Discrete time and continuous time dynamic mean-variance analysis

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.author Reiss, Ariane de_DE
dc.date.accessioned 2005-12-12 de_DE
dc.date.accessioned 2014-03-18T10:02:23Z
dc.date.available 2005-12-12 de_DE
dc.date.available 2014-03-18T10:02:23Z
dc.date.issued 1999 de_DE
dc.identifier.other 251817865 de_DE
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-21121 de_DE
dc.identifier.uri http://hdl.handle.net/10900/47443
dc.description.abstract Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead of exceeding the goal. The optimal strategy for n risky assets can be decomposed into a locally mean-variance efficient strategy and a strategy that ensures optimum diversification across time. In continuous time, a dynamically mean-variance efficient portfolio is infeasible due to the constraint on the expected level of terminal wealth. A modified problem where mean and variance are determined at t=0 was solved by Richardson (1989). The solution is discussed and generalized for a market with n risky assets. Moreover, a dynamically optimal strategy is presented for the objective of minimizing the expected quadratic deviation from a certain target level subject to a given mean. This strategy equals that of the first objective. The strategy can be reinterpreted as a two-fund strategy in the growth optimum portfolio and the risk-free asset. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podno de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en en
dc.subject.classification Portfolio Selection de_DE
dc.subject.ddc 330 de_DE
dc.subject.other Dynamic Optimization , Growth Optimum Portfolio , Mean-Variance-Efficiency , Minimum Deviation , Portfolio Selection , Two-Fund Theorem en
dc.title Discrete time and continuous time dynamic mean-variance analysis en
dc.type WorkingPaper de_DE
utue.publikation.fachbereich Wirtschaftswissenschaften de_DE
utue.publikation.fakultaet 6 Wirtschafts- und Sozialwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.publikation.typ workingPaper de_DE
utue.opus.id 2112 de_DE
utue.opus.portal wiwidisk de_DE
utue.opus.portalzaehlung 168.00000 de_DE
utue.publikation.source Tübinger Diskussionsbeiträge der Wirtschaftswissenschaftlichen Fakultät ; 168 de_DE
utue.publikation.reihenname Tübinger Diskussionsbeitrag de_DE
utue.publikation.zsausgabe 168
utue.publikation.erstkatid 2136475-8

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige