dc.contributor.advisor |
Lang, Florian (Prof. Dr.) |
|
dc.contributor.author |
Al Maghout, Tamer |
|
dc.date.accessioned |
2020-11-09T11:21:13Z |
|
dc.date.available |
2020-11-09T11:21:13Z |
|
dc.date.issued |
2020-11-09 |
|
dc.identifier.other |
1738269264 |
de_DE |
dc.identifier.uri |
http://hdl.handle.net/10900/109332 |
|
dc.identifier.uri |
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1093320 |
de_DE |
dc.identifier.uri |
http://dx.doi.org/10.15496/publikation-50709 |
|
dc.identifier.uri |
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1093325 |
de_DE |
dc.identifier.uri |
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1093329 |
de_DE |
dc.description.abstract |
Transforming Growth Factor β1 (TGFβ1) plays an important role in the maturation of megakaryocyte and formation of platelets. TGFβ1 can up-regulate Ca2+ entry through store operated Ca2+ entry (SOCE) and on the contrary, it can up-regulate Ca2+ exclusion by upregulating the activity of Na+/Ca2+ exchangers. TGFβ1 first enhances the increase of intracellular Ca2+ triggered by the release of Ca2+ from intracellular stores, then it enhances the subsequent decline of [Ca2+]i.
The mechanism of action, by which TGFβ1 up-regulates SOCE, is based on a signalling pathway requires the activation of p38 MAP Kinase, Serum & Glucocorticoid inducible Kinase (SGK1), and Nuclear Factor κB (NFκB). On the other hand, the mechanism of action, by which TGFβ1 upregulates Na+/Ca2+ exchangers remained unidentified, as well as the specific Na+/Ca2+ exchanger isoforms involved in the process of up-regulation. The present study aimed to identify, whether TGFβ1 influences the expression and activity of K+-independent (NCX) and K+-dependent (NCKX) Na+/Ca2+ exchangers, and aimed also to explore the signalling involved.
Methods: In human megakaryocytic cells (MEG01), Fura-2 fluorescence was utilized to observe cytosolic Ca2+ activity [Ca2+]i. The activity of Na+/Ca2+ exchanger was studied by observing the rise in [Ca2+]i resulting from changing the extracellular solution from a solution with 0 mM Ca2+ and 130 mM Na+ to a solution with 2 mM Ca2+ and 0 Na+. For analysis of NCX, the concentration of K+ was 0 mM. For analysis of NCKX, the concentration of K+ was 40 mM. In order to quantify transcription levels of NCX/NCKX isoform, RT-PCR was applied.
Results: TGFβ1 (60 ng/ml, 24 h) was found to increase significantly the transcription levels of certain isoforms of NCX/NCKX including: NCX1, NCKX1, NCKX2 and NCKX5. Additionally, the activity of NCX and NCKX was shown to be increased significantly in the presence of TGFβ1 (60 ng/ml, 24 h). Skepinone-L (1 μM), a p38 MAP Kinase inhibitor, caused a significant downregulation of the effect of TGFβ1 on both transcription levels and activity of NCX and NCKX. GSK-650394 (10 μM), an inhibitor of SGK1, and Wogonin (100 μM), and inhibitor of NFκB, caused a significant downregulation of the effect of TGFβ1 on the activity of NCX and NCKX.
Conclusions: P38 MAP Kinase, SGK1 and NFκB are involved in the signaling pathway by which TGFβ1 increases the activity of Na+/Ca2+ exchanger and the transcription levels of NCX1, NCKX1, NCKX2, and NCKX5. |
en |
dc.language.iso |
en |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-podok |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en |
en |
dc.subject.classification |
Transforming Growth Factor beta 1 |
de_DE |
dc.subject.ddc |
500 |
de_DE |
dc.title |
P38 Kinase, SGK1 and NF-κB Dependent Up-Regulation of Na+/Ca2+ Exchanger Expression and Activity Following TGFß1 Treatment of Megakaryocytes |
en |
dc.type |
PhDThesis |
de_DE |
dcterms.dateAccepted |
2020-09-08 |
|
utue.publikation.fachbereich |
Biochemie |
de_DE |
utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |