Can we predict real-timefMRIneurofeedback learning success from pretraining brain activity?

DSpace Repository

Can we predict real-timefMRIneurofeedback learning success from pretraining brain activity?

Author: Haugg, Amelie; Sladky, Ronald; Skouras, Stavros; McDonald, Amalia; Craddock, Cameron; Kirschner, Matthias; Herdener, Marcus; Koush, Yury; Papoutsi, Marina; Keynan, Jackob N.; Hendler, Talma; Cohen Kadosh, Kathrin; Zich, Catharina; MacInnes, Jeff; Adcock, Alison; Dickerson, Kathryn; Chen, Nan-Kuei; Young, Kymberly; Bodurka, Jerzy; Yao, Shuxia; Becker, Benjamin; Auer, Tibor; Schweizer, Renate; Pamplona, Gustavo; Emmert, Kirsten; Haller, Sven; van de Ville, Dimitri; Blefari, Maria-Laura; Kim, Dong-Youl; Lee, Jong-Hwan; Marins, Theo; Fukuda, Megumi; Sorger, Bettina; Kamp, Tabea; Liew, Sook-Lei; Veit, Ralf; Spetter, Maartje; Weiskopf, Nikolaus; Scharnowski, Frank
Tübinger Autor(en):
Veit, Ralf
Published in: Human Brain Mapping (2020), Bd. 41, H. 14, S. 3839-3854
Verlagsangabe: Wiley
Language: English
Full text: http://dx.doi.org/10.1002/hbm.25089
ISSN: 1097-0193
DDC Classifikation: 610 - Medicine and health
570 - Life sciences; biology
Dokumentart: Article
Show full item record

This item appears in the following Collection(s)