Hodge Theory of Nondegenerate Minimal Toric Hypersurfaces

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Batyrev, Victor (Prof. Dr.)
dc.contributor.author Giesler, Julius
dc.date.accessioned 2023-12-21T08:23:17Z
dc.date.available 2023-12-21T08:23:17Z
dc.date.issued 2023-12-21
dc.identifier.uri http://hdl.handle.net/10900/148801
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1488019 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-90141
dc.description.abstract In this thesis we study toric hypersurfaces in the context of higher-dimensional algebraic geometry. The topics are quite complicated but restricting to generic situations and almost smooth birational models (minimal models), we are able to get good results. We ask how to calculate invariants like the Plurigenera or the Hodge numbers of toric hypersurfaces. Deforming such hypersurfaces within the surrounding toric variety we study a Kodaira-Spencer map, parameterizing infinitesimal deformations one-to-one and the infinitesimal Torelli theorem, bridging deformation theory and Hodge theory, both by very explicit formulas, though for this part we restrict to surfaces in toric 3-folds. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.ddc 510 de_DE
dc.subject.other Toric Hypersurfaces en
dc.subject.other Newton Polytope en
dc.subject.other Plurigenera en
dc.subject.other Kodaira-Spencer map en
dc.subject.other Infinitesimal deformations en
dc.subject.other Infinitesimal Torelli Theorem en
dc.title Hodge Theory of Nondegenerate Minimal Toric Hypersurfaces en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2023-12-14
utue.publikation.fachbereich Mathematik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.source ein Teil der Arbeit wird erscheinen im Journal of Combinatorial Algebra, Status: Zur Veröffentlichung zugelassen. de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige