| dc.contributor.author | 
Gao, Yapeng | 
 | 
| dc.contributor.author | 
Tebbe, Jonas | 
 | 
| dc.contributor.author | 
Zell, Andreas | 
 | 
| dc.date.accessioned | 
2023-10-11T09:13:37Z | 
 | 
| dc.date.available | 
2023-10-11T09:13:37Z | 
 | 
| dc.date.issued | 
2022-10-08 | 
 | 
| dc.identifier.issn | 
0924-669X | 
 | 
| dc.identifier.uri | 
http://hdl.handle.net/10900/146138 | 
 | 
| dc.language.iso | 
en | 
de_DE | 
| dc.publisher | 
Springer Link | 
de_DE | 
| dc.relation.uri | 
http://dx.doi.org/10.1007/s10489-022-04131-w | 
de_DE | 
| dc.subject.ddc | 
004 | 
de_DE | 
| dc.title | 
Optimal stroke learning with policy gradient approach for robotic table tennis | 
de_DE | 
| dc.type | 
Article | 
de_DE | 
| utue.quellen.id | 
20230619000000_02021 | 
 | 
| utue.publikation.seiten | 
13309-13322 | 
de_DE | 
| utue.personen.roh | 
Gao, Yapeng | 
 | 
| utue.personen.roh | 
Tebbe, Jonas | 
 | 
| utue.personen.roh | 
Zell, Andreas | 
 | 
| dcterms.isPartOf.ZSTitelID | 
Applied Intelligence | 
de_DE | 
| dcterms.isPartOf.ZS-Issue | 
11 | 
de_DE | 
| dcterms.isPartOf.ZS-Volume | 
53 | 
de_DE | 
| utue.fakultaet | 
07 Mathematisch-Naturwissenschaftliche Fakultät | 
de_DE |