dc.contributor.author | Goswami, Bedartha | |
dc.date.accessioned | 2025-02-12T12:22:58Z | |
dc.date.available | 2025-02-12T12:22:58Z | |
dc.date.issued | 2024-12-04 | |
dc.identifier.uri | http://hdl.handle.net/10900/161953 | |
dc.language.iso | en | de_DE |
dc.publisher | arXiv | de_DE |
dc.relation.uri | https://doi.org/10.48550/arXiv.2412.03743 | de_DE |
dc.subject.ddc | 004 | de_DE |
dc.title | A Hybrid Deep-Learning Model for El Niño Southern Oscillation in the Low-Data Regime | de_DE |
dc.type | Preprint | de_DE |
utue.personen.roh | Schlör, Jakob | |
utue.personen.roh | Newman, Matthew | |
utue.personen.roh | Thuemmel, Jannik | |
utue.personen.roh | Capotondi, Antonietta | |
utue.personen.roh | Goswami, Bedartha |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |