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Summary 

Psoriasis is an autoinflammatory skin disease with high incidence (3% of adults) in Western 

countries, accompanied by personal and socioeconomic burden. Psoriatic skin lesions are 

characterized by hyperproliferating keratinocytes, by vasodilatation in the dermis and most 

importantly by skin infiltration of leukocytes, dominated by neutrophils (PMNs). Several 

studies implicate a major role of T helper 17 (Th17) cells and plasmacytoid dendritic cells 

(pDCs) in psoriatic autoinflammatory response but only little is known about the impact of 

PMNs on the pathology of the disease. Intriguingly, the initial trigger for immune infiltration 

and inflammation in psoriasis is also so far unknown. In this thesis two different mechanisms 

which might play a role in innate immune responses in psoriasis were addressed: first the 

impact of nucleic acid and LL37 complexes on PMN activation (part I) and second the impact 

of platelet-PMN aggregates on the pathogenesis of psoriasis (part II). 

 

Part I: Psoriatic lesions are associated with overexpression of the antimicrobial peptide LL37. 

Due to its positive charge, LL37 forms complexes with nucleic acids (RNA and DNA) and 

mediates their uptake by pDCs. Subsequently, nucleic acids are recognized by endosomal Toll-

like receptors (TLRs) which induces the release of IFN-α by pDCs. The physiological source of 

nucleic acids and LL37 and the triggers which induce inflammatory responses in psoriasis are 

unknown. Importantly, as PMNs dominate the immune infiltrates in psoriasis and are sources 

of LL37 and nucleic acids (e.g. due to release of neutrophil extracellular traps (NETs)), they 

might fuel a self-sustaining inflammatory loop in psoriasis. This study shows that primary 

human and murine PMNs efficiently respond to RNA-LL37 complexes rather than to DNA-LL37 

by releasing cytokines, chemokines and NETs. Interestingly, PMNs from psoriasis patients are 

more prone to RNA-LL37 stimulation, potentially due to a higher abundance of PMN-derived 

LL37. Further experiments revealed that LL37 and unexpectedly also RNA is present in NETs in 

vitro and in psoriatic lesions but not in healthy skin. Importantly, isolated NET material induces 

NET release in PMNs, again containing DNA, RNA and LL37. The receptors binding RNA-LL37 

complexes are TLR13 and TLR8 in mice and humans, respectively. This result is validated by 

TLR8 inhibitory oligodeoxynucleotides that effectively block RNA-LL37-mediated 

cytokine/chemokine production and NETosis of PMNs in vitro. The present data show that in 

PMNs, RNA-LL37 complexes activate TLRs (TLR8 or TLR13) which can induce a self-propagating 

vicious cycle of inflammation. Most importantly, this study for the first time identifies NET-

associated RNA (naRNA) as a NET component that can potentially fuel the vicious cycle.  

 

Part II: Psoriasis is characterized by massive skin infiltration of PMNs and is often accompanied 

by cardiovascular comorbidities. The major triggers for PMN skin homing in psoriasis are not 

identified yet. In order to find surface antigens on PMNs which explain skin homing in psoriatic 

lesions, whole blood from psoriasis patients and healthy controls (five each) was screened for 

the expression of 332 surface antigens. These experiments identified a platelet antigen 

signature for circulating PMNs from psoriasis patients because of increased aggregation of 
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PMNs with platelets in patients’ blood. Results were confirmed in an imiquimod (IMQ)-

induced mouse model of psoriasis which revealed higher amounts of PMN-platelet aggregates 

in the blood of IMQ-treated mice compared to mock controls. In blood samples from psoriasis 

patients, platelet blood counts are significantly elevated and platelet plaques are found in 

direct contact with PMNs in the lesions of psoriasis patients which is absent in healthy skin. 

Importantly, in mice, depletion of platelets in vivo drastically ameliorates disease severity, 

evidenced by decreased ear thickness, epidermal thickening and reduced leukocyte 

infiltration. Also, in the skin of IMQ-treated mice, PMNs are present in close proximity to 

platelets, while depletion of platelets completely abolishes PMN infiltration. This indicates a 

causal function of platelets in PMN infiltration which is relevant for psoriasis pathology and 

disease severity. The role of platelets in psoriasis potentially explains psoriasis-associated 

cardiovascular comorbidities and opens a new venue for the treatment of psoriasis.  
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Zusammenfassung 

Psoriasis ist eine autoinflammatorische Hautkrankheit, welche sich durch eine hohe Inzidenz 

(3% der Erwachsenen) in westlichen Ländern auszeichnet und von persönlichen und 

sozioökonomischen Belastungen begleitet wird. Psoriatische Hautläsionen sind 

gekennzeichnet durch hyperproliferierende Keratinozyten, durch Vasodilatation in der Dermis 

und vor allem durch Hautinfiltration von Leukozyten, die von neutrophilen Granulozyten 

(PMNs) dominiert werden. Mehrere Studien sprachen T Helfer 17 (Th17) Zellen und 

plasmazytoiden dendritischen Zellen (pDCs) eine wichtige Rolle bei der psoriatischen 

autoinflammatorischen Reaktion zu, es ist jedoch wenig über die Bedeutung von PMNs für die 

Pathologie der Krankheit bekannt. Interessanterweise ist auch der initiale Auslöser für 

Immuninfiltration und Entzündung bei Psoriasis bisher unbekannt. In dieser Arbeit wurden 

zwei unterschiedliche Mechanismen untersucht, über die das angeborene Immunsystem die 

Pathologie der Psoriasis vermitteln könnte: erstens der Einfluss von Nukleinsäure- und LL37-

Komplexen auf die PMN-Aktivierung (Teil I) und zweitens der Einfluss von Plättchen-PMN-

Aggregaten auf die Pathogenese der Psoriasis (Teil II). 

 

Teil I: Psoriatische Läsionen sind durch Überexpression des antimikrobiellen Peptids LL37 

gekennzeichnet. Aufgrund seiner positiven Ladung, komplexiert LL37 Nukleinsäuren (RNA und 

DNA) und vermittelt die Aufnahme von diesen durch pDCs. Anschließend werden die 

Nukleinsäuren von endosomalen Toll-like-Rezeptoren (TLRs) erkannt, was zur Freisetzung von 

IFN-α durch pDCs führt. Die physiologische Quelle von Nukleinsäuren und LL37 und die 

initialen Auslöser, die bei der Psoriasis entzündliche Reaktionen hervorrufen sind unbekannt. 

Da PMNs die Immuninfiltrate bei der Psoriasis dominieren und selbst Quellen von LL37 und 

Nukleinsäuren sind (z.B. durch Freisetzung neutrophiler extrazellulärer Netze (Neutrophil 

extracellular traps NETs)), könnten sie eine selbsterhaltende Entzündungsschleife bei der 

Psoriasis induzieren. Diese Studie zeigt, dass primäre menschliche und murine PMNs effizient 

auf RNA-LL37-Komplexe und nicht auf DNA-LL37 reagieren, indem sie Zytokine, Chemokine 

und NETs freisetzen. Interessanterweise sind PMNs von Psoriasis Patienten anfälliger für die 

RNA-LL37-Stimulation, möglicherweise aufgrund einer höheren Menge an PMN-generiertem 

LL37. Weitere Experimente zeigten, dass LL37 und unerwarteterweise auch RNA in NETs in 

vitro und auch in psoriatischen Läsionen vorhanden sind, aber nicht in gesunder Haut. Wichtig 

ist, dass isoliertes NET-Material in PMNs die NET-Freisetzung induziert, welche wiederum 

DNA, RNA und LL37 enthalten. Die Rezeptoren, die RNA-LL37-Komplexe binden, sind TLR13 

und TLR8 bei Mäusen bzw. Menschen. Dieses Ergebnis wird durch TLR8-hemmende 

Oligodeoxynukleotide bestätigt, die die RNA-LL37-vermittelte Zytokin-/Chemokin-Produktion 

und NETose von PMNs in vitro wirksam blockieren. Die vorliegenden Daten zeigen, dass in 

PMNs, RNA-LL37-Komplexe TLRs (TLR8 oder TLR13) aktivieren, die einen 

selbstfortpflanzenden Entzündungskreislauf induzieren können. Diese Studie identifiziert 

außerdem erstmalig NET-assoziierte RNA (naRNA) als eine NET-Komponente, die potenziell 
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den Entzündungskreislauf in der Psoriasis und anderen autoinflammatorischen Erkrankungen 

vermitteln kann.  

 

Teil II: Psoriasis ist durch eine massive Hautinfiltration von PMNs gekennzeichnet und wird oft 

von kardiovaskulären Komorbiditäten begleitet. Die Hauptauslöser für die PMN-

Hautinfiltration bei Psoriasis sind noch nicht identifiziert. Um Oberflächenantigene PMNs zu 

finden, welche die Hautinfiltration bei psoriatischen Läsionen erklären, wurde Vollblut von 

Psoriasis Patienten und gesunden Kontrollen (je fünf) auf die Expression von 332 

Oberflächenantigenen untersucht. Diese Experimente identifizierten eine Blutplättchen-

Marker-Signatur für zirkulierende PMNs von Psoriasis Patienten. Die Blutplättchen-Signatur 

der PMNs wurde durch die erhöhte Aggregation von PMNs mit Blutplättchen im Blut der 

Patienten hervorgerufen. Diese Ergebnisse wurden in einem Imiquimod (IMQ)-induzierten 

Mausmodell der Psoriasis bestätigt, bei welchem, im Vergleich zu Kontrollen, höhere Mengen 

an PMN-Blutplättchen-Aggregaten im Blut von IMQ-behandelten Mäuse nachgewiesen 

wurden. Blutproben von Psoriasis Patienten zeigten außerdem signifikant erhöhte Anzahl an 

Blutplättchen und in Hautläsionen von Psoriasis Patienten, nicht aber in gesunder Haut, 

wurden Thrombozytenplaques in direktem Kontakt mit PMNs gefunden. Durch die Depletion 

von Blutplättchen in Mäusen wurde in vivo die Schwere der Erkrankung drastisch reduziert, 

was sich in einer geringeren Ohrdicke, reduzierter Verdickung der Epidermis und einer 

reduzierten Leukozyten-Infiltration zeigte. Auch in der Haut IMQ-behandelter Mäuse sind 

PMNs in unmittelbarer Nähe von Blutplättchen zu finden, wohingegen die Depletion der 

Blutplättchen die PMN-Infiltration vollständig verhinderte. Dies deutet auf eine kausale Rolle 

der Blutplättchen bei der PMN-Infiltration hin, die für die Psoriasis-Pathologie und den 

Schweregrad der Erkrankung relevant ist. Die Rolle der Thrombozyten bei der Psoriasis könnte 

zudem die mit der Psoriasis einhergehenden kardiovaskulären Komorbiditäten erklären und 

eröffnet neue Wege zur therapeutischen Behandlung der Psoriasis.  
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Introduction 
 

1.1. The Immune System 

To fend off microbial infection, the human immune system relies on three primary 

components: barriers, innate and adaptive immunity. The first obstacles a pathogen has to 

overcome are barriers which prevent the entry into the host, including physical barriers like 

the skin, chemical barriers inhibiting the growth of the pathogen (e.g. a certain pH) and also 

the composition of the host’s microbiome creating a protective environment (Chaplin 2010) 

(Gallo and Nizet 2008).   

Innate and adaptive immune system comprise complex networks of different cell types and 

mediators with the major task to protect the host from microbes, toxins or other harmful 

substances interfering with normal homeostasis. Indispensable for host defense is the ability 

to distinguish between non-self and self-derived structures. In mammals, two different 

systems which differ in specificity and speed of immune reaction have developed over time; 

they are also better known as innate and adaptive immunity. Despite their classification as 

two different systems, they often function as one union, where cross-talks and interactions 

happen to provide an efficient immune response (Chaplin 2010).  

1.1.1. Innate Immunity 

If a pathogen was able to invade the host by overcoming physical barriers like the skin, an 

immediate response is induced by the innate immune system. It consists of soluble (humoral), 

e.g. the complement system, and a number of cellular components, i.e. different cell types, 

such as professional phagocytes (monocytes, neutrophils and macrophages), cytotoxic cells 

(natural killer cells/NK cells) and antigen presenting cells (dendritic cells/DCs). These cells 

recognize structures that are common to pathogens by conserved receptors which are 

typically also found in lower organisms including plants and insects. In response to pathogen 

recognition, receptor signaling induces initial defense mechanisms such as phagocytosis and 

killing-mechanisms to neutralize invaders, cytokine release to signal further responses, 

activation of a cellular anti-viral state and opsonizing mechanisms like activation of the 

complement system etc. (Chaplin 2010). 

Charles Janeway Jr. first postulated in 1989, that innate immune cells are able to recognize 

microbe-associated molecular patterns (MAMPs) by so-called pattern-recognition receptors 

(PRRs) in a non-specific way (Janeway 1989). Later, it was shown that PRRs are diverse in their 

structure and also in their way of recognizing foreign components. PRRs were shown to sense 

a variety of different pathogenic mediators, ranging from polysaccharides, to lipids or even 

nucleic acids. Different PRR families have been characterized so far: the most extensively 

studied ones are called Toll-like receptors (TLRs). Each of these receptors binds and senses 

distinct microbial structures. As pathogens colonize the host extra- and intracellularly, 

respective PRR receptors, recognizing different structures, are found on the surface of cells, 
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or in intracellular compartments (see below 1.2.1.) (Iwasaki and Medzhitov 2015). Another 

mechanism, in addition to the recognition of microbe-derived structures, is the “altered-self-

recognition” (Karre et al. 1986). NK cells for example use this strategy to scan for infected cells: 

Viral infection or any form of stress associated with infection may change the surface antigens 

of a cell and mark it for NK cell-mediated lysis (Raulet 2006).  

Additionally, after invasion of pathogens, skin resident innate immune cells recognize the 

invader and secrete pro-inflammatory cytokines and chemokines which attract other immune 

cells from the circulation. Usually, the first cells that are recruited to a site of inflammation are 

granulocytes, especially neutrophils. Activation of neutrophils stimulates phagocytosis of the 

pathogen, degranulation, release of reactive oxygen species (ROS) and eventually Neutrophil 

extracellular trap (NET) formation or “NETosis”. The process of NETosis involves ejection of 

cellular DNA that traps the pathogen in place and facilitates efficient killing of the invader 

(Thomas and Schroder 2013) (also see 1.3.2.). When intracellular pathogens such as viruses 

are sensed by cytosolic PRRs, secretion of type I interferons is induced creating an “anti-viral” 

environment which inhibits viral spread (Iwasaki and Medzhitov 2015). Each of these 

mechanisms is important to combat infection and to activate adaptive immune responses.  

1.1.2. Adaptive Immunity 

Unlike the relatively unspecific immediate response of the innate immune system, the 

response of the adaptive immune system is delayed owing to the fact that it is far more 

specific. Adaptive immunity is therefore specifically found in higher developed organisms like 

mammals. The adaptive immune system can build on the early immune responses of the 

innate immune system and mount an antigen-specific immune response by activation of so-

called T- and B-lymphocytes. T cell development takes place in the thymus where gene 

rearrangement generates clonally distributed individual T cell receptors (TCRs). The resulting 

T cell population with a variety of individual receptors provides the primary T cell repertoire. 

The arranged TCRs are then tested for cross-reactivity with the host, resulting in positive or 

negative selection. The remaining non-self-reactive TCRs form the functional T cell repertoire. 

Cells of the functional T cell repertoire can be activated by binding to a specific antigen 

presented by antigen-presenting cells (APCs) (Parkin and Cohen 2001) (Viret and Janeway 

1999) (Krueger et al. 2017). B cell development starts in the bone marrow. Here, 

immunoglobulin-gene-rearrangement takes place and produces a large number of B cell 

clones with specific B cell receptors. Failure in any step to produce a functional B cell receptor 

leads to the death of the immature B cell. Thus, exclusively B cells with a functional B cell 

receptor (BCR) leave the bone marrow to circulate in blood and secondary lymphoid tissues. 

When a B cell encounters its specific antigen and is stimulated by T cells, this specific B cell 

can undergo isotype switching and somatic hypermutation (affinity maturation). When the 

immune response is shut down, the B cell undergoes apoptosis (programmed cell death) or 

becomes a long-lasting memory B cell which is pre-selected to produce antibodies against a 

specific antigen (Chaplin 2010) (Parkin and Cohen 2001) (Melchers 2015).   
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In contrast to B cells that bind a free antigen via their B cell receptor, conventional T cells 

heavily rely on antigen-presentation by APCs. These APCs include different phagocytic cells 

such as certain dendritic cell subsets and macrophages. APCs process internalized antigens 

which are then exposed on their cell surface bound to major histocompatibility complexes 

(MHC) class I or II. The antigen/MHC complex is bound by the specific TCR with the help of co-

receptors, either CD4 (for MHC class II) or CD8 (for MHC class I) thus mediating their activation 

and differentiation of the respective T cell. The two T cell subsets (CD4+ or CD8+) are activated 

by different mechanisms: CD4+ T cells, also known as T-helper (Th) cells, are activated by 

extracellular pathogens-derived MHC II ligands, whereas CD8+ T cells, also known cytotoxic T 

cells (CTLs), are activated by antigens derived from intracellular pathogens complexed with 

MHC I (Chaplin 2010) (Parkin and Cohen 2001). Hence, CTLs recognize infected or invaded cells 

and induce apoptosis by granzymes, perforins or by binding to death inducing molecules (e.g. 

Fas-FasL). Th cells can be subdivided in several subtypes with Th1 and Th2 as classical 

representatives. Th1 cells produce cytokines like IL-2 which is crucial for T cell proliferation in 

general and cytotoxicity by CTLs. Th1 cells importantly release IFN-γ and thus activate 

macrophages and enhance their capacity to kill engulfed pathogens. On the other hand, Th2 

cells release IL-4, 5, 6 and 10, and mainly promote antibody production by B cells (Parkin and 

Cohen 2001). So far, further T-helper subsets were characterized, namely Th17, T-follicular 

helper cells (TFHs), regulatory T cells (Treg) or T helper 22 (Th22) cells (Hirahara and Nakayama 

2016) (Jia and Wu 2014) which all display important functions in adaptive immunity but will 

not be discussed in further detail. 

As mentioned before: the major task of B cells is to produce antibodies against pathogenic 

invaders. Antibodies represent the humoral part of adaptive immunity and are important for 

sensitizing infected cells for complement (CDCC) or antibody-dependent cellular cytotoxicity 

(ADCC) mediated by NK cells; antibodies also bind to and cover the surface (opsonize) of 

pathogens labeling them for phagocytosis. Furthermore, B cells can also act as APCs for T cells: 

when an antigen is recognized by a BCR, this antigen is internalized, processed and presented 

on MHC class II of the B cell. Recognition of this antigen-MHC class II complex by a TCR 

activates the respective Th cell and mediates a Th2 response, i.e. the Th cell produces 

cytokines which induce B cell proliferation and maturation of antibody secreting plasma cells 

(Parkin and Cohen 2001).   
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1.2. Toll-like Receptors (TLRs) 

Until the discovery of Toll-like receptors (TLRs), innate immune responses were thought to be 

unspecific and primitive. Now it is appreciated that TLRs recognize a variety of different 

microbe associated molecular patterns (MAMPs) from bacteria, viruses, fungi and protozoa 

quite specifically and induce microbe-specific immune responses. Recognition of self-derived 

structures can also lead to autoinflammation. 

1.2.1. TLRs and their respective ligands and signaling pathways 

The Toll story started in 1985, when Christiane Nüsslein-Volhard discovered that the Toll 

protein was important for embryonic segmentation of Drosophila (Anderson et al. 1985). 

Approximately one decade later, Toll was identified to play a role in the immune system of 

Drosophila (Lemaitre et al. 1996). Shortly thereafter, a human homologue for Toll was 

identified (Taguchi et al. 1996) leading finally to the characterization of the first Toll-like 

receptor in humans (Medzhitov et al. 1997).  

Toll-like receptors (TLRs) are germline-encoded pattern-recognition-receptors (PRRs) which 

induce immune activation upon recognition of different components derived from pathogens 

(also called microbe-associated-molecular-pattern (MAMPs)) and are expressed on a variety 

of innate immune cells, like granulocytes, macrophages or dendritic cells (Kawai and Akira 

2011) but also some tissue-resident cells like epithelial or endothelial cells and fibroblasts. This 

knowledge is based on a seminal publication of Janeway in 1989, postulating that there have 

to be receptors recognizing certain molecular structures of microbes to link innate and 

adaptive immunity (Janeway 1989). Although TLRs play an important role in innate immunity 

and often bridge immune responses of innate and adaptive immunity, they are not the only 

PRRs inducing immune activation. As PRRs gained more attention in recent decades, 

additional receptors were characterized, e.g. C-type lectins (CLRs) recognizing MAMPs from 

fungi (Brown et al. 2018), RIG-I-like receptors (RLRs) sensing viral RNA (Loo and Gale 2011), 

cytosolic NOD-like receptors (NLRs) which bind bacterial peptides and respond to other 

cellular stress signals (Kim et al. 2016) or, most recently, cytosolic DNA sensors like cGAS-

STING (Kawai and Akira 2011) (Chen et al. 2016).  

To date, 10 TLRs in humans and 13 TLRs in mice have been described. Each of them recognizes 

certain microbial molecular structures (see Table 1.1) (Kawai and Akira 2011) (O'Neill et al. 

2013). 
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Table 1.1: Toll-like receptors and their ligands  

TLR localization Type of ligand Ligands* 

TLR1 with 2 surface bacterial Triacylated lipopeptides 

  synthetic Pam3CSK4 

  fungal Chitin (Fuchs et al. 2018) 

TLR2 surface bacterial lipopeptides 

  fungal Chitin (Fuchs et al. 2018), Zymosan 

TLR2 with 6 surface bacterial Diacetylated lipopeptides 

  synthetic Pam2CSK4 

TLR3 endosome viral Double-stranded RNA 

  synthetic Poly (I:C) 

TLR4 with MD2 surface bacterial Lipopolysaccharide (LPS) 

 endosome bacterial Lipopolysaccharide (LPS) 

TLR5 surface bacterial flagellin 

TLR7 endosome viral Single-stranded RNA 

  synthetic R848, Imiquimod (IMQ) 

TLR8 endosome viral Single-stranded RNA 

  synthetic R848, TL8-506 

TLR9 
surface or 
endosome 

bacterial 
viral 

CpG, hypomethylated DNA motifs 
Herpesvirus DNA 

TLR10 (human) surface ? ? 

TLR11 (mouse) surface bacterial Uropathogenic bacteria, profilin-like molecules 

TLR11 with TLR12 
(mouse) 

surface parasitic Toxoplasma gondii profilin protein  

TLR13 (mouse) endosome bacterial Ribosomal RNA  

* adapted from O’Neill et al. (O'Neill et al. 2013) and completed by literature mentioned in the text above and 
below and by synthetic TLR ligands which can be purchased by InvivoGen 

 

TLR1, 2, 4, 5, 6 are expressed on the cell surface and predominantly bind bacterial membrane 

structures, whereas TLR3, 7, 8 and 9 are found in endosomes where they bind nucleic acids 

(in more detail Table 1.1). TLR10 was recently described to be an anti-inflammatory (Oosting 

et al. 2014) and inhibitory regulator of innate immune signaling (Jiang et al. 2016). Although 

TLR10 has been shown to play a crucial role in inflammatory responses to Listeria 

monocytogenesis (Regan et al. 2013) its precise ligand still has to be identified. Commonly, 

TLR signaling requires dimerization of receptors, with the exceptions of TLR7, 8 and 9 that 

exist in preformed dimers in the endosome (Gay et al. 2014). Some TLRs also form hetero-

dimers such as TLR2 which complexes with either TLR1 or TLR6, while the mouse TLR11 

dimerizes with TLR12 (Gay et al. 2014).  

Upon MAMP binding, the so-called Toll–IL-1-receptor (TIR) domains of the receptor molecule 

engage TIR domain-containing adaptor proteins, such as MyD88 (myeloid differentiation 

primary response protein 88) (except for TLR3). Binding of MyD88 activates a kinase cascade 

involving IRAKs (IL-1R associated kinases), activation of NF-κB (Nuclear Factor kappa-light-

chain-enhancer of activated B cells) and production of pro-inflammatory cytokines (O'Neill et 

al. 2013). Later, another adaptor protein was discovered and named TRIF (TIR domain-

containing adaptor protein inducing IFNβ). TRIF was shown to mediate signaling of TLR3 and 
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MyD88-independent TLR4 signaling (with the help of the TRIF-related adaptor molecule 

(TRAM)), induced by internalized TLR4. Additionally, another TIR adaptor protein called MAL 

(MyD88-adaptor like protein) was described for TLR2 and TLR4 signaling, bridging MyD88 and 

TLR2/4. Furthermore, for successful LPS recognition, TLR4 is in need of a co-receptor, namely 

myeloid differentiation factor 2 (MD2) which binds LPS to induce signaling. Therefore, TLR4 

signaling is so far considered the most complex signaling mechanism in the family of TLRs, 

either inducing surface receptor dependent activation of NF-κB (via MyD88-MAL) or 

cytoplasmic sensing and induction of anti-viral interferon response (via TRIF-TRAM) (see 

Figure 1.1) (O'Neill et al. 2013).  
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1.2.2. TLRs and their contribution to autoinflammation 

TLRs are expressed on a variety of innate immune cells and their signaling is important for 

activation of adaptive immunity by e.g. induction of pro-inflammatory cytokines or enhancing 

expression of costimulatory molecules for APCs (Li et al. 2009). TLR signaling is considered to 

be crucial to link innate and adaptive immunity. However, continuous activation of TLRs or 

dysregulated TLR signaling likely contributes to the development of autoimmune diseases 

(Fischer and Ehlers 2008).  

TLR signaling has therefore also gained interest in numerous autoimmune diseases in part as 

potentially druggable targets and new treatment options. Especially self-DNA recognition by 

endosomal TLRs has been extensively studied. For instance, in the autoinflammatory disease 

rheumatoid arthritis which leads to destruction of the joints, endosomal TLR ligands e.g. RNA 

are found in synovial fluids of the patients (Brentano et al. 2005), but also endogenous TLR4 

ligands like heat-shock proteins (HSPs) (Roelofs et al. 2006) which can both potentially lead to 

inflammation. In systemic lupus erythematosus (SLE), autoantibodies against DNA or RNA are 

observed and clearance of apoptotic cells is impaired. This promotes the formation of immune 

complexes (ICs) of self-DNA fragments and their respective autoantibodies. The ICs are in turn 

recognized by TLR9 and thus induce pro-inflammatory immune response, leading to activation 

of DCs, T and B cells and culminate in an autoinflammation (Barrat et al. 2005) (Barrat and 

Coffman 2008). Small inhibitory oligonucleotides (iODNs) that block TLR9 were suggested as 

potential therapeutic intervention for SLE patients. Some of these iODNs are currently tested 

in clinical studies (Wu et al. 2015). In line with this, it was shown that neutrophils releasing 

self-DNA by neutrophil extracellular traps (NETs), could activate B cells in SLE patients. This 

DNA derived from NETting neutrophils, together with an antimicrobial peptide, entered B cells 

and induced activation by TLR9 signaling. This stimulation in turn led to autoantibody 

production against those NET structures (anti-neutrophil antibodies). A genetically modified 

B cell line that was deficient for TLR9 showed diminished immune stimulation and antibody 

production in response to DNA-ICs, proving that TLR9 is essential for sensing of self-derived 

DNA and subsequent inflammation in SLE (Gestermann et al. 2018).  

Figure 1.1: TLR signaling pathways 

Heterodimers of TLR2-1 or TLR2-6, TLR5 and TLR11 bind their ligands on the cell surface, whereas, TLR3, TLR7, 
TLR8, TLR9 and TLR13 recognize nucleic acids in endosomal compartments. TLR4 is localized either on the cell 
surface or in endosomes. TLR signaling is initiated by ligand binding, following receptor dimerization. Thereafter, 
the Toll–IL-1-receptor (TIR) domains of TLRs bind TIR domain-containing adaptor proteins (MyD88 and 
MyD88-adaptor-like protein (MAL), or TRIF and TRAM). When TLR4 translocates to the endosome, signaling is 
switched from MyD88 to TRIF. TLR downstream signaling involves interaction of IRAKs, with TRAFs (TNF receptor-
associated factors) and leads to kinase activation and transcription of NF-κB and Interferon-regulated factors 
(IRFs). Consequently, pro-inflammatory cytokines are released, or in case of endosomal TLRs type I interferons 
(IFNs). Adapted from O’ Neill 2013 (O'Neill et al. 2013). 
dsRNA, double-stranded RNA; LPS, lipopolysaccharide; rRNA, ribosomal RNA; ssRNA, single-stranded RNA  
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For psoriasis, an autoinflammatory disease of the skin (see paragraph 1.5.), it was found that 

self-derived DNA and RNA can activate plasmacytoid DCs (pDCs) to produce type I interferon. 

IFN production depended on TLR9 and TLR7 respectively (Lande et al. 2007) (Ganguly et al. 

2009) and NET contents released by neutrophils induced immune activation in pDCs (Lande et 

al. 2011). The presumed autoantibody in psoriasis is still unknown, but it is conceivable that a 

similar mechanism as found in SLE underlies the inflammatory mechanisms in the skin with 

endosomal TLRs as central mediators. 

 

1.3. Neutrophilic granulocytes (PMNs) 

Neutrophilic granulocytes, also commonly referred to as polymorphonuclear leukocytes 

(PMNs), are the most abundant granulocytes in the human blood, representing 60-70% of 

white blood cells in healthy human adults (Imhof and Dunon 1995). PMNs are usually 

considered the first cells to be recruited to the sites of inflammation and are very important 

for clearance of infections. PMNs are short lived, however one study showed PMN viability of 

up to 5.4 days in the human body (Galli et al. 2011) (Pillay et al. 2010). These findings are 

controversial because the method which was used by Pillay et al., also labeled PMNs in the 

bone marrow resulting in false viability rates of blood PMNs (Tofts et al. 2011). Nevertheless, 

PMNs show prolonged survival when activated by the presence of pathogens in vivo to assure 

complete clearance of the infection and adequate recruitment of other immune cells to the 

sites of inflammation (reviewed in (Kolaczkowska and Kubes 2013)). Also, the balance 

between PMN release and retention is tightly regulated by chemokines. Phagocytosis of 

apoptotic neutrophils by macrophages is an important mechanism regulated by the liver X 

receptors (LXR). Its dysregulation is often linked to autoimmune diseases (reviewed in (Kruger 

et al. 2015)).  

Moreover, PMNs are packed with different kinds of granules which are divided in four 

subclasses: primary or azurophilic granules, secondary or specific granules, tertiary or 

gelatinase granules and secretory granules. All of them are filled with different antimicrobial 

peptides or bactericidal components (Lacy 2006) (Selders et al. 2017). Furthermore, PMNs are 

able to display a variety of different responses to combat pathogens such as phagocytosis, 

degranulation, ROS formation, release of pro-inflammatory cytokines or chemokines to 

attract other immune cells or even trapping and killing of pathogens by releasing NETs (Kruger 

et al. 2015).  

1.3.1. PMNs and their role in inflammation 

To effectively combat microorganisms in the periphery, leukocytes, including PMNs, need to 

rapidly translocate from the circulation into peripheral tissues. The leukocyte recruitment 

cascade is usually divided in five steps: tethering, rolling, adhesion, crawling and 

transmigration. When a pathogen enters the body, endothelial surface integrin expression 

changes due to stimulation by tissue resident leukocytes interacting with the inflammatory 
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mediator or due to direct activation of the endothelium by the pathogen. This causes PMNs 

in circulation to slow down and transient bonds are formed between PMNs and the 

endothelium (tethering and rolling). Then, integrins on the surface of PMNs change from low-

affinity to high-affinity binding state, inducing attachment to the endothelial wall (adhesion) 

(Kolaczkowska and Kubes 2013). PMNs then actively crawl to cell-cell junctions, where they 

transmigrate through the endothelial barrier into the tissue. This mechanism is tightly 

regulated by interactions between the endothelium expression of ICAM1 (Intercellular 

Adhesion Molecule 1) and the neutrophil expression of MAC1 (macrophage adhesion ligand-

1) (Phillipson et al. 2006). To leave the blood vessel, PMNs cross the endothelium and 

subsequently the basement membrane. This process requires tight regulation of integrins and 

cell-junction proteins. Also, endothelial cells rearrange their cytoskeleton to loosen the 

attachment to the extracellular matrix which finally enables transmigration of PMNs 

(Kolaczkowska and Kubes 2013). How PMNs overcome the tight barrier of the basement 

membrane is not fully understood but it is speculated that PMNs selectively transmigrate in 

regions where the expression of extracellular matrix proteins is low (Wang et al. 2006). 

The major mechanisms of PMNs to fight pathogens are degranulation, ROS formation, NETosis 

and phagocytosis. PMNs are very potent phagocytes. After ligation with an opsonizing 

receptor, PMNs engulf foreign particles or pathogens. Phagocytosis is a complex mechanism 

involving diverse signaling cascades and cytoskeletal rearrangements that mediate target-

engulfment within minutes. After engulfment, primary and secondary granules fuse with 

phagosomes and release their antimicrobial contents to kill the engulfed microbes (Kruger et 

al. 2015). When specific granules fuse with the phagosome, the enzyme nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase is activated and produces free superoxide radicals, 

i.e. reactive oxygen species (ROS) that have antimicrobial activity and are harmful to 

pathogens (Selders et al. 2017).  

The mechanism regulating degranulation is not completely understood. Increase of 

intracellular Ca2+ which is largely mediated by ionophores, is of central importance (Lacy 

2006). Interestingly, PMNs can release so-called Neutrophil extracellular traps (NETs) in 

response to bacteria, fungi or other stimuli like cholesterol crystals (Brinkmann et al. 2004) 

(Warnatsch et al. 2015). Their function will be discussed in more detail in the following section 

(1.3.3.).  

Although PMNs are highly potent antimicrobial immune cells another important function is 

signaling to and recruitment of cells to sites of inflammation, by releasing pro-inflammatory 

cytokines and chemokines. Therefore, neutrophils and DCs are often found in close proximity 

at sites of inflammation. Furthermore, PMNs were shown to attract Th17 cells (Pelletier et al. 

2010) and CD8+ cytotoxic T cells (Lim et al. 2015) and they were recently found to even present 

antigens to CD4+ T cells in an APC-like fashion (Vono et al. 2017).  
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1.3.2. Expression and roles of TLRs in PMNs 

Activation of neutrophils can induce cytokine release, degranulation, i.e. release of pre-stored 

antimicrobial peptides and proteins, release of reactive oxygen species (ROS), active 

phagocytosis or NETosis (see also 1.3.3.) (Kruger et al. 2015). These are all important 

mechanisms for adequate immune response against pathogens. Some of those mechanisms 

are strongly dependent on TLR signaling.  

PMNs also readily and functionally express TLRs on their surface and in endosomes. Hayashi 

et al. found that stimulation of TLRs with their specific ligands expectedly induced IL-8 release 

from PMNs of healthy donors – except for TLR3 ligands. Hence, they found that PMNs do not 

express TLR3 mRNA (Hayashi et al. 2003). Another study also demonstrated the lack of TLR7 

expression in PMNs (Janke et al. 2009), leaving TLR8 and TLR9 as the only remaining 

endosomal TLRs in neutrophils. Importantly, Berger et al. confirmed the lack of TLR3 and TLR7 

expression but showed cytosolic RNA receptors e.g. RIG-I to be functionally expressed in 

neutrophils (Berger et al. 2012) which might compensate for missing TLR3 and TLR7. 

Interestingly, Lindau et al. showed TLR9 (a DNA sensing endosomal TLR) to be functional on 

the surface of human and mouse PMNs. Of note, stimulation of neutrophils with the TLR9 

ligand CpG enhanced surface expression of TLR9. The authors claimed that expression of TLR9 

on the cell surface might be relevant in case TLR9 ligands are not able to enter the endosome 

to still ensure immune response to bacterial DNA (Lindau et al. 2013).  

TLR stimulation in neutrophils was shown to efficiently induce release of pro-inflammatory 

cytokines, whereas it is not clear whether release of ROS strongly depends on TLR signaling. 

Zymosan is a protein-carbohydrate complex derived from yeast cell wall (Dillon et al. 2006) 

which serves as a ligand for TLR2 and Dectin-1. Zymosan was shown to induce ROS release 

from human PMNs (Gantner et al. 2003). Therefore, ROS formation can depend on TLR2 

and/or Dectin-1 signaling. Further investigations showed, that zymosan depleted of TLR2 

ligands was found to robustly induce ROS formation, meaning that ROS release largely 

depends on Dectin-1 (No et al. 2000). Our work showed that indeed cytokine release from 

neutrophils was highly dependent on TLR2 ligand binding and subsequent signaling, whereas 

Dectin-1 induced robust ROS release (Fuchs et al. 2018). Also, further TLR ligands e.g. LPS 

(TLR4), CpG (TLR9), R848 (TLR7/8), Pam3CSK4 (TLR2/1) or Pam2CSK4 (TLR2/6) (unpublished 

data) did not result in ROS release by PMNs. These results indicate, that TLR stimulation is not 

a robust ROS inducer but rather activates release of pro-inflammatory cytokines or NETosis 

(see 1.3.3. for more detail).  

1.3.3. Neutrophil extracellular traps (NETs) 

Neutrophil extracellular traps (NETs) have been described as long, fiber-like decondensed 

chromatin structures, loaded with cytosolic and granular proteins, e.g. antimicrobial peptides 

(Papayannopoulos 2018). Brinkmann et al. first discovered these structures and found NETs 

to trap and kill bacteria (Brinkmann et al. 2004). A couple of years later, the cell lytic form of 
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NET release was called “NETosis” (see Figure 1.2), because of its distinct differences to other 

forms of cell deaths like apoptosis or necrosis (Steinberg and Grinstein 2007) (Fuchs et al. 

2007). Even though PMNs may have committed to eventual death, they still perform multiple 

tasks such as crawling or phagocytosis even after having lost the majority of their nuclear DNA 

(Yipp and Kubes 2013). 

The major purpose of NETs is thus to eliminate pathogens. NETs not only trap bacteria but 

also contain antimicrobial peptides with activity towards a variety of different pathogenic 

species like bacteria, viruses or fungi. Also, other NET contents like neutrophil elastase (NE) 

were shown to inactivate virulence factors of pathogens (Brinkmann and Zychlinsky 2012). 

The exact mechanism allowing PMNs to distinguish when to release NETs or to induce 

alternative host protective mechanisms is far from being understood. A major factor 

influencing the choice of PMN response appears to be the size of a microbe: hyphae and huge 

bulks of bacteria that are too large to be phagocytosed are hence rather trapped by NETs, 

while smaller pathogens usually are internalized and digested. This selective induction of 

NETosis prevents overshooting immune reactions and necrotic tissue damage 

(Papayannopoulos 2018). Interestingly, also tiny bacteria that escape phagosomes, such as 

Listeria, or otherwise interfere with phagocytosis are also trapped and killed by NETosis. 

Additionally, bacterial toxins were found to kill PMNs and induce NETosis - whether bacterial 

toxins are required for NET formation remains unclear (reviewed in (Papayannopoulos 2018)).  

Over the last couple of years, it became apparent that NETs are also released without cell lysis 

e.g. by S.aureus (Pilsczek et al. 2010) or by TLR4-activated platelets which bind to and 

subsequently mediate NET release by PMNs (Clark et al. 2007). TLR-mediated NET release is a 

fast process induced 30-60 minutes after stimulation compared to NETosis induced via 

Phorbol myristate acetate (PMA) (peaking at 4 hours after stimulation, complete cell lysis is 

induced). Here, the plasma membrane integrity is maintained and DNA is packed into small 

vesicles which fuse with the plasma membrane to release DNA (Pilsczek et al. 2010) (Jorch and 

Kubes 2017). In NETosis which is induced by PMA (originally observed by Brinkman et al. 

(Brinkmann et al. 2004)), NADPH oxidase induces ROS formation and subsequently stimulates 

protein-arginine deaminase 4 (PAD4) that converts arginine to citrulline on histones, thus 

inducing decondensation of chromatin in the nucleus (Jorch and Kubes 2017). Furthermore, 

histone citrullination that promotes chromatin decondensation was initially shown to be 

mediated by Neutrophil elastase (NE) (Papayannopoulos et al. 2010) which then is released 

during NET formation. However, histone H3 citrullination was independent of NE activity in 

NET release induced by fungi (Branzk et al. 2014). Also, in a deep vein thrombosis model, NE-

deficient mice still showed robust NET formation (Martinod et al. 2016). Therefore, it might 

not be sufficient to investigate NE release in vitro to prove NET formation and usually 

microscopic analysis, preferably live cell imaging, has been considered a necessary means to 

illustrate the formation of bona fide NETs.  
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A remaining open question is also the source of DNA found in NETs. Yousefi and Simon showed 

that DNA in NETs is not exclusively nuclear chromatin but can also originate from mitochondria 

(Yousefi and Simon 2016). Interestingly, mitochondrial NETs and ROS induction were 

associated with autoinflammation in SLE. There, mitochondrial NETs were sensed by STING 

inducing type I IFN in a mouse model (Lood et al. 2016). But, whether nuclear or mitochondrial 

DNA release via NETs follows distinct pathways or is induced by distinct stimuli still remains to 

be clarified (Boeltz et al. 2019).  

Hence, the mode of action for NET release; how to distinguish NETosis clearly from other 

forms of cell death and the source of DNA in NETs is still under current investigation (Jorch 

and Kubes 2017) (Boeltz et al. 2019) (Nestle et al. 2009).The three different types of NETs that 

have been described so far are (1) rapid TLR-induced nuclear DNA-NETs, (2) PMA-induced slow 

nuclear DNA-NETs and (3) mitochondrial DNA-NET release (Figure 1.2). 

 
 
Figure 1.2: Different types of NETosis 

Different mechanisms of NET release have been described. ① NETs can be released in response to initial TLR4-
mediated activation of platelets and subsequent interaction with and activation of PMNs. The nucleus rounds up 
and uniformly condensed chromatin is found in the cell center. The nuclear envelope breaks down and DNA is 
packed into small vesicles. These vesicles eventually fuse with the plasma membrane and NETs are released to 
trap bacteria. This process is very fast and occurs approximately 30-60 min after stimulation of the cell. ② NETs 
are also released by cell lysis, where the nuclear membrane is degraded. Chromatin decondensation is mediated 
by PAD4-induced citrullination of histones. This mechanism is usually induced by PMA and occurs 3-4 h after 
stimulation. ③ NET release by mitochondria was also observed but not very much is known about its mode of 
action. Adapted from Phillipson & Kubes, 2011 (Phillipson and Kubes 2011). 
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1.3.4. NETs in disease and autoinflammation 

NET formation is necessary for a fully functional and effective host defense while dysregulated 

NET induction can lead to severe health problems. Patients suffering from chronic 

granulomatous disease (CGD) are not able to mount efficient host response due to the lack of 

ROS induction. As ROS was shown to play a role in NET formation, PMNs from CGD patients 

also fail to induce NETosis, when infected with Aspergillus (a fungus which can form hyphae, 

thus being too large for phagocytosis). The patients’ inability to clear the infection leads to 

severe and life-threatening inflammation (Brinkmann and Zychlinsky 2012). On the other 

hand, an overshooting NET formation can lead to severe tissue damage, as seen in sepsis 

(O'Brien et al. 2017). Usually in a healthy individual unwanted NETs are digested by DNases 

and thus removed. Interestingly, in patients with thrombosis less DNase I was found to clear 

NETs. In deep vein thrombosis, NET formation is induced due to activation of platelets and 

endothelium involving platelet-derived high mobility group protein B1 (HMGB1).  

(Papayannopoulos 2018). Furthermore, .in atherosclerosis, cholesterol crystals induce 

NETosis which in turn activate other immune cells, direct them to infiltrate the tissue and thus 

lead to a sterile (pathogen-free) inflammation (Warnatsch et al. 2015).  

Autoimmunity in the context of NETs was first described for SLE. In SLE, B cells produce anti-

neutrophil-cytoplasmic antibodies (ANCAs) and NETs were suspected as source for ANCA 

production (Yu and Su 2013). Meanwhile, Gestermann et al. showed that NET contents 

actively induce the production of anti-neutrophil antibodies in B cells from SLE patients 

(Gestermann et al. 2018).  

In another auto-immune disease, rheumatoid arthritis (RA), patients suffer from inflamed 

joints. Interestingly, in an experimental mouse model for RA, mice deficient for PAD4 which 

are not able to induce NETosis, had less inflammation in their joints. Of note, the synovial fluid 

of RA patients contains large numbers of citrullinated proteins which even serve as diagnostic 

markers for RA (Branzk and Papayannopoulos 2013). In psoriasis (described in more detail in 

1.5.) patients’ NETs were found in blood and skin samples (Hu et al. 2016) and NET contents 

can stimulate pDCs to produce type I IFNs (Lande et al. 2011). These examples show that tight 

regulation of NET formation and degradation is crucial to maintain homeostasis and 

dysregulation has the potential to induce overshooting immune reactions and is associated 

with autoimmune diseases. Importantly, the possibility of RNA instead of DNA as a potential 

NET content and its contribution to the development of autoinflammation was so far not 

appreciated. 
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1.4. Platelets 

Megakaryocytes found in the bone marrow are the origin of platelets, also called 

thrombocytes, that are absolutely crucial for blood coagulation. Platelets are small, 

anucleated cells and by far more abundant in human blood than leukocytes, counting over 

one trillion circulating cells in an adult human being. Besides the well-known and central role 

of platelets in coagulation, they are now also appreciated to be important players in immune 

responses (Habets et al. 2013). Platelets release inflammatory mediators (Golebiewska and 

Poole 2015) and attract other cells to the site of inflammation (Sreeramkumar et al. 2014) 

(Zuchtriegel et al. 2016). Also, there is a potential link between platelets or platelet-leukocyte 

aggregates and autoimmune diseases like rheumatoid arthritis, or skin diseases like atopic 

dermatitis or psoriasis (Tamagawa-Mineoka 2015).   

1.4.1. The role of platelets in coagulation  

The coagulation system is a well-known cascade of tightly regulated factors and generally two 

individual pathways are distinguished: the extrinsic, also known as tissue-factor pathway and 

the intrinsic or contact pathway. The tissue factor pathway is triggered by the cell surface 

protein “tissue factor (TF)”, whereas the contact pathway is regulated by activation of factor 

XII. Both pathways culminate in prothrombin cleavage into active thrombin which in turn 

converts fibrinogen to fibrin and additionally activates platelets (Smith et al. 2015). In Figure 

1.3 an overview of all factors initiating blood coagulation is shown.  

Platelets have so far mostly been appreciated for their role in blood coagulation. In a healthy 

individual, platelets usually circulate in close proximity to the blood vessel walls. In an intact 

endothelial barrier, platelet activation is inhibited by the secretion of nitric oxide (NO) or 

prostacyclin (PGI2) from the endothelium (Golebiewska and Poole 2015). Injury induces 

thrombus formation fast in a hierarchical manner. During the first phase (initiation) platelets 

are recruited to the site of injury by the von Willebrand factor (vWf) which binds to collagen 

fibers in the blood vessel wall. Usually, vWf circulates in an inactive form in the blood stream 

(secreted by endothelial cells) (Ruggeri 2007). Injury induces exposure of collagen fibers and 

exposed collagen fibers accumulate bound vWf. The vWf binding of surface antigen CD42b 

mediates recruitment of platelets. However, this weak binding of vWf to CD42b is not 

sufficient for robust platelet attachment and therefore subsequent conformational changes 

in surface integrins enhances attachment of platelets. Also, platelet activation is mediated by 

intrinsic activation pathways and e.g. generation of thrombin from the extravascular tissue 

(Tomaiuolo et al. 2017). After tight platelet adhesion and activation, the second phase 

(extension) follows, in which more platelets are recruited to form platelet-platelet aggregates. 

This process is mainly mediated by platelet binding to the plasma protein fibrinogen. This 

mechanism is induced by platelet dense granule contents e.g. adenosine-diphsophate (ADP) 

or by thromboxane A2 released from already adherent platelets (Golebiewska and Poole 

2015). In the third phase (stabilization) the thrombus plug is stabilized and protected from 

shear forces of the blood. Thrombin, besides activating platelets, also converts fibrinogen to 
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fibrin which forms strong fibers. Additionally, platelets release soluble agonists and interact 

with endothelial cells at the site of injury which functions as a positive feedback loop and 

further strengthens the thrombus plug (Tomaiuolo et al. 2017) (Golebiewska and Poole 2015).  

 
 

Figure 1.3: Blood coagulation cascade 

Overview of the blood coagulation cascade. Two different pathways have to be distinguished: the Tissue Factor 
(TF) Pathway (extrinsic) or the Contact Pathway (intrinsic). The TF pathway is induced by cell-surface complex of 
TF and factor VIIa (TF:VIIa). The TF:VIIa complex proteolytically activates factor IX and factor X. The contact 
pathway is induced when factor XII, pre-kallikrein (PK) and HK (High-molecular-weight kininogen) form 
aggregates on a surface or polymer. These aggregates mediate activation of factor XII to factor XIIa and XIIa 
processes PK to kallikrein. Factor XIIa in turn activates factor XI to XIa which converts factors IX to factor IXa. Both 
pathways induce the production of active factor Xa which in turn induces the final step by generating thrombin 
leading to the transformation of fibrinogen to fibrin. Fibrin itself forms clots and mediates the activation of 
platelets. Adapted from Smith et al. 2015 (Smith et al. 2015). 

 

1.4.2. Selected platelet-related diseases 

There is a vast variety of different diseases associated with dysfunctional hemostasis classified 

as either thrombocytopathies or thrombocytopenias which can cause severe bleeding in the 

patients. The class of thrombocytopathies includes platelet-related diseases which have a 

defect in either adhesion, activation, secretion or aggregation of platelets (D'Andrea et al. 

2009). Thrombocytopathies are usually very rare diseases. One of the most eminent defects 

is Glazmann thrombastenia which affects the megakaryocyte linage. Patients with Glazmann 

thrombastenia express functional deficient αIIbβ3 (CD41/CD61 complex) integrin which is 

important for binding of fibrinogen or vWf. The autosomal recessive inherited disease causes 

bleeding that ranges from mild to severe and the onset of the disease varies from early age to 

later in life (D'Andrea et al. 2009). Congenital thrombocytopenias were formerly considered 

as very rare but are now more frequently diagnosed by routine blood analysis. However, still 
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some cases are mistaken for an acquired thrombocytopenia e.g. idiopathic thrombocytopenic 

purpura, a low platelet count of an unknown cause (Kayal et al. 2014). Congenital 

thrombocytopenias are commonly divided into three groups: diseases with normal, increased 

or reduced platelet size. Patients with thrombocytopenia also suffer from rather mild to 

severe tendency to bleed (D'Andrea et al. 2009).  

Better understood and characterized are the so-called Haemophilias like Haemophilia A and 

B. These X-chromosome-linked diseases almost exclusively affect men. Patients suffering from 

Haemophilia A usually have a deletion in Factor VIII gene that causes a mild to severe 

phenotype. Haemophilia B is characterized by deletion of Factor IX of the coagulation cascade. 

As the name of the disease already suggests: here patients also suffer from a higher tendency 

to bleed (Emilien et al. 2000).  

Enhanced bleeding is not the only complication of platelet dysfunction: When platelet 

aggregation is increased, this can also cause thrombosis and other cardiovascular diseases 

(CVDs) like stroke or heart attack. Healthy platelets inhibit thrombus formation by releasing 

NO (Golebiewska and Poole 2015), this system is usually dysfunctional during thrombosis 

(Koupenova et al. 2017). Major risk factors for thrombosis or other CVDs are coagulation 

factor mutations (e.g. Factor V Leiden (Slusher 2010)), smoking, hypertension and high levels 

of cholesterol but interestingly autoimmune diseases e.g. Systemic Lupus Erythematosus have 

also been implicated (Koupenova et al. 2017).  

As platelets are now considered to be not only important for blood coagulation but also 

emerging new players in immune activation, the question arises whether platelet dysfunction 

is also involved in autoimmunity. The role of platelets as immune cells and in autoimmunity is 

the topic of the following two paragraphs. 

1.4.3. The role of platelets in immunity  

Interestingly, former findings already indicate that platelets are able to direct leukocytes to 

sides of inflammation (Sreeramkumar et al. 2014) (Zuchtriegel et al. 2016). Leukocyte 

attraction was mainly induced by aggregate formation and platelet activation. Platelets also 

decorate bacteria, tagging them for PMN-mediated phagocytosis (Gaertner et al. 2017). 

Additionally, platelets can also induce neutrophil adhesion and recruitment of monocytes to 

the endothelium (Golebiewska and Poole 2015). Besides these rather passive mechanisms of 

platelet-induced immune reactions it is possible that they, although being anucleated, actively 

act as immune cells especially in innate immunity.  

Indeed, in 2002, Tang et al. showed for example that thrombin-activated platelets are able to 

release seven different antimicrobial peptides, all of them being active against at least two 

pathogenic strains, mostly of bacterial and not of fungal origin (Tang et al. 2002). Additionally, 

platelets also express a variety of PRRs like TLRs (TLR1, 2, 4, 6, 8 and 9) (Morrell et al. 2014) 

and also NLRP3 and NOD2, both belonging to the same family of NOD-like receptors. Signaling 
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via these receptors activates anti-bacterial responses in platelets. TLR4 activation for example 

leads to the shedding of IL-1β containing microparticles from platelets and to interactions with 

other cells (Brown and McIntyre 2011). Hence, platelets also actively secrete pro-

inflammatory cytokines such as IL-1β (Morrell et al. 2014) and are also important producers 

of the chemokine CXCL4 (PF4) which activates monocytes (Golebiewska and Poole 2015). 

However, whether platelets are also able to induce interferons as anti-viral response, has not 

been shown yet (Hottz et al. 2018).  

Platelets not only affect innate immune cells (also see 1.4.5) or display innate immune cell 

functions but also influence adaptive immunity (Hottz et al. 2018). For example, platelet-

derived CXCL4 binds to CXCR3 receptor which is highly expressed on activated Th1 cells and 

induces T cell trafficking (Mueller et al. 2008). Additionally, platelets are the major producers 

of CD40L (stored in their α-granules) in the human body. CD40L released from platelets 

enhances T cells response to viral stimuli and is important for dendritic cell maturation and B 

cell isotype switch (Elzey et al. 2003) (Morrell et al. 2014).  

1.4.4. Platelets and their role in autoimmunity  

As outlined above, platelets accomplish functions in innate and adaptive immunity. 

Consequently, it is conceivable to assume that dysregulated platelet function is involved in 

development of autoimmune diseases. However, only little is known about platelets and their 

impact on autoinflammation. Still, there are indications that platelets affect the pathogenesis 

of numerous autoinflammatory diseases e.g. rheumatoid arthritis (RA), systemic lupus 

erythematosus (SLE), systemic sclerosis, multiple sclerosis (MS), atopic dermatitis (AD), 

allergic contact dermatitis and possibly psoriasis (Habets et al. 2013) (Tamagawa-Mineoka 

2015).  

In RA for example, platelets are activated by fibrin accumulations in the joint and this in turn 

attracts PMNs to the sites of inflammation where they get trapped in the fibrin-platelet 

network and induce inflammation (Habets et al. 2013). SLE patients show enhanced platelet 

activation and increased serum levels of soluble CD40L which mainly originates from platelets 

(Desai-Mehta et al. 1996) and also systemic sclerosis patients show increased levels of 

platelet-derived molecules, like β-thromboglobulin (Postlethwaite and Chiang 2007). 

Moreover, increased platelet counts are also found in peripheral blood of MS patients 

(Sheremata et al. 2008) (Habets et al. 2013).  

Still, platelet functions are only poorly studied in autoinflammatory skin diseases, especially 

in psoriasis. Nevertheless, there are indications from analysis in other skin-related diseases 

which indicate that platelets and platelet-PMN interactions might also be important in 

psoriasis (Tamagawa-Mineoka 2015) (Habets et al. 2013). For example, in AD, platelet-derived 

chemokines like CXCL4 are strongly upregulated in patients’ blood (Tamagawa-Mineoka et al. 

2008). Furthermore, in a murine mouse model for AD, increased PMN-platelet aggregate 
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formation is observed in the blood (Tamagawa-Mineoka 2015). Platelet-PMN interactions are 

discussed in further detail in the next paragraph.  

1.4.5. PMN-platelet aggregation or interaction 

More than four decades ago, it was shown that platelets and leukocytes form aggregates, 

especially when platelets are activated (Chanarat and Chiewsilp 1975) (Jungi et al. 1986) (de 

Bruijne-Admiraal et al. 1992). It is also well established that platelets are important mediators 

in innate immunity and in inflammatory diseases, e.g. in sepsis (Dewitte et al. 2017). 

Consequently, platelets are likely to interact with other cells such as PMNs which are initially 

recruited to sites of inflammation and induce further immune responses. Indeed, platelets do 

interact with PMNs: P-Selectin on platelets binds to P-selectin glycoprotein ligand 1 (PSGL-1) 

on PMNs (Lisman 2018). Interaction is also achieved via CD40L binding to CD40 (Zuchtriegel 

et al. 2016). Stable PMN-platelet aggregates commonly enclose activated platelets - either in 

circulation or when platelets bind to activated endothelium (Lisman 2018).  

In the last couple of years, it has been increasingly appreciated that platelet activation might 

be the first response in innate immunity. In this scenario platelets guide leukocytes to the sites 

of inflammation (Ludwig et al. 2004) (Sreeramkumar et al. 2014) (Zuchtriegel et al. 2016). 

Ludwig et al. showed that the interactions of P-selectin and PSGL-1 on platelets and 

neutrophils respectively are responsible for rolling along skin micro vessels (Ludwig et al. 

2004). Later, it was reported that PMNs, when recruited to injured tissue, scan the area for 

activated platelets and the interactions of P-selectin and PSGL-1 is indispensable for PMNs to 

extravasate or to form NETs (Sreeramkumar et al. 2014). However, Zuchtriegel et al. later 

postulated that platelets navigate leukocytes to extravasate and infiltrate tissues. In these 

studies platelets adhered at junctions in the endothelium and captured neutrophils by CD40-

CD40L interactions. The recruitment accumulated cells at the site of inflammation and the 

cell-cell crosstalk induced a conformational change in integrins to subsequently mediate 

extravasation (Zuchtriegel et al. 2016).   

Furthermore, PMN-platelet interactions have also been described in injury and thrombosis. In 

a transfusion associated mouse model of lung injury, platelets induced NETosis in PMNs which 

caused severe tissue damage and death (Caudrillier et al. 2012). Another important interplay 

between platelets and PMNs was observed in the pathogenesis of thrombosis. In various 

mouse models a key role of PMNs in the induction of thrombus formation was shown (Lisman 

2018). Interestingly, human thrombi even contain NETs (Savchenko et al. 2014) and NET 

components are elevated in patients suffering from thrombosis (van Montfoort et al. 2013). 

This shows an important rationale between platelet and PMN activation in platelet-related 

complications in vivo.  

It is also accepted that platelet-leukocyte interactions are not only important in platelet-

related diseases, injury and immunity but also potentially cause autoinflammation. However, 

for inflammatory skin diseases, very little is known about PMN-platelet interactions. In a 
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mouse model of allergic contact dermatitis platelet-PMN aggregates are found adherent on 

vessel walls with PMNs which internalized platelets. The authors interpreted these findings by 

assuming that PMNs which initially attempted to clear platelet aggregates subsequently 

extravasated from blood vessels (Daito et al. 2014). Moreover, in a mouse model of atopic 

dermatitis platelet-leukocyte-complexes were increasingly found in blood, while in 

thrombocytopenic conditions, the chronic inflammation was reduced (Tamagawa-Mineoka et 

al. 2009). Importantly, in psoriasis, platelet aggregates were shown a long time ago (Berrettini 

et al. 1985) and aggregate formation is reduced after amelioration of skin inflammation. 

Nevertheless, the indicated contribution of platelet-PMN aggregates to the pathology of 

psoriasis awaits further confirmation in patient derived samples. 

 

1.5. Psoriasis 

1.5.1. General features of psoriasis 

Psoriasis is an autoinflammatory disease of the skin with an incidence of up to 3% of adults in 

the Western population. Its major characteristics are epidermal hyperplasia due to increase 

in keratinocyte proliferation, angiogenesis accompanied with bleeding of the dermis and 

immune cell infiltration, mostly PMNs in the dermis (Griffiths and Barker 2007). The most 

common form of psoriasis (90% of cases), is the so-called psoriasis vulgaris or plaque psoriasis 

(histological picture of skin biopsy, see Figure 1.4). Another major characteristic of plaque 

psoriasis is the “Koebner phenomenon”, where new lesions develop at sites of trauma or 

pressure e.g. on elbows, knees or the scalp (Griffiths and Barker 2007). In children, an acute 

form of psoriasis, called psoriasis guttata, can occur which is triggered by a streptococcal 

infection of the throat. Another, but quite rare form of psoriasis is the so-called pustular 

psoriasis which is characterized by small, sterile pustules on the skin (Griffiths and Barker 

2007). The severity of psoriasis it scored by the Psoriasis-Area-Severity-Index (PASI) that 

includes parameters such as the affected area of the skin, the severity of inflammation and 

sometimes even the personal well-being of the patients. The PASI can reach values of up to 

72 in very severe cases; a moderate to severe case is defined by a PASI higher than 10 

(Fredriksson and Pettersson 1978) (Cabrera et al. 2015). Since 1971 the treatment of choice 

for most patients is the FDA (Food and Drug Administration)-approved systemic therapy with 

methotrexate, especially for patients that do not respond to topical treatments with steroids 

or phototherapy (Menter and Griffiths 2007). However, so called “biologicals”, such as 

antibodies or small molecule inhibitors that block signaling of certain cytokines, e.g. TNF or IL-

17, are currently tested in clinical studies or have already been approved as drugs for the 

treatment of psoriasis (Eberle et al. 2016). 

Studies aimed to identify genetic predisposition for the development of psoriasis have shown 

limited success. Until now exclusively the presence of the HLA-Cw6 allele shows a good 

correlation with familial inherited early-onset psoriasis (Nair et al. 2006). Additionally, several 
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psoriasis-associated susceptibility loci (Tsoi et al. 2012) have been described. However, the 

main trigger for the development of psoriasis is still unknown.  

  

 

1.5.2. Innate immune responses (especially of PMNs) in psoriasis 

Adaptive immune responses have been extensively studied in psoriasis. Based on these 

studies it is generally believed that psoriasis, certainly in its chronic state, is a T cell-driven 

disease. Thus, innate immune responses were largely neglected and are just beginning to gain 

interest in recent years.  

Especially the work of Lande et al. initiated a shift in the paradigm of T-cell driven psoriasis by 

showing that complexes of self-derived DNA and the antimicrobial peptide LL37 which is 

overexpressed in psoriatic lesions, induce type I IFN release from pDCs via endosomal TLR 

signaling (Lande et al. 2007). In their work the authors explain the high type I IFN levels found 

in psoriatic lesions and how type I IFN in turn can activate other cells and induce T cell 

differentiation. 

In addition to MAMPs, so-called Heat-shock-proteins (HSPs) and S100 proteins which have 

antibacterial properties, serve as endogenous ligands for TLRs. Finally, because HSPs and S100 

proteins are frequently expressed in psoriatic skin, the binding of HSPs to TLRs in turn induces 

pro-inflammatory cytokine production in psoriasis (Tsan and Gao 2004) (Sweeney et al. 2011) 

(Holzinger et al. 2018). Importantly, keratinocytes can also initiate immune reactions of the 

skin and in psoriasis keratinocytes express higher levels of TLRs (TLR1 and TLR2) as compared 

to healthy skin. The enhanced expression of TLRs in psoriatic keratinocytes potentially also 

drives pro-inflammatory immune activation (Sweeney et al. 2011).  

Figure 1.4: Skin biospy of lesional 
skin in psoriasis 

Histological appearance of psoriatic 
lesions with hyperkeratosis, 
epidermal thickening and leukocyte 
infiltration of the dermis. (picture 
provided by Kamran Ghoreschi) 
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About the role of innate immune cells, different from DCs, only very little is known in psoriasis. 

Langerhans cells, i.e. dendritic cells that reside in the epidermis (Valladeau and Saeland 2005) 

are dysregulated in psoriasis (Sweeney et al. 2011). Macrophages, which are professional 

phagocytes, infiltrate psoriatic lesions and were proposed as the main producers of the pro-

inflammatory cytokine TNF-α (Marble et al. 2007). The role of TNF-α in the pathogenesis of 

psoriasis is incompletely understood but TNF-α antagonists are used for the treatment of 

psoriasis and ameliorate the skin pathology (Yost and Gudjonsson 2009).  

Although infiltration of PMNs into psoriatic lesions is a hallmark of psoriasis, the causative role 

of PMNs and their contribution to the pathogenesis of psoriasis is only poorly studied and 

therefore still incompletely defined (Schon et al. 2017). PMNs release various pro-

inflammatory cytokines and chemokines which could drive proliferation and activation of 

keratinocytes but also attract further PMNs to the site of inflammation and activate them 

(Tecchio et al. 2014) (Terui et al. 2001). Furthermore, PMNs are the main producers of LL37 in 

the human body (Sorensen et al. 1997) which could explain excessive amounts of LL37 found 

in psoriatic skin. Interestingly, PMNs from psoriasis patients are more prone to activation and 

more sensitive to induction of NETosis in blood, also NETs are found in psoriatic lesions. The 

number of NETting neutrophils even correlates with disease severity (Hu et al. 2016). 

Additionally, signaling by TLRs expressed by PMNs (Prince et al. 2011) can induce very fast 

immune responses by release of pro-inflammatory cytokines or induction of NETosis.  

The cytokine IL-17 is mainly produced by T helper 17 (Th17) cells and Th17 cells are considered 

as the major driver of inflammation in psoriasis (Di Cesare et al. 2009). An IL-17 specific 

antibody is approved for the treatment of psoriasis (Eberle et al. 2016) (Hueber et al. 2010). 

Due to the psoriasis associated role of IL-17 and the abundance of PMNs in psoriatic lesions it 

is speculated that PMNs are a potential source of IL-17 and could be targeted by the same 

treatment as T cells (Schon et al. 2017). This would link innate (PMNs) and adaptive (Th17 

cells) immunity in psoriasis.  

The central importance of PMNs in the patho-physiology of psoriasis is further highlighted by 

the fact that depletion of neutrophils in a psoriasis mouse model (Sumida et al. 2014) and in 

patients strongly ameliorates inflammation of the skin (Ikeda et al. 2013). 

1.5.3. Adaptive immune responses in psoriasis 

Research on pathogenic mechanisms in psoriasis generally is focused on T cells. Both, CD4+ 

and CD8+ T cells are found in the epidermis of psoriasis patients (Gaspari 2006). Also, T cells in 

psoriatic skin are mostly mature and activated memory T cells. However, the trigger for T cell 

homing to the skin has not yet been conclusively reported although it is known that LL37, 

which is overexpressed in psoriatic skin, acts as an MHC class II autoantigen that is recognized 

by T cells in psoriasis (Lande et al. 2014). There are also indications that molecular mimicry - a 

strong reaction to microbes involving immunodominant epitopes that cross-react with self-



Introduction 
 

22 

antigens - can occur in psoriasis (Christen and von Herrath 2004). This mechanism could 

explain the onset of psoriasis gutatta (see above).  

An important feature of memory T cells found in psoriatic skin is the expression of CLA 

(cutaneous lymphocyte associated antigen) and CCR10 (chemokine receptor type 10), both 

being almost exclusively detected in autoimmune diseases of the skin (Prinz 2003). Once they 

have infiltrated the skin, T-cells secrete cytokines (e.g. IFN-γ, TGF-β, IL-6 etc.) that induce 

proliferation of keratinocyte leading to the commonly observed skin thickening (Strange et al. 

1993).  

Intriguingly, it was only recently described that in psoriasis patients, polymorphisms are found 

in genes that are associated with Th17 immune signaling. Th17 cells are the major producers 

of IL-17 (Eberle et al. 2016) and IL-17A induces proliferation and impaired differentiation of 

keratinocytes. IL-17A induces weakening of the skin barrier and amplifies inflammation by 

promoting the release of pro-inflammatory cytokines and chemokines from keratinocytes. 

Additionally, IL-17A induces migration of leukocytes and in combination with TNF and IL-22, 

IL-17A upregulates the production of IL-1 family cytokines (Brembilla et al. 2018). Finally, 

genetically engineered mice that overexpress IL-17A in keratinocytes spontaneously develop 

psoriasis-like skin disease within a short period of time (Karbach et al. 2014). In line, anti-IL-17 

antibodies significantly ameliorate skin pathology in psoriasis patients (Hueber et al. 2010) 

(Eberle et al. 2016). Hence, psoriasis is considered to be a Th17-IL-17 driven disease, although 

it is unclear how Th17 cells are triggered to produce IL-17 (Brembilla et al. 2018).  

In contrast to numerous studies focusing on the role and function of T-cells in psoriasis, B-cells 

have only rarely been studied and, in line, autoantibodies have not been identified. Recently 

a correlation of B cell blood counts and severity of psoriasis was reported (Lu et al. 2016). The 

authors suggest that elevated B cell blood counts indicate enhanced activation of B cells in 

psoriasis patients. Also, the relative number of IL-10-producing regulatory B cells is decreased 

in psoriasis as compared to healthy individuals, indicating impaired B cell regulation in 

psoriasis patients (Hayashi et al. 2016).  

1.5.4. Cardiovascular comorbidities in psoriasis 

Psoriasis is often associated with additional autoinflammatory diseases like arthritis or even 

with cancer. In regard to cancer, however, it is not clear whether psoriasis or its treatment is 

the major cause (Griffiths and Barker 2007). The most noticeable comorbidity is the risk to 

develop cardiovascular diseases (CVDs) which was already described in 1973 (McDonald and 

Calabresi 1973). CVDs affect the heart or blood vessels and rising numbers of CVDs are an 

increasing problem worldwide. In 2016, the WHO (reference see Table 6.1 and 6.3.1.) 

published an alarming chart of leading causes of death, where the top 2 were ischemia heart 

disease and stroke, i.e. two severe CVDs. The treatment of CVDs, in order to prevent death, 

costs the US several hundred billion dollars a year (Jindal and Jindal 2018).   
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Besides the fact that CVDs are a general and worldwide problem of modern society, it was 

first suggested that psoriasis is an independent risk factor of CVD development by Gelfand et 

al. in 2006. The authors analyzed a general practitioner (GP) database from 1987 to 2002 and 

found an elevated risk of myocardial infarction for patients with severe psoriasis (Gelfand et 

al. 2006). Later, Ludwig et al. described psoriasis as an independent risk factor for CVDs 

(Ludwig et al. 2007) (Caiazzo et al. 2018). Mehta et al. postulated in 2011, that patients 

suffering from severe psoriasis not only have a higher risk to develop any CVD in general but 

that psoriasis is a risk factor experience major cardiac events (Mehta et al. 2011) (Boehncke 

2018).  

It has been suggested that hyperactive platelets are causing the enhanced risk of CVD in 

psoriasis. Psoriatic hyperactive platelets would cause excessive aggregation that in turn favors 

the development of CVDs. This proposed mechanism links cardiovascular disease and 

inflammatory skin disease psoriasis (Tamagawa-Mineoka 2015). The causal nature of psoriatic 

hyperactive platelets is in line with the observed increased amounts of platelet aggregates in 

blood samples from psoriasis patients. Furthermore, in vitro observed platelet aggregates 

were strongly reduced after improvement of the patients’ skin condition (Berrettini et al. 

1985). Only recently antagonistic antibodies directed towards IL-17A, a driver of inflammation 

in psoriasis, were reported to effectively ameliorate (Eberle et al. 2016) (Schon and Erpenbeck 

2018) not only skin inflammation but also CVDs (Schuler et al. 2018). This shows that 

dysregulated platelet activation is strongly associated with psoriasis and likely causing CVDs 

of various kinds. 

1.5.5. PMNs and platelets in psoriasis 

Infiltration of PMNs in the skin is a central hallmark of psoriasis (Griffiths and Barker 2007). 

Besides, the impact of PMNs on the pathogenesis and inflammatory status in psoriasis is 

insufficiently understood. In recent years it became evident that PMNs might provide 

important inflammatory mediators such as ROS and cyto-or chemokines which induce the 

commonly observed hyperproliferation of keratinocytes and immunologic activation of 

endothelial and additional immune cells (Terui et al. 2001) (Tecchio et al. 2014). Furthermore, 

in autoinflammation, activation of immune cells can result from NET-provided self-antigens 

originating from PMNs (Lande et al. 2011). Interestingly, PMNs have been suggested as source 

of IL-17 which is a key mediator of psoriatic inflammation, and IL-17 release occurs via NETs 

(Lin et al. 2011). PMN-mediated release of NETs and IL-17 can therefore potentially link innate 

and adaptive immune responses in psoriasis.  

Platelets are recognized as drivers of cardiovascular comorbidities in psoriasis. Also, the role 

of platelets as immune mediators/modulators is increasingly appreciated. Increased platelet 

mass index and mean platelet volume (Unal 2016) (Canpolat et al. 2010) as well as the 

identification of activated platelets in patient samples (Ludwig et al. 2004) corroborate their 

role in psoriasis. Finally, platelet activation reportedly correlates with diseases severity 

(Tamagawa-Mineoka et al. 2010) and platelets from psoriasis patients show a lower threshold 
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for activation and aggregate formation in vitro (Tamagawa-Mineoka 2015) which indicates a 

dysregulated platelet function in psoriasis patients. Interestingly, cardiovascular comorbidities 

are also linked to IL-17, as IL-17 is not only a major driver for psoriatic inflammation but also 

for cardiovascular diseases (Karbach et al. 2014) and by inhibiting IL-17 both inflammation and 

cardiovascular comorbidities can be ameliorated (Schuler et al. 2018).  

Comparatively only scarce knowledge exists about platelet-PMN interplay in psoriasis and its 

impact on inflammation or cardiovascular comorbidities. Two studies from Turkey and Korea 

showed that neutrophil-to-lymphocyte and platelet-to lymphocyte ratios are elevated in 

psoriasis patients and correlate with disease severity (Polat et al. 2017) (Kim et al. 2016). 

However, an explanation of skin infiltration, platelets helping PMNs to extravasate and the 

impact of platelet-PMN aggregates on disease severity remains elusive. 

 

1.6. Nucleic acid-LL37 complexes 

LL37 belongs to the family of cathelicidins, i.e. peptides with antimicrobial activity. The active 

LL37 is a 37 amino acid long, amphipathic and positively charged peptide with two N-terminal 

leucine residues (Durr et al. 2006). The major producers of LL37 in the human system are 

PMNs which store LL37 in their specific granules (Sorensen et al. 1997). The active LL37 is 

generated from its precursor hCAP18 (human Cationic Antimicrobial Peptide 18 kDa) by 

proteolytic processing. The processing protease is amongst others the neutrophil-derived 

proteinase-3 (PR3). PR3 cleaves hCAP18 after the signal sequence and cathelin-domain to 

release the active C-terminal part LL37 (Sorensen et al. 2001). Thus, neutrophils provide both, 

the mature LL37 and the enzyme specifically processing the precursor. In healthy individuals 

LL37 is upregulated upon infection and displays efficient anti-microbial activities to most 

gram-positive and gram-negative bacteria but also to fungi (Turner et al. 1998). 

Because of its positive charge, LL37 tends to form complexes with negatively charged 

molecules, such as DNA or RNA. DNA-LL37 complexes are delivered inside of cells by some 

form of endocytosis (Zhang et al. 2010) and endosomal TLR recognition of DNA or RNA induces 

robust immune activation (Lande et al. 2007) (Ganguly et al. 2009). Hence, LL37 especially 

protects fragile RNA from rapid degradation by RNases (Ganguly et al. 2009). Of note, 

complexes of human LL37 with nucleic acids are more potent in inducing immune activation 

compared to complexes of nucleic acids with the mouse ortholog CRAMP (cathelin related 

antimicrobial peptide) (Gallo et al. 1997) (Singh et al. 2013). Moreover, similar to LL37, β-

defensins 2 and 3, which belong to a second class of antimicrobial peptides, naturally form 

complexes with DNA and fuel activation of immune cells (Tewary et al. 2013). 

In addition to endosomal TLR binding, DNA or RNA in nucleic acid-LL37 complexes might also 

be recognized by other intracellular nucleic sensing receptors (e.g. RIG-I, or even 

inflammasomes (Loo and Gale 2011, Xiao 2015)) or LL37 itself can potentially bind to a 

receptor to induce immune stimulation. In keratinocytes, for example, IFN-β production is 
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induced by RNA-LL37 complexes that bind to cytosolic RNA receptors like RIG-I (Zhang et al. 

2016). Confusingly, complexing of dsDNA by LL37 was reported to prevent stimulation of the 

dsDNA sensing AIM2 (absent in melanoma 2) inflammasome in keratinocytes, suggesting an 

anti-inflammatory effect of LL37 (Dombrowski et al. 2011).  

Furthermore, LL37 was reported to act as a ligand for formyl-peptide receptor 2 (FPR2) (Zhang 

et al. 2009) which is also expressed on innate immune cells like e.g. PMNs. In line, the group 

of Richard Gallo postulated that LL37 enables self-RNA recognition via LL37-binding by 

scavenger receptors, inducing endocytosis of RNA and subsequent nucleic acid recognition of 

PRRs (Takahashi et al. 2018). These discrepant publications show that recognition and 

signaling of nucleic acid-LL37 complexes is incompletely understood and needs further 

investigation.  

A major characteristic of psoriasis is the overexpression of LL37 in lesional skin. Complexes of 

nucleic acids with LL37 activate pDCs which induces strong IFN-α release (Lande et al. 2007) 

(Ganguly et al. 2009). These studies also report pDC infiltration of psoriatic lesions (Lande et 

al. 2007). In both studies, LL37 promoted uptake of DNA or RNA by cells and thus fueled 

recognition by endosomal TLRs, TLR7 for RNA and TLR9 for DNA in pDCs (Ganguly et al. 2009) 

(Lande et al. 2007). The authors claimed, that nucleic acid-LL37-mediated activation of pDCs 

might fuel an early inflammatory response in psoriasis which in turn can lead to T cell 

activation and chronification of the disease (the major findings are shown in Figure 1.5).  

Furthermore, in autoinflammation of SLE, contents released by NETting neutrophils, i.e. DNA 

and LL37, induce robust activation not only of pDCs (Lande et al. 2011) but also of B cells and 

nucleic-acid-sensing of endosomal TLRs is indispensable for immune activation. These 

activated B-cells further produce autoantibodies against DNA and LL37 (Gestermann et al. 

2018). However, autoantibodies have not been identified for psoriasis. Assumedly, a similar 

mechanism as seen for SLE applies to chronic inflammation in psoriasis. Intriguingly, LL37 itself 

also acts as an MHC class II autoantigen presented to T cells (in psoriasis) (Lande et al. 2014). 

This would connect innate immune responses (PMNs, pDCs) and adaptive immunity (T and B 

cells) providing a possible mechanism for fulminant and chronic inflammation in psoriasis. 
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1.7. Hypothesis and aims of part I 

Plasmacytoid dendritic cells (pDCs) and their ability to respond to complexes of nucleic-acids 

and the antimicrobial peptide LL37 were intensely studied. The group of Michel Gilliet could 

show that pDCs induced high levels of type I IFN when stimulated with DNA or RNA complexed 

to LL37 (Lande et al. 2007) (Ganguly et al. 2009) in the context of psoriasis. Furthermore, they 

showed that NET contents were immunostimulatory for pDCs, suggesting that nucleic acid-

LL37 complexes are found in NETs (Lande et al. 2011).  

However, PMN skin infiltration is a hallmark of psoriasis. PMNs not only outnumber pDCs in 

human blood and skin of psoriasis patients, they are furthermore the first cells recruited to 

the sites of inflammation and produce considerable amounts of pro-inflammatory cytokines 

like IL-8 or TNF. Therefore, it was assumed that PMNs play an important role in immune 

responses in psoriasis. Most importantly, it is still uncertain which cells might provide LL37 or 

nucleic acids, as both cannot be readily released by pDCs.  

Figure 1.5: Complexes of self-DNA and LL37 induce activation of 
pDCs in psoriasis 

Environmental triggers like stress or injury induce the 
formation of psoriatic lesions in individuals with a background 
of genetic susceptibility for psoriasis. In the beginning, 
stressed keratinocytes release self-DNA which form 
complexes with LL37, overexpressed in psoriatic skin. 
Plasmacytoid dendritic cells (pDCs) are activated to produce 
interferon-α (IFNα). Keratinocytes are also activated and 
release interleukin-1β (IL-1β), IL-6 and tumour necrosis factor 
(TNF). pDC-derived IFNα and the pro-inflammatory cytokines 
released from keratinocytes activates dermal DCs. These 
activated dermal DCs migrate to the skin-draining lymph 
nodes to present an antigen (of self or microbial origin) to 
naive T cells. This in turn promotes their differentiation into T 
helper 1 (Th1) and/or Th17 cells. (not shown: Th17 cells are 
activated and release IL-17 which leads to keratinocyte 
hyperproliferation and weakening of the skin barrier. Also, 
the production of pro-inflammatory cytokines is induced in 
other immune cells, leading to more inflammation and 
further immune infiltration of the skin.) Adapted from Nestle 
et al.  (Nestle et al. 2009). 
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It was hypothesized that PMNs, which are major producers of LL37 in the human body and 

can also easily extrude nucleic acids by a term called NETosis, can provide the first triggers for 

inflammation in psoriasis.  

The aim of this study was to investigate whether PMNs are able to induce cytokine release or 

NETosis in response to nucleic acid and LL37 complexes and if those NETs contain further 

nucleic acids and LL37. If this is the case, those de novo generated nucleic acid-LL37 complexes 

could potentially induce further immune reactions in PMNs which might fuel a self-

propagating inflammatory loop possibly explaining early inflammatory events in psoriasis (see 

Figure 1.6). 

 
 
Figure 1.6: PMN activation might fuel a self-amplifying inflammatory loop in psoriasis 

LL37 forms complexes and shuttles nucleic acids (DNA and RNA) into endosomal compartments of PMNs. 
Endosomal TLRs recognize these nucleic acids and induce cytokine- and NET release from PMNs. These NETs 
contain further nucleic acids and LL37 which in turn activate more PMNs via further endosomal TLR signaling. 
Pro-inflammatory cytokines released by PMNs upon stimulation with nucleic acid-LL37 complexes induce the 
infiltration and activation of additional leukocytes. This mechanism might explain an early inflammatory event 
of TLR-dependent activation of PMNs in psoriasis. 
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1.8. Hypothesis and aims of part II 

Psoriasis is an autoinflammatory skin disease, where a variety of immune cells from the blood 

infiltrate the skin lesions. The trigger for immune cells to infiltrate the skin in psoriasis remains 

elusive. To identify surface antigens which are differentially expressed on immune cells of 

psoriasis patients and healthy controls, a surface antigen screen was performed. The major 

goal was to better understand skin homing of immune cells, especially PMNs, and to give a 

glimpse on the potential mechanism underlying skin infiltration in psoriasis (see Figure 1.7). 

 

 
 

Figure 1.7: Differential expression of surface antigens might explain skin homing of blood cells in psoriasis 

Blood leukocytes of psoriasis patients differentially express surface antigens compared to healthy controls. This 
might explain the tendency of immune cells to infiltrate psoriatic lesions. 
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2. Materials and Methods 

2.1. Materials 

2.2.1. Reagents and Chemicals 

Table 2.1: Reagents and Chemicals 

Reagent/Chemical Company Product no. 

RPMI  Sigma-Aldrich R8758 

VLE-RPMI Merck-Biochrom FG1415 

FCS TH-Geyer 11682258 

Pen./Strep. Gibco 15140122 

L-Glutamine Gibco 25030081 

Sodium pyruvate Gibco 11360070 

HEPES Sigma-Aldrich H0887 

PBS Thermo Fisher 14190-169 

RNase/DNase free water Thermo Fisher 10977049 

Ampuwa Fresenius Kabi 1833 

Ficoll/Biocoll Biochrom ab211650 

β- estradiol Sigma-Aldrich E2758 

Ammonium chloride (NH4Cl) Roth 5470.1 

Potassium bicarbonate (KHCO3) Fluka 60220 

EDTA pH=8 ThermoFisher 15575020 

Trisodium citrate dihydrate 
(C6H5Na3O7 * 2 H2O) 

Carl Roth 4088.1 

Citric acid (C6H8O7) Carl Roth X863.2 

Fixation buffer BioLegend 420801 

Cell staining buffer BioLegend 420201 

Precision Count beads™ BioLegend 424902 

Pooled human serum Transfusion medicine Tübingen - 

Saponin Applichem,  A4518.0100 

ProLong Diamond Antifade ThermoFisher P36965 

RNase A ThermoFisher EN0531 

Roti Histol  Carl Roth 6640.1 

Immersion oil OLYMPUS 81012 
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2.1.2. TLR ligands and inhibitors 

Table 2.2: TLR ligands and inhibitors 

Component company Product no. 

LL37 InvivoGen tlrl-l37 

TL8-506 InvivoGen tlrl-tl8506 

LPS-EK (ultrapure) InvivoGen tlrl-peklps 

R848 (Resiquimod) InvivoGen tlrl-r848-5 

Chloroquine InvivoGen tlrl-chq 

PMA InvivoGen tlrl-pma 

HK S. pyogenes Tatjana Eigenbrod - 

HK E.coli Tatjana Eigenbrod - 

 
 

2.1.3. RNA/DNA and inhibitors 

Table 2.3: Synthetic RNA/DNA and inhibitors 

Component Sequence company 

CpG2006 5’TsCsGsTsCsGsTsTsTsTsGsTsCsGsTsTsTsTsGsTsCsGsTsT3’ TIB MOLBIOL 

ssRNA40 (unconjugated, 
conjugated with AF647 or 
AF488) * 

5’GsCsCsCsGsUsCsUsGsUsUsGsUsGsUsGsAsCsUsC3’ IBA Lifescience 

ssDNA60 5’AC(AC)28AC3’ TIB MOLBIOL 

IRS661 5’TsGsCsTsTsGsCsAsAsGsCsTsTsGsCsAsAsGsCsA3’ TIB MOLBIOL 

IRS954 5’TsGsCsTsCsCsTsGsGsAsGsGsGsGsTsTsGsT3’ TIB MOLBIOL 

* phosphorothioate backbone. 
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2.1.4. Antibodies and recombinant proteins 

Table 2.4: Antibodies and recombinant proteins 

Item fluorophore species isotype dilution company Product no. 

Isotype control PE mouse IgG1 κ 1:100 eBioscience 12471442 

Isotype control FITC mouse IgM κ 1:80 BioLegend 401605 

Isotype control APC mouse IgG1 κ 1:100 BD Bioscience 550854 

Isotype control BV421 mouse IgG1 κ 1:100 BioLegend 400157 

Isotype control AF488 mouse IgG2a κ 1:200 BioLegend 400233 

Isotype control FITC mouse IgG2b κ 1:200 BioLegend 401206 

Isotype control AF488 mouse IgG1 κ 1:100 BioLegend 400134 

Isotype control AF647 mouse IgM κ 1:100 BioLegend 401618 

Isotype control PE-Cy7 mouse IgG1 κ 1:500 BioLegend 400126 

Anti-hCD15 PE mouse IgG1 κ 1:100 BioLegend 323006 

Anti-hCD66b FITC mouse IgG1 κ 1:80 BioLegend 305103 

Anti-hCD62L BV421 mouse IgG1 κ 1:100 BioLegend 30482 

Anti-hCD14 PE mouse IgG1 κ 1:100 ImmunoTools 21620144 

Anti-hCD3 AF488 mouse IgG2a κ 1:200 BioLegend 317310 

Anti-hCD4 PE mouse IgG1 κ 1:200 BioLegend 300508 

Anti-hCD11b APC mouse IgG1 κ 1:100 BioLegend 301310 

Anti-hCD19 BV421 mouse IgG1 κ 1:500 BioLegend 302234 

Anti-hCD8 APC mouse IgG1 κ 1:200 ImmunoTools 21810086 

Anti-hHLA-DR FITC mouse IgG2b κ 1:200 BioLegend 327006 

Anti-hCD15 PE-Cy7 mouse IgG1 κ 1:500 BioLegend 323030 

Zombie yellow fixable dye - - - 1:200 BioLegend 423103 

Anti-hCD41 PE mouse IgG1 κ 1:60-200 BioLegend 303706  

Anti-hCD61 PE mouse IgG1 κ 1:60-200 BioLegend 336406 

Anti-hCD66b AF647 mouse IgM κ 1:100 BioLegend 305109 

Anti-hCD62P AF488 mouse IgG1 κ 1:100 BioLegend 304916 

anti-mLy6C VioBlue rat  IgG2a κ 1:100 Miltenyi 130-102-929 

Anti-mCD45 APC-Vio770 rat  IgG2b κ 1:100 Miltenyi 130-118-687 

Anti-mCD41 FITC rat  IgG1 κ 1:100 Miltenyi 130-105-929 

Anti-mLy6G PE rat  IgG1 κ 1:100 Miltenyi 130-102-895 

Anti-mCD11b APC rat  IgG2b κ 1:100 Miltenyi 130-113-793  



Materials and Methods 
 

32 

Propidium iodide n/a - - 1:100 Miltenyi 130-093-233 

TruStain fcX - - - 1:25 BioLegend 422302 

Recombinant hMIP-1β - - - 1:3.3x106 or 1:0.6x106 ImmunoTools 11343223 

Recombinant hIL-16 - - - 1:3.3x105 or 1:0.6x105 ImmunoTools 11340163 

Recombinant hSDF-1α - - - 1:1000 ImmunoTools 11343363 

Recombinant hIL-3 - - - 1:1000 Peprotech 200-03 

Recombinant hM-CSF - - - 1:1000 Peprotech 300-25 

SYTO RNAselect  n/a - - 1:10 000 ThermoFisher S32703 

Hoechst33342 n/a - - 1:10 000 Sigma-Aldrich B2261 

Anti-hLL37  unconjugated rabbit IgG 1:80-500 LSBio LS-B6696-500 

Anti-ψU unconjugated mouse IgG1 1:200-500 MBL MBL-D347-3 

Anti-hNeutrophil Elastase (NE) unconjugated mouse IgG1 1:100-500 Novus Biologicals MAB91671-100 

Anti-hCD41 unconjugated rabbit IgG 1:100 Abcam ab63983 

Anti-hCD42b unconjugated goat IgG 1:100 Santa Cruz sc-7070 

Anti-mCD41 unconjugated rat IgG1 1:100 GeneTex GTX-76011 

Anti-h/mMPO unconjugated goat IgG 1:200 R&D systems AF3667 

Anti-mCD42b unconjugated rat IgG 4 µg/g or 2 µg/g Emfret Analytics R300 

Isotype control unconjugated rat IgG 4 µg/g or 2 µg/g Emfret Analytics R301 

Anti-rabbit IgG AF647 chicken IgY 1:500 ThermoFisher A-21443 

Anti-mouse IgG AF594 chicken IgY 1:500 ThermoFisher A-21201 

Anti-mouse IgG AF488 chicken IgY 1:500 ThermoFisher A-21200 

Anti-mouse IgG AF647 chicken IgY 1:500 ThermoFisher A-21463 

Anti-rat IgG AF488 chicken IgY 1:500 ThermoFisher A-21470 

Anti-goat IgG AF488 chicken IgY 1:500 ThermoFisher A-21467 

Anti-goat IgG AF594 chicken IgY 1:500 ThermoFisher A-21468 
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2.1.5. Special equipment and Softwares 

Table 2.5: Special equipment and software 

Plates/equipment Company Product no./Version 

QIAcube QIAGEN 9002840 

Nikon Ti2 eclipse bright-field 
fluorescence microscope 

Nikon - 

CO2-O2 controller Okolab - 

Revolve ECHO FJSD2001 

MACSQuant VYB Miltenyi 130-096-116 

FACS Canto II BD Bioscience - 

ImageStream X MKII Merck Millipore - 

Polycarbonate inserts, 24 well plates,  
3 µm pores (for transwell experiments) 

Corning 734-1570 

½ Area flat bottom ELISA plates Greiner 675061 

U-bottom 96 well plates Greiner 650101 

V-bottom 96 well plates Greiner 651101 

µ-insert 4 well dish Ibidi 80406 

Poly-L-Lysine coated coverslips  Corning 734-1005 

SuperFrost® Plus microscopy slides VWR 631-9483 

heparinized capillary tubes ThermoFisher 22-362566 

6 mm Acu punch Acuderm P650 

Prism  GraphPad V6-8 

Excel Windows Office V2010 and V2019 

FlowJo FlowJo LLC V10 

FACSDiva  BD V6 

Fiji/ImageJ - win64 

NIS Elements Nikon II 

FCAP Array BD Bioscience V3 

INSPIRE instrument controller software Amnis V2 

IDEAS Amnis V4 

 
 

2.1.6. Kits 

Table 2.6: Kits used in this study 

Kit Company Product no. 

RNeasy Mini Kit QIAGEN 74104 

QIAamp DNA Blood Mini Kit  QIAGEN 51106 

Human IL-8 ELISA MAX Deluxe Kit BioLegend 431505 

Human TNF-α ELISA MAX Deluxe Kit BioLegend 430205 

Human MIP-1β DuoSet ELISA Kit R&D systems DY271-05 

Human IL-16 ELISA DuoSet ELISA Kit R&D systems DY316 

Human LL37 ELISA Kit HycultBiotec HK321-02 

Mouse TNF-α ELISA MAX Deluxe Kit BioLegend 430902 

Cytometric bead array Human Inflammatory Cytokine Kit  BD Bioscience 551811 

Mouse Neutrophil Isolation Kit Miltenyi Biotec 130-097-658 

MACSxpress Whole Blood Neutrophil Isolation Kit  Miltenyi Biotec 130-104-434 

NETosis Assay Kit Cayman Chemical 601010 

LEGENDScreen™Human PE Kit BioLegend 700001 
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2.1.7. Buffers and media 

Table 2.7: Buffers and media 

Buffer/Media Name 

1.54 M NH4Cl 
100 mM KHCO3 

1 mM EDTA; pH=8 
dissolved in Ampuwa water 
pH adjusted to 7.3, sterile filtered (0.22 µm) 

Erythrocyte lysis buffer (10x) 

PBS 
2% FCS (heat inactivated) 
1 mM EDTA, pH=8 

FACS buffer 

PBS 
0.05% Saponin 

Permeabilization buffer 

0.1 M C6H5Na3O7 * 2 H2O  
pH adjusted to 6.0 with 0.1 M C6H8O7 

Citrate buffer 

RPMI 
10% FCS, heat inactivated; sterile filtered (0.22 µm) 
 

Neutrophil culture medium (human and mouse) 

RPMI 
10% FCS 
1% Pen./Strep. 
1% L-Glutamine 

PBMC culture medium 

VLE-RPMI 
10% FCS (heat inactivated) 
1% Pen./Strep. 
1% Sodium pyruvate 
1% HEPES 

BLaER1 culture medium 

VLE-RPMI 
10% FCS (heat inactivated) 
1% Pen./Strep. 
1% Sodium pyruvate 
1% HEPES 
10 ng/ml hIL3 
10 ng/ml MCSF 
150 nM β-estradiol 

BLaER1 transdifferentation medium 
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2.2. Cell biology methods 

2.2.1. Complex formation 

For stimulation of human cells, 5.8 µM ssRNA40 (final concentration 34.4. µg/ml, sequence 

Table 2.3, AF647 or AF488 labeled where indicated) was mixed with 10 µg LL37 (final 

concentration 20 µg/ml, sequence Table 2.3, Atto-488 where indicated) and left at RT for 1 

hour.  

Where indicated, 1 µM ssDNA (final concentration 20 µg/ml, sequence see Table 2.3), genomic 

DNA (final concentration 20 µg/ml, isolated from whole blood using a QIAamp DNA Blood Mini 

Kit), total human mRNA (final concentration 20 µg/ml, isolated from HEK293T cells using the 

RNeasy kit on a QIAcube) or bacterial RNA (final concentration 10 µg/ml, from S. aureus 

USA300 JE2 was isolated as described below) was also mixed together with 10 µg LL37 and 

left at RT for 1 hour.  

For experiments with BM-PMNs, 5 µg bacterial RNA was complexed with 10 µg LL37 and used 

for four mice (final concentration: 10 µg/ml bacterial RNA and 20 µg/ml LL37). For the RNA-

only or LL37-only conditions, the same amounts and volumes as for the complexes were used 

by adding sterile, endotoxin-free H2O to the same final volume.  

2.2.2. Isolation of bacterial RNA 

Bacterial RNA isolation was performed by Natalya Korn from AG Wolz, Tübingen. For all 

experiments, RNA from S. aureus USA300 JE2 was used. On the first day, the bacterial culture 

was inoculated in suitable medium (using antibiotics if needed). The next day, the culture was 

diluted (1:100) and the OD was measured with 600 nm absorbance. Then the culture was 

further diluted until OD=0.05, incubated while shaking at 37°C until reaching an OD of 0.5.  

5 ml of the culture was harvested and spun down at 5 000 x g for 5 min at 4°C. The supernatant 

was discarded and the pellet was resuspended in 1 ml Trizol (Invitrogen, 15596026) on ice and 

pipetted into freezing cups, containing zirconia silicon globules (Roth, N035.1). Then, the 

suspension was put on a shaker for 20 sec. at 6 500 rpm before freezing at –80°C.  

The next day RNA isolation was performed. The samples were thawn at RT, 200 µl chloroform 

was added and mixed for 30-60 sec. After 3 min of incubation at RT, the samples were 

centrifuged at 12 000 x g for 15 min at 4°C. Thereafter, 500 µl isopropanol was pipetted into 

1.5 ml RNase free Eppendorf tubes and the supernatant of the afore centrifuged samples 

(approximately 600 µl liquid phase) was added to the isopropanol. After mixing, and 10 min 

incubation at RT, the suspension was centrifuged at 12 000 x g for 30 min at 4°C. The 

supernatant was then removed by pipetting, using filter tips and the pellet was washed with 

500 µl of 70% ethanol and centrifuged again at 7 500 x g for 5 min at 4°C. The supernatant was 

removed with filter tips, leaving the pellet to dry. In the end, 50 µl of sodium citrate (1 mM, 

pH=6.4 Ambion, AM7000) was added, incubated for 10 min at 55°C on a heating block (the 
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samples were thoroughly vortexed every 3-4 min) and frozen at -80°C. The RNA concentration 

was determined with a nanodrop (ng/µl) before using for experiments. 

2.2.3. Study participants and sample acquisition 

All blood and skin donors (psoriasis patients and healthy donors) provided their written 

informed consent before participation in the study. Approval for use of their biomaterials was 

obtained by the local ethics committees at the University Hospitals of Tübingen and 

Heidelberg, in agreement with the principles written down in the Declaration of Helsinki as 

well as respective laws and regulations. All blood or skin samples obtained from psoriasis 

patients, had a PASI score of ≥10 (except for 2 donors in Figure 4.3 and Figure 6.8, where the 

PASI score was ≥4.8), a median age of 41.8 years and no systemic therapy at the time of blood 

or skin sampling. The samples were obtained at the University Hospital Tübingen or in 

Heidelberg (both Department of Dermatology) and processed together with samples from at 

least one healthy donor (age- and sex-matched) which were recruited at the University of 

Tübingen, Department of Immunology. Skin sections were assessed from 12 patients with 

psoriasis vulgaris and 1 patient with psoriasis guttata. Platelet counts were determined in the 

course of clinical routines at the time of study blood sampling. 

2.2.4. Isolation of bone-marrow derived PMNs (BM-PMNs) 

Unc93b13d/3d (Tabeta et al. 2006) or Tlr13-/- (Li and Chen 2012), kindly provided by Tatjana 

Eigenbrod from Heidelberg (both C57BL/6 background) and WT C57BL/6 mice (own breeding) 

between 8 and 20 weeks of age were used for this study. The mice were maintained following 

local institutional guidelines for animal experiments and hygiene monitoring. They were 

sacrificed using CO2, followed by cervical dislocation. 

Bone-marrow-derived (BM)-PMNs were isolated by magnetic separation (MACS separation) 

following the manufacturer’s instructions (see Table 2.6). For (BM)-PMNs isolation, bone 

marrow of femur and tibia from all four legs was used to obtain a higher cell number. The cells 

were resuspended in neutrophil culture medium (see Table 2.7) and seeded by using 3 x 106 

cells/ml (in 24 well plate, 250 µl per well and 96 well plate, 125 µl per well, the same 

concentration of cells for all experiments). After resting for 30 min, PMN stimulation was 

performed for 5 hours at 37 °C and 5% CO2. Thereafter, supernatants were harvested and used 

for ELISA. For microscopy, the cells were seeded on Poly-L-Lysine coated coverslips (see Table 

2.5, in a 24-well plate) stimulated for 16 hours and stained subsequently.  

2.2.5. Human PMN isolation and stimulation 

Whole blood (EDTA-anticoagulated) from healthy donors or psoriasis patients was diluted in 

PBS (1:2) and carefully loaded on 20 ml Ficoll (1.077 g/ml, using a 50 ml falcon). Then, density 

separation centrifugation was performed for 25 min at 509x g and 21°C (without brake). 

Thereafter, all layers were discarded (if the PBMCs were not used from the same donor) 

except for the erythrocyte-granulocyte pellet. Then, erythrocyte lysis (using 1x erythrocyte 
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lysis buffer, see Table 2.7) was performed for 20 min at 4°C on a roller shaker (the falcon tube 

was filled until 50 ml with erythrocyte lysis buffer). After centrifugation for 10 min (without 

brake), another erythrocyte lysis step was performed for 10 min at 4°C (the falcon tube was 

filled until 25 ml). After another 5 min of centrifugation (without brake), the remaining cell 

pellet was carefully resuspended in neutrophil culture medium (see Table 2.7). 1.6 x 106 

cells/ml were seeded (24 well plate, 500 µl per well or 96 well plate, 125 µl per well). After 

resting for 30 min at 37°C, 5% CO2, the cells were pre-treated with inhibitors (where indicated) 

for 30 min and subsequently stimulated with the indicated agonists for 4 hours (for ELISA) or 

for 30 min to 3 hours (for FACS analysis or microscopy). 

2.2.6. Generation of NET contents 

PMNs from healthy donors were isolated as described above. They were seeded in 10 cm 

dishes at a cell density of 5 x 106 cells/ml at 37°C and 5% CO2. After resting for 30 min, the cells 

were stimulated with RNA-LL37 complex, LL37 alone, PMA (600 nM) or left unstimulated for 

4 hours. Supernatants were removed carefully and the adherent cells/NETs were carefully 

washed three time with PBS. Then the cells and NETs were scraped off the bottom of the dish 

and frozen in neutrophil culture medium at -80°C. 

2.2.7. Human PBMC isolation 

Whole blood (EDTA anticoagulant) was diluted in PBS. After density gradient separation using 

Ficoll (described above), the PBMC layer was carefully transferred into a new reaction tube 

and diluted in PBS (1:1). The cell suspension was spun down at 645 x g for 8 min. Then, 

erythrocyte lysis was performed using 1x erythrocyte lysis buffer (see Table 2.7) for 5 min at 

RT. The cells were then washed twice more in PBS and spun down with decreasing speed (448 

x g and 241 x g) for 8 min each. Then the cells were resuspended in PBMC culture medium 

(see Table 2.7) and seeded at cell density 1.6 x 106 cells/ml. 

2.2.8. BLaER1 cells culture, transdifferentiation and stimulation 

BLaER1 cells (WT and TLR8-/-, kindly provided by Tim Vierbuchen and Holger Heine from 

Borstel, Germany (Vierbuchen et al. 2017)) were cultured in BLaER1 culture medium (see 

Table 2.7) at 37°C and 5% CO2. After reaching a cell concentration not higher than 2 x 106 

cells/ml, the cells were seeded in a 6 well plates (0.5 x 106 cells/ml, 2 ml per well) and 

transdifferentiated in BLaER1 transdifferentiation medium (see Table 2.7) for 6 days including 

2 medium changes (on day 2 and 5). The cells become adherent and show a “star-shaped” 

morphology. On day 7 the adherent cells were detached by pipetting and re-seeded (96 well 

plate, 4 x 105 cells/ml, 125 µl per well) using BLaER1 culture medium (see Table 2.7) and left 

to rest for 1 hour. Subsequently, they were stimulated with TLR ligands for 18 hours and the 

supernatants were harvested and collected for ELISA measurements. The transdifferentiation 

efficiency was verified by FACS analysis, using CD19, CD14 and CD11b as cell surface markers 

as previously described (CD14+CD11b+ and CD19- cells are considered to be “monocyte-
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/macrophage-like” cells; when following this protocol a purity of ≥ 95% can be reached) (Gaidt 

et al. 2018). 

2.2.9. Live cell imaging of human PMNs 

Human neutrophils were isolated by magnetic separation using MACSxpress whole blood 

neutrophil isolation kit (see Table 2.6) and were seeded into a µ-insert 4 well dish (7 µl cell 

suspension per insert). After resting for 20 min at 37°C, 5% CO2, 1 µl Hoechst33342 (final 

concentration 1 µg/ml) and 1 µl SYTO RNAselect Green fluorescent dye (final concentration 

50 µM) were added and the cells were incubated for another 20 min at 37°C and 5% CO2. Live 

cell imaging was performed using a Nikon Ti2 eclipse microscope (40x magnification, no 

immersion oil) including a CO2-O2 controller. After adjustment of microscope and live cell 

imaging chamber, the cells were stimulated with TLR ligands (1 µl per well, using 34.4 µg/ml 

ssRNA and 20 µg/ml LL37 for complex formation and 600 nM PMA as control) and 

measurements were started immediately after adding of stimuli. Time-lapse analysis was 

performed by taking pictures every 3 min for at least 2 hours. Image analysis was performed 

using NIS Elements and Fiji analysis software.  

 

2.3. Immunochemical methods 

2.3.1. Flow cytometry of PMNs (purity and pre-activation assessment) 

After PMN isolation and stimulation, the purity and activation status of PMNs was determined 

by flow cytometry. 200 µl of the cell suspension was transferred into a 96 well plate (U-shape) 

and spun down for 5 min at 448 x g and 4°C (all centrifugation steps were performed using the 

same speed and time and are referred to as “washing”). Blocking of Fc-receptors (FcR) was 

performed using 50 µl pooled human serum diluted 1:10 in FACS buffer (see Table 2.7) for 15 

min at 4°C. After washing, the samples were stained with 50 µl antibody, diluted in FACS buffer 

(antibodies and respective dilutions see Table 2.4) for 30 min at 4°C in the dark. After further 

washing, fixation buffer (see Table 2.1) was added to the cell pellets for 10 min at RT in the 

dark. After washing, the cells were permeabilized with 0.05% Saponin diluted in PBS (see Table 

2.7) for 15 min at RT in the dark. After an additional washing step, the cell pellets were 

resuspended in 150 µl FACS buffer. Measurements were performed on a FACS Canto II and 

analysis was performed using FlowJoV10. CD15+CD66b+ and CD14- cells were considered as 

PMNs. Using the aforementioned isolation method, a purity of ≥ 95% can be reached. Pre-

activation was measured by staining of CD62L. When activated, the cells lost CD62L expression 

on their surface. 

2.3.2. FACS analysis and fluorescence microscopy of fixed PMNs 

The cells were isolated as previously described (see above) and seeded in a 96 well plate at 

1.6 x 106 cells/ml, 125 µl per well. Subsequently they were stimulated with RNA-LL37 

complexes for 30 min and 1 hour using RNA-AF647/AF488 and/or unlabeled LL37 or LL37-
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Atto488 (where indicated, if the cells were not stimulated, this step was not performed). FcR 

block, staining, fixation and permeabilization were performed as for Flow cytometry (see 

above). Nuclei were stained with Hoechst33342 (final concentration 1 µg/ml) for 5 min at RT 

in the dark. After a final washing step, the cell pellets were resuspended in 50-100 µl FACS 

buffer. 40 µl of the cell suspension was pipetted on a Poly-L-Lysine coated coverslip and the 

cells were left to attach for 1 hour in the dark. ProLong Diamond Antifade (see Table 2.1) was 

used to mount the coverslips on uncoated microscopy slides. The slides were left to dry 

overnight at RT in the dark and stored at 4°C prior to analysis. The measurements were 

conducted with a Nikon Ti2 eclipse (100x magnification, using immersion oil) and the analysis 

was performed using Fiji analysis software. 

2.3.3. Fluorescence microscopy of fixed NETing neutrophils (human and mouse) 

For NET analysis, PMNs (1.6 x 106 cells/ml for human cells and 3 x 106 cells/ml for mouse cells) 

were seeded in 24 well plates, containing Poly-L-Lysine coated coverslips and stimulated with 

RNA-LL37 complexes (for mouse cells bacterial RNA-LL37 complexes were used) or PMA (600 

nM) for 3 hours. NETs were fixed and stained using the protocol from Brinkmann et 

al.(Brinkmann et al. 2010). Where indicated, 100 µg/ml RNase A (DNase, protease-free, see 

Table 2.1) was added after fixation and incubated overnight (approximately 12 hours) at 37°C.  

Blocking was performed using pooled human serum (1:10 in PBS) for 15 min at RT. After three 

washes with PBS (5 min each), LL37 and PMNs were visualized using an unconjugated rabbit 

anti-LL37 antibody or an unconjugated mouse anti-Neutrophil elastase (NE) antibody (for 1 

hour at RT) (see Table 2.4) with subsequent staining with an AF647-conjugated anti-rabbit or 

an AF594-conjugated anti-mouse secondary antibody, for 30 min at RT in the dark respectively 

(see Table 2.4). After washing, RNA was stained using SYTO RNAselect Green fluorescent dye 

(see Table 2.4, final concentration 50 µM) for 20 min or an unconjugated anti-U antibody 

(see Table 2.4) for 1 hour at RT in the dark and subsequently adding an AF594-conjugated anti-

mouse secondary antibody for 30 min at RT also in the dark. In the end, nuclear DNA was 

stained using Hoechst33342 (see Table 2.4, final concentration 1 µg/ml) for 5 min at RT in the 

dark. For mouse cells, only SYTO RNAselect Green fluorescent dye and Hoechst33342 were 

used to visualize RNA and DNA.  

The coverslips were finally mounted with ProLong Diamond Antifade mounting solution (see 

Table 2.1), were left to dry overnight at RT in the dark and were then stored at 4°C before 

analysis. Secondary antibodies alone did not yield any significant staining. The measurements 

were conducted with a Nikon Ti2 eclipse (100x magnification, using immersion oil) and the 

analysis was performed using Fiji analysis software.  

2.3.4. Transwell experiments 

Transwell inserts were loaded with 100 µl of PBMC suspension (0.8 x 106 cells/insert). In the 

lower chamber 500 µl media containing TLR stimuli (2 µg/ml R848, RNA, LL37, RNA-LL37 

complex, see Table 2.2) or 500 µl media containing only MIP-1β (30 and 150 pg/ml), IL-16 (300 
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and 1500 pg/ml) or SDF-1α (positive control, 100 ng/ml) were added. After 4 hours, the cells 

in the lower compartment were harvested and FACS staining was performed as described 

above. The total number of migrated cells was acquired using counting beads (see Table 2.1) 

on a FACS Canto II. Analysis was performed using FlowJo analysis software. 

2.3.5. ImageStream analysis 

ImageStream analysis was used to analyze internalization of RNA-LL37 complexes using      

spot-counts and tracking single cells. The cells were first seeded in a 96 well plate at a cell 

density of 8 x 106 cells/ml, 125 µl neutrophil culture medium per well. Subsequently, they 

were stimulated for 1 hour with RNA-AF647 (see Table 2.3) and/or LL37-Atto488 (kindly 

provided by Hubert Kalbacher, University of Tübingen). FcR block and surface staining (here 

CD15 PE) was performed as described above. After fixation, the cells were permeabilized with 

permeabilization buffer (see Table 2.7) for 15 min at RT in the dark. After washing, nuclei were 

stained with Hoechst33342 (final concentration 1 µg/ml) for 5 min at RT in the dark. After a 

last washing step, the cells were resuspended in 50 µl FACS buffer (see Table 2.7) and 

transferred into a 1.5 ml Eppendorf tube. The measurement was performed with the help of 

Simone Pöschel. At least 10.000 cells were acquired for each sample with 40x magnification 

using an ImageStream X MKII with the INSPIRE instrument controller software. Data were 

analyzed using the IDEAS Image analysis software. All samples were gated on single cells in 

focus. 

2.3.6 Luminex cytokine multiplex analysis 

Luminex measurements and analysis were performed by Nicole Schneiderhan-Marra and 

Thomas Knorpp at the NMI in Reutlingen. All samples were stored at -70°C until testing. The 

samples were thawn at room temperature, vortexed, spun at 18 000 x g for 1 min to remove 

debris and the required sample volumes were removed for multiplex analysis according to the 

manufacturer’s recommendations. The samples were successively incubated with the capture 

microspheres, a multiplexed cocktail of biotinylated, reporter antibodies, and a streptavidin-

phycoerythrin (PE) solution. Analysis was performed on a Luminex 100/200 instrument and 

the resulting data were interpreted using proprietary data analysis software (Myriad RBM). 

Analyte concentrations were determined using 4 and 5 parameter-, weighted- and non-

weighted curve fitting algorithms included in the data analysis package. 

2.3.7. Cytometric bead array 

A cytometric bead array was performed using the “Human inflammatory cytokine kit” (see 

Table 2.6) and following the manufacturer’s instruction. 25 µl of samples and standards were 

added to 25 µl of the capturing bead mixture. Additionally, 25 µl of PE detection reagent was 

pipetted to all tubes and incubated for 3 hours at RT in the dark. Thereafter, 1 ml of wash 

buffer was added to each tube and centrifuged at 200 x g for 5 min. The supernatant was 

carefully removed and the pellets were resuspended in 300 µl wash buffer each. 
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Measurements were performed with the FACS Canto II. Analysis was performed with Soft Flow 

FCAP Array v3 analysis software.  

2.3.8. ELISA 

To ensure that the supernatants were cell free, cell culture plates were spun down for 5 min 

at 796 x g. Subsequently, the supernatants were harvested and stored at -80°C prior to use. In 

order to save antibodies, ½ Area plates were used (see Table 2.5, using duplicates or triplicates 

of each sample). The absorbance was measured with a standard plate reader at 450 nm. The 

assays were performed according to the manufacturer’s instructions (all ELISA kits used in this 

study are listed in Table 2.6), using appropriate dilutions of the supernatants. For LL37 

determination a kit from HycultBiotech (see Table 2.6) with pre-coated plates was used 

following the manufacturer’s instructions.  

2.3.9. Neutrophil elastase NETosis assay  

Neutrophil extracellular trap formation was determined using the colorimetric NETosis Assay 

Kit (see Table 2.6) based on the enzymatic activity of NET-associated neutrophil elastase. 

PMNs from various healthy donors were isolated as described above and stimulated with RNA-

LL37 complex, or PMA (100 nM, provided by the kit) and a calcium ionophore (A-23187, 25 

µM, provided by the kit) as positive controls for 1 to 3 hours. The assay was performed 

following the manufacturer’s instructions but also using ½ Area plates to save substrate. The 

absorbance was then measured at 405 nm using a standard plate reader. 

2.3.10. Fluorescence microscopy of tissue samples (human and mouse) 

Skin samples from psoriasis patients with a PASI ≥ 10 and without systemic therapy at the time 

of skin sampling, healthy skin samples and mouse ears were paraffin-embedded according to 

standard procedures (Canene-Adams 2013). The paraffin blocks were cut in slices (thickness = 

3 µm) and mounted on SuperFrost® Plus microscopy slides (this was done by Lukas Freund at 

the Dermatology Department in Heidelberg or by Sybille Kohler at the Dermatology 

Department Tübingen).  

Thereafter, the tissue samples were deparaffinized (2 times for 10 min) with Roti Histol 

solution (see Table 2.1) and rehydrated using decreasing concentrations of ethanol (100% two 

changes, 95%, 80% and 70% every step 5 min). After rinsing in ddH2O, antigen retrieval was 

performed by boiling for 10-20 min in citrate buffer (see Table 2.7). The skin tissue was then 

washed 3 times for 5 min with PBS. Blocking was performed using pooled human serum (1:10 

in PBS) for 30 min at RT. The primary antibody (antibody list in Table 2.4) was added either 

overnight at 4°C or for 1 hour at RT. After 3 washes, the samples were incubated with 

secondary antibody for 30 min at RT in the dark. After another 3 washes, SYTO RNAselect 

Green fluorescent dye (final concentration 50 µM) was added for 40 min at RT in the dark. 

Thereafter, the samples were washed again and DNA was stained with Hoechst33342 (final 

concentration 1 µg/ml) for 5 min. Then 3 last washes were performed before using ProLong 
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Diamond Antifade and uncoated coverslips for mounting. The samples were left to dry 

overnight at RT in the dark before being used for microscopy or stored at 4°C. The specimens 

were analyzed on a Nikon Ti2 eclipse microscope (10x-60x magnification, using immersion oil 

for 40x and 60x magnification) and the analysis was performed using Fiji analysis software. 

Autofluorescence in multiple channels typical for the stratum corneum was labeled “AF”. 

Blood vessels were labeled with “BV”. 

2.3.11. Cell surface antigen expression screening in whole blood samples 

A cell surface antigen screening was performed using the LEGENDScreen™ (Table 2.6). Whole 

blood (EDTA anticoagulated) was drawn from five psoriasis patients (PASI≥10, no systemic 

therapy at the time of blood drawing) and five sex- and age-matched healthy controls. 

Erythrocyte lysis was performed for 5 min at 4°C on a roller shaker using 1x erythrocyte lysis 

buffer (see Table 2.7). After a short spin of 5 min at 509 x g without brake, FcR block was 

performed using pooled human serum (diluted 1:10 in PBS) for 15 min at 4°C, also on a roller 

shaker. Thereafter, the cells were stained in 1 ml volume per tube with anti-CD3 (T 

lymphocytes), CD15 (PMNs) and CD19 (B lymphocytes), excluding dead cells using Zombie 

Yellow (respective antibodies, fluorophores and dilutions see Table 2.4) for 30 min at 4°C on 

a roller shaker. Subsequently, each tube was filled with 12 ml PBS and the stained cells were 

aliquoted into 4 x 96 well plates (V-bottom), each well containing 5 µl of PE-labeled antibody 

directed against one of 332 surface antigens, and 10 isotype controls all labeled in PE (all PE-

conjugated Abs were provided by the kit). Further steps were performed using manufacturer’s 

instructions, except that one kit was divided for the measurement of 4 donors. FACS 

measurements were performed using a MACSQuant analyzer (AG Schindler, Tübingen) and 

subsequently FlowJo V10 was used to analyze the data. T cells, PMNs and B cells were gated 

according to the Abs in the master mix. The gating strategy is depicted in Figure 6.5. 

Monocytes were gated by size and granularity and not additionally labeled with CD14. 

However, in the well containing anti-CD14-PE antibody, all gated events were CD14-positive. 

2.3.12. FACS analysis of whole blood samples 

200 µl of the cell suspension prepared as in section 2.3.11. was transferred into a 96 well U-

bottom plate and spun down for 5 min at 448 x g at 4°C. FcR block was performed using pooled 

human serum diluted 1:10 in FACS buffer for 15 min at 4°C. After washing, the samples were 

stained for 30 min at 4°C in the dark (antibodies and respective dilutions are listed in Table 

2.4). Thereafter, fixation buffer was added to the cell pellets and incubated for 10 min at RT 

in the dark. After an additional washing step, the cell pellets were resuspended in 100 µl FACS 

buffer. Measurements were performed on a MACSQuant analyzer. Analysis was performed 

using FlowJo V10. 

2.3.13. Fluorescence microscopy of fixed whole blood cells 

Short erythrocyte lysis was performed as described above in (2.3.11.). 200 µl of cell suspension 

was aliquoted per well (96 well plate, U-bottom). FcR block, staining, fixation and 
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permeabilization were performed as for flow cytometry (described above in 2.3.1. and 2.3.12., 

antibodies and respective dilutions are listed in Table 2.4). Nuclear DNA was stained using 

Hoechst33342 (final concentration 1 µg/ml) as described above. Cell pellets were 

resuspended in 50-100 µl FACS buffer. 40 µl of the cell suspension was pipetted on a Poly-L-

Lysine coated coverslip (see Table 2.5) and the cells were left to attach for 1 hour in the dark. 

ProLong Diamond Antifade was used to mount the coverslips on uncoated microscopy slides. 

The slides were left to dry overnight at RT in the dark and were then stored at 4°C before 

microscopy. Measurements were conducted with a Nikon Ti2 eclipse (100x magnification, 

using immersion oil) and the analysis was performed using Fiji analysis software.  

2.3.14 FACS and microscopy settings 

Table 2.8: FACS Canto II Settings 

Color/dye Laser Wavelength (nm) 

BV421 violet 450/50 

FITC/AF488 blue 530/30 

PE blue 585/42 

APC/AF647 red 660/20 

 
Table 2.9: MACSQuant FACS Settings 

Color/dye Laser Wavelength (nm) 

BV421 violet 450/50 

Zombie Yellow violet 525/50 

AF488 blue 525/50 

PE yellow 586/15 

PE-Cy7 yellow 750/LP 

   

 
Table 2.10: Nikon Ti2 eclipse Settings 

Color/dye Filter Wavelength (nm) 

Hoechst 33342 QuadDAPI 390 

SYTO RNAselect Green fluorescent, AF488, FITC QuadFITC 475 

PE QuadCy3 549 

AF549 QuadmCherry 575 

AF647 QuadCy5 632 

 

2.4. In vivo mouse model 

2.4.1. Mice 

In vivo mouse experiments were performed by Nate Archer (group of Lloyd Miller in Baltimore, 

USA). In brief, C57Bl/6J mice were purchased from Jackson Laboratories (Bar Harbor, ME). The 

mice were bred and maintained under specific pathogen-free conditions at an American 

Association for the Accreditation of Laboratory Animal Care (AAALAC)-accredited animal 

facility at Johns Hopkins University. They were handled according to procedures described in 
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the Guide for the Care and Use of Laboratory Animals as well as Johns Hopkins University’s 

policies and procedures as set forth in the Johns Hopkins University Animal Care and Use 

Training Manual, and all animal experiments were approved by the Johns Hopkins University 

Animal Care and Use Committee. Sex- and age-matched 6-8-week old mice were used for each 

experiment. 

2.4.2. Platelet depletion protocol 

For platelet depletion in mice, 4 µg/g of anti-CD42b (see Table 2.4) or rat IgG isotype control 

(see Table 2.4) diluted in sterile PBS was injected intravenously (i.v.) one day before, and 2 

µg/g intraperitoneally (i.p.) 3 days after the first imiquimod treatment. 

2.4.3. Imiquimod model of psoriatic skin inflammation 

Mice were anesthetized (2% isoflurane) and 62.5 mg of 5% imiquimod (Imiquimod creme, Tora 

Pharmaceuticals) was applied topically with a sterile cotton swab to the ventral and dorsal 

sides of the mouse ear. This was done daily for a total of 5 treatments. Prior to imiquimod 

application, ear thickness was measured with a manual caliper. A day before and at the end 

of imiquimod treatment, blood was collected retro-orbitally with heparinized capillaries for 

FACS analysis. In addition, ear thickness was terminally analyzed taking a 6mm punch for 

immunohistochemistry (IHC, in this case H&E staining) and immunofluorescence (IF). 

2.4.4. Histology and epidermal thickness measurements 

6-mm punch biopsy specimens were placed in 10% formalin and paraffin-embedded using 

standardized procedures. Skin cross-sections (thickness = 4 μm) were cut and mounted on 

SuperFrost® Plus microscopy slides and left to dry overnight. The staining with hematoxylin-

eosin (H&E) was performed by the Johns Hopkins Reference Histology Laboratory according 

to clinical specimen guidelines, or utilized for immunofluorescent staining (as described 

above). To measure epidermal thickness, at least 10 measurements per mouse were averaged 

from images taken at 20x magnification (Revolve microscopy from ECHO, Table 2.5) using 

ImageJ/Fiji software.  

2.4.5. Flow cytometry 

For FACS analysis, retro-orbital blood samples were collected on day 0 and day 5 of IMQ-

treatment, diluted in 300 µl TBS (Tris-buffered saline) containing 5 U/ml Heparin and 

subsequently further diluted with 500 µl PBS. FcR-block was performed using TruStain fcX (see 

Table 2.4) for 10 min at RT. Subsequent staining was performed using anti-Ly6C, anti-CD45, 

anti-CD41, anti-Ly6G, anti-CD11b, propidium iodide (all antibodies with respective dilutions 

are listed in Table 2.4) for 30 min at 4°C. FACS measurements were performed using a 

MACSQuant and subsequently analyzed with MACSQuantify software. Cell types were defined 

by flow cytometry according to the following gating strategies: platelets were identified from 

the CD41+ population from live cells, and myeloid cells were gated on the CD11b+ population 
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from live cells. PMNs and monocytes were identified as Ly6GhiLy6Clo and Ly6GloLy6Chi cells, 

respectively. Platelet-PMN and platelet-monocyte aggregates were identified first by gating 

on the CD41+ CD11b+ population and then on Ly6GhiLy6Clo and Ly6GloLy6Chi cells, respectively. 

 

2.5. Statistical analysis 

2.5.1. General statistics 

Experimental data was analyzed using Excel 2010 or 2019 (Microsoft) and/or GraphPad Prism 

6, 7 or 8. Microscopy data were analyzed with NIS Elements from Nikon and with ImageJ/Fiji. 

Flow cytometry data were evaluated with FlowJo V10. Extreme values, outliers were identified 

using the ROUT method at high (0.5%) strictness. For each experiment, normal distribution 

was evaluated using the D'Agostino-Pearson or Shapiro-Wilk test to choose either a 

parametric (ANOVA, Student’s t-test) or non-parametric (e.g. Friedman, Mann-Whitney U or 

Wilcoxon) test for validation of significance. p-values (α=0.05) were then calculated and 

correction for multiple comparison was performed in Prism, which is always indicated in the 

Figure legends. Values < 0.05 were considered as statistically significant and indicated by * 

even if the calculated p-values were greatly lower than 0.05. Multiple comparisons were 

performed, typically comparing all values to the unstimulated control unless indicated 

otherwise. Wherever this was done, p-values were adjusted for multiple testing. 

2.5.2. Differential expression analysis of surface marker screening data 

Statistical analysis of the LEGENDScreen™ raw MFI (mean fluorescence intensity) data was 

performed by Marius Codrea and Simon Heumos at QBIC in Tübingen.  

The goal was to identify surface antigens which were significantly different between patients 

and healthy donors within specific cell populations (on a surface antigen/protein expression 

level). This relationship was formulated as MFI ~ health_status + cell_type, where the mean 

fluorescence intensity (MFI) depended on the two main factors: health status and cell type. 

All cell populations were measured simultaneously in one FACS screen per subject (patient or 

healthy donor) and the resulting intrinsic (within-subject) variance (across all populations) was 

calculated by extending MFI ~ health_status + cell_type + subject/cell_type. In this notation, 

cell_type was “nested” within “subject”. Analysis were performed in R [version 3.4.4, with 

linear mixed models using the R package nlme (version 3.1-131.1)] (Pinheiro 2000, Bates 

2015). The fitted models were subject to post-hoc analysis with Tukey's "Honest Significant 

Difference" test to compute adjusted pair-wise differences among the cell types (Bretz 2011). 

The lsmeans (version 2.27-61) (Lenth 2016) R package implementation was used in order to 

compute the adjustments. lsmeans’ pairs were used to calculate all pair-wise contrasts of 

patients versus healthy donors by the given cell_type. The p-values and the fold changes of all 

surface antigens were extracted from all contrasts of all different cell_type levels. This then 

provides multiple-comparison adjusted p-values and fold changes between patients versus 

healthy donors for each cell population. For the generation of the principle component 
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analysis (PCA) plots, the R package ggplot2 (version 2.2.1) was used (Herster et al., 2019, in 

revision). 
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3. Results part I 

3. Neutrophil extracellular trap-associated RNA (naRNA) and LL37 complexes enable 
self-amplifying inflammation in psoriasis  

3.1. LL37 induces uptake of RNA and PMN activation by endosomal TLRs 

The group of Michel Gilliet (Lande et al. 2007) (Ganguly et al. 2009) previously showed that 

pDCs internalized DNA or RNA, when complexed to LL37, which in turn induced strong type I 

interferon release. In order to investigate whether PMNs are also able to be activated by 

nucleic acids complexed to LL37, experiments with PMNs isolated from healthy donors were 

performed first.  

3.1.1 PMNs only respond to RNA-LL37 and not to DNA-LL37 complexes 

It was previously shown that human PMNs respond to RNA and DNA with cytokine release 

after stimulation for over 12 hours. However, the cytokine levels were for both much lower 

compared to stimulation with the commercially available TLR7/8 agonist, R848 (Janke et al. 

2009) (Lindau et al. 2013). In this study, these previous findings were re-evaluated but using 

only short time period (e.g. 4 hours) for stimulation, taking into account that isolated PMNs 

are short lived in culture and to avoid off-target effects by apoptotic cells (after 4 hours in 

culture, a cell viability of at least 95% was observed, see Figure 6.1C).  

PMNs were purified as described in chapter 2.2.4. in “Materials and Methods”. As they are 

very fragile and can potentially be activated during the process of isolation, purity and pre-

activation status were always assessed by FACS prior to performing an experiment. For purity, 

cells which were CD15+CD66b+ were considered as PMNs; for pre-activation, CD62L shedding 

was used as a sensitive and early activation marker (Simon et al. 1995). Here, the purity was 

always >95% and cells were not pre-activated if handled very gently (see Figure 6.1A and B). 

PMNs from healthy donors were found to readily respond to stimulation with known TLR 

ligands e.g. R848 (TLR 7/8 agonist), LPS (TLR4 agonist) and CpG (TLR9 agonist) with cytokine 

release and CD62L shedding (R848 did not induce CD62L shedding) (see Figure 3.1A). 

However, in contrast to pDCs (Lande et al. 2007), in PMNs neither ssDNA (sequence see Table 

2.3) nor human genomic DNA induced detectable IL-8 release or CD62L shedding, regardless 

of DNA being in complex with LL37 or not (Figure 3.1B). However, when using ssRNA40 (from 

now on further referred to as “RNA”, sequence see Table 2.3), this induced a robust release 

of IL-8 and moderate CD62L shedding but only in complex with LL37 (Figure 3.1C). These 

results indicate that neither RNA nor DNA alone are able to induce immune activation in 

primary PMNs. Only for RNA, but not for DNA, LL37 promotes cell activation.  
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3.1.2. LL37 promotes RNA uptake in human PMNs 

To further investigate if LL37 helps to promote RNA uptake, AlexaFluor (AF) 647-labeled RNA 

was purchased from IBA Lifescience. In FACS analysis more than 20% of PMNs were AF647 

positive for RNA-LL37 complex-treated PMNs compared to under 5% for RNA alone (Figure 

3.2A) upon stimulation for 1 hour. ImageStream bright-field cytometry confirmed that RNA 

did not only bind to the surface of the cell but was internalized and therefore found in 

intracellular compartments (Figure 3.2B). Additionally, after labeling LL37 with Atto488 (kindly 

provided by Hubert Kalbacher, Tübingen), fluorescence microscopy not only showed that RNA 

was detectable in intracellular compartments but also co-localized with LL37 (Figure 3.2C). 

These findings show that LL37 is able to shuttle RNA into intracellular compartments (probably 

endosomes, where nucleic acid sensing TLRs reside, (Berger et al. 2012)) and that complex 

formation in vitro works, which is in good agreement with previous studies performed with 

pDCs (Ganguly et al. 2009).  

 

Figure 3.1: PMNs react to RNA-LL37 complexes with IL-8 
release and CD62L shedding  

PMNs from healthy donors were stimulated with (A) LPS 
(200 ng/ml), R848 (2 µg/ml), CpG (1 µM) or left untreated 
for 4 h for ELISA and for 2 h for FACS analysis (n=6-7). In 
(B) PMNs were stimulated with ssDNA or genomic DNA 
(both 20 µg/ml and equimolar to CpG used in this 
setting), either in complex with 10 µg LL37 or alone for 4 
h for ELISA and for 2 h for FACS analysis (n=5). In (C) the 
same set-up was used as in (B) but using 5.8 µM ssRNA40 
(equimolar to R848 used in this setting), either in complex 
with 10 µg LL37 or alone (n=8-15). A-C represent 
combined data (mean+SD), each dot represents one 
donor. * p<0.05 according to one-way ANOVA with 
Dunnett’s correction compared to unstimulated unless 
otherwise indicated(A-C).  
 

A                                                            B 
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3.1.3. Synthetic, human and bacterial RNA form complexes with LL37 and induce cytokine 

release via endosomal TLRs in PMNs 

Next, it was investigated whether RNA-LL37 uptake was specific for the synthetic RNA 

(sequence see Table 2.3) which was used for pervious experiments or whether the RNA 

sequence had no impact on complex formation with and uptake by LL37. Therefore, total 

human mRNA isolated from HEK293T cells and bacterial RNA, isolated from S. aureus as 

Figure 3.2: LL37 promotes RNA uptake 

(A) FACS analysis: % of AF647 positive 
PMNs isolated from healthy donors 
and stimulated (for 1 h) with RNA-
AF647-LL37 complex or RNA-AF657 
and LL37 alone (n=6). (B) 
ImageStream analysis (scale bar = 10 
μm, n=2) of purified PMNs stimulated 
with RNA-AF647-LL37 complex 
subsequently stained with CD15-PE as 
surface marker and Hoechst33342 
(nucleus). Cells which internalized 
RNA are shown. (C) Brightfield 
microscopy (scale bar = 10 μm, n=6) of 
PMNs incubated for 1 h with RNA-
AF647 complexed with LL37-Atto488. 
(A) represents combined data 
(mean+SD) from ‘n’ biological 
replicates (each dot represents one 
donor). In B and C representative 
samples of ‘n’ replicates or donors are 
shown. * p<0.05 according to 
Friedman test with Dunn’s correction 
(A). 

A                                                                 B 

BF               RNA         Hoechst         LL37            overlay 
                 (AF647)     (nucleus)      (Atto488) 
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previously described by Eigenbrod et al. (Eigenbrod et al. 2015) was used. As expected, human 

(Figure 3.3A) and, interestingly, bacterial RNA (from now on further referred to as bRNA) 

(Figure 3.3B) induced cytokine release more potently when being complexed with LL37. 

However, it has to be acknowledged that human PMNs in general reacted better to synthetic 

compared to bacterial RNA.  

In order to test whether this observed cytokine release induced by RNA-LL37 complexes was 

dependent on endosomal TLRs, Chloroquine (CQ) was used to block endosomal TLR signaling 

(Kuznik et al. 2011). CQ inhibits endosomal acidification which is crucial for endosomal TLR 

activation. And indeed, CQ was able to inhibit IL-8 release by PMNs induced through CpG (a 

known TLR9 agonist, positive control) and RNA-LL37 complexes (Figure 3.3C and D). This was 

not due to a cytotoxic effect (Figure 6.1D). As chloroquine also does not affect cytosolic RNA 

sensing e.g. by RIG-I (Matsukura et al. 2007), it was assumed that RNA-LL37 signaling occurs 

due to endosomal TLR sensing and is independent of the RNA sequence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: RNA-LL37 complexes 
induce cytokine release by PMNs 
via endosomal TLRs and this is 
independent of RNA sequence 

(A) PMNs were stimulated with 

complexes of total human mRNA 
isolated from HEK293T cells and 
LL37 for 4 h (n=4-6). (B) Bacterial 
RNA (isolated from S. aureus) 
was complexed with LL37 and 
PMNs were stimulated with the 
complex for 4 h (n=4). (C) PMNs 
were pre-incubated with 10 µM 
CQ (30 min) and subsequently 
stimulated with CpG (1 µM and 
500 nM) for 4 h (n=7). (D) The 
same setup as in C but 
stimulation with RNA-LL37 
complex instead of CpG (n=7). A-
D represent combined data 
(mean+SD) from ‘n’ biological 
replicates (each dot represents 
one donor). * p<0.05 according 
to one-way ANOVA with 
Dunnett’s correction for A and D 
with Sidak correction for C and 
Friedman test with Dunn’s 
correction for B.  

A                                          B 

C                                          D 
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3.2. PMNs release cytokines and chemokines in response to RNA-LL37 complexes which 
in turn induce migration of other immune cells 

3.2.1. RNA-LL37 complexes induce the release of multiple cytokines and chemokines by human 

PMNs 

Next, it was investigated whether PMNs only release IL-8 in response to RNA-LL37 complexes 

or also other pro-inflammatory cytokines and chemokines. Therefore, supernatants from two 

healthy donors were screened in Luminex analysis (the measurements were kindly performed 

by Nicole Schneiderhan-Marra and Thomas Knorpp at the NMI in Reutlingen). The analysis 

was performed as previously described (Brockmann et al. 2016). As a result, it was observed 

that not only IL-8 was released by PMNs in response to RNA-LL37 complexes but also other 

pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β (Figure 6.2A). Interestingly, the 

screen also revealed that PMNs released more IL-16 and MIP-1β in response to RNA-LL37 

complexes (Figure 6.2B). IL-16, previously known as lymphocyte chemoattractant factor or 

LCF, was described as a chemoattractant for CD4+ lymphocytes a long time ago (Center and 

Cruikshank 1982). However, not much is known about IL-16 release by PMNs. There are 

indications that its release might be related to cell death (Roth et al. 2015) which can be 

excluded here (Figure 6.1C), at least for the unstimulated samples. MIP-1β or better known as 

CCL4 (C-C Motive Chemokine Ligand 4) is a strong chemoattractant for a variety of immune 

cells (Menten et al. 2002). For PMNs, there is only one study showing that migrating 

neutrophils secreted MIP-1β which induced the migration of dendritic cells in turn (Chiba et 

al. 2004). Next, the results of the Luminex screen were re-evaluated with supernatants from 

more donors using Cytometric bead array (CBA) or ELISA. As expected, it was confirmed that 

PMNs release more TNF-α, IL-6 and IL-1β in response to RNA-LL37 complexes (Figure 3.4A-C). 

Furthermore, IL-16 release was already induced by stimulation with LL37 only (Figure 3.4D), 

whereas the induction of MIP-1β was strongly dependent on RNA-LL37 stimulation (Figure 

3.4E). These data show that PMNs are able to release not only IL-8 but also other cytokines 

and chemokines in response to RNA-LL37 which consequently could potentially attract other 

cells to the site of inflammation. 

Although the amounts of cytokines released from RNA-LL37-stimulated PMNs in in vitro 

experiments were comparatively low, they might still have a great impact on immune 

responses. Furthermore, high concentrations of cytokines might well be elicited due to fast 

cytokine release (within 4 hours of stimulation) and the high number of PMNs in human blood 

or psoriatic skin lesions. 
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3.2.2. Low concentrations of MIP-1β and IL-16 induce the migration of other immune cells 

As previously described, PMNs respond to RNA-LL37 stimulation with the release of a variety 

of pro-inflammatory cytokines and chemokines. To study whether these cyto-/chemokines (in 

low concentrations, as released by PMNs) are able to induce cell migration, transwell 

migration assays were performed. It was especially expected that IL-16 and MIP-1β, as known 

chemoattractants for a variety of cells (Center and Cruikshank 1982) (Menten et al. 2002), 

would induce cell migration. In the lower compartments, IL-16 (300 pg/ml and 1500 pg/ml) 

and MIP-1β (30 pg/ml and 150 pg/ml) or SDF-1α (stromal-cell derived factor 1 α, 100 ng/ml, 

used as migration control) were pipetted in RPMI medium. In the upper compartment PBMCs 

from the healthy donors were inserted. After 4 hours, the migrated cells in the lower wells 

were harvested, stained with antibodies against respective surface antigens and measured by 

flow cytometry. To assess the total number of migrated cells, counting beads were used.  

With SDF-1α as known strong chemoattractant for T and B lymphocytes (Bleul et al. 1996), it 

was confirmed that the transwell experiment itself worked (Figure 6.3A-C). As shown in Figure 

3.5 A-C, CD3+CD4+ helper T cells, CD3+CD8+ cytotoxic T cells and CD14+HLA-DR+ monocytes 

migrated towards the cytokines, even more prominently towards the lower concentrations 

Figure 3.4: PMNs respond to RNA-LL37 
complexes with cyto-and chemokine release 

PMNs were stimulated with RNA-LL37 
complexes for 4 h and supernatants were 
measured in Cytometric bead array (A-C) or 
ELISA (D, E) for TNF (A), IL-6 (B), IL-1β (C), IL-16 
(D) or MIP-1β (E) (n=6). A-E represent combined 
data (mean+SD) from ‘n’ biological replicates 
(each dot represents one donor). * p<0.05 
according to Friedmann test with Dunn’s 
correction (A, B, D, E) and one-way ANOVA with 
Dunnett’s correction for multiple testing in (C). 

A                                   B                                      C 

D                                     E 
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used in this experiment. Due to donor-to-donor variations, only a non-significant effect could 

be observed. Unexpectedly, when adding RNA-LL37 complexes and other TLR stimuli to 

medium in the lower compartment (intended as a negative control), CD3+CD4+ lymphocyte 

migration towards the RNA-LL37 complexes was observed (Figure 3.5D). Of course, it remains 

to be established whether this effect only applies to T cells within PBMCs, i.e. an indirect 

effect, or if RNA-LL37 works directly on CD4+ T cells, a possibility that could be easily checked 

using isolated CD4+ T cells in the future. These current data show that IL-16 and MIP-1β are 

able to attract a vast variety of immune cells and that even RNA-LL37 serves as a 

chemoattractant for CD4+ T cells. 
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Figure 3.5: Immune cells migrate towards cytokines and chemokines released by PMNs in response to RNA-LL37 
complexes 

Total cell counts quantified by flow cytometry after transwell migration assay (after 4 h). Migrating CD3+CD4+ T 
cells (A), CD3+CD8+ T cells (B) and CD14+HLA-DR+ monocytes (C) towards either MIP-1β (30 and 150 pg/ml) or IL-
16 (300 and 1500 pg/ml) are shown (n=6-7, p>0.05 for treatments vs. media). Total migrating CD4+ T cell counts 
(D) towards R848 (2 µg/ml), RNA, RNA-LL37 complexes or LL37 are shown (n=3-7). A-D represent combined data 
(mean+SD) from ‘n’ biological replicates (each dot represents one donor). * p<0.05 according to Friedmann test 
with Dunn’s correction (A-C) or one-way ANOVA with Dunnett’s correction for multiple testing (D). 

A                                                    B 

C                                                        D 
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3.2.3. PMNs from psoriasis patients secrete more cytokines in response to RNA-LL37 complexes 

Activation of pDCs by RNA-LL37 complexes has been reported, however, differences in 

response of pDCs from healthy individuals and psoriasis patients were not investigated 

(Ganguly et al. 2009). To elucidate whether PMNs of psoriasis patients and healthy individuals 

differentially react to RNA-LL37 complexes, PMNs from peripheral blood (from psoriasis 

patients and healthy controls) were isolated and subsequently stimulated with RNA-LL37 

complexes. At the same time, at least one sex-and age-matched control was analyzed. As 

shown in Figure 3.6 A and B, PMNs from psoriasis patients released more IL-8 when stimulated 

with the complex, whereas other TLR agonists like LPS or R848 (not shown) did not display 

differences in cytokine levels between patients and healthy controls. This was even more 

obvious for MIP-1β (Figure 3.6C and D). There, psoriasis PMNs released significantly more MIP-

1β only in response to the RNA-LL37 complex compared to healthy controls. Interestingly, it 

was observed that the IL-8 baseline for RNA alone was higher for psoriasis patients (relatively 

to the unstimulated control), whereas the levels of IL-8 for the healthy controls were not 

considerably different from the unstimulated sample. As previously shown, RNA uptake was 

very dependent on LL37 complex formation (Figure 3.1C). PMNs are the major producers of 

LL37 in the human body, therefore it was speculated whether psoriasis PMNs might 

constitutively secrete more LL37. If this was the case, readily released LL37 could in turn 

complex with added RNA and start the stimulation of other PMNs independently of 

exogenously added LL37. For this reason, LL37 levels were measured in supernatants of 

unstimulated PMNs from psoriasis patients and healthy controls and indeed higher LL37 

baseline levels were found for patients compared to healthy donors (Figure 3.6E). These 

results indicate that psoriasis PMNs are more prone to RNA-LL37 stimulation, potentially due 

to a higher constitutive secretion of PMN-derived LL37. 
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3.3. RNA-LL37 complexes trigger the release of RNA-and LL37-containing NETs 

This study so far showed that RNA and LL37 complexes induced pro-inflammatory cytokine 

release which could potentially contribute to inflammation in psoriatic lesions. Also, 

neutrophil-mediated chemokine release could trigger the infiltration of other immune cells to 

sites of inflammation. This response to RNA-LL37 complexes would be self-limiting, unless 

RNA-LL37 would trigger the release of further RNA and LL37 e.g. by NETosis. It was previously 

shown that Neutrophil extracellular traps (NETs) contain nucleic acids (DNA) (Brinkmann et al. 

2010) and that this DNA, when complexed to LL37 (Lande et al. 2011), can activate pDCs. As 

shown here, PMNs were not able to induce immune reaction in response to DNA-LL37. 

Therefore, it was investigated whether RNA could be a new, unknown NET content involved 

in NET-mediated propagation via the DNA-unresponsive PMNs. Further studies were 

performed to reveal whether RNA-LL37 complexes were able to induce NETosis and whether 

these NETs can in turn contain LL37 and more importantly RNA. 

3.3.1 RNA-LL37 complexes induce NETosis 

The first hint that RNA-LL37 complexes were able to induce NET formation were obtained 

from EM (electron microscopy) pictures taken by Jürgen Berger at the MPI (Tübingen). Here, 

fiber-like structures were observed in close proximity to PMNs which had been stimulated 

with RNA-LL37 complexes (Figure 3.7A). Therefore, NET formation was analyzed by detection 

of Neutrophil elastase (NE) release from PMNs (supernatants) using an enzymatic reaction 

(“NETosis kit”) (Yizengaw et al. 2016). Interestingly, Neutrophil elastase was not only released 

in response to RNA-LL37 but also to LL37 alone (Figure 3.7B) (PMA was used as a positive 

Figure 3.6: Psoriasis PMNs are more prone to RNA-LL37 stimulation 

In (A) ELISA of IL-8 secreted from psoriasis PMNs or PMNs from sex-and age-matched healthy donors after 4 h of 
stimulation with RNA-LL37 complexes or (B) with 200 ng/ml LPS is shown. (C) the same setting as in (A) but 
measuring MIP-1β by ELISA. (D) the same set-up as (B) but measuring MIP-1β. (E) LL37 ELISA of unstimulated 
PMNs from psoriasis patients or from sex-and age-matched healthy donors (for all n=3-4 patients, chequered 
bars, n=7-10 healthy donors). A-E represent combined data (mean+SD) from ‘n’ biological replicates (each dot 
represents one donor). * p<0.05 according to one-way ANOVA with Dunnett’s correction for multiple testing (A, 
C, E) or Kruskall-Wallis test with Dunn’s correction (B, D). 
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control). Since it is under debate whether NE is really necessary for the induction of NETosis 

(Martinod et al. 2016), further investigations of NET formation were performed by 

fluorescence microscopy. Hence, DNA, RNA and LL37 were labeled and NET release by PMNs 

in response to RNA-LL37 complexes was evaluated. To show RNA in NETs, a dye called SYTO 

RNAselect which was previously described to be RNA-specific (Li et al. 2006), was used.  

Importantly, RNA-LL37 complexes induced NETosis in human PMNs which contained not only 

DNA (blue) and LL37 (red) but also considerable amounts of RNA (green) (Figure 3.7C). This 

was quite exclusive for stimulation with RNA-LL37 complex (and PMA as positive control), 

because RNA or LL37 alone did not result in NET release (RNA alone is not shown). Next, the 

behavior of PMNs to stimulation with RNA-LL37 in live-cell-imaging, in order to exclude 

staining artefacts in fixed cells, was investigated. The cells were therefore labeled with 

Hoechst (nucleus) and SYTO RNAselect (RNA) which revealed that the complex first 

accumulated on the cell membrane, then entered the cell and was finally released with further 

endogenous RNA and DNA from the rupturing cell. This was in general a very fast process 

(Figure 3.7D, quantified in E). In summary, these data demonstrate, that RNA-LL37 complexes 

induce NETosis and that these NETs in turn contain DNA, RNA and LL37.  

  A                                                                                         B 



Results part I 
 

57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C 

D                                                                  E 



Results part I 
 

58 

 

 

 

 

 

 

 

 

3.3.2. RNA-LL37 complexes induce release of NET-associated-RNA (naRNA) 

This study previously showed that RNA-LL37 induced NETosis and that those NETs in turn 

contained RNA and LL37. To prove the specificity of SYTO RNAselect, RNase A was used 

(Sharma et al. 1993) for RNA digest which yielded in significantly reduced RNA signal (SYTO 

RNAselect), leaving the DNA signal (Hoechst) unaffected (Figure 3.8A and B). Fluorescence 

microscopy using AF647 labeled RNA complexed with unlabeled LL37 as stimulus and 

subsequent staining with SYTO RNAselect revealed that the dye not just stained the synthetic 

RNA which was added to the cells but rather showed the total RNA in the cells or released in 

NETs (Figure 3.8C). Additionally, PMNs at the verge of NETosis or degranulation were 

observed, where the SYTO RNAselect dye was accumulating in granule-like vesicles (Figure 

3.8D). It was assumed that RNA is potentially stored in granules of PMNs, as it was previously 

reported for eosinophils (Behzad et al. 2010).  

Although the specificity of SYTO RNAselect was already proven by Li et al. (Li et al. 2006) and 

also in this study with previous experiments (Figure 3.8A-C), further confirmation was 

accomplished using an antibody against pseudoruidine (Ψ-U). Ψ-U is a frequent nucleotide 

modification exclusively found in RNA (Zhao and He 2015) and would thus also allow to 

distinguish stimulant RNA (which is synthetic and hence devoid of Ψ-U) and cellular RNA. 

When inducing NETosis by RNA-LL37 (but also with PMA as a control), Ψ-U-positive RNA in 

extracellular, fiber-like structures was clearly observed. When using RNase A, this RNA signal 

could be completely erased, whereas the DNA signal stayed unaffected (Figure 3.8E). Finally, 

when PMNs were stimulated with AF488-labeled synthetic RNA complexed with unlabeled 

LL37 and subsequently stained with Ψ-U-antibody (AF594-labeled secondary antibody), 

ssRNA40-AF488 could be depicted in defined cytosolic compartments, whereas Ψ-U was 

found spread over the whole cell or over the NET fibers rather than being accumulated in 

puncta (Figure 3.8F). These findings confirm the abundance of RNA in NETs which might serve 

as a new immunogenic stimulus. Since RNA has never before been reported as a component 

of NETs, the term “NET-associated-RNA” or short “naRNA” is proposed for future reference. 

 

Figure 3.7: PMNs respond to stimulation with RNA-LL37 complex with NET formation 

(A) EM pictures from PMNs stimulated with RNA-LL37 for 3 h (n=1), taken by Jürgen Berger at the MPI, Tübingen. 
(B) Neutrophil elastase (NE) released from PMNs stimulated for 3 h. 100 nM PMA was used as a positive control 
(n=8, each dot represents one donor). (C) Fluorescence microscopy of PMNs, stimulated with RNA-LL37 
complexes or 600 nM PMA for 3 h. After fixation, the cells were subsequently stained with Hoechst33342 
(nucleus, depicted in blue), anti-LL37 (unconjugated, rabbit, secondary antibody A647 labelled, depicted in red) 
and SYTO RNAselect (RNA, depicted in green) (n=6, scale bar = 10 µm). (D) Live-cell imaging of PMNs, stained 
with Hoechst33342 (nucleus) and SYTO RNAselect (RNA) and subsequently stimulated as indicated (n=4, scale 
bar = 20 µm). Pictures of 30 min and 60 min after stimulation are shown. (E) Quantification of live-cell-imaging. 
B and E represent combined data (mean+SD) from ‘n’ biological replicates. In A, C and D representative samples 
of ‘n’ replicates or donors are shown. Arrowheads indicate released RNA-containing NETs (C and D). * p<0.05 
according to one-way ANOVA (B), two-way ANOVA (E) with Dunnett’s correction.  
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3.3.3. RNA-LL37 complexes are found in psoriatic skin lesions  

It was previously shown that increased levels of NETs were present in steady-state of blood-

derived PMNs but also in skin of psoriasis patients (Hu et al. 2016). The presence of naRNA 

had obviously not been analyzed. It was therefore of interest to investigate whether more 

RNA and LL37 can be detected in psoriatic lesions, potentially released by NETting PMNs. As 

expected, high abundance of LL37, not only in the epidermis of the patient samples but also 

in the infiltrating PMNs (here additionally stained with anti-NE antibody), was observed. 

Interestingly, when using SYTO RNAselect, more RNA can be found throughout the whole 

epidermis of the patient skin (Figure 3.9A) compared to healthy controls but also due to the 

infiltrating cells which likewise contained RNA. When taking a closer look, RNA and LL37 

appeared to be co-localized especially where PMNs infiltrated (Figure 3.9B). Also, SYTO 

RNAselect specificity for skin samples was confirmed using anti-ΨU: both signals clearly 

overlapped (Figure 3.9C). It can therefore be assumed that the RNA signal is attributable to 

naRNA. As RNA and LL37 are found in large quantities in psoriatic lesions, it was hypothesized 

Figure 3.8: RNA-LL37 complexes induce the release of NET-associated-RNA (naRNA) 

(A, B) Fixed Neutrophils, were treated with RNase A (100 µg/ml) or buffer control overnight at 37°C and 
subsequently stained with Hoechst33342 or SYTO RNAselect (n=4). Quantification of pixel values of nuclear or 
extracellular NET events scored by an independent and unbiased observer in the RNA (A) or DNA channels (B) is 
shown for one representative experiment. (C) Shows fixed PMNs, stimulated with RNA-AF647 (red) complexed 
to unstained LL37 for 1 h and subsequently stained with SYTO RNAselect (green) (n=2, scale bar = 10 µm). (D) 
Shows SYTO RNAselect (green) staining accumulation in granules, observed for every experiment (n = 10, scale 
bar = 10 µm). (E) PMNs were stimulated for 3 h with RNA-LL37 complexes (or PMA not shown here), treated with 
RNase A (100 µg/ml) or buffer control overnight at 37°C and subsequently stained with anti-Ψ-U (AF594 labeled 
secondary antibody, red) (n= 3, scale bar = 10 µm). (F) Stimulation as in (C) but using RNA-AF488 (green) and 
unlabeled LL37 for stimulation and subsequent staining with anti-ΨU (AF594 labeled secondary antibody, red) 
(n=2, scale bar = 10 µm). Arrowheads indicate RNA-containing NETs (E). In A-F one representative of ‘n’ replicates 
is shown. * p<0.05 according to one-way ANOVA with Holm-Sidak’s correction (A) or Kruskal-Wallis test with 
Dunn’s correction (B) to adjust for multiple testing.  

F 



Results part I 
 

61 

that RNA-LL37 complexes might have a physiological relevance in inflammation in psoriatic 

skin. 
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3.3.4. NET contents (naRNA-LL37 complexes) induce NETosis in further PMNs 

Based on previous results, it was assumed that NETs induced by RNA-LL37 complexes (which 

contained naRNA and LL37) could trigger further NET formation in more PMNs. The repetitive 

release of naRNA and LL37 via NETosis, in turn could lead to a self-propagating inflammatory 

loop. 

In fact, when using those NET-contents (from cells which nicely released NETs upon 

stimulation with RNA-LL37 complexes and PMA, as shown in Figure 3.10A) to stimulate naïve 

PMNs, those PMNs were prompt to “NET” (release) and NETs contained DNA, naRNA and 

LL37. In contrast, the “mock” NET contents from unstimulated PMNs were not able to induce 

any NET formation in naïve PMNs (Figure 3.10B, and quantified in Figure 3.10C). Taken 

together, this experiment showed that NETs released by RNA-LL37 has the ability to induce 

NET formation in naïve PMNs and their NETs contain further DNA, naRNA and LL37. Although 

it awaits confirmation in vivo, the self-propagating mechanism that could be envisaged, might 

be applicable to psoriatic skin as an early inflammatory stimulus (naRNA-LL37 complexes) and 

upstream event of pDC and T cell activation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: RNA-LL37 complexes are found in psoriatic skin lesions 

(A,B) Skin sections from healthy skin and psoriatic lesions (n=12 patients and 3 healthy controls, scale bar = 20 
µm), from patients with PASI score ≥ 10 and no systemic therapy at the time of skin biopsy collection, were 
stained with anti-LL37 (red), anti-NE (yellow) (with subsequent secondary antibodies anti-rabbit-AF647 and anti-
mouse-AF594) and SYTO RNAselect (green). (B) Co-localization of RNA and LL37 is indicated by arrowheads. (C) 
SYTO RNAselect (green) staining strongly overlaps with anti-ΨU (red) (and subsequent anti-mouse-AF594) 
staining in psoriatic skin samples (n=12 patients, scale bar = 20 µm). AF = autofluorescence. In A representative 
samples of ‘n’ replicates or donors are shown. In B and C one representative of ‘n’ replicates is shown. 
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3.4. RNA-LL37 complexes and NETs activate PMNs via TLR8 (human) and TLR13 (mouse) 

Previously it was observed that cytokine release from PMNs induced by RNA-LL37 complexes 

could be inhibited by blocking endosomal TLR signaling via chloroquine (Figure 3.3D). As CQ 

had no effect on cytosolic RNA sensors (Matsukura et al. 2007), the following experiments 

further focused on endosomal TLR signaling. Although it is now appreciated that PMNs survive 

a couple of days in vivo (Kruger et al. 2015), in vitro the cells are only very short-lived and are 

post-mitotic (Mayadas et al. 2014). Therefore, it is impossible to genetically modify them in 

culture e.g. via transfection or viral transduction. As a result, mouse BM-PMNs were used to 

study receptor-dependency. First, previous results (Figure 3.3D) were re-evaluated with BM-

Figure 3.10: naRNA-LL37 complexes induce NETosis in further PMNs 

(A) PMNs were stimulated with RNA-LL37 complex, LL37 alone or PMA (600 nM) for 4 h (n=4, scale bar = 10 µm). 
After fixation, cells were stained with anti-LL37 (yellow) (anti-rabbit-AF647 secondary antibody), anti-ΨU (red) 
(anti-mouse-AF594 secondary antibody), SYTO RNAselect (green) and Hoechst33342 (blue). These NET contents 
were harvested and (B) subsequently transferred to naïve PMNs (n=6, scale bar = 10 µm) for 4 h. Then, after 
fixation the cells were stained with anti-LL37 (yellow) (anti-rabbit-AF647 secondary antibody), anti-ΨU (red) 
(anti-mouse-AF594 secondary antibody), SYTO RNAselect (green) and Hoechst33342 (blue). (C) Quantification of 
(A) and (B) by showing pixel values per scored events. C represents combined data (mean+SD) from ‘n’ biological 
replicates. In A and B representative samples of ‘n’ replicates or donors are shown. * p<0.05 according to Kruskal-
Wallis test with Dunn’s correction (C). 
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PMNs from Unc93b1-deficient mice which lack functional endosomal TLR signaling because of 

a so-called “triple D” mutation (Tabeta et al. 2006) that suppresses the critical chaperone 

function of UNC93B1 for endosomal TLRs (Eigenbrod et al. 2012). For mouse BM-PMNs, bRNA 

together with (human) LL37 was used for stimulation, as this yielded the highest BM-PMN 

activation: bRNA-LL37 complexes were more potent in mouse PMNs to stimulate cytokine 

release compared to synthetic ssRNA40 (data not shown); and additionally, human LL37 was 

already shown to be more potent in binding DNA compared to the mouse ortholog CRAMP 

(Singh et al. 2013) (Gallo et al. 1997). The same effects were therefore assumed for RNA. 

When stimulating BM-PMNs from Unc93b1-deficient mice, it was observed that cytokine 

release induced by bRNA-LL37 was completely dependent on endosomal TLR signaling. CpG, 

a known TLR9 agonist (Hemmi et al. 2000), served as control; cytokine release upon 

stimulation with CpG was also completely abolished in BM-PMNs from Unc93b1-deficient 

mice (Figure 3.11A). Of note, LPS or heat-killed E.coli (TLR4 ligands, (Poltorak et al. 1998)) were 

actually more potent in Unc93b1-deficient mice compared to WT mice.  

As human PMNs were shown to functionally express endosomal TLRs but not TLR3 (Hayashi 

et al. 2003) and TLR7 (Janke et al. 2009) (Berger et al. 2012), it was assumed that TLR8 could 

be the RNA sensing receptor responsible for activation by RNA-LL37 complexes of human 

PMNs. Hence, testing of BM-PMNs from Tlr13-deficient mice was considered because of 

TLR13 being the murine equivalent for TLR8 in the humans (Li and Chen 2012) and TLR8 being 

non-functional in mice (Hemmi et al. 2002) (Heil et al. 2004). Indeed, when stimulating BM-

PMNs isolated from Tlr13-deficient mice with bRNA-LL37 complexes cytokine release was 

abolished. Conversely, stimulation with LPS or heat-killed E.coli stayed unaffected (Figure 

3.11A). After this very promising result, it was investigated next whether BM-PMNs from WT 

mice were able to induce NETosis in response to bRNA-LL37 stimulation and whether this was 

endosomal TLR- or even TLR13-dependent. When stimulating BM-PMNs from WT, Unc93b1-

deficient or Tlr13-deficient mice with PMA, a chemical, TLR-independent NET-inducer (van der 

Linden et al. 2017) (Al-Khafaji et al. 2016), BM-PMNs from all mouse strains were able to 

induce NETosis. However, in response to bRNA-LL37 complexes only BM-PMNs from WT mice 

potently induced NET formation and BM-PMNs from Unc93b1- (Figure 3.11B) or Tlr13-

deficient mice (Figure 3.11C) failed to do so.  

Finally, to undoubtedly pinpoint TLR8 as receptor for RNA-LL37 complexes, a biological model 

system was used that closest resembles human innate immune responses. Therefore, since 

human PMNs cannot be engineered, BLaER1 cells (WT and TLR8-/-) were used. BLaER1 cells 

are leukemic B cells that can be transdifferentiated to monocyte-/macrophage-like cells 

(Vierbuchen et al. 2017) and thus display a good model to study immune reactions in innate 

immune cells (Gaidt et al. 2018). With these cells it could be observed that cytokine release 

by RNA-LL37 complexes was completely dependent on TLR8 in the human system. As a control 

for TLR8 signaling TL8-506 (by Invivogen), a selective TLR8 agonist (Lu et al. 2012), was used 

(Figure 3.11D). These findings thus clearly show that RNA-LL37 complexes are dependent on 

TLR8 (human) and TLR13 (mouse) to induce robust cytokine and NET release in PMNs.  
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3.5. NET and cytokine release induced by RNA-LL37 complexes can be blocked by iODNs 

After identifying TLR8 for being a receptor for RNA-LL37-induced immune reactions, it was 

further analyzed whether receptor binding could be potentially blocked with so-called 

inhibitory oligodeoxynucleotides (iODNs). iODNs were previously characterized in mice and 

are directed towards TLR7 (IRS661) or TLR7/9 (IRS954) to block ligand-mediated activation 

(Pawar et al. 2007). Both of the inhibitors used here were already proposed as treatment for 

another autoimmune disease, namely Systemic Lupus Erythematosus (SLE) (Barrat et al. 2005) 

(Barrat and Coffman 2008). Because of the similarities found in endosomal TLRs (Colak et al. 

2014), it was assumed that the TLR7 antagonists might also block TLR8 signaling. Based on 

previous results obtained by a former member of the lab, David Eisel, PMNs from healthy 

donors were pre-incubated for 30 min with very low amounts of iODNs (IRS661 1 nM and 

IRS954 50 nM, not toxic for PMNs shown in Figure 6.4) and subsequently stimulated with    

RNA-LL37 complexes for 4 hours. And indeed, not only IL-8 and MIP-1β (Figure 3.12A, B) 

release from PMNs induced by RNA-LL37 complexes could be inhibited but this was also 

specific for TLR8 signaling, because LPS-induced cytokines were not affected (Figure 3.12C). 

Importantly, iODNs could also inhibit NETosis induced by RNA-LL37 complexes (Figure 3.12D 

and quantification in E), again at very low concentrations (IRS661 50 nM). These results are in 

agreement with previous findings on TLR8-dependent inhibition of NETosis induced by HIV 

infection (Saitoh et al. 2012). Based on these results, it can be concluded that iODNs might be 

useful to block TLR8-mediated binding of RNA-LL37 complexes and hence as a therapeutic 

intervention in psoriasis. Blocking of TLR8 signaling potentially inhibits cytokine and NET 

release induced by RNA-LL37 complexes and can potentially intervene with an early 

inflammatory event in psoriasis. 

 

 

 

 

 

 

Figure 3.11: Cytokine and NET release induced by RNA-LL37 complexes is dependent on TLR8 (human) and TLR13 
(mouse) 

(A) BM-PMNs from WT, Unc93b3d/3d and Tlr13-/- mice were isolated and stimulated for 5 h with bRNA, LL37, 
bRNA-LL37 complexes, 1 µM CpG, 200 nM LPS and heat-killed E. coli MOI = 1 (provided by Tatjana Eigenbrod, 
Heidelberg) (n=4 Tlr13-/-, n=5 Unc93b13d/3d, n=8 WT). (B) BM-PMNs were stimulated for 16 h as in (A), additionally 
using 600 nM PMA as a positive control and fixed. Subsequently fluorescence microscopy was performed, using 
Hoechst33342- (DNA, blue) and SYTO RNAselect- (RNA, green) stained cells (n=5 Unc93b13d/3d, n=8 WT; scale bar 
= 10 µm). (C) as in (B) but using WT and Tlr13-/- BM-PMNs (n=4 Tlr13-/-, n=8 WT; scale bar = 20 µm). (D) TLR8 
CRISPR-edited BLaER1 cells were stimulated with RNA, LL37, RNA-LL37 complex, heat killed E. coli MOI = 1 and 
100 ng/ml TL8-506 for 18 h and IL-8 ELISA was measured (n=7). The values were normalized to E. coli = 100%. 
Arrowheads indicate released NETs (B and C). A and D represent combined data (mean+SD) from ‘n’ biological 
replicates. In B and C one representative of ‘n’ replicates is shown (mean+SD of technical triplicates). * p<0.05 
according to tone-way ANOVA with Sidak correction (A, D).  
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Figure 3.12: NET and cytokine release induced by RNA-LL37 complexes can be inhibited by iODNs 

(A) PMNs were pre-treated with IRS661 (1 nM) or IRS954 (50 nM) for 30 min and then subsequently stimulated 
with RNA-LL37 complexes for 4 h (n=6). IL-8 release was measured by ELISA. (B) the same as (A) but measuring 
MIP-1β (G, n=4). (C) as (A) but using 200 ng/ml LPS as stimulus (n=4-6). (D) PMNs were pre-treated with IRS661 
(50 nM) for 30 min and subsequently stimulated for 3 h with RNA-LL37 complexes. After fixation, fluorescence 

microscopy was performed with Hoechst33342- (nuleus, blue) and anti-U- (RNA, red) (anti-mouse-AF594 
secondary antibody) stained PMNs (n=3, scale bar = 10 µm). (E) Quantification of D by showing pixel values per 
counted extracellular events. A-C, and E represent combined data (mean+SD) from ‘n’ biological replicates (each 
dot represents one donor or value). Arrowheads indicate released NETs (D) * p<0.05 according to one-way 
ANOVA with Sidak correction (A and C) or Friedmann test with Dunn correction (B), and Mann-Whitney test (E). 
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4. Results part II 

4. Platelet-PMN aggregates promote skin pathology in psoriasis  

4.1. Circulating PMNs in psoriasis have a distinct platelet signature 

In psoriasis, a variety of different immune cells infiltrate the skin. However, the major trigger 

for immune cells to infiltrate the skin in psoriasis remains elusive. In order to find surface 

antigens differentially expressed on cells from whole blood of psoriasis patients, which might 

contribute to skin homing, the so-called LEGENDScreen™ from BioLegend was performed. This 

kit contains 332 antibodies against different surface antigens and 10 corresponding isotype 

controls, all labeled with PE and are pre-aliquoted in individual wells in a total of 4 x 96-well 

plates (Figure 6.5A). Combined with the antibodies against CD15, CD3, CD19 and Zombie 

yellow (as a master mix added to each well), this further allowed to phenotype PMNs, T cells 

and B cells (excluding dead cells) respectively from different psoriasis patients and healthy 

donors for 332 unique surface antigens, in order to identify those differentially expressed in 

patients vs. controls. Whole blood samples from five patients with a PASI score of ≥ 10 and no 

systemic therapy at the time of blood sampling and five sex- and age-matched controls was 

analyzed.  

4.1.1. Surface antigens are differentially expressed on blood cell populations of psoriasis 

patients 

Whole blood from five patients and five healthy controls was used and, as aforementioned, 

additionally stained with CD15 (PMNs), CD3 (T cells), CD19 (B cells) and Zombie yellow (dead 

cells). Subsequently, the LEGENDscreen™ was performed. This was based on an already 

published approach investigating T cells (Graessel et al. 2015). The monocyte population was 

afterwards gated by size and granularity. However, CD14 positivity was confirmed by the 

antibody provided by the kit (PE-labeled antibody, kit content). In the following paragraph the 

term “monocytes” refers to cell, characterized by granularity and size. The general workflow 

and gating strategy of the experiment are shown in Figure 6.5A and B. Differences based on 

MFI (mean fluorescence intensity) raw data for each surface antigen and isotype control from 

each of the gated populations were calculated by Marius Codrea and Simon Heumos from 

QBIC (Quantitative Biology Center, Tübingen). Conceptually, they first analyzed significant 

differences in surface antigen expression between the two groups. Defined by p<0.1 (nominal 

by two-way ANOVA followed by Tukey’s multiple comparisons correction), differential 

expression of antigens for PMNs, T cells, B cells and monocytes (comparing psoriasis patients 

and healthy controls) were identified. In total, 30 antigens were identified to be significantly 

different on blood cells over several populations between psoriasis patients and healthy 

controls.  
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Figure 4.1A-E shows significantly different surface antigens for PMNs and in Table 4.1 and 

Figure 6.6 all significant differences in surface antigen expression with short explanation are 

listed or box plots are shown. Most affected were monocytes as a whole, with 12 surface 

antigens being significantly different between psoriasis patients and healthy controls.  

With this experiment, it was confirmed that there are significant differences in surface antigen 

expression on circulating blood cells of psoriasis patients and healthy controls. PMNs as the 

cells of interest were analyzed in further detail but selected antigens will nevertheless be 

discussed below (see paragraph 6.2.1.). 

Table 4.1: Significantly different surface antigen expression (psoriasis patients vs. healthy controls) 

surface antigen name* cell type 
up/down 
in patients 

short explanation 

CD20 B1 or Bp35 Monocytes up 

Plays a role in B cells 
differentiation into 
Plasma cells (Vale and 
Schroeder 2010) 

CD21 

Complement C3d receptor 
(C3dR), complement 
receptor 2 (CR2), Epstein-
Barr virus receptor  

Monocytes up 

Has been shown to 
interact with CD19 on B 
cells  
(Bradbury et al. 1992) 

CD22 
BL-CAM, Siglec-2, Lyb8  
 

Monocytes up 

Belongs to SIGLEC family 
and is expressed on 
mature B cells 
(Crocker et al. 1998) 

CD11c 
Integrin αX subunit, CR4, 
p150, ITGAX  
 

B cells down 

Expressed on a variety of 
different blood cells, 
potential role in 
phagocytosis and antigen 
presentation 
(Sadhu et al. 2007) 
(Collin et al. 2013) 

CD13 
Aminopeptidase N, APN, 
gp150  
 

Monocytes up 

Expressed on 
granulocytes, myeloid 
progenitors and involved 
in processing of 
cytokines  
(Proost et al. 2007) 

CD56 
Leu-19, NKH1  
 

Monocytes up 
Expressed on NK and NK-
T cells 
(Almehmadi et al. 2014) 

CD41 
gpIIb, CD41a  
 

Monocytes up 

Forms complexes with 
CD61. CD41 is required 
for platelet adhesion and 
aggregation 
(Anderson et al. 1991) 
(Mateo et al. 1996) 

CD61 Integrin β3, gpIIIa  Monocytes up See CD41 

CD162 
PSGL-1, p-selectin 
glycoprotein ligand-1 

Monocytes up 
Binds to P-selectin 
(CD62P); rolling 
(Xu et al. 2007) 

CD163 
GHI/61, M130, RM3/1, 
p155, 

Monocytes up 
Upregulation happens in 
macrophages when it 
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Hemoglobin/Haptoglobin 
Complex Receptor, 
macrophage-associated 
antigen 

switches to pro-
inflammation 
(Etzerodt and Moestrup 
2013) 

CD154 
CD40L, gp39, TRAP, T-BAM, 
TNFSF5  
 

Monocytes up 

Expressed on activated T 
cells and induces class 
switch in B cells  
(Lederman et al. 1994) 

CD89 
FcαR  
 

Monocytes up 

Expressed on 
neutrophils, and 
monocytes/macrophages 
(Morton and Brandtzaeg 
2001) 

CD124 
IL-4 receptor α subunit  
 

B cells up 

Mostly responsible for 
Th2 responses  
(Gilmour and Lavender 
2008) 

CD209 

Dendritic Cell-Specific 
Intercellular adhesion 
molecule 3 (ICAM-3)-
Grabbing Nonintegrin 

PMNs down 

Is a member of the C-
type lectin family and 
can bind and transmit 
HIV  
(Geijtenbeek et al. 2000) 

CD143 

ACE, kininase II, dipeptidyl 
dipeptidase 1, peptidase P, 
carboxycathepsin  
 

PMNs down 

angiotensin I and 
bradykinin, acting as a 
blood pressure regulator 
and is expressed on 
endothelial cells 
(Iwai et al. 1987) 

CD215 
IL-15RA, IL-15Rα, IL-15 
Receptor α subunit 

B cells down 
Binds IL-15 in high 
affinity 
(Giri et al. 1994) 

CX3CR1 
V28, GPR13, Chemokine C-
X3-C receptor 1  
 

T cells down 
Mediates both leukocyte 
adhesion and migration 
(Imai et al. 1997) 

Delta Opioid 
receptor 

OPRD, DOR, hDOR  
 

B cells down 
Mainly expressed in the 
brain 
(Erbs et al. 2015) 

CD261 
TRAIL-R1, Apo-2, CD261, 
TNFRSF10A 

B cells up 

Member of TNFR 
superfamily induces 
apoptosis 
(Dufour et al. 2017) 

CD235ab Glycophorin A/B, GPA/GPB  PMNs up 

expressed on red blood 
cell membrane, and 
erythroid precursors 
(Bruce et al. 1994) 

CD272 
BTLA, B and T lymphocyte 
attenuator  
 

Monocytes up 

Co-inhibitory receptor 
comparable to e.g. PD-1 
Induction of peripheral 
tolerance in vivo 
(Liu et al. 2009) 

CD337 

NKp30, NCR3, Activating 
NK receptor NKp30, natural 
cytotoxicity triggering 
receptor 3  

PMNs down 
Expressed on resting and 
activated NK cells 
(Warren et al. 2005) 

CD244 
2B4, NAIL, SLAMF4  
 

T cells down 
Ligation of CD244 
induces enhanced NK 
cytotoxicity 
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(Stark and Watzl 2006) 

CD267 
TNFRSF13B, CD267, 
Transmembrane Activator 
and CAML Interactor (TACI)  

B cells down 

Important for humoral 
immunity, negative 
regulator of B cells 
(Sakurai et al. 2007) 

FcεRIα 
high affinity IgE receptor  
 

Monocytes up 

Expressed on variety of 
inflammatory cells 
Plays a key role in allergy 
(Fiebiger et al. 1996) 

CD268 
TNFRSF13C, BAFF-R, 
BAFFR, BR3, BAFF Receptor  

Monocytes up 
Co-stimulation of B cells 
See also CD267  
(Sakurai et al. 2007)  

IgD 
Ig delta chain C region  
 

Monocytes up 
Expressed in naïve B cells 
(Noviski et al. 2018) 

Siglec-8 

Sialic acid-binding Ig-like 
lectin 8 (Siglec-8), Siglec8L, 
Sialoadhesin family 
member 2 (SAF2)  

Monocytes down 
Expressed mainly on 
eosinophils 
(Bochner 2009) 

TRA-1-60-R Podocalyxin, TRA-1 PMNs down 

Expressed on human 
embryonic stem cells, 
downregulated when cell 
differentiates 
(Pera et al. 2000) 

MSC (W5C5) 

Mesenchymal Stem Cells 
(MSC), Sushi domain 
containing 2 (SUSD2)  
 

B cells up 

Expressed by bone 
marrow mesenchymal 
stem cells 
(Sivasubramaniyan et al. 
2013) 

* names were downloaded from the data sheet provided by the LEGENDscreen™ from BioLegend 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: In PMNs from psoriasis patients, certain surface antigens are differentially expressed compared to PMNs 
from healthy controls 

(A-E) Surface antigens (CD209, CD235ab, CD337, TRA-1-60-R and CD143 see Table 4.1 and Figure 6.6 for further 
information) with significant differences in MFIs between healthy donors (HDs) and psoriasis patients (PsorPs), 
n=5 each. A-E represent combined data (mean+SD) from ‘n’ biological replicates. Statistical analysis was 
performed by Marius Codrea and Simon Heumos from QBIC. * p<0.1 nominal by two-way ANOVA followed by 
Tukey’s multiple comparisons correction. 
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4.1.2. Circulating PMNs from psoriasis patients display a distinct platelet signature 

Although differences in individual surface antigen expression were clearly detected, psoriatic 

and healthy cell populations supposedly differ more significantly in combined expression of 

specific surface antigens. In order to adequately distinguish patients from healthy donors by 

combinations of surface antigens (later referred to as “signature”) a global principle 

component analysis (PCA) was performed (further information is provided in the section 

“Materials and Methods”). Surprisingly, especially for PMNs, the psoriasis patients strongly 

clustered together (Figure 4.2), indicating that PMNs of psoriasis patients can strictly be 

defined and are different from PMNs from healthy controls. For the other cell types, the 

variance was much larger and therefore the clusters were not so prominent (Figure 6.7A-C). 

Mapping of those antigens, which mostly contribute to the separation of the groups, showed 

that for PMNs mainly five different antigens, namely CD6, CD11c, CD41, CD61 and CD235ab 

were responsible for the distinct “signature” of psoriasis PMNs in circulation. For monocytes, 

there was a much larger group of surface antigens contributing to the separation of groups. 

Also, B and T cells from patients or healthy controls only clustered weakly (Figure 6.7A-C).  

Interestingly, CD6 has previously been shown to be important for T cell activation (Carrasco et 

al. 2017) and binds to the ligands CD166 (Bowen et al. 1995) and CD318 (Enyindah-Asonye et 

al. 2017) on epithelial cells like keratinocytes. CD11c is a known antigen found on a variety of 

blood cells in humans, e.g. classical DCs, monocytes but also to a lower extend on PMNs and 

B cells (Boltjes and van Wijk 2014) and was considered to be important for phagocytosis and 

for DC antigen presentation (Sadhu et al. 2007) (Collin et al. 2013). CD235ab, however, was is 

expressed on terminally differentiated erythrocytes (Bruce et al. 1994) (some of these 

antigens are further discussed in section 5.2.1.). When taking a closer look on the 

aforementioned antigens that contribute to the psoriasis PMN signature, it was appreciated 

that two antigens are known platelet antigens, in particular CD41 and CD61. CD41, also known 

as integrin α2b which is usually associated with CD61 (integrin β3) and is required for platelet 

adhesion and aggregation (Mateo et al. 1996) (Anderson et al. 1991). 

Collectively, these data show that a group of five surface antigens can clearly discriminate 

between psoriasis patients and healthy controls, with platelet antigens as major 

representatives in the psoriasis PMN signature.  
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4.2. Circulating PMNs directly interact with platelets in psoriasis 

4.2.1. Platelet-PMN aggregates are found in blood from psoriasis patients 

As shown before, PCA revealed that the signature of circulating psoriasis PMNs was mainly 

dependent on five surface antigens, namely CD6, CD11c, CD41, CD61 and CD235ab. As PMN 

infiltration of the skin is a hallmark of psoriasis, it was believed that one or more of those 

antigens could potentially explain PMN skin homing. First, the main focus was on CD41 and 

CD61 (as known platelet antigens) surface expression of psoriasis PMNs.  

According to the literature, platelet (PLT)-leukocyte aggregate formation is often observed in 

an inflammatory background (Habets et al. 2013). They also seem to play a role in various 

experimental in vivo models for inflammatory skin diseases e.g. Atopic dermatitis (AD) 

(Tamagawa-Mineoka 2015). PMN-PLT aggregates are additionally frequently shown to form 

in whole blood which was also used for this study. Chanarat and Chiewsilp furthermore found 

that PMN-PLPT aggregates can be diminished by Ficoll density separation (Chanarat and 

Chiewsilp 1975). To investigate whether PMNs of psoriasis patients de novo expressed platelet 

surface antigens or whether platelets bound to PMNs, whole blood derived- and Ficoll-

separated PMNs and PBMCs from additional psoriasis patients and healthy controls were 

analyzed. In Figure 4.3A, the initial MFIs from the LEGENDScreen™ are shown again. There, it 

was observed that CD41 and CD61 expression was higher on psoriasis PMNs compared to 

PMNs from healthy controls, but this did not reach statistical significance. When investigating 

Figure 4.2: The PMN signature of psoriasis 
patients is defined by five surface antigens 

Principal component analysis of PMN 
surface antigens for healthy donors (red) 
and psoriasis patients (grey). The top 
significant antigens (based on nominal p-
value <0.1) which contribute to a 
separation of patients and healthy 
donors (n=5). Represents combined data 
(mean+SD) from ‘n’ biological replicates 
(each dot represents one donor). 
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CD41 and CD61 levels on more patients and healthy controls in unmanipulated whole blood, 

it was further observed that more PMNs in the patient cohort were positive for CD41 and 

CD61 compared to PMNs from healthy controls (Figure 4.3B). Interestingly, the amounts of 

CD41 and CD61 positive PMNs in the psoriasis cohort after Ficoll separation were decreased, 

resulting in comparable antigen levels as observed for healthy controls (Figure 4.3C). Similar 

results were obtained when investigating monocytes (Figure 6.8A-C).  

These results indicate that the platelet-antigen signature previously observed in the 

LEGENDScreen™ is due to increased platelet-PMN aggregate formation in the blood of 

psoriasis patients, rather than de novo expression of platelet antigens by psoriasis PMNs. 

 

 
 
 
Figure 4.3: Platelets cover the surface of psoriatic PMNs in whole blood 

(A) Mean fluorescence intensity (MFI) extracted from the LEGENDscreen™ for CD41 (upper panel) and CD61 
(lower panel) (healthy donor (HD) and psoriasis patient (PsorP); n=5 each). FACS analysis of CD41- or CD61-
positive PMNs (defined as CD15+CD66b+ and CD41+ or CD61+) analyzed in HDs or PsorPs (HD n=7, PsorP n=5) in 
whole blood samples (B) or Ficoll density gradient centrifugation (C). % of positive PMNs is shown. A-C represent 
combined data (mean+SD) from ‘n’ biological replicates, each dot represents one donor. * p<0.05 according to 
two-way ANOVA followed by Tukey’s multiple comparisons correction (A) and Mann-Whitney test (B, C). 
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4.2.2 PMN-platelet aggregate formation can be confirmed by fluorescence microscopy and is 

observed in blood of IMQ-treated mice 

Next, PMN-platelet aggregate formation was further confirmed using fluorescence 

microscopy. Whole blood from psoriasis patients was used and PMNs and platelets were 

labeled with CD66b and CD41 respectively. Indeed, small anucleated CD41+ cells adjacent to 

the surface of CD66+ PMNs (Figure 4.4A) were frequently observed. Interestingly, most of 

those CD41+ cells on the surface of CD66b+ PMNs also expressed the platelet activation marker 

CD62P (P-selectin, Figure 4.4B). This observation is in good agreement with previous studies 

(Sreeramkumar et al. 2014), where PMNs interacted with activated CD62P+ platelets at the 

sites of inflammation. This finding further confirms that the platelet-signature of psoriasis 

PMNs found via the LEGENDScreen™ was due to increased numbers of aggregates which 

formed more prominently between PMNs and activated platelets in the blood of patients. 

Unfortunately, this analysis does not allow for establishing causality, i.e. answer whether 

psoriasiform disease activity and PMN-PLT aggregation were linked or merely coincidental. To 

probe for a direct link in vivo, the relationship between PMN-PLT aggregates and psoriatic 

inflammation was investigated in an Imiquimod (IMQ)- induced model of psoriasiform skin 

inflammation in mice (with the help of Nate Archer, group of Lloyd Miller, Baltimore, USA). In 

this model, application of the TLR7 agonist IMQ induces skin inflammation with PMN 

infiltration mimicking the human disease (Gilliet et al. 2004).  

Interestingly, similar results could be obtained in the in vivo mouse model as in the human 

system: Even though inflammation was primarily induced in the skin, more PMN-platelet and 

more monocyte-platelet aggregates were found in the circulation of IMQ-treated mice 

compared to mock-treated controls (Figure 4.4C and D). This suggests, that aggregates of 

PMNs and platelets in the blood of both psoriasis patients and psoriasis-affected mice could 

be a result of a feedback loop of inflammation in the skin 
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4.3. Platelets are found in psoriatic lesions 

Previous experiments already showed that more PMN-platelet aggregates are found in the 

blood of psoriasis patients. Next, it was investigated if total platelet counts in general were 

elevated in psoriasis patients. Indeed and in keeping with literature (Unal 2016), more 

platelets in general in the blood of patients (62% more than for the healthy controls, Figure 

4.5A) were found. This increased number of PLTs might thus facilitate the formation of PMN-

PLT aggregates in the blood. Further, it was previously reported that platelets can help PMNs 

to infiltrate sites of inflammation (Sreeramkumar et al. 2014) (for psoriasis this would be the 

skin). Therefore, it was further investigated whether platelets may even be detectable in 

psoriatic lesions and potentially in proximity with PMNs. Skin sections of psoriasis patients and 

healthy controls were stained for PMNs using an anti-neutrophil elastase (NE) antibody and 

for platelets with anti-CD41 and -CD42b (only CD42b shown) antibodies. Surprisingly, platelet 

aggregates were found in psoriatic lesions (Figure 4.5B, quantified in D). In samples with high 

numbers of PMNs, platelets could additionally be found in close proximity to PMNs (Figure 

4.5C, quantified in E). Conversely, neither PMNs nor platelets were found in healthy skin 

samples (Figure 4.5B and C).  

Based on these findings, it was hypothesized that platelets infiltrate lesional skin, mainly 

together with PMNs. Additionally, it appeared conceivable that PMNs require the help of 

platelets. These results are in good agreement with previous findings, where PMNs needed 

platelets to infiltrate inflamed venules via interaction of P-Selectin (CD62P) on platelets and 

P-selectin glycoprotein ligand 1 (PSGL-1) on PMNs (Sreeramkumar et al. 2014). 

Figure 4.4: PMN-platelet aggregates can be found in blood from psoriasis patients and in IMQ treated mice 

(A) Fluorescence microscopy of PMNs in a PsorP whole blood sample stained as indicated (scale bar = 10 µm), 
using CD66b AF647 (red) to label PMNs and CD41 PE (green) for platelets. (B) as in (A) but additional staining with 
CD62P AF488 (green, and CD41 PE depicted in yellow) as platelet activation marker is shown. The nucleus was 
stained in both pictures using Hoechst33342 (blue). (C and D) Mean number of PMN-platelet (C) or monocyte-
platelet (D) aggregates comparing naïve (day 0) and IMQ-treated (day 5) mice (n=10 each). C and D represent 
combined data (mean+SD) from ‘n’ biological replicates (each dot represents one mouse). In A, B one 
representative donor is shown. * p<0.05 according to unpaired Student’s t-test (C, D). The in vivo mouse 
experiments were performed by Nate Archer. 
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Figure 4.5: Platelet aggregates can be found in psoriatic lesions 

(A) shows total platelet counts in HDs and PsorPs (A, n=52 vs 53). (B) Fluorescence microscopy analysis of skin 
sections stained with anti-NE (PMNs, red) (subsequent staining with anti-mouse AF594 secondary antibody), anti-
CD42b (platelets, green) (subsequent staining with anti-goat AF488 secondary antibody) and Hoechst33342 
(nucleus, blue), from healthy skin or psoriatic lesions (n=12 patients and 3 healthy controls, scale bar = 20 µm) 
and quantified in (C). (D) performed like B but showing PMNs and platelets in close proximity in psoriatic lesions, 
quantified in (E). AF = autofluorescence, BV = blood vessel. Arrowheads indicate platelet and PMN co-localization 
(B and C). A, C and E represent combined data (mean+SD) from ‘n’ biological replicates (each dot represents one  
donor or mouse). In B and D representatives of ‘n’ biological replicates (donors) are shown (mean+SD). * p<0.05 
according to an unpaired Student’s t-test (A) or Mann-Whitney test (C, E).  

 

4.4. Depletion of platelets in vivo ameliorates skin pathology 

In order to get a better understanding of PMN and platelet infiltration of the skin and whether 

both cell populations are needed for psoriasis-like skin inflammation, collaboration partners 

performed PMN or platelet depletion in the IMQ-induced mouse model of psoriasiform skin 

inflammation. Final analysis and evaluations were further performed in our laboratory. 

4.4.1. Platelet depletion reduces ear swelling and epidermal thickness 

First, previous findings of Sumida et al. (Sumida et al. 2014) were re-evaluated. They showed 

that systemic depletion of PMNs using an anti-Ly6G antibody reduced ear swelling in the IMQ-

induced mouse model of psoriasiform skin inflammation. As expected, significantly reduced 

ear swelling was observed in the PMN-depleted and IMQ-treated mice compared to isotype-

treated control mice (Figure 4.6A). These results show that PMNs are relevant for the skin 

pathology in the IMQ-induced mouse model which resembles findings in the human situation 

(where PMN depletion ameliorates skin inflammation) (Ikeda et al. 2013). Next circulating 

platelets were depleted using an anti-CD42b antibody (Elzey et al. 2003) one day before first 

IMQ application and on day 4 of IMQ treatment. Unexpectedly, ear swelling was greatly 
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reduced in the PLT-depleted mice, even to a greater extent than seen for PMN depletion 

(Figure 4.6B). In H&E staining of IMQ-isotype treated skin samples, infiltration of leukocytes 

in the dermis of the mice, as well as epidermal thickening was observed. However, when 

investigating the skin of anti-CD42b treated mice, epidermal thickening was strongly reduced, 

almost resembling naïve skin (Figure 4.6C, quantification in D).  

These results suggest that platelets are indeed of great importance for the psoriatic 

phenotype in IMQ-induced psoriasiform skin inflammation, because systemic platelet 

depletion resulted in strong amelioration of skin pathology. 
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4.4.2. Platelet depletion diminishes PMN-platelet aggregates in blood and inhibits PMN 

infiltration of the skin 

Finally, it was investigated whether platelet depletion could potentially prevent not only 

platelets but also PMNs to infiltrate the inflamed skin. After showing that platelet depletion 

in circulation was very efficient (Figure 4.7A), it could be confirmed that concomitantly PMN-

platelet aggregates in the blood were strongly reduced (Figure 4.7B). Interestingly, the total 

numbers of free PMNs in the blood of platelet-depleted mice were increased (Figure 4.7C). 

This strengthened aforementioned hypothesis that PMNs and other cells need platelets to 

infiltrate the site of inflammation. In this case, the platelets were missing to guide PMNs to 

infiltrate the skin (the site of inflammation) and therefore PMNs got “trapped” and 

accumulated in the blood (Figure 4.7C). To prove this hypothesis, skin biopsies of platelet-

depleted and isotype- treated mice were stained with anti-MPO (PMNs) and anti-CD41 

(platelets) in order to investigate whether PMN skin infiltration was affected by systemic 

platelet depletion. Interestingly, vast amounts of platelet aggregates, often in close proximity 

to PMNs in IMQ-isotype treated mouse skin, were observed. By contrast, in the platelet- 

depleted mice, neither platelet aggregates nor PMNs were detectable (Figure 4.7D and 

quantified in E and F).  

Taken together, these findings indicate that PMN skin infiltration is depended on platelets in 

an IMQ-induced psoriasis mouse model. Platelet depletion inhibits PMN-PLT aggregates in 

blood and PMN infiltration of the skin and this greatly ameliorates skin inflammation. Thus, it 

could be speculated that in humans, inhibition of platelet-aggregation in blood can also 

ameliorate skin pathology in psoriasis. This may potentially be achieved as easy as the daily 

intake of aspirin. 

 

 

Figure 4.6: Platelet depletion decreases ear swelling and epidermal 
thickening in an IMQ mouse model of psoriasiform skin inflammation 

(A-B) IMQ induced psoriasiform skin inflammation in BL/6 mice. Ear 
thickness (mm x 0.01) was measured after PMN depletion by anti-Ly6G 
(A) or platelet depletion by anti-CD42b (B) or respective control 
antibodies (n=5 in each group). (C) H&E staining of skin from mice treated 
with either anti-CD42b or isotype control (anti-CD42b n=4, isotype 
control n=5, scale bar = 180 µm). Quantification is shown in D. A, B, D 
represent combined data (mean+SD) from ‘n’ biological replicates (each 
dot represents one mouse). In C one representative of ‘n’ biological 
replicates (mouse biopsies) is shown * p<0.05 according to two-way 
ANOVA (A, B), unpaired Student’s t-test (D). The in vivo mouse 
experiments were performed by Nate Archer. 

D 



Results part II 
 

81 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

  

Figure 4.7: Platelet depletion diminishes PMN-platelet 
aggregates in blood and skin 

(A-C) Flow cytometry analysis of total platelet counts on 
day 5 of IMQ treatment (A), PMN-platelet aggregates (B) 
and free PMNs (C) of blood from IMQ-treated animals 
with anti-CD42b antibody or isotype control (n=10 each). 
(D) Representative immunofluorescence staining from 
anti-CD42b and isotype-treated mouse skin (anti-CD42b 
n=4 and isotype control n=5, scale bar = 20 µm), stained 
with anti-MPO (PMNs, red) (with subsequent anti-goat 
AF594 secondary antibody), anti-CD41 (platelets, green) 
(with subsequent anti-rat AF488 secondary antibody) 
and Hoechst33342 (nucleus, blue) and the quantification 
of platelet aggregates in the skin (E) and platelets and 
PMNs in close proximity to each other (F) is shown. 
Arrowheads indicate close proximity of platelets and 
PMNs. A-C and E-F represent combined data (mean+SD) 
from ‘n’ biological replicates (each dot represents one 
mouse). In D one representative of ‘n’ biological 
replicates (mouse biopsies) is shown * p<0.05 according 
to Mann-Whitney test (A-C) or unpaired Student’s t-test 
(E, F). 
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5. Discussion 

5.1. Neutrophil extracellular trap-associated RNA (naRNA) and LL37 complexes enable 
self-amplifying inflammation in psoriasis 

Psoriasis is an autoinflammatory disease of the skin and psoriatic skin lesions are characterized 

by leukocyte infiltration, dominated by PMNs. However, the triggers for inflammation and 

immune cell infiltration of the skin are still unknown. 

The group of Michel Gilliet extensively showed that pDCs respond to complexes consisting of 

either RNA or DNA and the antimicrobial peptide LL37 with the production of type I 

interferons. Whereas protection from nucleases and uptake was promoted by LL37, signaling 

depended on nucleic acid sensing by endosomal TLRs, namely TLR7 for RNA- and TLR9 for 

DNA-LL37 complexes (Ganguly et al. 2009) (Lande et al. 2007). The authors claimed that these 

findings might explain an early inflammatory event in psoriasis. Although this mechanism of 

immune activation in psoriasis is highly plausible and congruent with the observed IFN 

signature in psoriatic skin (Yao et al. 2008), this scenario relies on a source of the 

immunostimulatory mediators – DNA, RNA and LL37 - that has been unknown. PMNs are the 

major producers (Sorensen et al. 1997) of LL37 and can also release nucleic acids by NETosis 

(Brinkmann et al. 2004). Also, PMN skin infiltration is a hallmark of psoriasis (Griffiths and 

Barker 2007) and PMNs outnumber pDCs both in human blood and in the psoriatic lesions. 

Additionally, PMNs are the first immune cells that respond to insult or inflammation and 

produce considerable amounts of pro-inflammatory cytokines and chemokines which then 

attract further immune cells to the sites of inflammation.  

Therefore, it seemed plausible – but had not been investigated - that PMNs might be activated 

by complexes of nucleic-acids and LL37, and subsequently release LL37 and nucleic acids as 

parts of NETs as well as cytokines, thus providing the prerequisites for progredient immune 

infiltration and activation (e.g. including pDCs). Several observations made in the process 

warrant further discussion. 

5.1.1 LL37 is an antimicrobial peptide which can act as a double-edged sword 

The antimicrobial peptide LL37 is upregulated upon skin invasion by pathogens and exhibits 

antimicrobial activity against a broad spectrum of infectious species e.g. bacteria, viruses and 

fungi (Schauber and Gallo 2007).  

LL37 is also overexpressed in psoriatic skin and acts as a double-edged sword there: on one 

hand it protects patients from superinfections (Marcinkiewicz and Majewski 2016) on the 

other hand it can also induce the uptake of self-derived DNA or RNA that in turn causes 

inflammatory responses in immune cells (Lande et al. 2007). Complexed by LL37, nucleic acids 

are transported into immune cells (Zhang et al. 2010) and bind to nucleic acid sensing 

receptors inducing activation of respective immune cells. In line, activation of PMNs is not 

induced by free RNA or DNA that do not enter PMNs (Figure 3.1 and Figure 3.2). This is in good 
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agreement with previous results, showing that synthetic endosomal TLR ligands like R848 

(TLR7/8 agonist) or CpG (TLR9 agonist) reach the endosomes and induce robust immune 

stimulation via endosomal TLRs while RNA and DNA do not (Kuznik et al. 2011). Notably, RNA 

but not DNA complexed to LL37 induces substantial cytokine release from PMNs (Figure 3.1). 

Interestingly only at very high concentrations of LL37 show toxicity (Wang et al. 1998). Thus, 

it can also be hypothesized that LL37 (in lower concentrations) can function as a transfection 

reagent to deliver (negatively charged) membrane-impermeable components into cells. 

Indeed, LL37 has been used for transfection and improves transfection efficiency of e.g. 

nanoparticles. In this setup LL37 even had two positive effects: it enhanced gene delivery and 

induced an antibacterial effect, thus accelerating wound healing (Wang et al. 2018). 

Interestingly, LL37 was also already used to deliver siRNA into cells. Although, transfection 

efficiency was largely dependent on cell type, delivery was successful in a variety of different 

cells (Yalcinkaya 2013). Importantly, the transfer-efficiency is largely sequence-dependent 

because e.g. CRAMP, the mouse ortholog of LL37 (Gallo et al. 1997), was less potent in binding 

and delivering of DNA into cells (Singh et al. 2013). The D-enantiomer of the human LL37 

peptide however, binds and delivers DNA into cells but does not induce activation of 

endosomal DNA-sensing TLRs (Gestermann et al. 2018). Hence, transfection by the D-

enantiomeric form of LL37 apparently is favorable to avoid induction of undesired immune 

modulation.  

Of note, LL37 is also implicated in immune diseases of the skin different from psoriasis e.g. 

Atopic Dermatitis (AD) and Rosacea. In AD, some patients suffer from severe superinfections 

with bacteria from different species. In contrast to psoriasis, AD patients show defective 

upregulation of several antimicrobial peptides, including LL37, causing insufficient clearance 

of bacteria (Reinholz et al. 2012). In Rosacea however, (affects the centrum of the face, i.e. 

cheeks and nose) processing of the precursor hCAP18 into its activate form, LL37, and also 

smaller peptides, is elevated due to enhanced activity of cutaneous proteases. The protease 

activity is increased because of MAMP-sensing by TLR2 in keratinocytes in skin lesions 

(Reinholz et al. 2012). In skin lesions of Rosacea patients Demodex mites are frequently found. 

These mites shed chitin (a polysaccharide) from their exoskeleton (Georgala et al. 2001) which 

serves as MAMP for TLR2 (Fuchs et al. 2018) and hence induces increased processing of 

hCAP18. The interplay of activated keratinocytes with increased protease activity causing 

fragmentation of hCAP18 and hence the overexpression of LL37 and TLR-mediated immune 

reaction could elicit the pathogenesis of rosacea (Reinholz et al. 2012).  

These examples show that balanced expression and lytic activity of LL37 is pivotal for efficient 

host defense against numerous pathogens, whereas the deregulation of LL37 is crucial for the 

pathogenesis of different autoimmune diseases of the skin. 
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5.1.2. Bacterial and fungal RNA might serve as inflammatory triggers in psoriasis 

This study shows that not only synthetic RNA but also human (self) RNA and bacterial RNA 

bind to LL37 and induce immune response of PMNs (see Figure 3.3). Bacterial RNA is generally 

an underestimated stimulus for immune cells (Eigenbrod and Dalpke 2015) although for 

certain bacteria such as Streptococcus pyogenes (S.pyogenes) bacterial RNA is the major driver 

of immune response (Eigenbrod et al. 2015) (Eigenbrod and Dalpke 2015). Given the fact that 

infections with Streptococci (Griffiths and Barker 2007) are associated with psoriasis guttata, 

it can be imagined that in this case sensing of bacterial RNA might even drive infection-induced 

psoriasis, especially because PMNs can provide LL37 for complex formation in an early stage 

of immune defense. Furthermore, it is known that LL37 lyses bacteria (Kahlenberg and Kaplan 

2013) inducing release of bacterial RNA which in turn could form complexes with LL37 and 

induce immune stimulation (Figure 3.3B and Figure 5.1). 

Interestingly, psoriasis patients show altered commensal skin microbiota (Alekseyenko et al. 

2013) and the abundance of certain bacteria, including Streptococci, is enhanced in psoriatic 

skin. The present data show that bacterial RNA in complex with LL37 robustly activates 

immune response via endosomal TLRs (TLR8 in humans and TLR13 in mice; Figure 3.11). 

Similarly, RNA from Archaeon Methanosphaera stadtmanae (a member of the human gut 

microbiota) induces TLR8-dependent immune reaction (Vierbuchen et al. 2017). These 

findings imply that RNA from commensals can also serve as an inflammatory mediator, 

especially when the composition of the microbiota is changed or dysregulated e.g. as found in 

psoriasis patients.  

Also, commensal fungi like Malassezia are associated with skin diseases like atopic dermatitis 

or dandruff (Gioti et al. 2013). Furthermore, RNA from Malassezia is packed in extracellular 

nanovesicles which can in turn induce immune reactions in human keratinocytes and 

monocytes (Johansson et al. 2018). Interestingly, increased Candida colonization (pathogens 

and commensals) is found on the skin of psoriasis patients and therefore it had been proposed 

that fungal infections might trigger psoriatic skin inflammation (Pietrzak et al. 2018). 

Consequently, it would be interesting to investigate whether fungal RNA binds to LL37 and 

induces immune reactions in PMNs. It can be hypothesized that also for fungi not only 

pathogens but also commensals in a dysregulated skin microbiome, might provide RNA for 

RNA-LL37 complexation resulting in immune cell activation.  

Furthermore, as RNA modifications modulate immunogenicity (Eigenbrod and Dalpke 2015) 

(Freund et al. 2019) and as these RNA modifications differ between species (Jaffrey 2014) 

(Edelheit et al. 2013) and strains it would be highly interesting to investigate RNA from 

different bacterial and fungal strains to identify the differences in LL37 binding and their 

potential to induce immune activation. Alternatively, the influence of RNA modification on 

immunogenicity could also be tested systematically by the use of synthetic RNA with known 

modifications. By using synthetic modified RNA, it would be possible to quantitatively 
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correlate sequence specific effects as well modulatory interplay of different RNA 

modifications.  

Alternatively, bacterial or fungal RNA might also enter the host in psoriasis via the 

compromised barrier function of the skin of psoriasis patients (Ye et al. 2014). This would 

further facilitate the invasion of bacteria and fungi (RNA), either from infection or of 

commensal origin. First mechanisms to combat the invaders might then trigger an 

inflammatory feedback loop of PMN activation in psoriasis (Figure 5.1). 

5.1.3. Cytokines released by PMNs in response to RNA-LL37 complexes are associated with 
psoriasis and act as chemo-attractants  

A variety of cytokines and chemokines are upregulated in psoriasis, most importantly TNF-α, 

type I interferons, IL-17 and members of the IL-1 cytokine family (Baliwag et al. 2015). A 

massive release of type I interferons is induced by complexes of RNA or DNA with LL37 from 

pDCs (Lande et al. 2007) albeit most experiments to date have investigated this in an in vitro 

context. As pDCs produce IFN-α but do not release other pro-inflammatory cytokines, e.g. TNF 

or IL-1β which are essential for immune cell infiltration and polarization of T cells (Ghoreschi 

et al. 2007), the present study investigated whether RNA-LL37 complexes induce the release 

of such non-IFN cyto- and chemokines from PMNs. Indeed, PMNs release a variety of pro-

inflammatory cytokines in response to stimulation with RNA-LL37 complexes, namely TNF-α, 

IL-6 and IL-1β (Figure 3.4). Although the amounts of cytokine release are low, one could argue 

that the vast amount of PMNs in psoriatic lesions might be efficient to accumulate a fulminant 

inflammatory reaction and induce activation of other immune cells. Also, it can be 

hypothesized that immuno-modulatory therapies like anti-TNF antibodies (Eberle et al. 2016) 

likely intervene already with a very early inflammatory event, targeting downstream signaling 

of PMNs.  

Interestingly, two additional chemokines are released by PMNs in response to RNA-LL37 

complexes: namely IL-16 and MIP-1β. IL-16 functions as a chemoattractant for CD4+ 

lymphocytes (Center and Cruikshank 1982) and MIP-1β is a potent chemokine for a variety of 

immune cells (Menten et al. 2002). The release of IL-16 and MIP1β by PMNs has only scarcely 

been studied. This study investigated whether low amounts of IL-16 and MIP1β (as released 

by PMNs) can attract other immune cells, therefore transwell migration assays were 

performed. The transwell experiment showed migration of CD4+ T cells, CD8+ T cells and CD14+ 

monocytes (Figure 3.5), but also of B cells, classical DCs (cDCs) and even pDCs (data not shown) 

towards IL-16 and MIP-1β. This result fits to previous findings showing that MIP-1β secretion 

by PMNs caused migration of dendritic cells (Chiba et al. 2004). Interestingly, lower 

concentrations of both chemokines more efficiently attract other immune cells to the lower 

compartments of the transwell chambers (Figure 3.5). In line, a non-linear relationship for 

dose and response is also described for other cytokines (Atanasova and Whitty 2012). Of note, 

it was also observed that RNA-LL37 complexes alone act as chemoattractant for CD4+ T cells. 

This is in agreement with previous findings that show a chemo-attractive effect of LL37 on 
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neutrophils and eosinophils (Tjabringa et al. 2006). It would be interesting to investigate in 

detail which immune cells directly respond to RNA-LL37 as chemokine. Here, purified e.g. CD4+ 

T cells could be used to investigate whether they actively migrate towards RNA-LL37 

complexes or whether the observed effect was due to activated cells in the PBMC population 

which released chemokines leading to subsequent migration of CD4+ T cells. 

One could have expected to detect IL-17 production by PMNs in the Luminex screen, since IL-

17 was identified as a key driver in the pathogenesis of psoriasis and anti-IL-17 therapies are 

clearly beneficial for psoriasis patients (Eberle et al. 2016). IL-17 is principally produced by 

Th17 cells but it was observed that PMNs contained IL-17 in the skin of psoriasis patients (Lin 

et al. 2011). Recently, it was shown that human PMNs (stimulated for 20 hours after isolation) 

released IL-17 upon stimulation of TLR8 by R848 (Tamassia et al. 2019). However, production 

of IL-17 by human PMNs in response to RNA-LL37 complexes or other TLR ligands e.g. LPS or 

R848 (Luminex analysis, data not shown) was not observed in this study. Of note, only PMNs 

from healthy donors, which were stimulated for 4 hours, were tested, while in other studies 

longer periods for cell stimulation were used (up to 20 hours). Also, IL-17 release from PMNs 

in vitro could not be reproduced by the identical group who previously reported IL-17 

production by PMNs (Tamassia et al. 2018). Therefore, IL-17 production by human PMNs is 

not proven yet and still remains controversial.  

Importantly, blood-derived PMNs from psoriasis patients (compared to healthy donors) 

release higher amounts of IL-8 and MIP-1β in response to stimulation with RNA-LL37 

complexes (Figure 3.6). However, it has to be mentioned that only three patient samples were 

measured so far and for further confirmation more patients have to be recruited for this study. 

Nevertheless, in this experimental setting pre-activation of PMNs can be excluded which was 

investigated by the absence of CD62L shedding (example see Figure 6.1). Both, PMNs from 

healthy controls and psoriasis patients were not pre-activated (no CD62L shedding) and 

cytokine release in response to control TLR ligands like LPS was comparable between the two 

groups (Figure 3.6B and D). Hence, an unspecific cytokine release, due to pre-activated PMNs 

(e.g. due to technical issues) can be excluded. The superior response of PMNs from psoriasis 

patients to RNA-LL37 complexes could be explained by enhanced expression of endosomal 

TLRs which could bind RNA in PMNs from patients. Hence, comparative analysis of TLR 

expression levels in PMNs from healthy and psoriatic individuals is warranted. This could be 

achieved by qPCR on a mRNA level or Western blot on a protein level. Alternatively, the 

enhanced response of PMNs might also result from increased production of LL37 in psoriasis 

PMNs which can complex and stimulate further PMNs. Elevated LL37 baseline secretion by 

PMNs from psoriasis patients was found (Figure 3.6E). If RNA is also released by psoriatic 

PMNs (faster as compared to healthy controls), e.g. by cell death (NETosis) this would provide 

both immunomodulatory stimuli, i.e. LL37 and RNA, resulting in autoactivation of PMNs. 
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5.1.4. RNA-LL37 complexes trigger the release of RNA-and LL37-containing NETs  

The present study shows that LL37 shuttles RNA into cytosolic compartments (Figure 3.2 and 

Figure 3.3) and also that RNA-LL37 complexes induce NET formation (Figure 3.7). NETs have 

also been detected in blood and skin of psoriasis patients (Hu et al. 2016), although it has to 

be mentioned that in tissue sections a clear demonstration is difficult. The reason for NET 

release, however, still remains unidentified. Therefore, RNA-LL37 complexes as potential 

triggers for NETs in PMNs were further investigated (in the context of psoriasis).  

This study shows that LL37 alone induces NETosis in a NE-specific substrate assay (Figure 

3.7A). However, it is still debated whether NE is necessary for the induction of NETosis because 

PMNs from mice lacking NE still induce robust NET release (Martinod et al. 2016). Therefore, 

NET formation was further investigated by fluorescence microscopy. There, RNA-LL37 

complexes robustly induce NETs which in turn contain more LL37 and surprisingly also RNA 

(Figure 3.7 and Figure 3.8). It might be suggested that this RNA and LL37 de novo form 

complexes and induce the activation of further PMNs and the subsequent release of 

proinflammatory cytokines and more RNA and LL37 by NET formation. This might lead to a 

vicious cycle of PMN-activation, inflammation and attraction of other immune cells towards 

sites of inflammation. Therefore, this inflammatory loop might provide a very early event in 

the formation of psoriatic lesions (see Figure 1.6 and Figure 5.1 and explained below in further 

detail).  

Importantly, psoriatic lesions contain massive amounts of RNA which is not only found in 

keratinocytes but also in skin infiltrating blood cells (see Figure 3.9A-C). The excessive amounts 

of RNA could potentially originate from hyperproliferating keratinocytes in psoriatic lesions 

(more mRNA is produced). Another possible explanation for these large quantities of RNA 

might be that LL37, which is overexpressed in psoriatic lesions, stabilizes and protects RNA 

from degradation (Ganguly et al. 2009). Hence, RNA from dying cells (keratinocytes or immune 

cells) might persist in psoriatic lesions, whereas it is quickly degraded in healthy individuals. 

In addition, excessive amounts of RNA could potentially also originate from NETting PMNs that 

infiltrate the inflamed lesions (Hu et al. 2016). NETosis is very difficult to detect in the skin, 

because most PMNs and also NETs are exclusively seen in lesions that developed very recently, 

shortly before biopsy. Also, because of limitations in immunofluorescence microscopy (in 

terms of magnification and resolution), it was difficult to ascertain if DNA or RNA was 

detectable intra-or extracellularly. Nevertheless, potential NET formation was observed by 

extracellular NE staining in some biopsies, but this was not further analyzed due to limited 

numbers of patient samples and histone-specific antibodies, to detect NETs in tissues were 

not available in our group at the time of afore described experiments. Staining and subsequent 

analysis of NET formation in skin will be performed as soon as further patient samples are 

available. Furthermore, in ongoing in vivo experiments bacterial RNA-LL37 complexes are 

injected intradermally into ears of mice (Li et al. 2012) and the skin is analyzed for recruitment 

of and NET release by PMNs. These results will shed light on the relevance of the 
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aforementioned mechanism. Moreover, this might prove the hypothesis that RNA-LL37 

complexes are physiologically relevant for driving PMN- and NET-mediated inflammation in 

psoriasis. 

Importantly, the molecular and immunological relationships described above also provide an 

explanatory approach for the Koebner phenomenon. Due to a small injury, e.g. keratinocytes 

die or PMNs infiltrate the skin to prevent invasion of bacteria and provide inflammatory 

mediators. PMN-derived LL37 lyses bacteria which in turn induces the release of bacterial RNA 

and subsequent complex formation with LL37. RNA-LL37 complexes activate PMNs which 

release pro-inflammatory cytokines and chemokines to attract other immune cells to the sites 

of initial tissue damage. Furthermore, activated PMNs undergo NETosis and NETs contain 

more RNA and LL37 which form complexes and subsequently stimulate more PMNs. This 

mechanism might induce a vicious cycle of inflammation, subsequent chronification and 

development of lesions in places of minor injuries or trauma of the skin (see Figure 5.1). 

5.1.5. naRNA: NET-associated RNA as a novel component of NETs 

A central premise for this study was the abundance of RNA in PMA- and also RNA-LL37-

induced NETs (Figure 3.7 and Figure 3.8). The presence of RNA in NETs was evidenced by two 

independent methods, i.e. using the RNA-specific dye SYTO RNAselect and a RNA-specific 

antibody, (Figure 3.7 and Figure 3.8). This NET-associated RNA was termed “naRNA” for future 

references. Intriguingly, the possibility that RNA could be a NET component was so far not 

considered, despite of the fact that more than 1900 publications (Boeltz et al. 2019) are 

dealing with NETs. To our knowledge, this is the first study that explicitly acknowledges RNA 

as a new NET component.  

More importantly, the present study uncovers naRNA as a previously unrecognized, new 

immunostimulatory mediator (Figure 3.8) that triggers inflammation. The fact that isolated 

NETs from PMA- and RNA-LL37 (containing further naRNA and LL37) activated PMNs induced 

NET release from other PMNs (Figure 3.10) and the abundance of RNA and LL37 in psoriatic 

skin (Figure 3.9) demonstrates a potential physiological role of naRNA in the pathogenesis of 

psoriasis. Assumedly, this is a very early inflammatory event in psoriasis (see Figure 5.1 and 

described in 5.1.4.). In this scenario RNA-LL37 complexes are the first element for a spiral of 

increasing inflammatory responses. Because of the fact that this proposed new role of RNA-

LL37 in the initiation of psoriatic lesions has far-reaching consequences for our understanding 

of psoriasis, rigorous testing of the hypothesis with additional control experiments are 

mandatory, e.g. in experiments using NET contents from RNA-LL37 or PMA stimulated PMNs 

for induction of further PMN responses. In the current setting the presence of the original 

stimulus, i.e. PMA or RNA-LL37 from isolated NETs cannot completely be excluded.  
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Figure 5.1: Complexes of naRNA and LL37 might drive a self-amplifying inflammatory loop in psoriasis 

① A small injury of the skin weakens the skin barrier and facilitates the invasion of bacteria. PMNs infiltrate the 
skin to combat the invader. ② They release the antimicrobial peptide LL37 in response to bacterial invasion. 
LL37 induces lysis of bacteria and subsequent ③ release of bacterial RNA. ④ Bacterial RNA in turn forms 
complexes with LL37. ⑤ These complexes enter PMNs and induce robust TLR8 signaling. Pro-inflammatory 
cytokines and chemokines released by activated PMNs induce the infiltration of other leukocytes. ⑥ TLR8-
dependent RNA-LL37 sensing also drives NET release. ⑦ These NETs contain NET-associated-RNA (naRNA) and 
further LL37 which form complexes and induce the activation of more PMNs. This highlights a TLR-mediated 
sensing mechanism for RNA-LL37 complexes in PMNs, inducing a self-propagating vicious cycle of inflammation 
and NET-associated RNA (naRNA) as a key driver of inflammation. 

 

Of note, PMNs usually produce only little amounts of RNA (Tecchio et al. 2014) and RNA is 

normally easily degraded by RNases. However, two RNA-specific staining methods i.e using 

SYTO RNAselect and a Ψ-U antibody both detected considerable amounts of de novo 

synthetized RNA in PMA- and RNA-LL37-induced NETs (Figure 3.8). When using, RNase A, the 

RNA was robustly erased but the DNA staining (Hoechst) stayed unaffected (Figure 3.8). 

Controversially, the group of Klaus T. Preissner (University of Giessen) found that a variety of 

different RNases are present in NETs (personal communication) (Noll et al. 2017). There, the 

RNases (RNase 1 and 5) originate from PMNs, probably as a mechanism to prevent the host 

from overshooting immune reactions by extracellular RNA. Interestingly, RNase 7, a member 
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of the RNase A family, is also secreted by keratinocytes as an antimicrobial peptide. 

Additionally, RNase 7 is overexpressed in psoriatic lesions (Kopfnagel et al. 2018) and 

functions similar to LL37. It binds DNA and promotes IFN-α release by pDCs. However, the 

mechanism of the antimicrobial activity of RNase 7 is incompletely understood as the 

bactericidal function of RNase 7 is independent of its ribonuclease activity; mutants without 

functional ribonuclease still show effective bacterial killing (Rademacher et al. 2016). Also, 

RNase 7 is only secreted on the skin surface which only protects from microbial growth but 

not from invasion (Simanski et al. 2012). Thus, it is likely that self-derived RNA or bacterial 

RNA can still enter the host (due to a small injury) and induce immune responses, even in the 

presence of RNase 7. Moreover, it can be suspected that LL37 (as NET content) protects naRNA 

from degradation by RNases (Ganguly et al. 2009). In line, LL37 was shown to protect DNA 

from degradation by nucleases derived from bacteria. Hence, NETs containing LL37 are more 

robust in trapping and killing of bacteria (Neumann et al. 2014). This potentially also applies 

to naRNA. 

Furthermore, it would be interesting to investigate the role of naRNA in NETs in general, e.g. 

to answer the question whether naRNA participates in antimicrobial functions as DNA in NETs 

(Brinkmann et al. 2004): Bacterial killing assays could be performed with naRNA containing 

NETs and investigate whether RNase A treatment impairs bactericidal effects. Also, it could be 

analyzed how naRNA can execute bactericidal functions, e.g. by trapping of bacteria or by 

direct interruption of bacterial function. It has to be additionally investigated how the 

bactericidal function of naRNA is modulated by LL37, e.g. due to stoichiometric composition 

or naRNA modification. Of note, NETs released by lower species like insects contains RNA 

rather than DNA (Altincicek et al. 2008). It can be therefore argued that RNA release by NETs 

is conserved between species, presumably acting quicker and cruder than DNA but still, similar 

to DNA which is important for trapping and killing of bacteria. Also, data in this study evidences 

accumulated RNA in granules of PMNs, ready to be released (Figure 3.8D). A similar effect was 

also observed for eosinophils (Behzad et al. 2010). Accumulation of RNA in granules might 

therefore be a common feature of granulocytes in general, giving another indication of a quick 

mechanism of RNA release. 

Interestingly, NET contents are immunostimulatory for pDCs (Lande et al. 2011) and B cells 

(Gestermann et al. 2018) in psoriasis and SLE respectively. Both studies focused on DNA and 

LL37 as mediators for the induction of NETs. It would be interesting to analyze the impact of 

naRNA on the development of autoinflammatory diseases other than psoriasis. Interestingly, 

in SLE patients, anti-RNA antibodies are also frequently found (Blanco et al. 1991). Therefore, 

naRNA might be a potential source of autoantibodies in SLE but also in other autoimmune 

diseases. Furthermore, in other NET-related diseases like atherosclerosis (Warnatsch et al. 

2015) (where NETs form because of cholesterol crystals) or RA (Branzk and Papayannopoulos 

2013) (where NETs are found in inflamed joints) the impact of naRNA and a potential 

dysregulated degradation by RNases might be of interest to elucidate the role of naRNA in 

homeostasis and disease.   
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5.1.6. TLR8 is a key player in naRNA-LL37 induced signaling in PMNs 

Initial experiments showed that cytokine release induced by RNA-LL37 complexes from PMNs 

was inhibited by chloroquine (Figure 3.3D). As chloroquine does not affect RNA-sensing by 

cytosolic receptors such as RIG-I, but prevents endosomal acidification and thus activation of 

endosomal TLRs (Matsukura et al. 2007) (Kuznik et al. 2011), it was hypothesized that for RNA-

LL37 sensing endosomal TLRs are instrumental. TLR8 (human) and its equivalent TLR13 in the 

mouse were assumed to mediate cytokine release and NETosis, as the RNA-sensing 

endosomal TLRs becauseTLR3 and TLR7 are not expressed in human PMNs (Hayashi et al. 

2003) (Janke et al. 2009) (Berger et al. 2012).  

Although this study showed that RNA-LL37-mediated immune reactions where highly 

dependent on endosomal TLR signaling, RNA-LL37-induced NETosis might nevertheless also 

depend on LL37 binding to a specific receptor. Among others, the formyl-peptide receptor 2 

(FPR2) (Zhang et al. 2009) was proposed to bind LL37. However, blocking of FPR2 by the 

selective antagonist WRW4 (Bae et al. 2004) did not affect RNA-LL37-induced NE release 

(measured the “NETosis kit” from Cayman Chemical). This strongly indicates that the release 

of NET-associated NE (and hence NET formation), induced by RNA-LL37 complexes, is not 

dependent on LL37-FPR2 signaling (preliminary data not shown, more donors needed for 

statistically relevant results; furthermore, these results were also not proven in fluorescence 

microscopy). Although other receptors that bind LL37 have been described, e.g. members of 

the EGFR (epithelial growth factor receptor) family or the human purinergic receptor P2X7 

(reviewed in (Verjans et al. 2016)), subsequent experiments focused on endosomal nucleic 

acid-sensing receptors as potential candidates for RNA-LL37-binding and signaling. 

Interestingly, cytosolic DNA (microbial and self-derived) was also reported to activate the 

inflammasome in a TLR-independent manner (Muruve et al. 2008). Also, two very recent 

findings show the relation of NLRP3 inflammasome, more specifically an inflammasome 

substrate, Gasdermin D, and NET formation (Sollberger et al. 2018) (Chen et al. 2018). 

Gasdermin D is a pore-forming protein and a key player in pyroptosis which is a form of cell 

death induced by intracellular LPS via a so-called non-canonical NLRP3 inflammasome 

pathway (Liu et al. 2016). Sollberger et al. published that Gasdermin D is activated in PMNs 

dying by NETosis and in a chemical screen they found a small molecule inhibitor for Gasdermin 

D that not only inhibits pyroptosis but also interferes with NETosis (Sollberger et al. 2018). The 

group of Kate Schroeder observed that in PMNs, Gasdermin D forms pores in granules and 

nuclear membranes prior to permeabilizing the plasma membrane which in turn induced the 

release of IL-1β and NETs – here termed “pyro-NETs” (Chen et al. 2018). These data show that 

Gasdermin D is not only implicated in pyroptosis but also links in the regulation of NETosis. 

Furthermore, endosomal TLR ligands like R848 are also known to prime NLRP3 inflammasome 

signaling (Hornung and Latz 2010). Therefore, we wondered whether “pyro-NETosis” can be 

mediated not only by cytosolic LPS but also by RNA which is shuttled by LL37 into endosomal 

compartments. Consequently, cytokine release and NET formation by BM-PMNs from one 

Nlrp3-/- mouse was analyzed in response to RNA-LL37 complexes. BM-PMNs from the Nlrp3-/- 
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mouse released TNF and induced NETs to the same extend as BM-PMNs from WT mice (data 

not shown, IL-1β release was not analyzed). Although preliminary, these results indicate that 

NET induction by RNA-LL37 is most likely independent from other innate immune responses 

like the NLRP3 inflammasome but strongly depends on endosomal TLR signaling.  

As mentioned before, this study proved that TLR8 and TLR13 are actual receptors that 

recognize RNA from RNA-LL37 complexes and induce immune activation in human and mouse 

PMNs (Figure 3.11). It was shown that PMNs are activated via these endosomal RNA-sensing 

receptors to release pro-inflammatory cytokines and NETosis. These NETs in turn contained 

further RNA and LL37 which might complex again to activate more PMNs. Interestingly, TLR8 

activation of PMNs apparently switches the response from phagocytosis to NETosis (Lood 

2016). This perfectly fits to the current observation: induction of NETosis by RNA-LL37 

mediated activation of TLR8, rather than mere phagocytosis of the complexes. Also, the fact 

that TLR8-mediated NETosis differs from, for example PMA-mediated NETosis is illustrated by 

the different kinetics for PMA- and RNA-LL37-induced NETs: RNA-LL37 induces NET formation 

fast, approximately within 60 minutes post stimulation (see Figure 3.7D and E), while PMA-

induced NETosis peaks at 4 hours after stimulation. The specific kinetics indicate different 

underlying mechanisms of NET formation. This is in accordance with published results showing 

fast induction of NET release when TLR2 bound its ligand S.aureus or by TLR4-mediated 

platelet activation and subsequent binding to and activation of neutrophils (Yipp et al. 2012) 

(Pilsczek et al. 2010) (Clark et al. 2007). By this means, only the nuclear membrane is degraded 

while the plasma membrane stays intact. In contrast, PMA induced NETosis is slower and leads 

to complete cell lysis (cell death is induced) (Nestle et al. 2009) (also see Figure 1.2). Therefore, 

live NETs (mostly induced by TLR signaling) and suicidal NETs (induced by PMA) have to be 

clearly distinguished from each other (Boeltz et al. 2019). However, live-cell-imaging gives the 

impression that the whole cell ruptures upon activation with RNA-LL37 complexes, despite of 

being a TLR-dependent and fast process (Figure 3.7D and E). To illustrate the underlying 

mechanism of NET induction by RNA-LL37 complexes it would therefore need further 

investigation. By plasma membrane labeling using CellMask™ (as previously described (van 

der Linden et al. 2017)), one could potentially elucidate whether RNA-LL37 complexes induce 

vital or suicidal NET formation, preferably by investigation using live-cell-imaging. 

These data indicate that endosomal TLR8 signaling is pivotal for RNA-LL37-mediated immune 

reactions. The relevance of endosomal TLR signaling in RNA-LL37-induced skin inflammation 

could hence be further elucidated in additional in vivo experiments, e.g. by intradermal 

injection of bacterial RNA-LL37 complexes into Unc93b1-deficient and Tlr13-/- mouse ears. 

Absence or reduced ear swelling as compared to control mice, less PMN skin infiltration or 

NETs would verify the importance of RNA-LL37-induced activation of endosomal TLRs. 

Furthermore, therapeutic intervention by e.g. small molecules compounds that block TLR8-

bining or signaling by TLR8 in PMNs could thus intervene with early inflammatory response in 

psoriasis. 
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5.1.7. Therapeutic implications 

To date, the majority of psoriasis patients in Germany with moderate to severe disease still 

receive systemic therapy with methotrexate. This antimetabolite of folic acid was approved 

by the FDA in 1971 for the treatment of psoriasis (Menter and Griffiths 2007). As an 

antimetabolite, methotrexate is also used as a cytostatic drug in anti-cancer therapy to treat 

a variety of different solid tumors (Brown et al. 2016) (Abolmaali et al. 2013), although at 

considerably higher doses. As Methotrexate interferes with synthesis of purines and 

pyrimidines and thus with DNA synthesis (Czarnecka-Operacz and Sadowska-Przytocka 2014), 

its use represents a rather unspecific therapeutic intervention and long-term therapy is often 

associated with unwanted side-effects which can range from mild to severe; from fatigue to 

nausea, gastrointestinal problems and also liver dysfunction and infertility (Wang et al. 2018).  

Due to the unspecific nature and considerable side effects of standard therapy by 

methotrexate it is of great importance to develop more specific therapies for psoriasis 

patients. As an alternative, immune-specific approaches like the use of “biologicals” (Eberle et 

al. 2016) to directly target pro-inflammatory cytokines as a potential new therapeutic 

intervention for psoriasis was proposed. This proposal was inspired by enhanced 

concentration of pro-inflammatory cytokines in psoriasis patients. In psoriatic lesions 

increased levels of IL-1β are found (Balato et al. 2013) and IL-1β and other IL-1 family members 

are assumedly important inflammatory mediators in psoriasis. Also, in an IMQ-induced mouse 

model of psoriasis IL1 receptor (IL-1R) was found to be a major driver of inflammation, 

however, independent from NLRP3 inflammasome signaling (Rabeony et al. 2015). 

Surprisingly, Anakinra, an inhibitor for IL-1R, which is successfully used for treatment of 

diseases with gain of function mutations in NLRP3, had no beneficial effect in psoriasis 

patients. Quite the contrary is true: upon treatment with Anakinra new onset of psoriasis was 

observed (Tsai and Tsai 2017). This indicates a dysregulated IL-1 production in psoriasis 

patients which likely is independent from activation of the NLRP3 inflammasome but 

unfortunately cannot be treated with IL-1R inhibition by Anakinra. 

Other biologicals like anti-TNF antibodies are important new therapeutics which are now more 

frequently used to treat psoriasis and the FDA already approved several anti-TNF antibodies 

(Kircik and Del Rosso 2009). Although anti-TNF therapy is highly effective for the majority of 

patients, 2-5% develop paradoxical psoriasis, characterized by new inflammatory skin lesions, 

resembling psoriasis. These lesions form due to exaggerated type I IFN induction without T 

cell autoimmunity (Conrad et al. 2018). Another serious drawback of long-term therapy with 

anti-TNF antibody is the increased susceptibility to serious infections (Bongartz et al. 2006). 

In addition to IL-1 and TNF also type I interferons were found to play a crucial role in the 

pathogenesis of psoriasis. Plasmacytoid DCs were shown to produce large quantities of IFN-α 

in response to nucleic acid-LL37 complexes and pDCs were also found in psoriatic lesions 

(Lande et al. 2007). Additionally, the type I IFN signaling cascade is greatly upregulated in 

psoriasis patients (van der Fits et al. 2004). In line, inhibition of the IFN pathway ameliorates 
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skin inflammation in a mouse xenograft model of psoriasis (Nestle et al. 2005). Blocking of 

type I IFN therefore has been suggested as potential new therapy for psoriasis (Yao et al. 

2008). However, a phase I clinical trial using an anti-IFN-α antibody did not show any beneficial 

effects in psoriasis patients (Bissonnette et al. 2010). Therefore, the authors concluded that 

IFN-α does not significantly affect the perpetuation of psoriasis.  

Yet another angle to target psoriasis derived from important observations of polymorphisms 

in genes associated with Th17 immune signaling in psoriasis patients. T cells of the Th17 

subtype usually produce IL-17 (Eberle et al. 2016). The cytokine IL-17A weakens the skin 

barrier and amplifies inflammation by promoting the release of pro-inflammatory cytokines 

(e.g. IL-8 or IL-6 (Pfaff et al. 2017)) and chemokines from keratinocytes. Also, IL-17A induces 

migration of leukocytes and in association with TNF and IL-22, IL- 17A mediates upregulation 

of IL-1 family cytokine expression (Brembilla et al. 2018). Importantly, anti-IL-17 antibodies 

significantly ameliorate skin pathology in psoriasis patients (Hueber et al. 2010) (Eberle et al. 

2016). In recent years it became evident that IL-17 production and differentiation of Th17 cells 

largely depends on IL-23. Therefore, the IL-23/IL-17 axis in psoriasis is considered to link innate 

and adaptive immunity (Schon and Erpenbeck 2018). Combination therapies that block IL-23 

and IL-17 by antibodies induce impressive remission in up to 90% of patients (Kim and Krueger 

2017) (Hawkes et al. 2017). However, these IL-23/IL-17 aimed therapies (and other biologicals) 

are still very cost intensive (Tsai and Tsai 2017) (Wasilewska et al. 2016). Also, it is still 

controversial whether PMNs release IL-17 (Tamassia et al. 2018) (Tamassia et al. 2019). This 

indicates that therapeutic intervention of the IL-23/IL-17 axis would only target chronic 

disease but might still miss very early, acute inflammation induced by PMNs. 

Finally, the present study shows that inhibition of TLR8 by very low amounts (1-50 nM) of 

inhibitory oligodesoxynucleotides (iODNs) diminishes cytokine release by PMNs and 

completely blocks NETs (see Figure 3.12A, B and D). IODNs were proposed for the treatment 

of Systemic Lupus Erythematosus (SLE) (Barrat et al. 2005) (Barrat and Coffman 2008) and 

some small molecule inhibitors, similar to those used in this study, are already tested for the 

treatment of SLE in several clinical studies (Wu et al. 2015). Therefore, it might be assumed 

that small inhibitory molecules that block RNA-LL37-induced TLR8 signaling (in very low doses) 

might also be efficient as a new therapeutic intervention in psoriasis and intervening with a 

very early inflammatory event, by direct targeting of PMN activation in psoriasis.  

5.1.8. Conclusions part I 

Complexes of nucleic acids and LL37 are important immunostimulatory mediators in psoriasis. 

Still the origin of those inflammatory mediators has been unknown. This study provides 

evidence for a mechanism that activates PMNs by NET-associated RNA (naRNA) and LL37 

which enables a self-amplifying inflammation in psoriasis. PMNs not only release a variety of 

different cytokines and chemokines (which can attract other immune cells) in response to 

RNA-LL37 complexes but also induce robust NET formation. These NETs in turn contain LL37 

and more importantly RNA. NET contents from RNA-LL37-stimulated PMNs activate more 
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PMNs to release RNA-and LL37-containing NETs. In this process TLR8 (human) and TLR13 

(mouse) are instrumental. Interestingly, very low concentrations of iODNs which block TLR8 

signaling inhibit not only cytokine- but also NET release. This current study thus showed that 

PMNs, which heavily infiltrate psoriatic skin, can provide immunostimulatory components (in 

this case naRNA and LL37) themselves which might fuel a vicious self-propagating cycle of 

inflammation in psoriasis.  



Discussion 
 

96 

5.2. Platelet-PMN aggregates promote skin pathology in psoriasis (part II) 

As aforementioned, a hallmark of psoriasis is the infiltration of the skin by PMNs. As PMNs are 

among the first cells present at sites of inflammation and attract other immune cells, it was 

assumed that differential expression of surface antigens on PMNs from healthy controls and 

psoriasis patients could be responsible for the skin homing of PMNs in psoriasis. In order to 

detect differences in surface antigen expression, an antibody-based screen for 332 surface 

proteins (LEGENDScreen™) was performed on whole blood of five psoriasis patients and five 

healthy controls. In this screen B cells, T cells, PMNs, dead cells were additionally labeled and 

monocytes were gated by size and granularity. 

5.2.1. Blood cells from psoriasis patients express different surface antigens compared to 
healthy controls  

In blood samples from healthy donors and psoriasis patients, 30 surface antigens were 

identified which were differentially expressed (defined by a nominal statistical significance) 

between the two groups. These differentially expressed antigens spread over different cell 

populations in the blood (see Table 4.1). However, the validity of the present results would be 

significantly improved by a larger sample number. Also, the mean fluorescence intensities 

(MFIs) in this study are low, likely owing to technical limitations, yielding in increased deviation 

of MFIs. Nevertheless, the MFIs of “positive hits” are considerably higher than MFIs of 

respective isotype controls thus indicating reliable differences. Re-evaluation of the identified 

differentially expressed surface antigens using another FACS device ensured comparable 

trends, proving reliability of results obtained by the LEGENDScreen™. Several of the identified 

surface antigens will be highlighted and discussed in detail in the next paragraph. 

Differentially expressed surface markers on PMNs: On PMNs, five surface antigens were 

differentially expressed: CD209, CD143, CD235ab, CD337 and TRA-1-60R. Because CD337 is 

mainly expressed on NK cells (Angelo et al. 2015) and expression of TRA-1-60R was very low 

in this setting, the function and expression of only CD209, CD143 and CD235ab will be 

discussed in detail.  

• CD209 (DC-SIGN) is a DC marker found on monocyte-derived DCs (mDCs) which induces 

initial contact of DCs to resting T cells and DC trafficking by interaction with the 

endothelium. CD209 expression is regulated by IL-4 and IFN-γ, the major cytokines driving 

Th2 and Th1 responses respectively. IFN-γ acts a negative regulator of CD209 expression, 

whereas IL-4 induces the expression of CD209 (Relloso et al. 2002). This means that IFN-

γ promotes Th1-mediated inflammation which correlates with downregulation of CD209. 

Interestingly, PMNs can act as APCs (Vono et al. 2017) and therefore it can be 

hypothesized that PMNs also express different DC markers, including CD209. Expression 

of CD209 was downregulated on PMNs from psoriasis patients. This might give a hint on 

psoriasis as an IFN-γ-Th1-driven disease (although it is now appreciated that the Th17 

response is also very important) (Cai et al. 2012).  
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• CD143, is commonly known as Angiotensin-converting enzyme (ACE). ACE converts 

angiotensin I into the active angiotensin II which induces increase of blood pressure and 

vasoconstriction (Bernstein et al. 2018). Millions of people take ACE inhibitors to treat 

cardiovascular diseases (Messerli et al. 2018). Although ACE is mainly found on 

endothelial cells, here reduced expression levels of ACE on PMNs from psoriasis patients 

was found compared to healthy controls. Reduced ACE levels might for example be the 

cause of vasodilatation is psoriasis which is a hallmark of the disease (Heidenreich et al. 

2009). Interestingly, in mice, ACE is expressed on PMNs and overexpression of ACE 

enhanced the capacity to induce anti-bacterial mechanisms in PMNs. In contrast, mice 

lacking ACE on PMNs were more vulnerable towards infections. Thus, ACE on PMNs 

protects the host from infections (Khan et al. 2017) and psoriasis could be triggered by a 

small infection that is not efficiently cleared by PMNs due to their lack of ACE expression. 

Genetic predisposition or unknown triggers can cause the formation of psoriatic lesions 

after bacterial infections. Importantly, ACE inhibitors, prescribed to psoriasis patients to 

treat cardiovascular comorbidities, even worsened psoriasis or led to new onset of 

psoriasis guttata (Hong 2012). This indicates that inhibition of ACE on PMNs might 

increase susceptibility towards bacteria-triggered psoriasis.  

• CD235ab. expression is found on terminally differentiated, anucleated erythrocytes and 

considered to be erythrocyte specific (Bruce et al. 1994). Interestingly, this study detected 

CD235ab on PMNs from psoriasis patients and, moreover, CD235ab was the only surface 

protein showing significantly enhanced expression on psoriasis PMNs. Despite this 

intriguing finding, CD235ab detection on PMNs should be interpreted with caution. PMNs 

tend to bind proteins on their surface; they are “sticky” e.g. in cancer (Olsson and 

Cedervall 2016) and also in autoimmune diseases. It is for example known that platelets 

tend to stick to the surface of PMNs (Gerrits et al. 2016) (Chanarat and Chiewsilp 1975). 

Hence, also erythrocytes might stick to PMNs and cause detection of enhanced CD235ab 

on PMNs. However, this would imply inefficient red blood cell lysis which is unlikely 

because osmolysis of erythrocytes is highly efficient and visual inspection did not indicate 

traces of erythrocytes (white color of cell pellet). Still, as CD235ab is a highly specific 

marker on erythrocytes, detection on PMNs might result from membrane-fragments from 

erythrocytes which stick to PMNs. These erythrocyte membrane fragments would - even 

in case of efficient erythrocyte lysis - cause the CD235ab-positive signal on PMNs. To 

exclude that CD235ab-positivity stems from erythrocyte fragments bound to PMNs from 

psoriasis patients, positive selection of PMNs (e.g. using magnetic beads) followed by 

qPCR to detect CD235ab mRNA could be performed. This approach would allow to verify 

de novo expression of CD235ab by psoriasis PMNs. 

Differentially expressed surface markers on B-cells: For B cells, 7 makers were significantly 

different when comparing healthy control and psoriasis samples: CD11c, CD124, CD215, δ-

Opioid receptor, CD261, CD267 and MSC (W5C5). For all those antigens the expression levels 

were considerably low and there was often a large variance either in the HD or in the PsorP 
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cohort between different donors. Therefore, only three markers will be discussed in more 

detail because they showed the most promising differences (between patients and healthy 

controls). 

• CD11c is found on a variety of blood cells in humans, e.g. DCs, monocytes but also to a 

lower extend on PMNs and B cells (Boltjes and van Wijk 2014). CD11c was found to be 

important for phagocytosis and considered as an important mediator for DC antigen 

presentation (Sadhu et al. 2007) (Collin et al. 2013) but is also described on memory B 

cells in tonsils. These memory B cells were found to expand into circulation upon 

autoimmune reactions (Karnell et al. 2017). In the present study reduced expression of 

CD11c on B cells of psoriasis patients compared to healthy controls was found. In contrast 

to the detected reduced expression, it was expected that autoimmune-diseased 

individuals, i.e. psoriasis patients, show enhanced expression of CD11c. Because CD11c is 

expected to be upregulated on B cells from psoriasis patients, as an indicator of 

autoimmune responses, there is no conclusive explanation for the result.  

• CD261 belongs to the TNFR superfamily. In healthy individuals only weak expression of 

CD261 is mainly found on immature B cells of the bone marrow (Rudolf-Oliveira et al. 

2018). CD267, frequently referred to as TACI (Transmembrane Activator and CAML 

Interactor), was shown to mediate inhibition of B cell activation. TACI-/- mice show strong 

B cell activation and accumulation in the spleen that causes splenomegaly (Yan et al. 

2001). In B cells of psoriasis patients, the expression of CD261 is enhanced whereas the 

expression of TACI is reduced indicating the presence of hyperactive and immature B cells 

in psoriasis, well in agreement with the higher risk of psoriasis patients of developing a 

lymphoproliferative disease like lymphoma or leukemia (Gelfand et al. 2006).  

Differentially expressed surface markers on T-cells: For T cells only two surface antigens were 

found to be differentially expressed in psoriasis patients: CX3CR1 and CD244. Both are 

decreased for patient-derived T cells.  

• CX3CR1 is a known mediator for both leukocyte adhesion and migration (Imai et al. 1997). 

The observed decrease of CX3CR1 on T cells from psoriasis patients would indicate that 

psoriasis T cells have attenuated ability to adhere and migrate. Opposite results were 

expected and therefore there is no conclusive explanation for these findings. 

• Interestingly, low expression of CD244 is implicated in activating NK and CD8 T cell 

immunity (Chlewicki et al. 2008). Hence, low expression of CD244 on psoriatic T-cells is 

well in line with a hyperactive immune system in psoriasis in general. 

Differentially expressed surface markers on monocytes: The majority of differentially 

expressed antigens was detected on monocytes (see Table 4.1 and Figure 6.7D). Due to 

technical limitations the analysis did not include a specific antigen labeling for monocytes and 

therefore these cells were identified by size and granularity. Morphological characteristics are 
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of low specificity and it must therefore be assumed that some of the identified differentially 

expressed markers are false positives. Still it is worth to highlight a few which could then be 

confirmed in a setup that includes CD14 and CD16 staining to unequivocally identify different 

monocyte populations:  

• CD13 is was found to be upregulated on monocytes from psoriasis patients. Interestingly, 

CD13 is also upregulated on monocytes after trauma (Huschak et al. 2003). In line with 

the pathogenesis of plaque psoriasis lesions usually form at the sites of trauma and 

pressure (Koebner phenomenon).  

• Interestingly, CD162/PSGL-1 was found to be upregulated on psoriatic monocytes. PSGL-

1 is essential for monocyte homing and initial tethering (Huo and Xia 2009). Surprisingly, 

PSGL-1 is therefore the only homing receptor found to be upregulated in this screen, and 

therefore possibly indicating the tendency of psoriasis monocytes to infiltrate the skin.  

• Furthermore, CD154/CD40L, is overexpressed on monocytes of SLE patients and its 

expression correlates with disease severity. As an explanation, Katsiari et al. suggested a 

T cell independent CD40L-mediated cell-cell interaction that induces humoral immunity 

in SLE (Katsiari et al. 2002). The present study identified enhanced expression of CD40L 

on monocytes which assumingly has a similar function as in SLE.  

• Most importantly, compared to healthy controls, monocytes from psoriasis patients 

express elevated levels of platelet antigens, namely CD41 and CD61 (see Table 4.1 and 

Figure 6.7D). In this study, this finding was due to aggregate formation between 

monocytes and platelets in the blood of psoriasis patients (see Figure 6.8). 

Monocyte/PMN-platelet aggregates will further be elucidated in the next paragraph. 

Due to sample limitations in general, all these findings still need further validation using more 

patient samples before initializing follow-up studies to elucidate the exact role and function 

of the described surface molecules in psoriasis. Analysis in the present study focused further 

on PMNs as suspected cellular key drivers in psoriasis. 

5.2.2. Blood-derived PMNs from psoriasis patients have a defined “platelet surface antigen 
signature” 

In order to identify additional differences in blood samples from healthy individuals and 

psoriasis patients, principal component analysis (PCA) of data generated by the 

LEGENDScreen™ was performed. PCA uncovered specific clusters of protein expression in 

healthy individuals and psoriasis patients, i.e. certain combinations of surface antigens 

allowing discrimination between the two groups. Importantly, most significant results in PCA 

were obtained for PMNs, revealing strong clustering of patients’ PMNs. The five antigens 

which in combination define “psoriasis PMNs” in whole blood are: CD6, CD11c, CD41, CD61 

and CD235ab (Figure 4.2). This study further focused on the expression of CD6, CD41 and CD61 

on psoriasis PMNs. 
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CD6 is important for T cell activation (Carrasco et al. 2017) and CD6-ligands like CD166 (Bowen 

et al. 1995) and CD318 (Enyindah-Asonye et al. 2017) are expressed on epithelial cells e.g. 

keratinocytes. Importantly, anti-CD6 antibodies are currently tested in clinical trials as a new 

T cell-based therapy for psoriasis in India (Srivastava 2017). Assuming a high expression of CD6 

on PMNs of psoriasis patients, it can be hypothesized that anti-CD6 therapy not only 

intervenes with chronic manifestation of psoriasis induced by T cells but also prevents acute 

events driven by PMNs. Therefore, the investigation of CD6 expression on psoriasis PMNs was 

also of therapeutic interest and a potential role of CD6 on PMNs in psoriasis was assumed. 

Surprisingly, after re-gating of obtained LEGENDScreen™ data, it became apparent that 4 out 

of 5 psoriasis patients had very high CD6 expression levels on PMNs whereas 4 out of 5 healthy 

controls had no CD6 surface expression on PMNs (data not shown). Unfortunately, these 

findings could not be verified in additional patient samples. CD6 expression was neither 

detected on PMNs from psoriasis patients nor from healthy controls (data not shown). 

Therefore, it can be assumed that this “positive hit” was due to a kit effect, showing a false 

positive CD6 staining for psoriasis PMNs. Actually, during further evaluation of the results 

obtained by the LEGENDScreen™, it became apparent that mainly patients and healthy 

controls were measured with the same kit respectively. Only for the last patient and healthy 

control, the same kit was used, showing negative staining for CD6 on PMNs for both. For this 

reason, involvement of CD6 in pathology of psoriasis was not followed up in this study (see 

above) and further investigations focused on platelet-PMN interactions in psoriasis.  

CD11c is a known marker found on different cell subsets in human blood, e.g. DCs, monocytes 

but also granulocytes (Boltjes and van Wijk 2014) and is considered to be important for 

phagocytosis and for DC antigen presentation (Sadhu et al. 2007) (Collin et al. 2013). As PMNs 

are able to act as APCs (Vono et al. 2017) it can be hypothesized that CD11c is also found on 

PMNs (see 5.2.1., similar to CD209) and displays similar functions there. Of note, CD11c 

expression and function on psoriasis PMNs was not further evaluated in this study. 

Furthermore, enhanced CD235ab expression was already detected as individual marker and 

has already been discussed in detail (see 5.2.1.).  

Notable, two of the five combination markers, namely CD41 and CD61, are known platelet 

antigens which usually act in concert and are necessary for platelet adhesion and aggregation 

(Mateo et al. 1996) (Anderson et al. 1991). The relevance of surface antigens CD41 and CD61 

(in the context of psoriasis) was evidenced by further analysis (see 4.2.-4.4.) and hence will be 

discussed in the following sections (5.2.3.-5.2.6.).  

PCA analysis of LEGENDScreen™ data revealed that blood-derived cells from psoriasis patients 

and healthy controls can be distinguished by specific surface antigens that are differentially 

expressed in these two groups. Importantly, PCA shows strong clustering especially for 

psoriasis PMNs, additionally uncovering a clear platelet signature on PMNs from psoriasis 

patients. 
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5.2.3. Platelet-PMN aggregates - a novel requisite for skin and cardiovascular manifestations of 

psoriasis? 

Intriguingly, the present study identified a distinct “platelet signature” for circulating PMNs in 

psoriasis with two dominant markers: CD41 and CD61 (Figure 4.2). Expression of CD41 is 

commonly associated with CD61 and both proteins are required for platelet adhesion and 

aggregation (Mateo et al. 1996) (Anderson et al. 1991). CD41 and CD61 expression in this 

study was detected on PMNs due to platelet-PMN aggregates in circulation (confirmed by 

FACS and fluorescence microscopy, see Figure 4.3 and Figure 4.4). Importantly, the presence 

of platelet-PMN aggregates found in blood of psoriasis patients was also evident in IMQ-

challenged mice (Figure 4.4), an established model system of psoriasiform skin inflammation. 

Of note, expression of the adhesion molecule P-selectin was shown to correlate with psoriasis 

severity (Ludwig et al. 2004). Although the present screen did not show enhanced expression 

of P-selectin (CD62P) in psoriasis patients (data not shown) further immunofluorescence 

microscopy identified platelets in platelet-PMNs aggregates which were predominantly 

activated and expressed CD62P (Figure 4.4). Although these findings are in good agreement 

with previous results (Ludwig et al. 2004), platelet-PMN aggregates were so far not studied in 

psoriasis and their impact on disease pathology has not been investigated: a potential etiology 

of platelet involvement was proposed - but not proven experimentally (Tamagawa-Mineoka 

2015). 

The present study experimentally evidences that platelet counts in psoriatic blood are greatly 

increased compared to blood from healthy controls. This is in agreement with previous 

findings which show an increased platelet mass index and volume in psoriasis furthermore 

correlating with arthritis. Thus, in psoriatic arthritis platelet mass index and volume can serve 

as a clinical marker (Canpolat et al. 2010) (Unal 2016). The elevated number of platelets might 

explain the increase in platelet-PMN aggregates found in psoriatic blood. Nevertheless, 

elevated platelet counts could be a secondary effect of increased hematopoiesis in response 

to inflammation, including megakaryocyte production in the bone marrow (Masamoto and 

Kurokawa 2016).  

Also, a specific role of platelets in the development of skin lesions in psoriasis has not been 

reported yet. Here, in an IMQ mouse model of psoriasis significant amelioration of skin 

inflammation was reported upon platelet depletion: reduced ear swelling, decreased 

epidermal thickness, undetectable platelet-PMN/monocyte aggregates in the blood and also 

no detectable immune infiltrates in the skin (Figure 4.6 and Figure 4.7). In contrast, in human 

psoriatic lesions, PMNs are found in close proximity or even co-localized with platelets (Figure 

4.5). This strongly indicates that PMNs rely on platelets to extravasate and cause inflammation 

in psoriatic lesions. Potential mechanisms of platelet-PMN extravasation are discussed in the 

following section (5.2.3.). 

In summary, the present study for the first time provides solid evidence that platelet-PMN 

aggregates are highly relevant for skin pathology in psoriasis. Given the debated role of T-cells, 
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PMNs and endothelial cells in psoriasis it is worthwhile to investigate the role of platelets as 

new players in the pathogenesis of psoriasis as well as the mechanism underlying platelet-

PMN aggregate formation and infiltration of the skin. 

5.2.4. Potential mechanisms of platelet-PMN extravasation 

Importantly, platelet aggregates are present in psoriatic skin (Figure 4.5), frequently 

accompanied by PMNs. These results are well in line with the recently published process of 

PMNs actively scanning for activated platelets prior to extravasation (Sreeramkumar et al. 

2014). Also, platelets adhere at sites of inflammation and subsequently “capture” neutrophils 

or monocytes and promote extravasation (Zuchtriegel et al. 2016). Ludwig et al. showed that 

leukocyte rolling depends on PSGL1-P-selectin interactions and that rolling is enhanced by 

platelet-leukocyte aggregate formation (Ludwig et al. 2004). In combination with active 

migration of platelets (Gaertner et al. 2017) it is assumable that platelet-leukocyte aggregates 

form in the blood and then collectively migrate through the blood vessel. However, the 

scenario of platelets actively assisting leukocytes extravasation and its specificity for psoriatic 

skin remains to be validated. Currently ongoing experiments are focusing on shedding light to 

the mechanism of PMN-platelet aggregate formation and extravasation. The most important 

interaction of PMNs and platelets was shown for PSGL-1 (PMNs) and P-selectin (platelets). The 

impact of PSGL-1-P-selectin interactions on PMN extravasation in an IMQ-induced psoriatic 

mouse model is currently investigated by neutralizing PSGL-1 as previously described 

(Sreeramkumar et al. 2014). It is assumed that disruption of platelet-PMN interactions can 

prevent PMN infiltration of psoriatic skin. 

Another component involved in leukocyte and platelet extravasation is the endothelium 

which is activated in psoriasis (Lee et al. 1994). Activated endothelium imparts enhanced 

attraction of platelets and other blood cells in turn augmenting extravasation. Interestingly, 

adherence of neutrophils is greatly increased in psoriasis which depends on activated 

endothelial cells (Wetzel et al. 2006). Of note, endothelial leakage is known for a long time in 

acute and chronic inflammation, facilitating extravasation of blood cells (McDonald et al. 

1999). This also applies for psoriasis which, in rare cases, is associated with largely increased 

capillary permeability causing a hypovolemic shock; this phenomenon is commonly referred 

to as leaky syndrome (Bressan et al. 2017). There is evidence that endothelial permeability 

largely controls and affects angiogenesis. In line with this, angiogenesis is increased in 

psoriasis and new micro-vessels form in psoriatic lesions. Activated endothelium and 

angiogenesis of new micro-vessels would facilitate access of platelets and blood cells to sites 

of inflammation. In line, the vascular endothelial growth factor (VEGF) which regulates 

angiogenesis is associated with psoriasis. Keratinocyte-derived VEGF induces angiogenesis 

and supports hyperproliferation of the keratinocytes in the epidermis of psoriatic lesions. 

Furthermore, a pro-angiogenic role is attributed to IL-17, an accepted key mediator in the 

pathogenesis of psoriasis (Heidenreich et al. 2009). IL-17 induces expression of VEGF (Pan et 

al. 2015) (You et al. 2017) and angiogenesis. Thus, VEGF inhibitors (blocking angiogenesis) are 

considered to be efficient for treatment of psoriasis (Li et al. 2014). 
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Furthermore, in arthritis, platelets were shown to increase vascular permeability which is 

strongly regulated by serotonin (Cloutier et al. 2012). Current studies investigate, whether 

PMN influx of the skin is mediated by serotonin-driven vascular permeability or if platelet-

PMN interaction/aggregate formation is necessary for PMN skin infiltration in an IMQ-induced 

psoriasis mouse model. As disease progression in psoriasis is improved by serotonin re-uptake 

inhibitors (Thorslund et al. 2013), the application of serotonin re-uptake inhibitors in IMQ-

treated mice will further elucidate the mechanistic interrelationship of enhanced vascular 

permeability and PMN infiltration of the skin. 

A specific role of platelets in the development of skin lesions in psoriasis has not been reported 

yet. As previously mentioned, this study describes significant amelioration of psoriatic skin 

inflammation accompanied with disappearance of PMNs in the skin upon depletion of 

platelets in an IMQ-induced mouse model of psoriasiform inflammation (Figure 4.6 and Figure 

4.7). These data are consistent with results from experiments performed for another 

inflammatory disease of the skin, namely atopic dermatitis (AD): platelet-leukocyte 

aggregates are also found in the blood of mice suffering from AD and platelet depletion 

drastically reduced inflammation of the skin (Tamagawa-Mineoka et al. 2007). In humans, AD 

patients (the majority are children) suffer from severely itchy skin which could originate from 

pruritus-inducing chemical mediators. Such chemical mediators, e.g. histamines, can be 

provided by platelets (Tamagawa-Mineoka 2015). The fact that other inflammatory skin 

diseases like AD also profit from platelet-depletion, shows that the beneficial platelet 

depletion in the IMQ-induced mouse model of psoriasis might be of broader interest. 

Therefore, it would be interesting to investigate skin and blood from patients with other 

autoimmune diseases of the skin, such as AD, Rosacea, Sweet Syndrome, Behçet’s Syndrome 

or contact dermatitis (Dainichi et al. 2014) (Villarreal-Villarreal et al. 2016). These analyses 

could reveal similar results as seen for psoriasis patients and uncover platelet-PMN 

aggregation as a common mechanism in inflammatory skin diseases. Thus, reduced platelet 

aggregation could also ameliorate skin pathologies in a broader sense. 

This study for the first time presents solid data that instigate intervention with platelet-

physiology as an opportunity to ameliorate pathologic skin condition in psoriasis. Data in this 

study show that platelets infiltrate the skin (Figure 4.5 and Figure 4.7) and might therefore 

either independently contribute to disease severity or by formation of platelet-PMN 

aggregates (Li et al. 2015). Interestingly, enhanced numbers of “free” PMNs are present in the 

blood of platelet-depleted mice, whereas skin infiltration of PMNs is absent (Figure 4.7). The 

absence of PMNs in the skin in combination with enhanced numbers of PMNs in the blood 

indicates that PMNs get “trapped” in the blood likely because the signal for skin infiltration is 

lacking due to loss of platelet-mediated skin homing. Thus, it is assumed that PMNs rely on 

platelets to infiltrate the skin in psoriasis and both, platelets and PMNs, are inevitable for a 

fulminant skin inflammation in psoriasis. 

To further elucidate the underlying mechanisms of platelet-PMN skin infiltration, it would be 

interesting to characterize the molecular composition of platelets that aggregate with PMNs 
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in psoriasis patients. Regarding proteins at the platelet surface an antibody-screen 

(LEGENDScreen™) including additional platelet and PMN markers could be performed 

focusing on differentially expressed markers on platelets that are bound by PMNs. This screen 

may potentially identify antigens that reveal the molecular basis for platelet-assisted skin 

homing of PMNs. Alternatively, proteome analysis would be a promising, however also 

challenging, approach because separation of PMNs and platelets that already formed 

aggregates is hard to accomplish 

As previously discussed, in RA, platelet accumulations in synovial fluid attract PMNs to the site 

of injury and PMNs subsequently are trapped in the fibrin network of platelets (Habets et al. 

2013). These trapped PMNs become activated and release pro-inflammatory cytokines or 

even NETs. A similar mechanism can be assumed for psoriasis. Given the fact that NETs are 

found in blood and skin of psoriasis patients (Hu et al. 2016) and that platelets evoke NETosis 

(Caudrillier et al. 2012), it can be hypothesized that platelets might activate NET formation in 

psoriatic lesions. Interestingly, in NETs coagulation factors are detected (Healy et al. 2016) and 

there is emerging evidence that NETs participate in thrombosis (Kimball et al. 2016) – 

establishing a second line of evidence for a close relationship of platelets and PMN in immune 

responses of both, injury and autoimmune diseases. The interplay of platelets and PMNs 

might be essential to induce inflammation. Presuming that platelets are the first cells recruited 

into the skin, early inflammatory responses in psoriasis could potentially arise from a small 

injury that induces platelet activation at the leaky endothelium. Active platelets then attract 

PMNs or platelets already are accompanied by PMNs due to preformed aggregates in blood 

(proposed hypothesis see Figure 5.2). Then, PMNs get trapped and activated, release pro-

inflammatory mediators or NETs which in turn attract and activates more PMNs and other 

blood cells. This mechanism would establish the formation of new lesions at the site of trauma 

or pressure. 
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Figure 5.2: Platelet-PMN interactions potentially cause the development of psoriatic lesions 

① A small injury of the skin actives platelets to close the wound by clot formation. In psoriasis activated platelets 
either recruit PMNs to the site of injured skin or platelet-PMN aggregates already form in blood and migrate as 
complex. ② Due a leaky and activated endothelium, platelet-PMN aggregates might easily reach the injured 
skin. ③ After skin infiltration, platelets can activate PMNs to induce NET formation which potentially leads to 
skin inflammation. 

 

5.2.5. Potential role of platelet-PMN aggregates in CVDs found in psoriasis patients 

Platelet-aggregates detected in this study offer an explanation for psoriasis associated 

cardiovascular comorbidities. Activated platelets form aggregates and recruited PMNs 

establish inflammation. This platelet-PMN driven mechanism has been described for RA, 

where activated platelets trap PMNs in the synovium, mediating PMN activation resulting in 

inflammation (Habets et al. 2013). Dysregulation of hyperactivity of platelets yields in 

thrombosis and/or cardiovascular diseases. Interestingly, suffering from severe psoriasis 

serves as an independent risk factor for the occurrence of major cardiovascular events 
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(Gelfand et al. 2006), substantiating the outlined interrelation of platelet-PMN aggregates and 

psoriasis. Therefore, it can be assumed that platelets attract PMNs also to other tissues (e.g. 

the heart) and induce inflammation. Hence, it would be interesting to investigate whether 

platelet-PMN aggregates are found e.g. in the aortas of mice with psoriatic skin inflammation 

and whether this infiltration is inhibited upon PMN-or platelet-depletion in circulation. This 

might serve as a potential link between psoriatic skin inflammation and CVDs seen in psoriasis 

patients and intervention with platelet-aggregation might simultaneously ameliorate psoriatic 

skin lesions and co-morbidities like CVDs. 

Interestingly, the cytokine IL-17 was not only identified as a driver for psoriatic inflammation 

and but also for cardiovascular co-morbidities (Karbach et al. 2014). Antagonization of IL-17 

expectedly reduced inflammation but also attenuated vascular diseases in a psoriatic mouse 

model (Schuler et al. 2018). Given that IL-17 increases platelet aggregation (Maione et al. 

2011), it was hypothesized that IL-17 might also be a potential target to ameliorate CVDs in 

psoriasis. This could be further investigated using IL-17R conditional-platelet specific (Pf4-Cre) 

knock-out mice in the IMQ-induced psoriatic mouse model. Presumably, these mice would 

develop less CVDs compared to WT controls in psoriasiform inflammation. 

Therefore, it can be assumed that targeting IL-17 in psoriasis is not only beneficial for chronic 

T cell driven psoriasis but also for cardiovascular comorbidities and potentially also reduces 

early inflammatory events induced by platelets.  

5.2.6. Therapeutic implications 

In this study, platelet depletion drastically ameliorates skin inflammation in an IMQ-induced 

psoriatic mouse model. This was likely due to strong interactions and aggregate formation 

with PMNs (Figure 4.6 and Figure 4.7).  

It was hypothesized that platelet depletion is causative for reduced skin infiltration which 

might be supported by reports on beneficial effects on psoriatic skin lesions in the human 

system, by disrupting platelet aggregation e.g. using aspirin. Frequently, aspirin is prescribed 

to prevent thrombosis. However, aspirin inhibits cyclooxygenase, synthesis of prostaglandins 

and the formation of thromboxane A2. Therefore, it reduces pain, has an anti-inflammatory 

effect and, most importantly in the current context, it prevents platelet activation and 

aggregation (Mistry et al. 2017). Furthermore, aspirin reduces platelet-leukocyte aggregates 

in thrombosis (Trelinski et al. 2009) indicating that disruption of platelet-leukocyte aggregates 

indeed intervene with the induction of platelet-driven complications. Interestingly, beneficial 

effects of aspirin are also assumed for a variety of different immune diseases like RA, MS, SLE 

etc. (Habets et al. 2013).  

Further investigations revealed case reports (reference see Table 6.1 and 6.3.2.) documenting 

improvement of psoriatic skin conditions upon aspirin therapy. Although aspirin was primarily 

prescribed to psoriasis patients to prevent cardiovascular comorbidities, it was also found to 
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induce regression of skin lesions. These findings are intriguing, because aspirin is a widely used 

drug, with marginal side-effects at appropriate doses (Berkel 1999) (Kwok 2010). To our 

knowledge, there is no data from systematic clinical studies on the effects of aspirin on 

psoriasis available so far. Nevertheless, it would be helpful to further investigate which 

functional mechanism underlies aspirin mediated amelioration of skin inflammation and 

whether the inhibition of platelet activation in this context is causative. 

5.2.7. Conclusions part II 

To date, the initial trigger for immune infiltration of the skin in psoriasis is unknown. Here, 

surface antigen expression of various cell populations was investigated using whole blood of 

psoriasis patients and healthy controls. It was assumed that differential expression of surface 

receptors might explain skin homing. Interestingly, circulating PMNs from psoriasis patients 

do not present an altered expression of chemokine- or adhesion-receptors as could be 

expected but a platelet signature, due to aggregate formation of platelets with PMNs, was 

found. Additionally, platelets were detected in psoriatic lesions, frequently in close proximity 

to PMNs. Strikingly, skin inflammation was greatly ameliorated and platelet-PMN-skin 

infiltration was inhibited upon platelet depletion in an IMQ-induced psoriatic mouse model. 

Thus, the present study is the first to provide solid evidence for an essential function of 

platelets in the pathogenesis of psoriasis. Future experiments should aim to enhance our 

understanding on the underlying mechanism of platelet-PMN aggregates in skin infiltration 

and resulting inflammation in psoriasis. Undoubtedly, it would be worthwhile to investigate 

the impact on interfering with platelet aggregation e.g. by using anti-coagulants like aspirin in 

the context of psoriasis. 
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6. Appendix 
6.1. Neutrophil extracellular trap-associated RNA (naRNA) and LL37 complexes enable 
self-amplifying inflammation in psoriasis 

6.1.1. PMNs are not pre-activated and are viable in this experimental setting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 
Figure 6.1: PMNs are not pre-activated and viable in this experimental setting 

(A) FACS analysis of PMNs using anti-CD15, anti-CD66b, anti-CD14 and anti-CD62L antibodies against surface 
antigens. Gating strategy is shown. CD15+CD66+ and CD14- cells were considered as PMNs. (B) Histogram of one 
respective donor for CD62L is shown. PMNs are not activated. (C) Aqua Live-dead flow cytometric viability 
analysis of unstimulated PMNs after 4 h in culture (n=9 combined from several experiments) and (D) including 
10 µM chloroquine (CQ) 30 min pre-incubation (n=5-8). C and D represent combined data (mean+SD) from ‘n’ 
biological replicates. A and B show results from one respective donor. * p<0.05 according to Wilcoxon signed 
rank sum (D). 
 
 
 
 
 

FSC-A 

S
S

C
-A

 

C
D

1
5

 
C

D
1

4
 

CD66b 

CD66b 

CD62L 

N
o
rm

a
liz

e
d

 t
o

 M
o

d
e

 

Isotype control 

Unstim. PMNs 

A                                                                                                      C 

B 

D 



Appendix 
 

109 

6.1.2. Luminex analysis reveals a variety of cytokines and chemokines which are released by 
PMNs upon stimulation with RNA-LL37 complexes 

 

 

 
 

6.1.3. T cells migrate towards SDF-1α 

 

  
Figure 6.3: Migration control of transwell migration assay 

Total amount of migrated cells in transwell migration assays with total PBMCs in the upper and SDF-1α (100 
ng/ml positive control) in the lower compartment (n=6-7, p>0.05 for treatments vs. media). (A) total migrated 
CD4+ T cells, (B) CD8+ cells and (C) CD14+HLA-DR+ monocytes are shown. Combined data (mean+SD) from ‘n’ 
biological replicates (each dot represents one donor) throughout. * p<0.05 according to Friedmann test with 
Dunn’s correction (A, B), one-way ANOVA with Dunnett’s correction for multiple testing (C). 

 

 

 

 

Figure 6.2: Luminex analysis of PMNs from two healthy donors 

This analysis was performed at the NMI in Reutlingen (by Nicole Schneiderhan-Marra and Thomas Knorpp). 
Luminex multiplex cytokine analysis from supernatants of PMNs from two donors. (A) PMNs release more TNF-
α, IL-6 and IL-1β when stimulated with RNA-LL37 complexes for 4 h (n=2). (B) PMNs release more IL-8, IL-16 and 
MIP-1β when stimulated with RNA-LL37 complexes for 4 h (n=2). 
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6.1.4. IRS661 and IRS954 (in nanomolar concentrations) are not toxic for PMNs 

 

 

 

      

 

 

 

 

6.2. Platelet-PMN aggregates promote skin pathology in psoriasis 

6.2.1. General workflow and gating strategy 

 

 
 

 

 

Figure 6.4: IRS661 and IRS954 are not toxic for PMNs 

Aqua Live-dead flow cytometric viability analysis of PMNs pre-treated with 
IRS661 (1 nM) and IRS954 (50 nM) for 30 min and subsequent culturing for 4 h 
(n=5-9). * p<0.05 according to Kruskall-Wallis test with Dunn’s correction. 
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Figure 6.5: Workflow and gating strategy for LEGENDScreen™ from BioLegend 

(A) shows the general workflow of the LEGENDScreen™ using whole blood from 5 psoriasis patients and 5 sex-
and age-matched controls. After short erythrocyte lysis, the cell suspension was stained with CD15 PE-Cy7 
(PMNs), CD3 AF488 (T cells), CD19 BV421 (B cells) and with Zombie yellow (dead cells). Then the screen was 
performed following the manufacturer’s instructions (for further information see Materials and Methods). (B) 
shows the gating strategy. PMNs were gated by CD15+ and subsequently checked for CD16+ (PE marker provided 
in the kit) expression. For B and T cells, the lymphocytes were gated and checked for CD19+ and CD3+ (or 
CD19+CD20+ double positives and CD3+CD4+ double positives, with CD4 PE and CD20 PE provided by the kit). 
Monocytes were gated by size and granularity but were checked for CD14+ (PE provided by the kit) expression. 
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6.2.2. Significant differences in surface antigen expression on B cells, T cells and monocytes 
found in LEGENDScreen™ analysis  
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Figure 6.6: Significant differences in surface antigen expression between psoriasis patients and healthy controls 

(A) Surface antigen expression (MFI) on B cells which are significantly different (CD261, CD11c, CD124, CD215, 
MSC, CD267 and δ- Opioid receptor; see Table 9 for further information) between healthy donors (HD) and 
psoriasis patients (PsorP) n=5 each. (B) the same as (A) but for T cells (CD244 and CX3CR1). (C) the same as (A) 
but for monocytes (CD56, CD61, CD162, Siglec-8, CD41, CD22, CD154, CD268, CD13, FcεRIα, CD21, IgD, CD20, 
BTLA, CD89 and CD163). A-C represent combined data (mean+SD) from ‘n’ biological replicates. Statistical 
analysis was performed by Marius Codrea and Simon Heumos from QBIC. * p<0.1 nominal by two-way ANOVA 
followed by Tukey’s multiple comparisons correction. 
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6.2.2. Surface antigen signature of monocytes, B and T cells (psoriasis patients vs. healthy 
controls) 

 

  
Figure 6.7: Monocytes, B and T cells from 
psoriasis patients have a different surface 
antigen signature compared to healthy 
controls 

Principal component analysis of monocytes 
(A), B cell (B) or T cell (C) surface antigens for 
healthy donors (red) and psoriasis patients 
(blue) (data obtained by LEGENDScreen™). 
The top significant markers (based on 
nominal p-value <0.1) which contribute to a 
separation between patients and healthy 
donors (n=5). A-C represent combined data 
(mean+SD) from ‘n’ biological replicates 
(each dot represents one donor). 
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6.2.3. Platelet-monocyte aggregates are found in the blood of psoriasis patients 

 

 
 
Figure 6.8: Platelets cover the surface of monocytes in the blood of psoriasis patients 

(A) Mean fluorescence intensity (MFI) extracted from the LEGENDscreen™ for CD41 (upper panel) and CD61 
(lower panel) (healthy donor (HD) and psoriasis patient (PsorP); n=5 each). (B) FACS analysis showing % of CD41- 
or CD61-positive PMNs (defined as CD15+CD66b+ and CD41+ or CD61+) analyzed in HD or PsorP (HD n=7, PsorP 
n=5) in whole blood samples or (C) after Ficoll density gradient centrifugation. In A * p<0.1 nominal by two-way 
ANOVA followed by Tukey’s multiple comparisons correction, in B and C * p<0.05 by unpaired Student’s t-Tests.  

 

 

6.3. Supplementary references 
 
Table 6.1: Supplementary references 

homepage paragraph 

https://www.who.int/news-room/fact-sheets/detail/the-top-
10-causes-of-death 

1.5.4. 

https://www.clinicaladvisor.com/home/consultations/aspirin-
for-psoriasis/ 5.2.5 

https://www.everydayhealth.com/news/surprising-uses-for-
aspirin/ 

5.2.5. 
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6.3.1. Leading causes of death worldwide (WHO, 2016) 
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6.3.2. Aspirin ameliorates psoriatic skin inflammation 
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