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Introduction  

The enigma of cerebellar function: beyond motor coordination 

The cerebellum has been traditionally viewed as a sensorimotor structure, which is important for 

movement control and motor learning (Ito 2006, Kawato 1999, Loewenstein et al 2005, Manto et al 

2012, Wolpert et al 1998). Disorders of the cerebellum result in movement disturbance that have been 

described in great detail in clinical and animal models studies (Barash et al 1999, Diener & Dichgans 

1992, Glickstein et al 2005, Haines & Manto 2007, Holmes 1917, Holmes 1939, Ignashchenkova et al 

2009, Markanday et al 2018). The cerebellum as a comparator is a view that has been shared by many 

neuroscientists during the last decades. In this model, the difference between the intended movement 

and the actual movement is compared and used as a motor error to correct subsequent movements. 

The intended movement is sent as an efferent copy from the motor cortex via pontine nuclei, whereas 

the sensory inputs provide the afferent feedback and both are then compared within the cerebellum 

(Apps & Garwicz 2005, Ito 2013, Oscasson 1980). A more recent adaptation implies that the cerebellum 

is built of modules of internal models that provide a sensory prediction of the movement outcome 

which is used for comparison with the actual movement for subsequent motor learning (Herzfeld et al 

2018). 

In the last decades, the cerebellum was also reported to be involved in non-motor functions based on 

clinical symptoms of cerebellar patients, functional imaging as well as neuroanatomical studies (Dum et 

al 2002, Dum & Strick 2003, Schmahmann & Sherman 1998, Strick et al 2009). However, it remains 

unclear how the cerebellum contributes to non-motor function, and whether it uses a similar 

computational principle as the one that it uses in motor coordination (comparator/sensory predictor). 

Modular organization of the cerebellum 

The motor function of the cerebellum is integrating motor commands with somatosensory, vestibular, 

visual and auditory information for coordination and motor learning. Specific motor functions can be 

ascribed to particular modules within the cerebellum, although the neuronal circuitry of the cerebellum 

seems to be homogeneous (Apps et al 2018, Diener & Dichgans 1992, Voogd 2014). The Purkinje cells 

are uniformly aligned in the cerebellar cortex and project to the deep cerebellar nuclei (DCN) in a 

modular fashion. The DCN is embedded within the white matter and generally, four cerebellar nuclei are 

distinguished on either side: the fastigial/medial nucleus (MN), globose/posterior interposed nucleus 

(PIN), emboliform/anterior interposed nucleus (AIN) and dentate/lateral nucleus (LN). An additional 



10 
 

nucleus, the interstitial cell group, is distinguished between the fastigial and globose (Buisseret-Delmas 

1988). Seven to nine modules were initially identified on both sides of the carnivores’, rodents’ and 

primates’ cerebellum (Apps & Hawkes 2009). Each module is composed of one longitudinally organized 

Purkinje cell zone, its cerebellar or vestibular target nuclei and inferior olive (IO) subdivision. The 

Purkinje cells within a zone receive their climbing fiber (CF) projections from a particular subdivision of 

the contralateral IO. In addition the cerebellar or vestibular target nuclei are interconnected with the IO 

subdivision in a reciprocal fashion. 

For example, the C1 and the adjacent C2 zones in the hemispheres, receive CFs from the rostral dorsal 

accessory olive (DAO) and rostral medial accessory olive (MAO), respectively. Their target nuclei are the 

emboliform/AIN and the globose/PIN, respectively. They thereby compose two separate modules only 

allowing for interactions via the parallel fibers (PFs) in the cerebellar cortex. Another two examples are 

the Purkinje cell zones D1 and D2 in the hemispheres, which target the caudoventral and rostrodorsal 

dentate/LN, respectively and make up another two separate modules. They receive CFs from ventral 

principal olive (PO) for the D1 zone and the dorsal PO for the D2 zone (Glickstein et al 2011, Oscarsson 

1979, Voogd 2014).  

The special dentate  

Compared to its neighbouring nuclei, the dentate/LN is special in several aspects. It is the most 

voluminous cerebellar nucleus in primates, located on both sides most laterally and the newest nucleus 

from the evolutionary perspective. During evolution the overall brain size increases at a characteristic 

allometric rate with body size (Jerison 1955; Finlay, Darlington et al. 2001). This size increase often 

follows a regular scaling of its components and reflects a general trend of the brain parts to enlarge 

conjointly (Roth and Dicke 2005). However, deviations from the regular scaling were crucial to the 

evolution of the primate brain and the emergence of a different cerebrotype, as different brain parts 

evolved at different pace. The emergence of the neocerebellum, which is made up of the cerebellar 

hemispheres and the dentate/LN accompanies the emergence of the increased surfaces of cerebral 

neocortex. As demonstrated by Sultan, there is a parallel growth in surface area of both cerebral and 

cerebellar cortices during evolution (Sultan 2002). Leiner et al have argued that the increase in the size 

of the dentate/LN is also paralleled by an increase in the cortical areas influenced by cerebellar output 

(Leiner et al 1986, Leiner et al 1991). Unlike in primates, the more medial part of PIN shows the greatest 

increase in cetaceans (Voogd & Glickstein 1998). Furthermore, the shape of the enlarged primate 

dentate/LN changed in a remarkable fashion to a highly folded structure, while the cetaceans’ PIN 
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remained a globous-shaped nucleus (Ogawa 1935). The dentate/LN is the only other highly folded 

subcortical region (D'Angelo et al 2015, Fujita & Sugihara 2013) besides its tightly connected partner, 

the PO. The joint expansion of cerebral cortex and the cerebellar modular components: the cerebellar 

hemispheres, the dentate/LN and the PO, indicates a functional dependence of one upon the other.  

The dentate/LN is the main recipient of the Purkinje cell projections from the ipsilateral D1 and D2 zones 

of the cerebellar hemisphere and is the main source of efferents from the cerebellum (Benagiano et al 

2018). According to the connections with the cerebellar cortex, the macaque dentate/LN can be divided 

into a the rostrodorsal region receiving somatotopically organized corticonuclear projections from the 

skeletomuscular regions of the cerebellar cortex (i.e., anterior and simplex lobule) and a caudoventral 

region, receiving corticonuclear projections from the visuomotor regions (i.e., crus I and crus II and 

paraflocculus) of the cerebellar cortex (Glickstein et al 2011). Strick and colleagues (Strick et al 2009) 

suggested that the dorsal portions of the dentate/LN project to the primary motor and premotor areas 

of the cerebral cortex while projections to prefrontal and posterior parietal areas of cortex originate 

from ventral portions of the dentate/LN (Dum & Strick 2003, Middleton & Strick 2001). This subdivision 

within the dentate/LN agrees with the results of functional MRI studies providing evidence of the 

activation in distinct regions of the dentate/LN during the execution of either motor or non-motor tasks 

(Dimitrova et al 2006, Kim et al 1994, Kuper et al 2011).  

The special dentate/LN has led to renewed interest in the specific cerebellar computational abilities. 

Braitenberg and Sultan proposed that the cerebellum temporally coordinates sequences in its inputs. A 

larger neocerebellum could allow for a larger sequence with more multimodal and diverse input 

(Braitenberg et al 1997, Sultan 2014, Sultan & Braitenberg 1993, Sultan & Heck 2003). The quest to 

comprehend the evolutionary driving forces that required a larger human neocerebellum has led to a 

new hypothesis (Sultan et al 2010): that an enlarged dentate/LN with its folding’s and an enlarged 

surface might be required to reduce the overlap between the sequences and thereby rendering them 

independent. 

Comparative neuroanatomy of the DCN 

The dentate/LN connects with the cerebellar hemisphere and IO subdivisions in a modular fashion. 

Studying the interface —the neurons’ soma and dendrites, axons, and synapses—between modular 

components comparatively within DCN may provide essential clues which adaptations occurred parallel 

to the expanded and flattened dentate/LN due to the evolutionary selection forces. The DCN are built of 

a heterogeneous population of neurons, consisting of both large and small projecting neurons and local 
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interneurons. The projecting neurons can be of variable size while interneurons are usually small 

(Czubayko et al 2001, Sultan et al 2003a). Comparing the neuroarchitecture within DCN, however, has 

been limited to Golgi-staining procedure in a qualitative manner in rodents and nonhuman primates 

(Chan-Palay 1977). Filling the neurons Intracellularly allowed for analyzing soma and dendrites in a 

quantitative manner in rodent dentate/LN (Sultan et al 2003b). Applying this method to non-human 

primates is, however, challenging. Therefore, an alternative approach was developed by Sultan and 

colleagues using 3D quantitative immunohistochemistry (3D-QIHC) which is applicable to both rodents 

and non-human primates. This method uses confocal laser scanning microscopy (CLSM) to 3D 

reconstruct fibers on the population level (thereby losing the individual neuronal identity) and extracts 

information about fiber diameter and length. This approach showed that the phylogenetically newer 

DCN, i.e., the dentate/LN and the PIN, had a higher dendritic length density than the phylogenetically 

older parts (MN and AIN) in the rat (Hamodeh et al 2014).  

Scaling of dendrites in dentate/LN: from rat to macaque 

In general, networks in larger brains have to cover a larger distance with their dendrites and axons 

leading to a decrease in neuron density and an increase in the dendritic and axonal wiring. This has been 

shown for example for the neocortex (Braitenberg 2001). However, it is not clear how the wiring in the 

DCN scales and whether larger DCN have more dendritic and axonal wiring.  

In the first study of this thesis (Hamodeh et al 2017) we show that the neuron density is comparable 

between dentate/LN and its neighbors within one species and follows a regular scaling rule within 

different species (Hamodeh et al 2017). The comparison of the dendritic wiring, however, demonstrates 

a specific deviation of the scaling rule within the primates’ dentate/LN. The dendritic length per neuron 

in primate/LN is shorter than predicted. This reduction is also associated with a smaller dendritic region-

of-influence (ROI) of these neurons. The smaller dendritic fields would provide an explanation of the 

unique folded structure of the primate dentate/LN, and also enable more independent network 

modules to be accommodated inside. However, it is not clear whether this dendritic reduction is also 

associated with a reduction in the number of synapses.  

Excitatory synaptic density in rat DCN 

The activity of DCN neurons is jointly regulated by the inhibitory inputs from the Purkinje cells from the 

cerebellar cortex and the excitatory inputs from CFs and mossy fibers (MFs) from outside of the 

cerebellum. The frequency and accuracy of DCN neurons spiking is controlled by synchronized inhibitory 

inputs from the Purkinje cells (Gauck & Jaeger 2000, Gauck & Jaeger 2003). These physiologic property 
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of the DCN neurons are reflected in their anatomy with the majority of inhibitory synapses (73% in the 

rat (De Zeeuw & Berrebi 1995) and 63% in cats (Palkovits et al 1977)) located close to the axon initial 

segment (on the somata and primary dendrites).  

The excitatory inputs to the DCN are the collaterals of CFs and MFs and have different sources of origin. 

In contrast to the CFs, all of which are derived from IO, the MFs stem from multiple brain stem and 

spinal cord regions. These include such nuclei as the basilar pontine nuclei, the nucleus reticularis 

tegmentis pontis (Gerrits & Voogd 1987) and the lateral reticular nucleus. Despite the different origins 

of the fibers and in contrast to the inhibitory synapses (Hioki et al 2003, Hisano et al 2002), almost all 

the excitatory synapses were found to be on the dendrites of DCN neurons (Gerrits & Voogd 1987, van 

der Want et al 1987, van der Want & Voogd 1987, Van der Want et al 1989).  

Nevertheless, strong excitation through the MFs and/or CFs can directly drive DCN responses and 

therefore short-circuit the cerebellar cortical processing (Gauck & Jaeger 2000, Gauck & Jaeger 2003). 

The MFs and CFs projecting to the DCN are therefore important components of the modular circuitry, 

but have not been quantitatively studied. A previous study has shown that the dendritic length density is 

higher in phylogenetically newer DCN than the phylogenetically older counterparts in rat (Hamodeh et al 

2014) and the excitatory synapses falls on the dendrites. This could imply a larger excitatory connectivity 

within the phylogenetically newer DCN.  

MFs and CFs both utilize glutamate as neurotransmitter to signal the DCN neurons. However they 

express different vesicular glutamate transporters (vGluTs) to load the glutamate into vesicles for later 

release. There are two major types of vGluTs in the brain, vGluT1 and vGluT2. Although vGluT1 and 

vGluT2 have comparable pharmacological properties, they show a complementary expression pattern 

with vGluT1 in cortical and vGluT2 in subcortical regions. They also correlate with distinct physiological 

properties in synapses expressing these isoforms. The vGluT1 is usually associated with modulatory 

synapses with a low probability of vesicular release, while the vGluT2 is usually associated with driving 

synapses with a high release probability, probably due to their distinct trafficking and recycling 

mechanisms (Fremeau et al 2001, Li et al 2017, Petrof & Sherman 2013, Sherman 2016, Varoqui et al 

2002, Voglmaier et al 2006, Weston et al 2011). The PFs in cerebellar cortex, which express only vGluT1, 

show paired-pulse enhancement (Perkel et al 1990). In contrast, the CFs, which express exclusively 

vGluT2 (Hioki et al 2003, Hisano et al 2002), show paired-pulse depression (Konnerth et al 1990, Perkel 

et al 1990). Each Purkinje cell forms about 175.000 synapses with PFs which, by far, outnumber the 

synapses from CFs (about 300 synapses per Purkinje cell) (Napper & Harvey 1988, Rossi & Borsello 1993, 
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Shinoda et al 2000). However the CFs have a powerful effect on the Purkinje cells evoking the so-called 

complex spikes, while the PFs can only elicit simple spikes in a weak connection to the Purkinje cells. 

Similarly, the thalamocortical synapses in layer 4 of the mouse somatosensory cortex, expressing vGluT2, 

is far outnumbered by intracortical synapses utilizing vGluT1. However the differences of release 

probability between vGluT1 and 2 expressing synapses make the thalamocortical connection more 

effective than the intracortical connection (Gil et al 1999).  

Immunostaining of the vGluT1 and vGluT2 in the DCN region labels all MF and CF terminals and serves as 

a good approach for quantifying the excitatory synapses in DCN. Based on the mRNA expression pattern 

of the precerebellar nuclei, we would assume that the vGluT1 labelled synapses would be mostly from 

the basilar pontine nuclei since this precerebellar nuclei is the only one that express strong vGluT1 

mRNA (Geisler et al 2007). The vGluT2 labelled synapses correspond to the sum of CF terminals from IO 

which express only vGluT2 and the terminals from other precerebellar nuclei, such as the external 

cuneate nucleus, reticulotegmental nuclei, and spinal trigeminal nucleus, which express strong vGluT2 

and weak vGluT1 (Graziano et al 2008, Hisano et al 2002). 

In the second part of this dissertation (see study 2, Mao et al 2018), I have quantified the excitatory 

synapses by using vGluT1 and 2 double staining across the rat DCN. I have shown that there is a higher 

excitatory synaptic density (mainly the vGluT1 type) in phylogenetically newer DCN, where a higher 

dendritic wiring was also observed in a previous study.  

Scaling of excitatory synaptic density from rat to macaque  

Our data shows that 3D-QIHC analysis is robustly able to detect differences in the neuropil of different 

brain structures and provide considerable sampling scope to survey a whole brain region in detail. When 

transforming the 3D-QIHC to the primate brain, lipofuscin introduces problems. Lipofuscin is a major 

source of autofluorescence in the primate brain, even in very young animals and has, for instance, 

already been detected in cortical neurons of a 5-year-old human subject (Benavides et al 2002). 

Lipofuscin was also detected in the IO of 3-month-old macaca mulatta. It later appeared in other brain 

regions and by the time the macaque reached the age of four, it was found in all brain regions examined 

(Brizzee et al 1974). Lipofuscin is generally assumed to be a major polymerization product of lipids and 

proteins that accumulates with age in liposomes (Nakano et al 1990, Nakano et al 1989, Oenzil et al 

1994). It has a broad excitation and emission spectrum which overlaps with those of the common 

commercial fluorophores (Barden 1980, Dowson 1982, Dowson et al 1982), thus making it difficult to 

quantify specific immunostaining in the primate brain (Correa et al 1980). Pretreatments of the brain 
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sections, such as chemical quenching, photo bleaching, or the combination of the two, were used to 

remove the lipofuscin like fluorescence in previous studies. These methods can reduce the fluorescence, 

however, they also affect the efficiency of the immunohistochemistry (IHC) staining (Neumann & Gabel 

2002, Schnell et al 1999, Viegas et al 2007). Multispectral imaging was also used to distinguish lipofuscin 

fluorescence from the stained fluorescence, but this method is very time consuming (Marmorstein et al 

2002).  

Generally it is difficult to distinguish lipofuscin from the presynapses, given the puncta/granula shape of 

both structures. By taking advantage of the specific physical property of lipofuscin, broad excitation and 

emission under laser microscope, we used a specific channel to record the lipofuscin signal only and 

then masked the lipofuscin signal from our immuno-stained signals. Based on this approach we obtained 

pure vGluT1 and 2 signals in macaque DCN. This method can also be applied to human brain tissue 

where lipofuscin is abundant. In the third part of the thesis, I have shown that the excitatory synaptic 

density (mainly the vGluT1 type) is higher in phylogenetically newer DCN of the macaque, similar to the 

rat. However, the individual neurons in the macaque dentate/LN have fewer excitatory synapses (mainly 

the vGluT1 type) than the rat dentate/LN neurons. Taken together, the hyposcaling of both excitatory 

synapses and dendritic length per neuron could be confirmed in the macaque dentate/LN and reflects 

its special neuronal architecture.  
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Aims of this dissertation 

The first aim of this dissertation is to search for deviations from normal scaling that could support the 

notion that primate brains have a special architecture and represent a distinct cerebrotype (Clark et al 

2001, Haug 1970, Watson et al 2012). The dentate nucleus is unusually large, folded and flattened. The 

evolutionary adaptation that led to this special morphology together with the cellular changes that 

accompanied it, still remains unknown. To unravel these cellular changes we compared the dentate to 

the other DCN. This was done by quantifying several neuronal parameters in a systematic and an 

unbiased approach in the DCN of the rat and macaque, the most commonly used animal models in 

neuroscience (1st study, Appendix 1). 

The second aim of this dissertation is to verify that the structural differences that we observed in the 1st 

study reflect the synaptic organization of the DCN. The DCN is a critical component of the modular 

organization and the main output of the cerebellum. Special modifications or adaptations in the DCN 

could influence the computations of the cerebellum as a whole. In the first study, we showed that the 

dendritic length density is higher in phylogenetically newer DCN. The aim of this part of the dissertation 

is to check whether the higher dendritic length density is accompanied with higher excitatory synaptic 

density in the rat and how these excitatory synapses are quantitatively organized; whether they are of 

the vGluT1 or 2 type (2nd study, Appendix 2). 

Finally, we also wanted to look at the excitatory synaptic organization of the macaque DCN, especially 

the dentate/LN to see whether the phylogenetically newer DCN has also a higher excitatory synaptic 

density and compare that between rat and macaque. To achieve this goal we had to design a new 

approach to remove lipofuscin like fluorescence on our fluorescence stained tissue (3rd study, Appendix 

3).  
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Summary of scientific findings 

Study 1 

Uncovering specific changes in network wiring underlying the primate cerebrotype 

Salah Hamodeh, Ayse Bozkurt, Haian Mao, Fahad Sultan 

Brain Struct Funct, DOI 10.1007/s00429-017-1402-6 

In this study we analyzed the major hub (DCN) connecting the cerebellar with the cerebral cortex and 

demonstrate that these hubs could show changes from a predictable scaling (neuron density decrease 

and dendritic/axonal length increase) to a different scaling mode, with smaller dendritic regions of 

interest allowing for a larger number of modules in the most enlarged DCN of primates, in dentate/LN. 

This surprising result, however, is well in keeping with the long known observation of the unique 

anatomy of the primate dentate/LN from which its name is derived: the flattening and folding of its grey 

matter into a tooth-shaped structure.  

Study 2 

Quantitative comparison of vesicular glutamate transporters in rat deep cerebellar nuclei 

Haian Mao, Salah Hamodeh, Fahad Sultan 

Neuroscience 376 (2018) 152–161 

In this paper we quantified the excitatory synapses by vGluT1 and vGluT2 immunolabeling in cerebellar 

output region (DCN) systematically in an unbiased fashion and showed that the density of vGluT1+ 

boutons differs significantly within these nuclei (in contrast to the vGluT2+ bouton density). Our results 

confirmed and extended our previous findings showing that the higher dendritic and axonal wiring in 

phylogenetically newer DCN is associated with a higher vGluT1+ synaptic density.  

Study 3  

Quantitative organization of the excitatory synapses of the primate cerebellar nuclei: further evidence 

for a specialized architecture underlying the primate cerebellum 

Haian Mao, Salah Hamodeh, Angelos Skodras, Fahad Sultan 

Brain Structure and Function, accepted 
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In this study we optimized our quantitative approach to the primate brain by using 

immunohistochemical staining of defined neuron parts (excitatory presynaptic makers) and by taking 

the lipofuscin autofluorescence into account. The lipofuscin like fluorescence was obtained in a specific 

channel and subsequently masked from the vGluT1 and 2 stained fluorescence signals. We were 

therefor able to quantify the excitatory synapses in DCN systematically in an unbiased fashion and 

compared one of the two main animal models in neuroscience research (rats and macaca mulata). Our 

results provided important clues of the long known observation of the unique anatomy of the primate 

dentate/LN and of the difference to its close neighbour, the PIN, a nucleus which is enlarged in 

cetaceans and reflects another mammalian cerebrotype in the highly encephalized cetaceans.  
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Conclusions and outlook 

In primates the dentate/LN is the largest and phylogenetically newest part of the DCN and is of 

particular interest because of its morphological changes in shape during evolution. By combining 3D-

QIHC and systematic, random sampling on different neuronal substrates, we compared DCN subregions 

(phylogenetically newer vs. older parts) in different species (rat vs. macaque). We found that the 

phylogenetically newer DCN increased in dendritic length density and excitatory synaptic density within 

the same species. However, when comparing different species, we found a hyposcaling of dendrites and 

excitatory synapses in individual neuronal level particular in macaque dentate/LN. The neurons in 

dentate/LN tend to occupy smaller dendritic fields and bear less excitatory synapses. Therefore this 

hyposcaling in the dentate/LN provides special clues for its morphological changes and for its functional 

adaptation by allowing for a larger number of independent modules.   

We observed the hyposcaling of dentate/LN neurons from two representative animal models (rat and 

macaque). Applying our method to the cerebella of other mammalian orders, such as tree shrews 

(scandentia) will allow us to test whether the hyposcalled dendrites are specific for primates. 

Furthermore, the relationship between the expansion/folding and the pruning of the dendrites in the 

dentate/LN can also be studied. A simplified assumption would be that dendritic pruning are a 

secondary effect of increased mechanic tension due to the expansion of the dentate/LN in primates. 

Several genes, such as Trnp1 and ARHGAP11B were identified in regulating the cerebral cortex 

expansion (Florio et al 2015, Stahl et al 2013). Transgenic animal model systems can be built by 

searching genes responsible for the dentate/LN expansion and quantifying the dendritic fields when the 

expression level of the candidate gene(s) is disrupted to test this assumption.  

Our results showed a higher vGluT1+ synaptic density in phylogenetic newer DCN which fits with the 

general distribution pattern of vGluT1 in the phylogenetically newer and more modifiable parts of the 

brain (Herzog et al 2004, Hisano 2003). However, the comparable vGluT1 and 2+ synaptic density in the 

DCN is likely due to the presence of two separate pathways: the CFs and MFs which process information 

differently, with the CFs having a much lower firing frequency than the MFs (Delvendahl & Hallermann 

2016, Sultan et al 2012). However, the presence of vGluT2 in a subpopulation of MFs complicates this 

view and further studies are required to quantify the proportion of MFs expressing vGluT2 and clarify 

which brain regions they origin from. A study by Boele and colleagues showed an increase of vGluT2 MF 

presynapses to the DCN from basilar pontine nuclei following Pavlovian eyeblink conditioning (Boele et 

al 2013). So far, it remains unclear whether this kind of learning in the DCN requires the sprouting and 
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formation of new vGluT1 synapses, or whether it is achieved by an increase in vGluT2 levels in vGluT1 

MF collaterals. The former has been shown to underlie synaptic plasticity in other parts of the brain 

(Black et al 1990), while the latter would point to a novel mechanism of synaptic plasticity that has not 

been described so far. 
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