Adipose stem cell-derived extracellular matrix – comparative characterization and evaluation as a biomaterial

DSpace Repository


Dokumentart: Dissertation
Date: 2022-06-08
Language: English
Faculty: 7 Mathematisch-Naturwissenschaftliche Fakultät
Department: Biologie
Advisor: Schenke-Layland, Katja (Prof. Dr.)
Day of Oral Examination: 2022-05-20
DDC Classifikation: 000 - Computer science, information and general works
570 - Life sciences; biology
Other Keywords:
Extracellular Matrix
Adipose derived stem cells
License: Publishing license excluding print on demand
Show full item record


The extracellular matrix (ECM) is the non-cellular part of tissues and represents the natural environment of the cells. Next to structural stability, it provides various physical, chemical, and mechanical cues that strongly regulate and influence cellular behavior and are required for tissue morphogenesis, differentiation, and homeostasis. Due to its promising characteristics, ECM is used in a wide range of tissue engineering and regenerative medicine approaches as a biomaterial for coatings and scaffolds. To date, there are two sources for ECM material. First, native ECM is generated by the removal of the residing cells of a tissue or organ (decellularized ECM; dECM). Secondly, cell-derived ECM (cdECM) can be generated by and isolated from in vitro cultured cells. Although both types of ECM were intensively used for tissue engineering and regenerative medicine approaches, studies directly characterizing and comparing them are rare. Hence, in the first part of this thesis, dECM from adipose tissue and cdECM from stem cells and adipogenic differentiated stem cells from adipose tissue (ASCs) were characterized towards their macromolecular composition, structural features, and biological purity. The dECM was found to exhibit higher levels of collagens and lower levels of sulfated glycosaminoglycans compared to cdECMs. Structural characteristics revealed an immature state of collagen fibers in cdECM samples. The obtained results revealed differences between the two ECMs that can relevantly impact cellular behavior and subsequently experimental outcome and should therefore be considered when choosing a biomaterial for a specific application. The establishment of a functional vascular system in tissue constructs to realize an adequate nutrient supply remains challenging. In the second part, the supporting effect of cdECM on the self‐assembled formation of prevascular‐like structures by microvascular endothelial cells (mvECs) was investigated. It could be observed that cdECM, especially adipogenic differentiated cdECM, enhanced the formation of prevascular-like structures. An increased concentration of proangiogenic factors was found in cdECM substrates. The demonstration of cdECMs capability to induce the spontaneous formation of prevascular‐like structures by mvECs highlights cdECM as a promising biomaterial for adipose tissue engineering. Depending on the purpose of the ECM material chemical modification might be necessary. In the third and last part, the chemical functionalization of cdECM with dienophiles (terminal alkenes, cyclopropene) by metabolic glycoengineering (MGE) was demonstrated. MGE allows the chemical functionalization of cdECM via the natural metabolism of the cells and without affecting the chemical integrity of the cdECM. The incorporated dienophile chemical groups can be specifically addressed via catalysts-free, cell-friendly inverse electron-demand Diels‐Alder reaction. Using this system, the successful modification of cdECM from ASCs with an active enzyme could be shown. The possibility to modify cdECM via a cell-friendly chemical reaction opens up a wide range of possibilities to improve cdECM depending on the purpose of the material. Altogether, this thesis highlighted the differences between adipose dECM and cdECM from ASCs and demonstrated cdECM as a promising alternative to native dECM for application in tissue engineering and regenerative medicine approaches.

This item appears in the following Collection(s)