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I. Summary of the Dissertation 

Throughout the last decades, substantial technological innovations in mass spectrometry (MS) 

fueled a continuous progress in analytical chemistry and enabled the accelerated exploration 

of various “omics” branches. Lipidomics, a subset of metabolomics, has recently attracted 

increasing attention, since lipids, with their diverse physiological functions as structural 

components of membranes, energy depots and signaling molecules, have been recognized as 

significant factors in disease onset and progression, e.g. for central health concerns like 

cardiovascular disease and cancer. Besides the improved instrument hardware, also analytical 

strategies and bioinformatics have advanced to yield reliable qualification and quantification, 

which aid in the ongoing decryption of the lipidome and its pathways and networks. 

To obtain sufficient sensitivity, selectivity and analyte coverage, hybrid quadrupole time-of-

flight (QTOF) mass spectrometers are often utilized, as their rapid acquisition rates allow to 

combine the recording of high resolution mass spectra with the hyphenation to ultra-high 

performance liquid chromatography (UHPLC). Along with the introduction of sequential window 

acquisition of all theoretical fragment ion mass spectra (SWATH), a powerful tool for true 

comprehensive analysis was made available. 

In this thesis, the potential of a UHPLC-QTOF platform was exploited to achieve a maximum 

yield of extractable information from biological samples in the context of lipidomic workflows. 

Besides the comparison of different lipid extraction strategies for HeLa cells, also the 

development of a specialized sample preparation protocol for plasma steroids was conducted. 

Together with SWATH acquisition and a thorough optimization of MS parameters, absolute 

quantification of low picomolar levels of testosterone and estradiol was attained. An obstacle 

for the quantification of endogenous compounds is typically the lack of a true blank matrix, 

which was compensated by surrogate calibration via 13C3-labeled target analyte analogues. 

The established method was validated according to international guidelines and the accuracy 

and precision were additionally verified by the analysis of external quality control (QC) 

samples. Later, over 300 clinical samples were analyzed and the obtained results were utilized 

to monitor and interpret the influence of estradiol treatment on food intake in healthy men. The 

observed lowered protein consumption was shown to be independent from alterations in 

macronutrient ingestion induced by insulin administration. Furthermore, the merged 

targeted/untargeted study design enabled simultaneous screening of additional steroids and 

revealed a significant reduction in epitestosterone, dihydrotestosterone and 

hydroxyprogesterone levels after estradiol intake. 

Moreover, in the framework of an exclusively untargeted lipidomic study, different 

normalization strategies, which are usually required to control for unwanted variation, were 

assessed. After compiling a QC-based workflow to effectively compare the performance of 
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normalization methods, novel guidelines for selecting the best suitable strategy, while 

maintaining data integrity, were proposed. In addition, a script-based statistical and 

bioinformatical tool was provided as an open source solution to facilitate the implementation 

of these guidelines into the existing data processing workflows. Eventually, a contribution 

towards the necessary harmonization of data handling approaches in untargeted lipidomics 

was supplied for the scientific community. 

In spite of the increasing efforts in untargeted analysis, the majority of studies is still only able 

to report results as relative foldchanges. Without absolute quantification, though, comparability 

to other studies or databases is limited and follow-up experiments have to be conducted to 

estimate reference or abnormal levels of potential biomarkers. To overcome this issue, a study 

with deuterated, lipid class-specific standards as class-wide surrogate calibrants was 

designed. Matrix-matched calibrants and QCs were incorporated into the analytical sequence 

of an untargeted plasma study and precision and accuracy for representative surrogate lipids 

was validated. Lipid species were separated with a reversed-phase UHPLC method and data 

was acquired using SWATH. Due to different ionization efficiencies and instrument responses 

between lipid species, which depend on carbon chain length, degree of saturation, matrix 

effects and solvent composition during elution, response factors had to be considered for 

class-wide extrapolation of absolute concentrations. It could be demonstrated that surrogate 

calibration resulted in more accurate quantification of lipid levels than one-point calibration. 

With post-acquisition re-calibration, which is describing the experimental determination of 

response factors after analysis and data processing for lipids of interest, a workflow, that is 

capable to estimate lipid levels in untargeted assays, was suggested. 
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II. Zusammenfassung der Dissertation 

In den vergangenen Jahrzehnten haben beachtliche technologische Innovationen in der 

Massenspektrometrie (MS) einen kontinuierlichen Fortschritt der analytischen Chemie 

vorangetrieben und die Erforschung verschiedener „Omik“ Bereiche beschleunigt. Die 

Lipidomik, ein Teilgebiet der Metabolomik, hat in letzter Zeit zunehmend Aufmerksamkeit 

erregt, da Lipiden ein signifikanter Einfluss beim Ausbruch und Verlauf von weitläufigen 

Krankheiten wie Krebs oder Herz-Kreislauf-Erkrankungen zugesprochen wird. Dies ist vor 

allem auf ihre vielfältigen physiologischen Aufgaben, z.B. als Membranbausteine, 

Energiespeicher und Signalmoleküle, zurückzuführen. Neben der verbesserten Geräteleistung 

haben sich auch die analytische Herangehensweise und die Methoden der Bioinformatik 

weiterentwickelt. Hierdurch wurden Grundlagen für eine zuverlässige Qualifizierung und 

Quantifizierung geschaffen, die bei der stetigen Entschlüsselung des Lipidoms sowie der damit 

verbundenen Stoffwechselwege und metabolischen Netzwerke, hilfreich sind. 

Damit eine ausreichende Empfindlichkeit, Selektivität und Analytabdeckung erreicht werden 

kann, setzt man häufig Quadrupol-Flugzeit-Massenspektrometer (QTOFs) ein, da ihre 

schnellen Aufnahmegeschwindigkeiten die Generierung von hochauflösenden 

Massenspektren während der Kopplung an Ultra-Hochleistungs-Flüssig-Chromatographie 

(UHPLC) erlauben. Mit der Einführung einer ergänzenden Akquisitionstechnik namens 

SWATH (engl.: sequential window acquisition of all theoretical fragment-ion spectra) wurde ein 

leistungsstarkes Hilfsmittel für eine umfassende Analytik zur Verfügung gestellt. 

In der folgenden Arbeit wurde das Potenzial eines UHPLC-QTOF Instruments genutzt, um bei 

der Untersuchung des Lipidoms in biologischen Proben den maximalen Informationsgewinn 

zu erzielen. Neben dem Vergleich verschiedener Extraktionsprotokolle für HeLa-Zellen wurde 

zudem die Entwicklung einer spezialisierten Probenaufbereitungsmethode für Plasma-

Steroide durchgeführt. Mit Hilfe von SWATH und einer sorgfältigen Optimierung der 

massenspektrometrischen Parameter, wurden Bestimmungsgrenzen im niedrigen 

picomolaren Bereich für Testosteron und Estradiol erreicht. Ein Hindernis bei der 

Quantifizierung endogener Verbindungen ist üblicherweise das Fehlen einer echten 

Leermatrix. Dies konnte jedoch durch den Einsatz einer sogenannten Surrogat-Kalibrierung 

mittels 13C3-markierten Analoga der Zielanalyte kompensiert werden. Die fertige Methode 

wurde nach internationalen Richtlinien validiert und Präzision und Richtigkeit wurden 

zusätzlich über externe Qualitätskontrollproben bestätigt. Anschließend wurden über 300 

klinische Proben vermessen. Anhand der erhaltenen Ergebnisse konnte der Einfluss einer 

Estradiol-Behandlung auf die Nahrungsaufnahme bei männlichen Probanden überwacht und 

interpretiert werden. Dabei wurde ein verringerter Proteinkonsum festgestellt, der unabhängig 

von Veränderungen der Makronährstoffaufnahme ist, welche durch Insulingabe induziert 
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werden. Durch das kombinierte Studiendesign, welches neben den Zielanalyten eine 

ungezielte Detektion von Analyten erlaubt, war es zudem möglich nach weiteren Steroiden in 

den Proben zu suchen. Hierdurch konnte gezeigt werden, dass eine signifikante Abnahme der 

Epitestosteron-, Dihydrotestosteron- sowie Hydroxyprogesteron-Level durch die Einnahme 

von Estradiol verursacht wurde. 

Des Weiteren wurden im Rahmen einer anderen Studie, welche ausschließlich auf die 

ungezielte Detektion von Analyten ausgerichtet war, verschiedene Methoden zur 

Normalisierung beurteilt. Diese werden für gewöhnlich angewendet um ungewollte Variationen 

in den Proben zu verringern. Nachdem ein auf Qualitätskontrollproben basierender 

Arbeitsablauf zur effektiven Beurteilung der Güte einer Normalisierung zusammengestellt 

wurde, konnten neue Richtlinien zur Auswahl der bestmöglichen Strategie vorgeschlagen 

werden. Ein wichtiger Aspekt war dabei auch, die Überprüfung der Plausibilität der Daten nach 

der Normalisierung. Darüber hinaus wurde ein bioinformatisches und statistisches Open 

Source Skript zur Verfügung gestellt, welches eine vereinfachte Implementierung der 

formulierten Richtlinien in bestehende Abläufe zur Datenprozessierung gewährleisten kann. 

Dadurch wurde letztendlich ein Beitrag für die wissenschaftliche Gemeinschaft erbracht, der 

zur erforderlichen Harmonisierung der Datenhandhabung bei ungerichteten Lipidomanalysen 

genutzt werden kann. 

Trotz des erhöhten Aufwands bei ungerichteten Analysen, wird bei den meisten Studien nur 

eine relative Quantifizierung erzielt. Ohne absolute Konzentrationsangaben ist die 

Vergleichbarkeit mit anderen Studien oder Datenbanken jedoch eingeschränkt und 

Folgeversuche zur Abschätzung von abnormalen Konzentrationen oder Referenzbereichen 

potenzieller Biomarker müssen unternommen werden. Um diesem Problem entgegenzuwirken 

wurde eine Studie initiiert, bei der deuterierte, Lipidklassen-spezifische Standardsubstanzen 

als Surrogat-Kalibranten verwendet wurden. Hierdurch sollte eine klassenbasierte 

Quantifizierung realisiert werden. Kalibranten und Qualitätskontrollproben der Surrogat-

Substanzen wurden in unbehandeltem Plasma hergestellt und in die Sequenz einer 

ungerichteten Plasmalipid-Studie eingebettet. Dabei wurde die Präzision und Richtigkeit der 

Surrogat-Kalibranten überprüft und validiert. Die einzelnen Lipidspezies wurden über eine 

Umkehrphasen-UHPLC Methode getrennt und mittels SWATH analysiert. 

Aufgrund von abweichenden Ionisierungseffizienzen und Unterschieden in der Signalstärke 

zwischen Lipidspezies, welche von der Kettenlänge, vom Sättigungsgrad, von Matrixeffekten 

und von der Zusammensetzung der mobilen Phase während der Elution abhängen, mussten 

sogenannte Response-Faktoren beachtet werden um eine klassenweite Extrapolation der 

Ergebnisse zu gewährleisten. Es wurde aufgezeigt, dass die Surrogat-Kalibrierung eine 

genauere Quantifizierung von Lipiden erlaubt als eine Ein-Punkt-Kalibrierung.  



 

IX 

Durch eine neu formulierte Strategie der „Post-Akquisition Re-Kalibrierung“, welche die 

experimentelle Bestimmung von Response-Faktoren für Lipide von besonderem Interesse 

nach der Messung und Datenprozessierung beschreibt, wurde ein möglicher Arbeitsablauf 

angedeutet, mit dem eine Abschätzung von Lipidgehalten in ungezielten Analysen vollzogen 

werden kann. 
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1. Introduction 

1.1. Lipidomics 

Following groundbreaking analytical developments in DNA-sequencing,1,2 genomics emerged 

as the first “omics” field and initiated the rise of various other disciplines like proteomics, 

transcriptomics and metabolomics. As one of the most recent research areas amongst omics, 

lipidomics was introduced in 2003 as a subset of metabolomics3 and has ever since attracted 

a continuously increasing scientific interest (Figure 1). This trend was also fueled by analytical 

advancements, in particular in instrumentation and acquisition techniques of mass 

spectrometry (MS) (see Chapter 1.2), which enabled the iterative construction of 

characteristics, pathways and networks of the lipidome. 

 

Figure 1. Published research in metabolomics and lipidomics. Data extracted from the PubMed 
database,4 showing the number of articles that include metabolomics and lipidomics as keywords. 

 

In general, lipids are summarized as biological compounds that are soluble in nonpolar 

solvents.5 Given this simplified description, it is likely to underestimate the complexity and 

structural diversity of biological lipids, which is captured in the LIPID MAPS Structure Database 

(LMSD),6 the most comprehensive, public lipid database with 43,413 distinct entries (access 

date: 07/01/2019). For clarification and harmonization, a designated expert consortium7,8 

established a classification system that divides biological lipids into eight categories: fatty 

acyls, glycerolipids, glycerophospholipids, polyketides, prenol lipids, saccharolipids, 

sphingolipids and sterol lipids (Figure 2). Moreover, a nomenclature system to precisely define 
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structures of acyl/alkyl chains including carbon count, degree of saturation, stereochemistry 

and double-bond geometry was introduced,6 which was also adopted for this work. 

 

Figure 2. Distribution and exemplary structures of biological lipid categories. Data according 
to LMSD6. Lipid categories can be further separated into classes and subclasses6-8. 

 

The vast complexity of the lipidome is also reflected in the diverse biological functions that are 

exerted by lipid compounds. Primarily, lipids create membranes by formation of bilayers,9 

which represent the vital process of compartmentalization of cells and organelles. Besides its 

properties as molecular barriers, membrane lipids also influence signaling of embedded 

proteins via regulatory membrane-protein interactions.10 Many others, e.g. eicosanoids, 

phosphoinositides and sterol lipid hormones, act directly as messengers and control cellular 

functions via intra- and extracellular signaling.11 Furthermore, key roles as energy depots, co-

factors, pigments and vesicular transport units have been assigned to lipids.12,13 

The deep involvement in numerous physiological processes emphasizes the great potential to 

discover novel biomarker candidates amongst lipid compounds. Many clinical manifestations 

like Alzheimer´s disease,14 atherosclerosis,15 breast cancer,16 cardiovascular disease,17 

diabetes,18 liver cancer,19 obesity,20 and prostate cancer21 were already shown to be 

associated to significant changes of the lipidome. These findings have put lipidomics on the 

verge to enter clinical application22 and will contribute to realize personalized medicine.23 

Overall, the strong relevance of lipid metabolism has been recognized by the scientific 

community, which is aiming for comprehensive exploration of the lipidome. Ultimately, by 
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interconnecting the findings of omics disciplines, a holistic understanding of physiological 

processes in health and disease is pursued. Continuous analytical innovation is mandatory 

and will play a central role as a pacemaker to achieve set goals. 

 

1.1.1. Sample Preparation 

The biggest contribution to measurement uncertainty in an analytical workflow is introduced in 

the pre-analytical phase24 from where random or systematic errors will propagate and yield 

inaccurate results. Good analytical practices therefore need to be respected already during 

sample collection and sample storage. Sample type-specific considerations to obtain 

homogenous and representative portions of body fluids or tissues are obligatory, including pre-

acquisition normalization procedures, e.g. adjustments according to DNA/protein 

concentration, cell count or dry weight.25 Moreover, any contamination that affects analyte 

integrity as well as hemolysis have to be strictly avoided, as the obtained results will lead to 

misinterpretation and erroneous inter-study comparison. 

As some lipids are sensitive compounds that can undergo post-sampling modifications by 

oxidation, peroxidation or hydrolysis,26 instant quenching of enzymatic activities by immediate 

sample processing or low temperature (-80 °C) storage, optimally under inert gas (such as 

argon) and in appropriate, light-absorbing containers, is advised.27 To further avoid 

degradation during storage or thawing, also degassing or addition of antioxidants is 

administered, in particular during sample preparation in oxylipin analysis or oxylipidomics in 

general.28 

Lipid extraction from biological samples involves a variety of organic solvents like chloroform 

(CHCl3),29,30 methanol (MeOH),29-31 butanol,32 methyl-tert-butyl ether (MTBE),33,34 hexane,31 

and isopropanol (IPA),35-37 which provide an enhanced solubility for lipophilic compounds and 

dispatch proteins via precipitation. Depending on the miscibility of the used solvent with water, 

extraction approaches can be generally divided into monophasic and biphasic protocols. 

Traditional methods are based on biphasic extraction using CHCl3/MeOH/H2O mixtures 

according to the protocols of Bligh and Dyer29 or Folch.30 Although being most widely used 

over decades, certain drawbacks exist: (i) the desired organic phase, predominantly containing 

CHCl3 (ρ = 1.49 g/cm3, 25 °C)), is accumulated at the bottom, topped by the protein-rich 

interphase and the aqueous phase. Collection of the organic phase is aggravated as the upper 

phases have to be fully removed or penetrated, leading to enhanced risk for contamination; (ii) 

CHCl3 has to be treated with stabilizing agents to prevent accumulation of phosgene and 

hydrochloric acid and consequential modification of susceptible lipids;38 (iii) CHCl3 toxicity as 

a carcinogenic substance increases environmental and personnel health risks;39 (iv) CHCl3 is 

incompatible with most plastic laboratory materials used for extraction tubes and pipette tips 
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(e.g. polypropylene)40 and usage of glassware is strongly recommended; (v) high volumes are 

needed e.g. Folch´s extraction requires a CHCl3/MeOH/H2O-ratio of 8:4:3 (v:v). Biphasic 

protocols are therefore trending towards alternative extraction solvents like MTBE. Its major 

benefit is the low density (ρ = 0.74 g/cm3, 20 °C), which enables formation of the organic phase 

as the upper layer, which is highly simplifying the collection process. Moreover, MTBE is non-

halogenated and shows a favorable toxicity profile.34 Nevertheless, (iv) and (v) also apply to 

MTBE, which is diminishing its usage in automated, high-throughput workflows like 96-well 

plates.41 

Monophasic extraction is carried out via addition of water-miscible organic solvents (i.e. IPA, 

MeOH, acetonitrile (ACN)). Here, precipitated proteins are easily removed by subsequent 

centrifugation of the mixture (sometimes after storage at reduced temperatures to complete 

protein precipitation) and the resulting supernatant can be directly analyzed, if no 

supplementary processing is conducted. Added volumes are much lower than for biphasic 

extraction as a minimum ratio of 2.5:1 (organic solvent:sample, v:v) has been shown to achieve 

sufficient removal of proteins for plasma samples.42 These minimum steps in preparation not 

only provide a time effective sample handling but also have less potential to introduce variance, 

which is ultimately resulting in improved precision.36 IPA-based protocols have been shown to 

yield comparable or superior results regarding lipid coverage,35,36 since also polar lipid classes 

like lysophosphatidylcholines (LPCs) or free fatty acids (FFAs) are efficiently extracted (see 

Figure 3). On the other hand, also polar, non-lipid compounds are obtained by IPA-extraction, 

which can cause interference or matrix effects e.g. in direct-infusion mass spectrometry (i.e. 

shotgun MS). When using reversed-phase (RP) liquid chromatography (LC) in conjunction with 

MS, this effect can be neglected, as polar impurities are separated from major lipid classes  

 

Figure 3. Comparison of the lipid extraction profiles of typically used organic solvent systems. 
Nine individual lipid classes were assessed via a representative lipid species (PG, 
phosphatidylglycerole; PC, phosphatidylcholine; PE, phosphatidylethanolamine; SM, sphingomyelin; 
PS, phosphatidylserine; Cer, Ceramide; DG, diacylglycerol; TG, triacylglycerol; C17:0, FFA 17:0). 
Extractions were compared in both polarities of the ESI mode. Error bars indicate standard deviation 
(SD) of the recovery. Reprinted with permission from Sarafian et. al36 (Copyright 2014, American 
Chemical Society). 
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during early gradient progression.43 In conclusion, additionally regarding its cost effectiveness 

and acceptable toxicity profile, IPA is an excellent choice for global lipid extraction and high-

throughput application. 

Lipid extraction yields can be shifted towards specific classes by pH-adjustments, i.e. it has 

been reported that acidification increases recovery for phosphatidic acids (PAs), sphingosine-

1-phosphates (S1Ps) and phosphatidylinositol-phosphates (PIP).44,45 However, acidic 

conditions can also lead to hydrolysis. Accordingly, the duration of the exposure should be 

kept at a minimum when global lipid profiling is the goal.46 

If a more specialized extraction of lipid targets is demanded, like in the case for low abundant 

steroid or eicosanoid species, solid phase extraction (SPE) is the method of choice. Various 

class-specific extraction protocols have been already developed to regulate recovery, 

purification, and enrichment of analytes.26,28,47 

At last, analysis results are also highly dependent on the composition of the injection solvent, 

which ideally shows maximum solubility for all lipids but has no detrimental effects on 

chromatography i.e. peak shape of the analytes including early eluted ones. Micro- or nano-

LC systems in RP mode are particularly prone to peak distortion effects of injection solvents 

with an exceeding elution power, since the injection volume accounts for a relatively high 

proportion of the system volume. Improperly chosen injection solvents (e.g. when drying and 

redissolving is conducted) can in consequence result in premature elution, peak broadening 

and loss in sensitivity.48 

 

1.1.2. Analytical Strategies 

To qualitatively and quantitatively encompass the full lipidome with its immense 

physicochemical diversity is a challenging approach that requires a broad spectrum of 

analytical methodologies. Furthermore, the thousands of distinct lipids in various biological 

matrices show concentrations ranging from picomolar to micromolar levels and are under 

constant dynamic change.49 To date, prominent contributions in lipidomics derive from 

spectroscopy, chromatography and mass spectrometry.50 

Amongst spectroscopic methods, which are capable to observe interactions between 

electromagnetic radiation and matter, nuclear magnetic resonance (NMR) spectroscopy is the 

most noteworthy in the context of lipidomics, as it offers some unprecedented analytical 

properties: (i) non-destructive detection; (ii) high instrumental robustness and analytical 

reproducibility; (iii) elucidation of structural information and molecular dynamics; (iv) direct 

quantitative data.51 Still, its relatively low sensitivity and the convoluted spectra that are 

obtained for complex mixtures are limiting its potential impact on the field.26 
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Currently, main advancements and discoveries in lipidomics are driven by MS analysis, either 

utilizing shotgun methods, hyphenation to LC systems or imaging techniques.26 Highlights of 

shotgun analysis are short run times and the robust quantitative performance due to consistent 

matrix effects and co-detection of internal standards (ISs).52 However, the large quantity of 

analytes that are concurring for ionization can cause significant ion suppression53 and low 

abundant lipids are likely to remain uncaptured. Another issue is in-source fragmentation, 

which can lead to an apparent lipid conversion and ultimately to feature misannotation when 

no orthogonal information like retention time (tR) is present.54 In addition, signal interferences, 

originating from the presence of numerous isobars and isomers,55 are to be expected and 

require sophisticated deisotoping/deconvolution algorithms. Many of these difficulties are 

approached by additional sample preparation efforts,52 intra-source separation and selective 

ionization,56 high-resolution MS instruments57 or accessory ion mobility spectrometry (IMS).58 

In conjunction with chromatographic separation, matrix effects and potential signal 

interferences are drastically reduced, which is making less concentrated compounds 

accessible and improves identification.26 The most widely used chromatographic approach for 

lipidomics is based on RPLC. It provides the separation of complex lipid mixtures and resolves 

lipid species according to their chain length and degree of saturation. Retention time increases 

with number of carbon atoms, while it decreases with number of double bonds.59-61 In contrast, 

lipid class separation can be achieved by hydrophilic interaction liquid chromatography 

(HILIC), since the separation mechanism mainly relies on the polar head groups.62 HILIC, 

currently replacing normal phase LC, is preferably used for quantitative purposes due to the 

co-elution of analytes and class-specific ISs. However, complications, owing to peak 

interferences (as above mentioned for shotgun lipidomics), limit its application. For efficient 

lipid class separation, also supercritical fluid chromatography (SFC) is eligible, which has been 

drawing attention due to rapid run times.63 SFC also allows retention of apolar, neutral lipids, 

like normal-phase LC, which is difficult to achieve with HILIC for what reason neutral lipids 

elute unresolved with or close after t0 in HILIC lipid class separation methods. Another 

promising separation technique for lipidomics is two-dimensional LC (2D-LC), as it can deliver 

increased peak capacity by highly orthogonal retention and elution, e.g. via combination of 

HILIC in the first dimension and RPLC in the second dimension.64 An overview about frequently 

applied workflows is provides in Figure 4. 

The above-mentioned methods allow the analysis of representative biofluids and cell bundles 

or tissue regions. However, it is of great scientific interest to be able to characterize specific 

cell types and its metabolomic pathways in order to decipher mechanisms of disease 

progression. Suitable methods to pursue this goal are predominantly MS-based as well, and 

include single-cell analysis or MS imaging.69-73 
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Zhang et. al65 Contrepois et. al66 Zhou et. al67 Forest et. al68 Lísa et. al63 Contrepois et. al66 

Figure 4. Summary of common workflows. The Lipidyzer platform consists of a QTRAP 5500 and is 
equipped with a SelexION unit for differential ion mobility. 

 

Powerful analytical tools and workflows have been developed in the recent years, though, each 

platform has its specific advantages and disadvantages so that a gold-standard method for 

lipidomic analysis has not yet been proclaimed. Accordingly, further research is simultaneously 

progressing in multiple directions, distributed across the available techniques. Together with 

the steady development of relatively novel technologies, like 2D-LC or IMS, and hyphenation 

of subsidiary instrumentation, the lipidomics community is advancing to solve some of the 

currently existing challenges. 

 

 Mass Spectrometry 

Throughout the last century, MS has evolved to become an indispensable and pervasive 

technology that brought innovation to many scientific fields. Since its first major impact in 1920, 

when the existence of stable isotopes could be verified,74 striking instrumental advancements 

have been made, and many being recognized with a Nobel Prize.75 

The principle of MS relies on the determination of the mass-to-charge (m/z) ratio of ionized 

atoms or molecules by using magnetic and/or electric fields. As effective ionization is still one 

of the biggest challenges of MS, historical improvements of this process have iteratively led to 

broader application. For example, the invention of electrospray ionization (ESI) greatly 

simplified interfacing of LC and MS and directed subsequent developments.76 
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Nowadays, the analytical chemist can access various ionization techniques (see Chapter 

1.2.1) and many technologically advanced instruments to address specific demands. 

Especially LC-MS, owing to its unmatched sensitivity, selectivity, analyte coverage, and 

reliable performance in qualification and quantification, has become the gold-standard method 

in the analysis of biomolecules in complex matrices. Fundamental aspects of MS will be 

discussed in the next chapters. 

 

1.2.1. Ionization 

In order to separate and detect atoms or molecules with MS, gas-phase ions must be present. 

The ionizing conversion is achieved either by electron ejection, electron capture, protonation, 

deprotonation or adduct formation with charged ions.77 The majority of currently used ionization 

methods operate under atmospheric pressure to allow LC coupling or solvent injection, e.g. 

ESI or atmospheric pressure chemical ionization (APCI). Another widely applied method is 

matrix-assisted laser desorption/ionization (MALDI), which is particularly favorable for MS 

imaging.72 

ESI, also utilized for the experimental work in this dissertation, is regarded as the standard ion 

source and is installed in most commercialized MS instruments. Here, a liquid flow (1 – 1000 

µL/min) is directed through a narrow needle or capillary to which a high voltage potential of up 

to ≈ 5 kV is applied.78 Every solvent shows a specific minimum onset voltage for spray 

formation, which depends on its surface tension. With increasing voltage, initially spherical 

drops elongate until the so-called Rayleigh limit is reached (see Figure 5). Here, the liquid flow 

is transformed into a spray by Coulombic explosion due to the accumulated electric repulsion 

on the surface.77 A “Taylor cone”, that is constantly emitting charged droplets, can now be 

observed on the tip. Supported by a heated dry gas (commonly N2 or synthetic air), the solvent 

in the droplets evaporates, again resulting in an elevated charge-to-surface ratio, increasing 

repulsion and ultimately Coulombic explosion into even finer droplets. This process is repeated 

until ions are desorbed from the successional droplets or, in the case of large molecules, until 

the solvent is completely evaporated.77,79 An applied nebulizer gas guides the spray to the MS 

orifice, where ions are electrostatically drawn into an ion path and towards the mass analyzer. 

The initially axial installation of the spray and the orifice is nowadays mainly replaced by an 

orthogonal setup. This way excessive contamination is avoided and the diameter of the orifice 

can be increased, leading to enhanced instrument robustness and sensitivity.77 
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Figure 5. Formation of the Taylor cone. Left: No or low voltage with a spherical drop; Middle: 
Elongated drop, close to the onset voltage; Right: Formation of the Taylor cone and release of 
charged droplets after the Rayleigh limit has been surpassed. 

 
ESI usually yields [M+H]+, [M-H]- or adduct ions depending on the polarity, pH and modifier 

content in the solution. For large molecules (e.g. proteins) also multiply charged ions are 

generated, which can shift the measured m/z ratio to observable values when mass analyzers 

with limited mass range are utilized. Another characteristic of ESI is its sensitivity to 

concentration rather than to total mass.80 Accordingly, in case of precedented chromatographic 

separation, an increased sensitivity can be achieved at lower flow rates due to the decreased 

sample dilution factor. However, lower flow rates also have to be combined with smaller 

diameters of chromatographic columns to avoid cancellation of the reached gain in sensitivity 

by peak broadening due to increased longitudinal diffusion.81 It should also be noted that typical 

electrochemical processes are occurring at the tip of the ESI electrode.82 When operated, the 

ESI aperture functions as an electrolytic cell in which reduction and oxidation reactions 

produce an electric current, which is limiting the total amount of extractable ions.83 

Ionization efficiency is further dependent on the presence of co-eluting compounds that concur 

for ionization or affect droplet formation.84 This is known as the matrix effect, which can result 

in ion enhancement or, more commonly, in ion suppression. 

APCI is reported to be less prone to matrix effects due to its differing ionization mechanism.85 

Here, a gas is used to nebulize the liquid flow into droplets that pass through a heated ceramic 

tube. The evaporated gas-phase is then directed towards a high voltage corona discharge 

needle where an ionization plasma is formed.77 By a transfer cascade via ambient gas 

molecules and nebulized solvent molecules, a charge is transferred to the analyte. APCI can 

yield better ionization efficiency for specific analytes and is particularly suited for nonpolar lipids 

and compounds in the lower molecular range up to 1500 Da. 

With MALDI, an ionization technique that is exceptionally suited for large molecules like DNA 

or proteins was introduced. It shows a good robustness to contamination and does not require 

exceeding sample preparation. In MALDI, the analyte is dissolved in a liquid matrix that 

contains molecules with a high absorption coefficient for the wavelength of a laser. After drying, 

the analyte is embedded in this matrix and exposed to strong laser pulses. During this process, 

the absorbing molecules are extremely heated and evaporated, and subsequent ionization 

takes place via proton transfer.86 Due to its unique ionization procedure, it is the predominantly 

used technique for MS imaging. 
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1.2.2. Mass Analyzers 

After ionization in the source, ions pass the MS orifice through which they are directed by an 

electromagnetic field. Subsequent ion trajectories and unwanted fragmentation can only be 

preserved in high vacuum conditions, thus, powerful turbopumps are essential to sustain a 

vacuum of 10-3 - 10-7 Torr. Also, increased requirements for the interface are needed when 

atmospheric pressure ionization methods are used. 

To date, analytical chemists have to choose between a selection of diverse mass analyzers, 

most of them with complementary properties regarding (i) the observable mass range, (ii) the 

resolving power, (iii) the sensitivity (depending on duty cycle, transmission and detector 

efficiency), (iv) the acquisition speed and (v) the mass accuracy.77,87 Commercialized 

instruments usually employ quadrupole, ion trap, Fourier transform ion cyclotron resonance 

(FT-ICR), Orbitrap or time-of-flight (TOF) mass analyzers. Various combinations of two or more 

mass analyzers are also available, e.g. triple quadrupoles (QqQs) or in case of different mass 

analyzers as hybrid instruments, for tandem mass spectrometry (MS/MS), which provides a 

repertory of scan modes to improve qualification and quantification. An overview about the 

characteristics of currently available high resolution (HR) hybrid MS instruments is shown in 

Table 1. 

The instrument that was utilized for the experimental work in this dissertation was a hybrid 

quadrupole time-of-flight (QTOF) MS by Sciex (TripleTOF 5600+), operated with a DuoSpray 

source (consisting of an ESI and APCI probe). Its domain is the recording of HR TOF-MS 

spectra and the additional acquisition of MS/MS fragments to gain structural information. 

 

Table 1. Performance parameters of exemplary HR hybrid MS instruments. 

Instrument Resolving Power Acquisition Rate [Hz] 

Agilent 6550 iFunnel QTOF 40 000 50 

Bruker impact II (QTOF) 50 000 50 

JEOL SpiralTOF‐TOF 60 000 10 

SCIEX TripleTOF 6600 (QTOF) 35 000 100 

SCIEX TOF/TOF 5800 26 000 10 

SCIEX X500R (QTOF) 35 000 100 

ThermoFisher Q Exactive HF 240 000 18 

ThermoFisher Orbitrap Fusion Tribrid 450 000 15 

Waters Xevo G2‐XS QTOF 40 000 30 

Resolving power was calculated for specified m/z values at full width at half maximum (fwhm). Adapted 
with permission from Kind et. al88 (Copyright 2017, Wiley Periodicals, Inc). 

 

The first element of a QTOF is a quadrupole, which generally consists of four perfectly parallel, 

hyperbolic rods in square formation to which a radio frequency current (RF) and a 



 

11 

superimposed direct current (DC) are applied (see Figure 6).89 Arriving ions traverse through 

the quadrupole, since they are attracted by a low voltage potential at its opposite end. During 

their passage, they interact with the electromagnetic fields, which are induced by the currents, 

and follow helical trajectories. Depending on the amplitude and frequency of the RF, the offset 

potential of the DC, the initial position and the traversing velocity, only ions with a specific m/z 

ratio will obey trajectories that ensure axial transmission through the quadrupole.90 Other ions 

experience increasing oscillation and are ultimately neutralized when striking the rods.92 

 

Figure 6. Voltage profile of the rods in a quadrupole analyzer. Depending on the amplitude and 
frequency of the RF and the DC offset, dynamically changing electromagnetic fields are created, 
which force ions into m/z ratio specific trajectories. Reprinted with permission from Somogyi et. al.91 
(Copyright 2008, Elsevier B.V.). 

 

Accordingly, an efficient m/z filter is obtained by selected modulation of RF and DC. In Figure 

7, an exemplary stability diagram for different m/z ratios is shown. The stability areas below 

given m/z ratios represent possible combinations of RC and DC values that will result in stable 

trajectories through the quadrupole. Many m/z values have overlapping stability areas and RF 

and DC have to be set carefully to achieve sufficient resolving power to discriminate m/z 

values. Thus, during a scan, RF and DC are linearly increased, resulting in a scan line (see 

Figure 7). The intersection of the scan line and the stability areas is directly correlated to the 

spectral peak width and therefore also to resolving power. To attain uniform resolving power 

for a given mass range, quadrupoles have to be tuned and are usually set to yield spectral 

peak widths of 0.7 – 1.0 units at fwhm on the m/z ratio scale (see Figure 7). As often observed 

in MS, higher resolution is compromised with a loss in sensitivity and vice versa.93,94 
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Figure 7. Stability diagram of a quadrupole mass analyzer. m/z1 < m/z2 < m/z3. Heavier ions with 
higher m/z ratios show bigger stability regions since their reaction to electromagnetic field changes is 
slower than that of lighter ions due to the higher inertia. For RF scanning, most quadrupoles use 
amplitude scans at fixed frequencies rather than frequency scans at fixed amplitudes.95 The initial DC 
offset is represented by the y-intercept of the scan line. Units are omitted in the diagrams for reasons 
of simplicity. 

 

Quadrupoles are also regularly employed as ion guides or collision cells when operated in “RF-

only” mode. With the absence of DC in the rods, wider m/z transmission windows can be 

controlled via RF settings to yield an “open” quadrupole or a focused ion beam for ion optics. 

Traversing ions can be fragmented in MS/MS by introduction of an inert gas into an RF-only 

quadrupole and subsequent collision-induced dissociation (CID). The degree of fragmentation 

is dependent on the kinetic energy of the ions, which can be modulated via an additional 

potential termed collision energy (CE). 

QTOF instruments consist of two quadrupoles (disregarding additional quadrupoles used as 

ion guides), whereas the first one (Q1) is utilized as a mass filter and the second one (q2) 

functions as a collision cell (see Figure 8). However, both can also be operated in open state 

to forward unfiltered precursor ions to the successional TOF analyzer. The underlying principle 

of a TOF is based on the determination of ion flight times (t) in a field-free region after 

acceleration by a potential (V).96 
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According to the basic equation: 

𝑬𝒌𝒊𝒏 =
𝟏

𝟐
𝒎𝒗𝟐 = 𝒒𝑽 = 𝒛𝒆𝑽 Equation 1 

ions with a mass m and a total charge q (defined as the product of the charge number z and 

the elementary charge e) show distinct velocities (v) after uniform acceleration in a field (V) to 

reach a defined kinetic energy (Ekin).77 Velocities are calculated by rearrangement of the 

equation to: 

𝒗 =
𝟐𝒛𝒆𝑽

𝒎
 Equation 2 

The flight time of the ions is then determined via the length of the flight tube (L) and the velocity 

(v): 

𝒕 =
𝑳

𝒗
 Equation 3 

Combination of Equation 2 and Equation 3 yield: 
𝒎

𝒛
= 𝟐𝒆𝑽(

𝒕

𝑳
)𝟐 Equation 4 

 

Equation 4 shows that the m/z ratio of an ion can be directly calculated from the measured drift 

time t when the length of the flight tube L and the amplitude of the potential V are known. 

Accordingly, heavier ions with an increasing m/z value will show prolonged flight times 

compared to lighter ions with lower m/z values.91 Moreover, uncontrolled changes in L or V 

can affect the measurement accuracy. The main factor are temperature fluctuations that affect 

the length of the flight tube or the power supply output. For this reason, TOF instruments 

require temperature controlled laboratories and denser mass calibration intervals compared to 

quadrupoles.97 

TOF resolution can be enhanced with increasing flight duration, yet maximizing the flight tube 

or decreasing the acceleration voltage were shown to be impractical.77 A major factor for 

insufficient resolution are the unequal starting conditions of the ions caused by kinetic and 

spatial dispersion.96,98 Both deteriorating factors were substantially minimized by the 

introduction of the reflectron99 and delayed pulsed extraction100,101 elements. 

A reflectron acts as an ion mirror (see Figure 8) and corrects kinetic spread of ions with the 

same m/z ratio. It relies on the elongated flight path of ions with higher initial velocity, as they 

permeate deeper into the ion mirror until they are reflected. The detector should be positioned 

in a suitable location to capture ions of identical m/z values in the moment when the ions of 

higher velocity reach the ions of slower velocity. 
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Figure 8. Design of a QTOF instrument (TripleTOF 5600). A: Scheme of the instrument. The ion 
course is indicated with the arrows from left to right. B: 3D orientation of the instrument ion path. 
Adapted with permission from Andrews et. al102 (Copyright 2011, American Chemical Society). 

 

In a continuous ion beam, ions with identical m/z values can show differing spatial distribution 

due to disparate velocities or nonuniform angles of the beam. To regain the lost resolution, 

arriving ions are gathered in a field-less region before they are accelerated by a short pulse. 

This region is therefore denominated as the accelerator or ion pulser. Ions closer to the origin 

of the pulse (and initially further from the detector) are more intensely exposed to the pulse 

and experience higher acceleration. On the way to the detector they ultimately join the 

previously separated ions, which received less accelerating energy, and are recorded with 

identical flight times. In a QTOF this delayed pulsing is usually done in an orthogonal direction 

after the ions have passed the collision cell.103 This way the continuous ion beam is 

transformed into an ion pulse, which is preferred for TOF applications. Moreover, the axis of 

detection is independent from the ion beam direction and thus acquisition speed, resolution 

and sensitivity is improved.104 

QTOF instruments are now widely used for various applications as they combine HR spectral 

acquisition with fast acquisition speed. This allows comprehensive analysis, even in 

conjunction with ultra-high performance liquid chromatography (UHPLC). Technological 

improvements have also provided enhanced sensitivity and wider linear dynamic range, 

enabling quantitative performance comparable to QqQs.47,105,106 
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1.2.3. Detector System 

The detector system represents the final bottleneck during MS data acquisition, as previous 

efforts in ionization and mass filtering are degraded without the proper conversion of ions into 

interpretable signals. Direct detection of few single ions with sufficient signal-to-noise (S/N) 

ratio is challenging due to the low electric current they induce.77 Thus, with distinct 

exceptions,107 incoming ions require amplification mechanisms, mainly in the form of electron 

multipliers.108 

In a TOF, after fully passing the flight tube, ions are accelerated towards the electron multiplier 

dynode using a high voltage of the opposite polarity. This way, ions strike the electron multiplier 

with enhanced kinetic energy and release several charged secondary particles (negative 

mode: positive ions; positive mode: negative ions and electrons).77 By a subsequent impact 

with the dynode, the secondary particles are converted into electrons, which release additional 

electrons in the following cascade of impacts. Depending on the applied voltage and the 

geometry and surface of the dynode, signal multiplication factors of >106 can be reached. 

The predominant electron multiplier type used in QTOF instruments are microchannel plates 

(MCPs). These are small plates that are perforated with many cylindrical holes, which all 

function as single amplifying dynodes. The valuable properties for QTOF application are the 

fast response time, due to a rather short electron path, and the increased detection area, ideal 

for large incoming ion beams. 

The next element of a QTOF detector system is a converter that digitizes the ejected electron 

signals of the MCP. This can either be an analog-to-digital converter (ADC), that show a wide 

linear dynamic range and can also record signal amplitudes, or a time-to-digital converter 

(TDC). Most frequently, TDCs are employed in QTOF instruments, as they are typically more 

sensitive, owing to a beneficial S/N ratio.97 

During acquisition, the TDC is synced to the pulsing of the accelerator (Figure 9). After 

amplification, incoming ion signals are forwarded by a discriminator if a certain threshold is 

reached. The TDC then registers the arrival time that has passed since the last pulse.97 This 

measurement result can be converted into an m/z value (see Equation 4). A major drawback 

of the TDC is its inability to register an additional ion event during its dead time (usually few 

nanoseconds).97,109 In consequence, if multiple ions with an identical m/z value arrive at the 

detector at the same time during a pulse cycle, they are only counted as one single ion. 
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Figure 9. Scheme of the spectrum acquisition with a TDC. The pulser frequency is limited by the 
highest mass that is transmitted by the q2, since heavier ions have longer flight times and a new pulse 
can only be initiated after all ions have arrived at the detector. With the sum of pulses an arrival time 
histogram is created. As the TDC is operated at 40 GHz, the minimum time bin for the histogram (≙ 
the maximum achievable resolution) is 25 ps. 

 

This saturation effect limits the linear dynamic range of the detector and requires 

counteraction, like mathematical correction via probability statistics. As the output signal is 

generated by summation of several thousand individual pulses (with mass range dependent 

accelerator frequencies of about 10 – 30 kHz), Poisson statistics can be used to predict the 

amount of ions that were missed during dead times.97 This automated signal correction 

enhances the linear dynamic range by 10-fold. Another approach to overcome TDC limitations 

is multi-channeling. The TripleTOF5600+ contains four TDC channels,102 which theoretically 

increase ion counting capacity by 4-fold (if a uniform spread of the ion beam is assumed). 

Moreover, the system offers automated ion gating, i.e. ion transmission control (ITC).110 Here, 

a lens in front of the Q0 region (see Figure 8) dynamically modulates the total ion transmission 

depending on the intensity of the total ion current (TIC). Accordingly, the ion load is decreased 

and TDC saturation is less likely. Prior to the data output, a correction factor is applied to the 

signal intensities that were recorded with reduced ion transmission. Due to the vastly reduced 

ion load in MS/MS experiments, ITC is only activated in TOF-MS by default, but not in MS/MS 

scan modes. 
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1.2.4. Scan Modes 

In general, MS data acquisition can be separated into targeted and untargeted approaches. 

By targeted acquisition, most commonly conducted with QqQ instruments, high quality data of 

preselected analytes is obtained. It is regarded as the gold-standard of absolute quantification 

and is perfectly suited to verify predefined hypotheses. In contrast, the goal of untargeted MS 

is to capture all detectable analytes, including unknowns, to stimulate the discovery of novel 

metabolites and potential biomarkers. Rather than absolute quantification, it focusses on 

relative quantification and qualification of found features. In order to obtain reasonable and 

interpretable results from untargeted analysis of complex sample matrices, HR-MS 

instruments, like QTOFs or Orbitraps, are mandatory. The most prominently utilized scan 

modes of the TripleTOF 5600+ are briefly described in the following sections. 

The central scan mode of a QTOF is the obligatory TOF-MS survey scan, where a full HR 

precursor ion spectrum is recorded. Both quadrupoles are operated in the open state with low 

CE to avoid unwanted fragmentation. The subsequent TOF-analysis provides a specified 

resolving power of ≥30,000fwhm (@ m/z 829.5393 in ESI⁺ and @ m/z 933.6363 in ESI⁻). Via the 

obtained accurate masses and isotopic patterns, potential sum formulas for the detected ions 

can be estimated. However, this data alone does not yield high levels of confidence for 

compound indentification.111-114 Thus, additional data acquisition is necessary to enhance the 

extracted information content. 

 

1.2.4.1. Product Ion Scan 

The experiment cycle can be extended by addition of one or several product ions scans to 

merge untargeted and targeted acquisition.115 Here, narrow Q1 transmission ranges (typically 

with an m/z width of 0.7; see Figure 7) are used to isolate precursor molecules, that are 

subsequently fragmented in the q2 using elevated CE values. This scan mode is similar to the 

product ion scan in QqQs, but an HR spectrum of all fragments is obtained. Although the duty 

cycle is much lower than for QqQs, the enhanced selectivity can result in beneficial S/N ratios. 

The obtained fragmentation results provide the highest achievable MS selectivity for the 

instrument and can be utilized for structure elucidation and compound identification. Moreover, 

the continuous acquisition of MS and MS/MS data enables the generation of extracted ion 

chromatograms (EICs), which can be exploited for relative or absolute quantification on both 

MS levels. 

When MS is used in conjunction to prior chromatographic separation, reasonable 

considerations regarding total cycle time, which is the sum of experiment accumulation times 

and system times (e.g. settling time etc.), need to be considered. As a minimum of 10 data 
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points per peak is typically required to accurately describe a peak with sufficient precision,116 

the distributable accumulation time is limited by the chromatographic peak width. Given that 

increasing accumulation time yields an improved S/N ratio,47 it should always be maximized 

for the least sensitive analyte. In order to multiplex the acquisition of target precursors, the 

analytical run can be split up into several periods with individual MS and MS/MS settings.67 

Period experiments are ideally designed to monitor target analytes only during their respective 

retention time intervals. This way, comparable to scheduled multiple reaction monitoring 

(MRM) in QqQs, accumulation times can be optimally distributed between all target analytes. 

In contrast to a QqQ, the investigation of fragment ratios is automatically enabled without any 

additional MS experiments. These ratios are suitable for (cross-)validation of selectivity, since 

they should remain stable in the absence of interferences.47 

The product ion scan (as well as the other MS/MS scans) can be operated in high sensitivity 

or in high resolution mode. During high sensitivity acquisition, the ion beam is focused after 

ion ejection from the q2 (see Figure 10A). This way the yield of accumulating ions in the 

accelerator, and consequently the duty cycle, is increased. However, the linear correlation 

between the initial ion velocity and the ion position in the pulser, on which the compensation 

by delayed pulsed extraction and reflection is based (see Chapter 1.2.2), is hereby distorted. 

The 2- to 5-fold gain in sensitivity thus comes along at expense of a loss in resolution (resolving 

power ≥15,000fwhm). In the high resolution mode, ion optics are turned off and ions are partially 

lost at the skimmer to the entrance of the accelerator (see Figure 10B). In consequence, 

sensitivity is decreased owing to the reduced duty cycle. Yet, an equivalent resolution as in 

TOF-MS (resolving power ≥30,000fwhm) is reached due to the feasible correction of velocity and 

spatial spreads.117 

Beyond these two options for acquisition, signal intensity can be further increased by enabling 

the enhancement of a specific m/z region in the high sensitivity mode. This can be achieved 

via pre-tuned ion optics potentials that induce temporary ion trapping in the q2, subsequent 

rapid ion gating into the accelerator and an optimized accelerator timing of the TOF pulse.118 

Depending on the m/z value of the targeted ion, the system calculates ideal ion release delays 

(IRDs, i.e. the time between ion gating and the TOF pulse) and ion release widths (IRWs, i.e. 

the duration of the gating pulse). The result is a ≥3-fold increase in sensitivity for a limited m/z 

region of about 400 units around the set value. With the achieved duty cycle of up to 100 %, a 

sensitivity comparable to QqQ instruments is reached. 
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Figure 10. Principle of the high sensitivity and high resolution mode. In high sensitivity mode 
(A), correlation of initial ion velocities and ion positions before acceleration are partially lost. The red 
arrows indicate the path of two ions (of identical m/z value) that ultimately have the same position in 
the accelerator but their velocity shows different directions. In high resolution mode (B), ions are not 
deflected by ion optics. The positions of the ions entering the accelerator (blue arrows) are correlated 
to their velocity and the initial spread can be corrected. 

 

1.2.4.2. Data-dependent Acquisition 

Although the preceding TOF-MS survey scan generates untargeted MS data, product ion 

scanning is far from comprehensive on the MS/MS level. To increase the amount of MS/MS 

data in order to improve the confidence level for compound annotation, information-dependent 

acquisition (IDA, i.e. data-dependent acquisition (DDA)) was introduced.119,120 It can be briefly 

described as a dynamic product ion scan, which is triggered after preset criteria are fulfilled in 

the TOF-MS survey scan. In truly untargeted acquisition, IDA is adjusted to acquire product 

ion spectra of the most abundant ions found in TOF-MS. Furthermore, IDA-methods can be 

further specified by addition of inclusion and/or exclusion lists. 

The number of recordable product ion scans per cycle is limited by the acquisition frequency 

of the instrument (100 Hz for the TripleTOF5600+). In (LC-MS) practice, usually the top 10 – 

20 ions per cycle for QTOF121 (in case of slow acquisition instruments like orbitraps usually top 

4 – 5) are selected for further fragmentation, as accumulation times need to be adjusted to 

achieve 10 data points per peak (in TOF-MS) with adequate S/N ratio (in IDA-MS/MS). IDA 

drastically increases the number of processable and selective spectra for compound 

annotation compared to regular product ion scanning. Yet, the increased selectivity on the 

MS/MS level cannot be exploited for quantitative purposes as most peaks are not multiply 

triggered to reach a sufficient number of data points per peak. Relative or absolute 

quantification, therefore, is restricted to TOF-MS results, which are more prone to interference. 

Since there is still a risk to miss relevant precursors, as it is the case when analytes are of low 
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abundance, co-eluting, or not efficiently triggered, IDA does also not provide full 

comprehensiveness on the MS/MS level. 

 

1.2.4.3. Data-independent Acquisition 

Global fragment ion data for all detected precursors can only be captured by data-independent 

acquisition (DIA) techniques. A simple approach to achieve full comprehensive data acquisition 

is MSE (first reported on QTOF instrument of Waters) or also termed All-ion-fragmentation (AIF; 

QTOF of Agilent, Orbitraps of Thermo Fisher).122,123 Here, two (TOF)-MS scans, one with low 

CE for precursor detection, and one with high CE for registration of all fragments, are exerted. 

If the chromatographic separation is not efficient, the obtained spectra are highly complex and 

require deconvolution,124 which is aggravated for perfectly co-eluting peaks. Another method, 

termed MS/MSALL,125 approached DIA by discrete stepping of unit mass resolution Q1 

precursor windows in small intervals to achieve sequential fragmentation (see Figure 11). As 

this workflow basically represents full comprehensive product ion scanning (see Chapter 

1.2.4.1), total cycle times are incompatible with chromatographic hyphenation. Thus, 

MS/MSALL is strictly limited to shotgun analysis. 

 

Figure 11. MS/MSALL acquisition. Due to the high number of sequential product ion scans, total run 
times for shotgun analysis with MS/MSALL can take up to six minutes. Recreated and adapted with 
permission from B. Simons et. al125 (Copyright 2012 by the authors; open access). 
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Other groups experimented with sequential fragmentation of multiple precursors via 

intermediate Q1 isolation windows.126 Each MS/MS experiment covered an m/z width of 10 

units, but instruments were not yet fast enough to capture a broad precursor range when 

hyphenated to chromatography. Accordingly, at first instrumental limitations in resolution and 

acquisition speed had to be overcome until a novel DIA technique named SWATH (sequential 

window acquisition of all theoretical fragment-ion mass spectra) was introduced for 

commercialized instruments.122,127 Instead of unit mass precursor isolation, SWATH allows to 

set Q1 transmission windows of variable width (see Figure 12). Extracted precursors are then 

simultaneously fragmented in the q2, generating composite fragment spectra with significantly 

improved selectivity compared to MSE (AIF). 

 

Figure 12. Exemplary scheme of a SWATH enabled acquisition cycle. The amount of SWATH-
MS/MS experiments as well as the individual window width can be individually adjusted. Total cycle 
time has to be adjusted according to the chromatographic peak width. 

 

Although the spectral quality is more susceptible to interference than IDA, numerous studies 

showed that SWATH results in higher identification rates and better analyte coverage.122,128,129 

Moreover, SWATH also offers EIC generation on both MS and MS/MS level, which illustrates 

the excellent potential for quantification via the most sensitive and selective ion signals. In 
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addition, full comprehensive MS and MS/MS spectra facilitate the deconvolution process by 

matching of precursor and fragment retention times, which is exploited in the MS-DIAL (Mass 

Spectrometry - Data-Independent Analysis) software.130 

SWATH is further progressing by introduction of new bioinformatic tools like swathTUNER,131 

which is used to calculate optimized SWATH window widths based on equalized precursor ion 

density or uniform TIC intensity. Also, merged experiment designs with narrow Q1 isolation 

windows for improved analysis of compounds of special interest are commonly 

reported.47,132,133 Additional advancements with novel techniques like scheduled SWATH131,133 

(i.e. changing SWATH window settings throughout an analytical run) or scanning SWATH134 

(i.e. continuous scanning of the Q1 along the m/z range including fragment spectra 

deconvolution) can be expected in the future. 

Ultimately, it can be noted that SWATH was proven to yield reliable and reproducible qualitative 

and quantitative data.135 As an untargeted DIA technique it requires enhanced data processing 

efforts and demands bioinformatic solutions. Nevertheless, these obstacles have to be 

overcome to enable true comprehensive and retrospective analysis. 

 

1.2.5. Method Optimization 

Apart from sample preparation and chromatographic optimization, there are several MS 

parameters that can be modulated to obtain ideal results in terms of selectivity, sensitivity or 

linear dynamic range. In untargeted analysis, the main goal is to achieve a broad analyte 

coverage. Instrument settings are adjusted to comply with efficient ionization of many diverse 

compounds. Accordingly, optimization of MS parameters is based on finding the best 

compromise, which is often accomplished by selecting empirically derived standard settings. 

For targeted analysis, on the other hand, extensive optimization can be conducted in order to 

attain maximum method performance. This section will discuss the MS optimization 

parameters for the TripleTOF5600+ operated in the ESI configuration of a DuoSpray ion 

source. 

Before any optimization efforts are initiated, the system should be thoroughly checked for 

errors, and tuning and calibration of all used acquisition modes (including Q1 settings, see 

Figure 7) must be properly verified. A major cause for a flawed performance is the ESI 

electrode, which needs to be free of contamination and corrosion to ensure a stable spray. 

Also, the protrusion of the electrode from the probe (i.e. the electrode holder) must be kept in 

the recommended limits between 0.5 – 1.0 mm, as a stable nebulizer gas flow around the tip 

can otherwise not be sustained. Ignoring these preparational steps can lead to high inter-

sample variability and incorrect selection of optimized settings. 
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Assuming that the development of the chromatographic method has been completed, the 

target analyte should be dissolved in the mobile phase composition that is also expected during 

its elution. All subsequent parameter optimization steps are then conducted via continuous 

injection of this solution at the desired flow rate of the chromatographic method. Alternatively, 

if high flow rates are used, the defined mobile phase mixture can be provided by an LC 

instrument and the target analyte is added at minor flow rate via a T-piece. In both setups a 

reasonable analyte concentration should be administered to work outside any saturation 

conditions. 

After preliminary tests have revealed the favorable polarity for analyte detection, the vertical 

and horizontal position of the probe can be adjusted. It is mainly dependent on the flow rate 

and typically yields best results if it is moved closer to the orifice with decreasing flow (and vice 

versa). Here, as well as for the adjustment of all other parameters, the settings should be 

optimized to obtain the best S/N ratio, as this will ultimately determine the analyte sensitivity. 

Nevertheless, settings that avoid exceeding contamination, implicitly relevant when adjusting 

the probe position, should be chosen to sustain a robust performance. 

In the next step, the declustering potential (DP) and CE are to be optimized. The DP is a 

voltage that is applied to the MS orifice to extract analyte ions from the spray into the MS ion 

path. The voltage regulates the acceleration of ions towards the orifice, where they collide with 

residual gas molecules to reduce solvent clusters or unwanted adducts. At its optimized value 

it diminishes the division of analyte signals across different adducts and shifts the adduct 

distribution towards a preferred species. At highly elevated DP values, in-source fragmentation 

can occur, which decreases the precursor ion yield. Yet, in certain cases in-source fragments 

show enhanced sensitivity or can be used for structure elucidation. 

Usually, MS/MS analysis results in increased selectivity and a beneficial S/N ratio. 

Fragmentation can be modulated by changing the CE, a difference of electric potentials 

between the Q0 and the q2 (see Figure 8). Transmitted ions are forwarded into the q2, where 

they undergo CID depending on the degree of acceleration. Eventually, optimum fragmentation 

is evaluated by acquiring data while ramping the CE voltage. Adjustments of DP and CE can 

also be utilized to balance instrument responses or to shift the linear dynamic range towards 

higher concentrations, if needed. 

Ultimately, source and gas parameters are regulated. Besides their dependence on the flow 

rate and composition of the mobile phase, they are often also interdependent and require 

iterative fine tuning. In total, three different gas parameters are available for ESI: (i) the 

nebulizer gas, which flows around the electrode tip to support and direct the electrospray; (ii) 

the heater gas, that is originating from the heater to assist in solvent evaporation; (iii) the 

curtain gas, a gas flow between the orifice and the curtain plate that restrains contamination 

of the proximate ion optics by ambient air or solvent droplets. As a rule of thumb, the gases 
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should always be set to the highest possible value at which no loss in signal stability and 

sensitivity is observed. Especially the maximization of the curtain gas can lead to increased 

robustness and longevity of the system. 

After the gas settings are assessed, the ion spray voltage is adjusted. It should be high enough 

to provide a stable spray but should also not forcibly operated at the maximum to avoid 

unwanted discharges and arcing.136 Accordingly, its optimum setting is at the lowest value at 

which spray stability and sensitivity are not sacrificed. At the end, the heater temperature is 

adjusted to enable complete solvent evaporation and optimum ion desorption. A summary of 

optimization parameters and their operational ranges is given in Table 2. 

There are also several advanced options to maximize the sensitivity. Exemplary measures are 

the alteration of the Q1 resolution (see Figure 7) to increase sensitivity while maintaining 

sufficient resolution and selectivity. Furthermore, the voltage of the detector (or MCP) can also 

be raised to yield higher signals. However, a constant increase of the voltage above its 

optimum value will drastically decrease its lifetime. 

 

Table 2. Operational ranges for optimization parameters. 

Parameter Operational Range Typical Value 

Flow rate 5 – 3000 µL/min 200 µL/min 

Nebulizer gas 0 – 90 psi 40 – 60 psi 

Heater gas 0 – 90 psi 50 psi 

Curtain gas 20 – 50 psi 30 psi 

Temperature 0 – 750 °C 425 – 650 °C 

DP 
ESI⁺: 70 V 

ESI⁻: -70 V 

ESI⁺: 0 – 400 V 

ESI⁻: -400 – 0 V 

CE 
ESI⁺: 0 – 150 V 

ESI⁻: -150 – 0 V 
Compound dependent 

Ion Spray Voltage 
ESI⁺: 0 – 5500 V 

ESI⁻: -4500 – 0 V 

ESI⁺: 5500 V 

ESI⁻: -4500 V 

Time bins to sum 1 – 100 4 

 

An additional parameter that should be noted are the time bins to sum. As discussed in Figure 

9, the maximum time resolution of the TDC is 25 ps (≙ one time bin). The operator can select, 

how many time bins are merged to create a datapoint, e.g. if four time bins to sum are selected, 

the TDC will collect all signals throughout the several thousand TOF pulses and create the 

arrival time histogram in bins of 100 ps. This way, the spectral intensity will be apparently 

higher, as four single data points are now summed up to one datapoint, but also resolution is 

lost (see Figure 13). Since the total number of ion counts is not changed, the overall sensitivity 

is not increased and EICs show identical peak heights and peak areas. However, this option 
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can be useful to increase the apparent spectral intensity (by sacrificing resolution) in order to 

detect large, low abundant ions (e.g. for intact protein measurements) that would have 

otherwise been lost. 

 

Figure 13. Influence of time bins to sum parameter on spectral resolution. Data shows repeated 
injections of 5 ng/mL testosterone with differing time bins to sum settings. A, 2 time bins to sum; B, 4 
time bins to sum (standard setting); C, 16 time bins to sum; D, 64 time bins to sum. The choice of the 
bin size has a drastic influence on the spectral resolution. For each graph, the total sum of cps is 
identical. The amount of time bins to sum should be chosen to yield at least 10 data points per spectral 
peak. 

 

1.2.6. Data Processing in Untargeted Lipidomics 

Untargeted lipidomics assays, in particular when acquired with DIA techniques, yield vast raw 

data files with millions of data points. To be able to transform this information into interpretable 

results, multiple (pre-)processing steps via sophisticated bioinformatics are required.137,138 As 

an intermediate result, a data matrix, covering m/z values and retention times of unknowns 

and identified/annotated compounds together with their corresponding intensities in the 

respective samples, is obtained. Only after final statistical evaluation, results are then 

considered for hypothesis generation. A broad variety of commercialized, open access, or 

script-based tools is available and under constant development to support the exhaustive 

extraction of qualitative and quantitative information and its automation. As an integral part of 

untargeted analysis, data processing and statistical evaluation are briefly discussed in this 

subchapter. 
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The main goal of initial processing procedures is to strip down the raw data in order to cover 

only the relevant information. Accordingly, it is necessary to execute noise filtering (i.e. 

background subtraction), either by setting dynamic or absolute intensity thresholds under 

which signals are not further considered for subsequent steps.138 In addition, a blank 

subtraction should be conducted. Here, unspecific signals acquired from a processed blank 

sample are excluded for the interpretation of the study outcome or are only respected if they 

are detected with a significantly higher intensity in the study samples. Afterwards, spectra are 

subjected to deisotoping and deadducting to reduce multiple signals, which can be derived 

from the same analyte, e.g. when several charge states or adducts of the analyte are observed, 

into a (monoisotopic) peak.139,140 

In chromatographic assays, data filtering is followed by the detection of actual features via 

peak finding algorithms, which assign series of data points to individual features, without 

considering remaining noise.138,141 Optionally, found peaks can be smoothed to improve its 

appearance or its S/N ratios.142 The data then has to be aligned across all study samples due 

to inter-sample variation of retention time and mass accuracy.143 Depending on the 

chromatographic precision and the stability of the mass calibration, tolerance thresholds can 

bet set to modulate alignment parameters. Moreover, alignment filters that determine the 

minimum number of samples in which the feature must be detected, can be applied. 

Generally, MS acquisition is accompanied by the introduction of systematic or random errors, 

e.g. via fluctuations of the electrospray, which lead to variation of signal intensities. This issue 

can be addressed with normalization. In targeted assays, sufficient normalization is usually 

achieved by the addition of appropriate ISs. For untargeted data, a large variety of 

normalization strategies was developed, comprising scaling methods, QC-based, model-

based, or IS-based approaches.144 Suitable methods have to be chosen with care, as different 

normalization procedures regulate different types of variation. Due to the partially strong data 

manipulation, results should always be thoroughly checked for plausibility to avoid the 

interpretation of artificially induced results. 

The fundamental part of any untargeted assay is compound annotation and 

identification.88,114,145 To increase the confidence level of identification,111-114 as much 

information as possible should be gathered about the feature, with which several libraries can 

be screened for potential matches (see Table 3). Via the accurate mass and the isotope pattern 

of the precursor, sum formulas are initially derived. Thereafter, corresponding MS/MS spectra 

are matched to spectral fragment libraries, which were either iteratively created by 

experimental determination or consist of computer-generated fragment patterns (so-called in 

silico MS/MS libraries). MS/MS spectral matching drastically decreases the number of potential 

hits, yet, highly similar compounds with identical sum formulas can show overlaps in 

fragmentation. It is therefore advised to acquire orthogonal information like retention time or 
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collision cross section (CCS) to further enhance the confidence level. In case no library hit is 

found for an unknown peak of interest, the collected information should be used for structure 

elucidation, and, if necessary, additional experiments need to be conducted. The identity of a 

compound can be verified with high probability, when an equivalent standard reference 

matches the previously acquired findings. 

 

Table 3. Selection of compound and mass spectral databases. 

Database Entries Description 

Pubchem146 235,035,188 structures 
Largest compound database of small 
molecules 

Chemspider147 110,527,546 structures 
Collection of chemical structures for 
small molecules 

KEGG148 647,201 structures 
Pathway database for metabolites of 
multiple species 

MetaCyc149 15,655 structures 
Pathway database for metabolites of 
multiple species 

HMDB150 114,100 structures 
Compound database of human 
metabolites including drugs, toxins, 
pollutants and nutritional products 

CHEBI151 55,878 structures 
Compound database for small 
molecules of biological interest 

LMSD152 43,413 strucures Compound database for lipids 

METLIN153 > 431,000 spectra 
MS database for metabolites with 
experimental and in silico spectra 

mzCloud 24,303 spectra 
MS database for metabolites and drugs 
with experimental spectra 

MoNA 622,520 spectra 
MS database for metabolites with 
experimental and in silico spectra 

Access date July 2019. 

 

Modern software is capable to automatically screen the available data and match the findings 

to embedded or connected libraries. Results are usually reported as a score that implies a 

probability for the reported identification. Furthermore, in particular when DIA techniques are 

used, implemented deconvolution algorithms are able to purify composite spectra by assigning 

only highly associated fragments to their precursors. Misannotations, however, cannot be ruled 

out and high priority findings must be manually checked for consistency to verify the presence 

of adequate data for reliable identification.154 Here, additionally to the previous measures, 

extrapolation of lipid elution patterns in RPLC can be utilized to obtain accessory 

information.155 
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1.2.7. Statistical Evaluation 

With the completion of data processing, an aligned and, if necessary, normalized data matrix 

of several hundreds or thousands of features is obtained. To evaluate such complex results, 

various statistical calculation or visualization procedures are employed. Many statistical tests 

require normal distribution and are not able to deal with zero or empty values in the data array. 

Thus, logarithmic transformation and missing value imputation are often applied prior to 

statistical evaluation.144 Furthermore, the data must be systematically screened for true 

outliers, as they will have a detrimental effect on the study outcome, if present. 

A regular untargeted lipidomics study for biomarker discovery is designed to elaborate discrete 

features that have been significantly altered between properly chosen experimental groups. 

For this purpose, means/medians of these groups are compared by statistical hypothesis 

testing. In general, parametric tests, for which preliminary assumptions about the structure of 

the data are made, are distinguished from nonparametric tests. For example, t-tests are 

parametric as they are only valid for normally distributed data. Moreover, for Student´s t-test 

equal variances between groups are assumed, whereas Welch´s t-test is designed for unequal 

variances.156 Accordingly, to correctly apply these tests, the proclaimed assumptions must be 

verified by testing normality (e.g. via the Shapiro-Wilk or Kolmogorov-Smirnov tests) and 

variance equality (Bartlett´s test).157 If these assumptions are not fulfilled or unknown, 

nonparametric tests like the Wilcoxon-Mann-Whitney-U-test are performed. The results of 

statistical hypothesis testing are usually reported as p-values, which are indicating probabilities 

for the trueness of the null hypothesis. 

By design, p-values below a preset significance level α will occur by chance when the number 

of hypothesis tests is increased. This is a well-known issue of multiple testing in untargeted 

assays, which will lead to false positives (type I errors).158 The p-values must therefore be 

adjusted to control for type I errors, which can be achieved by various p-value correction 

procedures like the false discovery rate evaluation or the Bonferroni approach.159,160 

Besides univariate significance tests, numerous multivariate statistical methods are available. 

The most prominently used methodology for untargeted assays is principal component 

analysis (PCA). It is highly suitable to transform multidimensional data into lower dimensional 

projections via linear combination of variables, that show maximum variation.157 Via the 

obtained scores plot, relations between samples can be derived from grouping or separating 

trends. Also, when QCs are embedded in the analytical sequence, the stability of the 

instrument performance can be estimated with the scores plot, as technical replicates of the 

QCs must ideally be tightly clustered due to the expected low variation. In contrast, potential 

outliers can be spotted, since they show different variation and are not clustered with the other 
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experimental samples. Furthermore, the loadings plot allows to investigate the contribution of 

the individual variables to the observed variation.157 

Many more tools for extensive statistical analysis are available, e.g discriminant analysis, 

receiver operating characteristics (ROC), hierarchical clustering, volcano plots, heatmaps, and 

partial least squares methods. Together, they aid to visualize classification or differences 

between experimental groups and are consulted to evaluate highly significant features, which 

can then be postulated as potential biomarkers. 

 

1.3. Bioanalytical Method Validation 

Bioanalysis is specified as the ability to determine drug and/or metabolite concentrations in 

biological matrices. It is the basis of many pharmaceutical and clinical studies concerning 

pharmacokinetics, bioequivalence, toxicology, and therapeutic drug monitoring and plays a 

key role in the interpretation of pharmacodynamics and the regulation of drug safety and drug 

efficacy. In 1990, with the emergence of novel analytical advancements, in particular the 

introduction of commercialized LC-MS platforms, the demand for the harmonization of 

validation procedures was first recognized by the American Association of Pharmaceutical 

Scientists (AAPS) and the United States Food and Drug Administration (FDA).161 Several 

additional workshops throughout the last decades162,163 have resulted in the formulation of 

broadly accepted guidelines for bioanalytical method validation of therapeutics and 

biomarkers. The central aspects of these guidelines, which were recently updated in 2018,164 

and the requirements for chromatographic assays are discussed in the following section. 

To prove that a method can reliably quantify the target analyte in study samples, several 

experiments have to be conducted and preset criteria must be fulfilled. At first, the selectivity 

and specificity of target analytes and ISs need to be verified by analysis of blank matrix 

samples from at least six sources. If the absence of significant interferences has been shown, 

a calibration curve for every analyte must be assessed in the sample matrix. This is achieved 

by spiking target analyte reference standards (ideally of authenticated analytical purity with the 

certificates of analyses provided) into an analyte-free matrix. Good practices require the 

addition of an appropriate IS for every analyte in the first steps of sample preparation or after 

sample collection, to correct for analyte loss or matrix effects.165 ISs do not require certification, 

but their suitability must be demonstrated by the absence of interferences with the analytes. 

The used matrix should be identical to the matrix of the study samples and the calibration 

range should comprise all expected concentration levels. Furthermore, the simplest model to 

accurately correlate instrument response ratios (analyte response / corresponding IS 

response) and analyte concentration should be chosen. In total, a calibration curve should 

consist of a blank sample (without analytes and ISs), a zero calibrant (without analytes but with 
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ISs) and at least six non-zero calibrant levels. The lowest non-zero calibrant level is assigned 

as the lower limit of quantification (LLOQ), whereas the highest calibrant level indicates the 

upper limit of quantification (ULOQ). If a background noise or interference of the analyte is 

found in the blank sample, the analyte response at the LLOQ should exceed the blank 

response by at least 5-fold. After regression, calculated concentrations for calibrants should 

show a maximum bias of ±15 % to their theoretical concentrations, except for LLOQ where 

±20 % bias are accepted. For successful calibration, this criteria must apply to at least 75 % 

of all calibrant samples. 

Besides calibrants, quality control (QC) samples are prepared by spiking blank matrix, but 

different stock solutions of the reference standards should be used for this purpose. The QCs 

are employed to evaluate accuracy and precision at four concentration levels: (i) at the LLOQ; 

(ii) at the lower range (defined as 3-fold LLOQ); (iii) at the mid range (not precisely defined); 

(iv) at the high range (not precisely defined) of the calibration curve. The performance of the 

QCs is evaluated via preceding calibrant measurements for at least three independent runs. 

In each run, the respective QC levels must be analyzed with a minimum of five replicates. The 

same acceptance criteria that were previously defined for calibrant samples also apply to 

accuracy and precision of the QCs. 

Moreover, QCs are utilized to assess analyte stability for different conditions, e.g. stability of 

the processed samples, freeze-thaw stability, or long-term stability. These measurements only 

need to be conducted at low and high range QC levels in at least triplicate. For analyte 

recovery, no strict acceptance criteria are defined. However, its extent should be determined 

via post-extraction experiments166 at low, mid, and high range QC levels. 

An overview about the required validation runs and the respective acceptance criteria is 

provided in Table 4. After successful validation, quantitative performance has to be monitored 

throughout the study samples. Here, slightly different criteria are recommended (see Table 4). 

The described guidelines were postulated to standardize validation procedures for targeted 

analysis and quantitative purposes. For untargeted assays, comparable guidelines do not yet 

exist and, although the same principles apply, compliance to FDA guidelines is not always fully 

applicable owing to the enhanced complexity and the lack of standards and blank matrices. 

Nevertheless, the metabolomics and lipidomics community is gathering good practices and 

iteratively enforces improved workflows by striving for the harmonization of extraction 

protocols, QC design, normalization, data evaluation, identification, and quantitative 

approaches.68,167-170 Together with the growing availability of databases and bioinformatic 

tools171 the validity of untargeted metabolomics and lipidomics is constantly improving to 

comply with fit-for-purpose recommendations. 
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1.3.1. Calibration of Endogenous Compounds 

For the preparation of calibrants and QCs, according to FDA guidelines, the use of blank matrix 

is instructed. However, for many endogenous analytes no true blank matrix is available. In 

some cases, this problem can be resolved by selecting matrix donors from specific patient 

groups that naturally show analyte levels below the anticipated LLOQ, e.g. young girls or post-

menopausal women with typically low plasma testosterone levels. Still, challenging analytes 

require alternative options for calibration and accurate quantification. In general, four 

approaches have been proposed: (i) standard addition;172 (ii) background addition; (iii) 

surrogate matrices;173,174 (iv) surrogate calibrants (i.e. surrogate analytes).175 

Standard addition is conducted by spiking small, increasing increments of the analyte into 

aliquots of the intended sample. By extrapolation of the calibration line, the original analyte 

concentration can be calculated from the x-intercept (see Figure 14). Determination of its 

uncertainty can also be executed via the error of the y-intercept. This method is effective as it 

is independent from variations of matrix effects (see Figure 14). However, a high sample 

volume is needed, and many extra measurements are necessary. It is also not feasible when 

the original analyte concentration is close to the upper limit of the linear dynamic range as 

additional spiking of the analyte will result in signal saturation. 

 

Figure 14. Standard addition. Samples with identical analyte concentration but differing matrix are 
shown. The differing matrix conditions do not affect the results. 

 

When using background addition, a matrix pool with a known analyte concentration 

(determined via e.g. standard addition) is used to prepare calibrants and QCs. The analyte 
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content of the pool automatically represents the LLOQ and thus limits the achievable sensitivity 

that can be validated. The sum of the spiked analyte and the background concentration yields 

the final calibrant concentration, respectively. This method allows matrix-matched calibration 

but is not suitable if background concentrations of analytes are rather high. Moreover, the 

method has to be readjusted if a new batch of pooled matrix is used. Additional complications 

may arise if multiple analytes are quantified simultaneously and unacceptably high background 

concentrations are present. In the literature, also background subtraction is described.174 Here, 

the total signal of a spiked sample is subtracted by the background signal of the pooled matrix. 

The spiked amount is then declared as the LLOQ. However, since the obtained signal does 

not reflect the conditions at the authentic LLOQ (decreased accuracy and precision due to a 

signal close to the noise level),164 this method is not advised. 

To be able to calibrate and validate the instrumental LLOQ, surrogate matrix methods can be 

used. Here, the analyte is spiked into a similar, modified or artificial matrix. The validity of the 

chosen matrix must be shown via parallelism of the calibration curve in surrogate matrix and 

the standard addition curve in true matrix.176 If no matrix effects are present and if the recovery 

is 100 %, also neat solutions with sufficient analyte solubility can be chosen as surrogate 

matrices. Although the use of ISs is highly recommended, a simple approach to calibrate in 

neat solution with added ISs to control signal losses due to recovery and matrix effects (without 

evaluation of these parameters) is not applicable, as the LLOQ and the linear dynamic range 

cannot be accurately assessed. 

Another option is to remove the target analyte from the true matrix via activated charcoal, 

specific antibodies, enzymes or chemical reactions/heat. Here, it has to be assured that prior 

to analyte spiking, all previously added material for analyte stripping is removed or deactivated. 

Yet, these methods bear the risk to alter the matrix effect or recovery and still parallelism has 

to be verified. 

Moreover, artificial matrices can be utilized to simulate complex or scarce matrices. Most 

commonly phosphate-buffered saline and bovine serum albumin are used to mimic plasma 

and to enhance solubility for hydrophobic compounds compared to simple aqueous 

solutions.177 Also more complex mixtures for diverse biological matrices are described.173 A 

major challenge is the determination of a suitable surrogate matrix when multiple analytes must 

comply and exert parallelism. 

Ultimately, an approach that utilizes authentic matrix and surrogate analytes for calibration are 

available. The surrogate calibrant must be a compound that shows the same analytical 

behavior as the targeted analyte. Amongst the best candidates are usually stable isotope 

labeled analogues of the target analyte, preferably marked with 13C-, 15N-, or 18O- atoms as 

these analogues were shown to be less prone to isotope exchange reactions and to more 

accurately reflect the physicochemical properties (including matrix effects) of the target analyte 
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than deuterated compounds.173 As a matter of course, selectivity of target analytes and 

surrogate calibrants is required and any impurities of residual unlabeled analyte in the 

surrogate calibrant reference standard must be ruled out. Furthermore, it is often observed that 

the instrument response of surrogate calibrants is not identical to target analytes. This can 

have multiple causes like impurities, differences in ionization efficiencies due to kinetic isotope 

effects, or the compression of the isotope distribution pattern if 13C-labeled analogues are used 

(see Figure 15).178 Therefore, instrument responses of surrogate calibrants have to be 

investigated and, if necessary, balanced to match the response of the corresponding target 

analytes. This can be achieved by modulation of CE or DP or by concentration adjustment of 

the surrogate calibrant. Alternatively, also a response factor can be applied but is not advised 

as the conditions at the LLOQ are not accurately reproduced when response factors are 

applied. After matching of response ratios (usually a tolerance of 5 % deviation is accepted),176 

parallelism has to be proved. 

Although precise guidelines for validation of surrogate methods are not given, meeting the 

existing criteria that are valid for bioanalytical method validation should be anticipated as far 

as possible. 

 

Figure 15. Compression of monoisotopic peaks. The isotopic distributions of respective [M+H]+ 
adducts of estradiol and its 13C-analogues are shown. A, Estradiol (C18H24O2); B, 13C3-estradiol; C, 
13C6-estradiol. With an increasing number of incorporated 13C-atoms the portion of the monoisotopic 
peak is increased. 
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4. Objectives of the Thesis 

The aim of this thesis was to develop new methods and optimize existing workflows for 

lipidomics to support clinical research. On the one hand, the focus was to improve untargeted 

assays in general, which allow broad lipid profiling of hundreds to thousands of lipids per 

sample. On the other hand, a progressive analysis of specific, demanding lipid classes such 

as steroids was approached. 

 

Steroid hormones are one of the most frequently monitored analytes during clinical studies. 

They are often by default quantified via immunoassays, which were reported to yield discrepant 

results, presumably due to their susceptibility to matrix effects and cross-reactivities. In 

consequence, researchers head for MS determination of steroids, which represent a 

challenging analyte group due to their partial low abundance in biological matrices. 

Accordingly, the first aim of this thesis was to develop a sensitive and robust LC-MS/MS 

method for absolute quantification of estradiol and testosterone in clinical plasma samples. 

However, instead of a standard LC-QqQ method, a merged targeted/untargeted method by 

UHPLC-QTOF analysis with SWATH acquisition was pursued. Nevertheless, a QqQ-like 

performance in terms of sensitivity, accuracy and precision had to be demonstrated to pass 

the strict validation requirements in bioanalysis. To reach the set goals, an advanced sample 

preparation protocol for maximizing recovery, purification and analyte enrichment was needed. 

As alternative calibration was required due to the lack of steroid-free plasma, the eligibility of 

matrix-matched surrogate calibration was evaluated. Eventually, in order to enhance the 

extractable information for the valuable study samples, simultaneously acquired TOF-MS data 

was screened for additional steroids to exhibit the full potential of QTOF analysis. 

 

In targeted assays, normalization of analyte signals, which typically incorporate various 

sources of variation, is achieved by addition of suitable ISs and the calculation of response 

ratios. For untargeted data, which captures an exceeding number of detected features and 

comprises many unknown compounds, normalization is consequentially aggravated. 

Nevertheless, critical datasets that reveal only few significant differences of minor extent, 

strongly depend on accurate normalization, which must be able to reduce unwanted variance 

in order to detect robust, true positive findings. Various normalization strategies already exist, 

yet, no harmonized guidelines on how to select the best performing method without sacrificing 

data integrity are available. It was therefore aspired to gather defined requirements that enable 

a rational decision-making model for the respective selection of optimum normalization 

methodologies. The validity of these novel recommendations had to be presented via an 

appropriate, exemplary dataset. 
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Although an effective normalization is capable to drastically improve the data quality, the 

ultimate goal of untargeted acquisition should be absolute quantification of all or of as many 

compounds as possible during one analytical sequence. This achievement would enable an 

optimum comparability of results between different studies, matrices, disease states and so 

forth, which is currently not given with relative quantification and foldchanges. However, 

absolute quantification of unknown or uncalibrated targets is not trivial and requires additional 

efforts in study design and data processing. A potential strategy towards class-specific 

quantification via surrogate calibration with lipid class representatives was developed and 

investigated. Moreover, although no guidelines for the validation of such strategies exist, a fit-

for-purpose verification of the methodology had to be performed. 
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5.1.1. Abstract 

In spite of demonstrated lack of accuracy and consistency, quantification of steroid hormones 

is still most commonly executed via immunoassays. Mass spectrometric methods with triple 

quadrupole instruments are well established and, because of their proven robustness and 

sensitivity, best suited for targeted analysis. However, recent studies have shown that high-

resolution mass spectrometers, like quadrupole time-of-flight instruments (QTOF), show 

comparable performance in terms of quantification and can generate additional sample 

information via untargeted profiling workflows. We demonstrate that adequate accuracy and 

selectivity for estradiol and testosterone can be achieved with a QTOF by data-independent 

acquisition with sequential window acquisition of all theoretical fragment-ion mass spectra 

(SWATH). Besides potential combination of targeted quantification and untargeted profiling, 

SWATH offers advantages with respect to sensitivity because the reduced total number of 

MS/MS experiments could be used to increase accumulation time without increasing cycle 

time. By applying a surrogate calibrant method leading to successful validation, a reliable 

method for absolute steroid quantification and high potential for steroid profiling has been 

developed. Linear calibration was achieved in the range from 10 - 1,000 pg mL-1 for 13C3-

estradiol and from 20 - 15,000 pg mL-1 for 13C3-testosterone. Results for inter-day precision 

(13C3-estradiol: 4.5 - 10.2 %; 13C3-testosterone: 5.1 - 7.8 %) and inter-day accuracy (13C3-

estradiol: 94.6 - 112.8 %; 13C3-testosterone: 98.2 – 107.7 %) were found to be well acceptable. 

Eventually, the method has been utilized to measure clinical samples of a study in which male 

volunteers obtained transdermal estradiol patches and sex hormone levels were quantified in 

plasma. 
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5.1.2. Introduction 

17β-estradiol (E) and 17β-testosterone (T), the main steroid sex hormones in women and men, 

play crucial roles in human physiology and are frequently monitored analytes in routine 

diagnostics and clinical studies.1 Despite the well-known disadvantages, like impact of matrix 

effects and cross-reactivities,2 the majority of steroid analytics is still performed via 

immunoassays. Numerous studies have already shown inconsistency between assay results, 

especially in critical patient groups with low steroid levels.3-9 Accurate results, however, are 

mandatory for effective therapy and study interpretation. Consequently, the demand for reliable 

techniques, in particular liquid chromatography coupled to tandem mass spectrometry (LC-

MS/MS), is emerging in clinical analysis and clinical studies.10 

Another challenge of steroid quantification in plasma is the absence of true blank matrix for 

calibration and assessment of assay selectivity. To overcome this problem, various alternative 

methods are described.11 In order to obtain an authentic analytical environment, a surrogate 

calibrant approach12 was selected for this method. Herein, calibration is done via an analyte-

related substance, preferably a stable-isotope-labeled analogue (SIL), which is spiked into the 

true matrix. After initial matching of SIL response to target analyte response and verification of 

parallelism,13 the surrogate calibration is used for sample quantification. 

The goal of this study was to develop and validate a sensitive LC-MS/MS method for the 

quantification of E and T in human plasma to verify and complement results previously 

gathered by a competitive chemiluminescent enzyme immunoassay. A large number of 

quantitative assays using LC hyphenated to triple quadrupole (QqQ) instruments were already 

published for these steroid hormones.10, 14-26 To reach low concentration levels of target 

analytes in various matrices, pre-column derivatization is often carried out, using e.g. Girard-

P,27,28 dansyl chloride,27 aminoxypropyl trimethylammonium bromide29 (Amplifex Keto) for 

ketolic steroids such as T, and dansyl chloride27 or 1,2-dimethylimidazole-5-sulfonyl chloride21 

for phenolic steroids such as E. Due to robustness, high sensitivity and wide linear range, LC-

ESI-QqQ is the method of first choice for targeted quantitative analysis of steroid hormones. 

Recently, however, quantification by LC coupled to high-resolution (HR) MS raised some 

interest due to good performance.30-32 Usually, quantitative data with such HR-MS instruments 

(quadrupole/time-of-flight or quadrupole/orbitrap) are acquired in MRMHR (also called parallel 

reaction monitoring, PRM) or data-dependent acquisition (DDA).33,34 In former acquisition 

mode, after a full scan MS experiment (survey scan) MS/MS experiments are programmed for 

the selected targets whereby precursor selection occurs by a quadrupole mass analyzer with 

unit mass followed by fragmentation and analysis of the product ions in the HR-mass analyzer. 

Highly selective MS/MS chromatograms can be extracted for the programmed targets (i.e. 

EICs for fragment ions of the selected precursors), while untargeted profiling is still possible at 
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the MS level.35,36 In DDA, subsequent to the full scan MS experiment, a series of MS/MS 

experiments, in which the most intensive precursor ions detected in the survey scan are 

fragmented, is carried out. Thus, MS/MS data are not collected comprehensively across the 

entire chromatogram and all study samples. The consequence is that quantitative analysis can 

be only performed with the precursor ion from the MS experiment. This restriction can be 

overcome by untargeted profiling with data-independent acquisition (DIA). In DIA, MS/MS 

fragmentation occurs without dependence on information from the survey scan. All precursors 

of the entire m/z range co-isolated by the quadrupole are co-fragmented simultaneously 

(termed MSE, all ion fragmentation).37 This yields complex composite spectra, which is the 

reason why this acquisition mode has not become very popular. However, precursor selection 

can also be performed in a stepped manner with sequential, intermediate-sized Q1 windows 

(e.g. 20 - 50 Da), thus covering the entire m/z range of interest. This acquisition mode has 

been developed for proteomics38 but has been recently tested for small molecules as well, 

including metabolomics and lipidomics.39-45 Better performance than with DDA has been 

documented for this DIA called SWATH (sequential window acquisition of all theoretical 

fragment-ion mass spectra) due to better analyte (metabolite) coverage, better reproducibility, 

and less complex composite spectra.43 Moreover, comprehensive MS/MS data are available 

and can be used for quantitative analysis. The application of a QTOF with SWATH acquisition 

for quantitative purposes has recently shown promising results.41,46 Here, we wanted to utilize 

the advantageous properties SWATH offers in terms of sensitivity, especially when surrogate 

calibration is used. In contrary to previous works, fully optimized SWATH experiments for 

generating specific and sensitive MS/MS fragment ion signals for quantification of target 

analytes without derivatization was established. 

Concluding, we demonstrate the performance of UHPLC-ESI-QTOF-MS/MS analysis by DIA 

with SWATH for the simultaneous targeted quantitative analysis of E and T in human plasma 

samples from a clinical study in which male subjects were treated with transdermal E patches. 

Extension of the method to a combined targeted/untargeted profiling method is illustrated as 

well. Furthermore, reliable quantification based on peak areas of extracted MS/MS 

chromatograms of characteristic fragment ions in SWATH experiments is demonstrated. 
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5.1.3. Experimental Section 

Materials 

T, 17β-testosterone-2,3,4-13C3 (13C3T, 100 µg mL-1 in methanol), E, 17β-estradiol-2,3,4-13C3 

(13C3E), 17α-estradiol (epiestradiol, epiE) and phosphoric acid (85 %, w/v, ACS grade) were 

purchased from Sigma-Aldrich (Saint Louis, MO, USA). 17β-testosterone-2,2,4,6,6-2H5 (d5T, 

106.7 µg mL-1 in methanol) was purchased from IsoSciences (King of Prussia, PA, USA). 17β-

estradiol-2,4,16,16,17-2H5 (d5E, 100 µg mL-1 in acetonitrile) and 17α-testosterone (epiT; 1.0 

mg mL-1 in acetonitrile) were purchased from Cerilliant (Round Rock, TX, USA). Details on 

standard solutions, (surrogate-) calibrants and quality controls can be found in supplementary 

data (Appendix A.). Cortisone and cortisol were purchased from Cayman Chemical (Ann Arbor, 

MI, USA). Type I purity water was obtained from a Purelab Ultra purification system (ELGA 

LabWater, Celle, Germany). Immunoassay measurements of study samples were done with 

an Immulite 2000 system (Siemens Diagnostics, Erlangen, Germany) using complying E and 

T kits for total quantification. 

 

Immunoassay 

In this fully automated, competitive chemiluminescent enzyme immunoassay the solid phase 

consist of beads coated with rabbit polyclonal antibodies specific for the respective target 

analyte. After introduction of the sample (T: 20 µL; E: 25 µL) and alkaline-phosphate 

conjugated with E or T, respectively, the target analytes compete with the analyte-enzyme 

complexes for the limited binding sites during an incubation period of 60 minutes. After washing 

to remove excess material and reagents, a chemiluminescent substrate (adamantly dioxetane 

phosphate ester) is added. Hydrolization of the substrate by alkaline phosphatase yields 

unstable anions, which, as a result of decomposition, generate constant emission of photons. 

Accordingly, light intensity is inversely proportional to target analyte concentration in the 

sample. Lyophilized serum quality controls (MassCheck Steroid Panel 2, tri-level) were 

purchased from Chromsystems (Graefelfing, Germany). Subjects providing blood samples 

gave written informed consent to the study that conformed to the Declaration of Helsinki as 

revised in 2008 and was approved by the local Ethics Committee on Research Involving 

Humans. 

 

Sample Preparation 

500 µL of EDTA plasma were diluted with 500 µL of 5 % H3PO4 (w/v) that contained 1.0 ng 

mL-1 of d5E and 0.4 ng mL-1 of d5T as internal standards (IS). After vortexing, the sample was 

loaded onto a dry Oasis PRiME HLB SPE cartridge (1 cc / 30 mg, Waters, Milford, MA, USA). 

Samples were processed applying negative pressure with a Vacmaster 20 manifold (Biotage, 
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Uppsala, Sweden). After the first loading step, the cartridges were washed with 1 mL of 50 % 

MeOH in H2O (v/v). Analytes were then eluted with 2 × 500 µL MeOH and the eluate was dried 

using a Savant ISS110 SpeedVac concentrator (Thermo Fisher Scientific, Waltham, MA, 

USA). After reconstitution in 100 µL MeOH, samples were centrifuged for 5 min at 15,000 × g 

and 4 °C with a 5415R microcentrifuge (Eppendorf, Hamburg, Germany). The supernatant was 

transferred into a vial, which was crimped and stored at 4 °C in the autosampler. Samples 

were analyzed as soon as possible after preparation. 

 

LC-Method 

The chromatographic system consisted of a 1290 Infinity UHPLC system (Agilent 

Technologies, Waldbronn, Germany) and a PAL HTC-xt autosampler (CTC Analytics, 

Zwingen, Switzerland). Separation was performed on a Kinetex C18 column (50 mm × 2.1 mm, 

2.6 µm, 100 Å pore size) with a KrudKatcher Ultra in-line filter (Phenomenex, Aschaffenburg, 

Germany) for column protection. Mobile phase A consisted of H2O + 0.1 % formic acid (v/v) 

and mobile phase B of MeCN + 0.1 % formic acid (v/v). The flow rate was 0.3 mL min-1 with a 

constant oven temperature of 30 °C. Injection volume was set to 10 µL. The following gradient 

was applied: 5 - 30 % B from 0.0 – 0.5 min, 30 – 45 % B from 0.5 – 3.2 min, 45 – 95 % B from 

3.2 – 3.5 min, holding 95 % B from 3.5 – 4.0 min, 95 – 5 % B from 4.0 – 4.2 min, equilibration 

with 5 % B from 4.2 – 5.0 min. 

 

MS-Method 

Mass spectrometric detection was performed on a TripleTOF 5600+ mass spectrometer with 

a DuoSpray source (Sciex, Concord, Ontario, Canada). Optimized ion source parameters were 

as follows: curtain gas (N2) 35 psi; nebulizer gas (N2) 50 psi; heater gas (N2) 80 psi, ion source 

voltage floating 4,000 V, source temperature 600 °C. Samples were measured in positive 

electrospray ionization (ESI) mode, running one TOF-MS experiment in the mass range of m/z 

30 – 1,000 (survey scan; resolution ≥30,000, FWHM @ 829.5393 Da) and four SWATH-

MS/MS experiments (resolution ≥15,000, FWHM @ 397.2122 Da) per cycle (method 1, see 

Table 1). Accumulation time (tAcc) was set to the following values: TOF-MS scan: 20 ms; 

SWATH of T/13C3T: 50 ms; SWATH of d5T: 50 ms; SWATH of E/13C3E: 300 ms; SWATH of 

d5E: 100 ms. Total cycle time (tCyc) was delimited to 570 ms to attain at least ten data points 

per peak in regard to average peak widths of about 6 s. Enhanced product ion mode was 

enabled. For SWATH experiments of d5-internal standards, enhancement was set to the 

monoisotopic mass of the used fragment, respectively. For SWATH experiments that covered 

two compounds, target analytes and surrogate calibrants, the enhancement mass was set to 

the calculated mean mass of both corresponding fragments. 
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Mass calibration was done via infusion of sodium acetate (0.1 mg mL-1 in MeCN:H2O, 1:1, v/v) 

every 25th injection. The whole analytical system was controlled by the Analyst 1.7 TF 

software (Sciex). 

 

Data Analysis and Quantification. 

Calibration curves were constructed using weighted least-square linear regression (weighting 

factor: 1/x) of six different calibrant levels by plotting peak area ratios of 13C3E/d5E and 
13C3T/d5T against respective surrogate calibrant concentrations. The resulting equations were 

used to determine target analyte concentrations in real samples via E/d5E and T/d5T ratios, 

respectively. Two QCs, QClow (13C3T: 60 pg mL-1; 13C3E: 30 pg mL-1) and QChigh (13C3T: 12,000 

pg mL-1; 13C3E: 800 pg mL-1) were embedded after every 20th sample in the sequence to verify 

stable method performance. To control for accuracy and linearity of calibration, five 

determinations of the calibration were equally distributed across the whole sequence. 

Quantification was based on fragment ions (Table 1). Fragment peak areas were extracted 

using a ± 10 mDa mass window in the associated SWATH experiments. Automated integration 

with the MultiQuant 3.0 software (Sciex) was done using a MQIII algorithm, Gaussian 

smoothing (width: 2 data points), noise percentage of 90 %, baseline substraction window of 

0.1 min and a peak splitting factor of 2. Excel 2007 (Microsoft, Redmond, WA, USA), SPSS 

Statistics 23 (IBM, Armonk, NY, USA) and Origin 2017 (OriginLab, Northampton, MA, USA) 

were used for further data evaluation. 

 

5.1.4. Results and Discussion 

Sample Preparation 

E and T are bound to plasma proteins like SHBG (sex hormone-binding globulin).47 Their 

release by organic solvents used for protein precipitation would demand an evaporation step 

prior to SPE which is needed for E/T enrichment. Hence, 5 % H3PO4 was selected for protein 

precipitation48-51 because the resultant supernatant could be directly loaded onto the Oasis 

PRiME HLB material, which does not require pre-conditioning and equilibration prior to the 

loading step. 50 % MeOH in H2O (v/v) was selected as optimum washing eluent and complete 

analyte elution with good recoveries of E, 13C3E, T and 13C3T could be achieved with 2 × 500 

µL MeOH. By drying and reconstitution in 100 µL MeOH, a total sample pre-concentration 

factor of 5 was achieved to reach sufficient levels of sensitivity (for details see Appendix A.). 
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LC-MS Method 

A fast UHPLC method with gradient elution (5 min including re-equilibration) was developed 

using a core-shell C18 column (Kinetex® C18, 2.6 µm). Faster elution by higher flow rates was 

not considered because the detection sensitivity significantly dropped at flow rates higher than 

0.3 mL min-1.52 Close to baseline separation of E and T was achieved (RS = 0.98) (Fig. A.3C) 

and in spite of a fast gradient sufficient assay specificity was ensured by selective mass 

spectrometric detection. 

The low concentrations of E expected in male plasma samples required dedicated optimization 

of MS parameters to reach maximal sensitivity for E. For assessment of most sensitive 

conditions, ionization efficiencies of analytes were tested with APCI and ESI in positive and 

negative mode. Best sensitivity for E was achieved in negative APCI mode, but ionization of 

T was inacceptable in negative APCI and negative ESI. Accordingly, analysis in positive mode 

was mandatory since polarity switching in ms time scale is not possible for the TripleTOF 

5600+. Whereas the [M+H]+-precursor ion could be detected for T, E only showed an in-source 

fragmentation product [M-H2O+H]+, which was selected as the precursor. For acquisition, 

data-independent acquisition mode using SWATH, a sequential window-based MS/MS 

acquisition methodology with intermediate Q1 precursor window sizes, was executed. It allows 

flexible adjustment and thus optimization of MS parameters for each SWATH window 

separately and leads to a comprehensive set of MS/MS data in the selected Q1 precursor 

windows. Since SWATH acquisition used parameters, which secured ≥10 spectra available 

across each peak, enough data points were available to enable generation of MS/MS 

chromatograms, i.e. EICs of fragments, with some advantages as described below (see also 

Fig. A.4). Activation of the enhanced product ion mode showed >3 times increase in signal 

intensities. This feature optimizes the ion pulsing process for a specific fragment and improves 

the duty cycle.53 However, only a narrow m/z-region around the targeted fragment is enhanced 

by this process and ions outside this region are lost for detection and excluded. Because of 

this effect, precursor ions of analytes were not observed in the SWATH-MS/MS experiments 

in the present case (Fig. A.5). 

 

Comparison of SWATH and MRMHR Sensitivity by their Instrumental LODs 

Instead of individual product ion MS/MS experiments with unit mass Q1 precursor selection 

(MRMHR) for each analyte, SWATH-MS/MS experiments were created (Table 1). By selection 

of appropriate window sizes (4 Da for E, T and their corresponding 13C3 analogues; 5 Da for 

the deuterated internal standards), fragments of target analytes and corresponding surrogate 

calibrants could be detected in the same SWATH window. Because of fragmentation 

interferences, separate SWATH windows had to be created for d5-analogues. Optimized 

window sizes assured assay specificity for the fragment ions used for quantification. 
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Sensitivity, on the other hand, generally increases with increasing accumulation time tAcc (see 

Fig. A.6 and Fig. A.7). 

SWATH acquisition allowed to reduce the total number of MS/MS experiments and allowed to 

distribute the maximally available tAcc between fewer experiments. This enabled to increase 

tAcc for each analyte as compared to MRMHR. In order to compare the sensitivity of MRMHR and 

SWATH, the instrumental limits of detection (LODs) were determined for three different 

methods: The SWATH method with the parameters described in section 2. and Table 1, an 

MRMHR method with tAcc equal to the SWATH experiment (i.e. 300 ms for E and 50 ms for T) 

(MRMeq) and an MRM method with half the tAcc (i.e. 150 ms for E and 25 ms for T) (MRM1/2). 

The MRM1/2 method was designed since it represents the most realistic equivalent to the 

SWATH method as only half the tAcc is available due to the double number of experiments if 

each of the analyte and 13C3-calibrant is acquired by separate product ion MS/MS 

experiments. Besides tAcc, all other mass spectrometric parameters (see LC-method 

subchapter and Table 1) were kept identical for each method to ensure best achievable 

comparability. Furthermore, all methods were run with enabled “enhanced product ion mode”, 

had identical cycle times tCyc and a uniform tAcc (20 ms) for the mandatory TOF-MS experiment. 

To assess instrumental LODs in the low concentration range, an 8-point calibration of both 

target analytes in MeOH was analyzed in triplicate. Instrumental LODs were lowest for the 

SWATH method (5.8 and 8.1 pg mL-1 for E and T, respectively; about factor 2-3 lower than 

with MRMHR even at equal tAcc; see also Table A.7). 

 

Assay Specificity 

While SWATH was shown to increase sensitivity, specificity is lost owing to the broader Q1 

isolation window. Validation therefore ultimately requires verification of sufficient assay 

specificity. First of all, possible interferences deriving from SILs have to be ruled out. The 

attempt to cover target analyte and corresponding 13C3- and d5-analogues in one single 8 Da-

wide SWATH window, respectively, failed since interferences were observed both for E and 

T. Investigation showed that fragmentation of d5-standards caused significant interference due 

to overlapping isotope patterns of d5-fragments and 13C3-fragments. Accordingly, a separate 

5 Da SWATH window was created for analysis of each d5-standard. Further optimization 

showed that two additional SWATH experiments of 4 Da width are adequate to cover 

corresponding pairs of target analytes and surrogate 13C3-calibrants, respectively. 

Fragmentations in these windows were free of interference and showed sufficient specificity 

(see Fig. A.11 – A.16). In untargeted SWATH methods, windows are usually overlapping by 1 

Da. In our targeted approach a gap of at least 1.5 Da had to remain between the SWATH 

windows to avoid interferences. This is owed to the fact that the Q1 is not capable of doing an 

exact cutout of m/z ranges. Also ions with an m/z slightly (~ 1 Da) below or above SWATH 
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window limits will pass through the Q1, which can lead to unwanted interference. Cross-

validation via commercial quality controls has finally been utilized to verify assay specificity. 

Also, epiT and epiE, epimers of T and E with identical fragmentation, were analyzed and 

showed chromatographic baseline separation (epiT to T, ΔtR: 0.42 min; epiE to E, ΔtR: 0.27 

min) (see Fig. A.10). Assay specificity (i.e. lack of interferences) of 13C3- and d5-standards was 

determined by analyzing six different blank plasma samples. No interfering peaks in a 

retention time window of ± 0.1 min of the respective analyte were detected. 

 

Calibration and Limits of Quantification 

With optimized conditions, both E and T could be detected with high sensitivity. Unfortunately, 

for T the signal leveled off at concentrations above 1,000 pg mL-1 due to detector saturation. 

De-optimization, by raising DP from 120 to 200 V, led to a shift of the linearity range which 

then covered the relevant concentration range between 20 pg mL-1 (instrumental LLOQ) to the 

upper limit of quantification (ULOQ) of 15,000 pg mL-1 (see also Fig. A.8). 

Due to absence of blank matrix for matrix-matched calibration, a surrogate calibrant approach 

was adopted. To ensure accuracy of quantification via 13C3-surrogate calibrants, parallelism 

of the calibration curves between surrogate calibrants and the corresponding standard 

addition curve of the target analyte has to be verified.13 In the present case, the maximum 

difference of the slopes of T and 13C3T during three inter-day measurements was 3.7 % (slope 

of 13C3T divided by slope of T) and 3.2 % for E and 13C3E (slope of 13C3E divided by slope of 

E) (see Fig. A.18). Therefore, 13C3T and 13C3E have been found to be adequate surrogate 

calibrants for quantitative analysis of T and E in human plasma. 

LLOQs in real samples were determined adopting the criteria set forth by the FDA guideline 

for bioanalytical method validation (analyte response at least 5 times the response of the blank 

response, precision of 20 % and accuracy of 80 - 120 %). Thus, 10 pg mL-1 for E and 13C3E, 

and 20 pg mL-1 for T and 13C3T were set as LLOQs in real samples (Fig. 1). During validation 

these values were shown to meet the acceptance criteria for LLOQs. 

 

Method Validation 

Method validation was performed on the basis of the FDA guideline on bioanalytical method 

validation with minor modifications (e.g. 5 replicates over 3 independent days instead of one 

replicate over 5 independent days for assessment of inter-day accuracy and precision). The 

detailed results can be found in Appendix A. Matrix effect (ME), extraction recovery (RE) and 

process efficiency (PE) were evaluated according to Matuszewski et. al54 with 13C3-labelled 

analogues of analytes, which are expected to suffer equally from ME as the coeluted target 

analytes. The results are shown in Table 2. E shows an average ME (ion suppression) of 81.3 

% and T a more significant average ME of 60.4 %, which made its correction by internal 
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standards (here d5-analogues) mandatory. Average recoveries for E and T were 88.0 and 

84.4 %, respectively. 

 

Fig. 1. Chromatograms (product ion EIC) in true plasma matrix. A: 13C3E in blank matrix; B: 13C3E 
spiked at LLOQ (10.0 pg mL-1); C: E in real sample at LLOQ (10.7 pg mL-1); D: E in real sample (242 
pg mL-1); E: 13C3T in blank matrix; F: 13C3T spiked at LLOQ (20.0 pg mL-1); G: T in commercial control 
Level I (201 pg mL-1, lowest concentration of all samples); H: T in real sample (7,507 pg mL-1). 

 

Intra-assay and inter-day precisions and accuracies were determined in plasma using the 

surrogate calibrants. Four QCs were used to validate precision and accuracy: QCLLOQ, 

QC3x LLOQ, QCMid, QCULOQ. These QCs were measured on three days in quintuplicate (n = 5) 

(Table 3). Precisions were <10 % in the entire range and accuracies between 95 and 115 % 

recoveries clearly confirm that assay specificity of the current SWATH methodology is 

adequate. Adequate method performance was further confirmed by cross-validation with 

commercial QCs (lyophilized true plasma matrix controls with certified E and T 

concentrations). Results are shown in Table A.13. Precisions matched those of above 

validation study and bias remained within acceptable limits (6 - 15 %). Adequate analyte 

stability during sample storage, freeze-thaw cycles, autosampler stability and short-term 

stability at ambient temperature was verified as well (see Table A.11). 

 

Intra-Assay Cross-Validation with Alternative Quantifiers 

With the employed DIA using SWATH, comprehensive high-resolution MS/MS data are 

available across the steroid hormone peaks in all samples. Thus, it becomes possible to select 

post-acquisition the most appropriate ion from a peak group, viz. precursor ion from either 

TOF-MS or MS/MS experiments, or any fragment ion from MS/MS experiments, to generate 
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the EIC chromatograms for quantification. This opens up the possibility to use the most 

intensive ion as quantifier ion, provided it has sufficient specificity, and any of the other ion 

traces as qualifier ions, similar to QqQ-based quantification assays but with high mass 

resolution readout and no need of pre-acquisition decision on the selected ion transitions. It 

enables another level of validation via controlling the results by additional fragment or 

precursor ion EICs or ion ratios.55 In other words, in order to control if the chosen fragment for 

quantification is selective, other fragments or precursors of the same analyte can be used for 

quantification and both sets of results can be compared. For example, for T a linear calibration 

from 500 to 15,000 pg mL-1 could be achieved for the precursor from the MS experiment. Also, 

a second fragment with m/z 97.0648 (MS/MS fragment 2), with comparable sensitivity to the 

original quantifier fragment of m/z 109.0648, yielded a linear calibration function for the entire  

 

Table 2. Matrix effect, extraction recovery, process efficiency.b 

Analyte  ME [%] RE [%] PE [%] 

13C3E 

QCLLOQ 82.2 ± 12.7 94.2 ± 11.1 77.4 ± 11.5 

QC3x LLOQ 79.6 ± 11.8 93.3 ± 9.7 74.3 ± 14.1 

QCMid 83.3 ± 5.7 79.4 ± 9.2 66.1 ± 8.4 

QCULOQ 80.2 ± 6.7 85.2 ± 3.9 68.4 ± 3.7 

13C3T 

QCLLOQ 55.2 ± 13.3 86.9 ± 12.2 48.0 ± 6.5 

QC3x LLOQ 58.7 ± 14.5 89.2 ± 10.9 52.4 ± 9.8 

QCMid 63.2 ± 4.5 78.7 ± 5.8 49.8 ± 6.8 

QCULOQ 64.4 ± 7.1 82.6 ± 5.5 53.2 ± 4.8 

bSingle determinations of 5 different lots were used to create QCs in neat standard solution, post-
extraction spiked plasma and pre-extraction spiked plasma. Error was calculated by addition of relative 
errors of mean values. T shows a relatively ineffective PE. Since the LLOQ of 20 pg mL-1 is below 
normal reference levels in patients, a PE of around 50 % can be accepted. Concentrations, see Table 
3 footnote c. 

 

range. All patient sample concentrations were also calculated for these alternative signals. 

Using MS/MS fragment 2 as alternative quantifier the results were in good agreement to the 

original results (scatter plot linear regression: y = 1.000 (±0.003) x + 158.2 (±16.7), R2 = 

0.99684) (Fig. A.21A). Using the precursor ion trace of the TOF-MS experiment, the 

agreement was still acceptable yet significantly worse (scatter plot linear regression: y = 

0.9541 (±0.006) x – 126.0 (±31.6), R2 = 0.9875) (Fig. A.21B) indicating the potential problem 

in terms of specificity of single stage MS data. Consequently, also these results consolidate 

adequate assay specificity and method performance. 
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Combined Targeted/Untargeted Profiling (Towards Steroidomics) 

Contrary to classical targeted assays with triple quadrupole instruments the current method 

provides simultaneously lipid profiles in an untargeted manner. Additional information can be 

derived from TOF-MS experiments (survey scans) or SWATH-MS/MS experiments. In many 

cases, signals in TOF-MS lack of specificity or show insufficient sensitivity (see Fig. 4). 

Comprehensive data of superior quality can be acquired by additional MS/MS experiments. 

To demonstrate the potential of SWATH for steroidomic analysis, an exemplary MS-method 

with six extra SWATH experiments was created to cover the relevant mass range of interest 

(Table A.14; method 2). 

 

Table 3. Validation results of precision and accuracy.c 

Analyte 
QCLLOQ QC3x LLOQ QCMid QCULOQ 

Accuracy 
[%] 

Precision 
[%] 

Accuracy 
[%] 

Precision 
[%] 

Accuracy 
[%] 

Precision 
[%] 

Accuracy 
[%] 

Precision 
[%] 

13C3E 

Intra-
day 
(n = 5) 

114.7 3.9 99.2 2.5 96.9 4.4 93.9 8.5 

Inter-
day 
(n = 15) 

112.8 5.5 99.2 5.0 94.6 4.5 96.9 10.2 

13C3T 

Intra-
day 
(n = 5) 

111.7 4.7 102.8 2.7 108.2 4.5 95.7 6.6 

Inter-
day 
(n = 15) 

107.7 7.8 102.1 6.5 104.1 7.6 98.2 5.1 

cConcentrations were as following: QCLLOQ, 10 pg mL-1 for 13C3E and 20 pg mL-1 for 13C3T; QC3x LLOQ, 
30 pg mL-1 for 13C3E and 60 pg mL-1 for 13C3T; QCMid, 250 pg mL-1 for 13C3E and 2,500 pg mL-1 for 13C3T; 
QCULOQ 1,000 pg mL-1 for 13C3E and 15,0000 pg mL-1 for 13C3T. 

 

The four previously optimized SWATH windows for E and T quantification remained unaltered, 

so that the capability of combined untargeted profiling and targeted quantification of E and T 

can be documented. A mass range from m/z 250 - 370 was additionally covered by SWATH 

MS/MS experiments, which mostly comprises unconjugated steroids. To use this narrower 

range for MS/MS experiments allows to design smaller precursor selection windows which is 

favorable for assay specificity in steroid analysis. The peak spotting plot in Fig. 2 and Fig. A.22 

reveals a total of 1,613 molecular features in the TOF-MS survey scan. 
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Fig. 2. Aligned peak spotting in 9 repeated measurements of a pooled plasma QC sample (m/z 
range from 120 to 500 is shown, for extended overview see Fig. A.22) applying method 2 (see Table 
A.14). 1,613 molecular features with a peak intensity over 2,000 cps were found in the survey scan 
after blank subtraction, de-isotoping and de-adducting. Dashed lines represent the mass range 
covered comprehensively by SWATH MS/MS experiments. Identified steroids were verified by 
injection of authentic standards and matching of tR and mass spectra. Identified features showed 
matching precursor m/z and high level agreement of mass spectra (LipidBlast56, MassBank60) 
identified by MS-DIAL61 software. Annotated steroids were found by matching m/z of precursors from 
steroids covered in the LipidMaps62 database. 

 

For verification of the utility of this expanded steroidomics profiling method, the trilevel 

commercial controls were analyzed. These commercial QCs specify concentrations for a 

variety of other steroids, besides E and T, dehydroepiandrosterone, dehydroepiandrosterone-

sulfate, androstenedione, hydroxyprogesterone, dihydrotestosterone (DHT) and progesterone 

which could be identified by matching precursor mass, isotope pattern and MS/MS 

fragmentation (see Fig. 3). Furthermore, verification of identity was achieved by controlling for 

linearity of the obtained three-point calibration of the trilevel controls (see Table A.15). Cortisol, 

cortisone, epiE and epiT could also be specifically identified in samples by comparison with 

available standards (see Fig. 3). Other steroids only annotated by exact mass and coherent 

fragmentation were aldosterone, corticosterone, deoxycortisol, deoxycorticosterone, estrone 

and pregnenolone. Furthermore, several acylcarnitines could be identified via spectral 

matching to the LipidBlast56 database, concluding that also other non-steroidal, lipophilic 

compounds are captured by sample preparation. 
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Fig. 3. Overlay of normalized chromatograms of identified steroids (targets IV and V; non-
targeted steroids I-III and VI-XII) in commercial control. I: Cortisol (fragment, m/z 327.1955 ± 
0.02); II: Cortisone (fragment, m/z 343.1904 ± 0.02); III: Dehydroepiandrosterone-Sulfate (fragment, 
m/z 213.1638 ± 0.02); IV: Estradiol (fragment, m/z 159.0804 ± 0.02); V: Testosterone (fragment, m/z 
109.0648 ± 0.02); VI: epiE (fragment, m/z 159.0804 ± 0.02); VII: epiT (fragment, m/z 109.0648 ± 
0.02); VIII: Androstenedione (fragment, m/z 97.0648 ± 0.02); IX: Dehydroepiandrosterone (precursor, 
m/z 271.2062 ± 0.02); X: Hydroxyprogesterone (fragment, m/z 97.0648 ± 0.02); XI: 
Dihydrotestosterone (fragment, m/z 255.2113 ± 0.02); XII: Progesterone (fragment, m/z 97.0648 ± 
0.02). Method 2 (see Table A.14). 

 

The currently employed combined targeted/untargeted profiling by data-independent 

acquisition with SWATH provides other benefits. Availability of comprehensive MS/MS data 

within the dedicated m/z range across the chromatogram and all samples allows to extract 

both MS chromatograms of precursors but also MS/MS chromatograms of fragments which is 

not possible with common data-dependent acquisition. This enables uncompromised 

retrospective data processing post-acquisition. Quantitative analysis can be either performed 

on precursors or fragments, which ever gives better assay specificity and/or higher sensitivity. 

This is documented in Fig. 4 exemplarily for non-targeted dihydrotestosterone (DHT). DHT is 

a bioactive metabolite of T formed by the enzyme 5-reductase and is the biologically most 

active form of T. In a targeted assay with a triple quadrupole and SRM acquisition for E and 

T, no information on DHT could be obtained. In the combined targeted/untargeted screening 

approach, presented in Table A.14, DHT is detected in the different samples as well. This 

allows deriving information, at least for relative quantification (e.g. for differential steroidomics 

between sample groups). However, the signal is very poor in the TOF-MS chromatogram of 
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the precursor (S/N (PeakView estimate) = 2.3) due to many interferences and a high noise 

level (Fig. 4A). Although the signal is reduced in the MS/MS chromatogram of the precursor 

(Fig. 4B), the S/N ratio was significantly improved due to a lower noise level. Upon extraction 

of the MS/MS chromatogram from the precursor with m/z 255.2113 the S/N ratio increased by 

a factor of about 4 because the majority of interferences were eliminated and the noise level 

further reduced (Fig. 4C). Data processing on this signal is certainly advantageous for 

retrospective relative quantification of samples. The fact that in DIA with SWATH all signals 

are acquired and comprehensive MS as well as MS/MS data are available, provides 

researchers the flexibility to use the optimal MS or MS/MS signal for data processing. If taken 

into account that MS parameters were not optimized for the untargeted SWATH experiments, 

even higher sensitivity might be possible. Also, ion ratios can be further processed for 

confirmation underpinning the advantage of DIA.55 

 

Fig. 4. Comparison of signal quality for non-targeted dihydrotestosterone. Signals were 
obtained from commercial QC Lvl. III (1,050 pg ml-1). A: TOF-MS of precursor ion; B: SWATH-MS/MS 
of precursor ion; C: SWATH-MS/MS of fragment ion. Method 2 (see Table A.14). (S/N values are 
estimates calculated with PeakView). 

 

Clinical Study and comparison with immunoassay results 

In a clinical study, the effect of E and insulin on food intake in men was investigated. Here, 

two groups of healthy young men (each n = 16) received transdermal E (100 µg/24h) or 

placebo via transdermal patches for three days. According to a 2 × 2 design, the experiment 

comprised two individual sessions in each subject with intranasal insulin (160 IU) and, 

respectively, placebo administration. In each session, plasma samples were collected at five 

different time points, totaling 320 samples. These samples were measured by method 1 (Table 
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1) and also quantified by a competitive chemiluminescent enzyme immunoassay (IA, Immulite 

2000). Whereas E levels of 22.2 % of samples were below the LLOQ of the immunoassay (20 

pg mL-1), only one sample (0.3 %) could not be quantified by mass spectrometry (LLOQ: 10 

pg mL-1). IA results were compared to mass spectrometric (MS) results by correlation scatter 

plots (Fig. 5) and Bland-Altman plots (Fig. 6). At first sight, the scatter plot for E presumes 

acceptable agreement between methods. However, the Pearson correlation coefficient r of 

0.8913 expresses the high variability in the lower region between 40 - 100 pg mL-1. This gets 

more clearly visible in the Bland-Altman plot, where we can see that differences increase with 

lower E levels and reach over ± 60 %. The scatter plot for T shows disagreement, especially 

in the upper region above 5,000 pg mL-1. A further look into the Bland-Altman plot shows that 

there is strong variability over the whole range. Although 2s limits are narrower than for E, 

differences of over ± 50 % can be observed, which is inacceptable for clinical measurements. 

The reason for the partially strong disagreement could be the known disadvantages of 

immunoassays, as they are prone to cross reactivity, general sample condition like lipemia or 

hemolysis57 or other interferences. Several groups already investigated agreement between 

different methodologies for steroid quantification and found large discrepancy exceeding 

clinical acceptance limits.3-9 Vesper et. al8 reported the high variabilities of estradiol assays in 

general and found mean bias of up to 22.5 % for MS methods compared to up to 235 % for 

immunoassays. Wang et. al9 found that the Immulite 2000 is likely to systematically 

underestimate T concentration and showed discrepancy of over 60 % compared to LC-

MS/MS, which correlates well to our observations. Overall, variability of quantitative results 

was found to be substantially smaller for MS methods than for immunoassays.58 

Consequently, institutions like the Joint Committee for Traceability in Laboratory Medicine 

(JCTLM) only accept MS assays as reference methods59 and the National Institute of 

Standards and Technology (NIST) is working on establishing reliable LC-MS/MS methods for 

steroid quantification.23 

To control for trueness of the mass spectrometric method, commercial QCs with known 

concentration levels were purchased and quantified (see Table A.13). By reaching the clinical 

acceptance limit of 85 - 115 % accuracy and <15 % precision, the MS method was proven to 

yield reasonable results. 

 



64 

Fig. 5. Scatter plots for comparison of results from immunoassay (IA) and mass spectrometry 
(MS). Plot (A) shows results for E and plot (B) for T. Solid lines resemble the optimum line of parity. 
Dashed lines are results of linear regression analysis of results obtained with the two methods. 

 

Fig. 6. Bland-Altman plots for comparison of results from immunoassay (IA) and mass 
spectrometry (MS). Plot (a) for E with mean difference (9.7 %, solid line) and 2s limits (95 % limits 
of agreement; +2s = 63.1 % , -2s = - 43.7 %, dashed lines). Plot (b) for T with mean difference (-13.0 
%, solid line) and 2s limits (+2s = 25.3 % , -2s = - 51.2 %, dashed lines). 

Moreover, processing of survey scan data revealed additional information on study 

participants. For instance, a 3.2-fold increase of hydroxyprogesterone (d5T-normalized) in 

placebo patch groups compared to E patch groups could be displayed (Fig. 7). Application of 

transdermal E therefore seems to interact in hydroxyprogesterone metabolism. To support 

this hypothesis, we retrospectively analyzed hydroxyprogesterone/d5T response ratios in QC 

samples (QClow and QChigh; n = 36), which were run equally distributed across the entire 
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sample sequence and were derived from an identical plasma pool. Precision, calculated as 

relative standard deviation, was 23.6 %. Moreover, hydroxprogesterone ratios in commercial 

QCs (n = 9 per level) showed following precision: Level I (0.30 ng mL-1): 29.7 %; Level II (1.54 

ng mL-1): 16.6 %; Level III (8.96 ng mL-1): 8.3 %. These values are well below the biological 

variance observed in the study samples and below the common acceptance limit for assay 

precision of 30% RSD for biomarker studies (usually applied as criteria in untargeted profiling 

methods). Other examples of significantly regulated steroids were found as well (Fig. A.23, 

Fig A.24). In general, it is shown that such an assay combined favorably hypothesis-driven 

targeted quantification and untargeted profiling which allowed to generate new hypotheses 

without extra measurements, without additional samples, and without additional human/animal 

experiments. Consequently, such a combined targeted/untargeted assay can be regarded in 

line with the 3R-principle for human and animal studies (3R principle means to avoid animal 

experiments altogether (Replacement), to limit the number of animals (Reduction) and their 

suffering (Refinement) in tests to an absolute minimum), because it collects more information 

per sample. 

 

Fig. 7. Relative quantification of hydroxyprogesterone. EI: E patch & insulin treatment; EP: E 
patch & placebo treatment; PI: placebo patch & insulin treatment; PP: placebo patch and placebo 
treatment. Boxplots for each of the four groups (A) and for grouped E patch and grouped placebo 
patch samples (B). For B, a 3.2-fold increase (median values) in hydroxyprogesterone was found in 
placebo patch groups (U-test, p-value: 3.3 x 10-47). Signals were obtained from TOF-MS scan 
(precursor signals). 
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5.1.5. Conclusions 

The DIA technique SWATH, primarily designed for untargeted analysis of peptides in 

proteomics, was shown capable of accurate and reliable quantification via HR-MS/MS data. 

While controlling for specificity, advantageous analysis in terms of analyte coverage and 

sensitivity compared to regular MRMHR was demonstrated. This way simultaneous low-level 

quantification of E and T was achieved without derivatization nor polarity switching. Especially 

for endogenous compounds that require alternative quantification via surrogate calibrants, 

SWATH enables beneficial experiment design by reduction of the total number of MS and 

MS/MS experiments favorable for keeping cycle times short. Owing to the feature of combined 

targeted/untargeted analysis, valuable secondary information is recorded and accessible post-

acquisition. High quality untargeted MS/MS data, e.g. for steroid profiling, can be collected by 

optional, user-modulated SWATH experiments. Validation according to international 

guidelines (with some minor modifications) and accurate quantification of certified, commercial 

quality controls underline the value of this acquisition technique. By exploiting the potential of 

SWATH for sensitive and quantitative steroid analysis, most likely in conjunction with extended 

chromatography, the avenue towards steroidomics has been paved herein. 
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5.1.7. Supplementary Data 

Materials and Methods 

Fig. A.1 shows structures of the analytes, surrogate calibrants and internal standards. 

Suppliers are specified in the main document. 

 

Fig. A.1 Structure of steroid hormone analytes. Estradiol (E) and testosterone (T) as well as 
corresponding 13C3-labelled surrogate calibrants (13C3E and 13C3T) and deuterated internal standards 
(d5E and d5T). 

 

Solvents for mobile phase preparation were MS grade. Acetonitrile (MeCN, Ultra LC-MS 

grade), methanol (MeOH, Ultra LC-MS grade), 2-propanol (Ultra LC-MS grade) and formic 

acid (98 %, w/v, ACS grade) were purchased from Carl Roth (Karlsruhe, Germany). Stock 

solutions of each standard in MeOH (1.0 mg mL-1) were further diluted in multiple steps, using 

a 10 mL volumetric flask and MeOH, to working solutions of following concentrations: 1,000 

ng mL-1, 100 ng mL-1, 10 ng mL-1 and 1 ng mL-1. Prior to preparation of spiked plasma samples, 

responses of 13C3-standards (surrogate calibrants) were matched with corresponding target 

analyte responses by altering 13C3-standard concentrations. A response factor ratio (RF; 13C3-

standard divided by target analyte standard) of 1.00 ± 0.05 was deemed acceptable (Jones 

et. al) and adjusted (see Table A.1 and Table A.2). The RF-fitted 13C3-standard solutions were 
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used for spiking pooled EDTA plasma, yielding matrix-matched calibrants and quality controls 

(QCs). Six non-zero surrogate calibrants with concentrations from 10 - 1,000 pg mL-1 for 13C3E 

and 20 - 15,000 pg mL-1 for 13C3T were prepared. For validation, four QCs: QCLLOQ, QC3xLLOQ, 

QCMid, QCULOQ (13C3E: 10, 30, 250, 1,000 pg mL-1; 13C3T: 20, 60, 2,500, 15,000 pg mL-1) were 

spiked separately. Two QCs, QClow (13C3T: 60 pg mL-1; 13C3E: 30 pg mL-1) and QChigh (13C3T: 

12,000 pg mL-1; 13C3E: 800 pg mL-1) were embedded in the sample sequence to verify stable 

method performance. 

 

Table A.1. Evaluation of initial response factor of target analytes and corresponding surrogate 
calibrants.a 

T Area 13C3T Area 
Response 
factor 

E Area 13C3E Area 
Response 
factor 

55058 52818 0.959 11442 13662 1.194 

53584 52932 0.988 11753 14352 1.221 

61523 58915 0.958 13395 16353 1.221 

87084 82572 0.948 14838 17622 1.188 
 Average 0.963  Average 1.206 
 StDev 0.017  StDev 0.018 
 RSD [%] 1.777  RSD [%] 1.458 

aResults were obtained by multiple analysis of 1.0 ng mL-1 of each compound in MeOH. Response 
factor = Area surrogate calibrant / Area target analyte. 

 

Table A.2. Final response factor of target analytes and corresponding surrogate calibrants after 
adjusting concentrations of surrogate calibrants.b 

T Area 13C3T Area 
Response 
factor 

E Area 13C3E Area 
Response 
factor 

45014 46481 1.033 20200 21020 1.041 
60660 60419 0.996 17600 18280 1.039 
52848 51930 0.983 28780 28390 0.986 
76736 78098 1.018 18129 17973 0.991  

Average 1.007  Average 1.022  
StDev 0.022  StDev 0.029  
RSD [%] 2.209  RSD [%] 2.872 

bResults were obtained by multiple analysis after adjusting surrogate analyte concentration to match 
corresponding target analyte response. Final concentrations in MeOH: T: 1.00 ng mL-1; 13C3T: 1.04 ng 
mL-1; E: 1.00 ng mL-1; 13C3E: 0.83 ng mL-1 A response factor ratio of 1.00 ± 0.05 with an RSD ≤3 % was 
deemed acceptable.  
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Method Development 

Sample Preparation 

Several low level steroid hormone plasma samples were pooled and spiked with 100 pg mL-1 

of analytes and corresponding 13C3-labelled analogues (13C3E and 13C3T). Two distinct 

protocols were used for protein precipitation and a variety of distinct SPE cartridges were 

tested for sample clean up. 

I. Protein precipitation using 1.0 mL plasma with ice-cold MeOH (2.5:1 , v:v) 

 2 mL of supernatant into speed vac 

 resuspend in 1.0 mL 25 % MeOH 

 load on SPE cartridge & wash with 1.0 mL 5 % MeOH 

 elute with MeOH (2 x 200 µL) 

 dry in speed vac & resuspend in 100 µL MeOH 

 centrifuge and measure supernatant 

 

II. Incubate 1.0 mL plasma with 1.0 mL 5 % H3PO4 for 30 min 

 load on SPE cartridge & wash with 1.0 mL 5 % MeOH 

 elute with MeOH (2 x 200 µL) 

 dry in speed vac & resuspend in 100 µL MeOH 

 centrifuge and measure supernatant 

 

A 1:20 dilution of the resultant extracts was injected into UHPLC-ESI-QTOF-MS/MS (for 

method description see main document). The following results were obtained (Table A.3 and 

Table A.4). 
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Table A.3. Optimization of sample preparation comprising the steps protein precipitation and 
SPE. Results for T and 13T3E. 

Cartridge (Supplier) Protocol T [S/N] 

Supel-Select HLB, 1 mL (Sigma-Aldrich) I 443.6 

Sep-Pak C18, 1 mL (Waters) I 484.7 

Oasis PRiME HLB, 1 mL (Waters) I 485.1 

Chromabond C18ec, 1 mL (Macherey-
Nagel) 

I 679.6 

Oasis HLB, 1 mL (Waters) I 695.5 

Supra-Clean C18-S, 1 mL (PerkinElmer) I 835.2 

Sep-Pak C18, 1 mL (Waters) II 955.1 

Oasis PRiME HLB, 1 mL (Waters) II 1269.1 

Supra-Clean C18-S, 1 mL (PerkinElmer) II 1299.7 

 

Table A.4. Optimization of sample preparation comprising the steps protein precipitation and 
SPE: Results for E and 13C3E. 

Cartridge (Supplier) Protocol E [S/N] 

Oasis PRiME HLB, 1 mL (Waters) I 36.3 

Supel-Select HLB, 1 mL (Sigma-Aldrich) I 42.8 

Supra-Clean C18-S, 1 mL (PerkinElmer) I 49.3 

Sep-Pak C18, 1 mL (Waters) I 53.6 

Oasis HLB, 1 mL (Waters) I 57.2 

Chromabond C18ec, 1 mL (Macherey-

Nagel) 

I 
68.2 

Supra-Clean C18-S, 1 mL (PerkinElmer) II 88.1 

Sep-Pak C18, 1 mL (Waters) II 104.0 

Oasis PRiME HLB, 1 mL (Waters) II 131.9 
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As can be seen from Table A.3 and Table A.4, the following SPE cartridges showed the best 

results: 

Supra-Clean C18-S, 1 mL (PerkinElmer) 50 mg / 1mL 

Oasis PRiME HLB, 1 mL (Waters) 30 mg / 1 mL 

Chromabond C18ec, 1 mL (Macherey-Nagel) 100 mg / 1mL 

Sep-Pak C18, 1 mL (Waters) 100 mg / 1mL 

 

From these experiments, the following optimized sample preparation protocol was derived 

(Fig. A.2) which is described in detail in the main document. 

 

Fig. A.2. Optimized sample preparation procedure. 
 

To conclude, time-consuming drying or further aqueous dilution was avoided by selecting 5 % 

H3PO4 for initial precipitation. Efficient removal of residual proteins from the resultant 

supernatant was achieved by subsequent purification steps. As the Oasis PRiME HLB material 

does not require conditioning and equilibration, samples could be directly loaded onto the 

cartridges. 50 % MeOH in H2O (v/v) was selected as optimum washing eluent. Lower 

percentages of MeOH led to higher noise and decreased sensitivity due to ion suppression of 

leftover matrix compounds. Complete analyte elution of E and 13C3E could be achieved with 1 

× 500 µL MeOH. However, a second 500 µL MeOH elution was necessary to improve recovery 

of T and 13C3T. MeOH + 0.1 % formic acid (v/v), MeCN and 2-propanol were also tested as 

elution solvents but only 2-propanol led to comparable results. Accordingly, MeOH was 

chosen as it shows a favorable evaporation rate. By drying and reconstitution in 100 µL MeOH, 

a total sample concentration factor of 5 was achieved to reach sufficient levels of sensitivity. 
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Liquid Chromatography 

A fast UHPLC method with gradient elution (5 min including reequilibration) was developed 

using a core-shell C18 column (Kinetex® C18, 2.6 µm) (Fig. A.3A). Faster elution by higher 

flow rates was not considered because the detection sensitivity significantly dropped at flow 

rates higher than 0.3 mL min-1 (Fig. A.3B). Decreasing the flow rate, starting from 0.5 mL min-

1, led to higher sensitivity. However, poor peak shape at very low flow rates was limiting this 

optimization parameter so that 0.3 mL min-1 was set as optimum. Higher percentages than 0.1 

% (v/v) of formic acid in mobile phases did not show any improvement in chromatography or 

sensitivity. The chosen gradient was optimized for sensitivity, selectivity and run time. 

Resolution between the two target analytes was not further optimized in favor of short analysis 

times. Yet, although only partial, close to baseline resolution was achieved (Fig. A.3C), there 

was no assay specificity problem arising from the two steroids due to selective detection by 

the specific SWATH acquisition. 
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(B) 

(C) 

Fig. A.3. UHPLC separation on Kinetex® C18, 2.6 µm (50 x 2.1 mm) column. (A) Gradient profile, 
(B) effect of flow rate on sensitivity, and (C) separation of E and T under final conditions (Rs = 0.98). 
Mobile phases, A: H2O + 0.1 % FA, B: ACN + 0.1 % FA. 
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MS Detection 

Concentration levels of E in human plasma are extremely low, in particular in male, in the low 

pg mL-1 range (see Table A.5). On the other hand, T concentrations in male plasma are in the 

ng mL-1 range and can be readily detected. Second, E shows higher ionization efficiencies in 

negative ion mode due to its phenolic group and weakly acidic character, while T cannot be 

detected in negative ion mode (Table A.6). Unfortunately, polarity switching is not possible on 

the TripleTOF®5600+ system. Derivatization of E to yield derivatives which give good 

ionization yields in positive mode has sometimes been pursued to overcome this problem, yet 

was not considered in our study. Thus, another solution had to be found. 

 

Table A.5. Reference values for T and E in adult men. 

Testosterone in adult men, total 2.4 – 9.5 ng mL-1* 

Testosterone in study subjects (Immulite®) 0.5 – 12.0 ng mL-1 

Estradiol in adult men, total 8.0 – 35.0 pg mL-1** 

Estradiol in study subjects (Immulite®) 20 – 500 pg mL-1 

*Mayo Medical Laboratories: 
http://www.mayomedicallaboratories.com/test-updates/attachment.php?id=33420 
**Mayo Medical Laboratories: 
http://www.mayomedicallaboratories.com/test-updates/attachment.php?id=31374 
 

 
Table A.6. Direct infusion of analyte solution (1,000 ng mL-1) to find suitable electrospray 
ionization mode for [M+H]+ or [M-H]- ions (ESI). 

Analyte Positive Mode Negative Mode 

Testosterone ✔✔✔ ✘ 

Estradiol ✔ ✔✔ 

 

In ESI, an in-source fragment for E is generated by water cleavage in the positive ion mode 

(Fig. A.4). It can be seen, that the S/N is significantly improved for this in-source fragment 

(middle panel) as compared to the protonated precursor of E (top panel). The sensitivity (S/N) 

could be further improved by selecting the fragment with m/z 159.0804 from the in-source 

fragment [M-H2O+H]+ as precursor ion (bottom panel) for detection in positive ion mode (Fig. 

A.4). Furthermore, all source and gas parameters were optimized for maximal sensitivity for E 

(not shown; optimized settings reported in main document). 

 



 

77 

Fig. A.4. Selection of E ion for quantitative analysis and comparison of sensitivities. S/N ratios 
of precursor ion [M+H]+, in-source fragment [M-H2O+H]+ and fragment of in-source fragment. 

 

A further sensitivity gain for E was furnished by using the enhanced product ion mode (high 

sensitivity mode of MS/MS) with fragment enhancement for the fragment with m/z 159.0804 

of the in-source fragment with m/z 255.1743 as precursor ion. The result is illustrated in Fig. 

A5A and Fig. A.5B. The intensity of the fragment m/z 159.0804 is increased by factor of about 

3. For T even a higher increase of about 10-fold was achieved (Fig. A.5C and Fig. A.5D). The 

information about the precursor ions is unfortunately lost in the MS/MS spectra of the 

enhanced mode (Fig. A.5B and Fig. A.5D). 
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Fig. A.5. MS/MS spectra of E (precursor, in-source fragment with m/z 255.1743) without fragment 
enhancement (A) and with fragment enhancement on m/z 159.0804 (B). Fragment with m/z 
133.0648 was not used as it showed insufficient specificity. MS/MS spectra of T (precursor, m/z 
289.2162) without fragment enhancement (C) and with fragment enhancement on m/z 109.0648 (D). 

 

A convenient strategy to improve sensitivity is to increase accumulation time (Fig. A.6). 

Unfortunately, the increase of the accumulation time comes at expense of the cycle time. 

When cycle times are too large, a sufficient number of data points across the peak is not 

possible anymore. As shown in Fig. A.7, when the accumulation time was increased from 50 

to 100 ms the S/N ratio could be improved roughly by factor of 2. Further increase to 250 ms 

provided an S/N of only 102 (ca. 70 % related to 100 ms accumulation time). While both 

experiments, 50 and 100 ms accumulation time, yielded more than 10 data points per peak, 

the latter experiment with 250 ms did not provide a sufficient number of data points and thus 

the peak was not correctly described (signal was cut off). 
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Fig. A.6. Effect of accumulation times on sensitivity (S/N) of E (10 pg mL-1) in SWATH acquisition 
mode. 

 

Fig. A.7. Effect of accumulation time (tAcc) and cycle time (tCyc) on sensitivity of E (500 pg mL-1) 
and data points across the peak (product ion mode). S/N values are estimates calculated with 
PeakView. 
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Fig. A.8. De-optimization of ion-source parameters (declustering potential DP) for T in order to 
have linearity in the relevant concentration range. (A) DP optimized for maximal sensitivity (120 V), 
(B) calibration function at DP 160 V slightly de-optimized, (C) DP de-optimized (200 V) so that linearity 
is observed in the relevant concentration range, and (D) overlay of XICs of T (50 pg mL-1) at two distinct 
DPs, 200 V (blue) and 120 V (green). 

 

With such resultant highly optimized conditions, both E and T can be detected at very low 

levels (ca. 10 pg mL-1). Unfortunately, for T the linear range does not cover the relevant 

concentration range of the real samples under investigation. At concentrations above 1,000 

pg mL-1 the signal levels off due to detector saturation (Fig. A.8A). For the range of about 10 

- 15,000 pg mL-1 only a quadratic relationship between concentration and response ratio could 

be achieved. Consequently, for T the MS parameters needed to be de-optimized. While a 

number of options were available, the DP was selected for this purpose. Slightly increasing 

DP from 120 V to 160 V has only a minor effect (Fig. A.8B). When the DP was increased to 

200 V, linearity was observed for T over the concentration range of 50 pg mL-1 to 10 ng mL-1 

(Fig. A.8C). A comparison of XICs from MS/MS data at two distinct DP of 120 and 200 V is 

shown in Fig. A.8D. LOD and LOQ were significantly higher, yet sufficient for the present 

purpose. 
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Fig. A.9 shows the comparison of signal intensities obtained for different acquisition modes, 

MRMHR and SWATH. MRMeq represents the product-ion mode equivalent to equal 

accumulation time as in SWATH acquisition (300 ms for E and 50 ms for T). MRM1/2 on the 

other hand is the product-ion mode with half of the accumulation time which is more realistic 

because it is the equivalent with same cycle time. The corresponding peak areas and S/N 

ratios can be found in Fig. A.9. Corresponding LODs of each method are listed in Table A.7. 

 

Fig. A.9. Comparison of signals obtained from MRMHR and SWATH acquisition. A: E (20 pg mL-1 
in MeOH), B: T (40 pg mL-1 in MeOH). (S/N values are estimates calculated with PeakView). 

 

For determination of instrumental LODs, an 8-point calibration of both target analytes in 

MeOH, ranging from 20 pg mL-1 to 200 pg mL-1, was analysed in triplicate. Via the standard 

error of the intercept (seb), instrumental LODs could be calculated from the calibration curve 

(see Table A.7). It is shown that the SWATH method achieved the lowest instrumental LODs 

even at equal tAcc. 
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Table A.7. Comparison of instrumental LODs (in pg mL-1) of MRMHR and SWATH.c 

Method Analyte tAcc [ms] LOD 

MRM1/2 
E 150 13.6 

T 25 15.3 

MRMeq 
E 300 9.6 

T 50 14.1 

SWATH 
E 300 5.8 

T 50 8.1 

cInstrumental LODs were calculated by 3x seb divided by the slope of the calibration curve The 
mandatory TOF-MS experiment had a tAcc of 20 ms in all experiments. To reach uniform tCyc, additional 
experiments were added in the MRM1/2 method. For associated chromatograms see Fig. A.9. 

 

Method Validation and Calibration 

Assay Specificity 

Widening the Q1 windows during precursor selection in SWATH acquisition (as compared to 

the product ion scan mode with its unit mass precursor selection for fragmentation) raises the 

risk for interferences in the TOF readout. Stringent control and validation of assay specificity 

is therefore necessary. A number of potential interferences with the same sum formula as T 

can be found in the LipidMaps database (Table A.8). Amongst them, epitestosterone (epiT) is 

a likely interference due to the fact that it shows the same fragments as well. It is an important 

steroid from an analytical perspective, in particular in doping control, as it is monitored as well 

and used to derive the T/epiT ratio. At T/epiT levels larger than 4/1 further investigation for 

potential T abuse is conducted. For this reason, a mixture of T and epiT was injected. As can 

be seen in Fig. A.10, epiT elutes at different retention time and therefore does not cause any 

problems. Similarly, epiestradiol (epiE) is a potential interference but was also eluted at 

different retention time compared to E. Other isomers of Table A.9 are expected to show 

different fragmentations and/or retention time. 
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Table A.8. Potential interferences for T (isomeric structures from LipidMaps database search). 

Common Name Systematic name Formula Mass 

Testosterone 17beta-hydroxyandrost-4-en-3-one C19H28O2 288.2089 

Dehydroepiandrosterone 3beta-hydroxyandrost-5-en-17-one C19H28O2 288.2089 

17α-Testosterone 
(Epitestosterone) 

17alpha-hydroxyandrost-4-en-3-one C19H28O2 288.2089 

- 5beta-androstane-3,17-dione C19H28O2 288.2089 

- 5alpha-androstane-3,17-dione C19H28O2 288.2089 

Dehydroandrosterone - C19H28O2 288.2089 

1-Testosterone 17beta-hydroxy-5alpha-androst-1-en-3-
one 

C19H28O2 288.2089 

 

Table A.9. Potential interferences for E (isomeric structures from LipidMaps database search).d 

Common Name Systematic name Formula Mass 

- estra-5,7,9-triene-3beta,17beta-diol C18H24O2 272.1776 

- 8alpha-estra-1,3,5(10)-trien-3,17beta-
diol 

C18H24O2 272.1776 

- estra-5,7,9-triene-3alpha,17alpha-diol C18H24O2 272.1776 

17α-Estradiol 
(Epiestradiol) 

estra-1,3,5(10)-triene-3,17alpha-diol C18H24O2 272.1776 

dA database search (LipidMaps, HMDB) for potential interference for the [M-H2O+H]+ precursor 
(C18H22O) did not lead to any results. 
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Fig. A.10. Assay specificity testing for steroid epimers. Injection of E & epiE (A) and T & epiT (C) 
shows baseline separation of peaks in both cases. Injection of only epiE (B) or only epiT (D) shows no 
interaction for target analytes. 

 

Assay specificity of SWATH was compared to MRMHR (product ion mode with same fragment 

as used for SWATH, other mass spectrometric parameters remained identical to SWATH 

method). It can be seen in Fig. A.11 that no interference is observed in the XIC traces of T, 
13C3-T and d5T upon injection of the respective other targets in MRMHR in which Q1 precursor 

selection occurs with unit mass. The situation is different for SWATH. When precursor 

selection occurred with 8 Da windows, a signal for d5T was monitored in the 13C3-T XIC trace, 

and likewise for T and 13C3-T in the XIC of d5T (Fig. A.12) demonstrating insufficient assay 

specificity when the Q1 window for precursor selection was too wide in SWATH. However, 

when the Q1 window was narrowed to 4 Da (5 Da for d5T), no interferences were observed 

(see Fig. A.13). The situation was the same for E (see Fig. A.14, Fig. A.15 and Fig. A.16). 
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Fig. A.11. T: MRMHR for every transition (5 ng mL-1 per analyte). 
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Fig. A.12. T: SWATH with 8 Da window for T, 13C3T & d5T (5 ng mL-1 per analyte). Interfering signals 
are marked with a black filling. 
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Fig. A.13. T: SWATH with 4 Da window for T & 13C3T, 5 Da window for d5T (5 ng mL-1 per analyte). 
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Fig. A.14. E: MRMHR for every transition (5 ng mL-1 per analyte). 
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Fig. A.15. E: SWATH with 8 Da window for E, 13C3E & d5E (5 ng mL-1 per analyte). Interfering signals 
are marked with a black filling. 
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Fig. A.16. E: SWATH with 4 Da window for E & 13C3E, 5 Da window for d5E (5 ng mL-1 per analyte). 
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Fig. A.17. Specificity in blank matrix. XICs of fragments of 13C3T (a), d5T (b), 13C3E (c) and d5E (d) 
are shown in a blank matrix sample. Relevant regions of retention time are shown in a zoomed-in 
window, respectively. 
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calibration for quantification, both curves must be parallel after initial matching of responses, 

which was done by adjusting concentrations of surrogate calibrants (Table A.1 and Table A.2). 

Parallelism for both substance pairs was controlled for during the whole study, including 
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Fig. A.18. Parallelism of standard addition curve and corresponding surrogate calibrant curve 
for (A) T & 13C3T, (B) E & 13C3E. Following concentrations were spiked into plasma calibrants, 
respectively: T: 0/20/60/1,000/5,000/10,000/15,000 pg mL-1; 13C3T: 20/60/500/2,500/10,000/15,000 pg 
mL-1; E: 0/10/30/100/250/500/1000 pg mL-1; 13C3E: 10/30/100/250/500/1000 pg mL-1. 

 

Table A.10. Control for parallelism during validation.e 

Analyte Day 
Slope surrogate 

calibrant 
Slope target 

analyte 
Slope 
ratio 

Slope deviation 
[%] 

Estradiol 

1 0.00708 0.00725 0.977 2.3 

2 0.00895 0.00867 1.032 3.2 

3 0.00775 0.00759 1.021 2.1 

Testosterone 

1 0.00555 0.00561 0.989 1.1 

2 0.00600 0.00623 0.963 3.7 

3 0.00505 0.00505 1.000 0.0 

eA slope ratio (13C3-standard/target analyte standard) of 1.00 ± 0.05 was deemed acceptable. 
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Matrix Effects, Extraction Recoveries and Process Efficiencies 

Matrix Effect by Post-Column Infusion 

Besides validation of matrix effects, extraction recoveries and process efficiencies by the 

protocol proposed by Matuszewski discussed in the main document, matrix effects were also 

investigated by post-column infusion experiments. 13C3-labelled surrogate calibrants and d5-

labelled internal standard solutions were infused via a T-piece to the column effluent and 

ionized in the ESI source. The XICs of the corresponding solutes were monitored (Fig. A.19 

and Fig. A.20). It can be seen that at the relevant retention time of the analyte signals are not 

suppressed significantly indicating negligible or minor matrix effects. 

 

Fig. A.19. Post-column infusion of 13C3T for plasma (A) and MeOH (B) and post-column infusion 
of d5T for plasma (C) and MeOH (D). Relevant regions of retention time are shown in zoomed-in 
window. XICs of infused substance for relevant fragment mass are shown, respectively. 
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Fig. A.20. Post-column infusion of 13C3E for plasma (a) and MeOH (b) and post-column infusion 
of d5E for plasma (c) and MeOH (d). Relevant regions of retention time are shown in zoomed-in 
window. XICs of infused substance for relevant fragment mass are shown, respectively. 

 

Stability 

Different types of stabilities were validated. Freeze-thaw stability was assessed by freezing 

freshly prepared QClow and QChigh samples (n = 3) for 24 h. Three cycles of thawing and 

freezing for 4 h, respectively, were done and samples were analyzed after final thawing. 

Furthermore, long term stability of samples (n = 3) that were stored for 6 months at -20 ° C 

was tested. Short term stability was validated by analyzing freshly prepared samples that were 

frozen for 24 h, thawed and kept at room temperature (25 ° C) for 6 h. The respective response 

ratios were compared to the response ratios of freshly prepared QClow and QChigh samples. By 

leaving these freshly prepared samples in the autosampler at 4 ° C for 10 h, also post-

preparative stability could be assessed. It can be seen that all stability assessments are within 

acceptable limits (Table A.11) Since freeze-thaw stability of 13C3E showed an accuracy of only 

80.9 % for the high level QC, multiple freeze-thaw cycles were avoided. 
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Table A.11. Validation of stability.f 

Sample QC 
13C3-Estradiol 13C3-Testosterone 

Accuracy [%] RSD [%] Accuracy [%] RSD [%] 

Fresh QC 
low 100.0 7.0 100.0 3.5 

high 100.0 5.6 100.0 8.3 

Freeze-
thaw QC 

low 93.5 13.0 87.8 8.1 

high 80.9 1.6 88.8 15.6 

Long term 
QC 

low 105.1 8.8 98.4 10.8 

high 89.6 8.4 100.0 0.2 

Short term 
QC 

low 103.4 21.9 90.9 17.3 

high 90.3 15.4 86.5 4.8 

Post-prep. 
QC 

low 98.8 4.2 91.0 6.6 

high 102.0 2.5 89.1 1.8 

fResponse ratios of freshly prepared QCs were set to 100 % accuracy for comparison. 

 

Application 

Results from Study Samples 

The method was applied to measure plasma concentrations of T and E in a clinical study in 

which healthy young men received a 3-day treatment with transdermal E (Estradot 50 patches, 

Novartis Pharma, Nuremberg, Germany, 100 µg / 24 h) or placebo and the respective effect 

on calorie intake was monitored. Sixty-four sets of samples obtained at 5 different time points 

were quantified, so that the total sample number was 320. 

 

Table A.12. Analysis results.g 

Sample ID Estradiol [pg mL-1] Testosterone [pg mL-1] Estradiol Patch Insulin treatment 
10A10 47.6 ± 4.2 7097.9 ± 380.8 ✘ ✘ 
10A2 48.4 ± 4.2 8411.7 ± 451.2 ✘ ✘ 
10A4 52.1 ± 4.5 9490.5 ± 508.9 ✘ ✘ 
10A6 52.4 ± 4.5 9721.8 ± 521.3 ✘ ✘ 
10A8 52.1 ± 4.5 8319.4 ± 446.2 ✘ ✘ 
10B10 35.5 ± 3.3 8947.3 ± 479.8 ✘ √ 
10B2 30.4 ± 3.0 8161.9 ± 437.8 ✘ √ 
10B4 32.9 ± 3.1 9974.5 ± 534.9 ✘ √ 
10B6 42.1 ± 3.8 10770.2 ± 577.5 ✘ √ 
10B8 505.6 ± 40.8 9966.3 ± 534.4 ✘ √ 
11A10 65.3 ± 5.5 1671.6 ± 90.2 √ √ 
11A2 54.7 ± 4.7 2244.9 ± 120.8 √ √ 
11A4 87 ± 7.2 2314.5 ± 124.6 √ √ 
11A6 69.3 ± 5.8 2145.2 ± 115.5 √ √ 
11A8 69 ± 5.8 2033.9 ± 109.5 √ √ 
11B10 57.9 ± 4.9 2030.3 ± 109.4 √ ✘ 
11B2 50.9 ± 4.4 1561.4 ± 84.3 √ ✘ 
11B4 65.7 ± 5.5 1617.6 ± 87.3 √ ✘ 
11B6 66.3 ± 5.6 1437.8 ± 77.7 √ ✘ 
11B8 64.7 ± 5.4 1555.2 ± 83.9 √ ✘ 
12A10 19.6 ± 2.3 4271.4 ± 229.4 ✘ √ 
12A2 22.1 ± 2.4 3061.8 ± 164.6 ✘ √ 
12A4 23.8 ± 2.5 3517.3 ± 189.0 ✘ √ 
12A6 19.8 ± 2.3 4174.8 ± 224.2 ✘ √ 
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12A8 27.1 ± 2.7 5277.5 ± 283.2 ✘ √ 
12B10 23.4 ± 2.5 4139.4 ± 222.3 ✘ ✘ 
12B2 23.3 ± 2.5 5733.4 ± 307.7 ✘ ✘ 
12B4 24.9 ± 2.6 6577.0 ± 352.9 ✘ ✘ 
12B6 20.3 ± 2.3 7191.8 ± 385.8 ✘ ✘ 
12B8 19.8 ± 2.3 6225.7 ± 334.0 ✘ ✘ 
13A10 92.1 ± 7.6 3226.4 ± 173.4 √ ✘ 
13A2 115.3 ± 9.4 2741.0 ± 147.4 √ ✘ 
13A4 104.2 ± 8.5 3264.3 ± 175.4 √ ✘ 
13A6 120.6 ± 9.8 2922.8 ± 157.1 √ ✘ 
13A8 149.7 ± 12.2 3592.0 ± 193.0 √ ✘ 
13B10 53.9 ± 4.6 1516.1 ± 81.8 √ √ 
13B2 69.5 ± 5.8 2027.4 ± 109.2 √ √ 
13B4 71.3 ± 6.0 2308.7 ± 124.3 √ √ 
13B6 68.8 ± 5.8 2193.8 ± 118.1 √ √ 
13B8 67.3 ± 5.6 2682.1 ± 144.2 √ √ 
14A10 16.7 ± 2.2 10070.5 ± 540 ✘ ✘ 
14A2 12.0 ± 2.0 7464.4 ± 400.4 ✘ ✘ 
14A4 19.1 ± 2.3 10787.2 ± 578.4 ✘ ✘ 
14A6 17.0 ± 2.2 11680.3 ± 626.3 ✘ ✘ 
14A8 18.0 ± 2.2 10797 ± 578.9 ✘ ✘ 
14B10 22.4 ± 2.5 11041.5 ± 592 ✘ √ 
14B2 29.6 ± 2.9 12224.4 ± 655.4 ✘ √ 
14B4 25.9 ± 2.7 12542 ± 672.4 ✘ √ 
14B6 21.8 ± 2.4 11925.7 ± 639.4 ✘ √ 
14B8 21.6 ± 2.4 12028.7 ± 644.9 ✘ √ 
16A10 16.2 ± 2.1 6354.0 ± 340.9 ✘ ✘ 
16A2 15.7 ± 2.1 6403.3 ± 343.6 ✘ ✘ 
16A4 15.2 ± 2.1 6714.9 ± 360.2 ✘ ✘ 
16A6 15.5 ± 2.1 6120.4 ± 328.4 ✘ ✘ 
16A8 17.0 ± 2.2 6390.3 ± 342.9 ✘ ✘ 
16B10 23.1 ± 2.5 5855 ± 314.2 ✘ √ 
16B2 21.1 ± 2.4 7207.0 ± 386.6 ✘ √ 
16B4 19.8 ± 2.3 5940.9 ± 318.8 ✘ √ 
16B6 26.4 ± 2.7 6755.7 ± 362.4 ✘ √ 
16B8 26.8 ± 2.7 7047.3 ± 378.1 ✘ √ 
18A10 95.4 ± 7.8 1840.7 ± 99.2 √ √ 
18A2 104.6 ± 8.6 3467.5 ± 186.3 √ √ 
18A4 102.2 ± 8.4 2749.7 ± 147.9 √ √ 
18A6 112.0 ± 9.2 2933.7 ± 157.7 √ √ 
18A8 112.3 ± 9.2 3171.1 ± 170.4 √ √ 
18B10 128.6 ± 10.5 636.1 ± 34.9 √ ✘ 
18B2 242.1 ± 19.6 1169.3 ± 63.3 √ ✘ 
18B4 203 ± 16.4 974.1 ± 52.9 √ ✘ 
18B6 178.7 ± 14.5 1137.6 ± 61.6 √ ✘ 
18B8 199.7 ± 16.2 1110.8 ± 60.2 √ ✘ 
19A10 49.6 ± 4.3 828.7 ± 45.1 √ ✘ 
19A2 73.8 ± 6.1 1825.5 ± 98.4 √ ✘ 
19A4 50.9 ± 4.4 2035.7 ± 109.6 √ ✘ 
19A6 71.1 ± 5.9 1892.9 ± 102 √ ✘ 
19A8 59.4 ± 5.0 1652.2 ± 89.1 √ ✘ 
19B10 38.7 ± 3.5 1062 ± 57.6 √ √ 
19B2 45.8 ± 4.0 1443.2 ± 77.9 √ √ 
19B4 49.8 ± 4.3 1615.8 ± 87.2 √ √ 
19B6 42.1 ± 3.8 1433.8 ± 77.4 √ √ 
19B8 76.7 ± 6.4 1612.3 ± 87 √ √ 
1A10 77.2 ± 6.4 1275.7 ± 69 √ √ 
1A2 79.7 ± 6.6 2192.5 ± 118 √ √ 
1A4 85.0 ± 7.0 1857.7 ± 100.1 √ √ 
1A6 86.2 ± 7.1 1987.7 ± 107.1 √ √ 
1A8 83.7 ± 6.9 1712.4 ± 92.3 √ √ 

1B10 72.3 ± 6 1663.6 ± 89.7 √ ✘ 
1B2 68.3 ± 5.7 2783.8 ± 149.7 √ ✘ 
1B4 76.9 ± 6.4 3103 ± 166.8 √ ✘ 
1B6 70.8 ± 5.9 2774.9 ± 149.2 √ ✘ 
1B8 74.9 ± 6.2 2109.5 ± 113.6 √ ✘ 

20A10 20 ± 2.3 4568.1 ± 245.3 ✘ √ 
20A2 20.1 ± 2.3 5476.4 ± 293.9 ✘ √ 
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20A4 17.5 ± 2.2 5310.5 ± 285 ✘ √ 
20A6 19 ± 2.3 4349.3 ± 233.5 ✘ √ 
20A8 20.1 ± 2.3 4573.5 ± 245.5 ✘ √ 
20B10 27.6 ± 2.8 5931.7 ± 318.3 ✘ ✘ 
20B2 28.7 ± 2.9 6753.7 ± 362.3 ✘ ✘ 
20B4 26.8 ± 2.7 6711.8 ± 360.1 ✘ ✘ 
20B6 29.4 ± 2.9 7447.0 ± 399.5 ✘ ✘ 
20B8 24.1 ± 2.6 6726.5 ± 360.9 ✘ ✘ 
23A10 15.5 ± 2.1 6372.3 ± 341.9 ✘ √ 
23A2 20.5 ± 2.4 6503 ± 348.9 ✘ √ 
23A4 24.3 ± 2.6 7076.5 ± 379.6 ✘ √ 
23A6 21.6 ± 2.4 7674.1 ± 411.6 ✘ √ 
23A8 19.8 ± 2.3 8009.3 ± 429.6 ✘ √ 
23B10 23.8 ± 2.5 7128.9 ± 382.4 ✘ ✘ 
23B2 28.7 ± 2.9 8140.3 ± 436.6 ✘ ✘ 
23B4 30.7 ± 3.0 8882.0 ± 476.3 ✘ ✘ 
23B6 33.7 ± 3.2 10389.0 ± 557.1 ✘ ✘ 
23B8 41.5 ± 3.7 10778.7 ± 578 ✘ ✘ 
24A10 66.1 ± 5.6 540.7 ± 29.9 √ ✘ 
24A2 90.3 ± 7.4 300.4 ± 17.3 √ ✘ 
24A4 73.9 ± 6.2 368.5 ± 20.8 √ ✘ 
24A6 75.8 ± 6.3 297.8 ± 17.2 √ ✘ 
24A8 75.1 ± 6.3 368.7 ± 20.8 √ ✘ 
24B10 41.3 ± 3.7 911.2 ± 49.5 √ √ 
24B2 36.0 ± 3.3 824.2 ± 44.9 √ √ 
24B4 47.6 ± 4.2 824.2 ± 44.9 √ √ 
24B6 38.2 ± 3.5 718.7 ± 39.3 √ √ 
24B8 38.3 ± 3.5 701.7 ± 38.4 √ √ 
25A10 16.8 ± 2.2 6887.1 ± 369.5 ✘ ✘ 
25A2 19.1 ± 2.3 8258.7 ± 443 ✘ ✘ 
25A4 21.5 ± 2.4 8929.5 ± 478.9 ✘ ✘ 
25A6 22.3 ± 2.5 8175.1 ± 438.5 ✘ ✘ 
25A8 21.5 ± 2.4 9287.3 ± 498.1 ✘ ✘ 
25B10 16.0 ± 2.1 8794.3 ± 471.6 ✘ √ 
25B2 18.1 ± 2.2 10696.4 ± 573.5 ✘ √ 
25B4 16.5 ± 2.2 11694.1 ± 627 ✘ √ 
25B6 15.8 ± 2.1 10722.2 ± 574.9 ✘ √ 
25B8 18.0 ± 2.2 10557.4 ± 566.1 ✘ √ 
26A10 75.8 ± 6.3 1014.2 ± 55 √ √ 
26A2 82.2 ± 6.8 1274.3 ± 68.9 √ √ 
26A4 103.9 ± 8.5 989.3 ± 53.7 √ √ 
26A6 94.6 ± 7.8 840.7 ± 45.8 √ √ 
26A8 89 ± 7.3 1003.5 ± 54.5 √ √ 
26B10 86.7 ± 7.2 942.2 ± 51.2 √ ✘ 
26B2 108.7 ± 8.9 883.3 ± 48.1 √ ✘ 
26B4 121.9 ± 9.9 822 ± 44.8 √ ✘ 
26B6 93.8 ± 7.7 962.0 ± 52.2 √ ✘ 
26B8 100.9 ± 8.3 916.8 ± 49.8 √ ✘ 
27A10 41.5 ± 3.7 1530.2 ± 82.6 √ ✘ 
27A2 44.1 ± 3.9 3289.7 ± 176.8 √ ✘ 
27A4 62.8 ± 5.3 2299.3 ± 123.7 √ ✘ 
27A6 66.1 ± 5.6 2598.7 ± 139.8 √ ✘ 
27A8 55.4 ± 4.7 2361.1 ± 127.1 √ ✘ 
27B10 41.2 ± 3.7 1217.2 ± 65.9 √ √ 
27B2 48.1 ± 4.2 2211.0 ± 119.0 √ √ 
27B4 38.7 ± 3.5 1878.6 ± 101.2 √ √ 
27B6 59.9 ± 5.1 1925.2 ± 103.7 √ √ 
27B8 51.1 ± 4.4 1530.9 ± 82.6 √ √ 
29A10 23.4 ± 2.5 8054.2 ± 432.0 ✘ ✘ 
29A2 21.0 ± 2.4 7288.2 ± 391.0 ✘ ✘ 
29A4 30.6 ± 3.0 9356.4 ± 501.8 ✘ ✘ 
29A6 36.2 ± 3.3 8498.3 ± 455.8 ✘ ✘ 
29A8 34.0 ± 3.2 8825.1 ± 473.3 ✘ ✘ 
29B10 18.5 ± 2.3 5501.4 ± 295.2 ✘ √ 
29B2 19.1 ± 2.3 7026.3 ± 376.9 ✘ √ 
29B4 22.9 ± 2.5 6681.9 ± 358.5 ✘ √ 
29B6 24.8 ± 2.6 7120.4 ± 382.0 ✘ √ 
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29B8 27.1 ± 2.7 6105.9 ± 327.6 ✘ √ 
2A10 70.0 ± 5.9 492.7 ± 27.3 √ ✘ 
2A2 81.4 ± 6.7 1032.5 ± 56.0 √ ✘ 
2A4 73.8 ± 6.1 878.8 ± 47.8 √ ✘ 
2A6 85.4 ± 7.1 1002.9 ± 54.4 √ ✘ 
2A8 77.6 ± 6.4 783.4 ± 42.7 √ ✘ 

2B10 68.1 ± 5.7 581.9 ± 32.0 √ √ 
2B2 56.4 ± 4.8 1000.0 ± 54.3 √ √ 
2B4 73.6 ± 6.1 849.2 ± 46.2 √ √ 
2B6 67.6 ± 5.7 916.5 ± 49.8 √ √ 
2B8 88.2 ± 7.3 958.7 ± 52.1 √ √ 

30A10 63.8 ± 5.4 929.7 ± 50.5 √ √ 
30A2 70 ± 5.9 1278.4 ± 69.1 √ √ 
30A4 72.9 ± 6.1 1208.5 ± 65.4 √ √ 
30A6 79.2 ± 6.6 1108.4 ± 60.1 √ √ 
30A8 71.1 ± 5.9 1029.9 ± 55.9 √ √ 
30B10 57.5 ± 4.9 465.1 ± 25.9 √ ✘ 
30B2 69.5 ± 5.8 778.0 ± 42.4 √ ✘ 
30B4 71.3 ± 6.0 631.9 ± 34.7 √ ✘ 
30B6 72.8 ± 6.1 621.2 ± 34.1 √ ✘ 
30B8 66.6 ± 5.6 581.9 ± 32.0 √ ✘ 
31A10 25.4 ± 2.6 5705.5 ± 306.2 ✘ ✘ 
31A2 25.6 ± 2.7 6728.9 ± 361 ✘ ✘ 
31A4 26.1 ± 2.7 7250.7 ± 389 ✘ ✘ 
31A6 24.3 ± 2.6 5818.6 ± 312.2 ✘ ✘ 
31A8 21.5 ± 2.4 7468.8 ± 400.6 ✘ ✘ 
31B10 32.7 ± 3.1 4148.1 ± 222.8 ✘ √ 
31B2 20.1 ± 2.3 5424.7 ± 291.1 ✘ √ 
31B4 27.2 ± 2.8 5445.2 ± 292.2 ✘ √ 
31B6 18.5 ± 2.3 5210.1 ± 279.6 ✘ √ 
31B8 24.6 ± 2.6 5666.9 ± 304.1 ✘ √ 
32A10 581.1 ± 46.9 1101.7 ± 59.7 √ ✘ 
32A2 55.2 ± 4.7 1109.9 ± 60.1 √ ✘ 
32A4 55.9 ± 4.8 838.2 ± 45.7 √ ✘ 
32A6 304.2 ± 24.6 879.5 ± 47.8 √ ✘ 
32A8 741.7 ± 59.9 793.9 ± 43.3 √ ✘ 
32B10 88.2 ± 7.3 1562.5 ± 84.3 √ √ 
32B2 97.4 ± 8 1921.2 ± 103.5 √ √ 
32B4 104.1 ± 8.5 1440.7 ± 77.8 √ √ 
32B6 98.4 ± 8.1 1338.6 ± 72.4 √ √ 
32B8 123.4 ± 10.1 1275.9 ± 69 √ √ 
33A10 19.1 ± 2.3 3102.6 ± 166.8 ✘ √ 
33A2 15.8 ± 2.1 5806.8 ± 311.6 ✘ √ 
33A4 17.2 ± 2.2 5701.3 ± 306.0 ✘ √ 
33A6 17.0 ± 2.2 5287.0 ± 283.8 ✘ √ 
33A8 19.8 ± 2.3 4846.3 ± 260.2 ✘ √ 
33B10 17.5 ± 2.2 5550.9 ± 297.9 ✘ ✘ 
33B2 15.2 ± 2.1 6066.2 ± 325.5 ✘ ✘ 
33B4 19.5 ± 2.3 5836.7 ± 313.2 ✘ ✘ 
33B6 16.0 ± 2.1 6453 ± 346.2 ✘ ✘ 
33B8 21.0 ± 2.4 6928.1 ± 371.7 ✘ ✘ 
34A10 34.7 ± 3.2 4643.7 ± 249.3 √ √ 
34A2 50.9 ± 4.4 2888.2 ± 155.3 √ √ 
34A4 67.8 ± 5.7 2658.9 ± 143 √ √ 
34A6 76.9 ± 6.4 2475.3 ± 133.2 √ √ 
34A8 67.8 ± 5.7 2536 ± 136.4 √ √ 
34B10 85.5 ± 7.1 1949.6 ± 105 √ ✘ 
34B2 67.5 ± 5.7 3809.2 ± 204.6 √ ✘ 
34B4 93.5 ± 7.7 3129.8 ± 168.2 √ ✘ 
34B6 91.5 ± 7.5 3317.2 ± 178.2 √ ✘ 
34B8 74.6 ± 6.2 3132.9 ± 168.4 √ ✘ 
35A10 18.3 ± 2.2 4234 ± 227.4 ✘ ✘ 
35A2 14.0 ± 2.0 3695.3 ± 198.5 ✘ ✘ 
35A4 18.3 ± 2.2 4052.4 ± 217.6 ✘ ✘ 
35A6 17.6 ± 2.2 3892 ± 209 ✘ ✘ 
35A8 18.5 ± 2.3 4841.8 ± 259.9 ✘ ✘ 
35B10 23.4 ± 2.5 2356.4 ± 126.8 ✘ √ 
35B2 22.1 ± 2.4 3225 ± 173.3 ✘ √ 
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35B4 23.4 ± 2.5 3709.3 ± 199.3 ✘ √ 
35B6 25.9 ± 2.7 3245.8 ± 174.4 ✘ √ 
35B8 25.3 ± 2.6 3729.6 ± 200.3 ✘ √ 
37A10 13.7 ± 2.0 4167.9 ± 223.8 ✘ ✘ 
37A2 17.0 ± 2.2 5478.9 ± 294 ✘ ✘ 
37A4 20.5 ± 2.4 5162.1 ± 277.1 ✘ ✘ 
37A6 21.1 ± 2.4 6187.8 ± 332 ✘ ✘ 
37A8 22.4 ± 2.5 6172.2 ± 331.2 ✘ ✘ 
37B10 22.1 ± 2.4 4360.7 ± 234.1 ✘ √ 
37B2 29.1 ± 2.9 4552.9 ± 244.4 ✘ √ 
37B4 25.4 ± 2.6 5584.2 ± 299.7 ✘ √ 
37B6 26.6 ± 2.7 5001.3 ± 268.5 ✘ √ 
37B8 31.6 ± 3.0 5802.1 ± 311.4 ✘ √ 
38A10 41.8 ± 3.7 1954.7 ± 105.3 √ ✘ 
38A2 45.0 ± 4.0 3153.2 ± 169.5 √ ✘ 
38A4 43.6 ± 3.9 3186.7 ± 171.3 √ ✘ 
38A6 49.9 ± 4.3 3043.5 ± 163.6 √ ✘ 
38A8 47.8 ± 4.2 2555 ± 137.4 √ ✘ 
38B10 63.5 ± 5.4 1381.6 ± 74.7 √ √ 
38B2 71.4 ± 6.0 2090.1 ± 112.6 √ √ 
38B4 55.1 ± 4.7 2372.7 ± 127.7 √ √ 
38B6 51.7 ± 4.5 2093.2 ± 112.7 √ √ 
38B8 81.9 ± 6.8 1877.1 ± 101.2 √ √ 
39A10 19.1 ± 2.3 5344.6 ± 286.8 ✘ √ 
39A2 18.8 ± 2.3 5307.8 ± 284.9 ✘ √ 
39A4 22.9 ± 2.5 6116.2 ± 328.2 ✘ √ 
39A6 21 ± 2.4 6198.3 ± 332.6 ✘ √ 
39A8 20.1 ± 2.3 5476.9 ± 293.9 ✘ √ 
39B10 21.0 ± 2.4 7663.8 ± 411.1 ✘ ✘ 
39B2 32.2 ± 3.1 9237.5 ± 495.4 ✘ ✘ 
39B4 23.1 ± 2.5 9739.4 ± 522.3 ✘ ✘ 
39B6 20.0 ± 2.3 7843.2 ± 420.7 ✘ ✘ 
39B8 24.4 ± 2.6 7665.6 ± 411.2 ✘ ✘ 
3A10 28.2 ± 2.8 5209.6 ± 279.6 ✘ √ 
3A2 32.5 ± 3.1 5677.4 ± 304.7 ✘ √ 
3A4 29.1 ± 2.9 5717.3 ± 306.8 ✘ √ 
3A6 27.7 ± 2.8 5723.4 ± 307.1 ✘ √ 
3A8 28.2 ± 2.8 5477.3 ± 294 ✘ √ 

3B10 21.3 ± 2.4 4327.4 ± 232.4 ✘ ✘ 
3B2 18.5 ± 2.3 5700.8 ± 305.9 ✘ ✘ 
3B4 23.9 ± 2.6 6462.6 ± 346.7 ✘ ✘ 
3B6 22.8 ± 2.5 5971.2 ± 320.4 ✘ ✘ 
3B8 24.6 ± 2.6 5880.2 ± 315.5 ✘ ✘ 

4A10 55.1 ± 4.7 836.9 ± 45.6 √ ✘ 
4A2 59.2 ± 5 1222.1 ± 66.1 √ ✘ 
4A4 55.6 ± 4.8 1063.3 ± 57.6 √ ✘ 
4A6 63.8 ± 5.4 959.6 ± 52.1 √ ✘ 
4A8 59.2 ± 5 935.3 ± 50.8 √ ✘ 

4B10 75.6 ± 6.3 811.0 ± 44.2 √ √ 
4B2 64.7 ± 5.4 1082.7 ± 58.7 √ √ 
4B4 74.9 ± 6.2 834.0 ± 45.4 √ √ 
4B6 76.6 ± 6.4 854.1 ± 46.5 √ √ 
4B8 78.6 ± 6.5 978.1 ± 53.1 √ √ 

5A10 11.4 ± 1.9 3481.1 ± 187 ✘ √ 
5A2 12.8 ± 2 3899.8 ± 209.5 ✘ √ 
5A4 13.5 ± 2 5159.5 ± 276.9 ✘ √ 
5A6 14.3 ± 2.1 4440.7 ± 238.4 ✘ √ 
5A8 14.7 ± 2.1 5059.5 ± 271.6 ✘ √ 

5B10 <10.0 4062.2 ± 218.2 ✘ ✘ 
5B2 10.7 ± 1.9 4705.7 ± 252.6 ✘ ✘ 
5B4 13.8 ± 2 5604.5 ± 300.8 ✘ ✘ 
5B6 12.7 ± 2 4638.6 ± 249 ✘ ✘ 
5B8 10.0 ± 1.9 5530.2 ± 296.8 ✘ ✘ 

6A10 16.5 ± 2.2 3136.7 ± 168.6 ✘ ✘ 
6A2 19.6 ± 2.3 5134.7 ± 275.6 ✘ ✘ 
6A4 18.6 ± 2.3 5085.6 ± 273 ✘ ✘ 
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6A6 20.1 ± 2.3 5511.0 ± 295.8 ✘ ✘ 
6A8 21.3 ± 2.4 4816.6 ± 258.6 ✘ ✘ 

6B10 19.3 ± 2.3 5150.5 ± 276.4 ✘ √ 
6B2 21.5 ± 2.4 6432.9 ± 345.1 ✘ √ 
6B4 24.1 ± 2.6 7507.7 ± 402.7 ✘ √ 
6B6 22 ± 2.4 7639.3 ± 409.8 ✘ √ 
6B8 22.6 ± 2.5 7507.0 ± 402.7 ✘ √ 

7A10 124.9 ± 10.2 325.9 ± 18.6 √ √ 
7A2 145.6 ± 11.8 458.6 ± 25.5 √ √ 
7A4 164.3 ± 13.3 491.6 ± 27.3 √ √ 
7A6 162.8 ± 13.2 444.1 ± 24.8 √ √ 
7A8 147.1 ± 11.9 380.7 ± 21.5 √ √ 

7B10 46.3 ± 4.1 778.2 ± 42.5 √ ✘ 
7B2 41.7 ± 3.7 1548.5 ± 83.6 √ ✘ 
7B4 62.7 ± 5.3 923.5 ± 50.2 √ ✘ 
7B6 56.5 ± 4.8 1087.2 ± 58.9 √ ✘ 
7B8 51.4 ± 4.4 877.1 ± 47.7 √ ✘ 

9A10 49.3 ± 4.3 3123.3 ± 167.9 √ ✘ 
9A2 71.9 ± 6 3560.1 ± 191.3 √ ✘ 
9A4 79.9 ± 6.6 3913 ± 210.2 √ ✘ 
9A6 76.9 ± 6.4 3856.1 ± 207.1 √ ✘ 
9A8 85.5 ± 7.1 4405.5 ± 236.5 √ ✘ 

9B10 49.8 ± 4.3 1623.9 ± 87.6 √ √ 
9B2 74.1 ± 6.2 2536.4 ± 136.4 √ √ 
9B4 64.5 ± 5.4 2062.9 ± 111.1 √ √ 
9B6 51.1 ± 4.4 1833.1 ± 98.8 √ √ 
9B8 65.7 ± 5.5 2337.5 ± 125.8 √ √ 

gErrors were calculated using the formula 
| |
=

( ) ( )
+ ( )  with a being the slope and b as 

the intercept of the respective calibration line y = a * x + b (13C3T: y = (4.483e-3 ± 3.6e-5) * x + (3.916e-2 

± 2.278e-2); 13C3E: y = (6.041e-3 ± 9.9e-5) * x + (-4.61e-3 ± 1.049e-2). For the relative error of y ( ), the 

average relative standard deviation of each calibration point of the five in-sequence calibrations was 
used (13C3T: 5.30 %; 13C3E: 7.91 %). The first number of the sample ID identifies the individual patient, 
the following capital letter describes the chronological sequence of experiments (B after A) and the last 
number stands for the 5 different time points of sampling (2: 8:30 am; 4: 9:08 am; 6: 9:26 am; 8: 9:56 
am; 10: 10:55 am). 
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Cross-validation 

Intra-assay cross-validation 

 

Fig. A.21. Scatter plots of results for intra-assay cross-validation via alternative quantifiers. A: 
Scatter plot for SWATH-MS/MS fragment 2 (m/z 97.0648); B: Scatter plot for TOF-MS precursor (m/z 
289.2162). Solid lines resemble the optimum line of parity. Dashed lines are results of linear regression 
analysis. 

 

Cross-validation with commercial controls 

The lyophilized true plasma matrix controls (MassCheck Steroid Panel 2) with certified E and 

T concentrations were resuspended and treated like regular samples. For T, all three available 

levels could be employed. For E only the lower 2 levels were used since the upper level, with 

a concentration of 2,500 pg mL-1, exceeded the calibration range of the current method. Three 

aliquots of each level were prepared and analyzed in triplicate. Normality tests and following 

Grubb´s tests did not show any outliers so that the mean of all measurements of each level 

was calculated and compared to the target value of the commercial control. Results are shown 

in Table A.13. Precisions matched those of above validation study and bias remained within 

acceptable limits (6 - 15 %). 
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Table A.13. Validation by independent commercial quality controls.h 

Analyte Level 
Target conc. 

[pg mL-1] 
Target range 

[pg mL-1] 
Accuracy 

[%] 
Precision 

[%] 

E 
I 82 57 - 107 104.3 11.0 

II 411 329 - 493 112.0 5.9 

T 

I 201 141 - 261 93.8 11.2 

II 1,520 1,210 - 1,820 105.0 6.3 

III 7,820 6,260 - 9,380 114.8 6.9 

hFor level III of the E controls the concentration exceeded the calibration range. 

 

Combined Targeted/Untargeted Profiling (Towards Steroidomics) 

Extended SWATH Method 

Another method (method 2) with six additional SWATH experiments was created to 

demonstrate the ability of combined targeted quantitative analysis with untargeted profiling 

(Table A.14). In consequence, the total cycle time slightly increased to 710 ms. Experiments 

that covered target analytes were not altered in DP or CE. All other SWATH experiments were 

set to a DP of 100 V, a CE of 30 V and a collision energy spread (CES) of 10 V. For design of 

window widths, swathTuner (Zhang, Y.; Bilbao, A.; Bruderer, T.; Luban, J.; Strambio-De-

Castillia, C.; Lisacek, F.; Hopfgartner, G.; Varesio, E. J Proteome Res 2015, 14, 4359-4371.) 

was used. Recommended window widths had to be adjusted to prevent interferences between 

analytes with overlapping retention periods and similar fragmentation. For example, the 

fragment with m/z 97.0648 (or 109.0648, respectively) is formed by androstenedione (tR: 3.56 

min) and epiT (tR: 3.58 min). In order to be able to detect these signals distinctively, SWATH 

windows have to be designed in a way to cover each precursor in a separate window. 

Therefore, SWATH experiment 4 (Table A.14) was shortened to cover solely androstenedione 

(precursor m/z: 287.2006). epiT (precursor m/z: 289.2162) fragment signals could be detected 

separately in SWATH experiment 5, free of androstenedione interference. 
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Table A.14. SWATH design for combined targeted/untargeted profiling (method 2).i 

Experiment Range [m/z] Acc [ms] CE [V] CES [V] 

TOF 30 - 1,000 20 10 N/A 

SWATH 1 254.5 - 258.5 300 25 0 

SWATH 2 260.0 – 265.0 40 25 0 

SWATH 3 250.0 - 276.6 40 30 10 

SWATH 4 275.6 - 287.2 40 30 10 

SWATH 5 288.5 - 292.5 30 33 0 

SWATH 6 294.0 - 299.0 30 33 0 

SWATH 7 286.2 - 310.3 40 30 10 

SWATH 8 309.3 - 327.3 40 30 10 

SWATH 9 326.3 - 344.8 40 30 10 

SWATH 10 343.8 - 370.0 40 30 10 

iSWATH windows 1 and 2 were the same as for targeted analysis of E. SWATH windows 5 and 6 were 
the same as for targeted analysis of T. tAcc of target windows were adjusted to reach a total tCyc of 710 
ms (≈ 10 data points per peak). Collision energy spread (CES). 
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Towards Comprehensive Steroidomics 

Fig. A.22. Aligned peak spotting in 9 repeated measurements of a pooled plasma QC sample 
applying method 2 (see Table A.14). Associated to Fig. 2 in main document, but with extended m/z 
range. 
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Table A.15. Identified steroids in commercial control samples.j 

Analyte 
tR 

[min] 

TOF-
Precursor 

[m/z] 

MS/MS-
Signal 
[m/z] 

Calibration 
Rangeg 

[ng mL-1] 

Calibration 
Function 

R2 
S/N at  
Level I 

Dehydroepi-
androsterone-
sulfate 

2.67 
271.2056  263.0 - 5,019 6.78 * 10-5x – 6.82 0.9963 14.8 ± 2.4 

369.1730 213.1638 263.0 - 5,019 1.15 * 10-5x – 2.58 0.9961 14.9 ± 2.4 

Estradiol 3.16 
255.1743  - - -  

255.1743 159.0804 0.082 – 2.500 9.92 * 10-3x – 0.38 0.9986 
19.85 ± 

2.1 

Testosterone 3.22 
289.2162  0.201 – 7.820 1.41 * 10-3x – 0.07 0.9920 10.5 ± 1.0 

 109.0648 0.201 – 7.820 2.26 * 10-3x – 0.06 0.9976 41.2 ± 2.8 

Androstene-
dione 

3.56 

287.2006  - - -  

287.2006 287.2006 0.277 - 9.58 5.957e-4x + 0.03607 0.9986 18.7 ± 2.8 

287.2006 97.0648 0.277 - 9.58 9.27e-4x – 0.07300 0.9972 19.1 ± 3.2 

Dehydroepi-
androsterone 

3.63 
271.2056   - -  

 271.2062 2.01 - 37.8 8.267e-5x – 0.08546 0.9951 10.8 ± 2.3 

Hydroxy-
progesterone 

3.67 
331.2268 331.2268 0.300 - 8.96 6.69 * 10-4x – 0.01 0.9980 32.4 ± 2.1 

 97.0648 0.300 - 8.96 5.93 * 10-4x – 0.05 0.9958 10.1 ± 1.8 

Dihydro-
testosterone 

3.96 
291.2318      

 255.2113 0.083 - 1.05 1.63 * 10-4x – 0.01 0.9918 10.1 ± 0.2 

Progesterone 4.17 
315.2318 315.2318 0.310 - 15.1 2.77 * 10-4x – 0.04 0.9975 11.7 ± 2.5 

 97.0648 0.310 - 15.1 7.00 * 10-4x – 0.15 0.9973 10.3 ± 0.7 

jRange of trilevel commercial control samples. Weighting was 1/x for all compounds. CE in untargeted 
windows was set to a general value of 30 V with a spread of ± 10 V, fragmentation was therefore not 
optimized. Calibration function is given for ion signal mentioned in corresponding row. *For these 
compounds d5E was used as internal standard, for others d5T was used (MS/MS-signals). 

 

Untargeted findings 

Further processing of TOF-MS or SWATH-MS/MS data besides E and T quantification can 

reveal secondary information about individual samples or study groups. By relative 

quantification and statistical comparison of features additional insights in sample properties, 

which would have been lost with common QqQ instruments, are gathered. For exemplary 

purposes, untargeted investigation of all study samples was executed via MarkerView 1.2.1 

(Sciex). For normalization, d5T and d5E were assigned to find features according to their tR. 

Grouping (EI = E patch & insulin treatment; EP = E patch & placebo treatment; PI = placebo 

patch & insulin treatment; PP = placebo patch and placebo treatment) and statistical analysis 

showed that hydroxyprogesterone levels were elevated in groups with placebo patches 

compared to groups that were administered E patches (see main document Fig. 6). Also epiT 

was found to be down-regulated in E patch groups (Fig. A.23), complying with the finding of 

down-regulation of T in E-treated groups. Additional findings are shown in Fig. A.24. 
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Fig. A.23. Relative quantification of epiT. Boxplots for each of the four groups (A) and for grouped E 
patch and grouped placebo patch samples (B). For B, a 2.3-fold increase (median values) in epiT was 
found in placebo patch groups (U-test, p-value: 8.8 x 10-29). Signals were obtained from SWATH-
MS/MS scan (fragment signals). 

 

Fig. A.24 Additional Boxplots. (A) Androstenedione (U-test, p-value: 9.2 x 10-3), (B) Progesterone (U-
test, p-value: >0.05), (C) Cortisol (U-test, p-value: >0.05), (D) Cortisone (U-test, p-value: 1.1 x 10-3). 
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5.2.1. Abstract 

Due to variation in instrument response caused by various sources of errors throughout an 

analytical assay, data normalization plays an indispensable role in untargeted LC-MS profiling, 

yet limited accepted guidelines on this topic exist. In this work, a systematic comparison of 

several normalization techniques, mainly focusing on internal standard-based approaches, 

has been performed to derive some general recommendations. For generation of untargeted 

lipidomic data, a comprehensive ultra-high performance liquid chromatography (UHPLC)-

electrospray ionization (ESI)-quadrupole time of flight (QTOF)-MS/MS method was utilized. 

To monitor instrument stability and evaluate normalization performance, quality control (QC) 

samples, prepared from aliquots of all experimental samples, were embedded in the 

sequence. Stable isotope labeled standards, representing differing lipid classes, were spiked 

to each sample as internal standards for postacquisition normalization. Various metrics were 

used to compare distinct normalization strategies, with reduction of variation in QC samples 

being the critical requirement for acceptance of successful normalization. The comparison of 

intragroup coefficients of variation (CVs), median absolute deviations (MADs), and variance 

enables simple selection of the best performance of normalization with improved and coherent 

results. Furthermore, the importance for normalization in critical data sets, showing only minor 

effects between groups with high variation and outliers, is pointed out. Apart from 

normalization, also, influences of used raw data types are demonstrated. In addition, effects 

of various factors throughout the processing workflow were investigated and optimized. 

Eventually, implementation of quality control samples, even if not required for normalization, 

provided a useful basis for assessing data quality. Due to lack of consensus for selecting 

optimum normalization, suggestions for validating data integrity are given. 
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5.2.2. Introduction 

Untargeted metabolomic or lipidomic screening methods, in particular by LC-MS hyphenation, 

have evolved to become widely used techniques in biomarker discovery.1,2 Although superior 

sensitivity, analyte coverage, and selectivity are shown,3 precision in LC-MS is limited by 

fluctuating ionization efficiencies of the standard electrospray ionization (ESI) source.4 Despite 

protocols and instrumentation being steadily improved and optimized, additional introduction 

of variation by random or systematic errors throughout the analytical process cannot be fully 

eliminated. 

Excessive variation in the data produces outliers and significantly impairs statistical power,5 

especially when effect size between experimental groups is moderate or weak. Furthermore, 

employment of animal models, typically limited by ethical constraints complying to the 3R 

principle or the investigation of rare clinical conditions, usually yields statistically 

underpowered results due to small sample sizes. Improvement of precision is therefore of 

utmost importance to minimize variation and achieve maximum significance. In targeted 

approaches, many sources of errors are usually controlled for by addition of stable isotope 

labeled (SIL) internal standards (ISs) and determination of analyte/IS ratios as the response. 

In untargeted omics, various strategies for normalization were developed, with most of them 

being model-driven approaches6 and only a minority relying on response ratios. One of the 

obstacles for utilizing ISs in untargeted profiling is limited suitability and availability of labeled 

compounds. Experiments applying global SIL samples (e.g., U-13C-labeled yeast or fungi) 

have shown promising results7,8 but are also accompanied by additional costs, higher potential 

for signal interference, and complex data processing efforts. 

Many studies attempt normalization with a selection of multiple ISs; however, correct 

assignment of ISs to unlabeled features is still controversial. Satisfying results have been 

achieved by assignment via similar chemical properties like retention time (tR-IS),9 analyte 

class,10 or m/z ratio.11 However, normalization based on chemical similarities might not be able 

to fully control the observed variation in analytical sequences.12 Recently, Boysen et. al13 

developed a strategy named B-MIS (best-matched internal standard normalization) for which 

assignment depends on best achievable precision in repeated measurements of a pooled 

quality control (QC) sample.14 Furthermore, other normalization methods relying on IS-derived 

models have been developed. Sysi-Aho et. al12 described a model based on similarities in 

variation profiles of recorded features and ISs using multiple linear regression (NOMIS, 

normalization using optimal selection of multiple internal standards). Another model, focusing 

on systematic cross-contribution effects of analytes and ISs, termed CCMN15 (cross-

contribution compensating multiple standard normalization), has also been successfully 

established. With RUV-random16 (remove unwanted variance-random), a statistical method 
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using linear mixed effects modeling to normalize data via ISs or quality control metabolites, a 

limited number of currently recognized IS-based normalization methodologies is available. 

The described techniques are accompanied by various alternative normalization methods. 

Besides scaling and other IS-independent models, signal correction relying on QCs embedded 

in the sequence is commonly practiced in untargeted assays.17 These QC samples, preferably 

consisting of an equivalent mixture of all samples, were shown to be suitable to correct 

instrumental drifts and are used to monitor the stability of system performance.18 For 

normalization, a QC-based regression model, for example, LOWESS (locally weighted scatter 

plot smoothing),19 is deployed and executed to adjust real sample signals according to the 

analytical order. Although diverse normalization methods have been shown to yield improved 

results, suitability is always dependent on the nature of the samples and the occurring variation 

and therefore needs to be tested. Various projects like Normalyzer,20 NOREVA,21 or 

MetaboGroupS22 provide platforms to perform and evaluate different normalization techniques 

on data, which simplifies investigation and selection of optimum normalization. 

In this study, we focused on comparison of IS-based normalization and used different 

strategies to assess performance. Moreover, when a combined study design with QC samples 

and ISs is used, novel guidelines for selecting optimal normalization based on results for 

intragroup metrics of variation are suggested. 

 

5.2.3. Methods 

Materials 

Ultra LC-MS grade acetonitrile, methanol, and 2-propanol as well as ACS grade formic acid 

(98%, w/v) were supplied by Carl Roth (Karlsruhe, Germany). Ammonium formate was 

purchased from Sigma–Aldrich (Saint-Louis, MO, USA). SPLASH LipidoMIX was obtained 

from Avanti Polar Lipids (Alabaster, AL, USA). Arachidonic acid-d8, α-linolenic acid-d14, and 

linoleic acid-d4 were acquired from Cayman Chemical (Ann Arbor, MI, USA). Type I purity 

water was provided by a Purelab Ultra purification system (ELGA LabWater, Celle, Germany). 

 

Sample Preparation 

Plasma samples23 were stored at −80 °C and thawed on ice on the day of sample preparation. 

Aliquots of 25 μL were used for untargeted lipid extraction24,25 via 2-propanol-based protein 

precipitation (55 μL of 2-propanol + 20 μL of methanol). For normalization, LipidoMIX and SIL 

fatty acids (arachidonic acid-d8, α-linolenic acid-d14, linoleic acid-d4) were added to the 

methanolic portion prior to precipitation. After vortexing, samples were centrifuged for 10 min 

at 15 000g and 4 °C with a 5415R microcentrifuge (Eppendorf, Hamburg, Germany). The 

supernatant was transferred to a sealed glass vial and stored in a PAL HTC-xt autosampler 
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(CTC Analytics, Zwingen, Switzerland) at 4 °C under the absence of light. Samples were 

analyzed by ultra-high performance liquid chromatography (UHPLC)-ESI-quadrupole time of 

flight (QTOF)-MS/MS as soon as possible after preparation. 

 

Selection of Internal Standards and Study Design 

The number and selection of implemented ISs play key roles in untargeted omics as they can 

greatly affect the outcome of the study. A generally valid approach is using as many ISs as 

applicable to closely resemble the composition in the sample.26 In this study, the main source 

of employed ISs was contained in the SPLASH LipidoMIX, which covers quantitative amounts 

of deuterated lipids designed to relatively reflect the ratios in human plasma. Due to differing 

concentrations and instrument response, suitable SIL lipids for IS normalization were selected 

after preset criteria for asymmetry factor (>0.9 and <1.4), minimum intensity (≥500 cps (counts 

per second)), and signal-to-noise (S/N) ratio (>30) were met (Tables S-1 and S-2). 

Furthermore, five plasma samples and five blank samples were processed without ISs and 

positively checked for the absence of signal interferences. QCs, prepared from pooled aliquots 

of all plasma samples, were embedded in the randomized sequence after every fifth injection. 

These samples were used for LOWESS normalization and for monitoring instrument 

performance. The analytical order is shown in Table S-3. 

 

LC-MS/MS Method Parameters 

Lipid separation was performed according to the method of Tsugawa et al.27 Chromatography 

was carried out on a 1290 Infinity UHPLC system (Agilent Technologies, Santa Clara, CA, 

USA) with an Acquity UPLC CSH C18 column (100 mm × 2.1 mm, 1.7 μm, 130 Å) and a 

VanGuard Acquity UPLC CSH C18 precolumn (5 mm × 2.1 mm, 1.7 μm, 130 Å) (Waters, 

Milford, MA, USA). Mobile phase A was 60:40 MeCN/H2O (v/v) with 0.1% formic acid (v/v) and 

10 mM ammonium formate. Mobile phase B consisted of 90:9:1 IPA/MeCN/H2O (v/v/v) with 

0.1% formic acid (v/v) and 10 mM ammonium formate. The gradient (0.0 min, 15% B; 2.0 min, 

30% B; 2.5 min, 48% B; 11.00 min, 82% B; 11.50 min, 99% B; 12.00 min, 99% B; 12.10 min, 

15% B, 15.00 min, 15% B) was operated at a flow rate of 0.6 mL/min and a constant oven 

temperature of 65 °C. Injection volume was set to 3 μL in positive and 5 μL in negative 

ionization modes. 

The chromatographic system was hyphenated to a TripleTOF 5600+ mass spectrometer with 

a DuoSpray source (Sciex, Framingham, MA, USA) operated with the ESI probe. Ion source 

parameters were as follows: curtain gas (N2), 35 psi; nebulizer gas (N2), 60 psi; heater gas 

(N2), 60 psi; ion source voltage floating, +5500 V (positive mode) and −4500 V (negative 

mode); declustering potential, ±80 V; source temperature, 350 °C. For comprehensive 

acquisition of MS/MS data, 20 SWATH (sequential window acquisition of all theoretical 
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fragment-ion mass spectra) experiments with a collision energy of ±45 V (mode dependent) 

and a spread of ±15 V were created. This method was applied as it allows rapid lipid 

identification via a well-established workflow for untargeted lipidomics.28 Only TOF signals 

were used for normalization; therefore, SWATH experiment design is not further discussed. 

An accumulation time of 200 ms was assigned to the TOF-MS experiment for precursor 

detection in the mass range of m/z 50–2000. Total cycle time summed up to 750 ms, yielding 

at least 10 points per peak with an average peak width at base of 8 s. The resolution on the 

MS level was over 30 000 (fwhm @ m/z 829.5393), and it was over 15 000 (fwhm @ m/z 

397.2122) on the MS/MS level in high sensitivity mode. Mass calibration was achieved via 

detection of sodium acetate clusters by infusion (0.1 mg/mL in MeCN/H2O, 1:1, v/v) every 10th 

injection. Samples were first analyzed in positive and subsequently in negative ESI mode. The 

analytical system was controlled by Analyst 1.7 TF software (Sciex). 

 

Data Processing 

Data processing for untargeted lipidomic screening was done via MS-DIAL27 (version 3.2026). 

The software enables processing of SWATH data, including peak finding, alignment, and lipid 

identification, relying on tR, m/z values and isotope ratios as well as MS/MS similarity of an 

incorporated in silico library.27 Processing parameters are listed in Table S-4. Raw area and 

raw height data sets from aligned TOF results were exported and normalized, respectively. 

LOWESS was performed via the LOWESS Normalization Tool (Riken, Saitama, Japan). mTIC 

normalization (based on sum of peak heights of identified metabolites)29 was done via the 

embedded function in MS-DIAL. The IS-based methods CCMN, NOMIS, RUV-random, B-MIS, 

and tR-IS were executed in R Studio 1.1.383 (R Foundation for Statistical Computing, Vienna, 

Austria) and Excel 2016 (Microsoft, Redmond, WA, USA). For RUV-random, only ISs and no 

additional quality control metabolites were selected. Factor k, required as the preliminary input 

for RUV-random, was set to 3 for the shown data. The influence of k is further discussed in 

the Supporting Information. In contrast to the proposed B-MIS method,13 no cutoffs for the 

coefficient of variation (CV) in raw data (>10%) or CV improvement compared to raw data 

(≥40%) for acceptability of an IS were used. Instead, selection between IS normalization and 

raw data was always done according to the data type that produced the lowest CVs in the 

pooled QCs, respectively. Raw and normalized data matrices of LOWESS, mTIC, B-MIS, and 

tR-IS were log-transformed prior to statistical testing to achieve comparability to the log-

transformation-inheriting methods of NOMIS, CCMN, and RUV-random. Due to log-

transformation, given CVs in this paper are calculated as geometric CVs.30 In order to visually 

detect outliers and assess intragroup variation, relative log abundance (RLA) plots31 and 

principal component analysis (PCA) were considered. Furthermore, group-specific CV, 

median absolute deviation (MAD), and variance (Var) were calculated for each feature. For 
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detection of significant differences between groups, two-tailed Student’s t tests were 

performed. In general, taking only the number of significant features with p-values <0.05 into 

account is not regarded as an accurate metric for comparing the performance of 

normalization.16 However, comparing p-value distribution is well accepted16,21 and can give 

better hints about the consistency of the data. Moreover, multiple testing errors (type I errors) 

have to be avoided, which is usually achieved by adjusting p-values according to an eligible 

procedure like the Bonferroni or Benjamini-Hochberg32 correction. The number of features with 

adjusted p-values under a certain significance level can be interpreted as an indirect measure 

of goodness of p-value distribution. The more the distribution deviates from the optimum, the 

less significantly different features will be found after p-value correction. Traditional correction 

methods, previously mentioned, can often be too conservative, leading to no significant 

findings, in particular when the difference from the null hypothesis is only weak or medium. 

Therefore, alternative procedures like SGoF (sequential goodness of fit metatest), designed 

to increase statistical power,33,34 were considered and reportedOther parameters for 

evaluation of data quality were the percentage of features with a CV <30% in QC samples, 

mean area under the curve (AUC) of receiver operating characteristics (ROC) of the most 

significant features, number of features with an AUC higher than 0.8, and cumulative 

goodness of fit estimate (R2Y) as well as cumulative goodness of prediction estimate (Q2Y) 

for the optimum number of predictive components after partial least-squares discriminant 

analysis (PLS-DA). Statistical processing was carried out in R using the following packages: 

metabolomics35 (RLA plots), NormalizeMets36 (NOMIS, CCMN, and RUV-random 

normalization), sgof37 (SGoF p-value adjustment), ropls38 (PLS-DA), caTools39 (ROC and AUC 

calculation), and qvalue40 (Benjamini-Hochberg correction with false discovery rate (FDR) 

estimation). For further data evaluation, PeakView 2.2 (Sciex), MarkerView 1.2.1 (Sciex), 

FunRich 3.1.3 (http://www.funrich.org), and Origin 2018 (OriginLab, Northhampton, MA, USA) 

were used. 

 

Data Sets 

To evaluate normalization methods, data sets showing only weak to medium differences 

between experimental groups were chosen. Lipidomics data from plasma samples of mice 

were originated from a previous study, and no additional animal experiments were carried out 

for this work.23 The biological results and interpretation will be reported elsewhere (manuscript 

in preparation). The used study consisted of 4 groups of mice, which had different genomic 

backgrounds and received differing diets following a 2 × 2 scheme. For simplification, we refer 

to the groups as knockout (KO) and wild-type control (WT) and differentiate diets as high-fat 

diet (HFD) and control diet (CD). Samples were acquired in negative (ESI– data set) and 

positive (ESI+ data set) modes. The comparison of the main scientific interest was group KO-
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HFD versus group WT-HFD (both n = 10). Presented data is based on this comparison unless 

stated otherwise. In the raw data, these groups showed high variation and outliers, resulting 

in failure to detect significant differences. By normalization, methods that were able to 

decrease variation, recover outliers, and map minor differences in the data were investigated. 

 

5.2.4. Results and Discussion 

Comparison of Raw Data Types 

Raw data of untargeted assays can be extracted as peak areas or peak heights. In general, 

the use of peak heights is recommended due to enhanced robustness to signal interferences, 

less influence of integration errors, and therefore improved precision, especially in the case of 

low abundant features.28 However, using peak heights requires sufficient stability and 

reproducibility of chromatographic performance. Hence, suitability of the different raw data 

types was first investigated for the utilized analytical method. In order to evaluate performance, 

raw height and raw area values were normalized. In addition, two mixed data matrices of 

response values, one composed of ratios of feature heights and IS areas (height/area) and 

the other of ratios of feature areas and IS heights (area/height), were created and normalized 

with IS-based methods. For comparison, the number of features with a p-value <0.05, the 

number of significant features after SGoF adjustment, and the percentage of features that 

showed a CV <30% in the QCs were determined (Figure 1). The ESI– data set contained 

outliers, which decreased the number of true positive findings by introduction of high 

intragroup variation. For their removal, outliers were visually selected by examination of within-

group RLA plots (Figures 2 and S-2) and PCA (data not shown). After removal of outliers from 

the raw data, sets were again normalized and compared (Figures 1B and S-1B). For both 

polarities, with and without outliers, raw height data cover more features that show a CV <30% 

in QCs (FDA precision criteria for biomarker studies) and produce a higher number of 

significant findings after SGoF correction than raw area data. This trend is also consistent 

throughout all normalization techniques, which underlines the beneficial quality of raw height 

data for untargeted lipidomics. For the mixed data matrices, area/height and height/area, no 

clear tendency can be identified for which one is better throughout all the normalization 

methods. However, height/area combined data outperform the respective raw area data type 

in most cases for the shown metrics. In B-MIS data, this mixed data set even yields the best 

results (Figures 1A and S-1B). A possible explanation could be the high quality of IS area 

signals, which were shown to be interference-free with high S/N ratios (Table S-2) and 

frequently of higher precision in QCs than height signals (Table S-5). Therefore, raw area data 

might represent the true response for ISs more accurately, which makes height/area-like data 

sets worth investigating. NOMIS displays favorable results for raw height and area/height data, 
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but performance is questionable as no true positives are obtained for outlier removed data 

(Figure 1B). Further investigation revealed that removal of SIL fatty acid ISs led to good 

performance of NOMIS normalization (data not shown), which assumes higher dependency 

on selected ISs than the other IS-based methods. Overall, CCMN and RUV-random show 

strongly varying results without a clear disposition to an optimum raw data type. In conclusion, 

these data sets suggest B-MIS for the maximum yield of significant findings and the most 

consistent results throughout raw data types. Further results are listed in Tables S-6–S-9. 
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Figure 1. Comparison of raw data type and normalization (ESI– data set). Number of features 
with a p-value <0.05 are represented by colored columns. Overlay of the lined pattern columns show 
the number of SGoF-adjusted p-values <0.05. Values above the columns show the respective 
percentage of features in the QCs that showed a CV <30%. For RUV-random, k was set to 3. (A) 
ESI– data set covering all samples. (B) ESI– data set after removal of outliers (B9257, D0181, D3396, 
B9324, D0167, D3397, QC3, QC7). 

 

Figure 2. Within-group RLA plots for the ESI– data set (comprised of box-whisker plots). 
Different experimental groups are represented by different colors: red (KO-HFD), blue (WT-HFD), 
and green (QC). RLA plots were sorted according to group. RLA plots sorted after analytical order 
were also investigated to detect systematic signal drifts, which was not the case. (A) Raw height data, 
(B) LOWESS, (C) mTIC, (D) tR-IS, (E) B-MIS, (F) NOMIS, (G) CCMN, and (H) RUV-random (k = 3). 
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Evaluation of IS-Based Normalization Methods 

As peak heights were proven to deliver better quality data throughout different normalization 

methods, only raw peak height-derived data were considered for the extensive comparison of 

the performance. For estimation of intragroup variation and detection of outliers, RLA plots 

are a simple yet powerful tool (Figures 2 and S-2). However, relying on visual judgment for 

the selection of optimum normalization can be challenging. Another approach via plotting 

group-dependent CVs, MADs, and variances was therefore chosen (Figure 3). By addition of 

a reference line, representing the median value of the respective metric in non-normalized 

data, the simple evaluation of normalization performance regarding reduction or an increase 

of intragroup variation is given. With embedded QC samples, a potent feature is enabled to 

the data to facilitate the choice of optimum normalization. Regardless of the underlying 

strategy, normalization should never increase the metrics of variation in technical replicates 

like QCs. Methods resulting in an increase of variation metrics compared to raw data (median 

of the boxplot on the right side of the red line; see Figure 3A,D,G) must therefore be dismissed 

for further evaluation. In this case, tR-IS, NOMIS, and RUV-random have to be removed for 

further consideration due to the increased MAD in QCs (Figure 3D). In general, the reduction 

in variation in experimental groups after applying a particular normalization method should not 

come along at the expense of increasing variation in QC samples (Figure 3D–F: NOMIS). 

Moreover, normalization should decrease variation not only in QCs but also in experimental 

groups (KO-HFD: Figure 3B,E,H; WT-HFD: Figure 3C,F,I). Following these norms (Figure 4), 

mTIC, B-MIS, and CCMN represent complying methods for the ESI– data set and are selected 

for further evaluation via parameters like p-value distribution (Figure S-3), number of true 

positives (Figure 1), mean AUC, or PLS-DA results (Table S-6). Results for metrics of variation 

for other data sets are shown in Figures S-4–S-6. According to this suggested workflow, B-

MIS and CCMN, yielding acceptable results for PLS-DA and a comparable number of true 

positives, are the optimum candidates for the best-performing optimization in the ESI– data 

set. If more than one normalization is deemed acceptable, overlapping true positive findings 

between methods can be determined (Figures S-8–S-10). This way, only the most robust 

results are considered for hypothesis generation. 
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Figure 3. Box-whisker plots of intragroup metrics of variation (ESI– data set). The red line 
represents the median value of the respective metric in raw height data. (A) CV in QCs, (B) CV in 
KO-HFD, (C) CV in WT-HFD, (D) MAD for QCs, (E) MAD for KO-HFD, (F) MAD for WT-HFD, (G) Var 
for QCs, (H) Var for KO-HFD, and (I) Var for WT-HFD. 

 

Figure 4. Flowchart for selecting the normalization strategy. Dashed lines represent optional 
repetition of the scheme until the anticipated number of normalization methods for comparison is 
reached. If no normalization method fulfills the criteria, raw data is used for further processing. 
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Investigation of B-MIS Normalization 

IS assignment in B-MIS normalization can be dependent on the number of incorporated QC 

samples and can therefore greatly affect the outcome of the results. Enhancing the number of 

QCs for B-MIS seems likely to yield robust IS assignment that more accurately returns features 

and ISs of similar behavior. In order to examine this hypothesis, B-MIS was executed with 

increasing numbers of QC samples, starting with a minimum of three samples as originally 

proposed.13 In addition, three data matrices derived from randomly assigned ISs (random 1–

3) were compared to B-MIS. Results for intragroup variation metrics are shown in Figure 5. 

 

Figure 5. Box-whisker plots of intragroup metrics of variation to show the QC dependency of 
B-MIS normalization and the comparison with random IS assignment. Results for the 
comparison of KO-HFD versus WT-HFD in the ESI– data set. The red line represents the median 
value of the respective metric in raw height data. In B-MIS (1), the IS assignment was optimized for 
the best precision in the KO-HFD group. In B-MIS (2), the IS assignment was optimized for best 
precision in the WT-HFD group. (A) CV in QCs, (B) CV in KO-HFD, (C) CV in WT-HFD, (D) MAD for 
QCs, (E) MAD for KO-HFD, (F) MAD for WT-HFD, (G) Var for QCs, (H) Var for KO-HFD, and (I) Var 
for WT-HFD. 

 

As expected, variation in QCs and experimental groups is continuously decreased with the 

increasing number of employed QCs. Here, it should also be pointed out that usage of only 

three QCs led to results that were not significantly different from the results obtained from 

random IS assignment. Maximizing the number of QCs should therefore be anticipated but 

might certainly not always be applicable, for example, when sample volume is limited. We 

suggest incorporating IS-spiked QCs after a regular scheme for untargeted lipidomics18 in 

dense intervals if achievable. Thus, not only are instrument performance monitored and B-

MIS results improved, but also other normalization methods like LOWESS are able to ideally 

address specific problems of sample variation postanalysis. To further explore the potential of 

B-MIS, IS assignment can also be executed to achieve the best precision in experimental 
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groups. However, care has to be taken as low intragroup variation cannot always be expected 

in study samples. As shown in Figure 5, IS assignment based on KO-HFD (B-MIS (1)) and on 

WT-HFD (B-MIS (2)) both strongly improve variation for the respective experimental group 

and additionally show lower variation in QC samples than the raw data. According to Figure 

4, these B-MIS variants would therefore also be deemed acceptable. 

 

Effect of Normalization on Data with Strong Intergroup Differences 

To demonstrate the effects of normalization on highly diverse sample groups, mice that 

received differing diets were additionally compared (KO-HFD vs KO-CD, Figure 6). As 

expected, lipidomic profiling revealed numerous profound differences. Except for NOMIS, 

which underperformed for all negative mode data, and RUV-random (Supporting Information, 

influence of factor k), the number of true positive findings is almost identical for raw height, 

LOWESS, tR-IS, B-MIS, and CCMN. In addition, true positive findings are also highly similar 

across the different normalization methods (Figure 6B), and even raw data yield excellent 

results. The observed differences must therefore be of greater amplitude than the effect of 

normalization. Accordingly, precise optimization of normalization is not implicitly demanded 

when the majority of the detected differences are of a strong extent. However, if the 

maximization of the performance is anticipated, most true positive findings are obtained with 

B-MIS, which also achieves the best results for reducing intragroup variation (Figure S-7). 

 

Figure 6. Normalization results for experimental groups with strong intergroup differences. 
Results for KO-HFD versus KO-CD in the ESI– data set. (A) Column diagram of features with a p-
value <0.05 (colored columns). The overlay of the lined pattern columns shows the number of SGoF-
adjusted p-values <0.05. Values above the columns show the respective percentage of features in 
the QCs that showed a CV <30%. (B) Venn diagram of true positive findings (SGoF-adjusted p-value 
<0.05) across different normalization methods based on raw height. 
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5.2.5. Conclusion 

Choosing the optimum normalization is challenging in untargeted omics assays, and obtained 

results can vary drastically between methods. Special care has to be taken, particularly in 

model-based approaches prone to overfitting.41 In this study, a comprehensive evaluation of 

IS-based normalization methods and highly influential factors like IS selection and raw data 

type was anticipated. 

Overall, the selection of raw height data as response signals was shown to be the most robust 

choice for untargeted lipidomics data. Nevertheless, the investigation of alternative raw data 

types, especially mixed data matrices containing ratios of feature heights and IS areas, can 

yield optimized results due to enhanced precision. Complex normalization approaches like 

NOMIS and RUV-random showed higher susceptibility to raw data types, IS selection, and 

additional factors like k (factors of unwanted variance; see the Supporting Information). In 

contrast, B-MIS, relying on simple analyte/IS ratios, yielded comprehensible results between 

raw data types and had a high robustness to poorly performing ISs as they were automatically 

ignored during IS assignment. With an increased number of ISs truly reflecting the main 

sample composition, B-MIS results are also likely to improve, given that global B-MIS with 

global SILs is considered as ideal. However, cross-contributing effects of analytes and ISs are 

not addressed with B-MIS but can be better controlled with CCMN. Ultimately, various 

normalization methods should be executed and assessed for each data set, as the source of 

variation can vary and no generally valid normalization can be claimed. 

To compare normalization performance between methods, several parameters for comparison 

like RLA plots, PCA plots, and p-value distribution are proposed, with most of them relying on 

visual interpretation and individual selection rather than distinct guidelines. Here, numerical 

characteristics like the amount of true positive findings or intragroup CVs, MADs, and 

variances could help to define and harmonize the selection process. In general, the inclusion 

of QC samples in untargeted omics workflows, following a reasonable sample/QC ratio, was 

shown to be beneficial. Thus, not only is instrument performance easily monitored and QC-

based normalization applied, but also IS assignment in B-MIS is executed with increased 

precision (Figure 5). Furthermore, with the QC-based evaluation of differing normalization 

methods, obeying a simple scheme (Figure 4), the selection of optimum normalization results 

can be justified. The key principle is that normalization of data should never lead to increased 

variation in replicate measurements of identical QC samples. If the variation in experimental 

groups is additionally decreased, the examined normalization method qualifies to be 

considered for further evaluation. 

Eventually, the general implementation of QCs in untargeted assays enables an effective 

control mechanism for data integrity postnormalization. Together with an exemplary data set, 
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the R code to automatically compare raw data, B-MIS, CCMN, NOMIS, and RUV-random via 

computed statistical parameters and plots of intragroup metrics of variation is provided at 

https://github.com/LaemmerhoferLab/Selection-of-IS-Normalization. 
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5.2.7. Supporting Information 

 

Table S-1. Internal standards in QCs and real samples.a 

Compound name 
Conc. 

[ng/mL] 

tR 

[min] 

Adduct type IS 

pos neg pos neg 

18:1(d7) LPC 340.0 1.61 ± 0.01 [M+H]+ [M+FA-H]- √ √ 

18:1(d7) LPE 70.7 1.65 ± 0.00 [M+H]+ [M-H]- √ √ 

15:0-18:1(d7) PI 121.3 4.53 ± 0.00 [M+H]+ - √ - 

15:0-18:1(d7) PS 56.0 4.69 ± 0.03 - [M-H]- - √ 

15:0-18:1(d7) PG 388.0 4.78 ± 0.04 - [M-H]- - √ 

d18:1-18:1(d9) SM 412.0 4.87 ± 0.00 [M+H]+ [M+FA-H]- √ √ 

15:0-18:1(d7) PC 2,143 5.24 ± 0.00 [M+H]+ [M+FA-H]- √ √ 

15:0-18:1(d7) PE 76.0 5.42 ± 0.00 [M+H]+ [M-H]- √ √ 

15:0-18:1(d7) DAG 125.3 6.67 ± 0.00 [M+NH4]+ - √ - 

15:0-18:1(d7)-15:0 TAG 764.0 10.59 ± 0.00 [M+NH4]+ - √ - 

Arachidonic acid(d8) 133.3 2.73 ± 0.01 - [M-H]- - √ 

α-Linolenic(d14) 133.3 2.28 ± 0.01 - [M-H]- - √ 

Linoleic acid(d4) 133.3 2.84 ± 0.01 - [M-H]- - √ 

aValues are given for the final concentration in the supernatant after sample preparation. tR 
values are based on results in QC samples. LPC: lysophosphatidylcholine; LPE: 
lysophosphatidylethanolamine, PI: phosphatidylinositol, PS: phosphatidylserine; PG: 
phosphatidylglycerol, SM: sphingomyelin, PC: phosphatidylcholine, PE: 
phosphatidylethanolamine; DAG: diacylglycerol; TAG: triacylglycerol. 
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Table S-2. Results for acceptance criteria of internal standards.b 

Compound name 
positive mode negative mode 

S/N 
Asymmetry 

factor 
S/N 

Asymmetry 
factor 

18:1(d7) LPC 3,756 ± 255 1.07 ± 0.12 3,960 ± 707 1.11 ± 0.14 

18:1(d7) LPE 761 ± 122 1.20 ± 0.08 1,843 ± 180 1.05 ± 0.12 

15:0-18:1(d7) PI 190 ± 25 1.13 ± 0.24 - - 

15:0-18:1(d7) PS - - 385 ± 48 1.35 ± 0.16 

15:0-18:1(d7) PG - - 3,087 ± 395 1.33 ± 0.19 

d18:1-18:1(d9) SM 3,683 ± 453 0.90 ± 0.07 1,734 ± 217 1.36 ± 0.13 

15:0-18:1(d7) PC 14,784 ± 2,023 1.32 ± 0.12 9,225 ± 1,410 1.24 ± 0.09 

15:0-18:1(d7) PE 848 ± 109 1.17 ± 0.10 2,010 ± 321 1.18 ± 0.10 

15:0-18:1(d7) DAG 1,234 ± 264 1.17 ± 0.07 - - 

15:0-18:1(d7)-15:0 TG 2,895 ± 632 1.09 ± 0.08 - - 

Arachidonic acid(d8) - - 3,292 ± 496 1.05 ± 0.14 

α-Linolenic(d14) - - 2,484 ± 552 1.04 ± 0.13 

Linoleic acid(d4) - - 35 ± 6 1.05 ± 0.11 

bS/N values are based on MarkerView estimates. 
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Table S-3. Sequence of analysis (ESI⁻ and ESI⁺ dataset).c 

Sample Name Class 
Analytical 

order 
 Sample Name Class 

Analytical 
order 

QC_eq1_IDA QC_eq 0  B9258 KO-HFD 29 
QC_eq2_IDA QC_eq 1  D0181 KO-HFD 30 
QC_1 QC 2  D3371 KO-HFD 31 
D0163 WT-CD 3  QC_6 QC 32 
D0138 WT-CD 4  QC_7 QC 33 
D3432 KO-CD 5  D0186 KO-CD 34 
D0143 WT-CD 6  D3379 WT-CD 35 
D3381 WT-CD 7  D3357 WT-HFD 36 
QC_2 QC 8  D3383 WT-CD 37 
D3377 KO-CD 9  D3396 KO-HFD 38 
B9256 KO-HFD 10  QC_8 QC 39 
D0137 WT-CD 11  D3394 KO-HFD 40 
B9305 WT-HFD 12  D3380 WT-CD 41 
B9343 KO-CD 13  D3305 WT-HFD 42 
QC_3 QC 14  D3397 WT-HFD 43 
B9257 KO-HFD 15  D3370 WT-HFD 44 
D0191 KO-CD 16  QC_9 QC 45 
D0183 KO-HFD 17  D0139 WT-CD 46 
D0182 KO-HFD 18  D0168 KO-CD 47 
D3392 KO-HFD 19  D0176 WT-HFD 48 
QC_4 QC 20  B9345 WT-CD 49 
D3417 WT-HFD 21  B9324 WT-HFD 50 
D0185 WT-CD 22  QC_10 QC 51 
D0167 WT-HFD 23  D0142 KO-CD 52 
D3385 KO-CD 24  QC_11 QC 53 
D3435 KO-CD 25  QC_12 QC 54 
QC_5 QC 26  QC_13 QC 55 
B9278 WT-HFD 27  QC_14 QC 56 
D3353 KO-HFD 28     

cQC_eq samples were injected for equilibration and conditioning of the column. Sample D3371 was 
removed from further data evaluation (including processing via MS-DIAL; see Table S-4) as a 
classification error was suspected (see Figure S-22 and S-23). 
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Table S-4. MS-DIAL parameters.d 

Parameter 
Setting 

ESI⁺ ESI⁻ 

Data collection range [min] 0.5 – 13.0 0.5 – 13.0 

Mass range (as m/z ratio) 50 – 1250 50 – 1250 

MS1 tolerance (as m/z ratio) 0.01 0.01 

MS2 tolerance (as m/z ratio) 0.025 0.025 

Smoothing level 1 1 

Minimum points per peak 4 4 

Minimum peak height [cps] 500 500 

Identification tolerance for tR [min] 1.0 1.0 

ID score 80 % 80 % 

Alignment reference sample QC_3 QC_3 

Aligment tR tolerance [min] 0.2 0.2 

Alignment MS1 tolerance (as m/z ratio) 0.02 0.02 

Alignment filter: at least found in one group 70 % 70 % 

Aligned features after blank subtraction 2,083 1,103 

Identified aligned features 529 179 

Annotated aligned features 29 52 

dBlank subtraction was done by removing signals that had a foldchange < 5 in the averaged samples 
compared to the averaged signals in three replicates of a processed blank sample. Missing values were 
replaced with a value that corresponded to 10% of the minimum in all samples (standard method 
embedded in MS-DIAL software). Although QC_3 was registered as an outlier in the ESI⁻ dataset, data 
was not essentially reprocessed. The iterative peak finding and alignment process of MS-DIAL (see ref. 
27 Supplementary Figure 10), utilizing all samples after preliminary peak finding in the reference file, 
ensures maximum coverage. Requirements for reference files are, that they should not be blanks or 
external QCs and that no chromatographic and/or mass shifts are present. Comparative reprocessing 
using QC_5 resulted in 98.3 % identical aligned features with identical response values. 
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Table S-5. Precision of internal standards in QC samples (ESI⁻ and ESI⁺ dataset).e 

Compound name 
positive mode negative mode 

CV raw area 
[%] 

CV raw height 
[%] 

CV raw area 
[%] 

CV raw height 
[%] 

18:1(d7) LPC 3.1 3.5 5.8 7.6 

18:1(d7) LPE 4.8 6.3 7.3 8.4 

15:0-18:1(d7) PI 6.9 5.1 - - 

15:0-18:1(d7) PS - - 6.6 5.3 

15:0-18:1(d7) PG - - 6.1 6.6 

d18:1-18:1(d9) SM 12.9 4.5 22.6 9.2 

15:0-18:1(d7) PC 2.1 2.8 2.2 3.9 

15:0-18:1(d7) PE 5.8 7.8 6.2 8.9 

15:0-18:1(d7) DAG 5.1 5.1 - - 

15:0-18:1(d7)-15:0 TG 12.5 11.0 - - 

Arachidonic acid(d8) - - 7.1 8.7 

α-Linolenic(d14) - - 11.1 12.7 

Linoleic acid(d4) - - 19.7 10.1 
eFor calculation outlying QC samples were not considered (positive mode: QC10, QC11; 
negative mode: QC3, QC7). Although d18:1-18:1(d9) SM and Linoleic acid(d4) show great 
variation in raw area, B-MIS results were comparable even if both internal standards were not 
used and even if area values were replaced with height values in these cases. 
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Table S-6. Extracted parameters for comparison of normalization (ESI⁻ dataset).f 

Normalization 
p-value 
< 0.05 

p-value 
< 0.05 
(SGoF) 

Median CV 
(QCs) 

Mean AUC 
PLS-DA 

R2Y / Q2Y 

Raw area 51 0 25.6 0.815 (14) - 

Raw height 53 0 21.5 0.816 (19) - 

LOWESS (area) 33 0 22.4 0.800 (9) - 

LOWESS (height) 37 0 19.2 0.801 (9) - 

mTIC 70 5 13.4 0.823 (19) - 

tR-IS (area) 83 15 23.5 0.852 (44) - 

tR-IS (height) 101 32 15.6 0.855 (48) - 

tR-IS (height/area) 98 29 16.6 0.847 (43) - 

tR-IS (IS height) 92 23 19.5 0.860 (47) - 

B-MIS (area) 84 16 14.1 0.847 (35) 0.998 / 0.522 (4) 

B-MIS (height) 96 27 10.3 0.839 (39) 0.991 / 0.535 (4) 

B-MIS (height/area) 103 34 10.4 0.842 (44) 0.993 / 0.451 (4) 

B-MIS (area/height) 84 18 13.7 0.844 (36) 0.998 / 0.634 (4) 

NOMIS (area) 26 0 21.3 0.797 (11) - 

NOMIS (height) 53 0 18.0 0.831 (21) - 

NOMIS (height/area) 21 0 16.8 0.786 (10) - 

NOMIS (IS height) 54 0 22.8 0.835 (22) - 

CCMN (area) 91 22 19.4 0.839 (28) 0.989 / 0.589 (3) 

CCMN (height) 89 21 14.7 0.842 (32) 0.976 / 0.468 (3) 

CCMN (height/area) 91 22 14.5 0.836 (31) 0.976 / 0.429 (3) 

CCMN (IS height) 88 19 19.7 0.845 (29) 0.989 / 0.615 (3) 

RUV-random (area) 65 0 23.5 0.841 (25) - 

RUV-random (height) 74 6 16.7 0.831 (35) - 

RUV-random (height/area) 65 0 19.3 0.827 (28) - 

RUV-random (area/height) 79 12 21.7 0.844 (38) - 

fCVs are reported in %. Mean AUC values are derived from ROC of the 25 most significant features. 
The number in parentheses lists the amount of features with an AUC > 0.8. R2Y and Q2Y are reported 
for the optimum number of predictive components p (in parentheses). When the first predictive 
component was not significant, PLS-DA was rejected and no results are given. 
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Table S-7. Extracted parameters for comparison of normalization (ESI⁻ dataset, outliers 
removed).g 

Normalization 
p-value 
< 0.05 

p-value 
< 0.05 
(SGoF) 

Median 
CV (QCs) 

Mean AUC 
PLS-DA 

R2Y / Q2Y 

Raw area 125 54 13.9 0.919 (139) 0.997 / 0.554 (3) 

Raw height 134 62 10.7 0.929 (143) 0.712 / 0.406 (1) 

LOWESS (area) 110 39 10.0 0.912 (124) 0.997 / 0.483 (3) 

LOWESS (height) 119 48 7.7 0.918 (119) 0.966 / 0.450 (2) 

mTIC 158 84 10.0 0.921 (166) 0.998 / 0.709 (4) 

tR-IS (area) 97 29 19.3 0.927 (135) 0.960 / 0.337 (2) 

tR-IS (height) 169 96 12.8 0.936 (183) 0.684 / 0.380 (1) 

tR-IS (height/hrea) 128 58 13.0 0.921 (142) 0.622 / 0.266 (1) 

tR-IS (IS height) 134 62 16.0 0.939 (163) 0.965 / 0.454 (2) 

B-MIS (area) 138 66 11.6 0.914 (148) 0.975 / 0.512 (2) 

B-MIS (height) 184 109 8.6 0.937 (185) 0.953 / 0.499 (2) 

B-MIS (height/area) 152 80 8.9 0.929 (160) 0.969 / 0.437 (2) 

B-MIS (area/height) 144 71 11.5 0.936 (160) 0.963 / 0.503 (2) 

NOMIS (area) 23 0 20.7 0.842 (19) - 

NOMIS (height) 16 0 17.8 0.833 (25) - 

NOMIS (height/area) 18 0 16.1 0.830 (19) - 

NOMIS (IS height) 16 0 22.4 0.826 (21) - 

CCMN (area) 84 16 20.2 0.904 (99) 0.739 / 0.225 (1) 

CCMN (height) 95 26 17.1 0.911 (106) 0.729 / 0.294 (1) 

CCMN (height/area) 91 23 15.6 0.869 (48) 0.706 / 0.226 (1) 

CCMN (IS height) 128 56 14.7 0.919 (139) 0.998 / 0.508 (3) 

RUV-random (area) 90 22 21.5 0.929 (143) 0.999 / 0.779 (4) 

RUV-random (height) 145 72 13.8 0.912 (124) 0.737 / 0.394 (1) 

RUV-random (height/area) 102 32 16.8 0.918 (119) 0.716 / 0.310 (1) 

RUV-random (area/height) 138 66 17.6 0.921 (166) 0.995 / 0.619 (3) 

gFollowing outliers were removed: B9257, D0181, D3396, B9324, D0167, D3397, QC3, QC7. CVs are 
reported in %. Mean AUC values are derived from ROC of the 25 most significant features. The number 
in parentheses lists the amount of features with an AUC > 0.8. R2Y and Q2Y are reported for the 
optimum number of predictive components p (in parentheses). When the first predictive component was 
not significant, PLS-DA was rejected and no results are given. 
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Table S-8. Extracted parameters for comparison of normalization (ESI⁺ dataset).h 

Normalization 
p-value 
< 0.05 

p-value 
< 0.05 
(SGoF) 

Median CV 
(QCs) 

Mean AUC 
PLS-DA 

R2Y / Q2Y 

Raw area 67 0 28.0 0.845 (34) - 

Raw height 78 0 25.5 0.841 (35) - 

LOWESS (area) 87 0 24.6 0.849 (37) - 

LOWESS (height) 99 0 21.6 0.854 (56) - 

mTIC 119 0 18.7 0.846 (42) - 

tR-IS (area) 82 0 22.2 0.855 (42) - 

tR-IS (height) 97 0 18.8 0.855 (35) - 

tR-IS (height/area) 94 0 19.5 0.844 (37) - 

tR-IS (IS height) 82 0 22.0 0.842 (32) - 

B-MIS (area) 89 0 18.1 0.840 (34) - 

B-MIS (height) 94 0 14.2 0.846 (39) - 

B-MIS (height/area) 93 0 14.4 0.839 (31) - 

B-MIS (area/height) 70 0 17.9 0.836 (26) - 

NOMIS (area) 95 0 25.3 0.839 (26) - 

NOMIS (height) 202 78 21.6 0.862 (85) 0.980 / 0.417 (3) 

NOMIS (height/area) 110 0 22.8 0.837 (31) - 

NOMIS (IS height) 199 74 24.4 0.866 (65) 0.984 / 0.434 (3) 

CCMN (area) 133 14 21.1 0.861 (64) - 

CCMN (height) 167 44 17.4 0.862 (57) 0.995 / 0.472 (3) 

CCMN (height/area) 150 28 17.9 0.870 (70) - 

CCMN (IS height) 146 24 20.8 0.859 (62) - 

RUV-random (area) 181 57 21.3 0.865 (74) 0.708 / 0.078 (1) 

RUV-random (height) 168 44 17.1 0.871 (58) - 

RUV-random (height/area) 182 60 18.0 0.845 (34) 0.692 / 0.081 (1) 

RUV-random (area/height) 147 24 20.6 0.841 (35) - 

hCVs are reported in %. Mean AUC values are derived from ROC of the 25 most significant features. 
The number in parentheses lists the amount of features with an AUC > 0.8. R2Y and Q2Y are reported 
for the optimum number of predictive components p (in parentheses). When the first predictive 
component was not significant, PLS-DA was rejected and no results are given. 
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Table S-9. Extracted parameters for comparison of normalization (ESI⁺ dataset, outliers 
removed).i 

Normalization 
p-value 
< 0.05 

p-value 
< 0.05 
(SGoF) 

Median 
CV (QCs) 

Mean AUC 
PLS-DA 

R2Y / Q2Y 

Raw area 209 83 18.6 0.943 (290) 0.765 / 0.338 (1) 

Raw height 228 101 14.7 0.958 (302) 0.767 / 0.363 (1) 

LOWESS (area) 203 78 15.2 0.941 (279) 0.782 / 0.351 (1) 

LOWESS (height) 230 103 12.3 0.960 (288) 0.783 / 0.375 (1) 

mTIC 277 148 14.7 0.951 (378) 0.698 / 0.358 (1) 

tR-IS (area) 195 71 19.5 0.950 (261) 0.995 / 0.705 (3) 

tR-IS (height) 183 59 15.9 0.939 (246) 0.993 / 0.600 (3) 

tR-IS (height/area) 210 86 16.2 0.952 (279) 0.994 / 0.723 (3) 

tR-IS (IS height) 158 35 19.3 0.938 (212) 0.994 / 0.556 (3) 

B-MIS (area) 230 104 16.8 0.960 (278) 0.748 / 0.319 (1) 

B-MIS (height) 234 107 13.0 0.959 (285) 0.745 / 0.309 (1) 

B-MIS (height/area) 257 129 13.1 0.961 (309) 0.752 / 0.338 (1) 

B-MIS (area/height) 202 77 16.5 0.945 (265) 0.995 / 0.666 (3) 

NOMIS (area) 108 0 24.3 0.888 (133) 0.996 / 0.217 (3) 

NOMIS (height) 279 151 20.3 0.933 (305) 0.947 / 0.442 (2) 

NOMIS (height/area) 108 0 21.9 0.892 (141) 0.994 / 0.221 (3) 

NOMIS (IS height) 269 141 23.6 0.935 (284) 0.948 / 0.439 (2) 

CCMN (area) 195 70 20.2 0.939 (265) 0.775 / 0.279 (1) 

CCMN (height) 145 23 14.9 0.932 (215) 0.794 / 0.264 (1) 

CCMN (height/area) 206 81 17.2 0.947 (269) 0.767 / 0.290 (1) 

CCMN (IS height) 141 20 18.9 0.932 (221) 0.998 / 0.728 (3) 

RUV-random (area) 237 110 20.4 0.928 (284) 0.705 / 0.294 (1) 

RUV-random (height) 148 25 15.2 0.918 (189) 0.997 / 0.695 (3) 

RUV-random (height/area) 242 114 17.6 0.932 (278) 0.693 / 0.286 (1) 

RUV-random (area/height) 149 27 18.9 0.931 (188) 0.998 / 0.696 (3) 

iFollowing outliers were removed: D0181, D0182, D3392, B9324, D0167, D3396, QC10, QC11. CVs 
are reported in %. Mean AUC values are derived from ROC of the 25 most significant features. The 
number in parentheses lists the amount of features with an AUC > 0.8. R2Y and Q2Y are reported for 
the optimum number of predictive components p (in parentheses). When the first predictive component 
was not significant, PLS-DA was rejected and no results are given. 
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Figure S-1. Comparison of raw data type and normalization (ESI⁺ dataset). Number of features 
with a p-value < 0.05 are represented by colored columns. Overlay of the lined pattern columns show 
the number of SGoF-adjusted p-values < 0.05. Values above the columns show the respective 
percentage of features in the QCs that showed a CV < 30 %. For RUV-random k was set to 3. A: ESI⁺ 
dataset covering all samples. B: ESI⁺ dataset after removal of outliers (D0181, D0182, D3392, B9324, 
D0167, D3396, QC10, QC11). 

 

Figure S-2. Within-group RLA plots (ESI⁺ dataset). Different experimental groups are represented 
by different colors: red (KO-HFD), blue (WT-HFD), green (QC). RLA plots (comprised of Box-Whisker 
plots) were sorted according to group. RLA plots sorted after analytical order were also investigated to 
detect systematic signal drifts, which was not the case. A: raw height data, B: LOWESS, C: mTIC, D: 
tR-IS, E: B-MIS, F: NOMIS, G: CCMN, H: RUV-random (k = 3). 
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Figure S-3. p-value distribution for different normalization methods (ESI⁻ dataset). Results for 
comparison KO-HFD versus WT-HFD. Histogram has 20 breaks so that each columns represents a 
0.05 interval. A: raw height, B: LOWESS, C: mTIC, D: tR-IS, E: B-MIS, F: NOMIS, G: CCMN, H: RUV-
random (k = 3). 

 

Figure S-4. Comparison of intra-group metrics of variation (ESI⁻ dataset, outliers removed). 
Following outliers were removed: B9257, D0181, D3396, B9324, D0167, D3397, QC3, QC7. Box-
Whisker plots are shown. The red line represents the median value of the respective metric in raw 
height data. A: CV in QCs, B: CV in KO-HFD, C: CV in WT-HFD, D: MAD for QCs, E: MAD for KO-HFD, 
F: MAD for WT-HFD, G: Var for QCs, H: Var for KO-HFD, I: Var for WT-HFD. According to the proposed 
guidelines (Figure 4) LOWESS is accepted as a valid normalization.  
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Figure S-5. Comparison of intra-group metrics of variation (ESI⁺ dataset). Box-Whisker plots are 
shown. The red line represents the median value of the respective metric in raw height data. A: CV in 
QCs, B: CV in KO-HFD, C: CV in WT-HFD, D: MAD for QCs, E: MAD for KO-HFD, F: MAD for WT-
HFD, G: Var for QCs, H: Var for KO-HFD, I: Var for WT-HFD. According to the proposed guidelines 
(Figure 4) LOWESS, mTIC, CCMN and RUV-random are accepted as valid normalizations. 

 

Figure S-6. Comparison of intra-group metrics of variation (ESI⁺ dataset, outliers removed). 
Following outliers were removed: D0181, D0182, D3392, B9324, D0167, D3396, QC10, QC11. Box-
Whisker plots are shown. The red line represents the median value of the respective metric in raw 
height data. A: CV in QCs, B: CV in KO-HFD, C: CV in WT-HFD, D: MAD for QCs, E: MAD for KO-HFD, 
F: MAD for WT-HFD, G: Var for QCs, H: Var for KO-HFD, I: Var for WT-HFD. According to the proposed 
guidelines (Figure 4) LOWESS and mTIC are accepted as valid normalizations. 
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Figure S-7. Comparison of intra-group metrics of variation (ESI⁻ dataset, KO-HFD vs. KO-CD). 
Box-Whisker plots are shown. The red line represents the median value of the respective metric in raw 
height data. A: CV in QCs, B: CV in KO-HFD, C: CV in KO-CD, D: MAD for QCs, E: MAD for KO-HFD, 
F: MAD for KO-CD, G: Var for QCs, H: Var for KO-HFD, I: Var for KO-CD. According to the proposed 
guidelines (Figure 4) B-MIS, CCMN and RUV-random are accepted as valid normalizations. 

 

Figure S-8. True positive findings for accepted normalization methods, (ESI⁻ dataset). After 
selection of normalization methods according to Figure 4 and results in Supplemental Table 6, B-MIS 
and CCMN were deemed acceptable. Robust true positive findings are represented by the intersection 
area in the Venn diagram. 
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Figure S-9. True positive findings for accepted normalization methods (ESI⁺ dataset). After 
selection of normalization methods according to Figure 4 and results in Supplemental Table 8, CCMN 
and RUV-random were deemed acceptable. Robust true positive findings are represented by the 
intersection area in the Venn diagram. 

 

 

 

 

Figure S-10. True positive findings for accepted normalization methods (ESI⁺ dataset, outliers 
removed). After selection of normalization methods according to Figure 4 and results in Supplemental 
Table 9, CCMN and RUV-random were deemed acceptable. Robust true positive findings are 
represented by the intersection area in the Venn diagram. 
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Text T-1. Influence of factor k for RUV-random normalization. 

RUV-random normalization requires input of additional parameters like k, which is describing 

the number of factors of unwanted variance. As only ISs were selected as control metabolites, 

values for k ranged between 1 and the total number of ISs. De Livera et. al16 recommend 

utilizing a plot that shows the variance explained by the principal components of control 

metabolite abundances against k factors (see Figure S-11). Additionally RLA plots and p-value 

histograms can be taken into account.31 In order to investigate the influence of k, RUV-random 

was executed with all variants of k and results were compared using intra-group metrics of 

variation (see Figures S-13 – S-16). A clear tendency of increasing variation in QC samples 

with increasing k is observed for all datasets. Although RUV-random shows great potential for 

reducing variation in experimental groups this effect regularly goes along with an increase of 

variation in QCs. Especially for outlier removed datasets (Figure S-14 & S-16), RUV-random 

is not able to outperform raw data and only small values for k should be considered. However, 

RUV-random shows great potential to improve variation in the ESI⁺ dataset (see Figure S-15). 

Enhanced investigation of RUV-random and factor k by comparison of intra-group metrics of 

variation is therefore mandatory. 

 

Figure S-11. Explained variance by k factors of variance for RUV-random. A: ESI⁻ dataset, B: ESI⁻ 
dataset, outliers removed, C: ESI⁺ dataset, D: ESI⁺ dataset, outliers removed. 
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Figure S-12. Influence of factor k on RUV-random. Number of features with a p-value < 0.05 are 
represented by dark columns. Overlay of the lined pattern columns show the number of SGoF-adjusted 
p-values < 0.05. Values above the columns show the respective percentage of features in the QCs that 
showed a CV < 30 %. A: ESI⁻ dataset, B: ESI⁻ dataset, outliers removed, C: ESI⁺ dataset, D: ESI⁺ 
dataset, outliers removed. 

Figure S-13. Comparison of intra-group metrics of variation for RUV-random normalization 
depending on factor k (ESI⁻ dataset). Box-Whisker plots are shown. The red line represents the 
median value of the respective metric in raw height data. A: CV in QCs, B: CV in KO-HFD, C: CV in 
KO-CD, D: MAD for QCs, E: MAD for KO-HFD, F: MAD for KO-CD, G: Var for QCs, H: Var for KO-HFD, 
I: Var for KO-CD.  
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Figure S-14. Comparison of intra-group metrics of variation for RUV-random normalization 
depending on factor k (ESI⁻ dataset, outliers removed). Box-Whisker plots are shown. Following 
outliers were removed: B9257, D0181, D3396, B9324, D0167, D3397, QC3, QC7. The red line 
represents the median value of the respective metric in raw height data. A: CV in QCs, B: CV in KO-
HFD, C: CV in WT-HFD, D: MAD for QCs, E: MAD for KO-HFD, F: MAD for WT-HFD, G: Var for QCs, 
H: Var for KO-HFD, I: Var for WT-HFD. 

 

Figure S-15. Comparison of intra-group metrics of variation for RUV-random normalization 
depending on factor k (ESI⁺ dataset). Box-Whisker plots are shown. The red line represents the 
median value of the respective metric in raw height data. A: CV in QCs, B: CV in KO-HFD, C: CV in 
KO-CD, D: MAD for QCs, E: MAD for KO-HFD, F: MAD for KO-CD, G: Var for QCs, H: Var for KO-HFD, 
I: Var for KO-CD. 
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Figure S-16. Comparison of intra-group metrics of variation for RUV-random normalization 
depending on factor k (ESI⁺ dataset, outliers removed). Box-Whisker plots are shown. Following 
outliers were removed: D0181, D0182, D3392, B9324, D0167, D3396, QC10, QC11. The red line 
represents the median value of the respective metric in raw height data. A: CV in QCs, B: CV in KO-
HFD, C: CV in WT-HFD, D: MAD for QCs, E: MAD for KO-HFD, F: MAD for WT-HFD, G: Var for QCs, 
H: Var for KO-HFD, I: Var for WT-HFD. 

 

Figure S-17. p-value distribution for different normalization methods (ESI⁻ dataset, outliers 
removed). Results for comparison KO-HFD versus WT-HFD. Histogram has 20 breaks so that each 
columns represents a 0.05 interval. A: raw height, B: LOWESS, C: mTIC, D: tR-IS, E: B-MIS, F: NOMIS, 
G: CCMN, H: RUV-random (k = 3). 
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Figure S-18. p-value distribution for different normalization methods (ESI⁺ dataset). Results for 
comparison KO-HFD versus WT-HFD. Histogram has 20 breaks so that each columns represents a 
0.05 interval. A: raw height, B: LOWESS, C: mTIC, D: tR-IS, E: B-MIS, F: NOMIS, G: CCMN, H: RUV-
random (k = 3). 

 

Figure S-19. p-value distribution for different normalization methods (ESI⁺ dataset, outliers 
removed). Results for comparison KO-HFD versus WT-HFD. Histogram has 20 breaks so that each 
columns represents a 0.05 interval. A: raw height, B: LOWESS, C: mTIC, D: tR-IS, E: B-MIS, F: NOMIS, 
G: CCMN, H: RUV-random (k = 3). 
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Figure S-20. IS assignment of aligned features using B-MIS (ESI⁻ dataset). Each feature is plotted 
with the color of the corresponding IS after B-MIS normalization. In the ESI⁻ dataset, 19.7 % of identified 
lipids, for which a class-specific IS was available, were normalized via their corresponding, class-
specific IS. Furthermore, < 1 % of identified lipids was not normalized as no improvement was obtained 
with internal standardization (overall, raw height data for 18.9 % of all features was maintained). In the 
ESI⁺ dataset, 25.7 % of all identified lipids with a potential class-specific IS were normalized via this 
particular IS. Amongst these lipid candidates, 6.3 % remained un-normalized (in total 18.1 % of all 
features were not normalized) 
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Figure S-21. IS assignment of aligned features using tR-IS (ESI⁻ dataset). Each feature is plotted 
with the color of the corresponding IS after tR-IS normalization. 

 

Figure S-22. PCA plots of raw height data (no weighting, mean center scaling). PCA results show 
that groups can be clearly separated according to the received diet. Sample D3371, classified as KO-
HFD, does not group with other HFD samples but rather groups with CD samples. A misclassification 
error throughout the study is therefore indicated. A: ESI⁻ dataset, B: ESI⁺ dataset (to obtain a better 
overview, 3 samples (outliers D0181, D0182, D3392; see Figure S-24 and S-25) are not shown as they 
are outside the chosen scale).  
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Figure S-23. PCA-DA plots of raw height data (logarithmic weighting, mean center scaling). PCA-
DA (principal component analysis and discriminant analysis) results show that groups can be clearly 
separated according to the received diet. Sample D3371, classified as KO-HFD, does not group with 
other HFD samples but rather groups with CD samples. A misclassification error throughout the study 
is therefore indicated. A: ESI⁻ dataset, B: ESI⁺ dataset. 
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Figure S-24. Outlier evaluation for the ESI⁻ dataset. A: Within-group RLA plot (comprised of Box-
Whisker plots), showing intra-group variation of single samples. Samples with a negative shift of the 
median indicate overall lower abundance of features. Furthermore, intra-group variation can be 
assessed via the size of the box and the extension of Whiskers. KO-HFD (red), WT-HFD (blue), KO-
CD (green), WT-CD (purple), QCs (yellow). B: PCA plot prior to outlier removal (logarithmic weighting, 
mean center scaling). Samples showing a negative shift in A are also not grouped in PCA. C: Overlay 
of all TICs (only exemplary peak interval is shown for better overview). Whereas most TIC traces show 
normal distribution, QC_7, QC_3, D3397 and B9257 have a significantly lower intensity. An injector 
malfunction is therefore suspected. Besides these samples, D0181, D3396, B9324 and D0167 were 
additionally removed as outliers as they showed a light hemolytic trend and had above-average intra-
group variation (see size of boxes and Whiskers in A). 
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Figure S-25. Outlier evaluation for the ESI⁺ dataset. A: Within-group RLA plot (comprised of Box-
Whisker plots), showing intra-group variation of single samples. Samples with a negative shift of the 
median indicate overall lower abundance of features. Furthermore, intra-group variation can be 
assessed via the size of the box and the extension of Whiskers. KO-HFD (red), WT-HFD (blue), KO-
CD (green), WT-CD (purple), QCs (yellow). B: PCA plot prior to outlier removal (logarithmic weighting, 
mean center scaling). C: Overlay of all TICs (only exemplary peak interval is shown for better overview). 
Whereas most TIC traces show normal distribution, D3392, D3381, D3379, D0186, D0182, D0181, 
D0168, D0139, D0143, QC_10 and QC_11 (marked with a *) have a significantly lower intensity. Further 
investigation showed, that 96 % of all features in these samples had a foldchange <1 compared to all 
other samples. An injector malfunction is therefore suspected. Besides these samples, D3396, B9324 
and D0167 were additionally removed as outliers as they showed a light hemolytic trend and had above-
average intra-group variation (see size of boxes and Whiskers in A). 
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Text T-2. Power calculation after outlier removal. 

Due to the high number of outliers, G*Power 3.1 (Faul, F., Erdfelder, E., Buchner, A., & Lang, 

A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and 

regression analyses. Behavior Research Methods, 41, 1149-1160.) was used to estimate 

statistical power with the residual sample sizes (ESI⁻: n = 7 per group after outlier removal). 

For an exemplary true positive finding showing a minimum foldchange of 0.6 or 1.4 and intra-

group CV of 20 % (as obtained from the data), a statistical power of 0.93 can be generated at 

a significance level of α = 0.05 for a two-tailed Student´s t-test. Regarding the limited 

availability of mouse plasma samples and the observed effect sizes in true positive findings, 

statistical power was deemed acceptable for hypothesis generation in untargeted LC-MS 

lipidomics. 
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5.3.1. Abstract 

With continuous advances in mass spectrometry and its ever-increasing applications in 

numerous scientific fields, also lipidomics has gained rising attention in the recent years. 

Several strategies for lipidomic profiling are developed, with targeted analysis of selected lipid 

species, typically utilized for lipid quantification via low-resolution triple quadrupoles, and 

untargeted analysis by high-resolution instruments, focusing on hypothesis generation for 

prognostic, diagnostic and/or disease-relevant biomarker discovery. The latter methodologies 

generally yield relative data with limited inter-assay comparability. In this work we aimed to 

combine untargeted analysis and absolute quantification to enhance data quality and to obtain 

independent results for optimum comparability to previous studies or database entries. For 

the lipidomic analysis of mouse plasma, RP-UHPLC hyphenated to a high-resolution 

quadrupole TOF mass spectrometer in comprehensive data-independent SWATH acquisition 

mode was employed. This way, quantifiable data on the MS and the MS/MS level were 

recorded, which increases assay specificity and quantitative performance. Due to the lack of 

an appropriate blank matrix for untargeted lipidomics, we herein established a sophisticated 

strategy for lipid class-specific calibration with stable isotope labeled standards (surrogate 

calibrants). Acceptable values for accuracy and precision well below ±15 % bias were reached 

for the majority of surrogate calibrants. However, to achieve sufficient accuracy for target 

lipids, response factors to corresponding surrogate calibrants are required. An approach to 

estimate response factors via a standard reference material (NIST SRM 1950) was therefore 

conducted. Furthermore, a useful workflow for post-acquisition re-calibration, involving 

response factor determination and iteratively built libraries, is suggested. In comparison to 

single-point calibration, the presented surrogate calibrant method was shown to yield results 

with improved accuracy that are largely in accordance with standard addition. Quantitative 

results of real samples were then compared to two previously published dietary mouse plasma 

studies that provided absolute lipid levels.  
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5.3.2. Introduction 

Due to emerging insights in biological pathways of endogenous lipids and their importance in 

disease progression,1 lipidomic profiling and related analytical methods have evolved to 

become a key field in analytical chemistry. With the steady development of sophisticated mass 

spectrometric methods, the number of published articles covering lipidomics has been 

continuously increasing in the recent years.2 Many advances in lipidomic biomarker discovery 

are being made,3-5 but also methodological progress regarding study design,6 databases,7, 8 

software applications and data processing9 is rapidly deployed. Studies aiming for new results 

in hypothesis generation of potential biomarkers typically utilize high-resolution mass 

spectrometry for untargeted data acquisition and focus on the observation of relative fold-

changes of detected compounds between distinct groups of interest and control groups. These 

metrics of relative quantification, however, limit inter-study, inter-batch or even inter-sequence 

comparability and do not allow the comparison of found biomarker levels to reference levels 

that are covered in databases, such as the Human Metabolome Database.10 The ultimate 

approach to overcome these limitations is absolute quantification of compounds of interest. 

Although accurate determination of absolute levels for hundreds or thousands of features in 

complex matrices is difficult to accomplish, approaches towards quantitative, untargeted 

lipidomics must be pursued. In this context, various difficulties concerning calibration, 

normalization via internal standards (ISs), control of matrix effects and requirements for 

validation arise. 

Most approaches towards quantification in untargeted lipidomics employed shotgun analysis 

methods in combination with high-resolution instruments.11-15 Its main advantage is the 

simultaneous ionization of lipids with added ISs for optimum normalization, yet, the enhanced 

concurring ionization processes can lead to ion suppression, which results in decreased 

sensitivity and impeded detection of low abundant lipids. Moreover, direct infusion adds an 

increased risk for compromised assay specificity by in-source fragmentation and higher 

probability for signal-interferences from isomers and isobars.16 Other promising results have 

already been achieved by using SFC-MS17 or HILIC-MS.18 Here, lipids are separated 

according to lipid class polarities and class-specific ISs are co-eluted. Efforts to utilize lipid 

species separation via RP-LC-MS for quantitative purposes are mainly limited to a reduced 

number of target compounds19-22 or require global lipid labeling.15 Furthermore, the majority of 

these assays is conducted with low resolution triple quadrupole instruments.23, 24 Due to the 

study design of many untargeted methods, which often implement single-point calibration with 

class-specific ISs,25, 26 results are typically semi-quantitative27 as absolute quantification in 

accordance to quantification guidelines (e.g. FDA guidelines for bioanalytical method 

validation28) requires multi-level calibration for each analyte. On the other hand, following the 
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existing guidelines is not always possible for the untargeted analysis of endogenous 

compounds, and no comparable instructions exist for this purpose. Alternative approaches 

that comply as far as achievable, thus need to be developed and investigated. 

In this work, an approach to achieve absolute quantification of selected lipid classes in an 

untargeted lipidomic RP-LC-MS assay is presented. By using stable isotope labeled lipids of 

various classes for matrix-matched surrogate calibration, class-specific quantification of 

compounds of interest can be executed retrospectively post-analysis. Via SWATH acquisition 

(sequential window acquisition of all theoretical fragment ion mass spectra),29 comprehensive 

lipid analysis could be achieved, which enables quantification on TOF-MS or SWATH-MS/MS 

level (using precursor or product ions). SWATH is a data-independent acquisition technique 

that offers many advantages like full coverage of MS/MS fragments for enhanced selectivity 

and higher identification rates than data-dependent acquisition. In addition, it provides high 

sensitivity that is comparable to that of multiple reaction monitoring (MRM) with triple 

quadrupole instruments. 

Though, an additional determination and application of response factors between target 

analytes and surrogate calibrants as well as knowledge about linear ranges is required to 

achieve true absolute quantification.18 The performance of surrogate calibration was 

compared to single-point (i.e. 1-point) calibration and standard addition. Furthermore, method-

specific response factors for various lipid species were calculated using consensus values 

obtained from certified reference material for human plasma (NIST SRM 1950). 

 

5.3.3. Experimental Section 

Materials 

Acetonitrile (MeCN, Ultra LC-MS grade), methanol (MeOH, Ultra LC-MS grade), 2-propanol 

(IPA, Ultra LC-MS grade) and formic acid (98 %, w/v, ACS grade) were supplied by Carl Roth 

(Karlsruhe, Germany). Ammonium formate was purchased from Sigma–Aldrich (Saint Louis, 

MO, USA). SPLASH LipidoMIX (Lipidomix), 14:0-14:0 phosphatidylcholine (PC), 16:0-16:0 

PC, 18:0-18:0 PC, 17:1 lysophosphatidylcholine (LPC) and 20:0 LPC were purchased from 

Avanti Polar Lipids (Alabaster, AL, USA). Arachidonic-acid(d8), α-linolenic-acid(d14) and 

linoleic-acid(d4) were acquired from Cayman Chemical (Ann Arbor, MI, USA). 

Oleoylethanolamide was acquired from abcr GmbH (Karlsruhe, Germany). Type I purity water 

was obtained from a Purelab Ultra purification system (ELGA LabWater, Celle, Germany). 

Standard reference material (SRM) of human plasma (SRM 1950) for response factor 

evaluation of lipids was acquired from the National Institute of Standards and Technology 

(NIST, Gaithersburg, MD, USA). Plasma samples of mice were collected during a previous 
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study30 with permission of the local authorities and conducted in accordance with the German 

legislation on the protection of animals. 

 

Sample preparation 

Blood was collected by cardiac puncture from experimental mice after 18 weeks of dietary 

feeding under deep terminal anaesthesia induced by xylazine (10 µg/g body weight (BW)), 

ketamine (80 µg/g BW) and a 2 - 4 % isoflurane in oxygen inhalation. Upon disposal of the 27-

gauge needle, blood was transferred from the syringe into 0.5 mL EDTA coated tubes that 

were chilled on ice and gently mixed. Samples were centrifuged for 15 min at 3,000 rpm at 4 

°C and stored as aliquots of 50 µL plasma per individual at -80 °C upon further processing. 

After thawing on ice, aliquots of 25 µL were used for sample preparation, respectively, 

whereas residual volumes were pooled for the preparation of calibration and QC samples (see 

section below). IPA-based protein precipitation for untargeted lipid extraction31, 32 was obtained 

by addition of 55 µL IPA and 20 µL MeOH to the individual plasma aliquots. This ratio was 

chosen to achieve uniform solvent composition in all samples (see preparation of calibration 

and QC samples). After precipitation and subsequent vortexing, the samples were centrifuged 

for 10 min at 15,000 × g and 4 °C with a 5415R microcentrifuge (Eppendorf, Hamburg, 

Germany). The supernatant was transferred to a 250 µL conical glass insert in a 1.5 mL glass 

vial, which was immediately sealed with a crimp cap and stored at 4 °C in the autosampler for 

the time of analysis. Samples were analyzed as soon as possible after preparation and the 

analytical sequence was started within 2 h after the final centrifugation. 

In order to perform 1-point calibration, Lipidomix and labeled fatty acids (arachidonic-acid(d8), 

α-linolenic-acid(d14), linoleic-acid(d4)) were spiked into the methanolic portion of the 

precipitation solvent. Addition of 1-point calibrants also enabled the application of various IS-

based normalization techniques for untargeted data processing. Final concentrations of spiked 

standards in study samples are listed in Table S-1. 

 

Preparation of calibration and QC samples - Quantitative study design 

In accordance to regular targeted, quantitative assays, calibration and QC samples were 

prepared to assess linear dynamic range, precision and accuracy. For matrix-matched 

calibration, labeled lipid standards (Lipidomix and fatty acids) were spiked into a mouse 

plasma pool (prepared from aliquots of all study samples) in differing concentrations to serve 

as class-specific surrogate calibrants.33-35 

The Lipidomix contains quantitative amounts of deuterated lipids to relatively reflect the ratios 

in human plasma. The following lipids are covered: 18:1(d7) cholesteryl ester (CE), 15:0-

18:1(d7)diacylglycerol (DAG), 18:1(d7) lysophosphatidylcholine (LPC), 18:1(d7) 

lysophosphatidylethanolamine (LPE), 18:1(d7) monoacylglycerol (MAG), 15:0-18:1(d7) 
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phosphatidylcholine (PC), 15:0-18-1(d7) phosphatidylethanolamine (PE), 15:0-

18:1(d7)phosphatidylglycerol (PG), 15:0-18:1(d7) phosphatidylinositol (PI), 15:0-18:1(d7) 

phosphatidylserine (PS), d18:1-18:1(d9) sphingomyelin (SM), 15:0-18:1(d7)-15:0 

triacylglycerol (TAG) as well as cholesterol(d7) (see Table S-1). In addition, also 15:0-18:1(d7) 

phosphatidic acid is present in the Lipidomix, but was not further considered for this study due 

to its poor peak shape. 

As the concentrations of the individual lipids in the Lipidomix could not be altered and since 

detection sensitivity for each lipid class representative is distinct, regular 6-point-calibration 

(minimally required by international guidelines) would not have been suitable for universal 

coverage of the linear ranges of each surrogate calibrant. Therefore, 11 calibration samples 

(plus an additional true matrix blank, i.e. unspiked mouse plasma pool) were prepared by 

serial dilution of the spiked methanolic portion of the extraction solvent (see sample 

preparation). The content of MeOH in the precipitation mix (IPA:MeOH, 2.75:1, v/v) was 

selected, as the Lipidomix is provided in a methanolic solution by the manufacturer. 

Consequently, sample preparation was adjusted to the composition of the highest calibration 

sample (calibration 11: 25 µL plasma, 55 µL IPA, 20 µL Lipidomix and SIL fatty acids in 

MeOH). To evaluate and control for intra-sequence (i.e. intra-assay) precision and accuracy, 

5 quantitative QCs (QCquant), which were spiked to yield concentrations at 1 %, 5 %, 25 %, 50 

% and 80 % of the highest calibration sample, were established. For internal standardization, 

80 ng mL-1 of 17:1 LPC were spiked to each sample before preparation. Surrogate calibrant 

concentrations in calibration and QC samples are listed in Table S-2 and Table S-3. 

The sequence of analysis was designed to cover calibration and QCquant samples at the 

beginning, middle and end of the batch. In-between, study samples with embedded system 

QCs (QCsyst; after each block of 5 samples) were incorporated in a randomized manner. QCsyst 

samples were independently prepared but had identical surrogate calibrant concentrations to 

QCquant level 3. This way, besides being used for monitoring of instrument stability and 

normalization (e.g. LOWESS36), QCsyst samples were also used to control for stability of 

quantitative performance throughout the sequence. The principal scheme for the analytical 

batch can be seen in Figure 1 (for more details see Table S-4). 

 

Figure 1. Measurement scheme of the analytical sequence. QCsyst samples were repeatedly 
analyzed after each 5 real sample measurements. 
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LC-method 

Instrumental analysis was performed based on the method of Tsugawa et. al.9 

Chromatography was carried out on a 1290 Infinity UHPLC system (Agilent Technologies, 

Waldbronn, Germany) via an Acquity UPLC CSH C18 column (100 mm × 2.1 mm, 1.7 µm, 

130 Å) with a VanGuard Acquity UPLC CSH C18 pre-column (5 mm × 2.1 mm, 1.7 µm, 130 

Å) (Waters, Milford, MA, USA). Mobile phase A consisted of 60:40 MeCN:H2O (v/v) with 0.1 

% formic acid (v/v) and 10 mM ammonium formate. Mobile phase B consisted of 90:9:1 

IPA:MeCN:H2O (v/v/v) with 0.1 % formic acid (v/v) and 10 mM ammonium formate. The 

gradient (0.0 min, 15 % B; 2.0 min, 30 % B; 2.5 min, 48 % B; 11.00 min, 82 % B; 11.50 min, 

99 % B; 12.00 min, 99 % B; 12.10 min, 15 % B, 15.00 min, 15 % B) was operated at a flowrate 

of 0.6 mL min-1 and a constant oven temperature of 65 °C. Injection volume of a connected 

PAL HTC-xt autosampler (CTC Analytics, Zwingen, Switzerland) was set to 3 µL in positive 

and 5 µL in negative ionization mode (to increase feature detection due to generally lower 

sensitivity in negative mode). 

 

MS-method 

The chromatographic system was hyphenated to a TripleTOF 5600+ mass spectrometer and 

operated with the ESI-probe of a DuoSpray source (Sciex, Framingham, MA, USA). Ion source 

parameters were as follows: curtain gas (N2) 35 psi; nebulizer gas (N2) 60 psi; heater gas (N2) 

60 psi, ion source voltage floating +5,500 V (positive mode) and -4,500 V (negative mode), 

declustering potential: ±80 V, source temperature 350 °C. For fragmentation in untargeted 

screening, collision energy was set to 35 V with a spread of ±15 V for each SWATH-MS/MS 

experiment, respectively. An accumulation time of 200 ms was assigned to the TOF-MS 

experiment for precursor detection in the mass range of m/z 50 – 1,250. Every ionization 

mode-specific method covered 25 SWATH-MS/MS experiments with a respective 

accumulation time of 20 ms. Resolving power on TOF-MS level was over 30,000 (FWHM @ 

m/z 829.5393) and over 15,000 (FWHM @ m/z 397.2122) on SWATH-MS/MS level in high 

sensitivity mode. Total cycle time summed up to 750 ms, which yielded a minimum of 10 points 

per peak for an average peak width at base of 8 s. Ionization mode-dependent selection of 

SWATH window widths was done using swathTUNER.37 The initial input data was generated 

from a QCsyst sample that was analyzed with a preliminary TOF-MS method, which was 

operated in an information-dependent acquisition (IDA) mode . SWATH window settings are 

listed in Table S-5. Samples were first analyzed in positive and subsequently in negative 

mode. Mass calibration was achieved via infusion of sodium acetate (0.1 mg mL-1 in 

MeCN:H2O, 1:1, v/v) every 10th injection. The analytical system was controlled by Analyst 1.7 

TF software (Sciex). 
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Validation 

In general, it was pursued to follow existing guidelines for bioanalytical method validation as 

far as possible. Therefore, selectivity of surrogate calibrants was assessed via the analysis of 

6 individual blank mouse plasma samples in positive and negative mode. In contrast to the 

deuterated precursors or fragment moieties of surrogate calibrants, endogenous target lipids 

are not always interference-free and do not exclusively yield selective products (e.g. due to 

overlapping fragmentation in the case of closely eluting precursors that are carrying identical 

fatty acid moieties). Therefore, special care has to be taken and selectivity must be verified 

prior to surrogate quantification, i.e. by searching for signs of interference like peak shoulders 

etc. In the case of insufficient assay specificity, an alternative mode (positive / negative, TOF-

MS / SWATH-MS/MS) for quantification has to be chosen, if applicable. When an interference 

is suspected, the sample can be re-run with an elongated gradient and it can be investigated 

if the peak is split up into two or more peaks. 

Furthermore, ≥6-point calibration and multi-level QCs were established for each surrogate 

calibrant to evaluate the linear range, precision and accuracy. The acceptance criteria for the 

inclusion of surrogate calibration samples were adopted from the FDA guidelines, i.e. non-

zero calibrants were ±15 % of the nominal concentrations (except for LLOQ where ±20 % 

were accepted) and ≥75 % of the included surrogate calibrants met the criteria. For the linear 

ranges, high similarities between surrogate calibrants and corresponding target analytes must 

be assumed for correct quantification. If this assumption is in doubt, its validity can be verified 

post-acquisition via standard addition of the target analyte of interest. 

Matrix effects were elaborated by continuous post-column infusion44 of surrogate calibrants 

into the regular analytical flow of blank mouse plasma samples (i.e. devoid of deuterated 

surrogate calibrants) via a T-piece. This way, matrix effects could be monitored and estimated 

across the whole retention time interval of the class, instead of for just one peak via post-

extraction spiking experiments.43 In contrast to post-column infusion,these experiments would 

have also required an exceeding volume of the mouse plasma samples. In this approach, 

potential matrix compounds, that are causing an increase (ion enhancement) or decrease (ion 

suppression) in the extracted ion chromatograms (EICs) of the surrogate calibrants, are 

exhibited. To verify the absence of matrix effects, surrogate calibrant EICs should show a 

constant signal during relevant retention time (tR) intervals of corresponding lipid classes. 

Here, it is assumed that lipid species are exposed similar behavior in terms of matrix effects 

within a lipid class and that deviations in chain length and saturation lead to identical results. 

This assumption was also investigated by post-column infusion (see Figure S-6). 
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Data processing 

The LC-MS setup enabled the usage of a well-established workflow for lipidomic analysis38 

with rapid data processing via MS-DIAL9 (version 3.20), which is covering peak finding, 

alignment, deconvolution, identification (score-based on tR and MS/MS similarity to the 

LipidBlast library8), and normalization of SWATH data. After conversion of the recorded raw 

data (.wiff extension) into Analysis Base Files (.abf extension) via the ABF converter (Reifycs, 

Tokyo, Japan), MS-DIAL projects were created separately for each ionization mode. 

Processing parameters were adjusted to the following settings: peak finding between 0.3 – 13 

min; precursor m/z range from 50 – 1,250; TOF-MS tolerance: m/z 0.01; SWATH-MS/MS 

tolerance: m/z 0.025; smoothing level: 2; minimum number of points per peak: 5; minimum 

peak height: 500 cps; tR tolerance for LipidBlast8 based identification: 1.0 min; identification 

score cut-off: 80 %. Peak alignment was based on the 3rd QCsyst sample with a tR tolerance of 

0.1 min, TOF-MS tolerance of m/z 0.02 and a detection frequency of at least 70 % in one 

group. Blank subtraction was exerted for signals that had a foldchange <5 in the average 

samples compared to the average blank signals. The final alignment files covered the following 

feature counts: positive mode, 2083 features after blank subtraction including 529 identified 

lipids; negative mode, 1103 features after blank subtraction including 179 identified lipids. 

For quantitative data processing, PeakView 2.2 (Sciex) and MultiQuant 3.0 (Sciex) were 

utilized. Here, peak areas were extracted with a ± 10 mDa mass window in the associated 

mass spectrometric experiment. Further settings were automated integration by a MQIII 

algorithm, Gaussian smoothing (width: 2 data points), noise percentage of 90 %, baseline 

subtraction window of 0.1 min and a peak splitting factor of 2. Moreover, Excel 2019 (Microsoft, 

Redmond, WA, USA), SPSS Statistics 23 (IBM, Armonk, NY, USA) and Origin 2019 

(OriginLab, Northampton, MA, USA) were used for additional data evaluation. 

 

Study samples 

Plasma samples were derived from control mice and mice lacking BK in various adipocyte 

populations (both on a C57Bl/6N strain background). Adipocyte-specific controls (genotype: 

adiponectin-CreERT2tg/+; BK+/L2 (CTR group)) and pre-mutant BK animals (genotype: 

adiponectin-CreERT2tg/+; BKL1/L2 (KO group)) were generated as previously described.30, 39, 40 

Dietary feeding protocols were performed with adipoqBK-CTR and adipoqBK-KO mice that 

either received a high-fat-diet (HFD) or a control diet (CD) for 18 weeks.39 To avoid sex-

dependent effects only male mice were designated to the dietary feeding at an age of 10 

weeks. Body weight gain, fat masses and non-fat components of the body, food intake, body 

core temperature and numerous other parameters of the CD- and HFD-exposed adipoqBK-

CTR and adipoqBK-KO mice were reported by Illison et al.30 
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5.3.4. Results and Discussion 

Method characteristics 

The employed RPLC-MS/MS assay is a lipid-species separation method. It allows separation 

of potential isotopic interferences (M+2 isotopologues of lipids with 1 additional double 

bond41), of many isomeric lipid species and leads to reasonable spread of the lipids over the 

chromatogram as to minimize matrix effects. Data-independent acquisition with SWATH was 

utilized for data generation. It results in comprehensive MS and MS/MS data over the entire 

chromatogram and across all samples with the benefit that EICsfor quantitative analysis can 

be retrieved post-acquisition from MS and MS/MS data, whichever is more selective or more 

sensitive. Other selective ion traces can then serve for intra-assay cross validation of assay 

specificity. Lipidomix standards added to the samples before preparation are usually used as 

ISs for single point calibration. This standard mix has the advantage that these lipids elute in 

the middle of the lipid species distribution so that all lipids quantified with this single lipid class 

specific standard elute relatively close-by. However, herein we test a complementary 

calibration approach using the Lipidomix calibrant series for matrix-matched surrogate 

calibration and compare it with single point lipid class specific calibration in terms of assay 

accuracy. 

 

Selectivity and IS selection 

After analysis of 6 individual blank mouse plasma samples, no interfering peaks were detected 

for surrogate calibrant mass traces in relevant tR intervals (see Table S-1 and Table S-6). 

For optimum internal standardization, addition of a complementary set of labeled lipids (with 

a mass shift of ≥3 Da to surrogate calibrants and unlabeled analytes) would have been 

advantageous. However, commercial availability of such standards is limited or not given. As 

an alternative, odd-chain lipid species, which were shown to be of explicitly lower content in 

human plasma than even-chain lipids,42 can be suitable as ISs as long as endogenous 

concentrations are below detectable levels in study samples. Therefore, the measured blank 

plasma samples were screened for potentially suitable odd-chain lipid ISs by checking 

endogenous background signals for mass traces of odd-chain lipid standards. The odd-chain 

lipid species that were detected in these samples are shown in Table S-11. Eventually, only 

one odd-chain lipid species that was available at short notice in our lab, 17:1 LPC, was found 

acceptable and could subsequently be used as a single IS (ISquant) for surrogate calibration. 

 

Linear ranges and intra-assay precision and accuracy 

Following the scheme in Figure 1, intra-sequence (i.e. intra-assay) precision and accuracy 

were determined for independent QCquant (n = 3 per level) and QCsyst (n = 11) samples. Results 
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were obtained in positive and negative mode for the most sensitive and interference-free 

adduct of each surrogate calibrant (see Table S-1). A chromatogram of all surrogate calibrants 

is presented in Figure 2. Due to the comprehensive nature of SWATH acquisition, fully 

quantifiable EICs on MS/MS level could also be obtained for the evaluation of precision and 

accuracy, presuming selective fragmentation in associated SWATH windows is present. 

Linear ranges, coefficients of determination of calibration functions (R2) and estimated LODs 

for the mode of favourable performance are shown in Figure 3 or are presented in more detail 

for all modes in Table S-8. Results for precision and accuracy are listed in Table 1. They 

indicate that thresholds of ±15 % bias, which are generally accepted for targeted assays, can 

be reached for the majority of surrogate calibrants. Overall, good precision, with most values 

being below 15 % for the favourable modes of the respective lipids, is achieved. Accuracy is 

in accepted ranges as well and only a limited number exceeds ±15 % bias for certain QC 

levels in the best-performing modes. For poor-performing calibrants that did not pass the 

acceptance criteria according to the FDA guidelines, the reason could be the lack of suitable 

ISs, as one early eluting IS might not be able to sufficiently reflect analytical behavior of all 

lipid classes throughout the run. With an upgraded IS design, if suitable standards are made 

available, furtherly improved results can be expected for future studies. Due to the 

comprehensive design of the MS method, general settings of declustering potential and 

collision energy were chosen. Enhanced and refined results for lipids or lipid classes of special 

interest can therefore certainly be reached when working with optimized MS and MS/MS 

parameters. 
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Figure 2. Chromatogram of surrogate calibrants. Results from calibration 11 sample in mode of 
favourable performance (see Table 1 or the marked mode of favourable performance in Figure 3.) is 
shown. The specific m/z values of the presented EICs are presented in Table S-6. In addition, the 
positive TOF-MS signal of 17:1 LPC (ISquant) is drawn. 
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Figure 3. Linear ranges of surrogate calibrants. Polarity that showed favourable performance, 
concerning linear range, precision and accuracy, is marked with a *. The MS level of best 
performance, as well R2 values derived from calibration results are listed in the table. For more 
detailed results of all MS modes see Table S-8. LOD results are estimated via results for signal-to-
noise ratio of ≈ 3. 

 

Interestingly, matrix effects again appear to be reduced on SWATH-MS/MS level (Figure S-3) 

and can only be significantly detected for PC(d7) (Figure S-3G). Regarding the principles of 

the ionization process, this finding seems paradox since similar extents of matrix effects to 

TOF-MS experiments are expected. A contributing factor for this finding could be the gated 

ion transmission control (ITC), which is usually applied in TOF-MS to avoid detector saturation 

in case of high ion load.45 Depending on total ion current and individual peak intensities, ion 

transmission is modulated cycle-by-cycle and a correction factor is applied to the output signal 

to account for ITC fluctuations. Whereas ITC is steadily regulated in TOF-MS, ion transmission 

is permanently set to 100 % for SWATH-MS/MS experiments due to the significantly lower ion 

load after precursor isolation and the greatly reduced risk for detector saturation. Total ion 

chromatograms (TICs) and ITC progression from the same experiments for positive and 

negative mode TOF-MS are shown in Figure S-4. Plots for comparison of TOF-MS and 

SWATH-MS/MS matrix effects for exemplary surrogate calibrants are displayed in Figure S-5. 

Ultimately, special care has to be taken for lipid classes affected by matrix effects, in particular 

when surrogate calibrant and target analyte do not underly identical degrees of matrix effects. 

For critical lipid classes, the number of surrogate calibrants and ISs should be maximized. 

Concerning the already discussed lack of suitable lipid standards, another approach could be 

the determination of response factors in representative matrix like a QC sample. However, 

enhanced uncertainty of results is given if high inter-sample variability of matrix effects is 

observed, since response factors are dependent on the underlying matrix and may change 

from lot-to-lot. 
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Response factors of target analytes to surrogate calibrants 

Most studies dealing with class-specific quantification of lipids have been shotgun 

approaches, 11-13 which require de-isotoping and high resolution instruments with resolving 

power >100,000 to rule out signal interferences of co-eluting compounds. In addition, tR as 

orthogonal information for compound identification is not available and partial misannotation 

due to in-source fragmentation (e.g. LPC can decompose to FA or LPE) has been shown.46, 47 

For shotgun assays, instrument responses of lipid species within polar lipid classes were 

reported to be mostly identical due to the main effect of the polar head group on the ionization 

efficiency.19 For the other lipid classes, responses between lipid species are dependent on 

chain length and the degree of saturation.12 Other factors affecting detector response were 

total lipid concentration, instrument settings and solvent composition. Furthermore, studies 

utilizing surrogate calibrants found differing ionization efficiencies between stable isotope 

labeled compounds and unlabeled target analytes.33, 34 Accordingly, the determination of 

response factors between surrogate calibrants and corresponding target analytes is essential 

to ensure accurate quantification. To take matrix effects (and recovery) into account, response 

factors are ideally determined in representative sample matrix and after the analytes have 

underwent the identical sample preparation. Owing to limited sample volume, evaluation of 

response factors in neat solution may be an acceptable compromise in regard to general 

global profiling methods aiming primarily at hypothesis generation. 

For proof-of-principle, several lipid standards (14:0-14:0 PC, 16: 16:0 PC, 18:0-18:0 PC, 20:0 

LPC) were acquired. Standards, surrogate calibrants and 17:1 LPC (ISquant) were spiked into 

MeOH, followed by serial dilution (with ISquant spiked MeOH) to 5 different concentration levels. 

These samples were analyzed with the identical method that was used for previous study 

measurements. Response factors were calculated via the slopes (slopelipid standard / slopesurrogate 

calibrant) and results are shown in Table 2. For shotgun approaches, linear relationships between 

acyl chain length and response factors could be observed for PCs.12 Here, neither using mass 

concentrations nor molarities, an apparent relationship between chain length and response 

factor could be constructed. This implies that for gradient elution in RP chromatography, which 

results in differing retention times for lipid species, estimation of response factors is 

aggravated due to the changing solvent composition. A simple extrapolation factor that is 

depending on structural characteristics can therefore not be readily determined. The same 

applies to SWATH-MS/MS data, in which the additional factor of fragmentation efficiency is 

further complicating the matter. 

Assessment of response factors for numerous lipid species is labor intensive and associated 

to high costs for standard compounds. Yet, method-specific response factor libraries could be 

iteratively established, as the stability of response factors has been previously demonstrated 

for other mass spectrometric instruments.18 A productive workflow for future studies could be 
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to acquire standards for compounds of interest after final data processing and to subsequently 

determine their response factors to their corresponding surrogate calibrants. This way, 

significantly regulated lipids and/or potential biomarkers can be quantified post-acquisition for 

universal comparability. This workflow (i.e. post-acquisition re-calibration) can be of special 

interest when sample volume of individual samples is limited, and standard addition is hence 

not applicable. 

 

Table 2. Response factors of lipid standards to surrogate calibrants in neat solution. 

 14:0-14:0 PC 16:0-16:0 PC 18:0-18:0 PC 20:0 LPC 

TOF-MS⁺ 
mass 1.013 1.022 0.665 0.966 

molarity 0.912 0.996 0.698 1.008 

SWATH-

MS/MS⁺ 

mass 2.383 0.990 0.724 0.849 

molarity 2.145 0.965 0.760 0.886 

TOF-MS⁻ 
mass 1.127 1.093 0.612 1.058 

molarity 1.015 1.065 0.642 1.104 

SWATH-

MS/MS⁻ 

mass 1.934 1.789 0.848 0.922 

molarity 1.741 1.744 0.890 0.962 

tR [min] 4.32 5.61 7.02 2.88 

Response factors were calculated on the basis of mass concentration and molarity. Results are based 
on peak area as this parameter was also used for quantification. However, also peak height did not 
reveal any linear relationship between carbon chain length of lipid species and response factors. 17:1 
LPC was used as IS for all compounds 

 

Comparison of quantification between standard addition, surrogate calibration and 1-

point calibration 

In general, standard addition has several drawbacks that limit its routine implementation into 

untargeted studies: (i) it is not suitable if the concentration in the sample is close to the upper 

limit of the linear range, since additional spiking will result in a nonlinear increase of the signal; 

(ii) it requires a significant amount of additional laboratory work and analysis time for each 

sample; (iii) it is not applicable if the sample volume is limited; (iv) the samples are exposed 

to ageing until analytes of interest are evaluated and standard addition can be prepared. 

However, since it is accepted as a valid approach for quantification, it was used as a reference 

method for the comparison of surrogate calibration and 1-point calibration. 

Given the linear calibration functions of the respective surrogate calibrant (see Table S-8) and 

the response factor of the target lipid species (Table 2), absolute quantification via surrogate 

calibration can be executed. For cross-validation purposes, a 5-level standard addition of 14:0-

14:0 PC, 16:0-16:0 PC, 18:0-18:0 PC and 20:0 LPC into pooled QC samples was conducted 

(see Table S-7). The results for standard addition were considered as the most accurate, thus, 
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they were compared to results obtained from surrogate calibration (established via post-

acquisition re-calibration) and 1-point calibration (Table S-1 and Table S-3) of the QC pool. 

Precision for standard addition was calculated via the error of the y-intercept. Accuracy was 

determined via the unspiked sample, after adjusting for the endogenous lipid concentration 

calculated by extrapolation of the standard addition curve. For surrogate calibration and 1-

point calibration, precision was determined via the 14 replicates of QCsyst + QCquant 3 samples. 

Response factors are generally mandatory for 1-point calibration, too. Accordingly they were 

also applied to this method. A comparison of the three quantification methods is given in 

Table 3. 

Except for 14:0-14:0 PC, acceptable agreement between standard addition and surrogate 

calibration was obtained in positive TOF-MS mode by this post-acquisition re-calibration. 

Relatively high deviations in 14:0-14:0 PC quantification could be due to the neglected matrix 

effects (Figure 4H and Figure S-2I) (note that the response factor was determined in MeOH), 

or the relatively low concentration close to the lower end of the linear range of the surrogate 

calibrant 15:0-18:1(d7) PC (LLOQ: 25.11 ng mL-1). Excellent results were achieved for 20:0 

LPC throughout all modes for surrogate calibration. This finding could furtherly imply the need 

for improved internal standardization as 20:0 LPC was quantified with a class-specific IS 

(ISquant 17:1 LPC). In most cases, 1-point calibration led to overestimation of target lipid 

concentrations and to systematically higher concentration values than for surrogate 

calibration. Major drawbacks, which are resulting in increased uncertainty for 1-point 

calibration, are: (i) the defective calibration function that is automatically forced through the 

origin; (ii) the inability to apply weighted regression; (ii) the requirement for the calibrant 

concentration to be in the linear range, which requires preliminary experiments. In contrast to 

the partially inacceptable results obtained from 1-point calibration (despite considering 

response factors), surrogate calibration involving post-acquisition re-calibration yielded 

absolute concentration values comparable to standard addition results. By assessment of 

matrix-matched response factors and proper internal standardization, performance of 

surrogate calibration is likely to be further improved. 
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Estimation of (matrix-matched) response factors using human plasma NIST SRM 1950 

A brief description of the NIST SRM 1950 standard reference material and further information 

about associated consensus values can be found in the Supplementary Material, Text S1. For 

the anticipated response factor evaluation, surrogate calibrants and 17:1 LPC (ISquant) were 

spiked to NIST SRM 1950 plasma. The samples were subsequently prepared with the identical 

protocol that was also used for the experimental mouse plasma samples. The supernatant 

was then diluted with ISquant-spiked precipitation solvent to yield a 5-point dilution series. In 

order to avoid bias by underestimation of matrix effects, only moderate dilutions of the 

supernatant were prepared (1:1.33, 1:2, 1:4, 1:8; v:v). Equivalent to the above described 

response factor evaluation procedure for standard reference analytes (i.e. post-acquisition re-

calibration approach), slopes of SRM 1950 lipids were divided by the slope of the 

corresponding surrogate calibrant. Only lipids with a COD <30 % (see Text S-1), that could be 

detected free of interference, were considered for response factor evaluation. As lipid 

concentrations were reported for total sum compositions (e.g. PC 36:0), it had to be assumed 

that different isomer lipid species (e.g. PC 18:0-18:0 and PC 16:0-20:0) contribute equally to 

the resulting response factor. If individual species should be quantified, a specific MS/MS 

signal has to be used for calibration, response factor determination and re-calibration. Results 

are listed in Table S-9 and the distribution of response factors in positive and negative mode 

are visualized in Figure S-7. 

To achieve reliable results, peak integration has to be consistent throughout the respective 

lipid class. As some lipid signals are close to detector saturation and others are close to LOQ, 

further care has to be taken to verify working in correct linear ranges. Although high similarities 

in the matrix compositions of mouse and human plasma can be expected, potential response 

factor inaccuracies should be kept in mind due to the usage of plasma from distinct species. 

One major drawback of this approach is the partially high uncertainty and variance of inter-

laboratory results, and the observed discrepancies to values determined by the LIPID MAPS 

consortium (Table S-9). Nevertheless, reasonable results, especially for LPCs, for which 

response factors are closely distributed around 1, could be obtained. As LPCs are one of the 

most polar lipid classes, instrument response is less affected by differences in chain length or 

saturation. Also matrix effects were shown to be of minor extent or at least uniform throughout 

the elution interval for LPCs (see Figure 4 and Figure S-2). If only a weak influence of the 

mobile phase composition is assumed, a class-wide, matrix-matched response factor that 

closely resembles the response factor determined in neat solution (Table 2) can be expected. 
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Inter-study comparison. 

The comparison of lipidomic profiles of rodents that received a high fat diet versus rodents 

that received a standard (control) diet has been described in the literature. For two dietary 

mouse studies,48, 49 absolute concentration values of various lipid species were reported. 

These results were compared to the quantitative results in this study, which were obtained via 

surrogate calibration. Due to differences like genetic background, age, diet composition, 

duration of feeding and other factors, which can highly influence the plasma lipidome (see 

Table S-10), unrestricted inter-study comparability is not given and perfect similarity of lipid 

levels cannot be expected. Nevertheless, quantitative results are suitable to investigate the 

impact of these differences on lipid plasma levels and to identify unaffected lipid species. 

Comprehensive results for inter-study comparison are listed in Table S-10. 

In conclusion, levels of 11 lipid species showed less than 30 % deviation when compared to 

results of CD-fed mice from Eisinger et al.49 (for HFD-fed mice 5 lipids showed less than 30 % 

deviation). Compared to results from Barber et al.,48 4 lipids in CD-fed mice and only 3 lipids 

in HFD-fed mice had lower than 30 % deviation. Furthermore, when comparing the two 

previously published studies, also only 5 lipids in CD-fed mice and 6 lipids in HFD-fed mice 

showed a plasma level deviation below 30 %. Overall, the majority of lipids were elevated, 

compared to the previously published studies (72.2 % of all lipids for Barber et al.48, 83.8% of 

all lipids for Eisinger et al.49), which might be related to the time point of sampling or the 

duration of the feeding (Table S-10).It should also be noted that 32.4 % of the obtained results 

from surrogate calibration exceeded the linear range and are likely to be overestimated. 

However, the study design enables the choice of a less sensitive polarity (e.g. ESI⁻ instead of 

ESI⁺) or MS/MS level quantification with a less sensitive fragment ion, which can yield an 

enhanced linear range for improved quantification. 

 

5.3.5. Conclusions 

With the presented work, an alternative approach towards class-specific quantification in an 

untargeted RP-LC-MS lipidomic assay is suggested. Surrogate calibrant methods have been 

shown highly suitable for quantification of endogenous analytes, especially when no true blank 

matrix is available. This principle has been transferred to untargeted high-resolution MS in 

combination with comprehensive, quantifiable SWATH-acquisition, which offers potential 

improvements regarding selectivity when compared to TOF. Moreover, SWATH is able to 

generate enhanced sensitivity, as MS/MS generally yields beneficial signal-to-noise ratios. 

Nevertheless, SWATH did not automatically provide the best results for all lipid classes and 

several surrogate calibrants showed superior performance on the TOF-level. This might be 

due to the lack of specific and sensitive fragments, yet, MS parameters like collision energy 
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can be individually tailored for each SWATH experiment to optimize the sensitivity. After all, it 

was demonstrated that sufficient precision and accuracy can be obtained with SWATH (and 

TOF) and that previously determined response factors are needed for accurate quantification. 

For the majority of surrogate calibrants, sufficient results for precision and accuracy, complying 

with proposed thresholds for targeted assays, were obtained. The presented approach was 

shown to yield improved results compared to 1-point calibration and was in acceptable 

agreement with standard addition for tested lipids. Moreover, issues concerning response 

factors, which were shown to be essential for accurate quantification, were addressed by post-

acquisition re-calibration via analysis of authentic standards (in methanolic solution) and NIST 

SRM 1950 (matrix-matched but species mismatched). Productive workflows, which comprise 

response factor determination for analytes of interest post-analysis, or method-specific 

response factor libraries emphasize the potential application of this approach. 

Ultimately, the target goal to obtain quantitative results that enhance inter-study, inter-batch 

or database comparability was demonstrated. Yet, future challenges remain, primarily with the 

persistent lack of suitable ISs. An alternative approach to account for this issue could be the 

use of low abundant odd-chain lipid species for surrogate calibration in combination with stable 

isotope labeled lipids as ISs for interference-free normalization. Regarding the potential 

advantages, further studies addressing absolute quantification are anticipated as they can aid  

to maximize the extent and quality of the information that can be extracted from untargeted 

lipidomic assays. 
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5.3.7. Supplementary Material 

 

Table S-1. Concentration of single-point calibrants in study samples.a 

Compound name 
Conc. 

[ng mL-1] 

tR 

[min] 

Adduct type 

pos neg 

17:1 LPC* 80 1.31 ± 0.00 [M+H]+ [M+FA-H]- 

18:1(d7) LPC§ 1,360 1.61 ± 0.01 [M+H]+ [M+FA-H]- 

18:1(d7) LPE§ 283 1.65 ± 0.00 [M+H]+ [M-H]- 

18:1(d7) MAG§ 107 2.81 ± 0.01 - [M+FA-H]- 

15:0-18:1(d7) PI§ 476 4.53 ± 0.00 [M+NH4]+ [M-H]- 

15:0-18:1(d7) PS§ 218 4.69 ± 0.03 [M+H]+ [M-H]- 

15:0-18:1(d7) PG§ 1,507 4.78 ± 0.04 [M+H]+ [M-H]- 

d18:1-18:1(d9) SM§ 1,648 4.87 ± 0.00 [M+H]+ [M+FA-H]- 

Cholesterol(d7) § 5,248 4.83 ± 0.02 [M-H2O+H]+ - 

15:0-18:1(d7) PC§ 8,571 5.24 ± 0.00 [M+H]+ [M+FA-H]- 

15:0-18:1(d7) PE§ 304 5.42 ± 0.00 [M+H]+ [M-H]- 

15:0-18:1(d7) DAG§ 501 6.67 ± 0.00 [M+NH4]+ [M+FA-H]- 

15:0-18:1(d7)-15:0 TAG§ 3,056 10.59 ± 0.00 [M+Na]+ - 

18:1(d7) CE§ 18,992 11.04 ± 0.05 [M+NH4]+ - 

Arachidonic acid(d8) 533 2.73 ± 0.01 - [M-H]- 

α-Linolenic(d14) 533 2.28 ± 0.01 - [M-H]- 

Linoleic acid(d4) 533 2.84 ± 0.01 - [M-H]- 

aExtracted masses of precursors and fragments are listed in Table S-6. *17:1 LPC served as IS for 
ISquant and was spiked to all samples. §Lipid species that are covered in the Lipidomix. 
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Table S-3. Concentration of calibrants (surrogate or 1-point calibrants) in QC samples.c 

Compound name QCquant 1 QCquant 2 
QCquant 3 / 

QCsyst  
QCquant 4 QCquant 5 

18:1(d7) LPC 204.0 1020 5100 10200 16320 

18:1(d7) LPE 42.4 212 1060 2120 3392 

18:1(d7) MAG 16.0 80 400 800 1280 

15:0-18:1(d7) PI 71.3 356.7 1783.4 3566.8 5706.9 

15:0-18:1(d7) PS 32.6 163.2 816.2 1632.4 2611.9 

15:0-18:1(d7) PG 226.1 1130.5 5652.4 11304.9 18087.8 

d18:1-18:1(d9) SM 247.2 1236 6180 12360 19776 

Cholesterol(d7) 787.2 3936 19680 39360 62976 

15:0-18:1(d7) PC 1285.6 6428 32140 64280 102848 

15:0-18:1(d7) PE 45.6 228 1140 2280 3648 

15:0-18:1(d7) DAG 75.2 376 1880 3760 6016 

15:0-18:1(d7)-15:0 TAG 458.4 2292 11460 22920 36672 

18:1(d7) CE 2848.8 14244 71220 142440 227904 

Arachidonic acid(d8) 80.0 400 2000 4000 6400 

α-Linolenic acid(d14) 80.0 400 2000 4000 6400 

Linoleic acid(d4) 80.0 400 2000 4000 6400 

cConcentrations are given in ng mL-1. 



 

179 

T
ab

le S
-4. D

etailed
 seq

u
en

ce o
f an

alysis. d 

S
am

p
le N

am
e 

C
las

s 
A

n
alytica

l 
o

rd
er 

 
S

am
p

le N
am

e 
C

lass 
A

n
alytica

l 
o

rd
er 

 
S

am
p

le N
am

e 
C

las
s 

A
n

alytica
l 

o
rd

er 
M

atrix B
lank 

- 
0 

 
Q

C
syst  

Q
C

syst  
35 

 
D

339
6 

K
O

-H
F

D
 

70 
C

alibration 0 
C

al 
1 

 
D

34
17 

C
T

R
-H

F
D

 
36 

 
Q

C
syst  

Q
C

syst  
71 

C
alibration 1 

C
al 

2 
 

D
01

85 
C

T
R

-C
D

 
37 

 
D

33
94 

K
O

-H
F

D
 

72 
C

alibration 2 
C

al 
3 

 
D

01
67 

C
T

R
-H

F
D

 
38 

 
D

338
0 

C
T

R
-C

D
 

73 
C

alibration 3 
C

al 
4 

 
D

33
85 

K
O

-C
D

 
39 

 
D

330
5 

C
T

R
-H

F
D

 
74 

C
alibration 4 

C
al 

5 
 

D
34

35 
K

O
-C

D
 

40 
 

D
339

7 
C

T
R

-H
F

D
 

75 
C

alibration 5 
C

al 
6 

 
Q

C
syst  

Q
C

syst  
41 

 
D

337
0 

C
T

R
-H

F
D

 
76 

C
alibration 6 

C
al 

7 
 

B
927

8 
C

T
R

-H
F

D
 

42 
 

Q
C

syst  
Q

C
syst  

77 
C

alibration 7 
C

al 
8 

 
D

33
53 

K
O

-H
F

D
 

43 
 

D
013

9 
C

T
R

-C
D

 
78 

C
alibration 8 

C
al 

9 
 

B
925

8 
K

O
-H

F
D

 
44 

 
D

01
68 

K
O

-C
D

 
79 

C
alibration 9 

C
al 

10 
 

D
01

81 
K

O
-H

F
D

 
45 

 
D

017
6 

C
T

R
-H

F
D

 
80 

C
alibration 1

0 
C

al 
11 

 
D

33
71 

K
O

-H
F

D
 

46 
 

B
93

45 
C

T
R

-C
D

 
81 

C
alibration 1

1 
C

al 
12 

 
Q

C
syst  

Q
C

syst  
47 

 
B

93
24 

C
T

R
-H

F
D

 
82 

Q
C

qua
nt  1 

Q
C

qua
nt  

13 
 

M
atrix B

lank 
- 

48 
 

Q
C

syst  
Q

C
syst  

83 
Q

C
qua

nt  2 
Q

C
qua

nt  
14 

 
C

alibration 0 
C

al 
49 

 
D

0142 
K

O
-C

D
 

84 
Q

C
qua

nt  3 
Q

C
qua

nt  
15 

 
C

alibration 1 
C

al 
50 

 
Q

C
syst  

Q
C

syst  
85 

Q
C

qua
nt  4 

Q
C

qua
nt  

16 
 

C
alibration 2 

C
al 

51 
 

Q
C

syst  
Q

C
syst  

86 
Q

C
qua

nt  5 
Q

C
qua

nt  
17 

 
C

alibration 3 
C

al 
52 

 
Q

C
syst  

Q
C

syst  
87 

D
016

3 
C

T
R

-C
D

 
18 

 
C

alibration 4 
C

al 
53 

 
M

atrix B
lank 

- 
88 

D
013

8 
C

T
R

-C
D

 
19 

 
C

alibration 5 
C

al 
54 

 
C

alibration 0 
C

al 
89 

D
343

2 
K

O
-C

D
 

20 
 

C
alibration 6 

C
al 

55 
 

C
alibration 1 

C
al 

90 
D

014
3 

C
T

R
-C

D
 

21 
 

C
alibration 7 

C
al 

56 
 

C
alibration 2 

C
al 

91 
D

338
1 

C
T

R
-C

D
 

22 
 

C
alibration 8 

C
al 

57 
 

C
alibration 3 

C
al 

92 
Q

C
syst  

Q
C

syst  
23 

 
C

alibration 9 
C

al 
58 

 
C

alibration 4 
C

al 
93 

D
337

7 
K

O
-C

D
 

24 
 

C
alibration 10 

C
al 

59 
 

C
alibration 5 

C
al 

94 
B

925
6 

K
O

-H
F

D
 

25 
 

C
alibration 1

1 
C

al 
60 

 
C

alibration 6 
C

al 
95 

D
013

7 
C

T
R

-C
D

 
26 

 
Q

C
qua

nt  1 
Q

C
qua

nt  
61 

 
C

alibration 7 
C

al 
96 

B
930

5 
C

T
R

-H
F

D
 

27 
 

Q
C

qua
nt  2 

Q
C

qua
nt  

62 
 

C
alibration 8 

C
al 

97 
B

934
3 

K
O

-C
D

 
28 

 
Q

C
qua

nt  3 
Q

C
qua

nt  
63 

 
C

alibration 9 
C

al 
98 

Q
C

syst  
Q

C
syst  

29 
 

Q
C

qua
nt  4 

Q
C

qua
nt  

64 
 

C
alibration 1

0 
C

al 
99 

B
925

7 
K

O
-H

F
D

 
30 

 
Q

C
qua

nt  5 
Q

C
qua

nt  
65 

 
C

alibration 1
1 

C
al 

10
0 

D
019

1 
K

O
-C

D
 

31 
 

D
0186 

K
O

-C
D

 
66 

 
Q

C
qua

nt  1 
Q

C
qua

nt  
101 

D
018

3 
K

O
-H

F
D

 
32 

 
D

3379 
C

T
R

-C
D

 
67 

 
Q

C
qua

nt  2 
Q

C
qua

nt  
102 

D
018

2 
K

O
-H

F
D

 
33 

 
D

3357 
C

T
R

-H
F

D
 

68 
 

Q
C

qua
nt  3 

Q
C

qua
nt  

103 
D

339
2 

K
O

-H
F

D
 

34 
 

D
3383 

C
T

R
-C

D
 

69 
 

Q
C

qua
nt  4 

Q
C

qua
nt  

104 
 

 
 

 
 

 
 

 
Q

C
qua

nt  5 
Q

C
qua

nt  
105 

dS
am

ple D
3

37
1 w

as rem
oved from

 further data processing as a classification
 error w

as suspecte
d. Labe

led lipid concentrations of Q
C

syst  sam
ples w

ere iden
tica

l 
to Q

C
q

ua
nt  3 sam

ples but indepe
nde

ntly prepared. 



180 

Table S-5. MS and MS/MS experiment settings in positive and negative ionization mode.e 

Experiment 
Positive mode Negative mode 

m/z start m/z end m/z start m/z end 

TOF-MS 50 1,250 50 1,250 

SWATH-MS/MS 1 50 163.6 50 119.4 

SWATH-MS/MS 2 162.6 214.6 118.4 135.4 

SWATH-MS/MS 3 213.6 256.8 134.4 160.4 

SWATH-MS/MS 4 255.8 310.3 159.4 175.5 

SWATH-MS/MS 5 309.3 360.3 174.5 194.6 

SWATH-MS/MS 6 359.3 427.4 193.6 214.6 

SWATH-MS/MS 7 426.4 497.9 213.6 243.4 

SWATH-MS/MS 8 496.9 541.9 242.4 283.7 

SWATH-MS/MS 9 540.9 572.9 282.7 301.7 

SWATH-MS/MS 10 571.9 622.5 300.7 344.6 

SWATH-MS/MS 11 621.5 666.1 343.6 377.8 

SWATH-MS/MS 12 665.1 701.1 376.8 395.6 

SWATH-MS/MS 13 700.1 731.1 394.6 437.4 

SWATH-MS/MS 14 730.1 755.1 436.4 481.8 

SWATH-MS/MS 15 754.1 771.2 480.8 519.9 

SWATH-MS/MS 16 770.2 786.2 518.9 579.4 

SWATH-MS/MS 17 785.2 800.9 578.4 636.8 

SWATH-MS/MS 18 799.9 814.1 635.8 689.2 

SWATH-MS/MS 19 813.1 828.6 688.2 730 

SWATH-MS/MS 20 827.6 841.2 729 775 

SWATH-MS/MS 21 840.2 864.1 774 815 

SWATH-MS/MS 22 863.1 892.8 814 853.1 

SWATH-MS/MS 23 891.8 927.3 852.1 887 

SWATH-MS/MS 24 926.3 1,044.2 886 953.2 

SWATH-MS/MS 25 1,043.2 1,250 952.2 1,250 

eSWATH window settings were determined using IDA data of a QCsyst sample. After peak-finding on 
TOF-MS level via PeakView, data was transferred to swathTUNER. SWATH design was based on 
optimized precursor density. 
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Table S-6. Sum formulas and extracted masses for surrogate calibrants and ISs.f 

Compound name Sum Formula 

Positive mode Negative mode 

TOF 
extraction 

mass 

SWATH 
extraction 

mass 

TOF 
extraction 

mass 

SWATH 
extraction 

mass 

17:1 LPC C25H50NO7P 508.3398 508.3398 552.3307 492.3096 

18:1(d7) LPC C26H452H7NO7P 529.3994 346.3333 573.3903 288.2925 

18:1(d7) LPE C23H392H7NO7P 487.3524 346.3333 485.3379 288.2925 

18:1(d7) MAG C21H332H7O4 - 272.2965 408.3348 - 

15:0-18:1(d7) PI C42H722H7O13P 847.6036 570.5473 828.5625 828.5625 

15:0-18:1(d7) PS C39H672H7NO10P 755.5563 570.5473 753.5417 288.2925 

15:0-18:1(d7) PG C39H682H7O10P 742.5610 570.5473 740.5465 288.2925 

d18:1-18:1(d9) SM C41H722H9N2O6P 738.6470 720.6364 782.6379 722.6368 

Cholesterol(d7) C27H392H7O 376.3955 376.3955 - - 

15:0-18:1(d7) PC C41H732H7NO8P 753.6134 570.5473 797.6043 288.2925 

15:0-18:1(d7) PE C38H672H7NO8P 711.5664 570.5473 709.5519 288.2925 

15:0-18:1(d7) DAG C36H612H7O5 605.5844 346.3333 632.5488 - 

15:0-18:1(d7)-15:0 TAG C51H892H7O6 834.7539 834.7539 - - 

18:1(d7) CE C45H712H7O2 675.6780 - - - 

Arachidonic acid(d8) C20H242H8O2 - - 311.2832 267.2933 

α-Linolenic(d14) C18H162H14O2 - - 291.3052 - 

Linoleic acid(d4) C18H282H4O2 - - 283.2581 - 

fIn some cases SWATH and TOF masses are identical due to insufficient fragmentation or improved 
data quality for precursors in SWATH-MS/MS (see 17:1 LPC, Cholesterol(d7), PI(d7)). 
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Table S-7. Spiked lipid concentrations for standard addition in mouse plasma (pooled QC).g 

Sample 
Spiked concentration [ng mL-1] 

14:0-14:0 PC 16:0-16:0 PC 18:0-18:0 PC 20:0 LPC 

Std.add. 0 0 0 0 0 

Std.add. 1 150 15,000 800 1,500 

Std.add. 2 300 30,000 1,600 3,000 

Std.add. 3 450 45,000 2,400 4,500 

Std.add. 4 600 60,000 3,200 6,000 

gMouse plasma was spiked and subsequently processed according to the described sample preparation 
protocol. 
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Table S-11. Odd chain lipid species detected and identified in mouse plasma.k 

FA 17:1 PC 17:2-17:2 SM d15:0/18:2 TAG 15:1-16:0-18:2 

PC 13:0-13:0 PC 17:2-17:2 SM d15:0/28:2 TAG 15:1-17:1-19:1 

PC 14:0e/3:0 PC 17:2-20:4 SM d15:2/20:2 TAG 16:0-17:0-18:1 

PC 14:1e/3:0 PC 18:3e/15:0 SM d15:2/26:2 TAG 16:0-17:1-18:1 

PC 14:1e/5:0 PC 18:5e/17:0 SM d15:3/28:2 TAG 16:0-17:2-20:0 

PC 15:0-15:0 PC 19:0-18:1 SM d17:0/18:2 TAG 16:1-16:1-19:1 

PC 15:0-16:0 PC 19:0-18:2 SM d17:0/22:2 TAG 16:1-17:0-18:2 

PC 15:0-18:1 PC 19:0-18:2 SM d18:1/23:0 TAG 16:1-18:1-21:1 

PC 15:0-18:2 PC 19:0-20:3 SM d19:0/22:2 TAG 17:0-17:1-19:1 

PC 15:0-18:2 PC 19:0-20:4 SM d19:2/23:0 TAG 17:0-17:1-19:2 

PC 15:0-20:4 PC 19:0-20:4 TAG 12:0-14:0-17:0 TAG 17:0-17:1-19:3 

PC 15:0-22:6 PC 20:0-19:2 TAG 12:0-15:0-18:1 TAG 17:0-18:1-18:2 

PC 15:1-15:1 PC 21:1-21:1 TAG 12:0-16:1-17:1 TAG 17:0-18:2-18:2 

PC 16:0-17:1 PC 21:2-20:4 TAG 13:0-13:0-14:1 TAG 17:1-18:0-18:1 

PC 16:2e/3:0 PE 22:4e/18:1 TAG 13:0-13:0-18:3 TAG 18:1-18:1-19:1 

PC 17:0-18:0 SM d14:0/19:1 TAG 14:0-15:0-16:0 LPC 15:0 

PC 17:0-18:1 SM d14:0/19:1 TAG 14:0-15:0-18:1 LPC 15:0e 

PC 17:0-18:1 SM d14:0/21:1 TAG 14:0-16:0-17:0 LPC 17:0 

PC 17:0-18:2 SM d14:0/22:1 TAG 14:1-20:1-21:1 LPC 17:2 

PC 17:0-20:3 SM d14:0/22:2 TAG 15:0-15:0-21:4 LPC 19:0 

PC 17:0-20:4 SM d14:1/25:0 TAG 15:0-15:0-21:4 LPC 19:1 

PC 17:0-20:4 SM d14:1/25:0 TAG 15:0-15:1-21:1 LPC 21:0 

PC 17:0-22:6 SM d14:1/27:0 TAG 15:0-16:0-18:1 LPC 23:0 

PC 17:1-18:1 SM d14:1/29:0 TAG 15:0-16:0-20:2 LPC 25:0 

PC 17:1-18:2 SM d14:2/22:1 TAG 15:0-16:1-18:1 LPE 17:0 

PC 17:1-20:4 SM d15:0/16:1 TAG 15:1-16:0-16:0  

kAligned results for the 6 “blank” plasma samples, which were analysed to validate selectivity, are shown 
(positive and negative mode are merged). 
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Figure S-1. Matrix effect evaluation by post-column infusion – positive mode SWATH-MS. 
SWATH-MS/MS mass traces of surrogate calibrants in positive mode during analysis of blank plasma 
samples and simultaneous post-column infusion of surrogate calibrants via a T-piece. Shaded areas 
indicate tR intervals in which species of corresponding lipid classes were detected and identified. Ion 
suppression can be observed for PS(d7) and TAG(d7). As TAGs are one of the most abundant lipids in 
plasma, this effect can be explained by co-eluting TAGs that concur for ionization. A: LPC(d7), B: 
LPE(d7), C: PI(d7), D: PS(d7), E: PG(d7), F: SM(d9), G: Cholesterol(d7), H: PC(d7), I: PE(d7), J: 
DAG(d7), K: TAG(d7), L: MAG(d7). 
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Figure S-2. Matrix effect evaluation by post-column infusion – negative mode TOF-MS. TOF-MS 
mass traces of surrogate calibrants in negative mode during analysis of blank plasma samples and 
simultaneous post-column infusion of surrogate calibrants via a T-piece. Shaded areas indicate tR 
intervals in which species of corresponding lipid classes were detected and identified. Signals for 
MAG(d7) and DAG(d7) were too low for assessment of matrix effects. Significant ion suppression can 
be spotted at the tR interval from 5 – 6.5 minutes. This effect is most probably derived from a concurring 
ionization effect of eluting PCs, which are highly abundant in plasma. A: Arachidonic acid(d8), B: Linoleic 
acid(d4), C: α-Linolenic acid(d14), D: LPC(d7), E: LPE(d7), F: PS(d7), G: PG(d7), H: SM(d9), I: PC(d7), 
J: PE(d7). 
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Figure S-3. Matrix effect evaluation by post-column infusion – negative mode SWATH-MS. 
SWATH-MS/MS mass traces of surrogate calibrants in negative mode during analysis of blank plasma 
samples and simultaneous post-column infusion of surrogate calibrants via a T-piece. Shaded areas 
indicate tR intervals in which species of corresponding lipid classes were detected and identified. Signals 
for PE(d7) and arachidonic acid(d8) were too low for assessment of matrix effects. For PI(d7) (panel E), 
the increase of the XIC trace is not derived from an ion enhancement effect but rather from a signal-
interference of a closely eluting compound. A: LPC(d7), B: LPE(d7), C: PS(d7), D: PG(d7), E: PI(d7), F: 
SM(d9), G: PC(d7). 
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Figure S-4. TOF-MS ion transmission and TICs of a QCsyst sample. A: Ion transmission control in 
positive mode TOF-MS, B: Ion transmission control in negative mode TOF-MS, C: positive mode TOF-
MS TIC, D: negative mode TOF-MS TIC. TIC intensity is about 10x higher in positive mode TOF-MS 
(panel C) than in negative mode TOF-MS (panel D). To avoid detector saturation, ion transmission never 
reaches 100 % for positive mode TOF-MS and most severe short-term ion transmission regulation is 
about 40 – 50 % (panel A). In negative mode TOF-MS, ion transmission control is only applied during 
elution intervals of highly abundant lipids (panel B). Due to the overall 10x lower ion load, ion 
transmission is often at 100 %, but regulation with rapid changes of 80 – 90 % in ion transmission occur 
during elution. For SWATH-MS/MS experiments ITC is permanently set to 100 %. 
  



 

197 

Figure S-5. Comparison of matrix effects for negative TOF-MS and SWATH-MS/MS (post-column 
infusion). For better comparability of matrix effects on differing MS-levels, exemplary negative mode 
data of PG(d7), SM(d9) and PC(d7) is shown. Due to differences in absolute signal intensities between 
TOF-MS and SWATH-MS/MS EICs data were mean centered. A: TOF EIC of PG(d7), B: TOF EIC of 
SM(d9), C: TOF EIC of PC(d7), D: SWATH EIC of PG(d7), E: SWATH EIC of SM(d9), F: SWATH EIC 
of PC(d7), G-I: TOF ITC progression (negative mode). 
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Figure S-6. Comparison of matrix effects for different PC standards via post-column infusion.f 
fEICs of mass traces for A, 14:0-14:0 PC - positive mode; B, 16:0-16:0 PC - positive mode; C, 18:0-18:0 
PC - positive mode; D, 14:0-14:0 PC - negative mode; B, 16:0-16:0 PC - negative mode; C, 18:0-18:0 
PC - negative mode; are shown. Due to the relatively high abundance of 16:0-16:0 PC and 18:0-18:0 
PC in mouse plasma (see Table 3), peaks are visible in the respective mass traces during their 
corresponding retention time. For 14:0-14:0 PC the plasma levels are too low and no peak is spotted in 
post-column equilibration. All traces were mean-centered for best comparability. The respective matrix 
effect profiles are highly similar for each PC species. 
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Figure S-7. Response factor distribution for the evaluation via NIST SRM 1950. 

 

 

Supplementary Text S-1. 

In 2006, NIST developed a human plasma reference material (SRM 1950) derived from 100 individuals 

to represent the average US population (for further information see https://srm1950.nist.gov). Lipidomic 

analysis of this material, including quantification of absolute levels for several lipid species, was 

executed by a consortium organized by LIPID MAPS.[see reference 24 in the main manuscript] Later, a 

harmonizing initiative by Bowden et al.[see reference 23 in the main manuscript] established consensus 

values for SRM 1950, by summarizing lipid concentrations quantified by a minimum of 5 independent 

laboratories, with most of them utilizing targeted (triple-quadrupole) mass-spectrometric methods. 

Consensus values were reported as medians of means (MEDM) from inter-laboratory results, together 

with a standard uncertainty (u), calculated via median absolute deviations (for details see Bowden et 

al.[see reference 2 in the main manuscript]). Analogous to CVs, these two metrics were used for 

calculation of coefficients of dispersion (COD) to express inter-laboratory variation of results. NIST also 

lists certified lipid concentrations in the certificate of analysis, which, however, could not be used since 

they represent values for total cholesterol and total fatty acids. 
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C L I N I C A L R E S E A R C H A R T I C L E

Insulin and Estrogen Independently and Differentially
Reduce Macronutrient Intake in Healthy Men

Rosemarie Krug,1 Linda Mohwinkel,2 Bernhard Drotleff,3 Jan Born,1,4,5

and Manfred Hallschmid1,4,5

1Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076
Tübingen, Germany; 2Department of Neuroendocrinology, University of Lübeck, 23538 Lübeck, Germany;
3Institute of Pharmaceutical Sciences, University of Tübingen, 72076 Tübingen, Germany; 4German Center
for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; and 5Institute for Diabetes Research
and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), 72076
Tübingen, Germany

Context: Insulin administration to the central nervous system inhibits food intake, but this effect has
been found tobe less pronounced in female comparedwithmaleorganisms. This sex-specific patternhas
been suggested to arise from a modulating influence of estrogen signaling on the insulin effect.

Objective: We assessed in healthy young men whether pretreatment with transdermal estradiol in-
teracts with the hypophagic effect of central nervous insulin administration via the intranasal pathway.

Design, Setting, Participants, and Intervention: According to a 232 design, two groups of men (n =
16 in each group) received a 3-day transdermal estradiol (100 mg/24 h) or placebo pretreatment and
on two separate mornings were intranasally administered 160 IU regular human insulin or placebo.

Main Outcome Measures: We assessed free-choice ad libitum calorie intake from a rich breakfast
buffet and relevant blood parameters in samples collected before and after breakfast.

Results: Estrogen treatment induced a 3.5-fold increase in serum estradiol concentrations and
suppressed serum testosterone concentrations by 70%. Independent of estradiol administration,
intranasal insulin reduced the intake of carbohydrates during breakfast, attenuating in particular
the consumption of sweet, palatable foods. Estradiol treatment per se decreased protein con-
sumption. We did not find indicators of eating-related interactions between both hormones.

Conclusions: Results indicate that, in an acute setting, estrogen does not interact with central
nervous insulin signaling in the control of eating behavior in healthy men. Insulin and estradiol
rather exert independent inhibiting effects on macronutrient intake. (J Clin Endocrinol Metab 103:
1393–1401, 2018)

The pancreatic hormone insulin, in addition to its
peripheral effects, modulates central nervous func-

tions, including the control of energy metabolism (1, 2).
The direct application of insulin to the brain via intra-
cerebroventricular infusion in animals and via intranasal
administration in humans (3) has been shown to decrease
food intake and bodyweight inmice (4), rats (5), baboons
(6), and men (7, 8). The hypophagic effect of central

nervous insulin appears to display a preponderance in
male compared with female organisms (7–9). In humans,
intranasal insulin administration acutely curbs food in-
take in men but not in women (7) and during long-term
treatment reduces body fat content in male but not
age-matched female subjects (8). Similarly, in contrast to
male rats, intact female rats do not reduce their food
intake upon intracerebroventricular insulin treatment (9).
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Sensitivity to the anorexigenic effect of intracere-
broventricular insulin, however, can be induced in fe-
male animals by ovariectomy associated with a reduction in
plasma estradiol concentrations; vice versa, estrogen-
treated male rats are no longer susceptible to the
hypophagic effect of the hormone (10), suggesting that
sex-related differences in estrogen signaling modulate
the impact of central nervous insulin on eating behavior.
Nevertheless, although in women intranasal insulin does
not affect food intake in the fasted state, it inhibits
snack intake when administered postprandially (11),
indicating that the peptide can decrease calorie con-
sumption also in female subjects.

Against this background and considering that estrogen
has been reported to attenuate energy intake and body
weight in animals (12), we investigated whether estrogen
and insulin acutely interact in the regulation of eating
behavior in humans. We assessed the effect of intranasal
insulin on food intake in healthy young men who were
pretreated for 3 days with transdermal estradiol or pla-
cebo, hypothesizing that increasing the circulating con-
centrations of estrogen decreases the susceptibility of men
to the anorexigenic effect of insulin.

Subjects and Methods

Subjects, design, and procedure
Thirty-two healthymen aged between 18 and 31 years (mean

age, 23.94 6 0.52 years; mean body mass index, 22.80 6
0.36 kg/m2) participated in the experiment. Current illness,
vegetarianism, and habitual dietary idiosyncrasies (e.g., because
of allergy) were excluded by clinical examination. All subjects
were free of medication and were nonsmokers. They gave
written informed consent to the study, which conformed to the
Declaration of Helsinki as revised in 2008 and was approved by
the local Ethics Committee on Research Involving Humans.

Study design and experimental procedures are summarized
in Fig. 1. According to a 232 design, subjects were randomly

assigned to two groups of participants (n = 16 in each group)
who were treated with either estradiol (“estrogen patch” group;
24.386 0.93 years, 22.626 0.50 kg/m2) or placebo (“placebo
patch” group; 23.50 6 0.49 years, P. 0.41; 22.986 0.54 kg/
m2, P . 0.61) each time before participating in two individual
experimental sessions where they received intranasal insulin or
placebo. Three days before each test session, subjects attended
our laboratory at 5:00 PM. In the participants of the estrogen
patch group, two transdermal estradiol patches (Estradot 50;
Novartis Pharma, Nuremberg, Germany) were applied to the
abdomen, delivering a total dose of 100 mg estradiol per
24 hours according to the manufacturer. Participants of the
placebo patch group received two patches that looked identical
to the estradiol patches but did not contain the hormone. The
patches were renewed by the experimenters after 24 and
48 hours (i.e., the third pair of patches was attached on the day
before and removed directly after the experiment proper).
Subjects and experimenters were blinded to the patches and the
intranasal treatment. Experimental sessions were separated by
at least 3 weeks, and the order of conditions was balanced
across subjects.

The experimental procedure on each test day was similar to
our previous experiments on the acute effects of intranasal
insulin on food intake (7, 13). All subjects remained fasted and
abstained from drinking caloric beverages after 10:00 PM on the
evening before testing. After arrival at the laboratory at around
8:00 AM, a venous cannula was inserted into each subject’s
nondominant arm for the collection of venous blood and
the determination of blood glucose (HemoCue B-Glucose-
Analyzer; HemoCue AB, Angelholm, Sweden). Sessions star-
ted with a 60-minute baseline period, which included blood
sampling at 8:15, 8:30, and 8:45 AM and ratings of mood and
hunger. At 9:00 AM, subjects were intranasally administered 16
puffs (0.1 mL, eight per nostril) of insulin or placebo at
30-second intervals, amounting to a total dose of 1.6 mL insulin
(160 IU) (Insulin Actrapid; Novo Nordisk, Mainz, Germany),
or vehicle. At 10:25 AM, after postadministration blood sam-
pling at 10- to 20-minute intervals and further assessments of
mood and hunger, a standardized free-choice breakfast buffet
was offered comprising a variety of food choices (Table 1) from
which subjects ate ad libitum during the subsequent 30minutes.
Subjects were not aware that their food intake was measured by
weighing buffet components before and after breakfast. This

Figure 1. Experimental procedure. Two groups of 16 healthy men who had been pretreated with transdermal estradiol (100 mg/24 h for 3 days)
or placebo participated in two experimental sessions. After a baseline period of around 60 minutes, subjects were intranasally administered 160
IU insulin or, in the other condition, placebo at 9:00 AM before a free-choice test breakfast buffet was offered around 85 minutes later. Self-rated
hunger, thirst, tiredness, and mood were repeatedly assessed, and blood samples for the determination of glucose and hormone concentrations
were obtained (syringe symbols). Heart rate and blood pressure were assessed twice.
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procedure has been shown to enable the precise assessment of
food intake in the fasted state (7, 13, 14). Throughout the
experiments, subjects repeatedly underwent a battery of cog-
nitive tests unrelated to the topic of the current study (data not
shown). After final blood sampling and another assessment of
mood and hunger, subjects were asked in a short interview
which patch (estrogen/placebo) and which spray (insulin/
placebo) they thought they had received. In these interviews,
none of the subjects reported adverse side effects.

Hormonal and psychometric assessments
Blood samples were centrifuged, and plasma and serumwere

stored at 280°C. Serum concentrations of insulin, C-peptide,
and cortisol (all sampling time points) and of luteinizing hor-
mone (LH) and follicle-stimulating hormone (FSH) (first and
third baseline time points) were determined by Immulite (DPC,
Los Angeles, CA). Plasma concentrations of estradiol (i.e., 17b-
estradiol) and testosterone were determined for every other
sampling time point (Fig. 2A and 2B) by ultra–high-
performance liquid chromatography and subsequent mass
spectrometry validated according to FDA guidelines. Samples
were precipitated with 5% H3PO4, purified, and concentra-
ted in methanol before chromatographic separation was per-
formed on an ultra–high-performance liquid chromatography
instrument (1290 UHPL; Agilent Technologies, Waldbronn,
Germany). Analyte detection was carried out on a hyphenated
TripleTOF 5600+mass spectrometer (Sciex, Concord, Ontario,
Canada) in positive ionization mode. For quantification, a
surrogate calibrant method using 13C3-estradiol and 13C3-
testosterone in true plasma matrix was established. Internal
standardization was obtained by spiking of d5-estradiol and d5-
testosterone. Quantifiable ranges for estradiol and testosterone
were 10 to 1000 pg/mL and 20 to 15,000 pg/mL, respectively.

In a simultaneous mass spectrometric survey scan, we recorded
precursor ion data for an untargeted profiling of plasma
samples that yielded the relative concentrations of additional
steroids of interest [i.e., epitestosterone (17a-testosterone),
dihydrotestosterone (androstanolone), androstenedione, dehy-
droepiandrosterone (androstenolone), progesterone, and
hydroxyprogesterone].

Hunger, thirst, and tiredness were rated on nine-point scales
twice during baseline, at 20- to 30-minute intervals after spray
administration, and after the test breakfast. In parallel, mood
was assessed with five-point scales covering the categories good/
bad mood, alertness/sleepiness, and calmness/agitation
[Mehrdimensionaler Befindlichkeitsfragebogen (MDBF); ref.
15). Blood pressure and heart rate were measured before and
;10 minutes after spray administration.

Statistical analyses
Analyses were performed with SPSS® Statistics Version 21

(IBM, Armonk, NY) and based on repeated-measures analyses of
variance (ANOVA) with the between-subjects factor “Group”
(estrogen patch vs placebo patch) and the within-subject factors
“Treatment” (insulin vs placebo), “Time,” “Macronutrient,” and
“Taste” (i.e., neutral/sweet/savory) as appropriate. Significant
ANOVA interactions were specified by Student’s t tests. All data
are presented as means 6 standard error of the mean (SEM). A
P value ,0.05 was considered significant.

