dc.contributor.advisor |
Lensch, Hendrik P. A. (Prof. Dr.) |
|
dc.contributor.author |
Mallick, Arijit |
|
dc.date.accessioned |
2025-10-13T09:22:38Z |
|
dc.date.available |
2025-10-13T09:22:38Z |
|
dc.date.issued |
2025-10-13 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/170931 |
|
dc.identifier.uri |
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1709319 |
de_DE |
dc.description.abstract |
This research provides a comprehensive analysis of multi-view scene interpretation, leveraging deep learning models to enhance input image quality. We delve into tasks ranging from low-level view interpolation to high-level 3D reconstruction and burst image denoising. Our approach leverages deep learning techniques and innovative methodologies to overcome limitations in existing classical and learning methods. We introduce a novel view interpolation technique that generates intermediate frames accurately without requiring additional geometric input. This method lays the foundation for our subsequent work on multi-view 3D reconstruction. To address the lack of ground truth depth information in 3D reconstruction, we propose a meta-learning and unsupervised approach to tackle the classic problem of multi-view stereo. We also tackle the issue of low-resolution depth maps by introducing a depth enhancing transformer-CNN hybrid module. Finally, we explore burst image denoising, proposing a model that utilizes multiple image alignment and feature volume merging to achieve state-of-the-art performance. Our research contributes significantly to the field of computer vision and has potential applications in various domains. |
en |
dc.language.iso |
en |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-podno |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en |
en |
dc.subject.classification |
Deep Learning , Machine learning , Computer graphics , Machine vision , MVS , Image processing |
de_DE |
dc.subject.ddc |
004 |
de_DE |
dc.title |
Advancing Multi-View Scene Interpretation: Leveraging Deep Learning for Optimized Input Image Analysis |
en |
dc.type |
PhDThesis |
de_DE |
dcterms.dateAccepted |
2025-07-11 |
|
utue.publikation.fachbereich |
Informatik |
de_DE |
utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
utue.publikation.noppn |
yes |
de_DE |