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2. Summary 

 

Late Pleistocene lithic assemblages from North (Leang Sarru) and Central Sulawesi 

(Topogaro) were subjected to multi-stage use-wear analysis. This study provides 

new perspectives on seemingly simple flaked tools from Island Southeast Asia 

(ISEA). The results indicate the production of specialised organic-based 

technologies and varying technological developments on different locations c. 35kya. 

Analysis of stone tools from Leang Sarru have micro traces indicating intensive plant 

working while animal bone processing was more evident in Topogaro. Furthermore, 

evidence of composite tool technology using amorphous flakes as hafted 

implements, plant processing (polish and plant residues), and deliberate tool 

modification to create concave notched working edges indicate a complexity that is 

in contrast to previous assessments of stone tool technology as being undeveloped 

and stagnant. Current perspectives on amorphous expedient technologies should be 

reassessed, particularly since microscopic use-wear analysis clearly shows the 

potential to address issues on the lithic technology in ISEA that might have been 

missed by techno-typological approach, such as multi-functionality and variability of 

tool use. This research complements previous studies on amorphous flake tools, 

provides new significant results from a functional perspective, and scrutinises 

established but poorly substantiated concepts such as ‘unchanging technology’, 

‘bamboo technology’, and ‘smash-and-grab’ strategy in the framework of a more 

encompassing traceological identification of prehistoric activities.  
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Zusammenfassung 

 

Diese Forschungsarbeit stellt die erste mehrstufige Gebrauchsspurenanalyse von 

Steingeräteinventaren aus zwei Fundstellen aus Nord- und Mittel-Sulawesi dar, 

Leang Sarru und Topogaro. Die Ergebnisse dieser Untersuchungen werden dabei 

mit bereits durchgeführten Studien von Inventaren von den nördlich von 

Sulawesi gelegenen Philippinen verglichen. Diese Dissertation eröffnet neue 

Perspektiven hinsichtlich der scheinbar einfachen und unentwickelten Steingeräte, 

die typisch für die Inselregion Südostasiens (ISEA) sind. Die Ergebnisse zeigen 

unterschiedliche technologische Entwicklungen innerhalb der Region ab ca. 35.000 

Jahre vor heute. Die Steinwerkzeuge mit Gebrauchsspuren aus Leang Sarru weisen 

überwiegend Spuren intensiver Pflanzenbearbeitung auf. Demgegenüber war in 

Topogaro die Verarbeitung von Tierknochen, vermutlich zur Herstellung von 

Werkzeugen und Geräten, stärker ausgeprägt. Beiden Standorten gemeinsam ist 

das Vorhandensein deutlicher Hinweise auf Technologien, die auf organischen 

Materialien basierten. Darüber hinaus fanden sich Hinweise auf Kompositgeräte, 

wobei einfache amorphe Abschläge als Werkzeuge in Schäftungen eingesetzt 

wurden, sowie eine ausgeprägte Verarbeitung pflanzlicher Materialien, insbesondere 

phytolithenreicher Gräser (Mikropolituren und Pflanzenresiduen). Dies und die 

systematische Anfertigung gekerbter Arbeitskanten lassen eine funktionale 

Komplexität aufscheinen, die im starken Gegensatz zu früheren Betrachtungen der 

Steinwerkzeugtechnologie in dieser Region als rückständig und unentwickelt steht. 

Derartige noch immer etablierte Ansichten müssen daher unter funktionalen 

Gesichtspunkten neubewertet werden, besonders, da die Methoden der 

mikroskopischen Gebrauchsspurenanalyse Sachverhalte und Fragestellungen der 

Steingerätetechnologien in ISEA in umfassenderer Weise angehen können als die 

traditionell angewandten techno-typologischen Methoden. Diese besitzen gegenüber 

der Gebrauchsspurenanalyse klare Schwächen beim Erkennen komplexer 

technologischer Aspekte wie Multifunktionalität und Variabilität beim Gebrauch von 

Steinwerkzeugen. Diese Forschungsarbeit stellt nicht nur eine Ergänzung früherer 

Studien über einfache Abschlaggeräte dar, sondern liefert neue und 

forschungsrelevante Ergebnisse aus funktionaler Sicht. Sie hinterfragt etablierte, 

aber wenig fundierte Konzepte wie "unveränderte Technologie", 

„Bambustechnologie" und "Smash-and-Grab"-Strategie im Kontext 
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einer umfassenderen Gebrauchsspuren-Identifizierung prähistorischer Aktivitäten 

innerhalb Südostasiens. Darüber hinaus werden in dieser Arbeit auch 

Quantifizierungsmethoden von Gebrauchsspuren als Möglichkeit zur weiteren 

systematischen Behandlung der Schlüsselfragen der prähistorischen Technologie im 

Bereich des insularen Südostasiens behandelt. 
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3. General introduction 

 

A. Late Pleistocene modern human migrations towards Wallacea 

 

Migrations of anatomically modern humans towards Sahul during the Late 

Pleistocene is one of the most important issues in Island Southeast Asia. These 

early movements reflected the technological and behavioural adaptation of modern 

humans to island environments. Early open water crossing in ISEA by modern 

humans 50,000 years ago is evident in the permanent colonization of Sahul 

(Australia and New Guinea) (O’Connor, 2010). A group of islands located between 

Sahul and Sunda (mainland Southeast Asia), Wallacea is a hotspot for movements, 

material exchanges, and evidence for adaptations of AMH during the past 35-50kya. 

Open water voyages could have been possible due to technological capabilities of 

the first groups who were able to cross through Wallacea during periods of lowest 

sea levels (Fox, 1970; Pawlik and Ronquillo, 2003; Piper et al., 2008, 2011; 

O’Connell et al., 2010; O’Connor et al., 2011; Porr et al., 2012; Pawlik et al., 2014; 

Robles et al., 2014; Bird, 2019; Pawlik and Piper, 2019; Roberts and Amano, 2019). 

At the centre of current research in early modern migrations is the region called 

Wallacea, a biogeographical region between Sunda (mainland Southeast Asia 

including Palawan and Borneo. Theories regarding human migrations through 

Wallacea proposed two main routes – the Northern Route through Sulawesi towards 

Papua and the Southern Route passing through Java through Flores and towards 

North Australia (Birdsell, 1977; Kealy et al., 2017; Bird et al., 2019). Several key sites 

along the Southern Route, including Liang Bua, Jerimalai Cave, and Laili Cave, 

provided fossil artefact records associated with AMH (Moore et al., 2009; O’Connor 

et al., 2011; van der Bergh et al., 2009; Sutikna et al., 2016; Marwick et al., 2016; 

Hawkins et al., 2017).  

 

Current research on sea level rise and sea crossings in the region also indicates that 

sea crossings along the Northern Route had probably a higher rate of success 

(Kealy et al., 2016). The Northern Route would have led human migrations from 

Borneo to the western coastline of Sulawesi (Kealy et al., 2016). Although there are 

currently no fossils reported in Sulawesi, archaeological evidence such as rock art 

and stone tools indicate the arrival and colonisation the island of AMH of the region 
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at around 40kya in the southwestern section of Sulawesi (Aubert et al., 2014; Brumm 

et al., 2018). The central and northern sections of the island have been studied and 

explored since the 1970s (Bellwood 1976), however Pleistocene deposits were only 

discovered in the 1995 with the excavation of Leang Sarru (Tanudirjo, 2001, 2005), 

which was reopened in 2004 (Ono et al., 2010). Our current project involving two 

sites in North and Central Sulawesi indicates human occupation of cave sites 

beginning around 35-30 kya (Tanudirjo, 2001, 2005; Ono et al., 2010, in 

preparation). In this research use-wear analysis of lithic artefacts from two sites, 

Leang Sarru in North Sulawesi, and Topogaro in Central Sulawesi, was conducted. 

These sites produced the earliest evidence of human activities at c. 35-30kya in 

Central and North Sulawesi. This study provides new perspectives on the 

behavioural and technological adaptation to insular and coastal environments. 

 

Leang Sarru is a rockshelter situated in Salibabu Island, at the Talaud Islands in 

North Sulawesi. It was excavated in 1995 (Tanudirjo, 2001, 2005) and 2004 (Ono et 

al., 2010, 2015), revealing four main occupation phases (Ono et al., 2010). Stone 

tools made of chert were recovered from Leang Sarru indicating human presence as 

early as c. 35kya with the production of unretouched tools using hard hammer direct 

percussion technique. Morphological analyses were conducted by Tanudirjo (2001, 

2005) and Ono et al. (2010, 2015), describing the presence of gull wing flakes that 

were produced with repeated strikes on the same spot (on the core) resulting in 

negatives on the ventral face of the flakes. Retouched ‘scrapers’ recovered during 

the 2nd phase (LGM) were also identified. Overall, the lithic technology in Leang 

Sarru can be categorised as similar with amorphous flake traditions in the region but 

with few retouched pieces. On the other hand, Topogaro 1 and 2 were excavated in 

2016 (Ono et al., in preparation) and is an ongoing collaboration between Pusat 

Penelitian Arkeologi Nasional (ARKENAS, National Archaeology Research Centre, 

Jakarta, Indonesia), Balai Arkeologi (BALAR) Sulawesi Utara (Manado, Indonesia) 

and the National Museum of Ethnology (Osaka, Japan). Excavations in Central 

Sulawesi are still ongoing and so far, Topogaro 2 has C14 dates of c. 30kya at three 

meters below surface level while Topogaro 1 has first occupation layers dated to c. 

10kya. Initial results of the research indicate the arrival of AMH in the ‘north route’ 

(Birdsell, 1977; Bird et al., 2019) at least c. 30kya (Ono et al., in preparation).  
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B. Informal expedient lithic technology in ISEA 

 

The absence of formal tools has led researchers in ISEA to propose alternative 

views on the development of stone tool production in the region. Plant-based 

technology is one theory, supported mainly by the presence of use-wear traces 

attributed to contact with phytolith-rich plant species (e.g. Mijares, 2007; Lewis et al., 

2008; Brumm et al., 2018). However, experiments are limited to prove or disprove 

this claim. Direct evidence such as plant cells, fibres, and tissues from bamboo or 

grass families are rarely preserved on stone tools in the region. Another is the 

presence of organic technology, mainly bone tools, that have been recorded in some 

sites in ISEA, mainly Niah Cave, Borneo with evidence of hafted bone tools from the 

Late Pleistocene (Barton et al., 2009), Jerimalai, East Timor with shell fish hooks 

directly-dated between ~23 and 16kya (O’Connor et al., 2011), and sites in Mindoro, 

Philippines that delivered polished bone tools and shell adzes, a fishing gorge and 

flaked shell tools (dated to c. 30kya) (Pawlik et al., 2014, 2015; Pawlik and Piper, 

2019).  

 

Morphological analysis has been ineffective in identifying trends in the development 

of lithic technology in ISEA, often anchored on the premise that formal tools are 

absent in the region, implying ‘stagnated’ stone tool traditions (Movius, 1948; Coutts, 

1983; Patole-Edoumba, 2012). Based on traditional techno-typological cultural 

periods in Europe and Africa, the lithic industries in Wallacea are a dilemma because 

these do not fit the definitions of lithic technologists (Haidle and Pawlik, 2009; Pawlik, 

2009). This expedient technology from Late Pleistocene to historical period, has the 

same form and did not change even with the arrival of Austronesians and ceramic 

technology (Coutts and Wesson, 1980; Pawlik and Ronquillo, 2003; Mijares, 2007; 

Pawlik, 2009, 2010; Fuentes, 2015). It is further argued that the absence of formal 

tool types was the result of production and use of an organic- or plant-based 

technology. The bamboo hypothesis has been proposed to have existed in the 

region because of the ubiquity of bamboo species (Solheim, 1972; Pope, 1989; Bar-

Yosef et al., 2013) and also based on ethnographic and experimental studies 

(Xhauflair, 2014; Xhauflair et al., 2016, 2017). So far, this ongoing debate on 

whether plants replaced or complemented lithic materials in ISEA failed to point out 

complexity in uses and functions of lithic materials. Borel et al. (2013) addressed the 
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problem of studying flaked tools from the Early Holocene period of ISEA by 

combining data from use-wear and geometric-morphometric analyses of lithic 

assemblage from Song Terus (Java, Indonesia). The results suggest that form is not 

the main criterion in production and selection of stone tools rather it is the suitability 

for particular tasks (Borel et al., 2013). Formal tool types during the Late Pleistocene 

and Early Holocene are rare in ISEA. An example is the Toalean lithic industry or the 

Maros points, recovered from South Sulawesi. Maros points refer to the small, 

hollow-based point that are usually with saw-tooth margins (Mulvaney and Soejono, 

1970; Glover, 1976). This absence of formal tools, at least to standards applied to 

sites in Europe and Africa, led to a dilemma on how to categorise technology in the 

region (Pawlik, 2009).  

 

C. Use-wear analysis and typology dilemma 

 

Use-wear analysis is founded on the premise that certain traces on the surfaces of 

stone artefacts are caused by contact with certain types of materials (Semenov, 

1964; Keeley and Newcomer, 1977). In fracture mechanics, this is more commonly 

known as tribology, the science of rubbing surfaces. In archaeology, the actors 

include the artefact (stone tool) and the worked object (Yamada and Sawada, 1993). 

The same concept is being followed for the analysis of both experimental and actual 

prehistoric stone tools. Distinct use-wear traces are formed because of contact with 

different types of materials (e.g. Semenov, 1964; Tringham et al., 1974; Odell, 1977; 

Hayden, 1979; Keeley, 1980; Anderson-Gerfaud, 1981; Kamminga, 1979, 1982; 

Keeley, 1980; Odell, 1981, 1996; Vaughan, 1985; Unrath et al., 1986; Beyries, 1988; 

van Gijn, 1989, 2014; Pawlik, 1992, 1995, 2001, 2009; Anderson et al., 1993). 

Knowledge of use-wear traces is vital in the identification of prehistoric stone tool 

use, thus replicative experiments are necessary (Semenov, 1964; Keeley and 

Newcomer, 1977). Action-oriented experiments focuses on the development of use-

wear traces in a controlled setting while goal-oriented approach aims to understand 

the development of use-wear traces vis-à-vis the end product or goal (Vaughan, 

1985; Unrath et al., 1986). 

 

Two main approaches in lithic use-wear analysis developed through time – low 

power (examining scarring and rounding) and high power microscopy (examining  
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surface alterations, polish, and striations) (e.g. Keeley, 1976, 1977, 1978, 1980; 

Keeley and Newcomer, 1977; Odell 1977, 1979, 1981; Hayden, 1979; Odell and 

Odell-Vereecken, 1980; Kamminga, 1982). The low-power approach applies 

magnifications below 100x to identify edge scars and rounding. Vaughan (1985:10-

11) outlined the main classes of use-wear traces, which include microchipping - the 

scars along the edges of stone tools caused by intentional utilisation or in some 

cases non-use damage mechanisms (edge scarring – Odell, 1975; microflaking – 

Tringham et al., 1974; utilisation damage – Keeley and Newcomer, 1977; edge 

damage – Keeley, 1980; micro-esquillement and ébréchures – Dauvois 1977; 

retouche d'utilisation – Brézillon, 1977; and micro-écaillures – Anderson-Gerfaud, 

1982: 25). Rounding or smoothing of the working edges can also be observed in 

lower magnifications (Pawlik, 1992). In high-power approach, tool surfaces are 

observed using a modified reflected light microscope with differential interference 

contrast (DIC) at optical magnifications of 100-500x Odell, 1979; Keeley, 1980; 

Kamminga, 1982; Vaughan, 1985; Odell, 1996; Pawlik, 2001). Higher optical 

magnifications allow researchers to identify striations and polishes. Striations 

indicate the direction and type of motion while micropolishes indicate which type of 

contact materials were processed in the past (Semenov, 1964; Keeley, 1974; 

Hayden, 1979; Kamminga, 1982; Newcomer et al., 1986; Vaughan, 1985; Unrath et 

al., 1986; Fullagar, 1991; Pawlik, 2001, 2017).  

 

The processes of polish formation are still debated among use-wear analysts and 

three main theories emerged from this. The abrasion model (e.g. Crabtree, 1974; 

Dauvois, 1977; Diamond, 1979: Kamminga, 1979; Masson et al., 1981; Meeks et al., 

1982) suggests that “polish is produced by the gradual loss of surficial material 

(wearing down) and smoothing of those surfaces” (del Bene, 1979:172 as cited by 

Vaughan, 1985:13). The friction-fusion model proposes that the intense localised 

frictional heat in the main contact area of the stone tool causes silica to melt and 

fuse. This is the mechanism behind the formation of sickle gloss (Witthoft, 1967). 

The amorphous silica gel model suggests that silica and precipitates in an 

amorphous gel-like state and appears as highly reflective polish. Furthermore, it 

causes particles of the worked material to be embedded in this gel (Anderson-

Gerfaud, 1981, 1982). Vaughan (1985) outlined three stages of development of 

polish in experimental tools. First, generic weak refers to the dull polish, which is, 
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nonetheless, somewhat brighter than the natural reflective background of the flint, 

yet less reflective than a well-developed polish on the same surface. Smooth-pitted 

refers to the individual small polish components, with smooth surfaces, formed on 

the higher points of the microtopography of a generic weak polish contact area. The 

components of the polish can be said to be incompletely linked, thus there are 

numerous darker interstitial spaces between the polished sections referred to as 

micropits. The final stage in polish formation, called well-developed, is characterised 

by the increase in intensity of reflection and increase in linkages between the 

affected areas (Vaughan, 1985:29-30).  

 

Residue analysis is one of the main components of use-wear approach (e.g. 

Anderson, 1980; Vaughan, 1985; Kooyman, 1992; Loy, 1993; Loy et al., 1992; 

Pawlik, 1995, 2004a, 2004b; Jahren et al., 1997; Atchison and Fullagar, 1998; 

Dominguez-Rodrigo et al., 2001; Rots, 2002; Wadley et al., 2004; Lombard and 

Wadley, 2007; Xhauflair and Pawlik, 2010; Pawlik and Thissen, 2011). Residues 

refer to deposits of a former contact material on artefact surfaces. Initially, only 

organic residues that can be removed using hydrochloric acid but are not washable 

by soap and water, alcohol or acetone, were considered (Keeley, 1980; Vaughan, 

1985). However, inorganic residues from hematite and ochre (e.g. Wadley, Lombard, 

and Williamson, 2004) or pyrite (Pawlik, 2004b; Sorensen, 2014) associated with tool 

use have also been analysed. Prehistoric hafting technology can be reconstructed 

based on the locations of residues on the tool surface (Keeley, 1980; Anderson-

Gerfaud, 1981, 1982; Vaughan, 1985; Pawlik, 1995, 2004; Rots, 2002; Pawlik and 

Thissen, 2011, 2017). Current use-wear analysis techniques such as surface 

metrology, geographic information systems (GIS), three-dimensional microscopy, 

and micro-residue analysis are being employed to obtain data with higher resolution 

and a more standardised approach (e.g. Barceló, Pijoan, and Vicente, 2001; 

González-Urquijo and Ibáñez-Estévez, 2003; Evans and Donahue, 2008; Bird, 

Minichillo, and Marean, 2007; Macdonald and Wilkins, 2010; Schoville and Brown, 

2010; Macdonald, 2014; Stemp et al., 2015; Bordes et al., 2018; Prinsloo and 

Bordes, 2018).  

 

Use-wear analysis is a suitable method to address particular issues of lithic 

technology in ISEA and in other regions with informal flake assemblages. Pawlik 
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(2012) proposed a microscopic approach in dealing with lithic technologies in the 

Philippines due to similar types of lithic artefacts recovered from the Late Pleistocene 

to the Holocene and even until the historical period. He further analysed artefacts 

from Ille Cave, Palawan (Philippines) and inferred use as of unretouched lithic flakes 

as composite tools. It shows possibilities with use-wear analysis rather than 

employing technological approaches in creating a chronological sequence of 

technological development in the region. The same dilemma occurs in most sites in 

the Philippines and ISEA (Haidle and Pawlik, 2009). The North and Central Sulawesi 

assemblages are also composed of unretouched flakes, however, retouching was 

present especially during the transition to the Holocene period. Similar use-wear 

approaches were used for both unretouched and retouched stone tools. 

 

Multistage use-wear analysis has its limitations, thus, for future research the 

following should be addressed particularly for ISEAn assemblages: 1) increasing 

sample size across several sites, 2) recording all the anomalies and not only 

dependent on key traces that were previously mentioned (e.g. plant polish 

associated with bamboo and rattan working, 3) extensive taphonomic experiments, 

and 4.) consider complex technologies such as hafting and intentional retouching in 

tool interpretations. These suggestions could alter interpretations and provide a more 

accurate picture of the prehistoric lithic technology in the region. Although, the 

development of hafting and formal tool technology during the Pleistocene is not yet 

fully understood, future studies can address these more sufficiently.  
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4. Objectives and expected output of the thesis/ doctoral research 

 

This research contributes to our understanding of the development and variability of 

lithic technology in ISEA through a multi-level comparative analysis of stone tool 

assemblages from Indonesia. Second, we aimed to integrate state-of-the-art 

technology of microwear analysis to fundamental archaeological research by 

examining lithic artefacts to determine their actual uses, especially in cases not 

suitable with techno-typological approach. This is the first application of use-wear 

analysis to the study of lithic assemblages from North and Central Sulawesi. This 

researcher conducted a morphological-technological classification of the samples, 

utilised use-wear analysis to identify the tool functions, and inferred the activities 

carried out at Leang Sarru and Topogaro throughout their occupation sequences. 

Overall, the comparison of prehistoric stone tool functions of the assemblages from 

North and Central Sulawesi allowed us to understand technological development in 

island setting during period of drastic environmental change. 

 

The outcome of this study is a significant contribution to the reconstruction of human 

behaviour and the responses to a changing palaeoenvironment in Wallacea from the 

Terminal Pleistocene to the Holocene. The identification of former tool uses and the 

different activities carried out with these stone tools shed light on the cognitive and 

behavioural abilities of prehistoric humans, their subsistence strategies, and 

interaction with a tropical rainforest environment. The research outputs were 

submitted to international peer-reviewed journals for publication and results were 

presented in international conferences, highlighting themes such as prehistoric 

technology and maritime interactions ISEA. The researcher also established 

collaborations with institutions in Germany, Japan, Philippines, and Indonesia, for 

future research. 
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6. Results and discussion 

 

A. Typology dilemma in ISEA – cases from the Philippines 

 

Amorphous lithic tools that are prevalent in ISEA are often categorised as expedient 

lithic tools, showing little to no change from the Pleistocene until Holocene and even 

until the Metal Age. This unchanging technology has been documented in several 

studies, proving previous claims that the lithic technology in the area stagnated 

(Fuentes and Pawlik, in press; see Appendix A.1). This research did not include 

artefacts from the Philippines due to access with excavated materials, which are 

currently being studied or were already analysed by other researchers - Ille Cave 

and Rockshelter, Callao Cave, and Tabon Cave (Mijares, 2007; Lewis et al., 2008; 

Xhauflair, 2008; Pawlik, 2010). However, this researcher is collaborating within the 

Mindoro Archaeological Research Project and participates in the technological and 

functional analysis of lithic artefacts from three sites investigated within the project. 

The Mindoro Archaeological Research Project is a long-term multidisciplinary 

research initiative that investigates early migration and maritime adaptation of the 

first modern humans reaching the Philippines (Pawlik et al., 2014, 2015; Neri et al., 

2015; Carlos et al., 2018; Boulanger et al., 2019; Pawlik and Piper, 2019). Other 

researchers in the Philippines are already currently working on lithic assemblages 

similar in radiometric dates to Leang Sarru and Topogaro. These include Tabon 

Cave in Palawan (Xhauflair, 2008; Xhauflair and Pawlik, 2010; Xhauflair et al., in 

review) and Callao Cave in Northern Luzon (Mijares, 2007). Those assemblages 

have the same context with the sites from Central and North Sulawesi, however, 

these are already being studied by other lithic analysts. The researcher was able to 

study Neolithic tools from Vito Cave in Northern Luzon and addressed the issue of 

appearance of pottery-wielding groups or the so-called Austronesians (Fuentes, 

2015), which was previously addressed by Mijares (2007). Pawlik (2009, 2012) 

argued for the possibility of more complex functions of amorphous flakes with the 

identification of hafted tools from the Terminal Pleistocene in Ille Cave, Palawan 

From the 1980s and until the  establishment of the Lithic Studies Laboratory in the 

Philippines in 2001 (Dizon and Pawlik, 2001), the main research themes underwent 

the same typology dilemma observed in other Palaeolithic sites in ISEA. 

Furthermore, the pursuit of characterising the so-called bamboo technology led 
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researchers to conduct more detailed plant-working experiments, coupled with 

ethnographic field research (Xhauflair, 2014; Xhauflair et al., 2016, 2017). 

 

Techno-typological evaluation of the analysed samples from Leang Sarru and 

Topogaro indicate production and use of unretouched flakes from c. 35kya until the 

Metal Age (Fuentes et al., 2019, under review, in preparation). This seemingly 

unchanging technology did not cover the production and use of retouched tools and 

hafting as part of the amorphous lithic package, and thus needs to be further studied. 

Tool modification and technologies that were not previously described within lithic 

studies for the region were identified through use-wear analysis. The researcher was 

able to detect traits, such as hafting technology and intentional production of ‘formal’ 

tools, previously considered to be rare or even non-existent in the region (Pawlik, 

2012). These results are relevant not only to amorphous lithic assemblages in ISEA, 

but to other regions that encounter the same typology dilemma, previously outlined 

by Pawlik (2010). Expedient technology, previously thought to be ‘backwards’, 

‘stagnated’ or even ‘culturally retarded’ (Movius, 1948; Mijares, 2002) can be better 

appreciated within the overall debate of appearance of technologies such as formal 

and composite tools. The status of use-wear analysis in the Philippines greatly 

reflects the specialisation in ISEA as most of the premise and literature in the 

discipline were mostly produced from sites in Luzon and Palawan (Koenigswald, 

1958; Fox ,1970; Pawlik and Ronquillo, 2003; Lewis et al., 2008). Thus, to 

understand prehistoric technology and functions in the northern part of Wallacea and 

ISEA, the approach needs to be applied to adjacent sites south of the Philippines to 

have comparisons and discuss amorphous lithic technology in the larger context and 

targeting locations within the most possible routes of AMH towards from Southeast 

Asia to Sahul (Kealy et al., 2016). To address this issue, we analysed stone tools 

from Leang Sarru rockshelter (N=182) in North Sulawesi and Topogaro caves 

(N=173) in Central Sulawesi. Both sites have produced archaeological sequences 

beginning from c. 35-30kya and continued until the Holocene and Metal Age with 

majority of stone tools considered as unretouched with few samples that can be 

categorised as retouched lithics. 

 

B. Traceology of lithic assemblage from Leang Sarru, North Sulawesi 

 

17



 

This is the first multi-stage use-wear analysis of Palaeolithic artefacts from Leang 

Sarru, since the it was excavated in 1995 and 2004 (Tanudirjo, 2001, 2005; Ono et 

al., 2010, 2015). The researcher analysed 183 artefacts from four main cultural 

phases (and samples from the ‘Modern Period’) in Leang Sarru (Fuentes et al., 

2019, see Appendix A.2; Tanudirjo, 2001, 2005; Ono et al., 2010). The implications 

are discussed within the framework that form does not follow function in ISEA, 

previously addressed by Borel et al. (2013) with the analysis of early Holocene 

assemblage from Song Terus through a combination of geometrics-morphometrics 

and use-wear analyses. Interpretation of stone tool functions in ISEA has been 

limited due to few experiments conducted only recently often pointing to production 

of organic technology that might have played a role during the Late Pleistocene. 

Bamboo technology is being proposed as an alternative to the supposed 

backwardness of lithic technology in the Philippines and in the region in general. It 

has been the accepted notion, thus, most studies focused on this aspect of 

expedient lithic technology in ISEA (Mijares, 2007; Xhauflair et  al., 2016).  

 

A clear indication of plant use during the Terminal Pleistocene is the presence of 

well-developed sickle polishes on unretouched flakes in processing phytolith-rich 

plants. Intensive polishes were identified along the working edges, creating 

undulating flat polishes and bevel (Fuentes et al., 2019, see Appendix A.2). 

Transversal striations and scarring were also formed on polished surfaces where 

polishes developed indicating repetitive scraping action. No bone artefacts were 

recovered at the site, which also suggests dominantly plant processing. Polish 

formation is characterised by undulating smooth areas emanating from the edge 

outline then transitioning to smooth-pitted and generic-type polishes, at the inner part 

of the edge. The traces indicate higher working angles that can be interpreted as 

scraping action for smoothing through repeated motion. This is probably due to 

lesser contact on sections away from the working edge outline. The main contact 

sections can be inferred following the segments showing concentration of polishes at 

the centre of the working edge outline, which slowly fades towards the left or right 

lateral section of the working edge. This indicates transversal action especially 

scraping, as opposed to parallel motion. Polish bevels were also identified on 

unretouched flakes indicating steep working angles up to 90 degrees (see Appendix 

A.2), which is preferred for thinning or smoothing actions (based on experiments 
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conducted by the researcher). This type of polish can be formed through consistent 

and continuous contact with phytolith-rich plants, indicating activities such as 

thinning for basketry (Xhauflair et al., 2016). These intensive plant polish formation 

has often been suggested as the main indicator of the so-called bamboo technology 

in the region. The results suggest contact with phytolith-rich plants, however, this 

may not necessarily point to bamboo-working. The study concluded that these were 

phytolith-rich plants but identification to the species level is difficult to impossible due 

to the diversity of flora in the region. Previous researches that supported bamboo- or 

rattan-working based their interpretations on very limited experimental database 

(Teodosio, 2006; Mijares, 2007). Quantification methods might aid in the 

identification of ‘plant species preference’, however, more relevant issues such  as 

which parts of plants were processed, what were the desired end products, and what 

was their role in the prehistoric toolkits of the early islanders must be addressed. 

 

Other than indirect evidence in the form of use-wear traces (polishes), our research 

also found direct material evidence. Plant remains were identified on the artefacts 

even after mild cleaning (Fuentes et al., under review, see Appendix B.1). These 

were recovered were recovered from the c. 22kya, and as old as 35kya, until the 

Holocene. These include plant cells and tissues, raphides, starch, fibre, and 

decaying or indistinct plant cells which are comparable to those identified on 

archaeological sites in Wallacea and Sahul (Kononenko, 2011; Torrence and Barton, 

2016). These were deposited on both the unretouched and retouched flakes, on the 

working and non-working sections. Plant cells, especially parenchyma, were 

deposited throughout all the occupation phases. It was only during the Early 

Holocene when starch and raphides were identified, and during the Metal Age when 

fibre was preserved. Plant processing was therefore aimed at producing binding for 

attachment on shafts. The absence of bone points (as well as animal bones) further 

supported our view that intensive plant working was conducted as adaptation to 

available resources while at the same time tool modification became a specialisation 

in order to process hard materials through scraping activity (Fuentes et al., 2019; 

Fuentes et al., under review, see Appendix B.1). 

 

Retouching through direct percussion was applied to create ‘notched’ concave 

working edges. Plant working was not only conducted with unretouched flakes but 
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also with notched tools. Activities such as scraping and smoothing are more efficient 

with the use of blunt concave tools, the retouched notched in the case of Leang 

Sarru. Intentional retouching began to be recorded in layers dated from the Terminal 

Pleistocene. Flakes were modified through repetitive striking on one part of the 

proximal base, usually at its thickest section, to create a concave section. The 

researcher conducted replication experiments and was able to reproduce similar 

concave edges through direct percussion technique (Fuentes et al., under review, 

see Appendix B.1). These tools have steep edge angles, usually greater than 45 

degrees. Plant working should not be perceived as an end point in understanding the 

prehistoric technology in ISEA. It is rather just a facet in the technology previously 

thought to be simple and stagnated. As a result, plant remains were deposited within 

the retouched sections of these notched tools and identification of these residues 

provided direct evidence of plant working in the site. 

 

In order to test our hypothesis that retouching played a vital role in the deposition 

and preservation of the plant remains, experiments were conducted at Talaud 

Islands in North Sulawesi using local chert materials and plants. Although the 

experiments are still limited, the documentation of residues indicate that 1.) step and 

hinge scars on the retouched sections acted as catchments for plant residues 

regardless of activity, but more apparent when processing fresh plants 2.) physical 

angle of plant preservation must be looked upon to understand why plant 

preservation on stone tool surface is rare in ISEA 3.) future research should address 

the phenomenon of fungal growth on plant remains deposited on stone tools and its 

role in either the hastening or slowing down of decomposition (Langejans, 2010; 

Fuentes et al., under review, see Appendix B.1).  

 

The results provide evidence for plant processing using unretouched and retouched 

tools in Leang Sarru during the Pleistocene to Holocene. Hafted lithic technology 

was also documented in this study, which is still rare in Late Pleistocene sites in 

Island Southeast Asia (Pawlik, 2012). Complex hunter-gatherer behaviour can be 

revealed through microscopic study of simple flake tools. Furthermore, use-wear 

analysis could assist in redefining expedient lithic technology in ISEA. Technological 

traits not detectable through macroscopic approaches can be detected through 

microscopic use-wear analysis. The state of the art of use-wear analysis in the 
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region focuses on identification of simple tasks such as cutting, scraping, or 

chopping which limits interpretations of lithic technology in the region. Although the 

number of artefacts displaying complex activities were limited, through use-wear 

analysis the researcher was able to identify traces that indicate production and 

possible use of hafted tools, especially unretouched ‘blades’. By utilising published 

materials on hafted composite tools, the researcher was able to document scalar 

scars, hafting polish, impact scars, and tar residues pointing to production and 

possible use of unretouched tools to create composite tools (Fuentes et al., 2019).  

 

In general, the lithic technology in Leang Sarru can be characterised by intensive 

plant working using unretouched and retouched flakes. Overall, in terms of 

morphology, it is similar with other assemblages in ISEA, however, upon closer 

inspection, cultural traits previously rare in the region were identified – possible 

hafting and retouching to create formal tools. These technological innovations are 

uncommon in the region and often been justified or explained by the seeming 

dependence on organic plant-based technologies. Through use-wear analysis, 

minute details of complex activities using simple tools can be identified. The same 

approach should be utilised in addressing the question on the absence of 

technological development of stone tools in ISEA. The results show that unmodified 

flakes were utilised in a similar manner as retouched tools - an aspect of lithic 

technology in ISEA that still needs to be properly documented. 

 

C. Stone tool functions at Topogaro Caves, Central Sulawesi  

 

This is the first multi stage use-wear analysis in the region and could provide clues in 

the earliest lithic technologies in Central Sulawesi or the so called North Route as 

outlined by Birdsell (1977) and Bird (2019), so far the only site with radiocarbon 

dates 30kya or older. The overall results of material analysis, radiocarbon dating, 

and interpretation of site occupation for the Topogaro sites are being prepared (Ono 

et al., in preparation, see Appendix C.1). Techno-typological analysis of all lithic 

artefacts from both Topogaro 1 and 2 are still ongoing and in this research the 

researcher presents the initial results from use-wear analysis of samples from layers 

dated to c. 30kya until the Metal Age.  
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One hundred seventy six artefacts from Topogaro 1 and 2 in Central Sulawesi 

undergone multi-stage use-wear analysis. The artefacts were sampled from 

excavations conducted from 2016-2017 (Ono et al., in preparation). The assemblage 

was collected through dry-sieving and recovered in situ.  Impact scars with 

secondary edge rows indicate bone chopping from c. 30kya, the oldest-dated layer 

of Topogaro 2 so far (Ono et al., in preparation; Fuentes et  al., in preparation). 

Activities from this period were carried out using chert flakes. One tool displayed 

step- and hinge-terminated scars along the working edge, and was recovered in the 

same context with animal foot bones (Ono et al., in preparation). These technologies 

not only utilised chert tools but also limestone and silicified chert with generally 

smaller dimensions. These were possible microliths made from limestone were 

recovered from c. 30kya. Chert materials based on initial surveys were generally 

available at the periphery of the site, along streams and at the main river system 

(Ono et al., in preparation). Analysis is still ongoing but initial assessment indicate 

production of small triangular limestone flakes (c. <3 cm in length). Further analysis 

and comparisons with other lithic technological traditions in Sulawesi and Wallacea 

needs to be conducted to place the stone tool traditions into their proper context.    

 

Tool retouching using direct percussion technique was identified on stone tools from 

the LGM layers in Topogaro 2. A unifacially retouched chert flake indicates possible 

production of points. Through microscopic analysis the retouched point displayed 

MLITs with longitudinal orientation – evidence of use as projectile (Fuentes et  al., in 

preparation, see Appendix C.2). These belong to the techno-typological classification 

of points with unifacial retouching to create a formal tool. During the Holocene similar 

points were observed but produced with soft hammer percussion technique as 

shown by shallow and feather scarring, initiated from both dorsal and ventral face. 

Replicas of these tools were reproduced through direct percussion technique with 

the use of hammerstones c. 5cm in diameter.  

 

Bone points were recovered from Topogaro 1 and are associated with notched 

scrapers. Retouched notched tools feature a single notched retouched from either 

the ventral or dorsal face, characterised by shallow and feather terminated scars. 

Retouched tools display concave edges produced with direct percussion technique. 

These were recovered with bone points and are associated with bone processing. 
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Furthermore, unretouched flakes indicate polishes from contact with bones, 

especially scraping. The researcher hypothesise that bone processing was 

conducted using retouched tools. On the other hand, polishes formed through 

contact with bones were also identified within the same assemblage. Production of 

bone tools involved several stages and notched scrapers where thought to have 

been used in roughing the bone fragments before actual bone smoothing. 

Throughout Holocene and even the latter periods of Holocene, these two artefact 

types were recovered and creates a clear demarcation of intensive bone tool 

production in the sites, which was limited to absent in Topogaro 2. 

