Towards Disentangled Representation Learning in Practice

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Brendel, Wieland (Prof. Dr.)
dc.contributor.author Sharma, Yash
dc.date.accessioned 2025-09-08T09:34:24Z
dc.date.available 2025-09-08T09:34:24Z
dc.date.issued 2025-09-08
dc.identifier.uri http://hdl.handle.net/10900/170059
dc.identifier.uri http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1700593 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-111386
dc.description.abstract While the success of deep learning is underpinned by learning representations of data, what information the learned representations extract remains a mystery. In our first contribution (C1), we show that state-of-the-art approaches to self-supervised visual representation learning extract the aspects, or factors of variation (FoVs), of the data that are invariant to data augmentations applied during training, discarding the variant FoVs. In studying augmentations used in practice, we find that while object class is left invariant, position, hue, and rotation information tend to be discarded, which is problematic for tasks outside of object recognition, e.g. object localization. In our second contribution (C2), we show that such approaches can yield \emph{disentangled} representations, where all FoVs are extracted separately in the representation, if all FoVs are variant to the augmentations, an assumption that notably isn't met by augmentations used in practice. In our third contribution (C3), we show evidence that this assumption can be met in natural video, where FoVs undergo transitions that are typically small in magnitude with occasional large jumps, characteristic of a temporally sparse distribution. While challenges remain for real-world disentanglement, our contributions provide guidance to the field in the pursuit of progress in representation learning. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podno de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en en
dc.subject.ddc 004 de_DE
dc.subject.other representation learning en
dc.subject.other disentanglement en
dc.subject.other self-supervised learning en
dc.subject.other unsupervised learning en
dc.subject.other concept learning en
dc.title Towards Disentangled Representation Learning in Practice en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2024-09-16
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige