Advancing Multi-View Scene Interpretation: Leveraging Deep Learning for Optimized Input Image Analysis

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Lensch, Hendrik P. A. (Prof. Dr.)
dc.contributor.author Mallick, Arijit
dc.date.accessioned 2025-10-13T09:22:38Z
dc.date.available 2025-10-13T09:22:38Z
dc.date.issued 2025-10-13
dc.identifier.uri http://hdl.handle.net/10900/170931
dc.identifier.uri http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1709319 de_DE
dc.description.abstract This research provides a comprehensive analysis of multi-view scene interpretation, leveraging deep learning models to enhance input image quality. We delve into tasks ranging from low-level view interpolation to high-level 3D reconstruction and burst image denoising. Our approach leverages deep learning techniques and innovative methodologies to overcome limitations in existing classical and learning methods. We introduce a novel view interpolation technique that generates intermediate frames accurately without requiring additional geometric input. This method lays the foundation for our subsequent work on multi-view 3D reconstruction. To address the lack of ground truth depth information in 3D reconstruction, we propose a meta-learning and unsupervised approach to tackle the classic problem of multi-view stereo. We also tackle the issue of low-resolution depth maps by introducing a depth enhancing transformer-CNN hybrid module. Finally, we explore burst image denoising, proposing a model that utilizes multiple image alignment and feature volume merging to achieve state-of-the-art performance. Our research contributes significantly to the field of computer vision and has potential applications in various domains. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podno de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en en
dc.subject.classification Deep Learning , Machine learning , Computer graphics , Machine vision , MVS , Image processing de_DE
dc.subject.ddc 004 de_DE
dc.title Advancing Multi-View Scene Interpretation: Leveraging Deep Learning for Optimized Input Image Analysis en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2025-07-11
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige