Pruning population size in XCS for complex problems

DSpace Repository

Show simple item record

dc.contributor Wilhelm-Schickard-Institut de_CH
dc.contributor.author Rakitsch, Barbara de_DE
dc.contributor.author Bernauer, Andreas de_DE
dc.contributor.author Bringmann, Oliver de_DE
dc.contributor.author Rosenstiel, Wolfgang de_DE
dc.date.accessioned 2010-03-09 de_DE
dc.date.accessioned 2014-03-18T10:21:02Z
dc.date.available 2010-03-09 de_DE
dc.date.available 2014-03-18T10:21:02Z
dc.date.issued 2010 de_DE
dc.identifier.other 32060652X de_DE
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-45937 de_DE
dc.identifier.uri http://hdl.handle.net/10900/49387
dc.description.abstract In this report, we show how to prune the population size of the Learning Classifier System XCS for complex problems. We say a problem is complex, when the number of specified bits of the optimal start classifiers (the prob lem dimension) is not constant. First, we derive how to estimate an equiv- alent problem dimension for complex problems based on the optimal start classifiers. With the equivalent problem dimension, we calculate the optimal maximum population size just like for regular problems, which has already been done. We empirically validate our results. Furthermore, we introduce a subsumption method to reduce the number of classifiers. In contrast to existing methods, we subsume the classifiers after the learning process, so subsuming does not hinder the evolution of optimal classifiers, which has been reported previously. After subsumption, the number of classifiers drops to about the order of magnitude of the optimal classifiers while the correctness rate nearly stays constant. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights cc_by-nc-nd de_DE
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.de de_DE
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en en
dc.subject.classification Optimierung , Genetischer Algorithmus de_DE
dc.subject.ddc 004 de_DE
dc.subject.other Learning Classifier Systems , XCS en
dc.title Pruning population size in XCS for complex problems en
dc.type Report de_DE
dc.date.updated 2012-10-11 de_DE
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.publikation.typ report de_DE
utue.opus.id 4593 de_DE
utue.opus.portal wsi de_DE
utue.opus.portalzaehlung 2010.02000 de_DE
utue.publikation.source WSI ; 2010 ; 2 de_DE
utue.publikation.reihenname WSI-Reports - Schriftenreihe des Wilhelm-Schickard-Instituts für Informatik de_DE
utue.publikation.zsausgabe 2010, 2
utue.publikation.erstkatid 2919855-0

Dateien:

This item appears in the following Collection(s)

Show simple item record

cc_by-nc-nd Except where otherwise noted, this item's license is described as cc_by-nc-nd