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Zusammenfassung

In dieser Promotionsarbeit untersuchen wir die statistische Physik von kolloidalen

Flüssigkeiten mit stark-richtungsabhängigen Teilchenwechselwirkungen, was Relevanz

für viele reale Systeme hat. So spielen auf der molekularen Ebene anisotrope Teilchen-

wechselwirkungen zum Beispiel in Wasser eine entscheidende Rolle, wohingegen auf der

Skala der weichen und biologischen Materie anisotrope Wechselwirkungen insbesondere

das Phasenverhalten von Proteinen in wässriger Lösung bestimmen.

Ein wichtiges Fundament zur theoretischen Beschreibung von Systemen mit stark-

richtungsabhängigen Wechselwirkungen bilden patchy particles. Dieses Modell ist im

Prinzip einfach zu verstehen: Es beschreibt harte Kugeln, welche über attraktive Wech-

selwirkungszentren (patches) auf ihren Oberflächen miteinander interagieren können.

Interessanterweise kann dieses einfache Modell bereits sehr viele Eigenschaften von

realen Flüssigkeiten mit anisotropen Wechselwirkungen beschreiben.

Diese Dissertation fußt auf einem erfolgreichen theoretischen Modell für patchy particles,

welches von M. Wertheim in den 1980er Jahren im Rahmen der Statistischen Mechanik

formuliert wurde. Die Wertheim’sche Theorie kann das Phasenverhalten von patchy

particles in vielen Facetten äußerst erfolgreich beschreiben. Die Beschreibung von

strukturellen Eigenschaften wie der Dichteverteilung in einem externen Feld oder die

Berechnung von Korrelationsfunktionen stellt die statistische Physik jedoch vor Her-

ausforderungen. In dieser Arbeit nutzen wir klassische Dichtefunktionaltheorie (DFT)

sowie Computersimulationen um Paarkorrelationsfunktionen und deren asymptotischen

Zerfall, oder die Adsorptionseigenschaften von patchy particles an einer Oberfläche

(z.B. einer harte Wand) zu berechnen. Weiterhin werden wir auch dynamischen Eigen-

schaften wie z.B. das Diffusionsverhalten untersuchen.

Neben grundlegenden und fundamentalen Betrachtungen aus dem Blickwinkel der theo-

retischen statistischen Physik werden wir auch ein experimentelles System in welchem

stark-richtungsabhängige Wechselwirkungen auftreten ausführlicher behandeln: Protein-

Salz-Mischungen. In diesen Systemen können Salzionen stark-richtungsabhängige Wech-

selwirkungen zwischen den Proteinen hervorrufen. Aufbauend auf einem einfachen

Modell, welches Proteine als patchy particles basierend auf der Wertheim’schen Theorie

beschreibt, zeigen wir mithilfe von DFT-Rechnungen, dass das experimentelle Adso-

prtionsverhalten von Proteinen an festen Oberflächen verstanden werden kann, was für

viele interdisziplinäre Gebiete wie der Biotechnologie oder Humanmedizin von Relevanz

ist.





Abstract

In this thesis we investigate the statistical physics of model fluids with anisotropic

particle interactions, i.e. interactions that depend on the relative orientation of the

fluid particles to each other. In the fields of soft matter and biophysics, anisotropic

interactions occur for instance in many protein solutions or can explicitly be designed

in colloidal fluids in order to achieve certain desired material properties. Orientation-

depend interparticle forces arise also in many atomic fluids; for instance, the directional

interactions between the oxygen and hydrogen atoms in water are responsible for many

of its anomalies, most notably the fact that the liquid phase is denser than the solid.

A widely employed framework to describe directional interactions is the model of

patchy particles, which consists of hard spheres decorated with a specific number of

attractive interaction sites (patches). If two sites of distinct particles overlap, a bond

between the latter is formed. Detailed studies based on theoretical considerations

and computer simulations have revealed that this rather simple model is capable of

describing many features of the thermodynamic phase behavior, structure and dynamics

of real fluids with anisotropic interactions.

Seminal work by Wertheim has paved the way towards a theoretical understanding

of the rich bulk phase behavior of uniform patchy fluids. Determining structural

properties, such as correlation functions, however, is still a challenge for liquid-state

theories. In this work we employ classical density functional theory (DFT) and

computer simulations in order to investigate structural properties of patchy fluids,

which includes bulk pair correlation functions or density profiles in the vicinity of solid

surfaces such as a hard planar wall. In addition, we also put attention to the dynamic

properties of patchy fluids.

Besides fundamental considerations from the perspective of liquid-state theory,

we shall focus explicitly on an experimental system in which patchy interactions are

believed to play a crucial role: protein solutions in the presence of multivalent metal

ions. In these systems, the latter can bind to the protein surfaces and thereby act

as mediator of a highly-directional interaction between the proteins. Building up

on an existing simple model for the protein bulk phase behavior, we for instance

demonstrate that experimentally observed protein adsorption at substrates attracting

the proteins can successfully be understood with a DFT formulation of this protein

model. The results are relevant for many interdisciplinary fields such as biology and

medical sciences.
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Chapter 1

Introduction

”
Assume that a group of intelligent theoretical physicists had lived in closed

buildings from birth such that they never had occasion to see any natural

structures [...]. Given a fundamental knowledge in quantum mechanics,

they probably would predict the existence of atoms, of molecules, of solid

crystals, both metals and insulators, but most likely not the existence of

liquids.“

V. Weisskopf in ‘About liquids’ , Trans. N.Y. Acad. Sci. II, 38, 202 (1977)

1.1 Liquid-state theory

Liquid-state theory is concerned with describing and connecting the macroscopic

behavior of a fluid, i.e. the existence of gaseous, liquid, and solid phases, to its

microscopic structural and dynamical properties, which, in turn, are controlled by the

underlying interparticle forces. A classical fluid is an interacting many-body system

consisting of N particles confined to a volume V , in which quantum mechanical effects

can be neglected. As a result, it suffices to employ classical theories that are based

on Newtonian mechanics. However, it is important to recognize that the existence of

certain kinds of particle interactions can often be only understood within quantum

mechanics – for example, the strong repulsion that atoms or molecules feel when their

electron orbitals overlap is due to Pauli’s principle.

In order to estimate whether a system can be described with a classical approach

it is helpful to consider the thermal de Broglie wavelength λth. It is given by

λth =
h√

2πmkBT
, (1.1)

where m denotes the mass of a particle, h is Planck’s constant, kB Boltzmann’s constant

and T is the temperature. Quantum effects cannot be omitted if the value of λth is

comparable to that of the particle mean distance a = ρ
−1/3
b , where ρb = N/V is the

average (bulk) particle density. On the other hand is a classical description justified

and sufficient if a≫ λth. This certainly is satisfied in the gaseous phase, where the
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mean distance is typically much larger than the effective atomic diameter σs, a≫ σs.

By contrast, in a liquid or solid the mean distance typically is of the order of σs, a ∼ σs.
Thus, a classical description of a liquid (or solid) is a good one if the particles are

sufficiently massive and the temperature is sufficiently high such that λth ≪ σs; a good

example is liquid argon. In general it turns out that the interactions between nearly all

heavier atoms and molecules (i.e. except H2 and He) can be treated well in a classical

picture at ‘moderate’ conditions.

Let us consider the Hamiltonian H of a classical N -particle system, where all particles

have equal mass m:

H =
N∑
i=1

|pi|2
2m︸ ︷︷ ︸

≡Tkin

+Φ(r1, ..., rN )︸ ︷︷ ︸
≡U

+
N∑
i=1

Vext(ri)︸ ︷︷ ︸
≡V

, (1.2)

where pi = m ṙi is the momentum of particle i and Vext(ri) denotes a time-independent

external potential acting on the latter. The interactions among the particles are

encoded within the function U ≡ Φ(r1, ..., rN ). The Hamilton function separates

naturally into kinetic (Tkin) and potential energy contributions. The latter in turn

splits into internal contributions due to particle interactions (U) and external fields

(V ). For many fluids it turns out that to a good approximation Φ(r1, ..., rN ) may be

written as the sum over an isotropic and pairwise additive potential φ(r):

Φ(r1, ..., rN ) =
1

2

N∑
i=1

N∑
i ̸=j

φ(|rij |) , (1.3)

where |rij | is the absolute value of the center-to-center vector rij ≡ ri − rj between

two particles i and j. The physics of a classical system is governed by Hamilton’s

equations of motion:

ṙi =
∂H

∂pi
; ṗi = −

∂H

∂ri
, i = 1, ..., N , (1.4)

which, of course, are equivalent to Newton’s second law:

m r̈i = f int
i + f ext

i , i = 1, ..., N , (1.5)

where we have discriminated between external forces f ext
i = −∇iVext(ri) and the inter-

nal forces f int
i = −∇iΦ(r1, ..., rN ). For given initial configurations {r1(0), ..., rN (0)}

and {p1(0), ...,pN (0)} there exists only one unique solution to Eqs. (1.4) or (1.5).

Structural, dynamical as well as thermodynamic properties of the system would be

fully determined if we knew the phase-space trajectories ri(t) and pi(t) at all times

t > 0. Clearly, for a macroscopic number of particles, N ∼ 1023, this is an exceedingly

difficult challenge. Moreover, explicit knowledge of all the trajectories is not desirable

at all: all relevant (i.e. experimentally measurable) fluid properties such as the pressure
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p, the compressibility χ, or the static structure factor S(k), are inevitably the result

of a time-averaged collective behavior. No experimental setup exists that can resolve

the dynamics of ∼ 1023 particles on atomistic time scales (∼ 10−13 s)1. Besides that,

the produced amount of data would probably exceed all to date available world-wide

digital storage capabilities. The only sensible possibility to theoretically describe the

relevant physical properties of a fluid is thus to expect that the ergodicity theorem

holds true and apply classical statistical mechanics. This precisely is what equilibrium2

liquid-state theory does.

1.2 Simple fluids, Colloids and Soft Matter

Simple fluids

The existence of gases, metals, semiconductors, and insulators can be understood rather

straightforwardly from fundamental principles of many-body quantum mechanics. For

the third state of matter, that we experience in daily life, the liquid phase, this is

much less clear. In 1977 Weisskopf argued in his essay ‘About liquids’ [1] that the

existence of the liquid phase is not at all self-evident; this was rephrased by Evans in a

2019 anniversary essay in Physics Today [2]:
”
It is not obvious that a state of matter,

other than gas and solid, should exist that is dense, disordered, and strongly spatially

correlated“. In fact, by the end of the 1950s no theoretical framework had existed

to describe dense liquids due to their aforementioned properties. In a gas, the bulk

density ρb is small and perturbation approaches employing ρb as an order parameter

are likely to succeed. On the other hand, in a solid one can employ spatial symmetries

which is not possible in a disordered liquid.

In the 1940s, Kirkwood [3] probably was the first who realized that the structure of

the hard-sphere fluid shares remarkable similarities with that of simple atomic fluids

such as argon. The hard-sphere pair potential is defined as:

βφHS(r) =

∞ ; r < σ

0 ; r ≥ σ ,
(1.6)

where β = 1/(kBT ) is the inverse temperature and σ the hard-core diameter. In the

1950s, Kirkwood’s findings were confirmed by early computer simulations carried out

by Wood and Wainright [4, 5]. Catalyzed by these simulation results, in the 1960s

and 70s a quantitative theoretical understanding of the liquid state emerged which

had been lacking before. In particular, Widom [6] and Weeks, Chandler and Andersen

[7] elaborated in seminal papers the role of repulsive packing effects in determining

the characteristic short-range order of (dense) liquids, which in 1976 was reviewed

1This is different for colloidal fluids as is discussed subsequently.
2Note that a time-independent external potential implies that a well-defined equilibrium state

exists so that the system as a whole does not move (no net flows etc). In a dynamical picture, this
means that in equilibrium on average the external forces are balanced by the internal forces. In this
thesis we will only consider fluids that are in equilibrium.
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Figure 1.1 The Lennard-Jones pair potential (black line) in comparison to the square-well
model (red line) with well-width δ = 0.5. The gray dashed line is a guide to the eye.

by Barker and Henderson in the beautiful work: ‘What is liquid? Understanding the

states of matter’ [8].

The simulation results by Wood and Wainright also suggested that hard spheres

crystallize on a regular lattice at packing fractions

η =
π

6
ρbσ

3 (1.7)

well below the point at which random close packing is reached (≈ 62%). These

observations raised controversial debates [9]: it was not clear how crystallization

processes could occur in systems purely driven by entropy. The mystery was solved by

realizing that a regular ordering of spheres allows for much higher packing fractions

up to 74%, compared to random closed packing. The latter has indeed a higher

configurational entropy than an ordered arrangement of particles on a lattice; however,

this is counterbalanced by the so-called vibrational entropy. Broadly speaking, the

latter measures the amount of accessible volume per sphere, which is much higher on a

regular lattice compared to a random closed packing situation where the particles are

jammed by surrounding neighbors.

The hard-sphere model is a crude yet justified approximation for atoms that feel a

harsh repulsion on distances r < σs, but do not attract or repel each other on larger

distances, which is a reasonable assumption at sufficiently high temperatures. However,

the hard-sphere model has its limitations. The absence of attractive forces implies

that there will be no phase separation into gaseous and liquid phases. If in a real

system the density and temperature are sufficiently low, attraction can dominate over

repulsion and lead to gas-liquid phase separation (i.e. the coexistence of gas and liquid
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on a macroscopic scale). Nowadays, the hard-sphere pair potential φHS(r) is often

supplemented by an additional attractive portion φatt(r) for r > σ, which then leads to

the existence of gaseous, liquid, and solid phases in computer simulations. By contrast,

the prediction of all three states of matter on equal footing has been challenging

liquid-state theories for many decades. Remarkably, the concept of separating the

effects of repulsion and attraction was already realized in 1867 by Johannes van der

Waals. He introduced the distinction between effects of attraction and volume-excluded

repulsion by modifying the ideal-gas equation of state. This idea led to a simple theory

that was capable of predicting gas-liquid phase separation, but, however, could not

describe the liquid-solid transition.

The attractive part of the pair potential, φatt(r), typically depends on a parameter

ε, measuring the strength of the attraction, and another parameter δ defining the

distance for which the attraction between two particles acts. A widely considered

model system is the square-well (SW) fluid, where φSW(r) reads

φSW(r) = φHS(r) + φSW
att(r) =


∞ ; r < σ

−ε ; σ < r < σ(1 + δ)

0 ; r > σ(1 + δ) ,

(1.8)

which is displayed as the red line in Fig. 1.1 for δ = 0.5. It approximates the more

realistic Lennard-Jones (LJ) pair potential (black line):

φLJ(r) = 4ε

[(σs
r

)12
−
(σs
r

)6]
, (1.9)

where the repulsive part in Eq. (1.9) models the Pauli repulsion and the attractive bit

describes van der Waals forces (induced dipole-induced dipoole interactions between

molecules).

In Fig. 1.2 (a) the generic phase diagram of a fluid with a longer-ranged attraction

(& 50% of the hard-core diameter σ) is sketched in the temperature-density plane.

Qualitatively, it applies to most atomic fluids such as argon and is not very sensitive

to the precise form of the interaction potential. At very high particle densities, & 60%

packing fraction, the system is most likely in a solid phase (S). At lower densities,

above the gas-liquid critical point (circle), the fluid is in a so-called supercritical state

where gas and liquid phases cannot be distinguished. We call such state points simply

‘fluid’ (F). Below the critical point, stable gaseous (G) can occur at low, and liquid

phases (L) at higher densities. These one-phase regions are separated by the binodal,

the line at which the latter can coexist. Inside of the binodal no single phase of gas or

liquid can be thermodynamically stable and so there are always coexisting domains of

gaseous and liquid phases. The typical values for the critical density (in terms of the

packing fraction ηc) are in the range of ∼ 15 – 30%. The packing fractions at the triple

point (coexistence of gas, liquid and solid) are roughly in the range of ∼ 40 – 45%.
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Figure 1.2 (a) Schematic equilibrium phase diagram in the temperature-density plane of a
simple atomic fluid, including the gas (G), liquid (L), and solid phases (S). The interparticle
attraction is sufficiently long-ranged so that the gas-liquid coexistence region is thermodynami-
cally stable. The dashed lines are guides to the eye indicating the critical temperature (upper
line) and triple point (lower line). Above the critical point (red dot) no phase separation occurs.
(b) Phase diagram of a colloidal fluid where the interparticle attraction is short-ranged so that
the gas-liquid coexistence region becomes metastable with respect to the solid phase. Note
that this is not possible for atomic fluids.

At temperatures below the triple point, gas and solid are the only stable equilibrium

phases.

Colloids and Soft Matter

Besides simple atomic fluids, there are molecules and structures that can consist of up to

thousands of individual atoms, such as polymers, surfactants, proteins, or even cells in

living organisms, that may (or may not) exhibit gaseous, liquid, and solid phases. Very

often these kinds of systems form states of matter that differ fundamentally from what

is known from atomic fluids. This includes for instance gels and glasses, highly stable

non-equilibrium cluster phases or liquid crystals. All such exotic structures are the

result of considerably more involved interparticle forces. Predicting the thermodynamic

phases, structure and dynamics of such complex fluids defines soft-matter science

[2]. The physics of colloidal suspensions does also belong to the field of soft matter

providing a crucial link to simple fluids. In what follows we will briefly outline the

basic principles of colloid physics as it is important for this thesis to keep in mind the

differences between atomic and colloidal fluids; a detailed and excellent introduction is

given by J. Dhont in the text book entitled An Introduction to Dynamics of Colloids

[10].

A colloidal fluid consists of mesoscopic particles, with diameters varying between

10−7 – 10−4m, that are immersed in a atomic solvent, where the particle size is of

the order of ∼ 10−10m. In the most simple case these colloids are spherical particles,

which we shall assume in what follows. In addition to differences in their size, the

colloidal mass M is much larger than that of the solvent molecules m, i.e. M ≫ m.

This, in turn, implies that the time scales between the motion of a colloid and that of

the solvent particles is completely separated; as mentioned earlier, the latter is of the
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order of 10−13 s whereas the microscopic colloidal dynamics take place on time scales of

about 10−9 – 10−5 s. Furthermore, one learns that the motion of the colloidal particles

is of a stochastic nature, as they undergo Brownian motion due to frequent random

collisions with the solvent molecules. For instance, it takes a colloidal particle of

diameter ∼ 100 nm roughly 10−3 s to diffuse over a distance comparable to its diameter

(which defines the Brownian time τB). Note also that a colloidal trajectory is due

to its stochastic character not smooth, in contrast to those in atomic systems. An

illustration is displayed in Fig. 1.3 (a) (image from Ref. 11).

The equations of motion for a colloidal suspension may be described by the

(overdamped) Langevin equations [12]:

γṙi = −∇iΦ(r1, ..., rN )−∇iVext(ri) + ξi(t) , i = 1, ..., N , (1.10)

where γ is a solvent-dependent friction constant. In the colloidal picture, Φ(r1, ..., rN )

denotes an effective colloid-colloid interaction potential, which, in general, does also

contain solvent-mediated forces. Furthermore, ξi(t) is an uncorrelated stochastic

white-noise term that satisfies

⟨ξi(t)⟩ = 0 , ∀ t , (1.11)

⟨ξai (t)ξbj(t′)⟩ = 2kBTγδijδabδ(t− t′) , (1.12)

and arises from the random kicks of the solvent molecules exerted on the colloids. Here,

brackets ⟨·⟩ denote averages over different initial conditions of the solvent-induced

noise, δij denotes the Kronecker-symbol, and δ(·) the Dirac distribution. Despite

their fundamentally different equations of motion (deterministic versus stochastic)

atomic fluids and colloidal suspensions share important common physical grounds:

both are realizations of classical statistical mechanics systems. Thus, for equal pair

potentials, the equilibrium structure and phase diagrams are expected to be similar,

but occur on different length- and time scales. The interactions between atoms and

molecules are fixed and cannot be changed; this is different for colloids, where it is,

for instance, possible to alter their surface chemistry, or if the colloidal particles carry

surface charges, their pair interactions can be tuned upon the addition of salts. In

1986, Pusey and van Megen [13] were the first who synthesized nearly bare hard-sphere

interactions in colloidal suspensions and showed that the experimental phase behavior is

in extraordinary agreement with predictions from classical statistical mechanics. Their

work paved the way towards experimentally determining the hard-sphere equation of

state [14] and towards measuring the structure of hard-sphere crystals [15]. These

accomplishments have also been boosting the development and establishment of novel

theoretical frameworks such as classical density functional theory [16, 17], where

experimental data serves as an important benchmark for theoretical results. For

example, recent experimental work on two-dimensional hard disks has impressively

confirmed predictions of liquid-state theory and simulations [18–20].

Experimentally, advances in imaging and tracking of mesoscopic sized colloids opened



8 Introduction

(a) (b)

Figure 1.3 (a) Illustration of a colloidal suspension. The colloids (big spheres) experience
frequent random kicks by the solvent molecules (small spheres) leading to stochastic trajectories.
From H. Löwen, Phys. Rep. 237, 249 (1994). (b) Image of hard-sphere like colloids taken via
confocal microscopy. The scale bar is 10µm. From C. P. Royall et al., Nat. Mater. 7, 556
(2008).

new perspectives. While the structure of colloidal fluids in momentum space can be

explored with scattering techniques that employ visible light (static- and dynamic light

scattering) instead of X-rays, colloids particularly are sufficiently large to be visualized

in real space using optical imaging techniques, most notably via confocal microscopy.

The latter allows one to track single-particle trajectories and draw conclusions on

particle configurations even in large three-dimensional samples [21–23]. A typical

snapshot of a colloidal liquid obtained from confocal microscopy is provided in Fig. 1.3

(b) (taken from Ref. 24). Moreover, the significantly larger time scales on which

the colloidal dynamics take place allow for real-time resolutions of gas-liquid phase

separation [25, 26] or crystal growth [27] in experiments. These examples manifest

the great advantage of colloids over atomic fluids: they provide the ability to probe

predictions from statistical mechanics via a vast diversity of methods, ranging from

analyzing single-particle trajectories to simply observing macroscopic phase behavior

by eye.

Attractive interactions between colloids can e.g. be controlled by employing

the depletion effect. The addition of non-adsorbing polymers to a solution of hard-

sphere like colloids induces a purely entropic effective attraction between the colloids.

Theoretically, this phenomenon was first described by Asakura and Oosawa in 1954

[28] and later by Vrij [29]. The range of the attraction is set by the size of the polymers,

and its strength is dictated by the polymer concentration. If the polymer size ratio

q = σp/σc is q ∼ 1, where σp denotes the effective polymer radius and σc that of the

colloids, then the phase diagram mimics that of a simple fluid i.e. is of the form shown

in Fig. 1.2 (a). For small polymers, q . 0.3, the colloid-colloid depletion attraction

can become very short-ranged (a few per cent of σc). In such systems, the liquid-liquid

coexistence region (i.e., the coexistence of a colloid-poor and colloid-rich phases) often

becomes suppressed with respect to the solid phase [30, 31], and so coexistence of a
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Figure 1.4 Sketch of patchy particles with four patches (blue cones). A bond between a pair
of particles is formed if their patches overlap.

colloidal gas and solid is the only thermodynamic stable phase. A generic equilibrium

phase diagram is sketched in Fig. 1.2 (b). At this point it is important to point out

that colloidal suspensions can also show both exciting equilibrium and non-equilibrium

behavior, that is not seen in simple atomic fluids. For instance, if a colloidal hard-

sphere fluid is compressed rapidly beyond its equilibrium freezing point, so-called glass

states can occur in which the particles are highly jammed with a lacking long-ranged

order [32]. Liquid-crystal phases are observed in colloidal fluids where the particles

are of ellipsoidal shape, including nematic, smectic, or twisted phases. In experiments

with colloid-polymer mixtures at a small size ratio q, the equilibrium phase behavior

as shown in Fig. 1.2 (b) is often not reached due the occurrence of highly stable

non-equilibrium states, such as colloidal aggregation or dynamically arrested gel phases

[33].

1.3 Patchy colloids

In this thesis we will mostly be concerned with the statistical physics of so-called

patchy colloids [34, 35], where the particles interact via highly anisotropic (attractive)

forces. These forms of interactions can give rise to a equilibrium phase behavior and

microscopic structure that both differ substantially from that of colloidal fluids with

isotropic pair interactions [36]. More generally, the framework of patchy particles allows

one to model directional interactions for a far more wide class of systems. This ranges

from simple atomic models for water [37–40], over explicit realizations in colloidal [41]

and biology-inspired systems [42] to the modeling of effective interactions between
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Figure 1.5 Schematic phase diagram of the patchy fluid with M = 3 or M = 4 interaction sites
where the gas-liquid coexistence region is not metastable with respect to the solid phase. The
binodals (black solid lines) shrink significantly compared to fluids with isotropic interactions
with the same interaction strength and range (dashed line). The percolation threshold, defined
as the line where system-wide networks of bonded particles can exist, is marked by the red
line. Note that bond lifetimes in the vicinity to the percolation line are typically much smaller
than macroscopic observation times, i.e. the network is flexible. This changes with decreasing
temperature, where equilibrium gel phases may exist (below the blue line). In this region the
system remains in a disordered state, but is kinetically arrested due to macroscopically long
bond lifetimes. Such states are not found in fluids with isotropic interactions.

globular proteins [43–46]. In this theses, the term ‘patchy particle’ means the following:

consider a hard sphere of diameter σ, decorated with M interaction sites. If two (or

more) of these interaction sites of distinct particles overlap, they form a bond. We

call the sites also ‘patches’ . An illustration for the case of M = 4 patches arranged in

tetrahedral symmetry is shown in Fig. 1.4, where the hard spheres are displayed in red

and the patches are the blue cones.

Patchy colloids with two sites can form chains and rings; with three sites, chain

branching and extended network formation becomes possible. A tetrahedrally ar-

rangement of four patches may serve as a crude model of e.g. a water molecule.

Patchy colloids with such small numbers of interaction sites have been at the focus of

liquid-state physics for the past decade as their phase behavior shows several exciting

features:

� Gas-liquid coexistence regions can occur at particular low densities and tempera-

tures [47] compared to isotropic pair potentials. For a chain-forming fluid with

two attractive sites, the gas-liquid coexistence even ceases to exist. Curiously,

mixture of two- and three-patch particles yield the possibility to continuously

move the location of critical points towards zero density and temperature with

appropriate mixtures of two- and three-patch particles [47, 48]. As a result, it is

possible to realize ‘empty liquid’ states where packing fractions of the coexisting

liquid well below ten percent are possible. Experimentally, such behavior was
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found in colloidal clays [41] and DNA-nanostars [42], both of which examples for

soft-matter systems where highly directional particle interactions occur.

� Another curiosity is the fact that although the patch-patch interaction range

typically is of the order of 10% of the hard-core diameter σ, the gas-liquid

coexistence region in patchy colloidal fluids is not necessarily metastable with

respect to the solid phase [49] as is the usual case for fluids interacting via isotropic

pair potentials with a short-ranged attraction; this is controlled by the geometry

and interaction range of the patches. In particular, computer simulations have

suggested that for certain patch geometries the disordered fluid phase can be

retained as the most stable phase even down to zero temperature [50]. In Fig. 1.5

we show a schematic phase diagram for M = 3 and 4, where the liquid is not

metastable with respect to the solid phase. The binodals are the black solid lines,

and the dashed line indicates the respective isotropic case (with the same range

of the attraction as the patches). The red line is the so-called percolation line

defining the locus in the phase diagram below which system-wide networks of

bonded particles can occur. Below the percolation line, the probability of finding

a patch bonded to another, denoted by pb, is high, & 90%. However, the bond

lifetimes between two particles in vicinity to the percolation line are typically still

much smaller than macroscopic observation times [51], i.e. bonds are frequently

formed and broken and the network is flexible.

� This changes at lower temperatures. The fact that the disordered phase can

be more stable than the solid even at temperatures well below the critical

value provides the remarkable possibility of so-called equilibrium gels. Such

states are characterized by bond lifetimes that can become macroscopically large,

likely resulting in slow dynamics and eventually kinetic arrest at extremely low

temperatures. In Fig. 1.5 these regions occur below the blue line. Equilibrium gel

phases were for instance observed in colloidal clays [41]. Recall that arrested gel

phases that are observed in experiments with colloids interacting via short-ranged

isotropic forces are typically metastable and are not predicted by equilibrium

theories or simulations (cf. discussion at the end of Sec. 1.2) or Ref. 33.

1.4 Applications of patchy models

1.4.1 Water

Many atomic or molecular fluids that arise in nature interact via highly anisotropic

forces. The probably most prominent representatives are directional hydrogen bonds

in water [52–56, 40]. It is the particular geometry of the water molecule and its

anisotropic interactions with other water molecules giving rise to both thermodynamic

and structural features that are not seen in fluids such as argon. The macroscopic

properties of water exhibit several anomalies – the probably widest known example is

the fact that the density of water (at atmospheric pressure) has a maximum at 4◦C
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Figure 1.6 Experimental results for the radial distribution function g(r) for oxygen atoms
in water at room temperature (sold line) and for liquid argon near its triple point (dashed
line). The points are results from computer simulations for a water model with four interaction
sites [55]. Image taken from J.-P. Hansen and I. McDonald, Theory of Simple Liquids with
Applications to Soft Matter, Academic Press, 4th Edition, London, 2013.

and hence the solid phase (ice) is less dense. In order to reproduce these phenomena in

simulations, it turned out to be crucial to incorporate directional interactions mimicking

hydrogen-bonds between water molecules [55, 56].

In Fig. 1.6 we show experimental results for the radial distribution function g(r)

for liquid argon near its triple point (dashed line) in comparison to that of the oxygen

atoms of liquid water at room temperature (solid line), which is also rather close to

its triple point. The data was obtained from X-ray scattering experiments and is

replotted from Ref. 57. The radial distribution function provides information about

the microscopic structure in a fluid; it is proportional to the probability of finding

a particle at distance r given that there is a particle located at the origin r = 0.

A more detailed definition will be provided in Ch. 2. It is clear from Fig. 1.6 that

the microscopic structure is very different in the two liquids. The nearest neighbor

coordination number, which is the volume integral over g(r) until the first minimum

after the main peak, and does provide information on the average number of direct

neighbors around a reference particle, is significantly smaller for water than is for

argon. The latter has a coordination number of ≈ 12, whereas for water one finds

approximately four nearest neighbors. Second, the oscillations in the two curves are

out of phase, where the second peak of water is shifted towards the nearest neighbor

peak. Both the reduced coordination number, and the shift of the oscillations, comply

with the molecules forming (strained) tetrahedral networks of hydrogen-bonds in the

liquid phase; these structures are in particular apparent in hexagonal ice [58].
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1.4.2 Proteins in solution

Aqueous solutions of proteins (e.g. lysozyme) are an important example of soft matter

where anisotropic interactions play an essential role [36, 59]. Proteins are crucial

to many processes of life, where they for instance are responsible for metabolism,

defining the structure of cells, or the transport of molecules such as oxygen. Moreover,

degenerated protein interactions are known to play a key role in many diseases such as

Alzheimer or eye cataract [60, 61].

From a physical perspective, proteins are difficult to describe with all their details

as each particle consists of thousands of atoms or molecules resulting in considerable

more complex interactions between two proteins than that between two spherical

colloids. Surprisingly, it turns out that colloid physics can at least qualitatively explain

[62, 63] the fluid phase behavior of many solutions of globular proteins, where the latter

are modeled as hard spheres with an isotropic very short-ranged attraction. Similar

to colloidal suspensions, proteins in solution undergo liquid-solid and liquid-liquid

transitions, where the former is typically found to be metastable with respect to the

latter [64], i.e. the equilibrium phase diagrams are similar to the one shown in Fig. 1.2

(b). In contrast to colloid-polymer mixtures, where phase separation experimentally is

often preempted by kinetically-arrested gels, coexistence of protein-poor and protein-

rich phases is readily observed; phenomena such as gelation typically set in at lower

temperatures.

However, the assumption of pure isotropic interactions between proteins is certainly

not justified. Generally, anisotropy in protein-protein interactions may be the result of

non-uniformly distributed surface charges, the presence of hydrophobic and hydrophilic

zones on the protein surface, or the formation of hydrogen bonds. In particular,

the shape and location of liquid-liquid binodals in protein solution points towards

the influence of patchy attractions [65, 45]. Furthermore, the variety of lattice types

observed in protein crystals, and their relatively low densities, provides further evidence

that anisotropic attraction plays a dominant role [43, 66]. In addition, for many protein

solutions experimentally determined values of the second virial coefficient can be only

understood with the assumption of orientation-dependent interactions [67].

A system which shall be of deeper interest in this thesis, are protein solutions

in presence of multivalent salt [68, 69, 46]. In these systems protein aggregates and

liquid-liquid phase separation are the result of multivalent salt ions binding to the

surface of proteins inducing highly directional bonds between the latter. For sufficient

salt concentrations, the anisotropic attraction drives formation of protein aggregates

and metastable liquid-liquid phase separation. We will return to this system in detail

in Ch. 7.

1.5 Thesis outline

The purpose of this thesis generally is to gain a deeper theoretical understanding of

complex fluids in which highly anisotropic interparticle forces play a dominant role.
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We choose to employ the framework of patchy particles, which allows to address a

vast number of systems being characterized by directional particle interactions in

soft-matter physics and also molecular liquid-state theory. Our focus shall be on the

augmentation of existing, and development of novel theoretical approaches relevant for

but not bounded to (colloidal) fluids of patchy particles. We will outline the thesis in

what follows.

Chapter 2: Concepts in liquid-state theory. We will start this thesis with

a brief recapitulation of the key concepts in modern classical liquid-state theory that

are important for this work. We shall also discuss a novel approach to the fundamental

question: ‘How do we measure the balance between attractive and repulsive forces

in classical fluids?’ – see Sec. 2.4. Note, however, that it is beyond the scope of this

work to provide an extensive review of liquid-state theory; for this purpose we refer to

excellent text books such as Hansen’s and McDonald’s Theory of Simple Liquids with

Applications to Soft Matter, Academic Press 4th Edition, London, 2013.

Computer simulations. Particle-based computer simulations of the patchy fluid

will play an important, but not the key role in this thesis. The reasons for this are as

follows. Simulations are accurate and reliable tools to investigate e.g. the structure and

dynamics of a fluid as their results are formally exact and only subject to statistical

noise. As such, they pose important cornerstones in liquid-state physics. However,

extracting thermodynamic properties can be a demanding task, and typically requires

sophisticated algorithms and sufficient computational resources. In particular for

patchy fluids the interaction energies can be of several orders of magnitudes larger

than that in simple fluids, which can drive determination of any fluid property to

an extraordinary delicate task. The main drawback of simulations is, however, that

it is not easy to surmise what physical mechanisms govern the behavior of a certain

observable – a simulation doesn’t provide one formulas (though one still might fit a

parameterized theory to simulation results but this requires already some idea of the

ongoing physics). Questions of the form: ‘How does parameter A depend on another

parameter B, and how does A change if B is changed?’ are difficult to answer from

simulations.

Density functional theory. This is one of the reasons why in this thesis we will

focus on classical density functional theory (DFT) [16] formulations for the patchy fluid

rather than to only rely on simulations. DFT is one of the most powerful and successful

theoretical frameworks in liquid-state theory, as it treats the structure of inhomogeneous

fluids and its thermodynamics on equal footing. The key quantity in DFT is the particle-

density field ρ(r). In most cases, DFT calculations are computationally much more

efficient than a particle-based simulation and expressions for thermodynamic properties,

such as the pressure or compressibility, often can be written down analytically. However,

there is a trade-off: while the framework of DFT itself is mathematically exact, in
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practice one has to rely on approximations to the description of particle interactions.

In fact, the key task in DFT is to construct robust and self-consistent approximations,

that, on the one hand, can reproduce known behavior and properties of a fluid, but,

on the other hand, do also yield reliable predictions in novel situations. To provide

a successful example, the thermodynamics and structure of the fluid phase of hard

spheres are captured by DFT to an extraordinary degree of accuracy [17, 70]. The

basics and framework of DFT will be introduced in Sec. 2.2 of Ch. 2.

Chapters 3 and 4: Thermodynamics and structure of the patchy fluid.

DFT formulations for the inhomogeneous patchy fluid [71, 72] are based on seminal

theoretical work by Wertheim [73–77] that has paved the way to theoretically un-

derstand the rich thermodynamic phase behavior of homogeneous patchy fluids (see

Ch. 3). We shall see that existing DFT approaches do not, and cannot, provide reliable

and accurate results in any situation. In Ch. 4 we provide an extensive investigation

of structural properties of the patchy fluid as given by DFT, and compare to results

from particle-based computer simulations. This includes questions such as: ‘What is

the form of density correlations in a homogeneous patchy fluid that is not subject to

an external potential and how do they decay?’ or ‘What is the density distribution

of a patchy fluid in vicinity to a planar, hard wall?’. We will also see that a simple

modification of a widely-applied DFT formulation for the patchy fluid yields reliable

results in many situations, but it should be applied with care when orientations of the

particles become distinguished (as e.g. may be the case in certain external potentials).

Chapter 5: Dynamic properties of the patchy fluid. As outlined in Sec. 1.3

of this chapter, the dynamics of patchy fluids will be highly affected by bond formation

at sufficiently low temperatures. At such state points, patchy particles can even

form equilibrium gel-like structures, due to macroscopically long bond lifetimes. In

Sec. 5.1 we will be presenting results for the bulk dynamics in systems with three

and four patches obtained from dynamic Monte-Carlo simulations (Appendix B). This

includes the mean-squared displacement and the van Hove function, both of which

provide information about diffusion and structural relaxation processes in a fluid. The

results that we present in Sec. 5.1 are mostly known and are in accordance with recent

publications, see e.g. Refs. 78, 51, 79 and references therein.

Dynamic quantities such as the mean-squared displacement in principle are also

accessible via a time-dependent version of DFT [80, 81] and it has been shown that

dynamic DFT provides a satisfactory description of the bulk dynamics of hard spheres

[82] and hard disks [83]. However, in Ch. 5 it is demonstrated that the DFT formulations

that exist for the patchy fluid fail to describe fundamental dynamic properties seen in

computer simulations.

Chapter 6: Fluids with competing interactions. Although the title of this

thesis is ‘Structure and Thermodynamics of Fluids with Anisotropic Interactions’ in
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Chapter 6 we will focus on fluids with so-called competing interactions . What is meant

by this terminology is is the presence of a longer-ranged repulsive force in addition

to some form of a short-ranged interparticle attraction in the fluid pair potential.

Competing interactions can give rise to a rich and exciting phase behavior, including

equilibrium cluster phases [84–87] and microphase-separated states [88–90].

We introduce the general framework and outline the most recent state of research

for these kinds of fluids in Sec. 6.2 and in Sec. 6.3 we proceed with analyzing the

physics of fluids with anisotropic competing interactions, where the attractive part of

the pair potential is patchy-like. This particular form of a particle interaction is of

interest for models of protein solutions in presence of multivalent salts (see Ch. 7).

Chapter 7: Patchy models for protein solutions. In the final chapter of

this thesis, we will focus on an experimental system in which patchy interactions are

believed to play a crucial role: protein solutions in the presence of multivalent salts

[68, 91, 69]. In these systems, salt ions can bind to the protein surface and thereby act

as mediator of a highly-directional attraction between individual proteins. This yields

a very rich experimental phase behavior, including reentrant protein aggregation and

liquid-liquid phase separation. We summarize the experimental findings in Sec. 7.2.

Some aspects of the experimental bulk phase behavior are captured by a sim-

ple coarse-grained patchy colloidal model, where individual interaction sites can be

activated by salt ions. As a result, the strength of the protein-protein attraction

is controlled by the salt concentration [46]. The model, which is formulated within

Wertheim’s theory for patchy particles [73–77] omits any longer-ranged electrostatic

forces. It is introduced in Sec. 7.3, where we discuss its thermodynamic predictions in

comparison to experiments. Subsequently, in Sec. 7.4 we incorporate the model within

DFT in order to describe inhomogeneous protein phases. It is demonstrated that the

DFT model adequately accounts for protein adsorption at attractive substrates as

measured in experiments, which, in turn, provides evidence that protein solutions,

despite their inherent complexity, do not only follow the predictions of the statistical

physics of ‘simple fluids’ in terms of bulk thermodynamics, but also in terms of more

complex surface and adsorption phenomena.

Finally, in Sec. 7.5 we introduce a simple extension of the protein model to include

effects of an additional longer-ranged electrostatic repulsion. This poses a realization

of anisotropic competing interactions and we discuss the possibility of equilibrium

protein cluster phases in light of recent experimental results.
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Chapter 2

Concepts in Liquid-State Theory

2.1 Thermodynamics and structure of fluids

2.1.1 Reminder: Statistical Mechanics

Let Γ = (r1, ..., rN , p1, ...,pN ; N) denote a point in the 6N -dimensional phase space

spanned by the locations ri and momenta pi of all particles, i = 1, ..., N , of a classical

fluid. We also call Γ a ‘configuration’ or ‘microstate’ of the system. The corresponding

Hamiltonian H is given by Eq. (1.2). In classical statistical mechanics the mean or

average value ⟨A⟩ of an observable A(Γ) (e.g., the mean energy E = ⟨H⟩) is calculated
from

⟨A⟩ =
∑
Γ

A(Γ)f(Γ) ≡ trclA(Γ)f(Γ) , (2.1)

where f(Γ) is the phase-space probability, i.e. it gives the probability that a partic-

ular configuration Γ is realized. In Eq. (2.1) we have furthermore introduced the

‘classical’ trace as the summation over all possible configurations Γ inspired by the

notation commonly used in quantum mechanics. For a classical system, the positions

and momenta of the particles are continuous variables, and thus the ‘summation’ over

microstates in Eq. (2.1) generally involves integrations over particle positions and

momenta.

In equilibrium, explicit expressions for the phase-space probability feq can be

obtained from Gibbs principle of maximal entropy where one maximizes the statistical

entropy S demanding specific side conditions (in the canonical ensemble one e.g. de-

mands a constant mean energy E and constant particle number N). The entropy S of

the system is defined as

S = −kB ⟨ln(feq)⟩ = −kB trclfeq ln(feq) . (2.2)

The latter definition stays meaningful even for non-equilibrium configurations, but in

such situations expressions for f are in general unknown.



20 Concepts in Liquid-State Theory

Canonical ensemble. In the canonical (c) ensemble one consider a system at

constant temperature T , particle number N and volume V that can exchange energy

with its environment. In equilibrium, the mean energy E will be a constant, i.e. E =

⟨H⟩ = const. The phase-space probability distribution fc is given by

fc =
exp [−βH]

Z(N,V, T ) , (2.3)

where Z(N,V, T ) is a normalization constant ensuring that trcl fc = 1. It is termed

the (canonical) partition sum and defined as

Z(N,V, T ) = trcl exp[−βH] (2.4)

=
1

h3N N !

∫
V
dr1 · · ·

∫
V
drN

∫
dp1 · · ·

∫
dpN exp[−βH] (2.5)

=
1

λ3Nth N !

∫
V
dr1 · · ·

∫
V
drN exp[−β(U + V )] , (2.6)

where the factor 1/(h3N ) ensures that the partition sum is dimensionless (h has the

dimension of an action) and incorporates Heisenberg’s uncertainty relation between

particle positions and momenta. Furthermore, 1/N ! ensures overcounting of physically

equivalent configurations. Clearly, the (trivial) kinetic degrees of freedoms Tkin in the

Hamiltonian can be integrated out resulting in Eq. (2.6), containing solely contributions

from the interparticle interactions U and external field V . We also see that the classical

trace in the canonical ensemble is given by

trcl ≡
1

h3N N !

∫
V
dr1 · · ·

∫
V
drN

∫
dp1 · · ·

∫
dpN . (2.7)

The free energy F provides the link between the microscopic fluid configurations

and its thermodynamic properties. It is defined as the Legendre transform of the mean

energy E with respect to the entropy S:

F = E − TS , (2.8)

= trcl fc [H + kBT ln(fc)] . (2.9)

If we make use of Eq. (2.3) we obtain from (2.9) the familiar relation

F = −kBT ln(Z) , (2.10)

between the free energy and the canonical partition sum.

Grand-canonical ensemble. The grand-canonical (gc) description is the most

natural ensemble to describe a fluid. Here, the chemical potential µ, temperature T ,

and volume V of the system are prescribed and in addition to the energy, the particle

number N fluctuates around a mean value ⟨N⟩. The equilibrium grand-canonical



2.1 Thermodynamics and structure of fluids 21

phase-space probability fgc for finding N particles in a particular configuration Γ reads:

fgc =
exp [βNµ− βH]

Ξ(µ,V, T ) , (2.11)

where Ξ(µ,V, T ) denotes the grand-canonical partition sum

Ξ(µ,V, T ) = trcl exp [βNµ− βH] (2.12)

=

∞∑
N=0

1

λ3Nth N !

∫
V
dr1 · · ·

∫
V
drN exp [βNµ− β(U + V )] (2.13)

=
∞∑

N=0

eβµNZ(N, V, T ) , (2.14)

where the classical trace now reads

trcl ≡
∞∑

N=0

1

h3N N !

∫
V
dr1 · · ·

∫
V
drN

∫
dp1 · · ·

∫
dpN . (2.15)

In the grand-canonical ensemble, the grand potential Ω provides the link with the

thermodynamics. It is defined as the Legendre transform of the free energy F with

respect to the (mean) particle number ⟨N⟩:

Ω = F − µ⟨N⟩ (2.16)

= E − TS − µ⟨N⟩ (2.17)

= trcl fgc[H − µN + kBT ln(fgc)] , (2.18)

which, if we take into account Eq. (2.11), reduces to the well-known result:

Ω = −kBT ln(Ξ) . (2.19)

Note that, in the thermodynamic limit N →∞, V → ∞, N/V = const., the free energy

obtained in the canonical ensemble from Eq. (2.9) with N = ⟨N⟩ is quasi-equivalent to
that arising in Eqs. (2.16), (2.17) and (2.18) in the grand-canonical ensemble. This is

due to the fact that particle fluctuations around ⟨N⟩ vanish with ∼ 1/
√
N and thus

are negligible in a macroscopic system.

Assume now that the system is homogeneous and isotropic which implies Vext(r) = 0.

Then the mean energy E consists only of intrinsic contributions: E = ⟨Tkin⟩+ ⟨U⟩ and
hence does the free energy. Generally, the internal energy is for uniform fluids given by

the fundamental relation E = TS − pV + µN . Thus for uniform systems the grand

potential Ω reduces to

Ω = −pV , (2.20)

where p is the pressure in the fluid. Recall that the latter and the chemical potential

µ can be obtained from Ω or F via differentiation with respect to their conjugate
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variables:

µ =

(
∂F

∂N

)
V,T

=

(
∂f

∂ρb

)
V,T

, (2.21)

p = −
(
∂F

∂V

)
N,T

= −
(
∂Ω

∂V

)
µ,T

. (2.22)

where we have introduced f ≡ F/V the free energy density. Combining Eqs. (2.20)

and (2.21) we find for the pressure the useful relation:

p = µρb − f . (2.23)

Another quantity that will be of relevance in this work is the isothermal compressibility

χT , which measures the relative change of the fluids’ volume V due to pressure gradients,

i.e.

χT = − 1

V

(
∂V
∂p

)
µ,T

= − 1

V

(
∂p

∂V

)−1

µ,T

. (2.24)

2.1.2 Density distribution functions

One-body density profile ρ(r). We now consider the one-body density distribution

(or density profile) ρ(r) of a fluid in equilibrium described by the grand-canonical

ensemble. Multiplied with an infinitesimal volume element dr, ρ(r) gives the probability

of finding a particle within dr at position r. If the external potential vanishes,

Vext(r) = 0, and if the fluid is in a stable one-phase region, i.e. in a gaseous, liquid or

supercritical phase, then ρ(r) will be constant and equal the bulk density: ρ(r) = ρb.

In general, however, ρ(r) will spatially vary, i.e. ρ(r) ̸= const. and its the precise

form is determined by the particle interactions and external field. If we integrate ρ(r)

over the volume V, we obtain the average particle number in the system:

⟨N⟩ =
∫
V
dr ρ(r) . (2.25)

The density profile ρ(r) can be written as a statistical average of a microscopic density

field operator ρ̂(r) counting particles at location r :

ρ(r) = ⟨ρ̂(r)⟩ =
〈

N∑
i=0

δ(r− ri)

〉
, (2.26)

where averages ⟨·⟩ are taken according to Eqs. (2.1) and (2.11) and δ(·) denotes the
three-dimensional Dirac-delta function.

The density profile ρid(r) of non-interacting ideal particles subject an external

potential can be calculated explicitly from Eqs. (2.26), (2.11), and (2.1):

ρid(r) =
eβµid

λ3th
e−βVext(r) , (2.27)
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If there is no external potential, it follows from Eq. (2.27) that

ρb =
⟨N⟩
V =

eβµid

λ3th
. (2.28)

Since the chemical potential βµid of an ideal gas has to satisfy µid = ∂fid/∂ρb, one can

integrate to obtain the ideal-gas free energy density:

βfid = ρb[ln(ρbλ
3
th)− 1] . (2.29)

Radial distribution function g(r). Let us now consider the conditional probability

of finding a particle at position r, given that there is already another particle at r′.

This provides a quantity termed the two-body density distribution ρ(2)(r, r′) and yields

information about density correlations in the fluid between two positions r and r′.

Similar to the one-body density ρ(r), the two-body density can be defined in terms of

an ensemble average [57]:

ρ(2)(r, r′) =

〈∑
i ̸=j

δ(r− ri)δ(r
′ − rj)

〉
. (2.30)

For non-interacting particles one finds the simple result ρ(2)(r, r′) = ρ(r)ρ(r′) which

expresses that there are no spatial correlations between the particles. For the uniform

ideal gas it follows ρ(2)(r, r′) = ρ2b ·

Consider now an uniform fluid of interacting particles. Isotropy then demands

ρ(2)(r, r′) = ρ(2)(|r − r′|) = ρ(2)(r) ̸= const, i.e. correlations between r and r′ will

depend only on their relative distance r ≡ |r−r′| to each other. The radial distribution

function g(r) is defined as

g(r) =
ρ(2)(r)

ρ2b
, (2.31)

and provides information about the density-density correlations of a homogeneous bulk

fluid relative to an uniform ideal gas. Clearly, we can also introduce a more general

definition g(r, r′) = ρ(2)(r, r′)/ρ(r)ρ(r′).

There is another more helpful and intuitive definition for g(r) which goes back

to Percus [92] and holds for fluids with pairwise additive interactions: consider an

arbitrary chosen test (or reference) particle, and choose the origin of the laboratory

coordinate system to be at the center-of-mass of that test particle. Then the latter

imposes an effective external field to surrounding fluid which is equivalent to the

pair potential, i.e. Vext(r) = φ(r), and the one-body density distribution ρ(r) satisfies

ρ(r) = ρ(r) = ρbg(r). This definition provides considerable insight into what is meant

by the structure of a fluid: it implies that the average number of particles within the

range r and r+dr around the reference (test) particle is 4πr2ρbg(r)dr and peaks in g(r)

correspond to ‘shells’ of neighbors. A typical plot of g(r) for the hard-sphere fluid at

low (η = 0.05, black curve) and high packing fraction (η = 0.4, red curve) is displayed

in Fig. 2.1. The red curve nicely shows the typical short-ranged order characteristic for
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Figure 2.1 Radial distribution function g(r) of the hard-sphere fluid at a packing fraction of
η = 0.4 (red) and 0.05 (black). The figure also illustrates the interpretation of g(r) in Percus’
test particle picture as the one-body density profile ρ(r) = ρbg(r) around an arbitrary test
particle (colored in red).

dense fluids, which is generated by the shells of nearest (green particles) and second

(yellow particles) neighbors, and gives rise to the prominent structural correlation

peaks in g(r). Since the fluid is disordered this information is successively lost at larger

separations, and hence g(r)→ 1 as r →∞. The decay rate to unity defines the true

correlation length ξ.

At this point we also introduce the total pair correlation function h(r), which is defined

as the deviation of g(r) from the ideal gas result, i.e. h(r) = g(r)− 1. Its 3d Fourier

transform

ĥ(k) =

∫
dr e−ik·r h(r) = 4π

∫ ∞

0
dr r2h(r)

sin(kr)

kr
, (2.32)

is accessible in diffraction experiments (typically neutron or x-ray scattering for atomic

fluids or light scattering in the case of larger colloidal particles), where the static

structure factor S(k) can be measured:

S(k) = 1 + ρbĥ(k) . (2.33)

In colloidal suspensions, experimental advances allows one also to measure g(r) directly

via individual particle tracking techniques, see, e.g., Ref. 18.

2.1.3 The role of computer simulations in liquid-state theory

The general dilemma in statistical physics for a given Hamiltonian is that partition

sums and ensemble averages cannot be evaluated exactly for a given thermodynamic
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state point (i.e. given temperature T , volume V , et cetera). Only in limited cases such

as for the ideal gas or one-dimensional hard-rods are exact expressions available [93, 94].

However, thermodynamic and structural properties can be extracted numerically from

particle-based computer simulations. A simulation treats the locations (and momenta)

of N particles and their interactions explicitly within a finite simulation volume

V. Challenges arising in real experiments, including the precise control of particle

interactions or of environmental conditions, typically are not present in a simulation.

But other pitfalls can arise. First, even with nowadays computing power, the

number of particles N in a simulation is significantly restricted by practicality as

the time taken for a double loop scales with N2 (for instance to evaluate the total

instantaneous intrinsic energy from the pair potential). One therefore studies systems

typically consisting of a few hundred up to several thousands of particles. This gives rise

to a second point one has to care about. In order to avoid surface effects in a relatively

small system, periodic boundary conditions are introduced i.e. when a particle leaves

the simulation box, it reenters on the opposite side. For sufficiently short-ranged

(i.e. quickly decaying) particle interactions, it is possible to obtain reliable results using

a cubic box with side length L ≈ 6σ [95] (which applies to hard-sphere or Lennard-

Jones fluids). However, longer-ranged pair interactions may require significantly larger

simulation volumes, and if the pair potential decays as a power law, φ(r) ∼ r−l, where l

is smaller than the dimensionality of the system, sophisticated techniques are required

[95]. Moreover, one also has to stay sufficiently far away from critical points, where

density fluctuations can become macroscopic, which implies that critical phenomena

are difficult to assess in a simulation. Nevertheless, the common experience is that

structural and thermodynamic quantities of simple fluids with quickly decaying pair

potentials, and away from the critical point, are only slightly affected by applying

periodic boundary conditions. As such are simulations a very important cornerstones

in liquid-state physics and soft-matter science.

The main drawback of a simulation is, however, that explicit expressions (i.e. for-

mula) for structural or thermodynamic properties, and their mutual dependencies, are

difficult to assess from simulations. But this clearly is necessary to gain broad insight

into what physics drives the behavior of a fluid. Here, approximative and perturbation

theories are indispensable.

Molecular and Brownian dynamics simulations. In a molecular dynamics sim-

ulation, one explicitly solves Newton’s equations for an atomic system, whereas in a

Brownian dynamics simulation Langevin’s equation are solved for particles that are

subject to Brownian motion. Observable means can then be obtained by computing

time-averages:

⟨A⟩ = ⟨A(Γ(t))⟩time = lim
t→∞

1

t

∫ t

0
dt′ A(Γ(t′)) ≈ 1

νt

νt∑
i=0

A(Γ(i∆t)) , (2.34)
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where t = νt∆t and νt ∈ N. In this thesis, we will not make use of molecular or

Brownian dynamics simulations.

Monte-Carlo simulations. Consider for simplicity a canonical ensemble, where

the particle number N is fixed. It follows from Eqs. (2.1) and (2.3), that averages of

momentum-independent observables can be obtained from

⟨A⟩ =
∫
V dr1 · · ·

∫
V drN A(r1, ..., rN ) exp[−β(U + V )]∫

V dr1 · · ·
∫
V drN exp[−β(U + V )]

(2.35)

≡
∫
V
dr1 · · ·

∫
V
drN A(r1, ..., rN )P (r1, ..., rN ) (2.36)

where the reduced phase-space probability density P (r1, ..., rN ) is defined as

P (r1, ..., rN ) =
exp[−β(U + V )]∫

V dr1 · · ·
∫
V drN exp[−β(U + V )]

. (2.37)

The remaining integrals may be approximated by employing stochastic (Monte-Carlo)

integration schemes along with a technique called ‘importance sampling’, introduced by

Metropolis in 1953: If we were able to generate a random sequence of positional configu-

rations
{
{r11, ..., r1N}, ..., {rK1 , ..., rKN}

}
distributed according to the reduced probability

distribution P (r1, ..., rN ), then Eq. (2.35) might be approximated by

⟨A⟩ ≈ 1

K

K∑
j=1

Aj , (2.38)

where Aj ≡ A(rj1, ..., rjN ), which would become exact for K → ∞. But how to

generate such a set of configurations? This is the key challenge in a Monte-Carlo (MC)

simulation. The most common scheme is the Metropolis algorithm [96], which, among

other schemes employed in this thesis, is described in Appendix B, where we also give

details regarding e.g. the calculation of the radial distribution function g(r). A great

benefit of MC techniques is that hard-core interactions can be treated exactly, whereas

they have to be approximated in MD simulations (in order to ensure that the particle

accelerations and velocities are smooth quantities).

2.1.4 Approximate theories for bulk properties of simple fluids

The total correlation function h(r) of an uniform bulk fluids which was introduced

at the end of Sec. 2.1.2 may be split into a part which stems from direct interactions

between any two particles, and the rest. This is encoded within the Ornstein-Zernike

(OZ) relation [57]

h(r) = c(r) + ρb

∫
dr′ h(r′)c(|r− r′|) , (2.39)

where c(r) is the so-called bulk pair direct correlation function. The latter is less

structured than h(r) and its range is similar to that of the pair potential. Note also
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Figure 2.2 The bulk pair direct correlation function c(r) of the square-well fluid with well-
widths δ = 0.15, 0.25 and 0.5, from left to right (in units of σ). The data was obtained from
simulation results for g(r) and the Ornstein-Zernike relation (2.39) for several packing fractions
η = 0.1 − 0.3. For all cases the temperature is set to T/Tc = 1.23 where Tc is the critical
temperature.

that the OZ relation is an exact one; it shifts the focus from h(r) towards c(r), so

without further information it is not too helpful for gaining theoretical insights into

the structure and correlations of an uniform fluid.

Away from critical points, c(r) decays as the pair potential [57]:

c(r) = −βφ(r) , r →∞ . (2.40)

Furthermore, it can be shown [57] that c(r) obeys the exact low-density expansion

c(r) = f(r) + ρbf(r)

∫
dr′ f(|r− r′|)f(|r′|) + ... . (2.41)

where f(r) = e−βφ(r) − 1 is the Mayer-f function. Note that the asymptotic result

(2.40) is included in Eq. (2.41) as for r →∞ the pair potential is weak, so that we can

expand: f(r) ≈ −βφ(r).
For simple fluids with a harshly repulsive core and a quickly decaying attractive tail

in the pair potential, c(r) is [57] negative for r < σ arising from repulsive packing effects,

and has a positive contribution for r > σ where the pair potential is attractive. In

Fig. 2.2 the typical behavior of c(r) is shown1 for the square-well fluid for different well-

widths (in units of σ; see Eq. (1.8)) δ = 0.15 (a), 0.25 (b) and 0.5 (c) of the attraction and

several packing fractions η = 0.1 – 0.3 at fixed supercritical temperatures T/Tc = 1.23

where Tc is the critical temperature. We observe that the negative contribution for

1The curves in Fig. 2.2 were obtained from MC simulations. In order to extract c(r) from the
latter, the OZ equation was solved numerically in Fourier space using the simulated h(r) as an input.
We simulated 10 000 particles for each shown state point with the standard Metropolis algorithm (see
App. B) in order to obtain an accurate h(r) out to separations of r ≈ 15σ in order to minimize the
cut-off error during the subsequent numerical Fourier transformation.
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r < σ associated with repulsive packing effects becomes more negative with increasing

density, while the attractive tail is not very sensitive to the packing fraction suggesting

that the asymptotic result (2.40) remains rather accurate down to the hard core r = σ.

Quantitative knowledge of a closure relation between h(r) and c(r), or a second

independent access to one of the latter, would provide us the possibility to calculate

the one from the other via the OZ relation (2.39). In particular, knowledge of h(r) or

c(r) would provide one insight into thermodynamic properties of the fluid, which is

precisely why these are key quantities in equilibrium liquid-state theory. For example,

the isothermal compressibility χT is related exactly [57] to the volume integral over

h(r):

ρbkBTχT = 1 + 4πρb

∫ ∞

0
dr r2h(r) = 1 + ρbĥ(0) = S(0) , (2.42)

or, alternatively, using the OZ relation (2.39) in Fourier space, we find

ρbkBTχT =
1

1− ρbĉ(0)
. (2.43)

The results for χT could then be integrated via Eq. (2.24) to find the fluid pressure p,

which may eventually be integrated to yield the free energy F (recall that p = ∂F/∂V).
For the sake of completeness, in what follows we provide a brief overview on the

most important approximations to c(r) and the corresponding free energies. However,

we shall see in Sec. 2.2 that DFT provides a more general and powerful access to

approximative expressions for c(r).

van der Waals fluid. Consider the lowest order of the density expansion (2.41) for

the pair direct correlation function, i.e. c(r) = f(r). This is the simplest approximation

to c(r). Integrating twice yields the equation of state

βp

ρb
= 1 +B2ρb , (2.44)

where B2 = −2π
∫∞
0 dr r2f(r) is the so-called second virial coefficient. If the pair

potential can be decomposed in to a hard-sphere reference plus an attractive tail,

φ = φHS + φatt, we obtain in the limit of high temperatures (i.e., |φatt(r)| ≪ kBT ) the

van der Waals equation of state

βpvdW
ρb

= 1 + 4η + 2πρb

∫ ∞

σ
dr r2βφatt(r) . (2.45)

This is the crudest model for a fluid that exhibits phase-separation into gaseous and

liquid phases.

Percus-Yevick approximation. The Percus-Yevick (PY) approximation [97] pro-

vides an additional more complex relation between c(r) and g(r) in terms of the pair
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potential φ(r) and reads:

c(r) ≈ (1− exp[βφ(r)]) g(r) . (2.46)

Equation (2.46) is in particular consistent with the asymptotic behavior of c(r) (2.40)

as g(r) ≈ 1 and eβφ(r) ≈ 1 + βφ(r) for r →∞. It is also consistent with the leading

order of the low density expansion (2.41) since g(r) ≈ e−βφ(r) for ρb → 0. Importantly,

the PY approximation has an exact analytical solution for hard spheres [98]. It is given

by (cHS,PY(r) = 0 for r ≥ σ):

cHS,PY(r) = −λ1 − 6ηλ2

( r
σ

)
− 1

2
ηλ1

( r
σ

)3
, r < σ , (2.47)

where

λ1 =
(1 + 2η)2

(1− η)4 , λ2 = −
(2 + η)2

4(1− η)4 . (2.48)

The pressure is given by the expression

βpHS,PY

ρb
=

1 + η + η2

(1− η)3 , (2.49)

and is in good accordance with computer simulations up to the fluid-solid transition.

The corresponding excess (over ideal) free energy density reads

βfHS,PY
ex = βf − βfid = ρb

[
3η(2− η)
2(1− η)2 − ln(1− η)

]
. (2.50)

Random phase approximation. In general, the PY approximation can be solved

only numerically and so analytic expressions for e.g. the isothermal compressibility or

the pressure cannot be obtained via this route. But we can obtain a simple analytic

form for c(r) for arbitrary attractive interactions since we know the asymptotic behavior

of c(r) for r →∞, see Eq. (2.40). For φ = φHS + φatt it follows

c(r) ∼ −βφatt(r) . (2.51)

Hence, we may simply assume that

c(r) = cHS(r)− βφatt(r) , (2.52)

where cHS(r) may be given by the PY solution (2.47) for hard spheres, but any other

approximate expression might be used. Equation (2.52) is known as random-phase ap-

proximation (RPA) and is fairly accurate for longer-ranged attractions (cf., e.g., Fig. 2.4).

The resulting excess free energy density has the form of a generalized van der Waals

model

βfex = βfHS
ex +

4π

2
ρ2b

∫ ∞

σ
dr r2βφatt(r) . (2.53)

There is another way to derive Eq. (2.52). The Mayer-f function of the full pair
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potential can be decomposed into

f(r) = fHS(r) + e−βφHS(r)fatt(r) , (2.54)

where fHS(r) and fatt(r) are the Mayer-f functions of the hard-sphere and attractive

part of the pair potential, respectively. We now may neglect all terms in the expansion

(2.41) for c(r) of order ρb or higher that contain fatt(r), but keep higher-order terms

that include fHS(r). If φatt(r) is sufficiently weak so that e−βφatt(r) ≈ 1− βφatt(r) we
arrive at Eq. (2.52). As such, the RPA can also be interpreted as the leading-order

correction of a perturbation expansion for simple fluids where the hard-sphere fluid

acts as a reference.

Corrected RPA. The RPA is in qualitative accordance with simulations regarding

the phase behavior for e.g. square-well fluids. However, it significantly underestimates

for instance critical temperatures in comparison to simulations. This can empirically

be corrected by extending the attractive portion of the pair potential βφatt(r) down to

the core. The free energy in the corrected version of RPA is then given by

βfex = βfHS
ex +

4π

2
ρ2b

∫ ∞

0
dr r2βφatt(r) , (2.55)

where a common choice for r < σ is φatt(r) = φatt(σ).

Carnahan-Starling equation of state. In the latter examples, thermodynamic

quantities are determined based on approximations for microscopic correlation functions

of the uniform bulk fluid. There are also ways to determine macroscopic properties

directly. Of course, having only a thermodynamic relation at hand we cannot deduce

a corresponding microscopic quantity such as c(r) or h(r). The Carnahan and Starling

(CS) equation of state for hard spheres is a well-known example. It is given by [99]

βpHS,CS

ρb
=

1 + η + η2 − η3
(1− η)3 . (2.56)

Equation (2.56) is more accurate (in comparison to results from computer simulations)

than the PY compressibility equation of state (2.49). The corresponding excess free

energy density reads

βfHS,CS
ex = ρb

η(4− 3η)

(1− η)2 . (2.57)

2.2 Classical density functional theory (DFT)

So far we have not introduced theoretical methods (apart from simulations) that tell

us how e.g. the equilibrium density profile ρ(r) depends on a given external potential

Vext(r). All that we know is that ρ(r) will not be a constant, since external forces will

break the translational invariance of the system. However, spatially varying density

profiles can also occur in systems that are not subject to any external forces – think of
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a coexisting gas-liquid interface at state points located on the binodal, or of fluid-solid

interfaces where the solid phase may be viewed as a strongly spatially localized liquid.

The most appropriate theoretical framework for these kinds of questions is classical

density functional theory (DFT) [16] introduced by R. Evans in 1979. Its key strength

is that it accounts for the structure and thermodynamics of an inhomogeneous fluid,

subject to an arbitrary external potential Vext(r), on equal footing.

We consider the intrinsic free energy F of the fluid, defined by2

F [fgc] = trcl fgc [Tkin + U + kBT ln(fgc)] (2.58)

= trcl fgc [Tkin + kBT ln(fgc)] + trcl fgc [U ] (2.59)

≡ Fid[fgc] + Fex[fgc] , (2.60)

which we have split into the ideal-gas free energy Fid and the excess (over ideal)

contribution Fex. The key idea of DFT is that F [fgc], which is a functional of the

equilibrium phase-space probability density fgc, is also an unique functional of the

equilibrium density profile ρ(r): F = F [ρ(r)]. This follows from the fact [16] that the

external potential Vext(r) is uniquely determined by a given one-body density ρ(r),

i.e. two distinct external fields V ′
ext ̸= Vext cannot give rise to the same equilibrium

density profile ρ(r). Note that the opposite is not necessarily true – there might exist

different density profiles subject to the same external field e.g. at phase coexistence.

As a result we have that the external potential can be written as a unique functional

of the density: Vext = Vext[ρ(r)].

It directly follows from the definition of fgc, Eq. (2.11), that we can view fgc as a

functional of Vext(r), i.e. fgc = fgc[Vext(r)]. In turn, this implies fgc = fgc[ρ(r)] and

hence it follows from Eq. (2.60) that F = F [ρ(r)]. With the same arguments one can

show that the grand potential Ω is a unique functional of the density ρ(r):

Ω[fgc] = trcl fgc[H − µN + kBT ln(fgc)]

= F [ρ(r)] + trcl fgc[V − µN ]

= F [ρ(r)] +
∫

dr ρ(r)(Vext(r)− µ) (2.61)

≡ Ω[ρ(r)] , (2.62)

In particular, the equilibrium density ρ(r) minimizes the grand-potential functional,

i.e. any other density distribution ρ̃(r) which is not the equilibrium one, ρ̃(r) ̸= ρ(r),

leads to a number that is larger than the grand potential: Ω̃ = Ω[ρ̃] > Ω[ρ] = Ω. This

may be summarized in the important result:

0 =
δΩ[ρ̃]

δρ̃(r)

∣∣∣∣
ρ̃=ρ

=
δF [ρ̃]
δρ̃(r)

∣∣∣∣
ρ̃=ρ

+ Vext(r)− µ . (2.63)

2Recall that the Hamiltonian is written as H = Tkin + U + V , where Tkin = 1/(2m)
∑

i |pi|2,
U =

∑
i<j φ(ri, rj) and V =

∑
i Vext(ri)
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The splitting of the intrinsic Helmholtz free-energy in Eq. (2.60) into ideal and excess

contributions naturally translates to F [ρ] = Fid[ρ] + Fex[ρ], where the ideal-gas free

energy functional is known exactly:

βFid[ρ] =

∫
dr ρ(r)

[
ln
(
ρ(r)λ3th

)
− 1
]
. (2.64)

The excess free energy functional Fex[ρ] contains all information about the particle

interactions. The total free energy F of the system is given by

F = F [ρ(r)] +
∫

dr ρ(r)Vext(r) . (2.65)

Equation (2.63) yields an implicit equation for the density profile ρ(r)

ρ(r) = ρb exp
(
−βVext(r) + c(1)(r) + βµex

)
, (2.66)

where the chemical potential µ = µid + µex was also split into ideal-gas and excess

contributions. The quantity c(1)(r) is the so-called one-body direct correlation function

and defined as

c(1)(r) := −δβFex[ρ]

δρ(r)
, (2.67)

and therefore is the (negative) excess part of the local chemical potential

βµ(r) =
δβF [ρ]
δρ(r)

= ln
[
λ3thρ(r)

]
− c(1)(r) . (2.68)

More generally, the n-body direct correlation functions are defined as

c(n)(r1, ..., rn) := −
δnβFex[ρ]

δρ(r1) · · · δρ(rn)
. (2.69)

In particular, it can be shown [16] that the second member of the hierarchy, c(2)(r1, r2),

in uniform systems equals the bulk pair direct correlation function c(r) introduced

previously in Eq. (2.39):

c(r) = c(2)(|r− r′|) = − δ2Fex[ρ]

δ(r)δ(r′)

∣∣∣∣
ρb

. (2.70)

However, in general, the excess free energy functional Fex[ρ] is not known exactly,

as this would be equivalent to having access to the exact partition sum of the system.

Knowledge of (an exact or approximate) excess free energy functional Fex[ρ] would

map the equilibrium statistical mechanics of inhomogeneous fluids to a problem of

functional minimization rather than a cumbersome numerical evaluation of the grand

partition sum Ξ or sampling configurations according to a phase-space probability

distribution. The key task in DFT is therefore to construct reliable approximations for

Fex[ρ] for a given model Hamiltonian, which poses a non-trivial challenge. The typical

route for determining Fex[ρ] for fluids that interact via a harshly repulsive core and a
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longer-ranged tail is as follows: the two-body density ρ(2)(r, r′) can be obtained [16]

from taking the functional derivatives of the excess free energy functional w.r.t. the

pair potential φ(r, r′), i.e.

ρ(2)(r, r′) = 2
δβFex[ρ]

δφ(r, r′)
. (2.71)

If we now split the pair potential into a reference part φ0(r, r
′) and a perturbation

φper(r, r
′) we may define a family of intermediate pair potentials:

φα(r, r
′) = φ0(r, r

′) + αφper(r, r
′) , 0 ≤ α ≤ 1 . (2.72)

Increasing the parameter α smoothly from 0 to 1 would correspond to turning on the

perturbation. Functional integration of (2.71) at constant density profile ρ(r) then

yields [16]

Fex[ρ]−F0
ex[ρ] =

1

2

∫ 1

0
dα

∫∫
dr dr′ ρ(2)(r, r′ ; α)φper(r, r

′)

=
1

2

∫ 1

0
dα

∫∫
dr dr′ ρ(r)g(2)(r, r′ ; α)ρ(r′)φper(r, r

′) , (2.73)

where F0
ex[ρ] is the free energy functional of the reference fluid, and in the sec-

ond equation we used the general form of the pair correlation function g(2)(r, r′) =

ρ(2)(r, r′)/(ρ(r)ρ(r′)). In order to make progress one may expand g(2)(r, r′, α) about

α = 0:

g(2)(r, r′ α ) = g
(2)
0 (r, r′) + α

∂g(2)(r, r′ α )

∂α

∣∣∣∣∣
α=0

+ ... (2.74)

Truncation at lowest order gives rise to

Fex[ρ] = F0
ex[ρ] +

1

2

∫∫
dr dr′ ρ(r)g

(2)
0 (r, r′)ρ(r′)φper(r, r

′) . (2.75)

For spherically-symmetric pair interactions, this result reduces to

Fex[ρ] = F0
ex[ρ] +

1

2

∫∫
dr dr′ ρ(r)ρ(r′)g0(|r− r′|)φper(|r− r′|) , (2.76)

where g0(r) is the radial distribution function of the reference fluid. The crudest

approximation is to assume g0(r) ≈ 1 in the range where the perturbation acts. We

then obtain the generalization of Eq. (2.53) towards inhomogeneous fluids:

Fex[ρ]−F0
ex[ρ] =

1

2

∫∫
dr dr′ ρ(r)ρ(r′)φper(|r− r′|) . (2.77)

By taking two functional derivatives and evaluating the result at constant bulk density,

we obtain the random phase approximation (2.52) for c(r).

If φper(r) describes an attractive tail, φper(r) = φatt(r), one may correct the right-

hand side of Eq. (2.76) by means of extending φatt(r) down to the core, where are

common choice for r ≤ σ is φatt(r) = φatt(σ). This empirically compensates an
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underestimation of correlations due to omitting g0(r) of the reference fluid, and leads to

the corrected RPA discussed in Sec. 2.1.4. Moreover, Eq. (2.77) constitutes a mean-field

(MF) approximation for the non-hard-core interactions, as we can easily rewrite

Fex[ρ]−F0
ex[ρ] =

1

2

∫∫
dr dr′ ρ(r)ρ(r′)φper(|r− r′|) (2.78)

=

∫
dr ρ(r)ζ(r) , (2.79)

where ζ(r) may be viewed as a background field generated by all other particles

ζ(r) =
1

2

∫
dr′ ρ(r′)φper(|r− r′|) . (2.80)

However, Eq. (2.77) is not very helpful without knowledge of approximations for the

free-energy functional F0
ex[ρ] of the reference system. The latter is often assumed to be

the hard-sphere fluid, and hence deriving accurate excess free energy functionals for

the latter is crucial.

2.3 Density functionals for the hard-sphere fluid

A crude way of constructing an excess free energy functional is to assume that bulk

equations for the free energy hold also in inhomogeneous situations. This is referred

to as local density approximation (LDA). In fact, the second term of Eq. (2.77)

may e.g. be viewed as a local density approximation for the non-hard-sphere part in

Eq. (2.55). For hard spheres, one may assume that the Carnahan-Starling free energy,

Eq. (2.57), holds also for the inhomogeneous fluid, i.e.

βFHS
ex [ρ] =

∫
dr ρ(r)

η(r)(4− 3η(r))

(1− η(r))2 , (2.81)

with η(r) = πρ(r)σ3/6. However, it turns out that Eq. (2.81) is reliable only for slowly

varying density profiles and furthermore is not consistent with the exact low-density

expansion of c(r) (2.41).

A possible alternative is to expand Fex[ρ] about the homogeneous state ρ(r) = ρb:

Fex[ρ] = Fex[ρb] +

∫
dr

δFex[ρ]

δρ(r)

∣∣∣∣
ρb

∆ρ(r)

+
1

2

∫∫
dr dr′

δ2Fex[ρ]

δ(r)δ(r′)

∣∣∣∣
ρb

∆ρ(r)∆ρ(r′) + ..., (2.82)

where ∆ρ(r) = ρ(r)− ρb. Taking together Eqs. (2.70) and (2.82) we obtain

Fex[ρ] ≈ Fex[ρb] + µex

∫
dr∆ρ(r)− 1

2

∫∫
dr dr′ c(|r− r′|)∆ρ(r)∆ρ(r′) , (2.83)

where µex = ∂Fex[ρb]/∂N . Equation (2.83) is known as the Ramakrishnan-Yussouff
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approximation [100]. Making use of e.g. the PY solution to c(r) for hard spheres

as an input to Eq. (2.82) yields a functional that provides a decent description of

structural properties of the hard-sphere fluid over a wide range of densities as compared

to simulations [100, 101]. Remarkably, it is also capable of predicting the freezing

transition.

However, to date, the most reliable density functionals for hard spheres are based

on so-called weighted density approximations (WDA). We will discuss two types in the

subsequent Secs. 2.3.1 and 2.3.2: first, the formalism of Tarazona, typically just termed

‘WDA functionals’ and then Rosenfeld’s successful fundamental measure theory.

2.3.1 Tarazona’s weighted density approach

From Eqs. (2.41) and (2.70) it follows an exact expansion of the excess free energy

functional in terms of Mayer-f functions:

βFex[ρ] = −
1

2

∫∫
dr1 dr2 ρ(r1)ρ(r2)f(r12)

− 1

6

∫∫∫
dr1 dr2 dr3 ρ(r1)ρ(r2)ρ(r3)f(r12)f(r23)f(r31) + ... , (2.84)

which is a very useful starting point to construct functionals that are valid at higher

particle densities. As mentioned above, the LDA functional for hard spheres, Eq. (2.81),

does not satisfy this low-density limit (2.84). In a first paper [102], Tarazona showed

that a functional can be constructed which satisfies the leading term of the expansion

(2.84) by introducing the following weighted density ρ̄(r):

ρ̄(r) = −1

8

∫
dr′ ρ(r′)f(r) , (2.85)

which replaces η(r) in Eq. (2.81). However, the resulting density profiles at e.g. a

planar hard wall were still rather poor at high fluid densities in comparison to computer

simulations [103].

In a following work [104] Tarazona augmented the above idea to construct a

functional for hard spheres which satisfies Eq. (2.84) up to second order and proposed

a generic form for the excess free energy functional:

βFex[ρ] =

∫
dr ρ(r)βΨ(ρ̄(r)) , (2.86)

where Ψ(ρ̄(r)) is the bulk excess free energy per particle evaluated3 at ρ̄(r). The

weighted density ρ̄(r) is written more generally as a convolution of the bare density

ρ(r) with a (density-dependent) weight function ω:

ρ̄(r) =

∫
dr′ρ(r′)ω(|r− r′| , ρ̃(r)) . (2.87)

3For the Carnahan-Starling expression (2.57) this for instance means
βΨ(ρ̄(r)) = η̄(r)(4− 3η̄(r))/(1− η̄(r))2 with η̄(r) = πσ3ρ̄(r)/6.
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In bulk one has the constraint that ρ̄(r) = ρ̃(r) = ρ(r) = ρb and hence ω(r, ρ) has to

satisfy ∫
drω(r, ρ) = 1 . (2.88)

The resulting bulk pair direct correlation c(r) has then the generic form [104]

c(r) =− 2βΨ′(ρb)ω(r, ρb)− ρbβΨ′′(ρb) (ω ∗ ω)(r, ρb)
− 2βρbΨ

′(ρb) (ω ∗ ω′)(r, ρb) , (2.89)

where primes in Eq. (2.89) denote differentiation with respect to the density and ∗
denotes a three-dimensional convolution of the weight functions. In order to specify

the yet unknown weight function ω, Tarazona expanded in powers of the density:

ω(r, ρ) = ω0(r) + ρω1(r) + ρ2ω2(r) + ... , (2.90)

leading to the relation

ρ̄(r) = ρ0(r) + ρ̃(r)ρ1(r) + [ρ̃(r)]2ρ2(r) + ... , (2.91)

where

ρi(r) ≡
∫

dr′ ρ(r′)ωi(|r− r′|) , with i = 0 , 1 , 2 , ... . (2.92)

This expansion may be plugged into Eq. (2.89) and a comparison of coefficients with

the low-density expansion Eq. (2.41) of c(r) yields exact relations for ω0(r) and ω1(r).

For example ω0(r) is given by

ω0(r) =
3

4πσ3
Θ(σ − r) . (2.93)

In order to obtain a density functional which is valid at higher particle densities,

Tarazona truncated the expansion (2.90) at second order and determined ω2(r) by

fitting the generated c(r) to the PY solution (2.47).

Note that in Tarazona’s original work ρ̃(r) = ρ̄(r) and thus Eq. (2.91) yields a

quadratic equation for ρ̄(r) when truncated at second order in the density. Kim et al.

[105] alternatively suggested that the weighted densities ρ̃(r) may be obtained by the

global average

ρ̃(r) =

∫
dr′ρ(r′)ω(|r− r′|, ρb) , (2.94)

which guarantees that the resulting bulk pair direct correlation function The form of

Kim et al. produces nearly indistinguishable results [105] compared to the original WDA

by Tarazona, but is computationally less intensive as it only requires the calculation

of additional convolutions. Both theories produce density profiles that are in very

good agreement with results from computer simulations up to high particle densities

[103, 105] (see also Fig. 2.3).
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2.3.2 Fundamental measure theory (FMT)

While Tarazona’s WDA for hard spheres has proven to yield reliable predictions even

at high fluid densities, the most accurate density functionals for hard spheres are based

on Rosenfeld’s fundamental measure theory (FMT) [17, 70]. Besides the gratifying

observation that it performs even better at very high fluid packing fractions compared

to simulations, a cornerstone is posed by the fact that it generates the PY bulk pair

direct correlation function as an output without using it as an input. Moreover, the

theory is constructed for hard-sphere mixtures. In what follows we will outline the

basics of FMT, but we will not discuss every detail; we refer the further interested

reader to the excellent review of Roth [70].

At the center of FMT is the observation that the Mayer-f function fij(r) =

−Θ(Ri + Rj − r) for a pair of spheres with radii Ri and Rj , where Θ(·) is the

Heaviside step function, can be decomposed into convolutions of weight functions ωi
ν(r)

characterizing the geometry of the particles. As a result, the exact low-density free

energy functional, generalized to a ℓ-component mixture, can be written as

βFHS
ex [ρ] =

1

2

ℓ∑
i, j=1

∫∫
dr dr′ ρi(r)ρj(r

′)Θ(Ri +Rj − |r− r′|)

=

∫
dr {n0(r)n3(r) + n1(r)n2(r)− n1(r) · n2(r)} , (2.95)

where the nν(r) are weighted densities defined as

nν(r) =
ℓ∑

i=1

∫
dr′ ρi(r

′)ωi
ν(r− r′) . (2.96)

For instance, n3(r) is the total local packing fraction given by

n3(r) =
ℓ∑

i=1

∫
dr′ ρi(r

′)Θ(Ri − |r− r′|) , (2.97)

which reduces to the total packing fraction η = π/6
∑ℓ

i=1 ρb,iR
3
i in the uniform fluid.

All together, the weight functions of species i are:

ωi
3(r) = Θ(Ri − |r|) , ωi

2(r) = δ(Ri − |r|) , (2.98)

ωi
1(r) =

ωi
2(r)

4πRi
, ωi

0(r) =
ωi
2(r)

4πR2
i

, (2.99)

ω⃗i
2(r) =

r

r
ωi
2(r) , ω⃗i

1(r) =
ω⃗i
2(r)

4πRi
. (2.100)

In order to derive an excess free energy functional at larger densities, Rosenfeld

employed the ansatz:

βFHS
ex [{ρi}] =

∫
dr Φ({nν(r)}) , (2.101)
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which is motivated by the exact result for one-dimensional hard-rod mixtures [94].

Equation (2.101) yields the following form for the direct correlation function c
(1)
i (r) of

species i:

c
(1)
i (r) = −

∑
ν

∫
dr′

∂Φ({nγ(r′)})
∂nν

δnν(r
′)

δρi(r)
(2.102)

= −
∑
ν

∫
dr′

∂Φ({nγ(r′)})
∂nν

ωi
ν(r

′ − r) . (2.103)

Rosenfeld FMT. In order to determine the function Φ, Rosenfeld used dimensional

analysis, the condition that Eq. (2.101) has to recover the low-density expansion

Eq. (2.84), and an exact relation from scaled-particle theory, which reads

lim
Ri→∞

βµiex
4π
3 R

3
i

= βp , (2.104)

relating the work of reversibly introducing a large sphere into the fluid (i.e. the excess

chemical potential µiex of species i) to the bulk pressure p. The final result obtained by

Rosenfeld reads

ΦRF({niν}) = −n0 ln(1− n3) +
n1n2 − n1 · n2

1− n3
+
n32 − 3n2n2 · n2

24π(1− n3)2
(2.105)

≡ Φ1 +Φ2 +Φ3 . (2.106)

Remarkably, the bulk pair correlation function generated by this functional is identical

to the exact solution of the Percus-Yevick approximation for hard-sphere mixtures

[106], i.e.

cFMT,RF

ij (r) = −
∑
ν,ν′

∂2Φ({nγ})
∂nν ∂nν′

∣∣∣∣∣∣
ρb

(±ωi
ν ∗ ωj

ν′)(r) (2.107)

= cHS,PY

ij (r) , (2.108)

where the negative sign in Eq. (2.108) holds for the vector-type weight functions.

While being very successful in describing many aspects of the inhomogeneous hard-

sphere fluid, it turned out that Rosenfeld’s free energy density in its original form

is not able to describe a hard-sphere crystal [17, 107]. A negative divergence occurs

in the final term Φ3 for strongly peaked density profiles. In order to regularize Φ3,

Rosenfeld et al. suggested to modify the term Φ3 as follows [108, 109]:

Φ̃3 =
1

24π(1− n3)2
(
n2 −

n2 · n2

n2

)3

, (2.109)

which is referred to as the ‘q3 correction’ . An alternative approach that regularizes Φ3

was given by Tarazona who introduced an additional tensorial (t) weight function, and
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thus a tensorial weighted density [110]. These are given by

ωi
t(r) =

(
r⊗ r

r2
− 1

3
1

)
ωi
2(r) , (2.110)

and

nt(r) =
ℓ∑

i=1

∫
dr′ ρi(r

′)ωi
t(r− r′). (2.111)

Here 1 denotes the 3× 3 unity matrix and r⊗ r represents the dyadic product of two

vectors. Φ3 is replaced by a new term Φt
3 containing nt:

Φt
3 = Φ3 +

9
2

(
n2ntn2 − Tr

(
n3t
))

24π(1− n3)2
, (2.112)

where Tr(·) denotes the trace of a matrix. Both the q3 correction and the tensorial

modification lead to functionals that give decent descriptions of the hard-sphere crystal,

while leaving the already excellent properties of the functional regarding the descriptions

of the fluid phase virtually unaffected.

White-Bear versions of FMT. It is possible to use the more accurate Mansoori-

Carnahan-Starling-Leland (MCSL) equation of state [111], which is a ℓ-component

generalization of the CS equation of state (cf. last paragraph of Sec. 2.1.4), as an

input to derive a new excess free energy density ΦWB - the White Bear (WB) version

of FMT [112]. The WB functional performs better in describing density profiles of

hard sphere mixtures, especially at high bulk densities close to freezing transition.

However, it is found that the WB functional does not recover Eq. (2.104), meaning

that the partial derivative of ΦWB with respect to n3 does not give rise to the equation

of state originally used for the derivation of ΦWB. Obviously, this inconsistency with

scaled-particle theory has to be expected because, as discussed above, using Eq. (2.104)

in order to determine Φ precisely leads one to the less accurate PY equation of state.

In order to minimize this inconsistency, a new generalization of the Carnahan-Starling

equation of state has been put forward [113]. Based on this new equation of state it is

possible to derive the following functional [114]:

ΦWB2 = −n0 ln(1− n3) + (n1n2 − n1 · n2)
1 + 1

3φ2(n3)

1− n3

+
(
n32 − 3n2n2 · n2

) 1− 1
3φ3(n3)

24π(1− n3)2
, (2.113)

in which the functions φ2 and φ3 are given by

φ2(n3) =
1

n3

(
2n3 − n23 + 2(1− n3) ln(1− n3)

)
,

φ3(n3) =
1

n23

(
2n3 − 3n23 + 2n33 + 2(1− n3)2 ln(1− n3)

)
. (2.114)
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Figure 2.3 Radial distribution function g(r) = ρ(r)/ρb of the hard-sphere fluid as obtained
from minimizing the grand-potential functional Ω[ρ] in presence of a test particle: WDA
functional (dashed line); FMT WB2 functional (solid line); MC simulations (symbols). The
packing fractions are η = 0.31 (a) and 0.42 (b). The inset (c) shows a magnification of (b)
highlighting slight differences between WDA and FMT.

This functional, the White Bear version Mark 2 (WB2), is consistent with the scaled-

particle relation, i.e. βpCS = ∂Φ/∂n3 in the case of the one-component fluid. Since

the derivations of the White Bear versions of FMT start from the same ansatz as

Rosenfeld’s FMT (mainly they differ in the choice of the equation of state) it is obvious

that they face the same problems when describing a hard sphere crystal. However, one

can also apply the empirical q3 correction or the tensorial approach due to Tarazona

to Φ3. In particular the tensorial WBII functional has been demonstrated to provide

an excellent description of hard sphere crystals [115].

Finally, it is worth mentioning that there exists also a very accurate version of FMT

to describe hard-disk mixtures [116] which has proven to be in excellent agreement

with experiments for both structural and thermodynamic properties [18, 20] and Lin

and Oettel used this functional to study properties of the two-dimensional fluid-solid

interface [117].

2.3.3 Calculation of density profiles

In Fig. 2.3 we show results for the radial distribution function g(r) = ρ(r)/ρb of hard

spheres obtained from minimizing the grand-potential functional Ω[ρ] in presence of a

test particle (Percus’ idea of defining g(r)). This situation corresponds to setting the

external potential equal to the pair interaction, i.e. Vext(r) = φHS(r). The equilibrium

density profile ρ(r) can then be calculated numerically from solving Eq. (2.66) with
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iterative schemes. The packings are η = 0.31 (a) and 0.42 (b); recall that the fluid-solid

transition appears at roughly η ≈ 0.49. The dashed line corresponds to Tarazona’s

WDA functional with modification according to Kim [105] (cf. Sec. 2.3.1), and the

solid lines are results from the FMT WB2 functional. The theoretical data predicted

by both DFT versions fit very well to results obtained from MC simulations (green

symbols). The WB2 functional performs slightly better at higher particle densities,

see inset of Fig. 2.3 (c).

Classical DFT in particular allows us to also calculate density profiles in complex

external potentials such as fluids confined to three-dimensional capillaries [118], where

in such cases the density profile will depend on all three spatial coordinates x, y and z

and the numerical solution of Eq. (2.66) can computationally be inefficient using solely

iterative procedures. In Appendix A we outline the possibility to calculate the density

profile ρ(r) massively in parallel on graphics cards, which in two- and three dimensions

can speed up the minimization procedure by nearly two orders of magnitude.

The density functionals for hard disks in two, and hard spheres in three dimensions,

based on FMT are state of the art and their accuracy compared to simulations and

experiments is striking. In particular, this allows us to shift the focus towards the

study of fluids with more complex pair interactions. An example for this is provided

in the next Sec. 2.4, where we will focus on the behavior of the radial distribution

function g(r) and its role in determining thermodynamic properties for fluids where

the particles interact via a hard core and an additional attractive tail.

2.4 On the decay of pair correlations and related topics4

The statistical physics of fluids is frequently concerned with the role of repulsive

and attractive interparticle potentials, and their competition, in determining the

thermodynamic and structural properties. At the most basic level, the virial expansion

of the pressure p = kBT (ρb +B2(T )ρ
2
b + · · · ) provides a measure of the competition

at low number densities ρb. T is the temperature and kB is Boltzmann’s constant. If

repulsion dominates the second virial coefficient is positive, B2(T ) > 0, so that the

pressure p is larger than the ideal-gas value, p > pid = kBTρb, whereas if attraction

is dominant then B2(T ) < 0 and p < pid. The Boyle temperature TB, defined by

B2(TB) = 0, is that for which repulsive and attractive interactions cancel in a dilute gas.

For a Lennard-Jones fluid kBTB/ε ≈ 3.418 where ε is the Lennard-Jones well-depth

[119]. In colloid science and in the physics of proteins the sign and magnitude of

the second virial coefficient B2 plays an important role in quantifying the effective

interactions between these mesoscopic particles suspended in a solvent [120–122]. The

value of B2 is also believed to play an important role in determining the onset of phase

coexistence in dense fluids. The empirical criterion [123, 124] for the critical value,

i.e. Bcrit
2 /BHS

2 . −1.5 is often used to estimate the gas-liquid critical temperature.

4This section is reproduced from: D. Stopper, H. Hansen-Goos, R. Roth, and R. Evans, J. Chem.
Phys. 151 014501 (2019), with the permission of AIP Publishing
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Here BHS
2 = 2πσ3/3 is the second virial coefficient for hard spheres (HS) of diameter

σ. For very short-ranged attractive potentials the adhesive hard-sphere criterion

Bcrit
2 /BHS

2 . −1.2 is preferred [125]. These criteria are based on the idea: provided

there is sufficient net attraction, as measured by a sufficiently negative B2(T ), phase

coexistence can occur.

The competition between repulsive and attractive interatomic forces also governs

the form of the pair and higher order correlation functions, i.e. the structure of the

fluid. Seminal work [6, 7] explained the importance of repulsive forces and their

softness in determining the short-ranged behavior of the total correlation function

h(r) ≡ g(r)− 1, where g(r) is the radial distribution function. Here we focus primarily

on the long-ranged behavior of h(r). For a dilute gas at low T , or in the vicinity of the

gas-liquid critical point, rh(r) should decay to zero exponentially, as r →∞; the decay

length defines the true correlation length ξ. On the other hand, in the liquid state or

in a supercritical high density fluid state we expect rh(r) to decay in an exponentially

damped oscillatory fashion, similar to the decay found for one-component HS fluids at

all state points. The former mode of asymptotic decay requires sufficient interparticle

attraction, whereas the latter is a signature that repulsion is dominating. The crossover

between pure exponential and exponentially damped oscillatory decay of rh(r) defines

a line in the phase diagram, first identified by Fisher and Widom (FW) [126] in their

analysis of one-dimensional models. They conjectured that similar crossover would

occur in three dimensional fluids. Determining the FW line requires knowledge of

the poles of the Fourier transform ĥ(k) of the total pair correlation function h(r).

In turn, this requires calculating the pair direct correlation function c(r) at many

thermodynamic state points [57, 127–129]. One learns that the form of c(r) is crucial

in determining whether the ultimate decay of rh(r) is damped oscillatory or monotonic.

In this section, we revisit how the competition between repulsive and attractive

interparticle potentials influences the structure of fluids. In particular, we enquire

whether there is a simple physical criterion that indicates where in the phase diagram

the FW structural crossover should occur. By considering the repulsive and attractive

contributions to c(r) we propose a simple approximate criterion: FW crossover should

occur close to the line where the isothermal compressibility χT takes its ideal gas value

χidT . We also investigate the so-called Widom (W) line, which we define as the line of a

local maximum of the true correlation length ξ. In recent literature, the term ‘Widom

line’ is often associated with lines of extrema of thermodynamic response functions,

which appears to have its origin in papers from H. E. Stanley and co-workers, see

e.g. Ref. [130], dealing with a liquid-liquid transition. In Ref. [131] several lines of

maximal response functions are plotted for the square-well fluid. The title of the paper:

‘True Widom line for a square-well system’ is unfortunate as the authors consider

the Ornstein-Zernike (OZ) correlation length ξOZ , which appears in the celebrated

expansion of the static structure factor S(k) = S(0)/(1 + ξ2OZk
2) at low wavenumbers

k → 0, not the true correlation length ξ which is determined by the asymptotic decay

of rh(r).
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2.4.1 The Fisher-Widom line and decay of pair correlations

In addition to determining macroscopic phase behavior, i.e. the existence of gaseous,

liquid and solid phases, the competition between interparticle attraction and repulsion is

also reflected in the microscopic structure of fluids. As earlier, Fisher and Widom [126]

conjectured that in three-dimensional systems in the fluid phase, the total correlation

function h(r) ≡ g(r)− 1 should decay to zero in damped oscillatory fashion as r →∞
at state points for which repulsion dominates over attraction; typically at sufficiently

high volume fractions η and/or temperatures T . In contrast, at state points where

attraction dominates, e.g. in proximity to the critical point or in the gaseous phase,

h(r) should decay monotonically to zero, from above, as r →∞.

The asymptotic behavior of h(r) can be extracted from its Fourier representation

along with the Ornstein-Zernike relation [57]. In d = 3

rh(r) =
1

2π2

∫ ∞

0
dk k sin(kr) ĥ(k)

=
1

4π2i

∫ ∞

−∞
dk k eikr

ĉ(k)

1− ρbĉ(k)
, (2.115)

where ρb = N/V is the number density of the fluid and ĉ(k) is the Fourier transform

of the bulk pair direct correlation function c(r). Note that the second equation holds

only if ĉ(k) is an even function; this is the case for exponentially or faster decaying

pair potentials or pair potentials of finite range. If the pair potential decays as a power

law, as is the case for dispersion interactions, there are complications [127]. In this

paper, we restrict consideration to short-ranged interactions.

The right-hand side of Eq. (2.115) can be evaluated by performing a contour

integration in the upper half-plane and applying the residue theorem. Provided that

all poles of ĥ(k) in the complex plane are simple, it follows that

rh(r) =
∑
n

eiknrAn , (2.116)

where kn is the n-th pole satisfying 1 − ρbĉ(kn) = 0, and 2πAn is the residue of

kĉ(k)/(1 − ρbĉ(k)) at k = kn. Clearly, the pole with the smallest imaginary part

determines the asymptotic decay. We term this the leading pole. If this pole is complex

it will occur as a conjugate pair: kn = ±α1 + iαosc
0 and the ultimate decay takes the

form

rh(r) ∼ exp(−αosc
0 r) cos(α1 r − θ) , r →∞ , (2.117)

where θ is a phase [128, 129]. On the other hand, the leading pole may be purely

imaginary: k = iαmon
0 and α1 = 0. Then rh(r) vanishes purely exponentially for

r →∞, i.e.

rh(r) ∼ exp(−αmon
0 r) , r →∞ . (2.118)

In some (approximate) theories one finds leading poles with αosc
0 = 0 and α1 > 0,

corresponding to pure oscillatory decay of r h(r). These point to an instability of



44 Concepts in Liquid-State Theory

−12

−10

−8

−6

−4

−2

0

2

0 0.5 1 1.5 2

(a) DFT

kBT/ε = 1.5

0 0.5 1 1.5 2

(b) MC

c(
r)

r/σ r/σ

η = 0.10
η = 0.15
η = 0.20
η = 0.25
η = 0.30

Figure 2.4 The bulk pair direct correlation function c(r) of the square-well fluid with diameter
σ and well-width 0.5σ (λ = 1.5 or δ = 0.5) obtained from (a) mean-field density functional
theory and (b) Monte-Carlo simulations for fixed reduced temperature kBT/ε = 1.5 and
packing fractions η = 0.1 − 0.3. Note that mean-field DFT gives rise to the random phase
approximation (RPA) (2.52).

the uniform fluid with respect to density modulations [132, 133]. The FW line is

the boundary in the phase diagram where pure exponential (α1 ≡ 0) and damped

oscillatory solutions have the same imaginary part, i.e. αmon
0 = αosc

0 .

For several models and theories ĉ(k) is known analytically so poles of ĥ(k) can be

calculated directly. However, in many cases c(r) is only available numerically. Poles

can be found by equating real and imaginary parts in the solution to 1− ρbĉ(k) = 0.

One obtains the following coupled equations [128, 129]

1 = 4πρb

∫ ∞

0
dr r2c(r)

sinh(α0r)

α0r
cos(α1r) , (2.119)

1 = 4πρb

∫ ∞

0
dr r2c(r) cosh(α0r)

sin(α1r)

α1r
. (2.120)

These equations can be solved numerically to find α0 and α1 for the leading pole

at a given state point, provided that the inputted c(r) decays sufficiently quickly

to zero so that the integrals converge – this is typically the case for interparticle

potentials decaying faster than a power law. The leading pure imaginary pole can

be found from Eq. (2.119) alone with α1 = 0. From Eqs. (2.117) and (2.118) we see

that (αmon
0 )−1 is precisely the (true) correlation length ξ of the fluid. The liquid-gas

spinodal corresponds to solutions of Eqs. (2.119) and (2.120) with α1 = α0 = 0 and

the FW line is bounded by the liquid spinodal [128].

It is evident from Eqs. (2.119) and (2.120) that the location of imaginary poles

relative to the complex ones is controlled by the form of the bulk direct correlation
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function c(r). Typically, in simple fluids, c(r) exhibits a negative repulsive core region

for r < σ, the atomic diameter, arising from repulsive packing effects, and a positive

contribution for r > σ, where the pair potential φ(r) is attractive [57]. It follows

that the asymptotic decay of correlations in a fluid is determined by the competition

between repulsive and attractive interactions. For illustration, in Fig. 2.4 we plot c(r)

for a square-well fluid as obtained from (a) standard mean-field density functional

theory [16, 57, 134] description (more details will be given in Sec. 2.4.3) and (b) MC

simulations. In order to extract c(r) from simulation we followed the method described

in Ref. 135. The reduced temperature T ∗ = kBT/ε = 1.5 is fixed well above the critical

temperature T ∗
c , and the packing fraction is η is varied. There is good qualitative

agreement between theory and simulations: As observed in Ref. 135 for a truncated

and shifted Lennard-Jones fluid, the attractive tail of c(r) is not very sensitive to the

packing fraction but the core contribution becomes more negative with increasing

particle density. Recall [57] that, away from the critical point, c(r) = −βφ(r), r →∞.

The simulation results in Fig. 2.4 (b) show that this asymptotic result remains rather

accurate5 down to the core diameter σ. In Fig. 2.5 we show the asymptotic decay

of h(r) from MC for the same state points as in Fig. 2.4. For η = 0.10 and 0.15

rh(r) decays monotonically at large r/σ, consistent with a leading pure imaginary

pole. For η = 0.25 the decay is exponentially damped oscillatory, consistent with

a leading conjugate pair of complex poles. The results for η = 0.20 also point to

oscillatory asymptotic decay but this state point lies close to the FW crossover from

pure exponential to damped oscillatory decay – see Sec. 2.4.3. Which pole is leading is

governed by competition between interparticle attraction and repulsion. However, it is

not easy to glean from Eqs. (2.119) and (2.120) what physical criterion determines the

location of the FW line. In the next section we seek such a criterion for the crossover.

2.4.2 Interparticle forces and isothermal compressibility

An insightful paper by Widom [6] noted that the isothermal compressibility χT can

provide a qualitative measure for the overall balance of repulsive and attractive particle

interactions in a fluid. We augment his arguments. Recall that χT is related directly

[57] to h(r) via the relation

ρbkBTχT =

(
∂βp

∂ρb

)−1

T

= 1 + 4πρb

∫ ∞

0
dr r2h(r) , (2.121)

where β = 1/(kBT ) denotes the inverse temperature. Suppose that we are close to

the critical point so that pressure gradients (∂p/∂ρb)T become very small. Then χT is

very large, i.e. χT /χ
id
T ≫ 1, where χid

T = (ρbkBT )
−1 is the compressibility of the ideal

gas. Such behavior can occur only if h(r) decays monotonically, from above, at large r

with a long decay length. Asymptotic decay described by Eq. (2.118) with a positive

amplitude, meets this requirement when the correlation length ξ ≡ (αmon
0 )−1 is large.

5We found similar good agreement with the asymptotic result in MC simulations for smaller values
of the width of the square-well, i.e. c(r) retains the shape and variation with η as displayed in Fig. 2.4.
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Figure 2.5 Asymptotic decay of the total correlation function h(r) for the square-well fluid
with λ = 1.5, and fixed kBT/ε = 1.5 as obtained from MC simulations for the same state points
as in Fig. 2.4 apart from η = 0.30. Fisher-Widom (FW) crossover from monotonic to damped
oscillatory decay occurs at roughly η ≈ 0.2. The curves have been shifted vertically for clarity.

The divergence of χT at the critical point, driven by a diverging correlation length

ξ →∞, requires sufficiently strong attractive interactions so that Eq. (2.118) is valid,

i.e. the critical point must lie on the monotonic side of the FW line.

At higher densities or temperatures, where repulsive interactions dominate, χT may

fall well below χid
T . Such behavior can occur if h(r) is oscillatory, as in Eq. (2.117), so

that the integral in Eq. (2.121) is negative. For mechanical stability, χT must always be

positive. Such observations suggest a crossover from monotonic to damped oscillatory

decay of h(r) might be reflected in the behavior of the thermodynamic quantity χT /χ
id
T

across the phase diagram.

We explore this possibility, focusing on the excess, over ideal, compressibility defined

by

χT ≡ χid
T + χex

T , (2.122)

and argue that the line in the phase diagram where χex
T = 0 should lie near the FW

line for simple liquids. Recall that the relative location of the poles is controlled by

the form of c(r) (see discussion in Sec. 2.4.1). A pure imaginary pole, q = iαmon
0 , is

determined by Eq. (2.119) with α1 = 0 :

1 = 4πρb

∫ ∞

0
dr r2c(r)

sinh(αmon
0 r)

αmon
0 r

. (2.123)

Suppose first we are at a state point where repulsion dominates so that c(r) is dominated

by its negative core contribution r < σ. Then it is likely that the smallest solution

αmon
0 will be greater than the imaginary parts αosc

0 of the complex poles obtained
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from solving Eqs. (2.119) and (2.120) and therefore the ultimate decay of h(r) will

be damped oscillatory. This follows since the right-hand side of Eq. (2.123) must be

equal to one and thus the integral is positive definite. But this can be achieved only

for large values of αmon
0 if c(r) has only small positive contributions arising from weak

attraction. In order to obtain a leading imaginary pole, the interparticle attraction

must be sufficiently strong to counterbalance the negative core contributions in c(r).

In this context it is useful to consider a near-critical state point where αmon
0 is

small. Expanding sinh(αmon
0 r) in Eq. (2.123) to second order one finds

(αmon
0 )2

2π

3
ρb

∫ ∞

0
dr r4 c(r) = 1− C , (2.124)

with

C = 4πρb

∫ ∞

0
dr r2c(r) = ρbĉ(0) . (2.125)

Recalling that the static structure factor S(k) is given by [57]

S(k) =
1

1− ρbĉ(k)
, (2.126)

it follows that 1−C = S(0)−1, which must be positive for the fluid to be stable. Thus,

Eq. (2.124) has real solutions, which we denote αOZ , provided the second moment of

c(r) is positive. This requires c(r) to be sufficiently positive at large r, i.e. there must

be sufficient attraction. Note that the solution of Eq. (2.124) then yields the second

moment or Ornstein-Zernike (OZ) correlation length:

ξ2OZ ≡ α−2
OZ = R2S(0) , (2.127)

where R2 = 2π
3 ρb

∫∞
0 dr r4c(r) defines the short-ranged correlation length or Debye

persistence length [57] and expanding ĉ(k) to O(k2) in Eq. (2.126) yields the celebrated

OZ formula for the structure factor: S(k) = S(0)/(1 + ξ2OZk
2), k → 0. By considering

the Taylor expansion of x sinh(x) it is easy to show αmon
0 < αOZ , i.e. the true

correlation length ξ, obtained from Eq. (2.123), is larger than the OZ one, obtained

from Eq. (2.124): ξ > ξOZ .

These considerations point to the importance of having a positive second moment

of c(r) in order to obtain monotonic decay of h(r) with a long correlation length.

By contrast, for a model fluid that exhibits purely repulsive interactions, such as

hard-spheres, c(r) is negative apart from a very weak, rapidly decaying tail outside

the hard core, so that both the second and first moments of c(r) are negative. Then

the only poles are complex, α1 > 0, and are determined by solving Eqs. (2.119) and

(2.120).

For a model fluid that exhibits, both repulsive and attractive interactions, it is

clear that the first moment Eq. (2.125) at a given state point provides a measure of the

competition between repulsive and attractive contributions to c(r). C will be positive

when attraction dominates but negative when repulsion dominates. From plots such as
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those in Fig. 2.4 for c(r) in the SW fluid one can surmise that C changes from positive

values at low packing fractions η to negative values at large η. And we know from

Fig. 2.5 that FW crossover occurs at an intermediate η. We conjecture that generally

the change of sign of C should reflect the change from monotonic to damped oscillatory

decay of h(r). Since the criterion C = 0 corresponds to S(0) = 1, see Eq. (2.126), this

implies FW crossover should occur when the k = 0 limit of the structure factor is near

the ideal gas value. Using the compressibility sum rule [57] S(0) = ρbkBTχT , identical

to (2.121), it follows that the line defined by C = 0 corresponds to the line of vanishing

excess compressibility: χex
T = 0. From the arguments above it is clear that this line

cannot be identical to the FW line, defined by equality of asymptotic decay lengths,

i.e. (αosc
0 )−1 = (αmon

0 )−1 but we conjecture the lines will be close.

In the next section, we examine how close these two lines are for the square-well

fluid. To this end, we employ classical density functional theory, which is a powerful

framework to describe structure and thermodynamics on equal footing. In Ref. 136 we

furthermore investigate the hard-core Yukawa fluid, the sticky hard-sphere fluid, and

the Asakura-Oosawa model [28, 137].

2.4.3 Results for the square-well fluid

We consider the square-well (SW) fluid which is the crudest model system for describing

simple fluids such as argon. The pair interaction potential φ(r) is given by

φ(r) =


∞ ; r < σ

−ε ; σ < r < λσ

0 ; r > λσ ,

(2.128)

where ε is the strength of the attraction which acts in the range σ < r < λσ. We

describe the model fluid via the standard mean-field (MF) approach [57, 134], i.e.

Fex[ρ] = FHS
ex [ρ] +

1

2

∫∫
dr dr′ρ(r)ρ(r′)φswatt(|r− r′|) , (2.129)

where φswatt(r) denotes the attractive portion of the SW pair potential. Of course, there

is flexibility in defining this. Here we split the total pair potential φ(r) = φHS(r)+φ
sw
att(r)

into the hard-sphere contribution and an attractive tail given by:

φHS(r) =

∞ ; r < σ

0 ; r > σ ,
; φswatt(r) =

−ε ; r < λσ

0 ; r > λσ .
(2.130)

Extending the attraction to inside the core compensates underestimation of correlations.

For the hard-sphere part of the excess free-energy functional, FHS
ex [ρ], we employ the

accurate White-Bear Mark 2 functional [114]. For illustration, in Fig. 2.6 we show g(r)

for several packing fractions η = 0.10 (a), 0.20 (b), 0.30 (c) and 0.40 (d) and compare

to results from MC simulations (green symbols). Within the range of attraction, the
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Figure 2.6 Radial distribution function g(r) of the square-well fluid with λ = 1.5 for η = 0.10
(a), 0.20 (b), 0.30 (c) and 0.40 (d) as obtained from mean-field DFT (black solid lines) and
simulation (green symbols). The reduced temperature is T ∗ = 1.5.

density profiles exhibit a correlation peak in which the probability of finding a particle

is increased. For a low density η = 0.10 some clear differences between DFT and

simulation can be seen, which at first glance might seem surprising. However considering

that the critical point and phase diagrams predicted by DFT differ from the respective

quantities obtained from MC simulations [138], we may conclude that these deviations

are likely to be expect. They are observed to vanish in denser fluids. Especially for

η = 0.30 the overall agreement between simulation and DFT is remarkably well given

the simplicity of the MF description.

For bulk (uniform) fluids, with a constant bulk density ρb, Eq. (2.129) yields to

the excess free energy density

βfex =
βFex[ρb]

V
= ρb

4η − 3η2

(1− η)2 +
1

2
ρ2b βφ̂sw(0) , (2.131)

where η = πσ3ρb/6 is the fluid packing fraction, and φ̂swatt(0) = 4π
∫∞
0 dr r2φswatt(r) is

the k = 0 limit of

φ̂swatt(k) = −
4πε

k3
[sin(λσk)− λσk cos(λσk)] , (2.132)
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the three-dimensional Fourier transform of the pair potential φswatt(r). The pressure of

the SW fluid is then given by the generalized van der Waals form

βp = ρb
1 + η + η2 − η3

(1− η)3 − 4βερbηλ
3 , (2.133)

where the first term is the accurate Carnahan-Starling (CS) reduced pressure of hard-

spheres. The isothermal compressibility χT is easily calculated using Eq. (2.121). The

condition χex
T = 0 is equivalent to ρbkBTχT = 1, which is identical to

∂βp

∂ρb
= 1 ⇔ βελ3 =

1− η
4

(1− η)4 . (2.134)

Thus, for the SW model treated in mean-field DFT, the line where the isothermal

compressibility takes its ideal gas value is described by a simple formula. The form of

Eq. (2.134) is a direct result of the simple generalized van der Waals equation of state

(2.133), where the attractive contribution to the pressure is proportional to ρ2b . If we

consider a general form φatt(r) for the attractive potential in Eq. (2.129) the condition

χex
T = 0 reduces to

− βφ̂att(0)σ−3 =
4π

3

1− η
4

(1− η)4 , (2.135)

with φ̂att(0) = 4π
∫∞
0 dr r2φatt(r).

It is clear that determining this line is much simpler than calculating the FW

line where the leading poles of ĥ(k) must be determined. The former is determined

by a thermodynamic criterion, i.e. only the bulk free energy density is required.

By contrast, and as discussed in Sec. 2.4.1, the FW line is determined by the bulk

correlation function c(r) that must be provided by the underlying microscopic theory.

Within the framework of DFT, c(r) can be obtained by functional differentiation of

the (approximate) excess free-energy functional Fex[ρ]:

c(η ; r) = − δ2βFex[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρb

. (2.136)

For the MF DFT (2.129), c(r) reduces to the (corrected) RPA (cf. Sec. 2.1.4):

c(η ; r) = cHS(η ; r)− βφswatt(r) , (2.137)

where cHS(r), obtained from White-Bear Mark II, is a third-order polynomial of r with

range σ, depending on the packing fraction η and the hard-sphere diameter σ. Results

for c(r) from this mean-field DFT are shown in Fig. 2.4 (a).

In Fig. 2.7 we plot the phase diagram for the SW fluid with λ = 1.5 in the T ∗ − η
plane where T ∗ = kBT/ε, also recently considered by Roth in Ref. [139]. The critical

point is located at (ηc, T
∗
c ) = (0.13, 1.27). The solid line shows the binodal, where the

gas and liquid coexist. The fine dotted line below the binodal is the spinodal, which is

most easily determined by searching for solutions where the isothermal compressibility
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Figure 2.7 The phase diagram of the square-well fluid with λ = 1.5 treated within mean-field
DFT fashion in the T ∗ − η plane. The solid line shows the binodal, and the fine dotted line
below the binodal is the spinodal. The long-dashed line terminating at the critical point black
square (ηc, T

∗
c ) = (0.13, 1.27) is the Widom line, i.e. the line of local maximal correlation length

ξ = α−1
0 . The short dashed-line is the Fisher-Widom line separating regions of monotonic and

oscillatory decay, and the medium-dashed line is where χT = χid
T . The crosses labeled η1, η2,

η3, η4, and ηFW denote state points considered in this work.

diverges. The Fisher-Widom line is the short-dashed line, which is bounded by the

spinodal at low T ∗. This follows since the spinodal can also be defined as the solutions

of Eq. (2.119) with α0 = 0, corresponding to 1− ρbĉ(0) = 0. On the low density side

of the FW line, correlations decay purely monotonically (where α1 = 0), whereas on

the high density side the decay is damped oscillatory. The FW line is determined

numerically by searching for solutions of 1 − ρbĉ(k) = 0 where complex poles and

imaginary poles have the same (smallest) imaginary part, αmon
0 = αosc

0 . The long-

dashed line in Fig. 2.7 emanating almost vertically from the critical point is the Widom

(W) line, which we defined as the line of a local maximum of the true correlation length

ξ, corresponding to a minimum of α0. At higher temperatures, the W line approaches

the FW line.

Strikingly, the line where χex
T vanishes (medium dashed-line) is rather close to the

FW line. At higher temperatures the deviations become larger, but in the important

region approaching coexistence these are fairly small. In particular, there is no

systematic offset between the FW line and the line where χexT = 0. This means that at

state points where c(r) has sufficient positive (attractive) contributions such that the

integral in Eq. (2.125) vanishes, we are likely to find FW crossover in close proximity

to the χex
T = 0 criterion. Fig. 2.7 indicates nicely how the FW line is bounded by

the liquid spinodal [128]. It is obvious from Sec. 2.4.2 that the line χT = χid
T must lie
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Figure 2.8 Asymptotic decay of h(r) for the SW fluid, as obtained from MF DFT by minimizing
the grand-potential functional in the presence of a test particle. The curves are shifted vertically
for clarity. The state points, both at temperature T ∗ = 1.5, are located on the monotonic side
of the FW line (η2 = 0.15; upper curve), and the oscillatory side of the FW line (η3 = 0.25;
bottom curve).

outside the spinodal, i.e. at larger η, and we observe it also lies outside the FW line at

low T ∗.

In Fig. 2.8 we plot the asymptotic decay of h(r) as obtained from numerically

minimizing the grand-potential functional in presence of a test particle – the Percus’

test-particle procedure [57]. This corresponds to fixing a particle at the origin so

that it exerts an external potential Vext(r) = φ(r), the pair interaction potential, on

other particles. Then the one-body density profile satisfies ρ(r) = ρ(r) = ρbg(r), with

g(r) = h(r) + 1. It is important to recognize that the inverse decay length and the

wavelength that can be extracted from the decay of (test particle) plots such as Fig. 2.8

correspond precisely to α0 and 2π/α1 determined by calculating the poles of ĥ(k) or

zeros of 1 − ρbĉ(k) with ĉ(k) from Eq. (2.137), usually termed the OZ route. The

equivalence between the test particle and OZ routes for asymptotic decay is discussed

in a recent paper [140], and is based on linear response arguments [141]. We consider

two state points, marked as crosses in Fig. 2.7, at constant temperature T ∗ = 1.5: One

is located on the monotonic side of the FW line at volume fraction η1 = 0.15, and the

other on the oscillatory side of the FW line at η2 = 0.25. As found in the simulations

(cf. Fig. 2.5), we observe a crossover from monotonic to damped oscillatory decay as η

is increased. Calculating h(r) precisely at the point where FW crossover occurs, i.e.

where both types of poles (complex and imaginary) contribute to the decay for r →∞,

we find that h(r) decays overall in a damped oscillatory fashion. At FW crossover
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the state points (crosses) shown in Fig. 2.7 with fixed temperature T ∗ = 1.5.

r h(r) decays as

rh(r) ∼ Amon exp(−αmon
0 r)

+Aosc exp(−αosc
0 r) cos(α1 r − θ) , r →∞ , (2.138)

where αmon
0 = αosc

0 , and Amon and Aosc are amplitudes. Note that on the FW line one

still finds damped oscillatory (non-monotonic) decay of rh(r) as r →∞, regardless of

the (non-zero) values of Amon and Aosc. If Aosc > Amon then rh(r) has zeros, which

is not the case if Aosc < Amon. At this state point, the isothermal compressibility is

close to its ideal-gas value; see Fig. 2.7. This is also demonstrated in Fig. 2.9 where

the static structure factor S(k) is plotted for the five state points shown in Fig. 2.7.

We use the OZ route, i.e. S(k) is given by Eq. (2.126). Within this framework, S(k)

can be computed analytically. On the monotonic side of the FW line (packings η1

and η2) the value of S(k = 0) = χT /χ
id
T is substantially greater than unity. At high

packing fractions (η3 and η4), S(k = 0) < 1, and decreases rapidly with increasing η,

reflecting the rapid decrease of χT . For η = ηFW we find S(k = 0) is close to unity.

Note that the position and the height of the maximum of S(k) increases smoothly with

increasing η.





Chapter 3

Bulk Theory for Patchy Particles

3.1 The Kern-Frenkel model

Consider a system consisting of hard spheres with diameter σ, supplemented with a

specific number M of identical attractive sites on their surfaces. A sketch of patchy

particles with three and four interaction sites is shown in Figs. 3.1 (a) and (b). The pair

potential between two patchy particles, 1 and 2, may be described by the Kern-Frenkel

(KF) model [44, 142]. It is composed of two contributions

φ(r12, ϖ1, ϖ2) = φHS(|r12|) + φbond(r12, ϖ1, ϖ2) , (3.1)

the usual hard-sphere interaction (1.6) and a bonding potential φbond(r12, ϖ1, ϖ2),

where ϖi denotes an individual orientation vector of particle with label i. The total

interaction energy of the system is given by

U = Φ(r1, ...., rN , ϖ1, ..., ϖN ) =
1

2

N∑
i=1

N∑
j ̸=i

φ(rij , ϖi, ϖj) . (3.2)

The bonding potential φbond(r12, ϖ1, ϖ2) between particles 1 and 2 can be written as

φbond(r12, ϖ1, ϖ2) =

M∑
α=1

M∑
β=1

φpatch

(
r12, r̂

α
1 (ϖ1), r̂

β
2 (ϖ2)

)
, (3.3)

where φpatch describes the interaction between a patch α on particle 1 and some

patch β on particle 2. In the KF model, the patch-patch interaction is decomposed

into a product of a spherically-symmetric attractive potential φatt(r) and a function

G(r̂12, r̂
α
1 (ϖ1), r̂

β
2 (ϖ2)) containing the orientational character of the interaction. If the

attraction is described by a square-well potential we have

φSW
att(r) =

−ε if σ < r < σ(1 + δ)

0 otherwise ,
(3.4)
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1 2

r12/|r12|(a) (b) (c)

Figure 3.1 Sketch of a patchy particle with three (a) and four (b) patches (blue cones). (c)
Illustration of the Kern-Frenkel pair potential (3.1) with a square-well attraction between the
patches of range δ. A bond is formed between particles 1 and 2 if two patches with opening
angle 2Θmax overlap. The blue line indicates the center-to-center unit vector between particles
1 and 2. Right image adapted and modified from Rovigatti et al. Eur. Phys. J. E 41, 59
(2018).

where the parameter δ controls the range of the attraction, and ε is the potential depth,

as in Eq. (1.8). Throughout this thesis we assume both quantities to be identical for

all patches. The orientational character of the patch-patch interaction is given by [44]

G(r̂12, r̂
α
1 (ϖ1), r̂

β
2 (ϖ2)) =


1 if

r̂ · r̂α1 > cos(θmax) ,

−r̂ · r̂β2 > cos(θmax) ,

0 else ,

(3.5)

where r̂12 = r12/|r12| denotes the center-to-center unit vector between particles 1 and

2, and r̂αi is a unit vector from the center of particle i to a patch α on its surface

depending on the individual orientation ϖi. Hence, the product of φSW and G defines

interactions between particles such that it is attractive only if two patches are within

a small distance and are orientated to each other properly, depending on the patch

opening angle θmax. This is illustrated in Fig. 3.1 (c).

Note that the KF pair potential can readily be generalized to describe distinct types of

patches. Of course, there is more than one possibility to define a pair potential describ-

ing patchy-type interaction; see e.g. the work ‘How to simulate patchy particles’ by

Rovigatti et al. [142] for a general discussion. We also mention the floating-bond model

[143, 144] which generates patchy-type interactions via a non-additive binary mixture

of particles, where the individual pair potentials are spherically-symmetric.

3.2 Wertheim’s theory for associating particles

In Sec. 2.1.4 of Ch. 2 we have outlined conventional schemes for deriving approximate

theories describing bulk structural and thermodynamic properties of simple fluids

(i.e. particles that interact via a hard core and an additional isotropic attraction).

The non-hard core interaction is thereby commonly treated in mean-field fashion,

i.e. the excess part of the free energy of the uniform fluid is given by Eq. (2.53) or by

Eq. (2.55), which empirically corrects a potential underestimation of correlations in the

reference fluid. For inhomogeneous fluids, the excess free-energy functional (2.77) is
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the natural analogue. These concepts are general and in principle may also be applied

to non-isotropic pair interaction potentials.

The corresponding mean-field excess free energy of patchy particles interacting via

the Kern-Frenkel potential (3.1) might be written as:

βfex − βfHS
ex =

1

2
ρ2b

∫
dr ⟨βφbond(r, ϖ1, ϖ2)⟩ϖ1,ϖ2

=
M2 ρ2b

2

∫
drβφSW

att(r) ⟨G(r, ϖ1, ϖ2)⟩ϖ1,ϖ2

= −vb
M2 ρ2b

2
βε , (3.6)

where vb is the ‘bonding volume’ between two patches

vb =
4πσ3

3
sin4

(
θmax

2

)[
(1 + δ)3 − 1

]
, (3.7)

and ⟨· · · ⟩ϖ1,ϖ2 denotes an unbiased orientational average:

⟨· · · ⟩ϖ1,ϖ2 ≡
1

(4π)2

∫
dϖ1

∫
dϖ2 · · · . (3.8)

However, it is important to recall the genesis of mean-field type theories: in essence

they embody a generalized form of van der Waal’s theory where the particle attraction

is incorporated making use of simple perturbation arguments about the hard-sphere (or

some other reference) fluid. As such, these approaches are expected to be reliable for

sufficiently weak and long-ranged perturbations or at sufficiently low particle densities

(see also discussions in Secs. 2.1.4 and the last paragraph of Sec. 2.2). In particular

the former is in general not satisfied in patchy fluids as the range of the interaction

between the patches is typically short (∼ 10% of the hard-core diameter σ) and the

interaction energy needs to be rather strong in order to promote e.g. system-spanning

association and polymerization. Moreover, the fluid state differs considerable from

that of fluids with isotropic pair potentials, especially at low particle densities and at

low temperatures. For such state points the directionality of the site-site interaction

dictates the microscopic structure and thus the phase behavior of the fluid. As a result,

we would expect a reasonable theory for the patchy fluid to depend on quantities

that describe a certain degree of association such as the probability to find a pair

of bonded patches, or the fraction of particles engaged in a cluster (i.e., the degree

of polymerization). If we consider Eq. (3.6) one readily realizes that contributions

of directionality treated within standard mean-field fashion enter only in form of an

additional multiplicative factor relative to the isotropic square-well case. But this

merely changes the temperature or energy scale on which interactions and hence the

phase behavior take place. As a result we cannot expect a crude perturbation argument,

sufficient for the qualitative description of simple fluids, to succeed for fluids with

highly directional interactions.

The most successful and widest applied theory for associating fluids is that of
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Wertheim [73–76], which is derived within cluster graph expansions; we will not discuss

the details in this thesis – the interested reader is referred to, e.g., Refs. 145, 146.

The key point is that Wertheim treats different associating aggregates (monomers,

dimers, in general a ‘s-mer’) as distinct species, each with a separate number density,

which is termed ‘multi-density formalism’. There are several fundamental assumptions

underlying Wertheim’s approach: first, Wertheim considers hard-spheres decorated with

attractive sites (or patches), so he chooses to employ the hard-sphere fluid as a reference

system. Second, it is assumed that the site-site interaction potential allows every site

to be engaged in at most one bond with another site (the singly-bonded condition).

This can be achieved by choosing the patch-patch interaction sufficiently short-ranged

an narrow (for the KF potential this is controlled by θmax). A third assumption is

the so-called single-chain approximation where monomer-monomer correlations in

the associated fluid are considered to be the same as those in the reference hard-

sphere system. Within the cluster graph formalism, this means that contributions

where more than one (s ≥ 2)-mer is present are neglected. The remaining graphs

then contain a single (s ≥ 2)-mer surrounded by an arbitrary number of monomers.

Interestingly, Wertheim’s theory is valid for inhomogeneous situations, and in fact the

final expressions can be written in a density functional formalism [145, 146] as we shall

see in Secs. 3.2.1 and 3.2.2.

3.2.1 Dimerizing spheres

The simplest case of an associating fluid that one may consider are dimerizing particles,

i.e. particles carrying only one single interaction site. As a result, only attractive

two-body interactions are possible. In this case, no more approximations then those

mentioned above are needed. The final contribution due to association to the excess

free energy functional is

βFex[ρ]− βFHS
ex [ρ] =

1

4π

∫
drdϖρ(r, ϖ)

[
lnX0(r, ϖ)− X0(r, ϖ)

2
+

1

2

]
, (3.9)

where X0(r, ϖ) = ρ0(r, ϖ)/ρ(r, ϖ) is the monomer-fraction, i.e. the fraction of particles

at position r with orientation ϖ that are not bonded ρ0(r, ϖ) relative to all particles

ρ(r,ϖ). The central result of Wertheim’s theory is that X0 is determined by the

equation

ρ(r1, ϖ1)

ρ0(r1, ϖ1)
− 1 =

1

4π

∫
dr2 dϖ2 ρ0(r2, ϖ2)gHS(r12)fpatch(r12, ϖ1, ϖ2) , (3.10)

with the patch Mayer-f function fpatch = e−βφpatch − 1. For uniform fluids, ρ and ρ0,

and thus X0, become orientation and position independent quantities. We can then

average Eq. (3.10) over orientations and after reordering we arrive at

X2
0ρb∆+X0 − 1 = 0 , (3.11)
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where ∆ is defined as [77]

∆ =

∫
dr gHS(r) ⟨exp(−βφpatch(r, ϖ1, ϖ2))− 1⟩ϖ1,ϖ2

(3.12)

≈ vb gHS(σ
+)(eβε − 1) . (3.13)

The quantity ∆ thus connects all geometrical and physical properties of the patches. The

radial distribution function gHS(r) of the hard-sphere reference system is approximated

by its contact value gHS(σ
+), since we consider only rather short ranged site-site

interactions. We note that one may also use a more accurate linear approximation to

g(r) [39]. The contact value can approximated by the Carnahan-Starling expression

gHS(σ
+) =

1− η
2

(1− η)3 . (3.14)

Equation (3.11) can be solved explicitly to give the monomer fraction

X0 =
−1 +√1 + 4ρb∆

2ρb∆
. (3.15)

This expression satisfies the limit limρb→0 X0 = 1 which is obviously correct. The bulk

excess free energy density is finally given by

βfbond ≡ βfex − βfHS
ex = ρb

[
ln(X0)−

X0

2
+

1

2

]
. (3.16)

Wertheim’s theory turned out to be much more efficient than other approaches, for

example the one by Anderson [52, 147]. For dimerizing fluids, Anderson’s approach had

led to the same expression (3.15) for the monomer fraction X0 as Wertheim’s theory a

decade later, but it requires the solution of a series of complex integral equations [145].

But with his multiple-density formalism, Wertheim managed to employ to advantage

in an intriguing way what had been made other theories for fluids with anisotropic

interactions insufficient and cumbersome.

3.2.2 Multiple association sites

Further approximations have to be introduced for the more general case of multiple

patches per particle. Clearly, for more than one site, complex structures and binding

situations can occur. In addition to the singly-bonded condition and the single-chain

approximation, Wertheim neglected ring-forming structures (e.g. loops), multiply

bonded association sites (e.g. one site of one particle simultaneously bonded to two

sites of another particle) and multiple bonds between particles. As a result, only

chain and tree like clusters are considered. However, in (s > 2)-mers also many-body

correlations between patches can play a role. The first-order contribution of Wertheim’s

theory (TPT1) contains all contributions describing the association between a pair

of molecules, i.e. it describes two-body effects. Higher-order correlations, such as
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information about the simultaneous association of three molecules, are not taken into

account. It follows that TPT1 assumes bonding to occur independently at each site.

Nevertheless, note that it is still possible to describe elongated networks of associated

particles with these restrictions.

For M identical patches, the TPT1 contribution to the excess free energy functional

due to association is

βFex[ρ]− βFHS
ex [ρ] =

M

4π

∫
drdϖρ(r, ϖ)

[
lnX(r, ϖ)− X(r, ϖ)

2
+

1

2

]
, (3.17)

where now X is the probability that an arbitrary chosen patch on a particle at position

r with orientation ϖ is not bonded (which is equivalent to the monomer fraction X0

for M = 1). It is given by the self-consistent relation [145, 146]

X(r1, ϖ1) =

[
1 +

M

4π

∫
dr2 dϖ2 ρ(r2, ϖ2)X(r2, ϖ2)fpatch(r12, ϖ1, ϖ2)gHS(r12)

]−1

.

(3.18)

The latter is equivalent to Eq. (3.10) apart from the factor M . It is important to

note that Eq. (3.18) is valid only under the assumption of two-body interactions i.e.

for independent bonding processes. This is why the expressions within TPT1 are

independent of the geometrical locations of the patches on the particle surface. For

bulk fluids, we obtain

X =
−1 +√1 + 4ρbM∆

2ρbM∆
=

2

1 +
√
1 + 4Mρb∆

, (3.19)

where the previous definition of ∆ (Eq. (3.12)) remains unchanged. X is the fraction

of unbonded sites, or, equivalently, the probability that an arbitrary chosen patch

is not bonded. We can therefore also introduce the bonding probability of a site as

pb = 1−X. The bulk excess free energy density reads:

βfex − βfHS
ex = ρbM

[
ln(X)− X

2
+

1

2

]
(3.20)

= ρbM
[
ln(1− pb) +

pb
2

]
. (3.21)

If we describe the hard-sphere excess free energy by the accurate Carnahan-Starling

expression (2.57), the total bulk free energy density of the patchy fluid may be written

as

βf = ρb (ln(η)− 1) + ρb
η(4− 3η)

(1− η)2 + ρbM

[
ln(X)− X

2
+

1

2

]
. (3.22)

For small densities and finite temperatures, the right-hand side of Eq. (3.20) can

be expanded up to the leading order in the density resulting in

lim
ρb→0

βfbond = −M
2

2
(eβε − 1)vbρ

2
b , (3.23)



3.3 Cluster distributions and percolation 61

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M = 3

Lines: Wertheim TPT1
Symbols: Simulation

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M = 4

Po
ly

m
er

iz
at

io
n

Φ

T ∗

η = 0.05
η = 0.20
η = 0.30

T ∗

Figure 3.2 Polymerization Φ as a function of the reduced temperature T ∗ = kBT/ε for packing
fractions η = 0.05 (red), 0.2 (green), and 0.3 (blue). Individual symbols show results from MC
simulations and solid lines are predictions by TPT1. Left: three-site particles, right: four-site
particles. The range of the patch-patch potential is set to δ = 0.119σ and the half-opening
angle is fixed by cos(θmax) = 0.895.

which, at high temperatures, where eβε − 1 ≈ βε, is equivalent to the mean-field

expression (3.6).

3.3 Cluster distributions and percolation

Wertheim’s TPT1 naturally provides a framework for studying clusters and polymer-

ization, as the underlying assumptions of the theory are equivalent [148] to those of

the Flory-Stockmeyer theory [149]. In particular, the latter provides expressions for

the number density ρn of n-particle clusters as a function of the number of patches

and the bonding probability pb. For M identical sites we have

ρn = ρb(1− pb)M
[
pb(1− pb)M−2

]n−1
ωn , (3.24)

ωn =
M(Mn− n)!

(Mn− 2n+ 2)!n!
. (3.25)

The total bulk density satisfies ρb =
∑∞

n=0 nρn. The Flory-Stockmeyer theory provides

also a measure for percolation. Recall that the latter is defined as the locus in the phase

diagram where system-wide association can occur (i.e. presence of system-spanning

clusters). This is related to a high probability of finding a patch engaged in a bond.

However, percolation does typically not mean that the bonds forming the clusters have a

long lifetime, i.e. the networks are flexible, with bonds forming and breaking frequently.

If bond lifetimes become macroscopically long, i.e. on the timescale of experiments,

the system forms a percolated gel state (see also discussion in Sec. 1.3). However,
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Flory-Stockmeyer theory yields only a static measure for the bonding probability ppb at

percolation (i.e. it does not include information regarding the lifetimes of bonds). It is

given by:

ppb =
1

M − 1
. (3.26)

We can also define the degree of polymerization Φ, i.e. the probability that a particle

is part of a cluster via [149, 148]

Φ = 1− (1− pb)M . (3.27)

In Fig. 3.2 we show theoretical results for Φ as obtained from TPT1 (lines) compared

to simulations (symbols) as a function of T ∗ for trivalent particles (M = 3, left) and

tetravalent particles (M = 4, right). The packing fractions are η = 0.05 (red), 0.2

(green), and 0.3 (blue). The agreement between theory and simulation is striking given

the number of underlying approximations entering TPT1. For the case of two patches,

M = 2, the theory becomes even more accurate – see Ref. 150.

In simulations, the fractions of particles engaged in at least one bond have been

accumulated for each state point. In the KF potential (3.1) we set δ = 0.119 and

cos(θmax) = 0.895 ensuring that the potential meets the single-bond assumption of the

Wertheim theory. The simulations were performed based on open-source code [142].

3.4 Bulk phase behavior

We now focus on the bulk phase behavior of patchy fluids described within TPT1. In

order to calculate binodals and spinodals, we need to determine the chemical potential

βµ = ∂βf/∂ρb, with βf given by Eq. (3.22), as well as the pressure p = ρbµ− f . Using
Eq. (3.20) we find for the contribution to the chemical potential due to bonding µbond:

βµbond =
∂βfbond
∂ρb

=M

(
ln(X)− X

2
+

1

2

)
+Mρb

[
1

X
− 1

2

]
∂X

∂ρb
. (3.28)

and for the pressure contribution due to bonding:

βpbond =Mρ2b

[
1

X
− 1

2

]
∂X

∂ρb
. (3.29)

The change of X with respect to the density ρb is given by

∂X

∂ρb
=

(
∆+ ρb

∂∆

∂ρb

)[
1

ρb∆
√
1 + 4Mρb∆

− X

ρb∆

]
, (3.30)

where ∂∆/∂ρb = vb(e
βε − 1)g′HS(σ

+) and the prime means differentiation w.r.t. the

density. We find for the total pressure

βp = ρb
1 + η + η2 − η3

(1− η)3 +Mρ2b

[
1

X
− 1

2

]
∂X

∂ρb
, (3.31)
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Figure 3.3 Phase diagram in the T ∗– η plane of the patchy fluid with four (a) and three sites
(b), treated within Wertheim’s first-order perturbation theory. The black solid lines show the
coexistence curves, the fine-dotted line below the latter is the spinodal, and the black squares
denote the critical points. The red dashed line shows the line of vanishing excess isothermal
compressibility χex

T = 0, i.e. where χT = 1. The blue line is the percolation line, below which
system-spanning association can occur.

from which one can obtain the reduced isothermal compressibility χT ≡ χT /χ
id
T =

(∂ βp/∂ρb)
−1 where χidT = 1/(kBTρb) is the compressibility of the ideal gas. Recall also

that χT is equivalent to χT = S(0), where S(0) is the static structure factor evaluated

at zero wavenumber. The line where the isothermal compressibility takes its ideal-gas

value, χT = 1, cf. Sec. 2.4.2, is then determined by the relation:

− ∂βpbond
∂ρb

=
8η
(
1− η

4

)
(1− η)4 . (3.32)

In Fig. 3.3 we show the bulk phase diagrams for patchy particles with four (a) and

three patches (b) as obtained from TPT1. The potential parameters are as in Fig. 3.2.

The black lines are the gas-liquid coexistence curves (binodals), and the filled squares

denote critical points. Note that the critical temperatures for fluids that interact with

spherically-symmetric pair potentials are roughly order of magnitude higher than those

in patchy fluids (cf. Fig. 2.7). The fine-dashed line below the binodal is the spinodal,

determined as the locus where χT diverges, or, equivalently, where 1/χT approaches

zero. The red dashed line is the line of vanishing excess isothermal compressibility

χex
T = 0, i.e. where χT = 1. Furthermore, the blue solid line intersecting the binodal

on the low-density branch is the percolation line where pb = 1/(M − 1). Curiously, the

present binodals and spinodals, as well as the χexT = 0 lines exhibit an infinite slope at

low temperatures T ∗ → 0; this also seen in simulations [148, 50] – we will return to

this in Sec. 4.3 of Ch. 4.
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As outlined in Sec. 1.3, critical points in patchy fluids move towards lower densities

and temperatures [47] as the number of sites is lowered. For a chain-forming fluid,

with only two interaction sites, the coexistence of gaseous and liquid phases ceases to

exist. In particular, mixtures of two- and three-site patchy fluids provide the possibility

to move the location of the critical point continuously towards the origin; recall that

this is also found in simulations [47, 151]. This is consistent with what we observe in

Fig. 3.3; for three patches per particle, the critical point predicted by TPT1 is located at

(ηc, T
∗
c ) = (0.05, 0.123), whereas for tetravalent particles we find (ηc, T

∗
c ) = (0.09, 0.161).

Relatedly, the χex
T = 0 line terminates at the density-axis at T ∗ = 0 at lower packing

fractions. A low density and low temperature expansion of 1/χT provides further

physical and mathematical insight into this behavior [152]:

1

χT

=
∂βp

∂ρb
= c0(η) + c1(η) e

−βε/2 +O(e−βε) , (3.33)

where

c0(η) =

(
1− M

2

)
+

(
8− 5M

2

)
η +O(η2) , (3.34)

c1(η) =

√
M√

η vb/vs
+

15

16

√
M η√
vb/vs

+O(η3/2) , (3.35)

where vs = πσ3/6 is the hard-sphere volume. It follows from Eq. (3.34) that 1/χT

can become negative at small densities and temperatures for M > 2, as the first two

leading terms in c0(η) become negative, and c1(η) > 0 is exponentially damped for

low T ∗. However, the case 1/χT < 0 implies mechanical instability, and hence there

will always be a spinodal for M > 2. We clearly see that c0(η) becomes more negative

with an increasing number of patches, and thus the regions of mechanical instability

will become larger. Note that the higher-order terms of c0(η) in Eq. (3.34) are positive

and will counter-balance the negative contributions at higher densities.

In Sec. 3.3 we have seen that thermodynamic cluster properties, such as the degree

of polymerization, are described accurately by TPT1, for tri- and tetravalent patchy

particles and in Ref. 150 excellent agreement is found for chain-forming fluids. However,

the gas-liquid binodals are not in such well agreement with simulations; here Wertheim’s

theory particularly underestimates the densities of the coexisting liquid branch for

M ≥ 4 [148]. The critical points found in simulations [153] for the present model

parameters are (ηc, T
∗
c ) = (0.14, 0.168) for M = 4, and (ηc, T

∗
c ) = (0.07, 0.125) for

M = 3. The latter is rather close to the predictions of TPT1.

We may conclude that Wertheim’s first-order perturbation theory provides a

valuable approach to account for the phase behavior of associating fluids with highly

anisotropic interactions. Thereby it naturally yields to a theory for clustering and

polymerization. On passing, we finally note that TPT1 has also proven to be reliable

in more complex situations. An example are so-called 2AnB patchy colloids. There

one places two sites of type A at the poles of each particles and n patches of type B
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are placed along the equator. The particles interact via AA or via AB bonds only

(with distinct interaction energies εAA and εAB), while BB bonds are forbidden. Here

one for instance finds [154, 155] reentrant binodals, i.e. coexistence curves that vanish

asymptotically for temperatures sufficiently below the critical temperature T ∗
c . We

will find a similar behavior in systems with anisotropic competing interactions. This is

discussed Sec. 6.3 of Ch. 6.





Chapter 4

Static Structure of Patchy Fluids

4.1 Density functionals for the patchy fluid

For the uniform associating fluid, Wertheim developed a successful thermodynamic

perturbation theory. In its first order formulation (TPT1), correlations between

bonding sites are neglected, and loop-forming structures are not considered. Moreover,

it is assumed that each site is engaged in not more than one bond, and each pair

of particles can be connected by at most one bond. Finally, the theory includes no

information about the geometrical arrangement of the patches on the particles surface.

As we have seen in the previous chapter 3, Wertheim’s approach produces reliable

and robust results as regards the phase behavior and bonding statistics – see also

Refs. 77, 148, 156, 157.

The theoretical description of the inhomogeneous patchy fluid appears to be more

challenging. Wertheim’s theory is, in principle, valid for inhomogeneous fluids [145, 146]

and can be written in a density functional language – see Eq. (3.17). In particular, in its

inhomogeneous form the theory respects particle orientations. However, from a practical

point of view, this makes functional minimization a challenging and complex numerical

task. In the literature, it is therefore quite common to neglect the orientational

dependency, which amounts to averaging out the latter under the assumption that

both the density profile ρ(r) and the fraction of unbonded sites X(r) do not depend on

the particle orientation ϖ. However, the orientational averaged inhomogeneous form

of TPT1 yields relatively poor density profiles compared to simulations [71].

Up to the present date, the perhaps most common method used in the literature

is to employ the bulk form of TPT1 as a starting point: there is the DFT version of

Segura et al. [71, 158], which makes use of the WDA formalism of Tarazona [104] (see

also Sec. 2.3.1) for both the hard sphere and association contribution. Another version

is a density functional suggested by Yu and Wu [72] which is constructed within the

framework of Rosenfeld’s FMT for hard-sphere mixtures in combination with TPT1.

In particular, it phenomenologically incorporates the vector-type weighted densities of

FMT. Both functionals were initially tested close to a hard, planar wall for particles

carrying four patches. Here, good agreement was observed over a wide range of densities
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and not too low temperatures (i.e. well above from the critical point) in comparison

with computer simulations. The FMT-based functional appeared to perform slightly

better at higher particle densities and being less computationally intensive for mixtures.

Deviations between WDA and FMT were fairly small. To date the approach by Yu

and Wu seems to have become ‘state-of-the-art’ and is commonly applied, e.g., to

investigate properties of associating fluids at planar [159–161] or spherical interfaces

[162–164]. However, in situations in which the particle orientations become important,

such as at a hard wall and sufficiently low temperatures, both density functional models

break down [159]. This breakdown is most likely a consequence of the fact that the

theories for inhomogeneous patchy fluids do not respect particle orientations as they

are based on an orientation-independent bulk theory. The latter in addition does not

provide explicit information on the geometric arrangement of bonding sites.

Weighted-density functional (WDA). We first outline the WDA approach by

Segura et al. [71]. Recall that in Tarazona’s WDA formalism the density functionals

have the form

βFex[ρ] =

∫
dr ρ(r)βΨ(ρ̄(r)) , (4.1)

where Ψ(ρ) is the bulk excess free energy density per particle evaluated at a weighted

density ρ̄(r) =
∫
dr′ ρ(r′)ω(|r− r′| ; ρ̃) – see Sec. 2.3.1 for details. For hard-spheres,

the very accurate CS expression may be employed:

βΨCS(ρ̄(r)) =
4η̄(r)− 3η̄(r)2

(1− η̄(r))2 , (4.2)

where η̄(r) = πσ3ρ̄(r)/6. Although the above approach has been derived for the pure

hard-sphere fluid, Segura et al. were the first who used this WDA formalism to obtain

a density functional for associating fluids, where [71, 158, 159]

βΨ(ρ̄(r)) = βΨCS(ρ̄(r)) +M

[
ln(X(ρ̄(r)))− X(ρ̄(r))

2
+

1

2

]
.

As can be seen, the bonding contribution in the inhomogeneous case is assumed to

be of Wertheim’s form, Eq. (3.20), where the bulk density dependence of the bonding

probability has been replaced by a dependence on the weighted density ρ̄(r). Note

that the weight function ω(r, ρ), determined by Tarazona to match the PY solution of

c(r) for hard-spheres, remains unchanged.

Fundamental-measure functional (FMT). Yu and Wu extended the bonding

contribution to the inhomogeneous fluid via an empirical weighted-density approxi-

mation of Eqs. (3.20), (3.19), and (3.12) incorporating the weighted densities nν(r) of

Rosenfeld’s FMT. The idea is to replace all bulk quantities by corresponding weighted

densities – e.g. ρb with n0, which is exact for the homogeneous fluid, and assume that

these relations hold also for the non-uniform case. The excess free-energy functional
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reads then [72]

βFex[ρ] =

∫
dr [ΦHS({nν(r)}) + Φbond({nν(r)})] , (4.3)

where

Φbond({nν}) =M n0(r) [ξ(r)]
q

[
ln (X(r))− X(r)

2
+

1

2

]
, (4.4)

with X(r) being now a position-dependent function via the weighted densities nν(r)

given by
1−X(r)

[X(r)]2
= n0(r) [ξ(r)]

qM ∆({nα(r)}) . (4.5)

The quantity ∆ = vb(e
βε − 1)ghs({nν(r)}) depends on weighted densities through the

generalized contact value of hard-sphere mixtures:

gHS({nν}) =
1

1− n3
+

σn2ξ
q

4(1− n3)2
+

σ2n22ξ
q

72(1− n3)3
. (4.6)

Importantly, the factor ξ = 1− n2 · n2/n
2
2 has been incorporated purely phenomeno-

logically by Yu and Wu, probably to obtain better results in comparison to computer

simulations. Note that in this work we allow for a slightly more general form for ξ in

powers of q. This, of course, does not affect the bulk form of Wertheim’s theory, since

in uniform systems ξq = 1 for all values of q due to the fact that the volume integral

over the vector-type weight functions vanishes. Yu and Wu assumed q = 1; however, as

we will see later, results significantly can be improved when employing q = 3. To the

latter we will refer to as the mFMT (modified FMT) functional, whereas the original

approach with q = 1 is referred to as the FMT functional.

4.2 Bulk structure of tetravalent patchy particles1

Surprisingly, systematic studies addressing the bulk structural behavior of density

functionals describing patchy particles based on TPT1 seem to be lacking. This is

probably due to the fact that it is a priori not clear how to proper model the directional

interactions between a test particle and its surrounding fluid within Percus’ test particle

approach to obtain the (orientationally averaged) radial distribution function g(r) of

the fluid. We will demonstrate in this chapter, that density profiles obtained from

DFT around a test particle, interacting via a short-ranged spherically-symmetric

SW potential with its patchy neighbors, can match simulation results of g(r) and

the corresponding static structure factor S(k) nicely. We argue that it is precisely

the orientational independence of the theory that leads to a good agreement with

simulations. We consider three different density functionals: (i) the WDA-based

approach of Segura et al. [71], (ii) the original FMT-functional by Yu and Wu [72],

1This section is reproduced from: D. Stopper, F. Hirschmann, M. Oettel, and R. Roth, J. Chem.
Phys. 149, 224503 (2018), with permission of AIP Publishing
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and (iii) a slightly modified version (which we will refer to as mFMT) of the latter

incorporating the vector-type weighted densities in a different manner.

4.2.1 Test particle approach

In the present context of particles with directional interactions the Percus’ test particle

approach for determining g(r) poses a challenging task. Any density functional which

employs the bulk Wertheim theory and makes use of purely spherical weight functions

cannot depend on particle orientations. This makes it very hard to realize an exact

realization of Percus’ test particle theory as this would require a proper coupling of

the orientational character of the pair potential and an orientationally independent

ensemble-averaged density profile of the particles.

We propose a method to obtain approximate radial distribution functions from

DFT as follows. We calculate the density profiles around a particle that interacts with

the fluid via a short-ranged spherical SW potential, where the interaction range is set

equal to the range of the pair potential δ. More precisely, the external potential acting

on the fluid is given by

Vext(r) =


∞ ; r < σ

−εsw ; σ ≤ r < σ + δ

0 ; r ≥ σ + δ ,

(4.7)

where εsw sets the interaction energy between test particle and the surrounding particles.

In simulations, such a spherical tracer(in view of Percus’ test particle approach

this means that the tracer does not know about the orientational character of the

interaction between the surrounding particles, and interacts with the latter via a

spherically-symmetric SW pair potential) will influence the local ordering of the

particles within the first few coordination shells. The density around the tracer will

not result in the radial distribution function g(r). Indeed, in order to minimize

configurational energy, we expect that the particles surrounding the test particle prefer

such orientations in which their patches are not face-to-face with the latter since this

would result in a decrease of bonding possibilities. This is demonstrated in Fig. 4.1,

where a simulated g(r) (blue symbols) at packing fraction η = 0.3 and temperature

T ∗ = 0.2 is compared to the simulated density profile around a spherical attractive test

particle (black dashed line). The potential depth εsw is chosen such that the height of

the first peak matches the peak height found in the g(r). The second peak in g(r) at

r ≈ 1.75σ, which is typical for directional fluids exhibiting tetrahedral networks, is not

found in the correlations around the tracer, but occurs at r ≈ 2σ indicating a local

distortion of the bulk structure. However, such a distortion of the local structure driven

mainly by distinguished particle orientations cannot be captured by the present density

functionals, since, as mentioned in the first paragraph of this subsection, they do not

consider preferred orientations explicitly. In particular, this may be interpreted as if the

theory assumes that the average (bulk) particle orientations are unaffected by a given
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Figure 4.1 Radial distribution function g(r) obtained from MC simulations of tetravalent
patchy particles (individual symbols) at packing fraction η = 0.3 and temperature T ∗ = 0.2.
The dashed line shows the MC result for the density around an isotropic square-well test
particle. The solid line plots a DFT result using the mFMT functional around an external
potential according to Eq. (4.7) with εsw chosen to match the first peak in the simulated g(r)
(not visible on the scale of the graph).

external potential. In general this, of course, physically cannot be correct. However,

for the present situation describing the bulk structure of a tetravalent patchy fluid one

may benefit from the orientational independence of the theory. For suitably chosen

values of the potential depth εsw Eq. (4.7) may mimic an effective (orientationally

averaged) patch-patch interaction potential. Note that if εsw is chosen such to fit the

first peak of g(r), the first shell around the tracer particle contains as many particles as

a true test particle, and according to the argument given before, in DFT the first shell

corresponds to particles properly oriented with their patches towards the tracer particle.

This situation can also be modeled explicitly in simulations: If the spherical interaction

introduced by the tracer acts only on the patches of the surrounding particles, then

εsw can be chosen such that the resulting density profiles deviate only marginally from

the real g(r). For illustration, when calculating the density profiles around an external

potential according to Eq. (4.7) making use of the mFMT functional, we find excellent

agreement between the mFMT functional (black solid line in Fig. 4.1) and the radial

distribution function g(r) from simulations.

We note that the above approach should be most reliable in case of isotropically

distributed patches on the particle surfaces which is in best accordance with the

assumption of orientationally independent density functionals. For example, we have

verified that the g(r) of the chain-forming fluid (with two sites per particle located at

the north- and southpole) is not adequately described by the present approach: the

correlation peaks, which in this case occur roughly at integer values of σ in simulations,
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Figure 4.2 Radial distribution function of the chain-forming fluid with two patches per particle
located at the north- and south pole. The packing fraction is η = 0.25 and the temperature
T ∗ = 0.08. The symbols show simulation results, and the solid line is the prediction of DFT
along with the mFMT functional.

are still located at non-integer values in the corresponding DFT results (using the

mFMT functional). This is illustrated in Fig. 4.2 for a packing fraction of η = 0.25

and temperature T ∗ = 0.08.

4.2.2 Density around hard spherical tracer

We now compare results from the WDA, FMT and the mFMT functionals to that from

simulations for the structure of tetravalent patchy particles around a hard spherical

tracer of diameter σ (i.e., εsw = 0 in Eq. (4.7)). The results are summarized in Fig. 4.3,

for temperatures T ∗ = 10.0 (a), 0.2 (b), 0.16 (c), and 0.14 (d). The packing fraction

is η = 0.3, which yields a degree of polymerization Φ ranging from nearly zero at

T ∗ = 10.0 where particles behave as hard spheres, to nearly fully bonded states with

Φ ≈ 1 at low temperatures, cf. also Fig. 3.2. Lines in Fig. 4.3 correspond to results

from mFMT (solid), FMT (short-dashed), and WDA (long-dashed), whereas individual

symbols show simulation results. It was verified that all DFT implementations fulfilled

the Gibbs adsorption theorem providing a proof of internal consistency [70].

While in the hard-sphere limit all three curves are nearly indistinguishable, qualita-

tive differences between (i) the functionals and (ii) with the simulations emerge when

association between the particles increases. The WDA predicts a continuous decrease

of the contact density ρ(σ+) while simultaneously a broad correlation peak at r . 1.6σ

emerges, whose intensity does not further increase for T ∗ < 0.16. This behavior bears

resemblance to the results reported in Ref. [159], where density profiles at a planar

hard wall have been considered for trivalent patchy particles.
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Figure 4.3 Normalized density profile ρ(r)/ρb of tetravalent patchy particles around a hard
spherical tracer particle (εsw = 0) with same hard-core diameter σ as the fluid particles. The
packing fraction is η = 0.3. The temperatures are T ∗ = ∞ (a, hard-sphere limit), 0.2 (b),
0.16 (c), and 0.14 (d). The solid lines are the results borne out by the mFMT functional,
the short-dashed curves are the FMT results, and the long-dashed lines correspond to the
predictions of the WDA functional. The individual symbols in (b) – (d) show results from MC
simulations.

In contrast, the contact values given by the mFMT and the FMT functional,

respectively, increase slightly upon cooling. Importantly, only the mFMT approach

provides an accurate representation of the contact density and the structural intensity

in comparison to simulation results. However, the density peaks are out of phase with

the latter. Facing the discussion in the previous Sec. 4.2.1, this may be traced back to

the fact that the theory cannot account for orientational inhomogeneities as necessarily

are introduced by a spherical hard test particle. The particles directly surrounding

the tracer will prefer to orient themselves such that the number of possible bonds

is maximized, i.e. it is unlikely that a patch is oriented face-to-face with the test

particle; this gives rise to that the second peak in ρ(r) is located at r ≈ 2σ instead of

r ≈ 1.75σ as would be the case within a perfect bulk situation. The third peak located

at r ≈ 2.7σ [most prominent visible for the lowest T considered here, cf. Figs. 4.3 (c)

and (d)] is then associated with the structural information of a tetrahedral network

starting in the third coordination shell around the hard tracer. The (m)FMT predicts

that the bulk order is not significantly distorted by the presence of the hard tracer

particle, and thus the second peak arises at r < 2σ.

4.2.3 Radial distribution functions

In this section, we examine whether the test-particle approach described previously

can be applied to effectively describe radial distribution functions g(r) and compare to

simulation results. We start with comparison between DFT and MC simulations of

Kern-Frenkel-type patchy particles. In Fig. 4.4 we plot radial distribution functions

obtained from simulations (individual symbols) compared to DFT results employing

the effective test-particle method for η = 0.2 (upper panel) and 0.3 (lower panel) at

temperatures T ∗ = 0.22 [(a), (e)], 0.2 [(b), (f)], 0.18 [(c), (g)], 0.17 (d) and 0.16 (h).
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Figure 4.4 Density profiles of the tetravalent patchy fluid around an effective test particle as
obtained from the mFMT functional (black solid lines). The height of the first peak was fitted
to simulations (individual symbols). The packing fractions are η = 0.2 (upper panel) and 0.3
(lower panel) at temperatures T ∗ = 0.22 [(a), (e)], 0.2 [(b), (f)], 0.18 [(c), (g)], 0.17 (d), and
0.16 (h). The short-dashed lines in the upper panel correspond to the original FMT, while the
long-dashed lines in the bottom panel show results from the WDA functional.

Recall that the critical temperature is T ∗
c = 0.168. At such temperatures and densities

the overall degree of polymerization Φ is always larger than 90% (see Fig. 3.2). The

lines correspond to the same three functionals as shown in Fig. 4.3. The quantity

εsw is chosen such that the peak height of ρ(r)/ρb given by DFT for σ < r < σ + δ

fits to simulations with a tolerance of a few per cent. Note that we do not provide

εsw for each case, as it slightly varies for distinct density functionals and state points.

Typically, we find εsw/ε ≈ 0.25− 0.35.

Already at intermediate temperatures [(a), (b), and (e), (f)] where association

between particles is not too strong, the mFMT performs clearly better than FMT

in comparison to simulations. A correlation peak grows being located at r ≈ 1.75σ,

indicating an increasing tetrahedral ordering of the particles [165, 143, 166]. In contrast,

the WDA functional (dashed lines in lower panel) completely fails to describe such

a peak. For lower temperatures [(c), (d) and (g), (h)] the oscillations in simulations

significantly become more pronounced; here, only the mFMT functional yields density

profiles which are in adequate agreement with the simulations, although the correlations,

and in particular the intensity of the second peak, are underestimated and slightly out

of phase with simulations.

The overall good agreement between the latter and the theory is also reflected in

momentum space when considering the static structure factor S(k) = 1+ρbĥ(k), where

ĥ(k) is the three-dimensional Fourier transform of g(r)− 1. In Fig. 4.5 we compare

S(k) extracted from simulations (symbols) and mFMT (solid lines) by numerically
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Figure 4.5 Static structure factor S(k) as obtained by numerically Fourier transforming some
of the theoretical density profiles shown in Fig. 4.4 (solid lines) in comparison to simulation
results (symbols). The dashed lines in (a) and (b) display the hard-sphere structure factor.

Fourier transforming the real-space data shown in Fig. 4.4. For higher temperatures

T ∗ = 0.2 and packing fractions η = 0.2 (a) and 0.3 (b), we find excellent agreement

between simulation and DFT, even in the low-k region related to bulk thermodynamic

properties of the system such as the isothermal compressibility. The dashed lines in

(a) and (b) show the corresponding Percus-Yevick solution for the structure factor

Shs(k) of hard spheres. For lower temperatures T ∗ = 0.17 (c) and 0.16 (d), however,

deviations between DFT and simulations in the region 0 < kσ < 8 become visible.

In particular, for η = 0.3 the static structure factors from simulations feature an

additional peak at kσ ≈ 4.5, which is absent in the theoretical calculations. Indeed,

the presence of two peaks in S(k) at kσ ≈ 4.5 and kσ ≈ 8 is a prominent signal of a

system-spanning amorphous tetrahedral network [165, 143, 166]. While the shift of

the monomer-monomer correlation peak from initially kσ ≈ 2π at high temperatures

towards kσ ≈ 8 at lower temperatures is also captured by the mFMT functional, we

never observe a second peak at lower k, even for lower temperatures T ∗ < 0.16 than

discussed here. These discrepancies are most likely due to approximations introduced

by Wertheim’s perturbation theory related to the absence of geometrical informations

regarding the arrangement of bonding sites. This presumably makes it impossible

to obtain an even better agreement in terms of bulk structural properties between a

theory making use of TPT1 and simulations of patchy particles.

The present results impressively demonstrate that density functional theory making

use of Wertheim’s perturbation theory is capable of describing fundamental structural

aspects prominent for fluids with directional interactions via an effective test-particle

route. However, our findings also show that the quality of the results obtained from

density functionals based on the bulk form of TPT1 seem rather sensitive on how

precisely the generalization to the inhomogeneous fluid is achieved. In particular, for

the FMT-based approaches this sensitivity can be traced back to the incorporation

of the factor ξ = 1− n2 · n2/n
2
2: When setting ξ ≡ 1, the FMT exhibits a very poor

behavior, similar to the performance of the WDA functional. On the other hand, we
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have seen that replacing ξ → ξ3 yields accurate results in comparison to simulations

over a wide range of densities and temperatures (we should also note that in planar

geometries, such as introduced by a hard wall, the mFMT differs only marginally from

the original FMT approach by Yu and Wu). Furthermore, the remarkable performance

obtained by minimization of the mFMT functional is rather interesting, as it turns out

that the approach (as the WDA functional) does not respect the leading-order term of

the exact virial expansion

lim
ρ→0

βFex[ρ] = −
1

2

∫∫
dr dr′ ρ(r)ρ(r′)⟨f(|r− r′|)⟩ , (4.8)

where the angular averaged Mayer-f function is given by

⟨f(r)⟩ = −Θ(σ − r) +A [Θ(σ + δ − r)−Θ(r − σ)]
≡ fhs(r) + ⟨fbond(r)⟩ , (4.9)

with A =M2(eβε−1) sin4(θc/2). The latter features a prominent peak for σ < r < σ+δ

arising from nearest neighbor patch-patch interactions. By means of performing a

functional Taylor expansion about ρ = 0 up to second order in density, one obtains

the following low-density behavior of the FMT-type functionals (we consider only the

bonding contribution, as the hard-sphere parts do respect Eq. (4.8))

lim
ρ→0

βFbond[ρ] = −
B
2

∫
dr

(
[n0(r)]

2 − qn2(r) · n2(r)

π2σ4

)
. (4.10)

The factor B is given by B =M2(eβε − 1)vb, where the bonding volume vb is defined

in Eq. (3.7). For completeness we also provide the low-density limit of the WDA

functional:

lim
ρ→0

βFbond[ρ] = −
B
2

∫
dr ρ(r)ρ0(r) . (4.11)

Taking two functional derivatives one readily recognizes that Eqs. (4.10) and (4.11)

do not yield ⟨fbond(r)⟩ as given in Eq. (4.9). In the uniform fluid, however, both

expressions are consistent with Eq. (4.8) and are equivalent to the Wertheim free

energy (Eq. (3.20)) expanded up to second order in ρb,

lim
ρb→0

βfbond = −B
2
ρ2b . (4.12)

The above shortcoming of the mFMT functional is also reflected when considering the

full bulk pair direct correlation function c(r) compared to simulations. Recall that it is

defined as the negative second functional derivative of Fex[ρ] evaluated for the uniform

fluid (cf. Eq. (2.70)). From simulations and integral equation theories it is known

that c(r) typically is negative inside the hard core due to repulsive interactions, and

has positive contributions outside due to the presence of attractive forces [135, 136]

(see also Fig. 2.2). Extracting a bulk pair direct correlation function csim(r) from

our simulations of patchy particles via the OZ relation, Eq. (2.39), we observe a
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Figure 4.6 (a) Bulk pair direct correlation function r2 c(r) obtained from simulations (symbols),
functional differentiation according to Eq. (2.70) (dashed line), and the test-particle route
(solid line). Both lines show results from the mFMT functional. (b) Comparison of a g(r)
obtained via the test-particle route (solid line) and from solving the Ornstein-Zernike equation
(2.39) along with c(r) from Eq. (2.70) (dashed line). The state point in (a) and (b) is the same
as in Fig. 4.4 (d).

significant peak for σ < r < σ + δ in accordance with the Mayer-f function (in the

low-density limit it follows from Eq. (4.8) that c(r) = f(r)) – see Fig. 4.6 (a), where

the symbols show csim(r) for the same state point as in Fig. 4.4 (d). In contrast, the

c(r) obtained from taking two functional derivatives of the mFMT functional exhibits

a fundamentally distinct behavior (dashed line): it is zero for r > σ, but becomes

positive inside the core. This can readily be understood since the FMT-type weight

functions ων(r) (see Eqs. (2.98)) are of range σ/2 and thus c(r) is of range σ. As a

result, the patchy attraction is completely mapped into the hard-core region. Note that

there is no significant qualitative difference between the FMT and mFMT, albeit the

former produces a less pronounced curve which goes in hand with the less structured

density profiles in Fig. 4.4. On the other hand, when extracting an effective ceff(r)

from density profiles obtained via the test-particle route and the mFMT approach,

it shows a similar level of good agreement with simulations as do the effective radial

distribution functions which is impressively demonstrated by the solid curve in Fig. 4.6

(a). Remarkably, the g(r) obtained from the OZ relation (2.39) using the c(r) as

generated by Eq. (2.70) does not deviate too strongly from the g(r) obtained via the

test-particle route for r & 1.5σ, see Fig. 4.6 (b). However, it does not exhibit the

first-neighbor correlation peak for σ < r < σ + δ nor does it satisfy the core-condition

g(r) = 0 for r < σ, which trivially is fulfilled in the test-particle situation.

The disagreement between the c(r) obtained from directly differentiating the mFMT

functional and that via the test-particle route is striking; but following Archer and

Evans [134] one should not judge a density functional solely based on its performance on

the level of the (bulk) pair direct correlation function: for mean-field type DFTs, which

are commonly employed for treating longer-ranged attractive spherically-symmetric pair

interactions, it is well known that functional minimization according to Eq. (2.66) may

lead to much more reliable results than taking two functional derivatives of Fex[ρ]. We
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thus emphasize that the (m)FMT functional for patchy particles is not necessarily bound

to yield unreliable results for the one-body density ρ(r) in inhomogeneous situations.

We also note that the (m)FMT functional is consistent with the compressibility sum

rule

ρb kBT χT =

(
∂βp

∂ρb

)−1

= S(0) , (4.13)

i.e., where the pressure is calculated from Eq. (3.29) employing the bulk free energy

(3.22), and S(0) = 1/(1 − ρbĉ(0)) is obtained from the k → 0 limit of the Fourier

transform of the bulk pair correlation function c(r), where the latter is in turn obtained

from Eq. (2.70).

4.3 Asymptotic decay of correlations

In Sec. 2.4 we discussed in detail the asymptotic behavior of the pair correlation function

h(r) for model fluids with short-ranged isotropic pair potentials; it is straightforward

to show that two distinct types of decay of h(r) exist as r →∞: damped oscillatory

(Eq. (2.117)) or purely exponential monotonic decay (Eq. (2.118)). Which sort of

decay dominates depends on the thermodynamic state point and is controlled by the

competition between attraction and repulsion, which, in turn, controls the form of the

bulk pair direct correlation function c(r). As a result, there exists a line in the phase

diagram at which crossover from one type of decay to the other occurs, first conjectured

by Fisher and Widom [126], and hence this line is referred to as Fisher-Widom (FW)

line. In the following Secs. 4.3.1 and 4.3.2 we investigate FW lines for the patchy fluid

with four, three and two patches per particle. Moreover, we also consider Widom (W)

lines of local extrema of the true correlation length ξ (i.e. the decay rate of h(r) to

zero) as well as lines of extrema of thermodynamic response functions.

4.3.1 Fisher-Widom and Widom lines

In Figs. 4.7 (a) and (b) we display the bulk phase diagrams of four- and three-site patchy

particles, including the FW (black dotted) and W (green solid) lines, as obtained from

the mFMT functional and Eqs. (2.70), (2.119) and (2.120). Note that the deviation

of the FW line obtained from the original FMT functional proposed by Yu and Wu

compared to the mFMT functional is not significant, and therefore we do not show

results borne out by the former. Furthermore we show as the purple line where the

reduced isothermal compressibility χT = χT /χ
id
T = S(0) has local maximums, where

χid
T = 1/(kBTρb) is the ideal gas compressibility. In what follows, we call this the

χmax
T line. This line, similar to the W line, emanates from the critical point (black

square), at which χT → ∞. We also show the lines at which χT = 1 (red dashed),

i.e. where χT = χidT , as well as the spinodals (black solid) and the corresponding critical

points (black squares). In Fig. 4.7 (c) we also display the bulk phase behavior of a

chain-forming fluid (M = 2). For this system there is no gas-liquid coexistence region
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Figure 4.7 Bulk phase diagrams of the patchy fluid with M = 4 (a), M = 3 (b) and M = 2
(c) interaction sites, including the Fisher-Widom (black dotted) and Widom line (green solid),
both obtained from the mFMT functional via Eqs. (2.70), (2.119) and (2.120). The purple line
displays the χmax

T line, emanating from the critical point, and the red dashed line shows where
χT = 1 (see Sec. 2.4). The black solid lines in (a) and (b) additionally show the spinodals
as well as the corresponding critical points (black squares). The binodals are for the sake of
clarity not plotted. In (c) we show the phase diagram for the chain-forming fluid with two
patches per particles, i.e. M = 2, which is separately discussed in Sec. 4.3.2. The inset (d)
shows a magnification of the χmax

T line at lower densities and temperatures.

and hence no (true) critical point, but we find both FW and W lines. These results

are curious and interesting – we will come back to this in the subsequent Sec. 4.3.2.

We observe that the locations of the FW lines in the T ∗ – η plane behave similar to

other (thermodynamic) quantities: if the number of patches per particle is reduced, the

crossover from monotonic to damped oscillatory decay moves to lower densities and

temperatures. And there is another curiosity: the FW lines seem to not be bounded

by the spinodals as for instance is the case for the square-well fluid (cf. Fig. 2.7), and

generally for simple fluids with spherically-symmetric pair potentials [136]. This means

that outside of gas-liquid instability regions the correlation length ξ remains finite for

all temperatures, which, interestingly, complies with the fact that disordered states

can exist in low-valence patchy fluids down to very low temperatures [50, 51].

How accurate and reliable are the FW (and W) lines for the present mFMT

functional given the deviations between the c(r) obtained from the test-particle and OZ

routes? (see Fig. 4.6). We first recall what we found in Sec. 2.4.3 for the SW fluid: the

line at which the isothermal compressibility takes its ideal gas value, χT −χidT = χexT = 0,

or, equivalently, where χT = 1, is a simple and reliable approximate criterion for where

in the phase diagram FW crossover is expected to occur. In the paper [136] we

demonstrated that this criterion remains also valid for other model fluids. From

Figs. 4.7 (a)–(c) we see that the χT = 1 lines (red-dashed) follow well the actual FW
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Figure 4.8 Asymptotic decay of rh(r) to zero for the tetravalent patchy fluid, as obtained
from the mFMT functional and the effective test-particle route discussed in Sec. 4.2. The
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dotted). The blue and orange straight lines show the expected asymptotic decay rates of rh(r)
according to Eqs. (2.119) and (2.120) at these state points (see main text).

lines; in particular, the former decrease with a infinite slope as T ∗ → 0 evidencing

that the correlation length ξ (outside of regions of mechanical instability) does not

diverge upon approaching zero temperature (since a divergence of ξ would result in a

divergence of χT – cf. Eq. (2.121)) and hence the qualitative behavior of the FW lines

for T ∗ → 0 should be reliable.

Furthermore, in Fig. 4.8 we display the asymptotic decay of rh(r) at a temperature

T ∗ = 0.17 and packing fractions η = 0.15 (top solid) and 0.3 (bottom dashed). The

curves were obtained using the mFMT functional and the Percus test particle procedure

as described in Sec. 4.2.1. The state point where η = 0.3 is located on the oscillatory

side of the FW line, while the state point at lower density is on the monotonic side. The

decay rates of rh(r) to zero predicted by Eqs. (2.119) and (2.120) along with Eq. (2.70)

is identical to those emerging in the asymptotic decay of the density profiles. To a first

instance this might seem remarkable given the deviations between the c(r) as obtained

from functional differentiation and from the test-particle route (cf. Fig. 4.6). However,

it can be shown that these two routes (for any density functional) must yield equivalent

results for the real- and imaginary parts of the poles of ĉ(k)/(1 − ρbĉ(k)) (but not

necessarily for amplitudes), which goes back to linear response arguments [141]. From

a mathematical point of view, this is expressed by the fact that the real- and imaginary

parts of the poles are determined by an volume integral over c(r), Eqs. (2.119) and

(2.120), and thus depend primarily on the integrated strength rather than the precise

form of c(r). In Fig. 4.8 the agreement between the two routes is demonstrated by

the two lines −αim
0 r +Aim (top blue) and −αosc

0 r +Aosc (bottom orange), where αim
0
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and αosc
0 are the imaginary parts of the solutions to Eqs. (2.119) and (2.120) for pure

exponential and damped oscillatory decay. Aosc and Aim denote offsets chosen so that

the lines lie on the top of the density profiles for r →∞. Note in particular that for

the case of patchy particles with four interaction sites, the equivalence between the

test-particle and OZ route for determining the asymptotic decay rates of h(r) provides

evidence that the FW line shown in Fig. 4.7 (a) should lie close to where FW crossover

occurs in simulations.

4.3.2 Chain-forming fluid

In Fig. 4.7 (c) we have shown that the (m)FMT functional based on Wertheim’s theory

predicts both FW and W lines for the chain-forming fluid, and we also find lines of

local extrema of thermodynamic response functions, all of which emanating from the

origin. Even more striking, in Fig. 4.9 (a) we observe a divergence of the correlation

length ξ (dashed) following the Widom, and of χT (solid) following the χmax
T line, upon

approaching zero temperature T ∗ → 0 and packing fraction η → 0. This is curious

given the fact that for the case of two patches there is no phase separation into gaseous

and liquid phases. In models of three-dimensional simple fluids the occurrence of FW

and W lines and lines of extrema of thermodynamic response functions, is always

accompanied by the presence of a critical point (located at finite temperatures). We

thus conjecture that these surprising results for the chain-forming patchy fluid might

be understood as the remains of a pseudo-critical point suppressed to the origin at

zero density and temperature; we emphasize that both, the values of ξ and χT do not

diverge as T → 0 for all finite packing fractions η > 0, which can be seen nicely from

Eqs. (3.33) – (3.35) for M = 2.
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Figure 4.10 Simulation snapshot of a configuration with 30 000 particles at a packing fraction
of η = 0.02 and temperature T ∗ = 0.08. At such densities and temperatures the particles form
elongated chains.

In order to test the theoretical predictions, we performed grand-canonical MC

simulations based on the open-source code PatchyParticles [142], that allows us to

directly measure particle fluctuations. As a result, it is possible to calculate the the

isothermal compressibility since we have the exact relation [57]

χT =
⟨N2⟩ − ⟨N⟩2
⟨N⟩ . (4.14)

We considered three fixed temperatures T ∗ = 0.08, 0.10 and 0.12, and measured S(0) as

a function of the packing fraction η. In a grand-canonical MC simulation the chemical

potential µ, or, equivalently, the activity z = eβµ is prescribed which controls the

average number ⟨N⟩ of particles present in the system. The precise values of z were

chosen by hand, depending on the temperature so that average number of simulated

particles ranged roughly between ⟨N⟩ ≈ 150 – 2000. Before taking measurements, we

equilibrated the systems for 5 × 106 MC steps, which turned out to be sufficient in

order to guarantee that initial shifts in the internal energy and the particle number had

disappeared. The aggregation-volume-bias MC move (cf. Appendix B) was applied in

order to speed up the phase-space sampling.

In Fig. 4.9 (b) we compare the theoretical predictions for χT according to TPT1

(solid lines) to the simulation results (individual symbols). The agreement between

theory and the latter is excellent, even at T ∗ = 0.08. The shift of the maximum in χT

towards lower densities with decreasing temperature nicely resembles the behavior of

the purple curve in Fig. 4.7 (c). These results provide clear evidence that Wertheim’s
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theory stays reliable even at very low temperatures. This in particular is in line with

the findings of Ref. 150, where other thermodynamic properties of chain-forming fluids

(including the degree of polymerization, average chain-lengths et cetera) described by

TPT1 were excessively tested against MC simulations.

We also tested the theoretical prediction of the presence of a FW line. To our

knowledge, there exist no three-dimensional (simple) fluids that show FW crossover

but do not exhibit gas-liquid phase separation. However, it is important to note

that the existence of a FW line without the presence of a critical point does not

contradict the original results of Fisher and Widom [126]: in their work they considered

a one-dimensional lattice gas as well as a one-dimensional continuum model fluid, and

both systems do not phase separate. We simulated a system consisting of N = 30 000

particles at temperature T ∗ = 0.08 and a packing fraction of η = 0.02 which roughly

corresponds to a state point where χT has a maximum – see red curve in Fig. 4.9

(b). At this temperature and density the system is populated with elongated chains;

a configuration snapshot is shown in Fig. 4.10. The side length of the simulation

box is L = 84σ, which allows us to calculate g(r) up to r = 42σ. We equilibrated

ten independent systems for 5× 106 MC steps, where a step consists of N individual

attempts of performing an AVB-move. The production runs for calculating g(r) last

for Np = 5×107 steps, where a histogram recording was performed every 103-th step in

order to ensure that the samples were sufficiently decorrelated, which we concluded by
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considering the autocorrelation function of the internal energy. Since sampling of g(r)

scales with ∼ N2, we employed graphics cards to speed up the histogram calculations,

although the overall sampling still took two months of computation time.

The final result for the total correlation function h(r) is shown in Fig. 4.11. As

in Fig. 4.8, we plot ln |r h(r)| so that pure exponential decay according to Eq. (2.118)

occurs as a straight decreasing line, and this is what we observe. The initial oscillations

in rh(r), arising from strong particle association, start to decay at r ≈ 10σ and vanish

beyond r ≈ 15σ. Note that for r & 25σ the curve reaches a plateau at ln |r h(r)| ≈ −10
due to statistical fluctuations. It would require significant effort to further suppress

fluctuations at such long distances. The inset in Fig. 4.11 shows a magnification of

g(r), where its decay to unity from above nicely is visible, as was conjectured by Fisher

and Widom [126] if attraction dominates over repulsion. When extracting c(r) from

h(r) via the OZ relation, and searching for solutions to Eqs. (2.119) and (2.120), we

find a purely imaginary leading pole; the corresponding asymptotic behavior of h(r),

according to Eq. (2.118), is shown as the solid straight line in Fig. 4.11. When searching

for the lowest-lying complex pole, we find that the decay rate αosc
0 matches exactly

the decay of h(r) over the first coordination shells up to r ≈ 6σ. This is indicated by

the blue dashed line. We emphasize that the presence of only one state point, where

h(r) decays monotonically, is sufficient to prove the existence of FW crossover: we

know that at high temperatures and densities the decay must be oscillatory as the

fluid behaves hard-sphere like in those regions of the phase diagram.

4.4 Density profiles at a hard wall

In the final section of this chapter we consider density profiles of patchy particles at a

hard wall. Similar to Sec. 4.2, we compare results from DFT to simulations. To this end,

systems with N = 1000 particles carrying two, three, and four patches were simulated

where walls placed at z = σ and z = L− σ. In Ref. [159] Gnan and de las Heras have

studied in detail the performance of the WDA and FMT functional for particles with

three patches. Here, we focus on tetravalent particles. In Fig. 4.12 we show results for

ρ(z)σ3 from mFMT (solid line), FMT (dashed line) and MC simulations (symbols).

The packing fractions are η = 0.1, 0.2, and 0.3, from top to bottom. We consider

temperatures T ∗ = 0.25, 0.22, 0.20, and 0.18 (from left to right). For η = 0.1 and 0.2,

we observe a desorption of the density from the wall as the temperature is lowered,

reflected in a contact density smaller than that of the bulk value, i.e. ρ(σ+) < ρb. This

is consistent with the exact thermodynamic sum rule [57]

βp = ρ(σ+) , (4.15)

which follows from that the fluid pressure βp, exerted from the fluid on the wall, equals

the negative pressure exerted from the wall on the fluid.

Recall that the critical temperature in both TPT1 and simulations occurs at roughly
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Figure 4.12 Density profiles of tetravalent patchy particles at a hard wall located at z/σ = 0.5.
The individual symbols show results from MC simulations and the lines DFT calculations
making use of the mFMT (solid line) and FMT functional (dashed line). The packing fractions
are, from top to bottom, η = 0.1, 0.2, and 0.3. The temperatures, from left to right, are
T ∗ = 0.25, 0.22, 0.20, and 0.18. Note that the differences between the contact densities ρ(σ+)
arise from deviations between the bulk pressure predicted by TPT1 and simulations.

T ∗
c ≈ 0.16. At the binodal, the pressure of the liquid phase equals the pressure in the

gaseous phase, i.e. it is low. As a result, when approaching the binodal from above

the critical point, according to Eq. (4.15), we expect a decrease and desorption of the

density from the wall. However, performing simulations very close to the binodal is

a challenging task as this would require large simulation boxes due to a significant

depletion of the density close to the walls. We therefore restrict consideration to

temperatures T ∗ ≥ 0.18.

For the lowest packing fraction, η = 0.1, we see that the mFMT approach provides

an overall better description than the FMT which overestimates the amount of density

close to the wall, particularly at T ∗ = 0.18. At η = 0.2, however, deviations between the

equation of states of theory and simulation are already significant leading to different

contact densities and thus a systematic bias. The latter impedes a quantitative

comparison. Nevertheless, the qualitative behavior is reasonable and the structural

properties seen in simulations are captured by the theoretical curves, even though

the mFMT slightly overestimates the degree of structural intensity. No desorption
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Figure 4.13 Density profiles as obtained from the mFMT functional for the two-site (a) and
three-site (b) patchy fluid at a hard wall in comparison to MC results (individual symbols). In
both cases the packing fraction is η = 0.2 and the temperature T ∗ = 0.1.

occurs at a packing fraction of η = 0.3 when lowering the temperature, and both

DFT versions underestimate the contact density. For temperatures T ∗ . 0.20, the

density profiles from simulations exhibit a clear peak in the third layer from the wall

at z ≈ 2.5σ which we can associate with a tetrahedral network signal, similar to what

we have observed in the density profile around a hard tracer particle (cf. Sec. 4.2.2).

This peak is hardly visible in the DFT results; it may be surmised from the mFMT

curves. The latter predicts a significant peak at r ≈ 1.8σ, not seen in the simulations.

In light of our discussion in Sec. 4.2, this disagreement may also be a consequence of

density functionals failing to capture orientational inhomogeneities as necessarily being

introduced by a hard wall.

In particular, the present density functionals have shown to fail dramatically in

cases where the patch arrangement is no longer isotropic and the temperature is low

[159]. This is demonstrated in Fig. 4.13 where for η = 0.2 and T ∗ = 0.1 the density

profiles of a fluid of chains are displayed in (a) and for trivalent patchy particles in (b).

In both cases we observe that simulations predict a significant correlation peak located

close to the wall. In contrast, the DFT completely fails to predict these properties.

This breakdown of the theory can be traced back to the independence of orientational

degrees of freedom [159]: in both cases, at sufficiently low temperatures, the particles

close to the hard wall orient and locate themselves such that the plane containing the

patches is parallel to the wall resulting in the strong correlation signal at z ≈ 1.5σ.



Chapter 5

Bulk Dynamics and van Hove

Function

In the previous Ch. 4, we focused on static properties of patchy fluids including the bulk

structure and the asymptotic decay of correlations, or density profiles at a planar hard

wall. In thermal equilibrium, these quantities are not time-dependent as external and

internal forces are balanced. In this chapter, we will shift consideration to dynamic bulk

properties, i.e. diffusive and structural relaxation processes. The questions of interest

will involve: How is the mobility of a single particle influenced by bond formation ?

How is the collective dynamic behavior affected if a system-spanning network occurs ?

In order to investigate these questions, we first recall the colloidal picture, where

the (patchy) particles are considered as big spheres immersed within a solvent of much

smaller molecular particles. We assume the so-called high-friction limit, i.e. any initial

momenta of the colloids relax quasi-instantaneously relative to the Brownian time scale

τB = σ2/D0, where D0 = kBT/(3πηsσ) is the Stokes-Einstein diffusion coefficient and

ηs the viscosity of the solvent. The Brownian time τB is a measure for the time that it

takes a particle to travel a distance comparable to its own diameter. Typical values

for τB are ≈ 10−3 – 10−4 s, whereas initial momenta in the large-friction limit relax on

time scales of ≈ 10−9 s [57].

Let us now assume that the interactions among colloidal particles are weak so that

the ideal-gas approximation is justified. Then the mean-squared displacement (MSD)

δr2(t) ≡ ⟨[r(t)− r(0)]2⟩, measuring the average volume that a reference particle has

explored at time t relative to some time origin, behaves as δr2(t) = 6D0t for all times

t > 0. In contrast, in a dense colloidal fluid, the single-particle long-time diffusion

will be reduced significantly [21, 101] w.r.t. the ideal gas case, i.e. δr2(t) = 6Dt where

D < D0 for t → ∞. This is due to many collisions that the reference particle has

experienced with other colloidal particles at long times giving rise to a stochastic

motion with a reduced diffusion constant. For short-times, t≪ τB , the particle diffuses

free as δr2(t) ≈ 6D0t since it has not yet experienced many collisions other colloidal

particles. As a result there is an intermediate time regime t ≈ τB where the MSD

behaves nonlinearly, and decreases to approach its asymptotic long-time value.
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As we have discussed in Sec. 1.3, low-valence patchy colloids can give rise to

states of matter called ‘equilibrium gels’ (see Fig. 1.5) at sufficiently low temperatures.

These states are characterized by bond lifetimes that are macroscopically large, i.e. on

experimental time scales. In general, we expect that bond lifetimes will increase

continuously with decreasing temperature. For short times and temperatures T well

below the critical value, T ≪ Tc, we expect that the particles can ‘vibrate’ in their

initial local environment, i.e. small orientational and translational changes may be

possible if they comply with the geometric restrictions of the anisotropic pair potential.

However, for a sufficiently strong attraction it is unlikely that many particles will

frequently break existing bonds and we expect this to be reflected in ensemble averaged

dynamic quantities such as the MSD as compared to a weakly bonded network fluid.

In this chapter, we shall study the bulk dynamics of tetravalent patchy particles by

means of dynamic Monte-Carlo simulations [167, 168] (see Appendix B for details). In

particular, we seek for signals indicating changes in the dynamics due to association

and network formation, where our studies go closely along the lines of earlier work

[78, 51, 79]. We will also explore the possibility to account for the dynamics of patchy

fluids by means of dynamical density functional theory (DDFT) [169, 80], the dynamic

counterpart of equilibrium DFT. We build on a recent framework which has been

proposed by Stopper, Hansen-Goos and Roth, based on foundational work of Hopkins

and Schmidt [81, 101] extending Percus’ test particle approach beyond the equilibrium

case, allowing to investigate the bulk dynamics of hard spheres [82], hard disks [83] or

model colloid-polymer mixtures [170].

5.1 Results from dynamic Monte-Carlo simulations

5.1.1 Mean-squared displacement

We simulated systems consisting of N = 7500 tetravalent (M = 4) at packing fraction

η = 0.3, and trivalent (M = 3) patchy particles at packing fraction η = 0.25 up

to times t = 50τB. In both cases, the considered densities are on the right-hand

side of the liquid branch of the gas-liquid coexistenc curves [148]. The investigated

temperatures range from T ∗ = 0.5 down to 0.06 for trivalent particles [critical point:

(ηc, T
∗
c ) = (0.07, 0.125)] and from T ∗ = 0.5 down to 0.12 for tetravalent particles

[critical point: (ηc, T
∗
c ) = (0.14, 0.168)]. For comparison, we also simulated bare

hard spheres at a packing fraction η = 0.3. We waited for 5 × 106 MC prior to

all measurements, where we employed the aggregation-volume bias moves to boost

equilibration [142]. The number of chosen equilibration steps appeared to be sufficient

to ensure that the internal energies, as a function of MC steps, had reached plateaus.

The MSD was calculated directly from its statistical definition ⟨[r(t)− r(0)]2⟩, where
r(t) is the position of a tagged particle at time t, and ⟨·⟩ denotes an average over

configurations and all particles (see Sec. B.3 in Appendix B).

In Fig. 5.1 we display the simulated MSDs as a function of t/τB normalized w.r.t. to

the ideal gas law δr2id(t) = 6σ2 t/τB. Fig. 5.1 (a) shows results for tetravalent and (b)
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Figure 5.1 Mean-squared displacement normalized relative to its ideal-gas value for tetravalent
(a) and trivalent (b) patchy particles as obtained from dynamic MC simulations for several
temperatures (see key). The packing fraction is η = 0.3 in (a) and 0.25 in (b). All state points
lie outside of the gas-liquid coexistence region.

for trivalent patchy particles, where the dashed line shows the idel gas result. The

data is displayed on a double logarithmic scale in order to highlight the crossover

from the short-time diffusion regime for t≪ τB to the long-time diffusion regime for

t → ∞. In the hard-sphere limit (i.e. at high temperatures), the MSD exhibits the

usual behavior: for short times, the particles diffuse with the Stokes-Einstein ideal-gas

diffusivity D0, as here the particles on average have not experienced many collisions

with other particles. For longer times, the MSD behaves nonlinearly and rather quickly

approaches its long-time limit with a reduced diffusivity DHS < D0 (which can be

extracted from the asymptotic slope of the MSD, however the difference between DHS

and D0 is hardly visible on the scale of the graph).

For the two state points marked by the blue lines [T ∗ = 0.2 in (a) and T ∗ = 0.15 in

(b)], which are located well below the percolation line (here the degree of polymerization

is & 97% – see Fig. 3.2), the long-time diffusivity D is clearly reduced although

the overall behavior of the MSD is similar to that in the hard-sphere fluid. This

indicates that at these temperatures the diffusive motion of the particles is not affected

dramatically by bond and cluster formation.

However, the behavior of the MSD changes considerably upon on approaching the

lowest considered temperatures (T ∗ = 0.12 in (a) and 0.06 in (b)). Here, the MSDs

become very flat at intermediate times, indicating particle caging: as written earlier,

for short times we expect that particles can move and rotate in their local environment

rather undisturbed and indeed, for t/τB → 0 all MSDs are rather close to each other.

For longer times it is unlikely that bonds are broken, which impedes particles from

diffusing quickly over distances greater than the range of the site-site interaction

resulting in plateaus that spans over roughly two order magnitudes in time. For
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even lower temperatures this trend is expected to become more pronounced [78, 79],

eventually reaching the equilibrium gel state with macroscopically long bond lifetimes.

In the long-time limit the MSDs will increase again with a linear slope but with

dramatically reduced diffusion constants. This is related to the fact that the probability

of forming or breaking bonds is very low but, of course, non-zero as long as T > 0.

Thus, in the long-time limit, t→∞, particles eventually loose memory about their

initial bonding state. In the subsequent Sec. 5.1.2, we will focus on the dynamic

behavior of spatial correlations.

5.1.2 The van Hove function of tetravalent patchy particles

The van Hove function G(r, t) [171] is a key quantity in order to investigate the

temporal behavior of density correlations in a fluid. It in particular allows one to

study single particle (or self) dynamics as well as the collective behavior caused by

all particles on equal footing. As such, G(r, t) for instance has proven to be of great

value for characterizing phenomena such as glass- [21] or gel-transitions [172]. The van

Hove function is defined as [57]

G(r, t) =
1

N

〈
N∑
i=1

N∑
j=1

δ(r+ rj(0)− ri(t))

〉
≡ Gs(r, t) +Gd(r, t) , (5.1)

where ⟨·⟩ denotes an configurational average, and δ(·) is the Dirac delta function.

Physically, G(r, t) describes the probability that a particle i is located at position r at

time t, given that there has been another particle j at the origin r = 0 at time t = 0.

Furthermore, by discriminating between the cases i = j and i ̸= j, it naturally splits

into the self part Gs(r, t), describing the motion of the (test) particle initially located at

the origin, and the distinct part Gd(r, t) accounting for the behavior of the surrounding

particles. For a uniform bulk system, Eq. (5.1) depends only on the distance r = |r| to
the origin. Technically, G(r, t) is a correlation function on the two-particle level, similar

to the radial distribution function g(r). In fact, for t = 0, the distinct part is exactly

given by Gd(r, 0) = ρbg(r). The self part satisfies Gs(r, 0) = δ(r). In the long-time

limit we have Gd(r, t→∞) = ρb and Gs(r, t→∞) = 0. The MSD, alternatively to

its statistical definition, is the second moment of Gs(r, t), i.e.

δr2(t) = 4π

∫ ∞

0
dr r4Gs(r, t) . (5.2)

Note that from Eq. (5.2) it follows that only a pure Gaussian form of Gs(r, t) gives

rise to a strictly linear MSD as a function of time. For t→∞ we thus have

Gs(r, t) =
1

(4πDt)3/2
exp

[
−r2/(4Dt)

]
, (5.3)

which, when plugged into Eq. (5.2), gives rise to δr2(t) = 6Dt.
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Figure 5.2 Simulation results for the self part Gs(r, t) of the van Hove function of tetravalent
patchy particles for the same temperatures, packing fraction and color code as in Fig. 5.1 (a).
The times are shown in logarithmic steps, i.e. t/τB = 10−3 (solid lines), 10−2 (long dashed),
10−1 (medium dashed), 100 (short dashed) and 101 (dotted).

Behavior of Gs(r, t). We first focus on the behavior of the self part Gs(r, t) for

tetravalent patchy particles (the results of the three-patch case do not provide much

new insight, and, therefore, are not discussed). This is displayed in Figs. 5.2 (a) – (f)

for the same temperatures T ∗ and packing fraction as in Fig. 5.1 (a); for clarity, the

same color coding is used. In each figure, we show results at times t/τB = 10−3 (solid),

10−2 (long-dashed), 10−1 (medium-dashed), 100 (short-dashed) and 101 (dotted). The

magnitude of Gs(r, t) is shown on a logarithmic scale. Even for rather dense hard-

sphere systems it is known that Gs(r, t) to a good approximation has the form of a

Gaussian distribution [101, 173], which is the exact result for the ideal gas and the

long-time limit, cf. Eq. (5.3). This complies with what we observe in Fig. 5.2 (a),

where Gs(r, t) appears also to be of Gaussian form for all times. However, the behavior

and shape of Gs(r, t) changes if directional interactions start to play a role. While for

T ∗ = 0.2 and 0.18 the self part seems to be of Gaussian shape at short and long times,

at intermediate times t/τB ≈ 10−2 – 100 we observe a clear deviation from a Gaussian

distribution, where Gs(r, t) exhibits an exponential tail, i.e. Gs(r, t) ∼ e−r/λ(t), where

λ(t) is a characteristic length scale increasing with time. The deviation of the self part

from Gaussian shape becomes more pronounced as the temperature is lowered. In

particular, in Figs. 5.2 (d) – (f) we observe that Gs(r, t) exhibits an exponential tail

up to 10 Brownian times. Moreover, for the lowest temperatures [Figs. 5.2 (e) and (f)],
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Figure 5.3 Simulation results for the distinct part Gd(r, t) of the van Hove function of
tetravalent patchy particles for the same state points as in Fig. 5.2.

Gs(r, t) is still significantly peaked at the origin, suggesting that most of the particles

have not yet diffused over distances larger than their diameter. This complies with the

behavior of the corresponding MSDs at these temperatures, which do not have entered

the Gaussian diffusion regime with a linearly increasing MSD at t = 50τB (cf. red and

purple curves in Fig. 5.1).

Behavior of Gd(r, t). The distinct part Gd(r, t) of the van Hove function contains

all information about the correlations between a particle i located at the origin at time

t = 0 and particles j located at distance r to the origin at time t, where i ̸= j. As

mentioned above, Gd(r, 0) = ρbg(r). In Figs. 5.3 (a) – (f) we show the distinct part

for the same packing fraction, temperatures and times as in Figs. 5.2 (a)–(f). In the

upper panel, Gd(r, t) has relaxed nearly to the asymptotic result Gd(r, ∞) = ρb for

t ≈ 10τB. For hard spheres, this state is already reached after roughly one Brownian

time. Interestingly, we observe that the first correlation peak, corresponding to the

shell of bonded nearest neighbors, decays significantly faster than the second peak.

This becomes more pronounced at lower temperatures, see bottom panel. For T ∗ = 0.14

(e) and 0.12 (f), a significant correlation structure is retained even for very long times

t ≈ 50τB, in accordance with the behavior of the MSD and self part Gs(r, t). Note that

the corresponding static correlation functions at t = 0, where Gd(r, 0) = ρbg(r), do

not exhibit such a strong temperature dependence. Indeed, once the bond probability
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pb has reached 100% and the network has formed, no significant changes in static

correlations are expected upon on further decreasing the temperature. We conclude

that it is both worth and necessary to also investigate dynamic quantities in addition

to static and thermodynamic properties in order to fully determine phenomena arising

in fluids with anisotropic interactions.

5.2 Dynamic DFT approach

Wertheim’s theory for bulk patchy fluids cannot describe dynamic properties, nor

can equilibrium DFT. However, an dynamic version of the latter, dynamic density

functional theory (DDFT), allows us to also investigate non-equilibrium phenomena

within the framework set by equilibrium DFT. The latter is, from a mathematical

point of view rigorous, and approximations are typically introduced when seeking

for explicit expressions of excess free energy functionals. By contrast, dynamic DFT

already introduces approximations on a more fundamental level. It assumes that

exact relations on the two-body (and higher-order) level, valid in equilibrium, hold

also out-of-equilibrium [169, 80]; this means that DDFT assumes that higher-order

correlations equilibrate much faster, quasi-instantaneously, compared to the respective

one-body quantities. Nevertheless, DDFT has been applied successfully to spinodal

decomposition [80], colloidal sedimentation [174], quasi-crystal formation [175], or cell

growth in tissues and tumors [176].

DDFT along with Rosenfeld’s FMT has been employed to approximate the van

Hove function of hard spheres [101, 82] hard disks [83] and model colloid-polymer

mixtures [170] within a dynamic extension of Percus’ test particle theory [81]. It

treats a one-component system as a binary mixture of species s (self) consisting of

only the test particle, and species d (distinct) which consists of the remaining N − 1

particles. Hence, in thermal equilibrium at time t = 0, the one-body density distribution

ρd(r, t = 0) around species s is given by ρd(r, t = 0) = ρbg(r), and ρs(r, t = 0) = δ(r).

Now assume that the coordinate system is fixed in space at the original position of

the tagged particle. Thus for times t > 0, we can follow the time evolution of the

densities ρs(r, t) and ρd(r, t). Considering the definition of G(r, t), we can identify

ρs(r, t) ≡ Gs(r, t) and ρd(r, t) ≡ Gd(r, t). In previous studies [101, 177, 82] it turned out

that the quality of the results compared to those from simulations depends crucially on

the precise treatment of the self component s, which represents one single particle – the

free-energy functionals of equilibrium DFT are constructed within the grand-canonical

ensemble, and particle fluctuations are known to yield unphysical contributions in

systems where particles are treated explicitly [178, 179]. Importantly, in Ref. 82 a

method was derived which removes possible self-interactions within the FMT-based

functionals by considering the zero-dimensional crossover and a proper modeling of

the grand potential in that situation.

In this section, we explore the possibility to determine the van Hove function of

associating fluid via DDFT and the dynamic test particle approach. In the next section
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5.2.1, we shall therefore outline briefly the basics of DDFT; in the subsequent Sec. 5.2.2

we give more details on the dynamic test particle theory for hard spheres. We then

attempt to augment the ideas to the patchy fluid in Sec. 5.2.3.

5.2.1 Dynamic density functional theory

The dynamical behavior of a system of N classical (identical) colloids with positions

ri, i = 1, .., N in the overdamped (high-friction) limit can be described by the following

set of Langevin equations [12]:

Γ−1dri
dt

= Fi + ηi(t) , (5.4)

where Γ−1 is a friction constant due to the motion of the Brownian particles through the

solvent, ηi(t) is a stochastic force caused by random collisions of the solvent molecules

with the colloids, fulfilling the condition ⟨ηi(t)⟩ = 0. Note that Γ is related to ideal-gas

diffusivity via D0 = kBTΓ. Furthermore, in this section, ⟨·⟩ denotes an average over

initial conditions of the solvent and Fi denotes the external force acting on particle i,

which can be decomposed into the gradient of the inter-particle potential Φ(r1, .., rN )

and an arbitrary external potential Vext. Assuming Φ(r1, .., rN ) to be a sum over a

pair interaction potential, which depends only on the distance between two colloids k

and j, yields an expression for Fi:

Fi = −∇i

1

2

N∑
k=1

N∑
j ̸=k

φ(|rk − rj |) +
N∑
k=1

Vext(rk)

 (5.5)

Following Marconi and Tarazona [169] the set of equations in Eq. (5.4) can be

rewritten as

∂ρ(r, t)

∂t
= ∇ [kBT∇ρ(r, t) + ρ(r, t)∇Vext(r)]

+∇
[∫

dr′ ρ(2)(r, r′, t)∇φ(|r− r′|)
]
, (5.6)

where ρ(r, t) is the ensemble-averaged one-body density distribution

ρ(r, t) = ⟨ρ̂(r, t)⟩ =
〈

N∑
i=1

δ(ri(t)− r)

〉
, (5.7)

and ρ(2)(r, r′, t) = ⟨ρ̂(r, t)ρ̂(r′, t)⟩ is the time-dependent two-body distribution func-

tion. Unfortunately, in general ρ(2)(r, r′, t) is not known exactly. Therefore some

approximations have to be made. One possibility is to make the assumption that the

relation

kBTρeq(r)∇c(1)(r) = −
∫

dr′ ρ(2)eq (r, r
′)∇φ(|r− r′|) , (5.8)
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where

c(1)(r) = −β δFex[ρ(r)]

δρ(r)

∣∣∣∣
ρ=ρeq

, (5.9)

which holds for ρ
(2)
eq (r, r′) in thermodynamic equilibrium, can be used as an approxi-

mation also for non-equilibrium systems [169, 80]. Substituting Eqs. (5.8) and (5.9)

into Eq. (5.6) yields to the key equation of dynamical density functional theory:

∂ρ(r, t)

∂t
= Γ∇ ·

[
ρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)

]
, (5.10)

where Fex[ρ] denotes the full free energy functional, i.e.

F [ρ(r, t)] = kBT

∫
dr ρ(r, t)

(
ln
(
λ3thρ(r, t)

)
− 1
)

+ Fex[ρ(r, t)] +

∫
dr ρ(r, t)Vext(r, t) . (5.11)

Note that in this derivation of DDFT the mobility Γ is assumed to be a constant in

space and time; Eq. (5.10) can be generalized to include a time- and space-dependent

mobility (or, diffusivity):

∂ρ(r, t)

∂t
= ∇ ·

(
Γ(r, t)

[
ρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)

])
. (5.12)

The multi-component generalization of Eq. (5.12) to a system consisting of ℓ species of

colloids with radii Ri , i = 1, ..., ℓ is given by [180]

∂ρi(r, t)

∂t
= ∇ ·

(
Γi(r, t)

[
ρi(r, t)∇

δF [{ρj}]
δρi(r, t)

])
, (5.13)

where the Helmholtz free energy functional now takes the form

F [{ρi}] = kBT

ℓ∑
i=1

∫
dr ρi(r, t)

[
ln
(
λ3thρi(r, t)

)
− 1
]

+ Fex[{ρi}] +
ℓ∑

i=1

∫
dr ρi(r, t)V

i
ext(r). (5.14)

5.2.2 Dynamic test particle theory for hard spheres

As outlined earlier, it is possible to employ DDFT within the framework of dynamic

test particle theory to calculate the van Hove function of hard spheres or hard disks.

In this section, we will review the key elements. The adoption to the associating fluid

is then (to some extent) straight forward.

For a binary mixture consisting only of self (s) and distinct particles (d), the key

equation of DDFT, written in the form of a continuity equation, can be written as (we
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use the notation of Ref. 82)

∂ρs/d(r, t)

∂t
= −∇ · js/d(r, t) , (5.15)

where the particle currents js/d(r, t) read

js/d(r, t) = −Ds/d(r, t)ρs/d(r, t)∇βµs/d(r, t) , (5.16)

with the local chemical potentials µs/d(r, t) obtained from the functional-derivative of

the intrinsic Helmholtz free-energy functional (as there is no external field):

µs/d(r, t) =
δF [ρs, ρd]
δρs/d(r, t)

. (5.17)

Note that the DDFT equations have to be integrated forward in time numerically.

Prior to this step it is useful to carry out functional derivatives and apply gradients by

hand to reduce the complexity of the equations. The resulting expressions may then

be integrated via e.g. a simple Euler-forward algorithm if the associated time step ∆t

is chosen sufficiently small. A good choice is e.g. ∆t = 10−5τB.

In Ref. 82 we derived a method to remove unphysical self-self interactions occurring

within the FMT functionals for hard spheres. It is based on the idea that in the

zero-dimensional limit, i.e. a cavity that can hold at most one particle, the free energy

takes a specific form that can be constructed explicitly from the associated partition

sum. The final result for the binary-mixture FMT functional reads (either Rosenfeld’s

original version or more accurate versions such as White-Bear Mark 2 may be used):

Fq
ex[ρs, ρd] = FHS

ex [ρs, ρd]−FHS
ex [ρs] , (5.18)

so the unphysical self-self interactions are simply subtracted from the full mixture

FMT functional, which is referred to as ‘quenched’ approach (hence the superscript

‘q’). Note that in Eq. (5.16) a space- and time-dependent particle self-diffusivity D(r, t)

is assumed, in oder to capture effects of high particle densities on the self-diffusion.

In contrast, standard DDFT is not capable of adequately describing the crossover

from free diffusion at very short times to the slowed down long-time self-diffusivity

DHS < D0 at long times [101, 177]: The MSD given by standard DDFT typically

shows the onset of a decrease at intermediate times, but subsequently speeds up to

ideal-gas diffusion in the long-time limit. Hereby the theory predicts a behavior of

the MSD which is akin to superdiffusivity, but is clearly unphysical in the context

of overdamped equilibrium dynamics. This failure is due to the fact that the decay

of Gs(r, t) in standard DDFT can be affected only by structural information that is

encoded within the respective distinct part of the van Hove function. However, for

long times, when the correlations in Gd(r, t) have decayed sufficiently to a flat bulk

profile, and thus structural information is lost, DDFT is bound to yield the (incorrect)

ideal-gas diffusivity. In order to fix this shortcoming, a result obtained by Leegwater
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Figure 5.4 Top: DDFT results (solid lines) for the distinct part of the van Hove function of
hard spheres using the FMT functional (5.18) and the diffusivity given in Eq. (5.20) compared
to DMC results (symbols). Bottom: the mean-squared displacement obtained from the self
part of the van Hove function via Eq. (5.2). The graphic is reproduced from D. Stopper,
H. Hansen-Goos and R. Roth, J. Phys.: Condens. Matter 28, 455101 (2016).

and Szamel [181] for the long-time diffusivity DHS(η) of the hard-sphere fluid at packing

fraction η can be employed [82]. Leegwater and Szamel obtained the expression

DHS(η) =
D0

1 + 2ηg(σ+)
, (5.19)

where D0 is the mobility of the spheres in the dilute limit and g(σ+) is the radial

distribution function at contact, itself a function of η (see Eq. (3.14)). As Yu and Wu

have done in their construction of the (m)FMT functional for the patchy fluid, we may

generalize to the inhomogeneous fluid by employing the local packing fraction based on

the weighted density n3, which integrates the fluid density over the volume of a sphere.
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Hence in the bulk fluid n3 = η while in the inhomogeneous fluid we have 0 ≤ n3 ≤ 1.

More specifically we set

Ds(r, t) ≡ DHS(n
d
3(r, t)) , Dd(r, t) ≡ DHS(n

s
3(r, t) + nd3(r, t)) . (5.20)

These definitions take into account that there are no interactions within the self-

component, consequently the respective mobility depends only on nd3(r). Obviously, in

the long-time limit where ns3 → 0 and nd3 → η the correct values for the mobility are

obtained. The definition further ensures that for short times, t→ 0, the self particle

can diffuse freely. For illustration, in Figs. 5.4 (a) and (b), replotted from Ref. 170,

we show results (solid lines) for the distinct part Gd(r, t) obtained from DDFT along

with Eqs. (5.18) and (5.20) and compare these to DMC simulation results (symbols).

The (reduced) densities are ρbσ
3 = 0.6 in (a) and 0.8 in (b). The agreement between

simulation and DDFT is very good; also, the accompanying MSD, obtained from the

self part of the van Have function via Eq. (5.2), displayed in Fig. 5.4 (c), is very close

to the simulation results.

5.2.3 Hard-sphere tracer immersed in the patchy fluid

We will now discuss results from DDFT for the dynamics of a single hard spherical

test particle, diffusing in a surrounding fluid of tetravalent patchy particles. The

consideration of hard-sphere like test particle poses a simplification as regards the

theoretical modeling: we do not have to take care of how to treat a patchy test

particle at times t > 0. The ‘distinct part’ ρd(r, t), i.e. the density around the hard

tracer at time t, is then, of course, not equivalent to the bulk counterpart Gd(r, t)

discussed earlier in Sec. 5.1.2. Nevertheless, ρd(r, t) should capture essential physics:

The influence of increasing bond lifetimes on the distinct dynamics as the temperature

is lowered. The associated excess free-energy functional, to be employed along with

the DDFT equations (5.15), (5.16), and (5.17) for times t∗ > 0, is given by:

Fex[ρs, ρd] = FHS
ex [ρs, ρd] + Fbond

ex [ρd]−FHS
ex [ρs] , (5.21)

where the mFMT version for the bonding free-energy functional Fbond
ex [ρ] is employed.

We solved the respective DDFT equations up to times of t∗ = 0.5 for the same

state points as shown in Fig. 4.3, where we used the displayed density profiles as an

initialization for ρd(r, 0). The self part ρs(r, t) is initialized as a normalized, sharply

peaked, Gaussian distribution: ρs(r, 0) = (β/π)3/2 exp(−βr2/σ2) with β = 103. Further

implementation details can be found e.g. in Refs. [177, 170]. The diffusivity Ds/d(r, t)

is that of hard-spheres, i.e. Eq. (5.20). We also performed accompanying DMC

simulations in order to check the DDFT results. The methodology does in principle not

differ from the usual DMC method (cf. Appendix B); however, now the test particle

is distinguished from the other particles. This means that histogram recordings, in

contrast to calculating e.g. the bulk van Hove function, cannot be averaged over all
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Figure 5.5 Top: DMC results for the density ρd(r, t) around a hard-sphere test particle. The
temperatures are T ∗ =∞ (hard-sphere limit, black solid), 0.18 (blue dashed), and 0.14 (red
short-dashed). The times are, from left to right, t/τB = 0.1, 0.25, and 0.5. Bottom: the
respective DDFT predictions.

particles, resulting in poorer statistics, which accordingly has to be compensated by

increasing the number of samples.

In Fig. 5.5 we display results for ρd(r, t) at temperatures T ∗ =∞ (the hard-sphere

limit, black solid), 0.18 (blue dashed) and 0.14 (red short-dashed). The times are,

from left to right, t/τB = 0.1, 0.25, and 0.5. The packing fraction is η = 0.3. The top

panel shows results from DMC simulations, and the bottom panel from DDFT. We

observe a drastic failure of the latter. The simulation results show a clear slowdown of

the distinct dynamics, relative to the hard-sphere limit, as the temperature decreases,

which is what we expect. In contrast, the DDFT predicts an increase of the relaxation

of ρd(r, t) towards the flat bulk profile. In the asymptotic long-time limit, t→∞, the

present DDFT is indeed doomed to predict a diffusivity that will be too fast compared

to simulations, due to the fact that we prescribe the long-time dynamics as that of

hard-spheres by employing Eq. (5.20). However, we find that the theory significantly

overestimates the dynamics, right after relatively short times; here it is even much

faster than the corresponding hard-sphere limit (cf. Figs. 5.5 (a) and (d)).

The complete overestimation of the relaxation speed predicted by DDFT may be

traced back to the several shortcomings. One important deficit is that, in DDFT, the

extent of dynamic relaxation is affected only by instantaneous (i.e. at the present

point in time) structural correlations. This is precisely related to the necessity to
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empirically correct the long-time diffusivity in order to capture the correct long-

time dynamics in case of hard-spheres – see discussion in the previous Sec. 5.2.2.

Secondly, as the Wertheim theory itself is an equilibrium, time-independent bulk

theory, it cannot provide information on bond lifetimes, and so cannot the associated

free-energy functionals. We note that recent simulation results [79] suggest that the

single-particle diffusivity, which is directly controlled by bond lifetimes, can be related

to the probability pb = 1−X of finding a patch engaged within a bond (i.e. a static

bulk variable), but no precise dependency is yet known. However, we have seen in

previous sections that long bond lifetimes dramatically affect the dynamics of the

system. But why are the dynamics even faster than in bare hard-sphere fluids ? This

may be related to the form of the density profiles at time t = 0: if we solve only

the ideal diffusion equation, i.e. ∂ρ/∂t = ∇2ρ, where no information regarding the

particle interaction enters, and using the same initial density profiles for ρd(r, 0), we

observe that the correlations in ρd(r, t) at e.g. T ∗ = 0.14 also relax faster than in

the hard-sphere limit, i.e. for T ∗ → ∞. In conclusion, we have seen that DDFT is

a both qualitatively and quantitatively inadequate tool to describe the dynamics of

patchy fluids, and for this purpose one has to rely on alternative approaches such as

simulations.



Chapter 6

Competing Interactions

6.1 Introduction

In addition to a hard core, fluids with competing interactions are characterized by the

presence of a short-ranged attraction that competes with a longer-ranged repulsion

in the pair potential. A frequently considered model is the hard-core two-Yukawa

fluid, for which the pair potential is sketched in Fig. 6.1. In such systems, depending

on the amplitude ratio between the attraction and repulsion, stable spherical-like

clusters can form [182, 183] at low packing fractions η . 0.1 that coexist with a gaseous

phase consisting of few monomers, and the radial distribution function g(r) can exhibit

prominent long-ranged oscillations out to very large separations from the origin. Cluster

formation may occur if the attraction is sufficiently strong and the repulsion sufficiently

weak, so that it is likely that few particles can overcome the repulsive barrier in the

pair potential to form an aggregate. The entropy loss necessarily associated with the

formation of clusters is (over-) compensated by a gain in configurational energy and

hence the free energy is lowered. The size of such clusters is, however, limited by

the strength and range of the repulsion, as the effective repulsive barrier that e.g. a

monomer has to overcome in order to attach to an existing cluster is proportional to

size of the latter. As a result, if the cluster size exceeds a certain threshold no further

particles can attach, and thereby the repulsion stabilizes aggregates of a certain size.

The formation of equilibrium clusters was for instance observed in experiments with

colloid-polymer mixtures, where an attraction between the colloids was induced via

the depletion effect, and a surface charge of the colloids resulted in a (long-ranged)

screened Coulomb repulsion [84]. A confocal-microscopy image from Ref. 84 is shown

in Fig. 6.2; note that the fluid is still ergodic and disordered, i.e. the clusters are mobile

and break and reform frequently.

At intermediate packing fractions, 0.1 . η . 0.25 the clusters may become [182, 183]

more elongated and eventually percolate at high densities, i.e. they form system-

spanning structures. In experiments, similar behavior was observed though here the

systems showed the tendency towards dynamic arrest and the formation of (non-

equilibrium) percolated gels [184]. At high densities, η & 0.25 ‘inverse-cluster’ phases
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Figure 6.1 Illustration of the hard-core two-Yukawa pair potential defined in Eq. (6.2) where the
amplitude ratio B between the attraction and repulsion and their individual range (controlled
by z1 > z2 in Eq. (6.2)) favor the formation of stable equilibrium clusters. Note that the graph
shows r2φ(r) in order to highlight the repulsive barrier.

may occur, where e.g. spherical voids coexist with a dense liquid-like percolated fluid

[182].

In addition to (unordered) low-density cluster and high-density percolated states,

various recent theoretical [88, 89, 185] and simulation studies [90, 183] have predicted

that colloidal fluids interacting via competing interactions may self-organize into

periodically-ordered structures, consisting of low- and high-density fluid domains (also

referred to as microphases or mesophases), that are thermodynamically more stable

than the homogeneous bulk fluid. A line in the temperature-density phase diagram

akin to a spinodal (the so-called ‘λ line’) separates the disordered fluid state, potentially

populated with clusters, from microphase-separated regions. The structure of these

mesophases can be ‘simple’, e.g., a lamellar phase where high- and low-density domains

interchange along one spatial direction, but also more complex morphologies such as

spherical micelles arranged on a bace-centered-cubic (BCC) lattice or gyroid structures

are possible. Intriguingly, gyroids can be found in the wings of some butterfly or bird

species, where they scatter visible light resulting in brilliant structural colors [186, 187].

However, the predictions of simulations and theory are at odds with the reality found

in colloidal experiments. While unordered equilibrium cluster phases, as mentioned

above, were observed in experiments [84, 184], microphase-separated states have

yet to be obtained. In Ref. 188 Royall argues that it turns out to be difficult to

experimentally control the required balance between attraction and repulsion suggested

by theory and simulations to be necessary in order to trigger microphase formation.
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Figure 6.2 Confocal microscopy image of equilibrium clusters in a colloid-polymer mixture,
where the colloids are charged resulting in a longer-ranged screened Coulomb repulsion. The
packing fraction of the colloids is η ≈ 0.05. Image replotted from A. Stradner et al., Nature
432, 492 (2004).

Furthermore, dynamic slowdown and gel formation may impede self-assembly into

complex microphases [189].

Note that there are other soft-matter systems for which self-assembly into mi-

crophases including lamellae and gyorid structures are well-known phenomena, where

the most prominent representatives are diblock copolymer melts [190, 191]. In these

systems, two immiscible polymer components, say A and B, are linked together via

a chemical bond which impedes a phase separation into macroscopic A- and B-rich

regions (similar to e.g. water and oil). As a result, the distinct polymer components

can form complex microphase-separated states on the microscopic scale, i.e. on the

scale of their chainlength. The equilibrium phase behavior of block copolymers shows

an intriguing quantitative similarity with that theoretically predicted for colloidal

suspensions with competing interactions [88–90], and also non-equilibrium properties

such as the behavior under shear flow reveals analogies [192]. The current scientific

consensus is that the formation of ordered patterns seems to be the general result

of complex physical mechanisms leading to a competition between attraction and

repulsion on different lengthscales, irrespective of its precise microscopic origin [193].

In Sec. 6.2 we will provide an overview on the rich physics found in fluids with

competing interactions, where we focus on the hard-core two-Yukawa fluid described

with a simple mean-field DFT. The results presented there mainly go back to early

work carried out by Sear in 1999 [194], Imperio and Reatto in 2004 [195] and continued

work by Pini and Archer [85, 182, 196] as well as recent results by Edelmann and Roth

[89].

While all the aforecited studies considered spherically-symmetric pair potentials,

there are systems in which anisotropic competing interactions occur. This particularly

is the case for many protein solutions [45] (see also Sec. 7.5 of Ch. 7), where a longer-
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ranged repulsion is the result of screened Coulomb interactions. In Sec. 6.3 of this

chapter, we will investigate the phase behavior and equilibrium structure of a simple

model of anisotropic competing interactions based on the framework of patchy particles.

6.2 The hard-core two-Yukawa fluid

We consider the following interaction potential

φ(r) = φHS(r) + φ2Y(r) , (6.1)

where φHS(r) denotes the hard-sphere potential (1.6). The two-Yukawa (2Y) contribu-

tion φ2Y(r) is given by

φ2Y(r) =

−ε (e−z1 −Be−z2) ; r < σ

−ε
(
σ
r e

−z1r/σ −B σ
r e

−z2r/σ
)

; r ≥ σ ,
(6.2)

where ε sets the overall energy scale, and B fixes the amplitude ratio between attraction

and repulsion. The parameters z1 and z2 (with z1 > z2) control the interaction range

of the latter. The excess free energy functional is given by

βFex[ρ] = βFHS
ex [ρ] +

1

2

∫∫
drdr′ ρ(r)ρ(r′)βφ2Y(|r− r′|) , (6.3)

where we employ the original version of Rosenfeld’s FMT [17] to describe the hard-

sphere correlations. Similar to the study of the square-well fluid in Sec. 2.4.3, the

non-hard-core bit φ2Y(r) is extended down to the core as we employ the standard

mean-field approach to treat the non-hard-core interactions which systematically

underestimates correlations.

In Fig. 6.3 (a) we show the radial distribution functions g(r) at a low packing

fraction η = 0.05 for temperatures kBT/ε = 0.28 (blue) and 0.25 (red), where we

observe that g(r) exhibits long-ranged, slowly decaying oscillations with a wavelength

of ≈ 12σ as the temperature is lowered. Furthermore, the probability of finding a

particle in vicinity to the origin at r = 0 is very high out to separations of r ≈ 5σ. Such

behavior is a signal of the formation of clusters that coexist with a gas of monomers

[182], where the long-ranged oscillations correspond to cluster-cluster correlations

and the sharp ‘bumps’ in the region r < 5σ correspond to hard-sphere-like particle-

particle correlations within a cluster. Moving to higher temperatures, we find that the

cluster-cluster correlations become quickly damped (cf. green curve in the inset where

kBT/ε = 0.29).

The long-ranged oscillations in g(r) are also reflected in Fourier space by a maximum

in the static structure factor S(k) at a wave number kpre that is smaller than that

associated with the monomer-monomer correlations, kpre < kmono. Recall that S(k) is
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Figure 6.3 (a) Typical behavior of g(r) for the hard-core two-Yukawa fluid treated in mean-field
DFT at packing fraction η = 0.05 and temperatures kBT/ε = 0.28 (blue) and 0.25 (red).
These are fluid states at which spherical clusters coexist with few monomers. At higher
temperatures (kBT/ε = 0.29) the long-ranged cluster-cluster correlations become quickly
damped (see inset). (b) Behavior of the static structure factor S(k) at packing fraction η = 0.05
and several temperatures. A prominent pre-peak occurs at low wavenumbers kpre ≪ 2π/σ
as the temperature is lowered, and can emerge long before cluster correlations dominate the
intermediate shape of g(r). The parameters of the two-Yukawa potential are z1 = 1, z2 = 0.5
and B = 0.2.

related to the Fourier transform ĉ(k) bulk pair direct correlation function c(r) via

S(k) =
1

1− ρbĉ(k)
. (6.4)

Recall also that in mean-field DFT ĉ(k) is given by the simple result

ĉ(k) = ĉHS(k)− βφ̂2Y(k) , (6.5)

where ĉHS(k) is the Fourier transform of the hard-sphere pair direct correlation function,

which can be calculated from Eq. (2.70); for the original Rosenfeld functional (see

Eqs. (2.105) and (2.108)) ĉHS(k) is given by the 3d Fourier transform of the Percus-

Yevick solution (2.47). It can be written in the form [197]

ĉHS(k) =− 4πσ3
[(

α+ 2β + 4γ

q3

)
sin(q) +

(
−α+ β + γ

q2
+

2β + 12γ

q4

)
cos(q)

+
24γ

q6
(1− cos(q))− 2β

q4

]
, (6.6)

whith q = kσ and density-dependent coefficients

α =
(1 + 2η)2

(1− η)4 ; β =
−6η(1 + η

2 )
2

(1− η)4 ; γ =
η(1 + 2η)2

2(1− η)4 . (6.7)

The Fourier transform of the two-Yukawa part (6.2) is easily calculated:

βφ̂2Y(k) =4πβεσ3
[−e−z1 +Be−z2

q3
(sin(q)− q cos(q))
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Figure 6.4 Microphase-separation manifests itself in non-decaying peaks in the radial distribu-
tion function g(r) (purple curve). At these state points the uniform bulk fluid is an unstable
phase. The peaks in g(r) correspond to spherical shells of particles periodically ordered around
the reference particle (colored in red in the sketch). Note that this particular form is the result
of an artificially imposed spherical symmetry to the density profile ρ(r) during the minimization
procedure of the grand-potential functional.

− e−z1

z21 + q2

(
cos(q) +

z1
q
sin(q)

)
+

Be−z2

z22 + q2

(
cos(q) +

z2
q
sin(q)

)]
. (6.8)

In Fig. 6.3 (b) we show S(k) for several values of the reduced temperature kBT/ε and

the same packing fraction η = 0.05 as in Fig. 6.3 (a). We observe a quickly growing

so-called pre-peak in S(k) at wavenumbers 0 < kpre ≪ kmono, where kmonoσ ≈ 2π, as

the temperature is lowered. Note that the inverse 2π/kpre roughly corresponds to the

wavelength of the long-ranged density modulations in g(r). Note also that computer

simulations have find a very similar behavior for g(r) and S(k) [182].

Interestingly, we can conclude from Figs. 6.3 (a) and (b) that a prominent peak

in S(k) at low wavenumbers can be retained despite that the long-ranged cluster

oscillations in g(r) become significantly damped upon increasing temperature. Indeed,

for several years there has been an extensive scientific debate [198, 199, 86, 87, 200, 201]

to which extent the pre-peak in S(k) provides information about the significance of

cluster formation in the fluid at low densities. The debate was triggered by contradicting

statements regarding the interpretation of an experimentally observed (small) pre-

peak in S(k) in solutions of proteins [84, 202]. Subsequent insights from theoretical

and simulation studies [198, 199, 86] suggested that a small pre-peak in S(k) is the

general result of pair potentials that exhibit a competition on different lengthscales,

and does not necessarily imply the presence equilibrium cluster phases. Based on a
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Figure 6.5 Bulk phase diagram of the hard-core two-Yukawa fluid treated within mean-field
DFT for B = 0.2, z1 = 1.0 and z2 = 0.5. In a broad region enclosed by the λ line the
homogeneous bulk state is unstable with respect to density fluctuations, and microphases (or
inhomogeneous bulk phases) are always the thermodynamic stable state. On and below the
λ line, the structure factor diverges at wavenumber 0 < kpre ≪ 2π/σ, i.e. S(kpre)→∞. At
low density and in the vicinity to the λ line clustering occurs, manifested by a prominent (but
finite) peak in S(k = kpre) and long-ranged oscillations in g(r). At higher temperatures, these
long-ranged oscillations become quickly suppressed, though a small pre-peak in S(k = kpre)
is retained (see Fig. 6.3). In recent literature [86, 201], this region is termed ‘intermediate
range-order’ fluid, a state which is dominantly populated by monomers and small transient
clusters consisting of few particles. At higher densities, outside the λ line, clusters can percolate
and form system-spanning unordered structures [183].

careful analysis of microscopic particle configurations, the authors of Ref. 199 identified

an empirical threshold based on the pre-peak height: if S(kpre) . 2.7 the system

is in a state called ‘intermediate range-order’ fluid characterized by the presence of

‘indistinct’ cluster phases, i.e. states that consist of monomers, dimers, trimers, and so

on where the cluster-size probability distribution decreases monotonically and shows no

maximum. Furthermore, the average lifetime of such small clusters seems to be rather

short, i.e. they frequently break and reform [201]. On the other hand, there is consensus

about that a sufficiently strong signal in the static structure factor S(kpre)≫ 2.7 is a

indication for a ‘mono-disperse’ cluster phase, i.e. where the cluster-size probability

function shows a clear maximum indicating a preferred mean-cluster size and only few

free monomers.

We will now consider lower temperatures than those for which g(r) and S(k) are

shown in Figs. 6.3 (a) and (b). Note that the gas-liquid critical point for B = 0.2,

z1 = 1.0 and z2 = 0.5 is located at (ηc = 0.123, kBTc/εc = 0.11). For temperatures

below kBT/ε ≈ 0.25 (at a packing fraction η = 0.05) we observe that g(r) exhibits



108 Competing Interactions

(c)

(c)(a)
(b)

(c)

(c)

Figure 6.6 Three-dimensional density profiles of possible microphases found by minimizing
the grand-potential at sufficiently low packing fraction (cf. Fig. 6.7). (a) Spherical micelles
arranged on a BCC lattice, (b) 2D-hexagonal cylinders, and (c) the double-gyroid structure .
White areas denote liquid-like high-density domains, black means zero density.

long-ranged oscillations that do not decay as r → ∞, which is shown as the purple

curve in Fig. 6.4. This means that there is a crossover from a disordered fluid state,

where g(r)→ 1 as r →∞, to a periodically ordered microphase-separated state. The

peaks in g(r) correspond to spherical shells of high-density domains located around

the reference particle at the origin (colored in red). Note that this particular form

is the result of an artificially imposed spherical symmetry to the density profile ρ(r)

during the minimization procedure of the grand-potential functional.

Within mean-field DFT one finds an instability region in the kBT/ε − η phase

diagram that is enclosed by a spinodal-like line, the so-called λ line. It is related to a

divergence of the pre-peak in the static structure factor, i.e. S(kpre)→∞. Physically,

this means that the homogeneous bulk fluid is unstable with respect to arbitrary small

density fluctuations, i.e. a periodically ordered microphase-separated state can be

the equilibrium phase without the presence of any external field. We plot the λ line

for B = 0.2, z1 = 0.1 and z2 = 0.5 in Fig. 6.5 as the short-dashed line along with

the binodal (solid) and the spinodal (long-dashed). At low densities, in vicinity to

yet outside of the λ line, the fluid exhibits unordered cluster phases manifested by

prominent long-ranged, slowly decaying oscillations in g(r), cf. our discussion above.

At higher particle densities, these clusters may percolate to form system-spanning

structures [182, 183]. We also indicate the regions of the ‘intermediate range-order’ fluid

[86, 201] at higher temperatures, where the static structure factor S(k) exhibits only

a small pre-peak. At such statepoints, the fluid is characterized by the presence of

mostly monomers and small transient clusters consisting of few particles.

In order to explore the structure of possible microphases, one has to perform

three-dimensional DFT calculations. A detailed analysis revealed [89] that lamellar,

cylindrical tubes arranged on a hexagonal lattice, gyroid-phases, and spherical micelles

arranged on BCC lattice can be stable phases, depending on the state point in the

kBT/ε – η phase diagram. In Fig. 6.6 we show the three-dimensional density profile of

several structures that can exist as thermodynamically stable microphases at packing

fractions η . 0.15. This includes (a) spherical micelles arranged on a BCC lattice, (b)

2D-hexagonal cylinders and (c) the double-gyroid phase. The white areas correspond to
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Figure 6.7 Thermodynamically stable microphases as predicted by mean-field DFT for the
hard-core two-Yukawa fluid. Note that the structures at high packing fractions denote their
inverse, i.e. low- and high-density domains are interchanged and the system forms periodically
ordered percolated structures. Image adapted and modified from M. Edelmann and R. Roth,
Phys. Rev. E 93, 062146 (2016).

liquid-like high-density domains and black means zero density. The optimal side length

L0 of the corresponding unit cells ranges between ≈ 20σ – 30σ for the double-gyroid, ≈
12σ – 20σ for e.g. the BCC structure and ≈ 7σ – 12σ for the lamellar phase. At high

densities, one finds for instance that an inverted BCC phase can occur, i.e. where low-

and high-density domains are interchanged. Other microphases (for instance spherical

micelles on a FCC lattice) can also exist, but they are typically metastable with respect

to the aforementioned structures.

The structures were obtained by numerically solving Eq. (2.66) in three dimensions

massively in-parallel on graphics cards (Appendix A) via a standard Picard iteration

scheme. One typically has to employ an initial guess ρinit(r) for the density that already

resembles the desired microphase [89]. This is due to the fact that the free-energy

landscape of a fluid with competing interactions can be very complex, i.e., within

the region enclosed by the λ line there can exist a lot of metastable cluster states.

This means that during the Picard iteration the system easily can become trapped

in a local minimum, which may be far away from the desired structure when simply

employing a random noise term above the bulk profile as an initial input. For instance,

a suitable guess for the lamellar structure with density modulations along the x-axis

reads ρinit(r) = ρb(1+γ sin(2πx/L0)), where γ controls the strength of the perturbation;

typically γ = 0.1 is sufficient. For the gyroid phase, a more complex approximation

based on Fourier-expansions has to be used; it can be found in Ref. 203. The optimal

periodicity length L0 of a specific microphase can be found by minimizing the grand
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potential functional Ω[ρ] in Eq. (2.61) w.r.t. both the density ρ(r) and the size of the

unit cell [89].

The complete phase behavior within (and in vicinity to)1 the λ line, as obtained

from mean-field DFT, is shown in Fig. 6.7 (modified from Ref. 89). Note that essentially

the same phase diagram is predicted by computer simulations [90]. In particular, the

microphases exhibit an unique sequence as a function of the packing fraction η and

constant temperature, which is the same as for diblock-copolymer melts [190, 191].

This remarkable result can be explained with work done by A. Ciach [193], who showed

that the latter system and colloidal fluids with competing interactions can be described

by the same Landau-type free-energy functional.

6.3 Anisotropic competing interactions2

In this section, we provide a DFT study of a fluid where the particles interact via an

anisotropic attraction via four patches, described by the Kern-Frenkel potential (3.1),

and an additional longer-ranged Yukawa repulsion. An illustration of this model is

displayed in Fig. 6.8. The total pair-interaction potential between two particles 1 and

2 thus reads

φ(r, ϖ1, ϖ2) = φHS(r) + φrep(r) + φbond(r, ϖ1, ϖ2) , (6.9)

where φHS(r) is the hard-sphere potential (1.6), r = |r| ≡ |r1 − r2| is the center-to-

center distance between particles 1 and 2, and φbond(r, ϖ1, ϖ2) is the KF pair potential

defined in Eq. (3.1). In this section, we define the repulsive Yukawa potential as:

φrep(r) =

0 ; r < σ

Bσ exp [−z(r/σ − 1)] /r ; r > σ
(6.10)

where B controls the repulsion strength and z its range. Note that here we do not

extent φrep(r) down to the core as we only treat the repulsion with a mean-field

functional:

Fex[ρ] = FHS
ex [ρ] + Fbond

ex [ρ] +
1

2

∫∫
dr dr′ ρ(r)ρ(r′)φrep(|r− r′|) , (6.11)

where the hard-sphere correlations are again described with the Rosenfeld functional

[17], and the bonding contribution according to the original approach of Yu and Wu

[72] (this was termed the ‘FMT functional’ in Ch. 4). We assume four patches per

particle, i.e. M = 4, a range of the patch-patch pair potential of δ = 0.119, and the

1Note that the λ line is a locus of mechanical instability of the homogeneous bulk fluid, i.e. periodic
microphases may also occur outside the λ line, where the bulk phase is metastable w.r.t. the latter
(but mechanically stable). This is the reason why in Fig. 6.7 e.g. the inverted-BCC phase also occurs
slightly outside of the λ line.

2This section is reproduced from: D. Stopper and R. Roth, Phys. Rev. E 96, 042607 (2017).
©2017 American Physical Society



6.3 Anisotropic competing interactions 111

Figure 6.8 Schematic illustration of the considered model for anisotropic competing interactions.
Patchy particles modeled as hard spheres (blue) with four attractive sites (red) and an additional
spherically-symmetric hard-core Yukawa repulsion (green).

opening angle is fixed at cos(θmax) = 0.895. The total excess free energy per particle

of the homogeneous fluid is given by:

βFex

N
=

[
3η(2− η)
2(1− η)2 − ln(1− η)

]
+M

[
ln(X)− X

2
+

1

2

]
+
ρb
2

∫
drβφrep(r) . (6.12)

The probability X that an arbitrary patch is not bonded is defined in Sec. 3.2 in

Eq. (3.19). In order to investigate whether this system exhibits a λ line, we need an

expression for the static structure factor S(k). Fortunately, the internal structure

of FMT and the mean-field functional allow for an analytic solution for the Fourier

transform of the bulk pair direct correlation function ĉ(k) and thus for S(k). The

former splits into three terms:

ĉ(k) = ĉHS(k) + ĉbond(k) + ĉrep(k) ,

where

ĉ(k)− ĉrep(k) = −
∑
ν,ν′

∂2(ΦHS +Φbond)

∂nν ∂nν′

∣∣∣∣
ρb

ω̂ν(k) · ω̂ν′(−k) , (6.13)

and

ĉrep(k) = −βφ̂rep(k)

= − 4πβBσ3

(kσ)2 + z2

(
cos(kσ) +

z

kσ
sin(kσ)

)
. (6.14)
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Figure 6.9 (a) Gas-liquid coexistence phase diagrams in the T ∗ − η plane for A = 0.005 (red
long-dashed), 0.01 (blue short-dashed), 0.25 (green dashed-dotted) and 0.1 (brown dotted).
Open squares denote the critical points. (b) Critical temperature T ∗

c and density ηc as a
function of the inverse repulsion strength 1/A. The parameter z controlling the range of
repulsion is fixed at z = 0.5.

Here, the ω̂ν(k) are the Fourier-transforms of the FMT-type weight functions ων(r),

which are known analytically (they can be found in Sec. A.2.1 of Appendix A). We do

not show the full expression here as it would not provide much physical intuition.

6.3.1 Bulk phase diagrams

In this section, we discuss results for the gas-liquid binodals and the λ line. The

former is determined by demanding chemical and mechanical equilibrium, and critical

points are calculated by demanding that the first and second derivatives of the systems

pressure p w.r.t. the density ρb vanish. All phase diagrams are displayed in the T ∗ – η

plane, where T ∗ = kBT/ε and ε is the patch-patch interaction energy. As in Sec. 6.2

we fix the amplitude ratio between attraction and repulsion, i.e. we assume B = Aε,

where A denotes a dimensionless scaling factor.

Gas-Liquid phase separation. In Fig. 6.9 (a) we show results for gas-liquid bin-

odals (lines) and critical temperatures (open squares) for distinct values of A. We

display curves for A = 0 (black), A = 0.005 (red), 0.01 (blue), 0.025 (green) and 0.1

(brown). The value of z is fixed at 0.5 which is inspired by previous DFT studies

of competing interactions [85, 89]. For A = 0, i.e. the pure patchy fluid, the liquid

phase is characterized by elongated tetrahedral networks, where most of the patches

are bonded (see also Secs. 3.3 and 3.4 for more details). Remarkably, we find that the

topology of the gas-liquid binodals changes fundamentally for A ̸= 0, where the liquid

branch is squeezed to significantly lower packing fractions. Moreover, the values of the

critical packing fraction ηc and temperature T ∗
c decrease, and eventually are suppressed

to the origin as 1/A → 0, see Fig. 6.9 (b). We also observe that the liquid-branch

of the binodal exhibits a reentrant shape, i.e. when the temperature is lowered at
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λ-line (blue dashed) for a variety of parameters A and z. Note the small packing fractions η in
(d) for A = 0.1 and z = 0.5 in comparison to A = 0.01 (a)–(c). Crosses in (a) denote state
points shown in Fig. 6.11.

constant η, at some point one enters the two-phase region and subsequently reenters

to a stable liquid state.

The effects leading to a reentrant phase diagram may be understood as the result of

a competition between bond formation and the isotropic repulsion. Up on cooling, the

latter increasingly influences bond formation between particles due to its long-range

character. In order to minimize their configurational energy, the particles may tend

to form elongated, chain-like structures rather than tetrahedral-like networks. As a

result, with decreasing temperature, the phase-separated regime appears to shrink and

vanishes for T ∗ → 0, as a fluid of chains does not phase separate [47]. This physical

picture is also consistent with that the critical point successively is suppressed to

the origin as A→∞. Furthermore, we have verified that the reentrant shape of the

binodal does not show up for a temperature-independent repulsion (i.e. constant B),

whereas the critical point is still suppressed to the origin as B →∞.

Note that from a technical point of view the reentrant effect and vanishing of

the critical point are the result of a competition between the rather complex density

dependence of Eqs. (3.20) and (3.19) and the mean-field free energy accounting for the

repulsion, which scales with ∼ ρ2b . It therefore remains an open question to what extend

a theory describing the repulsion beyond mean-field would impact the phase behavior.

It is also interesting to note that the reentrant shapes of the binodal bear resemblance

to the phase behavior found in systems with so-called 2AnB patchy colloids [154, 155].

There one places two sites of type A at the poles of each particle, and n patches of

type B are placed along the equator. The particles are allowed to only interact via AA

or AB bonds (with distinct interaction energies εAA and εAB), while BB bonds are

forbidden. In these systems, a reentrant binodal is the result of a competition between

AA bonds and AB bonds at finite temperatures if εAB < εAA/2. The latter condition

ensures that the ground state at zero temperature will always consist of chains (which

do not phase separate) rather than branched structures.
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Microphase separation: λ line. We now focus on the λ line, which is determined

by the value of the wavenumber k = kpre for which the static structure factor S(k)

diverges. In Figs. 6.10 (a) – (d) we show the λ lines (blue dashed), the binodals (red)

and spinodals (black) for a selection of parameters A and z: A = 0.01, z = 0.3 (a),

z = 0.5 (b), z = 0.75 (c), and A = 0.1 and z = 0.5 (d). Strikingly, the λ line also

exhibits a reentrant topology which is fundamentally different to spherically-symmetric

competing interactions [196, 89]. A feature satisfied by both the present system and

two-Yukawa fluid is that the λ line converges to the spinodal for T ∗ → 0 which here

gives rise to the reentrant behavior of the λ line. In particular, the λ line stretches

asymmetrically into the ‘high-density regions’ (the packing fractions are much lower

than e.g. for the two-Yukawa fluid) and converges rather quickly to the spinodal close

to the gas-liquid critical point. This may be due to the fact that a fluid consisting

mainly of short chains or small clusters, as present in the gaseous phase, seems to be

incommensurate with self-assembly into complex microphases. Hence, the reentrant

topology is most likely a consequence of the directionality of the particle interaction.

By altering the tuple (A, z), it is possible to significantly tune the absolute location

of the λ line in the phase diagram, as well as its relative location to the binodal. For

instance, we find when A is kept fixed and z is varied, that the absolute extension of the

λ line changes only slightly, whereas both the binodal and spinodal grow considerably

as the range of repulsion is reduced – compare Figs. 6.10 (a), (b) and (c). We can

also alter A and keep z fixed: compare Figs. 6.10 (b) where A = 0.01 and (d) where

A = 0.1. In this case, we observe that the binodal and the λ line both can be changed

on an absolute scale, whereas their relative location to one another is not affected

dramatically. Generally, we can conclude that the λ line follows the overall behavior of

the binodal and spinodal in the phase diagram as the relative strength of the repulsion

(i.e. the parameter A) is increased: the region where microphase separation can occur

is suppressed to very low packing fractions and temperatures which is a curious feature

certainly not seen in fluids with spherically-symmetric competing interactions.

6.3.2 Structural properties

In this section we shall focus on (bulk) structural properties of our model system. More

specifically, we calculate the fluid structure around a purely repulsive test particle.

Strictly speaking this is not equivalent to the radial distribution function g(r), but

the density profile around the repulsive test particle will capture the dominating

inter-particle correlations of the surrounding fluid. In order to obtain the (orientational

averaged) density distribution, we minimize the grand potential Ω[ρ] in radial symmetry

w.r.t.. to the density profile ρ(r) = ρ(r) using a standard numerical minimization

scheme [70]. The potential Vext(r) exerted by the test particle to the surrounding fluid

is set to

Vext(r) =

∞ ; r < σ

Aεσ
r exp (−z(r/σ − 1)) ; r ≥ σ

. (6.15)



6.3 Anisotropic competing interactions 115

0

0.25

0.5

0.75

1

1.25

1.5

1.75

0 5 10 15 20

(a) T ∗ = 0.13

A = 0.01
z = 0.30

0

0.5

1

1.5

2

2.5

0 5 10 15 20

(b) T ∗ = 0.10

0

0.25

0.5

0.75

1

1.25

0 5 10 15

(c) T ∗ = 0.06

g(
r)

r/σ r/σ r/σ

η = 0.10
η = 0.12
η = 0.14

Figure 6.11 Radial distribution function g(r) around a purely repulsive test particle for
different values of the temperature T ∗ = 0.13 (a), 0.10 (b), and 0.06 (c). The packing fractions
are η = 0.10 (blue dashed), 0.12 (red dotted) and 0.14 (black solid). The values of A and z
correspond to the phase diagram shown in Fig. 6.10 (a), where the state points are marked
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In Figs. 6.11 (a) – (c) we show the resulting density profiles ρ(r) for several values

of kBT/ε = 0.13 (a), 0.10 (b), and 0.06 (c) at constant packing fractions η = 0.14

(black solid), 0.12 (red dotted), and 0.10 (blue dashed). The parameters in φrep(r) are

set to A = 0.01 and z = 0.3 corresponding to the phase diagram in Fig. 6.10 (a), where

the considered state points are marked with crosses. For η = 0.10 and temperatures

T ∗ = 0.13 and 0.10 we are inside of the instability region; in Figs. 6.11 (a) and (b)

this is manifested by strong periodic density modulations in ρ(r) that do not decay as

r → ∞. The lengthscale of these oscillations is L0 ≈ 7 – 8σ which is fairly close to

2π/kpre, where kpreσ ≈ 0.8 is the wavenumber at which S(kpre) diverges.

For densities η = 0.12 and 0.14, the state points are in vicinity to but located outside

the λ line, and here we observe that long-ranged slowly-decaying cluster correlations

emerge. Following our discussion of Sec. 6.2, these may be related to unordered cluster

phases, which would not be recognizable in the bulk fluid (i.e. on statistical average

the density is constant, ρ(r) = const.) – in contrast to microphases inside the λ line. In

particular, we observe that the cluster oscillations in ρ(r) reflect the reentrant topology

of the phase diagram: far away from the λ line (cf. Fig. 6.11 (a)) only weak oscillations

can be seen; in its direct vicinity, cluster correlations are clearly visible, in particular

for η = 0.12. By further lowering temperature (Fig. 6.11 (c)) cluster correlations in

turn become less pronounced.

6.3.3 Inhomogeneous bulk phases

We will now investigate what kind of microphases can be stable within the regions

of the phase diagrams that are enclosed by the λ line. Does the typical sequence

(BCC-hexagonal-gyroid-lamellar-inverted gyroid-inverted hexagonal-inverted BCC) of

mesophases that is found in fluids with spherically competing interactions, as a function

of the density and constant temperature, change due to an anisotropic attraction?
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Figure 6.12 (a) The grand potential Ω normalized w.r.t. the lamellar phase (red dashed line)
as a function of η at temperature T ∗ = 0.12 for several structures, including the single-gyroid
(green dashed-dotted), double-gyroid (black solid), and 2D-hexagonal phase (blue dotted). (b)
Same as in (a) but as a function of the temperature T ∗ at fixed packing fraction η = 0.06.

In Fig. 6.12 (a) we show Ω/|Ωl| normalized w.r.t. the absolute value of the lamellar

phase Ωl as a function of the reservoir packing fraction η for A = 0.01 and z = 0.3,

corresponding to the phase diagram shown in Fig. 6.10 (a). The temperature is fixed

at T ∗ = 0.12. For these parameters we observe the same sequence of structures

as predicted for spherically-symmetric competing interactions (cf. Fig. 6.7): BCC-

hexagonal-gyroid-lamellar-inverted gyroid-inverted hexagonal-inverted BCC. Note that

for the sake of clarity the BCC phase is not displayed, as it occurs only in direct

vicinity to the λ line. The kinks in the graphs corresponding to the double-gyroid

and hexagonal phase indicate a first-order transition to their inverted structure, i.e.,

where low-density and high-density domains are interchanged. The lamellar and the

single-gyroid structure are its own inverse, thus the grand potential of these structures

is a smooth function of η.

Figure 6.12 (b) also pictures the behavior of the grand potential Ω/|Ωl|, but now
as a function of the temperature T ∗ at fixed packing fraction η = 0.06. Strikingly, we

observe a reentrant effect: starting from a stable lamellar structure, the gyroid phase

becomes stable between T ∗ ≈ 0.127 and T ∗ ≈ 0.11. Subsequently, this is followed by a

region where the 2D-hexagonal structure corresponds to the global thermodynamic

minimum, and at T ∗ ≈ 0.09 the gyroid becomes the most stable structure again. For

lower temperatures than displayed in the image, approaching the λ line, the lamellar

phase is stable again. This behavior directly reflects the reentrant shape of the λ line,

and is not compatible with the typical phase diagrams in systems with spherically
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competing interactions, cf. Fig. 6.5. We have performed the same calculations also

for the phase diagram in Fig. 6.10 (d), and found a similar behavior – although

here the inverse structures (e.g. inverse double-gyroid or inverse BCC) seem to be

unstable (despite a properly chosen initial perturbation δρ(r) one always ends up with

an unspecific structure), which may be due to the fact that the (reservoir) packing

fraction is too low in order to stabilize these structures.





Chapter 7

Patchy Models for Protein-Salt

Mixtures

7.1 Introduction

Proteins are essential biological macromolecules, ubiquitously present in living organ-

isms and cells, where they are crucial to and responsible for e.g. metabolism, the cell

structure, or the transport of molecules such as oxygen. Proteins consist of amino

acids connected via peptide bonds which defines their so-called primary structure. A

single protein can unite several thousands of individual atoms, that primarily interact

via covalent bonds, hydrogen bonds, and van der Waals forces. The non-covalent

interactions control the so-called secondary, tertiary and quaternary protein structure

and are typically much weaker compared to chemical bonds. Proteins can thus respond

to chemical influences, such as exposure to acids, or to physical influences, such as

temperature and pressure gradients with reversible or irreversible changes in their form

and shape (unfolding and denaturation). An illustration of the most abundant protein

in mammals, serum albumin, is pictured in Fig. 7.1.

Due to their inherent structure the interactions between proteins in solution are

much more complex than that between two atoms or spherical colloids. The interactions

among individual proteins include Coulomb forces, hydrogen bonds, van der Waals

interactions, as well as solvent-mediated effects due to the presence of hydrophobic

and hydrophilic zones on the proteins surface. Further levels of complexity are added

due to inhomogeneous patterns of surface charge and the non-spherical shape of many

proteins in general. All of this makes a quantitative physical description of proteins at

the molecular level cumbersome and hence poses a large challenge for the statistical

physics of soft matter. In particular, obtaining predictions for the macroscopic phase

behavior based on atomistic simulations is at the very best extremely time-consuming

and in many cases unfeasible. At the same time a profound understanding of the

microscopic mechanisms in protein solutions is important to various fields ranging from

biotechnology, biology, pharmacology and medicine, to environmental science and food



120 Patchy Models for Protein-Salt Mixtures

Figure 7.1 Left: Molecular picture of bovine serum albumin (BSA), where individual atoms
are shown as spheres. Grey corresponds to carbon, blue to nitrogen, red to oxygen, and yellow
to sulfur. The structure of the protein is the result of covalent- and hydrogen bonds, as well
as van der Waal and Coulomb forces. Right: The structure of the BSA protein in surface
representation. Images generated from https://www.rcsb.org/, PDB ID 3V03, K.A. Majorek
et al., Mol. Immunol. 52, 174 (2012).

processing. For example, protein condensation and aggregation can be related to many

diseases [204, 205] such as eye cataract [60] or Alzheimer’s disease [61].

In 1977 Ishimoto and Tanaka [206] were the first who observed that protein solutions

(lysozyme in salt water) can phase separate into protein-poor and protein-rich phases,

in this context often termed liquid-liquid phase separation (LLPS). Many further

studies on different types of proteins followed, see, e.g., Refs. 207–210 for detailed

studies by Benedek and co-workers who investigated the formation of metastable

(w.r.t. crystallization) liquid-liquid phase separation in aqueous γ-crystallin solutions,

which plays a crucial role in mammal eye cataract. The occurrence of metastable LLPS

regions is relevant to protein crystallization pathways: the presence of liquid-liquid

critical points may enhance the formation of crystal nuclei in a ‘two-step’ process

[211], where in a first instance a dense liquid droplet is formed from which then crystal

structures can emerge [212]. A broader overview on the experimental history of research

on the protein phase behavior is e.g. provided in Ref. 213.

Understanding and predicting the structure, dynamics and phase behavior of such

complex macromolecules defines soft-matter science, and there is no simple recipe or

general principle which tells us how to map a protein, or other complex materials as

polymer melts, to a simple fluid as liquid argon [2]. It thus seems intriguing that various

aspects of the experimental phase behavior of many distinct protein species, despite

their differences in size, structure, or biological function, share intriguing similarities

with a simple model of hard spheres and an additional short-ranged attraction outside

their hard core [62, 214]. This model was first studied by Hagen and Frenkel [215] to

model the phase behavior of colloid-polymer mixtures. Recall (see Sec. 1.2) that models

of colloidal particles interacting via a short-ranged attraction exhibit a fundamentally

different equilibrium phase behavior than those where the attraction is longer-ranged

[31]: if phase separation into colloid-poor and colloid-rich occurs, then it is typically

https://www.rcsb.org/
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metastable w.r.t. crystallization and the equilibrium phase diagram is as displayed

in Fig. 1.2 (b). However, in contrast to protein solutions, in colloid experiments

metastable liquid-liquid phase separation is often suppressed by particle aggregation

and dynamically arrested gel phases [31, 33].

While the statistical physics of colloidal fluids consisting of spherical particles

certainly is a valuable starting point, it is easy to grasp that proteins do not interact via

purely isotropic (effective) pair potentials. Evidence for directional interactions between

proteins is vast, starting from their non-spherical shape or the presence of hydrophobic

and hydrophilic zones on their surface that may give rise to orientation-dependent

forces. As regards the phase behavior, most notably the location of metastable critical

points and liquid-liquid phase boundaries at rather low protein densities, such that

the former are not frustrated by dynamic arrest, strongly suggest the presence of

anisotropic attractive interactions between proteins in solution [65, 45] as a popular

feature of patchy interactions is the tendency to render critical points at lower densities

compared to isotropic pair potentials [47]. A promising framework to study the phase

behavior of proteins is therefore formed by patchy particles [36, 59]. During the past two

decades, many patchy particle models have been formulated to study features of protein

solutions. In 1999, Sear [43] was the first who introduced a model based on Wertheim’s

perturbation theory that semi-quantitatively reproduced the phase diagrams of protein

solutions. In 2001, Curtis et al. [67] argued that directional interactions need to be

taken into account in order to reproduce experimental measurements of the second

virial coefficient B2(T ) in lysozyme solutions. In 2008, Gögelein et al. formulated

an approach [45] to calculate the effects of sodium chloride on lysozyme solutions,

were he employed a Barker-Henderson thermodynamic perturbation theory to describe

patchy attractions, and a screened Coulomb potential to account for effects of the

electrostatic repulsion. Results from computer simulations confirmed these theoretical

ideas [44, 216] and provided further evidence for the importance of patchy attractions

in protein solutions with other studies addressing the experimentally often observed

two-step crystallization process [217, 218]. Furthermore, important aspects of protein

solutions in presence of multivalent metal ions were successfully understood via simple

colloidal models making use of patchy interactions [46, 144], where salt ions can bind

to the protein surface and act as mediator for bonds between different proteins. In

this chapter, we shall be concerned with these systems.

7.2 Protein-salt mixtures

Multivalent-metal ions have proven to be a powerful tool to induce a broad variety of

interactions between proteins [68, 91]. Most importantly, these multivalent ions can

trigger a so-called reentrant phase behavior as a function of the salt concentration. We

shall now review the fundamentals of the experimental phase behavior of BSA and

human serum albumin (HSA) in the presence of yttrium-III chloride (YCl3) in some

detail based on work of the Schreiber group [68, 91, 219, 220, 69, 213, 46], though an
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Figure 7.2 Reentrant phase behavior of bovine serum albumin in the presence of yttrium
chloride at constant protein concentration of cp = 50 mg/ml and increasing salt concentration
(from left to right). The clear regime at low salt concentration defines Regime I, a turbid
solution Regime II, and a clear solution at high salt concentration Regime III (see text). Image
from F. Zhang et al., Phys. Rev. Lett. 101, 148101 (2008)©2008 American Physical Society

.

extensive review of all findings that have been gathered since more than a decade is

clearly beyond the scope of this chapter; for more details, we refer to the aforementioned

references, and references therein.

In pure water, without salt, both BSA and HSA carry a net-negative surface

charge (its precise value depends on the pH value) and hence the protein solution is

charge-stabilized. The addition of multivalent salt (in the following its concentration

is denoted by cs, typically given in millimolar (mM)) screens long-ranged repulsive

electrostatic forces acting between the proteins. At the same time, positively charged

multivalent cations (Y3+) can bind to solvent-exposed carboxylic side chains on the

protein surface and thereby change the net surface charge of the proteins. However,

for sufficiently low salt concentrations the solution stays charge-stabilized and appear

optically clear. In Ref. 68 this is called Regime I. Upon further increasing the salt

concentration, the samples may become optically turbid at a specific salt concentration

c∗, which, in turn, depends on the protein concentration cp. This region is called

Regime II in which the solution exhibits a very rich phase behavior, including a LLPS

region, protein crystallization via different pathways, or aggregation of amorphous

protein structures that at high densities form gel-like states. Further addition of salt

leads to a reentrant effect (or reentrant condensation) above a certain concentration

c∗∗, where the samples become optically clear again. This defines Regime III. An

illustration of this reentrant condensation is shown in Fig. 7.2. We will discuss the

three Regimes I, II and III in more detail subsequently where we complement the text

with Figs. 7.3 and 7.4.

Regime I: cs < c∗. With increasing salt concentration, approaching c∗, small-angle

x-ray scattering (SAXS) experiments show [68] that the scattering intensities I(q)

exhibit a rapid increase for wavenumbers q → 0 – see Figs. 7.3 (a) and (c) where I(q)

is shown for a protein concentration of cp = 100 mg/ml and various salt concentrations
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Figure 7.3 Left [(a) and (c)]: Results obtained from SAXS measurements of a BSA-YCl3
solution at a protein concentration cp = 100 mg/ml and various salt concentrations. Middle [(b)
and (d)]: Corresponding structure factors obtained from fitting a (sticky) square-well model
to the intensity. (e) Experimental results for the reduced second virial coefficient B2/B

HS
2 for

cp = 50 mg/ml as a function of salt concentration, where BHS
2 = 2πσ3/3 is the second virial

coefficient for hard spheres, obtained by assuming a sticky hard-sphere pair potential acting
between the proteins. The red, dashed line is a guide to the eye where B2/B

HS
2 = −1.5, which

is a phenomenological way to estimate the location of critical points in a wide class of simple
fluids [123, 124]. The black dashed line shows B2/B

HS
2 = 0, i.e. where attraction balances

repulsion. Images (a)–(e) from F. Zhang et al., Phys. Rev. Lett. 101, 148101 (2008)©2008
American Physical Society, data shown in (e) from M. Fries, private communication.

(below c∗). The corresponding1 effective structure factors S(q) are displayed in Figs. 7.3

(b) and (d): with increasing salt concentration, the values of S(q) a low q → 0 increase

suggesting that attraction between the proteins starts to dominate over repulsion upon

approaching the transition concentration c∗. By fitting known analytical expressions

for the structure factor of the square-well fluid to the experimental results one learns

that the range of protein-protein attraction is very short-ranged – a few per cent of

the effective protein diameter [68].

In Ref. 69 Soraruf and co-workers provide a detailed study of Regime I for the

BSA-YCl3 system. In this work, the isothermal compressibility χT and the (OZ)

correlation length ξOZ were measured using static (SLS)2 and the time-dependent

intensity auto-correlation function g(2)(q, t) was obtained from dynamic light scattering

(DLS)3. The results from SLS experiments presented in Ref. 69 showed that upon

approaching c∗ the isothermal compressibility and the correlation length increase by

several orders of magnitude, akin to a spinodal-like transition. These results are in

1Recall [57] that the scattering intensity is proportional to the static structure factor S(q),
I(q) ∝ P (q)S(q), where P (q) is the form factor, a function that contains information about the
geometric form of a particle (more precisely information about the spatial distribution of scattering
centers). Assuming a spherical or ellipsoidal particle P (q) is easily calculated. Thus, one can extract
an effective structure factor S(q), or, in turn, if a known analytical expression for S(q) of some model
is used, one can gather information about the effective protein pair interactions.

2In SLS experiments the low-density (ρb → 0) and large wavelength (q → 0) behavior of the static
structure factor S(q) can be measured:

S(q) ≈ S(0)

1 + ξ2OZq
2
≈ 1

(1 + 2B2ρp)(1 + ξ2OZq
2)

(7.1)

where S(0) is approximated by S(0) = (∂βp/∂ρp)
−1 ≈ 1/(1 + 2B2ρp) and B2 is the second virial

coefficient. ρp denotes the number density of the proteins in the sample.
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line with the strong increase of I(q → 0) obtained from the SAXS measurements.

Furthermore, two decay times in g(2)(q, t) emerged upon coming close to the c∗ line,

pointing towards the presence of protein structures larger than monomers. Recently,

Bleibel and co-workers found [144] a similar behavior upon approaching the fluid-fluid

spinodal in a simple patchy model for proteins, where cluster formation (i.e. networks

of bonded particles) was identified to be responsible for two decay times in the dynamic

structure factor. In Ref. 69 it is stated that no qualitative changes were observed

when repeating the SLS and DLS measurements after a few days using the same

samples, suggesting that the protein clusters may correspond to a true equilibrium

state. Interestingly, equilibrium clusters in protein solutions due to the presence of

competing interactions had been reported earlier [84]. We will return to this in Sec. 7.5.

Regime II: c∗ < cs < c∗∗. The experimental results found in Ref. 69 for the

compressibility and correlation length point towards the presence of a spinodal-like

transition upon approaching c∗. But what mechanisms might cause the optical

turbidity of the samples after crossing c∗ in Regime II (the rather sharp transition from

a clear to a turbid solution at salt defines c∗) ? From the perspective of equilibrium

liquid-state theory, the occurrence of steeply increasing scattering intensities, diverging

correlation lengths and an observable turbidity might lead to the conclusion that the

system crosses an actual spinodal line at cs ≈ c∗, where the turbidity is associated with

critical opalescence (density fluctuations on the scale of the wavelength of visible light).

However, crossing the boundary c∗ does not necessarily lead to macroscopically phase-

separated protein phases – this requires sufficiently high protein and salt concentrations,

see Figs. 7.4 (a) and (b). The coexisting protein-rich phases can form amorphous

protein aggregates after several days to weeks and appear gel-like (Fig. 7.4 (e)) and

we also show the typical behavior of the second virial coefficients B2 crossing the

LLPS region (calculated from a simple square-well model) in Fig. 7.3 (c) for a protein

concentration of cp = 50 mg/ml. It becomes clearly negative upon approaching c∗,

3With DLS experiments it is possible to investigate dynamic properties. The intensity auto-
correlation function g(2)(q, t) can be written as

g(2)(q, t) = 1 + β |f(q, t)|2 , (7.2)

where f(q, t) ≡ F (q, t)/F (q, 0) and F (q, t) =
∫
dr exp(−iq · r)G(r, t) is the spatial Fourier-transform

of the van Hove function G(r, t) termed the dynamic structure factor. β is an instrument dependent
constant. Since the van Hove function can be split into self (s)- and distinct (d) parts G(r, t) =
Gs(r, t) + Gd(r, t) (see Ch. 5 for details) the same is true for the dynamic structure factor, i.e.
F (q, t) = Fs(q, t) + Fd(q, t). For mono-disperse systems it is known that fs/d(q, t) decays for fixed q
and as a function of time as [57]:

fs/d(q, t) ∝ exp(−Ds/d(q) q
2 t) , (7.3)

where Ds/d(q) are (q-dependent) diffusion constants that provide information about self- and collective
(distinct) structural relaxation over time. A second, typically slower time scale may emerge if structural
correlations on a larger lengthscale influence the dynamics in the system, i.e. then one expects

fs/d(q, t) = A
(1)

s/d(q) exp(−D
(1)

s/d(q) q
2 t) +A

(2)

s/d(q) exp(−D
(2)

s/d(q) q
2 t) , (7.4)

with D
(2)

s/d(q) < D
(1)

s/d(q) and q-dependent amplitudes A
(i)

s/d(q).
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Regime I: repulsion Regime II: attraction Regime III: repulsion

g h i

Figure 7.4 Figures illustrating the explanations of Regime I, II and III in the main text. (a)
Reentrant phase behavior of HSA (similar for BSA) in the presence of YCl3 in the cp – cs plane
at 20◦C. (b) Under an optical microscope the LLPS region appears as slowly coalescing droplets
of the protein-rich phase. (c) and (d) Growth of crystals observed from the protein-poor phases
via two distinct crystallization processes: a non-classical two-step crystal [220] growth from
the dilute protein phase via intermediate high-density droplets close to the LLPS and c∗∗

phase boundary in (c) and via a classical one-step process in (d) (growth from a homogeneous
solution). (e) Amorphous protein aggregates self-assemble after long times (after several weeks)
from high-density protein phases, indicating a gel-like but non-arrested phase. (f) Sketch of the
conjectured three-dimensional phase diagram for protein-salt mixture in cp – cs –T space. (g)
– (i) Sketch of the dominating protein interactions in Regimes I, II and III upon adding salt.
Regime I: Electrostatic repulsion dominates in the solution, due to the strongly negative net
surface charge (Q≪ 0) of HSA/BSA at neutral pH. Regime II: The trivalent positively charged
Y3+ ions (green dots) screen the electrostatic repulsion and can bind to the protein surfaces.
At the same time proteins start to form aggregates. Regime III: At high salt concentrations,
over-charging (Q≫ 0) sets in leading again to an overall repulsive protein-protein interaction.
Image is adapted and modified from Zhang et al., Soft Matter 8, 1313 (2012).

and decreases even below the value of −1.5, which in a wide class of simple fluids is an

empirical value to estimate the critical temperature [123, 124].

We mentioned in the introduction 7.1 that a general feature in protein solutions is

that the fluid-fluid coexistence is metastable with respect to crystallization, in analogy

to the equilibrium phase behavior of colloidal fluids with a short-ranged attraction.

Indeed, depending on the actual salt and protein concentration, crystals can nucleate

via the classical pathway near the phase boundary c∗, or via a non-classical two-step

mechanism close to the LLPS region and c∗∗ boundary [91, 219, 220]. However note

that there is strong evidence [221] that c∗ does not coincide with the equilibrium

fluid-solid boundary, as might be surmised from Fig. 7.4 (f); crystallization can also be

observed below c∗, i.e. the (equilibrium) fluid-solid phase boundary must lie at lower

salt concentrations. These experimental results point towards the fact that Regime II
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is presumably located completely within the equilibrium solid-fluid coexistence region.

Recall that crystallization in experiments with colloids that interact via a short-ranged

attraction is often observed only in a narrow region close to the equilibrium gas-solid

coexistence curve, and metastable non-equilibrium particle aggregation and gelation

likely frustrates the true equilibrium phase coexistence of a low-density colloidal gas

and a crystal phase, even at very low colloid packing fractions of ∼ 1% [31, 33].

Given the close analogies found in the phase behavior of e.g. colloid-polymer

mixtures and many protein solutions, a visible turbidity found outside of the LLPS

region (cf. Figs. 7.2 and 7.4 (b)) might also be the result of non-equilibrium protein

aggregation [221]. In fact, in contrast to states at salt concentration cs < c∗ where

experiments suggest [69, 222] that small protein clusters might correspond to an

equilibrium state (see also Sec. 7.5), for cs > c∗ it is observed that the aggregates tend

to grow evidencing a non-equilibrium state [69]. Importantly, these metastable protein

aggregates are believed to play a role in the above mentioned two-step crystallization

process near the phase boundary c∗∗ [220].

Regime III: cs > c∗∗. At very high salt concentrations, the LLPS region and

turbidity vanishes and the solution becomes clear again [68]. The system undergoes

a charge inversion [68, 223, 213], i.e. the net surface charge of the proteins becomes

positive. As a result, electrostatic repulsion again dominates over attraction. This

manifests itself in decreasing values of I(q) and S(q) at low q → 0, corresponding

to increasing values of the (reduced) second virial coefficient B2/B
HS
2 . This behavior

is called reentrant condensation and is defined by a second phase transition at salt

concentrations cs = c∗∗. As mentioned above, one also observes protein crystallization

in vicinity to the latter, though the nucleation mechanism is different to that found at

c∗ [219].

7.3 Ion-activated patchy particles as a model for protein-

salt mixtures

The existence of a reentrant LLPS region and protein condensation can be semi-

quantitatively explained with a colloidal model of patchy particles [46] formulated

within Wertheim’s theory [73–77] (see also Ch. 3). The key point of the model is

that the patch-patch interaction strength is controlled by the amount of salt (cations)

present in the system. All repulsive interactions that occur and dominate the protein

solution in Regimes I and III are mapped onto the hard-sphere pair potential. The

patches represent solvent-exposed side chains on the protein surface which can be

occupied by the yttrium ions, which yields an energy gain of εb. Two proteins can

then be cross-linked if an occupied site meets a non-occupied one. In this case the

interaction between the two proteins is activated by an ion, whereas it is deactivated

otherwise. Note that protein bonds mediated by yttrium ions were observed in crystals
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Figure 7.5 Proposed microscopic explanation for the formation of attractive protein interactions
in the context of a patchy colloidal model [46]: multivalent cations can bind to unoccupied
sites on the protein surface. The occupation probability Θ is defined in Eq. (7.5) and is shown
as a function of the chemical potential µs of the salt (blue dashed line). A protein bond can be
formed if an occupied site meets an unoccupied one (‘activated’) but no bond can be formed if
two occupied or unoccupied sites meet (‘deactivated’). The resulting patch-patch interaction
energy is given by Eq. (7.7) and is displayed by the red curve as a function of µs. Image
adapted and modified from Roosen-Runge et al., Sci. Rep. 4, 7016 (2014).

[219]. An illustration of the mechanism is provided in Fig. 7.5, taken and modified

from Ref. 46).

The average occupancy Θ of a site by an ion may be written as the grand-canonical

statistics of a two-state system:

Θ(µs) =
1

exp(β(εb − µs))
, (7.5)

where µs is the chemical potential of the cations. As a result, the (average) patch-patch

interaction energy ε may be written as

ε = εuu(1−Θ)2 + 2εuoΘ(1−Θ) + εooΘ
2 . (7.6)

The first term describes the interaction between two unoccupied sites. They meet with

a probability of (1 − Θ)2; the third term accounts for the interaction between two

occupied sites, meeting with a probability of Θ2. It is assumed that two unoccupied

or two occupied patches do not interact, i.e. εuu = εoo = 0. Eventually, the effective

patch-patch attraction becomes

βε(µs) =
2βεuo exp(βεb − βµs)
(1 + exp(βεb − βµs))2

, (7.7)

and is thus controlled by the chemical potential µs of the salt, the binding energy εb

between the cation and the proteins surface, and the interaction energy εuo between

an occupied (activated) and unoccupied (deactivated) site meeting with probability

Θ(1 − Θ). Note that the quantities εb and εuo may depend on the ion and protein
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(a)

(b)

(c) (d)

Figure 7.6 Theoretical phase diagram of the ion-activated patchy particle model [46] (see text
for details) in the ηp – cs plane. (a) + (b) Comparison of the theoretical phase diagram to
the experiments according to Roosen-Runge et al. [46]. The red-dashed line in the bottom
left image (b) displays the percolation line according to Flory-Stockmeyer theory [149, 148]
where the probability of bonding exceeds pb > 1/3 in the case of four binding sites (patches)
per protein (cf. Eq. (3.26)). (c) The model exhibits a closed-loop LLPS (green line) with
two, upper and lower, critical points (squares). The white line enclosing the LLPS regime
shows the locus where χT = χid

T , i.e. where S(0) = 1. According to Stopper et al. [136]
(see also Sec. 2.4) the overall particle attraction dominates over repulsion within the region
enclosed by this line. The colored heat map represents the number fraction Φ (cf. Eq. (3.27))
of proteins engaged in clusters, where the blue area corresponds to Φ ≈ 0, i.e. the presence of
hard-sphere like monomers, and red to Φ ≈ 1, i.e. the presence of system-spanning networks.
(d) A magnification of the phase diagram at low volume fractions (see text).

species, respectively, and can be considered as fixed quantities in a given experimental

setup. They may be chosen inspired by experimental values [46]. Thus, the chemical

potential µs controls the attraction between the proteins and takes the role of an

effective temperature. For βµs → ±∞ it follows from Eq. (7.7) that βε(µs) → 0,

i.e. the proteins behave as hard spheres in the limit of no salt and at very high salt

concentrations.

The resulting bulk phase diagram is displayed in Fig. 7.6 in the ηp – cs plane, where

ηp denotes the protein volume fraction, and cs the total salt concentration present in

the system. The model assumes four binding sites per protein (i.e. M = 4), inspired by

the number of cross-linked proteins in crystals [219] and βεb = −5 and βεuo = 14. It is

also important to note that only the proteins are represented explicitly in this model.

This, in turn, implies that cs as a function of µs cannot be predicted self-consistently

within this approach. However, we may assume [46] that cs can be written as4

cs(µs) = ρpMΘ(µs) + ρrs(µs)
(
1− ηp(1 + σs/σp)

3
)

(7.8)

≡ cbounds (µs) + cfrees (µs) (7.9)

where ρp is the protein number density, σp (σs) denotes the effective protein (salt

ion) diameter, and ρrs(µs) = C exp(βµs) is the number density of the salt ions in the

reservoir, which are approximated as an ideal gas. However, the constant C cannot be

determined self-consistently; in Figs. 7.6 (c) and (d) we have set C ≡ 2. The first term
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in Eq. (7.8) accounts for the salt ions bonded to the protein surfaces and the second

term describes the amount of free salt present in the system.

Comparing the theoretical predictions to the experimental phase diagram (Figs. 7.6

(a)+ (b), from Ref. 46), we see that the colloidal model accurately reproduces the

closed-loop coexistence region (green lines) on a semi-quantitative level. In particular,

the rather low values of packing fractions below 25% of the high-density protein

phase and of the critical densities (squares) below 10% point towards the presence

of highly anisotropic, patchy protein interactions. The red dashed line in Fig. 7.6

(b) corresponds to the percolation line (defined in Eq. (3.26)). The blue solid line

is the fluid-solid boundary, where the solid is described within a cell model [43]. In

accordance with experimental results, the LLPS regime is found to be metastable5

w.r.t. crystallization [46]. The fraction Φ of proteins in clusters (or the degree of

polymerization), cf. Eq. (3.27), displayed as a coarse contour plot in (b), is shown

in a more detailed heat map in Figs. 7.6 (c) and (d). Blue areas correspond to the

hard-sphere limit, i.e. Φ = 0 whereas red corresponds to Φ = 1 indicating the presence

of system-spanning dense networks of proteins. In addition, we show as the white solid

line where the isothermal compressibility takes its ideal-gas value, i.e. where attraction

balances repulsion (see Sec. 2.4). The behavior of both, the degree of polymerization

Φ and the line χT = χid
T fairly resemble the experimental lines c∗ and c∗∗.

It is important to note that the model provides an effective and coarse description

within a patchy colloidal picture, that itself is based on an approximate theoretical

framework. We thus emphasize that e.g. the criterion χT = χid
T or the percolation

line are not a direct quantitative measure for the experimental crossover lines c∗

and c∗∗, but rather provide an idea of the essential physics in terms of a reentrant

attraction as a function of the salt concentration. Recall that any form of repulsion is

mapped onto the hard-sphere potential and any form of attraction is mapped onto the

patchy interaction. Similarly, the theoretical model fails to satisfactorily explain the

occurrence of a turbidity in experiments that is visible by eye. As mentioned earlier, a

turbidity implies the presence of dense aggregates or droplets of proteins with sizes

of the order of several hundreds of nanometers. The image Fig. 7.6 (c) displays a

magnification of the theoretical phase diagram at low protein packing fractions. Here

the fraction of proteins in clusters is predicted to range between 10% and at most 40%,

which cannot quantitatively explain the presence of large and dense protein aggregates

4Note that in Eq. (7.8), and in the model in general, the unit of cs is a number density, whereas
in experiments the salt concentration is typically given in millimolar (mM). Similarly, the protein
concentration cp is e.g. given in mg/ml, whereas in the theoretical model reduced quantities such as the
protein packing fraction ηp = πσ3

pρp/6 are used. Interconversion of these variables is straightforward.
For instance, ηp can be calculated from cp in mg/ml via: ηp = πσ3

p ρp/6 = πσ3
p (cp/MBSA) /6 , where

σp ≈ 7 nm is the effective protein diameter and MBSA = 66 kDa is the molecular weight of BSA.
Note, however, that there is, of course, not a one-to-one correspondence between the experimental and
theoretical phase diagram in terms of absolute values for the protein and salt concentrations.

5Wertheim’s theory for patchy particles cannot describe solid (crystalline) phases. Thus
‘metastable’ in this context means that the Wertheim free energy of the fluid phase is larger than that
obtained from the cell-model method. A potential future project could elucidate the precise location
of the fluid-solid phase boundaries of the model with the help of computer simulations.
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scattering visible light. In particular, if the protein aggregation in Regime II was a

pure non-equilibrium phenomenon (cf. discussion in Sec. 7.2), no equilibrium theory

would be able to describe the lines c∗ and c∗∗ on a quantitative level.

7.4 Protein adsorption at the solid-liquid interface6

Protein adsorption at solid-liquid interfaces occurs in many natural processes, and its

understanding is crucial to many fields, ranging from biotechnology, biology, pharma-

cology, medicine to environmental science and food processing with relevance in many

applications [224]. In particular, it is the first step in numerous biological processes,

such as the blood coagulation cascade or transmembrane signaling and adhesion of

particles (bacteria or cells) [224] and therefore plays a key role in biomedical devices,

including biosensors, biochips, soft contact lenses and biomaterials for implants [225].

In this section, we demonstrate that experimentally observed salt-induced protein

adsorption at a planar attractive substrate can be intuitively understood with the

ion-activated patchy model (see Sec. 7.3). The adsorption experiments, carried out by

the Schreiber group, were performed in presence of a planar silicium-dioxide (SiO2)

substrate at different salt (YCl3) concentrations and constant protein (BSA) concentra-

tion of cp = 20mg/ml corresponding to a packing fraction of ≈ 1%. This corresponds

to taking a path in the experimental phase diagram as indicated by the red arrow in

Fig. 7.7 (b). For further experimental details we refer to Ref. 161.

Experimental observation

As outlined in Sec. 7.2, protein solutions in presence of multivalent undergo a reentrant

condensation (RC) phase behavior as a function of the total salt concentration. An

aggregation Regime II occurs in between two (protein-density dependent) salt con-

centrations c∗ and c∗∗, which is illustrated in Fig. 7.7 (b). The physical mechanisms

behind the observed RC behavior are believed to be the inversion of protein charge

(Fig. 7.7 (a)) and a cation-mediated anisotropic attraction. The laterally-averaged

thickness d of the adsorbed protein layer was obtained from real-time ellipsometric data

measurements. The experimental results (individual symbols) are plotted in Fig. 7.8

as a function of of the dimensionless quantity cs/cp. Note that both BSA and SiO2

surfaces are net negatively charged in pure water without added salt. Under these

conditions the electrostatic repulsion among the proteins as well as among proteins

and the substrate dominates the solution, leading to an overall low adsorption. With

increasing salt concentration cs, a clear increase of the adsorbed amount of proteins

at the substrate is observed (solid triangles in Fig. 7.8). In Regime II, the value of d

reaches a maximum of ≈ 10 nm at cs = 4 mM (empty diamonds in Fig. 7.8), evidencing

that clearly more than one monolayer of proteins is adsorbed to the interface (the

6This section is partially reproduced from M. Fries, D. Stopper, A. Hinderhofer, F. Zhang, R. M.
J. Jacobs, M. W. A. Skoda, R. Roth, and F. Schreiber. Phys. Rev. Lett., 119, 228001 (2017). ©2017
American Physical Society
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Figure 7.7 (a) Charge inversion of BSA as a consequence of adding trivalent yttrium ions. (b)
Schematic of the bulk phase diagram of BSA and YCl3 showing a liquid-liquid phase separation
(LLPS) and reentrant condensation. The dashed red arrow indicates the path taken in the
experiments.

effective diameter of BSA is ≈ 7 nm). Upon further increasing the salt concentration,

the protein adsorption decreases down to a value of d ≈ 6 nm when approaching the

second transition line c∗∗. Note that in Regime II the bulk solution was centrifuged

before performing the adsorption measurements, which results in a small jump of the

adsorption at the transition from Regime II to III [161]. The centrifugation removed

some of the largest protein aggregates, as an excessive amount of large protein clusters

would cause a dramatic drop of the sensitivity of the ellipsometer due to massive light

scattering. We show both data sets at cs/cp = 40 (centrifuged and non-centrifuged) to

demonstrate the obtained difference, which, importantly, does not affect the overall

adsorption trend. In Regime III, close to c∗∗, the value of d after (≈ 6 nm) and without

centrifuging (≈ 7.5 nm) for cs = 12 mM. At very high salt concentrations (solid squares

in Fig. 7.8), deeply in Regime III, the value of d converges to a plateau value of ≈ 4.5

nm corresponding to slightly less than coverage by one full monolayer. Interestingly,

there the proteins were found to irreversibly be bounded to the substrate (rinsing the

sample with water did not reduce the measured layer thickness d) [161].

Theoretical modeling

In order to understand the experimental adsorption behavior, in a first instance it

is helpful to understand that the latter is related closely to that of the second virial

coefficient B2 of the bulk protein solution (see inset of Fig. 7.8). Recall that B2 is

defined as

B2 = 2π

∫ ∞

0
dr r2

[
1− e−β φeff(r)

]
, (7.10)

where φeff(r) is the effective spherically-averaged protein-protein pair potential. In

Regime II, the value of B2/B
HS
2 , where BHS

2 = 2πσ3p/3 is the hard-sphere virial coefficient,

is clearly negative indicating a strong overall attraction between proteins compared to

Regime I and III; note that this is not the definition of the regimes nor its boundaries,

but rather is an important observation: the net attraction between proteins is reflected

by a sharp adsorption maximum. This observation indicates that the protein adsorption
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Figure 7.8 Individual symbols: Adsorbed protein layer thickness d extracted from ellipsometry
as a function of cs/cp. c

∗ and c∗∗ denote the phase transitions of the bulk solution [68], see
also Fig. 7.7 (b). The top cs-axis shows the absolute salt concentration cs in mM (at cp = 20
mg/ml). The blue shaded area indicates the approximate range where bulk turbidity occurs.
Solid and dashed lines: Protein adsorption based on DFT calculations as borne out by the
ion-activated attractive patch model, while neglecting long-range electrostatic forces, as a
function of cs/cp for two different values of βεw (see main text). Inset : The reduced second
virial coefficient B2/B

H
2
S obtained from SAXS measurements.

in the system is closely related to the bulk behavior, which can successfully be accounted

for by the model for ion-activated attractive patches as a mechanism for interactions

in protein-salt mixtures, introduced in Sec. 7.3. While the experimental results suggest

that the bulk behavior dominates the adsorption trend, another key point is the

protein adsorption at a charged attractive planar wall, which implies breaking the

translational symmetry of the system. We can make use of DFT in order to investigate

inhomogeneous density distributions of proteins at the solid-liquid interface. More

precisely, we employ the mFMT-DFT formulation of Wertheim’s theory, discussed

in detail in Ch. 4, to theoretically calculate the layer thickness d at the attractive

substrate, where we incorporate the protein model from Sec. 7.3 within DFT.

The attraction mechanism between protein and substrate arises in the experiments

as follows: the substrate is charged and strongly attracts yttrium ions, which in turn

attract proteins towards the wall (Fig. 7.9 (a)). Effectively, this can be described by a

short-ranged external potential Vext(z) acting on the proteins, where z is the distance

normal to the SiO2 wall. We set

Vext(z) =

∞ ; z < 0

−εwΘ(µs)h(z) ; z ≥ 0 ,
(7.11)

in order to represent a steric repulsion between proteins and the substrate for z < 0

and an attraction for z > 0. The function h(z) accounts for the rather short-ranged

attraction induced by the yttrium ions condensed on the wall – which is in-line with

recent experimental observations [226]. Here, we employ a Gaussian form h(z) =
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Figure 7.9 (a) Illustration of the different interaction mechanisms of the proteins, salt, and
interface. (b) Sketch of protein adsorption on the attractive surface by increasing cs/cp.

exp(−2(z/σp)2) with the range of attraction being roughly one protein diameter, which

effectively accounts for the range of the screened electrostatic interactions between ions

and the wall, and between ions and proteins.

The key point of the wall-fluid potential is: the strength of the external potential

depends on µs, the chemical potential of the salt, via the occupation probability Θ of

the protein binding sites. This form can be motivated by the following arguments. A

sketch is presented in Fig. 7.9. At low cs, when Θ→ 0, only few proteins are subject

to the attraction of the wall induced by ions. As cs increases, more ions can mediate

attractions between the wall and proteins. At the same time, the protein-protein

attraction increases considerably, which in turn leads to an increase of the overall

adsorption of proteins. At very high cs (Θ→ 1), the mechanism for the wall attraction

remains, while the protein-protein interaction becomes weak since a majority of binding

sites are occupied so that salt ions cannot induce anymore a patchy attraction between

proteins. Therefore, one expects from the just outlined model ≈ 1 monolayer of proteins

to be adsorbed on the wall at high salt concentrations.

In Fig. 7.8 (solid and dashed lines), we show the theoretical values of d in nm as

a function of cs/cp for a packing fraction ηp = πρpσ
3
p/6 = 0.0078, corresponding to a

path in the theoretical phase diagram as illustrated by the red dashed arrow in Fig. 7.7

(b). This particular value for the packing fraction was chosen such that the relative

distance between the path and LLPS boundary is the same as that in the experimental

phase diagram4. Recall also that only the proteins are represented explicitly in the

theoretical model, which implies that the salt concentration cs as a function of µs

cannot be predicted self-consistently within this approach. We use the location of

the minimum of the experimentally determined value of B2/B
H
2
S in order to calibrate

cs(µs) which results in C = 2 in Eq. (7.8).

We furthermore choose four binding sites per protein (i.e. M = 4), εb = −5 and

εuo = 14 in Eqs. (7.5) and (7.7) as in Ref. 46. The protein adsorption is then obtained

from the inhomogeneous density profile ρp(z), computed from DFT employing the

ion-activated patch model. Recall that in Sec. 4.4 of Ch. 4 we have shown that the

mFMT-DFT is fairly reliable for the case of four binding sites per particle. In order to

compare with experiments, we define d as the distance from the wall where ρp(z) is at

least 50% higher than the bulk density ρp. For suitable values of βεw (1.8 (solid curve),

and 1.7 (dashed curve)), we find very good, semi-quantitative agreement between
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Figure 7.10 (a) Adsorption layer d in nm assuming a protein diameter of σp = 7 nm as obtained
from the theoretical model upon approaching LLPS at several constant protein volume fractions
ηp, where the orange curve corresponds to the black solid line in Fig. 7.8 with βεw = 1.8. The
inset (b) demonstrates the paths taken relative to the low-density protein phase of the LLPS
region. (c) Plots of the protein density ρp(z) corresponding to the adsorption maxima shown
in (a) and normalized to their asymptotic value for z →∞, where the same color code as in
(a) and (b) is used.

theory and experiment. For high values of cs, we find a value of d related to ≈ 1

monolayer coverage, similar to the experiments.

The theoretical results confirm that ion binding at the protein surface drives the

experimentally observed non-monotonic adsorption behavior, thereby reflecting the

underlying bulk interactions. In particular, the remarkable agreement between experi-

ment and theory (considering in particular the few parameters involved) emphasizes

that our model of ion-activated attractive patchy particles, subjected to an effective

external wall potential, captures the essential effects of the protein adsorption at a

charged surface in the presence of multivalent salt ions. Our model is kept intentionally

simple with a minimum number of parameters, which helps us to identify the key

mechanism responsible for the behavior of the system, namely the ion-activated patchy

interactions of the proteins.

Enhanced protein adsorption upon approaching coexistence region

Importantly, using the DFT model we can easily explore the adsorption behavior of

the system in different regions of the bulk phase diagram. The theoretical predictions

for the layer thickness d, as a function of the dimensionless ratio cs/cp, are displayed

in Fig. 7.10 (a) for several fixed protein volume fractions; the corresponding paths in

the theoretical bulk phase diagram are shown in the inset (b). The model parameters

are the same as in Fig. 7.8 and given above. In addition, we show the protein density

distributions ρ(z) obtained from DFT in Fig. 7.10 (c), corresponding to the maxima of
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the adsorption layer d shown in Fig. 7.10 (a). Note that the curves are normalized

with respect to the bulk value of the protein-poor phase.

The model predicts that the adsorption in Regime II is dramatically enhanced upon

approaching the LLPS region. For the path crossing the coexistence region (black arrow)

the attractive substrate is covered by a macroscopic film of the coexisting high-density

protein phases, i.e. the layer thickness d diverges. The enhancement of adsorption at

the solid-liquid interface, when approaching liquid-liquid coexistence from the dilute

phase, is a well-known phenomenon in the statistical physics of simple liquids [57, 227].

It is related to wetting transitions, which can occur at bulk coexistence where the

thickness of the adsorption layer diverges either continuously or discontinuously to

form a macroscopically thick film above a certain so-called wetting temperature.

Our theoretical results suggest that interfacial phenomena such as wetting may

also be formed in rather complex solutions of proteins, which would provide promising

new perspectives for controlling protein adsorption at interfaces. In fact, exploiting the

underlying bulk phase behavior and thermodynamic conditions offers an particularly

efficient tool for tailoring a desired protein density at substrates in a controlled manner.

7.5 Simple extension for the protein model

In Sec. 7.2 we laid out the experimental phase behavior of proteins-salt mixtures

in some detail. In this section, we discuss possible equilibrium cluster formation of

proteins upon approaching the lower phase boundary c∗ in Regime I. In fact, we would

expect that upon approaching c∗ there is a window where competing interactions (see

Ch. 6) might be present as the surface charge of the proteins is reduced due to binding

of positively charged cations to the protein surfaces, resulting in a weakening of the

overall electrostatic repulsion between the proteins. At the same time, ion-mediated

bonds between the latter lead to an effective short-ranged patchy attraction. While the

existence of two-time scales in dynamic correlation functions provides some hints for

cluster formation [69], according to our discussions given in Ch. 6, we would also expect

the presence of a pre-peak in the static structure factor S(q) at low wave numbers q.

In order to take electrostatic forces into account, the simplest extension of the

protein model discussed in Sec. 7.3 is to assume a salt-dependent screened electrostatic

repulsion, which may be described by the Derjaguin-Landau-Verwey-Overbeek (DLVO)

theory. The latter was derived for the dilute limit of two charged hard spheres in the

presence of monovalent salt, and thus should be applied with care to denser protein

solutions in presence of multivalent salts; nevertheless it may provide qualitative insights

into the essential physics. Let us thus consider a repulsive hard-core Yukawa-potential

φrep(r) ≡ φDLVO(r) in addition to the salt-dependent patchy attraction. The theoretical

description within DFT is as described in Sec. 6.3. Theoretical results for the structure

factor S(q) are calculated via the Fourier transform of the direct pair correlation

function ĉ(q), S(q) = 1/(1 − ρbĉ(q)), where the latter is obtained from taking two

functional derivatives of the excess free energy functional given by Eq. (6.11).
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Within DLVO theory, the repulsive part of the pair interaction reads:

βφDLVO(r) =
ADLVO

r/σp
exp[−κ(r/σp − 1)] , (7.12)

=
λB/σp

(1 + κ/2)2
Q2

p

r/σp
exp[−κ(r/σp − 1)] , (7.13)

where κ−1 is the reduced (dimensionless) Debye screening length and Qp is the net

protein surface charge in units of the elementary charge e. Both quantities, κ and Qp,

are in general salt- and protein concentration dependent. The inverse reduced Debye

screening length may be written as

κ = σp

√
4πλB (z2cfrees + ρp|Qp|) , (7.14)

where cfrees is the number density of the free ions (cf. Eq. (7.8)) and z is the valence

number of the ions, i.e. z = 3. Furthermore, λB = e2/(4πε0εrkBT ) is the Bjerrum

length (λB ≈ 0.7 nm for water at room temperature). If we assume an effective protein

diameter of σp = 7 nm [46] we thus have λB/σp = 0.1. The model framework for

ion-activated patches leads to a simple expression for the net protein surface charge as

a function of the salt-chemical potential:

Qp(µs) = −Q0 + zM Θ(µs) , (7.15)

where Q0 is the surface charge without salt (we assume Q0 = −6 as in Ref. 46), and

Θ(µs) is given by Eq. (7.5).

The key feature of the inverse screening length κ is its dependency on the salt

concentration, κ ∝
√
cfrees and the protein density, κ ∝ √ρp. However, as mentioned

above, we cannot expect Eqs. (7.14) and (7.12) to hold for multivalent salts on a

quantitative level. We therefore introduce a scaled screening length, κ̃ ≡ ψκ with a

scaling factor ψ that is used to fit theoretical expressions to experimental results for

the static structure factor.

Experimental results for S(q). In Figs. 7.11 (a)–(d) we display the effective

static structure factor as obtained from scattering intensities I(q) measured in SAXS

experiments for a BSA-LaCl3 (lanthanum (III) chloride) mixture [222] at cp = 50

mg/ml (a), 100 mg/ml (b), 150 mg/ml (c) and 200 mg/ml (d). The (reduced) salt

concentrations are cs/cp = 1.1 (purple), 2.2 (green), 3.3 (blue), and 4.4 (yellow). All

these state points are located within the clear Regime I. Note that LaCl3 does not

trigger LLPS, pointing towards an ion-induced attraction that is weaker than for YCl3

[228]. However, a reentrant phase behavior is still observed, including Regimes I, II

and III. At state points for cs/cp = 1.1 (purple lines) the solution is dominated by

repulsion [222, 221]. In particular, at these state points, the first peak in S(q) is not

a signal indicating competition between attraction and repulsion; rather it indicates

the presence of a longer-ranged repulsive component in the pair potential forcing the
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Figure 7.11 (a)–(d) Effective static structure factor S(q) for BSA-LaCl3 at cp = 50 mg/ml (a),
100 mg/ml (b), 150 mg/ml (c) and 200 mg/ml (d) for reduced salt concentrations cs/cp = 1.1,
2.2, 3.3, and 4.4. Note that these state points are located below the transition boundary c∗

in Regime I; the experimental data is replotted from Ref. 222. (e) – (h) Theoretical results
for the static structure factor S(q) at different protein volume fractions ηp as borne out by
the extended protein model. The resulting phase diagram is displayed in Fig. 7.12. Note that
there is no one-to-one mapping between the experimental and theoretical phase diagram in
absolute numbers, so that the protein volume fractions in (e)–(h) do not precisely correspond
to the protein concentrations shown in (a)–(d).

proteins to separate at distances larger than their effective diameter σp (recall that in a

hard-sphere like fluid the main peak is located at qσ ≈ 2π). We observe that the peak

shifts (at constant cs/cp = 1.1) from initially qσp ≈ 3 to higher values of qσp ≈ 2π with

increasing protein concentration (it vanishes for cp ≥ 300 mg/ml, not shown). This

is a consequence of the fact that the electrostatic repulsion depends on the protein

density (the former gets screened at higher protein densities, i.e. its amplitude and

range decrease, cf. Eq. (7.12)). This is also in line with findings of BSA solutions in

the presence of monovalent sodium chloride [229].

Consider now the case of increasing salt concentration at fixed protein density.

We make two observations: first, and as expected, the value of S(q → 0) clearly

increases towards unity, indicating that attraction between the proteins starts to play

a dominating role where the effect is more pronounced at lower protein densities. We

furthermore observe that the first peak in S(q) initially located at qσp ≈ 3 starts to

move towards lower values of q, most clearly visible in Figs. 7.11 (a) and (b). We

note that such behavior is only known for systems where a short-ranged attraction

competes with a longer-ranged repulsion, see e.g. Refs. 198, 86. It can be surmised from

Figs. 7.11 (a) and (b) that this peak, however, will continue to move towards q → 0 for
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for η = 0.05 (red) and 0.10 (orange) as a function of the salt chemical potential µs. The scaling
parameter is ψ = 2 (see main text). (b) LLPS region (green solid) as borne out of the extended
model in comparison to the LLPS region according to the original model (orange dashed). The
arrows indicate taken paths at constant protein density in Figs. 7.11 (e)–(h).

higher salt concentrations approaching c∗, where we know that the system undergoes

a spinodal-like transition manifested by steeply increasing scattering intensities for

q → 0. At higher protein concentrations of cp = 150 mg/ml (c) and 200 mg/ml (d)

the overall effect is much less pronounced. This behavior is consistent: as mentioned

above, both the amplitude and the range of the electrostatic repulsion should decrease

with respect to a state point with lower protein density but the same value of cs/cp.

As a result, with increasing protein concentration, the system behaves more similarly

to a fluid where there is only a short-ranged attraction present between the particles,

i.e. S(q → 0) increases as the salt concentration is increased, but no peak emerges at

low q.

Comparison with theoretical results. Remarkably, if we choose ψ = 2, i.e. κ̃ =

2κ, where κ is defined in Eq. (7.14), we can obtain qualitative similarities between the

static structure factor S(q) as borne out by the extended protein model (incorporated

into DFT along the lines of Sec. 6.3) and the experimental results. This is displayed

in Figs. 7.11 (e) – (h) for protein packing fractions ηp = 0.05 (e), 0.1 (f), 0.15 (g)

and 0.2 (h); note that a constant value of the salt chemical potential βµs is similar

to a constant ratio cs/cp in the experiments. Interestingly, a similar trend for S(q)

was observed in Ref. 230 where the author studied effects of a spherical DLVO-type

repulsion on a patchy model for proteins based on the floating-bond model [143].

In Fig. 7.12 (a) we compare the amplitude of the attractive patch-patch interaction

energy (blue line) in comparison to the amplitude ADLVO of repulsion, defined in

(7.12), as a function of the salt chemical potential βµs. We show ADLVO for a protein

packing fraction ηp = 0.05 (red line) and 0.1 (orange). Similar to the attraction, the

repulsion shows a reentrant effect, however, at high salt density its amplitude and
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range are significantly damped. Interestingly, this qualitatively is consistent with the

experimental behavior of the second virial coefficient (Fig. 7.3) which does not reach

its initial values of Regime I upon approaching Regime III. The effects of incorporating

a longer-ranged repulsion on the LLPS region (green line) in comparison to the original

model (orange dashed) are displayed in Fig. 7.12 (b). The arrows indicate paths at

constant chemical potential βµs, illustrating the state points at which S(q) is shown in

Fig. 7.11.

The results of the extended model for protein-salt mixtures provide theoretical

evidence that competing interactions play a role in Regime I upon approaching the

phase boundary c∗. In particular, the original protein model, where no long-ranged

repulsion is taken into account, does not predict any pre-peak in the corresponding

structure factor. However, the presence of equilibrium protein cluster phases, defined

in Refs. 199, 86, 87 as the presence of aggregates with a particular size (see also

discussions in Ch. 6), cannot be verified – the signals in the experimentally measured

structure factors S(q) are too inconclusive. We might conclude that both structural

and dynamical [69] results from experiments point toward some indistinctive form of

protein cluster formation.





Chapter 8

Final Remarks and Outlook

In this final chapter, we will conclude by summarizing some of the key findings of

this thesis and possible directions to future work. This work was generally concerned

with the statistical physics of (classical) fluids whose physical properties are driven

by the presence of highly-directional particle interactions. We chose to employ the

framework of patchy particles, which is a generic model system for real fluids in which

anisotropic interactions are present, equally applicable to molecular (e.g. water) and

colloid and soft-matter systems (e.g. protein solutions). In this thesis we focused on

the colloidal picture, i.e. mesoscopic particles that are immersed in an atomic solvent,

and we employed modern tools of statistical mechanics, including classical density

functional theory and computer simulations.

Chapter 2

In Ch. 2 we laid out fundamentals of liquid-state theory pertinent to our studies

in the subsequent chapters. This on the one hand included the introduction of

basic quantities such as the radial distribution function g(r) and the bulk pair direct

correlation function c(r) (Secs. 2.1.2 and 2.1.4), as well as the theoretical framework of

classical DFT (Secs. 2.2 and 2.3).

In Sec. 2.4 we introduced a novel concept for how to generally measure the balance

between attractive and repulsive forces in a fluid. This is probably one of the oldest

and most fundamental questions in liquid-state theory, as the competition between

excluded volume effects and interparticle attraction governs the thermodynamic and

structural properties of any fluid. We began Sec. 2.4 by recalling the importance of

the second virial coefficient B2(T ) for quantifying the balance between net repulsion

and attraction that determines certain thermodynamic properties of fluids. The

Boyle temperature TB represents the simplest example of a crossover temperature

identified by the vanishing of the excess pressure, p− pid, in a dilute gas. Here we have

identified a more sophisticated criterion, pertinent to a dense fluid, that also reflects

the competition between repulsive and attractive interactions. The new criterion

also involves a thermodynamic excess function: the line in the phase diagram where
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the excess isothermal compressibility χex
T vanishes describes crossover of the total

pair correlation function rh(r) from asymptotic damped oscillatory decay, dominated

by repulsive forces and characteristic of hard-sphere systems, to monotonic decay,

dominated by attractive forces and characteristic of dilute gaseous and near-critical

fluid states. Our criterion corresponds to the condition (∂βp/∂ρb)T = 1. In the

limit ρb → 0 this condition reduces to B2(TB) = 0, i.e. the definition of the Boyle

temperature; however note that approximate theories do not necessarily yield the

exact Boyle temperature. Generally, the condition corresponds to the static structure

factor S(k), at wave number k = 0, taking its ideal gas value: S(0) = 1. For the

square-well fluid, which is an important model fluid in liquid-state theory, this new

thermodynamic criterion yields a line in the T − η phase diagram that lies close to the

actual Fisher-Widom (FW) crossover line, as determined from a formal pole analysis

of the asymptotic decay of the total correlation functio h(r) [126, 57, 128, 129]. In

the paper [136] we furthermore show that this holds also for other widely considered

model fluids.

The new criterion is based on considering the attractive and repulsive contributions

to the pair direct correlation function c(r), see Sec. 2.4.2, for a range of thermodynamic

states. It corresponds to the condition that the three dimensional integral of c(r) in

Eq. (2.125) vanishes. For the simple square well (SW) model the exact asymptotic

result c(r) = −βφ(r) describes well the behavior of c(r) outside the hard-core (see

Fig. 2.4). The origin of the crossover from monotonic to damped oscillatory as the

density increases is straightforward to grasp. Unfortunately, there are few simulation

results in the literature, for models exhibiting both repulsive and attractive interactions,

that display c(r) at different state points. Ref. [135] for the truncated and shifted

Lenard-Jones model is an exception and it is pleasing that the MC results for a fixed

supercritical temperature also show the asymptotic formula for c(r) holding outside the

core region and the core contribution becoming more negative as the density increases.

Without knowledge of c(r) one cannot perform a careful pole analysis of the asymptotic

decay required to determine the true correlation length and therefore the FW and W

lines. One must resort to fitting simulation data for the decay of ln |rh(r)| to obtain

decay lengths.

As a final remark to Sec. 2.4 we note that it is difficult to determine the FW and

the W line in simulations because the true correlation length ξ is not easily computed.

It requires knowledge of h(r) with high precision out to large separations r, i.e. to ten

particle diameters or more, to be able to make reliable fits to the decay lengths or to

perform an accurate determination of c(r) in order to determine poles. The χT = χid
T

criterion is much easier to examine in simulations. As such this is a good starting

point for investigating where in the phase diagram we expect the competition between

repulsive and attractive interactions to lead to crossover in the asymptotic decay of

correlations, i.e. to point to the location of a FW line. Experimentally χT is easily

obtained from equation of state determinations or from extrapolation of small angle

scattering data to zero wavenumber [57].
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Chapter 4

Section 4.2

In Sec. 4.2 we employed classical DFT to address the bulk structure of patchy fluids

with a maximum number of bonded neighbors equal to four. To this end, we made use

of free energy density functionals incorporating Wertheim’s first-order perturbation

theory (Ch. 3), which is known to yield reliable results for bulk properties such as the

degree of polymerization (Fig. 3.2) and other thermodynamic properties (Fig. 4.9); see

also Refs. 77, 47, 154, 157.

Three density functional approaches have been considered which are commonly

employed in the literature. The first is formulated within the framework of Tarazona’s

weighted-density approximation for hard spheres first suggested by Segura et al. [71];

the second approach is based on Rosenfeld’s fundamental measure theory, as originally

proposed by Yu and Wu [72]; the third functional that we considered was a slightly

modified version of the latter, which we termed the ‘mFMT functional’ (see Sec. 4.1 and

Secs. 2.3.1 and 2.3.2). We calculated density profiles around a test particle interacting

via an attractive square-well with its surrounding (patchy) neighbors, thereby obtaining

effective radial distribution functions. In order to classify the results given by these

functionals, we first benchmarked the theoretical curves against simulation results

for the radial distribution function g(r) of tetrahedral patchy particles. It turned

out that the mFMT functional was the only approach which was capable of satisfac-

torily matching simulation results, while the original FMT clearly underestimated

correlations; the WDA functional completely failed to account for essential structural

properties. However, upon lowering temperatures, even the mFMT approach could

not quantitatively describe the height of the correlation peak emerging at r ≈ 1.75σ

in the simulated radial distribution functions, which is a structural indicator of a

strong tetrahedral arrangement of the particles (see Figs. 4.4 and 4.5). This may

be attributed to approximations introduced by Wertheim’s first-order perturbation

theory (see Ch. 3). Most notably, the latter does not provide information about the

geometrical arrangement of the patches and, moreover, all quantities are averaged

over particle orientations. As a result, any weighted-density functional which employs

the bulk Wertheim theory and makes use of purely spherical weight functions cannot

depend on particle orientations – while this is accurate for a bulk theory describing

thermodynamic properties of the homogeneous fluid, it will necessarily yield deviations

between theory and simulations in (effective) inhomogeneous situations in which the

geometrical arrangement of the interaction sites becomes important.

We also saw that the bulk pair direct correlation function c(r) that one obtains from

taking two functional derivatives of the mFMT functional did not satisfy the exact low-

density result: c(r) = f(r), where f(r) is the orientational averaged Mayer-f function.

As regards future work, it would thus be desirable to construct a functional which obeys

the exact low-density limits Eqs. (4.8) and (4.9), and shows a similar performance than

the present FMT-based functional. An obvious choice is to follow Tarazona’s Mark I
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DFT version for hard spheres [102], and introduce a suitable weighted density to be

used in Eq. (3.20) which by construction yields Eq. (4.9). This can be achieved by

defining a ‘bonding’ weight function

ωbond(r) ≡
⟨fbond(r)⟩∫
dr ⟨fbond(r)⟩

,

leading to a new weighted density nbond(r) =
∫
dr′ ρ(r′)ωbond(|r− r′|). However, we

found that this simple approach led to density profiles which are very poor compared

to simulations, and thus more sophisticated approaches seem to be necessary for a

consistent density functional theory for associating fluids.

Section 4.3

We began Sec. 4.3.1 by calculating Fisher-Widom (FW) and Widom (W) lines for the

patchy fluid (Fig. 4.7) based on the density functional introduced in Sec. 4.2, where

we considered four, three and two patches per particles. Interestingly, we found for all

cases that the FW lines were not bounded by the spinodals at low temperatures, as is

usually the case for fluids with spherically-symmetric pair potentials (see, e.g., Ref. 136

and references therein). This means that, outside of the gas-liquid instability region,

the correlation length ξ remains finite for all temperatures, which complies with the

fact that disordered states can exist in patchy fluids down to very low temperatures

[50, 51]. We additionally calculated the line where the isothermal compressibility χT

takes its ideal gas value, i.e. χT = (ρbkBT )
−1, or, equivalently χex

T = χT − χid
T = 0. In

Sec. 2.4 we showed that this thermodynamic line approximates well the actual FW

line for the square-well fluid, treated in mean-field DFT, and in Ref. 136 we validated

this for other model fluids with short-ranged isotropic interactions. Importantly, we

found in Sec. 4.3.2 that also for the patchy fluid the χexT = 0 lines lie rather close to the

respective FW lines. This result evidences that the (static) correlation length ξ, within

the Wertheim theory, remains finite for T → 0 (as χT and ξ are related via Eq. (2.121)),

although, of course, the system will be dynamically arrested as T approaches zero.

Subsequently, in Sec. 4.3.2 we put attention to the limit where the number of

patches is exactly two and explored the question: what is leftover in the T − η phase

diagram in the limit of chain-forming fluids where phase coexistence has disappea?red?

Recall that for every fluid in three dimensions the occurrence of a gas-liquid critical

point and curves of phase coexistence (binodal) and mechanical instability (spinodal)

are typically accompanied by a bunch of additional lines that may be drawn in the

phase diagram, as for instance the FW and W lines, or the locus in the phase diagram

at which the reduced isothermal compressibility χT = χT /χ
id
T = ρbkBTχT exhibits a

local maximum (which we termed the χmax
T line) – see Figs. 4.7 (a) – (c). As the Widom

line, the latter diverges at the critical point. We demonstrated that although there

is no gas-liquid binodal in the chain-forming patchy fluid, and hence no true critical

point, one can still calculate lines of maximal correlation length and thermodynamic

response functions all of which diverge upon approaching the origin at zero temperature
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and density. This is curious. At finite densities, however, as mentioned above, both

χT (and hence χT ) as well as the correlation length ξ remain finite down to zero

temperature. Moreover, we found a fairly broad region in the phase diagram, around

the origin, in which the decay of h(r) is monotonic, i.e. we found FW crossover (as in

the high-temperature limit, where the particles behave as hard spheres, there is always

damped oscillatory decay of h(r)). In particular, we validated our theoretical results

against computer simulations.

The results for the chain-forming patchy fluid are at odds with the typical situation

for fluids with isotropic particle interactions, where a FW or W line is always accom-

panied by the presence of a (true, i.e. at finite temperatures) gas-liquid critical point.

Our surprising results might thus be understood as the remnants of a pseudo-critical

point suppressed to the origin at zero density and temperature.

Chapter 6

In Sec. 6.3 we presented a DFT study investigating systems with anisotropic compet-

ing interactions, where the anisotropic patchy attraction was accounted for within

Wertheim’s theory and the FMT functional due tu Yu and Wu [72], and the repul-

sion was described in a standard mean-field treatment. We calculated the respective

gas-liquid coexistence regions, as well as the λ line, which encloses a region in the

phase diagram where the bulk fluid is unstable w.r.t. density fluctuations and self-

assembles into (periodic) microphases. This is a well-known phenomenon in systems

with spherically-symmetric competing interactions, see Sec. 6.2. Importantly, we

found that the topology of the phase diagram changes fundamentally in comparison

to the case of isotropic competing interactions, including critical points at very low

temperatures and densities as well as reentrant binodals. The λ line follows the form

of the latter and also exhibits a reentrant behavior. In Sec. 6.3.2 we calculated the

density profile ρ(r) around a repulsive test particle having the same hard-core diameter

as the surrounding particles. Here, we found that the bulk phase behavior of the

system is reflected in the structure of the fluid – reentrant cluster correlations in g(r)

were visible along isochores in vicinity to the λ line. Subsequently, in Sec. 6.3.3 we

investigated what kind of microphases could be stable within the λ line, and we found

the same types of microphases as in systems with spherically-symmetric competing

interactions (cf. Fig. 6.7), i.e. BCC structures, lamellar and gyroid phases as well as

cylindrical tubes arranged on a hexagonal lattice. In line with the reentrant shape of

the λ line, we observed that the occurrence of specific types of microphases showed

a temperature-dependent reentrant effect (cf. Fig. 6.12), which is different to the

phase diagram for the isotropic double-Yukawa fluid, where the location of microphases

within the λ line depends only on the packing fraction η (see Fig. 6.5). It remains an

interesting future task to sample through the phase diagrams displayed in Figs. 6.10

(a)–(d) and determine the sequence of stable structures, which we conjecture is different

to those generated by isotropic competing interactions treated within mean-field DFT.
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Chapter 7

In Ch. 7 we were concerned with the theoretical modeling of protein solutions in

the presence of multivalent metal ions, based on earlier experiments [68, 91, 69] and

theoretical work [46]. In Sec. 7.2 we outlined the rich bulk phase behavior which had

been found in experiments; the rich phase diagram of human serum albumin (HSA), or

bovine serum albumin (BSA), in the presence of yttrium chloride (YCl3) is illustrated

in Fig. 7.4. In Ref. 46 the phase behavior of proteins in the presence of multivalent

salt was successfully described by a patchy colloidal model. We summarized the key

aspects of this model in Sec. 7.3; it describes proteins as patchy particles, where the

anisotropic attraction is mediated by ions that can chemically bind to the protein

surface. A bond between two distinct proteins is only possible if an occupied patch

meets an unoccupied one. The resulting phase diagram, calculated from the Wertheim

theory, is in semi-quantitative agreement with the experiments. This includes reentrant

condensation in terms of protein clusters and a closed-loop LLPS region (see Fig. 7.6).

Section 7.4

The Schreiber group carried out experiments investigating the adsorption behavior

of proteins in the presence of multivalent salts at attractive solid substrates [231].

Importantly, a reentrant effect was observed in terms of the thickness of the adsorbed

protein layer as a function of the salt concentration (at constant protein density),

thereby reflecting the rich reentrant bulk behavior of protein-salt mixtures. In Sec. 7.4

we showed that the experimental data could be understood by theoretical calculations

within the framework of classical DFT based on the model of ion-activated patchy

model for proteins (Sec. 7.3). In addition to the fundamental implications of the

first-time demonstration of the ion-activated patch model in the context of a symmetry

break introduced by the presence of an interface, our approach and theoretical findings

(Figs. 7.8 and 7.10) suggested furthermore an interesting and in fact efficient alternative

to tune protein adsorption at substrates via benefiting from suitable thermodynamic

conditions, i.e. conditions that favor a certain level of adsorption driven by the un-

derlying bulk phase behavior. This is in contrast to ‘common’ approaches, where the

underlying interaction mechanisms between proteins and solid surfaces are controlled

by e.g. altering the surface chemistry of the interface. In future work, it would thus be

fascinating to explore if adsorption phenomena such as wetting, well known in simple

fluids, could be observed in a rather complex protein suspensions exhibiting LLPS in

the presence of multivalent salt. The consequences might be important for the control

and tailoring of protein adsorption, which, in turn, is relevant for biological or medical

applications such as biosensors or better biocompatibility in dental implants, lenses

and joints and might be extended to other biological systems such as DNA nanostars

used in hydrogels [42].
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Section 7.5

In Sec. 7.5 we proposed an extended model for protein-salt mixtures which includes

effects of the Coulomb repulsion acting between the proteins, which in the simple

model introduced by Roosen-Runge (cf. Sec. 7.3) is mapped in an effective manner

onto the hard-sphere pair potential. The incorporation of an additional repulsion to

the model is motivated by recent experimental data that suggests the formation of

equilibrium protein clusters due to the presence of competing interactions [222] for state

points close to yet below c∗. Indeed, upon approaching the latter, the surface charge

of the proteins reduces due to binding of positively charged cations to the protein

surfaces, thereby weakening the overall electrostatic repulsion between the proteins.

At the same time, ion-mediated protein bonds introduce an short-ranged anisotropic

attraction between the proteins. This presumably opens the window towards a region

in the phase diagram where anisotropic competing interactions might play a role.

We described the electrostatic repulsion between the proteins via a DLVO-like

theory, where the strength (Eq. (7.12)) and range (Eq. (7.14)) of the repulsion depend

on both, the protein density and the amount of salt. The resulting model is therefore

an application of the model fluid with anisotropic competing interactions, investigated

in Sec. 6.3 of Ch. 6. The results of the extended protein model provided theoretical

hints that the competition between a short-ranged attraction and a longer-ranged

repulsion might favor the formation of equilibrium clusters at sufficiently low protein

densities and salt concentrations in vicinity to the transition boundary cs < c∗. In

particular, the original protein model, where no longer-ranged repulsion is taken into

account, does not predict a pre-peak at low wave numbers in the static structure factor

S(k). However, from the experimental data we cannot certainly conclude that there are

equilibrium cluster protein phases, i.e. fluid states that are characterized by the presence

of clusters with a certain average size, as is often observed in colloidal fluids with

competing interactions [84, 199, 86, 87] (see also Sec. 6.2). Rather, the weak signals at

low wavenumbers observed in the experimental structure factor S(k) point towards

what in the aforecited literature is referred to as the presence of an ‘intermediate-range

order’, which refers to fluid states characterized by the equal presence of monomers

and transient (small) clusters.





Appendix A

Classical Density Functional

Theory on Graphics Cards1

A.1 Parallel minimization on graphics cards

A.1.1 Parallelization of DFT and FMT in D dimensions

From a numerical point of view, a scalar-field f(r) depending on D cartesian spatial

variables r = (x1, . . . , xD) has to be windowed on a finite grid. This means that

every variable xm with m = 1, ..,D, takes on discrete values only, and we can write

xm = ξm(im,∆) with a suitable mapping-function ξm; the im enumerate all points in

m-th direction, i.e. im ∈ [0, Nm − 1] when Nm is the number of grid points in that

direction. The quantity ∆ denotes the spacing between grid points which we assume

to be identical along each axis. It is straightforward to lift this restriction to different

grid spacings ∆m for different axes, equally spaced grids in each direction is essential

for an efficient application of fast Fourier methods, which we employ In this chapter.

In particular, we demand that the values of xm are uniquely determined by their index

im. For instance, if all coordinates are positive, we have xm(im) = ξm(im,∆) := im∆

for all m. However, in the following it is convenient to map the tuple (i1, .., iD) in

row-major order onto a global index n,

n(i1, ..., iD) =
D∑
l=1

(
D∏

m=l+1

Nm

)
il , (A.1)

and we can write f(r) = f(i1, ..., iD) ≡ fn which simply is the value of f at each lattice

point, and n ∈ [0, N1 · ... ·ND − 1]. Note that row-major order conventionally is used

by most programming languages to map multi-dimensional data onto linear arrays.

Recall that in DFT We start with considering the Picard iteration in order to solve

Eq. (2.66) numerically. Starting from an initial guess for the density profile ρ(k=0)(r)

(e.g. the corresponding ideal gas limit) the algorithm generates a new density profile

1This appendix is reproduced from D. Stopper and R. Roth, J. Chem. Phys. 147, 064508 (2017)
with the permission of AIP publishing
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ρ(k+1)(r) given a density profile ρ(k)(r) of the k-th iteration step via

ρ(k+1)(r) = (1− γ)ρ(k)(r) + γρ̃(k)(r) , (A.2)

where (cf. Eq. (2.66))

ρ̃(k)(r) = ρb exp
[
−βVext(r) + c(1)(r ; [ρ(k)]) + βµex

]
. (A.3)

The mixing parameter γ ∈ [0, 1] is introduced for stability reasons, since a ‘bad guess’

ρ(0) may result in divergences during subsequent iteration steps. Usually a good choice

is γ = 0.1, which still guarantees for fast convergence, but we note that there exist more

sophisticated ways how to choose values for the mixing parameter [70]. On a grid, the

discrete counterparts of Eqs. (A.2) and (A.3) can be treated as a set of N1 · ... ·ND − 1

decoupled equations

ρ(k+1)
n = (1− γ)ρ(k)n + γρ̃(k)n , (A.4)

ρ̃(k)n = ρb exp
[
−βVext,n + c(1)n + βµex

]
, (A.5)

which in principle may all be computed in parallel.

Importantly, the structure of FMT for hard disks and spheres allows also for an

parallel computation of the weighted densities nα(r) and the direct correlation function

c(1)(r). From a mathematical point of view, Eqs. (2.96) and (2.102) are convolutions

which can be written as a simple multiplication in Fourier-space

n̂α(k) = ρ̂(k) ω̂α(k) , (A.6)

ĉ(1)(k) = −
∑
α

∂̂Φ

∂nα
(k) ω̂α(−k) , (A.7)

in which f̂(k) =
∫
dr f(r) exp(−ik · r) denotes the D-dimensional Fourier-transform of

f . On a grid we have f̂(k) = f̂(ξ1(i1,∆k1), .., ξD(iD,∆kD)) ≡ f̂n with ∆km denoting

the grid spacing of each axis in reciprocal space. The latter are connected to the

spacing in real space via ∆km = 2π/(Nm∆), which is the reason why we may have

different spacings per axis although there is the same discretization of each axis in real

space. We again obtain a set of independent equations,

n̂αn = ρ̂n ω̂
α
n , (A.8)

ĉ(1)n = −
∑
α

χ̂α
n ω̂

α
n , (A.9)

where we have set χα = ∂Φ/∂nα. The Fourier- and inverse-Fourier-transforms of

functions defined on a lattice again allow for parallel calculation via Fast-Fourier

methods (FFT). Generally, all Fourier-transforms of quantities that change during

the Picard iteration have to be calculated numerically, whereas the Fourier-transforms

ω̂α(k) of the weight functions do not change and are known analytically. Moreover, the
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Figure A.1 Schematic illustration of the differences between a CPU (left) and a GPU (right).
The arithmetic logical units (ALU, in the online-version blue) perform arithmetic operations
on data; cache (red) is a fast but small memory. Instructions are scheduled by control units
(green). CPU and GPU have access to (distinct) global memory.

partial derivatives allow for an analytical evaluation before applying FFT algorithms,

cf. Sec. A.2.1.

A.1.2 Maximizing parallel-data operations

In order to maximize parallel-data operations, we make use of the hardware architecture

of GPUs, which is fundamentally different from standard multi-core CPUs [232]. While

a CPU is highly optimized for efficient memory management, process scheduling and

arithmetic operations in serial, a GPU mainly is designed for massive data-parallel

operations, as arising in graphics applications (e.g. pixel shading). A fundamental

feature is that an single instruction invokes parallel processing on many (distinct)

data elements; this is known as single-instruction-multiple-data pattern (SIMD). The

difference in hardware architecture is pictured in Fig. A.1: A modern CPU (left)

consists of a number (here: four) of arithmetic logical units (ALU, blue), also referred

to as processor cores. Most focus is put on process scheduling and memory management

(control (green) and cache units (red)). In contrast, a modern GPU contains up to

thousands of processor cores, but relatively small cache and control units reflecting the

design for heavy SIMD-type operations. However, since roughly one decade, CPUs

also tend to increase SIMD-type operations, mainly as a result of fundamental physical

limitations which prevent an unlimited increase in clock-frequency. Nowadays high-

performance CPUs have up to ∼ 20 cores whereby each core can handle up to 32

floating-point operations (FLOPs) per clock-cycle, and this trend seems to increase in

future.

Nevertheless, GPUs clearly outpace standard CPUs in both, single (SP) and double

precision (DP) FLOPs since recent years. FLOPs per second can serve as a theoretical

measure for the performance of a processor, and is obtained by the following equation

FLOPs

sec
=

instructions

clock-cycle
× frequency× cores , (A.10)
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Figure A.2 Recent development of theoretical FLOPs per second (cf. Eq. (A.10)) in comparison
between Nvidia Tesla series (filled squares), AMD FirePro series (open squares), Intel Xeon
CPUs (points) and Intel Xeon Phi series (stars). (a) shows single-precision and (b) double
precision performance.

where the processor frequency measures the number of clock-cycles per second, which

commonly is in the Giga-Hertz regime. The quantity ‘instructions/clock-cycle’ can

vary significantly, and e.g. depends on the hardware design. For instance, each core of

a modern GPU can handle up to 2 floating-point instructions per clock-cycle in SP,

and as mentioned above, each core of a recent CPU is capable of initiating up to 32

instructions per clock-cycle, where an instruction is either an additive or multiplicative

arithmetic operation.

For illustration, in Fig. A.2 the theoretical FLOPs per second in single (a) and double

(b) precision of recent generations of high-performance GPUs of the GPU-manufacturers

Nvidia (‘Tesla’ series, filled squares) and AMD (‘FirePro’ series, empty squares) are

compared to the most powerful CPU-series ‘Xeon’ of the CPU manufacturer Intel over

the last years 2009 - 2016. Note that the Intel ‘Xeon Phi’ series has been published as a

alternative to GPUs a few years ago, and is a (co-)processing unit where recent versions
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Figure A.3 Recent development of theoretical memory bandwidth in Gigabytes per second of
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have up to 72 CPU-type cores. Interestingly, even latest high-performance CPUs

clearly fall behind professional many-core devices by an order of magnitude. Moreover,

the memory bandwidth of such hardware is significantly higher in comparison to CPUs,

which is relevant for reading or storing data in global memory. In Fig. A.3, we compare

the theoretical maximum bandwidth in Gigabytes per second between Intel Xeon, and

Nvidias Tesla series. Additionally, we have labelled the specific hardware generations

(which can also be applied to Fig. A.2). The memory bandwidths of AMDs GPUs and

Intels Xeon Phi are comparable to those of Nvidia, and for clarity in the plot they are

not pictured here. Note that standard consumer graphics cards such as the Nvidia

‘Geforce’ series reach similar values regarding single precision FLOPs and memory

bandwidth, but have a rather poor double precision performance. This is in contrast

to standard consumer CPUs (e.g. Intel i5 and i7 series), which mainly are limited in

the number of cores and memory bandwidth in comparison to high-end processors.

The usage of many-core devices such as GPUs for scientific purposes mainly is

limited by two major factors: (i) the problem under consideration must be efficiently

parallelizable; (ii) the available amount of global graphics memory must be sufficient.

In particular, (ii) impeded DFT calculations being executed on GPUs for long times,

although the possibility of free-programmable graphics cards were already introduced.

For instance, a simple 3D-FMT program computing hard spheres in a hard box with

(256)3 grid points allocates circa 1 Gigabytes of memory in single- and twice as much

in double precision, but graphics memory has reached such domains just a few years

ago. Therefore, massive data movement with low bandwidth between GPU and CPU

would had been necessary, thereby completely compensating the performance gain of

parallel-data processing. However, facing the recent escalation of available memory with

high bandwidth, GPUs have become promising candidates for significantly speeding-up

DFT calculations.
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A rough theoretical estimate of speed-up can be given as follows. We assume that

a standard DFT implementation typically runs completely sequential, i.e. it makes use

of only one processor core. Hence, a measure for speed-up between serial and parallel

execution is substantiated by considering instructions/clock-cycle of a single-core device

(divide out frequency and cores in Eq. (A.10)) versus the FLOPs/clock-cycle of a multi-

core device (where all processor units contribute, i.e. only divide out frequency in

Eq. (A.10)). For illustration, we picture the resulting theoretical performance gain

due to parallelization in Fig. A.4 for Nvidias Tesla series (filled squares) and Intel

Xeon CPUs (open squares) relative to a sequantial program execution on a single

CPU core (points). Clearly, similar considerations can also be done for CPUs of other

manufactures (e.g. AMD) or standard-consumer GPUs (e.g. Nvidias Geforce or AMDs

Radeon series), but the picture does qualitatively not change.

To provide an example oriented on the hardware used In this chapter (see Sec. A.2),

consider a Tesla K40 having 2880 cores with 2 instructions per cycle each, and a

standard-desktop CPU Intel i5-4570 with 4 cores allowing for 32 instructions/cycle

for each core (both in SP). We obtain a speed-up factor of roughly 180; when taking

clock-frequency into account, this advance will significantly be smaller since the CPU

cores clock with a higher frequency of 3500 MHz, whereas the K40 reaches 745 MHz per

core. Thus, we obtain an effective speed-up of 40. However, note that here effects of

memory accesses are neglected completely; these numbers only provide an illustration of

the orders of magnitude to which extent a parallel DFT executed on a recent (high-end)

GPU might be faster in comparison to a DFT executed in serial on a CPU.
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... N0 1 2 3

...

...
float x = input[threadID]; // read
float y = func(x); // manipulate
output[threadID] = y; //store
...

thread ID

Figure A.5 Pseudo-code illustration of data processing in a CUDA application: The thread
ID is used for loading and storing data. Arrows indicate instruction flow of each thread.

A.1.3 General purpose GPU programming: CUDA

In this chapter, we make use of the developer environment CUDA introduced by

Nvidia in 2007. CUDA provides an extension of the programming language C/C++

in order to outsource parallelizable algorithms on Nvidia graphics cards. However

note that while CUDA can be used only with Nvidia GPUs, there exist further

multi-platform programming models such as the OpenCL standard which are also

appropriate for GPGPU. We choose CUDA since it provides a wide range of features,

including optimization tools and a library for performing GPU accelerated Fast-Fourier-

transforms which is crucial for FMT applications.

A CUDA program starts a user defined number of so-called threads, which perform

arithmetic operations on given data elements. Internally, these are divided into groups

of 32, referred to as warps, and all threads of a warp are executed simultaneously

by the cores of a multiprocessor. Hence, depending on the number of ALUs inside a

multiprocessor, the latter can execute several warps in parallel. While in sequential

code usually loop control variables serve as data indexer, in CUDA one accesses data

depending on the thread identification number (thread ID), thus every thread can

operate on distinct data elements which schematically is depicted in Fig. A.5. Note

that there is no direct mapping between threads and available cores. Indeed, commonly

a program is initiated with much more threads than ALUs are available in order

to maximize performance. The reason is so-called latency hiding – access to global

graphics memory is even with modern bandwidths relatively slow in comparison to

arithmetic operations. If some threads of an executed warp are reading or storing data,

the internal scheduler of the GPU switches to another (queued) warp to execute.

In practice, one has to decide on the basis of the given data structure and underlying
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hardware how many threads are optimal to be started, i.e. to obtain best performance.

However, these and further technical details regarding efficient GPU programming are

well documented [233, 234] and shall not be discussed here in more detail.

A.2 Implementation details

In this section we discuss the systems which we consider in order to demonstrate

the performance of GPU-accelerated DFT applications. Moreover, we discuss details

regarding memory efficient implementations by making use of symmetries within FMT.

Toward this end, we investigate a two-dimensional (D = 2) system of hard disks,

where we keep a ‘test disk’ fixed at the origin and determine the equilibrium density

around that particle, but we have no further external field such as hard wall boundaries

(which is the 2D radial distribution function g2D(r) [92]). In D = 3 we consider hard

spheres enclosed by a hard box (i.e., a hard slit in each spatial direction) and an

additional test particle is located in the middle of the box. These two scenarios are

later used as benchmark for performance measurements related to computational cost

versus system size.

Additionally, we investigate for fixed volumes how the choice of the grid spacing ∆

impacts the resulting density profile, and we compare the results of a quasi-1D situation

with very high spatial resolution to full 3D calculations.

A.2.1 Model systems

In two dimensions a recent version of FMT [116] proposes an excess free-energy density

as a function of four weighted densities: two weighted densities are scalar, one is

vectorial and has in general two components, and the fourth one is a second-rank

tensor-like weighted density with three independent components. Additional higher-

ranked tensorial weight functions can be included in a systematic expansion of the

Mayer-f function, but do not seem to be necessary for an accurate account of the fluid

or solid structure [116]. The Fourier-transforms of the weight functions are given by

ω̂2(k) = 2πRJ1(kR)/k , (A.11)

ω̂1(k) = 2πRJ0(kR) , (A.12)̂⃗ω1(k) = −ikω̂2(k) , (A.13)

←̂→ω
(2)

ij (k) = −2π

R

∂

∂ki

∂

∂kj
J0(
√
k2x + k2zR) , (A.14)

where Ji(x) is the i-th order Bessel function of the first kind. Here and in the following

k = |k| is the absolute value of k. Note that the derivatives of the Bessel functions can

be calculated analytically. In addition there exists one more scalar weight function

ω̂0(k) = ω̂1(k)/(2πR).

In three dimensions, the free-energy density Φ({nα}) is a function of six weighted

densities [17]. However, note that only three of them are linear independent and their
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Fourier-transforms ω̂α are known analytically [235]

ω̂3(k) = 4π (sin(kR)− kR cos(kR)) /k3 , (A.15)

ω̂2(k) = 4πR sin(kR)/k , (A.16)̂⃗ω2(k) = −ikω̂3(k) , (A.17)

and ω̂1(k) = ω̂2(k)/(4πR), ω̂0(k) = ω̂2(k)/(4πR
2), ̂⃗ω1(k) = ̂⃗ω2(k)/(4πR). For simplic-

ity, we employ the original Rosenfeld-functional

ΦRF({nα}) = −n0 ln(1− n3) +
n1n2 − n⃗1 · n⃗2

1− n3
+
n32 − 3n2n⃗2 · n⃗2
24π(1− n3)2

, (A.18)

which is sufficient as long as no high-density peaks are present such as in crystals

[107, 115] or strong-confining external potentials [118]. In such cases, the last term of

Eq. (A.18) can lead to divergences, but empirical corrections [236] or more sophisticated

approaches including tensorial weight functions can be applied [110] in order to describe

strongly peaked density distributions. For the particle densities considered In this

chapter (cf. Sec. A.3) we did not observe any divergences in the hard box using

Eq. (A.18), but this may be different for higher densities.

A.2.2 Efficient DFT implementation

Following our considerations of Sec. A.1.1, we store all quantities depending on spatial

and momentum-space variables in row-major order using linear floating-point arrays

(single- or double precision). Every global array index n (i.e., thread ID) of such

an array can then be remapped to two- or three-dimensional indices im by inverting

Eq. (A.1).

Since memory on graphics cards is still the major limitation factor, we present a few

suggestions of how to implement a DFT-FMT program using as less memory as possible.

First, remind that the Fourier-transform of a function f(r) with purely real values obeys

Hermitian symmetry, i.e. f̂∗(k) = f̂(−k), where f̂∗ is the complex-conjugate of f̂ (this

is a fact in all dimensions). As a result, in discrete multi-dimensional Fourier-transforms

it suffices to store the positive frequencies of one axis in momentum-space [237], which

halves the amount of allocated memory needed for storing Fourier-transforms. Hence

we recommend to employ real-to-complex (R2C) and complex-to-real (C2R) transforms

provided by the cuFFT library. Second, we make use of the fact that the Fourier-

transforms of the weight functions ωα in both D = 2 and D = 3, are purely real or

imaginary. Therefore, it is convenient to store all ω̂α (in their analytical form) in simple

single- or double-precision floating-point arrays instead of more memory intensive

data-types representing complex numbers. Note further that the FFT-routines assume

periodic boundary conditions, i.e. the negative frequencies of the ω̂α have to be stored

in the second half of the array. To provide an example, in 3D the components of the
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wave vector k = (kx1 , kx2 , kx3) are calculated according to

kxm =

2πim/(Nm∆) if im ≤ Nm/2

2π(Nm − im)/(Nm∆) else
, (A.19)

for m = 1, 2 and

kxm = 2πim/(Nm∆) , (A.20)

for m = 3 with i3 ∈ [0, ..., N3/2]. While the investigated scenarios In this chapter are

compatible with the periodic boundary conditions of FFT, for systems that are very

far from being periodic, FFT methods still can be applied in most cases in order to

calculate convolution integrals by applying ‘zero-padding’ . This amounts to extend

the array storing the density profile with zeros such that a periodic mixing of the input

arrays (e.g. density and weight functions) is avoided in order to not introduce a false

periodicity (note that the full result of a linear convolution is always longer than either

of the two input arrays).

As a third point we note that it suffices to store at most the linear independent

weight functions, since the remaining ones are obtained by multiplication with trivial

geometric measures and can easily be calculated on the fly. In particular, this fact

allows for a simplification when calculating the direct correlation function c(1)(r). For

instance, in D = 3 rewriting the summation in Eq. (A.7) yields

−ĉ(1)(k) = ∂̂Φ

∂n3
ω̂3 −

(
∂̂Φ

∂n⃗2
+

1

4πR

∂̂Φ

∂n⃗1

)
· ̂⃗ω2

+

(
∂̂Φ

∂n2
+

1

4πR

∂̂Φ

∂n1
+

1

4πR2

∂̂Φ

∂n0

)
ω̂2 , (A.21)

i.e. it suffices to store combinations of the partial derivatives, and subsequently

one numerically calculates the corresponding Fourier-transform. Regarding memory

accesses we emphasize that data transfers between CPU and GPU as well as accesses

to the global graphics memory should be minimized whenever possible [234].

A.2.3 Technical details

We performed the serial DFT calculations on an Intel Core i5-4570 CPU with 3200

MHz clock frequency per core with a maximal theoretical memory throughput of 25.6

Gigabytes/sec. It allows for 32 FLOPs per cycle in single precision (16 in double

precision). The systems memory is 32 Gigabytes DDR3-RAM. All codes are compiled

using the -O2 optimization level in GNU G++ compiler version 4.8.4 on Ubuntu 16.04

LTS.

The parallel DFT is executed on two GPUs: First, we use a standard low-stream

consumer graphics card GeForce GT730 with 2 Gigabytes GDDR5-RAM (launched

2014) with a maximum theoretical memory bandwidth of 48 Gigabytes/sec. It contains

2 multiprocessors with 192 ALUs each, thus the total amount of processor cores is
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Figure A.6 Density profile of hard disks in 2D around a test particle calculated via the FMT
outlined in Sec. A.2.1 on a GPU. The red line shows the density profile along the z-axis through
the origin, whereas the inset pictures full density ρ(x, z). White means high density, black zero
density.

384 clocking with 902 MHz. This amounts to a theoretical peak performance of 693

Giga-FLOPs/sec in single precision (but only 28.9 in double precision).

Second, we employ the high-performance GPU Tesla K80, which basically unifies two

Tesla K40s on a single board, which are connected via the PCI-Express 3.0 bus (15

Gigabytes/sec bandwidth). Every chip has 13 multiprocessors with 192 cores each, and

has a total memory amount of 12 Gigabytes GDDR5-RAM with a bandwidth of 240

Gigabytes/sec. It reaches a theoretical peak performance of 4.36 Tera-FLOPs in SP

(double 1.45) per chip with a maximum clock frequency of 875 MHz. Unfortunately,

due to the internal structure of DFT and FMT, it is not possible to perform calculations

on both chips at a time without mutual memory accesses via the PCI-Express bus,

which clearly would limit the performance.

A.3 Results

A.3.1 Performance benchmarks

Two dimensions

We first present results for hard disks in two dimensions. As mentioned in Sec. A.2.1,

we consider a system where a test particle is fixed at the origin and we calculate the

density distribution ρ(x, z) around that particle. For illustration, in Fig. A.6 we plot

the density normalized with respect to bulk density ρb along the z-axis at x = 0 for a

packing fraction of η = πR2ρb = 0.5 (red solid line). The density is initialized on the
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grid as the corresponding ideal gas limit

ρ(0)(i1, i2) =

0 ; r < 2R

ρb ; else
, (A.22)

where r = ∆
√

(i1 −N/2)2 + (i2 −N/2)2. The density subsequently is iterated 200

times according to Eqs. (A.2) and (A.3) using a mixing parameter γ = 0.1, irrespective

of a complete convergence of the density profile corresponding to the thermodynamic

minimum. We fix the system size at V = (20R)2, and the number of grid points is

N2 = 61442 resulting in a fine grid spacing of ∆ = 0.0032R in each spatial direction.

The inset shows the full density profile, where black corresponds to lowest density and

white means highest density. The calculation has been performed in single precision,

where the peak value of resident memory reaches roughly 10 Gigabytes.

For the performance measurements, we investigate systems with N2 = 2562, 5122,

10242, 15362, 20482, 25602, 30722, 40962, 51202 and 61442 grid points (note that

the FFT routines require that the number of grid points can be written in the form

2n×3m×5l×7s along each axis where exponents are integers [237]). Hence, keeping the

systems volume constant at V = (20R)2 determines the corresponding grid spacing ∆.

The packing fraction is fixed at η = 0.3. In Fig. A.7 (a) we compare the computation

time of a serial DFT (filled squares) in single (full black lines) and double precision

(dashed blue lines) to a parallel execution on the GT730 (empty squares) and a

massively parallel execution on the Tesla K80 (stars). Here the distinction between

‘parallel’ and ‘massively parallel’ indicates the differences in the number of cores of

the GPUs.

As mentioned in Sec. A.2.3, the employed CPU allows for each core for 32 FLOP

instructions per clock-cycle in SP and 16 FLOPs in DP, but the differences are born

out to be rather less than a factor of two. This may be due to the fact that memory

bandwidth for reading and storing data limits the theoretical performance gain in

single precision. While for the CPU implementation we do not run out of memory in

both, SP and DP calculations, the picture is different on the GPUs. In particular, the

low-stream GPU with 2 GB of memory allows only for system sizes up to 20482 in SP

(15362 in DP), whereas employing the K80 the largest size is up to 61442 in SP and

40962 in DP, see also Fig. A.10 (a). However, regarding performance, even the slower

GPU gives a significant speed-up factor of roughly 10 in SP compared to the serial

code for all possible system sizes (cf. Fig. A.7 (b)), although performance dramatically

breaks down when using double precision floating-point numbers; here the GT730 only

yields a maximum speed-up between 2 – 4.

Running a massively parallel minimization, we obtain an enormous performance

gain between 30 – 70 in SP and 20 – 40 in DP relative to the serial algorithm. The

maximum speed-up factors are obtained for system sizes which can be written in the

form 2n with n ∈ N+, e.g. N
2 = 10242, 20482 or 40962. This is due to the fact that

(parallel) FFT routines work most efficient for arrays with these dimensions [237]. For
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Figure A.7 (a) Total computation time needed for minimization of the grand potential for
hard disks in single (full black) and double precision (dashed blue). Full squares show serial
CPU results, open squares parallelized code on a low-stream GPU, and stars correspond to
results born out by a high-performance GPU. Figure (b) demonstrates the obtained speed-up
factor relative to the serial execution.

instance, considering a grid size of N2 = 40962, the CPU code takes 1324 seconds

whereas the massively parallel DFT runs only 19 seconds.

Three dimensions

We now focus on a full three-dimensional minimization of the grand potential for a

system of hard spheres within a hard box. Additionally, as in D = 2, we keep a test

particle fixed at the origin. For large enough systems, the density profile in vicinity to

the test particle corresponds to the radial distribution function g(r), and the contact

value of the density at the center of a wall equals the bulk pressure. These relations

can be used for internal consistency checks [70, 238], and we have verified that they

are satisfied for the systems investigated In this chapter; further details are also given

in the next Section A.3.2.
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Figure A.8 Density profile of hard spheres in D = 3 in a cubic hard box at a packing fraction
of η = 0.25. Moreover, we have fixed a test particle at the origin. As in Fig. A.6, red line
corresponds to the density along the z-axis, and the inset pictures density in the y-z-plane at
x = 0, where yellow means high density and blue low density.

In Fig. A.8 we plot the density divided by ρb along the z-axis at x = y = 0 for a

3D packing fraction of η = 0.25 using the Rosenfeld functional Eq. (A.18) (red solid

line). Again, the density is initialized as the corresponding ideal gas limit. The total

number of grid points is N3 = 5123 with a grid spacing of ∆ = R/30 yielding a volume

of V = (17.067R)3, and calculation is performed on the K80 in single precision. The

inset pictures the density in the y-z-plane at x = 0, where yellow means highest and

blue lowest density. We observe that the density is sharply peaked in the corners,

which restricts the usage of standard FMT to low and intermediate packing fractions,

since too strong confinement leads to divergences in the third term of Eq. (A.18). In

situations with strong confinement and high densities one may use more sophisticated

versions of FMT including tensorial weight functions [110].

As in two dimensions, we examine the computation time needed for 200 Picard

iterations using a mixing parameter γ = 0.1. The system sizes are ranging from

N3 = 643, 963, 1283, 1603, 1923, 2243, 2563, 2883, 3203, 3843 to N3 = 5123, where

the volume is kept constant at V = (17.067R)3. Packing fraction is fixed at η = 0.1.

Figures A.9 (a) and (b) show the same graphs as in Fig. A.7 but for hard spheres

in D = 3: Filled squares correspond to the serial code, empty squares feature the

parallel DFT on the slower GPU, and stars picture results which we obtain on the

high-performance GPU. Again, the full black curves are the SP results, and dashed

blue curves are DP results. As for the system of hard disks, the difference between

single and double precision of the CPU version is measurable, though is less than a

factor of two. The parallel execution increases performance by roughly a factor of 5 –

8 in SP and 2 – 4 in DP. For system sizes larger than 2563 grid points in SP (2243 in

DP, respectively) the amount of necessary memory exceeds the limit of 2 Gigabytes.

When running the massively parallelized DFT, the maximum number of grid points is
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Figure A.9 Same as Fig. A.7 but for hard spheres in D = 3.

5123 in SP (3843 in DP), which also is shown in Fig. A.10 (b). Regarding performance,

we find a peak speed-up factor of roughly 65 for 2563 points in SP; for all remaining

system sizes larger than 1923 points speed-up ranges between 50 – 60 in SP, and 40 –

50 in DP.

To summarize, we can conclude that a massively parallel minimization of DFT-FMT

in both, 2D and 3D situations, leads to enormous speed-up factors. However, it is

important to note that the specific numbers clearly depend on the underlying hardware

and software implementation. For instance, performing the same serial code on an

older CPU with higher clock-frequency but less instructions per clock-cycle for each

core, one may find increased speed-up factors, despite the higher clock-frequency. On

the other hand, the advance of a GPU implementation will be less when employing a

parallelized CPU code making use of all available processor cores, although for the

CPU employed here we have found that using a multi-threaded version making use of

all 4 cores only yields a speed-up of ∼ 1.5− 2 depending on the specific number of grid

points.
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Figure A.10 Memory usage in % of one Tesla K80 chip as a function of system size for (a)
hard disks and (b) hard spheres in single (full black) and double precision (dashed blue).

A.3.2 Convergence benchmarks

In the previous section we extensively studied the computational cost versus system

size, i.e. the number of grid points used. While in Figs. A.6 and A.8 the grid spacing

∆ is fine (∼ 300 points per radius in 2D and 30 in 3D), we did not discuss whether for

significantly coarser grid spacings (i.e., smaller number of grid points) the resulting

density profiles are converged to the expected solution in thermal equilibrium.

In effective 1D situations, DFT calculations can be performed efficiently with very

high spatial resolution. Hence, in this section we investigate the convergence of a full

three-dimensional DFT result to the corresponding quasi-1D solution as a function

of the number of grid points used for different volumes V . Specifically, we compare

the density profile ρ(z) confined in a slit-like hard pore of the effective 1D-system

of hard spheres to the full 3D-results as a function of (i) number of grid points and

(ii) computation time. The packing fraction is fixed at η = 0.42. Note that while

the previously investigated 2D-system of hard disks can obviously also be reduced in
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Figure A.11 Density profile of hard spheres in a slit-like pore of the quasi-1D system (red
solid lines, double precision) with a fine grid spacing of 128 points per radius R at a packing
fraction of η = 0.42. Additionally, in (a)–(d) the corresponding full 3D results (symbols, single
precision) along an arbitrary axis parallel to the z-axis are pictured for numbers of grid points
ranging from 1283 (a) to (512)3 (d).

dimensionality due to radial symmetry, here the reduction to 1D is only seemingly

advantageous. First, in 2D it is possible to obtain a fine spatial resolution even for

large systems along each axis with much less computational effort than in 3D. For

instance, considering a volume of V = (100R)2 and a total number of grid points of

20482, one obtains a grid spacing of ≈ 20 points per radius R which is sufficient even

for quantitative accuracy, as we will see in the 3D case. Moreover, the resulting 1D

FMT-equations on a standard linear grid no longer contain convolution integrals, and

calculations become inefficient compared to using FFT-algorithms that can be applied

in the full two-dimensional case.

In Figs. A.11 (a)–(d) we display the density ρ1D(z) of the quasi-1D system (red

solid line, in double precision) for a simulation volume of V = (32R)3 (i.e., a length

of L = 32R in D = 1). The density is iterated 200 times, after which the relative

change δ ≡
∫
dz (ρk+1(z) − ρk(z))2 to the previous density profile is δ < 10−15.

Comparing the resulting contact density ρ(R+) to the Percus-Yevick bulk pressure

βp = ρb(1 + η + η2)/(1 − η)3, we find excellent agreement (see blue dashed line in

Fig. A.11) using a fine spatial resolution of 128 points per radius R. For illustration,

on the CPU employed In this chapter, the serial code takes only 0.8 seconds in double
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Figure A.12 Same as in Fig. A.11 but for a constant number of grid points N3 = 1283 and
different volumes V = (16R)3 (a) and (64R)3 (b).

precision using 1D-FFT methods. We refer to Ref. [70] for further details regarding

efficient 1D-DFT implementations.

Furthermore, in Figs. A.11 (a)–(d) we show the corresponding full 3D results (symbols)

for numbers of grid points N3 = 1283, 1923, 2563 and 5123 along an arbitrary axis

parallel to the z-axis. For the volume V = (32R)3 this corresponds to a grid spacing

ranging from 4 to 16 points per radius. In order to achieve a situation corresponding

to slit-like pore, in 3D the density is explicitly unconfined in the x- and y-direction,

but confined in z-direction. Thus, for every constant point in the x-y-plane one obtains

the identical density profile ρ(x = const, y = const, z) ≡ ρ3D(z). As expected, we

observe that with increasing spatial resolution, the 3D result converges to the reference

solution. On the scales shown in the plot, for the largest number of grid points studied

here (5123 in single precision, limited by the employed hardware) there is excellent

agreement between the 3D- and 1D result, also in terms of the contact value. Moreover,

still for 2563 grid points the agreement is good, although slight deviations can be
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Figure A.13 (a) Convergence parameter ε of the three-dimensional density ρ3D(z) to the 1D-
reference solution as a function of system size for three different simulation volumes V = (16R)3

(open squares), (32R)3 (crosses) and (64R)3 (stars). (b) ε as a function of total computation
time for the massively parallelized (stars) and serial DFT (open squares) in single (black solid)
and double precision (blue dashed) for a simulation volume of V = (32R)3.

observed; these are increasing with decreasing numbers of grid points (cf. Figs. A.11

(a) and (b)). Note that usage of single precision does not impact the density profiles

presented here. In general we have verified that for all situations considered In this

chapter, single precision is sufficient. However there are clearly situations such as the

description of the crystal phase [115], where fluctuations beyond single precision may

lead to unphysical results or numerical divergences .

In addition, we plot similar graphs for a smaller [V = (16R)3) (a)] and a larger

volume [V = (64R)3, (b)] for N3 = 1283 grid points in Fig. A.12. While the large

volume with 2 points per radius spatial resolution clearly fails to describe fundamental

properties, the smaller system is satisfactory reflected using a relatively small number

of grid points. Based on the present finding, we suppose that the grid spacing should

not deceed the threshold of 8 – 10 points per particle (hard-core) radius in order to

obtain reliable and meaningful results as long as the system is in the liquid state; for

crystal-like states one may need to employ a rather more fine spatial resolution in
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order to ensure that the desired properties of the system are described properly.

As a direct measure of convergence, we consider the quantity

ε ≡
∫ L

0
dz (ρ3D(z)− ρ1D(z))2 , (A.23)

which in Fig. A.13 (a) is shown as a function of system size for the three volumes

shown in Figs. A.11 and A.12. This representation reflects the observed behavior of

the density profiles: with increasing volume V , the number of grid points needs also to

increase in order to obtain a similar level of accuracy compared to smaller volumes.

In Fig. A.13 (b) we show the accuracy as a function of computational cost for a

massively parallel- (squares) and completely serial execution (stars) for V = (32R)3.

While increasing accuracy with a serial (or slightly parallelized on a standard consumer

CPU) implementation rapidly becomes unproportional regarding computational effort,

this is not the case for a heavy parallelized execution. Several further conclusion can be

given. First, in situations that require a large volume in terms of the particle size (e.g.

periodic cluster phases in systems with competing interactions [89]), a huge number

of grid points is necessary in order to obtain reasonable accuracy. For instance, for

V = (64R)3, one already needs (384)3 points in order to achieve a qualitative accuracy

as in Fig. A.11 (b). Second, for smaller volumes, a massively parallelized DFT allows

for the calculation with high spatial resolution – which can be mandatory, e.g. if the

system is confined in an arbitrarily shaped cavity. Furthermore, due to the lack of

a spatial direction, in 2D the investigation of large volumes with very high spatial

resolution is applicable. These findings presented here demonstrate the need for a

massively parallel implementation of a multi-dimensional DFT, as in such situations

serial and slightly parallelized versions become highly infeasible.



Appendix B

Simulation Details

B.1 The open-source code PatchyParticles

All simulation results for patchy particles shown in this thesis were obtained from the

open-source code PatchyParticles (PP) accompanying the nice paper How to simulate

patchy particles by L. Rovigatti, J. Russo, and F. Romano [142]. It implements the Kern-

Frenkel pair potential defined in Eqs. (3.1), (3.3), and (3.4). A documentation on how to

use the PP code can be found on GitHub under https://github.com/lorenzo-rovigatti/

PatchyParticles. At this point we also refer to the text book Computer Simulation of

Liquids by Michael Allen and Dominic Tildesely which provides a general introduction

to computer simulations [95].

The PP code implements the most important MC algorithms that are pertinent

to simulations of patchy fluids, including simple roto-translations as discussed in

Sec. B.2.1, AVB moves (Sec. B.2.3), but also more sophisticated cluster-move algorithms

or techniques to calculate the free-energy landscape, which, however, we do not have

employed in this work. Besides the canonical ensemble, the PP code can also run

grand-canonical simulations which allows one to measure particle fluctuations.

Note that the PP code as available on the Internet does not calculate radial distri-

bution functions or the density at a hard wall, but only provides basic measurements

of e.g. the internal energy in canonical ensemble. We amended the original PP code to

determine structural quantities.

B.2 Monte Carlo algorithms for patchy fluids

Consider a classical fluid of N particles with equal mass m. The Hamilton function H

is given by

H =

N∑
i=1

|pi|2
2m

+Φ(rN ) +

N∑
i=1

Vext(ri)︸ ︷︷ ︸
≡V

, (B.1)

where Φ(rN ) is a pair potential, i.e. Φ(rN ) =
∑

i<j φ(ri, rj). In a MC simulation one

is typically concerned with calculating integrals of the form (for simplicity we consider

https://github.com/lorenzo-rovigatti/PatchyParticles
https://github.com/lorenzo-rovigatti/PatchyParticles
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the canonical ensemble):

⟨A⟩ =
∫

dΓA(Γ)f0(Γ) (B.2)

=

∫
drN A(rN ) exp[−β(Φ + V )]∫

drN exp[−β(Φ + V )]
(B.3)

≡
∫

drN A(rN )P (rN ) , (B.4)

where Γ is a point in phase space, and f0(Γ) is the probability distribution function

in equilibrium, in case of the canonical ensemble given by Eq. (2.3). Furthermore,

rN = {(r1, ϖ1), ..., (rN , ϖN )} denotes a set of tuples containing all particle positions

and orientations, and
∫
drN ≡

∫
dr1

∫
dϖ1 · · ·

∫
drN

∫
dϖN .

Integrating out the momentum degrees of freedom in Eq. (B.2) yields (B.3) provided

that A does not depend on the particle momenta pi, i = 1, ..., N . This leads to a

reduced phase-space probability distribution P (rN ):

P (rN ) =
exp[−β(Φ + V )]∫

drN exp[−β(Φ + V )]
. (B.5)

Equations such as (B.4) may be approximated by employing stochastic (Monte-Carlo)

integration schemes along with a technique called ‘importance sampling’, introduced in

1953 by Metropolis [96]: If we were able to generate a random sequence {rN1 , ..., rNK} of
configurations (or samples) of length K in phase space, according to the phase-space

probability distribution P (rN ), where rNj = {(r1, ϖ1)j , ..., (rN ,ϖN )j}, j = 1, ...,K,

then we could approximate Eq. (B.4) as:

⟨A⟩ ≈ 1

K

K∑
j=0

Aj , (B.6)

where Aj = A(rNj ). The obvious key task of a Monte-Carlo simulation is thus to

generate a sequence {rN1 , ..., rNK} which samples the positional configuration space

according to P (rN ).

B.2.1 Metropolis algorithm for patchy fluids

The Metropolis algorithm [96] is the most common method to generate samples

according to the Boltzmann distribution (B.6). For a patchy fluid, the Metropolis

algorithms involves the following steps (also called MC step or sweep): Starting from

a given initial configuration rN0 , the (j + 1)-th sample rNj+1 is generated from rNj via

the following iterative procedure:

1. Choose randomly a particle s ∈ {1, ..., N} with coordinates (rs, ϖs)j from the

configuration rNj .

2. Perform a random roto-translation (trial move) of particle s, i.e. (rs, ϖs)j+1 =
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(rs + δr, ϖs + δϖ)j , where δr denotes a small random translational displacement,

and δϖ a small rotation around a randomly chosen axis dϖ, respectively.

3. The above move generates an intermediate configuration that is given by r̃Nj+1 =

{(r1, ϖ1)j , ..., (rs , ϖs)j+1, ..., (rN , ϖN )j}. Calculate now the change in configura-

tional energy ∆E = (Φ̃j+1 + Ṽj+1 −Φj − Vj) where Φ̃j+1 ≡ Φ(r̃Nj+1), Φj ≡ Φ(rNj )

etc.

4. Accept the new intermediate configuration r̃Nj+1 with probability

Pj→j+1 = min {1, exp[−β∆E]} (B.7)

5. Repeat steps 1. to 4. for N times. This then defines the new configuration rNj+1.

The translational displacement δr = (δx, δy, δz)T is chosen uniformly from [−δl, δl]×
[−δl, δl]× [−δl, δl] where δl is the maximal displacement along each axis. A random

rotation axis dϖ can be generated via dϖ =
(√

1− ζ2 cos(ϕ),
√

1− ζ2 sin(ϕ), ζ
)T

with ζ ∈ [−1, 1] and ϕ ∈ [0, 2π) chosen uniformly. The rotation angle is chosen

uniformly from δϕ ∈ [0, δϑ].

B.2.2 Equilibration and decorrelation

A simulation is typically initialized in a configuration that is far from equilibrium.

Before starting to accumulate values of Aj according to the right-hand side of Eq. (B.6)

by generating a sequence of configurations, it is important that the system is allowed

to relax towards equilibrium for a sufficient number Neq of MC steps (often called

equilibration steps). A good estimate whether the system has reached equilibrium,

is to monitor the instantaneous internal energy of the system as a function of MC

steps and wait until systematic drifts have vanished. Furthermore, to ensure that the

simulation has not entered a gas-liquid coexistence region, one should also monitor

structural quantities such as g(r). In a two-phase region, the g(r) typically exhibits

long-ranged oscillations that do not decay to the correct bulk value. In general it is

difficult to say how many equilibration steps are necessary to approach equilibrium;

in this work, we provide the number Neq of equilibration steps prior to observable

measurements in those sections where simulation results are presented.

A new configuration that has been generated from a previous one is in general

highly correlated with the latter. This introduces bias to averages ⟨A⟩ of observables.
To minimize such correlations, one should allow for a certain number Ndecorr of

intermediate MC steps before calculating a new value Aj+1 that enters Eq. (B.6). For

the Metropolis algorithm this means that steps 1. to 4. are carried out for N ×Ndecorr

times before a new value of Aj+1 is recorded. The precise value of Ndecorr depends on

the number of particles N , the temperature T , packing fraction η. During the course

of a simulation, in total M ×Ndecorr ×Neq MC moves are performed; this number can

be of order ∼ 1010 – 1012.
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The amount of necessary equilibration end decorrelation steps in some situations

can be reduced significantly with clever MC algorithms. An important example, that

we frequently employed in this work is the so-called aggregation-volume-bias (AVB)

move.

B.2.3 Aggregation-volume-bias (AVB) moves

While roto-translations along with the Metropolis algorithm provide a suitable access

to the behavior of patchy fluids at reasonable high temperatures and densities, it

can be extremely difficult and demanding to sample the phase space at low densities

and temperatures properly; at the same time, self-assembly of complex structures is

often observed at very low temperatures and densities. For example, chain-formation

in systems with two interaction sites becomes significant for kBT/ε . 0.08 [154].

The probability to break an existing bond between two particles is proportional to

(kBT/ε)
−1; see Eq. (B.7). At these temperatures it typically requires ∼ 106 – 108 trial

moves to break a bond for simulations that make use of conventional Metropolis moves,

which, in turn requires to run a very large number of equilibration and intermediate

decorrelation steps.

The AVB algorithm proposes a method to significantly speed up phase-space

sampling at such low densities and temperatures. This is achieved by performing two

kinds of particle moves: (i) formation of a new bond between previously unbonded

particles and (ii) breaking of an existing bonds between two particles by explicit

separating. The precise steps involved can be found in Ref. [142]. The authors

demonstrated that at low densities and temperatures, the AVB algorithm can speed

up the sampling of phase space up to more than two orders of magnitudes compared

to the standard Metropolis algorithm.

B.2.4 Calculating radial distribution functions

A key task throughout this work is to determine the radial distribution function g(r)

(and its dynamical analogue, the van Hove function) from a given set of configurations.

This can be realized as follows. Due to the definition of g(r), the mean number of

particles N(r) within a sphere of radius r centered around a reference particle can be

written as

N(r) = 4πρb

∫ r

0
dr′ r′2g(r′) , (B.8)

Differentiating both sides of Eq. (B.8) yields

dN(r)

dr
= 4πr2ρbg(r) , (B.9)

or, equivalently,

g(r) = lim
∆r→0

N(r +∆r)−N(r)

4πρbr2∆r
≈ N(r +∆r)−N(r)

4π
3 ρb[(r +∆r)3 − r3] , (B.10)
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where N∆r ≡ N(r +∆r)−N(r) is the mean number of particles within the spherical

shell between r and r+∆r. The quantity N∆r can be estimated by means of recording

the distances of all particles surrounding a fixed reference particle into a histogram

and then averaging over all (reference) particles and configurations. Hence, g(r) is

approximately given by

g(r) ≈ hist(r)
4π
3 ρb[(r +∆r)3 − r3] , (B.11)

where the histogram hist(r) is calculated via (the inner summation is an average over

all particles)

hist(r) =
1

NK

K∑
i=1

N∑
j=1

N∑
k ̸=j

χ[r,r+∆r](|ri,j − ri,k|) , (B.12)

in where ri,k is the position of particle k within configuration rNi , and χ[r,r+∆r](x)

denotes the characteristic function on the interval [r, r +∆r], i.e.

χ[r,r+∆r](x) =

1 if x ∈ [r, r +∆r] ,

0 else .
(B.13)

We used a spatial resolution of one hundred points per diameter, i.e. ∆r = 10−2σ.

B.2.5 Density at a hard wall

A hard wall can be modeled as a region where the particles cannot enter due to their

hard core; respective configurations will be discarded by the MC algorithms during the

course of the simulation. In this work, a hard wall with thickness 2σ was introduced

at z = 0 in the x-y plane of the simulation box. Due to the symmetry induced by a

planar hard wall, the equilibrium density profile will only depend on the z-coordinate

and be translational invariant along the x- and y-axis. Similar to the derivation of

Eq. (B.11), consider the number of particles at distance z to the wall:

N(z) =

∫ Lx

0
dx′

∫ Ly

0
dy′
∫ z

0
dz′ ρ(z′) = Lx Ly

∫ z

0
dz′ ρ(z′) (B.14)

⇒ ρ(z) =
1

Lx Ly

dN(z)

dz
≈ 1

Lx Ly

N(z +∆z)−N(z)

∆z
=

1

Lx Ly

hist(z)

∆z
, (B.15)

wheren hist(z) is a histogram of the number of particles that are located between

[z, z +∆z] at distance z from the wall. It is given by

hist(z) =
1

K

K∑
i=0

N∑
j=0

χ[z, z+∆z](zi,j) , (B.16)

where zi,j is the distance of particle j to the wall in configuration rNi .
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B.3 Dynamic Monte-Carlo simulations

B.3.1 Methodology

The dynamic Monte Carlo (DMC) method [167, 168] is based on the standard Metropo-

lis algorithm (see Sec. B.2.1) and mimics Brownian dynamics of colloidal particles

immersed in a solvent in the limit of small displacements δr. It is based on the obser-

vation that the mean square displacement of a free Brownian particle can be linked to

the displacement distance in a MC simulation |δr| =
√

(δx2) + (δy)2 + (δz)2 ∈ [0, δr],

where δr =
√
3 δl. In a trial move, a randomly chosen particle is shifted by a random

vector δr as described in Sec. B.2.1. Thus, the translational mean-square displacement

per trial move is given by

⟨δr2⟩ = 1

δr

∫ δr

0
r2a(r) dr ≈ ā

δr

∫ δr

0
r2 dr =

ā

3
δr2. (B.17)

Here the acceptance rate a(r) of a trial move has been approximated by its average

ā, which is exact only in the limit of infinitesimal displacements δr → 0. Requiring

Eq. (B.17) to be equivalent to the mean square displacement of an isolated Brownian

particle, i.e.

⟨δr2⟩ = 6D0∆t =
ā

3
δr2 , (B.18)

yields an explicit specification for δr:

δr(∆t) =

√
18D0

ā
∆t =

√
18σ2

ā
∆t∗ , (B.19)

where ∆t∗ = ∆t/τB, where τB = σ2/D0 is the Brownian time. As a result the maximal

displacement along each spatial direction is given by

δl (∆t) =

√
6σ2

ā
∆t∗ . (B.20)

The dependency on the acceptance ratio can be bypassed by redefining a MC

step as performing roto-translations until N trial moves have been accepted ; then the

average acceptance probability of a trial move is ā = 1. Similar considerations [168]

lead to an expression for the maximal angular displacement δϑ per trial move. Taking

all together we find:

δl (∆t∗) =
√
6σ2∆t∗ ; δϑ(∆t∗) =

√
72∆t∗. (B.21)

In this thesis we have assumed a time step of ∆t∗ = 10−4 which in case for hard

spheres has proven to be sufficient for converging against Brownian dynamics [177]. It

was moreover verified that the results obtained from DMC were insensitive to changes

in ∆t.



B.3 Dynamic Monte-Carlo simulations 175

B.3.2 Measurements

The DMC method enables us to calculate means of time-dependent observables ⟨A⟩(t)
in a colloidal fluid that is subject to Brownian motion, such as the mean-squared

displacement or the van Hove function G(r, t) (cf. Ch. 5). This amounts to calculate

an average of A at several points in time. This is done as follows.

Starting with an equilibrium configuration rN0 , we perform a number of Mt Monte-

Carlo steps according to the Metropolis algorithm discussed in Sec. B.2.1. It is

important to note that here intermediate equilibration steps must not be allowed to

ensure a convergence of the DMC method towards Brownian dynamics. The total

simulation time tmax (in units of τB) is then given by tmax = Kt∆t
∗ with Kt ∈ N. In

order obtain reliable statistics, we have to repeat the above steps for K times; this

then yields an estimate for ⟨A⟩(t). In order to minimize correlations, we choose the

latest configuration rNKt
as initialization for the new run (which clearly can be done in

bulk fluids).

The mean-squared displacement is calculated according to:

〈
[r(t)− r(0)]2

〉
=

1

N ·K
K∑
i=1

N∑
j=1

[ri,j(t)− ri,j(0)]
2 , (B.22)

where t ∈ {0, tmax} and ri,j(t) denotes the location of particle j in configuration rNi at

time t.

Similar to the calculation of the radial distribution function g(r), the self and

distinct parts of van Hove function G(r, t) can be obtained from:

Gd(r, t) =
1

4π
3 ρb[(r +∆r)3 − r3]

1

NK

K∑
i=1

N∑
j=1

N∑
k ̸=j

χ[r,r+∆r](|ri,j(t)− ri,k(0)|) , (B.23)

Gs(r, t) =
1

4π
3 ρb[(r +∆r)3 − r3]

1

NK

K∑
i=1

N∑
j=1

χ[r,r+∆r](|ri,j(t)− ri,j(0)|) . (B.24)
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University of Tübingen, 2016).

[232] J. Nickolls and W. Dally, IEEE Micro 30, 56 (2010).

[233] NVIDIA, CUDA C PROGRAMMING GUIDE (NVIDIA Corporation, 2016).

[234] NVIDIA, CUDA C BEST PRACTICES GUIDE (NVIDIA Corporation, 2016).

[235] Y. Rosenfeld, Phys. Rev. A 42, 5978 (1990).
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