Mikrowellen-Mikrowellen Doppelresonanzspektroskopie von Glykol und Aceton (HOCH₂CH₂OH und CH₃COCH₃) in deren ersten angeregten Torsionszuständen und das Rotationsspektrum von 1,2,3-Triazin (C₃H₃N₃)

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Dipl.-Ing. Leonora Morina

aus Vushtrri, Kosovo

Tübingen

2018

Tag der mündlichen Qualifikation: 08.04.2019

Dekan:		Prof. Dr. Wolfgang Rosenstiel	
1.	Berichterstatter:	Prof. Dr. Dines Christen	
2.	Berichterstatter:	Prof. Dr. Thomas Chassé	

Ich erkläre hiermit, dass ich die zur Promotion eingereichte Arbeit selbstständig verfasst nur die angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich übernommene Stellen als solche gekennzeichnet habe.

Leonora Morina, Tübingen 2018

für Rron und Valmir

1.	Einleitung	11
1.1	Motivation und Aufbau der Arbeit	12
Ka	npitel 2	13
	2. Allgemeine Eigenschaften der Rotation-Spektren	13
,	2.1 Hamilton Operator für einen starren Rotator	14
	2.2 Der starre Rotator	14
	2.3 Die Born-Oppenheimer-Näherung	18
,	2.4 Störungen des Hamilton-Operators des starren Kreisels	20
	2.4.1 Zentrifugalverzerrung	20
	2.4.2 Kernquadrupol-Hyperfeinstruktur-Aufspaltung	22
	2.5 Reine rotatorische Hamiltonian	26
	2.5.1 Kreiseltypen	26
	2.5.2 Auswahlregeln	26
	2.5.3 Lineare Moleküle	28
	2.5.4 Der prolate symmetrische Kreisel	29
	2.5.5 Der oblate, symmetrische Kreisel	30
	2.5.6 Asymmetrischer Kreisel	31
,	2.6 Besetzungszahlen	33
,	2.7 Kohärenzphänomene	35
	2.8 Schwingungsrotationen der Moleküle	37
,	2.9. Molekülsymmetrie	40
	2.9.1 Punktgruppen	41
	2.9.2 Die Punktgruppe C _{2y}	41
	2.9.3 Die Punktgruppe C_{3v}	42
,	2.10 Spinstatistik	43
,	2.11 Effektiver Rotation-Operator für Großamplitudenbewegung, Torsionsbewegungen und	
1	Spektren	46
	2.12 Basis-Sets von Wellen-Funktionen in Großamplitudenbewegungen	47
	2.13 Matrix Elemente des effektiven Rotation Hamiltonoperator in Großamplituden Bewegun	gen
,	2.14 Beschreibung der internen Bewegung in polyatomaren Molekülen	
	2.14.1 Interne Rotation	

Kapitel 3
3. Mikrowellenspektroskopie
3.1 Modulation Methoden54
3.1.1 Stark-Effekt Modulation 54
3.1.2 Aufbau eines Doppelresonanzspektrometers
3.1.3 Drei-Niveau-System
3.2 Die Mikrowellenquelle 59
3.2.1 Geräte der Mikrowellen-Mikrowellen Doppelresonanzspektroskopie
3.2.2 Doppelresonanzmessung in Köln 61
3.2.3 Experimenteller Aufbau 61
3.3 Computerprogramme für die Anpassung an 1,23-Triazin, Aceton und Ethylenglykol 63
3.4 Chemikalien
I. 1,2,3-Triazin ($C_3H_3N_3$)
II. Aceton (CH ₃ COCH ₃)64
III. Ethylenglykol (HOCH ₂ CH ₂ OH)64
Kapitel 4
4.1 1,2,3-Triazin
4.1.1 Einleitung
4.2 Das Fortrat-Diagramm
4.3 Experimentelle Mikrowellen Spektroskopie69
4.4 Theoretische Studien
4.6 Diskussion
Kapitel 5
5. Aceton
5. 1 Einleitung92
5.2 Struktur und Symmetrieeigenschaften von Aceton94
5.3 Doppelresonanzspektroskopie von Aceton und Ergebnisse
5.4 Experimenteller Vorgang von Aceton101
5.5 Auswertung 102
5.3 Diskussion
Kapitel 6 113
6. Ethylenglykol,
6.1 Einleitung 113

6.2 Bisherige Forschungsergebnisse	114
6.2.1 Frühere Studien zur Konformations-struktur von Ethylenglykol	116
6.3 Der Hamiltonoperator für den beiden Tunnelnden Unterzustände	125
6.4 Versuchsdurchführung bei Ethylenglykol	126
6.5 Vorgehen der Analyse	128
6.6 Diskussion	132
7. Zusammenfassung	133
7.1 Summary	136
8. Literaturverzeichnis	
9. Appendix	
9.1 Publikationsliste	147
9.2 Danksagung	149

Kapitel 1

1. Einleitung

Die Spektroskopie ist heutzutage eine der wichtigsten Methoden zu Untersuchung und Analyse von Molekülen. Bereits Mitte des 19. Jahrhunderts entdeckten Kirchhoff und Bunsen, dass unterschiedliche Elemente die Flamme eines Gasbrenners unterschiedlich färben. Diese Entdeckung war der Grundstein für die moderne Spektroskopie, da aufgrund der unterschiedlichen Lichtabsorptionen und Emissionen, die Stoffe zugeordnet werden konnten. Im Laufe der Zeit und durch die Weiterentwicklung technischer Hilfsmittel konnte man bald Messungen außerhalb des sichtbaren Bereichs des elektromagnetischen Spektrums durchführen und es entwickelten sich immer neue Anwendungsgebiete. Je nachdem welche Art von elektromagnetischer Strahlung man für die Untersuchung auswählt, werden andere Informationen über die untersuchte Substanz generiert. Die in dieser Arbeit verwendete Methode ist die Mikrowellenspektroskopie.

Die Mikrowellenspektroskopie weist eine Reihe charakteristischer Merkmale auf, die sie von anderen Arten der Molekülspektroskopie deutlich unterscheidet. Da die elektromagnetische Strahlung bei der Mikrowellenspektroskopie (1mm-1m) im Vergleich zu Infrarot (800nm-1mm) und UV/VIS-Spektroskopie (circa 200-800nm) energieärmer ist, werden nur Rotationen, also keine Schwingungen und Elektronenübergänge, angeregt. Aus diesem Grund bietet sich die Mikrowellenspektroskopie gerade für die Untersuchung von isolierten, gasförmigen Molekülen an, um Rückschlüsse auf deren Struktur, Bindungslängen, Dipolmomente und Dynamik zu ziehen. Die in dieser Arbeit verwendete Modulationstechnik ist die Stark-Spektroskopie bzw. die Doppelresonanzspektroskopie. Für das Verfahren der Doppelresonanz-Spektroskopie gibt es kein kommerzielles Spektrometer; - das Gerät ist im Labor aus Einzelgeräten (etwa 20 Stück) aufgebaut worden, und es verlangt ein hohes Maß an Geschicklichkeit damit umzugehen. Dies ermöglicht es eindeutige Spektren mit wenigen, gut zugeordneten Linien zu erhalten.

1.1 Motivation und Aufbau der Arbeit

Die hier vorgestellte Arbeit umfasst mit Hilfe des Mirowellenspektrometers, experimentelle und theoretische Untersuchungen an drei verschiedenen Molekülen: 1,2,3-Triazin, Aceton und Ethylenglykol.

Nach einer theoretischen Einführung in Kapitel 2 wird in Kapitel 3 Näheres zur Mikrowellenspektroskopie ausgeführt und die zwei verwendeten Modulationstechniken; - Stark Spektroskopie und die Doppelresonanzspektroskopie -im Detail vorgestellt.

In Kapitel 4 geht es um das Molekül 1,2,3-Triazin. Im Ersten Teil des Kapitels 4 wird mehr über theoretische Studien des 1,2,3-Triazin erläutert; - im zweiten Teil werden die Ergebnisse diskutiert. Durch die große Übereinstimmung der Bandenköpfe in den Mikrowellenspektren der isomeren 1,2,3- und 1,2,4 -Triazin ist eine Zuordnung des 1,2,3- Isomers möglich.

Das zweite analysierte Molekül Aceton befindet sich im Kapitel 5. Da Rotationsübergänge zwischen Energieniveaus mit niedrigen Rotationsquantenzahlen J in früheren Untersuchungen (23) des Rotationsspektrums im v_{17} Zustand von Aceton nicht identifiziert worden sind, wurden nun solche Übergänge durch Mikrowellen-Mikrowellen Doppelresonanzspektroskopie gesucht und zugeordnet.

Im ersten Teil des Kapitels 6 werden bisherige Forschungen zum Molekül Ethylenglykol dargestellt. Das Molekül liegt in der Gasphase in 2 verschiedenen Konformationen vor, die mit antigauche-gauche (aGg^c) bzw. gauche-gauche-gauche (gGg^c) bezeichnet werden, wobei die Kleinbuchstaben die Orientierung der Hydroxylgruppen, die Großbuchstaben, die der Ethylengruppen darstellen. Als die zweite Konformation (gGg^c) 2001 zugeordnet werden konnte, stellte sich heraus, dass das Modell nicht so gut passte, wie für die aGg^c-Konformation. Als Erklärung wurde vermutet, dass der Grundzustand des gGg^c-Konformeren mit dem angeregten Torsionszustand des aGg^c-Konformeren in Wechselwirkung stand. Um diese Erklärung zu überprüfen wurde das Rotationsspektrum des Glykols im angeregten Torsionszustand gemessen.

Kapitel 2

2. Allgemeine Eigenschaften der Rotation-Spektren

Um das Spektrum eines Moleküls, insbesondere das Rotationsspektrum, zu analysieren, ist es notwendig, ein zuverlässiges theoretisches Modell zu formulieren, das aus den Lösungen zur Charakterisierung der Energieniveaus gewonnen werden kann [23, 27, 44].

Um Übergänge zu analysieren, die nur Änderungen in den Rotations-Quantenzahlen aufweisen, erscheint sinnvoll, ein Modell zu wählen, das nur Rotations-Freiheitsgrade aufweist, d.h. einen starren Rotator, der später ausführlicher behandelt wird.

Da ein Molekül Veränderungen in der Schwingungs-, elektronischen- und Kernenergie sowie der Rotationsenergie erfahren kann, ist es wichtig, die Trennung der Rotation von anderen energetischen Freiheitsgraden zu rechtfertigen.

Die Rechtfertigung für die Trennung von Elektronen und Schwingungsenergien kommt aus dem Born-Oppenheimer-Prinzip und wird in Laufe dieses Kapitel näher beschrieben.

Im Wesentlichen gilt, dass die Bewegung der Kerne in Bezug auf die Elektronenbewegungen in einem Molekül sehr langsam ist, so dass die Schwingungsbewegungen die elektronischen Energiezustände nicht wesentlich beeinflussen. Die Wellengleichung kann für die Elektronen in einem festen Kernrahmen gelöst werden; - wenn die Schwingungsbewegung behandelt wird, wird die elektronische Energie verwendet, um die Schwingungspotentiale zu formulieren. Diese Approximation wird durch die relativen großen Energien der elektronischen Energiezustände in Bezug auf die Schwingungsenergiezustände verifiziert. Ebenso können Vibrationen und Rotation in der Regel in einer guten Annährung getrennt werden, da Rotationsenergien in der Regel geringer sind als Schwingungsenergien [23].

In Molekülen mit zwei internen Rotoren, wie im Fall zwei der Moleküle, die wir in der vorliegenden Arbeit untersuchen, beginnt die Zuordnung von Mikrowellenübergängen mit Modellen, bei denen die Rotationsschwingungsenergie die Summe aus dem starren Rotator und der aus der internen Bewegung stammenden Energien bildet. In diesem Kapitel geben wir zunächst einen kurzen Überblick über das einfache starre Rotator-Problem und diskutieren die verschiedenen Annahmen, die auf die Schrödingergleichung angewendet werden, um die Wellenfunktionen und Energien der Rotation und Schwingungsbewegungen getrennt zu finden.

2.1 Hamilton Operator für einen starren Rotator

Der Hamilton Operator wird aus dem klassischen Hamiltonian gewonnen, wenn die Momente durch ihre konjugierten Operatoren ersetzt werden. Wenn keine externen Drehmomente angewendet werden, besteht der klassische Hamiltonian des starren Rotators nur aus kinetischer Energie, die in Form der Komponenten des Drehimpulses in den Hauptachsen ausgedrückt werden kann, wie unten in der Gleichung

$$E_r = \left(\frac{1}{2}\right)I_x\omega_x^2 + \left(\frac{1}{2}\right)I_y\omega_y^2 + \left(\frac{1}{2}\right)I_z\omega_z^2 = \left(\frac{1}{2}\right)\frac{p_x^2}{l_x} + \left(\frac{1}{2}\right)\frac{p_y^2}{l_y} + \left(\frac{1}{2}\right)\frac{p_z^2}{l_z}$$
(2.1)

Um den entsprechenden Hamilton Operator zu finden, ersetzt man einfach die P's durch den konjugierten Drehimpulsoperatoren. In den molekülfesten Hauptachsen x, y, z ist dieser Operator wie folgt.

$$H_r = \frac{1}{2} \left(\frac{P_x^2}{l_x} + \frac{P_y^2}{l_y} + \frac{P_z^2}{l_z} \right)$$
(2.2)

Wobei:

$$P_{x} = \frac{\hbar}{i} \left(y \frac{\partial}{\partial_{z}} - z \frac{\partial}{\partial_{y}} \right), P_{y} = \frac{\hbar}{i} \left(y \frac{\partial}{\partial_{x}} - z \frac{\partial}{\partial_{z}} \right), P_{z} = \frac{\hbar}{i} \left(y \frac{\partial}{\partial_{y}} - z \frac{\partial}{\partial_{x}} \right),$$
(2.3)

2.2 Der starre Rotator

Kein wirkliches Molekül ist ein starrer Rotator, aber es ist ein einfaches Modell, das von einer Reihe von Forschern gründlich behandelt wurde,- [18, 19, 20].

Für niedrige Quantenzahlen J kann das Rotationsspektrum eines Moleküls in guter Näherung durch das Modell des starren Kreisels beschrieben werden. Hierbei wird das Kerngerüst des Moleküls starr angenommen. Wir nummerieren diese Kerne mit dem Index $\eta = 1,2,3,...,N$. Der Kern η hat die Masse m_{η} . In diesem Koordinatensystem hat der Kern η die Koordinaten ($X_{\eta} Y_{\eta} Z_{\eta}$). Die X-Koordinate des Massenschwerpunkts der Kerne ist definiert als:

$$X_0 = \frac{1}{M} \sum_{\eta=1}^{N} m_{\eta} X_{\eta}$$
 (2.4)

wobei $M = \sum_{\eta=1}^{N} m_{\eta}$ die Gesamtmasse der Kerne ist. Die Y- und Z- Koordinaten des Massenschwerpunkts, Y_0 und Z_0 , sind analog definiert. Ein zentraler Punkt in der Behandlung des starren, rotierenden Moleküls ist die Definition des molekülfesten Koordinatensystems. Dieses kartesische Koordinatensystem hat seinen Ursprungspunkt im Massenschwerpunkt des Moleküls, das heißt im Punkt (X_0 , Y_0 , Z_0) des raumfesten Koordinatensystems, und seine Achsen xyz sind fest mit dem starren Molekül verbunden. Das molekülfeste Koordinatensystem folgt also der Rotation des Moleküls. Folglich können wir als Rotationskoordinaten Winkel benutzen, die die augenblicklichen Richtungen der molekülfesten Achsen xyz relativ zu den raumfesten Achsen XYZ beschreiben.

Man braucht drei Winkel, um die relative Lage der beiden Koordinatensysteme definieren zu können, und diese werden normalerweise als die sogenannten Eulerwinkel (θ , ϕ , χ) gewählt. Es gibt mehrere Möglichkeiten, die Eulerwinkel zu definieren. Wir definieren die positive Richtung einer Rotation um eine Achse wie folgt: Wenn man mit der rechten Hand um die Achse fasst, so dass der Daumen in die positive Richtung der Achse zeigt, dann zeigen die anderen vier Finger die positive Rotationsrichtung an. Man kann nun erreichen, dass das raumfeste Koordinaten-system mit dem molekülfesten Koordinatensystem zusammenfällt (das heißt, dass die X-Achse, mit der x-Achse, die Y-Achse mit der y-Achse und die Z-Achse mit der z-Achse zusammenfallen), wenn man das raumfeste Koordinatensystem XYZ in der folgenden Weise dreht:

- Das XYZ-System wird um die Z Achse um den Winkel φ in die positive Rotationsrichtung gedreht. Dadurch wird die Y-Achse in die sogenannte Knotenlinie ON- (Abb.1.) überführt.
- Das gedrehte Koordinatensystem wird jetzt um die ON-Achse um den Winkel θ in die positive Roationsrichtung gedreht. Dadurch wird die Z-Achse in die z-Achse überführt.

Das gedrehte Koordinatensystem wird jetzt um die z-Achse um den Winkel χ in die positive Rotationsrichtung gedreht. Dadurch wird die ON- Achse in die y- Achse überführt Die augenblicklichen Richtungen der x-, y-, und z-, Achsen werden von drei Einheitsvektoren i, j, und k bestimmt. Da das molekülfeste Koordinatensystem kartesisch ist, gilt zu jeder Zeit i*i =j*j =k*k=1 und i*j=j*k= i*k =0 (17).

Abbildung 1. Die Definition der Eulerwinkel (θ , ϕ , χ) [6].

Die freie Rotation dieses Körpers wird durch den Hamiltonoperator beschrieben [5]:

$$H = \frac{P_a^2}{2I_a} + \frac{P_b^2}{2I_b} + \frac{P_c^2}{2I_c}$$
(2.5)

Wobei P_a , P_b , P_c die Komponenten des Drehimpulses und I_a , I_b , I_c die Trägheitsmomente bezüglich der Hauptträgheitsachsen sind: In der Mikrowellenspektroskopie rechnet man in allgemeinen mit den Rotationskonstanten A, B,C.

$$A = \frac{h}{8\pi^2 I_a} B = \frac{h}{8\pi^2 I_b}; C = \frac{h}{8\pi^2 I_c}$$
(2.6)

wobei A \geq B \geq C.

Die Schrödinger Gleichung dieses Problems lässt sich für den Sonderfall des symmetrischen Kreisels (B=C, "prolaten", A=B, "oblaten") in geschlossener Form lösen. Die Energieeigenwerte werden dann durch die Quantenzahl J des Gesamtdrehimpulses und durch die Projektions-quantenzahl K des Gesamtdrehimpulses in Richtung der Figurenachse des Kreisels beschrieben. Im allgemeinsten Fall, dem asymmetrischen Kreisel, ist nur noch der Gesamtdrehimpuls, aber nicht mehr seine Projektion auf eine Achse, eine Konstante der Bewegung. Das heißt, im Gegensatz zu J ist K im asymmetrischen Kreisel keine Quantenzahl. Da sich die Schrödinger gleichung des asymmetrischen Kreisels bis auf wenigen Ausnahmen nicht in geschlossener Form lösen lässt, behandelt man das Problem in der Basis der Eigenfunktionen des symmetrischen Kreisels. Für die Rotationsenergie erhält man dann eine Matrix, die in einzelne J-Blöcke faktorisiert. Durch numerische Diagonalisierung dieser J-Blöcke erhält man für jeden Wert J des Gesamtdrehimpulses 2J+1 Eigenwerte der Rotationsenergie. Zur Charakterisierung der Eigenwerte betrachtet man die Grenzfälle des "prolaten" und des " oblaten" symmetrischen Kreisels und gibt den Eigenwerten des asymmetrischen Kreisels die K-Quantenzahlen der entsprechenden symmetrischen Grenzfälle als Indices. Es ist vorteilhaft vor der Diagonalisierung die Energiematrix umzuformen, so dass man für die Eigenwerte folgenden Ausdruck erhält[6]

$$E(A, B, C) = h\left[\frac{(A+C)}{2}\right] J(J+1) + \left[\frac{(A-C)}{2}\right] E(\kappa)$$
(2.7)

Die zu diagonalisierende Matrix hängt dann nur noch von dem Parameter ab:

$$\kappa = \frac{2B - A - C}{A - C} \tag{2.8}$$

Ihre Eigenwerte E (Kappa) nennt man die reduzierte Energie. Der Asymmetrie-Parameter κ nimmt im gestreckten Grenzfall den Wert-1 und im abgeplatteten Fall den Wert+1 an.

Für elektrische Dipolübergänge zwischen den Rotationsniveaus gelten die Auswahlregeln:

$$\Delta J = 0 \quad (Q - Zweig)$$

$$\Delta J = +1 (R - Zweig) \tag{2.9}$$

$$\Delta J = -1 \left(P - Zweig \right)$$

 K_{-1} und K_{+1} sind Pseudoquantenzahlen, die für den Prolaten und Oblaten-Grenzfall stehen und einfach Unterniveaus der Quantenzahl J im asymmetrischen Rotator repräsentieren. Für die Pseudoquantenzahlen erhält man für die verschiedenen Übergänge die Auswahlregeln [5]:

Komponente des Dipolmoments	ΔK_{-1}	$\Delta K_{\pm 1}$
$\mu_a \! \neq 0$	0, ±2,	$\pm 1, \pm 3,$
$\mu_b \neq 0$	±1, ±3,	±1, ±3,
$\mu_{c} \neq 0$	±1, ±3,	0, ±2,

 Tabelle 1. Auswahlregeln

Wenn alle drei Komponenten ungleich Null sind, sind alle Übergänge erlaubt. Es hat sich aber gezeigt, dass bei Annährung an die symmetrischen Grenzfälle die Linien, die stärksten sind, die den Übergängen des zugehörigen symmetrischen Falls entsprechen. Bei Annährung an den Prolat-Grenzfall mit einem a-Dipol sind beispielsweise die Linien mit $\Delta K_{-1}=0$ die intensivsten.

Prolater Kreisel:
$$F(J, K) = BJ(J + 1) + (A-B)K^2$$

Oblater Kreisel: $F(J, K) = BJ(J + 1) + (C - B)K^2$ (2.9)

2.3 Die Born-Oppenheimer-Näherung

Die Zeitunabhängige Schrödingergleichung für ein System konstanter Gesamtenergie lautet:

$$H\Psi = E\Psi \tag{2.10}$$

H entspricht hier: $H = T + V_{est} + H_{stark}$, und ψ gibt die Gesamtwellenfunktion an. Die potentielle elektrostatische Energie V_{est} teilt sich auf in einen Anteil V_e der die potentielle Energie der Elektronen sowohl untereinander als auch bezüglich der Kerne beschreibt, und einen Anteil V_n, der die gegenseitige Wechselwirkung der Kerne angibt:

$$\mathbf{V}_{\rm est} = \mathbf{V}_{\rm e} + \mathbf{V}_{\rm n} \tag{2.11}$$

In einem geeigneten Koordinatensystem ist diese Trennung möglich, sollen aber auch Rotationen und Schwingungen getrennt werden, geht dass in Allgemein nicht.

Born und Oppenheimer [2] entwickelten eine Näherung, die es erlaubt, die Anteile der Kerne und der Elektronen an der Wellenfunktion zu separieren auch wenn Schwingung und Rotation getrennt betrachtet werden. Die resultierende Schrödingergleichung nimmt dadurch Formen an, die geschlossene Lösungen ermöglichen.

Nach der Born-Oppenheimer-Näherung lässt sich eine separate Schrödingergleichung für die Bewegung der Kerne (Schwingung und Rotation) aufstellen:

$$\left(-\frac{h^2}{2}\sum_k \frac{\nabla_k^2}{M_k} + V_n\right)\psi_{vr} = (E - E_{el})\psi_{vr}$$
(2.12)

$$B_{ZW.} \left(-\frac{h^2}{2} \sum_k \frac{\nabla_k^2}{M_k} + (E_{el} + V) \right) \psi_{vr} = E \psi_{vr}$$
(2.13)

 E_{el} bezeichnet die Elektronenenergie und ψ_{vr} die Kernwellenfunktion für Schwingung und Rotation. Die zweite Darstellung zeigt explizit, dass hier die Kernbewegung im gemeinsamen Potential aus Elektronenergie und elektrostatischer Energie der Kerne untereinander dargestellt ist.

2.4 Störungen des Hamilton-Operators des starren Kreisels

2.4.1 Zentrifugalverzerrung

Mit zunehmenden Quantenzahlen J der gemessenen Übergänge treten systematische Abweichungen vom Modell des starren Kreisels auf. Die Rotation erzeugt Zentrifugalkräfte, die zu einer Veränderung von Bindungslängen und Winkeln führen. Trägheitsmomente und Rotationskonstanten hängen daher vom Drehimpuls ab; mit zunehmender Anregung wächst der Unterschied zwischen beobachteten und für den starren Kreisel berechneten Rotationsenergien. Freilich lassen sich die rotationsaufgelösten Banden zahlreicher Moleküle und Cluster in zufriedenstellender Weise durch ein starrer Rotator Modell wiedergeben. Meist liegt die durch Zentrifugalverzerrung bedingte Änderung der Linienfrequenzen innerhalb der experimentellen Messunsicherheit. Ein maßvolles Limit der Abweichungen wird dadurch begünstigt, dass hohe Rotationszustände, in denen besonders starke Zentrifugalkräfte wirken, in "kalten" Molekularstrahlspektren nicht merklich involviert sind. Die hohe Genauigkeit der Mikrowellen-spektroskopie macht die Berücksichtigung von Zentrifugalverzerrungskonstanten trotzdem erforderlich. Auch die in dieser Arbeit analysierten Spektren können nur mit einem diesbezüglich erweiterten Hamilton Operator hinreichend exakt errechnet werden.

Hier wird ein Ausdruck für den Hamiltonoperator abgeleitet, der die Zentrifugalverzerrung als Störung behandelt. Unter Annahme eines harmonischen Potentials:

$$V = \frac{1}{2} \sum_{ij} f_{ij} R_i R_j \tag{2.14}$$

mit: R_i : innere Koordinaten, $f_{ij} = f_{ji}$ -harmonische Kraftkonstanten, zeigten Kivelson und Wilson[13], dass die Zentrifugalverzerrungseffekte als Störung 1. Näherung des Hamilton- Operators des starren Kreisels behandelt werden können.

$$H' = H'_r + H'_d$$
 (2.15)

$$H'_{r} = \frac{1}{h^{2}} \left(A' P_{z}^{2} + B' P_{x}^{2} + C' P_{y}^{2} \right)$$
(2.17)

$$H'_{d} = \frac{1}{4} \sum \alpha, \beta, \gamma, \delta \tau_{\alpha, \beta, \gamma, \delta} P_{\alpha}, P_{\beta}, P_{\gamma}, P_{\delta}$$
(2.18)

 H'_r entspricht dem starren Kreisel, H'_d dem Störterm. (es wird die I^R- Darstellung verwendet.)

Die τ - konstanten tragen der Tatsache Rechnung, dass die Trägheitsmomente nicht mehr unabhängig vom Rotationszustand sind. Sie lauten:

$$\tau_{\alpha,\beta,\gamma,\delta} = -\frac{1}{2} \sum_{ij}^{(i)} \mu_{\alpha\beta} (f^{-1})_{ij} \mu_{\gamma\delta}$$
(2.19)

Mit $\mu_{\alpha\beta}$: Elemente des inversen Trägheitstensors

$$\mu_{\alpha\beta}^{(i)} = \left(\frac{\partial\mu_{\alpha\beta}}{\partial R_i}\right)_e \tag{2.20}$$

Der Index e bedeutet: Ableitung nach den inneren Koordinaten im (theoretischen, schwingungslosen) Gleichgewichtsfall.

Bei bekannter Struktur und bekannten Kraftkonstanten lassen sich daher die Verzerrungskonstanten im Prinzip berechnen, dies ist aber nur in relativ einfachen Molekülen möglich.

$$H = A'_{\nu} < R|P_{z}^{2}|R > +B'_{\nu} < R|P_{x}^{2}|R' > +C'_{\nu} < R|P_{y}^{2}|R' >$$
$$+\frac{1}{4}\sum_{gg'j'} \tau_{gg'jj'} < \frac{R}{P_{g}}P_{g}'P_{J}P_{j'}|R' >$$
(2.21)

Zwischen den Drehimpulskomponenten bestehen Vertauschungsrelationen, daher können die Verzerrungskonstanten nicht vollständig unabhängig voneinander sein. Unter Benutzung dieser Vertauschungsrelation erhielt Watson[14]für das Energieniveaus eines Kreisels mit Zentrifugalverzerrung folgenden Ausdruck:

$$H = A_{eff}P_Z^2 + B_{eff}P_x^2 + C_{eff}P_y^2 - \Delta_J P^4 - \Delta_{JK}P^2 P_z^2 - \Delta_K P_z^4 - 2\partial_J P^2 (P_x^2 - P_y^2) - \delta_K [P_z^2 (P_x^2 - P_y^2) + (P_x^2 - P_y^2)P_z^2] + H_J P^6 + H_{JK}P^4 P_z^2 + H_k P^2 P_z^6 + 2h_J P^4 (P_x^2 - P_y^2) + h_{JK} P^2 [P_z^2 (P_x^2 - P_y^2) + P_x^2 - P_y^2)P_z^2] + h_K [P_z^4 (P_x^2 - P_y^2) + (P_x^2 - P_y^2)P_z^4]$$
(2.22)

(sextischer Watson Operator)

Die Koeffizienten d_J, d_{EJ} und d_{EK}; - sind Linearkombinationen der Verzerrungskonstanten τ , diese Linearkombinationen können aus dem Rotationsspektrum bestimmt werden.

Watson hat einen Hamilton Operator angegeben, der Drehimpulse bis zur sechsten Potenz erhält. Hierbei werden weitere Zentrifugalverzerrungsparameter eingeführt. In der vorliegenden Arbeit haben wir Übergänge mit höheren J-Werte, daher wird auch der sextische Watson Operator gebraucht. Der sextische Hamilton Operator von Watson kommt mit sieben zusätzlichen H- Konstanten, so dass die Zahl der Anpaßparameter auf insgesamt fünfzehn ansteigt.

Unter einem "quartischen Watson-Modell", wurde in der Arbeit [14] festgestellt das das Modell für J > 30 versagt. Nun war die Frage wie man das Modell erweitern und verbessern kann: Liegt das Versagen daran, dass man nur Störungsrechnung erster Ordnung durchführt oder ist ein Hamilton-Operator ungenügend, der Drehimpulsterme nur bis zur vierten Potenz enthält?

Setzt man im Programm alle sextischen Konstanten gleich Null, dann geht der sextischer Watson-Operator in den quartischen über.

2.4.2 Kernquadrupol-Hyperfeinstruktur-Aufspaltung

Grundsätzlich ist eine Aufspaltung entarteter Rotationsniveaus dann zu erwarten, wenn das Molekülsystem Atomkerne enthält, die einen Kernspin I>¹/₂ und damit ein elektrisches Quadrupolmoment besitzen. ¹⁴N hat ein Kernspin von 1 und ist ein Quadrupolkern. Die Aufspaltung der Rotationsenergieniveaus wird durch Kopplung des Drehimpulses J und Moleküls mit dem Drehimpuls I des Atomkerns, der ein Quadrupol Moment besitzt, hervorgerufen. Die Kopplung erfolgt durch Wechselwirkung des molekularen elektrischen Feldgradienten am Kernort mit dem elektrischen Quadrupolmoment des Atomkerns. Die Quantenzahl des Gesamtdrehimpulses kann dann folgende Werte annehmen [5].

$$F = (J+I), (J+I-1), \quad \dots \quad |J-I|$$
(2.23)

Da die Einstellenergie des Quadrupols in der Regel klein gegenüber der Rotationsenergie ist, sind die verschiedenen F Niveaus eines J wertes eng benachbart, und die entsprechenden Übergänge fallen dann fast zusammen.

Die Quantenmechanik liefert für die Quantenwechselwirkung in erster Näherung (d.h. wenn I, J, und F gute Quantenzahlen sind) folgenden Ausdruck [9].

$$E_Q = -eQqY(J,I,F) = -\chi Y(J,I,F)$$
(2.24)

$$E^{1}_{Q} = \frac{1}{2} \frac{e^{2} Q_{q_{J}}}{I(2I-1)J(2J-1)} \left[\frac{3}{4} C(C+1) - I(I+1)J(J+1) \right]$$
(2.25)

$$C = F(F+1) - I(I+1) - J(J+1)$$
(2.26)

Hierbei bedeutet: e-Elemtarladung, Q-Quadrupolmoment des Kerns, q_J ist der Feldgradient und gilt in dieser Beziehung für alle Molekültypen.

Zur Berechnung der Energien mit einem Quadrupolkern behafteten rotierenden Moleküls benötigen wir also in 1. Ordnung nur noch die Kenntnis von q_J die durch folgenden Ausdruck gegeben ist:

$$q_J = \left\langle J_\tau M_J = J' \left| \frac{\partial^2 V}{\partial Z_J^2} \right| J'_{\tau'} M_J = J' \right\rangle$$
(2.27)

für den Fall des asymmetrischen Kreisels und

$$q_J = \left\langle JKM \left| \frac{3COS^2\theta - 1}{2} \right| JKM \right\rangle * \left(\frac{\partial^2 V}{\partial Z^2} \right)$$
(2.28)

für den Fall des symmetrischen Kreisels. Dieselbe Beziehung gilt mit K=0 für das lineare Molekül.

Van Vleck, Cloes und Good [11, 12]zeigten, dass man für einen einzelnen Kern in einem symmetrischen Top- Molekül χ mit dem Ausdruck $\left(1 - \frac{3K^2}{J(J+1)}\right)$ multiplizieren sollte; - wobei K die Quantenzahl für den Drehimpuls um die Symmetrie-Achse ist.

Die Auswahlregeln zur Bestimmung der durch Quadrupolkopplung bedingten Feinstruktur von Rotationslinien eines symmetrischen Kreiselmoleküls lauten in 1. Ordnung; -

$$\Delta J = \pm 1$$

$$\Delta K = 0$$
 (2.29)

$$\Delta F = 0, \pm 1$$

Da die Aufspaltung jetzt vom Wert K der Projektionsquantenzahl abhängt, ergeben sich für jeden K-Zustand verschiedene Aufspaltungen. Das bedeutet, dass die Feinstrukturaufspaltung eines symmetrischen Kreiselmoleküls wesentlich komplexer ist, als die eines linearen Moleküls.

Die Quadrupolkopplungskonstanten χ_{aa} , χ_{bb} ,- und χ_{cc} lassen sich mit Hilfe eines Anpassungsprogramms bestimmen. Man verwendet dazu Linien mit niedrigem J, die eine große Hyperfeinstrukturaufspaltung haben. Außerdem besteht die Möglichkeit, Linien mit berechneter Hyperfeinstruktur zu plotten, so dass der direkte Vergleich zwischen theoretischen und experimentellen Werten möglich ist.

2.5 Reine rotatorische Hamiltonian

2.5.1 Kreiseltypen

Die Rotation kann klassisch als Gesamtdrehimpuls um eine raumfeste Achse beschrieben werden. Möchte man nun Moleküle beschreiben, kann man diese Kreisel betrachten, die beruhend auf ihrer Symmetrie und ihren Hauptträgheitsmomenten, in vier verschiedene Kategorien unterteilt werden können: lineare Kreisel, symmetrische (oblate und prolate) Kreisel und asymmetrische Kreiseln.

2.5.2 Auswahlregeln

Die Voraussetzung für die Emission oder Absorption von elektromagnetischer Strahlung im Mikrowellenbereich ist das Vorhandensein eines elektrischen Dipolmoments des Moleküls. Das Molekül muss also polar sein. Durch das Dipolmoment werden die Auswahlregeln sowie die Intensität der Absorptionslinien bestimmt. Für ein Dipolmoment gilt:

$$\mu = q * l \tag{2.30}$$

Hierbei ist q die Ladung und l der Abstand zwischen den negativen und postiven Ladungsschwerpunkten.

Ein Rotationsübergang findet statt, falls die Matrixelemente des Operators für die Dipolübergangs μ nicht verschwinden:

$$\langle J, K, M | \mu | J', K', M' \rangle \neq 0$$
 (2.31)

$$\Delta J = 0, \pm 1 \ \Delta K = 0 \ \Delta M = 0, \pm 1 \tag{2.32}$$

Mit der Quantenzahl K wird der Drehimpuls entlang der Molekülachse beschrieben [33]. In einem symmetrischen Kreisel entspricht die Molekülachse der Symmetrieachse. Der Drehimpuls kann

sich entlang dieser Achse durch Absorption oder Emission nicht ändern. Das Festlegen der Auswahlregeln ist bei einem asymmetrischen Kreisel dadurch, dass es schwierig ist, eine Molekülachse festzulegen, nicht so einfach wie beim symmetrischen Kreisel an einem prolaten oder oblaten Kreisel annäherten und dadurch auch die Auswahlregeln, die wiederum von den drei Dipolmomenten $\mu_{A,}\mu_{B}$ und μ_{C} entlang der drei Raumachsen abhängen.

2.5.3 Lineare Moleküle

Bei linearen Molekülen liegen alle Atome auf einer Achse mit folgenden Trägheitsmomenten: $I_b = I_c$, $I_a = 0$. Daher kann eine Rotation nur um eine zur Molekülachse senkrechte Achse erfolgen, wobei das Trägheitsmoment um die Molekülachse immer Null ist.

Der Hamilton-Operator ist hierbei wie folgt:

$$H_{rot} = B_0 J_b^2 \tag{2.33}$$

Man kann zeigen, dass der Hamiltonoperator des starren, linearen Rotators als

$$H_{lin} = \frac{J^2}{2I_{bb}} \tag{2.34}$$

gegeben ist. Die Eigenfunktionen der Schrödingergleichung

$$\boldsymbol{H}_{lin}\psi_{lin}(\theta,\phi) = E_{lin}\psi_{lin}(\theta,\phi) \tag{2.35}$$

Sind die Kugelfunktionen $Y_{Jm}(\theta, \phi)$ und die Eigenwerte

$$E_{lin} = E_J = \frac{\hbar^2}{2I_{bb}} J(J+1)$$
(2.36)

wobei J = 0, 1, 2, 3, 4, \dots Der Spektroskopiker definiert normalerweise eine Rotationkonstante in Wellenzahleinheiten als

$$B_e = \frac{1}{hc} \frac{\hbar^2}{2I_{bb}} = \frac{h}{8\pi^2 c I_{bb}}.$$
 (2.37)

und beschreibt die Rotations-Termwerte als

$$F_J = \frac{1}{hc} E_J = B_e J (J+1).$$
(2.38)

2.5.4 Der prolate symmetrische Kreisel

Sind zwei Trägheitsmomente identisch und unterscheiden sich von einem dritten, wird das Molekül den symmetrischen Kreiseln zugeordnet. Je nachdem, ob I_a oder I_c von den anderen Momenten verschieden ist, spricht man von einem prolaten oder oblaten Kreisel. Mit a und c werden die entsprechenden Molekülachsen bezeichnet. Symmetrische Kreisel können oft den Punktgruppen C_n oder $S_n \text{ mit } n > 2$ zugeordnet werden.

Daraus ergibt sich

$$H_{prolat} = \frac{J_a^2}{2I_{aa}} + \frac{1}{2I_{bb}} (J_b^2 + J_c^2)$$
(2.39)

Identifiziert man nun die a- Achse mit der z- Achse, die b- Achse mit der x- Achse und die c- Achse mit der y- Achse (die Zuordnung $abc \rightarrow zxy$ nennt man in der Spektroskopie eine I^r- Zuordnung) erhält man:

$$H_{prolat} = \frac{J_z^2}{2I_{aa}} + \frac{1}{2I_{bb}} \left(J_x^2 + J_y^2 \right) = \frac{J_z^2}{2I_{aa}} + \frac{1}{2I_{bb}} \left(J^2 + J_z^2 \right)$$
(2.40)

Die Rotations-Termwerten ausgedruckt:

$$F_{Jk} = \frac{1}{hc} E_{Jk} = B_e J (J+1) + (A_e - B_e) K^2$$
(2.41)

mit J = 0, 1, 2, 3, ... und K =-J, -J+1, -J+2, ... J-1, J. Der Termwert hängt weder vom Vorzeichen der Quantenzahl k noch von der Quantenzahl m ab. Ein Term mit k=0 ist 2J+1- Fach entartet, da es (2J+1) verschiedenen Wellenfunktionen gibt, die zu diesem Term gehören (das heißt-, die Wellenfunktion $\psi_{J0m}(\theta, \phi, \chi)$, mit m = -J, -J+1, -J+2, ..., J-1, J). Für ein prolaten symmetrischen Kreisel ist I_{aa}<I_{bb}. Folglich ist $A_e > B_e$, der Koeffizient von K^2 ist positiv. Für einen festgehaltenen J-Wert steigt die Energie eines prolaten, symmetrischen Kreisels mit steigendem Wert von K (= |k|).

2.5.5 Der oblate, symmetrische Kreisel

Für einen oblaten, symmetrischen Kreisel kann man die Überlegungen von den prolaten Kreisel ausgehen, die im Wesentlichen wiederholen. Es gilt nun: $I_{aa} = I_{bb} < I_{cc}$ und wir erhalten den Hamiltonoperator

$$H_{oblat} = \frac{J_c^2}{2I_{cc}} + \frac{1}{2I_{bb}} (J_a^2 + J_b^2)$$
(2.42)

Identifizieren wir nun die a- Achse mit der x- Achse, die b-Achse mit der y- Achse und die c-Achse mit der z- Achse (die Zuordnung abc→xyz nennt man eine III^{r-}Zuordnung) erhält man:

$$H_{oblat} = \frac{J_z^2}{2I_{cc}} + \frac{1}{2I_{bb}} \left(J_x^2 + J_y^2 \right) = \frac{J_z^2}{2I_{cc}} + \frac{1}{2I_{bb}} \left(J^2 + J_z^2 \right)$$
(2.43)

Seine Rotations-Termwerte werden:

$$F_{Jk} = \frac{1}{hc} E_{Jk} = B_e J (J+1) + (C_e - B_e) K^2$$
(2.44)

mit J = 0, 1, 2, 3, ... und k = -J, -J +1, -J+2, ... J-1, J. Die Termwerte weisen dieselbe Entartung

auf, wie bereits für die prolaten symmetrischen Kreiseln beschrieben.

Abbildung 2. zeigt für einen prolaten und einen oblaten symmetrischen Kreisel die Termwerte in Abhängigkeit von J und k [6].

Der Koeffizient von K^2 ist negativ. Für ein festgehaltenen J-Wert nimmt die Energie eines oblaten, symmetrischen Kreisels mit steigendem Wert von |k| ab.

2.5.6 Asymmetrischer Kreisel

Beim asymmetrischen Kreisel (drei ungleiche Trägheitsmomente) ist die Projektion des Drehimpulses auf die Figurenachse nicht mehr zeitlich konstant (die Figurenachse bewegt sich nicht mehr auf einem Kreiskegel um die Drehimpulsachse), d.h. K ist keine Quantenzahl mehr-, bzw. P_z ist keine Konstante der Bewegung. Die Bezeichnung K wird dennoch für die Eigenniveaus beibehalten. K₊₁ ist der Wert; den K für einen oblaten Kreisel annimmt, K₋₁ für einen prolaten.

Der Hamiltonoperator für einen asymmetrischen Rotator lautet:

$$H = A_0 J_a^2 + B_0 J_b^2 + C_0 J_c^2$$
(2.45)

Die Schrödingergleichung für den asymmetrischen Kreisel ist nicht geschlossen lösbar. Deshalb setzt man als Wellenfunktionen des asymmetrischen Kreisels Linearkombinationen der orthonormierten Wellenfunktionen des symmetrischen Kreisels an.

Für den starren, asymmetrischen Rotator bildet die Gesamtheit aller Funktionen $\psi_{Jkm}(\theta, \phi, \chi), J = 0, 1, 2, 3, 4, \dots, k = -J, -J + 1, -J + 2, \dots, J - 1, m = -J, -J + 1, -J + 2, \dots, J - 1, J$. Folglich können die Wellenfunktion $\psi_i(\theta, \phi, \chi)$ des starren, asymmetrischen Rotators wie folgt entwickelt werden:

$$\psi_{i}(\theta,\phi,\chi) = \sum_{J=0}^{\infty} \sum_{k=-J}^{+J} \sum_{m=-J}^{+J} c_{(J,K,M)i} \psi_{Jkm((\theta,\phi,\chi))}$$
(2.46)

Der Grad der Abweichung vom symmetrischen Fall wird durch den Asymmetrieparameter

$$\kappa = \frac{2B - A - C}{A - C}$$
 beschrieben.

Dieser Asymmetrieparameter variiert von -1 für einen prolaten symmetrischen Kreisel zu +1 für einen oblaten symmetrischen Kreisel. Abb. 1 zeigt die Energieniveaus eines starren Rotators mit den beiden Werten für einen oblaten und einen prolaten Kreisel als Funktion des Asymmetrie parameters Kappa.

2.6 Besetzungszahlen

Die Grundannahme der Doppelresonanz geht von der Änderung der Besetzungszahlen der molekularen Energieniveaus aus. Im thermischen Gleichgewicht bei einer Temperatur T wird die Anzahl N der Moleküle, die einen nicht entarteten Zustand der Energie E besetzen, Boltzmann- verteilt:

$$\frac{N_i}{N} = \frac{e^{\frac{-E_i}{kT}}}{\sum_j e^{\frac{-E_j}{kT}}}$$
(2.47)

Hierbei ist E die Energie, und k die Boltzmannkonstante.

Wird das System von einer starken Mikrowellenstrahlung bestrahlt, die der Energiedifferenz zweier Niveaus entspricht, nähern sich die Besetzungszahlen der beiden Energieniveaus einander an. Die durch die eingestrahlte Mikrowellenstrahlung resultierenden Übergänge von einem tiefen Energieniveau in ein höheres und von einem höheren Energieniveau in ein tiefere-, sind gleich wahrscheinlich. Ohne die Anwesenheit der Strahlung ist es bei thermischen Relaxationsprozessen statistisch wahrscheinlicher ein Molekül vom angeregten, energetisch höher liegenden Zustand in einen energetischen niedrigen Zustand zu überführen, als umgekehrt. Durch die Konkurrenz zwischen den beiden Prozessen wird der Strahlungsabsorptionskoeffizient, der proportional zur Besetzungszahldichte ist, reduziert. Zur Vereinfachung soll angenommen werden, dass dieser Unterschied in den Besetzungszahlen und der Temperaturanstieg nur durch Übergänge von Molekülen innerhalb des Zwei-Niveau-Systems verursacht wird. Nimmt man die Besetzungszahlen des ganzen Systems, ändern sich diese bei der Bestrahlung nicht, sie werden nur umverteilt. Ein System im i-ten Niveau hat die dazugehörigen Besetzungszahl N_i. Die Differenz zwischen zwei Besetzungszahlen (N₁-N₂) nimmt beispielsweise jeden Wert zwischen seinem eigenen Wert in thermisches Gleichgewicht und Null an.

Weil thermische Relaxationsprozesse in Gasen bei Druck im mTorr-Bereich relativ schnell ablaufen, ist es fast nicht möglich ausreichend Mikrowellenenergie anzulegen, um bei der Differenz der Besetzungszahlen einen Wert von Null zu erreichen. Jedoch reichen die Energiedichten in der Größenordnung von 100W/m², wie sie üblicherweise in der Mikrowellenspektroskopie verwendet werden aus, um die Differenz der Besetzungszahlen auf die Hälfte des Gleichgewichtszustands zu reduzieren. Bei den für die Mikrowellenspektroskopie typischen eingesetzten Temperaturen und Frequenzen ist $h \ll kT$.

In der Drei-Niveau-System ist der Absorptionskoeffizient der Energie der Probe proportional zur Differenz der Besetzungszahlen [35].

$$N_{2} - N_{3} = \overline{N_{2}} - \overline{N_{3}} + \Delta N_{2}$$

$$= \overline{N_{2}} \left(e^{\frac{hv_{23}}{kT}} - 1 \right) - \frac{1}{2} \Delta (N_{1} - N_{2})$$

$$\approx \overline{N_{2}} \frac{hv_{23}}{kT} + \frac{1}{4} \overline{N_{2}} \frac{h_{12}}{kT}$$

$$= \overline{N_{2}} \frac{hv_{23}}{kT} \left[1 + \left(\frac{v_{12}}{4v_{23}} \right) \right]$$
(2.48)

Die Probenabsorption wird also um einen Faktor $\left[1 + \left(\frac{v_{12}}{4v_{23}}\right)\right]$ gegenüber seinem Wert in Abwesenheit der Pumpstrahlung erhöht. In der Mikrowellenspektroskopie kann man diese Aussage für zwei verschiedene Fälle anwenden: für spektrale Aussagen und für die Verstärkung schwacher Übergänge [35].

2.7 Kohärenzphänomene

In der Mikrowellenspektroskopie existieren zwar Linienverbreitungsmechanismen, wie zum Beispiel die Doppler-Verbreitung, die aus dem sogenannten Doppler-Effekt abgeleitet werden kann. Dieser besagt, dass ein Atom, das sich mit einer bestimmten Geschwindigkeit bewegt das eingestrahlte Licht mit einer verschobenen Frequenz wahrnimmt. Ein Atom absorbiert also je nach seiner Geschwindigkeit Photonen mit leicht verschobenen Frequenzen. Beobachtet man ein Gas, bestimmt die Geschwindigkeitsverteilung (Boltzmann-Verteilung) der verschiedenen Moleküle die gemessene Linienbreite. Die Effekte dieser Mechanismus sind im Vergleich zu einer homogenen Verbreiterung, die aufgrund von Relaxationen von Kollisionen zustande kommt, so klein, dass sie entweder ganz vernachlässigt werden oder als geringe Störung betrachtet werden können. Es ist also besser die Moleküle als ein großes Ganzes zu betrachten, das mit der Mikrowellenstrahlung wechselwirkt, als die individuellen Effekte unabhängig voneinander aufzusummieren.

Trifft kohärente Strahlung auf ein zwei Niveau-System, bildet sich aus den unterschiedlichen Energiezuständen ein Superpositionszustand der beiden Wellenfunktionen der Energiezustände als Linearkombination heraus. Sind diese resonant zur Energiedifferenz der beiden Niveaus, gilt die Gleichung:

$$\psi(t) = \Psi_1(t) \cos\left(\frac{\omega_0 t}{2}\right) + i\Psi_2(t) \sin\left(\frac{\omega_0 t}{2}\right)$$
(2.49)

Hierbei ist ω_0 die Winkelgeschwindigkeit und $\Psi_{1,2}(t)$ die zeitabhängige Wellenfunktion der Energiezustände. Das System wechselt zwischen den beiden möglichen Zuständen hin und her, ohne jemals in dem einen oder anderen Zustand zu verbleiben oder die einfallende Strahlung zu absorbieren. Es gilt für die Frequenz v_0 , mit der das System nutiert:

$$v_0 = \frac{\omega_0}{2\pi} = \frac{|\mu_{12}|\epsilon}{h}$$
(2.50)

 $|\mu_{12}|$ ist das Übergangsmatrixelement zwischen den beiden Energiezuständen und ϵ die Feldstärke des Mikrowellenfeldes [40].

Nur dann, wenn die Nutation durch irgendeine Form von Kollision unterbrochen wird und das System in seinem oberen Zustand bleibt, kann man von der Absorption eines Photons sprechen. Zudem bildet das Ganze, weil alle Moleküle simultan in Resonanz stehen und mit derselben Frequenz nutieren einen makroskopischen elektrischen Dipol, der synchron mit dem angelegten Strahlungsfeld oszilliert. Es ist nicht nötig, dass das Strahlungsfeld in Resonanz ist, um eine Nutation zu erzeugen. Sie tritt im Allgemeinen bei einer Frequenz von

$$(v_0^2 + \Delta v^2)$$
 (2.51)

auf, jedoch nehmen Amplitude und Dipolmoment schnell ab, sobald der Frequenzabstand von der Resonanz Δv ansteigt [40].

Für die Resonanzbedingung des Signalübergangs, die normalerweise $E_3 - E_2 = hv_{23}$ lautet gibt es nun zwei Frequenzen, die die Resonanzbedingung erfüllen, es gilt:

$$E_3 - E_2 \pm \frac{1}{2}hv_0 = hv_{23} \tag{2.52}$$

Der Signalübergang ist also in zwei Übergänge aufgespalten. Umgeformt ergeben sich die Frequenzen der beiden Übergänge zu:

$$\mu_{23} = \frac{E_3 - E_2}{h} \pm \frac{1}{2} v_0 \tag{2.53}$$

Die Existenz dieser Kohärenz-Splitting ist fest verankert in den Beobachtungen zur Mikrowellen -Mikrowelle Doppelresonanzspektroskopie.
2.8 Schwingungsrotationen der Moleküle

Die kleinen Unterschiede in den **effektiven** Rotationskonstanten verschiedener Schwingungszustände und Zentrifugalverzerrungen-, sind zwei Aspekte der Wechselwirkungen: zwischen der molekularen Schwingung und der Rotationsbewegung.

Der physikalische Ursprung dieser Effekte ist die Kopplung des durch die molekularen Schwingungen erzeugten Drehimpulses mit dem durch die Gesamtrotation des Moleküls hervorgerufenen Drehimpuls und wird allgemein als Coriolis- Wechselwirkung bezeichnet. Diese Wechselwirkungen können zu deutlichen Abweichungen vom starren Rotator verhalten; für einige der Rotationsenergieniveaus der beiden Zustände führen, während die verbleibenden Rotationsebenen und die anderen Schwingungszustände nicht signifikant beeinflusst werden. In linearen und symmetrischen Top-Molekülen gibt es degenerierte Vibrationen und die Coriolis- Interaktionen führen zu einer Ausfaltung einiger der Paare von Rotation- Vibrationsenergieniveaus, die sonst degeneriert wären. Dieses Phänomen wird als 1-type -Verdopplung bezeichnet und tritt häufig in den Torsionszuständen oder niederfrequenten Biegeschwingungen dieser Moleküle auf. Später wird darauf hingewiesen, dass periodische Potentialfunktionen oder symmetrische Doppelfunktionen mit hoher Barriere zu degenerierten oder nahezu degenerierten Energiepaaren führen können. Coriolis Wechselwirkungen sind oft prominente Merkmale der Mikrowellenspektren von Molekülen mit diesen Arten von potenziellen Funktionen und kann analysiert werden, um die Trennung in Energie zwischen den beiden Schwingungen oder Torsionszustände zu geben. Die Art und Weise, in der die Rotationsenergiepegel in einem asymmetrischen Rotor durch eine Coriolis- Wechselwirkung beeinflusst werden, kann unter Berücksichtigung des Hamilton-operators und der Wellenfunktionen verstanden werden. Zur Vereinfachung wird angenommen, dass das Molekül starr ist, mit Ausnahme einer einzigen großen Amplitudenbewegung, die Paar fest degenerierten Pegeln (v1, v2) und Schwingungs-drehmomenten um die innere a-Achse hervorruft.

Der Hamiltonoperator ist:

$$H = AP_a^2 + BP_b^2 + CP_c^2 + \left(\frac{F}{2}\right)p^2 + V(x) - F'pP_a$$
(2.54)

Wobei F und F^c Parameter sind, die sich auf die Molekülgeometrie beziehen. Der erste Ausdruck steht für die Rotationsenergie des Moleküls, der zweite Ausdruck für die Schwingung und der dritte Term bezeichnet die Schwingungs-rotation Wechselwirkung. Wenn der letzte Begriff gleich Null ist, wäre die Energie eben die Summe der Schwingungsenergie und der des starren Rotors mit den effektiven Rotationskonstanten der Schwingungszustände, die in Betracht gezogen werden. Die Gesamt-Wellenfunktionen wären Produkte der Schwingungs-Wellenfunktionen und der starren Rotator-Wellenfunktionen.

$$\psi_{v_1 J_1 \tau_1} = \psi_{v_1} \psi_{J_1 \tau_1}; \ \psi_{v_2 J_2 \tau_2} = \psi_{v_2} \psi_{j_2 \tau_2} \tag{2.55}$$

und die Rotationwellenfunktionen wären Linearkombinationen geeigneter symmetrischer Kreisel Wellenfunktionen.

Letztendlich wurden die Schwingungsrotationsenergien bestimmter molekularer Modelle nach einer von Wilson und Howard [31] beschriebenen Methoden quantenmechanisch behandelt. In jedem Fall wurde festgestellt, dass die auf diese Weise berechneten Energiebeziehungen der zweiten Näherung von bestimmten Größen abhingen, die mit der Natur der normalen Schwingungsmoden, der Größe und der Form des Moleküls und der Multiplikation der Konstanten zusammenhingen, die kubischen und quartischen Teile des anharmonischen Potentials bestimmen.

Auf der Basis des klassischen Ausdrucks, der von Wilson und Howard [31] gegeben wurde, haben Darling und Dennison [32] den folgenden quantenmechanischen Schwingungrotations-Hamiltonian für ein mehratomiges Molekül abgeleitet.

$$H = \frac{1}{2} \sum_{\alpha\beta} \mu^{\frac{1}{4}} (\pi_{\alpha} - \mu_{\alpha}) \mu_{\alpha\beta} \mu^{\frac{-1}{2}} (\pi_{\beta} - \pi_{\beta}) \mu^{\frac{1}{4}} + \frac{1}{2} \sum_{k} \mu^{\frac{1}{4}} P_{k} \mu^{-1/2} P_{k} \mu^{\frac{1}{4}} + V$$
(2.56)

Hier ist $\mu_{\alpha\beta}$ ein effektiver reziproker Trägheitstensor und μ ist seine Determinante. Der Hamiltonoperator kann auch in die Form gebracht werden:

$$H = \frac{1}{2} \sum_{\alpha\beta} (\pi_{\alpha} - \pi_{\alpha}) \mu_{\alpha\beta} (\pi_{\beta} - \pi_{\beta}) + \frac{1}{2} \sum_{k} P_{k^{2}} + U + V$$
(2.57)

Der extra Term U das diesen Vertauschungsrelationen Rechnung trugen [115]

$$U = -\frac{1}{8}\mu_{\alpha\alpha}$$

Welches nur eine Funktion der Koordinaten und nicht der Momente ist und als Teil des potentiellen Energiebegriffs betrachtet werden kann.

2.9. Molekülsymmetrie

Aus den Symmetrieeigenschaften eines Moleküls, die mit Hilfe der Gruppentheorie beschrieben werden, können Aussagen über die Moleküleigenschaften gemacht und die Moleküle können ihrer Symmetrie nach geordnet werden.

Symmetrie ist eine allgemeine Eigenschaft von abstrakten und konkreten Objekten. Sie ermöglicht sowohl einen Aufbau durch Wiederholung als auch eine Analyse durch Vereinfachungen [23].

Ein Molekül ist symmetrisch, wenn es nach einer Operation (Umorientierung) in einen nicht unterscheidbaren Zustand überführt werden kann. Die Art der Umorientierung nennt man Symmetrieoperation, der zugehörigen Operator Symmetrieelement. Zu den Symmetrie-operationen zählen Rotation, Spiegelung und Inversion, auf die im Folgenden weiter eingegangen werden soll. Jede Symmetrieoperation benötigt ein Symmetrieelement (Punkt, Linie, Ebene) als Bezugsgröße.

Einer der fünf Symmetrieoperationen, die zur Klassifikation eines Moleküls beiträgt, ist zunächst die Identität E, die einfachste Operation überhaupt, d.h. die Drehung der Moleküle um eine beliebige Drehachse mit dem Winkel 0 Grad (das "Nichtstun") oder 360° das Molekül bleibt unverändert (0) oder wird in den identischen Zustand überführt (360°). Führt man die Nomenklatur C_n =Drehung um den Winkel φ =360/n ein, kann man die Drehung um 360° als C_1 bezeichnen. Eine Spiegelung ist an einer Symmetrieebene (Spiegelebene) σ durchzuführen, die entweder die Hauptdrehachse enthält oder senkrecht zu ihr liegt. Die vertikale Spiegelebene σ_v ist parallel zur Hauptdrehachse, die senkrechte Spiegelebene σ_d liegt in der Winkelhalbierenden zwischen zwei C_2 -Achsen und die horizontale Spiegelebene σ_h ist senkrecht zur Hauptachse. Die sogenannte Inversion i ist eine Punktspiegelung im Ursprung des Koordinatensystems. Die n-zählige Drehspiegelung um die n-zählige Drehspiegelachse S_n, ist zunächst eine Rotation um 360 Grad/n und danach eine Spiegelung an einer Spiegelebene, die senkrecht zur Drehachse ist.

Moleküle mit identischen Symmetrieelementen können sogenannten Gruppen zugeordnet werden. Diese unterteilen sich wieder in Punktgruppen (Molekül) und Raumgruppen (Kristalle). Hier sind im Folgenden nur die Punktgruppen von weiterem Interesse. Die unterschiedlichen Symmetrieoperationen einer Punktgruppe werden in sogenannten Charaktertafeln ausgedrückt.

2.9.1 Punktgruppen

Eine Punktgruppe besteht aus einem Satz von Symmetrieelementen, die einem gemeinsamen Punkt besitzen, der sich bei der Ausführung der Symmetrieoperationen nicht verändert [23].

Die Punktgruppen sind auch dann interessant, wenn man wissen möchte, ob ein Molekül ein permanentes Dipolmoment besitzt, also polar ist. Nur in Molekülen mit der Punktgruppe C_n und C_{nv} liegt das Dipolmoment entlang der Hauptachse. Die wichtigsten Punktgruppen in dieser Arbeit sind C_{2v} und C_{3v} , die im Folgenden genauer beschrieben werden.

2.9.2 Die Punktgruppe C_{2v}

Als Beispiel bezogen aus Aceton. Die Carbonylgruppe besitzt zunächst die Symmetrieoperation der Identität E. Zudem besitzt sie eine zweizählige Rotationsache C₂ und 2 vertikale Spiegelungen $(2\sigma_v)$. Damit wird die Carbonylgruppe der Punktgruppe C_{2v} zugeordnet.

C _{2v}	Е	C ₂	σ_{χ_Z}	σ_{yz}	T/R	h = 4	Т
A ₁	1	1	1	1	Tz	Z	x^2, y^2, z^2
A ₂	1	1	-1	-1	Rz		ху
B ₁	1	-1	-1	-1	T_x, R_y	Х	χZ
B ₂	1	-1	-1	1	T_y, R_x	У	yz

Spalte eins in Tabelle 2 bezeichnet hierbei die irreduziblen Darstellungen, den Charakter des Moleküls. Mit Blick auf die Charaktertafel lässt sich der Grad der Entartung feststellen. A ist symmetrisch, B ist antisymmetrisch. Bei +1 behält die Wellenfunktion ihr Vorzeichen unter der Operation bei, -1 steht für einen Vorzeichenwechsel. Die Bezeichnungen x, y, und z stehen für die Achsen. Die Orientierung der Symmetriegruppen, die sich aus der Gesamtzahl der einzelnen Gruppen zusammensetzt, wird mit *h* bezeichnet. Diese Punktgruppe ist eine nicht zyklische, abelche Gruppe.

2.9.3 Die Punktgruppe C_{3v}

Eine Methylgruppe besitzt zunächst die Symmetrieoperation der Identität E. Zudem besitzt die eine dreizählige Rotationsache C₃ und 3 vertikale Spiegelungen ($3\sigma_v$). Damit wird die Methylgruppe der Punktgruppe C_{3v} zugeordnet. Die Charaktertafel ist in Tabelle 2 dargestellt. E ist hierbei ein zweifach entarteter Zustand. Die Ordnung der Symmetriegruppe ist h= 6. Sie ist eine antizyklische, abelsche Gruppe. Jedes Molekül, das eine dreifache Rotator ist und eine antisymmetrische Grundstruktur hat, wird der Symmetriegruppe C_{3v} zugeordnet.

C_{3v}	Е	3 <i>C</i> ₃	3_{σ_v}	h= 6	Т
A ₁	1	1	1	Ζ	$z^2; y^2; x^2$
A ₂	1	1	-1		
Е	2	-1	0	(xy)	$(xy, x^2 - y^2), (yz, zx)$

Tabelle 3. Charaktertafel der Punktgruppe C_{3v} .

2.10 Spinstatistik

Für Überlegungen zu den relativen Linienintensitäten der A und E Komponenten in einem Rotationsübergang ist es notwendig die Symmetrien der Wellenfunktionen zu betrachten.

Die Fermionen mit halbzahligem Spin sind streng von den Teilchen mit ganzzahligem Spin, den Bosonen, abzugrenzen das von Wolfgang Pauli 1925 empirisch gefunden und 1940 theoretisch bewiesen [26] wurde.

- Die Bosonen sind identische Teilchen der Bose-(Einstein-) Statistik (Zustände werden mehrfach besetzt) und werden durch symmetrische, quantenmechanische Zustände beschrieben. In dem Zustand (charakterisiert durch die Quantenzahlen) können sich beliebig viele Bosonen aufhalten. Dadurch wird auch verständlich, warum das Bose-Einstein-Kondensat (BEK) bei sehr tiefen Temperaturen existieren kann: alle Bosonen sitzen im tiefst möglichen Zustand, dem Grundzustand des Systems.
- Die Fermionen sind hingegen unterschiedliche Teilchen, die der Fermi-(Dirac-) Statistik folgen (kein Zustand ist mehrfach besetzt) und durch antisymmetrische, quantenmechanische Zustände (Slater-Determinanten) beschrieben werden.

Bei einer Permutation (Vertauschung der Koordinaten) von äquivalenten Kernen darf keine experimentell feststellbare Veränderung eintreten, d.h. die Wellenfunktion darf höchstens ihr Vorzeichen ändern (damit ψ^2 , wovon die Messwerte abhängig sind unverändert bleibt). Es ergibt sich in Übereinstimmung mit dem Pauliprinzip, dass Teilchen mit halbzähligen Spin, wie z.B. Elektronen (1/2), H(1/2), ¹⁵N(1/2), ¹⁷O(5/2) und ³⁵Cl(3/2), bei einer solchen Permutation das Vorzeichen ihrer beschriebenen Wellenfunktion ändern müssen (Fermi-Dirac-Statistik), während Teilchen mit ganzzahligen Spin, wie z.B. Deuterium (1), ¹²C(0), ¹⁶O(0) oder ¹⁴N(1), das Vorzeichen nicht ändern dürfen (Bose-Einstein-Statistik).

Die Zahl der möglichen Spinzustände (jeder charakterisiert durch eine Spinfunktion ψ_s) ist; -

$$N_s = \Pi_i (I_i + 1)^{n_i} \tag{2.58}$$

wobei i jeden Satz von äquivalenten Kernen indiziert, I_i den Kernspin des i-ten Satzes und n_i die Zahl der jeweiligen äquivalenten Kerne.

Die Projektionquantenzahl von I wird s genannt, und es gilt:

$$S = I, I-1, I-2, \dots, -I$$
 (2.59)

also ähnlich der Projektionquantenzahl m_j des totalen Drehimpulses, jedoch mit dem Unterschied, dass, wo J und M_J nur ganzzahlig sein können, I und s auch halbzahlige Werte annehmen dürfen.

Verallgemeinert sind bei zwei äquivalenten Kernen von g_I die kernspinstatistischen Entartungsfaktor- Angaben in die folgende Tabelle durchzuführen:

$$g_I = \frac{g(kern)}{(2I+1)^2}$$
 (2.60)

Statistik	Spin	ψ	Konfigura-	spin	Stat.gewicht
			tion		
Ferm-Dirac	Halb	Antisym.	Sym.	Antisym.	(2I+1) I
			antisym	Sym.	(2I-1) (I+1)
Bose-Einstein	Ganz	Sym.	Sym.	Sym.	(2I+1) (I+1)
			Antisym.	Antisym.	(2I+1) I

Tabelle 4. Konfiguration und statische Gewichtung von Ferm-Dirac und Bose-Einstein.

Für FCH₃ wird es ein bisschen komplizierter. Es gibt drei äquivalente Protonen mit Spin $\frac{1}{2}$. Das Molekül besitzt C_{3v}- Symmetrie, die relevante Rotationgruppe ist C₃ mit irreduzibler Darstellung <u>A und E.</u>

Spinfunktion			
Ι	$\uparrow\uparrow\uparrow$		
II	$\uparrow\uparrow\downarrow$		
III	$\uparrow \downarrow \uparrow$		
IV	$\downarrow \uparrow \uparrow$		
V	$\uparrow\downarrow\downarrow$		
VI	$\downarrow \uparrow \downarrow$		
VII	$\downarrow \downarrow \uparrow$		
VIII	$\downarrow \downarrow \downarrow$		

Der elektronische Grundzustand ist totalsymmetrisch, ψ_s : I und VIII sind totalsymmetrisch gegenüber den erlaubten Rotationen (A), jede Permutation der Protonen; die äquivalent zu einer Rotation ist, wird diese zwei Teile unverändert lassen. Weil die Spinfunktionen $\psi_s^{II}\psi_s^{III}\psi_s^{IV}$ bzw. $\psi_s^V\psi_s^{VI}\psi_s^{VI}\psi_s^{VII}$ entartet sind, müssen sie aber gleichzeitig (Linearkombination) betrachtet werden. Die Funktionen $\psi_s^{II_2}$ und $\psi_s^{II_3}$ sind jedoch entartet (E), somit gibt es insgesamt 4 Totalsymmetrische Spinfunktionen (A) sowie 2 zweifachentartete Spinfunktionen (E).

Die Eigenfunktionen eines symmetrischen Kreisels können folgendermaßen beschrieben werden:

$$\psi_r = \Theta_{lkn*} e^{inx} e^{\pm ik\varphi} \tag{2.61}$$

 φ ist die Rotationswinkel um die Figurenachse. Eine Drehung um $2\pi/3$ (120°) wird keine Änderung verursachen, wenn K ein Mehrfaches von 3 ist. In einem Molekül der Punktgruppen C_{3v} werden die Rotationseigenfunktionen für K=3q (q= 0,1,2...) somit alle zu irreduziblen Darstellung A der gruppe C₃ gehören.

Wenn K kein Mehrfaches von 3 ist, K=3q+/-1 wird sich die Rotationseigenfunktion durch eine Drehung von $2\pi/3$ verändern. Diese Zustände gehören somit der irreduziblen Darstellung E an.

Die Symmetrie der Punktwellenfunktion $\psi_{Schwingung}$. ψ_{Spin} wird nun durch das Kreuzprodukt der Charaktere der beiden Torsionszustände A und E bestimmt. Man kommt zu folgendem Ergebnis:

$$A * (4A + 2E_1 + 2E_2) = 4A + 2E_1 + 2E_2$$
(2.62)

$$(E_1 + E_2) * (4A + 2E_1 + E_2) = 4A + 6E_1 + 6E_2$$
(2.63)

Letztendlich folgt dann daraus, dass die Linienintensität eines Mikrowellenübergangs von A und E gleich ist.

2.11 Effektiver Rotation-Operator für Großamplitudenbewegung, Torsionsbewegungen und Spektren

Die Torsionsbewegung ist eine typische niederfrequente Schwingung mit großer Amplitude.

Diese spezifische innere Bewegung in den polyatomaren Molekülen hat beträchtliche Aufmerksamkeit unter den Forschern der Mikrowellen und der Millimeter-Wellen-Spektroskopie hervorgerufen.

Der interne Rotations-Hamiltonoperator für ein Modell mit zwei inneren Rotatoren kann in drei Teilen aufgestellt werden:

$$H = H_R + H_I + H_{RI} \tag{2.64}$$

 H_R - ist der Rotationshamiltonoperator, weil H_I die gekoppelte Interne Rotation und die wichtigsten Beiträge zur rotationinternen Rotation-Wechselwirkung ist. H_{IR} - enthält die verbleibende Wechselwirkung Begriffe. In Abwesenheit von Rotationswinkel (J=0) H_I schreibt man auch:

$$H(J=0) = p_1 F_1 p_2 + p_2 F_2 p_2 + p_1 F' p_2 + p_2 F' p_1 + V(\tau_1, \tau_2)$$
(2.65)

Wobei p_1 und p_2 konjugierte Drehimpulse zu den internen Rotationskoordinaten sind bzw. τ_1 und τ_2 . $V(\tau_1, \tau_2)$ die zweidimensionale potential Funktion ist, auf deren Beschreibung im folgenden Abschnitt eingegangen wird.

2.12 Basis-Sets von Wellen-Funktionen in Großamplitudenbewegungen

Um eine Vorhersage über die Frequenz eines Rotationsübergangs treffen zu können, wurde mit einem effektiven Hamilton-Operator gearbeitet, der für Moleküle mit einem oder zwei periodischen Amplituden formuliert ist.

Die Matrixelemente des effektiven Hamiltonoperators sind folgendermaßen:

$$\langle JKMv\sigma_1\sigma_2 \rangle = |JKMv\sigma_1\sigma_2 \rangle = |JKM\rangle |v\sigma_1(K)v\sigma_2(K)\rangle$$
(2.66)

Hierbei ist $|JKM\rangle$ die Basisfunktion des symmetrischen Rotators mit dem Eulerwinkel eines molekülfesten Referenzachsensystems in Hinblick auf die raumfeste Achse als Variablen.

 $|v\sigma_1(K)v\sigma_2(K)\rangle$ ist die Funksion für die innere Bewegung (abhängig von der Quantenzahl K, die die Einstellungsmöglichkeiten (2J +1) des Moleküldrehimpulses in Richtung der Kreiselachse beschreibt); v ist der Schwingungszustand; σ_1 und σ_2 sind die Quantenzahlen der Rotatoren [18].

2.13 Matrix Elemente des effektiven Rotation Hamiltonoperator in Großamplituden Bewegungen

Die allgemeinen Matrix Elemente eines effektiven Rotations-Hamilton-Operators lautet:

$$\langle JK'Mv\sigma_1\sigma_2|H|JKMv\sigma_1\sigma_2\rangle = \sum_{K_1}\sum_{K_2}Y_{KK'}(K_1K_2)\sum 0 + \sum_1\langle JK'M|R_1|JKM\rangle\sum 1$$
(2.67)

 R_I ist der Operator des Drehimpulses. Die Matrix Y_{KK} (K₁K₂) ist wie folgt definiert:

$$Y_{K'K}(K_1K_2) = \frac{1}{2} \{ \langle JK'M | JK_1M \rangle \langle JK_1M | JK_2M \rangle \langle JK_2M | JKM \rangle \} + \langle JK'M | JK_2M \rangle \langle JK_2M | JK_1M \rangle \langle JK_1M | JKM \rangle \}$$

$$(2.68)$$

Hierbei stellt $\langle JKM | JK_kM \rangle$ das Matrixelement der Rotation zwischen dem Referenzachsensystem und einem Achsensystem mit einer z_k - Achse parallel zum ρ Vector der k-ten internen Rotation dar. Dies kann durch Terme mittels der Wigner Rotationsgruppe beschrieben werden:

$$\langle JKM|JK_kM\rangle = D_{K_kK}^{(J)}(\gamma_k,\beta_k,\alpha_k) = e^{iK_{k\gamma_k}} d_{K_kK}^{(J)}(\beta_k) e^{iK_{k\alpha_k}}$$
(2.69)

Die Winkel γ_k und α_k von Aceton sind null; $\beta_1 = \beta$ und $\beta_2 = \pi - \beta$ sind die Winkel zwischen dem Vektor ρ_k und der Hauptträgheitsachse α .

 \sum_0 und \sum_0 sind zweidimensionale Fourierreihen, die für Aceton folgendermaßen lauten:

$$\sum_{0} = \varepsilon_{00} + 2\sum_{q>0} \left\{ \varepsilon_{qq} \cos\alpha'_{qq} + \varepsilon_{q-q} \cos\alpha_{q-q} + \sum_{q'=q+1}^{q-1} \varepsilon_{qq'} (\cos\alpha'_{qq'} + \cos\alpha'_{q'q}) \right\}$$
(2.70)

Sowie

$$\sum_{l} = T_{l00} + 2\sum_{q>0} \left\{ T_{l00} \cos \alpha_{qq} + T_{lq-q} \cos \alpha_{q-q} + \sum_{q'=q+1}^{q-1} T_{lqq'} (\cos \alpha_{-qq'} + \cos \alpha'_{q'q}) \right\}$$
(2.71)

wobei

$$\alpha'_{qq'} = 2\pi \big(q(\sigma_1 - \rho K_1) + q'(\sigma_2 - \rho K_2) \big) / 3$$
(2.72)

und

$$\alpha_{qq'} = \pi \left(q \left(2\sigma_1 - \rho(K + K') \right) + q' \left(2\sigma_2 - \rho(K + K') \right) \right) / 3$$
(2.73)

 ρ ist hierbei die Länge des Vektors ρ_k ; σ_1 und σ_2 sind die Symmetriequantenzahlen, die ausschließlich den Wert 0, 1 oder 2 für Methylrotatoren annehmen können. Für Aceton gilt bei der Kombination, (σ_1, σ_2) = (0),dass die Entartung aufgehoben ist und der konventionellen Schreibweise, bei Molekülen wie Aceton, AA entspricht. Die restlichen Kombinationen der vierfachen Aufspaltung sind: EE mit (σ_1, σ_2) = (0,1), AE (σ_1, σ_2) = (1,1) und EA(σ_1, σ_2) = (1,2).

Für alle entarteten Zustände kennzeichnet der erste Buchstabe den Zustand. Aufgrund der Interaktionen haben die Unterniveaus vier unterschiedliche Komponenten, einen für jedes Unterniveau. Dabei können die Rotationsenergieniveaus sehr nahe beieinander (Entfernung circa 100 MHz) oder sehr weit auseinander (bis zu 1 GHz) liegen.

Aufgrund der Symmetrieeigenschaften haben unterschiedliche Zustände und Unterniveaus unterschiedliche Spingewichte, welche als Faktoren für die Entartung der Unterniveaus berücksichtigt werden müssen. Der zweite angeregte Zustand v_{17} gehört zu B₁, einer irreduziblen Darstellung der Punktgruppe C_{2v}, die in dem nachfolgenden Kapitel noch genauer erläutert wird. Daher ist die Spingewichtung im zweiten angeregten Zustand v_{17} anders als die im Grundzustand v_0 (A₁-Symmetrie) oder im ersten angeregten Zustand v_{12} (A₂ - Symmetrie).

2.14 Beschreibung der internen Bewegung in polyatomaren Molekülen

2.14.1 Interne Rotation

Eine interne Rotation ist eine intermolekulare Bewegung, bei der sich die Molekülteile im Molekül auf einer festen Achse unabhängig vom Rest bewegen können. Es können hierbei mehrere Konformationen eine Rolle spielen, wo hingegen bei einer Schwingung, die auch eine innermolekulare Beweglichkeit darstellt, nur eine Konformation möglich ist.

Die interne Rotation einer symmetrischen Gruppe, wie in diesem Fall der Methylgruppe (CH₃), kann mit der Gesamtrotation des Moleküls wechselwirken. Der Gesamtdrehimpuls koppelt demzufolge mit dem internen Drehimpuls. Dies verursacht eine periodische Änderung der gesamten potentiellen Energie des Moleküls und kann als folgende Funktion wiedergegeben werden:

$$V(\alpha) = \frac{1}{2} \sum_{k} V_{kn} [1 - \cos(kn\alpha)]$$
(2.74)

Wobei n die Zähligkeit des Kreisels darstellt, die im Fall der Methylgruppe n=3 ist und die Anzahl von Minima und Maxima bei einer 360 Grad Drehung angibt. α ist der Winkel bei einer Rotation um die jeweilige C-C Bindung.

Es ist möglich, die Potentialfunktion V (α_1, α_2) zu erweitern, so dass sie für einen C_{2v} - molekularen Rahmen mit zwei gleichen C_{3v} –Kreiseln als Fourier-Reihe bezüglich der beiden Rotationswinkel α_1 und α_2 folgendermaßen geschrieben werden kann:

$$V(\alpha_1, \alpha_2) = \frac{1}{2} V_3(\cos(3\alpha_1) + \cos(3\alpha_2)) + \frac{1}{2} V_{33}(\cos(3\alpha_1) + \cos(3\alpha_2))$$

= $+\frac{1}{2} V'_{33}(\sin(3\alpha_1) + \sin(3\alpha_2)) + \frac{1}{2} V_6(\cos(6\alpha_1) + \cos(6\alpha_2))$ (2.75)

Terme höherer Ordnung werden hier vernachlässigt. In der Gleichung (2.64) beschreibt V'₃₃ die Methyl-Methyl-Rotation, und die drei Kosinus-Terme beschreiben die Methyl-Rotationen mit dem Rahmen und mit sich selbst.

Abbildung 3. Rotationskonformere des Acetons: (a) eclipsed-eclipsed; (b) staggered-staggered [24]

Der Potentialverlauf für einen dreizähligen symmetrischen Rotator in Abhängigkeit des Winkels ist in Abbildung 3 dargestellt. Für jede Drehung der CH₃-Gruppe um 360 Grad besitzt diese Eigenfunktion drei identische Minima.

Diese Funktion (2.75) besitzt für einen internen Rotator (CH₃) mit dreifacher Symmetrie, drei identische Minima pro 360 Grad Drehung. Wenn die Potentialbarriere zwischen jedem Minimum unendlich hoch ist, sind alle Zustände im Minimum dreifach entartet und das System enthält dadurch drei lokalisierte Wellenfunktionen, Ψ_I , Ψ_{II} , und Ψ_{III} . Wird jedoch die Barriere reduziert, erhöht sich die Möglichkeit einer Zunahme des Tunneleffekts und eine partielle Veränderung der Entartung. Es ergeben sich ein nicht entarteter Zustand A und ein zweifach entarteter Zustand E.

Die erlaubten Wellenfunktionen für ein System mit drei identischen Minima lauten:

$$\Psi_{A} = \frac{1}{\sqrt{3}} (\Psi_{I} + \Psi_{II} + \Psi_{III})$$
(2.76)

$$\Psi_{E_1} = \frac{1}{\sqrt{3}} (\Psi_I - \Psi_{II} + \Psi_{III})$$
(2.77)

$$\Psi_{E_2} = \frac{1}{\sqrt{3}} (\Psi_I + \Psi_{II} - \Psi_{III})$$
(2.78)

Die Betrachtung der Wellenfunktion in den oberen stehenden Gleichungen führt zu Symmetrie-Überlegungen, auf die im nächsten Abschnitt eigegangen wird.

Kapitel 3

3. Mikrowellenspektroskopie

Mit elektromagnetischer Strahlung im Mikrowellenbereich lassen sich hauptsächlich Molekülrotationen anregen und somit ist sie molekülspezifisch. Dies erlaubt es in speziellen Fällen aus der Vermessung einer einzigen Linie bei Vorliegen entsprechender Spektraltabellen ein Molekül eindeutig zu identifizieren [6].

Die Mikrowellenspektroskopie ist eine nicht dispersive Spektroskopie, sie arbeitet mit durchstimmbaren monochromatischen Strahlungsquellen.

Die "Energie" der Mikrowellenphotonen liegt im Bereich von = 1-100 GHz und diese fallen damit in den Bereich der Rotation und Torsionsanregungen von Molekülen [1]. Die Absorptions-koeffizienten der Rotationübergänge sind sehr klein. Mithilfe von Modulation können Absorptionssignale sichtbar gemacht werden. Dazu kann man z.B. die Stark-Effekt Modulation oder die Doppelresonanz-Modulation verwenden.

Die Mikrowellenspektroskopie ist bei der Untersuchung kleinerer Moleküle von großem Nutzen. Gerade bei der Analyse von Substanzen im Weltall ist sie zu einem sehr wichtigen Instrument geworden.

3.1 Modulation Methoden

Bei diesen Untersuchungen werden zwei verschiedene Modulationstechniken verwendet.

Stark-Effekt Modulation (1,2,3-Triazin)

Doppelresonanz Modulation (Aceton und Glykol)

3.1.1 Stark-Effekt Modulation

Moleküle haben einen Drehimpuls J, der 2J+1 Einstellungsmöglichkeiten gegenüber einer raumfesten Achse besitzt. Die Energiezustände sind unter isotropen Bedingungen entartet, d.h. sie haben alle die gleiche Energie. Nach Anlegen eines elektrischen Feldes existiert die Entartung nicht mehr. Im MW-Spektrum äußert sich dies als Aufspaltung von Rotationslinien. Diese Veränderung gegenüber der isotropen Bedingung nennt man Stark-Effekt. Abbildung 4 zeigt ein Beispiel dieser Effektmodulation. Ohne an der Strahlungsdichte etwas zu verändern, "schalten", die Moleküle bei bestimmten Frequenzen die Resonanzabsorption ein uns aus. Dadurch wird die phasenempfindliche Detektion dem Signal/Rausch-Verhältnis erheblich verbessert [39].

Abbildung 4. Schematischer Aufbau eines Starkspektrometers [45].

3.1.2 Aufbau eines Doppelresonanzspektrometers

Das Mikrowellen-Mikrowellen Doppelresonanzspektrometer wird bereits seit über fünfzig Jahren erfolgreich eingesetzt. Es ermöglicht genaue Aufzeichnungen und Identifikationen selbst schwieriger Spektren mehratomiger Moleküle. Im Rahmen dieser Arbeit wurde grundsätzlich mit der Methode der MW-MW-DRS gearbeitet. Im Gegensatz zur normalen Absorptionsspektroskopie werden im Doppelresonanz-Experiment drei Energie-niveaus miteinander verknüpft (wird später ausführlicher erläutert), dies erlaubt es, bei eingestellten Analysenfrequenzen mit einer wesentlichen Vereinfachung des technischen Aufwandes eine 99-prozentige Sicherheit bei der Identifizierung eines Überganges zu erhalten [6].

Untersucht werden Absorptionsspektren von Aceton und Glykol, die ein permanentes Dipolmoment besitzen.

Der Aufbau des Spektrometers ist im Prinzip einfach, was mit der hohen Reinheit der Mikrowellenstrahlung, die aus einer durchstimmbaren Mikrowellenquelle kommt, in Zusammen-hang steht.

Die eine Welle die auch als Pumpstrahlung bezeichnet wird, ist sehr leistungsstark, sie kann entweder im Radiofrequenz oder Mikrowellenfrequenzbereich liegen und ihre Aufgabe ist es, Rotationniveaus zu sättigen, die andere Welle ist die sogenannte Signalstrahlung (Mikrowellenstrahlung).

Abbildung 5. zeigt den Grundaufbau einer Mikrowellen-Mikrowellen-Doppelresonanzspektrometers [44].

Als Strahlungsquelle für Mikrowellen können unterschiedliche Quellen eingesetzt werden, je nachdem welcher Frequenzbereich abgedeckt werden soll.

Wir haben als Strahlungsquelle Reflexklystrons verwendet (Frequenzbereich 20-70 GHz).

Durch den Hornstrahler, der nach einem 3db Koppler eingebaut ist, wird die Frequenz direkt durch die Zelle gestrahlt. Mit diesem Aufbau ist es möglich, das Signal und die Pumpstrahlung über einen größeren Bereich unabhängig voneinander zu variieren.

Der 3db Richtkoppler dient dazu, dass es 50% / 50% für die jeweilige Frequenzleistung durchlässig sind.

In der Glaszelle mit einer Länge von 1.5 m und einem Durchmesser von 15cm befindet sich die Substanz (Aceton bzw. Glykol in dem gasförmigen Aggregatzustande) mit einem optimalen Druck von 10 mTorr. In diesem Bereich zeigten sich die besten Intensitäten. Damit der Detektor nicht durch die hohe Pumpleistung ge- und zerstört wird, folgt nach der Zelle direkt ein Hohlleiter-Cutoff Filter. Deshalb muss immer darauf geachtet werden, dass v(Pump)<v(Signal) ist.

Die registrierten, phasenverschobenen Signale werden durch einen phasenempfindlichen Verstärker (PSD-Phasen-sensitive-Detektion) demoduliert und an den Schreiber weitergeleitet.

Da die Breite der Absorptionslinien im mTorr Bereich kleiner als 100 kHz ist, müssen die erzeugten Mikrowellen sehr stabil und frequenzgenau sein; - dies wird durch das phasenstarre Koppeln der Mikrowelle mit einer Oberwelle einer Radiofrequenzstrahlung erreicht, deren Frequenzdifferenz 30 MHz beitragen muss.

3.1.3 Drei-Niveau-System

Die Doppelresonanzthechnik lässt sich am besten mit einem Drei-Niveau-System veranschaulichen. Dieser Modulationstyp wird anhand der selektiven Population molekularer Energieniveaus beschrieben, die mit Hilfe eines dreistufigen Systems interpretiert werden kann, wie in Abbildung 6 dargestellt. In thermischem Gleichgewicht bei einer Temperatur T folgt die Population der molekularen Energieniveaus der Boltzmann-Verteilung:

$$N_n = N_0 e^{-(E_n/_{kT})}$$
(3.1)

Nach dieser Verteilung nimmt die Anzahl der Moleküle N_n einen "nicht entarteten" Zustand, $|n\rangle$ von Energie E_n die einen Wert proportional zu exp (${}^{-E_n}/_{kT}$), wobei k die Boltzmannkonstante ist.

In einem dreistufigen System verursacht die wechselnde Population eines Energieniveaus während des Pumpens eine Amplitudenmodulation des Signals.

Abbildung 6. Beschreibung des three-Level-System in vier (A, B, C, D) verschiedenen Phasen für moduliertes MW-DR. Die Pumpfrequenz (grauer Pfeil) ist kleiner als die Sinalfrequenz (heller Pfeil). Die Anordnung der Energieniveaus E_i ist schematisch mit ihren Boltzmanpopulation n des ungestörtes Systems dargestellt.

3.2 Die Mikrowellenquelle

3.2.1 Geräte der Mikrowellen-Mikrowellen Doppelresonanzspektroskopie

Während der Arbeit wurden unterschiedliche Geräte verwendet, die jeweils in Tabelle 6 dargestellt sind. In Tabelle 5 sind alle verwendeten Bänder (=Frequenzabschnitte) verzeichnet.

Band	Frequenzbereich $v[GHz]$
Х	8,2 – 12,4
Ku	12,4 – 18
K	18 – 26,5
V	26,5 - 40
U	40 - 60
М	50 - 75

Tabelle 5. Frequenzbanden Bezeichnungen

Nr.	Instrumente für Mikrowellen-Mikrowellen Doppelresonanzspektroskopie			
1.	Universal Klystron power supply Model Z815B von der Firma FXRINC			
2.	Microwave sweep oscillator (WE, Macroni)			
3.	Frequenzgenerator (Mikrowellen) MG 520 M von der Firma Schomandl			
4.	Radiofrequenz Verstärker von der Firma Schamandl, Abstimmbare Ausgang 750-			
	1000MHz			
5.	Syncriminator Model FDS 30 von der Firma Schomandl			
6.	Microwave sweep oscillator Model 211 von der Firma mi-Sanders			
7.	Klystron (in verschiedenen Banden M-V Band) von der Firma OKI			
8.	Microwave Synthesizer Systron Donner Model 1720 von der A THRON EMI			
9.	Recorder Firma ROHDE&SCHWARTZ			

10	Mischkopf FMDR			
11.	Signalstärke an Detektor von der Firma Kipp und TOMP			
12.	Detektoren:			
	X Band-	Lichfield Model DT085		
	V Band-	Aertech -Tunnel Detector W264 F		
		Farron FTL1615B WDP		
		MRI Model DETR-X S/N 108		
	M Band-	MicroLab/FXR/72309/178		
13.	Harmonic Mixer Model FMDR 26/40			
14.	Oscilloscope			
15.	Giga-Tronics Model 910/01-40			

In Tabelle 6. Sind alle Geräte notiert, die für die Mikrowellen-Mikrowellen Doppelresonanzspektroskopie verwendet wurden.

Es ist nötig anzudeuten, dass der Richtkoppler, die Mikrowellenstrahlung der Pump und die der Signalquelle zusammenführt, ohne Pump oder Signalquelle zu stören.

Abbildung 7. Zwei-Band-Richtkoppler: K/Q-Band. Diese zeigt beispielhaft einen Zwei-Band-Richtkoppler, der K- und Q-Band zusammen-koppelt.

3.2.2 Doppelresonanzmessung in Köln

Unser Ziel war es, mit Hilfe des Mikrowellen-Submillimeter-Spektrometers der Universität Köln; und Geräten der Universität Tübingen, Doppelresonanz Messungen der zwei Moleküle (Aceton und Glykol) durchzuführen.

Nach vielen Versuchen beim Aufbau der Geräte ist es uns gelungen, Doppelresonanzmessungen aufzuzeichnen.

3.2.3 Experimenteller Aufbau

Die fundamentale Frequenzquellen waren computergesteuerte Sweep Synthesizer, die auf einem Rubidium Uhr normiert wurden. Einer der Synthesizer (Agilent E8257D und Rohde) wurde als direkte Frequenzquelle verwendet, um Spektren bis 70 GHz aufzuzeichnen; - dieser war mit einem Koaxialkabel an einer Hornantenne im M-Band verbunden.

Der RF-Ausgang eines Mikrowellen Generators (Rohdle und Schwarz SMF 100A: maximale Frequenz 43GHz) wurde auf der gewünschten Frequenz mit kaskadierten Multiplikatoren von Virginia- Dioden Inc.(VDI) multipliziert;- diesbezüglich wurde mit einem Vorverstärker (der Uni Tübingen) an einer Hornantenne im K Band verbunden. Beide Synthesizer ermöglichen quasi kontinuierliches Tuning in frei einstellbaren Frequenzschritten von typischerweise einigen wenigen Kilohertz.

Die Zwei Hornantennen (siehe unten Abbildung 8) werden so eigestellt, dass die Strahlung aus den beiden Quellen durch einen Polarisator gehen und mit 90° verdreht Polarisation durch zwei Hornantennen in die Pyrex Absorption Zelle erreichen.

DC-biased Schotlly Dioden (Raumtemperatur) wurden als Detektoren eingesetzt. Das Signal wurde mit einem Lock-in Verstärker phasensensitiv detektiert.

Frequenzmodulation wurde verwendet, um Baseline Effekte zu reduzieren. 2f- Demodulation wurde durchgeführt, was zu eine Lineshape in Form einer zweiten Ableitung eines Gausians führt.

Eine detaillierte Beschreibung des Millimeter-Submillimter-Spektrometers und der experimentellen Bedingungen finden sich in der Literatur [43,44].

Abbildung 8. Aufbau einer Polarisation mit Hilfe der zwei Hornantennen, die sich im X-K Band befinden.

3.3 Computerprogramme für die Anpassung an 1,23-Triazin, Aceton und Ethylenglykol

In der vorliegenden Arbeit wurden für die Anpassung und Vorhersagen der Spektra der untersuchten Moleküle verschieden Methoden verwendet, um die Berechnungen von Vibrationrotations- und Spinnrotations-Wechselwirkungen zu behandeln.

Für die Anpassung von 1,2,3-Triazin-; wurde das *Pickett Programm mit Spfit-code* verwendet, für die letzte Anpassung der Rotations-Verzerrungskonstanten von 1,2,3-Triazin wurde durch *B3LYP aus ccpVT2* und Coupled Cluster durchgeführt.

Unten in der Tabelle sind alle Kalkulationsmethoden dargestellt:

Method	basis set
Microwave spectrum	
CCSD(T)	Def2-TZVPPD
MP4(SDQ)	Def2-TZVPPD
MP2	aug-cc-pVTZ
B3LYP	aug-cc-pVTZ
M11	Def2-TZVPPD
LC-BLYP	Def2-QZVPPD

Die GAUSSIAN-16 Suite (G-16) (10) einschließlich das *Pickett* (16), sorgten dafür, dass alle Daten über Momente, Rotationskonstanten und 14 N nukleare Quadrupolkopplung sich auf das System der *Inertialachse (IA)* beziehen.

Für die Anpassung von Aceton und Glykol wurde das *Pickett Programm* und der *ERHAM- code*, DFT (density functional theory), verwendet.

3.4 Chemikalien

I. 1,2,3-Triazin (C₃H₃N₃)

III. Ethylenglykol (HOCH₂CH₂OH)

Kapitel 4

4.1 1,2,3-Triazin

4.1.1 Einleitung

Als Mitglied der Gruppe Azin C_{6-n}H_{6-n}N_n (n=0-5) ist 1,2,3-Triazin mit (n=3) das am wenigsten bekannte Molekül, vermutlich aufgrund der synthetischen Schwierigkeiten. Trotzdem kann es als Ausgangsstoff für größere Ringsysteme genutzt werden, wobei 1,2,4- Triazin der günstigere Ausgangsstoff ist. Das und die schwierige Herstellung sind wahrscheinlich auch die Gründe, warum 1,2,3- Triazin kaum industrielle Bedeutung hat. Sein Wert liegt vielmehr darin, als Modellsystem für heterocyclische Ringsysteme in der Rotationsspektroskopie zu fungieren.

Nach der rotationsspektroskopischen Arbeit am 1,2,4- Triazin [1 - 4] schien es jedoch interessant, auch das 1,2,3- Triazin zu untersuchen. Mit diesem Ziel wurden schon 2003 Starkspektren in Tübingen aufgenommen, die aber bis jetzt nicht zugeordnet werden konnten.

Mit Hilfe des Fortrat-Diagrammes von 1,2,3-Triazin und 1,2,4-Triazin ist es möglich auf sehr anschauliche Weise einen Vergleich in Bezug auf das Verhalten der beiden Moleküle zu ziehen.

4.2 Das Fortrat-Diagramm

Trägt man die Rotationsquantenzahl J gegen die Frequenz eines Rotationsübergangs aus dem Rotationsspektrum auf, so erhält man ein sogenanntes Fortrat-Diagramm, wenn man Übergänge mit demselben K₊₁- Wert verbindet. Kommen in einem bestimmten Frequenzbereich gehäuft viele Rotationslinien bzw. Rotationsübergänge vor, spricht man von einem Bandenkopf. Dieser Bandenkopf tritt (bei hohen K₊₁-Wert) auf, wenn J sich dem Wert von K₊₁ nähert. Hier ein Beispiel wie der Fortrat für das Molekül 1,2,4-Triazin aussieht.

Abbildung 9. Fortrat-Diagramm der gemessenen a-Type Linien bestehend aus Q-Zweig-Übergängen.

Es gibt verschiedenen Übergange für die Änderungen der Rotationsquantenzahl J. Die Übergänge mit ΔJ =-1 bilden den P-Zweig, die mit ΔJ =0 den Q- Zweig, und die Übergänge mit ΔJ =1 bilden den R- Zweig. Je nach Form der drei Zweige zueinander; - kann man Rückschlüsse über die Rotationskonstanten ziehen. Die charakteristischen Formen der Zweige in einem Fortrat-Diagramm haben einen bestimmten Grund. Der Einfachheit halber wird die Form der Zweige in einem Fortrat-Diagramm nur für den sphärischen und linearen Kreisel besprochen: Die Energie eines rotierenden sphärischen oder linearen Moleküls für ein beliebiges J wird mit der Gl. berechnet:

$$E(J) = hcBJ(J+1) \tag{4.1}$$

Betrachtet man nun einen Rotationsübergang, dann ergibt sich die Energie dieses Übergangs aus der Differenz zwischen dem angeregten Zustand (einfach gestrichen) und dem Ausgangszustand (zweifach gestrichen), wobei zusätzlich noch ein Faktor berücksichtig werden muss, welchen man als Bandenursprung v_0 bezeichnet. Daraus ergibt sich dann folgende Gleichung:

$$F = v_{\circ} + B'J'(J'+1) - B''J''(J''+1)$$
(4.2)

Setzt man nun die Auswahlregeln für die jeweiligen Zweige ein, so erhält man für jeden der Zweige eine separate Gleichung:

-für den P-Zweig (J'=J''-1) gilt:
$$F = v_{\circ} + B'(J''^2 - J'') - B''(J''^2 + J'')$$
 (4.3)

$$F = \nu_{\circ} - (B' + B^{\prime \prime})J^{\prime \prime} + (B' - B^{\prime \prime})J^{\prime \prime 2}$$
(4.4)

- für den Q-Zweig (J'=J'') gilt:
$$F = v_{\circ} + B'(J''^2 + J'') - B''(J''^2 + J'')$$
 (4.5)

$$F = \nu_{\circ} + (B' + B'')J'' + (B' - B'')J''^2$$
(4.6)

für den R-Zweig (J[']=J[']-1) gilt:
$$F = v_{o} + B'(J'^{2} - J') - B''(J'^{2} + J')$$
 (4.7)

$$F = v_{\circ} + (B' + B'')J' + (B' - B'')J'^{2}$$
(4.8)

Betrachtet man davon jeweils die untere Gleichung, kann sie zur Verdeutlichung auf folgende Gleichung vereinfacht werden:

-für den P- und Q-Zweig:
$$F = a + bJ'' + cJ''^2$$
 (4.9)

- für den R-Zweig:
$$F = a + bJ' + cJ'^2$$
 (4.10)

Wie nun unschwer zu erkennen ist, gehorchen alle drei Zweige mehr oder weniger einer quadratischen Funktion, was auch die meist teilweise vorhandene Parabelform der Zweige erklärt.

Je nachdem, wie sich B'zu B" verhält, kann dies noch zusätzlich das Aussehen der drei Zweige beeinflussen:

Abbildung 10. Fortrat-Diagramm in Abhängigkeit von B' und B''

Ist B'<B'', so wird die Komponente c der verallgemeinerten Gleichung negativ, was die nach links geöffneter Parabel erklärt. Gilt B'>B'', so ist die Komponente c positiv und die Parabel ist nach rechts geöffnet. Für den Fall B'=B'' wird die Komponente c gleich null und der quadratische Term verschwindet ganz, wodurch der Verlauf der P-, Q- und R-Zweige zu Geraden werden.

Diese Betrachtung gilt nur für den sphärischen und linearen Rotator, da in diesen beiden Rotator-Typen nur eine Rotationskonstante vorhanden ist. Die Betrachtung wird viel komplizierter für den symmetrischen oder asymmetrischen Kreisel, da die einzelnen Rotationskonstanten gemäß ihrer Größe noch gewichtet werden müssen.

4.3 Experimentelle Mikrowellen Spektroskopie

1,2,3-Triazin wurde von R. Alan Aitken und M. H. Palmer synthetisiert [106] und uns für die weitere Analyse zu Verfügung gestellt. Die Spektren wurden bei Raumtemperatur bei einem niedrigen Druck aufgezeichnet. Der Frequenzbereich betrug 7-35 GHz mit einem klassischen rechteckmodulierten Stark-Effekt-Mikrowellenspektrometer (Modulations-Frequenz 50 kHz). Spektren wurden mit einem computergesteuerten Gigatronics Modell 910 Synthesizer gemessen; die Schrittgröße betrug 10 kHz. Jeder Punkt wurde 10 Mal gescannt, die Signale summiert und anschließend wurden die Punkte geglättet. Die Spektrallinienpositionen wurden automatisch unter Verwendung der Funktion "peak-pick" bestimmt. Die endgültigen Ergebnisse der spektren-Analyse sind in den Tabellen 7, 8 - und 9 gezeigt. Die ersten zwei Banden, die im Detail analysiert werden, sind in den Abbildungen 13 und 14 gezeigt.

4.4 Theoretische Studien

Die Gleichgewichtsstruktur von 1,2,3-Triazin wurde mit einer Vielzahl von Basis-Sätzen und Methoden gesucht, wie in Tabelle 9 gezeigt. Die nahezu degenerierten A- und B-Rotationskonstanten erwiesen sich jedoch als Herausforderung, was am meisten durch Coupled-Cluster mit Einzel- und Doppelanregung durch ausgewählte Tripple (CCSD(T) Verfahren erreicht wurde. Dies wird weiterhin als "Goldstandard" in der Computer-Chemie für elektronische Grundzustände angesehen. [99 – 102] die Ahlrichs et al. Default Serie 2 Triple Zeta Valence mit zusätzlichen p- und d- Polarisations-Funktionen (Def2-TTZVPPD) basis-set gab die engsten Rotationskonstanten zu den spektroskopischen Werten; - diese werden in Tabelle 11 dargestellt. [103 – 105] die GAUSSIAN-16 Suite (G-16), [10], einschließlich der Pickett-Ausgabe Richtlinie, [16] sorgte dafür, dass sich alle Daten über Momente, Rotationskonstanten und ¹⁴N-nukleare Quadrupol-Kopplung auf das System der Inertialachse (IA) beziehen.

4.5 Vorgehen bei der Analyse und Entwicklung

Als wir die Analyse der ursprünglichen Aufzeichnungen unseres früheren Rotationsspektrums in Angriff nahmen, wurden wir von zwei theoretischen Berechnungen unterstützt vor allem von Dr. H.P.S Müller [76], -viel später in der Untersuchung haben wir die gekoppelten Cluster und andere Berechnungen durchgeführt, die in den Tabellen 10 und 11 gezeigt sind.

Das Hauptziel dieser Arbeit war es, die Rotationsübergänge im Q-Zweig in das 1,2,3-Triazin aufgezeichnete Spektrum einzuordnen und anschließend die Roations- und Zentrifugalverzerrungskonstanten zu bestimmen. Das isolierte Molekül weist C_{2v} - Symmetrie mit symmetrischen Positionen für zwei Stickstoffatome im Ring auf. Das Dipolmoment liegt entlang der C_{2v} -Achse durch das (mittlere) N₂-Atom, das entweder die a- oder die b-Achse sein muss. Die Isotopenmasse schreiben jedoch vor, dass die Trägheitsmomente I_a und I_b sehr ähnlich sind. Unter Verwendung des Asymmetrie-Parameters $\varkappa = (2B - (A + B)/(A - C))$ ist das Molekül ein nahezu zufälliges abgeflachtes symmetrisches Top \varkappa nähert zu +1. Die Analyse des Rotationsspektrums zeigt unten, dass die a-Achse entlang der Symmetrieachse liegt, aber geringfügige Änderungen der Struktur-Parameter oder Änderungen der Isotope könnten dies in die b-Achse umwandeln. Diese Probleme stehen im Gegensatz zu 1,2,4-Triazin, wo die drei Stickstoffatome unsymmetrisch im Ring angeordnet sind. 1,2,4-Triazin ist ein asymmetrischer Rotator mit stark unterschiedlichen Trägheitsmomenten I_a und I_b sowie μ_a und μ_b Dipolkomponenten.

Um eine Zuordnung vornehmen zu können, mussten wir erst mal überlegen, wie wir am besten eine Serie von Linien identifizieren, die später als Modell bei der Anpassung genutzt werden können.

Daher wurden die Spektren so aufgestellt, dass man alle Linien vor sich hat, um einen besseren Blick über das komplette Spektrum zu haben. In dieser Hinsicht konnte man sofort erkennen, dass es in den Spektren 5 Bereiche gibt, in dem die Linien ganz dicht beieinander liegen; - wie bereits erwähnt, werden diese Linien als Bandenkopf bezeichnet.

Die Bandenköpfe befinden sich im 15 GHz, 22 GHz, 28 GHz und im 35 GHz Bereich. Da die Dichte der Linien in diesen Bereichen sehr hoch ist, kann es schwierig sein, einzelne Übergänge zu erkennen, aber der Vorteil ist, dass man innerhalb einer Reihe von Linien einen gemeinsamen Verknüpfungspunkt hat (siehe Abbildung 11). Mit zunehmendem J-Wert wird der Abstand zwischen den Übergängen größer und auch die Intensität viel größer.

Warum wir den 15-Bereich als Anfangsanalyse benutzten, ist kein Zufall.

Abbildung 11. Bandenkopft im Frequenz Bereich von 15-16 GHz. Der Schlüssel zur Zuordnung hat den Bereich bei 15.8 GHz mit K+1=2-3, bei Raumtemp, Druck auf 20mTorr, Zeitkonstante = 300ms; delay = 125ma; Stark = 400V/cm; F-step = 10kHz.

Wie es aus dem Plot zu entnehmen ist, gehen die divergierenden Q-Zweige von niedrigen J-Werten in die entgegengesetzte Richtung mit einer nahezu parallelen Aufspaltung der Linien. Im Bandenkopf (~15850 *GHz*) ist es nicht einfach, einen klaren Anfangs-Übergang zu finden (J=K₊₁), aber das Verhalten der Linien schien leichter erfassbar zu sein, als bei den anderen Bandenköpfen. Natürlich gab es auch hier ein paar Schwierigkeiten, Übergänge zu finden, die zum selben Zweig gehören, so dass andere Kriterien berücksichtigt werden mussten. Einerseits muss die Serie eine kontinuierliche Zunahme des Abstandes durch Erhöhung von J aufweisen, andererseits muss die Form des Stark-Effektes sowohl in der Größe als auch im Vorzeichen berücksichtigt werden, so dass z.B. ein Übergang mit der Frequenz 16223,2 (der später als 31₂₈₃-31₂₈₄ zugeordnet wurde) keinen offensichtlichen Stark Effekt aufweist und in diesem Fall nicht als Mitglied der Serie an

gesehen wird, obwohl er sehr intensiv ist; anderseits zeigt die Linie mit der Frequenz 15508,88 (die später als 32₂₉₃-32₂₉₄ zugeordnet wurde) ebenfalls keinen offensichtlichen Stark Effekt. Ein weiteres Kriterium ist auch die Intensität des Übergangs. Beispielsweise ist es nicht möglich, dass nach einem Übergang mit hoher Intensität der nächste Übergang des Zweiges nur eine wesentlich schwächere Intensität hat. Eine weitere Schwierigkeit ist, dass meist nicht ganz klar ist, welchem J einer Rotationslinie zugeordnet werden kann, da in Prinzip auch das nächst niedrigere oder nächsthöhere J möglich ist, was die genaue Zuordnung der Übergänge sehr schwierig machte. Aus diesem Regelwerk wurde eine erste Anpassung mit den ersten 6 Linien der jeweiligen Q-Zweige im 15 GHz Bereich versucht.

Assignment	Frequency	Assignment	Frequency
532-533	15732.58	542-523	15764.39
642- 643	15709.35	652-633	15775.45
$7_{52} - 7_{53}$	15671.34	7 ₆₂ - 7 ₄₃	15790.88
862-863	15615.77	872-853	15814.55
972-973	15537.09	9 _{82 -} 9 ₆₃	15848.78
1082- 1083	15431.32	1092- 1073	15897.05

 Tabelle 7.
 Ausgewählte Linien

So wurden die ersten 6 Linien für den einen Zweig und 6 Linien für den anderen Zweig aus dem Spektrum entnommen und als experimentelle Linien verwendet.

Zu einer groben Klassifizierung des Rotationsspektrums von 1,2,3-Triazin wurde zuerst für das Molekül ein Modell übernommen, mit Hilfe des Computerprogramms Pickett [16] wurde eine SPFIT- und SPCAT-Anpassung durchgeführt und eine Berechnung der noch fehlenden Rotationsübergänge vorgenommen. Da es sich um einen Nahe-Symmetrischen Kreisel handelt und daher auch nur μ_a –Übergänge berechnet werden, wurden zuerst bei der Anpassung nur die Rotationskonstanten B und C variiert und sonst an allen anderen Parameter festgehalten.
Dieses Modell wurde angepasst und gibt für die Rotationskonstante A= 6334.14 MHz

```
B=6271.3MHz
C= 3151.3MHz
```

Mit Hilfe von Rotationskonstanten wurde aus den 12 ausgewählten Linien eine Anpassung durchgeführt.

Parameter	Value (standard deviation)
Α	6334.1478(fixed)
В	6271.288(7)
С	3151.399(8)
(A - C)/2	1591.37
κ	0.960
Microwave RMS	0.442 MHz

Tabelle 8. Rotationskonstanten aus der B3LYP-theoretischen Berechnung- B und C wurden angepasst.

Auf den ersten Blick sehen diese Zahlen im Vergleich zu den Endwerten der Konstanten nicht sehr viel versprechend aus (siehe Tabelle 9), aber Q-Zweig Übergänge hängen nur von (A-C)/2 und κ ab, und diese Werte sind fast identisch mit denen der Final fit, also sehr geeignet für die Fortsetzung der Suche nach der Zuordnung von Q-Zweig-Übergängen.

Mit diesem ersten angepassten Modell wurden weitere Übergänge vorhergesagt und schließlich gefunden. Bei höheren J-Werten war es notwendig, auch einige Zentrifugalverzerrungskonstanten zu variieren. Um jedoch die Zentrifugalverzerrungskonstanten besser zu erhalten, war es notwendig, Übergänge mit einem höheren K_{+1} -Wert zu analysieren, der sich auf die höheren Werte von J erstreckt.

Daher wurde als nächster Schritt der 35 GHz Bereich ausgewählt. Die Situation ist hier ganz anders, als im 15 GHz Bereich (vgl. Abbildung 12).

Abbildung 12. Bandenkopf in Frequenzbereich 35 GHz bei Raumtemperatur, Druck auf 20mTorr, Zeitkonstante = 300ms; delay = 125ms; Stark = 400V/cm; Frequenz-step = 10kHz.

m		-	4 4 4			• • •
				1 1 1		
\mathbf{I} and \mathbf{U}	H VNAPINAANTAIIA	HEADINATION	\mathbf{v}	1 PIO/71 DO 10 45	NIMENTA	
	N.X.IPI IIIPI PIPP	N PHILE I / PH	VIII /. 1			
\mathbf{I} u \mathbf{U} \mathbf{U} \mathbf{U}		I I CUUCIIZCII				J ODVIZUNEV
						-
	-					

$J'_{Ka',Kc'} \leftarrow J''_{Ka'',Kc''}$	v (MHz)	$J'_{Ka',Kc'} \leftarrow J''_{Ka'',Kc''}$	v (MHz)
955-936	34659.66	945-936	34659.66
10 6 5 - 10 4 6	34657.08	10 55-10 56	34657.08
11 75-11 56	34654.20	1165 - 1166	34654.20
1285-1266	34649.54	1275- 1276	34649.54

1395-1376	34644.16	1385-1386	34644.16
14 105-14 86	34637.69	14 95- 14 96	34637.69
15 115-1596	34629.99	15105-15106	34629.99
16125-16106	34620.46	16115-16116	34620.46
17135-17116	34609.55	17125-17126	34609.55
18145-18126	34596.59	18135-18136	
19155 - 19136	34581.44	19145-19146	
20165-20146	34564.52	20155-20156	34562.50
21175-21156	34544.07	21 ₁₆₅₋ 21 ₁₆₆	34541.81
22185-22166	34521.41	22175-22176	34517.44
23195-23176	34495.87	23185-23186	34489.77
24205-24186	34467.31	24195-24196	34457.59
25215-24196	34435.16	25205-25206	34420.93

Besonders auffällig in diesem Bereich ist die Tatsache, dass bei niedrigeren J-Werte die beiden Zweige zunächst eng beieinander liegen und gleichzeitig in eine Richtung verlaufen, auch hier war es nicht so einfach, die ersten Übergänge zuzuordnen. Eine Reihe von Linien wurden aus der Modellrechnung entnommen und mit dem Spektrum verglichen. Anschließend wurden die Linien, die die berechneten Werte sehr nahekommen, als experimentelle Werte aus dem Spektrum genommen und für die Anpassung verwendet. Mit den neuen Rotations- und Verzerrungskonstanten wird eine Neuberechnung der gewählten Frequenzen im Bereich von 35 GHz durchgeführt.

Die Werte lagen sehr nahe an den berechneten Werten, somit wurden die Rotations-konstanten zunehmend verbessert. Um alle verfügbaren Daten zu nutzen, müssten mehrere Übergänge gefunden werden. So kamen immer mehr beobachtete Linien hinzu, zuerst aus dem 28 GHz-Bereich,

dann 22 GHz und am Ende der 10 GHz-Bereich. Es ist auch im Fortrat-Diagramm dargestellt, dass die Linien im 10 GHz-Bereich nicht wirklich einen Bandenkopf bilden, so dass dies der schwierigste Teil des Spektrums war. Für jeden der Bandenköpfe wurden die Daten mit dem Watson Hamiltonian analysiert (S- Reduktion, III^R-Darstellung). In den Anpassungen wurden vier quartische Zentrifugalverzerrungskonstanten eingestellt. Am Ende, als Übergänge mit J um 50 dazu kamen, wurden auch fünf sechstische Zentrifugalverzerrungskonstanten hinzugefügt.

Unten in den Tabellen (12-17) sind alle zugeordneten Linien der Q-Zweig und die nachfolgend zugeordneten R- Zweige verzeichnet; - leider ist diese letzte Suche schwieriger gewesen, da die meisten dieser Linien von geringer Intensität sind und meist sehr nah an den Bandköpfen liegen.

In Tabelle 10 ist die letzte Anpassung mit Rotations- und Verzerrungskonstanten von 1,2,3-Triazin und in der Tabelle 11 die verschiedenen theoretische Methoden dargestellt.

Parameter	Experimental	B3LYP + aug-
А	6334.1694(64)	6401.1865
В	6271.3135(64)	6324.6960
С	3151.2485(68)	3181.3531
к	0.9605	0.9525
D _K	2.751(80)×10 ⁻³	0.00012224
D _{JK}	-2.7810(32)×10 ⁻³	-0.000266870
DJ	0(fixed)	0.00158078
d ₁	0.43890(89)×10 ⁻⁴	-0.0000406914
d ₂	-2.919(23)×10 ⁻³	0.192500×10 ⁻²
H _J	0.0 (fixed)	
H _{JK}	-0.0305(35)×10 ⁻⁶	
H _{KJ}	0.966(108)×10 ⁻⁶	
H _K	0.0 (fixed)	
h ₁	-0.373(90)×10 ⁻⁹	

h ₂	0.338(83)×10 ⁻⁹	
h ₃	-0.084(19)×10 ⁻⁹	
σ	= 0.161	

Tabelle 10. Ein Vergleich der gemessenen Rotations- und Zentrifugalverzerrungskonstanten mit Standardabweichung in Klammern für 1,2,3 Triazin (MHz) mit berechneten Werten der effektiven Rotationskonstanten. Letzteres schließt Terme ein, die sich aus quartischen Zentrifugalverzerrungskonstanten ergeben.

Tabelle 11. Vergleich der beobachten und berechneten Rotationskonstanten mit Variationen in Basissatz und Methoden

Method	basis set	Rotational constants	Asymmetry		
					parameter
		A	В	С	к
Microwave spectrum		6.3341575(142)	6.2712899(142)	3.1512308(142)	0.9605
CCSD(T)	Def2-TZVPPD	6.3285030	6.2550287	3.1457757	0.9539
MP4(SDQ)	Def2-TZVPPD	6.4127743	6.3226617	3.1836996	0.9442
MP2	aug-cc-pVTZ	6.3301219	6.2673440	3.1492883	0.9605
B3LYP	aug-cc-pVTZ	6.4011802	6.3246922	3.1813532	0.9525
M11	Def2-TZVPPD	6.4841971	6.3814888	3.2162165	0.9371
LC-BLYP	Def2-QZVPPD	6.5846391	6.4696910	3.2633295	0.9525

Tabelle 12. Berechnete und exp. Frequenzen von 1,2,3- Triazin in 15000 MHz Bereich (ohne Berechnung der Quadrupolkonstanten)

J' _{Ka',Kc'}	V (MHz)	V(MHz)	J' _{Ka',Kc'}	V (MHz)	V(MHz)
← J″ _{Ka″.Kc} ″	experimentell	berechnet	← J″ _{Ka″.Kc″}	experimen-	Berechnet
				tell	
441-422	9784.7100	9784.47203	431-432	9141.9200	9141.79486
551-532	9962.2700	9962.21759	541-542	8986.4100	8986.101
6 ₆₁ -6 ₄₂	10186.290	10186.41634	6 ₅₁ -6 ₅₂	8801.5500	8801.5535
771-752	10462.5000	10462.73819	7 ₆₁ -7 ₆₂	8587.1100	8587.04561
881-862	10797.5300	10797.47334	871-862	8343.9500	8343.96620
991-972	11197.2700	11197.30147	9 ₈₁ -9 ₈₂	8073.3800	8073.33324
10101-1082	11669.0700	11669.00014	1091-1092	7776.5800	7776.41152
11 ₁₁₁ -11 ₉₂	12218.85000	12219.1117			
12121-12102	12853.3000	12853.59871			
13131-13112	13577.6300	13577.54158			
14141-14122	14394.74000	14394.90008			
15151-15132	15308.5600	15308.38261			
16 ₁₆₁ -16 ₁₄₂	16319.3300	16319.41524			
17 ₁₇₁ -17 ₁₅₂	17427.7900	17428.19686			
18181-18162					
19 ₁₉₁ -19 ₁₇₂	19934.16	19934.33038			
20201-20182	21327.00	21327.03991			
21 ₂₁₁ -21 ₁₉₂	22808.5600	22808.45620			
22221-22202	24373.9400	24374.35611			
23231-23212	26020.1400	26019.99887			
24241-24222	27739.9100	27740.04701			
25251-25232	29528.8000	29528.61820			
26261-26242	31379.6000	31379.30830			
27 ₂₇₁ -27 ₂₅₂	33285.1600	33285.22362			
28281-28262	35239.3375				

$J'_{Ka',Kc'}$	V (MHz)	V(MHz)	$J'_{Ka',Kc'}$	V (MHz)	V(MHz)
$\leftarrow J''_{Ka'',Kc''}$	experi-	berechnet	$\leftarrow J''_{Ka'',Kc''}$	experi-	Berechnet
	mentell			mentell	
312-313	15753.3136		322 - 303		
422 - 423	15746.6700	15746.43516	4 ₃₂ - 4 ₁₃		
5 ₃₂ - 5 ₃₃	15732.5800	15732.78401	5 ₄₂ - 5 ₂₃		
642 - 643	15709.3500	15709.09752	652 - 633	15775.4500	15775.37249
$7_{52} - 7_{53}$	15671.3400	15671.51303	7 ₆₂ - 7 ₄₃	15790.8800	15790.87885
8 ₆₂ - 8 ₆₃	15615.7700	15615.72276	872 - 853	15814.5500	15814.56353
972 - 973	15537.0900	15537.15103	9 ₈₂ - 9 ₆₃	15848.7800	15848.98930
1082 - 1083	15431.3200	15431.18818	1092- 1073	15897.0500	15897.14773
1192 - 1193	15293.4600	15293.46437	11 ₁₀₂ -11 ₈₃	15962.5200	15962.49349
$12_{102} - 12_{103}$	15120.3100	15120.13129	12112 - 1293	16048.9700	16048.97826
$13_{112} - 13_{113}$	14908.13	14908.11119	13 ₁₂₂ - 13 ₁₀₃	16161.0400	16161.08090
14 ₁₂₂ - 14 ₁₂₃	14655.4300	14655.27519	14 ₁₃₂ - 14 ₁₁₃	16303.8400	16303.82945
15 ₁₃₂ -15 ₁₃₃	14360.5700	14360.52719	15142 - 15123	16482.8600	16482.80896
16142 - 16143	14024.100	14023.79187	16152 - 16133	16704.1200	16704.14725
17152 - 17153	13645.8500	13645.92519	17 ₁₆₂ - 17 ₁₄₃	16974.56	16974.47002
18 ₁₆₂ - 18 ₁₆₃	13228.6200	13228.57864	$18_{172} - 18_{153}$	17300.88	17300.81590
19172 - 19173	12774.2000	12774.04957	19 ₁₈₂ - 19 ₁₆₃	17690.53	17690.50415
20 ₁₈₂ - 20 ₁₈₃	12285.3300	12285.14404	20192 - 20173	18150.10	18150.95139
21192 - 21193	11765.0700	11765.06791	21 ₂₀₂ - 21 ₁₈₃	18689.639	
$22_{202} - 22_{203}$	11217.5400	11217.35228	$22_{212} - 22_{193}$	19312.76	219312.85828
23 ₂₁₂ - 23 ₂₁₃	10645.8900	10645.81121	23 ₂₂₂ - 23 ₂₀₃	20027.36	20027.41244
24 ₂₂₂ - 24 ₂₂₃	10054.8100	10054.52503	24 ₂₃₂ - 24 ₂₁₃	20838.31	20838.37626
25 ₂₃₂ - 25 ₂₃₃	9447.9800	9447.83930	25 ₂₄₂ - 25 ₂₂₃	21749.80	21749.87143
26242 - 26243	8830.4200	8830.36842	26252 - 26233	22764.63	22764.72423

Tabelle 13. Berechnete und exp. Frequenzen von 1,2,3- Triazin in 15000 MHz Bereich (ohne Berechnung der Quadrupolkonstanten)

27 ₂₅₂ - 27 ₂₅₃	8206.9500	8206.99244	27 ₂₆₂ - 27 ₂₄₃	23884.39	23884.40243
28262 - 28263	7583.0200	7582.83567	28272 - 28253	25109.17	25109.03002
29 ₂₆₂ - 29 ₂₇₃			29 ₂₈₂ - 29 ₂₆₃	26437.44	26437.46403
30272 - 30283			30292 - 30273	27867.40	27867.41027
			31 ₃₀₂ -31 ₂₈₃	29395.77	29395.55465
			32312-32293	31018.06	
			33322-33303	32728.82	32728.83215
			34332-34313	34523.19	34523.30185

Tabelle 14. Berechnete und exp. Frequenzen von 1,2,3- Triazin in 22000 MHz Bereich (ohne Berechnung der Quadrupol konstanten)

$J'_{Ka',Kc'}$	V (MHz)	V(MHz)	$J'_{Ka',Kc'}$	V (MHz)	V(MHz)
$\leftarrow J''_{Ka'',Kc''}$	experimen-	berechnet	$\leftarrow J''_{Ka''.Kc''}$	Expperimen-	Berechnet
	tell			tell	
413 - 414	22058.75	2258-76886	423-404	22058.75	22058.83054
5 ₃₃ - 5 ₁₄	22057.56	22057.58991	523-524	22057.56	22057.34240
643 - 634	22055.30	22055.63225	633-634	22054.97	22054.89008
7 ₅₃ - 7 ₃₄	22052.81	22052.78234	7 ₄₃ -7 ₄₄	22050.94	22050.92473
8 _{63 -} 8 ₄₄	22048.86	22048.89938	853-854	22044.38	22044.80811
973 - 954	22043.91	22043.90765	9 ₆₃ -9 ₆₄	22035.93	22035.71742
$10_{83} - 10_{64}$	22037.74	22037.82813	1073-1074	22022.81	22022.60758
1193 -1174	22030.69	22030.81294	1183-1184	22004.08	22004.16985
12103 - 1284	22023.07	22023.18167	1293-1294	21978.83	21978.78858
13113 - 1394	22015.43	22015.45895	13103-13104	21944.60	21944.49864
14 ₁₂₃ - 14 ₁₀₄	22008.45	22008.41248	14113-14114	21899.34	21898.95

15 ₁₃₃ - 15 ₁₁₄	22003.36	22003.09103	15 ₁₂₃ -15 ₁₂₄	21839.20	21839.37019
16143 - 16124	22000.90	22000.86187	16133-16134	21762.48	21762.57643
17 ₁₅₃ - 17 ₁₃₄	22003.36	22003.44734	17 ₁₄₃ -17 ₁₄₄	21664.93	21664.97248
18163 - 18144	22012.98	22012.96011	18153-18154	21542.41	21542.61284
19173-19154	22031.98	22031.93714	19 ₁₆₃ -19 ₁₆₄	21391.31	21391.29807
20183-20164	22063.44	22063.37181	20173-20174	21206.56	21206.71963
21 ₁₉₃ -21 ₁₇₄	22110.82	22110.74390	21 ₁₈₃ -21 ₁₈₄	20984.47	20984.64930
22203-22184	22178.09	22178.04626	22193-22194	20721.20	20721.16130
23213-23194	22269.86	22269.80670	23203-23204	20412.79	20412.86580
24223-24204	22391.14	22391.10234	24213-24214	20057.20	20057.121641
25233-25214	22547.61	22547.56288	25 ₂₂₃ -25 ₂₂₄	19652.38	19652.23272
26243-26224	22745.40	22745.35769	26233-26234	19197.67	19197.50592
27253-27234	22991.20	22991.16052	27 ₂₄₃ -27 ₂₄₄	18693.38	
28263-28244	23292.14	23292.08500	28253-28254	18140.72	18141.09504
29273-29254	23655.58	23655.58404	29263-29264	17543.20	17543.12319
30283-30264	24089.25	24089.30789	30273-30274	16902.36	16902.51127
31293-31274	24600.91	24600.9197	31 ₂₈₃ -31 ₂₈₄	16223.20	16223.00339
32303-32284	25197.88	25197.86870	32293-32234	15508.88	15508.85905
33313-33294	25887.17	25887.14302	33303-33304	14764.55	14764.74664
34323-34304	26675.03	26675.00179	34313-34314	13995.79	13995.66423
35333-35314	27566.83	27566.72884	35323-35324	13206.90	13206.90149
36343-36324	28566.47	28566.42164	36333-36334	12403.87	12403.92635
37353-37334	29676.98	29676.84067	37343-37344	11592.67	11592.51697
38363-38344	30899.39	30899.33076	38353-38354	10778.59	10778.57841
39373-39354	32233.84	32233.81578	39 ₃₆₃ -39 ₃₆₄	9968.18	9968.18297
40383-40364	33678.85	33678.85637	40373-40374	9167.50	9167.50941

$J'_{Ka',Kc'}$	V (MHz)	V(MHz)	$J'_{Ka',Kc'}$	V (MHz)	V(MHz)
$\leftarrow J''_{Ka'',Kc''}$	exp	berechnet	$\leftarrow J^{\prime\prime}{}_{Ka^{\prime\prime},Kc^{\prime\prime}}$	Exp	Berechnet
524-515	28361.53	28362.76037	514-505	28361.53	28362.75975
634-615	28360.74	28360.62018	624-625	28360.74	28360.61710
744-725	28359.28	28358.93599	734-735	28358.28	28359.92467
854-835	28356.32	28356.54725	844-845	28356.32	28356.51326
9 ₆₄ -9 ₄₅	28353.37	28353.27382	954-955	28363.37	28353.18538
1074-1055	28348.82	28348.90854	10 ₆₄ -10 ₆₅	28348.82	28348.71202
11 ₈₄ -11 ₆₅	28343.10	28343.27089	1174-1175		
1294-1275	28336.15	28336.11201	1284-1285		
13104-1385	28327.33	28327.22125	1394-1395	28325.70	28325.54698
14114-1495	28316.46	28316.38474	14104-14105	28313.29	28313.37075
15124-15105	28303.45	28303.40594	15114-15115	28298.27	28298.20091
16134-16115	28288.09	28288.11866	16124-16125	28279.45	28279.44827
17 ₁₄₄ -17 ₁₂₅	28270.44	28270.40261	17 ₁₃₄ -17 ₁₃₅	28256.48	28256.40997
18154-18135	28250.33	28250.20163	18144-18145		
19 ₁₆₄ -19 ₁₄₅	28227.63	28277.54471	19 ₁₅₄ -19 ₁₅₅	28194.12	28193.94613
20174-20155	28202.17	28203.56973	20164-20165	28152.36	28152.30736
21 ₁₈₄ -21 ₁₆₅	28175.64	28175.54976	21174-21175	28102.15	28101.88
22194-22175	28146.93	28146.92187	22184-22185		
23204-23185	28117.41	28117.31796	23194-23195	27967.10	27967.57334
24214-24195	28087.64	28087.59738	24204-24205	27878.97	27879.30267
25224-25205	28058.87	28058.88086	25214-25215	27772.98	27773.44852
26234-26215	28032.56	28032.58528	26224-26225	27646.56	27646.90694
27244-27225	28010.53	28010.45891	27234-27235		
28254-28235	27994.58	27994.61655	28244-28245	27317.28	27317.49579
29264-29245	27987.53	27987.57398	29254-29245	27106.54	27106.69433

Tabelle 15. Berechnete und exp. Frequenzen von 1,2,3- Triazin in 28000 MHz Bereich (ohne Berechnung der Quadrupolkonstanten)

