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“Wisdom and might are His. He changes the times and the seasons;  
He removes kings and raises up kings;  

He gives wisdom to the wise  
and knowledge to those who have understanding.  

He reveals deep and secret things;  
He knows what is in the darkness, and light dwells with Him.” 

 
 
 

–Daniel 2:20-22 (The Bible, New King James Version) 
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Abstract 
This study aims to characterize the chromatin features associated with long-

range transcriptional regulation. Transcriptional regulation is a highly complex 

process mediated by the action of many features in the nuclear environment that 

affect promoter activity, gene expression and, through gene interaction networks, 

phenotypic output. The contacts formed by promoters are a useful readout of 

transcriptional regulation and can be revealed by chromosome conformation capture 

(3C) assays. These contacts likely work through interaction with transcriptional 

machinery, but it is still unclear how they find the target promoter, or which chromatin 

features confer transcriptional regulatory function. Potentially relevant features of 

promoter contacts include the presence or absence of histone tail modifications, and 

local chromatin structure and accessibility. In this work, I attempt to connect 

promoter contacts with transcriptional output by integrating 3C and other datasets at 

several loci in the mouse genome. In Chapter 2, I explored the genomic features of 

promoter contacts, including chromatin accessibility, GC content class, distance from 

the promoter, and enrichment for nearby histone modification marks. I found that 

promoter contacts were often located in the same topologically associating domain 

and that the correlation between promoter contact frequency and each chromatin 

feature varied across promoter gene expression level, with poised promoters less 

constrained than active or silent promoters when forming contacts. I explored these 

features and applied the principles in a mouse selective breeding experiment for 

longer tibia called “Longshanks” (Chapter 3). At loci that show evidence of selection, 

we identified putative enhancers by chromatin accessibility and histone modification 

marks, linked them to their target promoters by 4C-seq, a variation of 3C, and 

functionally validated them with transgenic reporter assays. This allowed us to 

identify the molecular changes at enhancers that we hypothesize to encode for gain-

of-function of the limb growth activator Gli3 and loss-of-function of the limb growth 

repressor Nkx3-2, contributing to longer leg length in mice under selection. These 

studies reveal differences in contact features across promoter gene expression 

levels and underline the key role of transcription factors in conferring transcriptional 

regulatory function. Characterizing the chromatin features that enable transcriptional 

regulation should facilitate our understanding of how gene expression is precisely 

regulated during development and how it is altered during evolution or disease.  
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Zusammenfassung 
Das Ziel der Studie war es, die Chromatineigenschaften zu charakterisieren, 

welche mit der weitreichenden Transkriptionsregulation assoziiert werden. Die 

Transkriptionsregulation ist ein hochkomplexer Prozess, der durch das 

Zusammenwirken vieler Eigenschaften in der Zellkernumgebung beeinflusst wird, 

welche die Promotoraktivität und Genexpression beeinflussen und schließlich durch 

Gen-Interaktionsnetzwerke den phänotypischen Output. Die Kontakte, welche durch 

die Promotoren gebildet werden, können mithilfe des “chromosome conformation 

capture (3C)” Tests aufgezeigt werden und zur Analyse der Transkriptionsregulation 

genutzt werden. Diese Kontakte können den Output der Promotoren beeinflussen 

durch Interaktion mit der transkriptionellen Mechanismen. Dabei ist jedoch unklar, 

wie sie die Zielpromotoren finden und welche Chromatineigenschaften die 

Transkriptsionsregulatoren übertragen. Potenziell relevante Eigenschaften der 

Erbgutsequenz von Promotorkontakten beinhalten die An- oder Abwesenheit von 

Histonmodifikationen sowie die lokale Chromatinstruktur und dessen Zugänglichkeit. 

Das Ziel dieser Studie war es, Promotorkontakten mit dem transkriptionellen Output 

zu verknüpfen, indem ich 3C und andere Datensätze an mehreren Loci im 

Mausgenom integriere. In Kapitel 2 habe ich die Eigenschaften der Ergbutsequenz 

von Promotorverbindungen untersucht, einschließlich der Chromatinzugänglichkeit, 

den GC-Verhältnissen, die Entfernung zum Promotor und die Anreicherung von 

nahegelegene Histonmodifikationen. Ich konnte zeigen, dass die Promotorkontakten 

sich häufig in denselben topologisch assoziierten Domänen befanden und dass die 

Korrelation zwischen der Häufigkeit der Promotorverbindungen und den 

verschiedenen Chromatineigenschaften je nach Genexpressionsniveau variierte, 

wobei einsatzbereite Promotoren weniger eingeschränkt waren als aktive oder 

inaktive Promotoren, wenn sie Kontakte aufbauten. In Kapital 3 habe ich diese 

Merkmale untersucht und gefundene Prinzipien auf eine künstliche 

Ausleseexperiment in Mäusen namens „Longshanks“ (selektierend auf längere 

Oberschenkelknochen) angewandt, um die molekularen Grundlagen an zwei Loci, 

welche Hinweise auf Selektion zeigten, aufzuklären. An den zwei Loci wurden 

mutmaßliche Enhancer durch Chromatinzugänglichkeit und durch 

Histonmodifikationen identifizierte, und durch 4C-seq (eine 3C-Variante) miteinander 

verknüpft und schließlich durch transgene Reportertests funktionell validiert. Dies 

ermöglichte es uns, die molekularen Veränderungen an den Enhancern zu 
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identifizieren, von denen wir vermuten, dass sie einen Funktionsgewinn des 

Extremitätenwachstumsaktivators Gli3 und einem Funktionsverlust des 

Extremitätenwachstumsrepressors Nkx3-2 codieren, was zu einer längeren 

Beinlänge bei Mäusen in der künstlichen Auslese führte. Diese Studien zeigen 

Unterschiede in den Kontakteigenschaften zwischen den Genexpressionsniveaus 

und schildern die Schlüsselrolle der Transkriptionsfaktoren bei der Übertragung der 

Transkriptionsregulationsfunktionen. Die Charakterisierung der 

Chromatineigenschaften, die Transkriptionsregulation ermöglichen, sollte unser 

Verständnis vertiefen, wie die Genexpression während der Entwicklung genau 

reguliert wird und wie sie sich während der Evolution oder Krankheit verändert. 

 

 
Translated and proofread by Thomas Pavelka, Claire Siebenmorgen, and Volker Soltys.  
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Chapter 1: General Introduction 
 

1.1 Objectives of this study 
This study attempts to characterize the genomic features of DNA regions that 

contact gene promoters in order to determine which of these features are important 

for regulating transcription. In mammals, these long-range elements often skip over 

closer promoters to act on targets that are up to tens of hundreds of kilobase pairs 

away. In its native conformation, chromatin forms looping structures that bring distal 

loci into contact with one another. These chromatin loops serve as a proxy for 

transcriptional activity and can be captured by chromosome conformation capture 

(3C) assays. However, only a subset of the regions contacting a given promoter 

actually regulates its transcriptional output. In this work, I investigate the following 

questions: 

 

1. Where do the regions that regulate transcriptional output lie with respect to 

their target promoters?  

2. How well do various genomic features predict how often a given region 

contacts a promoter? Are there features that should be prioritized when 

determining which promoter contacts to functionally validate? 

3. How do these genomic features vary with promoter activity level? 

 

In Chapter 2, I compared the contacts from 25 promoters on mouse 

Chromosome 7 with other datasets to determine which features are most highly 

correlated with promoter contact frequency. In Chapter 3, we discovered that two 

genes are relevant to the rapid increase in leg length in a mouse selective breeding 

experiment called Longshanks. These two genes are among up to a hundred genes 

known to regulate limb development. Despite our knowledge of limb developmental 

genetics, only a handful of these genes have been linked to natural variation in leg 

length in human or mice, and none with molecular detail. Here, my work contributed 

to the identification of naturally occurring variants within their enhancers and our 

characterization of their associated chromatin features provided new evidence on 

how this trait may have evolved in response to artificial or potentially natural 

selection. 
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Answering these questions should aid efforts to efficiently and accurately link 

promoters to the regions that transcriptionally regulate them. This, in turn, should 

facilitate identification of causal mutations that drive changes in gene expression 

during disease or evolution, and help elucidate the transcriptional regulatory 

mechanisms that enable precise control of gene expression during development. 

 
1.2 Properties of cis-regulatory elements 

There are only an estimated 21,000 protein-coding genes in the human and 

mouse genomes (Mouse Genome Sequencing Consortium, 2002; ENCODE Project 

Consortium, 2012), but potentially an infinite number of possible distinct gene 

expression profiles conferring cellular identity. This complexity is possible through 

the combined action of cis-regulatory elements and trans-acting factors (Fakhouri et 

al., 2010) which determines gene expression in a given cell type or developmental 

stage. Cis-regulatory elements (CREs) are DNA sequences to which trans-acting 

factors like transcription factors (TFs) and their cofactors, RNA polymerases, 

chromatin remodelers, histone-modifying enzymes, and chromatin looping factors 

like cohesin localize to affect transcriptional activity and subsequently gene 

expression (Meiklejohn et al., 2014; Long et al. 2016) (Figure 1.1). CREs include 

promoters, enhancers, silencers, and insulators. With the exception of promoters, we 

know little about what determines their activity and function, yet as argued above, 

they are thought to be key contributors to complexity during vertebrate evolution. 

This is the core motivation of our study. 
Figure 1.1. Features of 
the chromatin and 
nuclear environment 
that enable 
transcriptional 
regulation. Typical cis-
regulatory elements – 
including (black arrows) 
promoters and (red 
boxes) enhancers, 
silencers, and insulators 
– interact with trans-
acting factors (green 
spheres except for 
cohesin) to repress or 
stimulate transcription of 
protein-coding genes 

(thick blue lines). Starting from the top of the chromatin segment (blue line), an active 
enhancer – marked by flanking nucleosomes containing H3K27ac and H3K4me1 – comes 
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into contact with its target promoter by means of chromatin looping factors such as cohesin 
(blue ring). Transcriptional activators bind to the enhancer and interact with cofactors like 
CBP and p300, facilitating gene transcription by RNA Polymerase II. The active promoter is 
marked by H3K27ac and H3K4me3 and its gene body contains DNA methylation (black 
vertical lines with circles) and H3K4me1. Another enhancer is blocked by CTCF, which binds 
to an intervening insulator sequence, from acting on the promoter. A silencer sequence, 
marked by DNA methylation, provides a binding site for a transcriptional repressor that 
silences transcription of an adjacent gene whose promoter is marked by DNA methylation 
and H3K27me3. PRC2 helps add and maintain the repressive mark H3K27me3 at the silent 
promoter and its gene body. Abbreviations: CRE, cis-regulatory element; TF, transcription 
factor; CTCF, CCCTC-binding factor; RNA Pol II, RNA Polymerase II; PRC, Polycomb 
Repressive Complex; CBP, CREB-binding protein; H3K4me3, histone H3, lysine 4 
trimethylation; H3K27ac, histone H3, lysine 27 acetylation; H3K4me1, histone H3, lysine 4 
monomethylation; H3K27me3, histone H3, lysine 27 trimethylation. 
 

Promoters 
The core promoter is the minimal sequence around the TSS necessary to 

activate basal levels of transcription (Burke et al., 1998). The core promoter recruits 

general transcription factors, RNA Polymerase II, and the Mediator complex to form 

the pre-initation complex (Poss et al., 2013). It contains the TATA box, initiator, TFIIB 

and DNA recognition elements, downstream core element, and/or motif ten elements 

(Butler and Kadonga, 2002). The level of transcriptional output at a promoter is 

affected by the binding of TFs to promoter-proximal elements as well as to more 

distal CREs. Promoter-proximal elements are located up to a few hundred base pairs 

away from the TSS (Dikstein, 2011). Distal CREs may act on multiple promoters, 

particularly if they are alternate promoters of the same gene (Sanyal et al., 2012; 

Andrey et al., 2017). 

Promoters are well annotated in mice and humans (FANTOM Consortium, 

2014) because they are position- and orientation-dependent with respect to protein-

coding genes and are characterized by certain motifs and chromatin modifications. 

They extend for up to one or two kilobase pairs around the transcription start site 

(TSS) (Florquin et al., 2005; Kiran et al., 2006). 

In terms of their genomic features, promoters are enriched for CpG islands. 

About 70% of known vertebrate promoters, especially those of developmental 

regulator genes, contain CpG islands (Saxonov et al., 2006). CpG islands are 500-

1500 base pair stretches of high C-G dinucleotide content whose methylation is 

associated with transcriptional repression (Andersson et al., 2014). 

The nucleosomes flanking promoters and also enhancers are associated with 

certain types of histone modifications (Table 1.1). Through their interactions with 
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trans-acting factors, these modified histone tails affect chromatin stability and 

transcriptional output (Vignali et al., 2000). Histone H3, lysine 4 methylation follows 

enrichment gradients across the gene body starting from the promoter, with H3K4 

trimethylation most highly enriched close to the promoter, and di- and 

monomethylation peaking farther away (Wang et al., 2011). The ratio of H3K4me1 to 

H3K4me3 is generally higher at enhancers than promoters (Robertson et al., 2008), 

but this ratio may be more linked to the activity level of a given CRE than to the class 

of CRE (Andersson et al., 2015). Active promoters, like active enhancers, are 

marked by H3K27ac (Zhang et al., 2015). Active and poised promoters, like strong 

enhancers, are associated with H3K4me3, likely due to its positive correlation with 

RNA Polymerase II (Andersson et al., 2015). In embryonic stem cells, the promoters 

of developmental genes tend to be enriched for both H3K4me3 and H3K27me3 

(Voigt et al., 2013). Upon cellular differentiation, genes resolve these bivalent marks 

according to their activity level: active genes retain H3K4me3 and silent genes 

H3K27me3 (Bernstein et al., 2006). Silent promoters and their gene bodies are 

marked by trimethylation of histone H3, lysine 27 (H3K27me3), whose addition is 

catalyzed by the Polycomb Repressive Complex 2 (PRC2) and whose presence is 

associated with transcriptional repression (Cao and Zhang, 2004). 

 
Table 1.1. Conventional associations of histone marks with CREs. 
Modification Principal associated chromatin features 

H3K4me1 Active and poised enhancers 
H3K4me3 Active, poised, and bivalent promoters 
H3K27ac Active promoters and enhancers 

H3K27me3 Bivalent and silent promoters and gene 
bodies; repressive chromatin 

 

Enhancers 
Much work on CREs has focused on enhancers. Enhancers, like promoter-

proximal elements, activate transcription, but often in a distance- and orientation-

independent manner (Pennacchio et al., 2013). They are short sequences tens to 

hundreds of base pairs in length (Kulaeva et al., 2012) that recruit TFs and their co-

activators, bringing RNA Polymerase II and transcriptional machinery to promoters to 

stimulate transcription. The pre-initiation complex which typically assembles at the 

core promoter may alternatively assemble at an enhancer, enabling more precise 

control over when transcription is initiated (Maston et al., 2006). At enhancers, TFs 
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outcompete nucleosomes for DNA occupancy (Long et al., 2016). Nucleosomes at 

enhancers acquire histone variants which cause them to become hypermobile and 

thus easier to displace by TFs than regular nucleosomes (Calo and Wysocka, 2013). 

Nucleosomes flanking enhancers, like those flanking promoters, are often 

marked by combinations of histone tail modifications (Table 1.1) (Karlic et al., 2010). 

Two of the most common enhancer marks are H3K27ac and H3K4me1. H3K27ac 

neutralizes the positive charge of the lysine residual, making it easier for the 

negatively-charged DNA to dissociate from the nucleosome and be accessible to 

transcriptional machinery (Bao and Bedford, 2016). It is added – usually to regions 

already marked by H3K4me1 – by the histone acetyltransferase p300 and its paralog 

CBP (CREB-binding protein), which also function as TF co-activators. While 

H3K27ac is an accurate predictor of active enhancers (Holmqvist and Mannervik, 

2013), it does not comprehensively mark all active enhancers, and it is also 

associated with active promoters (Wang et al., 2008; Creyghton et al., 2010). 

H3K4me1 aids enhancer activity by mediating interactions between histone tails, by 

protecting DNA from methylation and subsequent gene silencing, and by recruiting 

cofactors to aid TF recruitment and chromatin remodeling (Calo and Wysocka, 

2013). H3K4me1 is nonspecific to CREs, often extending across the gene body. It is 

associated with poised and active enhancers. In mouse embryonic stem cells 

(mESCs), poised enhancers are marked by trimethylation of histone H3, lysine 27 

(H3K27me3), or acquire it upon differentiation (Zentner et al., 2011). Enhancers can 

also be found within coding regions and therefore may also be characterized by 

histone modifications conventionally associated with genes (Pennacchio et al., 

2013). Finally, strong enhancers may be marked by H3K4me3, which is strongly 

positively correlated with RNA Polymerase II and therefore classically considered to 

be a promoter mark (Andersson et al., 2015). Looking for combinations of histone 

marks known to be associated with enhancers can help determine their location and 

activity level (Pennacchio et al., 2013). 

It has long been known that enhancers not only stimulate transcription of 

genes, but can also themselves be transcribed. Recently, this was shown to be a 

universal characteristic of active enhancers (Pennacchio et al., 2013), which 

stimulate their own transcription into short, bidirectional enhancer RNAs (“eRNAs”) 

(De Santa et al., 2010; Kim et al., 2010). These eRNAs may help enhance the 

chromatin loops between promoters and enhancers, and have also been observed to 
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interact with histone-modifying enzymes (Ding et al., 2018). eRNA transcript 

abundance can be used to predict active enhancers (Hah et al., 2013; Andersson et 

al., 2014). In an endogenous context, eRNA transcription can be captured in real-

time through GRO-seq (Garcia-Martinez et al., 2004; Core et al., 2008). However, 

because this method requires the incorporation of bromouridine, which is cytotoxic 

(Paulsen et al., 2014), it may be more suited for experiments with cultured cells. 

Therefore, methods like ChIP-seq and ATAC-seq may be more appropriate for 

enhancer identification in cells isolated from tissues. 

Enhancers, along with promoters and nucleosome binding sites, are enriched 

in mammals for GC-rich sequences (Fenouil et al., 2012; Wang et al., 2012; Colbran 

et al., 2017). TFs exhibit cell type-specific preferences for the GC content of the 

regions flanking their binding sites (Dror et al., 2015). The GC content of the flanking 

regions helps determine the thermostability and flexibility of the DNA, thus affecting 

the formation of chromatin looping structures that enable distal enhancers to contact 

their target promoters (Vinogradov, 2003). The GC content of enhancers appears to 

be correlated with their activity, although studies have found both positive (White et 

al., 2013; Kwasnieski et al., 2014) and negative (Shen et al., 2016) correlation. 

Further sequence features of enhancers include higher levels of DNA 

methylation than those found at promoters (Sharifi-Zarchi et al., 2017), which often 

inhibits but sometimes enhances their activity (Chamberlain et al., 2014; Lea et al., 

2018), and the prominence of dinucleotide repeats (Yanez-Cuna et al., 2014). 

Enhancers tend to evolve rapidly in mammals (Villar et al., 2015). While TFs and 

their binding motifs are well-conserved, enhancer activity varies considerably across 

species (Fish et al., 2017) because it depends on many factors, like TF binding and 

accessibility, histone modification marks, and other features of the chromatin and 

nuclear environment. TF binding is a better predictor of in vivo enhancer activity than 

chromatin accessibility or histone modification marks (Dogan et al., 2015; Kreimer et 

al., 2017), but the hundreds of different TFs in mammals tend to be highly cell type-

specific, making comprehensive TF binding data impractical to collect (Khamis et al., 

2018). TF binding at enhancers can be sub-optimal, which could in itself constitute a 

mechanism whereby enhancer activity domains become restricted during 

development (Farley et al., 2015). It is governed by a complex motif grammar, 

including spacing and orientation of the motifs on the enhancer (Spitz and Furlong, 

2012; Long et al., 2016). 
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Histone modification marks, chromatin accessibility, DNA methylation, eRNA 

transcription, and other datasets are now available in a number of cell types in the 

mouse and human genomes (ENCODE Project Consortium, 2012), but which of 

these features actually confer cis-regulatory function and thus impact gene 

expression (Graur et al., 2013)? The determinants of enhancer activity are explored 

in greater detail in the General Discussion (Chapter 4). 

 

Silencers 
Silencers repress transcription by recruiting transcriptional repressors or by 

competing with enhancers for TF binding (Ogbourne and Antalis, 1998). Silencers 

have higher rates of DNA methylation than enhancers and, like enhancers, act in an 

orientation- and position-independent manner with respect to their target promoters 

(Jayavelu et al., 2018). Current genomic methods, especially 3C-derived approachs, 

likely confound enhancers and silencers. However, due to the difficulty in assaying 

the absence of a reporter gene compared to its activity, experimental demonstrations 

for silencers are scarce compared to enhancers. 

 

Insulators 
Insulators recruit the architectural and chromatin structure protein CTCF 

(CCCTC-binding factor) to prevent CREs from interacting with one another (Kim et 

al., 2015). Insulators range from 500 base pairs to around 3 kilobase pairs and are 

position-dependent. They shield promoters from enhancers by interfering with 

chromatin loop formation, and from repressive heterochromatin by blocking 

chromatin remodelers (Maston et al., 2006; Tokuda et al., 2011). Insulators in 

vertebrates are often found at imprinted loci such as the well-characterized H19/Igf2 

imprinting control region (Maston et al., 2006). There have been many 

comprehensive studies and reviews detailing how insulators organize chromosome 

domains and modulate transcription through CTCF binding (Phillips and Corces, 

2009; Lupianez et al., 2015). For the purpose of this thesis, since CTCF ChIP 

binding data is not widely available for different cell types and much of its effect is 

captured within defined TADs, the role and effects of insulators have been factored 

into the datasets I use and I will therefore not discuss insulators separately. 
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Dynamic switching between classes of CREs 
There is dynamic switching between distinct classes of CREs. Promoters can 

take on enhancer-like roles and regulate transcription of other promoters (Kowalczyk 

et al., 2012; Leung et al., 2015). Conversely, enhancers can take on promoter-like 

roles (Andersson et al., 2015). Silencers, insulators, and enhancers, like promoters 

and enhancers, can act interchangeably across cell types (Kolovos et al., 2012; 

Andersson et al., 2015). These dynamics enable precise control of gene expression 

but lend complexity to the genome, compounding efforts to map CREs to their target 

genes. 

 

Methods to identify CREs 
Since CREs tend to have highly variable sequences, often act distally on 

target genes, and can lie anywhere in the genome, even evolving from “junk” DNA 

like transposable elements (Makalowski, 2003), how can they be accurately linked to 

their target genes? A plethora of methods exists to aid identification and mapping of 

CREs to their target genes, of which a subset is listed in Table 1.2. These methods 

capture known chromatin features of CREs that differ depending on CRE function. 

Methods like ATAC-seq, DNase-seq, MNase-seq, or FAIRE-seq assays reveal 

regions of open and closed chromatin (Tsompana and Buck, 2014) and can be used 

to infer DNase hypersensitive sites (DHSs). DHSs have historically been used to 

identify all types of CREs because they often coincide with TF binding (Thurman et 

al., 2012; Chen et al., 2018). Additional methods that distinguish between the distinct 

classes of CREs – promoters, enhancers, silencers, and insulators – facilitate their 

identification. 

 
Table 1.2. Methods to identify and characterize cis-regulatory elements. The first five 
methods in the table capture genome-wide data such as transcript abundance, chromatin 
accessibility, and histone modification marks, but do not reveal spatiotemporal domains of 
CREs. FISH and 3C (grey shaded boxes) explore the three-dimensionality of the genome. 
The last four methods enable functional validation of CREs, revealing their expression 
domains. 
 

Method and Aim Advantages Limitations References 
ATAC-seq (Assay for 
Transposase-
Accessible 
Chromatin): 
 
Map genome-wide 
chromatin 
accessibility, inferring 

Quick, simple protocol. High 
signal-to-noise ratio. As few as 
5,000 cells required; single-cell 
also possible. Improvement 
over DNase-seq, MNase 
(micrococcal nuclease)-seq, 
and FAIRE (Formaldehyde-
assisted isolation of regulatory 

It is possible for closed 
chromatin to open during 
sample preparation and 
integrate the transposome, 
leading to spurious signal. 
Biased towards shorter 
fragments. 

ATAC-seq: Buenrostro 
et al., 2015 
DNase-seq: Galas and 
Schmitz, 1978 
MNase-seq: Valouev et 
al., 2011 
FAIRE-seq: Giresi et 
al., 2007 
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nucleosome and 
transcription factor 
occupancy. 

elements)-seq. 

ChIP-seq 
(Chromatin immuno- 
precipitation): 
 
Capture genome-
wide TF binding and 
nucleosome 
occupancy. 

Binding of the p300 TF co-
activator is the most accurate 
in-vivo predictor of active 
enhancers. Histone 
modification enrichment is 
strongly associated with active 
and poised enhancers and 
promoters. Up to single base 
pair resolution. Quick, high 
efficiency and accuracy. 

Can be highly cell type-
specific. Sensitive to 
antibody quality; biased 
toward high GC-content 
sequences. Requires high 
sequencing coverage. 
Histone modifications are 
not comprehensive and 
may miss CREs, and may 
also be nonspecific. 

Initial development of 
ChIP-seq: Robertson 
et al., 2007 
Histone profiling: 
Mikkelsen et al., 2007 

eRNA-seq 
(Enhancer RNA 
sequencing): 
 
Determine in-vivo 
enhancer activity from 
the abundance of 
short, bi-directional 
enhancer RNAs, or 
eRNAs. 

Can be gleaned from RNA-seq 
data if coverage is of sufficient 
depth; thus optimal for 
experiments with limited 
starting material (no separate 
experiment needed). 

Requires high sequence 
coverage and/or 
enrichment techniques 
due to the low 
transcription rate and 
instability of eRNAs 
compared to mRNAs. 

Kim et al., 2010; 
Andersson et al., 2014 

GRO-seq (Global 
nuclear run-on 
sequencing): 
 
Obtain a real-time 
readout of 
transcription. 

Unbiased and highly sensitive; 
can detect transcripts of low 
abundance, including 
noncoding RNAs like eRNAs. 

Transcription is “frozen” at 
the desired stage. High 
amount of material needed 
(10 million cells). 
 
 

Garcia-Martinez et al., 
2004; Core et al., 2008 

Isochore assignment: 
 
Distinguish active 
from inactive 
chromatin by looking 
at GC content and 
comparing with 
chromatin 
compartments “A” 
and “B”. 

Already characterized in 
mouse and humans: is an 
inherent sequence feature and 
not cell type-specific. 

Low resolution (300 kbp 
average length in the 
mouse). 

Thiery et al., 1976 

3C (Chromosome 
conformation 
capture) and 
derivatives: 
 
Capture the contacts 
occurring between 
loci in the genome. 

Definitively links regulatory 
elements to their targets. 

Prone to noise. Long, 
complex protocol. Dekker et al., 2002 

FISH (Fluorescence 
in situ hybridization): 
 
Confirm the 
interaction between 
loci by hybridizing 
fluorescently labeled 
probes. 

Definitively links regulatory 
elements to their targets. 

Low resolution. Technique 
is confirmational rather 
than experimental (probe 
sequence must be known 
ahead of experiment) 

Langer-Safer et al., 
1982 

RNA-seq: 
 
Obtain quantitative 
expression levels of 
coding and noncoding 
RNAs. 

High throughput. 
Capable of detecting low-
abundance transcripts like 
eRNAs. 

Transcript size selection 
can lead to bias or 
inconsistency across 
experiments. 

Morin et al., 2008 

MPRA (Massively 
Parallel Reporter 
Assay): 
 

High-throughput; avoids 
positional (random integration) 
effects because tested 
enhancers are not integrated 

Episomal features that 
affect enhancer activity, 
may differ from genomic 
(endogenous) features. 

Melnikov et al., 2012 
 
STARR-seq: Arnold et 
al., 2013 
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Obtain a readout of 
enhancer activity from 
co-transfection of a 
library of enhancer 
reporter constructs. 

into the genome. 

Transgenic reporter 
assay: 
 
Visualize CRE 
expression domains 
by site-specific or 
random integration of 
enhancer reporter 
constructs or of 
minimal promoter-
reporter genes. 

Reveals expression domains 
of all CREs at the site of 
integration (enhancer traps), of 
individual enhancers 
(enhancer-reporter 
constructs), or of entire 
regions (through BAC 
reporters). 

May be subject to site-
specific integration effects 
unless integration is 
targeted. Construct 
injection is tedious and 
expensive. 

Banerji et al., 1981 

ISH (In situ 
hybridization): 
 
Obtain expression 
pattern of a DNA or 
RNA molecule by 
visualizing 
hybridization to a 
labeled probe. 

Material (embryo or tissue 
section) can be re-used 
repeatedly for multiple ISH; 
method does not use up the 
sample. 

Time-consuming and 
tedious. Not sensitive at 
detecting low-copy 
molecules. Probe 
permeation and 
subsequent staining 
visualization of internal 
tissues is limited. 
Hybridization, post-
hybridization, and 
proteinase K digestion 
conditions must be 
carefully titrated. 

Gall and Pardue, 1969 

 

1.3 Linking CREs to target promoters 
The main methodology to directly link CREs to promoters is through the 

chromosome conformation capture (3C) assay and its derivatives. These methods 

use cross-linking, restriction enzyme cutting and re-ligation to preserve three-

dimensional information such as looping contacts that would otherwise be lost during 

DNA extraction. 

 

1.3.1 3C methodology 
The three-dimensionality of the genome necessitates the integration of 

several types of data when attempting to characterize CREs. The methods in Table 
1.2 can be divided into those that rely on genome-wide data without distinguishing 

which promoter is acted upon, and those that do establish the physical link between 

distal-acting CREs and their target promoters (FISH, 3C). Fluorescence in situ 

hybridization (FISH) can be used to visualize and confirm the interaction between 

two or more loci, but only has single-gene (100-200 kbp) resolution at best, and 

fluorescent probes must be designed ahead of time to hybridize to complementary 

regions in the genome (Cui et al., 2016). In contrast, chromosome conformation 

capture (3C) methods, which are molecular as opposed to microscopic techniques, 
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afford sub-kilobase pair resolution and are high throughput, with no foreknowledge of 

interacting regions required (Barutcu et al., 2016). 

To prepare a 3C library, nuclei are cross-linked to preserve their native 

conformation (Figure 1.2). Cross-linked nuclei undergo shearing or restriction 

digestion, followed by re-ligation, de-cross-linking, and sequencing. Captured 

sequences are mapped to the reference genome to identify the sequences 

interacting with one another (de Wit and de Laat, 2012). Selective sequencing of 3C 

library molecules that contain a “viewpoint”, or target sequence, yields a 

chromosome conformation capture profile for that viewpoint. 

 
Figure 1.2. Chromosome 
conformation capture 
(3C) captures interacting 
genomic sequences. 
During 3C template 
preparation, the chromatin 
is cross-linked to its 
associated proteins (light 
blue ovals), digested into 
shorter fragments to 
increase resolution, and re-
ligated to reconstitute the 
chromatin loops that 
occurred in its native 
conformation. Ligation of 

physically proximate (but linearly distant) sequences to one another results in chimeric 
molecules. Sequencing of the molecules which contain the “viewpoint”, or target sequence, 
followed by alignment of the interacting regions to the reference genome, yields a 
chromosome conformation capture-seq profile for that viewpoint (red arrowhead, viewpoint; 
blue arrowhead, genomic location of the blue interacting fragment depicted in Steps 2-5), 
where the height of the capture signal (y-axis) indicates how often that fragment was 
captured, or ligated to the viewpoint-containing fragment and sequenced. 
 

Each step of the 3C library preparation must be carefully titrated for different 

cell types in order to minimize introducing or capturing spurious interactions (van de 

Werken et al., 2012). When properly optimized, a chromosome conformation capture 

signal profile typically shows exponetntial signal decay out from the viewpoint 

(Figure 1.2; Figure 1.3B) (van de Werken et al., 2012). This is due to the proximity 

ligation effect: molecular kinetics dictates that during ligation, DNA fragments that 

were closest to the viewpoint are more likely to become re-ligated to it due to their 

physical proximity on the linear (pre-digested) DNA. Ligation of chimeric molecules is 

further affected by cohesiveness of digested fragments (Gavrilov et al., 2013). 

Ultimately, capture data is semi-quantitative because biological interactions may be 
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captured or amplified less preferentially due to proximity ligation, PCR amplification 

bias, and prevalence of spurious interactions. In addition to preparation of multiple 

replicates, complementary chromatin feature data can help rule out noise (Denker 

and de Laat, 2016). 

 

A 
 
Figure 1.3. Chromosome conformation capture 
signal decays over distance. (A) The 
percentage of viewpoint contacts mapping in cis, 
or to the same chromosome as the viewpoint 
(leftmost four boxplots), increases with decreasing 
linear distance from the viewpoint. The median 
percentage of reads mapping to fragment within 
100 kbp of the viewpoint (leftmost boxplot) is 
comparable to the median of trans – mapping to 
all other chromosomes – reads (rightmost 
boxplot). (B) A typical conformation capture profile 
shows that the signal emanates from the 
viewpoint (dashed grey line), with the highest 
frequency of contact closest to the viewpoint. 
Peak height represents the running mean reads 

(y-axis), and relative position (kbp) along the viewpoint chromosome is depicted on the x-
axis. Figures are Figure 4.6 and Figure 4.7B from van de Werken et al., 2012. 
 
B 

 
 

The many derivatives of 3C-seq differ in their hybridization, digestion, and 

ligation conditions and subsequently, their throughput. 4C-seq (circularized 

chromosome conformation capture) captures all contacts for a single viewpoint, 

whereas Hi-C captures all genome-wide interactions. ChIA-PET (chromatin 

interaction analysis by paired-end tag sequencing) combines ChIP-seq with 3C to 

find interacting loci bound by a given TF. 5C (chromosome conformation capture 

carbon copy) captures interactions for many viewpoints at once, as does Capture-C 

(Denker and de Laat, 2016). 

 

1.3.2 TADs and the 3D structure of chromatin 
Hi-C, which captures genome-wide interactions, revealed the presence in the 

genome of topologically associating domains (TADs), which are megabase-scale 
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regions of interacting loci (Dixon et al., 2012). Interactions tend to occur far more 

frequently within TADs than across TAD boundaries. This is due to the insulating 

action of boundary elements like CTCF, which are found at the edges of TADs. 

CTCF stalls or halts cohesin, preventing chromatin loops from forming across TAD 

boundaries (Fudenberg et al., 2016). TADs are important structural units that have 

been found in mESCs to contain a majority of promoter-enhancer interactions (Shen 

et al., 2012; Schoenfelder et al., 2015). At the HoxD cluster, which may be a rare 

example of a developmentally critical locus straddling two different TADs, different 

HoxD genes become active at specific times through their interaction with either the 

centromeric or the telomeric TAD flanking the cluster, allowing precise coordination 

of gene expression in the proximal – during early stages of limb development – and 

distal – during later stages – limb bud (Andrey et al., 2013). At the Wnt6 locus, 

deletion of CTCF-associated boundary elements allowed CREs to act on promoters 

outside of their TADs, resulting in ectopic gene expression (Lupianez et al., 2015). 

CTCF binding site orientation is nonrandom at TAD edges and can determine 

enhancer directionality: over 90% of TAD boundary elements in mouse brain cells 

were found to have oppositely orientated (reverse-forward) CTCF binding sites 

relative to those of their neighboring TADs, and CRISPR/Cas9-mediated inversion of 

a CTCF-containing enhancer between two TADs caused the enhancer to switch the 

TAD it contacted (Guo et al., 2015). 

TADs aid identification and mapping of CREs to their target promoters. Even 

though enhancers tend to act from tens of hundreds of kilobase pairs away, they 

tend to stay within TAD boundaries. TAD boundaries were reported to be relatively 

conserved across cell types and even species (Dixon et al., 2012), although exact 

boundaries likely vary from cell to cell (Giorgetti et al., 2014; Liu and Tijan, 2018). If 

TAD boundaries are available for a cell type, they can be used as a proxy for the cell 

type of interest and used to narrow candidate genes. Conversely, if the experimental 

goal is to find the CREs regulating a promoter of interest, one can look within the 

TAD for known CRE marks using other datatsets like chromatin accessibility or 

histone profiling (Andrey and Mundlos, 2017). To help confirm or functionally test 

CRE-promoter interactions, expression profiles of candidate genes in the TAD – for 

instance, from in situ hybridizations – can be compared with expression domains 

from transgenic or massively parallel reporter assays (Smith et al., 2019; Frazer et 

al., 2004). 
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On a larger scale, TADs can be organized into different chromatin 

compartments, designated “A” and “B”, that are characterized by their respective 

gene expression levels (Rao et al., 2014). Compartment A is characterized by active 

genes and open chromatin that localizes close to the center of the nucleus. 

Compartment B chromatin is closed, typically has lower GC content than 

Compartment A chromatin, includes silent genes and repressive marks, and 

localizes at the nuclear periphery (Lieberman-Aiden et al., 2009). Not only local 

sequence GC content but also broad-scale GC content can help determine which 

regions of the genome likely harbor CREs. One such type of feature has been 

termed isochores. Isochores are long (on average, 300 kilobase pairs in mammals) 

stretches of homogenous GC content (Bernardi, 2000); isochore families with 

moderate levels of GC content are most likely to contain protein-coding genes and 

hence CREs (Arhondakis et al., 2011). 

In summary, the three-dimensionality of the genome allows CREs to act 

distally, even skipping over closer promoters or being blocked by insulators lying 

between them and their targets on the linear DNA. Chromosome conformation 

capture reveals or confirms distal interactions, but must be followed by functional 

validation tests or compared with other datasets. 

 

1.4 Mouse limb development as a model system to study transcriptional 
regulation 
The developing mouse limb bud is an ideal organ to study transcriptional 

regulation. Limb bud development is regulated by many transcription factor families. 

Recently, Andrey and coworkers obtained Capure-C data (which I analyzed in 

Chapter 2) from over four hundred limb development genes, including members of 

the important Hox, Sox, Tbx, and Runx transcription factor families and the IGF, 

FGF, WNT, and RA signaling pathways (Andrey et al., 2017). The mouse limb bud is 

a highly heterogeneous structure (Zeller et al., 2009). The anterior-posterior, 

proximal-distal, and dorsal-ventral axes form by E12.5 (Zuniga, 2015), and 

transcriptional dynamics differ across micro-sections (Rodriguez-Carballo et al., 

2017). For instance, at the HoxD cluster, various HoxD genes are differentially 

transcriptionally regulated through interactions with one of two adjacent TADs 

depending on the stage and location of the cells (Fabre et al., 2017). The 

mammalian limb bud therefore represents an intriguing system in which variations in 
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long-range DNA interactions and transcription regulation may give rise to visible, 

morphological differences. 

It is therefore our motive to study a biological system in which limb 

phenotypes show striking yet specific changes. One such system is provided in the 

mouse from an artificial selection experiment for long tibia length known as the  

“Longshanks selection experiment”. This is a mouse population created by Dr. 

Campbell Rolian at the University of Calgary, in which outbred mice with variable 

tibia length were subjected to 20 generations of selective breeding. I was involved in 

a genomic study aimed at determining which loci may be responsible for the rapid 

increase in tibia length. 

In the Longshanks selection experiment (Chapter 3), analysis of the genomic 

sequencing data revealed many loci genome-wide that were found to have shifted 

allele frequencies between the lines under selection and the control lines, providing 

ample candidate loci at which to investigate transcriptional dynamics. Furthermore, 

regions with significant allele frequency shifts were enriched for genes known to 

have limb knockout phenotypes. Understanding how gene expression is regulated in 

the limb bud has important implications for researching evolution, disease, and 

development. 
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2.2 Abstract 
Linking cis-regulatory elements to the genes they regulate is challenging 

because they tend to act at a distance from their target promoters. Features such as 

chromatin accessibility and certain combinations of histone modification marks can 

be used to identify putative regulatory regions in the genome, but chromatin looping 

data is needed to confirm the interaction between a regulatory element and its target 

promoter. However, chromosome conformation capture assays like Capture-C which 

reveal such chromatin loops are noisy, and thus must be combined with other types 

of data to separate signal from noise. I modeled promoter contact frequency, or 

Capture-C signal, at 25 limb development genes along mouse Chromosome 7 as a 

function of chromatin accessibility, GC content, and histone modification. I 

categorized the viewpoint genes by their expression level in E13.5 forelimb and 

hindlimb and compared the predictive values of various chromatin features across 

the different expression states. Most promoter contacts were confined to the same 

topologically associating domain as the viewpoint promoter. Furthermore, distance 

from the viewpoint was the best predictor of promoter contact frequency. Promoters 

in transition formed more contacts and were less constrained by distance than active 

or silent promoters. The features included in the model explained only a small 

proportion of contacts, suggesting that the best way to identify biologically 

meaningful contacts is to first confine the search to the viewpoint TAD and to 

consider the expression level of the promoter of interest. 

 

2.3 Introduction 

Identifying genomic regulatory elements and the genes they regulate is an 

important challenge. Finding promoter contacts is confounded by the fact that 

mammalian cis-regulatory elements (CREs) can lie tens to hundreds of kilobase 

pairs away from their promoters and do not always act on the nearest promoters. 

Rather, distal CREs contact promoters by means of chromatin loops which mediate 

recruitment and localization of transcriptional machinery (Kadauke and Blobel, 

2009). While enhancers and promoters are often flanked by nucleosomes with 

certain types of histone modifications, they may be highly tissue- and stage-specific, 

necessitating in vivo and in vitro assays to verify their activity in a given cell type 

(Pennacchio et al., 2006). Active promoters can be regulated by multiple enhancers 

in a combinatorial manner, with enhancers acting additively (Shin et al., 2016) or 
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synergistically (Marinic et al., 2013; Hay et al., 2016; Thormann et al., 2018) to refine 

one another’s activity. Conversely, one enhancer can act on multiple promoters 

(Mohrs et al., 2001). The sequence code of enhancers has proven difficult to crack 

(Yanez-Cuna et al., 2014; Bu et al., 2017), in part because enhancer activity 

depends on cooperation between multiple transcription factors (TFs), which can be 

highly cell type-specific (Long et al., 2016). Silencers, similar to enhancers, act in a 

distance- and orientation-independent manner, recruiting transcriptional repressors 

to inhibit gene expression (Ogbourne and Antalis, 1998). Insulators, which contain 

binding sites for the architectural and chromatin structure protein CTCF, shield loci 

from interacting with one another (Kim et al., 2015). Silencers, insulators, and 

enhancers in one cell type may even act as another class in other cell types 

(Kolovos et al., 2012; Andersson et al., 2015). These dynamics enable precise 

control of gene expression but lend complexity to the genome, compounding efforts 

to map CREs to their target genes. 

The chromatin looping structures that enable CREs to physically contact 

promoters so as to regulate their transcription can be captured by chromosome 

conformation capture (3C). 3C uses cross-linking to preserve chromatin in its native 

conformation followed by digestion, re-ligation, and sequencing to obtain a readout 

of interacting loci (Dekker et al., 2002). A 3C derivative known as Hi-C, which 

captures genome-wide interactions, has revealed the presence of topologically 

associating domains, or TADs: megabase-scale regions of high-density inter-

chromosomal contacts in Hi-C matrices (Dixon et al., 2012). At the borders of TADs 

are boundary elements like the architectural protein CTCF which stop chromatin 

loops from proceeding along the DNA, shielding loci in neighboring TADs from 

interacting with one another (Fudenberg et al., 2016). 

3C derivatives like Capture-C (Davies et al., 2016) and 4C-seq (Simonis et al., 

2006) which target specific bait regions, or “viewpoints”, provide high resolution of 

interacting loci. 3C assays are nevertheless prone to noise, and captured contacts 

may not necessarily represent biologically relevant interactions. Several 

experimental factors can affect ligation frequency and lead to spurious signal 

(Denker and de Laat, 2016), including cross-linking time and temperature (Dekker et 

al., 2002), ligation conditions, PCR amplification bias, and the cohesiveness of 

digested fragments (Gavrilov et al., 2013). One way to filter contacts is by comparing 

other datasets which mark putative CREs but do not link them to their targets. These 
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include enhancer transcription (eRNA) readout (Andersson et al., 2014), chromatin 

immunoprecipitation (ChIP-seq) of general TFs like p300 (Visel et al., 2009) and of 

histone modification marks commonly associated with enhancers and promoters 

(Calo and Wysocka, 2013), and chromatin accessibility maps (Thurman et al., 2012; 

Chen et al., 2018). 

Understanding transcriptional regulatory dynamics has broad implications for 

studying disease and development. Identification and characterization of CREs is 

key to understanding how gene expression is carefully controlled during 

development (Marinic et al., 2013; Andrey and Mundlos, 2017), and provides targets 

for genome-editing therapies to counteract disease (Weischenfeldt et al., 2013; 

Lupianez et al., 2015). By combining Capture-C, a high-throughput 3C derivative that 

detects contacts for up to several hundreds of viewpoints simultaneously (Hughes et 

al., 2014; Davies et al., 2016), with datasets that mark putative CREs, I investigated 

the chromatin features associated with relevant promoter contacts. 

 

2.4 Results 

I analyzed Capture-C signal from E13.5 forelimb and hindlimb (Andrey et al., 

2017) because this assay directly captures putative promoter-CRE contacts. To 

identify which genomic features may affect such contacts, I integrated additional 

types of stage- and tissue-matched data (Table 2.1) and analyzed what relationship, 

if any, these features may have with Capture signal. Assay for Transposase-

Accessible Chromatin, or ATAC-seq (Buenrostro et al., 2015), provides a readout of 

open chromatin, which likely contains active and poised CREs since it is accessible 

to transcription machinery. Histone profiling uses ChIP-seq to characterize histone 

marks associated with gene regulatory functions. For example, acetylation of lysine 

27 at histone H3 (H3K27ac) is conventionally associated with active enhancers, 

monomethylation of histone H3, lysine 4 (H3K4me1) with poised and active 

enhancers, and trimethylation of histone H3, lysine 4 (H3K4me3) with poised and 

active promoters. Trimethylation of histone H3, lysine 27 (H3K27me3) is associated 

with repression of transcription. Finally, GC content is correlated with transcription 

rate and gene expression, with GC-rich sequences and CpG islands enriched at 

enhancer and promoter elements (White et al., 2013; Colbran et al., 2017; Carelli et 

al., 2018; Lecellier et al., 2018). 
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Table 2.1. Genomic and physical properties to predict Capture-C promoter contacts. 
Method or 

genomic feature Aim Samples Used in 
Analysis Data Source 

Capture-C 

Capture chromatin 
contacts of many 
viewpoints (up to 

hundreds) at once. 

E13.5 Forelimb and 
Hindlimb; 2 

technical replicates 
each 

Andrey et al., 2017 

Hi-C 
Derive topologically 
associating domains 

(TADs). 

Mouse embryonic 
stem cells (mESCs) 
and mouse cortex 
cells; 2 technical 
replicates each 

mESCs: 
Dixon et al., 2012 

 
Cortex: 

Shen et al., 2012 

ATAC-seq Find regions of 
open chromatin 

E13.5 limb bud; 2 
technical replicates 

ENCODE Project 
Consortium, 2012 

GC content 

Linked to gene 
expression (gene-

rich regions are 
higher GC than 

gene-poor). 

NA 

Mus musculus 
reference mm10 

(GRCm38) 
assembly 

Histone profiling 

Derive K4me3, 
K4me1, K27ac, 

K27me3 
enrichment. 

E13.5 Forelimb and 
Hindlimb; 2 

technical replicates 
each 

Andrey et al., 2017 

 
I chose to analyze these genomic features because they were the most 

extensive functional genomics datasets available for mouse embryonic limb bud. 

Since CREs are often highly specific to stage and cell type, it was important to use 

data that matched the Capture-C samples. Other types of data associated with 

transcriptional regulation such as the genome-wide binding sites of key TFs, 

particularly those of the histone deacetyltransferase p300 – the most accurate in-

silico predictor of enhancers (Visel et al., 2009) – were not available for this stage of 

embryonic limb bud. 

The Capture-C dataset from Andrey et al., 2017 is a high-quality, high-

throughput resource with which to study transcriptional regulation during mouse 

embryonic development. It captures the contacts of 446 limb developmental 

regulators across seven different biological samples: E10.5, E11.5, and E13.5 

forelimb and hindlimb bud, and – as a negative control – E10.5 midbrain tissue. I 

selected E13.5 forelimb and hindlimb since I aimed to compare Capture-C signal 

with other types of data, rather than comparing across tissues and stages. Although 

hindlimb lags half a day behind forelimb development from E9.5 to E16.5 (Zuniga, 

2015), the number of genes differentially expressed between forelimb and hindlimb 

at the same stage is very low (Andrey et al., 2017; Cotney et al., 2013). The 
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Capture-C signal profiles were also similar between the two tissues. Therefore, I 

combined forelimb and hindlimb replicates for most analyses. 

Andrey et al., 2017 categorized Capture-C interactions into several histone 

profile-derived functional chromatin states, including repressed, heterogeneous, and 

active chromatin states using a Hidden Markov Model. A minority of the Capture-C 

interactions in each biological sample mapped to repressed chromatin (characterized 

by enrichment of H3K27me3 and depletion of H3K27ac, H3K4me3, and H3K4me1). 

The forelimb and hindlimb samples from E13.5 had the highest proportion of 

contacts mapping to repressed chromatin. To maximize the power of the statistical 

analysis, I focused on the stage with the greatest variation in viewpoint gene 

expression. 

I perform a statistical analysis using ANCOVA modeling in order to explore 

the relationship between specific genomic features and promoter contacts (Figure 
2.1). 

 

 
 
Figure 2.1. Molecular factors contributing to transcriptional regulation. Integrating 
multiple datasets can help identify and regulatory regions to their target promoters. Depicted 
on the left is an example of a chromatin segment in the limb bud cell of a developing mouse 
embryo. Cohesin (blue rings) translocates along the DNA (black curved line) to form looping 
structures, which bring promoters (black arrows) into contact with their regulatory regions. 
Averaging across a population of cells, promoter contacts (captured by Capture-C and Hi-C; 
chromatin loops depicted as blue curved lines) are generally confined to neighborhoods 
known as topologically associating domains (TADs; blue triangles). Through ANCOVA 
modeling, I explore how well chromatin and sequence features of the DNA, such as location 
with respect to the promoter TAD, nucleosome (black spheres) positioning (captured by 
ATC-seq), and histone modification marks (ChIP-seq) predict promoter contact frequency. 
 

Distribution of Capture-C viewpoint contacts with respect to TADs 
Each Capture-C viewpoint promoter had a high proportion of contacts within 

the same topologically associating domain, or TAD (Figure 2.3). Dixon et al., 2012 
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reported TADs to be highly stable across cell types and species. Therefore, I used 

mouse embryonic stem cell (mESC) TADs (Dixon et al., 2012) as a proxy for E13.5 

limb bud TADs. Chromsome 7 has an exceptionally high number of TADs per unit 

length (Figure 2.2). Out of 157 mESC TADs, 20 contained Capture targets 

corresponding to 25 viewpoints (Table 2.A). The short TAD lengths mean that some 

of the viewpoint promoters are located close to the edges of TADs. For this reason, I 

chose to focus on Chromosome 7 TADs. 

 

 
 
Figure 2.2. Chromosome 7 has an atypical distribution of mESC TADs. (A) 
Chromosome length and the number of mESC TADs per chromosome are positively 
correlated (R2 = 0.81). Chromosome 7 has a high number of mESC TADs relative to its 
length. (B) There is no significant correlation between average TAD length and chromosome 
length (R2 < 0.01). Chromosome 7 has a far shorter average mESC TAD length than the rest 
of the chromosomes. 
 

Across the Chromosome 7 viewpoints, on average 45% (median; range 17-

71%) of reads mapped within the same TAD (Figure 2.3A) despite the TADs 

occupying on average 0.58% of available Chromosome 7 mappable segments 

(Figure 2.3C), where segments were DpnII restriction fragments since DpnII was the 

four-cutter used to digest the chromatin during the Capture-C assay. By contrast, 

only 7% (1-27%) of reads map to the closest adjacent TADs (Figure 2.3A). These 

results reflect the signal decay that occurs over distance, and show that much of the 

chromosome contacts – and by extension, the transcriptional regulatory mechanisms 

– occur within the same TAD. 

If mESC TAD boundaries were fully conserved with E13.5 limb bud TAD 

boundaries, and if they were fully effective at insulating neighboring domains from 
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interacting with one another, then viewpoints should have the same proportion of 

contacts in their assigned TAD irrespective of their position from the TAD boundary. 

Instead, the proportion of contacts in the TAD is lower for viewpoints at the edges of 

TADs. Viewpoints that are located closest to TAD boundaries (rightmost bars, 

Figure 2.3B) tend have more contacts in the closest neighboring TAD and fewer in 

the assigned TAD. This suggests that the mESC TAD boundaries may be lenient, 

may not be accurate for E13.5 limb bud, or both. 

 

 
 
Figure 2.3. Promoters contact loci within their topologically associating domain, or 
TAD. (A) 45% (median; range 17-71%) of Chromosome 7 promoter contacts (blue 
diamonds) map to the same mouse embryonic stem cell TAD as the viewpoint (blue 
triangles with solid borders). By contrast, 7% (median; range 1-27%) of chromosome-wide 
contacts (light blue ovals) per viewpoint are in the closest neighboring TAD (light blue 
triangles with dashed borders). Each viewpoint is represented by a pair of data points with 
the same horizontal position. An x-axis score of 50 means that the viewpoint is at the center 
of its assigned TAD; an x-axis score of 100 means it is at the edge of the TAD; that is, the 
viewpoint is closer to the closest TAD boundary than 100% of DpnII fragments in the TAD. 
Read counts were averaged over 4 Capture samples per viewpoint (2 forelimb and 2 
hindlimb replicates). To minimize the number of non-informative reads, alignments within the 
probe span ±1 kilobase pair were excluded from the analysis. (B) Viewpoints are binned into 
intervals based on their proximity to the closest TAD edge. Averaging across forelimb and 
hindlimb replicates of all viewpoints in an interval, 48% (median; range 31-54%) of 
Chromosome 7 contacts are in the viewpoint TAD (blue bars), 6% (3-20%) are in the closest 
neighboring TAD (light blue bars), and 45% (32-50%) are on the rest of Chromosome 7 
(grey bars). (C) The viewpoint and closest neighboring TADs comprise on average 0.58% 
and 0.48% of the Chromosome 7 DpnII fragments, but the viewpoint TADs contain a high 
proportion of chromosome-wide contacts.  
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TAD boundary inaccuracy may stem from shifts in TAD boundaries over 

development; that is, mESC and E13.5 limb bud cells may have different TAD 

boundaries. To determine whether this could be the case, I compared TAD boundary 

positions in mESC and adult cortex cells (Figure 2.4). I overlapped combined Hi-C 

replicates from adult cortex cells (Shen et al., 2012) and from mESCs (Dixon et al., 

2012) and compared their lengths. Frequently, adjacent mESC TADs overlapped at 

least 30% by cortex TADs were observed to merge into longer cortex TADs (Figure 
2.4A; B). Reciprocally, cortex TADs overlapped at least 30% by mESC TADs were 

observed to split into multiple adjacent mESC TADs (Figure 2.4C). Overlapping 

TADs increase in length and Chromosome 7 TADs decrease in number from mESCs 

to cortex cells, suggesting that TAD boundaries have relaxed over developmental 

time. TAD boundaries tend to merge upon cellular differentiation in additional cell 

types (Meshorer and Misteli, 2006; Melcer and Meshorer, 2010; Gaspar-Maia et al., 

2011; Boya et al., 2017; Battulin et al., 2015). The Capture-C viewpoint-containing 

mESC TADs on Chromosome 7 are usually shorter than the cortex TADs they 

overlap (Figure 2.4D). Even if TAD boundaries are conserved between mESCs and 

E13.5 limb bud cells, however, contacts may still form outside the viewpoint TAD due 

to the dynamic nature of TAD boundaries across different developmental contexts 

(Rodriguez-Carballo et al., 2017), or due to experimental noise. TAD coordinates 

represent an average across a population of cells whose exact boundaries may vary 

(Giorgetti et al., 2014; Liu and Tijan, 2018). 
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Figure 2.4. From mESC to adult cortex cells, TADs on Chromosome 7 tend to merge 
over developmental time. (A) Lengths of cortex TADs and the mESC TADs they overlap 
by at least 30% are plotted. (B) 75% of the mESC TADs overlapped at least 30% by cortex 
TADs can be merged into cortex TADs. Reciprocally, 47% of cortex TADs overlapped at 
least 30% by mESC TADs can be split into multiple adjacent mESC TADs. Cortex and 
mESC TAD boundaries were derived from the combined Hi-C replicates from Dixon et al., 
2012. (C) Multiple short, adjacent TADs in mESCs (blue points) overlapped at least 30% by 
cortex TADs (red points) can often be merged into longer cortex TADs. (D) The Capture 
viewpoint-containing TADs follow the same overall trend as all Chromosome 7 TADs, with 
multiple adjacent mESC TADs tending to merge into larger cortex TADs. 
 

Two studies showed that the majority of putative mouse promoter-enhancer 

contacts occur within the same TAD (Shen et al., 2012; Schoenfelder et al., 2015), 

and this analysis shows that the assigned viewpoint mESC TADs contain a high 

percentage of the promoter contacts. By focusing on the contacts within the 

viewpoint TAD, I increased the stringency of the analysis, limiting the amount of false 

positives – contacts outside the TAD that likely do not represent meaningful 

biological interactions – that could distort the outcome. 

 
Proximity ligation and the confounding effect of distance 
The high proportion of viewpoints within the TAD is confounded by the 

proximity ligation effect (Lajoie et al., 2015). During a Capture assay, the cross-

linked genome is digested into restriction fragments that are subsequently ligated 

together. The fragments closest to the viewpoint on the linear DNA sequence have a 

higher likelihood of ligating to the viewpoint than do more distal fragments. This 

results in a typical profile where the signal is disproportionally strong at the viewpoint 

and decays rapidly over distance. It is visible on 4C-seq contact profiles (Figure 
1.3B) as well as on Hi-C interaction matrices and can be modeled exponentially 
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(Lieberman-Aiden et al., 2009; Wijchers and de Laat, 2011). Peaks that break with 

the signal decay pattern often represent biologically relevant contacts. 

To verify that the Capture-C signal follows the typical signal decay profile and 

that it is likely the result of proximity ligation, I plotted contact frequency over 

distance at the Mylpf viewpoint promoter and, as a control, at a viewpoint located in 

a gene desert (Figure 2.5). If signal decay is linked to the chromatin features found 

around genes, then it may not manifest at gene deserts. If, however, it stems from 

proximity ligation, then it should also be observed at viewpoints located far away 

from gene bodies. 

Both at the Mylpf promoter (Figure 2.5A) and at a distal enhancer (located 

over 200 kbp upstream and 1.5 Mbp downstream of the closest genes) of the Nkx3-2 

gene on Chromosome 5 (Figure 2.5B), there is signal decay within the TAD (R2 = 

0.59 and 0.07, respectively). Since Mylpf is closer to the TAD edge than 96% of 

fragments in the TAD, many bins outside the TAD are closer to the viewpoint than 

within-TAD bins. These outside-TAD bins tend to have high Capture-C signal 

(leftmost grey data points from about 100 kbp to 1 Mbp away from the viewpoint). 

The line of best fit, however, is nearly horizontal (R2 = 0.02) due to low signal in the 

rest of the outside-TAD bins. Likewise, signal decay rate is non-significant (R2 < 

0.01) for outside-TAD bins at the Nkx3-2 enhancer viewpoint. The presence of signal 

decay at a viewpoint in a gene desert means it cannot be attributed to features found 

at genes. Instead, it is likely the result of proximity ligation noise. 

 
 
Figure 2.5. 
Capture-C signal 
decays rapidly 
within the 
viewpoint TAD. 
(A) At Mylpf, 
contact frequency 
(“Normalized 
Promoter 
Contacts”, y-axis) 
is strongly 
negatively 
correlated (R2 = 
0.59) with 
fragment distance 

from the viewpoint (log of distance, x-axis) within the viewpoint TAD (red points; line of best 
fit in dark red). For fragments outside of the TAD (grey points; line of best fit in black), there 
is high Capture-C signal around 100 kbp to 1 Mbp from the viewpoint, but the line of best fit 
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is nearly horizontal (R2 = 0.02) due to low signal in the rest of the outside-TAD bins. (B) 4C 
data from Longshanks (Chapter 3) from E14.5 forelimb bud at the distal Nkx3-2 enhancer, 
located in a gene desert on Chromosome 5, displays significant signal decay within the 
viewpoint TAD (R2 = 0.07) but not outside the TAD (R2 < 0.01). Signal decay in (A) and (B) 
was plotted on the same scale to facilitate visual comparison between the two viewpoints. 
Capture-C signal was normalized across two and 4C across three technical replicates using 
a regularized log transformation (Love et al., 2014). Only one forelimb replicate of each 
viewpoint is plotted. 
 

Modeling Promoter Contact Frequency with ANCOVA 
To understand how the chromatin features explain the variation in Capture-C 

signal, I combined all the chromatin features into a single model. This approach also 

allowed me to account for potential interaction effects that may occur between the 

chromatin features, thus more accurately describing biological conditions. Because 

the genomic features used to predict promoter contact frequency (normalized 

Capture-C signal) include at least one categorical variable – namely, whether a given 

Chromosome 7 bin lies within or outside of the assigned viewpoint TAD, I used 

ANCOVA, or Analysis of Covariance (Eden and Fisher, 1927), to model the Capture-

C signal. The ANCOVA model has the equation: 

 

Normalized Capture-C signal ~ TAD status (Outside | Within) + distance from 

viewpoint + ATAC-seq enrichment + GC content class + H3K27me3 signal + 

H3K27ac signal + H3K4me1 signal + H3K4me3 signal (+ interaction effects). 

 

At the Igf1r viewpoint in Forelimb Replicate 1, I observed that TAD status was 

most highly predictive of promoter contact variance when all Chromosome 7 DpnII 

bins were considered, explaining over 40% of the variance regardless of whether 

pairwise interaction effects were included. When ANCOVA models were generated 

using only the DpnII bins within the TAD, distance explained over 20% of the 

variation. The other variables in the model each explained less than 5% of the 

variation (Figure 2.6). 
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Figure 2.6. Example ANCOVA results at the Igf1r promoter in Forelimb replicate 1 (A) 
with no interaction effects included; (B) with all possible pairwise interaction effects. Grey 
bars depict Type II Analysis of Nested Covariance (ANCOVA) results from all Chromosome 
7 DpnII fragments or bins. Red bars depict ANCOVA results across only the DpnII bins 
located within the same topologically associating domain (TAD) as the Capture-C viewpoint. 
The height of each bar plot reflects how much variation in promoter contact frequency 
(normalized Capture-C signal) that explanatory variable predicts. The explanatory variables 
include TAD location (within or outside the viewpoint TAD), log base 10 of the distance in 
base pairs from the viewpoint, ATAC-seq enrichment, histone profile signatures (H3K4me1, 
H3K4me3, H3K27ac, and H3K27me3), and GC content class as explanatory variables to 
predict the contact frequency, or normalized Capture-C signal. 

 
ANCOVA model outcomes from all the Chromosome 7 viewpoints reveal 

similar trends to those observed at the Igf1r viewpoint. Within the viewpoint TAD, 

promoter contact frequency is strongly distance-dependent. Distance is by far the 

most predictive of all genomic features in the model. Across all viewpoints, the 

median within-TAD percent variation explained by distance is 33.7% (95.9% of the 

variation that can be explained), or 33.2% (96.4% of variation that can be explained) 

if all possible pairwise interaction terms are included in the model. Including or 

excluding pairwise effects does not appear to have a big influence on model 

outcome (Figure 2.7).  
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Figure 2.7. Analysis of Nested 
Covariance (ANCOVA) results for all 
Chromosome 7 Capture-C 
viewpoints. The black boxplots depict 
the amount of variation in promoter 
contact frequency (normalized Capture-
C signal) explained or predicted by each 
explanatory variable when all DpnII bins 
within the viewpoint TAD (topologically 
associating domain) are included in the 
model. The grey boxplots depict the 
model outcome when all possible 
pairwise interactions between 
explanatory variables are included in the 
model. 
 

 
Physical and biochemical properties of contacts with respect to viewpoint 
promoter activity level 

The chromatin features of promoter contacts likely vary with promoter activity 

level, as chromatin has been observed to sequester into active and repressed hubs 

with distinct features (Harmston and Lenhard, 2013). Therefore, I next explored 

whether there were differences in ANCOVA model outcomes across different levels 

of viewpoint promoter activity. To determine whether the types of contacts promoters 

form vary with their expression levels, I assigned the viewpoint promoters to low, 

intermediate, or high expression categories based on their E13.5 forelimb and 

hindlimb RNA-seq levels (Andrey et al., 2017; Figure 2.8). I derived these 

expression categories from the sum of the normalized RNA-seq counts from all 

exons belonging to a viewpoint gene (low expression category genes had a median 

log of the normalized RNA-seq counts of -3.66; intermediate, -1.74; and high, -1.14). 

They predict 30% of the variation in the RNA-seq signal. Viewpoint promoters with 

intermediate expression levels may be in transition, switching from on to off or vice 

versa, or they may be a result of cellular heterogeneity where a high expression level 

in some cells in the limb bud is counteracted by a low level in others. To verify that 

the intermediate expression viewpoint genes are in transition, RNA-seq levels would 

need to be compared across expression stages before and after E13.5. 
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Figure 2.8. Promoter contact features vary with gene expression. (A) Viewpoint genes 
can be categorized by expression level in E13.5 forelimb and hindlimb based on cumulative 
RNA-seq signal. (B and C) Genomic features of promoter contacts differ across expression 
categories. Contacts of promoters with intermediate expression have greater unexplained 
variation, lower distance decay, and higher H3K4me1, GC content class, and ATAC-seq 
correlation. To create the pie charts, percent variation explained by each genomic feature 
was averaged across all viewpoints per expression category. 
 

The directionality and magnitude of the relationship between promoter contact 

frequency and each genomic feature differs across the viewpoints, adding 

heterogeneity to each expression category (Figure 2.9). In accordance with its 

association with active and poised enhancers, H3K4me1 was positively correlated at 

all viewpoint promoters with intermediate to high expression levels, and at most 

promoters with low expression levels. A few viewpoint promoters with low or 

intermediate activity were positively correlated with the repressive mark H3K27me3. 

H3K27ac, which marks active enhancers and promoters, was positively correlated at 

most active and poised promoters. This matches previous findings (Simonis et al., 

2006; Noordermeer et al., 2011, 2014; Vieux-Rochas et al., 2015) that active genes 

interact with open, active chromatin, whereas silent genes interact with inactive 

regions (Andrey et al., 2017). 
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ATAC-seq signal was nearly always positively correlated regardless of 

promoter activity level. In accordance, DNAse hypersensitive sites (DHSs), which 

ATAC-seq reveals, mark and historically have been used to identify all classes of 

CREs (Thurman et al., 2012; Chen et al., 2018) – including silencers, which contact 

repressed promoters (Ogbourne and Antalis, 1998). GC content class was positively 

correlated with signal at some promoters and negatively at others, seemingly 

independently of expression level. H3K4me3, which marks active, poised, and 

bivalent promoters (Heintzman et al., 2007), was negatively correlated with signal at 

nearly all viewpoint promoters. Although promoter-promoter interactions do play a 

role in transcriptional regulation by taking on enhancer-like roles (Kowalczyk  et al., 

2012; Leung et al., 2015) or by sharing cis-regulatory regions with alternate 

promoters of the same gene (Sanyal et al., 2012) or with promoters of genes with 

similar expression domains (Andrey et al., 2017), they likely represent a minority of 

meaningful chromatin interactions (Andersson et al., 2015). 

 

 
 
Figure 2.9. The relationship between promoter contact frequency and each 
explanatory variable differs across viewpoints. Correlation between promoter contact 
frequency (normalized Capture-C signal) and each genomic feature is plotted on the y-axis 
as Spearman’s rho. The Chromosome 7 viewpoints are sorted by expression rank, with 
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viewpoints in red expressed at low levels in E13.5 limb bud; in orange at intermediate, and in 
green at high levels. All four replicates per viewpoint are plotted. 
 

Low, intermediate, and high expression viewpoint genes have different 

averaged ANCOVA outcomes, with distance predicting less promoter contact 

variation at viewpoints with intermediate expression (Figure 2.8B). Besides distance, 

H3K4me1 signal, GC content class, and ATAC-seq signal explain more variation in 

contact frequency at promoters with intermediate expression than at active or silent 

promoters (H3K4me1: 0.7% at silent promoters, 1.9% at intermediate, 1.0% at 

active; GC content class: 0.4% at silent, 1.0% at intermediate, 0.1% at active; ATAC-

seq: 0.2% at silent, 0.7% at intermediate, 0.2% at active) (Figure 2.8C). Intermediate 

promoters, however, have on average more unexplained variation (71%) than do low 

(59%) or high (55%) expression promoters. The contacts they form are less 

constrained by distance from the viewpoint, which explains 25% of the variation on 

average, compared to 39% at silent promoters and 44% at active promoters (Figure 
2.8B). 

 
2.5 Discussion 

Chromosome conformation capture reveals interacting loci, which mediate 

transcriptional regulation. Chromatin features that confer CRE functionality can be 

used to find biologically relevant captured interactions. Through ANCOVA modeling 

of Capture-C signal with seven different genomic features, I characterized promoter 

contacts and how they vary with respect to gene expression. I found a high 

proportion of promoter contacts within the viewpoint TAD when mESC TAD 

boundaries were used as a proxy for the TAD boundaries in E13.5 limb bud, 

although this is potentially confounded by the proximity ligation effect. In line with the 

typically rapid signal decay produced by proximity ligation, distance was most 

predictive of the variation in Capture signal. Intermediate promoters, however, had 

on average less variation explained by distance, and more unexplained variation. 

Intermediate promoters may be transitioning from an active to an inactive state, or 

the reverse. Particularly during development, this switch may need to occur quickly 

in order to establish precise control of gene expression at the right stages and 

sections of the developing limb bud. Therefore, there may be rapid turnover or 

dissociation of the bulky complexes associated with transcriptional activation or 

repression (Swift and Coruzzi, 2017), and promoters in transition may experience 
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less steric hindrance in forming contacts. They may exist in a poised state in which 

they are more promiscuous than active or silent promoters, contacting loci enriched 

for genomic features other than those in the ANCOVA model (Figure 2.10). 

Interactions between poised promoters and enhancers have been observed at the 

Sonic hedgehog (Shh) promoter in anterior mouse limb bud cells, where Shh is not 

detectably transcribed despite contacting a known Shh limb enhancer (Amano et al., 

2009). 

 

 
 
Figure 2.10. Transition promoters are less constrained than silent or active promoters 
in the contacts they form. The ANCOVA results suggest that active and silent promoters 
form fewer contacts than do transition promoters, possibly due to steric hindrance by 
transcriptional or repressive complexes. Curved lines, chromatin loops; blue rings, cohesin; 
colored teardrops, histone modification marks; black arrows, promoters; transparent 
spheres, large chromatin-associated complexes. 
 

This model is supported by the dynamics of chromatin loop formation. 

According to loop extrusion theory, which has now been visualized in real-time in 

yeast (Ganji et al., 2018), loops form when loop extrusion factors such as the 

cohesin ring (in mammals) bind the DNA, bringing non-adjacent loci into contact with 

one another as they translocate along the DNA (Fudenberg et al., 2016). Depleting 

cohesin in human cells increased the average distance between interacting loci in 

the mouse, confirming its critical role in chromatin interactions (Wutz et al., 2017). 

When the extrusion factors encounter a boundary element like CTCF, often at the 

end of a TAD, translocation stalls and the loop cannot proceed beyond the TAD 

boundary. TAD boundaries are enriched not only for CTCF but also for active 

promoters and their associated transcriptional machinery. The latter is hypothesized 

to be capable of itself acting as a boundary element by physically disrupting the 

translocation of cohesin along the DNA (Fudenberg et al., 2016). Active promoters 

themselves, therefore, are subject to steric hindrance which prevents them from 

forming as many connections as transition promoters. 
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At inactive promoters, repressive complexes like the Polycomb Repressive 

Complex (PRC) may likewise contribute to steric hindrance if their dissociation rate 

from the DNA is sufficiently low. On a broader scale, long stretches of repressed 

chromatin interact with one another through the actions of PRC1 and PRC2 (Andrey 

et al., 2017). PRC2 both catalyzes and – in a positive feedback loop which enables it 

to maintain or foster the spread of repressive chromatin – recognizes the 

trimethylation of histone H3, lysine 27 (Berry et al., 2017). Through the spread of 

repressive marks, the chromatin is compartmentalized into laminar-associated 

domains (LADs) and inter-LADs. LADs comprise gene-poor, low GC content, closed 

chromatin localized to the nuclear periphery, whereas inter-LADs comprise gene-

rich, higher GC content, open and active chromatin closer to the center of the 

nucleus (van Steensel and Belmont, 2017). Any Capture-C viewpoints located in 

LADs may be restricted from forming as many contacts due to the higher level of 

chromatin compaction in these territories. In support, 4C-seq in mouse immune cells 

showed that inactive viewpoints contacted fewer loci per chromatin loop than active 

viewpoints (Jiang et al., 2016). 

The ANCOVA models in this work suggest that when attempting to identify 

CREs regulating a gene, one should first consider activity level of the gene – not only 

because chromatin interactions are known to take place between regions with similar 

levels of transcriptional activity (Andrey et al., 2017), but because if a gene of 

interest is expressed at an intermediate level or is poised, then it may be subject to 

fewer constraints than active or silent loci in the contacts it forms. 

If relevant datasets other than those included here are available for the cell 

type of interest, they should be considered when attempting to predict regulatory 

function among promoter contacts. This is because the chromatin features I included 

predict less than half of the variation in Capture signal. If the lack of predictive power 

is because Capture signal is simply too noisy – due to exerimental conditions or to 

cellular heterogeneity within the limb bud (Andrey et al., 2017), including allele-

specific differences (Davies et al., 2016) such as at the imprinted Igf2 locus on 

Chromosome 7, then adding additional chromatin features might only result in 

incremental increases in model fit. However, a study predicting enhancer activity in 

mouse erythroid progenitors found TF occupancy to be a better predictor than either 

chromatin accessibility or histone modifications (Dogan et al., 2015). Two studies 

using chromatin features to predict contacts of active promoters in human cell lines 
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found DNase hypersensitivity and histone modification marks to have some 

predictive power (Roy et al., 2015), in accordance with this work, but also found 

CTCF, cohesin subunit Rad21 (Yang et al., 2017), and TF occupancy to be 

predictive. The abundance of predicted TF binding sites in the genome and the 

tendency of TFs to be highly cell type-specific and follow a complex, sometimes sub-

optimal motif grammar makes accurate computational prediction of their binding sites 

challenging (Spitz and Furlong, 2012; Farley et al., 2015; Khamis et al., 2018; 

Keilwagen et al., 2019), but obtaining ChIP-seq data for each new cell type and TF 

would not be practical. In additon, determination of enhancer output is compounded 

by the cooperation between multiple TFs to out-compete nucleosomes for 

occupancy of the DNA (Long et al., 2016). In the absence of relevant TF binding 

data, consideration of the presence or absence of transcriptional or repressive 

complexes expected to localize at the viewpoint based on viewpoint gene expression 

level should guide the search for CREs. 

 

2.6 Conclusion 
Because the genomic features included in the ANCOVA models in this work 

predict only a small proportion of the variation in promoter contact frequency, future 

work characterizing promoter contacts should focus on other chromatin features that 

may confer cis-regulatory functionality. In particular, chromatin loop formation as it 

relate to the structural and biochemical properties of the DNA is not well understood. 

If two cohesin rings come into contact before either is forced to dissociate from the 

DNA by a boundary element at the end of the TAD, are there properties of the DNA 

– possibly bestowing greater TF binding affinity – that cause one chromatin loop to 

out-compete the other, or do the loops merge into one? As conformation capture 

techniques become even higher resolution, differences across individual cells need 

not be averaged. Indeed, such single-cell studies may reveal subtler trends in 

promoter contacts. In addition, to increase statistical power within each gene 

expression category, further explorations should incorporate many more viewpoints 

so as to determine whether poised promoters consistently display higher promiscuity 

as observed in this work. 
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2.7 Materials and Methods 
Capture-C de-multiplexing and read count normalization 
Publicly available Capture-C Sequence Read Archives from E13.5 forelimb and 
hindlimb (2 replicates each) were downloaded from the NCBI Gene Expression 
Omnibus under accession number GSE84795. Read 1 and Read 2 fastq files were 
derived with fastq-dump (v2.3.1; SRA-Toolkit; NCBI). Forward and reverse reads 
were interleaved with FLASH (v1.2.11). Interleaved reads were in-silico digested with 
DpnII using a custom perl script from the CC Analyser 3 pipeline, 
https://github.com/sudlab/Capture_C_Perl_Scripts. With bwa mem (Li, 2013), 
digested reads were aligned to mouse reference genome mm10 (GRCm38), sorted, 
and indexed. If one DpnII bin overlapped any of a viewpoint’s Capture probe 
coordinates, all bins from that read pair were assigned to that viewpoint. Reads were 
filtered for assembly gaps from the UCSC Table Browser and for  blacklisted regions 
(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-mouse/). Reads 
containing less than a mapping quality score of 20 were removed with samtools view 
(samtools-1.7). With bedtools coverage (v2.22.1), read counts were summed per 
DpnII bin. To minimize proximity ligation noise, reads encompassing the probe span 
(or, for the Ctbp2 viewpoint, each of the two non-adjacent probe spans) and the 
kilobase immediately upstream or downstream of it were removed with bedtools 
intersect (v2.22.1). Read counts were normalized within each pair of replicates using 
a regularized log transformation from the DESeq2 package (v1.18.1) in R (v3.4.1). 
 
TAD assignment 
Each viewpoint was assigned to the topologically associating domain, or TAD, that 
overlapped its Capture probe span. mESC Hi-C domains (Dixon et al., 2012) were 
lifted over from mm9 to mm10 without allowing multi-mapping and were used as a 
proxy for E13.5 limb bud boundaries. 
 
GC content class 
GC content was calculated for each Chromosome 7 DpnII bin using bedtools nuc 
(v2.22.1), and GC content class was calculated by taking the absolute value of the 
standard deviation of all GC content scores across the chromosome. 
 
ATAC-seq fold enrichment 
ATAC-seq from E13.5 limb bud (2 technical replicates) were downloaded from the 
ENCODE Consortium as 50 nucleotide paired-end fastq files 
(https://www.encodeproject.org/experiments/ENCSR896XIN/). Reads were aligned 
to the genome with bowtie2 (v2.3.2) and blacklisted against the same regions as the 
Capture alignments. PCR duplicates were removed with picard-tools (v1.138) and 
alignments with a mapping quality score of less than 20 were excluded with samtools 
(v1.8). Fold enrichment of signal over noise was computed with macs2 
(v2.1.1.20160309), with in-house ATAC-seq reads from genomic DNA, prepared 
according to Buenrostro et al., 2015, as the control. The intervals assigned by macs2 
were merged where overlapping (bedtools merge v2.22.1) and were mapped onto 
the DpnII bins that overlapped at least 50% of their length. The 100th quantile of 
ATAC-seq signal was selected per bin and was residualized for bin length. The fold 
enrichment residuals were averaged across the two ATAC-seq replicates. 
 
ChIP-seq signal 
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Publicly available E13.5 forelimb and hindlimb (1 alignment each) ChIP-seq mm9 
alignments for the histone modification marks H3K27ac, H3K27me3, H3K4me1, and 
H3K4me3 were downloaded from the NCBI Gene Expression Omnibus under 
accession number GSE84795. Overlapping intervals were merged with bedtools 
merge; merged intervals were lifted over to mm10 and parsed onto DpnII bins that 
overlapped them by at least 50%. The 100th quantile of ChIP-seq signal was 
selected for each DpnII bin and residualized for DpnII bin length. Forelimb and 
hindlimb ChIP-seq residuals were used in forelimb and hindlimb Capture-C ANCOVA 
models, respectively. 
 
ANCOVA modeling 
Variation in Capture-C normalized signal was modeled with ANCOVA Type II from 
the R package “cars” (Fox and Weisberg, 2011; v3.0.2; R version 3.4.1). The 
explanatory variables were the TAD status (whether each Chromosome 7 DpnII bin 
lies outside or within the assigned viewpoint TAD); log-transformed distance from 
each DpnII bin midpoint to the midpoint of each viewpoint Capture probe span; GC 
content class; ATAC-seq fold enrichment over genomic DNA; and each of the four 
ChIP-seq histone modification marks for E13.5 forelimb or hindlimb. Models were run 
with all Chromosome 7 DpnII bins and with just those lying within each viewpoint 
TAD. To account for potential interaction effects between explanatory variables, 
each ANCOVA model was run with either no pairwise interactions or all possible 
pairwise interactions. 
 
Viewpoint Proximity to Closest TAD Edge 
The distance in base pairs from the midpoint of each viewpoint’s probe span to the 
closest TAD boundary was calculated with bedtools intersect. Distances were 
normalized by multiplying by 2, then dividing by TAD length (base pairs). The 
resulting value was subtracted from 1 to express the percentile of DpnII bins that 
were farther from the closest TAD edge than the viewpoint-containing DpnII bin. 
 
Capture-C Viewpoint gene expression level 
Publicly available mouse E13.5 forelimb and hindlimb RNA-seq (2 replicates each) 
mm9 (GRC37) bigWig alignments were downloaded from the NCBI Gene 
Expression Omnibus under accession number GSE84795. Coordinates were lifted 
over to mm10; overlapping intervals were merged with bedtools merge. Transcript 
ids were compiled from the UCSC Table Browser for each of the 25 viewpoints, and 
the unique exons for all transcripts of each viewpoint gene were retrieved. RNA-seq 
signal was averaged over each unique merged exon bed interval using bedtools map 
(v2.22.1). The average RNA-seq signal was summed across all unique exons for 
each viewpoint, then rescaled from 0-1 across all viewpoints. This rescaled 
cumulative RNA-seq signal was averaged across all limb bud RNA-seq replicates (2 
replicates per tissue, hindlimb and forelimb). Each viewpoint gene was assigned to 
an expression level category of either low, intermediate, or high expression in E13.5 
limb bud based on the distribution of the log10 RNA-seq values. These expression 
categories explained 30% of variation in the RNA-seq values (ANCOVA Type II 
model). 
 
4C Signal at the Nkx3-2 Enhancer Viewpoint 
For the generation of 4C data, the reader is referred to the Materials & Methods 
section of Chapter 3.  
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2.9 Appendix to Chapter 2 
 
Table 2.A. Chromosome 7 Capture-C Viewpoint Genes. 
Viewpoint 
Id Gene name Chr7 coordinates and gene 

length  

Acan Aggrecan 79.053-79.115 Mbp; 62 kbp  

Atp2a1 ATPase, Ca2+ transporting, cardiac muscle, 
fast twitch 1 126.44-126.46 Mbp (-); 17 kbp  

Ccnd1 Cyclin D1 144.930-144.940 Mbp (-);10 
kbp  

Cebpa CCAAT/enhancer binding protein, alpha 35.119-35.122 Mbp (+); 2.6 
kbp  

Chrdl2 Chordin-like 2 100.006-100.034 Mbp (+); 28 
kbp  

Crym Crystallin, mu 120.186-120.202 Mbp (-); 
15.6 kbp  

Ctbp2 C-terminal binding protein 2 132.987-133.124 Mbp (-); 137 
kbp  

Fgf3 Fibroblast growth factor 3 144.838-144.844 Mbp (+); 6.3 
kbp  

Fgf4 Fibroblast growth factor 4 144.861-144.865 Mbp (+); 3.8 
kbp  

Fgfr2 Fibroblast growth factor receptor 2 120.162-120.267 Mbp (-); 104 
kbp  

Ifitm5 Interferon induced transmembrane protein 5 140.949-140.950 Mbp (-); 1.3 
kbp  

Igf1r Insulin-like growth factor 1 receptor 67.953-68.234 Mbp (+); 281 
kbp  

Igf2 Insulin-like growth factor 2 142.651-142.667 Mbp (-); 16 
kbp  

Lmo1 LIM domain only 1 109.139-109.175 Mbp (-); 
36.6 kbp  

Mki67 Antigen identified by monoclonal antibody Ki 67 135.690-135.716 Mbp (-); 
26.6 kbp  

Mylpf Myosin light chain, phosphorylatable, fast 
skeletal muscle 

127.209-127.214 Mbp (+); 5.4 
kbp  

Myod1 Myogenic differentiation 1 46.376-46.379 Mbp (+); 2.6 
kbp  

Pth Parathyroid hormone 113.386-113.389 Mbp (-); 3.0 
kbp  

Sox6 Sex determining region Y-box 6 115.471-116.039 Mbp (-); 568 
kbp  

Tbx6 T-box 6 126.781-126.786 Mbp (+); 4.1 
kbp  

Tgfb1 Transforming growth factor, beta 1 25.687-25.705 Mbp (+); 17.1 
kbp  

Tnni2 Troponin 1, skeletal, fast 2 142.442-142.444 Mbp (+); 2.6 
kbp  

Tnnt1 Troponin T1, skeletal, slow 4.505-4.516 Mbp (-); 11.4 kbp  

Wnt11 Wingless-type MMTV integration site family, 
member 11 

98.835-98.855 Mbp (+); 19.8 
kbp  

Zfp260 Zinc finger protein 260 30.095-30.108 Mbp (+); 12.8 
kbp  

  



	   68 

Chapter 3: An integrative genomic analysis of the Longshanks selection 
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Abstract 
Evolutionary studies are often limited by missing data that are critical to 

understanding the history of selection. Selection experiments, which reproduce rapid 

evolution under controlled conditions, are excellent tools to study how genomes 

evolve under selection. Here we present a genomic dissection of the Longshanks 

selection experiment, in which mice were selectively bred over 20 generations for 

longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. 

We synthesized evolutionary theory, genome sequences and molecular genetics to 

understand the selection response and found that it involved both polygenic 

adaptation and discrete loci of major effect, with the strongest loci tending to be 

selected in parallel between replicates. We show that selection may favor de-

repression of bone growth through inactivating two limb enhancers of an inhibitor, 

Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect 

individual base-pair changes to the overall selection response. 
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Introduction 
Understanding how populations adapt to a changing environment is an urgent 

challenge of global significance. The problem is especially acute for mammal 

populations, which are often small and fragmented due to widespread habitat loss. 

Such populations often show increased inbreeding, leading to the loss of genetic 

diversity (Hoffmann and Sgrò, 2011). Because beneficial alleles in mammals 

typically come from standing genetic variation rather than new mutations like in 

microbes, this loss of diversity would ultimately impose a limit on the ability of small 

populations to adapt. Nonetheless, mammals respond readily to selection in many 

traits, both in nature and in the laboratory (Darwin, 1859; Gingerich, 2001; Garland 
and Rose, 2009; Keightley et al., 2001). In quantitative genetics, such traits are 

interpreted as the overall effect from a large set of loci, each with an infinitesimally 

small (and undetectable) effect (‘infinitesimal model’). Broadly speaking, the 

infinitesimal model has performed remarkably well across a wide range of selection 

experiments, and the model is the basis for commercial breeding (Walsh and 
Lynch, 2018). However, it remains unclear what type of genomic change is 

associated with rapid response to selection, especially in small populations where 

allele frequency changes can be dominated by random genetic drift. 

 

While a large body of theory exists to describe the birth, rise and eventual fixation of 

adaptive variants under diverse selection scenarios (Maynard Smith and Haigh, 
1974; Barton, 1995; Otto and Barton, 2001; Weissman and Barton, 2012; Crow 
and Kimura, 1965; Hill and Robertson, 1966), few empirical datasets capture 

sufficient detail on the founding conditions and selection regime to allow full 

reconstruction of the selection response. This is particularly problematic in nature, 

where historical samples, environmental measurements and replicates are often 

missing. Selection experiments, which reproduce rapid evolution under controlled 

conditions, are therefore excellent tools to understand response to selection—and by 

extension—adaptive evolution in nature (Garland and Rose, 2009). 

 

Here we describe an integrative, multi-faceted investigation into an artificial selection 

experiment, called Longshanks, in which mice were selected for increased tibia 

length relative to body mass (Marchini et al., 2014). The mammalian limb is an ideal 

model to study the dynamics of complex traits under selection: it is both 
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morphologically complex and functionally diverse, reflecting its adaptive value; and 

limb development has been studied extensively in mammals, birds and fishes as a 

genetic and evolutionary paradigm (Petit et al., 2017). The Longshanks selection 

experiment thus offers the opportunity to study selection response not only from a 

quantitative and population genetics perspective, but also from a developmental 

(Marchini and Rolian, 2018) and genomic perspective. 

 

By design, the Longshanks experiment preserves a nearly complete archive of the 

phenotype (trait measurements) and genotype (via tissue samples) in the pedigree. 

Previously, Marchini et al. investigated how selection was able to overcome 

correlation between tibia length and body mass and produced independent changes 

in tibia length during the first 14 generations of the Longshanks experiment 

(Marchini et al., 2014). Importantly, that study focused on the phenotypes and 

inferred genetic correlations indirectly using the pedigree. The current genomic 

analysis was initiated when the on-going experiment reached generation 17 and 

extends the previous study by integrating both phenotypic and genetic aspects of the 

Longshanks experiment. By sequencing the initial and final genomes, the current 

analysis benefits from direct and highly resolved genetic information. Here, with 

essentially complete information, we wish to answer a number of important questions 

regarding the factors that determine and constrain rapid adaptation: Are the 

observed changes in gene frequency due to selection or random drift? Does rapid 

selection response of a complex trait proceed through innumerable loci of 

infinitesimally small effect, or through a few loci of large effect? What type of 

signature of selection may be associated with this process? Finally, when the same 

trait changes occur independently, do these depend on changes in the same gene(s) 

or the same pathways (parallelism)? 

 

 

Results 
Longshanks selection for longer tibiae 
At the start of the Longshanks experiment, we established three base populations 

with 14 pairs each by sampling from a genetically diverse, commercial mouse stock 

(Hsd:ICR, also known as CD-1; derived from mixed breeding of classical laboratory 

mice [Yalcin et al., 2010]). In two replicate ‘Longshanks’ lines (LS1 and LS2), we 
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bred mice by pairing 16 males and females (and excluding sibling pairs) with the 

longest tibia relative to the cube root of body mass for each sex. This corresponds to 

15–20% of all offspring (only details essential to understanding our analysis are 

summarized here. See Marchini et al., 2014 for a detailed description of the 

breeding scheme). We kept a third Control line (Ctrl) using an identical breeding 

scheme, except that breeders were selected at random. In LS1 and LS2, we 

observed a strong and significant response to selection in tibia length (0.29 and 0.26 

Haldane or standard deviations (s.d.) per generation, from a selection differential of 

0.73 s.d. in LS1 and 0.62 s.d. in LS2). Over 20 generations, selection for longer 

relative tibia length produced increases of 5.27 and 4.81 s.d. in LS1 and LS2, 

respectively (or 12.7% and 13.1% in tibia length), with a modest decrease in body 

mass (−1.5% in LS1 and −3.7% in LS2; Student’s t-test, p<2 × 10−4 and p<1 × 10−8, 

respectively; Figure 3.1B and C; Figure 3.2; n.b. this relationship was in part biased 

by the F1 generation, which were fed a different diet and phenotyped three weeks 

later than later generations, see Marchini et al., 2014 for details). By contrast, Ctrl 

showed no directional change in tibia length or body mass (Figure 3.1C; Student’s t-

test, p>0.05). This approximately 5 s.d. change in 20 generations is rapid compared 

to typical rates observed in nature (Hendry and Kinnison, 1999, but see Grant and 
Grant, 2002) but is in line with responses seen in selection experiments (Gingerich, 
2001; Keightley et al., 2001; Falconer and Mackay, 1996; Pitchers et al., 2014). 

 

Simulating selection response: infinitesimal model with linkage 
The rapid but generally smooth increase in tibia length in Longshanks is typically 

interpreted as evidence for a highly dispersed genetic architecture with no 

individually important loci contributing to the selection response. This is classically 

described under quantitative genetics as the infinitesimal model. Crucially, the 

appropriate null hypothesis for the genomic response here should capture “polygenic 

adaptation” rather than a neutral model. We therefore developed a simulation that 

faithfully recapitulates the artificial selection experiment by integrating the trait 

measurements, selection regime, pedigree and genetic diversity of the Longshanks 

selection experiment, in order to generate an accurate expectation for the genomic 

response. Using the actual pedigree and trait measurements, we mapped fitness 

onto tibia length T and cube-root body mass B as a single composite trait ln(TBϕ). 

We estimated ϕ from actual data as −0.57, such that the ranking of breeders closely 
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matched the actual composite ranking used to select breeders in the selection 

experiment, based on T and B separately (Marchini et al., 2014) (Figure 3.3A). We 

assumed a maximally polygenic genetic architecture using an “infinitesimal model 

with linkage” (abbreviated here as HINF), under which the trait is controlled by very 

many loci, each of infinitesimally small effect (see Appendix for details). Results from 

simulations seeded with actual genotypes or haplotypes showed that overall, the 

predicted increase in inbreeding closely matched the observed data (Figure 3.3B). 

We tested models with varying selection intensity and initial linkage disequilibrium 

(LD), and for each, ran 100 simulated replicates to determine the significance of 

changes in allele frequency (Figure 3.3C-E). This flexible quantitative genetics 

framework allowed us to explore possible changes in genetic diversity over 17 

generations of breeding under strong selection. 

 

In simulations, we followed blocks of genomes as they were passed down the 

pedigree. In order to compare with observations, we seeded the initial genomes with 

single nucleotide polymorphisms (SNPs) in the same number and initial frequencies 

as the data. We observed much more variation between chromosomes in overall 

inbreeding (Figure 3.3B) and in the distribution of allele frequencies (Figure 3.5B) 

than expected from simulations in which the ancestral SNPs were initially in linkage 

equilibrium. This can be explained by linkage disequilibrium (LD) between the 

ancestral SNPs, which greatly increases random variation. Therefore, we based our 

significance threshold tests on simulations that were seeded with SNPs drawn with 

LD consistent with the initial haplotypes (Figure 3.3C and E; see Appendix). 

 

Because our simulations assume infinitesimal effects of loci, allele frequency shifts 

exceeding this stringent threshold would suggest that discrete loci contribute 

significantly to the selection response. An excess of such loci in either a single LS 

replicate or in parallel would thus imply a mixed genetic architecture of a few large-

effect loci amid an infinitesimal background. 

 

Sequencing the Longshanks mice reveals genomic signatures of selection 
To detect the genomic changes in the actual Longshanks experiment, we sequenced 

all individuals of the founder (F0) and 17th generation (F17) to an average of 2.91-

fold coverage (range: 0.73–20.6×; n = 169 with <10% missing F0 individuals; 
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Supplementary file 1). Across the three lines, we found similar levels of diversity, 

with an average of 6.7 million (M) segregating SNPs (approximately 0.025%, or 1 

SNP per four kbp; Supplementary file 2; Figure 3.5A and Figure 3.6). We checked 

the founder populations to confirm negligible divergence between the three founder 

populations (across-line FST on the order of 1 × 10−4), which increased to 0.18 at F17 

(Supplementary file 2). This is consistent with random sampling from an outbred 

breeding stock. By F17, the number of segregating SNPs dropped to around 5.8 M 

(Supplementary file 2). This 13% drop in diversity (0.9M SNPs genome-wide) is 

predicted by drift. Our simulations confirmed this and moreover, showed that 

selection contributed negligibly to the drop in diversity (Appendix, Figure 3.3B, D). 

 

We conclude that despite the strong selection on the LS lines, there was little 

perturbation to genome-wide diversity. Indeed, the changes in diversity in 17 

generations were remarkably similar in all three lines, despite Ctrl not having 

experienced selection on relative tibia length (Figure 3.5A). Hence, and consistent 

with our simulation results (Figure 3.3B,D), changes in global genome diversity had 

little power to distinguish selection from neutral drift despite the strong phenotypic 

selection response. 

 

We next asked whether specific loci reveal more definitive differences between the 

LS replicates and Ctrl (and from infinitesimal predictions). We calculated ∆z2, the 

square of an arcsine transformed allele frequency difference between F0 and F17; 

this has an expected variance of 1/2Ne per generation, independent of starting 

frequency, and ranges from 0 to π2. We averaged ∆z2 within 10 kbp windows (see 

Methods for details), and found 169 windows belonging to eight clusters (i.e., loci) 

that had significant shifts in allele frequency in LS1 and/or LS2 (corresponding to 9 

and 164 clustered windows respectively at p≤0.05 under HINF, max LD; ∆z2 ≥0.33 π2; 

genome-wide ∆z2 = 0.02 ± 0.03 π2; Figure 3.4; Figure 3.3D, Figure 3.6, Figure 3.7; 

see Methods for details) and 8 windows in three clusters in Ctrl (genome-wide ∆z2 = 

0.01 ± 0.02 π2). The eight loci in Longshanks each overlapped between 2 to 179 

genes and together contained 11 candidate genes with known roles in bone, 

cartilage and/or limb development (e.g., Nkx3-2 and Sox9; Table 3.1; Figure 3.7, 

Figure 3.8). Four out of the eight loci contain genes with a ‘short tibia’ or ‘short limb’ 

knockout phenotype (Table 3.1; p≤0.032 from 1000 permutations, see Methods for 
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details). Of the broader set of genes at these loci with any limb knockout 

phenotypes, only fibrillin 2 (Fbn2) is polymorphic for SNPs coding for different amino 

acids, suggesting that for the majority of loci with large shifts in allele frequency, 

gene regulation was likely important in the selection response (Figure 3.8; 

Supplementary file 3; see Appendix for further analyses on enrichment in gene 

functions, protein-coding vs. cis-acting changes and clustering with loci affecting 

human height). 

 

Taken together, two major observations stand out from our genomic survey. One, a 

polygenic, infinitesimal selection model with strong LD among marker SNPs 

performed better than moderate LD or no LD (Figure 3.3E); and two, we 

nevertheless find more discrete loci in LS1 and LS2 than in Ctrl, beyond the 

significance threshold set by the infinitesimal model (Figure 3.4; Figure 3.6). Thus, 

we conclude that although the genetic basis of the selection response in the 

Longshanks experiment may be largely polygenic, evidence strongly suggests 

discrete loci with major effect, even when each line is considered separately. 

 

We next tested the repeatability of the selection response at the gene/locus level 

using the two LS replicates. If the founding populations shared the same selectively 

favored variants, we may observe parallelism or co-incident selective sweeps, as 

long as selection could overcome random drift. Indeed, the ∆z2 profiles of LS1 and 

LS2 were more similar to each other than to Ctrl (Figure 3.4 and 3.9A; Figure 3.10; 

Pearson’s correlation in ∆z2 from 10 kbp windows: LS1–LS2: 0.21 vs. LS1–Ctrl: 0.06 

and LS2–Ctrl: 0.05). Whereas previous genomic studies with multiple natural or 

artificial selection replicates focused mainly on detecting parallel loci (Burke et al., 
2010; Jones et al., 2012; Chan et al., 2012; Kelly and Hughes, 2018), here we 

have the possibility to quantify parallelism and determine the selection value of a 

given locus. Six out of eight significant loci at the HINF, max LD threshold were line-

specific, even though all eight selected alleles were present in the F0 generation in 

both lines. This prevalence of line-specific loci was consistent under different 

significance thresholds. However, the two remaining loci that ranked first and second 

by selection coefficient were parallel, both with s > 0.3 (Figure 3B; note that as 

outliers, the selection coefficient may be substantially overestimated, but their rank 



	   76 

order should remain the same), supporting the idea that the probability of parallelism 

can be high among those loci with the greatest selection advantage (Orr, 2005). 

 

Finding just two parallel loci out of 8 discrete loci may appear to be low, given the 

genetic similarity in the founding generation and the identical selection applied to 

both Longshanks replicates. However, one should bear in mind the very many 

genetic paths to increasing tibia length under an infinitesimal model, and that the 

effect of drift is expected to be very strong in these small populations. In larger 

populations, the shift in the balance from drift to selection should result in selection 

being able to favor increasingly subtle variants and thus produce a greater proportion 

of parallel loci. However, we expect the trend of parallelism being enriched among 

the top loci to hold. 

 

In contrast to the subtle differences within each line in changes in global diversity 

over 17 generations (Figure 3.4 and Figure 3.6), we found the signature of 

parallelism to be significantly enriched in the comparison between the selected 

replicates (χ2 test, LS1–LS2: p≤1 × 10−10), as opposed to comparisons between 

each selected line and Ctrl (LS1–Ctrl: p>0.01 and LS2–Ctrl: p>0.2, both non-

significant after correcting for multiple testing), or between simulated replicates 

(Figure 3.10; see Appendix for details). Because the parallel selected loci between 

LS1 and LS2 have the highest selection coefficients and parallelism is not generally 

expected in our populations, these loci provide the strongest evidence for the role of 

discrete major loci. As such, the top-ranked parallel locus is the prime candidate for 

molecular dissection (see Figure 3.12 and Appendix ‘Molecular dissection of Gli3’ 

for an additional a priori candidate locus with known limb function). 

 

Molecular dissection of the Nkx3-2 locus highlights cis-acting changes 
Between the two major parallel loci, we chose the locus on chromosome 5 (Chr5) at 

41–42 Mbp for functional validation because it showed the strongest estimated 

selection coefficient, its signature of selection was clear, and crucially for functional 

characterization, it contains only three genes, including Nkx3-2 (also known as 

Bapx1), a known regulator of bone maturation (Figure 3.4 and 3.11A) (Provot et al., 
2006). At this locus, the pattern of variation resembles a selective sweep spanning 1 

Mbp (Figure 3.11A). Comparison between F0 and F17 individuals revealed no 
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recombinant in this entire region (Figure 3.15A, top panel), precluding fine-mapping 

using recombinants. We then analyzed the genes in this region to identify the likely 

target(s) of selection. First, we determined that no coding changes existed for either 

Rab28 or Nkx3-2, the two genes located within the topologically associating domain 

(TAD, which mark chromosome segments with shared gene regulatory logic) (Dixon 
et al., 2012). We then performed in situ hybridization and detected robust expression 

of Nkx3-2 and Rab28 in the developing fore- and hind limb buds of Ctrl, LS1 and LS2 

E12.5, in a domain broadly overlapping the presumptive zeugopod, the region 

including the tibia (Figure 3.13B). A third gene, Bod1l, straddled the TAD boundary 

with its promoter located in the neighboring TAD, making its regulation by sequences 

in the selected locus unlikely. Consistent with this, Bod1l showed only weak or 

undetectable expression in the developing limb bud (Figure 3.13A). We next 

combined ENCODE chromatin profiles and our own ATAC-Seq data to identify limb 

enhancers in the focal TAD. Here we found three novel enhancer candidates (N1, 

N2 and N3) carrying three, one and three SNPs respectively, all of which showed 

significant allele frequency shifts in LS1 and LS2 (Figure 3.11B and C; Figure 
3.15A). Chromosome conformation capture assays showed that the N1 and N3 

sequences formed long-range looping contacts with the Nkx3-2 promoter—a 

hallmark of enhancers—despite as much as 600 kbp of intervening sequence 

(Figure 3.11B). We next used transgenic reporter assays to determine whether 

these sequences could drive expression in the limbs. Here, we were not only 

interested in whether the sequence encoded enhancer activity, but specifically 

whether the SNPs would affect the activity (Figure 3.11C and D). An examination of 

the predicted transcription factor binding sites showed that both the N1 and N3 

enhancers contain multiple SNPs with consistent directional impact on the putative 

enhancer activity (Figure 3.11C). In contrast, the N2 enhancer contains only a single 

SNP and is predicted to have inconsistent effect on its activity. We therefore 

excluded the N2 enhancer from further testing. We found that the F0 alleles of the 

N1 and N3 enhancers (three SNPs each in about one kbp) drove robust and 

consistent lacZ expression in the developing limb buds (N1 and N3) as well as in 

expanded trunk domains (N3) at E12.5 (Figure 3.11E). In contrast, transgenic 

reporters carrying the selected F17 alleles of the N1 and N3 enhancers drove 

consistently weak, nearly undetectable lacZ expression (Figure 3.11E). Thus, 

switching from the F0 to the F17 enhancer alleles led to a nearly complete loss in 
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activity (‘loss-of-function’) at developmental stage E12.5. This is consistent with the 

role of Nkx3-2 as a repressor in long bone maturation (Provot et al., 2006). It should 

be noted that even though our selective regime favored an increase in the target 

phenotype (tibia length), at the molecular level we expect advantageous loss- and 

gain-of-function variants to be equally likely favored by selection. In fact, in an 

additional functional validation example at the Gli3 locus, we found a gain-of-function 

enhancer variant that may have been favored at that locus (see Figure 3.12 and 

Appendix ‘Molecular dissection of Gli3’). 

 

At the Nkx3-2 locus, we hypothesize that the F17 allele causes de-repression of 

bone and/or cartilage formation by reducing enhancer activity and Nkx3-2 

expression. Crucially, the F0 N1 enhancer showed activity that presages future long 

bone cartilage condensation in the limb (Figure 3.11E). That is, the observed 

expression pattern recalls previous results that suggest that undetected early 

expression of Nkx3-2 may mark the boundaries and size of limb bone precursors, 

including the tibia (Sivakamasundari et al., 2012). Conversely, over-expression of 

Nkx3-2 has been shown to cause shortened tibia (even loss) in mice (Bren-Mattison 
et al., 2011; Tribioli and Lufkin, 2006). In humans, homozygous frameshift 

mutations in NKX3-2 cause the rare disorder spondylo-megaepiphyseal-

metaphyseal dysplasia (SMMD; OMIM: 613330), which is characterized by short-

trunk, long-limbed dwarfism and bow-leggedness (Hellemans et al., 2009). The 

affected bones in SMMD patients broadly correspond to the expression domains of 

the two novel N1 (limbs) and N3 (limbs and trunk) enhancers. Instead of wholesale 

loss of Nkx3-2 expression, which would have been lethal in mice (Akazawa et al., 
2000) or likely cause major defects similar to SMMD patients (Hellemans et al., 
2009), our in situ hybridization data did not reveal qualitative differences in Nkx3-2 

expression domains between Ctrl or LS embryos (Figure 3.13B). Taken together, 

our results recapitulate the key features of a cis-acting mode of adaptation: Nkx3-2 is 

a broadly expressed pleiotropic transcription factor that is lethal when knocked out 

(Akazawa et al., 2000). We found no amino acid changes between the F0 and F17 

alleles that could impact protein function. Rather, selection favored changes in 

tissue-specific expression by modular enhancers. By combining population genetics, 

functional genomics and developmental genetic techniques, we were able to dissect 

a megabase-long locus and present data supporting the identification of up to six 
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candidate quantitative trait nucleotides (QTNs). In mice, this represents a rare 

example of genetic dissection of a trait to the base-pair level. 

 

Linking molecular mechanisms to evolutionary consequence 
We next aimed to determine the evolutionary relevance of the Nkx3-2 enhancer 

variants at the molecular and the population levels. At the strongly expressed N3/F0 

‘trunk and limb’ enhancer, we note that the SNPs in the F17 selected allele lead to 

disrupted Nkx3-1 and Nkx3-2 binding sites (Figure 3.11C and 3.14A; UNIPROBE 

database [Berger et al., 2008]). This suggests that the selected SNPs may disrupt 

an auto-feedback loop to decrease Nkx3-2 activity in the limb bud and trunk domains 

(Figure 3.14A). Using a GFP transgenic reporter assay in stickleback fish embryos, 

we found that the mouse N1/F0 enhancer allele was capable of driving expression in 

the distal cells but not in the fin rays of the developing fins (Figure 3.14A). This 

pattern recapitulates fin expression of nkx3.2 in fish, which gives rise to 

endochondral radials (homologous to ulna/tibia in mice) (Crotwell and Mabee, 
2007). Our results suggest that strong selection may have favored the weaker 

N1/F17 and N3/F17 enhancer alleles in the context of the Longshanks selection 

regime despite the deep functional conservation of the F0 variants. 

 

Using theory and simulations, we went beyond qualitative molecular dissection to 

quantitatively estimate the selection coefficient at the Nkx3-2 locus and its 

contribution to the total selection response in the Longshanks mice. We retraced the 

selective sweep of the Nkx3-2 N1 and N3 alleles through targeted genotyping in 

1569 mice across all 20 generations. The selected allele steadily increased from 

around 0.17 to 0.85 in LS1 and 0.98 in LS2 but fluctuated around 0.25 in Ctrl (Figure 
3.14B). We estimated that such a change of around 0.7 in allele frequency would 

correspond to a selection coefficient s of ~0.24 ± 0.12 at this locus (Figure 3.15B; 

see Appendix section on ‘Estimating selection coefficient of the top-ranking locus, 

Nkx3-2, from changes in allele frequency’). By extending our simulation framework to 

allow for a major locus against an infinitesimal background, we find that the Nkx3-2 

locus would contribute 9.4% of the total selection response (limits 3.6–15.5%; see 

Appendix section ‘Estimating selection coefficient’ for details) in order to produce a 

shift of 0.7 in allele frequency over 17 generations. To avoid inflation stemming from 

estimating from outliers, we also independently estimated the contribution of the 
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Nkx3-2 locus using a linear mixed animal model based on the full genotyped series 

mentioned above (see Appendix section ‘Estimating selection coefficient, animal 

model’ for details). Using this alternative approach, we estimated that each selected 

allele increases tibia length by 0.36% (N = 1569, 95% conf. int.: 0.07–0.64%, 

p=0.0171). Multiplying the effect with the increase in the allele frequency suggests 

that the Nkx3-2 locus alone would account for approximately 4% of the overall 12.9% 

increase in tibia length. This lower estimate of around 4% is nonetheless within the 

bounds of the estimate from simulations. Together, both approaches indicate that the 

Nkx3-2 locus contributes substantially to the selection response. 

 

 

Discussion 
A defining task of our time is to understand the factors that determine and constrain 

how small populations respond to sudden environmental changes. Here, we analyze 

the replicated and controlled Longshanks experiment to characterize the genomic 

changes that occur as small experimental populations respond to selection. 

 

An important conclusion from the Longshanks experiment is that selection response 

can be steady and robust even in extremely bottlenecked populations. That is, we 

found that tibia length increased readily and repeatedly in response to selection even 

with as few as 14–16 breeding pairs per generation. The sustained response was 

possible because the lines were founded with enough standing variation, and 

generation 17 was still only a fraction of the way to the expected limit for the 

selection response at ~2Ne generations (Robertson, 1960), estimated here to be 

around 90 (see legend for Figure 3.3B; Appendix on ‘Estimating the selection 

coefficient’). Although other selective breeding studies using a similar base 

population of mice encountered selection limits at around generation 20–25 (possibly 

due to countervailing selection rather than loss of genetic variance) for high voluntary 

wheel running behavior (Careau et al., 2013) and for nest-building behavior (Bult 
and Lynch, 2000), here all evidence suggests that the Longshanks mice should 

continue to show increases in tibia length for many more generations. 

 

The estimated Ne of 46 in the Longshanks experiment, while small, is comparable to 

those in natural populations like the Soay sheep (McRae et al., 2005), Darwin’s 
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finches (Grant and Grant, 1992) or Tasmanian devils (Epstein et al., 2016) (this 

last study documents a rapid and parallel evolutionary response to transmissible 

tumors). These populations span a wide range of time in sustained bottlenecking, 

from the most recent in Tasmanian devils, to likely many millions of years in Darwin’s 

finches. Accordingly, we also expect very different dynamics during short- vs. long-

term selection response: for a short bout of selection, such as the 20 generations 

analyzed in this study, selection response depends overwhelmingly on standing 

genetic variation, with little to no contribution from de novo mutations (Hill, 1982; 

Weber and Diggins, 1990). Over the long term, however, de novo mutations would 

contribute increasingly to selection response. In the Longshanks experiment, we 

observe a robust early response to selection (Figure 3.1B and Figure 3.2), and a 

gradual decrease in sequence diversity, consistent with the effect of drift (Figure 
3.3B and Figure 3.5A, Supplementary file 2). There has long been broad empirical 

support for adaptation from standing genetic variation in nature (Jones et al., 2012; 

Epstein et al., 2016; Hancock et al., 2011) and breeding (Sheng et al., 2015). At 

least in the short-run, our result demonstrating robust selection response in the 

Longshanks experiment provides grounds for some optimism regarding the ability of 

populations to respond rapidly to changes in their environment. 

 

By combining pedigree records with sequencing of founder individuals, our data had 

sufficient detail to allow precise modeling of trait response, with predicted shifts in 

allele frequency distribution that closely matched our results (e.g. Figure 3.3D). 

Furthermore, we functionally validated loci that showed allele frequency shifts 

outside the model’s predictions and found key enhancers of major effect. Connecting 

trait changes to allele frequency changes at specific loci has been a longstanding 

objective in selection experiments, with a number of notable early attempts (e.g., 

Keightley et al., 1996). To date, we know of only a few studies that attempt to 

explicitly link traits with changes in allele frequencies (Kessner and Novembre, 
2015; Rice and Townsend, 2012; Chen et al., 2019; Nuzhdin et al., 1999) and 

none have systematically tested the underlying architecture against an infinitesimal 

background. Here, our results imply a mixed genetic architecture with a few discrete 

loci of large effect amid an infinitesimal background. It remains to be seen whether 

other evolve-and-resequence (E&R) studies, with different selection pressures and 

population parameters, may reveal similar results. 
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To put our finding of a mixed genetic architecture into perspective, it is worth noting 

that the infinitesimal model is still the most predictive model by far in practical 

quantitative genetics, for diverse domesticated species from cattle to crops, despite 

its intrinsically unrealistic assumptions (Hill et al., 2008; Lynch and Walsh, 1998; 

Hill and Zhang, 2012). In general, current genomic data for many traits is consistent 

with a very large number of loci, each with a small effect. From a practical point of 

view, however, the use of an infinitesimal model does not preclude the presence or 

indeed the importance of a few major effect loci. Rather, it simply assumes that they 

are rare enough to allow reasonable model fit (Walsh and Lynch, 2018, page 878). 

Here, we note that it is actually not clear how one might parameterize a generally 

applicable predictive oligogenic model with more than a single major effect locus. In 

this study, while we consider the most likely genetic architecture underlying selection 

response for tibia length to be a small number of major effect loci together with a 

polygenic background, we cannot reject other alternative models that could also 

account for the observed response, such as an effectively infinitesimal model with 

linkage, as well as models with a few major trait loci. 

 

Among other classical examples of complex traits, such as height or body weight, 

that may have been subjected to selection, we observe a range of genetic 

architectures in ways often tightly connected to their population size and/or selection 

history. Height in humans is often cited as the classical complex trait under possible 

selection of unknown (and much debated) intensity (see Turchin et al., 2012; Berg 
and Coop, 2014; Barton et al., 2019). It shows high heritability and a highly 

dispersed genetic architecture (with the top-ranked locus accounting for only 0.8% of 

the variation explained in cosmopolitan European populations) (Weedon et al., 
2007; Wood et al., 2014). In contrast, as few as 4 to 6 loci account for 83% and 50% 

of the variation in height in horses and dogs, respectively (Makvandi-Nejad et al., 
2012; Rimbault et al., 2013). In both horses and dogs, selection has been strong 

and sustained, and breed-specific populations tend to be small. Interestingly, and in 

line with our experiment, the major allele at the IGF1 locus stems from a standing 

genetic variant, despite many factors that may theoretically favor large-effect de 

novo mutations (Sutter et al., 2007). In chickens, modern breeding practice and 

selection from large populations yielded a highly polygenic genetic architecture for 

body weight, with some of the best empirical evidence for epistasis (Carlborg et al., 
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2006; Wahlberg et al., 2009; Rubin et al., 2010; Pettersson et al., 2013). Similarly, 

results from many selection experiments in Drosophila suggest that the genetic 

architecture underlying selection response may involve many genes (Jha et al., 
2015; Reeves and Tautz, 2017; Orozco-terWengel et al., 2012; Turner et al., 
2011). By contrast, the extreme tail of the effect size distribution (as inferred from 

∆z2) from the Longshanks experiment appears to account for a substantial part of the 

selection response, presumably due to the combined effects of relatively low 

diversity in commercial mouse stocks and the small founding populations. But unlike 

these previous QTL studies or selection experiments, in which either the genetic 

architecture of a trait or the selection value were estimated separately, sometimes 

from only few parental individuals or lines, E&R studies sample a much broader pool 

of alleles and continually compete them against each other. Thus, our approach 

allowed simultaneous inference of genetic architecture and distribution of effect 

sizes, is more likely to be representative of the population at large, and is more akin 

to genome-wide association studies (GWAS), except that here we can also directly 

connect a trait to its selective value and capture the trajectory of any given allele. 

 

Parallel evolution is often seen as a hallmark for detecting selection (Chan et al., 
2012; Schluter et al., 2004; Chan et al., 2010; Martin and Orgogozo, 2013). We 

investigated the factors that contribute to parallelism in allele frequency shifts over 

17 generations by contrasting the two Longshanks replicates against the Control 

line. However, we observed little parallelism between selected lines and Ctrl, or 

between simulated replicates under selection, even though the simulated haplotypes 

were sampled directly from actual founders. This underscores that parallelism 

depends on both shared selection pressure (absent in Ctrl) and the availability of 

large-effect loci that confer a substantial selection advantage (absent under the 

infinitesimal model; Figure 3.9; Figure 3.10). With increasing population size, 

selection would be better able to detect variants with more subtle effects. This would 

in turn lower the threshold beyond which the selective advantage of an allele would 

become deterministic, that is, exhibit parallelism. 

 

Through in-depth dissection of the Nkx3-2 locus, our data show in fine detail how the 

selective value of standing variants depends strongly on the selection regime: the 

originally common F0 variant of the N1 enhancer shows deep functional 
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conservation and can evidently recapitulate fin nkx3.2 expression in fishes (Figure 
3.14A). Yet, in the Longshanks experiment selection strongly favored the weaker 

allele (Figure 3.14B). In fact, our molecular dissection of two loci show that both 

gain-of-function (Gli3) and loss-of-function (Nkx3-2) variants could be favored by 

selection (Figure 3.11E and 3.14A; Figure 3.12D). Through synthesis of multiple 

lines of evidence, our work uncovered the key role of Nkx3-2, which was not an 

obvious candidate gene like Gli3 due to the lack of abnormal limb phenotype in 

Nkx3-2 knockout mice. To our surprise, the same loss of NKX3-2 function in human 

SMMD patients manifests in opposite ways in different bone types as short trunk and 

long limbs (Hellemans et al., 2009). This matches the expression domains of our N1 

(limb) and N3 (limb and trunk) enhancers (Figure 3.14A). Evidently, in the absence 

of lethal coding mutations, the F17 haplotype was doubly beneficial at both 

enhancers for the limb and potentially also trunk target tissues under the novel 

selection regime in the Longshanks selection experiment. We estimate that these 

enhancer variants, along with any other tightly linked beneficial SNPs, segregate as 

a single locus, which in turn contributes ~10% of the overall selection response. 

 

Despite our efforts to uncover the mechanism underlying the selective advantage of 

the Nkx3-2 locus, much remains unknown. For example, it remains unclear how 

such a major allele could segregate in the general mouse stock (and as the 

reference C57BL/6J allele, no less). It could be that this allele has the same effect in 

the general mouse population but is conditionally neutral under non-selective 

breeding and simply escaped notice. However, our preliminary exploration in a panel 

of C57BL/6-by-DBA/2 (‘BXD’) mice suggested otherwise: mapping of tibia length or 

mineral density did not reveal this locus as a major QTL determining tibia length 

(unpublished data kindly provided by Weikuan Gu), suggesting that this allele’s effect 

on tibia length may depend on the genetic background. Alternatively, the broader 

C57BL/6 allele could be linked to a compensatory mutation that became uncoupled 

among the founders of the Longshanks lines. Finally, although we do observe the 

specific N1 and N3 SNP positions as variable across the rodent and indeed the 

broader mammalian lineages, further work is needed to determine their effect, if any, 

on limb development. 
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Conclusion 
Using the Longshanks selection experiment and synthesizing theory, empirical data 

and molecular genetics, we show that it is possible to identify some of the individual 

SNPs that have contributed to the response to selection on morphology. In 

particular, discrete, large-effect loci are revealed by their parallel response. Further 

work should focus on dissecting the mechanisms behind the dynamics of selective 

sweeps and/or polygenic adaptation by re-sequencing the entire selection pedigree, 

testing how the selection response depends on the genetic architecture, and the 

extent to which linkage places a fundamental limit on our inference of selection. 

Improved understanding in these areas may have broad implications for 

conservation, rapid adaptation to climate change and quantitative genetics in 

medicine, agriculture and in nature. 

 
 
Materials and methods 
Animal care and use 
All experimental procedures described in this study have been approved by the 
applicable University institutional ethics committee for animal welfare at the 
University of Calgary (HSACC Protocols M08146 and AC13-0077); or local 
competent authority: Landesdirektion Sachsen, Germany, permit number 24–
9168.11-9/2012-5. 
 
Reference genome assembly 
All co-ordinates in the mouse genome refer to Mus musculus reference mm10, which 
is derived from GRCm38. 
 
Code and data availability 
Sequence data have been deposited in the SRA database under accession number 
SRP165718 and GEO under GSE121564, GSE121565 and GSE121566. Non-
sequence data have been deposited at Dryad, doi:10.5061/dryad.0q2h6tk. Analytical 
code and additional notes have been deposited in the following repository: 
https://github.com/evolgenomics/Longshanks (Evolgenomics, 2019; copy archived 
at https://github.com/elifesciences-publications/Longshanks). Additional raw data 
and code are hosted via our institute's FTP servers at 
http://ftp.tuebingen.mpg.de/fml/ag-chan/Longshanks/. 
 
Pedigree data 
Tibia length and body weight phenotypes were measured as previously described 
(Marchini et al., 2014). A total of 1332 Control, 3054 LS1, and 3101 LS2 individuals 
were recorded. Five outlier individuals with a skeletal dysplasia of unknown etiology 
were removed from LS2 and excluded from further analysis. Missing data in LS2 
were filled in with random individuals that best matched the pedigree. Trait data were 
analyzed to determine response to selection based on the measured traits and their 
rank orders based on the selection index. 



	   86 

Simulations 
Simulations were based on the actual pedigree and selection scheme, following one 
chromosome at a time. Each chromosome was represented by a set of junctions, 
which recorded the boundaries between genomes originating from different founder 
genomes; at the end, the SNP genotype was reconstructed by seeding each block of 
genome with the appropriate ancestral haplotype. This procedure is much more 
efficient than following each of the very large number of SNP markers. Crossovers 
were uniformly distributed, at a rate equal to the map length (Cox et al., 2009). Trait 
value was determined by a component due to an infinitesimal background (Vg); a 
component determined by the sum of effects of 104 evenly spaced discrete loci (Vs); 
and a Gaussian non-genetic component (Ve). The two genetic components had 
variance proportional to the corresponding map length, and the heritability was 
estimated from the observed trait values (see Appendix section ‘Major 
considerations’). In each generation, the actual number of male and female offspring 
were generated from each breeding pair, and the male and female with the largest 
trait value were chosen to breed. 
 
SNP genotypes were assigned to the founder genomes with their observed 
frequencies. However, to reproduce the correct variability requires that we assign 
founder haplotypes. This is not straightforward, because low-coverage individual 
genotypes cannot be phased reliably, and heterozygotes are frequently mis-called as 
homozygotes. We compared three procedures, which were applied within intervals 
that share the same ancestry: assigning haplotypes in linkage equilibrium (LE, or ‘no 
LD’); assigning the two alleles at heterozygous sites in each individual to its two 
haplotypes at random, which minimizes linkage disequilibrium but is consistent with 
observed diploid genotypes (‘min LD’); and assigning alleles at heterozygous sites in 
each individual to the ‘reference’ and ‘alternate’ haplotype consistently within an 
interval, which maximizes linkage disequilibrium (‘max LD’) (Figure 3.3C). For 
details, see legend in Figure 3.3. 
 
Significance thresholds 
To obtain significance thresholds, we summarized the genome-wide maximum ∆z2 
shift for each replicate of the simulated LS1 and LS2 lines, averaged within 10 kb 
windows, and grouped by the selection intensity and extent of linkage disequilibrium 
(LD). From this distribution of genome-wide maximum ∆z2 we obtained the critical 
value for the corresponding significance threshold (typically the 95th quantile or 
p=0.05) under each selection and LD model (Figure 3.9A; Figure 3.3E). This 
procedure controls for the effect of linkage and hitchhiking, line-specific pedigree 
structure, and selection strength. 
 
Sequencing, genotyping and phasing pipeline 
Sequencing libraries for high-throughput sequencing were generated using TruSeq 
or Nextera DNA Library Prep Kits (Illumina, Inc, San Diego, USA) according to 
manufacturer’s recommendations or using equivalent Tn5 transposase expressed in-
house as previously described (Picelli et al., 2014). Briefly, genomic DNA was 
extracted from ear clips by standard Protease K digestion (New England Biolabs 
GmbH, Frankfurt am Main, Germany) followed by AmpureXP bead (Beckman 
Coulter GmbH, Krefeld, Germany) purification. Extracted high-molecular weight DNA 
was sheared with a Covaris S2 (Woburn, MA, USA) or ‘tagmented’ by commercial or 
purified Tn5-transposase according to manufacturer’s recommendations. Each 
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sample was individually barcoded (single-indexed as N501 with N7XX variable 
barcodes; all oligonucleotides used in this study were synthesized by Integrated 
DNA Technologies, Coralville, Iowa, USA) and pooled for high-throughput 
sequencing by a HiSeq 3000 (Illumina) at the Genome Core Facility at the MPI 
Tübingen Campus. Sequenced data were pre-processed using a pipeline consisting 
of data clean-up, mapping, base-calling and analysis from software fastQC v0.10.1 
(Andrews, 2016); trimmomatic v0.33 (Bolger et al., 2014); bwa v0.7.10-r789 (Li 
and Durbin, 2010); GATK v3.4–0-gf196186 modules BQSR, MarkDuplicates, 
IndelRealignment (McKenna et al., 2010; DePristo et al., 2011). Genotype calls 
were performed using the GATK HaplotypeCaller under the 
GENOTYPE_GIVEN_ALLELES mode using a set of high-quality SNP calls made 
available by the Wellcome Trust Sanger Centre (Mouse Genomes Project version 
three dbSNP v137 release [Keane et al., 2011]), after filtering for sites segregating 
among inbred lines that may have contributed to the original seven female and two 
male CD-1 founders, namely 129S1/SvImJ, AKR/J, BALB/cJ, BTBR T+Itpr3 tf/J, 
C3H/HeJ, C57BL/6NJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HiJ, MOLF/EiJ, NOD/ShiLtJ, 
NZO/HlLtJ, NZW/LacJ, PWK/PhJ and WSB/EiJ based on (Yalcin et al., 2010). We 
consider a combined ~100x coverage sufficient to recover any of the 18 CD-1 
founding haplotypes still segregating at a given locus. The raw genotypes were 
phased with Beagle v4.1 (Browning and Browning, 2016) based on genotype 
posterior likelihoods using a genetic map interpolated from the mouse reference map 
(Cox et al., 2009) and imputed from the same putative CD-1 source lines as the 
reference panel. The site frequency spectra (SFS) were evaluated to ensure 
genotype quality (Figure 3.5A). 
 
Population genetics summary statistics 
Summary statistics of the F0 and F17 samples were calculated genome-wide (Weir–
Cockerham FST, π, heterozygosity, allele frequencies p and q) in adjacent 10 kbp 
windows or on a per site basis using VCFtools v0.1.14 (Danecek et al., 2011). The 
summary statistic ∆z2 was the squared within-line difference in arcsine square-root 
transformed MAF q; it ranges from 0 to π2. The resulting data were further processed 
by custom bash, Perl and R v3.2.0 (R Development Core Team, 2015) scripts. 
 
Peak loci and filtering for hitchhiking windows 
Peak loci were defined by a descending rank ordering of all 10 kbp windows, and 
from each peak signal the windows were extended by 100 SNPs to each side, until 
no single SNP rising above a ∆z2 shift of 0.2 π2 was detected. A total of 810 peaks 
were found with a ∆z2 shift ≥0.2 for LS1 and LS2. Following the same procedure, we 
found 766 peaks in Ctrl. 
 
Candidate genes 
To determine whether genes with related developmental roles were associated with 
the selected variants, the topologically associating domains (TADs) derived from 
mouse embryonic stem cells as defined elsewhere (Dixon et al., 2012) were re-
mapped onto mm10 co-ordinates. Genes within the TAD overlapping within 500 kbp 
of the peak window (‘core span’) were then cross-referenced against annotated 
knockout phenotypes (Mouse Genome Informatics, http://www.informatics.jax.org). 
This broader overlap was chosen to include genes whose regulatory sequences 
(e.g., enhancers), but not necessarily their gene bodies, fall close to the peak 
window. We highlight candidate genes showing limb- and bone-related phenotypes, 
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e.g., with altered limb bone lengths or epiphyseal growth plate morphology, as 
observed in Longshanks mice (Marchini and Rolian, 2018), of the following 
categories (along with their Mammalian Phenotype Ontology term and the number of 
genes): ‘abnormal tibia morphology/MP:0000558’ (212 genes), ‘short 
limbs/MP:0000547’ and ‘short tibia/MP:0002764’ (223 genes), ‘abnormal cartilage 
morphology/MP:0000163’ (321 genes), ‘abnormal osteoblast 
morphology/MP:0004986’ (122 genes). Note that we excluded compound mutants or 
those conditional mutant phenotypes involving transgenes. To determine if the 
overlap with these genes was significant, we performed 1000 permutations of the 
core span using bedtools v2.22.1 shuffle with the -noOverlapping option (Quinlan 
and Hall, 2010) and excluding ChrY, ChrM and unassembled scaffolds. We then 
followed the exact procedure as above to determine the number of genes in the 
overlapping TAD belonging to each category. We reported the quantile rank as the 
P-value, ignoring ties. To determine other genes in the region, we list all genes 
falling within the entire hitchhiking window (Supplementary file 3). 
 
Identification of putative limb enhancers 
We downloaded publicly available chromatin profiles, derived from E14.5 limbs, for 
the histone H3 lysine-4 (K4) or lysine-27 (K27) mono-/tri-methylation or acetylation 
marks (H3K4me1, H3K4me3 and H3K27ac) generated by the ENCODE Consortium 
(Shen et al., 2012). We intersected the peak calls for the enhancer-associated 
marks H3K4me1 and H3K27ac and filtered out peaks overlapping promoters 
(H3K4me3 and promoter annotation according to the FANTOM5 Consortium 
[Forrest et al., 2014]). 
 
Enrichment analysis 
To calculate enrichment through the whole range of ∆z2, a similar procedure was 
taken as in Candidate genes above. For knockout gene functions, genes contained 
in TADs within 500 kbp of peak windows were included in the analysis. We used the 
complete database of annotated knockout phenotypes for genes or spontaneous 
mutations, after removing phenotypes reported under conditional or polygenic 
mutants. For gene expression data, we retained all genes which have been reported 
as being expressed in any of the limb structures, by tracing each anatomy 
ontological term through its parent terms, up to the top-level groupings, e.g., ‘limb’, in 
the Mouse Genomic Informatics Gene Expression Database (Finger et al., 2017). 
For E14.5 enhancers, we used a raw 500 kbp overlap with the peak windows 
because enhancers, unlike genes, may not have intermediaries and may instead 
represent direct selection targets. 
 
For coding mutations, we first annotated all SNPs for their putative effects using 
snpEff v4.0e (Cingolani et al., 2012). To accurately capture the per-site impact of 
coding mutations, we used per-site ∆z2 instead of the averaged 10 kbp window. For 
each population, we divided all segregating SNPs into up to 0.02 bands based on 
per-site ∆z2. We then tracked the impact of coding mutations in genes known to be 
expressed in limbs, as above. We reported the sum of all missense (‘moderate’ 
impact), frame-shift, stop codon gain or loss sites (‘high impact’). A linear regression 
was used to evaluate the relationship between ∆z2 and the average impact of coding 
SNPs (SNPs with high or moderate impact to all coding SNPs). 
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For regulatory mutations, we used the same bins spanning the range of ∆z2, but 
focused on the subset of SNPs falling within the ENCODE E14.5 limb enhancers. 
We then obtained a weighted average conservation score based on an averaged 
phastCons (Pollard et al., 2010) or phyloP (Siepel et al., 2005) score in ±250 bp 
flanking the SNP, calculated from a 60-way alignment between placental mammal 
genomes (downloaded from the UCSC Genome Browser [Kent et al., 2002]). We 
reported the average conservation score of all SNPs within the bin and fitted a linear 
regression on log-scale. In particular, phastCons scores range from 0 (un-
conserved) to 1 (fully conserved), whereas phyloP is the ∣∣log10∣∣ of the P-value of 
the phylogenetic tree, expressed as a positive score for conservation and a negative 
score for lineage-specific accelerated change. We favored using phastCons for its 
simpler interpretation. 
 
Impact of coding variants 
Using the same SNP effect annotations described in the section above, we checked 
whether any specific SNP with significant site-wise ∆z2 in either LS1 or LS2 cause 
amino acid changes or protein disruptions and are known to cause limb defects 
when knocked out. For each position we examined outgroup sequences using the 
60-way placental mammal alignment to determine the ancestral amino acid state and 
whether the selected variant was consistent with purifying vs. diversifying selection. 
The resulting 12 genes that matched these criteria are listed in Supplementary file 
4. 
 
Association with human height loci 
We downloaded the set of 697 SNPs associated with loci for human height (Wood et 
al., 2014) to test if these loci cluster with the selected loci in the Longshanks lines. In 
order to facilitate mapping to mouse co-ordinates, each human SNP was expanded 
to 100 kbp centering on the SNP and converted to mm10 positions using the liftOver 
tool with the multiple mapping option disabled (Kent et al., 2002). We were able to 
assign positions in 655 out of the 697 total SNPs. Then for each of the 810 loci 
above the HINF, no LD threshold in the selected Longshanks lines, the minimal distance 
to any of the mapped human loci was determined using bedtools closest with the -d 
option (Quinlan and Hall, 2010). When a region actually overlapped, a distance of 0 
bp was assigned. To generate a permuted set, the 810 loci were randomly shuffled 
across the mouse autosomes using the bedtools shuffle program with the -
noOverlapping option. Then the exact same procedure as the actual data was 
followed to determine the closest interval. The resulting permuted intervals followed 
an approximately normal distribution, with observed results falling completely below 
the range of permuted results, that is, closer to height-associated human SNPs. 
 
In situ hybridization 
Detection of specific gene transcripts were performed as previously described in 
Brown et al., 2005. Probes against Nkx3-2, Rab28, Bod1l and Gli3 were amplified 
from cDNA from wildtype C57BL/6NJ mouse embryos (Supplementary file 5). 
Amplified fragments were cloned into pJET1.2/blunt plasmid backbones in both 
sense and anti-sense orientations using the CloneJET PCR Kit (Thermo Fisher 
Scientific, Schwerte, Germany) and confirmed by Sanger sequencing using the 
included forward and reverse primers. Probe plasmids have also been deposited 
with Addgene. In vitro transcription from the T7 promoter was performed using the 
MAXIscript T7 in vitro Transcription Kit (Thermo Fisher Scientific) supplemented with 
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Digoxigenin-11-UTP (Sigma-Aldrich) (MPI Tübingen), or with T7 RNA polymerase 
(Promega) in the presence of DIG RNA labeling mix (Roche) (University of Calgary). 
Following TURBO DNase (Thermo Fisher Scientific) digestion, probes were cleaned 
using SigmaSpin Sequencing Reaction Clean-Up columns (Sigma-Aldrich) (MPI 
Tübingen), or using Illustra MicroSpin G-50 columns (GE Healthcare) (University of 
Calgary). During testing of probe designs, sense controls were used in parallel 
reactions to establish background non-specific binding. 
 
ATAC-seq library preparation and sequencing pipeline 
ATAC-seq was performed on dissected C57BL/6NJ E14.5 forelimb and hindlimb. 
Nuclei preparation and tagmentation were performed as previously described in 
Buenrostro et al. (2013), with the following modifications. To minimize endogenous 
protease activity, cells were strictly limited to 5 + 5 min of collagenase A treatment at 
37°C, with frequent pipetting to aid dissociation into single-cell suspensions. 
Following wash steps and cell lysis, 50,000 nuclei were tagmented with expressed 
Tn5 transposase. Each tagmented sample was then purified by MinElute columns 
(Qiagen) and amplified with Q5 High-Fidelity DNA Polymerase (New England 
Biolabs) using a uniquely barcoded i7-index primer (N701-N7XX) and the N501 i5-
index primer. PCR thermocycler programs were 72°C for 4 min, 98°C for 30 s, 6 
cycles of 98°C for 10 s, 65°C for 30 s, 72°C for 1 min, and final extension at 72°C for 
4 min. PCR-enriched samples were taken through a double size selection with PEG-
based SPRI beads (Beckman Coulter) first with 0.5X ratio of PEG/beads to remove 
DNA fragments longer than 600 bp, followed by 1.8X PEG/beads ratio in order to 
select for Fraction A as described in Milani et al. (2016). Pooled libraries were run 
on the HiSeq 3000 (Illumina) at the Genome Core Facility at the MPI Tübingen 
Campus to obtain 150 bp paired end reads, which were aligned to mouse mm10 
genome using bowtie2 v.2.1.0 (Langmead and Salzberg, 2012). Peaks were called 
using MACS14 v.2.1 (Zhang et al., 2008). 
 
Multiplexed chromosome conformation capture (4C-Seq) 
Chromosome conformation capture (3C) template was prepared from pooled E14.5 
liver, forelimb and hindlimb buds (n = 5–6 C57BL/6NJ embryos per replicate), with 
improvements to the primer extension and library amplification steps following 
(Sexton et al., 2012). The template was amplified with Q5 High-Fidelity Polymerase 
(New England Biolabs GmbH, Frankfurt am Main, Germany) using a 4C adapter-
specific primer and a pool of 6 Nkx3-2 enhancer viewpoint primers (and, in a 
separate experiment, a pool of 8 Gli3 enhancer-specific viewpoint primers; 
Supplementary file 6). Amplified fragments were prepared for Illumina sequencing 
by ligation of TruSeq adapters, followed by PCR enrichment. Pooled libraries were 
sequenced by a HiSeq 3000 (Illumina) at the Genome Core Facility at the MPI 
Tübingen Campus with single-end, 150 bp reads. Sequence data were processed 
using a pipeline consisting of data clean-up, mapping, and analysis based upon 
cutadapt v1.10 (Martin, 2011); bwa v0.7.10-r789 (Li and Durbin, 2010); samtools 
v1.2 (Li et al., 2009); bedtools (Quinlan and Hall, 2010) and R v3.2.0 (R 
Development Core Team, 2015). Alignments were filtered for ENCODE blacklisted 
regions (ENCODE Project Consortium, 2012) and those with MAPQ scores below 
30 were excluded from analysis. Filtered alignments were binned into genome-wide 
BglII fragments, normalized to Reads Per Kilobase of transcript per Million mapped 
reads (RPKM), and plotted and visualized in R. 
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Plasmid construction 
Putative limb enhancers corresponding to the F0 and F17 alleles of the Gli3 G2 and 
Nkx3-2 N1 and N3 enhancers were amplified from genomic DNA of Longshanks 
mice from the LS1 F0 (nine mice) and F17 (10 mice) generations and sub-cloned 
into pJET1.2/blunt plasmid backbone using the CloneJET PCR Kit (Thermo Fisher 
Scientific) and alleles were confirmed by Sanger sequencing using the included 
forward and reverse primers (Supplementary file 7). Each allele of each enhancer 
was then cloned as tandem duplicates with junction SalI and XhoI sites upstream of 
a β-globin minimal promoter in our reporter vector (see below). Constructs were 
screened for the enhancer variant using Sanger sequencing. All SNPs were further 
confirmed against the rest of the population through direct amplicon sequencing. 
 
The base reporter construct pBeta-lacZ-attBx2 consists of a β-globin minimal 
promoter followed by a lacZ reporter gene derived from pRS16, with the entire 
reporter cassette flanked by double attB sites. The pBeta-lacZ-attBx2 plasmid and its 
full sequence have been deposited and is available at Addgene. 
 
Pronuclear injection of F0 and F17 enhancer-reporter constructs in mice 
The reporter constructs containing the appropriate allele of each of the three 
enhancers were linearized with ScaI (or BsaI in the case of the N3 F0 allele due to 
the gain of a ScaI site) and purified. Microinjection into mouse zygotes was 
performed essentially as described (DiLeone et al., 2000). 
 
At 12 d after the embryo transfer, the gestation was terminated and embryos were 
individually dissected, fixed in 4% paraformaldehyde for 45 min and stored in PBS. 
All manipulations were performed by R.N. or under R.N.’s supervision at the 
Transgenic Core Facility at the Max Planck Institute of Molecular Cell Biology and 
Genetics, Dresden, Germany. Yolk sacs from embryos were separately collected for 
genotyping and all embryos were stained for lacZ expression as previously 
described (Mortlock et al., 2003). Embryos were scored for lacZ staining, with 
positive expression assigned if the pattern was consistently observed in at least two 
embryos. 
 
Genotyping of time series at the Nkx3-2 N3 locus 
Allele-specific primers terminating on SNPs that discriminate between the F0 from 
the F17 N3 enhancer alleles were designed (rs33219710 and rs33600994; 
Supplementary file 8). The amplicons were optimized as a qPCR reaction to give 
allele-specific, present/absent amplifications (typically no amplification for the absent 
allele, otherwise average ∆Ct >10). Genotyping on the entire breeding pedigree of 
LS1 (n = 602), LS2 (n = 579) and Ctrl (n = 389) was performed in duplicates for each 
allele on a Bio-Rad CFX384 Touch instrument (Bio-Rad Laboratories GmbH, 
Munich, Germany) with SYBR Select Master Mix for CFX (Thermo Fisher Scientific) 
and the following qPCR program: 50°C for 2 min, 95°C for 2 min, 40 cycles of 95°C 
for 15 s, 58°C for 10 s, 72°C for 10 s. In each qPCR run we included individuals of 
each genotype (LS F17 selected homozygotes, heterozygotes and F0 major allele 
homozygotes). For the few samples with discordant results between replicates, DNA 
was re-extracted and re-genotyped or otherwise excluded. 
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Transgenic reporter assays in stickleback fish 
In sticklebacks, transgenic reporter assays were carried out using the reporter 
construct pBHR (Chan et al., 2010). The reporter consists of a zebrafish heat shock 
protein 70 (Hsp70) promoter followed by an eGFP reporter gene, with the entire 
reporter cassette flanked by tol2 transposon sequences for transposase-directed 
genomic integration. The Nkx3-2 N1/F0 enhancer allele was cloned as tandem 
duplicates using the NheI and EcoRV restriction sites upstream of the Hsp70 
promoter. Enhancer orientation and sequence was confirmed by Sanger sequencing. 
Transient transgenic stickleback embryos were generated by co-microinjecting the 
plasmid (final concentration: 10 ng/µl) and tol2 transposase mRNA (40 ng/µl) into 
freshly fertilized eggs at the one-cell stage as described in Chan et al. (2010). 
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sites (underlined and bold) for insertion into the pBeta-lacZ-attBx2 reporter 
vector upstream of the b-globin minimal promoter. 
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Marchini M, Belohlavy S, 
Hiramatsu L, Kucˇka M, 
Beluch WH, Naumann R, 
Skuplik IO, Cobb J, Barton 
NH, Rolian CP, Chan YF 2019 

An integrative 
genomic analysis 
of the Longshanks 
selection 
experiment for 
longer limbs in 
mice 

http://www.ncbi.nlm.
nih. gov/sra?term= 
SRP165718 

NCBI 
Sequence 
Read Archive, 
SRP165718 

Castro JPL, Yancoskie MN, 
Marchini M, Belohlavy S, 
Hiramatsu L, Kucˇka M, 
Beluch WH, Naumann R, 
Skuplik IO, Cobb J, Barton 
NH, Rolian CP, Chan YF 2019 

An integrative 
genomic analysis 
of the Longshanks 
selection 
experiment for 
longer limbs in 
mice 

http://www.ncbi.nlm.
nih. 
gov/geo/query/acc.c
gi? 
acc=GSE121564 

NCBI Gene 
Expression 
Omnibus, 
GSE121564 

Castro JPL, Yancoskie MN, 
Marchini M, Belohlavy S, 
Hiramatsu L, Kucˇka M, 
Beluch WH, Naumann R, 
Skuplik IO, Cobb J, Barton 
NH, Rolian CP, Chan YF 2019 

An integrative 
genomic analysis 
of the Longshanks 
selection 
experiment for 
longer limbs in 
mice 

http://www.ncbi.nlm.
nih. 
gov/geo/query/acc.c
gi? 
acc=GSE121565 

NCBI Gene 
Expression 
Omnibus, 
GSE121565 

Castro JPL, Yancoskie MN, 
Marchini M, Belohlavy S, 
Hiramatsu L, Kucˇka M, 
Beluch WH, Naumann R, 
Skuplik IO, Cobb J, Barton 
NH, Rolian CP, Chan YF 2019 

An integrative 
genomic analysis 
of the Longshanks 
selection 
experiment for 
longer limbs in 
mice 

http://www.ncbi.nlm.
nih. 
gov/geo/query/acc.c
gi? 
acc=GSE121566 

NCBI Gene 
Expression 
Omnibus, 
GSE121566 

Castro JPL, Yancoskie MN, 
Marchini M, Belohlavy S, 
Hiramatsu L, Kucˇka M, 
Beluch WH, Naumann R, 
Skuplik IO, Cobb J, Barton 2019 

An integrative 
genomic analysis 
of the Longshanks 
selection 
experiment for 

http://dx.doi.org/10. 
5061/dryad.0q2h6tk 

Dryad Digital 
Repository, 
10.5061/ 
dryad.0q2h6tk 
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NH, Rolian CP, Chan YF longer limbs in 
mice 

 
The following previously published datasets were used: 

Author(s) Year Dataset title Dataset URL 
Database and 
Identifier 

Keane TM, Goodstadt L, 
Danecek P, White MA, Wong 
K 2011 

Mouse Genomes 
Project version 3 
dbSNP v137 
release 

https://www.sanger.
ac. 
uk/science/data/mo
usegenomes-
project 

Wellcome 
Sanger 
Institute, 
dbSNP v137 
release 

Shen Y, Yue F, McCleary 
DF, Ye Z, Edsall L, Kuan S, 
Wagner U, Dixon J, Lee L, 
Lobanenkov VV, Ren B 2012 

A map of the cis-
regulatory 
sequences in the 
mouse genome 

https://genome.ucs
c. 
edu/encode/dataM
atrix/ 
encodeDataMatrixH
uman.html 

ENCODE 
Experiment 
Matrix, Mouse 
E14.5 Limb 

Smith CL, Blake JA, Kadin 
JA, Richardson JE, Bult CJ, 
the Mouse Genome 
Database Group 2018 

Mouse knockout 
phenotypes 

http://www.informati
cs. 
jax.org/downloads/r
eports/MGI_Phenot
ypicAllele.rpt 

Mouse 
Genome 
Informatics, 
MGI_ 
PhenotypicAllel
e 

Wood AR, Esko T, Yang J, 
Vedantam S 2014 

Defining the role 
of common 
variation in the 
genomic and 
biological 
architecture of 
adult human 
height 

https://portals.broad
institute.org/collabo
ration/ 
giant/index.php?titl
e= 
GIANT_consortium
&oldid=251 

GIANT 
consortium, 
GWAS 
Anthropometric 
2014 Height 
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Appendix 1 
 
Major considerations in constructing the simulations 
 
In the Longshanks experiment, the highest-ranking male and the highest-ranking female 
from each family were chosen to breed with the highest-ranking mice from other families 
within a line (i.e., disallowing sibling matings).  Thus, if we disregard non-Mendelian 
segregation, and the fraction of failed litters (15%), selection acts solely within families, on 
the measured traits.  Such selection does not distort the pedigree and allows us to follow the 
evolution of each chromosome separately. 
 
Our simulations track the inheritance of continuous genomes by following the junctions 
between regions with different ancestry.  In principle, we should simulate selection under the 
infinitesimal model by following the contributions to the trait of continuous blocks of 
chromosomes across the whole genome.  However, this is computationally challenging, 
since the contributions of all the blocks defined by every recombination event have to be 
tracked.  Instead, we follow a large number of discrete biallelic loci checking that the number 
is sufficiently large to approach the infinitesimal limit (Figure 3.3D).  We made a further 
slight approximation by only explicitly modeling discrete loci on one chromosome at a time.   
We divided the breeding value of an individual into two components.  The first, Vg, is a 
contribution from a large number of unlinked loci, due to genes on all but the focal 
chromosome, as represented by the infinitesimal model.  The values of this component 
amongst offspring are normally distributed around the mean of the parents, with its variance 
being: 
 

𝑉! = (𝑉!  /2)  (1 −   β)  (1   −   𝐹!! − 𝐹!!) 
 
where: 𝑉! is the initial genetic variance, and  

𝐹!!, 𝐹!! are the probabilities of identity between distinct genes in each parent, 
𝑖, 𝑗; 𝐹!!, 𝐹!! are calculated from the pedigree;  

β is the fraction of genome on the focal chromosome. 
The second component, Vs, is the sum of contributions from a large number, 𝑛, of discrete 
loci, evenly spaced along the focal chromosome (here we used 10,000), and contributing a 
fraction 𝛽 of the initial additive variance.  We choose these to have equal effects and random 
signs, ±α, such that initial allele frequencies 𝑝! = 𝑞! =

!
!
, and equal effects α, such that 

𝛽𝑉!,! = 2 𝛼!𝑝!,!𝑞!,!!
!!! .  The initial population consists of 28 diploid individuals, matching 

the experiment, and loci have initial frequencies of 1, 4, 12 and 28 out of the diploid total of 
56 alleles, in equal proportions.  Inheritance is assumed to be autosomal, with no sex-
linkage.  This choice of equal effects approaches most closely to the infinitesimal model, for 
a given number of loci. 
 
The decrease in genetic variance due to random drift is measured by the inbreeding 
coefficient, defined as the probability of identity by descent, relative to the initial population.  
We distinguish the identity between two distinct genes within a diploid individual, 𝐹!,from the 
probability of identity between two genes in different individuals, 𝐹!.  The overall mean 
identity between two genes chosen independently and at random from all  2𝑁 genes is 
 𝐹 = !(!!!)!!!!!!!

!!
.  The proportion of heterozygotes in the population decreases by a factor 

of 1 − 𝐹!, the variance in allele frequency increases with 𝐹, and the genetic diversity, 
 𝔼 = [2𝑝𝑞] , decreases as 1 − 𝐹.   
 
Figure 3.3B shows that in the absence of selection, the identity 𝐹! increases slower than 
expected under the Wright–Fisher model with the actual population sizes (compare light 
shaded lines with black lines).  These differences are a consequence of the circular mating 
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scheme, which was designed to slow the loss of variation.  The dotted line show the average 
𝐹, estimated from the loss of heterozygosity in 50 replicate neutral simulations, each with 
104 loci on a chromosome of length R=1 Morgan.  These are close to the prediction from the 
pedigree (light shaded lines), validating the simulations.   
 
The thick colored line in Figure 3.3B shows 𝐹, estimated in the same way from simulations 
that include truncation selection on a trait with within-family variance 𝑉!/𝑉! = 0.584 (a value 
we abbreviate as 𝜃 = 1), which matches the observed selection response and parent-
offspring regression.  The rate of drift, as measured by the gradient in 𝐹 over time, is 
significantly faster in simulations with selection, by 6.7% in LS1 and 9.8% in LS2 (Student’s 
t-test P ≤ 0.008 in LS1 and P ≤ 0.0005 in LS2).  However, this effect of selection would not 
be detectable from any one replicate, since the standard deviation of the rate of drift, relative 
to the mean rate, is ~13% between replicates.  On average, the observed loss of 
heterozygosity fits closely to that expected from the pedigree (large dot with error bars), 
though there is wide variation among chromosomes (filled dots), which is substantially 
higher than seen in simulations seeded with SNP at linkage equilibrium (compare filled and 
open dots).   
 

We then performed 100 simulations, seeding each founding generation with actual 
genotypes and using actual pedigrees, selection pressure or heritability parameters (within-
family heritability ℎ! of the fitness dimension: 0.51).  A main conclusion from our modelling is 
that the overall allele frequencies were hardly perturbed by varying selection from random 
drift to even doubling the selection intensity.  Upon closer examination, it became clear that 
under the standard “infinitesimal” model, selection could generate a weak but detectable 
excess of allele frequency sweeps compared to strict neutrality with no selection (Figure 
3.3D, SNP classes 1/56 and 4/56).  However, it would take many replicates (assuming no 
parallelism) for this excess to become statistically significant.  Taken at face value, this result 
echoes many “evolve-and-resequence” (E&R) experiments based on diverse base 
populations that show only weak evidence of selective sweeps at specific loci (Burke et al., 
2010; Orozco-terWengel et al., 2012).   

 
Broader patterns and analyses of parallelism 

On a broader scale, we also observed greater extent of parallelism globally than in 
the simulated results or with the empirical Ctrl line.  For example, out of the 2405 and 2991 
loci found above the HINF, no LD cut-off in LS1 and LS2, 398 were found in both lines (13%; 𝜒2 
test, N~150,000 windows; 𝜒2=2901.4, d.f.=1, P ≤ 1 ×10-10); whereas we found only 10 or 7 
overlaps in Ctrl–LS1 or Ctrl–LS2 comparisons, respectively.  This difference is statistically 
significant (940 significant Ctrl loci at the HINF, no LD threshold; N~150,000 windows; Ctrl–LS1: 
𝜒2=0.7; Ctrl–LS2: 𝜒2=6.0; both P = n.s.; see also Figure 3.10).  In fact, there was not a 
single window out of a total of 8.4 million windows from the 100 replicates where both 
simulated LS1 and LS2 replicates simultaneously cleared the HINF, no LD threshold.   In contrast 
to our earlier analysis in single LS replicates, the parallel selected loci in both LS replicates 
loci may provide the strongest evidence yet to reject the infinitesimal model.  

 
Heritability estimate by an animal model 
 

We estimated heritability using linear mixed effect “animal models” with maximum 
likelihood (Figure 3.2D) in the R package MCMCglmm v2.5 (Hadfield, 2010; following guide 
by de Villemereuil, 2019).  Because the animal model makes inference of the parameter 
estimates to the base population, to compare heritability as it changed over time we 
estimated heritability in blocks of 5 generations F0-4, 5-9, 10-14, and 15-19, separately for 
each selected line.  In testing each block, we used the full pedigree to build the relationship 
matrix but only phenotypes from the individuals in those generations.  As an alternative, we 
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tested each block with a truncated pedigree, in which the first generation of each block is 
treated as unrelated (i.e., the base population).  The two methods produced similar results.  
In all analyses, we standardized the composite trait 𝑙𝑛 𝑻𝑩!!.!"  (𝑻  = tibia length in mm; 𝑩 = 
cube-root body mass in ∛g; see Simulating selection response: infinitesimal model with 
linkage in main text) within each generation and line to account for fluctuations in mean and 
variance (Careau et al., 2013).  The phenotypic variance was partitioned as VP = fixed 
effects + VA + VR, where fixed effects were sex, age, and litter size, VA was additive genetic 
variance, and VR was residual variance. Heritability was estimated as h2 = VA /( VA + VR).  
 
Enrichment for genes with functional impact on limb development 

 To determine what types of molecular changes may have mediated the selection 
response, we performed a gene set enrichment analysis.  We asked if the outlier loci found 
in the Longshanks lines were enriched for genes affecting limb development (as indicated by 
their knockout phenotypes) and found increasingly significant enrichment as the allele 
frequency shift ∆z2 cut-off became increasingly stringent (Figure 3.8A).  The “limb/digital/tail” 
category of affected anatomical systems in the Mouse Genomic Informatics Gene 
Expression Database (Finger et al., 2017) showed the greatest excess of observed-to-
expected ratio out of all 28 phenotype categories (the excluded “normal” category also 
showed no enrichment).  In contrast, genes showing knock-out phenotypes in most other 
categories did not show similar enrichment as ∆z2 became more stringent (Figure 3.8A).  
For genes expressed in limb tissue, there was a similar, but weaker increase, with the 
enrichment only appearing at higher ∆z2 cut-off.  We did not observe similar enrichment 
using data and thresholds derived from Ctrl (Figure 3.8A, lower panels).  To investigate the 
impact on regulatory sequences, we obtained 21,211 limb enhancers predicted by ENCODE 
chromatin profile at a stage immediately preceding bone formation (Theiler Stage 23, at 
approximately embryonic day E14.5) (Shen et al., 2012).  We found likewise an enrichment 
throughout the range of significance cut-offs (Figure 3.8A).  Again, there was no similar 
enrichment in Ctrl.   
 
Clustering with loci associated with human height 

Since tibia lengths directly affect human height, we tested if an association exists 
between loci controlling human height (Wood et al., 2014) and a set of 810 loci at the P ≤ 
0.05 significance level under HINF, no LD described here.  After remapping the human loci to 
their orthologous mouse positions (n = 655 out of 697 total height loci; data from the GIANT 
Consortium), we detected significant clustering with the 810 peak loci (mean pairwise 
distance to remapped height loci: 1.41 Mbp vs. mean 1.69 Mbp from 1000 permutations of 
shuffled peak loci, range: 1.45–1.93 Mbp; n = 655 height loci and 810 peak loci; P < 0.001, 
permutations).  We interpret this clustering to suggest that a shared and conserved genetic 
program exist between human height and tibia length and/or body mass. 
 
Genome-wide analysis of the role of coding vs. cis-acting changes in response to selection 
 

We examined the potential functional impact of coding or regulatory changes as a 
function of ∆z2 in all three lines.  For coding changes, we tracked the functional 
consequences of coding SNPs of moderate to high impact (missense mutations, gain or loss 
of stop codons, or frame-shifts).  Whereas we found only mixed evidence of increased 
coding changes as ∆z2 increased in the LS lines, there was a depletion of coding changes in 
Ctrl line as ∆z2 increased, possibly due to purifying or background selection (Figure 3.8B; 
linear regression, LS1: P ≤ 0.015, slope > 0; LS2: P = 0.62, n.s., slope ≈ 0; Ctrl: P ≤ 5.72×10-

9, slope < 0).   
 

For regulatory changes, we used sequence conservation in limb enhancers 
overlapping a SNP as a proxy for functional impact.  In contrast to the situation for coding 
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changes, where the correlations differed between LS1 and LS2, the potential impact of 
regulatory changes increased significantly as a function of ∆z2 in both LS lines (Figure 
3.8B): within limb enhancers, SNP-flanking sequences became increasingly conserved at 
highly differentiated SNPs (phastCons conservation score, ranging from 0 to 1 for 
unconserved to completely conserved positions; linear regression, log-scale, P < 1.05×10-9 
for both, slopes > 0).  This relationship also exists for the Ctrl line, albeit principally from 
lower ∆z2 and conservation values (P < 0.8×10-3, slope > 0; Figure 3.8B).  Taken together, 
our enrichment analysis suggests that while both coding and regulatory changes were 
selected in the Longshanks experiment, the overall selection response may depend more 
consistently on cis-regulatory changes, especially for developmental regulators involved in 
limb, bone and/or cartilage development (Table 3.1; Supplementary File 3; c.f. 
Supplementary File 4 for coding changes).  This is a key prediction of the “cis-regulatory 
hypothesis”, especially in its original scope on morphological traits (Carroll, 2008). 
 
Genes with amino acid changes of potentially major impact 

We have further identified 12 candidate genes with likely functional impact on limb 
development due to specific amino acid changes showing large frequency shifts (albeit only 
one, Fbn2, cleared the stringent P ≤ 0.05 HINF, max LD threshold; 6 in LS1, 9 in LS2, of which 3 
were shared; Supplementary File 4).  Consistent with strong selection for tibia 
development, all 12 genes show limb or tail phenotypes when knocked out, e.g., “short 
limbs” for the collagen gene Col27a1 knockout.  Most of these genes encode for structural 
cellular components, e.g., myosin, fibrillin and collagen (Myo10; Fbn2; and Col27a1 
respectively), with Fuz (fuzzy planar cell polarity protein) being the only classical 
developmental regulator gene.  All but one of these genes have also been shown to have 
widespread pleiotropic effects with broad expression domains, and their knockouts were 
often lethal (eight out of 12) and/or exhibit defects in additional organ systems (11 out of 12).  
Based on this observation, we anticipate that the phenotypic impact of these selected coding 
missense SNPs (n.b. not knockout) would not be restricted to tibia or bone development. 

 
Molecular dissection of Gli3, a candidate limb regulator, reveal gain-of-function cis-acting 
changes  
 

We anticipated that genes related to major limb patterning, like Gli3, may contribute 
to the selection response (Mo et al., 1997; Nakamura et al., 2015).  We thus performed an 
in-depth molecular dissection of Gli3, an important early limb developmental regulator on 
chromosome 13 (Chr13; Figure 3.12A).  This locus showed a substantial shift in minor allele 
frequency of up to 0.42 in LS1 (∆q, 98th quantile genome-wide, but below the HINF, max LD 
threshold to qualify as a discrete major locus).  We performed functional validation of Gli3, 
given its limb function (Büscher et al., 1997) and considering that Gli3 could be among the 
many minor loci in the polygenic background contributing to the selection response in LS1.   

  
 At the Gli3 locus we could only find conservative amino acid changes (D1090E and 
I1326V) that are unlikely to impact protein function.  Because the signal in LS1 was stronger 
in the 5’ flanking intergenic region, we examined the Gli3 cis-regulatory topologically 
associating domain (TADs, which mark chromosome segments with shared gene regulatory 
logic) (Dixon et al., 2012) and identified putative enhancers using chromatin modification 
marks from the ENCODE project and our own ATAC-Seq data (Figure 3.12B) (Buenrostro 
et al., 2013; Shen et al., 2012).  Four putative enhancers carried SNPs with large allele 
frequency changes.  Among them, an upstream putative enhancer G2 (956 bp) carried 6 
SNPs along with two 1- and 3-bp insertion/deletion (“indel”) with putative functional impact 
due to predicted gain or loss in transcription factor binding sites (Figure 3.12C).  We tested 
the G2 putative enhancer in a transgenic reporter assay by placing its sequence as a 
tandem duplicate upstream of a lacZ reporter gene (see Methods for details).  We found that 
only the F17 LS1 allele was able to drive consistent lacZ expression in the developing limb 
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buds (Figure 3.12D).  Importantly, this enhancer was active not only in the shaft of the limb 
bud but also in the anterior hand/foot plate, a major domain of Gli3 expression and function 
(Figure 3.12A).  Furthermore, substitution of the enhancer sequence with the F0 allele (10 
differences out of 956 or 960 bp) abolished lacZ expression (Figure 3.12D).  This showed 
that 10 or fewer changes within this novel enhancer sequence were sufficient to convert the 
inactive F0 allele into an active limb enhancer corresponding to the selected F17 allele 
(“gain-of-function”), suggesting that a standing genetic variant of the F17 allele may have 
been selectively favored because it drove stronger expression of Gli3, a gene essential for 
tibia development (Akiyama et al., 2015, but see Koziel et al., 2005). 
 
Estimating the selection coefficient of the top-ranking locus, Nkx3-2, from changes in allele 
frequency  
 

The significant locus on Chr5 containing Nkx3-2 shows strong changes in SNP 
frequency in both LS1 and LS2.  Here, we estimate the strength of selection on this locus, 
and the corresponding effect on the selected trait.  We approximate by assuming two 
alternative alleles, and find the selection coefficient implied the observed parallel changes in 
allele frequency; we then set bounds on this estimate that take account of random drift.  
Finally, we use simulations that condition on the known pedigree to estimate the effect on 
the trait required to cause the observed strong frequency changes; these show that linked 
selection has little effect on the single-locus estimates. 

 
We see strong and parallel changes in allele frequency at multiple steps.  There are 

14 non-overlapping 10kb windows that have a mean square change in arc-sin transformed 
allele frequency of ∆𝑧! >   2 in both LS1 and LS2, spanning a 260 kbp region and including 
807 SNP.  SNP frequencies are tightly clustered, corresponding to two alternative 
haplotypes (Figure 3.14 and Figure 3.15A).  The initial (untransformed) allele frequencies 
average q0 = 0.18, 0.17 in LS1, LS2, respectively, and the final frequencies average q17 = 
0.84, 0.98, respectively (also see Figure 3.15A, lower panel).  These frequencies depend on 
the arbitrary threshold for which windows to include.  However, this makes little difference, 
relative to the wide bounds on our estimates. 

 
Under constant selection, 𝑙𝑜𝑔 !

!
 changes linearly with time, at a rate equal to the 

selection coefficient, 𝑠.  Therefore, a naive estimate of selection is given by 𝑠 = !
!
log !!"

!!"

!!
!!

 
(Haldane, 1932) thus, 𝑠 =0.19, 0.32 for q in LS1, LS2, and averages 0.26.  Here, males and 
females with longest tibia are chosen to breed; the strength of selection on an additive allele 
depends on the fraction selected and the within-family trait variance.  The former is kept 
constant, and there is little loss of variance due to drift (𝐹~0.17). Thus, assuming constant 
selection is reasonable (Figure 3.14B), unless there is strong dominance. 

 
To set bounds on this estimate, we must account for random drift.  The predicted 

loss of diversity over 17 generations, based on the pedigree, is 𝐹=0.173, 0.175 for LS1, LS2, 
which corresponds to an effective size 𝑁! = 44.9, 44.4, respectively (note that due to 
differences in estimation methodology, this 𝑁! differs slightly from that mentioned in Figure 
3.3 but is largely consistent).  Therefore, we calculate the matrix of transition probabilities for 
a Wright–Fisher population with 2𝑁 rounded to 90, 89 copies for LS1, LS2, over a range of 
selection, 𝑠.  This yields the probability that the number of copies would change from the 
rounded values of 16/90 to 75/90 in LS1, and from 14/89 to 87/89 in LS2—that is, the 
likelihood of 𝑠, given the observed changes in allele frequency, and the known 𝑁!.  There is 
no significant loss of likelihood by assuming the same selection in both lines; overall, 𝑠 = 
0.24 (limits 0.13–0.36; Figure 3.15B). 
 
Estimating the selection coefficient, accounting for linked loci 
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The estimates above using the simple approach do not account for selection on 
linked loci, and do not give the effect on the composite trait.  We therefore simulated 
conditional on the pedigree and on the actual selection regime, as described above, but 
including an additive allele with effect A at the candidate locus on Chr5.  The genetic 
variance associated with the unlinked infinitesimal background, and across Chr5, were 
reduced in proportion, to keep the overall heritability the same as before 𝑉!/ 𝑉! + 𝑉! =
  0.539.  The selection coefficient inferred from the simulated changes in allele frequency was 
approximately proportional to the effect on the trait, with best fit 𝑠 = 0.41𝐴/ 𝑉! (Figure 
3.15C, left).  Assuming this relationship, we can compare the mean and standard deviation 
of allele frequency from simulations with linked selection, with that predicted by the single 
locus Wright–Fisher model (points vs. line in Figure 3.15C, middle & right). These agree 
well, showing that linked selection does not appreciably change the distribution of allele 
frequencies at a single locus.  This is consistent with Figure 3.3D, which shows that linked 
selection only inflates the tail of the allele frequency distribution, an effect that would not be 
detectable at a single locus. 
 

Combining our estimates of the selection coefficient with the relation 𝑠 = 0.41𝐴/ 𝑉!, 
we estimate that the locus on Chr5 has effect 𝐴 = 0.59 𝑉!, with 2-unit support limits 0.32 𝑉! 
to 0.87 𝑉�.  This single locus is responsible for ~9.4% of the total selection response (limits 
3.6–15.5%).  

 
This analysis does not allow for the inflation of effect that might arise from multiple 

testing.  This is hard to estimate, because it depends on the distribution of effects across the 
genome, and also on the excess variation in estimates due to LD in the founder population.  
However, we note that if the effect of this locus is large enough that it would certainly be 
detected in this study, then there is no estimation bias from this source. 

 
We also assume that there are two haplotypes, each with a definite effect.  There 

might in fact be heterogeneity in the effects of each haplotype, for two reasons.  First, this 
region might have had heterogeneous effects in the founder population, with multiple alleles 
at multiple causal loci.  Second, as recombination breaks up the founder genomes, blocks of 
genome would become associated with different backgrounds.  To the extent that genetic 
variation is spread evenly over an infinitesimal background, this latter effect is accounted for 
by our simulations, and has little consequence.  However, we have not tested whether the 
data might be explained by more than two alleles, possibly at more than one discrete locus.  
Testing such complex models would be challenging, and we do not believe that such test 
would have much power.  However, the estimates of selection made here should be 
regarded as effective values that may reflect a more complex reality. 

 
Estimating the contribution of the Nkx3-2 locus using an animal model 

 
We used a linear mixed “animal model” to estimate the effect of the enhancer N3 (of the 
major locus in Nkx3-2) on the composite selected trait 𝑙𝑛 𝑻𝑩!!.!" , see Section ‘Simulating 
selection response: infinitesimal model with linkage’ and Figure 3.3A. The model was: 

 
VP = fixed effects + VA + VR  
 

where: 
fixed effects = sex, generation, litter size (i.e., number of siblings in family), genotype 

at N3 (0, 1, or 2 copies of F17 allele), and replicate line 
VA = additive genetic variance 
VR = residual variance  
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We found a small but significant effect of the genotype at enhancer N3 on the composite trait 
(mean effect = 0.0036; 95% CI: 0.00069–0.0064; P=0.017).  Given the same body mass 𝑩, 
the mean effect corresponds to 0.36% increase in tibia length per copy of the F17 allele, or 
~1% of the variance in tibia length at generation F01.  The observed increase of this allele 
from ~0.18 to 0.91, averaged over the two lines, implies that it accounts for ~4% of the total 
selection response.  This is within the confidence limits in the main text, based on the 
change in SNP frequency (3.6–15.5%) and note that the latter may be biased upwards by 
ascertainment.  However, the exact effect of the allele is difficult to pinpoint in any given 
generation or population due the nature of the composite trait and change in variance in the 
composite trait over generations.  
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3.1. Selection for Longshanks mice produced rapid increase in tibia length. (A 
and B) Tibia length varies as a quantitative trait among outbred mice derived from the 
Hsd:ICR (also known as CD-1) commercial stock. Selective breeding for mice with the 
longest tibiae relative to body mass within families has produced a strong selection response 
in tibia length over 20 generations in Longshanks mice (13%, blue arrow, LS1). (C) Both LS1 
and LS2 produced replicated rapid increase in tibia length (blue and red; line and shading 
show mean ±s.d.) compared to random-bred Controls (gray).Arrowheads along the x-axis 
mark sequenced generations F0 and F17. See Figure 3.2 for body mass data. Lower panel: 
Representative tibiae from the Ctrl, LS1 and LS2 after 20 generations of selection. (D) 
Analysis of sequence diversity data (linked variants or haplotypes: lines; variants: dots) may 
detect signatures of selection, such as selective sweeps (F17 in LS1 and LS2) that result 
from selection favoring a particular variant (dots), compared to neutral or background 
patterns (Ctrl). Alternatively, selection may elicit a polygenic response, which may involve 
minor shifts in allele frequency at many loci and therefore may leave a very different 
selection signature from the one shown here. DOI: https://doi.org/10.7554/eLife.42014.003 
  



	   112 

 
 
Figure 3.2. Artificial selection allowed detailed reconstruction of selection parameters. 
Rapid response to selection produced mice with progressively longer tibiae (A) and slightly 
lower body weight (B) within 20 generations. Having complete records throughout the 
selection experiment makes it possible to reconstruct the selection response for both 
phenotypes and genotypes in detail. Individuals varied in tibia length in both Longshanks 
lines (LS1, left; LS2, right). Lines connect parents to their offspring. The actual selection 
depended on the within-family and within-sex rank order of the tibia length-to-body mass 
(cube root) ratio (see Marchini et al., 2014 for details). The overall selection response was 
immediate and rapid for tibia length (A), suggesting a selection response that depended on 
standing variation among the founders (black lines show the best fitting quadratic function, 
with shading indicating 95% confidence interval; adjusted R2 = 0.61 for LS1; 0.43 for LS2). 
Strong selection response led to rapid increase in tibia length. In contrast, there was only 
minor decrease in body weight over the course of the experiment. (C) Trajectory in selection 
response shows decoupling of correlation between tibia length and body mass. Despite 
overall correlation between tibia length and body mass (gray arrow and major axes in 
confidence envelopes), cumulative trait displacement over the 20 generations (expressed in 
s. d. units at F1; arrows, dots and 95% confidence envelopes, color-coded according to 
generation) showed persistent increase in tibia length with only minor change in body mass 
along the general direction of selection pressure (black arrows from F1; vector length and 
directions based on logistic regression). This shows that the Longshanks selection 
experiment was successful in specifically selecting for increased tibia length while keeping 
relatively unchanged body mass. (D) Despite persistent and strong selection, heritability for 
the composite trait ln(TB−0.57) (T = tibia length in mm; B = cube-root body mass in ∛g (see 
Simulating selection response: infinitesimal model with linkage in main text) was maintained 
over 20 generations. Heritability was estimated by a linear mixed “animal model” in which 
the phenotypic variance was partitioned as VP = fixed effects + VA + VR, where fixed effects 
were sex, age, and litter size, VA was additive genetic variance, and VR was residual 
variance. Heritability was estimated as h2 = VA /(VA + VR). Each tested block used the full 
pedigree but only phenotypic information from individuals within the block. We tested an 
alternate model for each block using truncated pedigrees wherein the first generation of 
each block was assumed to be unrelated, but found similar results. 
https://doi.org/10.7554/eLife.42014.004 
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Figure 3.3. Simulating selection on pedigrees. This figure summarizes the results from 
our analyses to determine parameters used in the simulations. For full detail, see Appendix, 
section ‘Major considerations in constructing the simulations’. (A) Finding the correct ϕ value 
for the composite trait ln(TBϕ). In each simulated family, offspring are split by sex and ranked 
by their composite trait. Due to occasional use of back-up crosses, the average rank of 
actual breeders is greater than 1. We vary ϕ to find the value where actual breeders in the 
LS lines have the best (lowest) rank. We find ϕ = -0.571 to show the best match for males 
and -0.605 for females. For subsequent analyses we set ϕ to be -0.57. (B) Increase in 
inbreeding over the course of the Longshanks experiment. The lines show the change in 
identity between two alleles between diploid individuals, Fb, over 20 generations, as 
calculated from the pedigree (light shade); the average of 50 neutral simulations without 
selection (dotted line); or the average of 50 simulation replicates with selection intensity at 
Vs/Ve = 0.584 (θ=1; thick, dark line). While the Fb trajectories based on pedigree or neutral 
simulations are indistinguishable, inbreeding increases slightly faster under selection (thick 
line). The black line shows the increase in identity expected under a Wright–Fisher model 
with the actual population sizes; under this model, Fw and Fb are close to each other, and to 
1 − (1 − !

!!!
)!, with Ne equal to the harmonic mean, 24.8. The large dot (with error bar 

showing the interquartile range among chromosomes) at right show the actual Fb, estimated 
from the decline in average 2p(1−p) over 17 generations. Small filled dots show the 
estimates from each of the 20 chromosomes. Open dots show 40 replicate simulations, 
made with the same pedigree and the same selection response θ=1 and sub-sampling from 
the simulated chromosome according to the actual map length of each of the mouse 
chromosomes (Cox et al., 2009). The simulation agrees well with the observed genome-
wide average. Most of the observed data from chromosomes fall within a range comparable 
to simulated replicates (compare large dot with open dots), with LD being the likely source of 
this excess variance. (C) Three different schemes to seed founder haplotypes. We simulate 
founder haplotypes that are consistent with observed genotypes (shown here as black, white 
and gray dots as the two homozygous and the heterozygous states) by directly sampling 
from founder individuals in each LS line. Under the linkage equilibrium scheme, we sample 
from the list of allele counts at all SNPs. This produces founder haplotypes that carry no 
linkage disequilibrium (‘no LD'). Under the random assignment scheme, we sample 
according to each individual (shown as ‘diplotypes' within the box for easy comparison). At 
heterozygote sites in each individual (arrowheads), we randomly assign the alleles to the 
two haplotypes. This produces founder haplotypes that show minimal LD that is consistent 
with the observed genotypes (‘min LD'). Under the ‘max LD' assignment scheme, we also 
sample according to each individual, except that we consistently assign its haplotypes 1 and 
2 with reference (white) and alternate (black) alleles, respectively. This maximizes LD in the 
founder haplotypes (‘max LD'). (D) Simulated vs. expected allele frequency shifts. The 
distribution of minor allele frequencies q0 at generation 17 is compared with the distribution 
expected with no selection (blue) or with selection (red), given a frequency of 1, 4, 12 or 28 
minor alleles out of 56 founding alleles. The black line shows the diffusion limit, calculated 
for scaled time !"

!!
, with Ne estimated to be 51.7 and 48 in LS1 and LS2 respectively, from the 

rate of increase in F, calculated from the pedigree in panel A above. (E) Significance 
threshold values under varying LD from 100 simulated replicates (blue: no selection; red: 
observed selection response in the actual experiment, θ=1; see panel C on LD assignment 
methods). In order to account for non-independence of adjacent windows due to linkage, a 
distribution of genome-wide maximum ∆z2 was used to determine the significance threshold 
at each LD level. ∆z2 is the square of arcsine transformed allele frequency difference 
between F0 and F17; this has an expected variance of 1/2Ne per generation, independent of 
starting frequency, and ranges from 0 to π2. As seen in previous panels, increasing selection 
pressure does produce greater shifts in ∆z2 despite using the same pedigree due to a 
relatively greater proportion of additive genetic variance Vs. However, a far greater impact on 
∆z2 is due to changes in LD. This is because weak associations between large numbers of 
SNP can greatly inflate the variance of ∆z2. Of the three LD levels, ‘max LD' likely produced 
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overly conservative thresholds, whereas ‘min LD' may lead to higher false positives. We 
have opted conservatively to use maximal LD in our analysis. 
https://doi.org/10.7554/eLife.42014.005 
 
 

 
 
Figure 3.4. Widespread genomic response to selection for increased tibia length. 
Allele frequency shifts between generations F0 and F17 in LS1, LS2 and Ctrl lines are 
shown as ∆z2 profiles across the genome (plotted here as fraction of its range from 0 to π2). 
The Ctrl ∆z2 profile (gray) confirmed our expectation from theory and simulation that drift, 
inbreeding and genetic linkage could combine to generate large ∆z2 shifts even without 
selection. Nonetheless the LS1 (blue) and LS2 (red) profiles show a greater number of 
strong and parallel shifts than Ctrl. These selective sweeps provide support for the 
contribution of discrete loci to selection response (arrowheads, blue: LS1; red: LS2; purple: 
parallel; see also Figure 3.3E, Figure 3.6, Figure 3.7) beyond a polygenic background, 
which may explain a majority of the selection response and yet leave little discernible 
selection signature. Candidate genes are highlighted (Table 3.1). An additional a priori 
candidate limb regulator Gli3 is indicated with a black arrowhead. 
https://doi.org/10.7554/eLife.42014.006  
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Figure 3.5. Broad similarity in molecular diversity in the founder populations for the 
Longshanks lines and the Control line. (A) Shown are the site frequency spectra from 
LS1, LS2 and Control lines at F0 (top; folded based on a global minor allele frequency or 
MAF ≤0.5) and F17 (bottom; unfolded, but tracking the same minor alleles as in F0). Overall 
the spectra were very similar to each other within each generation. The Control population 
was mostly intermediate in the decay in the rarer alleles. After 17 generations, the same 
alleles were generally more spread out, leading to more broadly distributed spectra. There 
was again little overall difference between the Longshanks and Control lines. (B) Variations 
between chromosomes (separate same-colored lines) shown in each population and 
generation. The unfolded site frequency spectrum is shown based on the MAF assigned as 
in A. There is substantial variation between chromosomes, which shows increased 
distortions in F17. (C) Allele frequencies between the founder populations were very similar. 
Joint minor allele frequencies shown as box plots in 2% bands between the Control and LS1 
(blue), LS2 (red); or the two LS lines (purple). Outliers were omitted for clarity. The overall 
trends follow closely the parity line (gray line along the diagonal), except at frequencies very 
close to 0.5. Similar to the site frequency spectra in panel A, a small number of sites have a 
MAF above 0.5 (gray box), because of the use of an overall MAF ≤0.5 to determine minor 
allele status to enable comparisons across lines. Correlations between all pairwise 
combinations were around 0.93. https://doi.org/10.7554/eLife.42014.007 
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Figure 3.6. Selected lines showed more extreme values of ∆z2 than the Control line. 
Histogram of within-line ∆z2 values in 10 kbp windows across the genome in LS1, LS2, and 
Control. Overall similarity is high across all three lines, but there was an excess of large ∆z2 
value starting from as low as <0.1 π2. This pattern becomes clearly distinct above the 
threshold value of 0.125, which corresponds to the lenient significance threshold p≤0.05 
under HINF, no LD (inset). There was clearly an excess of windows in LS2 above the more 
stringent p≤0.05 threshold under HINF, max LD. This excess supports discrete loci contributing 
to selection response in LS2 that give rise to greater distortion of ∆z2 spectra. 
https://doi.org/10.7554/eLife.42014.008 
 
 

 
 
Figure 3.7. Detailed ∆z2 profiles at the 8 Longshanks significant loci. For each 
significant locus, ∆z2 profiles are shown for Ctrl (gray), LS1 (blue) and LS2 (red). Plots are 
shaded if the locus is significant in a given line. TADs within 250 kbp of the significant 
signals are shown as gray bars above each locus. Above the TADs are highlighted genes 
whose knockout phenotypes belong to the following categories: ‘abnormal tibia morphology’, 
‘short limb’, ‘short tibia’, ‘abnormal cartilage morphology’, ‘abnormal osteoblast morphology’. 
The gene symbols are colored according to the gene function(s) in limb development 
(green), bone development (purple) or both (boxed). Gene symbols marked by asterisks (*) 
have specifically reported ‘short tibia’ or ‘short limb’ knockout phenotypes. All of the above 
categories show significant enrichment at the eight loci (number of genes per category: 4–7, 
nominal p≤0.03, see Appendix, section ‘Enrichment for genes with functional impact on limb 
development’ for details on the permutation), except ‘abnormal cartilage morphology’, with 
four genes and a nominal P-value of 0.083. No overlap was found with any gene in these 
categories from the three significant loci from the Ctrl line. 
https://doi.org/10.7554/eLife.42014.009 
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Figure 3.8. Loci associated with selection response in Longshanks lines show 
enrichment for limb function likely associated with cis-acting mechanisms. (A) Gene 
set enrichment analysis of knock-out phenotypes (KO) showed that selection response (here 
shown as ∆z2 cut-off values, see Supplementary Methods for details on cut-off values and 
inclusion criteria) were found among topologically associating domains (TADs) containing 
limb and tail developmental genes (red solid lines) or genes with limb expression (red dotted 
lines) in LS lines (top) but not in Ctrl (bottom). Among KO phenotypes, limb defects show the 
greatest excess out of 28 phenotypic categories (other gray lines, with other extreme 
categories labeled, the ‘normal’ category is excluded here). Among developmental 
enhancers for limb, heart, liver and brain tissue, we also observed an association with ∆z2 
peaks in LS lines (top) for limb but not in Ctrl lines (bottom). The simulated significance 
thresholds based on HINF, max LD are also shown for reference (vertical gray lines). The data 
from the LS lines suggest that enrichment started to increase around the p≤0.5 threshold 
and remained largely stable at p≤0.05, corresponding to a cut-off of around 0.33 π2. (B) 
Coding vs. regulatory impact. Frequency of moderate to major coding changes (top panels, 
amino acid changes, frame-shifts or stop codons), or average conservation score of 
regulatory sequences immediately flanking SNPs (based on conservation among 60 
eutherian mammals; bottom panels) were used as proxies to estimate the functional impact 
of coding and regulatory mutations, respectively. In LS1, major coding changes became 
more common at high ∆z2 ranges; however the number of SNPs with potentially major 
phenotypic consequences did not increase in LS2 and in fact seemed to decrease in Ctrl. In 
contrast, regulatory changes showed increased conservation associated with greater allele 
frequency shifts or ∆z2 in all three lines, except that SNPs with large shifts and strong 
conservation were more abundant in LS1 and LS2. Trend lines are shown with LOESS 
regression but statistical comparisons were performed using linear regressions. 
https://doi.org/10.7554/eLife.42014.010 
 
 

 
 
Figure 3.9. Selection response in the Longshanks lines was largely line-specific, but 
the strongest signals occurred in parallel. (A) Allele frequencies showed greater shifts in 
LS2 (red) than in Ctrl (gray; left panel; diamonds: peak windows; dots: other 10 kbp 
windows; see Figure 3.10 for Ctrl vs. LS1 and Appendix for details). Changes in the two 
lines were not correlated with each other. In contrast, there were many more parallel 
changes in a comparison between LS1 (blue) vs. LS2 (red; middle panel; adjacent windows 
appear as clusters due to hitchhiking). The overall distribution closely matches simulated 
results under the infinitesimal model with maximal linkage disequilibrium (HINF, max LD; right 
heatmap summarizes the percentage seen in 100 simulated replicates), with most of the 
windows showing little to no shift (red hues near 0; see also Figure 3,10 for an example 
replicate). Tick marks along the axes show genome-wide maximum ∆z2 shifts in each of 100 
replicate simulations in LS1 (x-axis, blue) and LS2 (y-axis, red), from which we derived line-
specific thresholds at the p≤0.05 significance level. While the frequency shifts from 
simulations matched the bulk of the observed data well, no simulation recovered the strong 
parallel shifts observed between LS1 and LS2 (compare middle to right panel, points along 
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the diagonal). (B) Genome-wide ranking based on estimated selection coefficients s among 
the candidate discrete loci at p≤0.05 under HINF, max LD. While six out of eight total loci showed 
significant shifts in only LS1 or LS2, the two loci with the highest selection coefficients were 
likely selected in parallel in both LS1 and LS2 (also see middle panel in A). 
https://doi.org/10.7554/eLife.42014.012 
 
 

 
 
Figure 3.10. Changes in ∆z2 across lines. Shown are changes in ∆z2 in individual 10 kbp 
windows (all windows: circles; peak windows: diamonds). Generally there were no clear 
differences in ∆z2 along the axes except a slight skew toward higher values in LS2. When 
taken as a joint LS1–LS2 comparison, however, we observed that many windows show 
shifts in both LS1 and LS2 (left panel; in purple). In contrast, very few windows show 
parallelism in Ctrl–LS2 and Ctrl–LS1 comparisons (middle two panels). The right panel 
shows a single selected simulated replicate (selection pressure 𝑉!/𝑉! =0.58; maximum LD) 
found to have among the greatest extent of parallel ∆z2 among the replicates. The excess in 
parallel loci in observed results is clear both among the significant loci at p≤ 0.05 under HINF, 

max LD and highly significant at the more relaxed HINF, no LD threshold. 
https://doi.org/10.7554/eLife.42014.013  
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Figure 3.11. Strong parallel selection response at the bone maturation repressor 
Nkx3-2 locus was associated with decreased activity of two enhancers. (A) ∆z2 in this 
region of chromosome five showed strong parallel differentiation spanning 1 Mbp in both 
Longshanks but not in the Control line. This 1 Mbp region contains three genes: Nkx3-2, 
Rab28 and Bod1l (whose promoter lies outside the TAD boundary, shown as gray boxes). 
Although an originally rare allele in all lines, this region swept almost to fixation by 
generation 17 in LS2 (Figure 3.15A). (B) Chromatin profiles [ATAC-Seq, red, (Buenrostro 
et al., 2013); ENCODE histone modifications, purple] from E14.5 developing limb buds 
revealed five putative limb enhancers (gray and red shading) in the TAD, three of which 
contained SNPs showing significant frequency shifts. Chromosome conformation capture 
assays (4C-Seq) from E14.5 limb buds from the N1, N2 and N3 enhancer viewpoints (bi-
directional arrows) showed significant long-range looping between the enhancers and 
sequences around the Nkx3-2 promoter (heat-map from gray to red showing increasing 
contacts; Promoters are shown with black arrows and blue vertical shading). (C) Selected 
alleles at 7 SNPs found within the N1, N2, and N3 enhancers increased ~0.75 in frequency 
in both LS1 and LS2. Selected alleles at three of these sites are predicted to lead to loss 
(red inhibition circles) of transcription factor binding sites in the Nkx3-2 pathway (including a 
SNP in N3 causing loss of two adjoining Nkx3-2 binding sites) and thus reduce enhancer 
activity in N1 and N3. (D, E) Transient transgenic reporter assays of the N1 and N3 
enhancers showed that the F0 alleles drove robust and consistent expression at centers of 
future cartilage condensation (N1) and broader domains of Nkx3-2 expression (N3) in E12.5 
fore- and hind limb buds (FL, HL; ti: tibia). Fractions indicate the number of embryos 
showing similar lacZ staining out of all transgenic embryos. Substituting the F17 enhancer 
allele (i.e., replacing three positions each in N1 and N3) led to little observable limb bud 
expression in both the N1/F17 and N3/F17 embryos, suggesting that selection response for 
longer tibia involved de-repression of bone maturation through a loss-of-function regulatory 
allele of Nkx3-2 at this locus. Scale bar: 1 mm for both magnifications. 
https://doi.org/10.7554/eLife.42014.014  
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Figure 3.12. An enhancer in chromosome 13 boosts Gli3 expression during limb bud 
development. (A) LS1 showed elevated ∆z2 in the intergenic region containing Gli3. (B) 
Putative limb enhancers (gray bars) were identified through peaks from ATAC-Seq (top) and 
histone modifications (bottom tracks, data from ENCODE project). Four of the enhancers 
contain mutations (in parentheses) with significant allele frequency shifts between F0 and 
F17 in LS1 (red shading). One of the enhancers located close to the peak ∆z2 signal (G2, 
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arrowhead) containing 10 bp differences was chosen for transgenic reporter assay. (C) 
Analysis of individual mutations showed an average increase of 0.33 in allele frequency, with 
six mutated positions affecting predicted binding of transcription factors in the Gli3 pathway 
(including three additional copies of Gli3 binding sites), all of which are predicted to boost 
the G2 enhancer activity. (D) The F17 G2 enhancer variants together drove robust and 
consistent lacZ reporter gene expression at E12.5, recapitulating Gli3 expression in the 
developing fore- and hind limb buds (right; see also Figure 3.13). Substitution of 10 
positions (F0 haplotype) led to little observable expression in the limb buds (left). These G2 
enhancer gain-of-function mutations (contrasting the major allele between F0 and F17) may 
confer an advantage under selection for increased tibia length. Scale bars: 1 mm for both 
magnifications. https://doi.org/10.7554/eLife.42014.015  
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Figure 3.13. Gene expression patterns at the Gli3 and Nkx3-2 candidate intervals. (A) 
Gli3 expression was determined using in situ hybridization. Gli3 was robustly expressed 
during limb development in both developing fore- and hindlimb buds, especially in the 
autopod (hand/foot plate). Lower panels show expression of Nkx3-2 and its neighboring 
genes Rab28 and Bod1l. The stronger expression of Nkx3-2 in the developing limb buds as 
well as the known role of Nkx3-2 in bone maturation (Sivakamasundari et al., 2012) 
strongly argues for Nkx3-2 being the gene underlying the selection response at the 
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chromosome 5 locus. Scale bars: 1 mm for whole-mounts; 0.5 mm for limb buds. FL, 
forelimb; HL, hind limb; unless otherwise indicated by ‘L’, all images were taken from the 
right side. (B) We collected E12.5 embryos from each line and performed in situ 
hybridization to determine the sites and level of expression of Nkx3-2 and Rab28 in the 
Longshanks (right columns) and Control (left column) lines. Both genes are expressed in 
similar sites overall and specifically in the developing fore- and hind limb buds in the region 
of the presumptive zeugopods. These data indicate common sites of expression and rule out 
qualitative presence/absence differences in expression. Note that although the N1 enhancer 
pattern appear to differ from endogenous Nkx3-2 expression (Figure 3.11E, details in limb 
buds), it matches the pattern of early Nkx3-2 expression, detectable through the use of 
lineage-tracing via the combined effect of a Nkx3-2 Cre-driver line and the lacZ reporter line 
Rosa26R (see Figure 2B in Sivakamasundari et al., 2012). 
https://doi.org/10.7554/eLife.42014.016 
 
 

 
 
Figure 3.14. Linking base-pair changes to rapid morphological evolution. (A) At the 
Nkx3-2 locus, we identified two long-range enhancers, N1 and N3 (circles), located 600 and 
230 kbp away, respectively. During development, they drive partially overlapping expression 
domains in limbs (N1 and N3) and trunk (N3), which are body regions that may correlate 
positively (tibia length) and possibly negatively (trunk with body mass) with the Longshanks 
selection regime. For both enhancers, the selected F17 alleles carry loss-of-function variants 
(gray crosses). Two out of three SNPs in the N3 F17 enhancer are predicted to disrupt an 
auto-feedback loop, likely reducing Nkx3-2 expression in the trunk and limb regions. 
Conversely, the enhancer function of the strong N1 F0 allele is evolutionarily conserved in 
fishes, demonstrated by its ability to drive consistent GFP expression (green) in the pectoral 
fins (pf, outlined) and branchial arches (white arrowhead, left) in transgenic stickleback 
embryos at 11 days post-fertilization. The N1 enhancer can recapitulate nkx3.2 expression 
in distal cells specifically in the endochondral radial domain in developing fins (black 
arrowheads, right). Scale bar: 250 µm for both magnifications. (B) Allele frequency of the 
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selected allele (minor allele at F0, q) at N3 over 20 generations (blue: LS1; red: LS2; gray 
broken line: Ctrl; results from N1 were nearly identical due to tight linkage). Observed 
frequencies from genotyped generations in the Ctrl line are marked with filled circles. 
Dashed lines indicate missing Ctrl generations. Open circles at generations 0 and 17 
indicate allele frequencies from whole genome sequencing. The allele frequency fluctuated 
in Ctrl due to random drift but followed a generally linear increase in the selected lines from 
around 0.17 to 0.85 (LS1) and 0.98 (LS2) by generation 17. Shaded contours mark expected 
allelic trajectories under varying selection coefficients starting from 0.17 (red horizontal line; 
the average starting allele frequency between LS1 and LS2 founders). The gray shaded 
region marks the 95% confidence interval under random drift. 
https://doi.org/10.7554/eLife.42014.017 
 
 
 

 
 
Figure 3.15. Selection at the Nkx3-2 locus. (A) Raw genotypes from the F0 and F17 
generations from LS1 (left) and LS2 (right) are shown, clearly indicating the area under the 
selective sweep. The genotype classes are shown as C57BL/6J homozygous (BL6, white), 
heterozygous (black) and alternate homozygous (dark gray). Lower Panel: Tracking MAF 
from both lines show that the originally rare F0 allele (thin line) rose to high frequency at F17 
(thick lines). The plateau profile from both lines suggested that the same originally rare allele 
was segregating at in both founder populations and became very common by F17 in both 
lines (see raw genotypes). Note that in LS2 F17 the region is nearly fixed for the BL6 allele 
except in the bottom-most individual. (B) The log likelihood of the selection coefficient, s, for 
LS1 and LS2 (blue and red, respectively), based on transition probabilities for a Wright–
Fisher population with the appropriate Ne. The horizontal red line shows a loss of log 
likelihood of 2 units, which sets conventional 2-unit support limits. (C) Simulations of an 
additive allele with effect A on the trait; 40 replicates for each value of A. Left: The selection 
coefficient, estimated from the change in mean allele frequency, as a function of 𝐴/ 𝑉!; the 
line shows the least-squares fit s=0.41𝐴/ 𝑉!. Middle: dots show the mean allele frequency at 
generation 17; the line shows the prediction from the single-locus Wright–Fisher model, 
given s=0.41𝐴/ 𝑉!. Right: the same, but for the standard deviation of allele frequency. 
https://doi.org/10.7554/eLife.42014.018  
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Table 3.1. Major loci likely contributing to the selection response. These eight loci show 
significant allele frequency shifts in ∆z2 and are ordered according to their estimated 
selection coefficients according to Haldane (1932). Shown for each locus are the full 
hitchhiking spans, peak location and their size covering the core windows, the overlapping 
TAD and the number of genes found in it. The two top-ranked loci show shifts in parallel in 
both LS1 and LS2, with the remaining six showing line-specific response (LS1: 1; LS2: 5). 
Candidate genes found within the TAD with limb, cartilage, or bone developmental knockout 
phenotype functions are shown, with asterisks (*) marking those with a ‘short tibia’ knockout 
phenotype (see also Figure 3.7and Supplementary file 3 for full table). 
https://doi.org/10.7554/eLife.42014.011 
 

Rk Chr 
Span 
(Mbp) Peak 

Core 
(kbp) 

TAD  
(kbp) Genes 

∆q  

LS1 LS2 Ctrl Type 
Candidate 

genes 

1 5 
38.95–
45.13 41.77 900 720 3 0.69 0.86 −0.14 Parallel Nkx3-2 

2 10 77.47–
87.69 

81.07 5360 6520 175 0.79 0.88 −0.04 Parallel Sbno5, Aes, 
Adamtsl5*, 
Chst11*, Cry1, 
Prdm4* 

3 18 
53.63–
63.50 58.18 220 520 4 0.05 0.78 −0.06 

LS2-
specific - 

4 13 35.59–
55.21 

48.65 70 2600 22 0.24 0.80 −0.03 LS2-
specific 

Id4 

5 1 
53.16–
57.13 55.27 10 720 4 0.65 0.01 −0.23 

LS1-
specific - 

6 15 
31.92–
44.43 41.54 10 680 3 −0.23 0.66 0.02 

LS2-
specific Rspo2* 

7 6 
118.65–
125.25 120.30 130 1360 12 −0.03 0.79 −0.15 

LS2-
specific Wnt5b* 

 
8 11 

111.10–
115.06 113.42 10 2120 2 −0.14 0.66 −0.15 

LS2-
specific Sox9* 

Rk, Rank. 
Chr, Chromosome. 
Core, Span of 10 kbp windows above HINF, max LD p≤0.05 significance threshold. 
TAD, Merged span of topologically associating domains (TAD) overlapping the core span. 
TADs mark segments along a chromosome that share a common regulatory mechanism. 
Data from Dixon et al. (2012). 
Candidate genes, Genes within the TAD span showing ‘short tibia’, ‘short limbs’, ‘abnormal 
osteoblast morphology’ or ‘abnormal cartilage morphology’ 
knockout phenotypes are listed, with * marking those with ‘short tibia’. 
DOI: https://doi.org/10.7554/eLife 
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Chapter 4: General Discussion 
Which factors in the nuclear environment enable transcriptional regulation by 

enhancers? Attempts to characterize the biochemical and physical properties that 

determine enhancer output have pointed to the interplay between transcription factor 

(TF) binding, histone modification marks, and chromatin stability and looping (Calo 

and Wysocka, 2013; Yanez-Cuna et al., 2014; Long et al., 2016; Bu et al., 2017). 

These factors are influenced both by one another and by intrinsic features of 

enhancers, including GC content, DNA methylation (Bu et al., 2017), and the 

presence of dinucleotide repeats (Spitz and Furlong, 2012; Yanez-Cuna et al., 2014; 

Bagshaw, 2017; Colbran et al., 2017; Carelli et al., 2018), making the determination 

of enhancer activity highly complex. In this discussion, I consider the evidence from 

the literature as well as from my work on the Capture-C and Longshanks 

experiments (Chapters 2-3) to reconstruct the chain of events that could lead to 

expression differences at the Nkx3-2 and Gli3 loci in the Longshanks mice. 

 

4.1 Transcription factor binding 
TFs bind enhancers to displace nucleosomes and recruit cofactors, which 

interact with RNA Polymerase II and transcriptional machinery to elevate 

transcription at promoters (Long et al., 2016). TF binding is difficult to predict in silico 

and impractical to comprehensively assay in vivo, as there are hundreds of different 

TFs in mammals and they tend to be highly cell type-specific (Khamis et al., 2018) 

and occupy only a small proportion of predicted binding sites (Grossman et al., 

2017). Multiple TFs bind to each enhancer in a manner that is dependent on the 

spacing and order of binding motifs as well as on the interactions between the bound 

TFs (Spitz and Furlong, 2012; Stefflova et al., 2013; Farley et al., 2015; Long et al., 

2016). 

 

4.2 Histone modification marks 
TF binding both affects and is regulated by histone modifications, although the 

latter are not always required for enhancer activity (Henikoff and Shilatifard, 2011; 

Calo and Wysocka, 2013). TF binding recruits histone-modifying enzymes, many of 

which double as co-activators of TFs (Xin and Rohs, 2018). The active enhancer 

mark H3K27ac, by neutralizing the positive charge of the lysine residue, helps lower 

the affinity of the nucleosome for the DNA, making it easier for TFs to bind (Bao and 
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Bedford, 2016). H3K4 methylation, which often precedes H3K27 acetylation (Bonn et 

al., 2012) and is associated with poised enhancers, enables enhancer activity by 

protecting the DNA from de novo methylation and subsequent gene silencing, by 

recruiting cofactors that in turn recruit TFs and chromatin remodeling complexes, 

and by interacting with other modified histone tails to regulate chromatin stability 

(Cao and Wysocka, 2013). A host of other histone modification marks, often in 

combination, have been found to be associated with enhancer activity (Karlic et al., 

2010). In some contexts, however, TF binding occurs despite a lack of histone 

modification marks near the enhancer (Ghisletti et al., 2010; Heinz et al., 2010; 

McManus et al., 2011; Spitz and Furlong, 2012). In transgenic or massively parallel 

reporter assays, enhancer reporter activity is subject to positional effects such as the 

presence or absence of histone modifications at the site of genomic integration 

(Akhtar et al., 2013). In assays that rely on episomal instead of genomic integration, 

including STARR-seq (Arnold et al., 2013), enhancer activity is likewise affected by 

the histone modifications that form in episomal chromatin (Riu et al., 2007; Barde et 

al., 2009; Muerdter et al., 2015; Inoue et al., 2017). In short, modification of nearby 

histones can both facilitate and result from TF binding, though the exact cause and 

consequence is unclear and may depend on the context; a comprehensive assay of 

histone modification function has not been possible thus far due to the challenges 

associated with knockdown or mutagenesis of histones or the enzymes which 

catalyze their modification (Calo and Wysocka, 2013). 

 

4.3 Long-distance regulatory mechanisms 
Enhancers tend to act distally to their promoters, often from up to hundreds of 

kilobase pairs away (Kleinjan and van Heyningen, 2005). How do they recruit 

transcriptional machinery over long distances? Several mechanisms have been 

proposed. The chromatin looping model is best supported by experimental evidence, 

particularly from chromosome conformation capture methods (Li et al., 2012). TF 

binding to enhancers and subsequent binding of chromatin remodelers to TFs and 

their cofactors help initiate chromatin loops (Matharu and Ahituv, 2015). 

Subsequently, loops are maintained by loop extrusion factors like cohesin, which 

bring distal loci into physical proximity with one another as they translocate along the 

DNA (Fudenberg et al., 2016). Although cohesin can move freely over nucleosomes 

(Davidson et al., 2016), initial formation of the loop is influenced by histone 
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modification marks that regulate chromatin flexibility (Li et al., 2006). Enhancers 

which contact their promoters through chromatin loops may not require chromatin 

loops to have precise lengths: knockout of the cohesin release factor WAPL in a 

human cell line led to longer median chromatin loops but only affected expression of 

around 1,000 genes genome-wide (Haarhuis et al., 2017). Depleting cohesin from 

mouse immune cells, however, resulted in down-regulation of many otherwise highly 

expressed genes located near enhancers, underscoring the role of chromatin looping 

in enabling enhancer activity (Ing-Simmons et al., 2015). The prevalence of 

chromatin loops is further underscored by the finding that the majority of 

characterized promoter-enhancer contacts in mouse embryonic stem cells lie within 

topologically associating domains (TADs) (Shen et al., 2012; Schoenfelder et al., 

2015), which were discovered by Hi-C, a technique that captures genome-wide 

chromatin loops. 

In some cases, enhancer activity can proceed without chromatin looping: if 

the chromatin between an enhancer and its target promoter is sufficiently compact, 

the TFs recruited by enhancers may already be localized to the promoters 

(Pennacchio et al., 2013). Likewise, if an enhancer is sufficiently close to its target 

promoter, then chromatin looping is also not required (and may not even be possible 

due to constraints on chromatin flexibility). This is the case in transgenic reporter 

assays and in STARR-seq (Arnold et al., 2013), where the enhancer is directly 

adjacent to a minimal promoter. As an alternative to chromatin looping, enhancers 

may be brought into proximity with their promoters through the action of RNA 

Polymerase II, which binds to TFs at the enhancer and scans along the chromatin 

until it encounters the target promoter (Blackwood and Kadonaga, 1998). This 

“tracking” or “scanning” model is thought to describe only a minority of observed 

interactions (Calo and Wysocka, 2013; Meng and Bartholomew, 2018). In summary, 

while enhancers may rely on other methods to target and act on promoters 

(Pennacchio et al., 2013), chromatin looping is a widespread mechanism among 

endogenous enhancers. 

 

4.4 Determinants of enhancer output at Nkx3-2 and Gli3 in the Longshanks 
mice 
I will now turn to applying the findings from my exploration of transcription 

regulation in the Capture-C study to the Longshanks selection experiment, 
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specifically to interpret the interplay between various factors at the candidate regions 

we molecularly dissected. We identified candidate regions as those that had 

significant allele frequency shifts from F0 to F17 and looked at the genes in these 

regions, taking into account their function. At Nkx3-2 and Gli3, because we did not 

see coding changes or observed only mild conservative changes, it stands to reason 

that gene regulatory mechanisms like enhancers would be the most likely 

explanation. Therefore, we focused on identifying enhancers and determining 

whether any functional differences could be under selection. We required putative 

enhancers to be located in open chromatin regions (as identified by ATAC-seq) near 

the candidate genes and to be enriched for H3K27ac and H3K4me1 but not for the 

classic promoter mark, H3K4me3. With 4C-seq, we confirmed that the putative 

enhancers interacted with the candidate gene promoters (Figure 3.11B). We then 

selected enhancers to test in lacZ transgenic reporter assays (Figure 3.11D-E), 

prioritizing those that contained SNPs with major allele frequency differences. 

Through differential TF binding site predictions from SNP intersection, we found that 

the SNPS that were swept to higher allele frequency by F17 were predicted to have 

resulted in loss (at Nkx3-2) or gain (at Gli3) of TF binding sites. We hypothesized 

based on the transgenic assays, differential TF binding site predictions, and known 

roles of Nkx3-2 as a limb repressor and of Gli3 as a limb growth activator that the 

SNPs in the tested enhancers led to lower expression of Nkx3-2 (loss-of-function) 

and higher expression of Gli3 (gain-of-function) in F17 mice. 

The ChIP-seq (ENCODE Project Consortium, 2012), ATAC-seq, and 4C-seq 

experiments were performed in C57BL/6NJ (BL6) mice, whose haplotype at each of 

the SNP-containing enhancers matches the haplotype of the allele under selection. 

 

Nkx3-2 
At the weaker (BL6) F17 allele in the Nkx3-2 enhancers, the chromatin is 

accessible and the active and poised enhancer marks (H3K27ac and H3K4me1) are 

present. Our 4C-seq showed that each enhancer engages in a chromatin loop with 

the Nkx3-2 promoter. However, the F17 enhancers were not observed to stimulate 

expression of the reporter gene in E12.5 limb bud, despite the fact that each allele 

was cloned and injected as a tandem duplicate, which we would expect to 

strengthen enhancer output without changing the expression domain based on 

results from Farley et al., 2015 (Figure 3.11D-E). The lack of F17 reporter gene 
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expression may be due to technical aspects of the transgenic reporter assays. For 

example, we may not have screened enough transgenic embryos to establish a 

consistent lacZ expression pattern above and beyond the integration site effect. This 

is because the reporter transgene may be silenced or suppressed by histones at the 

integration site or may not be strong enough to recruit histone-modifying enzymes to 

add the appropriate marks (Akhtar et al., 2013). Another possibility is that the genetic 

background of the transgenic embryos may cause the enhancer to behave differently 

than it would in the Longshanks genetic background. Additionally, the transgenic 

reporter assays were screened at E12.5, whereas the other data is from E14.5 limb 

bud. The tested F17 enhancers might not yet be active in E12.5 limb bud, although 

we detected Nkx3-2 expression as early E12.5. 

If the transgenic reporter assays do reflect the activity of the endogenous 

enhancers in the Longshanks mice – namely, that the enhancers are weakened in 

F17 – then the striking difference in enhancer activity from F0 to F17 could be 

attributed to the predicted differential TF binding sites within the N1 and N3 

enhancers. Without ChIP-seq data, it is difficult to determine actual TF occupancy at 

the enhancers, as combinatorial binding by multiple TFs, motif grammar, and other 

factors affect binding (Spitz and Furlong, 2012; Stefflova et al., 2013) such that only 

a small proportion of predicted binding sites are occupied in vivo (Grossman et al., 

2017). However, from differential TF binding site predictions we found that at the N1 

enhancer, the SNPs swept to higher frequency by F17 were predicted to have 

ablated a predicted binding site of the hoxd12 TF (Figure 3.11C). SNPs in the N3 

enhancer were predicted to have resulted in loss of two binding sites of nkx3-2, 

which is itself a TF. Since nkx3-2, like hoxd12, likely activates Nkx3-2 transcription, 

the potential impact on enhancer activity may be amplified through a negative 

feedback loop whereby nkx3-2 binds less frequently to its own enhancer. Loss or 

reduction of occupancy by these transcriptional activators may reduce enhancer 

activity either directly (if they are the primary or sole TFs to confer enhancer activity) 

or by impacting the combinatorial binding of additional TFs (if the additional TFs 

require co-binding by the transcriptional activators in order to themselves bind, or if 

the full set of TFs must be present in order to stimulate enhancer activity). A study of 

combinatorial TF binding across different species revealed that cobound TFs were 

sensitive to one another’s binding and tended to be lost in tandem (Stefflova et al., 

2013); loss of binding by TFs at N1 and N3 may decrease co-binding by other TFs. 
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Once TF binding is lost or reduced, the enhancers may not be able to 

stimulate transcription (or may still do so, but at such a low level as to be 

undetectable in a transgenic reporter assay) despite the presence of histone marks 

like H3K27ac and H3K4me1. These marks, while strongly associated with 

enhancers, are not sufficient for enhancer activity; not all active enhancers are 

marked by H3K27ac (Taylor et al., 2013), and H3K4me1 decorates gene bodies in 

addition to poised enhancers (Calo and Wysocka, 2013). The enzymes that add the 

histone modification marks are recruited through TF binding. Assuming the 

Longshanks F17 mice have the same H3K4me1 and H3K27ac ChIP-seq peaks 

present in BL6, how could these marks have been added? The transcriptional 

activators whose binding sites were altered by SNPs in F17 may still be able to bind 

the enhancers and recruit histone-modifying enzymes, albeit possibly with lower 

efficiency due to the more transient nature of binding. Many enhancers have been 

observed to function through sub-optimal binding affinity, and it is even a mechanism 

whereby enhancer activity can be restricted (Farley et al., 2015, 2016). Furthermore, 

if there are additional TFs with binding sites not impacted by the SNPs and they 

continue to bind to the enhancer sequence, then they could also have recruited the 

histone-modifying enzymes. A wide range of TFs can recruit the p300/CBP histone 

acetyltransferase that adds H3K27ac, for example (Goodman and Smolik, 2000). 

According to our 4C-seq data, the F17 enhancers contact the Nkx3-2 

promoter. Even if the enhancers are engaged in a chromatin loop with the promoter, 

without TFs recruiting transcriptional machinery to the promoter, they should not be 

able to stimulate gene expression. Chromatin looping of an enhancer to a promoter 

without an accompanying increase in gene expression has been observed in the 

developing mouse limb bud at the Sonic hedgehog promoter: in cells of the anterior 

limb bud, no Shh expression was detected despite contact between a distal limb 

enhancer and the promoter (Amano et al., 2009). In this work, the authors 

hypothesized that the chromatin conformation in the anterior limb bud cells existed in 

a poised state whereby activation of the gene was primed by enhancer proximity 

through chromatin looping. This is compatible with the model proposed in the 

Capture-C analysis (Chapter 2) that suggests that promoters with intermediate 

expression exist in a poised state where they form contacts less constrained by 

distance than active or silent promoters. In F17, Nkx3-2 behaves more like the 

poised than the active class of promoters. It continues to form interactions with the 
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now hypomorphic N1 and N3 enhancers but is not regulated by them because 

although they are marked by hallmark enhancer features like chromatin accessibility 

and H3K27ac and H3K4me1, they may lack the critical TF binding that confers 

functionality in the F0 mice. 

In situ hybridization in Longshanks embryos from the 20th generation onwards 

still showed Nkx3-2 expression (Figure 3.13B). Due to the semi-quantitative nature 

of in situ hybridization (Wunderlich et al., 2014), it is not possible to quantify whether 

Nkx3-2 expression was lower in the Longshanks embryos than in the Control (not 

exposed to selection) embryos from the same generation. However, given the known 

role of Nkx3-2as a limb growth repressor, the presumed loss or weakening of 

transcriptional activator binding in the F17 enhancers, and the failure of the F17 

enhancers to drive readily detectable lacZ reporter expression, we hypothesized that 

Nkx3-2 expression decreased in the Longshanks mice upon selection, contributing to 

longer tibia length by reducing Nkx3-2 limb growth repression. This hypothesis is 

consistent with the longer limb length seen in human patients who have frameshift 

mutations in Nkx3-2 (Hellemans et al., 2009), and also with the shorter limb length 

seen in chicken embryos that overexpress Nkx3-2 (Bren-Mattison et al., 2011). 

These known phenotypic impacts of Nkx3-2 mis-expression suggest that the 

expression decrease we hypothesized to have happened by F17 is not negligible. 

While there may be other causal mutations underlying longer tibia length in 

Longshanks mice, the allele frequency shift at Nkx3-2 had the strongest selection 

coefficient, and the changes in the enhancers arose in parallel across the two 

independently selected lines. 

How is Nkx3-2 expression maintained in the context of hypomorphic N1 and 

N3 enhancers? From the in situ hybridization, the expression domains of Nkx3-2 do 

not visibly differ between Control and Longshanks embryos. The most parsimonious 

explanation is that in the F17 context, the N1 and N3 enhancers are simply weaker 

but still able to stimulate transcription, and that the presumed reduction of Nkx3-2 

expression is solely quantitative as opposed to spatial and thus not detectable by in 

situ hybridization. However, endogenous Nkx3-2 showed expression in the distal 

(fingertip) portion of the limb bud, whereas the F0 N1 and N3 enhancers were not 

observed to stimulate lacZ expression in these cells. The absence of observable 

reporter gene expression in the fingertips could be a result of intrinsic features of the 

reporter gene assay, such as differences in how the endogenous Nkx3-2 promoter 
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and the β-globin minimal promoter respond to stimulation by enhancers. Additionally, 

N1 and N3 may be acting in tandem in the endogenous context, possibly by forming, 

within the same chromatin loop, a “pocket” of cis- and trans-regulatory elements 

(Kragesteen et al., 2018), to stimulate more cell types to express Nkx3-2 than each 

one can stimulate on their own. 

There could also be other enhancers stimulating expression which we did not 

functionally test due to their lack of SNPs with a significant allele frequency shift, or, 

as at the N2 putative enhancer, a lack of SNPs with a predictable impact on TF 

binding sites. Our 4C-seq showed that the F17 version of the N2 enhancer also 

contacted the Nkx3-2 promoter. In mammals, promoters tend to be regulated by 

multiple enhancers with similar expression domains (de Laat and Duboule, 2013; 

Osterwalder et al., 2018). These enhancers may include functionally redundant 

“shadow” enhancers (Hong et al., 2008) that stimulate transcription in the same cell 

types as do the N1 and N3 enhancers, but possibly less efficiently such that overall 

Nkx3-2 expression is still lower in F17. Osterwalder et al., 2018 observed that 

deleting individual enhancers had no visible effect on target gene expression, and 

only observed a phenotypic impact when enhancers were deleted in pairs. Likewise, 

deletion of a hindlimb-specific distal enhancer of Pitx1 had no observable effect on 

hindlimb morphology or Pitx1 expression domains and resulted in only a small 

reduction of Pitx1 expression level in the hindlimb, suggesting it is functionally 

redundant with other enhancers (Sarro et al., 2018). Enhancers may also function in 

an additive manner whereby each one contributes partially or non-overlapping 

expression domains, and knockout of one enhancer, such as the PelB enhancer at 

the Pitx1 promoter in mouse hindlimb (Thompson et al., 2018), decreases but does 

not abolish target gene expression. Arnold et al., 2013 observed a correlation 

between gene expression level and the sum of enhancer strength as derived from a 

STARR-seq assay in Drosophila, suggesting enhancers acted on the same gene in 

an additive or redundant manner. If F17 N1 and N3 are hypomorphic, then other 

enhancers with additional or overlapping expression domains may at least partially 

compensate for their lack of activity. A CRISPR/Cas9-mediated knockout of N1 and 

N3 followed by Nkx3-2 in situ hybridization could reveal whether other enhancers 

can maintain Nkx3-2 limb bud expression. 

We noted that the F0 N1 and N3 enhancers stimulated lacZ expression in the 

proximal part of the limb bud, whereas endogenous Nkx3-2 was not visibly 
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expressed here according to the in situ hybridizations. However, Nkx3-2-driven Cre 

in a cell lineage-tracing experiment from Sivakamasundari et al., 2012 was 

expressed in proximal as well as distal cells of the limb bud. This suggests that the 

transgenic reporter assay may have revealed subtler expression patterns not 

detectable by in situ hybridization due to its limited sensitivity (Speel et al., 1999); 

that is, the endogenous Nkx3-2 promoter most likely does stimulate proximal limb 

bud expression. 

There is disparity, however, between the F0 N3 lacZ expression domain and 

the Nkx3-2 expression pattern captured by the in-situ and Cre cell-lineage tracing 

experiments. The F0 N3 enhancer stimulates reporter gene expression strongly in 

most cells of the proximal hindlimb bud, whereas proximal hindlimb expression is 

more scant in the cell-lineage and in situ hybridization E12.5 embryos. One potential 

reason the N3 enhancer can stimulate expression outside of the endogenous Nkx3-2 

domain is the presence of multiple enhancers acting in a combinatorial or synergistic 

manner to restrict the expression domain of N3. Synergistic regulation involving 

multiple enhancers can explain why enhancer and gene expression domains do not 

always match, a phenomenon also observed in large-scale transgenic reporter 

assays (Kragesteen et al., 2018). In the developing mouse limb bud and brain, 

enhancers of the Fgf8 promoter stimulated reporter gene expression in additional 

cell types beside those observed to express Fgf8. Barring integration site effects, the 

expression domain of one enhancer may be restricted by the activity of other 

enhancers (Marinic et al., 2013). At the Pitx1 locus, the Pen enhancer is expressed 

both in the developing forelimb and the hindlimb, yet Pitx1 is only expressed in the 

hindlimb (Kragesteen et al., 2018). In cells of the proximal limb bud in F0 mice, other 

enhancers at the endogenous locus may hinder N3 from stimulating Nkx3-2 

transcription, which they would otherwise be able to do if acting in isolation, as in a 

transgenics reporter assay. 

What mechanism might underlie such synergy? Chromatin conformation may 

sequester enhancers from their target promoters in one cell type but not in another 

(Kragesteen et al., 2018). Possibly, there are additional enhancers or cis-regulatory 

elements like insulators at the endogenous locus, which loop out or otherwise shield 

the N3 enhancer from the Nkx3-2 promoter in many of the proximal hindlimb cells. 

Performing 4C-seq with the Nkx3-2 promoter as the viewpoint could reveal other 

contacts that help to regulate Nkx3-2 expression. These contacts and the 
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transcriptional activity hubs they may form likely take place entirely within the same 

TAD. In the Capture-C analysis (Chapter 2), I found that the majority of promoter 

contacts at most of the viewpoints were located within the same mESC TAD (Dixon 

et al., 2012) as the viewpoint, confirming previous findings in mESCs that promoter-

enhancer interactions tend to take place within the same TAD (Shen et al., 2012; 

Schoenfelder et al., 2015). I also observed, in accordance with previous studies, that 

TADs merge over developmental time and during cellular differentiation (Meshorer 

and Misteli, 2006; Melcer and Meshorer, 2010; Gaspar-Maia et al., 2011; Battulin et 

al., 2015; Boya et al., 2017). However, the question of whether to use TAD 

boundaries from mESCS (Dixon et al., 2012) or from cortex cells (Shen et al., 2012) 

does not appear to be an issue in the Longshanks 4C-seq assay even though the 

limb bud cells (E14.5) are one day more advanced than the E13.5 limb bud cells 

from the Capture-C experiment, because the Gli3 and Nkx3-2 TADs share the same 

coordinates in mESCs as in cortex cells. 

In the limb bud, the N1 through N3 enhancers appear to act solely on the 

Nkx3-2 promoter and are not shared between multiple promoters as has been 

reported at certain other loci (Andrey et al., 2017). From our 4C-seq data, these 

enhancers were not observed to frequently contact the Bod1l promoter, which is 

located 80 kbp telomeric to the Nkx3-2 promoter and is in the adjacent mESC TAD. 

They were additionally not observed to frequently contact the Rab28 promoter, which 

is within the same mESC TAD and 60 kbp centromeric to the target promoter – thus 

closer to the enhancers and more likely to be affected by proximity ligation in the 4C-

seq assay. 

 

Gli3 
Which molecular mechanisms at Gli3 enabled the presumed increase in Gli3 

expression from F0 to F17? At the Gli3 locus, the ChIP-seq and ATAC-seq profiles in 

BL6 mice again match the haplotype of the selected allele (Figure 3.12B). In this 

case, they match the stronger allele according to our hypothesis that a gain of 

function of the limb growth activator Gli3 occurred in Longshanks. The SNPs at the 

G2 enhancer altered TF binding sites, with three of the ten SNPs in the enhancer 

predicted to have resulted in the gain of transcriptional activator – including from 

GLI3 itself – binding sites and one SNP resulting in loss of a binding site of NKX3-2, 

which likely acts to inhibit Gli3 expression (Figure 3.12C). If the transcriptional 
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activators whose binding sites were predicted to be impacted by SNPs are key for 

enhancer activation, their absence in F0 and presence in F17 can explain why only 

the F17 version of the G2 enhancer was observed to stimulate lacZ expression in the 

limb bud. 

Neither 4C-seq nor F0 histone profiles or chromatin accessibility data are 

available at the Gli3 locus. Based on the chromatin features observed at the Nkx3-2 

locus in the weaker allele, the inactive or hypomorphic G2 enhancer in F0 mice may 

already be marked by accessible chromatin, facilitating TF binding in the F17 mice 

once the binding sites have been gained (and the NKX3-2 binding site has been 

lost). This pre-existing landscape is likely to be enriched for H3K4me1, as this mark 

spreads easily and nonspecifically over large swathes of DNA (Calo and Wysocka, 

2013) and as the Gli3 locus in BL6 mice includes at least twenty other putative 

enhancers as marked by the presence of H3K4me1 and H3K27ac and absence of 

H3K4me3 signal. H3K27ac may also exist at the F0 G2 enhancer, although it is less 

likely to be present since it is added by enzymes which double as cofactors of TFs – 

of which there may be few binding to the enhancer – and as it tends to disappear 

quickly when transcription is not stimulated (Calo and Wysocka, 2013). However, it 

may have been added by cofactors binding to other enhancers in the vicinity. Even in 

a hypomorphic state, the G2 enhancer may be part of a chromatin loop connecting 

multiple other enhancers to the Gli3 promoter. Gli3 is known to be regulated by 

multiple enhancers (Coy et al., 2011; Anwar et al., 2015). They likely add expression 

domains that together comprise the entire Gli3 expression pattern; the expression 

domain of Gli3 from our in situ hybridization in BL6 (Figure 3.13A) extends well 

beyond the expression domain of the lacZ reporter stimulated by the F17 G2 

enhancer (Figure 3.12D), both within the forelimb and hindlimb and in the whole 

embryo. 
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Chapter 5: Conclusion and Future Outlook 
The Capture-C and Longshanks analyses show how chromosome 

conformation capture data can be integrated with epigenetic, chromatin accessibility, 

and other datasets to help explain gene expression differences brought about by 

transcriptional regulation. A few main principles concerning chromosome 

conformation capture data emerged or were confirmed through these analyses. 

Firstly, Capture data can be used to establish the link between CREs and their target 

promoters. In the Longshanks experiment, 4C-seq data showed that the distal N1, 

N2, and N3 enhancers interacted with the Nkx3-2 promoter (Figure 3.11B). 

Secondly, interacting loci tend to stay within the confines of TADs, which are 

indicative of physical barriers like CTCF binding sites that block chromatin loops by 

halting or stalling loop extrusion factors like cohesin and its subunits from 

translocating along the DNA. In the Capture-C analysis, most of the promoter 

contacts at each viewpoint mapped to the same TAD as the promoter (Figure 2.3). 

In the context of the Nkx3-2 locus in the Longshanks mice, the N1, N2, and N3 

enhancers were all found within the same TAD as the Nkx3-2 promoter they 

contacted. Finally, both analyses suggested that even if CREs come into contact 

with their target promoters, they do not necessarily actively regulate them. Rather, 

the gene expression level of the target promoter should be considered, as poised 

promoters or those with intermediate expression levels are less constrained than 

active or silent promoters in the contacts they form. These contacts may not be 

capable of stimulating transcription, either through sequence changes in CREs that 

occurred during evolution (as in the Longshanks experiment) or as a result of 

differential trans factors in the nuclear environment that vary across cell types and 

developmental time points. These principles highlight the usefulness of Capture data 

in elucidating the mechanisms that underlie transcriptional regulation. 

In order to efficiently both identify CREs and link them to their targets, 

experimenters should aim to integrate at least three types of data: TAD boundaries 

(derived from Hi-C), nucleosome occupancy (chromatin accessibility and/or histone 

modifications), and Capture data. The molecular features at the Nkx3-2 enhancers in 

the Longshanks mice and the low predictive power of chromatin features in the 

Capture-C analysis suggest that TF binding is more directly determinative of CRE 

function than histone modifications or chromatin accessibility, in line with previous 

studies (Dogan et al., 2015; Kreimer et al., 2017). However, TF binding data is 
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impractical to collect. By contrast, the first two aforementioned types of data are 

readily available for many cell types or are easily obtainable. Each indirectly assays 

TF binding. TADs, derived from Hi-C data, indicate the physical barriers (CTCF 

binding and subsequent insulator activity) that hinder TFs from bringing 

transcriptional machinery to promoters. Considering TAD boundaries can quickly 

confine the search for putative CREs to just a few megabase pairs or hundreds of 

kilobase pairs, and is particularly useful for excluding contacts from Capture data of 

promoters that are located on the edges of TADs since these interactions are 

presumably due to proximity ligation, rather than biological function. Conservation of 

TADs between species means that TAD coordinates from one species may be used 

as a proxy for another; however, care should be taken to ensure that the 

developmental stage is as closely matched as possible, as our investigation of 

mESC and cortex TAD boundaries in Chapter 2 confirmed previous studies that 

suggested TADs merge over development as chromatin compacts. TF binding can 

also be inferred from chromatin accessibility or nucleosome occupancy data, 

including identification of DHSs and profiling of histone marks. This is because 

nucleosomes and TFs compete for binding to CREs, and the enzymes that add 

histone marks are often cofactors of TFs. DHSs identify all types of CREs, whereas 

histone marks give a more detailed view linked to the gene expression level of the 

target gene. DHSs are easily obtainable from short, simple assays like ATAC-seq, 

and, like key histone marks associated with enhancers and promoters, are already 

widely available for a variety of cell types (ENCODE Project Consortium, 2012). 

Finally, chromosome conformation capture data is needed to establish the link 

between a promoter and a CRE, as at the Longshanks Nkx3-2 locus, where we used 

4C-seq to confirm that the N1 and N3 enhancers acted on Nkx3-2 and not on the 

Rab28 promoter, which is in the same TAD and is also expressed in the limb bud. 

Although these three types of data can accurately identify and link CREs to 

their target promoters, they do not reveal whether a CRE is functional in a given 

context (the third main principle from these analyses). To uncover CRE expression 

domains and activity levels, functional validation assays like transgenic reporter 

assays are needed. These have revealed that a given CRE may not actively regulate 

a promoter despite forming a chromatin loop with it, as at the Shh locus in anterior 

limb bud cells (Amano et al., 2009) and presumably at the Nkx3-2 locus in F17 

Longshanks mice. However, transgenic reporter assays may not accurately reflect 
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the transcriptional regulation that occurs at the endogenous locus, since they do not 

involve chromatin looping and may suffer from integration site effects. To avoid 

integration effects, enhancer traps (O'Kane and Gehring, 1987) – in which a minimal 

promoter is cloned upstream of a reporter gene and is integrated into the genome to 

report on local enhancer activity – may be used instead; however, these still do not 

involve chromatin loops and may be confounded by the activity of multiple nearby 

regulatory elements at the integration site (Kvon, 2015). Both enhancer traps and 

transgenic enhancer reporter assays are limited to looking at individual CREs in 

isolation, and thus give an incomplete picture of transcriptional regulation because 

CREs may act synergistically on the same promoter, often refining one another’s 

expression domains (Kragesteen et al., 2018). To capture the activity of all CREs at 

once, a BAC reporter construct, in which the coding sequence of the endogenous 

gene is replaced with a reporter gene, can instead be introduced in the genome, 

facilitating manipulation of putative CREs so as to molecularly dissect their activity 

and function (Kvon, 2015; Thompson et al., 2018). However, BAC transgenics are 

still prone to disparities between episomal and endogenous chromatin features 

(Matthaei, 2007). All in all, transcriptional regulation is a hugely complex puzzle to 

decipher, not only due to the interplay between cis- and trans-factors in the nuclear 

environment but also to the presence of multiple distal regulatory elements that act 

additively, synergistically, or in a functionally redundant manner on the same target 

promoter. This complexity means that for many developmental regulators such as 

Pitx1, there are still new distal enhancers being explored (Sarro et al., 2018; 

Thompson et al., 2018) even after many years and concerted efforts by multiple labs 

to explore transcriptional regulation of these well-known genes. Chromosome 

conformation capture is an invaluable tool to find transcriptional regulators of a gene 

so that follow-up functional validation experiments can be performed. Capture signal 

profiles can reveal where ectopic chromatin interactions have occurred or existing 

ones have been lost, as during disease (Lupianez et al., 2015) or development 

(Andrey et al., 2013). The advent of Capture techniques with ever higher resolution 

(Stevens et al., 2017) enables the detection of chromatin dynamics and 

subsequently possible transcriptional regulatory mechanisms with increasing rates of 

sensitivity. 
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ABSTRACT F1 hybrids between mouse inbred strains PWD and C57BL/6 represent 

the most thoroughly genetically defined model of hybrid sterility in vertebrates. 

Hybrid male sterility can be fully reconstituted from three components of this model, 

the Prdm9 gene, intersubspecific homeology of Mus musculus musculus and Mus 

musculus domesticus autosomes, and the X-linked Hstx2 locus. Hstx2 modulates 

the extent of Prdm9-dependent meiotic arrest and harbors two additional factors 

responsible for intersubspecific introgression-induced oligospermia (Hstx1) and 

meiotic recombination rate (Meir1). To facilitate positional cloning and to overcome 

the recombination suppression within the 4.3 Mb encompassing the Hstx2 locus, we 

designed Hstx2-CRISPR and SPO11/Cas9 transgenes aimed to induce DNA 

double-strand breaks specifically within the Hstx2 locus. The resulting recombinant 
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reduced the Hstx2 locus to 2.70 Mb (Chr X: 66.51–69.21 Mb). The newly defined 

Hstx2 locus still operates as the major X-linked factor of the F1 hybrid sterility, and 

controls meiotic chromosome synapsis and meiotic recombination rate. Despite 

extensive further crosses, the 2.70 Mb Hstx2 interval behaved as a recombination 

cold spot with reduced PRDM9-mediated H3K4me3 hotspots and absence of DMC1-

defined DNA double-strand-break hotspots. To search for structural anomalies as a 

possible cause of recombination suppression, we used optical mapping and 

observed high incidence of subspecies-specific structural variants along the X 

chromosome, with a striking copy number polymorphism of the microRNA Mir465 

cluster. This observation together with the absence of a strong sterility phenotype in 

Fmr1 neighbor (Fmr1nb) null mutants support the role of miRNA as a likely 

candidate for Hstx2. 

 

KEYWORDS Speciation; Hybrid sterility X2; Prdm9; Bionano optical mapping; 

SPO11Cas9 transgene; Fmr1nb 

 

REPRODUCTIVE isolation is a basic prerequisite of speciation implemented by a 

range of prezygotic and postzygotic mechanisms under complex genetic control 

(Dobzhansky1951; Dion-Côté and Barbash 2017). Hybrid sterility, one of the 

reproductive isolation mechanisms, appears in the early stages of speciation and 

shares common features in many animal and plant species hybrids. They include 

preferential involvement of the heterogametic sex (XY or ZW), known as Haldane’s 

rule (Haldane 1922), or the large X effect (Coyne’s rule), referring to disproportionate 

engagement of X chromosome compared to autosomes (Dobzhansky 1951; Forejt 

1996; Coyne and Orr 2004; Good et al. 2008; Presgraves 2018). The first hypothesis 

on genetic control of hybrid sterility, known as Dobzhansky–Muller epistatic 

incompatibility, refers to a dysfunction caused by the independent divergence 

ofmutually interacting genes (Dobzhansky 1951). More recently, an interaction 

between meiotic drive and its suppressors has been implicated in some instances of 

reproductive isolation (Orr 2005; Zhang et al. 2015; Patten 2018). However, despite 

extensive genetic studies in organisms of various species such as yeast, fruit fly, or 

house mouse, the underlying genetic architecture and molecular mechanisms of 

hybrid sterility remain elusive [reviewed in Maheshwari and Barbash (2011); Phifer-
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Rixey and Nachman (2015); Dion-Côté and Barbash (2017); Mack and Nachman 

(2017); Payseur et al. (2018)]. 

The first hybrid sterility genetic factor to be identified in vertebrate, the hybrid 

sterility 1 (Hst1), was described in hybrids between laboratory and wild mice (Forejt 

and Ivanyi 1974; Gregorová et al. 1996; Trachtulec et al. 1997) and identified as the 

Prdm9 gene encoding PR/SET domain-containing nine protein (Mihola et al. 2009). 

The PRDM9 binds genomic DNA by a zinc finger domain at allele-specific sites and 

trimethylates lysine 4 and lysine 36 of histone 3. In mice, humans, and other 

mammalian species, Prdm9 mediates meiotic recombination by determining the 

genomic localization of the recombination hotspots (Baudat et al. 2010; Myers et al. 

2010; Parvanov et al. 2010). In a mouse model of intersubspecific hybrids where 

Mus musculus domesticus subspecies is represented by inbred strain C57BL/6J 

(hereafter B6) and Mus musculus musculus by PWD/Ph (hereafter PWD) 

(Gregorova and Forejt 2000) Prdm9 causes early meiotic arrest and complete male 

sterility by interaction with the X-linked Hstx2 locus. Hybrids between laboratory 

strains PWD and B6 serve as a robust, reproducible and genetically well-defined 

model of hybrid sterility [reviewed in Forejt (1996); Forejt et al. (2012)]. Specific 

allelic combinations of the Prdm9 gene (Prdm9PWD/B6) and Hstx2 locus (Hstx2PWD) 

were shown necessary but not sufficient to fully explain the meiotic arrest in hybrids. 

Initially, three or more additional hybrid sterility genes of small effect complementing 

the Prdm9 and Hstx2 major hybrid sterility genes had been considered (Dzur-

Gejdosova et al. 2012). Later, we identified chromosome-autonomous meiotic 

asynapsis of homeologous chromosomes [homologous chromosomes from 

related(sub)species] as the third requirement for meiotic arrest (Bhattacharyya et al. 

2013, 2014). The chromosomal, non-genic effects of homeologous chromosomes in 

(PWD x B6) F1 hybrids, manifested as a failure of meiotic chromosome synapsis, is 

most likely a consequence of evolutionary erosion of PRDM9 binding sites in each 

subspecies, resulting in asymmetry of DNA double-strand-break (DSB) hotspots 

(Davies et al. 2016). The explanation of hybrid sterility by expected shortage of 

symmetric DNA DSBs was supported by improvement of chromosome pairing and 

fertility after experimentally increasing the number of symmetric DNA DSBs by 

random stretches of a homozygous PWD sequence (Gregorova et al. 2018). 

Moreover, partial improvement of meiotic chromosome synapsis in hybrid males was 
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achieved by addition of exogenous DSBs generated by a single cisplatin injection 

(Wang et al. 2018). 

The PWD allele of the Hstx2 locus (Hstx2PWD) is indispensable for full sterility 

of (PWD x B6) F1 hybrids, while the Hstx2B6 allele attenuates the phenotype to 

partial spermatogenesis arrest in reciprocal (B6 x PWD) F1 males (Dzur-Gejdosova 

et al. 2012; Flachs et al. 2012; Forejt et al. 2012). Admittedly, the mechanism of 

action of the Hstx2 locus in meiotic arrest of F1 hybrids remains elusive. Previously, 

the Hstx2 locus was mapped to a 4.7 Mb region on X chromosome [chromosome X 

(Chr X): 64.9–69.6 Mb] (Bhattacharyya et al. 2014). The interval that encompasses 

10 protein-coding genes and a cluster of microRNA (miRNA) genes is still too large 

to identify the true Hstx2 candidate. The Hstx2 locus (Chr X: 64.9–69.6 Mb) harbors 

two additional meiosis-related genetic factors,the hybrid sterility X1 (Hstx1) locus, 

manifested by spermhead malformations after Hstx2PWD sequence introgression into 

the B6 genome (Storchová et al. 2004), and meiotic recombination 1 (Meir1), which 

controls meiotic recombination rate (Balcova et al. 2016). Since these factors have 

not yet been genetically separated, their phenotypes may represent a pleiotropic 

effect of the same gene. 

In an attempt to reduce the size of Hstx2, we constructed an SPO11-driven 

CRISPR-Cas9 system to target meiotic recombination to a particular genomic locus 

within the Hstx2 recombination cold spot. Although the method did not work as 

predicted, we recovered a single recombinant, thus reducing the Hstx2 locus to 2.70 

Mb. We show that the shortened version of Hstx2 still carries the genetic factors or 

genes responsible for hybrid sterility, meiotic chromosome asynapsis, and genome-

wide control of meiotic recombination rate. Using Bionano Optical mapping 

technology, we show high incidence of subspecies-specific insertion/deletion 

variants inside and outside the Hstx2 locus. Furthermore, we interrogate the Fmr1nb 

gene as a possible Hstx2 candidate gene. 

 
 

Materials and Methods 
Animals and ethics statement 
The mice were maintained in the Pathogen-Free Facility of the Institute of Molecular 
Genetics (Czech Academy of Sciences in Prague). The project was approved by the 
Animal Care and Use Committee of the Institute of Molecular Genetics AS CR and 
by the Czech Central Committee for Animal Welfare, and ethically reviewed and 
performed in accordance with European Directive 86/609/EEC. Subconsomic mouse 
strains C57BL/6J-ChrX.1PWD/Ph (abbreviated B6.DX.1) and C57BL/6J-
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ChrX.1sPWD/Ph (B6.DX.1s) were described earlier (Storchová et al. 2004). The 
C57BL/6J-ChrX.64-69PWD/Ph/ForeJ (B6.DX.64-69 ) congenic strain was established 
by backcrossing B6.DX.1s to the B6 strain (Figure 6.1). The congenic strain 
C57BL/6J-ChrX.66-69PWD/Ph (B6.DX.66-69) was prepared by the new CRISPR/ 
Cas9 Hstx2-targeting method. The PWD/B6 composition of the Chr X is depicted 
schematically in Figure 6.1 for each consomic strains.  
 
Genotyping, fertility parameters, and histology 
Genomic DNA was prepared from tails by NaOH method (Truett et al. 2000). The X 
chromosome recombinants in the backcross 1 (BC1) populations were genotyped by 
PWD/B6 allele-specific microsatellite markers (Table 6.1). Recombination 
breakpoints were determined by Sanger-DNA sequencing of the PCR amplicons 
carrying informative PWD/B6 SNP polymorphism(s). Genotyping of the new 
B6.DX.66-69 strain by microsatellite markers, Sanger DNA sequencing, and next 
generation sequencing showed the maximum and minimum extent of the PWD 
sequence on Chr X. The Fmr1nb deletion was confirmed using primers: forward 
5'CAGGAGGTTCTGGACTGCTC 3' and reverse 5'TGAAGTCCAGAAGCCAAACC 
3'. All experiments were performed with at least three animals per group. Cytological 
and histological experiments were performed on males between 8 and 10 weeks of 
age, with the exception of the males after fertility test. 
 
Quantitative Reverse Transcription-PCR (RT-qPCR) analysis 
Total RNA was extracted from testes by TRI Reagent #T9424 (Sigma, St. Louis, 
MO) according to manufacturer’s instructions. The RNA was reverse transcribed 
using MuMLV-RT (28025-013; Invitrogen, Carlsbad, CA). Quantitative real-time PCR 
was performed with the Light Cycler DNA Fast Start Master SYBR Green I kit 
(Roche) in a Light Cycler 480 Instrument II at Tm = 60°. The sequences of primers 
for Fmr1nb were: Fmr1nb-F – 5'-TCCTGGGATTTCTGCCTATG-3', Fmr1nb-R – 5'-
CCTTCAACATCCTGTTCATCC-3'; and the primers for Actin-b were: Actb-F – 5'-
CTAAGGCCAACCGTGAAAAG-3', Actb-R – 5'-ACCAGAGGCATACAGGGACA-3'. 
The Fmr1nb expression values were normalized to Actin-b expression. 
 
Western blotting 
Whole testes were snap-frozen in liquid nitrogen before extraction buffer with 
protease inhibitors (1836153; Roche) and bensonase (1.01654.0001; Merck) was 
used to homogenize the tissue (see Table 6.2). After a 30 min incubation, 2% SDS 
was added and the mixture was heated at 95° for 20 min. Total protein concentration 
was measured using the Pierce BCA Protein Assay Kit (#23225; Thermo Scientific). 
The protein samples were then size-separated by electrophoresis on a gradient Bolt 
4-12% Bis-Tris plus gel (NW04120BOX; Invitrogen), transferred onto a 
polyvinylidene difluoride membrane, and blocked with TBST with 5% BSA overnight. 
Primary antibodies against FMR1NB (sc-246953, goat polyclonal; Santa Cruz 
Biotechnology) and alpha-tubulin (66031-1-Ig, mouse monoclonal; Proteintech) were 
used at the 1:1000 and 1:2000 dilutions, respectively. Secondary antibodies (a 
donkey anti-goat IgG-HRP antibody, sc-2020; Santa Cruz Biotechnology, and a 
horse anti-mouse IgG-HRP antibody, 7076; Cell Signaling Technology), conjugated 
to HRP were used at 1:10000 dilution. Western Blotting Substrate (#32106; Pierce 
ECL Plus) was used for detection of HRP enzyme activity. Images were captured 
using the BioRad ChemiDoc MP Imaging System and processed with ImageLab 
software (Bio-Rad, Hercules, CA).  
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Immunofluorescence microscopy 
Meiotic chromosome spreads were performed as previously described (Anderson et 
al. 1999) with minor modifications. Briefly, the testes were dissected and transferred 
to 1ml of RPMI (Sigma). Sucrose (0.1M) was used as a hypotonic solution and cells 
were dropped onto a slide with 1% paraformaldehyde containing protease inhibitors 
(1836153; Roche). After 3 hr at 4° slides were washed and blocked with 0.5 X 
blocking buffer (1.5% BSA, 5% goat serum, 0.05% Triton X-100) containing protease 
inhibitors (1836153; Roche) for 1 hr at 4°. Primary antibodies (listed in Table 6.2) 
were added and the slides were incubated overnight in a humid chamber at 4°. The 
slides were then incubated with secondary antibodies conjugated to fluorophores 
(Table 6.2) for 1 hr at 4°. The slides were mounted with Vectashield mounting 
medium containing DAPI (H1200). The immunofluorescence images were observed 
by Nikon Eclipse X 400 epifluorescence microscope with single band-pass filters for 
excitation and emission of infrared, red, blue and green fluorescence (Chroma 
Technologies) and X 60 Plan Fluor objective (MRH00601; Nikon, Garden City, NY). 
The images were captured using a DS-QiMc monochrome CCD camera (Nikon) and 
NIS Elements processing program (NIS-Elements Microscope Imaging Software). 
The images were adjusted using Adobe Photoshop (Adobe Systems). 
 
Construction of Fmr1nb-specific TALEN and generation of transgenic mice 
TALEN nucleases were designed using TAL Effector Nucleotide Targeter 2.0 
(https://tale-nt.cac.cornell.edu/), assembled using the Golden Gate Cloning system 
(https://international.neb.com/applications/cloning-and-synthetic-biology/dna-
assembly-and-cloning/golden-gate-assembly) and cloned into the ELD-KKR 
backbone plasmid. TALEN containing repeats NN-NN-HD-NG-NN-NN-NG-NG-NI-
NN-NI-NN-NI-HD-HD-NG-HD-HD (for 5´ site) and NG-HD-NG-HD-NG-NN-NI-HD-
NG-NG-NN-NN-HD-HD-NG-NG (for 3´ site) recognized a locus close to the ATG 
start codon of Fmr1nb. Each TALEN plasmid was linearized with NotI and 
transcribed using the mMESSAGE mMACHINE T7 Kit (Ambion). Polyadenylation of 
resulting mRNAs was performed using the Poly(A) Tailing Kit (Ambion); the mRNA 
was purified with RNeasy Mini columns (Qiagen, Valencia, CA). TALEN mRNAs 
were diluted in nuclease free water and kept at −80°. Transgenic mice were 
generated in the transgenic facility of the Institute of Molecular Genetics by injecting 
purified mRNA of Fmr1nb-specific TALEN into male pronuclei of one-cell embryos of 
C57BL/6N or B6.DX.1s origin. Mice positive for mutations were identified by PCR 
reaction with Fmr1nb2outF and Fmr1RightBsrI primers followed by NspI digestion. 
Specific genome mutations were identified by PCR fragment sequencing. Twenty-
three mouse founders (F0), each carrying a mutated allele of the Fmr1nb gene were 
generated. After outcrossing the F0 mice to C57BL/6N or to B6.DX.1s we obtained 
five B6.Fmr1nb– mouse strains and three B6.DX.1s.Fmr1nb–  strains with stable 
deletion mutations. Here we used two lines, the B6.Fmr1nbem1ForeJ line carrying 236 
bp long deletion over the ATG start codon of the Fmr1nbB6 allele, and the 
B6.DX.1s.Fmr1nbem1ForeJ line carrying 19 bp long deletion over the ATG start codon 
of the of Fmr1nbPWD allele. 
 
Preparation of CRISPR-Hstx2 and SPO11-Cas9 constructs, and generation of 
transgenic mice 
To place the Cas9 nuclease under the control of the SPO11 promoter, the SPO11 
coding region was replaced by a mouse codon-optimized Cas9 open reading frame 



	   158 

in a SPO11-carrying bacterial artificial chromosome (BAC) clone (RP23-20N4, 
distributed by BACPAC Resources, Oakland, CA) by a marker-less GalK double-
selection system via liquid culture recombineering as described (Sharan et al. 2009). 
Homology arms for the SPO11 BAC were introduced by PCR with Phusion 
polymerase (New England Biolabs, Frankfurt am Main, Germany). The 1.3 kbp PCR 
product was purified with a Gel Extraction Kit (QIAGEN) and confirmed by Sanger 
sequencing. The Cas9 cassette was produced by excision from plasmid MLM3613 
(#42251; Addgene, Watertown, MA) by enzymes SacII and MssI (Thermo Fisher 
Scientific, Schwerte, Germany) and purified by gel extraction. The homology arms 
were added by PCR amplification and Phusion polymerase. The CRISPR plasmid 
pX260 was obtained (#42229, Addgene plasmid, a gift from Feng Zhang; Cong et al. 
2013) and the CRISPR protospacers corresponding to the Hstx2 loci were cloned 
according to instructions from the Zhang Laboratory 
(https://media.addgene.org/cms/filer_public/e6/5a/e65a9ef8-c8ac-4f88-98da- 
3b7d7960394c/zhang-lab-general-cloning-protocol.pdf). Briefly, long oligonucleotides 
were ordered as Ultramers (oligos 20-21; Integrated DNA Technologies, Coralville, 
IA) for the following three target regions flanking the Hstx2 locus: a sequence 2.2 Mb 
upstream of the Ctag2 gene (Chr X: 65,069,229–65,069,258); an intergenic 
sequence between the Mir465 cluster and Gm1140 predicted protein coding gene 
(Chr X: 67,052,342–67,052,371); and a sequence 4 kbp upstream of the Aff2 gene 
(Chr X: 69,356,143–69,356,172). After phosphorylation (T4 Polynucleotide Kinase, 
New England Biolabs) and annealing by temperature ramping from 95º to 30 sec by 
–0.1º/min increments, the duplexes were ligated into the BbsI site of the cut pX260 
plasmid (New England Biolabs) and transformed into DH5-Alpha Escherichia coli 
cells. The protospacer-containing plasmids were further modified by excising the 
Cas9 open reading frame with PstI (New England Biolabs). Each final plasmid 
contains the U6 promoter, protospacer, the 1H promoter and the trans-activating 
CRISPR RNA. These were sequence-verified before transgenic injection. The 
CRISPR constructs and SPO11-Cas9-BAC construct were generated in Tubingen by 
the laboratory of Y.F.C. The BAC transgene was injected to the pronuclei of 1-day-
old mouse embryos and the founders were generated in the laboratory of R.S. in 
Vestec. 
 
Bionano optical mapping 
We generated optical maps for two markers (BspQ1 and DLE-1) across the whole 
genome of five different mice, from two mouse subspecies: C57BL/6J (B6) and 
C57Bl6Crl (B6N) of M. m. domesticus and PWD/Ph (PWD) and PWK/Ph (PWK) of 
M. m. musculus origin. Two females were from the congenic C57BL/6J-ChrX.64-
69PWD/Ph strain (B6.DX64-69), carrying a small portion of Chr X including the 
hybrid sterility Hstx2 locus from PWD/Ph on C57BL/6 background. First, megabase-
scale high molecular weight (HMW) DNA was extracted according to the Saphyr 
Bionano Prep Animal Tissue DNA Isolation Soft Tissue Protocol (Document Number: 
30077; Revision B). Briefly, cell nuclei were isolated from splenic tissue and 
embedded in agarose plugs. DNA in plugs was purified with Proteinase K and 
RNAse, then HMW genomic DNA was extracted from the agarose plugs using 
agarase, and purified by drop dialysis. HMW DNA was resuspended overnight 
before quantification with the Qubit BR dsDNA assay, then kept at 4° until labeling. 
Each sample was labeled at the recognition sites NtBspQ1 (GCTCTTC) and DLE-1 
(CTTAAG), respectively, using two different methylation insensitive assays. The 
Bionano nicking, labelling, repairing, and staining protocol was used to label 
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NtBspQ1 (Document Number: 30206, Revision C), and was performed on 900 ng of 
purified HMW DNA for each mouse. The Bionano direct labelling and staining 
protocol (Document Number: 30024, Revision I) was performed on 750 ng of DNA to 
label all DLE-1 recognition sites. After an initial clean-up step, the labeled HMW DNA 
was pre-stained, homogenized, and quantified with the Qubit HS dsDNA assay, 
before using an appropriate amount of backbone stain YOYO-1. The molecules were 
then imaged using the Bionano Saphyr System (Bionano Genomics, San Diego, 
CA). We obtained high-quality optical reads for both labeling techniques. For 
example, for the nicking, labeling, repairing, and staining labeling produced an 
average of 437 Gbps of reads, which were longer than 150 kbps and have a 
minimum of nine label. It achieved an average N50 length of 0.3137 Mbp with an 
average label density of 14.82 labels per 100 kbp. Similarly, the direct labelling and 
staining labeling achieved an average output of 389 Gbps (≥150 kbp and minSites 
≥9), an average N50 length of 0.2663 Mbp and an average label density of 
13.72/100 kbp. (Individual outputs were collected for each animal and labeling 
technique in Table 6.3). The presence of in-silico recognition sites for each enzyme 
recognition site in the genome was used to compute separate in-silico optical maps 
for each labeling enzyme, for the mm10 genome (Table 6.4). 
 
Detection and quantification of apoptotic cells: terminal deoxynucleotidyl 
transferase-mediated dUTP nick-end labeling assay 
The males were killed and the testes dissected from, and fixed in 4% 
paraformaldehyde overnight at 4°. Testes were dehydrated and embedded in 
paraffin. Paraffin sections at 3 µm thick were deparaffinized. To perform antigen 
retrieval for immunohistochemistry, the slides were incubated in Citrate Antigen 
Retrieval solution for 15 min at pH 6.0. The slides were processed as for 
immunofluorescence. The apoptotic cells in the tissue sections were determined by 
terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), 
using in situ DeadEnd Fluorometric detection kit (G3250-PROMEGA, Madison, WI) 
according to technical protocol (#TB235). TUNEL-treated testicular sections were 
mounted in Vectashield with DAPI to watch the nuclei. Images were captured from a 
Nikon E-400 Eclipse fluorescence microscope and captured with a Ds-Qi_Mc1 CCD 
camera (Nikon). The images were processed and TUNEL-positive cells counted by 
the NIS Elements picture analyzer, and processed using Photoshop (Adobe). 
 
Fertility test 
Each male was mated with one 8-week-old C57BL/6J virgin female for 3 months, 
during which the numbers of neonatal pups sired by B6.DX.1s.Fmr1nb– and 
B6.DX.1s males were recorded. 
 
Data availability and statistics 
Strains and plasmids are available upon request. The authors affirm that all data 
necessary for confirming the conclusions of the article are present within the article, 
figures, tables, and in the supplemental material. The optical mapping datasets are 
available from Linda Odenthal-Hesse or Kristian Karsten Ullrich upon reasonable 
request. Statistical analyses were performed by unpaired two-tailed t-test, if not 
indicated otherwise. Statistical significance was set at P values of * 0.05,** 0.01, and 
*** 0.005. Data were processed and plotted by GraphPad Prism version 6.00 
(GraphPad Software, San Diego, CA; www.graphpad.com). Other types of statistical 
analyses are described within the text and in the corresponding figure legends. 
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Supplemental material available at FigShare: 
https://doi.org/10.25386/genetics.9874460. 
 
 
Results 

Hstx2 locus is a recombination cold spot 
The Hstx2 locus was initially defined as a 4.7 Mb PWD interval present in B6.PWD-

Chr X.1s (B6.DX.1s) but absent in the partially overlapping B6.PWD-Chr X.1 

(abbreviated B6.DX.1) congenic strain. (Storchová et al. 2004; Bhattacharyya et al. 

2014) (Figure 6.1A). 

Here, we specified the PWD/B6 distal border of B6.PWD-Chr X.1s by next-

generation sequencing to Chr X: 69.21 Mb narrowing the Hstx2 locus to 4.3 Mb of 

the PWD sequence (Figure 6.1A). Admittedly, such subtraction mapping could not 

exclude the possibility that some additional genetic information in the proximal 64.9 

Mb of the PWD sequence may contribute to the genetic factors situated within Hstx2 

locus. To reduce the size of Hstx2 locus and to check the possible role of the 

proximal region of the XPWD sequence, 52 new recombinant X chromosomes were 

generated in three BC1 populations (Table 6.5). Genotyping of 168 (B6.DX.1s x B6) 

x B6 BC1 mice yielded 51 recombinants with crossovers spanning the proximal 

region of Chr X. A new C57BL/6J-ChrX.64-69PWD/Ph congenic strain (abbreviated 

B6.DX.64-69) derived from this backcross carried only 4.34 Mb of the PWD 

sequence (Chr X: 64.87–69.21 Mb; mouse genome assembly GRCm38.p6), (Figure 
6.1A). However, not a single recombination occurred in the Hstx2 locus tracked by 

markers at Chr X: 65.10 and 69.08 Mb (Table 6.5). In the second backcross 

experiment, the B6.DX.51-69 subconsomic, which carries PWD sequence in the 

interval 51–69 Mb was used, but again no recombinant among 111 BC1 animals was 

found within the Hstx2 locus. Finally, in an attempt to change the pattern of the 

recombination hotspots, the B6.Prdm9Hu strain carrying the “humanized” PRDM9 

with ZnF array from the human PRDM9A allele (Davies et al. 2016) was used in 

(B6.Prdm9Hu x B6.DX.64-69) x B6 backcross. No recombinant was found within the 

Hstx2 locus among 369 BC1 animals. The absence of crossovers could occur due to 

the lack or inaccessibility of PRDM9 binding sites, the failure of SPO11 protein to 

target these sites and induce DNA DSBs, or because the repair of such DSBs is 

implemented exclusively by noncrossovers. The available data on female B6 meiosis 

(Brick et al. 2018) showed reduced occurrence of PRDM9-dependent H3K4me3 hot 
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spots and absence of DMC1 hotspots within the Hstx2 locus (Figure 6.2), 

suggesting the virtual disappearance of SPO11-generated DNA DSBs as a 

mechanism of recombination suppression. Remarkably, in male meiosis the strong 

suppression of DMC1 hotspots [data from Davies et al. (2016)] over the Hstx2 locus 

observed in (PWD x B6) and (B6 x PWD) reciprocal F1 hybrids was attenuated in 

PWD and B6 parental strains (Figure 6.3). To conclude, no recombinant in the Hstx2 

region was found among 648 BC1 mice, although 15 recombinants would be 

expected (P = 2.495 x 10-7, binomial test) based on the 0.526 cM/Mb mean 

recombination rate in the adjacent Chr X: 7.36–65.10 Mb proximal region. The 

recombination cold spot overlaps with the interval of low PRDM9 histone 

methyltransferase activity and strong suppression of DNA DSB hotspots. 

 

Targeting homologous recombination to Hstx2 by CRISPR/Cas9 

Because the Hstx2 locus behaved as a cold spot of recombination, we attempted to 

bring the recombination machinery to this region by means of Cas9 endonuclease-

induced DSBs. Two transgenic lines were prepared, the first carrying Cas9 

endonuclease under the control of SPO11 genomic region to ensure exclusive 

expression of Cas9 at early prophase I of meiosis. The second transgenic strain was 

generated with the U6-promoter driven CRISPR cassette targeted to three sites 

within the Hstx2 locus (see Materials and Methods). Next, the double transgenic F1 

females (B6.DX.1s.TgSPO11-Cas9 x B6.TgCRISPR-Hstx2) were mated to B6 males 

to generate the BC1 population. This approach allows the generation of targeted 

DSB by means of a transgene that can be removed through selective breeding in a 

B6 backcross design. We found that double transgenic F1 females yielded a 15-fold 

higher frequency of recombination in the interval spanning 64.8-65.1 Mb immediately 

adjacent to the Hstx2 locus (10 recombinants in 181 BC1 offspring, 18.42 cM/Mb) 

compared to previous classical backcrosses (one recombination event in 279 BC1 

offspring, 1.19 cM/Mb). However, only one homologous recombination event inside 

the Hstx2 locus was detected, giving rise to congenic strain B6.PWD-Chr X.66-69 

(abbreviated B6.DX.66-69). The new congenic restricts the PWD sequence on Chr X 

to 2.70 Mb in the 66.51-69.21 Mb interval. Admittedly, all these recombinants 

occurred within the range bracketed by the guide RNAs but at some distance away 

from the sites targeted. At this point, we have not determined what may have caused 

the increase in recombination rate close to but not involving the targeted sites.  
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Phenotypes of newly defined Hstx1, Hstx2, and Meir1 loci 
Hstx1 fertility phenotype: To check the Hstx1 phenotype the fertility parameters of 

B6.DX.64-69 and B6.DX66-69 congenic males carrying the shortened 4.34 Mb (Chr 

X: 64.87–69.21) and 2.70 Mb (Chr X: 66.51–69.21 Mb) of PWD sequence were 

compared to B6.DX.1 and B6.DX.1s males carrying 64.9 and 69.2 Mb of proximal 

PWD sequence (Figure 6.1, A and B). Both shortened intervals of the PWD 

sequence reduced testes weight (P < 0.05, t-test) and caused higher frequency of 

morphologically malformed sperm heads compared to B6.DX.1 (P < 0.01, t-test, 

Figure 6.1B). However, compared to B6.DX.1s, the level of teratozoospermia 

controlled by the 4.34 Mb and 2.70 Mb stretches of PWD sequence was significantly 

lower (40.8% vs. 69%, P < 0.01, t-test, Figure 6.1B). Thus, some additional genetic 

information proximal to the Chr X: 64.87–69.21 Mb interval is necessary to fully 

reconstruct the Hstx1 phenotype. 

 

Hstx2 fertility and meiotic chromosome asynapsis phenotypes: To verify the 

presence of Hstx2 in the newly derived congenic strains, testes weight and sperm 

count were compared in F1 hybrid males from crosses of PWD males and B6.DX.1, 

B6.DX.1s, B6.DX.64-69, and B6.DX66-69 females. The quasi-fertile phenotype of 

(B6.DX.1 x PWD) F1 hybrids contrasted with full sterility of the remaining three types 

of hybrids as shown by low testes weight (P < 0.0001, t-test) and sperm count (P < 

0.0001, t-test, Figure 6.1C). Thus in contrast to the Hstx1 locus, the shortest version 

of Hstx2 (Chr X: 66.51–69.21 Mb) was necessary as well as sufficient to fully 

reconstruct the (PWD x B6) F1 male hybrid sterility phenotype. 

Recently, we have found out that meiotic asynapsis of homeologous 

chromosomes (homologs from different subspecies) in (PWD x B6) F1 hybrids 

depends on their subspecific origin and can be abolished by introduction a short 

stretches (27 Mb or more) of consubspecific homology into a given chromosome pair 

(Gregorova et al. 2018). Contrary to this chromosome-autonomous cis-control, the 

substitution of the Hstx2PWD allele for Hstx2B6 in (B6 x PWD) F1 hybrids significantly 

reduces meiotic asynapsis in trans, while the Prdm9PWD/Prdm9B6 genotype remains 

the same as in sterile hybrids (Bhattacharyya et al. 2014). To evaluate meiotic 

chromosome synapsis we visualized the axial elements of partially or fully 

asynapsed chromosomes by co-immunostaining of HORMA domain-containing 
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protein-2, HORMAD2 (Wojtasz et al. 2012) and synaptonemal complex protein 3, 

SYCP3, in pachynemas of F1 hybrids carrying different intervals of XPWD (Figure 
6.4). The highest proportion, 85.3± 1.3%, of pachynemas affected by asynapsis was 

observed in the (PWD x B6) F1 hybrid males with intact XPWD chromosome. The 

frequencies of pachynemas with asynapsis rates 78.9 ±1.4%, 70.5± 8.6% and 

70.49% in three subconsomic F1 hybrids (B6.DX.1s x PWD) F1, (B6.DX.64-69 x 

PWD) F1, and (B6.DX66-69 x PWD) F1 did not differ from each other, but were 

significantly lower than in (PWD x B6) F1s (Figure 6.4A). Importantly, the XB6 

chromosome in (B6 x PWD) F1 did not completely eliminate the Prdm9 controlled 

asynapsis, which reached 38.9± 5.2% in (B6 x PWD) F1 hybrid males (Figure 6.4A). 

It appears that in (B6 x PWD) F1 hybrid genomic background this level of asynapsis 

rate could indicate a threshold of azoospermia because (B6 x PWD) F1 hybrid males 

with <40% asynapsis rate showed 7.2 ± 4.2x106 epididymal sperm count, while 

males of the same genotype with >40% asynapsis were virtually azoospermic (0.12 

± 0.1x106 sperm count). 

To conclude, ~three quarters of the Hstx2 effect on Prdm9-controlled 

asynapsis rate is preserved in the newly reduced 2.70 Mb PWD sequence version 

(Chr X: 66.51–69.21 Mb); the remaining effect either maps elsewhere on the X 

chromosome or is the consequence of a hypothetical position effect of the M. m. 

domesticus genome on the introgressed M. m. musculus sequence. 

 

Meir1 control of global meiotic recombination rate: The Meir1 was localized in 

the Hstx2 interval as the strongest transgressive modifier of the meiotic 

recombination rate in B6.DX.1s males. The Meir1PWD coming from the high 

recombination rate PWD strain lowered crossover frequency in a transgressive 

manner when introgressed into the B6 genome (Balcova et al. 2016). The crossover 

frequency determined by counting the MLH1 foci per pachytene spermatocyte 

revealed that both the 4.34 Mb and 2.70 Mb PWD interval reduced recombination 

compared to B6 and B6.DX.1, thus behaving as Meir1, but the reduction did not 

reach the level seen in B6.DX.1s (Figure 6.5). We conclude that similarly as in the 

case of the newly defined Hstx1 locus some additional genetic information in the 

proximal PWD sequence besides the 2.70 Mb interval is necessary to fully 

reconstruct the Meir1 phenotype (Figure 6.5, A and B). 
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Optical mapping of intersubspecific structural variation within and outside the 
Hstx2 locus 

One possible cause of the recombination cold spot overlapping the Hstx2 locus 

could be a structural rearrangement, typically an inversion that prevents recovery of 

viable recombinants. Such structural variants acting as recombination suppressors 

often enforce reproductive isolation between species, especially when situated on 

sex chromosomes (Kirkpatrick 2010; Hooper et al. 2018). To elucidate the physical 

structure of Hstx2 locus we analyzed the region by optical mapping using the 

Bionano Saphyr platform, a further development of the technique described by 

((Chan et al. 2018)). As a proof of concept, we examined the Hstx2PWD M. m. 

musculus introgression in the M. m. domesticus Chr XB6. Indeed, the 64–69 Mb 

interval of Chr X was easily recognizable in two optical maps from biological replicas 

of B6.DX.64-69 mice when matched with the reference B6/J in-silico map and with 

the map of a female from the C57BL/6Crl substrain. The structure of the 64–69 Mb 

interval of Chr X matched most closely the PWD and PWK optical maps, while the 

flanking intervals matched the B6 optical map. (Figure 6.6, A-C). To inquire into the 

overall divergence of the Hstx2 locus as a possible cause of recombination 

suppression, optical maps of the region of the same size outside the recombination 

cold spot (Chr X: 59.6–64.0 Mb) was compared to the Hstx2 region (Chr X: 64.8–

69.2 Mb) from four mouse strains (B6/N, B6.DX.64-69 , PWD and PWK) by 

alignment to the mm10 in-silico reference (Table 6.6). Although only 0.08% of the 

control locus sequence was involved in deletions or insertions in B6/N and 

B6.DX.64-69, the same 4.3 Mb control interval included 6.92% of deleted or inserted 

sequence in PWD and PWK. In comparison, the Hstx2 locus (Chr X: 64.8–69.2 Mb) 

displayed 2 insertions of 8.7 kb and no deletion in the B6/N, representing 0.02% of 

the sequence, while 4.71% of sequence was either inserted or deleted in B6.DX.64-

69 , 4.58% in PWD, and 5.90% in PWK. Intraspecific comparison of the same Hstx2 

interval yielded 1.11% and 2.40% of sequence involved in PWK and PWD specific 

inversions and deletions. To conclude, the overall structural dissimilarity is 

surprisingly high between M. m. musculus and M. m. domesticus subspecies, but 

unlikely to explain the Hstx2 recombination cold spot. 

 

Fine-scale screen for the Hstx2-specific structural variants 
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A structural variant within the Hstx2 locus could be a marker of the Hstx2 candidate 

gene. Thus we screened for PWD-specific structural variations within the Hstx2 locus 

because the Hstx2 alleles differ between M. m. musculus PWK and PWD and M. m. 

domesticus B6 mice (Flachs et al. 2014). We first aligned de-novo maps of 

B6.DX.64-69, PWD, PWK, and C57BL/6Crl to the C57BL6/J in-silico reference, 

generating a quadruple assembly (Figure 6.6). We then screened for structural 

variants that occur in B6.DX.64-69 and PWD but not in C57BL/6Crl or PWK. This 

had to be done semimanually, as due to the large genetic divergence in this interval, 

relying only on Bionano’s automated algorithms was insufficient. A fine-scale 

characterization of the refined Hstx2 interval by manual label matching revealed 

three high-confidence structural variants. The first locus, found between Chr X 

positions 66.756–66.797 Mb, contains two long terminal repeats (LTRs) in the B6 

reference. While PWD and PWK both possess a 4.7 kb deletion of the first LTR, the 

second LTR locus downstream harbors a 3.1 kb deletion in PWD, also deleting 

miRNA Mir883b. In contrast, PWK shows a large overlapping 45.0 kb insertion 

(Figure 6.7A). The second significant structural variation is located between 

chromosomal positions 66.819–66.840 Mb, and includes the Mir465 cluster, which 

appears differentially duplicated in PWK and PWD (Figure 6.7B). In PWD we 

observed an insertion of 22.9 ± 4 kb, while the PWK map revealed a shorter insertion 

of only 16.3 kb. Previously, we found overexpression of the Hstx2 miRNA cluster, 

particularly of Mir465 in sterile hybrids (Bhattacharyya et al. 2014). A differential 

duplication could therefore harbor subspecies-specific differences in Mir465 

expression, which may confer dosage effects on the regulation of downstream target 

genes. 

The third is a homozygous deletion of 4574 ± 9 bp situated at Chr X: 

67,787,047–67,795,903. However, this deletion neither interrupts nor deletes any 

known gene, mRNA/miRNA sites, or transcripts in the available testis transcriptomics 

data sets (Margolin et al. 2014; Harr et al. 2016; Jung et al. 2018) (Figure 6.7C). 

This structural variant is thus an unlikely candidate for harboring Hstx2. 

 

Probing Fmr1nb as an Hstx2 candidate gene 
The newly reduced Hstx2 genomic interval incorporates eight protein-coding genes, 

of which the Fmr1 neighbor (Fmr1nb) appeared as the best potential candidate for 

the Hstx2 gene. 
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The priority was based on Fmr1nb expression at early meiotic prophase I 

(Margolin et al. 2014; Ball et al. 2016; Jung et al. 2019; Ernst et al. 2019) and two 

nonsynonymous single nucleotide polymorphisms between PWD and B6 parental 

strains (Table 6.7). We confirmed almost exclusive expression of Fmr1nb in the 

testis, with only traces in the spleen and heart (Figure 6.8A) and found 2.5-fold 

higher expression in sterile (PWD x B6) F1 adult testis compared to the PWD and B6 

parental strains (P < 0.001, P < 0.001; t-test) (Figure 6.8B). A continuous increase 

of the mRNA level of Fmr1nb was found in juvenile males at 10, 12, 14, and 20 days 

of postnatal development; however, all three genotypes showed a similar expression 

pattern (Figure 6.8C). The predicted structure of the FMR1NB protein (Figure 6.9) 

consists of two cytosolic N- and C-terminal domains, two transmembrane domains, 

and an extracellular part containing a P-type trefoil domain. The mouse Fmr1nb 

transcripts occur in three splice variants (ENSMUSG00000062170.12, ENSEMBL) 

corresponding to three isoforms of FMR1NB protein (Q80ZA7, UniProt) comprising 

238, 192, and 166 amino acids, respectively. We found that in the testis, the most 

abundant is isoform 3 (Figure 6.9) made up of 166 amino acids. It lacks the 

complete P-type trefoil domain and most of the extracellular domain. Two FMR1NB 

nonsynonymous substitutions create exchanges of 31 argininePWD for threonineB6 

and 162 leucinePWD for isoleucineB6. 

Using fluorescent immunolabelling, we detected the FMR1NB protein on 

histological sections of the testis of adult B6 males in the cytoplasm and 

spermatocyte cell membranes. The strongest FMR1NB expression was found at the 

leptotene and zygotene stages of the first meiotic prophase. The signal decreased in 

pachynemas, and disappeared in the round and elongated spermatids (Figure 
6.8D). 

 

Fertility phenotypes of Fmr1nb null mutants: To test the effect of the Fmr1nb null 

allele on the Hstx1/2 phenotypes, two mouse lines carrying Fmr1nb deletion mutants 

were generated by TALEN nuclease method (see Material and Methods and Figure 
6.10A). The coisogenic mouse line B6.Fmr1nbem1ForeJ carried 236 bp deletion within 

the first exon and B6.DX.1s.Fmr1nbem2ForeJ displayed a 19 bp deletion over the ATG 

start codon (these lines are henceforth called B6.Fmr1nb- and B6.DX.1s.Fmr1nb–). 

The Fmr1nb mRNA was detectable by quantitative Reverse Transcription-PCR in 

both transgenic lines as expected because the transcription start site was not 
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affected (not shown). Three FMR1NB isoforms were identified by Western blotting in 

males carrying Fmr1nbB6 and Fmr1nbPWD alleles, while the FMR1NB protein was 

missing in the mutant testes (Figure 6.10B). Intriguingly, the most truncated isoform 

3 of FMR1NB was expressed most strongly in the testes of all four genotypes, 

whereas the longer isoforms iso-1 and iso-2 showed low expression in B6 and (B6 x 

PWD) F1, and even lower in (PWD x B6) F1 sterile hybrids and no expression in 

PWD and B6.DX.1s (Figure 6.10B). Immunohistochemistry of testes of adult wild 

type males showed high expression of FMR1NB in spermatogenic cells in early 

stages of meiotic prophase I. The protein was missing in histological sections from 

the B6.DX.1s.Fmr1nb– knockout males (Figure 6.10C) but the overall composition of 

testicular tubules did not show any apparent changes (Figure 6.10D). 

The Fmr1nb– males bred successfully, but their mean litter size was 

significantly lower than litter size of males carrying the wild type alleles (Figure 
6.11). The B6.Fmr1nb– and B6 males did not differ significantly in the testes weight 

(165.8 ± 22.2 vs. 180 ± 16.8 mg; P = 0.133, t-test) or in the sperm count (54.5 ± 18.2 

x 106 vs. 73.3 ± 17.5 x 106; P = 0.073, t-test) (Figure 6.12, A and B), but 

B6.Fmr1nb– displayed a significantly higher proportion of malformed sperm heads 

(32.9 ± 8.6 vs. 19.8 ± 4.2%; P < 0.05, t-test) (Figure 6.12C). 

The effect of the Fmr1nbPWD null allele was stronger on the B6.DX.1s genetic 

background. Testes weight of the B6.DX.1s.Fmr1nb– males was significantly lower 

than in B6.DX.1s (148.1± 16.1 vs. 171.9 ± 8.8; P < 0.001, t-test) (Figure 6.12D) and 

the sperm count was lower in B6.DX.1s.Fmr1nb– than in B6.DX.1s males (44.2 ± 

12.8 vs. 53.5 ± 10 x 106; P < 0.05, t-test) (Figure 6.12E). Furthermore, the 

B6.DX.1s.Fmr1nb– males showed significantly higher proportion of malformed sperm 

heads than B6.DX.1s control males (76.9 ± 8 vs. 69 ± 7.3%; P < 0.05, t-test) (Figure 
6.12F). The frequency of apoptotic cells in seminiferous tubules assessed by 

fluorescence TUNEL labeling of histological sections was higher in the 

B6.DX.1s.Fmr1nb– males (3.36 ± 0.23) compared to B6.DX.1s males (1.46 ± 0.39, P 

< 0.005; Figure 6.13, A and B). 

To inquire whether Fmr1nb interacts with the Hstx2 phenotype, the hybrid 

males were analyzed for the testes weight and sperm count. Neither the Fmr1nbB6 

nor Fmr1nbPWD null allele rescued hybrid sterility; on the contrary, the Fmr1nbPWD 

null allele in (B6.DX.1s.Fmr1nb– x PWD) F1 hybrid males significantly reduced the 
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testes weight when compared to (B6.DX.1s x PWD) F1 control males (59.3 ± 4.1, 

and 67.7 ± 3.5 mg; P < 0.001, t-test, see Table 6.8). 

To conclude, the Fmr1nb on the B6 genetic background is necessary for the 

normal course of spermiogenesis, with stronger effects in the PWD context of 

B6.DX.1s Fmr1nb congenic males. In intersubspecific F1 hybrids, however, the 

absence of FMR1NB modifies neither the intrameiotic arrest nor hybrid sterility. 

 

Discussion 

Two-gene architecture of hybrid sterility 
Our model of hybrid sterility based on (PWD x B6) F1 hybrids is composed of three 

main components: the Prdm9 gene, subspecific divergence of homeologous 

autosomes, and the Hstx2 locus. It differs in its simplicity from the complex genetic 

control reported by other studies using the same combination of house mouse 

subspecies (Tucker et al. 1992; Payseur et al. 2004; Macholán et al. 2007, 2011; 

Duvaux et al. 2011; Janoušek et al. 2012; Turner et al. 2012). 

PRDM9 protein activates high number of asymmetric DNA DSBs in prophase 

I of (PWD x B6) F1 primary spermatocytes, so that PRDM9B6-determined hotspots 

occur mostly on the PWD chromosome and vice versa (Davies et al. 2016; 

Smagulova et al. 2016; Hinch et al. 2019). The main reason of hotspot asymmetry is 

the evolutionary erosion of the PRDM9 DNA binding sites (Baker et al. 2015). The 

predominant role of PRDM9-induced DSB asymmetry in this model of hybrid sterility 

was emphasized by complete recovery of spermatogenesis and fertility of the (PWD 

x B6) F1 hybrids when the zinc-finger array of PRDM9B6 was replaced with the 

human orthologous sequence (Davies et al. 2016). The hotspot erosion and meiotic 

failure disappeared because PRDM9Hum, in contrast to PRDM9B6, has never before 

been in contact with mouse genome. Full recovery can be also achieved by 

homozygosity for the Prdm9PWD allele (Dzur-Gejdosova et al. 2012). 

The importance of cis-interaction between homeologous chromosomes was 

shown in intersubspecific backcross males where asymmetry disappeared in 

conspecific autosomal intervals (PWD/PWD or B6/B6) (Gregorova et al. 2018), 

which initially had been misinterpreted as multiple hybrid sterility QTL (Dzur-

Gejdosova et al. 2012). The major meiotic consequences of DSB hotspot asymmetry 

include persistent DNA DSBs and meiotic asynapsis, both leading to apoptosis 

(Davies et al. 2016; Gregorova et al. 2018; Wang et al. 2018). 
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The role of Hstx2 is apparent from attenuated manifestation of the Prdm9-

driven asynapsis phenotype and subsequent meiotic arrest in the reciprocal (B6 x 

PWD) F1 hybrids. Previously we excluded mitochondrial inheritance, the Y 

chromosome, and genomic imprinting as a cause and identified the Hstx2 locus on 

Chr X to be the culprit (Dzur-Gejdosova et al. 2012; Bhattacharyya et al. 2014). We 

have not yet identified the genetic factor behind the Hstx2 locus, so it is difficult to 

guess why the same pair of homeologous autosomes with the same ratio of 

asymmetric/novel DMC1 hotspots (Davies et al. 2016; Smagulova et al. 2016) differs 

so strongly in DSB repair and meiotic synapsis in the reciprocal hybrids. Three main 

options can be considered: Hstx2 could extend the time window necessary to 

accomplish the repair of mutated PRDM9 binding sites, it could reduce the sensitivity 

of putative mismatch repair anticrossover activity to sequence heterology (Spies and 

Fishel 2015), or it may facilitate the switch of repair partner bias by sister chromatid 

homologous recombination (Garcia-Muse et al. 2019). 

 
A recombination cold spot overlaps the Hstx2 locus 
Empirical results from rabbits and mice strongly indicate that genomic regions with 

suppressed recombination are more differentiated and tend to accumulate 

reproductive isolation genes (Nachma and Payseur 2012). Ortiz-Barrientos et al. 

(2016) predicted that “…regions of low recombination will tend to harbor genes for 

various forms of reproductive isolation, as well as modifiers of recombination during 

the early stages of speciation…” Indeed, the hybrid sterility genetic locus Hstx2 

meets both of these predictions since it is situated in a recombination cold spot and 

carries Meir1, an underdominant modifier of meiotic recombination rate. Moreover, 

Hstx2 operates at early stage of speciation when reproductive isolation of Mus 

musculus subspecies is still incomplete. In an attempt to reduce the size of the Hstx2 

locus by genetic recombination, we used three genetic backcrosses, one of them 

employing the ‘humanized’ Prdm9Hu allele known to determine a DSB hotspots 

landscape entirely different from the Prdm9dom2 allele. However, none of these 

crosses was able to break the 4.3 Mb cold spot. The only recombinant which 

reduced Hstx2 to 2.7 Mb was obtained in a backcross where SPO11-driven Cas9 

nuclease was targeted by CRISPR to Hstx2 interval in female meiotic prophase. 

Because the recombination breakpoint lies outside the targeted sites and outside 
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SPO11-oligo hotspots (LANGE et al. 2016), the possibility that this unorthodox 

crossover arose by repairing a Cas9- generated DSB seems unlikely. 

The cold spots of recombination are often caused by heterozygosity for large 

structural variations, often inversions, and these ‘frozen’ blocks can harbor genetic 

factors important for reproductive isolation (Coyne and Orr 2004; Fuller et al. 2018). 

In contrast to inversions, large copy number variants can be associated with closed 

chromatin and reduced gene expression in germ cells, suggesting a constitutive 

effect on recombination by altering chromatin structure (Morgan et al. 2017). A 

constitutive cold spot model seems to better fit to the Hstx2 locus based on the low 

histone methytransferase activity of PRDM9 and strong depression DNA DSB 

hotspots in the Hstx2 region in female meiosis (Brick et al. 2018). The conclusion is 

also supported by recombination data from 73 sequenced inbred strains of the 

Collaborative Cross project (Collaborative Cross Consortium 2012; Srivastava et al. 

2017). We found that none of the sequenced strains carries a single recombination 

event within the 8 Mb (Chr X: 61.8–70.3 Mb) interval spanning Hstx2, while 9 and 10 

recombinants occurred in the adjacent 8 Mb and 6 Mb regions 

(http://csbio.unc.edu/CCstatus/index.py?run=CCV). In the Diversity Outbred project 

that used the same eight parental strains strong association between copy number 

variants regions and recombination cold spots was found (Morgan et al. 2017). 

The present results based on optical mapping of a single genomic region 

indicate that genome-wide optical mapping can greatly contribute to elucidating the 

‘fluidity’ of noncoding sequences between related species as well as to clarify the 

greater differentiation of X chromosome compared to the autosomes (Hammer et al. 

2008; Presgraves 2018). The optical mapping enabled unprecedentedly high 

resolution of the Hstx2 locus physical map in the M. m. musculus (PWD) and M. m. 

domesticus (B6) genome, but did not provide evidence of an inversion that could 

explain the recombination cold spot. Provided that the Hstx2 phenotype is 

associated with a structural variant, then it should be visible in the PWD sequence, 

but not in PWK or B6. Three such PWD-specific variants have been found, but only 

one of them, including a cluster of miRNA genes, can directly implicate functional 

consequences related to Hstx2. To conclude, these results together with the 

recombination data from the Collaborative Cross project show that the Hstx2 locus is 

located within a constitutive recombination cold spot with the chromatin structure 

poorly accessible to the recombination machinery.  
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Hstx1 and Meir1 genetic factors located in the newly defined Hstx2 locus 
The Hstx1 was mapped on Chr X as a QTL common for several male fertility 

phenotypes following the transgression of Chr XPWD into the B6 genome. In the same 

experiment the suppression of recombination in the Chr X: 59.65–72.41 Mb interval 

(DXMit140–DXMit199) was noticed for the first time and the QTL for number of 

offspring, testes weight and sperm morphology was mapped to the interval near the 

DXMit199 marker (Storchová et al. 2004). Later the X-linked Hstx2 locus controlling 

the early meiotic arrest in (PWD x B6) F1 hybrids was localized in the same area 

(Bhattacharyya et al. 2014). 

The effect of Meir1 genetic factor on meiotic recombination is paralleled by 

the male-limited transgressive/underdominant effect of Hstx2 on hybrid sterility, since 

the Meir1PWD allele of the high recombination rate PWD parent causes 

downregulation of crossover rate after introgression in the low recombination rate B6 

strain. Thus the localization of Meir1 within the Hstx2 locus indicates a link between 

meiotic recombination and hybrid sterility (Balcova et al. 2016). 

In the course of positional cloning of QTL in mice and other organisms, the 

QTL effect sometime weakens or even disappears with narrowing down the critical 

region. In most instances the weakening of QTL’s effect was explained by several 

physically linked small effects (Flint et al. 2005). We have seen some weakening of 

all three genetic factors mapping to the 2.70 Mb interval, which can be explained in 

the same manner. Alternatively, an epigenetic positional cis-effect could be involved. 

 

The role of the Fmr1 neighbor (Fmr1nb) gene in male fertility 
In the present study, we selected the Fmr1nb gene as the most promising candidate 

of Hstx2 based on its expression pattern during meiotic prophase I and two 

missense polymorphisms between PWD and B6 alleles. Although the role of Fmr1nb 

in male fertility was challenged in a study of 54 testis-expressed genes (Miyata et al. 

2016), we showed that the Fmr1nb null allele induced apoptosis of spermatogenic 

cells, elevated the frequency of sperm head malformations and decreased sperm 

counts. A similar general function in cellular proliferation and apoptosis was 

described for human FMR1NB in glioma cells (Wu et al. 2018). The phenotype of 

Fmr1nb null mutants, in particular the occurrence of abnormal sperm heads mimics 

the Hstx1 effect. However, since teratozoospermia is a common pathological 

phenotype with many possible causes, and given that the null allele of Hstx1 does 
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not eliminate fertility phenotype differences between B6.DX.1 and B6.DX.1s, we 

consider Fmr1nb an unlikely candidate for Hstx1. Moreover, since the lack of 

FMR1NB protein did not modulate the pachytene arrest in (PWD x B6) F1 hybrids, 

we also do not consider Fmr1nb as candidate of Hstx2. 

 

miRNA cluster variation within the Hstx2 locus 
The Hstx2 locus harbors an evolutionary conserved group of 12 testis specific 

miRNAs residing in two clusters of 19 and 3 miRNAs situated between Slitrk2 and 

Fmr1 protein coding genes. The conserved location of these miRNA clusters 

anchored between the two X-linked genes was reported in 12 mammalian species 

(Zhang et al. 2019). In spite of the interspecific variability in number of individual 

miRNA genes, the levels of testicular miRNAs are under regulatory constrains 

because depletion as well as overexpression of specific miRNA molecules or miRNA 

clusters can be deleterious for male fertility (Royo et al. 2015; Ota et al. 2019). The 

X-linked miRNAs are actively transcribed in spermatogonia and suppressed by 

meiotic sex chromosome inactivation in pachytene spermatocytes (Royo et al. 2010). 

Since mouse hybrid sterility is accompanied by PRDM9-controlled meiotic silencing 

of unsynapsed chromatin and consequent disturbance of meiotic sex chromosome 

inactivation (Bhattacharyya et al. 2013; Campbell et al. 2013; Larson et al. 2016), the 

uninhibited miRNA clusters could suppress genes necessary for meiosis, thus acting 

as “lethal mutants” contributing to meiotic arrest. Previously we have found 

overexpression in pachynemas of the miR-465 miRNA cluster in sterile (PWD x B6) 

F1 compared to reciprocal, quasi fertile (B6 x PWD) F1 males (Bhattacharyya et al. 

2013). Remarkably, this cluster is subjected to copy number variation between PWD, 

PWK, and B6 strains. Admittedly, until we identify the gene/sequence responsible for 

the Hstx2 phenotype, such speculations have to be taken with a grain of salt. Indeed, 

in reciprocal crosses between the M. m. musculus STUS strain and B6, both 

reciprocal hybrid males were fully sterile, showing that in this particular cross the 

Prdm9msc/Prdm9dom2 hybrid sterility phenotype was not dependent on Hstx2 allele 

(Bhattacharyya et al. 2013).   
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Summary 
Early meiotic arrest of mouse intersubspecific hybrids depends on the interaction 

between the Prdm9 gene and Hybrid sterility X2 (Hstx2) locus on chromosome X.  

Lustyk et al. conducted high-resolution genetic and physical mapping of the Hstx2 

locus, reduced it to 2.7 Mb interval within a constitutive recombination cold spot and 

found that the newly defined Hstx2 still operates as the X-linked hybrid sterility factor, 

controls meiotic chromosome synapsis, and modifies recombination rate. Optical 

mapping of the Hstx2 genomic region excluded inversion as a cause of 

recombination suppression and revealed a striking copy number polymorphism of 

the microRNA Mir465 cluster. 
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Figure 6.1. Mapping of hybrid male sterility Hstx1 and Hstx2 loci in subconsomic and 
congenic strains. (A) Schematic view of the chromosome X architecture in subconsomic 
and congenic strains B6.DX.1, B6.DX.1s, B6.DX.64-69, and B6.DX.66-69. The PWD and B6 
origin of chromosomal intervals is depicted in white and black. The list of protein coding 
genes, noncoding RNAs, and miRNAs spanning the interval of the newly defined Hstx2 
locus (66.51–69.21 Mb) is shown. (B) Hstx1 locus mapping. Fertility parameters of 
subconsomic and congenic males; the testes weight (weight of wet testes pair in milligrams), 
the sperm count (number of sperms in millions per pair of epididymes) and frequency of 
malformed sperm heads (in percent). (C) Hstx2 locus mapping. Fertility parameters of the 
(B6 x PWD) F1 and the reciprocal (PWD x B6) F1 hybrid males, and F1 male progeny of 
crosses of B6.DX.1, B6.DX.1s, B6.DX.64-69, and B6.DX.66-69 congenic females with PWD 
males are presented as mean ±SD; n, number of analyzed males.  
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Figure 6.2. Activity of PRDM9-dependent H3K4 methylation and DMC1-marked DNA 
DSBs in female meiosis. The DMC1 and H3K4me3 hotspots plotted within the Hstx2 locus 
and the adjacent regions of chromosome X (mm10 genome). The strong DMC1 hotspots 
coupled with H3K4 methylation lie outside the Hstx2 region (shaded), which contains only 
H3K4 methylation marks. Data extracted from Brick et al. (2018); visualized are hotspots 
with activity >50. 
 
 

 
 
Figure 6.3. Activity of male DMC1 hotspots in the Hstx2 recombination cold spot.  The 
activity of DMC1 hotspots in the Hstx2 region of the (PWD x B6) F1 and (B6 x PWD)F1 
hybrid males was suppressed compared to PWD and B6 strains. Data extracted from 
(DAVIES et al. 2016); visualized are hotspots with activity > 50.  
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Figure 6.4. Pivotal role of the Hstx2 locus in the pachytene asynapsis rate of male F1 
hybrids. (A) The mean values of asynapsis rate (± SD) in F1 and B6.DX.1s hybrid males 
carrying different portions of XPWD. Autosomal asynapsis (frequency of pachynemas with one 
or more asynapsed autosomes) was examined in 5-8 animals of a given genotype, scoring 
at least 50 pachytene nuclei per one male. (B) Representative immunofluorescence 
micrographs show the HORMAD2-positive XY pair in a pachytene spermatocyte of 
B6.DX.1s congenic male and asynapsed autosomes in (DX.66-69 x PWD) F1 hybrids. 
Asynapsed chromosome axes are immunostained by HORMAD2 antibody. SYCP3 
visualizes lateral elements of synaptonemal complexes. CEN labels centromeric 
heterochromatin, and DAPI labels nuclear DNA. Bar, 10 µm. (C) Comparisons of the 
asynapsis rates between individual animal groups were performed by two-tailed t-test, and 
the P-values are displayed in the table. 
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Figure 6.5. Transgressive effect of the Hstx2PWD allele on crossover rate. (A) The mean 
crossover rate values (± SD) are shown for the subconsomic and congenic males carrying 
different portions of the chromosome XPWD on the B6 genetic background. (B) 
Representative immunofluorescence micrograph visualizing MLH1 foci (green), 
synaptonemal complex protein 1, SYCP1 (red), centromeric proteins, CEN (white), and 
nuclear DNA (blue) in the B6.DX.1s late pachytene spermatocyte. Bar, 10 µm. (C) Summary 
of comparisons of the recombination rates between individual animal groups are shown in 
the table as P-values analyzed by unpaired two-tailed t-test. 
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Figure 6.6. Structural variants (SVs) in the Hstx2 locus and in flanking regions. Each 
box contains a comparative analysis of a de-novo optical map (bottom), and the mm10 in-
silico reference B6 map (top) of a given individual. (A) Five maps of B6N, B6.DX.64-69A, 
B6.DX.64-69B, PWD, and PWK spanning Chr X 60–74 Mb (images extracted from Bionano 
Solve version 3.3_10252018 at maximum resolution). At this overview, individually-labeled 
restriction sites are not visible. However, matching intervals appear blue on both the 
reference and de-novo map, as labeled restriction sites matching their predicted position in 
the reference are depicted as blue lines. In contrast, labels found in either the reference or 
de-novo map, but not both, are marked by yellow lines. Therefore, clusters of mismatched 
labels become visible as yellow blocks. Label patterns are used to predict SVs by the 
Bionano Solve software. Putative SVs are depicted as shaded areas, connecting the upper 
reference and lower de-novo map. Light red areas represent putative deletions, where labels 
present in the in-silico reference, are absent in the de-novo map. In contrast, light blue 
shaded areas depict putative insertions, where additional labels were found in the de-novo 
map, but not the in-silico reference. (B) The same optical maps for B6.DX.64-69A, 
B6.DX.64-69B, PWD, and PWK, zoomed in to Hstx2 position X: 66.51–69.21 Mb, which is 
an apparent recombination cold spot. All putative SVs are shown at higher resolution, with 
deletions in red and insertions in blue. Neither large inversions nor translocations have been 
predicted for this interval. (C) To quantify the number of labels matching between in-silico 
map and each of the five de-novo maps, we counted all labels across Chr X 60-74 M (see 
Table 6.6). Proportions of matching labels are plotted per 10 kb nonoverlapping window. 
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Figure 6.7. Detailed examination of polymorphic structural variation in the Hstx2 
locus. Blue vertical lines represent perfect matches to the predicted B6 in silico optical map 
(mm10), while yellow vertical lines are additional detected labels that do not match the 
reference. Structural variants (SVs) between the B6 reference and respective de-novo 
optical map are depicted as colored triangles, deletions in orange, and insertions in blue. At 
the bottom of the panel, the ENSEMBL tracks for LTRs and genes are shown, with vertical 
lines representing the interval affected by the SVs depicted in the top panel. (A) The optical 
maps zoomed to interval at Chr X: 66.75–66.80 Mb, revealing a polymorphic LTR region. 
Here, PWD possesses two deletions while PWK displays only one deletion, plus an 
insertion. (B) The optical map zoomed in at interval Chr X: 66.76–66.84 Mb. PWD and PWK 
both bear insertions, which duplicate the locus containing the Mir465 miRNA cluster, 
compared to the orthologous region in B6J. These insertions are polymorphic between the 
two M. m. musculus chromosomes, spanning only 16.2 kb in PWK but 23.3 kb in PWD (C) 
Optical map zoomed in at interval Chr X: 67.75–67.81 Mb, which possesses a deletion in 
PWD only. However, the deletion does not appear to disrupt any known gene. 
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Figure 6.8. Expression of the Fmr1nb gene. (A) Tissue-specific expression of Fmr1nb 
mRNA. Relative expression of Fmr1nb to Actin-b measured by RT-qPCR and plotted for the 
spleen, intestine, brain, pancreas, liver, kidney and testis.  (B) Expression of Fmr1nb 
determined by RT-qPCR in adult testis of PWD, B6 and (PWD x B6)F1 sterile hybrids. (C) 
Profiles of Fmr1nb mRNA in the first wave of spermatogenesis in the testis of juvenile males 
B6.DX.1s, PWD and B6 determined by RT-qPCR. (D) Immunohistochemical detection of 
FMR1NB and SYCP3 proteins in the histological section of testis of the B6.DX.1s mouse. 
FMR1NB expression appears in early stages of meiotic prophase I but not in the pachytene 
spermatocytes. The pachytene spermatocytes, determined by typical SYCP3 staining 
pattern, are shown at higher magnification. Data in B and C are presented as a mean of 
three independent biological replicates (±SD). FMR1NB, green; SYCP3, violet; DAPI, blue. 
Scale bar, 10 µm (D).  
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Figure 6.9. FMR1NB protein domains and isoforms. The predicted structure of the 
FMR1NB protein consists of two cytosolic N- and C-terminal domains, two transmembrane 
domains, and an extracellular part containing a P-type trefoil domain. Three isoforms of 
FMR1NB protein (Q80ZA7, UniProt) hold 238, 192 and 166 amino acids, respectively. The 
PWD and B6 allelic variants FMR1NB differ in two nonsynonymous substitutions: 31 
ArgininePWD / ThreonineB6 and 162 LeucinePWD/IsoleucineB6. The polymorphic amino acids 
are highlighted in pink. 
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Figure 6.10. Generation of Fmr1nb null allele. (A) Transcript variants of Fmr1nb are 
shown, comprising six, five and four exons. Deletion mutants of B6 and PWD alleles of 
Fmr1nb were generated by TALEN nuclease pair constructs targeted to the ATG start codon 
of Fmr1nb in C57BL/6N (B6N) laboratory strain and C57BL/6J-ChrX.1sPWD/Ph (B6.DX.1s) 
subconsomic strain, respectively. (B) FMR1NB protein levels in the testes of males of 
indicated genotypes were assessed by Western blot. None of the three isoforms of FMR1NB 
was detectable in the Fmr1nb-deficient strain. Loading control was alpha-tubulin. (C) 
Immunolabeling of FMR1NB and SYCP3 in histological sections of testis of B6.DX.1s and 
B6.DX.1s.Fmr1nb. FMR1NB is shown in green, SYCP3 is shown in violet, and DAPI is 
shown in blue. Bar, 10 µm. (D) The histological sections of testes of the B6.DX.1s and 
B6.DX.1s.Fmr1nb– genotype stained with hematoxylin and eosin displayed no changes in 
morphology and occurrence of the meiotic cells. Bar, 100 µm. 
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Figure 6.11. Reproductive performance of B6.DX1s and B6.DX1s.Fmr1nb- males. Mean 
values (± SD) of litter size sired by B6.DX.1s or B6.DX.1s.Fmr1nb- males (p < 0.05, t-test). 
The number of sired offspring was counted per each male caged individually with B6 female 
for three months of mating period. 
 
 

	  
	  
Figure 6.12. Fertility parameters of B6.Fmr1nb- and B6.DX.1s.Fmr1nb- males 
compared to the B6 and B6.DX.1s control counterparts.  (A, B, C) Fmr1nbB6 null allele; 
testes weight (weight of pair of wet testes in mg), sperm count (number of sperms in millions 
per pair of epididymis) and frequency of malformed sperm heads (in per cent) are shown as 
mean (± SD) for the B6.Fmr1nb- and B6 males. (D, E, F) Fmr1nbPWD null allele; Fertility 
parameters are plotted for the B6.DX.1s.Fmr1nb- and B6.DX.1s males. Data are presented 
as mean (±SD); n, number of males analyzed for the specific genotype. 
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Figure 6.13. Apoptosis of spermatogenic cells in B6.DX1s and B6.DX.1s.Fmr1nb- 

males. (A) Average numbers of apoptotic cells per one tubule were plotted for individual 
males (N=3) of both genotypes (n, total number of tubules analyzed; p<0.01). (B) Apoptotic 
cells were visualized by FITC fluorescence using TUNEL assay in histological sections of 
testis of B6.DX.1s wild type and B6.DX.1s.Fmr1nb- null mutant genotypes.  Scale bar, 50 
µm. 
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Table 6.1. Microsatellite markers used for genotyping the X chromosome. 
 

Microsatelite position PWD B6	  
marker forward	  primer	  (5'	  to	  3') reverse	  primer	  (5'	  to	  3') (GRCm38/mm10) 	  length	  (bp) length	  (bp)
MIT55 CTGCTTCCAGAATATTATCACTACTCC AAAACATCCATTTATGTTAACACACA ChrX:7360056-‐7360192 120 137
MIT81 GAGGAGCATCAACCTTCTCG	   GAGGTGGGGAGAAACAGAGG ChrX:36201307-‐36201506 190 197
MIT73 GTGCACATTTGTGTGTGTATGC	   ACATGAAAGTTAGAAAGAGACCCG ChrX:59656746-‐59656858 130 113
SX65100 AAAAAGGCTGCTGGAAGTCA ATGAGGCTGGGATTCTTCCT ChrX:65100392-‐65100563 162 172
SX68233 TGTGAAGTGAGGGCAGTTTG GCTCTCCCTTTCATCGTCAA ChrX:68233480-‐68233728 160 249
SX69084 AGGCCTTCTGGGCTTATCTC AAAGCTCATGGATGAGAAAACA ChrX:69084174-‐69084417 232 244  
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Table 6.2, Supplementary Reagent Table. 
 

Data type Experimental 
species

Symbol/name used in publication Source – public Source -- 
published

Source – 
unpublished

Identifiers New reagent Comments

Data type (mandatory)   
Duplicate rows as needed.  
Order is flexible, but row titles 
must be preserved.

Experimental 
species  
(mandatory, 
"NA" okay)

Symbol/name used in publication (mandatory) Source – public [stock 
center; company, data 
repository] (one of D,E,F 
mandatory)

Source -- 
published 
[PMID or 'this 
paper'] (one of 
D,E,F 
mandatory)

Source – 
unpublished 
[description, incl. lab 
of origin] (one of 
D,E,F mandatory)

Identifiers [format as 
ID_source:identifier] 
Separate multiple 
entries with semi-
colon, space

New reagent 
(mandatory for new 
entities) 
Description, 
progenitor(s)

Comments (optional) Genotypes, 
purpose of reagent, additional 
information

gene (source not applicable)
E. coli - C57BL/6J 
mouse BAC clone RP23-20N4 BACPAC Resources, Oakland, CA, USA

C57BL/6J genomic interva-
Chr2:172,790,428-173,050,865

gene (source not applicable) NA plasmid MLM3613 Addgene #42251
gene (source not applicable) NA plasmid pX260 Addgene #42229
antibody NA anti SYCP3 (mouse) Santa Cruz Biotechnology sc-74569 mouse monoclonal
antibody NA anti HORMAD2 (rabbit) PMID: 22549958 rabbit polyclonal, gift from Dr. Attila Toth
antibody NA anti-SYCP1(rabbit) Santa Cruz Biotechnology ab-15087 rabbit polyclonal
antibody NA anti-MLH1(rabbit) Abcam ab14206 mouse monoclonal
antibody NA anti-rabbit IgG - AlexaFluor568  (goat) Molecular Probes A-11036 goat polyclonal
antibody NA anti-rabbit IgG - AlexaFluor488 (goat) Molecular Probes A-11029 goat polyclonal
antibody NA anti-mouse IgG - AlexaFluor647 (goat) Molecular Probes A-21235 goat polyclonal
antibody NA anti-Fmr1nb(goat) Santa Cruz Biotechnology sc-246953 goat polyclonal
antibody NA anti-alpha tubulin (mouse) Proteintech 66031-1-Ig mouse monoclonal
antibody NA anti-beta tubulin (mouse) SIGMA a5441 mouse monoclonal
antibody NA anti-mouse IgG - HRP (horse) Cell Signaling Technology #7076 horse polyclonal
antibody NA anti-goat IgG - HRP (donkey) Santa Cruz Biotechnology sc-2020 donkey polyclonal
other NA protease inhibitors Roche 1836153
other NA 32% PARAFORMALDEHYDE AQ SOLUTION Electron Microscopy Sciences # 50-980-495
other NA DAPI stain - mounting medium Vectashield H1200
other NA normal goat serum Chemicon S26-100ML
other NA TRI Reagent SIGMA&ALDRICH T9424
other NA MuMLV-RT Invitrogen 28025-013
other NA dUTP nick end labelling (TUNEL) Promega G3250
other NA bensonase Merck 1.01654.0001
other NA Pierce BCA Protein Assay kit Thermo Fisher Scientific  # 23225
other NA gradient Bolt 4-12% Bis-Tris plus precast gels Invitrogen NW04120BOX
other NA Pierce™ ECL Western Blotting Substrate Thermo Fisher Scientific # 32106
other NA mMESSAGE mMACHINE™ T7 Transcription Kit Ambion AM1344
other NA poly (A) Tailing Kit Ambion AM1350
other NA RNeasy Mini Kit Qiagen #74104
other NA Phusion High-Fidelity DNA Polymerase New England Biolabs M0530
other NA NotI New England Biolabs R0189
other NA NspI New England Biolabs R0602
other NA T4 Polynucleotide Kinase New England Biolabs M0201
other NA PstI New England Biolabs R0140
other NA SacII Thermo Fisher Scientific ER0201
other NA  MssI Thermo Fisher Scientific ER1341
other NA  Gel Extraction Kit QIAGEN #4993
other  E. coli DH5-Alpha E. coli competent cells Invitrogen #18265017  
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Table 6.3. Optical mapping - Individual molecules report. 
 

SAMPLE Sample Method Enzyme N50 Label	  Density	  
(per	  100	  Kbp)

Total	  DNA	  
>20kbp	  
(in	  Mbp)

Total	  DNA	  
>150kbp	  
(in	  Mbp)

50058331 B6N DLS DLE-‐1 0,2647 16,36 0,452664 0,3127929
50058331 B6N NLRS NTBSPQ1 0,3664 12,59 0,612533 0,4533204
50065026 B6.DX64-‐69_A DLS DLE-‐1 0,2479 11,35 0,853258 0,3724081
0 B6.DX64-‐69_A NLRS NTBSPQ1 0,2933 14,09 0,727927 0,4395364
50065027 B6.DX64-‐69_B DLS DLE-‐1 0,2441 12,6 0,882681 0,4685591
50065027 B6.DX64-‐69_B NLRS NTBSPQ1 0,3139 13,39 0,656291 0,4588529
G95888 PWD DLS DLE-‐1 0,2347 15,28 0,960242 0,4761316
G95888 PWD NLRS NTBSPQ1 0,3056 15,3 0,675135 0,4719136
G97190 PWK DLS DLE-‐1 0,3401 12,99 0,411025 0,3144309
G97190 PWK NLRS NTBSPQ1 0,2891 18,75 0,483307 0,3590695 	  

 
For each sample, optical mapping method and labelling enzyme, the average N50 in Megabasepairs (Mb) as well as 
the label density, defined as the average number of labels per 100 kilobasepair (kb) interval, was listed. As additional proxy for DNA molecule 
length, DNA quality and achieved optical map lengths, the table also shows the cumulative number of Mb of DNA molecules longer than 20 kb, 
as well as from DNA molecules longer than 150 kb. 
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Table 6.4. Optical mapping - Reference assemblies. 
 

SAMPLE Sample Method Enzyme Reference number	  of	  
Contigs

Genome	  
N50

total	  Genome	  length	  
(Mb)

50058331 B6N DLS DLE-‐1 C57Bl/6	  (mm10) 87 101,325 2615,561
50058331 B6N NLRS NTBSPQ1 C57Bl/6	  (mm10) 1039 3,884 2615,567
50058331 B6N DLS DLE-‐1 PWK/PhJ 84 102,951 2652,997
50058331 B6N NLRS NTBSPQ1 PWK/PhJ 1005 4,032 2663,43
50065026 B6.DX64-‐69_A DLS DLE-‐1 C57Bl/6	  (mm10) 109 101,496 2625,722
50065026 B6.DX64-‐69_A NLRS NTBSPQ1 C57Bl/6	  (mm10) 2411 1,489 2547,894
50065026 B6.DX64-‐69_A DLS DLE-‐1 PWK/PhJ 127 103,381 2679,237
50065026 B6.DX64-‐69_A NLRS NTBSPQ1 PWK/PhJ 2416 1,526 2598,985
50065027 B6.DX64-‐69_B DLS DLE-‐1 C57Bl/6	  (mm10) 73 90,738 2604,705
50065027 B6.DX64-‐69_B NLRS NTBSPQ1 C57Bl/6	  (mm10) 1703 2,246 2590,975
50065027 B6.DX64-‐69_B DLS DLE-‐1 PWK/PhJ 75 91,015 2655,77
50065027 B6.DX64-‐69_B NLRS NTBSPQ1 PWK/PhJ 1672 2,35 2644,356
G95888 PWD DLS DLE-‐1 C57Bl/6	  (mm10) 84 104,142 2609,912
G95888 PWD NLRS NTBSPQ1 C57Bl/6	  (mm10) 1991 1,788 2614,102
G95888 PWD DLS DLE-‐1 PWK/PhJ 67 106,268 2657,694
G95888 PWD NLRS NTBSPQ1 PWK/PhJ 1977 1,851 2669,026
G97190 PWK DLS DLE-‐1 C57Bl/6	  (mm10) 85 121,219 2641,753
G97190 PWK NLRS NTBSPQ1 C57Bl/6	  (mm10) 1399 1,018 1220,692
G97190 PWK DLS DLE-‐1 PWK/PhJ 75 121,867 2679,769
G97190 PWK NLRS NTBSPQ1 PWK/PhJ 1511 1,018 1338,968  

 
For each Sample, optical maps were obtained for two labelling enzymes. These optical maps were then aligned to optical map references of 
both the mm10 and the PWK/PHJ genomes. Optical map references are computed, based on the in-silico presence of enzyme recognition site 
in the reference genome. For each assembly, the total number of contigs, genome N50 and total assembled genome length, in Mb is 
summarized. 
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Table 6.5. Localization of PWD/B6 recombination events on the X chromosome. 
 

Number of recombination events (N) in the specific X chromosome 
intervals / recombination ratea,b (cM/Mb) 

Backcross (BC1)  Number 
    of BC1 (n)     X:7.36–65.10 Mb     X:7.36–36.20 mb     X:36.20–59.66 Mb     X:59.66–65.10 Mb     X:65.10–69.08 Mb 
DX.1s x B6) x B6      168    51 / 0.526a            17 / 0.351a         30 / 0.761a         4 / 0.438a             0 
(DX.51-69 x B6) x B6      111         N.D.     N.D.    N.D.          1 / 0.166a             0 
(DX.64-69 x B6.P9Hu/Hu)     369         N.D.     N.D.    N.D.   N.D.             0 
    x B6c 
 
a The recombination rate (cM/Mb) was calculated from the number of recombination events (N) and the number of BC1 animals tested (n) using 
the length (L) of a specific region on the X chromosome. 
b Microsatellite PCR primer sequences used for genotyping are listed in Table 6.1. 
c The B6.Prdm9Hu/Hu mouse strain carries Prdm9Hu/Hu on a B6 background, which was engineered by replacing the PRDM9B6 zinc-finger array 
with the human “B-allele” zinc finger array (Davies et al. 2016). B6.Prdm9Hu/Hu was crossed with B6.DX.64-69, and the female progeny was 
backcrossed with B6 males. 
 
 
 
 

Table 6.6. Insertions and deletions in the Hstx2 locus compared to control intervals on chromosome X. 
 
      Control Chr X               Hstx2 locus 
Mouse strain  coordinates (Mb)     Insertions, n /(kb)     Deletions, n /(kb)     coordinates (Mb)     Insertions, n /(kb)    Deletions, n /(kb) 
B6.N    Chr X: 59.6–64.0       1 / 0.9     1 / 2.8      Chr X: 64.8–69.2            2 / 8.8   0 
B6.DX64-69_A   Chr X: 59.6–64.0       1 / 0.9     1 / 2.6      Chr X: 64.8–69.2          14 / 94.1       26 / 116.3 
B6.DX64-69_B   Chr X: 59.6–64.0       1 / 0.9     1 / 2.8      Chr X: 64.8–69.2          15 / 92.6       26 / 111.6 
PWD    Chr X: 59.6–64.0     22 / 105.7   21 / 174.4      Chr X: 64.8–69.2          12 / 85.8       29 / 116.4 
PWK    Chr X: 59.6–64.0     21 / 113.4   24 / 192.1      Chr X: 64.8–69.2          14 / 140.3      26 / 119.4 
 
Optical maps over the Hstx2 region (Chr X: 64.8–69.2 Mb) and the control Hstx2-adjacent interval of the same size (Chr X: 59.6–64.0Mb) from 
five mouse genome DNA samples, representing four mouse strains, were generated and aligned to the mm10 in silico reference map. 
Coordinates are given with respect to the position in the mouse genome reference mm10 (Mb), n / (kb) numbers and cumulative sizes of 
structural variants within the intervals of the same extent in the X chromosome. 
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Table 6.7. Hstx2 candidate genes. 
 

Gene	  Symbol X	  chromosome	  position	  [Mb]a Meiotic	  expression SNPs	  (PWD/B6	  )

Slitrk2 66.649-‐66.661 POST-‐meiotic* 2
Gm1140 67.682-‐67.693 LEP,	  ZYG$ 7
Gm14692 67.695-‐67.706 LEP,	  ZYG$ 7
4933436I01Rik 67.919-‐67.921 RS*,	  # 7
Fmr1 68.678-‐68.717 LEP,	  ZYG*,	  # 0
Fmr1nb 68.761-‐68.804 LEP,	  ZYG*,	  # 2
Gm14698 68.821-‐68.825 ZG,	  PA*,	  # 0
Gm6812 68.892-‐68.893 ES*,	  # 1  

 
The Hstx2 locus comprises 4 protein coding and 4 predicted protein coding genes expressed in testes. 
aPhysical positions given in coordinates of mouse reference C57BL/6J genome NCBI Assembly (GRCm38/GCA_000001635.2) 
Expression data were taken from: *Margolin et al. (2014), #Jung et al. (2018), $Ball et al. (2016). 
Abbreviations: leptotene, LEP; zygotene, ZYG; pachytene, PA; round spermatids, RS; elongated spermatids, ES. Single nucleotide 
polymorphisms (SNPs) between B6 and PWD within the protein coding regions. 
 
 
 
 

Table 6.8. Fertility phenotypes of (B6.Fmr1nb- x PWD) F1 and (B6.DX.1s.Fmr1nb- x PWD) F1 male hybrids. 

F1	  Hybrid Number Testes	  weight	  
[mg]

Sperm	  Count	  
[x106]

Sperm	  Head	  Malformation	  
[%]

(B6.Fmr1nb-‐	  x	  PWD)F1 8 82.5	  ±	  7.62 2.73	  ±	  2,78 45	  ±	  9
(B6.Fmr1nbB6	  x	  PWD)F1 9 82.2	  ±	  8.22 2.93	  ±	  3,78 47	  ±	  8
(B6.DX.1s.Fmr1nb-‐	  x	  PWD)F1 10 59.3	  ±	  4.1* 0.01	  	  ±	  	  0,04 N.D.
(B6.DX.1s.Fmr1nbPWD	  x	  PWD)F1 6 67.7	  ±	  3.5* 0.01	  ±	  0,01 N.D.  

 
*Significantly different from wild type, P < 0.001, t -test; N.D. not determined 
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