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ABSTRACT 

Carbonatites show great economic potential and are important sources for a range of 

commodities, including P, Fe, F, Cu and HFSE (e.g., Zr, Hf, Nb, U), but especially REE. 

About 10% of all known carbonatite occurrences (50 out of 550) are currently mined for 

those commodities and about 40% of all REE exploration projects target carbonatites and 

associated rock types. Despite their economic importance we have a limited understanding 

of carbonatite systems and their relationship with associated rock types. A range of 

processes result in strong variability in the mineralogy and mineral chemistry of 

carbonatites, and hence their economic viability. However, the scientific interest to 

understand the complex mineralizations and associations in carbonatitic systems has 

tremendously increased. Our studies focus on two carbonatite complexes, namely the 

Palabora Carbonatite Complex (South Africa) and the Kaiserstuhl Volcanic Complex 

(Germany), that reflect a variety of mineral assemblages and mineral chemistry. The 

Palabora carbonatite clearly indicate an insignificant orthomagmatic REE mineralization, 

a late-magmatic enrichment of REE mineral phases and an effective post-magmatic 

redistribution of the REE mineralization. The Kaiserstuhl carbonatites, on the other hand, 

show a greater diversity in their REE concentrations due to a greater variety of petrogenetic 

processes. Some of the carbonatite bodies at the Kaiserstuhl experienced a strong 

hydrothermal enrichment of REE. In contrast, one Kaiserstuhl carbonatite body, namely 

the Badberg, shows strong retention of REE by apatite during early orthomagmatic stages. 

This carbonatite body lacks a late-magmatic to hydrothermal REE enrichment. The 

enhanced incorporation of REE into orthomagmatic apatite is attributed to a coupled 

substitution that is promoted through host rock contamination. Since the REE mineral type 

(its abundance) and mineral associations are decisive if a carbonatite is economic or not, 

the understanding of effects on the REE mineralization is of crucial importance. We use 

the Palabora complex (and the Fen complex, Norway) to illustrate the individual 

evolutionary stages of carbonatites and we illustrate the influence of external silicate 

contamination on the economic potential of a carbonatite at the Kaiserstuhl complex. 

Furthermore, we present a new model that reconstructs the emplacement of, and relation 

between, carbonatites and associated rocks. This model predicts the ratio between 

carbonatites and associated rock types, and explains the origin of phoscorite magmas. An 

extension of the model further explains the generation of various carbonatitic fluids. 
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KURZZUSAMMENFASSUNG 

Karbonatite zeichnen sich durch ihr hohes wirtschaftliches Potenzial als wichtige Quelle 

für Rohstoffe, wie P, Fe, F, Cu und HFSE (z.B. Zr, Hf, Nb, U), aber vor allem LREE, aus. 

Etwa 10% aller bekannten Karbonatite (50 von 550) werden derzeit abgebaut, wobei etwa 

40% aller REE-Explorationsprojekte auf diese und die mit ihnen assoziierten 

Gesteinsvorkommen abzielen. Trotz ihrer wirtschaftlichen Bedeutung ist das Verständnis 

von karbonatitischen Systemen und ihre Beziehungen zu assoziierten Gesteinstypen noch 

unvollständig. Hierbei kann eine Reihe von verschiedenen Prozessen eine starke 

Variabilität in der Mineralogie und Mineralchemie von Karbonatiten verursachen, und eine 

starke Auswirkung auf ihre Wirtschaftlichkeit haben. Das Interesse, diese komplexen 

Systeme zu verstehen, ist deshalb enorm gestiegen. Unsere Studien konzentrieren sich 

auf zwei Karbonatitkomplexe, den Palabora Komplex (PCC, Südafrika) und den 

Kaiserstuhl Komplex (KVC, Deutschland). Die Komplexe weisen eine stark variable 

Mineralogie und Mineral-chemie auf. Der PCC Karbonatit zeigt eine unbedeutende 

orthomagmatische REE-Mineralisation, eine spätmagmatische REE Anreicherung und 

eine effektive post-magmatische Umverteilung der REE-Mineralisation. Die KVC 

Karbonatite sind in ihrer REE-Anreicherung deutlich abweichend. Einige der 

Karbonatitkörper weisen eine starke hydrothermale Anreicherung auf. Ein 

Karbonatitkörper jedoch, der Badberg, erfuhr einen frühzeitigen Entzug von REE aus dem 

System während der ortho-magmatischen Phase. Dieser Karbonatitkörper zeigt in Folge 

dessen keine REE Anreicherung während der spätmagmatischen bis hydrothermalen 

Phase. Der Entzug von REE erfolgte aufgrund eines kontaminationsbedingten, 

bevorzugten Einbaus in Apatit. Da die Art, die Häufigkeit und die Vergesellschaftung der 

REE-Minerale entscheidend sind, ob ein Karbonatit wirtschaftlich ist oder nicht, ist das 

Verständnis von Auswirkungen auf die REE-Mineralisation von entscheidender 

Bedeutung. Wir veranschaulichen am Beispiel vom PCC (und dem Fen Komplex, 

Norwegen) die einzelnen Entwicklungsstufen von Karbonatiten und zeigen den Einfluss 

einer Silikat-Kontamination auf ihr wirtschaftliches Potenzial am Beispiel vom KVC. 

Darüber hinaus stellen wir ein Modell zur Platznahme und Beziehung von Karbonatiten 

und asso-ziierten Gesteinen vor. Dieses Model erklärt das Verhältnis zwischen 

Karbonatiten und zugehörigen Gesteinsarten sowie den Ursprung von Phoskoriten. Eine 

Erweiterung dieses Models erklärt die genese verschiedene karbonatitischer Fluide. 
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1. INTRODUCTION 

 

1.1 Genesis of carbonatites and associated rocks 

Carbonatites are mantle-derived igneous rocks that contain ≥30 vol.% primary 

magmatic carbonate minerals (Mitchell, 2005). Worldwide, about 550 occurrences are 

known to date, most of them (80%) are associated with a, compositionally largely 

variable range of typically SiO2 undersaturated silicate rocks (Mitchell, 2005; Woolley 

and Kjarsgaard, 2008). Carbonatites can be subdivided into calcio- (sövites and 

alvikites), magnesio- (beforsites) and ferro-carbonatites, depending on their 

predominant carbonate phase, with calico-carbonatites being the most frequent 

carbonatites (Woolley and Kempe, 1989). Less common are primary magmatic 

dolomitic and ankeritic carbonatites. Theorised petrogenetic models on the origin of 

carbonatites have been reviewed by e.g. Bell (1989), Lee and Wyllie (1994, 1997), 

Mitchell (2005), and Jones et al. (2013). Two formation processes are accepted: 

(1) Derivation from a primary carbonatitic magma by low-degree partial melting of 

carbonate-bearing mantle (Bell and Simonetti, 2010; Dalton and Presnall, 1998). The 

primary melt composition, is however, still unclear and under debate. 

(2) Derivation from a carbonate-bearing silicate magma by (2a) fractional crystallization 

(Lee and Wyllie, 1994)  and (2b) separation of a carbonatitic magma from a carbonate-

bearing silicate magma by liquid-liquid immiscibility (Veksler et al., 1998).  

Some carbonatites (~4%) are additionally spatially and temporally associated and 

genetically related to phoscorites, which are defined as carbonate-bearing ultramafic 

rocks that mainly consist of magnetite, apatite and forsterite/diopside/phlogopite. 

Phoscorites almost exclusively occur in multiphase carbonatite complexes and are 

situated around or in carbonatite cores (Krasnova et al., 2004b). Phoscoritic small-

scale structures are present in many carbonatites (Krasnova et al., 2004b), but most 

of these occurrences are poorly described. The genetic relationship between 

carbonatites and phoscorites has been discussed among petrologists for many years 

and two potential processes have been suggested for the generation of phoscorites: 

(1) Derivation from an individual primary phoscoritic magma.  

(2) Derivation from a carbonatitic magma by (2a) fractional crystallization and (2b) 

separation from a parental carbonatitic melt by liquid-liquid immiscibility (Krasnova et 

al., 2004b). 
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However, the formation from an individual magma is specified as unrealistic because 

of the instability of phoscoritic melts at plausible temperatures (Lindsley and Epler, 

2017). Processes 2a and 2b on the other hand, may also explain the common 

geometric relations between carbonatites and phoscorites (Krasnova et al., 2004b). 

Spherulitic and orbicular textures of phoscorite portions in carbonatites and vice versa 

in numerous carbonatite complexes (e.g., Krasnova et al., 2004b; Lapin and 

Vartiainen, 1983) as well as mineral inclusions in apatite and olivine (Mikhailova et al., 

2002) give evidences for phoscorite formation by liquid immiscibility. In addition, melt 

inclusions show an Fe and P enrichment in parental magmas of some carbonatites 

(e.g., Chen et al., 2013; Guzmics et al., 2008; Krasnova et al., 2004b). Phoscorites, 

however, contain carbonate-dominated melt inclusions (e.g., Veksler et al., 1998; 

Zaitsev and Kamenetsky, 2013). Even though liquid immiscibility plays an important 

role in the phoscorite genesis, the role of fractional crystallization is still under debate 

for some complexes (e.g., Rimskaya-Korsakova and Krasnova, 2002). The formation 

of many carbonatite occurrences and their relationship to associated rocks remains 

unclear, but detailed mineralogical and mineral chemical investigations may reveal 

relevant formation processes (see above). 

 

1.2 Mineralogical and mineral chemical variations in carbonatites/phoscorites 

The most common non-carbonate minerals in carbonatites and phoscorites are apatite, 

magnetite and phlogopite, with apatite and phlogopite in particular, varying largely in 

composition (e.g., Andersen, 1988; Brod et al., 2001; Chakhmouradian et al., 2017; 

Chakrabarty et al., 2009; Hogarth, 1989; Mitchell et al., 2017). Therefore, they are used 

as monitors for the magmatic and hydrothermal evolution of carbonatitic systems (e.g., 

Brigatti et al., 1996; Chakhmouradian et al., 2017). Apatites from carbonatites (and 

phoscorites) may usually contain higher concentrations of Sr, rare-earth elements 

(REE) as well as Na and Si relative to most other magmatic rocks. The halogen-site is 

primarily occupied by OH and F, whereas Cl distribution is typically very low (Teiber et 

al., 2015 and references therein). Micas from carbonatites (and phoscorites) can be 

distinguished into four main groups: (1) The phlogopite-annite, (2) phlogopite-

eastonite, (3) phlogopite-kinoshitalite, and (4) phlogopite-tetraferriphlogopite series 

(e.g., Reguir et al., 2009 and references therein). These micas are very Mg-rich 

(phlogopite) and typically evolve towards an Al-rich composition (eastonite and 

kinoshitalite; e.g., Brod et al., 2001; Lee et al., 2003) or an IVFe3+-rich composition 
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(tetraferriphlogopite; e.g., Brod et al., 2001; Gaspar and Wyllie, 1987). In contrast, 

micas of associated silicate rocks typically contain a significant annite (VIFe2+) 

component >20% and are thus classified as biotites.  

In addition, a number of other silicate minerals (e.g. monticellite, forsterite, 

clinopyroxene, foid, alkali feldspar, etc.) have been described (Barker, 2001), but it is 

difficult to distinguish primary carbonatitic mineral phases from xenocrysts (Barker, 

2001). In this context, a mineral chemical comparison of silicates from carbonatites 

and cogenetic silicate rocks, country rocks and mantle rocks, can provide insights on 

their provenance. However, relevant studies are rare (e.g., Vuorinen and Skelton, 

2004). Furthermore, various HFSE-rich minerals and sulphides (pyrrhotite, pyrite, 

chalcopyrite, etc.) are commonly present (e.g., Bell et al., 2015; Chakhmouradian, 

2006; Farrell et al., 2010; Gomide et al., 2013). A detailed understanding of mineral 

variability and their process-related character is crucial to understand how carbonatitic 

complexes emplace and how their mineralizations develop. This understanding, in 

turn, is critical to mineral exploration and future development of these important 

resources (Moore et al., 2015). 

 

1.3 REE mineralization in carbonatites and phoscorites 

Both, carbonatites and phoscorites are of high economic interest and are currently 

mined for their HFSE mineral-bearing phases (e.g., Nb in pyrochlore; Zr in baddeleyite; 

REE in monazite and REE-fluorocarbonates, etc.; e.g., Niobec, Canada; Kovdor, 

Russia; Mount Weld, Australia; Bayan Obo, China; Gendron et al., 1984; Ivanyuk et 

al., 2002; Kanazawa and Kamitani, 2006; Krasnova et al., 2004a; Yang et al., 2011). 

Additionally, they can represent important sources for Fe (in magnetite) and P (in 

apatite; e.g., Palabora, South Africa; Kovdor, Russia; e.g., Hanekom et al., 1965; 

Ivanyuk et al., 2002) and other minor commodities. About 45 REE-minerals and REE-

bearing minerals have been reported from carbonatites worldwide (Chakhmouradian 

and Zaitsev, 2012; Wall and Zaitsev, 2004; Zaitsev et al., 2015). Two general types of 

REE mineralization can be distinguished in carbonatites: (1) those with “true” REE-

minerals where REE are major constituents and (2) those where independent REE-

minerals are absent and the significant amounts of REE are hosted in minerals such 

as calcite and apatite (Wall and Zaitsev, 2004). A variety of those minerals may be 

found in a single carbonatite. The most common REE-minerals in carbonatites are 

ancylite, bastnäsite-group minerals (known as REE-fluorocarbonates), britholite, and 
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monazite (Mariano, 1989; Zaitsev et al., 1998; Zaitsev et al., 2014), which are 

interpreted to be either of magmatic (relatively rare, mostly bastnäsite/parisite; 

Chakhmouradian and Zaitsev, 2012; Moore et al., 2015), hydrothermal (mostly 

bastnäsite and monazite; Williams-Jones et al., 2012) or supergene origin (e.g., 

crandallite-group minerals in carbonatite-derived laterites; Kynicky et al., 2012). 

Numerous carbonatite complexes experienced a multi-stage evolution (e.g., Brigatti et 

al., 1996; Lee et al., 2003; Moore et al., 2015), with processes potentially responsible 

for REE enrichment including fractional crystallization of carbonatitic magma, 

enrichment of REE in magmatic fluids and subsequent precipitation, breakdown of 

primary carbonatitic minerals with sequestration of REE in secondary minerals, and 

subsolidus redistribution of REE (e.g., Verplanck et al., 2016). But in general, several 

studies pointed out that hydrothermal processes usually are the most important 

parameter to form a major REE mineralization (e.g., Barra do Itapirapua, Bear Lodge, 

Tundulu and Kangankunde, Khibina; Andrade et al., 1999; Moore et al., 2015; Wall 

and Mariano, 1996; Zaitsev, 1996).  

 

1.4 Case studies of carbonatite deposits 

Some of the best studied REE-rich carbonatite complexes are those of the Kola 

Province (Finland and Russia). Phoscorites and early-stage carbonatites of most of 

these complexes are relatively REE-poor (≥2000 µg/g). The REE is generally hosted 

in major rock-forming minerals such as calcite and apatite, whereas REE-minerals are 

mostly absent. Late-stage carbonatites, however, show high REE contents (up to 5 

wt.%) and incorporating distinct REE-minerals (e.g., bastnäsite; Lee et al., 2004; 

Zaitsev et al., 2015). Additionally, a primary (crystallized from a melt or carbo-

hydrothermal fluid) and a secondary (formed during metasomatic replacement) REE 

mineralization are distinguished (Zaitsev et al., 2015).  

A good example for the complexity of multi-stage REE mineralizations is the Bear 

Lodge carbonatite (USA), where five distinct REE-mineral assemblages can be 

texturally distinguished and record multiple stages of hydrothermal deposition involving 

compositionally distinct fluids followed by supergene oxidation (Moore et al., 2015). 

Similar processes were documented from several other carbonatite complexes in 

Russia, China, Finland, Malawi and Siberia (Al Ani and Sarapää, 2009; Bulakh et al., 

1998; Chakhmouradian and Zaitsev, 2012; Wall and Mariano, 1996; Xu et al., 2010; 

Zaitsev et al., 2002; Zaitsev et al., 1998). In several of these cases, changes in 
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temperature and in activities of CO2, HF and HCl in such fluids (caused e.g., by the 

dissolution of primary minerals such as carbonates, apatite or phlogopite) are assumed 

to be responsible for the variability of the observed REE mineralizations (Andersen and 

Austrheim, 1991; Downes et al., 2014). 

The formation of the currently largest producing REE deposit Bayan Obo (China) was 

also explained by carbonatite-derived multistage hydrothermal metasomatism, in this 

case of sedimentary carbonate rocks (e.g., Chao, 1997). The Bayan Obo deposit 

contains several distinct REE mineralizations. The dominant REE-minerals are 

bastnäsite and monazite, which are assumed to have precipitated from CO2-rich fluids 

(Kanazawa and Kamitani, 2006). The major variation in fluid composition (as indicated 

by fluid inclusion data) points to a multistage deposition and remobilization of the REE.  

In the second largest producing REE deposit, Mountain Pass (USA), three distinct 

REE-mineral assemblages include magmatic bastnäsite, parisite and monazite, late-

stage bastnäsite and secondary synchisite, sahamalite and ancylite (Castor, 2008). 

Interestingly, textural observations in these rocks indicate an upward streaming of 

REE- and Ca-rich fluids. In this case, fluids of distinct compositions have the potential 

to precipitate REE-minerals and to modify pre-existing REE mineralizations. 

In summary, REE-deposits in carbonatites are divers and often show a multi-stage 

origin. The REE mineralizations in a single orebody can be highly variable and depend 

on temperature, pressure, pH and fluid composition (e.g., Cooper et al., 2015). REE 

mineralizations can be of primary magmatic origin, but many REE mineralizations in 

carbonatites are attributed to changes in REE speciation and complexation during the 

transition from magmatic to hydrothermal/carbothermal stages (Haas et al., 1995). 

The present thesis deals with the Palabora Carbonatite Complex (South Africa) and 

the Kaiserstuhl Volcanic Complex. The former is one of the deepest emplaced 

carbonatite occurrences world-wide and is associated with a prominent phoscorite 

occurrence. The latter reflects a subvolcanic emplacement including several 

geometrically distinct carbonatite bodies, but no phoscorite association. Due to 

extensive sampling campaigns and the provision of available drill core material, the 

investigation of the Palabora and Kaiserstuhl Complexes, which will be described in 

more detail below, is a unique opportunity for a systematic study on mineral variations 

in carbonatitic systems. This study will further advance the knowledge and 

understanding concerning the emplacement and evolution of carbonatites and their 

associated REE mineralization. 



6 
 

1.5 Regional geology of the studied complexes 

1.5.1 Palabora Carbonatite Complex (PCC) 

Palabora represents a kidney-shaped, pipe-like complex of Proterozoic age (2060 Ma; 

Reischmann, 1995), which intruded the Archean granite-gneiss basement of the north-

eastern Kaapvaal craton (Wu et al., 2011). The complex covers an area of about 12 

km² next to the city of Phalaborwa (Limpopo province, South Africa). The tripartite 

intrusion is dominated by different types of pyroxenite and is divided into a northern 

and southern pyroxenite, and the central Loolekop pipe. Only the latter comprises a 

1.3 x 0.8 km sized circular structure consisting of carbonatites and phoscorite.  

Phoscorite (FOS), for which Palabora represents the type locality, is strongly 

interwoven with banded carbonatite (BCB). This association, in turn, is transected by 

a transgressive carbonatite (TCB). Newly discovered carbonatite veins of increasing 

frequency with increasing depth, indicate another (hidden) carbonatite body in the 

centre of the southern pyroxenite. Carbonatites of the Palabora complex are generally 

sövitic. Marginal zones of the pyroxenite intrusion (dominantly micaceous pyroxenite, 

MPY) experienced an interaction with the basement during emplacement that resulted 

in the formation of a feldspathic pyroxenite (FPY). The surrounding basement was 

fenitized (Fenite - FEN). Within the immediate vicinity of the complex syenites intruded 

as satellite bodies and dolerite dykes (mostly Proterozoic; Wu et al., 2011) crosscut 

the entire region. Correlations to the extrapolated sediment cover yielded an 

emplacement depth of about 15 km (Eriksson, 1982), which defines Palabora one of 

the deepest known carbonatite complexes world-wide. Furthermore, it is suggested 

that the primary magma that formed the carbonatite complex was derived from an 

enriched mantle source and that the magma was generated by the same mantle plume 

activity that caused the formation of the Bushveld Complex (Wu et al., 2011). 

The Palabora carbonatite is the only carbonatite world-wide that is primarily mined for 

copper. Besides copper, the complex is mined for apatite and magnetite. Due to 

intensive mining over more than 50 years, the Palabora Mine represents one of the 

deepest open pit mines in the world. After reaching the economic level of the open pit 

(2003), an underground mine was constructed. As a result of an intensive drilling 

campaign, the complete sampling of a vertical profile of about 2000 m through the 

Loolekop pipe was possible. While those drillings verify a continuity of the complex to 

a depth of at least 2 km, gravity data expand the continuity to a depth of at least 5 km 

(Eriksson, 1982).  
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1.5.2 Kaiserstuhl Volcanic Complex (KVC) 

The Kaiserstuhl represents a Miocene (18-15 Ma; e.g., Kraml et al., 2006) volcanic to 

subvolcanic complex, which is situated in the Upper Rhine Graben, an area that is 

characterized by lithospheric thinning (Bourgeois et al., 2007; Edel et al., 2006; 

Hüttner, 1996). Furthermore, the Upper Rhine Graben is featured by numerous partly 

deep-reaching listric and steep fault sets that are mostly subparallel to the graben 

geometry and typically form a horst and graben structure including variably sized 

tectonic blocks and relay ramps (e.g., Beccaletto et al., 2010).  

The rocks of the KVC mainly consist of tephritic to phonolitic rocks, and minor 

nephelinitic, limburgitic, melilititic, haüynitic rock series (e.g., Baranyi et al., 1976; 

Braunger et al., 2018; Keller et al., 1990; Wimmenauer, 2003). Carbonatites emplaced 

in the centre of the complex (e.g., Schleicher et al., 1990; Wang et al., 2014), where 

they are exposed as four major carbonatite bodies (Badberg, Degenmatt, 

Haselschacher Buck, Orberg), spatially associated with polygenetic breccias. 

Additionally, two smaller occurrences (<10 m in diameter) are situated at the 

Katharinenberg and Kirchberg. All carbonatite bodies are sövitic with minor, alvikitic 

and beforsitic dykes (cm- to m thick) crosscutting all rock types (Katz-Lehnert, 1989; 

Sommerauer and Katz-Lehnert, 1985). Field observations and geophysical data 

(Brauch et al., 2018 and references therein) identified an intersection of the KVC by 

the regional Tuniberg normal fault, with a westwards down-throw of a vertical 

displacement between 1000 and 3000 m (Beccaletto et al., 2010; Groschopf et al., 

1996), separating the Badberg from the other sövite bodies. While the pipe-like 

Badberg sövite (400 m thick, inclined ~60° towards NW) shows no evidence to 

continue at greater depth, a continuous pipe-like system is indicate below the 

Degenmatt and Haselschacher Buck (Brauch et al., 2018). Furthermore, the Badberg 

contains numerous cm- to m-sized rafts of calcite foidolites (xenoliths). Sövites at the 

Orberg display variable geometries including sills, sheet-like bodies and irregular 

cauliflower-like structures, that are strongly associated with polygenic breccias. These 

breccias probably promoted an intrusion into zones of weakness (Hubaux, 1964). At 

Henkenberg and Kirchberg alternating sequences of carbonatitic lavas, crystal tuffs 

and lapillistones (three 1 to 1.5 m thick layers, interbedded with silicate pyroclastics) 

are exposed (Keller, 1978; Keller, 1981; Keller, 1989). The KVC sövites only 

experienced a historical, small-scale mining on Nb during which, 4 boreholes with a 

depth between 100 to 500 m were drilled. Today the area is a protected natural habitat. 
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2. OBJECTIVES AND EXPECTED OUTPUTS 

 

2.1 Studies on the main topic of this dissertation 

Although carbonatites represent a high economic potential, their mode of emplacement 

and processes that cause variations in their mineralization are not yet fully understood. 

However, the interest to understand such processes has increased significantly during 

the last years. Thus, our studies on the Palabora (South Africa) and Kaiserstuhl 

Complex (Southwest Germany) contribute to a better understanding of carbonatitic 

systems, their emplacement and mineralization. Carbonatites from Palabora (e.g., 

Aldous, 1980; Eriksson, 1982; Hanekom et al., 1965; Palabora Mining Company, 1976; 

Wu et al., 2011) and the Kaiserstuhl (e.g., Braunger et al., 2018; Keller, 1981; Teiber 

et al., 2015; Walter et al., 2018; Wang et al., 2014; Wimmenauer, 2003) have been 

subject to previous investigations, but no detailed and systematic studies on their 

mineralogy and mineral chemistry were available to date. Therefore, a comprehensive 

data set of the mineralogical inventory and the compositional variation of major 

minerals in carbonatites of these complexes is generated. In addition to a detailed 

textural, mineralogical and mineral chemical characterization of the carbonatites (and 

phoscorite), this thesis focuses on the following aspects of the individual studies.  

 

2.1.1 The orthomagmatic, late-magmatic and post-magmatic REE mineralization, 

and its significance in carbonatites 

Title of publication:  

The Multistage REE Mineralization of the Palabora Carbonatite Complex, South Africa. 

(Study A) 

 

This study is driven by the following major questions: 

 How does the mineralogy, and especially the paragenetic sequence of REE 

minerals, change between the carbonatites and phoscorite? 

 What are the different stages and related formation processes that caused a 

distinct REE mineralization? 

 Which processes caused a REE mineralization how effectively?  

 How do different processes affect an existing REE mineralization? 

 Which mechanisms lead to an effective REE mineral alteration and REE 

redistribution? 
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2.1.2 The relationship of carbonatites and phoscorites based on phlogopite and 

apatite composition including a new emplacement model 

Title of publication:  

A model for the formation of carbonatite-phoscorite assemblages based on the 

compositional variation of mica and apatite from the Palabora Carbonatite Complex, 

South Africa. (Study B)  

 

This study is driven by the following major questions: 

 How are carbonatites (BCB and TCB), phoscorite and silicate rocks 

genetically related to each other? 

 Why did carbonatites and phoscorites emplace late into silicate rock-

dominated complexes? 

 How do phoscorites form? 

 Why do some carbonatite complexes lack any associated silicate rocks? 

 Is it possible to create a petrogenetic model which explains the volumetric 

relationship between carbonatites, phoscorites and silicate rocks? 

 

2.1.3 Mineralogical and mineral chemical variations in carbonatites due to 

magma-wall rock interactions  

Title of publication: 

Evidence for magma – wall rock interaction in carbonatites from the Kaiserstuhl 

Volcanic Complex (Southwest Germany). (Study C)  

 

This study is driven by the following major questions: 

 How does the mineralogy of the different sövite bodies of the KVC vary? 

 Which features can be used to track contamination in carbonatites? 

 How can we identify whether a silicate mineral in a carbonatite formed by (I) 

a pristine sufficiently high silica activity or (II) a change in silica activity by 

contamination, or whether (III) it is entrained as a xenocryst? 

 Are uncontaminated carbonatites capable of crystallizing higher amounts of 

silicates, especially mica? 

 What effects does contamination by silicate-rich wall rocks have on the REE 

mineralization of carbonatites? 
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2.2 Further co-authored publication on the petrogenetic significance of 

interactions with carbonatite-derived fluids 

A further study contributes to the main topic of the thesis. These study are supposed 

to provide comparisons and additions to the above described publications (especially 

study A) in order to highlight the previous results and bring them into a broader context. 

 

Title of publication: 

Hydrothermal processes in the Fen carbonatite complex, southern Norway. (Study D) 

 

This study is driven by the following major questions: 

 Which processes formed the mineralization of the Fen carbonatites? 

 How do the different processes affect each other with respect to their 

mineralization? 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 The orthomagmatic, late-magmatic and post-magmatic REE mineralization, 

and its significance in carbonatites 

Title of publication:  

The Multistage REE Mineralization of the Palabora Carbonatite Complex, South Africa. 

(Study A) 

 

This study is based on a collection of about 400 drill core samples from 6 drill holes 

that combine to a vertical profile of about 2000 m. For analytical work 45 representative 

samples (20 TCB, 15 BCB, 10 FOS) have been chosen from the sample set. The 

samples were texturally investigated in much detail and all (10) relevant REE minerals 

and their different generations were analysed by electron micro probe (341 analyses). 

The analytical data was primarily used to identify the different REE minerals and to 

distinguish different mineral generations by mineral composition. This distinction is 

based on a comparison of texturally characterized mineral phases and their mineral 

composition. Furthermore, this compositional distinction was especially important for 

mineral assemblages, where a clear textural distinction was not possible. 
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Our study has proven that phoscorites, and both carbonatite types (BCB and TCB) 

generally contain the almost same mineral assemblages in the same crystallization 

sequence, only modal abundances and textural features are variable. While 

phoscorites are dominated by early orthomagmatic minerals (e.g., olivine, apatite, 

phlogopite and magnetite), carbonatites commonly contain larger amounts of later 

orthomagmatic minerals (e.g., carbonates). The frequency of very early magmatic 

minerals (e.g., olivine and thorianite) and in general silicates (olivine and phlogopite) 

is higher in BCB than in TCB. A detailed investigation of the individual mineral 

generations and mineral assemblages has shown that the Loolekop has experienced 

four different evolutionary stages. This includes an orthomagmatic, a late-magmatic 

(hydrothermal), sulphide and post-magmatic (hydrothermal) stage, which can be 

observed in phoscorites as well as both carbonatites with a particularly strong late-

magmatic effect on TCBs. 

A combination of orthomagmatic and subsequent late-magmatic hydrothermal stages 

is typically observed in carbonatites of various complexes (e.g., Bear Lodge and 

Wicheeda; Moore et al., 2015; Trofanenko et al., 2016). Later hydrothermal post-

magmatic stages are also common (e.g., Amba Dongar; Doroshkevich et al., 2009). 

Therefore, the individual evolutionary stages of carbonatites of the Palabora complex 

can be used as a generalized example for a typical formation and redistribution of REE 

minerals in carbonatitic systems, while, of course, compositional variation of the 

original magma and involved fluids can initiate relevant mineralogical differences. For 

this purpose, the different stages are first characterized and then compared with 

respect to their significance for the REE mineralizations. 

The orthomagmatic stage is characterized by an early formation of forsteritic olivine, 

apatite, baddeleyite and thorianite, and first REE minerals (fergusonite and REE-Ti-

betafite). However, the REE minerals are rare and form only small crystals. This 

mineral association is followed by the formation of phlogopite and the beginning of 

titanomagnetite crystallization coprecipitating with minor amounts of spinel and 

ilmenite. Additional spinel and ilmenite exsolved from titanomagnetite during cooling. 

The precipitation of Mg-rich calcite, which later exsolved wormlike dolomite, already 

started during the final stages of apatite formation, but its main crystallization stage 

took place relatively late in the crystallization sequence. Discrete dolomite crystallized 

during the intermediate stage of calcite formation. Contemporaneously to the main 

calcite crystallization, REE-, Ba- and Sr-carbonates such as bastnäsite, strontianite 
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and barytocalcite formed. Furthermore, there are indications (see below) that 

carbocernaite and/or burbankite formed at this late orthomagmatic stage as is typical 

for other carbonatite complexes, but these phases were commonly replaced by later 

REE minerals (Wall et al., 1997; Zaitsev et al., 1998).  

The late-magmatic stage is interweaved with the orthomagmatic stage and probably 

represents the result of an interaction of orthomagmatic minerals with a residual 

aqueous-carbonic fluid that was released by the carbonatite itself. This stage is 

characterized by a serpentinization of olivine and a replacement of olivine by 

chondrodite. The formation of serpentine or chondrodite certainly depends on the 

enrichment of F in the late-magmatic fluid, which in turn is most likely dependent on 

the mobilization of F by apatite dissolution. Furthermore, chloritization of 

orthomagmatic phlogopite, formation of secondary apatite and precipitation of 

tetraferriphlogopite (see study B) as well as monazite and britholite is observed. 

Monazite replaced apatite as thin rims or occasionally even completely by dissolution-

reprecipitation reactions. Although orthomagmatic apatites incorporated significant 

concentrations of REE (Ø 8000 ppm), mass balance considerations demonstrate that 

these concentrations are not sufficient to provide enough REE for monazite 

precipitation. Therefore, an additional introduction of REE was essential for the 

formation of monazite. Britholite, in contrast, crystallized either at the expense of 

olivine, where it usually formed rims around olivine- serpentine/chondrodite 

assemblages, or less frequently in contact with phlogopite-chlorite assemblages.  

Britholite was only rarely found as a discrete crystal in vein-like structures, where it 

occurs together with tetraferriphlogopite (see Study B). Usually, britholite occurrences 

worldwide indicate a primarily hydrothermal origin, replacing apatite or monazite and 

obtaining Si from the fluid itself (Budzyń et al., 2011; Uher et al., 2015). However, since 

britholite in Palabora was formed only after the provision of Si by the alteration of 

orthomagmatic silicates (olivine and phlogopite), it can be assumed that the 

mineralization fluid was originally low in Si and was only enriched during the alteration 

of silicates. The Si-enriched fluid might later form the discrete britholite crystals 

together with tetraferriphlogopite. As britholite mainly represents fluorbritholite-(Ce), it 

can also be assumed that the involved fluid must have been sufficiently enriched in F. 

Finally, the formation of a particular type of REE mineral was locally dependent on the 

availability of P or Si, provided by the alteration of orthomagmatic silicates or 
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phosphates. Monazite is the dominant REE phase of this stage due to the high 

abundance of apatite and minor abundance of olivine. 

Between the late-magmatic and the post-magmatic stage, a sulphide stage occurs. 

This sulphide stage is characterized by an injection of a sulphide-rich liquid which 

causes the extensive Fe-Cu sulphide mineralization of the Palabora complex. But, 

since this stage does not lead to an REE mineral formation or redistribution, it is not 

further discussed in this study. However, it should be mentioned that a corresponding 

inclusion of previous REE minerals (e.g., late-magmatic monazites and orthomagmatic 

REE-fluorocarbonates) in sulphide phases prevents alteration of these minerals by 

subsequent processes of the post-magmatic stage. 

The post-magmatic stage caused a strong alteration of previously formed minerals 

(e.g., valleriitization of sulphides, recrystallization of carbonates) and a significant 

redistribution of certain elements (e.g., Sr and Th, but especially REE). Carbocernaite 

and/or burbankite are completely replaced by post-magmatic cordylite and ancylite, 

which are strongly associated with strontianite and baryte. Orthomagmatic bastnäsite 

is either replaced by a mixture of parisite, synchysite, strontianite and occasionally 

fluorite, or strongly dissolved with only few relicts that witness a former presence of 

bastnäsite. The alteration of late-magmatic REE minerals (dominantly represented by 

monazite) is also characterized by strong dissolution and (only for monazite) an 

additional replacement by a REE-poor apatite (mobilization of REE). Occasionally the 

formation of post-magmatic apatite at the expense of monazite is associated with the 

simultaneous formation of bastnäsite needles. It is suggested that this feature is 

caused by a REE oversaturation of the fluid during the remobilization of REE by 

alteration, and hence, indicates the fertility of the fluid. The remobilized element budget 

finally precipitates as a range of different REE minerals in carbonate veins due to fluid 

cooling. While the alteration of former REE phases can be seen as a proximal 

mineralization of the post-magmatic fluid, the recrystallization of the remobilized 

element budget in veins can be described as the corresponding distal mineralization. 

This distal mineralization is dominated by bastnäsite and ancylite, which are often 

associated with further secondary magnetite, strontianite (in absence of ancylite) and 

thorianite or thorite.  

The formation of secondary Th minerals (thorianite and thorite) is typical for those 

hydrothermal low temperature mineralizations. Since Th was mobilized during the 

alteration of REE minerals (with certain amounts of Th), but also of primary Th minerals 
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(e.g., orthomagmatic thorianite), and Th cannot easily be incorporated into secondary 

REE minerals at significantly lower temperatures (Budzyń et al., 2010; Doroshkevich 

et al., 2008; Read et al., 2002), Th precipitates as discrete Th minerals. This is 

evidenced by a comparison of mineral compositions of the different REE mineral 

generations and represents an important indicator to distinguish those mineral 

generations.  

Finally, an important post-magmatic mineral of both proximal and distal mineralization 

is anzaite. The identification of anzaite in Palabora represents the second occurrence 

of anzaite [REE4FeTi6O18(OH)2] world-wide, with the type locality being the Afrikanda 

complex (Russia; Chakhmouradian et al., 2015). The formation of anzaite is dependent 

on the availability of Ti, which is obtained by the alteration of ilmenite. If REE are 

already sufficiently enriched in the fluid, ilmenite is simply replaced by anzaite (proximal 

mineralization). Otherwise, ilmenite is dissolved by the fluid and Ti is remobilized. Such 

a remobilization of Ti is usually ascribed to very low pH fluids containing sufficient F as 

complexing agent (e.g., Van Baalen, 1993). But those conditions are considered to be 

unlikely for the post-magmatic fluid. Alternatively, Manning (2004) pointed out that Ti 

can be transported by complexing agents of polymerized silicate molecules (e.g., Ti-

aluminosilicate complexes; Beitter et al., 2008; Tropper and Manning, 2005). Since the 

post-magmatic fluid causes a strong valleriitization of sulphides and precipitation of 

serpentine (independent on the presence of silicate minerals), which both require a 

certain concentration of mobilized Al and Si, respectively, it can be concluded that 

adequate amounts of these complexing agents are available. A direct indication is the 

rapid sequential formation of valleriite (consumption of Al), serpentine (consumption of 

Si) and subsequent precipitation of anzaite by the loss of complexing agents.  

Since the post-magmatic fluid did not cause an intensive alteration of pre-existing 

silicate phases, but caused a significant formation of serpentine and 

tetraferriphlogopite, it can be assumed that this fluid was, in contrast to the late-

magmatic fluid, already enriched in Si. On the other hand, the strong alteration and 

dissolution of orthomagmatic and late-magmatic REE minerals, and remobilization of 

REE instead of precipitation, indicates that the involved fluid was originally low in REE 

and was only enriched during the alteration of REE minerals. A comparison of the late-

magmatic and post-magmatic fluid further reveals the importance of the late-magmatic 

fluid to initiate the REE mineralization of Palabora. The post-magmatic fluid, in contrast, 
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caused an effective alteration of pre-existing mineral phases and redistribution of REE 

minerals due to remobilization and reprecipitation processes.  

The lack of REE in olivine and low/insufficient REE content in apatite (see above) 

reflects the necessity to import REE into the system during the late-magmatic stage to 

precipitate REE minerals (britholite and monazite). While not only late-magmatic, but 

also late orthomagmatic REE minerals were altered during the post-magmatic stage, 

early orthomagmatic REE minerals were frequently preserved in subsequently formed 

mineral phases (e.g., magnetite), similar to REE minerals enclosed in sulphides (see 

above). Nevertheless, it should be noted that, very similar to what is observed in other 

carbonatite complexes, due to its high modal content, apatite represents the main REE 

host at the PCC (Dawson and Hinton, 2003). However, the economic character of a 

carbonatite is dependent on the occurrence of discrete REE minerals (e.g., bastnäsite 

and monazite) due to the processability of these mineral phases. 

 

 

3.2 The relationship of carbonatite and phoscorite magmas during emplacement 

based on phlogopite and apatite mineral chemistry including a new 

emplacement model 

Title of publication:  

A model for the formation of carbonatite-phoscorite assemblages based on the 

compositional variation of mica and apatite from the Palabora Carbonatite Complex, 

South Africa. (Study B)  

 

This study is based on the same sample set that was used in study A and the same 

selected samples were analysed in this study. In addition, we added three samples of 

associated silicate rocks (2 MPY, 1 FEN). As mica and apatite occur as major 

constituents in all rock types of the Loolekop deposit, textural and mineral chemical 

variations in these minerals are used to shed light into the relations between the 

different lithologies. For this approach about 450 mica and 550 apatite electron micro 

probe analyses were acquired.  

Mineral chemical analyses have shown that 5 different types of mica can be 

distinguished in the carbonatites (TCB and BCB), phoscorite and silicate rocks at 

Palabora. These types include common phlogopite (Fe2+-poor; type I), mica of the 

phlogopite-kinoshitalite (K++Si4+↔Ba2++IVAl3+; type II), phlogopite-eastonite 
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(Mg2++Si4+↔VIAl3++IVAl3+; type III), phlogopite-annite series / biotite (Mg2+↔Fe2+; 

annite component >20%; type IV), and tetraferriphlogopite (IVAl3+↔IVFe3+; type V). Mica 

of type I-IV are interpreted to be of magmatic origin, whereas tetraferriphlogopites (type 

V) indicate a late-magmatic hydrothermal origin. Our study pointed out that the different 

types of mica are limited to specific rock types (except tetraferriphlogopite). Type I mica 

occur exclusively in BCB and FOS. Type II mica exclusively occur in TCB. Mica type 

III is limited to sections of BCB and FOS that are in contact or close to a contact to 

TCB and were interpreted as a product of an interaction with TCB melt. Mica type IV 

(biotites) exclusively occur in pyroxenites. This is in accordance to mica composition 

of other carbonatite complexes, where silicate rocks are associated with carbonatitic 

rocks and biotite exclusively occur in the silicate rocks (e.g., Brod et al., 2001). 

Tetraferriphlogopites (mica type V) typically occur in late-stage rocks, crystallizing at 

lower temperatures (Fleet, 2003; Lee et al., 2003), forming rims with sharp 

compositional changes to pre-existing phlogopite cores (e.g., Brod et al., 2001) or 

completely new individual crystals (e.g., Lee et al., 2003). Tetraferriphlogopite from 

Palabora crystallized as new individual crystals in veins, where it is occasionally 

associated with aggregates of (rarely euhedral) britholite and apatite-monazite 

dissolution structures (see study A) that are both aligned parallel to the vein-like 

orientation of tetraferriphlogopites. Hence, it is assumed that tetraferriphlogopite, 

britholite and monazite formed contemporaneously during the late-magmatic stage 

(characterized in study A) in TCB, BCB and FOS, decoupled from the orthomagmatic 

mica formation. 

The majority of apatites (in FOS, BCB and TCB) depicts a large compositional overlap 

with generally low concentrations of REE, Si, Sr and Na (all <0.05 apfu) and are 

interpreted to be orthomagmatic. In contrast, there are a few outliers exhibiting higher 

REE concentrations (up to 0.15 apfu), which are suggested to represent late-stage 

apatites. The REE enrichment results from different coupled substitution mechanisms, 

namely britholite substitution (P5++Ca2+↔Si4++REE3+ in FOS and few BCB) and 

belovite substitution (5Ca2+ ↔ Na++3Sr2++REE3+ in BCB and TCB), which probably 

dependent on the availability of Si and Sr in late-stage fluids. Interestingly, these 

outliers occur in samples which are characterized by the occurrence of late-stage mica 

type V (tetraferriphlogopite) and hence confirm the assumption of study A that late- 

magmatic fluids introduced a REE mineralization.  
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In this terms, the compositional variations of both, phlogopite and apatite reflect the 

multistage evolution of the Loolekop deposit, with the availability of Al being a 

prominent factor controlling the mica composition. However, neither phlogopite nor 

apatite show systematic compositional changes with depth (over a profile of >2000 m), 

which evidences the absence of a vertical zonation. Furthermore, the obtained data 

point out that compositional variations in mica are much more useful to reconstruct 

magmatic differentiation processes than apatite at Palabora. Magmatic apatites plot 

unsystematically in a defined cloud without clear indications, with respect to 

composition. Additionally, the distinct mica compositions provide information about the 

relations between the different rock types at Palabora. 

The nearly identical mica mineral chemistry of BCB and FOS, their identical mineralogy 

but different modal composition (see study A) and strong structural relations (strongly 

intercalated into each other) indicate a genetic dependence of these rock types. While 

fractional crystallization cannot explain an analogous compositional development of 

mica in BCB and FOS, liquid immiscibility seems to be the most likely process that 

might have formed the phoscorite. This has also been described from other 

carbonatite-phoscorite associations (e.g., Catalão I+II, Sokli; Brod et al., 2001; Lee et 

al., 2003). Further observations on other carbonatite-phoscorite complexes 

strengthens the assumption that liquid immiscibility plays a key role for phoscorite 

formation. Those observations include orbicular and spherulitic phoscorite fractions in 

carbonatites and vice versa (e.g., Krasnova et al., 2004b; Lapin and Vartiainen, 1983) 

and studies of mineral inclusions in olivine and apatite (Mikhailova et al., 2002). Melt 

inclusions evidence that the parental magma of some carbonatites was enriched in Fe 

and/or P (e.g., Chen et al., 2013; Guzmics et al., 2008; Krasnova et al., 2004b). 

Phoscorites, in turn, contain melt inclusions dominated by various carbonates (Veksler 

et al., 1998; Zaitsev and Kamenetsky, 2013). In contrast, TCB as well as associated 

silicate rocks (MPY, FEN) reflect a completely different mica composition, which 

indicates a separate evolution of these lithologies with TCBs representing a higher 

evolved carbonatite magma compared to BCB. 

Anyhow, the assumption that carbonatite-phoscorite associations are formed by liquid 

immiscibility raises the question of a parental magma, its origin and mode of intrusion. 

Furthermore, it is of utmost interest to compare the variable ratios of carbonatites and 

phoscorites between different complexes in order to point out dependencies, e.g. with 

depth. Interestingly, a few studies have shown that there is a depth dependency 
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between the proportions of carbonatites and silicate rocks (Arzamastsev et al., 2000) 

as well as certain mineralogical variations (Frolov, 1971). But individual mechanisms 

are only unsatisfactorily known. This has driven us to develop a model based on the 

existence of a parental melt for carbonatites and phoscorites, which explains the rock 

associations in carbonatite complexes. For this purpose it must be considered that 

previous isotope studies indicate that neither fractional crystallization nor liquid 

immiscibility can be attributed to the formation of associated silicate rocks and 

carbonatites/phoscorites at Palabora (Eriksson, 1982). Accordingly, we suggest a 

contemporaneous emplacement of both lithologies but no genetic link between them. 

Such genetic independence of spatially associated carbonatites and silicate rocks in 

alkaline complexes is frequently suspected (Gittins and Harmer, 2001). 

We suppose that carbonate-rich melts that are generated in the lithospheric 

metasomatized mantle at depths >70 km (e.g., Wyllie and Lee, 1998) by low degree 

partial melting (<5%; e.g., Dasgupta et al., 2007; Gudfinnsson and Presnall, 2005) are 

enriched in Fe and especially in P (in the upper mantle) due to the preferred partition 

of these elements into carbonatites (Jones et al., 1995; Lindsley and Epler, 2017; 

Naslund, 1983). A remixing with silicate melt is prohibited by the liquid immiscibility, 

which further supports the separation of these two melts. The enrichment of Fe and P 

finally forms carbonate-phosphate/iron-oxide-rich (CPIO) melts, which can be 

considered as the required parental melts for carbonatites and phoscorites. The 

pristine carbonatite melt provides a buoyancy due to its low densities (typically 2.2-2.6 

g/cm³; e.g., Dobson et al., 1996; Genge et al., 1995; Kono et al., 2014; Wolff, 1994) 

within the much more voluminous silicate melt accumulation. But by the enrichment of 

Fe and P the CPIO melt becomes increasingly denser, resulting in a loss of buoyancy 

and a state of density equalization. As a result of a depressurization-related magma 

ascent, the CPIO melt is dragged together with the silicate melt into an ascending 

channel (activated weakness zones) and introduced into crustal levels. The 

introduction timing (relative to the first introduction of silicate melt) is dependent on the 

distance between the CPIO melt body and the ascending channel. Therefore, these 

channels were commonly already passed by silicate magma prior to the intrusion of 

the CPIO melt. Due to decreases in temperature and pressure during ascent, a Fe and 

P-rich melt (phoscorite) and carbonate-rich melt (carbonatite) finally segregates from 

the CPIO melt. This segregation can additionally be supported by the presence of 

larger quantities of F in the parental melt (Hou et al., 2017). Lindsley and Epler (2017) 
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pointed out that discrete iron-oxide melts (low in Ti) are not stable below 1000 °C even 

in the presence of fluxes such as P, F and C. It must, therefore, be assumed that the 

phoscorite melts starts to crystallize very soon after segregation, which is additionally 

supported by the fact that C is generally the most important flux (Lindsley and Epler, 

2017) and remains in large quantities in the carbonatite magma during segregation. 

Hence, it can be assumed, that larger quantities of phoscorite only occur in relatively 

deep emplacement depth, where segregation took place. Medium to shallow 

emplacement depth of carbonatite complexes may consequently be characterized by 

rather low amounts or complete absence of phoscorites, which is confirmed by the 

absence of any extrusive phoscorites (Krasnova et al., 2004b). The 

simultaneous/directly subsequent crystallization of early carbonatite (e.g., BCB) 

causes the typical intercalation with phoscorite, while crystal fractionation produces 

higher evolved carbonatite magmas (e.g., TCB). The segregation and differentiation 

processes initiate a substantial density contrast between the high density phoscorite 

and low density carbonatite melts, which may cause a “jet-like” ascent of the residual 

carbonatite melt. Since silicate melts have relatively high viscosities and higher solidus 

temperatures in contrast to carbonatitic melts, their magma activity may already have 

ebbed in certain crustal levels. Rapidly ascending extremely low viscose carbonatites 

(Treiman and Schedl, 1983) may pass through those silicate magma fronts ascending 

to higher emplacement levels, where the intruding carbonatite magma forms 

carbonatite complexes without a silicate rock association. About 20% of carbonatite 

occurrences reflect such silicate rock-free complexes and, confirmatively, most of them 

(where an emplacement depth is known) represent rather shallow intruded 

carbonatites (Woolley and Kjarsgaard, 2008). However, it must be noted that the 

sequence of characteristic carbonate-phoscorite-silicate rock ratios in certain 

emplacement depths can be variable. These ratios strongly dependent on factors such 

as crustal thickness, geological setting (e.g., inter-cratonic or rift zone) and the timing 

of silicate magma chamber formation within the crust. The typical sequences of rock 

associations in carbonatite complexes are thus controlled by the source-emplacement-

distance (ΔS-E). 

In this context, it can be assumed from our generalized model that deeper crustal 

regions, relatively close to the melt source (low ΔS-E), are characterized by higher 

volumetric proportions of ultramafic silicate rocks and lower amounts of carbonatitic 

rocks. Additionally, these complexes display a relatively high phoscorite-carbonatite 
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ratio. Conclusively, an increase of the ΔS-E entails a decrease in phoscorite-

carbonatite ratios, and a decrease in silicate-carbonatite ratios, until the carbonatite 

proportion of a complex exceeds the silicate proportion and finally pure carbonatite 

complexes occur. 

 

3.3 Mineralogical and mineral chemical variations in carbonatites due to magma 

– wall rock interactions 

Title of publication: 

Evidence for magma – wall rock interaction in carbonatites from the Kaiserstuhl 

Volcanic Complex (Southwest Germany). (Study C)  

 

This study is based on a collection of about 400 surface outcrop and drill core samples 

(2 historic drill holes). For analytical work 48 representative samples have been chosen 

from the sample set. A detailed textural investigated was carried out and all major 

minerals and relevant minor minerals were analysed by electron micro probe (apatite 

[N≈520], mica [N≈620], magnetite [N≈260], carbonates [N≈380], clinopyroxene 

[N≈130], garnet [N≈200], olivine [N≈36], monticellite [N≈19]). The selected samples 

represent the four major (Badberg, Degenmatt, Haselschacher Buck and Orberg) and 

one minor (Katharinenberg) intrusive carbonatite bodies, as well as two extrusive 

carbonatite occurrences (Henkenberg and Kirchberg). The analytical data was used to 

identify compositional variation in minerals of the different carbonatite bodies. 

Since mica and apatite are typically used to indicate different processes within 

carbonatitic systems (e.g., see study B) we used these minerals to reveal processes 

that are in relation to the mineralogical variations between the carbonatite bodies of 

the KVC. Macroscopically, the Badberg sövites differ from the other KVC carbonatites 

due to the presence of cm- to m-sized silicate rock inclusions (xenoliths), which can be 

best described as calcite foidolites. Furthermore, the Badberg is the only sövite body 

of the Kaiserstuhl that contains clinopyroxene. In general, besides calcite, sövites of 

the Kaiserstuhl contain, apatite, mica, variable amounts of spinel group minerals of the 

magnesioferrite-magnetite series, pyrochlore, occasionally olivine (Katharinenberg 

and Haselschacher Buck only), monticellite (Orberg only), zirconolite (Haselschacher 

Buck only) and a range of sulphides (trace minerals). 

Similar to the Badberg, also some extrusive carbonatites (crystal tuffs) of the 

Henkenberg location include xenolitic calcite foidolites. Other extrusive carbonatites 
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contain xenocrysts of nepheline (lava from Kirchberg), garnet (lava from Kirchberg, 

lapillistones and crystal tuffs from Henkenberg) and clinopyroxenes (lapillistones and 

crystal tuffs from Henkenberg).  

Calcite foidolite (xenolith) itself contains large amounts of a mixture of various zeolite 

minerals, calcite, mica and other minerals that have almost completely replaced (post-

magmatically) former foid minerals (nosean or haüyne). In addition, relicts of alkali 

feldspar can rarely be observed. Relictic garnet cores occur enclosed in anhedral 

masses of recrystallized garnet, while clinopyroxenes have been completely 

recrystallized as subhedral and interstitial grains. Since most minerals of the calcite 

foidolite are completely replaced or recrystallized, it is difficult to identify its protolith. 

However, a comparison of relicts of the original garnet with the garnet composition of 

other KVC rock types indicates that nosean syenite represents the most probable 

candidate. The occurrence of alkali feldspar relicts, foids and clinopyroxene confirm 

this suggestion. Furthermore, those nosean syenites directly underlay the tilted 

Badberg body. 

The contact between sövite and the enclosed calcite foidolites is characterized by a 

black-wall-like seam of coarse-grained khaki to olive-green mica. This mica seam 

occasionally surrounds a transition zone (outer rim of calcite foidolites) that is 

characterized by strongly altered clinopyroxene and garnet and high proportions of 

calcite, which typically intruded as carbonatitic veins into the xenoliths. This contact 

indicates at least a marginal resorption of the calcite foidolites by the carbonatitic 

magma, which is accompanied by a metasomatic alteration of the remaining xenoliths 

and has caused the recrystallization of corresponding minerals (see above). A 

resorption of xenoliths is further indicated by an increasing disaggregation of xenoliths 

in a margin-centre profile of the pipe-like structure of the Badberg carbonatite. This 

feature could be assigned to a longer persisting heat flow in the central area and an 

earlier cooling in the marginal zones of the carbonatite pipe. 

In addition to the stubby coarse-grained black wall mica, which occasionally covers 

large portions of the carbonatite around the xenoliths, the Badberg sövite also contains 

large-sized bundles of mica laths that occur independently of the presence of silicate 

rock xenoliths. Although these two types of mica in the Badberg sövite differ slightly in 

their composition, they are, as a whole, clearly separated texturally and 

compositionally from micas of the other carbonatite occurrences of the KVC. While the 

Badberg is commonly very mica-rich, with mica up to a size of 2 cm, the other locations 
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are generally mica-poor and contain significantly smaller mica crystals (<2 mm). 

Compositionally, mica of the Badberg differs from mica of the other KVC carbonatites 

mainly by a considerably higher Fe2+ and increased Mn content. In general, mica of 

the Kaiserstuhl is characterized by a combination of the kinoshitalite (K+ + Si4+ ↔ Ba2+ 

+ IVAl3+) and eastonite substitution (Mg2+ + Si4+ ↔ IVAl3+ + VIAl3+). Most micas (with 

exception of the Badberg) are dominated by the kinoshitalite substitution. Badberg 

mica, in contrast, is dominated by the eastonite substitution. This indicates an excess 

of Al over Ba in the Badberg carbonatite.  

Apatites also depict a strong variability between carbonatites of the Badberg and other 

KVC localities. The composition of Badberg apatite cores is very similar to the apatite 

composition of the other carbonatite localities and differs only by an increased Sr 

content (with few Orberg apatites also have an increased Sr content). In contrast, the 

composition of Badberg apatite rims differs strongly from those of the other apatites. 

These rims experienced a strong britholite substitution (Ca2+ + P5+ ↔ REE3+ + Si4+) 

and thus an enrichment of REE. This enrichment increases further from the margin to 

the centre of the pipe-like structure of the Badberg carbonatite. In contrast, some 

Orberg apatites show an increased concentration of Na and a subordinate belovite 

substitution (2Ca2+ + (3Ca2+) ↔ REE3+ + Na+ + (3Sr2+)). This belovite substitution is 

also responsible for the above-mentioned enrichment of Sr in Orberg apatites. 

However, since magmatic processes shall be discussed and a belovite substitution in 

apatites is predominantly assigned to hydrothermal processes (e.g., de Toledo et al., 

2004; Doroshkevich et al., 2009), this should not be considered for now. A pronounced 

britholite substitution (0.3-0.5 REE+Si pfu) in apatite, in contrast, is not possible in 

hydrothermal stages (Anenburg et al., 2018; Anenburg and Mavrogenes, 2018) and is 

attributed to a magmatic phase (>600 °C). A hydrothermal overprint at these high REE 

contents (4-6 wt.% REE2O3) would have led to the formation of REE-poor apatites and 

discrete REE minerals. In the presence of sufficient Si e.g. cerite (e.g., Anenburg et 

al., 2018; Anenburg and Mavrogenes, 2018) and in the absence of Si e.g. monazite 

would have formed (e.g., study A).  

In contrast to the enrichment of Sr in apatite, which indicates a higher magmatic 

evolution (by magmatic differentiation; of the Badberg with respect to the other 

localities), the sharp contact between core and compositionally variable rim argues 

against magmatic differentiation as a mechanism for Si and REE enrichment in the rim, 

for which a continuous transition in mineral chemistry would be expected. Likewise, 



23 
 

the increased occurrence of mica and the exclusive occurrence of clinopyroxene in the 

Badberg carbonatite cannot be explained by magmatic differentiation, since silicates 

crystallize in carbonatites quite early and accordingly deplete the magma in SiO2 by 

fractionation. All available evidence suggests that the variability of Badberg mineralogy 

and mineral chemistry depends on the inclusion of calcite foidolites, and the more 

these calcite foidolites are resorbed and metasomatized, the larger the variability.  

A comparison of mineral compositions of the calcite foidolite with mineral composition 

of the KVC nosean syenite (protolith) demonstrates that certain amounts of Si, Al, K, 

Fe and Ti must have been released during the replacement of alkali feldspar by foids 

and the recrystallization of clinopyroxene and garnet. On the other hand, certain 

amounts of Ca and Mg as well as smaller amounts of Nb and Zr are consumed. This 

indicates an interaction between the xenoliths and the carbonatitic melt and may 

explain an abrupt availability of elements that cause corresponding mineral chemical 

variations in mica (observed at the Badberg). Nevertheless, it remains the question if 

mineralogical variations were also caused by contamination and thus the increased 

occurrence of mica and clinopyroxenes in Badberg can be explained. 

In general, different silicates are described in carbonatites worldwide (e.g., Reguir et 

al., 2012), while their presence is strongly dependent on silica activity, which is 

generally very low in carbonatites (Barker, 2001; Massuyeau et al., 2015). Three main 

types of silicates are distinguished in carbonatites (modified after Barker, 2001): (1) 

primary crystallized silicates, which are (a) either formed by sufficient Si in the original 

melt or (b) by a supply of Si (e.g., by contamination), (2) xenocrysts and (3) subsolidus 

phases. According to experimental constrains, which suggest a low solubility of Si and 

Al in carbonatites (<2.9 wt.% SiO2, <1 wt.% Al2O3; Brooker and Kjarsgaard, 2011; 

Weidendorfer et al., 2017), mass balance calculations based on carbonatite melt 

densities (2.2-2.6 g/cm³; e.g., Dobson et al., 1996; Genge et al., 1995; Kono et al., 

2014; Wolff, 1994) and typical Al and Si contents of mica indicate that a maximum 

modal amount of about 7 % can be expected to crystallize from a carbonatite without 

additional Si influx. 

Textural features of mica (black wall seams around xenoliths and bundles of long, 

occasionally filigree laths) indicate an in-situ formation. Compositional overlaps with 

clinopyroxene from calcite foidolites and structural evidence that clinopyroxene in 

sövite is not a xenocryst of the calcite foidolite (euhedral in sövite, anhedral in calcite 

foidolites), as well as the absence of small-scale compositional changes (zoning) 
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further indicate an in-situ formation of clinopyroxene in the carbonatite. Therefore, 

neither mica nor clinopyroxene are xenocrysts, but both are crystallized by Si-

contamination (silicate type 1b, see above). 

This contamination also had a strong effect on apatite. The higher the silica input, the 

higher the incorporation of Si into apatite and thus the consumption of REE based on 

britholite substitution (e.g., Hammouda et al., 2010). Furthermore, experimental data 

(Klemme and Dalpé, 2003) confirm a pronounced partitioning of REE into apatite with 

increasing SiO2 content in the melt. 

A comparison of main REE-bearing minerals (apatite and pyrochlore) between the 

Badberg and other KVC sövites has shown that the contamination process has 

significantly influenced the REE distribution at the Badberg. Most pyrochlore of the 

KVC sövites (with exception of the Badberg) experienced a late-stage hydrothermal 

overprint, which strongly enriched this pyrochlore in REE (Walter et al., 2018), whereas 

the pyrochlore of the Badberg is largely unaffected. This phenomenon may be 

attributed to an early consumption of REE by the contamination-induced britholite 

substitution in apatite and thus to a limited availability of REE in late stages. This is in 

accordance with the occurrence of relatively REE-poor apatite in the sövites, where 

pyrochlore was hydrothermally enriched in REE. 

 

3.4 Further co-authored publication on the petrogenetic significance of 

interactions with carbonatite-derived fluids 

 

Title of publication: 

Hydrothermal processes in the Fen carbonatite complex, southern Norway. (Study D)  

 

The Fen carbonatite complex experienced at least three different hydrothermal 

alteration events. Besides a sulphide-rich fluid (fluid 1) that was most likely derived 

from associated mafic silicate rocks, a REE-rich fluid (fluid 2) and a Si-rich fluid (fluid 

3) modified the original mineralogy of the Fen complex. The REE-rich fluid was most 

likely derived from the carbonatites and represents an autometasomatic fluid. The Si-

rich fluid represents most probably an oxidizing meteoric fluid that was in equilibrium 

with the basement. An interaction of the REE-rich and Si-rich fluids caused an intense 

alteration of the carbonatites and the formation of the famous rødberg.  
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Fluid 1 induced a widespread pyrite formation that can be found in all lithologies. 

Occasionally massive pyrite veins cross-cut the carbonatites. Fluid 2 caused a 

remobilization and redistribution of Fe and Al and formation of discrete REE minerals 

dominated by REE-fluorocarbonates. Minor amounts of allanite, monazite, samarskite 

and aeschynite can be identified. Fluid 3 induced a partial silicification of the 

carbonatite and an unusual mobilization of phosphorus by the replacement of apatite 

by quartz, resulting in the formation of apatite and monazite veins. A mixing of fluid 2 

and 3 finally caused the formation of iron ores (hematite). A remobilization of 

preferentially LREE by fluid 3 from pre-existing minerals (formed by fluid 2) resulted in 

the relative enrichment of HREE in some altered portions of the complex. There are 

evidences that Nb and Ti were transported together with REE in the evolved 

carbonatitic fluid. Furthermore, mineral associations and enrichment of Th together 

with HREE indicate similar behaviour of this elements during the hydrothermal 

alteration of the carbonatites. 

 

 

4. SUMMARY, CONCLUSION AND IMPLICATION 

 

Our studies have demonstrated that carbonatites may experience a variety of different 

processes that may result in distinct variability in both mineralogy and mineral 

chemistry. The REE mineralization of carbonatites may strongly vary as a function of 

the absence or involvement of relevant processes as well as their intensity. In fact, 

orthomagmatic processes within a carbonatite body cause the weakest variations and 

a subordinate formation of REE minerals. Early orthomagmatic REE mineralizations 

typically consist predominantly of REE-Ti/Nb oxides (e.g., pyrochlore group minerals; 

study A & C). Minor REE-Zr phases (e.g., zirconolite; study C) can be detected. 

Frequently, those early (small sized) mineral phases are included in later crystallizing 

(much larger) mineral phases and thus often protected from later alteration (study A). 

Furthermore, REEs are incorporated in apatites and despite a low REE content, 

apatites may significantly contribute to a whole rock REE enrichment due to their high 

modal proportions. Late orthomagmatic phases mainly occur as REE carbonates (e.g., 

bastnäsite, synchisite, parisite, burbankite and carbocernaite; study A). Additionally 

monazite is rarely described as orthomagmatic phase (e.g., at Mountain Pass; Castor, 

2008). Besides, REE may be incorporated in carbonates (e.g., calcite, dolomite). Even 
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if these carbonates contain rather lower contents of REE, the REE budget of a 

carbonatite may, similar to apatite, be strongly affected by carbonates due to their high 

modal content. 

Carbonatites are typically associated with phoscorites in several complexes and a 

genetic relation can be traced by mineral compositional variations, especially in mica 

(study B). Apatites, on the other hand, are rather poor indicators for such relations, at 

least at Palabora, as they do not reveal systematic variations. Instead apatites indicate 

hydrothermal variations (see below). Neither mica nor apatite depict depth-dependent 

systematic variations over a vertical profile of 2000 m, which reflects a lacking zonation 

over this range. This is confirmed by a depth profile of 1550 m at Kovdor (Krasnova et 

al., 2004a). Nevertheless, mica composition emphasizes that the carbonatite-

phoscorite association must have been formed by liquid immiscibility, due to the 

segregation of a parenteral mantle melt (study B). Consequently, phoscorites are 

mainly present in deeply intruded carbonatite complexes. Carbonatites and 

phoscorites show a nearly identical mineralogy, which differs only in the modal 

composition. This is also valid for the REE mineralization. Similarly, mineral 

composition differs only negligibly. However, due to the very high apatite modal content 

in phoscorites, REE are primarily incorporated in apatite, with a subordinate 

occurrence of later formed discrete REE mineral phases. 

In general, the orthomagmatic REE mineralization of carbonatites (as well as 

phoscorites) is not economically relevant with exception of the Mountain Pass 

carbonatite (e.g., Castor, 2008). In contrast, hydrothermal late-magmatic and post-

magmatic processes play a much more important role in the enrichment of REE in 

carbonatites. In particular, hydrothermal late-magmatic processes are responsible for 

an enhanced introduction of REE and corresponding REE mineralization. At Palabora, 

this results in a precipitation of discrete REE minerals at the expense of pre-existing 

non-REE phases. Additionally, these processes occasionally lead to a modification of 

apatite (REE enrichment) and to the formation of Al-poor mica. The mineralizing late-

magmatic fluid probably originates from the carbonatite itself. Those fluids represent 

most likely the most common sources for a deposit-quality enrichment of REE-minerals 

in carbonatites (e.g., Wall and Mariano, 1996). The most common REE minerals are 

monazite and britholite (study A). Allanite and occasionally REE-carbonates are also 

known from other carbonatite complexes (e.g., Fen, study D).  
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Another hydrothermal stage represents the post-magmatic stage, which induced a 

strong alteration of the pre-existing mineral content and a redistribution especially of 

the REE. Both orthomagmatic and late-magmatic REE minerals are affected by this 

alteration and redistribution processes, which form a proximal and distal mineralization. 

While the proximal mineralization involves alteration or direct replacement of pre-

existing minerals, distal mineralization depends on effective mobilization of relevant 

elements and a subsequent reprecipitation. The most frequent REE minerals of this 

stage are REE-carbonates (bastnäsite, synchisite, parisite, ancylite, cordylite; study 

A), as a special feature for the Palabora complex additionally anzaite occurs. According 

to the strong dependence on the pre-existing mineralogy, an enhanced mobilization, 

enrichment and redistribution of REE minerals within variable local chemical (micro) 

environments only occurs if the previous stages have formed appropriate REE phases.  

On the other hand, the late-magmatic stage can only provide an adequate REE 

mineralization if enough REE has been enriched in the related fluid. This is of course 

dependent on the partition of REE (and other relevant elements) between the residual 

melt and the fluid. An enrichment of REE in a carbonatite melt of the late 

orthomagmatic stage, in turn, depends on the consumption of REE by early 

orthomagmatic minerals. In this context, particularly apatite may play an important role 

(see above).  

Similar to the Palabora complex (study A), carbonatites of the Fen complex (study D) 

also experienced an intense hydrothermal overprint. Involved fluids of both complexes 

are in some aspects very similar. Both complexes contain REE-rich carbonatite-

derived fluids that formed the main REE mineralization. Both complexes contain a Si-

rich fluid that caused a significant alteration of pre-existing minerals, and a mobilization 

and redistribution of their element budget. Although no information could be provided 

about the origin (certainly not a meteoric) of the post-magmatic fluid of Palabora, an 

external origin and an equilibrium with the basement could be possible (similar to the 

Fen complex).  Nevertheless, the intense hydrothermal overprint of the carbonatites 

made Fen to the biggest carbonatite-related REE and Th deposit in Europe. 

The Kaiserstuhl, in contrast, shows an almost missing REE mineralization in the late-

magmatic stage of the Badberg, but a significant REE enrichment in apatite (study C). 

In contrast, other carbonatite bodies of the KVC (Orberg, Degenmatt, Haselschacher 

Buck) lack an enhanced REE enrichment in apatite, but reveal a late magmatic 

hydrothermal modification (incl. REE enrichment) of pyrochlore (Walter et al., 2018). 
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We assign this variation to a contamination of the Badberg by silicate rocks, where a 

britholite substitution and related REE enrichment in the apatite was promoted during 

the orthomagmatic stage. This further inhibited later enrichment of REE in residual 

liquids/fluids and emphasizes the potential importance of contamination of carbonatitic 

magmas for REE mineralizations. 

In general, contamination in carbonatites is typically very poorly identifiable by means 

of radiogenic isotope (e.g. Sr, Nd) data, as their isotope systems are "buffered" (due 

to high concentrations) against contamination with silicate rocks (usually much lower 

concentrations of these elements; e.g., Bell and Tilton, 2002). Furthermore, it is 

assumed that carbonatites are not specifically prone to contamination by crustal or 

cogenetic intrusive rocks, as low densities and extremely low viscosities of carbonate 

melts allow a rapid ascent (e.g., Jones et al., 2013; Treiman and Schedl, 1983) without 

a notable melt-rock interaction. However, based on textural observations and 

compositional variations of mica and apatite, we were able to verify a related 

contamination of the Badberg. This points out, as Study B has already shown, that 

especially mica, but also apatite (under certain conditions), can be effectively used as 

geochemical indicators in carbonatitic systems. In addition, it also demonstrates the 

basically sensitive behaviour of REEs. 

In conclusion, it can be assumed that one important candidate for an ideal REE 

enrichment of high economic significance is a carbonatite which has not experienced 

any contamination, contains only minor amounts of apatite, experienced a strong 

enrichment of REE by a late magmatic fluid, and finally completed a redistribution and 

enrichment of REE by external fluids. Such characteristics may be most likely expected 

from highly differentiated carbonatites that intruded shallow crustal levels and 

consequently lack associated phoscorites, but did not intrude into tectonically active 

areas where entrainment of silicate wall rock fragments is promoted. As an absolute 

optimum, such carbonatites experienced a supergene enrichment as laterites. Further 

work on this topic should focus in particular on the potential fluid phases that induce 

the formation of discrete REE minerals. Especially for carbonatites, neither the 

influence of different natural fluid types on the REE mineralization nor the influence of 

different processes on the fluid composition is sufficiently known. Additionally, as 

contamination in carbonatitic systems reflects a previously unnoticed effect, it is 

necessary to investigate such processes and their influences in further case studies to 

determine differences due to variable rock compositions (e.g. BIF, gabbro, etc.). 
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abstRaCt

The 2060 Ma old Palabora Carbonatite Complex (PCC), South Africa, comprises diverse REE 
mineral assemblages formed during different stages and reflects an outstanding instance to understand 
the evolution of a carbonatite-related REE mineralization from orthomagmatic to late-magmatic stages 
and their secondary post-magmatic overprint. The 10 rare earth element minerals monazite, REE-F-
carbonates (bastnäsite, parisite, synchysite), ancylite, britholite, cordylite, fergusonite, REE-Ti-betafite, 
and anzaite are texturally described and related to the evolutionary stages of the PCC. The identification 
of the latter five REE minerals during this study represents their first described occurrences in the PCC 
as well as in a carbonatite complex in South Africa.

The variable REE mineral assemblages reflect a multi-stage origin: (1) fergusonite and REE-
Ti-betafite occur as inclusions in primary magnetite. Bastnäsite is enclosed in primary calcite and 
dolomite. These three REE minerals are interpreted as orthomagmatic crystallization products. (2) 
The most common REE minerals are monazite replacing primary apatite, and britholite texturally 
related to the serpentinization of forsterite or the replacement of forsterite by chondrodite. Textural 
relationships suggest that these two REE-minerals precipitated from internally derived late-magmatic 
to hydrothermal fluids. Their presence seems to be locally controlled by favorable chemical conditions 
(e.g., presence of precursor minerals that contributed the necessary anions and/or cations for their 
formation). (3) Late-stage (post-magmatic) REE minerals include ancylite and cordylite replacing 
primary magmatic REE-Sr-carbonates, anzaite associated with the dissolution of ilmenite, and sec-
ondary REE-F-carbonates. The formation of these post-magmatic REE minerals depends on the local 
availability of a fluid, whose composition is at least partly controlled by the dissolution of primary 
minerals (e.g., REE-fluorocarbonates).

This multi-stage REE mineralization reflects the interplay of magmatic differentiation, destabili-
zation of early magmatic minerals during subsequent evolutionary stages of the carbonatitic system, 
and late-stage fluid-induced remobilization and re-/precipitation of precursor REE minerals. Based on 
our findings, the Palabora Carbonatite Complex experienced at least two successive stages of intense 
fluid–rock interaction.

Keywords: Rare earth minerals, Loolekop, monazite, britholite, anzaite, fluoro-carbonates, ancylite, 
cordylite, fergusonite, REE-Ti-betafite

intRoDuCtion

Carbonatites are important exploration targets for rare earth 
elements (REE) and high field strength elements (HFSE, e.g., 
Mariano 1989; Wall and Mariano 1996; Verplanck et al. 2016). 
Since REE have become increasingly important for industrial 
use (Chakhmouradian and Wall 2012; Hatch 2012; Wall 2014) 
and were categorized as critical and strategic metals (European 
Commission 2014; Nassar et al. 2015), the scientific interest to 
understand the complex REE mineralizations found in carbon-
atitic systems has tremendously increased (e.g., Verplanck et al. 
2016). Processes potentially responsible for REE enrichment 

in carbonatites include fractional crystallization of carbonatitic 
magma, enrichment of REE in magmatic fluids and subsequent 
precipitation, breakdown of primary carbonatitic minerals with 
sequestration of REE in secondary minerals, and subsolidus 
redistribution of REE (e.g., Verplanck et al. 2016). In all these 
processes, REE-bearing minerals (such as apatite, calcite, and 
dolomite) have to be distinguished from actual REE minerals 
with REE as major constituents. The most common REE miner-
als in carbonatites include REE-phosphates (mostly monazite) 
and various hydrous and anhydrous carbonates (e.g., ancylite, 
burbankite, and carbocernaite) and fluorocarbonates, such as 
bastnäsite, parisite, and synchysite (e.g., Wall and Zaitsev 2004b; 
Kanazawa and Kamitani 2006).

This study presents detailed textural observations on the vari-
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ous REE phases in the Loolekop pipe of the Palabora Complex 
(PCC, South Africa). These textural relations to both the car-
bonatitic minerals and among each other are used to distinguish 
between orthomagmatic, late-magmatic, and post-magmatic 
stages of formation and provide a better understanding for the 
importance of fluid-assisted mobilization and reprecipitation 
of these minerals. Understanding these typically late-stage 
processes is crucial for any economic judgement on REE in 
carbonatites (Wall and Zaitsev 2004a; Chakhmouradian and 
Zaitsev 2012; Zaitsev et al. 2015). Accordingly, the aim of this 
study is to present the crystallization and alteration history of the 
various REE minerals within the different evolutionary stages 
observed in the PCC as a prime example of REE-mineralized, 
large carbonatitic systems worldwide.

GeoloGiCal baCKGRounD anD pRevious WoRK on 
the Ree MineRalization at palaboRa

The Palabora Carbonatite Complex (PCC) is located close 
to the town of Phalaborwa (South Africa) and intruded at about 
2060 Ma into Archaean basement rocks (Reischmann 1995; 
Wingate and Compston 2000; Heaman 2009; Wu et al. 2011). 
The complex represents an elongated tripartite pipe-like intru-

sion divided into a northern and southern pyroxenite and the 
central Loolekop pipe, with only the latter hosting carbonatites 
(Fig. 1; Hanekom et al. 1965; Yuhara et al. 2003; Verwoerd and 
Du Toit 2006).

The Loolekop pipe is composed of phoscorite (FOS) and 
banded carbonatite (BCB), which are intruded by transgressive 
carbonatite (TCB). Both the BCB and TCB are dolomite-bearing, 
but calcite-dominated with varying proportions of fluorapatite, 
phlogopite, magnetite, forsterite/chondrodite, and accessory 
phases (Fig. 2). Geochronological data indicate no significant age 
differences between these two rock types and Wu et al. (2011) 
suggest that they crystallized from different magma batches de-
rived from a heterogeneous mantle source. Subsequent injection 
of a sulfide-rich liquid caused Fe-Cu-sulfide enrichment in the 
carbonatite pipe (Kavecsanszki et al. 2012). The carbonatite-
phoscorite association is surrounded by micaceous pyroxenite 
(MPY, Lombaard et al. 1964; Hanekom et al. 1965; Eriksson 
1989). Several syenite bodies were injected into the surrounding 
basement rocks in the vicinity of the complex (Eriksson 1989; 
Yuhara et al. 2003; Wu et al. 2011) and the basement rocks in 
the border zone toward the complex were fenitized (Verwoerd 
1966). The entire complex was cross cut by dolerite dikes (DOL), 

FiGuRe 1. Generalized geological map of the Palabora Complex (modified after Hanekom et al. 1965; Fourie and De Jager 1986; Wilson 1998) 
and cross section of the Loolekop pipe in N-S direction showing the irregular ring structure of the pipe (modified and extended after Wilson 1998).
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which were interpreted as being Proterozoic (Briden 1976; Stet-
tler et al. 1989; Wu et al. 2011) to Post-Karoo (<180 Ma) in age 
(Hanekom et al. 1965; Uken and Watkeys 1997).

Very similar to what is observed in other carbonatite com-
plexes, apatite represents the main REE host in carbonatites 
from the PCC and is much higher in REE than calcite and 
dolomite (Dawson and Hinton 2003). Early investigations on 
the REE distribution in carbonatites of the PCC suggested the 
absence of REE minerals (Aldous 1980). Later, bastnäsite, 
parisite, synchysite, ancylite, monazite, Sr-REE apatite, and an 
unknown REE-silicate were described by Bulakh et al. (1998) 
and Karchevsky (2000). These studies used the same five samples 
from the open pit level (random sampling—upper 600 m of the 
deposit; Bulakh, personal communication) and provided only 
incomplete textural descriptions on their occurrence. Bastnäsite 
(and minor parisite) was identified as the most abundant REE 
mineral in the BCB, whereas ancylite (and minor synchysite) 
was described as the most abundant REE mineral in the TCB. 
Monazite was described as mainly forming rims around or veins 

in apatite and an unknown REE-silicate was mentioned to form 
rims around chondrodite.

saMple MateRial anD analytiCal MethoDs
The Loolekop pipe is divided into three sections: the open pit level (uppermost 

part), the first lift level (upper underground level), and the second lift level (lowest 
part, Fig. 1), representing a vertical profile of >1500 m. We collected about 400 
samples from 6 drill holes (LK-109, U-2, U-33, MT-1, SL-131, FS-14) and the 
observations reported in the following derive from 45 representative samples (20 
TCB, 15 BCB, and 10 FOS) covering all three levels of the Loolekop pipe. All 
mineral formulas and abbreviations used are given in Table 1.

Polished thin sections were investigated using petrographic and reflected-light 
microscopes and were further examined using the backscattered electron (BSE) 
mode (focused beam) of a Hitachi Tabletop SEM (Tübingen), a JEOL JSM-6610 
SEM (UFS, Bloemfontein), and the FE-SEM of the Centre for Microscopy (UFS, 
Bloemfontein).

Quantitative analyses of REE minerals were acquired using a JEOL JXA 8230 
Superprobe at the Department of Geology, Rhodes University and a JEOL JXA 
8900 Superprobe at the Department of Geosciences, Eberhard Karls University, 
Tübingen. Data acquisition was performed using four wavelength-dispersive 
spectrometers. Standardization was done using natural mineral standards, synthetic 
REE phosphates (SPI Supply), and REE1-4 glasses (Drake and Weill 1972). The 
ZAF matrix correction method (Bence and Albee 1968; Armstrong 1988) was 
employed for quantification, except for monazite, where a PRZ (JEOL) correction 
was used. For analyses of the different REE minerals, variable settings were used 
as detailed in the electronic appendix1. 

Results

Crystallization sequence of the Palabora carbonatites and 
phoscorites

Here we provide an overview of the crystallization sequence 
for carbonatites and phoscorites of the Loolekop deposit. Detailed 
descriptions of REE minerals (marked red in Fig. 2) are given in 
the subsequent chapter. The PCC experienced at least four stages 
of crystallization, which were distinguished as (1) orthomag-
matic, (2) late-magmatic, (3) sulfide-rich, and (4) post-magmatic. 
Phoscorites (blue field in Fig. 2) are dominated by orthomagmatic 
minerals, whereas in carbonatites later-magmatic minerals are 
more common. Although BCB and TCB were classified as two 
different carbonatites (e.g., Wu et al. 2011), they show some 
textural differences (from fine banding of mainly magnetite, 
apatite, and phlogopite in BCB to large patchy crystallization 
of the same minerals in TCB) but generally comprise the same 
mineral assemblages in the same crystallization sequence. This 
favors integration into a single paragenetic scheme together with 
the phoscorites (Fig. 2).

The orthomagmatic crystallization (stage 1) commenced by 
the formation of forsterite (with higher abundance in BCB), 
apatite, baddeleyite (later altered to zirconolite), and thorianite 
(Figs. 3a–3e). Subsequent formation of phlogopite (with higher 
abundance in BCB; Figs. 3d–3f) is followed by magnetite (with 
minor spinel and ilmenite; Figs. 3g and 3h), which exsolved 
further spinel (Figs. 3i and 3j) and ilmenite (Figs. 3i–3k) during 
later cooling. Precipitation of Mg-rich calcite started during 
the final stages of apatite formation with its main crystalliza-
tion phase outlasting that of magnetite. A dolomite formation 
stage (Fig. 3l) existed contemporaneous with the intermediate 
stages of calcite formation, and during the main calcite stage, 

FiGuRe 2. Paragenetic scheme for carbonatites and phoscorite (blue 
field) of the Loolekop deposit. Note: Main phases in bold, minor phases 
in plain style, accessory phases in italics, and REE phases in red.

1Deposit item AM-17-66004, Supplemental Material and Table 2. Deposit items 
are free to all readers and found on the MSA web site, via the specific issue’s 
Table of Contents (go to http://www.minsocam.org/MSA/AmMin/TOC/2017/
Jun2017_data/Jun2017_data.html).

http://www.minsocam.org/MSA/AmMin/TOC/2017/Jun2017_data/Jun2017_data.html
http://www.minsocam.org/MSA/AmMin/TOC/2017/Jun2017_data/Jun2017_data.html
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additional Sr- and Ba-carbonates formed. Exsolution of dolomite 
and Mg-poor calcite from Mg-rich calcite (Fig. 3m) concludes the 
magmatic stage 1.

A late-magmatic stage (stage 2) is reflected by the serpenti-
nization (and further magnetite formation) of forsterite (Figs. 4e 
and 4f) and replacement of forsterite by chondrodite (Fig. 4g), 
occasional chloritization of phlogopite (Figs. 4h), and the forma-
tion of secondary apatite (ap-II). Stage 2 interweaved with stage 1 
and is probably the result of the action of aqueous-carbonic fluids 
(LM fluid in the following).

The subsequent injection of a sulfide-rich liquid (stage 3) 
resulted in extensive Fe-Cu sulfide mineralization (with minor 
magnetite). The interaction of a sulfide magma with the carbonatite 
magma is suspected during this stage (Kavecsanszki et al. 2012).

Subsequently, a post-magmatic fluid (stage 4; PM fluid in the 
following) caused a second serpentinization event (again associ-
ated with magnetite), valleriitization of the sulfide minerals (Figs. 
4c, 4d, and 5e), recrystallization of carbonates (Fig. 6g; restricted 
to TCB), and the formation of thorianite, thorite (Figs. 6g and 6h; 
restricted to TCB), galena, baryte, celestine (Fig. 7f), and late-stage 
apatite (ap-III; Figs. 6f and 5f).

Textural appearance of REE minerals in the Palabora 
carbonatites and phoscorites

Ten REE minerals were identified during this study (marked red 
in Fig. 2; plus the suspected former occurrence of carbocernaite/
burbankite), partly occurring in different generations. All REE 
minerals from the PCC are strongly LREE-enriched (Table1 2) and 
typically represent Ce-dominated members, which is displayed by 
the suffix-(Ce) after the nomenclature of Bayliss and Levinson 
(1988). The only exception is fergusonite, which reflects a Nd-rich 
end-member [fergusonite-(Nd)-β]. Even though the suffix use in 
the mineral nomenclature is recommended by the Commission on 
New Minerals, Nomenclature and Classification (CNMNC) of the 
International Mineralogical Association (IMA), for simplification 
we abstain from using the suffix in the following.

Fergusonite. The REE-niobate fergusonite (Table1 2) at the 

PCC belongs to the Ce-enriched, Nd-dominated end-member of 
this mineral group and is very rare compared to all other REE 
minerals found in the Palabora carbonatites. It mostly occurs as 
rounded to irregular inclusions (max. 80 μm) in magnetite, often 
associated with baddelyite and zirconolite (Figs. 8a and 8b).

REE-Ti-betafite (pyrochlore-group member). The REE-
Ti-oxide REE-Ti-betafite (alternatively named ceriobetafite; 
not approved by IMA; Table1 2) seems to be restricted to TCB 
and represents, after fergusonite, the second rarest REE mineral 
in the PCC. Betafite requires Ti/(Nb+Ta+Ti) ratios above 1/3. 
Compositions with Ti > Nb+Ta (Ti-betafite) are very rare and nor-
mally exclusively known from granite pegmatites (Yaroshevskii 
and Bagdasarov 2008). REE-Ti-betafite in the PCC occurs as 
25–75 μm sized needles and rods, mostly as inclusions in magnetite 
or, more rarely, in dolomite and calcite (Figs. 8c and 8d).

REE-F-carbonates. The REE-fluorocarbonates bastnäsite, 
parisite, and synchisite (Table1 2) are strongly associated with each 
other, with bastnäsite being by far the most abundant (>80% of all 
measured REE-F-carbonates). The following three associations 
can be distinguished.

The first type (REEFC-I) occurs mostly as 10–200 μm sized 
rods enclosed in magmatic calcite and dolomite (Figs. 6a–6c) 
and is associated with fluorite, strontianite (Fig. 6d), or ancylite 
(see below). These rods are often partly dissolved and form 
optically continuous single crystals (Figs. 6a–6d). REEFC-I 
needles partly included in sulfides show a higher resistance to 
dissolution for parts protected by the sulfide phase (Fig. 6b). The 
second type (REEFC-II a; restricted to TCB) forms as bastnäsite 
rods in the vicinity of monazite replacing apatite and is mostly 
associated with sulfides, valleriite, and ap-III (Figs. 6e and 6f). 
A third type (REEFC-II b; restricted to TCB) consists mainly 
of bastnäsite and generally occurs as irregularly shaped grains 
(5–100 μm) in late-stage carbonate veins (Figs. 6g and 6h). This 
type is frequently intergrown with magnetite or strontianite and 
contains inclusions of thorianite and rarely thorite (Figs. 6g and 
6h). In few cases REEFC-II b is associated with anzaite (Fig. 6h).

Monazite. The REE-phosphate monazite (Table1 2) typically 

Table 1. Chemical formulae of the minerals mentioned in the text and figures
Mineral Abbr. Formula Mineral Abbr. Formula
SILICATES:   CARBONATES:
chlorite chl (Mg4Al2)Si3Al)O10(OH)8 ancylite-(Ce) anc (Sr,Ca)(REE)(CO3)2(OH)·H2O
chondrodite chn (Mg,Fe)5(SiO4)2(F,OH)2 bastnäsite-(Ce) bsn (REE,Ca)(CO3)2F
fluorbritholite-(Ce) bri Ca2(REE)3(SiO4)3(F,OH) burbankite bur (Ca,Na)3(Sr,REE,Ba)3(CO3)5

olivine ol (Mg,Fe)SiO4 calcite cal CaCO3

phlogopite phl KMg3(Si3Al)O10(OH,F)2 carbocernaite cbc (Ca,Na)(Sr,REE,Ba)(CO3)2

serpentine srp Mg6Si4O10(OH)8 cordylite-(Ce) cdy (Ca,Na)Ba(REE)2(CO3)3F2

thorite thr ThSiO4 dolomite dol CaMg(CO3)2

   parisite-(Ce) pst Ca(REE)2(CO3)3F2

OXIDES:   strontianite str (Sr,Ca,Ba)CO3

anzaite-(Ce) anz (REE)4FeTi6O18(OH,F)2 synchysite-(Ce) syn Ca(REE)(CO3)2F
baddeleyite bdl ZrO2 barytocalcite bcl BaCa(CO3)2

REE-Ti-betafite-(Ce) btf (REE,Ca)2Ti2O6(O,OH,F)
fergusonite-(Nd)-β frg (REE)NbO4 SULFATES:
ilmenite ilm FeTiO3 baryte brt BaSO4

magnetite mgt Fe3O4 celestine cls SrSO4

spinel spl MgAl2O4

thorianite thn ThO2 PHOSPHATES:
zirconolite zrc CaZrTi2O7 fluorapatite ap Ca5(PO4)3(F,OH)
   monazite-(Ce) mnz (REE,Ca)PO4

SULFIDES:
bornite bn Cu5FeS4 HALIDES:
chalcopyrite cp CuFeS2 fluorite fl CaF2

galena gn PbS
valleriite val 2[(Fe,Cu)S]·1.53[(Mg,Al)(OH)2]
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F i G u R e  3 .  Genera l 
or thomagmatic  mineral 
assemblages observed in 
carbonatites and phoscorite 
from the Loolekop deposit. 
(a) Euhedral apatite inclusion 
in  par t ly  serpent inized 
forsterite. (b) Intergrowth 
of magmatic baddeleyite 
and thorianite. (c) Euhedral 
inclusion of thorianite in 
apatite. (d) Calcite inclusion 
in apatite, which again is 
enclosed in phlogopite. (e) 
Baddeleyite and apatite 
inclusions in phlogopite. (f) 
Dolomite and phlogopite 
surrounded by i lmenite 
in magnetite. Baddeleyite 
included in ilmenite. (g) 
Ilmenite with inclusions of 
phlogopite and magnetite, 
all included in magnetite. 
(h) Spinel with baddeleyite 
and zirconolite included in 
magnetite. (i) Exsolved spinel 
cubes (note the equality of 
orientation) associated with 
exsolved ilmenite lamellae 
in magnetite. (j) Slightly 
rounded spinel with a rim 
of ilmenite in magnetite. (k) 
Ilmenite exsolution lamellae 
in magnetite. (l) Distinct 
dolomite accumulations 
partly enclosed in calcite 
with dolomite exsolution 
(arrow). (m) Sub-graphic 
intergrowth of vermicular 
dolomite exsolutions with 
calcite.

represents La-enriched, Ce-dominated monazite [lanthanian 
monazite-(Ce) after the nomenclature of Bayliss and Levinson 
1988]. Monazite is almost always replacing apatite, forming 
thin skins (≥3 μm) to massive rims (≤40 μm) around the latter 
(Fig. 4a). These textures can develop to a nearly complete re-
placement of apatite with lobate-like expansions up to 300 μm in 
diameter (Fig. 4a). In some cases relics of apatite are surrounded 
by thick rims of monazite (40–300 μm) in cases together with 
calcite (Fig. 4b). More uncommon appearances include monazite 
enclosed or in contact with sulfides, which may show reaction 
rims toward apatite in contact to the reaction of primary sulfide 
to valleriite (Figs. 4c and 4d).

Britholite. The Ca-REE-silicate britholite (Table1 2) is mainly 
present as fluorbritholite-(Ce). Britholite forms rims (≤60 μm 

thick) around forsterite-serpentine/chondrodite assemblages, 
where it usually precipitates at the outer rim of the serpentine 
(Figs. 4e and 4f) and chondrodite (Fig. 4g). In rare cases britholite 
(~20 μm thick) is also found in contact with phlogopite/chlorite 
(Fig. 4h).

Ancylite. The hydrous REE-Sr-carbonate ancylite (Table1 2) 
occurs in two textural varieties: The first type (ANC-I) forms 
15–100 μm sized needles, rods, or irregular grains (Figs. 7a–7c) 
that may contain tiny inclusions of baryte (Figs. 7a and 7b) and 
are enclosed in calcite and dolomite (in cases associated with 
REEFC-I). ANC-I is often associated with strontianite and 
cordylite (see below). A second type (ANC-II) is restricted to 
TCB and forms 10–50 μm sized grains that are mostly associated 
with magnetite, thorite (Figs. 7d and 7e), strontianite, and baryte 
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and rarely occur as crack-fillings together with magnetite and 
celestine (Fig. 7f). Similar to REEFC-II b, this type occurs in 
late carbonate veins, but shows a higher affinity to serpentine, 
where REE-F-carbonates are usually absent (Figs. 7d and 7e).

Cordylite. Similar to ANC-I, the REE-Ba-carbonate cordy-
lite (Table1 2) occurs as 10–100 μm sized needles or irregular 

grains enclosed in calcite and dolomite (Figs. 7g and 7h). 
Cordylite is often patchy (Fig. 7h) and may show tails filling 
tiny veins (Fig. 7g). It was only found in few samples mainly 
from the uppermost part of the Loolekop pipe, where baryte 
and celestine are relatively abundant. Importantly, cordylite 
in the direct vicinity of partly dissolved REEFC-I (see above) 

FiGuRe 4. Textural appearances of monazite and britholite. (a) Lobate-like expansions of monazite rim around apatite. (b) Tiny relics of apatite 
enclosed by calcite with a thick rim and irregular precipitation of monazite. (c) Monazite partly enclosed by sulfides with apatite rim where sulfide 
shows valleriitization. Note the lack of apatite rim at monazite where no valleriitization took place. (d) Strongly altered monazite with formation 
of secondary apatite associated with valleriitization of sulfides. Note thorite inclusions in valleriite. (e) Monazite and britholite in equilibrium 
around serpentinized forsterite and apatite. The red dashed line marks the border between britholite and monazite. (f) Thick britholite rim around 
serpentinized forsterite. (g) Britholite around forsterite replaced by chondrodite and serpentine. (h) Britholite associated with phlogopite and chlorite.

Fig. 6 
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shows no dissolution or alteration features.
Anzaite. A REE-Ti-oxide rarely found in the PCC is most 

likely anzaite (Table1 2), which up to now has only been described 
from the Afrikanda Complex (Russia; Chakhmouradian et al. 
2015). To ultimately distinguish anzaite from a cation-deficient 
perovskite (which has to date not been described from a natural 
occurrence, though) XRD analyses would be needed (Chakhmou-
radian et al. 2015). In the investigated samples, anzaite occurs 
in two distinct associations: (1) In most cases 10–30 μm sized 
anzaite replaces ilmenite (Figs. 5a–5d) and often shows patchy 
zonation, reflecting variable REE/Ti ratios (Fig. 5a). (2) Mostly 
in medium to highly serpentinized samples (restricted to TCB), 
however, 5–30 μm sized irregular grains or schlieren of anzaite 
occur, which are commonly associated and mostly intergrown 
with valleriite, but not with ilmenite (Figs. 5e and 5f).

DisCussion
The identification of fergusonite, REE-Ti-betafite, cordylite, 

and britholite during this study represents the first described 

occurrence of these REE minerals in the PCC and the first 
occurrence in a carbonatite complex of South Africa. Bulakh et 
al. (1998) mentioned a Ti-REE mineral and Karchevsky (2000) 
described a REE-silicate for the PCC, but both gave no further 
specifications on these minerals. The probable identification of 
anzaite represents its second occurrence worldwide.

Multistage formation of REE minerals in the Palabora 
carbonatites and phoscorites

Most REE mineralizations in carbonatites are believed to 
have crystallized from carbo- or hydrothermal fluids (e.g., 
Mariano 1989; Wall and Mariano 1996; Wyllie et al. 1996; 
Wall et al. 2001; Zaitsev et al. 2002; Williams-Jones et al. 2012; 
Nadeau et al. 2015). However, fluid inclusion studies show 
that REE do not preferentially fractionate into fluids, although 
they would be capable of transporting REE (Bühn and Rankin 
1999). Experimental studies at high temperatures (Song et al. 
2016) imply that carbonatite-related REE deposits may form by 
fractional crystallization of carbonatitic melts rather than from 

FiGuRe 5. Textural appearances of anzaite. (a) Compositionally zoned anzaite completely replacing ilmenite in contact with magnetite. Anzaite 
shows mostly patchy zoning with the brightest areas having high REE/Ti ratios and the darker areas showing the opposite. (b) Anzaite replacing 
ilmenite with ilmenite relics enclosed by anzaite. (c) Dissolved ilmenite lamellae (partly filled with calcite) with relictic ilmenite in the center of 
the lamellae and precipitation of anzaite within the former lamellae. The upper part of the image displays the same phenomenon with a batch of 
ilmenite partly dissolved and filled by calcite and showing marginal precipitation of anzaite. (d) Part replacement of ilmenite by anzaite as well as 
precipitation of anzaite around ilmenite relicts. (e) Anzaite associated with valleriite replacing chalcopyrite. (f) Association of anzaite, valleriite, 
serpentine, and secondary apatite (ap-III). Note the intergrowth of valleriite, ap-III, and anzaite.
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exsolved hydrothermal fluids. In rare cases only, a magmatic 
origin for REE mineralizations in carbonatites is assumed, based 
on textural (e.g., Mountain Pass, Mariano 1989) and isotopic 
data (e.g., Zaitsev et al. 2002) with alteration, replacement, and 
remobilization of preexisting REE minerals clearly linked to a 

late-stage process involving water-bearing fluids (e.g., Wall and 
Mariano 1996; Zaitsev et al. 1998, 2002; Wall et al. 2001; Moore 
et al. 2015). Some paragenetic studies on individual carbonatite 
complexes indicate multistage mineralization processes with 
significant overprint of the orthomagmatic mineralization by a 

FiGuRe 6. Textural appearances of REE-F-carbonates. (a) Partly dissolved REEFC-I needle. (b) REEFC-I partly included in chalcopyrite. Note 
the strong dissolved parts of REEFC-I outside the sulfide enclosure. (c and d) Partly dissolved REEFC-I with interdigitated parisite/synchysite 
and bastnäsite, and (d) the additional presence of strontianite and fluorite. (e and f) Relics of monazite around apatite with interlocked REEFC-
II a. Monazite decomposed to secondary REEFC-II a needles and secondary apatite (ap-II). (g) Carbonate vein (marked with white dashed line) 
through calcite with exsolved dolomite and REEFC-II b. The enlargement shows the intergrowth with magnetite. Note the tiny secondary thorianite 
inclusions in magnetite and REEFC-II b. (h) REEFC-II b intergrown with magnetite and anzaite with inclusions of secondary “fusiform” thorite. 
Recrystallized zone is located next to a serpentinized area.
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late-stage hydrothermal or carbothermal mineralization (Rankin 
2005). Nevertheless, the controls on the REE mineralization in 
carbonatites are poorly understood (Trofanenko et al. 2016).

Based on the textures described above, the various REE 

mineral associations at Palabora formed during different stages 
(Figs. 2 and 9). While fergusonite, REE-Ti-betafite, and prob-
ably also REEFC-I crystallized during the orthomagmatic 
stage directly from a carbonatitic melt, monazite and britholite 

FiGuRe 7. Textural appearances of ancylite and cordylite. (a) Heterogeneous ancylite needle with light parts reflecting intergrown baryte. The 
darkest parts reflect a high Ca, low Sr, and low REE contents and the medium light parts reflect a high Sr and low Ca content with a high concentration 
of REE. (b) Rod-like/partly irregular ancylite with an inclusion of baryte. (c) Ancylite associated with cordylite. (d) Ancylite intergrowth with 
magnetite in recrystallized carbonate vein. Dark rims around dolomite represent serpentine. (e) Ancylite pseudomorphed after completely dissolved 
primary thorianite, with a thorite inclusion enclosed in ancylite, serpentine, and magnetite, all associated with recrystallized calcite. (f) Cracks in 
apatite filled with ancylite, celestine, and magnetite. (g) Cordylite with a thin tail filling a crack in calcite. (h) Patchy zonation of cordylite shows 
the heterogeneity of this phase.
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precipitated from late-magmatic fluids (LM fluid). Finally, the 
formation of anzaite, REEFC-II (a+b) and ANC-II and the altera-
tion of monazite and REEFC-I is assigned to REE redistribution 
processes caused by post-magmatic fluids (PM fluid). Although 
the genetic position of ANC-I and cordylite is not entirely clear, 
the association with baryte, the integrity of ANC-I, and the pres-
ence of cordylite needles next to strongly dissolved REEFC-I 
needles favor a formation during stage 4 (Fig. 2).

The variability of types of REE mineralization in the PCC 
largely reflects the sensitive character of REE mineral formation 
during fluid-assisted processes. We suggest that late-magmatic 
and post-magmatic fluids show compositional variabilities, 
which are probably caused by local dissolution-reprecipitation 
processes. We distinguish the following fluid types: LM = late-
magmatic fluid enriched in REE, LMʹ = REE-depleted analog 
of LM that results from REE mineral precipitation from LM, 
PM = post-magmatic REE-poor or -free initial fluids, PMʹ = 
fluids enriched in REE by remobilization, PM″ = REE- and 
cation-enriched fluids transporting the element content for distal 
precipitation, and PM‴ = REE-depleted fluids after REE mineral 
precipitation from PMʹ and PM″.

Orthomagmatic crystallization of fergusonite, REE-Ti-betafite, 
and REE-F carbonates

Texturally, fergusonite and REE-Ti-betafite are interpreted as 
early magmatic REE phases, which probably crystallized more 
or less contemporaneously. Fergusonite represents the most 
important Nb-phase in the system (pyrochlore sensu stricto is 
lacking), but its very low abundance reflects a general depletion 
of Nb in the Palabora carbonatites. Hence, the PCC comprises 

a magmatic association of a Ti-poor Nb-oxide (fergusonite; 
<0.13 wt% TiO2) and a Nb-poor Ti-oxide (REE-Ti-betafite; 
<0.11 wt% Nb2O5). Notably, Ti-bearing fergusonite (>1 wt% 
TiO2) and Nb-bearing betafite (up to 20 wt% Nb2O5) have been 
described (e.g., Mitchell and Chakhmouradian 1998; Tomašić 
et al. 2006; Yaroshevskii and Bagdasarov 2008). At this stage 
it remains unclear why magmatic fergusonite and betafite in 
the PCC do not incorporate significant amounts of Ti and Nb, 
respectively. The enclosure of both mineral phases in magnetite 
isolates these minerals mostly from later fluid interactions and 
alteration (Fig. 9).

In general, REE-fluorocarbonates are among the most 
abundant REE minerals in carbonatites (Shunhua et al. 1986; 
Hsu 1992; Williams-Jones and Wood 1992). Although REE-
F-carbonates (especially bastnäsite) are stable to temperatures 
above 600 °C (Wyllie et al. 1996 and references therein), most 
REE-fluorocarbonates precipitate at comparatively low tem-
peratures (Williams-Jones and Wood 1992). Magmatic REE-F-
carbonates (mainly represented by bastnäsite) from Mountain 
Pass were described as coarse-grained, hexagonal prismatic 
(strongly elongated), crystals in fine- to medium-grained calcite 
and baryte, while fine-grained, stubby, hexagonal, interstitial 
prisms of bastnäsite were formed by a late residual fluid (Cas-
tor 2008).

At Palabora REE-F-carbonates (REEFC-I) occur as small 
and elongated crystals that are partly dissolved and form 
optically continuous single crystals (Fig. 6a and 6b) and well-
preserved REEFC-I needles are included in sulfides. Based 
on this and the similarities to REE-F-carbonates at Mountain 
Pass (except for crystal size), we assume a magmatic origin for 

FiGuRe 8. Textural appearances of fergusonite and REE-Ti-betafite. (a) Rounded fergusonite partly included in magnetite. (b) Rounded 
fergusonite associated with zirconolite included in magnetite and partly dissolved fergusonite with overgrown baddeleyite. Small baddelyite grain 
on the left side in contrast shows an overgrowth by fergusonite. (c) Rod-shaped REE-Ti-betafite partly included in magnetite. (d) Rod-shaped 
REE-Ti-betafites included in magnetite, calcite, and dolomite.
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FiGuRe 9. Scheme for REE mineral precipitation during different evolutionary stages of the Palabora 
carbonatites. Estimated temperatures after (Fernandez et al. 1977; Solovova et al. 1998; Fleet 2006; Sharygin 
et al. 2011; Chakhmouradian et al. 2015). Roman numbers (I–III) refer to diagrams in Figure 10.

REEFC-I at Palabora.
Normally REE-F-carbon-

ates contain minor amounts 
of Th (e.g., Armbrustmach-
er 1979; Smith et al. 2000; 
Humphries 2012). For exam-
ple, bastnäsite typically con-
tains 0.2–0.3 wt% Th (Wang 
et al. 2013) and can also occur 
as thorbastnäsite (Smith et 
al. 2000) with 47 wt% Th 
(Pavlenko et al. 1965). Uher 
et al. (2015) even report ThO2 
concentrations of 0.5 to 1.4 
wt% for bastnäsite and 0.4 to 
4.5 wt% for synchysite in a 
granite from Stupné, Slova-
kia. In our case, REEFC-I are 
Th-poor (<0.08 wt%), which 
is in contrast to REEFC-II 
(see below). We suggest that 
early magmatic precipitation 
of Th-minerals (mostly tho-
rianite; Figs. 2 and 3b) caused 
an early depletion of Th in 
the magmatic system, which 
resulted in lower Th con-
centrations during the stage 
of REEFC-I precipitation. 
Furthermore, partly dissolved 
REEFC-I (Fig. 6a) indicates a 
later remobilization of REE 
and the patchy appearance of 
parisite and synchysite within 
the bastnäsite interdigitation 
indicates an alteration of 
bastnäsite to synchysite and 
parisite during the remobili-
zation of REE (see below).

Late-magmatic formation 
of monazite and britholite 
at the expense of apatite 
and forsterite

Monazite formation. The 
replacement of apatite by 
monazite has been described 
for some hydrothermal de-
posits (e.g., Pan et al. 1993a; 
Lieftink et al. 1994; Smith 
et al. 1999) as a late-stage 
alteration phenomenon (Wall 
and Mariano 1996). Monazite 
inclusions and rims around 
apatite are often explained by fluid-induced (metasomatic) 
alteration of apatite via coupled substitution and mass transfer 
(Harlov et al. 2002, 2005; Harlov and Förster 2003). As such, 
monazite may have originated from the REE budget available 

from the apatite itself, where Si and Na would be removed from 
the apatite without the concurrent removal of REE (Pan et al. 
1993a; Harlov and Förster 2002; Harlov et al. 2002).

In the investigated samples there is no textural evidence to 
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suggest that monazite is the result of exsolution from precur-
sor apatite during metasomatic alteration. Rather, apatite shows 
strong dissolution textures. Mass-balance considerations imply 
that the REE content of the apatite is not sufficient to allow for 
the precipitation of the observed amounts of monazite (Figs. 4a 
and 4b). We suggest that the precipitation of monazite (in cases 
associated with calcite) at the expense of apatite was caused by a 
REE-bearing fluid, according to the following schematic equation:

Apatite + LM Fluid = Monazite + Calcite + LMʹ Fluid
Ca5(PO4)3F + CO3

2– + 3REE3+ = 3REE(PO4) + CaCO3 + F– + 4Ca2+ (1)

Due to the relative immobility of P (Smith et al. 1999; Poi-
trasson et al. 2004; Cetiner et al. 2005; Louvel et al. 2015), mona-
zite mainly precipitates directly at the contact to apatite or within 

FiGuRe 10. Qualitative activity diagrams illustrating the relative 
stabilities of different REE mineral phases. Numbers in parentheses refer 
to reactions mentioned in the text. Note the necessity of REE introduction 
for the formation of monazite and britholite during stage 2 (I and II) as 
well as the locally controlled variability of F in stage 2 and 4 fluids (II and 
III). The activity of “Ca2+” in diagram III reflects the combination of the 
alkali- and alkaline earth metals Na++Ca2++Sr2++Ba2+ for simplification.

its immediate vicinity. The different appearances from surficial 
dissolution (thin rims of monazite around euhedral apatite; Fig. 
4a) to nearly complete dissolution (larger masses of monazite 
with relict apatite; Fig. 4b) probably reflect variable degrees of 
apatite replacement by monazite linked to the degree of apatite 
dissolution by the fluid.

Britholite formation. Britholite is mainly described from 
nepheline syenites and contact metasomatic deposits, where it 
generally forms during hydrothermal processes related to the 
replacement of apatite or monazite (Budzyń et al. 2011; Uher et 
al. 2015; Zirner et al. 2015). Britholite has also been described as 
a low-temperature phase in the Virulando carbonatite (Angola) 
where it formed during late-stage supergene alteration processes, 
associated with synchysite, cerite, goethite, hollandite, and baryte 
(Torró et al. 2012). In all, britholite is assumed to have a late stage 
to post-magmatic (subsolidus alteration of primary minerals) 
origin for most occurrences (Wall et al. 1993; Uher et al. 2015).

Typically, britholite obtains the necessary anions from Si-
bearing hydrothermal fluids. However, because of a general lack 
of Si-rich fluids in carbonatitic systems, another Si source has to be 
considered. Based on textural evidence, we suggest that Si is pro-
vided by the serpentinization of forsterite and the replacement of 
forsterite by chondrodite to which britholite is largely bound (Fig. 
4f, 4g, and 9). As forsterite is REE-poor, the britholite-forming 
fluid contained appreciable amounts of REE, in accordance with 
the assumptions made for monazite formation above:

Forsterite + LM Fluid = Serpentine + Dolomite + Britholite + LMʹ Fluid
9Mg2SiO4 + 3½H2O + 5½H+ + ½F– + 4Ca2+ + 4CO3

2– + 3REE3+ =
3Mg3Si2O5(OH)4 + 2MgCa(CO3)2 + Ca2(REE)3(SiO4)3(F,OH) + 7Mg2+ 

(2)

Forsterite + LM Fluid = Chondrodite + Britholite + LMʹ Fluid
5Mg2SiO4+ ⅔Ca2+ + 4⅓F– + REE3+ = 
2Mg5(SiO4)2F2 + ⅓Ca2(REE)3(SiO4)3(F) (3)

In a few cases britholite formation is associated with the 
chloritization of phlogopite:

Phlogopite + LM Fluid = Chlorite + Britholite + LMʹ Fluid
2KMg3(Si3Al)O10(F2) + 10OH– + 2Ca2+ + 3REE3+ = 
(Mg5Al)(Si3Al)O10(OH)8 + Ca2(REE)3(SiO4)3(F) + Mg2+ + 2 K+ + 3F– + 2H+

  (4)

Although britholite from Palabora is generally F-rich (fluor-
britholite; Fig. 10 II), britholite associated with the replacement 
of forsterite by chondrodite and the chloritization of phlogopite 
is higher in F than the britholite associated with the serpentiniza-
tion of forsterite. This shows that the LM fluid contains variable 
contents of F (Fig. 10 II).

Based on textural observations (Fig. 4e), we suggest that mona-
zite and britholite formed contemporaneously from the same fluid 
(Fig. 9). Accordingly, the type of REE phase formed depends on the 
local presence of forsterite or apatite, which provide the necessary 
SiO4

4– or PO4
3–, respectively. The occasional presence of acicular 

ap-II in serpentine indicates that small amounts of P (released 
by monazite formation; confirmed by mass-balance calculations 
or dissolution of apatite) may cause precipitation of secondary 
apatite during serpentinization of forsterite. The absence of REE 
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in olivine and the too low concentrations in apatite indicates the 
necessity to import REE into the system to precipitate britholite 
and monazite (arrows labeled 1–3 in Fig. 10).

Post-magmatic redistribution of REE: Formation of 
cordylite, ancylite, REE-F carbonates, and anzaite

Cordylite and ancylite (ANC-I) formation. Whereas ancyl-
ite is a relatively common REE mineral in carbonatites, cordylite 
is extremely rare (Zaitsev et al. 1998). Ancylite has never been 
described as a primary magmatic mineral, instead it is specified 
as a useful indicator of hydrothermal/carbothermal processes 
(Wall and Zaitsev 2004a; Verplanck et al. 2016). Zaitsev et 
al. (1998) describe the association of cordylite and ancylite as 
resulting from the hydrothermal alteration of magmatic carbo-
cernaite and burbankite. Based on this and our own textural 
observations (see above), we suggest that cordylite (Fig. 7g) 
and ANC-I (Figs. 7a–7c), together with baryte and strontianite 
with which it is tightly associated, may replace precursor REE-
Ca-Sr-carbonates. Because of the absence of any relics it is 
not possible to identify the precursor mineral of cordylite and 
ANC-I. However, based on very similar textural descriptions in 
the literature (Pecora and Kerr 1953; Somina 1975; Kapustin 
1980; Zaitsev et al. 1998; Moore et al. 2015), we assume the 
former presence of carbocernaite/burbankite (red question mark 
in Fig. 2). Burbankite and/or carbocernaite are important REE 
minerals in carbonatites that were probably present in many 
carbonatites but are typically replaced by ancylite, strontianite, 
synchysite, calcite, baryte, quartz, monazite, and apatite (e.g., 
Kangankunde, Malawi; Wigu Hill, Tanzania; Adiounedj, Mali; 
Bear Lodge, Wyoming, and Gem Park, U.S.A.; Wall et al. 1997). 
Supposing the precipitation of cordylite and ancylite during the 
early phase of stage 4 (Fig. 2 and 9), we suggest that dissolution 
of REEFC-II (see below) controls the activity of F in the fluid, 
which in turn controls the formation of ancylite and cordylite 
(Fig. 10 III). Ancylite and cordylite are depleted in Th, which 
suggest that the fluid from which they precipitated from was 
also Th-poor. The later precipitation of secondary thorianite and 
thorite, as well as slightly higher Th contents in later secondary 
REE minerals, suggest Th-enrichment of the fluid by dissolution 
of primary Th minerals.

Monazite alteration. Monazite in contact with or enclosed 
by sulfides is occasionally altered to ap-III associated with the 
valleriitization of the sulfide (Figs. 4c, 4d, and 9). This may be 
caused by the remobilization of REE from monazite (Fig. 10 I) 
by the same fluid that caused valleriitization of sulfides and can 
be explained by the following schematic equation:

Monazite + Chalcopyrite + PM Fluid = Apatite + Valleriite + PMʹ Fluid
3REE(PO4) + CuFeS2 + 5Ca2+ + HF + Mg2+ + ½Al3+ + 2OH– = 
Ca5(PO4)3F + 2[(Fe,Cu)S]·1.53(Mg,Al)(O,OH)2 + 3REE3+ + 2½H+

  (5)

Valleriitization in association with ap-III formation some-
times includes thorite (Fig. 4d), which is supposed to be formed 
by the remobilization of Th from primary Th minerals by a 
post-magmatic fluid.

REEFC-II formation. REEFC-II show two different types 
of occurrence, which may be distinguished into a proximally 

(REEFC-II a) and a distally precipitated (REEFC-II b) va-
riety depending on the REE saturation of the fluid (Fig. 9). 
The proximal variety (Figs. 6e and 6f) indicates reaction of 
monazite, apatite, and a fluid, which is linked to reaction 5 
with the exception of the availability of CO3

2– by the dissolution 
of carbonate. The remobilization of REE during this reaction 
will be prevented by the formation of REEFC-II a (exclusively 
bastnäsite), similar to what was observed in the Bayan Obo 
deposit (Smith et al. 1999):

Monazite + Calcite + PM Fluid = Apatite + Bastnäsite + PMʹ Fluid
3(REE)PO4 + 5CaCO3 + 4HF = Ca5(PO4)3F + 3(REE)(CO3)F +2H2O + 2CO2

  (6)

Partial dissolution of REEFC-I (see above) may form stron-
tianite, parisite/synchysite and fluorite in the interstices of the 
REEFC-I interdigitation (Figs. 6d and 9). This may cause ad-
ditional remobilization of REE by the evacuation of dissolved 
components [(REE)(CO3)F ↔ REE3+ + CO3

2– + F–]. The alteration 
of REEFC-I to parisite and synchysite may be caused by inter-
action with a Ca-rich fluid, while the presence of Sr promotes 
additional precipitation of strontianite and fluorite:

Bastnäsite + PM Fluid = Parisite
2(REE)(CO3)F + Ca2+ + CO3

2– = Ca(REE)2(CO3)3F2 (7)

Bastnäsite + PM Fluid = Strontianite + Parisite + Fluorite + PMʹ Fluid
4(REE)(CO3)F + 2Ca2+ + Sr2+ = SrCO3 + Ca(REE)2(CO3)3F2 + CaF2 + 
2REE3+  (8)

The observation that REEFC-I needles, protected as inclu-
sions in sulfide (Fig. 6b), do not show the described alteration, 
indicates that this process happens after the formation of sulfide 
minerals and during the post-magmatic stage.

The second variety (distal; REEFC-II b) precipitated in vein-
like fluid paths together with secondary strontianite, magnetite, 
anzaite, valleriite, thorianite, and thorite (Figs. 6g, 6h, and 9). 
Thus, the fluid causing the precipitation of these secondary min-
erals was probably enriched in Th. Thorium can be remobilized 
by leaching and dissolution of primary Th-bearing minerals such 
as thorianite (Pan et al. 1993b). At high temperatures, Th can be 
incorporated into REE minerals (Harlov et al. 2011), whereas 
at low temperatures, Th incorporation into REE minerals is 
restricted (Read et al. 2002; Doroshkevich et al. 2008; Budzyń 
et al. 2010), which explains the coexistence of secondary Th 
minerals with REEFC-II b (Figs. 6g and 6h). In fact, Th contents 
in REEFC-II are higher than in REEFC-I, but the depletion of 
Th in REEFC-I depends on the depletion of Th in the melt dur-
ing REEFC-I precipitation after the early crystallization of Th 
minerals (see above). At the same time, REEFC-II b formed 
concurrently with Th minerals due to the remobilization of Th 
from primary Th minerals. Formation of REEFC-II b may have 
occurred according to the following schematic reactions:

Dolomite A + Calcite A + PMʹ Fluid = 
REEFC-II b (Bastnäsite) + Calcite B + Dolomite B + PMʹʹʹ Fluid
2MgCa(CO3)2 + CaCO3 + REE3++ HF = 
REE(CO3)F + 2CaCO3 + MgCa(CO3)2 + Mg2++ H+ (9)
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The percolating fluid that caused the formation of REEFC-II b 
further induced dissolution (calcite A and dolomite A) and recrys-
tallization (calcite B and dolomite B) of carbonates constituting 
a further generation of carbonates within veins (Fig. 6g).

Ancylite (ANC-II) formation. Similarly, ANC-II is bound 
to vein-like fluid paths with a secondary mineralization of car-
bonates (Fig. 7d). However, ANC-II was not observed to coexist 
with REEFC-II b. Rather, in cases where REEFC-II b are present, 
the dominant Sr phase is a REE-poor strontianite (ΣREE2O3 < 
4 wt%; Karchevsky 2000) and the REE are mainly incorporated 
into REEFC-II b (Fig. 9). At presumably higher H2O activities, 
the formation of serpentine and the absence of the REEFC-II b 
lead to the concentration of REE into the Sr phase ancylite. 
The necessary Sr was probably provided by the dissolution of 
strontianite and/or Sr-rich calcite (which occurs as secondary 
exsolutions in exsolved dolomite):

Dolomite A + Calcite A + Strontianite + PMʹ Fluid = 
ANC-II + Dolomite B + Calcite B + PMʹʹʹ Fluid
MgCa(CO3)2 + 2¼CaCO3 + ¾SrCO3 + 2H2O + REE3+ = 
(Sr0.75Ca0.25)(REE)(CO3)2(OH)·H2O + MgCa(CO3)2 + CaCO3 + Ca2+ + H+

 (10)

Dolomite A + Sr-Calcite + PMʹ Fluid = 
ANC-II + Dolomite B + Calcite + PMʹʹʹ Fluid
MgCa(CO3)2 + 3(Ca0.75Sr0.25)CO3 + 2H2O + REE3+ = 
(Sr0.75Ca0.25)(REE)(CO3)2(OH)·H2O + MgCa(CO3)2 + CaCO3 + Ca2+ + H+

  (11)

Anzaite formation. Anzaite-(Ce) was first described from 
Afrikanda (Russia) as a late hydrothermal alteration product 
where Ti and Fe were derived from primary Ti oxides such as 
ilmenite. This is reflected by a ubiquitous association of an-
zaite with ilmenite and/or Ti-rich magnetite (Chakhmouradian 
et al. 2015). The associated mineral assemblage precipitated 
at Afrikanda at 150–250 °C, aH+ ≈ 10–5 and aH4SiO4

0 > 10–4 
(Chakhmouradian and Zaitsev 2004).

The close association of anzaite with valleriite (Figs. 5e and 
5f) at Palabora confirms the assumption of a low-temperature 
origin. Anzaite is texturally bound to ilmenite (Figs. 5b and 5d). 
Therefore, the partial dissolution of ilmenite by a REE-bearing 
fluid seems to be essential for the local enrichment of Ti allow-
ing for the formation of anzaite. Two different occurrences of 
anzaite can be distinguished, which might reflect a proximal and 
distal fluid transport (Fig. 9) of a Ti-enriched, REE-bearing fluid.

The common association includes anzaite with relics of 
ilmenite in direct contact or close vicinity with magnetite (Figs. 
5a–5d). In this case, anzaite directly replaces ilmenite, which can 
be described by the following schematic equation:

Ilmenite + PMʹ Fluid = Anzaite + PMʹʹʹ Fluid
6FeTiO3 + 2OH– + 4REE3+ = REE4FeTi6O18(OH)2 + 5Fe2+. 

 (12)

The less common occurrence of anzaite is not directly bound 
to ilmenite but associated with valleriite and serpentine (Figs. 
5e and 5f). This association requires small-scale hydrothermal 
transport of Ti, Al, and Si by a REE-bearing fluid. In general, 

very low pH fluids, combined with the availability of complex-
ing ligands such as F, can enable Ti transport (van Baalen 1993). 
However, we consider such low pH values (<2) unlikely for 
Palabora. Alternatively, significant mass transfer of Ti has been 
explained by complexing agents of polymerized silicate mol-
ecules in solution (Manning 2004), most likely Ti-aluminosilicate 
complexes (Tropper and Manning 2005; Beitter et al. 2008). We 
favor this explanation as the assumption of the existence of Ti-
transporting aluminosilicate complexes provides Al and Si for 
valleriite and serpentine formation, respectively (as observed; 
reaction 13b). The precipitation of this type of anzaite together 
with valleriite may be expressed by a two-step process. First, 
ilmenite is dissolved and Ti-aluminosilicate-complexes form:

Ilmenite + PMʹ Fluid (incl. aluminosilicate-complex) = PMʹʹ Fluid
FeTiO3 + 6⅓OH– + 3H2O + 7Mg2+ + 2AlOSi(OH)3

2+ + ⅔REE3+ = 
12⅓OH– + 7Mg2+ + 2(Ti,Fe)-AlOSi(OH)3

5+ + ⅔REE3+ (13a)

This Ti-enriched fluid may then precipitate anzaite together 
with valleriite and serpentine when coming into contact with 
sulfides:

PMʹʹ Fluid + Cu-Fe Sulfide (e.g., Chalcopyrite) = 
Anzaite + Valleriite + Serpentine + PMʹʹʹ Fluid
12⅓OH– + 7Mg2+ + 2(Ti,Fe)-AlOSi(OH)3

5+ + ⅔REE3+ + 4CuFeS2 = 
1/6REE4FeTi6O18(OH)2 + 4{2[(Fe,Cu)S]·1.53[(Mg,Al) (O,OH)2]} +
½Mg6Si4O10(OH)8 + 5/6Fe2+ + 12H+ (13b)

The type of anzaite formation (proximal or distal; Fig. 9) 
depends on the availability of potential Ti-complexing ligands 
and is therefore locally controlled by the earlier enrichment of 
Si and Al.

Although Kavecsanszki et al. (2012) assume that the sulfide-
bearing liquid (stage 3) released fenitizing fluids, the actual source of 
the PM fluid has not yet been demonstrated. Alternatively, external 
fluids, e.g., related to the cross-cutting dolerite dikes, may have 
caused post-magmatic alteration reactions within the carbonatites.

iMpliCations

Our new data reveal a complex interplay between host miner-
als, fluid chemistry, and REE mineralogy after the orthomagmatic 
stage. This interplay leads to various local chemical (micro)
environments reflected in different REE mineral assemblages. 
Our results suggest that hydrothermal processes during late-
magmatic and post-magmatic stages are of greater importance 
with respect to the formation and variability of REE minerals than 
orthomagmatic crystallization. Hydrothermal overprint causes 
alteration and in some cases complete replacement of primary 
REE minerals. Our study on the Palabora carbonatites further 
implies that the REE contents of magmatic minerals (such as 
apatite and carbonates) are not high enough to account for the 
formation of late-magmatic REE minerals such as monazite, 
which suggests that a REE-enriched fluid was introduced into the 
observed sections of the complex during late-magmatic stages. 
The results of this study confirm (1) the significance of late-stage 
introduction of REE and their reaction with precursor mineral 
phases, and (2) the redistribution of REE during post-magmatic 
stages in natural carbonatitic systems.
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A detailed electron microprobe study has been carried out on the compositional variations of mica and apatite
from carbonatites, phoscorites and associated pyroxenites (and fenites) of the Loolekop deposit, Palabora
Carbonatite Complex (South Africa). Mica in pyroxenites and fenites is Mg-rich biotite, whilst micas in
carbonatites and phoscorites are compositionally diverse including phlogopite, Ba-rich phlogopite (up to 30%
kinoshitalite component), IVAl-rich phlogopite (up to 30% eastonite component) and tetraferriphlogopite. The
various types of phlogopites are interpreted as orthomagmatic phases, whereas tetraferriphlogopite precipitation
was a late-magmatic to hydrothermal process that additionally introduced REE into the system. Orthomagmatic
apatite is generally REE- and Sr-poor fluorapatite and does not show large compositional differences between
rock types. Apatite associated with the late-stage tetraferriphlogopite mineralization reaches higher levels of
REE (up to 4.9 wt%), Si (up to 1.5 wt% SiO2), Sr (up to 2.6 wt% SrO) and Na (up to 1.0 wt% Na2O).
The compositional variation of micas and apatites, which is affiliated with distinct rock types, reflects the multi-
stage evolution of the Loolekop deposit and provides detailed insight into the relationships of the carbonatite-
phoscorite assemblage. The obtained data support the separation of phoscorite and carbonatite by immiscibility
from a common parental magma, which may happen due to a decrease of temperature and/or pressure during
the ascent of themagma. This results in a density contrast between the carbonatitic and phoscoritic components
that will lead to descending phoscorite accumulations at the outer zones of the magma channel and a jet-like as-
cent (further promoted by its extremely low viscosity) of the carbonatite magma. The genetic model deduced
here explains the peculiar association of carbonatites, phoscorites and silicate rocks in many alkaline complexes
worldwide.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Apatite and mica are two of themost abundant non-carbonate min-
erals in carbonatites. They cover a large compositional range and are
therefore ideal monitors for the magmatic and hydrothermal evolution
of such systems (e.g., Brigatti et al., 1996b; Chakhmouradian et al.,
2017). Apatites from carbonatites and phoscorites are known to reach
elevated contents of rare-earth elements (REE), large ion lithophile ele-
ments (e.g., Sr) and higher concentrations of Na and Si compared to

most other plutonic rocks, while the halogen-site is mainly occupied
by F and OH, with normally negligible Cl (Teiber et al., 2015 and refer-
ences therein). Micas from carbonatite/phoscorite – silicate rock associ-
ations world-wide generally comprise four main groups, namely the
phlogopite-annite, phlogopite-eastonite, phlogopite-kinoshitalite, and
the phlogopite-tetraferriphlogopite series (e.g., Reguir et al., 2009 and
references therein; see Table 1 for end-member compositions). Com-
monly, micas with an annite component N20% (biotites) are restricted
to the associated silicate rocks, whereas those from carbonatites and
phoscorites are very Mg-rich (phlogopite) and may show some evolu-
tion towards eastonite (e.g. Sokli; Lee et al., 2003) and/or kinoshitalite
(e.g. Jacupiranga; Brod et al., 2001).

Micas evolving towards tetraferriphlogopite composition were first
described from Kovdor (Rimskaya-Korsakova and Sokolova, 1964), but
in the meantime have been described from many alkaline rock-
carbonatite complexes (e.g., Brigatti et al., 1996a; Brigatti et al., 1996b;
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Brod et al., 2001; Gaspar and Wyllie, 1987; Lee et al., 2003; McCormick
and Le Bas, 1996; Seifert et al., 2000), where they are commonly re-
stricted to carbonatites and phoscorites (e.g., Kovdor and Sokli;
Krasnova et al., 2004a; Lee et al., 2003) or silicate rocks that reflect a
strong metasomatic overprint induced by carbonatites (e.g., Catalao-
I; Brod et al., 2001). The crystallization of tetraferriphlogopite is gener-
ally considered to be caused by the low availability of Al combined
with high fO2 (Brigatti et al., 1996b; Lee et al., 2003; McCormick and
Le Bas, 1996).

Some carbonatites are spatially and temporally associated and ge-
netically related to phoscorites, which are defined as carbonate-
bearing ultramafic rocks that mainly consist of magnetite, apatite and
forsterite, diopside or phlogopite (Krasnova et al., 2004b). The 21
phoscorite occurrences described world-wide (with Palabora being
the type locality) are almost exclusively represented by multiphase
phoscorite-carbonatite complexes, with phoscorite situated around or
in carbonatite cores. Numerous phoscoritic small scale structures are
common in most calcite and dolomite carbonatites (Krasnova et al.,
2004b), but many of such occurrences have been insufficiently de-
scribed. Certainly, there are much more unrecognized phoscorite-
carbonatite associations. The genetic relation between carbonatites
and associated phoscorites has been the subject of discussions among
petrologists for many years and three potential processes have been
suggested for the generation of phoscorites: (1) crystallization from
an individual magma, (2) fractionation from a carbonatitic magma or
(3) separation from an immiscible carbonatitic melt (Krasnova et al.,
2004b).

The present investigation provides systematic data on the composi-
tional variation of micas and apatites from the three major rock types
(banded carbonatite, transgressive carbonatite and phoscorite), of the
Palabora Carbonatite Complex and assesses their petrogenetic and evo-
lutionary significance. Based on these data, the relationship between the
two carbonatite types and phoscorite are discussed and a model for
explaining similar carbonatite-phoscorite-silicate rock associations is
proposed.

2. Geological setting

The Palabora Carbonatite Complex depicts a tripartite, pipe-like
intrusion comprising an area of about 18 km2, which is dominated
by various types of clinopyroxenite (Fig. 1). The complex is located
next to the city of Phalaborwa in the Limpopo province (South
Africa) and was intruded at 2060 Ma into Archean granite-gneiss
basement of the north-eastern Kaapvaal craton (Wu et al., 2011).
According to gravity data, the complex continues to a depth of at
least 5 km (Eriksson, 1982) while 2 km are verified by drilling
data (Giebel et al., 2017).

The complex is divided into a northern and southern pyroxenite
and the central Loolekop pipe, which comprises a 1.3 × 0.8 km sized
carbonatite-phoscorite assemblage, where phoscorite (FOS) is as-
sociated with Banded Carbonatite (BCB); both are cut by Transgres-
sive Carbonatite (TCB). This so-called Loolekop deposit is the focus

of the present study and represents the only carbonatite world-
wide primarily mined for Cu. The Loolekop deposit experienced a
multi-stage mineralization, which can be divided into an
orthomagmatic, late-magmatic, sulphide and post-magmatic stage
(Giebel et al., 2017). The majority of the complex is bordered by a
feldspathic pyroxenite (FPY), which represents an interaction of
the intruding pyroxenite (micaceous pyroxenite, MPY) with the
basement. The surrounding basement was fenitized and late syenite
satellite bodies formed in the direct vicinity of the complex. Doler-
ite dykes of mostly Proterozoic age (Wu et al., 2011) finally crosscut
the entire complex. The primary magma forming the carbonatite
complex has been identified as being derived from an enriched
mantle source and was proposed to have been triggered by the
same mantle plume activity which initiated the intrusion of the
Bushveld Complex (Wu et al., 2011).

3. Previous work on Palabora apatites and phlogopites

Systematicmineral chemical studies to assess themulti-stage evolu-
tion of the carbonatite-phoscorite assemblage of the Palabora
Carbonatite Complex have been lacking so far. Apatite is abundant in
all rock types with quantities decreasing from FOS N BCB N TCB
(Hanekom et al., 1965; Palabora Mining Company, 1976). Aldous
(1980) identified apatite as the major REE carrier at Palabora, and
later parenthetic studies (using only one sample each of BCB, FOS and
MPY) focused on the REE distribution between apatite and carbonates
(Dawson and Hinton, 2003), without presenting any genetic implica-
tions. Only Wu et al. (2011) and Milani et al. (2017) drew petrogenetic
conclusions based on isotope and trace element analyses of apatite and
carbonates, and suggested a cogenetic origin for most of their samples
(4 FOS, 3 BCB, 2 TCB).Milani et al. (2017) finally pointed out the compo-
sitionally “ordinary” nature of Palabora apatite without significant dif-
ferences between FOS, BCB and TCB.

Few phlogopite data for carbonatites and phoscorites have been pre-
sented by Eriksson (1982), who focussed his studies on pyroxenites and
noticed that the majority of micas from Palabora range from Mg-rich
phlogopites (carbonatites and phoscorites) toMg-rich biotites (pyroxe-
nites), while phlogopites often show a deficiency in Al (compared to
ideal phlogopite) with low concentrations of Ti (compared to other ul-
trabasic rocks). Fenites (FEN) show very similar mica compositions as
pyroxenites and although micas in carbonatites and phoscorites have
lower Fe/(Fe + Mg) ratios compared to pyroxenites, they mostly over-
lap in composition,which lead Eriksson (1982) to conclude that the for-
mation of the carbonatite-phoscorite assemblage was not caused by
differentiation of the magma that produced pyroxenites. Although
Suwa and Aoki (1975) described rims of tetraferriphlogopite surround-
ing phlogopites in pyroxenites, these features were not observed in the
much more detailed study of Eriksson (1982). Other studies only de-
scribed the presence of “common” phlogopite (e.g., Aldous, 1980;
Hanekom et al., 1965; Lombaard et al., 1964; Palabora Mining
Company, 1976). Milani et al. (2017) presented trace element data for
micas from a very limited number of samples (3 FOS and 2 BCB, no TCB).

Table 1
Ideal end-member compositions and substitutiton trends of Palabora micas.

Endmember name Ideal end-member comp. Substitution trend Abbr. Max. end-member composition at Palabora*

Phlogopite KMg3AlSi3O10(OH)2 – “Common” phl K(Mg2.7Fe0.3)(AlSi3)O10(OH1.7F0.3)
Annite KFe32+AlSi3O10(OH)2 3Mg2+ ↔ 3Fe2+ Biotite K(Mg1.8Fe1.2)(AlSi3)O10(OH1.9F0.1)
Eastonite KMg2AlAl2Si2O10(OH)2 Mg2+ + Si4+ ↔ VIAl3+ + IVAl3+ IVAl-rich phl K(Mg2.6Fe0.1Al0.3)(Al1.3Si2.7)O10(OH1.8F0.2)
Siderophyllite KFe22+AlAl2Si2O10(OH)2 3Mg2+ + Si4+ ↔ VIAl3+ + IVAl3+ + 2Fe2+

Kinoshitalite BaMg3Al2Si2O10(OH)2 K+ + Si4+ ↔ Ba2+ + IVAl3+ Ba-bearing phl K0.7Ba0.3(Mg2.8Fe0.2)(Al1.3Si2.7)O10(OH1.3F0.7)
Ferrokinoshitalite BaFe32+Al2Si2O10(OH)2 3Mg2+ + K+ + Si4+ ↔ Ba2+ + IVAl3+ +3Fe2+

Tetraferriphlogopite KMg3Fe3+Si3O10(OH)2 IVAl3+ ↔ IVFe3+ Tetraferri-phlogopite K(Mg2.5Fe0.5)(Fe3+0.77꙱0.03Al0.1Si3.1)O10(OH1.9F0.1)
Tetraferriannite KFe32+Fe3+Si3O10(OH)2 3Mg2+ + IVAl3+ ↔ IVFe3+ + 3Fe2+

Note:Mineral names are in accordancewith thenomenclature of the InternationalMineralogical Association (IMA). *Solid solution formular based onmax. deviation from ideal phlogopite
(phl) composition. Mica type in italics displays biotite from associated silicate rocks (micaceous pyroxenite and fenite).
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4. Sample material, analytical methods, and recalculation
procedures

This study is based on 45 representative samples (20 TCB, 15 BCB
and 10 FOS) that have been chosen from a collection of about 400 drill
core samples from 6 drill holes that combine to a vertical profile of
about 2000 m. The composition of micas (452 analyses) and apatite
(554 analyses) was acquired using a Jeol JXA 8900 Superprobe at the
Department of Geoscience of the Eberhard Karls University, Tübingen
(Germany) using four wavelength-dispersive spectrometers (WDS).
For standardization, albite (Na), plagioclase (Si, Al and Ca), diopside
(Mg), hematite (Fe), topaz (F), tugtupite (Cl), baryte (Ba), rhodonite
(Mn), SrTiO3 (Ti), and Cr metal (Cr) where used for micas; for apatites,
we used albite (Na), sanidine (K), diopside (Si), apatite (Ca, P and F), he-
matite (Fe), tugtupite (Cl), baryte (S), rhodonite (Mn), SrTiO3 (Sr), GaAs
(As) and REE 1–4 glasses (La, Ce, Pr and Nd; Drake andWeill, 1972). The
ZAF matrix correction method (Armstrong, 1988; Bence and Albee,
1968) was employed for quantification. The microprobe was operated
at 15 kV accelerating voltage, 12 nA (mica) and 10 nA (apatite) beam
current and a defocused beamof 2 μm(mica) and 10 μm(apatite) diam-
eter was used. Overlap corrections for Ti-Ba (in mica) and for Fe-Ce and
Pr-La (in apatite) where applied. Further details of the WDS configura-
tion are given in the electronic supplement.

Structural formulae of micas were calculated based on an ideal
trioctahedral mica formula (XY3[Z4O10][OH,F,Cl]2) and the data were
normalized to seven (tetrahedral [Z] plus octahedral [Y]) cations. OH
was calculated by assuming (F + Cl + OH) = 2. Earlier studies have
shown that Fe2+/Fe3+ calculations from EMPA data are reliable and
not unrealistically different from Mössbauer data, if appropriate

recalculation methods are used (e.g., Brod et al., 2001). We recalculated
our EPMA data using the method by Dymek (1983) for Al-bearing
phlogopites and the method by Araújo (1996) for Al-deficient
tetraferriphlogopites (explained/translated by Brod et al., 2001). For
the different substitution trends inmica the following cations are consid-
ered to occupy the related sites: (1) Tetrahedral site: Si4+-Al3+-Fe3+,
(2) octahedral site:Mg2+-Mn2+-Fe2+-Fe3+-Al3+-Ti4+ and (3) interlayer
site: K+-Na+-Ba2+-Ca2+.

Structural formulae of apatite were normalized to eight cations and
OH was calculated assuming (F + Cl + OH) = 1. For the different sub-
stitution trends in apatite the following preferred site occupancies are
assumed: (1) A site: Si4+-P5+-S6+-As5+ and (2) B site: Na+-Ca2+-Sr2+

-REE3+-Fe2+-Mn2+.

5. Textural appearance of mica and apatite

Micas in pyroxenites occur as small (b1 mm) to large (N5 cm) laths
interstitial to clinopyroxenes (cpx) with rare inclusions of small cpx, or
as small euhedral inclusions (poikilitically) in cpx. They record a mag-
matic origin. Micas in fenite occur as laths filling veinlets together
with calcite.

Micas and apatite are the most abundant orthomagmatic non-
carbonates in the carbonatite-phoscorite assemblage at Palabora,
together with olivine and magnetite (Giebel et al., 2017). Phlogopites
are mainly enclosed by carbonate phases (Fig. 2A) or included in mag-
netite (Fig. 2C). They often contain inclusions of apatite and vary from
up to cm-sized euhedral grains (Fig. 2A) tomuch smaller anhedral crys-
tals (Fig. 2B). These textural features apply to FOS, BCB and TCB samples,
but TCB phlogopites tend to form large euhedral crystals. Phlogopites

Fig. 1. Generalized geological map of the Palabora Complex (modified after Fourie and Jager, 1986; Hanekom et al., 1965; Wilson, 1998) and cross section of the Loolekop pipe in N-S
direction showing the irregular ring structure of the pipe (modified and extended after Wilson, 1998).
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are generally optically unzoned and undeformed, occasionally altered to
chlorite or vermiculite. They typically show pale to bright blueish-
greenish (Fig. 2C) to pinkish-violet interference colours and have a
nearly colourless to light brownish appearance in bright field.

Tetraferriphlogopites, however, show light red-orange to brown
interference colours (Fig. 2D). They appear intense brownish in bright
field and show a reverse pleochroism. The reverse pleochroism in
tetraferriphlogopite is caused by a related tetrahedral Fe3+-Al substitu-
tion and requires an occupancy of IVFe3+ of N0.25 apfu with IVAl b0.75
apfu at about 3 apfu IVSi (e.g., Brod et al., 2001). This proposition can
be confirmed by our observations and supports the reversed pleochro-
ism in phlogopite with IVAl/IVFe3+ ≤ 3. Tetraferriphlogopite in both
carbonatite types (BCB and TCB) ismostly associatedwith veins ofmag-
netite (±Fe-Cu-sulphides; Fig. 2E), which show an orientation parallel
to that of the tetraferriphlogopites. Occasionally magnetites also
form small clusters around tetraferriphlogopite. In some samples,
late-stage magnetite forms a distinctive meshwork of veins. In these
veins magnetite (±Fe-Cu-sulphides) partly dissolves the pre-existent
tetraferriphlogopite assemblage (Fig. 2E & 3B). Tetraferriphlogopite-
bearing assemblages in FOS occur as larger, isolated veins (Fig. 2F).
Orthomagmatic magnetite in tetraferriphlogopite-rich samples
(Fig. 3A) shows directional dissolution fronts, which are highlighted
by the residue of exsolved ilmenite lamellae (Fig. 3C). Occasionally,
tetraferriphlogopite is associated with aggregates of (rarely euhedral)
britholite (Fig. 3D) and apatite-monazite dissolution structures
(Fig. 3E; e.g., Giebel et al., 2017) that are both aligned parallel to
the vein-like orientation of tetraferriphlogopites (Fig. 3A). In cases,

bead-like pellets of graphite occur as string-like (moniliform) apposi-
tions (Fig. 3F.1) or more frequently as single beads attached to
tetraferriphlogopite. This graphite variety is occasionally associated
with magnesite (Fig. 3F.2).

Apatites from carbonatites (BCB and TCB) range from small
grains (b100 μm) with a prismatic but mostly rounded habit, to
cm-scale elongated euhedral to subhedral crystals, occasionally
strongly fractured and rarely with inclusions of thorianite and
baddeleyite. Most apatites show variable dissolution features,
characterized by reaction rims of monazite around apatite
(Fig. 3E; see details in Giebel et al., 2017). Apatites are optically
unzoned, but cathodoluminescence images show a sporadic faint
zoning often based on fractures and crystal irregularities, which
indicate a weak interaction with a pervasive fluid. Apatites in
FOS form up to some cm sized irregular masses that are mostly
interstitial to olivine, with minor inclusions of small apatite in
olivine and magnetite. This apatite variety shows only minor
association with monazite.

6. Compositional variation of micas and apatite

Both phlogopite and apatite show no compositional depth-
dependent changes for the entire sample profile covering N2000 m.
This confirms the absence of a vertical zonation, as has been demon-
strated for a profile down to −1550 m for Kovdor (Russia) by
Krasnova et al. (2004a).

Fig. 2. Mica textures from carbonatites and phoscorites of the Loolekop deposit, Palabora Carbonatite Complex (South Africa). (A) Euhedral phlogopite enclosed by calcite/dolomite
(in TCB), (Photo fromMineMineral Collection PMC). (B) Anhedral phlogopite enclosed by calcite (crossed nicols). (C) Phlogopite enclosed bymagnetite (crossed nicols). (D) Foxy-orange
tetraferriphlogopite (crossed nicols). (E) Vein-like occurrence of tetraferriphlogopite in TCB with later magnetite mineralization (crossed nicols). (F) Tetraferriphlogopite occurring at
the outer rim of a carbonate-dominated vein trough phoscorite. Red dashed line marks the contact between vein and host rock (FOS). Mineral abbreviations: ap – apatite, cal – calcite,
dol – dolomite,mgt –magnetite, phl – phlogopite, tfphl – tetraferriphlogopite. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb version
of this article.)
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6.1. Mica

Selected electron microprobe analyses of representative micas from
the Loolekop deposit (TCB, BCB, FOS, MPY, FEN) are listed in Table 2
(phlogopites) and Table 3 (tetraferriphlogopite and biotite). Core-rim
variations in micas are only very minor, usually not exceeding the
inter-sample composition range.

The Mg# (100xMg/(Mg + Fe)) of mica from pyroxenites (60–62)
and fenites (70–72) is much lower than in carbonatites and phoscorites
(81–98) and in the latter rocks, phlogopites (#Mg= 86–98) are distin-
guished from tetraferriphlogopites (#Mg = 81–93) based on a signifi-
cant Al-deficiency of the latter (Foster, 1960; Fig. 4). The chemical
evolution of phlogopites shows an increase of Al with Mg# (Fig. 4)
and a negative correlation between FeTotal and Mg (Fig. 5).
Tetraferriphlogopites, however, show a virtually constant Mg content
with increasing FeTotal, which mirrors the substitution of IVFe3+ for IVAl
and indicates that the VIFe2+-Mg substitution during their formation is

less important. Only when FeTotal reaches a concentration of 1 apfu,
VIFe2+ starts to substitute for Mg (Fig. 5C). Thus, in contrast to phlogo-
pites (Fe b 0.4), which show a decrease of Fe2+ with differentiation
(red arrow in Fig. 5C), tetraferriphlogopites (Fe N 1) show an increase
of Fe2+ (Fig. 5C).

Enrichment of Ba is an exclusive feature of some phlogopites from
TCB samples (Fig. 6A), coupledwith an enrichment of IVAl and following
the substitution mechanism K+ + Si4+ ↔ Ba2+ + IVAl3+ (expressed as
Al3+ + Si4+ = 4 apfu in Fig. 6B) towards kinoshitalite-rich composi-
tions (Table 1). Although some phlogopites from BCB and FOS show en-
richment of Al, they follow a different trend (Fig. 4A), implying the
substitution of Mg2+ + Si4+ ↔ IVAl3+ + VIAl3+ (Fig. 6B). The contents
of Ti and Na are low, with phlogopites in BCB and FOS reaching higher
values than other phlogopites and tetraferriphlogopites (Fig. 7A & B).

Fluorine contents are variable (Fig. 8), with phlogopites in TCB
reaching much higher values (up to 0.75 apfu) than in BCB and FOS
(up to 0.55 apfu). The typical feature of F depletion in Fe-rich micas

Fig. 3. Schematic illustration and Back Scatter Electron (BSE) images of characteristic textures associatedwith late-stage tetraferriphlogopite-bearing veins in carbonatites and phoscorites
of Palabora. (A) Sketch comprising the local orientation of characteristic textures B to F. (B) Late magnetite dissolving pre-existent tetraferriphlogopite. (C) Primary magmatic magnetite
with dissolution front (red arrow) and residual ilmenite lamellae adjacent to immaculate magnetite-ilmenite exsolutions. (D) Aggregate of britholite crystals orientated parallel to vein-
like tetraferriphlogopite assemblages. (E) Orientated dissolution structure of apatite-monazite reaction-assemblage. (F.1) Tetraferriphlogopite associated with bead-like graphite pellets,
and (F.2) graphite associatedwithmagnesite. Formineral abbreviations see Fig. 2 and bri – fluorbritholite-(Ce), brt – baryte, cls – celestine, g – graphite,mgs –magnesite,mnz -monazite.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(known as “Fe-F avoidance”; Fleet, 2003, and references therein) is
observed in tetraferriphlogopites only, which display a much larger
range in total Fe (Fig. 8). Increasing F in phlogopites from BCB/FOS to
the later TCB is consistent with observations from carbonatites and
phoscorites of the Sokli complex (Finland) where F in F-bearing phases
typically increases from early to late stage rocks of the complex (Lee
et al., 2003). Consistent with phlogopite data from other carbonatite
complexes, the Cl content of phlogopites from Palabora is generally
low (b0.01 apfu).

6.2. Apatite

Selected electron microprobe analyses of representative apatites
from the Loolekop deposit are listed in Table 4. Apatite is generally
fluorapatite (0.6–0.8 apfu F; 0.2–0.4 apfu OH, calculated) with very
low concentrations of Cl (≤ 0.025 apfu), as is typical of carbonatites
(Hogarth, 1989; Klemme and Dalpé, 2003; Teiber et al., 2015 and refer-
ences therein). While the bulk of the apatites (in FOS, BCB and TCB),
which are interpreted as orthomagmatic phases, shows a large compo-
sitional overlap, there are few outliers, which are considered to repre-
sent late apatites (Fig. 9). Orthomagmatic apatites contain low REE
(~0.01 to 0.05 apfu; Fig. 9), low Si (b 0.04 apfu; Fig. 9A), low Sr (b 0.05
apfu; Fig. 9B) and low Na concentrations (b 0.05 apfu; Fig. 9C). In con-
trast, late apatites exhibit higher REE concentrations reaching 0.15
apfu (Fig. 9). Conspicuously, these outliers show two distinguishable
trends, which behave differently in different rock types. (1) Enrichment
of REEwith increasing Si (Fig. 9A), but constantly low Sr (Fig. 9B) andNa
(Fig. 9C) is identified in FOS according to the britholite substitution (P5+

+ Ca2+↔ Si4++ REE3+), while (2) enrichment of REE with constantly
low Si (Fig. 9A) but increasing Sr (Fig. 9B) and Na (Fig. 9C) is seen in TCB

and is assigned to the belovite substitution (5Ca2+ ↔ Na+ + 3Sr2+ +
REE 3+). Samples of BCB show features of both trends (Fig. 9).

7. Discussion

7.1. Petrogenetic evolution of micas in the Palabora carbonatites and
phoscorites

Besides Mg-rich biotite in pyroxenites and fenites, several phlogo-
pite types in BCB, TCB and FOS can be distinguished based on the data
presented above (Figs. 4-8):

(i) Common phlogopite is restricted to BCB and FOS, characterized
by the highest Na and Ti contents with no large deviation from
the ideal phlogopite formula, with the exception of
Fe-enrichment (0.15–0.55 apfu).

(ii) Barium-bearing phlogopite is characterized by an enrichment of
Ba and Al (at the expense of K + Si). This type of phlogopite is
Fe-poor, shows the widest range in F contents and only occurs
in TCB.

(iii) Somephlogopite analyses in BCB and FOS showhigh Al (up to 1.5
apfu) and Si (up to 3.0 apfu) comparable to phlogopite in TCB,
but are relatively low in Ba (b 0.05 apfu; Fig. 6).

(iv) Tetraferriphlogopites occur in BCB, FOS and TCB and are charac-
terized by variable and relatively high Fe, but low Al contents,
suggesting the substitution of IVFe3+ for IVAl (Fig. 7).

Based on their textural appearance, common phlogopite, Ba-
enriched phlogopite and Al-rich, but Ba-poor phlogopite are
interpreted as orthomagmatic crystallization products, whereas

Table 2
Representative major-element composition of phlogopite from FOS, BCB and TCB.

in wt% “Common” phlogopite IVAl-rich phlogopite Ba-bearing phlogopite

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Na2O 0.14 0.08 – 0.05 0.25 0.07 0.15 0.05 0.04 0.03 0.12 0.12 0.02 0.08 0.05
K2O 10.6 10.98 11.05 10.82 10.22 10.32 10.38 10.85 10.62 11.13 11.25 10.6 10.81 10.4 8.31
CaO 0.01 – 0.06 0.04 0.02 0.03 0.04 0.02 0.05 0.01 0.02 0.01 – 0.06 –
BaO 0.06 0.06 0.15 0.38 0.36 0.31 0.53 1 0.97 0.88 0.17 0.38 0.98 2.55 7.13
MgO 25.93 26.61 27.93 25.46 26.96 27.13 25.44 27.18 26.69 25.77 27.82 26.5 27.45 27.49 26.41
MnO 0.02 – 0.01 0.01 – – 0.03 – 0.04 0.03 0.02 0.03 – – 0.01
FeOS 4.25 3.42 1.54 4.73 3.29 2.25 1.55 2.38 2.71 1.5 1.34 3.79 2.17 2.3 1.4
Fe2O3

S 1.89 1.14 0.95 1.44 1.53 1.92 – – – 0.65 – – 1.48 – –
Al2O3 10.25 10.74 11.67 10.63 10.21 10.77 18.19 12.74 12.97 18.13 12.85 12.61 11.04 12.4 16.62
TiO2 0.26 0.26 0.62 0.35 0.06 0.15 – 0.03 0.04 0.18 0.18 0.1 0.03 0.06 0.09
Cr2O3 – – – – – – – – – – – – – – –
SiO2 42.92 43.57 43.03 42.97 43.58 42.28 39.25 42.49 41.88 39.48 43.31 42.37 42.98 42.32 37.17
Cl 0.02 0.07 – 0.03 0.04 0.03 0.02 0.01 0.02 – – 0.02 0.01 0.06 0.04
F 1.92 1.12 1.45 1.26 0.95 0.68 0.12 2.5 1.4 0.87 1.68 1.14 3.05 1.52 1.31
-O = (F,Cl)2 0.82 0.49 0.61 0.54 0.41 0.29 0.05 1.06 0.59 0.36 0.71 0.48 1.29 0.65 0.56
TOTAL 97.45 97.56 97.85 97.63 97.06 95.65 95.65 98.19 96.84 98.3 98.05 97.19 98.73 98.59 97.98
H2O* 3.3 3.73 3.63 3.61 3.79 3.88 4.2 3.1 3.58 3.93 3.54 3.73 2.83 3.55 3.52

in apfu Structural formulae calculated for 7 cations (tetrahedral [Z] plus octahedral [Y] cations)
Na 0.02 0.01 – 0.01 0.03 0.01 0.02 0.01 0.01 – 0.01 0.02 – 0.01 0.01
K 0.96 0.98 0.98 0.98 0.92 0.94 0.93 0.97 0.96 0.98 0.99 0.95 0.97 0.93 0.77
Ca – – 0.01 – – – – – – – – – – – –
Ba – 0.02 – 0.01 0.01 0.01 0.01 0.03 0.03 0.02 – 0.01 0.03 0.07 0.2
Mg 2.74 2.78 2.88 2.7 2.82 2.87 2.66 2.83 2.81 2.65 2.86 2.77 2.87 2.87 2.84
Mn – – – – – – – – – – – – – – –
Fe2+ 0.25 0.21 0.09 0.29 0.19 0.13 0.09 0.14 0.16 0.09 0.08 0.21 0.13 0.13 0.08
Fe3+ 0.1 0.06 0.05 0.08 0.08 0.09 – – – 0.03 – – 0.08 – –
Al 0.86 0.89 0.96 0.89 0.85 0.89 1.49 1.06 1.08 1.48 1.05 1.04 0.91 1.02 1.41
Ti 0.01 0.01 0.03 0.02 – 0.01 – – – 0.01 0.01 0.01 – – –
Cr – – – – – – – – – – – – – – –
Si 3.04 3.05 2.99 3.02 3.06 3.01 2.76 2.97 2.96 2.73 2.99 2.98 3.01 2.97 2.68
Cl – 0.01 – – – – – – – – – – – 0.01 0.01
F 0.43 0.25 0.32 0.28 0.21 0.15 0.02 0.55 0.31 0.19 0.37 0.25 0.68 0.37 0.3

(1–3) „Common “phlogopite in FOS, (4–6) in BCB; (7–9) IVAl-rich phlogopite in FOS, (10−12) inBCB; (13–15) Ba-bearing phlogopite in TCB.H2O* - calculated fromOH(F+Cl+OH=2).
S - Fe2+/Fe3+ ratios calculated from stoichiometry. Dashes indicate that the analyzed element is not present in detectable quantities.
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Table 3
Representative major-element composition of tetraferriphlogopite from FOS, BCB, TCB and biotite from MPY and FEN.

in wt% Tetraferriphlogopite Biotite

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Na2O 0.03 0.05 0.05 0.05 0.03 0.01 0.03 – 0.01 0.06 0.07 0.12 0.09 0.06
K2O 10.85 10.27 10.27 10.60 10.97 10.30 10.75 10.58 10.47 10.32 10.16 9.92 10.43 10.28
CaO 0.05 0.06 0.15 0.05 0.03 0.01 – 0.03 0.01 0.05 0.07 0.02 0.01 0.04
BaO 0.06 0.07 0.06 0.79 0.40 0.07 0.36 0.12 0.05 0.32 0.20 0.26 0.26 0.12
MgO 25.56 25.18 25.02 26.88 26.82 22.74 26.77 25.86 24.73 16.00 15.52 16.27 19.70 18.76
MnO 0.04 0.03 0.02 – – 0.14 0.04 0.08 0.11 0.19 0.18 0.19 0.18 0.15
FeOS 4.11 4.29 4.83 2.70 3.05 7.00 4.68 5.62 6.57 18.10 18.35 17.98 13.85 14.34
Fe2O3

S 5.85 8.44 10.01 4.88 5.09 14.68 1.93 6.60 13.80 – – – – –
Al2O3 7.15 5.93 4.54 8.46 8.02 0.96 8.94 5.49 0.93 11.73 11.99 11.97 11.81 12.56
TiO2 0.04 0.06 0.05 0.06 – 0.08 0.02 0.05 0.04 0.90 0.94 0.93 0.21 0.26
Cr2O3 – – – – – – – – – – – – – –
SiO2 42.62 41.88 42.44 42.84 43.21 41.22 43.27 42.60 41.89 39.97 40.01 40.24 41.31 40.22
Cl 0.02 0.03 0.03 0.02 0.04 – 0.02 0.01 0.01 0.22 0.21 0.23 0.05 0.06
F 1.45 1.18 1.15 1.41 1.12 0.46 1.77 0.84 0.36 0.56 0.51 0.51 1.21 0.98
-O = (F,Cl)2 0.62 0.50 0.49 0.59 0.48 0.19 0.75 0.35 0.16 0.29 0.26 0.27 0.52 0.42
TOTAL 97.21 96.97 98.13 98.15 98.30 97.48 97.83 97.53 98.82 98.13 97.95 98.37 98.59 97.41
H2O* 3.47 3.55 3.58 3.56 3.71 3.78 3.39 3.76 3.92 3.69 3.71 3.73 3.54 3.59

in apfu Structural formulae calculated for 7 cations (tetrahedral [Z] plus octahedral [Y] cations)
Na 0.01 0.01 0.01 0.01 – – – – – 0.01 0.01 0.02 0.01 0.01
K 0.99 0.96 0.96 0.96 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.95 0.97 0.98
Ca – 0.01 0.01 – – – – – – – 0.01 – – –
Ba – – – 0.02 0.01 – 0.01 – – 0.01 0.01 0.01 0.01 –
Mg 2.75 2.74 2.71 2.84 2.82 2.55 2.82 2.78 2.69 1.79 1.74 1.8 2.13 2.05
Mn – – – – – 0.01 – 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Fe2+ 0.25 0.26 0.29 0.16 0.18 0.44 0.17 0.22 0.3 1.14 1.16 1.12 0.84 0.88
Fe3+ 0.32 0.46 0.54 0.26 0.27 0.82 0.21 0.47 0.85 – – – – –
Al 0.61 0.51 0.38 0.7 0.67 0.09 0.74 0.46 0.08 1.02 1.06 1.05 1.01 1.09
Ti – – – – – 0.01 – – – 0.05 0.05 0.05 0.01 0.01
Cr – – – – – – – – – – – – – –
Si 3.07 3.04 3.08 3.04 3.05 3.08 3.06 3.07 3.06 2.98 2.97 2.98 3 2.96
Cl – – – – – – – – 0.03 0.03 0.03 0.01 0.01
F 0.33 0.27 0.26 0.31 0.25 0.11 0.4 0.19 0.09 0.13 0.12 0.12 0.28 0.23

(1–3) Tetraferriphlogopite in FOS, (4–6) in BCB, (7–9) in TCB; (10–12) Biotite inMPY, (13–14) in Fen. H2O* - calculated fromOH (F+ Cl+ OH= 2). S - Fe2+/Fe3+ ratios calculated from
stoichiometry. Dashes indicate that the analyzed element is not present in detectable quantities.

Fig. 4. Compositional variation of mica from Palabora. (A) Mg versus Al. (B) Mg# versus Al. Abbreviations: TCB – Transgressive Carbonatite; BCB – Banded Carbonatite; FOS – Phoscorite;
comPhl – “common” phlogopite; Al-Phl – IVAl-rich phlogopite; Ba-Phl – Ba-bearing phlogopite; TfPhl – Tetraferriphlogopite; Analyses are visuallymembered in data points and datafields
of related data points. For all binary diagrams: Where detection limits are not displayed no analyses plot below D.L.
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tetraferriphlogopites formed during a late-magmatic to hydrother-
mal stage.

7.1.1. Magmatic crystallization of phlogopite-annite, −kinoshitalite and
-eastonite series

Micas of the phlogopite-annite series (common phlogopite) are lim-
ited to BCB and FOS, and represent the compositionally most primitive
phlogopite type. Usually an increase of VIFe2+ in phlogopites correlates
with magma evolution and can be used to assess the differentiation of
the igneous system (Brod et al., 2001). However, co-precipitation of
larger amounts of magnetite (as is the case in many carbonatites) can
cause an increase of Mg# in phlogopites, due to the consumption of Fe
(e.g., McCormick and Le Bas, 1996). In this regard, an increasing Mg#
is distinctive for the evolution of orthomagmatic mica at Palabora

(Fig. 4B). Although Ti concentrations in micas from Palabora are gener-
ally low, common phlogopite reaches the highest Ti contents of phlogo-
pites from carbonatites and phoscorites. This may reflect a relatively
early formation of this type of phlogopite (e.g., Mitchell and Bergman,
1991), or may be influenced by coexisting mineral phases (e.g., Lee
et al., 2003) and physicochemical conditions. Experimental studies
have shown that dependencies on melt/liquid composition (e.g., fO2

and P content) exert onlyminor effects on the substitutionmechanisms
for Ti in phlogopite, whereas a temperature decrease or pressure in-
crease (especially in high-K rocks) cause a much stronger decrease of
Ti solubility (Arima and Edgar, 1981). Furthermore, the crystallization
of Ti-bearing phases (ilmenite and titanomagnetite), in combination
with a decrease of temperature, inhibits the incorporation of Ti into
mica, forming Ti-depleted phlogopites during the evolution of the
magma (e.g., Edgar and Arima, 1983; Tronnes et al., 1985).

Ba-bearing phlogopite (max. kinoshitalite content of 30%) only oc-
curs in TCB, whereas common phlogopite (BCB and FOS) is absent in
this rock type. We therefore conclude that the magma crystallizing
TCB was specifically enriched in Ba (and Al) compared to the magma
crystallizing BCB and FOS, which is further suggested by the common
appearance of barytocalcite in TCB. Enrichment of Ba in carbonatitic
magmas may be caused by magma differentiation when incompatible
elements accumulate in larger amounts in the residual liquid
(e.g., Kogarko et al., 2012; McCormick and Heathcote, 1987;
McCormick and Le Bas, 1996). Furthermore, Ba-bearing phlogopites
show the highest F concentrations. Experimental studies found that F
in phlogopite increases with decreasing temperature, which is linked
to an increasing crystal/liquid ratio, and is not distinctly affected by
pressure (e.g., Edgar and Arima, 1985). While geological observations
provide clear evidence that Ba-phlogopite-bearing TCB represents the
latest magma/melt, as it intrudes the BCB/FOS assemblage, geochemical
data on micas support that TCB represents the most evolved rock type.
Since IVAl-rich phlogopite is limited to BCB and FOS samples that are
in contact or close to the contact to TCB, we suggest that this mica
type formed by interaction of intruding TCB melt with pre-existing
BCB magma (crystal mush, not consolidated). This implies that the
TCBmagmamay have acted as an Al source for contacting BCB/FOS sec-
tions and is further affirmed by the occasional slight enrichment of Ba in
IVAl-rich phlogopite and the enrichment of Al in subsequent magnetite

Fig. 5. Variation of Mg (apfu) versus FeTotal (apfu) for micas from Palabora.

Fig. 6. Compositional variation of mica from Palabora. (A) Ba versus Al. Separated plot reflects Fe enrichment according to the main diagram. Red dots (high Fe) at high Al (1–1.1 apfu)
represent biotites from pyroxenites with high Fe2+ (octahedral site). (B) Si versus Al. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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in such samples (expressed as abundant exsolved spinel in magnetite
from such samples; Giebel et al., 2017). Because early mica crystalliza-
tion should lead to Al-depletion in evolving carbonatitic magmas,
assuming an excess of Al in higher evolved carbonatites (TCB) seems
contradicting. However, similar evolutionary trends in micas from
carbonatite complexes in the Transvaal/South Africa, Arkansas/USA
and Uganda (Clarke et al., 1993; Heathcote and McCormick, 1989;
McCormick and Le Bas, 1996) have been observed andwere interpreted
to result from contamination by country rockmaterial (McCormick and
Le Bas, 1996).

The content of Na in phlogopites is assumed to reflect the degree of
melt evolution.While early crystallized phlogopites in carbonatites gen-
erally show a depletion of sodium, late-stage phlogopites may contain
significant amounts of Na (e.g., Sokli carbonatite, Lee et al., 2003).

Phlogopites from Palabora, however, show a quite controversial dichot-
omy: although the Na content is generally low (b 0.045 apfu) and BCB
and FOS show an internal increase of Na, whichmirrors an evolutionary
trend (Fig. 7B), some BCB and FOS (more primitive) show a much
higher substitution of Na for K than TCB (more evolved), where a de-
crease of K is mainly linked to an increase of Ba. This apparent discrep-
ancy arises from the instance that BCB/FOS and TCB do probably not
represent a continuous differentiation sequence, but may show basi-
cally different evolutionary levels, at which TCB is characterized by a
more advanced development of coexisting fluids. Generally, Na shows
a high affinity for fluid phases, which migrate to higher levels and sur-
rounding rock sequences, leading to a depletion of Na in the (typically
almost Na-free) carbonatite bodies (Veksler and Keppler, 2000). These
Na-rich fluids cause metasomatism (fenitization; often characterized
by sodium enrichment) of surrounding silicate rocks (Bühn and
Rankin, 1999), which is prominent at Palabora (Verwoerd, 1966).

7.1.2. Late-stage formation of tetraferriphlogopite
In general, tetraferriphlogopite crystallizes as a magmatic phase

or from late-stage fluids. It typically occurs in late-stage rocks, crys-
tallizing at low temperatures (Fleet, 2003; Lee et al., 2003). In other
carbonatite occurrences, presumably magmatic tetraferriphlogopite
essentially shows phlogopite cores with normal pleochroism with a
continuous enrichment of IVFe3+ due to the formation of nearly
ideal tetraferriphlogopite (e.g., Lee et al., 2003; Puustinen, 1973),
while tetraferriphlogopites interpreted as precipitated from late-
stage fluids rather replace earlier phlogopites, form overgrowth
zones and rims with sharp compositional changes to mainly pre-
served pre-existing phlogopite cores (e.g., Brod et al., 2001) or
completely new individual crystals (e.g., Lee et al., 2003).

Tetraferriphlogopites from Palabora crystallized as new individ-
ual crystals in veins (see above) probably at a late-magmatic stage
(characterized after Giebel et al., 2017), decoupled from the
orthomagmatic phlogopite formation. The mineral associations de-
scribed above indicate a locally controlled contemporaneous min-
eralization of tetraferriphlogopite and late-magmatic REE phases
from the same fluid. This Al-poor fluid was locally enriched in Fe
by the dissolution of pre-existing (primary magmatic) magnetite
(Fig. 3B), which is confirmed by the small-scale heterogeneous dis-
persal of tetraferriphlogopites with different Fe/Al ratios depending
on the availability of Fe within the fluid. The following schematic
reaction is suggested to describe this:

Fig. 7. Compositional variation ofmica from Palabora. (A) Mg# versus Ti. (B)Mg# versus Na. For analyses below the detection limit (black horizontal line) the data points were set to zero
to illustrate the amount of data below D.L.

Fig. 8. Variation of FeTotal (apfu) versus F (apfu) for micas from Palabora.
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[1] Magnetite + Fluid (late-magmatic) = Tetraferriphlogopite +
Fluid’(late-magmatic)

0.5Fe2+Fe3+2O4+K++3Si4+2.5Mg2++10OH−=KMg2.5Fe2+0.5Fe3+

Si3O10(OH)2 + 8H+

In contrast to phlogopites, tetraferriphlogopite shows a decrease of
Mg#, probably reflected by the evolution of tetraferriphlogopite
mineralization without simultaneous magnetite precipitation.
Tetraferriphlogopites and the late-stage generation of magnetites,
which occur together in veins (described above), are in textural disequi-
librium (Fig. 2E).

7.1.3. Changing oxygen fugacity during phlogopite and tetraferriphlogopite
formation?

The incorporation of Fe2+ and Fe3+ into mica provides insights into
the fO2 conditionsprevailingduringmica crystallization (e.g., Brod et al.,
2001) andmay be identified by the use of the ternary diagram Fe2+-Fe3
+-Mg2+ including fO2 buffer limits after Wones and Eugster (1965) as
has been done before (e.g., Brigatti et al., 1996b; Brod et al., 2001), al-
though these buffer limits were originally prepared to characterize bio-
tites of silicate rocks, therefore may only be used with caution in
carbonatitic systems (Fig. 10). Phlogopites at Palabora plot below the
NNO (nickel‑nickel oxide) buffer, most tetraferriphlogopites in FOS
and TCB (few BCB) between NNO and HM (hematite-magnetite buffer)

Table 4
Representative major-element composition of apatite from FOS, BCB and TCB.

in wt% 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Na2O 0.08 0.06 0.08 0.09 0.16 0.12 0.11 0.19 0.16 0.2 1 0.76 0.47 0.45
CaO 54.75 54.69 54.75 54.89 53.84 54.88 51.55 52.5 53.32 53.51 48.59 49.35 52.24 52.52
SrO 0.51 0.61 0.55 0.42 0.82 0.67 0.82 0.8 0.62 0.36 2.57 2.63 1.41 1.5
La2O3 – 0.09 0.14 0.16 0.22 0.11 0.74 0.74 0.43 0.21 1.14 0.91 0.56 0.37
Ce2O3 0.27 0.24 0.5 0.23 0.45 0.27 1.88 1.61 1.06 0.9 2.25 2.15 1.34 1.17
Pr2O3 0.08 0.02 0.07 0.09 0.03 0.2 0.3 0.32 0.14 0.16 0.43 0.25 0.16 0.18
Nd2O3 0.16 0.2 0.29 0.18 0.32 0.18 0.99 0.9 0.55 0.69 1.11 0.82 0.57 0.58
FeO 0.04 – 0.01 – 0.04 0.05 0.1 0.03 – 0.01 0.01 0.05 – 0.01
P2O5 42.18 42.12 41.52 41.87 41.34 41.63 39.45 39.82 40.44 40.87 40.62 40.62 41.42 41.44
SiO2 0.11 0.08 0.14 0.09 0.12 0.08 1.45 1.08 0.71 0.54 0.13 0.05 0.1 0.05
SO3 – – 0.03 – 0.04 0.03 0.02 – 0.07 0.03 – 0.03 0.02 –
As2O5 – – – – – – – – – – – – – –
MnO 0.03 – – – 0.02 – – – – – – – – –
Cl 0.07 0.05 0.04 0.08 0.03 0.05 0.02 0.03 0.07 0.05 0.01 0.02 0.02 0.02
F 2.53 2.54 2.75 2.5 2.87 2.56 2.72 2.76 2.5 2.6 2.24 2.35 2.69 2.74
-O = (F,Cl)2 1.06 1.07 1.15 1.05 1.2 1.07 1.14 1.16 1.05 1.09 0.94 0.99 1.13 1.15
TOTAL 99.75 99.63 99.72 99.55 99.10 99.76 99.01 99.62 99.02 99.04 99.16 99.00 99.87 99.88
H2O* 0.57 0.56 0.46 0.58 0.4 0.55 0.44 0.43 0.55 0.51 0.65 0.59 0.49 0.47
in apfu Structural formulae calculated for 8 cations
Na 0.01 0.01 0.01 0.01 0.03 0.02 0.02 0.03 0.03 0.03 0.17 0.13 0.08 0.07
Ca 4.94 4.93 4.94 4.95 4.91 4.95 4.79 4.83 4.88 4.89 4.54 4.6 4.76 4.79
Sr 0.02 0.03 0.03 0.02 0.04 0.03 0.04 0.04 0.03 0.02 0.13 0.13 0.07 0.07
La – – – – 0.01 – 0.02 0.02 0.01 0.01 0.04 0.03 0.02 0.01
Ce 0.01 0.01 0.02 0.01 0.01 0.01 0.06 0.05 0.03 0.03 0.07 0.07 0.04 0.04
Pr – – – – – – 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Nd – – 0.01 0.01 0.01 0.01 0.03 0.03 0.01 0.02 0.03 0.03 0.02 0.02
Fe – – – – – – 0.01 – – – – – – –
P 3 3 2.98 2.99 2.98 2.97 2.89 2.89 2.93 2.95 2.99 3.01 2.98 2.98
Si 0.01 0.01 0.01 0.01 0.01 0.01 0.13 0.1 0.06 0.05 0.01 – 0.01 0.01
S – – – – – – – – – – – – – –
As – – – – – – – – – – – – – –
Mn – – – – – – – – – – – – – –
Cl – 0.01 0.01 0.01 – 0.01 – – 0.01 0.01 – – – –
F 0.67 0.68 0.73 0.66 0.77 0.68 0.75 0.75 0.68 0.7 0.62 0.65 0.72 0.73

(1–2) Apatite in FOS; (3–4) in BCB, (5–6) in TCB; (7–8) High REE apatite in FOS, (9–12) in BCB, (13–14) in TCB. H2O* - calculated from OH (F + Cl + OH= 1). Dashes indicate that the
analyzed element is not present in detectable quantities.

Fig. 9. Compositional variation of Palabora apatites. Diagram of (A) REETotal versus Si, (B) REETotal versus Sr and (C) REETotal versus Na. Red circles mark sections enriched in
tetraferriphlogopites. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and tetraferriphlogopites inmost BCB (and few TCB) plot above the HM
buffer (Fig. 10). These trends clearly confirm the characteristic forma-
tion of tetraferriphlogopites at fO2 above the NNO buffer (Brigatti
et al., 1996b). Ideal tetraferriphlogopites would plot along the 25% Fe3
+-line (completely substitution of IVFe3+ for IVAl; e.g., Tapira, Brazil;
Fig. 10). The evolution of tetraferriphlogopites almost parallel to the
Fe3+-Mg axis reflects a nearly constant Fe2+/Mg ratio with increasing
Fe3+ and depicts an increase in fO2 during the evolution of the late-
magmatic fluid. However, tetraferriphlogopites from Palabora show
prominent positive Eu anomalies (Milani et al., 2017), which suggests
reducing conditions. Therefore, we assume that tetraferriphlogopites
have been modified by interaction with a rather reduced post-
magmatic fluid, as will be described in more detail below. Giebel et al.
(2017) showed that this post-magmatic fluid caused an important re-
distribution of REE in the carbonatites and phoscorites from Palabora.

In cases, rounded aggregates of graphite occur around
tetraferriphlogopite. This feature is often associated with magnesite.
This graphite variety is related to thepost-magmatic stage and therefore
not cogenetic with the tetraferriphlogopite, but the REE budget of
tetraferriphlogopites was probably affected by the fluid that precipi-
tated graphite. Based on similar textures, Gellatly (1966) and reference
therein, explained the formation of drop-like graphite by the decompo-
sition of carbonates in carbonatites (T=455–745 °C; P=.05–1GPa) re-
lated to hydrothermal alteration. The potential for graphite formation
increases with cooling of a carbon-saturated C-O-H fluid (most
favourable conditions in H2O-rich fluids with XO (O/(O + H)) = 0.33)
due to the shift of the carbon saturation surface and results in an in-
crease of the fO2

fluid (Huizenga, 2011). The typical co-precipitation of
graphite with magnetite under such conditions was confirmed by
Kogarko et al. (2010). In contrast, very reduced fluid (C\\H) conditions
rather cause consumption of graphite at lower temperatures (Huizenga,
2011), whilst fluids exceeding the graphite-CO buffer (CCO), may cause
carbonate precipitation (Frost andWood, 1997). Precipitation of graph-
ite in carbonatites at Palabora is suggested according to the following
schematic reaction:

[2] Fluid (post-magmatic) = Graphite +Magnesite +Magnetite +
Fluid’ (post-magmatic)

CH4 + 2½CO2 + 8OH− + 3Fe2++Mg2+ = 2½C+MgCO3 + Fe2+

Fe3+2O4 + 6H2O.
The enrichment of C-species in the post-magmatic fluid arises from

the dissolution of carbonates (calcite, dolomite), which also caused
the enrichment of Mg (leading to the formation of magnesite). The pos-
sible co-existence of magnesite and graphite lies approximately on the
CCO buffer (e.g., Doroshkevich et al., 2010). The mentioned relations

favour the presence of an initially rather reduced hydrothermal fluid
which evolved into a rather oxidized “post-magmatic” fluid during
cooling.

7.2. Comparison of micas from Palabora with other carbonatite/phoscorite
complexes

Similar to Palabora, Jacupiranga/Brazil and Kaiserstuhl/Germany
show a distinct mica mineralogy among carbonatites/phoscorites
and associated silicate rocks (Figs. 11A-C). Jacupiranga phlogopites
(in carbonatites and phoscorites) comprise Ba-, IVAl- and VIAl-
enriched micas. These belong to a mixture of phlogopite-eastonite
and phlogopite-kinoshitalite series micas following the trends of
IVAl-rich phlogopite from Palabora, but contain significant higher
Ba concentrations (up to 0.6 apfu; Brod et al., 2001) compared to
Palabora phlogopites (up to 0.24 apfu Ba; Fig. 6). At Kaiserstuhl,
micas of the phlogopite-kinoshitalite series with a strongly variable
eastonite component dominate themica mineralogy in carbonatites,
with up to 0.55 Ba apfu (Giebel, unpubl. data). In contrast to
Jacupiranga, where phlogopites show a depletion of Al during their
evolution (black arrow in Fig. 11B), phlogopites from the Kaiserstuhl
Volcanic Complex evolve towards higher concentrations of Al (black
arrow in Fig. 11C). Although both types of Ba-bearing phlogopite can
occur in carbonatite complexes, the latter trend, which is also
reflected by Palabora phlogopites (black arrow in Fig. 11A), appears
to be much more common. However, both Jacupiranga and
Kaiserstuhl lack tetraferriphlogopite. In contrast, Sokli/Finland com-
prises mica of the phlogopite-tetraferriphlogopite and phlogopite-
eastonite series, but lacks Ba-enriched mica (Fig. 11D; Lee et al.,
2003). Kovdor/Russia contains common phlogopites in early-stage
phoscorites, whereas late-stage micas are tetraferriphlogopites
(Fig. 11E; Krasnova et al., 2004a; Krasnova et al., 2004b). While
Sokli and Kovdor display a successive evolution from phlogopites
to tetraferriphlogopites (continuous decrease of Al), Palabora
shows an evolutionary increase of Al in phlogopites and a separate
evolution of tetraferriphlogopite following an Al depletion
(Fig. 11A).

Although the mentioned mica types are typical constituents in
carbonatites, in most complexes they usually do not occur together
and at least one of them is typically lacking (e.g., McCormick and Le
Bas, 1996). In that sense, carbonatites and phoscorites of Palabora repre-
sent a rare case with a multi-stage and multi-type mica mineralogy
combining the whole set of typical micas, namely common phlogopite
and members of the phlogopite-eastonite, phlogopite-kinoshitalite,
and phlogopite-tetraferriphlogopite series.

Fig. 10. Palabora phlogopite composition plotted in the ternary Fe2+-Fe3+-Mg with fO2 buffer after Wones and Eugster (1965). Blue field represents tetraferriphlogopite in carbonatites
from Tapira after Brod et al. (2001). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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7.3. Tetraferriphlogopite versus Apatite

Although apatite data show no large compositional variations
between FOS, BCB and TCB, the few exceptional analyses (circles in
Fig. 9) provide information about late-magmatic processes. These out-
liers depict enrichment of REE and derive from samples that show a
strong overprint by late-magmatic fluid characterized by the abundant
tetraferriphlogopite precipitation. This confirms the assumption that
significant amounts of REE were introduced by late-magmatic fluids,
which caused the extensive formation of monazite and britholite (for
more detail in respect to the late-magmatic stage and the related REE
mineralization the reader is referred to Giebel et al., 2017). The kinds
of REE enrichment (with increasing Si or Sr; see above) are certainly
controlled by the local enrichment of Si or Sr in the late-magmatic
fluid which is connected to the remobilization of the elements from
pre-existing mineral phases (Sr-bearing carbonates, silicates). This in
turn depends on their availability (proportion) in the related rock
types. The preferred incorporation of Si into tetraferriphlogopite
requires an excess of Si for a substitution into apatite.

7.4. Genesis of the carbonatite-phoscorite association of Palabora

Our data has shown that banded carbonatites and phoscorites reflect
almost identical mica compositions, while transgressive carbonatites
as well as associated silicate rocks depict a completely different mica
composition. An analogous compositional development of mica has
also been described from other carbonatite-phoscorite associations
(e.g., Catalão I+ II, Sokli; Brod et al., 2001; Lee et al., 2003). Thismay in-
dicate the genetic relationship between phoscorite and carbonatite,
which certainly belong to a common parental magma.While the forma-
tion of phoscorite as an individual magma is specified as unrealistic
because of the instability at plausible temperatures (Lindsley and
Epler, 2017), crystal fractionation or separation from an immiscible
carbonatite melt are used to explain the observed geometric relations
between the mentioned rock types (see discussion in Krasnova et al.,
2004b). The very similar mineral associations in BCB and FOS at
Palabora with only differences in modal compositions (Giebel et al.,
2017) provide further evidence that these rock types were formed
from a common parental magma. The analogous compositional devel-
opment of mica from BCB and FOS cannot be easily explained by crystal
fractionation.We therefore suggest that FOS and BCB formed by exsolu-
tion of a parental magma into two immiscible melts. Further observa-
tions of orbicular and spherulitic phoscorite fractions in carbonatites
and vice versa in several carbonatite complexes (e.g., Krasnova et al.,

2004b; Lapin and Vartiainen, 1983), studies of mineral inclusions in ol-
ivine and apatite (Mikhailova et al., 2002) as well as individual mineral
chemistry (e.g., Lee et al., 2006) argue for the importance of liquid im-
miscibility as the source of phoscorite formation for most carbonatite-
phoscorite associations. Furthermore, melt inclusions show that the pa-
rental magma of some carbonatites was enriched in Fe and/or P
(e.g., Chen et al., 2013; Guzmics et al., 2008; Krasnova et al., 2004a),
while phoscorites contain melt inclusions dominated by different car-
bonates (e.g., Veksler et al., 1998a; Zaitsev and Kamenetsky, 2013).
However, both crystal fractionation and liquid immiscibility seem to
be eligible to cause the generation of phoscorites (e.g., Rimskaya-
Korsakova and Krasnova, 2002). Therefore, the results of our study
have to be seen as an example of phoscorite formation but not as a
unique mechanism. Other complexes (Guli, Russia; Kogarko et al.,
1997) may form phoscorites by crystal fractionation, or a combination
of both crystal fractionation and liquid immiscibility. The deviant phlog-
opite composition in TCB compared to mica from BCB and FOS implies
that TCB represents a higher evolvedmagma, which experienced a sep-
arate evolution.

7.5. Emplacement of Palabora-like carbonatite complexes

Besides the general demand for a model illustrating the related em-
placement of carbonatites and phoscorites, an equally highly debated
issue is the sequence of magma emplacement in relation to associated
silicate rocks. This study has shown that the mica mineralogy of pyrox-
enites at Palabora (Eriksson, 1982, and this study) completely differs
from the mica mineralogy of the carbonatite-phoscorite assemblage,
which may indicate that both rocks have experienced an independent
development. This furthermore is indicated by previous isotope studies
that point out that fractional crystallization and liquid immiscibility are
not viable mechanisms to relate silicate rocks and carbonatites/
phoscorites from Palabora (Eriksson, 1982). Therefore, we suggest a
contemporaneous emplacement of both lithologies but no genetic link
between them. Especially Gittins and Harmer (2001) emphasise the in-
dependence of spatially associated carbonatites and alkali silicate rocks
in igneous complexes. A compilation of worldwide carbonatite com-
plexes for which the emplacement depth is known reveals a relation
of emplacement depth and rock type association. Already Frolov
(1971) stated that the ratio of carbonatites to associated silicate rocks
in many carbonatite-bearing complexes increases with decreasing em-
placement depth. Arzamastsev et al. (2000) have shown that the dom-
inance of carbonatites or associated silicate rocks within a Kola
peninsula complex seems to be controlled by the depth of the ore
body. While short vertical ore bodies show a very low carbonatite/

Fig. 11. Compositional trends of mica from Palabora (A) and other carbonatite complexes (B-E). Sokli (Lee et al., 2003), Kovdor (Krasnova et al., 2004a), Jacupiranga (Brod et al., 2001),
Kaiserstuhl (Braunger et al., 2018; Giebel, unpubl. data). Green field – micas from associated silicate rocks, red field – micas from carbonatites and phoscorites. Ann - annite, Eas -
eastonite, Phl - phlogopite, Sid - siderophyllite, TfAn - tetraferriannite, TfPhl - tetraferriphlogopite. According to the absence of Ba in plots of Fig. 12, a differentiation between
phlogopites of the phlogopite-kinoshitalite and phlogopite-eastonite series is not possible in this plots but explained in the text. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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silicate rock ratio (C/SR), high, vertically extensive ore bodies exhibit a
relatively high C/SR ratio. To understand this phenomenon, it is impor-
tant to recognize that ore bodies with a short vertical extension may
represent a deep emplacement within the continental crust and a
deep erosion level in relation to the paleo surface (low source-
emplacement distance → low ΔS-E). In contrast, complexes with a
deep-reaching ore body may display a shallower emplacement with a
high ΔS-E and a shallow erosion level in relation to the paleo surface.
Volcanic carbonatite complexes often show a significant silicate rock
domination (lower C/SR ratio), which apparently displays a contradic-
tion to the previously introduced assumption. This is probably simply
linked to a lower ΔS-E because of crustal thinning, as their occurrence
is largely restricted to continental rifting zones. Furthermore, deep-
level carbonatitic intrusions show a significant higher amount of associ-
ated phoscorite than shallow level ones. This would imply that a possi-
ble phoscorite-carbonatite separation takes place at deeper crustal
levels and the phoscorite proportion decreases with distance to the
source.

The followingmodel attempts to explain and combine the approach
of magma genesis, evolution and the emplacement of carbonatites and
phoscorites in association with mafic to ultramafic silicate rocks
(e.g., pyroxenites and olivinites) according to data and observations
made in this study as well as from the related literature. This model is
only valid for the genesis of carbonatite complexes derived by mantle
plume activity which has been confirmed by several studies
(e.g., Gibson et al., 1995; Huang et al., 1995; Natali et al., 2018; Wu
et al., 2011; Zaitsev and Bell, 1995). It is supposed that mantle plume-
derived partial melting displays the most important process causing
the formation of carbonatite/phoscorite assemblages, whichwill be typ-
ified by the following model. Our model is driven by three major ques-
tions: (1) Why are carbonatite-phoscorite assemblages emplaced late
within silicate rock-dominated complexes? (2) How are phoscorites
formed and why do they show an almost exclusive association with
carbonatites? (3) Why do some carbonatite complexes not show any
associated silicate rocks?

7.6. A genetic model for the formation of carbonatite-phoscorite
associations

The formation of phoscorite rocks requires a parental magma of
carbonatitic composition (see above). Such magmas possibly form
below cratonic crust (N86% of all known carbonatitic rocks occur in Pre-
cambrian cratons, mostly close to continental margins; Woolley and
Kjarsgaard, 2008), where these melts experienced an enrichment in
Fe, Ti and P, forming carbonate-phosphate/iron-oxide-rich (CPIO)
melts. These may represent magmas parental to carbonatite-
phoscorite associations. Primary carbonatitic melts are generated in
the lithospheric metasomatized mantle at depths N70 km (Wyllie and
Lee, 1998). They probably formed by low degree partial melting (b5%;
e.g., Dalton and Presnall, 1998; Dasgupta et al., 2007; Gudfinnsson and
Presnall, 2005) at the marginal zones of mantle plumes (Bell and
Simonetti, 2010),whilemore central areas are characterized by the gen-
eration of silicate melts, according to a higher degree of melting
(Fig. 12A). These primary carbonatitic melts are typically Mg-rich
(Harmer and Gittins, 1998; Lee and Wyllie, 1998; Sweeney, 1994) be-
cause of their pressure-dependent partitioning of Mg (Lee and Wyllie,
1997) into carbonate liquid at high pressures (N10 kbar; Brooker,
1998) and into silicate melts at lower pressure (Veksler et al., 1998b).
Liquid immiscibility of silicate and carbonatitic melts prohibits a re-
mixing in the upper mantle and supports the separation of these two
melts. During this process, Fe and especially P partition into the
carbonatitic melt (Jones et al., 1995; Lindsley and Epler, 2017;
Naslund, 1983), which evolves into a CPIO melt. Smaller amounts of
carbonatitic/CPIO melt penetrate the lower crust along zones of weak-
ness, but major portions of the CPIO melts remain below the crust be-
coming denser by the enrichment of Fe and P until equilibration with

the silicatemelt is reached. A comparison of thedensity of associated sil-
icate rocks (e.g., pyroxenites Ø 3.3 g/cm3, melteigites/ijolites Ø
3.0 g/cm3), carbonatites (Ø 2.9 g/cm3) and phoscorites (Ø 3.8 g/cm3;
Arzamastsev et al., 2000) shows that a CPIO melt, comprising a
carbonatite-phoscorite ratio of b50/50, has a density very close to that
of associated silicate rocks. This implies thatwith increasing enrichment
of Fe and P, immiscible CPIOmelts lose their high buoyancy and achieve
a state of levitation within the much more voluminous silicate melt
accumulation.

Processes that activate weakness zones may then allow for channel-
ized magma ascent and according to the state of levitation, CPIO
magmas may be dragged into these zones because of depressurization
(Fig. 12B) together with already introduced silicate magmas
(Fig. 12C). The higher the distance between an ascending channel and
the CPIO magma body the longer the melt needs to reach the channel.
Hence the feasibility of an introduction of CPIO melt into this channel
and the timing of this process highly depends on the distance between
both. This condition certainly further defines the degree of Fe-P enrich-
ment. The longer the CPIO melt remains within the high volume of sili-
cate magma, the more it gets enriched in Fe and P. Early opened
ascending channels directly above the carbonatitic magma body will
be accompanied by less Fe-P enriched carbonatitic melts, while ascend-
ing channels in broader vicinity of the carbonatitic body will be accom-
panied by rather higher Fe-P enriched CPIO melts.

Due to the decrease in temperature and/or pressure of the ascending
CPIOmelt, unmixing of a phoscoritic and carbonatitic magmamay then
occur (Fig. 12D). Hou et al. (2018) have shown that an increase of aH2O
and fO2 enlarges the two-liquid field, which allows for the separation of
a silica-free or -poor Fe-Ca-P melt and a silicic magma. Although such a
system, which includes a silicic magma, is genetically different, the ex-
perimental study of Hou et al. (2018) reflect a very similar mechanism
to generate Fe-Ca-P melts such as phoscorites. Furthermore, Hou et al.
(2018) demonstrate the preferred portioning of F into the Fe-rich
melt, whereat Hou et al. (2017) point out that an enrichment of F fa-
vours the development of liquid immiscibility by the complexation of
Mg (and Ca) and increasing activity of Fe. While an increase of F pro-
motes the enrichment of Ca in a Fe-P-rich melt, a decrease in fO2 pro-
motes the partition of silica into this melt (Hou et al., 2018). These
variations may be responsible for the variable mineralogy of
phoscorites.

Although Fe-Ti oxidemelts cannot be stabilized even by P, F and/or C
below temperatures of 1300 °C, the presence of these fluxes, with C
being the most important one, can stabilize Ti-poor iron oxide melts
(common phoscorites) to temperatures below 1000 °C (Lindsley and
Epler, 2017). However, the removal of C from exsolved phoscorite
melt will initiate crystallization immediately after separation, because
P alone is not effective enough to stabilize Fe oxide-dominatedmagmas.
Precipitation of apatite will trigger the formation of Fe (Ti) oxide, and
vice versa, which explains the common association of apatite and Fe
(Ti) oxides (Lindsley and Epler, 2017). This segregation process further
induces a significant density contrast between carbonatite (low den-
sity) and phoscorite (high density)melts. This may lead to a slightly de-
scending phoscorite accumulation at the outer zones of the magma
channel, caused by the continuously ascending magma flow through
the centre of the conduit (Fig. 12D). The adjacent crystallization of
carbonatite induces the strong association between phoscorites and
early carbonatites. Furthermore, fractionation generates higher differ-
entiated carbonatite magmas, which emplace into higher levels of the
crust. The separation of phoscorite, and the related strong density de-
crease of the evolving carbonatite melt, causes a significant density dif-
ference between the silicate and carbonatite magma. This may promote
enhanced, jet-like ascent of the carbonatite melt through the ascending
silicate magma. Passing through the intruding silicate magma front
(Fig. 12E), the carbonatite magmamay rapidly ascend to higher crustal
levels, because of its extremely low viscosity (Treiman and Schedl,
1983), while silicate magma activity already ceased (based on higher
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viscosity and higher solidus temperatures). This may explain some of
the carbonatite complexes apparently lacking associated silicate rocks
(20% of carbonatites show no silicate rock association; Woolley and
Kjarsgaard, 2008; e.g., Sokli), as these would resemble cases with a
very high source-emplacement-distance (ΔS-E) that reflect a very
high carbonatite/silicate rock ratio and high carbonatite/phoscorite
ratio. The latter is further supported by the lack of any extrusive
phoscorites (Krasnova et al., 2004b). Geophysical investigations at
Sokli (high ΔS-E, high C/SR ratio) furthermore suggest that foiditic
rocks are present at much greater depth (Arzamastsev et al., 2000).
On the other hand, mixed pyroxenite-carbonatite-phoscorite assem-
blages as being typical for e.g., Kovdor and Palabora may indicate rela-
tively intermediate to short source-emplacement distances (Fig. 12E),
in line with depth estimates of approximately 4 km and 15 km, respec-
tively (Epshteyn and Kaban'kov, 1984; Eriksson, 1982). A final caveat:
the appearance of carbonatite complexes is highly variable and the
achievement of a certain evolutionary stage of our model may be lim-
ited by the formation of extensive magma chambers in the continental
(cratonic) crust.

8. Conclusions

Our results have shown, that in the case of Palabora, the composi-
tional variation of apatite is not helpful for reconstructingmagmatic dif-
ferentiation processes, which is in contrast to mica composition. Late-
stage apatite textures and compositions, however, confirm the results
of earlier assumptions, that additional REE where introduced by late-
magmatic fluids (Giebel et al., 2017). The strong variation of mica com-
position in rocks of Palabora provides evidence for a multi-episodic

crystallization history, characterized by the formation of (1) biotites in
pyroxenites and fenites, (2) “common” phlogopites in BCB and FOS,
(3) Ba-bearing phlogopites in TCB. (4) IVAl-rich phlogopites in BCB
and FOS by interaction with TCB, and (5) the late-magmatic precipita-
tion of tetraferriphlogopites by fluid interaction, where the availability
of Al is a prominent factor controlling mica composition.

Analogous trends in the chemical composition andmutual evolution
of mica in BCB and FOS argue for the existence of a common parental
magma,whichprobably segregated into two immisciblemelts. This em-
phasizes the potential importance of liquid immiscibility for generating
phoscorites, with a carbonate-rich parental magma (developed within
the upper lithosphericmantle) being essential to enable such processes.
This in turn may explain the exclusive occurrence of phoscorite in asso-
ciation with carbonatite. Distinguished by their mica chemistry, the as-
sociated silicate rocks followed a completely separate evolution.

Our generalized model assumes that at deeper crustal levels, more
proximal to themelt source, volumetrically higher proportions of ultra-
mafic silicate rocks and lower proportions of carbonatitic rocks are pres-
ent. Higher crustal levels (i. e., increasing distance to the source) show a
volumetrically higher proportion of alkaline silicate rocks with an in-
creasing percentage of carbonatitic rocks. Passing a distinct source-
emplacement distance, the carbonatite proportion of a complex can ex-
ceed the silicate rock proportion of this complex. Furthermore, a relative
volumetric increase of phoscorites with depth is supposed.
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ABSTRACT

The mineralogy and mineral chemistry of the four major sövite bodies (Badberg, Degenmatt,
Haselschacher Buck and Orberg), calcite foidolite/nosean syenite xenoliths (enclosed in the Badberg
sövite only) and rare extrusive carbonatites of the Kaiserstuhl Volcanic Complex in Southern
Germany provide evidence for contamination processes in the carbonatitic magma system of the
Kaiserstuhl. Based on textures and composition, garnet and clinopyroxene in extrusive carbonatites
represent xenocrysts entrained from the associated silicate rocks. In contrast, forsterite, monticellite
and mica in sövites from Degenmatt, Haselschacher Buck and Orberg probably crystallized from the
carbonatitic magma. Clinopyroxene and abundant mica crystallization in the Badberg sövite, how-
ever, was induced by the interaction between calcite foidolite xenoliths and the carbonatite melt.
Apatite and micas in the various sövite bodies reveal clear compositional differences: apatite from
Badberg is higher in REE, Si and Sr than apatite from the other sövite bodies. Mica from Badberg is
biotite- and comparatively Fe2þ-rich (Mg# ¼ 72–88). Mica from the other sövites, however, is phlogo-
pite (Mg# up to 97), as is typical of carbonatites in general. The typical enrichment of Ba due to the
kinoshitalite substitution is observed in all sövites, although it is subordinate in the Badberg samples.
Instead, Badberg biotites are strongly enriched in IVAl (eastonite substitution) which is less important
in the other sövites. The compositional variations of apatite and mica within and between the different
sövite bodies reflect the combined effects of fractional crystallization and carbonatite-wall rock inter-
action during emplacement. The latter process is especially important for the Badberg sövites, where
metasomatic interaction released significant amounts of K, Fe, Ti, Al and Si from earlier crystallized
nosean syenites. This resulted in a number of mineral reactions that transformed these rocks into cal-
cite foidolites. Moreover, this triggered the crystallization of compositionally distinct mica and clino-
pyroxene crystals around the xenoliths and within the Badberg sövite itself. Thus, the presence and
composition of clinopyroxene and mica in carbonatites may be useful indicators for contamination
processes during their emplacement. Moreover, the local increase of silica activity during contamin-
ation enabled strong REE enrichment in apatite via a coupled substitution involving Si, which demon-
strates the influence of contamination on REE mineralization in carbonatites.

Key words: contamination; carbonatite; Kaiserstuhl; mineral chemistry; calcite foidolite; REE min-
eralization; silicates in carbonatites
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INTRODUCTION

Carbonatites are mantle-derived magmatic rocks with

more than 30% primary igneous carbonate minerals

(Mitchell, 2005; Woolley & Kjarsgaard, 2008). In most of

the � 550 known occurrences they form intrusive

bodies (e.g. plugs, pipes, dykes, sills), whereas extru-

sive equivalents, such as lavas and tuffs are notably

scarce, with only about 50 known occurrences (Woolley

& Church, 2005). Depending on their predominant car-

bonate mineral, carbonatites are subdivided into

calcite- (sövites and alvikites), dolomite- (beforsites),

ferro- and natro-carbonatites (Le Maitre et al., 2002).

Calcite is the most common magmatic carbonate

(sometimes with exsolution of dolomite), magmatic

dolomite and ankerite are less common and other car-

bonates (e.g. strontianite, barytocalcite) and REE-

carbonates (e.g. burbankite, bastnäsite) are generally

minor constituents (e.g. Zaitsev et al., 1998; Moore

et al., 2015; Giebel et al., 2017).

In addition to carbonate minerals, most carbonatites

contain variable amounts of apatite, magnetite (spinel

group minerals) and phlogopite and a number of add-

itional silicate minerals (e.g. forsterite, monticellite,

melilite, clinopyroxene, amphibole, garnet, feldspa-

thoids, alkali feldspar) have been reported, although it

may be difficult to distinguish primary carbonatitic crys-

tals from xenocrysts (e.g. Andersen, 1988; Hogarth,

1989; Barker, 2001; Brod et al., 2001; Chakrabarty et al.,

2009; Reguir et al., 2012; Chakhmouradian et al., 2017).

In addition, various sulfides (pyrrhotite, pyrite, chalco-

pyrite, galena, sphalerite) and HFSE- and REE-rich min-

erals (e.g. baddeleyite/zircon, perovskite/titanite,

pyrochlore, zirconolite, calzirtite) are typically present

(e.g. Chakhmouradian, 2006; Farrell et al., 2010; Gomide

et al., 2013; Bell et al., 2015). Due to the high abundance

of apatite and some of the above-mentioned REE- and

HFSE-rich minerals, carbonatites are of general eco-

nomic interest and several occurrences are currently

mined (e.g. Araxa, Bayan Obo, Catalao, Kovdor, Mount

Weld, Niobec; Gendron et al., 1984; de Oliveira &

Imbernon, 1998; Ivanyuk et al., 2002; Krasnova et al.,

2004; Kanazawa & Kamitani, 2006; Yang et al., 2011;

Neumann & Medeiros, 2015).

Contamination by crustal or cogenetic intrusive

rocks is generally not considered to play an important

role during carbonatite magmatism, because carbona-

titic melts have low densities and extremely low viscos-

ities, enabling them to ascend rapidly (Treiman &

Schedl, 1983; Jones et al., 2013 and references therein).

High-silica carbonatitic rocks in alkaline silicate–car-

bonatite complexes, which probably preserve the evi-

dence of contamination of the parental magma, have

often been ignored in previous studies, although there

is evidence for the interaction between carbonatites

and silicate rocks (Andrade et al., 1999). However, po-

tential contamination by silicate rocks in carbonatites

cannot easily be detected by means of radiogenic iso-

tope data (such as Sr, Nd and Pb isotope data) as

carbonatites often have high concentrations of these

elements and their isotope systems are thereby ‘buf-

fered’ against contamination with silicate rocks, which

normally have much lower concentrations of these ele-

ments (e.g. Bell & Tilton, 2002 and references therein).

The composition of silicate minerals in carbonatites and

their comparison with country rocks, mantle rocks and
associated ultramafic cumulates and alkaline rocks,

however, may allow for their identification as true pri-

mary carbonatitic crystals or xenocrysts, but such stud-

ies are very rare (e.g. Vuorinen & Skelton, 2004).

Carbonatites from the Kaiserstuhl Volcanic Complex

(South Germany) have been investigated previously

(e.g. Keller, 1981; Hay & O’Neil, 1983, Hubberten et al.,

1988; Wimmenauer, 2003; Wang et al., 2014; Teiber
et al., 2015; Braunger et al., 2018; Walter et al., 2018) but

no systematic study of their mineralogy and mineral

chemistry is available to date. We provide a compre-

hensive data set for the mineralogical inventory and the

compositional variations of the major minerals in

sövites and extrusive carbonatites, namely calcite, apa-

tite, spinel group minerals (magnetite-magnesioferrite)

and silicate minerals (mica, forsterite, monticellite,

clinopyroxene, garnet). Based on the compositional
variation of these phases, we tested the suitability of

apatite and mica to assess the extent of carbonatite–

wall rock interaction (contamination) in one of the

sövite bodies of the Kaiserstuhl Volcanic Complex.

GEOLOCICAL SETTING AND OCCURENCE OF
CARBONATITES IN THE KAISERSTUHL

The Kaiserstuhl Volcanic Complex (KVC) is situated in

the Upper Rhine Graben (Fig. 1a), which is part of a

larger extensional zone throughout central Europe that

was established in a stress regime caused by Alpine

orogenic processes in Tertiary times (e.g., Ziegler, 1982;

Wilson & Downes, 1991). The emplacement of the KVC

rocks along deep-reaching zones of weakness was

enabled by lithospheric thinning (Hüttner, 1996; Edel
et al., 2006; Bourgeois et al., 2007). The Upper Rhine

Graben is characterized by numerous listric and mostly

steep fault sets that are partly subparallel to the graben

geometry. These faults and associated structures cause

a horst and graben structure and a complex system of

variably sized tectonic blocks (e.g. Beccaletto et al.,

2010).

The rocks of the KVC are of Miocene age (18–15 Ma;
e.g. Kraml et al., 2006 and references therein) and main-

ly consist of a tephritic to phonolitic rock series, accom-

panied by minor nephelinitic to limburgitic, and

melilititic to haüynitic lithologies and carbonatites (e.g.

Baranyi et al., 1976; Keller et al., 1990; Wimmenauer,

2003; Braunger et al., 2018). The KVC rocks probably de-

rive from several magma sources, with carbonatites

being genetically related to the melilititic to haüynitic

rocks (e.g. Schleicher et al., 1990; Wang et al., 2014).
The four major sövite bodies (Badberg, Degenmatt,

Haselschacher Buck, Orberg) are spatially associated
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with polygenetic breccias in the central area of the KVC

and two small sövite occurrences (<10 m in diameter)

are exposed at Katharinenberg and Kirchberg (Fig. 1a).

The KVC is intersected by the regional Tuniberg Fault

(Fig. 1), which causes a vertical displacement of

�1000 m north and �3000 m south of the KVC, with a

westwards down-throw towards the Rhine graben

centre (Groschopf et al., 1996; Beccaletto et al., 2010).

Geophysical evidence (seismic surveys; e.g. Brauch

et al., 2018 and references therein) suggests at least one

sub-parallel structure further W that intersects the

Badberg sövite body (Fig. 1b), but the vertical displace-

ment of this structure is unknown.

The about 400 m thick, pipe-like Badberg body is

banded and inclined at about 60� towards the north-

west. It intrudes sodalite monzogabbros and phonolites

and is partly underlain by foid syenites and phonolites

as indicated by the scientific KB3 and FB drillings

(Kirchheimer, 1973; Blust, 1993). Mineral banding in the

sövite is subparallel to its contacts towards the country

rocks and numerous cm- to m-sized rafts of calcite foi-

dolites occur aligned parallel to the banding. The rela-

tive abundance of these xenoliths decreases from the

top of the tilted Badberg body towards its deeper parts.

The sövite bodies at Degenmatt and Haselschacher

Buck probably reflect similar pipe-like geometries but

are not exposed well enough to constrain this.

However, geophysical data (gravimetric and magnetic)

indicate a continuous pipe-like body below the

Degenmatt/Haselschacher Buck bodies, whereas there

is no evidence that the Badberg body continues to

greater depth (Brauch et al., 2018).

Sövites at Orberg are exposed in five quarries (desig-

nated as I–V) and display variable geometries. Sövite

sills dipping by 25� towards the northeast are exposed

in quarries I and II, quarry III exposes a 10 m thick sheet-

like body with a dip of 70� towards the northwest , and

quarries IV and V show irregular geometries implying a

cauliflower-like structure. The emplacement of the

Orberg sövites was probably promoted by distinct

zones of weakness, reflected by pre-existing polygenic

breccias (proved by KB2 scientific drilling in 1991 in

quarry II; Hubaux, 1964).

Dolomite-bearing alvikites (still calcite-dominated,

though) occur as fine- to medium-grained subvertical

dykes, crosscutting all rock types and rare dolomite-

Fig. 1. Geology of the Kaiserstuhl Volcanic Complex (KVC). (a) Simplified geological map of the KVC (modified after Keller et al.,
1990) including an overview map of the European Cenozoic Volcanic Province (modified after Dèzes et al., 2004), where the position
of the KVC is indicated by a red star. (b) Detailed geological map of the central part of the KVC, which depicts several sövite bodies
and the location of the four historic drill holes KB1, KB2, KB3 and FB. The schematic fault system is represented by a duplication of
the Tuniberg normal fault. (c) Schematic cross section of the structural development of the carbonatites at the KVC.
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dominated varieties (beforsites) are known (e.g. Van

Wambeke, 1964; Sigmund, 1996). Alvikites show vari-

able thicknesses (cm- to m scale) and textures. They

have been described in great detail previously (e.g. Katz

& Keller, 1981; Sommerauer & Katz-Lehnert, 1985; Katz-

Lehnert, 1989) and are not subject to the present study.
At Henkenberg and Kirchberg (Fig. 1a), three layers

(each 1 to 1�5 m thick) of extrusive carbonatite, repre-

sented as alternating sequences of carbonatitic crystal

tuff, lapillistones and lavas and interbedded with teph-

ritic and basanitic pyroclastics, are preserved (Keller,

1978; Keller, 1981, Keller, 1989; Woolley & Kjarsgaard,

2008). The distance between these two localities is

about 1�5 km, but the original extent of these deposits is

unknown, due to intense anthropogenic land transfor-
mations in the 1970s.

SAMPLE MATERIAL AND ANALYTICAL
METHODS

The material investigated for this study is part of the

sample set (N�400) of Walter et al. (2018) and includes
46 carefully selected samples from surface outcrops

and from the scientific KB2 and KB3 drillings, covering

the major sövite bodies and the two known occurrences

of extrusive carbonatites in the KVC. A complete sample

list is given in Table 1, along with locations, GPS coordi-

nates and petrographic details.

Mineral compositions were acquired using a JEOL

8900 electron microprobe at the Institute of

Geosciences, Universität Tübingen, Germany.
Acceleration voltage was 15 kV (for apatite, phlogopite,

clinopyroxene and carbonate) and 20 kV (for garnet and

spinel group minerals) using a beam current of 10 nA

(for apatite) and 20 nA (for other minerals). Depending

on the mineral, the beam diameters varied from a

focused beam (for olivine, spinel group minerals, pyrox-

ene and zirconolite), 2 mm (mica), 5 mm (carbonates and

garnet) to 10 mm (apatite). Natural and synthetic stand-
ards were used for calibration (see ES1, Supplementary

Data; supplementary data are available for download-

ing at http://www.petrology.oxfordjournals.org). Data

reduction was performed using the internal ZAF and

uqz matrix correction software of JEOL (Armstrong,

1991). Details on the WDS configuration used and typ-

ical detection limits for the individual elements of vari-

ous minerals are given in the Supplementary Data;

supplementary data are available for downloading at
http://www.petrology.oxfordjournals.org (ES1).

PETROGRAPHY

Sövites
Besides calcite, the most abundant minerals in the dif-

ferent sövites are apatite, mica, spinel group minerals
and pyrochlore, with highly variable modal amounts

(Table 1; Fig. 2) on a dm- to m-scale. Occasionally, min-

eral banding represented by alternating coarse-grained

and finer grained layers of non-carbonate minerals

occurs in some areas. Rarely, thin olivine-rich layers

(Orberg) and in one case, a perovskite-rich layer

(Badberg, see below) have been exposed. However, the

major mineralogical differences between the sövite

bodies are reflected by the presence/absence of clino-

pyroxene, olivine and monticellite.
Olivine is present in two samples from

Haselschacher Buck and Katharinenberg and occurs as

up to 500lm large euhedral to subhedral grains, which

are often serpentinized along cracks and grain bounda-

ries and are occasionally replaced by calcite (Fig. 3a).

Subhedral to anhedral monticellite occurs in one sam-

ple from Orberg V (Fig. 3b).

Apatite is the most abundant non-carbonate mineral
and occurs in all investigated sövites. Textures range

from large radial crystal aggregates (Fig. 3c), medium-

sized prismatic grains to anhedral patches mostly

enclosed by calcite and less commonly by phlogopite

and spinel group minerals. Most apatites show variable

zoning patterns, ranging from oscillatory zonation

(Fig. 3d; with occasional resorbed cores) to patchy

zonation.
Clinopyroxene was only observed in some of the

Badberg samples, where it is mostly euhedral but typic-

ally cracked and altered along cleavages. In some cases

it shows rounded grain boundaries towards calcite

(Fig. 3e).

The abundance and general appearance of mica

(Figs 3e and 4) differs between samples from Badberg

(commonly very mica-rich) and the other localities (gen-
erally mica-poor). With the exception of the Badberg

samples, mica occurs as <2 mm large euhedral to sub-

hedral laths to stubby grains, mostly enclosed by calcite

(Fig. 4a). It is almost colourless under plane-polarized

light and is occasionally altered to chlorite. Mica from

Orberg III and Katharinenberg is typically oscillatory

zoned (Fig. 4b), while mica from the Degenmatt sam-

ples is less so, and mica from other localities lacks any

visible zonation. Mica from the Badberg samples is
much larger (up to 2 cm), exhibiting an olive-green to

khaki appearance under plane-polarized light. Two dif-

ferent modes of occurrence in the Badberg samples are

distinguished: (1) blocky crystals accumulated at the

contact towards the calcite foidolites (Fig. 4c; see below)

are classified as ‘black-wall mica’, whereas (2) bundles

of large mica laths occur dispersed in the Badberg sam-

ples and are seemingly independent of the presence of
calcite foidolite relicts (Fig. 4d).

Spinel group minerals are very common and gener-

ally occur as several mm-sized disseminated subhedral

to euhedral grains (occasionally very porous; Fig. 3f).

They are mostly enclosed by calcite and occasionally

contain inclusions of apatite. In very few samples, how-

ever, they are overgrown by apatite. Abundant pyro-

chlore (see details in Walter et al., 2018) and rare
zirconolite (Van Wambeke, 1964; Sinclair & Eggleton,

1982; Keller, 1984) crystallized more or less simultan-

eously with spinel group minerals. Zirconolite was only

found in a sample from Haselschacher Buck, where it

4 Journal of Petrology, 2019, Vol. 00, No. 0

https://academic.oup.com/petrology/article-lookup/doi/10.1093/petrology/egz028#supplementary-data
https://academic.oup.com/petrology/article-lookup/doi/10.1093/petrology/egz028#supplementary-data
https://academic.oup.com/petrology/article-lookup/doi/10.1093/petrology/egz028#supplementary-data
http://www.petrology.oxfordjournals.org
https://academic.oup.com/petrology/article-lookup/doi/10.1093/petrology/egz028#supplementary-data
https://academic.oup.com/petrology/article-lookup/doi/10.1093/petrology/egz028#supplementary-data
http://www.petrology.oxfordjournals.org


occurs as up to 30mm large and occasionally zoned

crystals (Fig. 4g). Perovskite (in the old literature called
‘dysanalyte’) was reported from a thin horizon at the

Badloch quarry (southern Badberg; Wimmenauer, 1963;

Hornig-Kjarsgaard, 1998). This outcrop is, however, lost

and none of the investigated samples contains

perovskite.

The main phase of calcite formation occurred rela-
tively late, only rarely calcite occurs as small inclusions

in apatite. Calcite exhibits equigranular and subhedral

textures, with grain sizes varying from 100lm up to

several cm. Late-stage dolomitization of calcite is occa-

sionally observed (Fig. 4h).

Table 1: List of samples investigated in this study along with their major mineralogy

Locality Rock type Sample # Depth UTM coordinates Ap Phl Mgt Pcl Cpx Grt Ol/
Mtc

Cal Dol

Badberg Calcite foidolite HTAC 260 Surface 32 U 401310 5327748 x x – (tr) X* X – x –
Badberg Sövite HTAC 1136 KB3 (267 m) 32 U 400940 5327843 X X X* – X* – – X –
Badberg Calcite foidolite HTAC 1139 KB3 (254 m) 32 U 400940 5327843 x* x – – X X* – x –
Badberg Calcite foidolite HTAC 1147 KB3 (241 m) 33 U 400940 5327844 x* x – – X X* – x –
Badberg Calcite foidolite HTAC 1148 KB3 (240 m) 32 U 400940 5327843 x x* – (tr) X X – x –
Badberg Sövite HTAC 1151 KB3 (227m) 32 U 400940 5327843 X X x x x* – – X* –
Badberg Sövite HTAC 1156 KB3 (215 m) 32 U 400940 5327843 X X* x x – – – X –
Badberg Calcite foidolite HTAC 1158 KB3 (204 m) 32 U 400940 5327843 x X – (tr) X X* – X –
Badberg Calcite foidolite HTAC 1168 KB3 (177 m) 32 U 400940 5327843 x x – (tr) X X* – x –
Badberg Calcite foidolite HTAC 1173 KB3 (165 m) 32 U 400940 5327843 x X x – X X* – x –
Badberg Calcite foidolite HTAC 1178 KB3 (150 m) 32 U 400940 5327843 x* – – (tr) X* X – X –
Badberg Calcite foidolite HTAC 1197 KB3 (100 m) 32 U 400940 5327843 x x – (tr) X* X – x –
Badberg Sövite HTAC 1200 KB3 (93m) 32 U 400940 5327843 X X* x (tr) – – – X –
Badberg Calcite foidolite HTAC 1200 KB3 (93 m) 32 U 400940 5327843 x X* x – X X* – x –
Badberg Sövite HTAC 1215 KB3 (35 m) 32 U 400940 5327843 X x X x x* – – X –
Badberg Sövite HTAC 1229 KB3 (-10 m) 32 U 400940 5327843 X* X X x X* – – X* –
Badberg Sövite HTAC 1237 KB3 (-48 m) 32 U 400940 5327843 X X* X (tr) x* – – X* –
Badberg Sövite HTAC 1245 KB3 (-66 m) 32 U 400940 5327843 x X* X (tr) x – – X –
Badberg Sövite HTAC 1362 Surface 32 U 400763 5327907 X x X (tr) x – – X* –
Orberg II Sövite HTAC 1253 KB2 (4 m) 32 U 402477 5328680 x* x X x – – – X* x
Orberg II Sövite HTAC 1267 KB2 (271 m) 32 U 402477 5328680 x x x – – – – X* x
Orberg II Sövite HTAC 1318 KB2 (191.7 m) 32 U 402477 5328680 x x* x – – – – X x
Orberg II Sövite HTAC 1282 KB2 (242 m) 32 U 402477 5328680 x x x – – – – X* x
Orberg II Sövite HTAC 1294 KB2 (323 m) 32 U 402477 5328680 x x X x – – – X* –
Orberg III Sövite HTAC 1410 Surface 32 U 402555 5328668 x* x* x* x – – – X* –
Orberg III Sövite HTAC 1413 Surface 32 U 402555 5328668 x* x* x* x – – – X –
Orberg IV Sövite HTAC 0237 Surface 32 U 402691 5328724 X* x* X* x – – – X* –
Orberg IV Sövite HTAC 0239 Surface 32 U 402691 5328724 X* – x x – – – X* –
Orberg IV Sövite HTAC-1353 Surface 33 U 402691 5328724 x* x x* x – – – X –
Orberg V Sövite HTAC 0222 Surface 32 U 402640 5328781 x* x* – x – – – X X
Orberg V Sövite HTAC 0224 Surface 32 U 402640 5328781 X – X* X – – – X –
Orberg V Sövite HTAC 0225 Surface 32 U 402640 5328781 x* x* x* X – – – X* –
Orberg V Sövite HTAC 1356 Surface 32 U 402640 5328781 x* – x – – – �/ X* X* –
Orberg V Sövite HTAC 1366 Surface 32 U 402620 5328185 x* x* – x – – – X* –
Degenmatt Sövite HTAC 1399 Surface 32 U 403779 5326957 X* x* – x – – – X* –
Haselschacher

Buck
Sövite HTAC 0284 Surface 32 U 402668 5327797 X* x* x* x – – – X* –

Haselschacher
Buck

Sövite HTAC 1354 Surface 32 U 402668 5327797 x* x* x* – – – x*/- X* –

Katharinenberg Sövite HTAC 1415b Surface 32 U 402288 5329644 X x* X* x – – – X* –
Katharinenberg Sövite HTAC 1415c Surface 32 U 402288 5329644 X* x* x* x – – X*/- X* –
Henkenberg Crystal tuff GM1 Surface 32 U 396571 5327645 x – – – x* x* – X* –
Henkenberg Crystal tuff GM2 Surface 32 U 396571 5327645 x – x* (tr) X* x* – X* –
Henkenberg Crystal tuff GM3 Surface 32 U 396570 5327645 x* x x* – X x* – X –
Henkenberg Crystal tuff HTAC 1369 Surface 32 U 396571 5327640 x – x – – x* – X –
Henkenberg Crystal tuff HTAC 1371 Surface 32 U 396571 5327640 x – x* – – x – X –
Henkenberg Lapilli stone GM4 Surface 32 U 396570 5327647 x – x* – x* x* – X* –
Kirchberg Lava HTAC 1337 Surface 32 U 396571 5327640 – – x* – – x* – X* –

X, major component; x, minor component; (tr), trace component.
*, EPMA data available.

Fig. 2. Paragenetic scheme for sövites of the KVC including
major alteration phases (in grey).
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Fig 3. Photomicrographs (plane polarized light) and backscattered electron (BSE) images of the mineral assemblage of sövites
from the KVC. (a) Coarse-grained olivine altered to serpentine (Haselschacher Buck). (b) Subhedral to anhedral monticellite (Orberg
V). (c) Stellar aggregates of apatite (Orberg V). (d) REE- and Si-rich rims with REE- and Si-poor cores in apatite (Badberg). (e). Partly
resorbed and altered clinopyroxene associated with biotite (Badberg). (f) Porous spinel group mineral (magnetite-magnesioferrite)
associated with apatite and calcite (Orberg III). (g) Zirconolite (zrc) in olivine-bearing sövite (Haselschacher Buck). (h) Subhedral cal-
cite surrounded and partly replaced by late-stage dolomite (Orberg II).

Abbreviations: ap, apatite; bt, biotite; cal, calcite; cpx, clinopyroxene; dol, dolomite; mag, spinel group mineral (magnetite–magne-
sioferrite); mtc, monticellite; ol, olivine; zrc, zircon.
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Rare pyrrhotite crystallized before calcite, but other

sulphides (mainly pyrite, with minor galena and sphal-

erite) are of late-stage/hydrothermal origin and are

often associated with fine-grained and interstitial barite.

Extrusive carbonatites
Carbonatite lavas have only been observed at the

Kirchberg (Fig. 1). They consist of up to 0�6 mm large

oscillatory zoned calcite laths and up to 150 mm large

euhedral spinel group mineral grains, set in a fine-

grained groundmass of calcite, apatite and spinel group

minerals (Fig. 5a). In some cases, the spinel group min-

erals show thin rims, which are BSE-dark (Fig. 5b).

Occasional xenocrysts of nepheline (300lm; Fig. 5a)

and garnet (200 lm) have been observed.

Carbonatite lapillistones and crystal tuffs from the

Henkenberg were described in detail by Keller (1981,

1989). Lapillistones consist of calcite laths and sub-

rounded lapilli cemented by fine-grained secondary cal-

cite. The 0�5 to 10 mm large lapilli contain, in addition to

calcite, larger amounts of spinel group minerals and

prismatic apatite, and rare grains of clinopyroxene and

garnet (Fig. 5c). Crystal tuffs are mainly composed of

fragments of calcite (showing mosaic textures), spinel

group minerals, garnet and pyroxene, with rare apatite

and pyrochlore, set in a groundmass of calcite (Fig. 5d).

Occasionally intercalated clasts of calcite foidolite and

sövite can be recognized.

Calcite foidolites
Xenoliths of calcite foidolite (cm- to m-sized) occur only

in the Badberg sövite (and rarely in carbonatitic tuff

layers of the Henkenberg). Their abundance decreases

towards the centre of the Badberg body, where they are

strongly disaggregated compared to those in marginal

zones. Sövite that contains strongly disaggregated xen-

oliths is exceptionally mica-rich (Fig. 6). Based on drill

core loggings (Blust, 1993), the average carbonatite/

xenolith ratio is about 5:1, but varies strongly from

about 2:1 (marginal areas) to about 50:1 (central areas)

over a range of tens of metres.

The contact between calcite foidolites and the sur-

rounding sövite is characterized by coarse-grained

seams of olive-green to khaki mica (see above) and an

occasional transition zone consisting of strongly altered

garnet and clinopyroxene, frequently intruded by carbo-

natitic veins (Fig. 7a). The central parts of these xeno-

liths consist of variable amounts of altered foid

minerals (see below) and relict feldspar, with variable

amounts of clinopyroxene, garnet and interstitial calcite

(Fig. 7b–d).

Former nosean or haüyne (now decomposed to vari-

ous zeolite minerals and calcite) is the most common

phase. It mostly forms rounded grains of variable sizes

and only rarely, euhedral grains containing small Fe-

sulfide/oxide micro-inclusions are present (Fig. 7c).

Rare relics of alkali feldspar are variably replaced by

zeolites, calcite, mica and other minerals (Fig. 7d).

Fig. 4. Photomicrographs (plane polarized light) and backscattered electron (BSE) images of the different appearances of mica in
sövites from the KVC. (a) Euhedral to subhedral laths of phlogopite enclosed by calcite and spinel group minerals (magnetite-mag-
nesioferrite; Orberg V). (b) Oscillatory zoned Ba-rich phlogopite (Orberg III). (c) Coarse-grained ‘black-wall’ biotite (Badberg). (d)
Coarse-grained bundles of biotite laths independent of the presence of calcite foidolite (Badberg). Abbreviations (see Fig. 3): bt, bio-
tite; phl, phlogopite.
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Fig. 5. Photomicrographs (plane and crossed polarized light) and backscattered electron (BSE) images of textural features of extru-
sive carbonatites from the KVC. (a) Carbonatite lava with calcite laths in a matrix of fine-grained calcite, apatite and spinel group
minerals (magnetite–magnesioferrite). (b) Euhedral spinel group minerals with darker rims (enriched in Al) in carbonatite lava. (c)
Lapillistone porphyritic lapilli in a fine-grained groundmass of calcite, spinel group minerals and apatite, cemented by secondary
calcite. (d) Crystal tuff with fragments of clinopyroxene, garnet (grt) and spinel group minerals in groundmass of calcite.

Fig. 6. Xenoliths in the Badberg carbonatites. (a) Carbonatite with a high xenolith proportion and strong proximal (to the xenolith)
mica formation. (b) Xenolith from a ‘shallow’ drill core level (reflecting the marginal zone of the carbonatite pipe) showing signifi-
cant mica formation around (black-wall mica) and in direct vicinity of the xenoliths. (c) Sections distal to a xenolith within a ‘shal-
low’ drill core level showing low mica formation. (d) Xenolith from a ‘deep’ drill core level (reflecting the central zone of the
carbonatite pipe) showing strong disaggregation. The xenolith is nearly almost replaced by calcite. (e) Sections distal to xenolith
within a ‘deep’ drill core level showing significant mica formation. The correlation between stronger disaggregated/resorbed xeno-
liths and the increased formation of mica shows a clear dependency.
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Clinopyroxene occurs mostly as pale green, sometimes

patchy-coloured subhedral and interstitial grains

(Fig. 7e). If present, dark brown garnet I (relict cores) is

overgrown by a reddish-brownish garnet II (recrystal-

lized anhedral grains or masses; Fig. 7f). Garnet II is

commonly zoned and occasionally forms poikilitic

aggregates that enclose former foid minerals (Fig. 7f).

Ubiquitous accessory minerals are apatite and titanite,

only one sample contains primary spinel group

minerals.

MINERAL COMPOSITIONS

Carbonates
Representative analyses are given in Table 2; formula

calculations are based on one cation with CO2 being cal-

culated. Calcite in sövites contains variable, but

generally minor amounts of Sr (<2 wt % SrO), Fe

(<0�4 wt % FeO), Mg (<1�5 wt % MgO) and Mn (<1�5 wt

%). Mean REE contents are generally <0�2 wt % Ce2O3

(similar to earlier data; Hornig-Kjarsgaard, 1998), but

may occasionally reach higher values; however, the

presence of REE-rich micro inclusions cannot be

excluded. Calcite from Badberg samples is relatively Sr-

rich but Mg-poor compared to calcite from other sövites

(Fig. 8). Calcite in extrusive carbonatites is highly vari-

able in composition. In the crystal tuff and lapillistone

samples from Henkenberg, primary calcite is Sr-rich but

Mg-poor compared to secondary calcite cement (Fig. 8).

Apatite
Representative analyses are given in Table 3 and for-

mula calculations were done using the method of

Ketcham (2015). As typical of carbonatites

Fig. 7. Photomicrographs (plane polarized light) of the mineral assemblage and textural appearance of calcite foidolites from the
KVC. (a) Coarse-grained biotite-rich ‘black-wall’ at the contact between carbonatite and calcite foidolite. (b) Recrystallized garnet (II)
associated with recrystallized clinopyroxene (II), calcite and foid minerals (mostly altered to zeolites). (c) Euhedral nosean (or
haüyne) decomposed to zeolite and calcite. (d) Alkali feldspar (afs) replaced by a mixture of zeolite, calcite, biotite, minor clinopyr-
oxene (II) and garnet (II). (e) Clinopyroxene (II), garnet (II) and interstitial calcite in a calcite foidolite. (f) Dark brown and rounded (rel-
ict) garnet (I) overgrown by anhedral garnet (II).

Journal of Petrology, 2019, Vol. 00, No. 0 9



T
a
b
le

2
:

R
e

p
re

se
n

ta
ti

v
e

E
P

M
A

a
n

a
ly

se
s

o
f

ca
rb

o
n

a
te

s
fr

o
m

th
e

K
a

is
e

rs
tu

h
l
V

o
lc

a
n

ic
C

o
m

p
le

x

S
a

m
p

le
#

1
2

2
9

1
2

3
7

1
3

6
2

1
2

6
7

1
2

9
4

1
2

6
7

1
3

1
8

1
3

1
6

b
1

4
1

0
2

3
7

2
3

9
2

2
5

1
3

5
6

1
3

6
6

L
o

ca
li
ty

B
a

d
b

e
rg

O
rb

e
rg

II
O

rb
e

rg
II
I

O
rb

e
rg

IV
O

rb
e

rg
V

M
in

e
ra

l
C

a
lc

it
e

D
o

lo
m

it
e

A
n

ke
ri

te
C

a
lc

it
e

R
o

ck
ty

p
e

S
ö
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(Chakhmouradian et al., 2017), apatite from the KVC is

fluorapatite to hydroxyapatite with variable F (1–2�8 wt

%) and very low Cl contents (below 0�02 wt %; Table 4).

Most data closely follow a substitution mechanism

according to the apatite-britholite series (Ca2þ þ P5þ $
REE3þ þ Si4þ; Fig. 9a). Apatites from the Badberg

sövites and calcite foidolites reach the highest levels of

REE2O3 (up to 6�5 wt %), SrO (up to 4 wt %) and SiO2 (up

to 3�6 wt %), but are relatively low in Na2O (below 0�5 wt

%) compared to other locations (Fig. 9). In contrast, apa-

tites from Orberg are low in REE2O3 (<3 wt %), SiO2

(<1�8 wt %) and SrO (<1�5 wt %), but in some cases

show elevated Na2O (up to 1�2 wt %), following the

coupled substitution mechanism 2Ca2þ þ (3Ca2þ) $
REE3þ þ Naþ þ (3Sr2þ) (apatite-belovite series). Most

apatites are compositionally zoned with variable enrich-

ments of REE and Si towards the rim of the crystals. In

particular, apatites from the Badberg sövite show a dis-

tinct and sharp enrichment of a britholite component

(Figs 3d and 9a) and commonly a slight decrease of Sr

in their rims (Fig. 9c). Apatite data from samples of the

KB3 drill hole (Badberg) show greater scatter in the

upper parts of the drill hole than in the lower parts, with

higher REE and Si but lower F and slightly lower Sr in

the deeper parts of the drill hole (Fig. 10).

Mica
Representative analyses are given in Table 4; formula

calculations are based on an ideal trioctahedral mica

formula (XY3[Z4O10][OH, F, Cl]2) and the data were nor-

malized to 7 (tetrahedral [Z] plus octahedral [Y]) cations.

Micas from the KVC are Mg-rich and show variable en-

richment of Ba (Fig. 11a), with those from Badberg hav-

ing lower Ba (<0�07 apfu) and Mg# (72–88) compared to

micas from the other localities (up to 0�5 Ba pfu and

Mg# 91–97), while tetrahedral Fe3þ is similarly low at all

localities (<0�05 and <0�07 Fe3þ pfu, respectively).

Accordingly, mica from Badberg is classified as biotite

(after Foster, 1960), whereas mica from all other local-

ities is phlogopite. A continuous 1:1 increase of Al with

Ba is caused by the phlogopite-kinoshitalite substitution

(Kþ þ Si4þ $ Ba2þ þ IVAl3þ). Deviations from the 1:1

slope towards higher Al indicate an additional effect of

the phlogopite–eastonite substitution (Mg2þ þ Si4þ $
IVAl3þ þ VIAl3þ; Fig. 11b) with a shift from the ideal

1:1 line reflecting constant eastonite substitution with

increasing kinoshitalite substitution. The distinct oscilla-

tory zonation in phlogopites from Orberg III and

Katharinenberg (Fig. 4b) exclusively reflects a variable

kinoshitalite substitution. Based on specific chemical

characteristics, three mica groups are distinguished:

1. Phlogopites from Degenmatt, Katharinenberg and

Orberg III and V are characterized by a large spread

in Ba and Al contents (Fig. 11b). Orberg III micas fol-

low a nearly ideal kinoshitalite substitution, whereas

for micas from Degenmatt, Katharinenberg and

Orberg V the additional importance of the eastonite

substitution is obvious (Fig. 11a). Phlogopites of this

group are further characterized by intermediate Na

and F (Na up to 0�09 apfu, F up to 0�4 apfu; Fig. 11c

and d) and the lowest Ti and Mn contents (<0�02 and

<0�03 apfu, respectively; Fig. 11e and f).
2. Phlogopites from Orberg II and IV and from

Haselschacher Buck show a constant eastonite sub-

stitution with increasing kinoshitalite substitution

(Ba <0�3 apfu; Fig. 11b) and are further characterized

by the highest Na (up to 0�11 apfu), intermediate Ti,

(up to 0�03 apfu) and low Mn (<0�03 apfu) and F

(<0�15 apfu; Fig. 11c–f) contents.

3. Biotite from the Badberg shows the lowest Mg# (72–

88) and although their Ba content is low (<0�07

apfu), they show strong Al enrichment during evolu-

tion suggesting the importance of the eastonite sub-

stitution (Fig. 11a and b). They are further

characterized by the highest Mn (up to 0�1 apfu), low

Fig. 8. Composition of calcite in sövites and extrusive carbona-
tites from the KVC shown as box plot diagrams.
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(a)

(b)

(c)

Fig. 9. Chemical variations of apatite in sövites and calcite foidolites from the KVC. (a) CaþP vs REEþSi representing the apatite-
britholite substitution mechanism (Ca2þ þ P5þ $ REE3þ þ Si4þ). (b) and (c) Variations of Na2O and SrO vs REE2O3.
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to intermediate Na (<0�07 apfu) and F (<0�5 apfu)

and intermediate to high Ti (<0�06 apfu; Fig. 11c–f).

Amongst the Badberg micas, those from black-walls

around calcite foidolites (Fig. 7a) show lower Ti and

Na, but higher F and Mn contents (Fig. 11c–f), but

are otherwise compositionally similar to those

formed far away from xenoliths.

Olivine and monticellite
Representative analyses are given in Table 5; formula

calculations are based on four oxygens. Olivine in two

of the sövites is Mg-rich (Fo96–90) but shows a large

range in the larnite component, varying from 0�1 to

1�5 mol % (0�06–1�17 wt % CaO; Fig. 12a). The negative

correlation between forsterite and larnite components

(Fig. 12a) implies a preferred incorporation of Ca with

decreasing Mg (Jurewicz & Watson, 1988; Libourel,

1999). The Mn contents (up to 3�0 wt % MnO) are much

higher than in the associated silicate rocks of the KVC

(grey fields in Fig. 12b), while Ni contents rarely exceed

the detection limit (NiO <0�03 wt %). Monticellite (about

75 mol %) is present in one sample (Orberg V) and con-

tains about 20 mol % kirschsteinite (CaFeSiO4) and

5 mol % glaucochroite (CaMnSiO4).

Clinopyroxene
Formula calculations are based on four cations and six

oxygens; representative analyses are listed in Table 6.

Clinopyroxene in the investigated samples is invariably

diopside-rich (Fig. 12c and d). However, clinopyroxene

in sövites and calcite foidolites is higher in MnO (up to

1�4 wt %) but lower in TiO2 (<0�9 wt %) compared to

clinopyroxene in extrusive carbonatites (MnO <0�3 wt

% and up to 4�1 wt % TiO2; Fig. 12c and d). The concen-

tration of Cr2O3 (up to 0�27 wt %) is only elevated in

some extrusive carbonatites (Table 6).

Spinel group minerals
Representative analyses are given in Table 7 and for-

mula calculations are based on three cations and four

oxygens. Spinel group minerals in the investigated

samples are classified as magnetite–magnesioferrite. In

sövites they are poor in Ti (<0�13 apfu) and Al (<0�32

apfu), but relatively rich in Mn (up to 0�22 apfu), com-

pared to those from extrusive carbonatites (Fig. 12e). In

extrusive carbonatites, their Mg contents are relatively

constant (0�26 to 0�36 apfu) compared to the large range

observed in the sövite samples (0�08–0�65 apfu).

Amongst the sövites, samples from Orberg reach the

highest Mg content, implying a relatively large magne-

sioferrite component (up to 63 mol %), when consider-

ing endmembers magnetite (Fe2þFe3þ
2 O4),

magnesioferrite (MgFe3þ
2 O4) and jacobsite (MnFe3þ

2 O4).

Spinel group mineral rims in a carbonatitic lava sample

(Fig. 5b) that appear distinctly darker in BSE have high

Mg (0�63–0�69 apfu) and Al (0�42–0�56 apfu) concentra-

tions, i.e. are spinel-rich.

Garnet
Representative analyses are listed in Table 8; formula

calculations are based on eight cations and twelve oxy-

gens, using the calculation scheme of Locock (2008).

Most analyses show a very good 1:1 correlation be-

tween Ti þ Fe3þ and Si þ Al (Fig. 13a), indicating solid

solution between grossular (0–26%) andradite (47–

84%), schorlomite (0–18%) and morimotoite (0–29%)

endmembers (Fig. 13b). These garnets are best

described as Ti-bearing andradites. They are commonly

called ‘melanite’, but this name is not accepted by the

IMA. The contents of Nb, Zr and REE are generally low

(<0�02, <0�02 and <0�01 apfu, respectively) but garnet II

from the calcite foidolites may reach much higher Nb

(up to 0�2 apfu) and Zr (up to 0�2 apfu), whilst REE con-

tents are similarly low (Fig. 13c–e). Such Nb- and Zr-rich

Fig. 10. Compositional variations of apatite with depth (given as m above sea level) in the KB3 drill hole (Badberg). Note: According
to the tilting of the Badberg sövite (Fig. 1c), this variation depicts only a restricted depth variation within the sövite pipe, but reflects
an additional centre-margin effect.
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analyses show clear deviations from the ideal Ti þ Fe3þ

- Si þ Al 1:1 correlation (Fig. 13a). Based on their Mg–Ti
characteristics, garnet I and II from the calcite foidolites

can be clearly distinguished from each other, with gar-

net from the extrusive carbonatites plotting in between

these two groups (Fig. 13f).

Zirconolite
Representative analyses are given in Table 9; formula

calculations are based on four cations. We analysed zir-

conolite in a sövite from Haselschacher Buck, where it
is rich in Nb (up to 21�5 wt % Nb2O5) and Ta (up to 4�4 wt

% Ta2O5) with relatively low amounts of REEþY (up to

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Compositional variation of mica in sövites from the KVC. (a) Binary diagram of Ba vs Mg#. (b) Binary diagram of Ba versus
Al. Inset depicts substitution tendencies: (A) Kinoshitalite substitution, (B) eastonite substitution (for details see text). (c) and (d) Na
vs Mg# and F, respectively. (e) and (f) Mn and Ti vs Mg# respectively. Note the separation of biotite from Badberg compared to
phlogopite from the other localities, as well as a separation between ‘black-wall’ mica (marked by heavier outline) and mica which
is seemingly ‘independent’ of the presence of calcite foidolite in the Badberg samples.
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4�5 wt % REE2O3 þ Y2O3), U (up to 1�2 wt % UO2) and Th

(up to 1�7 wt % ThO2), plotting in the NbþTa-rich corner

of the known compositional range (Fig. 14).

DISCUSSION

Origin of silicate minerals in the Kaiserstuhl
carbonatites
Many carbonatites contain minor amounts of silicate

minerals (in particular ferromagnesian silicates) with

mica being the most common one (Reguir et al., 2012).

Their stability largely depends on silica activity, which

is generally very low in carbonatites, in addition to tem-

perature and other chemical potentials (Barker, 2001;

Massuyeau et al., 2015). Therefore, it is important to dis-

tinguish different genetic types of silicate minerals in

carbonatites (e.g. Barker, 2001), including:

1. Silicates that crystallized from the carbonatitic

magma, either due to a pristine sufficiently high sil-

ica activity (‘true’ primary magmatic silicates; type

Ia) or because of a (local) change in silica activity

(and the activity of other chemical components), for

example by the interaction with wall rocks or xeno-

liths (type Ib).

2. Entrained crystals from the source rock or from wall

rocks encountered during ascent and emplacement

of the carbonatitic magma, including crystals from

genetically related magmatic silicate rocks (xeno-

crysts; type II).

3. Subsolidus phases that formed during final cooling

due to the interaction with hydrothermal or meteoric

fluids (type III).

While a subsolidus origin (type III) can be easily rec-

ognized based on characteristic textures (e.g. exsolu-

tions, pseudomorphs, veinlets), it is not easy to

distinguish primary (carbonatitic) crystals (type I) from

xenocrysts (type II) because there is a broad range of

compositional variations of these phases in carbona-

tites (Chakhmouradian & Zaitsev, 2002; Reguir et al.,

2009; Reguir et al., 2012). Also, depending on their

composition and reaction kinetics, entrained xeno-

crysts may or may not be partly resorbed and/or chem-

ically modified by diffusion-controlled reactions with

the carbonatite magma. Therefore, only careful textural

analyses combined with a detailed comparison be-

tween the composition of the mineral in question in the

carbonatite with that of mantle rocks (e.g. olivine) and

surrounding silicate rocks may provide the opportunity

to determine the origin of such silicate minerals. In the

following, we discuss the potential origin of the various

silicate phases present in the Kaiserstuhl carbonatites.

Mica is the major K-bearing phase in most carbona-

tites and is typically Fe2þ-poor and variably enriched in

Ba and Al (Giebel et al., 2019 and references therein).

At the KVC, mica in all sövites, except for the Badberg

samples, shares these characteristics (Figs 11 and 15)

and occurs as a minor phase more or less evenly dis-

persed in the rocks (Fig. 4a). We suggest that mica in

these samples crystallized from the carbonatitic

magma itself as a ‘true’ primary magmatic silicate at

sufficiently high silica activities (type Ia). Mica in the

Badberg samples, however, is compositionally distinct

(Figs 11 and 15), much more abundant compared to the

other sövites and partly occurs as seams around xeno-

liths (Figs 4 and 6). We assume that mica in the Badberg

samples formed due to the interaction between

entrained xenoliths and the carbonatitic magma (dis-

cussed in more detail below) and represents a type Ib

phase.

Monticellite is stable at very low silica activities only

(Barker, 2001) and is, therefore, commonly found in car-

bonatites (e.g. Nesbitt & Kelly, 1977; Stoppa & Lupini,

1993; Guzmics et al., 2011), but is exceedingly rare in

silicate rocks. None of the silicate lithologies at the KVC

contains this phase. Olivine, in contrast, is a typical

phase in mantle rocks and in many silicate rocks,

including some of the KVC silicate lithologies. However,

the high forsterite content, combined with high Mn

(Fig. 12b) and very low Ni contents (Braunger et al.,

2018) is atypical of xenocrystic or mantle-derived oliv-

ine, but is typically observed in carbonatites (e.g. Lee

et al., 2004). At the KVC, olivine and monticellite (both

Mn-enriched) are fairly rare and only occur in relatively

mica-poor samples. Due to their cracked appearance,

occasional rounded edges, serpentinization/iddingitiza-

tion and partial resorption, a xenocrystic origin cannot

be excluded. However, the absence of even small-scale

compositional modifications (for example composition-

al zoning as would be expected by diffusional proc-

esses) renders this unlikely. Hence, we suggest that

monticellite and olivine may represent silicate minerals

of type I, probably representing ‘true’ primary magmat-

ic silicates (type Ia), although it cannot be completely

Table 5: Representative EPMA analyses of olivine and monti-
cellite from the Kaiserstuhl Volcanic Complex

Sample # 1415 1415 1354 1354 1356
Locality Katharinenberg Haselschacher

Buck
Orberg V

Mineral Forsterite Monticellite

wt.%
SiO2 43�01 42�54 41�64 42�27 38�06
FeO 1�78 4�13 6�29 5�52 8�45
MnO 1�88 2�82 2�97 2�67 2�41
MgO 54�28 50�98 48�77 50�05 18�98
NiO bdl bdl bdl bdl bdl
CaO 0�06 0�52 0�86 0�41 32�82
Total 101�03 100�99 100�53 100�92 100�74
Formula based on 4 oxygens
Si 1�01 1�02 1�01 1�02 1�02
Fe 0�04 0�08 0�13 0�11 0�19
Mn 0�04 0�06 0�06 0�05 0�05
Mg 1�90 1�82 1�77 1�79 0�76
Ni bdl bdl bdl bdl bdl
Ca 0�00 0�01 0�02 0�01 0�95
Total cations 2�99 2�98 2�99 2�98 2�98

bdl, below detection limit.
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(c)

(e)

(d)

Fig. 12. Composition of olivine, clinopyroxene and spinel group minerals (magnetite-magnesioferrite) from carbonatites and calcite
foidolites of the KVC. (a) Larnite vs forsterite components. (b) MnO (wt %) vs forsterite component in olivine. (c) and (d)
Concentrations of TiO2 (wt %) and MnO (wt %) vs diopside component in clinopyroxene. (e) Spinel group mineral compositions
from carbonatites of the KVC. Grey fields represent data (olivine, clinopyroxene and spinel group minerals, respectively) for the
KVC silicate rocks (Braunger et al., 2018): (I) Olivine nephelinites and limburgites, (II) tephritic rocks, (III) melilititic and haüynitic/
haüynolitic rocks, (IV) phonolitic/syenitic rocks, (V) haüynilites and melteigites.

18 Journal of Petrology, 2019, Vol. 00, No. 0



excluded that they are the product of small-scale con-

tamination (type Ib).

Clinopyroxene (cpx) and garnet in extrusive carbona-

tites are broken and partly rounded (Fig. 5d). As they

chemically resemble those of the silicate rocks (Figs 12

and 13), both phases are interpreted as being entrained

from the KVC silicate rocks during eruption, represent-

ing type II silicates. In sövites, cpx only occurs in the

Badberg samples, where it is mostly euhedral and com-

positionally distinct from those found in extrusive car-

bonatites and the known silicate rocks of the KVC, but

very similar to the recrystallized cpx of calcite foidolites

(Fig. 12c and d). Therefore, we suggest that cpx in the

Badberg sövites formed similarly to mica (see above)

by the interaction between xenoliths and carbonatite

magma, representing a type Ib silicate. A possible en-

trainment of recrystallized cpx from calcite foidolites or

an entrainment of original cpx (both representing a type

II silicate) from the calcite foidolite precursor lithology

(before alteration) is considered unlikely, as cpx in

sövite is mostly euhedral (Fig. 3e), whereas it is intersti-

tial and completely recrystallized in calcite foidolites

(Fig. 7e). Also, a lack of small-scale compositional modi-

fications (zoning) by xenocryst–carbonatite magma

interactions render an entrainment of the original cpx

improbable.

Mineralogical and mineral chemical differences
among the KVC carbonatites
Based on geophysical and structural data (Brauch et al.,

2018; see above) we assume that the various sövite

bodies of the KVC once belonged to a common sub-

vertical pipe structure that was intersected, displaced

and tilted by subsequent tectonic activity within the

Rhine Graben system (Fig. 1c). Consequently, sövites at

the Badberg may represent a higher emplacement level

(shallower level of the pipe) than the Haselschacher

Buck and Degenmatt occurrences. Orberg sövites may

represent a large apophysis of this structure (e.g.

Hubaux, 1964; Katz-Lehnert, 1989) and based on pyro-

chlore textures and compositions, these rocks experi-

enced an intense hydrothermal overprint (Walter et al.,

2018). Although it is assumed that all four carbonatite

localities belong to one batch of melt, major mineralogic-

al and mineral chemical differences between the Badberg

sövites and the other carbonatite bodies are prominent:

1. only Badberg sövites contain variable amounts of

calcite foidolites (Figs 6 and 7);
2. only Badberg sövites are comparatively rich in mica

that is texturally and compositionally distinct from

mica in the other sövite occurrences (Figs 4c, d and 6);

3. only some Badberg sövites contain clinopyroxene

(Fig. 3e);
4. only apatite in Badberg sövites shows exceptionally

Si- and REE-rich rims (Fig. 9a).

In the following we discuss the significance of the

calcite foidolites and the possible reasons for the pres-

ence of compositional distinct mica and apatite in the

Badberg sövites, including contamination, magmatic

differentiation and hydrothermal overprint.

Table 6: Representative EPMA analyses of pyroxene from the Kaiserstuhl Volcanic Complex

Sample # 260 1197 1151 1229 1215 1178 1237 GM1 GM2 GM4
Locality Badberg Henkenberg

Rock type Calcite foidolite Crystal tuff Lapili stone

wt %
SiO2 53�44 49�16 49�40 49�20 49�74 51�84 50�74 44�37 45�04 44�89
TiO2 0�05 0�11 0�21 0�58 0�33 0�10 0�17 3�30 2�30 2�64
Al2O3 1�60 3�60 3�61 3�58 3�30 1�08 2�81 9�37 8�52 8�38
Cr2O3 bdl bdl bdl bdl bdl bdl bdl 0�04 0�04 0�03
FeO 6�15 8�81 8�61 7�97 7�25 5�96 6�58 7�53 7�35 7�75
MnO 0�94 0�81 0�83 0�95 0�89 1�14 0�99 0�13 0�15 0�15
MgO 13�93 12�52 12�67 12�71 13�22 14�26 13�65 11�53 11�83 11�51
CaO 24�70 23�90 24�35 23�96 24�23 23�90 24�35 22�77 23�65 23�64
Na2O 0�38 0�47 0�41 0�51 0�40 0�51 0�37 0�53 0�42 0�51
Total 101�19 99�38 100�11 99�47 99�37 98�81 99�67 99�65 99�32 99�56
Formula based on 4 cations and 6 oxygens
Si 1�96 1�84 1�84 1�84 1�86 1�94 1�88 1�66 1�68 1�68
Ti 0�00 0�003 0�01 0�02 0�01 0�003 0�005 0�09 0�06 0�07
Al 0�07 0�16 0�16 0�16 0�15 0�05 0�12 0�41 0�38 0�37
Cr bdl bdl bdl bdl bdl bdl bdl 0�001 0�001 0�001
Fe3þ 0�04 0�18 0�18 0�17 0�15 0�11 0�12 0�12 0�15 0�16
Fe2þ 0�15 0�09 0�08 0�08 0�08 0�08 0�08 0�12 0�08 0�09
Mg 0�76 0�70 0�70 0�71 0�74 0�79 0�76 0�64 0�66 0�64
Mn 0�03 0�03 0�03 0�03 0�03 0�04 0�03 0�004 0�005 0�005
Ca 0�97 0�96 0�97 0�96 0�97 0�96 0�97 0�91 0�95 0�95
Na 0�03 0�03 0�03 0�04 0�03 0�04 0�03 0�04 0�03 0�04
Total cations 4�00 4�00 4�00 4�00 4�00 4�00 4�00 4�00 4�00 4�00
Mg# 0�84 0�88 0�89 0�89 0�91 0�91 0�90 0�85 0�90 0�88

bdl, below detection limit.
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Significance of calcite foidolites (carbonatite
magma–xenolith interaction)
Calcite foidolites in the Badberg sövites (Figs 6 and 7)

probably do not represent cumulates of the carbonatite

magma itself, since their mineralogy is very different

from the sövites and large differences in the modal

abundances would be expected. Also, feldspar, which is

found as relicts in the calcite foidolites, is generally un-

stable at the low silica activities expected for

carbonatite magmas (Barker, 2001; Massuyeau et al.,

2015). Therefore, we assume that these rocks represent

equivalents of previously emplaced silicate rocks

entrained in and subsequently resorbed and metasom-

atized by the intruding carbonatitic magma.

Despite their textural resemblance to haüynolites

that occur as xenoliths in some phonolitic rocks

(Czygan, 1977), the chemical composition of relict gar-

net (garnet type I) in calcite foidolites suggests that the

(a) (b)

(c) (d)

(e) (f)

Fig. 13. Compositional variation of garnet from carbonatites and calcite foidolites of the KVC. (a) TiþFe3þ vs SiþAl. The solid line
illustrates the ideal 1:1 substitution. (b) Garnet composition based on the octahedral-site occupations Fe3þ, X2þþTi (X¼ Mg, Fe2þ)
and Al and based on the endmembers andradite, morimotoite and schorlomite. (c)–(f) Concentrations of Nb, Zr, REE and Mg vs Ti,
with data from the KVC silicate rocks shown as grey fields for comparison (Braunger et al., 2018): (III) melilititic and haüynitic/haüy-
nolitic rocks, melteigites, IVa) nosean syenites (former ‘ledmorites’), (IVb) phonolites and nosean syenite inclusions therein.

22 Journal of Petrology, 2019, Vol. 00, No. 0



nosean syenites that underlie the Badberg body (as evi-

denced by the FB drill core; see Walter et al., 2018), are

the most likely protolith (Fig. 13). However, in contrast

to nosean syenites, calcite foidolites have a higher pro-

portion of sodalite-group minerals, alkali feldspar is al-

most absent and clinopyroxene and garnet are

subhedral to anhedral. We attribute these mineralogic-

al and textural differences to the interaction with the

carbonatite magma (Fig. 16).

Carbonatites reach liquidus temperatures above

1000 �C (e.g. Kharlomov, 1981; Panina, 2005; Guzmics

et al., 2011) and contain large amounts of volatile

phases (e.g. F and H2O; Treiman & Essene, 1984; Jago

& Gittins, 1991). Therefore, they can cause intense

metasomatism (Elliot et al., 2018) and may be capable

of partly assimilating silicate rocks. Textural evidence

for the interaction between the entrained xenoliths and

the carbonatite magma includes: (i) the almost com-

plete replacement of precursor alkali feldspar by foids;

(ii) the compositional change of nosean to haüyne; (iii)

blackwall-like mica seams around the xenoliths; (iv) the

occurrence of recrystallized garnet (garnet type II) with

relics of original garnet cores (garnet type I); and (v)

crosscutting carbonatitic veins (Figs 6 and 7). The modi-

fications in nosean syenites can be expressed by the

schematic mineral reactions (1) – (3):

alkali feldspar þ nosean ðnosean syeniteÞ !
haüyne ðcalcite foidoliteÞ

2 KAlSi3O8 þ Na8Al6Si6O24SO4 þ CaSO4ðmeltÞ
þCaO ðmeltÞ ¼ Ca2Na6Al6Si6O24ðSO4Þ2 þ Al2O3

þ 6 SiO2 þ K2O þ Na2O

(reaction 1)

original cpx ðnosean syeniteÞ !
recrystallized cpx ðcalcite foidoliteÞ

10 Ca0:8Na0:2Mg0:4Fe2þ
0:3Fe3þ

0:3Al0:1Si1:9O6

þ2 CaO ðmeltÞ þ 3 MgO ðmeltÞ
þ0:5 Al2O3ðreaction 1Þ

¼ 10 CaMg0:7Fe2þ
0:1Fe3þ

0:2Al0:2Si1:8O6

þ3 FeO þ Na2O þ SiO2 þ 0:25 O2

(reaction 2)

original garnet I ðnosean syeniteÞ !
recrystallized garnet II ðcalcite foidoliteÞ

10 ðCa2:9Mg0:1ÞðFe2þ
0:3Fe3þ

1:2Ti0:5ÞðAl0:2Si2:8ÞO12

þ0:5 ZrO2ðmeltÞ þ 0; 25 Nb2O5ðmeltÞ
þ0:5 Al2O3ðreaction 1Þ þ 0:125 O2ðmeltÞ

¼ 10 ðCa2:9Mg0:1ÞðFe2þ
0:2Fe3þ

1:3Ti0:3½Zr; Nb�0:1Al0:1Þ
ðAl0:2Si2:8ÞO12 þ 2 TiO2

(reaction 3)

Garnet II has relatively high Nb and Zr contents

(Fig. 13), reflecting the importance of the carbonatitic

magma during metasomatism, as carbonatites are typ-

ically enriched in these elements (usually stored in

pyrochlore, perovskite, baddeleyite and zirconolite).

Similar modifications of silicate rocks by carbonatitic

melts have been described as ‘antiskarn’

Table 9: Representative EPMA analyses of zirconolite from the
Kaiserstuhl Volcanic Complex

Sample # 1354 1354 C 71 C 72
Locality Haselschacher Buck Kaiserstuhl

Rock type Sövite

wt %
CaO 12�56 12�52 11�38 12�20
Na2O bdl bdl n.a. n.a.
SrO 0�29 bdl n.a. n.a.
La2O3 0�16 0�30 n.a. n.a.
Ce2O3 1�71 2�02 0�77 0�90
Pr2O3 0�37 0�34 n.a. n.a.
Nd2O3 1�03 1�13 1�10 n.a.
Sm2O3 0�27 0�19 0�27 n.a.
Y2O3 0�48 0�49 n.a. n.a.
ZrO2 33�75 32�68 30�51 34�80
UO2 1�04 1�23 1�22 1�40
ThO2 1�18 1�65 5�13 4�10
TiO2 10�81 10�66 13�56 22�70
Nb2O5 21�20 21�53 22�07 15�70
Ta2O5 4�10 4�45 3�08 n.a.
MgO n.a. n.a. 0�85 n.a.
Al2O3 0�91 0�82 n.a. n.a.
FeO 8�00 7�77 7�41 7�60
MnO 0�98 1�03 0�94 0�20
SiO2 bdl bdl n.a. n.a.
F bdl bdl n.a. n.a.
Total 98�83 98�80 98�29 99�60
Formula based on 4 cations
Ca 0�90 0�91 0�84 0�87
Na bdl bdl n.a. n.a.
Sr 0�01 bdl n.a. n.a.
REEþY 0�10 0�12 0�05 0�02
Zr 1�11 1�07 1�02 1�08
U 0�01 0�02 0�02 0�02
Th 0�02 0�03 0�08 0�06
Ti 0�55 0�54 0�70 1�10
Nb 0�64 0�66 0�67 0�46
Ta 0�07 0�08 0�06 n.a.
Mg n.a. n.a. 0�09 n.a.
Al 0�07 0�07 n.a. n.a.
Fe 0�45 0�44 0�42 0�38
Mn 0�06 0�06 0�05 0�01
Si bdl bdl n.a. n.a.
F bdl bdl n.a. n.a.
Total cations 4�00 4�00 4�00 4�00

bdl, below detection limit. n.a., not analysed.
C71: Data from Keller (1984). C72: Data from Sinclair &
Eggleton (1982).

Fig. 14. Compositional variation of zirconolite from the KVC in
comparison with other carbonatites (data from Williams &
Gieré, 1996; Hurai et al., 2018).
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metasomatism (Anenburg & Mavrogenes, 2018) and re-

flect the mutual interaction during contamination.

Importantly, xenoliths in the lower sections of the

KB3 drill hole, which represents the central part of the

tilted Badberg body, are much more strongly disaggre-

gated, which may indicate higher degrees of resorption

compared to the marginal parts of the body. This may

be attributed to a longer lasting heat flow that predom-

inantly occurred in the central area of the carbonatite

pipe, while marginal zones experienced an earlier and

more rapid cooling. Consequently, this central zone

contains more silica that may have induced the

observed exceptional mica enrichment in those parts

(Fig. 6). In these samples (down-hole below þ100

metres above sea level), pyrochlore is enriched in Fe2þ,

Al and Ti (Walter et al., 2018), which was probably

released by the resorption of xenoliths. Note that such

enrichment of Fe2þ and Al in pyrochlore is confined to

the Badberg locality and does not exist at the other car-

bonatite localities of the KVC.

The significance of mica composition
The enhanced formation of mica (and the formation of

diopside instead of monticellite/olivine) in the Badberg

samples cannot be ascribed to magmatic differenti-

ation, since silicates in carbonatites crystallize early,

which would decrease the SiO2 concentration and silica

activity in the carbonatite magma with fractionation

(e.g. Krasnova et al., 2004; Lee et al., 2004). However,

strong textural evidence and mineral compositions (see

above) suggest a connection between the formation of

mica (and cpx) and the entrainment of xenoliths in the

sövites from Badberg.

In contrast to mica from the other sövite bodies of

the KVC (which are dominated by the kinoshitalite sub-

stitution), mica at Badberg is dominated by the easton-

ite substitution (see above). This indicates that the

availability of Al exceeds the availability of Ba, most

likely due to the provision of Al by the resorption of

feldspar (reaction 1). Furthermore, Badberg mica

shows an unusual enrichment in octahedral Fe2þ. This

is atypical for the other sövites of the KVC and carbo-

natites in general (e.g. Kovdor, Palabora, Sokli and

Jacupiranga; Fig. 15), where the formation of tetraferri-

phlogopite (incorporation of Fe3þ) or Fe-poor phlogo-

pite is preferred over the formation of Fe2þ-rich mica

(biotite; e.g. Lee et al., 2003; Krasnova et al., 2004;

Giebel et al., 2019). While all other localities of the KVC

show ‘typical carbonatite micas’ with respect to their

Mg, Al and Fe concentrations, Badberg micas are more

similar to micas from silicate rocks (Fig. 15), which we

ascribe to the metasomatic interaction with the calcite

foidolite clasts and rafts (see above). Alteration reac-

tions (1) – (3) above demonstrate the release of K, Al,

Si and Fe2þ, which are consumed to form Fe2þ-bearing

mica (Figs 4c and 7a) according to the schematic

reaction:

K2O ðsee reaction 1Þ þ Al2O3ðsee reaction 1Þ
þ6 SiO2ðsee reactions 1 and 2Þ
þFeO ðsee reaction 2Þ þ 5 MgO ðmeltÞ
þ2 H2O ðmeltÞ ¼ 2 KMg2:5Fe0:5AlSi3O10ðOHÞ2

(reaction 4)

Besides the Fe2þ-enrichment, the micas of the

Badberg contain elevated amounts of Ti and Mn. While

Mn and also F are preferably incorporated into the mica

precipitating directly on the resorbed clasts (black-wall

Fig. 15. (a) Ternary diagrams of Mg–Altotal–Fetotal reflecting the compositional characteristics of mica from the sövites of the KVC,
with numbered grey areas representing mica compositions from the silicate rocks of the KVC (Braunger et al., 2018): (I) olivine
nephelinites; (II) tephritic rocks; (III) haüyne melilitites. (b) Mica compositions from other carbonatites with brown fields indicating
mica compositions in carbonatites and dark grey field mica compositions from associated silicate rocks (Palabora, Kovdor, Sokli
and Jacupiranga; Brod et al., 2001; Lee et al., 2003; Krasnova et al., 2004; Giebel et al., 2019). Ann, annite; Eas, eastonite; Sid, sidero-
phyllite; Phl, phlogopite; TfPhl, tetraferriphlogopite; TfAn, tetraferriannite.
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mica), Ti, Na and Ba behave mostly conversely and ap-

pear to have been enriched in the carbonate melt, fur-

ther distant from the resorbed clasts (Fig. 11). The

enhanced crystallization of mica at Badberg and the

related consumption of Mg from the carbonatite melt

may also be the reason for the relative depletion of Mg

in subsequently crystallized calcite (Fig. 8), due to the

generally very rapid diffusion in carbonatite melts and

their resulting very fast equilibration (e.g. Anenburg

et al., 2018 and references therein). Besides Mg, Ba was

also derived from the carbonatite melt itself, while the

enrichment of Ti (reaction 3) and additional Mn is prob-

ably related to the resorption and recrystallization of

clinopyroxene and garnet I. The absence of Fe2þ-poor

mica cores suggests that the entire mica crystallization

in the Badberg sövites took place during nosean syen-

ite–carbonatite magma interaction. Hence, mica com-

position cannot be easily used to track magmatic

differentiation at Badberg, but may still be applicable at

the other localities.

Enrichment of Ba in carbonatites is generally

ascribed to differentiation because of its incompatible

character (e.g. Kogarko et al., 2012; McCormick &

Heathcote, 1987; McCormick & Le Bas, 1996).

Moreover, Ba is efficiently mobilized in carbonatites, is

strongly concentrated in residual liquids and dissolves

favourably in aqueous fluids (Anenburg & Mavrogenes,

2018). Thus, the strong enrichment of Ba in the mica

from the Orberg sövites (Fig. 11) confirms the assump-

tion of Walter et al. (2018) that the Orberg sövites are

evolved and hydrothermally overprinted. The high Mg#

of Orberg mica is attributed to the relative enrichment

of Mg over Fe during differentiation (fractional crystal-

lization) due to the contemporaneous formation of Fe-

rich spinel group minerals. This is the reverse of what is

typically expected during silicate-magma differentiation

(dependent on the redox state of the magma; e.g.

Heathcote & McCormick, 1989; Giebel et al., 2019). A

comparison between the enrichment of Ba and the in-

crease of the Mg# in these micas suggests a much

stronger sensitivity of the former in terms of mica evo-

lution. In conclusion, mica does not only record differ-

entiation, but also contamination processes in

carbonatites exceptionally well.

The significance of apatite composition
The local increase in silica activity in the carbonatite

melt (reactions 1 & 2) enhanced the incorporation of Si

in apatite (Figs 9 and 10) and favoured simultaneous

REE incorporation due to the britholite substitution (e.g.

Hammouda et al., 2010). In contrast to cores of Badberg

apatites, which generally reveal a lower britholite sub-

stitution, rims are significantly more strongly affected

(Fig. 9a). The sharp contact between the cores and rims

suggests an abrupt and strong compositional change of

the carbonatite magma during apatite formation, which

excludes continuous magma differentiation, although

the generally high Sr contents in Badberg apatites

(Fig. 9c) indicate a relatively evolved character for the

Badberg sövites.

In contrast to a few apatites from the Orberg that

occur in strongly hydrothermally altered samples and

experienced a belovite substitution (see above; Fig. 9),

which is typical for hydrothermal apatite evolution in

many carbonatites (e.g. de Toledo et al., 2004;

Doroshkevich et al., 2009), a hydrothermal origin of the

Badberg apatites in respect of the increased britholite

substitution (0�3–0�5 REEþSi pfu) in its rims is also un-

likely. This phenomenon is restricted to magmatic tem-

peratures (>600 �C), while hydrothermal conditions

(including sufficient SiO2) promote the formation of

REE-poorer apatite and REE-rich silicate minerals (e.g.

cerite; Anenburg & Mavrogenes, 2018; Anenburg et al.,

2018). In addition, typical hydrothermal interaction tex-

tures (reprecipitation/replacement reactions; e.g. Giebel

et al., 2017) are typically absent in Badberg sövites.

We assume that the enhanced britholite substitution

in apatites is related to the interaction between the car-

bonatite magma and silicate xenoliths. The core–rim

variation records the time-dependent effect of contam-

ination. This is additionally reflected by the increasing

Si and REE content in apatite in the deeper sections of

drill core KB3 (Fig. 10; central zones of the pipe), where

a stronger disaggregation of xenoliths caused an

increased release of silica (see above). Experimental

data (Klemme & Dalpé, 2003) confirm enhanced parti-

tioning of REE into apatite with increasing SiO2 content

in the melt. This emphasizes the potential importance

of contamination of carbonatitic magmas for REE min-

eralization; the local enrichment of Si favours an early

(magmatic) incorporation of REE into apatite, which

inhibits the subsequent enrichment of REE in residual

liquids/fluids. These late-stage fluids, however, are the

most common source for the deposit-quality enrich-

ment of REE-minerals and/or REE-rich minerals in car-

bonatites (Wall & Mariano, 1996). This connection is

convincingly indicated by a comparison of the REE con-

centrations in apatite and pyrochlore between the

Badberg and other carbonatite bodies (Fig. 17). While

Badberg apatites are REE-rich (due to contamination;

Fig. 9a), the incorporation of REE in Badberg (late-stage)

pyrochlore seems to be largely unaffected. In contrast,

apatites at other localities are relatively REE-poor, while

hydrothermally overprinted pyrochlore at these local-

ities is strongly REE-enriched (see details in Walter

et al., 2018). This potentially has economic implications,

although it should be noted that calcite (due to its high

modal content) further contributes to the REE budget of

the rocks.

Mica in carbonatites – a potential clue to wall
rock interaction processes?
Many carbonatites contain appreciable amounts of

mica (e.g. Brod et al., 2001; Lee et al., 2003; Reguir et al.,
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2009; Giebel et al., 2019). In many carbonatites mica is

more or less equally distributed in the rock, but some

carbonatites contain cm- to m-sized mica-rich areas as

schlieren and lenses and even mica-dominated rocks

(glimmerites) occur in some cases at the contact be-

tween carbonatites and the host rocks (glimmeritiza-

tion; e.g. Gittins et al., 1975; Hoatson et al., 2011).

Our study shows that interaction of carbonatite

magma with silicate rocks may induce mica crystalliza-

tion in carbonatites due to the mobilization and redistri-

bution of K, Si, Al, Mg, Fe and H2O (reaction 4).

Similarly, Vuorinen & Skelton (2004) and

Chakhmouradian et al. (2008) showed that mica with an

unusual Fe2þ-rich composition in the Alnö and Eden

Lake sövites most probably is the product of the reac-

tion between the carbonatite melt and the silicate host

rocks. Thereby, the general question arises whether

‘pure’ carbonatites are capable of crystallizing mica in

larger quantities at all, or whether an additional enrich-

ment of K, Al, Si and Fe by contamination and inter-

action with silicate wall rocks is critically important.

Sufficient Mg occurs in the carbonatite magma itself

and experimental studies have shown that carbonate

melts are capable of containing relatively high concen-

trations of H2O (e.g. 10 wt % at 1 kbar; Keppler, 2003).

However, the available experimental data indicate that

carbonatites can dissolve only minor amounts of Al

(usually <1 wt % Al2O3; Brooker & Kjarsgaard, 2011)

and Si (<2�9 wt % SiO2) at conditions pertinent to

the KVC (750–1200 �C, subvolcanic pressures;

Weidendorfer et al., 2017).

We performed mass balance calculations based on

these experimental constraints, typical Al and Si con-

centrations in mica from the Badberg (and various

other carbonatites) and carbonatite melt densities (2�2–

2�6 g/cm3) estimated for middle to shallow crustal lev-

els at 800–1200 �C (e.g. Wolff, 1994; Genge et al., 1995;

Dobson et al., 1996; Kono et al., 2014). These calcula-

tions indicate that only minor modal amounts of mica

(<7%) can form from a carbonatitic melt – assuming

that sufficient K, Mg and H2O are available and no other

silicate minerals are present (ES1, Supplementary

Data; supplementary data are available for download-

ing at http://www.petrology.oxfordjournals.org).

Consequently, larger amounts of mica in carbonatites

would require an additional external introduction of Si

and Al. In fact, the enrichment of Al in some carbona-

tites has been ascribed to the resorption of feldspar

from fenitized wall rocks (McCormick & Le Bas, 1996),

which obviously also releases alkalis and Si. Further,

because of the relatively early fractionation of mica in

Fig. 16. Schematic diagram illustrating processes during con-
tamination of carbonatitic melt by wall rock. (a) Interaction of
carbonatitic melt with xenoliths of nosean syenite leads to re-
sorption of primary minerals in marginal zones and associated
release of some elements into the melt. (b) The released ele-
ments cause the formation of mica in black-walls, with Mg

Fig. 16. Continued
mostly provided by the carbonatitic melt. Contemporaneously
Fe3þ, Ca and CO2�

3 are incorporated in recrystallized garnet II,
diopsidic clinopyroxene II and calcite. (c) Completely resorbed/
recrystallized xenolith (now represented as calcite foidolite)
with relictic garnet I; primary nosean is completely replaced by
zeolite.
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carbonatites, rather mica-poor carbonatites are general-

ly expected at shallow crustal levels. This further

excludes the possibility that a compositionally distinct

carbonatite magma is responsible for the unusual en-

richment of mica in the Badberg sövites. Hence, con-

tamination may play a key-role for enhanced mica

formation in evolved carbonatitic systems, such as the

KVC. This notion is most likely also applicable for the

formation of other silicate minerals (e.g. Anenburg &

Mavrogenes, 2018). Here, though, different processes

have to be distinguished, including: (1) assimilation of

wall rocks/crystals (occurrence of xenoliths/xenocrysts);

(2) interaction with wall rocks via diffusion along com-

positional gradients (wall rock modifications); and (3)

introduction of alkali-rich fluids (not easily detectable).

CONCLUSIONS AND IMPLICATIONS

It is generally supposed that crustal contamination

plays a negligible role during carbonatite intrusion due

to the high rate of magma ascent, extremely low viscos-

ity and occasionally extraordinary low temperatures of

carbonatitic magmas (Treiman & Schedl, 1983; Jones

et al., 2013 and references therein). At the same time,

carbonatitic magmas are known to be extremely react-

ive because of their massive compositional contrast to

almost all crustal rock types and cogenetic silicate rocks

(the strong geochemical gradients result in intense dif-

fusional processes) and because of their high amounts

of fluxing agents such as P, F and other volatiles, caus-

ing various types of metasomatic reactions in deep-

seated mantle regions as well as at shallow crustal

levels.

Especially shallow-level carbonatites in active rift

zones, of which the Kaiserstuhl Volcanic Complex

(Southwest Germany) is a good example, may be asso-

ciated with brittle deformation during and after magma

emplacement, which may support disaggregation and

entrainment of fragments and rafts of country rocks

and/or cogenetic intrusive rocks. Sub-surface levels

may even promote the fragmentation of wall rocks by

explosive eruptions, where fragments of wall rock may

be partly resorbed by carbonatite melt prior to

consolidation.

Our study presents textural and geochemical evi-

dence that intense interaction between carbonatite

magma and fragments of earlier, cogenetic, intrusive

silicate rocks at a shallow emplacement level can in-

deed influence the mineralogy and mineral chemistry

of sövites. This contamination process causes a min-

eralogical and geochemical modification of both car-

bonatite and silicate rocks.
Mica that crystallized from such locally contami-

nated carbonatites may incorporate relatively high

amounts of octahedral Fe2þ, which is atypical of carbo-

natites in general. Such contamination processes may

even influence the timing, type and intensity of REE

mineralization and hence may be able to cause a re-

location of economic levels in a carbonatitic system. In

the Badberg case, wall rock interaction causes pre-

ferred incorporation of REE in apatite during the mag-

matic stage. This resulted in relative REE depletion

during the late-magmatic/hydrothermal stages. At

Orberg, however, contamination processes probably

did not play an important role and indeed, REE enrich-

ment in pyrochlore in these samples is much more in-

tense during the hydrothermal stage. However, the

otherwise commonly observed formation of late mag-

matic and hydrothermal REE-F-carbonate minerals (e.g.

bastnäsite, synchysite, parisite) in carbonatites is large-

ly lacking at the KVC.
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