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Abstract

Modern high-throughput technologies in proteomics and related fields produce evergrowing
amounts of complex experimental data. The wide range of techniques for quantification and
identification of peptides and proteins and the wealth of available instrument types give rise
to a wide range of computational challenges. As a consequence, computational data analysis
has become a crucial bottleneck of the overall workflow in today’s proteomics studies.

In this thesis, we present novel algorithms and tools for efficient automated data analysis
of high-throughput LC-MS proteomics data, evaluate their performance in various benchmark
settings, and demonstrate the successful application of our methods in a proteomics study in
the field of forensics science. All tools developed in the context of this thesis are implemented
in OpenMS, an open-source framework for computational mass spectrometry.

We introduce TOPPAS, a dedicated workflow engine for the analysis of LC-MS proteomics
data using OpenMS. TOPPAS facilitates rapid construction of complex analysis workflows and
offers parallel data processing on multi-core systems. The entire data processing workflow can
be designed, tested, fine-tuned, executed, and documented in a single interface, thus providing
researchers with a convenient way to organize and communicate their data analyses. The
successor of TOPPAS, an OpenMS plugin for the popular workflow platform KNIME, takes this
approach even one step further: In addition to the data processing tools provided by OpenMS,
KNIME offers a wealth of available workflow nodes for downstream data manipulation, statis-
tical analysis, and visualization. To enable analyses that require massive compute power, we
provide the KNIME2gUSE extension for KNIME, which allows to export KNIME workflows to
the Grid and Cloud User Support Environment (gUSE), which executes them on powerful grid
and cloud resources. Finally, we present a free plugin for the popular commercial Proteome
Discoverer platform (Thermo Scientific) making OpenMS algorithms available to an even larger
group of non-bioinformatics experts: LFQProfiler for label-free quantification and RNPxl for
protein-RNA cross-linking data analysis.

Motivated by common issues of existing approaches for label-free quantification in the
context of high sample complexity, we have developed OptiQuant, a novel method for label-free
quantification using mixed integer programming for globally optimal feature detection in label-
free proteomics experiments. The OptiQuant workflow includes FeatureLinkerUnlabeledKD,
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a novel algorithm for retention time alignment and linking of corresponding signals across
label-free LC-MS maps, which has become the state-of-the-art feature linking tool in OpenMS.

Last, but not least, we demonstrate the successful application of TOPPAS workflows for
label-free quantification of proteomics data, statistical data analysis, and machine learning
to assist in the forensic reconstruction of shooting incidents. Our proof-of-principle study
demonstrates that proteomics can be used to match bullets to perforated vital organs based on
the protein expression profiles found in traces of organic material remaining on the bullets. In
cases involving multiple shooters, this information can help answer the crucial question: who
fired the lethal bullet?
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Zusammenfassung

Moderne Hochdurchsatz-Technologien in der Proteomik und in verwandten Gebieten produ-
zieren immer größere Mengen an komplexen experimentellen Daten. Die große Auswahl an
Methoden zur Quantifizierung und Identifikation von Peptiden und Proteinen, sowie die Fülle
von verfügbaren Instrumententypen, führen zu einer großen Bandbreite von Herausforderun-
gen in der Datenauswertung. Somit ist die rechnergestützte Datenanalyse ein kritischer Engpass
heutiger Proteomik-Studien.

In dieser Arbeit präsentieren wir innovative Algorithmen und Anwendungen zur effizienten
automatisierten Datenanalyse von Hochdurchsatz-LC-MS-Proteomik-Daten, vergleichen ihre
Leistungsfähigkeit mit Hilfe verschiedener Benchmarks, und demonstrieren die erfolgreiche
Anwendung unserer Methoden im Rahmen einer Proteomikstudie im Gebiet der Rechtsmedizin.
Alle Anwendungen, die im Rahmen dieser Arbeit entwickelt wurden, sind als Teil von OpenMS
implementiert, einem quelloffenen Softwarepaket für rechnergestützte Massenspektrometrie.

Wir präsentieren TOPPAS, eine dedizierte Workflow-Lösung zur Analyse von LC-MS-Proteo-
mik-Daten mit Hilfe von OpenMS. TOPPAS ermöglicht den raschen Entwurf von komplexen
Datenanalyse-Workflows und bietet Parallelprozessierung auf Multi-Core-CPUs. Der gesam-
te Ablauf der Datenanalyse kann an ein und derselben Stelle entworfen, getestet, optimiert,
ausgeführt und dokumentiert werden, was es Wissenschaftlern ermöglicht, ihre Ergebnisse
auf komfortable Weise zu organisieren und zu kommunizieren. Der TOPPAS-Nachfolger, ein
OpenMS-Plugin für die Workflow-Plattform KNIME, geht noch einen Schritt weiter: Zusätzlich
zu den Anwendungen, die von OpenMS selbst bereitgestellt werden, bietet KNIME eine große
Auswahl an verfügbaren Workflow-Nodes zur anschließenden Datenmanipulation, statistischen
Analyse, und Visualisierung. Um Analysen zu ermöglichen, die extreme Anforderungen an die
Rechenkapazität stellen, stellen wir die KNIME2gUSE-Erweiterung für KNIME bereit, die es
erlaubt, KNIME-Workflows in die Grid and Cloud User Support Environment (gUSE) zu kon-
vertieren, wo sie dann auf leistungsfähigen Grid- und Cloud-Ressourcen ausgeführt werden.
Schließlich präsentieren wir ein quelloffenes Plugin für die beliebte kommerzielle Anwendung
Proteome Discoverer (Thermo Scientific), das OpenMS-Algorithmen einer noch größeren Grup-
pe von Nicht-Bioinformatikern zugänglich macht: LFQProfiler zur label-freien Quantifizierung
und RNPxl für Protein-RNA-Crosslinking-Analysen.
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Angeregt durch häufig auftretende Probleme von existierenden Ansätzen zur label-freien
Quantifizierung bei hoher Probenkomplexität haben wir OptiQuant entwickelt, eine innovative
Methode zur label-freien Quantifizierung, die mit Hilfe von Mixed Integer Programming eine
global-optimale Lösung für das Feature-Detektionsproblem berechnet. Der OptiQuant-Workflow
beinhaltet FeatureLinkerUnlabeledKD, einen neuen Algorithmus zur Retentionszeitkorrektur
und zum Zusammenführen einander entsprechender Signale über mehrere LC-MS-Proben
hinweg, der mittlerweile die effizienteste Lösung für diese Probleme in OpenMS darstellt.

Zu guter Letzt beschreiben wir die erfolgreiche Anwendung von TOPPAS-Workflows zur
label-freien Quantifizierung, statistischer Datenauswertung und maschinellem Lernen, um die
rechtsmedizinische Rekonstruktion von Schießereien zu verbessern. Unsere Machbarkeitsstu-
die zeigt, dass die Proteomik es prinzipiell ermöglicht, Projektile und Schusskanäle einander
zuzuweisen, anhand der Proteinexpressionsprofile in Spuren von organischem Material, das an
den Projektilen haftet. Sind mehrere Schützen involviert, kann diese Information sehr hilfreich
sein um die die entscheidende Frage zu beantworten: Wer gab den tödlichen Schuss ab?
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Chapter 1

Introduction

In 2001, the first drafts of the sequence of the human genome were published as a result of a
huge effort made by an international research project called the Human Genome Project and
a private company named Celera Genomics1,2. Genome sequencing had been around earlier,
and the human genome was not the first to be sequenced. Full genome sequencing of smaller
genomes (4000 - 7000 base pairs) has been described as early as 19793. The Haemophilus
influenzae genome (1.8 million base pairs) was sequenced in 19954, Drosophila melanogaster
(140 million base pairs) in 20005. And yet, when the sequencing efforts culminated in the
publication of the 3 billion base pair sequence of the human genome, a pivotal milestone in
biology was reached, heralding the start of a new era of biological research using approaches
that were fundamentally different from the ones existing before.

The availability of vast and ever-growing amounts of sequencing data led to a paradigm
shift from classical reductionist, hypothesis-driven research to technology- and data-driven
systems-level approaches. While classical reductionism tries to elucidate the function of a
system by understanding all its parts, one after another, systems biology aims at investigating
the entire system at once, as a whole. Here, the fundamental idea is that a system is more
than the sum of its parts. It has certain properties that emerge only from the complex interplay
between its individual components, and these properties cannot be understood by analyzing
its parts in isolation. The holy grail of systems biology is to eventually understand (and hence
be able to simulate) an entire biological system in all its complexity.

The rise of systems biology led to the emergence of a plethora of so-called omics fields,
such as genomics, transcriptomics, proteomics, metabolomics, or interactomics. All omics
technologies aim at investigating their respective omes, i.e., the entirety of the respective
entities. In the case of transcriptomics, for instance, the aim is to study the entire transcriptome,
which denotes the entirety of all messenger ribonucleic acid (mRNA) transcripts in a sample.
Interactomics aims at elucidating the entirety of all interactions between certain kinds of
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1. Introduction

molecules. As of June 2018, the community-maintained list of omes and omics on omics.org6

contained 364 entries (not all of which, admittedly, are equally relevant).7

This thesis deals mainly with data analysis in the field of proteomics. In contrast to the
genome, which is static in an individual (cancer and epigenetics aside), the proteome is highly
dynamic. One can think of the genome as an instruction manual describing all possible biolog-
ical processes (i.e., which genes are present in an organism and could eventually be translated
to proteins). The transcriptome describes what is actually supposed to happen under certain
circumstances, at a certain point in time (i.e., which genes are supposed to be translated
to proteins at this particular point and how many copies should be produced). Differential
gene expression in different cells, tissues, organs, or at different points in time leads to dif-
ferent abundances of RNA on the transcriptome level. This, in turn, translates to differential
abundances in the proteome, which comprises the actual set of proteins in a sample. On the
proteome level, in contrast to the transcriptome, post-translational modifications like phospho-
rylation or acetylation constitute another important layer of complexity, as the modification
state is often crucial for the function of a protein. Moreover, some proteins only become active
when forming complexes with other proteins or various other kinds of molecules. Proteins are
the key players in the cell as they are involved in virtually every biological function. Hence,
proteomics provides a very detailed picture of the cellular processes taking place under specific
circumstances. Differential proteomics plays a key role in understanding the molecular mech-
anisms of cellular signaling in general and in particular those of cancer and other diseases.
Here, the proteome is analyzed and compared between different conditions (e.g., tumor tissue
versus healthy tissue) or sampled multiple times in a time-series experiment where changes in
the proteome are monitored over time.

The most important technology in modern high-throughput proteome research is mass
spectrometry (MS), often coupled to high-performance liquid chromatography (HPLC, LC).
The typical experimental workflow starts with a sample containing purified proteins which are
digested to peptides using a protease, usually trypsin. These peptides are then injected into an
HPLC system which performs a chromatographic separation to reduce complexity. he HPLC
system is coupled on-line to a mass spectrometer which records the masses of all molecules
entering it. From the peptide masses and their signal intensities, the original set of proteins in
the sample can be reconstructed and quantified.

In today’s “post-genomic era”, proteomics is an important piece of the puzzle. The ques-
tions that can be asked are diverse and a variety of experimental techniques exist that can
help answering them. While some definitions of the term “proteomics” include anything that
deals with the study of proteins (including reductionist approaches like experimental structure
elucidation), there is some consensus among high-profile proteomics scientists that this term
should only be used for large-scale studies using high-throughput technologies that examine
the proteome as a whole rather than concentrating on individual proteins. With the rise of

2

omics.org


personalized medicine, large-scale clinical studies employing proteomics experiments with
hundreds or even thousands of samples are becoming more and more common. As an example,
the “Snyderome” project8, a huge integrative multi-omics project initialized by Michael Snyder
and co-workers in Stanford, has so far produced over half a petabyte of omics data of just
one person (as of November 2015). This study has since been extended to 100 people and
monitors, among other omes, the human blood proteome and the proteomes of the various
microorganisms inhabiting the subjects’ bodies over time. The goal is to further expand this
study to a million people and to use the tools of big data to gain a better understanding of the
interplay of various omes in health and disease, for identifying novel biomarkers for various
conditions, and for finding new drug targets9.

An obvious requirement for such large-scale studies is efficient automated data processing,
as the sheer amount of raw data makes manual analysis impossible. In principle, there are
two different approaches to automating data analyses: monolithic applications and modular
workflow systems. The former have the advantage that they are often relatively easy to use.
They are typically tailored towards one or few specific applications and require only little
interaction with the user. Most of the commercial data analysis platforms for proteomics
data fall into this category. The big disadvantage of monolithic solutions, however, is missing
flexibility. Study designs, the combination of the various employed instruments, and other
experimental conditions can vary immensely between different studies. More often than not,
these differences should also be reflected in the data analysis part. This is where modular
workflow systems come into play. They provide a means to composing custom data analysis
workflows by offering many small building blocks, each of them solving one specific task, which
can be chained together in a flexible manner. This approach ensures reusability of large parts
of the data analysis workflows while enabling the user to flexibly adapt and fine-tune the
analysis. Last but not least, using a single workflow from raw data to final results, including
statistical downstream analyses and the creation of plots, is a great way of documenting the
entire computational data analysis of a study and thus an important step towards reproducible
science.

Besides automation, another requirement for the analysis of such vast amounts of data is
the availability of efficient algorithms. The two most fundamental tasks in HPLC-MS-based
computational proteomics are identification and quantification of peptides and proteins. The
computational complexity of peptide identification usually scales linearly with the number of
samples. This is because each spectrum can be identified independently of the other spectra
and the number of samples. For quantification, however, this is not necessarily true. Here, one
fundamental problem is to establish correspondence between identical analytes from different
samples, so that their quantities can be compared. This problem arises mostly because of
the poor reproducibility of the HPLC part: slightly different experimental conditions (such as
temperature, amount of injected analyte, age of the HPLC column, etc.) lead to shifts in the
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1. Introduction

retention time of corresponding analytes across different HPLC runs. Shifts of up to several
minutes are not uncommon. Hence, individual samples cannot be analyzed independently of
each other and data analysis becomes more and more challenging with growing numbers of
samples.

There are two major strategies to tackle this issue: labeled quantification and label-free
quantification (LFQ). The various kinds of labeled quantification techniques all share the basic
idea that multiple samples can be labeled and then mixed together, so that they can be measured
in a single MS run. Labels are chosen such that they do not change the chromatographic
properties of the peptides but introduce a well-defined mass shift. Thus, corresponding peptides
originating from different samples elute at the same time. The problem of retention time
shifts is eliminated. Because the mass difference introduced by these labels is known, linking
corresponding analytes and assigning them to their respective samples of origin is relatively
straightforward. However, all labeled approaches have one obvious drawback: the number of
samples that can be quantified and compared is limited by the number of available labels. LFQ,
on the other hand, is also suitable for large-scale quantitative proteomics studies as the number
of samples is basically unlimited. LFQ methods can be further divided into spectral counting and
intensity-based approaches. While spectral counting circumvents the additional computational
effort of aligning corresponding analytes to each other, it is a rather unprecise quantification
method. Intensity-based LFQ outperforms spectral counting in terms of quantification accuracy
and sensitivity10 and should thus be the method of choice. As mentioned above, these methods
come at the price of additional computational problems that need to be tackled. Considering
the huge amounts of data produced by modern mass spectrometers, this computational part
nowadays represents the bottleneck of many large-scale proteomics studies.

The main contributions of this thesis are threefold: We have developed software for auto-
mated data processing of high-throughput LC-MS data using modular workflows, contributed
new concepts and algorithms for sensitive and accurate label-free quantification of proteomics
data, and successfully applied our tools in the context of an LC-MS proteomics study in the
field of forensic science. All software developed in the context of this thesis is closely related
to and has in large part been integrated into the OpenMS11,12 project. OpenMS is a versatile
open-source software framework for analyzing HPLC-MS proteomics and metabolomics data.

We present TOPPAS13, the OpenMS Proteomics Pipeline Assistant, which has become the
dedicated workflow engine of the OpenMS11 software suite. TOPPAS is specifically designed
for the analysis of LC-MS proteomics data using OpenMS/TOPP12. It enables fast construction
of complex analysis workflows using all available TOPP tools, and also provides a mechanism
to integrate external programs like the popular ProteinProphet14 or ProteoWizard’s raw file
conversion tool msconvert15. From the development and use of TOPPAS, we have learned
valuable lessons about the importance of various workflow language concepts.
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The TOPPAS workflow language is rather minimalistic, and yet is able to implement almost
any conceivable TOPP workflow. These ideas found their way into the implementation of the
Generic KNIME Nodes (GKN)16 plugin for the popular general-purpose workflow and data-
analysis platform KNIME17. GKN allows to wrap arbitrary command line tools into KNIME
nodes, as long as their command line interface can be described by a so-called Common Tool
Descriptor (CTD) file. It enables file-based data flow (as opposed to KNIME’s default, which
is table-based in-memory data flow) and provides special nodes implementing a subset of
the workflow language features of TOPPAS. The successor of TOPPAS, an OpenMS plugin for
KNIME, was built on top of GKN. KNIME-OpenMS thus uses a workflow language very similar
to that of TOPPAS. To enable analyses that require more computational resources than a single
compute node can offer, we provide the KNIME2gUSE extension for KNIME, which allows to
convert entire KNIME workflows to the Grid and Cloud User Support Environment (gUSE)
workflow language18. With gUSE, workflows can then be executed on powerful grid and cloud
resources.

Moreover, we present two new plugins for the Thermo Proteome Discoverer platform that
make OpenMS algorithms available to an even larger group of non-bioinformatics experts:
LFQProfiler for label-free quantification and RNPxl for protein-RNA cross-linking data analysis.
The tight integration with the built-in data processing and visualization tools of Proteome Dis-
coverer make these more user-friendly than their equivalents in full-fledged workflow solutions
like TOPPAS or KNIME, at the expense of modularity and flexibility.

Signal detection and quantification of raw data in datasets with high sample complexity
is a key challenge in today’s label-free proteomics studies, since overlapping signals can skew
quantification or prevent feature detection altogether. Based on established concepts of a pre-
viously described LFQ workflow using OpenMS19 and on a recently described signal detection
approach originally designed for metabolomics data20, we have developed OptiQuant, a novel
method for label-free quantification using a mixed integer programming approach for globally
optimal feature detection across all runs of a label-free experiment at once. The OptiQuant
approach includes FeatureLinkerUnlabeledKD, a novel algorithm for retention time alignment
and linking of corresponding signals across label-free LC-MS maps, which has shown to be
substantially faster and thus replaced its predecessor, FeatureLinkerUnlabeledQT, as the state-
of-the-art feature linking tool in OpenMS. We evaluate the overall quantification performance
of the OptiQuant workflow in a series of benchmark comparisons with other state-of-the-art
tools for LFQ.

Last, but not least, we demonstrate the successful application of TOPPAS workflows for
label-free quantification of proteomics data, statistical data analysis, and machine learning to
assist in the forensic reconstruction of shooting incidents. Matching bullets to victims by means
of DNA analysis has become a routine task in modern forensics. However, it is still rather diffi-
cult to determine which projectile caused the lethal injury in cases involving multiple shooters
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1. Introduction

and bullet channels. In a proof-of-principle study, we demonstrate that proteomics can be used
to match bullets to perforated vital organs based on the protein expression profiles found in
traces of organic material remaining on the bullets. This study lays important groundwork for
future efforts to establish our method as a routinely used technology in forensic science.
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Chapter 2

Background

2.1 Mass Spectrometry-Based Proteomics

Mass spectrometry is a widely used analytical technique for measuring the mass and abundance
of charged analytes. It has applications in various omics fields, most notably in proteomics
and metabolomics. Here, the principal goal is to identify and quantify analytes of interest. In
targeted omics experiments, the set of analytes of interest is determined a priori, whereas in
untargeted omics, the entire ome (proteome, metabolome, lipidome, ...) is captured, without
prior assumptions as to what will be detected. For proteomics, the analytes are either intact
proteins or – more commonly – peptides resulting from the enzymatic digestion of proteins.
If proteins are digested first, the approach is also referred to as shotgun (or bottom-up) pro-
teomics, whereas experiments on intact proteins are called top-down proteomics experiments.
Analyzing intact proteins has the obvious advantage that the identity and abundance of a
protein of interest does not have to be reconstructed from the identity and abundance of its
peptides. However, it comes with significant challenges in protein identification, since the mass
and isotopic fine structure of an entire protein cannot be resolved accurately enough for unam-
biguous identification in the general case. In the following, we will provide an overview of the
technology and discuss the fundamental data analysis challenges in mass spectrometry-based
shotgun proteomics.

2.1.1 Sample Preparation

Sample preparation for LC-MS shotgun proteomics experiments typically involves a protein
purification step and the enzymatic digestion of proteins to peptides. A variety of sample
preparation tools and strategies exist, and careful and consistent sample preparation is a crucial
first step in proteomics experiments. This is because inconsistencies in sample preparation
often translate to significant technical variation in the measurement results. Here, we restrict
ourselves to a brief explanation of the protein digestion step, since this is the fundamental
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Figure 2.1: Basic components of a typical LC-MS proteomics experiment. A protein
sample is digested to peptides, which then undergo a separation step before they enter
the mass spectrometer (MS). The MS consists of three fundamental parts: the ion source,
the mass analyzer, and the detector. Here, we show a selection of available types for the
different components. Adapted from Bielow21.

step producing the actual analytes. The digestion procedure has an important impact on the
properties of these peptides.

Proteins are digested to peptides using a protease, most commonly trypsin. Alternatives
are available, but trypsin is usually preferred because it has a number of desirable properties:
It cleaves specifically after lysine and arginine residues, and thereby creates peptides with
at least two positive charges (at the C- and N-terminus). This is important since the mass
spectrometer can only measure charged analytes. The average length of tryptic peptides is 14
amino acids22, which means that their average mass-to-charge ratio is well within the range
of modern instruments.

2.1.2 Analyte Separation

The complex nature of omics samples often necessitates a separation step. It is virtually im-
possible to identify or quantify the proteins in a complex proteomic sample (e.g., whole cell
lysate or serum) by recording and analyzing a single mass spectrum, due to the large number
of overlapping signals (especially at lower resolutions23). Instead, the sample complexity is
first reduced by means of a separation step. Traditionally, two-dimensional gel electrophoresis
has been a popular method for peptide separation. In today’s era of high-throughput omics
technologies, however, this has widely been replaced by more modern methods that can be
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automated and coupled online to the mass spectrometer and thus allow for a faster analysis of
the proteome during separation.

The most commonly used peptide separation technique is high-performance liquid chro-
matography (HPLC)24. Here, the peptide solution is forced through a chromatography column
at high pressure. Peptides are retained by the column for a certain amount of time. This
achieves a separation of the peptides because the so-called retention time (RT) is different
for different peptide species. It is (to some degree) reproducible for the same analyte across
multiple chromatography runs using the same setup.

HPLC involves a stationary phase (the column) and a mobile phase (a solvent, usually
containing water, acetonitril, and/or methanol). At RT= 0, the peptide solution is injected
into the mobile phase, and the resulting mixture is forced through the column at high pres-
sure. Retention time is a function of certain physico-chemical properties of the analytes (e.g.,
hydrophobicity, ionic interactions), properties of the chromatography column, composition of
the mobile phase, pressure, and temperature. The composition of the solvent can be changed
over time. The resulting profile of solvent composition over time is called the HPLC gradient.
The solvent composition has an impact on the interactions of the analyte with the two phases
and thus affects the retention behavior of peptides in the column. A certain peptide species
will only begin to elute from the column when its solubility in the mobile phase is high enough
and outweighs the physico-chemical effects retaining it in the stationary phase. A typical HPLC
gradient for complex samples has a duration of a few hours.25

2.1.3 Mass Spectrometry

Mass spectrometers are scientific instruments that can measure the mass – more precisely:
the mass-to-charge ratio or m/z – of charged molecules and quantify their signal. Here, m is
the molecular mass in Dalton (Da) or u, and z is the number of elementary charges. m/z is
commonly considered a unitless quantity. The unit Thompson (Th= u

e ) has been proposed as
an alternative notation but is rarely being used today26.

The result of a single mass spectrometric scan is a mass spectrum with m/z on the x-axis and
signal intensity (a unitless measure for the abundance of detected ions) on the y-axis. Modern
instruments are sufficiently accurate to allow for reliable charge state determination of the
measured analytes and hence the determination of their actual mass. Compound identification
can then be achieved either by comparing the accurate mass of an intact analyte with a set of
expected masses of candidate molecules, or by analyzing the masses of certain fragments of
the compound resulting from a purposefully induced fragmentation step.

Two numbers describe important characteristics of any mass spectrometer: the resolution
and the mass accuracy of an instrument27. For some instruments, the resolution decreases with
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increasing mass-to-charge ratio. Per convention, it is thus usually reported for m/z = 400 and
defined as

R=
(m/z)
�(m/z)

, (2.1)

where �(m/z) is defined as the full width at half maximum (FWHM) of the approximately
Gaussian shaped raw peak signal for any given analyte measured at this m/z. The resolution
is thus inversely correlated with the minimum m/z distance between the maxima of two
neighboring (overlapping) peaks such that they can still be told apart by the mass spectrometer.
More intuitively,�(m/z) is the peak distance between two overlapping peaks of equal intensity
at this m/z that are separated by a valley which has a minimum at 50% of the peaks’ maximum
intensity.

The mass accuracy is the relative error of the measured mass of an ion compared to its
theoretical mass in parts per million (ppm). Mass accuracy can vary from measurement to
measurement, but the average mass accuracy is an informative instrument-specific property of
mass spectrometers.

Mass accuracy=
(m/z)measured � (m/z)theoret ical

(m/z)theoret ical
(2.2)

The basic components of a mass spectrometer are depicted in Figure 2.1: The ion source,
the mass analyzer, and the detector. The latter two operate in a vacuum. There are different
varieties for each of these modules. In the following, we will discuss the most notable examples
used in modern instruments.

Ion Source

There are essentially two different kinds of ion sources that are commonly used in mass spec-
trometry-based proteomics experiments: electrospray ionization (ESI)28 and matrix-assisted
laser desorption/ionization (MALDI)29 sources. Both are so-called soft ionization techniques,
as they leave the analyte mostly intact.

For MALDI, the peptide sample is first mixed with a solution of matrix molecules. This
solution is then spotted onto a metal plate, the solvent evaporates, and the matrix molecules
crystallize. Now, the peptides are embedded (co-crystallized) in the matrix. In order to achieve
the actual ionization, short laser pulses are shot at the crystallized spots, and the resulting
ions enter the mass spectrometer. MALDI is an offline technique, as it cannot easily be coupled
directly to a continuous separation technique like HPLC. If separation is performed prior to
mass spectrometry, fractions of eluting analytes have to be collected and spotted onto the plate
individually. One important advantage of MALDI is the fact that the crystallized samples can
be stored and re-analyzed, because only a fraction of the analytes in the crystal is ionized by a
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single laser pulse. Thus, it is possible to perform an initial experiment to gather preliminary
data, and then use these data to optimize instrument parameters for the main run. In some
applications (e.g., clinical or forensic), the ability to store and re-analyze samples later may
also be of significance from a legal perspective.30

The most widely used ionization technique is ESI. Electrospray ion sources can be coupled
online to the HPLC, which makes it the method of choice for high-throughput applications. A
simple schematic of the electrospray ionization process is shown in Figure 2.2. The analyte
solution entering the ESI source is forced through a fine spray needle at the tip of the HPLC
column. A high voltage is applied to this needle, leading to the formation of positively charged
droplets of peptide solution. These droplets are directed towards the (negatively charged) mass
spectrometer through a near-vacuum heated region in which the solvent evaporates. Once the
positive charge of an evaporating droplet exceeds a certain limit, it can dissociate explosively.
At the entrance to the mass spectrometer, all peptides are effectively desolvated, leading to
a constant stream of positively charged peptide ions entering the mass analyzer. The exact
physical processes involved in ESI are not yet completely understood.31

Desolvated
peptide ions

Charged dropletsHPLC column

+2 kV to +5 kV

Heated desolvation region

MS

Figure 2.2: Schematic of an ESI source. At the tip of the charged spray needle, charged
droplets of peptide solution form and are directed through the heated desolvation region
towards the mass spectrometer. On their journey, the solvent evaporates and the charged
peptides are completely desolvated when they enter the mass spectrometer. Adapted with
permission from Kinter and Sherman32. Copyright 2005 John Wiley and Sons.
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Mass Analyzer

The mass analyzer of a mass spectrometer is responsible for determining the m/z of the injected
ions. A variety of different mass analyzer designs are available today. They can be roughly
divided into three different groups:

• Selective mass filters, which create an electromagnetic field that lets only ions of a
certain m/z ratio pass on to the detector and discards all others. A prominent example
is the linear quadrupole mass filter.33

• Time-of-flight (TOF) mass analyzers, which infer the m/z of an ion by accelerating it
through an electric field and measuring the time elapsing until it reaches the detector.
The time of flight of an ion is proportional to the square root of its m/z ratio.34

• Fourier transform MS (FTMS) analyzers, which infer the m/z of a set of analytes by
Fourier-transforming the measured current induced by ions oscillating in an electric
(Orbitrap) or magnetic (Fourier-transform ion cyclotron (FTICR)) field.35

All datasets analyzed in this thesis have been generated by Orbitrap36 hybrid instruments,
in which the Orbitrap is combined with an additional linear trap quadrupole (LTQ) or with a
linear quadrupole mass filter (Thermo Fisher’s QExactive instrument family). These analyzer
types shall thus be highlighted briefly.

Linear quadrupoles have found multiple uses in the design of mass spectrometers. They
can either serve as a selective mass filter in the way described above, or – in combination with
an additional electric field constraining the ions’ movement in the axial direction – they can
serve as a linear ion trap that selectively stores ions over time. Quadrupoles are also used
as collision chambers, where priorly selected ions can be fragmented by means of collision-
induced dissociation (see Section 2.1.3 for more information on this fragmentation step). The
basic setup of a linear quadrupole is depicted in Figure 2.3: four parallel cylindrical metal rods
create an electric field through which only ions of a certain m/z can reach the detector. Ions
arriving at the detector at any given time can be attributed to the m/z currently selected by the
quadrupole. In order to record a full mass spectrum, the entire mass range has to be scanned
like this. In some modern instrument designs, the quadrupole has been replaced by a more
efficient hexapole or octupole, but the general functional principle remains the same.33

The Orbitrap36 is one of the most popular high-resolution mass analyzers in mass spectrom-
etry-based proteomics. As a matter of fact, the traditional distinction between mass analyzer
and detector is not entirely appropriate here. In FTMS instruments like the Orbitrap, it would
be more adequate to speak of a unified “mass analyzer and detector” module, which uses a
subtly different strategy to perform the measurement: Here, a packet of ions (of different m/z)
is trapped in an electric field orbiting around a central spindle-like electrode while oscillating
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Figure 2.3: A linear quadrupole. The two diagonal pairs of rods are connected to a DC
offset voltage of equal magnitude and opposite sign. In addition, a radio frequency (RF)
voltage is applied, where the phases of the two pairs are shifted by 180°. This setup creates
an oscillating electromagnetic field through which only ions of a specific m/z can pass on
a stable spiral trajectory, whereas all other ions collide with the rods and are thus filtered
out. By adjusting the applied voltages, the quadrupole can be set to select ions of a certain
m/z ratio.

back and forth along the spindle axis. The current induced by the oscillation of these ions is
measured on an outer barrel-like electrode. The recorded signal corresponds to the sum of
all currents induced by each individual ion. It can thus be Fourier-transformed to reconstruct
the m/z and abundance of all ions contained in the packet. As the frequencies of the induced
current can be determined very accurately, Orbitraps and other FTMS instruments have a
comparatively high mass accuracy and resolution. Trapping and analyzing ion packages for
longer periods of time allows more accurate averaged measurements but comes at the expense
of longer cycle times. The basic setup of an Orbitrap mass analyzer and detector is explained
in Figure 2.4.

Detector

While FTMS instruments like the Orbitrap use a combined “analyzer/detector” module as
explained above, TOF and quadrupole mass spectrometers have a separate detector module
whose sole purpose is the quantification of incoming charged particles. The detector itself
is agnostic of the mass of these ions, it only registers the incoming charge. In TOF mass
spectrometry, the time elapsed between acceleration and detection determines the m/z of
the detected ion. With quadrupole mass filters, the m/z of an ion registered by the detector
corresponds to the current voltage setting of the quadrupole. The most basic detector design is
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Figure 2.4: Schematic of an Orbitrap. Before entering the mass analyzer, ions are collected
in a curved ion trap (C-trap). The ion beam is focused and an ion packet is directed into
the Orbitrap. Here, ions orbit in an electric field around the central spindle-like electrode
while oscillating back and forth along the spindle axis. The frequency of an ion’s axial
oscillation corresponds to its m/z. The frequency spectrum for the entire ion packet can be
computed via Fourier transformation of the measured signal. Artwork by Thermo Fisher
Scientific (CC-BY-SA 3.0)37.

14



Computational Mass Spectrometry

the Faraday cup. Here, incoming ions collide with a metal plate carrying the opposite charge.
The current compensating for the resulting charge transfer between the ions and the plate can
be measured and corresponds to the abundance of incoming ions. A more sensitive variant is the
electron multiplier, where incoming ions trigger the emission of electrons, which in turn trigger
the emission of even more electrons, leading to a positive feedback loop that amplifies the
original signal by several orders of magnitude. Both Faraday cups and electron multiplers are
so-called destructive detection methods, since the ions are immediately decharged upon contact
with the detector and thus cannot be analyzed any further. In contrast, the “analyzer/detector”
modules utilized in FTMS instruments are non-destructive.

Tandem Mass Spectrometry

It is infeasible to unambiguously identify higher-molecular-weight biomolecules (such as pep-
tides and proteins) based on their accurate mass alone. Even if mass spectrometers had suffi-
cient resolution and mass accuracy to allow for the unambiguous identification of the analytes’
sum formulae, this would still not provide any insight into the structural arrangement of the
atoms. However, an important breakthrough in mass spectrometry, the invention of tandem
mass spectrometry, has enabled scientists to reliably identify peptides and other analyte species
using an additional fragmentation step.

In tandem mass spectrometry, mass spectrometric measurements are performed at two
different levels, the so-called MS1 and MS2 level. The MS1 scan (or survey scan) produces a
conventional full mass spectrum of the intact analytes currently emitted by the ion source as
described above. This spectrum is referred to as the MS1 (or simply MS) spectrum. Now, the
key idea is that analytes detected in this survey scan can be selected and redirected to a collision
cell, where they are purposefully fragmented by collision with a natural gas in a process called
collision-induced dissociation (CID). As a result, the peptides break into characteristic fragments
that can be further analyzed to reconstruct their amino acid sequence. Thus, after CID, the
fragments are measured in an additional MS2 scan. The resulting fragment spectrum is called
an MS2 or MS/MS spectrum. The parent ion selected for fragmentation is often referred to as
the precursor ion, its fragments are also called product ions. For more information on the data
analysis aspects of peptide identification via tandem mass spectrometry, see Section 2.2.2.38,39

2.2 Computational Mass Spectrometry

In a typical 2-4 hour HPLC-MS proteomics experiment, a modern mass spectrometer can
produce several gigabytes of raw data. The ever-growing volumes of generated data and the
inherent variety of algorithmic and statistical data analysis challenges have made computational
mass spectrometry an indispensable interdisciplinary research field on the interface of analytical
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chemistry, statistics, computer science, and biology. The topics addressed span a wide range,
including (but not limited to) the compact storage of raw data in free formats, consistent
representation of associated metadata, efficient algorithms for signal detection, data reduction,
peptide identification, statistical validation of identifications, peptide quantification, protein-
level inference from peptide data, downstream statistical analyses, and automation of high-
throughput data processing using workflow systems.

We will begin with an overview of basic concepts, data characteristics, and nomenclature
conventions in HPLC-MS/MS data analysis, followed by an overview of common approaches
to the most fundamental problems in computational proteomics: peptide identification and
quantification. Finally, we will provide a brief introduction to OpenMS, an open-source frame-
work for mass spectrometry data analysis which has served as the primary development library
and toolbox for the work described in this thesis.

2.2.1 Basic Concepts and Terminology

Figure 2.5: Example of a mass spectrum. The outer graph depicts an MS spectrum for a
selected m/z range. The embedded graph shows a zoomed-in version of one of the mass
spectrometric signals in which the characteristic isotope pattern of the analyte becomes
visible. Raw data peaks (as recorded by the instrument) are shown in green, centroided
peaks resulting from a post-acquisition peak picking step are shown in blue.

Mass Spectra and Peaks

A mass spectrum is the entirety of all mass spectrometric signals recorded in a single scan
across the instrument’s m/z range. The x-axis of a mass spectrum is the m/z, and the y-axis is
the recorded intensity. A selected region of a typical mass spectrum is depicted in Figure 2.5.
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An important detail to note is that the peaks recorded by the instrument are not simply pairs of
m/z and intensity, but instead have an approximately Gaussian shape with a certain peak width
that depends on the instrument resolution (see Section 2.1.3). While some instruments have
optional built-in peak picking algorithms developed by the vendor, it is sometimes preferred
to record the spectra in raw profile mode and perform a post-acquisition peak picking step
using a third-party peak picking algorithm, such as the ones implemented in OpenMS (see
2.2.4) or the popular raw file conversion tool msconvert15. With modern high-resolution mass
spectrometry data, the loss of information due to peak picking is negligible. The difference in
raw data disk space requirements and efficiency of downstream data processing algorithms,
however, is significant.

Isotope Patterns

With sufficient instrument resolution, the signal of a single analyte in a mass spectrum consists
of more than one peak, due to the incorporation of isotopes. Isotopes are atoms of the same
element with the same number of protons but different numbers of neutrons (and thus differ-
ent mass). In nature, isotopes occur with element-specific abundances. The most abundant
isotope of carbon, for instance, is carbon-12 (12C) with 6 protons and 6 neutrons. It accounts
for around 99% of all carbon on earth. The remaining 1% is 13C with one additional neutron.
One distinguishes between the monoisotopic mass and the average mass of an element’s atoms:
the monoisotopic mass is the mass of its most abundant isotope, whereas the average mass
is the weighted average mass of all naturally occuring isotopes (weighted by relative abun-
dance). These two different notions of mass can be transferred to the molecular level simply
by summing up the monoisotopic or average masses of a molecule’s atoms. Otherwise identical
molecules containing different isotopes, i.e., differing only in the number of neutrons, are called
isotopologs. Naturally, the isotope distribution for isotopologs is more complex than atom-level
isotopic abundances. For molecules comprised of a single element, it corresponds to a multi-
nomial distribution1. With increasing number of contained elements, however, computing the
isotope distribution of a molecule becomes more involved. The OpenMS implementation used
in this thesis employs a convolution-based approach, which performs O(log n) convolution op-
erations for an upper bound n on the isotopic rank (number of additional neutrons). In shotgun
proteomics, n < 10 is usually sufficient, since the probability to observe more is vanishingly
low for almost any peptide.38,40

For proteomics data, a simple trick allows us to approximate the isotope distribution for
arbitrary peptides based on their mass alone: Since peptides and proteins are comprised of
amino acids, we can simply compute the sum formula of a hypothetical “average” amino acid,
the so-called averagine, comprising average amounts of the elements carbon, hydrogen, ni-

1binomial if the element has exactly two isotopes
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trogen, oxygen, and sulfur (CHNOS) found in amino acids. The fractional sum formula of
averagine is C4.9384H7.7583N1.3577O1.4773S0.0417, its molecular mass is 111.1254 Da41. For any
given peptide mass, the numbers of CHNOS atoms can thus be approximated by dividing the
mass by 111.1254 Da, multiplying the resulting “number of averagines” with the respective
average number of atoms for each of these elements, and filling the remainder with additional
hydrogen atoms. With these numbers, the isotope distribution of the peptide can be approxi-
mated as described above. This will be relevant in Section 4.2.3, where we use the averagine
model to score hypotheses in a peptide signal detection algorithm.

It is important to note that the mass difference between an isotope with N neutrons and
an isotope with N + 1 neutrons does not exactly equal one neutron mass. This is because the
presence of an additional neutron also has an impact on the nuclear binding energy. With E =
mc2, this translates to a certain mass difference, contributing to the element-specific mass defect
of the atom. For instance, the mass difference between 12C and 13C amounts to ~1.003355
Da, whereas the masses of 1H and 2H differ by ~1.006277 Da. Thus, on the molecular level,
this means that there is not only a single mass for isotopologs with one additional neutron,
but one for each contained element. Modern ultrahigh-resolution instruments are capable of
resolving this so-called isotopic fine structure to a certain degree (depending on the molecular
weight and element composition of the analyte).

Figure 2.5 shows the isotope pattern of a doubly charged peptide. Because the most abun-
dant isotopes of CHNOS are also the lightest isotopes of these elements, the monoisotopic peak
of a peptide is always the one with lowest m/z. Here, the monoisotopic (leftmost) peak is also
the most intense one. Apart from the monoisotopic peak, we can observe additional isotopic
peaks for isotopologs with up to four additional neutrons. The corresponding peptide has
charge z = 2. The m/z distance between two consecutive isotopic peaks is thus approximately
1.003355Da

z ⇡ 0.501678. Note that we use the mass difference between 12C and 13C for this
calculation. Although not entirely correct, this works well in practice as 13C isotopes dominate
the isotopic fine structure due to their comparatively high natural abundance and the high
carbon content of peptides.

LC-MS Maps

LC-MS datasets consist of a series of mass spectra, recorded at a certain interval (e.g., every
second) for the duration of the HPLC gradient. So far, we have only considered individual
mass spectra. Adding retention time as an additional dimension (one time point per spectrum)
yields a three-dimensional representation of the whole LC-MS dataset, which we refer to as
an LC-MS map or peak map. As the total signal caused by an analyte is three-dimensional (a
set of points [RT, m/z, intensity]), algorithms for peptide signal detection and quantification
usually operate in this space rather than on individual mass spectra. Figure 2.6 shows a 3D
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visualization of a small selected region from a map of an LC-MS experiment measuring yeast
whole-cell lysate, acquired on an LTQ Orbitrap XL mass spectrometer10.

Figure 2.6: 3D view zoomed into a small region of an LC-MS map. Several peptide
features can be distinguished, each showing its characteristic isotope pattern in the m/z
dimension and an approximately Gaussian elution profile in the RT dimension.

Chromatograms

Another fundamental data type in LC-MS data analysis is the chromatogram, the chromato-
graphic counterpart of the mass spectrum. Here, signal intensity is described as a function
of retention time rather than m/z. For LC-MS data, a chromatogram can be obtained simply
by summing up the mass spectrometric signals within a certain m/z window for each spec-
trum. The so-called total ion chromatogram (TIC) sums across the entire m/z range. It is a
valuable diagnostic measure for HPLC quality control, as it approximates2 the total amount
of eluting analytes over time. In contrast, extracted-ion chromatograms (XIC) isolate a narrow
m/z window, typically to extract and quantify the signal of a single analyte as a function of
retention time. The shape of chromatographic peaks varies with certain HPLC parameters and
experimental conditions. It is usually modeled as a Gaussian, or as an exponentially-modified
Gaussian if peaks show significant asymmetry (tailing).

2not “equals” since the TIC can be distorted by varying analyte-specific ionization efficiencies
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Mass Traces and Features

In the context of MS-based quantification, the term feature refers to the entire MS signal
caused by a specific charge variant of a single analyte (potentially with adducts). In Figure
2.6, we can recognize a number of different peptide features. Each consists of a few (3-5)
co-eluting mass traces showing an approximately Gaussian elution profile. The m/z distances
between mass traces as well as their intensity distribution is determined by the analyte-specific
isotope distribution. Feature detection (or feature finding) denotes the process of detecting
and quantifying all analyte features present in the data. The overall intensity of a feature is
usually computed as the sum of the areas under the chromatographic peaks of its isotopic traces.
Thus, in feature detection, the entire signal of a peptide, consisting of hundreds or thousands
of mass spectrometric peaks, is basically condensed into four numbers: the m/z and RT of
the chromatographic apex of the monoisotopic mass trace, the charge of the corresponding
peptide, and the overall intensity.

2.2.2 Identification

Basic Idea

As mentioned in Section 2.1.3, tandem mass spectrometry allows the identification of peptides.
In this section, we want to address the data analysis aspects of peptide identification via tandem
mass spectrometry. The basic idea is that, due to collision with natural gas in the collision cell,
the peptide breaks into characteristic fragments, and comparing these fragment masses to the
known masses of amino acids (or to sums of several) allows the reconstruction of the peptide
sequence. The most frequently breaking bond is the amide bond between the ↵-carboxyl group
of one amino acid and the ↵-amino group of another, leading to the formation of b- and y-ions
(see Figure 2.7).39

De Novo vs Database Search

Peptide identification from tandem mass spectrometry data without using external sequence
information (candidate sequences) is referred to as de novo sequencing. Current state-of-the-art
tools for de novo identification include PepNovo42, NovoHMM43, and Antilope44. Here, the
identification is done solely by detecting fragment ion series in the spectrum and attributing
their mass differences to matching amino acids. Although conceptually very attractive, de
novo sequencing has difficulty identifying spectra with missing peaks and struggles with the
combinatorial complexities inherent in this kind of analysis, especially in the presence of noise.
In general, these methods thus typically require relatively long runtimes and offer moderate
identification rates45.
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Figure 2.7: Different types of peptide fragments occuring in CID. (a) depicts the three
most frequent fragmentation sites along the backbone of the peptide. Each of those
corresponds to a characteristic set of resulting fragment ions: a/x, b/y, or c/z-ions. a/b/c
ions start with the N-terminal amino acid of the peptide and stop before the fragmentation
site, x/y/z ions are the respective C-terminal complements. (b) shows the typical b- and
y-ion series that are most relevant for peptide identification. Reprinted with permission
from Steen and Mann39. Copyright 2004 Springer Nature.
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Therefore, database search algorithms have become the more popular alternative when the
investigated organism is known and protein sequences are available. Here, we generate a list
of theoretically expected peptide fragment masses for a database of candidate proteins. We
start by in silico-digesting the proteins using the enzyme-specific cleavage rules (see Section
2.1.1) in order to obtain peptide sequences, and then compute the theoretical masses of all
potentially occuring b- and y-ions for all of these theoretical peptides. The observed fragment
spectra can then be compared against theoretical spectra of peptides with matching precursor
mass. If a sufficient similarity score is achieved, a peptide-spectrum match (PSM) is reported.
A variety of different database search algorithms are available. Some of the most popular ones
are Mascot46, SEQUEST47, OMSSA48, X!Tandem49, MS-GF+50, Comet51, and Andromeda52.

Validation

Database search engines differ in their algorithmic approaches and, most notably, in their
scoring functions for PSMs. A common property of these PSM scores, however, is that they
have little to no statistical meaning as such. For this reason, it is usually required to perform an
additional re-scoring step, where the statistical significance of identifications is assessed and
insignificant hits are filtered out. The basic approach for this is the so-called target-decoy search:
Prior to the search engine run, we add decoy sequences to the database, one for each target
sequence. Decoys are constructed in such a way that they are unlikely to coincide with target
peptide sequences, but show similar statistical properties (precursor mass distribution, amino
acid composition). Simply using the reverse sequence of each protein is the recommended
approach, as it preserves amino acid frequencies and results in decoy peptide sequences unlikely
to coincide with target peptide sequences.

Now, the key idea is that we can use the distributions of target and decoy PSM scores to
control the false discovery rate (FDR) of an identification run. The simplest approach is to
sort PSMs by search engine score and to then assign a q-value to each PSM by computing the
relative amount of decoy PSMs among all those PSMs that have a score better or equal to the
PSM currently considered. Discarding all PSMs with a q-value greater than a user-specified
FDR threshold t controls the overall PSM-level FDR of the identifiation results. More advanced
alternatives exist, for instance the semi-supervised machine learning-based tool Percolator53,54,
which learns to discriminate between correct and decoy spectrum identifications and thus
achieves higher percentages of correctly assigned peptide identifications than the traditional
q-value filtering approach.

Another approach to increase the number of correctly identified peptides at a certain FDR
is the combination of search results from several database search engines. In order to establish
comparability between PSMs produced by different search engines, the engine-specific PSM
scores must first be transformed to a universally meaningful statistical measure, such as poste-
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rior (error) probability. Then, analyzing the degree of consensus or dissent among the search
engines allows for better estimates of PSM probabilities, and thus yields an increased number
of correct identifications at a fixed FDR. The two most important tools for combining results
of different search engines are ConsensusID55 (part of OpenMS) and iProphet56 (part of the
Trans Proteomic Pipeline (TPP)57,58).

Since a single eluting peptide can cause multiple LC-MS peptide signals due to the oc-
curence of different charge variants, and because proteins consist of multiple peptides, the
FDR of identification results propagates from PSM level to peptide level to protein level. In
general, PSM-level FDRs are an underestimate of the peptide-level FDR, and an even grosser
underestimate of the protein-level FDR. For this reason, a number of tools have been pro-
posed to control peptide- and protein-level FDRs of identification results. Popular tools include
PeptideProphet59, ProteinProphet14, and Mayu60.

2.2.3 Quantification

A key challenge in quantitative mass spectrometry arises from the fact that the efficiency of
ionization in the ion source is analyte-specific. Let us consider a sample containing two differ-
ent analytes A and B in equal concentration. More likely than not, the MS signals of these two
analytes will not have equal intensity, as one is more likely to ionize than the other. This effect
can distort quantification by several orders of magnitude. For this reason, quantitative signals
of different analytes can in general not be compared. An exception are isotopologs measured
in the same run. These will show practically identical ionization behavior. Thus, quantifica-
tion in LC-MS usually means relative quantification of the same analyte across different runs
(or channels, see Section 2.2.3), or absolute quantification by adding spike-in isotopologs in
known concentration. In the following, we will provide an overview of the most widely used
quantification strategies and technologies.

Targeted vs Untargeted

A fundamental classification of quantification strategies is the distinction between targeted
and untargeted approaches. In targeted approaches, the analyte (or set of analytes) to be
quantified is already specified a priori, whereas in untargeted quantification, the goal is simply
to identify and quantify all analytes. An important experimental technique for targeted analysis
is selected reaction monitoring (SRM), which is typically done on triple quadruople (QqQ) mass
spectrometers. A QqQ MS consists of a linear series of three quadrupoles where the first one
selects a certain set of precursor masses (one for each target analyte), the second quadrupole
acts as a collision chamber for CID, and the third quadrupole selects a set of fragment masses for
each precursor mass. Such a pair of precursor mass and fragment mass is also called a transition.
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Each analyte can then be quantified by computing the area under the chromatographic peaks
of their XICs.

Data analysis for untargeted approaches is inherently more complex than for targeted
quantification. When we already know which analytes we are looking for, there is obviously
no need for an identification step. Furthermore, quantification is much easier since we can
simply compute the theoretical masses of the analytes of interest (e.g., peptide mass from
amino acid sequence, masses of expected b- and y-ions) and then extract and quantify the
signal at these positions. For untargeted analysis, on the other hand, we need an algorithm
that first detects all signals corresponding to arbitrary analytes present in the sample, i.e., we
need to be able to model the signal of a peptide and then try to find all regions in the data that
resemble our model. In addition, we need an identification step in order to attribute each of
those anonymous quantified features to the analyte that caused it. This thesis mainly addresses
approaches for and applications of untargeted quantification.

Figure 2.8: Common quantification strategies in mass spectrometry-based proteomics.
Boxes in blue and yellow represent two experimental conditions. Horizontal lines indicate
when samples are combined. Dashed boxes indicate steps where experimental variation
between samples can introduce quantification errors. Reprinted with permission from
Bantscheff et al.61. Copyright 2007 Springer-Verlag.
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Labeled Quantification

Another important distinction to be made is between labeled and label-free approaches. Figure
2.8 depicts the basic approaches for three widely used labeling strategies: metabolic labeling,
chemical labeling, and isotope-labeled spike-in peptides. Common to all of them is the idea
that samples, once labeled, can be combined and then measured in one go. This approach is
commonly referred to as multiplexing. Labeling techniques differ in the number of samples that
can be multiplexed3. These are also referred to as channels. The main advantage of labeled
approaches over label-free quantification is the fact that samples of different conditions can
be combined early in the protocol, and thus all subsequent sample preparation steps and mea-
surements are performed together, which minimizes technical variation between investigated
conditions.

In metabolic labeling, labels are incorporated in vivo, i.e., the organism is fed a medium
containing stable isotope-labeled amino acids which are then incorporated into all of the or-
ganism’s proteins as the organism grows. The most common approach for metabolic labeling
in proteomics is stable isotope labeling with amino acids in cell culture (SILAC)62,63. SILAC
medium contains isotope-labeled lysine and arginine, which ensures that all fully tryptic pep-
tides will have exactly one such label, as trypsin cuts after K and R. Now, for two samples of
different conditions with different SILAC labels, MS peptide signals will appear in characteristic
co-eluting pairs with identical chromatographic elution profile, separated only by a mass shift
of 8 Da (lysine) or 10 Da (arginine). Thus, the main task in SILAC data analysis is the detection
and quantification of these pairs4 of corresponding peptide signals. Since both conditions have
been measured in one and the same instrument run, no further normalization is required; the
abundances of two corresponding peptides can be compared immediately. SILAC is mostly re-
stricted to cell culture. An alternative better suitable for higher multi-cellular organisms is 15N
labeling64, where data analysis is similar, but the m/z shift between corresponding peptides is
variable due to the varying amount of nitrogen atoms in peptides.

In chemical labeling, labels are applied at a later stage of sample preparation, either to
extracted proteins or to digested peptides, using chemical reagents. These approaches can be
further subdivided into MS- and MS/MS-based methods. MS-based approaches are similar
to the metabolic labeling techniques described above in that they produce pairs (or groups)
or co-eluting peptide signals shifted by a certain mass. Therefore, data analysis is essentially
identical. Common MS-based methods are isotope-coded afinity tagging (ICAT)65 and dimethyl
labeling66. MS/MS-based methods, on the other hand, use a very different approach. Here,
different but isobaric5 labels are applied in each channel. For a single analyte, the differently
labeled versions thus all contribute to one and the same MS signal, they are isolated and

32 - 10
4or singlets, if a peptide is present in only one of the samples
5same mass
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undergo CID together. Now, the key idea is that the different isobaric labels fragment into
different characteristic product ions, the so-called reporter ions, which can then be quantified
in the MS/MS spectrum and compared across channels. Popular methods are isobaric tags for
relative and absolute quantitation (iTRAQ)67 and tandem mass tags (TMT)68.

Stable isotope-labeled spike-in peptides enable absolute quantification of peptides in tar-
geted analyses. Here, isotopologs of the target peptides are added to the sample in a known
concentration prior to LC-MS. Absolute quantification can thus be achieved by comparing the
signal intensities of the two versions of a peptide, as the concentration of the spiked standard
is known. As in SILAC, they will appear in the MS data as a pair of co-eluting peptide features
shifted by a known mass difference.61

Label-Free Quantification

The main advantage of label-free quantification (LFQ) methods over label-based approaches
is the absence of an upper limit on the number of samples that can be compared in LFQ.
On the experimental side, label-free approaches have the additional benefit that the sample
preparation protocol is simpler and cheaper, as no labeling steps are required. Samples are
prepared and measured independently of each other, and correspondence of analyte signals
across runs is established solely during data analysis. This approach, however, comes with
significant computational challenges, mainly due to the moderate reproducibility of HPLC,
which makes it complicated to establish correspondence between signals across the different
runs. With the ever-increasing speed and resolution of modern instruments and the consequent
massive amounts of raw data, computational data analysis has largely become the limiting
factor in LFQ studies.

Label-free quantification methods can be further divided into spectral counting and MS
intensity-based approaches. Spectral counting is an MS/MS-based approach where the abun-
dance of a compound is approximated simply by counting the number of MS/MS spectra in
which it was identified. The basic idea is that higher-abundant analytes elute for a longer time
and are thus more likely to be selected for fragmentation – and hence identified more often –
than less-abundant ones. The advantage of spectral counting over MS-based methods is the
fact that data analysis scales linearly with the number of samples here. Nevertheless, this is
a very crude way of quantifying. While it may be sufficient for an initial discovery of strong
quantitative trends in the data, spectral counting has, unsurprisingly, been demonstrated to
show relatively poor quantification accuracy10,69.

In the context of this thesis, we have worked with MS intensity-based approaches for label-
free quantification. A basic conceptual workflow for this type of analysis is depicted in Figure
2.9. Starting with the raw data, the workflow can be divided into two initially independent
branches: one for peptide identification (using only MS/MS data), and one for quantification
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Figure 2.9: Conceptual workflow for label-free quantification.
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(using only MS data). The quantitative branch typically starts with peak picking, followed by
run-wise feature detection for each LC-MS map. After peptide identification, FDR filtering,
and protein inference, peptide IDs are mapped to the quantified features in the ID mapping
step. Here, we are combining a set of anonymous peptide features resulting from feature
detection, and a set of validated PSMs. Each PSM is annotated with the m/z and RT of the
isolated precursor that gave rise to its fragments, and thus can be mapped to the closest
compatible6 quantified feature within a certain m/z and RT tolerance window around the
precursor peak. In the retention time alignment step, one tries to find a transformation for
each experiment that warps peptide signals in the RT dimension such that the RT difference
between corresponding peptides across different experiments is minimized. This facilitates the
subsequent feature linking step, where correspondence between signals across different runs is
actually established. By doing so, peptide identifications are transferred between corresponding
signals. This is a crucial step since many quantified peptide features remain unidentified in
a typical experiment. If a peptide can be quantified across several runs, but identified only
in a single run, this single identification can now easily be transferred to all linked features
in the other experiments. Otherwise, quantified features without identification would remain
anonymous and hence useless. Finally, intensity distributions are normalized in order to make
them comparable across the different MS runs.

Popular tools for analyzing LFQ data include open-source software like OpenMS11,12,70,
Proteios71, SuperHirn72, and msInspect73; the free (but closed-source) MaxQuant74,75; and
commercial applications like Progenesis QI (Nonlinear Dynamics), SIEVE (Thermo Fisher Scien-
tific), and Spectrolyzer (MedicWave AB). They all carry out more or less the same fundamental
steps, although the degree of algorithmic emphasis on the different subtasks may vary. A key
advantage of the workflow-based OpenMS approach compared to monolithic applications like
MaxQuant or Progenesis lies in the flexibility and configurability of the analysis. Because of
the high degree of modularity in the OpenMS-based LFQ workflow, the computational analysis
is very flexible and can easily be adapted to different study designs and experimental setups.
Monolithic applications are typically easier to use but offer only a single pre-determined work-
flow.

2.2.4 OpenMS – An Open-Source Framework for Mass Spectrometry Data Anal-
ysis

OpenMS11,12,70 is a comprehensive open-source framework for the analysis of LC-MS data
in proteomics and metabolomics. It has served as the primary development library for the
algorithms and tools developed as part of this work, and has been the most heavily used toolbox
for all mass spectrometry data analyses performed in this context. Figure 2.10 illustrates the

6same charge
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Figure 2.10: Overview of OpenMS architecture and dependencies.
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overall architecture of OpenMS. The framework can roughly be subdivided into the following
layers:

• OpenMS core library: The OpenMS core is written in C++ and provides extensive in-
frastructure for the development of data analysis algorithms and tools in computational
mass spectrometry. It includes numerous data structures for the representation of LC-MS
data, classes for reading, writing, and converting between different open mass spectrom-
etry file formats, as well as a multitude of algorithms for common tasks in LC-MS data
analysis.11

• The OpenMS Proteomics Pipeline (TOPP): Built on top of the core library, the TOPP
tool layer comprises more than 180 command line tools, where each is designed to
solve a very specific task in LC-MS data analysis. The high degree of modularity and
interoperability between different TOPP tools allows the development of custom-tailored
data analysis pipelines without requiring programming skills.12

• Python bindings (pyOpenMS): Most of the functionality of the OpenMS core and the
algorithms implemented as TOPP tools can also be accessed via pyOpenMS. This is
useful for rapid prototyping of algorithms and for developers feeling less comfortable
with C++.76

• Visualization: OpenMS is shipped with TOPPView, a powerful GUI application for visu-
alization of mass spectrometry raw data and (intermediate) analysis results.11,70

• Workflow engines: A more convenient way to leverage the functionality of TOPP is
provided by a number of OpenMS-enabled workflow systems. TOPPAS is the in-house
OpenMS workflow engine shipped with the software package itself. KNIME is a popu-
lar generic workflow system which supports TOPP via plugin and in addition provides
powerful tools for downstream data analysis, machine learning, and statistics. For an in-
depth discussion of automation and workflows in computational proteomics, see Chapter
3.13,16,77

• Vendor software: Last but not least, TOPP workflows have even been integrated into
popular vendor software tools, such as Proteome Discoverer and Compound Discoverer
(Thermo Fisher Scientific). The integration of a label-free quantification workflow and a
protein-RNA cross-linking pipeline into Proteome Discoverer will be presented in Section
3.5.78
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Chapter 3

Automation of Proteomics Workflows

Adapted with permission from

TOPPAS: A Graphical Workflow Editor for the Analysis of High-Throughput Proteomics Data
Johannes Junker+, Chris Bielow+, Andreas Bertsch, Marc Sturm, Knut Reinert, and Oliver Kohlbacher

J Proteome Res. 11(7):3914-20 (2012)

+ These authors contributed equally.

Copyright 2012 American Chemical Society.

LFQProfiler and RNPxl - Open-Source Tools for Label-Free Quantification and Protein-RNA
Cross-Linking Integrated into Proteome Discoverer

Johannes Veit, Timo Sachsenberg, Aleksandar Chernev, Fabian Aicheler, Henning Urlaub, and Oliver Kohlbacher

J Proteome Res. 15(9):3441–48 (2016).

Copyright 2016 American Chemical Society.

3.1 Introduction

The vast amounts of raw data generated by modern mass spectrometers in the context of
today’s large-scale proteomics studies necessitate efficient and highly automated tools for data
analysis. In addition, many different techniques for quantification and identification and a
wealth of different instrument types give rise to a broad range of computational problems. Not
surprisingly, bioinformatics and data analysis have turned out to be the bottlenecks and a key
research focus in proteomics. Numerous algorithms and software tools have been developed
over the past years. There are basically two types of software solutions for MS-based proteomics
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data analysis: monolithic applications, usually with graphical user interfaces tailored towards
specific applications (identification, quantification), and pipeline-based tool kits.

Examples of the former category include open-source tools like Skyline79, free but closed-
source tools like MaxQuant74,75 or commercial applications like Progenesis QI (Nonlinear
Dynamics). The disadvantage of many of these systems, however, is their lack of flexibility:
it is basically impossible to use the software for purposes other than those envisioned by
its developers. Hence, adapting the data analysis workflow to even a small change in the
experimental workflow can sometimes pose an insurmountable obstacle. Pipeline-based tool
kits like the Trans-Proteomic Pipeline (TPP80) or The OpenMS Proteomics Pipeline (TOPP12),
on the other hand, consist of a set of many rather small computational tools which can be
flexibly combined to form powerful data analysis workflows. Here, it often suffices to exchange
one or two building blocks in order to adapt the data analysis to a change in the experimental
workflow. However, they are harder to use and often deployed in large core facilities only.
Common to all open source platforms is the support of open standard formats, like mzML81,
mzIdentML82, or TraML83, as a way to facilitate tool interoperability.

Scientific workflow management systems, such as Galaxy84–86, Taverna87,88, Conveyor89,
Mobyle90, Pegasus91, or Kepler92 can provide a more user-friendly interface to command line-
based pipeline tool kits. A proof-of-concept implementation93 supporting multi-core CPUs (no
remote parallelization) integrated parts of the Trans-Proteomic Pipeline80 and X!Tandem49

into the Taverna Workbench. However, integrating new tools into these generic workflow
systems can be difficult. An alternative specifically tailored to the analysis of HPLC-MS data
is Proteomatic94. Here, a selection of scripts for analyzing proteomics data is available and
can be incorporated into custom workflows using a graphical user interface (GUI). In addition,
Proteomatic provides adapters to external tools, such as OMSSA48.

In the following, we will present solutions for workflow-based automated processing and
downstream statistical data analysis based on OpenMS/TOPP: our in-house workflow engine
TOPPAS, which is now included in every OpenMS installation, will be covered in Section
3.2. Subsequently, we will present our efforts to make OpenMS tools accessible from within
the powerful KNIME workflow and data analysis platform in Section 3.3. An open-source
KNIME extension allowing to export KNIME workflows to the Grid and Cloud User Support
Environment (gUSE)18 format will be described in Section 3.4. This closes the gap between
the user-friendly KNIME workflow environment and powerful high-performance computing
(HPC) resources, which are otherwise only accessible via commercial versions of KNIME. Last
but not least, Section 3.5 will cover the tight integration of OpenMS workflows into our latest
target platform, the popular vendor software Thermo Proteome Discoverer.
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3.2 TOPPAS - The OpenMS Proteomics Pipeline Assistant

In order to provide a user-friendly but yet powerful and productive way of using the Open-
MS/TOPP tool kit, we have developed TOPPAS, The OpenMS Proteomics Pipeline Assistant13.
TOPPAS is a graphical workflow editor and engine fully integrated into the OpenMS/TOPP
framework11,12 which enables fast construction of custom analysis workflows using all the
TOPP tools from OpenMS as well as arbitrary external programs like ProteinProphet14. TOPPAS
also facilitates sharing established workflows by simply sending a single file to a collaborator or
through our online repository of shared standard workflows. In this section, we will describe
the architecture and features of TOPPAS and showcase its use with several examples, ranging
from very simple to rather complex workflows.

TOPPAS is suitable for a wide range of applications without the need to write shell scripts
or to do any programming whatsoever. In contrast to generic workflow management systems,
setting up and using TOPPAS is straight-forward. TOPPAS is included in version 1.9 or later of
OpenMS. Installation takes only a few minutes using readily available binary packages for all
major operating systems. TOPPAS has the complete functionality of all TOPP tools available
out-of-the-box. This includes a wealth of efficient algorithms for signal processing and prepro-
cessing, peptide property prediction, quantification using different experimental techniques,
e.g., SILAC, iTRAQ, and label-free analyses, as well as adapters for identification using several
popular search engines, including OMSSA48, Mascot46, and X!Tandem49. Moreover, almost
any other external program can be integrated into TOPPAS by providing a simple configuration
file. Sample configuration files for some tools of interest can be found on the OpenMS website.

Workflows can be created and run locally on the user’s machine. Alternatively, a command
line version of TOPPAS without the graphical user interface enables workflow execution for
batch processing of a larger number of data sets. In order to take advantage of modern multi-
core CPUs, all processing steps that are independent of each other can be executed in parallel.
The user can choose the number of parallel jobs to be executed on the machine. No additional
configuration steps are required.

3.2.1 Usage and Features

User Interface

TOPPAS features a user-friendly GUI which allows to create, edit, save, and run workflows. The
parameters of all involved tools can be adjusted within the application and are also saved as
part of the pipeline definition in a workflow file. Furthermore, TOPPAS interactively performs
validity checks during the pipeline editing process and before execution.

Figure 3.1 shows the TOPPAS main window. A simple pipeline is just being created. The
user has added several tool nodes to a workflow by dragging them from the TOPP tool list on
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Figure 3.1: Creation of a simple workflow. Tool nodes can be dragged and dropped from
the list of tools (left pane) to the workflow canvas (center). Documentation for the whole
workflow or individual tools is displayed on the right. Reprinted from Junker et al.13

the left to the central area. Additionally, special nodes for input and output files have been
added. Edges were drawn between the nodes which determine the data flow of the pipeline.
An edge maps an output file of a source node to an input file of the target node. A TOPP node
might have more than one input or output file parameter, e.g., the OMSSAAdapter has two
input files – an mzML file and a FASTA database file. When an edge is created and either source
or target node have more than one input or output parameter, an input/output parameter
mapping dialog is displayed to the user to select the output parameter of the source node and
the input parameter of the target node. In order to facilitate workflow construction, TOPPAS
does not permit to add edges whose source and target file types are not compatible with each
other or edges that would lead to a cyclic workflow. Figure 3.2 shows the parameter editing
dialog which appears when a tool node is double-clicked.

Once the pipeline is set up, input files have to be specified before it can be run. This is
done by double-clicking an input node and selecting the desired input files in the dialog that
appears. As soon as a valid set of input files has been selected, the corresponding edge will
turn green and the workflow is ready for execution.

During pipeline execution, the circles in the top-right corner of the tools indicate whether
a tool has finished successfully (green), is currently running (yellow), has not been executed
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Figure 3.2: Each tool has parameters that can be adjusted through a dialog. Each param-
eter is explained in the lower part of the dialog, a simple validity check on the parameters
is automatically performed. Reprinted from Junker et al.13
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yet (gray), or could not be executed successfully (red). When the execution has finished, the
output files generated by each of the workflow’s nodes can be inspected quickly by selecting
Open output in TOPPView from its context menu.

Workflow Concepts

TOPPAS pipelines follow a round-based concept: in the simplest scenario, the entire workflow is
traversed exactly once for each input file. We refer to each traversal as one round of processing.
However, only the most basic workflows are strictly linear, meaning that a set of input files is
sequentially processed by one or more tools and exactly one output file is produced for each
input file. More complex workflows may contain more than one input node. An example
pipeline with two different input nodes is illustrated in Figure 3.4.

Even more advanced workflows require results from two or more different processing
branches to be merged or certain files to be re-used multiple times (e.g., in identification, when
several datasets are searched against one and the same FASTA database). For these purposes,
we introduce three additional elements of our workflow language: two special nodes, called
Merge and Collect, which combine the results of multiple incoming workflow branches, and the
Recycle mode which allows the same file to be re-used over multiple rounds.

A Merge node can have arbitrarily many incoming connections from preceding nodes. In
each round, it compiles a new list of files consisting of exactly one file per connected predecessor
and passes this list of files to its successor node(s). Thus, the lists of files from all preceding
nodes must have equal length and they must be in the same order, such that corresponding
files are merged together. A Collect node behaves similarly but waits for all rounds to finish
before passing on a combined list of all output files from all its predecessors. Thus, successors
of a Collect node will be called only once during the entire pipeline run.

Another useful concept is Recycling, where the (output) files of a node can be re-used in
multiple rounds. For example, the database input node in Figure 3.3 is set to constantly feed
the same FASTA database to the OMSSAAdapter node, which is called three times (once for
each mzML input file). In this case, the workflow is valid although its two input nodes contain
different numbers of input files, since the FASTA database can be re-used in every round.
Without recycling, one would need to specify a list of three identical FASTA files instead.

A use case of both merging and input recycling is illustrated in Figure 3.5. Figure 3.4
demonstrates the usage of a Collect node.

External Software Tools

In addition to all TOPP tools, which are included with the OpenMS/TOPP distributions, it is
also possible to add custom nodes to a pipeline. These nodes can represent almost any external
command line tool, from analysis tools like ProteinProphet to R95 for statistical data analysis. It
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has recently been shown that in some scenarios, heterogeneous workflows incorporating LC-MS
analysis tools from different software suites can achieve higher performance than homogeneous
workflows96. Thus, the ability to also include external tools is highly desirable.

Integrating an external tool into TOPPAS requires a TOPP tool description (TTD) file. This
is an XML file specifying the input and output parameters of the tool and how they should be
exposed in TOPPAS. For convenience, preconfigured TTD files are available on the OpenMS
website (http://www.openms.org/) for a number of common tools.

TTD files have a simple structure and the examples given can be easily modified for new
tools within a few minutes based on the documentation of the tool.

Once the TTD file is in place, the corresponding node can be found in the EXTERNAL
section of the tool menu and used in the same way as any other tool node. For the node to run,
the external program has to be installed first. An example TTD file and details on its format
can be found in the supplemental material.

Using Preconfigured Workflows

Stable workflows are often re-used by collaborators, maybe in a slightly modified form. Thus,
sharing workflows should be as easy as possible. In TOPPAS, the whole pipeline and parameter
information is stored in a compact file, which can be distributed conveniently.

As a good starting point, a selection of standard workflows is available on our website in an
online repository, which can either be downloaded through a standard web browser or directly
from within TOPPAS (see File! Online Repository in the TOPPAS menu).

Batch Execution of Workflows

Once set up and saved, a workflow can also be run without the GUI using the TOPP tool
ExecutePipeline. As input files (e.g., in mzML format) change frequently, the user can also
provide a resource file to ExecutePipeline which specifies the input to the pipeline. Pipelines
can thus be developed and tested on a desktop machine and then easily deployed in high-
throughput environments for automatic processing of larger datasets (e.g., in core facilities).

3.2.2 Application Examples

In order to review the features of TOPPAS, we will describe several examples of varying com-
plexity.

The first example is a basic identification pipeline using the database search engine OMSSA48.
Figure 3.3 shows the overall layout of the workflow. It accepts one or more mzML files con-
taining the tandem spectra on input node 1. Note that vendor-specific formats, e.g., RAW,
can be used after appropriate conversion15. On the Windows operating system, this conver-
sion can also be performed within TOPPAS. Input node 2 contains the FASTA database. The
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Figure 3.3: Basic identification workflow. Reprinted from Junker et al.13

database also contains decoy versions of all protein sequences in order to allow calculation
of false discovery rates (FDRs). After identification, PeptideIndexer annotates for each search
result whether it originates from the target or from the decoy part of the sequence database.
With this information, the FalseDiscoveryRate tool is able to estimate the FDR for each of the
peptide-spectrum matches. Finally, the IDFilter is used to retain only those peptide-spectrum
matches with an FDR of at least 5%. A possible extension of this pipeline would be to do the
spectrum annotation using multiple search engines and combine the results afterwards, using
the ConsensusID tool. The results may also be exported using TextExporter for further analysis
with external tools, for example Microsoft Excel.

Our second example is the basic label-free quantification pipeline illustrated in Figure
3.4. Input node 1 contains three mzML files. FeatureFinderCentroided finds the peptide
features in each of these maps and passes on three featureXML files. Corresponding peptide
identifications in idXML format (obtained in advance) are mapped to each of these featureXML
files using IDMapper, which then produces one featureXML output file (now including sequence
annotations) for every pair of corresponding featureXML and idXML input files. The Collect
node waits for all three rounds to finish, then runs FeatureLinkerUnlabeled once, with all three
annotated featureXML files as input, which creates a single consensusXML output file.

A more complex pipeline is shown in Figure 3.5. It combines identification using mul-
tiple search engines and quantification of iTRAQ reporters. The database used for peptide
identification is easy to substitute as it is represented as a dedicated input node in Recycle
mode.
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Figure 3.4: This basic label-free quantification workflow is one of the example pipelines
included in TOPPAS. It ships with three mzML files containing MS scans of varying con-
centrations of bovine serum albumin (BSA) as well as three idXML files containing identi-
fications from a search engine run on the corresponding MS/MS data. The context menu
of any node can be used to open its output in either TOPPView or a file system browser.
Visualizations from TOPPView of the mzML input files as well as the single consensusXML
output file are superimposed for illustrative purposes. Reprinted from Junker et al.13

Figure 3.5: iTRAQ identification and quantification pipeline featuring multiple search
engines, easy to substitute protein databases, and FDR filtering. Reprinted from Junker
et al.13
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Figure 3.6: Workflow showing the use of external tools: msconvert and ProteinProphet.
Reprinted from Junker et al.13

To demonstrate the ability of TOPPAS to integrate external software tools, we wrote TTD
files for ProteoWizard’s msconvert and the widely known ProteinProphet included in the TPP.
See Figure 3.6 for an example. The output of the ProteinProphet node is either an Excel-
compatible file or an XML file. All TTD shown here described in this publication are included
in TOPPAS by default, i.e., these external tools can be used out-of-the-box.

3.3 KNIME Integration

TOPPAS has proven to be an invaluable tool for rapid workflow design, parameter tuning, and
automated batch processing of large-scale proteomics analyses using OpenMS/TOPP, and has
received lots of positive feedback over the past years. A minor inconvenience, however, is
the lack of built-in tools for downstream statistical analyses. A TOPPAS pipeline defines an
entire TOPP workflow, the sequence of tools to be run together with the respective input and
output files and exact parameter settings for each tool. These workflows usually end with a
tabular file (preferably mzTab97) containing the “raw” processing results (e.g., peptide and
protein identifications, quantified peptide feature intensities across several samples, etc.) and
do not include the downstream statistical analyses. These are then usually implemented in an
external environment like R95.
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The distinction between efficient data reduction and processing using OpenMS/TOPP on
the one hand and downstream statistical analyses on the other hand is somewhat natural: the
former steps are often performance-critical and need to be implemented in a very efficient
manner. OpenMS/TOPP is written in C++ and contains many highly-optimized algorithms
suitable for processing very large datasets fast and using an affordable amount of memory. Fur-
thermore, while many TOPP tools are versatile and reusable in various contexts, the statistical
analysis of a study is usually tailored specifically for its particular study design. Often times, it
cannot be reused on another dataset. Hence, it is less evident why this part of the data analysis
should be implemented using workflows.

There are, however, several advantages of joining data processing and statistical analysis
into a single workflow: obviously, such an approach is simply more practical and less error
prone, since the processing results do not have to be exported to a file first and then read back
into another environment for statistical analysis. More importantly, having a single workflow
carry out all analysis steps, from raw data files to publication-ready visualizations and tables,
is a great way of ensuring integrity of the results and of documenting the entire data analysis
of a study, and thus a big step towards reproducible science. Since the potential wish list
for supported downstream data analysis and visualization capabilities is virtually unlimited,
implementing and maintaining a satisfactory set of tools would go way beyond the scope of
TOPPAS.

This is why Aiche et al.16 instead opted for developing a plugin for the KNIME17 workflow
system adding so-called Generic KNIME Nodes (GKN) wrapping all OpenMS/TOPP tools and
thus making them readily available for building workflows in KNIME including its powerful
downstream data analysis capabilities. GKN is a general framework for wrapping arbitrary
command line tools and making them available as KNIME nodes. In GKN-based workflows,
data is passed between nodes in a file-based manner, just like in TOPPAS, whereas native
KNIME nodes pass in-memory tables. Interoperability between GKN-based workflow nodes
and native KNIME nodes is established by a selection of adapters for loading processing result
files as KNIME tables. Figure 3.7 illustrates an example workflow for label-free quantification of
metabolomics data based on a feature detection approach implemented in OpenMS/TOPP20,
together with downstream statistical analysis including intensity normalization, statistical
testing for differential abundance, multiple hypothesis correction, plotting of visualizations,
and report generation.

3.4 Workflow Conversion

KNIME17 is a great tool for interactive scientific workflow design and execution, especially due
to its integrated reporting and visualization capabilities and the plethora of readily available
data analysis nodes. In many cases, there is no need to use any other software: the entire
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Figure 3.7: Label-free quantification workflow of metabolomics data including raw data
processing using OpenMS/TOPP via GKN and downstream statistical analysis and visual-
ization, all within the same KNIME workflow. The insets depict generated visualizations
and result tables. A/B: Intensity distributions of invidual samples before/after normaliza-
tion. C: Summary table including visualizations of chemical structures for all identified
and quantified metabolites. Adapted from Aiche et al.16.

data analysis – from raw data to publication-ready results including figures – can be carried
out within the KNIME environment. Some of today’s large-scale proteomics studies, however,
generate such vast amounts of data that analyzing them on a desktop computer becomes virtu-
ally infeasible. In these cases, researchers are forced to resort to high-performance computing
(HPC) infrastructures, such as compute clusters, grids, or clouds.

In addition to the free and open-source KNIME Analytics Platform, there are advanced ver-
sions of KNIME which do offer support for compute clusters, namely KNIME Cluster Execution
and the KNIME Server Edition. However, these solutions are not royalty-free and the support
for parallelization on the cluster is somewhat limited. For instance, in GKN-based workflows,
the most fundamental way of parallelization, namely the parallel execution of loops over lists
of input files, is currently not supported. For an increasing number of today’s high-throughput
proteomics studies, however, parallel data processing is an absolute necessity due to the sheer
amount of acquired raw data.

The Grid and Cloud User Support Environment (gUSE)18, on the other hand, is a powerful
web-based workflow framework designed to run on HPC resources. It is free and open-source
and flexible enough to implement workflows utilizing arbitrary tools that run on linux and
offer a command line interface (CLI). Workflows can be designed, executed, and monitored
through its web-based GUI component, the Web Services Parallel Grid Runtime and Developer
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Environment Portal (WS-PGRADE). In principle, it is possible to work with OpenMS workflows
using this platform exclusively. One arguable disadvantage of gUSE / WS-PGRADE, however,
is the limited usability of its GUI components. Setting up the individual nodes representing
tools – and combining them to form entire workflows – can be a very tedious, error-prone, and
frustrating process.

Because the workflow languages of TOPPAS, KNIME (using GKN), and gUSE feature com-
parable concepts, there is a large overlap of workflows that can be implemented in any of
the three platforms. This is what motivated us to implement a workflow conversion tool
termed KNIME2gUSE which is able to translate arbitrary KNIME workflows to the gUSE work-
flow language. This includes – but is not limited to – GKN-based OpenMS workflows. Using
KNIME2gUSE, users can use the convenient KNIME workflow editor to design and test their
workflows and optimize parameters. Once a workflow is set up and tested, converting it to
a gUSE workflow is as easy as clicking a button in KNIME. The exported workflow is ready
to be executed on a powerful compute cluster or grid running gUSE. Figure 3.8 illustrates a
workflow conversion example featuring an OpenMS-based label-free quantification workflow.

3.5 Integration into Thermo Proteome Discoverer

Last but not least, there is still a gap between monolithic GUI applications and proper workflow
systems for LC-MS data analysis. As mentioned above, monolithic applications are often too
rigid and cannot be adapted to suit the specific needs of its user. Workflow systems, on the
other hand, are extremely flexible but this comes at the price of potentially high complexity of
the employed workflows. The more explicit a workflow language is, the more powerful and
flexible, but also more complex. The Thermo Proteome Discoverer (PD) approach represents
a tradeoff between these two extremes: It features a convenient GUI in which users can easily
load raw data directly from the instrument and explore and analyze it, all within one and the
same platform. Data analysis can be performed using a variety of workflows, and Proteome
Discoverer can be extended by plugins, which makes it easy to adapt the software to novel
use cases. In comparison to the aforementioned workflow systems, however, the Proteome
Discoverer workflow language is somewhat less explicit and thus less complex, as it consists of
fewer and larger building blocks which have more built-in logic and sanity checks. Although
this takes away some of the power of full-fledged workflow systems, this approach is often a
good compromise between user-friendliness and flexibility. We have thus developed so-called
meta nodes for the Proteome Discoverer workflow engine, i.e., nodes that contain a more
complex workflow under the hood which is hidden from the user for the sake of simplicity and
usability.

In Section 3.5, we present a freely available plugin for Proteome Discoverer providing
software solutions for two important problems in computational proteomics: LFQProfiler for
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A

B

Figure 3.8: KNIME2gUSE workflow conversion example. A: OpenMS-GKN workflow for
label-free quantification and peptide identification using multiple search engines imple-
mented in KNIME. B: The same workflow implemented in gUSE, as generated by the
KNIME2gUSE workflow converter. Note how there is no one-on-one correspondence of
nodes between the two workflow languages. For instance, the ZipLoop constructs that
enable sequential processing for lists of input/output files in KNIME are not required in
gUSE. Here, iteration over lists of input files is accomplished by setting certain properties
in the input / output ports of nodes. The translation between these concepts is done
automatically by KNIME2gUSE. Adapted from de la Garza et al.77.44
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label-free quantification (LFQ) and RNPxl for protein-RNA cross-linking data analysis. Those
two applications were chosen out of the hundreds of other algorithms and tools contained in
OpenMS because we felt there was an urgent need for an improved, user-friendly label-free
quantification tool on the one hand. On the other hand, we wanted to explore to what extent
the tight integration with the raw data visualization could improve the complex annotation
and curation still required for protein-RNA cross-linking analysis. These are thus the first two
OpenMS tools to be integrated into Proteome Discoverer, but most likely not the last. LFQ is a
well-established technique, and a number of commercial and free software solutions exist for
analyzing LFQ data (e.g., MaxQuant (MaxLFQ)74,75, MFPaQ98, Progenesis QI (Nonlinear Dy-
namics), SuperHirn72, or the various feature-finding tools contained in OpenMS / TOPP11,12).
Until now, Proteome Discoverer did provide only rather limited means to analyze LFQ data:
natively, it supports spectral counting, and a rather basic way of MS intensity-based quantifi-
cation. However, comparing abundances across different samples becomes difficult using this
approach, because the crucial step of matching between runs, also known as retention time
(RT) alignment or feature linking, is missing. This cannot simply be overcome by adding an
additional node for matching between runs, since this would require an algorithm that can
detect and quantify peptide features in the data independently of identification results. Such an
algorithm is currently missing. Proteome Discoverer can only quantify XICs at those positions
where an identification is already present. Since many (especially low-intensity) peptides are
identified in only one or few runs, but might be consistently quantifiable across several runs
in the MS data, this has a big impact on the number of peptides that can be identified and
quantified.

A less established but trending topic in proteomics is protein-RNA complex analysis using
ultra violet (UV) light induced cross-linking. Protein-RNA complexes are essential components
in all life forms. They play pivotal roles in a wide range of biological processes, including
bacterial anti-termination, spliceosomal cleavage of intronic regions, small RNA maturation,
translational control by miRNA / non-coding RNA, epigenetic modulation, regulation of DNA
degradation, etc. In many cases, the structural arrangement of the individual subunits is still
unknown and the biological processes these complexes are involved in are poorly understood.
Thus, protein-RNA complexes represent a highly interesting target of biological research. RNPxl

is a powerful and convenient tool for analyzing protein-RNA cross-linking data. Our new
Proteome Discoverer workflow is based on the work of Kramer et al.99 but contains critical
algorithmic improvements compared to the original version and provides convenient built-in
visualization within the Proteome Discoverer platform.
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3.5.1 Implementation

Thermo Proteome Discoverer is a versatile and user-friendly software for 64-bit Windows
platforms enabling proteomics data analyses for a wide range of experimental techniques. It
already supports multiple sequence database search engines (e.g., Sequest HT47 or Mascot46),
spectral library searching, peptide-spectrum-match validation (e.g., using Percolator53), as
well as various quantification techniques, such as isobaric mass tagging (iTRAQ67, TMT68)
or SILAC62. Besides data processing workflows, Proteome Discoverer also offers powerful
integrated visualization options including spectrum viewers, scatter charts, histograms, Venn
diagrams, and many more.

In PD 2.x, data analysis is workflow-driven. Workflows are always split into two parts:
the processing step and the consensus step. The idea behind this distinction is that some
computationally expensive tasks have to be run only once (or few times), while other parts
further downstream in the analysis might involve more tweaking and optimization and thus
have to be run more often using different parameter settings or even different workflows. The
results of the processing step (e.g., the sequence database search results) can thus be computed
once and various consensus workflows can be tried on them, which usually run much faster.
Another intuition for this two-step approach is that tasks in the processing step can usually
be computed individually for each input file, one after another, and hence can be parallelized
using the batch processing mode, whereas the consensus step requires the processing results
of all input files at once for a combined analysis.

Proteome Discoverer is written in the C# programming language and offers an application
programming interface (API) for node development enabling the community to write their own
PD workflow nodes. Today, a number of PD community nodes is available free of charge, e.g.,
the popular search engine MS Amanda100, or the modification site localization tools phosphoRS
and ptmRS101. A selection of useful nodes can be found on pd-nodes.org.

All algorithms utilized by LFQProfiler and RNPxl are implemented as standalone executable
tools contained in the OpenMS/TOPP tool suite. In order to make these tools and workflows
accessible from PD 2.x, we developed a plugin that adds two new processing nodes and two
corresponding consensus nodes to the PD node repository. These control the data flow between
individual tools and perform conversion of input/output data formats used by PD and OpenMS.
This is necessary because OpenMS data storage and exchange is based on XML files, whereas
PD uses a relational database approach together with object-relational mapping for storing and
accessing all its data. The results of a PD analysis are stored in a pdResult file which contains
a SQLite database. From a node developer’s point of view, accessing this data from within the
node is seamless, since the object-relational mapper (the so-called EntityDataService of PD)
takes care of loading objects from and persisting them to the database. From a conceptual
point of view, our PD workflow nodes represent so-called meta nodes which encapsulate and
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allow execution of larger workflows while hiding complexity from the user. In addition, the
plugin implements logic to facilitate usage and provides visualization capabilities.

3.5.2 Results and Discussion

LFQProfiler

An overview of the LFQProfiler workflow is depicted in Figure 3.9. The workflow is split into
two parts: The processing step starts with loading raw files using the “Spectrum Files” node.
This node is followed by a “Spectrum Selector” for optionally filtering spectra based on various
criteria. After that, the workflow branches: peptide features are quantified in all runs by
“LFQProfiler FF”. In parallel, MS/MS spectra are identified using the native PD node Sequest
HT. Subsequently, peptide identifications are validated using Percolator.

As soon as the processing step has finished, the consensus step combines the individual
processing results. It starts with the obligatory “MSF Files” node for loading the processing
results stored in a Thermo MSF file. “LFQProfiler” then exports peptide identifications from
the Proteome Discoverer format to a file in OpenMS’s idXML format. Then, for each run,
peptide identifications are mapped onto their corresponding quantified features contained
in the featureXML files from “LFQProfiler FF”. The resulting ID-annotated features are again
stored in a featureXML file. At the same time, all peptide-level identification results are used
for protein inference using Fido102 via the TOPP tool FidoAdapter. The result of this step is a
set of protein groups that plausibly explain the observed peptides. These will be quantified in
the remaining steps.

In order to match peptide signals between runs, chromatographic shifts are first reduced by
retention time alignment on the feature level. To this end, RT transformations are computed
for each map based on the deviating retention times of corresponding features across differ-
ent runs. Features are assumed to correspond to one another if they have identical peptide
annotations and lie within a (user-defined) m/z and RT tolerance window. The computed
transformations are applied to warp the retention times of all peptide signals. This initial
warping facilitates the actual task of establishing correspondence between (potentially uniden-
tified) peptide features across runs, the so-called feature linking step, which is achieved using
a quality threshold clustering algorithm19. Once correspondences are established, the linked
peptide signals together with the transferred identifications are stored in a consensusXML file.
Feature intensities are normalized across all runs in order to make them comparable.

Both the quantified and identified features from the consensusXML file and the protein
inference results in idXML format are used as input for the final protein quantification step.
Here, feature intensities are summarized to peptide intensities (i.e., different charge states
of the same peptide are merged), and finally, peptide intensities are summarized to protein
(group) intensities using the results from the Fido protein inference. The final result are tables
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Figure 3.9: Processing and consensus workflow of LFQProfiler. Screenshots from the
Proteome Discoverer workflow editor are shown on the left. The two nodes highlighted
in blue are the ones provided by our plugin, all others are native PD nodes. The numbers
on the nodes are assigned by PD during workflow creation and reflect a topological order
of the workflow graph. The inner workings of our nodes are elucidated on the right.
Here, boxes correspond to the intermediary files that are produced and arrows represent
processing actions carried out by OpenMS/TOPP tools. Reprinted from Veit et al.78
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Figure 3.10: The closest equivalent KNIME representation of the wokflow underlying
LFQProfiler. Reprinted from Veit et al.78

of feature, peptide, and protein (group) abundances for all MS runs in CSV format. These are
parsed back into Proteome Discoverers result tables.

LFQProfiler is based on an established workflow for label-free quantification described by
Weisser et al.19 It provides functionality currently missing in Proteome Discoverer and features
a number of improvements compared to the original version of the workflow19, including
substantial speed-ups and a greatly reduced memory footprint of several employed algorithms,
higher sensitivity, and a more advanced protein inference and quantification step. Figure
3.10 illustrates a KNIME workflow resembling the LFQProfiler workflow as closely as possible.
A completely equivalent representation is currently not possible because the search engine
and validation nodes (Sequest HT and Percolator) of Protome Discoverer are not available in
KNIME. LFQProfiler is fully integrated into Proteome Discoverer and interacts with a selection
of the existing Proteome Discoverer data processing nodes.

49



3. Automation of Proteomics Workflows

We have evaluated our method on a recently published publicly available benchmark data
set for label-free LC-MS data processing workflows from Ramus et al.10 They have measured
a proteomics standard consisting of an equimolar mix of 48 human proteins (Sigma UPS1)
spiked into a complex yeast cell lysate background at nine different concentrations in three
replicates. The entire data set thus comprises 27 full LC-MS runs.

The main performance metric is a receiver operating characteristic (ROC) curve of a clas-
sifier determinining differential abundance between two conditions with different spike-in
concentrations. An ideal classifier would detect all spike-in proteins as differential and all back-
ground proteins as non-differential and would thus achieve an area under the curve (AUC) of 1.
The ROC is plotted for the combined result containing three comparisons: 50 vs 0.5 fmol/µg,
50 vs 5 fmol/µg, and 25 vs 12.5 fmol/µg (each condition measured in three replicates). For
each of the three comparisons, six LC-MS runs (two conditions, three replicates) were pro-
cessed at once by the different investigated workflows. The results for all three comparisons
were then merged into a single table as in the original study for further statistical analysis.
The full table of quantified protein groups including statistical test results is available in the
Supplementary Material.

We have replicated the exact statistical analysis described in this publication in order to
assess the performance of LFQProfiler in comparison with MaxLFQ, MaxQuant, MFPaQ, and
Skyline. In order to ensure a fair comparison, we recomputed the performance evaluation
metrics for these tools based on the result tables accompanying the publication. The same
statistical analysis was then applied to the results of LFQProfiler.

Where possible, we tried to choose settings comparable to the ones used in the other
workflows from the benchmark publication, e.g., both the PSM-level and protein-level FDR
thresholds were set to 1%. As in the original publication, missing values were imputed on the
protein level as the 5-percentile of all protein abundances in the respective LC-MS run. The
exact parameter settings of the LFQProfiler workflow are described in Supplementary Table S1.
With these settings and after applying all filtering criteria10, LFQProfiler was able to quantify a
total of 2,535 proteins across the combined data set of all three comparisons (MaxLFQ 2,625;
MaxQuant Intensity 2,644; MFPaQ 2,721; Skyline 2,620). Figure 3.11 shows the ROCs of the
different workflows. Since all investigated software solutions score very high on this data set
(AUCs in the 97% - 99% range), we limited the ROC plot to the more informative false positive
rate (FPR) interval [0,0.05] and computed the corresponding relative partial AUCs (pAUC).
Note that the relative pAUC of a perfect classifier would equal 100% and correspond to a pAUC
of 0.05, which is the maximum pAUC possible for FPRs between 0 and 0.05. A random classifier
would have a relative pAUC of 50%, corresponding to a pAUC of 0.025. LFQProfiler achieves
a relative pAUC of 97.32%, which is the best performance among the evaluated workflows
(MaxLFQ 96.44%; MFPaQ 93.05%; MaxQuant Intensity 91.27%; Skyline 85.70%). The slightly
lower number of quantified proteins might be due to a more conservative protein-level FDR
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Figure 3.11: ROC curves for the different LFQ workflows participating in the benchmark.
True positive rate is plotted against false positive rate for a varying classification threshold
(p-value of Welsh’s t-test) with a fixed absolute z-score threshold of 1, as described by
Ramus et. al10. Reprinted from Veit et al.78

filtering strategy based on protein inference results in LFQProfiler. Supplementary Figure S1
shows the volcano plot corresponding to these results. Running the entire LFQProfiler workflow
on six input files took approximately 2h 20min (1h 47min processing step, 31 min consensus
step) using a single core of a 3.20 GHz Intel Core i5-3470 machine with 16 GB of RAM. For
comparison, running MaxLFQ on the same machine and input files took 5h 30min.

RNPxl

Beside LFQProfiler, we introduce RNPxl, a Proteome Discoverer workflow based on the work
of Kramer et al.99 for identification and localization of peptide-RNA cross-links which is easy
and quick to handle. UV cross-linking of proteins with RNA and identification of the resulting
products has been used to assign novel binding regions and exact binding sites in proteins. The
large number of potential cross-linked amino acids and oligonucleotides poses a data analysis
challenge and has to be accounted for in MS database searching. Kramer et al. introduced an
experimental MS workflow together with a processing pipeline implemented in the OpenMS
framework, termed RNPxl, to tackle this problem. In essence, the method runs a modified
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Figure 3.12: Processing and consensus workflow of RNPxl. Screenshots from the Pro-
teome Discoverer workflow editor are shaded in gray. Here, most of the functionality is
implemented in the “RNPxl” processing node. If an (optional) control file is provided, the
workflow starts with aligning the UV and the control run to each other in the retention
time dimension and continues with the XIC filtering step in order to remove signals not
originating from cross-links. After that, the ID filtering step removes MS/MS spectra that
can be identified as a (non-cross-linked) peptide with high confidence, in order to fur-
ther reduce the number of false positive cross-link identifications. Finally, cross-links are
identified using the dedicated peptide-nucleotide cross-link search engine. The resulting
CSV file is parsed back into a Proteome Discoverer result table. In the consensus step, the
results are merely preprocessed for visualization. Reprinted from Veit et al.78

database search algorithm that is able to identify cross-linked peptides by taking into account
the masses of characteristic marker ions, cross-linked immonium ions, and characteristic prod-
uct ions from the cross-linked peptides. In addition, cross-link identifications are filtered in
different ways in order to increase reliability of the results.

A schematic of the RNPxl workflow is shown in Figure 3.12. The “RNPxl” processing node
encapsulates two conceptually distinct subworkflows. The first subworkflow can be seen as a
computational cross-link enrichment step that aims at removing all tandem mass spectra of
non-cross-linked analytes. To this end, all spectra that can be assigned to a (non-cross-linked)
peptide, given a user-provided false discovery rate, are removed. If an (optional) non-cross-
linked control is provided, the UV and the control file are first aligned in order to correct
for chromatographic shifts. Extracted ion chromatograms (XIC) from potential cross-linked
precursors are compared between control and UV, and all tandem spectra that show a strong
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signal in the control are discarded. The idea behind using a control to filter tandem spectra
in the cross-linked sample is that signals in the control are known to not correspond to cross-
linked peptides. Hence, they can be used to discard co-eluting precursors and the corresponding
tandem mass spectra in the UV file. Now, spectra that originate from non-cross-linked peptides
or contaminants have been removed and an enriched set of potential cross-linked tandem mass
spectra are used in the second subworkflow performing the actual cross-link search.

The workflow presented here represents both a substantial advancement on the algorith-
mic side and a great improvement of usability of the original approach99. To account for
the complex fragmentation behavior of cross-linked moieties, we implemented a novel search
engine designed specifically for peptide-RNA cross-link identification. This enhanced workflow
runs approximately 90 times faster (on a large Orbitrap XL run with ⇠30,000 spectra) than
the original approach by Kramer et al.99 and is able to automatically localize the cross-linked
amino acids in the peptide sequence based on characteristic product ions of the cross-linked
species. Moreover, localizations are scored using a heuristic, in order to assess the confidence
of localizations. Results can be manually inspected for validation using a convenient integrated
peptide-RNA fragment spectrum viewer. It thus meets the needs of structural biologists, re-
searchers working in the field of RNA binding proteins as well as proteomic researchers that
investigate RNA binding in various cellular contexts.

In addition to the algorithmic improvements, our plugin offers an integrated cross-link
spectrum visualization including annotations of peptide ions and cross-linked nucleotide ions,
as illustrated in Figure 3.13. This feature substantially facilitates manual validation of the
cross-link identifications, which is a crucial step when analyzing these data. For a thorough
evaluation of the method and a complete example data set, see Kramer et al.99 Due to a lack
of competing implementations, we cannot give a comparison to other tools in this case.

3.6 Availability

TOPPAS is included in version 1.9 or later of the open source C++ software library OpenMS11,
running on all major platforms (Windows, Linux, Mac OS X). Binary and source packages
together with installation instructions are available at http://www.openms.org/. GKN
and KNIME are available as KNIME extensions through the KNIME Community Contributions
repository directly from within the KNIME environment. Installation is as easy as selecting the
OpenMS plugin and pressing the Install button in the KNIME GUI. KNIME2gUSE is available at
http://workflowconversion.github.io/ and published under the GNU General Public
License (GPL). LFQProfiler and RNPxl binary installers for Proteome Discoverer 2.0 and 2.1,
the user manual, as well as example workflows demonstrating the basic usage of our nodes
are available free of charge at http://www.openms.org/pd/. OpenMS as well as the C#
plugins for Proteome Discoverer are open-source, published under a BSD 3-clause license.
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Figure 3.13: Annotation and visualization of cross-links. A tabular view for quick valida-
tion of spectrum match information contains protein accessions, precursor charge, m/z
and RT, detected cross-linked peptide and RNA, charge, and score. A click on “Show Spec-
trum” opens an interactive spectrum visualization that highlights all detected fragment
ions. In this example, a precursor heteroconjugate with ribosomal peptide and U-H2O
RNA adduct fragmented to y-ions (blue), a-ions (green), cross-linked b-ions (violet) as
well as a cross-linked immonium ion of tryptophan (brown). Reprinted from Veit et al.78

Source code is available online on GitHub at http://github.com/OpenMS/OpenMS/ and
http://github.com/OpenMS/PDCommunityNodes/.

3.7 Conclusion

We have presented a diverse repertoire of available workflow technologies for designing, opti-
mizing, running, and sharing data analysis workflows based on OpenMS/TOPP. Each of those
platforms was developed with a specific design goal in mind, and thus comes with its own
advantages and disadvantages.

TOPPAS allows non-computer scientists to easily set up new data analysis workflows for
mass spectrometric data. It is a valuable tool for designing custom analysis pipelines, while
facilitating sharing of existing solutions. Even for bioinformaticians, building a workflow
prototype with TOPPAS is much faster and more robust than with custom shell scripts. The
entire workflow together with the parameters of all involved tools as well as a workflow
description is stored in a single file. It is thus simple to share and document the final pipelines.
One of the main advantages over generic workflow management systems is its straight-forward
setup and usability. The graphical workflow language is simple enough to be readily used
by everyone. Yet, in our experience, it is sufficiently expressive to describe a wide range of
MS data analysis workflow. Even complex, branched workflows can be easily modeled and
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the interdependencies of the separate branches are resolved correctly, while processing tasks
independent of each other can be run in parallel on a multi-core CPU. By default, TOPPAS is
equipped with all TOPP tools. These implement a variety of efficient algorithms for numerous
tasks in computational analysis of HPLC-MS data. Arbitrary external command line tools can
be easily integrated by writing a simple configuration file describing its interface. Established
workflows can be run without the GUI using the ExecutePipeline TOPP tool. This enables the
use of TOPPAS pipelines in a high-throughput setting, where a visual interface is no longer
needed once the pipeline has been tested.

Our experiences with the TOPPAS workflow language have influenced the design of the
corresponding language constructs in the Generic KNIME Nodes (GKN) plugin for the KNIME
workflow platform. For this reason, any TOPPAS workflow can be represented as an equivalent
KNIME-GKN workflow. The main advantage of KNIME over TOPPAS is the huge variety of
KNIME nodes for downstream statistical data analysis and visualization. Thus, the entire data
analysis workflow – from raw data to publication-ready figures and result tables – can be
stored and documented in a single place, thus ensuring the integrity of raw data, intermediate
results, analysis results and corresponding figures. Complete data analysis workflows and
results can be shared conveniently between researchers. TOPPAS, on the other hand, has
better built-in support for parallel execution of pending processing jobs that are independent
of each other, and workflow creation is often faster than in KNIME, as KNIME-GKN workflows
require a number of explicit control structures that are implicit in TOPPAS. The KNIME2gUSE
workflow converter is the latest addition to the repertoire of available workflow technologies
for OpenMS/TOPP. It allows to convert KNIME workflows to the gUSE workflow language,
and thus enables the seamless deployment of workflows designed and tested in the KNIME
environment on powerful compute clusters or cloud environments.

Last, but not least, we have developed user-friendly plugins for Proteome Discoverer adding
novel community nodes powered by OpenMS, aiming to combine the convenience of dedicated
GUI applications and the flexibility of workflow-driven approaches in a single tool. Our plugins
enable two powerful data analysis workflows in PD: LFQProfiler for label-free quantification
of peptides and proteins, and RNPxl for peptide-RNA cross-linking data analysis. LFQProfiler
is valuable for PD users who want to perform label-free quantification. Until now, the tools for
label-free quantification in PD were rather unsatisfactory and limited to spectral counting and
calculating the area under the extracted ion chromatogram (XIC) of identified precursor ions.
Proper intensity-based label-free quantification, however, requires a number of additional
algorithmic steps (e.g., feature detection, mapping of identifications to quantified features,
retention time alignment) which are all taken care of by LFQProfiler. LFQProfiler uses a
modified version of an established workflow described and benchmarked by Weisser et al.19.
We have demonstrated its performance and compared it to a selection of other tools in a
benchmark setting defined by Ramus et al.10 We could show that LFQProfiler performs at
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least on par with other state-of-the-art tools for label-free quantification. The second workflow,
termed RNPxl, represents the first software solution to date for identification of peptide-RNA
cross-links including automatic localization of the cross-links at amino acid resolution and
localization scoring. Compared to the original version described by Kramer et al.99, it is
substantially faster and more convenient to use, as it is fully integrated into the Proteome
Discoverer GUI and comes with a customized interactive peptide-nucleotide cross-link spectrum
viewer for convenient manual inspection of the results.
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Chapter 4

OptiQuant – A Novel Approach to
Label-free Quantification

4.1 Introduction

Relative label-free peptide quantification is the problem of estimating the relative abundances
of peptides in multiple LC-MS samples based on their raw LC-MS signals. The main advantage
over labeled approaches is that with label-free quantification, the number of samples to analyze
and compare is virtually unlimited. While the experimental workflow is straightforward (no
labeling required), additional challenges arise on the computational side. Various algorithms
and tools for label-free quantification have been proposed in the past. A brief overview of
existing solutions can be found in Section 2.2.3. Most of these tools share a certain set of
core funtionalities. The task of detecting and quantifying peptide signals in raw LC-MS data
inherently requires algorithms for signal detection and data reduction. In fact, data reduction
is implied by the problem definition itself: given a set of n raw LC-MS data sets consisting of
hundreds of millions of peaks, compute a list of all peptides present in the samples together
with their relative abundances in each of the n runs.

In label-free quantification algorithms, data reduction is usually performed multiple times at
different levels in order to achieve feasible runtimes for downstream algorithmic steps. Existing
solutions differ in the types of employed algorithms and in the order in which data reduction
steps are carried out. But data reduction always comes at a price. At each reduction step,
the signal is condensed into a more compact, more concrete, and more readily interpretable
representation. Ideally, the reduced data set still contains all relevant information required
for correct quantification of the original signal, but less irrelevant information. In practice,
however, data reduction steps are error-prone. Different instrument types and experimental
setups produce data with different noise profiles. Sample complexity and ambient conditions
during data acquisition are other important factors contributing to the characteristics of any
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given LC-MS dataset. Designing a robust universal data reduction algorithm for LC-MS data is
a challenging task mainly due to this multitude of different shapes and sizes.

Traditional approaches to label-free peptide quantification usually perform a significant
amount of data reduction at an early stage in the quantification workflow. For each detected
peptide feature, its hundreds or thousands of raw data peaks are basically condensed into four
numbers: m/z of the monoisotopic mass trace, RT of the chromatographic apex of this trace,
overall feature intensity, and charge. This reduction simplifies the subsequent retention time
alignment and feature linking problems, but it can also introduce errors that cannot be fixed in
the downstream steps anymore. If feature assembly groups the wrong set of signals together in
one run, chances are that the respective peptide cannot be linked to its corresponding peptides
in other runs as its feature centroid position may not be within a reasonable tolerance window
of the true signals, leading to a missing value for this feature.

One possible solution to avoid these kinds of problems is to quantify based on individual
detected mass traces rather than assembled features. If followed by an ID mapping step,
peptides with identifications matching detected mass traces can be quantified. Instruments try
to select the monoisotopic mass of a putative peptide for fragmentation and recording of an
MS/MS spectrum. Hence, these identifications should match the monoisotopic mass trace of
their corresponding MS signals. A peptide can thus be quantified across all runs in which its
monoisotopic mass trace was detected.

Thus, skipping feature assembly as a potential source of error can improve sensitivity. Mere
mass trace detection is a less error-prone subproblem of feature detection and errors made here
tend to have less catastrophic effects on the overall quantification result. The chromatographic
peak estimation of the mass trace may be slightly inaccurate, or the total width of the mass
trace may be a bit too long or too short (depending on the noise level and how many missing
peaks one wants to allow before canceling the extension of a mass trace in the RT dimension).
But in general, the chances of being able to detect and link mass traces across different runs
are better than for fully assembled features due to the higher degree of preservation of the true
underlying signal.

However, the gain in sensitivity when quantifying based on unassembled mass traces is
accompanied by a potential loss of quantification accuracy. A fully assembled feature consisting,
for example, of six isotopic mass traces, provides a much better estimate of the true abundance
than its monoisotopic mass trace alone. This is especially true for heavier peptides (multiply
charged peptides in the higher m/z regions), since their isotope distributions are significantly
shifted towards larger numbers of heavy isotopes, and therefore the monoisotopic mass trace
accounts for a relatively small proportion of the total signal. Thus, the signal-to-noise ratio
of the monoisotopic mass trace is smaller than for the more intense heavier isotopic traces.
This can be critical when quantifying low-intensity features close to the noise level. Another
shortcoming of purely mass trace-based quantification is the lack of the charge information in
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the MS signals. This is because the charge of a peptide can only be determined if at least two
consecutive isotopic peaks have been detected, in which case the charge z can be determined
based on the m/z distance �m/z between consecutive peaks: z =

⇥ 1
�m/z

⇤
. Thus, if multiple

peptide identifications with conflicting charge states match a single mass trace, it is impossible
to choose which one is correct. This problem does not occur with fully assembled features.
Here, we can simply select the identification with the charge state matching that of the MS
feature. Last but not least, when information about the isotopic envelope is ignored, any
mass trace could potentially represent a monoisotopic mass trace of a feature that we want to
quantify. We have no way of identifying and then ignoring higher isotopic traces during the ID
mapping process. Thus, in complex datasets, the number of candidate mass traces that could
be mapped to a given peptide identification is simply too high.

To overcome the shortcomings of traditional approaches in the scenarios described above
while achieving the superior quantification accuracy and charge state determination of feature
assembly-based approaches, we have developed a novel method termed OptiQuant. It is based
on two fundamental ideas: First, we expect that feature detection will be more reliable when
considering evidence found across all LC-MS runs at once during feature assembly, as opposed
to the traditional approach of first detecting feature signals in individual runs and only then
establishing correspondence. Instead of assembling features first, our first step consists in run-
wise mass trace extraction. Subsequently, corresponding mass traces are linked across runs.
Using this intermediate result, we then perform a so-called consensus feature assembly, where
consensus features are assembled from linked consensus mass traces. The advantage of this
delayed assembly approach is that we can, at this stage, make a more informed guess about
the presence or absence of features. By considering the combined evidence across all runs
at once, we have a much better chance of choosing the correct feature hypothesis from a set
of conflicting hypotheses and of quantifying it across all samples in which the corresponding
peptide was present. Moreover, while traditional algorithms usually employ greedy heuristics
to select a conflict-free subset from a set of overlapping feature hypotheses, OptiQuant provides
a framework for efficiently computing a globally optimal solution with respect to an objective
function and a set of constraints. We expect a global optimization approach to be superior to
greedy local heuristics.

4.2 Concepts

The OptiQuant approach involves three essential steps: mass trace detection, mass trace linking,
and consensus mass trace assembly. Figure 4.1 shows a schematic of the basic workflow.

59



4. OptiQuant – A Novel Approach to Label-free Quantification

Figure 4.1: Basic OptiQuant workflow.

4.2.1 Mass Trace Detection

Our approach builds upon an established algorithm for mass trace detection, originally pub-
lished as a submodule of a method for sensitive feature detection in LC-MS-based metabolomics
data by Kenar et al. For detailed information on the algorithmic approach, the reader is referred
to their original publication20.

4.2.2 Efficient Mass Trace Alignment and Linking

Mass trace linking is essentially a variant of the feature linking problem in which the objects
being linked do not possess a charge state attribute. The charge of a peptide can only be
determined if at least two consecutive isotopic traces have been detected, in which case the
charge z can be determined based on the m/z distance �m/z between consecutive mass traces:
z =

⇥ 1
�m/z

⇤
. Apart from this difference, existing algorithms for retention time alignment and

linking of LC-MS features are readily applicable to mass trace data as well.
A plethora of linking algorithms for LC-MS signals have been developed and published

over the past decade. They can roughly be divided into different groups based on the type of
input data they operate on (raw data, assembled features), whether they perform pair-wise
iterative linking or a global simultaneous approach where all input runs are used at once, and
whether or not they perform an alignment or warping step to bring corresponding features into
closer proximity to each other before actually establishing correspondence. Smith et al.’s103

otherwise excellent review mentions OpenMS, but unfortunately does not include the latest
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available OpenMS tools for retention time alignment and feature linking. The review refers
to an approach by Lange et al.104 involving the OpenMS tools MapAlignerPoseClustering and
FeatureLinkerUnlabeled. MapAlignerPoseClustering selects a user-specified number of high-
intensity features in each run as potential anchor points for the alignment and then employs a
pose clustering algorithm to estimate matches. Based on matched anchor points, it computes
linear transformations for each run to bring its features’ RTs closer to those of a reference run.
This reference run can be specified by the user or chosen automatically (in which case the map
with the largest number of features is selected). The limitation to linear transformations is
quite unfavorable, as it has been shown that RT shifts between different runs often show rather
strong non-linear effects19. Subsequently, FeatureLinkerUnlabeled operates on the transformed
feature maps and groups features in a pair-wise greedy manner, loading one map at a time
and adding each feature to the closest compatible cluster found so far.

In the meantime, more recent tools for feature alignment and linking have been devel-
oped and incorporated into OpenMS, notably MapAlignerIdentification and FeatureLinkerUnla-
beledQT19. MapAlignerIdentification represents a significant improvement over its predecessor.
Most importantly, it allows to compute non-linear transformations using, e.g., cubic B-splines
or LOWESS regression. The basic idea, as its name implies, is to exploit peptide identifications
annotated to the features in order to determine the initial set of corresponding objects. Granted
these identifications are correct, this approach produces a very reliable set of anchor points
for computing the warping function. It has been demonstrated to be clearly superior to the
linear approach19. Obviously, however, this method works only if identifications are available.
While this is not a serious restriction in many practical applications in label-free proteomics,
where MS/MS spectra are routinely acquired and identified using peptide search engines, it
renders the tool useless in situations where identifications are, for whatever reason, unavail-
able. Conceivable examples include metabolomics or lipidomics datasets where identification
of compounds is sometimes less straightforward than with proteomics data. In general, we
prefer to consider identification and quantification as two independent problems.

Both MapAlignerPoseClustering and MapAlignerIdentification require a reference run. This
is undesirable for a number of reasons. First, it is unclear which of the runs to choose as the
reference a priori, i.e., without first determining how well a particular run represents the
consensus of all maps. In order to guarantee an optimal choice, one would have to try each
map as the reference once and then compare certain quality metrics on the final linking results
(such as the average RT difference between all features from other maps linked to features from
the reference, or the number of linked consensus features without missing values). Such an
approach is clearly unfavorable as it causes excessive runtimes. This is why the tools mentioned
above just leave the choice of the reference up to the user, or, alternatively simply choose the
map with the largest number of features. However, there is no guarantee whatsoever that
this is a particularly good choice. This map could just as well be the one with the largest
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retention time shifts compared to all other maps. Moreover, the automatic choice implies
another potential pitfall: linking results might change considerably if only a single input file is
removed or added, if this file just happens to be the map with the largest number of features.

MapAlignerIdentification’s counterpart, FeatureLinkerUnlabeledQT, is superior to its prede-
cessor FeatureLinkerUnlabeled as it operates on all maps at once rather than using a pair-wise
greedy heuristic approach. The computed result is thus globally optimal with respect to its
optimization criteria, regardless of the order of input files and without the need for a reference
run. For the development of the OptiQuant label-free quantification approach, we initially
chose to work with FeatureLinkerUnlabeledQT. This approach employs a variant of the quality
threshold (QT) clustering algorithm19 for feature grouping. In general terms, clustering is de-
fined as the task of grouping a set of objects in such a way that objects within the same cluster
are more similar to each other than to objects of other clusters. In feature linking, our aim is to
group signals from different runs originating from the same analyte. The problem can thus be
formalized as a clustering problem with additional constraints: objects are represented by their
retention time, m/z, and intensity (fully assembled features also have a charge attribute, mass
traces do not). A cluster represents a set of corresponding peptide signals from different maps,
a so-called consensus feature. The additional constraints are that a cluster cannot exceed a
certain diameter (implied by the linking tolerance thresholds for m/z and RT), cannot contain
more than one element from each map, and cannot contain features with conflicting charge
states or peptide identifications.

FeatureLinkerUnlabeledQT is the current state-of-the art linking tool of the traditional
OpenMS label-free quantification workflow. This workflow has been demonstrated to perform
at least on par with the most popular competing software solutions for label-free quantification
to date19,78. FeatureLinkerUnlabeledQT has been a very useful tool during the early prototyping
stages of the OptiQuant approach. However, preliminary tests on realistically sized mass trace
datasets revealed considerable performance issues. We have carried out a test run using
FeatureLinkerUnlabeledQT on a dataset comprising 15 Orbitrap Velos runs with approximately
700,000 detected mass traces (compared to approximately 50,000 detected features) per run.
Feature linking was canceled after a total runtime of eight days without making any observable
progress.

The problem in this scenario is that mass trace extraction produces much larger result
files than full feature detection. Assuming that an average feature has approximately five
or six observable isotopic mass traces, the number of datapoints is at least five or six times
higher than for feature data. Depending on the mass trace detection parameter settings, false-
positive noise traces often add another significant amount of data points. As a consequence, the
subsequent retention time alignment and feature linking steps become computationally much
more challenging. Thus, a crucial prerequisite for the OptiQuant consensus feature assembly
approach was the development of very efficient algorithms for retention alignment and mass
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trace linking which are able to operate on hundreds of maps, each containing up to a million
mass traces. In the following two sections, we present novel algorithms that are able to achieve
this goal.

Retention Time Alignment

The input of our retention time alignment and linking algorithm is a set of featureXML files,
each representing an MS run of a label-free experiment. We start by constructing a k-d tree for
fast region queries in the RT and m/z dimension. A node in the k-d tree is represented by an
object storing the mandatory primary attributes (RT and m/z) as well as the unique index of
the feature it represents, in order that the original object a node corresponds to can always be
accessed via the node returned by a k-d tree query. For each input map, we create a k-d tree
node for each of its features and additionally store the map index of the corresponding input
map. Once the entire set of input features has been added, the tree must be balanced in order
to optimize query speed.

Next, we construct a compatibility graph on the entire set of features from all maps com-
bined. This graph will allow us to find a reliable set of anchor points for computing the
alignment function without the need for a reference run. Let

F = { f1, . . . , fn} (4.1)

=
[

j=1,...,n
M( f j) (4.2)

=
[

k=1,...,m
Mk (4.3)

denote the entire set of features (from any input map Mk), where n is the total number of
features, m the total number of maps, and M(·) denotes the input map of the feature passed
as argument. We define the compatibility graph G = (V, E) with

V = {vi : i = 1, . . . , n} (4.4)

E =
�
(vi , vj) : c(i, j) = 1

 
, (4.5)

where

c(i, j) =

8
<
:

1, if fi and f j compatible

0, otherwise
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denotes the pair-wise compatibility function indicating whether two features are compatible,
i.e., potentially representing corresponding signals. To compute the set of features compatible
with a feature fi , we perform a rectangular region query around the feature centroid of fi using
the k-d tree (the rectangle is defined by the user-specified RT and m/z tolerances). The set of
features within that region shall be denoted Fi . These are candidates for features compatible
with fi , i.e., potential corresponding signals. We continue by checking additional constraints:
Any true corresponding features fik must originate from a map M( fik) 6= M( fi) and must have
the same charge state z as fi (if the charge state is known). In addition, we define a maximum
absolute log fold change threshold �max for any pair of features to be considered compatible.
This is a measure to increase the specificity of pair-wise correspondence estimation. It is based
on the (usually safe) assumption that the dataset contains a sufficiently large number of non-
differential signals. Note that this means we might fail to establish compatibility between
pairs of highly differential but truly corresponding features. However, at this stage, we are not
actually linking features yet, but are only interested in finding a sufficiently large number of
corresponding features in order to compute retention time alignment functions for all input
maps. For this reason, a few missing features do not have a significant effect on the result. The
benefits of using this stricter definition of compatibility will be detailed further below. Thus,
the actual set F̂i of compatible features for feature fi is defined as

F̂i =
⇢

fik 2 Fi : fik /2 M( fi)^ z( fik) = z( fi)^ | log(
fi

fik
)| �max

�
. (4.6)

Next, we compute the connected components (CCs) on this compatibility graph by means
of breadth-first search (BFS) in O(n) time and space. These CCs are preliminary candidates for
sets of corresponding features. Ideally, each CC would form exactly a clique (i.e., a subgraph
in which each distinct pair of nodes is connected by an edge). In this case, retention time
alignment would actually be unnecessary as the feature correspondence problem has a trivial
solution. Each CC represents exactly one set of corresponding features.

In practice, however, it is often the case that not all pairs of nodes within a CC are adjacent,
for example if the user-specified tolerances are set rather tight and two of the input maps are
extreme outliers (in opposite directions) in terms of the overall systemic retention time shift. In
this scenario, a pair of true corresponding features from these two maps might not be connected
by an edge, but each of them might still be connected to one or more corresponding features
from the other maps, which in turn are all closer to the average RT and highly interconnected.
This case is still unproblematic, since all true corresponding features would nevertheless end
up in the same CC, even though some of the nodes are not connected by a compatibility edge.
The situation becomes more difficult when a CC has internal conflicts, i.e., contains several
features from the same map or conflicting charge states. This can occur if the m/z and RT
tolerance window is too wide, if true positive features from two different CCs are simply very
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close to each other, or if additional false positive features are present. As an example, a small
subset of the compatibility graph generated for the alignment of a total of 15 label-free LC-MS
runs of tryptic human platelet proteome digest in different conditions105 is illustrated in Figure
4.2.

Figure 4.2: Subset of the compatibility graph generated for the alignment of 15 label-free
LC-MS runs in organic layout. Figure created using yEd (yWorks GmbH, Germany).

Looking at some of these connected components, one might be tempted to suggest to simply
try and resolve the occuring conflicts. For example, some of the CCs consists of two perfect
cliques that are joined only by a single edge as a feature from one clique happens to fall into
the tolerance window of a feature from another clique (and vice versa). While some of these
cases may seem trivial to resolve to human eyes, the general case is in fact computationally
very expensive. For instance, one might want to find maximum cliques within CCs that exhibit
internal conflicts. It follows from the definition of our set of edges E that a maximum clique can
be at most of size m. Hence, our example case could be solved by finding the two maximum
cliques contained in this CC. Unfortunately, finding a maximum clique in a graph is an NP-
complete problem. Beyond that, it is fixed-parameter intractable and hard to approximate.
A slightly more promising idea would be to repeatedly determine the minimum cut of a CC
with internal conflicts until all resulting subgraphs are conflict-free. A cut of a graph defines a
partitioning of the graph into two disjoint subgraphs. A minimum cut is one which cuts through
a minimal number of edges. There exist polynomial time approximations for this problem,
such as the randomized Karger-Stein algorithm, which has a “high probability” of finding a
min-cut in a graph in O(n2 logO(1) n). Such an approach might still be computationally feasible.

However, the fundamental problem with these types of problem definitions is that they
cannot deal well with data that contains errors. The presence or absence of nodes and edges
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in the graph is a function of the set of detected mass traces (which may cause false-positive
and false-negative nodes) and the user-specified alignment tolerance parameters controlling
the tradeoff between false-positive and false-negative edges. In the general case, the compat-
ibility graph must thus be assumed to contain various types of errors. Even if the result of
a graph-theoretical approximation of the abovementioned problems is actually optimal in a
graph theoretical sense, this wouldn’t guarantee that we found the true solution of the feature
correspondence problem. Hence, we might as well resort to simpler, more efficient heuristics
for conflict resolution, such as repeatedly deleting edges between nodes with small node degree
until the CCs are conflict-free, or something along those lines.

Luckily, however, there is another option. We can simply circumvent conflict resolution
altogether, as we don’t actually need all of the true sets of corresponding features in order to
compute the warping functions for all maps. Thus, instead of trying to separate coalescent CCs
from one another, we can simply discard problematic CCs. As an additional means to ensure
we use only “high quality” connected components for computing the warping function, we
define a minimum size (number of maps in which a feature was detected) for the CCs to keep,
relative to the total number of input maps. For example, we might want to keep only the set
of conflict-free CCs Ci explaining a signal in at least 80% of the input maps {Ci : |Ci |� 0.8m}.

We want to point out that there is virtually no limit on the coalescence of true sets of
corresponding features. A single pair of compatible features from different CCs suffices to
merge them into one. The degree of connectedness depends to a large extent on the choice of
the m/z and RT threshold parameters. Both an extremely small and an overly large tolerance
window result in fewer CCs fulfilling the filtering critera: If the window is too narrow, some truly
corresponding features might not be joined by an edge and thus might not end up in the same
CC. Thus, CCs will be smaller and fewer of them will pass the minimum size threshold. On the
other hand, if the tolerance window is too wide, many true sets of corresponding features will
merge with others and form larger connected components. However, any connected component
with a size larger than m inevitably contains a conflict (at least one non-unique map index)
and will be discarded. This undesirable side-effect caused by more generous tolerances is the
reason why we introduced �max in Equation (4.6). It decreases the probability of unwanted
coalescence and thus allows to increase alignment tolerances without having to discard too
many fused CCs.

Let C denote the set of filtered “high-confidence” CCs. We proceed with computing the
actual data points on which we will fit our RT transformation functions. We want to compute
one such function for each input map. Therefore, we iterate over all CCs and for each CC Ci,
we compute the average retention time t̄ i of all contained features. Then, for each input map
Mk we define a corresponding set Pk of pairs of RTs ti j and average RTs t̄ i for all features fi j

originating from Mk and belonging to Ci:
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Pk =
[

Ci2C

�
(ti j , t̄ i) : fi j 2 Ci ^M( fi j) = Mk

 
. (4.7)

Now, we obtain the desired warping function lk for map Mk by performing a LOWESS regression
on the data points contained in the corresponding set Pk. Finally, the RTs ti of all features
fi 2 Mk are transformed by replacing them with the LOWESS evaluation l(ti). In our case,
since we want to keep the original RTs for reporting, we do not actually replace RTs but store
an additional O(n) array of transformed RTs for internal use in the subsequent feature linking
steps.

The entire retention time alignment algorithm requires O(n) space, since all n features need
to be kept in memory at the same time and the additional k-d tree also requires O(n) space.
If we would physically generate the actual compatibility graph as described above, storage
of the edges would require an additional O( n

m m2) = O(nm) since there are O( n
m) connected

components Ci , each of which contains O(|Ci |2) compatibility edges, where |Ci | m. In order
to avoid this excessive memory consumption, we compute the CCs of this graph without ever
explicitly storing the graph in memory. Instead of traversing all compatibility edges of a node
in the BFS algorithm computing the CCs, we simply compute the set of compatible features
on-the-fly and add them to the current connected component. The runtime complexity is
O(n log(n)) on average and O(n2) in the worst case, since computing the CCs by means of BFS
requires O(n) time and for each node, we need to perform a k-d tree region query in order to
find compatible features, which requires O(log(n)) on average and O(n) in the worst case.

Feature Linking

Our linking algorithm is based on the same fundamental idea as the FeatureLinkerUnlabeledQT19

algorithm described above. The basic approach of this greedy QT clustering variant is to select
a cluster in each iteration that maximizes a global quality criterion, followed by the removal
of the newly clustered features from the set of objects remaining to be grouped. Every feature
fi 2 Mk is considered as the center point of a potential cluster Ci containing at most one feature
from any map Mk0 , k0 = 1, . . . , m, namely the feature fi0 2 Mk0 most similar to fi . It follows that
these potential clusters are overlapping (sharing features) with other potential clusters in their
neighborhood. For this reason, all remaining potential clusters affected by the removal of the
features of a finalized optimal cluster must be updated in each iteration. All features fi0 2 Ci

must lie within the user-specified m/z and RT tolerance window around the center fi and must
have the same charge state as fi . If no such feature exists, the final consensus feature will have
a missing value for map Mk0 . The global quality criterion for choosing an optimal cluster in
each iteration is a combination of the similarity of the grouped features and the size of the
cluster (i.e., the number of runs in which it explains a signal): The cluster selected in each
iteration is always guaranteed to have maximum size among all remaining potential clusters.
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Ties are broken by similarity score. It follows that the final number of clusters explaining the
entire dataset is minimal. Hence, the algorithm satifisfies the principle of maximum parsimony.
The major performance improvement of our algorithm over FeatureLinkerUnlabeledQT is due
to the use of considerably more efficient data structures and strategies for organizing and
querying the objects to be linked, maintaining the set of potential clusters, efficiently choosing
an optimal cluster in each iteration, and updating all remaining potential clusters affected from
that choice.

The linking algorithm operates on the transformed RTs from the alignment step (while
the original RTs are kept for reporting the final results). Therefore, the original k-d tree must
first be rebalanced using the transformed RTs. Now, we start by creating the initial set of
potential clusters. To this end, we iterate over all features (from any input map) and for each
feature fi perform a region query of the rectangular region defined by the user-specified RT
and m/z tolerance around the feature centroid position. Again, let F denote all features falling
within that rectangle. We build the potential cluster Ci by adding the center point fi itself and
selecting for each other map Mk0 6= M( fi) the feature fi0 most similar to fi:

Ci = { fi}[
[

k0 6=k

⇢
argmin
fi02F\Mk0

d( fi , fi0)
�

(4.8)

with the parametrized distance function

d( f , f 0) =
wmz

|mz( f )�mz( f 0)|a
⌧mz

+ wrt
| rt( f )�rt( f 0)|b

⌧r t
+ wint

| log int( f )�log int( f 0)|c
maxi=1,...,n log int( fi)

wmz + wrt + wint
, (4.9)

where ⌧mz and ⌧r t denote the m/z and RT tolerance thresholds, respectively.
Note that the individual components of this distance function can be weighted (thus can

be turned off by setting their respective weight to zero) and their exponents can be adjusted.
Including the log intensity difference may be counterproductive in some use cases, as we want
to be able to link corresponding differential features regardless of their fold change. However,
if lots of noisy features are present, using the intensity component can be a very effective
measure to avoid grouping low-intensity false-positive features that happen to be close to a
cluster center together with true positives.

Now, in order to significantly reduce space complexity, we do not store the entire set of
O( n

m) potential clusters of size O(m) in memory, but instead keep only so-called cluster proxy
tuples C⇤i = (|Ci |, d̄(Ci)) storing the size of the cluster and the average distance

d̄(Ci) =

P
fi02Ci

d( fi , fi0)

|Ci |� 1
(4.10)
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of all contained points to the cluster center fi . Thus, our space requirements stay in O(n) rather
than O(nm) (which would be quadratic in m). The resulting cost of retrieving the actual cluster
Ci again later when its cluster proxy C⇤i is selected as the current optimal cluster is negligible.

In order to efficiently select the current optimal cluster proxy in each iteration, we keep all
cluster proxies in a sorted binary tree. The less-than operator l(·, ·) defining the actual sorting
is defined as follows:

l(C⇤i , C⇤j ) =

8
>>>>><
>>>>>:

1, if |Ci |> |Cj |
0, if |Ci |< |Cj |
1, if |Ci |= |Cj |^ d̄(Ci)< d̄(Cj)

0, otherwise

This implies a sorting by priority on the cluster proxies where a cluster of larger size will
always be preferred over a smaller one and if the size of two clusters is equal, the one with the
smaller average distance d̄(Ci) will be preferred. Since the binary tree is sorted in ascending
order, the current optimal cluster proxy is always the first element of the tree and can thus
be retrieved in O(1) time. In each iteration, we select the current best cluster proxy C⇤i and
now retrieve the actual corresponding cluster Ci a second time, using the same procedure as
described above on the center feature fi . The potential cluster Ci is now finalized. A consensus
feature containing all subfeatures fi0 2 Ci is added to the final linking result, the fi0 are marked
assigned so they will not be available to other potential clusters anymore, and the cluster proxy
C⇤i is removed from the binary search tree.

Consequently, all remaining potential clusters still grouping any of the now unavailable fi0

must be updated before we proceed with the next best cluster. By definition, these features fi0

are contained within the rectangular region defined by the m/z and RT tolerance centered on fi .
In the most extreme case, a feature fi0 could lie exactly on the border of the tolerance window
around fi , and at the sime time on the border of another potential cluster with center f j , where
f j is at a distance twice the tolerance in the m/z and/or RT dimension. Hence, we perform
a rectangular region query on the k-d tree using twice the specified m/z and RT tolerance to
retrieve all features f j that could possibly be affected by the finalization of fi and therefore
need updating. We recompute the optimal clusters Cj for them (ignoring the now unavailable
fi0), we remove the outdated cluster proxies C⇤j from the binary search tree and instead add the
new cluster proxies Ĉ⇤j describing the updated clusters Cj. The whole procedure is repeated
until the search tree containing the potential cluster proxies is empty and hence all features
have been clustered into consensus features.

Like the RT alignment part, the linking part and thus the algorithm as a whole requires
O(n) space and O(n log n) time, since we use the same k-d tree as the primary datastructure
(complexity discussed above) and we store a set of O(n) many potential cluster proxies of size
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O(1) in a sorted binary search tree, which in turn requires O(n) space and O(log n) time for
insertion and lookup.

Additional Improvement

Although the algorithm is very efficient as is, we have implemented another optimization to
even further reduce the runtime and memory requirements in practical application (while not
improving on the theoretical complexity). This approach is carried over from an improvement
that has been made to FeatureLinkerUnlabeledQT after its initial publication. The idea is to
not run the algorithm on the entire dataset at once, but to first partition all input maps in m/z
space (using the same boundaries for each map) such that this partitioning is guaranteed not
to have an impact on the final results. We partition the dataset D into partitions:

D = { f1, . . . , fn} (4.11)

= P1 [ . . . [ Pm (4.12)

Pi \ Pj = ; 8 i, j = 1, . . . , m : i 6= j (4.13)

where the partitioning fulfills

mz( f ) < mz( f 0) 8 f 2 Pi , f 0 2 Pi+1, i = 1, . . . , m� 1, (4.14)

and two neighboring m/z partitions Pi and Pi+1 are seperated by an empty margin in m/z
space wider than the user-specified m/z tolerance ⌧mz:

min
f 02Pi+1

mz( f 0) � max
f 2Pi

mz( f ) > ⌧mz 8 i = 1, . . . , m� 1. (4.15)

This holds because our algorithm guarantees never to link features that have an m/z difference
larger than this tolerance ⌧mz . Note that there is one exception where the partitioning would
actually influence our results, namely the computation of the RT warping function. Here, the
warping function depends on signals from the entire m/z range and should not be computed
on individual partitions. Therefore, we first generate the entire set of datapoints for a global
LOWESS fit by accumulating datapoints in an initial full pass over all partitions. Once all
datapoints have been collected, a LOWESS transformation is fitted for each input map and this
same set of transformations will be applied to each partition in the subsequent steps. With this
modification, the partitioning is guaranteed not to have an impact on the results.
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4.2.3 Optimal Consensus Feature Assembly Using Mixed Integer Programming

The actual OptiQuant consensus feature assembly algorithm operates on the linked consensus
mass traces resulting from run-wise mass trace extraction and subsequent mass trace alignment
and linking using the approaches described above. Its output are assembled consensus features
corresponding to peptides quantified across the input maps. Again, we employ a k-d tree
for fast region queries. This time, the k-d tree is not constructed on the set of input mass
traces (subfeatures of the linked consensus mass traces), but only on the consensus mass traces
themselves. The m/z and RT of a consensus mass trace is computed as the average m/z and
RT of all its linked subtraces.

Now, we generate the set of all possible feature hypotheses H for the user-specified set of
charge states Z to consider. To this end, we consider each consensus mass trace as a potential
monoisotopic mass trace of a consensus feature. For a given potential monoisotopic consensus
mass trace t, we consider all charge states z 2 Z and look for up to ntmax (a user-specified
parameter) isotopic traces at rt(t) and mz(t)+k 1.0033555Da

z for all k = 1, . . . , ntmax (the constant
corresponds to the mass difference between 12C and 13C, see Section 2.2.1). As usual, we allow
for a user-specified m/z and RT tolerance around the expected positions of isotopic traces.

In addition to those feature hypotheses for which we have found certain isotopic mass
traces at the expected positions, we also consider all hypotheses in which any subset of these
traces is missing. The reason for that is that individual mass traces originating from different
analytes can easily collide (be observed at the same or a very similar m/z and eluting at the
same time) and then cannot be distinguished from one another. In this case, the intensity of
the single quantified mass trace is actually the sum of two mass traces intensities. Thus, it
wouldn’t make much sense to include this mass trace in the quantification of either parent
feature (unless we had a way to deconvolve the two true mass traces, which, in the general
case, we do not).

In reality, however, we do not actually consider all of the possible hypotheses with arbitrary
amount of missing mass traces. In order to reduce complexity, and because it is probably safe
to assume that some of the more unlikely hypotheses can be neglected (e.g., a hypothesis with
only the monoisotopic mass trace, or one with only the monoisotopic mass trace and the sixth
isotopic trace, but nothing in between, etc.), we first filter the set of generated hypotheses
before selecting a conflict-free subset of hypotheses and promoting them to real features. For
details on the filtering criteria, see Table 4.2.

Many of the generated hypotheses are actually in conflict with each other. For instance, all
hypotheses sharing the same monoisotopic mass trace are in conflict. We can only select one
of them and have to discard all others. The goal of the OptiQuant algorithm is to select the
“best” subset of compatible features from each set of conflicting hypotheses. We consider two
hypotheses h and h0 to be in conflict with each other if they share one or more mass traces.
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Most often, a given hypotheses is in conflict with not only one but with a larger number of
other hypotheses. Thus, our next step is to determine all clusters of hypotheses Cj ✓ H for
which each h 2 Cj is in conflict with at least one other hypothesis h0 2 Cj and is in conflict with
no other hypothesis h⇤ /2 Cj outside of the cluster.

Finding these clusters can again be modeled as a graph problem: Let G = (V, E) denote an
undirected graph with vertices V representing hypotheses and edges E = {(u, v) : hu and hv

share mass traces}. Then finding the connected components of this graph directly yields the
sought conflict clusters. This can be computed in O(n) using breadth-first search (BFS).

The advantage of first finding these clusters is that conflict resolution can now be performed
separately for each cluster, ignoring hypotheses from other clusters. This reduces the complexity
of the overall optimization problem by reducing a global optimization problem to a set of
independent, smaller optimization problems without affecting the optimality of the global
solution. In fact, the global solution that we obtain by combining the solutions of the individual
problems is identical to the solution of the global optimization problem1 per definition of the
conflict clusters Cj as well as the objective function and constraints (see Equations (4.23) and
(4.24) below), which ensure that the solution of the global optimization problem will never
contain features involving mass traces belonging to different clusters. The independence of
the individual problems allows us to compute their solutions in parallel.

Our algorithm for conflict resolution works as follows: For each hypothesis cluster consist-
ing of n hypotheses, we construct a mixed-integer program (MIP) maximizing an objective
function

z = s1 x1 + s2 x2 + · · ·+ sn xn (4.16)

subject to certain constraints (see below), where si denotes the score of hypothesis hi and xi is
a binary variable indicating whether hypothesis hi is selected as a feature (xi = 1) or discarded
(xi = 0).

The score for a hypothesis hi is defined as

si = s(hi) = ssize(hi)
a wint sint(hi)

b + wmz smz(hi)
c + wRT sRT (hi)

d

wint + wmz + wRT
(4.17)

It is parameterized by the exponents a, b, c, and d as well as the weighting factors wmz , wRT ,
and wint . The individual score components are the hypothesis size score ssize, which equals the
number of consensus mass traces the hypothesis explains, the intensity score sint representing
the weighted average Pearson correlation of the observed isotope intensity distributions with
the expected distribution, as well as smz and sRT penalizing deviations from the expected m/z
and RT in the sub-hypotheses found in individual maps.

1The global optimization problem is obtained by maximizing Equation (4.23) s.t. Equation (4.24) for all
generated hypotheses at once, without prior grouping into clusters of conflicting hypotheses.
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Let hi j denote the j-th subfeature hypothesis (found in input map j out of m maps in total) of
a hypothesis hi . For the user-specified maximum number of considered isotope traces ntmax , let
avg(hi) 2 Rntmax denote a vector containing the theoretically expected (averagine) intensities
of the first ntmax isotopic traces for hypothesis hi . Let int(hi j) 2 Rntmax denote the vector of de-
tected trace intensities for hypothesis hi in map j. Let ni j =

���k = 1, . . . , ntmax : int(hi j)k 6= 0
 ��

denote the number of detected (non-zero) traces supporting hypothesis hi in map j and let
n̂i =

P
j=1,...,m ni j denote the total number of detected traces supporting hi across all maps.

Then, the overall intensity score component for hypothesis hi can be defined as

sint(hi) =
1
n̂i

X

j=1,...,m

ni j
r(int(hi j), avg(hi)) + 1

2
, (4.18)

where

r(X , Y ) =

P
i (Xi � X̄ )(Yi � Ȳ )

∆P
i (Xi � X̄ )2

∆P
i (Yi � Ȳ )2

2 [�1, 1] (4.19)

is the Pearson correlation coefficient. In order to obtain a score sint(hi) 2 [0,1], the correlations
are transformed to this interval by adding 1 and dividing by 2. The intensity score contribution
for a map j is weighted by the factor ni j in order to put more emphasis on signals from maps
where many traces are explained, as the Pearson correlation is not very meaningful for too
small sample sizes. Finally, the sum of scores for all maps is divided by n̂i in order to constrain
the score to [0,1] again.

For the RT score component, we compute the median absolute deviation (MAD) of the RT
values of the consensus mass traces explained by the hypothesis and transform its additive
inverse to [0,1] using the user-specified RT tolerance ⌧RT . Let MT(hi) denote the set of
consensus mass traces explained by hi. Note that, in contrast to above, this is not an ntmax -
dimensional vector but a set of mass traces with |MT(hi)|  ntmax , since mass traces can be
missing for some of the isotopic masses. For a consensus mass trace t 2MT(hi), let rt(t) denote
its RT. Then, with

MAD(X ) = median
����X j �median(X )

�� , 0 j  |X |
 �

, (4.20)

the RT score component is defined as

sRT (hi) = 1� MAD ({rt(t), t 2MT(hi)})
⌧RT

. (4.21)

Similarly, we compute the m/z variation score. Here, we obviously cannot compute the
MAD on the m/z values directly because different isotope traces have different m/z. Instead,
we first compute the isotopic mass difference implied by each non-monoisotopic trace based on
its m/z value and the position of the trace (an integer between 1 and ntmax) and then compute
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the MAD of these mass differences. With mz(t) denoting the m/z value of a consensus mass
trace t, pos(t) denoting its isotopic position (0 for the monoisotopic trace, 1 for the trace with
one heavy isotope, ...), and t0 denoting the monoisotopic consensus mass trace of hi , the m/z
variation score component is defined as

smz(hi) = 1�
MAD

Ä¶
mz(t)�mz(t0)

pos(t) , t 2MT(hi) : pos(t) 6= 0
©ä

⌧mz
(4.22)

In order to ensure that only compatible hypotheses are selected in the optimization, we add
a set of special ordered set type 1 (SOS1) constraints to the model. Hypotheses are incompatible
if they share one or more mass traces. Thus, for every consensus mass trace t 2 T (where T
is the entire set of detected consensus mass traces), we define the set of hypothesis indices
HI(t) = {i : t 2MT(hi), i = 1, . . . , n} of all hypotheses hi potentially explaining t. For each
mass trace, we add an SOS1 constraint enforcing that only one of the hypotheses explaining it
can be selected. Thus, the overall optimization problem is defined as

Maximize

z = s1 x1 + s2 x2 + · · ·+ sn xn (4.23)

s.t.

X

i2HI(t)

xi  1 8t 2 T (4.24)

After optimization, we then simply select all hypotheses hi if xi = 1 as features. With that,
the description of the basic algorithm is complete. Additional details of our implementation
will be described in the following section.

4.3 Implementation

Retention time alignment and feature linking are both performed by the novel tool FeatureLink-
erUnlabeledKD. Traditionally, retention time alignment and feature linking have been regarded
as two seperate steps in OpenMS workflows and thus implemented in separate, modular tools.
While our decision means to break with the paradigm of maximal modularity that we usually
follow, we felt that this particular case is an example of over-modularization and the bene-
fits from joining the two steps into one are greater than the disadvantages. If retention time
alignment is performed in a separate step prior to feature linking, the intermediate alignment
result contains features with transformed RTs and the link to the original features is lost (or
at least not trivial to reconstruct). Hence, it becomes difficult to superimpose linking results
with the original feature detection results or the raw data, which can be very helpful when
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Figure 4.3: Basic OptiQuant TOPPAS workflow featuring the novel tools OptiQuant and
FeatureLinkerUnlabeledKD. Input files containing picked MS data in mzML format (node
1) are first processed by MassTraceExtractor, which generates a featureXML file containing
the quantified mass traces. In a parallel branch, corresponding identification results are
loaded and filtered (we leave out the actual identification sub-workflow for the sake of
readability). Subsequently, the filtered peptide identifications in idXML format are mapped
to the quantified mass traces in featureXML format using IDMapper. The Collect node waits
for all preceding nodes to finish (so far, all input files have been processed sequentially),
and then calls FeatureLinkerUnlabeledKD on the entire list of the annotated featureXML
files. The result is a consensusXML file containing the linked consensus mass traces,
serving as input to OptiQuant, which then performs the consensus feature assembly and
outputs a consensusXML file containing the final linked consensus features for the entire
dataset. Before exporting to mzTab format for downstream data analysis, identification
conflicts within consensus features are resolved using IDConflictResolver.
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Parameter Description
mz_unit unit of m/z tolerance values
nr_partitions number of partitions in the m/z dimension (more = faster processing

times)
warp:enabled whether or not to transform RTs before linking
warp:rt_tol RT tolerance during the alignment step
warp:mz_tol m/z tolerance during the alignment step
warp:max_pairwise_log_fc maximum absolute log10 fold change between two features in order

to be considered compatible in the alignment graph construction
warp:min_rel_cc_size minimum relative size for connected components to be included in the

LOWESS fit (relative to total number of maps)
warp:max_nr_conflicts maximum number of internal conflicts (features from the same map)

for connected components to be included in the LOWESS fit
link:mz_tol m/z tolerance during the linking step
link:rt_tol RT tolerance during the linking step
LOWESS:span fraction of data points to use for each local regression in the LOWESS

fit

Table 4.1: Parameters of the FeatureLinkerUnlabeledKD TOPP tool.

troubleshooting an analysis workflow or optimizing workflow parameters. Thus, our algo-
rithm computes and applies RT transformations for internal purposes only. The final result
will contain the original retention times for all subfeatures of the linked consensus features,
making it easy to investigate corresponding regions in the raw data and original feature de-
tection results in individual runs. Another argument for joining the two steps is simply faster
runtime. Disk input/output (I/O) accounts for a significant contribution to the total runtime,
and joining the two steps saves half of the runtime spent on I/O. FeatureLinkerUnlabeledKD
consumes a set of unaligned featureXML files as input, and outputs a consensusXML file con-
taining linked consensus features with original RTs. After linking individual mass traces using
FeatureLinkerUnlabeledKD, the OptiQuant tool runs the consensus mass trace assembly on the
consensusXML files containing linked mass traces. Its output is a consensusXML file contain-
ing fully assembled and quantified consensus features. The overall TOPPAS workflow of the
OptiQuant approach is depicted in Figure 4.3. The parameters of the new tools are listed in
Tables 4.1 and 4.2.

4.3.1 Availability

FeatureLinkerUnlabeledKD has become the state-of-the-art feature linking tool of OpenMS. It
is contained in the stable release since OpenMS version 2.1, available at www.openms.org
and github.com/OpenMS/OpenMS/. The OptiQuant TOPP tool itself has not been integrated
into the mainline of OpenMS yet, due to its dependency on the CPLEX optimization framework,
which is incompatible with the OpenMS license. The source code is available in a dedicated

76

www.openms.org
github.com/OpenMS/OpenMS/


Implementation

Parameter Description
mz_tol m/z tolerance for isotopic trace matching
mz_unit m/z unit for matching tolerance (ppm or Da)
rt_tol RT tolerance for isotopic trace matching (sec)
charge_low the lowest charge state to consider
charge_high the highest charge state to consider
min_averagine_score minimum averagine similarity score a hypothesis must achieve in order

to be considered in the optimization
max_nr_traces consider up to this many isotopic traces
require_n_out_of_first_m do not consider consensus feature hypotheses with fewer than n out of

the first m isotopic traces
min_nr_traces_per_map ignore subfeatures with fewer than this many detected isotopic traces
quantify_top in the final intensity calculation, consider this this many isotopic traces

for quantification
trace_preference [’intensity’, ’similarity’]; if ’intensity’, the <quantify_top>most intense

positions of the isotope intensity distribution are selected for quantifi-
cation; if ’similarity’, traces whose intensity profile across maps agree
better with each other are selected instead

keep_unassembled_traces [’all’, ’none’, ’identified’]; whether or not to include unassembled traces
in the final result; ’identified’ includes only unassembled traces with
matching peptide identification

adaptive_iso_mass_diff whether or not to re-estimate the isotopic mass difference while collect-
ing isotopic traces for a hypothesis

require_monoiso whether or not to require the monoisotopic trace to be present in all
maps in order for a hypothesis to be considered in the optimization

use_ids if a mass trace has identifications attached, generate only hypotheses
for the charge state(s) found in these identifications when generating
hypotheses for this monoisotopic mass trace

solver_time_limit CPLEX time limit (sec) for solving the optimization for a single hypoth-
esis cluster

score:size_exp exponent of the size component in the hypothesis scoring function
score:int_exp exponent of the intensity component in the hypothesis scoring function
score:int_weight weighting factor of the intensity component in the hypothesis scoring

function
score:mz_exp exponent of the m/z component in the hypothesis scoring function
score:mz_weight weighting factor of the m/z component in the hypothesis scoring func-

tion
score:rt_exp exponent of the RT component in the hypothesis scoring function
score:rt_weight weighting factor of the RT component in the hypothesis scoring function

Table 4.2: Parameters of the OptiQuant TOPP tool.
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branch at github.com/hannesveit/OpenMS/tree/OptiQuant. This thesis refers to revi-
sion 562ab37d9b5fbe6fea4ef7c07672fe684defa51e.

4.4 Benchmarks

We have evaluated the performance of our novel approach on various datasets and compared
it to popular state-of-the-art solutions for label-free quantification of proteomics data, namely
against the traditional OpenMS LFQ workflow using FeatureFinderCentroided (FFC)19, the
same workflow using the more recent FeatureFinderMultiplex106 (FFMPX), and MaxQuant
(MaxLFQ)74,75. All workflows were benchmarked across four different datasets, three of which
were synthetic (simulated), and one of which consisted of real experimental data from the
iPRG 2015 study107.

4.4.1 Datasets

Synthetic Data

We have generated three synthetic LFQ benchmark datasets using MSSimulator108. Two of
them are based on the same ground truth of proteins and differ only in simulated signal quality.
These datasets contain peptide features resulting from in-silico tryptic digestion and ESI-LC-MS
simulation for a set of 200 randomly selected human protein sequences. Protein abundances
were drawn from a log-normal distribution with µ = 14 and � = 4. Minimum length for
tryptic peptides was set to seven amino acids. The resulting ~36,000 features per run span an
intensity range of eight orders of magnitude (0.5 to 1.7⇥108) with a mean feature intensity of
3.8⇥ 106. The simulated m/z range was [300, 1800], the LC gradient had a total duration of
1 h. Each of the two datasets consists of 10 simulated runs, all based on the same ground truth
of protein abundances, while retention time shifts and elution peak widths were randomly
generated for each individual feature and simulation.

In order to assess the impact of signal quality on feature detection and quantification
performance, we have created two different raw datasets for this ground truth: a high-quality
one with high resolution (70,000), no mass error, and completely noise-free, and a low-quality
one with lower resolution (20,000), simulated m/z error, and intensity noise. For the low-
quality dataset, m/z error was drawn from a normal distribution with µ = 0 and � = 0.001
for each raw data peak. Detector noise was drawn from a normal distribution with µ = �2
and � = 5. This type of noise is added to the intensity of any peak that was actually simulated.
In addition, we have generated white noise at any potential peak position (regardless of the
presence of a true simulated peak) with intensities drawn from a normal distribution with
µ= 0 and � = 10.
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Since we know the ground truth of these datasets, we can compute exact values for precision
and recall of feature detection and compare it across workflows. In addition, these synthetic
datasets allow us to assess quantification accuracy, the proximity of the quantified feature
intensity values to their true corresponding signal intensities. While protein intensities are
log-normally distributed within runs, they have constant intensity across runs. Thus, in an
ideal result, any pair of corresponding features from different maps would have an intensity
ratio of one, and the standard deviation of subfeature intensities would equal zero for each
consensus feature.

However, using only features of constant abundance, we cannot make any statements
about the effects of differential abundance on quantification accuracy. The accuracy of relative
quantification (ratios) across multiple runs with high dynamic range is a crucial aspect of
quantification performance. In order to investigate it, we have created a third synthetic dataset,
based on the low-quality dataset described above, containing additional spike-ins (proteins
from Escherichica coli) in varying concentrations. 50 E. coli proteins were randomly selected
and added to the existing ground truth (human protein background, constant abundance).
Abundances of E. coli proteins were constant within and differential across the 10 runs (104 �
108.5 with 0.5 increment of the exponent). The resulting maps contained ~42,000 features
each.

Figure 4.4 gives an impression of the complexity of these datasets. With 42,000 (36,000)
features distributed across a 1-h LC gradient, the degree of overlap between features is relatively
high. Figure 4.5 shows the low-quality and the high-quality version of the simulated signal for
two features in 3D view. Both features were well above the noise threshold, but we can see
the lower-abundant isotopic mass traces approach the limit of detection.

iPRG 2015 Challenge

The iPRG 2015 challenge label-free dataset consists of 12 raw LC-MS maps corresponding to
four samples acquired in three replicates. Each sample contained a constant background of
200 ng tryptic yeast digest and was additionally spiked with different amounts of six protein
digests, as summarized in Table 4.3. The identity of the spike-in proteins was not known
to the study participants. Their sequences were added at random locations to the sequence
database of yeast proteins provided by the organizers, with background proteins identifiers for
camouflage.

LC-MS data was acquired using a Thermo Scientific Easy-nLC 1000 system with a 110-min
gradient coupled to a Thermo Scientific Q-Exactive mass spectrometer. Each MS survey scan
was followed by 10 MS/MS scans for the most intense precursors using higher energy collision
dissociation (HCD). Spectra were acquired in profile mode at resolution 70,000 for MS and
17,500 for MS/MS spectra. The MS scan range was set to 300-1650 m/z.
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Figure 4.4: Left: overview of a single simulated raw map in 2D view (grayscale indicates
log intensity). Right: Small extracted region of raw data with overlaid ground truth
features. Large dots indicate feature positions (chromatographic apex of monoisotopic
mass trace), green bounding boxes contain all isotopic mass traces corresponding to a
feature.
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Figure 4.5: 3D visualization of two raw features from the simulated human background.
Left: version without noise, high resolution. Right: version with artificial noise, low
resolution.
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Samples
Protein 1 2 3 4

A Ovalbumin 65 55 15 2
B Myoglobin 55 15 2 65
C Phosphorylase b 15 2 65 55
D Beta-Galactosidase 2 65 55 15
E Bovine Serum Albumin 11 0.6 10 500
F Carbonic Anhydrase 10 500 11 0.6

Table 4.3: Concentrations of the six spike-in proteins (fmol/µg) for each of the four
samples prepared for the iPRG 2015 study.107

Data was provided to the participants as unpicked raw LC-MS/MS data together with the
aforementioned sequence database containing background and spike-in proteins. In addition,
the study organizers have included their own identification results that participants could
choose to use or disregard. All runs were searched against the provided target-decoy database
using the search engines OMSSA48, MS-GF+50, and Comet51. Search results were individually
validated on PSM-level using PeptideProphet59, iProphet56 was used to combine the results of
the three search engines. Results were originally provided in pepXML format and converted to
the OpenMS idXML format for our purposes. The final PSMs handed out to the participants
were unfiltered, but annotated by the iProphet probability score, which is equivalent to (1 -
posterior error probability). For detailed information on the study design, data acquisition,
and search engine parameters, see Choi et al.107.

4.4.2 Workflows

The quantification performance of the OptiQuant workflow was compared against the perfor-
mance of three state-of-the-art solutions for label-free quantification (LFQ): the traditional
OpenMS LFQ workflow using FeatureFinderCentroided (FFC)19, a variant using the more re-
cently developed FeatureFinderMultiplex (FFMPX) algorithm106, and the popular MaxQuant74

(with MaxLFQ75 enabled). Figure 4.6 illustrates the TOPPAS workflows for label-free quantifi-
cation using OptiQuant, FeatureFinderCentroided, and FeatureFinderMultiplex. The latter two
workflows are identical except for the feature detection algorithm. For MaxQuant, we do not
provide an illustration of the workflow, as MaxQuant is a monolithic GUI application rather
than a workflow-driven data analysis tool. It does not offer the modularity and flexibility of
OpenMS workflows and supports only a limited set of standard analysis types foreseen by its
developers. For more information on the MaxQuant LFQ data analysis strategy and employed
algorithms, see Cox and Mann74 and Cox et al.75.

Parameter settings for each workflow were adjusted manually for each benchmark dataset.
We tried to optimize for the best “overall” result by considering the impact of parameter changes
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(and combinations thereof) on all benchmark metrics simultaneously, changing parameters only
when this led to a clear improvement and keeping the default values otherwise. Note that a full
systematic grid search across the parameter space of all tools in a workflow is computationally
infeasible. We tried to be as fair as possible and optimized the parameters of each workflow to
the best of our abilities, but it cannot be ruled out that a chosen combination of parameters
was suboptimal. The parameter settings for each workflow and benchmark dataset are listed
in Supplementary Table A.1 in the Appendix.

4.4.3 Statistics

Beyond the processing workflows described above, the iPRG 2015107 benchmark involves a
downstream statistical analysis, which is – as the authors of the original study rightly emphasize
– equally relevant to the overall performance of the solution. A key insight of the original study
was that there is no single quantification tool or statistical approach or even combination thereof
that is clearly superior to other methods. In the study, different participants employing the
exact same combination of computational tools have produced vastly different results. Certain
trends could be observed, for instance that spectral counting systematically underestimated fold
changes, or that correction for multiple testing is important while the use of fixed fold change
cutoffs does not work well. However, among the well-performing solutions, the combinations
of data processing tools and statistical approaches was still rather diverse. The exact parameter
settings and software versions of all involved computational tools and the precise sequence of
data analysis steps have shown to have a substantial impact on overall performance.107

There are multiple ways to infer protein-level log fold changes and corresponding uncertain-
ties. For instance, one way is to first summarize peptide-level intensities to protein intensities,
and then perform statistical testing for difference of the mean protein intensity on the three
replicates for each condition. The authors have included an example analysis protocol of this
type in their publication107. Another idea is to test on the feature-level and then combine
the feature-level p-values for each protein using a meta-analysis approach such as Fisher’s
method109. Yet another approach has worked best in our hands in an initial comparison of
these strategies (data not shown) and has thus become the method of choice for this analysis:

Motivated by the common issues110 of the t-test on small sample sizes (here, n=3), instead
of testing on two groups of triplicates, our approach uses the ratios of all detected features of
a protein from all replicates for the protein-level test, without prior summarization. In order
to compute the p-value for differential expression of a protein P between conditions i and
j, we first transform feature intensities to ratios by dividing the intensities of P ’s features in
both conditions by the mean intensities across replicates in one of the two conditions (without
loss of generality). Now, unlike feature intensities, all these ratios are on a comparable scale.
Thus, we can perform a test for differential expression where one group contains the ratios for
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Figure 4.6: Top: The OptiQuant TOPPAS workflow applied to all benchmark datasets.
Input files containing picked MS data in mzML format (node 1) are first processed by
MassTraceExtractor. In a parallel branch, input files containing the corresponding iden-
tification results (node 2; generated by MSSimulator for synthetic data, provided by the
organizers for iPRG data) are filtered to extract only identifications with a maximum
charge of 5 (a handful of features obtained a higher charge state in the simulation) and
to filter by iProphet score for the iPRG 2015 dataset. Subsequently, the peptide identifi-
cations in idXML format are mapped to the quantified mass traces in featureXML format
using IDMapper. The Collect node waits for all preceding nodes to finish (so far, all input
files have been processed sequentially), and then calls FeatureLinkerUnlabeledKD on the
entire list of the annotated featureXML files. The result is a consensusXML file containing
the linked consensus mass traces, serving as input to OptiQuant, which then performs the
consensus feature assembly and outputs a consensusXML file containing the final linked
consensus features for the entire dataset. Before exporting to mzTab format for down-
stream data analysis, identification conflicts within consensus features are resolved using
IDConflictResolver. Bottom: Workflows using FeatureFinderCentroided or FeatureFind-
erMultiplex. The main difference to the OptiQuant approach lies in the fact taht these
workflows perform run-wise feature detection as a first step (feature detection node high-
lighted in red), whereas OptiQuant only quantifies mass traces at this stage and delays
assembly until after mass trace linking. The MapAlignerIdentification tool is in brackets
because it was only used for analyzing the iPRG dataset, as we did not simulate systematic
retention time shifts in the synthetic data (only random, feature-specific shifts) and thus
do not benefit from transforming retention times prior to feature linking.
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condition i and the other one contains the ratios for condition j2. Since sample sizes can be
different due to missing values in one condition, we have used Welch’s t-test for unequal sample
size and variance. P-values were corrected for multiple testing using Benjamini-Hochberg FDR
correction111.

The main advantage of this method is that it significantly increases the sample size of
the statistical test. Moreover, it circumvents protein-level intensity summarization altogether,
which is a delicate endeavour due to varying ionization efficiencies and other effects making it
infeasible to compare the signals of different analytes in the general case (see Section 2.2.3).

4.4.4 Results

We have assessed quantification performance of all investigated workflows in terms of sensitiv-
ity, reproducibility, and accuracy of quantification. Performance assessment on the synthetic
datasets was limited to the OptiQuant, FeatureFinderCentroided, and FeatureFinderMultiplex
workflows3. In addition to these key metrics, we present the results of our post-mortem reanal-
ysis of the iPRG 2015 challenge data analysis task and compare them to the results submitted
by the study participants.

Reproducibility

In the synthetic datasets, an ideal feature detection algorithm would detect the complete (same)
set of peptides across all maps, with constant abundance for human background features and
log-linear differential abundance for E. coli spike-in features. In the low-quality dataset, perfect
quantification is clearly impossible as random noise was added to each simulated raw data
peak, thus affecting quantification, and some of the signals fall below the limit of detection
(LOD), resulting in missing data. For the noise-free high-resolution dataset, quantification is
still challenging due to the sheer complexity of the simulated dataset: with ~36,000 simulated
peptide features per run (42,000 for the spike-in dataset) distributed over a 1-h LC gradient,
the degree of overlap between signals is relatively high. With finite instrument resolution,
overlapping signals in the raw data can lead to inaccuracies in peak picking, which in turn
translate to distorted or missing peaks, mass traces, and features. The amount of features
found consistently across all (or a subset of n > 1) runs is thus a fraction of the total number
of detected features. The higher these numbers, the more reproducible (and more likely to
be sensitive, see Section 4.4.4) the feature detection is. Technical variation aside, the same
expectations hold for the experimental dataset: In theory, all measured samples should contain

2One of those groups will have a mean log ratio of zero, as we divided by its mean intensity earlier.
3All attempts to import the simulated raw data into MaxQuant have failed due to its essentially abandoned

support for free mass spectrometry data formats. The outdated mzXML format is the only non-proprietary option
available, but the parser is nonoperational. We were unable to reverse-engineer a dialect of mzXML that would not
cause MaxQuant to crash during loading (tested on six different MaxQuant versions between 1.2.2.5 and 1.5.8.0).
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the same set of peptides, in constant amounts for background features, and in the respective
differential amounts for spike-ins.

Figure 4.7 illustrates reproducibility of feature detection on simulated and experimen-
tal data. On the synthetic datasets, OptiQuant considerably outperformed FeatureFinder-
Centroided and FeatureFinderMultiplex for this metric: In the high-quality dataset with con-
stant abundance, over 300,000 (30,000 per map) of the features detected by OptiQuant were
reproducible across all 10 runs. Thus, OptiQuant detected ~40% more fully reproducible
features than the other tools. In the low-quality variant of the dataset, OptiQuant was still
able to quantify over 160,000 features, corresponding to a 24% improvement over FFC and
37% over FFMPX. In the dataset containing additional E. coli spike-ins, detection rates for the
human background peptides were lower due to suppression by spike-in features.

On the experimental dataset, results look slightly different. Here, OptiQuant achieved the
highest number of spike-in features detected across all maps, and a close to second-best result
for the number of background features detected in all runs, but detected fewer of the less
reproducible features than its competitors.

Precision and Recall

Knowing the exact ground truth of the synthetic datasets allows us to compute exact values for
precision and recall of feature detection for each simulated map. The results of this analysis
are depicted in Figure 4.8. All investigated tools showed a comparable and very high precision
(>0.99, with one minor outlier for FFC on the noisy dataset when including irreproducible
features). Recall, however, was significantly higher for OptiQuant in all investigated scenarios.
Considering only fully reproducible features, OptiQuant achieved a recall of 0.70 on the noise-
free dataset, whereas FFC and FFMPX achieved ~0.55. In the presence of noise and at low
resolution, OptiQuant still achieved a recall of 0.41, compared to 0.32 for FFC and 0.29 for
FFMPX.

Quantification Accuracy

So far, we have only compared numbers of detected features for each workflow while ignoring
the actual quantification of analyte abundance. An equally critical measure of quantification
performance is accuracy, denoting the proximity of the quantified feature intensity values to
their true corresponding signal intensities. Even for simulated datasets (where the ground
truth of raw data is available), accuracy can only be determined for relative quantification,
since there is no single right way to quantify the absolute signal of an analyte (algorithms vary
in the way they summarize peak intensities to mass trace intensities, which mass traces to
include in the quantification, etc.).
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A: Synthetic, high quality C: Synthetic, low quality, w/ spike-insB: Synthetic, low quality
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Figure 4.7: Comparison of reproducibility in constant background quantification on syn-
thetic and experimental data. The plots show the total number of detected features as a
function of a reproducibility threshold, the minimum number of maps these features were
detected in. Hence, the leftmost datapoint indicates the total number of detected features
when considering only those found in all 10 out of 10 maps; the next datapoint to the
right represents the total number of detected features when additionally considering all
those features found in only 9 out of 10 maps. The rightmost datapoint thus shows the
total number of features detected in any map, regardless of reproducibility. A,B: Synthetic,
constant background only; C: Synthetic, human background (solid line) plus E. coli spike-
ins (dashed line) detected in the same raw data. D,E: separate plots for background and
differential peptides in the iPRG dataset.
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Precision

Recall

Recall
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Figure 4.8: Precision and recall achieved by the investigated tools on the two simulated
datasets containing only human peptides for varying reproducibility thresholds (consider-
ing only features found in at least 0%, 80%, 100% of the maps).

All investigated benchmark datasets consist of replicates with identical amounts of back-
ground peptides across runs. Thus, we can make an assessment of quantification accuracy by
considering the standard deviations (STD) of log intensities of corresponding features across
maps – ideally, they would all equal zero. FFC produced the most accurate quantification
results with a median STD of 0.087 on high-quality and 0.089 on low-quality data. OptiQuant
was a close second with a median STD of 0.092 on high-quality data and 0.091 on low-quality
data. FFMPX was least accurate and achieved a median STD of 0.116 on high-quality and
0.113 on low-quality data. On the iPRG 2015 dataset, OptiQuant and FFC lead the field with
a median STD of 0.073, followed by MaxLFQ (0.085) and FFMPX (0.11). Thus, in terms of
overall accuracy of constant background quantification, OptiQuant and FFC performed best
and approximately on par across all benchmark datasets. On the simulated datasets, their
performance was about 20% better than FFMPX’s, on the iPRG data they were 15% more
accurate than MaxLFQ and 33% better than FFMPX.

In order to further investigate the unexpected finding that overall quantification accuracy
was not worse, but instead even slightly better on the low-quality synthetic dataset, we have
looked at the intensity dependence of the variation. Figure 4.9 illustrates the results of this
analysis: On the high-quality dataset with high resolution, no m/z error, and no intensity
noise, the average standard deviation is higher for consensus features at the lower end of the
intensity distribution than on the low-quality data. These low-intensity features could not be
quantified in the low-quality data (and hence do not contribute to additional complexity) since
their intensity was below the noise threshold.

Having compared quantification accuracy on peptides with constant abundance across runs,
let us consider the (much more interesting) case involving differentially abundant features. To
this end, we have investigated quantification accuracy on the third simulated dataset containing
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Synthetic, high quality Synthetic, low quality iPRG 2015

Figure 4.9: Standard deviation of log intensities for corresponding features as a function
of median log intensity, smoothed using an unweighted averaging window of 1,000 data
points.

constant human background and an additional log-linear concentration series of E. coli peptides
in the same raw data. Figure 4.10 shows a scatter plot of quantified ratios against true ratios
for all quantified E. coli peptides, together with the regression line of an ordinary least squares
(OLS) fit of a linear model. Map number 10 (the one with the highest simulated concentration
of E. coli peptides) served as the reference. Each of the other maps corresponds to one of the
discrete true log ratios on the x-axis. We can make several observations here:

Firstly, none of the algorithms were able to correctly quantify E. coli signals in the map
with lowest E. coli concentration, and only very few features were detected in the map with
second lowest concentration. Secondly, besides the bulk of quantified ratios concentrated
around the true ratio, there is a considerable amount of outliers above the regression line,
corresponding to grossly underestimated fold changes. A closer look at the data revealed that
these are actually the result of linking errors, where the signal of a human background peptide
was assigned to an E. coli consensus feature. This explains the bimodality observed for FFC
and FFMPX: the distribution of outlier ratios (which looks similar for each map) corresponds
to the intensity distribution of human background features (which is identical for each map).
This bimodality cannot be observed for the OptiQuant workflow, where linking errors occur
on mass trace level rather than on feature level. Thus, instead of linking entire features to
the wrong consensus, here we misassign only single mass traces. Because mass traces span a
much wider intensity range than the features themselves (due to the high dynamic range of
isotopic mass trace intensities), the linking error population is much more widely distributed
here. In order to mitigate the effect of linking errors on the regression analysis, we have
removed outliers in each map (upper/lower quartile +/- 1.5 ⇥ interquartile range) prior to
linear regression. Overall, OptiQuant’s and FFC’s quantification results exhibit near perfect
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Data Workflow R2 Slope Intersect
OptiQuant 0.857 0.895 -0.127
FFC 0.895 0.934 -0.085All data
FFMPX 0.799 0.958 -0.102
OptiQuant 0.974 0.987 -0.016
FFC 0.972 1.001 -0.004Outliers removed
FFMPX 0.957 1.092 0.062

Table 4.4: Summary of the linear regression results on the E. coli peptide concentra-
tion series for all investigated tools with and without filtering outliers. Best values per
comparison are printed in boldface (highest R2; slope closest to 1; intersect closest to 0)

linearity across the investigated ratio range. Table 4.4 contains a summary of the results of the
linear model fit (with and without filtering outliers). After filtering, OptiQuant achieved the
highest coefficient of determination, whereas FFC produced the best slope estimate. FFMPX
performed significantly worse for both metrics.

Figure 4.11 illustrates the overall root-mean-square error (RMSE) of the quantified log
ratios as a function of the true log ratio for the synthetic dataset with differential spike-ins. The
extraordinarily high quantification error on the lower end of the concentration series is due
to the very low numbers of detected E. coli features in these maps and the fact that they are
outnumbered by false-positives resulting from linking errors. Removing outliers for the first
two maps with lowest concentration did not have much of an effect on the quantification error,
since the median of these distributions is actually closer to the average ratio of the linking error
population than to the true ratio. For the higher concentrations, however, filtering outliers
improves the RMSE considerably. In accordance with the linear regression results, FFC and
OptiQuant were essentially on par in this comparison (FFC having a slight edge), while FFMPX
was placed a distant third. The best average RMSE (ignoring the first two maps with too little
data) was achieved by FFC (0.138), followed by OptiQuant (0.149). FFMPX’s error on these
maps was almost twice as high (0.269).

Last, but not least, we have compared quantification accuracy for the differential spike-ins
in the iPRG dataset on the protein level. Figure 4.12 shows the log-log plot of all quantified
protein ratios against the true ratios, together with the overall distribution of quantified ratio
errors, for each of the investigated workflows. The best total RMSE of quantified protein log
ratios was achieved by OptiQuant (0.71), followed by MaxLFQ (0.85), FFC (0.89), and the
distant fourth FFMPX (1.68).

iPRG 2015 Challenge

The challenge task was to provide a list of differentially abundant proteins found in the dataset,
together with log fold changes and a characterization of the uncertainty of the results, for each
pairwise sample comparison. There were four samples (with three replicates each), hence six
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OptiQuant

FFC

FFMPX

Figure 4.10: Scatter plot of quantified log ratios against true log ratios for all features
with E. coli identification in the synthetic dataset with differential spike-ins. The map
with the highest concentration of E. coli peptides served as reference for computing ratios.
Each of the other maps corresponds to one of the nine discrete log ratios on the x-axis.
The blue line depicts the results of the linear regression after removing outliers for each
map. The red dashed line indicates perfect quantification.90
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Figure 4.11: RMSE of quantified log intensities.

Figure 4.12: Protein-level quantification accuracy on the iPRG dataset. Left: scatter plot
of quantified protein ratios vs true protein ratios. Right: corresponding distributions of
quantification errors. Numeric values shown below the boxplots denote the median.
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pair-wise comparisons. Each sample contained certain differential amounts for each of the six
spike-in peptides, whereas the background concentrations remained constant. Thus, a perfect
estimator would find 36 true positives (all six spike-ins across all six pairwise comparisons)
and zero false positives (background proteins falsely classified as differential). Interestingly, in
contrast to our findings on the synthetic datasets, OptiQuant was the least sensitive workflow on
background proteins in this comparison: After filtering out features with decoy identifications,
aggregating by sequence and charge (thus combining split features that quantify the same
signal), and removing single-peptide-hit proteins, OptiQuant was able to quantify 2,573, FFC
2,809, FFMPX 2,711, and MaxQuant 3,175 proteins.

In the original study results107, the 48 correct submissions were first grouped into three
different groups based on the positive predictive value (PPV; also known as precision) of
the classification into differential / non-differential. 19 submissions had a PPV >= 0.7, 10
submissions had a PPV between 0.2 and 0.7, and 19 submissions had a PPV of < 0.2. Within
these groups, results were further ranked by the number of true positives, and ties were broken
by the number of false positives. In this ranking of 52 submissions (48 original plus our
four), the results produced by our workflows would have been placed as shown in Table 4.5.
According to the ranking criteria of this competition, MaxQuant would have achieved the
highest rank (7th), followed by OptiQuant (8th), FFC (11th), and FFMPX (15th). Out of the
four workflows compared in our reanalysis, OptiQuant was the only one achieving a perfect
PPV of 1.0 (28 TP / 0 FP).

Rank (1 - 52) Workflow PPV TP FP
7 MaxQuant 0.88 29 4
8 OptiQuant 1.00 28 0
11 FFC 0.96 26 1
15 FFMPX 0.92 24 2

Table 4.5: Ranking of our results within the participant submissions of the original iPRG
2015 study, including positive predictive value (PPV), number of true positives (TP), and
number of false positives (FP).

4.5 Discussion

We have presented OptiQuant, a novel tool for label-free quantification of LC-MS proteomics
data using mixed-integer programming for globally optimal consensus feature assembly, and
demonstrated its quantification performance in a comparison with three state-of-the art LFQ so-
lutions across synthetic and experimental benchmark datasets. The results of these first bench-
mark comparisons are very encouraging: On all three synthetic datasets, OptiQuant clearly
outperformed its competitors in terms of sensitivity and reproducibility by a large margin,
while achieving an overall quantification accuracy comparable to FeatureFinderCentroided’s
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(FFC) and considerably better than FeatureFinderMultiplex’s (FFMPX). This was true for both
high-quality and low-quality simulated data, for background features with constant abundance,
as well as for differential spike-in features. On the experimental iPRG 2015 challenge dataset,
OptiQuant showed lower sensitivity than the other three investigated workflows, but achieved
the best overall accuracy on both background features and spike-ins. In terms of the actual
challenge results, OptiQuant was the only workflow in our comparison producing a result with
perfect PPV of 1.0 (28 TP / 0 FP). MaxQuant detected 29 TPs with 4 FPs. In the ranking of
48 submitted results from the participants of the orginal study, our MaxQuant results would
have been ranked 7th, the OptiQuant results 8th. It shall be noted, however, that these ranking
criteria were somewhat arbitrary. Whether to prefer higher numbers of true positives or lower
numbers of false positives depends, to a significant degree, on the application. In some scenar-
ios (for instance, when positive observations will be subject to further very expensive testing),
precision can be of higher importance than sensitivity. If we rank submissions by PPV (ties
broken by number of TP and FP), the OptiQuant workflow is ranked third (two submissions
also achieved a PPV of 1.00 but found 30 TPs instead of OptiQuant’s 28), FFC is ranked 10th,
FFMPX is ranked 12th, and MaxQuant is ranked 14th.

An interesting and unexpected finding on the synthetic datasets was that overall quan-
tification accuracy on the low-quality data was actually not worse, but even slightly better
than on the high-quality data. This may seem counterintuitive at first, but can be explained
in light of the corresponding results for sensitivity (Figure 4.7) and intensity-dependence of
quantification accuracy (Figure 4.9): All investigated workflows showed significantly lower
sensitivity on low-quality data. Thus, the main impact of the decrease in data quality (addi-
tional intensity noise, mass error, and lower resolution) was not on quantification accuracy
for detectable features, but on the sensitivity of feature detection. Figure 4.7 indicates that a
large portion of the total intensity variance among corresponding features is actually caused by
low-intensity consensus features. These features are simply not detectable in the low-quality
dataset as they fall below the noise level, and hence they cannot have a negative impact on the
overall quantification accuracy there. In other words, the low-quality dataset is – in practical
terms – less complex and has a lower dynamic range, even though it is based on the exact same
theoretical ground truth.

Another interesting finding was that FFMPX showed a significant systematic bias towards
over-estimation of fold changes that could not be observed for any of the other workflows. This
is clearly indicated by the linear regression results on the synthetic spike-in concentration series
(Figure 4.10 and Table 4.4) and by the distribution of quantification errors on experimental
spike-ins in the iPRG dataset (Figure 4.12). In accordance with these results, Figure 4.11 shows
that filtering outliers (primarily caused by linking errors) has not had that much of a positive
effect on the quantification accuracy of FFMPX, while it considerably increased accuracy for
OptiQuant and FFC. A possible explanation for this could lie in the fact that FFMPX, according
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to our understanding of the algorithm, computes the overall intensity of a mass trace simply
by summing up all peak intensities. A more precise way of estimating the signal intensity
would be to compute the area under the chromatographic peak. Especially in the presence of
missing peaks, this circumstance could potentially explain the effect. However, this remains
mere speculation at this point, and needs to be investigated in more detail. In retrospect, our
decision to prefer FFMPX over FFC as the feature detection tool of choice in the LFQProfiler
workflow (see Section 3.5.2) seems questionable. When faced with this decision, FFMPX had
shown to be slightly more sensitive than FFC at comparable accuracy in an ad-hoc benchmark
(data not shown). This benchmark, however, involved only the quantification accuracy on
features of constant abundance and did not involve any differential features, hence the effect
was not visible. This underlines, once more, the importance of a diverse set of benchmark
metrics and datasets.

While these initial results are very promising, there is room for improvement. The bar for
an approach like OptiQuant is quite high, as the considerably increased problem complexity
and the resulting CPU and memory requirements must be justified. Using OptiQuant’s current
implementation, we were unable to achieve results that are objectively better than MaxQuant’s
in the iPRG benchmark, for instance. OptiQuant is currently a proof-of-concept implemen-
tation that needs further improvement in several areas before it can be used in production.
A big current hurdle is the workflow’s large number of parameters, that still need too much
manual adjustment by the user. FFC, FFMPX, and MaxQuant have shown to be more robust
to parameter changes, and seemed to work pretty well with default parameters. With the
OptiQuant workflow, however, the quality of the results using default parameters for each tool
often resulted in unacceptable performance. In particular the mass trace detection and the
OptiQuant assembly algorithm itself expose a significant number of parameters to the user that
really must be tuned in order to achieve good performance. Thus, a practical requirement for
OptiQuant’s production use would be the reduction of parameters exposed to the user. Ideally,
OptiQuant should be able to estimate non-intuitive parameters directly from the data.

Our modifications to MassTraceExtractor (pre-filtering of noise peaks based on presence or
absence of isotopic peaks) have slightly improved the robustness of the mass trace detection
part, but it was still rather cumbersome to find a combination of parameters that work well
together, and it seems to be very dependent on the particular dataset at hand (complexity,
resolution, noise-level, etc.). A tradeoff has to be made between precision and recall of mass
trace detection, but both are actually critical to the quality of the downstream OptiQuant
consensus feature assembly. Too many missing traces lead to inaccurate quantification or
missing data, whereas false-positive traces increase the likelihood of linking errors. Since it is
such a critical step in the OptiQuant workflow, it might be worth the effort to try and improve
the mass trace detection algorithm. A potential idea would be to modify it in such a way that
it takes isotopic traces into account while collecting the peaks for a mass trace hypothesis.
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In our experience, fine-tuning the parameters that regulate the conditions under which trace
extension stops was critical to performance. We speculate that it might be much easier to
estimate whether to stop or continue mass trace extension if corresponding isotopic traces are
considered simultaneously.

Processing speed and memory consumption are further aspects that should be addressed.
As mentioned before, the increased problem complexity is to a certain degree inherent in
OptiQuant’s fundamental idea to perform consensus feature assembly using the quantified
mass traces from all maps at once. Run-wise mass trace extraction and run-wise feature
detection are comparable in terms of runtime (seconds or few minutes per map). Linking
all unassembled mass traces (hundreds of thousands per map) will always be slower than
linking features (tens of thousands). But the additional amount of CPU hours used by CPLEX
for solving the optimization problem for each connected component is currently very hard
to predict and varied wildly for different datasets and parameter settings in our initial tests.
For slightly different parameter settings on the iPRG dataset, for example, OptiQuant in one
setting was using all 24 CPU cores and 55GB of RAM for more than 20 minutes, and in another
it was using less than one core on average for about five minutes and a total of 12 GB of
RAM for the entire optimization. Due to the high degree of sophistication of modern MIP
solvers such as CPLEX, the employed pre-solving and optimization strategies and the resulting
runtime and memory requirements of the optimization are impossible to predict a priori. But
it can be said in general that the average complexity of these optimization problems in our
case is sensitive to the degree of overlap between hypotheses, which in turn is very sensitive
to a variety of user parameters (maximum number of isotopic traces considered, averagine
similarity threshold, m/z and RT tolerance, allowed number of missing traces, etc.). Finding
more reliable ways of filtering out unlikely hypotheses prior to optimization will help reduce
the average size of clusters of conflicting hypotheses, and thus help control the complexity of
the corresponding optimization problems. In order for OptiQuant to be reliably applicable to
hundreds or thousands of label-free runs on machines with, say, less than 512 GB of memory,
additional mitigations of the overall runtime and memory complexity will be necessary. One
ambitious idea would be to slice the dataset in the RT or m/z dimension (or both) across all
runs, and then to generate hypotheses and select optimal features on each slice individually.
The overall complexity would still be linear in the number of input maps, but with a much
smaller constant factor. If we want to preserve the optimality of the result, however, such an
approach would require an additional (non-trivial) step to combine sub-optimal results near
slice boundaries to globally optimal results.

Regardless of the current practical limitations of the proof-of-concept implementation,
OptiQuant is a valuable general framework for prototyping similar solutions, free for anyone to
use and adapt under a permissive three-clause BSD license. At the very heart of the approach
lies the hypothesis scoring function, which ultimately determines which hypotheses will be
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selected and which ones will be abandoned. This scoring function was essentially formulated
ad-hoc, inspired by our own experience and expectations of what true features should look like.
In other words, there is no mathematical or probabilistic justification for this particular scoring
function. Systematic experiments on a diverse set of datasets might lead to the discovery of
better scoring criteria and thus help further improve performance of the overall approach.
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Chapter 5

Forensic Applications of
Mass-Spectrometry Based Proteomics

Adapted with permission from

Mass Spectrometry-Based Proteomics Reveals Organ-Specific Expression Patterns to Be Used as
Forensic Evidence

Sascha Dammeier+, Sven Nahnsen+, Johannes Veit+, Frank Wehner, Marius Ueffing, and Oliver Kohlbacher

J Proteome Res. 15(1):182-92. (2016)

+ These authors contributed equally.

Copyright 2016 American Chemical Society.

5.1 Introduction

Forensic medicine is an important part of jurisprudence that involves medical and analytical
knowledge according to legal aspects. A forensic examiner is preferably consulted to pass an
expert opinion about medico-legal or ethical issues in cases involving death, drug abuse, rape,
paternity tests, etc. Apart from classical examination methods like blood analyses, psychiatric
interviews and autopsies, forensic medicine has been revolutionized by modern molecular
biology techniques. In particular, the analysis of DNA via the application of polymerase chain
reaction (PCR) and therefore the use of traces of DNA as evidence has become a routinely
used method in legal medicine113,114. Apart from genomic technologies, modern analytical
techniques like liquid chromatography (LC) coupled to high-performance mass spectrome-
try (MS) have already been established in forensic medicine, e.g., for the identification and
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Figure 5.1: Visual Abstract. Mass spectrometry-based proteomics reveals organ-specific
expression patterns to be used as forensic evidence. Reprinted from Dammeier et al.112
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quantification of illegal or toxic substances in body fluids115. One of the most prominent
analyses reported so far is the determination of recombinant forms of erythropoietin, a major
performance-enhancing drug in sports, within the scope of doping tests116.

In the case of shootings with fatal outcome, a standard task for the forensic practitioner
is the examination of bodies with respect to the impact of projectiles. During postmortem
examination regarding the cause of death, it is a special task to reconstruct the crime via
analysis of bullet channels. Furthermore, bullets are routinely matched to certain weapons by
standard ballistic and technical analyses117. The question of which projectile has hit which
subject can be solved by modern PCR analysis of traces of DNA remaining on the surface of
the projectile118. However, it is far more challenging to determine which (vital) organs have
been penetrated by a certain bullet just from the projectile as single evidence, especially in
cases of multiple hits and more than one shooter. This is of particular importance in countries
with moderate gun control. For instance, in the US statistically one murder took place every
37 minutes in 2013, however, the clearance of murder and non-negligent manslaughter cases
was just 64.1% in the same year119.

In the case of multiple hits and/or shooters, the examination of nucleic acids is rather
inadequate, since RNA is degraded rapidly in most cases, and DNA cannot be used to iden-
tify organ-specific gene expression. However, with regard to RNA, and in particular mRNA,
which should also represent tissue-specific profiles as it is translated into proteins, some ap-
plications concerning forensic science have been established (e.g. to determine the age of
biological samples like bloodstains and hairs120,121). These methods seem to work well al-
though with certain limitations. Here, age determination is based on the complex, non-linear
degradation kinetics of particular RNA species that are both generally detectable by RT-PCR
and undergo different degradation kinetics, which allows a relative semi-quantification and,
finally, age-determination. Thus, in case of bullets and biological debris, an RNA-based method
to determine organ specificity would mean tedious work to find characteristic mRNA pairs
that exhibit well characterized kinetics as well as organ-specificity. Therefore forensic scien-
tists have focused research on easier methods like cytological detection and immunochemistry.
However, those methods have exhibited limitations with regard to the stability or integrity of
the biological material remaining on the piece of evidence122,123. Furthermore, analyses based
on the immunological identification of tissues via antibody epitopes might not be sufficient to
answer the central question of which projectile is likely to have caused the lethal impact.

Proteome analysis combined with bioinformatics tools allows a comprehensive description
of a large set of expressed proteins as well as their interactions and modifications in the context
of a biological process. High-resolution MS coupled with high-performance LC has become
the analytical technology of choice in many proteomic studies. LC-MS experiments allow
the identification and quantification of thousands of proteins in a single instrument run124.
Inspired by its analytical power with regard to sensitivity and selectivity, we set out to examine

99



5. Forensic Applications of Mass-Spectrometry Based Proteomics

the remnants of protein material on the surface of bullets in order to identify organ-specific
protein patterns. The proposed forensic workflow is visualized in Figure 5.2.

The identification of tissue-specific protein markers is one way to find corresponding organs.
Mass spectrometry-based proteomics has previously been shown to be a powerful technology
in assigning patterns of protein expression and protein modification to the tissue of origin125;
however, those have never been exploited for forensic application126. In a first attempt, protein
signatures that allow unambiguous determination of tissues/organs in the circumstances of
crime need to be identified experimentally. Once such signatures are established, they can
serve as organ-specific markers and would be used to make organ assignments to projectiles,
and probably to other types of penetrating weapons.

Organic material remaining attached to bullets was therefore analyzed, and LC-MS/MS
raw data as well as the corresponding protein identifications thereof were used to correlate
individual organs to protein expression patterns. To get started we designed a very artificial
experimental setting using bovine organs and manual penetration being aware that the findings
needed to be refined on different, more realistic validation levels in the course of our studies
(e.g., testing high-speed penetration, dealing with contamination issues, and translation into
forensic practice). The identified correlations were highly significant and reproducible. More-
over, experiments have been performed to demonstrate the robustness and transferability of
the experiments to shootings and human material. Using evidence of a real murder case, and
combining our experimental, molecular findings with results from classical trajectory analy-
sis, the method generated highly valuable additional information qualifying it as a method of
choice for unclear forensic cases.

5.2 Materials and Methods

5.2.1 Sample Taking

For the main data set, different metal projectiles, namely (a) 7.62 mm bore (Tokarer), (b) blunt,
plain metal pins, 5.0 mm bore, (c) precision bullets, 4.55 mm bore (H&N Sport), (d) 6.35 mm
bore (Sellier/Bellot), and (e) 6.35 mm bore (Geco/Dynamit Nobel), were used to penetrate a
selection of four bovine inner organs (kidney, lung, liver, and heart; received directly and fresh
from the abattoir) and one ubiquitous control organ (skeletal muscle: received from the same
animals) by manual force for a total contact time of approximately 2 seconds. The air-dried
projectiles were kept in reagent vials until further processing. For each of the five organs, the
penetration by the five different bullets was repeated on three biological replicates (four in the
case of lung). One of the liver runs was discarded for technical reasons. Hence, the main data
set comprises 3 replicates ⇥ 5 organs ⇥ 5 bullets + 5 additional lung samples – 1 bad sample
= 79 samples.
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Figure 5.2: Schematic visualization of the overall workflow for the identification of organ-
specific proteins to be used as forensic evidence. Projectiles are processed by tryptic
proteolysis on the surface. The resulting peptides are analyzed by liquid chromatography
and mass spectrometry followed by bioinformatic and statistical analysis to identify organ-
specific discriminating proteins. Reprinted from Dammeier et al.112
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In addition, shooting experiments using selected bovine organs embedded in gelatin blocks
were performed as described earlier123. Due to the additional costs and effort, we restricted
ourselves to four of these samples (kidney, liver, lung, and heart) for a proof of concept.

Bullets derived from a homicide were received blinded from the coroner in small plastic
bags according to standard procedures used to store court exhibits. The bullet that was taken
as a blood contamination control was covered with two drops of fresh blood derived from a
healthy male volunteer and treated like the samples of the bovine experiments.

5.2.2 Proteomics Sample Preparation

In order to obtain peptide samples that are suited for mass spectrometric analysis, the bullets
were covered with 50 mM ammonium bicarbonate solution containing 10% RapiGest SF Sur-
factant (Waters, UK). Subsequently, dithiothreitol was added (3 mM final concentration) and
they were incubated for 15 min at 60 °C followed by the addition of iodacetamide (10 mM
final concentration) and incubation for 30 min at room temperature in the dark. Finally, the
bullet sample was incubated in its supernatant liquid with trypsin (Sigma Aldrich, Germany)
for a minimum of 14 h at 37 °C to perform limited proteolysis. The reaction was stopped by
applying trifluoroacetic acid to a final concentration of 5%. The samples were centrifuged
(5 min at 16,000 ⇥ g), and the supernatant was recovered and processed using StageTips
(Thermo Fisher Scientific, Germany) according to the manufacturer’s protocol. The resulting
peptide solution was lyophilized and stored at -20 °C until analysis.

5.2.3 Mass Spectrometry

LC-MS/MS analysis was performed on a NanoRSLC3000 HPLC system (Dionex) coupled to
a LTQ OrbitrapXL mass spectrometer (Thermo Fisher Scientific) by a nano spray ion source.
Tryptic peptide mixtures were automatically injected and loaded at a flow rate of 6µL min�1

in 98% solvent C (0.1% trifluoroacetic acid in HPLC-grade water) and 2% solvent B (80%
actetonitrile and 0.08% formic acid in HPLC-grade water) onto a nano trap column (75µmi.d.⇥
2 cm, packed with Acclaim PepMap100 C18, 3µm, 100 Å; Dionex). After 5 minutes, peptides
were eluted and separated on the analytical column (75µm i.d.⇥25cm, Acclaim PepMap RSLC
C18, 2µm, 100 Å; Dionex) by a linear gradient from 2% to 35% of solvent B in solvent A (2%
acetonitrile and 0.1% formic acid in HPLC-grade water) at a flow rate of 300 nLmin�1 over 150
minutes. Remaining peptides were eluted by a short gradient from 35% to 95% solvent B in 5
minutes. The eluted peptides were analyzed using a LTQ Orbitrap XL mass spectrometer. From
the mass spectrometry pre-scan at a resolution of 60,000 with a m/z range of 300 – 1,500,
the 10 most intense peptide ions were selected for fragment analysis in the linear ion trap if
they exceeded an intensity of at least 200 counts and if they were at least doubly charged. The
normalized collision energy for collision-induced dissociation was set to a value of 35, and the

102



Materials and Methods

resulting fragments were detected with normal resolution in the linear ion trap. The lock mass
option was activated and set to a background signal at m/z 445.1200215. Every ion selected
for fragmentation was excluded for 20 seconds by dynamic exclusion.

5.2.4 Data Processing

For qualitative protein identification the raw data were analyzed using Mascot (Matrix Science,
UK; version 2.4.1) and Scaffold (version 3.6.5, Proteome Software Inc., USA). Tandem mass
spectra were extracted, charge state deconvoluted and deisotoped by extract_msn.exe

version 5.0. All MS/MS samples were analyzed using Mascot. Mascot was set up to search the
Uniprot database (selected for Bos taurus, extracted on 2013-04-23, 31462 entries) assuming
the digestion enzyme trypsin. Mascot was searched with a fragment ion mass tolerance of 1 Da
and a parent ion tolerance of 10 ppm. Carbamidomethyl of cysteine was specified in Mascot as
a fixed modification. Deamidation of asparagine and glutamine and oxidation of methionine
were specified in Mascot as variable modifications. Scaffold was used to validate MS/MS based
peptide and protein identifications. Peptide identifications were accepted if they could be
established at greater than 80.0% probability by the Peptide Prophet algorithm127 with Scaffold
delta-mass correction. All filtered peptides are than subjected to protein inference using the
Protein Prophet model. Protein identifications were accepted if they could be established at
greater than 99.0% Protein Prophet probability and contained at least 2 identified peptides.
Protein probabilities were assigned by the Protein Prophet algorithm14. Finally, the probability-
filtered peptides and proteins were subjected to peptide and protein FDR calculation using the
probabilistic approach as implemented in the Trans Proteomic Pipeline57, resulting in a final
protein FDR of 0.1% (and 2.4% on the peptide level). Proteins that contained similar peptides
and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the
principles of parsimony.

After data conversion with Proteowizard15,128, the quantitative data was processed using
OpenMS/TOPP in version 1.1111,12 for peak picking, feature detection, map alignment, feature
linking, and intensity normalization. An overview of the processing workflow implemented in
TOPPAS is depicted in Figure 5.3. Finally, the statistical software R, in version 2.15.1, was used
for principle component analysis (PCA) and subsequent statistical assessment. Classification
was performed using python and the scikit-learn package, version 0.14.1129,130.

5.2.5 Data Deposition

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consor-
tium131 via the PRIDE partner repository132 with the dataset identifier PXD002193 and DOI
http://dx.doi.org/10.6019/PXD002193.
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Figure 5.3: TOPPAS workflow for labelfree quantification used in the forensics study.
Reprinted from Dammeier et al.112
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5.2.6 Finding Marker Proteins

As a first step towards finding potential markers among the identified proteins, we sorted
identifications by their absolute Pearson correlation coefficient with each of the five investigated
organs. With a total of n= 79 samples, the correlation between a protein identification pi and
organ oj is computed as the Pearson correlation coefficient between the two binary vectors Pi

and Oj, where Pi = (pi1, . . . , pin) : pik = 1 if protein i was identified in sample k, else 0, and
Oj = (oj1, . . . , ojn) : ojk = 1 if sample k originates from organ j, else 0.

In a first attempt to find potential tissue markers, we searched for protein expression
profiles correlating with organ assignment of the samples. We constructed expression profile
vectors Pi for each identified protein i, describing in which sample protein i was identified.
Pi = (pi1, . . . , pin), pik 2 {0,1} is a binary vector where pik = 1 if protein i was identified in
sample k. Similarly, we define sample-organ assignment vectors Oj = (oj1, . . . , ojn), ojk 2 {0, 1},
where ojk = 1 if sample k stems from organ j and 0 otherwise.

For proteins expressed in specific organs only, the expression profile of the protein across
all samples should coincide with the organ assignment vector of the respective organ: proteins
should be identified exactly in those samples derived from the respective tissue. Obviously,
incorrect or incomplete identifications (false positives, false negatives) as well as simultaneous
expression in different tissues complicate this. We thus used Pearson correlation to rank simi-
larities between expression profiles and organ assignments. Proteins relevant as markers for a
specific organ should have a high correlation with their respective organ assignment vectors.

5.2.7 Classification

We evaluated the classification performance on our bovine data set using different machine
learning algorithms (support vector machines (SVM)133, random forests134, Gaussian naïve
Bayes, and multinomial naïve Bayes135) implemented in scikit-learn129,130. We compared pre-
diction performance when using only qualitative attributes (protein identified / not identified)
and when using a combination of qualitative and quantitative attributes (MS feature intensi-
ties). Hence, samples were represented as attribute vectors composed of binary qualitative
attributes and [0,1]-scaled real-valued quantitative attributes of the detected peptide feature
intensities. In order to prevent overfitting of the model to noisy features, we reduced the
complexity by removing quantitative attributes that could not be identified as well as those
that were quantified in less than ten out of 79 samples.

To assess classification performance, we performed 5-fold cross-validation by stratified
random sub-sampling of a training set consisting of 80% of the samples and a test set containing
the remaining 20%. Accuracy on the training set as well as the classification performance of
the test set was reported. To reduce the complexity of the model and to investigate how
well classification works when only a few marker proteins are considered, we tried selecting
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only the top N 2 {1,3, 5,10, 20,100} proteins with the highest Pearson correlation coefficients
for each of the five investigated organs respectively, and used only those N attributes for
classification. To prevent overfitting of the model, attribute selection as well as the selection of
model parameters was performed only on the training data set, which is independent of the test
data set used for performance evaluation. This was done using a nested 5-fold cross-validation,
where the training set is again split into an inner training set and the remaining samples are
used as an inner validation set. Attributes and model parameters yielding the best average
performance on the validation set were used to actually train the model on the entire outer
training set and finally make predictions on the outer test set, on which the performance was
evaluated. The entire procedure was repeated 1,000 times. We report the average classification
accuracy (percentage of correctly classified instances) on the test data set together with the
standard error of the mean (SEM).

5.2.8 Forensic Use Case

Evidence of a recent case of murder (five projectiles filed as court exhibit numbers “1-3”, “1-
12”, “1-13”, “1-14”, and “1-17”) was received from the district public prosecution authority
(Staatsanwaltschaft Tübingen, AZ: NN/2012 (06.03.2012)) in blinded fashion. As usual for
homicide cases, a standard autopsy of the body was performed by the forensic examiner,
and results regarding the bullet channels were shared after the proteomic analysis had been
performed, and after an organ assignment had been proposed.

5.3 Results

5.3.1 Proteomic Analysis of Organic Debris on Bullets Allows Discrimination of
Penetrated Organs

In total, we analyzed 79 bovine tissue samples that originated from five distinct organs, i.e.,
heart, kidney, liver, muscle and lung, using the workflow as described in Section 5.2 in detail.
In brief, to simulate the hit of a projectile, metal pieces were manually pressed through bovine
tissues. This experimental setting was used to obtain sufficient amount of data for a compre-
hensive statistical analysis. Biological material was treated with trypsin directly on the surface
of the metal pieces, and the resulting peptides from each sample were measured in separate
three-hour LC-MS/MS runs, resulting in 79 raw datasets. We also included several controls for
assessing the influence of protein degradation over time (at least one metal piece per organ
was kept at ambient temperature for a minimum of three weeks before being processed), and
the influence of the metal composition (use of different common bullet types, i.e., made out
of different metal alloys, with the identical organic material). After processing the raw data,
we detected an average of approximately 14,000 peptide features per sample. By mapping

106



Results

identified MS/MS spectra to features we identified a total of 1,756 proteins. The measurements
exhibited decent reproducibility as demonstrated by a computation of the overlap of protein
identifications across all replicates for each organ. On average, 30% of the proteins identified
in any of the replicates of an organ could be identified in at least half of the replicates of that
organ (heart 33%, kidney 22%, liver 40%, lung 20%, muscle 35%).

Furthermore, we investigated the influence of different metal compositions that are com-
monly used as bullet bodies. To this end, bovine liver was penetrated with four different bullet
types, and the routine digestion protocol was performed. A comparison of the protein identi-
fications revealed a reasonable overlap between the four samples: 50% (478 out of 955) of
the proteins identified in any of the samples could be reproducibly identified across all four
samples, 66% (626 out of 955) in at least three out of four. Hence the protocol can be assumed
to be robust also with respect to different metal alloys of projectiles.

Principle component analysis (PCA) was used to assess the degree of similarity between the
different protein profiles. A clustering of peptide feature intensities was performed to visualize
the structure of the quantitative data. Using all features detected in any map and aligned from
map to map, we were able to construct a PCA input matrix of 79 samples and 282,640 peptide
feature intensities in total. Figure 5.4 shows the scores plot of the PCA. PCA clustering revealed
strong separation power using the first three components, which by themselves account for
almost 60% of the total variance in the data set. The resulting clusters allow for a clear visual
separation of all muscle samples and almost all heart samples (four samples show overlap with
lung profiles). While the distribution of samples for lung, liver and kidney show more overlap
than heart and muscle, the centers of the respective clusters are clearly drawn apart.

Subsequently, we evaluated the classification performance on this data set using support
vector machines (SVM), random forests, Gaussian naïve Bayes, and multinomial naïve Bayes
and compared their performances on sets of qualitative and quantitative attributes. All in-
vestigated classifiers achieved an excellent performance of well over 90% correctly classified
instances on this data set. Notably, the simple multinomial naïve Bayes classifier achieved a
surprisingly good performance of more than 99% correctly classified instances even when only
the top three discriminating proteins per organ (hence 15 in total) were used as attributes,
outperforming all other classifiers in the majority of cases. A comprehensive summary of the
performance evaluation results can be found in Table 5.1.

Classification performance of the multinomial naïve Bayes classifier using only the top 1, 3,
and 5 highest-correlated attributes is illustrated in Figure 5.5. We compared the performance
of our approach when using only qualitative attributes (“ID only”) and when considering both
qualitative and quantitative attributes (“ID + quant”). In the “ID only” attribute selection
process, the top N highest-correlated protein identifications for each of the 5 investigated
organs, hence 5 N in total, were selected. For “ID + quant”, we additionally selected the top
N highest-correlated quantitative attributes (MS feature intensities), hence 10 N attributes in
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Figure 5.4: Principal component analysis of protein profiles from 79 bullet surfaces de-
rived from penetration experiments on five different solid bovine organs. The first three
components are visualized and exhibit a clustering of organ-specific profiles. Organ as-
signments are represented by colors, as indicated. Reprinted from Dammeier et al.112
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Attributes SVM Random Forest Gaussian NB Multinomial NB

Number Kind Test set Train set Test set Train set Test set Train set Test set Train set

Quant 86.91%
(±0.25%)

96.25%
(±0.25%)

86.63%
(±0.27%)

95.19%
(±0.27%)

89.76%
(±0.24%)

95.22%
(±0.24%)

87.13%
(±0.24%)

94.61%
(±0.24%)

ID 90.46%
(±0.20%)

97.04%
(±0.20%)

91.44%
(±0.20%)

97.13%
(±0.20%)

90.46%
(±0.20%)

96.72%
(±0.20%)

94.72%
(±0.16%)

97.35%
(±0.16%)Top 1

Both 96.28%
(±0.15%)

98.96%
(±0.15%)

94.21%
(±0.19%)

98.45%
(±0.19%)

95.91%
(±0.16%)

98.31%
(±0.16%)

98.60%
(±0.09%)

99.90%
(±0.09%)

Quant 91.16%
(±0.20%)

96.85%
(±0.20%)

91.33%
(±0.21%)

96.97%
(±0.21%)

94.58%
(±0.17%)

96.06%
(±0.17%)

95.97%
(±0.14%)

98.24%
(±0.14%)

ID 97.53%
(±0.11%)

99.07%
(±0.11%)

95.55%
(±0.17%)

99.01%
(±0.17%)

98.02%
(±0.11%)

98.81%
(±0.11%)

99.11%
(±0.09%)

99.90%
(±0.09%)Top 3

Both 97.95%
(±0.10%)

99.28%
(±0.10%)

96.00%
(±0.15%)

98.76%
(±0.15%)

98.84%
(±0.10%)

99.06%
(±0.10%)

99.81%
(±0.03%)

99.97%
(±0.03%)

Quant 92.18%
(±0.18%)

97.57%
(±0.18%)

91.62%
(±0.20%)

97.20%
(±0.20%)

95.00%
(±0.17%)

95.92%
(±0.17%)

97.71%
(±0.10%)

99.30%
(±0.10%)

ID 98.18%
(±0.10%)

99.25%
(±0.10%)

96.62%
(±0.16%)

99.04%
(±0.16%)

99.01%
(±0.09%)

99.16%
(±0.09%)

99.11%
(±0.07%)

99.95%
(±0.07%)Top 5

Both 98.49%
(±0.09%)

99.34%
(±0.09%)

96.31%
(±0.14%)

98.75%
(±0.14%)

99.21%
(±0.08%)

99.30%
(±0.08%)

99.86%
(±0.03%)

99.97%
(±0.03%)

Quant 92.81%
(±0.18%)

97.81%
(±0.18%)

92.99%
(±0.19%)

97.79%
(±0.19%)

95.48%
(±0.16%)

96.56%
(±0.16%)

98.41%
(±0.09%)

99.67%
(±0.09%)

ID 98.45%
(±0.09%)

99.36%
(±0.09%)

97.88%
(±0.13%)

99.12%
(±0.13%)

99.46%
(±0.06%)

99.29%
(±0.06%)

98.71%
(±0.08%)

99.84%
(±0.08%)Top 10

Both 98.69%
(±0.08%)

99.53%
(±0.08%)

96.60%
(±0.14%)

98.81%
(±0.14%)

99.63%
(±0.05%)

99.45%
(±0.05%)

99.55%
(±0.05%)

99.87%
(±0.05%)

Quant 93.12%
(±0.17%)

98.01%
(±0.17%)

94.29%
(±0.17%)

98.15%
(±0.17%)

97.24%
(±0.13%)

98.63%
(±0.13%)

98.53%
(±0.09%)

99.79%
(±0.09%)

ID 98.37%
(±0.09%)

99.47%
(±0.09%)

98.16%
(±0.10%)

99.06%
(±0.10%)

98.74%
(±0.08%)

98.97%
(±0.08%)

99.02%
(±0.07%)

99.46%
(±0.07%)Top 20

Both 98.62%
(±0.08%)

99.57%
(±0.08%)

96.84%
(±0.14%)

98.91%
(±0.14%)

98.78%
(±0.08%)

99.07%
(±0.08%)

99.21%
(±0.07%)

99.77%
(±0.07%)

Quant 93.31%
(±0.18%)

98.00%
(±0.18%)

95.36%
(±0.15%)

98.11%
(±0.15%)

99.85%
(±0.03%)

99.97%
(±0.03%)

99.22%
(±0.07%)

99.90%
(±0.07%)

ID 99.84%
(±0.03%)

99.95%
(±0.03%)

99.19%
(±0.07%)

99.71%
(±0.07%)

99.88%
(±0.03%)

99.82%
(±0.03%)

99.12%
(±0.07%)

99.54%
(±0.07%)Top 100

Both 99.94%
(±0.02%)

99.97%
(±0.02%)

97.36%
(±0.13%)

99.01%
(±0.13%)

99.89%
(±0.03%)

99.86%
(±0.03%)

99.61%
(±0.05%)

99.88%
(±0.05%)

All (25,872) Quant 96.55%
(±0.14%)

95.89%
(±0.14%)

97.28%
(±0.12%)

97.52%
(±0.12%)

98.78%
(±0.08%)

98.36%
(±0.08%)

96.22%
(±0.15%)

95.95%
(±0.15%)

All (1,756) ID 99.98%
(±0.01%)

99.94%
(±0.01%)

99.41%
(±0.06%)

99.80%
(±0.06%)

99.96%
(±0.02%)

99.87%
(±0.02%)

98.55%
(±0.09%)

98.78%
(±0.09%)

All (27,628) Both 99.72%
(±0.04%)

99.13%
(±0.04%)

97.78%
(±0.12%)

98.09%
(±0.12%)

99.84%
(±0.03%)

99.35%
(±0.03%)

98.14%
(±0.11%)

97.91%
(±0.11%)

Table 5.1: Average classification accuracies for different numbers and types of selected
attributes using various classifiers. Adapted from Dammeier et al.112
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Figure 5.5: Average classification accuracy on the test set for different numbers and types
of selected attributes using a multinomial naïve Bayes classifier. Even if only the presence
or absence of only a single marker protein per organ is used as a criterion, we obtain
almost 95% correct organ assignments on the test set. Adding quantitative information
significantly improves the performance even further. No significant improvement is ob-
served after adding more than the top three attributes per organ. Error bars represent the
SEM. Reprinted from Dammeier et al.112

total were used for classification. Even if only the presence or absence of only a single marker
protein for each organ is considered, we already achieve a classification accuracy of 94.7%
(±0.16%). If we add the quantitative information, we see a significant improvement to 98.6%
(±0.09%). Using the top three attributes, we reach 99.1% (±0.09%) with qualitative attributes
and even 99.8% (±0.03%) when the quantitative information is added. Selecting the top five
or more attributes does not significantly improve the classification performance any further.
Table 5.2 shows the confusion matrix for the classification results using the multinomial naïve
Bayes classifier on the top 3 selected ID and quantitative features per organ.

Discriminating proteins were ranked according to their Pearson correlation factors. The
top-ranked proteins for the entire dataset, together with their Pearson correlation coefficients
as well as p-values for organ specificity computed using Fisher’s exact test, are listed in Table
5.3.
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Predicted organ

Kidney Lung Liver Muscle Heart

Kidney 3000 0 0 0 0

Lung 0 3999 0 0 1

Liver 0 0 3000 0 0

Muscle 0 0 0 3000 0Tr
ue

or
ga

n

Heart 0 0 29 0 2971

Table 5.2: Confusion matrix for classification results on the test set using the multino-
mial naïve Bayes classifier on the top 3 selected ID and quantitative features per organ.
Numbers are the sum over all 1000 randomized repetitions of the stratified 5-fold cross-
validation. Hence, each row sum equals 1000 times the number of samples originating
from the corresponding organ per repetition. Numbers on the main diagonal indicate
correct classifications, whereas all other numbers represent misclassifications. Adapted
from Dammeier et al.112

5.3.2 Projectiles of Shooting Experiments Adsorb Sufficient Amounts of Protein

As the experiments using isolated bovine organs in combination with manual bullet penetration
were artificial with regard to a real shooting scenario we sought to address the crucial ques-
tion whether manual penetration is comparable to high-speed penetration from a proteomics
perspective.

In a real shooting, bullets of common handguns would hit the body at a velocity of up to
500 m/s. Thus the projectile has a high amount of kinetic energy that is mainly needed to
perform work at the target, i.e. to penetrate and to cavitate. The ideal effect of a shot would
be instant incapacitation due to the hit of a vital structure, preferably heart or brain. Although
the kinetic energy of a non-deforming projectile is proportional to the volume displaced by
cavitation this rule applies ideally for a non-elastic medium137. Tissue, however, is highly
elastic so that a lot of kinetic energy is applied to elastic displacement. More energy is lost to
the deformation of the bullet. Thus besides the energy spent for the rupture of the tissue (by
hydrodynamic pressure) only a minor portion of energy is lost to friction or in consequence to
heat. Therefore the extent of heat development is far insufficient to carbonize proteins that are
exposed to the surface of the penetrating bullet. Otherwise it would not have been possible to
identify tissue-specific proteins by immunodetection on the surface of projectiles in shooting
experiments earlier123. Another issue is probably the contact time of projectile and penetrated
tissue. Due to the high velocity this is rather short for each organ, which equals to a specific
“protein pool” that is crossed.

111



5. Forensic Applications of Mass-Spectrometry Based Proteomics

Heart

Protein Name Accession (bovine) Accession (human) R p
Myosin binding protein C, cardiac-type Q0VD56_BOVIN MYPC3_HUMAN 0.92 6.99e-10
Glycogen phosphorylase, brain form PYGB_BOVIN PYGB_HUMAN 0.83 5.05e-09
Troponin I, cardiac muscle TNNI3_BOVIN TNNI3_HUMAN 0.79 3.66e-06
Myosin light chain 3 MYL3_BOVIN MYL3_HUMAN 0.76 1.60e-07
Pyruvate dehydrogenase E1 subunit beta ODPB_BOVIN ODPB_HUMAN 0.75 6.24e-06
Calpastatin Q9XSX1_BOVIN ICAL_HUMAN 0.74 4.27e-05
NADH dehydrogenase 1 alpha subunit 4 NDUA4_BOVIN NDUA4_HUMAN 0.74 4.27e-05
Cytochrome c oxidase subunit 4 isoform 1 COX41_BOVIN COX41_HUMAN 0.70 2.11e-04

Kidney

Protein Name Accession (bovine) Accession (human) R p
Calbindin CALB1_BOVIN CALB1_HUMAN 1 3.26e-13
Na(+)/H(+) exchange regulatory cofactor NHE-RF3 NHRF3_BOVIN NHRF3_HUMAN 1 3.26e-13
Low-density lipoprotein receptor-related protein 2 F1N6H1_BOVIN LRP2_HUMAN 1 3.26e-13
Villin 1 Q5E9Z3_BOVIN VILI_HUMAN 0.96 2.12e-11
Retinyl ester hydrolase type 1 Q5MYB8_BOVIN Q8TDZ9_HUMAN 0.92 3.13e-10
Membrane metallo-endopeptidase variant 2 E1BPL8_BOVIN NEP_HUMAN 0.92 6.99e-10
Phosphotriesterase-related protein PTER_BOVIN PTER_HUMAN 0.83 2.65e-07
Plastin-1 PLSI_BOVIN PLSI_HUMAN 0.79 3.66e-06

Liver

Protein Name Accession (bovine) Accession (human) R p
Hydroxymethylglutaryl-CoA synthase, mitochondrial HMCS2_BOVIN HMCS2_HUMAN 0.96 1.41e-12
Carbamoyl-phosphate synthase, mitochondrial F1ML89_BOVIN CPSM_HUMAN 0.92 2.12e-11
Phenylalanine-4-hydroxylase PH4H_BOVIN PH4H_HUMAN 0.92 2.12e-11
3-oxo-5-beta-steroid 4-dehydrogenase E1BBT0_BOVIN AK1D1_HUMAN 0.92 2.12e-11
Catechol O-methyltransferase COMT_BOVIN COMT_HUMAN 0.92 2.12e-11
Acetyl-CoA acetyltransferase Q17QI3_BOVIN THIC_HUMAN 0.92 9.31e-11
Cytochrome P450 2E1 CP2E1_BOVIN CP2E1_HUMAN 0.92 9.31e-11
Dimethylaniline monooxygenase G5E5R0_BOVIN FMO1_HUMAN 0.92 9.31e-11

Lung

Protein Name Accession (bovine) Accession (human) R p
Plastin-2 F1MYX5_BOVIN PLSL_HUMAN 0.93 1.21e-12
Cathelicidin-4 CTHL4_BOVIN CAMP_HUMAN 0.90 2.50e-11
Tubulin beta chain TBB5_BOVIN TBB5_HUMAN 0.90 2.23e-11
Cysteine and glycine-rich protein 1 CSRP1_BOVIN CSRP1_HUMAN 0.87 3.94e-10
Prostaglandin F synthase 2 PGFS2_BOVIN AK1C1_HUMAN 0.87 3.94e-10
Myosin light polypeptide 6 MYL6_BOVIN MYL6_HUMAN 0.84 1.46e-09
Calpain-2 catalytic subunit CAN2_BOVIN CAN2_HUMAN 0.83 5.05e-09
Alpha-actinin-1 ACTN1_BOVIN ACTN1_HUMAN 0.83 5.05e-09

Muscle

Protein Name Accession (bovine) Accession (human) R p
Bridging integrator 1 Q2KJ23_BOVIN Q9BTH3_HUMAN 1.00 3.26e-13
Myosin-binding protein C, slow-type A6QP89_BOVIN MYPC1_HUMAN 1.00 3.26e-13
Fructose-1,6-bisphosphatase isozyme 2 F16P2_BOVIN F16P2_HUMAN 1.00 3.26e-13
Myosin-binding protein C, fast-type E1BNV1_BOVIN MYPC2_HUMAN 1.00 3.26e-13
Troponin C, skeletal muscle (fast type) Q148C2_BOVIN TNNC2_HUMAN 1.00 3.26e-13
Myosin regulatory light chain 2, skeletal muscle MLRS_BOVIN MLRS_HUMAN 0.96 5.21e-12
Nebulin F1MQI3_BOVIN NEBU_HUMAN 0.92 4.43e-11
PDZ and LIM domain protein 3 PDLI3_BOVIN PDLI3_HUMAN 0.92 4.43e-11

Table 5.3: Top discriminating protein identifications per organ. Protein identifications
were ranked by absolute Pearson correlation coefficient (Corr) between presence of a
protein identification and organ affiliation over all samples. In addition to the Uniprot
accessions of bovine proteins, we provide accessions of one homologous human protein
each as determined by executing the BLAST algorithm in protein-to-protein mode136.
Adapted from Dammeier et al.112
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To investigate the applicability of our approach to real-world scenarios, shooting exper-
iments were performed using four of the isolated bovine organs, namely liver, lung, kidney
and heart, which were imbedded in a gelatin matrix. The collected projectiles were processed
using our established protocol, and proteomic data analysis was performed. Subsequently,
the protein identification overlap was computed between samples taken from shot bullets and
manually pushed bullets. For each of the four shot bullets, we calculated the average protein
identification overlap with the reproducible protein IDs (those found in at least half of the
replicates) for the corresponding organ from the manual penetration data set. Despite the very
different nature of sample taking, we could identify a substantial number of proteins on the
shot bullets that have also been reproducibly identified in the manual penetration data set:
46% (166 out of 360) for the liver sample, 43% (96 out of 222) for lung, 20% (35 out of 174)
for kidney, and 17% (11 out of 64) for heart.

5.3.3 Proteomics of Shot Projectiles Allows Organ Classification

To evaluate the applicability of our classification model, which was trained on the entire data
set of manually penetrated bovine organs, to the shooting scenario, we sought to predict which
bullet was shot through which organ. Here, we applied the classifier and attribute combination
yielding the best performance on the training set, namely the multinomial naïve Bayes classifier
using the top five attributes per organ. The classification was correct for two out of the four
shooting samples, namely liver and lung. The heart sample was incorrectly classified as muscle,
kidney was classified as lung. As the heart represents a specialized muscle, this result is to a
certain extent not completely wrong. However, it exemplified that the heart-specific marker
proteins discriminating heart from muscle as determined by our model were not identified
here. One reason for the misclassification of the heart sample becomes obvious: the overall
number of protein identifications on this bullet was very small. Furthermore, both misclassified
samples exhibited a considerably smaller protein identification overlap with the corresponding
samples from the manual penetration data set. Nevertheless, these results confirmed partially
that manual penetration and shooting experiments lead to a comparable outcome.

5.3.4 Application to a Case of Homicide

In order to test and validate protein signatures established from bovine organs towards forensic
application, we analyzed a recent case of murder, in which the coroner was not able to fully
reconstruct the shooting by analysis of the bullet channels during autopsy. For case details,
refer to the file reference in the Experimental Procedures. In brief, a 63-year-old male was
shot by his wife inside a car while driving. After several hits he was still able to leave the
car, though followed by his assailant. In the end, the victim was hit by a shot in the head
and died in the street. Although the general solution of this case of murder was clear, from

113



5. Forensic Applications of Mass-Spectrometry Based Proteomics

a forensic point of view, it was of specific interest which of the multiple shots was the first
lethal one, i.e., inside the car or outside. To investigate this, two projectiles recovered from
inside the car, filed as court exhibits numbers 1-12 and 1-13, and three projectiles found in the
street, filed as court exhibits numbers 1-14, 1-17, and 1-3, were taken for proteomic analysis as
described. It is noteworthy to mention that sample 1-3 was found in a puddle of blood on the
asphalt, and that all court exhibits were analyzed in blinded fashion, i.e. without knowledge
of details of the autopsy. The database search revealed a total of 269, 180, 33, 34, and 84
protein identifications for samples 1-12, 1-13, 1-14, 1-17, and 1-3, respectively. A machine
learning-based approach was performed with the protein identification data as described for
the bovine test case. Unfortunately, the outcome was not significant (data not shown), which
was not surprising since the projectiles of interest had penetrated multiple organs. Therefore
contamination might have been a major issue. Moreover, most likely not all of the penetrated
organs were covered by the bovine experiments, and, in consequence, by our model.

The autopsy of the body revealed three full primarily abdominal penetrations and one
graze of the right shoulder as well as two bullets, of which one was lodged in the brain and the
other in the right thigh. Only bullets found outside the body were analyzed by our proteomic
approach without knowledge of anatomical details of the autopsy. Additionally, the forensic
examination exhibited that the three abdominal penetrations could be characterized further
as (i) penetration of liver and right atrium, (ii) penetration of upper arm, lung and heart, and
(iii) penetration of aorta and trachea. In order to reveal the correlation of bullet channels to
projectiles, we followed a different strategy and tried to map the protein identifications of the
projectiles to the top-ranked ten organ-discriminating proteins. The results are summarized in
Table 5.4. Sample 1-12 was the only one that exhibited three of the top-ranked discriminating
proteins for liver. In combination with the identification of four top heart-discriminating
proteins, this indicated that 1-12 maps best to the bullet channel of penetration (i), since it
was the only one affecting the liver. In addition, as sample 1-13 exhibited a number of heart-
specific plus lung-specific proteins, but not any liver-discriminating proteins, we suggest that
this projectile can be matched to penetration defect (ii).

Because the remaining projectiles did not exhibit any of the top-ranked organ-discriminating
proteins, and due to the fact that at least sample 1-3 showed a reasonable number of 84 protein
identifications, we set out to adapt our approach by taking major contaminations into account.
Due to the special setting of a forensic situation contamination is generally one of the major
issues. A projectile that hit a body traverses in most cases fabric, skin, connective tissue, and
it certainly gets in contact with blood. Eventually it even leaves the body and may be found
in dirt or dust. With regard to standard proteomic analyses blood, which is available in every
organ, seems to be the most relevant general contaminant. As projectile 1-3 was found in
a puddle of blood, it was indicated to subtract a general “blood-projectile-profile” that was
generated by the contamination of a naïve bullet with human blood and proteomic analysis
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Protein ID*
Organ

Protein accession
(human)

Correlation
(bovine) 1-12 1-13 1-14 1-17 1-3

Heart MYPC3_HUMAN 0.92 7
PYGB_HUMAN 0.83 13
TNNI3_HUMAN 0.79 3
MYL3_HUMAN 0.76 6 8
ODPB_HUMAN 0.75 2
NDUA4_HUMAN 0.74 2

Liver HMCS2_HUMAN 0.96 6
CPSM_HUMAN 0.92 45
FMO1_HUMAN 0.92 3

Lung TBB5_HUMAN 0.90 3 2
MYL6_HUMAN 0.84 2 2
ACTN1_HUMAN 0.83 6 12

Muscle MYPC1_HUMAN 1 13
F16P2_HUMAN 1 7
TNNC2_HUMAN 1 2 2
MLRS_HUMAN 0.96 2
NEBU_HUMAN 0.92 7
PDLI3_HUMAN 0.92 2

Table 5.4: Detailed protein identification analysis of court exhibits of a homicide case.
The overlap of protein identifications from the homicide case (court exhibits no. 1-12,
1-13, 1-14, 1-17, 1-3) with the top ten most organ-discriminating proteins from the bovine
experiments as listed in Table 5.3 is exhibited. Only proteins that were actually identified in
the homicide case are shown. This information was used for manual forensic interpretation
(e.g., exclusion of specific organ penetrations). Adapted from Dammeier et al.112

*Protein identification parameters (numbers of identified peptides are shown) were kept at minimum
of 2 identified peptides/protein and at a protein identification threshold of 99%.
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after storage for 3 weeks (see data in the PRIDE repository). The remaining list of 12 proteins
still exhibited a prominent number of blood-specific proteins (e.g., hemoglobin subunits), yet
it additionally revealed a number of proteins that are very abundant in muscle. However, most
of them are also found in heart tissue (e.g., myosin isoforms 2 and 7 and creatine kinase M).
Furthermore, strong evidence that projectile 1-3 can be matched rather to penetration (iii)
than to the grace shot, for which the projectile was also not assigned, is derived from the fact
that vimentin was identified on its surface. In the analysis of the bovine organ data, vimentin
exhibited a moderate correlation with lung and heart, but an anti-correlation with liver and
kidney, and hardly any correlation with muscle. In summary, we found protein signatures
determining organ specificity of bullet penetration for three projectiles. These signatures corre-
lated with the anticipated bullet channels determined by classical forensic autopsy. Moreover,
a contamination with blood could be experimentally evaluated to some extent.

5.4 Discussion

We present the first study applying mass spectrometry-based proteomics to reveal organ-specific
protein expression for forensic evidence. So far, forensic examinations in this context have been
based preferably on a few marker proteins that were primarily predefined (e.g., by applying
immunodetection122). The method described here extends the notion of markers to revealing
protein profiles using comprehensive proteomic datasets. Previous studies have shown that
proteomic technologies are able to reveal organ-specific protein expression and/or specific
patterns of protein modification125,138.

Furthermore, with respect to forensic applications, mass spectrometry-based analysis of
protein debris on evidence exhibited the potential to precisely define the type of biological
material (e.g., blood, saliva, or feces139). We used a range of bioinformatics methods to reveal
a data-driven clustering of organs based on their raw MS profile and assigned protein IDs.
Principle component analysis, based on peptide feature intensities alone, already revealed a
significant separation of most profiles originating from different organs. This could generally
be anticipated with respect to the experimental design chosen. In addition, we have shown
that using both quantitative and protein identification information permits the classification of
samples with an overall accuracy of over 99% for the five organs investigated. This suggests a
clear conservation of the underlying organ-specific protein expression profile from the collected
bullet to the mass-spectrometric data. As no significant improvement of classification accuracy
was observed after adding more than the top three features this might also be a promising sign
to develop a relatively inexpensive targeted assay for forensic testing. However, we have to
be cautious about that because of the extremely artificial situation of the manual penetration
experiments. Furthermore we were able to show that the organ-specificity could be partially
replicated in shooting experiments. In doing so the level of congruence seemed to be dependent
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on the type of organ (e.g., for liver it was acceptable (46%), whereas for heart it was rather poor
(17%)). It could be speculated that this finding is somehow related to the different textures of
the organs, which might have different effects on a rapidly penetrating bullet.

With respect to the biochemical nature of the most relevant organ-discriminatory proteins,
we found either structural proteins or enzymes that could be related to the physiological role
of the organ. In general, it was assumed that the identified and discriminating proteins are
the outcome of different intrinsic, external, and analytical factors. Intrinsic factors are relative
protein abundance, robustness against degradation, hydrophobicity or adhesive properties of
the proteins. External factors are influencing variables outside the biological context (e.g.,
environmental factors like temperature and humidity). Especially the matrix background of
forensic samples represents a major analytical challenge during analysis. Taking these factors
into account, it is also of scientific interest to elaborate what kind of substantial biochemical or
physiological organ properties are reflected by the most discriminating proteins as summarized
in Table 5.3. Hence we sought to interpret the discriminatory protein data of heart and muscle
used as an example for closely related organs, as well as of liver used as an example for a non-
muscular inner organ (In the following general protein characteristics are referenced according
to their UniProt annotations (www.uniprot.org)).

Proteins that were suitable for classifying skeletal muscle successfully exhibit the organ’s
special role in motility. Prominent examples are myosin-binding proteins, troponin C, myosin
regulatory light chain, and also nebulin, a stabilizing, muscle-specific protein enhancing the
integrity of sarcomers and membranes of myofibrils. In contrast, bridging integrator 1 or
amphiphysin, a protein that exhibited a correlation factor of 1, is highly expressed in nerve
terminals, probably being involved in synaptic vesicle endocytosis thus reflecting the muscles’
high level of innervation. Although being ubiquitously distributed, some isoform subtypes
have been reported to be very tissue specific (e.g., in brain or muscle140). Furthermore, since
skeletal muscles consume high amounts of energy, the list of muscle-discriminating proteins
is completed by enzymes that are involved in energy-generating processes (e.g., fructose-1,6-
bisphosphatase isozyme 2, which plays a prominent role in glycolysis). Strikingly, the identified
discriminatory protein profiles on the projectile surfaces allow for distinguishing the skeletal
muscle from the heart muscle, a muscle that is both powerful and persevering. Again, as for
muscle tissue, proteins directly or indirectly involved in contractility are prominent discrim-
inators (e.g., myosin binding protein C and myosin light chain 3). However, the proteomic
analysis is able to detect cardiac-specific variants of those, the most important representative of
this class being troponin I, which has been discussed as a (blood) biomarker for heart-related
disorders like myocardial infarction141. An additional set of cardiac discriminators derive
from key proteins involved in energy metabolism, i.e., glycogen phosphorylase and pyruvate
dehydrogenase E1. Interestingly, a subgroup of this class of top discriminators consists of
mitochondrial proteins, i.e., subunit 4 of the NADH dehydrogenase alpha subcomplex and
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subunit 4 of cytochrome C oxidase, both referring to the high impact of mitochondrial energy
generation in the heart.

In contrast, discriminating protein signatures for liver contain specific enzymes associated
with steroid metabolism, (e.g., HMG-CoA synthase and 3-oxo-5-beta-steroid 4-dehydrogenase).
These proteins feature the extraordinary metabolic activity in lipid synthesis of the liver. Fur-
thermore, they are accompanied by a prominent enzyme of fatty acid metabolism, namely,
acetyl-CoA acetyltransferase. The generation of steroids and the metabolism of lipids are im-
portant central hepatic functions. Another central function of the liver is detoxification or
degradation of waste molecules. These features explain the presence of various key metaboliz-
ing enzymes, including dimethylaniline monooxygenase, cytochrome P450 2E1, and catechol
O-methyltransferase among the top liver-discriminating proteins. Furthermore, proteins pri-
marily involved in the degradation of amino acids and amines complete this picture (e.g.,
phenylalanine-4-hydroxylase and carbamoyl-phosphate synthase, an enzymatic component of
the urea cycle). It is highly remarkable that we detected neither the classical (diagnostic) liver
enzymes such as the aminotransferases AATM/AATC and ALAT, nor the liver-specific alcohol
dehydrogenases among the highest discriminating proteins.

Finally, the top discriminating proteins were searched in a data base that contains tissue
and organ information in order to benchmark our experimental findings. Therefore we chose
ProteomicsDB, a comprehensive atlas of the human proteome which has been released re-
cently142. Overall, a good correlation with the organ-specific expression level could be found
for heart, kidney and liver, whereas muscle proteins are not annotated as such in the database
(data not shown). The comparison also indicates that the forensic applicability of precompiled
organ proteomes is limited and therefore the experimental determination of specific datasets
as reported here should be preferred.

As the statistical findings in the bovine experimental case exhibited good correlations
between bullets and organs (see 5.3), and due to the fact that our experimental setting could
function as model for shootings, it could be assumed that a similar approach would also
be successful in real forensic cases. However, in the investigated homicide case it was not
possible to achieve comparable accuracy solely by statistical classification in a blinded approach.
Nevertheless, the knowledge of organ-discriminating protein patterns fostered the biochemical
and forensic interpretation of the proteins that were actually identified in the homicide case.
Thereby valuable additional information was provided for the coroner towards the assignment
of specific projectiles to distinct bullet channels. Thus we postulate that our method could
set new standards in forensic analysis and, consequently, in jurisdiction. Although most cases
will include additional challenges, such as contamination with various organic materials at the
crime scene, or protein degradation as a consequence of late recovery or inadequate storage
and asservation, in the real crime case, our approach enabled the assignment of projectiles for
two out of three penetrating defects of the corpse successfully (Table 5.4). This improvement of
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the forensic examination, and consequently, of the reconstruction of the whole case would not
have been feasible without the utilization of the proteomic data set. However, due to multiple
organ penetrations, it was necessary to combine and assign the top discriminating proteins
manually. A potential reason for this could be the multi-organ situation that is very difficult
to address experimentally. In addition, the consideration of case-related contaminations like
the obvious contact with special tissues (one of the projectiles was found in a puddle of blood)
increased the chance of an accurate organ assignment. However, we assumed not to find an
important influence of ubiquitous tissues like fat or skin on our analyses. In particular, skin
contaminations seem not to be highly relevant since contamination by dermal or epidermal
proteins, such as keratins, is a general issue in proteome research143. Therefore we have
chosen muscle tissue as potential major contamination control in our experiments, as well as
the heart would be one of the principal targets of forensic investigation.

The study presented here gives a proof of principle for the application of mass spectrometry-
based proteomics during forensic examination. Further improvements of the method in combi-
nation with a more comprehensive database of forensic reference samples have the potential
for almost automatically assigning even multiple organs to a sample in future applications.
At the same time, we suggest that the presented forensic proteomic method would also be
applicable to cases of stabbing, in which very often many forensic uncertainties remain119.
Finally, with the availability of personalized genome sequences the proteomics approach can
also be further extended to identify not only the victim, but also the organs involved in one
comprehensive analysis.
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Chapter 6

Conclusion

Modern high-throughput technologies in proteomics produce vast amounts of experimental
data. Tools for efficient and automated data analysis have become an absolute necessity. The
wide range of available techniques for quantification and identification and the variety of dif-
ferent instrument types give rise to a broad range of computational challenges. Computational
data analysis has become a key bottleneck of the overall workflow in today’s biomedical stud-
ies. In the context of this thesis, we have developed novel algorithms and tools for automated
data processing and efficient analysis of high-throughput LC-MS proteomics data and demon-
strated their performance in various benchmark settings. Finally, we have described an exciting
application of our work in the context of a LC-MS proteomics study in the field of forensic
science.

The first major contribution presented in this thesis, the development of TOPPAS, the
OpenMS proteomics pipeline assistant, has paved the way for what has now become one
of the key concepts of OpenMS: reproducible data analysis using established, documented,
and highly configurable computational workflows. TOPPAS is a GUI-driven dedicated Open-
MS/TOPP workflow engine implemented in C++/Qt. Since OpenMS version 1.9, TOPPAS
is included in every installation of the software package and allows non-computer scientists
and bioinformaticians alike to rapidly set up data analysis workflows for mass spectrometric
data. The entire data processing workflow, including all tool parameters, is stored in a single
file. This facilitates the design, customization, parameter optimization, and documentation
of entire data processing workflows and provides a convenient way for researchers to share
established analysis workflows with the community. For developers, TOPPAS has become an
invaluable tool for rapid prototyping and testing of novel tools and workflows. Due to its tight
integration with the overall OpenMS framework and build system, all TOPP tools contained
in the underlying OpenMS installation are automatically registered with TOPPAS and thus
instantly available as workflow nodes. This is especially useful for prototyping workflows
involving TOPP tools that are still in the early development phase, hence unpublished and
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unavailable in the current stable releases of OpenMS or on other workflow platforms. For
batch processing of high-throughput data on more powerful computing resources, mature
workflows can be run without the GUI using the ExecutePipeline TOPP tool, allowing the
deployment on dedicated compute servers, where a graphical environment may be unavailable.
In addition to the TOPP tools included with OpenMS, arbitrary external command line tools
can be integrated into TOPPAS workflows as well. This is achieved by providing TOPPAS with
an XML-based configuration file describing the external tool’s command line interface. This
format has eventually inspired the design of its successor, the Common Tool Descriptor (CTD)
format, which has now become a central component of our approach for wrapping external
tools in other workflow platforms and has been suggested as a general community standard
for simililar efforts across the field.

The presented OpenMS plugin for the popular KNIME workflow platform powered by the
Generic KNIME Nodes (GKN) extension takes the idea of “holistic” data analysis workflows
one step further: In addition to the data processing part using OpenMS/TOPP, the entire down-
stream statistical analysis, from “raw” processing results up to the generation of publication-
ready figures and tables, can be designed, executed, and documented in the same place. A
key argument for choosing KNIME over TOPPAS is the huge variety of available KNIME nodes
for downstream statistical data analysis and visualization. TOPPAS, on the other hand, has
better built-in support for parallel execution of processing jobs, and is thus better suitable in
high-throughput settings where processing speed is crucial. While TOPPAS can make use of an
arbitrary user-defined number of CPU cores for efficient parallel processing of queued jobs on
a single compute server, there are cases where efficient data analysis of ultra-high-throughput
data demands the compute power of a cluster, grid, or cloud environment. The KNIME2gUSE
workflow converter is the latest addition to the repertoire of available workflow technologies
for OpenMS/TOPP. It allows to easily convert KNIME workflows to the gUSE workflow lan-
guage, enabling the seamless deployment of workflows designed and tested in the KNIME
environment on powerful grid and cloud resources.

TOPPAS, KNIME-GKN, and KNIME2gUSE span a wide range of use cases and audiences.
However, our experience has shown that a significant number of biologists and other non-
computer scientists are reluctant to use a powerful modular workflow system when they want
to perform standard analyses that can also be achieved using dedicated standalone solutions. In
order to make OpenMS algorithms and workflows available to these users, we have developed a
plugin for the popular vendor software platform Proteome Discoverer (PD; Thermo Scientific),
adding community nodes for label-free quantification of peptides and proteins (LFQProfiler)
and protein-RNA cross-linking data analysis (RNPx l) to PD’s repertoire of workflow nodes. The
motivation for targeting this additional platform was to combine the efficiency of OpenMS
algorithms and workflows with the convenience and integrated data analysis capabilities of
Proteome Discoverer. PD’s workflow concept represents a tradeoff between modularity, flexi-
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bility, and configurability on the one hand and usability by non-expert users on the other hand.
As a result, PD workflow nodes typically perform a series of computational steps that would be
separated into individual modules in the OpenMS philosophy. LFQProfiler, for instance, per-
forms run-wise feature detection in one PD node, and the rest of the label-free quantification
workflow (mapping of identifications to quantified features, retention time alignment, feature
linking, protein inference) in a downstream node. Only the most important parameters of the
underlying OpenMS workflows are exposed to the user. LFQProfiler is based on a modified
version of an established LFQ workflow described by Weisser et al.19, and has shown to perform
at least on par with other state-of-the-art tools for label-free quantification in a performance
comparison on a public benchmark dataset10. RNPxl is based on an approach by Kramer et al.99

and represents the first software solution to date for identification of peptide-RNA cross-links
including automatic localization at amino acid resolution and localization scoring. Due to the
tight integration with PD, results can be interactively inspected using a customized peptide-
nucleotide cross-link spectrum viewer including custom annotations for the detected fragment
ion types.

In an effort to further improve on the quantification performance of OpenMS-based label-
free quantification (LFQ), we have developed OptiQuant, a novel approach to LFQ for pro-
teomics data. One of the key challenges in LFQ lies in reliable signal detection and quan-
tification of raw data in datasets with high sample complexity. Partially overlapping signals
within the same LC-MS run can lead to skewed quantification values or prevent features from
being detected altogether, leading to missing data for the respective run. Traditional methods
perform run-wise feature detection and then link corresponding features across maps. Feature
detection usually involves simple local heuristics to select one out of several conflicting feature
hypotheses. In contrast, OptiQuant uses mixed-integer programming to compute a globally
optimal solution for the feature detection problem, considering signals from all maps at once.
We wanted to investigate to which extent such an approach can improve overall sensitivity
and quantification accuracy. To this end, we have compared OptiQuant’s results to those of
three state-of-the art LFQ solutions across both synthetic and experimental datasets. The first
benchmark results are very encouraging, yet perhaps not quite impressive enough to justify
the increased problem complexity inherent to OptiQuant’s approach: OptiQuant clearly out-
performed the other tools in terms of sensitivity and reproducibility on three complex synthetic
datasets, while achieving a very good overall quantification accuracy. On the experimental
iPRG 2015 LFQ challenge dataset107, OptiQuant achieved lower sensitivity but the highest
quantification accuracy of all tested tools. In the ranking of 48 results submitted by the chal-
lenge participants, OptiQuant’s results would have been ranked 8th – a respectable result. The
set of differential proteins reported by the OptiQuant workflow achieved a perfect precision
of 1.0. Out of the 48 submitted solutions, only seven achieved an equally high precision, and
only two of them had a higher recall than OptiQuant. While these initial benchmark results are
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6. Conclusion

promising, a number of areas could benefit from further improvement. These include usability
(reducing the number of unintuitive user parameters), the reliability of mass trace detection,
the central scoring function for mass trace hypotheses at the heart of the optimization function,
better handling of outlier traces resulting from mass trace linking errors, as well as processing
speed. Beyond the current proof-of-concept implementation, we believe that OptiQuant can
serve as a valuable general prototyping framework for related approaches.

Last, but not least, we have presented our findings from an LC-MS proteomics study in the
field of forensics science. Here, we have successfully used TOPPAS workflows for label-free
quantification, in combination with downstream statistical analysis and machine learning, to
analyze the proteomes contained in traces of organic material remaining on projectiles after
perforation of vital organs. Matching bullets to victims by means of DNA analysis has become
a routine task in modern forensics, but it is rather difficult to determine which projectile
caused the lethal injury in cases involving multiple shooters and bullet channels. In this
proof-of-concept study, we were able to demonstrate that a sufficient amount of protein can
be recovered from the surface of bullets after perforation of bovine organs, in both manual
penetration and actual shooting experiments. Moreover, we have shown that the penetrated
organ can be determined based on the characteristic expression profile of proteins found on the
bullet. This was demonstrated using multiple machine learning classifiers in a stratified nested
cross-validation setting. Classifiers were trained on identification and quantification results for
a total of 79 label-free LC-MS experiments corresponding to biological and technical replicates
of bullet samples after perforation of bovine organs. We could show that the perforated organ
can be reconstructed with very high accuracy, even when the prediction is based only on a
relatively small subset of characteristic proteins. The results of this proof-of-principle study
are not yet generally applicable in everyday forensic practice. More work remains to be done
before our method can be applied to human samples and meet the reliability standards of legal
proceedings. An obvious practical obstacle is the acquisition of a sufficiently large training
dataset of human samples. Moreover, our classification approach currently supports only the
prediction of a single penetrated organ for each bullet. In practice, however, bullet channels can
span multiple vital organs. It remains to be investigated how mixed tissues affect classification
performance, and whether it is even feasible to reliably predict combinations of penetrated
organs. Nevertheless, our study has clearly shown that the general approach is viable, and
thus laid important groundwork for future efforts along these lines. In conclusion, we are
confident that this thesis has contributed to the advancement of the field of computational
mass spectrometry – and hopeful that it will one day help solve homicide cases routinely.
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A. OptiQuant

DatasetWorkflow Tool Parameter HQ LQ LQ + spike-in iPRG
mass_trace:mz_tolerance (Da) 0.01 0.01 0.01 0.01
mass_trace:min_spectra 10 7 7 7
mass_trace:max_missing 1 2 2 2
isotopic_pattern:charge_high 5 5 5 5

FeatureFinderCentroided

isotopic_pattern:mz_tolerance (Da) 0.01 0.01 0.01 0.01
IDFilter charge 1:5 1:5 1:5 1:5

score:pep 0 0 0 0.15
best:n_peptide_hits 0 0 0 1
mz_tolerance (ppm) 5 5 5 5
mz_reference peptide peptide peptide peptide
use_centroid_rt true true true false

IDMapper

use_centroid_mz true true true true
MapAlignerIdentification min_run_occur - - - 9

distance_RT:max_difference (s) 20 20 20 30
distance_mz:max_difference (ppm) 5 10 10 10

FFC

FeatureLinkerUnlabeledQT
distance_mz:unit ppm ppm ppm ppm
mz_tolerance (ppm) 6 10 10 10FeatureFinderMultiplex intensity_cutoff 0.0001 0.0001 0.0001 1000
charge 1:5 1:5 1:5 1:5
score:pep 0 0 0 0.15IDFilter
best:n_peptide_hits 0 0 0 1
mz_tolerance (ppm) 5 5 5 5
mz_reference peptide peptide peptide peptide
use_centroid_rt true true true falseIDMapper

use_centroid_mz true true true true
MapAlignerIdentification min_run_occur - - - 9

distance_RT:max_difference (s) 20 20 20 30
distance_mz:max_difference (ppm) 5 10 10 10

FFMPX

FeatureLinkerUnlabeledQT
distance_mz:unit ppm ppm ppm ppm
common:noise_threshold_int 0.0001 0.0001 0.0001 10
mtd:mass_error_ppm 10 10 10 10
mtd:trace_termination_outliers 2 3 3 5
mtd:min_sample_rate 0.8 0.7 0.7 0.5
mtd:min_trace_length 5 5 5 10
epd:min_fwhm 2 2 2 3

MassTraceExtractor

epd:max_fwhm 9999 9999 9999 9999
IDFilter charge 1:5 1:5 1:5 1:5

ignore_charge true true true true
mz_tolerance (ppm) 5 5 5 5
mz_reference peptide peptide peptide peptide
use_centroid_rt true true true false

IDMapper

use_centroid_mz true true true true
warp:min_rel_cc_size 0.5 0.5 0.5 0.7
distance_RT:weight 1 1 1 0.1FeatureLinkerUnlabeledKD
LOWESS:span 0.3 0.3 0.3 0.3
mz_tol (ppm) 5 10 10 5
max_nr_traces 7 7 7 6
min_averagine_score 0.85 0.85 0.85 0.9
trace_preference similarity similarity similarity intensity
adaptive_iso_mass_diff true true true false

OptiQuant

OptiQuant

require_n_out_of_first_m 3/4 3/4 3/4 2/2
maxCharge 5
centroidMatchTol (ppm) 8
centroidMatchTolInPpm true
maxMissedCleavage 2
enzyme Trypsin
fixedModifications Carbamidomethyl (C)

variableModifications

Oxidation (M)
Acetyl (Protein N-term)
Gln->pyro-Glu
Glu->pyro-Glu
Deamidation (NQ)

firstSearchTol (ppm) 20
mainSearchTol (ppm) 4.5
searchTolInPpm true
lfqMode 1
matchBetweenRuns true

MaxQuant

msmsParamsArray FTMS

Table A.1: Parameter settings of all benchmarked workflows. Parameters not listed here
were set to their default.
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Actual OptiQuant FFC FFMPX MaxLFQ
FC FC ✏(FC) FC ✏(FC) FC ✏(FC) FC ✏(FC)

Comparison Protein

2 vs 1 ZRT4 5.64 5.89 0.25 6.85 1.20 7.28 1.63 5.69 0.04
PGA4 -4.20 -2.48 1.72 -2.64 1.55 -3.43 0.77 -3.15 1.04
SFG2 -2.91 -2.53 0.38 -3.17 -0.27 -3.62 -0.72 -2.98 -0.07
VAC2 -0.24 -0.22 0.02 0.02 0.26 -0.15 0.09 -0.32 -0.08
ISCB -1.87 -2.63 -0.76 -2.78 -0.90 -3.07 -1.19 -2.88 -1.00
UTR6 5.02 5.08 0.06 5.57 0.55 6.12 1.10 5.87 0.85

3 vs 1 ZRT4 0.14 -0.25 -0.39 -0.28 -0.42 -0.35 -0.49 -0.40 -0.53
PGA4 -0.14 -0.57 -0.43 -0.44 -0.30 -0.71 -0.57 -0.58 -0.44
SFG2 2.12 2.55 0.44 2.62 0.50 3.29 1.18 2.49 0.38
VAC2 -2.12 -2.39 -0.28 -2.58 -0.46 -2.85 -0.73 -2.65 -0.53
ISCB -4.78 -5.29 -0.51 -6.25 -1.47 -3.30 1.49 -5.67 -0.89
UTR6 4.78 4.69 -0.09 5.02 0.24 5.69 0.91 5.45 0.67

4 vs 1 ZRT4 -4.06 -0.62 3.44 -2.71 1.35 -1.92 2.14 -2.47 1.59
PGA4 5.51 6.10 0.59 5.95 0.44 7.05 1.55 5.93 0.43
SFG2 1.87 2.37 0.49 2.33 0.46 3.04 1.17 2.34 0.46
VAC2 -5.02 -3.17 1.85 -6.06 -1.03 -0.52 4.51 -4.08 0.94
ISCB 0.24 -0.14 -0.39 -0.21 -0.45 -0.28 -0.52 -0.07 -0.31
UTR6 2.91 2.46 -0.44 2.87 -0.03 3.47 0.56 2.78 -0.13

3 vs 2 ZRT4 -5.51 -6.15 -0.64 -7.13 -1.62 -7.63 -2.12 -6.08 -0.57
PGA4 4.06 1.91 -2.15 2.21 -1.85 2.72 -1.34 2.57 -1.49
SFG2 5.02 5.08 0.06 5.79 0.77 6.92 1.90 5.47 0.45
VAC2 -1.87 -2.18 -0.30 -2.60 -0.72 -2.70 -0.82 -2.32 -0.45
ISCB -2.91 -2.66 0.24 -3.47 -0.56 -0.23 2.68 -2.80 0.11
UTR6 -0.24 -0.39 -0.14 -0.55 -0.31 -0.43 -0.19 -0.43 -0.19

4 vs 2 ZRT4 -9.70 -6.51 3.19 -9.55 0.15 -9.19 0.51 -8.15 1.55
PGA4 9.70 8.58 -1.13 8.59 -1.11 10.48 0.78 9.09 -0.62
SFG2 4.78 4.89 0.11 5.51 0.72 6.66 1.88 5.32 0.54
VAC2 -4.78 -2.95 1.83 -6.07 -1.29 -0.37 4.42 -3.76 1.03
ISCB 2.12 2.49 0.37 2.57 0.45 2.79 0.67 2.81 0.70
UTR6 -2.12 -2.62 -0.50 -2.69 -0.58 -2.65 -0.54 -3.10 -0.98

4 vs 3 ZRT4 -4.20 -0.36 3.83 -2.43 1.77 -1.57 2.63 -2.07 2.12
PGA4 5.64 6.66 1.02 6.38 0.74 7.77 2.12 6.51 0.87
SFG2 -0.24 -0.19 0.06 -0.29 -0.05 -0.25 -0.01 -0.16 0.08
VAC2 -2.91 -0.78 2.13 -3.48 -0.57 2.33 5.24 -1.43 1.48
ISCB 5.02 5.15 0.13 6.04 1.01 3.02 -2.00 5.61 0.59
UTR6 -1.87 -2.23 -0.36 -2.15 -0.27 -2.22 -0.35 -2.67 -0.80

Median 0.06 -0.16 0.72 0.095

Table A.2: True and estimated log fold changes for all benchmarked workflows, proteins,
and sample comparisons. ✏(FC) denotes the absolute error of the log fold change estimate.
The lowest absolute error is printed in boldface for each row.
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A. OptiQuant

OptiQuant FFC

FFMPX MaxLFQ

Figure A.1: Parallel coordinate plot of protein intensities (sum of peptide intensities)
across all LC-MS runs of the iPRG 2015 dataset107.
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Appendix B

Abbreviations

API application programming interface
AUC area under the curve
BFS breadth-first search
BSA bovine serum albumin
CC connected component
CID collision-induced dissociation
CLI command-line interface
CPU central processing unit
CTD Common Tool Descriptor
Da Dalton
ESI electrospray ionization
FDR false discovery rate
FFC FeatureFinderCentroided
FFMPX FeatureFinderMultiplex
FP false positive
FPR false positive rate
FTICR fourier-transform ion cyclotron
FTMS fourier-transform mass spectrometry
FWHM full width at half maximum
GKN Generic KNIME Nodes
GPL GNU General Public License
GUI graphical user interface
gUSE Grid and Cloud User Support Environment
HCD higher-energy collisional dissociation
HPC high-performance computing
HPLC high-performance liquid chromatography
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B. Abbreviations

I/O input/output
ICAT isotope-coded afinity tagging
ID identification
iPRG Proteome Informatics Research Group
iTRAQ isobaric tags for relative and absolute quantitation
KNIME Konstanz Information Miner
LC liquid chromatography
LFQ label-free quantification
LOD limit of detection
LOQ limit of quantification
LTQ linear trap quadrupole
m/z mass-to-charge ratio
MAD median absolute deviation
MALDI matrix-assisted laser desorption/ionization
MIP mixed-integer program
mRNA messenger ribonucleic acid
MS mass spectrometry
OLS ordinary least squares
OQ OptiQuant
pAUC partial area under the curve
PCA principle component analysis
PD Proteome Discoverer (Thermo Scientific)
PEP posterior error probability
ppm parts per million
PPV positive predictive value
PSM peptide-spectrum match
QqQ triple quadrupole
QT quality threshold
RAM random access memory
RF radio frequency
RMSE root-mean-square error
ROC receiver operating characteristic
RT retention time
SEM standard error of the mean
SILAC stable isotope labeling with amino acids in cell culture
SRM selected reaction monitoring
STD standard deviation
SVM support vector machine
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Th Thompson
TIC total ion chromatogram
TMT tandem mass tags
TOF time-of-flight
TOPP The OpenMS Proteomics Pipeline
TOPPAS The OpenMS Proteomics Pipeline Assistant
TP true positive
TPP Trans-Proteomic Pipeline
TPR true positive rate
TTD TOPP tool description
UV ultra violet
WS-PGRADE Web Services Parallel Grid Runtime and Developer Environment Portal
XIC extracted ion chromatogram
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Appendix C

Publications

Peer-Reviewed Journal Articles

• J Proteome Res. 2016 Sep 2;15(9):3441-8.
LFQProfiler and RNP(xl): Open-Source Tools for Label-Free Quantification and
Protein-RNA Cross-Linking Integrated into Proteome Discoverer.
Veit J, Sachsenberg T, Chernev A, Aicheler F, Urlaub H, Kohlbacher O.

• Nat Methods. 2016 Aug 30;13(9):741-8.
OpenMS: a flexible open-source software platform for mass spectrometry data anal-
ysis.
Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich
HC, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G,
Rurik M, Schmitt, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O, Choudhary J,
Malmström L, Aebersold R, Reinert K, Kohlbacher O.

• BMC Bioinformatics. 2016 Mar 12;17:127.
From the desktop to the grid: scalable bioinformatics via workflow conversion.
de la Garza L, Veit J, Szolek A, Röttig M, Aiche S, Gesing S, Reinert K, Kohlbacher O.

• J Proteome Res. 2016 Jan 4;15(1):182-92.
Mass-Spectrometry-Based Proteomics Reveals Organ-Specific Expression Patterns
To Be Used as Forensic Evidence.
Dammeier S*, Nahnsen S*, Veit J*, Wehner F, Ueffing M, Kohlbacher O.

• Blood. 2014 Jan 30;123(5):e1-e10.
Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet
inhibition is a concerted process involving multiple signaling pathways.
Beck F, Geiger J, Gambaryan S, Veit J, Vaudel M, Nollau P, Kohlbacher O, Martens L,
Walter U, Sickmann A, Zahedi RP.
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C. Publications

• J Proteome Res. 2012 Jul 6;11(7):3914-20.
TOPPAS: a graphical workflow editor for the analysis of high-throughput proteomics
data.
Junker J*+, Bielow C*, Bertsch A, Sturm M, Reinert K, Kohlbacher O.

Conference Posters

• American Society for Mass Spectrometry (ASMS) – San Antonio – 2016
RNPxl 2 - Protein-RNA interaction site localization from UV cross-linked peptide-
RNA oligonucleotides in Proteome Discoverer 2.1.
Sachsenberg T, Veit J, Chernev A, Sharma K, Hofele R, Qamar S, Zaman U, Kappert C,
Kramer K, Pfeuffer J, Liang X, Reinert K, Lenz C, Urlaub H, Kohlbacher O.

• Human Proteome Organization (HUPO) – Vancouver, Canada – 2016
LFQProfiler a free plugin for labelfree quantification in Proteome Discoverer.
Veit J, Aicheler F, Pfeuffer J, Weisser H, Sachsenberg T, Reinert K, Kohlbacher O.

• American Society for Mass Spectrometry (ASMS) – Vancouver, Canada – 2012
An integrated framework for the assessment of statistical significance in label-free
quantification of proteins.
Junker J+, Nahnsen S, Beck F, Zahedi R, Sickmann A, Kohlbacher O.

* co-first authors
+ maiden name
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