VIPNANO: Monitoring of Virtual Private Cloud Networks for Automated Anomaly Detection

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.author Sichermann, Marleen
dc.contributor.author Dietz, Katharina
dc.contributor.author Kögel, Jochen
dc.contributor.author Meier, Sebastian
dc.contributor.author Geißler, Stefan
dc.contributor.author Hoßfeld, Tobias
dc.date.accessioned 2025-04-03T05:20:32Z
dc.date.available 2025-04-03T05:20:32Z
dc.date.issued 2025-04-03
dc.identifier.uri http://hdl.handle.net/10900/163783
dc.identifier.uri http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1637831 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-105113
dc.description.abstract Anomaly detection in enterprise networks is crucial for cybersecurity, system monitoring, and identifying outages. Despite extensive academic research, practical deployment of proposed mechanisms remains rare. The VIPNANO project investigates key shortcomings in academic approaches, focusing on two major obstacles: (1) reliance on unrealistic datasets that fail to reflect real-world complexity, and (2) overly complex machine learning models with impractical computational overhead. Additionally, we highlight a critical gap – the lack of rigorous real-world validation. Through systematic analysis, we emphasize the need to prioritize realistic data, scalability, and verifiable solutions to bridge the gap between theory and deployment. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.subject.ddc 004 de_DE
dc.title VIPNANO: Monitoring of Virtual Private Cloud Networks for Automated Anomaly Detection en
dc.type Article de_DE
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige