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APC  Antigen Presenting Cell 

AJCC  American Joint Committee on Cancer 
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2 Abstract 

In addition to conventional surgery, chemotherapy and radiotherapy, 

immunotherapy holds a great deal of promise as an effective form of cancer 

treatment. This utilises the patient’s own immune system to control tumour growth 

and thus relies on the presence of immune cells which can recognise and 

subsequently kill or otherwise control cancer. This notion is supported by many 

studies showing that the presence of T cells recognising tumour-associated 

antigens (TAAs) is associated with superior survival in a number of cancer types. 

In contrast, cancer patients with high levels of immune suppressor cells experience 

worse survival and respond more poorly to therapy. These studies demonstrate 

that the balance between different immune populations is closely associated with 

clinical outcome. Therefore, the aim of the work in this thesis was to identify new 

blood- and tissue-based prognostic markers that more accurately predict patient 

outcome. Monitoring patients for their possession of TAA-reactive T cells may be 

important for this, but standardising such biological assays is challenging. 

Therefore, the first part of this work attempted to identify surrogate markers that 

may more easily identify patients with beneficial T cell responses. To achieve this, 

T cells reactive to the shared TAAs MUC1, survivin and HER2 were measured in a 

cohort of breast cancer patients and were investigated for association with a broad 

set of immunological parameters. Considering HLA type, serum cytokines, tumour-

infiltrating leukocytes and blood leukocyte populations, the latter were found to be 

the most informative for identifying patients with such antigen-reactive T cells. 

Moreover, by constructing composite immune profiles, we were able to achieve a 

sensitivity and specificity of up to 100 % for the identification of patients possessing 

these antigen-reactive T cells. In addition to predictive immune markers in the 

periphery, a number of studies has shown that the immune status within the 

tumour plays a major role in cancer progression. Therefore the second part of this 

work investigated immune features in the tumour microenvironment which may 

serve as prognostic markers for patient survival. Unlike in the majority of prior 

studies which only considered one type of immune feature, for example only 
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leukocytes or only cytokines, this study assessed a combination of diverse immune 

parameters in the tumour microenvironment including lymphoid and myeloid cells, 

secreted cytokines and transcription factors. This investigation showed that 

patients whose tumours had high relative levels of putatively suppressive CD15+ 

cells had shorter overall survival. Furthermore, by combining the assessment of 

CD3+ and CD15+ cells, it was observed that patients with high levels of CD3+ T 

cells and low levels of CD15+ cells survived the longest. Other studies have 

yielded similar results regarding the impact of the state of the immune system on 

clinical outcome. These studies have shown that one of the mechanisms employed 

by melanoma to escape anti-tumour immunity is the induction of 

immunosuppressive myeloid-derived suppressor cells (MDSCs), the levels of 

which correlate with clinical outcome. The mechanisms by which tumour cells 

induce MDSCs remain unknown, but knowledge thereof may pave the way for new 

forms of cancer therapy. Therefore, an in vitro co-culture model was developed to 

uncover tumour-immune interactions, with the aim of identifying pathways that 

allow the induction of such suppressive cells to be prevented. The implementation 

of a three-way co-culture system employing melanoma cells, activated T cells and 

monocytes (precursors of MDSCs) allowed the re-creation of MDSC-induced 

immune suppression in vitro. Subsequent targeting of specific molecular pathways 

in melanoma cells revealed that proteins involved in cellular stress pathways (heat 

shock proteins) are involved in triggering the differentiation of normal monocytes 

into MDSCs. These studies show that the levels of immune populations in the 

periphery and in the tumour can be used to monitor the clinical course of cancer 

patients. Furthermore, this work identifies new mechanisms of immune 

suppression by revealing novel pathways used by tumour cells to suppress the 

immune system. 
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3 Zusammenfassung 

Bei der Behandlung solider Tumore gilt die Immuntherapie zurzeit als einer der 

vielversprechendsten Therapieansätze. Hierbei macht man sich die Fähigkeit von 

patienteneigenen Immunzellen zu Nutze, Tumorzellen nach Stimulation zu 

erkennen und anschließend zu eliminieren. So konnte bereits bei mehreren 

Entitäten eine längere Überlebenszeit bei denjenigen Patienten festgestellt 

werden, deren Tumore antigen-reaktive T-Zellen aufweisen. Da es sich bei der 

Erfassung solcher T-Zell vermittelten Reaktionen jedoch um kosten- und vor allem 

arbeitsintensive Verfahren handelt, haben diese Untersuchungen noch keinen 

Einzug in die klinische Routine gehalten. Im Fokus dieser Arbeit stand daher unter 

anderem die Suche nach Biomarkern, welche die Identifizierung derjenigen 

Patienten erlaubt, die solch klinisch relevanten Antigen-reaktive T Zellen besitzen. 

Im ersten Screening wurden HLA Typen, Serumzytokine, Tumor-infiltrierende 

Leukozyten und Blutleukozyten gemessen, wobei sich Blutleukozyten als am 

geeignetsten für die Identifizierung von Patienten mit solchen Antigen-reaktiven T 

Zellen erwiesen. Durch die Kombination verschiedener Parameter konnte darüber 

hinaus eine 100-prozentige Sensitivität und Spezifität bei der Identifizierung von 

Patienten mit reaktiven Zellen erreicht werden. Jedoch scheinen nicht nur die 

Immunzellen der Peripherie allein eine wichtige Rolle für den Tumor zu spielen, 

zusätzlich scheint die zelluläre Zusammensetzung des Tumorgewebes selbst 

maßgeblich dessen Wachstum zu beeinflussen. Die Identifizierung von zellulären 

und löslichen Faktoren innerhalb des Tumors, welche eine prognostische Rolle in 

Melanom Patienten haben, war daher ein weiterer Schwerpunkt der vorliegenden 

Arbeit. Hier zeigte sich, dass Patienten mit einer starken Infiltration von potentiell 

suppressiven CD15+ Zellen, als auch Patienten mit schwacher Infiltration von 

CD3+ und starker Infiltration von CD15+ Zellen ein geringeres Gesamtüberleben 

aufwiesen. 

Ein weiterer Hinweis für die Relevanz des Immunsystems hinsichtlich des 

Überlebens zeigten weitere Studien, in denen ein erhöhtes Level an 

immunsuppressiven MDSCs mit einem verkürzten Überleben der Patienten 
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assoziiert war. So ist von Melanom Zellen bekannt, dass sie die Fähigkeit besitzen 

immunsuppressive MDSCs zu induzieren, wobei allerdings wenig über den 

zugrunde liegenden Mechanismus bekannt ist. Wir untersuchten daher in einem 

Zellkulturmodel die Wechselwirkungen zwischen Tumor und Immunzellen mit dem 

Ziel, die Induktion immunsuppressiver Zellen zu blockieren. Hierbei zeigte sich, 

dass molekulare Signalwege, welche in Stresssituationen relevant sind, für die 

Differenzierung von MDSCs verantwortlich sind. Durch die Hemmung dieser 

Signalwege lässt sich die Differenzierung von immunsuppressiven Zellen 

blockieren, womit sich Möglichkeiten für vielversprechende therapeutische Ansätze 

ergeben. 
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7 Introduction 

Cancer is a leading cause of death worldwide where it accounts for approximately 

16 % of all deaths. This equates to 8.8 million people who died from cancer in 

2015, with 70 % of deaths in low- or middle-income countries 1. The main 

characteristic of cancer is the uncontrolled growth of abnormal cells resulting in: 

repression of normal cells, invasion into adjacent tissue, the spread to distant 

organs and metastasis being the major cause of death from cancer 2. Normally, 

cell proliferation and function is strictly regulated. However, in cancer this 

regulation is lost due to the accumulation of genetic mutations. However, mutation 

in a single gene does not usually cause cancer, which requires multiple steps 

typically consisting of genetic mutations in a number of different genes that include 

gain of function mutations in proto-oncogenes and loss of function mutations in 

tumour suppressor and DNA repair genes 3. Such mutations can be caused by a 

diverse range of factors, including physical or chemical carcinogens such as 

irradiation or components of tobacco smoke but also by biological factors such as 

infections with certain viruses 1. With the accumulation of such mutations a normal 

cell transforms into a precancerous cell which eventually leads to cancer. During 

this process, cancer cells acquire traits including sustaining proliferative signalling, 

evading growth suppressors, resisting cell death, enabling replicative immortality, 

reprogramming energy metabolism, evading immune destruction, inducing 

angiogenesis and activating invasion and metastasis 4,5. 

7.1 Breast cancer  

All forms of cancer resulted in 14.1 million cases being diagnosed in 2012, with the 

majority being cancer of the lung, breast and colon. Breast cancer represents the 

second most common form, account for 12 % of all cancers. In women, it is the 

most common cancer, representing with 25 % of all cancer types 6. Over the past 

few decades the incidence of breast cancer increased, while the death rate has 

significantly decreased. This is attributed to earlier discovery and subsequent 
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improvements in therapy 7. Despite this, it is still the most leading cause of death in 

women, with approximately 522 000 deaths in 2012 6.  

Breast cancer is heterogeneous genetically and clinically, with several histological 

and molecular subtypes being identified. The subtype classification is of great 

importance for prognosis and prediction of response to chemotherapy and 

endocrine therapy 8. It can be broadly categorised into in situ carcinoma and 

invasive carcinoma. The in situ breast carcinoma most commonly begins in the 

lining of the milk ducts or in the lobules of the breast and are therefore referred to 

as ductual or lobular carcinoma. If the cancer cells then spread into surrounding 

tissue of either breast ducts or lobules, it is then referred to as invasive ductal 

carcinoma or invasive lobular carcinoma 9. In addition to traditional 

clinicopathological variables, including tumour size, tumour grade and nodal 

involvement, immunohistochemistry markers such as the hormone receptors, 

estrogen (ER) and progesterone (PR) as well as the expression of human 

epidermal growth factor receptor-2 (HER2) are analysed in order to further 

characterise breast cancer. Based on this, breast tumours can be further 

categorised into at least three major subtypes: luminal, HER2+ and basal like 10,11. 

This is of great importance, as each subtype has different risk factors for incidence, 

response to treatment, risk of disease progression and different preferential organ 

sites of metastasis. Based on this knowledge, treatment can be customised in 

order to improve disease-specific survival 12. Thus, luminal tumours positive for the 

hormone receptors ER and PR consequently often respond well to hormone 

therapies. HER2+ tumours have an amplification of the ERBB2 oncogene and 

overexpress HER2. This subtype can be treated with anti-HER2 therapies. In 

contrast, basal-like tumours neither express hormone receptors nor do they 

express HER2 and are therefore known as triple-negative breast cancer. These 

properties result in triple negative tumours being insensitive to some of the most 

effective therapies available for breast cancer including anti-HER2 and endocrine 

therapies. Although only a minority of breast cancer is categorised as triple-

negative, it is an aggressive form whereby only 20 % of patients respond to 

chemotherapy 13. Therefore, there is a need to develop better therapies and to 
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identify biomarkers that can be used to select which patients should receive which 

treatment in order to improve disease outcome.  

7.2 Malignant melanoma 

In contrast to breast cancer, melanoma is relatively rare with 232 000 newly 

diagnosed cases throughout the world in 2012, only representing 1.7 % of all 

cancer types. However, according to the US National Cancer Institute, the 

incidence rate of melanoma has more than doubled since 1975 – with 7.5 new 

cases per 100 000 in 1975 versus 25 per 100 000 in 2014 14. This is a more rapid 

increase in the incidence rate compared to any other solid tumour type 14,15. The 5-

year survival rate for primary melanoma of the skin is about 92 %. However, 

looking at late stage melanoma, the 5-year survival rate drops dramatically to 15 % 

- 20 % 1. As with many other cancers, patient outcome depends on the tumour 

stage at diagnosis. According to the American Joint Committee on Cancer (AJCC), 

melanoma can be classified into stages I – IV by characteristics of the primary 

tumour (T) (thickness, ulceration, mitotic rate), involvement of locoregional lymph 

nodes and soft tissue metastases (N) (microscopic vs macroscopic lesions) and 

the presence of distant metastases (M) (serum concentration of lactate 

dehydrogenase and localization of metastases) 16. In stage I melanoma, the 

tumour is restricted to the dermal layer with a 5-year survival rate of 90 – 95 %. 

With progressing disease, tumour size increases, loco-regional metastases 

develop and finally the tumour spreads into distant organs, typically accompanied 

by high serum LDH levels. The latter is defined as stage IV melanoma with a 5-

year survival probability of 15 – 20 % 16–18. However, with the introduction of new 

treatment approaches such as immunotherapies or targeted therapies, 5-year 

survival of metastatic melanoma patients may rise to as high as 35 % 19.  

7.3 Immune system and Cancer 

The role of the immune system in cancer has been discussed for more than a 

century, starting with Paul Ehrlich who first proposed the idea that the immune 

system could repress carcinomas, which would otherwise occur at higher 
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frequencies. Burnet and Thomas then further postulated a protective role of the 

immune system according to the theory of cancer immune surveillance, suggesting 

that lymphocytes can recognise and eliminate continuously arising transformed 

cells 21,22. However, despite the notion that the host immune system can provide 

protection from cancer, it has been shown that it may also be involved in tumour 

progression. Therefore, the hypothesis of cancer immune surveillance was 

modified into the concept of immunoediting, dividing the process from immune 

surveillance to tumour escape into three phases (Elimination, Equilibrium and 

Escape) 20. Immune surveillance occurs during the elimination process. In the 

equilibrium phase, the immune system prevents tumour growth as well as 

promotes tumour cell variants with reduced immunogenicity. These cells are then 

able to develop mechanisms to escape immune control and enter the last “escape” 

phase in which cancer cells grow in an uncontrolled manner 20.  

7.4 Immunosuppression 

Immunosuppression by cancer cells can be mediated by multiple mechanisms in 

order to avoid being recognised or attacked by the immune system. Blocking these 

mechanisms of immunosuppression and understanding components and the 

mechanisms responsible for suppression of anti-tumour immune response are of 

great interest in order to increase the efficacy of immunotherapies.  

One mechanism used by tumours to avoid T cell recognition is changing the 

antigenic profile. This occurs during immune selection against tumour cells 

expressing immunologically relevant epitopes, therefore leaving those behind 

which are not recognised by T cells of the adaptive immune system 23. This leads 

to a selection of tumour cells highly resistant to T cell responses, thus supporting 

tumour growth. In addition, tumours can down-regulate and mutate their antigen 

processing machinery resulting in impaired antigen presentation and thus immune 

evasion from T-cell responses 24. Furthermore, immunosuppressive cytokines, 

chemokines and growth factors are either synthesised by tumour or stromal cells. 

For example, TGF- is a cytokine capable of inhibiting T-cell activation, 

proliferation and differentiation 25 and high serum levels are associated with poor 

clinical outcome in several types of cancer 26–29. Several other cytokines have been 
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identified that impair anti-tumour immune response by directly acting on T cells or 

by recruiting or expanding regulatory cells like regulatory T cells (Tregs) or myeloid 

derived suppressor cells (MDSCs). Although Tregs were originally described as 

regulators for preventing organ-specific autoimmune disease, several studies 

suggest an important role in anti-tumour immune responses and their involvement 

in tumour growth and progression. In multiple malignancies, including breast and 

skin cancer, an accumulation of Tregs has been shown in either the circulation or 

the tumour itself 30–33, the levels of which are associated with poor overall survival 

34. Supporting the role of Tregs in preventing anti-tumour immune responses, 

studies targeting these cells have been shown to improve the efficacy of 

immunotherapy 35–37. More recently, another regulatory cell type, the MDSC, has 

gained great attention due to its pro-tumoural and immunosuppressive activity 38,39.  

7.5 Myeloid derived suppressor cells (MDSCs) 

Myeloid cells may be terminally differentiated cells including dendritic cells, 

macrophages and granulocytes, however, in the case of cancer a typical high 

inflammatory environment induces a higher than normal level of immature myeloid 

cells which have immunosuppressive properties. Due to their suppressive nature 

and myeloid origin, these cells are called myeloid-derived suppressor cells 40,41. 

Regarding their characterisation, in humans no definite phenotype has been 

identified so far, although a combination of different markers has been reported to 

mark these cells. They are negative for the lineage markers of T cells (CD3), B 

cells (CD19) and natural killer cells (CD56) and always positive for myeloid 

markers including CD11b and CD33 with low expression of human leukocyte 

antigen-DR (HLA-DR) 42,43. In addition to these markers, MDSCs can be further 

distinguished based on the expression of CD14 and CD15 - granulocytic MDSCs 

express CD15 and lack CD14 while monocytic MDSCs can be defined by their 

CD14 expression.  

Recently, MDSCs gained a great deal of attention for their role in cancer. Due to 

their suppressive activity, MDSCs represent a major barrier in effective cancer 

therapy. In support of this, melanoma patients with high relative levels of MDSCs 

experience shorter overall survival and respond more poorly to immunotherapy 
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with the anti-CTLA-4 antibody ipilimumab 44,45. Mechanisms of MDSC-mediated 

immunosuppression include (1) depletion of nutrients required for T cell activation, 

(2) generation of oxidative stress (3) cleavage of L-selectin on naïve T cells 

required for homing and activation of T cells and (4) induction of Tregs. These 

mechanisms of immunosuppression might represent potential targets for 

therapeutic intervention. Studies targeting pathways associated with MDSC-

mediated immunosuppression (including arginase, ROS, COX-2 and STAT3) may 

restore T cell proliferation in co-culture experiments. In addition to blocking the 

suppressive activity of MDSCs, it might also be possible to prevent the 

differentiation of myeloid cells into MDSCs or to induce the differentiation of 

MDSCs into non-suppressive cells. Recently, Mao et al. have shown that co-

culturing CD14+ monocytes from healthy individuals with melanoma cells results in 

the induction of monocytes with an MDSC-like phenotype possessing suppressive 

activity 46. These data suggest that either cell-cell contact or soluble factors 

produced by melanoma cells are able to induce the differentiation of MDSCs. 

Several soluble factors have already been identified to be involved in the 

differentiation of monocytes into suppressive MDSCs, including GM-CSF, IL-6 and 

PGE2 47–53. In addition, upstream signalling pathways like COX2 and STAT3 have 

also been identified to be involved in the differentiation and suppressive function of 

MDSCs 46–48. Targeting these pathways resulted in restored T cell proliferation 

after treating melanoma-educated monocytes or patient-derived MDSCs with 

different inhibitors. These data suggest that combining agents that block the 

differentiation or suppressive function of MDSCs with current immunotherapeutic 

strategies may be a useful approach that could result in more efficacious 

treatment. 

7.6 Tumour microenvironment 

The tumour microenvironment consists of tumour cells, fibroblasts, myofibroblasts, 

blood and lymph vessels as well as tumour-infiltrating immune cells, chemokines 

and cytokines, with each component contributing to either tumour suppression or 

tumour development and progression 55. Among non-immune components, 

tumour-associated fibroblasts are involved in the formation and remodelling of the 
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extracellular matrix as well as in the supply of factors which promote the growth of 

cancer cells 54. With increasing tumour mass, the formation of new blood vessels is 

required to supply sufficient oxygen and nutrition, and this also provides routes for 

local invasion and distant metastases. Especially the role of immune factors in 

tumour progression and control has gained more and more attention recently. 

Analysis of the tumour microenvironment of several cancer types revealed that 

many or most tumours are infiltrated by T cells. In colorectal cancer, intra- and 

peritumoural infiltration with CD8+ T cells has been shown to have greater 

prognostic power than the standard clinical staging system for predicting post-

operative survival 56–58. Such associations between the level of tumour-infiltrating 

lymphocytes and clinical outcome have been also shown in several other cancer 

types 59–62. Although high infiltration with T lymphocytes is generally associated 

with good prognosis, tumour progression is still frequently seen despite the 

presence of high levels of such intra-tumoural immune cells. This suggests that 

factors such as suppressive cells within the tumour microenvironment impair the 

function of these beneficial immune cells. Indeed, studies have shown that 

infiltration by MDSCs or regulatory T cells promotes tumour progression via 

multiple suppressive mechanisms. These cells dampen beneficial anti-tumour 

immune responses by both innate and adaptive immune cells. In addition to 

cellular components of the tumour microenvironment, soluble factors may also alter 

anti-tumour immune responses. In support of this, studies have shown that soluble 

immune molecules in the tumour microenvironment such as PGE2 or IL-6, 

correlate with patient survival 63,64 and influence the migration, differentiation and 

functional state of infiltrating immune cells 67. As well as providing prognostic 

information relating to patient survival, the assessment of the intra-tumoural 

immune context can also assist in predicting which patients will respond to certain 

forms of therapy, something of great importance in clinical patient management. 

Consistent with this, analysis of the tumour microenvironment revealed an 

association between the density of tumour-infiltrating T cells and clinical response 

to PD-1 antibodies 65. 
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7.7 Immunotherapy 

Based on the current knowledge of the immune system and its role in tumour 

defence, an approach in cancer therapy, referred to as immunotherapy, was has 

been established. This form of therapy aims to boost the host’s immune system, 

re-enabling it to effectively target and destroy malignant cells. Numerous studies 

have been conducted to develop treatment approaches with different mechanisms 

of action including monoclonal antibodies, adoptive immunotherapies or cancer 

vaccines targeting different tumour-associated antigens. Encouraging results were 

observed in breast cancer when HER2-positive patients were treated with the 

monoclonal antibody trastuzumab targeting HER2. Until then, HER2-positive 

breast cancer patients had the worst overall survival and recurrence-free survival 

compared to all other types including triple-negative breast cancer 66. With the 

introduction of trastuzumub the median survival of HER2-positive breast cancer 

patients was increased up to 25.1 months compared to 20.3 months in the group of 

patients receiving chemotherapy alone 68. However, as a passive immunotherapy, 

therapeutic effect will be achieved only during the administration of the antibody. In 

contrast active immunotherapy strategies potentially induce long-term immune 

activation even after treatment has been completed. Breakthrough results were 

achieved in metastatic melanoma patients treated with a monoclonal antibody 

called ipilimumab, which targets cytotoxic T lymphocyte antigen-4 (CTLA-4) 

expressed on T cells. In patients with unresectable metastatic melanoma 

vaccinated with the tumour-associated antigen glycoprotein 100, an improved 

overall survival of 10.1 months was achieved with ipilimumab, compared to 6.4 

months in the group of patients treated with vaccine alone 69. Later studies 

targeting another “checkpoint” molecule, programmed death-1 (PD-1) or 

programmed death-ligand 1 (PD-L1) have demonstrated superior clinical 

responses compared with ipilimumab in melanoma. There are also promising 

results in other cancer types 70–75. Similarly, cancer vaccines also aim to prime or 

boost immune responses against tumour cells, and both approaches have been 

shown to stimulate T cell responses resulting in clinical tumour regression or 

prolonged patient survival 76,77.  
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Despite these encouraging advances in cancer therapy, not every patient is equally 

likely to benefit from a certain form of therapy. The effectiveness of such 

treatments is presumably based on T cell responses against tumour-associated 

antigens (TAAs) expressed by cancer cells, allowing these T cells to kill or 

otherwise inhibit tumour cells and induce tumour regression.  

7.8 Antigen-reactive T cells 

The immune system can distinguish non-transformed cells from cancer cells by 

differential recognition of certain proteins. However, these targets for the immune 

system are not necessarily cancer cell-specific and as such can also be found on 

normal tissue. Therefore, molecules that are more commonly found on cancer cells 

give rise to so-called tumour-associated antigens (TAA). These proteins can be 

products of (1) aberrantly expressed genes such as HER2, which is also 

expressed in non-transformed cells but at lower levels (2) genes encoding viral 

products like the human papillomavirus proteins (3) mutated cellular genes such as 

p53, (4) molecules that are expressed during certain stages of development like 

melanocyte antigen (Melan-A) or (5) molecules that are expressed in germ cells of 

the testis and ovary but are silent in non-transformed somatic cells, like NY-ESO-1. 

One of the most extensively studied TAAs in breast cancer is HER2. This protein is 

overexpressed in approximately 20 – 30 % of breast carcinomas and is correlated 

with greater tumour aggressiveness and poor prognosis 78. Since HER2 is a cell 

surface molecule, it represents a good target for cancer therapy with antibodies. 

Indeed, as noted above, treatment with anti-HER2 monoclonal antibody was 

associated with longer time to progression, higher response rate, longer response 

duration and improved overall survival 68. Because antibody-based therapies rely 

on the expression of the targeted molecule at a certain expression level on the 

relevant cell type, vaccination that induces or stimulates pre-existing anti-HER2 

immune responses might result in superior therapeutic response. In support of this, 

Bailur et al. observed that breast cancer patients who possessed HER2-reactive 

CD8+ T cells experienced improved overall survival 79. In Phase I/II clinical trials 

aiming to elicit T cell responses to HER2 vaccines in breast cancer patients, partial 

clinical responses were observed 80,81. 
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8 Thesis aims  

The primary aims of this thesis were 1) to identify new blood or tissue-based 

prognostic markers in melanoma and breast cancer, and 2) to develop a better 

understanding of interactions between tumour cells and cells of the immune 

system, with the aim of understanding mechanisms of tumour-induced immune 

suppression and identifying potential therapeutic targets in melanoma. In breast 

cancer patients, the presence of HER2-reactive CD8+ T cells had previously been 

shown to be associated with superior overall survival. Therefore, the current project 

investigated whether T cells which recognise other tumour-associated antigens 

may also act as prognostic markers. This project increased the number of 

candidate antigens tested to include the tumour-associated antigens MUC1 and 

Survivin, in addition to attempting to validate the previous results for HER2. 

Because the measurement of antigen-reactive T cells is costly, time intensive and 

technically challenging they are not used as a part of routine clinical monitoring. 

Therefore, this study sought to identify surrogate markers which may more easily 

be used to indicate the presence of these cells. The identification of surrogate 

markers may also provide a better understanding of the immune states favourable 

to the presence of these cells, thus improving our understanding of breast cancer 

immunobiology. While this project in breast cancer was especially focused on the 

immune profile in peripheral blood, the project in melanoma was focused on 

identifying immune features in the tumour microenvironment which may serve as 

prognostic markers. Here, diverse immune parameters covering both soluble and 

cellular features in the tumours of melanoma patients were assessed. Using 

immunofluorescence, protocols for the detection of T cells, myeloid cells and a 

panel of soluble immune factors were established. These factors were then 

quantified in tumour tissue and investigated for relationship with patient clinical 

features.  

It is being ever more appreciated that immune suppressive cells are of great 

clinical importance in melanoma, for example they have been shown to correlate 

with patient survival and to impair the efficacy of immunotherapy. Melanoma cells 
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have been shown to induce such myeloid cells with immune suppressive activity in 

vitro, but little is known regarding how melanoma cells convert healthy cells into 

immune suppressive cells. Therefore, unlike in the prior observational studies, a 

subsequent project in melanoma involved the development of an in vitro model to 

investigate interactions between melanoma and immune cells, with the aim of 

identifying potential new therapeutic targets that can prevent tumour-induced 

suppression of the immune system, which may have the additional benefit of 

enhancing the efficacy of immunotherapy. 
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9 Results and Discussion  

9.1 Publication 1 

Peripheral T cell responses to tumour antigens are associated with molecular, 

immunogenetic and cellular features of breast cancer patients 

 

Previously, our group demonstrated an association of peripheral HER2-reactive T 

cells with superior survival in breast cancer patients 79. The present study analysed 

patient features associated with the presence of such T cell responses to tumour 

antigens, with the goal of identifying biomarkers that may be routinely used to 

select breast cancer patients with responses to tumour antigens. Surrogate 

markers for antigen-reactive T cells may be more easily implemented into routine 

clinical practice compared to the complex and expensive protocol required to 

measure them directly. The introduction of routine detection of such tumour-

antigen reactive T cells may improve therapeutic management of breast cancer 

patients. This study included analysis of (1) the type of reactive T cell (CD4+ or 

CD8+) and (2) the produced cytokine pattern (interferon- (IFN-), TNF-α, IL-2, IL-

4, IL-10 and IL-17 was simultaneously measured in the same cell) of T cells 

reactive to HER2, MUC1 and Survivin antigens using intracellular cytokine staining 

(ICS) (3) immunogenetic factors (HLA type), (4) soluble signalling molecules in 

serum using Luminex-based technology, as well as immune cells (5) in the 

peripheral blood using immunophenotyping (monocytes, MDSCs, pDCs, mDCs, T 

cells and NK cells) and (6) within the tumour using immunohistochemistry (CD4, 

CD8, FoxP3 and CD163). 

Cryopreserved PBMCs from 50 patients with non-metastatic invasive carcinoma 

were collected at the St. Savas Cancer Hospital in Athens between February 2014 

and May 2015, one day prior to surgery. The study included women with an age 

range of 27–78 (median age 56 years) with early stage non-metastatic invasive 

ductal carcinoma. Patients with AJCC stages 1, 2A, 2B, 3A and 3C were included, 
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while patients with tumours extending to the chest wall as well as AJCC stages 3B 

and 4 were excluded.  

Although only 30 % of patient tumours overexpressed HER2, almost every patient 

possessed T cells responding to HER2 (96 %) (Fig. 1a). These results are in line 

with studies indicating the benefit of HER2 vaccines in HER2-“negative” patients 

82–84 . In terms of MUC1 and SUR, data on tumour expression are not available. 

Here, were observed antigen-reactive T cells in 80 % and 72 % of patients (Fig. 

1a). Consistent with previous studies of our group, we found that CD4+ T cells 

responses were more common compared to CD8+, and also produced a larger 

number of different cytokines (Fig. 1C) 79. Furthermore these two different 

compartments were associated with different clinical characteristics. According to 

Mann-Whitney U testing, patients with more advanced disease (higher tumour 

grade) had weaker CD4+ T cell responses to MUC1 (p = 0.045) (Fig. 2a) while 

those patients with oestrogen receptor (ER)-positive tumours had stronger CD8+ T 

cell responses to HER2 (p = 0.031) (Fig. 2b). In contrast, patients with SUR-

reactive T cells showed no associations with any clinical parameters including T, N 

or AJCC stage, total lymph node involvement as well as expression of Ki67, HER2 

or progesterone receptor in the tumour.  

In order to identify immune parameters associated with the presence or absence of 

antigen-reactive T cells, immune features including serum cytokines, HLA type and 

tumour leukocyte infiltration were analysed for correlations with T cells responding 

to HER2, MUC1 and SUR. However, these analyses revealed only a few 

correlations with T cell responses. Here, the presence of HLA-A*01 was associated 

with a lack of T cell response to MUC1 (p = 0.045), while HLA-A*02+ patients were 

more likely to possess MUC1-reactive T cells (p = 0.0001) (Fig. 3a). In terms of 

serum cytokines, high levels of IL-10 were associated with HER2-reactive (Fig. 3b) 

and SUR-reactive CD8+ T cells. Interestingly, no association between tumour 

leukocyte infiltration and in vitro T cell responses were observed for HER2-reactive 

T cells (Fig. 4a), but high infiltration of CD163+, CD4+ T cells (Fig. 4b) as well as 

combined cell counts for both CD4+ and CD8+ T cells was associated with the 

presence of T cells responding to the MUC1 antigen. In contrast, patients with low 

numbers of tumour-infiltrating CD8+ T cells had more frequent CD8+ T cells 
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responding to the SUR antigen (Fig. 4c). Interestingly, no correlations for these 

particular cell types in tissue were found for the same cell type in blood. These 

differences between blood and tissue and their association with TAA-reactive T 

cells suggest that cellular location and phenotype are both relevant for their impact 

on T cell responses to tumour-associated antigens in blood. Therefore, unless 

location-specific markers are found, the identification of marker proteins which 

accurately reflect cellular function remains difficult.  

Analysing peripheral blood leukocytes for their association with TAA-reactive T 

cells, only a few correlations were observed between T cell responses and 

potential suppressive cells like Tregs and MDSCs, although the presence of such 

suppressive cells is one mechanism dampening beneficial antigen-reactive T cell 

responses. This suggests that (a) either these potential suppressive cells are not 

suppressive in breast cancer patients or (b) that these cells are not able to 

suppress antigen-reactive T cells in blood or (c) circulating suppressive cells are 

not relevant for the activity of antigen-reactive T cells. Notably, several inverse 

relationships between TAA reactive T cells and blood leukocytes were observed. 

For example, high levels of blood monocytes was associated with absent or 

weaker CD4+ and CD8+ T cells responsive to HER2 and MUC1. Comparable 

inverse relationships were observed for the HLA-DR-negative fraction within 

monocytes, NK cells, mDCs and CD4+ and CD8+ T cells expressing markers of 

proliferation (Fig. 5), while several other populations were positively associated 

with antigen-reactive T cells (Table 2). These data suggest that blood leukocytes 

are able to suppress T cell responses to tumour antigens, but remain imperfectly 

defined on a phenotypic level.  

Notably, combining different immune parameters resulted in increased specificity 

and sensitivity in identifying patients with TAA-reactive T cells as well as in 

identifying patients with a strong or weak response (Fig. 6a). Thus, patients with 

below median levels of monocytes and NK cells identified a group in which all 

patients possessed HER2-reactive T cells with an average stimulation index of 

14.5, compared to patients with above median levels of these cells who had an 

average of stimulation index of 2.3 (Fig. 6b, left panel). In addition, combining 

multiple immunological parameters like tumour-infiltrating cells and blood 
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leukocytes resulted in superior prediction of patients responding to TAAs. For 

example, high levels of T cell infiltration and low levels of blood CD16+ mDCs were 

associated with an improved accuracy in identifying patients with MUC1-reactive T 

cells as well as identifying those with a stronger response (Fig. 6b, middle panel). 

Recent studies have shown an association between the clinical benefit of 

immunomodulatory antibodies and the presence of anti-tumour T cells. These 

findings suggest that patients with pre-existing TAA-reactive T cells may be more 

likely to respond to such therapies 85,86. Therefore, identifying biomarkers 

associated with T cells responding to TAAs may provide the basis for selecting 

breast cancer patients more likely to benefit from such treatments. Furthermore, 

patients lacking TAA-reactive T cells but who exhibit an immune profile associated 

with T cells responding to TAAs may also benefit from treatment with 

immunomodulatory drugs due to these patients having an “immune environment” 

that is favourable for facilitating such anti-tumour responses. The same principle 

may be applied for the use of cancer vaccines; patients with an immune profile 

associated with the presence of anti-tumour immune responses may be more likely 

to generate an immune response to the vaccine and benefit clinically 76,77,91–93. 

Furthermore, previous studies highlighted that not only the presence of TAA-

reactive T cells per se is relevant for patient survival, but also the production of 

certain cytokines. These results allow the selection of patients with TAA-reactive T 

cells that produce specific cytokines, and as such, may allow better prediction of 

patients most likely to respond to therapy or have a favourable prognosis according 

to the immune profiles identified here.  

In order to validate whether the composite set of biomarkers identified here will 

allow superior survival prediction, patient clinical follow-up will need to be analysed. 

Furthermore, selecting patients using these biomarker combinations may allow 

more personalised treatment management and prevent unnecessary treatment for 

patients with a favourable prognosis or the administration of more aggressive 

therapies for patients with a poorer prognosis.  
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9.2 Publication 2 

Inhibiting HSP90 prevents the induction of myeloid-derived suppressor cells by 

melanoma cells 

 

Recent findings by Mao et al. showed that melanoma cells induce the 

differentiation of monocytes into immune suppressive myeloid-derived suppressor 

cells (MDSCs) which may resemble a mechanism of immune suppression that 

could also occur in vivo in melanoma patients 46. Based on these observations, we 

aimed to investigate pathways in melanoma cells responsible for the induction of 

MDSCs. We ultimately aimed to prevent the induction of MDSC-mediated immune 

suppression by targeting specific molecular pathways in tumour cells. Therefore, 

established melanoma cell lines were pre-treated with a panel of different inhibitors 

tested for their potential to alleviate T cell suppression by preventing MDSC 

differentiation. In brief, melanoma cells were co-cultured with isolated CD14+ 

monocytes and autologous CD3+ T cells. Suppressive activity of MDSCs was 

assessed by measuring CD4+ and CD8+ T cell proliferation using CFSE dilution. In 

addition, monocytes were analysed phenotypically for CD14 and HLA-DR 

expression in order to investigate their differentiation into MDSC-like cells. Before 

co-culturing melanoma cells with isolated immune cells, they were pre-treated with 

inhibitors targeting known pathways involved in the differentiation and suppressive 

function of MDSCs, such as geldanamycin (inhibition of Heat Shock Protein (HSP) 

90), methylene blue (an HSP70/NO Synthase inhibitor), U-104 (Carbonic 

anhydrase (CA) inhibitor), acetylsalicylic acid (cyclooxygenase (COX) inhibitor) and 

AG490 (a JAK/STAT inhibitor).  

 

To understand tumour-immune cell interactions we first cultured monocytes and T 

cells together with a melanoma cell line and observed changes to the monocyte 

phenotype and T cell proliferation over time. To this end we co-cultured the 

established tumour cell line EST-200 with monocytes and T cells for 24, 48, 72, 96 

or 120 hrs in vitro. This revealed that after 72 hrs T cell proliferation started to 

decrease when T cells were co-cultured with monocytes and melanoma cells 

compared to the control cultures consisting of T cells and monocytes alone. We 
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found that CD4+ T cell suppression continued to increase until 96 hrs, while 

suppression of CD8+ T cells continued to increase up until the final measurement 

point of 120 hrs (Fig. 2A). T cell proliferation was not inhibited when T cells were 

co-cultured with melanoma cells alone, suggesting T cell suppression in the co-

culture experiment (together with monocytes and melanoma cells) is due to 

interactions between monocytes and melanoma cells. As low levels of HLA-DR 

have been used as a marker for suppressive myeloid cells and MDSCs, we next 

investigated whether T cell suppression was associated with changes in monocyte 

phenotype, which may indicate their differentiation towards immunosuppressive 

MDSCs. We observed a decrease in HLA-DR expression on monocytes cultured 

with melanoma cells and T cells compared to the control monocytes cultured just 

with T cells (Fig. 2B). This decrease in HLA-DR indicates that the cells have 

differentiated towards suppressive MDSCs, which is in line with observations of 

greater T cell suppression over time. Thus, this in vitro model has shown that 

melanoma cells are able to induce differentiation of monocytes into cells that 

phenotypically and functionally resemble myeloid-derived suppressor cells.  

 

Similar results were observed when performing these experiments with additional 

donors and more melanoma cell lines. Six healthy donors were tested with a 

greater number of established cell lines (EST-41, EST-83, EST-145, EST-152 and 

EST-200); all cell lines resulted in suppression of T cell proliferation when cultured 

with monocytes compared to control cultures consisting of monocytes cultured with 

T cells but without melanoma cells. Comparing the degree of suppression, we 

observed that EST-145, EST-152 and EST-200 induced the greatest degree of 

suppression with between 90 – 70 % of T cell suppression compared to control 

cultures without melanoma cells (Fig. 3, top panel). This was accompanied by 

phenotypic changes on monocytes that are in line with changes previously 

reported to be associated with differentiation towards MDSCs, namely down-

regulation of HLA-DR and up-regulation of CD14 expression (Fig. 3, bottom panel). 

Interestingly, we observed different degrees of T cell suppression comparing co-

cultures with melanoma cell lines tested here, suggesting that different melanoma 
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cell lines vary in their capacity to induce immunosuppression via MDSCs, and 

which thus may employ different mechanisms of immune suppression.  

Several soluble factors have been identified as being involved in the differentiation 

of monocytes into suppressive MDSCs, including GM-CSF, IL-6 and COX-2/PGE2 

51 (53). Neutralizing GM-CSF, IL-6 and IL-1beta in tumour cell line- PBMC co-

cultures abolished the induction of CD33+ suppressor cells, and reduced their 

suppressive activity towards T cells to a degree comparable to controls 53 (55). 

Despite these advances in the understanding of MDSC biology, the molecular 

pathways in tumour cells responsible for inducing the differentiation of MDSCs 

remain to be elucidated. In order to identify pathways in melanoma cells 

responsible for the induction of suppressive MDSCs, we pre-treated melanoma 

cells for 18 hrs with a panel of different inhibitors including those against heat 

shock proteins (hsps) which act as molecular chaperones (geldanamycin: HSP90; 

methylene blue: HSP70), pH regulatory proteins (U-104: Carbonic anhydrase 

inhibitor) and inhibitors of COX (acetylsalicylic acid) and JAK/STAT signaling 

(AG490).  

Assessing this panel of inhibitors for their ability to prevent immune suppression in 

this in vitro model showed no significant effect on restoring T cell proliferation for 

acetylsalicylic acid or AG490. In contrast, geldanamycin was the most effective at 

restoring T cell proliferation, followed by methylene blue. Occasionally we also 

observed an effect for U-104, however this was less consistent. Interestingly, the 

effect of the inhibitors differed according to the cell line tested. Geldanamycin 

alleviated T cell suppression in 3 of 4 tested melanoma cell lines (EST-145, EST-

152, EST-200), which was followed by methylene blue and U-104 in terms of 

strength of effect (Fig. 4B – D). However, for EST-41 we observed a different trend. 

Here, methylene blue was the most effective in alleviation of T cell suppression, 

followed by geldanamycin and U-104 (Fig. 4A). In accordance with this functional 

analysis assessing T cell proliferation, reduced T cell suppression was associated 

with an increase in HLA-DR expression on monocytes compared with monocytes 

in cultures without inhibitor (Fig. 4, bottom panel). Interestingly, EST-41 was an 

exception also in terms of phenotypic analysis; no association between HLA-DR 
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expression on melanoma-educated monocytes and degree of T cell suppression 

was observed with this cell line.  

In order to exclude a direct effect of the drugs on T cell proliferation, T cells were 

directly cultured with pre-treated melanoma cells. This showed T cell proliferation 

to be comparable to the culture where melanoma cells had not been pretreated 

with an inhibitor. This suggests that due to the thorough washing protocol 

employed, no drugs remained, or that the levels were too low to have an effect on 

T cell proliferation. Because the inhibitor might affect the viability of melanoma cells 

and therefore may result in impaired induction of T cell suppression, we performed 

the experiment with double the number of melanoma cells to compensate for any 

potential effect on cell viability. Because we observed no differences in T cell 

suppression with twice the number of melanoma cells, this suggests that alleviation 

of T cell suppression is not related to the number of melanoma cells and thus 

occurs through blocking molecular pathways in melanoma cells.  

Collectively, these results show that targeting HSP70 and HSP90 prevents the 

differentiation of monocytes into suppressive cells on both a functional and 

phenotypic level 87–90. Both molecules belong to the family of molecular 

chaperones and play essential roles in maintaining the integrity of intracellular 

proteins 99. With the help of co-chaperones, they are responsible for the correct 

folding, function and degradation of a large number of cellular proteins. Particularly 

in the case of cancer, the harsh tumour microenvironment results in the up-

regulation of such molecules in order to sustain the function of cancer cells. This is 

partly achieved through chaperones maintaining the function of key signaling 

molecules required for aberrant cell division 94. Therefore, results showing restored 

T cell proliferation upon blocking HSP70 or HSP90 suggest that there are 

overlapping networks between pathways involved in cancer maintenance and 

those involved in immune suppression. This idea is supported the action of 

chemotherapeutic drugs which have been shown to exert their beneficial effect 

partly through immunomodulatory mechanisms 95. 

As geldanamycin was shown to be the most effective in alleviating T cell 

suppression, we next investigated the time-dependent effect of this drug on 

preventing the induction of suppressive cells. For this, we pre-treated established 
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melanoma cell line EST-200 with geldanamycin and co-cultured these cells with 

monocytes and T cells for 24, 48, 72, 96 or 120 hrs. This revealed a decrease in T 

cell suppression over time compared to co-cultures with melanoma cells that had 

not been pretreated (Fig. 5). In accordance with functional analysis, we observed 

higher HLA-DR expression on melanoma-educated monocytes over time 

compared to control cultures not pretreated with geldanamycin. It was interesting 

that although melanoma cells were treated only for a duration of 18 hrs, alleviation 

of T cell suppression could be observed even 5 days post-exposure, suggesting 

that a single dose of this drug is sufficient for a long-lasting effect. In addition, we 

analysed GM-CSF production in a co-culture experiment consisting of melanoma 

cells and monocytes, as GM-CSF has been shown to be involved in the 

differentiation of suppressive MDSCs. Here, we observed decreased GM-CSF 

expression when melanoma cells were pre-treated with geldanamycin, suggesting 

HSP90 to be involved in the production of GM-CSF. Collectively, these results 

suggest that blocking HSP90 by pre-treating melanoma cells with geldanamycin 

prevents the conversion of healthy monocytes into immune suppressive cells.  

The tumour mass has distinctive features when compared to the surrounding 

tissue, including lowered oxygen tension and acidic pH, which contributes to the 

up-regulation of heat-shock proteins like HSP70 and HSP90, or the induction of the 

transcription factor hypoxia inducible factor 1 (HIF-1a) 96. Although 

chemotherapeutic drugs are typically less effective under these conditions 95,97, the 

inhibitors tested here target molecules which are up-regulated in response to 

cellular stress such as hypoxic tolerance and may not suffer from reduced efficacy 

under these conditions. On the contrary, they may even be more effective under 

conditions of the tumour microenvironment 98. Therefore we repeated the previous 

experiments under conventional (20 % O2) conditions and compared these results 

obtained under hypoxia (2 % O2). Pre-treating melanoma cells with geldanamycin 

resulted in a greater alleviation of T cell suppression under hypoxia compared to 

the conventional condition (20 %). A similar trend was observed for methylene blue 

being equally effective under hypoxia and hyperoxic conditions (Fig. 6). These 

results suggest that the efficacy of drugs targeting HSP90 is not diminished in a 

hypoxic environment in vitro. Furthermore an even greater effect was observed 
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when inhibiting HSP90, suggesting that melanoma cells are even more dependent 

on these molecules under hypoxic conditions.  

This study identified novel mechanisms in tumour cells responsible for the 

conversion of healthy monocytes into immune suppressive cells. Especially 

interesting for potential clinical application is that a single sub-lethal dose of these 

drugs was sufficient to alleviate T cell suppression. Furthermore, in contrast to 

common chemotherapeutic agents, the activity of these drugs was not diminished 

under hypoxic conditions, which may better represent the tumour 

microenvironment. Further investigations are necessary to validate the clinical role 

of hsps.  

9.3 Manuscript 1 

High levels of blood T cells identify breast cancer patients with HER2, MUC1 and 

SUR-reactive T cells. (manuscript under revision in biomarkers) 

 

Recent findings from our group, showed that (1) the presence of peripheral HER2-

reactive T cells is associated with patient survival in breast cancer and (2) 

compared with tumour-infiltrating leukocytes, HLA type and serum cytokines, blood 

leukocytes are the most informative immune parameter for the identification of 

patients possessing TAA-reactive T cells. We therefore greatly expanded the panel 

tested focusing mainly on blood leukocytes, with the aim of identifying markers that 

can more accurately select patients who possess T cells responding to tumour-

associated antigens. These markers may then be used as part of routine patient 

monitoring, in turn avoiding the complex and extended duration of directly testing 

for these antigen-reactive T cells. 

Using intracellular cytokine staining we assessed (1) T cells (CD4 or CD8) reactive 

to HER2, MUC1 and Survivin and their produced cytokine pattern (measuring 

interferon- (IFN-), TNF-α, IL-2, IL-4, IL-10 and IL-17 simultaneously in the same 

cell) (3) cellular components in the blood including T cells, NK cells and B cells 

using extracellular staining in the blood of breast cancer patients. For this study, 

cryopreserved PBMCs from 50 patients with non-metastatic invasive ductal 

carcinoma were collected at the St. Savas Cancer Hospital in Athens between 
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February 2014 and May 2015, one day prior to surgery. The study included women 

with an age range of 27–78 (median age 56 years). Patients of AJCC stages 1, 2A, 

2B, 3A and 3C were included, while patients with tumours extending to the chest 

wall as well as AJCC stages 3B and 4 were excluded. 

In this study we observed that all leukocyte types, but particularly T cells, were 

associated with clinical parameters including tumour grade, AJCC stage, Ki67 

tumour expression and lymph node infiltration. Here, higher AJCC stage and 

higher tumour grade was related to low levels of CD4+ T cells (AJCC stage: p = 

0.02, tumour grade: p = 0.03) (Fig. 2a) and high levels of CD3hiCD56dim cells that 

may resemble NKT cells (AJCC stage: p = 0.06, tumour grade: p = 0.003,) (Fig. 

2B). Interestingly, no such associations were observed for Tregs, suggesting that 

reduced levels of CD4+ T cells are due to a reduction in helper CD4+ T cells with 

disease progression. However, in terms of the number of tumour-infiltrated lymph 

nodes the same trend was observed for both CD4+ T cells and regulatory T cells; 

patients with a greater number of infiltrated lymph nodes had lower levels of both 

CD4+ T cells (p = 0.02) (Fig. 2C) and CD4+ regulatory T cells (p = 0.04). 

Furthermore, low levels of NK cells were related to higher stage and higher 

percentage of tumour cells expressing Ki67 (AJCC stage: p = 0.01, Ki67: p = 0.04), 

while the opposite trend was observed for B cells; high levels of B cells were 

associated with higher tumour grade and Ki67 tumour expression (tumour grade: p 

= 0.02; Ki67: p = 0.06) (Fig. 2D). Several other leukocyte populations were also 

observed to correlate with clinical parameters. Next, we examined the relationships 

between the major types of leukocyte populations. Here we observed only one 

significant correlation between B cells and T cells; this showed that high 

frequencies of CD20+CD40+ B cells were associated with high levels of CD4+ 

regulatory T cells (CD4+CD25+FoxP3+) (p = 0.02) (Additional File 8). 

Although previous studies have shown that tumour antigen-reactive T cells are 

predictive of patient prognosis, the generation and detection of such cells requires 

time- and resource-intensive culture protocols and thus limits their use as part of 

routine clinical monitoring. Hence, identifying immune parameters that select 

patients possessing TAA-reactive T cells may improve patient monitoring and 

clinical patient management. Having shown that blood leukocytes, compared to 
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serum cytokines, HLA type or tumour-infiltrating lymphocytes, are the most 

informative immune parameters for identifying patients possessing antigen-reactive 

T cells, in this study we expanded the panel of blood leukocytes tested to identify 

biomarkers that can more accurately select patients with response to tumour 

antigen. Thus, these blood-based biomarkers can be more easily implemented into 

clinical routine compared to the complex and expensive protocols required for 

detecting antigen-reactive T cells. 

Accordingly, we have increased the number of populations tested to include 302 

different blood leukocyte populations: 213 for T cells, 19 in the case of B cells, and 

70 NK cell populations (Additional File 9). We observed NK cells to be associated 

with T cell responses to MUC1 and SUR but not with HER2 (full set of correlations 

in Additional File 10). Here, both, low or high levels of different NK cell populations 

were shown to correlate with MUC1- and SUR- reactive T cells. For example, 

presence of CD4+ T cells responding to the MUC1 antigen was associated with 

relative high levels of CD27+ NK cells (p = 0.04) (Fig. 3A), while another population 

of NK cells (CD56dimCD16-NKG2D+) was found to be lower in patients with 

MUC1-reactive T cells (p = 0.04) (Fig. 3A). In contrast to NK cells, B cells were 

found to be associated only with T cell responses to HER2. Here, only one 

correlation between CD8+ HER2-reactive T cells and B cells was found; patients 

possessing CD8+ T cells responding to HER2 had higher levels of CD19+CD38-

CD27+CD20- B cells (p = 0.04) (Fig. 3B). Although we were able to select patients 

with TAA-reactive T cells using different B and NK cell populations, we could only 

identify selected T cell responses to certain antigens. In contrast, blood T cells 

were found to be associated with both CD4+ and CD8+ T cells responding to all 

three antigens tested. Here, compared to NK cells and B cells, T cells were found 

to be most informative for selecting patients with T cell responses to HER2, MUC1 

or SUR. Interestingly, the T cell populations found to be associated with TAA-

reactive T cells did not share any common features and covered various 

differentiation stages, including naïve as well as late-differentiated T cells. For 

example, patients with T cells responding to the SUR antigen had higher levels of 

CD8+ CD27- T cells (p = 0.0007) (Fig. 3C), while patients with MUC1-reactive T 

cells had higher levels of CD8+ TEMRA T cells (p = 0.01) (Fig. 3C). Noteworthy 
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was that the majority of patients possessing TAA-reactive T cells had higher levels 

of blood T cells, suggesting that these phenotypes may directly contribute to the 

generation of antigen-reactive T cells. This is further supported by the observation 

that, unlike B and NK cells, T cells were relevant for every type of response and 

accounted for the vast majority of all correlations with TAA-reactive T cells. 

Underlining these findings and their clinical importance, T cells were found to be 

the most informative for patient clinical parameters. These data suggest that 

altering the immune system of patients lacking TAA-reactive T cells so that it more 

closely mirrors the immune system of patients with TAA-reactive T cells might 

result in improved anti-tumour immune responses and thus superior clinical 

outcome. 

Our previous study revealed that combining multiple immune parameters can more 

accurately identify patients with TAA-reactive T cells. For example, combining 

parameters such as tumour-infiltrating leukocytes and blood leukocytes, as well as 

combining different blood leukocyte populations resulted in improved specificity 

and sensitivity in the identification of patients with TAA-reactive T cells (84). Based 

on these results, the present study aimed to identify markers that can predict 

patients possessing TAA-reactive T cells even more accurately by testing a 

markedly increased number of leukocyte populations. Indeed, in this study we were 

able to achieve specificity and sensitivity of up to 100 % in selecting patients with 

TAA-reactive T cells by combining multiple blood leukocyte populations. For 

example, by stratifying patients according to median levels of stem memory T cells 

(TSCM) and CD3-CD56- cells, we were able to identify a group of patients who all 

possessed MUC1-reactive CD4+ T cells (Fig. 4). Similarly, a group of patients with 

above median levels of NK cells (CD3-CD56hiCD16-CD27+) and NKT cells 

(NKG2D+ CD3+CD56dim) all possessed CD8+ T cells responding to the Survivin 

antigen (Fig. 4). 

This study identified populations of blood leukocytes that allow the accurate 

identification of breast cancer patients with functional TAA-reactive T cells. The 

identification of such markers could replace the direct measurement of antigen-

reactive T cells, which requires a time consuming, expensive and labour intensive 

in vitro protocol, as well as additional expertise in order to analyse and interpret the 
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results. Furthermore, difficulties in standardising culture protocols, due to user- or 

manufacturer-dependent differences, plus the limited availability of material from 

cancer patients limits the routine implementation of this approach into the clinical 

setting. Thus, identifying blood-based surrogate markers that can more easily be 

measured but still select patients with TAA-reactive T cells may represent an 

alternative to allow patient clinical monitoring and thus allow more personalised 

treatment. Especially in light of recent advances in immunotherapy, which 

presumably relies on the generation and amplification of already existing antigen-

reactive T cells, identifying patients possessing such TAA-reactive T cells, or 

identifying patients with an immune profile favourable to generating such an 

immune response, may improve the selection of patients more likely to respond the 

immunotherapy. Furthermore, identifying immune profiles of patients lacking TAA-

reactive T cells might represent therapeutic targets, whereby immune parameters 

may be altered in order to better resemble the immune profile of patients with TAA-

reactive T cells, potentially creating a more favourable environment to generate 

anti-tumour immune responses. 

These findings are intended as the first step towards replacing the time-consuming 

and costly procedure of detecting TAA-reactive T cells. By using a directly and 

more easily measured parameter such as blood leukocytes, this approach may 

more easily be integrated into routine monitoring in order to select patients with 

antigen-reactive T cells and thus identify patients with a more or less favourable 

prognosis. Ongoing clinical follow-up of these prospectively recruited patients will 

reveal which of the biomarkers identified here are relevant to patient survival 

compared with the assessment of antigen-reactive T cells. 

9.4 Manuscript 2 

Intra-tumoural immune features as prognostic markers in metastatic melanoma. (in 

preparation) 

 

Recently, investigation on the topic of the tumour microenvironment has revealed 

that the state of the immune system within the tumour plays a major role in cancer 

progression, patient clinical outcome and response to therapy. To date, prior 
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studies have been largely focused on investigating lymphocytes, typically T cells, in 

the tumour mass. In contrast, other populations of leukocytes, transcription factors 

and soluble mediators of immune response (such as cytokines) have been 

relatively neglected. Therefore, this study was designed to identify immune 

parameters including soluble factors and cellular components in the tumour 

microenvironment in order to assess which of these are most relevant for patient 

outcome. 

This study assessed T cells (CD3+) and myeloid cells (CD15+) in addition to a 

panel of soluble immune factors (IL-6, GM-CSF, TNF, IL-1Ra, IL-2, IL-10, GDF15, 

PGE2) as well as the transcription factor STAT3 in metastatic melanoma tissues of 

76 patients using fluorescence microscopy. Slide-mounted formalin-fixed paraffin-

embedded tissue sections (5 µm thick) from metastatic melanoma patients were 

collected at the Dermatology Department of Tübingen University Hospital. The 

study population consisted of 44 men and 32 women with a median age of 63 

(range 35 – 89 years). Patients of AJCC stages 3, 4A, 4B and 4C were included in 

this study. 

The analysis of soluble factors as well as immune cells within the tumour 

microenvironment revealed that the majority of melanoma tissues were positive for 

most molecules tested (Fig. 1A). However, the levels of expression as well as the 

number of infiltrating cells varied across melanoma patients, with IL-6, GM-CSF 

and IL-1Ra showing the greatest range (Fig. 1B). Overall, CD15+ granulocytic cells 

were less commonly found compared to CD3+ T cells (Fig. 1C and 1D), although 

no significant difference were observed comparing the relative distribution of T and 

granulocytic cells between the center and margin of the tumour (Fig. 1E). In 

addition to T cells and granulocytic cells, we also attempted to analyse CD14+ cell 

infiltration. Although we tested two commercially-available antibodies (goat 

polyclonal anti-CD14 from Novus Biologicals and mouse monoclonal anti-CD14 

from Santa Cruz (clone 5A3B11B5)) and a number of different staining protocols, 

unfortunately we were not able to establish a staining protocol which enabled us to 

quantify CD14+ cells. 

Soluble molecules often act in concert and may generate an environment that 

either enhances or suppress infiltration of immune cells into the tumour. Therefore, 
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we examined whether the presence of certain soluble molecules is associated with 

higher infiltration of immune cells into tumour tissue. Indeed, we found that high 

CD15+ infiltration is associated with low relative expression of PGE2 (p = 0.02) 

(Fig. 2A), but no other association between immune cell infiltration and soluble 

molecules was observed. Furthermore, analyzing the relationship between different 

soluble molecules revealed several correlations between their expression levels. 

For example, expression of IL-6 and GM-CSF (p < 0.0001, r = 0.7), TNF and 

STAT3 (p < 0.0001, r = 0.7), IL-2 and IL-10 (p < 0.0001, r = 0.5) (Fig. 2B), plus 

other combinations of these cytokines were found to be positively correlated 

(Supplementary Data 1). 

Several studies have shown that the state of the immune system plays a major role 

in patient outcome. However, the majority of those studies mainly focus on tumour-

infiltrating cells and miss analysis of soluble factors, although they have been 

shown to influence anti-tumour immune responses and thus patient survival. 

Therefore we investigated whether immune parameters tested here are associated 

with clinical features including disease stage, progression time (stage III to stage 

IV), age and gender as well as patient survival. In terms of clinical parameters, only 

stage and age were found to correlate with the immune features tested here. We 

observed that patients with stage IV disease had higher levels of TNF compared to 

patients with less advanced stage III disease (p = 0.02) (Fig. 3A). Furthermore, we 

observed age to be associated with CD15+ cell infiltration; older patients were 

found to have lower numbers of CD15+ cells in the margin of the tumour (p = 

0.046) (Fig. 3B). In order to investigate the role of immune parameters tested here 

on patient survival, we first stratified patients according to the conventional method 

of using the median values to split the cohort into relative high and low values for a 

particular parameter. Using this approach, Kaplan-Meier survival analysis revealed 

that none of the immune parameters tested here (neither soluble nor cellular 

factors) was associated with patient survival (data not shown). These results are in 

contrast to several other studies showing superior overall survival in patients with 

high CD3+ infiltration in several types of cancer 56–58,100–106. However, in 

melanoma, the role of tumour-infiltrating T cells remains to be elucidated due to 

inconsistent results from different investigators. While Hillen et al. reported a 
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negative association with the level of intra-tumoural T cells on overall survival 67, 

other studies report a positive relationship - patients with high levels of intra-

tumoural T cells, or one study considering peri-tumoural T cell activation markers, 

were found to have longer survival 107,108. Another study, in accordance with the 

results presented here, reported no significant association between the level of 

intra- or peri-tumoural CD3+ cells and overall survival 109. Such discrepancies 

between these studies might be explained by the great diversity of cells that are 

detected when using only CD3 to identify T cells; sub-populations of CD3+ cells 

may vary considerably in functional properties or activities. For example, CD3+ T 

cells include helper cells, cytotoxic cells but also regulatory T cells or exhausted 

and anergic cells. Therefore, combining multiple markers to more accurately 

characterise their phenotypes, as well as including markers representing their 

functional state, may increase the accuracy of predicting patient prognosis. In 

support of this, one study highlighted the prognostic difference with different T cell 

populations in a cohort of melanoma patients. In that study, high T cell infiltration 

per se was associated with poorer survival, but prolonged survival was found when 

the degree of cells expressing the T cell activation marker CD69 was considered 

67. 

However, in contrast to the results showing no association between the intra-

tumoural immune parameters investigated here and patient survival, we observed 

that several immune parameters were associated with patient survival when using 

a different method to analyse the experimental data. In this approach, we grouped 

patients according to relative high and low values using different cut-off values to 

determine the threshold with the minimum p-value and thus the greatest difference 

in survival. Here, we observed that patients who had low relative levels of GM-CSF 

or IL-10 (p=0.035 and p=0.043 respectively), or high relative levels of PGE2 

showed longer survival (p=0.03) (Fig. 4A and B). In addition, higher levels of 

infiltrating T cells or low levels of infiltrating granulocytic cells were associated with 

better patient survival (p = 0.028 and p = 0.0006, respectively) (Fig. 4C). Because 

this approach requires an additional number of statistical tests, we adjusted the 

significance threshold accordingly. Considering this, only the association between 

low relative levels of intra-tumoural CD15+ cells and improved patient survival 
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remained significant (p = 0.0006, adjusted significance threshold p = 0.0009) (Fig. 

4C). 

Recent studies have shown that high numbers of tumour-infiltrating immune cells 

are associated with superior survival in many types of cancer 56,57. However, 

despite the presence of such tumour-infiltrating immune cells, tumour progression 

is still frequently seen, suggesting that there are factors in the tumour 

microenvironment inhibiting an effective anti-tumour response by these cells. 

Indeed, several mechanisms have been identified that induce T cell dysfunction by 

either directly inhibiting T cell function, for example the expression of inhibitory 

ligands like PD-L1 on tumour cells or APCs, or indirectly via the induction of 

regulatory cells such as Tregs or MDSCs 24,110. High levels of IDO and PGE2 have 

been demonstrated to inhibit T cell function while IL-6 and several other factors 

have been shown to convert monocytes into immunosuppressive MDSC. These 

mechanisms have the potential to impair T cell function within the tumour 

microenvironment and as such may limit the prognostic value of tumour-infiltrating 

leukocytes due to changing the immunological context which influences the 

functional state of these cells. To better consider the immunological context of the 

immune parameters investigated here, we assessed combinations of these 

features as potential prognostic markers. Thus, by combining immune features we 

could demonstrated that patients with high levels of infiltrating CD3+ T cells and 

low levels of CD15+ cell infiltration had better survival compared to patients without 

these combinations (p = 0.03) (Fig. 5A). Furthermore, we observed a trend for a 

survival advantage in patients with high relative levels of CD3 infiltration in 

combination with low relative levels of the potentially suppressive cytokine IL-10 (p 

= 0.1), as well as for patients with low relative levels of infiltrating CD15+ cells and 

low IL-10 expression (p = 0.08) (Fig. 5B). These results suggest that the interaction 

between different intra-tumoural leukocytes as well as between leukocytes and 

soluble factors in the tumour microenvironment are important for their functional 

state. This hypothesis is supported by a study showing that high levels of tumour-

infiltrating CD8+ T cells are associated with the recruitment of regulatory T cells 

into the tumour microenvironment, which might represent a negative feedback 
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mechanism following infiltration by cytotoxic T cells. Therefore, assessing cytotoxic 

T cells only might limit their prognostic accuracy 111. 

These results, especially in light of the increasing clinical use of immunotherapies, 

indicate the importance of a more comprehensive analysis of the tumour 

microenvironment. Supporting this notion, immune features of the tumour 

microenvironment have been shown to be associated with response to 

immunotherapies 57,112–119. For example, Tumeh et al. observed an association 

between the density of tumour-infiltrating T cells and clinical response to PD-1 

antibodies 65. Thus, there is an urgent need to understand the constitution of the 

tumour microenvironment in order to optimize personalized treatment management 

or for the identification of novel therapeutic targets.  

Collectively, these preliminary results show that intra-tumoural immune parameters 

either individually or in combination may act as potential prognostic markers in 

metastatic melanoma. Unlike in many other cancer types, tumour infiltration by T 

cells was not associated with patient survival, but granulocytic cells may be a more 

promising marker for predicting patient survival. These results require validation in 

an independent cohort of patients and should be considered preliminary until then.  
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Abstract
Purpose Breast cancer is a leading cause of cancer deaths

in women, but despite steady improvements in therapies,

treatment is still suboptimal. Immunotherapy holds pro-
mise as a more effective therapy for breast cancer; sup-

porting this, our prior study showed that patients

possessing HER2-reactive CD8? T cells in blood experi-
ence survival superior to patients without these cells. Here,

we define a composite set of biomarkers that identify

patients with T cell responses to tumour antigens.
Methods We assessed T cell responses following in vitro

stimulation with the HER2, MUC1 and SUR tumour-as-

sociated antigens (TAA) by flow cytometry and intracel-
lular cytokine staining in 50 breast cancer patients. We also

measured HLA type, serum cytokines, tumour-infiltrating

leukocytes and blood leukocyte populations.

Results We found few correlations between TAA-reactive
T cells and HLA type, serum cytokines and tumour-infil-

trating leukocytes, whereas blood leukocyte phenotypes

broadly correlated with TAA responses. This showed
monocytes, natural killer cells, dendritic cells and T cells to

be inversely associated with both CD4? and CD8? T cells

reactive to tumour antigens. Moreover, combining multiple
parameters improved the accuracy in predicting patients

with TAA-responsive T cells.

Conclusion This study therefore defines composite immune
profiles that identify patients responding to TAAs which

may allow better personalisation of cancer therapies.

Keywords Tumour-associated antigen ! Blood
leukocytes ! Breast cancer ! HER2 ! Survivin ! MUC1
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IFNc Interferon gamma
IL Interleukin

IL-1Ra Interleukin-1 receptor antagonist

mDCs Myeloid dendritic cells
MDSCs Myeloid-derived suppressor cells

MUC1 Mucin 1

N N stage
NK Natural killer

NR Non-responder

PBMCs Peripheral blood mononuclear cells
pDCs Plasmacytoid dendritic cells

PR Progesterone receptor

R Responder
SI Stimulation index

SUR Survivin

T Tumour stage
TAA Tumour-associated antigens

TGF-b Transforming growth factor-b
TNF Tumour necrosis factor
Tregs Regulatory T cells

Introduction

Breast cancer is the most common cancer in women (http://
globocan.iarc.fr), but mainstay treatments are still subop-

timal for most patients. To address this, there is a growing

interest in using immunotherapy to treat breast cancer.
Immunotherapy can take many forms including mono-

clonal antibodies targeting tumour antigens expressed on

cancer cells, so-called checkpoint inhibitors, cancer vac-
cines or other treatments that aim to boost the immune

system. Of these, immunomodulatory antibodies that target

T cell suppressor ligands or receptors have shown highly
encouraging results in several types of cancer [1–3]. The

effectiveness of such treatments is presumably based on T

cell immune responses against tumour-associated antigens
(TAAs) expressed by cancer cells, allowing these cells to

kill or otherwise inhibit tumour cells and induce tumour

regression. Similarly, cancer vaccines also aim to prime or
boost immune responses against tumour cells, and it has

been shown that both of these approaches result in stimu-

lated T cell responses and clinical tumour regression or
prolonged patient survival [4–6].

One of the most widely investigated TAAs in breast

cancer is the human epidermal growth factor receptor 2
(HER2). Our previous study showed that breast cancer

patients whose peripheral blood mononuclear cells

(PBMCs) mounted in vitro CD8? T cell responses to
HER2 peptides experienced prolonged survival relative to

patients without such responses [7]. Consistent with this,

HER2 vaccination has also resulted in clinical therapeutic
responses [8, 9] and tumour regression [10]. These studies

closely link T cells specific for TAAs with improvements

in patient clinical status. As with most types of immune
responses, TAA-reactive T cells are governed by immune

regulatory factors such as regulatory T cells (Tregs) or

myeloid-derived suppressor cells (MDSCs), which can
dampen anti-tumour immune responses including those

against TAAs [11–19]. Tregs and MDSCs induce immune

suppression through a range of processes including cytol-
ysis via granzyme B and perforin, production of inhibitory

signalling molecules such as IL-10, transforming growth
factor-b (TGF-b) or prostaglandin 2, or induction of T cell

dysfunction through arginine depletion [20, 21]. This may

offer the possibility of targeting these cells to enhance anti-
tumour immunity [22]. Because many of these effector

molecules are soluble, the activity of such regulatory cells

may be reflected by systemic levels of suppressive factors
that they produce. Indeed, serum cytokines have been

associated with patient outcome [23, 24], supporting their

potential as markers reflective of patient immune status.
Considering the emerging role of tumour antigen-reac-

tive T cells and the results of our prior study which

demonstrated a survival advantage for patients possessing
T cells reactive to HER2, we aimed to pinpoint the patient

features associated with T cell responses to tumour anti-

gens in breast cancer. We reasoned that multiple different
factors could potentially influence whether a patient pos-

sesses T cells responsive to tumour antigens and thus

clinical outcome. To increase the predictive utility of such
biomarkers, here, we measured broad features including

immunogenetic factors, soluble signalling molecules in

serum as well as cellular components in the blood and also
within the tumour, with the goal of defining a composite set

of biomarkers predictive of TAA responses which may

better correlate with clinical outcome than tumour antigen
immune responses alone, and which may also allow more

effective personalised application of cancer therapies.

Materials and methods

Patients

Blood samples from 50 patients with invasive carcinoma
were collected at the St. Savas Cancer Hospital in Athens

between February 2014 and May 2015, one day prior to

surgery. The study includes women with an age range of
27–78 (median age 56 years). Peripheral blood mononu-

clear cells were isolated from blood using Ficoll–Hypaque

gradient and stored in liquid nitrogen before being shipped
to the Tübingen University Hospital for analysis. Written

informed consent was approved by the Review Board at St.

Savas Cancer Hospital. The patients all had non-metastatic
invasive ductal carcinoma. Patients who had tumours of
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any size but without extension to chest wall were included,

i.e. patients were all of AJCC stages 1, 2A, 2B, 3A, 3C but
not 3B and 4. None of these patients were treated with

neoadjuvant chemotherapy or were enrolled to other

research protocols, nor did they have any history of cancer
or other serious health problems. Tumour expression of

hormone receptors [progesterone (PR) and oestrogen

receptors (ER)], the HER2 oncoprotein and the marker of
cell proliferation Ki67 was available for all patients

(Table 1).

Detection of antigen-reactive T cells

T cell responses to HER2, Mucin1 (MUC1) and Survivin

(SUR) were measured after 12 days of in vitro culture. This

procedure, including the detection of reactive T cells with
flow cytometry, was performed as in our prior study [7]

(see Online Resource 1 for full list of antibodies

employed). Cytometer setup and tracking beads (BD Bio-

science) were run before and after each sample measure-
ment to ensure consistency in machine performance. The

inclusion of a positive biological control (stimulation with

influenza peptides) assured consistency in sample quality
and the prevention of false-negative results.

Phenotypic analysis of myeloid cells, T cells
and Natural Killer cells

For characterisation of myeloid cells [including monocytes,

MDSCs, plasmacytoid Dendritic Cells (pDCs) and myeloid

DCs (mDCs)], T cells (including regulatory T cells) and
Natural Killer cells (NK cells), PBMCs were thawed and

stained as previously described [7], using the antibody

panels in Online Resource 1. Antibody panels were
established using fluorescence minus one controls.

Cytometer setup and tracking beads were run before and

after each sample measurement to ensure consistency in
machine performance. The limited nature of patient mate-

rial did not permit multiple testing of the same sample, but

we performed multiple independent measurement of a
healthy control donor (n = 9) in order to ensure consis-

tency in measurement conditions.

Flow cytometry data analysis

Data were analysed with FlowJo software version 10.07
(immunophenotyping) or version 7.2.5 (antigen-reactive T

cells). Flow cytometry data were analysed first by

excluding events not part of the main acquisition popula-
tion using a time-vs-side scatter gate. Cell doublets were

then removed before the exclusion of dead cells (EMA-

positive events) and cell debris with the use of a morpho-
logical gate (Online Resource 2). The assessment of T cell

responses to tumour-associated antigens was performed

using the same method as in our prior study [7]; we
compared control (unstimulated) and peptide-stimulated

cultures as described in the methods section ‘‘Detection of

antigen-reactive T cells’’ and assigned a positive response
when the frequency of T cells producing any cytokine in

the stimulated sample was at least twice that of the control

sample (Online Resource 4). Additionally, each response
was visually assessed to ensure the presence of a clearly

distinguishable population of positive events. T cell

responses were considered categorically (present or absent)
in addition to a quantitative assessment of the strength of

response by calculating the ratio of the frequency of pos-

itive events in the stimulated sample by comparison with
the unstimulated sample to give a stimulation index (SI).

This method allows the detection of multiple cytokines

from each patient, but does not directly assess whether
production is from the same or different population of

Table 1 Characteristics of the breast cancer patients

Patient clinicopathological parameters (n = 50)

Median age (range in years) 56 (27–78)

AJCC staging

1 15

2A 10

2B 12

3A 12

3C 1

Receptor status

Triple negative 5

ER? 42

PR? 33

HER2? 15

Ki67

\10% 7

10–20% 21

[20% 22

T stage

1 21

2 26

3 3

N stage

0 21

1 17

2 11

3 1

Grade

1 0

2 26

3 24
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cells. Antibody-stained leukocyte populations, including

the assessment of T cell responses to TAAs, were gated
according to the approaches shown in Online Resources

2–4.

Assessment of tumour-infiltrating leukocytes

Haematoxylin–Eosin-stained tumour slides were reviewed
by two breast pathologists (M.S. and N.A.) to select the most

representative slide of each tumour. Sections (4–5 lm) were
stained individually with antibodies to CD4 (4B12, 1:40;

Biogenex), CD8 (SP16, 1:80; Thermo Scientific), CD163

(10D6, 1:400; Biocare) and FoxP3 (236A/E7, 1:100;
Abcam). Staining protocols for all antibodies were opti-

mised using sections of tonsil tissues. Immunostaining was

performed using the Leica Bond III automation (Leica
Biosystems, Melbourne, Australia) and Leica detection kit

(Leica Biosystems, Newcastle, UK). The staining protocol

included a 30-min high pH epitope retrieval in the case of
CD4, CD163 and FoxP3 antibodies, and a low pH retrieval

for CD8, which was followed by a 30-min incubation with

the primary antibody. Reactions were developed with
diaminobenzidine, and sections were counterstained with

haematoxylin.

Micrographs (3840 9 3072 pixels) of each slide stained
with CD4, CD8, FoxP3 and CD163 were captured with a

Nikon DXM-1200 Camera on a Nikon Eclipse E800

microscope with E Plan Achromat Objectives using Auto-
matic Camera Tamer (ACT-1) Version 2 software. White

balance was calibrated before image capture. The images

were saved as JPG at 95% quality without image process-
ing. Quantification of infiltrating cells was performed using

Adobe Photoshop CS6 (used to select the exact colour of

positive cells for eachmarker whichwas then converted to a
grey scale image) and ImageJ (used to analyse the per-

centage of the surface covered by the stained cells). The

surface coverage of stained cells was then converted to
absolute number of infiltrating cells per mm2. For each

infiltrating subpopulation, we performed visual enumera-

tion in ten representative regions by two independent
researchers.

Patient HLA typing

DNA from peripheral blood cells was extracted using the

automated Maxwell" 16 Blood DNA Purification Kit
(Promega, Madison, WI, USA), according to the manu-

facturer’s protocol. HLA genotyping was performed using

rSSO-Luminex (LIFECODES" HLA SSO Typing—
RAPID, Immucor Transplant Diagnostics, INC, Stamford,

CT, USA), and the results were analysed with the MATCH

IT! DNA software (Immucor Transplant Diagnostics, INC,
Stamford CT).

Measurement of serum cytokines

Frozen sera from patients were thawed at 37 #C and sub-
sequently mixed well. Measurement of IL-1Ra, IL-9 and

IL-10 was simultaneously performed by Luminex using the

human premixed multi-analyte kit (R&D systems)
according to manufacturer’s instructions. RANTES/CC-

chemokine ligand 5 and TGF-b determinations were per-

formed by separate Luminex-based kits (R&D systems).
The full panel of cytokines investigated additionally

included IL-1beta, IL-2, IL-4, IL-5, IL-8, IL-12 p70, IL-15,

IL-17A, TNF, IFNc and GM-CSF, but levels of these
cytokines could not be detected.

Statistical analysis

Statistical analyses were performed using GraphPad Prism

5 (GraphPad Software Inc., San Diego, CA, USA). Two
independent groups were compared using the Mann–

Whitney U test. Relationships across four grouping vari-

ables were assessed with Fisher’s exact test. Correlations
were assessed using Spearman correlation analysis. A

value of p\ 0.05 was considered statistically significant.

Because this was an exploratory study we aimed to reduce
the chance of obtaining false-negative results. For this

reason, statistical analyses were not corrected using the

Bonferroni method, and the results should be interpreted as
such.

Results

Breast cancer patients frequently show in vitro
responses to HER2, MUC1 and SUR

T cells reactive to the HER2, MUC1 and SUR tumour
antigens were detected in the PBMC of 50 non-metastatic

breast cancer patients using an established 12 day in vitro

expansion protocol. Reactive T cells were found to be
common in patients, with a high frequency of responses to

HER2 (96%), MUC1 (80%) and SUR (72%) (Fig. 1a).

Examining CD4? and CD8? T cell responses separately
showed that CD4? reactive T cells were more common

(Fig. 1b) and produced a larger number of different

cytokines than CD8? cells (Fig. 1c).

T cell responses to tumour antigens are associated
with clinical parameters in breast cancer

We investigated if T cell responses to HER2, MUC1 and

SUR were associated with patient clinical features. This
analysis showed that patients with a higher tumour grade

had weaker CD4? T cell responses to MUC1 (p = 0.045)
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(Fig. 2a), but those with oestrogen receptor (ER)-positive

tumours had stronger CD8? T cell responses to HER2
(p = 0.031) (Fig. 2b). No associations with SUR-re-

sponding T cells were found, nor were correlations with

other clinical parameters including T, N or AJCC stage,
total lymph node involvement as well as expression of

Ki67, HER2 or progesterone receptor in the tumour.

Serum cytokines and patient HLA type are
associated with T cell responses to TAAs

Immune features associated with responses to tumour

antigens were sought in the form of serum cytokines and
HLA type. We reasoned that a particular cytokine milieu or

due to immunoediting, T cell responses to tumour antigens

might be favoured or suppressed which might result in high
frequencies of certain HLA types possessing TAA-reactive

T cells. To this end, we measured serum levels of IL-1Ra,

IL-9, IL-10, TGF-b1 and RANTES and performed HLA
typing. We found that only in selected cases were these

features related to responses to tumour antigens; a high

proportion of HLA-A*01? patients lacked T cells

responsive to MUC1, whereas HLA-A*02? patients were
more likely to possess T cells reactive to this antigen than

HLA-A*02-negative patients (Fig. 3a). Considering serum

cytokines, we found higher serum IL-10 levels in patients
who had CD8 HER2-(Fig. 3b) and SUR- (p = 0.02, data

not shown) responsive T cells compared to those who did

not have these cells. Aside from these associations no other
relationships between T cell responses and serum cytokines

or HLA type were found.

Relationships between tumour leukocyte infiltration
and in vitro T cell responses to tumour antigens

Based on the notion that TAA-reactive T cells are active

against tumour cells in situ, we investigated if they were
associated with tumour leukocyte infiltration, namely by

CD4?, CD8?, FoxP3? and CD163? cells, which may act

as local regulators of tumour immunity. These analyses
revealed that there was no association between tumour

leukocyte infiltration and in vitro T cell responses to HER2

Fig. 1 T cell responses to tumour-associated antigens in breast
cancer patients. CD4? and CD8? T cell responses measured by IL-
2, IL-5, IL-10, IL-17, TNF and IFNc production were detected in the
PBMC of 50 breast cancer patients after stimulation with HER2,
MUC1 or SUR TAAs. CD4? and CD8? T cells were considered
responsive to an antigen if they showed a positive signal for any of the
six measured cytokines. a Across these 50 breast cancer patients,
HER2-reactive T cells were observed to be more common than
MUC1- or SUR-reactive T cells. b Responses to all TAAs were more

commonly seen for CD4? than CD8? T cells. c Differences in the
cytokine production profile were observed for CD4? but not for
CD8? T cells when comparing their responses to HER2, MUC1 and
SUR. The percentage for each cytokine was calculated only
considering patients who responded to HER2, MUC1 or SUR. NR
non-responder; R Responder; TAA tumour-associated antigen; HER2
human epidermal growth factor receptor 2; MUC1 Mucin 1; SUR
Survivin
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(Fig. 4a), but patients whose tumours were more densely

infiltrated by CD163? , CD4? T cells (Fig. 4b) as well as

combined cell counts for both CD4? and CD8? T cells
(data not shown) more commonly possessed CD4? T cells

responding to the MUC1 antigen. Conversely, patients who

showed less tumour infiltration by CD8? T cells more
commonly had CD8? T cells responding to SUR (Fig. 4c).

No other associations between TIL and antigen-reactive T

cells were found.

Blood leukocyte populations as surrogate markers
for anti-tumour T cell responses

The immunogenetic, molecular and cellular features investi-

gated so far were only occasionally associated with in vitro T
cell responses to tumour antigens, which led us to pursue

more robust markers of tumour antigen responses in the form

of blood leukocytes. To this end, 30 different myeloid and 23
lymphoid populations comprising T cells, monocytes, den-

dritic cells, natural killer cells, regulatory T cells and mye-

loid-derived suppressor cell phenotypes were tested for
association with T cell responses to the HER2, MUC1 or

SUR antigens (see Online Resource 5 for a complete list of

tested phenotypes). We were particularly interested in
exploring these relationships for leukocytes with suppressor

phenotypes, namely Tregs and MDSCs. Furthermore, to

account for potential location-dependent differences, we also

re-tested a number of cell types that were investigated in
tissue. This analysis revealed that many blood leukocyte

populations were associated with T cell responses to HER2

and MUC1 and SUR. It was surprising that compared with
phenotypically non-suppressive leukocyte populations, we

found relatively few correlations for Tregs (two correlations)

and MDSC phenotypes (nine correlations) (Table 2). Note-
worthy was that patients with higher levels of blood mono-

cytes presented with absent or weaker CD4? and CD8? T

cells responsive to HER2 and MUC1 than patients with lower
levels of monocytes. Similar inverse relationships were also

observed for NK cells, mDCs and CD4? and CD8? T cells

expressing markers of proliferation (Fig. 5), whereas other
populations were positively associated with antigen-reactive

T cells (Table 2). Interestingly, we observed that within

monocytes, the HLA-DR? fraction positively correlated with

Fig. 2 T cell responses to MUC1 and HER2 correlate with tumour
grade and ER receptor expression. T cell responses to the HER2,
MUC1 or SUR TAAs were measured in 50 breast cancer patients
following 12 days of in vitro expansion. The SI (ratio of cytokine
positive cells between peptide-stimulated and unstimulated T cells) of
responding CD4? or CD8? T cells were correlated with the patient
clinical parameters grade, T, N, AJCC stage, total lymph node
involvement as well as tumour expression of Ki67, HER2, ER and
PR. a Patients with more advanced tumour grade showed weaker
responses to MUC1. b ER-positive patients responded more strongly
to HER2 than ER-negative patients. SI stimulation index; ER
oestrogen receptor; HER2 human epidermal growth factor receptor
2; MUC1 mucin 1; *p\ 0.05 (Mann–Whitney U test)

Fig. 3 Patient HLA type and serum cytokine levels correlate with T
cell responses to tumour antigens. Patients with or without HER2-,
MUC1- or SUR-reactive T cells were compared in terms of HLA type
and serum cytokines (n = 50). a HLA-A*01 (p = 0.045) and HLA-
A*02 (p = 0.0001) status was associated with MUC1-reactive T cells
(Fisher’s exact test). CD8? T cells were considered responsive to an
antigen if they showed a positive signal for any of the six measured
cytokines. b Serum IL-10 levels were higher in patients who had
IFNc producing CD8 HER2-reactive T cells (Mann–Whitney U test)
compared to patients without these cells. R responder; NR non-
responder; **p\ 0.01; NS not significant; HER2 human epidermal
growth factor receptor 2; MUC1 mucin 1; SUR survivin
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tumour antigen-reactive T cells, while the HLA-DR- frac-

tion was negatively associated with TAA-reactive T cells,

indicating that the balance between monocyte maturation
states may be relevant for the presence of anti-tumour T cells.

The location of these leukocytes, whether in tissue or in

blood, was also relevant to their relationship with tumour

antigen-reactive T cells; correlations for a particular cell type

in blood were not found when the same cell type was present
in tissue and vice versa (Fig. 4; Table 2), thereby demon-

strating location-dependent differences. Figure 5 shows rep-

resentative relationships between blood leukocyte frequencies
and TAA T cell responses, and Table 2 provides an overview

of all correlations identified. Similar relationships were

obtained whether considering the strength of T cell response
(stimulation index) or categorically comparing patients who

had reactive T cells for each cytokine with those who did not.

Combining immune parameters improves
the accuracy of predicting patients with TAA-
reactive T cells

We sought to improve upon the accuracy of the
parameters found to be associated with TAA-reactive T

cells by analysing multiple immunological features. By

combining different immune parameters, we were able to
achieve superior prediction in the specificity and sensi-

tivity in identifying patients possessing T cells reactive

to HER2, MUC1 or SUR (Fig. 6a, selected results
shown). Furthermore, these combinations of immune

features allowed us to better stratify patients by the

strength and frequency of T cell responses, i.e. into sub-
groups with stronger and more frequent T cell responses

or with weaker and less frequent responses (Fig. 6b,

selected results shown). For example, the group of
patients with below median levels of monocytes and NK

cells only contained HER2 responders, with an average

SI of 14.5. In comparison, the group with above median
levels of these cells was made up of roughly equal

numbers of responding and non-responding patients and

had an average SI of 2.3 (Fig. 6b, left panel). We
observed that combining different types of immunolog-

ical parameters, for example, tumour-infiltrating cells

and blood leukocyte populations, also resulted in better
prediction of TAA responses. Patients with high levels

of tumour infiltration by T cells and low levels of

CD16? mDCs in peripheral blood were more likely to
have T cells reactive to MUC1 compared with patients

without this profile (Fig. 6b, middle panel).

Discussion

This study was conducted to identify composite immuno-

logical features including tumour-infiltrating leukocytes,

HLA type as well as peripheral immune cell types and
cytokines, with the goal of identifying biomarkers which

can accurately select breast cancer patients with responses

to tumour antigens, predict clinical outcome or facilitate
improved therapeutic customisation to individual patients.

Fig. 4 Tumour-infiltrating leukocytes are associated with peripheral
T cell responses to TAAs. The level of tumour leukocyte infiltration
was compared for patients possessing T cells reactive to the HER2,
MUC1 or SUR TAAs with those not possessing antigen-reactive T
cells (n = 50). a Patients with HER2-responsive T cells showed no
difference in their level of TILs. b Patients with MUC1-reactive T
cells showed greater tumour infiltration by CD4? T cells and
CD163? cells. c Patients with T cells reactive to the SUR antigen
had less tumour infiltration by CD8? T cells. Groups were divided
according to patients who possessed the indicated T cell response and
those who lacked these cells. NR non-responder; R responder; TIL,
tumour-infiltrating leukocytes; ***p\ 0.001; **p\ 0.004;
*p\ 0.04; NS not significant (Mann–Whitney U test); TAA tumour-
associated antigen; HER2 human epidermal growth factor receptor 2;
MUC1 mucin 1; SUR survivin
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We assessed T cells responding to HER2, MUC1 or SUR

in 50 breast cancer patients and found certain associations

between T cell responses with HLA type, serum cytokines
and tumour-infiltrating leukocytes. In contrast to these

limited associations, a number of different leukocytes in

blood, including monocytes, natural killer cells, dendritic
cells and T cells broadly correlated with tumour antigen-

reactive T cells. Moreover, accuracy in selecting patients

with tumour antigen-reactive T cells was improved when
considering multiple patient parameters. The cluster of

biomarkers identified here reveal immune profiles corre-

lating with the presence of TAA-reactive T cells that may

allow for the selection of patients with immune systems

most capable of mounting an anti-tumour response, thus

potentially identifying patients who possess a wider
repertoire of TAA-reactive T cells not limited to those

which can be feasibly measured. Ongoing clinical follow-

up of these prospectively recruited patients will reveal
whether the composite set of biomarkers identified here,

including TAA-reactive T cells, will allow superior sur-

vival prediction. Selecting patients using these biomarker
combinations may allow personalised tailoring of patient

treatments, for example, sparing patients with a favourable

prognosis from otherwise unnecessary treatment, or the

Table 2 Correlations between
blood leukocytes and T cell
responses to HER2, MUC1 and
SUR

T cell response Leukocyte population p value r value

CD4 IL-2 Monocytes 0.0001 -0.54

NK cells 0.004 -0.42

CD4? Ki67?, CD8? Ki67? 0.04, 0.02 -0.29, -0.33

CD4 IFN Monocytes 0.0005 -0.49

CD14? CD124? 0.024 0.33

CD4 IL-5 Monocytes 0.0002 -0.53

CD14? CD124? 0.007 0.39

mDCs 0.010 -0.37

NK cells 0.026 -0.33

CD4 TNF Monocytes \0.0001 -0.60

CD14? CD124? 0.0009 0.47

mDCs 0.045 -0.30

NK cells 0.024 -0.33

CD8 TNF Monocytes 0.038 -0.30

pDCs 0.016 -0.35

CD4 IFN CD14? HLA-DR- 0.013 -0.36

CD14? CD124? 0.049 0.29

CD4? CD25? FoxP3? Ki67? CD45RA? 0.033 0.33

CD4 IL-2 CD16? mDCs 0.036 -0.31

CD4 IL-5 Monocytes 0.0005 -0.49

CD14? CD124? 0.006 0.40

mDCs 0.027 -0.32

CD8? Ki67?, CD4? Ki67? 0.002, 0.04 -0.42, -0.29

CD8 IFN CD4? CD25? FoxP3? Ki67? CD45RA? 0.049 -0.31

mDCs 0.028 -0.32

CD4?, CD8? 0.015, 0.017 -0.34, 0.34

ratio CD4/CD8 0.0093 -0.36

CD8 IL-2

CD8 IL-2 Lin-CD14? HLA-DR; \0.05,\0.05 -0.29, 0.29

CD8 TNF Monocytes 0.02 -0.34

mDCs, pDCs 0.024, 0.038 -0.33, -0.30

CD4 IL-2 CD8? Ki67? 0.012 -0.35

CD8 IFN Lin-CD14? HLA-DR; 0.022, 0.015 -0.34, 0.35

CD8 TNF Lin-CD14? HLA-DR; 0.021, 0.017 -0.34, 0.35

Lin, lineage markers CD3 CD19 and CD56. Correlations were assessed using the SI
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administration of more aggressive therapies for patients

with a poorer prognosis.

The results from this study may also have implications
for the treatment of breast cancer patients with

immunotherapies. The clinical benefit of immunomodula-

tory antibodies (so-called check point inhibitors) relies on
the presence or emergence of anti-tumour T cells, sug-

gesting that patients with pre-existing tumour immunity in

the form of TAA-reactive T cells may be more likely to
respond to these drugs [25, 26]. As such, the results pre-

sented here may provide a basis for the selection of breast

cancer patients more likely to benefit from treatment with
immunomodulatory antibodies. Furthermore, patients

without TAA-reactive T cells but who show similar

immune profiles to patients with them may also benefit
from treatment with these drugs due to the existence of

conditions more permissible to the presence TAA-reactive

T cells. These results may also extend to the use of cancer

vaccines, whereby patients who have immune profiles

favourably associated with the presence of anti-tumour T

cells may also be more likely to develop an immune
response to the vaccine and to benefit clinically

[5, 6, 27–29]. Furthermore, our results allow the selection

of patients with antigen-reactive T cells producing specific
cytokines. Because our prior study found that not only the

general presence of TAA-reactive T cells but also the

production of certain cytokines by these cells to be relevant
for patient survival [7], the immune profiles identified here

therefore allow a high degree of specificity in identifying

those most likely to respond to immunotherapy or to have a
favourable prognosis.

Despite numerous associations between blood leuko-

cytes and TAA-reactive T cells, it was surprising that few
correlations were found for populations of cells with sup-

pressor phenotypes, namely Tregs and MDSCs. This sug-

gests that cells corresponding to these putatively

Fig. 5 Correlations between blood leukocytes and TAA-reactive T
cells. Levels of human blood leukocytes correlate with T cells
responding to the HER2, MUC1 or SUR TAAs (n = 50). Fig-
ure shows representative examples for monocytes, natural killer cells,
myeloid dendritic cells and CD8? T cells, which were inversely
associated with TAA-reactive T cells (Spearman correlation). The SI

(ratio of cytokine positive cells between peptide-stimulated and
unstimulated T cells) of responding CD4? or CD8? T cells were
correlated with the frequency of blood leukocytes. TAA tumour-
associated antigen; HER2 human epidermal growth factor receptor 2;
SI stimulation index
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suppressive phenotypes are not suppressive in breast cancer
patients, or if they are suppressive, that they do not exert

suppression against antigen-reactive T cells in blood.

However, the frequencies of a number of cell populations
related to MDSCs and Tregs, namely monocytes and

CD4? T cells, were found to be inversely related to the

presence of TAA-reactive T cells. These observations sug-
gest that there are leukocyte populations in blood which

suppress T cell responses to tumour antigens, but that they
remain imperfectly defined on a phenotypic level. A precise

set of phenotypic markers capable of accurately identifying

suppressive cells may in turn allow more accurate
biomarkers for the identification of patients with tumour

antigen-responsive T cells, but such markers remain elusive

[21]. One obstacle to the identification of such specific
markers is highlighted by the observation in this study that

there are differences in the association with TAA-reactive T

cells and leukocyte populations that are dependent on the
location of the cell population in question (whether in tissue

or blood). This suggests that cellular location and phenotype
are both relevant to the function of any given leukocyte

population, and unless location-specific markers are found,

may further limit the identification of marker proteins which
accurately reflect cellular function.

Conclusion

This study identified composite sets of immune features
which predict patients with TAA-reactive T cells. Con-

sidering that T cell responses to tumour antigens correlate

with breast cancer patient survival, the biomarkers identi-
fied here which include HLA type, serum cytokines,

tumour-infiltrating and blood leukocytes in addition to
in vitro TAA-reactive T cells may allow superior predic-

tion of patient survival or more personalised therapeutic

management of breast cancer patients.

Fig. 6 Combining multiple
immunological parameters
improves the accuracy of
predicting patients with anti-
tumour reactive T cells.
a Greater specificity and
sensitivity in identifying
patients with tumour antigen-
reactive T cells was achieved by
combining immune parameters.
The sensitivity and specificity
was calculated based on the
presence or absence of the
following T cells: CD8 IFNc
(‘‘CD8 SUR’’), CD4 IL-2
(‘‘CD4 MUC1’’) and CD4 IL-2
(‘‘CD4 HER2’’). b Combining
multiple immune parameters
also allowed the sorting of
patients into groups who have
stronger or weaker T cell
responses to HER2, MUC1 or
SUR. Representative examples
shown (Mann–Whitney U test).
The SI was used to represent the
strength of T cell responses to
HER2, MUC2 or SUR. SI
stimulation index; HER2 human
epidermal growth factor
receptor 2; MUC1 mucin 1;
SUR survivin; n = 50;
***p\ 0.0005; *p\ 0.02
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A B S T R A C T

Metastatic melanoma is the most dangerous form of skin cancer, with an ever-increasing incidence worldwide.
Despite encouraging results with immunotherapeutic approaches, long-term survival is still poor. This is likely
partly due to tumour-induced immune suppression mediated by myeloid-derived suppressor cells (MDSCs),
which were shown to be associated with response to therapy and survival. Thus, identifying pathways re-
sponsible for MDSC differentiation may provide new therapeutic targets and improve efficacy of existing im-
munotherapies. Therefore, we’ve analysed mechanisms by which tumour cells contribute to the induction of
MDSCs. Established melanoma cell lines were pre-treated with inhibitors of different pathways and tested for
their capacity to alleviate T cell suppression via MDSC differentiation in vitro. Targeting HSP70/90 in melanoma
cells resulted in reduced induction of immune suppressive cells on a phenotypic and functional basis, for which a
more potent effect was observed when HSP90 was inhibited under hypoxic conditions. This initial study suggests
a novel mechanism in tumour cells responsible for the induction of MDSC in melanoma.

1. Introduction

Melanoma is the most dangerous form of skin cancer with an ever
increasing incidence worldwide. Despite the recent introduction of
promising immunotherapies, the majority of patients with metastatic
disease still face a poor prognosis. Relapse or non-response to these
drugs is likely or at least partly due to tumour-induced immune sup-
pression, mediated by myeloid derived suppressor cells (MDSCs) and
regulatory T cells. MDSCs in particular represent one of the major
barriers preventing effective cancer treatment. These cells dampen
beneficial anti-tumour immune responses by both innate and adaptive
immune cells [1,2]. Supporting their relevance for cancer im-
munotherapy, MDSCs are elevated in the blood of melanoma patients
compared with healthy individuals [3,4], and patients with high re-
lative levels experience shortened survival [5,6] and respond more
poorly to immunotherapy with the anti-CTLA-4 antibody ipilimumab
[7]. In addition to in vitro studies which show that melanoma-induced
MDSCs suppress activated T and NK cells [1,2], a lower proportion of
melanoma patients with high MDSC levels exhibits anti-tumour antigen
T cell reactivity [8]. That in vitro model suggested that the negative

association between high MDSC levels and patient prognosis may be
through suppression of tumour immunity. Several mechanism of MDSC-
mediated immnunosuppresion have already been identified including
the induction of regulatory T cells, impairing NK cell function [9] and
inhibition of T cell activation [10–12]. On a molecular level, T cell
suppression by MDSCs can occur through a variety of secreted factors
such as reactive oxygen species (ROS), arginase and iNOS, TGFb and
indoleamine 2,3.dioxygenase (IDO) [10–12].

Factors that are involved in the expansion and activation of MDSCs,
in addition to cell-cell contact, could either be secreted by tumour cells
themselves, or by stromal cells present in the tumour microenviron-
ment, such as activated T cells. These interactions have been shown to
result in an elevation of MDSCs in melanoma patients compared with
healthy individuals [3,4]. These observations are complemented by in
vitro co-culture experiments with tumour cell lines which show the
induction of MDSC-like cells from healthy human monocytes mediated
by tumour cells [13]. Although several soluble factors including GM-
CSF, IL-6 and PGE2 have been shown to be involved in the differ-
entiation of monocytes into suppressive MDSCs [2,3,14–18], the precise
molecular pathways responsible for their differentiation as well as
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pathways in tumour cells responsible for this remain to be elucidated.
The identification of these mechanisms could reveal novel therapeutic
targets because they contribute to the maintenance of im-
munosuppressive pathways. As such, MDSCs have been proposed as a
major barrier to effective immunotherapy and thus drugs which aim to
affect tumour cells and block their ability to cause differentiation of
myeloid cells into MDSCs may improve the efficacy of other forms of
immunotherapy. Notably, both Obermayer et al. and Mao et al. de-
monstrated the importance of COX2/PGE2 and STAT3 in the differ-
entiation and suppressive function of MDSCs [1,2,14]. Treating T cell/
monocyte cultures with inhibitors targeting the COX2/PGE2 and STAT3
pathway resulted in alleviation of T cell suppression by such melanoma-
induced MDSC-like cells differentiated from normal monocytes. Those
studies focused on the immune-suppressive pathways in monocytes,
whereas the present study was designed to better understand the mo-
lecular pathways in tumour cells responsible for re-programming
normal monocytes to become suppressive MDSCs. Furthermore, few
prior studies have addressed physical characteristics of the tumour
microenvironment that might influence these processes. The tumour
mass has distinctive features when compared with surrounding healthy
tissue. These typically include reduced oxygen tension, acidic pH and
aberrant angiogenesis which contribute to limited oxygen and nutrient
delivery [19–22]. One of the major responses to cellular stress such as
hypoxia is the up-regulation of heat shock proteins (hsps) and induction
of the hypoxia inducible factor 1 α (HIF-1α) transcription factor. HIF-
1α has been shown to regulate the expression of hsps and to be involved
in the differentiation of MDSCs [23], while hypoxia itself has been
linked to aberrant cytokine expression that may support MDSC differ-
entiation. Considering this, the present study was designed to in-
vestigate the role that hsps, pH regulatory proteins as well as other
molecular pathways may play in the differentiation of MDSCs in mel-
anoma, with the aim of identifying pathways in tumour cells which are
responsible for inducing the differentiation of MDSCs.

To investigate MDSC induction by tumour cells, we developed an in
vitro co-culture model which allowed us to reconstruct melanoma-
monocyte interactions (Fig. 1). To consider the distinctive features
found in the tumour mass, we also considered the influence of low
oxygen tension in our in vitro model. To pin-point the molecular path-
ways in tumour cells responsible for inducing immune suppression, we
pre-treated melanoma cells with a panel of inhibitors including those
against molecular hsps, pH regulatory proteins and inhibitor of COX
and JAK/STAT signaling. The primary goal of this study was to uncover
mechanisms in tumour cells responsible for causing the differentiation
of monocytes into MDSCs. We identified inhibitors preventing the in-
duction of MDSCs by targeting certain molecular pathways in mela-
noma cells, and tested whether this inhibition would be effective under
hypoxic conditions, in order to give a better indication of the efficacy of

such approaches in vivo. The identification of suppressive pathways in
melanoma cells may point to new therapeutic targets and improve the
efficacy of existing immunotherapies by alleviating tumour-induced
immune suppression.

2. Materials and methods

2.1. Cell isolation and patient materials

Peripheral blood mononuclear cells were isolated from consenting
healthy donors of whole-blood leukoreduction filters (“Kegel”,
Tübingen University Hospital) using Ficoll-Hypaque gradient cen-
trifugation and stored in freezing medium containing 10% DMSO, 20%
FCS and 70% RPMI in liquid nitrogen until use. Monocytes were iso-
lated using magnetic bead separation with a CD14+ monocyte isola-
tion kit using LS separation columns (Miltenyi Biotech, Teterow,
Germany). Autologous T cells were isolated from the negative fraction
of the monocyte isolation by CD3+ T cell isolation kit according to the
manufacturer’s protocol (Miltenyi Biotech).

2.2. Tumour cell line culture

The EST human melanoma cell lines were sourced from the
European Searchable Tumor Line Database (ESTDAB; http://www.ebi.
ac.uk/ipd/estdab). They are currently also available from the European
Collection of Animal Cell Cultures (ECACC, see https://www.phe-
culturecollections.org.uk/products/celllines/generalcell/estdab-cell-
lines-introduction.aspx). These cell lines have been tested for myco-
plasma and verified with DNA finger printing. For melanoma-monocyte
co-culture experiments 2.0× 105 melanoma cells were cultured in 2ml
IMDM medium supplemented with 10% FCS per well in a 6-well plate
and allowed to rest overnight before being treated with either 5 µM
geldanamycin (an HSP90 inhibitor, Invitrogen, San Diego, USA), 4 µM
methylene blue (inhibition of HSP70/NO synthase, which affects pro-
tein function and ubiquitination as well as modulation of polyglutamine
protein degradation, Sigma-Aldrich), 750 µMa acetylsalicylic acid (COX
inhibitor, Sigma-Aldrich, Steinheim, Germany), 35 µM AG490 (JAK/
STAT inhibitor), 300 µM U-104 (CA inhibitor, Sigma-Aldrich) for 18 h.
The concentration of each drug was titrated so that melanoma cell line
viability and growth was not impaired (data not shown). Melanoma
cells were additionally left untreated as a control. Following the 18 h
treatment, inhibitors (or medium in the case of control wells) were
removed by three gentle washes with Hank’s Balanced Salt Solution
(HBSS) (Sigma-Aldrich). Treated and control melanoma cells were
subsequently cultured in IMDM with 10% FCS until the addition of
isolated CD3+ and CD14+ cells (typically 3 h). To further reduce the
chance that the inhibitors could directly interact with the isolated

Fig. 1. In vitromodel of immune suppression by melanoma cells. Established melanoma cell lines were cultured overnight in IMDM with 10% FCS before being treated for 18 h with either
GA, MB, U-104, acetylsalicylic acid, AG490 or left untreated as a control. Inhibitors were removed after 18 h and melanoma cells were subsequently co-cultured with isolated CD14+ and
activated CFSE-labelled CD3+ cells at a ratio of 5:1 for 5 days. Cells were then harvested and stained for CD3, CD4, CD8 (T cells) or CD14 and HLA-DR (monocytes) and analysed using
flow cytometry. GA: Geldanamycin (HSP90 inhibitor); MB: methylene blue (HSP70/NO synthase inhibitor), U-104 (CA inhibitor); acetylsalicylic acid (COX inhibitor); AG490 (JAK/STAT
inhibitor).
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CD3+ and CD14+ cells, melanoma cultures were washed once more
with HBSS before the addition of CD3+ and CD14+ cells. Isolated
CD3+ and CD14+ cells were added to melanoma cells at a ratio of 1:5
T cells : monocytes (5.0× 105 T cells to 2.5×106 monocytes). Isolated
T cells and monocytes were added to 6 well plates and co-cultured for
5 days under the following conditions: 1) pre-treated melanoma cells
(Fig. 1), 2) non-treated melanoma cells (Figs. 1 and 3) without mela-
noma cells (positive control).

2.3. T cell proliferation

T cell proliferation was used to estimate the degree of immune
suppression in melanoma-monocyte co-culture experiments. Isolated
(CD3+) T cells were labelled with carboxyfluorescein succinimidyl
ester (CFSE, Invitrogen) at a concentration of 1.4 µmol/L in 1ml PB
buffer for 5min at room temperature. Non-bound CFSE was removed by
three rounds of washing (X-Vivo 15, Lonza, Verviers, Belgium) followed
by centrifugation at 300g for 5min. 5.0× 105 CFSE-labelled T cells
were added to 6 well plates either with monocytes as a positive control
(2.5× 106 monocytes giving a ratio of 1:5) or with monocytes and
melanoma cells (2.0× 105) to investigate suppressive effects of mela-
noma-educated monocytes. Additional controls consisting of melanoma
cells only and T cells only were included in selected cases. All co-culture
experiments were performed for 5 days in 6 well plates with 7ml IMDM
containing 10% FCS unless otherwise stated. T cells were activated with
anti-CD3/CD28 mAb coated beads (2 µL per well). After 6 days of cul-
ture, the degree of T cell proliferation by CD4+ and CD8+ T cells was
measured by flow cytometry.

2.4. Phenotypic analysis of T cells and monocytes

Co-cultured T cells and monocytes were removed from 6 well plates
by gentle resuspension and aspiration of the culture medium followed
by washing with HBSS. Cells were then stained for cell surface markers
as previously described [24], but without exposure to light. Details
relating to the panel of antibodies appear in Supplementary data S1.
Antibody panels were established using fluorescence minus one con-
trols. Cytometer setup and tracking beads were run before and after
each sample measurement to ensure consistency in machine perfor-
mance.

2.5. Flow cytometry data analysis

Flow cytometry data were analysed by first excluding events not
part of the main acquisition population using a time-vs-side scatter
gate. Cell doublets were then removed before the exclusion of cell
debris with the use of a morphological gate. The full gating strategy
employed to assess T cell proliferation and to identify T cells and
monocytes is shown in Supplementary data S2.

3. Results

Mao et al. has previously shown that MDSC-like cells can be induced
by culturing monocytes from healthy individuals with melanoma cells
[1]. Based on this observation, here we established a model of tumour-
induced immune suppression that allows interactions between three
cell types to be studied: tumour cells, monocytes and T cells. Pre-
liminary experiments determined the optimum ratio of these different
cell types (data now shown), and thereafter we sought to characterise
how these cells interact across time. For these experiments, we cultured
peripheral monocytes from a healthy donor with autologous CFSE-la-
beled T cells and the EST-200 melanoma cell line for 24, 48, 72, 96 or
120 h in vitro. We observed that CD4+ T cell suppression plateaued
after 96 h, whereas CD8+ T cell suppression increased with time
(Fig. 2A, left panel). An example of inhibited proliferation of CD8+ T
cells according to CFSE dilution assay is shown in Fig. 2A (right panel).

These results suggest that interactions between melanoma cells and
monocytes result in T cell suppression, because T cell proliferation was
not inhibited when T cells were cultured directly with melanoma cells
(Supplementary data S3 and S4). To investigate these observations in
more detail we tested if T cell suppression was associated with changes
in monocyte phenotype over time. Low levels of HLA-DR have been
proposed as a marker for suppressive myeloid cells, thus we tested the
expression of this molecule in our in vitro culture model (Fig. 2B). In
accordance with the observation of greater T cell suppression over time,
we found that HLA-DR expression on monocytes cultured with mela-
noma cells was also reduced with time when compared to HLA-DR
expression on monocytes cultured only with T cells. Collectively, these
results suggest that melanoma cells cause monocytes to differentiate
into cells that phenotypically and functionally resemble myeloid-de-
rived suppressor cells.

To validate these initial results obtained in our in vitro model of
MDSC differentiation using the EST-200 melanoma cell line, we tested 6
healthy donors with a greater number of established melanoma cell
lines (EST-41, EST-83, EST-145, EST-152 and EST-200). We observed
similar results with these cell lines as with EST-200 – T cell proliferation
was suppressed when monocytes from healthy donors were co-cultured
with melanoma cells compared to T cells and monocytes without mel-
anoma cells. Of the cell lines tested, EST-145, EST-152 and EST-200
were found to induce the greatest degree of suppression with between
90 and 70% T cell suppression compared to T cells and monocytes
cultured without melanoma cells (Fig. 3, top panel). Generally
speaking, these results are in accordance with the changes previously
reported to occur when monocytes undergo differentiation into immune
suppressive cells (Fig. 3, bottom panel) [2], namely HLA-DR down-
regulation and CD14 up-regulation. To exclude direct effects of mela-
noma cells on T cells, we co-cultured T cells with melanoma cells
without monocytes; T cell proliferation was not inhibited under these
conditions (n=2, data not shown). It should be noted that some
melanoma cell lines (n= 3, data not shown) failed to induce monocytes
to become suppressive for T cell proliferation, suggesting that there is
heterogeneity in the induction of immunosuppressive capacity or in the
immune suppressive mechanisms employed by melanoma cells. Fur-
thermore, this observation demonstrates that the observed immune
suppressive effects in our co-culture model are not caused by non-
specific interactions between monocytes and the presence of any type of
cell.

Having developed a model that allowed us to generate MDSC-like
cells in vitro, we then attempted to identify molecular pathways in
melanoma cells responsible for converting normal monocytes into im-
mune suppressive cells. To achieve this, we pre-treated melanoma cells
for 18 h with a panel of inhibitors targeting a range of different mole-
cular pathways including geldanamycin (HSP90 inhibitor), methylene
blue (inhibitor of HSP70/NO synthase), acetylsalicylic acid (COX in-
hibitor), AG490 (JAK/STAT inhibitor) and U-104 (CA inhibitor). Prior
to the addition of isolated monocytes and T cells, pre-treated melanoma
cultures were thoroughly washed several times, allowed to rest and
washed once more. This was performed to minimise the potential for
direct contact between soluble drugs and the isolated immune cells. In
order to test the effect of the remaining drug on T cell proliferation, T
cells were directly cultured with melanoma cells (i.e. without mono-
cytes). Here, proliferation was found to be comparable whether the
melanoma cells had been treated with inhibitors or not, suggesting that
either no traces of the drugs remained, or the levels were so low that
they did not affect the functioning of the immune cells (data not
shown). Of the panel of inhibitors tested, we observed that selected
drugs alleviated the induction of immune suppression, with geldana-
mycin being most effective in this respect. This was followed by the
other hsp inhibitor, methylene blue, while occasional but less consistent
effects were seen for U-104. No significant effect was found for acet-
ylsalicylic acid or AG490. The effect of inhibitors was not the same for
all melanoma cell lines, but for geldanamycin an effect was observed in
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3 of 4 tested melanoma cell lines (EST-145, EST-152, EST-200,
Fig. 4B–D). This was followed by the less effective inhibitors methylene
blue and U-104 (Fig. 4B–D). The one exception to this trend was for the
cell line EST-41 (Fig. 4A). Here, the most effective inhibitor was me-
thylene blue, followed by geldanamycin and U-104 with similar effects.
Inhibitor-induced alleviation of T cell suppression induction was again

reflected by changes in monocyte phenotype; we observed increased
expression of HLA-DR when T cell suppression was reduced (Fig. 4D,
bottom panel). Again, this association was not observed with cell line
EST-41: there was no association between HLA-DR expression on mel-
anoma-educated monocytes and the degree of T cell proliferation when
monocytes and T cells were co-cultured with EST-41.

Fig. 2. Monocytes co-cultured with melanoma cells resemble MDSC cells in phenotype and function. Isolated monocytes and T cells were co-cultured with the melanoma cell line EST-200
for the time shown (A). The level of T cell suppression was determined using CFSE-stained autologous T cells. T cell suppression by melanoma-educated monocytes increased over time
with a maximum of suppression observed on or after 96 h. (B) Phenotypic changes (HLA-DR) of melanoma-educated monocytes (identified as CD14+) were analysed using flow
cytometry.

Fig. 3. Monocytes co-cultured with melanoma cells sup-
press T cell proliferation and show a phenotype resembling
MDSCs. Monocytes and T cells were co-cultured with the
established melanoma cell lines EST-41, EST-83, EST-145,
EST-152 or EST-200. T cell proliferation as well as pheno-
typic analysis of monocytes (CD14 and HLA-DR expression)
was analysed using flow cytometry (n= 6). T cell pro-
liferation was suppressed when monocytes were co-cultured
with melanoma cell lines EST-41, EST-83, EST-145 and EST-
200 (top panel) (relative degree of suppression obtained by
comparing proliferation of T cells and monocytes cultured
without melanoma cells). In line with the observed sup-
pressive capacity of monocytes co-cultured with melanoma
cells, phenotypic analysis revealed an up-regulation of
CD14 and down-regulation of HLA-DR expression on mel-
anoma-educated monocytes (bottom panel).
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To exclude the possibility that alleviation of T cell suppression in
inhibitor pre-treated co-cultures was related to the inhibitor affecting
the growth of melanoma cells, we performed experiments with double
the number of melanoma cells (4.0× 105). Here, we did not observe
differences related to the number of melanoma cells (data not shown).
Additionally, we also titrated drug concentrations so growth was not
adversely affected by the concentrations of these drugs used. Together
these results suggest that the effect of these drugs at alleviating T cell
suppression occurs through molecular pathways in melanoma cells, not
through indirect effects on the growth of melanoma cells.

Having shown that geldanamycin was most effective in reducing T
cell suppression induction, we then attempted to determine the time-
dependent effect of this drug on preventing the conversion of mono-
cytes into immune suppressive cells. To achieve this, the melanoma cell
line EST-200 was pre-treated for 18 h with geldanamycin as before, and
then co-cultured with monocytes and autologous CFSE-labeled T cells
from two healthy donors for 24–120 h. We observed a decrease in T cell
suppression over time when monocytes were co-cultured with gelda-
namycin pre-treated melanoma cells compared to co-cultures with un-
treated melanoma cells (Fig. 5, left panel). Changes in CD4+ and

CD8+ T cell proliferation across time are shown in Fig. 5 (right panel).
To investigate whether these observations are associated with changes
in monocyte phenotype over time, we also analysed the expression of
the myeloid maturation marker HLA-DR. In accordance with the ob-
servation of decreased T cell suppression over time, we found that HLA-
DR expression on monocytes cultured with geldanamycin pre-treated
melanoma cells was increased as well. Additionally, because several
soluble factors including GM-CSF have been shown to be involved in
the differentiation of monocytes into suppressive MDSCs, we analysed
the expression of GM-CSF in monocyte-melanoma co-cultures in pre-
liminary experiments. Here we observed decreased expression of GM-
CSF when melanoma cells were pre-treated with geldanamycin (data
not shown). Collectively, these results suggest that pre-treating mela-
noma cells with geldanamycin (blockade of HSP 90) results in a long
lasting effect at preventing the conversion of normal monocytes into
immune suppressive cells.

Having shown that geldanamycin and methylene blue were the
most effective drugs at preventing the induction of immune suppres-
sion, we investigated whether they are effective under conditions which
more closely mimic the tumour microenvironment. Many drugs are less

Fig. 4. Pre-treating melanoma cell lines with GA or MB alleviates T-cell suppression in melanoma-monocyte co-cultures. Melanoma cell lines EST-41, EST-145, EST-152 and EST-200
were pre-treated for 18 h with a panel of inhibitors targeting different molecular pathways (GA – HSP90, MB – HSP70 and U-104 – CA) (n= 6). Suppression of CD4+ and CD8+ T cells
was alleviated when melanoma cells were pre-treated with these inhibitors (upper two panels). GA and MB were most effective in reducing T cell suppression. Phenotypic analysis of
melanoma-educated monocytes agreed with functional analysis observed here; HLA-DR expression was up-regulated on monocytes co-cultured with pre-treated melanoma cells relative
to control monocytes co-cultured with untreated melanoma cells (bottom panel).
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effective due to the conditions found in the tumour microenvironment
[25,26]; however, because these two inhibitors target proteins which
are up-regulated under the stressful conditions of the tumour micro-
environment we hypothesised that they may be more effective under
these conditions. To achieve this, we utilised our established in vitro
model to induce MDSC-like cells under conventional culture conditions
and compared the results obtained under hypoxia (2% O2). As shown
above, we observed that geldanamycin and methylene blue reduced T
cell suppression in co-cultures performed under conventional culture
conditions. Comparing the effect of these drugs between the conven-
tional and 2% O2 conditions showed that the effect of alleviating im-
mune suppression was not lost under hypoxic conditions. On the con-
trary, a trend of greater activity under hypoxia was observed (Fig. 6).
Similar to GA, MB was found to be equally effective under hypoxic and
hyperoxic conditions (Fig. 6). This suggests that hypoxia in the tumour
microenvironment in vivo would not diminish the efficacy of drugs
against HSP90.

4. Discussion

Through their immune suppressive activity, MDSCs are thought to
represent one of the major barriers preventing effective cancer treat-
ment [5]. A number of mechanisms by which MDSCs suppress the
immune system have been elucidated, and several extracellular me-
chanisms of MDSC induction have been reported [16,18]. In contrast,
little is known about whether intra-cellular pathways in tumour cells
are responsible for converting monocytes into immune suppressive
cells. In the present study, using a new approach for in vitro generation
of tumour-associated human MDSCs, we describe the blocking of MDSC
induction by pretreating melanoma cells with hsp inhibitors. We report

that MDSC-like cells could be induced by co-culturing monocytes with
several melanoma cell lines, suggesting that melanoma cells are able to
direct monocytes from healthy individuals to differentiate into cells
capable of suppressing T cell proliferation. Furthermore, this observa-
tion suggests that tumour-induced MDSC differentiation is a mechanism
of immune suppression that could also occur in melanoma patients [1].
Although several soluble factors including GM-CSF, IL-6 and COX-2/
PGE2 have been shown to be involved in the differentiation of mono-
cytes into suppressive MDSCs [16], the molecular pathways in tumour
cells responsible for the induction of MDSC-like cells remain to be
elucidated. In preliminary experiments on isolated monocyte-mela-
noma cell co-cultures we observed reduced GM-CSF expression in co-
cultures pre-treated with geldanamycin, suggesting that Hsp90 is in-
volved in the production of GM-CSF. Because GM-CSF has been shown
to be involved in the differentiation of MDSCs, we pretreated melanoma
cells with a panel of inhibitors, in contrast to prior studies which di-
rectly treated melanoma-educated monocytes with inhibitors, in order
to identify pathways in the tumour cells themselves that were re-
sponsible for maintaining immunosuppressive networks. Lechner et al.
has shown that neutralisation of GM-CSF, IL-6 and IL-1beta in tumour
cell line-PBMC co-cultures abrogated induction of CD33+ suppressor
cell function and restored T cell proliferation to a level comparable to
controls [18]. Here, we have tested the potential of a panel of inhibitors
including those against hsps, pH regulatory proteins and inhibitors of
COX and JAK/STAT signaling. Co-culturing monocytes from healthy
individuals with melanoma cells pre-treated with geldanamycin (tar-
geting HSP90) or methylene blue (targeting HSP70/NO synthase) re-
sulted in increased HLA-DR expression on CD14+ monocytes and de-
creased suppression of T cell proliferation. Interestingly, comparing the
effect of the different drugs between melanoma cell lines, we observed

Fig. 5. Time-dependent effects of GA in co-cultures of monocytes, T cells and melanoma cells. The melanoma cell line EST-200 was pretreated with GA for 18 h before being removed and
co-cultured with isolated CD14+ cells plus activated CFSE-stained CD3+ T cells from 2 healthy individuals for either 24–120 h. We observed an increase in T cell proliferation of CD4+
and CD8+ cells over time when monocytes were co-cultured with GA pre-treated melanoma cells. In accordance with changes in T cell proliferation, we also found an increase in HLA-DR
expression on monocytes in GA-pretreated co-cultures (left panel). An example of CD4+ and CD8+ T cell proliferation according to CFSE is shown in the right-hand panel.
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differences in the capacity to alleviate T cell proliferation and this
differences in preventing melanoma cells from inducing MDSCs. This
suggests that different melanoma cell lines may use different me-
chanism to convert monocytes into suppressive MDSCs and thus re-
sulting in different effects of the drugs on alleviating T cell prolifera-
tion. However, the majority of cell lines were susceptible to treatment
with GA followed by less effective inhibitor methylene blue. Therefore,
these results show that targeting HSP70 and HSP90 within tumour cells
prevents the induction of monocyte differentiation into suppressive
immune cells on both at a phenotypic and functional level [27–30]. The
fraction of cell lines which did not respond to geldanamycin treatment
may use HSP90-independent mechanisms of MDSC differentiation, be-
cause every melanoma cell line examined to date has been shown to
express HSP90 [31]. HSP70 and HSP90 are two major types of mole-
cular chaperones that have central roles in cellular functioning by
maintaining the integrity of intracellular proteins [32]. These proteins
are highly conserved and present in all cells of every organism [33],
thus our results obtained in vitro using established cell lines are likely to
represent the roles that these proteins play in vivo. These molecules act
in a concerted fashion together with co-chaperones to assist in the
folding, function and degradation of a wide range of client proteins.

Furthermore, they play key roles in cancer; their up-regulation in re-
sponse to stress assists the functioning of cancer cells under the harsh
conditions of the tumour microenvironment, while their chaperoning
action maintains key signalling networks responsible for aberrant cell
division [34]. Because inhibiting the function of hsps alleviated tu-
mour-induced immune suppression, this suggests that there are over-
lapping networks between those traditionally thought to be responsible
for cancer maintenance (i.e. anti-apoptotic and signalling pathways)
and those more recently appreciated to influence cancer progression
such as immune suppression. Indeed this is reflected in the realisation
that traditional chemotherapeutic drugs exert much of their beneficial
effect through immune modulatory mechanisms [35]. Given that
MDSCs have been shown to be induced through pro-inflammatory
pathways, it seems plausible that inhibiting HSP70 and HSP90 in tu-
mour cells affects the production of pro-inflammatory cytokines. Sup-
porting this notion, preliminary results showed reduced GM-CSF pro-
duction in monocyte-melanoma cell co-cultures when melanoma cells
were pre-treated with the HSP90 inhibitor geldanamycin.

Because hypoxia is a widespread feature of the tumour micro-
environment that is also clinically important [25,26], culturing tumour
cells under high oxygen conditions (as is the case with cultures in air)

Fig. 6. GA is more effective in alleviating T cell suppression under hypoxic than under conventional culture conditions. The melanoma cell lines EST-152 and EST-200 were pretreated
with GA or MB and co-cultured with isolated monocytes and activated CFSE-stained CD3+ T cells for 120 h under either conventional (20% O2) or hypoxic (2% O2) conditions. GA
pretreated melanoma cells co-cultured with monocytes and T cells under hypoxic conditions were found to be more sensitive to GA treatment, resulting in less T cell suppression
compared to the conventional setting. The effect of MB was not inhibited by hypoxic either, and was found to be at least as effective under these conditions.

N. Janssen et al. Cellular Immunology xxx (xxxx) xxx–xxx

7



may result in the generation of misleading results. The tumour mass
consists of areas with distinctive conditions when compared with sur-
rounding healthy tissue, including reduced oxygen tension, acidic pH
and aberrant angiogenesis which contributes to limited oxygen and
nutrient delivery. The major mechanism by which cells respond to
hypoxia is through modulation of the HIF transcription factor [36]. HIF
has been shown to regulate the expression of hsps, while HSP90 itself
stabilises HIF in melanoma cells under hypoxic conditions [37,38]. It
has been shown that hypoxia is capable of up-regulating the expression
of HSP70 and HSP90 [31,39]. Furthermore, Hsp90 is important for
hypoxic tolerance as measured by the growth rate and viability of
melanoma cells [31]. As such, given the importance of hsps under hy-
poxic conditions, hsp-inhibiting drugs may be relatively more effective
in hypoxic tumours, for which many standard therapies are known to be
less effective [25]. Considering this, we developed the hypothesis that
targeting these molecules in tumour cells under low oxygen tension will
not result in diminished efficacy that is associated with many drugs. On
the contrary we predicted that drugs against these molecules may be
more effective under low oxygen tension. Indeed, our results demon-
strate that drugs targeting HSP70 and HSP90 do not suffer from re-
duced efficacy under hypoxic conditions, while we observed a trend of
a more potent effect when inhibiting HSP90 under these conditions.
These results suggest that melanoma cells rely more heavily on these
molecules under hypoxic conditions, in turn resulting in a similar or
greater effect when measuring consequences of inhibiting their action
under these conditions. These observations suggest that targeting mo-
lecules such as hsps that tumour cells more heavily rely on under hy-
poxic conditions may avoid the issue of weakened activity under these
conditions.

Aside from the observation that the beneficial effects on preventing
immune suppression when targeting HSP70 and HSP90 in tumour cells
is not diminished by hypoxic conditions, further possible implications
of our results relate to the long duration of effect that we observed.
Tumour cells were exposed transiently to these drugs (18 h), before
being co-cultured for another 5 days in our co-culture model with im-
mune cells. We observed a maintenance of the effect for CD4+ cells
after 5 days post-exposure, while an increasing strength of alleviating
suppression of proliferation of CD8+ T cells was seen up until 5 days.
These results suggest that a single exposure to these drugs is sufficient
to result in a long-lasting therapeutic effect, potentially saving the pa-
tient from unnecessary drug side effects. Hsp inhibitors have been
trialed clinically, but not in dosing schedules similar to the conditions
used here in which sub-lethal doses that do not directly kill tumour cells
were employed followed by a long duration without exposure to the
drug.

5. Conclusion

Collectively, this study demonstrates a novel mechanism in tumour
cells responsible for the induction of MDSC-like cells in melanoma. A
single, sub-lethal dose was sufficient to provide protection against the
induction of immune suppression. Furthermore, unlike many standard
therapies the activity of these drugs was not diminished by hypoxic
conditions. This initial study into hsp-mediated immune suppression
warrants further investigation to validate the proposition of hsps as
immunomodulatory agents.
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Supplementary Data S1 – Full list of antibodies employed 
T cell proliferation   
CD3-A700  BD Biosciences (Franklin Lakes, USA) 
CD4-APC Milteny Biotec (Bergisch Gladbach, Germany) 

CD8-PB BD Biosciences 

CD14-APC-H7 BD Biosciences 

  

MDSCs  

CD33-PE eBiosciences (San Diego, USA) 

CD14-BV711 Bio Legend (San Diego, USA) 

CD15-FITC BD Biosciences 

CD86-PB Bio Legend 

CD34-APC BD Biosciences 

HLA-DR-PerCP-CY5.5 BD Biosciences 
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High levels of blood T cells identify breast cancer patients with HER2, MUC1 and 

SUR-reactive T cells 

Context: 

This study analysed blood leukocytes in order to identify surrogate 

markers for antigen-reactive T-cells for use in routine patient monitoring.  

Material and Methods: 

Using flow cytometry we assessed T-cells reactive to the HER2, MUC1 

and SUR antigens and determined the levels of T-cells, NK and B-cells in 

the blood of 50 breast cancer patients.  

Results: 

High levels of T-cells at various differentiation stages were associated 

with the presence of antigen-reactive T-cells. Combining leukocyte 

populations increased sensitivity and specificity up to 100% in identifying 

patients with antigen-reactive T-cells.  

Conclusion: 

We identified surrogate markers for antigen-reactive T-cells, which 

prevent the time-consuming and hard-to-standardise bioassays required to 

directly measure them. 

Keywords: tumour-associated antigen, T cells, NK cells, B cells, breast cancer, 

HER2, Survivin, MUC1, antigen-reactive T cells 

 

 

Introduction 

The most common treatments for breast cancer such as radio-, chemo- or hormone 

therapy are often sub-optimal, particularly for late-stage patients. As such, there is a 

need to optimise the therapeutic management and identify more effective therapies for 

breast cancer patients. One approach to improve treatment options may be the use of 

immunotherapies, which utilise the patient’s own immune system to control tumour 

growth. There are different forms of immunotherapy including monoclonal antibodies 
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such as “checkpoint inhibitors”, cancer vaccines or other methods that aim to harness 

the immune system. Immunotherapy may be used in combination with 

chemotherapeutic agents that act directly on tumour cells and which can induce the 

release of tumour-associated antigens (TAAs). The release of such cancer-associated 

proteins may allow the immune system to more effectively mount an immune response 

against tumour cells expressing them. However the efficacy of such approaches relies 

on the presence of immune cells which can recognise and kill tumour cells expressing 

relevant tumour antigens.  

We have previously shown that breast cancer patients who possess CD8+ T cells 

reactive to the HER2 TAA experience superior overall survival. This finding closely 

links TAA-reactive T cells with patient clinical outcome in breast cancer. However not 

every patient possesses tumour antigen-reactive T cells, making it important to identify 

these patients in order to optimise their therapeutic management. Lack of antigen-

reactive T cells could be due to the state of the immune system which inhibits the 

presence or function of such reactive T cells. For example, regulatory T, B and Natural 

Killer (NK) cells as well as myeloid-derived suppressor cells (MDSCs) have been 

shown to suppress antigen-specific T cell responses (Deniz et al., 2008, Bonertz et al., 

2009, van de Veen et al., 2013) and which may limit the potential clinical benefit of 

antigen-reactive cells to the patient. Given that TAA-reactive T cells are closely 

associated with a survival benefit for patients (Walter et al., 2012, Bailur et al., 2015, 

Rittig et al., 2016), understanding the immune contexts that permit the presence of such 

cells may allow superior prediction of patient survival, better treatment individualisation 

or the identification of new therapeutic targets.  

Our previous study (Janssen et al., 2016) investigated broad immunological 

features in breast cancer patients including HLA type, serum cytokines, tumour-

Page 4 of 44

URL: http://mc.manuscriptcentral.com/tbmk  Email: office-biomarkers@charite.de

Biomarkers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

infiltrating leukocytes and blood leukocytes, with the aim of identifying the features 

which most accurately select patients with tumour-antigen reactive T cells. The results 

from that study showed blood leukocytes to be the most informative parameter for 

identifying which patients possess antigen reactive T cells, and reciprocally for 

identifying the patients who lack these cells. Considering our prior studies, here we 

aimed to establish a more accurate method of identifying patients with TAA-reactive T 

cells by expanding on the relatively limited set of blood leukocytes previously 

examined. The identification of easily measurable blood-based surrogate markers that 

indicate the presence of antigen-reactive T cells may allow the individual prediction of 

clinical course by avoiding the time- and resource-intensive in vitro stimulation 

procedures required to directly measure TAA-reactive T cells. The protocols required to 

measure antigen-reactive T cells are complex and require a high degree of expertise; 

thus finding easily measurable surrogate markers might improve protocol 

standardisation to facilitate use in less-specialised laboratories. Furthermore, 

understanding the composition of the immune system that favours the generation of 

TAA-reactive T cells may uncover new therapeutic targets or allow the selection of 

patients more likely to benefit from therapies which rely on the presence of tumour 

antigen-specific T cells such as vaccines or checkpoint inhibitors. As such, this study 

aimed to take the first step towards the eventual clinical employment of blood 

leukocytes as markers for antigen-reactive T cells. To this end, we measured a number 

of B, NK, and T cell populations at different stages of maturation and differentiation in 

the peripheral blood of 50 non-metastatic breast cancer patients and investigated their 

association with T cells reactive to the HER2, MUC1 and SUR tumour-associated 

antigens. Ongoing clinical follow-up will reveal which of the blood leukocyte 

populations measured here are associated with patient prognosis. 
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Clinical significance 

• Understanding the composition of the immune system that favours the 

generation of TAA-reactive T cells may allow superior prediction of patient 

survival, better treatment individualisation, the selection of patients more likely 

to benefit from therapies or the identification of new therapeutic targets 

• The identification of easily measurable blood-based surrogate markers that 

indicate the presence of such cells may allow the use in routine clinical 

monitoring. 

 

Materials and Methods  

Patients 

Blood from 50 patients with non-metastatic invasive carcinoma of the breast were 

recruited at St. Savas Cancer Hospital in Athens between February 2014 and May 2015. 
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 All samples were collected one day prior to surgery. Peripheral blood mononuclear 

cells were isolated from whole blood using Ficoll-Hypaque gradient and stored in liquid 

nitrogen before being shipped to the Tübingen University Hospital for analysis. Written 

informed consent was obtained for all patients, and the study was approved by the ethics 

committee of St. Savas Cancer Hospital (4-11-2013). Study participants were diagnosed 

with non-metastatic invasive ductal carcinoma, including patients with tumours of any 

size but without extension to the chest wall (i.e. patients of AJCC stages 1, 2A, 2B, 3A 

and 3C (if no extension to the chest wall) were included but AJCC stages 3B and 4 were 

not). None of these patients were treated with neoadjuvant chemotherapy or were 

enrolled in other research protocols, nor did they have any history of cancer or other 

serious health problems. Tumour expression of hormone receptors (progesterone (PR) 

and oestrogen receptors (ER)), the HER2 oncoprotein and the marker of cell 

proliferation Ki67 was available for all patients. Expression of MUC1 and SUR were 

not available. See Table 1 for a detailed description of the patient cohort.  

Detection of antigen-reactive T cells 

T cell responses to HER2, Mucin1 (MUC1) and Survivin (SUR) were measured after 12 

days of in vitro culture. Detection of reactive T cells was performed as described in our 

prior study (Bailur et al., 2015) (see Additional File 1 for a full list of antibodies 

employed). Cytometer setup and tracking beads (BD Bioscience) were run before and 

after each sample measurement to ensure consistency in machine performance. The 

inclusion of a positive biological control (stimulation with influenza peptides,) was used 

to certify consistency in sample quality and the prevention of false negative results. 

Phenotypic analysis of T, B and Natural Killer cells 

For characterisation of T, B and NK cells, PBMCs were thawed and stained as 
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previously described (Bailur et al., 2015) using the antibody panels in Additional file 1. 

Antibody panels were established using fluorescence minus one controls. Cytometer 

setup and tracking beads were run before and after each sample measurement to ensure 

consistency in machine performance. The limited nature of patient material did not 

permit multiple testing of the same sample, but we performed multiple independent 

measurement of a healthy control donor (n = 3) in order to ensure consistency in 

measurement conditions. 

Flow cytometry data analysis 

Flow cytometry data were analysed by first excluding events not part of the main 

acquisition population using a time-vs-side scatter gate. Cell doublets were then 

removed before the exclusion of dead cells (EMA (ethidium monoazide)-positive 

events) and cell debris with the use of a morphological gate (see Additional file 2). The 

assessment of T cell responses to tumour-associated antigens was performed using the 

same method as in our previous study (Bailur et al., 2015); we compared control 

(unstimulated) and peptide-stimulated cultures as described in the methods section 

“Detection of antigen-reactive T cells” and assigned a positive response when the 

frequency of T cells producing one or more cytokines in the stimulated sample was at 

least twice that of the control sample (Additional file 3). Additionally, each response 

was visually assessed to ensure the presence of a clearly distinguishable population of 

positive events. This method allows the detection of multiple cytokines from each 

patient, but does not directly assess whether production is from the same or different 

population of cells. Antibody-stained leukocyte populations, including the assessment 

of T cell responses to TAAs, were gated according to the approaches shown in 

Additional file 2-7. 

Page 8 of 44

URL: http://mc.manuscriptcentral.com/tbmk  Email: office-biomarkers@charite.de

Biomarkers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Statistical analysis 

Statistical analyses were performed using GraphPad Prism 5 (GraphPad Software, La 

Jolla, USA). Two independent groups were compared using the Mann-Whitney U test. 

Relationships across four grouping variables were assessed with Fisher’s exact test. 

Correlations were assessed using Spearman correlation analysis. A value of p < 0.05 

was considered statistically significant. Because this was an exploratory study we aimed 

to reduce the chance of obtaining false negative results. For this reason statistical 

analyses were not corrected using the Bonferroni method, and the results should be 

interpreted as such. 

Results 

Peripheral blood leukocytes are associated with clinical parameters of breast 

cancer patients 

We measured subsets of different peripheral blood leukocyte populations in the blood of 

50 non-metastatic breast cancer patients and assessed whether T cells (240 different 

populations assessed, including regulatory T cells), B cells (19 populations), NK cells 

(70 populations) or myeloid cells (15 populations) were related to clinical features of 

these breast cancer patients. We observed that all leukocyte types (T cells, B cells, NK 

cells and myeloid cells) were associated with certain clinical parameters including 

tumour grade, AJCC stage, Ki67 tumour expression and lymph node infiltration by 

tumour cells. In order to compare these leukocyte types on their relevance to patient 

clinical features, we calculated the proportion of identified clinical correlations relative 

to the number of phenotypes tested. We found that T cells were the most relevant to 

patient clinical features, followed by B, NK and myeloid cells, respectively (Fig. 1).  

Specifically, we found that patients of a higher AJCC stage and/or higher tumour grade 
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had lower levels of CD4+ T cells (AJCC stage: p = 0.02, tumour grade: p = 0.03) and 

NK cells (AJCC stage: p = 0.01) compared with patients with less advanced disease 

(Fig. 2A). Of note is that we could not identify such correlations for Tregs (data not 

shown), suggesting that these differences indicate a reduction in helper CD4+ T cells 

with disease progression. Higher tumour grade and/or AJCC stage was additionally 

found to be associated with higher levels of CD3hiCD56dim cells (tumour grade: p = 

0.003, AJCC stage: p = 0.03) and memory B cells (tumour grade: p = 0.02) (Fig. 2B). 

We also found that patients with a greater number of infiltrated lymph nodes had lower 

levels of total CD4+ cells (p = 0.02) (Fig. 2C) and CD4+ regulatory T cells (p = 0.04, 

data not shown). Similar relationships were observed for tumour Ki67 expression and 

NK cells; patients with a higher percentage of tumour cells expressing Ki67 had lower 

levels of NK cells (p = 0.04). This stands in contrast to B cells for which we observed 

an opposite trend with Ki67 expression (p = 0.06) (Fig. 2D). Other leukocyte 

populations were also observed to correlate with patient clinical parameters (data not 

shown). We also examined whether relationships between the major populations of T, 

B, NK or myeloid cells exist. Of these, we observed only one significant relationship; 

an increasing frequency of CD20+CD40+ B cells was associated with higher levels of 

CD4+ regulatory T cells (CD4+CD25+FoxP3+) (p = 0.02, Additional file 8). Other 

leukocyte phenotypes such as MDSCs were not found to correlate with any other 

leukocyte population. 

T cell responses to tumour-associated antigens in breast cancer patients 

We detected T cells reactive to HER2, MUC1 or SUR in this cohort of breast cancer 

patients using in vitro peptide stimulation. Our prior study (Bailur et al., 2015) showed 

that the presence of HER2-reactive T cells in breast cancer patients is associated with a 

more favourable prognosis. In the present study of prospectively recruited patients, we 
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have expanded the number of antigens tested to include MUC1 and SUR in addition to 

HER2. CD4+ or CD8+ T cells were considered reactive to an antigen if they produced 

any of the 6 cytokines that we measured (IL-2, IL-5, IL-10, IL-17, TNF and IFNγ). 

Antigen-reactive T cells were found to be common, with a high frequency of patients 

showing responses by either CD4+ or CD8+ cells to HER2 (96%), MUC1 (80%) and 

SUR (72%). We found that, in general, CD4+ reactive T cells were more common than 

CD8+ T cells. 

Although tumour antigen-reactive T cells are predictive of patient prognosis, the time- 

and resource-intensive culture protocols required for their detection limits their use as 

part of routine clinical monitoring. As previously mentioned, our prior study (Janssen et 

al., 2016) screened a broad set of patient features with the goal of finding those which 

are most capable of identifying patients with antigen-reactive T cells. Considering HLA 

type, serum cytokines, tumour-infiltrating leukocytes and blood leukocytes we found 

that the latter most accurately identified patients with antigen-reactive T cells. Based on 

these findings, we sought to extend blood leukocyte phenotyping beyond that 

previously examined with the goal of investigating if other populations of blood 

leukocytes can also be used to select patients with TAA-reactive T cells. If so, do they 

allow a more accurate selection of patients with these reactive T cells than was 

previously achieved? In the present study we have markedly increased the richness of 

the phenotyping analysis to encompass a total of 302 different blood leukocyte 

populations: 213 for T cells, 19 in the case of B cells, and 70 NK cell populations 

(Additional file 9). Regulatory T cells and myeloid cells including MDSCs were 

examined in our prior study and were therefore not considered again here. 
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Blood leukocytes identify patients with tumour antigen-reactive T cells 

NK cells are relevant for T cell responses to MUC1 and SUR but not HER2  

Assessing antigen-reactive T cells for relationships with NK cells showed that different 

NK cell populations were associated with T cell responses to MUC1 or SUR but not 

with HER2 (but note that because the vast majority of patients showed CD4+ HER2 

responses it was not possible to test for CD4+ associations to this antigen). We 

observed different populations of NK cells to be present at either higher or lower 

frequencies in patients with MUC1- or SUR-reactive T cells than in those without. For 

example, patients with CD4+ T cells reactive to MUC1 had higher levels of CD27+ NK 

cells compared to patients who did not possess these reactive T cells (p = 0.04) (Fig. 

3A). In contrast, another population of NK cells (CD56dimCD16-NKG2D+) was found 

to be lower in patients with MUC1-responsive T cells (p = 0.04) (Fig. 3A). A full set of 

correlations between NK cells and antigen-reactive T cells can be found in Additional 

file 10. 

High levels of B cells as a marker of patients with HER2-reactive T cells 

In contrast to NK cells, which were only associated with T cell responses to MUC1 and 

SUR, we found that B cells only correlated with HER2-reactive T cells. Of the 19 

populations of B cells examined, we found one which was associated with HER2 T cell 

responses; patients with CD8+ HER2-reactive T cells had higher levels of 

CD19+CD38-CD27+CD20- B cells (p = 0.04) (Fig. 3B). Apart from this, other 

relationships between B cells and CD4+ or CD8+ T cells reactive to any antigen were 

not found.  
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Blood T cells broadly correlate with HER2, MUC1 and SUR-reactive T cells  

Compared with NK and B cells, T cells were found to widely identify patients with 

HER2- MUC1- or SUR-reactive T cells. Of the total number of identified correlations 

between blood leukocytes and antigen-reactive T cells, 89% of these were with T cell 

populations, whereas NK cells and B cells accounted for only 10% and 1% of 

correlations, respectively. Interestingly, we observed that in the vast majority of cases 

(82/94), patients with TAA-reactive T cells had higher levels of blood T cells than 

patients without antigen-reactive T cells. This was true for CD4+ and CD8+ T cells of 

all differentiation stages. For example, high relative levels of CD8+CD27- T cells were 

associated with SUR-reactive T cells (p = 0.0007) (Fig. 3C), while high levels of 

CD8+TEMRA T cells were associated with MUC1-reactive T cells (p = 0.01) (Fig. 3C). 

In addition, a large number of other correlations between blood T cell populations and 

antigen-reactive T cells were found and appear in Additional file 11. 

A combination of multiple blood leukocyte populations improves the accuracy 

of predicting patients with TAA-reactive T cells  

In our prior study we combined immunological parameters in an attempt to more 

accurately select patients with TAA-reactive T cells. The results showed that the 

combination of different types of immunological parameters (such as tumour infiltrating 

leukocytes and blood leukocytes), but also the combination of multiple different blood 

leukocyte populations resulted in superior prediction of TAA responses (Janssen et al., 

2016). Based on this approach, we sought to determine more accurate markers of TAA-

reactive T cells than was previously possible with a relatively limited survey of blood 

leukocytes. By combining multiple populations of blood leukocytes, we were able to 

identify groups of patients who all possessed antigen-reactive T cells and therefore yield 

up to 100% sensitivity and specificity in the selection of patients with antigen-reactive T 
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cells. For example, a group of patients with above median levels of stem memory T 

cells (TSCM) and CD3-CD56- cells consisted exclusively of patients who possessed 

MUC-reactive CD4+ T cells (Fig. 4). Similarly, selecting patients on higher than 

median levels of NK (CD3-CD56hiCD16-CD27+) and NKT (NKG2D+ 

CD3+CD56dim) cells identified a group who all possessed CD8+ T cells reactive to 

SUR (Fig. 4). This approach therefore shows a high degree of accuracy in the selection 

of patients who possess antigen-reactive T cells. 

Discussion 

Our prior studies have shown that patients possessing TAA-reactive peripheral CD8+ T 

cells experience a more favourable prognosis, especially if they have lower than median 

levels of MDSCs (Bailur et al., 2015). Avoiding the complexity and extended duration 

of directly testing T cell reactivities and phenotyping MDSCs, assessing blood 

leukocytes is the most accurate method of identifying patients with these characteristics 

(Janssen et al., 2016). Considering this, the present investigation was designed to 

investigate blood leukocytes as markers of TAA-reactive T cells in greater detail. We 

had two primary aims in performing this study: by conducting an in-depth survey of 

peripheral immune cells in breast cancer, we sought to identify the leukocyte 

populations most relevant for clinical outcome, either alone or when combined with 

information regarding tumour antigen-reactive T cells. We continue to monitor this 

group of prospectively recruited patients regarding their clinical course, but the 

information available so far does not yet permit analysis. In addition, we aimed to 

identify surrogate markers for TAA-reactive T cells that may be used as part of patient 

clinical monitoring. The establishment of such surrogate markers will serve several 

purposes. Firstly, the measurement of blood leukocytes could replace the measurement 

of antigen-reactive T cells, for which a lengthy (12 day), expensive and labour intensive 
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in vitro stimulation period is required, as well as the additional resources and expertise 

needed to interpret the results. Furthermore, these culture protocols are complex and 

demand large numbers of leukocytes, often a limiting factor when dealing with material 

from cancer patients. Manufacturer- or batch-dependent differences due to the reagents, 

particularly the TAA peptides, are currently unknown but could likely influence the 

results. These aspects contribute to the difficulty of standardising the measurement of 

antigen-reactive T cells, while the considerable costs in time, labour and material have 

also proven prohibitive for the large-scale implementation of this approach in the 

clinical setting thus far. Given these limitations and the relative simplicity of directly 

measuring blood leukocytes, the latter may represent a viable alternative to indirectly 

allow the clinical monitoring of anti-tumour responses. Secondly, measuring blood 

leukocytes indirectly selects patients with a more favourable prognosis. Hence 

identifying these patients as part of routine clinical monitoring may spare them from 

unnecessary treatment or allow the administration of tailored forms of therapy. The 

rapid clinical implementation of immunotherapies including immunomodulatory 

antibodies and cancer vaccines means that optimising the use of these treatments will be 

increasingly important in future. The efficacy of such approaches is presumably through 

the stimulation, generation and amplification of tumour antigen-reactive T cells, and the 

downregulation of suppressive elements such as Tregs and MDSCs. Therefore, 

identifying patients with TAA-reactive T cells, or patients who show immune profiles 

favourable to the generation of such immune responses, may have implications for 

selecting patients more likely to respond to immunotherapy. The findings in this study 

allow the selection of patients with antigen-reactive T cells, but importantly they also 

identify patients who lack them. As such these results can be used to pinpoint 

differences in the immune system that are associated with either the presence or absence 
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of antigen-reactive T cells. These immune differences may thus represent novel 

therapeutic targets, whereby the immune systems of patients lacking antigen-reactive T 

cells can be altered to more closely resemble the immune systems of patients with 

TAA-reactive T cells. This form of therapy could potentially be used together with 

immunotherapies to enhance their activity. 

We found that peripheral B and NK cells allowed us to select patients with 

antigen-reactive T cells, but with these leukocyte types we could only identify patients 

with certain types of T cell responses. In contrast, blood T cells were found to widely 

correlate with both CD4+ and CD8+ T cells reactive to all antigens tested. Interestingly, 

the set of T cell phenotypes observed to correlate with antigen-reactive T cells did not 

share any definable features; we found that these phenotypes covered a range of 

differentiation stages from naïve to late-differentiated T cells. Despite this, we observed 

that in the vast majority of cases, patients with TAA-reactive T cells showed higher 

levels of blood T cells than patients without antigen-reactive cells, implying that the 

phenotypes found to correlate may directly participate or assist in the generation of 

antigen-reactive T cells. This is further supported by the observation that blood T cells 

accounted for 89% of all correlations with antigen-reactive T cells. In contrast B and 

NK cells together accounted for the remaining 11% of correlations, and unlike T cells, 

were not relevant to every type of T cell response. These findings suggests that 

therapies which alter the immune system of breast cancer patients to more closely 

mirror the immune system of patients with TAA-reactive T cells may result in enhanced 

anti-tumour responses by T cells. Because we found essentially all T cell phenotypes 

within both the CD4+ and CD8+ compartments to be higher in patients with TAA-

reactive T cells, elevating levels of T lymphocytes in general, such as with gamma-

chain cytokines, may result in more favourable conditions for the generation of antigen-
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reactive T cells. Underlining the clinical importance of peripheral T cells is that 

compared with NK and B cells, we found that T cells were most commonly associated 

with patient clinical parameters, adding further weight to their proposition as 

therapeutic targets. 

Conclusion 

The results of this study show that phenotypic assessment of blood leukocytes allows 

the accurate identification of breast cancer patients with functional TAA-reactive T 

cells. These findings are intended as the first step towards the possible clinical 

implementation of measuring blood leukocytes as part of routine monitoring to select 

patients with antigen-reactive T cells. Ongoing clinical follow-up will reveal which of 

the peripheral immune populations measured here are informative for patient outcome, 

and whether they more accurately predict survival when combined with the assessment 

of antigen-reactive T cells. 
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Table 1 Characteristics of the breast cancer patients 

Patient clinicopathological parameters (n = 50) 

Median Age (range in years) 56 (27-78) 

  

AJCC staging  

1 15 

2A 10 

2B 12 

3A 12 

3C 1 

  

Receptor status  

Triple negative 5 

Oestrogen receptor + 42 

Progesterone receptor+  33 

HER2+ 15 

  

Ki67  

<10% 7 

10% - 20% 21 

>20% 22 

  

T stage  

1 21 
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2 26 

3 3 

  

N stage  

0 21 

1 17 

2 11 

3 1 

  

Grade  

1 0 

2 26 

3 24 

Page 21 of 44

URL: http://mc.manuscriptcentral.com/tbmk  Email: office-biomarkers@charite.de

Biomarkers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

Figure 1. Relevance of T, B, NK and myeloid cells to patient clinical parameters. 

For each leukocyte type (T, B, NK and myeloid cells) the proportion of identified 

correlations with patient clinical features was calculated as a percentage relative to the 

number of phenotypes tested. We observed T cells to be the most relevant leukocyte 

type to patient clinical features, followed by B, NK and myeloid cells, respectively. 

Figure 2. Levels of blood leukocytes are associated with clinical features of breast 

cancer patients. 

T, B, NK and myeloid cells were measured in the blood of 50 breast cancer patients 

using flow cytometry and were tested for association with patient clinical parameters 

(Mann-Whitney U test). We found lower levels of CD4+ T cells and NK cells in 

patients with higher tumour grade or AJCC stage (A). Conversely, patients with a 

higher grade or AJCC stage showed higher levels of memory B cells or CD3hiCD56dim 

cells (B). We also found that patients with a greater number of infiltrated lymph nodes 

had lower CD4+ T cell frequencies (C), while tumour expression of Ki67 was 

associated with either lower levels of NK cells or showed a trend towards higher levels 

of memory B cells (D). Phenotypes given in square brackets indicate the reference 

population used to calculate the frequency of the respective leukocyte population. Bars 

indicate median values. *, p < 0.05; **, p < 0.01 

Figure 3. Levels of blood leukocytes differ in patients with HER2, MUC1 and SUR-

reactive T cells. 

T cell responses to HER2, MUC1 or SUR were measured in 50 breast cancer patients 

following 12 days of in vitro expansion. Levels of blood leukocytes were compared 

between patients with reactive T cells and those who lacked these cells. T cells were 
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considered responsive to an antigen if they showed a positive signal for any of the six 

measured cytokines (Mann-Whitney U test). This showed high or low levels of NK 

cells to be associated with the presence of MUC1-reactive T cells (A). High levels of B 

cells were found in patients with CD8+ HER2-reactive T cells (B), while high levels of 

CD8+CD27- T cells (C, left panel) and CD8+ TEMRA cells (C, right panel) were 

associated with the presence of SUR- or MUC1-reactive T cells. Phenotypes in square 

brackets indicate the reference population used to calculate the frequency of each 

leukocyte population. Bars indicate median values. HER2, Human Epidermal growth 

factor Receptor 2; MUC1, Mucin 1; NR, Non-Responder; R, Responder; SUR, 

Survivin; TAA, Tumour-Associated Antigen; TEMRA, terminally differentiated 

effector memory cells; *, p < 0.05; **, p < 0.01  

Figure 4. Combining blood leukocyte populations allows more accurate prediction of 

patients with anti-tumour reactive T cells.  

Selecting patients with >median levels of NKT and NK cells resulted in sensitivity and 

specificity of 90% and 100% in identifying patients with CD8+ SUR-reactive T cells. 

Similarly, the combination of >median levels of CD3-CD56- and TSCM resulted in 

75% sensitivity and 100% specificity in selecting patients with CD4+ MUC1-reactive T 

cells. MUC1, Mucin1; NK cells, Natural Killer cells; NKT cells, Natural killer T cells, 

SUR, Survivin; TSCM, stem memory T cells 
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Relevance of T, B, NK and myeloid cells to patient clinical parameters. For each leukocyte type (T, B, NK and 
myeloid cells) the proportion of identified correlations with patient clinical features was calculated as a 
percentage relative to the number of phenotypes tested. We observed T cells to be the most relevant 

leukocyte type to patient clinical features, followed by B, NK and myeloid cells, respectively.  
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Levels of blood leukocytes are associated with clinical features of breast cancer patients.  
T, B, NK and myeloid cells were measured in the blood of 50 breast cancer patients using flow cytometry 
and were tested for association with patient clinical parameters (Mann-Whitney U test). We found lower 

levels of CD4+ T cells and NK cells in patients with higher tumour grade or AJCC stage (A). Conversely, 
patients with a higher grade or AJCC stage showed higher levels of memory B cells or CD3hiCD56dim cells 
(B). We also found that patients with a greater number of infiltrated lymph nodes had lower CD4+ T cell 
frequencies (C), while tumour expression of Ki67 was associated with either lower levels of NK cells or 

showed a trend towards higher levels of memory B cells (D). Phenotypes given in square brackets indicate 
the reference population used to calculate the frequency of the respective leukocyte population. Bars 

indicate median values. *, p < 0.05; **, p < 0.01  
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Levels of blood leukocytes differ in patients with HER2, MUC1 and SUR-reactive T cells.  
T cell responses to HER2, MUC1 or SUR were measured in 50 breast cancer patients following 12 days of in 
vitro expansion. Levels of blood leukocytes were compared between patients with reactive T cells and those 

who lacked these cells. T cells were considered responsive to an antigen if they showed a positive signal for 
any of the six measured cytokines (Mann-Whitney U test). This showed high or low levels of NK cells to be 
associated with the presence of MUC1-reactive T cells (A). High levels of B cells were found in patients with 
CD8+ HER2-reactive T cells (B), while high levels of CD8+CD27- T cells (C, left panel) and CD8+ TEMRA 
cells (C, right panel) were associated with the presence of SUR- or MUC1-reactive T cells. Phenotypes in 
square brackets indicate the reference population used to calculate the frequency of each leukocyte 

population. Bars indicate median values. HER2, Human Epidermal growth factor Receptor 2; MUC1, Mucin 1; 
NR, Non-Responder; R, Responder; SUR, Survivin; TAA, Tumour-Associated Antigen; TEMRA, terminally 

differentiated effector memory cells; *, p < 0.05; **, p < 0.01  
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Combining blood leukocyte populations allows more accurate prediction of patients with anti-tumour reactive 
T cells.  

Selecting patients with >median levels of NKT and NK cells resulted in sensitivity and specificity of 90% and 

100% in identifying patients with CD8+ SUR-reactive T cells. Similarly, the combination of >median levels of 
CD3-CD56- and TSCM resulted in 75% sensitivity and 100% specificity in selecting patients with CD4+ 
MUC1-reactive T cells. MUC1, Mucin1; NK cells, Natural Killer cells; NKT cells, Natural killer T cells, SUR, 

Survivin; TSCM, stem memory T cells  
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Additional file 1 – Full list of antibodies employed 

The following table summarizes a full list of antibodies employed in this 

study 

TAA-reactive T cells   

Cell surface   

CD3-BV605 Bio Legend (San Diego, USA) 

CD4-Pacific Blue Bio Legend 

CD8-APC-H7 BD Biosciences (Franklin Lakes, USA) 

Intracellular  

IL-2-Alexa Fluor 700 Bio Legend 

IL-5-PE Bio Legend 

IL-10-APC Milteny Biotec (Bergisch Gladbach, Germany) 

IL-17-PerCP-Cy5.5 eBiosciences (San Diego, USA) 

IFNg-PECy7 BD Biosciences 

TNF-FITC Bio Legend 

  

  

B cells  

CD24-BV421 Bio Legend 

CD19-V500 BD Biosciences 

IgD-FITC BD Biosciences 

CD43-PE Bio Legend 

CD20-PerCP Bio Legend 

CD38-Pe-Cy7 Bio Legend 

IgG-APC Bio Legend 

CD40-APC-H7 BD Biosciences 

CD27-BV605 Bio Legend 

  

  

NK cells  

CD57-PB Bio Legend 

CD45-V500 BD Biosciences 

CD159a-PE Milteny Biotec 

CD161-FITC BD Biosciences 

CD314-PerCP-Cy5.5 BD Biosciences 

CD159c-PE-Vio 770 Milteny Biotec 

CD3-APC Bio Legend 

CD8-APC-H7 BD Biosciences 

CD27-A700 Bio Legend 

CD56-BV605 BD Biosciences 

CD16-BV711 BD Biosciences 
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T cells  

CD3-A700 BD Biosciences 

CD4-PerCP BD Biosciences 

CD8-APC-H7 BD Biosciences 

CD27-APC Bio Legend 

CD28-PE BD Biosciences 

CD45RA-V450 BD Biosciences 

CD57-FITC Immunotools (Friesoythe, Germany) 

CD95-PeCy7 eBiosciences 

CD279-PerCP-Cy5.5 Bio Legend 

  

unconjugated  

CCR7 R&D System (Minneapolis, USA)  

PO Invitrogen (Carlsbad, USA) 
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Reference population CD19+ 

Reference population CD38+ 

Additional file 2– Gating strategy B cells 

B cell gating strategy. Flow cytometry data were analysed first by excluding events not part of the main acquisition population using a time-vs-side scatter gate. Cell doublets were then  
removed before the exclusion of dead cells (EMA-positive events) and cell debris with the use of a morphological gate. Antibody-stained B cell populations, were gated according to  
the approaches shown here  using the antibody panel summarized in Additional file 1.  
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Unstimulated + HER2 peptide 

CD8 

IFNγ CD4 

0.08 % 0.53 % 

0.17 % 1.05 % 

Additional file 3- Assessment of TAA reactive T cells  

Control (left panels) and stimulated (right panels) CD4 (upper panels) and CD8 (lower panels) example  
showing a positive response for IFNγ  to HER2. We assigned a positive response when the frequency of T cells producing any cytokine in the 
stimulated sample was at least twice that of the control sample. Additionally, each response was visually assessed to ensure the presence of a 
clearly distinguishable population of positive events. T cell responses were considered categorically (present or absent) in addition to a 
quantitative assessment of the strength of response by calculating the ratio of the frequency of positive events in the stimulated sample by 
comparison with the unstimulated sample to give a stimulation index (SI). 
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Reference population CD45+ 

CD16- Bv711 

C
D

56
- 

B
v6

05
 

Additional file 4 – Gating strategy NK cells 

NK cell gating strategy. Flow cytometry data were analysed first by excluding events not part of the main acquisition population using a time-vs-side scatter gate. Cell 
doublets were then removed before the exclusion of dead cells (EMA-positive events) and cell debris with the use of a morphological gate (see Additional file 2). 
Antibody-stained NK cell populations, were gated according to the approaches shown here using the antibody panel summarized in Additional file 1.  
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Additional file 5 – Gating strategy NKT cells 

NKT cell gating strategy. Flow cytometry data were analysed first by excluding events not part of the main acquisition population using a time-vs-side scatter gate. Cell 
doublets were then removed before the exclusion of dead cells (EMA-positive events) and cell debris with the use of a morphological gate (see Additional file 2). Antibody-
stained NKT cell populations were gated according to the approaches shown here using the antibody panel summarized in Additional file 1.  
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Reference population CD4+ 

Additional file 6– Gating strategy T cells 

T cell gating strategy. Flow cytometry data were analysed first by excluding events not part of the main acquisition population using a time-vs-side scatter gate. Cell doublets were then  
removed before the exclusion of dead cells (EMA-positive events) and cell debris with the use of a morphological gate (see Additional file 2).  Antibody-stained  T cell populations, were 
gated according to the approaches shown here  using the antibody panel summarized in Additional file 1.  

Page 35 of 44

URL: http://mc.manuscriptcentral.com/tbmk  Email: office-biomarkers@charite.de

Biomarkers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Reference population CD8+ 
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Additional file 7 – Gating strategy T cells (continued) 

T cell gating strategy. Flow cytometry data were analysed first by excluding events not part of the main acquisition population using a time-vs-side scatter gate. Cell doublets were then  
removed before the exclusion of dead cells (EMA-positive events) and cell debris with the use of a morphological gate (see Additional file 2).  Antibody-stained  CD4+ T cell populations, 
were gated according to the approaches shown here  using the antibody panel summarized in Additional file 1.  

Page 37 of 44

URL: http://mc.manuscriptcentral.com/tbmk  Email: office-biomarkers@charite.de

Biomarkers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

B cells [%] 

re
g

u
la

to
ry

 T
 c

e
ll

s
 [

%
] 

90 92 94 96 98 100 
0 

2 

4 

6 

8 

Additional file 8 – Correlation B cells and Tregs 

Frequency of B cells was positively associated with higher levels of CD4+ regulatory T cell.  
We examined whether relationships between the major populations of T, B, NK or myeloid cells exist. 
 Of these, we observed only one significant relationship; an increasing frequency of  
CD20+CD40+ B cells was associated with higher levels of CD4+ regulatory T cells (CD4+CD25+FoxP3+) (p = 0.02),  
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Additional file 9 - Total leukocyte populations tested 

T cell phenotypes  

CD4+ [CD3+] CD8+ [CD3+] 

CD3+ CD4+ CD27- [CD3+] CD8+ CD27- [CD3+] 

CD4+ CD28- [CD3+] CD8+ CD28- [CD3+] 

CD4+ CD57+ [CD3+] CD8+ CD57+ CD3+] 

CD4+ CD95+ [CD3+] CD8+ CD95+ [CD3+] 

CD4+CD45RA+ CCR7+ (Naive) |[CD3+] CD8+CD45RA+ CCR7+ (Naive) [CD3+] 

CD4+CD45RA+ CCR7+ (Naive)/CD27+ CD28+ [CD3+] CD8+CD45RA+ CCR7+ (Naive)/CD27+ CD28+ [CD3+] 

CD4+CD45RA+ CCR7+ (Naive)/CD27+ CD28+/CD57+ [CD3+] CD8+CD45RA+CCR7+(Naive)/CD27+CD28+/CD95+(TSCM)[CD3+] 

CD4+CD45RA+ CCR7- (TEMRA) [CD3+] CD8+CD45RA+ CCR7+ (Naive)/CD27- CD28- [CD3+] 

CD4+CD45RA- CCR7+ (CM) [CD3+] CD8+CD45RA+ CCR7+ (Naive)/CD27- CD28-/CD57+ [CD3+] 

CD4+CD45RA- CCR7+ (CM)/CD27+ CD28+ (CM) [CD3+] CD8+CD45RA+ CCR7+ (Naive)/CD27- CD28-/CD95+ [CD3+] 

CD4+CD45RA-CCR7+ (CM)/CD27+ CD28+ (CM)/CD57+ [CD3+] CD8+CD45RA+ CCR7- (TEMRA) [CD3+] 

CD4+CD45RA- CCR7+(CM)/CD27+ CD28+ (CM)/CD95+ [CD3+] CD8+CD45RA+ CCR7- (TEMRA)/CD27+ CD28+ [CD3+] 

CD4+CD45RA- CCR7+ (CM)/CD27- CD28+ [CD3+] CD8+CD45RA+ CCR7- (TEMRA)/CD27+ CD28+ /CD95+ [CD3+] 

CD4+CD45RA- CCR7+ (CM)/CD27- CD28+/CD95+ [CD3+] CD8+CD45RA+ CCR7- (TEMRA)/CD27+ CD28- [CD3+] 

CD4+CD45RA- CCR7- (EM)[CD3+] CD8+CD45RA+ CCR7- (TEMRA)/CD27+ CD28-/CD95+ [CD3+] 

CD4+CD45RA- CCR7- (EM)/CD27+ CD28+  [CD3+] CD8+CD45RA+ CCR7- (TEMRA)/CD27- CD28- (E) [CD3+] 

CD4+CD45RA- CCR7- (EM)/CD27+ CD28+ /CD95+ [CD3+] CD8+CD45RA+ CCR7- (TEMRA)/CD27- CD28- (E)/CD57+ [CD3+] 

CD4+CD45RA- CCR7- (EM)/CD27- CD28+ [CD3+] CD8+CD45RA+ CCR7- (TEMRA)/CD27- CD28- (E)/CD95+ [CD3+] 

CD4+CD45RA- CCR7- (EM)/CD27- CD28+/CD95+ [CD3+] CD8+CD45RA- CCR7+ (CM) [CD3+] 

CD4+ CD27- [CD4+] CD8+CD45RA- CCR7+ (CM)/CD27+ CD28+ (CM) [CD3+] 

CD4+ CD28- [CD4+] CD8+CD45RA- CCR7+ (CM)/CD27+ CD28+ (CM)/CD57+ [CD3+] 

CD4+ CD57+ [CD4+] CD8+CD45RA- CCR7+ (CM)/CD27+ CD28+ (CM)/CD95+ [CD3+] 

CD4+ CD95+ [CD4+] CD8+CD45RA- CCR7+ (CM)/CD27+ CD28- [CD3+] 

CD45RA+ CCR7+ (Naive) [CD4+] CD8+CD45RA- CCR7+ (CM)/CD27+ CD28-/CD95+ [CD3+] 

CD45RA+ CCR7+ (Naive)/CD27+ CD28+ [CD4+] CD8+CD45RA- CCR7+ (CM)/CD27- CD28+ [CD3+] 

CD45RA+ CCR7+ (Naive)/CD27+ CD28+/CD57+ [CD4]+ CD8+CD45RA- CCR7+ (CM)/CD27- CD28+/CD95+ [CD3+] 

CD45RA+ CCR7+ (Naive)/CD27+ CD28+/CD95+ (TSCM) [CD4] CD8+CD45RA- CCR7+ (CM)/CD27- CD28-/CD57+ [CD3+] 

CD45RA+ CCR7- (TEMRA)[CD4+] CD8+CD45RAint CCR7int [CD3+] 

CD45RA- CCR7+ (CM)[CD4+] CD8+CD45RAint CCR7int/CD27+ CD28+  [CD3+] 

CD45RA- CCR7+ (CM)/CD27+ CD28+ (CM) [CD4+] CD8+CD45RAint CCR7int/CD27+ CD28+ /CD95+ [CD3+] 

CD45RA- CCR7+ (CM)/CD27+ CD28+ (CM)/CD57+ [CD4+] CD8+CD45RAint CCR7int/CD27+ CD28- [CD3+] 

CD45RA- CCR7+ (CM)/CD27+ CD28+ (CM)/CD95+ [CD4+] CD8+CD45RAint CCR7int/CD27+ CD28-/CD57+ [CD3+] 

CD45RA- CCR7+ (CM)/CD27- CD28+ [CD4+] CD8+CD45RAint CCR7int/CD27+ CD28-/CD95+ [CD3+] 

CD45RA- CCR7+ (CM)/CD27- CD28+/CD95+ [CD4+] CD8+CD45RAint CCR7int/CD27- CD28- [CD3+] 

CD45RA- CCR7- (EM)/CD27- CD28+ [CD4+] CD8+CD45RAint CCR7int/CD27- CD28-/CD57+ [CD3+] 

CD4+CD27+ CD28+ [CD45RA+ CCR7+ (Naive)] CD8+CD45RAint CCR7int/CD27- CD28-/CD95+ [CD3+] 

CD4CD27+ CD28+/CD57+ [CD45RA+ CCR7+ (Naive)] CD8+ CD27- [CD8+] 

CD4+CD27+ CD28+ (CM) [CD45RA- CCR7+ (CM)] CD8+ CD28- [CD8+] 

CD4+CD27+ CD28+ (CM)/CD95+ [CD45RA- CCR7+ (CM)] CD8+ CD57+ [CD8+] 

CD4+CD27- CD28+ [CD45RA- CCR7+ (CM)] CD8+ CD95+ [CD8+] 

CD4+CD27- CD28+/CD95+ [CD45RA- CCR7+ (CM)] CD45RA+ CCR7+ (Naive) [CD8+] 

CD4+CD27+ CD28+ [CD45RA- CCR7- (EM)] CD45RA+ CCR7+ (Naive)/CD27+ CD28+ [CD8+] 

CD4+CD27+ CD28+ /CD95+ [CD45RA- CCR7- (EM)] CD45RA+ CCR7+ (Naive)/CD27+ CD28+/CD57+ [CD8+] 

CD4+CD27- CD28+ [CD45RA- CCR7- (EM)] CD45RA+ CCR7+ (Naive)/CD27+ CD28+/CD95+ (TSCM) [CD8+] 

CD4+CD27- CD28+/CD95+ [CD45RA- CCR7- (EM)] CD45RA+ CCR7+ (Naive)/CD27- CD28- [CD8+] 

CD4+CD45RA-CCR7+CD57+ [CD27+ CD28+ (CM)] CD45RA+ CCR7+ (Naive)/CD27- CD28-/CD57+ [CD8+] 

CD4+CD45RA-CCR7+CD95+ [CD27+ CD28+ (CM)] CD45RA+ CCR7+ (Naive)/CD27- CD28-/CD95+ [CD8+] 

CD4+CD45RA-CCR7+CD95+ [CD27- CD28+] CD45RA+ CCR7- (TEMRA) [CD8+] 

CD4+CD45RA-CCR7- CD95+ [CD27+ CD28+] CD45RA+ CCR7- (TEMRA)/CD27+ CD28+  [CD8+] 

CD4+CD45RA-CCR7-CD95+ [CD27- CD28+] CD45RA+ CCR7- (TEMRA)/CD27+ CD28- [CD8+] 

CD45RA- CCR7+ (CM)/CD27+ CD28+ (CM) [CD8+] CD45RA- CCR7+ (CM) [CD8+] 

CD45RA- CCR7+ (CM)/CD27+ CD28+ (CM)/CD57+ [CD8+] CD8+CD45RAint CCR7intCD95+ [CD27- CD28-] 

CD45RA- CCR7+ (CM)/CD27+ CD28+ (CM)/CD95+ [CD8+] CD3+ CD8+ CD57+ [CD3+ CD8+] 
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T cell phenotypes - continued  

CD45RA- CCR7+ (CM)/CD27- CD28+ [CD8+] CD3+ CD8+ CD57+ CD27- [CD3+ CD8+] 

CD45RA- CCR7+ (CM)/CD27- CD28+/CD95+ [CD8+] CD3+ CD8+ NKG2C+ [CD3+ CD8+] 

CD45RAint CCR7int [CD8+] CD3+ CD8+/CD56- CD27- [CD3+ CD8+] 

CD45RAint CCR7int/CD27+ CD28+  [CD8+] CD3+ CD8- CD57+ [CD3+ CD8-] 

CD45RAint CCR7int/CD27+ CD28+ /CD95+ [CD8+] CD3+ CD8- CD57+ CD27- [CD3+ CD8-] 

CD45RAint CCR7int/CD27+ CD28- [CD8+] CD3+ CD8- CD57- CD27+ [CD3+ CD8-] 

CD45RAint CCR7int/CD27+ CD28-/CD57+ [CD8+] CD3+ CD8- NKG2C+ [CD3+ CD8-] 

CD45RAint CCR7int/CD27+ CD28-/CD95+ [CD8+] CD3+ CD8-/CD56- CD27- [CD3+ CD8-] 

CD45RAint CCR7int/CD27- CD28- [CD8+] CD3+ [CD45+] 

CD45RAint CCR7int/CD27- CD28-/CD57+ [CD8+] CD3+ CD56dim [CD45+] 

CD45RAint CCR7int/CD27- CD28-/CD95+ [CD8+] CD3+ CD56dim CD8+ [CD45+] 

CD8+CD27+ CD28+ [CD45RA+ CCR7+ (Naive)] CD3+ CD56dim CD8+ [CD3+ CD56dim] 

CD8+CD27+ CD28+/CD57+ [CD45RA+ CCR7+ (Naive)] CD3hi CD56dim [CD45+] 

CD8+CD27+ CD28+/CD95+ (TSCM) [CD45RA+ CCR7+ (Naive)] CD3+ CD16+ [CD45+] 

CD8+CD27- CD28- [CD45RA+ CCR7+ (Naive)] CD3+ CD16+ [CD16+] 

CD8+CD27- CD28-/CD95+ [CD45RA+ CCR7+ (Naive)] CD161+ CD3+ CD56dim [CD45+] 

CD8+CD27+ CD28+ [CD45RA+ CCR7- (TEMRA)] CD161+ CD3+ CD56dim [CD161+] 

CD8+CD27+ CD28- [CD45RA+ CCR7- (TEMRA)] NKG2D+ CD3+ CD56dim [CD45+] 

CD8+CD27+ CD28-/CD95+ [CD45RA+ CCR7- (TEMRA)] NKG2D+ CD3+ CD56dim [NKG2D+] 

CD8+CD27- CD28- (E) [CD45RA+ CCR7- (TEMRA)] CD3+ CD8+ [CD45+] 

CD8+CD27- CD28- (E)/CD57+ [CD45RA+ CCR7- (TEMRA)] CD3+ CD8+ CD57+ [CD45+] 

CD8+CD27+ CD28+ (CM) [CD45RA- CCR7+ (CM)] CD3+ CD8+ CD57+ CD27- [CD45+] 

CD8+CD27+ CD28+ (CM)/CD57+ [CD45RA- CCR7+ (CM)] CD3+ CD8+ CD57- CD27+ [CD45+] 

CD8+CD27+ CD28+ (CM)/CD95+ [CD45RA- CCR7+ (CM)] CD3+ CD8+ /CD56- CD27- [CD45+] 

CD8+CD27+ CD28- [CD45RA- CCR7+ (CM)] CD3+ CD8- [CD45+] 

CD8+CD27+ CD28-/CD95+ [CD45RA- CCR7+ (CM)] CD3+ CD8- CD57+ [CD45+] 

CD8+CD27- CD28+ [CD45RA- CCR7+ (CM)] CD3+ CD8- CD57+ CD27- [CD45+] 

CD8+CD27- CD28+/CD95+ [CD45RA- CCR7+ (CM)] CD3+ CD8- CD57- CD27+ [CD45+] 

CD8+CD27- CD28- [CD45RA- CCR7+ (CM)] CD3+ CD8- NKG2C+ [CD45+] 

CD8+CD27- CD28-/CD57+ [CD45RA- CCR7+ (CM)] CD3+ CD8- / CD56+ CD27+ [CD45+] 

CD8+CD27- CD28-/CD95+ [CD45RA- CCR7+ (CM)] CD3+ CD8- / CD56- CD27- [CD45+] 

CD8+CD27+ CD28+  [CD45RA- CCR7- (EM)] CD3+ /CD3hi CD56lo [CD45+] 

CD8+CD27+ CD28+ /CD95+ [CD45RA- CCR7- (EM)] CD161+ CD3+ [CD45+] 

CD8+CD27+ CD28+ /CD95+ [CD45RAint CCR7int] CD161+ CD3+ CD8+ [CD45+] 

CD8+CD27+ CD28-/CD57+ [CD45RAint CCR7int] CD161+ CD3+ CD8- [CD45+] 

CD8+CD27- CD28- [CD45RAint CCR7int] NKG2D+ CD3+ CD8+ [CD45+] 

CD8+CD27- CD28-/CD57+ [CD45RAint CCR7int] NKG2D+ CD3+ CD8- [CD45+] 

CD8+CD27- CD28-/CD95+ [CD45RAint CCR7int] CD3+ CD8+ [CD3+] 

CD8+CD45RA+CCR7+ (naive)CD95+ (TSCM) [CD27+ CD28+] CD3+ CD8+ CD57+ [CD3+] 

CD8+CD45RA+CCR7+ (naive)CD57+ [CD27- CD28-] CD3+ CD8+ CD57+ CD27- [CD3+] 

CD8+CD45RA+CCR7+ (naive)CD95+ [CD27- CD28-)] CD3+ CD8+ CD57- CD27+ [CD3+] 

CD8+ CD45RA+ CCR7- (TEMRA)CD95+ [CD27+ CD28+] CD3+ CD8+ /CD56- CD27- [CD3+] 

CD8+CD45RA+ CCR7- (TEMRA)CD95+ [CD27+ CD28-] CD3+ CD8- [CD3+] 

CD8+CD45RA+ CCR7- (TEMRA)CD57+ [CD27- CD28- (E)] CD3+ CD8- CD57+ [CD3+] 

CD8+CD45RA+ CCR7- (TEMRA)CD95+ [CD27- CD28- (E)] CD3+ CD8- CD57+ CD27- [CD3+] 

CD8+CD45RA-CCR7+ (CM)CD95+ [CD27+ CD28+ (CM)] CD3+ CD8- CD57- CD27+ [CD3+] 

CD8+CD45RA-CCR7+ (CM)CD95+ [CD27+ CD28-] CD3+ CD8- NKG2C+ [CD3+] 

CD8+CD45RA-CCR7+ (CM)CD95+ [CD27- CD28+] CD3+ CD8- /CD56- CD27- [CD3+] 

CD8+CD45RA-CCR7+ (CM)CD57+ [CD27- CD28-] CD3hi CD56lo [CD3+] 

CD8+CD45RA-CCR7+ (CM)CD95+ [CD27- CD28-] CD161+ CD3+ CD8+ [CD161+ CD3+] 

CD8+CD45RA- CCR7- (EM)CD95+ [CD27+ CD28+ ] CD161+ CD3+ CD8- [CD161+ CD3+] 

CD8+CD45RAint CCR7intCD57+ [CD27+ CD28-] NKG2D+ CD3+ CD8+ [NKG2D+] 

CD8+CD45RAint CCR7intCD95+ [CD27+ CD28-]  

CD8+CD45RAint CCR7intCD57+ [CD27- CD28-]  
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B cell phenotypes  

CD19+ CD27+ IgD+ (unswitched (IgM) memory) [ref CD19+] CD19+ CD38- CD27+ CD24+ [CD19+CD38-CD27+] 

CD19+ CD27+ IgD- (switched memory) [CD19+] CD19+ CD38- CD27+ IgD+ [CD19+] 

CD19+ CD38+ CD27+ [CD19+ CD38+] CD19+ CD38- CD27+ IgD+ [CD19+CD38-CD27+] 

CD19+ CD38+ CD27+ CD20- [CD19+] CD19+CD38-CD27+CD20- [CD19+ CD38-] 

CD19+ CD38+ CD27+ CD20- [CD19+ CD38+] CD19+CD38-CD27+CD20- [CD19+CD38-CD27+] 

CD19+ CD38+ CD24+ CD27+ [CD19+CD38+CD24+] CD19+ CD38- CD24+ [CD19+ 

CD19+ CD38+ CD24+ IgD [CD19+CD38+CD24+] CD19+ CD43+ CD27+ [CD19+] 

CD19+CD38-CD27+ [CD19+] CD19lo CD20- CD27hi CD38hi [CD19+] 

CD19+ CD38- CD27+ CD24+ [CD19+] CD20+CD40+ [CD20+] 

CD19+ CD38- CD27+ CD24+ [CD19+ CD38-]  

  

NK cell phenotypes  

CD3- CD56+ [CD45+] CD3- CD56dim NKG2A- [CD45+] 

CD3- CD56+ CD27+ [CD45+] CD3- CD56dim NKG2A- [CD3- CD56+] 

CD3- CD56hi CD16- CD27+ [CD3- CD56+] CD3- CD56hi CD57- [CD3- CD56+] 

CD3- CD56hi CD16- CD27+ [CD3- CD56+ CD27+] CD3- CD56hi NKG2A+ [CD45+] 

CD3- CD56dim CD16+ (mature) [CD45+] CD3- CD56hi NKG2A+ [CD3- CD56+] 

CD3- CD56dim CD16+ (mature) [CD3- CD56+] CD3- CD56- [CD45+] 

CD3- CD56dim CD16+ CD8+ [CD45+] CD3- CD56- CD16+ (dysfunctional) [CD45+] 

CD3- CD56dim CD16+ CD8+ [CD3- CD56+] CD3- CD56- CD16+ (dysfunctional) [CD3- CD56-] 

CD3- CD56dim CD16+ CD8+ [CD3- CD56dim CD16+] CD161+ CD3- CD56+ [CD45+] 

CD3- CD56dim CD16+ CD8+ CD57+ [CD45+] CD161+ CD3- CD56+ [CD161+] 

CD3- CD56dim CD16+ CD8+ CD57+ [CD3- CD56+] CD161+ CD3- CD56dim CD16- [CD45+] 

CD3-CD56dimCD16+CD8+CD57+[CD3- CD56dim CD16+] CD161+ CD3- CD56dim CD16- [CD161+] 

CD3-CD56dimCD16+CD8+CD57+[CD3-CD56dimCD16+CD8+] CD161+ CD3- CD56dim CD16- [CD161+ CD3- CD56+] 

CD3- CD56dim CD16+ CD57+ [CD45+] CD161+ CD3- CD56hi CD16- [CD45+] 

CD3- CD56dim CD16+ CD57+ [CD3- CD56+] CD161+ CD3- CD56hi CD16- [CD161+] 

CD3- CD56dim CD16+ CD57+ [CD3- CD56dim CD16+] CD161+ CD3- CD56hi CD16- [CD161+ CD3- CD56+] 

CD3- CD56dim CD16+ CD57+ NKG2Chi [CD45+] CD161+ CD3- CD56lo CD16+ [CD45+] 

CD3- CD56dim CD16+ CD57+ NKG2Chi [CD3- CD56+] CD161+ CD3- CD56lo CD16+ [CD161+] 

CD3-CD56dimCD16+CD57+NKG2Chi[CD3-CD56dimCD16+] CD161+ CD3- CD56lo CD16+ [CD161+ CD3- CD56+] 

CD3- CD56dim CD16+ NKG2A+ [CD45+] NKG2A+ CD3- CD56+ [CD45+] 

CD3- CD56dim CD16+ NKG2A+ [CD3- CD56+] NKG2A+ CD3- CD56+ [NKG2A+] 

CD3- CD56dim CD16+ NKG2A+ [CD3- CD56dim CD16+] NKG2A+ CD3- CD56hi CD16- [CD45+] 

CD3- CD56dim CD16+ NKG2C+ [CD45+] NKG2A+ CD3- CD56hi CD16- [NKG2A+] 

CD3- CD56dim CD16+ NKG2C+ [CD3- CD56+] NKG2D+ CD3- CD56+ [CD45+] 

CD3- CD56dim CD16+ NKG2C+ [CD3- CD56dim CD16+] NKG2D+ CD3- CD56+ [NKG2D+] 

CD3- CD56dim CD16- [CD3- CD56+] NKG2D+ CD3- CD56dim CD16+ [CD45+] 

CD3- CD56dim CD16- CD8+ [CD45+] NKG2D+ CD3- CD56dim CD16+ [NKG2D+] 

CD3- CD56dim CD16- CD57+ [CD3- CD56+] NKG2D+ CD3- CD56dim CD16+ [NKG2D+ CD3- CD56+] 

CD3- CD56dim CD16- NKG2A+ [CD45+] NKG2D+ CD3- CD56dim CD16- [CD45+] 

CD3- CD56dim CD16- NKG2A+ [CD3- CD56+] NKG2D+ CD3- CD56dim CD16- [NKG2D+] 

CD3- CD56dim CD16- NKG2C+ [CD3- CD56dim CD16-] NKG2D+ CD3- CD56dim CD16- [NKG2D+ CD3- CD56+] 

CD3- CD56dim CD57+ [CD45+] NKG2D+ CD3- CD56hi CD16- [CD45+] 

CD3- CD56dim CD57+ [CD3- CD56+] NKG2D+ CD3- CD56hi CD16- [NKG2D+ CD3- CD56+] 

CD3- CD56dim CD57- [CD45+]  

CD3- CD56dim CD57- [CD3- CD56+]  

CD3- CD56dim NKG2A+ [CD45+]  

CD3- CD56dim NKG2A+ [CD3- CD56+]  
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Additional file 10 – Correlations between NK cells and TAA-reactive T 

cells 

NK cell phenotype P value  

CD3- CD56+ CD27+ [CD45+] 0.039 Higher in Responder 

   

   

CD3- CD56dim CD16+ CD8+ CD57+ [CD3-CD56dimCD16+CD8+] 0.021 Higher in Responder 

NKG2D+ CD3- CD56dim CD16- [NKG2D+] 0.038 Lower in Responder 

   

   

CD3- CD56dim CD16+ CD57+ NKG2Chi [CD45+] 0.037 Lower in Responder 

CD3- CD56dim CD16+ CD57+ NKG2Chi  [CD3- CD56+] 0.025 Lower in Responder 

CD3- CD56dim CD16+ CD57+ NKG2Chi  [CD3- CD56dim CD16+] 0.03 Lower in Responder 

CD3- CD56dim CD16- CD8+ CD57+ [CD3- CD56dim CD16-] 0.031 Lower in Responder 

CD3- CD56dim CD16- NKG2C+ [CD3- CD56dim CD16-] 0.013 Lower in Responder 

NKG2A+ CD3- CD56+ [NKG2A+] 0.025 Higher in Responder 

   

CD3- CD56hi CD16- CD27+ [CD3- CD56+ CD27+] 0.020 Higher in Responder 
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Additional file 11 – Correlations between blood T cells and TAA-

reactive T cells 

T cell phenotype P value  

CD8posCD45RApos CCR7neg (TEMRA) [CD3pos] 0.035 Higher in Responder 

CD8posCD45RApos CCR7neg (TEMRA)/CD27pos CD28neg [CD3pos] 0.045 Higher in Responder 

CD8posCD45RAint CCR7int/CD27pos CD28pos /CD95pos [CD3pos] 0.018 Higher in Responder 

CD45RApos CCR7neg (TEMRA) [CD8pos] 0.042 Higher in Responder 

CD45RApos CCR7neg (TEMRA)/CD27pos CD28neg [CD8pos] 0.041 Higher in Responder 

CD45RAint CCR7int/CD27pos CD28pos /CD95pos [CD8pos] 0.021 Higher in Responder 

CD4CD27pos CD28pos/CD57pos [CD45RApos CCR7pos (Naive)] 0.013 Lower in Responder 

CD4posCD27neg CD28neg (E)/CD57pos [CD45RApos CCR7neg 

(TEMRA)] 

0.038 Higher in Responder 

CD8posCD45RAnegCCR7pos (CM)CD57pos [CD27pos CD28neg] 0.033 Lower in Responder 

CD8posCD45RAnegCCR7pos (CM)CD95pos [CD27neg CD28pos] 0.036 Lower in Responder 

   

CD8posCD45RApos CCR7neg (TEMRA)/CD27pos CD28neg [CD3pos] 0.025 Higher in Responder 

CD8posCD45RApos CCR7neg (TEMRA)/CD27pos CD28neg/CD95pos 

[CD3pos] 

0.018 Higher in Responder 

CD8posCD45RAposCCR7pos (naive)CD57pos [CD27neg CD28neg] 0.031 Lower in Responder 

   

CD4posCD45RAneg CCR7pos (CM)/CD27neg CD28pos [CD3pos] 0.037 Higher in Responder 

CD4posCD45RAneg CCR7pos (CM)/CD27neg CD28pos/CD95pos 

[CD3pos] 

0.039 Higher in Responder 

CD8posCD45RApos CCR7neg (TEMRA)/CD27pos CD28neg [CD3pos] 0.016 Higher in Responder 

CD8posCD45RApos CCR7neg (TEMRA)/CD27pos CD28neg/CD95pos 

[CD3pos] 

0.036 Higher in Responder 

CD45RApos CCR7pos (Naive)/CD27pos CD28pos/CD95pos (TSCM) 

[CD4] 

0.046 Higher in Responder 

CD45RAneg CCR7pos (CM)/CD27neg CD28pos [CD4pos] 0.044 Higher in Responder 

CD45RApos CCR7neg (TEMRA)/CD27pos CD28neg [CD8pos] 0.013 Higher in Responder 

CD45RApos CCR7neg (TEMRA)/CD27pos CD28neg/CD57pos 

[CD8pos] 

0.034 Higher in Responder 

CD161pos CD3pos CD8neg [CD45pos] 0.013 Higher in Responder 

   

CD4posCD45RAneg CCR7pos (CM)/CD27neg CD28neg/CD95pos 

[CD3pos] 

0.030 Lower in Responder 

CD45RAneg CCR7pos (CM)/CD27neg CD28neg [CD4pos] 0.030 Lower in Responder 

CD45RAneg CCR7pos (CM)/CD27neg CD28neg/CD95pos [CD4pos] 0.030 Lower in Responder 

CD4posCD45RAnegCCR7neg CD95pos [CD27pos CD28pos] 0.044 Higher in Responder 

CD8posCD45RAneg CCR7neg (EM)/CD95pos [CD27neg CD28pos] 0.050 Higher in Responder 

NKG2Dpos CD3pos CD8pos [CD45pos] 0.029 Higher in Responder 

   

CD8posCD45RAneg CCR7pos (CM)/CD27neg CD28pos [CD3pos] 0.027 Higher in Responder 

CD8posCD45RAneg CCR7pos (CM)/CD27neg CD28pos/CD95pos 

[CD3pos] 

0.022 Higher in Responder 

CD8posCD27neg CD28pos [CD45RAneg CCR7pos (CM)] 0.018 Higher in Responder 

CD8posCD27neg CD28pos/CD95pos [CD45RAneg CCR7pos (CM)] 0.019 Higher in Responder 

CD161pos CD3pos CD56dim [CD161pos] 0.037 Higher in Responder 

CD161pos CD3pos CD8pos [CD45pos] 0.009 Higher in Responder 

CD161pos CD3pos CD8pos [CD161pos CD3pos] 0.001 Higher in Responder 

CD161pos CD3pos CD8neg [CD161pos CD3pos] 0.001 Lower in Responder 
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CD4posCD45RApos CCR7neg (TEMRA)/CD27neg CD28neg (E) 

[CD3pos] 

0.035 Higher in Responder 

CD4posCD45RApos CCR7neg (TEMRA)/CD27neg CD28neg 

(E)/CD95pos [CD3pos] 

0.027 Higher in Responder 

CD8pos CD27neg [CD3pos] 0.001 Higher in Responder 

CD8pos CD28neg [CD3pos] 0.001 Higher in Responder 

CD8pos CD57pos CD3pos] 0.002 Higher in Responder 

CD8pos CD95pos [CD3pos] 0.049 Higher in Responder 

CD8posCD45RApos CCR7neg (TEMRA) [CD3pos] 0.005 Higher in Responder 

CD8posCD45RApos CCR7neg (TEMRA)/CD27neg CD28neg (E) 

[CD3pos] 

0.001 Higher in Responder 

CD8posCD45RApos CCR7neg (TEMRA)/CD27neg CD28neg 

(E)/CD57pos [CD3pos] 

0.003 Higher in Responder 

CD8posCD45RApos CCR7neg (TEMRA)/CD27neg CD28neg 

(E)/CD95pos [CD3pos] 

0.001 Higher in Responder 

CD8posCD45RAint CCR7int [CD3pos] 0.025 Higher in Responder 

CD8posCD45RAint CCR7int/CD27neg CD28pos/CD95pos [CD3pos] 0.018 Higher in Responder 

CD8posCD45RAint CCR7int/CD27neg CD28neg [CD3pos] 0.006 Higher in Responder 

CD8posCD45RAint CCR7int/CD27neg CD28neg/CD57pos [CD3pos] 0.009 Higher in Responder 

CD8posCD45RAint CCR7int/CD27neg CD28neg/CD95pos [CD3pos] 0.005 Higher in Responder 

CD45RApos CCR7neg (TEMRA)/CD27neg CD28neg (E) [CD4pos] 0.027 Higher in Responder 

CD45RApos CCR7neg (TEMRA)/CD27neg CD28neg (E)/CD57pos 

[CD4pos] 

0.043 Higher in Responder 

CD45RApos CCR7neg (TEMRA)/CD27neg CD28neg (E)/CD95pos 

[CD4pos] 

0.021 Higher in Responder 

CD8pos CD27neg [CD8pos] 0.002 Higher in Responder 

CD8pos CD28neg [CD8pos] 0.003 Higher in Responder 

CD8pos CD57pos [CD8pos] 0.018 Higher in Responder 

CD45RApos CCR7neg (TEMRA) [CD8pos] 0.011 Higher in Responder 

CD45RApos CCR7neg (TEMRA)/CD27neg CD28pos/CD95pos 

[CD8pos] 

0.033 Higher in Responder 

CD45RAint CCR7int/CD27neg CD28pos/CD95pos [CD8pos] 0.048 Higher in Responder 

CD45RAint CCR7int/CD27neg CD28neg [CD8pos] 0.014 Higher in Responder 

CD45RAint CCR7int/CD27neg CD28neg/CD57pos [CD8pos] 0.015 Higher in Responder 

CD45RAint CCR7int/CD27neg CD28neg/CD95pos [CD8pos] 0.013 Higher in Responder 

CD4posCD27pos CD28pos [CD45RAneg CCR7neg (EM)] 0.039 Lower in Responder 

CD8posCD27pos CD28pos [CD45RApos CCR7neg (TEMRA)] 0.001 Lower in Responder 

CD8posCD27neg CD28neg (E) [CD45RApos CCR7neg (TEMRA)] 0.008 Higher in Responder 

CD8posCD27neg CD28neg (E)/CD57pos [CD45RApos CCR7neg 

(TEMRA)] 

0.024 Higher in Responder 

CD8posCD27pos CD28pos /CD95pos [CD45RAint CCR7int] 0.045 Lower in Responder 

CD8posCD27neg CD28neg [CD45RAint CCR7int] 0.009 Higher in Responder 

CD8posCD27neg CD28neg/CD57pos [CD45RAint CCR7int] 0.034 Higher in Responder 

CD8posCD27neg CD28neg/CD95pos [CD45RAint CCR7int] 0.008 Higher in Responder 

CD4posCD45RAnegCCR7posCD95pos [CD27neg CD28neg] 0.050 Higher in Responder 

CD4posCD45RAnegCCR7negCD57pos [CD27pos CD28pos ] 0.031 Higher in Responder 

CD8posCD45RApos CCR7neg (TEMRA)CD95pos [CD27pos CD28neg] 0.016 Higher in Responder 

CD8posCD45RApos CCR7neg (TEMRA)CD95pos [CD27neg CD28pos] 0.042 Higher in Responder 

CD8posCD45RApos CCR7neg (TEMRA)CD95pos [CD27neg CD28neg 

(E)] 

0.000 Higher in Responder 

CD8posCD45RAneg CCR7neg (EM)CD95pos [CD27pos CD28neg] 0.037 Higher in Responder 

CD8posCD45RAint CCR7intCD95pos [CD27pos CD28neg] 0.003 Higher in Responder 
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CD8posCD45RAint CCR7intCD95pos [CD27neg CD28neg] 0.012 Higher in Responder 

CD3pos CD56dim [CD45pos] 0.027 Higher in Responder 

CD3pos CD56dim CD8pos [CD45pos] 0.015 Higher in Responder 

NKG2Dpos CD3pos CD56dim [CD45pos] 0.006 Higher in Responder 

NKG2Dpos CD3pos CD56dim [NKG2Dpos] 0.006 Higher in Responder 

CD3pos CD8pos CD57pos [CD45pos] 0.009 Higher in Responder 

CD3pos CD8pos CD57pos CD27neg [CD45pos] 0.010 Higher in Responder 

CD3pos CD8pos /CD56neg. CD27neg [CD45pos] 0.024 Higher in Responder 

CD161pos CD3pos CD8pos [CD45pos] 0.031 Higher in Responder 

CD3pos CD8pos CD57pos [CD3pos] 0.007 Higher in Responder 

CD3pos CD8pos CD57pos CD27neg [CD3pos] 0.006 Higher in Responder 

CD3pos CD8pos /CD56neg. CD27neg [CD3pos] 0.020 Higher in Responder 

CD161pos CD3pos CD8pos [CD161pos CD3pos] 0.023 Higher in Responder 

CD161pos CD3pos CD8neg [CD161pos CD3pos] 0.023 Lower in Responder 

CD3pos CD8pos CD57pos [CD3pos CD8pos] 0.018 Higher in Responder 

CD3pos CD8pos CD57pos CD27neg [CD3pos CD8pos] 0.013 Higher in Responder 
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Abstract: 

Introduction: 

A number of studies has shown that the “immune context” within the tumour plays a major 

role in cancer progression and responsiveness to immunotherapies. The efficacy of such 

immunotherapeutic approaches relies on the presence of immune cells that migrate into the 

tumour and subsequently kill tumour cells. Thus, a more comprehensive analysis of immune 

features in the tumour including cellular and soluble features may be required in order to 

better predict patient outcome or response to therapy. 

Methods: 

Here, we analysed multifaceted immune parameters in melanoma sections with the goal of 

identifying the immune factor(s) most relevant for patient outcome. Using fluorescence 

microscopy, we assessed T cells (CD3+) and myeloid cells (CD15+) in addition to a panel of 

soluble immune factors (IL-6, GM-CSF, TNF, IL-1Ra, IL-2, IL-10, GDF15, PGE2) as well as the 

transcription factor STAT3 in metastatic melanoma tissues of 76 patients.  

Results: 

We observed that tumour-infiltrating immune cells were present in the majority of patient 

samples, in which high relative levels of CD15+ but not CD3+ cells were found to be a 

potential prognostic marker for survival. Combining the assessment of CD15+ and CD3+ 

cells, we found that patients survived longer when their tumours contained high levels of 

CD3+ cells and low levels of CD15+ cells. No associations between patient clinical parameters 

and the level of a number of soluble factors were found, apart from high levels of TNF in 

patients with more advanced disease.  
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Conclusions: 

This pilot study proposes cellular but not soluble features as potential indicators of patient 

outcome in metastatic melanoma.  

Keywords:  

TILs, tumour microenvironment, metastatic melanoma, immune context 

 

Introduction 

Although malignant melanoma accounts for less than one percent of skin cancer cases (1), it 

is the most dangerous form, with an ever-increasing incidence worldwide. Despite recent 

therapeutic advances and sustained efforts at early diagnosis, the majority of metastatic 

melanoma patients still faces a poor prognosis. The recent introduction of 

immunomodulatory antibody therapies into the clinic has revolutionised treatment of 

metastatic melanoma and several other solid cancers. These therapies utilise the patient’s 

own immune system to control or suppress tumour growth. However, the efficacy of such 

approaches relies on the presence of immune cells which can migrate into the tumour and 

subsequently kill the cancer cells or otherwise suppress tumour development even when 

employing intratumoural immunotherapy (2). Supporting this notion, a number of recent 

studies has shown that the state of the immune system within the tumour plays a major role 

in cancer progression and patient outcome. The most intensively explored approach is based 

on investigations on the level of intra-tumoural lymphocytes and other immune cells in 

colorectal cancer, where the “immune context” had greater prognostic power than the 

standard staging system for predicting post-operative survival (3-5). Such associations 
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between the level of tumour-infiltrating lymphocytes and clinical outcome have also been 

reported in several other cancer types (6-9). As well as providing prognostic information on 

patient survival, the assessment of the intra-tumoural immune context could also assist in 

predicting which patients will respond to which forms of therapy, something of great 

importance in clinical patient management. Supporting this in the context of melanoma, 

Thume et al. has shown that high levels of infiltrating CD8+ cells are associated with 

responsiveness to therapeutic PD-1 blockade in these patients (10). Associations between 

the composition of the tumour microenvironment and the clinical efficacy of conventional 

therapies and immunotherapies have also been documented in several other cancer types 

(4, 11-18).  

However, tumour progression is still frequently seen even in the presence of substantial 

lymphocytic infiltration, suggesting that either an effective immune response cannot be 

generated, or that the immune response cannot always control tumour growth in every 

individual patient. This in turn suggests that a more comprehensive analysis of immune 

features in the tumour including cellular and soluble factors may be required in order to 

better predict patient outcome. This proposition is based on the notion that local immune 

cells are heavily influenced by signals received from soluble immune molecules such as 

chemokines or cytokines which can promote their migration and stimulate their anti-tumour 

activity but may also program them to become immunosuppressive. For example, Mlecnik et 

al. reported that the presence of certain chemokines and adhesion molecules is correlated 

with high levels of T cell infiltration into the tumour and with patient survival (19), while a 

separate study in uveal melanoma showed that intra-tumoural COX-2 expression was 

associated with the levels of Tregs and patient survival (20). These observational studies are 

supported by investigations which reveal interactions between soluble factors and cellular 
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immune features. For example, high levels of IDO and PGE2 inhibit T cell function, down-

regulate NK receptors and increase the frequency of tumour-infiltrating regulatory T cells 

(21-23). Furthermore, PGE2, IL-6 and a number of other soluble factors has been shown to 

drive the differentiation of monocytes into immunosuppressive “myeloid-derived suppressor 

cells” (MDSCs) (24-26). The levels of these molecules and their associated pathways in the 

tumour have also been shown to correlate with patient survival (27, 28). Collectively, these 

studies suggest that the soluble milieu in the tumour microenvironment influences the level 

and behaviour of local immune cells, and that both soluble and cellular immune features are 

important for patient prognosis. 

 

Considering the role of soluble signalling molecules in generating an efficient anti-tumour 

immune response, an immunological perspective of the tumour microenvironment would be 

incomplete without examining these soluble molecules. However, few studies have assessed 

the clinical importance of both cellular and soluble intra-tumoural immune features, and 

little is known about the prognostic value of cells infiltrating melanoma lesions. Because 

soluble factors influence leukocyte behaviour in pleiotropic or context-dependent ways, 

understanding what constitutes a “favourable” intra-tumoural environment is important for 

guiding the development of innovative therapies in future, as well as for optimal 

implementation of existing therapies. To take the first step towards this, the present study 

was designed to characterise multifaceted immune parameters in melanoma. We assessed T 

cells and myeloid cells in addition to a panel of soluble immune factors, with the goal of 

identifying immune factor(s) most relevant for patient outcome. 
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Materials and Methods 

Patients 

This study investigated 76 metastatic melanoma patients treated at the Dermatology 

Department of Tübingen University Hospital. Patients included in this study received diverse 

forms of anti-cancer therapies. Thus, this pilot study sought informative immune features 

common to all melanoma patients regardless of the type of treatment they received. The 

study population consisted of 44 men and 32 women with a median age of 63 (range 35 – 89 

years). See Table 1 for a detailed description of the patient cohort. This study was approved 

by the Ethics Committee of the University of Tübingen (017/2016BO2). Written informed 

consent was obtained from all patients for the storage and scientific analysis of tissue 

samples. 

Table 1: Description of patient cohort 

 
 

 

 

 

 

 

 

 

Patient clinicopathological parameters (n = 76) 

Median Age (range in years) 63 (35-89) 
  
Gender  
Men 44 
Women 32 
  
AJCC staging  
3 31 
4A 14 
4B 9 
4C 22 
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Immunofluorescence  

To detect proteins of interest, slide-mounted formalin-fixed paraffin-embedded tissue 

sections (5 µm thick) were first dewaxed for 15 min in xylene and then rehydrated in a series 

of graded ethanol solutions (100%, 96% and 70%, 5 min each), followed by incubation in 

distilled water for 30 min. Antigen retrieval was performed using an alkaline-based solution 

(1 mM EDTA, 25 mM Tris–HCl, 0.05% SDS, pH 8.5) (29) at 90°C for 45 minutes for all 

antibodies. Tissues were then rinsed with washing buffer (PBS, 0.025% Tween 20 and 

0.005% BSA) for 3 minutes before blocking non-specific binding with a 5% donkey serum 

solution (diluted in washing buffer) for 30 minutes at room temperature. This was followed 

by incubation with primary antibody (60 min at room temperature) before washing for 3 x 3 

min. After washing, secondary antibody was applied (incubated for 60 min at room 

temperature) before another round of 3 x 3 min washes. Cell nuclei were subsequently 

stained with 4′,6-diamidino-2-phenylindole (DAPI) (Roche, Mannheim, Germany) (diluted 

1:2000 in washing buffer) for 10 minutes before washing (3 x 3 min). Slides were then 

mounted with a glass coverslip (0.08–0.12 mm) using fluorescence mounting medium (Dako, 

Santa Clara, US). Stained slides were stored protected from light at 4°C before being 

measured with a Zeiss Axiophot fluorescence microscope using AxioVision 4.8 software. 

Soluble molecules were recorded at 20x magnification, whereas infiltrating cells were 

captured at 40x magnification. The following primary antibodies were used: rabbit 

polyclonal anti-CD3 (1:30, Abcam, Cambridge, UK ), goat polyclonal anti-CD14 (1:40 Novus 

Biologicals, Abingdon, UK), mouse monoclonal anti-CD14 (clone 5A3B11B5) (1:300 Santa 

Cruz Biotechnology, Dallas, Texas, USA) rabbit monoclonal anti-CD15 (1:80, Novus 

Biologicals), rabbit polyclonal anti-GM-CSF (1:20, Bioss, Woburn, Massachusetts, USA), 

rabbit polyclonal anti-TNF (1:40, Novus Biologicals), rabbit polyclonal anti-PGE2 (1:10, 
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Biorbyt, Cambridge, UK), rabbit polyclonal anti-GDF15 (1:35, BIOZOL, Eching, Germany), 

rabbit polyclonal anit-IL10 (1:10, BIOZOL), mouse polyclonal anti- IL-6 (1:20, Bioss), mouse 

anti- STAT3 (1:8, SantaCruz Biotechnology), mouse monoclonal anti-IL1Ra (clone OTI3B1) 

(1:45, ORIGENE, Rockville, MD, USA) and mouse monoclonal anti-IL2 (1:25, ACRIS, SanDiego, 

CA, USA). For the detection of the primary antibody, the following secondary antibodies 

were used: Alexa Fluor 488 donkey anti-rabbit IgG (H+L) (1:60), Cy3 donkey anti-mouse IgG 

(H+L) (1:150), Alexa Fluor 488 donkey anti-goat IgG (H+L) (1:60). All secondary antibodies 

were purchased from Jackson ImmunoResearch Laboratories, West Grove, PA, USA. Control 

sections omitting primary antibody were included for each sample. Primary antibodies were 

individually titrated and tested with different antigen retrieval methods in order to 

determine optimal staining conditions. 

Depending on tumour size, an average of 12 representative images was captured in a non-

biased manner covering all areas of the tissue, so that the tumour centre and margin were 

measured proportional to the tumour size. To determine relative differences in protein 

expression of different samples, fluorescence intensity was compared between the control 

(secondary antibody only) and primary antibody-stained tissue sections on the same slide. In 

order to standardise the measurement of different samples, signal intensity (exposure time) 

of the control tissue was adjusting in accordance with standard images. After determining 

comparable signal intensity in accordance with the standard images, an equivalent number 

of images from control and antibody-stained tissues was recorded. Fluorescence intensity 

for each image was measured with software designed in-house (created by Christof Zanke, 

Tübingen University Hospital, Tübingen, Germany) which was used to create a fluorescence 

index; mean pixel intensity of the antibody-stained tissue divided by mean pixel intensity of 

images from the control tissue. By including an internal control for each slide, this method 
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considers any potential differences in sample autofluorescence or in microscope settings or 

performance that may occur. Results obtained by software were confirmed visually. Tissues 

were considered to be positive for a protein if they showed fluorescence intensity of at least 

50% greater than the control slide (i.e. fluorescence index of 1.5). To quantify numbers of 

infiltrating cells, images were scored by two independent investigators and results compared 

to identify potential discrepancies. 

 

Statistical analysis 

Two independent groups were compared using the Mann-Whitney U test. Relationships 

across four grouping variables were assessed with Fisher’s exact test. Correlations were 

assessed using Spearman correlation analysis. Differences in disease-specific survival 

between two groups were compared using the Kaplan-Meier method with the log-rank test. 

Surviving patients or deaths not due to melanoma were censored. The patient cohort was 

dichotomised into two groups for survival analysis using two methods (1) following 

convention according to median values, or (2) the largest differences in survival between 

patient groups were determined by comparing all possible combinations of patient groups 

(group sizes accounted for at least 10% the entire cohort). To account for the additional 

number of statistical tests that this method requires, we adjusted the significance threshold 

considering this, whereas all other statistical relationships were considered using a threshold 

of 5%. Statistical analysis was performed with SPSS 22 (IBM, Ehningen, Germany) and Prism 

5 (Graph Pad, La Jolla, USA). 
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Results 

Metastatic melanomas are commonly infiltrated by T cells and granulocytic cells, and 

possess a diverse milieu of soluble factors 

 

To characterise the tumour microenvironment in melanoma, we assessed soluble factors 

and cellular features in the tumours of 76 metastatic melanoma patients. This 

characterisation included T cells, monocytes and granulocytic cells along with the soluble 

factors IL-6, GM-CSF, TNF, IL-1Ra, IL-2, IL-10, GDF15, PGE2 and the transcription factor 

STAT3. The presence of soluble molecules was very common, with a large fraction of 

tumours staining positive for most of the molecules (Fig. 1A). However, they were found to 

be present at different levels in different tumours, with IL-6, GM-CSF and IL-1Ra showing the 

greatest range (Fig. 1B). Similar to the soluble molecules, we observed that the majority of 

melanoma tissues contained CD3+ and CD15+ cells (Fig. 1C), but the latter were much less 

common (Fig. 1D) with substantially lower abundance compared to CD3+ cells (Fig. 1E). 

Further, there was no significant difference in the distribution of cells comparing center and 

margin of the tumour, neither for CD3+ nor for CD15+ cells (Fig. 1E), although there was a 

tendency towards greater CD15+ cell infiltration into the center of the tumour.  

We also attempted to quantify tumour infiltration by CD14+ cells using two commercially-

available antibodies (goat polyclonal anti-CD14 from Novus Biologicals and mouse 

monoclonal anti-CD14 from Santa Cruz (clone 5A3B11B5)). Despite the use of different 

staining protocols, we were not able to achieve staining quality that allowed quantification 

of CD14+ positive cells using either antibody.  
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Figure 1. Melanomas are commonly infiltrated by leukocytes and contain a range of different 
soluble molecules. Tumour infiltration by CD3+ and CD15+ cells (n = 56) and the presence of soluble 
molecules including IL-1Ra (n = 47), IL-2 (n = 56), IL-6 (n = 62), IL-10 (n = 56), GM-CSF (n = 45), TNF (n 
= 53), GDF15 (n = 47), PGE2 (n = 39) and STAT3 (n = 53) was determined using fluorescence 
microscopy. The presence of most soluble molecules was common in melanoma tumours (A), but 
differed in level (B). The majority of melanoma lesions was infiltrated by CD3+ (C, top image) and 
CD15+ cells (C, bottom image), with CD3+ cells being more common (D) and occurring at higher 
levels (E).  No significant difference between margin or center was observed for either CD3+ or 
CD15+ cells (E).  
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Levels of soluble molecules in the melanoma microenvironment correlate with each other 

and with infiltration by granulocytic cells  

We reasoned that a particular microenvironment might enhance or suppress the infiltration 

of immune cells into the tumour. We found that tumours more heavily infiltrated by CD15+ 

cells (which would be expected to suppress immunity) also showed lower expression of the 

immunosuppressive factor PGE2 (p = 0.02) (Fig. 2A). However, no other associations 

between immune cell infiltration and the level of soluble molecules were observed. Given 

that many of these soluble signalling molecules are known to act in concert, we next 

investigated whether the expression of the different molecules investigated here was 

related. Indeed, several factors were found to be positively associated with the presence of 

other factors. For example, levels of IL-6 and GM-CSF positively correlated with each other (p 

< 0.0001, r = 0.7) (Fig. 2B). Similar relationships were also seen between TNF and STAT3 (p < 

0.0001, r = 0.7), IL-2 and IL-10 (p < 0.0001, r = 0.5) as well as for other combinations of 

molecules. See supplementary data 1 for a full set of correlations. 

 

 



13 

 

 

Figure 2. The presence of soluble factors in melanoma tumours is correlated and can be associated 
with leukocyte infiltration. Intra-tumoural levels of CD3+ and CD15+ cells and the presence of 

soluble molecules (IL-1Ra, IL-2, IL-6, IL-10, GM-CSF, TNF, GDF15, PGE2, STAT3) was assessed in 
metastatic melanoma lesions from 76 patients. Patients were grouped according to their median 
expression level and cell counts, respectively. This revealed that patients with higher than median 
levels of CD15+ cells in tumours had lower levels of PGE2 (A). We also found that the amount of IL-6 
was positively correlated with GM-CSF, with similar relationships observed between STAT3 and TNF 
and between IL-2 and IL-10 (B). FI, Fluorescence Index 

 

High intra-tumoural levels of TNF are present in patients with more advanced disease  

We next investigated whether the presence of soluble factors or tumour infiltration by T 

cells or granulocytic cells was associated with clinical parameters in these melanoma 

patients. We investigated whether the immune parameters measured here were associated 

with clinical features including disease stage, progression time (stage III to stage IV), age and 
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gender. This analysis showed that patients with stage IV disease had tumours with higher 

levels of TNF relative to stage III patients (p = 0.02) (Fig. 3A). No other association between 

stage and any other immune features were found here; neither STAT3 nor CD3+ or CD15+ 

cells in the margin were associated with tumour stage (Fig. 3A). Older patients were 

additionally found to have lower numbers of CD15+ cells infiltrating into the tumour margin 

(p = 0.046) (Fig. 3B), while CD3+ infiltration into the margin, TNF and STAT3 expression 

where not influenced by age. No other associations between patient clinical parameters and 

the immune features measured here were found (Fig. 3, selected results shown).  

 

 

Figure 3. Levels of tumour-infiltrating leukocytes and intra-tumoural soluble factors are associated 
with some patient clinical parameters. Tumour-infiltrating cells (CD3+ and CD15+) and soluble 
factors (IL-1Ra, IL-2, IL-6, IL-10, GM-CSF, TNF, GDF15, PGE2 and STAT3) were measured in the tissue 
of 76 melanoma patients using fluorescence microscopy and tested for association with patient 
clinical parameters. Patients with more advanced disease had tumours with higher levels of TNF (A). 
We also found that older patients had lower levels of CD15+ cells infiltrating the tumour margin 
(young group: median age 53 (range 35 - 63 years); old group: median age 73 (range 64 - 89) (B).  
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Tumour-infiltrating leukocytes are associated with patient survival  

 

Based on recent findings suggesting that the makeup of the tumour microenvironment can 

accurately predict patient prognosis in certain types of cancer (6-9), we investigated 

whether the amounts of soluble factors or the infiltrating immune cells investigated here 

were associated with patient survival. To achieve this, we first stratified the patients into 

two groups according to median values and performed Kaplan-Meier survival analysis. Using 

this approach, we were unable to identify any single soluble or cellular factor which was 

associated with patient survival (data not shown). Because the aforementioned approach is 

based on an arbitrary method of dividing a single patient cohort into two groups, we next 

investigated whether separating the cohort according to different criteria would reveal 

discrete groups of patients showing differences in survival. To achieve this we compared the 

survival of two patient groups according to different cut-off values to determine the 

threshold with the minimum p value and thus the greatest differences in survival. This 

analysis surprisingly showed that lower intra-tumoural levels of GM-CSF and IL-10, as well as 

high levels of PGE2, were associated with better patient survival (Fig. 4A, and B). At the same 

time, patients with higher levels of intra-tumoural T cells or lower levels of granulocytic cells 

had better survival (Fig. 4C). To account for the additional number of statistical tests that this 

method requires, we adjusted the significance threshold accordingly. After this adjustment, 

only the association between survival and CD15+ infiltration into the margin of the tumour 

remained significant (p = 0.0006, adjusted significance threshold p = 0.0009) (Fig. 4C). These 

results therefore identify soluble and cellular factors in the tumour microenvironment as 

potential prognostic markers, but they require validation in an independent cohort to 

confirm these initial findings. 
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Figure 4. Levels of intra-tumoural leukocytes and soluble molecules are associated with the 
survival of melanoma patients. We compared the survival of two patient groups according to 
different cut-off values to determine the largest differences in the survival between patients showing 
high or low levels of soluble molecules and tumour-infiltrating leukocytes. This showed that low 
levels of GM-CSF and IL-10 (A) and high levels of PGE2 (B) were associated with longer patient 
survival. Similarly, patients with high levels of CD3+ or low levels of CD15+ cells in the tumour were 
found to have a survival benefit (C). When considering the number of statistical tests performed, 
only intra-tumoural levels of CD15+ cells were found to be associated with survival (adjusted 
significance threshold p = 0.0009).  
GM-CSF (n = 45): 27% of patients in the high group (>), 73% of patients in the low group (<); IL-10 (n = 
56): > 46%, < 54%; PGE2 (n = 39): > 74%, < 26%; CD3+ centre (n = 56): > 29%, < 71%; CD15+ margin (n 
= 56): > 30%, < 70%.  
Green lines in survival curves, patients with high levels of indicated feature; red lines, patients with 
low levels of indicated features; FI, Fluorescence Index  
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A combination of different types of immune parameters as prognostic markers for 

metastatic melanoma  

Considering our results which suggested that single immune parameters measured in this 

study might act as prognostic markers, we hypothesised that combinations of different 

immune features would correlate more closely with clinical outcome. This analysis revealed 

a survival advantage for patients with high levels of tumour-infiltrating CD3+ cells combined 

with low levels of CD15+ infiltration, compared to patients with other combinations of these 

parameters (p = 0.03) (Fig. 5A). A trend was observed for patients with high levels of CD3+ 

cells and low levels of IL-10 (p = 0.1) as well as for patients with low levels of both CD15+ cell 

infiltration and IL-10 (p = 0.08) (Fig. 5B). This combinational analysis reduces the number of 

patients that can be considered, and for this reason these results must be considered 

preliminary until such time as they are validated. 
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Figure 5 Combinations of multiple immune parameters are more closely associated with survival in 
melanoma patients. Patients were grouped according to combined immune parameters, and 
survival between these groups was compared using Kaplan-Meier analysis. This showed that high 
levels (>median) of tumour-infiltrating CD3+ and low levels (<median) of CD15+ cells were associated 
with better patient survival (A). Patients with high (> median) levels of tumour-infiltrating CD3+ cells 
and low (< median) tumour expression of IL-10, or patients with low levels (< median) of tumour-
infiltrating CD15+ cells and low (< median) expression of IL-10 were also found to have better survival 
(B). 
CD3hiCD15lo: n = 9, CD3loCD15hi: n = 12, CD3hiCD15hi: n = 16, CD3loCD15lo: n = 15: CD3hiIL-10low: 
n = 10, CD3lowIL-10hi: n = 11; CD15hiIL-10hi: n = 12, CD15loIL-10lo: n = 15; 
Green lines, patients with combined features associated with a better survival; red lines; patients 
with combined features that are associated with short survival 

 

Discussion 

It has been widely reported across different cancer types that high levels of tumour-

infiltrating immune cells can be associated with superior patient survival (4, 30). However, 

tumour progression is frequently seen despite the presence of high levels of such intra-

tumoural immune cells, suggesting that there are factors within the tumour 

microenvironment that impair the function of these cells and/or that these cells lack anti-

tumour activity. Therefore, factors providing additional information on the phenotype of 
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infiltrating cells as well as on the makeup of the tumour microenvironment may be used as 

biomarkers that can more accurately predict patient survival compared with other 

approaches that only assess the level of infiltrating immune cells. In support of this, prior 

investigations have shown that soluble immune molecules in the tumour microenvironment 

such as PGE2, COX or IL-6, correlate with patient survival (27, 28) and influence the 

migration, differentiation and functional state of infiltrating immune cells (19, 24, 25) 

including innate immune cells particularly for TNF (31). These observations support the 

proposition that the soluble and cellular makeup of the tumour microenvironment plays a 

fundamental role in the generation of effective anti-tumour immune responses, and thus 

may more accurately predict patient outcome when compared to the assessment of intra-

tumoural leukocytes alone. As the majority of studies on the tumour microenvironment 

focus on tumour-infiltrating leukocytes, the present study is one of the few to characterise 

both soluble and cellular intra-tumoural immune features at the same time, with the goal of 

defining an intra-tumoural immune context linked with favourable patient outcome. To 

achieve this, we studied tumour-infiltrating T cells (CD3+) and granulocytic cells (CD15+) 

along with a broad range of soluble molecules (GDF15, PGE2, IL-1Ra, IL-2, IL-6, IL-10, GM-

CSF, TNF) and the transcription factor STAT3. Tumour-infiltrating immune cells were present 

in the majority of patient samples, but CD3+ cells were not associated with any prognostic 

feature. Only CD15+ cells may be a potential prognostic marker depending on the method of 

analysis. This result is in contrast to a number of other studies that report an association 

between CD3+ infiltration and patient prognosis in several other types of cancer (4, 5, 30, 

32-38). However, the finding here that intra-tumoural T cells are not related to patient 

survival adds to the disparate results for the role of tumour-infiltrating T cells in melanoma. 

Hillen et al. reported that high levels of intra-tumoural T cells were associated with poor 
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survival (39), whereas other studies report the opposite relationship; high levels of intra-

tumoural T cells or one study considering peri-tumoural T cell activation markers were found 

to correlate with longer patient survival (40, 41). Furthermore, a recently published study 

reported no significant association between the level of intra- or peri-tumoural CD3+ cells 

and overall survival, in line with the results presented here (42). These discrepancies might 

be explained by variations in the broad populations of CD3+ T cells, which include helper 

cells, exhausted or anergic cells, regulatory T cells as well as cytotoxic cells. Thus, CD3 is 

present on cells with very different functional properties and activation states. Prior studies 

and the present work suggest that information about the level and distribution of T 

lymphocytes in the melanoma microenvironment can be associated with patient prognosis, 

but only in certain contexts. Combining markers providing information on the subsets of 

infiltrating T cells together with an assessment of the activation state of these cells (eg. 

measuring markers of exhaustion or activation) may increase the accuracy of this feature to 

predict patient prognosis. The potential prognostic differences associated with different 

populations of T cells are highlighted by one study in melanoma which showed an inverse 

association with patient survival for T lymphocytes, whereas longer survival was found when 

considering the degree of cells expressing the T cell activation marker CD69 (39). These 

findings highlight potential limitations in the widespread applicability of studies which 

propose TILs as markers of patient prognosis. For example, in the “immunoscore” studies 

performed in colorectal cancer, infiltration by CD3+ T cells alone were sufficient to use as a 

prognostic marker (8), but despite claims that melanoma is an immunogenic tumour type 

(43) no such associations were found in the present study. 
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Many mechanisms inducing T lymphocyte dysfunction have been identified, including 

suppression by regulatory T cells or through the expression of inhibitory ligands like PD-L1 on 

tumour cells or APCs (44, 45). These mechanisms have the potential to prevent optimal T cell 

function within the tumour microenvironment, suggesting that the prognostic value of such 

TILs is limited by the entire immunological context (both soluble and cellular) which 

influences the functional state of those cells. In accordance with this, we observed better 

survival in patients, whose tumours contained high levels of CD3+ cells in addition to low 

levels of CD15+ cells, suggesting that interactions between intra-tumoural leukocytes are 

important for their function and activation state. This notion is supported by a study 

showing that high levels of tumour-infiltrating CD8+ T cells are followed by recruitment of 

regulatory T cells into the tumour microenvironment, which might serve as a negative 

feedback mechanism following infiltration by cytotoxic T cells and thus may limit the 

prognostic accuracy of assessing cytotoxic T cells in isolation (46). In addition to the cellular 

context, we also observed a trend towards better survival in patients with high levels of 

CD3+ cells and low expression of the potentially immunosuppressive cytokine IL-10. 

Considering these data and the increasing clinical use of immunotherapies, more 

comprehensive analysis of the tumour microenvironment may be required to better predict 

patient outcome - especially as the clinical efficacy of immunotherapies has been shown to 

be associated with immune features of the tumour microenvironment in several cancer 

types (4, 11-18). In the context of immunomodulatory antibodies such as “checkpoint 

inhibitors”, the level of infiltrating lymphocytes and the expression of the target molecule 

has been shown to be important. For example Taube et al. found an association between 

the expression of PD-1 on tumour-infiltrating T cells and clinical response to PD-1 antibodies 

(47), which is in line with the observations by Chen et al.  who found higher expression of 
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PD-1 in patients responding to anti-PD-1 therapy as well as higher CD8+ infiltration in 

responder to CTLA-4 blockade at early on-treatment (48). As such, there is a need to 

understand the immune context in order to allow better treatment individualization or even 

the identification of new therapeutic targets. 

 

This was a pilot study investigating soluble and cellular immune parameters as potential 

combinatorial indicators of patient outcome in metastatic melanoma. The results of this 

study suggest that certain immune features either alone or in combination may be 

informative for patient prognosis in this cancer, regardless of the nature of patient pre-

treatment. Unlike commonly reported scenarios for other cancer types, T cell infiltration was 

not strongly associated with patient outcome, whereas granulocytic cells appear to be a 

more promising factor for the prediction of patient survival in melanoma. 

 

References 

 

1. Society, A. C. 2017. Cancer Facts & Figures 2017. 
2. Singh, M., and W. W. Overwijk. 2015. Intratumoral immunotherapy for melanoma. Cancer 

immunology, immunotherapy : CII 64: 911-921. 
3. Angel, H., and J. Galon. 2013. From the immune contexture to the Immunoscore: the role of 

prognostic and predictive immune markers in cancer. Current opinion in immunology 25: 
261-267. 

4. Fridman, W. H., F. Pages, C. Sautes-Fridman, and J. Galon. 2012. The immune contexture in 
human tumours: impact on clinical outcome. Nature reviews. Cancer 12: 298-306. 

5. Pages, F., A. Berger, M. Camus, F. Sanchez-Cabo, A. Costes, R. Molidor, B. Mlecnik, A. 
Kirilovsky, M. Nilsson, D. Damotte, T. Meatchi, P. Bruneval, P. H. Cugnenc, Z. Trajanoski, W. 
H. Fridman, and J. Galon. 2005. Effector memory T cells, early metastasis, and survival in 
colorectal cancer. The New England journal of medicine 353: 2654-2666. 

6. Al-Shibli, K. I., T. Donnem, S. Al-Saad, M. Persson, R. M. Bremnes, and L. T. Busund. 2008. 
Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung 
cancer. Clinical cancer research : an official journal of the American Association for Cancer 
Research 14: 5220-5227. 

7. DeNardo, D. G., D. J. Brennan, E. Rexhepaj, B. Ruffell, S. L. Shiao, S. F. Madden, W. M. 
Gallagher, N. Wadhwani, S. D. Keil, S. A. Junaid, H. S. Rugo, E. S. Hwang, K. Jirstrom, B. L. 
West, and L. M. Coussens. 2011. Leukocyte complexity predicts breast cancer survival and 
functionally regulates response to chemotherapy. Cancer discovery 1: 54-67. 



23 

 

8. Galon, J., A. Costes, F. Sanchez-Cabo, A. Kirilovsky, B. Mlecnik, C. Lagorce-Pages, M. Tosolini, 
M. Camus, A. Berger, P. Wind, F. Zinzindohoue, P. Bruneval, P. H. Cugnenc, Z. Trajanoski, W. 
H. Fridman, and F. Pages. 2006. Type, density, and location of immune cells within human 
colorectal tumors predict clinical outcome. Science 313: 1960-1964. 

9. Zhang, L., J. R. Conejo-Garcia, D. Katsaros, P. A. Gimotty, M. Massobrio, G. Regnani, A. 
Makrigiannakis, H. Gray, K. Schlienger, M. N. Liebman, S. C. Rubin, and G. Coukos. 2003. 
Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. The New England 
journal of medicine 348: 203-213. 

10. Tumeh, P. C., C. L. Harview, J. H. Yearley, I. P. Shintaku, E. J. Taylor, L. Robert, B. Chmielowski, 
M. Spasic, G. Henry, V. Ciobanu, A. N. West, M. Carmona, C. Kivork, E. Seja, G. Cherry, A. J. 
Gutierrez, T. R. Grogan, C. Mateus, G. Tomasic, J. A. Glaspy, R. O. Emerson, H. Robins, R. H. 
Pierce, D. A. Elashoff, C. Robert, and A. Ribas. 2014. PD-1 blockade induces responses by 
inhibiting adaptive immune resistance. Nature 515: 568-571. 

11. Andre, F., N. Berrada, and C. Desmedt. 2010. Implication of tumor microenvironment in the 
resistance to chemotherapy in breast cancer patients. Current opinion in oncology 22: 547-
551. 

12. Denkert, C., S. Loibl, A. Noske, M. Roller, B. M. Muller, M. Komor, J. Budczies, S. Darb-
Esfahani, R. Kronenwett, C. Hanusch, C. von Torne, W. Weichert, K. Engels, C. Solbach, I. 
Schrader, M. Dietel, and G. von Minckwitz. 2010. Tumor-associated lymphocytes as an 
independent predictor of response to neoadjuvant chemotherapy in breast cancer. Journal 
of clinical oncology : official journal of the American Society of Clinical Oncology 28: 105-113. 

13. Gajewski, T. F., J. Louahed, and V. G. Brichard. 2010. Gene signature in melanoma associated 
with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer journal 16: 
399-403. 

14. Halama, N., S. Michel, M. Kloor, I. Zoernig, A. Benner, A. Spille, T. Pommerencke, D. M. von 
Knebel, G. Folprecht, B. Luber, N. Feyen, U. M. Martens, P. Beckhove, S. Gnjatic, P. 
Schirmacher, E. Herpel, J. Weitz, N. Grabe, and D. Jaeger. 2011. Localization and density of 
immune cells in the invasive margin of human colorectal cancer liver metastases are 
prognostic for response to chemotherapy. Cancer research 71: 5670-5677. 

15. Hornychova, H., B. Melichar, M. Tomsova, J. Mergancova, H. Urminska, and A. Ryska. 2008. 
Tumor-infiltrating lymphocytes predict response to neoadjuvant chemotherapy in patients 
with breast carcinoma. Cancer investigation 26: 1024-1031. 

16. Iwamoto, T., G. Bianchini, D. Booser, Y. Qi, C. Coutant, C. Y. Shiang, L. Santarpia, J. Matsuoka, 
G. N. Hortobagyi, W. F. Symmans, F. A. Holmes, J. O'Shaughnessy, B. Hellerstedt, J. Pippen, F. 
Andre, R. Simon, and L. Pusztai. 2011. Gene pathways associated with prognosis and 
chemotherapy sensitivity in molecular subtypes of breast cancer. Journal of the National 
Cancer Institute 103: 264-272. 

17. Romano, E., M. Kusio-Kobialka, P. G. Foukas, P. Baumgaertner, C. Meyer, P. Ballabeni, O. 
Michielin, B. Weide, P. Romero, and D. E. Speiser. 2015. Ipilimumab-dependent cell-
mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma 
patients. Proceedings of the National Academy of Sciences of the United States of America 
112: 6140-6145. 

18. Wu, T., and Y. Dai. 2016. Tumor microenvironment and therapeutic response. Cancer letters. 
19. Mlecnik, B., M. Tosolini, P. Charoentong, A. Kirilovsky, G. Bindea, A. Berger, M. Camus, M. 

Gillard, P. Bruneval, W. H. Fridman, F. Pages, Z. Trajanoski, and J. Galon. 2010. Biomolecular 
network reconstruction identifies T-cell homing factors associated with survival in colorectal 
cancer. Gastroenterology 138: 1429-1440. 

20. Mougiakakos, D., C. C. Johansson, E. Trocme, C. All-Ericsson, M. A. Economou, O. Larsson, S. 
Seregard, and R. Kiessling. 2010. Intratumoral forkhead box P3-positive regulatory T cells 
predict poor survival in cyclooxygenase-2-positive uveal melanoma. Cancer 116: 2224-2233. 



24 

 

21. Fruci, D., E. Lo Monaco, L. Cifaldi, F. Locatelli, E. Tremante, M. Benevolo, and P. Giacomini. 
2013. T and NK cells: two sides of tumor immunoevasion. Journal of translational medicine 
11: 30. 

22. Frumento, G., R. Rotondo, M. Tonetti, G. Damonte, U. Benatti, and G. B. Ferrara. 2002. 
Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell 
proliferation induced by indoleamine 2,3-dioxygenase. The Journal of experimental medicine 
196: 459-468. 

23. Witkiewicz, A., T. K. Williams, J. Cozzitorto, B. Durkan, S. L. Showalter, C. J. Yeo, and J. R. 
Brody. 2008. Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal 
adenocarcinoma recruits regulatory T cells to avoid immune detection. Journal of the 
American College of Surgeons 206: 849-854; discussion 854-846. 

24. Mao, Y., D. Sarhan, A. Steven, B. Seliger, R. Kiessling, and A. Lundqvist. 2014. Inhibition of 
tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and 
recovers natural killer cell activity. Clinical cancer research : an official journal of the 
American Association for Cancer Research 20: 4096-4106. 

25. Obermajer, N., R. Muthuswamy, J. Lesnock, R. P. Edwards, and P. Kalinski. 2011. Positive 
feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells 
toward stable myeloid-derived suppressor cells. Blood 118: 5498-5505. 

26. Sinha, P., V. K. Clements, A. M. Fulton, and S. Ostrand-Rosenberg. 2007. Prostaglandin E2 
promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer research 
67: 4507-4513. 

27. Johansson, C. C., S. Egyhazi, G. Masucci, H. Harlin, D. Mougiakakos, I. Poschke, B. Nilsson, L. 
Garberg, R. Tuominen, D. Linden, M. F. Stolt, J. Hansson, and R. Kiessling. 2009. Prognostic 
significance of tumor iNOS and COX-2 in stage III malignant cutaneous melanoma. Cancer 
immunology, immunotherapy : CII 58: 1085-1094. 

28. Wouters, M., E. M. Dijkgraaf, M. L. Kuijjer, E. S. Jordanova, H. Hollema, M. Welters, J. van der 
Hoeven, T. Daemen, J. R. Kroep, H. W. Nijman, and S. H. van der Burg. 2014. Interleukin-6 
receptor and its ligand interleukin-6 are opposite markers for survival and infiltration with 
mature myeloid cells in ovarian cancer. Oncoimmunology 3: e962397. 

29. Syrbu, S. I., and M. B. Cohen. 2011. An enhanced antigen-retrieval protocol for 
immunohistochemical staining of formalin-fixed, paraffin-embedded tissues. Methods in 
molecular biology 717: 101-110. 

30. Angell, H., and J. Galon. 2013. From the immune contexture to the Immunoscore: the role of 
prognostic and predictive immune markers in cancer. Current opinion in immunology 25: 
261-267. 

31. Gonzalez-Gugel, E., M. Saxena, and N. Bhardwaj. 2016. Modulation of innate immunity in the 
tumor microenvironment. Cancer immunology, immunotherapy : CII 65: 1261-1268. 

32. Al-Attar, A., M. Shehata, L. Durrant, P. Moseley, S. Deen, and S. Chan. 2010. T cell density and 
location can influence the prognosis of ovarian cancer. Pathology oncology research : POR 
16: 361-370. 

33. Cai, X. Y., Q. Gao, S. J. Qiu, S. L. Ye, Z. Q. Wu, J. Fan, and Z. Y. Tang. 2006. Dendritic cell 
infiltration and prognosis of human hepatocellular carcinoma. Journal of cancer research and 
clinical oncology 132: 293-301. 

34. Nakano, O., M. Sato, Y. Naito, K. Suzuki, S. Orikasa, M. Aizawa, Y. Suzuki, I. Shintaku, H. 
Nagura, and H. Ohtani. 2001. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a 
prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of 
antitumor immunity. Cancer research 61: 5132-5136. 

35. Ropponen, K. M., M. J. Eskelinen, P. K. Lipponen, E. Alhava, and V. M. Kosma. 1997. 
Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. The Journal of 
pathology 182: 318-324. 



25 

 

36. Setala, L. P., V. M. Kosma, S. Marin, P. K. Lipponen, M. J. Eskelinen, K. J. Syrjanen, and E. M. 
Alhava. 1996. Prognostic factors in gastric cancer: the value of vascular invasion, mitotic rate 
and lymphoplasmacytic infiltration. British journal of cancer 74: 766-772. 

37. Simpson, J. A., A. Al-Attar, N. F. Watson, J. H. Scholefield, M. Ilyas, and L. G. Durrant. 2010. 
Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in 
colorectal cancer. Gut 59: 926-933. 

38. Vesalainen, S., P. Lipponen, M. Talja, and K. Syrjanen. 1994. Histological grade, perineural 
infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term 
prognosis in prostatic adenocarcinoma. European journal of cancer 30A: 1797-1803. 

39. Hillen, F., C. I. Baeten, A. van de Winkel, D. Creytens, D. W. van der Schaft, V. 
Winnepenninckx, and A. W. Griffioen. 2008. Leukocyte infiltration and tumor cell plasticity 
are parameters of aggressiveness in primary cutaneous melanoma. Cancer immunology, 
immunotherapy : CII 57: 97-106. 

40. Bogunovic, D., D. W. O'Neill, I. Belitskaya-Levy, V. Vacic, Y. L. Yu, S. Adams, F. Darvishian, R. 
Berman, R. Shapiro, A. C. Pavlick, S. Lonardi, J. Zavadil, I. Osman, and N. Bhardwaj. 2009. 
Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in 
predicting patient survival. Proceedings of the National Academy of Sciences of the United 
States of America 106: 20429-20434. 

41. Ladanyi, A., B. Somlai, K. Gilde, Z. Fejos, I. Gaudi, and J. Timar. 2004. T-cell activation marker 
expression on tumor-infiltrating lymphocytes as prognostic factor in cutaneous malignant 
melanoma. Clinical cancer research : an official journal of the American Association for 
Cancer Research 10: 521-530. 

42. Weiss, S. A., S. W. Han, K. Lui, J. Tchack, R. Shapiro, R. Berman, J. Zhong, M. Krogsgaard, I. 
Osman, and F. Darvishian. 2016. Immunologic heterogeneity of tumor-infiltrating lymphocyte 
composition in primary melanoma. Human pathology 57: 116-125. 

43. Haanen, J. B. 2013. Immunotherapy of melanoma. EJC supplements : EJC : official journal of 
EORTC, European Organization for Research and Treatment of Cancer ... [et al.] 11: 97-105. 

44. Gajewski, T. F. 2007. Failure at the effector phase: immune barriers at the level of the 
melanoma tumor microenvironment. Clinical cancer research : an official journal of the 
American Association for Cancer Research 13: 5256-5261. 

45. Marincola, F. M., E. M. Jaffee, D. J. Hicklin, and S. Ferrone. 2000. Escape of human solid 
tumors from T-cell recognition: molecular mechanisms and functional significance. Advances 
in immunology 74: 181-273. 

46. Spranger, S., R. M. Spaapen, Y. Zha, J. Williams, Y. Meng, T. T. Ha, and T. F. Gajewski. 2013. 
Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven 
by CD8(+) T cells. Science translational medicine 5: 200ra116. 

47. Taube, J. M., A. Klein, J. R. Brahmer, H. Xu, X. Pan, J. H. Kim, L. Chen, D. M. Pardoll, S. L. 
Topalian, and R. A. Anders. 2014. Association of PD-1, PD-1 ligands, and other features of the 
tumor immune microenvironment with response to anti-PD-1 therapy. Clinical cancer 
research : an official journal of the American Association for Cancer Research 20: 5064-5074. 

48. Chen, P. L., W. Roh, A. Reuben, Z. A. Cooper, C. N. Spencer, P. A. Prieto, J. P. Miller, R. L. 
Bassett, V. Gopalakrishnan, K. Wani, M. P. De Macedo, J. L. Austin-Breneman, H. Jiang, Q. 
Chang, S. M. Reddy, W. S. Chen, M. T. Tetzlaff, R. J. Broaddus, M. A. Davies, J. E. 
Gershenwald, L. Haydu, A. J. Lazar, S. P. Patel, P. Hwu, W. J. Hwu, A. Diab, I. C. Glitza, S. E. 
Woodman, L. M. Vence, Wistuba, II, R. N. Amaria, L. N. Kwong, V. Prieto, R. E. Davis, W. Ma, 
W. W. Overwijk, A. H. Sharpe, J. Hu, P. A. Futreal, J. Blando, P. Sharma, J. P. Allison, L. Chin, 
and J. A. Wargo. 2016. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields 
Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint 
Blockade. Cancer discovery 6: 827-837. 

 

 



26 

 

Supplementary Data  1: Full set of correlations between soluble, cellular and transcription factors 

IL-6 GM-CSF r=0.733, p=0.000 
 TNF r=0.489, p=0.000 
 STAT3 r=0.462, p=0.001 
   
GM-CSF TNF r=0.444, p=0.007 
 STAT3 r=0.395, p=0.017 
 IL-1Ra r=0.475, p=0.014 
   
PGE2 Ratio CD15 margin/centre r=-0.408, p=0.031 
   
TNF STAT3 r=0.688, p=0.000 
 CD15 evenness r=0.32,  p=0.034 
   
STAT3 IL-2 r=0.421, p=0.008 
 IL-10 r=0.364, p=0.023 
 CD15 evenness r=0.349, p=0.02 
   
GDF15 IL-1Ra r=0.41, p=0.004  
   
IL-2 IL-10 r=0.503, p=0.000 
   
CD3 margin CD3 centre r=0.765, p=0.000 
 CD3 total r= 0.959, p=0.000 
 CD3 ratio margin/centre r=0.362, p=0.026 
 CD3 evenness r=0.913, p=0.000 
 CD15 evenness r=0.296, p=0.033 
   
CD3 centre CD3 total r=0.89, p=0.000 
 CD3 ratio margin:centre r=-0.52, p=0.001 
 CD3 evenness r=0.874, p=0.00 
 CD15 margin r=0.312, p=0.025 
 CD15 evenness r=0.293, p=0.035 
   
CD3 total CD3 evenness r=0.935, p=0.000 
 CD15 margin r=0.294, p=0.034 
 CD15 centre r=0.276, p=0.047 
 CD15 evenness r=0.308, p=0.026 
   
CD3 evenness CD15 margin r=0.284, p=0.041 
 CD15 centre r=0.275, p=0.048 
 CD15 evenness r=0.307, p=0.027 
   
CD15 margin CD15 centre r=0.600, p=0.000 
 CD15 total r=0.847, p=0.000 
 CD15 ration margin/centre r=0865, p=0.000 
 CD15 evenness r=0.830, p=0.000 
   
CD15 centre CD15 total r=0.880, p=0.000 
 CD15 ratio margin/centre r=0.528, p=0.000 
 CD15 evenness r=0.792, p=0.000 
   
CD15 total CD15 ratio margin/centre r=0.740, p=0.000 
 CD15 evenness r=0.914, p=0.000 
   
CD15 ratio margin/centre CD15 evenness r=0.729, p=0.000 
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