 

Evidence of presence of AMH at the oldest layers of the site indicate stone tools and 

animal bones were recovered in the same context. Stone tools recovered from 30kya 

layers, classified as ‘large’ flakes were manufactured using chert. Limestone was 

also used in producing large flakes and possibly microliths (Fuentes et al., in 

preparation, see Appendix C.2). Tool retouching was identified on tools from the 

LGM at Topogaro 2 while it was observed on notched scrapers in Topogaro 1 

beginning the Holocene period. Future techno-typological research in the sites can 

provide more clues to the technology of AMH who crossed from Sunda to Sulawesi. 

The results of use-wear analysis indicate direct evidence of human presence in the 

island and intentional production of stone tools c. 30kya, with evidence of tool 

retouching to create notched scrapers later during the Holocene. The availability of 

resources around the site (Ono et al., in preparation) indicate the availability of good 

quality chert very similar to what were used in the past.  

 

D. An experimental database for North and Central Sulawesi 

 

Although still ongoing, this research also included an experimental database, which 

is the first extensive one to be developed solely for the purpose of addressing 

prehistoric use of stone tools  associated with early movements of AMH in North and 

Central Sulawesi. Surveys were conducted to identify possible raw material sources 

for production of stone tools. Knapping was conducted at BALAR Manado to 

produce unretouched flake. The experiments were aimed at creating a use-wear 

database, testing the functionality of notched tools, production and use of hafted 

tools, and polish development on unretouched flakes for quantification of polishes. A 
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database is necessary for the island and this is to be pursued for future research and 

as reference for other researchers.  

 

Although unpublished yet, we observed specific traces on each experiment that 

might be applicable to other sites dealing with unretouched lithic flakes. On the 

notched tool experiments the following has been recorded on both experimental 

tools and artefacts - plant cells and tissues, tuber sap forming circular patterns, 

fungal growth on the residues, fibres, starch grains, and stomata. The samples 

resemble those documented from Leang Sarru and could explain why retouched 

tools were present in the assemblage from the LGM (Fuentes et al., under review, 

see Appendix B.1). Retouching was closely associated with plant working in the 

archaeological materials thus the researcher hypothesise that it was intentional 

retouching and specifically for the purpose of smoothing and roughing plant 

materials. The preservation of residues still needs to be addressed in future 

research. The role of fungal growth in the decomposition or preservation of organic 

residues on these tools, and contamination of both experimental tools and artefacts 

are issues that also needs clarification. 

 

The ongoing project in Topogaro, Central Sulawesi provides an ideal venue for 

testing and addressing polish formation on plant and bones because of the recovery 

of bone points and unretouched flakes which indicate plant processing. The results 

are not published yet and documentation is ongoing. Based on initial analysis the 

following trends were observed: 1) experiments using notched tools resulted in 

deposition of residues on the retouched working edges, a possible explanation of 

preservation of plant residues on the artefacts. 2) plant polish formation or sickle 

gloss formed after experiments with phytolith rich plants with unretouched flakes and 

are ideal for testing quantification techniques using laser scanning confocal 

microscope. 3) retouching can be conducted through direct percussion technique to 

replicate the morphology of the artefacts. 

 

E. Current techniques in use-wear and potential for future research  
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We also partly tackle issues that need to be addressed in future research in 

Pleistocene sites in ISEA. First, is the presence of hafted tools using both 

unretouched and retouched flakes. We utilised experimental results from previous 

research (Rots, 2003, 2014, 2016; Rots et al., 2011; Rots and Plisson, 2014), in the 

meantime because of limited or non-existent published results on projectile 

technology in ISEA. To address this  issue, a robust experimental database catered 

for ISEA needs to be developed (see Appendix C.2). Hafting technology, indicating 

technological complexity can be detected through use-wear analysis. Plant working 

is an important issue but other questions such as the presence of complex tools 

(such as projectile points) and intentional tool retouching seem to be overlooked in 

ISEA. Another issue is the absence of extensive comparative experimental database 

of raw materials from Sulawesi. The researcher began an experimental program, 

designed to answer provide qualitative and quantitative database for future use-wear 

analysis of assemblages in the island and in ISEA, in general. More than the pursuit 

of plant working and identification of plant species, focus should be given to 

detection of more advanced technological innovations such as hafting and 

production of composite tools. The presence of hafting technology was previously 

addressed by the analysis of unretouched flakes from the Terminal Pleistocene and 

Early Holocene layers of Ille Cave, Palawan (Pawlik, 2012). Amorphous expedient 

technology can also be used as possible hafted tools without further modification. 

Tool retouching is an integral component of composite tools and we observed this in 

the case of Topogaro 2, Central Sulawesi on tools that possess unifacial and bifacial 

retouching similar to technique used in making backed blades in Europe. We might 

have overlooked something and some traces were not even mentioned in previous 

literature in ISEA, for tools that were possibly hafted. These traces need to be 

checked in the literature and also in use-wear analysis in the future. The traces 

include micro linear impact traces (MLIT), impact scars at the proximal tip of the 

artefact, scalar scars located on the left and right lateral sections, presence of 

organic residues (Fuentes et al., in preparation, see Appendix C.3).  

 

Second, is the identification of plant species through residue analysis. Although rare, 

residues from plant parts are still the most reliable and direct evidence of plant 

working. In the case of Leang Sarru, the researcher was able to identify plant 

remains as well as provide an explanation to why these were ‘preserved’ on the 
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tools. Retouching aided in the deposition as well as preservation of the residues 

including plant cells/ tissues, raphides, starch, fibres, and sap. Further research is 

necessary to identify and understand the chemical component of residue 

preservation. Plant remains were associated with direct plant processing and at the 

same time for the first time documented to be directly associated with production of 

composite tools, and possible fibre extraction with presence or fibres on retouched 

tools. The plant species processed for consumption and production of other forms of 

technology were identified through residue analysis. Most were identified as 

monocots (e.g. palm trees, grasses), and could possibly explain the predominance of 

plant polishes associated with phytolith-rich plants. 

 

Third, is the identification of plant species preference through quantification of 

polishes on the tool surface (see Appendices D.1 and D.2). These polishes served 

as proxy to which plant were processed and that could answer the question on 

whether bamboo was really preferred over other plants or there was no preference 

but rather plants that produce the needed materials were selected regardless of. In 

this research we are addressing one of the core issues of use-wear analysis – how 

to produce quantitative data that can be compared and can be repeated by other 

researchers through experiments. One technique being used in the past decade is 

laser scanning confocal microscopy and surface metrology. So far, researchers were 

able to at least distinguish between contact material types between condition (e.g. 

fresh versus dried plants) and types of contact materials (e.g. bone, wood, plant). 

However, no comparative data yet across sites due to differences in laboratory setup 

and equipment, and compartmentalised research questions. Two approaches are 

being explored – surface roughness measurement and profile sections of polish 

bevel. The potential of these techniques to go beyond the qualitative aspect of use-

wear analysis will be pursued in future research.  

 

F. Micro-traces and lithic traditions in ISEA – a conclusion 

 

The results of this research indicate technological aspects amorphous of lithic 

technology in North and Central Sulawesi and in Wallacea that might have been 

missed. This warrants re-assessment of the current perspectives and views of how 
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early AMH adapted and innovated their technology. The absence of formal stone 

tools for the Late Pleistocene until the Holocene may not be necessarily true as 

retouched tools resembling scrapers were already produced during the LGM in 

Leang Sarru and from the Early Holocene layers in Topogaro 2. The appearance of 

these retouched tools coincided with intense site occupation and use, which also 

indicated direct and indirect evidence of plant working. This is still a contentious 

issue in terms of lithic technological adaptation in the ISEA, due to the plant-based 

organic technology that is hypothesised as a reason why the lithics did not progress 

in morphology. Through low and high-power microscopy, the researcher was able to 

identify traces that indicate use of unretouched and retouched flakes for hafting or 

production of composite tools. These results offers alternative perspectives on the 

lithic technology of ISEA, as seemingly simple flake tools could be used in more 

advanced technologies. Previous use-wear studies in the region inferred plant 

working due to presence of polish on unretouched flakes. While our results also 

indicate intensive plant working, we propose that it was not the end goal to create 

plant tools but rather it was just a facet of their cultural and technological adaptation 

to island environments and to available resources.   

 

Although the lithic traditions in Wallacea are often labelled as simple and 

unchanging, yet no extensive analysis addressed the presence of complex 

technologies such as hafting were conducted (Pawlik, 2010). We propose to 

determine technological traits, such as hafting and production of formal tool types, 

through microscopic analysis. This research provides new perspectives on the 

prehistoric activities during the Terminal Pleistocene in Wallacea, which are vital 

study in exploring aspects of amorphous flake technology that cannot be revealed 

through techno-typological approach. We hypothesise that plant working is one 

component (e.g. bindings from fibres, shaft for hafted tools) of prehistoric toolkits in 

the region, rather than the end goal itself. The comparison between stone tool 

traditions of North and Central Sulawesi provides a picture of the prehistoric 

technologies in regions vital to understanding early sea crossings of modern 

humans. Overall, this study indicate that unformal lithic traditions were used with and 

without modification and use-wear analysis can help reveal micro-traces of activities 

that do not follow standard techno-typological classifications. 
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Use-wear analysis is an effective tool in detecting evidences of prehistoric stone tool 

functions. Debates and issues in ISEA revolving around prehistoric production of 

unformal flake tool tools as evidence of an underdeveloped lithic technology could be 

addressed through careful microscopic analysis. The study sites are the oldest C14-

dated cave and rockshelter in North and Central Sulawesi. These region are vital to 

understand human presence during prehistoric migrations to Sahuland through 

Sulawesi. The technologies that we identified implies a variety of strategies and 

reflects the intuitiveness of those prehistoric populations in producing cultural 

material made from both lithic and organic objects. Complex technologies such as 

hafting which constitutes parallel technologies with craft making, especially with the 

use of binding, could lead us to future research question to tackle which material 

culture and technologies made the sea-crossings possible.  

 

Advancements in surface metrology is being incorporated in lithic use-wear analysis 

and this is beginning to be applied to assemblages in ISEA. Surface roughness 

measurement demonstrated distinction between several types of contact materials 

and would be apt for unretouched tools in ISEA with sickle polish. With enough data 

from an extensive set of experiments, issues such as the presence of bamboo 

technology and plant preference, in general, can be addressed. Databases from the 

region can also be compared with results conducted elsewhere because similar and 

standardised microscopes and protocols are employed by use-wear analysts. 

Addressing prehistoric-plant working in ISEA through more advanced methods 

should still be based on extensive experiments and basic use-wear analysis due to 

limited samples and the problem of over simplification of interpretations in the region. 

As described in this research, morphologically-similar technologies with the same 

functions can exist in two distant locations but due to differences in resources, these 

traditions differ in terms of micro traces as outcome of actual functions. 
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1. Lithic Assemblages and Technology in Prehistoric 
Philippines – The Missing Types Problem 

Lithic technologies appear, at face value, to have remained remarkably 
uniform from the Late Pleistocene to mid-Holocene in Southeast Asia until 
the introduction of fully ground stone tool technologies at c. 4500-4000 cal. 
BP or even later. In the Philippines, as in most parts of prehistoric Island 
Southeast Asia, flaked stone tools were generally manufactured using rather 
simple production techniques, applying mostly direct and/or anvil 
percussion, and going without elaborate core preparation. There is hardly 
any convincing evidence for the deliberate production of formal tools and 
advanced knapping technologies such as Levallois and blade core 
preparation, with the exception of a small assemblage from Arubo in 
Central Luzon that included a bifacial handaxe, cleaver, unifacially 
modified artefacts, and several cores showing different reduction techniques 
(Pawlik, 2002, 2004; Pawlik and Ronquillo, 2003; Dizon and Pawlik 2010). 
Although the site remains undated, morphological similarity with several 
early Palaeolithic artefacts from sites in mainland and Island Southeast Asia 
suggests a Middle Pleistocene age (Pawlik, 2009). 

Not many lithic assemblages that are clearly associated with the 
Pleistocene by absolute dates have been retrieved in the Philippines. Despite 
a somewhat problematic chronological record, the lithic assemblage from 
Tabon Cave in Central Palawan (Fig. 1) might be the oldest absolute-dated 
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lithic artefacts in the Philippines and can at least be considered to be of a 

Terminal Pleistocene and early Holocene age with radiocarbon dates 

between 9250±250 uncal. BP or 11182-9768 cal. BP (UCLA-284) and 

30500±1100 uncal. BP or 36731-31814 cal. BP (UCLA 958; Fox, 1970, 40-

44). In the north of Palawan, a series of radiocarbon dates placed the 

cultural materials from Ille Cave to as early as ca. 14ka cal. BP (Lewis et 

al., 2008). In Callao Cave, Northern Luzon, a lithic assemblage has been 

retrieved from just above the layer where the oldest hominin fossils, dated 

to a minimum of ca. 67ka BP, respectively 50ka BP, were found (Mijares et 

al., 2010; Grün et al., 2014). The lithic materials were associated with a 

radiocarbon date on charcoal of 25968±373 uncal. BP or 30918-29334 cal. 

BP (WK-14881; Mijares, 2007). No lithic artefacts, however, were found 

associated with the possibly reworked human fossil remains. The few lithic 

assemblages that would date into the Terminal Pleistocene and early to mid-

Holocene would not show a distinctive different morphology and 

technology and it seemed that lithic technology remained stagnated for the 

entire Palaeolithic until the Neolithic and introduction of agriculture in the 

Philippines (Mijares, 2002, 2007; Pawlik, 2010; Patole-Edoumba et al., 

2012; Pawlik et al., 2014). Despite a rather early appearance of the remains 

of Homo sapiens in Island Southeast Asia (and Australia) at already 50ka 

BP, if not earlier, there is a remarkable absence of production of formal 

lithic tools throughout the Upper Pleistocene and even into the early/mid 

Holocene. Whether those lithic assemblages derive from the mainland 

Southeast Asia or were found in the region of Island Southeast Asia very 

few stone tool types like the so-called ‘Sumatraliths’ of the Hoabinhian 

technocomplex have been defined (Gorman, 1970).  
 

42



 

Figure 1: Geographical situation of the Philippines and relevant sites. 

For African and European prehistory, cultural, cognitive or behavioural 

advancement have been connected to innovations in lithic technology, and 

the appearance of milestone indicators like specialised blade industries, 

geometric tools, burin technology, among other traits of the so-called 

“modern package” (e.g. Mellars, 1989; Bar-Yosef, 2002; Conard, 2007; 

Haidle and Pawlik, 2010). Such a ‘package’ of modern behavioural traits 

cannot be claimed for the Southeast Asia-Pacific region. Habgood and 

Franklin (2008) stated that this ‘package’ of cultural innovations did not 

exist as an entity from the beginning of Sahul settlement, and that its 

components were gradually assembled over a 30,000-year period. In a 

comprehensive examination of more than 200 Pleistocene sites from 

Australasia, Langley (2009; 2011) could not find evidence of cognitive 

modernity and cultural complexity, but identified effects of taphonomy and 

archaeological sampling on the nature and representativeness of the 

archaeological record in this region. 
For Southeast Asia, it is quite remarkable that despite an early fossil 

evidence for the arrival of modern humans ranging back to 45-50ka BP, 

modern traits remain basically absent until the early Holocene and are still 

very rare until the Neolithic, with the exception of few finds of tools and 

points as well as fishing gear made of bone, shell, and stone predominantly 

in the coastal environments of Southeast Asia (Rabett, 2005; Pawlik et al., 

2014, 2015). Several authors have argued that the simplicity of Southeast 

Asia’s lithic industries and paucity of formal tools were caused by the 
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scarcity of lithic raw materials in sufficient quality, and the abundance of 

various organic materials like bamboo, rattan, and other wood species (Narr, 

1966; Solheim 1970; Hutterer, 1977; Pope, 1989; Schick and Zhuan, 1993; 

Mijares, 2002). For taphonomic reasons, those ‘vegetal industries’ remain, 

however, hypothetical. Tools made of bamboo and wood are not present in 

Pleistocene and early Holocene archaeological assemblages. Also, their 

production would still have required stone tools. The wood/bamboo tool 

hypothesis does neither consider factors of tool mechanics and uses nor 

does it deal with the fact that large lithic assemblages are present in the 

archaeological record (Pawlik, 2010). It can be certainly assumed that tools 

and utilitarian objects were made of vegetal materials including bamboo and 

wood but they were more likely an addition to the lithic toolkit rather than 

replacements, like the few bone tools found in Southeast Asia (Barton et al., 

2009; Pawlik, 2009). Furthermore, the causality that the production of 

vegetal tools has led to a simplification of lithic industries has not been 

convincingly explained. Also, artefacts made of lithic materials possessing a 

sufficient knapping quality, for instance chert, jasper, or even obsidian are 

not uncommon in Southeast Asian sites (e.g. Beyer, 1947; Charoenwongsa, 

1988; Pawlik, 2002, 2004a; Mijares, 2002, 2007; Neri et al. 2015), and 

long-distance exchange systems probably existed for obsidian since the 

Terminal Pleistocene (Neri et al., 2015).  
While evidence for vegetal tools is missing in the Palaeolithic record of 

Southeast Asia, several use-wear analyses have indeed identified wear 

traces of working wood, bone and bamboo on stone tools (e.g. Bannanurag, 

1988; Mijares, 2002; Pawlik, 2004, 2010; Teodosio, 2006; Barton, 2006; 

Xhauflair, 2014). Cutmarks found on animal bones from the 67ka layer of 

Callao Cave, Philippines have been investigated with optical and scanning 

electron microscopes (Manalo, 2011). Her comparative analysis with 

experimentally created cutmarks from various lithic and organic sharp-

edged tools suggested the use of bamboo “knives” rather than the sharp 

edges of lithic flakes (Manalo, 2011). 
However, explaining the paucity of formal and ‘modern’ lithic tool types 

with a supposed developed organic tool industry, that is even more absent in 

the archaeological record, might not be very helpful to argue for the 

existence of advanced and complex technologies in Southeast Asia. Instead, 

it is probably safer to say that tools made of vegetal material were 

complementing lithic tool kits in Southeast Asia when necessary rather than 

replacing lithic tools, like tools made of bone and shell (Pawlik, 2012; 

Xhauflair, 2014; Xhauflair et al., 2016). To overcome this “Typology 

Dilemma” (Haidle and Pawlik, 2009), functional analysis using microscopic 

use-wear and residue analysis was proposed as method for a more 
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meaningful classification of stone tools based on actual tool uses rather than 

formal and typological criteria (Pawlik, 2009). In the Philippines, only a 

few sites produced bones tools, and preserved plant remains, although 

organic technologies have been more frequently recorded in other parts of 

Island Southeast Asia (Piper and Rabett, 2009; Barton et al., 2009). A reason 

might be the current state of research and the very few excavated and 

comprehensively analysed assemblages of Pleistocene and early Holocene 

contexts.  
Although the overall absence of tool formality through time has nullified 

attempts at producing meaningful typological and technological 

classifications in the lithic record, traceological analysis of lithic 

assemblages in the Philippines and neighbouring regions confirmed the 

utilization of simple flakes for a variety of processes and activities. These 

evidences gave indications that complex technologies and use-contexts 

already existed by the Late Pleistocene, not unlike, for instance, the more 

formal prehistoric tools of the European Upper- and Epi-Palaeolithic 

(Mijares, 2002, 2007; Barton, 2006; Brumm et al., 2006; Barton et al., 

2009; Pawlik, 2012; Xhauflair and Pawlik, 2010; Xhauflair, 2014; Fuentes, 

2015; Xhauflair et al., 2016). For example, composite projectile 

technologies have been identified at Ille Cave in northern Palawan (Pawlik, 

2012) and at Niah Cave in Borneo (Rabett and Piper, 2014), both associated 

with layers dated to c. 14–12ka cal. BP. Residues on the stone tips from Ille 

Cave are also similar in morphology to the resinous glue applied to the 

composite artefacts from Niah (Barton et al., 2009; Pawlik, 2012). Reynolds 

et al. (2013: 154) have argued that similar residues of resin observed on 

flake tools from Niah Cave suggested that they were used to work on 

resinous wood or pieces of tree resin, possibly in the manufacture of 

composite implements evident from at least the Terminal Pleistocene. The 

edge-ground shell adzes, polished bone tools, as well as flaked shell 

artefacts found at shell midden sites in Mindoro, dating to between 4ka and 

over 30ka cal. BP (Pawlik et al. 2014, 2015) might indicate that a range of 

tools made of organic material, particularly shell and bone, complemented 

the basic lithic toolkit. 
 

2. Lithic Use-wear Studies in the Philippines: Functionality 

of a non-formal lithic tradition 

The method of microscopic functional analysis became worldwide 

popular short after the English translation of Semenov’s (1964) ground-

braking monograph “Prehistoric Technology”. However, in the Philippines 
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until the 1980s, lithic studies focused mainly on identifying the technology 

or morphological characteristics and the application of attribute analysis. 

Initial studies applied the low power approach (Odell, 1981) on materials 

from several cave sites in Peñablanca, northern Luzon. Henson (1978) 

analysed artefacts from Laurente Cave using a combination of attribute and 

use-wear analyses and proposed that these were possibly used on bamboo 

and rattan (Henson, 1978). A similar combination of technological and 

functional analyses was applied by Ronquillo (1981) in his master’s thesis 

for selected stone artefacts from Rabel Cave using a binocular microscope 

and magnifications of 10x - 40x (Ronquillo, 1981). Thiel (1990a, 1990b) 

studied wear traces on artefacts from Arku Cave und Musang Cave using 

hand lenses with magnifications of 2x, 10x, and 20x, and inferred that the 

artefacts were used as scrapers, spokeshaves, knives, grass-cutters, blades, 

gravers, drills, and saws. However, the studies conducted during this period 

had limitations in terms of optical techniques used as they mainly employed 

low power microscopy, and lacking in comparative use-wear experiments. 
 

 
Figure 2: The University of the Philippines Lithic Studies Laboratory with microscopes for 

high and low power analysis. A) After the inauguration in February 2002. B) Fully motorized 
Zeiss SteREO Discovery V20 microscope acquired in 2013. 
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By the late 1990s and early 2000s, research on lithic artefacts involved 

now both low power and high-power microscopy. Pawlik (2001) provided 

an introduction and manual on the methods of use-wear analysis and its 

application to the study of flaked lithic technology in Southeast Asia. This 

was related to his establishment of the Lithic Studies Laboratory at the 

University of the Philippines (Fig. 2), as the first facility for technological 

and functional analysis in the Philippines (Dizon and Pawlik, 2002). Also, 

replicative use-wear experiments began to be integrated into traceological 

studies and several studies following current methods of traceological 

analysis were conducted, since (Mijares, 2002; Teodosio, 2006; Pawlik, 

2002, 2006, 2012; Xhauflair & Pawlik, 2010; Xhauflair, 2014; Fuentes, 

2015; Benz, 2016).  
Another important aspect in use-wear analysis was testing the 

application to much older sites, as in the case of the Arubo artefacts. 

Analysis of potentially early Palaeolithic artefacts from Arubo in Central 

Luzon and Kalinga in Northern Luzon revealed that there was an industry in 

central Luzon where flakes and core tools were produced Pawlik (2002, 

2004a; Teodosio 2006). Use-wear analysis of chopping tools, a handaxe, 

cleaver, spatulate, and large flakes show traces of use especially, but not 

limited to heavy duty activities such as butchering, and mostly on hard 

materials (Teodosio, 2006). Although the tools were from reworked 

contexts and there was absence of absolute dates, yet the study established 

that the artefacts were intensively used.  
Traceological analysis was also applied on lithic assemblages from cave 

sites in Peñablanca, Northern Luzon. Mijares proposed in his analysis of the 

stone tools from Peñablanca, particularly Minori, Eme, Callao, and Dalan 

Serkot (Mijares, 2002, 2007) that an “expedient technology” (Binford, 

1979) was present for prehistoric Philippines. This technology was 

seemingly unchanging during the entire Late Pleistocene until the mid-

Holocene, with the use of simple technique of producing flakes through 

direct hard hammer percussion and without retouches (Mijares, 2005). He 

further argued that the expediency of the lithic technologies in Southeast 

Asia were not due to cultural stagnation, but represent an appropriate 

cultural adaptation by prehistoric people to their environment and resources 

(Mijares, 2003).  
The continuation of this unchanging technology into the Late Holocene 

of northern Luzon was observed by Fuentes (2015) in his microwear 

analysis of lithic artefacts from pre-ceramic and pottery containing deposits 

from Vito Cave in Peñablanca. He demonstrated that except for the addition 

of pottery, human activities, behaviour and subsistence remained widely 

unchanged even after the introduction of agriculture in the region. The few 
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pottery remains suggest contacts and some form of exchange of the upland 

hunter-gatherers with the newly arriving Austronesian-speaking farmers that 

settled in the lowlands along the Cagayan River at around c. 4000 BP 

(Bellwood, 2017; Piper et al., 2009). The archaeological record of Vito 

Cave also indicates that hunter-gatherer populations maintained their modes 

of life even after the arrival of sedentary Austronesian-speaking populations 

along the Cagayan River Valley and did not adopt this new form of 

subsistence and its technology. It further demonstrates that a clear 

distinction can be made between cave sites utilized by Neolithic populations 

for the burial of their dead, and sites used for habitation by forager groups, 

and that this distinction is fundamental in accurately reconstructing different 

modes of cave utilization by the various human populations that probably 

co-existed across Island Southeast Asia for extensive periods of the later 

Holocene. 
Several microwear studies have been conducted on lithic artefacts 

coming from Ille Cave in northern Palawan. Throughout its layers, the lithic 

assemblage contained a high proportion of cores all reduced using bipolar 

techniques with effort to control the core face geometry. Some cores 

displayed even parallel longitudinal flake scars indicating the production of 

flakes with blade geometry (Lewis et al., 2008). However, blade-like flakes 

are not apparent in the assemblage but mostly un-retouched flakes. Use-

wear analysis conducted by Barton (2006) revealed that a high proportion of 

the exhausted cores were subsequently used as tools as evidenced by micro-

scarring, use polish, rounding and striations. A subset of six pieces had 

traces suggesting a specialised function, possibly the planing of siliceous 

plants, reeds or wood. Pawlik (2006) studied fully ground stone adzes from 

Neolithic burials at Ille. The adze blades had been intensely used and were 

multiple times resharpened. They showed traces of wood working and 

transverse hafting suggesting that they were tied on wooden shafts with 

phytolith-containing plant fibres, perhaps supported by glue-like resin. Use-

wear analysis of artefacts from the lowest layers of Ille Cave, dated to 12-

14,000 cal. BP, demonstrated that simple unretouched flakes served as 

hafted armatures of more complex multi-component tools and that 

composite technology has to be considered for the lithic technologies in the 

Philippines (Pawlik, 2010, 2012). Furthermore, unmodified flakes exhibited 

traces from processing shell, red pigments and resins, among bone and 

plants (Pawlik, 2012). The variety of tasks and activities carried out with 

unmodified flakes paints a picture somewhat different from a solely 

expedient technology and a dominant organic technology for Island 

Southeast Asia.  
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A detailed experimental referential database on microwear traces and 

residues from processing tropical plants from the Palawan uplands was 

produced by Xhauflair (2014) through the combination of traceological 

analysis with ethnoarchaeological and ethnobotanical field research in 

relation to archaeological sites in Palawan, mainly Tabon Caves, providing 

the first systematic and comprehensive reference collection for the 

identification of traces from plant processing for the region (Xhauflair, 

2014; Xhauflair et al., 2016, 2017).  
In an ongoing interdisciplinary and multi-regional research program, 

lithic artefacts from several sites in the Philippines and the neighbouring 

region of northern Sulawesi are undergoing traceological analysis. The main 

goal of the project is to identify early human movements and adaptation to 

coastal environments, as well as maritime networks from the Late 

Pleistocene until the Late Holocene period. Use-wear analysis for this 

project is conducted by the authors on Late Pleistocene to mid-Holocene 

assemblages from Northern Sulawesi, especially Leang Sarru on Talaud 

Islands, Radiocarbon-dated to 35-8ka cal. BP. The assemblages show that 

the use of non-formal tools extended into areas close or proximate to the 

Philippines. However, in contrast to the materials from the Philippines, the 

Sulawesi assemblages include characteristic notched tools. The notched 

modification is a recurring pattern from the Northern and Central Sulawesi 

sites (Ono et al., 2009; Fuentes, et al., in review).  

3. Current Directions and Perspectives 

Microwear studies of lithic assemblages from the Philippines as well as 

other regions in Island Southeast Asia demonstrated that simple lithic 

technologies that dominantly were composed of amorphous unretouched 

flakes and other non-formal tools possess a versatility that enabled their 

prehistoric users to conduct a large variety of elementary activities, and that 

the methods of typological and technological studies are insufficient for the 

lithic analysis for this region and might not reflect actual prehistoric 

technological and cognitive behaviour. Although lithic technologists 

proposed a “bamboo hypothesis” to explain the absence of formal tools, no 

actual evidence for the existence of tools made of bamboo and other woody 

plants has been found, so far. Nevertheless, direct and indirect evidence for 

the processing and use of organic materials, particularly bone and shell, can 

be found in Southeast Asia and the Pacific and their potential for the 

recognition of human behaviour and technology is obvious. Especially shell 

has a clear potential for tool production in coastal regions. In East Timor, a 

fishhook made of Trochus shell was found at Jerimalai Rockshelter in 
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deposits bracketed by radiocarbon dates of 16 and 23ka cal. BP (O’Connor 

et al., 2011). At Niah Cave in Borneo worked stingray spines were turned 

into projectile points, dated to between ca. 9-12ka cal. BP. Residue analysis 

on these intriguing points revealed that they were attached to shafts using 

tree resin as an adhesive supported by a fibrous binding (Barton et al., 

2009).  
 

 
Figure 3: Flaked and ground shell artefacts from Mindoro. A) Tridacna flake tools from 

Bubog 2; B) Geloina flake tools from Bubog 1; C) Edge-ground shell adzes from Bubog 1 and 

Bilat Cave; D) Shell adze preform / heavy duty tool made of Tridacna shell from Bubog 2 
 

Flaked artefacts made of Tridacna shell were found in mid-Holocene 

deposits of Bubog 2 on Ilin Island (Fig. 3A) while two ground shell adzes 

were found on Ilin Island at Bubog 1 and just across in Bilat Cave in 

southwestern Mindoro (Figure 3C). Several direct AMS dates place them 

into the early to mid-Holocene (Pawlik et al. 2014, 2015). A large Tridacna 
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artefact, possibly an unfinished adze pre-form was uncovered at Bubog 2 in 

secure stratigraphic position and AMS-dated to 9115-8899 cal. BP 

(Marine13; S-ANU-49209), indicating a local production of those large 

shell tools already during the early Holocene. The shell artefact displayed 

battering marks and intense edge wear suggesting a heavy-duty use as a 

chisel or cleaver (Figure 3D). From the lowest shell midden layer of Bubog 

1, a shell tool assemblage was retrieved (Figure 3B). Two direct AMS-dates 

on flaked Geloina shells date the assemblage to between 28113 and 31139 

cal. BP (Marine13; S-ANU-49438, 49439). Numerous Geloina shells were 

used as chisels and for scraping and sawing activities. Those shells 

substituted for chert as raw material for tool production. Chert is absent on 

the entire island and needed to be acquired from the adjacent Mindoro 

Island in 7.5km distance. The only lithic tools appearing in the shell midden 

are unmodified igneous pebbles that served primarily as hammerstones to 

break open the thick and solid marine shells, and fragments thereof (Figure 

4A; Pawlik et al., 2014). The latter, however, carry microwear traces that 

point to a secondary use for working various other materials. Several 

pebbles received a waisted modification suggesting a use as netsinkers 

(Figure 4B). Only from the layers below the shell midden were few chert 

flakes found together with small obsidian débitage. These lithic artefacts 

date to before c. 30ka BP and to the Late Pleistocene when Ilin Island was 

connected with Mindoro. The same layers in Bubog 1 provided the earliest 

worked bone tools from the Philippines so far. Several fragmented polished 

bones were found in the mid-Holocene deposits of the shell midden (Figure 

5A). Below the shell deposits was an almost complete bone point found that 

was carefully smoothened on all surfaces to a rather symmetrical, slightly 

curved shape with circular profile and tapered into a point at either end 

(Figure 5B). Morphology and manufacturing technique shows an intriguing 

resemblance to ground bone tools identified as fishing gorges from Batanes 

in northernmost Philippines, even though they date significantly younger to 

c. 3500 BP (Piper et al., 2013). 
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Figure 4: A) Hammerstones and fragments thereof used on large marine shells at Bubog 1; 

B) Pebbles with waisted modification used as netsinkers. 
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Figure 5: A) Polished bone point fragments from the mid Holocene at Bubog 1. 
 

The used shell flakes and also the pebble fragments substantiate the 

claim that simple tools could perform most relevant activities and also 

demonstrate that primarily functional considerations characterised the 

prehistoric technology of those early islanders. Only for the production of 

the polished fishing gorges and edge-ground shell adzes more effort was 

expended. The recent find of a preform of a Tridacna adze at Bubog 2 

indicates that those shell adzes have been locally produced, suggesting a 

very pragmatic and efficient tool manufacturing strategy that would 

minimise production effort and apply more complex techniques only when 

necessary (Pawlik et al. 2015).   
Evidence for the use of unretouched chert flakes but also stingray spines 

attached to wooden shafts using resinous adhesives was found in Terminal 

Pleistocene deposits at Ille Cave in Palawan and Niah Cave in Borneo. The 

presence of this kind of an elaborate and multicomponent tool technology is 

certainly not surprising from a European/African perspective. What is worth 

mentioning though, is that the information was obtained mainly by 

microscopic analyses. This is not a standard practice for the identification of 

modern behaviour and neither necessary nor applied to identify blade 

technology, rock and figurative art, ornaments and most other complex 
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traits. However, it helped to uncover formerly unknown and invisible 

modern traits in Southeast Asian assemblages. Besides projectile and 

hafting technology, shell working possibly for ornaments and the use of 

pigments were identified together with signs of tool curation at Ille Cave 

(Pawlik, 2012). The use of pigments on shell, bone and turtle plastron has 

even been dated back for Southeast Asia to as early as c. 41ka cal. BP in 

Niah Cave (Barton et al., 2009).  
Current comparative microwear analysis of assemblages from the 

Philippines and Sulawesi has demonstrated that the lithic assemblages 

already studied in the Philippines must be placed in the larger context of a 

maritime network that probably spanned over the entire Philippine 

archipelago and included Sulawesi, Borneo, Java, coastal areas of the 

Southeast Asian Mainland, and was probably reaching as far as Near 

Melanesia already during the Terminal Pleistocene (Solheim, 1985; Bulbeck 

2008; Soares et al. 2008; Pawlik et al., 2015; Neri et al., 2015). In addition, 

microwear analysis provides actual technical and functional 

characterisations of lithic artefacts, the identification of working and 

hunting tools and a determination of activities and site functions (Pawlik, 

2009). It has no regional and chronological limitations and shows a 

potential for the detection of variability in behaviour and cognition, as well 

as traits of human modernity, like the application of complex technologies, 

hafting and multi-component tool making, projectile points, curation, 

fabrication of ornaments, shell fishing, use of pigments and more (Haidle 

and Pawlik, 2010).  
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A B S T R A C T   

Expedient lithic technology has been described as unchanging and without or very limited presence of formal 
tool types. However, this premise seems to limit the discussion on technological and behavioural complexity 
when studying amorphous flake industries. To address this issue, we employed multi-stage use-wear analysis to 
identify features that are not detectable through macroscopic approach. Our analysis of chert tools from Leang 
Sarru, North Sulawesi indicated the use of both unmodified flakes and retouched tools for plant processing, and 
we detected evidence for the manufacture of composite tools. Microscopic wear traces on unretouched flakes 
show that these were attached to shafts for possible use as hafted tools, but not necessarily as projectiles. Our 
results suggest that simple flake assemblages can be part of complex tool production and present an alternative 
view on the seemingly unchanging lithic technology from the Late Pleistocene to the Holocene. Furthermore, our 
current understanding of expedient lithic technology should be reassessed as features that are not observable 
with standard morphological and technological analyses may be detected through use-wear analysis. Overall, the 
applied methodology and results of this study are relevant to Pleistocene and Early Holocene archaeological sites 
and assemblages that exhibit the dilemma of inferring technological and behavioural complexity through the 
analysis of simple stone tools.   

1. Introduction 

Early long-distance movements and open water crossing in Island 
Southeast Asia (ISEA) by modern humans 50,000 years ago is evident in 
the permanent colonisation of Sahul (Australia and New Guinea) 
(O’Connor et al., 2011; Clarkson et al., 2017) and maybe even earlier on 
the Wallacean islands including Flores, Luzon, Mindoro, the Visayas, 

and Mindanao (Heaney, 1993; Esselstyn et al., 2010; Porr et al., 2012; 
Pawlik et al., 2014; Sutikna et al., 2017). Sulawesi, the location of Leang 
Sarru, is the westernmost major island of Wallacea and considered a 
stepping stone for the peopling of Sahul and Oceania along the northern 
route (Birdsell, 1977; Aubert et al., 2014; Brumm et al., 2017; Bird et al., 
2019). Recent discoveries in Sulawesi, such as the 40,000 to 35,000-year 
old rock art (Aubert et al., 2014), stone tools as old as 118,000 years ago 
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in Talepu (van den Bergh et al., 2016), and evidence of symbolic 
behaviour from 30,000 to 22,000 years ago (Brumm et al., 2017), 
demonstrate previously unknown cultural practices in the region, which 
shows the vital role that this island played in human dispersion. Surveys 
in the northern section of Sulawesi, including the Talaud Islands, were 
conducted in the 1970s by Bellwood (1976). One of the sites recorded in 
this region, Leang Sarru, was first excavated in 1995 by Tanudirjo 
(2001, 2005), and then in 2004 by Ono et al. (2010, 2015). So far, only 
technological analysis was conducted on the lithic assemblage from the 
site (Tanudirjo, 2001, 2005; Ono et al., 2015), and this study is the first 
multi-stage use-wear analysis on stone tools from North Sulawesi. 

Maritime technology showing capability of accessing pelagic fishing 
grounds and covering distances of open ocean of >90 km has been 
argued to be available to Pleistocene hunter-gatherers as early as 40,000 
years ago (O’Connor et al., 2010, 2011). The presence of a developed 
open-sea fishing technology for ISEA is supported by evidence such as 
fishing hooks, net sinkers, and remains of pelagic fish in the archaeo-
logical assemblages since the late Upper Pleistocene (O’Connor et al., 
2011, 2017; Pawlik et al., 2014; Boulanger et al., 2019; Pawlik and 
Piper, 2019). Despite the indications for a well-developed maritime 
technology during the Late Pleistocene, lithic technology of this region 
appears generally as simple and unsophisticated, seemingly contra-
dicting the assumed high level of cognitive and technological capabil-
ities of the early islanders (Pawlik and Ronquillo, 2003; Patole-Edoumba 
et al., 2012; Marwick et al., 2016). While during the Late Holocene, past 
research in ISEA focused predominantly on the hypothesis of migration 
of technologically advanced ‘Austronesian’ groups from Taiwan into the 
Pacific (Bellwood, 2005, 2017). New data indicate the importance of 
economic and ecological changes in pre-Austronesian and Neolithic 
societies during the transition from the Terminal Pleistocene to Early to 
Mid-Holocene (Bulbeck, 2008; Barker and Richards, 2012; Pawlik et al., 
2014, 2015; Pawlik and Piper, 2019). These results suggest the impor-
tance of this period in understanding the complex interplay of migra-
tion, adaptation, and integration of innovations and populations (Soares 
et al., 2008; Barker and Richards, 2012). 

Lithic assemblages associated with these early movements in ISEA do 
not show a distinctive morphology through time, that at face-value 
would seem to suggest that lithic traditions stagnated until the intro-
duction of ground stone technologies around 4000 cal. BP (Pawlik, 
2001, 2010; Mijares, 2002, 2007; Patole-Edoumba et al., 2012; Borel 
et al., 2013; Pawlik et al., 2014; Marwick et al., 2016). To overcome this 
‘typology dilemma’, use-wear and residue analysis (’traceology’) has 
been proposed as a method for the classification of stone tools (Haidle 
and Pawlik, 2009; Pawlik, 2009). Traceology applies basic physical 
principles of interacting surfaces in relative motion and studies the wear 
and tear created during such interaction between a tool and the worked 
object, resulting in formation of traces observable using optical and 
imaging techniques to identify qualitative features (Semenov, 1964; 
Tringham et al., 1974; Keeley and Newcomer, 1977; Kamminga, 1979; 
Keeley, 1980; Odell and Odell-Vereecken, 1980; Odell, 1981; Vaughan, 
1985; Unrath et al., 1986; Beyries, 1988; Pawlik, 1992; Anderson et al., 
1993; Yamada, 1993; Longo and Skakun, 2008) and to collect quanti-
fiable data (Evans and Donahue, 2008; Ib�a~nez et al., 2014; Macdonald, 
2014; Stemp et al., 2015). Adhering residues on stone tool surfaces 
provide direct clues to the origin and nature of the worked material and 
conducted activities (e.g. Anderson, 1980; Christensen et al., 1992; Loy 
et al., 1992; Kooyman et al., 1992; Pawlik, 1995, 2004; Fullagar et al., 
1998; Hardy and Garufi, 1998; Kealhofer et al., 1999; Rots, 2003, 2010; 
Rots and Williamson, 2004; Torrence and Barton, 2006; Dinnis et al., 
2009; Pawlik and Thissen, 2011; Bordes et al., 2017). So far, this method 
has been long neglected in the analysis of Southeast Asian lithic as-
semblages, although the few systematic traceological studies, involving 
experiments, that have been published in the region have demonstrated 
its importance in addressing key issues in human behaviour and asso-
ciated technologies (Mijares, 2002, 2007; Davenport, 2003; Lewis et al., 
2008; Barton et al., 2009; Pawlik, 2009, 2010; 2012; Haidle and Pawlik, 

2010; Xhauflair and Pawlik, 2010; Xhauflair, 2014; Fuentes, 2015; 
Xhauflair et al., 2016, 2017; Bordes et al., 2017). 

To address the issue of expedient lithic traditions, in relation to 
organic technologies, we employed multi-stage traceological analysis to 
study lithic samples from Leang Sarru, North Sulawesi. While the 
assemblage is mostly composed of simple unretouched flakes similar to 
other sites in ISEA, it also contains a significant number of retouched 
artefacts. The site was never connected to mainland Sulawesi during the 
Quaternary Period, making it an ideal setting to address the develop-
ment of expedient technology in a remote island environment. Our 
traceological analysis can contribute to the ongoing debate on the 
typological paucity of lithic assemblages in the region and the reasons 
for maintaining simple lithic production. Rather than justifying the 
supposed absence of ‘diachronic’ changes of tool technology during the 
Palaeolithic with a hypothetical ‘bamboo technology’ (Narr, 1966; 
Pope, 1989), which is even more absent in the archaeological record, we 
propose that lithic assemblages should be subjected to a 
functionally-oriented approach (Pawlik, 2012) in order to detect 
changes in technology and human behaviour during drastic environ-
mental changes over the past c. 35,000 years. 

2. Geography and archaeology of Leang Sarru, Talaud Islands 

The Talaud chain of islands is located between Mindanao, 
Philippines and the northern section of Sulawesi, Indonesia. It is 
composed of the islands of Karakelong, Salibabu, and Kabaruan, along 
with eight smaller uplifted coral islands called the Nanusa Islands group 
(Fig. 1). The three major islands are low-lying and of non-volcanic 
origin, covered with extensive natural forest (Riley, 2002; Ono et al., 
2010). Leang Sarru is a rockshelter located along the eastern coast of 
Salibabu Island within latitude 4�300 to 21�120N and longitude 119� to 
127�E. The northeast-facing rockshelter is situated in an uplifted coral 
limestone block at about 15 m above sea level and c. 400 m from the 
shore (Tanudirjo, 2005). It is c. 5 m by 3 m in area, 2.5 m-high in its 
curved ceiling at the dripline, and has a dry platform which slopes down 
away from the wall (Ono et al., 2010, Fig. 2B). It lies at a geographically 
strategic location between Sulawesi and Mindanao, south of the 
Philippines, and could have likely acted as a conduit for the movement 
of people, material culture and ideas between those regions throughout 
prehistory (Ono et al., 2010, Fig. 1). 

Two 1 � 1m test pits (B2 and C2) were opened in 1995 (Tanudirjo, 
2001, 2005) while six squares were excavated in 2004 (C3, C4, C5, C6, 
D2, and D3) (Ono et al., 2010, Fig. 2A, 2B). Ninety centimetres below 
surface level was excavated in 10-cm spits and four layers were recorded 
in B2 and C2 (Tanudirjo, 2001, 2005, Fig. 2C). Four units, located inside 
the rockshelter (C3, C4, D2, and D3), were excavated to a depth of 70 cm 
before hitting the bedrock. The squares situated beyond the dripline (C5, 
C6) reached 60 cm from the surface level (Ono et al., 2010, Fig. 2A). 
Sieving was conducted using 3-mm and 5-mm mesh. Shells, lithic flakes, 
potsherds, hammerstones, ochre, and a stone anvil were recovered 
within the four stratigraphical layers (Fig. 2C). However, no animal 
bones were found on both excavations (Tanudirjo, 2001, 2005; Ono 
et al., 2010). 

Leang Sarru has four main occupation phases, starting from c. 35,000 
to 31,000 BP (1st phase, Layer 3) with the recovery of stone tools and 
shells. From c. 22,000 to 17,000 BP (2nd phase, Layer 2B), a more 
intensive habitation with the bulk of lithic production was observed. The 
3rd phase was dated to c. 10,000 to 8000 BP (Layer 2A). There was no 
human habitation after 8000 BP until the rockshelter was again occu-
pied between c. 2000 to 1000 BP, during the Metal Age (Tanudirjo, 
2001, 2005; Ono et al., 2010; Table 1). Layer 1 (Metal Age) contains 
potsherds which are similar to jars associated with the Metal Phase 
(Bellwood, 1976), and for instance found in Leang Buiduane, c. 20 km to 
the north of Leang Sarru (Ono et al., 2010). The stratigraphical context, 
dating, and lithic technological analysis of Leang Sarru were discussed in 
detail by Tanudirjo (2001, 2005) and Ono et al. (2010, 2015). Tanudirjo 
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Fig. 1. Location of Leang Sarru in the Talaud Islands, North Sulawesi (modified from Ono et al., 2010).  

Fig. 2. A. Archaeological units from the 1995 and 2004 excavations (modified from Ono et al., 2010). B. Excavation units within the main platform and beyond the 
dripline (photos by Rintaro Ono). C. Four stratigraphical layers were excavated revealing four occupation phases (modified from Tanudirjo, 2005). 
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(2005) categorised the stone artefacts from units B2 and C2 into cores, 
lithic waste, blade-like flakes, and utilised flakes - pieces with retouches 
or macroscopically visible wear traces. Utilised flakes, blade-like arte-
facts, and a hammerstone were recovered in unit B2 within Layer 3, 
dated to 35,001–33,854 cal. BP (ANU-10499, Tanudirjo, 2005), while in 
C2, those artefacts began appearing in Layer 2 (ANU-10960, 22,618–21, 
939 cal. BP; Tanudirjo, 2005). Ono et al. (2015) and Tanudirjo (2001) 
proposed the presence of flakes that resemble gull wings (cross section of 
the striking platform), which were produced through successive flaking 
with a single direction on the same section of the striking platform. 

3. Materials and methods 

A total of 14,525 lithic artefacts were recovered - 5060 in 1995 
(Tanudirjo, 2005) and 9465 in 2005 (Ono et al., 2010). Although un-
retouched flakes are dominant, the assemblage contains retouched ar-
tefacts, mainly notched pieces (Ono et al., 2010). R. Fuentes and A. 

Pawlik selected 183 artefacts, with 361 potentially used areas (PUA) 
(Vaughan, 1985; van Gijn, 1989; Table 2; SI Tables 2 and 4; SI 5), to 
undergo multi-level use-wear analysis (van Gijn, 1989). We defined PUA 
based on the presence of an edge which can be assigned as a unit within 
the stone tool, and was deemed to have been used to perform specific 
tasks (Vaughan, 1985; van Gijn, 1989; SI 5). The samples were recov-
ered from Spits 1 to 6 (0–60 cm from surface level), covering Layers 1 to 
3 and four occupation phases. These include 15 artefacts from the 1st 
phase (PUA ¼ 24), 37 from the 2nd phase (PUA ¼ 71), and 82 from the 
3rd phase (PUA ¼ 168). In addition, we analysed 42 stone tools from the 
Metal Age (PUA ¼ 82) and seven from the Modern Period (PUA ¼ 16), 
tools with potentially used edges (Table 2; SI Tables 1 and 3) to identify 
the diachronic changes in technology. We based the selection on the 
following parameters: 1) condition of raw material and suitability for 
use-wear analysis, 2) presence of working edge, 3) visible microscarring 
or reflective surfaces (polishes) inspected with the aid of 2� and 10�
hand lenses, and 4) presence of PUA. All artefacts are currently stored at 

Table 1 
Occupation phases and radiocarbon dates of Leang Sarru (Tanudirjo, 2001, 2005; Ono et al., 2010).  

Occupation 
Phase 

Age 
estimate 

Spit Depth 
(cm) 

Layer Lab. code Material Unit/ 
Layer 

Depth 
(cm) 

14C Age (BP) Published 
calibrated age using 
CalPal2007_HULU 
(cal BP)a 

Calibrated age 
using Marine13 
(cal. BP; 2 
sigma) 

Reference 

Modern 
Period 

/ 1 0–10 Topsoil / / / / / / / Ono et al. 
(2010) 

Metal Age 2-1000 
BP 

2 10–20 Layer 1 / / / / / / / Tanudirjo 
(2005),  
Ono et al. 
(2010) 

3rd phase 10-8000 
BP 

3 20–30 Layer 
2A 

TERRA- 
070407a05 

Turbo 
sp. 

D3/2 � 30 
cm 

7660 � 40 8033–8144 8218–8000 Ono et al. 
(2010) 

ANU- 
10203 

Turbo 
sp. 

B2/2 � 30 
cm 

9750 � 90 10,430–10,683 10,814–10,515 Tanudirjo 
(2005) 

2nd phase 22- 
17,000 
BP 

4 30–40 Layer 
2B 

ANU- 
10810 

Turbo 
sp. 

B2/2 � 40 
cm 

14,820 � 80 17,309–17,819 17,849–17,320 Tanudirjo 
(2005) 

ANU- 
10960 

Turbo 
sp. 

C2/2 � 50 
cm 

18,880 � 140 21,715–22,421 22,618–21,939 Tanudirjo 
(2005) 

1st phase 35- 
31,000 
BP 

5–9 40–90 Layer 
3,4 

ANU- 
10499 

Turbo 
sp. 

B2/3 � 50 
cm 

30,850 � 340 34,988–35,033 35,001–33,854 Tanudirjo 
(2005) 

TERRA- 
070407a04 

Turbo 
sp. 

C3/3 � 50 
cm 

28,460 � 150 32,223–32,832 32,433–31,397 Ono et al. 
(2010) 

TERRA- 
070407a03 

Turbo 
sp. 

D3/3 � 60 
cm 

28,760 � 150 32,426–33,079 32,813–31,672 Ono et al. 
(2010) 

ANU- 
10498 

Turbo 
sp. 

B2/4 � 70 
cm 

29,590 � 630 32,898–34,087 34,368–31,622 Tanudirjo 
(2005) 

ANU- 
10204 

Turbo 
sp. 

B2/4 � 80 
cm 

29,760 � 650 33,031–34,201 34,592–31,750 Tanudirjo 
(2005) 

ANU ¼ The Australian National University Radiocarbon Dating Laboratory. 
TERRA ¼ Tandem Accelerator for Environmental Research and Radiocarbon Analysis. 
Note: All uncalibrated radiocarbon dates from Leang Sarru reported herein have been recalibrated with Calib 7.0.4 (Stuiver and Reimer, 1993) using Marine13 for shell 
(Reimer et al., 2013), and are given as a 95.4% or higher probability range. See Ono et al. (2010) for rejected dates. 

a Calibrated by Ono et al. (2010) using CalPal2007_HULU. 

Table 2 
Summary of tool and PUA edge types per occupation phase.  

Category Modern Period Metal Age 3rd Phase 2nd Phase 1st Phase Total 

Count % Count % Count % Count % Count % Count % 

Tool type Unretouched 5 3% 30 16% 63 34% 22 12% 11 6% 131 72% 
Notched 2 1% 11 6% 17 9% 15 8% 3 2% 48 26% 
Micronotched 0 0% 1 1% 2 1% 0 0% 0 0% 3 2% 
Shatter 0 0% 0 0% 0 0% 0 0% 1 1% 1 1% 
Total 7 4% 42 23% 82 45% 37 20% 15 8% 183 100% 

PUA edge type Concave 6 2% 32 9% 61 17% 24 7% 6 2% 129 36% 
Convex 3 1% 14 4% 40 11% 16 4% 9 2% 82 23% 
Straight 1 0% 9 2% 21 6% 11 3% 1 0% 43 12% 
Irregular 6 2% 27 7% 46 13% 20 6% 8 2% 107 30% 
Total 16 4% 82 23% 168 47% 71 20% 24 7% 361 100%  
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the Balai Arkeologi (BALAR) in Manado, North Sulawesi where they are 
kept in labelled zip lock bags. These had been already cleaned and 
adhering sediments removed under running water before storage. Prior 
to analysis, stains from handling and storage were removed through a 
gentle cleaning procedure using an ultrasonic tank filled with a mild 
solution of dishwashing liquid and distilled water for c. 3 min, and 
consequently rinsed with distilled water and 70% alcohol, then dried on 

paper towels. This procedure cleans artefacts for microscopic analysis 
gently and efficiently without leaving stains on the surface or causing 
damage to residues (Unrath et al., 1986). 

We conducted morphological analysis on the samples to present the 
attributes of the selected tools and to investigate changes in the quali-
tative features and metrical attributes. The detailed morphological an-
alyses were already conducted by Tanudirjo (2001, 2005) and Ono et al. 

Table 3 
Mean and median values of morphological measurements per occupation phase.  

Attributes Modern Period Metal Age 3rd Phase 2nd Phase 1st Phase Total 

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median 

Weight (gm), N ¼ 183 7.81 5.34 6.80 6.07 6.42 4.34 9.53 7.62 9.52 6.58 7.44 5.53 
Max length (mm) 32.50 33.60 29.73 29.35 30.63 28.70 33.83 32.80 32.99 36.20 31.33 30.80 
Max width (mm) 30.71 29.00 27.75 26.85 24.59 22.75 29.44 28.50 28.23 29.90 26.83 26.60 
Max thickness (mm) 10.39 9.60 9.53 9.05 9.77 8.75 11.25 10.80 9.65 9.20 10.03 9.30 
Striking platform thickness (mm), N ¼ 149 9.27 6.80 5.87 5.10 6.04 5.10 7.76 7.25 6.84 5.85 6.59 5.80 
Striking platform width (mm) 12.77 11.30 14.23 13.45 12.14 11.65 17.51 15.75 14.43 13.90 13.99 13.00 
PUA length (mm), N ¼ 361 25.24 27.75 25.96 25.10 24.86 23.70 26.77 26.60 27.14 25.20 25.65 24.70 
PUA edge angle (deg) 48 49 51 52 51 53 49 50 56 55 51 52  

Fig. 3. A. Unretouched flakes from the 1st phase B. Notched tools from the 2nd phase. Locations of potentially used areas are marked with red lines. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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(2015). Analysis had to be conducted in the collection holding facility at 
BALAR Manado, hence a portable microscope set-up was required. 
Low-power analysis was carried out with a Euromex NexiusZoom 
stereo-microscope (6.7–45�) and a Promicron 48-LED ring light illu-
mination unit with incremental light control. For high power analysis, 
we used Olympus BHMJ (110�, 220�, 440�) and BXFM (100�, 200�, 
500�) reflected light microscopes modified for LED spotlight illumina-
tion and operating with differential interference contrast (DIC)/No-
marski interference contrast (NIC) and long-working-distance (LWD) 
objectives. The artefacts were mounted with plasticine on a free-moving 
cup stage. Photomicrographic documentation was performed using a 
Nikon D5300 attached to the microscope via an AmScope and Prom-
icron phototube and adapter for Euromex NexiusZoom and Olympus 
BXFM. Respectively, a Canon Powershot G9 via a Promicron phototube 
and Olympus MTV-3 C-mount adapter for the Olympus BHMJ. Both 
cameras were connected to a personal computer and remotely controlled 
with dedicated image capture software. We used recording forms to 
document descriptions, locations, and magnifications of use-wear traces. 
Artefacts with potentially use-related residues were exported for further 
analysis. Scanning electron microscopy was conducted at the National 
Institute of Geological Sciences of the University of the Philippines 
(Hitachi S-3400N Variable Pressure Scanning Electron Microscope with 
Deben Peltier Coolstage) and at the Microfossils Laboratory in the 
Department of Geosciences of the Eberhard Karls Universit€at Tübingen 
(PhenomWorld Scanning Electron Microscope and Energy Dispersive 
X-ray). 

4. Results 

4.1. Morphological attributes of samples for use-wear analysis  

We analysed 182 flakes and one shatter, all made from chert 
(Table 2; Fig. 3). These are composed of 131 unretouched flakes (72%), 
48 notched-type (26%), three with micronotch (2%), and one shatter 
(1%) (Table 2). Most are complete flakes from all occupation phases – 
11/15 from the 1st phase, 85/119 from the 2nd and 3rd phases (Layers 
2A and 2B), and 37/49 from the Metal Age and Modern Period (SI 
Table 3). The notched tools were present beginning the 1st phase but 
only minimal (n ¼ 3), and were mostly identified from the 2nd phase 
(n ¼ 15), 3rd phase (n ¼ 17), and Metal Age (n ¼ 11). Majority of the 
samples, from all the occupation phases, were produced through Hert-
zian initiation, pronounced bulbs of percussion, and feather termination 
with no significant change in the production technique (SI Table 3). 
Plain-type striking platforms were dominant for all occupation phases. 
During the 3rd phase, prepared striking platforms first appeared and 
were identified on 13 of the 64 flakes with proximal sections (Table 2; SI 
Table 3). The selected stone tools have a median weight of 5.53 gms and 
maximum dimensions of 30.8 mm (length) by 26.6 mm (width) by 
9.3 mm (thickness). The dimensions of our samples, including their 
striking platforms (median thickness ¼ 5.8 mm, width ¼ 13.0 mm), did 
not vary across all the occupation phases (Table 3). 

Three hundred sixty one PUAs were assigned and categorised into 
the following working edge types - convex (82, 23%), concave (129, 
36%), straight (43, 12%), and irregular (107, 30%) (Table 2). Twenty 
four PUAs were identified during the 1st phase, 71 from the 2nd phase, 
168 from the 3rd phase, 82 from the Metal Age, and 16 from the Modern 
Period. The four main edge types (concave, convex, straight, and 
irregular) were produced from the 1st phase until the Metal Age and 
there is no clear trend for the samples, except for the minimal presence 
of straight edges. Overall, the samples do not show change across the 
occupation phases – PUA median length of 24.8 mm and 52� edge angle 
(Table 3). No flake modification or types were identified except for 
notched tools, which were produced in all phases (Table 2). 

4.2. Use-wear analysis 

4.2.1. Traces on potentially used areas 
Two hundred thirty three of 361 PUAs have proximal scar initiations 

(65%), which were categorised into shallow, steep, break-shallow, and 
crescent break (after Vaughan, 1985). For distal scar terminations, these 
were classified into feather, hinge, step, and crescent, and are present on 
249 of 361 PUAs (69%) (Vaughan, 1985, Table 4; SI Tables 2 and 4). The 
formation of traces exclusively on one face of the PUA, and their 
perpendicular orientation is in concordance with transversal activities 
such as scraping or heckling. Also, rounding frequently occurred, 
another wear pattern that is associated with processing of softer mate-
rials (Keeley and Newcomer, 1977; Plisson, 1985; Vaughan, 1985; 
Unrath et al., 1986; van Gijn, 1989; Pawlik, 1995: 96), is present on 117 
of 361 PUAs (Table 4). These were categorised into light, mid, to 
intensively-developed rounding types. We do not exclude the processing 
of hard material such as bone, however the absence of larger mammals 
in the faunal assemblage of Leang Sarru (Ono et al., 2010) makes such a 
factor quite unlikely. Polishes, present on 171 of 361 PUAs (47%), and 
were categorised as generic weak, smooth-pitted and well-developed 
(Vaughan, 1985, Table 4). Bright spots (Levi-Sala, 1996) were also 
identified on the samples (21/361 PUA, 6%). Striations were occasion-
ally present in sections with polishes (52/361 PUA, 14%; Table 4), and 
appear mainly in transversal (37/361 PUA, 10%) and diagonal orien-
tation (13/361 PUA, 4%; SI Table 4), indicating scraping actions. The 
formation of parallel (7/361 PUA, 2%) and multidirectional striations 
(2/361 PUA, 1%) was minimal (SI Table 4). 

For types of actions, we identified 7/361 PUAs (2%) that were used 
in longitudinal orientation, from the 2nd and 3rd phases. One hundred 
sixty seven PUAs (46%) were employed in transversal motion while 13 
(4%) has traces showing diagonal action – both directions inferred as 
scraping action. The PUAs with traces of both longitudinal and trans-
versal actions were identified as multifunctional while those that were 
possibly used as part of a hafted tool were labelled as composite. Tools 
with faint traces or those which also show knapping or fresh breakage, 
and deemed to be taphonomic were grouped under undeterminable (43 
PUA, 12%), while unused PUAs account for 135 (37%) in total (Table 5). 
Overall, majority of the tools appear to have been used in transversal 
orientation based on the locations of the traces that were identified, and 

Table 4 
Summary of presence of use-wear traces per occupation phase.  

Use-wear category Modern Period Metal Age 3rd Phase 2nd Phase 1st Phase Total Presence Total Absence 

Count % Count % Count % Count % Count % Count % Count % 

Distal scarring 8 50% 49 60% 113 67% 49 69% 14 58% 233 65% 128 35% 
Proximal scarring 9 56% 51 62% 119 71% 54 76% 16 67% 249 69% 112 31% 
Rounding 2 13% 25 30% 57 34% 26 37% 7 29% 117 32% 244 68% 
Polish 5 31% 33 40% 77 46% 42 59% 14 58% 171 47% 190 53% 
Striations 1 6% 9 11% 27 16% 13 18% 2 8% 52 14% 309 86% 
Retouch 7 44% 31 38% 53 32% 31 44% 6 25% 128 35% 233 65% 
Possible residues 6 38% 25 30% 34 20% 28 39% 2 8% 95 26% 266 74%  
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on directionality of polishes and striations. 
For contact materials, a total of 80 PUAs were used on soft materials 

while eight have traces associated with the soft-hard category. Well- 
developed polishes (‘sickle gloss’) caused by processing phytolith rich- 
plants were present on 54/361 PUAs (15%), and were mostly identi-
fied on samples from the 3rd phase (32/54 PUA). Intensive scarring 
associated with hard materials were inferred on 23 PUAs (6%) (Table 5). 
These show contact with hard woody plants and possibly even bones, 
although these are absent in the archaeological record (Ono et al., 
2010). Traces associated with plant processing were identified as early 
as the 1st phase, although very minimal (3 PUA) (Table 5). Intensified 
activities during the 2nd and 3rd phases indicate continuity of pro-
cessing of soft materials and phytolith-rich plants (Table 5; SI Tables 2 
and 4). In the next section, we interpreted the function of each tool 
(N ¼ 183) based on the combination of types of actions and contact 
materials for each PUA. 

4.2.2. Interpretations of tool function 
During the 1st phase (N ¼ 15), five tools were used for scraping soft 

material (n ¼ 1), soft-hard, (n ¼ 1), phytolith-rich plants (n ¼ 2), while 
one has undeterminable contact material. One artefact was used as 
notched scraper on soft material while no cutting tools were identified 
during this period. The few samples suitable for use-wear analysis re-
flects limited activities in the site during this period. Out of the 15 ar-
tefacts, two were interpreted as undeterminable and seven as unused. 

During the 2nd phase (N ¼ 37), 13 unretouched flakes were used in 
scraping action on a variety of materials (soft ¼ 3, hard ¼ 1, soft- 
hard ¼ 1, phytolith-rich plant ¼ 7, undeterminable ¼ 1) and six notched 
tools were used in scraping action (soft ¼ 3, phytolith-rich plant ¼ 1, 
undeterminable ¼ 2; Table 7). Two artefacts were categorised as 
multifunctional (soft-hard ¼ 1, and phytolith-rich plant ¼ 1; Table 7) 
and one as composite tool (soft ¼ 1, hard ¼ 1). For the 3rd phase 
(N ¼ 82), the same trend was observed - processing of soft materials 
(n ¼ 14) and phytolith-rich plants (n ¼ 20) through scraping especially 
using unretouched flakes. Scraping with notched tools was also detected 
(soft ¼ 7, hard ¼ 2). We identified lithics used in grooving (n ¼ 2), cut-
ting (n ¼ 3), and part of composite implements (n ¼ 3), but still minimal 
compared to scraping tools. Seven tools were undeterminable and 16 
were unused. Twenty-three tools were inferred to have been used in 
processing phytolith-rich plant (Table 7). After the 3rd phase and during 
the Metal Age, the same trend was observed – most activities were 
associated with scraping of soft materials and plant processing. 

Across all occupation phases, majority of the tools were used in 
scraping (transversal/diagonal PUA actions) soft materials (43 tools, 
23%; 79 PUA, 22%) and phytolith-rich plants (37 tools, 20%; 48 PUA, 
13%; Table 6). On the other hand, cutting action (3 tools, 2%; 7 PUA, 
2%) and processing of hard materials (12 tools, 7%; 23 PUA, 6%) were 
minimal (Table 6). Processing of phytolith-rich plants most likely began 
during the 1st phase (n ¼ 2) but substantial evidence was identified 
during the 2nd and 3rd phases, with 33 tools showing contact with this 

Table 5 
Inferred PUA actions and contact materials per occupation phase.  

Inference per PUA Modern Period Metal Age 3rd Phase 2nd Phase 1st Phase Total 

Count % Count % Count % Count % Count % Count % 

Action Transversal 2 13% 30 37% 81 48% 33 46% 8 33% 154 43% 
Longitudinal 0 0% 0 0% 5 3% 2 3% 0 0% 7 2% 
Diagonal 1 6% 4 5% 4 2% 3 4% 1 4% 13 4% 
Composite 0 0% 0 0% 6 4% 3 4% 0 0% 9 2% 
Undeterminable 3 19% 14 17% 17 10% 7 10% 2 8% 43 12% 
Unused 10 63% 34 41% 55 33% 23 32% 13 54% 135 37% 
Total 16 100% 82 100% 168 100% 71 100% 24 100% 361 100% 

Contact material Soft 3 19% 19 23% 40 24% 16 23% 2 8% 80 22% 
Soft-hard 0 0% 4 5% 2 1% 1 1% 1 4% 8 2% 
Hard 0 0% 1 1% 14 8% 7 10% 1 4% 23 6% 
Phytolith-rich plant 0 0% 8 10% 32 19% 11 15% 3 13% 54 15% 
Undeterminable 3 19% 16 20% 25 15% 13 18% 4 17% 61 17% 
Unused 10 63% 34 41% 55 33% 23 32% 13 54% 135 37% 
Total 16 100% 82 100% 168 100% 71 100% 24 100% 361 100%  

Table 6 
PUA actions and tool interpretations per type of contact material.  

Action Contact material 

Soft % Hard % Soft- 
hard 

% Phytolith-rich 
plant 

% Undeterminable % Unused % Total % 

PUA Longitudinal 1 0% 4 2% 0 0% 2 1% 0 0% 0 0% 7 2% 
Transversal 77 21% 14 8% 8 4% 40 11% 15 4% 0 0% 154 43% 
Diagonal 2 1% 3 2% 0 0% 8 2% 0 0% 0 0% 13 4% 
Part of hafted tool 0 0% 2 1% 0 0% 4 1% 3 1% 0 0% 9 2% 
Undeterminable 0 0% 0 0% 0 0% 0 0% 0 0% 43 12% 43 12% 
Unused 0 0% 0 0% 0 0% 0 0% 0 0% 135 37% 135 37% 
Total 80 22% 23 6% 8 2% 54 15% 18 5% 178 49% 361 100% 

Tool Cutting 1 1% 1 1% 0 0% 1 1% 0 0% 0 0% 3 2% 
Scraping 27 15% 7 4% 7 4% 35 19% 3 2% 0 0% 79 43% 
Notched scraper 16 9% 2 1% 2 1% 2 1% 2 1% 0 0% 24 13% 
Grooving 0 0% 1 1% 0 0% 1 1% 0 0% 0 0% 2 1% 
Composite tool 1 1% 1 1% 0 0% 2 1% 1 1% 0 0% 5 3% 
Multifunctional 0 0% 0 0% 1 1% 1 1% 0 0% 0 0% 2 1% 
Undeterminable 0 0% 0 0% 0 0% 0 0% 23 13% 0 0% 23 13% 
Unused 0 0% 0 0% 0 0% 0 0% 0 0% 45 25% 45 25% 
Total 45 25% 12 7% 10 5% 42 23% 29 16% 45 25% 183 100%  
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material type (Tables 6 and 7; SI Table 2). In the following sections, we 
provide examples of distinct technological activities that include plant 
processing using unretouched flakes and notched tools, use of grooving 
and planing tools, and production of composite implements. 

4.3. Plant polish on unretouched flakes 

Evidence of plant processing was recorded on flaked tools from the 
2nd phase and even as early as the 1st phase. For example, artefact no. 
D2_TL_S5_0003 and D2_TL_S5_0004 have intensive micropolishes, with 
diagonal orientation, formed approximately 10 μm away from the 

immediate edge (Fig. 4A, 4B). During the 2nd phase, activities associ-
ated with plant working appeared to have intensified, with the pro-
cessing of phytolith-rich grassy plants as the dominant activity. The 
plant polishes reached an intensity in development comparable to sickle 
gloss, for instance on tool no. D3_TL_S4_0009 (Fig. 4C) and 
D3_BL_S4_0006 (Fig. 4D). Identical patterns of polish formation were 
also identified within the 3rd phase (D3_BD_S3_0003, Fig. 4E; 
D3_TL_S3_0009, Fig. 4F) and the Metal Age (D3_TG_S2_0001, Fig. 4G; 
D3_BL_S2_0007, Fig. 4H), with flat polishes and bevel formation. In most 
cases, polishes and striations were oriented diagonally and perpendic-
ular to the tool edges indicating transversal activities, different from 

Table 7 
Interpretations of tool use per occupation phase.  

Activity Contact material Modern Period Metal Age 3rd Phase 2nd Phase 1st Phase Total 

Count % Count % Count % Count % Count % Count % 

Cutting Soft 0 0% 0 0% 1 1% 0 0% 0 0% 1 1% 
Hard 0 0% 0 0% 1 1% 0 0% 0 0% 1 1% 
Phytolith-rich plant 0 0% 0 0% 1 1% 0 0% 0 0% 1 1% 

Scraping Soft 2 1% 8 4% 14 8% 3 2% 0 0% 27 15% 
Hard 0 0% 0 0% 5 3% 1 1% 1 1% 7 4% 
Soft-hard 0 0% 3 2% 2 1% 1 1% 1 1% 7 4% 
Phytolith-rich plant 0 0% 6 3% 20 11% 7 4% 2 1% 35 19% 
Undeterminable 0 0% 0 0% 1 1% 1 1% 1 1% 3 2% 

Notched scraper Soft 1 1% 4 2% 7 4% 3 2% 1 1% 16 9% 
Hard 0 0% 0 0% 2 1% 0 0% 0 0% 2 1% 
Soft-hard 0 0% 2 1% 0 0% 0 0% 0 0% 2 1% 
Phytolith-rich plant 0 0% 1 1% 0 0% 1 1% 0 0% 2 1% 
Undeterminable 0 0% 0 0% 0 0% 2 1% 0 0% 2 1% 

Grooving Hard 0 0% 0 0% 1 1% 0 0% 0 0% 1 1% 
Phytolith-rich plant 0 0% 0 0% 1 1% 0 0% 0 0% 1 1% 

Composite tool Soft 0 0% 0 0% 0 0% 1 1% 0 0% 1 1% 
Hard 0 0% 0 0% 0 0% 1 1% 0 0% 1 1% 
Phytolith-rich plant 0 0% 0 0% 2 1% 0 0% 0 0% 2 1% 
Undeterminable 0 0% 0 0% 1 1% 0 0% 0 0% 1 1% 

Multifunctional Soft-hard 0 0% 0 0% 0 0% 1 1% 0 0% 1 1% 
Phytolith-rich plant 0 0% 0 0% 0 0% 1 1% 0 0% 1 1% 

No function Undeterminable 1 1% 9 5% 7 4% 4 2% 2 1% 23 13% 
Unused 3 2% 9 5% 16 9% 10 5% 7 4% 45 25% 

Total 7 4% 42 23% 82 45% 37 20% 15 8% 183 100%  

Fig. 4. Polishes and bevel formed on unretouched flakes from the 1st phase (A,B), 2nd phase (C,D), 3rd phase (E,F), and Metal Age (G,H).  
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cutting or reaping of cereal plants typical for Neolithic sickle imple-
ments. Instead, the observed traces compare favourably to experimental 
traces attributed to transverse actions in the processing of tropical plants 
such as whittling, scraping, and heckling (Xhauflair, 2014; Xhauflair 
et al., 2016). These polishes are fully-linked flat and undulating surfaces 
with micropitting are similar with those documented in previous studies 
and based on experiments and artefact analyses on tools from ISEA 
(Davenport, 2003; Xhauflair and Pawlik, 2010; Xhauflair, 2014; Xhau-
flair et al., 2016). 

4.4. Retouched tools and plant remains 

Notched artefacts were initially recorded in the Leang Sarru assem-
blage by Tanudirjo (2001), who considered them as similar to the 
steep-angled obsidian scrapers with notches found in the Passo shell 
midden site in North Sulawesi and lateral scrapers from East Timor 
(Bellwood, 1976). Glover (1986) proposed that these artefacts were used 
in creating small cylindrical objects that include bows, spears, blow 
guns, and digging sticks. He also noted that the retouch on the medial 
part of one or both sides of the flakes. We inferred that blanks were 
modified through unifacial retouch from the ventral face and within the 
thickest part of the flakes, at the proximal section and towards the bulb 
of percussion, to create notched working edge. Multiple secondary row 
scarring, characterised by step and hinge terminations, were formed in 
the process of retouching and resulted in steeper edge angles ideal for 
performing transversal actions (D3_BL_S4_0001, Fig. 5A; 
D2_BL_S3_0003, Fig. 5B). It seems that the notches were used for plant 
processing through repetitive scraping motions. Very similar formation 
and distribution of micropolishes were observed in experiments aimed 
at extracting fibres from reeds (Pawlik, 1995: 91–93). The limited for-
mation of polishes and striations on the immediate edge shows the 
continuous abrasion and reduction of the edge while being used, and/or 
resharpening. In several instances, the notches were possibly used to 
support attachment of the lithic implements to a shaft with a binding. 

The notched tools were designed as scrapers, with steep edge angles, 
and were inferred to have been used mainly for plant processing. We 
foundevidence of plant remains on fifty one artefacts, 15 from the 
Pleistocene and 36 from the Holocene layer, with cases showing pres-
ervation right on the negatives of the retouched sections 

(D2_BL_S3_0010, Fig. 5E; D3_TL_S4_0001, Fig. 5F). Although, the resi-
dues were mostly preserved on the notched tools, these were also pre-
sent on unretouched flakes. In one case, phytoliths were embedded 
within the polish (D3_BL_S3_0019, Fig. 5G). Plant tissues were also 
deposited along the edge outline (D2_BL_S3_0002, Fig. 5H). The detailed 
identification of plant remains will be presented in a separate paper 
(Fuentes et al., in review). 

4.5. Grooving and planing tools 

Five artefacts have chamfered edges (3rd phase ¼ 4, Metal Age ¼ 1; 
Table 4), formed through a row of fine feather-terminated scars. The 
used edges appear ‘flattened’ from a vertical point of view 
(D3_BL_S3_0004, Fig. 5C) and seem to be well-suited for transversal 
actions such as scraping, whittling, and grooving. The modification is 
characterised by regular shallow-initiated and feather-terminated neg-
atives located on either the distal or proximal section of the tools 
(D3_BL_S3_0010, Fig. 5D). These micro-retouches are mainly found on 
trapezoidal and triangular flakes. Although wear traces indicating use 
on softer material are more common (46 tools, 25%), traces from soft- 
hard (11 tools, 6%) and mainly hard organic materials (12 tools, 7%; 
Table 6) indicate processing of woody plants, yet we cannot discount 
osseous materials even though no animal bones were recovered at Leang 
Sarru (Ono et al., 2010). Aside from utilitarian objects made of wood, 
this can also include the manufacturing of shafts for composite tools 
since potential hafting traces and residues were detected on several flake 
tools in the assemblage. 

4.6. Composite tools 

Tool technology is considered as composite when it has several parts 
made of different materials, most commonly a lithic or bone implement 
attached to a shaft made usually of wood but also bamboo, antler, or 
bone. This tool is then fixed with a binding, glue, or a combination of 
both (Ambrose, 2010). Hereby, a composite tool is not necessarily used 
exclusively as a projectile but could have also been deployed for utili-
tarian purposes. Evidence of use of this tool type, with symmetrical 
form, scarring at the hafting boundary, scalar scars, hafting polishes, and 
residues that are distributed in presumed areas where a form of binding 

Fig. 5. A,B. Notched tools with scarring from retouch. C,D. Traces of chamfering resulting in flat working edges ideal for grooving and planing activities. E,F. 
Notched tools with plant remains on working edges. G. Phytoliths preserved on well-developed polish. H. Plant tissues on polished sections. 
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was used, was detected on five samples (3%) (Table 7; SI 6). Potentially 
hafted implements included mostly blade-like flakes, such as 
D3_BL_S3_0038 (Fig. 6A), D3_BL_S3_0037 (Fig. 6B), and D2_BL_S3_0001 
(Fig. 6C), recovered from the 3rd phase; and D2_BL_S4_0002 (Fig. 6D) 
from the 2nd phase. One retouched tool, D3_TL_S4_0005 (Fig. 6E), from 
the 2nd phase, was also interpreted as part of a composite implement. 
D3_BL_S3_0038, D3_BL_S3_0037, and D2_BL_S3_0001 are characterised 
by lateral sections divided by arises, indicating knapping preparation to 
form the triangular and blade-like feature (Fig. 6A, 6B, 6C). Impact scars 
are present at the ‘tip’ of the artefacts (Fig. 6F, 6J, 6.M, 6.O, 6.P, 6.T). 
We also identified sliced into scalar scars (Fig. 6G) and scars at the 
hafting boundary (Fig. 6K, 6.N, 6.R), aligned on the left and right lateral 
sections, traces that form due to contact with bindings (Rots, 2008, 
2013; Rots et al., 2006; Sano, 2009; SI 6). This is further substantiated by 
the formation of polishes associated with hafting (Fig. 6H, 6.Q). 

Although the plant residues on the assemblage appear to be directly 
associated with plant processing, we also detected it as possibly part of 

production of composite tools. For example, D3_BL_S3_0037 (Fig. 6B) 
and D3_TL_S4_0005 (Fig. 6E) have sections with plant residues (Fig. 6.L, 
6.S). One possibility for binding composite tools is the use of fibres, but 
this has not been documented for stone tools in the region yet. We only 
found possible fibre and plant cells on a single notched tool from the 
Metal Age, and will be presented as part of a study on identification of 
plant remains from the site (Fuentes et al., in review). The resinous 
material (Fig. 6I) on D3_BL_S3_0038 (Fig. 6A) probably stems from the 
use of mastics to support binding. Our sample shows highly organic 
residues with cracks, a typical feature of mastics after setting (Fig. 7A). 
EDX analysis shows that it is organic-based (Fig. 7B). Similar adhesives 
used for composite technology have been identified through microwear 
and residue analysis, and were found for instance on projectile points 
made of bone and stingray spine from the west mouth of Niah Cave in 
Borneo, dated to 11,700–10,690 cal. BP (Barton et al., 2009), and on 
multicomponent stone tools from the Terminal Pleistocene layers at Ille 
Cave in Palawan (Pawlik, 2012). 

Fig. 6. Artefacts interpreted as part of composite tools from the 3rd phase (A,B,C) and 2nd phase (D,E). F-I. Traces on D3_BL_S3_0038 (6.A). F. Impact scars at the tip. 
G. Sliced into scalar scar (curved initiation) located on the left and right lateral sections. H. Polishes formed along scars. I. Hafting residues. J-L. Traces on 
D3_BL_S3_0037 (6.B). J. Impact traces. K. Scars due to hafting. L. Plant remains within one of the scars. M,N. Traces on D2_BL_S3_0001 (6.C). M. Scars at the tip of the 
tool. N. Scars at the hafting boundary. O,P. Impact scars on both dorsal and ventral faces of D2_BL_S4_0002. Q-T. Traces on D3_TL_S4_0005. Q. Hafting polish. R. Scars 
at the hafting boundary. S. Plant remains associated with hafted section of the tool. T. Scars at the tip of the tool. 
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5. Discussion and conclusion 

Through multi-stage use-wear analysis, we identified human activ-
ities at Leang Sarru dating back from c. 35,000 years ago. During the 
Last Glacial Maximum and Early Holocene, lithic production and ac-
tivities intensified (Tanudirjo, 2001, 2005; Ono et al., 2010, 2015), and 
it was also during this time that more ‘complex’ activities began to be 
conducted at the rockshelter. Similar to other sites in ISEA, the stone tool 
assemblage from Leang Sarru is mainly composed of unretouched flakes, 
however, through simple modification, notched tools were also pro-
duced. We identified activities that were aimed at plant processing as 
indicated by the presence of polishes formed by direct and prolonged 
contact with phytolith-rich plants. This interpretation is supported by 
the adherence of plant remains on both unretouched and retouched 
tools. No animal bones were recovered during the excavations at Leang 
Sarru in 1995 and 2004, suggesting that the main raw material source 
for subsistence and production of other forms of technology were 
plant-based (Tanudirjo, 2001, 2005; Ono et al., 2010). Grooving or 
planing tools, characterised by blunt edges formed through secondary 
scarring were inferred to have been part of this plant processing toolkit. 
This supports our idea that simple unretouched tools as the main qual-
ifier for an expedient technology should be re-assessed through use-wear 
analysis. Aside from the activities focusing on plant working, evidence 
for the production of composite tools was also identified though 

microscopy. 
Our research shows that some or all elements of a hafted tool can be 

identified within a supposedly unchanging technology in ISEA. At pre-
sent, there are no published reference collections for hafted unretouched 
lithic flakes from ISEA. Also, we basically avoid tackling this issue 
because of the ‘form’ of lithic flakes which does not conform to the 
morphological standards of what a ‘point’ or a ‘hafted’ tool should be. 
Furthermore, it is compounded by the issue of plant-based technologies 
that supposedly either replaced or complemented the lithic assemblages 
in the region and one of the reasons why lithic technology stagnated. 
Hafting technology in ISEA is equated with bone points because of the 
modification, form, traces, and residues on these artefacts (Barton et al., 
2009), while for hafted lithic flakes, we still lack a published substantial 
experimental database while the archaeological record is limited to 
single observations (Pawlik, 2012). 

Palaeolithic assemblages in ISEA are characterised by a general 
absence of secondary modification and formal lithic tools. The issue of a 
paucity of recurring tool types is the cause for the so-called ‘typology 
dilemma’ (Haidle and Pawlik, 2009), preventing meaningful typological 
and technological classifications in the lithic record of the region. To 
overcome this dilemma, Pawlik (2009) proposed functional analysis 
using microscopic use-wear and residue analysis as a method for the 
classification of stone tools. Use-wear analysis of artefacts from the 
lowest layers of Ille Cave, Palawan demonstrated that seemingly simple 

Fig. 7. A. SEM image of residues with drying cracks and EDX sample area. B. Results of elemental analysis.  
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flakes served a variety of activities and also functioned as hafted ar-
matures (Lewis et al., 2008; Pawlik, 2012). This potential 
multi-component aspect must be considered in determining and classi-
fying lithic technologies in ISEA (Pawlik, 2010, 2012). 

The variety of activities carried out with unmodified flakes paints a 
picture somewhat different from a solely expedient technology (Binford, 
1979) and the hypothesis of a primarily organic technology for ISEA. 
The identification of a variety of materials that were processed using 
stone tools established that 1) it is possible to carry out numerous 
different activities with simple lithic flakes, and 2) if the processed 
materials remained the same over time, there might have been no sig-
nificant reason for a change or modification of tool forms. The recent 
microwear studies of several Southeast Asian lithic assemblages 
demonstrated that typological and technological studies alone are 
insufficient to address the issue of tool function and activity as the most 
relevant features of a stone tool. Microwear analysis on the other hand 
offers actual technical and functional characterisations of lithic arte-
facts, the identification of working and hunting tools and a determina-
tion of activities and site functions (Pawlik, 2009). It has no regional and 
chronological limitations and shows a potential for the detection of 
variability in behaviour and cognition, as well as traits of human 
modernity, like the application of complex technologies, hafting and 
multi-component tool making, projectile points, curation, fabrication of 
ornaments, shell fishing, use of pigments and more (Haidle and Pawlik, 
2010). 

Use-wear analysis has shown the capacity to address the lithic as-
semblages of ISEA more comprehensively than solely morphological and 
technological analyses. Traceological analysis of such amorphous flake 
assemblages associated with ‘expedient technology’ (Mijares, 2002) and 
‘smash and grab’ production (Coutts, 1983) have demonstrated their 
potential to address issues caused by the absence of modified lithic ar-
tefacts and recurring tool types. For instance, analysis conducted on 
assemblages from several caves in northern Luzon, Philippines such as 
Eme, Callao and Dalan Serkot (Mijares, 2005, 2007) and Vito Cave 
(Fuentes, 2015), have shown that despite the presence of an ‘unchanging 
technology’ and the use of unmodified lithic flakes, a variety of mate-
rials such as bone, wood, bamboo, and other plants as well as meat and 
other soft tissues were worked and processed. 

Furthermore, the seemingly simple lithic traditions in ISEA were not 
exclusively composed of unretouched flakes, but retouched tools may 
have played an important role in the production of other technologies 
vital to the movements into the remote islands of Southeast Asia. 
Through multi-stage use-wear analysis, seemingly expedient lithic 
technology revealed a complexity that warrants further scrutiny in 
future studies to detect changes in technology. We might have missed 
some aspects of technology, especially those that are not visible with the 
naked eye or hand lenses. Identifying cultural traits through techno- 
typological approach has proven to be an inappropriate method in 
discerning minor changes in the lifeways of prehistoric people, espe-
cially in ISEA. Overall, this reflects the complexity of expedient stone 
tool traditions that merits more research not just in Wallacea but also in 
regions that produced ‘simple’ and ‘unchanging’ lithic flakes. 

Note 

All uncalibrated radiocarbon dates from Leang Sarru reported herein 
have been recalibrated with Calib 7.0.4 (Stuiver and Reimer, 1993) 
using Marine13 for shell (Reimer et al., 2013), and are given as a 95.4% 
or higher probability range. Calibrated dates are given in cal BP. 
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Stuck within notches: direct evidence of plant processing during the Last Glacial 1 

Maximum to Holocene in North Sulawesi 2 
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 21 

Abstract 22 

The existence of an organic or plant-based technology during the Late Pleistocene and Early Holocene 23 

is an ongoing debate in Island Southeast Asia (ISEA). Evidence of plant-based organic technologies in 24 

the current archaeological record of ISEA is very limited. Nevertheless, excavations of prehistoric sites 25 

across the region have provided clues that plants played a key role in the subsistence and technology of 26 

the early islanders. Our previous use-wear study on the assemblage from Leang Sarru, a rockshelter 27 

with an occupation history of c. 35,000 years, indicate that plant remains were preserved on artefacts 28 

from 22,000 years ago. In this paper, we identified these plant remains that include parenchyma, 29 

fibres, stomata, starch, phytolith, and raphides. However, in the case of Leang Sarru, we observed that 30 

not only were those residues deposited on unretouched lithic flakes typical for prehistoric sites in 31 

ISEA but were especially preserved on flakes with a notched retouch – a case which has never been 32 

documented in the region yet. We conducted experiments using replicas of notched tools to test our 33 

hypothesis that they were particularly designed and used for scraping and smoothing plant materials. 34 

Our results show that a variety of plants can be processed using these retouched tools. The simple 35 

modification was observed to be efficient in scraping experiments, and plant residues were stuck 36 

within the notches – possibly a factor in their preservation. Overall, the current debate on the 37 

presence or absence of plant working revolves around expedient technology and the absence of formal 38 

tools. Other aspects of cultural and technological adaptations, such as tool retouching, might have 39 

been overlooked in favour of a justification that plant-based technologies were preferred. 40 

 41 

Keywords 42 

Island Southeast Asia, use-wear analysis, prehistoric plant processing, notched tools, 43 

expedient lithic technology 44 

 45 

Note: All uncalibrated radiocarbon dates from Leang Sarru reported herein have been 46 

recalibrated with Calib 7.0.4 (Stuiver and Reimer, 1993) using Marine13 for shell (Reimer et 47 

al., 2013), and are given as a 95.4% or higher probability range. Calibrated dates are given in 48 

cal BP. 49 
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1. Introduction 50 

 51 

Lithic use-wear research in Island Southeast Asia (ISEA), especially in Wallacea, indicates 52 

plant processing in karstic sites from the Late Pleistocene (Pope, 1989; Pookajorn, 1996; 53 

Barker et al., 2007; Mijares, 2007; Lewis et al., 2008; Xhauflair and Pawlik, 2010; Pawlik, 2012; 54 

Borel et al., 2013; Reynolds et al., 2013). Polishes associated with silica-rich plants are often 55 

observed on stone tools recovered from cave sites within ISEA that are associated with 56 

anatomically modern humans (Barker et al., 2007; Lewis et al., 2008; Xhauflair and Pawlik, 57 

2010; Borel et al., 2013). Experimental studies on prehistoric stone tool production and use, 58 

in relation to plant-working, have been conducted in the region mainly to address ‘typology 59 

dilemma’ and presence of organic-based technologies as replacement or complement to 60 

amorphous flakes from the Late Pleistocene to the Holocene (Davenport, 2003; Mijares, 2007; 61 

Xhauflair and Pawlik, 2010; Borel et al., 2013; Fuentes, 2015; Xhauflair et al., 2016; Xhauflair 62 

et al., 2017b). In the absence of formal tool types, plant-based technology has been proposed 63 

to have complemented the use of unretouched stone tools (Narr, 1966; Solheim, 1970; Pope, 64 

1989; Xhauflair et al., 2016). An attempt to create an extensive database on use-wear traces 65 

through ethnographic and experimental study was conducted in the 1980’s by Johan 66 

Kamminga in Luzon, Philippines (see Davenport, 2003). More recently, systematic 67 

experimental and ethnographic research conducted in Palawan Island, Philippines resulted 68 

in a detailed reference database and also addressed the issue on the rather lacking 69 

information on species other than bamboo (Xhauflair, 2014; Xhauflair et al., 2016, 2017b). 70 

However, actual evidence of plant remains attached to stone tools, such as cells, tissues, 71 

starch, and fibres, are still rare due to the nature of karstic sites and the generally poor 72 

preservation of organic materials in tropical conditions. Although it is generally accepted 73 

that flaked tools, without any form of modification, were used in plant processing (Fox, 74 

1970; Coutts and Wesson, 1980; Mijares, 2007; Pawlik, 2009), the relationship of plant 75 

working and lithic tools designed to process and extract materials has never been explored 76 

yet in the region and we attempt to address this issue through use-wear analysis. 77 

 78 

Recent microscopic analysis of artefacts from Leang Sarru reveal intensive plant working, 79 

mainly with the presence of ‘sickle’ polish (Fuentes et al., in press). Possible residues were 80 
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identified on the tool surfaces even after mild cleaning. Other than employing unretouched 81 

flakes for plant processing, there is evidence of flake modification. Therefore, we 82 

hypothesise tool specialisation at Leang Sarru beginning since c. 22,000 years ago, if not 83 

earlier, for the purpose of extracting plant materials. Intentional retouching was practiced to 84 

produce tools that were more ‘efficient’ for scraping activities compared with unretouched 85 

flakes. Furthermore, retouched sections with several layers of step scars might have played a 86 

key role in the preservation of plant remains - these acted as catchments for residues that 87 

even after thousands of years were still intact. To test this hypothesis, we conducted 88 

experiments at the Talaud Group of Islands, North Sulawesi. The plant remains were 89 

documented in situ on the tool surface, and were later compared with the residues recorded 90 

on the artefacts.  91 

 92 

2. Plant remains on tools from ISEA 93 

 94 

Plant materials are generally not preserved after exposure to tropical environment (Kumar 95 

et al., 1994), and only in very few cases, these were recovered on stone tools from Late 96 

Pleistocene karstic and open sites. Bubog 1, Mindoro, Philippines has produced a charred 97 

nutshell of Canarium hirsutum Willd., directly dated to 10,760-11,100 cal. BP and the remains 98 

of yam-like fragments were recovered in 6,000-7,500-year old deposits of its shell midden 99 

(Pawlik et al., 2014). Canarium spp. nuts were also identified from sediments of Niah Cave at 100 

10,000 years ago (Paz, 2005). Barker et. al (2007) presented the overall occupation sequence 101 

of Niah Cave, Borneo with results showing plant remains on the stone tool surface including 102 

starch granules and bast fibres from palm, and phytoliths of rattan or bamboo from deposits 103 

dated to between c. 46,000-19,000 BP and during the Early Holocene (Barker et al., 2007). 104 

Alocasia sp. and Crytosperma sp. residues were recovered from tool surfaces as old as 28,000 105 

BP in Kilu Cave, Solomon Islands (Loy et al., 1992) and c. 14,000 BP in New Ireland (Barton 106 

and White, 1993). Plant remains in relation to prehistoric consumption and domestication of 107 

tubers were reported from Papua New Guinea. For instance, evidence of processing of 108 

Pandanus and Dioscorea spp. was identified as early as 49,000-36,000 years ago at Kosipe 109 

Mission, Ivane Valley, Papua New Guinea (Summerhayes et al., 2010). Plant residues were 110 

reported on Late Pleistocene to Early Holocene lithic artefacts from PNG (Fullagar, 1993; 111 
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Barton et al., 1998; Denham et al., 2003; Fullagar et al., 2006; Denham, 2010; Summerhayes et 112 

al., 2010). Domestication of yam (Dioscorea sp.) and taro (Colocasia esculenta Schott.) has been 113 

proposed to commence by 10,200 cal. BP in Kuk Swamp, PNG (Fullagar et al., 2006). 114 

Although these studies addressed several issues in prehistoric domestication and 115 

consumption of plants yet direct evidence of ‘bamboo technology’ remained absent in the 116 

archaeological record. 117 

 118 

3. Archaeology of Leang Sarru 119 

 120 

Leang Sarru is a rockshelter located along the eastern coast of Salibabu Island – part of the 121 

Talaud Group of Islands, which is located between Mindanao (Philippines) and North 122 

Sulawesi (Indonesia) (Figure 1). Talaud is composed of the islands of Salibabu, Karakelong, 123 

and Kabaruan, along with eight smaller uplifted coral islands called the Nanusa Islands 124 

Group (Riley, 2002; Ono et al., 2010). The northeast-facing Leang Sarru rockshelter appears 125 

in an uplifted coral limestone block at about 15m above sea level and c. 400m distance from 126 

the shore (Tanudirjo, 2005). It is 5m (length) x 3m (width), with a 2.5m-high curved ceiling at 127 

the dripline, and a platform that slopes down away from the wall. Two 1x1m test pits (B2, 128 

C2) were opened in 1995, exposing four layers within the 1-meter stratigraphy (Tanudirjo, 129 

2001, 2005). The site was re-excavated in 2004 and six 1x1m squares were opened (D2, D3, 130 

C3, C4, C5, and C6) (Ono et al., 2010). Shells, lithic artefacts, potsherds, hammer stones, 131 

ochre, and a stone anvil were recovered. Four major occupation phases were identified 132 

through radiocarbon dates on opercula of Turbo marmoratus, with the 1st phase dated to c. 35-133 

31,000 BP (Tanudirjo 2001, 2005; Ono et al., 2010; Table 1). The rockshelter was intensively 134 

used during the 2nd (c. 22-17,000 BP) and 3rd phases (c. 10-8,000 BP) (Tanudirjo, 2005; Ono et 135 

al., 2010). The site was reoccupied during the so-called Metal Age (Tanudirjo, 2005; Ono et 136 

al., 2010). The faunal remains (NISP=3371) include mostly marine shells, land molluscs, 137 

crustaceans, and sea urchins (Ono et al., 2010). No larger or mid-sized mammal bones were 138 

recovered from the site. Currently, the endemic species present in the Talaud Group of 139 

Islands only include bats (14 species), rats (5 species), 4 species of flying fox (Pteropus spp.), 140 

and cuscus (Ailurops ursinus and Strigocuscus celebensis), while chicken, dog, cattle (Bos 141 

javanicus), and pig (Sus celebensis) were more recently introduced (Riley, 2002; Ono et al., 142 
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2010). A total of 14,525 lithic artefacts were recovered from the site, which were classified 143 

into blade-like flakes, stone waste, utilised flakes, and cores (see Tanudirjo, 2001 and Ono et 144 

al., 2015) for detailed lithic morphological analyses). Use-wear analysis was only conducted 145 

recently by the authors (RF and AP) at Balai Arkeologi Manado and this paper complements 146 

previous research on the Leang Sarru lithic assemblage (Tanudirjo, 2001, 2005; Ono et al., 147 

2015; Fuentes et al., in press). 148 

 149 

[insert here Table 1. Archaeological context and radiocarbon dates.] 150 

 151 

[insert here Figure 1. Location of Leang Sarru, North Sulawesi.] 152 

 153 

4. Materials and methods 154 

 155 

In our previous analysis of tools from Leang Sarru, we identified 51 artefacts with traces of 156 

plant working and associated residues - Trench D2 (n=13) and Trench D3 (n=38) (Fuentes et 157 

al., in press; see SI 1, 2, 3, 6, 7, 8). The samples were recovered from Layers 1 to 3 which were 158 

designated to four main occupation phases (Tanudirjo, 2001, 2005; Ono et al., 2010; Table 1). 159 

The samples include 20 notched tools, 22 unretouched flakes, and nine unretouched flakes 160 

with concave edges similar in morphology with notched edges. The notched tools have 41 161 

working edges, with 23 displaying features of concave notches (Figure 2; see SI 7)).   162 

 163 

Photographs of dorsal and ventral faces of all artefacts were taken before cleaning. To 164 

remove potential contaminants, the artefacts underwent ultrasonication in a solution of 165 

distilled water and liquid detergent soap for 3 minutes, individually placed in resealable 166 

bags. Then, the samples were rinsed with distilled water and air dried on paper towels. 167 

Next, these were soaked in 70% alcohol for 3 minutes and air dried again. Finally, each 168 

artefact was wrapped in paper towel and stored in individual resealable bag. The locations 169 

of residues were marked on the recording forms, with photos of dorsal and ventral faces and 170 

were later digitised. The experimental tools were not washed prior to recording of residues. 171 

Artefact analyses was conducted using a Euromex NexiusZoom incident light stereo-172 

microscope (6.7-45x optical magnification), an Olympus BHMJ reflected light microscope 173 
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with differential interference contrast (DIC) and long working distance (LWD) objectives 174 

(110x, 220x, and 440x), and an Olympus BXFM reflected light microscope with DIC and 175 

LWD (100x, 200x, and 500x). Photomicrographs were taken with a Canon Powershot G9 176 

digital camera (for Olympus BHMJ), and Nikon D5300 digital single lens reflex camera (for 177 

Euromex NexiusZoom and Olympus BXFM). The residues from the experimental notched 178 

tools were documented using an Olympus BX53M_UC90 (DIC/ POL set to zero), with cross-179 

polarised light microscopy. Scanning electron microscopy was conducted at the National 180 

Institute of Geological Sciences in the University of the Philippines (Hitachi S-3400N 181 

Variable Pressure Scanning Electron Microscope with Deben Peltier Coolstage) and at the 182 

Microfossils Laboratory at the Department of Geosciences of the Senckenberg Centre for 183 

Human Evolution and Palaeoenvironment (SHEP) Tübingen (PhenomWorld Scanning 184 

Electron Microscope coupled with energy dispersive X-ray microprobe). Photomicrographs 185 

of plant remains and residues were sent to specialists (JC, CK, and TM). 186 

 187 

We conducted experiments at Talaud Islands using retouched chert tools on plants (see 188 

Table 5). We employed transversal scraping activities associated with consumption (e.g. 189 

scraping of tuber outer skin) and production of other forms of technology (e.g. thinning of 190 

strips, fibre extraction, cleaning of outer skin, and smoothening of sticks). The experiments 191 

lasted for 30 minutes with continuous motion, excluding breaks, using one working edge 192 

per tool. We employed transversal motion, e.g. scraping, planing and heckling using steep 193 

edge angle that varies from 45-90 degrees. The notched ventral face, served as flank while 194 

dorsal where the negatives occurred was the rake face and in contact with the plant 195 

shavings, with working angles ranging from 30-90 degrees. The tools were individually 196 

packed in two resealable bags each, immediately after the experiments and kept prior to 197 

microscopic documentation. Plant residues were not extracted from the tool surface but 198 

rather recorded in situ.  199 

 200 

5. Results 201 

 202 

5.1. Types of archaeological plant remains 203 

 204 
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The residues were assigned into three main groups (Table 3). The 1st group represents cells 205 

and tissues - parenchyma, epidermis, hypodermis, stomata and long cells, fibre and 206 

epidermal-hypodermal cells. The 2nd group includes starch, raphides, and phytoliths while 207 

indistinct cells, resinous (decaying residues that appear organic), and indistinct blackish 208 

materials comprised the 3rd group. Parenchyma cells were identified on 29 artefacts and in 209 

four cases can be further categorised as vascular parenchyma. Epidermis and hypodermis 210 

cells of monocot (n=2) and palm (n=2) were also present. Stomata and long cells were 211 

preserved on four artefacts. Cells that appear similar to that of monocot leaf were identified 212 

on four samples, while fibres with epidermal and hypodermal cells (n=4) were also present. 213 

Disintegrated plant remains that show cell-like features were categorised as indistinct cells 214 

(n=7). Although limited, starch (n=1), phytoliths (n=2), and raphides (n=1) were present on 215 

the assemblage. Indistinct black material (n=2) and resinous (n=3) were assigned into one 216 

group. We also recorded fungal growth on five artefacts (Tables 2, 3, 4; see SI 4).  217 

 218 

5.1.2. Plant cells and fibres 219 

 220 

Most of the samples were identified as parenchyma, which are characterised by elongated or 221 

rounded shapes and undifferentiated tissues that play a vital role in plant growth. They can 222 

obtain a specific function while gaining differentiated structure. As storage, parenchyma 223 

cells are filled with nutrients such as starch grains. The cortical parenchyma located in a 224 

stem supports the plant growth while surrounding the vascular system. When the growth of 225 

organs is achieved, parenchyma cells thicken their walls (Speranza and Calzoni, 2005: 85-87). 226 

These were identified on the notched edge, non-utilised segments, and cortical section but 227 

mainly deposited on the notched working edges and retouch negatives within the proximal 228 

section  (e.g. D3_TL_S4_0001, Figure 2A; D2_BL_S3_0002, Figure 2B; D3_BD_S3_0004, Figure 229 

2C; D3_TL_S4_0001, Figure 2M; D2_BL_S3_0010, Figure 2N; D3_BD_S3_0004, Figure 2O; 230 

D3_TG_S2_0013, Figure 2P). These were also present within the medial section, where use-231 

wear traces such as scalar scars and micropolishes were formed, possibly with the use of 232 

bindings made from plants (Fuentes et al., in press).  233 

 234 
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Four stone tools display monocot epidermis or hypodermis - with two further classified as 235 

palm. It was both preserved on the notch and adjacent non-working segments. Epidermal 236 

tissue covers all aerial plant part and protect it from various external aggression and 237 

desiccation issues. It is composed of various continuous cells of different function and shape 238 

such as stomata, short cells, hairs among others that could be diagnostic to the genus level 239 

(Speranza and Calzoni, 2005). Tissues and cells from monocot leaf were present on four 240 

stone tools (e.g. D2_TL_S4_0011, Figure 2D). These cells display parallel venation with 241 

stomata oriented in linear file (Dickison, 2000). Stomata (n=4), characterised by elongated 242 

pores were deposited on working sections, medial-distal and medial-proximal segments – 243 

both non-working areas (e.g. D3_TL_S2_0001, Figure 2E). Four artefacts have fibres and 244 

epidermal/ hypodermal cells, which were all deposited adjacent to the notched sections. One 245 

tool has fibres, cells, and stomata that are identical with Musa sp. (D3_TL_S2_0001, Figures 246 

2E, 2F, 2R). 247 

 248 

5.1.3. Starch, raphides, and phytoliths 249 

 250 

Starch was located as clusters within the notched section (D3_TL_S3_0001, Figures 2.G, 2.Q). 251 

The starch clusters were deposited on both left and right lateral sides dorsal face of the 252 

notched sections. An elongated tubular phytolith with fibre size of 20-30 µm, and with 253 

pointed morphology at the end of the fibre cells matches Musa sp. (D2_TG_S1_0001, Figure 254 

2.H; Catling and Grayson, 1998; Valmayor et al., 2000). It was deposited along the edge 255 

outline and appears as providing strong evidence that the tool was used in processing Musa 256 

sp. Phytoliths with volcaniform shape (cf Musa sp.) were also preserved on an unretouched 257 

flake (D3_BL_S3_0019, Figure 2I; Vrydaghs et al., 2003), and embedded within micropolishes 258 

formed on transversal orientation. Phytoliths are bodies of silica present in all plants, as they 259 

precipitated in and in between plant cells they could be diagnostic to the family or the genus 260 

level (Dickison, 2000). The starch and phytoliths associated with Musa on tools used for 261 

scraping indicates fibre extraction from the pseudostem for the production of ropes and 262 

bindings (Frison and Sharrock, 1999). Raphides were deposited within scars on the notched 263 

section (D3_TL_S4_0002, Figure 2J). These are crystals of calcium oxalate that resemble 264 
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elongated needles and are usually contained within larger cells called raphide sacs 265 

(Dickison, 2000). 266 

 267 

5.1.4. Indistinct cells and resinous residues 268 

 269 

Four samples showed indistinct cells (e.g. D3_TL_S3_0005, Figure 2K) while three possessed 270 

adhering resinous residues (e.g. D3_BL_S4_0008, Figure 2L). Residues that appear as 271 

‘processed’, such as tar, and used for binding were not included in this research since these 272 

were already characterised in our previous study (Fuentes et al., in press).  273 

 274 

[insert here Table 2. Stone tools with plant remains.] 275 

 276 

[insert here Table 3. Stratigraphical distribution of plant remains.] 277 

 278 

[insert here Table 4. Locations of plant remains on tool surface per occupation phase and per type.] 279 

 280 

[insert here Figure 2. Types of archaeological plant remains. A-C. Parenchyma cells. D. Monocot 281 

epidermis/ hypodermis. E. Stomata. F. Fibre. G. Starch. H-I. Phytolith. J. Raphides. K. Indistinct 282 

cells. L. Resinous residues. M-P. SEM images of parenchyma. Q. SEM image of starch. R. SEM 283 

image of fibres.] 284 

 285 

5.2. Locations and distribution of plant remains 286 

 287 

Residues were present on 38 out of 51 artefacts on the working areas of both notched (Table 288 

4; Figures 3A, 3B, 3C; Figures 4A, 5A, 6A) and unretouched flakes (Figures 3D, 3E, 3F; 289 

Figures 4B, 5B, 6B). These were deposited on the working sections (Figures 3A, 3D). 290 

Adjacent areas also display residues, including medial-distal (Figure 3F), medial-proximal 291 

(Figures 3C, 3E), and medial beside the notched section (Figure 3B). Three tools have 292 

residues on both medial-proximal or medial-distal sections and on the working edge. Ten 293 

samples have plant remains within non-contact areas - medial (n=1), medial-proximal (n=5), 294 

and medial-distal (n=4) sections. Fifteen of the 20 notched tools display residues along the 295 
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working edge while three have residues preserved within the interior of the tool surface 296 

(medial or medial-proximal). Two artefacts have residues on both notched section and non-297 

working parts of the tool. The notched tools have intensive step- and hinge-terminated scars 298 

along the edge and progresses as feather-terminated scars away from the edge outline. Plant 299 

remains were deposited on these negatives. Twenty one of the 31 unretouched flakes have 300 

residues along the working edge or adjacent areas (Table 4; see SI 4).  301 

 302 

[insert here Figure 3. Locations of residues on notched tools. A. Working edge. B. Medial-distal. C 303 

Non-working proximal base. D-F. Locations of plant remains on unretouched tools. D. Working edge. 304 

E. Non-working edge. F. Medial section of concave edge.] 305 

 306 

Two artefacts display possible plant remains during the 1st occupation phase (Figures 4A.1, 307 

4B.1; Table 3; see SI 4). One tool (D3_BL_S5_0002, Figure 4A.1) has traces that appear as cells 308 

however upon comparison with our experimental results, these resemble dried sap from 309 

processing epidermis of tubers (Figure 9A). The other artefact has decaying residues that 310 

appears as organic (D3_TL_S5_0003, Figure 4B.1). However, no clear indication of plant 311 

processing, especially the presence of intact cells, was detected. During the 2nd phase, we 312 

identified parenchyma, stomata and long cells, fibre and epidermal-hypodermal cells, 313 

monocot leaf cells, and indistinct cells, providing direct evidence of plant working during 314 

the LGM using both retouched (Figure 4A) and unretouched flakes (Figure 4B). It is 315 

apparent that intensive processing of plant materials was conducted during this phase, and 316 

both, unretouched and retouched flakes were used. Six unretouched flakes and seven 317 

notched tools display plant remains during this period. One of the notched tools 318 

(D3_TL_S4_0005, Figure 4A.5) has been previously identified as possibly hafted tool 319 

(Fuentes et al., in press). Four artefacts have residues located right on the notched sections, 320 

with raphides (D3_TL_S4_0002, Figure 4A.8), parenchyma (D3_TL_S4_0001, Figure 4A.6; 321 

D3_TL_S4_0004, Figure 4A.4), and indistinct plant cells (D3_BL_S4_0007, Figure 4A.3).  322 

 323 

Vascular parenchyma, epidermis/ hypodermis (monocot, palm), phytolith, and starch were 324 

recovered from the 3rd phase. Seven notched tools (Figure 5A) and 11 unretouched flakes 325 

(Figure 5B) display plant remains. During this period, starch was preserved within notched 326 
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sections (D3_TL_S3_0001, Figure 5A.2). Raphides were also identified (D2_TG_S1_0001, 327 

Figure 5B.1). Plant remains were preserved on stone tools until the Metal Age and Modern 328 

Period (Figures 6A, 6B).  From Metal Age context, fibres were identified on a notched tool 329 

(D3_TL_S2_0001, Figure 6A.3). These were preserved with plant cells on the medial section 330 

and adjacent to the notch. Comparison with experimental tool show identical residues with 331 

processing of Musa textilis (Figures 9B.1, 9B.2).  332 

 333 

[insert here Figure 4. Plant remains on notched and unretouched tools during the 1st (4A.1, 4B.1) and 334 

2nd phases (4A.2-8, 4B.2-7). A. Notched tools B. Unretouched flakes.] 335 

 336 

[insert here Figure 5. Samples from the 3rd phase. A. Notched tools (5A.1-7). B. Unretouched flakes 337 

(5A.1-11).] 338 

 339 

[insert here Figure 6. Samples from the Metal Age. A. Notched tools (6A.1-5). B. Unretouched flakes, 340 

(6B.1-12) and Modern Period (unretouched flake, 6B.13).] 341 

 342 

5.3. Experimental framework: notched tool production and plant working 343 

 344 

Knapping was conducted at BALAR Manado using raw materials that were previously 345 

collected from the Talaud Islands. Large flakes were selected and marked on the proximal 346 

base. The notched sections were retouched using a hammerstone c. 5cm in diameter. The 347 

marked area was targeted and continuously knapped in order create a concave notched 348 

working edge (Figure 7A). Then, we conducted experiments using these tools at the 349 

periphery of Leang Sarru in Salibabu Island on eleven plant species (Table 5; see SI 5) - 350 

Dioscorea sp. (Figure 7B),  Schizostachyum sp. (Figures 7C, 7D), Colocasia esculenta (Figure 7E), 351 

Musa x paradisiaca L. (Figure 7F), Bambusa sp. Schreb (Figure 7G), Pandanus sp. (Figure 7H), 352 

Colocasia esculenta (Figures 7E, 7J), Musa textilis Née (Figure 7K), Alocasia macrorrhiza (Figure 353 

7L), Calamus sp. (Figure 7M), and Flagellaria indica L. (Figure 7N).  354 

 355 

Step and hinge terminated negatives and secondary edge row scarring led to the formation 356 

of edges with ‘steps’. This edge geometry made scraping more efficient as compared to the 357 
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‘single’ blade of unretouched flakes, probably one of the reasons why the residues were 358 

deposited on the working edge negatives. We identified plant traces along the main contact 359 

areas of the working edge and within the notches. The locations of the residue do not follow 360 

a general pattern except for the concentration within the negatives of notched tools. The 361 

notched tools were utilised as specialised tools for smoothing (e.g. shaft making).  362 

 363 

Plant remains were deposited on all the experimental tools and were present on both the 364 

working contact and handling sections. Examples of plant remains from NT1 to NT13 show 365 

that majority has preserved residues on the tool surface, especially without cleaning (Figure 366 

8). Plant cells were present on all the experimental tools except for the one used on Pandanus 367 

sp., probably because of the dry state of the contact material during the experiment and 368 

because the outer part of the root was already removed. Stomata and long cells were 369 

preserved on Musa x paradisiaca (NT5, Figures 8E.1-4) and Dioscorea sp. (NT1, Figures 8A.1-370 

4). Fibres were deposited on tools used on Bambusa sp. Schreb. (NT6, Figures 8F.1-4), 371 

Schizostachyum sp., Musa x paradisiaca L., Calamus sp., and Colocasia esculenta. Lumps of fibres 372 

with plant cells were deposited along the main concave edge of the experimental tools and 373 

spreads inwards and deposited even on the opposite handling segment of the tools. 374 

Raphides, deposited with fibres, were identified on the tool used on Bambusa sp. Schreb. 375 

Phytoliths were preserved after processing Pandanus sp. Starch is present on experiments 376 

involving Dioscorea sp. and Colocasia esculenta. It was also documented on experiments 377 

involving Pandanus sp., Calamus sp., and Bambusa sp. Schreb, and Flagellaria indica L. Nine 378 

experimental tools have fungal growth, after the plant remains were documented 379 

approximately three months after the experiments (Table 4; Figure 8). 380 

 381 

Plant remains were present on the edge outlines of the experimental tools. Processing of 382 

plant epidermis resulted in the deposition plant tissues within the notched sections. With 383 

continued use, these were still preserved on the negatives and were not scraped by materials 384 

from succeeding contact. The plant remains were mostly deposited along the edge outline 385 

within the negatives on the notches. The same pattern was observed for all the tools after 386 

use and, without washing or any form of cleaning, the residues were stuck on the notched 387 

sections after each experiment. The use of steep-edge concave tools resulted in relatively 388 
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efficient plant processing. Working angles and position can easily be changed through tilting 389 

due to the concave edges. For example scraping the epidermis of tubers needed acute 390 

working angle for the ‘softer’ part of the skin while cleaning sections towards the proximal 391 

part of the tuber needed more acute working edge in combination with diagonal motion in 392 

order to remove the roots. All these actions were done using the notched tool without the 393 

need for sharper edges and acute edge angles, common on unretouched flaked tools. 394 

Notched tools can be used in a combination of scraping and cutting and with an advantage 395 

of having sturdier edge, compared to unretouched flakes, due to their steep angles. Similar 396 

activities could have also been conducted using the notched artefacts, thus, we compared 397 

the residues found on the notched tools and on the artefacts.  398 

 399 

[insert here Table 5. Presence or absence of plant remains on experimental tools.] 400 

 401 

[insert here Figure 7. A. Knapping experiments to create notched tools. B-M. Experiments using 402 

notched tools. Dioscorea sp. (B), Schizostachyum sp. (C,D), Colocasia esculenta  (E), Musa x 403 

paradisiaca L. (F), Bambusa sp. Schreb (G), Pandanus sp. (H), Colocasia esculenta (E, J), Musa 404 

textilis Née (K), Alocasia macrorrhiza (L), Calamus sp. (M), Flagellaria indica L. (N).] 405 

 406 

[insert here Figure 8. A-M. Plant remains on experimental tools. Dioscorea sp. (A), Schizostachyum 407 

sp. (B,C), Colocasia esculenta  (D), Musa x paradisiaca L. (E), Bambusa sp. Schreb (F), Pandanus sp. 408 

(G), Colocasia esculenta (H, I), Musa textilis Née (J), Alocasia macrorrhiza (K), Calamus sp. (L), 409 

Flagellaria indica L. (M).] 410 

 411 

Direct comparison of the experimental reveals patterns on the types of residues that can be 412 

preserved per type and state of each plant species. These are based on the similarities with 413 

morphology, colour, and state when the residues were preserved. Their locations were also 414 

noted, however, as mentioned in our previous study, the locations of residues on the tool 415 

surface are not strong indicators of use and/or contamination (Fuentes et al., in press). We 416 

directly compared the types and locations of the plant remains on the experimental tools 417 

and artefacts, and the following features appeared hereby as significant: 418 

 419 
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A. Reddish and brownish cell-like structures were observed within the circular patterns of 420 

dried sap for the experiments involving yam and taro. The circular patterns appear as 421 

dried bubbles from the sap of the processed material. The patterns indicate processing of 422 

fresh tuber and without post-use cleaning leaving the dried sap with bubble patterns 423 

(D3_BL_S5_0002; NT4 Colocasia esculenta; Figure 9A). 424 

B. Fibres and parenchyma cells were identified in fibre extraction experiment using Musa 425 

textilis pseudostem. These residue type remained intact even after continued use and 426 

preserve together with the tissues and are consistently resulting from fibre. Identical 427 

features were observed on an artefact from the Metal Age (D3_TL_S2_0001; NT10 Musa 428 

textilis Née; Figure 9B). 429 

C. Starch granules were present on the tools used on Colocasia esculenta, Dioscorea sp., 430 

Alocasia macrorrhiza, Musa x paradisiaca L., and Calamus sp. We identified starch granules 431 

still preserved on the notched section (D3_TL_S3_0001; Figure 9C) and is comparable 432 

with the ones from Alocasia macrorrhiza (NT11; Figure 9C). Following initial 433 

identification, these starch grains have the potential to undergo further classification 434 

through comparison with existing databases (Barton et al., 1998; Kealhofer et al., 1999; 435 

Torrence and Barton, 2016). 436 

D. Raphides were present on artefact located on the notched section while the experimental 437 

tool used on bamboo has raphides preserved on the tool surface (D3_TL_S4_0002; NT6 438 

Bambusa sp.; Figure 9D). 439 

E. Stomata was identified on experimental tools used on scraping outer plant skin 440 

(D3_TL_S2_0001, Figure 9E.1-3; NT4 Colocasia esculenta, Figure 9F.1; NT11 Alocasia 441 

macrorrhiza; Figures 9F.2). Comparison with plant remains of Calamus (Figure 9F.3) and 442 

Musa (Figure 9F.4) shows resemblance with archaeological samples. 443 

 444 

[insert here Figure 9. Comparison of archaeological and experimental plant remains. A. Dried sap. B. 445 

Fibre. C. Starch. D. Raphides. E, F. Stomata.] 446 

 447 

6. Discussion 448 

 449 
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The chaîne opératoire of plant working could be further explained by studying the 450 

relationship between plant remains and stone tool type (e.g. unretouched or notched) and 451 

locations of the residue on the tool surface. On our experiments, the plant residues were 452 

mainly preserved on the retouches of the notched tools. These were concentrated along the 453 

edge outline due to the steep working and edge angles. The notched tools have greater 454 

variety of angle to work with simply by tilting and changing the working orientation, and a 455 

certain similarity of the notched edges and their handling with sickles was observed during 456 

the experiments. The retouched working sections are steep-angled and robust enough to 457 

resist and plane both fresh and dried materials - suitable for repetitive scraping or 458 

smoothing action. Furthermore, the types of residues deposited on the tool surface is 459 

influenced by the stage in which the plant was processed (e.g., procurement, smoothing). 460 

Processing of the outer part of the plant (epidermis/hypodermis) left intact plant tissues on 461 

the tools. Therefore, identifying plant anatomy would allow us to infer in which stage of the 462 

processing sequence the tool was used. For instance, the epidermis should be removed first 463 

before scraping other plant parts. 464 

 465 

Identifying the stages of plant processing (e.g. cutting, harvesting, scraping, cleaning) is a 466 

vital aspect of understanding prehistoric plant working in ISEA. Certain techniques in 467 

extracting plant materials require specific working edge type and working edge angle to be 468 

able to complete the task – steep concave notched edges in the case of Leang Sarru. The 469 

comparison of residue types and locations between unretouched and notched tools reflect 470 

the ‘specialised’ nature of the latter. Based on previous use-wear study, the notched tools 471 

have very minimal polish formation along the edge outline compared with unretouched 472 

flakes, which show polishes spreading towards the interior of the edge. The difference in 473 

polish distribution on unretouched and retouched flakes (Fuentes et al., in press) could also 474 

suggest different processes or stages in the chaine opératoire of the production of plant-based 475 

technologies.  476 

 477 

The absence of large animal bones in the archaeological record of Leang Sarru as a suitable 478 

raw material for a sophisticated organic technology (Ono et al., 2010), also supports the 479 

hypothesis that populations on such isolated smaller islands depended more on plants than 480 
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animals for the production of technology in addition to consumption. No indication of plant 481 

management was observed in the Late Pleistocene and Early Holocene deposits of Leang 482 

Sarru, and the artefactual context and faunal record clearly indicate the foremost 483 

exploitation of marine resources (Tanudirjo, 2005; Ono et al., 2010). Another relevant issue 484 

for the archaeology of ISEA is the state of preservation of plant remains. For Leang Sarru, 485 

several factors may have contributed to the preservation of plant residues on artefact 486 

surfaces. Shell midden deposits in archaeological sites in ISEA seem to provide more 487 

favourable conditions for the preservation of organic remains such as bones and plants 488 

despite the tropical condition, as seen in Late Pleistocene to Early/Mid Holocene sites in the 489 

Philippines and Borneo (Lewis et al., 2008; Barton et al., 2009; Pawlik et al., 2014; Carlos et 490 

al., 2018). This is a venue that needs to be explored for ISEA with experiments designed to 491 

interaction of micro residues with the environment (Langeans, 2010), given that the tropical 492 

environment affects preservation of plant residues (Kumar et al., 2004). Also, fungal growth 493 

are present right on the residues and sometimes mixing with the plant remains and forming 494 

patterns similar to starch with similar spores were identified as conidia (Haslam, 2006). 495 

Further research on residue preservation and fungal growth should be conducted in ISEA. 496 

 497 

Although taxonomical classification is limited, the identification of plant anatomy provided 498 

insights into the functions of notched tools in Leang Sarru. However understanding the role 499 

of tool retouching in prehistoric plant processing, requires the implementation of extensive 500 

research programs which are lacking for Wallacea. Currently only one traceological 501 

reference collection is available for Sunda (Palawan Island, Philippines), mainly focused on 502 

the collection and evaluation of ethnographic data for the selection and use of plants in the 503 

mountainous hinterland of Palawan Island, Philippines (Xhauflair, 2014; Xhauflair et al., 504 

2016, 2017b). This study complements this data pool and provides new and detailed 505 

information on the prehistoric activities and the significant role that stone tools, particularly 506 

the previously unexamined notched tools, and fibrous plants played in the prehistory of 507 

ISEA.   508 

 509 

The locations of plant remains may not be an indicator of use or contamination. Experiments 510 

conducted by Xhauflair et al. (2017a) with unretouched flakes showed that the location of 511 
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residues on the tool surface in relation to use-wear traces is not a direct evidence of use. On 512 

the other hand, residues that occur beyond the working sections are not necessarily always a 513 

result of contamination. We observed that plant processing with notched tools resulted in 514 

plant preservation in both working and non-working areas. The scars on the notches are 515 

hereby favourable for the adhesion of plant remains due to their relatively rough and jagged 516 

surfaces. Further studies on notched tools need to be conducted because similar tools were 517 

mentioned by Tanudirjo (2001), and from sites in East Timor, there labelled as side scrapers 518 

and inferred to have been used  in woodworking (Glover, 1986).  From Song Terus in Java, 519 

Indonesia, Borel et al. (2013) reported tools with concave retouched edges, morphologically 520 

similar to the notched tools from Leang Sarru that were recovered from Early Holocene 521 

contexts. This seemingly simple retouching technique provided the leverage for creating the 522 

obtuse-angled tool that works well for scraping activities on plants. 523 

 524 

Adaptive strategies and technological innovations may have varied from island to island, for 525 

instance with regard to fishing strategies (O’Connor and Veth, 2005; O’Connor et al., 2011; 526 

Boulanger et al., 2019; Pawlik and Piper, 2019), therefore generalising concepts of tool 527 

function, technological innovation and invention, and the associated cognitive abilities 528 

pertaining to this period should be treated with great caution. Aside from long-distance 529 

maritime interaction, a number of significant technological innovations, including plant 530 

dispersal, management and propagation already took place during the Terminal Pleistocene 531 

to Early Holocene, and long before the Austronesian diaspora (Hunt and Rabbett, 2014). 532 

Thus, there is a variety of activities related to plant processing, other than producing 533 

organic-based technologies. The preservation of plant remains on tools from Leang Sarru 534 

has provided us with direct evidence of non-osseous organic technology. The knowledge 535 

and strategy behind can be considered as an adaptive response to small insular 536 

environments where subsistence and technology depended on limited available resources 537 

and where plants, shells, and fish remains substituted for chert and bone as raw materials as 538 

seen for instance in the use of stingray spines as projectile points, Tridacna sp. shells for the 539 

manufacture of edge-ground adzes and flake tools, and Turbo sp. opercula that were 540 

modified into scrapers (Barton et al., 2009; O’Connor et al., 2011; Pawlik et al., 2015; Pawlik 541 

and Piper, 2019). The gradual isolation of Salibabu Island due to rising sea level might have 542 
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accelerated those adaptations and innovations after the LGM as evidenced by the significant 543 

increase of plant-related activities in the 2nd phase of Leang Sarru. 544 

 545 

7. Conclusion 546 

 547 

Multi-stage traceological analysis using low and high power light microscopy, and scanning 548 

electron microscopy coupled with energy-dispersive X-ray analysis (EDX) showed that a 549 

consistent use and processing of various plants took place in Leang Sarru during the Late 550 

Pleistocene and Early Holocene. Notching is a recurring modification on lithic artefacts and 551 

appear to have served a particular plant working process. They were very likely connected 552 

with the extraction of fibrous plant matter, used for instance to produce cords, bindings and 553 

woven materials, such as baskets, nets and ropes. The dominance of plant processing 554 

activities sets the assemblage of Leang Sarru in contrast to other sites in ISEA that reflects a 555 

dominantly marine-based subsistence. Our analysis offers insights on technological 556 

innovations in relation to island adaptation and maritime interaction from the Late 557 

Pleistocene to the Early Holocene. The lifeways and material culture of anatomically modern 558 

humans in this part of Wallacea depended largely on exploitation of plants. The absence of 559 

bone tool technology at Leang Sarru stands in contrast to other Late Pleistocene and Early 560 

Holocene sites across ISEA. No larger terrestrial mammals lived on the small Talaud Islands 561 

and most likely various plants had to substitute for bone as raw material, thus adding to the 562 

complexity of the ‘plant-based technology’ in this area. The traces indicating plant 563 

processing in Leang Sarru suggest a specialised function of the site and demonstrate a high 564 

level of adaptation of those early populations to insular environments with limited faunal 565 

resources. We expect that future results will provide us with more and detailed insights on 566 

the variability of the prehistoric technologies in ISEA. 567 

 568 

 569 

 570 

 571 

 572 

 573 
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Table 1. Radiocarbon dates of Leang Sarru (Tanudirjo, 2001, 2005; Ono et al., 2010). 

Occupation Phase Age estimate Spit Depth (cm) Layer Lab. code     Material Unit Depth of sample(cm) 14C Age (BP) 
Published calibrated age 

(cal BP)*

Calibrated age using Marine13 

(cal. BP; 2 sigma)
References

Modern Period / 1 0-10 Topsoil / / / / / / / Ono et al., 2010

Metal Age 2-1,000 BP 2 10-20 Layer 1 / / / / / / / Tanudirjo, 2005, Ono et al., 2010

TERRA-070407a05 Turbo sp. D3 ‐30 7660±40 8033-8144 8218-8000 Ono et al., 2010

ANU-10203 Turbo sp. B2 ‐30 9750±90 10,430-10,683 10814-10515 Tanudirjo, 2005

ANU-10810 Turbo sp. B2 ‐40 14,820±80 17,309-17,819 17849-17320 Tanudirjo, 2005

ANU-10960 Turbo sp. C2 ‐50 18,880±140 21,715-22,421 22618-21939 Tanudirjo, 2005

ANU-10499 Turbo sp. B2 ‐50 30,850±340 34,988-35,033 35001-33854 Tanudirjo, 2005

TERRA-070407a04 Turbo sp. C3 ‐50 28,460±150 32,223-32,832 32433-31397 Ono et al., 2010

TERRA-070407a03 Turbo sp. D3 ‐60 28,760±150 32,426-33,079 32813-31672 Ono et al., 2010

ANU-10498 Turbo sp. B2 ‐70 29,590±630 32,898-34,087 34368-31622 Tanudirjo, 2005

ANU-10204 Turbo sp. B2 ‐80 29,760±650 33,031-34,201 34592-31750 Tanudirjo, 2005

ANU = The Australian National University Radiocarbon Dating Laboratory

TERRA = Tandem Accelerator for Environmental Research and Radiocarbon Analysis

Note: All uncalibrated radiocarbon dates from Leang Sarru reported herein have been recalibrated with Calib 7.0.4 (Stuiver and Reimer, 1993) using Marine13 for shell (Reimer et al., 2013), and are given as a 95.4% or higher

probability range.

*no dates acquired for Metal Age 

2nd phase 22-17,000 BP 4 30-40 Layer 2A

3rd phase 10-8,000 BP 3 20-30 Layer 2B

1st phase 35-31,000 BP 5-9 40-90 Layer 3,4
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Table 2. Stone tools with plant remains.

Group/ type Modern Period Metal Age 3rd Phase 2nd Phase 1st Phase Total
Unretouched flakes 1 7 9 4 1 22
Unretouched flakes with concave edge 0 5 2 2 0 9

Notched 0 5 7 7 1 20

Total 1 17 18 13 2 51

100



Table 3. Stratigraphical distribution of plant remains.

Group Type Modern Period Metal Age 3rd Phase 2nd Phase 1st Phase Frequency Relative Frequency
Parenchyma cells 0 12 8 5 0 25 43%

Vascular parenchyma cells 0 1 3 0 0 4 7%

Epidermis/ hypodermis (monocot) 0 0 2 0 0 2 3%

Epidermis/ hypodermis (palm) 0 0 2 0 0 2 3%

Stomata and long cells 0 1 2 1 0 4 7%

Fibre and epidermal-hypodermal cells 1 2 0 1 0 4 7%

Leaf cells (monocot) 0 0 0 2 0 2 3%

Phytolith 1 0 1 0 0 2 3%

Raphides 0 0 0 1 0 1 2%

Starch 0 0 1 0 0 1 2%

Indistinct tissue/ cells 0 3 1 3 0 7 12%

Indistinct black material 0 0 0 1 0 1 2%

Resinous 0 2 0 0 1 3 5%

2 21 20 14 1 58 100%

3% 36% 34% 24% 2% 100%Relative Frequency

1

2

3

Frequency
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Table 4. Locations of plant remains on tool surface per occupation phase and per type.

Notched working edge Unretouched working edge Medial-proximal Medial-distal
Notched edge & medial-

proximal

Unretouched working edge 

& medial-distal
Frequency Relative Frequency

Modern Period 0 1 0 0 0 0 1 2%

Metal Age 3 9 1 3 1 0 17 33%

3rd 6 7 3 2 0 0 18 35%

2nd 6 5 0 0 1 1 13 25%

1st 0 1 1 0 0 0 2 4%

Frequency 15 23 5 5 2 1 51 100%

Relative Frequency 29% 45% 10% 10% 4% 2% 100%

Parenchyma cells 7 12 2 3 1 0 25 43%

Vascular parenchyma cells 2 1 1 0 0 0 4 7%

Epidermis/ hypodermis (monocot) 0 1 0 0 1 0 2 3%

Epidermis/ hypodermis (palm) 1 0 1 0 0 0 2 3%

Stomata and long cells 1 1 1 1 0 0 4 7%

Fibre and epidermal-hypodermal cells 0 2 1 1 0 0 4 7%

Leaf (monocot) 0 1 0 0 1 0 2 3%

Indistinct tissue/ cells 1 4 0 0 1 1 7 12%

Phytolith 2 0 0 0 0 0 2 3%

Raphides 1 0 0 0 0 0 1 2%

Starch 1 0 0 0 0 0 1 2%

Indistinct black material 0 1 0 0 0 0 1 2%

Resinous 0 2 1 0 0 0 3 5%

Frequency 16 25 7 5 4 1 58 100%

Relative Frequency 28% 43% 12% 8% 7% 2% 100%
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Table 5. Presence or absence of plant remains on experimental tools.

Experiment 

code
Plant species Common name

Duration of use 

(min)

Working angle 

(degrees)
Tissues/ cells Dried sap 

Stomata & 

elongated cells
Fibrous material Starch Raphides Phytolith Fungal growth

White granules/ 

crystals

NT1 Dioscorea  sp. Yam 30 30-45 x x x x

NT2 Schizostachyum sp. Bamboo 30 45 x

NT3 Schizostachyum sp. Bamboo 30 30-45 x x x x

NT4 Colocasia esculenta Taro 30 45 x x x x x

NT5 Musa x paradisiaca Banana 30 30-45 x x x

NT6 Bambusa  sp. Schreb Bamboo 30 45-90 x x x x x

NT7 Pandanus sp. Pandan 30 45-90 x x x x x x

NT8 Bambusa sp. Schreb Bamboo 30 45-90 x x x

NT9 Colocasia esculenta Taro 30 30-45 x x x x

NT10 Musa textilis Née Abaca 30 45-90 x x

NT11 Alocasia macrorrhiza Giant taro 30 30-60 x x x

NT12 Calamus sp. Rattan 30 45-90 x x x x x

NT13 Flagellaria indica Rattan 30 30-45 x x x
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Abstract 

Maritime migration and island adaptation by anatomical modern humans (AMH) are among 

the most significant current issues in Southeast Asian anthropology and archaeology, and 

directly related to  their behavioural and technological advancements. A major research hotspot 

is Wallacean islands where located between the past Sunda and Sahul continents during the 

late Pleistocene. The gaps between the Wallacean islands and both landmasses are very likely 

the major factor for the relative scarcity of animal species originating from Asia and Oceania 

and the high diversity of endemic species in Wallacea. They are also considered as barrier for 

hominin migration into Wallacean islands and Sahul continent. We report about new 

archaeological research on the eastern coast of Sulawesi, which could have been the most 

potential starting location for the northern routes. Based on the new findings, we discuss the 

evidence and timeline for migrations of early modern humans into the Wallacean islands and 

their adaptation to island environments during the late Pleistocene. 

 
Keywords: Southeast Asian prehistory, early modern human migrations, prehistoric lithic 

technology  

 

1. Introduction 

 

Maritime migration and island adaptation by anatomically modern humans (AMH) are among the most 

significant current issues in Southeast Asian anthropology and archaeology, and directly related to  their 

behavioural and technological advancements (e.g. Jelinek 1982; Hahn 1986; Dibble 1989; Klein 1995; 

Mellars 2005; McBrearty and Brooks 2000; Haidle 2006; Habgood and Franklin 2008; Haidle and 

Pawlik 2010; Pawlik 2012; Kaifu et al. 2015; Pawlik & Piper 2019). A major research hotspot is 

Wallacea, coined after Alfred Russel Wallace who voyaged through the Malay Archipelago and was 

the first to recognize the biogeographic divide between Lombok and Bali, Borneo/Kalimantan and 

Sulawesi, known since as Wallace’s Line (Wallace 1863, 1869; Huxley 1868).  

 

Today we know that the Wallace Line is exactly following the boundaries of the Sunda sub-continent, 

the raised landmass of the Sunda shelf during sea-level regressions in the Pleistocene - consisting of the 

Malay peninsula, Sumatra, Java, and Borneo/Kalimantan Island. Wallacea is hereby considered as the 

region east of the (original) Wallace line composed of islands which have never been connected to 
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Sunda and Sahul (the landmass consisting New Guinea, Australia and associated offshore islands during 

the Pleistocene) in its west. The gaps between the Wallacean islands and both landmasses are very likely 

the major factor for the relative scarcity of animal species originating from Asia and Oceania and the 

high diversity of endemic species in Wallacea. They are also considered as barrier for hominin 

migration into Wallacean islands and Sahul continent. Currently, no hominin species other than AMH 

had reached Sahul and Oceania and no fossil evidence currently exists for Wallacea, except for Sulawesi 

and Flores (Morwood et al. 2004; O’Connor et al. 2011; van den Bergh et al. 2016). From this 

perspective, one of the most enduring questions for the peopling of Wallacea and Sahul is about the 

technologies and the maritime, nautical and behavioural capacities of AMH that enabled them to cross 

the open sea over distances of at least 20 km to up to 100 km and successfully adapted to remote insular 

environments. 

 

Two major routes have been suggested for the initial maritime migration via Wallacea into Sahul or 

Oceania, (Fig.1), a ‘northern’ route after Birdsell (1977) into the region of New Guinea and a ‘southern’ 

route leading into northern Australia (Birdsell, 1977; Sondaar, 1989; Morwood and Van Oosterzee, 

2007; Kealy et al., 2015). Previous studies have mainly focused on southern routes since they seem 

more directly related to human migration into Australia. Archaeological studies have been conducted 

in Flores, Alor, and Timor Island (mainly in Timor-Leste) since the early 21st century and have so far 

discovered the older sites possibly associated with AMH, dating back to around 50,000 to 43,000 cal 

BP (O’Connor 2007; O’Connor et al. 2011; Hawking et al. 2017; Sutikna et al. 2017, see also Fig.1).  

 

Along the northern routes, on the other hand, recent research in south Sulawesi, the largest island in 

Wallaeca was able to find possible AMH traces dating to 42,000 to 36,000 cal BP (Aubert et al. 2014; 

Blume et al. 2017), but evidence of initial AMH migration remains very limited in other islands. 

Theonly three sites are known as older than 30,000 cal BP (Fig.1); Golo cave in Gebe Island dated to c. 

36,000 cal BP (Bellwood 2017, 2019; Bellwood et al. 1998), Bubog site in Mindoro Island dated > 35, 

000 cal BP (Pawlik et al. 2014), and Leang Sarru site in Talaud Islands with dates as early as 35,000cal 

BP (Fuentes et al. in press; Ono et al. 2010, 2015; Tanudirjo 2001, 2005).  

 

Figure 1 Major possible dispersal routes by early modern humans via Wallacea into Sahul (Oceania) 

 

The current archaeological evidences suggest a much older antiquity of the southern routes than the 

northern routes for early AMH traversing from Sunda into Sahul or Oceania (O’Connor 2007; Hawking 

et al. 2017;). Considering intervisibility between islands, however, the northern route would have 

provided an easier path for AMH for initial colonization of Sahul (Kealy et al. 2017).  Therefore, both 

routes have the potential to be used as initial paths to reach Sahul by AMH and more archaeological 

and anthropological data needs to be acquired, particularly along the northern routes in Wallacea.   

 

In this paper, we report about new archaeological research on the eastern coast of Sulawesi, which could 

have been the most potential starting location for the northern routes. Based on new findings from the 

cave site of Goa Topogaro in Central Sulawesi, East Indonesia (Fig.1), we discuss the evidence and 

timeline for early AMH migration into the Wallacean islands along the northern routes as well as 

indications for human adaptation to the fast changing ecological conditions during the late Pleistocene 

until the Mid-Holocene. We report on the excavated lithic and bone artefacts as well as faunal remains 

that provide information about the technological and cognitive aspects of human adaptation, evidence 

of changing human foraging behaviour, and temporal changes of the ecological conditions during the 

late Pleistocene to Holocene.    
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2. Materials and Methods 

2.1. Excavation and chronology of the Topogaro sites 

Archaeological survey and excavation were conducted in Goa Topogaro, Central Sulawesi. Goa 

Topogaro (Goa meaning “cave” in Bungku and Ta’a as the local languages around the site) is an 

extensive cave complex composed of three larger caves, Topogaro 1-3, within a large doline (sinkhole) 

formation in the lower part of a limestone hill that belongs to the ultramafic Neogene Tomata Formation. 

It is located in c. 3.5 km distance from Topogaro village in the West Morowali District along the eastern 

coast of Sulawesi at coordinates S02°06’55-4”, E121°19’58-5” (Figure 2), and elevated about 75m 

above current sea level, while the rockshelters Topogaro 4-7 are located along the wall of the upper 

doline are located at 90m above sea level. The limestone hill is well visible from the current coast, and 

the nearest fresh water source is Folili river in c. 200 m distance from the cave complex (Fig. 1).  

  

Figure 1 Locations of Goa Topogaro and Kolonodale in Morowali, Central Sulawesi 

 

Figure 2 Current locations of the limestone hill and Goa Topogaro complex with the nearest river-

streams (A-C) where a variety of chert pebbles can be found and was possibly a source of the Topogaro 

lithics 

 

Our initial surveys in the complex showed that the two caves Topogaro 1 and 2 seem to have the highest 

potential for Pleistocene archaeological deposits, while the four rockshelters (Topogaro 4-7) located in 

upper level of the limestone hill contain secondary burials and jars with dentate-stamped designs 

together with possible burial goods including shell ornaments (Ono et al. 2019). Another large cave, 

Topogaro 3, located next to Topogaro 2, has a very small entrance and is very dark and showed little 

potential for archaeological evidences. No archaeological material was observed on the cave’s surface. 

Our excavations therefore focused on Topogaro 1 and 2. Topogaro 1 is the slightly larger cave with 

about 500m2 of floor area. The cave is 24 m wide and 25 m deep with a maximum height of about 20 

m and faces northwest (Figure 4A). Over 30 broken wooden coffins with human skeletal remains were 

found on the surface in the central to northern part of the cave floor. The surface is generally dry and 

contains fragments of prehistoric pottery, Chinese and European ceramics, chert flakes, including finely 

retouched tools, and shell. This indicated at first sight that the cave had been used as a prehistoric 

habitation and tool production site, while the wooden coffins and the variety of Chinese and European 

ceramics indicate a use of the cave as a cemetery in more recent times.  

Topogaro 2 is located south-west of Topogaro 1 and both caves are connected to each other by a narrow 

passage at the southern wall of Topogaro 1 (Fig. 4B). The mouth of Topogaro 2 faces north and the 

cave’s length is about 24 m with a width of about 15 m and a maximum height of about 12 m.  The 

floor area of Topogaro 2 is about 360 m2, flat and has lesser rockfall than Topogaro 1. Unlike Topogaro 

1, this cave had no wooden coffins during our visit in 2016 (though a few coffins were observed by 

Sriwigati and Aziz who visited the site in 2015) and far less artefacts appeared on its surface although 

we were able to observe some potsherds, ceramics, chert flakes and broken human bones.  

 

Figure 3 Floor plan and excavated area in Goa Topogaro 1 & 2 
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Two trenches in the northern (Trench A, 1 x 4 m trench area) and southern part (Trench B, 2x3 m trench 

area) of the cave were excavated in Topogaro 1 with a total excavated area of 10 m2.  In Topogaro 2, 

Sector A, a 2x3 m trench along the eastern wall and Sector B, a 2x2 m square along the western wall 

were excavated (total excavated area of 10 m2). Excavation was generally carried out in horizontal spits 

of 5cm, but followed the stratigraphy whenever it was feasible. All excavated sediments were dry-

sieved through 5 mm and 2 mm screens. With access to water being difficult at the site, wet sieving was 

not attempted. The recovered materials were sorted into general classes (e.g. vertebrates, crustaceans, 

molluscs, pottery, stone artefacts) in the field. They were later re-sorted and analysed at the National 

Archaeological Research Centre in Jakarta and at the Sulawesi branch in Manado. In this article, we 

select to report on the materials from Trench B in Topogaro 1 and Sector A in Topogaro 2, since both 

trenches produced larger amount of artifacts and contain deeper deposits in each cave.  

For Topogaro 1, our excavation in both Trench A and Trench B exposed limestone rockfall at about 

100 cm depth from the surface, and we temporally had to stop our excavation due to the density of the 

fallen rocks. However, it appeared that more sediment deposits are still underneath the rockfall, and we 

plan to remove these limestones in later campaigns and to reach those deeper deposits. Until the heavy 

rockfall appeared, our excavation of both trenches identified three layers (Fig. 5) with significant 

amounts of lithics, human and animal bones, shell remains, bone projectiles, as well as ceramics, 

potsherds, glass ornaments (variety of beads), and metal objects in the upper layers associated with the 

burials. The top layer (Layer 1) contains numbers of fragmented human bones with possible burial 

goods including ceramics, pottery, glass ornaments, and metal goods. Layer 1 also contains a few bone 

projectiles, shell remains and lithics although their numbers increase in Layer 2 and the lower Layer 3. 

On the other hand, pottery, ceramics, metal goods and glass beads dramatically decrease or disappear 

in Layer 2 and were completely absent in Layer 3.  

 

Figure 4 Cultural layers of Trench B in Topogaro 1 

 

We encountered much lesser rockfall in Topogaro 2 and were able to excavate both sections down to a 

depth of 300-310 cm (Spit 60-62) at the end of our latest excavation in March 2018. Currently eleven 

layers were identified within Section A (Fig. 6), containing shells, small animal bones, and lithic flakes 

(n<100). Since our excavation in Topogaro 2 is still ongoing and we expect more cultural deposits 

underneath, the dates for the initial human use of the site are potentially older than the chronology that 

we report and discuss here. Among the upper layers, Layer 2 (mainly Spit 8-10) produced a large 

number of shell remains, while they were very few in the other layers. Layers 3, 5, 7, 8 and 10 produced 

significant amounts of lithic artefacts, mainly chert flakes while Layer 4, 6 and 9 contained very few or 

no artefacts, pointing at a discontinuous occupation of the cave.  

 

Figure 5 Cultural layers and location of dating materials in Sector A in Topogaro 2 

 

In situ charcoal and shell samples were dated at the Radiocarbon Dating Centre, the University of Tokyo. 

A total of 19 charcoal and shell samples from Trench B in Topogaro 1 (n=5) and Sector A on Topogaro 
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2 (n=14) were dated by AMS/C14 methods and calibrated against Marine13 (Reimer et al. 2013) using 

OxCal v.4.2.4 (Bronk Ramsey and Lee 2013). The results suggest three occupational phases for Trench 

B in Topogaro 1 (Table 1), during the early Holocene (c. 9000 cal BP), Mid-Holocene (c. 5000 cal BP) 

and late Holocene (ca. 3000-2000 cal BP). The results for Sector A in Topogaro 2 indicate four 

occupational phases: 1) late Pleistocene (c. 29000-26000 cal BP/ Layer 9-11); 2) post LGM (c. 16000 

cal BP/ Layer 6-8); 3) early Holocene (c. 10,000 cal BP/ Layer 3-4); and 4) early Metal Age (c. 2300 

cal BP/ Layer 1-2). The comparison of the different periods and their excavated remains allows us to 

discuss the changes of ecological conditions, resource use, and human foraging behaviour, including 

lithic and bone tool technology from the late Pleistocene to the Holocene and over the past 30,000 years.   

 

Table 1 List of charcoal and shell dates from Goa Topogaro 1 & 2 

 

2.2 Morphological and use wear analysis of stone and bone artefacts 

Morphological and use wear analysis of stone artefacts are part of our major study topic in Topogaro 

excavation since the site produce larger number of them. For morphological analysis of flake tools, we 

classify into the five six categories: (1) complete flake, (2) non-complete flakes, (3) retouched flake, 

(4) core and core fragment, (5) shatters, and (6) non-chert materials. For other stone artefacts, we also 

categorised hummer stone and stone blank. The methods of bone point analysis are similar to those 

employed by lithic analysts to emphasize aspects of raw material selection, methods of modification, 

basic metric attributes, the morphology of functional edges or points, and patterns of use-wear and 

damage as described by Pasveer (Pasveer 2006; Pasveer and Bellwood 2004). For use-wear analysis of 

stone and bone artefacts, both microscopic analysis and experimental approach analysis are essential. 

The laboratory analysis by use of microscope were mainly conducted at Balai Arkeologi Northern 

Sulawesi in Manado, while experimental analysis by making some stone tools with similar source 

materials around the sites was conducted during the excavation by R. Fuentes. For use-wear analysis, 

such experimental analysis to use these newly made stone tools to cut various materials to check their 

use wear for further comparison with the excavated tools. Samples were brought to the University of 

Tübingen for SEM-EDX and LSCM analysis, for future research. 

 

2.3 Analysis of excavated faunal remains 

Skeletal remains were identified at the lowest taxonomic level possible. Fish bones were identified 

through comparison with the reference collection of National Museum of Ethnology, while mammalian 

and reptile skeletal remains were preliminary identified using the somewhat limited reference collection 

(mainly collected by R. Ono in Sulawesi) at Balai Arkeologi Northern Sulawesi. Some remains of anoa 

and Babirusa were identified with the aid of Prof. Philip Piper at the Australian National University. 

Further and more detailed identification and analysis will require the use of a larger reference collection. 

Mollusca remains were sorted in each taxon but currently identified in family level counted in NISP 

and weight.  

 

3 Results 
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3.1 Variation and possible function of the stone and bone artefacts in Goa Topogaro 1 

The majority of the stone and bone artefacts from Trench B in Topogaro 1 date into the early to mid-

Holocene, between 10,000 to 8,500 cal BP (Table 1). For stone artefacts from Topogaro 1, we select a 

1 x 1 m square of Trench B (B-5) for the results of our morphological and use-wear analysis. The square 

produced 4,409 and 15,217g of flaked stone artefacts (Table 2). Most of them were made of chert with 

yellow to reddish colour. Other squares also produced similar volumes in Trench B. Artefacts were 

identified throughout the sequences but mostly concentrated in the upper layers. Similar colour and 

texture of chert nodules can be found along the streams within 3 km of the caves, and these chert pebbles 

were likely selected as flake cores. Complete flakes are counted as 225 in number and the assemblage 

mainly composed of both unretouched and retouched flakes with pointed edges (Fig. 6-A) and concave 

edges (Fig. 6-B). The assemblage also contains 131 cores or core fragments.  

Unifacially retouched tools were recovered from the early Holocene in Topogaro 1, c. 9,000 cal. BP 

(Spit 15, 75 cm from surface level). This type of retouch was done through direct percussion while 

creating concave edge, characterised by steep working angles. Shallow feather-terminated scars were 

formed through pressure flaking from a unifacial orientation. The working edges show contact with 

hard material on low power microscopy but no clear indications at higher magnifications such as well-

developed polishes - possibly due to continues retouching even after use. An ongoing experimental 

program shows that reddish and yellowish chert are readily available at the periphery of the site. After 

collecting raw materials, replicas of notched tools were produced through direct percussion technique 

initiated from the ventral face. The steep angle of these tools shows that it was intended to be used in 

scraping motion with the initiation point of the retouch as the contact face or rake. The retouched tools 

were recovered in the same context with bone points. The notched tools were unifacially modified, with 

the use of probably soft hammer percussion due to the shallow negatives on the edges and at times also 

hard hammer technique as shown by the secondary step scarring with step-terminated scars. We were 

able to reproduce similar retouched scrapers using chert from the periphery of the site, with the use of 

direct percussion hard hammer technique.  

 

Table 2 List of lithic artefacts from Trench B-5 (1x1m) in Goa Topogaro 1 

 

Figure 6 Unretouched and retouched flakes with concave edges from Trench B in Topogaro 1 

 

Most of the bone tools were found in Topogaro 1 (n= 120) and appeared in all squares of Trench A and 

B. They can be assigned to four major categories: bipoint, unipoint, spatula and edged tool (Figure 7). 

Since Trench B produced the larger number (n=68) and variety of bone tools, we selected this 

assemblage for further discussion in this paper (Table 3). Among them, 57 can be identified as bipoints 

(complete & 2/3 complete bipoint = 41, 1/2 broken but possibly bipoint = 26) and seven can be as 

unipoints (complete unipoint=3, 1/2 broken possible unipoint=4). The length of the complete bipoints 

(n=14) ranges between 58.13 and 21.57 mm, with a mean length of 35 mm. On the other hand, the 

length of the unipoints (n=3) ranges between 28.19 and 16.91 mm, with a mean length of 20 mm. The 

raw materials used for the manufacture of points are cortex bone slivers, narrow unsplit shaft bones, 

and the dentin of incisor roots of wild pigs. In addition, a broken spatula-like tool and two fragmented 

edged tools, both of which are probably made of the split long-bone shafts of a large mammal, possibly 
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Sus species were excavated. Almost all the points are burnt to some degree, though it is not sure whether 

the tools were originally made from burnt or intentionally heat-treated bones or whether the burning 

occurred subsequent to discarding.   

 

Table 3 List of bone artefacts from Trench B in Topogaro 1 (n=68) 

 

Figure 7 Bone tools from Trench B, Topogaro 1 (Holocene level) 

 

3.2 Variation and temporal change of the stone artefacts in Goa Topogaro 2 

Goa Topogaro 2 produced the Pleistocene stone artefacts both dated around 29,000-26,000 BP and 

16,000 BP in Sector A. The deepest found stone artefacts are two chert complete flake tools (Fig. 8A, 

B) from spit 60 of A-3 (~300 cm from the surface). They are associated with a phalange of Anoa and 

few charcoals (one of which is dated to 29,000 cal BP as in Table 1). The middle layers in Sector A 

dated around 16 ka produced some micro blades and blade-like flakes of white and yellowish color 

chert (Fig. 8C-I). The upper Holocene layers (Layer 1-4) produce yellowish color chert flakes, while 

the number and percentage of non-chert materials including limestone also increase in the lower layers 

of the Pleistocene deposits. The detailed analysis of stone artefacts in Topogaro 2 is still in progress, 

we select a 1 x1 m square on Sector A (A-2) here (Table 4). The upper Holocene dated layers in Sector 

A do not produce such small blades, while more variety of retouched tools including notched and 

pointed flakes similar to the ones from Topogaro 1 (Fig. 6). Sector B in Topogaro 2 produced only very 

few bone tools (n=6).  These bipoints and unipoints are similar to the ones retrieved from the Holocene 

layers in Topogaro 1. Because of the similarity and their very limited number, we excluded them from 

the discussion and focussed on the bone artefacts from Topogaro 1.  

 

Figure 8 Pleistocene lithic artefacts from Sector 2 in Topogaro 2 

 

A total of 252 lithic artefacts weighing 1920 gms were recovered from the A-2 square in Sector A. 

These were composed of complete chert flakes, 21 incomplete chert flakes, 5 cores/core fragments, 6 

shatters, and 175 non-chert artefacts mostly composed of limestone (Table 4). Lithic artefacts were 

recovered beginning from Spit 57 (285 cm from surface level). At Spit 55 (275 cm from surface level), 

complete chert flakes and a core were recovered. No retouched pieces were recovered in TP2. From the 

lowest level of Topogaro 2/ Sector A, large chert flakes and smaller limestone flakes show impact with 

hard materials such as animal bones. Production and use of both chert and limestone were identified as 

early as 30 kya. Animal bones were also recovered from the same context with the stone tools that show 

impact traces along the outline of working edge. From 18kya, we recovered tools that show contact 

with phytolith rich plants using continuous transversal action. We inferred these to have been used for 

processing plant materials, forming sickle polish along the working edges that are comparable with the 

results obtained from Leang Sarru, North Sulawesi (Fuentes et al. in press). Although flake tools were 

continually produced in Topogaro 2, no clear boundaries were identified in terms of appearance of lithic 

technology during the Holocene as compared with Topogaro 1 with the appearance of notched tools 
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associated with bone points. Lithic use-wear analysis from the selected retouch flakes in Topogaro 2 

confirms many of these retouched flakes were heavily used in the edge parts (Fig. 9). The ones from 

the Holocene layers shows much heavy use traces.  

 

Figure 9. Traces identified on artefacts from Topogaro 2. A. Pleistocene. B. LGM. C. Holocene period 

of Topogaro 2. 

 

3.4 Variety and temporal changes of faunal remains  

Both caves produced a rich variety of faunal remains including molluscs, vertebrates, and crustaceans. 

Topogaro 1, where we exposed only Holocene deposits so far, produced larger amounts of molluscs 

and crustaceans than Topogaro 2. For vertebrates remains, both caves have a similar record that is 

composed of small-sized mammals like chiropterans (bats/Pteropodidae) and rodents (rats/Muridae), 

wild pigs (Suidae) and anoa (Bubalus sp) as middle to large sized mammals, marsupials (mainly 

Phalangeridae), reptiles like snakes (Serpentes) and lizards (Lacertila), as well as fishes (Osteichthyes) 

and molluscs. Since the identification was based on the limited reference collection in Manado at this 

stage, the vertebrates were mainly identified on a higher order level.  

 

3.4.1 Faunal remains in Topogaro 1 

Table 5 shows the number of identified specimen (NISP) of all identified vertebrates from a selected 1 

x 1 m sampling square of Trench B (B-5). Table 6 shows the minimum number of individuals (MNI) 

of the same vertebrate assemblage. The NISP of currently identified vertebrates from the square is 1192, 

while their MNI is 463. The major taxa are represented by small mammals as chiropteran (bats) and 

murid (rats) species. The bone elements for these small mammals include femur, humerus, tibia, ulna, 

radius, pelvis, mandible, premaxilla, teeth and canine. For chiropteran bones, at least one fruit bat 

species (Pteropodidae) and one insectivorous taxa were identified but the exact species is yet unknown. 

For murid remains, rather small species dominate the assemblages, while some of the murid 

mandibulars are large in size and possibly belong to a giant rat species.  Since some chiropteran and 

small murid species have their habitat in limestone cave, it is unclear whether these remains were 

naturally accumulated (including as owl preys) or food remains discarded by humans in the past, while 

some larger specimens could very well have been human prey and used as food source. The recovered 

Suidae bones include mandibles, vertebrae, humerus, canines, pre-molars and incisors.  

 

Table 5 List of vertebrates from Square 1/ Trench B in Topogaro 1 (NISP) 

 

For the molluscs remains, 32 taxa were identified including both Bivalvia and Gastropods from a 

selected 1 x 1 m sampling square of Trench B (B-5). Among them, the major families are Cyrenidae 

and Arcidae for bivalvia, and Potamididae, Neritidae, and Thiaridae for gastropods. Cyrenidae, 

Potamididae, and Thiaridae shell mainly inhabit river, mangrove and coastal environments while 

Arcidae and Neritidae are mainly found in coastal environments. Figure 10 shows the temporal changes 
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of major shell families per spit. The largest family from Topogaro 1 is Potamididae, followed by 

Neritidae and Arcidae as marine to brackish water species, especially in the upper layers and the Mid-

Holocene.  

 

Figure 10 Molluscs remains from Square 1/ Trench B in Topogaro 1 (NISP) 

 

3.4.2 Faunal remains in Topogaro 2 

Table 6 shows the NISP and MNI of all the identified vertebrates from a selected 1 x 1 m sampling 

square of Sector A (A-1). Like Topogaro 1, the major taxa are small mammals like chiropteran (bats) 

and murid (rats) species. The bone elements for these small mammals include femur, humerus, tibia, 

ulna, radius, pelvis, mandible, premaxilla, teeth and canine. Rather small murids are dominant in the 

assemblage, although some murid mandibles are large in size and possibly belong to a giant rat species.  

For chiropteran bones, at least one fruit bat species (Pteropodidae/Terebralia) and insectivorous taxa 

are part of the Topogaro 2 fauna but like for Topogaro 1, the exact species is yet unknown.  

 

Table 6 List of vertebrates from Sector A (1 x 1 m) in Topogaro 2 (NISP/MNI) 

 

The analysed molluscan assemblage of Topogaro 2 was taken from a 1 x 1 m sampling square of Sector 

A (A-5). It contained as well both bivalvia and gastropod species. Here, most gastropods are Thiaridae 

while Cyerenidae are the dominant bivalvia species. They are both occupying fresh and brackish water 

habitats in river and mangrove environments. Limited numbers of Arcidae, Conidae, Neritidae, 

Potamididae shells also indicate shellfishing of marine and brackish water species to some extent.  Also 

oyster shells appear after the Mid-Holocene level, similar to Topogaro 1. The number of land snail 

species in Topogaro 2 exceed the count from Topogaro 1, although most of them could have died 

naturally in the cave. The numbers and volume of molluscs are quite limited in the Pleistocene layers 

and significantly increase in the middle and late Holocene layers (Figure 10).  

 

Figure 10 Temporal change of major molluscs remains from Sector A (1 x1 m) in Topogaro 2 

 

4. Discussions 

4.1 The Initial Island Migration into Wallacea and Oceania by AMH 

 

Distances between islands were a major factor for early human migrations and dispersals in Wallacea 

as were the particular island environments. Except for the above mentioned cases of Sulawesi and Flores, 

all traces of human presence in Wallacea and Oceania were possibly left by anatomically modern 

humans. They were probably also the first to reach Sahul which required significant open sea crossings 

and traversing a distance of at least 80 km from the Wallacean islands to Sahul taking the lower sea 

levels during the late Pleistocene into consideration (Bird et al. 2019). This was followed by the 
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migration into Oceania and the first true long-distance ocean voyages in the world. Maritime interaction 

and island adaptation in Wallacea and Oceania becomes evident in the archaeological record beginning 

with the drastic sea level rise and increase of coastal distances in the Holocene after 12,000 years ago. 

 

Regardless of the initial timing of AMH dispersal into Wallacea and Sahul, it should be noted that in 

the area of Mata Menge on Flores Island much older human traces have been found, dating back to 

around 880 kya (Morwood et al. 1997, 1998), while a recent excavation in the Walanai valley in south 

Sulawesi recovered lithic artefacts associated with large mammals including Stegodon, dated to around 

200 to 100 kya (van den Bergh et al. 2016). However, no early hominin fossil remains were found in 

Sulawesi, so far. To the north in the Philippines, Luzon is another oceanic island that has delivered 

evidence for early hominin presence in the form of a rhinoceros with cutmarks and butchering traces 

and associated stone tools, dated to over 700 kya (Ingicco et al. 2018) and the possible presence of 

Homo luzonensis as small-bodied hominin in Callao Cave, Northern Luzon dated to 66 kya (Détroit et 

al. 2019). Again in Flores, skeletal remains of Homo floresiensis, an enigmatic small-bodied hominin 

were found in Liang Bua and are now dated to between 95-60 kya (Brown et al. 2004; Morwood et al. 

2004, 2005; Sutikna et al. 2016).  

 

It is yet unknown what happened between the time those hominins existed and the appearance of AMH 

in Island Southeast Asia. The record of Liang Bua in Flores suggests as time for the disappearance of 

Homo floresiensis and the potential arrival of AMH after around 50 ka (Sutikna et al. 2016) while recent 

research at the site of Madjedbebe in Australia has significantly pushed back the arrival of AMH in 

Sahul to over 60 kya (Clarkson et al. 2017; Robert et al. 1994). However, the accuracy of the applied 

OSL dating which usually provides older ages than radiocarbon dating, and the stratigraphic context of 

the artefacts have been questioned and the arrival of AMH in Sahul before 50kya was considered as 

unlikely (O’Connell et al. 2018). The oldest radiocarbon dates from Australia date after 50 ka cal BP 

and are mostly younger than 45 ka (O’Connell and Allen 1998, 2004).  

 

A study by Habgood and Franklin (2008) on behavioural modernity in Sahul also stated that across all 

Pleistocene sites in Sahul associated with AMH, a cohesive ‘package’ of cultural innovations did not 

exist in the Indo-Pacific at the beginning of human expansion into the Sahul region and that modern 

“components were gradually assembled over a 30,000 year period” (Habgood and Franklin 2008: 214). 

This is in sharp contrast to the archaeological record of Madjedbebe where the entire modern package 

is already present in the archaeological record (Clarkson et al. 2017). Similarly in Flores, the earliest 

radiocarbon date for the possible initial appearance of AMH is a single charcoal date of around 46 kya, 

however, the oldest dated AMH fossil remains dated by laser ablation uranium-series isotope 

measurement analysis (234U/230TH) and AMS radiocarbon dating resulted to an age of only 6.4 -9.5 

ka (Sutikna et al. 2016).  

 

In conclusion, the chronology for the earliest appearance of AMH in Wallacea and Sahul continent is 

still unclear and might have happened somewhere between 60 and 40 kya. The oceanic voyages of early 

AMH into Wallacea and Sahul were possible along both, the southern and northern routes (Bird et al. 

2018, 2019, Kealy et al. 2017, 2018; Norman et al. 2018). While the former route had more visible land 

mass with a possible availability of higher biomass prey like Stegodon and larger reptiles (cf. Veneridae 

/ monitor lizard) until the terminal Pleistocene (e.g. Louys et al. 2007; van den Bergh et al. 2008, 2009), 

the northern route on the other hand, led through a much wetter environment with dense rain forests 

and a variety of land fauna, although the Moluccan islands had less suitable mammal and reptile species 

as prey for AMH except for marsupials and rodents (Bellwood 2019; Bellwood et al. 1998). More 

multidisciplinary investigations on the particular environmental and geographical conditions of the 
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islands along the southern route are needed to understand the migration strategies of early AMH to 

reach these islands and consequently the northern part of Sahul, mainly the coastal area of New Guinea. 

The paleogeography and inter-visibility models proposed by Kealy and others (2017) already indicate 

that AMH exploration of the Wallacean Archipelago could have been far more extensive than 

previously suggested between 65 and 45 ka, and inter-visibility between islands could have been better 

along the northern route. In fact, they also suggested that the northern route would have provided an 

easier migration path for AMH from Sunda to Sahul, thus being the more likely route for the initial 

colonization of Sahul (Bird et al. 2019; Kealy et al. 2017, 2018).  

 

However, as they also point out, there is currently little archaeological data to discuss this hypothesis, 

and what it is necessary to obtain more archaeological evidence along the northern route as well as the 

southern route through on-going and future studies in Wallacea region. Our on-going excavation in Goa 

Topogaro site which locates along the northern route from Sulawesi to the Moluccan islands now shows 

the direct archaeological evidence of AMH appearance in eastern coast of Sulawesi by 29 kya. Although, 

this date is yet not older than some other late Pleistocene sites in Wallacea, the site seems to contain 

much deeper deposits and we plan to continue our investigation to find much deeper deposits which 

may contain earlier AMH colonization. 

 

4.2 The late Pleistocene foraging behaviour and faunal resources in Wallacea 

The chronostratigraphic record and the excavated faunal remains, lithic artefacts, and bone tools of 

Topogaro provide information on long-term trends in site use and human foraging behaviour during the 

late Pleistocene and Holocene. Although the faunal remains from the oldest Pleistocene layers so far, 

dated between about 29-21 kya, are limited in number, the existence of some bat taxa including fruit 

bat and murid rodent taxa suggests a certain degree of forest cover in the area surrounding Topogaro. 

The existence of a currently unidentified large murid species at least 16 kya also suggests the presence 

of forested habitats shortly after the end of LGM. So far, no clear evidence of murid and bat 

consumption was observed in Topogaro, although the existence of such large murid and fruit bat species 

has been suggested to indicate human consumption of these fauna, while the smaller species could have 

been also brought in by owls (Hawkins et al. 2017a, 2017b).  

Topogaro 2 produced late Pleistocene evidence for large to middle sized mammal remains in the form 

of a phalange of anoa (Bubalus sp) from Layer 11 dated to 29 kya, and another phalange of a marsupial 

species, possibly bear cuscus (Ailurops sp.) from Layer 10 dated to around 27 kya. Both are associated 

with flaked stone artefacts mainly made of white-pinkish coloured chert. On the other hand, all the 

Suidae remains, mainly Babirusa, were so far only recovered from Holocene layers, both in Topogaro 

1 and 2. In southern Sulawesi, extant endemic wild boars (suids) together and bovids (anoa) dominate 

in the Pleistocene deposits of the Walanae river (Bullbeck et al. 2004). The use of marsupial phalanges 

(Sulawesi bear cuscus) for the manufacture of ornaments around 20 kya was reported from the Maros 

area (Brumm et al. 2017). Evidence for the active use of anoa and Celebes warty pigs (Sus celebensis) 

with minor use of cuscus and monkey (Macaca maura),  as well as river shellfish in the late Pleistocene 

was also found at Leang Burung 2 (Glover 1981; Clason 1989; Brumm et al. 2018) and Leang Sakapao 

(Bullbeck et al. 2004) in southern Sulawesi. Although fragmentary, these evidences clearly indicate the 

frequent capture and use of these medium to large-bodied mammals by early AMH as well as other 

hominins in Sulawesi.  

Another potential large mammal prey of hominins until the late Pleistocene in the larger islands of 

Wallacea is Stegodon. In Sulawesi, the potential exploitation of Stegodon species have been reported 
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so far from the open sites in the Walanae region dated ～ 200 kya (van den Bergh et al. 2016) and from 

the lower deposits of Leang Burung 2 in Maros, which possible dated to around 70 kya (Brumm et al. 

2018). At Topogaro and other prehistoric sites in Sulawesi dated after 32 kya, Stegodon remains are 

completely absent, thus suggesting that they became extinct before 30 to 40 kya (Larick and Ciochon 

2015). So far, no archaeological evidence has been found for the exploitation of Stegodon by the time 

of the initial migration of AMH into Sulawesi along both routes. 

Other sites in Indonesia, where Stegodon was found associated with early hominin species (H. erectus 

and H. floresiensis) are located in Java and Flores along the dry savannah environment corridor (van 

den Bergh et al. 2001, 2008, 2009; Morwood et al. 2004; Louys et al. 2007). It is possible that the 

Stegodon population might have been larger in such open environments along Java and the Sunda 

Islands well as part of Sulawesi.  

Also in Timor where Stegodon fossils were found but did not appear in any of the possible AMH sites 

so far, it could be that those larger mammals have been already gone extinct before the initial arrival by 

modern humans (Louys et al. 2016; O’Connor and Aplin 2007). If none or very few large sized animal 

resources existed by the time of their initial migration into Wallacea, then it was perhaps the variety of 

other available resources of terrestrial and marine origin and the visibility and accessibility to those 

resources that drew early AMH’s attention to the Wallacean region. In this case, both routes could have 

been equally attractive for them. For instance, along the Southern routes the coastal sites of Lene Hara, 

Jerimalai and Tron Bon Lei in Timor and Alor delivered large amounts of fish and shellfish remains 

together with possible fish hooks made of shell from the late Pleistocene and early Holocene layers and 

dated to around 42 to 10 kya (O’Connor and Veth 2005; O’Connor et al. 2002, 2011; Samper Carro et 

al. 2015). All of these sites are located within 1 km distance from the current coast, and were probably 

within 1-3 km distance from the Pleistocene coastline even during the LGM.  

On the other hand, these coastal sites only produced small terrestrial animal resources including rodents, 

reptiles and bats during the Pleistocene occupation, demonstrating maritime adaptation and a high 

demand for marine resources for the early AMH population that has migrated to the coastal areas of 

Timor and Alor. In contrast, the inland sites in these islands mostly produced mostly terrestrial resources 

such as murids and bats and very few or no marine resources. For instance, Uai Bobo2 located over 80 

km from the current coast in Timor and dated to around 16 kya only produced large numbers of murid 

and bat remains (Glover 1986). Matja Kuru 2 site located about 10 km inland but close to the largest 

freshwater lake in East Timor produced an abundance of giant and small murids together with 

freshwater turtles (O’Connor and Aplin 2007).  

Laili Cave, so far the oldest site in East Timor dated from 44 to 11 kya is located about 4.3 km from the 

current coast and has produced 16 different mammal taxa, mainly rodents (four extinct small rat species 

and four extinct giant rat species) and bats (including a fruit bat species) together with some reptile, 

amphibian, and bird remains (Hawkins et al. 2017a). The site has also delivered fish, molluscs, and 

crustacean remains, mainly freshwater and mangrove species. Their volume significantly increases after 

the LGM and terminal Pleistocene. A similar tendency is seen for the inland sites of Flores with a high 

number of terrestrial fauna including freshwater and mangrove mollusc species, and very few or no 

marine resources (van den Bergh et al. 2008). Although the current limited archaeological record issuing 

definite statements on the level of marine exploitation by early AMH in a wider perspective, the record 

from Timor shows that early AMH developed maritime adaptation and nautical skills to successfully 

exploit the coastal areas of remote islands with limited terrestrial resources such as Timor and Alor.  
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Along the northern routes, on the other hand, none of the coastal Pleistocene sites excavated produced 

marine fish remains in noticeable quantity, while many of them show the extensive use of marine and 

fresh-brackish water molluscs (Bellwood et al. 1998; Ono et al. 2010; Szabo and Amesbury 2011). For 

example, Golo Cave on Gebe Island in the northern Moluccas, dated to as early as 36 kya, is one of the 

oldest dated sites along the northern routes currently and located less than one km from the current 

coast. The site produced large numbers of marine molluscs as well as possible shell tools made of Turbo 

marmoratus opercula during the late Pleistocene (Szabo et al. 2007). Tridacna and Cassis shell adzes 

are also excavated from the early Holocene levels in Golo Cave (Bellwood 2017, 2019). They are so 

far the oldest dated shell adzes in Island Southeast Asia, although questions have been raised whether 

those early Melanesian and Moluccan shell adzes were produced on ‘old shell’ and rather belong into 

the early Holocene (Fredericksen et al. 1993; Pawlik et al. 2015). Despite the large amount of marine 

shells, the site has delivered only few fish remains and no fishhooks have been found, yet. Similarly, 

Leang Sarru on the coast of Salibabu Island of the remote Talaud Islands group located between 

Sulawesi and Mindanao produced large numbers of marine molluscs back to 35 kya, while no fish 

remains and fishhooks appeared at the site (Ono et al. 2010).  

Although the reasons for the absence of marine fish remains in the sites along the northern routes are 

still unclear, the concurrent absence of fishhooks in these sites shows that there is a strong difference to 

the sites in Timor and Alor along the southern routes. Topogaro on the eastern coast of Sulawesi shows 

a similar tendency with marine fish and fishhooks being absent in the Pleistocene deposits, while they 

contain numerous terrestrial animal remains. Topogaro is at present about 3.5 km inland, and its distance 

from the coast is similar to Laili Cave (4.3 km inland) on Timor Island (Hawkins et al. 2017a). Both 

sites did not produce fishhooks nor significant amounts of fish remains, while the amount of molluscs 

and terrestrial animal remains, as well as lithic artefacts, are high. Such cases might indicate the 

behavioural variability of early AMH and the capacity to exploit different resources in different (and 

changing) surroundings and environments in the past.  

For instance, Bubog 1 rockshelter further north on Ilin Island, Mindoro, is a coastal site located east of 

Wallace’s Line modified after Huxley in the oceanic part of the Philippines. It has produced a dense 

and well-stratified shell midden dated from c. 33,000 to 4,000 cal BP, followed by terrestrial silty 

deposits underneath (Pawlik et al. 2014). Throughout the archaeological deposits appear fish remains 

and a variety of terrestrial mammals, mostly endemic pigs but also Tamaraw, a bovid endemic to 

Mindoro, and cloud rats (Reyes et al. 2018). While an edge-ground Tridacna shell adze and Tridacna 

flaked artefacts were retrieved from its mid-Holocene Layers (Pawlik et al. 2015), the lowest shell 

midden layer contained an assemblage of worked Geloina coaxans shells used as tools. They are 

directly dated to 28-33,000 cal BP and are the currently earliest shell tools in the region (Pawlik and 

Piper 2019). Below the midden, a fully worked bone fishing gorge and the remains of pelagic fishes 

indicate open sea bait fishing before 30 kya (Boulanger et al. 2019; Pawlik and Piper 2019). The 

antiquity of the site of >35 kya provides another argument that the northern route has been used by 

AMH earlier than previously thought. The Philippine route and the northern route share both the same 

starting point in Borneo where Niah Cave has already delivered an over 40 kya long record of AMH 

presence (Barker et al. 2007).  

 

4.3. Changing foraging behaviour and technologies from the late Pleistocene to mid-Holocene 

In terms of temporal changes of forging behaviour from the late Pleistocene to Holocene, the amount 

of mangrove and coastal mollusc species in archaeological sites of Wallacea dramatically increased 
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after the Pleistocene, in Topogaro particularly during the early to middle Holocene levels around 10-5 

kya (see Figure 9, 10). The increase in the amounts of these molluscs coincides with warmer 

temperatures and sea level rise during this period and the spreading of coastal and mangrove forests 

around the site, providing ideal habitats for marine, fresh and brackish water species that were easily 

accessible to the foragers of Topogaro. A similar trend was reported from Laili Cave on Timor where 

the increase of freshwater and mangrove mollusc species after the LGM into the early Holocene levels 

is connected to gradually warmer and wetter conditions (Hawkins et al. 2017a). At Golo Cave in 

northern Moluccas, brackish-water mollusc foraging also became more dominant during the post-

glacial sea level rise (Szabo and Amesbury 2011), while coral dwelling marine mollusc species 

including Tridacna, Conus, and Trochus species dramatically increased at Leang Sarru on the Talaud 

Islands during the same period (Ono et al. 2010).  

Foraging of terrestrial animals, mainly giant rats and fruit bats is visible in Topogaro 2 throughout the 

stratigraphy from the Pleistocene to Holocene layers, although particularly the small sized species might 

not necessary have been hunted, exploited and discarded by humans. Hunting of babirusa and Celebes 

warty pig is currently confirmed only for the Holocene layers of Topogaro. A few dog teeth were 

excavated both from the lower and upper layers, their exact date hasn’t been determined as of now. 

Since there is no endemic Canis species known in Sulawesi, those dogs were most likely introduced by 

humans possibly after the mid-Holocene. The possible dog mandibular was excavated from Gua 

Mo’ohono in Walandawe region of southwest Sulawesi which is located about 100 km inland from Goa 

Topogaro and the direct dates of a dentine dated to around 4400 cal BP, however it is now suspected as 

mandibular canine of brown palm civet (O’Connor et al. 2018).   

 In Java, the Holocene layers of Song Gupuh, Gua Braholo and Song Keplek produced a large volume 

and wide range of animals remains that include deer, pig, bovid, elephant, bear, rhino, and tapir as well 

as mollusc remains (Morwood et al. 2008: 1784). Although the active use of monkey is not confirmed 

in the Topogaro case, we observed the exploitation of a wide array of animals including smaller-bodied 

species, rodents and molluscs in Topogaro which appears to follow this trend of Holocene sites in 

Indonesia. Such increase of foraging variability could be directly related with the technical and 

cognitive development of hunting and gathering skills and an increasing knowledge for creating the 

necessary strategies and tools.  

Lastly, regarding the stone and bone artefacts and their use, a variety of activities and processed 

materials were identified. Throughout the sequence, we were able to infer production and use of stone 

tools from c. 29 kya, mainly on harder materials such as animal bones. Limestone artefacts were also 

produced indicating utilisation of raw materials from both the cave site other than from rivers and 

streams, in the case of chert. Unretouched complete flakes were produced through direct percussion 

technique from the Terminal Pleistocene. At around 20 kya, during the LGM, we identified tools which 

were unifacially retouched, resembling a point which denticulated left and right lateral sections. Initial 

analysis reveals the use as possibly hafted tool similar to the case in the Talaud Islands about 100 km 

away from northern Sulawesi coasts (Fuentes et al, in press). The combination of utilisation of both 

retouched and unretouched tools continued until the Holocene period. In Topogaro 1, bone points and 

lithic artefacts were recovered from the same context, implying the associated production of both 

concave-retouched tools and osseous technology. Basing on use-wear analysis, distinct traces from 

plant working and bone processing showed well-developed polishes. Technological production and 

material processing indicate not just plant working but also processing of bones. Possibly hafted 

retouched tools were also present in the site and traces indicating lateral action through impact with the 

formation of micro linear impact traces (MLIT).  
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Bone tools are major tools regularly found in the Holocene archaeological sites in Southeast Asia 

including Wallacea. A few Pleistocene sites such as Niah Cave in Borneo, Lang Rongrien in peninsular 

Thailand, Matja Kuru 2 in East Timor also produced some bone tools dated to >30 kyr (Olsen and 

Glover 2004; O’Connor et al. 2014). In Sulawesi, however, bone points and awls are all from the 

Holocene layers between 10 to 4 kyr, and the major tools are occupied by small sized bipoint or pointed 

implements; Ulu Leang 1 (n=127/134) and Leang Burung 1 (n=21/26) in Maros, Southern Sulawesi 

(Olsen and Glover 2004), and some sites in Walandawe (n= 137/149), Southeast Sulawesi (Aplin et al. 

2016), as well as in Goa Topogaro (n=64/68 from Trench B) in Central Sulawesi reported here. The 

predominant of pointed tools possibly used as projectiles (Olsen and Glover 2004) in these sites may 

represent similar bone tool tradition were widely shared in Sulawesi during the Holocene. The Topogaro 

bone tool assemblages particularly show high similarity with those in Walandawe region in the selection 

of raw materials, possible manufacturing methods employed, and tool usage. The appearance of such 

similar bone tool tradition may have strong relation with predominant of concave-retouched tools in 

Goa Topogaro and general increase of variation in exploited animals especially of small-middle sized 

species and aquatic resource including fish and molluscs after the Holocene in Sulawesi and Wallacea. 

Bone tools also become dominant in other islands in Wallacea particularly among the islands including 

the North Moluccan islands, the Aru islands along the northern route as well as the Bird’s Head in New 

Guinea. In the Northern Molucca, Golo cave produced the largest sample of points (n=108) with 

dominant of bipoints (n=75) dated between 7.4 to 3.2 kyr (Pasveer and Bellwood 2004). Liang Lemdubu 

and Liang Nabulei Lisa produced 47 points dated widely between 25 to 2 kya in the Aru islands, while 

the largest sample (n=34) comes from the upper layer of Liang Lemdubu dated around 2 kyr (Pasveer 

2005). In the Bird’s Head, Kria cave produced 92 points including both bipoints and unipoints dated to 

7 to 4.3 kyr (Pasveer 2004). The Kria Cave points resemble the North Moluccan points in their method 

of manufacture, and both bipoints were mainly hafted and used as bores or engravers (Pasveer and 

Bellwood 2004). The Topogaro bone points are generally correspond with those points in Golo cave 

and Kria cave, and highly possibly hafted to use as projectile tool.  

Rabett and Piper (2012) conclude the pattern of use of osseous materials in Southeast Asia become 

more standardized to be used as hafted components of composite tools after 15 kyr, and such 

developments appear to have occurred earlier in Island Southeast Asia, especially in Wallacea. The 

increased prominence of osseous technologies could be one of the AMH foragers adaptation to the far-

reaching environments and demographic changes (Rabett and Piper 2012: 37) particularly after the 

Holocene. Similar to other cases in Sulawesi (Aplin et al. 2016; Olsen and Glover 2004), the Topogaro 

assemblages with increase of concave-retouched flake tools, bone points, small to middle sized animals 

and shells are highly relevant to such scenario. For further study, we need more comprehensive analysis 

as focusing on both lithic and bone tools including their use-wear analysis as well as zoo-archaeological 

analysis on the faunal remains to reconstruct more details of the past AMH foraging behaviour and 

technologies from the late Pleistocene to mid-Holocene. 

 

5. Conclusions 

The differences in the assemblages and the potential uses of these sites across ISEA is quite intriguing, 

however, the number of Pleistocene sites in Wallacea, especially along the northern route is still too 

small and more sampling data is needed for a more detailed comparative analysis of different subsistent 

strategies and resource used by early AMH along the both northern and southern routes in Wallacea. 
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List of Tables 

Table 1 List of charcoal and shell dates from Goa Topogaro 1 & 2 

Site Location Spit Layer Ref-No C14 Dates Calibrated Cal BP*  Material Dated 

TPGR1 Trench B 6 2 TKA-18864 8168 ± 28 BP 8763 - 8547  Cyrenidae sp. 

 Trench B 10 2 TMNA1-1 3097 ± 23 BP 3373 -3242  charcoal 

 Trench B 16 3 TKA-18865 9922 ± 31 BP 11037 - 10732   Anadara sp. 

 Trench B 20 3 TKA-18866 8107 ± 27 BP 8660- 8660  Cyrenidae sp. 

  Trench B 20 3 TMNA1-2 8742 ± 31 BP 9888 - 9595  charcoal 

TPGR2 Sector A/1 19 95cm TKA-17034 9454 ± 30 BP 10760 - 10587  charcoal 

 Sector A/6 18 90 cm TMNA2-6 9407 ± 33 BP 10729 - 10561  charcoal 

 Sector A/7 26 130 cm TMNA2-8 13202 ± 43 BP 16050- 15700  charcoal 

 Sector A/7 28 140 cm TMNA2-9 9489 ± 33 BP 10805 - 10651  charcoal 

 Sector A/5 32 160 cm TMNA2-1 13488 ± 41 BP 16431 - 16048  charcoal 

 Sector A/5 41 205 cm TMNA2-2 21778 ± 101 BP 26213 - 25813  charcoal 

 Sector A/5 42 210 cm TMNA2-3 12690 ± 37 BP 15275 – 14921 charcoal 

 Sector A/7 44 220 cm 2017J 5870 ± 26 BP 6366 - 6213  Telescopium sp. 

 Sector A/5 46 230 cm 2017I 22355 ± 67 BP 26377 - 25958  Telescopium sp. 

 Sector A/1 55 275cm TKA-16906 24642 ± 62 BP 28864 – 28464 charcoal 

 Sector A /7 56 280 cm TMNA2-10 19647 ± 59 BP 23914 - 23435  charcoal 

 Sector A /7 58 290 cm TMNA2-11 23540 ± 106 BP 27864 - 27485  charcoal 

 Sector A/6 59 295 cm TMNA2-7 21816 ± 72 BP 26199 - 25866  charcoal 

 Sector A/5 60 300 cm TMNA2-5 25424 ± 83 BP 29802 - 29212  charcoal 
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Table 2 List of stone artefacts from Square B- 3 (1 x 1m), Trench B in Goa Topogaro 1 

Spit 
Complete 

Flakes 

Incomplete 

Flakes 

Retouched 

Pieces  

Core/ 

fragments 
Shatters 

Non-chert 

Materials 
N W(g) 

1 12 31 3 11 166 29 252 1059 

2 19 27 3 7 143 16 215 883 

3 14 33 3 7 209 37 303 1356 

4 4 60 13 9 328 39 453 798 

5 18 76 6 13 329 22 464 2054 

6 32 33 17 15 560 13 670 1617 

7 37 98 16 16 431 17 615 1989 

8 22 42 2 2 246 16 330 527 

9 27 20 1 16 233 24 321 1099 

10 8 23 0 6 72 23 132 683 

11 6 18 4 9 88 11 136 569 

12 8 20 1 4 125 37 195 728 

13 4 10 1 4 70 31 120 751 

14 8 22 2 4 64 20 120 449 

15 4 5 0 6 14 21 50 462 

16 0 0 0 0 0 2 2 8 

17 1 0 0 1 8 6 16 111 

18 1 2 0 1 2 9 15 74 

Total 225 520 72 131 3088 373 4409 15217 

 

Table 3 List of stone artefacts from  Square A-2 (1 x 1 m), Sector A in Goa Topogaro 2 

Spit 
Complete 

Flakes 

Incomplete 

Flakes 

Retouched 

Pieces  

Core/ core 

fragments 
Shatters 

Non-chert 

Materials 
N W(g) 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 

12 1 0 0 0 0 0 1 16 

13 2 0 0 0 0 0 2 6 

14 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 

18 0 0 0 0 1 2 3 25 

19 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 4 4 17 

21 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 
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23 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 10 10 46 

25 0 0 0 0 0 8 8 43 

26 2 1 0 0 0 25 28 251 

27 0 2 0 0 0 1 3 33 

28 5 2 0 0 0 15 22 250 

29 6 0 0 0 2 9 17 166 

30 1 2 0 1 1 11 16 80 

31 5 1 0 1 1 2 10 67 

32 6 4 0 0 0 4 14 162 

33 1 2 0 0 0 0 3 32 

34 3 0 0 0 0 0 3 20 

35 1 1 0 0 0 0 2 39 

36 0 0 0 0 0 0 0 0 

37 1 1 0 0 0 0 2 13 

38 1 0 0 0 0 1 2 1 

39 0 0 0 0 0 2 2 8 

40 1 0 0 0 0 4 5 17 

41 0 0 0 0 0 0 0 0 

42 1 1 0 1 1 1 5 36 

43 0 1 0 0 0 0 1 2 

44 2 3 0 0 0 7 12 46 

45 0 0 0 0 0 0 0 0 

46 0 0 0 0 0 0 0 0 

47 0 0 0 0 0 0 0 0 

48 1 0 0 1 0 2 4 144 

49 0 0 0 0 0 0 0 0 

50 1 0 0 0 0 0 1 11 

51 0 0 0 0 0 1 1 7 

52 0 0 0 0 0 0 0 0 

53 0 0 0 0 0 14 14 71 

54 1 0 0 0 0 11 12 26 

55 3 0 0 1 0 2 6 87 

56 0 0 0 0 0 20 20 142 

57 0 0 0 0 0 19 19 58 

58 0 0 0 0 0 0 0 0 

59 0 0 0 0 0 0 0 0 

60 0 0 0 0 0 0 0 0 

  45 21 0 5 6 175 252 1920 

Spit 
Complete 

Flakes 

Incomplete 

Flakes 

Retouched 

Pieces  

Core/ core 

fragments 
Shatters 

Non-chert 

Materials 
N W(g) 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 
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11 0 0 0 0 0 0 0 0 

12 1 0 0 0 0 0 1 16 

13 2 0 0 0 0 0 2 6 

14 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 

18 0 0 0 0 1 2 3 25 

19 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 4 4 17 

21 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 10 10 46 

25 0 0 0 0 0 8 8 43 

26 2 1 0 0 0 25 28 251 

27 0 2 0 0 0 1 3 33 

28 5 2 0 0 0 15 22 250 

29 6 0 0 0 2 9 17 166 

30 1 2 0 1 1 11 16 80 

31 5 1 0 1 1 2 10 67 

32 6 4 0 0 0 4 14 162 

33 1 2 0 0 0 0 3 32 

34 3 0 0 0 0 0 3 20 

35 1 1 0 0 0 0 2 39 

36 0 0 0 0 0 0 0 0 

37 1 1 0 0 0 0 2 13 

38 1 0 0 0 0 1 2 1 

39 0 0 0 0 0 2 2 8 

40 1 0 0 0 0 4 5 17 

41 0 0 0 0 0 0 0 0 

42 1 1 0 1 1 1 5 36 

43 0 1 0 0 0 0 1 2 

44 2 3 0 0 0 7 12 46 

45 0 0 0 0 0 0 0 0 

46 0 0 0 0 0 0 0 0 

47 0 0 0 0 0 0 0 0 

48 1 0 0 1 0 2 4 144 

49 0 0 0 0 0 0 0 0 

50 1 0 0 0 0 0 1 11 

51 0 0 0 0 0 1 1 7 

52 0 0 0 0 0 0 0 0 

53 0 0 0 0 0 14 14 71 

54 1 0 0 0 0 11 12 26 

55 3 0 0 1 0 2 6 87 

56 0 0 0 0 0 20 20 142 

57 0 0 0 0 0 19 19 58 

58 0 0 0 0 0 0 0 0 

59 0 0 0 0 0 0 0 0 

60 0 0 0 0 0 0 0 0 

  45 21 0 5 6 175 252 1920 
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Table 4 List of bone artefacts from Trench B (6 m2) in Topogaro 1 (n=68) 

Square Spit Category Length Width  Weight Material 

B-3 4 1/2bipoint 26.87 4.94 0.73 cortex 

n=14 4&5 bipoint 58.13 6.71 1.45 cortex 
 5 bipoint 37.49 4.89 0.87 shaft 
 7 2/3bipoint 39.65 6.64 1.04 shaft 
 7 bipoint 25.03 3.72 0.25 cortex 
 7 unipoint 16.91 2.74 0.08 dentin 
 8 1/2bipoint 26.78 5.83 0.47 shaft 
 9 bipoint 21.57 3.09 0.15 cortex 
 9 1/3bipoint 20.43 4.93 0.7 cortex 
 9 1/2bipoint 14.36 3.63 0.12 cortex 
 10 2/3bipoint 37.49 4.87 0.75 cortex 
 11 1/2bipoint 12.25 5.57 0.22 cortex 
 13 unipoint 28.19 3.49 0.3 dentin 

  14 1/2bipoint 17.08 4.62 0.18 cortex 

B-4 5 bipoint 32.79 4.56 0.6 cortex 

n=10 5 2/3bipoint 36.66 4.89 0.71 cortex 
 5 2/3bipoint 48.77 7.09 1.44 shaft 
 5 1/2bipoint 30.82 6.27 0.85 shaft 
 5 1/2bipoint 24.73 4.62 0.3 cortex 
 5 bipoint 41.01 5.11 1.01 dentin 
 6 1/2bipoint 28.31 3.11 0.34 cortex 
 7 bipoint 50.7 4.71 0.92 shaft 
 7 1/2bipoint 23.59 4.52 0.55 cortex 

  10 2/3bipoint 36.16 5.16 0.74 shaft 

B-5 3 bipoint 30.06 5.26 0.37 cortex 

n=15 3 2/3bipoint 40.11 5.35 0.92 shaft 
 3 tib/bipoint? 14.45  0.1 cortex 
 5 1/2bipoint 25.14 5.86 0.46 shaft 
 5 1/2bipoint 20.11 5.85 0.33 shaft? 
 6 2/3bipoint 35.79 5.71 0.9 cortex 
 6 1/2unipoint? 32.72 3.67 0.46 cortex 
 9 1/2bipoint 15.64 3.84 0.15 shaft? 
 11 1/2bipoint 27.01 4.87 0.65 cortex 
 11 1/2unipoint? 26.59 5.69 0.57 cortex 
 11 1/2unipoint? 20.99 5.75 0.33 cortex 
 11 1/2edge tool? 32.29 6.22 0.67 shaft 
 13 1/2spatula 25.62 9.35 0.74 shaft 
 13 1/2bipoint 37.51 5.85 0.72 shaft 

  17 1/2bipoint 31.31 4.68 0.55 cortex 

B-6 1 bipoint 46.62 4.95 0.81 cortex 

n=4 2 bipoint 47.56 6.59 1.92 dentin 
 3 bipoint 42.87 5.16 0.76 cortex 

  4 1/2bipoint 20.86 3.93 0.25 dentin 

B-7 6 1/2bipoint 25.19 6.34 0.41 shaft 

n=7 8 bipoint 36.39 5.29 0.83 shaft 
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 8 unipoint 23.87 3.35 0.21 cortex 
 11 unipoint 43.78 5.52 0.93 shaft 
 13 1/2bipoint 32.68 5.81 0.75 shaft 
 13 1/2bipoint 19.97 4.23 0.26 cortex 

  15 bipoint 31.72 4.02 0.39 cortex 

B-8 5 2/3bipoint 27.49 4.39 0.38 cortex 

n=18 5 1/2bipoint 16.46 3.72 0.17 dentin 
 7 bipoint 33.71 4.24 0.5 cortex 
 7 2/3bipoint 31.79 5.67 0.7 cortex 
 9 1/2bipoint 23.37 4.38 0.34 cortex 
 11 bipoint 43.41 5.62 0.85 dentin 
 11 2/3bipoint 31.95 5.29 0.91 dentin 
 11 2/3bipoint 41.96 4.89 0.73 shaft 
 11 2/3bipoint 29.42 4.02 0.32 shaft 
 13 1/2bipoint 28.49 5.97 0.67 cortex 
 13 1/2spatula 38.46 7.69 1.15 shaft 
 13 edged tool 60.92 9.84 2.33 shaft 
 13 1/2bipoint 33.07 5.96 0.84 cortex 
 13 1/2bipoint 23.21 5.07 0.41 cortex 
 13 bipoint 41.74 4.47 0.75 cortex 
 13 bipoint 28.47 4.36 0.31 cortex 
 13 1/2bipoint 37.39 5.42 0.85 cortex 

  15 bipoint 36.43 5.62 0.7 shaft 
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Table 5 List of vertebrates from Square B-5 (1 x1 m), Trench B in Topogaro 1 (NISP) 

Spit bat rodents Suidae marsupials dog anoa snake lizard fish Total 

1 31 5 0 0 1 0  0 0 1 38 

2 1 1 0 0 0 0  3 2 0 7 

3 51 6 2 0 0 0  1 0 0 60 

4 12 3 0 0 0 0  1 1 2 19 

5 9 3 5 0 0 0  1 1 0 19 

6 20 1 0 0 0 0  1 0 0 22 

7 16 6 2 1 0 0  3 0 0 28 

8 10 2 1 1 0 0  1 0 0 15 

9 4 3 0 2 0 0  0 0 0 9 

10 35 3 1 0 0 0  0 0 1 40 

11 87 10 2 0 0 0  11 0 1 111 

12 90 6 0 0 0 0  1 0 1 98 

13 105 9 2 1 0 0  2 0 1 120 

14 157 17 1 6 0 0  1 0 0 182 

15 112 12 4 0 0 0  6 0 4 138 

16 78 4 3 0 0 1 3 0 1 90 

17 78 7 2 0 0 1 5 2 2 97 

18 28 0 3 0 0 0 1 0 2 34 

19 27 2 1 0 2 0  0 0 0 32 

20 29 2 0 0 0 0 1 1 0 33 

Total 980 102 29 11 3 2 42 7 16 1192 

 

Table 6 List of vertebrates from Square B-5 (1 x1 m), Trench B in Topogaro 1 (MNI) 

Spit bat rodent Sunidae marsupial dog anoa snake lizard fish Total 

1 4 2 0 0 1   0 0 1 8 

2 1 1 0 0 0   1 1 0 4 

3 15 2 1 0 0   1 0 0 19 

4 3 1 0 0 0   1 1 1 7 

5 9 3 1 0 0   1 1 0 15 

6 4 1 0 0 0   1 0 0 6 

7 6 1 2 1 0   3 0 0 13 

8 3 2 1 1 0   1 0 0 8 

9 1 3 0 2 0   0 0 0 6 

10 15 3 1 0 0   0 0 1 20 

11 32 4 2 0 0   3 0 1 42 

12 32 1 0 0 0   1 0 1 35 

13 38 2 2 1 0   2 0 1 46 

14 62 5 1 6 0   1 0 0 75 

15 35 4 4 0 0   6 0 4 53 

16 22 2 3 0 0 1 3 0 1 32 

17 21 2 2 0 0 1 5 2 2 35 

18 8 0 3 0 0 0 1 0 2 14 

19 8 2 1 0 1   0 0 0 12 

20 10 1 0 0 0 0 1 1 0 13 

Total 329 42 24 11 2 2 32 6 15 463 
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Table 7 List of vertebrates from Square A-1 (1 x1 m), Sector A in Topogaro 2 (NISP/MNI) 

Taxa   rodent(s) rodent(L) bat Suidae marsupial anoa fish 

Layer cal BP NISP MNI NISP MNI NISP MNI NISP MNI NISP MNI NISP MNI NISP MNI 

1   52 8     7 4 1 1             

2   17 4     2 2                 

3 6000? 6 1     0 0 1 1             

4 
10729 - 

10561  
133 14     26 4                 

5   111 12 1 1 26 4                 

6 
16431 - 

16048 
51 7     11 3                 

7   75 17 2 2 7 4                 

8 
15275 – 

14921 
97 14 2 2 50 3             1 1 

9 
26377 - 

25958  
23 5     4 1                 

10 
27864 - 

27485 
19 5     0 0     1 1         

11 
29802 - 

29212  
                    1 1     

Total   584 87 5 5 133 25 2 2 1 1 1 1 1 1 
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List of Figures 

Figure 1 Major possible dispersal routes by early modern human via Wallacea into Sahul (Oceaania) and the major 

Pleistocene sites in Wallacea incuding Goa Topogaro 

 

 

Figure 2 Current locations of the limestone hill and the Goa Topogaro complex with the nearest river and streams 

(A-C) that constitute possible lithic raw material sources where a variety of chert pebbles are available  
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Figure 3 Floor Plan and Excavated Areas in Goa Topogaro 1 & 2 

 
 

Figure 4 Stratigraphy of Trench B in Topogaro 1 
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Figure 5 Stratigraphy and location of dated samples in Sector A, Topogaro 2 

 

 

Figure 6 Modified and unretouched chert flakes with concave edges from Trench B in Topogaro 1 
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Figure 7 Bone tools: bipoints, unipoints, and spatula from Trench B, Topogaro 1 (Holocene level) 

 

 

Figure 8 Pleistocene stone artefacts from Sector A in Topogaro 2 

 

A-B: Complete flakes from Layer 10 (28,000 cal BP); C-E: bifacial retouched flakes F-G: blade-like retouched 

flake; H-I: possible micro-blade (C-H are from the middle layers dated 16000 cal BP ～) 
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Figure 9. Traces identified on artefacts from Topogaro 2 

 

A. Pleistocene (29-25 kyr) . B. terminal LGM (16 kyr) . C. Holocene (9-5kyr)  

 

 

Figure 10 Molluscs remains from Square 1/ Trench B in Topogaro 1 (NISP) 
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Figure 11 Temporal change of major molluscs remains from Sector A (1 x1 m) in Topogaro 2 
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Abstract 22 

 23 

Recent excavations in Topogaro 1 and 2, Central Sulawesi produced an archaeological sequence dated 24 

to c. 30,000 years ago. The site is located in a key location for prehistoric movements of anatomically 25 

modern humans through Wallacea. We identified the lithic technology and functions of the 26 

assemblage through multi-stage use-wear analysis. Here we report on the first multi-stage use-wear 27 

analysis on lithic tools from the Late Pleistocene and Early Holocene of Central Sulawesi. Our results 28 

indicate a variety of activities conducted in the site throughout its occupation from c. 30,000 years 29 

ago. While most of the artefacts with use-wear traces were unmodified flakes typical for this region, a 30 

number of retouched tools provided indication of specialised functions and certain traits of modern 31 

behaviour like hafting, projectile use and plant processing. Our results provide an overview of the 32 

lithic technology and prehistoric activities in Topogaro. Analysis of the microscopic wear traces and 33 

residues indicates an increase in specialisation and tool modification at the end of LGM and in the 34 

early Holocene, particularly the use of composite tools and notched tools for plant processing. Overall, 35 

the early movements of people from Sunda through Wallacea involved gradual developments of 36 

technologies rather than abrupt appearance and disappearance of technologies.  37 

 38 

 39 

Keywords: Lithic use-wear and residue analysis, Late Pleistocene technology, prehistoric 40 

technology, plant processing, Sulawesi  41 

 42 

 43 

 44 

 45 
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1. Introduction 46 

 47 

Sulawesi Island is vital in understanding early anatomically modern human technology and 48 

culture in ISEA. Evidence of presence of AMH such as rock art at Leang Timpuseng (Aubert 49 

et al., 2014) and stone tools at Leang Burung 2, both dating to c. 40kya (Brumm et al., 2018) 50 

were identified in South Sulawesi. Recent investigations and radiometric dating of 51 

archaeological sites in Sahul and Wallacea suggest maritime interaction and colonisation by 52 

early modern humans as early as c. 65kya (Westaway et al., 2009; Kealy et al., 2016; Wood et 53 

al., 2016; Clarkson et al., 2017; Hawkins et al., 2017). The colonisation of Sahul through 54 

Island Southeast Asia (ISEA), specifically through Wallacea has been proposed either using 55 

Birdsell’s southern or the northern route (Birdsell, 1977; Irwin, 1992; Chappell, 2000; Bird et 56 

al., 2005; O’Connor, 2010; Kealy et al., 2018). The Topogaro sites, located along the northern 57 

route (Kealy et al., 2018), provides evidence of human occupation from c. 30kya (Ono et al., 58 

in preparation). Use-wear analysis of tools from a sequence of c. 30kya until the Holocene 59 

reveals details on the technologies of AMH during periods of drastic environmental 60 

changes. 61 

 62 

Lithic technology in ISEA is characterised by simple flake production, lack of secondary 63 

modification and elaborate core preparation and the use of amorphous unretouched flakes 64 

(Movius, 1944; Fox, 1978; Pope, 1985; Moore et al., 2007, 2009; Xhauflair and Pawlik, 2010; 65 

Pawlik, 2010, 2012; Brumm et al., 2010; Marwick et al., 2016; Fuentes et al., in press). This 66 

simple flaked tool technology can be observed throughout ISEA and continuously from the 67 

earliest assemblages assigned to modern humans like Jerimalai Cave in East Timor at 42,000 68 

years ago (Marwick et al., 2016), until the Late Holocene and Neolithic. While techno-69 

typological analysis has often failed to sufficiently explain this “typology dilemma” (Pawlik, 70 

2009) of Southeast Asia’s Palaeolithic, a number of use-wear studies have recently geared 71 

towards understanding the reasons behind the absence of formal tools in the region by 72 

assessing the functionality and technological capacity of the informal tools as well as their 73 

tool makers. A microscopic approach appears as a more suitable method for addressing 74 

current issues of ISEA’s lithic technology (Haidle & Pawlik, 2009; Pawlik, 2010; Fuentes et 75 

al., 2019). For instance, composite tool making using unretouched chert implements and 76 
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hafting using resinous adhesives were observed in the Terminal Pleistocene at Ille Cave in 77 

Palawan and at Niah Caves where stingray spines were attached to shafts (Barton et al., 78 

2009; Pawlik, 2012; Piper, 2016). A bone fishing gorge was found in Bubog 1 rockshelter on 79 

the island of Ilin in Mindoro, Philippines dated to before c. 33kya (Pawlik et al. 2014; Pawlik 80 

& Piper, 2019). From the same site and the two neighbouring sites of Bubog 2 and Bilat 81 

Caves, edge ground shell adzes, directly dated to 7.2-7.4kya, respectively 9kya, and several 82 

thousand years before the appearance of ground stone adzes introduced by Austronesian-83 

speaking migrants (Pawlik et al., 2015; Pawlik & Piper, 2019).  84 

 85 

Still hypothetical remains the so-called bamboo or lignic industry proposed by various 86 

authors to explain the absence of formal lithic tools and a modern tool technology (Narr, 87 

1966; Solheim, 1970; Pope, 1989). More recently, experimental use-wear analysis on stone 88 

tools has been applied to address the possibility of an organic- or plant-based tool 89 

technology and building of a use-wear database in general (Teodosio, 2006; Borel et al., 2014; 90 

Xhauflair 2014; Xhauflair et al., 2016). For the Holocene sites, use-wear studies were 91 

conducted to address the issue of continuity and exchange of technologies in cave sites 92 

during the Holocene period with the advent of agriculture (Mijares, 2007; Pawlik 2006; 93 

Lewis et al. 2008; Fuentes, 2015). Chert tools with glossy edges diagnostic for phytolith-rich 94 

plants were reported Leang Burung 2, South Sulawesi within layers dated to c. 35,000 BP 95 

(Brumm et al., 2018). This research is one component of an ongoing project (Ono et al., in 96 

preparation) to answer key questions in the arrival of humans in Central Sulawesi. Use-wear 97 

analysis was employed to identify stone tool functions from c. 30kya until Holocene.  98 

 99 

2. Site Information 100 

 101 

Topogaro 1 and Topogaro 2 are two adjacent cave sites located within S 02°06’55-4” and E 102 

121°19’58-5” at an altitude of c. 90m asl and 3.5 km inland from the shoreline of Topogaro 103 

village at Goa (or Vafompogaro), Kacamatan Morowali Barat, Central Sulawesi. Topogaro 1 104 

has a 20m floor to roof height while the north west facing mouth is about 17m in width and 105 

24m in height. Topogaro 2 has a height of 12m, mouth opening of 12m (width) x 7m (height) 106 

facing north, and length of 24m. The first excavations were conducted in 2016 as part of a 107 
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research initiative with the goal of finding evidence for the presence of AMH during the 108 

Late Pleistocene.  Topogaro 1 was occupied beginning the Holocene period and was used as 109 

burial ground during from the Metal Age until the historical period. Topogaro 2 has 110 

stratigraphical sequence from c. 30,000 BP at the east section and c. 18,000 BP for the west 111 

section (Table 1; Figure 2) (Ono et al., in preparation). 112 

 113 

[insert here Table 1. Radiocarbon dates associated with the samples.] 114 

 115 

[insert here Figure 1. Location of Topogaro sites.] 116 

 117 

[insert here Figure 2. Excavation units. A. Topogaro 1. B. Topogaro 2.] 118 

 119 

3. Materials and methods 120 

 121 

For this traceological analysis were 131 stone tools from the 2016 and 2017 excavations 122 

selected - 45 from Topogaro 1 and 86 from Topogaro 2, together 131 pieces (Ono et al., in 123 

preparation). The artefacts were made of limestone and chert. The samples from Topogaro 1 124 

were selected from layers dated to c. 9500-9000 BP (beginning Spit 20, 100 cm from surface 125 

level) to 430-357 cal. BP in the uppermost layer (Spit 3, or 15 cm from the surface level) 126 

(Table 2) due to the presence of retouched tools with similar morphology observed 127 

throughout the sequence. For Topogaro 2, the samples include lithics from layers in the east 128 

section, dated to 28,864–28,464 cal. BP, and  from Early Holocene dated to 10,760-10,587 cal. 129 

BP. For the west section, the lithics were recovered from layers dated to 18,149-17,850 cal. BP 130 

with the upper layers dated to 2,181-2,107 cal. BP (Table 1; Figure 2; Ono et al., in 131 

preparation). These were selected from both in situ and dry-sieved samples. The artefacts 132 

are currently stored at the Balai Arkeologi in Manado, North Sulawesi, Indonesia. Prior to 133 

use-wear, morphometric analysis of the samples was conducted to characterise the 134 

production techniques and blank selection, and to identify potentially used areas on the 135 

flakes (Vaughan, 1985; van Gijn, 1993).  136 

 137 
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Traceological analysis was conducted by optical low power and high power analysis 138 

(Semenov, 1964; Hayden et al., 1977; Keeley, 1980; Odell & Odell-Vereecken, 1980; Plisson, 139 

1983; Vaughan, 1985). A PhenomWorld Scanning Electron Microscope and Energy 140 

Dispersive X-ray) was used for the assessment of observed residues. For low-power analysis 141 

we employed a Euromex NexiusZoom stereo-microscope with a magnification range 142 

between 6.7x-45x, while an Olympus BHMJ reflected-light microscope equipped with 143 

differential interference contrast attachment and long working distance lenses (110x, 220x, 144 

and 440x) for high-power microscopy. A Nikon D5300 with AmScope c-mount adapter and 145 

Canon G9 with Promicron adapter, respectively were used for microphotographic imaging. 146 

The photos were remotely captured and archived using the open source DigiCam Control 147 

software. Prior to analysis, the artefacts underwent cleaning in an ultrasonic bath with 148 

dishwashing liquid solution for three minutes, followed by a water bath in distilled water 149 

for approximately five minutes. The artefacts were soaked in 70% alcohol for three minutes 150 

before being laid out on paper towels and air dried. Prior to high-power microscopy, the 151 

artefacts were soaked for approximately one minute in 70% alcohol before being mounted 152 

on a cup-stage holder and attached with a tuck. Gloves were used during analysis to avoid 153 

contamination and smudging of the artefacts. Recording forms with 1:1 scale illustrations of 154 

the specimen were employed to mark the location of use-wear traces.  155 

 156 

We identified the activities based on the inferred use for each tool. The categories include 157 

activities such as scraping, cutting, chiselling, grooving/drilling, hafted, percussion tools, 158 

chopping, multidirectional, undeterminable, and unused. The contact material types include 159 

soft, mid, hard, and traces that show mixed signals resulting in interpretation that these 160 

were used on soft-mid, mid-hard, and soft-hard. Tools with very limited traces were 161 

identified as undeterminable, and with no signals at all categorised as unused. We utilised 162 

interpretations per PUA to infer function of the artefact as a whole and sum of parts. 163 

 164 

4. Results 165 

 166 

4.1. Morphological analysis of stone tool samples 167 

 168 
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In Topogaro 1, we analysed 41 flakes and two cores coming from spits 5-17 (25-85cm from 169 

surface level). Thirty five flakes were identified as complete and mostly (24, 57%) showing 170 

distal feather termination, while the rest include hinge (n=2, 5%), plunging (n=1, 2%), and 171 

step (n=3, 7%). Retouched tips were also identified (n=5, 12%). Pronounced bulbs of 172 

percussion appear on 31 (74%) of the complete and proximal flakes, in seven cases (17%) 173 

they are less pronounced. The selection included 16 (38%) artefacts with notched retouching 174 

and one (2%) possessing a micronotch, the remaining 25 (60%) flakes were unretouched. 175 

Twenty six flakes (62%) have no cortex, 10 with less than 1/3 cortex coverage (24%), two 176 

have more than 1/3 and less than 2/3 (5%). Three flakes (7%) have more than 2/3 of the 177 

surface covered while one is a cortical flake (2%). The striking platforms of proximal and 178 

complete flakes (n=38) were categorised into cortical (n=2, 5%), plain (n=33, 79%), and 179 

prepared (n=3, 7%) (Table 2). The striking platform has a median width of 6.5mm and 180 

thickness of 16.2mm. Overall, the flakes are relatively small-sized with a median weight of 181 

6.17gms and median dimensions of 39.0mm (length) by 31.4mm (width) by 8.6mm (height). 182 

Eighty five PUAs (Vaughan, 1985) were identified and categorised into straight (n=18, 21%), 183 

concave (n=27, 32%), convex (n=18, 21%), and irregular (n=22, 26%). The median working 184 

edge length is 29.1mm and the median edge angle is 53 degrees (Table 3).  185 

 186 

In Topogaro 2, the samples were recovered from west chamber (TP1, TP5, TP6, and TP7; N= 187 

60) and east chamber (TP3, TP4; N=22; Table 2; Figure 3). These are comprised of 79 flakes 188 

(96%) and three shattered fragments (4%). We identified sixty seven complete flakes (82%), 189 

eleven distal flakes (13%), and one a proximal flake (1%). For the complete and proximal 190 

flakes, Hertzian initiation was identified on 65 artefacts (79%), two bending (2%), and absent 191 

on 15 samples (medial-distal and shatters, 18%). Fifty is feather-terminated (61%), 16 with 192 

hinge (20%), 5 with plunging (6%), 6 with step (7%) while 2 retouched tip (2%), and 3 were 193 

classified as absent (4%). Majority of the bulbs of percussion was classified as pronounced 194 

(n=70, 85%), six has less pronounced (7%), while six display no remnants of the bulb (7%). 195 

Sixty one has plain striking platforms (74%), three with prepared (4%), and three with 196 

cortical (4%), and 15 without striking platform (18%). Forty four of the samples has no cortex 197 

(54%), 23 with <1/3 of the dorsal face covered (28%), six with >1/3 and <2/3  (7%), six with 198 

>2/3 <100% (7%), and three with fully covered dorsal faces (cortical flakes, 4%). We classified 199 
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two samples as notched (2%) while 79 remained as unretouched blanks (96%), and 1 with 200 

micro notching (1%). The median dimensions is 39.7mm (length) x 30.0mm (width) x 201 

10.6mm (thickness), while the median weight is 9.54gms. One hundred sixty PUAs were 202 

categorised into concave (n=35, 22%), convex (n=35, 22%), straight (n=29, 18%), and irregular 203 

(n=61, 38%). The median working edge length is 48mm and edge angle is 30.9 degrees (Table 204 

3).  205 

 206 

[insert here Figure 3. Stratigraphical contexts. A. Topogaro 1. B. Topogaro 2.]  207 

 208 

[insert here Table 2. Summary of morphological analysis.] 209 

 210 

 211 

[inset here Table 3. Measurements of lithic samples] 212 

 213 

4.2. Use-wear analysis 214 

 215 

4.2.1. Traces on potentially used areas 216 

 217 

In Topogaro 1, scarring (n=127) was categorised into crescent (n=10, 8%), steep (n=29,%), 218 

break-shallow (n=21, 17%), and shallow (n=39, 31%) (Table 4). Twenty eight PUAs (15%) do 219 

not display any form of microscarring. Proximal scarring was categorised into crescent 220 

(n=10, 8%), feather (n=54, 42%), hinge (n=18, 14%), and step (n=28, 22%). Rounding was 221 

formed on 28 (33%) instances and absent on 58 PUAs (67%). These were categorised into 222 

slight (n=11, 13%), mid (n=13, %), and intensive (n=4,%). The polishes were categorised into 223 

generic weak (n=25, 18%), smooth-pitted (n=19, 14%), and well-developed (n=26, 19%). 224 

Bright spots were absent and 69 edges (50%) have no polish. Diagonal striations were 225 

present on 10 PUAs (11%) while transversal type was identified on six PUAs (6%). Parallel 226 

striations was identified on three samples (3%) while it is absent on 74 PUAs (80%). Four 227 

PUAs have micro-notches while notched edges are present on 14 working edges. Secondary 228 

row-edge scarring was identified on 24 tools and absent on 54 samples. Possible residues 229 

were present on five samples. Reddish and blackish residues were identified on 15 instances 230 

(18%). One artefact has traces of exposure to heat.  231 

 232 
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For Topogaro 2, in low power analysis, distal scarring (N=214) were categorised into 233 

crescent (n=10, 5%), steep (n=34, 16%), break shallow (n=35, 16%), and shallow (n=40, 19%) 234 

(Table 4). It is absent on 95 PUAs (44%). While for proximal scars, 66 is feather type (31%), 17 235 

is hinge (8%), and 38 (18%) were classified as step. It is absent on 82 PUAs (38%). Rounding 236 

was identified on 36 instances and were grouped into slight (n=18, 11%), mid (n=11, 7%), and 237 

intensive (n=7, 4%), while 133 PUAs (79%) have no rounding. For high power analysis, 238 

polish formation was categorised as generic weak polish (n=25) (14%), smooth-pitted (n=18, 239 

10%), and well-developed types (n=18, 10%) (Vaughan, 1985), while no bright spots were 240 

identified. Polishes are absent on 124 PUAs (67%). The striations were classified as parallel 241 

(n=12, 7%), transversal (n=9, 5%), and diagonal (n=12, 7%) while 147 PUAs have no striations 242 

(82%. Five tools has micro-notches (3%), 14 with notches (8%), and one with retouch (1%). It 243 

was absent on 142 PUAs (82%). Possible residues were present on 17 PUAs (9%) and were 244 

identified as possible plant remains. Traces of heat exposure was observed on 24 (13%) 245 

samples. This is significantly different from Topogaro 1 where heat exposure is almost 246 

completely absent. Blackish and reddish residues account for 43 (32%) samples, however 247 

this potentially includes post-depositional mineral deposits like manganese oxide or fungal 248 

growth. 249 

 250 

[insert here Table 4. Summary of use-wear analysis.] 251 

 252 

[insert here Table 5. Identification of function per working edge/ PUA.] 253 

 254 

4.3. Prehistoric tool functions 255 

 256 

4.3.1. Inferred activity per tool through time 257 

 258 

For Topogaro 1, twenty tools were identified as solely used for scraping action. One tool was 259 

used on both scraping and grooving actions. Two were identified as possibly hafted. While 260 

another two were inferred to be used in a chopping action. Two artefacts were inferred to 261 

have been possibly hafted. Two tools with traces of multifunctional use-both cutting and 262 

scraping motion, while one artefact has traces indicating scraping and grooving. Five tools 263 

have been possibly used in scraping but limited traces also indicate undeterminable action. 264 
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Five tools are unused and four are undeterminable while one was identified as 265 

undeterminable or unused. Contact with hard materials were identified on 15 artefacts. One 266 

has contact with mid-soft, five with mid-hard, and six with soft-hard. Traces of contact that 267 

show traces with soft, mid, or hard materials leaning towards undeterminable classification 268 

were also identified (n=3). Six artefacts have undeterminable traces while five were unused, 269 

while one is either unused or undeterminable (Table 6). 270 

 271 

In Topogaro 2, eighteen tools were identified in scraping while one has traces of both cutting 272 

and scraping, indicating multidirectionality. One artefact was used in chopping motion, four 273 

on grooving and three possibly showing traces of being possibly hafted and one with 274 

multifunctional (cutting/ scraping). A combination of activities were also identified – one 275 

tool used in scraping and chiselling, two with traces of scraping and possibly hafted. We 276 

identified traces on two tools that are not in high resolution and were identified as both 277 

scraping and possibly undeterminable. Thirty four were unused, 13 were undeterminable, 278 

and three which are either undeterminable/ unused. For the contact materials, six were 279 

identified as soft and 11 as hard. Traces that are attributable to several contact materials 280 

were also identified – soft-mid (n=3), mid-hard (n=4), and soft-hard (n=4). Three tools were 281 

possibly hafted, while 34 were unused, 17 with very limited traces that remained 282 

undeterminable (Table 6). 283 

 284 

[insert here Figure 4. Chert artefacts from the Late Pleistocene in Topogaro 2.] 285 

 286 

[insert here Figure 5. Stone tools made from limestone recovered during the Late Pleistocene in 287 

Topogaro 2.] 288 

 289 

[insert here Table 6. Interpretation of tool function per tool.] 290 

 291 

[inset here Table 7. Function per tool throughout the stratigraphy.] 292 

 293 

 294 

4.3.2. Highlights of inferred activities 295 

 296 
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At the earliest occupation phase time, relatively large complete flakes made of chert and 297 

smaller limestone flakes were manufactured and used without any further retouching 298 

(Figure 6.B). The chert flakes have pronounced bulbs of percussion and were most likely 299 

produced through hard hammer percussion. These were recovered in context with animal 300 

bones (Figure 6.A). Distal-step scars with second-edge-rows (Vaughan, 1985) on the ventral 301 

face point to a contact with hard material through transversal motion. Two triangular 302 

limestone flakes with step scars on their tips were also recovered from this layer. Rounding 303 

and feather-terminated scars were formed on the tip of these tools. Step scarring was formed 304 

on one face with limited development of polishes and absence of striations. The polishes 305 

were formed on the upper part of the topography, without fully developing into undulating 306 

surfaces. The traces indicate processing of hard materials with transversal action. The 307 

artefact also displays residues appearing as globular and organic features. Cores were 308 

recovered together with these flakes. This type of technology not only shows the utilisation 309 

of limestone and silicified chert as raw material but also the intentional preparation of cores. 310 

Production was conducted with the use of soft hammer, similar with production of blade 311 

due to the narrow bulb of striking platform remnant and due to the less pronounced bulbs 312 

of percussion. Recent excavations shows the presence of production of smaller blade-like 313 

flakes with the use of chert. 314 

 315 

Within the layer dated to c. 18,000 cal. BP during the later stage of the Last Glacial 316 

Maximum, a retouched tool with denticulated edges was recovered (TPGR2-UW41). It is a 317 

unifacially modified triangular tool with point tip made from red jasper/ radiolarite. Hard 318 

hammer percussion technique was employed in the production of this tool. The researchers 319 

conducted initial tests/ experiments to identify possible sources of chert from the area and 320 

conducted experiments using this material. The removals were initiated from the ventral 321 

face using hard hammer direct percussion technique. Impact scars and step terminated 322 

secondary row scarring were identified on the tip of the tool (Figure 6.C). The negatives 323 

were initiated from the ventral face. We produced replicas of this artefact using direct 324 

percussion with pebble hammerstones (~5cm in diameter). linear impact traces (Dockall, 325 

1997) shows parallel orientation on the stone tool were identified on two spots on the stone 326 

tool showing the same orientation. These traces indicate longitudinal motion that involves 327 
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impact. The striations on one point (the one closest to the proximal section) also shows 328 

multidirectional and leaning towards diagonal towards the left of dorsal. The traces show 329 

impact on sections toward the distal face and at the medial part on the ventral face.  330 

Several artefacts recovered within layers dated to 18,000 cal. BP  display glossy parts along 331 

the edges similar to sickle gloss. Unretouched edges and tips exhibit scarring and 332 

multidirectional, dominantly  diagonal and transversal striations . The highly reflecting flat 333 

polishes confirm contact with silica-rich grassy plants. Starch grains were found within the 334 

proximal base in one of the tools (TPGR2-UW81). These are scattered in the proximal base of 335 

the tool and possibly associated with the plant processing (Figure 6.C). Although the sample 336 

size is limited, the traces indicate intensive processing of phytolith-rich plants at Topogaro 337 

and are qualitatively  comparable with results from other studies in ISEA in terms of plant 338 

polish. The samples with the most developed polish are unretouched flakes with acute 339 

working angles. From the direction of striations and the location of edge wear and polish, a 340 

transverse oriented activity like scraping or heckling can be assumed, similar to activities 341 

observed in Leang Sarru on Talaud Island that were aimed at fibre extraction (Fuentes et al., 342 

under review). 343 

 344 

4.3.3.  Notched scrapers and bone points 345 

 346 

Unifacially retouched tools were recovered from the early Holocene in Topogaro 1, c. 9,000 347 

cal. BP (Spit 15, 75 cm from surface level). This resulted in steep working angles on the 348 

identified working edges (N=92, median=54 degrees). Retouching was done through direct 349 

percussion and/or pressure flaking while creating concave working region designed for 350 

transversal actions. Shallow feather-terminated scars were formed through pressure flaking 351 

from a unifacial orientation. The working edges show contact with hard material on low 352 

power microscopy but no clear indications at higher magnifications (Figure 6.E). An ongoing 353 

experimental program to address use in the site in Central Sulawesi shows that the 354 

yellowish chert used in the production of these tools are available in the current river 355 

location near the site. Replicas of notched tools were produced through direct percussion 356 

technique initiated from the ventral face. The steep angle of these tools shows that it was 357 

intended to be used in scraping motion with the initiation point of the retouch as the contact 358 
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face or rake  (Figure 6.E). The retouched tools were recovered in the same context with bone 359 

points. 360 

 361 

[insert here Figure 6. Retouched flake with microlinear impact traces that shows longitudinal 362 

orientation of stone tools from 18,000 BP.] 363 

 364 

[insert here Figure 7. Unretouched tools used in processing organic materials, especially phytolith-365 

rich plants forming flat polishes with striations.] 366 

 367 

[insert here Figure 8. Notched tools from the Holocene in Topogaro 1 associated with bone tools.] 368 

 369 

[insert here Figure 8. Possibly hafted retouched tools recovered during the Holocene in Topogaro 1.] 370 

 371 

5. Discussion 372 

 373 

Topogaro 2 was occupied beginning c. 30,000 BP until the historical period. The adjacent 374 

site, Topogaro 1 was occupied  since the Early Holocene (9,500-9,000 years ago), and with 375 

the same context to retouched lithics and bone tools. We observed that plant processing was 376 

appeared as an activity during the LGM. There was no deliberate processing of plants 377 

observed at 30,000 BP. Insights into human behaviour and subsistence in the Topogaro sites 378 

can be inferred from use-wear analysis. The two sites show continued sequences in relation 379 

to lithic production and use – the older Topogaro 2 spanning from 30,000 BP until the 380 

historical period. Technologies made from organic materials, such as bones and plants, were 381 

being produced based on the use-wear traces and residues. We have identified wear traces 382 

associated with retouching and production of composite tools. Other than chert tools, the 383 

inhabitants of the cave also produced limestone artefacts. The processing of plants was 384 

observed in the site, either for the production of plant-based equipment like cord or nets 385 

and/or food processing. The observed residues point to the working of fibrous plant 386 

materials and processing of bones for the production of points. The flaked stone tools were 387 

used as is and with no modification. The production of organic technology made from 388 

osseous materials began during the Holocene in Topogaro 1, associated with notched tools.  389 
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 390 

Linear impact traces have been variously mentioned as an indicator for projectile point use 391 

(e.g.  Fischer et al., 1984; Geneste & Plisson 1993; Dockall, 1997; Lombard 2005; Pawlik & 392 

Thissen 2011, 2017; Sano, 2012; Lazuen, 2014; Tomasso et al., 2015; Kufel-Diakowska et al., 393 

2016; Rots, 2016). However, such traces have rarely been mentioned in use-wear studies in 394 

ISEA with the exception of the traceological analysis of stone tools from the terminal 395 

Pleistocene layers of Ille Cave in Palawan Philippines, where a triangular flake was used as 396 

projectile point showing impact traces, parallel striations and resinous hafting residues  397 

(Pawlik, 2012). Additional evidence is needed to understand to what extent stone tools were 398 

utilised as implements for multicomponent tools, the nature of shafts and bonding 399 

components such as resin. The production and use of these tools may also provide clues on 400 

certain aspects of technological and cognitive development that has been often overlooked 401 

in the Pleistocene lithic assemblages from ISEA. 402 

 403 

6. Conclusion 404 

 405 

Through use-wear analysis, we identified evidence for human occupation beginning from c. 406 

30kya in Topogaro, Central Sulawesi. Further investigations in the area would lead to 407 

identification of prehistoric activities beyond 30kya. More samples will provide a clearer 408 

picture of the prehistoric technology and tradition in Central Sulawesi. Comparison with 409 

other sites in the area shows that there was a recurring tradition of processing plants 410 

regardless of presence or absence of large mammals, as in the case of Topogaro wherein 411 

plant polishes and remains were also observed. Overall, this study shows that there was 412 

early human presence in Central Sulawesi at around 30,000 BP. A diachronic approach to 413 

studying lithic functions in the past shows a great deal in understanding not just certain 414 

aspects of the role of these technology in the past, but with the complexity of the interaction 415 

of cultural traits with environmental changes. 416 

 417 

 418 

 419 

 420 
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Table 1. Radiocarbon dates associated with the samples.

