dc.contributor.author |
Olthof, Susann-Cathrin |
|
dc.contributor.author |
Leyhr, Daniel |
|
dc.contributor.author |
Afat, Saif |
|
dc.contributor.author |
Nikolaou, Konstantin |
|
dc.contributor.author |
Preibsch, Heike |
|
dc.date.accessioned |
2024-11-19T10:53:12Z |
|
dc.date.available |
2024-11-19T10:53:12Z |
|
dc.date.issued |
2024 |
|
dc.identifier.issn |
2075-4418 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/158976 |
|
dc.language.iso |
en |
de_DE |
dc.publisher |
Basel : Mdpi |
de_DE |
dc.relation.uri |
http://dx.doi.org/10.3390/diagnostics14161742 |
de_DE |
dc.subject.ddc |
610 |
de_DE |
dc.title |
Optimizing Image Quality with High-Resolution, Deep-Learning-Based Diffusion-Weighted Imaging in Breast Cancer Patients at 1.5 T |
de_DE |
dc.type |
Article |
de_DE |
utue.quellen.id |
20241001000000_00560 |
|
utue.personen.roh |
Olthof, Susann-Cathrin |
|
utue.personen.roh |
Weiland, Elisabeth |
|
utue.personen.roh |
Benkert, Thomas |
|
utue.personen.roh |
Wessling, Daniel |
|
utue.personen.roh |
Leyhr, Daniel |
|
utue.personen.roh |
Afat, Saif |
|
utue.personen.roh |
Nikolaou, Konstantin |
|
utue.personen.roh |
Preibsch, Heike |
|
dcterms.isPartOf.ZSTitelID |
Diagnostics |
de_DE |
dcterms.isPartOf.ZS-Issue |
Article 1742 |
de_DE |
dcterms.isPartOf.ZS-Volume |
14 (16) |
de_DE |
utue.fakultaet |
04 Medizinische Fakultät |
de_DE |
utue.fakultaet |
06 Wirtschafts- und sozialwissenschaftliche Fakultät |
de_DE |