dc.contributor.author |
Reiss, Ariane |
de_DE |
dc.date.accessioned |
2005-12-12 |
de_DE |
dc.date.accessioned |
2014-03-18T10:02:23Z |
|
dc.date.available |
2005-12-12 |
de_DE |
dc.date.available |
2014-03-18T10:02:23Z |
|
dc.date.issued |
1999 |
de_DE |
dc.identifier.other |
251817865 |
de_DE |
dc.identifier.uri |
http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-21121 |
de_DE |
dc.identifier.uri |
http://hdl.handle.net/10900/47443 |
|
dc.description.abstract |
Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead of exceeding the goal. The optimal strategy for n risky assets can be decomposed into a locally mean-variance efficient strategy and a strategy that ensures optimum diversification across time. In continuous time, a dynamically mean-variance efficient portfolio is infeasible due to the constraint on the expected level of terminal wealth. A modified problem where mean and variance are determined at t=0 was solved by Richardson (1989). The solution is discussed and generalized for a market with n risky assets. Moreover, a dynamically optimal strategy is presented for the objective of minimizing the expected quadratic deviation from a certain target level subject to a given mean. This strategy equals that of the first objective. The strategy can be reinterpreted as a two-fund strategy in the growth optimum portfolio and the risk-free asset. |
en |
dc.language.iso |
en |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-podno |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en |
en |
dc.subject.classification |
Portfolio Selection |
de_DE |
dc.subject.ddc |
330 |
de_DE |
dc.subject.other |
Dynamic Optimization , Growth Optimum Portfolio , Mean-Variance-Efficiency , Minimum Deviation , Portfolio Selection , Two-Fund Theorem |
en |
dc.title |
Discrete time and continuous time dynamic mean-variance analysis |
en |
dc.type |
WorkingPaper |
de_DE |
utue.publikation.fachbereich |
Wirtschaftswissenschaften |
de_DE |
utue.publikation.fakultaet |
6 Wirtschafts- und Sozialwissenschaftliche Fakultät |
de_DE |
dcterms.DCMIType |
Text |
de_DE |
utue.publikation.typ |
workingPaper |
de_DE |
utue.opus.id |
2112 |
de_DE |
utue.opus.portal |
wiwidisk |
de_DE |
utue.opus.portalzaehlung |
168.00000 |
de_DE |
utue.publikation.source |
Tübinger Diskussionsbeiträge der Wirtschaftswissenschaftlichen Fakultät ; 168 |
de_DE |
utue.publikation.reihenname |
Tübinger Diskussionsbeitrag |
de_DE |
utue.publikation.zsausgabe |
168 |
|
utue.publikation.erstkatid |
2136475-8 |
|