An Interdisciplinary Approach to Human Pose Estimation: Application to Sign Language

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Lensch, Hendrik (Prof. Dr.)
dc.contributor.author Forte, Maria-Paola
dc.date.accessioned 2025-11-27T12:46:33Z
dc.date.available 2025-11-27T12:46:33Z
dc.date.issued 2025-11-27
dc.identifier.uri http://hdl.handle.net/10900/172679
dc.identifier.uri http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1726793 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-114004
dc.description.abstract Accessibility legislation mandates equal access to information for Deaf communities. While videos of human interpreters provide optimal accessibility, they are costly and impractical for frequently updated content. AI-driven signing avatars offer a promising alternative, but their development is limited by the lack of high-quality 3D motion-capture data at scale. Vision-based motion-capture methods are scalable but struggle with the rapid hand movements, self-occlusion, and self-touch that characterize sign language. To address these limitations, this dissertation develops two complementary solutions. SGNify improves hand pose estimation by incorporating universal linguistic rules that apply to all sign languages as computational priors. Proficient signers recognize the reconstructed signs as accurately as those in the original videos, but depth ambiguities along the camera axis can still produce incorrect reconstructions for signs involving self-touch. To overcome this remaining limitation, BioTUCH integrates electrical bioimpedance sensing between the wrists of the person being captured. Systematic measurements show that skin-to-skin contact produces distinctive bioimpedance reductions at high frequencies (240 kHz to 4.1 MHz), enabling reliable contact detection. BioTUCH uses the timing of these self-touch events to refine arm poses, producing physically plausible arm configurations and significantly reducing reconstruction error. Together, these contributions support the scalable collection of high-quality 3D sign language motion data, facilitating progress toward AI-driven signing avatars. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights cc_by-nc-nd de_DE
dc.rights ubt-podok de_DE
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.de de_DE
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en en
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.ddc 004 de_DE
dc.title An Interdisciplinary Approach to Human Pose Estimation: Application to Sign Language en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2025-11-07
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige

cc_by-nc-nd Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: cc_by-nc-nd