Results

Hormonal parameters
Transdermal estrogen in comparison with placebo

treatment induced a 3.5-fold increase in baseline plasma

Table 1. Composition of the Breakfast Test Buffet

Food Weight (g) Energy (kcal) Carbohydrate (g) Fat (g) Protein (g)

Neutral
Whole wheat bread 165 329 63.9 2 12.1
Wheat rolls 300 857 167.6 5.4 30
White bread 30 73 14.7 0.4 2.5
Butter 75 580 0.5 62.4 0.5
Whole milk 750 495 35.3 26.8 25.4
Condensed milk 40 54 3.9 3 2.6

Sweet
Jam 50 140 34.2 0 0.1
Hazelnut spread 40 218 22.7 12.4 2.7
Honey 40 123 30 0 0.2
Sugar 24 98 24 0 0
Fruit curd 150 148 24.8 1.2 8.8
Banana 190 167 38.1 0.3 2.2
Apple 120 71 17 0.1 0.4
Pear 190 105 23.5 0.6 0.9
Orange juice 400 173 36 1 4

Savory
Poultry sausage 40 74 0.1 4.3 8.3
Cervelat sausage 34 138 0.1 11.8 6.9
Sliced cheese 100 198 0 23 20.8
Cream cheese (natural) 33 87 1.1 8.2 1.8
Cream cheese (herbs) 40 84 1.2 7.2 3.2

Total 2811 4312 538 170 133

Breakfast was served with coffee or tea as requested by the participant.
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estradiol concentrations [F(1,30) = 75.38, P , 0.0001]
and a 70% decrease in testosterone [F(1,30) = 88.19, P ,

0.0001 for Group] (Fig. 2A and 2B). Both estradiol and
testosterone displayed a postprandial drop after breakfast
intake (P , 0.0001 for Time) that was more pronounced
in the groups pretreated with estrogen (both P , 0.002
for Group 3 Time). Intranasal insulin did not display a

modulatory influence on these parameters (all P . 0.23).
Concentrations of LH and FSH measured during baseline
were strongly suppressed after estrogen treatment (both
P , 0.01 for Group) (Fig. 2C). Supplemental analyses
of steroid hormones (Table 2) indicated that transder-
mal estrogen administration roughly halved plasma con-
centrations of epitestosterone and induced 27% and

Figure 2. Endocrine parameters. Plasma concentrations of (A) 17b-estradiol and (B) testosterone; (C) serum concentrations of LH and FSH; (D)
blood glucose concentrations; and serum concentrations of (E) insulin, (F), C-peptide, and (G) cortisol. Experiments were performed in two groups
of 16 men each who had received 3 days of transdermal estradiol (100 mg/24 h; squares) or placebo pretreatment (circles) before participating in
experimental sessions starting with baseline measurements followed by the intranasal spray administration of 160 IU insulin (filled symbols, solid
lines) or placebo (empty symbols, dashed lines), respectively, at 9:00 AM (arrow mark). LH and FSH represent the average of the 8:15 and 8:45 AM

baseline measurements. Values are means 6 SEM. **P , 0.01 for the ANOVA factor Treatment (D); **P , 0.01 and ***P , 0.001 for the
ANOVA factor Group (C).
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66% reductions in, respectively, dihydrotestosterone and
hydroxyprogesterone, all independent of insulin or placebo
administration. Intranasal insulin compared with placebo
induced a mild, estradiol patch–independent decrease in
androstenedione.

Parameters of glucose metabolism and cortisol con-
centrations did not differ between conditions during
baseline (all P. 0.09) and were generally not affected by
estrogen treatment (all P . 0.10 for respective in-
teractions). Intranasal insulin administration induced a
slight decrease in blood glucose concentrations [F(3,98) =
3.81, P , 0.02 for Treatment 3 Time) that remained
within the euglycemic range (Fig. 2D). Corresponding
changes in serum insulin and C-peptide after intranasal
insulin in comparison with placebo administration failed
to reach statistical significance in ANOVA [F(2,37) = 2.42,

P, 0.12, and F(1,33) = 3.01, P, 0.09 for Treatment 3
Time) (Fig. 2E and 2F). However, supplemental area-
under-the-curve analyses covering the time period
between the final baseline (8:45 AM) and the final pre-
breakfast sample (10:22 AM) indicated significant
respective increases in serum insulin [F(1,30) = 15.15,
P , 0.01] and decreases in serum C-peptide [F(1,30) =
4.91, P , 0.04]. Cortisol concentrations showed the
expected circadian decline but were not affected by any
of the hormonal interventions (P . 0.41) (Fig. 2G).

Food intake
Across groups, insulin in comparison with placebo

specifically reduced the intake of carbohydrates from the
test buffet [F(1,30) = 5.60, P , 0.03; F(2,48) = 4.39, P ,

0.03 for Treatment3Macronutrient] (Fig. 3A) against the

Table 2. Supplemental Steroid Measurements

Placebo Patch Estradiol Patch ANOVA Resulta

Placebo Spray Insulin Spray Placebo Spray Insulin Spray Group Treatment

Epitestosterone
(17a-testosterone)

41.42 6 2.62 40.81 6 3.95 18.97 6 2.23 18.84 6 2.50 F(1,29) = 43.91,
P , 0.001

F(1,29) = 0.90,
P = 0.35

Dihydrotestosterone
(Androstanolone)

133.77 6 9.62 124.55 6 9.30 100.30 6 7.71 88.61 6 6.00 F(1,30) = 15.33,
P , 0.001

F(1,30) = 1.87,
P = 0.18

Androstenedione 1216.63 6 108.87 1113.46 6 95.55 1033.52 6 87.05 979.30 6 97.84 F(1,29) = 1.10,
P = 0.30

F(1,29) = 6.73,
P , 0.02

Dehydroepiandrosterone
(Androstenolone)

741.41 6 63.87 694.04 6 52.62 817.51 6 81.19 832.87 6 78.65 F(1,29) = 1.44,
P = 0.24

F(1,29) = 0.18,
P = 0.67

Progesterone 619.90 6 88.90 500.20 6 94.13 538.26 6 92.01 432.08 6 42.90 F(1,29) = 0.43,
P = 0.52

F(1,29) = 3.02,
P = 0.09

Hydroxyprogesterone 754.86 6 69.49 641.86 6 53.90 242.43 6 34.47 238.78 6 34.61 F(1,30) = 53.27,
P , 0.001

F(1,30) = 3.02,
P = 0.09

Relative plasma levels as derived from response ratios (peak area of the analyte/peak area of the internal standard) obtained in amass spectrometric survey
scan (relative quantification) and expressed as areas under the curve of the main experimental period (8:30–10:55 AM). Experiments were performed in
two groups of men who received 3 days of transdermal estradiol (100 mg/24 h) or placebo before participating in experimental sessions including
intranasal treatment with 160 IU insulin or placebo.
aResults for the ANOVA factors Group and Treatment; respective interactions were not significant (n = 31 or 32).

Figure 3. Food intake from the test buffet. Intake of macronutrients (kcal) from a standardized free-choice breakfast buffet presented 85
minutes after intranasal spray administration of 160 IU insulin or placebo in healthy men who had received 3 days of transdermal estradiol (100
mg/24 h) or placebo pretreatment (n = 16 in each group) before the experimental day. (A) Macronutrient intake in the insulin (black bars) and
the placebo spray conditions (white bars) collapsed across the estrogen and placebo patch groups. (B) Macronutrient intake in the estradiol (gray
bars) and the placebo patch (white bars) groups collapsed across the insulin and placebo spray conditions. Values are means 6 SEM. *P , 0.05
for the ANOVA factors Treatment (A) and Group (B).
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background of comparable total food intake in both
conditions [F(1,30) = 0.58, P . 0.45] (Table 3), whereas
the intake of fat and protein was not affected by insulin (all
P . 0.48) (Fig. 3A). The suppressive effect of intranasal
insulin on carbohydrate intake was confirmed in co-
variance analyses correcting for the difference between
conditions in pre-breakfast concentrations of blood glucose
[F(1,29) = 5.38, P , 0.03; F(2,47) = 3.91, P , 0.04 for
Treatment3 Macronutrient] and serum insulin [F(1,29) =
6.87, P , 0.02 and F(2,48) = 7.08, P , 0.01; values
expressed as areas under the curve as defined previously].
The reduction in the consumption of carbohydrates was
also reflected by slight decreases and increases in the
consumption of food items with sweet and savory taste,
respectively [F(2,54) = 3.88, P , 0.04 for Treatment 3
Taste] (Table 3). Estrogen administration in the 3 days
preceding the experiment did not modulate the effect of
intranasal insulin on food intake regarding carbohydrate
consumption [F(1,30) = 0.03, P . 0.87 for Treatment 3
Group] or total intake and consumption of fat, protein, and
sweet vs savory foods (all P . 0.52).

Independent of the intranasal treatment estrogen
per se attenuated the intake of protein from the test
buffet [F(1,30) = 5.12, P = 0.03 for Group] (Fig. 3B). Total
intake and the intake of fat and carbohydrate remained
unaffected by estrogen (all P . 0.47). Although protein
specificity of estrogen’s anorexigenic effect was not sta-
tistically confirmed [F(2,48 = 0.72, P. 0.46 for Group3

Macronutrient], estrogen treatment in particular reduced
the intake of savory food items [estrogen vs placebo patch,
297.45 6 22.28 vs 381.95 6 22.28 kcal; F(1,30) = 7.19,
P , 0.02], such as sliced and natural cream cheese
[138.726 16.11 vs 184.936 16.11 kcal, F(1,30) = 4.11,
P , 0.06; 22.87 6 7.97 vs 44.91 6 7.97 kcal, F(1,30) =
3.83, P, 0.06, respectively] in favor of an increase in the
intake of items like hazelnut spread [100.11 6 17.26 vs

50.316 17.26 kcal; F(1,30) = 4.18,P = 0.05]. Hunger and
thirst ratings were not affected by estrogen treatment or
insulin administration (all P . 0.13).

Control parameters
Self-rated mood and alertness according to the MDBF

adjective scale generally improved during the experiment
(both P , 0.002 for Time) but were not affected by es-
trogen treatment or insulin administration (all P. 0.11).
Accordingly, tiredness rated on nine-point scales de-
creased between morning and noon (P, 0.001). Neither
tiredness nor calmness/agitation ratings showed differ-
ences between conditions or groups (all P . 0.10).
Cardiovascular parameters were not affected by estrogen
or insulin administration (all P . 0.21). In the estrogen
patch group, systolic/diastolic blood pressure measured
10 minutes after intranasal insulin in comparison with
placebo administration was 118.336 3.45/72.406 2.36
vs 123.88 6 2.71/72.44 6 2.59 mm Hg and 124.56 6
2.83/71.066 2.94 vs 120.136 3.69/72.256 2.32mmHg
in the placebo patch group.Heart rate in the estrogen patch
group was (insulin vs placebo) 59.67 6 1.80 vs 59.06 6
2.14 beats per minute and 58.63 6 2.24 vs 59.88 6

2.71 beats per minute in the placebo patch group. In the
post-experimental interviews, subjects were not able to
correctly indicate whether they had received estrogen or
placebo patches (P . 0.53) and insulin or placebo
sprays (P . 0.71; x2 tests).

Discussion

Central nervous insulin administration exerts stronger
acute (7) and long-term (8) catabolic effects in male
subjects than in female subjects; here we investigated
whether estrogen signaling contributes to this sex-specific
pattern. We found that strongly increasing circulating

Table 3. Food Intake From the Test Buffet

Food Intake (kcal) Placebo Insulin P Valuea

Total 1401.29 6 55.84 1365.82 6 45.61 0.45
Neutral food 743.34 6 40.59 696.78 6 38.33 0.18
Wheat rolls 361.24 6 27.81 301.79 6 29.24 0.06
Sweet food 343.50 6 25.58 304.08 6 23.66 0.09
Jam 37.38 6 6.82 25.76 6 7.44 0.03
Hazelnut spread 89.20 6 14.01 61.23 6 13.01 0.03
Honey 17.32 6 5.17 8.85 6 3.61 0.09
Sugar 10.69 6 2.46 6.74 6 2.38 0.07
Savory food 314.45 6 21.02 364.95 6 18.44 0.04
Cervelat sausage 67.95 6 8.37 83.03 6 8.17 0.10
Sliced cheese 147.46 6 13.94 176.19 6 11.96 0.03

Total food intake, food intake according to taste, and consumption of specific food items (all in kcal). All neutral, savory, and sweet foods contained in the
test buffet are listed in Table 1. Values are means 6 SEM calculated across experimental groups (placebo and estrogen patch) for the experimental
conditions (placebo and insulin spray).
aP values for the ANOVA factor Treatment (n = 32).

1398 Krug et al Insulin and Estrogen Reduce Macronutrient Intake J Clin Endocrinol Metab, April 2018, 103(4):1393–1401

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article-abstract/103/4/1393/4801230 by U
niversitaetsbibliothek Tuebingen user on 23 July 2019



estrogen concentrations in healthy young men by means
of transdermal estradiol patches does not alter the sup-
pressive effect on carbohydrate intake of intranasal in-
sulin. This outcome stands in some contrast to findings in
animals indicating that estrogen action interferes with the
anorexigenic effect of brain insulin (9, 10). Estrogen
administration per se was revealed to induce a small but
discernible reduction in protein consumption, indicating
that both insulin and estrogen, but in an independent
fashion, induce restraining effects on the intake of
macronutrients in men.

The pretreatment of our subjects with estradiol
patches worn for 3 consecutive days proved to be highly
effective, as evidenced by the 3.5-fold increase in circu-
lating estrogen, whereas the concentrations of LH
and FSH were roughly halved and serum testoster-
one dropped by about 70%. Estradiol administration
markedly reduced plasma levels of epitestosterone,
dihydrotestosterone, and hydroxyprogesterone, fur-
ther indicating a pronounced impact of our intervention
on steroid signaling. The estrogen-induced reduction
in protein intake from the test breakfast buffet fits
with animal experiments, indicating that centrally
administered estrogen, similar to the adiposity signal
leptin (16), inhibits food intake (17, 18). This effect is
likely mediated via estrogen receptors expressed in the
hypothalamic arcuate and ventromedial nuclei and the
nucleus of the solitary tract in the hindbrain (19) but also
in the reward-processing ventral tegmental area (20).
Daily food intake in naturally cycling women reaches
its nadir during the peri-ovulatory phase when estradiol
concentrations are maximal (21, 22). Protein consump-
tion has been found to be less pronounced during this
phase as compared with the mid-luteal phase (23), al-
though findings on cycle-dependent fluctuations in the
intake of specificmacronutrients are not unanimous (24, 25).
Estrogen-induced reductions in the concentrations of tes-
tosterone and dihydrotestosteronemight have contributed to
decreased calorie consumption (26–28).Most recently, 17a-
estradiol, an enantiomer of 17b-estradiol, has been suggested
to induce centrally mediated catabolic effects (29). Although
in our study the estrogen effect was evident for protein rather
than fat or carbohydrate intake and appeared to focus on
savory foods, it underlines the potential of estrogen delivery
to restrain food intake (30).

Irrespective of estrogen pretreatment, intranasal in-
sulin reduced carbohydrate consumption. This finding
supports previous observations that intranasal insulin
acutely decreases free-choice breakfast intake in healthy
young men (7), although overall calorie intake was not
reduced in the present experiments. Post hoc analyses of
intense eaters displaying total calorie intake above the
median of the respective placebo spray conditions

revealed an insulin-driven, estrogen-independent de-
crease also in overall food intake (n = 8 per estrogen and
placebo patch group, respectively; data not shown).
These results support the notion that insulin transported
to the central nervous system acts as a negative feedback
signal in the control of eating behavior (2, 6). It appears
unlikely that the moderate insulin-induced reduction in
androstenedione levels was involved in this effect (31).
Intranasal insulin also induced a slight increase in serum
insulin and a euglycemic decrease in blood glucose
concentrations that presumably stemmed from a small
ratio of exogenous insulin entering the circulation via the
nasal mucosa (7, 13, 32). Insulin’s effect on food intake
was confirmed in analyses corrected for these subtle
changes in glucoregulation, so that a peripheral media-
tion of the decrease in carbohydrate consumption may
be excluded.

Our observation that insulin restrains carbohydrate
intake and the ingestion of sweet food items ties in with
previous findings of reduced calorie and, in particular,
carbohydrate intake after pre-sleep intranasal insulin
administration (33) and of an insulin-induced decrease in
the intake of chocolate cookies in nonfasted women (11).
Studies in rats, in contrast, have indicated that central
insulin administration predominantly reduces fat intake
(34) but have also found respective reductions in sucrose
self-administration (35). In humans, intranasal insulin
acutely reduces the responsiveness to food stimuli of the
ventral tegmentum and nucleus accumbens of the brain
reward circuit as well as rated food palatability in men
andwomen (36). Although animal experiments in general
confirm that insulin inhibits the reward-related con-
sumption of palatable foods (37, 38), conflicting data
exist on the effect of insulin on dopaminergic signaling
(39, 40).

Contrary to our expectation, estrogen pretreatment
did not modulate the reduction in carbohydrate intake
induced by intranasal insulin. In male rats, the peripheral
administration of estradiol at a dosage of 2 mg admin-
istered every fourth day for 1 month completely blunted
the reduction in 24-hour food intake and body weight
observed in control animals after insulin injection into the
third cerebral ventricle (10). In these animals, estradiol
treatment increased plasma estradiol concentrations by
60%, averaging peri-ovulatory peak concentrations of
female animals (41), whereas increasing serum estradiol
concentrations by a factor of 3.5 in our male subjects
yielded concentrations of around 300 pmol/L; women
typically achieve ovulatory concentrations of 100 to
600 pmol/L. In principle, extended administration pe-
riods and higher dosages of estradiol might modulate the
hypophagic effect of insulin, but estrogen’s impact on
eating behavior in the present paradigm is clearly indicated
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by its suppressive effect on protein intake. Thus, it seems
safe to conclude that inducing peripheral estrogen con-
centrations in healthy young men that approximate the
situation regularly found in women and that induce strong
reductions in the concentration of testosterone and related
steroid hormones does not alter the brain’s sensitivity to
the anorexigenic impact of insulin. Different expression
patterns of estrogen receptors in the male and female brain
(42, 43) or basic genetic sex differencesmight contribute to
altered estrogen-insulin interactions inmen comparedwith
women. However, in previous experiments restricted to
women (13), the difference in estrogen levels between
young women receiving ethinyl estradiol–dominant con-
traceptives and postmenopausal women, in accordance
with the present data, was not associated with differences
in the response to intranasal insulin.

Conclusion

In healthy men, central nervous insulin delivery via the
intranasal route decreases carbohydrate consumption
regardless of whether concurrent circulating estrogen
concentrations are normal or elevated. This pattern in-
dicates that estrogen, which displays moderate suppres-
sive effects on protein intake, and insulin do not acutely
interact in the regulation of eating behavior in humans.
Further investigations, which should also cover longer
time scales, are needed to gain insight into neurobio-
logical mechanisms underlying the stronger anorexigenic
effect of central insulin in male than female subjects re-
ported in animals (9) and humans (7, 8). Such studies
might contribute to the development of sex-specific, in-
dividually tailored approaches in the treatment of eating
disorders.
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J, Holland J, Raver C, Seeley RJ, Hans W, Irmler M, Beckers J, de
Angelis MH, Tiano JP, Mauvais-Jarvis F, Perez-Tilve D, Pfluger P,
Zhang L, Gelfanov V, DiMarchi RD, Tschöp MH. Targeted es-
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38. Könner AC, Klöckener T, Brüning JC. Control of energy homeo-
stasis by insulin and leptin: targeting the arcuate nucleus and be-
yond. Physiol Behav. 2009;97(5):632–638.
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In this study, two monophasic isopropanol-water mixtures (IPA:H2O 75:25 v/v and IPA:H2O 90:10 v/v)
were compared with traditionally employed biphasic methods of Bligh & Dyer and Matyash et al. as
extraction systems for lipidomics analysis in Hela cells. Samples were analyzed by UHPLC-ESI-QTOF-MS/
MS in positive and negative mode using sequential window acquisition of all theoretical fragment ion
spectra (SWATH) and a relatively new software (MS-DIAL) was employed for the processing of the data
which includes detection of peaks, MS/MS spectra deconvolution, identification of detected lipids and
alignment of peaks through the analyzed samples.

The studied performance parameters such as precision, recoveries of isotopically labeled internal
standards and endogenous lipids, number of extracted lipids, and complexity of employed procedure
showed that extraction with IPA:H2O 90:10 v/v performs similar to the Matyash protocol and better than
Bligh & Dyer as well as IPA:H2O 75:25 v/v. However, less complex monophasic protocol which is simpler
to implement and can be executed in plastic rather than glass, make the monophasic IPA:H2O 90:10 v/v
protocol an excellent alternative to the classical biphasic protocols for reversed phase LC-MS lipidomics
studies.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Liquid chromatography-mass spectrometry (LC-MS) has
become the most widely used analytical tool for lipidomics analysis
asic versus classical biphasic extraction protocols for comprehensive
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BMP Bismonoacylglycerophosphate
CE Cholesteryl ester
Cer-NDS Ceramide non-hydroxyfatty acid-

dihydrosphingosine
Cer-NS Ceramide non-hydroxyfatty acid-sphingosine
DG Diacylglycerol
EP Extraction protocol
EtherPC Ether-linked phosphatidylcholine
EtherPE Ether-linked phosphatidylethanolamine
FA Fatty acid
HexCer-NDS Hexosylceramide non-hydroxyfatty acid-

dihydrosphingosine
HexCer-NS Hexosylceramide non-hydroxyfatty acid-

sphingosine
IPA isopropanol
(L)PA (Lyso)phosphatidic acid

(L)PC (Lyso)phophatidylcholine
(L)PE (Lyso)phosphatidylethanolamine
(L)PG (Lyso)phosphatidylglycerol
(L)PI (Lyso)phosphatidylinositol
(L)PS (Lyso)phosphatidylserine
MG Monoacylglycerol
MTBE Methyl tert-butyl ether
OxFA Oxidized fatty acid
OxPC Oxidized phosphatidylcholine
OxPE Oxidized phosphatidylethanolamine
OxPG Oxidized phosphatidylglycerol
OxPI Oxidized phosphatidylinositol
OxPS Oxidized phosphatidylserine
SM Sphingomyelin
SWATH Sequential window acquisition of all theoretical

fragment ion spectra
TG Triacylglycerol
TIC Total ion current
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in the last few years [1e4]. Despite many reported publications on
this topic, there is no consensus about the most adequate protocol
to follow. One of the most critical points is the sample preparation
and therefore the choice of a solvent or solvent mixture for the lipid
extraction, since this will determine which lipid classes are mostly
recovered from the sample [5]. Extractions with the system
chloroform-methanol-water (CHCl3-MeOH-H2O), at specific ratios,
were introduced more than six decades ago, with the pioneering
works of Folch [6] and Bligh & Dyer [7], and have frequently been
described as “gold standards” [1,8e13]. Hexane-isopropanol-water
(Hexane-IPA-H2O) was proposed in 1978 by Hara et al. as a less
toxic option [14]. However, its performance in terms of wide
coverage of distinct lipid classes is modest [15e17]. Recently, two
methods using methyl tert-butyl ether-methanol-water (MTBE-
MeOH-H2O) [10] and butanol-MeOH-H2O [18] were introduced and
they have become popular because of their similar or even better
performance, less tedious procedure for preparing the samples and
less toxicity with respect to the chloroform mixtures.

Solvent mixtures have been suggested for lipid extraction after
considering that most of the biological samples are composed of
some amount of water and that the lipids are mainly soluble in
organic solvents. Thus, the strategy for extractions of lipids has
traditionally been based on two steps, a first one where a miscible
solvent mixture (considering the water present in the sample) is
added to the sample, which allows good interaction between sol-
vent and sample matrix, and a second one where more aqueous or
organic solvent or both are added to the original mixture in order to
create a biphasic systemwhich separates the extracted lipids, in the
organic layer, from the rest of the sample, in the aqueous layer.
However, considering that nowadays many workflows for lip-
idomics analysis include a reversed phase liquid chromatographic
separation and polar interferences elute in the first minutes of the
separation, the use of a biphasic system is not strictly required [19].
In 2017 Jurowski et al. [19] reviewed the use of some monophasic
mixtures for lipidomics studies. Among the cited examples are
CHCl3:MeOH (2:1 v/v) [20,21], 1-butanol/methanol (1:1 v/v) [22]
for plasma samples, CHCl3:MeOH (1:2 v/v) for sphingolipids anal-
ysis in mammalian cells [23,24] and aqueous isopropanol for
extraction of lipids on microalgae [25]. In 2014, Sarafian et al. [26]
published a study showing a monophasic mixture IPA-H2O as a
good choice for lipid extraction of plasma samples with good re-
coveries for most of the lipid classes.

In this study, we evaluated the performance of monophasic
Please cite this article as: C. Calder�on et al., Comparison of simple monoph
UHPLC-MS/MS lipidomic analysis of Hela cells, Analytica Chimica Acta, h
isopropanol extraction in comparison to biphasic extraction pro-
tocols in detail for lipid extraction from Hela Cells. No information
about the suitability of this monophasic extraction protocol for
mammalian cells and how it compares to classical extraction pro-
tocols was available. Thus, two IPA-H2O mixtures (75:25 v/v and
90:10 v/v) were compared with the biphasic extraction systems:
CHCl3-MeOH-H2O (2:2:1.8 v/v/v, Bligh & Dyer) [7] and MTBE:-
MeOH:H2O (10:3:2.5, v/v/v, Matyash) [10], which currently are two
of the most widely employed protocols for lipid analysis
[8,11,16,17,27e30].

2. Materials and methods

2.1. Materials

Mobile phases were prepared with solvents of LC-MS grade.
Methanol (MeOH), acetonitrile (ACN) and isopropanol (IPA) were
supplied by Roth (Karlsruhe, Germany). As additive, formic acid (FA,
98%) was obtained by Carl Roth (Karlsruhe, Germany) and ammo-
nium formate was purchased from SigmaeAldrich (Steinheim,
Germany). Water was purified by a water filtration system from
Elga (High Wycombe, United Kingdom).

Solvents for extraction were of HPLC grade: chloroform (CHCl3,
�99.8%) and tert-butyl methyl ether (MTBE, anhydrous, 99.8%)
from Sigma-Aldrich.

SPLASH™ Lipidomix® solution containing the following isoto-
pically labeled internal standards (ILIS): 15:0e18:1(d7) PC,
15:0e18:1(d7) PE, 15:0e18:1(d7) PS, 15:0e18:1(d7) PG,
15:0e18:1(d7) PI, 15:0e18:1(d7) PA, 18:1(d7) LPC, 18:1(d7) LPE,
18:1(d7) Chol Ester, 18:1(d7) MG, 15:0e18:1(d7) DG,
15:0e18:1(d7)-15:0 TG,18:1(d9) SM, Cholesterol (d7) was obtained
from Avanti Polar Lipids (Alabama, USA) (See Table A1 for more
information about internal standards).

2.2. Cell culture

The human cervical cancer HeLa cells adapted to serum free
conditions (AC free, ECACC 08011102) were grown in T75-flask and
EX-CELL HeLa serum free media (Sigma Aldrich) supplemented
with 2mM L-glutamine (Sigma Aldrich), until they reached a den-
sity of around 2e3 x 106 cells/mL. Afterwards theywere transferred
to 50mL falcon tubes and centrifuged for 5min at 700 rcf, before
the supernatant was discarded. The cell pellet was resuspended in
asic versus classical biphasic extraction protocols for comprehensive
ttps://doi.org/10.1016/j.aca.2018.10.035
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15mL ice-cold Dulbecco's Phosphate Buffered Saline (PBS, Sigma
Aldrich) for washing and centrifuged again for 5min at 700 rcf. The
washing was repeated twice and after the last resuspension cells
were counted in triplicate with a hemocytometer. According to the
mean of the counted cells, aliquots containing approximately
8� 105 cells were transferred randomly to 15mL falcon tubes (for
extraction with isopropanol mixtures) and 15mL glass tubes (for
extractions with CHCl3 and MTBE). Samples were centrifuged at
700 rcf for 5min and the pellets were stored at �80 �C until
extraction.

2.3. Extraction protocols

Extraction solvents were kept on ice before their addition to the
samples. For each extraction protocol, 10 samples (pellets con-
taining 8� 105 cells) were extracted. In order to estimate the re-
covery of some lipid classes, 5 of these samples were spiked before
the extraction with 100 mL of 5% v/v SPLASH Lipidomix solution in
methanol and were resuspended with 100 mL MeOH before the LC-
MS measurement (pre-extraction spiking). For the other 5 samples
100 mL of MeOH were added before the extraction and they were
resuspended with 100 mL of 5% v/v SPLASH Lipidomix solution
before the LC-MS measurement (post-extraction spiking). Re-
coveries were calculated as ratio of average intensities for internal
standards in the pre-extraction and post extraction spiked samples.

2.3.1. Extraction with MTBE:MeOH:H2O (10:3:2.5, v/v/v, “MTBE”)
This EP was based on Matyash et al. [10]. Either methanol or

solution of 5% SPLASH Lipidomix in MeOH (100 mL) was added to
the pellet. Then 1.4mL of methanol and 5mL of MTBE were added.
Vortexing (30 s), ultrasonication (2min) and vortexing (30 s) cycle
was applied to disrupt the pellet. Samples were incubated on ice
while shaking (500 rpm, 60min). After the extraction, 1.25mL of
H2O was added and samples were incubated on ice for another
10min. Afterwards, centrifugation at 3500 rcf for 10min was
applied and the upper layer was transferred to a glass tube. Samples
were dried in an evaporator (Genevac EZ-2; Warminster, Pennsyl-
vania, USA) for 10 h under nitrogen protection. The lipid extract was
resuspended in 100 mL of either methanol or solution of 5% SPLASH
Lipidomix while sonication (2min) and vortexing (30 s) were
applied. Centrifugation at 3500 rcf for 10min was applied and the
supernatant was transferred to vials for MS-measurements. During
the last step, 10 mL aliquot of each sample were transferred to a
separate vial to prepare a pooled QC sample.

2.3.2. Extraction with IPA:H2O (75:25 v/v, “IPA75“)
Either methanol or solution of 5% SPLASH Lipidomix in MeOH

(100 mL) was added to the pellet. Then 5.0mL of IPA:H2O (75:25 v/v)
were added. Vortexing (30 s), ultrasonication (2min) and vortexing
(30 s) cycle was applied to disrupt the pellet. Samples were incu-
bated on ice while shaking (500 rpm, 60min). After the extraction,
centrifugation at 3500 rcf for 10min was applied and supernatant
was transferred to a 15mL falcon tube. Samples were dried in an
evaporator for 10 h under nitrogen protection. The lipid extract was
resuspended in 100 mL of either methanol or solution of 5% SPLASH
Lipidomix while sonication (2min) and vortexing (30 s) were
applied. Centrifugation at 3500 rcf for 10min was applied and the
supernatant was transferred to vials for MS-measurements. During
the last step, 10 mL aliquot of each sample were transferred to a
separate vial to prepare a pooled QC sample.

2.3.3. Extraction with IPA:H2O (90:10 v/v, “IPA90“)
As described before for extractionwith IPA75, only that IPA:H2O

(90:10 v/v) was used instead of IPA:H2O (75:25 v/v).
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2.3.4. Extraction with CHCl3-MeOH-H2O (2:2:1.8 v/v/v, “CHCl3“)
This EP was based on Bligh & Dyer [7]. Either methanol or so-

lution of 5% SPLASH Lipidomix in MeOH (100 mL) was added to the
pellet. Then, 0.8mL of H2O, 1.90mL of MeOH and 1.0mL of CHCl3
were added. Vortexing (30 s), ultrasonication (2min) and vortexing
(30 s) cycle was applied to disrupt the pellet. Samples were incu-
bated on ice while shaking (500 rpm, 60min). After the extraction
1.0mL CHCl3 and 1.0mL of H2O were added and samples were
incubated on ice for another 10min. Afterwards, centrifugation at
3500 rcf for 10minwas applied and the upper layer was transferred
to a glass tube. Samples were dried in an evaporator for 10 h under
nitrogen protection. The lipid extract was resuspended in 100 mL of
either methanol or solution of 5% SPLASH Lipidomix while soni-
cation (2min) and vortexing (30 s) were applied. Centrifugation at
3500 rcf for 10min was applied and the supernatant was trans-
ferred to vials for MS-measurements. During the last step, 10 mL
aliquot of each samplewere transferred to a separate vial to prepare
a pooled QC sample.

2.3.5. Blank extractions for all extraction protocols
Seven blank extraction replicates for each extraction protocol

were performed following the same steps indicated above, only
that extraction solvents were added to empty falcon or glass tubes.
For further analysis, an additional IPA90 blank extraction protocol
(also 7 replicates) was performed replacing plasticware with
glassware. The results from these blank samples were used to
correct the result from the cell extractions.

2.3.6. Extractions without internal standards
One cell extract for each EP was prepared following the same

steps described before, but no ILIS were added. These samples were
used to validate assay specificity for internal standards i.e. to check
that no significant signals are present at m/z and retention times
corresponding to the ILIS. For all EPs no signals i.e. no interferences
were found.

2.4. LC-MS measurement

All analyses were performed on an Agilent 1290 Series UHPLC
instrument (Agilent, Waldbronn, Germany) coupled to a Sciex Tri-
pleTOF 5600 þ mass spectrometer (Sciex, Concord, Ontario; Can-
ada). Duospray ion source for ESI in positive and negative ion mode
was used. Sample injections were done in randomized order with a
Pal HTC-XS autosampler from CTC (Zwingen, Switzerland). QC
samples were run at the beginning of the sequence, during the
sequence (every five samples) and at the end of the sequence.

Chromatographic separation was performed according to con-
ditions published by Tsugawa et al. [31] in order to enable retention
time scoring for peak identification with MS-Dial software. Briefly
an Acquity UPLC CSH C18 Column, 130Å, 1.7 mm, 2.1mm� 100mm
with an Acquity UPLC CSH C18 VanGuard Pre-column, 130Å,
1.7 mm, 2.1mm� 5mm (Waters, Eschborn, Germany) was used.
The mobile phase was composed of 10mM ammonium formate
and 0.1% formic acid in A) 60:40 ACN:H2O (v/v) and B) 90:10 (v/v)
IPA:ACN. The following gradient profile was used: 0.00min, 15% B;
2.00min, 30% B; 2.50min, 48% B; 11.00min, 82% B; 11.50min, 99%
B; 12.00min, 99% B; 12.10min, 15% B, 15.00min, 15% B. Flow rate
was 600 mL/min and column temperature was 65 �C. The injection
volumes were 3 mL and 5 mL for positive and negative mode,
respectively.

The following MS-settings of the mass spectrometer were used:
Curtain gas (CUR) 35 psi, nebulizer gas (GS1) 60 psi, drying gas
(GS2) 60 psi, ion-spray voltage floating (ISVF) þ5500 V in positive
and �4500 V in negative mode, source temperature (T) 350 �C,
collision energy 45 V, collision energy spread 15 V, declustering
asic versus classical biphasic extraction protocols for comprehensive
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potential (DP) 80 V, mass range m/z 50e1250 in ESI (þ) and
50e1050 in ESI (�), and RF Transmission (RF) m/z 40: 50% and m/z
120: 50%. An external mass calibration was performed every five
samples (see Table A2).

MS datawas obtained by using sequential window acquisition of
all theoretical fragment ion spectra (SWATH) [32,33], after opti-
mizing Q1 windows size (See Table A3) with Swath Tuner software
[34].
2.5. MS data processing

MS-Dial software (RIKEN, version 3.06) [31] was used to process
theMS data (see parameters in Table A4). This included detection of
peaks, MS2 data deconvolution, compound identification and
alignment of peaks through all the samples. For identification a cut
off value of 80% was selected: This value is based on 6 different
similarity scores: 1 for retention time, 1 for m/z, 1 for isotopic
pattern and 3 for MS/MS (dot product, dot product reversed and
presence). An important condition established in MS-Dial was that
a peak was selected for alignment only when it was present in at
least 51% of the samples of one extraction protocol. Features which
were relatively close (m/z difference less than 0.03 Da and retention
time difference less than 0.1min) in the alignment file of MS-Dial
were visually inspected in order to determine if they are effec-
tively corresponding to more than one feature, otherwise the
repeated feature was removed. List of aligned peaks from MS-Dial
were further evaluated with Multiquant 3.0 (Sciex). Intensities
were processed for principal component analysis (PCA) with Mar-
kerView (Sciex) and exported to Excel for statistical analysis. A
feature was considered for comparison between the different
extraction protocols when it was present in at least 90% of the
samples of one extraction protocol having a CV less than 30% for the
10 extraction replicates of that protocol. Furthermore blank
extraction samples were used to exclude features that have m/z
difference less than 0.01 Da, retention time difference less than
0.5min and fold change less than 5 between the cell extraction and
Fig. 1. Representative TICs for samples extracted with four different EPs using A) ESI (þ) a
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blank extraction replicates (List of detected features in extraction
blanks are in Appendix D).

Peaks corresponding to internal standards were removed from
MS-Dial detected features and were analyzed directly with Multi-
quant to evaluate the recoveries.
3. Results and discussion

In order to compare the different EPs some modifications were
introduced to the originally published protocols. Thus, extraction
volumes were modified to be as similar as possible for all EPs while
keeping the solvent ratios for each EP as they were published.
Variables like temperature, vortexing time, vortexing intensity,
centrifugation time and centrifugation speed were kept the same
for all extraction protocols. For the same reason no re-extractions
were done for any of the extraction protocols. The solvent evapo-
ration stepwas performed overnight to save time and it was kept at
10 h even when the time required for the evaporation of each sol-
vent ranges from less than 3 h, in the case for CHCl3 and MTBE, to
approximately 6 h, in the case of IPA75. Thus, all the extracts were
kept under nitrogen atmosphere until resuspension to minimize
possible oxidation of lipids.
3.1. Chromatograms and principal component analysis (PCA)

Total ion current (TIC) chromatograms in positive and negative
mode for extracted samples with different EPs (Fig. 1) show a very
similar profile with only some slight differences, especially during
the first minutes. After processing the data with MS-Dial and
Multiquant, peak intensities for detected features were analyzed
by PCA (Fig. 2). Score plots with the first two principal compo-
nents, in both ESI (þ) and ESI (�) mode (Fig. 2A and C), show a
clear separation between the samples extracted with each pro-
tocol, except for extractions with isopropanol 75% and iso-
propanol 90%, which are overlapped. This result indicates that the
detected features and their corresponding intensities show
nd B) ESI (�) mode. Asterixes indicate major differences between the chromatograms.
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Fig. 2. PCA plots for intensities of detected features. A) Scores plot in ESI (þ), B) Loadings plot including only lipid classes with more than 5 identified features ESI (þ) C) Scores plot
in ESI (�), D) Loadings plot including only lipid classes with more than 5 identified features ESI (�).
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significant alterations between the different extraction protocols.
Loadings plots, with the first two principal components, are
shown in Fig. 2B and D, for positive and negative mode respec-
tively (for a better visualization, unknown features and lipid
classes with less than five identified features were excluded from
each loadings plot). In Fig. 2B it is possible to note influences of
some lipid classes to the shown differentiation of EPs in Fig. 2A, for
example LPE are oriented in the direction of CHCl3 and PGs are
oriented in the direction of the EPs IPA75 and IPA90, which means
that those lipid classes are better extracted with the mentioned
EPs. In the same manner, in Fig. 2D, LPCs and LPEs are oriented in
the same direction of the EP CHCl3 and Cers are oriented in the
direction of the EPs IPA75 and IPA90.

3.2. Number of detected features

Table 1 and Fig. 3 show the numbers and distribution of features
detected in ESI (þ) and ESI (�) for the EPs (Specific data about
detected features can be observed in Appendix B). Features list
obtained after processing with MS-Dial was reprocessed with
Multiquant. In this manner we are combining the capabilities of
MS-Dial for recognizing features and the identification of approx-
imately 15% of them with the capabilities of Multiquant for a more
controlled integration, making it easier to determine whether a
feature is present or not in a group of samples. After the processing
with Multiquant and the feature filtration (only those features
Please cite this article as: C. Calder�on et al., Comparison of simple monoph
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which are present in at least 90% of the samples of one EP and have
a CV less than 30% for the replicates of that EP were selected) the
number of features was reduced from 1872 to 1382 in ESI (þ) and
from 1541 to 1024 in ESI (�) but the number of features which were
found with each EP was higher (See Table 1). Similar procedures
with MS-Dial and Multiquant were applied to blank extraction
replicates and peak exclusion lists were used to filter only the
features coming from the cell pellets (1167 features in ESI (þ) and
842 features in ESI (�)). In terms of the total number of detected
features, all extractions protocols show similar performance in ESI
(þ) (maximum difference is 4% between IPA90 and IPA75) and a
slight greater amount is obtained with CHCl3 in ESI (�) (difference
of 9% respect to the MTBE protocol). Venn diagrams in Fig. 3 show
the distribution of detected features in ESI (þ) and ESI (�) modes. It
is possible to see that 72% of the features in ESI (þ) and 77% in
negative mode were detected with all EPs. In ESI (þ) the amount of
features that can be exclusively extracted with each extraction
protocol is very similar (6.7% with CHCl3, 5.7% in common with
IPA75 and IPA90 and 5.1% with MTBE).

In ESI (�), CHCl3 protocol extracts exclusively 9.7% of total
detected features in comparison to 3.4% of MTBE and 2.6% of IPA75
and IPA90 (in common). These features detected with only one of
the specific EP (or two of them in the case of IPA75 and IPA90)
correspond to not identified features which are spread through the
whole studied range of m/z and retention time and for this reason
no specific lipid class can be assigned to them.
asic versus classical biphasic extraction protocols for comprehensive
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Table 1
Description of processed features with MS-Dial and Multiquant softwares.

Description ESI (þ) ESI (�)

Total CHCl3 IPA75 IPA90 MTBE Total CHCl3 IPA75 IPA90 MTBE

Detected features in MS-Dial a 1872 904 893 928 1038 1541 708 674 718 1015
Detected features after processing with Multiquantb 1382 1110 1054 1118 1183 1074 824 759 771 906
Detected features after correction with blanks 1167 991 (85%) 955 (82%) 1003 (86%) 985 (84%) 842 777 (92%) 713 (85%) 725 (86%) 701 (83%)
Identified features 292 289 (99%) 285 (97.6%) 290 (99.3%) 291 (99.7%) 206 205 (99.5%) 201 (97.6%) 205 (99.5%) 200 (97.1%)
� SM 29 29 28 29 29 22 22 22 22 22
� PG 6 6 5 6 6 10 10 10 10 10
� PE 29 29 29 29 29 55 55 54 55 55
� PC 88 88 88 87 87 43 43 43 43 43
� LPE 7 7 7 7 7 22 22 20 22 20
� LPC 4 4 4 4 4 11 11 11 11 10
� Cer-NS 12 12 10 12 12 6 6 6 6 6
� Cer-NDS 5 5 5 5 5 2 2 2 2 2
� TG 92 89 89 91 92
� HexCer-NS 3 3 3 3 3 1 1 1 1 1
� DG 12 12 12 12 12
� CE 2 2 2 2 2
� BMP 3 3 3 3 3
� PS - e e e e 1 1 1 1 1
� PI - e e e e 11 11 10 11 11
� OxPS - e e e e 1 1 1 1 1
� OxPG - e e e e 1 1 1 1 1
� OxPE - e e e e 6 6 5 5 5
� OxPC - e e e e 3 3 3 3 3
� LPI - e e e e 2 2 2 2 2
� LPG - e e e e 2 2 2 2 2
� HexCer-NDS - e e e e 5 5 5 5 5
� FA - e e e e 2 1 2 2 0

a Present in at least 51% of samples of one group.
b Present in at least 90% of samples of one EP having a CV< 30%.
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3.3. Identified lipids and relative recovery of endogenous lipids

Table 1 also shows the distribution of lipids identified with each
EP (Specific data about identified features can be observed in
Appendix C). Only IPA75 and MTBE extraction allowed the identi-
fication of a few less features (2% less in eachmode for IPA75 and 2%
less in negative mode for MTBE), it means that in terms of the
number of identified features the four studied EPs have similar
performance. However, Fig. 2B and D, already showed that even
when similar number of lipids where detected with each EP, their
intensities were significantly different for some lipid classes.

In order to describe the relative ability of each EP to extract a
particular lipid class, a relative recovery of endogenous extracted
Fig. 3. Venn diagrams showing the distribution of detected features with each EP an
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lipids was calculated using IPA90 as a reference. Thus, the average
intensity of each identified lipid extracted with CHCl3, IPA75 and
MTBE was normalized with respect to the average intensity of the
same lipid after extraction with IPA90. Afterwards, the normalized
values were averaged for the lipids belonging to the same lipid class
(Fig. 4, Table A5). The results show similar intensities for some lipid
classes independently of which protocol was employed. However,
in some other cases significant differences are noted. In ESI (�)
mode, for example, significantly lower intensities were obtained for
polar lipids LPG, LPI, PG, PI, PS and FA when CHCl3 and MTBE ex-
tractions were employed. Also, higher intensities are achieved for
LPE and LPC with CHCl3 protocol while lower ones are obtained
with IPA75 and MTBE. This higher recovery for LPC and LPE with
d their overlapping selectivities. A) Results from ESI (þ) and B) ESI (�) modes.
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Fig. 4. Relative lipid class recoveries of endogenous lipids obtained with different EPs and using IPA90 as a reference. A) Results from ESI (þ) and B) ESI (�) modes. Numbers in
parenthesis indicate the number of identified lipids from each lipid class that were normalized and averaged.
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CHCl3 has to be further investigated considering that these are two
of the most polar lipid classes and it is expected that polar mixtures
IPA:H2O can extract better these substances, as it has been indi-
cated previously [26].

3.4. Lipid recovery of internal standards

To determine the absolute recovery of lipid classes with each EP,
pre-extraction and post-extraction spiking of the samples with a
mixture of ILIS was performed. Fig. 5 and Table A6 show the % re-
covery for each ILIS. As an average MTBE and IPA90 have the best
performance. In the case of CHCl3, its performance is significantly
higher than other protocols for the recovery of TG. IPA75 shows
recoveries in most of the cases lower than the ones that can be
reached with IPA90. CHCl3 protocols shows significantly lower re-
coveries for polar lipid classes PA, PI and PS.

Here, it is important to highlight that beside the fact that ILIS
were added to the pellet just before the addition of extraction
solvent, which means they have less interaction with cellular ma-
trix and more direct contact with extraction solvent than endoge-
nous lipids, a good correlation was observed for the recoveries that
were calculated with the ILIS in comparison with the relative
Fig. 5. Recoveries of isotopically labeled internal standards after pre and p
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recoveries of endogenous lipids described in section 3.3. Only
exception for this finding was the anomalous mentioned case of
LPEs and LPCs.

Also, good correlation was observed between the obtained re-
coveries and reported results by Sarafian et al. [26] in plasma
samples after extraction with isopropanol and relative comparison
with protocols based on MTBE (Matyash) and CHCl3 (Bligh and
Dyer, Folch). However, only recovery of odd-chained internal
standards was reported at that moment and no comparison with
endogenous lipids was done.

Higher recoveries obtained with IPA90 respect to IPA75, espe-
cially for the most abundant lipid classes are also in good concor-
dance with comparison done by Yao et al. [25] in microalgae and
soybeans, where aqueous isopropanol mixtures with 88% and 95%
of isopropanol yielded higher oil extraction efficiency than mix-
tures with 50% and 70% isopropanol.

3.5. Precision

For a comparison of precisions obtained with the EPs, CV % for
each detected feature was calculated. A profile of the CVs for the
features that were found with each EP (1167 features in ESI (þ) and
ost-extraction spiking. A) Results from ESI (þ) and B) ESI (�) modes.
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Fig. 6. Distribution of CVs (%) obtained for precision evaluation of peak intensities of features detected in all four EPs. A) Results from ESI (þ) (1167 analyzed features) and B) ESI (�)
modes (842 analyzed features).
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842 features in ESI (�), see Fig. 3) is shown in Fig. 6 and Table A7. For
features detected in ESI (þ), CV profiles show to be very similar
having a maximum CV % bin from 10 to 15% and around 80% of the
features with CV less than 30% independently of the employed EP.
For features detected with ESI (�), IPA75 and IPA90 have a
maximum CV bin from 5 to 10%, while CHCl3 and MTBE have a
maximum CV bin from 10 to 15%. All EPs have more than 90% of
detected features with a CV below 30%.
3.6. Protocol complexity

Many publications have already made emphasis about the
advantage of using extraction protocols where the organic layer is
the upper phase (as in MTBE protocol) and not the lower one (as in
CHCl3 protocol) of a two-phase partitioning system. The reason for
this is the more tedious removal of the lipid containing organic
phase when this one is in the bottom, especially because a layer of
protein is located between the organic and aqueous layer. In the
case of tested EPs IPA75 and IPA90, the fact of having a monophasic
mixture makes this process even easier because only a separation
of the supernatant from the solid residue is required. A possible
disadvantage of employing monophasic mixtures for extraction
relies on the presence of salts as part of the extract. However, in
reversed phase LC-MS this is not necessarily a problem because
these salts elute during the first minutes of chromatographic run.
As part of this research, QC samples run at the beginning, in be-
tween and at the end of measured sequences in ESI (þ) and ESI (�),
did not show significant differences in terms of intensity (see
Fig. A1).

Another advantage for IPA75 and IPA90 extractions, is that they
are compatible with plasticware, which does not happen with
MTBE and CHCl3. In our study, extraction blanks were performed to
remove those features which are not coming from cell pellets (lists
of features detected in extractions blanks are in Appendix D).
Additionally, an extra extraction blank for IPA90 using glassware,
yielded a higher amount of detected features than the corre-
sponding one using plasticware (See Fig A2 and A3). This higher
amount of detected features could be related with the cleaning
process employed for the glass tubes. Therefore, in the case that
glassware is employed for these extractions, either new glassware
has to be utilized for each new extraction, which is very expensive
or a very strict cleaning protocol has to be employed, which will
Please cite this article as: C. Calder�on et al., Comparison of simple monoph
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demand extra time and make the process more tedious. Conse-
quently, it can be said that the extraction protocols IPA75 and
IPA90, employing plasticware, are less time consuming, cheaper
and easy to automatize.

4. Concluding remarks

After comparison of the performance for extraction of lipids, it is
possible to conclude that there was no significant difference with
the number of identified lipids with each EP. In terms of recoveries
for different lipid classes, extraction with IPA90 showed similar
results as MTBE for most of the lipid classes, better results than
CHCl3 for the more polar lipid classes and better results than IPA75
for the less polar lipid classes. Precision with IPA mixtures showed
to be slightly better in ESI (�) and similar in ESI (þ) than the pre-
cision obtained with MTBE and CHCl3. In terms of complexity,
monophasic extractions with IPA offered a simpler, less time
consuming and cheaper protocol. Also, MS signal intensities did not
show any decrease after samples extracted with IPA:H2O mixtures
were measured, which could be corroborated with the reproduc-
ibility of measured intensities for QC samples through the whole
study. Considering all these aspects, extraction with IPA90 repre-
sents an excellent alternative as a solvent for developing reversed-
phase LC-MS lipidomics studies.
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6.2. Data Processing Script for R 

6.2.1. Selection of Internal Standard-based Normalization for 

 MS-Data 

 

The following script, including an exemplary dataset, was published on GitHub 

(https://github.com/LaemmerhoferLab/Selection-of-IS-Normalization). It yields a summary 

table and a graph to compare intra-group metrics of variation between IS-based normalization 

methods. 

 

6.2.1.1. Readme.md 

This code performs various internal standard-based normalization methods (B-MIS, CCMN, 

NOMIS, RUVrandom) on MS-datasets and extracts statistical parameters and metrics of intra-

group variance for comparison. Ultimately, the aim is to provide a valid and simplified tool for 

selection of the optimum normalization strategy. This script was created using RStudio 

(Version 1.1.383) 

 

Title: "Selection of Internal Standard based Normalization" Author: "B. Drotleff et al." 

Date: "May 22th, 2019" 

 

Following R packages are required to run the script: MetNorm, NormalizeMets, metabolomics, 

qvalue, ggplot2, sgof, caTools, ropls, tibble. 

 

To ensure correct operation, the input data file must fulfill thefollowing requirements: 

 The R-project file must be in the same folder as the input data file 

 The input data file must be named "dataset.csv" with the file type .csv 

 Columns must have headers --> column 1: "Samples", column 2: "Class"  

o Rows in column 1 must contain individual sample names 

 Rows in column 2 must contain numeric numbers that represent the corresponding 

class affiliation 

 The first two classes should be the samples of interest that are compared against each 

other (e.g. class 1 = treated samples, class 2 = control samples)  

o Quality control samples (QCs) must must be included as class 3 

o Starting from column 3, sample-wise response values for internal standards 

(ISs) must be listed 
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o Subsequent columns must cotain sample-wise response values for aligned 

features 

o Empty cells should be avoided (execute missing value imputation prior to this 

script) 

o Dataset-specific input parameters that have to be adjusted by the user are:  

 Vector that describes columns that contain IS response values 

(including 0 <- non-normalization for B-MIS) e.g.: 0 stands for non-

normalization, values 1-5 indicate 5 IS in the first 5 rows ISvect<-

as.vector(c(0,1,2,3,4,5)) 

 Factor k for RUVrandom normalization e.g.: 3 factors of unwanted 

variation k=3 

An exemplary dataset (dataset.csv) is provided. This dataset was derived from open source 

data in the NormalizeMets R package. For further description of this dataset see: De Livera, 

Alysha M, M. Aho-Sysi, Laurent Jacob, J. Gagnon-Bartch, Sandra Castillo, J.A. Simp-son, and 

Terence P. Speed. 2015. Statistical methods for handling unwanted variation in 

metabolomicsdata.Analytical Chemistry 87 (7). American Chemical Society: 3606-15. (DOI: 

10.1021/ac502439y)  
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6.2.1.2. Script Code 

#Script was created using RStudio (Version 1.1.383) 
 
#Title: "Selection of Internal Standard based Normalization" 
#Author: "B. Drotleff et al." 
#Date: "May 22th, 2019" 
 
 
#load required packages 
suppressMessages(library(MetNorm)) 
suppressMessages(library(NormalizeMets)) 
suppressMessages(library(metabolomics)) 
suppressMessages(library(qvalue)) 
suppressMessages(library(ggplot2)) 
suppressMessages(library(sgof)) 
suppressMessages(library(caTools)) 
suppressMessages(library(ropls)) 
suppressMessages(library(tibble)) 
 
 
#R-project file must be in the same folder as the dataset csv file. Check by typing 
getwd() 
 
#To ensure correct operation, the input data file must fulfill thefollowing requirements: 
 #The R-project file must be in the same folder as the input data file 
 #Columns must have headers --> column 1: "Samples", column 2: "Class" 
 #Rows in column 1 must contain individual sample names 
   #Rows in column 2 must contain numeric numbers that represent the corresponding class affiliation 
   #The first two classes should be the samples of interest that are compared against each other (e.g. class 1 = treated 
samples, class 2 = control samples) 
 #Quality control samples (QCs) must must be included as class 3 
 #Starting from column 3, sample-wise response values for internal standards (ISs) must be listed 
 #Subsequent columns must cotain sample-wise response values for aligned features 
 #Empty cells should be avoided (execute missing value imputation prior to this script) 
 #Dataset-specific input parameters that have to be adjusted by the user are: 

#Vector that describes columns that contain IS response values (including 0 <- non-normalization for B-MIS) 
(see below) 

  #Factor k for RUVrandom normalization (see below) 
 #The file must be named "dataset.csv" and be of the file type .csv 
data.raw <- read.table("dataset.csv", sep = ",", header = TRUE, row.names = 1, check.names = FALSE) 
 
#set columns that contain IS information. IS columns must be the first response value containing columns in the dataset. The 
value "0" has to be kept in the vector/dataframe as it represents non-normalization (use of raw data) for B-MIS. 
#here,e.g.: 0 stands for non-normalization, values 1-5 indicate 5 IS in the first 5 rows. 
ISvect<-as.vector(c(0,1,2,3,4,5)) 
IS<-data.frame(t(ISvect)) 
 
#set factors of unwanted variation (k) for RUVrandom normalization (here k=3) 
k=3 
 
#Create new folder for statistical analysis of raw data 
dir.create("raw data") 
setwd("raw data") 
 #log-transform the dataset matrix 
 data.raw.log<-LogTransform(data.raw, base=exp(1))$output 
 
  #create across-group RLA plot 
  tiff("RLAPlot_ag_raw.tiff", width=8, height=8, units="in", res=300) 
  RlaPlots(data.raw.log, "ag", outline=FALSE, ylim=c(-1,1)) 
  dev.off() 
 
  #create within-group RLA plot 
  tiff("RLAPlot_wg_raw.tiff", width=8, height=8, units="in", res=300) 
  RlaPlots(data.raw.log, "wg", outline=FALSE, ylim=c(-1,1)) 
  dev.off() 
 
  #compute p-values (Student´s t-test, if Welch´s t-test is anticipated use "var.equal = FALSE") 
  p.val <- matrix(as.character(combn(3,2)),ncol = 3) 
  p.values.raw <- data.frame(row.names=paste(p.val[1,],"vs",p.val[2,])) 
  for(i in 2:ncol(data.raw.log)) 

{stat.test <- function(ttest) t.test(data.raw.log[,i] ~ data.raw.log[,1], data = data.raw.log, subset = 
data.raw.log[,1] %in% ttest, paired = FALSE, exact = TRUE, var.equal=TRUE)  

  p.values.raw[,i-1] <- as.numeric(sapply(apply(p.val,2,stat.test),"[",3))} 
  colnames(p.values.raw)<-colnames(data.raw.log[-1]) 
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  #plot p-value histogram 
  tiff("p-value_histogram_raw.tiff", width=8, height=8, units="in", res=300) 

hist(matrix(as.numeric(p.values.raw[1,])), main=row.names(p.values.raw[1,]),breaks = 20, xlab = "p-value", 
las = 1) 

  dev.off() 
 
  #compute q-values for p-value adjustment (usually only suitable for large datasets) 
  plotfile <- "q-values_raw.tiff" 

q.values.raw <- qvalue(matrix(as.numeric(p.values.raw[1,])),lambda=seq(0,0.95,0.001), fdr.level = 0.05,pfdr 
= TRUE) 

  tiff("q-values_raw.tiff", width=8, height=8, units="in", res=300) 
  plot(q.values.raw) 
  dev.off() 
   

#create dataframe with p- and q-values and sort according to ascending p-values for subsequent p-value 
adjustment methods 
p.val.stat.raw<-data.frame(cbind(ID = 
c(1:length(p.values.raw[1,])),round(matrix(as.numeric(p.values.raw[1,])),digits=4), 
round(q.values.raw$qvalues,digits=4))) 

  rownames(p.val.stat.raw)<-rownames(t(p.values.raw)) 
  colnames(p.val.stat.raw)<-cbind("ID","p-value","q-value") 
  p.val.stat.raw <- p.val.stat.raw[order(p.val.stat.raw[,2]),] 
   
  #compute Benjamini-Hochberg p-value adjustment 
  p.val.stat.raw$BH<-p.adjust(p.val.stat.raw[,2], method="BH") 
   
  #compute SGoF p-value adjustment 
  SGoF.raw<-SGoF(p.val.stat.raw[,2], alpha=0.05, gamma=0.05) 
  p.val.stat.raw$SGoF<-SGoF.raw$Adjusted.pvalues 
 
  #compute ROC statistics including AUC values 
   #get IDs of 25 most significant samples (or other suitable number depending on the dataset) 
   ID.pval.raw<-p.val.stat.raw[1:25,1] 
  data.raw.log.samples<-subset(data.raw.log, data.raw.log[,1]==1 | data.raw.log[,1]==2) 
   #caluculate mean AUC for 25 most significant samples 
   meanAUC.raw<-rowMeans(colAUC(data.raw.log.samples[,ID.pval.raw+1], data.raw.log.samples[,1])) 
   #calculate number of features with an AUC >0.8 
   AUC.raw<-colAUC(data.raw.log.samples[,2:length(data.raw.log.samples)], data.raw.log.samples[,1]) 
   nAUC.raw<-length(AUC.raw[(AUC.raw[1,]>0.8)]) 
 
  #compute PCA and PLS-DA 
  ropls.class<-as.factor(data.raw.log.samples[,1]) 
  ropls.data.raw.log<-data.raw.log.samples[, 2:dim(data.raw.log.samples)[2]] 
   #PCA 
   data.multiv.stat.raw.PCA <- opls(ropls.data.raw.log) 
   print(plot(data.multiv.stat.raw.PCA,parAsColFcVn=ropls.class)) 
   savePlot("PCA_raw.wmf") 
   #PLS-DA 

#if the first predictive component is already not significant you will get an error message and PLS-
DA will not be computed 

   data.multiv.stat.raw.PLSDA <- opls(ropls.data.raw.log, ropls.class, predI = NA) 
   print(plot(data.multiv.stat.raw.PLSDA)) 
   savePlot("PLS-DA_raw.wmf") 
   #Extract R2Y and Q2Y of PLS-DA (only possible if PLS-DA was computed) 
   try(R2YQ2Y.raw<-getSummaryDF(data.multiv.stat.raw.PLSDA),silent=TRUE) 
   R2YQ2Y.raw<-c(R2YQ2Y.raw[,2],R2YQ2Y.raw[,3],R2YQ2Y.raw[,5]) 
    
  #compute CVs (geometric), median absolute deviation (MAD) and variance (Var) for experimental classes 
   #CV(geometric, calculation via standard deviation for log-transformed data) 
   CV.raw<-data.frame(matrix(ncol=3, nrow=ncol(data.raw.log)-1)) 
   colnames(CV.raw)<-cbind("CV.raw QCs","CV.raw Class1","CV.raw Class2") 
   Subset<-subset(data.raw.log, data.raw.log[,1]==1) 
   CV.raw[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd)  
   Subset<-subset(data.raw.log, data.raw.log[,1]==2) 
   CV.raw[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd) 
   Subset<-subset(data.raw.log, data.raw.log[,1]==3) 
   CV.raw[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd) 
   #formula to translate standard deviation to geometric CV (only valid for log-transformed data) 
   CV.raw<-sqrt(exp(CV.raw^2)-1)*100 
    
   #MAD 
   MAD.raw<-data.frame(matrix(ncol=3, nrow=ncol(data.raw.log)-1)) 
   colnames(MAD.raw)<-cbind("MAD.raw QCs","MAD.raw Class1","MAD.raw Class2") 
   Subset<-subset(data.raw.log, data.raw.log[,1]==1) 
   MAD.raw[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad)  
   Subset<-subset(data.raw.log, data.raw.log[,1]==2) 
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   MAD.raw[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad) 
   Subset<-subset(data.raw.log, data.raw.log[,1]==3) 
   MAD.raw[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad) 
    
   #Var 
   Var.raw<-data.frame(matrix(ncol=3, nrow=ncol(data.raw.log)-1)) 
   colnames(Var.raw)<-cbind("Var.raw QCs","Var.raw Class1","Var.raw Class2") 
   Subset<-subset(data.raw.log, data.raw.log[,1]==1) 
   Var.raw[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var)  
   Subset<-subset(data.raw.log, data.raw.log[,1]==2) 
   Var.raw[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var) 
   Subset<-subset(data.raw.log, data.raw.log[,1]==3) 
   Var.raw[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var) 
    
   VarStat.raw<-cbind(CV.raw,MAD.raw,Var.raw) 
    
    
  setwd("..") 
  #create summary of statistical parameters for comparison of normalization 
  options(digits=4) 
  Summary<-data.frame(matrix(ncol=18,nrow=1)) 

Summary<-
t(c(sum(p.val.stat.raw[,2]<0.05),sum(p.val.stat.raw[,3]<0.05),sum(p.val.stat.raw[,4]<0.05),sum(p.val.stat.raw
[,5]<0.05),meanAUC.raw,nAUC.raw,median(CV.raw[,1]),median(CV.raw[,2]),median(CV.raw[,3]),median(M
AD.raw[,1]),median(MAD.raw[,2]),median(MAD.raw[,3]),median(Var.raw[,1]),median(Var.raw[,2]),median(Va
r.raw[,3]), 
ifelse(exists("R2YQ2Y.raw"),R2YQ2Y.raw[1],NA),ifelse(exists("R2YQ2Y.raw"),R2YQ2Y.raw[2],NA),ifelse(ex
ists("R2YQ2Y.raw"),R2YQ2Y.raw[3],NA))) 

   
colnames(Summary)<-cbind("p-value <0.05","q-value <0.05","Benjamini-Hochberg adj. p-value","SGOF p-
value <0.05","mean AUC (#25)","# AUC >0.8","median CV(geom) in QCs", "median CV(geom) Class1", 
"median CV(geom) Class2","median MAD QCs","median MAD Class1","median MAD Class2","median Var 
QCs","median Var Class1","median Var Class2","PLS-DA R2Y","PLS-DA Q2Y","#Optimum Components") 

 
#Create new folder for statistical analysis of B-MIS normalized data. Here, as stated by Drotleff et al., B-MIS was executed without 
consideration of cut-offs for miniumum CV in raw data or CV improvement compared to raw data. 
dir.create("B-MIS") 
setwd("B-MIS") 
  #compute normalization with all IS 
   #add column with value 1 for all samples for non-normalization 
   data.raw.BMIS<-add_column(data.raw,"noIS"=1:length(data.raw$Class),.after="Class") 
   data.raw.BMIS$noIS<-1 
    
   #calculate CVs for all potential ISs (via mean and standard deviation) 
    #class-specific mean after normalizatin with all IS 

mean.BMIS<-data.frame(matrix(nrow=length(IS), ncol=ncol(data.raw.BMIS)-
1)) 

     for (i in 1:length(IS)) 
     {mean.BMIS.norm <- paste("IS", i, sep = "") 

assign(mean.BMIS.norm, 
data.frame(c(data.raw.BMIS[1],data.raw.BMIS[2:ncol(data.raw.BMIS)]/data.r
aw.BMIS[,IS[,i]+2]), check.names = FALSE)) 
#change value for Class here if other class than QC (Class=3) should be 
processed 

     Subset<-subset(get(mean.BMIS.norm), Class==3) 
     mean.BMIS[i,]<-(apply(Subset[,2:ncol(Subset)], 2, FUN=mean))} 
     #class-specific standard deviation after normalizatin with all IS 
     sd.BMIS<-data.frame(matrix(nrow=length(IS), ncol=ncol(data.raw.BMIS)-1)) 
     for (i in 1:length(IS)) 
     {sd.BMIS.norm <- paste("IS", i, sep = "") 

assign(sd.BMIS.norm, 
data.frame(c(data.raw.BMIS[1],data.raw.BMIS[2:ncol(data.raw.BMIS)]/data.r
aw.BMIS[,IS[,i]+2]), check.names = FALSE)) 
#change value for Class here if other class than QC (Class=3) should be 
processed 

         Subset<-subset(get(sd.BMIS.norm), Class==3) 
     sd.BMIS[i,]<-(apply(Subset[,2:ncol(Subset)], 2, FUN=sd))} 
    CV.norm.BMIS<-sd.BMIS/mean.BMIS*100 
    colnames(CV.norm.BMIS)<-colnames(data.raw.BMIS[-1]) 
    
   #Find IS that produces minimum class-specific CV 
    BMIS.assignment<-data.frame(matrix(nrow=2, ncol=ncol(data.raw.BMIS)-1)) 
    BMIS.assignment[1,]<-apply(CV.norm.BMIS[,1:ncol(CV.norm.BMIS)], 2, FUN=min) 
    for (i in 1:ncol(BMIS.assignment)) 

{BMIS.assignment[2,i]<-
rownames(CV.norm.BMIS)[which.min(apply(CV.norm.BMIS[i],MARGIN=1,min))]} 
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    rownames(BMIS.assignment) <- c("minimum CV in %","IS ID") 
    colnames(BMIS.assignment) <- colnames(data.raw.BMIS[-1]) 

write.table(t(BMIS.assignment), "B-MIS_assignment.csv", sep = ",", quote = FALSE, 
append = FALSE, row.names = TRUE, col.names = NA) 

     
   #Normalize each feature with assigned B-MIS 
   BMIS.assignment<-cbind(1,BMIS.assignment) 
   colnames(BMIS.assignment)<-colnames(data.raw.BMIS) 
   data.BMIS<-data.matrix(rbind(BMIS.assignment[2,],data.raw.BMIS)) 
    
   for (i in length(IS):(length(data.BMIS[1,])-2)) 
   {for (z in 1:length(IS)) 
   { 
   if(data.BMIS[1,i+2]==z) 
   {data.BMIS[,i+2]<-data.BMIS[,i+2]/data.BMIS[,z+1]}}} 
   data.BMIS<-data.frame(data.BMIS[-1,-2]) 
   colnames(data.BMIS)<-colnames(data.raw) 

write.table(data.BMIS, "B-MIS.csv", sep = ",", quote = FALSE, append = FALSE, row.names = 
TRUE, col.names = NA) 

 
  #statistical analysis of B-MIS normalized dataset 
  #log-transform the dataset matrix 
   data.BMIS.log<-LogTransform(data.BMIS, base=exp(1))$output 
    
    #create across-group RLA plot 
    tiff("RLAPlot_ag_BMIS.tiff", width=8, height=8, units="in", res=300) 
    RlaPlots(data.BMIS.log, "ag", outline=FALSE, ylim=c(-1,1)) 
    dev.off() 
   
    #create within-group RLA plot 
    tiff("RLAPlot_wg_BMIS.tiff", width=8, height=8, units="in", res=300) 
    RlaPlots(data.BMIS.log, "wg", outline=FALSE, ylim=c(-1,1)) 
    dev.off() 
    

#compute p-values (Student´s t-test, if Welch´s t-test is anticipated use "var.equal = 
FALSE") 

    p.val <- matrix(as.character(combn(3,2)),ncol = 3) 
    p.values.BMIS <- data.frame(row.names=paste(p.val[1,],"vs",p.val[2,])) 
    for(i in 2:ncol(data.BMIS.log)) 

{stat.test <- function(ttest) t.test(data.BMIS.log[,i] ~ data.BMIS.log[,1], data = 
data.BMIS.log, subset = data.BMIS.log[,1] %in% ttest, paired = FALSE, exact = TRUE, 
var.equal=TRUE)  

    p.values.BMIS[,i-1] <- as.numeric(sapply(apply(p.val,2,stat.test),"[",3))} 
    colnames(p.values.BMIS)<-colnames(data.BMIS.log[-1]) 
     
    #plot p-value histogram 
    tiff("p-value_histogram_BMIS.tiff", width=8, height=8, units="in", res=300) 

hist(matrix(as.numeric(p.values.BMIS[1,])), main=row.names(p.values.BMIS[1,]),breaks 
= 20, xlab = "p-value", las = 1) 

    dev.off() 
   
    #compute q-values for p-value adjustment 
    plotfile <- "q-values_BMIS.tiff" 

q.values.BMIS <- 
qvalue(matrix(as.numeric(p.values.BMIS[1,])),lambda=seq(0,0.95,0.001), fdr.level = 
0.05,pfdr = TRUE) 

    tiff("q-values_BMIS.tiff", width=8, height=8, units="in", res=300) 
    plot(q.values.BMIS) 
    dev.off() 
     

#create dataframe with p- and q-values and sort according to ascending p-values for 
subsequent p-value adjustment methods 
p.val.stat.BMIS<-data.frame(cbind(ID = 
c(1:length(p.values.BMIS[1,])),round(matrix(as.numeric(p.values.BMIS[1,])),digits=4), 
round(q.values.BMIS$qvalues,digits=4))) 

    rownames(p.val.stat.BMIS)<-rownames(t(p.values.BMIS)) 
    colnames(p.val.stat.BMIS)<-cbind("ID","p-value","q-value") 
    p.val.stat.BMIS <- p.val.stat.BMIS[order(p.val.stat.BMIS[,2]),] 
       
    #compute Benjamini-Hochberg p-value adjustment 
    p.val.stat.BMIS$BH<-p.adjust(p.val.stat.BMIS[,2], method="BH") 
     
    #compute SGoF p-value adjustment 
    SGoF.BMIS<-SGoF(p.val.stat.BMIS[,2], alpha=0.05, gamma=0.05) 
    p.val.stat.BMIS$SGoF<-SGoF.BMIS$Adjusted.pvalues 
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    #compute ROC statistics including AUC values 
#get IDs of 25 most significant samples (or other suitable number depending 
on the dataset) 

     ID.pval.BMIS<-p.val.stat.BMIS[1:25,1] 
data.BMIS.log.samples<-subset(data.BMIS.log, data.BMIS.log[,1]==1 | 
data.BMIS.log[,1]==2) 

     #caluculate mean AUC for 25 most significant samples 
meanAUC.BMIS<-
rowMeans(colAUC(data.BMIS.log.samples[,ID.pval.BMIS+1], 
data.BMIS.log.samples[,1])) 

     #calculate number of features with an AUC >0.8 
AUC.BMIS<-
colAUC(data.BMIS.log.samples[,2:length(data.BMIS.log.samples[1,])], 
data.BMIS.log.samples[,1]) 

     nAUC.BMIS<-length(AUC.BMIS[(AUC.BMIS[1,]>0.8)]) 
     
    #compute PCA and PLS-DA 
    ropls.class<-as.factor(data.BMIS.log.samples[,1]) 
    ropls.data.BMIS.log<-data.BMIS.log.samples[, 2:dim(data.BMIS.log.samples)[2]] 
     #PCA 
     data.multiv.stat.BMIS.PCA <- opls(ropls.data.BMIS.log) 
     print(plot(data.multiv.stat.BMIS.PCA,parAsColFcVn=ropls.class)) 
     savePlot("PCA_BMIS.wmf") 
     #PLS-DA 

#if the first predictive component is already not significant you will get an error 
message and PLS-DA will not be computed 
data.multiv.stat.BMIS.PLSDA <- opls(ropls.data.BMIS.log, ropls.class, predI = 
NA) 

     print(plot(data.multiv.stat.BMIS.PLSDA)) 
     savePlot("PLS-DA_BMIS.wmf") 
     #Extract R2Y and Q2Y of PLS-DA (only possible if PLS-DA was computed) 
     try(R2YQ2Y.BMIS<-getSummaryDF(data.multiv.stat.BMIS.PLSDA),silent=TRUE) 
     R2YQ2Y.BMIS<-c(R2YQ2Y.BMIS[,2],R2YQ2Y.BMIS[,3],R2YQ2Y.BMIS[,5]) 
      
      

#compute CVs (geometric), median absolute deviation (MAD) and variance (Var) for experimental 
classes 

    #CV(geometric, calculation via standard deviation for log-transformed data) 
    CV.BMIS<-data.frame(matrix(ncol=3, nrow=ncol(data.BMIS.log)-1)) 
    colnames(CV.BMIS)<-cbind("CV.BMIS QCs","CV.BMIS Class1","CV.BMIS Class2") 
    Subset<-subset(data.BMIS.log, data.BMIS.log[,1]==1) 
    CV.BMIS[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd)  
    Subset<-subset(data.BMIS.log, data.BMIS.log[,1]==2) 
    CV.BMIS[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd) 
    Subset<-subset(data.BMIS.log, data.BMIS.log[,1]==3) 
    CV.BMIS[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd) 

#formula to translate standard deviation to geometric CV (only valid for log-transformed 
data) 

    CV.BMIS<-sqrt(exp(CV.BMIS^2)-1)*100 
     
    #MAD 
    MAD.BMIS<-data.frame(matrix(ncol=3, nrow=ncol(data.BMIS.log)-1)) 
    colnames(MAD.BMIS)<-cbind("MAD.BMIS QCs","MAD.BMIS Class1","MAD.BMIS Class2") 
    Subset<-subset(data.BMIS.log, data.BMIS.log[,1]==1) 
    MAD.BMIS[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad)  
    Subset<-subset(data.BMIS.log, data.BMIS.log[,1]==2) 
    MAD.BMIS[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad) 
    Subset<-subset(data.BMIS.log, data.BMIS.log[,1]==3) 
    MAD.BMIS[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad) 
     
    #Var 
    Var.BMIS<-data.frame(matrix(ncol=3, nrow=ncol(data.BMIS.log)-1)) 
    colnames(Var.BMIS)<-cbind("Var.BMIS QCs","Var.BMIS Class1","Var.BMIS Class2") 
    Subset<-subset(data.BMIS.log, data.BMIS.log[,1]==1) 
    Var.BMIS[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var)  
    Subset<-subset(data.BMIS.log, data.BMIS.log[,1]==2) 
    Var.BMIS[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var) 
    Subset<-subset(data.BMIS.log, data.BMIS.log[,1]==3) 
    Var.BMIS[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var) 
      
    VarStat.BMIS<-cbind(CV.BMIS,MAD.BMIS,Var.BMIS) 
 
    setwd("..") 
    #create summary of statistical parameters for comparison of normalization 
    options(digits=4) 
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Summary<-
rbind(Summary,t(c(sum(p.val.stat.BMIS[,2]<0.05),sum(p.val.stat.BMIS[,3]<0.05),sum(p.
val.stat.BMIS[,4]<0.05),sum(p.val.stat.BMIS[,5]<0.05),meanAUC.BMIS,nAUC.BMIS,me
dian(CV.BMIS[,1]),median(CV.BMIS[,2]),median(CV.BMIS[,3]),median(MAD.BMIS[,1]),
median(MAD.BMIS[,2]),median(MAD.BMIS[,3]),median(Var.BMIS[,1]),median(Var.BMI
S[,2]),median(Var.BMIS[,3]),ifelse(exists("R2YQ2Y.BMIS"),R2YQ2Y.BMIS[1],NA),ifelse
(exists("R2YQ2Y.BMIS"),R2YQ2Y.BMIS[2],NA),ifelse(exists("R2YQ2Y.BMIS"),R2YQ2
Y.BMIS[3],NA)))) 

   
#Create new folder for statistical analysis of CCMN normalized data. 
dir.create("CCMN") 
setwd("CCMN") 
   #normalize the dataset with CCMN 
   data.raw.NormMets<-data.raw.log[-1] 

data.raw.CCMN <- NormQcmets(data.raw.NormMets, data.raw.log[,1], method = "ccmn", qcmets = ISvect[-
1],check.names=FALSE) 

data.CCMN<-data.frame(matrix(nrow=nrow(data.raw.CCMN$featuredata), 
ncol=ncol(data.raw.CCMN$featuredata))) 

   data.CCMN<-data.raw.CCMN$featuredata 
   colnames(data.CCMN)<-colnames(data.raw[(length(IS)+1):length(data.raw)]) 
   data.CCMN<-add_column(data.CCMN,"Class"=1:length(data.raw$Class),.before=1) 
   data.CCMN$Class<-data.raw$Class 

write.table(data.CCMN, "CCMN.csv", sep = ",", quote = FALSE, append = FALSE, row.names = TRUE, 
col.names = NA) 

   
  #statistical analysis of CCMN normalized dataset 
        
    #create across-group RLA plot 
    tiff("RLAPlot_ag_CCMN.tiff", width=8, height=8, units="in", res=300) 
    RlaPlots(data.CCMN, "ag", outline=FALSE, ylim=c(-1,1)) 
    dev.off() 
   
    #create within-group RLA plot 
    tiff("RLAPlot_wg_CCMN.tiff", width=8, height=8, units="in", res=300) 
    RlaPlots(data.CCMN, "wg", outline=FALSE, ylim=c(-1,1)) 
    dev.off() 
    

#compute p-values (Student´s t-test, if Welch´s t-test is anticipated use "var.equal = 
FALSE") 

    p.val <- matrix(as.character(combn(3,2)),ncol = 3) 
    p.values.CCMN <- data.frame(row.names=paste(p.val[1,],"vs",p.val[2,])) 
    for(i in 2:ncol(data.CCMN)) 

{stat.test <- function(ttest) t.test(data.CCMN[,i] ~ data.CCMN[,1], data = data.CCMN, subset = 
data.CCMN[,1] %in% ttest, paired = FALSE, exact = TRUE, var.equal=TRUE)  

    p.values.CCMN[,i-1] <- as.numeric(sapply(apply(p.val,2,stat.test),"[",3))} 
    colnames(p.values.CCMN)<-colnames(data.CCMN[-1]) 
    
     
    #plot p-value histogram 
    tiff("p-value_histogram_CCMN.tiff", width=8, height=8, units="in", res=300) 

hist(matrix(as.numeric(p.values.CCMN[1,])), main=row.names(p.values.CCMN[1,]),breaks = 20, 
xlab = "p-value", las = 1) 

    dev.off() 
   
   
    #compute q-values for p-value adjustment 
    plotfile <- "q-values_CCMN.tiff" 

q.values.CCMN <- qvalue(matrix(as.numeric(p.values.CCMN[1,])),lambda=seq(0,0.95,0.001), fdr.level = 
0.05,pfdr = TRUE) 

    tiff("q-values_CCMN.tiff", width=8, height=8, units="in", res=300) 
    plot(q.values.CCMN) 
    dev.off() 
     
     

#create dataframe with p- and q-values and sort according to ascending p-values for subsequent p-value 
adjustment methods 
p.val.stat.CCMN<-data.frame(cbind(ID = 
c(1:length(p.values.CCMN[1,])),round(matrix(as.numeric(p.values.CCMN[1,])),digits=4), 
round(q.values.CCMN$qvalues,digits=4))) 

    rownames(p.val.stat.CCMN)<-rownames(t(p.values.CCMN)) 
    colnames(p.val.stat.CCMN)<-cbind("ID","p-value","q-value") 
    p.val.stat.CCMN <- p.val.stat.CCMN[order(p.val.stat.CCMN[,2]),] 
     
       
    #compute Benjamini-Hochberg p-value adjustment 
    p.val.stat.CCMN$BH<-p.adjust(p.val.stat.CCMN[,2], method="BH") 
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    #compute SGoF p-value adjustment 
    SGoF.CCMN<-SGoF(p.val.stat.CCMN[,2], alpha=0.05, gamma=0.05) 
    p.val.stat.CCMN$SGoF<-SGoF.CCMN$Adjusted.pvalues 
   
     
    #compute ROC statistics including AUC values 

#get IDs of 25 most significant samples (or other suitable number depending on the 
dataset) 

     ID.pval.CCMN<-p.val.stat.CCMN[1:25,1] 
    data.CCMN.samples<-subset(data.CCMN, data.CCMN[,1]==1 | data.CCMN[,1]==2) 
     #caluculate mean AUC for 25 most significant samples 

meanAUC.CCMN<-rowMeans(colAUC(data.CCMN.samples[,ID.pval.CCMN+1], 
data.CCMN.samples[,1])) 

     #calculate number of features with an AUC >0.8 
AUC.CCMN<-colAUC(data.CCMN.samples[,2:length(data.CCMN.samples[1,])], 
data.CCMN.samples[,1]) 

     nAUC.CCMN<-length(AUC.CCMN[(AUC.CCMN[1,]>0.8)]) 
     
   
    #compute PCA and PLS-DA 
    ropls.class<-as.factor(data.CCMN.samples[,1]) 
    ropls.data.CCMN<-data.CCMN.samples[, 2:dim(data.CCMN.samples)[2]] 
     #PCA 
     data.multiv.stat.CCMN.PCA <- opls(ropls.data.CCMN) 
     print(plot(data.multiv.stat.CCMN.PCA,parAsColFcVn=ropls.class)) 
     savePlot("PCA_CCMN.wmf") 
     #PLS-DA 

#if the first predictive component is already not significant you will get an error message and PLS-DA will 
not be computed 

     data.multiv.stat.CCMN.PLSDA <- opls(ropls.data.CCMN, ropls.class, predI = NA) 
     print(plot(data.multiv.stat.CCMN.PLSDA)) 
     savePlot("PLS-DA_CCMN.wmf") 
     #Extract R2Y and Q2Y of PLS-DA (only possible if PLS-DA was computed) 
     try(R2YQ2Y.CCMN<-getSummaryDF(data.multiv.stat.CCMN.PLSDA),silent=TRUE) 
     R2YQ2Y.CCMN<-c(R2YQ2Y.CCMN[,2],R2YQ2Y.CCMN[,3],R2YQ2Y.CCMN[,5]) 
      
      

#compute CVs (geometric), median absolute deviation (MAD) and variance (Var) for experimental 
classes 

     #CV(geometric, calculation via standard deviation for log-transformed data) 
     CV.CCMN<-data.frame(matrix(ncol=3, nrow=ncol(data.CCMN)-1)) 

colnames(CV.CCMN)<-cbind("CV.CCMN QCs","CV.CCMN Class1","CV.CCMN 
Class2") 

     Subset<-subset(data.CCMN, data.CCMN[,1]==1) 
     CV.CCMN[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd)  
     Subset<-subset(data.CCMN, data.CCMN[,1]==2) 
     CV.CCMN[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd) 
     Subset<-subset(data.CCMN, data.CCMN[,1]==3) 
     CV.CCMN[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd) 

#formula to translate standard deviation to geometric CV (only valid for log-transformed 
data) 

     CV.CCMN<-sqrt(exp(CV.CCMN^2)-1)*100 
      
     #MAD 
     MAD.CCMN<-data.frame(matrix(ncol=3, nrow=ncol(data.CCMN)-1)) 

colnames(MAD.CCMN)<-cbind("MAD.CCMN QCs","MAD.CCMN Class1","MAD.CCMN 
Class2") 

     Subset<-subset(data.CCMN, data.CCMN[,1]==1) 
     MAD.CCMN[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad)  
     Subset<-subset(data.CCMN, data.CCMN[,1]==2) 
     MAD.CCMN[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad) 
     Subset<-subset(data.CCMN, data.CCMN[,1]==3) 
     MAD.CCMN[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad) 
      
     #Var 
     Var.CCMN<-data.frame(matrix(ncol=3, nrow=ncol(data.CCMN)-1)) 

colnames(Var.CCMN)<-cbind("Var.CCMN QCs","Var.CCMN Class1","Var.CCMN 
Class2") 

     Subset<-subset(data.CCMN, data.CCMN[,1]==1) 
     Var.CCMN[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var)  
     Subset<-subset(data.CCMN, data.CCMN[,1]==2) 
     Var.CCMN[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var) 
     Subset<-subset(data.CCMN, data.CCMN[,1]==3) 
     Var.CCMN[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var) 
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     VarStat.CCMN<-cbind(CV.CCMN,MAD.CCMN,Var.CCMN) 
      
    setwd("..") 
    #create summary of statistical parameters for comparison of normalization 
    options(digits=4) 

Summary<-
rbind(Summary,t(c(sum(p.val.stat.CCMN[,2]<0.05),sum(p.val.stat.CCMN[,3]<0.05),sum(p.val.st
at.CCMN[,4]<0.05),sum(p.val.stat.CCMN[,5]<0.05),meanAUC.CCMN,nAUC.CCMN,median(CV.
CCMN[,1]),median(CV.CCMN[,2]),median(CV.CCMN[,3]),median(MAD.CCMN[,1]),median(MAD
.CCMN[,2]),median(MAD.CCMN[,3]),median(Var.CCMN[,1]),median(Var.CCMN[,2]),median(Var
.CCMN[,3]),ifelse(exists("R2YQ2Y.CCMN"),R2YQ2Y.CCMN[1],NA),ifelse(exists("R2YQ2Y.CCM
N"),R2YQ2Y.CCMN[2],NA),ifelse(exists("R2YQ2Y.CCMN"),R2YQ2Y.CCMN[3],NA)))) 

 
 
#Create new folder for statistical analysis of NOMIS normalized data. 
dir.create("NOMIS") 
setwd("NOMIS") 
   #normalize the dataset with NOMIS 

data.raw.NOMIS <- NormQcmets(data.raw.NormMets, method = "nomis", qcmets = ISvect[-
1],check.names=FALSE) 
data.NOMIS<-data.frame(matrix(nrow=nrow(data.raw.NOMIS$featuredata), 
ncol=ncol(data.raw.NOMIS$featuredata))) 

   data.NOMIS<-data.raw.NOMIS$featuredata 
   colnames(data.NOMIS)<-colnames(data.raw[(length(IS)+1):length(data.raw)]) 
   data.NOMIS<-add_column(data.NOMIS,"Class"=1:length(data.raw$Class),.before=1) 
   data.NOMIS$Class<-data.raw$Class 

write.table(data.NOMIS, "NOMIS.csv", sep = ",", quote = FALSE, append = FALSE, row.names = TRUE, 
col.names = NA) 

 
  #statistical analysis of NOMIS normalized dataset 
        
    #create across-group RLA plot 
    tiff("RLAPlot_ag_NOMIS.tiff", width=8, height=8, units="in", res=300) 
    RlaPlots(data.NOMIS, "ag", outline=FALSE, ylim=c(-1,1)) 
    dev.off() 
   
    #create within-group RLA plot 
    tiff("RLAPlot_wg_NOMIS.tiff", width=8, height=8, units="in", res=300) 
    RlaPlots(data.NOMIS, "wg", outline=FALSE, ylim=c(-1,1)) 
    dev.off() 
    
    #compute p-values (Student´s t-test, if Welch´s t-test is anticipated use "var.equal = FALSE") 
    p.val <- matrix(as.character(combn(3,2)),ncol = 3) 
    p.values.NOMIS <- data.frame(row.names=paste(p.val[1,],"vs",p.val[2,])) 
    for(i in 2:ncol(data.NOMIS)) 

{stat.test <- function(ttest) t.test(data.NOMIS[,i] ~ data.NOMIS[,1], data = data.NOMIS, subset = 
data.NOMIS[,1] %in% ttest, paired = FALSE, exact = TRUE, var.equal=TRUE)  

    p.values.NOMIS[,i-1] <- as.numeric(sapply(apply(p.val,2,stat.test),"[",3))} 
    colnames(p.values.NOMIS)<-colnames(data.NOMIS[-1]) 
    
     
    #plot p-value histogram 
    tiff("p-value_histogram_NOMIS.tiff", width=8, height=8, units="in", res=300) 

hist(matrix(as.numeric(p.values.NOMIS[1,])), main=row.names(p.values.NOMIS[1,]),breaks = 20, xlab = "p-
value", las = 1) 

    dev.off() 
   
    #compute q-values for p-value adjustment 
    plotfile <- "q-values_NOMIS.tiff" 

q.values.NOMIS <- qvalue(matrix(as.numeric(p.values.NOMIS[1,])),lambda=seq(0,0.95,0.001), fdr.level = 
0.05,pfdr = TRUE) 

    tiff("q-values_NOMIS.tiff", width=8, height=8, units="in", res=300) 
    plot(q.values.NOMIS) 
    dev.off() 
     

#create dataframe with p- and q-values and sort according to ascending p-values for subsequent p-value 
adjustment methods 
p.val.stat.NOMIS<-data.frame(cbind(ID = 
c(1:length(p.values.NOMIS[1,])),round(matrix(as.numeric(p.values.NOMIS[1,])),digits=4), 
round(q.values.NOMIS$qvalues,digits=4))) 

    rownames(p.val.stat.NOMIS)<-rownames(t(p.values.NOMIS)) 
    colnames(p.val.stat.NOMIS)<-cbind("ID","p-value","q-value") 
    p.val.stat.NOMIS <- p.val.stat.NOMIS[order(p.val.stat.NOMIS[,2]),] 
       
    #compute Benjamini-Hochberg p-value adjustment 
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    p.val.stat.NOMIS$BH<-p.adjust(p.val.stat.NOMIS[,2], method="BH") 
     
    #compute SGoF p-value adjustment 
    SGoF.NOMIS<-SGoF(p.val.stat.NOMIS[,2], alpha=0.05, gamma=0.05) 
    p.val.stat.NOMIS$SGoF<-SGoF.NOMIS$Adjusted.pvalues 
     
    #compute ROC statistics including AUC values 

#get IDs of 25 most significant samples (or other suitable number depending on the 
dataset) 

     ID.pval.NOMIS<-p.val.stat.NOMIS[1:25,1] 
    data.NOMIS.samples<-subset(data.NOMIS, data.NOMIS[,1]==1 | data.NOMIS[,1]==2) 
     #caluculate mean AUC for 25 most significant samples 

meanAUC.NOMIS<-rowMeans(colAUC(data.NOMIS.samples[,ID.pval.NOMIS+1], 
data.NOMIS.samples[,1])) 

     #calculate number of features with an AUC >0.8 
AUC.NOMIS<-colAUC(data.NOMIS.samples[,2:length(data.NOMIS.samples[1,])], 
data.NOMIS.samples[,1]) 

     nAUC.NOMIS<-length(AUC.NOMIS[(AUC.NOMIS[1,]>0.8)]) 
     
    #compute PCA and PLS-DA 
    ropls.class<-as.factor(data.NOMIS.samples[,1]) 
    ropls.data.NOMIS<-data.NOMIS.samples[, 2:dim(data.NOMIS.samples)[2]] 
     #PCA 
     data.multiv.stat.NOMIS.PCA <- opls(ropls.data.NOMIS) 
     print(plot(data.multiv.stat.NOMIS.PCA,parAsColFcVn=ropls.class)) 
     savePlot("PCA_NOMIS.wmf") 
     #PLS-DA 

#if the first predictive component is already not significant you will get an error message and PLS-DA will 
not be computed 

     data.multiv.stat.NOMIS.PLSDA <- opls(ropls.data.NOMIS, ropls.class, predI = NA) 
     print(plot(data.multiv.stat.NOMIS.PLSDA)) 
     savePlot("PLS-DA_NOMIS.wmf") 
     #Extract R2Y and Q2Y of PLS-DA (only possible if PLS-DA was computed) 
     try(R2YQ2Y.NOMIS<-getSummaryDF(data.multiv.stat.NOMIS.PLSDA),silent=TRUE) 
     R2YQ2Y.NOMIS<-c(R2YQ2Y.NOMIS[,2],R2YQ2Y.NOMIS[,3],R2YQ2Y.NOMIS[,5]) 
      

#compute CVs (geometric), median absolute deviation (MAD) and variance (Var) for experimental 
classes 

     #CV(geometric, calculation via standard deviation for log-transformed data) 
     CV.NOMIS<-data.frame(matrix(ncol=3, nrow=ncol(data.NOMIS)-1)) 

colnames(CV.NOMIS)<-cbind("CV.NOMIS QCs","CV.NOMIS Class1","CV.NOMIS 
Class2") 

     Subset<-subset(data.NOMIS, data.NOMIS[,1]==1) 
     CV.NOMIS[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd)  
     Subset<-subset(data.NOMIS, data.NOMIS[,1]==2) 
     CV.NOMIS[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd) 
     Subset<-subset(data.NOMIS, data.NOMIS[,1]==3) 
     CV.NOMIS[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd) 

#formula to translate standard deviation to geometric CV (only valid for log-transformed 
data) 

     CV.NOMIS<-sqrt(exp(CV.NOMIS^2)-1)*100 
      
     #MAD 
     MAD.NOMIS<-data.frame(matrix(ncol=3, nrow=ncol(data.NOMIS)-1)) 

colnames(MAD.NOMIS)<-cbind("MAD.NOMIS QCs","MAD.NOMIS 
Class1","MAD.NOMIS Class2") 

     Subset<-subset(data.NOMIS, data.NOMIS[,1]==1) 
     MAD.NOMIS[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad)  
     Subset<-subset(data.NOMIS, data.NOMIS[,1]==2) 
     MAD.NOMIS[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad) 
     Subset<-subset(data.NOMIS, data.NOMIS[,1]==3) 
     MAD.NOMIS[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad) 
      
     #Var 
     Var.NOMIS<-data.frame(matrix(ncol=3, nrow=ncol(data.NOMIS)-1)) 

colnames(Var.NOMIS)<-cbind("Var.NOMIS QCs","Var.NOMIS Class1","Var.NOMIS 
Class2") 

     Subset<-subset(data.NOMIS, data.NOMIS[,1]==1) 
     Var.NOMIS[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var)  
     Subset<-subset(data.NOMIS, data.NOMIS[,1]==2) 
     Var.NOMIS[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var) 
     Subset<-subset(data.NOMIS, data.NOMIS[,1]==3) 
     Var.NOMIS[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var) 
      
     VarStat.NOMIS<-cbind(CV.NOMIS,MAD.NOMIS,Var.NOMIS) 
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    setwd("..") 
    #create summary of statistical parameters for comparison of normalization 
    options(digits=4) 

Summary<-
rbind(Summary,t(c(sum(p.val.stat.NOMIS[,2]<0.05),sum(p.val.stat.NOMIS[,3]<0.05),sum(p.val.s
tat.NOMIS[,4]<0.05),sum(p.val.stat.NOMIS[,5]<0.05),meanAUC.NOMIS,nAUC.NOMIS,median(
CV.NOMIS[,1]),median(CV.NOMIS[,2]),median(CV.NOMIS[,3]),median(MAD.NOMIS[,1]),media
n(MAD.NOMIS[,2]),median(MAD.NOMIS[,3]),median(Var.NOMIS[,1]),median(Var.NOMIS[,2]),m
edian(Var.NOMIS[,3]),ifelse(exists("R2YQ2Y.NOMIS"),R2YQ2Y.NOMIS[1],NA),
ifelse(exists("R2YQ2Y.NOMIS"),R2YQ2Y.NOMIS[2],NA),ifelse(exists("R2YQ2Y.NOMIS"),R2YQ
2Y.NOMIS[3],NA)))) 

 
 
 #Create new folder for statistical analysis of RUVrand normalized data. 
 dir.create("RUVrand") 
 setwd("RUVrand") 
    #normalize the dataset with RUVrand 
    data.raw.RUVrand <- NormQcmets(data.raw.NormMets, method = "ruvrand", qcmets = ISvect[-1], k=k) 
    data.RUVrand<-as.data.frame(data.raw.RUVrand$featuredata) 
    data.RUVrand<-add_column(data.RUVrand,"Class"=1:length(data.raw$Class),.before=1) 
    data.RUVrand$Class<-data.raw$Class 

write.table(data.RUVrand, "RUVrand.csv", sep = ",", quote = FALSE, append = FALSE, row.names = TRUE, 
col.names = NA) 

 
   #statistical analysis of RUVrand normalized dataset 
         
     #create across-group RLA plot 
     tiff("RLAPlot_ag_RUVrand.tiff", width=8, height=8, units="in", res=300) 
     RlaPlots(data.RUVrand, "ag", outline=FALSE, ylim=c(-1,1)) 
     dev.off() 
 
    
     #create within-group RLA plot 
     tiff("RLAPlot_wg_RUVrand.tiff", width=8, height=8, units="in", res=300) 
     RlaPlots(data.RUVrand, "wg", outline=FALSE, ylim=c(-1,1)) 
     dev.off() 
     
     #compute p-values (Student´s t-test, if Welch´s t-test is anticipated use "var.equal = FALSE") 
     p.val <- matrix(as.character(combn(3,2)),ncol = 3) 
     p.values.RUVrand <- data.frame(row.names=paste(p.val[1,],"vs",p.val[2,])) 
     for(i in 2:ncol(data.RUVrand)) 

{stat.test <- function(ttest) t.test(data.RUVrand[,i] ~ data.RUVrand[,1], data = data.RUVrand, 
subset = data.RUVrand[,1] %in% ttest, paired = FALSE, exact = TRUE, var.equal=TRUE)  

     p.values.RUVrand[,i-1] <- as.numeric(sapply(apply(p.val,2,stat.test),"[",3))} 
     colnames(p.values.RUVrand)<-colnames(data.RUVrand[-1]) 
      
     #plot p-value histogram 
     tiff("p-value_histogram_RUVrand.tiff", width=8, height=8, units="in", res=300) 

hist(matrix(as.numeric(p.values.RUVrand[1,])), main=row.names(p.values.RUVrand[1,]),breaks 
= 20, xlab = "p-value", las = 1) 

     dev.off() 
    
     #compute q-values for p-value adjustment 
     plotfile <- "q-values_RUVrand.tiff" 

q.values.RUVrand <- qvalue(matrix(as.numeric(p.values.RUVrand[1,])),lambda=seq(0,0.95,0.001), fdr.level = 
0.05,pfdr = TRUE) 

     tiff("q-values_RUVrand.tiff", width=8, height=8, units="in", res=300) 
     plot(q.values.RUVrand) 
     dev.off() 
      

#create dataframe with p- and q-values and sort according to ascending p-values for subsequent p-value 
adjustment methods 
p.val.stat.RUVrand<-data.frame(cbind(ID = 
c(1:length(p.values.RUVrand[1,])),round(matrix(as.numeric(p.values.RUVrand[1,])),digits=4), 
round(q.values.RUVrand$qvalues,digits=4))) 

     rownames(p.val.stat.RUVrand)<-rownames(t(p.values.RUVrand)) 
     colnames(p.val.stat.RUVrand)<-cbind("ID","p-value","q-value") 
     p.val.stat.RUVrand <- p.val.stat.RUVrand[order(p.val.stat.RUVrand[,2]),] 
      
        
     #compute Benjamini-Hochberg p-value adjustment 
     p.val.stat.RUVrand$BH<-p.adjust(p.val.stat.RUVrand[,2], method="BH") 
      
     #compute SGoF p-value adjustment 
     SGoF.RUVrand<-SGoF(p.val.stat.RUVrand[,2], alpha=0.05, gamma=0.05) 
     p.val.stat.RUVrand$SGoF<-SGoF.RUVrand$Adjusted.pvalues 
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     #compute ROC statistics including AUC values 

#get IDs of 25 most significant samples (or other suitable number depending on the 
dataset) 

      ID.pval.RUVrand<-p.val.stat.RUVrand[1:25,1] 
     data.RUVrand.samples<-subset(data.RUVrand, data.RUVrand[,1]==1 | data.RUVrand[,1]==2) 
      #caluculate mean AUC for 25 most significant samples 

meanAUC.RUVrand<-rowMeans(colAUC(data.RUVrand.samples[,ID.pval.RUVrand+1], 
data.RUVrand.samples[,1])) 

      #calculate number of features with an AUC >0.8 
AUC.RUVrand<-colAUC(data.RUVrand.samples[,2:length(data.RUVrand.samples[1,])], 
data.RUVrand.samples[,1]) 

      nAUC.RUVrand<-length(AUC.RUVrand[(AUC.RUVrand[1,]>0.8)]) 
      
     #compute PCA and PLS-DA 
     ropls.class<-as.factor(data.RUVrand.samples[,1]) 
     ropls.data.RUVrand<-data.RUVrand.samples[, 2:dim(data.RUVrand.samples)[2]] 
      #PCA 
      data.multiv.stat.RUVrand.PCA <- opls(ropls.data.RUVrand) 
      print(plot(data.multiv.stat.RUVrand.PCA,parAsColFcVn=ropls.class)) 
      savePlot("PCA_RUVrand.wmf") 
      #PLS-DA 

#if the first predictive component is already not significant you will get an error message and PLS-DA will 
not be computed 

      data.multiv.stat.RUVrand.PLSDA <- opls(ropls.data.RUVrand, ropls.class, predI = NA) 
      print(plot(data.multiv.stat.RUVrand.PLSDA)) 
      savePlot("PLS-DA_RUVrand.wmf") 
      #Extract R2Y and Q2Y of PLS-DA (only possible if PLS-DA was computed) 

try(R2YQ2Y.RUVrand<-
getSummaryDF(data.multiv.stat.RUVrand.PLSDA),silent=TRUE) 
R2YQ2Y.RUVrand<-
c(R2YQ2Y.RUVrand[,2],R2YQ2Y.RUVrand[,3],R2YQ2Y.RUVrand[,5]) 

      
#compute CVs (geometric), median absolute deviation (MAD) and variance (Var) for experimental 
classes 

     #CV(geometric, calculation via standard deviation for log-transformed data) 
     CV.RUVrand<-data.frame(matrix(ncol=3, nrow=ncol(data.RUVrand)-1)) 

colnames(CV.RUVrand)<-cbind("CV.RUVrand QCs","CV.RUVrand 
Class1","CV.RUVrand Class2") 

     Subset<-subset(data.RUVrand, data.RUVrand[,1]==1) 
     CV.RUVrand[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd)  
     Subset<-subset(data.RUVrand, data.RUVrand[,1]==2) 
     CV.RUVrand[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd) 
     Subset<-subset(data.RUVrand, data.RUVrand[,1]==3) 
     CV.RUVrand[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=sd) 

#formula to translate standard deviation to geometric CV (only valid for log-transformed 
data) 

     CV.RUVrand<-sqrt(exp(CV.RUVrand^2)-1)*100 
      
     #MAD 
     MAD.RUVrand<-data.frame(matrix(ncol=3, nrow=ncol(data.RUVrand)-1)) 

colnames(MAD.RUVrand)<-cbind("MAD.RUVrand QCs","MAD.RUVrand 
Class1","MAD.RUVrand Class2") 

     Subset<-subset(data.RUVrand, data.RUVrand[,1]==1) 
     MAD.RUVrand[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad)  
     Subset<-subset(data.RUVrand, data.RUVrand[,1]==2) 
     MAD.RUVrand[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad) 
     Subset<-subset(data.RUVrand, data.RUVrand[,1]==3) 
     MAD.RUVrand[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=mad) 
      
     #Var 
     Var.RUVrand<-data.frame(matrix(ncol=3, nrow=ncol(data.RUVrand)-1)) 

colnames(Var.RUVrand)<-cbind("Var.RUVrand QCs","Var.RUVrand 
Class1","Var.RUVrand Class2") 

     Subset<-subset(data.RUVrand, data.RUVrand[,1]==1) 
     Var.RUVrand[,2]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var)  
     Subset<-subset(data.RUVrand, data.RUVrand[,1]==2) 
     Var.RUVrand[,3]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var) 
     Subset<-subset(data.RUVrand, data.RUVrand[,1]==3) 
     Var.RUVrand[,1]<-apply(Subset[,2:ncol(Subset)], 2, FUN=var) 
       
      VarStat.RUVrand<-cbind(CV.RUVrand,MAD.RUVrand,Var.RUVrand) 
       
       
    setwd("..") 
    #create summary of statistical parameters for comparison of normalization 
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    options(digits=4) 
Summary<-
rbind(Summary,t(c(sum(p.val.stat.RUVrand[,2]<0.05),sum(p.val.stat.RUVrand[,3]<0.05),sum(p.val.stat.RUVr
and[,4]<0.05),sum(p.val.stat.RUVrand[,5]<0.05),meanAUC.RUVrand,nAUC.RUVrand,median(CV.RUVrand[,
1]),median(CV.RUVrand[,2]),median(CV.RUVrand[,3]),median(MAD.RUVrand[,1]),median(MAD.RUVrand[,2]
),median(MAD.RUVrand[,3]),median(Var.RUVrand[,1]),median(Var.RUVrand[,2]),median(Var.RUVrand[,3]),if
else(exists("R2YQ2Y.RUVrand"),R2YQ2Y.RUVrand[1],NA),ifelse(exists("R2YQ2Y.RUVrand"),R2YQ2Y.RUV
rand[2],NA),ifelse(exists("R2YQ2Y.RUVrand"),R2YQ2Y.RUVrand[3],NA)))) 

    rownames(Summary)<-rbind("raw data","B-MIS","CCMN","NOMIS","RUVrandom") 
 
graphics.off()  
write.table(Summary, "Summary.csv", sep = ",", quote = FALSE, append = FALSE, row.names = TRUE, col.names = NA) 
 
#create plot to compare intra-group metrics of variation between normalization methods 
  #for comparison all datasets must have the same length ->remove ISs from raw data, BMIS and RUVrandom) 
  #compute lists with intra-group metrics of variation for each normalization 
   VarStat.raw<-VarStat.raw[-(1:length(IS)-1),] 
   VarStat.BMIS<-VarStat.BMIS[-(1:length(IS)-1),] 
   VarStat.RUVrand<-VarStat.RUVrand[-(1:length(IS)-1),] 
   VarStat.List<-cbind(VarStat.RUVrand,VarStat.NOMIS,VarStat.CCMN,VarStat.BMIS,VarStat.raw) 
   
  VarData<-list() 
  for (i in 1:(length(VarStat.List)-36)) 
  {VarData[[i]]<-cbind(VarStat.List[,i],VarStat.List[,i+9],VarStat.List[,i+18],VarStat.List[,i+27],VarStat.List[,i+36])} 
   
  #compute plot 
  plotnames<-c("CV (QC)","CV (Class1)","CV (Class2)","MAD (QC)","MAD (Class1)","MAD (Class2)","Var 
(QC)","Var (Class1)","Var (Class2)") 
  normnames<-c("RUVrand","NOMIS","CCMN", "B-MIS","raw data") 
 
  tiff("Comparison_metrics_of_variation.tiff", width=17, height=8.5, units="cm", res=600) 
  par(mfrow=c(3,3),cex.lab=2, oma = c(0,0.2,0.1,0), mar = c(1.5,3.7,1.4,0.4),mgp=c(3,0.2,0),cex=0.4) 
  for (i in 1:length(plotnames)) 
  {boxplot(VarData[[i]],main=plotnames[i],notch=TRUE,outline=FALSE, horizontal=TRUE,xaxt="n",yaxt="n") 
  axis(side=1,tck=-0.01,las=1) 
  axis(side=2,tck=0,las=1,labels=normnames, at=(1:length(normnames))) 
  abline(v=median(VarData[[i]][,5]), col="darkred", lwd=1.5) 
  grid(5, ny = FALSE, col = "black", lty = 3, lwd = 0.5)} 
  dev.off()  
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