dc.contributor.author |
Sichermann, Marleen |
|
dc.contributor.author |
Dietz, Katharina |
|
dc.contributor.author |
Kögel, Jochen |
|
dc.contributor.author |
Meier, Sebastian |
|
dc.contributor.author |
Geißler, Stefan |
|
dc.contributor.author |
Hoßfeld, Tobias |
|
dc.date.accessioned |
2025-04-03T05:20:32Z |
|
dc.date.available |
2025-04-03T05:20:32Z |
|
dc.date.issued |
2025-04-03 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/163783 |
|
dc.identifier.uri |
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1637831 |
de_DE |
dc.identifier.uri |
http://dx.doi.org/10.15496/publikation-105113 |
|
dc.description.abstract |
Anomaly detection in enterprise networks is crucial
for cybersecurity, system monitoring, and identifying outages.
Despite extensive academic research, practical deployment of
proposed mechanisms remains rare. The VIPNANO project
investigates key shortcomings in academic approaches, focusing
on two major obstacles: (1) reliance on unrealistic datasets that
fail to reflect real-world complexity, and (2) overly complex machine
learning models with impractical computational overhead.
Additionally, we highlight a critical gap – the lack of rigorous
real-world validation. Through systematic analysis, we emphasize
the need to prioritize realistic data, scalability, and verifiable
solutions to bridge the gap between theory and deployment. |
en |
dc.language.iso |
en |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.subject.ddc |
004 |
de_DE |
dc.title |
VIPNANO: Monitoring of Virtual Private Cloud Networks for Automated Anomaly Detection |
en |
dc.type |
Article |
de_DE |
utue.publikation.fachbereich |
Informatik |
de_DE |
utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
utue.publikation.noppn |
yes |
de_DE |