Site Location Cave wall Spit Material  ID Date Cal BP (1SD) Cal BP (2SD)

Topogaro1 TP1 North 3 charcoal TKA-17032 297 ± 18 BP 426 -393 cal BP  430-357 cal BP

TP1 North 7 charcoal TKA-17033 603 ± 24 BP 612 - 588 cal BP 652-580 cal BP

TP1 North 7 charcoal TKA-17033 603 ± 24 BP 612 - 588 cal BP 652-580 cal BP

TP2 North 16 charcoal TKA-16905 8099 ± 29 BP 9033 - 8998 cal BP 9094 - 8992 cal BP

TP2 North 11 shell TKA-17108 8486 ± 23 BP 9134 - 9024 cal BP 9211 - 9005 cal BP

TP2 North 20 shell TKA-17109 8752 ± 24 BP 9462 - 9407 cal BP 9492 - 9367 cal BP

Topogaro2 TP1 East 19 charcoal TKA-17034 9454 ± 30 BP 10734 - 10657 cal BP 10760 - 10587 cal BP

TP1 East 48 charcoal x x x x 

TP1 East 55 charcoal TKA-16906 24642 ± 62 BP 28781 - 28582 cal BP 28864 - 28464 cal BP

TP2 East 11 human tooth TKA-17404 1900 ± 20 BP 1871 - 1825 cal BP 1898 -1812 cal BP

TP3 West 6 charcoal TKA-17035 2274 ± 19 BP 2343 - 2310 cal BP 2347 - 2306 cal BP

TP3 West 17 charcoal TKA-17036 2274 ± 20 BP 2343 - 2310 cal BP 2348 - 2305 cal BP

TP3 West 27 charcoal TKA-17037 2160 ± 20 BP 2155 - 2124 cal BP 2181 - 2107 cal BP

TP3 West 31 charcoal TKA-16907 2234 ± 16 BP 2240 - 2181 cal BP 2259 - 2158 cal BP

TP3 West 8 shell x x x x 

TP3 West 18 shell TKA-17110 5895 ± 20 BP 6335 - 6275 cal BP 6381 - 6261 cal BP

TP3 West 25 shell TKA-17111 6823 ± 20 BP 7386 - 7316 cal BP 7409 - 7283 cal BP

TP3 West 44 shell TKA-17112 15204 ± 35 BP 18070 - 17920 cal BP 18149 - 17850 cal BP

TP3 West 52 shell TKA-16903 6317 ± 20 BP 6817 - 6735 cal BP 6861 - 6696 cal BP

TP3 West 60 shell x x x x 

Topogaro 2 TP5 West 1 human tooth TKA-17408 249 ± 19 BP 306 - 287 cal BP 310 - 281 cal BP

Topogaro 4 Surface Cassis shell TKA-16904 4607 ± 17 BP 4843 - 4807 cal BP 4870 - 4784 cal BP

Topogaro 7 TP1 North 14 charcoal TKA-17415 8377 ± 29 BP 9466 - 9404 cal BP 9476 - 9371 cal BP

TP2 South 3 charcoal TKA-17416 1540 ± 19 BP 1517 - 1494 cal BP 1523 - 1452 cal BP

TP2 South 6 Conus ring TKA-17411 2153 ± 34 BP 1798 - 1698 cal BP 1846 - 1634 cal BP

TP2 South 6 charcoal TKA-17417 128 ± 24 BP 118 - 68 cal BP 151 cal BP(45.8%)57 cal BP

All radiocarbon dates from Ono et al., in preparaton.
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Table 2. Summary of morphological analysis.

Trench Topogaro 1 Percentage Topogaro 2 Percentage Total Count Total Percentage

Type Flake 40 95% 79 96% 119 96%

Shatter 0 0% 3 4% 3 2%

Core 2 5% 0 0% 2 2%

Count 42 100% 82 100% 124 100%

Flake Completeness Complete 33 79% 67 82% 100 81%

Split 0 0% 0 0% 0 0%

Distal 2 5% 11 13% 13 10%

Medial 1 2% 0 0% 1 1%

Proximal 4 10% 1 1% 5 4%

Absent 2 5% 3 4% 5 4%

Count 42 100% 82 100% 124 100%

Type of Flake Initiation Hertzian 38 90% 65 79% 103 83%

Bending 0 0% 2 2% 2 2%

Bipolar 0 0% 0 0% 0 0%

Absent 4 10% 15 18% 19 15%

Count 42 100% 82 100% 124 100%

Type of Flake Termination Feather 24 57% 50 61% 74 60%

Hinge 2 5% 16 20% 18 15%

Plunging 1 2% 5 6% 6 5%

Step 3 7% 6 7% 9 7%

Retouched 5 12% 2 2% 7 6%

Absent 7 17% 3 4% 10 8%

Count 42 100% 82 100% 124 100%

Bulb of percussion Pronounced 31 74% 70 85% 101 81%

Less pronounced 7 17% 6 7% 13 10%

Absent 4 10% 6 7% 10 8%

Count 42 100% 82 100% 124 100%

Type of striking platform Plain 33 79% 61 74% 94 76%

Prepared 3 7% 3 4% 6 5%

Cortical 2 5% 3 4% 5 4%

Absent 4 10% 15 18% 19 15%

Count 42 100% 82 100% 124 100%

Cortex 0% 26 62% 44 54% 70 56%

<1/3 10 24% 23 28% 33 27%

 >1/3 to <2/3 2 5% 6 7% 8 6%

 >2/3 to <100% 3 7% 6 7% 9 7%

100% 1 2% 3 4% 4 3%

Count 42 100% 82 100% 124 100%

Retouch type Notched 16 38% 2 2% 18 15%

Micro-notched 1 2% 1 1% 2 2%

Absent 25 60% 79 96% 104 84%

Count 42 100% 82 100% 124 100%

PUA Concave 27 32% 35 22% 62 25%

Convex 18 21% 35 22% 53 22%

Straight 18 21% 29 18% 47 19%

Irregular 22 26% 61 38% 83 34%

Count 85 100% 160 100% 245 100%
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Table 3. Measurements of samples. 

Topogaro 1 Metrical attributes Minimum 1st Quartile Median 3rd Quartile Maximum Mean Standard Deviation

Weight (gm), N=42 1.95 4.28 6.17 13.56 45.22 10.60 10.04

Max Length (mm) 18.9 27.9 33.1 39.0 70.2 35.2 11.4

Max Width (mm) 13.8 23.3 31.4 36.4 67.6 31.8 12.1

Max Thickness (mm) 4.6 6.6 8.6 11.2 21.5 9.4 3.8

Striking Platform Thickness (mm), N=38 2 4.5 6.5 8.4 13.9 6.7 2.9

Striking Platform Width (mm) 7.4 11.3 16.2 19.4 32.4 16.5 6.3

Edge Length (mm), N=85 7.9 21.9 29.1 34.5 84.9 30.6 13.8

Edge Angle (deg) 16 40 53 70 80 53 17

Topogaro 2 Metrical attributes Minimum 1st Quartile Median 3rd Quartile Maximum Mean Standard Deviation

Weight (gm), N=82 0.68 4.96 9.54 15.01 46.94 12.43 10.24

Max Length (mm) 13.6 32.0 39.7 46.7 70.6 40.1 11.3

Max Width (mm) 3.0 23.7 30.0 38.0 82.0 31.1 11.5

Max Thickness (mm) 4.4 8.1 10.6 13.5 27.3 11.2 4.1

Striking Platform Thickness (mm), N=67 1.0 4.7 7.2 9.4 17.1 7.3 3.9

Striking Platform Width (mm) 3.5 10.9 15.2 22.6 53.6 17.4 10.3

Edge Length (mm), N=160 10.4 23.9 30.9 37.3 80.6 31.7 12.2

Edge Angle (deg) 14.0 36.0 48.0 64.0 88.0 48.9 17.4
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Table 4. Summary of use-wear analysis.

Use-wear category Type Topogaro 1 Percentage Topogaro 2 Percentage Total Count Total Percentage

Distal scarring Crescent 10 8% 10 5% 20 6%

Steep 29 23% 34 16% 63 18%

Break-shallow 21 17% 35 16% 56 16%

Shallow 39 31% 40 19% 79 23%

Absent 28 22% 95 44% 123 36%

Frequency 127 100% 214 100% 341 100%

Proximal scarring Crescent 10 8% 10 5% 20 6%

Feather 54 42% 66 31% 120 35%

Hinge 18 14% 17 8% 35 10%

Step 28 22% 38 18% 66 19%

Absent - distal scars 20 15% 82 38% 102 30%

Frequency 130 100% 213 100% 343 100%

Rounding Slight 11 13% 18 11% 29 11%

Mid 13 15% 11 7% 24 9%

Intensive 4 5% 7 4% 11 4%

Absent - rounding 58 67% 133 79% 191 75%

Frequency 86 100% 169 100% 255 100%

Polish Generic Weak 25 18% 25 14% 50 15%

Smooth-pitted 19 14% 18 10% 37 11%

Well-developed 26 19% 18 10% 44 14%

Bright spots 0 0% 0 0% 0 0%

Absent - polishes 69 50% 124 67% 193 60%

Frequency 139 100% 185 100% 324 100%

Striations Parallel 3 3% 12 7% 15 5%

Transversal 6 6% 9 5% 15 5%

Diagonal 10 11% 12 7% 22 8%

Multidirectional 0 0% 0 0% 0 0%

Absent - striations 74 80% 147 82% 221 81%

Frequency 93 100% 180 100% 273 100%

Retouch Micro-notch 4 4% 5 3% 9 3%

Retouched 0 0% 1 1% 1 0%

Microretouch-flat 0 0% 0 0% 0 0%

Notched 14 15% 14 8% 28 10%

Multiple scarring-clarify with notch/ retouched24 25% 11 6% 35 13%

Absent - retouch 54 56% 142 82% 196 73%

Frequency 96 100% 173 100% 269 100%

Possible residues Plant Remains/ Residues 5 6% 17 9% 22 8%

Reddish 1 1% 7 4% 8 3%

Blackish residues/ Possible residues15 18% 36 19% 51 19%

Burnt 1 1% 24 13% 25 9%

Absent - residues 62 74% 101 55% 163 61%

Frequency 84 100% 185 100% 269 100%
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Table 5. Summary of inferred activities in the Topogaro.

Activity Topogaro 1 Percentage Topogaro 2 Percentage

Scraping 20 48% 18 22%

Chopping 2 5% 1 1%

Grooving 0 0% 4 5%

Possibly hafted 2 5% 3 4%

Cutting 0 0% 0 0%

Scraping/ scraping 2 5% 1 1%

Scraping/ grooving 1 2% 0 0%

Scraping/ chiselling 0 0% 1 1%

Scraping/ possibly hafted 0 0% 2 2%

Scraping/ undeterminable 5 12% 2 2%

Undeterminable/ unused 1 2% 3 4%

Unused 5 12% 34 41%

Undeterminable 4 10% 13 16%

Total 42 100% 82 100%

Contact Material Topogaro 1 Percentage Topogaro 2 Percentage

Soft 0 0% 6 7%

Hard 15 36% 11 13%

Soft-mid 1 2% 3 4%

Mid-hard 5 12% 4 5%

Soft-hard 6 14% 4 5%

Soft/ undeterminable 1 2% 0 0%

Soft-mid/ undeterminable 1 2% 0 0%

Hard/ undeterminable 1 2% 0 0%

Undeterminable 6 14% 14 17%

Unused 5 12% 34 41%

Unused/ undeterminable 1 2% 3 4%

Possibly hafted 0 0% 3 4%

Total 42 100% 82 100%

180



Figure 1

B

CC

A

C

181



 

5m

4
3

5
1
2 8

7
6

8

West Section

East Section

0 200cm

N

0 200cm

N

Boulder
Coffin
Cover

Legend

A B Section
Slope

12

3

4 5

6

7 8

9

10

11

12

16

13

14
15

1,2,A,A-S,A-U

5m

Figure 2

A

B

182



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

47

49

51

53

55

57

59

46

48

50

52

54

56

58

60

230

240

250

260

270

280

290

300 Cm

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

LAYER 1

LAYER 2

LAYER 3

LAYER 4 A

LAYER 4 B

LAYER 5

LAYER 6

LAYER 7

LATER 8

LAYER 9

LAYER 10

LAYER 11

0      10      20     30      40     50 Cm
0 100 Cm

BATU

0

Gambar: Jagat, Nico

HOLE

STONE

GROUND TANK

CHARCOAL
CHARCOAL

240

250

260

270

280

0      10      20     30      40     50 Cm
0 100 Cm

TP 4 Tp4 TP4

LAYER 1

LAYER 2

LAYER 3

LAYER 4

LAYER 5

LAYER 6 LAYER 6                         LAYER 6

DINDING TIMUR DINDING SELATAN DINDING BARAT DINDING BARAT

AVALANCHE

0 

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

290

300
Cm

STONE

LAYER 1

LAYER 2

LAYER 3

LAYER 4

LAYER 5

LAYER 6 LAYER 6                         LAYER 6

AVALANCHE

Gambar: Sur, Redy 

P

A

B

Figure 3 183



TP 8 (TB 2) TP 5 (TB 4) TP 6 (TB 6)

DINDING TIMUR

0      10      20     30      40     50 Cm
0 100 Cm

KETERANGAN

             : LAYER 1 : LAYER 2 : BATU

10

20

30

40

50

60

70

80

90

100

110

10

20

30

40

50

60

70

80

90

100

110
Cm

0

Gambar: Arung, Deban, Wiji

C

Figure 3 continued

184



A

B

C

D

F

G

F
D EC

E H5 cm

G H

Figure 4

185



5 cm

A B

C

D

D

F

F

Figure 5

186



B

A

C

E

D

F

Figure 6

5 cm

E
D

F,H

B C

G

H

G

187



Figure 7

5 cm

A

B

C

D

E

F

H

G

I

D G

E H

F I

188



5 cm

notched scraper 
retouching A

notched scraper 
retouching B

A

B

C

A

D

E

F

Figure 8

E

F

189



 

Missing or undetected? A review of microwear traces on composite prehistoric lithic tools 1 

from ISEA 2 

 3 

Riczar Fuentes1,2, Rintaro Ono3, Sriwigati4, Nasrullah Aziz4, Harry Octavianus Sofian5, 4 

Tatiana Miranda6, and Alfred Pawlik7 5 

 6 

1) Institut für Ur- und Frühgeschichte und Archäologie des Mittelalters, Eberhard Karls Universität 7 

Tübingen, Schloss Hohentübingen, 72070 Tübingen, Germany 8 

2) Research Centre "The Role of Culture in Early Expansions of Humans" (ROCEEH) of the Heidelberg 9 

Academy of Sciences and Humanities, Rümelinstraße 19-23, 72070 Tübingen, Germany 10 

3) National Museum of Ethnology 10-1 Senri Expo Park, Suita, Osaka 565-8511, Japan 11 

4) Balai Arkeologi Sulawesi Utara, Manado, Indonesia 12 

5) Pusat Penelitan Balai Arkeologi Nasional (National Archaeology Research Centre, ARKENAS), Jakarta 13 

12510, Indonesia 14 

6) Senckenberg Center for Human Evolution and Palaeoenvironment (HEP) Tübingen, Eberhard Karls 15 

Universität Tübingen, Hölderlinstraße 12, 72074 Tübingen, Germany 16 

7) Department of Sociology and Anthropology, Ateneo de Manila University, Ricardo & Dr. Rosita Leong 17 

Hall, Quezon City, Philippines 18 

 19 

Abstract 20 

The presence of composite lithic tools in ISEA has very limited evidence based on morphological 21 

analysis. To find evidence of this elusive technological innovation in ISEA, looking into the 22 

microscopic traces has been proposed to be a method more suitable in addressing complexity of lithic 23 

technology in the region. However, very few evidence of hafted lithic technology in the region has been 24 

recorded through this method in the past 20 years. We review the literature on this topic with 25 

emphasis on the role of use-wear research and identification or misidentification of traces associated 26 

with plant working. Unretouched flakes were used in a variety of activities and formal tool types to 27 

make them morphologically identical with our concept of ‘projectiles’ or ‘hafted’ tools may have 28 

hindered our views regarding the role of these tools in the cognition and development of complex 29 

technologies in the region. A first multi-stage lithic use-wear analysis of lithics from Leang Sarru, 30 

North Sulawesi and Topogaro 2, Central Sulawesi reveals lithic tools that have traces of preparation 31 

and use as composite tools. Currently, there is no published database for ISEA. We conducted tests to 32 

replicate the traces identified on the on artefacts. Although it is limited, we identified possible traces of 33 

this technology type on tools from Leang Sarru and Topogaro with analysis of experimental and 34 

archaeological materials as case studies and places these in the larger picture to address the issue of 35 

‘paucity’ of lithic technology in ISEA, in general.  36 

 37 

Keywords – composite tools, hafting technology, Island Southeast Asia, use-wear analysis 38 

 39 

 40 

 41 
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1. Introduction 42 

 43 

The presence of composite tools in ISEA has not been extensively studied due to limited 44 

data and assemblages that do not show morphological features associated with points or 45 

hafted tools, and the limited use-wear data on hafting traces and residues. Migrations of 46 

AMH towards ISEA can be traced back to as early as 50kya. Projectiles and composite tools 47 

were identified to as old as 71,000 years ago in South Africa with evidence of microlith 48 

production and heat treatment (Brown et al., 2012). Complex tool technology is associated 49 

with the developments in human cognition, more than technological invention or 50 

innovations . This involves production of formal tool types such as blades and points. In a 51 

way, this is a marker for development of technology of cognitive abilities during the 52 

prehistoric period. Research on use-wear traces on projectile points and hafting implements 53 

has gained its ground in the past decade with establishment of certain laboratories dedicated 54 

to experimental programs answering questions on the mechanics of projectile traces and 55 

with more controlled experimental programs, prehension, and use of tar. Impact scars (Rots, 56 

2014) and micro linear impact traces (MLIT) are indicators of use as projectile points 57 

(Dockall, 1997; Fullagar et al., 2009; Sano, 2012; Lazuen, 2014; Rots, 2013, 2016; Rots et al., 58 

2011; Tomasso et al., 2015; Kufel-Diakowska et al., 2016). Residues, mainly tar, were used as 59 

glue to attach stone tools to a shaft. Although impact traces may be caused by other factors 60 

(Rots and Plisson, 2014) yet it is still the main indicator of use as composite tool, especially 61 

for the function of projectile. Overall, a more contextual approach is necessary to understand 62 

tool function especially hafting (Lauzen, 2014).  63 

 64 

2. Hafted lithic tools – a missing type? 65 

 66 

In ISEA, evidence of lithic composite technology is limited or rare for the Pleistocene period, 67 

mostly characterized by an unchanging unretouched flaked tool technology. A few cases 68 

have been mentioned based on morphological analysis and the presence of formal tool types 69 

(e.g. Toalean lithic industry). However, an unchanging lithic technology in ISEA does not 70 

support the argument and trend that hafting technology is associated with ‘sophisticated’ 71 

lithic technology - involves core preparation and retouching. Several sites in ISEA show no 72 
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distinction of lithic technological production from the Late Pleistocene and even until the 73 

historical period. One approach to address this issue is to employ lithic use-wear analysis to 74 

identify traits associated with the arrival of AMH in the region (Pawlik, 2012).  75 

 76 

Figure 1. Archaeological sites with evidence of osseous and lithic composite tool production before the 77 

Neolithic in ISEA.  78 

 79 

An overview of lithic studies especially of use-wear analysis in ISEA provides insight on the 80 

general features of the observed industries associated with the appearance of AMH. The 81 

sites associated with early migrations of AMH with evidence of lithic production include 82 

Jerimalai, Leang Burung, Niah Cave, Liang Bua, Tabon Cave, Callao Cave (Mijares, 2007; 83 

Brumm et al., 2018; Fox, 1970; Barker et al., 2007; Marwick et al., 2016). By the Holocene, 84 

more formal tools were identified in few sites in the region such as the Toalean industry in 85 

South Sulawesi (Bulbeck et al., 2000). With the introduction of ground tools, we have more 86 

evidence of hafting in the periods towards the transition to the ‘Neolithic’ (Fox, 1978; Pawlik 87 

et. al, 2015).  88 

 89 

Although formal tools during the early Holocene such as the case of Maros, it is still limited 90 

in terms of results showing hafting technology, probably due to limited microscopic data. To 91 

address this issue in lithic technology in ISEA, we reviewed use-wear analysis literature on 92 

this subject. Also, recent discoveries in North and Central Sulawesi points to occupation of 93 

sites dated from c. 35-31kya indicate traces that indicate possible production and use of 94 

composite tools. ISEA use-wear research lacks data on this technology due to the almost 95 

absence of tools that are morphologically considered as ‘points’ or ‘formal’. The production 96 

of unretouched flakes has been consistent from the Late Pleistocene to even the Holocene 97 

Period, and with functional edges that can be used in a variety of ways, it is no wonder why 98 

the current theme points to this level of technology. 99 

 100 

While there is rarity in the evidence of lithic composite tools, there is an abundance of 101 

evidence of bone point production (Piper, 2015). There are bone tools using fish spines in 102 

Niah Cave (Barton et al., 2009). Bone point traditions such as the Walane in Central Sulawesi 103 
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during the Holocene (Aplin et al., 2016). The production of these organic technologies 104 

maybe as old as 42kya with the oldest fish hooks from Jerimalai in Timor Leste (O Connor et 105 

al., 2011). In the case of ISEA, an experimental database to address potential use-wear traces 106 

from composite tools – hafted, or even projectile – is lacking. 107 

 108 

There are few published research detailing actual use of composite tools in ISEA. Pawlik 109 

(2012), addressed this issue by proposing use-wear analysis of simple flake tools in order to 110 

detect traces that can be attributed to production of hafted armatures. This typology 111 

dilemma is often justified by the presence of plant-based technology that served as 112 

complement rather than replacement to the lithic tools (Xhauflair et al., 2016). Hinge and 113 

step terminations the tip of tools suggest use as a projectile implement. Furthermore, there 114 

are polish spots at the tip of this tool with longitudinal striations on the upper part of the 115 

surface topography (Pawlik, 2012).  116 

 117 

The traces used in the interpretation of the tools as hafted include impact scars at the tip of 118 

the tool, hafting polish located on sections that came into contact with binding or shaft, scars 119 

caused by shaft or binding material, and residues that could have been used as hafting tar to 120 

attach the stone tool to a shaft (Pawlik, 2012). One main example is the triangular flake 121 

(artefact no. 40406) that was interpreted as a projectile point, attached to a shaft using tar as 122 

glue. The artefact was made of chert and produced through direct knapping and without 123 

retouching, a sample of simple flaked tool technology in ISEA (Figure 2). However, other 124 

aspects of composite/ multicomponent tools, such as micro linear impact traces, sliced into 125 

scalar scar, and scarring at the hafting boundary, have not been documented for stone tools 126 

from ISEA. Such aspects are vital in understanding hafting technology in general because 127 

these were already documented in experimental studies (Rots, 2003, 2008) and part of 128 

distinct features that should form on tools that were attached to shafts and possibly used. 129 

 130 

Figure 2. Composite lithic tools from Ille Cave, Palawan indicating hafting technology (Pawlik, 131 

2012). 132 

 133 

3. Micro-traces rather  than morphological attributes 134 
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 135 

Traces associated with preparation, production, and use of composite tools were identified 136 

in Leang Sarru, North Sulawesi (Fuentes et al., in press) and Topogaro 2, Central Sulawesi 137 

(Fuentes et al., in prep.). As part of a multi-stage use-wear study in the region (Fuentes et al., 138 

in press), we were able to identify use-wear traces associated with composite tools on both 139 

unretouched and retouched chert tools. It was not originally part of the goal to identify tools 140 

used with ‘hafting’ or ‘projectile’ technologies. However, these were encountered along the 141 

process and we were able to identify a total of six from Leang Sarru and four from 142 

Topogaro, Central Sulawesi. One limitation of this research is the absence of published 143 

database of systematic experimental program for projectile or hafted tools or any form of 144 

composite tools that addresses assemblages from ISEA. Comparison with published 145 

databases on projectile tools and hafted armaments in Europe and Africa yielded results for 146 

the assemblages from both Central and North Sulawesi, especially in the basics of fracture 147 

mechanics such as scalar scars, micro linear impact traces, and  148 

 149 

In Leang Sarru, two chipped artefacts from Spit 5 (D2_TL_S5_0003, D2_TL_S5_0004) display 150 

traces associated with use as projectile points and identical in terms of morphology and with 151 

use-wear traces (Lazuen, 2012). These tools were recovered in Spit 5, associated with the 1st 152 

occupation phase of Leang Sarru dated to c. 35kya. We found fully-developed polishes along 153 

the edge outline (Fuentes et al., in press). These tools were initially identified as used on 154 

plants on diagonal and transversal actions as shown by the direction of polish formation and 155 

limited scarring on the tool edges. These tools are morphologically similar with points 156 

identified in Africa and Europe for broken distal points (Lauzen, 2012). In the upper layer 157 

(Spit 3) (D3_BL_S3_0037, D3_BL_S3_0038), two chert flakes have scalar scars formed on the 158 

left and right lateral sections on both the proximal, medial, and distal sections (Fuentes et al., 159 

in press). These are identical with micronotches on the same locations. Impact scars were 160 

formed at the tips of unretouched chert tools. It is located on the negatives at the right lateral 161 

section of the ventral face. The tools were found within the 3rd occupation phase (10-8kya) at 162 

the main platform of Leang Sarru (Ono et al., 2010). An unretouched tool has impact traces 163 

and fungal growth at its tip which may have been used as composite or even projectile tool 164 

(D2_BL_S4_0002). 165 
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 166 

Figure 3. Possible composite technology from Leang Sarru, North Sulawesi. 167 

 168 

We identified retouched tools with symmetrical morphology showing negatives on the 169 

dorsal face. The tool was initially labelled as Topogaro point due to their recurring pattern of 170 

retouched and symmetrical morphology (TPGR2_TP4_41_#26; Fuentes et al., in prep.). MLITs 171 

with longitudinal orientation is present on three points along the edge outline. These were 172 

aligned on at least two locations on the ventral face of the tool. Furthermore, we also 173 

identified impact scars with secondary edge features also on the ventral face of the tool. The 174 

MLIT is quite a rarity in ISEA, although there are cases of similar striations and polishes, 175 

these were attributed to the use as cutting tools although the two types of striations are 176 

similar in morphology. The only difference is the abrupt formation that limits sections of 177 

intermediate zones often identified as smooth pitted polishes or the mid stage of polish 178 

formation. 179 

 180 

Figure 4. Retouched tools and micro linear impact traces from Topogaro, Central Sulawesi. 181 

 182 

4. What to look for in possible hafted amorphous tools  183 

 184 

Results from extensive studies on traces attributed to production and use of projectile traces 185 

indicate a combination of traces. The application of these traces could provide a set of 186 

guidelines for the identification of hafting traces and for the interpretation of function of 187 

amorphous flakes in ISEA.  188 

 189 

1. Morphological classification and retouching 190 

2. Impact scars  191 

3. Scalar scars 192 

4. Residues in the same locations with scarring due to hafting 193 

5. Micro linear impact traces 194 

 195 
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We proposed that these traces be included in use-wear studies being conducted in ISEA, 196 

especially for late Pleistocene assemblages. 197 

 198 

5. A need for experimental database on amorphous and expedient tools in ISEA 199 

 200 

There are several glaring issues with addressing prehistoric composite tool production in 201 

ISEA. First, the absence of formal tool types beginning from the late Pleistocene and even 202 

until the historical period, with exception of a few sites such as Maros, South Sulawesi with 203 

the Toalean tool industry. Most lithic assemblages that undergone use wear analysis do not 204 

show any formal morphological feature, the basic aspect that most researchers used to 205 

classify non-hafted/ projectile tool with those that were used as projectile points. Second, it is 206 

not the main problem in most use-wear studies because the focus is on the identification of 207 

traces associated with organic or plant-based tools. Thus we beg to question – ‘have we 208 

overlooked something?’ (Pawlik, 2012). Third, there are no published microwear database 209 

on lithic composite tools, so we based our inferences and identification of use-wear traces on 210 

experiments conducted elsewhere (Rots, 2006). Fracture mechanics would dictate the results 211 

for them to be generally acceptable for ISEAn assemblages. However, the nature of 212 

unretouched tools used in a variety of activities, which might include production of hafted 213 

tools and use of projectile tools, fails to account for the uniqueness of development of lithic 214 

technology in ISEA. So a database from ground up to identify minute details of activities 215 

pertaining to a more ‘advanced’ lithic tradition. Fourth, no microwear study has addressed 216 

the relationship of plant remains and plant working with production of bindings one of the 217 

components of hafted tool production. Same is true with experiments to produce tar and 218 

hafted tools based on this type of manufacturing process. Although archaeobotanical studies 219 

has presented results showing domestication of plants with the recovery of macro and micro 220 

botanical residues associated with consumption, we cannot discount cases wherein fibres 221 

were preserved. It could also address the scenario of plant utilisation for the production of 222 

lithic composite tools, fibre extraction for example. Fifth, we need to double check 223 

longitudinal striations as these are formed in the same way with MLITs. These were 224 

identified as result of cutting motion. However, the same is true with tools used with impact 225 

(hafted or projectiles), wherein MLITs can be formed diagonally or longitudinally in several 226 
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points on the tool. We also tested the chemical composition of the linear traces and 227 

compared the results for the experimental tools and for the artefacts to check the hypothesis 228 

that these MLIT-looking materials are actually from contact on animal bones. The results 229 

show high calcium and carbon content – consistent with composition of bones. 230 

 231 

A few attempts have been conducted in terms of experimental analysis in the Philippines, 232 

however, the results are still limited. So far the only evidence of composite tool production 233 

and use were identified in Ille Cave, Palawan, among other activities such as hide scraping 234 

(Pawlik, 2012). In the case of tools from the site, no MLITs were identified yet and the 235 

evidence for composite tools are impact scars at the proximal tip and the presence of 236 

residues in key points on the tool surface. The region now needs a robust experimental 237 

database on use of unretouched/ unmodified flakes as points or composite tools or hafted 238 

tools for that matter. In assemblages from the Philippines, use-wear analysis 25 thousand-239 

year-old stone tools from Callao Cave shows traces of contact with plant materials and with 240 

similar pattern of striations with longitudinal orientation and interpreted as a cutting tools 241 

(Mijares, 2002). Researchers should and must revisit and reanalyse tools with parallel 242 

striations, these are possible MLITs caused by use impact. There are no studies on chemical 243 

characterisation of possible hafting residues, especially tar Composite does not 244 

automatically mean projectiles, could be anything from scraping to cutting tool as long as 245 

several components are attached to a shaft.  246 

 247 

Use-wear and technological analysis dealing with flaked tool technology of the later 248 

Pleistocene or upper Palaeolithic in ISEA, it would be ideal to present an outline for future 249 

researchers on which traces should be checked. We proposed that these features should be 250 

looked upon – 1) impact scars on triangular flakes, with pre-removal negatives, 2) Parallel 251 

striations as these have the same morphology with MLITs, 3) residues should be 252 

documented (caused by contamination or not), 4) an extensive experimental database to 253 

compare MLIT and parallel striations, 5) an experimental database on unretouched flakes to 254 

test the presence of scarring associated with composite tools, 6) production and replication 255 

of residues used in production of composite tools (tar-based). These also points to the role of 256 

use-wear analysis in addressing ongoing issues and debates in ISEAn archaeology. Specific 257 
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traces can only be identified through this method without the formal tool features such as 258 

point type that usually involves retouching.  259 

 260 

More research on composite tools is needed  to address the absence or presence of composite 261 

tools. The notion that unretouched tools served a variety of tasks would also mean that these 262 

had functions beyond tasks such as scraping or cutting. Experiments are needed to address 263 

this seemingly lacking data, and moreover archaeological evidence also has equal value. 264 

Thus, the need to check more assemblages with the same framework and with this basic 265 

question – are there slightest indication that unretouched tools were used as a component of 266 

more complex tools? ISEA lithic assemblages lacks this due to the absence of formal tool 267 

types observed somewhere else. Use-wear analysis thus plays a vital role in addressing 268 

issues in cognition and technological advancements of the modern humans in ISEA. It 269 

begins by double checking previous microwear studies that may or may have traces that 270 

indicate use other than simple menial tasks with single-action uses. It is about time to 271 

address this issue, other than the presence of organic based technologies other than bone 272 

points that exist in the archaeological record. Plant working in relation to stone tool 273 

production is more complex than just employing simple and repetitive activities such as 274 

cutting and scraping or the variants of these two. Complex technologies may not be obvious 275 

on the macroscopic scale but with use-wear analysis this technological innovation that has 276 

not been systematically studied in ISEA. Experimental database is still lacking but this is 277 

slowly being addressed with the use of both retouched and unretouched flaked tools made 278 

of chert. 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 
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Abstract 

 

Plant working has been proposed to either replace and or complement the use of lithic tools in ISEA. 

With the absence of formal tools, bamboo technology or the use of plant-based technologies were 

proposed to have been practiced during the prehistoric period in ISEA. Plant polishes, often 

associated with phytolith-rich material have been identified in Leang Sarru. The initial 

interpretation is that these were used in a transversal action in processing plants that include 

monocots, palm, with the polishes associated with grass or bamboo processing. In this paper, we 

attempt to combine both approaches with the use of a database of qualitative photomicrographs and 

the use of laser scanning confocal microscope to differentiate polishes formed through working 

different kinds of plants. We employed two stages of lithic microwear identification and 

categorisation with focus on polishes. A combination of these two techniques provides more datasets 

for which to test our hypothesis that different kinds of plants were used. 

 

 

 

Keywords: plant polish, use-wear analysis, lithic analysis, laser scanning confocal 

microscopy, quantification technique 
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Abstract 

 

Upon testing the technique for quantification of polishes from Sulawesi on our previous research, 

we noticed that the current techniques for quantification does not address the presence of polish 

bevels on tools that has well developed polishes. Current techniques account for polishes on the 

dorsal or ventral faces, on areas considered as contact face during experiments and for artefacts. 

Now, the problem some tools from Sulawesi do not display well developed polishes on an area 

enough for scanning. These tools however display polish bevel that may provide clues to the 

contact material that was processed in the past. This study aims at testing the technique of 

measuring cross sections of polish bevel through the use of laser scanning confocal microscopy. 

We analysed experimental tools to assess and compare experimental polish bevels and 

archaeological samples. Main problem – while scanning for polish surface roughness, we noticed 

that the steep working angle and/ or absence of polished areas in some tools inferred to have been 

used for plant working. For some tools without ‘flat’ areas that would allow surface roughness 

measurement. A possible solution is to measure polish bevels – which have an undulating cross 

section very similar with cut marks, thus we test the technique of recording polish bevels on 

archaeological samples to develop a technique on quantification and recording of polish bevels. 

This research is not attempting to identify the contact material as experimental database is still 

lacking due to the research design which was designed to answer questions of surface roughness 

rather than polish bevel quantification. 

 

 

Keywords: use-wear analysis, laser scanning confocal microscopy, quantification 

technique, surface metrology 
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