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Abstract 

 

Endogenous neuronal activity is a hallmark of the developing brain. In rodents a 

handful of such activities were described in different cortical areas but the unifying 

macroscopic perspective is still lacking. Here we combined large-scale in vivo Ca2+ 

imaging of the dorsal cortex in naturally behaving neonatal mice with advanced 

mathematical analyses to reveal unique behavioral state-specific maps of 

endogenous activity. These maps were remarkably stable over time within and 

across experiments, and used patches of correlated activity with little hemispheric 

symmetry as well as stationary and propagating waves as building blocks. 

Importantly, the maps recorded during motion and rest were almost inverse, with 

sensory-motor areas active during motion and posterior-lateral areas active at rest. 

The retrosplenial cortex engaged in both resting- and motion-related activities, 

building functional long-range connections with respective cortical areas. Together, 

these data provide so far the most complete view on the endogenous network activity 

pacing development of cortex-wide functional networks in neonates. 

 

Keywords: endogenous network activity, large-scale in vivo Ca2+ imaging, state-

specific activity maps, stationary waves, propagating waves, functional long-range 

connections. 
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Zusammenfassung 

 

Endogene neuronale Aktivität ist ein Markenzeichen des sich entwickelnden Gehirns. 

Bei Nagetieren wurden einige solcher Aktivitätsmuster in verschiedenen kortikalen 

Bereichen beschrieben, aber eine einheitliche makroskopische Perspektive fehlt 

noch. Hier kombinierten wir großflächige in vivo Ca2+-Bildgebung des dorsalen 

Kortex in natürlich verhaltenden neonatalen Mäusen mit erweiterten mathematischen 

Analysen, um zustandsspezifische Karten der endogenen Aktivität zu erhalten. Diese 

Karten waren innerhalb und zwischen den Experimenten bemerkenswert stabil und 

setzten sich aus Bereichen mit korrelierter Aktivität geringer hemisphärischer 

Symmetrie sowie stationären und sich ausbreitenden Wellen zusammen. 

Interessanterweise waren die Karten, die während der Bewegung und in Ruhe 

aufgezeichnet wurden, fast invers, mit sensorisch-motorischen Bereichen, die 

während der Bewegung aktiv waren, und posterior-lateralen Bereichen, die in Ruhe 

aktiv waren. Der retrospleniale Kortex beteiligte sich sowohl an Aktivitäten während 

in Ruhe als auch während der Bewegung und bildete funktionelle 

Langstreckenverbindungen zu den jeweiligen kortikalen Bereichen. 

Zusammengenommen bieten diese Daten den bisher vollständigsten Überblick über 

die endogene Netzwerkaktivität, die die Entwicklung kortikaler funktioneller 

Netzwerke bei Neugeborenen vorantreibt. 

 

Schlüsselwörter: endogene Netzwerkaktivität, großflächige in vivo Ca2+-Bildgebung, 

zustandsabhängige Aktivitätskarten, stationäre Wellen, ausbreitende Wellen, 

funktionale Langstreckenverbindungen. 
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Brain development 
 

The brain is a sophisticated organ in all vertebrates that plays a crucial role in the 

body. In humans, this organ has several main functions such as processing sensory 

information, regulating blood pressure and breathing, controlling the release of 

hormones, etc. To do information processing the brain requires rich structures that 

do proper computation of incoming information in a reasonable time. Considering 

brain size and structure in embryo reveals that it needs the stringent developmental 

procedure (Figure 1). This strict developmental process has to be organized in a 

spatiotemporal manner to build up an intricate brain structure.  

 

 
 
Figure 1. Developing mouse brain. 
Taken from Allen et al., 2010. 
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In humans and many other mammalian species, the brain dynamically goes through 

different developmental stages that begin before the birth and, depending on 

species, continue after adolescence (B. L. Finlay & R. B. Darlington, 1995; Tau & 

Peterson, 2010). Genetic factors, as well as environmental inputs, play essential 

roles in the process of brain maturation. In general, brain development can be 

divided into three phases; (i) prenatal activity-independent period, (ii) prenatal 

activity-dependent period and (iii) postnatal activity-dependent period. In rodents, 

during embryonic development (early prenatal days), genetic factors govern the 

establishment of connections in immature neural circuits. In the second phase 

during late prenatal and early postnatal days, experience-independent intrinsic 

activities interact with genetic factors to orchestrate the development of the brain 

structures. During the third phase, brain development mainly relies on neural 

network activities caused by the interaction of the brain with environmental inputs 

(Hanganu-Opatz, 2010; Rustem Khazipov & Luhmann, 2006; Manley, 2013; 

Spitzer, 2006; Tierney & Nelson, 2009). Furthermore, several studies have shown 

that such correlated neuronal activities are present in many regions of the 

developing central nervous system (CNS) (Adelsberger, Garaschuk, & Konnerth, 

2005; O Garaschuk, Linn, Eilers, & Konnerth, 2000; Hanganu, Ben-Ari, & Khazipov, 

2006; Rustem Khazipov et al., 2004; Luhmann & Khazipov, 2017). 

In the rodent forebrain many of the initial coarse connections are refined during the 

first postnatal week in an experience-independent manner leading, for example, to 

the eye-specific input segregation in the lateral geniculate nucleus of the thalamus 

and formation of the retinotopic map in the visual (Ackman & Crair, 2014a; Kirkby, 

Sack, Firl, & Feller, 2013) or the emergence of the barrel map in the somatosensory 

(Luhmann, Sinning, Yang, & Reyes-puerta, 2016; C. C. H. Petersen, 2007) cortex. 

Because during this period, activation of these cortices through extrinsic (sensory) 
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stimuli is rather limited (see figure. 2 in ref. (Hanganu-Opatz, 2010)), this refinement 

likely relies on intrinsic neuronal activity. Such intrinsic activities have been found in 

multiple brain regions and were shown to have distinct spatiotemporal properties.  

During rodent embryonic development, cortical activities are mostly uncorrelated 

and occur either as calcium fluctuations or as electrically-driven Ca2+ spikes (Allene 

et al., 2008; Owens & Kriegstein, 1998). At birth, cortical activities show more 

coherent behavior mainly relying on gap junction-mediated electrical activity 

(Kandler & Katz, 1998; Yuste, Nelson, Rubin, & Katz, 1995). Ca2+ imaging, 

combined with electrophysiological recordings, revealed that the interactions 

between a small group of cells connected via gap junctions results in spontaneous 

synchronized Ca2+ plateaus (Crépel et al., 2007). In brain slices, SPAs 

(synchronous plateau assemblies) were shown to occur mainly at birth and during 

early postnatal development. They are spatially restricted and do not show 

propagating behavior. 

Large-scale oscillatory calcium waves called cortical early network oscillations 

(cENO), has been originally found in slices of one- to four-day-old (P1–P4) rats 

using imaging techniques (O Garaschuk et al., 2000). The cENOs are 

synaptically-driven and propagate in a wave-like fashion, usually starting 

posteriorly in the entorhinal/temporal cortex and propagating towards the 

perirhinal/insular cortex with a mean speed of 2.1 mm/sec. Their initiation depends 

on the activation of AMPA and NMDA receptors and a developmental shift of 

GABAergic transmission from depolarizing to hyperpolarizing stopped the cENOs. 

The cENO-like activity was also reported in vivo, in the temporal cortex of non-

anesthetized mice. These endogenous Ca2+ waves are expressed mainly during 

sleep-like resting states and disappeared during the animal's movement 

(Adelsberger et al., 2005). Another type of synaptically-driven activity has been 
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described in rat slices from the hippocampal area using 

electrophysiology(YEHEZKEL BEN-ARI, ENRICO CHERUBINI, 1989). In slices, 

these spontaneous giant depolarizing potentials (GDPs) were observed in the  

majority of neurons during the first postnatal days.  

 

 

 
 
Figure 2. Spontaneous neuronal activities during development. 
The figure is taken and modified from, Allene et al., 2008. 
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The strength of this transient type of activity decreased during development (from 

day 9 on) and GDPs disappeared around P12 (postnatal day 12). GDPs critically 

relied on the depolarizing GABAergic transmission and were shown to be 

generated by a localized population of the interneurons in the layer CA3 of the 

hippocampus. It remains, however, unclear whether depolarizing GABAergic 

transmission represents a genuine feature of the developing brain rather than an 

artifact of tissue slicing, as it was not present in an in vivo cortex but was readily 

seen after preparing tissue slices including the same cells, previously studied in 

vivo (Kirmse et al., 2015). 

Extracellular multielectrode recordings in the in vivo somatosensory cortex of P0-

P7 rats revealed three synchronized oscillatory activity patterns: spindle bursts, 

gamma oscillations, and long oscillations (J.-W. Yang, Hanganu-Opatz, Sun, & 

Luhmann, 2009). The data showed that spindle bursts and gamma oscillations are 

restricted to local neuronal networks. Long oscillations, however, were able to 

propagate over the large areas.  

Considering different spatiotemporal activity patterns in early development 

described above, it is interesting to see how they modulate brain circuits. Intrinsic 

non-evoked activities have been reported in the neocortex (Adelsberger et al., 2005; 

Corlew, Bosma, & Moody, 2004; O Garaschuk et al., 2000; Luhmann et al., 2016), 

hippocampus (Olga Garaschuk, Hanse, & Konnerth, 1998; Villette et al., 2016; 

YEHEZKEL BEN-ARI, ENRICO CHERUBINI, 1989) area, and in the sensory 

cortices such as visual (Ackman & Crair, 2014b; Blumberg, 2010; Galli & Maffei, 

1988; Hanganu et al., 2006; Rochefort et al., 2009), auditory (Clause et al., 2014; 

Tritsch, Yi, Gale, Glowatzki, & Bergles, 2007) and somatosensory (Blumberg, 2010; 

Rustem Khazipov et al., 2004; Luhmann & Khazipov, 2017; Minlebaev, Ben-Ari, & 

Khazipov, 2009). In the visual system of the rodents, because eyes are closed after 
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birth, all activities during early postnatal days are intrinsic. Simultaneous in vivo 

recording of the retina, midbrain and the visual cortex in neonatal mice suggested 

that spontaneous waves generated in the retina propagate through the superior 

colliculus (SC) and the lateral geniculate nucleus (LGN) to V1 area in the visual 

cortex thus suggesting modulatory effect of this activity on the visual system 

circuitry (Badalà, Nouri-mahdavi, & Raoof, 2012; Triplett et al., 2009). Moreover, it 

was shown that the retinal waves play a crucial role for the formation of the 

retinotopic map, eye-specific input segregation, and orientation tuning of V1 

neurons (Ko et al., 2013; Rochefort et al., 2011; S. L. Smith & Trachtenberg, 2007). 

In vivo two-photon Ca2+ imaging of the developing visual cortex revealed two 

independent activity patterns potentially able to modulate the V1 circuitry: the 

synchronized network activity driven by gap junctions and the retinal waves. 

Whereas the frequency of gap junctions-driven events decreases with age, the rate 

of cortical events driven by retinal waves increased (Siegel, Heimel, Peters, & 

Lohmann, 2012). In general, in mice the frequency of the Ca2+ waves in the visual 

cortex increases gradually during development and at the end of the second 

postnatal week, right before eye-opening, these waves engage a significant fraction 

of neurons. Eye-opening however, causes a desynchronization of this activity 

(Rochefort et al., 2009). Thus, with eye opening the spontaneous activity in the V1 

becomes sparser and less synchronized. 

In the somatosensory cortex, maturation occurs earlier than in the visual system. 

Focusing on the barrel cortex, formation of the barrel map starts at birth, and the 

initial activity-dependent refinement of the network happens during early postnatal 

days (Rakic, 1976; Rakic, Ayoub, Breunig, & Dominguez, 2009). In vitro, slow 

oscillatory cENO-like activity is typical for the somatosensory cortex. As explained 

above, this activity propagates slowly and covers large cortical areas (Allene et al., 
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2008; O Garaschuk et al., 2000). Additionally, electrical in vivo recordings identified 

early gamma oscillations (EGOs) and spindle bursts as the principal activity 

patterns in the barrel cortex (R. Khazipov, Minlebaev, & Valeeva, 2013; Luhmann, 

2016). EGOs are different from adult gamma oscillations. They occur during early 

postnatal days and disappear after P7-P8. In contrast, adult gamma oscillations 

start after P13. The major difference between these two activity patterns is their 

spatial organization. EGOs are restricted to single cortical columns but adult gamma 

oscillations have both local and long-range synchronization (R. Khazipov et al., 

2013). Besides, the area activated by spindle bursts is larger and the duration is 

longer compared to EGOs (J.-W. Yang et al., 2009). Whereas generation of EGOs 

is highly dependent on excitatory inputs from the thalamus (J. W. Yang et al., 2013), 

the mechanisms underlying the generation of spindle bursts are not well 

understood. However, there is an evidence suggesting that spindle bursts during 

early development are generated differently than adult's sleep spindles (McCormick, 

Trent, & Ramoa, 1995). Eliminating spindle bursts by selectively removal of 

subplate neurons (Tolner, Sheikh, Yukin, Kaila, & Kanold, 2012) shows the savior 

effect on the development of cortical circuitry and suggests the critical role of this 

type of activity for the formation of cortical architecture. Furthermore, EGOs are 

important for topographically aligned thalamocortical connections (R. Khazipov et 

al., 2013).  

Similar to other cortical areas, spontaneous activity has been reported in the 

auditory system before the onset of hearing (Dimitrova et al., 2017b; Lippe, 1994; 

Sonntag, Englitz, Kopp-Scheinpflug, & Rubsamen, 2009). It has been suggested 

that this rhythmic activity starts in the cochlea (Dimitrova et al., 2017b; Lippe, 1994) 

and promotes maturation of the auditory circuitry (Dimitrova et al., 2017a; Glueckert 

et al., 2003; Mostafapour, Cochran, Mae Del Puerto, & Rubel, 2000) or tuning of the 
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tonotopic map (Kandler, Clause, & Noh, 2009). This activity is likely initiated in the 

inner hair cells (IHC), which can produce Ca2+ spikes before the onset of hearing 

(Corne´J. Kros, 2004) and cause Ca2+-mediated glutamate release (Beutner & 

Moser, 2001; Glowatzki & Fuchs, 2002; Johnson, Marcotti, & Kros, 2005). This 

glutamate release activates spiral ganglion neurons (SGNs). In these neurons, 

NMDA receptors were shown to boost the cell's spiking rate and increase neuronal 

participation in each wave of spontaneous activity (YingXin Zhang-Hooks, Amit 

Agarwal, Masayoshi Mishina, & Dwight E. Bergles, 2016). Thus, the rhythmic firing 

pattern triggered by the IHC travels through the SGNs to various auditory centers of 

the brain (Wang et al., 2015). The functional role of the spontaneous activity for the 

development of the auditory system has been shown by manipulating (such as 

cochlea ablation or disrupting in neurotransmitter release) occurrence of such 

activities in the cochlea. Any manipulation on the cochlea or the IHC cause savior 

changes in the SGNs and in the brain such as degeneration of afferent fibers or 

apoptotic death of neurons (Glueckert et al., 2003; Hirtz et al., 2011; Mostafapour et 

al., 2000). In general, the maturation of the auditory system is governed by 

sequential developmental steps. Before the onset of hearing, in rodent around P11, 

no evoked responses are detected in the auditory cortex (Geal-Dor, Freeman, Li, & 

Sohmer, 1993). However, from P11-P12 on a small region start to show response to 

mid-range frequencies (de Villers-Sidani, Chang, Bao, & Merzenich, 2007). 

Moreover, spike latency reported for the developing auditory cortex is in the range 

of 20-40 ms (de Villers-Sidani et al., 2007). This value decreases for adult's AI 

reaching the value of 5-20 ms(Kelly & Sally, 1988; Polley, Read, Storace, & 

Merzenich, 2007)  

In summary, early development of the brain, which starts with proliferation and 

migration of cells and continues with dendritic and axonal extension and network 
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refinement, is driven by highly sophisticated and hierarchic patterns of endogenous 

activity. Activity-dependent maturation contains two stages: (i) experience-

independent, relying mainly on intrinsic activity patterns and (ii) experience-

dependent, mainly driven by external stimuli. Intrinsic (spontaneous) activity 

patterns were seen in many brain regions and belong, in general, to three distinct 

types. The first type is represented by intrinsic asynchronized single cell activities 

which are seen during early, largely embryonic, development. This type is followed 

by a spontaneous activity synchronized among a small population of neurons. 

These synchronously active cells are often connected through the gap junctions. 

Next, the chemical synapses form and become involved, creating large-scale 

network bursts and waves. The synaptically-driven spontaneous network activities 

in some cortical regions (e.g., prefrontal, motor or somatosensory cortex) were 

reported to be entrained by the activity in the other cortical/subcortical structures 

(e.g. hippocampus, S1, thalamus or M1, respectively) likely priming the functional 

coupling between the two areas seen in the adulthood (An, Kilb, & Luhmann, 2014; 

Antón-Bolaños et al., 2019; Brockmann, Pöschel, Cichon, & Hanganu-Opatz, 2011). 

It seems that during development spontaneous activity starts on a micro-scale and 

continues on a macro-scale thus contributing to formation of large scale neural 

networks.  

Neuroimaging 
 

Studying a complex organ like the brain requires monitoring techniques that capture 

the structural and functional information of that organ. Variety of methods have 

been introduced for studying the brain function and, in general, these techniques 

can be classified into the electrophysiological recording and imaging techniques.  
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Electrophysiological recordings measure the electrical signals from single cells or 

populations of cells at a high temporal resolution to understand the electrical 

properties of the tissue under study and to detect the occurrence of action potentials 

(Narahashi, 2004). Intracellular or extracellular recordings, despite their high 

temporal resolution, are limited to a small and, moreover, undefined area. However, 

there are several extensions, such as multielectrode arrays or 

electroencephalography (EEG), which increased spatial range of the recordings but 

not their spatial resolution. 

In addition, different imaging techniques are widely used for brain monitoring to 

capture both structural and functional information. They are divided into few 

categories based on their technology and application. Among popular imaging 

techniques, one can name single- and two-photon microscopy, Magnetic 

Resonance Imaging (MRI), Computed Tomography (CT), and Positron Emission 

Tomography (PET).  

MRI is a non-invasive 3D imaging technique with several clinical applications. This 

technique, with its extensions, creates the anatomical and functional images of the 

living organ at a mid-level spatial and temporal resolution (Grover et al., 2015). CT 

is another 3D imaging technique with higher spatial resolution in comparison to the 

MRI. This technique is economically cheaper and the images are obtained faster 

than with the MRI. However, CT provides only structural information and the safety 

level, depending on the application, is much lower than with the MRI. Due to the 

ionizing radiation used in the CT, it is not a proper imaging technique for 

experimental studies (Ginat & Gupta, 2014). PET is a minimally invasive technique 

with poor spatial resolution. Its working principle is based on the radioactive 

substances and the PET is generally used to monitor metabolic processes.  
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EEG, MEG, fMRI, and PET, despite their poor spatial and/or temporal resolution, 

non-invasively measure the activity of an enormous number of cells and therefore 

became popular recording techniques in the human studies (Paans, 2004). 

Instead of using radiation or radioactive substances, optical techniques use the light 

for monitoring a single cell or population of cells as well as their structures. 

Fluorescence microscopy is an optical recording method, and its principle is based 

on collecting the light emitted by the excited fluorophores (Sanderson, Smith, 

Parker, & Bootman, 2014). Simply speaking, the excitation light sent from the light 

source is absorbed by the fluorophore substance. In return, the substance emits 

light of a specific wavelength which is filtered and then detected by the camera.  

Due to its noninvasive nature, fluorescence microscopy is an essential tool in 

biology. The use of multiple fluorophores makes it possible to observe complex 

structures simultaneously. Spatial and temporal resolution, as well as image depth, 

are the major factors to be considered when choosing which type of fluorescence 

microscopy to use. 

For visualization of dynamical processes in the living cells, one has to use 

fluorophores able to monitor the activity of the cell. In the nerves system, changes in 

the intracellular Ca2+ concentration are involved in and often trigger many cellular 

processes (Neher & Sakaba, 2008; Zucker, 1999). Thus, investigating cell's Ca2+ 

signaling gives an insight into the cell function. Ca2+ imaging represents a recording 

technique using fluorescent Ca2+ indicators for monitoring changes in the 

intracellular Ca2+ concentration. Ca2+ indicators used nowadays divided into 

chemical and genetically-encoded indicators (for review, please see (Grienberger & 

Konnerth, 2012)).  
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Taking all, imaging techniques provide multi-dimensional data in a less invasive 

way. Besides, Ca2+ imaging has a unique capability in presenting complex structural 

and functional aspects of the cell.  

 

Data analysis 
 

Above we briefly introduced advanced technologies and how they allow studying 

cellular structures and functions. While this remarkable capability facilitates 

investigating complex organs like the brain, they produce an enormous amount of 

data and cause new challenges to analyze them. In the case of Ca2+ imaging, 

fluorescence intensity is captured at a given sampling rate over a single neuron or 

population ensemble. Since the captured intensity reflects neuronal activity, the aim 

is first to extract the fluorescence intensity in each neuron. To do that, each neuron 

must be spatially segmented, and the average intensity in a given segment needs to 

be calculated over time. The basic approach to this task is based on the time-

consuming manual segmentation of each neuron in a given spatiotemporal data set. 

As long as the dataset contains only a small number of neurons, the manual 

segmentation is applicable. In the large-scale recording, when the field of view 

contains a population of neurons, automatic or semi-automatic approach is a 

necessity.  

Considering the size of the neuron, any small spatial shift during the data 

acquisition affects the recorded fluorescence intensity. To solve this problem, as a 

preprocessing step, an artifact from motion needs to be removed. To do that, 

several algorithms have been published such as Hidden Markov Model (HMM) 

approach (Dombeck, 2007), hill-climbing method (Lucas & Kanade, 1981), subpixel 

registration (Thévenaz, Ruttimann, & Unser, 1998), Lucas-Kanade framework 
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based algorithm (Greenberg & Kerr, 2009) and etc. Motion correction step 

guarantees that the average fluorescence intensity recorded over time belongs to 

the selected region of interest (ROI) and not to the neighboring areas due to the 

shift in XYZ space.  

Advanced mathematical algorithms have been introduced to deal with the automatic 

ROI selection in a high dimensional spatiotemporal Ca2+ imaging data. In particular, 

some of these algorithms focus on activity-dependent ROI segmentation (Eran A. 

Mukamel, 2009; Junek, Chen, Alevra, & Schild, 2009; Miri, Daie, Burdine, Aksay, & 

Tank, 2010; Ozden, Lee, Sullivan, & Wang, 2008). First, they use an efficient 

dimension reduction algorithm like principal component analysis (PCA) to reduce 

the dimensionality and noise level in the dataset. This step then is followed by 

source extraction techniques such as Independent Component Analysis (ICA) (Eran 

A. Mukamel, 2009), Nonnegative Matrix Factorization (NMF) (Pnevmatikakis et al., 

2016), clustering-based methods (Pachitariu et al., 2016) or dictionary learning (A. 

Petersen, Simon, & Witten, 2017) to extract ROIs automatically. These algorithms 

unsupervisedly analyze temporal information jointly with corresponding spatial 

location of active neurons.  

Unsupervised algorithms show an advantage over supervised algorithms in a large-

scale recording when spatial resolution is low, and fluorescence intensity of 

populations of neurons is encoded in a single pixel. In this situation, a priori 

information about ROI's location is not available, and the algorithm cannot rely on 

this information. In the case of high spatial resolution, extracted temporal data for 

each neuron allow inferring spike train using deconvolution techniques (Vogelstein 

et al., 2010). Additionally, supervised algorithms (Sasaki, Takahashi, Matsuki, & 

Ikegaya, 2008; Theis et al., 2016) can estimate accurate spike trains from Ca2+ 

transients in the cost of labeled data. For labeled data acquisition, simultaneous 
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Ca2+ imaging and electrophysiological recordings of the same cell are needed. 

However, this type of recording could be costly or in some cases, not possible. For 

a detailed comparison between techniques see (Berens et al., 2018).  

Beside analyzing temporal traces belonging to individual neuron, functional 

dependency among spatially distinct neurons in ensemble population or, at larger 

scale, among multiple brain regions reveals functional connectivity patterns in a 

given circuit. In general, the functional connectivity among various samples can be 

described using model-free methods such as descriptive statistical methods (Cohen 

& Kohn, 2011; Fujisawa, Amarasingham, Harrison, & Buzsáki, 2008; Sutera et al., 

2014), information theory based techniques (Garofalo, Nieus, Massobrio, & 

Martinoia, 2009; Orlandi, Stetter, Soriano, Geisel, & Battaglia, 2014; Schreiber, 

2000), supervised learning-based algorithms (Veeriah, Durvasula, & Qi, 2015) or 

model-based methods like Dynamic Bayesian network (DBN) (Eldawlatly, 2013), 

maximum entropy model (Tkacik et al., 2014) or generalized linear model (Song, 

2013). The features describing neuronal connectivities are the existence of 

connection, cause of interaction, significance, and dynamic of the network. The 

major challenge in model-based connectivity is the problem of overfitting or 

underfitting. The solution suggested for this problem is mainly to infer the 

connectivity jointly with regularizer on cost function (constrained optimization). 
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Aim of the project 
 

As explained above, the early development of the brain is driven by highly intricate 

and hierarchic patterns of the endogenous activity. Intrinsic (spontaneous) activity 

patterns have been seen, in vivo and in vitro, in many brain regions. However, these 

studies focused on these specific brain regions only and therefore large-scale 

endogenous activity patterns that orchestrate the brain development, as well as 

connectivity map including different brain regions is not well understood.  

In this work, we developed an analyses pipeline by applying the state-of-art 

mathematical algorithm for analyzing large-scale neuronal activity in the cortex of 

neonatal mice. By taking advantage of fast and large-scale in vivo imaging, the aim 

was to (i) characterize the patterns of large-scale neuronal activity in the dorsal 

cortex of neonates, (ii) identify the areas with correlated activity patterns and (iii) 

establish the relationship between anatomical- and activity-driven cortical maps. 
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Materials and Methods  
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Mice 
 

All experiments were conducted in accordance with institutional animal welfare 

guidelines and were approved by the state government of Baden-Württemberg, 

Germany. For consistency, we focused on a defined animal age (P3) because 

during the first postnatal week the rapidly developing rodent cortex is known to 

traverse several developmental states (Kirischuk et al., 2017). 

In line with the biometric planning, seven 3-day-old nestin-Cre x 

Ai95(RCL‐GCaMP6f)-D mouse pups of either sex were used in this study. Parent 

mouse lines B6.Cg-Tg(Nes-cre)1Kln/J and B6;129S-Gt(ROSA)26Sortm95.1(CAG-

GCaMP6f)Hze/J were originally obtained from Jackson Laboratory (stock № 

003771 and stock № 024105, respectively) and were bred on the C57BL/6 

background. Note that in the widely used B6.Cg-Tg(Nes-cre)1Kln/J mouse strain 

(https://www.jax.org/ strain/003771) expression of the Cre recombinase becomes 

widespread only during the perinatal development (around P0; (Liang, 

Hippenmeyer, & Ghashghaei, 2012)). This late expression of both the recombinase 

and the Ca2+ sensor in our experimental mice minimizes the risk for any unwanted 

side effects, including the eventual toxicity or the development of aberrant activity 

(compare our Figure 14A to Figure 3 and 6 in ref. (Steinmetz et al., 2017)).  

 

Animal preparation for in vivo Ca2+ imaging 
 

Mouse pups were anesthetized with isoflurane (2.5% for induction, 1-2% for the rest 

of surgery). The skin above the dorsal part of the skull was cut away, the connective 

tissue was gently peeled off, and the custom made ring-like plastic chamber was 

glued to the skull. Xylocaine gel (2%) was applied to the wounded skin edges. To 

https://www.jax.org/strain/003771
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prevent the skull from drying out, it was covered with agarose (1-2%) dissolved in 

standard Ringer’s solution containing (in mM): NaCl 125, KCl 4.5, MgCl2 1, CaCl2 2, 

NaHCO3 26, NaH2PO4 1.25, Glucose 20, pH 7.4. The procedure described above 

lasted 23 ± 3.8 min (n=7 mice). After that, the isoflurane anesthesia was terminated, 

and the animal was allowed to recover on a warming plate (34oC - 36oC) for at least 

one hour. 

 

In vivo large-scale single-photon Ca2+ imaging 
 

After recovery the animal, resting on a warming plate, was transferred into the 

imaging setup and head-fixed under the MVX10 Research Macro Zoom Microscope 

equipped with an LED source for excitation (Thorlabs, central wavelength 470 nm), 

the Zyla 4.2 sCMOS camera (Andor Technology) and Andor Solis software for 

image acquisition. Animal’s limbs were free to interact with each other and the 

surface of the warming plate (schematic is illustrated in Figure 3). Both the left and 

the right hemispheres were imaged simultaneously through the intact skull at 

256x256 pixel resolution (1 pixel ≈ 50x50 µm2) and 11 ms/frame for half an hour 

(three consecutive 10-min-long acquisition series). Although the nestin promotor 

driving the Cre recombinase activity in our mice is expressed in both neuronal and 

glial cell precursors and the imaging technique used does not differentiate between 

neuronal and glial signals, following data suggest that the signals analyzed in the 

current study are of neuronal origin: (i) between P0 and P3 neurons represent ~ 

88% of all cells in the rodent cortex (Bandeira, Lent, & Herculano-Houzel, 2009) (ii) 

kinetic properties of population Ca2+ signals in these preparations coincide with 

those of neuronal Ca2+ transients and differ significantly (approximately by order of 
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magnitude) from those of glial Ca2+ transients (Adelsberger et al., 2005; Golshani et 

al., 2009). 

Recordings of animal’s movement 
 

Animals were imaged with a monochrome infrared (IR) light-sensitive camera. IR 

LED (950 nm) was used for illumination. To remove the salt-and-pepper noise, the 

image sequence (720x480 pixels, 29 Hz) was filtered with a median filter of kernel 

size 3x3. 

 

 
Figure 3. The schematics of the experimental procedure. Left panel provides a schematic view 
to isoflurane application at the beginning of the experiment. The second panel indicates the 
chamber implantation step to fix the head during recording. The third panel shows the recovery 
procedure on the warming plate. The last panel illustrates the recording procedure using a head-
fixed mouse. It consists of three schematic diagrams that briefly shows the recording procedure: (i) 
head-fixed mouse under microscope, (ii) infrared (IR) light-sensitive camera and its recording 
software in the left corner that records the body motion of the animal parallel with Ca

2+
 imaging and 

(iii) simplified schematic diagram showing principle of light microscopy used in this experiment. 

 

Subsequently, adjacent frames were pixel-wise subtracted from each other, thus 

transforming the original image sequence into an image sequence containing the 

information about the temporal changes within the field of view (Lipton, Fujiyoshi, & 
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Patil, 1998). For a given resulting image, the sum of absolute values of all pixels 

was taken as a measure of instantaneous body motion. Subsequently, the 

movement trace was upsampled using Matlab's 1D interpolation function to match 

the sampling rate of the Ca2+ signals (~91 Hz), plotted over time, normalized to the 

maximum recorded value, thresholded at ~6% to eliminate breathing artifacts and 

used to create a binary signal where all ones corresponded to the motion period 

and all zeros corresponded to the resting state (Figure 9). The on/off switching of 

the 470 nm excitation light, seen by both cameras, was used to synchronize the 

imaging of Ca2+ and movement signals. Also, we defined the time window including 

one second before the movement onset and three seconds after the end of the 

movement (corresponding to the decay time of the eventual movement-evoked Ca2+ 

signals) as a transition state. With this procedure, the behavior of the animal was 

automatically subdivided into three different states: motion, rest, and transition (see 

Figure 10). 

As the motion state potentially contained either spontaneous muscle twitches 

(Blumberg, 2010) or generalized movements, in a separate series of experiments 

we recorded nuchal muscle electromyogram (EMG (Seelke, Karlsson, Gall, & 

Blumberg, 2005)) simultaneously with imaging body movements. Note that at P3, 

the EEG traces are discontinuous, thus providing no information about the vigilance 

states (N., B., J.L., R., & M., 2018). For EMG recordings a stainless steel wire (type 

SS-3T, Science Products GmbH, Hofheim, Germany) was used. Two to five mm of 

the insulation was stripped off, and the insulation-free ends of the wire were gently 

inserted subcutaneously and placed bilaterally on the top of the neck muscles. 

After the correct position of the wires has been verified, the wires were fixed to the 

ring-like plastic chamber (see above) with a UV-cured dental cement. EMG data 
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were recorded at 1 kHz (0.3-500 Hz band-pass filter) using the Powerlab differential 

amplifier (ADInstruments Ltd, Oxford, United Kingdom). 

Movement binary signal was created from the EMG signal using signal envelope 

analysis (Oppenheim & Schafer, 2009). The normalized cross-correlation between 

the movement signals extracted from the imaging and the EMG data showed peak 

values of 0.6-0.85 (n = 9 recording in 3 mice) suggesting that both signals faithfully 

reflect the structure of the animal’s movement. Note, however, that some tiny 

movements, as well as limb twitches, might remain unrecognized by either one or 

even both techniques (Seelke et al., 2005). Next, we separately used EMG- and 

imaging-based data sets of individual animals to construct the distributions of the 

duration of movement episodes. Both data sets identified the first peak at 350-600 

ms, followed by a local minimum at 700-800 ms. Based on this data, we chose 750 

ms as an empirical border between spontaneous muscle twitches and generalized 

movements. For mice included in the present study, muscle twitches represented 

39.5 ± 14 % of all movement events (n=6 mice) and the fraction of time covered by 

muscle twitches ranged between 5% and 16% (median per mouse) of the total 

movement time. We concluded, therefore, that under our experimental conditions, 

Ca2+ signals recorded during the animal’s movement mainly reflect the ones 

associated with generalized movements. 

Data analysis 
 

Recording high-speed large-scale images throw intact skull is an advanced 

technique helping to understand neuronal activities and their interactions on a 

meso- and macroscales. However, it produces data in the range of ~40GB/h (taking 

spatial resolution of 256 x 256 pixels and the acquisition speed of 91 frames/sec). 

Storage and processing of this amount of data is a challenging task. To solve this 
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task one needs robust, automatic, fast, and scalable to large data sets 

computational tools. Here, we developed a reach analyses pipeline that helps to 

process large-scale Ca2+ fluorescence data. This pipeline contains four main 

branches (Figure 4B) analyzing the recorded data in a spatiotemporal manner. First 

two branches, in two different algorithms, calculate the pattern of activity. The third 

branch considers temporal dependencies within spatial patterns, and the last 

branch calculates functional connectivity among multiple cortical regions. All 

branches receive their inputs after motion correction step where the data frames are 

corrected for motion artifacts based on a given template frame. Below, we explain 

the whole pipeline in detail.  

If not otherwise indicated, data analyses started with reducing the image size to 

128x128 pixels using 2x2 binning.  
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Figure 4. Analyses pipeline. (A) Representative fluorescence intensity frames recorded from 
neonatal P3 mouse cortex. Black arrow indicates time axis. The black box shows typical local cortical 
activity, and its average fluorescence intensity expanded parallel to the time axis (black trace). (B) 
Diagram illustrates our analyses pipeline. This pipeline starts with the motion correction step, and its 
output is taken as a common input into all branches. The diagram contains four main branches that 
output three main results. These three outcomes are categorized based on three different colors. 
Light green represents branches that analyze spatial activity patterns. Light purple shows the branch 
that focuses on temporal dependencies within spatial patterns and light red branch calculates 
functional connectivity.  
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Motion correction 

 

Intensity-based image registration algorithm was used to remove motion artifacts in 

each video (Figure 5). This process is an automatic and iterative approach to do 

motion correction task. It takes a pair of images, a metric, an optimizer, and a 

transformation type. Similarity or dissimilarity between two images as a quantity is 

given by the metric. This value then evaluates the accuracy of misalignment 

correction. The optimizer is a method to minimize the dissimilarity or maximize the 

similarity, and the transformation type is a strategy that aligns the misaligned image 

with the reference image. The process starts with defining the transformation type. 

Then using this, the misaligned image is bilinearly interpolated. Next, the metric 

computes the value of similarity between the transformed misaligned image and the 

reference image. This value is compared to stop criteria and defines the process 

termination or continuation. In the case of continuation, the optimizer calculates new 

transformation, and the cycle will be repeated. The stop criteria mainly depend on 

two parameters, the maximum number of iteration and metric value.  

To do motion correction, we used Matlab image processing toolbox and custom-

written code.  

 

Pixel-wise detection and analyses of Ca2+ signals 

 

In our analyses pipeline, the first branch focuses on the information provided by 

each pixel in the given video. This analysis channel contains noise-estimation, 

filtering, transient detection and pixel-based frequency map creation steps. In this 

analysis line, temporal information from each pixel is taken and processed, results 

are returned to the spatial location of the selected pixel. Below we describe each 

step in detail. 
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Noise estimation 

 

The noise in a given data was estimated using Principal Component Analysis (PCA) 

algorithm as follows: after decomposing data to linearly uncorrelated variables 

named principal components (Figure 6B), the sorted components were split into two 

parts, depending on their eigenvalues (Figure 6C). To use data in the original 

space, two videos based on split components were reconstructed. 

 

 

Figure 5. Block diagram of the image registration process. This analysis cycle shows the 
iterative approach in motion correction algorithm. The cycle in each iteration starts with defining the 
transformation type. In the first iteration, the initial transformation matrix has to be provided. The 
second block shows bilinear interpolation of the misaligned image using information from the 
previous step. The third block represents a computational procedure that calculates similarity or 
dissimilarity between reference and misaligned images. The last block as an optimizer defines the 
method to minimize the dissimilarity or maximize the similarity. This process stops if the stop criteria 
are reached. 

This diagram is taken from the MathWorks website ( www.mathworks.com/help/images/intensity-
based-automatic-image-registration.html). 
 

https://www.mathworks.com/help/images/intensity-based-automatic-image-registration.html
https://www.mathworks.com/help/images/intensity-based-automatic-image-registration.html
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A threshold was chosen such, that the components from the first part described 

95% of data variance. This selection guarantees that the reconstructed video 

contains all information. The video reconstructed with the first part of the 

components were interpreted as data, and the video reconstructed with the rest of 

the components were interpreted as noise (Figure 6D). 

 

Filtering 

 

Next, to remove contamination of any non-transient slow oscillation from each 

signal (fluorescence intensity of each pixel in time), high-pass filter at the cut-off 

frequency of 0.05 Hz was designed and applied to the traces of each pixel in the 

reconstructed data. Zero-phase filtering strategy was used to avoid any time shift 

between wave shapes of the filtered signal and the original signal (Figure 6E). The 

example of the original and filtered traces is shown in Figure 6F. 

 

Transient detection 

 

Following the analysis line, in the data taken from the previous step, the 

fluorescence changes in each pixel of the video with peak amplitudes larger than 

the fourfold of the SD, in each corresponding pixel of the reconstructed data 

containing noise, of the baseline noise were detected using the Matlab (MathWorks) 

peak detection function. Based on the known kinetics of GCaMP6f (Chen et al., 

2013), we eliminated the events with the full width at half maximum (FWHM) of less 

than 100 ms. The rest of the detected events were defined as Ca2+ signals and 

were used for further detailed analyses.  
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Pixel-based frequency map 

 

The numbers per minute of the detected Ca2+ signals were used to create the color-

coded frequency maps. These numbers, calculated separately for each pixel, were 

located on spatial coordinates of corresponding pixels. These maps were created 

separately for three different behavioral states (motion, rest, and transition). The 

temporal location of each peak determines that it belongs to each behavioral state. 

The binary motion signal, explained above, was used to define the time window of 

each behavioral state.  

 

Model-based detection and analyses of Ca2+ signals 

 

Detecting active regions automatically in the wide-field image is a challenging task. 

A proper algorithm is necessary to extract the activity sources in a meaningful and 

unsupervised way. Moreover, it has to extract temporal information jointly with a 

spatial location of activities in a given spatiotemporal dataset. Non-negative Matrix 

Factorization (NMF) is a model that unsupervisedly extracts the sources and 

provides both temporal and spatial results.  
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Figure 6. Analyses of pixel information. (A) Block diagram of the analyses procedure. (B) 
Illustrates the PCA transformation on the original video. The right side of the equal sign are the 
principal components, and transformed data where their multiplication results in the original video. 
(C) This panel represents normalized singular values in the log-scaled graph. The x-axis has been 
shortened between 2000 and 15000. (D) Representative noise-reduced fluorescence trace. First 
trace (up) is an unprocessed representative data. Middle trace is noise-reduced version of the upper 
trace, and the lower trace is an estimated noise. (E) Bode plot of high-pass filter used to remove 
slow oscillations. Magnitude and phase of bode plot have been shown in blue and red colors 
respectively. (F) Same trace as in D (middle trace) filtered using a high-pass filter with characteristic 
indicated in E. Upper trace (middle trace in D) is an unfiltered data and lower traces is high-passed 
filtered data at the cut-off frequency of 0.05 Hz. 

 

Region of interest detection based on source extraction 

 

Pixels that showed a coherent change in fluorescence intensity were grouped into 

ROIs using NMF algorithm, running on a full data set. According to NMF, a given 

data matrix X is factorized into two matrices   and   containing spatial filters ( ) 

and the corresponding time information ( ): X    (an example is illustrated in 

Figure 7),       &      .   and   can be calculated by minimizing the cost 

function,              . In case of the low-rank NMF, the rank (k) of   and   is 

set to be smaller than the dimension of X. As an optimizer to minimize the cost 

function, we have chosen the alternating least-squares algorithm (Berry, Browne, 

Langville, Pauca, & Plemmons, 2007). The initialization method was based on 

Independent Component Analysis (ICA). The rank of   and   was estimated by 

PCA component's coefficients.  

Simplified ALS algorithm for NMF calculation 

W0 = Initialize  

for iteration = 1: maxiter 

Least square step, Solve optimization for H: WTWH = WTX 

Nonnegative constraints, Project all negative values in H to 0 

Least square step, Solve optimization for W while H is kept fix: HHTWT = HXT 

Nonnegative constraints, Project all negative values in H to 0 

end 
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The 300 spatial filters were inspected by eye. Filters resembling either the blood 

vessel pattern or whole-brain image contaminated by blood vessel pattern, likely 

reflecting movement artifacts, were discarded. The total number of such filters was 

in the range of 45-120. The remaining filters contained groups of bright neighboring 

pixels, clearly discernible from the noisy background. Sobel edge detector algorithm 

(Lim, 1989) was used to define the border between the active and background 

pixels. The frame-wise noise was estimated using these background pixels. Finally, 

the filters were binarized using the threshold value of fourfold the SD of the 

corresponding background noise. Groups of connected pixels with n > 10 pixels 

were defined as ROIs. The filters containing one ROI were called single ROI 

filters, and the ones with more than one ROI were called multi-ROI filters.  

 

ROI-based frequency maps 

 

To create ROI-based frequency map, each ROI was weighted by ascribing a value 

equal to a number of peaks detected in its temporal domain (  . For peak detection, 

traces corresponding to spatial filters ( ) were thresholded at 95% of their maximal 

amplitude. Finally, the weighted ROIs were superimposed to create a color-coded 

ROI-based frequency map. These maps were created separately for two different 

behavioral states (motion, rest). Same as above, the temporal location of each peak 

determines that it belongs to which behavioral state.  

 

Symmetry maps 

 

For calculation of the cortical symmetry maps, first, the brain rotationally corrected 

according to mid-line between two hemispheres. Then, one hemisphere was 

mirrored to another against the mid-sagittal plane and all ROIs belonging to each 
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multi-ROI filter were examined pairwisely by calculating their two-dimensional 

correlation coefficients. A pair of ROIs was considered as symmetric if the 

correlation coefficient was ≥0.5. Filters which contained only symmetric ROIs were 

classified as total symmetry filters, and filters with at least one pair of symmetric 

ROIs were classified as semi-symmetry filters. Further, according to their 

corresponding time information (matrix  ) and the animal state, the symmetry filters 

were subdivided into two categories: motion and rest. Superpositions of filters of a 

given class and category were used to produce specific symmetry maps. 

 

 

 

 
 
Figure 7. NMF based source extraction. This figure illustrates source extraction from a given video 
using NMF algorithm. The first column shows frames of the video aligned in the time axis. The other 
three columns are examples of the extracted sources (components) with their sums reconstructing the 
original video. Temporal information related to each source is plotted parallel to the time axis in blue (for 
more detail please see Methods).  
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Map of simultaneously active cortical regions 

 

To identify brain regions synchronously active during the movement and the resting 

states, spatial filters in multi-ROIs obtained from NMF analysis (see above) were 

processed according to the time information (matrix H) and the animal state. Then, 

the subregions from each multi-ROI were assigned to the anatomical regions based 

on the location of their center of mass. For any multi-ROI filter, each pair of 

simultaneously active subregions (within each cortical region or between two 

distinct cortical regions) was represented by an entry in the matrix (10x10 - each 

row or column) corresponds to one of the cortical regions. Such entry was made 

each time when the two subregions were simultaneously active. This procedure was 

repeated for all multi-ROIs in motion and resting states providing two matrices. 

Then each matrix was normalized to the sum of both matrices and values below 

50% were removed, to focus on interactions, predominant for each state. Median of 

three matrices (three 10-min-long image series) was taken as a representative map 

for each mouse and median of all maps from n = 6 mice was depicted as a 

summary result. 

 

Wave analyses 

 

Data revealed that the cortical activities are organized into the patterns that are 

shaped in both space and time. One approach to investigate temporal dynamics of 

Ca2+ waves jointly with their spatial location is to consider dataset as a multichannel 

time series. These time series contain multiple unknown temporal patterns with 

different spectral structures, noise, and non-stationary elements. Thus, the model-

free technique is required to decompose the multi-channel time series into a mixture 
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of interpretable components. Performing Multi-channel Singular Spectrum Analysis 

(MSSA) results in model-free decomposed spectrums. 

 

Multi-channel Singular Spectrum Analysis (MSSA) 

 

To detect propagating Ca2+ waves, the image sequences were processed by the 

nonparametric spectral estimation method: Multi-channel Singular Spectrum 

Analysis (MSSA; (Olshevsky, Tyrtyshnikov, Golyandina, & Usevich, 2010)). Before 

being reshaped into a two-dimensional space, the data were down-sampled by a 

factor of 10 in the temporal domain and by 25 in spatial domain. 

 

The basic algorithm of MSSA 

 

first, centralize the data      by subtracting the mean value of each pixel 

      

       

   
       

   n is the number of samples, p is the number of the pixels in 

the images 

then calculate the embedding matrix M, 

 
     

 

 
 
 
 
 
      

      
 

       
       

   
        

     
         
      

 
 
 
 

,          and K is a lag shift (this 

matrix called Hankel matrix) 

using embedding matrix M, estimate covariance matrix C,        
 

   
   

Calculate eigen decomposition of covariance matrix, 

[eigen value, eigen vector] = eigen decomposition (C). 
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Reconstructing time series 

     
 , where X is the original dataset and Xj is reconstructed data based on 

each or group of components. 

Then,      
 , where M j is the embedding matrix from each component.  

Each M j can be reconstructed using eigen vector and projected data. 

if M j has Hankel structure, 

values of reconstructed X j are the averages of the corresponding anti-

diagonals of the matrix M j 

elseif M j has NOT Hankel structure, 

first M j has to transformed to Hankel matrix 

then, X j can be reconstructed as above 

end 

 

In the MSSA, each principle vector describes an oscillatory component in the data 

set, whereas principle components represent the corresponding weighting 

coefficients. The k value (lag shift) was set to 15 s. 

 

Pacemaker maps 

 

Data were reconstructed (MSSA (Olshevsky et al., 2010)) based on a subgroup of 

components (sorted components 20-150). The remaining components represented 

either noise or slow baseline drifts. Finally, the reconstructed data were spatially 

thresholded to obtain the corresponding binary mask of each frame. Thresholding 

was based on fitting Laplace distribution to the reconstructed data. As a threshold, 

we selected a fourfold of the scale parameter of the estimated Laplace distribution. 

The first frame of each wave was defined as its pacemaker region. 
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Dynamic of waves 

 

Populations of connected pixels were treated as objects and dynamics of each 

object in time represented a single wave. The distance traveled by each wave was 

characterized by the displacement of the corresponding object’s center of mass. 

The waves were divided into two groups: (1) stationary waves with the center of 

mass moving less than 200 µm and (2) propagating waves with the center of mass 

moving more than 200 µm. Further, we counted the waves propagating within a 

given cortical region and calculated the fraction of waves occurring during the 

motion and resting periods, respectively. A similar procedure was applied to 

calculate the fraction of waves propagating between any two cortical regions. 

 

Functional connectivity 

 

The large-scale cortical recordings give the possibility to observe all cortical regions 

simultaneously. Consequently, this facilitates the investigation of any local cortical 

activity in the context of surrounding cortical regions. Also, tracking short- and/or 

long-range coherent activities determines the functional properties of neuronal 

networks (Friston, 2011). Taking all, studying the functional connectivity by means 

of Ca2+ imaging reveals local networks as well as long-range cortical functional 

connections. However, studying cortical functional connectivity could be biased by 

deep unobserved activity sources. Therefore it is better to go for analyses of direct 

connectivity (S. M. Smith, 2012; S. M. Smith et al., 2011).  

For calculating direct connectivity maps, input data were binned five by 5 pixels, 

temporally down-sampled by a factor of 10 and centered in the time domain by 

subtracting the mean value of each pixel. After that, the connectivity maps were 

calculated separately for resting and motion periods by using the sparse partial 
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covariance algorithm (Ma, Xue, & Zou, 2012). Assuming that data are drawn from a 

multivariate Gaussian distribution, elements of the precision matrix    
 explain 

partial covariance in a given data set. Sparsity constraint was introduced by adding 

an extra penalty term to the likelihood function. To calculate the sparse partial 

covariance one has to maximize the penalized log-likelihood L (Friedman, Hastie, & 

Tibshirani, 2008), 

                                 

where      , and   is an empirical covariance matrix 

      is l1 norm and γ is sparseness tuning parameter. 

The sparse partial covariance was calculated with a range of different γ values. The 

smaller γ values provide more dense connectivity pattern, whereas the larger γ 

values increase sparseness in the connectivity map by removing weak connections 

between the nodes. We identified the values 1.4 and 1.8 as cornerstone values 

supporting in one case a consistent and recognizable dense connectivity pattern 

and in another case a sparse stable pattern that was independent of a small 

variation of γ value. 

 

Connectivity maps 

 

After obtaining the direct connectivity map, pixels belonging to specific cortical 

regions were identified using the corresponding anatomical map of the brain (like 

the one shown in Figure 9A). Partial covariances between pixels of each specific 

cortical region were summed up, giving the value αij, where αij reflects the strength 

of the connectivity within the given cortical region if i=j. Similarly, partial covariances 

between pixels belonging to a pair of specific cortical regions were summed up, 

contributing those values of αij (i≠j), where αij reflects the strength of the connectivity 
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between the two different cortical regions. Finally, all values were normalized to the 

maximal αij value. 

 

Statistical analyses 

 

Statistics were performed using JASP and SPSS software. Normality of data was 

tested using the Shapiro-Wilk test. The two-tailed paired Student’s t-test was used 

for pair-wise comparisons of normally distributed data sets. For pair-wise 

comparisons of not normally distributed data, the Wilcoxon signed-rank test was 

applied. One-way or two-way repeated measures ANOVA (rANOVA) was used for 

comparing more than two normally distributed dependent variables. In the case of 

not normally distributed data, the Friedman test was used. In rANOVA sphericity 

assumption was tested using Mauchly's test, and in case of sphericity violation, 

Greenhouse-Geisser correction was applied. All ANOVAs, which show significant 

results, were followed by a post-hoc test with Hold-Sidak correction for multiple 

comparisons. For all tests, differences were considered significant if P < 0.05. 

If not otherwise indicated, data are presented as the median ± interquartile range 

(IQR)). 
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Results 
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Patterns of the large-scale cortical activity in the neonatal cortex 
 

When imaging through an intact skull (Figure 8A-C), we observed two kinds of 

cortical activity in the dorsal mouse cortex: local Ca2+ signals, involving one or 

several anatomical regions (Figure 8B, upper panel) and global Ca2+ signals. 

Placing regions of interest onto major anatomical regions of the dorsal cortex (i.e., 

visual, auditory, somatosensory and motor cortices) revealed that global Ca2+ 

signals often invaded all anatomical regions (Figure 8C), whereas the local did not. 

Taking the fact that the cortex of neonates mouse in P3 is not functionally mature, 

when selecting anatomical regions (Figure 8A) we relied on the atlas-based 

knowledge (Allen Institute for Brain Science, 2015) combined with data provided by 

(Gee et al., 2014). Simultaneous recording of animal movements (consisting at this 

age of muscle twitches and generalized movements, see Methods for details about 

the estimation of movement’s nature) by means of an infrared imaging camera (gray 

trace in Figure 8C; Figure 9), revealed the presence of spontaneous Ca2+ signals 

during both moving and resting states. Temporal relations, as well as signal 

strength between Ca2+ and motion signals as a representative case, are illustrated 

in figure 9. 

 

Behavior discrimination of animal 
 

Recording body movement using infrared camera revealed that the animal behavior 

could be split into two states: resting state when there is no detectable movement 

observed and motion state. To clearly discriminate between the motion and the  
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Figure 8. Large-scale cortical activity in the neonatal mouse cortex. (A) Top view on a P3 mouse 
cortex taken through an intact skull. Broken lines delineate cortical regions of interest (estimated as in 
(Gee et al., 2014)): ML, MR - motor cortex (left and right), SL, SR - somatosensory cortex (left and 
right), AuL, AuR - auditory cortex (left and right) and VL, VR - visual cortex (left and right). (B) Averages 
of 100 consecutive autofluorescence-subtracted images taken during periods of either local (top) or 
global (middle) cortical activities or no activity (bottom). Autofluorescence values are averages of data 
recorded in two different 3-day-old C57BL/6 mice, subtraction was done for display purposes only. 
Image brightness (arbitrary units, AU) is color-coded, with warm colors reflecting higher values. (C) 200-
second-long ΔF/F traces recorded from ROIs delineated in A. Gray boxes mark time periods of animal’s 
movement and blue dashed lines indicate the time periods during which global (i.e., detected 
simultaneously in >70% of all recorded cortical pixels, see arrow on the top graph) Ca

2+
 signals were 

recorded. Arrowheads mark muscle twitches. 
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resting states, we separated them by transition periods, including one second 

before the movement onset, and three seconds after the end of the movement. 

Taking transition period as a safe boundary between resting and motion states 

helps to prevent any misinterpretation of the Ca2+ signal due to slow dynamics of 

Ca2+ indicator dye (GCamP6f) used in this study (Chen et al., 2013). 

Overall, the 3-day-old mice moved only 32 ± 18.5% of the recording time (Figure 

10), thus spending most of the time in a state with no detectable motion. This result 

is consistent with our earlier data described in ref (Adelsberger et al., 2005). 

 

 

 

 

Figure 9. Signal strength between Ca
2+

 and motion signals. Example traces illustrating Ca
2+

 
signals recorded in the somatosensory cortex and corresponding animal movements (same 
experiment as the one shown in Figure 8A-C). A representative ΔF/F trace recorded from the SR 
area delineated in Figure 8A (upper) and the respective raw (middle) as well as binary (lower) animal 
movement signals, generated as described in Methods. Arrowheads mark muscle twitches. 
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Frequency of spontaneous Ca2+ signals in the neonatal mouse 

cortex 
 

To analyze the spatial pattern of spontaneous activity, we first calculated pixel-

based frequency maps (see the Methods for details) of activities recorded during 

the motion and the resting periods (Figure 11). Surprisingly, the pixel-based 

frequency maps differed dramatically between the two behavioral states, showing 

spatially distributed activity during the motion period and a prominent activation of 

posterior cortical areas during the resting period (Figure 11A). Moreover, these 

distinct spatial patterns were remarkably conserved across experimental animals, 

so that median frequency maps of 7 experimental animals (Figure 11B) looked 

almost identical to maps of a single animal (e.g., Figure 11A). 

Using the respective frequency maps, we calculated frequencies of spontaneous 

Ca2+ signals in the motor, somatosensory, auditory and visual cortices of the right 

and the left hemispheres during the two behavioral states (Figure 11C). When 

analyzing the median frequency values of 7 mice (Figure 11C, lower panel), we did 

 

 
Figure 10. The fraction of time in three different states. Box-and-whisker plots illustrating the 
fraction of time animals spent in three different states: motion, rest, and transition. The upper plot 
shows representative data from one mouse (n = 3 10-min-long image series) and the lower plot 
shows a median of 7 mice. A significant difference was observed between fractions of time spent in 
3 different conditions (One-way repeated measure ANOVA followed by Holm-Sidak multiple 
comparisons test, F1.79*,10.73*=5.35, P = 0.027, here and below a star (*) denotes Greenhaus-
Geisser sphericity correction). However, pairwise comparisons using the Holm-Sidak posthoc test 
did not reach the level of significance. 
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not observe any differences between the left and the right hemispheres for any 

condition tested (Repeated Measures ANOVA, F1, 6= 5x10-3, p=0.95). Therefore, for 

further analyses, we averaged data from both hemispheres. During the motion 

state, the frequency of spontaneous Ca2+ signals amounted to 10.64 ± 0.84, 11.97 ± 

2.28, 8.42 ± 1.73 and 9.85 ± 2.53 events/min, for motor, somatosensory, auditory 

and visual cortices, respectively. The corresponding values recorded during the 

resting state amounted to 0.32 ± 0.37, 0.54 ± 0.48, 0.96 ± 0.83 and 1.44 ± 0.53 

events/min. The frequencies of spontaneous Ca2+ signals in the given cortical area 

differed significantly between the motion and resting states (Two-way Repeated 

Measures ANOVA, F1, 6 = 8.97x102, P < 10-3), with frequencies observed during the 

motion state being almost 10 times higher (Figure 11C). In addition, we did observe 

significant differences in frequencies of spontaneous Ca2+ signals among different 

cortical regions (Two-way Repeated Measures ANOVA F1.53
*
, 9.22

* = 14.68, P = 

0.002. Here and below Star (*) denotes Greenhouse-Geisser correction against 

violations of sphericity). However, pairwise comparisons using the Holm-Sidak 

posthoc test failed to reach the level of statistical significance.  

In summary, the spatial patterns of spontaneous activity in the neonatal cortex 

differed dramatically between the motion and the resting states, but for a given 

state, they were impressively stable across the animals. Two types of activity 

(global and local) were observed during the motion period, whereas at rest, the 

spontaneous cortical activity was predominantly local. 
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Figure 11. Frequency of spontaneous Ca

2+
 signals in the neonatal mouse cortex. (A) 

Representative pixel-based frequency maps recorded in a P3 mouse during motion (left panel) and 
resting (right panel) periods. (B) Same analyses as in A, but each pixel is a median of data obtained 
in 7 different animals. Here and below before calculating the median, the maps of individual animals 
were aligned using point set registration technique taking the corresponding blood vessel pattern as 
a reference. Here and below color-coded bars show frequency of events per minute. Please note 
different dynamic range used for each image. (C) Box-and-whisker plots illustrating the frequency of 
spontaneous Ca

2+
 transients within ROIs delineated in Figure 8A (an ROI-specific average of all 

pixels in a pixel-based frequency map) during motion and resting periods. The upper plot shows 
data from 3 consecutive 10-min-long image series in a mouse shown in A, and the lower plot shows  
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Behavioral state-dependent patterns of local cortical activity 
 

In the subsequent analyses, we concentrated on the properties of local activity. To 

do so, we grouped pixels showing coherent changes in fluorescence intensity into 

regions of interest (ROIs) using nonnegative matrix factorization algorithm (NMF, 

see the Methods). Regarding the local activity, the algorithm identified either “single 

ROIs,” in which all coherently active pixels were immediately adjacent to each other, 

or “multi-ROIs,” in which coherently active pixels were distributed in patches 

throughout the dorsal cortex (see the Methods for details). Next, we constructed 

ROI-based frequency maps of the local spontaneous activity during the motion and 

the resting periods (Figure 12 A and B; see the Methods for details). Please note 

that due to the high threshold used during peak detection, some transients 

contributing to the pixel-based frequency maps were filtered out in analyses shown 

in Figure 12. On average, coherently active local cortical subregions belonging to 

either single or multi-ROIs covered the areas of approximately 0.2 mm2 (Figure 13), 

and the size of these areas was similar during different behaviors (rest: 0.21 ± 0.06, 

generalized movements: 0.17 ± 0.03, muscle twitches: 0.18 ± 0.06). However, the 

resulting ROI-based frequency maps differed dramatically between the motion and 

rest (Figure 12A). During the motion period, the activity was mostly localized to the 

somatosensory and a lesser extent motor cortex, whereas at rest it was 

predominantly found in the visual and auditory cortices as well as a rim of lateral 

cortical areas likely including temporal and parietal cortices. Noteworthy, these 

distinct activity patterns were highly conserved across experimental animals (Figure 

12B). 
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To quantify this difference, we calculated spatial correlation coefficients (Lewis, 

1995) for ROI-based frequency maps recorded during either the same or different 

behavioral state. First, we compared the maps calculated for three 10-min-long 

consecutive recordings in the same animal (Figure 12C) and then compared the 

median values obtained in 7 mice (Figure 12D). For all animals tested, spatial 

correlation coefficients were high for “within the state” comparison and much lower 

when comparing the maps across the different states. From a statistical point of 

view (Figure 12D), the coefficients were highest during the motion state and 

somewhat lower during the resting state, whereas the comparison between motion 

and rest produced correlation coefficients that were close to 0. 

 

 

Figure 12 ROI-based frequency maps of local activity. (A) Representative frequency maps 
based on ROI analysis using nonnegative matrix factorization algorithm recorded in a P3 mouse 
during motion (left panel) and resting (right panel) time periods. (B) Same analyses as in A, but 
each pixel is a median of data obtained in 7 different animals. (C) Box-and-whisker plot illustrating 
spatial correlation coefficients within and between maps obtained during motion and resting time 
periods (3 maps, each representing a 10-min-long image series recorded in a mouse shown in A). 
(D) Box-and-whisker plot illustrating medians (per mouse) of spatial correlation coefficients within 
and between maps obtained during motion and resting time periods. Obtained values are 
significantly different (One-way repeated measure ANOVA followed by Holm-Sidak multiple 
comparisons test, F1.6*,9.62*=71.12, P < 0.001, motion vs. rest: P = 0.001, the other two 
comparisons: P < 0.001). 
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Figure 13 Sizes of coherently active areas contributing to local cortical activity. (A) Normalized 
histograms of the size of areas active during motion and resting periods, respectively. (B) 
Normalized histogram of the size of areas active during generalized movements. (C) Normalized 
histogram of the size of areas active during muscle twitches. (D) Box-and-whisker plot showing 
median (per mouse) sizes of areas active during the three above mentioned states (in total n = 8621 
areas from 6 mice). As shown by the One-way Repeated Measure ANOVA (F1.13*, 5.65* = 3.76, P 
= 0.1, *denotes Greenhaus-Geisser sphericity correction), the sizes are not significantly different. 

 

The differences between the three groups were statistically significant (One-way 

Repeated Measure ANOVA F2, 12 = 71.12, P < 10-3 followed by Holm-Sidak multiple 

comparisons test; motion vs. rest P = 10-3 and P < 10-3 for the two remaining 

comparisons). The almost inverse spatial maps of the local activity during the two 

behavioral states suggest that regions involved in generation and propagation of 

this spontaneous activity are tightly controlled in a state-dependent manner. 
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Figure 14 Hemisphere-symmetric neuronal activity in the neonatal mouse cortex. (A) 
Representative active subregions belonging to one multi-ROI filter (upper) as well as symmetry maps 
(lower) projected on a grayscale image of P3 mouse cortex. Upper panels: fluorescence signals are 
color-coded with warmer colors indicating higher signal intensity. Lower panels: different colors 
delineate multi-ROIs, each satisfying the total (left panel) or semi- (right panel) symmetry criterion 
(see Methods). (B) Box-and-whisker plot illustrating the median fractions of multi-ROIs in three 
distinct categories: total, semi- and no symmetry (3 consecutive 10-min-long image series recorded 
in a mouse shown in A). (C) Same analyses as in B illustrating the median data obtained in 7 
different animals. Obtained values are significantly different (One-way repeated measure ANOVA 
F1.26*,7.56*=625.7, P < 0.001). Holm-Sidak multiple comparisons test provides following values: 
semi-symmetry vs. no symmetry P < 0.001, total symmetry vs. no symmetry P < 0.001. 
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Hemispheric asymmetry of the local cortical activity 
 

Next, we used the multi-ROI filters to analyze whether the patterns of coherent 

spontaneous activity were hemisphere-symmetric (Figure 14). To do so, for each 

recording we constructed the total symmetry map (containing only hemisphere-

symmetric ROIs) and the semi-symmetry map (containing at least one pair of 

hemisphere-symmetric ROIs, see the Methods) and compared these maps across 

the animals and the behavioral states.  

In general, only 6 ± 2.4% of all multi-ROIs showed a stringent hemispheric 

symmetry (Figure 14A-C). Another 9 ± 7.25% of multi-ROIs were partially 

symmetric, whereas 83 ± 6.5 % were totally asymmetric. The vast majority (73 ± 

22.7%) of totally symmetric ROIs was observed during the motion period, and only 

some 10.3 ± 14% of the symmetric activity patterns happened at rest (Figure 15A, C 

and D). Similar results were obtained for semi-symmetry maps, with 75 ± 29% of 

respective activity patterns observed during the motion and 12 ± 28% observed 

during the resting period (Figure 15B, E and F).  

 

Regions contributing to hemisphere-symmetric cortical activity in 

the neonatal mouse cortex differ between behavioral states 
 

Subsequently, we asked whether regions contributing to hemisphere-symmetric 

neuronal activity differ between the two behavioral states. For both total and semi-

symmetry maps, the fraction of active pixels amounted to less than 22% of all 

imaged cortical pixels (Figure 16A-D). 
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Figure 15 State-dependent hemisphere-symmetric neuronal activity in the neonatal mouse 
cortex. (A) Representative total symmetry maps recorded during motion (left panel) and resting 
(right panel) periods. Different colors delineate multi-ROIs, each satisfying the total symmetry 
criterion. (B) Similar maps as in A but here colors delineate multi-ROIs, each satisfying the semi-
symmetry criterion. (C) Box-and-whisker plot showing the median fractions of symmetric multi-ROIs 
during the three periods: motion, rest, and transition (3 consecutive 10-min-long image series 
recorded in a mouse shown in A). (D) Same analyses as in C illustrating the median data obtained 
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Still, the fraction of pixels active during the motion period (17.2 ± 3.9% and 21 ± 

11.1%, for total and semi-symmetry maps, respectively) was significantly higher 

than the fraction of pixels active at rest (2.5 ± 5.9% and 7 ± 21.3%; Paired student's 

t-test; total symmetry: motion vs. rest, t5 = 7, P < 10-3; semi-symmetry: motion vs. 

rest, t5 = 5.68, P = 2x10-3). Although we did identify some anatomical regions 

involved in totally- and semi-symmetric activities during both behavioral states (the 

most prominent being the retrosplenial cortex, marked with an arrow in Figure 16B), 

in general, the regions involved in these kinds of activity differed between the 

resting and motion periods. Thus, for the total symmetry maps (Figure 16E), there 

were virtually no pixels active both during motion and rest (0 ± 8%). For the semi-

symmetry maps, 11 ± 41.75% of pixels active during motion were also active at rest 

(Figure 16F). 

Taken together, this data documents a profound hemispheric asymmetry of 

spontaneous neuronal activity in the neonatal brain. This lack of symmetry is likely 

due to the immature corpus callosum (Son et al., 2017), known to coordinate 

synchronous patterns of activity between hemispheres (David A. McVea, Murphy, & 

Mohajerani, 2016). At the same time, we show that in the minority of cases 

hemisphere-symmetric activity patterns do occur and identify the retrosplenial 

cortex as a region, frequently involved in such type of activity during both the 

movement and the resting periods. 

 

in 7 different animals. Obtained values are significantly different (One-way repeated measure 
ANOVA F1.5*,9.02*=44.65, P < 0.001). Holm-Sidak multiple comparisons test provides following 
values: motion vs. rest P = 0.001, motion vs. transition P = 0.001. (E) Box-and-whisker plot showing 
the median fractions semi-symmetric multi-ROIs during the three periods: motion, rest, and 
transition (3 consecutive 10-min-long image series recorded in a mouse shown in A, B). (F) Same 
analyses as in E illustrating the median data obtained in 7 different animals. 
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Behavioral state-specific maps of simultaneously active cortical 

subregions 
 

Multi-ROI filters, automatically provided by nonnegative matrix factorization 

algorithm, contain synchronously active group of pixels. Taking this, we investigated 

simultaneous active regions during the movement and the resting states. First, we 

determined the anatomical location of all multi-ROI subregions using the map 

 
 
 
Figure 16 Regions contributing to hemisphere-symmetric cortical activity in the neonatal 
mouse cortex differ between behavioral states. (A) Spatial representation of the overlap 
between total symmetry maps recorded during motion and resting time periods in a P3 mouse. 
Purple color indicates the area active during the motion period, green color marks the area active 
during the resting period and white color shows the overlapping area. (B) The same representation 
as in A but for the semi-symmetry map obtained in the same experimental animal. The arrow points 
to the retrosplenial cortex. For display purpose, an experiment with a prominent overlap is shown. 
(C) Box-and-whisker plot showing the number of pixels belonging to the total symmetry map during 
motion (purple area) and rest (green area), as median (per mouse) fractions of the total number of 
imaged cortical pixels (n = 7 mice). Obtained values are significantly different (paired Student’s t-
test, t5 = 7, P < 0.001). (D) The same analyses as in C but for the areas contributing to the semi-
symmetry map. Obtained values are significantly different (paired Student’s t-test, t5 = 5.68, P = 
0.002). (E) Box-and-whisker plot showing median (per mouse) numbers of pixels belonging to the 
white area (as in A) normalized to the number of pixels belonging to the purple area (n = 7 mice). 
(F) The same analyses as in E but for the areas contributing to the semi-symmetry map. 
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similar to the one shown in Figure 8A but including, also, the retrosplenial cortex 

(Figure 17A). Subsequently, we constructed the state-dependent maps (see the 

Methods for details), in which each edge connected brain regions, which were 

consistently simultaneously active in a behavioral state-specific manner within and 

across experimental animals (Figure 17B-D). The circles indicate instances in which 

pairs of active subregions of a multi-ROI were located within the same anatomical 

region. 

Independent from the behavioral state, the simultaneously active subregions were 

found either close to each other (e.g. within the same anatomical region) or up to 

several mm apart, as exemplified in Figure 17 B and C. In general, the center-to-

center distances between simultaneously active subregions ranged between 0.33 

and 5.78 mm (1st – 99th percentile), with median of 2.12 ± 0.39 mm. When taking 3 

mm as a border between the short- and the long-range activities, the majority of 

activity patterns (72.2 ± 16.52%) belonged to the short-range activity (n = 6 mice; 

Figure 18). When comparing median (per mouse) distances between the 

subregions active during the motion and the resting states, no significant difference 

was found (motion: 2.13 ± 0.41 mm, rest: 2.23 ± 0.16 mm; Wilcoxon signed-rank 

test z = 0.52, P= 0.69, n=6 mice; Figure 18B). However, consistent with the general 

activity pattern described in Figure 12, the regions contributing to the simultaneous 

activity map differed dramatically between the motion and the resting state. During 

the motion state, the synchronously active subregions were mostly located in the 

anterior (motor, somatosensory) cortical regions, shifting to the posterior (e.g., 

visual) cortical regions during the resting state (Figure 17C). Interestingly, auditory 

and retrosplenial cortices contributed to the map of simultaneous activity during 

both behavioral states.  
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During the motion period; however, the retrosplenial cortex was predominantly 

active together with the motor cortex, while during the resting state, it was 

predominantly active together with the visual cortex. The median simultaneous 

activity map obtained for all recorded mice (n = 6; Figure 17D) assured the solidity 

of the described above findings. 

 

 
Figure 17 Map of simultaneously active cortical regions. (A) Top view on a P3 mouse cortex. 
Dots are positioned within the respective cortical areas of interest, listed under the image. (B) 
Representative active subregions belonging to one multi-ROI filter, projected on a grayscale image 
of P3 mouse cortex. Fluorescence signals are color-coded with warmer colors indicating higher 
signal intensity. (C) Representative multi-ROI-based maps of simultaneously active regions 
recorded during the two different behavioral states: motion and rest (3 consecutive 10-min-long 
image series). Nodes represent cortical areas pre-defined in A and edges between two nodes 
depict cases when two simultaneously active subregions are located in the two cortical areas. 
Similarly, circles depict cases when two simultaneously active subregions are located in the same 
cortical area. Numbers along the edges (or circles) represent the normalized number of transients, 
i.e. the fractions of cases occurring either during the motion (left) or the rest (right), respectively (D) 
Same analyses as in B but illustrating median data obtained in 6 different mice. Only the edges and 
circles with values of ≥50% are shown. 
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Figure 18 Distance between simultaneously active cortical subregions. (A) Cumulative 
probability functions of all pairwise distances between the centers of simultaneously active 
subregions belonging to the same multi-ROI filters during motion (left panel) and resting (right panel) 
periods. Distributions obtained in different mice (n = 6) are shown in different colors. (B) Box-and-
whisker plot showing median (per mouse) distances between the centers of coherently active 
subregions (n = 6 mice). 

 

Waves of activity propagating through the neonatal cortex 
 

So far, when describing the observed activity patterns, we have mostly considered 

their spatial dimension. With the temporal dimension added (see the Methods for 

details), the observed neonatal activity patterns represented waves of activity either 

propagating in a given direction (e.g., Figure 19A, left panel) or waxing and waning 

in magnitude and spatial area involved without any apparent movement of the 

wave’s center of mass (so-called stationary waves). Of all propagating waves 

observed, the majority (81 ± 25%) was recorded during the motion period with a 

significantly smaller fraction of waves (19 ± 25%; Paired student's t-test, t5 = 3.21, P 

= 0.02) being recorded at rest (Figure 19B, left panel). A similar trend was also 

observed for stationary waves (Figure 19B, right panel) but the difference did not 

reach the level of statistical significance (motion: 81 ± 36%, rest: 19 ± 34%).  

Next, we characterized the fractions of waves invading different anatomical regions 

(i.e., motor, somatosensory, auditory, visual and retrosplenial cortices) of the right 

and the left hemispheres during the two behavioral states. For both propagating and 

stationary waves, we did not observe any differences between the left and the right 
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hemisphere for any condition tested (Repeated Measures ANOVA; Figure 20A: F1, 

5= 3.53, p=0.12; Figure 20B: F1, 5= 2.83x10-4, p=0.98; Figure 20C: F1, 5= 4.13, p=0.1; 

Figure 20D: F1, 5= 0.001, p=0.98). 

 

 

 
Figure 19 Stationary and propagating Ca

2+
 waves in the neonatal mouse cortex. (A) The left 

panel shows a top view on the right hemisphere of a P3 mouse cortex with an example of a 
propagating wave. The direction of movement is color-coded from green to red. Blue stars depict the 
location of the center of mass in each frame (see the Methods). Broken line delineates the contour of 
the brain area imaged in this experiment. The middle panel is a superposition of propagating waves 
recorded in this animal in 6 min. False colors reflect the number of waves each pixel was involved 
into (see the scale bar), the corresponding center of mass trajectories are depicted as red lines. The 
right panel is a superposition of stationary waves recorded in this animal in 6 min. Red lines depict 
the center of mass trajectories of each wave. (B) Box-and-whisker plots showing median (per 
mouse) fractions of propagating (left panel) and stationary (right panel) waves happening during 
motion and rest, respectively (n = 6 mice). For each mouse, the number of propagating waves during 
the motion (or rest) was normalized to the number of all propagating waves recorded. Similar 
normalization procedure was used for stationary waves. 
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Figure 20 Stationary and propagating waves in the neonatal mouse cortex. (A and C) Median 

(per mouse) fractions of propagating (A) and stationary (C) waves invading the respective cortical 
areas in the left (L) and the right (R) hemisphere. (B and D) Similar analyses as in A and C but 
illustrating fractions of pacemakers for propagating (B) and stationary (D) waves located in the given 
cortical area (n = 6 mice). 
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Figure 21 Region dependent stationary and propagating Ca

2+
 waves in the neonatal mouse 

cortex. (A and B) Box-and-whisker plots showing averaged between the two hemispheres median 
(per mouse) fractions of propagating (A) and stationary (B) waves invading the respective cortical 
areas. (C and D) Similar analyses as in A and B but illustrating median (per mouse) fractions of 
pacemakers for propagating (C) and stationary (D) waves located in the given cortical region (n = 6 
mice). To calculate the fraction of propagating/stationary waves in a given cortical region during the 
motion/rest the number of propagating waves observed in this region during this particular state 
was normalized to the number of all propagating waves detected in this state. 
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Therefore, for further analyses, we averaged the data from both hemispheres 

(Figure 21). During the motion state the highest fraction of both propagating (23 ± 

4.5%, Figure 21A) and stationary (27 ± 8.5%, Figure 21B) waves invaded the 

somatosensory cortex, whereas at rest the waves mostly invaded somatosensory, 

auditory and visual cortices (9.75 ± 4%, 15.75 ± 4.5%, 11.75 ± 6% for propagating 

and 13 ± 9.5%, 18.75 ± 7.5%, 9.75 ± 4.5% for stationary waves, respectively). Next, 

we analyzed locations of pacemakers (defined as described in the Methods), 

initiating a given type of activity. During the motion state, the pacemakers were 

 

 
Figure 22 Distance and velocity of propagating waves. (A) Cumulative probability functions of all 
distances traveled by propagating waves during motion (left panel) and resting (right panel) time 
periods. Distributions obtained in different mice (n = 6) are shown in different colors. The dashed line 
marks the empiric border (1.5 mm) between the waves propagating over the short and the long 
distances. X-axes are shown in logarithmic scale. (B) Box-and-whisker plot showing median (per 
mouse) distances traveled by propagating waves during motion and resting time periods (paired 
Student’s t-test, t5 = 0.34, P = 0.75). (C) Cumulative probability functions of all average apparent 
velocities of propagating waves recorded during motion (left panel) and resting (right panel) time 
periods. X-axes are shown in logarithmic scale. (D) Box-and-whisker plot showing median (per 
mouse) apparent velocity of propagating waves during motion and resting states. Obtained values 
are significantly different (paired Student’s t-test, t5 =4.3, P = 0.008). 
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mostly located in the somatosensory cortex (25.5 ± 6.5% of pacemakers for 

propagating (Figure 21C) and 27.25 ± 8.5% for stationary (Figure 21D) waves, 

respectively). During the resting state the pacemakers were mostly distributed 

between the somatosensory, auditory and visual cortices (11.75 ± 5.5%, 18 ± 5%, 

13.5 ± 7.5% of pacemakers for propagating and 13 ± 10%, 19 ± 7.5%, 9.75 ± 5% for 

stationary waves, respectively). The overall similarity in the distributions of waves 

invading a given cortical area and their pacemakers suggests that the majority of 

waves spread over rather short distances.  

To test this assumption, we analyzed the distances traveled by the centers of mass 

of all propagating waves in our dataset. In general, the propagating waves spread 

over distances of 0.22 - 4.76 mm (1st – 99th percentile), with the median of 0.47 ± 

0.02 mm (n = 6 mice, not differentiating between motion and rest). When taking 1.5 

mm as a border between the waves propagating over short- vs. long distances, the 

majority (91 ± 2% of waves) spread over the short distances. The apparent center 

of mass velocity ranged from 0.06 till 3.5 mm/s (1st – 99th percentile), with the 

median of 0.38 ± 0.05 mm/s (n = 6 mice). When comparing the properties of waves 

propagating during the motion and the resting states (Figure 22), there was no 

significant difference between the distributions of median (per mouse) propagation 

distances (motion: 0.47 ± 0.02 mm, rest: 0.47 ± 0.06 mm; Paired student's t-test t5 = 

0.34, P = 0.75, n = 6 mice; Figure 22B) but the respective propagation velocities 

(Figure 22D) were significantly different (motion: 0.42 ± 0.05 mm/s, rest: 0.28 ± 0.13 

mm/s; Paired student's t-test t5 = 4.31, P = 0.01, n = 6 mice).  

Thus, the spontaneous neuronal activity in the dorsal cortex of neonates contains a 

rich and spatially complex pattern of both stationary and propagating waves. The 

majority of the propagating waves are associated with the animal’s movement, 

whereas stationary waves seem to occur with roughly similar incidence during the 
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movement and the resting periods. Interestingly, the waves of both types are 

triggered predominantly in the somatosensory or auditory cortices.  

Functional connectivity map of early cortical activity 
 

Spontaneous correlated neuronal activity is believed to represent a functional 

template for activity-dependent maturation of intracortical connections and the 

refinement of functional units underlying information processing at adulthood 

(Hanganu-Opatz, 2010; Luhmann et al., 2016). To test for functional connectivity 

between the different cortical regions (Figure 23), we used a sparse inverse 

covariance matrix estimation algorithm (see the Methods for details). This analysis 

was shown to measure the direct association between the two brain regions 

removing the contributions caused by global or third-party effects (for more details 

on the method we refer the reader to ref. (Huang et al., 2010)). 

The level of the sparseness of the algorithm’s outcome was controlled by the tuning 

parameter γ. Thanks to the monotone property of the algorithm used (Huang et al., 

2010), increasing γ monotonically increases the level of the sparseness of cortical 

connectivity at the expense of weaker connections. As shown in Figure 23 (upper 

panel), at low values of γ, we have observed direct functional connections within 

and in-between of many anatomical regions, defined as illustrated in Figure 17A. 

However, the majority of these connections were weak because they disappeared 

with an increasing γ (Figure 23, lower panel). The remaining strong connections 

emphasized the short-range intraregional connectivity as well as behavioral state-

specific long-range connections between the more anterior regions during motion. 

Interestingly, the method identified the strong and direct functional link between the 

ipsilateral retrosplenial and somatosensory cortices, present during both behavioral 

states, as well as some prominent state-specific connections (Figure 23). 
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Together, these data reveal that in neonatal mice, functionally connected cortical 

subregions are distributed through the entire dorsal cortical surface. The 

connectivity pattern is characterized by dense short-range connections, linking 

different subregions of the given anatomical area, as well as sparse long-range 

connections. The latter differ substantially between the resting and the motion state. 

These differences are highly conserved across experimental animals, thus reflecting 

typical activity patterns of the neonatal brain. 

 

 

 

 
Figure 23 Functional connectivity map. Direct connectivity maps calculated for motion (left panels) 
and resting (right panels) periods with two different values of γ (see the Methods). Nodes represent 
cortical regions of interest predefined in Figure 17A and edges between the two nodes show the 
direct connectivity between the two cortical regions. Edge thickness represents the median strength 
of connections between the two cortical regions. Similarly, circles depict connectivity within the given 
cortical region and thickness of each circled line shows the median strength of connections in this 
cortical region. Median of data obtained from 6 different animals. 
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Discussion 
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The current study provides a unifying view on the spontaneous neuronal activity in 

the dorsal cortex of neonates. It shows that in the awake state this activity is 

represented by a complex mixture of local events, often limited to a given cortical 

region, and large scale fluorescence changes (global events) (Figure 8B). Analysis 

of spatial pattern of spontaneous activities (Figure 11A), showed dramatic 

difference between the two behavioral states, where complex mixture of local and 

large scale fluorescence changes covering the most recorded area of the cortex 

during the motion period and a prominent activation of posterior cortical areas 

during the resting period. Interestingly, these large scale fluorescence changes 

occurred after the onset of the motion (Figure 8C, blue dash line and gray line). 

Moreover, the existence of the large scale fluorescence change during the motion 

period was also observed in C57BL/6 mice (data is not shown) which do not 

express the Ca2+ indicator GCaMP6. Therefore, this suggests that the observed 

large scale fluorescence changes are unspecific and one possible reason for 

observing such events might be the motion artifact which was not fully corrected 

during preprocessing step.  

The spatially-restricted Ca2+ transients represented the predominant type of activity 

at rest. These findings identify spatially-restricted Ca2+ signals as the main type of 

spontaneous network activity in the neonatal cortex. In-depth characterization of this 

type of activity revealed (i) its rich spatio-temporal structure comprising distributed 

patches of coherent activity in spatial as well as propagating and stationary waves 

in spatio-temporal domains, (ii) its genuine hemispheric asymmetry in the spatial 

domain, (iii) its ontogenetically-conserved and non-overlapping behavioral state-

specific spatial maps, and (iv) the surprising existence of long-range functional 

connections, often involving the retrosplenial cortex, at the developmental stage at 

which anatomical long-range connections are either not yet developed or immature 
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(Hartung, Brockmann, Pöschel, De Feo, & Hanganu-Opatz, 2016; Tagawa & 

Hirano, 2012). 

Strikingly, local cortical activity patterns recorded during the motion and the resting 

states turned out to be almost inverse with very little overlap between the two. 

During the motion activity was restricted to the somatosensory-motor area (compare 

active area in Figure 12A to the map of the adult mouse brain in ref.(Vanni, Chan, 

Balbi, Silasi, & Murphy, 2017)), consistent with the cumulative knowledge derived 

from earlier reports (An et al., 2014; Rustem Khazipov et al., 2004; D. A. McVea et 

al., 2012; Tiriac et al., 2012) as well as with recent data showing that active wake 

movements suppress spontaneous neural activity in the visual cortex of neonatal 

rats(Mukherjee, Yonk, Sokoloff, & Blumberg, 2017). In contrast, during the rest local 

activity completely spared the above areas being restricted to the visual, auditory 

and retrosplenial cortex as well as lateral cortical areas, such as, for example, the 

temporal cortex, known for its movement-independent spontaneous network activity 

(Adelsberger et al., 2005). 

Such sharp segregation of the activity patterns is surprising also in view of the fact 

that during the developmental stage studied here, both motion and rest are 

behaviorally heterogeneous. Indeed, motion comprises both generalized 

movements happening during wakefulness, and muscle twitches mainly observed 

during active sleep (Seelke et al., 2005; Tiriac, Del Rio-Bermudez, & Blumberg, 

2014). Similarly, the resting period might also include both quiet wakefulness and 

quiet sleep. Because under our experimental conditions the overall duration of 

muscle twitches comprised only 5 - 16% of the total movement time, the described 

here motion-related activity pattern is dominated by the one caused by wake-related 

generalized movements. Still, it is consistent with the activity pattern, seen by others 

during spontaneous muscle twitches (D. A. McVea et al., 2012; Tiriac et al., 2012). 



67 
 

Thus, under conditions when animal’s limbs are free to interact with each other and 

the supporting surface, both kinds of self-generated movements discussed above 

(predominantly wake-related generalized movements: current study, muscle 

twitches: refs. (Rustem Khazipov et al., 2004; D. A. McVea et al., 2012; Tiriac et al., 

2014, 2012) cause a robust and predominantly reafferent neuronal activity in the 

somatosensory-motor area of the cortex. Whereas muscle twitch-related activity is 

spatially confined and organized in a somatotopic manner (Rustem Khazipov et al., 

2004; D. A. McVea et al., 2012), activity patterns associated with wake-related 

generalized movements often cause global cortical signals. 

Considering the cortical areas involved in the behavioral state-specific patterns of 

spontaneous network activity, our work has identified the unique binding role of the 

retrosplenial cortex, an area (i) involved in both motion- and rest-related ongoing 

activities, especially in their hemisphere-symmetric subtypes and (ii) maintaining 

strong long-range functional connections with many other studied cortical regions. 

Although the consensus on the precise function of this cortical area is still missing, 

evidence from both human and animal studies points to its role in spatial navigation, 

visuospatial integration and hippocampus-related learning and memory (Czajkowski 

et al., 2014; Vann, Aggleton, & Maguire, 2009). Moreover, in humans, retrosplenial 

cortex was shown to be active during the resting brain state, thus belonging to the 

so-called “default mode network” (Vann et al., 2009). Whereas many areas 

belonging to the default mode network are known to decrease their activity upon 

engagement into a cognitive task (Anticevic et al., 2012), this is not the case for the 

retrosplenial cortex, which increases its activity, for example, during tests of spatial 

navigation and autobiographical memory retrieval (Vann et al., 2009). Of special 

interest is also the fact that although areas involved into default mode network vary 

across different age groups, this is not the case for the retrosplenial cortex, which 
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represents its inherent part from early infancy through adolescence into adulthood 

(Vann et al., 2009). Thus, both in humans and now also in mice from early on the 

retrosplenial cortex seems to represent a functional bridge between the default 

mode network active at rest and task- or movement-specific neural networks 

coordinating ongoing activity in the sensorimotor system. To do so, the retrosplenial 

cortex engages into behavioral state-specific coherent activity with the respective 

cortical areas: visual cortex at rest and somatosensory cortices during motion. The 

long-range nature of the latter functional connections is in marked contrast with the 

developmental state of the immature P3 mouse brain, in which long-range 

anatomical connections are immature (Hartung et al., 2016; Tagawa & Hirano, 

2012). Interestingly, a recent study of the ferret visual cortex also discovered long-

range (albeit intra-regional) functional connections at the developmental stage (P21 

- 22 in ferret) similar to the one studied here (G. B. Smith et al., 2018). To explain 

their data, the authors presented a dynamical rate network model, which in a regime 

of strongly heterogeneous local connectivity and moderate input modulation 

produces pronounced long-range correlations, similar to the ones observed in an 

experiment. Noteworthy, the spatial structure of the correlated activity produced by 

the model was fairly robust against changes in input drive strength, in agreement 

with author’s data that long-range correlations persisted in the immature cortex 

even after silencing the main driving input (i.e., spontaneous retinal waves reaching 

the visual cortex via the lateral geniculate nucleus (G. B. Smith et al., 2018)). The 

described above findings suggest that neonatal brain utilizes local spontaneously 

active inputs to drive the correlated activity of distant cortical regions, thus providing 

the template for activity- and Ca2+-dependent growth and branching of long-range 

axonal projections (Tagawa & Hirano, 2012). Indeed, the anatomical studies in adult 

rodents suggest that retrosplenial cortex, to stay with this example, is directly linked 
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with anterior cingulate, motor and visual cortices (Vann et al., 2009; Yamawaki, 

Radulovic, & Shepherd, 2016). 

Together, the knowledge obtained in the present study binds different region-

specific activity patterns described so far by us and others into a single consistent 

picture. Besides the suggested role of this activity in synchronizing the development 

of cortical microcircuits (Golshani et al., 2009), our data suggest its involvement in 

macrocircuit development by showing that neonatal cortical activity is capable of 

generating both long-range functional coherence between selected cortical areas 

and global activity engaging the entire cortex. Moreover, it identifies both stationary 

and propagating waves as putative building blocks of the endogenous brain activity 

in neonates and sets the stage for future inactivation studies probing the exact 

function of this complex activity pattern for activity-dependent cortical wiring during 

the precritical period(Feller & Scanziani, 2005). 
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