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Funding has been provided partly by a scholarship from the German Research Foundation 
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This thesis is organized in three parts as follows: 

In the first part, an introduction to the subject, the theoretical background of the observed physical 

processes, and the relevant techniques used this thesis are introduced and described. This part is kept as 

short as possible in order to provide the necessary fundamental information. 

Second part is the results and discussion part which combine the copy of three publications: 
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2018, 130, 36. 
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Abstract 

This cumulative thesis is based on three publications. It investigates the self-assembly of 

nanocrystal (NC) superlattices, charge transport in NC assembly, and application of these 

superlattices in optoelectronic and vapor sensing.  

The materials of choice are copper chalcogenide NCs such as binary copper sulfide Cu1.1S NCs, 

binary copper selenide Cu2Se NCs and ternary Cu2-xSeyS1-y NCs and the organic 

semiconductors metal (Cu or Co) centered -4,4′,4″,4″,4‴-tetraaminophthalocyanine 

(Cu/CoTAPc). Macroscopic superlattices of NCs are prepared by Langmuir-type self-assembly 

at the air/liquid interface followed by simultaneous ligand exchange with an organic 

semiconductor. To enhance interparticle coupling, we cross-link the nanocrystals with the 

organic π-system Cu-4,4′,4″,4″,4‴-tetraaminophthalocyanine and observe a significant increase 

in electrical conductivity. Ultraviolet-visible-near-infrared (UV-vis-NIR) and Raman 

spectroscopy are used to track the chemical changes on the nanocrystals’ surface before and 

after ligand exchange and develop a detailed picture of the various components which dominate 

the surface chemistry of this material. Grazing-incidence small-angle X-ray scattering 

(GISAXS) serve to study the importance of electronic conjugation in the organic π-system vs 

interparticle spacing for efficient charge transport. Transport measurements reveal that 

Cu4APc provides efficient electronic coupling for neighboring Cu1.1S NCs. The electrical 

properties of monolayers of this hybrid ensemble are consistent with a two-dimensional 

semiconductor and exhibit two abrupt changes at discrete temperatures (120 and 210 K), which 

may be interpreted as phase changes. This material provides the opportunity to apply the hybrid 

ensemble as a chemiresistor in organic vapor sensing. The vapor sensing experiments exhibits 

a strong selectivity between polar and nonpolar analytes, which we discuss in light of the role 

of the organic π-system and its metal center. 

Next, we choose ternary alloyed Cu-based chalcogenide NCs Cu2SeyS1–y and checked the effect 

of ligand exchange with the organic π-system Cobalt β-tetraaminophthalocyanine (CoTAPc) 

along with its binary counterpart Cu2Se NCs. We analysed changes in the structural, optical as 

well as electric properties of thin films of these hybrid materials. Strong ligand interaction with 

the surface of the NCs is revealed by UV/vis absorption and Raman spectroscopy. GISAXS 

studies show a significant contraction in the interparticle distance upon ligand exchange. For 

copper-deficient Cu2-xSe, this contraction has a negligible effect on electric transport, while for 

copper-deficient Cu2-xSeyS1-y, the conductivity increases by eight orders of magnitude and 
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results in metal-like temperature-dependent transport. We discuss these differences in the light 

of varying contributions of electronic vs. ionic transport in the two materials and highlight their 

effect on the stability of the transport properties under ambient conditions. With photocurrent 

measurements, we demonstrate high optical responsivities of 200-400 A/W for CoTAPc-

capped Cu2SeyS1–y and emphasize the beneficial role of the organic π-system in this respect, 

which acts as an electronic linker and an optical sensitizer at the same time. 

Finally, we report on the in-situ monitoring of the formation of conductive superlattices of 

Cu1.1S nanodiscs via cross-linking with semiconducting Co-4,4′,4″,4″,4‴-

tetraaminophthalocyanine (CoTAPc) molecules at the liquid/air interface by real-time grazing 

incidence small angle X-ray scattering (GISAXS). We determine the structure, symmetry and 

lattice parameters of the superlattices, formed during solvent evaporation and ligand exchange 

on the self-assembled nanodiscs. Cu1.1S nanodiscs self-assemble into two-dimensional 

hexagonal superlattice with a minor in-plane contraction (~ 0.2 nm) in the lattice parameter. A 

continuous contraction of the superlattice has been observed during ligand exchange, 

preserving the initial hexagonal symmetry. We estimate a resultant decrement of about 5% in 

the in-plane lattice parameters. The contraction is attributed to the continuous replacement of 

the native oleylamine surface ligands with rigid CoTAPc. The successful cross-linking of the 

nanodiscs is manifested in terms of the high electrical conductivity observed in the 

superlattices. This finding provides a convenient platform to understand the correlation 

between the structure and transport of the coupled superstructures of organic and inorganic 

nanocrystals of anisotropic shape. 
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Zusammenfassung 

Diese kumulative Arbeit basiert auf drei Publikationen. Es wird die Selbstassemblierung von 

Nanokristall-Übergittern (engl. nanocrystal, NC), deren Ladungstransport und die Anwendung 

dieser Übergitter in der Optoelektronik und Dampfsensorik untersucht.  

Die Materialien der Wahl sind Kupferchalkogenid-Nanokristalle, wie binäre Kupfersulfid 

Cu1.1S-NCs, binäre Kupferselenid Cu2Se-NCs und ternäre Cu2-xSeyS1-y-NCs und die 

organischen Halbleiter 4,4',4″,4‴ Tetraaminophthalocyanin mit Cu oder Co als metallisches 

Zentrum (CuTAPc/CoTAPc) als Liganden. Makroskopische NC-Übergitter werden durch die 

Selbstassemblierung an der Luft-/Flüssigkeitsgrenze hergestellt, gefolgt von einem 

Ligandenaustausch mit organischen Halbleitermolekülen. 

Um die interpartikuläre Kopplung zu verbessern, vernetzen wir die Nanokristalle mit dem π-

konjugierten Molekül Cu-4,4′,4″,4″,4‴-tetraaminophthalocyanin (CuTAPc) und beobachten 

eine signifikante Erhöhung der elektrischen Leitfähigkeit. Mit UV-VIS-NIR-Spektroskopie 

und Raman-Spektroskopie werden die chemischen Veränderungen auf der Oberfläche der 

Nanokristalle vor und nach dem Ligandenaustausch verfolgt und ein detailliertes Bild über die 

verschiedenen Komponenten entwickelt, die die Oberflächenchemie dieses Materials 

dominieren. Röntgen-Kleinwinkelstreuung unter streifendem Einfall (engl. grazing-incidence 

small-angle X-ray scattering, GISAXS) dient der Untersuchung des Interpartikelabstandes, 

welcher mit einer Kopplung der NCs durch die π-konjugierten Moleküle und einem 

effizienteren Ladungstransport korreliert werden kann. Transportmessungen zeigen, dass 

Cu4APc eine effiziente elektronische Kopplung zwischen benachbarten Cu1.1S-NCs 

ermöglicht. Die elektrischen Eigenschaften von Monolagen dieses hybriden Materials stimmen 

mit denen eines zweidimensionalen Halbleiters überein und zeigen bei diskreten Temperaturen 

(120 und 210 K) zwei abrupte Veränderungen, die als Phasenänderungen interpretiert werden 

können. Dieses assemblierte Hybridmaterial kann als Chemiresistor eingesetzt werden, um 

Dämpfe organischer Moleküle zu detektieren. Dampfsensor-Experimente zeigen eine starke 

Selektivität zwischen polaren und unpolaren Analyten, die wir im Zusammenhang mit der 

Rolle des π-konjugierten Moleküls und dessen Metallzentrum diskutieren. 

Außerdem wählen wir Cu-basierte ternär legierte Chalkogenid-NCs (Cu2SeyS1-y) und binäre 

Cu2Se-NCs und untersuchen den Effekt des Ligandenaustausches mit dem π-konjugierten 

Molekül Co-4,4′,4″,4″,4‴-tetraaminophthalocyanin (CoTAPc). Wir analysieren 
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Veränderungen in den strukturellen, optischen und elektrischen Eigenschaften von dünnen 

Schichten dieser Hybridmaterialien. Durch UV/VIS-Absorption und Raman-Spektroskopie 

decken wir starke Wechselwirkung der Liganden mit der Oberfläche der NCs auf. GISAXS-

Untersuchungen zeigen eine signifikante Kontraktion des interpartikulären Abstandes während 

des Ligandenaustauschs. Bei Cu2Se-NCs hat diese Kontraktion einen vernachlässigbaren 

Einfluss auf den elektrischen Transport, während bei Cu2-xSeyS1-y-NCs die Leitfähigkeit um 

acht Größenordnungen steigt und zu einem metallartigen, temperaturabhängigen Transport 

führt. Wir diskutieren diese Unterschiede im Zusammenhang der unterschiedlichen Beiträge 

des elektronischen und ionischen Transports in den beiden hybriden Materialien und zeigen 

ihren Einfluss auf die Stabilität der Transporteigenschaften unter Umgebungsbedingungen. Mit 

Photostrom-Messungen demonstrieren wir hohe optische Responsivitäten von 200-400A/W 

für CoTAPc-funktionalisierte Cu2SeyS1-y-NCs und heben die vorteilhafte Rolle des 

organischen π-Systems hervor, das gleichzeitig als elektronischer Linker und optischer 

Sensibilisator wirkt. 

Schließlich berichten wir über die in-situ-Untersuchung der Bildung von leitfähigen 

Übergittern aus scheibenförmigen Cu1.1S-NCs - durch die Vernetzung mit halbleitenden 

CoTAPc-Molekülen - an der Flüssig-Luft-Grenzfläche durch GISAXS-Messungen in Echtzeit. 

Wir bestimmen die Struktur-, Symmetrie- und Gitterparameter der selbstassemblierten NC-

Übergitter, die durch Verdampfen des Lösungsmittels und dem Ligandenaustausch entstehen. 

Die scheibenförmigen Cu1.1S-NCs assemblieren sich zu einem zweidimensionalen 

hexagonalen Übergitter, mit einer geringen Kontraktion von ~ 0,2 nm des interpartikulären 

Abstandes. Eine kontinuierliche Kontraktion des Übergitters wurde während des 

Ligandenaustauschs beobachtet, wobei die ursprüngliche hexagonale Symmetrie erhalten 

blieb. Wir schätzen eine resultierende Abnahme der Gitterparameter in der Ebene um etwa 5%. 

Die Kontraktion wird auf den kontinuierlichen Ersatz der nativen Oleylamin-

Oberflächenliganden durch starre CoTAPc-Liganden zurückgeführt. Die erfolgreiche 

Vernetzung der Nanoscheiben manifestiert sich in der hohen elektrischen Leitfähigkeit der 

Übergitter. Dieses Resultat bietet einen geeigneten Ansatz, um den Zusammenhang zwischen 

Struktur und Transport der gekoppelten Überstrukturen aus organischen Halbleitermolekülen 

und anorganischen Nanokristallen anisotroper Form zu verstehen. 

(Sprachberaterin: Andre Maier) 
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1. Introduction 

This thesis focuses on copper chalcogenides nanocrystals, their structural, optical and 

electronic properties in thin films along with the information of how to use them to create 

electronic devices, particularly vapor sensors and optoelectronic devices. In the last few 

decades, a considerable amount of research has been focused on the study of copper 

chalcogenides materials due to their compositional and structural versatility. As one of the 

purposes was for the construction of Cu-based chalcogenide materials that have dimensions on 

the nanoscale, in particular towards the understanding of their unique optical and electronic 

properties that dramatically distinguishes them from their bulk counterparts.1 Several 

successful attempts have been made towards synthesis, understanding electronic properties, 

and charge carrier concentration dependent localized plasmon resonance (LSPR) 

characteristics of these materials.2-8 Other sophisticated studies like formation of NCs 

superlattices at the interface, structural and optical characterization of the superlattices films, 

low-temperature transport mechanism, and application in optoelectronics and vapor sensing 

routes remain less studied. Inspired by the above, this research project seeks to explore the 

unique structural, optical and transport properties of the Cu chalcogenides nanocrystals thin 

films. We use Cu1.1S, Cu2SeyS1–y and Cu2Se nanocrystals as building blocks for larger 

superstructures, with the eventual goal of creating novel electronic devices out of them. So, to 

exploit interesting electronic properties of these nanocrystals (NCs) in thin film devices, 

replacement of the original bulky ligands attached on the NC surface to short ones is essential. 

The idea behind this is to cross-link the individual nanocrystals with a shorter organic molecule 

to provide an electronic coupling if their energy levels are located in a range near the 

nanoparticle’s energy bands. We use the electronic coupling of binary copper sulfide Cu1.1S 

with the organic π-system Copper β-tetraaminophthalocyanine (Cu4APc) to create two-

dimensional self-assembly for selective chemical vapor sensing. We investigate ligand 

exchange effect of ternary Cu2SeyS1–y as well as the binary Cu2Se nanocrystals (NCs) with the 

organic molecule Cobalt β-tetraaminophthalocyanine (CoTAPc) and analyze changes in the 

structural, optical as well as electric properties of thin films of these hybrid materials. 

Furthermore, we study how the anisotropic shape Cu1.1S nanocrystals self-assembled at the 

liquid-air interface that is nanocrystals which ‘spontaneously’ form larger hierarchical 

structures in real time. 
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Figure 1. Overview of the thesis will describe. 

 

1.1. What are nanocrystals? 

Nanocrystals are small crystalline materials, having dimensions in the range of the 1–100 nm, 

which provide one of the greatest potentials for improving performance and extended 

capabilities of products in a number of industrial sectors.9-11 There is a strong drive among 

researchers to explore the possibilities by down-sizing the existing material structures into the 

nanometre scale (<100 nm), or by making new types of nanostructures. This drive is caused by 

two factors. First of all, there is a great fundamental interest in the new electronic or optical 

properties that arise when a material becomes so small that it consists of only a few tens to 

thousands of atoms. Quantum mechanical effects start to dominate the properties of the bulk 

material when the size is typically a few nanometers. To develop highly sensitive techniques 

for investigating the morphological, electronic and optical properties of the (individual) 

nanocomponents is one part of the challenge in nanotechnology along with synthesizing these 

materials. Besides the scientific interest, the wide range of potential applications based on 

nanomaterials is an important driving force to push the size of materials to the smallest limits.  
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The term ‘nanocrystal’ encompasses a wide range of geometries and in general, they can be 

classified according to their configuration where their intrinsic properties arise from 

dimensional restrictions. This allows them to act as zero dimension (quantum dots and 

nanoparticles), one dimension (nanorods, nanowires, and nanotubes), two dimensions (ultra-

thin films, nanosheets) or in all three dimensions (nanoprisms).12, 13 NCs are of immense 

scientific interest as they effectively bridge the gap between the small, individual molecules 

with discrete energy states and that of bulk, crystalline materials with continuous energy 

states.14-17 The nanocrystals we study in this thesis are all semiconductors: materials through 

which we can control the current by applying an external bias.  

 

1.2. Why are colloidal nanocrystals interesting? 

Nanocrystals are interesting for two main physical reasons: i) a relatively larger surface area in 

size range of nanostructure compared to the same mass of a material produced in a larger size 

affects their physical and chemical properties, and ii) quantum effects start to dominate the 

behavior of materials in the nanoscale form affecting the optical, electrical and magnetic 

behavior of matter. Interest in colloidal compound semiconductors originates from the search 

for photochemical catalysts to address high oil prices in the late 1970s.18, 19 Brus and co-

workers in the 1980s first observed quantum size effects in colloidal semiconductors where 

they explained the term quantum confinement of free charges due to the finite size of the 

crystallite.20-23 The quantum confinement effect originates from the decoupling of molecular 

orbitals due to the decreasing amount of atoms within the semiconductor nanocrystals. Relative 

to the bulk, there are two primary ways in which the energy levels of a semiconductor 

nanocrystal are perturbed: 1) by a change in dielectric screening and carrier localization 

because of the finite crystal size24 and 2) by confinement of the exciton into a region smaller 

than the Bohr radius.21, 25 

The first effect manifests as a change in the oxidation and reduction potentials of the valence 

and conduction bands, which opens the door to tuning the electrochemical behavior of 

semiconductors by varying the size. The confinement of the exciton manifests as an increase 

in the prominence of the exciton in the absorption spectrum as well as an increase in the 

exciton's energy relative to the bulk. In a bulk semiconductor, the essentially infinite number 

of atomic orbitals overlaps and forms continuous energy levels, leading to the formation of 

conduction and valence bands. In contrast to metallic materials, intrinsic semiconductors have 
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a completely separated conduction band and valence band with a constant band gap (HOMO-

LUMO separation) in the range of 0.3 to 3.8 eV depending on the identity of the material.1 In 

the case of a semiconductor of nanocrystalline size, the band gap energy increases as the 

physical size of the material decreases within a critical range. Specifically, when the size 

decreases below the bulk exciton Bohr radius, there are not a sufficient number of atoms to 

form the continuum of energy levels. Instead, electrons and holes are quantum confined in three 

dimensions by the nanocrystallite, resulting in the breakdown of continuous energy bands into 

discrete atomic-like energy states, as illustrated in Figure 2. 

 

 

Figure 2. A schematic illustration of the change of the electronic properties when the size of a 

semiconductor decreases. At the left, an energy band diagram for a macrocrystalline semiconductor is 

shown, Eg(∞) being the bandgap. While the picture on the right represents the situation when the 

dimensions of the semiconductor are smaller than those of the exciton, Eg(NCs) is the energy of the lowest 

excited state (adapted from Steigerwald and Brus)26. 

The energy of the electron or hole near the conduction or valence band edge can be 

approximated by a quadratic relationship between the wave-vector k and energy (equation 1, 

where m* is the effective mass of the electron or hole). This means that carriers with energies 

near the band edge can be thought of as free, and move in response to applied electric fields 

according to their effective masses. 
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                                                      E = 
ħ2𝑘2

2𝑚∗
                                                              (1) 

If a free electron and hole are brought near one another, they will begin to orbit one another, 

forming a Wannier exciton, in which the electron and hole are bound to one another. The 

exciton has, by analogy to the hydrogen atom model, a Bohr radius which provides a 

convenient conceptual touchstone for understanding the phenomenon of quantum confinement. 

Brus and co-workers considered what would happen to the energy of an exciton as the size of 

the nanocrystal was reduced, and found that the energy of the lowest transition increased with 

decreasing particle size following equation 2 where Eg is the bulk gap, R is the particle size, me 

and mh and the electron and hole effective masses, e is the charge of an electron, and ϵ∞ is the 

dielectric constant outside the nanocrystal.20, 21 

E(R) = Eg + 
ħ2𝑘2

2𝑅2
 [

1

𝑚𝑒
 + 

1

𝑚ℎ
] −

1.8𝑒2

𝜖∞ 𝑅
                                                                  (2) 

Comparing the functional form for the lowest excited state of a semiconductor nanocrystal 

(equation 2) with the energy levels for particle in a box (equation 3, where n is an integer, R is 

the size of the potential energy well, and the other symbols have their usual meanings.) gives 

a conceptual framework for considering the energy levels as a function of size. Both systems 

have a dependency on size E ∞ 
1

𝑅2
, such that the lowest state increases in energy as the box 

decreases in size. 

                             E(n) = 
ħ2𝑘2𝜋2

2𝑅2𝑚
 n2                                                                         (3) 

By solely varying the physical size of the NC, the percentage of atoms at the surface relative 

to the core significantly increases, causing pronounced internal disruptions to the electronic 

structure and resultant optical properties of the material. This essentially provides an effective 

means to tailor the electronic structure and optical properties, giving rise to size-dependent 

band gaps in semiconductor NCs. Depending on the identity of the semiconductor (IV, III-V, 

II-VI or IV-VI group), the critical radius can be widely different, ranging from 2 nm to 60 nm.1 

Copper chalcogenide materials with critical dimensions in the nanometer range have been of 

considerable interests because of their low-cost and unique physical and chemical properties 

with the capability of bandgap engineering for use in a diverse range of applications. These 

NCs show the advantages of low-temperature preparation, and economical and convenient 
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post-processing such as spin-casting, dip-coating, and printing, as well as high device 

performance from quantum confinement effect.3, 8, 16, 27, 28  

 

1.3. Copper chalcogenide nanocrystals 

In recent years’ copper chalcogenide NCs have attracted an increasing attention due to their 

potential application in energy related fields. The interest in those NCs resides in three key 

aspects: (i) their abundance, low cost, and reduced environmental and health impact, compared 

with cadmium- and lead-based compounds; (ii) their excellent intrinsic functional properties, 

including appropriate direct band gaps for solar light absorption, plasmonic properties, notable 

charge carrier mobilities, potential high carrier concentrations, and low thermal conductivity; 

and (iii) their structural, compositional, and stoichiometric versatility, including abundant non-

stoichiometric phases, a wide range of solid solutions, and the related low energy of formation 

of defects. Even the simplest binary compounds, Cu2-xY (where Y = S, Se, Te), there are over 

20 reported binary stoichiometries, polymorphs, and defect phases.  Until now several dozens 

of ternary and multinary compounds of chalcogenides have been reported.29 

An interesting evolution in properties and applications as the number of elements increases, 

from the simplest binary elemental composition, of Cu and a chalcogen (S, Se, Te), to the more 

complex multinary compositions. The low size and electronegativity differences between the 

metals and chalcogens, the ability to form chalcogen-chalcogen bonds, and the possibility of 

Cu-Cu bonds within the structure, allows for a large diversity in stoichiometry and crystal 

structures and the resultant functional properties. The high defect concentration influences their 

charge transport properties, which greatly affects their electronic, thermoelectric, and 

optoelectronic properties. For example, the binary Cu chalcogenides have been long 

investigated for their interesting plasmonic properties, which allow them to be used as novel 

probes for surface-enhanced Raman spectroscopy (SERS) or hyperthermia. The hierarchical 

organization of NCs serves as the wide application set for these materials, including 

photovoltaics, optoelectronics, thermoelectrics, photocatalysis, fluorescent biological imaging, 

and photothermal therapy.3, 8, 30-33 Several reports have been published in the literature on p-

type Copper sulfide where the materials give application in catalytic, batteries, sensing and bio-

related field which results in tremendous endeavors on the rapid development of micro-

/nanostructured binary copper sulfide with well-controlled compositions, sizes, crystalline 

phase, and morphologies.29, 34, 35 
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The simplest and the far most studied binary copper chalcogenide is Copper sulfide (Cu2-xS). 

A number of stoichiometric compositions of Cu2-xS from copper-rich Cu2S (chalcocite) to 

sulfur-rich CuS (covellite) exist with different crystal structures, leading to the increasing 

electrical conductivity and tunable direct band gap.36 It possesses band gaps of 1.1 – 1.4 eV for 

chalcocite (x=0), increasing to 1.5 eV for digenite (x=0.2) and further increasing to 2.0 eV for 

covellite (x=1.0).37 The exciting surface plasmon resonance can be observed under near 

infrared region (NIR) in various Cu2-xS owing to the formation of free charge carriers. Cu2-xS 

and its selenium analogue, copper selenide (Cu2-xSe), are regarded as being competitive p-type 

semiconductor candidates owing to the copper vacancies in their lattices. Another important 

class of Cu-chalcogenide NCs contains two anionic chalcogens, in which the two chalcogens 

are typically sulfur and selenium. This gives rise to NC compositions, which range from ternary 

Cu2-xSeyS1-y, to quaternary CuIn(S1-xSex)2 and quinary Cu2ZnSn(SxSe1-x)4 (CZTSSe).29 Ternary 

alloyed copper sulfur selenide (Cu2-xSeyS1-y) NCs provide an effective way to finely tune the 

optical band gap, by controlling the S/Se chalcogen ratio in the resultant NCs.28, 38-40  

 

Figure 3. (a) & (b) TEM images of Cu1.1S NCs. 

 

Same as Copper Sulfide, Copper selenide is a p-type semiconductor material with potential 

application in solar cells, superionic conductors, thermoelectric devices and microwave shield 

coating. It also has potential application in optical filters, nanoswitches, thermoelectric and 

photoelectric transformers and superconductors.30, 41-44 A particularly interesting feature of 

copper chalcogenide NCs is their essential degree of doping based on the formation of copper 

vacancies in the structure.6, 31, 32, 45, 46 Moreover, they could be used as templates to prepare 

multielement metal chalcogenides. Recently, ternary Cu–Se–S semiconductor NCs have been 

obtained significant attention for not only inheriting the perfect optoelectronic and biochemical 
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properties from their parent binary NCs (Cu2-xSe and Cu2-xS) but also possess unique 

properties. There have been some reports on synthesis of alloyed Cu2-xSySe1-y NCs in which 

their NIR LSPR has been tuned by controlling the ratio of chalcogen.38, 47-49 However, pure 

Cu–Se–S NCs have not been extensively studied like their binary parents. This could be due to 

the difficulty in the synthesis of this type of nanomaterials with pure phases.  

 

Figure 4. (a) & (b) TEM images of Cu2-xSeyS1-yNCs. 

 

Various morphologies of copper chalcogenide nanocrystal have been well-demonstrated 

including spheres, cube, wires and sponge-like structures.29, 44, 48 The hierarchically anisotropic 

structure is more suitable in electronic device owing to oriented electronic migration and 

structural integrity.50 The development of novel nanostructured copper chalcogenide with 

controllable building block and composition as well as the crystalline-phase feature is still an 

interesting and challenging topic for both fundamental study and technological application. 

Moreover, the functional modifications (including hybridizing and doping) of the interfacial 

properties and electronic structures of Cu2-xS/Cu2-xSe-based nanostructures would effectively 

bring enhanced performances. Thus a systematic investigation on the formation mechanisms 

of different nanostructured Cu-chalcogenides can further optimize the physical properties such 

as morphology, optical behavior, structure, and electronic correlation, and application in 

Optoelectronics or Sensing would offer new insights to develop high-performance Cu-

chalcogenide based materials. 
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1.4. Coupled organic-inorganic nanostructures (COINs) 

Utilizing the unique physical properties of nanocrystals in solid-state devices is itself a 

challenge. There are several independently controllable factors i.e., NPs size, shape, and 

chemical composition, interparticle separation, material structure and so on. Since the basic 

building blocks (i.e., NCs are capped with organic molecules, the resultant self-assembly 

materials are mostly decoupled. A wide range of material properties can be realized over using 

a broad range of the building blocks, their surface ligands, and their arrangement procedure 

into bigger structures.  

Most of the as-prepared copper chalcogenide NC assemblies are usually non-conductive as 

they have insulating surface ligands (i.e. oleic acid or oleylamine). Frequently, it is problematic 

to probe the continuous charge transport measurements within the NCs superlattices due to the 

nanoparticles isolated by their ligand shell. The ligand shell often consists of long-chained 

organic molecules, with one end attached to the particle’s surface to stabilize them in the 

dispersion. These capped ligands prevent the agglomeration of the NCs into arbitrary 

macroscopic structures. Being made of long and insulating hydrocarbons, the ligand shell 

displays a strongly insulating effect, therefore limiting the charge carrier movement. Several 

attempts have been made to decrease inter-particle spacing of a self-assembled structure by 

removing ligand shells of NCs through different chemical methods. 

 

Figure 5. Energy level diagram of a COIN interface. In this example, the inorganic 1Sh state is tuned 

by the QD diameter to align with the HOMO of the OSC as for instance (adopted from Scheele at al.51) 
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In this thesis, we have taken a novel approach to reveal the optoelectronic properties of the 

nanostructures, which commonly known as coupled organic-inorganic nanostructures 

(COINs).52 Here, the insulating ligands are exchanged by new organic molecules that are 

already known to be semiconductors due to their conjugated π-system. Firstly, the new 

adligands chemically bound to the surface of the particles and spatially linking with 

neighboring particles. Secondly, they can act as an electronic coupler if their energy levels are 

located in a range near the nanoparticle’s energy bands. A resonant alignment of either the 1Se 

of the NC and the lowest occupied molecular orbital (LUMO) of the molecules, or the 1Sh of 

the NC and the highest occupied molecular orbital (HOMO), provides a conductive channel 

throughout the coupled structure. The electronic properties of the system can be varied by the 

ligand length and chemical structure by delocalization the charge carrier via new adligand. The 

ligand could, therefore, act as a bridge for the charge carriers, over several elements of the 

COIN and open the path to electrical conductivity over the structure (see in Figure 5). In 

addition, the ligands trigger the nanoparticles to arrange into a fashion that, depending on the 

COIN’s fabrication process, ranges from glass-like to very ordered structure. COINs have been 

proven to be versatile coupled organic-inorganic materials with tailored properties. A typical 

schematic representation of hole and electron conducting states of monodisperse NCs and the 

LUMO – HOMO state of the OSC molecules are presented in Figure 6. This kind of 

electronically coupled structures has gained as a conceivable field of application in solar cells 

or diodes. 

 

Figure 6. Schematic representation of a possible mechanism for hole and electron transport in a COIN 

system. 
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Previously, our group produced COINs of PbS NCs coupled with different organic 

semiconductor molecules.52-55 In this thesis, we produce COINs with different copper 

chalcogenides NCs. One study, we demonstrate disk shape Cu1.1S NCs (see in Figure 3) 

formed COINs using CuTAPc molecules and the resultant superlattice film has a 2D hexagonal 

ordering. In another work, we developed and optimized a method to investigate the structure 

and their electrical properties of the COIN system using binary Cu2-xSe and ternary Cu2-xSeyS1-

y (Figure 4) as inorganic nanocrystals and CoTAPc as organic semiconductor ligands. In a final 

work, we have studied the in-situ formation kinetics of the COIN formation on the liquid 

surface using disk-shape Cu1.1S NCs by X-ray scattering. 

 

1.5. Self-Assembly of Nanocrystals 

In recent decades, there has been a rapidly growing field of study exploring properties of NP 

assemblies. Those studies improve our understanding of the basic science governing the 

properties of these materials and providing hope for their applications. Out of many existed 

techniques reported in the literature, self-assembly methods are very promising in order to 

prepare long-range-ordered nanocrystals superlattices.4, 7, 29, 56-58  In this context, the 

superlattice is defined as an array of inorganic nanocrystals which are separated by organic or 

inorganic surface ligands.  

Over the years, different strategies have been employed for the assembly of a wide variety of 

NCs with four types of assembly processes dominant: (i) Drying mediated assembly; (ii) 

Assembly at the interface; (iii) Assembly in solution; and (iv) Directed assembly.59 These 

techniques become a rich tool for laboratory scale NC assembly along with their scalability to 

wafer level substrates suggests a possible extension to real-world applications. The first method 

is based on the solvent evaporation, the NCs are dispersed in an appropriate solvent (mostly 

organic, such as toluene, hexane, octane etc.) and are drop-cast onto a clean and polished 

substrate, followed by slow solvent evaporation. During the solvent drying period, the local 

NC concentration gradient (underneath the liquid surface) increases, which reduces the 

interparticle distance between NCs. The process initiates numerous attractive (dipole-dipole) 

and repulsion interactions (Columbic), which ultimately stabilize the NCs into a close-packed 

2D/3D superstructure at the surface.60 The entropy driven superlattice formation can be further 

increased by controlling the temperature of the process, the temperature of the substrate and 

native environment (based on Helmholtz free energy).60, 61 
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Formation of NPs self-assembly at the liquid-liquid and liquid-air interface has been 

investigated for more than a century. The idea of self-assembly of NCs into superlattices comes 

from the Pickerin-Ramsden emulsions phenomenon.62, 63 In this process, the interfacial 

assembly is driven by the total reduction of interfacial free energy between two immiscible 

phases due to particle adsorption on the interface. Depending upon the particle size, the 

assembly can be higher (micron size) or comparable (nanometer size) to thermal energy (kBT), 

and this will govern the adsorption of particles at the interface. In general, smaller particles 

adsorb more weakly than larger ones at the interface, and hence, the assemblies from larger 

particles are more stable. Apart from particle size, particle shape and surface chemistry also 

play key roles in the overall assembly process and the stability of final superstructures, as they 

influence the wettability (change in surface energy) and the interparticle interactions. The 

important role of the liquid interface is to provide a mobile surface for the particle to move 

freely and rearrange into their closely packed configuration. The assembly of colloidally 

synthesized NCs, at interfaces with different degrees of short- and long-range ordering has 

been studied for isotropic (i.e. spheres, cubes) and anisotropic NCs (i.e. nanorods, nanowires, 

nanoplates, nanoprisms) in both metal NCs and semiconductor NCs. In the case of spherical 

NCs, the close-packed assembly is generally favored due to the interparticle interactions. In 

contrast, for anisotropic NCs, shape and spatially dependent (interface mediated) capillary 

forces govern the overall assembly, due to the undulation of the contact line at the interface. 

ratio, and the interfacial energy between liquids and the NC. Murray and co-workers reported 

a simple technique of drop-casting the NC dispersion on an immiscible subphase and then 

controlling the evaporation rate to drive the assembly for a wide range of NC morphologies 

(spheres, plates, rods, prisms) with complex structures (binary, ternary to quaternary).64-68 

Third is Assembly in solution in which nanoparticles can coalesce in solution, due to 

interactions such as van der Waals, dipole-dipole, or electrostatic along with ligand-ligand, 

ligand-solvent present in NC solutions, which govern the assembly.69 Choice of solvent, 

capping ligand plays an important role in the formation of this kind of self-assembly. In several 

works, people have shown that by simply adding various additives to a stable NCs colloidal 

solution to achieve higher order assembly. In the directed assembly process, external forces 

(electric and magnetic field) is applied to facilitate NC assembly. This type of assembly of NC 

is remarkably versatile, not only to control assembly size but also to precisely tune the location 

where an assembly forms.  Over the years, much more research has been done to extend control 

of the assembly by applying external forces. It should note that in the case of arranging 
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anisotropic NCs, which requires additional control in both translation and orientational order, 

the application of external fields can provide the necessary control. 

 

The ligands play a significant role in the self-assembly process on NCs. It separates the core of 

the NC from the bulk solution and direct control over the interaction between the NC and 

ligands environment. So, the choice of a ligand for surface passivation is a key factor for 

manipulating their properties, inter-particle interaction, ligand-ligand interaction, and the self-

assembly process.70 The long chain organic ligands (hydrophobic in nature) passivate the trap 

states on the NC surface, by binding to the low-coordinating surface atoms, which helps to 

solubilize the NCs in nonpolar solvents and form stable colloids. When the NCs are in solution, 

the ligands keep on adsorbing and deadsorbing on NC surface. The ligand nature and their 

interaction with other ligands or solvent molecules determine the extent of colloid stability.  

When two NCs approach at a distance smaller than twice the ligand length, the chains compress 

and yield a repulsive force between the NC to make the dispersion stable. The chain length and 

chemical composition of the capping ligands can influence the dipole moments of the NCs, 

their reactivity, and their stability in solution and direct the self-assembly via electrostatic 

interactions or bonding. It has become ever more important to understand this synergism 

between the NC surface and the capping ligands, which has significant consequences for the 

properties of assembled materials, as compared to individual NC building blocks. In the case 

of monodisperse spherical NCs with an organic ligand covered surface, it is expected that the 

assembled structure would arrange into a face-centered cubic (fcc) lattice to achieve the 

maximum packing efficiency.63, 70 Researchers shows in several literatures how the capping 

ligand mediates the interaction between the NC and solvent for the purpose of assembly. Li 

and co-workers showed for the first time that the columnar self-assembly of Cu2S hexagonal 

nanoplates can be induced by in situ formation of a Sn-X complex (inorganic ligand) during 

the synthesis.71 Most nanoplates tend to stack face-to-face to form a columnar superstructure.  

This ligand-induced columnar assembly approach has also been used for the Cu2−xSe NCs.72 

 

In this thesis, we mostly study 2-D self-assembled materials, inspired by materials such as 

graphene. In order to create materials with reduced dimensionality, we have to confine the self-

assembly process of the NCs to two dimensions. The method pioneered by Dong et al.4, 73, uses 

a liquid substrate (as shown in Figure 7a). In this method, the colloids do not dissolve but 

adsorb at the liquid-air/N2 interface due to surface energy considerations after solvent 

evaporation. Nanoparticle monolayers can be obtained in which the NCs are epitaxially 
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connected resulting in excellent long-range nanocrystalline order. Also, the assembly can be 

controlled by tuning the NC concentration and the solvent evaporation rate. We modified this 

method to prepare COIN superlattice film by injecting ligand solution in the subphase in order 

to ligand-exchange the assembled NC film. By carefully choosing Cu-based chalcogenides 

NCs and π-conjugated organic semiconductor ligand solution we are able to get the resulting 

superlattices of thickness down to an NC monolayer with a typical grain size of hundreds of 

micrometers. And it can be scooped off the interface by simple fishing or Langmuir-Schaeffer 

like stamping of the NC film. The relative easiness to handle and versatility makes this process 

to create 2-D semiconductors attractive for industrial applications. 

 

Figure 7. (a) Two-dimensional confinement of the self-assembly process, as is studied mostly 

throughout this thesis. The NCs are confined at a liquid-air/N2 interface, which can result in superlattices 

which have a thickness of an NC monolayer. (b) STEM image of Cu1.1S NCs superlattice prepared at 

liquid-air interface. 

 

1.6. Characterization of NCs and their superlattices 

In general, the nanocrystals are too small to be studied through conventional optical 

microscopy. Therefore, we have performed different types of electron microscopy to determine 

the size and shape of the Copper chalcogenides NCs, used in this thesis. An electron 

microscope uses a high voltage electron beam to illuminate the specimen and create an image. 

The electron beam is generated by an electron gun. The beam is accelerated by an anode with 

respect to the cathode, focused by different lenses, and transmitted through the specimen. When 

it emerges from the specimen, the electron beam carries information about the structure of the 

specimen that is magnified by the objective lens of the microscope. Electron microscope 

provides a spatially resolved of the specimen and is used throughout this thesis in various 

forms. In particular, Scanning-transmission electron microscopy (STEM), is used to check the 
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size and shape of the basic NCs and to determine the film morphology of the self-assembled 

NCs and their ligand-induced assembled structures. The optical properties of the NC 

superlattices films are characterized with absorption spectroscopy (how much photons are 

absorbed by the NCs at each photon energy), Raman and FTIR spectroscopy (molecular 

vibrations or other excitations in the system interact with laser light and produce a shift up or 

down of laser phonons). To determine the large scale structure in the ex-situ samples, we used 

X-ray scattering techniques in our laboratory source. For the in-situ measurements (self-

assembly of NCs and their ligand exchange) we performed specialized liquid surface X-ray 

scattering using synchrotron source. These techniques allow us to study the kinetics of the self-

assembly and ligand exchange processes in more detail under reaction conditions on both 

nanocrystal and atomic length-scales. The next section will discuss the applied techniques in 

more detail.   

 

 1.7. Grazing incidence small angle X-ray scattering (GISAXS) 

In the last two decades, the Grazing Incidence Small Angle X-Ray Scattering (GISAXS) has 

emerged as a powerful technique that allows us to investigate the morphological properties in 

a non-destructive way. It measures the structural order of nanoparticle assemblies, deposited 

either on a surface, interface or embedded in a matrix, with sizes ranging from 1 nm to several 

microns.  

X-ray scattering probes nanostructures on the surface in the reciprocal space, or the Fourier 

space. The principle of X-ray scattering from nanostructures is identical to traditional X-ray 

diffraction, except that, (i) high intense synchrotron X-ray beam is usually needed because the 

investigated volume of matter is small; and (ii) the incident beam angle is kept at a grazing 

incidence with respect to the sample surface to minimize the unwanted background scattering 

emanating from the bulk structure, and to enhance the near-surface scattering from the thin 

film. In GISAXS, all the angles (incidence, out-going azimuthal and reflected) considered are 

small, i.e. less than a few degrees. In general, the incoming X-ray beam impinges on the surface 

of interest at an angle lower than the materials’ critical angle, αc (mili-radians), the X-ray 

photons will be reflected from the interface and only have an evanescent component inside the 

materials, this leads to a total external reflection and much more scattering. However, by 

changing the grazing angle and hence the penetration depth of the X-ray photons, we can obtain 

information from both the bulk and the surface of a material of interest. If there are nanometer-

size in-homogeneities of the electron density such as islands, roughness or electronic contrast 
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variation are present on the surface or interface, X-ray scatters the incident beam, depending 

on their morphology and topography. 

 

Figure 8. Typical experimental geometry of grazing-incidence X-ray scattering experiments. 

 

Throughout this thesis, we performed X-ray scattering experiment in grazing-incidence 

geometry, as shown in Figure 8. The X-ray photons are scattered in the forward direction to a 

detector collecting the scattering signal, where inter-nanoparticle distances and nanocrystalline 

structures can be followed in ex-situ or in-situ measurements over time. The GISAXS detector 

is usually at a relatively large distance, depending on the X-ray photon energy, since Bragg 

reflections need to sufficiently diverge in order to be separated from the direct beam. 

Publication 1 and 2 of the results and discussion part of this thesis contain the study the ex-situ 

GISAXS measurements of the self-assembled NCs and their ligand-exchanged assemblies have 

performed by using a laboratory instrument (Xeuss 2.0, Xenocs, France) using Cu Kα radiation 

(λ =1.5418 Å). The samples are probed with a focused X-ray beam of size 0.5 x 0.5 mm2 at an 

incidence angle of 0.22⁰. The GISAXS images are collected with a 2D Pilatus 300 K, having 

487 x 619 pixels. The detector is placed at a distance of 2496 mm, determined using Ag-

behenate as reference sample. We further study the in-situ self-assembly of nanocrystals and 

ligand exchange at the liquid/air-interface under this so-called grazing incidence geometry in 

the synchrotron source at P08 beamline, PETRA III, DESY, Hamburg, Germany. In this 

geometry, the collimated X-ray beam has to bend down towards the liquid surface. This is 

either achieved using X-ray mirrors or by using a crystal deflection scheme. Here one or two 

crystals are placed in a Bragg condition of one of their reflections, and they are rotated such 

that the photons follow the 2θ cone. The diffractometer arm, carrying the detectors, has to be 

rotated accordingly to follow the path of the X-ray beam.  
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It is possible to analytically calculate the full scattering signal of any material through the 

distorted wave Born approximation (DWBA). This takes multiple scattering effects into 

account, such as interference between scattering from the direct and reflected beam, into 

account by calculating the Fresnel coefficients of each scattering term. So, using this approach 

the total scattering pattern in an X-ray scattering experiment in grazing incidence geometry can 

be approximated as the product of the structure factor of the lattice and the form factor of the 

constituent particles, i.e. S(q)∙P(q). Example of the GISAXS pattern obtained from solid and 

liquid surface is displayed in Figure 9. We used DWBA to simulate the GISAXS pattern 

obtained at the liquid/air interface to avoid multiple scattering as seen in figure 9b. Both 

patterns represent two-dimensional hexagonal lattice of NCs, where the consecutive order of 

1: √3: 2 of peak positions in the horizontal scattering direction shows the signature of this 

lattice. Since the lattice is 2-D in the horizontal plane in real space, the structure factor appears 

as elongated rods in reciprocal space.  

 

 

 

Figure 9. (a) Typical GISAXS pattern obtained from ex-situ Cu2-xSe NCs superlattice film. Here, the 

incoming X-ray photons have an energy of 8 keV and hit the surface at a glancing angle of 0.2o (b) 

GISAXS patterns of Cu1.1S NDs superlattices film at the liquid/air interface. The red circles and pink 

boxes are the simulated diffraction patterns considering a hexagonal superlattice along the in-plane 

direction. Note that the direct beam, i.e. the reflection at qy=0 and qz=0, is usually blocked with a 

beamstop to prevent damage to the detector since it is very intense. 
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Figure 10. Schematic of interparticle contraction observed by GISAXS. 

 

1.8. Charge transport in NCs superlattices 

Assembly of nanocrystals into a single component, binary, and even ternary form provide a 

controlled platform to systematically explore charge transport in semiconductor thin films by 

permitting studies of structure-property relationships.74-76 There is a large effort in device-

oriented research involving copper chalcogenides NCs, especially those made of binary Copper 

chalcogenide nanocrystals. It is clear that for any real application electron transport through 

films of NCs has to be understood. In addition to the technological interest in NC solids, they 

are of fundamental interest for physics, since they form a new class of electron conducting 

materials in which the occupation of the NCs energy levels and their electronic interaction can 

be engineered. Specifically, in complex materials such as COINs, the coupling between the 

individual components is a crucial point. The temperature dependence of electronic 

conductivity forms a key characteristic in the study of transport in any system (superconductor, 

metal, an inorganic semiconductor, molecular conductor).  

At high temperatures (>200 K), close-packed layers of monodisperse metal NC can exhibit an 

increase in resistance with increasing temperature, the behavior typical for metals.77 It is often 

suggested the metal-like behavior of NCs assemblies may result from the large density of states 

at the Fermi level and from the predominant electron-phonon interactions. According to the 

Drude theory, the conductivity of a metal is given by  

σ = ne2τ/m                                                                                                                        (4) 

where n is the density of conducting electrons and τ is mean free time. τ is determined by 

electron scattering, which can be categorized as elastic (impurity or defect scattering) and 

inelastic (electron-electron or electron-phonon scattering).  

According to the Matthiesen rule,  

1

𝜏
 = 

1

𝜏𝑒𝑙𝑎𝑠𝑡𝑖𝑐
 + 

1

𝜏𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐
                                                                                                         (5) 

and the resistivity of metals can be written as  
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ρ(T) = ρ0+ ρPh. 

At very low temperatures, τelastic dominates since it is independent of temperature. At higher 

temperatures, τinelastic becomes significant and gives rise to a temperature-dependent 

conductivity. Assuming that the rate of inelastic scattering due to electron-phonon interactions 

increases as ∼kBT, metallic conductivity decreases as ∼1/kBT and resistivity increases linearly 

with T.  Below the metal-insulator transition temperature, electrical resistivity exhibits metallic 

behavior. In order to understand the conduction mechanism in the metallic region, the 

experimental data should be fitted with the well-known empirical equation (Bloch-

Grüneisen)78 

ρ(T) = ρ0 + ρ2T
2 + ρ5T

5                                                                                                   (6) 

Where ρ0 is the residual resistivity arising from grain boundary scattering, ρ2 and ρ5 due to the 

electron-electron scattering and mixed effects of electron-electron, electron–magnon and 

electron-phonon scattering processes, respectively. For metallic conduction process, both the 

grain boundaries and electron-electron scattering processes play important roles in the 

conduction process as ρ0 ˃˃ ρ2 ˃˃ ρ5. 

Electronic properties of granular materials have been extensively studied both theoretically and 

experimentally for several decades. The important pieces of the theoretical framework were 

put together by Mott, Efros and Shklovskii, Altshuler, and others.79, 80 Although our 

understanding of charge transport through NP assemblies is still evolving, several phenomena 

are known to be particularly important given the structure of the assemblies. These include 

tunneling, single-electron charging, hopping, varying wave function overlap, spatial and charge 

disorder, percolation effects, scattering, etc.81 Disorder plays an important role in the electronic 

properties of NC solids. For the disordered nanocrystal arrays, the temperature dependence of 

conductivity is inherently related to the disorder in the electronic structure.82 Small differences 

in size, shape, and position of the nanocrystals lead to variations in the energies of electrons 

(or holes) occupying the quantum-confined orbitals.82  

 

At lower temperatures, the carriers are localized on individual NCs and transport occurs by 

sequential tunneling; the electron hops from a particle to its nearest neighbor along the current 

path. Arrhenius type temperature dependence of conductivity log(G) ∼ 1/T is characteristic of 

this transport regime. At even lower temperatures, below ∼60 K the conductivity of Au and 

Ag NC layers scales as log(G) ∼ 1/T1/2.77, 83 Tran et al. explained such behavior by inelastic 

cotunneling transport mechanism dominated by cooperative, multielectron hops that each go 
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to the nearest neighbor but are synchronized to move charge over distances of several 

particles.83 The conduction mechanism in semiconductor NC solids strongly depends on the 

strength of interparticle coupling. Bulky capping ligands typically result in the activated 

nearest-neighbor hopping observed for several materials at near-room temperatures. Other 

mechanisms, including variable range hopping (VRH) with the Coulomb energy gap (so-called 

Efros-Shklovskii variable range hopping, ESVRH), have been recently proposed to explain 

nonArrhenius behavior observed in doped semiconductor NC solids.  

VRH was originally developed for lightly doped semiconductors where the conductance is 

proportional to the probability of tunneling between sites separated by a distance r: 

G ∞ exp (
−2𝑟

𝜉
− 

𝛥𝐸

𝑘𝐵𝑇
)                                                                           (7) 

Where 𝜉 is the localization length, which characterizes the tunneling probability between 

nearest sites; r is the hopping distance; 𝛥𝐸 is the energy difference between the initial and final 

sites. Mott pointed out that the energy difference 𝛥𝐸 is related to r as 𝛥𝐸 ~1/g0r
D if there is a 

constant DOS g0 near the Fermi surface, where D (1, 2, or 3) is the dimension of the materials. 

Maximizing the probability leads to Mott’s Law: 

 G ∞ exp ((
−𝑇𝑀

𝑇
)1/(D+1))                                                                                 (8) 

 

Figure 11. The density of states vs energy for a doped semiconductor exhibiting a soft Coulomb gap. 

The gap width is Δ.84 
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In 3D, ln G is linearly proportional to 𝑇−1/4 and TM = 
21.2

𝑘𝐵𝑔0𝜉3
 

This  𝑇−1/4 Mott’s Law has been observed in various classes of lightly doped semiconductors. 

Nevertheless, a large body of literature reported  𝑇−1/2 instead of Mott’s Law regardless of the 

dimension of the materials. Efros and Shklovskii argued that the Coulomb interaction would 

open a soft gap in the DOS g0 which leads to 

G ∞ exp (−√
𝑇𝐸𝑆

𝑇
)                                                                                         (9) 

In 1, 2, or 3 dimensions, TES is given by TES = 
𝛽𝑒2

𝑘𝑘𝐵𝜁
 

k is a macroscopic dielectric constant and β is a numerical constant of the order of unity. 

The Variable Range Hopping charge carrier transport mechanism in disordered NCs solids has 

been studied extensively.80 Yu et al. and Wehrenberg et al. studied the temperature dependence 

of electrochemically charged CdSe and PbSe nanocrystal assemblies, respectively, in a 

temperature range of ∼10 to ∼150 K.85, 86 They concluded that the conductivity follows ES-

VRH mechanism. Talapin and Murray studied the same PbSe NC system using a field-effect 

transistor (FET) setup and found ln σ ∝ T-1/4.87 Recently, Mentzel et al. presented more 

elaborate FET measurements on PbSe quantum-dot solids and concluded that the charge 

transport shows simple Arrhenius behavior, i.e. ln σ ∝ T-1.88 For copper sulfide (Cu2-xS) film, 

Otelaja et al. found carrier transport mechanism from the temperature-dependent conductivities 

of the films reveals a Mott type Variable Range Hopping conduction mechanism for the 

temperature range 25 to 270K.89 

The unique physical and electrical transport properties of cu-based chalcogenides nanoparticles 

can be harnessed for game-changing innovations that impact a vast range of technological 

applications in electronic devices (for a comprehensive review see Coughlan et al.).29 These 

include sensors, thermoelectrics, electrodes for lithium-ion batteries, supercapacitors, as well 

as photovoltaics, optoelectronics, photocatalysis, fluorescent biological imaging, and 

photothermal therapy. 

 

1.9. Photodetection 

Application of NCs in optoelectronic is receiving steadily growing attention. Under optical 

excitation above the band gap, the nanocrystals behave dramatically different compared to bulk 
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crystals as noted by Shabaev et al.90 For applications requiring light absorption-emission in the 

near-IR region, inorganic NCs, especially those made of narrow-gap semiconductors, are in 

strong position to compete with other technologies, because their band gap can be precisely 

tuned from the visible spectral region to the wavelengths of 3500 nm. In such nanocrystals due 

to the absence of periodic boundary conditions, the conservation of momentum does not hold 

anymore and the efficiency of non-radiative Auger processes is increased such that it surpasses 

the efficiency of radiative recombination. Therefore, the energy released during the 

recombination of an electron-hole pair in the vicinity of another (photo-excited) electron in the 

conduction band is transferred to this electron with almost 100%.52 The photocurrent in a 

semiconductor can be generally described as: 

iph = ηeNλGi                                                                                                                                                                            (10) 

where η is the quantum efficiency (i.e., the number of excess carriers produced per absorbed 

photon), e is the elemental charge, Nλ is the number of photons of wavelength λ absorbed in 

the sample per unit time, and Gi is the internal (photoconductive) gain. 

 

Figure 12. a) A sketch of typical thin film photoconductive photodetector. Interdigitate electrode 

structure is deposited onto the surface of active semiconductor. (b) A photodetector geometry that is 

typically used for NC-based devices: thin NC layer is deposited on top of the pre-patterned electrode 

structure. Au is shown as an example of metal contact material. (adapted from Talapin et al.)70 

Photoconductive gain is determined by the ratio between the free carrier lifetime (τ) and transit 

time (Ti): Gi= 
𝜏

𝑇𝑖
, Gi is determined by the number of electrons flowing through the external 

circuit per each absorbed photon or, in other words, the number of cycles the majority carriers 

can make before recombining. 
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There are several figures of merits used to characterize photoconductive photodetectors. These 

are responsivity, spectral response, noise-equivalent power (NEP), detectivity, response time, 

and frequency response. Responsivity (Ri) is also often called sensitivity which provides a 

quantitative measure for the output signal such as photocurrent iph per watt of the input optical 

power Pin. Ri is the function of both modulation frequency (f) and photon wavelength (λ): 

Ri(f, λ) =
𝑖𝑝ℎ

𝑃𝑖𝑛
                                                                                                           (11) 

Spectral response describes the spectral dependence of Ri, that is, the dependence of Ri versus 

λ. In NCs based photodetectors, the spectral response generally follows the shape of the NC 

absorption spectrum. 

 

 

Figure 13. (a) Schematic representation of Cu-chalcogenide based CONIs assembly exciting with the 

suitable light source. (b) Photocurrent response upon exposure of different laser source with different 

optical power at a bias voltage of +200mV.  

 

1.10. Application in Vapor Sensing 

The NC surface functionalization with different capping ligands proving to be very important 

for the design and performance of sensitive nanosensors. Monolayer films of the organic 

molecular capped nanoparticle have recently attracted considerable attention due to their 

numerous novel emerging applications in chemical and biological sensing.52, 91 Since the first 

report on spraying alkanethiolate-protected nanoparticles as a metal-insulator-metal ensemble 

on chemiresistors for vapor sensing, a number of NC thin films have been demonstrated to be 

viable for chemical sensing.92 The architecture of these devices includes inorganic NCs 
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connected to each other through organic bridges. The NCs provide electric conductivity and, 

thus, enable simple electrical signal transduction. The organic film component provides sites 

for the selective sorption of vapor analyte molecules. A very interesting feature of these sensor 

materials is the possibility to control their properties through molecular level design. These 

nanostructures have demonstrated variable sensitivity and selectivity utilizing different linker 

molecules which make them promising for developing artificial noses and multivariable 

sensors.93-96  

The attractiveness of functionalized NCs in sensing applications arises from the applicability 

of these nanostructures for different classes of gas and vapor analytes as well as the ability to 

produce NCs with different functional groups. Currently, the biggest limitation of NCs based 

sensors is the stability problem. The operational temperature ranges and the range of detectable 

compounds by such nanostructures also needs to be further improved. Array of metallic 

nanoparticles are the most common system which is explored for sensing purposes among 

which the Au, Ag, Pt, Pd, and Ni nanoparticles are the well-studied cases. 92, 97-100 The choice 

of different metal compounds allows us to engineer the surface of nanoparticles and 

functionalize them with various and desired functional groups. The mechanism of vapor 

sensing in arrays of nanoparticles involves a variation of interparticle distance and dimension 

of the capping layer upon analyte absorption as well as the change in dielectric constant of the 

nanoparticles’ environment.81, 101, 102 In the arrays where soft ligands separate nanoparticles 

from each other, the adsorption of the analyte can considerably affect the interparticle distance 

by changing the dimension length and geometry of capping organic molecules. In contrast, for 

the arrays of nanoparticles functionalized with rigid ligands, the interparticle spacing is not so 

sensitive to analyte adsorption; however, the charge transport can be still highly affected by the 

change in dielectric constant of the environment. 103  
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Abstract 

We study temperature-dependent charge transport in two-dimensional assemblies of copper 

sulfide nanodiscs in the covellite crystal phase (Cu1.1S). To enhance interparticle coupling, we 

cross-link the nanocrystals with the organic pi-system Cu-4,4′,4″,4″,4‴-

tetraaminophthalocyanine and observe an increase in the conductivity by six orders of 

magnitude. The electrical properties of monolayers of this hybrid ensemble are consistent with 

a two-dimensional semiconductor and exhibit two abrupt changes at discrete temperatures (120 

K and 210 K), which may be interpreted as phase changes. X-ray scattering experiments serve 

to study the importance of electronic conjugation in the organic pi-system vs. interparticle 

spacing for efficient charge transport. Applying the hybrid ensemble as a chemiresistor in 

organic vapor sensing experiments reveals a strong selectivity between polar and non-polar 

analytes, which we discuss in light of the role of the organic pi-system and its metal center.  
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Introduction 

 

Two dimensional (2D) semiconductor materials (such as WS2) have great potential for 

application in photodiodes, solar cells, photocatalysis, batteries, thermoelectric and light-

emitting diodes.104-108 While the charge carrier mobility in single-crystalline grains may exceed 

that of crystalline silicon, it is challenging to synthesize these materials with macroscopic 

lateral domain sizes.107 In contrast, granular ensembles of 2D conductors can be obtained in 

large quantities and assembled into macroscopic thin films, however with significantly lower 

mobilities.109 Charge carrier transport in such granular 2D materials occurs typically via 

hopping, which was first described by Mott with the concept of variable–range hopping (VRH), 

assuming that carriers hop between localized states over a characteristic, temperature-

dependent hopping distance.79, 110 While the density of states (DOS) is considered to be 

constant in this model, the electrical conductivity varies with temperature as σ(T) = σ0 exp[–

(TMott/T)x]. Here, T is the absolute temperature, σ0 the attempt frequency for a hopping event, 

TMott the characteristic Mott temperature, and x = 1/(D + 1), where D is the dimensionality of 

the conductor. Thus for a 2D material, ln σ is proportional to T-1/3. Efros and Shklovskii later 

pointed out that for sufficiently low temperatures, the DOS near the Fermi level (EF) is not 

constant and Coulomb interactions give rise to a soft gap in the density of states. In this regard, 

it has been demonstrated that the DOS near EF vanishes linearly with energy for a 2D system.80, 

111, 112 This has been explained with the electron-hole Coulomb interaction to be overcome 

when an electron  hops from one site to another.113 For this ES VRH mechanism, the 

conductivity varies with temperature as σ (T) = σ0 exp[–(TES/T)1/2]. Here, ln σ is always 

proportional to T-1/2 regardless of the dimensionality of the system, which merely affects the 

characteristic temperature TES.
114 Therefore for a granular 2D semiconductor, one can expect 

ln σ ~ T-1/2 for sufficiently low temperatures and ln σ ~ T-1/3 for higher temperatures.  

In this work, we use this characteristic behavior to examine under which conditions ensembles 

of covellite nanocrystals (Cu1.1S NCs) behave collectively like a 2D semiconductor. We chose 

Cu1.1S due to its low toxicity and rich redox chemistry, which renders it attractive for 

environmentally benign applications in optoelectronics and sensing.37, 115, 116 Previous attempts 

to tune the transport properties of copper sulfide NC ensembles employed thermal doping, 

electrophoretic deposition and/or ligand exchange with small molecules, such as 1, 2-

ethanedithiol (EDT), hydrazine, mercaptopropionic acid or ethylenediamine.2, 89, 117-119 
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Depending on the surface modification,  Copper sulfide NC ensembles have displayed 3D VRH 

transport, Arrhenius-type, nearest neighbour hopping or non-monotonic temperature 

dependencies.2, 89 Typical conductivities ranged between 10-4 S cm-1, 10-2 S cm-1 and 75 S cm-

1 for EDT-functionalization, treatment with hydrazine and electrophoretic deposition, 

respectively. Here, we take a different approach towards increasing electronic coupling in 

Cu1.1S NC films by functionalizing their surface with the relatively large (1.2 nm), but fully 

conjugated molecule Cu-4,4′,4″,4″,4‴-tetraaminophthalocyanine (Cu4APc) similar to other 

types of coupled organic-inorganic nanostructures.52 We discuss the transport behavior of this 

hybrid material in the context of potential 2D Mott VRH and demonstrate its perspectives for 

solvent vapor sensing. 

 

2. Methods 

2.1. Synthesis of Cu1.1S Nanocrystals:  Cu1.1S NCs were prepared by adapting the heat-up 

synthesis procedure from Xie et al.36  

 

2.2. Synthesis of Ligands: Cu-4,4′,4″,4″,4‴-tetraaminophthalocyanine (Cu4APc) was 

synthesized following a previously reported procedure.120 For the structural formula, see 

Figure S2.1. 

 

2.3. Thin-Film Preparation and Ligand Exchange: In this work, electronically coupled, 

ordered NC superlattice films were assembled at the liquid/air interface.4, 121 Initially, the native 

oleylamine passivated, disc-shaped Cu1.1S NCs (diameter of 12.7 ± 1.7 nm, and a thickness of 

5.8 ± 0.7 nm) film was prepared by controlling the evaporation of toluene solvent in DMSO 

solution in a home-built teflon chamber. A reference sample was prepared by transferring this 

film on to a Si-substrate. For Cu4APc cross-linked NCs, a solution of Cu4APc in DMSO was 

slowly injected into the subphase by a syringe in order to ligand-exchange the assembled NC 

film floating above the DMSO phase. Finally, the free-floating ligand-exchanged NC 

superlattice was transferred to substrates by retracting the solution from the bottom of the 

chamber (Figure S2.2). 

 

2.4. Instrumentation: Scanning transmission electron microscopy (STEM, Hitachi SU 8030 

microscope operating at 30 kV) was employed to determine the particle size and shape. Optical 

measurements were performed on solid state films on glass substrates using an UV–vis–NIR 
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spectrometer (Agilent Technologies, Cary 5000). Grazing-incidence small-angle X-ray 

scattering (GISAXS)53 was carried out with a laboratory instrument (Xeuss 2.0, Xenocs, 

France) using Cu Kα radiation (λ =1.5418 Å). The samples were probed with a focused X-ray 

beam of size 0.5 x 0.5 mm2 at incidence angle of 0.22⁰. The GISAXS images were collected 

with a 2D Pilatus 300K, having 487 x 619 pixels. The detector was placed at a distance of 2496 

mm, determined using Ag-behenate as reference sample. X-ray reflectivity (XRR) data from 

the sample was collected in specular geometry with a laboratory source (Cu Kα; GE Inspection 

Technologies, Germany). The surface morphology was measured by AFM using a JPK 

Nanowizard II instrument in tapping mode under ambient conditions. Image analysis was 

performed with Gwyddion. Raman spectra were acquired using a Horiba Jobin Yvon Labram 

HR 800 spectrometer with a CCD-1024 × 256-OPEN-3S9 detector. Excitation for Raman was 

performed using a He:Ne laser (wavelength 633 nm). Electrical measurements were performed 

in a glovebox at room temperature with a homemade probe station using a Keithley 2634B dual 

source-meter unit, controlled by the included test script builder program. The NC films after 

ligand exchange were deposited on commercially available bottom-gate, bottom-contact 

transistor substrates (Fraunhofer Institute for Photonic Microsystems, Dresden, Germany) with 

interdigitated Au electrodes of 10 mm width and 2.5 μm channel length followed by annealing 

at 250 °C for 2 h under nitrogen atmosphere. The temperature-dependent charge transport 

properties of the NC thin-films were measured by a Lake-Shore CRX-6.5K probe station, 

equipped with a Keithley 2636B dual source-meter unit and a Lake Shore temperature 

controller (model 336). For investigating the vapor sensing properties, the NC films were 

deposited on commercially available glass substrates with interdigitated gold electrode 

structure (90 finger pairs, 10 μm microelectrode gap and a circular area with a diameter of 

3.5 mm; “ED-IDE1-Au” by micrux Technologies). The sensitivity of the films was 

characterized by dosing them with vapors of 4-methyl-2-pentanone (4M2P), toluene, 

isopropanol, and water while monitoring their resistances at 0.1 V. All vapor sensing 

experiments were carried out at room temperature (ca. 25 °C) at a flow rate of 400 mL min-1. 

As all vapors have comparable vapor pressures (21, 29, 20, and 23 mbar at 20 °C, 

respectively)122, differences in the response of the samples are expected to arise mainly from 

their chemical nature (polarity and structural features) and not from the differences in vapor 

pressure. 
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3. Results 

 

 

Figure 2.1. (a) SEM image and (b) height profile of a typical Cu1.1S /Cu4APc film determined by 

atomic force microscopy (see Figure S2.3b for the original image). (c) UV-ViS-NIR absorption spectra 

of as-prepared Cu1.1S superlattice before and after ligand exchange (orange and dark red curves, 

respectively). (d) Raman spectra of as-prepared Cu1.1S nanocrystal thin films before and after ligand 

exchange (same color code as in (c)). The inset highlights the spectral regime around the S-S stretching 

bands. 

Figure 2.1a depicts a typical SEM image of Cu4APc cross-linked Cu1.1S NCs assembled into 

a hexagonal superlattice. The disk-shaped NCs have an average diameter of 12.7 ± 1.7 nm and 

a thickness of 5.8 ± 0.7 nm as determined from high resolution scanning electron micrographs 

(Figure S2.3a). Height profiles obtained by atomic force microscopy (AFM, Figure 2.1b and 

Figure S2.3b)) show that the average superlattice thickness is one monolayer (6 nm). Figure 

2.1c displays the UV-ViS-NIR spectra of the as-prepared Cu1.1S NCs before (orange) and after 

ligand exchange with Cu4APc (dark red) on quartz substrates. The strong NIR absorption with 

a maximum around 1250 nm is characteristic for a localized surface plasmon resonance (LSPR) 
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due to copper vacancies.45, 46, 123 In addition, the ligand exchanged film displays a new peak at 

736 nm corresponding to the appearance of the singlet absorption of Cu4APc.114 Raman 

spectroscopy provides further evidence for a successful ligand exchange (Figure 2.1d). While 

the vibrational spectrum of the as-prepared Cu1.1S NCs before ligand exchange (orange curve) 

features mainly a weak band at 265 cm−1 (see inset) and a sharp band at 471 cm−1 due to S−S 

stretching vibrations, additional bands at 747, 1115, 1345, 1447, 1535 and 1605 cm−1 appear 

after ligand exchange with Cu4APc124, 125 (Note: The bands observed near 521 cm−1 and 966 

cm−1 correspond to the optical phonon modes of the Si substrate). Furthermore, the S−S 

stretching bands shift to 267 and 474 cm-1 (see inset), which is often attributed to a binding 

interaction with the surface of the particles. These Raman spectra for both films are in good 

agreement with the existing literature on crystalline Cu1.1S NCs.124, 126  

 

 

Figure 2. 2(a) GISAXS patterns of self-assembled Cu1.1S NDs coated with OA. (b) GISAXS pattern of 

Cu4APc ligand induced assembly Cu1.1S NDs. Both patterns show long-range highly ordered 2D 

hexagonal superlattices. (c) The extracted line profiles from the corresponding GISAXS images along 

in-plane wave vector qy. To improve the statistics of the line profiles the signals were integrated along 

the qz direction. (d) X-ray reflectivity profile of Cu1.1S /Cu4APc film. 
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The structural changes of the Cu1.1S NC superlattice before and after ligand exchange are 

determined by GISAXS on Si-substrates in Figure 2.2a and 2.2b. The appearance of several 

intense scattering truncation rods, extended along the qz-direction at different qy-positions 

corresponds to a long-range ordered monolayer superlattice formation for both cases. The ratio 

of the relative peak positions is 1: √3: 2 - which is a characteristic of two-dimensional 

hexagonal superlattices for both cases and can be indexed with 10, 11 and 20 superlattice 

planes.127 The significant changes of the correlation peak positions along the qy-direction for 

both samples are additionally displayed with line profiles (Figure 2.2c). The lattice constants, 

which equal the nearest-neighbor distance in hexagonal lattices, are 16.8 ± 0.1 nm and 15.7 ± 

0.1 nm before and after ligand exchange, respectively. We attribute the decrease of 1.1 nm to 

the effect of replacing the larger oleic acid ligand (~ 2 nm) by the more compact Cu4APc (~ 

1.2 nm) molecule. The XRR profile in Figure 2.2d features multiple Kiessig oscillations, from 

which we determine the thickness of the NC film on the substrate to 5.8 nm, in good agreement 

with our AFM data.128  
 

 

 

 

For charge transport studies, the Cu1.1S NC films were deposited on Si-substrates with pre-

patterned gold contacts. Since the I/V characteristics were slightly field-dependent, all 

conductivities were measured in the low-field regime by fitting the linear current response to a 

voltage sweep from -200 mV to +200 mV (See Figure S2.4+5). We find an enhancement by 

six orders of magnitude after ligand exchange with Cu4APc in the electrical conductivity of 

the NC superlattice, providing clear evidence for the improved coupling. To determine the 

transport mechanism in the 2D superlattices of NCs before and after ligand exchange, we 

perform temperature-dependent conductivity measurement from 30 to 300 K in Figure 2.3a. 

In both cases, σ of the film increases with increasing temperature, which is the typical behavior 

of a semiconductor. However, as evident for the unexchanged sample and – to a lesser degree 

– for the Cu4APc-functionalized NCs as well (inset in Figure 2.3a), σ(T) deviated from a 

simple monotonic increase, implying that the charge transport cannot be described by a single 

hopping model. While the origin of this anomaly is not clear, it has been observed before for 

arrays of Cu1.1S and tends to be more pronounced for less coupled NCs.2, 129 The deviation 

from a single hopping model is further evidenced for the Cu4APc-capped Cu1.1S films in 

Figure 2.3b, where we plot the σ(T)-data according to ln 𝜎 = ln 𝜎0 − (
𝑇0

𝑇
)

1/𝑥

 with x = 1,2,3 or 

4. Evidently, none of the common temperature coefficients results in a satisfactory fit over the 

entire temperature range. To exemplify this, we display linear fits to the data as dashed lines. 

For x = 2, 3 and 4, this satisfactorily describes the data at low temperatures (30 – 120 K), but 
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increasingly deviates from a simple linear relationship (in this mode of plotting the data) above 

this range. For x = 1, no linear relationship over a reasonably large temperature window could 

be established.  

 

Another way of testing a certain transport mechanism is to plot the derivative d(log σ)/d(logT) 

against log T as illustrated in Figure 2.3c130  and determining x from the slope, m, of a linear 

fit to the data as 𝑥 = − 1
𝑚⁄ . The unusual, non-monotonic σ(T) behavior is readily visible in 

this plot with three distinct temperature regimes, namely 30-120 K, 120-210 K and 210-300 K, 

which are separated by abrupt changes in the derivative d(log σ)/d(logT). 

 

 

 

Figure 2. 3(a) Temperature-dependent electrical conductivity measurement of Cu1.1S nanocrystal films 

from 30 to 320 K. Red circles: OLm-capped Cu1.1S NC films and blue circles: Cu1.1S NC films 
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crosslinked with Cu4APc. Inset: linear plot of the Cu4APc-capped Cu1.1S film for better visualization. 

(b) Ln σ vs. T-1/x for x =1-4 as assigned by the color legend for Cu1.1S NC films crosslinked with Cu4APc. 

Dashed lines are linear fits for a fixed temperature window of 30 – 120 K. (c) Derivative d(log σ)/d(log 

T) vs. logT for the same dataset as in b). Solid lines are linear fits for fixed temperature windows of 30 

– 120 K and 120 – 210 K, respectively. 

 

We note several previous reports about presumed phase transitions in copper sulfide at low 

temperatures, which we tentatively hold responsible for our observation.2, 129, 131 Between 30-

120 K, we find x = 2.1 and a reasonable R-squared confidence of 90 %, suggesting a VRH ES 

transport mechanism in this temperature window. For 120-210 K, the slope notably flattens 

and we derive x = 3.0 in excellent agreement with Mott 2D VRH. However, an R-squared 

confidence of only 53 % cannot entirely rule out the possibility of Mott 3D VRH due to the 

small differences between the two mechanisms in the expected slope. Above 210 K, the R-

squared confidence decreases to 18 % and a meaningful fit becomes impossible. We suspect 

that this may be due to the already mentioned anomaly in this temperature range (see Figure 

2.3a). 

 

In addition to studying the transport characteristics of Cu1.1S/Cu4APc monolayers, we seek to 

take advantage of the high active surface area of the material for vapor sensing. The basic idea 

is that adsorption of vaporized molecules on and into the Cu1.1S/Cu4APc monolayer may 

induce a change in resistance, which serves as feedback for sensing. Figure 2.4a presents the 

typical resistance change (∆R/R0) at room temperature upon exposure to 4M2P vapor with 

concentrations in the range of 100 - 5000 ppm (three exposure cycles of 120 seconds each). 

We observe a fast (few seconds) and fully reversible, approximately rectangular response, 

which increases with increasing analyte concentration at the same operating temperature and 

0% relative humidity. Four types of vapor analytes are used in this study, i.e. 4M2P, Toluene, 

1-Propanol and water to check the chemical selectivity. Figure 2.4b compares the response of 

the NC film to these four analytes after exposure to 5000 ppm. While toluene vapor exhibits a 

significant but slightly weaker response compared to 4M2P vapor, the two polar analytes 1-

propanol and water invoke almost no response. 
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Figure 2.4. (a) Transient vapor response traces of Cu1.1S/Cu4APc film toward 100 to 5000 ppm of 

4M2P at 0% relative humidity. (b) Responses of the Cu1.1S/Cu4APc films to exposure with 5000 ppm 

4M2P vapor, toluene vapor, water vapor, and 1-propanol vapor. (c) Response amplitudes plotted versus 

the gas-phase concentration of 4M2P and toluene. (d) Response amplitudes plotted versus the gas-phase 

concentration of 1-propanol and water. The solid lines are the Langmuir fits according to a 1st order 

adsorption model (i.e. equation 2.1) and the dashed lines are the Langmuir fits according to a 2nd order 

adsorption model (i.e. equation 2.2). 

 

We gain further insight into the sensor response and analyte/film interactions by fitting the 

concentration-dependent change in resistance for all four analytes with a Langmuir adsorption 

using the equation 

                            
∆𝑅

𝑅0
= [

∆𝑅

𝑅0
]

𝑠

𝐾𝑏𝐶𝑣𝑎𝑝𝑜𝑟

1+𝐾𝑏𝐶𝑣𝑎𝑝𝑜𝑟
                                                                  (2.1) 

where [ΔR/R0]s and Kb are the relative change of resistance at saturation and the binding 

constant, respectively, and Cvapor is the concentration of the analyte in the gas phase.122  

We find that the 1st order Langmuir adsorption model in equation (2.1) reflects well the 

behavior for 4M2P and toluene as displayed in Figure 2.4c. In contrast, no satisfactory fits 
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could be obtained in this way for the analytes 1-propanol and water, which is why we applied 

a 2nd order Langmuir adsorption model according to equation (2.2), which described the 

experimental data more adequately (Figure 2.4d). 

                        
∆𝑅

𝑅0
= [

∆𝑅

𝑅0
]

𝑠

𝐾𝑏√𝐶𝑣𝑎𝑝𝑜𝑟

1+𝐾𝑏√𝐶𝑣𝑎𝑝𝑜𝑟
                                                                        (2.2) 

The fitting parameters, such as the relative differential resistance responses at saturation 

[ΔR/R0]s and the binding constants Kb obtained from the 1st and 2nd order Langmuir adsorption 

model for all four analytes at room temperature are given in Table 1. 

 

Table  1. The experimental sensor responses i.e. relative changes of resistance at saturation [R/R0]s 

and binding constants Kb obtained from the Langmuir fits for Cu1.1S/Cu4APc thin films at room 

temperature. 

 

NC Film Analyte [ΔR/R0]s (%) Kb  

Cu1.1S/Cu4APc 4M2P 7.13 6.43602E-5 (M-1) 

 Toluene 3.51 7.03732E-5 (M-1) 

 1-propanol 0.067 1.11619 (M-0.5) 

 Water 0.039 0.29583 (M-0.5) 

 

4. Discussion 

In addition to providing evidence for the chemical modifications, the spectroscopic data in 

Figure 2.1 also highlights the structural changes occurring in the NC ensemble during surface 

functionalization with Cu4APc. We attribute the 34 nm red-shift of the LSPR transition to a 

reduced interparticle distance due to the shorter length of Cu4APc (12 Å) compared to 

oleylamine (20 Å).  As the interparticle spacing narrows, dipole−dipole interactions between 

the NCs strengthen, which is known to cause a red-shift in the LSPR band.132 In addition, 

alterations in the dielectric environment of the NCs by the new surface chemistry can also 

affect the position of the LSPR.  The anticipated contraction of the interparticle spacing is 

quantified by the GISAXS data in Figure 2.2 to a net decrease of 11 Å. It is noteworthy that 
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even after this contraction, the average interparticle spacing is 30±17 Å and, thus, the NCs 

remain spatially well separated. In this light, the room-temperature conductivity of 1 mS cm-1 

is quite remarkable (Figure 2.3a) and even higher than that of EDT treated Cu1.1S NCs, despite 

the much shorter length of the molecular linker (4 Å).20 In addition, the conductivity increase 

by six orders of magnitude following the interparticle contraction during ligand exchange 

highlights the sensitivity of the material towards further structural changes, such as those 

induced by swelling upon exposure to a solvent vapor. To test this idea, we chose the four 

vapor analytes investigated in Figure 2.4, which differ significantly in their chemical affinity 

and permittivity (toluene: 2.4 (hydrophobic), 4M2P: 13.11 (hydrophilic), 1-propanol: 20.8 (H-

bonding) and water: 80.1 (polar H-bonding).133 As detailed in Table 1, the Cu4APc-capped 

Cu1.1S NC monolayers are significantly more sensitive towards analytes of low permittivity 

(4M2P and toluene), while the two polar analytes 1-propanol and water bind more strongly to 

the film as indicated by the larger binding constants Kb (Table 1) as well as the strong curvature 

of the response (Figure 2.4d).134  

 

We consider several possible reasons for the different behavior of 4M2P/toluene vs. 1-

propanol/water: (1) Water and 1-propanol are quite small and compact molecules, such that 

swelling effects exerted by these species are expected to be relatively small. (2) As shown in 

previous findings by Olichwer et al. on hydrophobic superlattices of dodecanethiol (DDT)-

stabilized Au NCs, 1-propanol adsorbs predominantly on the surface of the film with little 

contribution to film swelling.135  However, Cu4APc is significantly less hydrophobic than 

DDT, such that this reasoning may not fully apply here. (3)  The metal center of 

tetraaminophthalocyanines possess a high affinity towards 1-propanol and water.136 With just 

one metal per molecule, we expect this particular binding site to saturate quickly, even at low 

dosing concentrations. As a very crude estimate, one may expect 3 molecules per nm2 on the 

surface of each nanocrystal,137 corresponding to 300 metal center binding sites as an upper 

limit. Considering the active area of the interdigitated electrodes of the transducer (38.5 mm²) 

and assuming a monolayer coverage with Cu1.1S particles (diameter: 12.7 nm) with hexagonal 

packing (74 % fill fraction) yields 5.6*1010 particles, corresponding to 1.7*1013 metal center 

binding sites in the entire active area. At room temperature, there are roughly 2.5 ∙ 1022 gas 

molecules/L and, thus, 2.5 ∙ 1018 1-propanol/water molecules per Liter at a dosing 

concentration of 100 ppm. At a flux of 400 mL/min, saturation is expected instantaneously for 

this scenario after roughly 1 ms of exposure time in agreement with our observations (see 
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Figure 2.4b+d). Such small density of binding sites could possibly enable very low limits of 

detection as indicated by Figure 2.4d, provided a sufficient signal-to-noise ratio.  

 

In contrast, for the nonpolar analytes toluene and 4M2P, a strong affinity to the phthalocyanine 

metal center does not exist such that they are weakly adsorbed within the nonpolar ligand 

matrix and invoke swelling of the NC film. This induced expansion of the interparticle spacing 

is expected to significantly increase the resistance (as demonstrated in Figure 2.3a), which 

appears to be the major sensing mechanism for this material, explaining the selectivity for the 

two analytes toluene and 4M2P.110, 122 The magnitude of the relative response should be viewed 

in the context of the very thin layer thickness of ≤ 10 nm, a fast recovery of the sensors within 

a second time regime and a nearly rectangular sensor response. Thicker films may exhibit a 

stronger, but slower sensing response. In comparison with other previously reported 

chemiresistors based on NC ensembles for room temperature vapor sensing, these preliminary 

sensing measurements are encouraging. For instance, networks of Au NCs cross-linked with a 

variety of alkanethiols have shown ΔR/R0-values between 0.1-10 % but suffer from gradual 

degradation in air due to oxidation of the thiol cross-linkers.122, 134, 138-140 Utilizing more durable 

tin-doped indium oxide NCs yielded ΔR/R0-values of 2-3 %.141, 142 Higher values of 80 – 500 

% are typically only obtained for very large analyte concentrations or at elevated temperatures 

(300 °C).143, 144 For example, ZnO nanoflowers decorated with Au NCs have been reported to 

exhibit a ΔR/R0 of 7500 % towards 100 ppm acetone, however only at a working temperature 

of 270 °C.145 The material investigated in the present paper is operative under ambient 

conditions, unoptimized and holds the potential for selective vapor sensing at low detection 

limits due to its heterostructure as outlined above.        

The temperature-dependent transport data of Cu4APc-capped Cu1.1S NC monolayers in Figure 

2.3 are consistent with the picture of a two-dimensional conductor. At low temperatures (30 < 

T < 120 K), the transport mechanism is satisfactorily described with ES VRH, supposedly 

because of the dominant effect of Coulomb interactions and the opening of a soft gap in the 

density of states. At higher temperatures, this Coulomb gap closes and the transport data is 

more adequately described with Mott VRH as indicated by the slope of 3.0 for d(log σ)/d(log 

T) vs. log T (Figure 2.3c). As detailed in the introduction, this is the expected behavior for a 

granular 2D conductor.  

 

We note that the transport properties of Cu4APc-capped Cu1.1S NC films are different from 

those detailed by Bekenstein et al. for the same type of NCs but different surface ligands, such 
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as thiols of different chain lengths or mercaptopropionic acid, who exclusively found 

Arrhenius-type NNH over the whole temperature range.2 In view of the quasi-two dimensional 

structure of the films and the relatively large conductivity provided by the conjugated Cu4APc 

cross-linkers, we suspect that this altered transport behavior may be due to a combination of 

the unique geometry of the material as well as enhanced coupling between the NCs. This and 

the large interparticle spacing (30±17 Å) are ideal for resistance-mediated sensing applications 

of vapors, operating with adsorption and swelling effects, which we have demonstrated with 

the vapor sensing measurements in Figure 2.4. Comparative electric transport measurements 

using thicker films (5-10 monolayers) yield 2-3 orders of magnitude smaller electric 

conductivities, which we attribute predominantly to large structural inhomogeneities as well as 

a potentially incomplete ligand exchange (Figure S2.6). 

 

 

CONCLUSION 

We assemble Cu1.1S NCs capped with the organic pi-system Cu4APc at the air-liquid interface 

into a quasi-2D thin film with significant long-range order and electronic coupling. The 

coupling is evidenced by a six orders of magnitude enhancement in the conductivity as a result 

of the ligand exchange. Temperature-dependent electrical transport measurements are 

discussed in the context of two-dimensional variable range hopping, the effect of the quasi-2D 

structure, and the presence of the conjugated linker. Resistivity-based vapor sensing 

measurements reveal a selective sensitivity for non-polar analytes, which is facilitated by a 

large interparticle spacing of 30±17 Å. The results of this study show how combining organic 

pi-systems and copper-deficient covellite NCs rewards electrically conductive, quasi-2D films, 

which are solution-processible and attractive for vapor sensing applications. 
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Abstract 

We report on the effect of ligand exchange of Cu2SeyS1–y as well as Cu2Se nanocrystals (NCs) 

with the organic π-system Cobalt β-tetraaminophthalocyanine (CoTAPc) and analyse changes 

in the structural, optical as well as electric properties of thin films of these hybrid materials. A 

strong ligand interaction with the surface of the NCs is revealed by UV/vis absorption and 

Raman spectroscopy. Grazing-incidence small-angle X-ray scattering studies show a 

significant contraction in the interparticle distance upon ligand exchange. For copper-deficient 

Cu2-xSe, this contraction has a negligible effect on electric transport, while for copper-deficient 

Cu2-xSeyS1-y, the conductivity increases by eight orders of magnitude and results in metal-like 

temperature-dependent transport. We discuss these differences in the light of varying 

contributions of electronic vs. ionic transport in the two materials and highlight their effect on 

the stability of the transport properties under ambient conditions. With photocurrent 

measurements, we demonstrate high optical responsivities of 200-400 A/W for CoTAPc-
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capped Cu2SeyS1–y and emphasize the beneficial role of the organic π-system in this respect, 

which acts as an electronic linker and an optical sensitizer at the same time.  

 

Introduction  

Copper chalcogenide nanocrystals (NCs) have become a subject of intense research as possible 

alternatives to the more toxic Cd or Pb-based counterparts for optoelectronic applications such 

as solar cells or photocatalysts, but also as thermoelectric converters, gas sensors, optical filters, 

superionic conductors and electro-optical devices.29, 34, 47, 108, 146-154 A majority of these 

investigations focused on the binary compounds copper selenide (Cu2Se) and copper sulphide 

(Cu2S) with variable Cu(I) deficiency (as example Cu2-xSe, 0.00 ≤ x ≤ 0.6) and tailored charge 

carrier concentration as well as charge carrier concentration dependent localized plasmon 

resonance frequency (LSPR).28, 31, 45, 46, 152, 155-159 Introducing Cu(I) vacancies is readily 

afforded by oxidizing parts of the chalcogenide sublattice into the (-I)-state, which leads to a 

loss of Cu(I)-ions and the release of free holes in the NC core.36 More recently, the ternary 

alloy, Cu2SeyS1−y, has been studied to some extent, for instance as a precursor in the synthesis 

of Cu2ZnSn(SeyS1-y)4 NCs with relevance for photovoltaic applications.39, 40, 47-49, 149, 160, 161 

Particular, with respect to the oxidation-sensitive Cu2Se system, it has been argued that 

Cu2SeyS1−y may have similar optoelectronic properties, however with improved stability in 

air.38, 162 For the binary, copper-deficient copper chalcogenide NCs, Cu2-xSe and Cu2-xS, several 

studies have been conducted to increase electronic coupling in thin films of these materials, for 

instance by removing the native ligand with smaller molecules or anions, by thermal 

decomposition of the insulating ligand sphere or by thermal doping.2, 34, 42, 43, 147, 157, 158, 163-167 

Specifically for Cu2-xSe NCs, several groups have reported that high electric conductivities (up 

to 25 S cm-1) may also be obtained without such post-synthetic ligand exchange, indicating that 

charge carrier transport in these NCs potentially follows a different mechanism than that in 

copper sulphide where ligand exchange is usually necessary.3, 8, 168 From the perspective of 

tailoring the optoelectronic properties of copper chalcogenide NCs by their surface chemistry, 

such ligand-independent transport characteristics are undesirable. However, the electric 

conductivities in Cu2Se NCs are often found to be larger than in comparable Cu2S NCs.42, 118 

 

The present study is motivated by the hypothesis that alloying Cu2S into Cu2Se may combine 

the ligand-tunable optoelectronic of pure Cu2S with the high electric conductivity of pure 

Cu2Se. To this end, we compare the optical and electrical properties of Cu2Se and Cu2-xSe with 
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Cu2SeyS1−y and Cu2-xSeyS1−y, assess the different sensitivity to oxidation in air and the effect of 

ligand exchange with the organic π-system Cobalt β-tetraaminophthalocyanine (CoTAPc). We 

show that only the ternary alloy exhibits stable electric transport properties in air. Electrical 

conductivities > 1 Scm-1 and an increasing resistivity with increasing temperature indicate 

highly efficient charge carrier transport in CoTAPc-functionalized Cu2−xSeyS1−y NC thin films. 

We demonstrate an optical responsivity of 400 A/W under 637 nm photoexcitation which is an 

exceptionally large photosensitivity for this material. We argue that this is enabled by the 

hybrid nature of the presented material, in which the organic π-system acts as the 

photosensitizer and the network of NCs provides the channel for fast transport of the 

photoexcited charges.  

 

2. Methods 

2.1. Synthesis of Cu2Se nanocrystals: 

A synthesis method adapted from Deka et al. has been used to produce quasi-spherical Cu2Se 

NCs.3 Standard Schlenk line techniques were applied during synthesis and purification. A 

mixture of 15 mL 1-Octadecene (ODE) and 15 mL Oleylamine (OLm) is degassed under 

vacuum -at 115 °C for 3 h. The mixture is cooled to room temperature, and under argon flow 

297 mg Copper (I) chloride (CuCl, 3 mmol) is added. For an additional 15 min, the mixture is 

heated to reflux under vacuum. Subsequently, the flask is filled with argon and the temperature 

is raised to 300 °C in 5-6 min. The selenium (Se) precursor solution is prepared by dissolving 

Se (117 mg, 1.5 mmol) in degassed OLm (9 mL) and refluxing under vacuum for 30 min (115 

°C). The flask is again filled with argon and the mixture is left stirring at 190-200 °C until all 

Se is dissolved. Upon dissolution, the temperature is raised to 230 °C for 20 min. To transfer 

the precursor solution with a glass syringe, the solution is cooled to 150 °C. The Se solution is 

rapidly injected into the copper precursor solution. The temperature of the reaction mixture is 

allowed to recover to 290 °C within approximately 2-3 min. The reaction is quenched 15 min 

after the injection. At 150 °C, toluene (20 mL) is injected to prevent agglomeration. The 

particles are precipitated from the growth solution with ethanol (20 mL) and methanol (10 mL) 

and centrifugation (3700g, 20 min). The precipitate is resuspended in toluene (20 mL) by 

ultrasonication (5 min). After 12 h the solution is centrifuged again (3700g, 20 min) to remove 

aggregates. The supernatant is collected and used for all further experiments.  

 

2.2. Synthesis of Cu2SeyS1–y nanocrystals: 
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The Se-precursor solution is prepared according to the reported method of Lesnyak et al.146 

158 mg of Se powder (2 mmol) is mixed with 1 mL of 1-dodecanethiol (DDT) and 1 mL of 

OLm and is heated for 1 h at 100 °C under nitrogen atmosphere. The resultant, brown alkyl 

ammonium selenide solution is cooled to room temperature and stored in a nitrogen filled glass 

vial.  

In a three-neck round-bottom flask, 262 mg of Copper(II) acetylacetonate [Cu(acac)2] (1 mmol) 

is mixed with 3.5 mL of DDT and 10 mL of OLm and the mixture is degassed under vacuum 

with vigorous stirring at 70 °C for 1 h. Next, the flask is filled with nitrogen and quickly heated 

to 220 °C. After complete dissolution, Cu(acac)2 forms a clear yellow solution. At this 

temperature, a mixture of 0.5 mL of the Se-precursor with 1.5 mL of DDT is swiftly injected 

into the flask leading to immediate color change from yellow to brown. The reaction mixture 

is kept at 220 °C for 30 min. The nanocrystals are precipitated under inert gas atmosphere by 

centrifugation of the crude reaction mixture with subsequent dissolving of the precipitate in 

chloroform. 

2.3. Thin-Film Preparation and Ligand Exchange: 

 NC thin films were prepared by assembly at the dimethylsulfoxide/N2 interface under inert 

conditions in a glovebox. The fabrication process and ligand exchange were carried out in a 

home-built Teflon chamber according to our previously reported method.34  

 

2.4. Instrumentation: 

 Scanning transmission electron microscopy (STEM, Hitachi SU 8030 microscope operating 

at 30 kV) is employed to determine the particle size and shape. Optical measurements are 

performed on solid state films on glass substrates using an UV–vis–NIR spectrometer (Agilent 

Technologies, Cary 5000). Grazing-incidence small-angle X-ray scattering (GISAXS)53, 108, 127, 

128, 169 is carried out with a laboratory instrument (Xeuss 2.0, Xenocs, France) using Cu Kα 

radiation (λ =1.5418 Å). The samples are probed with a focused X-ray beam of size 0.5 x 0.5 

mm2 at an incidence angle of 0.22⁰. The GISAXS images are collected with a 2D Pilatus 300K, 

having 487 x 619 pixels. The detector is placed at a distance of 2496 mm, determined using 

Ag-behenate as reference sample. X-ray diffraction (XRD) data from the sample is collected 

in a laboratory source (Cu Kα; GE Inspection Technologies, Germany). Raman spectra are 

acquired using a Horiba Jobin Yvon Labram HR 800 spectrometer with a CCD-1024 × 256-

OPEN-3S9 detector. Excitation for Raman is performed using a He:Ne laser (wavelength 633 
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nm). Electrical measurements are performed in a glovebox at room temperature with a 

homemade probe station using a Keithley 2634B dual source-meter unit, controlled by the 

included test script builder program. The NC films after ligand exchange are deposited on 

commercially available bottom-gate, bottom-contact transistor substrates (Fraunhofer Institute 

for Photonic Microsystems, Dresden, Germany) with interdigitated Au electrodes of 10 mm 

width and 2.5 μm channel length followed by annealing at 250 °C for 2 h under nitrogen 

atmosphere. The temperature-dependent charge transport properties as well as the 

photoresponse of the NC thin-films are measured in a Lake-Shore CRX-6.5K probe station at 

a pressure of 5×10−6 mbar, equipped with a Keithley 2636B dual source-meter unit and a Lake 

Shore temperature controller (model 336). As an excitation source, single mode fiber-pigtailed 

laser diodes operated by a compact laser diode controller CLD1010 by Thorlabs were used: A 

638 nm laser diode with a maximal output power of 70 mW and a 408 nm diode with a maximal 

output power of 30 mW. Losses to this theoretical optical power output due to scattering, 

inefficient coupling into the optical fiber, decollimation of the beam etc. were determined by a 

calibration sample and an optical power meter to obtain the total absorbed optical power at the 

sample surface. 

 

Results and Discussion  

The TEM images in Figure 3.1a and 3.1b depict the morphologies of the as-synthesized 

alloyed Cu2SeyS1-y and Cu2-xSe NCs with relatively uniform size of 7.0 ± 0.8 nm and 12.2 ± 

1.9 nm, respectively. All NCs appear well separated by the native OLm capping ligand. Powder 

X-ray diffraction reveals that the Cu2SeyS1-y are in the hexagonal phase (Figure S3.1).47 We 

determine the composition of the alloyed NCs by energy-dispersive X-ray spectroscopy (EDX) 

as Cu2.2Se0.68S0.32 (Figure 3.1c). We note that colloidal NCs often exhibit an excess of cations 

on the surface, such that the actual stoichiometry of the inner core may contain less copper than 

suggested by our EDX result.  Figure 3.1d shows Raman spectra for solid state films of both 

NC materials coated with the native OLm ligand. In good agreement with previous reports, the 

most intense resonance peak is observed at around 260 cm-1 for both samples, corresponding 

to the Se–Se stretch vibration.159, 170 For the films composed of the ternary Cu2SeyS1-y NCs, 

two additional peaks are observed, one at 450 cm-1 corresponding to the S-S stretching mode, 

and another peak at 368 cm-1 due to the S-Se stretching mode.171 Consistent with the EDX data, 

the intensity of the Se-Se band is much stronger than that of the S-S and S-Se stretching 

vibration, suggesting that the alloy is rich in selenium.  
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Figure 3.1 TEM images of (a) 7.0 ± 0.8 nm Cu2SySe1-y NCs and (b) 12.2 ± 1.9 nm Cu2Se NCs. (c) EDX 

spectrum of the Cu2SySe1-y NCs. (d) Raman spectra of as-prepared Cu2Se and Cu2SeyS1-y nanocrystal 

thin films (orange curve and green curve, respectively). (e) Raman spectra of CuSeS nanocrystal thin 

films before and after ligand exchange (green curve and blue curve, respectively). 

 

To enhance chemical and electronic coupling in solid-state films of both NC materials, we 

exchange the native OLm ligand with the multidendate cross-linker CoTAPc. We choose this 

linker because earlier reports have shown that tetraaminophthalocyanines are suitable to 

replace oleylamine from the surface of Cu1.1S NCs and drastically improve charge carrier 

transport.34 The ligand-exchanged NC films exhibit a smooth surface with an average height 

difference of 3-4 NCs and 1 NC monolayer for Cu2SeyS1–y and Cu2Se, respectively (Figure 

S3.2). We monitor the effect of this ligand exchange by Raman spectroscopy in 3.1e. (This 

Figure exemplifies the exchange for Cu2SeyS1–y NCs, but the same spectral features between 

700 – 1700 cm-1 are also obtained with Cu2Se after ligand exchange.)  In accordance with 

previous studies, we interpret the strong bands appearing at 747, 1124, 1202, 1337, 1447, 1530 

and 1605 cm−1  with vibrational modes of CoTAPc, which is supporting evidence for the 



58 

 

presence of the new linker in the NC film.172 The peaks at 300 and 513 cm-1 belong to the Si 

substrate. Fourier-transform infrared spectroscopy furthermore reveals significant changes 

after exposure to CoTAPc, most notably the disappearance of characteristic OLm vibrations at 

1660 and 3350 cm−1. (For details, see Figure S3.3 in the Supporting Information.) 

We determine the structural details of the ensemble of the two NC samples as well as the effect 

of ligand exchange with CoTAPc by GISAXS in Figure 3.2. The intense in-plane scattering 

truncation rods, extended along the qz-direction indicate the formation of superlattices with 

long-range in-plane order. For OLm-capped Cu2-xSe NCs (Figure 3.2a+c), we find the first 

order in-plane correlation peak at qy = 0.043 Å-1, a second order peak at qy = 0.078 Å-1 and a 

barely visible third signal at qy ≈ 0.9 Å-1. These relative positions in qy can be interpreted as 

the formation of a hexagonal lattice (q1:q2:q3 = 1: √3: 2) with in-plane lattice constant a = 16.8± 

0.1 nm. After ligand exchange with CoTAPc (Figure 3.2b+c), the in-plane correlation peaks 

shift to higher values, that is, smaller lattice constants, and we find qy = 0.048 Å-1, 0.084 Å -1 

and a shoulder at 0.096 Å -1. These values are again in agreement with a hexagonal lattice, but 

with a contracted in-plane lattice constant a = 15.1± 0.1 nm. We attribute the contraction of 1.7 

nm to the replacement of OLm by the smaller CoTAPc ligand. The improved signal-to-

background ratio after ligand exchange indicates a higher degree of long-range order as a result 

of cross-linking with the rigid organic π-system. With respect to the average particle diameter 

of 12.2± 1.9 nm (Figure 3.1b), the interparticle spacing before ligand exchange is 4.6±1.9 nm, 

which can be interpreted with two adjacent, non-intercalated ligand spheres of OLm. After 

cross-linking with CoTAPc, the interparticle spacing is reduced to 2.9±1.9 nm, which is 

equivalent to 1-2 times the molecular length of CoTAPc.  Since the exact binding mode of 

CoTAPc to the surface of the NCs is not known, the latter finding could either be explained 

with a side-on binding of stacks of CoTAPc or with head-to-tail cross-linking of a CoTAPc 

monolayer.     

Similar GISAXS patterns are also obtained for Cu2-xSeyS1-y before and after ligand exchange 

with CoTAPc (Figure 3.2d+e). The first-order correlation peak shifts from 0.074 Å-1 with 

OLm functionalization to 0.082 Å-1 after ligand exchange (Figure 3.2f). Under the assumption 

of a hexagonal lattice, this corresponds to a center-to-center distance between the NCs of 

9.8±0.1 nm for OLm functionalization and 8.8 ± 0.1 nm for CoTAPc as the ligand. With a 

particle diameter of 7.0±0.8 nm, the interparticle distances are 2.8±0.8 nm for OLm and 

1.8±0.8 nm for CoTAPc. The latter result may be viewed as indirect supporting evidence that 

CoTAPc binds preferentially in a head-to-tail cross-linking manner between the surfaces of 
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two adjacent NCs as the width of the ligand sphere is precisely one molecular length of 

CoTAPc.   

 

Figure 3.2 GISAXS patterns of self-assembled (a) Cu2Se/OLm, (b) Cu2Se/CoTAPc, (d) Cu2SeyS1-y 

/OLm and (e) Cu2SeyS1-y /CoTAPc films. (c) and (f) extracted line profiles from the corresponding 

GISAXS images on the left in (a)/(b) and (d)/(e), respectively, as a function of the in-plane scattering 

vector qy. To improve the statistics of the line profiles, the ROI (white dotted box) was integrated along 

the qz direction. 

 

For charge transport studies, we deposit both copper chalcogenide NC films on silicon oxide 

substrates with pre-patterned Au contacts and record the two-point probe current–voltage (I–

V) characteristics at room temperature. In Figure 3.3a+b, we focus on a comparison of the I/V 

characteristics of both materials before and after ligand exchange with CoTAPc and 

before/after oxidation by exposure to air. The left panels in Figure 3.3 represent the 

characteristics of the ternary copper chalcogenide NCs, while the right panel characterizes the 

binary NCs. The color code is the same for both materials: green = OLm capping, reduced; 

yellow = OLm capping, oxidized; blue = CoTAPc capping, reduced; red = CoTAPc capping, 

oxidized. Oxidation leads to copper vacancies and a non-stoichiometric composition in copper 

selenide NCs and drastically increases the density of free holes, which manifests in degenerate 

p-type doping as well as the occurrence of an LSPR in the near-infrared (NIR).45, 46, 151 
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Therefore, we monitor the degree of vacancy doping for both samples with vis/NIR absorption 

spectroscopy in Figure 3.3c+d. We note a broad band centred at 1250 nm for oxidized Cu2–

xSeyS1–y (for both OLm and CoTAPc ligands), 1300 nm for oxidized OLm-capped Cu2-xSe and 

1600 nm for oxidized Cu2-xSe capped with CoTAPc, which we interpret as LSP resonances. In 

the reduced state, both materials show a negligible LSPR signal below 2000 nm, indicative of 

a low carrier density and a near stoichiometric copper content. In both ligand exchanged 

samples, the HOMO-LUMO transition of CoTAPc invokes a strong absorption band between 

600-800 nm. (See Supporting Information for the absorption spectrum of pure CoTAPc. Figure 

S3.2) Before ligand exchange, charge transport is poor in both materials (green curve) with 

conductivities on the order of 10-8 S cm-1 for Cu2SeyS1–y and 10-4 S cm-1 for Cu2Se. After surface 

functionalization with CoTAPc, both materials behave similar and the conductivities increase 

dramatically to 1 S cm-1 and 5 S cm-1, respectively (blue curve). In contrast, when studying the 

effect of oxidation in air for several hours (Cu2-xSe) or days (Cu2–xSeyS1–y), we observe a 

different behavior for Cu2–xSeyS1–y vs. Cu2-xSe. While the increase of copper vacancies has a 

negligible effect on the transport properties of OLm-capped Cu2–xSeyS1–y, it increases the 

conductivity of the OLm-capped Cu2-xSe to 6 S cm-1. Oxidizing the CoTAPc-capped NC films 

has no significant effect on the conductivity of either of the two samples (Figure S3.3). 

  

The structural characterization in Figure 3.2 demonstrates that the highly conductive OLm-

capped Cu2-xSe NCs are well-separated from each other (4.6±1.9 nm), such that necking and 

the formation of percolative pathways are an unlikely explanation for such efficient charge 

carrier transport. Similar widths of the OLm ligand sphere are also observed for Cu2-xSeyS1–y 

(2.8±0.8 nm, this work) and Cu1.1S NCs (4.1±1.7 nm), which exhibit negligible conductivities 

(10-8 S cm-1 and 10-9 S cm-1, respectively).34 We note that previous reports on drop-casted, 

oxidized OLm-capped Cu2-xSe NCs revealed similar or even larger conductivities, 

corroborating our finding here that Cu2-xSe NCs show uniquely different transport properties 

compared to Cu2–xSeyS1–y or Cu1.1S NCs.3, 8, 168 It is furthermore surprising that the significant 

contraction of the Cu2-xSe NC ensemble by 1.7 nm upon ligand exchange has no effect on the 

conductivity (Figure 3.3b yellow vs. red curve). This speaks against electronic (hopping) 

conduction as the dominant transport mechanism in OLm-capped Cu2-xSe NC thin films, which 

is strongly affected by a change of the hopping distance.173 We hypothesize that ionic 

conduction of mobile copper ions may play a key role here. Very large ionic mobilities with 

diffusion constants > 10-5 cm2s-1 and superionicity have been reported for Cu2-xSe, which can 

result in electric conductivities > 1 Scm-1.151, 174  Although it is not immediately obvious how 
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such ionic conductivity would be affected by the OLm ligand sphere, superionicity is an 

important feature of Cu2-xSe NCs and likely to be responsible for the unusually large electric 

conductivities. This would explain why only a reduction in copper vacancies can significantly 

reduce the conductivity in OLm-capped Cu2Se NCs. After surface-functionalization with 

CoTAPc, electronic conduction appears greatly improved, such that the conductivity is now 

only weakly affected by the density of copper vacancies (Figure 3.3b blue vs. red curve).    

An alternative explanation which we briefly consider here involves the formation of 

conductive, percolative pathways consisting of copper oxide nanostructures. Oxidation in air 

of Cu2Se NCs results in the release of Cu(I)-ions, which react with oxygen to copper oxide 

NCs.45 The conductivity of some copper oxide phases (which are mostly semiconducting) is 

rather high, and it is possible that successive release of Cu(I) ions from the Cu2Se NCs leads 

to a continuous network of this conductor. Once formed, charge transport across this network 

is expected to be unaffected by the addition of [Cu(CH3CN)4]PF6, which is a powerful reducing 

agent for Cu2-xSe NCs (via filling of Cu(I) vacancies), but not for copper oxide. However, we 

find that films of Cu2-xSe/OLm NCs show a drastically reduced electric conductivity upon 

treatment with [Cu(CH3CN)4]PF6, which speaks against this alternative explanation (see 

Figure S3.4).  

The transport characteristics of the ternary Cu2SeyS1–y NC ensemble appears to be dominated 

by electronic conduction with a strong dependence on the hopping distance (Figure 3.3a 

yellow vs. red curve and green vs. blue curve) and weak dependence on the density of copper 

vacancies (Figure 3.3a green vs. yellow curve and blue vs. red curve). In view of a recent report 

on electric transport in similar Cu1.1S NC ensembles, the Cu2SeyS1–y NCs investigated here 

resemble much more that of the binary sulphides than the selenides.34  
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Figure 3.3(a) Current-voltage (I-V) curves of Cu2SeyS1–y as well as Cu2–xSeyS1–y and (b) of Cu2Se and 

Cu2-xSe. (c) Corresponding optical absorption spectra of the ternary and (d) binary copper 

chalcogenides. The color code is the same in all four panels: green = OLm capping, reduced; yellow = 

OLm capping, oxidized; blue = CoTAPc capping, reduced; red = CoTAPc capping, oxidized. 

 

To further understand the electronic properties of CoTAPc-capped Cu2SeyS1–y NCs, we 

perform temperature-dependent resistivity measurements under high vacuum (Figure 3.4a). 

Throughout the entire temperature regime of 20-300 K, we observe monotonically increasing 

resistance with temperature, reminiscent of metallic behavior. Such characteristic is rarely 

observed in copper chalcogenide NC ensembles, and only in cases where electronic coupling 

is large enough to overcome the temperature-activated hopping regime.43, 175   
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Figure 3.4(a) Temperature-dependent resistivity of Cu2SeyS1-y functionalized with CoTAPc. (b) 

Time-dependent current at 200 mV of a Cu2SeyS1-y /CoTAPc film during three excitation periods to 

21 μW of 408 nm light (blue), 20 μW of 637 nm light (orange) and 21 μW of 848 nm (green). 

 

In light of the tunable optical absorption properties, copper chalcogenide NCs are often 

considered for applications where light-to-electric current conversion is important, such as 

photovoltaics or photocatalysis. However, the photocurrent behaviour of these materials 

showed only moderate photosensitivities so far.30, 41, 78, 176 In Figure 3.4b, we display the 

ON/OFF photocurrent characteristics of Cu2SeyS1–y /CoTAPc NCs during three excitation 

periods with 408 nm, 637 nm and 848 nm laser diodes at roughly the same direct optical power 

of ~20 µW. At a bias of 200 mV, we find a photocurrent of ~4 mA and ~ 8mA, respectively, 

corresponding to a responsivity of 200 A/W at 408 nm and 400 A/W at 637 nm. The 

reversibility of the transport characteristics after each excitation period indicates that the 

increased current is indeed a photocurrent and not, as recently observed for copper sulphide 

NCs, an irreversible photo-doping effect.165 We explain such unprecedented optical 

responsivity with the presence of CoTAPc, which shows strong absorbance at all three 

excitation wavelengths (See Supporting Information). We suggest that CoTAPc sensitizes 

Cu2SeyS1–y NCs for the absorption of photons at these wavelengths to form singlet excitons in 

the organic pi-system, which are split at the organic-inorganic interface and quickly swept to 

the source-drain electrodes under a small bias. For comparison, we have also measured the 408 

nm photocurrent response for OLm-capped Cu2SeyS1–y NCs, that is, without any CoTAPc 

sensitizers (see Supporting Information Figure S3.5). Here, the responsivity is only on the 

order of 3 µA/W. We conclude that the dramatic increase in responsivity by almost 8 orders of 
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magnitude observed after functionalizing Cu2SeyS1–y NCs with CoTAPc is due to the combined 

effect of better electronic coupling and the additional absorption of the organic pi-system. Thus, 

CoTAPc acts as an electronic cross-linker and optical sensitizer for the NCs.           

 

Conclusion 

We have measured the structural, optical and electric properties of ternary Cu2SeyS1-y NC solids 

capped with oleylamine and the organic pi-system Cobalt β-Tetraaminophthalocyanine 

(CoTAPc), respectively, and compared it to the binary compound Cu2Se. While the structural 

and optical response to ligand exchange and oxidation in air is rather similar for both materials, 

we have observed substantial differences in the charge carrier transport properties. Charge 

transport in Cu2SeyS1-y NC solids is dominated by electronic conduction, very sensitive to 

structural changes and largely unaffected by oxidation in air. Exchanging the surface ligand 

oleylamine with the organic π-system not only drastically increases electronic coupling in the 

Cu2SeyS1-y NC ensembles but also invokes an increase in the optical responsivity by eight orders 

of magnitude. Thus, ligand exchange with CoTAPc enables high conductivity and large 

responsivity in Cu2SeyS1–y NC films, which are much more robust against oxidation than their 

binary Cu2Se analogues.  
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Abstract 

We report on the in-situ monitoring of the formation of conductive superlattices of Cu1.1S 

nanodiscs via cross-linking with semiconducting cobalt 4,4′,4″,4″,4‴-

tetraaminophthalocyanine (CoTAPc) molecules at the liquid/air interface by real-time grazing 

incidence small angle X-ray scattering (GISAXS). We determine the structure, symmetry and 

lattice parameters of the superlattices, formed during solvent evaporation and ligand exchange 

on the self-assembled nanodiscs. Cu1.1S nanodiscs self-assemble into two-dimensional 

hexagonal superlattice with a minor in-plane contraction (~ 0.2 nm) in the lattice parameter. A 

continuous contraction of the superlattice has been observed during ligand exchange, 

preserving the initial hexagonal symmetry. We estimate a resultant decrement of about 5% in 
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the in-plane lattice parameters. The contraction is attributed to the continuous replacement of 

the native oleylamine surface ligands with rigid CoTAPc. The successful cross-linking of the 

nanodiscs is manifested in terms of the high electrical conductivity observed in the 

superlattices. This finding provides a convenient platform to understand the correlation 

between the structure and transport of the coupled superstructures of organic and inorganic 

nanocrystals of anisotropic shape.  

 

KEYWORDS: nanocrystals, self-assembly, GISAXS, superlattice, liquid/air interface 

Self-assembly of nanocrystals (NCs) into ordered structures has garnered increased attention 

due to their astonishing properties which are valuable for fundamental studies and 

technological devices.53, 54, 108, 109, 177-184 Most of the as-prepared NCs are usually spherical in 

shape and  produce essentially non-conductive superlattice as they feature insulating surface 

ligands. Relatively little research has been carried out to improve the physical properties of the 

superlattices by tuning the shape of the NCs, passivating the surface of the NCs and cross-

linking with organic semiconductor molecules (OSC).52, 185-187 Superstructure of copper sulfide 

nanomaterials have demonstrated generous use for their rich transport and plasmonic 

properties.2, 36, 43, 106, 115 The controlled preparation of two dimensional ordered and conductive 

assemblies of NCs with anisotropic shape is one of the challenges in nano-fabrication as the 

overall properties of the assemblies depend on their shape and orientation.188-190 Recently, the 

physical properties of  nanoparticle superstructures coupled  electronically with OSC molecules 

has been investigated by ex-situ measurements.34, 55 In such a typical superlattice, the OSC 

molecules bind at certain facets of the NCs with their reactive groups as they have a strong 

preference to couple between NCs. This might promote high charge carrier transport across the 

superstructure through resonant energy levels. In spite of the growing importance in the field 

of fabrication of conductive superstructures by tuning the shape of the NCs, the exact formation 

mechanism revealing the process is still poorly understood. Here, we use this approach to 

fabricate the superlattice with interesting transport properties by a) tuning the shape of the NCs, 

b) passivating the NCs surface, and c) cross-linking with organic semiconducting (OSC) 

molecules and followed the structure formation in real time. 

 

We choose in-situ grazing incidence small angle x-ray scattering (GISAXS)108, 128, 169, which is 

particularly relevant in elucidating the structure formation in real-time during the involved 

chemical processes, starting from the self-assembly to ligand exchange. In this context, 
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GISAXS is crucial to determine the in-situ structural changes in the thin film at the liquid/air 

interface. We report the in-situ formation of conductive hexagonal superlattices of Cu1.1S 

nanodiscs (NDs) by exchanging the native oleylamine (Olm) surface ligand with CoTAPc at 

the dimethyl sulfoxide (DMSO)/air interface. Initially, the nanodiscs (core diameter 12.7 ± 0.5 

nm and thickness 5.8 ± 0.2 nm) self-assemble into a two dimensional (2D) hexagonal 

superlattice after spreading them on the liquid surface with almost unaltered lattice parameter. 

A continuous contraction of the in-plane lattice parameters occurs during ligand exchange 

preserving the 2D hexagonal structure on liquid surface. The replacement of Olm with CoTAPc 

ligands in these superlattice films is confirmed by ex-situ Raman spectroscopy. A dramatic 

increase in the conductivity by more than 6 orders of magnitude of the ligand exchanged films 

suggests that the phthalocyanine derivative acts as an electronic linker between the NDs.  

 

Self-assembly of oleylamine-capped nanodiscs at the DMSO/air interface:  

Self-assembly of Olm-capped Cu1.1S NDs (Figure S4.1a) has been monitored by dispersing 

5μM, 200 μL NC solution in toluene at the DMSO/air interface in a custom-built Teflon cell 

of surface area 3x4 cm2. In-situ GISAXS patterns are collected as a function of waiting time at 

an interval of 4-6 minutes during the self-assembly process. Figure 4.1a and 4.1b show the 

GISAXS patterns for 5 minutes and 240 minutes of waiting period whereas others at 

intermediate times are shown in the Supporting Information (Figure S4.2). The appearance of 

several scattering peaks along the in-plane direction (qy) corresponds to the formation of order 

superlattices. The in-plane peak positions has a ratio of 1: √3 :2 - which is the characteristic 

for a 2D hexagonal superlattice and are indexed to the (10), (11) and (20) lattice planes. During 

the self-assembly process, all the GISAXS patterns show resemblance among themselves 

which illustrates that the superlattices remain in a hexagonal geometry for the whole period of 

assembling time. The scattering peaks in the GISAXS patterns are fitted by the distorted wave 

Born Approximation (DWBA)127, 169, 191, 192 method considering a model of 2D hexagonal 

superlattice with suitable lattice parameters (a, b, c = Inf., α=β=90⁰, γ=120⁰, θc=0.1⁰) and P6mm 

space group (S.G.) symmetry oriented with [001]SL-axis perpendicular to the liquid substrate. 

We found a small contraction in lattice parameter (~ 0.2 nm) during the first 10 minutes first 

of self-assembly and an almost unaltered of a=b= 16.8 ± 0.1 nm for rest of the self-assembly 

period (60 minutes) as shown in Figure 4.1c. The obtained lattice parameters also imply that 

the nanodiscs (NDs) assemble into 2D hexagonal superlattice with an edge-to-edge 

configuration. Figure 4.1d shows that the in-plane scattering peaks have no shift in the 
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extracted line profiles of the GISAXS patterns, obtained at different time intervals, except first 

two points (5 and 30 minutes).  

 

Figure 4.1a) GISAXS patterns of the NDs during self-assembly for a waiting period of a) 5 min. and 

b) 240 min. The white circles (transmitted) and red crosses (reflected) are the simulated diffraction 

patterns considering a hexagonal superlattice along the in-plane direction. c) Temporal evolution of the 

lattice constants. d) In-plane line profiles along -qy through the {10} peak of the GISAXS patterns.    

 

Self-assembly of the nanodiscs during ligand exchange at the DMSO/air interface:   

To gain insight into the ligand exchange process of the self-assembled Cu1.1S NDs (already in 

a 2D hexagonal superlattice) at the DMSO/air interface, we inject CoTAPc ligand solution in 

the bulk DMSO and investigate the structural change as a function of reaction time by in-situ 

GISAXS measurements. We recorded a series of GISAXS patterns in a regular time interval 

of 4-6 minutes during ligand exchange and Figure 4.2a-d represnts four selected GISAXS 

patterns, collected at -42, 6, 24 and 276 minutes, respectively. It should be noted that in the 

present case, the reference time (t = 0) is the time of ligand injection in the bulk liquid subphase. 
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During ligand exchange, the scattering pattern of all the GISAXS images including the images 

in the intermediate time periods (Figure S4.3) reveal a high resemblance with the patterns 

collected during self-assembly (Figure 4.1, 4.2a). This clearly indicates that the CoTAPc 

ligands do not significantly change the symmetry of the superlattice during ligand exchange at 

the liquid/air interface. To determine the transformation of the lattice parameter as a function 

of reaction time, we again extract the in-plane lattice parameters by simulating and fitting the 

scattering patterns of each images taking into account DWBA. Additionally, we determine the 

lattice parameter at different time period, from the peak position of the corresponding GISAXS 

line profiles (Figure 4.2e) passing through the first correlation peak (-10) along qy-direction. 

The patterns correspond to 2D hexagonal superlattice with P6mm SG symmetry and oriented 

with [001]SL-axis perpendicular to the liquid surface with varied lattice parameters (Table 2). 

The temporal evolution of the in-plane superlattice parameters (δ) after ligand injection is 

presented in Figure 4.2f. It illustrates that the lattice parameter shrinks almost linearly from 

16.75 ± 0.1 to 16 ± 0.1 nm during the time period of 60 min. (refer Figure 4.2f) with a rate of 

0.18 Å/min. For the rest of the waiting period (276 minutes), we have not observe any further 

major contraction of the superlattice. It is important to note that the hexagonal symmetry of the 

NDs superlattice was conserved during the superlattice contraction via ligand exchange with 

CoTAPc. 
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Figure 4.2 GISAXS patterns of the NDs during ligand exchange for a waiting period of a) -42 min, b) 

6 min, c) 24 min, and d) 276 min. The red crosses and white circles are the simulated diffraction patterns 

considering a hexagonal superlattice along the in-plane direction. e) In-plane line profiles along -qy 

through the {10} peak of the GISAXS patterns. Peak intensities have been scaled up for clarity. f) 

Temporal evolution of the lattice constants with elapsed time. 
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Ex-situ measurements of the ligand exchanged films: 

 The Raman vibrational spectrum of the native and ligand exchanged superlattices are shown 

in Figure 4.3a. The NDs capped with oleylamine ligand shows a sharp peak at 471 cm−1, which 

can be attributed to the S-S stretching vibration in crystalline CuS nanoparticles (NPs).125 

Several new peaks appeared at 747, 1105, 1336, 1447, 1533 and 1607 cm−1 are due to presence 

of CoTAPc in the sample through ligand exchange (red curve Figure 4.3a).193 These Raman 

spectra of both are in good agreement with the existing literature on crystalline copper sulfide 

and CoTAPc.34, 125, 193 Figure 4.3b shows the obtained current-voltage (I-V) characteristics in 

semi-log scale from the corresponding samples. We observe an ohmic behavior of the current 

with increasing bias voltage. The conductivity of the cross-linked superlattice is higher by 

about 6 orders of magnitude with respect to the native Olm capped film.  

 

 

Figure 4.3a) Raman spectra of Cu1.1S nanodisc thin films before (blue) and after ligand exchange (red). 

b) Current-voltage (I-V) characteristics of Cu1.1S ND films. Blue circles: Olm-capped Cu1.1S ND films 

and red circles: Cu1.1S ND film after ligand exchange. The graph is plotted on a logarithmic scale for 

better comparison. Inset: photograph of a substrate with Au contacts for I-V measurements. 

 

We determined the structure of the colloidal nanocrystal solution undergoing self-assembly via 

slow solvent evaporation and the superlattice experiencing ligand exchange by CoTAPc 

ligands as a function of reaction time (276 minutes) and compared our results with few earlier 

works on the self-assembly of anisotropic nanoparticles. Recently, Maiti et al. observed the in-

situ formation of disc shape single crystalline CuS nano-objects and their self-assembly at the 

liquid-liquid interfaces.11 Korgel group reported the self-assembly of disc shape CuS 
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nanoparticles by using time resolved SAXS and GISAXS, showing the formation of isotropic-

to-columnar arrays during solvent evaporation.194 Li et al. also observed the columnar self-

assembly of Cu2S hexagonal nanoplates in which Sn-X complexes act as the native inorganic 

surface ligands.71 In contrast to the previous works on the disc shape nanocrystals, we have not 

found any strong scattering peaks along the out-of-plane (qz) direction which undoubtedly rule 

out the possibility of the formation of columnar assembly by the Cu1.1S NDs. We have not seen 

similar events even after adding external crosslinking molecules. In our study, we find a very 

small (~ 0.2 nm) contraction of the nanocrystal superlattice parameter during self-assembly via 

solvent evaporation which is in contrary to the solvent evaporation induced assembly of 

concentrated solution of spherical PbS NPs (diameter 6.8 nm) at the acetonitrile/air interface.53 

The self-assembly of NCs are attributed to the capillary forces present in the liquid surfaces.53 

On the other hand, this small contraction is consistent with the recent results on cubic PbS NCs 

(edge length 11.8 nm).54 They proposed that the effective capillary forces are not sufficient 

enough to displace the relatively large size particles. 53, 195, 196 We believe that in the present 

case, the small contraction during solvent evaporation is also due to the ineffective capillary 

forces acting on the large diameter (12.7 nm) disc-shape particle at air/liquid interface. 

In our previous ex-situ study (prepared in inert atmosphere/glove box), we observed that similar 

NDs organise into hexagonal superlattice for self-assembled (without ligand exchange) and 

ligand exchanged films with Cu-4,4′,4″,4″,4‴-tetraaminophthalocyanine (CuTAPc) with 

similar lattice parameters.34 In contrary, here we monitored the in-situ self-assembly and ligand 

exchange of similar nanodiscs with CoTAPc as adligands directly at the air/liquid interface 

using synchrotron X-ray scattering to know the formation kinetics of the structural 

organization. For an understanding of possible electronic consequences of the structural 

changes in Cu1.1S ND superlattices, it is elucidating to correlate the structural, optical and 

transport behaviour after ligand exchange. While Raman spectra (Figure 4.3a), in particularly 

the new vibrational peaks above 1000 cm-1
, show that the strongly-insulating Olm ligands are 

replaced by CoTAPc,34 this removal enhances the current by six orders of magnitude (refer 

Figure 4.3b). The significant enhancement in conductivity depicts the efficient charge 

transport in the coupled superstructures by decreasing the inter-particle separation and 

increasing electronic coupling among the NDs via semiconducting ligands.   

In summary, we have monitored the real time structural evolution of Cu1.1S nanodisc 

superlattices at the DMSO/air interface during self-assembly followed by ligand exchange with 

CoTAPc molecules. The nanodiscs self-assemble into 2D hexagonal superlattices and their 
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lattice parameters does not change significantly during self-assembly. In contrast, the in-plane 

lattice parameters of the superlattice contracts isotropically during ligand exchange by 

preserving initial structural symmetry with a resultant shrinkage of about 5%. We attribute this 

contraction to the continuous replacement of oleylamine surface ligands by small CoTAPc 

molecules. Finally, we demonstrate that the OSC molecules act as electronic coupling agents 

between the nanodiscs to promote high charge carrier transport across the order superlattices.  
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Conclusions 

In this thesis work, we demonstrated an approach to increase the conductive properties of NCs 

films by crosslinking the particles with multivalent organic semiconductor molecules. Ideally, 

the film not only gets mechanically more stable through chemically connecting the NCs, but 

also shows increased electronic conductance. We have carried out spectroscopy studies to 

explore the direct evidence of ligand attachment with NCs surface. The structural changes 

before and after ligand exchange has been confirmed by the Grazing incidence x-ray scattering 

(GISAXS) techniques. Also GISAXS and the microscopy studies confirm the superlattice of 

the ligand exchanges films formed at liquid-air interfaces. We observed that the direct coupling 

by means of increased electrical conductivity by several order of magnitude by two-point probe 

electrical measurements. The charge carrier conduction mechanism is revealed by temperature-

dependent electrical transport measurements of the NCs superlattices films. 

We have demonstrated ligand exchange of Cu1.1S nanocrystals with organic semiconductor 

Cu4APc molecule yields a quasi-2D thin film with significant long-range order and 

electronically coupled network. UV-vis-NIR and Raman spectroscopy results exhibit the 

presence/binding of the organic semiconductor ligand between/to the Cu1.1S nanocrystals. The 

GISAXS measurements confirms the contraction of the interparticle spacing is to a net decrease 

of 11 Å. It is noteworthy that even after this contraction, the average interparticle spacing is 

30±17 Å and, thus, the NCs remain spatially well separated. 2-point probe conductivity 

measurements reveal a dramatic increase in conductivity by more than six orders of magnitude 

after ligand exchange, suggesting that the phthalocyanine derivative acts as an electronic linker. 

Temperature-dependent electrical transport measurements indicated that at low temperatures, 

transport across the NCs arrays occurs via two-dimensional variable range hopping. The effect 

of the quasi-2D structure and the presence of the conjugated linker in this context of charge 

transport mechanism are discussed in this work. Resistivity-based vapor sensing measurements 

reveal a selective sensitivity for non-polar analytes, which is facilitated by a large interparticle 

spacing of 30±17 Å. The results presented in this work show how combining organic pi-

systems and copper-deficient chalcocite NCs rewards electrically conductive, quasi-2D films, 

which are solution-processible and attractive for vapor sensing applications. 

We have measured the structural, optical and electric properties of ternary Cu2SeyS1-y NC solids 

capped with oleylamine and the organic semiconductor molecule CoTAPc, respectively, and 

compared it to the binary compound Cu2Se. While the structural and optical response to ligand 
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exchange and oxidation in air is rather similar for both materials, we have observed substantial 

differences in the charge carrier transport properties. Charge transport in Cu2SeyS1-y NC solids 

is dominated by electronic conduction, very sensitive to structural changes and largely 

unaffected by oxidation in air. Exchanging the surface ligand oleylamine with the organic π-

system not only drastically increases electronic coupling in the Cu2SeyS1-y NC ensembles but 

also invokes an increase in the optical responsivity by eight orders of magnitude. Thus, ligand 

exchange with CoTAPc enables high conductivity and large responsivity in Cu2SeyS1–y NC 

films, which are much more robust against oxidation than their binary Cu2Se analogues.  

In-situ GISAXS is a powerful technique to probe the superlatice formation of NCs. We have 

obtained the direct evidence of superlattice formation of anisotropic Cu1.1S nanocrystals at the 

liquid-air interface. We have monitored the structural evolution of a Cu1.1S nanodiscs 

superlattices on the DMSO surface during self-assembly followed by ligand exchange. We 

used the Rectangular-shape CoTAPc cross-linker to exchange the native Olm ligands and 

investigated the in-situ structural changes of the superlattices. We determined the superlattice 

parameters from the scattering patterns by fitting the peaks and monitor the orientation of the 

atomic lattices of NDs within the superlattice. We arrive at the following conclusions: The 

nanodiscs order into hexagonal superlattice and the lattice parameter does not change 

significantly during self-assembly through solvent evaporation. A continuous in-plane 

contraction of the superlattice occurs during ligand exchange, which is attributed solely to the 

continuous removal of the Olm by the smaller CoTAPc molecules. The superlattice contracts 

isotropically, preserving the initial structural symmetry with a resultant contraction of lattice 

parameter by 5%. The NDs within the superlattice have preferential orientation with respect to 

the liquid surface. The coupling of adjacent NDs via OSC molecules produces electronically 

coupled highly conductive and order superlattices.   
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5. Collaborated Publication 1 

 Understanding the Formation of Conductive Mesocrystalline Superlattices 

with Cubic PbS Nanocrystals at the Liquid/Air Interface 

  

(Santanu Maiti, Sonam Maiti, Andre Maier, Jan Hagenlocher, Andrey Chumakov, Frank Schreiber, Marcus 

Scheele published in J. Phys. Chem. C 2018, DOI: 10.1021/acs.jpcc.8b11518) 

 

We report the formation of conductive mesocrystalline superstructures of cubic PbS 

nanocrystals (NCs) through directional cross-linking with organic semiconductors at the 

liquid/air interface monitored simultaneously by in situ grazing incidence small angle X-ray 

scattering and grazing incidence X-ray diffraction. We determine the superlattice type, its 

symmetry and parameters, and the atomic orientation of NCs from the time-resolved scattering 

patterns. The superlattice contraction follows an exponential decay during ligand exchange, 

preserving always the two-dimensional square geometry. We attribute the contraction to the 

continuous replacement of oleic acid with smaller cobalt/copper 4,4′,4″,4‴-

tetraaminophthalocyanine molecules. In these superlattices, the NCs are directed with a [100]AL 

axis perpendicular to the liquid surface for the whole assembly period. The kinetics and 

structural results provide a direct correlation between the superstructure and their atomic 

orientation on the liquid surface during self-assembly followed by ligand exchange. 

 

Methods 

Synthesis of cubic PbS Nanocrystals: The details on the synthesis of PbS nanocrystals can 

be found in the original publication. 

Synthesis of Co/CuTAPc: The details on the synthesis of Co/CuTAPc can be found in the 

original publication. 

Formation of NC Films at the Liquid/Air Interface and Ligand Exchange: At first, the 

nitrogen-flushed chamber is filled up to 5 mm below the window edge with acetonitrile. 200 

μL of the 2.5 μM NC solution in a mixture of 1:2 hexane (97%, extra dry, nitrogen flushed, 

Acros Organics) to octane (99+%, extra dry, nitrogen flushed, Acros Organics) is dispersed on 

top of the acetonitrile at a rate of 1 mL/min. A nanoparticle film forms within a few seconds.53 

After beam alignment onto the liquid surface, the measurements before ligand injection are 
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done. After the investigations of the OA-capped NC film are finished, a 1 mg/mL solution in 

dimethyl sulfoxide (DMSO) of Co/CuTAPc is injected into the bulk acetonitrile liquid. The 

start of the injection process marks the time zero of our experiment. The subphase height was 

adjusted about every 15 min. For better control on the experiment, all the injection or dispersion 

processes are performed with the help of a syringe pump. 

Raman Spectroscopy and elecetrical measurements: 

Raman spectra (Horiba Jobin Yvon Labram HR 800 spectrometer) were collected using a 

He:Ne laser (wavelength 633 nm) as an excitation source and a CCD-1024 × 256-OPEN-3S9 

detector.  

The ligand-exchanged films were transferred onto commercially available bottom-gate, 

bottom-contact transistor substrates (Fraunhofer Institute for Photonic Microsystems, Dresden, 

Germany) with interdigitated Au electrodes of 10 mm width and 2.5 μm channel length. Two-

probe electrical measurements were carried out using a Keithley 2634B dualsource 

measurement unit.  

Ex Situ Characterization of the Ligand Exchanged Films: 

Raman spectroscopy (Figure 5.1a) on the recovered exchanged films shows the presence of 

intense bands at wavenumbers >1000 cm−1, which are a strong indication for the presence of 

the new Co/CuTAPc ligands on the surface of the NPs. It should be noted that we extensively 

washed the films with acetonitrile to remove excess/free ligand molecules. We compare the 

transport measurements of the ligand exchanged and self-assembled films in Figure 5.1b. The 

current−voltage (I−V) characteristics indicate an improvement of the current by 4 orders of 

magnitude for ligand exchanged film with respect to the native OA-capped PbS film. The 

enhancement of the electrical conductivity by 4 orders of magnitude (refer Figure 5.4b) for 

ligand-exchanged films is attributed to the formation of conductive PbS NC SLs by cross-

linking with the phthalocyanine molecules.55 
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Figure 5.1(a) Raman spectroscopy data after ligand exchange films. (b) Current−voltage (I−V) 

characteristics of PbS NC films: OA-capped (black); exchange film with CoTAPc (blue) and CuTAPc 

(green); the graph is plotted on a logarithmic scale for better comparison. 
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6. Collaborated Publication 2 

Correlated, Dual‐Beam Optical Gating in Coupled Organic–Inorganic 

Nanostructures 

 

(Kai M. Wurst, Dr. Markus Bender, Dr. Jannika Lauth, Sonam Maiti, Prof. Thomas Chassé, Prof. 

Alfred Meixner, Prof. Laurens D. A. Siebbeles, Prof. Uwe H. F. Bunz, Dr. Kai Braun, Dr. Marcus 

Scheele published in Angewandte Chemie 2018 doi.org/10.1002/anie.201803452) 

 

In this manuscript, an optical switch with two distinct resonances is formed by combining PbS 

nanocrystals and the conductive polymer poly[sodium 2‐(2‐ethynyl‐4‐

methoxyphenoxy)acetate] (PAE) into a hybrid thin film. Infrared excitation of the nanocrystals 

invokes charge transfer and consecutive polaron formation in the PAE, which activates the 

switch for excited‐state absorption at visible frequencies. The optical modulation of the 

photocurrent response of the switch exhibits highly wavelength‐selective ON/OFF ratios. 

Transient absorption spectroscopy shows that the polaron formation is correlated with the 

excited state of the nanocrystals, opening up new perspectives for photonic data processing. 

Such correlated activated absorption can be exploited to enhance the sensitivity for one optical 

signal by a second light source of different frequency as part of an optical amplifier or a device 

with AND logic. 

 

Methods 

Synthesis of PbS Nanocrystals: The details on the synthesis of PbS nanocrystals can be found 

in the original publication. 

Synthesis of Poly[sodium 2-(2-ethynyl-4-methoxyphenoxy)acetate] (PAE-1): PAE-

COOEt. The details on the synthesis of PAE-COOEt can be found in the original publication. 

Ligand Exchange with TTFDA – Solid/Air Exchange: Three milligrams of [TBA]2TTFDA 

was dissolved with 3 mL of methanol. Substrates for various characterization methods (FET, 

XPS, PDS, SEM, GIXD, etc.) were cleaned on using soap scrub, rinsed with distilled water, 

followed by isopropanol and acetone, blow-dried, UV/ozone cleaned for 5 min, and mounted 

onto a spin-coater. One drop of a filtered hexanes solution of nanoparticles (roughly 1 mg/mL) 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Wurst%2C+Kai+M
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Bender%2C+Markus
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Lauth%2C+Jannika
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Maiti%2C+Sonam
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Chass%C3%A9%2C+Thomas
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Meixner%2C+Alfred
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Meixner%2C+Alfred
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Siebbeles%2C+Laurens+D+A
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Bunz%2C+Uwe+H+F
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Braun%2C+Kai
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Scheele%2C+Marcus
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Scheele%2C+Marcus
https://doi.org/10.1002/anie.201803452
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was drop-cast onto the substrate and spun at 2000 rpm with a 1 s ramp for 15 s. At rest, the 

substrate was covered with the TTFDA solution (approximately 200 μL) and allowed to dry 

completely within roughly 10 min. While spinning at 2000 rpm, it was washed with methanol 

to spin-off excess TTFDA followed by hexanes to wash off the oleate. This procedure was 

repeated one more time to yield a continuous film. 

Self-assembly and ligand exchange into hybrid PbS-PAE-1 thin films. The following described 

preparation procedure is schematically pictured in Figure 6.1. All steps were carried out under 

nitrogen atmosphere. 

 

Figure 6.1 Schematically presentation of hybrid PbS-PAE-1 thin film fabrication. Individual steps are 

described in the continuous text. 

 

First, the substrate (commercial FET substrate from the Fraunhofer institute for Photonic 

Microsystems, Dresden, Germany, with bottom-gate and bottom Au contacts of 30 nm height, 

1 cm width and 2.5, 5, 10 or 20 µm channel lengths, or self-fabricated substrate with 

nanochannels) was placed on a stand in a Teflon crucible followed by addition of 8 mL 

acetonitrile. 100 µL of a 1 µM PbS NC solution in a 1:6 mixture of octane and hexane was 

slowly added on the edge of the crucible. After waiting for about 3 minutes, hexane and octane 

have evaporated completely yielding a thin PbS NC layer on top of the acetonitrile subphase 
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(Figure 6.1, step 2). In the next step (Figure 6.1, panel 3), 200 µL of PAE-1 saturated solution 

in methanol are added to the bottom of the crucible by punctuating the floating PbS 

nanoparticle layer. After waiting for 2 h, the ligand completely diffused through the subphase 

revealing a homogeneous yellow solution. During this period (step 4), the native oleic acid 

ligand of the PbS nanoparticles was replaced with the organic semiconductor. The subphase 

was carefully removed (step 5) and the hybrid PbS-PAE-1 film was deposited on the substrate 

(step 6). After waiting for 15 min, the sample dried completely. Excess organic semiconductor 

was removed by washing the film carefully with 200 µL methanol. Afterwards, the sample was 

baked out for 30 min at 80°C followed by storing in vacuum overnight.  

Raman spectroscopy 

Raman spectra were acquired using a Horiba Jobin Yvon Labram HR 800 spectrometer with a 

CCD-1024 × 256-OPEN-3S9 detector. Excitation for Raman was performed using a frequency 

doubled He:Ne laser at a wavelength of 633 nm.  

Hybrid thin films of PbS NCs cross‐linked with PAE‐1 were assembled as floating membranes 

at the acetonitrile/N2 interface and coated onto solid supports (see Figure 6.2a for Raman 

spectroscopy). 

 

 

Figure 6.2(a) Raman spectrum of a PbS-PPE-1 film, using a 1.96 eV laser. While the Oleic acid-capped 

PbS NCs do not exhibit any distinct Raman bands, after ligand exchange with PPE-1, the C-O as well 

as the phenyl-stretching bands of the polymer are clearly visible. 
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 Electronically Coupled, Two-Dimensional Assembly of Cu1.1S 

Nanodiscs for Selective Vapor Sensing Applications  

Sonam Maiti1,2, Santanu Maiti2, Yvonne Joseph3, Andreas Wolf4, Wolfgang Brütting5, Dirk Dorfs4, 
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Germany.  

 

 

 

 

 

 

 

  

Figure S2.1 Structural formula of Cu-4,4′,4″,4″,4‴-tetraaminophthalocyanine (Cu4APc) with M = Cu.  
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Figure S2.2 Ligand exchange at the liquid-air interface. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.3 TEM image of Cu1.1S nanodiscs of an average diameter of 12.7 ± 1.7 nm, and a thickness 

of 5.8 ± 0.7 nm. (b) AFM image of Cu1.1S nanocrystal film after ligand exchange.  
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Figure S2.4(a) Current-voltage (I-V) curves of Cu1.1S nanocrystal films prepared by interface method 

before and after ligand exchange (black and red curves, respectively). The curves were recorded under 

ambient conditions. (b) Plot of the total resistance vs. channel length Cu1.1S nanocrystal film after ligand 

exchange with Cu4APc. The contact resistance is extracted by a linear fit to this data 
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Figure S2.5 Plot of the total resistance vs. channel length Cu1.1S nanocrystal film after ligand exchange 

with Cu4APc. The contact resistance is extracted by a linear fit to this data. 
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Figure S2.6 a) Atomic force micrograph and b) extracted height profile of a thicker sample with 5-10 

monolayers. c) I/V characteristics of a thick film at different contacts and channel lengths. The 

conductivity is 2-3 orders of magnitude smaller than in the monolayered films shown in the main body 

of the manuscript. 
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Figure S3.1 XRD pattern of as-synthesized Cu2SySe1-y NCs. The reference structural data shows 

hexagonal Cu2S (PDF card #: 84-0209). The reflections at 29 °, 37 ° and 48 ° are absent in the cubic 

structure, and therefore characteristic for the hexagonal phase here. 
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Figure S3.2 AFM images and extracted height profile of Cu2SeyS1-y (top) and Cu2-xSe (bottom). 
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Figure S3.3 FT-IR spectra of a) Cu2Se and b) Cu2SeyS1-y NC films, both before and after ligand 

exchange with CoTAPc. Characteristic bands for oleylamine, which disappear during ligand exchange 

have been encircled in red. Note: Since CoTAPc also contains -NH2 and -CH vibrations, no quantitative 

description of the exchange efficiency can be made from this experiment. 
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Figure S3.4 UV/VIS absorption spectrum of pure CoTAPc. 

 

  

 

 

 

 

 



94 

 

 

Figure S3.5 Current/Voltage characteristics of a Cu2-xSeyS1-y/CoTAPc thin film at varying exposure 

times to air. The current was measured once the device was removed from the inert atmosphere of the 

glovebox and subsequently recorded from 5 minutes to 7 days. 
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Figure S3.6 Current–voltage characteristics of a Cu2Se/OLm film after a first oxidation in air (yellow), 

after treatment with 5 µL of a 0.04 mmol/L solution of [Cu(CH3CN)4]PF6 (blue), after treatment with 

10 µL of the same solution and after 15 min of oxidation in air. 

  

 

 

 

 

 

 



96 

 

0,0 0,1 0,2
0

50

100

150

 

 

C
u

rr
e

n
t 
(p

A
)

Voltage (V)

Dark

6 µW

21 µW

 

Figure S3.7 Current–voltage characteristics of a typical Cu2-xSeyS1-y/OLm film at different absorbed 

optical power values provided by a 408 nm laser diode. 
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 Experimental Methods 

Synthesis of Cu1.1S Nanocrystals:  Cu1.1S NDs were prepared by adapting the heat-up 

synthesis procedure from Xie et al.36 

Synthesis of Ligands: Co-4,4′,4″,4″,4‴-tetraaminophthalocyanine (Co4APc) was 

purchased from Abcr and used without further purification. 

In-situ formation of NC film at the liquid/air interface and ligand exchange:   

At first, the nitrogen flushed chamber is filled up to 5 mm below the window edge with 

dry, oxygen free DMSO (99,7+%, extra dry, Acros organics). Then 200μL of the 5μM ND 

solution in Toluene (97%, extra dry, nitrogen flushed, Acros Organics) is dispersed on top 

of the acetonitrile at a rate of 1 mL/min. The time resolved GISAXS patterns are collected 

afterwards from the ND film.  

After the investigations on the oleylamine capped NC film are finished, the ligand solution 

(1mg/mL solution of CoTAPc in DMSO) is injected in the bulk DMSO. The start of the 

injection process marks the time zero of our experiment. The subphase height was adjusted 

about every 15 minutes for perfect alignment. For better control on the experiment, all the 

injection or dispersion processes are performed with the help of a syringe pump. 

In-situ Grazing Incidence Small Angle X-ray Scattering (GISAXS):  

In-situ GISAXS measurements were performed at the Deutsches Elektronen-Synchrotron 

(DESY) in Hamburg, Germany at the Liquid Interface Scattering Apparatus (LISA), P08 

beamline. The x-ray beam energy was set at 18 keV by using a Si(111) double crystal 

monochromator and Ge(311) Large-Offset-Monochromator, focused with CRL lens.197, 198 

A beam of size 100 μm x 400μm (V x H) was illuminated on the liquid surface at a grazing 

angle of 0.065 degree, set by the double crystal deflector of LISA.199 The GISAXS signals 

were collected with a Lambda detector, having a pixel size of 55 x 55 μm2. The detector 

was placed at a distance of 1103 mm and each GISAXS images were collected over 5 

seconds of exposure time.  

Instrumentation 

Scanning transmission electron microscopy (STEM, Hitachi SU 8030 microscope 

operating at 30 kV) was employed to determine the particle size and shape. The surface 
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morphology was measured by AFM using a JPK Nanowizard II instrument in tapping 

mode under ambient conditions. Image analysis was performed with Gwyddion. We 

perform Raman spectroscopy to ratify the ligand exchange in the nanodisc superlattices 

over depositing them onto Si-substrates. Raman spectra were acquired using a Horiba 

Jobin Yvon Labram HR 800 spectrometer with a CCD-1024 × 256-OPEN-3S9 detector. 

Excitation for Raman was performed using a He:Ne laser (wavelength 633 nm). The 

superlattice films were illuminated at room temperature with the excitation in the range of 

350-1800 cm-1.  Electrical measurements were performed in a glovebox at room 

temperature with a homemade probe station using a Keithley 2634B dual source-meter 

unit, controlled by the included test script builder program. The NC films after ligand 

exchange were deposited on a commercially available bottom-gate, bottom-contact 

transistor substrates (Fraunhofer Institute for Photonic Microsystems, Dresden, Germany) 

with interdigitated Au electrodes of 10 mm width and 2.5μm channel length followed by 

annealing at 250°C for 2 h under nitrogen atmosphere. 

 

 Supplementary Figures 

a) TEM image of Olm-passivated Cu1.1S NDs. b) Structural formula of CoTAPc.

 

Figure S4.1 a) TEM image of Olm-passivated Cu1.1S NDs. b) Structural formula of CoTAPc. 

Figure S4.1a shows a typical transmission electron microscopy (TEM) image of as-

synthesized Cu1.1S NCs. The NCs are disc in shape (i.e. NDs) and have two hexagonal and six 

rectangular side facets. The NCs have an average in-plane diameter (d) and thickness of 12.7 

± 0.5 nm and 5.6 ± 0.5 nm, respectively. The NC surfaces are encapsulated with native 

oleylamine (Olm) and dispersed in toluene. Here, we use rectangular-shaped CoTAPc OSC 

molecules (size: 1.3 ± 0.6 nm) for the ligand exchange reaction. The CoTAPc molecule has 

four amines (–NH2) groups on their backbone as shown the structural formula in Figure S4.1b.  
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Figure S4.2 a-f) GISAXS patterns from the self-assembly without ligand exchange at different 

intermediate times marked at the right corner of each images. The pink and red spots are the simulated 

diffraction peak position of bcc superlattice considering DWBA method. 
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Figure S4.3 GISAXS patterns from the self-assembly during ligand exchange process at different 

intermediate times marked at the right corner of each images. The pink and red spots are the simulated 

diffraction peak position of bcc superlattice considering DWBA method. 
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Figure S4.4 STEM image of Cu1.1S NC superlattice 

 

Further material characterization     

Atomic force micrograph of the ligand-exchange nanocrystal superlattice 

 

Figure S4.5 Atomic force micrograph of the nanocrystal superlattice after complete ligand-exchange 

and drying on a silicon substrate. The average height of the superlattice is ~11 nm. 
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 Supplementary Table 

 

Table  2. Superlattice parameters 

Waiting 

time (min) 

a = b = 

c (Å) 

α = β 

(deg) 

γ (deg) SG 

Symmetry 

-42 171 90 120 P6mm 

0 169 90 120 P6mm 

6 168 90 120 P6mm 

10 166 90 120 P6mm 

15 165 90 120 P6mm 

20 164 90 120 P6mm 

24 163 90 120 P6mm 

29 162,5 90 120 P6mm 

33 162 90 120 P6mm 

36 161,5 90 120 P6mm 

41 161 90 120 P6mm 

48 160,5 90 120 P6mm 

62 160 90 120 P6mm 

72 160 90 120 P6mm 

78 160 90 120 P6mm 

84 160 90 120 P6mm 

93 160 90 120 P6mm 

104 160 90 120 P6mm 

114 160 90 120 P6mm 

130 160 90 120 P6mm 

176 160 90 120 P6mm 

236 160 90 120 P6mm 

276 160 90 120 P6mm 
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List of Symbols and Abbreviations 

eV       Electron Volt 

Eg         Bulk energy gap 

k          Wave vector 

m*       Effective mass of the electron or hole 

ħ          Reduced Planck constant 

R         Nano particle size 

e          Charge of an electron 

ϵ∞         Dielectric constant outside the nanocrystal 

kB            Boltzmann Constant 

COIN Coupled Organic-Inorganic Nanostructure 

STEM Scanning Transmission Electron Microscopy 

TEM    Transmission Electron Microscopy 

EDX     Energy-Dispersive X-ray Spectroscopy 

Δx Distance between organic monolayers / distance between stacking planes 

ρ(x) Charge density 

n Number of molecules per unit area and per discretization interval Δx 

V(x) Electrostatic potential at the position x from the substrate 

ɛ0 Vacuum permittivity 

R Resistance 

Rs Sheet resistance 

L Length of the channel 

w Width of the channel 

R0 Baseline Resistance 

Kb Binding Constant 

θ Electron off-axis angle with respect to the surface normal 

NCs Nanocrystals 

NP       Nanoparticle 

QDs Quantum Dots 

NIR     Near Infra Red 

LSPR Localized Surface Plasmon Resonance 
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FET Field-Effect Transistor 

LED    Light- Emitting Diode 

PVCs Photovoltaic Cells 

0D      Zero-Dimensional 

1D       One-Dimensional 

2D Two-Dimensional 

3D Three-Dimensional 

VRH Variable-Range Hopping 

HOMO Highest Occupied Molecular Orbital 

LUMO    Lowest Unoccupied Molecular Orbital 

FWHM   Full Width at Half Maximum 

GISAXS Grazing-Incidence Small-Angle Scattering 

αc                  Critical angle 

S(q)        Structure factor 

P(q)         Form factor  

DWBA   Distorted wave Born approximation 

UV–vis–NIR Ultraviolet–Visible–Near Infrared 

FTIR   Fourier Transform Infrared (spectroscopy) 

OLm/Olm   Oleylamine 

DMSO    Dimethyl Sulfoxide 

XRD    X-ray Diffraction 

σ          Electronic conductivity 

n         Density of conducting electrons 

τ          Mean free time 

ρ         Resistivity 

ρ0        Residual resistivity 

G        Conductance 

𝜉         Localization length 

r Hopping distance  

ΔE       Energy difference  

g0        Density of states near the Fermi surface 

D         Dimension 



106 

 

ESVRH Efros-Shklovskii Variable Range Hopping 

MVRH Mott variable range hopping 

η          Quantum efficiency 

Nλ        Number of photons of wavelength λ 

Gi        Internal (photoconductive) gain 

τ          Free carrier lifetime 

Ti        Transit time  

Ri            Responsivity 

iph           Photocurrent 

Pin          Input optical power 

f         Modulation frequency 

4M2P 4-methyl-2-pentanone 

TLM Transmission Line Method 

Pc Phthalocyanine 

OSC Organic Semiconductor 

DOS Density of States 

GIXD Grazing Incidence X-ray Diffraction 

AFM Atomic Force Microscopy 

CuS  Copper Sulfide 

Cu2Se   Copper Selenide 

Cu2SeyS1-y Copper Selenide Sulfide 
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