30274-30255	27867.40	27867.28145	30264-30265	26859.24	26859.50879
31284-31265	28012.13	28012.15502	31274-31275	26571.32	26571.62050
32294-32275	28050.87	28051.10520	32284-32285	26238.71	26238.85866
33304-33285	28113.62	28113.53114	33294-33295	25857.17	25857.40985
34314-34295	28204.38	28204.48852	34304-34305	25424.02	25424.03762
35324-35305	28329.39	28329.39839	35314-35315	24936.35	24936.28956
36334-36315	28494.17	28494.34292	36324-36325	24392.75	24392.66776
37344-37325	28705.87	28705.89418	37334-37335	23792.72	23792.74238
38354-38335	28970.10	28971.09920	38344-38345	23137.23	23137.19708
39 ₃₆₄ -39 ₃₄₅	29297.43	29296.40658	39354-39355	22427.88	22427.80591
40374-40355	29692.60	29692.55826	40364-40365	21667.11	21667.35910
41 ₃₈₄ -41 ₃₆₅	30164.46	30164.44288	41374-41375	20859.60	20859.51085
42394-42375	30721.26	30721.90972	42384-42385	20008.75	20008.70448
43404-43385	31369.48	31369.54734	43394-43395	19119.94	1919.9700
44414-44395	32117.40	32117.43678	44404-44405	18198.56	18198.83181
45424-45405	32970.98	32970.89545	45414-45415	17251.42	17251.19969
46434-46415	33935.24	33935.23	46424-46425	16283.51	16283.28924
			47 ₄₃₄ -47 ₄₃₅	15301.60	15301.56141
			48444-48445	14312.85	14312.67403
			49454-49455	13323.33	13323.43558
			50464-50465	12340.99	12340.75124
			51474-51475	11371.62	11371.5460
			52484-52485	10422.48	110422.68810
			53494-53495	9500.73	9500.84253

Tabelle 16. Berechnete und exp. Frequenzen von 1,2,3- Triazin in 35000 MHz Bereich (ohne Berechnung der Quadrupolkonstanten)

$J'_{Ka',Kc'}$	V (MHz)	V(MHz)	$J'_{Ka',Kc'}$	V (MHz)	V(MHz)
$\leftarrow J''_{Ka''Kc''}$	berechnet	experimen-	$\leftarrow J''_{Ka''Kc''}$	Berechnet	Experimen-
nu ,no		tell	iiu ,iic		tell
625-606	34664.80		615-616	34664.80	
735-716	34663.67	34664.08	725-7226	34663.67	34664.08
845-826	34662.14		835-836	34662.14	
955-936	34659.66	34660.08705	945-936	34659.66	34660.08656
10 6 5 - 10 4 6	34657.08	34657.43057	10 55-10 56	34657.08	34657.42912
11 75-11 56	34654.20	34654.03478	1165 - 1166	34654.20	34654.03093
1285-1266	34649.54	34649.75520	1275- 1276	34649.54	34649.76460
1395-1376	34644.16	34644.47279	1385-1386	34644.16	34644.45162
14 105-14 86	34637.69	34638.0047	14 95- 14 96	34637.69	34637.95577
15 115-1596	34629.99	34630.17744	15105-15106	34629.99	34630.08804
16125-16106	34620.46	34620.82296	16115-16116	34620.46	34620.65227
17135-17116	34609.55	34609.74672	17 ₁₂₅ -17 ₁₂₆	34609.55	34609.43384
18145-18126	34596.59	34596.75041	18135-18136	34596.59	34596.19706
19 ₁₅₅ -19 ₁₃₆	34581.44	34581.44	19145-19146	34580.7178	34581.44
20165-20146	34564.52	34564.17740	20155-20156	34562.50	34562.59873
21175-21156	34544.07	34544.18651	21165-21166	34541.81	34541.62420
22185-22166	34521.41	34521.45567	22175-22176	34517.44	34521.39236
23195-23176	34495.87	34495.79497	23185-23186	34489.77	34489.48643
24205-24186	34467.31	34467.03357	24195-24196	34457.59	34457.42750
25215-24196	34435.16	34435.02899	25205-25206	34420.93	34420.66098
26225-26206	34399.74	34399.67839	26215-26216	34378.85	34378.54043
27235-27216	34361.07	34360.93177	27225-27226	34330.45	34330.30837
28245-28226	34318.97	34318.80763	28235-28236	34275.0	34275.07400
29255-29236	34273.50	34273.41077	29245-29246	34212.18	34211.77

30265-30246	34225.08	34224.95269	30255-30256	34139.24	
31275-31256	34174.13	34173.77431	31265-31266	34055.92	
32285-32266	34120.66	34120.37102	32275-32276	33960.14	33959.38
33295-33276	34065.51	34065.42005	33285-33286	33849.	33851.70
34305-34286	34010.01	34009.80971	34295-34296	33722.56	33722.95438
35315-35296	33954.68	33954.67044	35305-35306	33576.33	33576.59413
36325-36306	33901.53	33901.40721	36315-36316	33407.81	33407.82039
37335-37316	33851.70	33851.73294	37325-37326	33213.08	33213.25291
38345-38346	33807.65	33807.70251	38335-38336	32989.02	32989.15879
39355-39336	33771.62	33771.74673	39345-39346	32731.40	32731.49255
40365-40346	33746.75	33746.70592	40355-40356	32435.78	32435.96802
41375-41356	33735.89	33735.86218	41365-41366	32098.01	32098.16643
42385-42366	33743.04	33742.96952	42375-42376	31713.69	31713.68199
43395-43376	33772.03	33772.28	43385-43386	31278.21	31278.30165
44405-44386	33828.64	33288.56900	44395-44396	30788.08	30788.20983
45415-45396	33916.21	33917.14303	45405-45406	30240.19	30240.20252
46425-46406	34043.62	34043.85134	46415-46416	29631.88	29631.89106
47 ₄₃₅ -47 ₄₁₆	34215.01	34215.07353	47425-47426	28961.71	28961.87378
48445-48426	34437.77	34437.69310	48435-48436	28229.81	28229.85688
49455-49436	34719.18	34719.04720	49445-49446	27436.48	27436.71
			50455-50456	26584.56	26584.46898
			51465-51466	25676.42	25676.24804
			52475-52476	24716.29	24716.15035
			53485-53486	23709.25	23709.12115
			54495-54496	22660.94	22660.80616
			55505-55506	21577.68	21577.41508
			56515-56516	20465.65	20465.60166
			57525-57526	19332.46	19332.36291
			58535-58536	18185.13	18184.96292
			60555-60556	15877.34	15877.62613

	56506-56507	34919.67	34919.41166
	57 ₅₁₆ -57 ₅₁₇	34201.29	34201.24369
	58526-58527	33416.02	33416.16356
	59 ₅₃₆ -59 ₅₃₇	32564.12	32563.92448
	60546-60547	31645.52	31645.49046
	61556-61557	30662.83	30663.04224
	62566-62567	29619.70	29619.92397
	63576-63577	28520.54	28520.54232
	65596-65597	261275.00	26175.08571

Tabelle 17. Berechnete und exp. Frequenzen von 1,2,3-Triazin in 35000 MHz Bereich (ohne Berechnung der Quadrupolkonstanten)

$J'_{Ka',Kc'}$	V (MHz)	V(MHz)	$J'_{Ka',Kc'}$	V (MHz)	V(MHz)
$\leftarrow J''_{Ka'',Kc''}$	berechnet	experimene-	$\leftarrow J''_{Ka'',Kc''}$	berechnet	experimen-
		tell			tell
212-111	15724	15724.97278	202-101		15511.44
313-212			303-202		
211-110	21965.38	21965.13324			
414-313	28361.53	28361.35578	404-303	28361.53	27861.36451
322-221	28267.66	27267.61692	312-311		
220-101	28394.81	28394.77			
515-414	34664.08	334664.13659	505-404	35664.08	34664.1366
321-220					
423-322			4 ₁₃ -3 ₁₂		

4.6 Die Gleichgewichtsstruktur von 1,2,3-Triazin

Die folgende Diskussion basiert auf der sehr nahen Identität der Rotationskonstanten in der Mikrowellenspektroskopie mit den CCSD (T)- Berechnungen. Die Struktur und Bindungslängen mit ausgewählten Winkeln sind in Abbildung 13 gezeigt. Die CC-, C-N- und N-N- Bindungslängen decken einen sehr kleinen Bereich von 0,057 Å ab; die CH-Bindungen liegen über 1,08 Å und sind länger als in vielen Gleichgewichtsstrukturen. Die inneren Ringwinkel liegen nahe bei 120 ° an den N-Atomen, unterscheiden sich jedoch erheblich (ungefähr 8 °) an C₄ und C₅ im Vergleich zu C₅. Alle diese Faktoren machen das Molekül versehentlich symmetrischer als erwartet, mit beträchtlichen Auswirkungen auf das Mikrowellenspektrum. Die beiden Röntgenstrukturen (Abbildung 13,14) sind sehr unterschiedlich, auch wenn die Achsenwahl für die Kristalle unterschiedlich ist. Die Röntgenstruktur von Yamaguchi [95] ergibt nach Nummerierung äquivalenter Bindungen N-N 1.318 Å, C-C 1.385 Å, C-N 1.345 Å;- die inneren Ringwinkel in jedem Zentrum haben Werte von 119.7(N₁, N₃), 121.6 (N₂), 121.8 (C₄, C₆) und 115.4 (C₅). Die vorliegenden Ergebnisse sind denen von Neuhoeffer [94] sehr ähnlich. Der erhebliche Unterschied der Winkel N₂ und C₅ vom mittleren Winkel von 120° ist sehr bemerkenswert.

Obwohl die vorliegende Studie weder die ¹⁴N-Quadrupolkopplung noch das Dipolmoment von 123T analysieren konnte, geben wir die in den theoretischen Studien enthaltenen Werte an, um einen späteren Vergleich mit zukünftigen Messungen zu ermöglichen. Gegenwärtig kann G-16 die ¹⁴N- Quadrupolkopplung nicht durchführen, wenn gekoppelte Clusterberechnungen, wie die hier berichteten, CCSD (T) verwendet werden. Die MP4 (SDQ)-Wellenfunktionen haben jedoch sehr ähnliche Energien wie CCSD(T), und diese führen die Aufgaben routinemäßig aus. Dieser Vergleich zwischen den beiden Methoden kann für die berechneten Dipolmomente mit CCSD(T) 5.15 Debye und MP4 (SDQ) 5.012 Debye demonstriert werden. Die ¹⁴N-Ergebnisse im Trägheitsachsenrahmen sind in Abbildung 14 gezeigt. Die sehr große außerdiagonale $\chi ab - 3,8414$ MHz an symmetrisch angeordneten N₁/N₃- Atomen ist nummerisch größer als die IA- Diagonalglieder mit Folgeschwächen bei der Mirowellenspektralinterpretation. Jedoch ist χaa bei N₂ sehr groß. Die Out-of-Plane χcc sind in allen Zentren sehr ähnlich.

Abbildung 13. Die CCSD(T) Gleichgewichtsstruktur von 1,2,3-Triazin

Abbildung 14. Die ¹⁴N. Quadrupolkopplung im Trägheitsachsenrahmen.

4.6 Diskussion

In dieser Arbeit ist es uns gelungen, das Molekül 1,2,3-Triazin mit mehr als 350 Linien von meist Q-Zweigen im Grundzustand zuzuordnen.

In diesem Fall liegt die erreichte Zuordnung zwischen 8-35 GHz mit einem maximalen J- Wert von 65 und K₋₁= 53. Jedes Band wird durch den Standard Watson Hamiltonian (S-Reduktion, III^{R} - Darstellung) analysiert, einschließlich vier quartische und fünf sechtische Verzerrungskonstanten führten zu einer Standardabweichung von 0,16 MHz, höher als die experimentelle Unsicherheit von ~100 kHz, aber erklärbar durch das Fehlen einer Analyse der Quadrupol-Hyperfeinstruktur, die durch die drei Stickstoffatome verursacht wird.

Da die meisten Übergänge, die eine vernünftige Hyperfeinstruktur (R- Verzweigungsübergänge bei niedrigen J-Werten) aufweisen, entweder sehr schwach sind oder teilweise von viel stärkeren Q-Verzweigungsübergängen in der Nähe der Bandenköpfe überlagert sind, haben wir nur einen Versuch unternommen, um die Hyperfeinstruktur zu modellieren und zwar ein,-"effektiven" Quadrupokopplungskern (N₁), aber dieser Versuch führte zu nichts, was sich den experimentellen Übergängen annäherte.

Somit war die einzige "Hyperfein"-Korrektur die Gewichtung der Komponenten einiger naheliegender Dubletts, um eine hypothetische Frequenz ungestörter Übergänge zu erzeugen.

Centre	Method	1.5 χaa	0.25 (χbb- χcc)
N2	MP4(SDQ)	-9.2593908	-0.25810101
N1/N3	MP4(SDQ)	-1.5934375	-1.5435899
N2	M11	-10.456233	-0.38139794
N1/N3	M11	-1.9617586	-1.7918260

Tabelle 18. VI ¹⁴N calculated quadrupole coupling constants (MHz) using the Def2-TZVPPD basis set

Interessanterweise scheint die Konvergenz der CC-Rechnung unter der gleichen Tatsache zu leiden, die die Zuordnung der experimentellen Spektren so schwierig gemacht hat: die Nähe zu einem zufälligen symmetrischen Top. Alle theoretischen Berechnungen führen zu einer AB- Differenz, die größer ist als der experimentell abgeleitete Wert, obwohl die B3LYP-Berechnung in dieser Hinsicht ziemlich nah ist. Von den berechneten Strukturen scheint es, dass die Aromatizität von 1,2,3-Triazin dieselbe, ist wie in den anderen Azinen.

Abbildung 15. Fortrat-Diagramm von 1,2,4- und 1,2,3- Triazin.

Kapitel 5

5. Aceton

5.1 Einleitung

Das weiter analysierte Molekül in dieser Arbeit ist Aceton, nach IUPAC auch als Propanon bezeichnet mit der Summenformel CH_3COCH_3 . Sein Strukturmerkmal, die Carbonylgruppe, an die zwei Methylgruppen gebunden sind, macht es zum einfachsten Keton. Aceton ist eines der einfachsten und wichtigsten Moleküle der organischen Chemie, in der es für viele verschiedenen Synthesen, beispielsweise zur Plexiglas- Herstellung genutzt wird.

Das erste Mikrowellenspektrum von Aceton wurde im Jahre 1949 von Børge Bak in Kopenhagen aufgenommen. Er konnte aber das komplizierte Spektrum nicht zuordnen. Eine Zuordnung war erst möglich nach dem die Theorie der Inneren Rotation entwickelt worden war.

Im Jahre 1959 gelang es Swalen und Costain [21], eine Zuordnung für niedrige J-Übergänge zu finden und die Barriere für die Interne Rotation zu bestimmen.

Seitdem haben zahlreiche Untersuchungen in den Mikrowellen [22, 109 - 112], und im Millimeter- und Submillimeterbereich die Zuordnung im Schwingungsgrundzustand von Aceton deutlich erweitert. Wegen der großen Wechselwirkungen zwischen Rotations- und Innenrotationen im Vergleich zu anderen Molekülen, waren Rotationszuordnungen von Aceton im angeregten-Vibrationszustand erst vor einem Jahrzehnt verfügbar [87, 88]. Sie haben durch Anwendung des Loomis-Wood Diagramms [89] auf Breitband-mm-sub-mm-Wellenspektren [90] und Anbringung des Spektra mit einem effektiven Rotations-Hamilton-Operator (ERHAM) basierend Programm [23] ermöglicht. Während die Zuordnung und die Anpassung nach der Methode der kleinsten Quadrate für den ersten angeregten Torsionszustand v_{12} [87] statistisch zufriedenstellende Ergebnisse lieferten, gilt dies leider nicht für die Ergebnisse für den zweiten angeregten Torsionszustand, Shimanouchi's v_{17} [88] (dieser Modus wurde in Standardarbeit [108] über Schwingungszuordnungen (ν_{24} genannt). Aus Gründen der Übereinstimmung mit früheren Rotationsuntersuchungen von Aceton wird für den Rest dieser Arbeit die Notion ν_{17} verwendet.

Mögliche Gründe für die Probleme wurden vorgeschlagen [88]:

- a. ein Mangel an angepassten Übergängen mit Asymmetrieaufspaltung
- b. die pure Größe der Tunnelaufspaltung im v_{17} -Zustand mit zugewiesenen und angepassten Aufteilungsmustern, die sich über mehr als 3 GHz erstrecken
- c. die erwarteten Einschränkungen der ERHAM-codes für Zustände in der Nähe oder oberhalb der Barriere gegen innere Rotation und
- d. vernachlässigte Wechselwirkung zwischen diesem Zustand mit niedrigeren und höheren angeregten Zuständen und sogar mit dem Grundzustand.

Schon vor 19 Jahren hatte sich Peter Groner [23] für das Problem der Formulierung eines effektiven Hamilton-Operators für das zwei-Rotator-Problem interessiert. Nachdem er ein Test Model für Aceton, Dimethyl Ether und andere zwei Rotatoren-Moleküle Im Grundzustand hatte, verwendete er die Methoden anschließend auch für die Analyse des Rotationsspektrums des Acetons in zwei angeregten Torsionszustände v_{12} und v_{17} .

Theoretische Arbeiten wurden von Dreizler geleistet, der auch für die zwei-Top Rotatoren ein generelles Arbeitsmodell einführte. Peter und Dreizler [17] untersuchten die Aufspaltung der internen Rotationen mit Hilfe der Hauptachsen-Methode (PAM), allerdings nur bei niedrigen J-Übergängen.

Aceton ist auch eine Spezies von astrophysikalischem Interesse, die in interstellaren Wolken von sternbildenden Regionen durch die Radioastronomie identifiziert wurde, in Sgr B2 und Orion-KL. [19, 20]. Da es auch ein Schadstoff der Erdatmosphäre ist [80 – 84], ist es wichtig, sein Spektrum über einen weiten Spektralbereich mit hoher Wahrscheinlichkeit simulieren zu können.

Um dieses spezielle Problem zu adressieren, suchen wir bei dem v_{17} Zustand nach J-Übergängen, in dem wir Mikrowellen-Mikrowellen-Doppelresonanz (MMDR) verwendeten, die sehr erfolgreich war, um die Mysterien des Rotationsspektrums von Ethylenglykol (1,2 -Ethandiol) zu entschlüsseln [52, 53, 54, 60].

5.2 Struktur und Symmetrieeigenschaften von Aceton

Entscheidend für spektroskopische Untersuchungen sind jedoch die Struktur und Symmetrieeigenschaften des Moleküls. Aceton besteht aus einem starren Rumpf, der Carbonylgruppe, an die zwei gleiche Internen Rotatoren, die beiden Methylgruppen, gebunden sind. Die Wechselwirkung zwischen Gesamtrotation und der internen Rotation der Methylgruppen führt zu einer Aufspaltung der Rotationsniveaus in vier Rotation-Torsionszustände.

Abbildung 16. Energie Level-Labels bestehen aus dem Triplets J, K_a, K_c. Beobachtete Doppelresonanzen im (01) -Unterzustand von v_{17} vertikale (Energie) Achse ist nicht maßstabsgetreu. Breite rote Pfeile zeigen Pumpübergänge an, dünne Pfeile repräsentieren Signalübergänge vom b-Typ (rot) und nicht b-Typ (blau gestrichelt).

Jedes Molekül, das ein asymmetrisches Grundgerüst besitzt und einen dreifachen Internen Rotator beinhaltet, ist die symmetrische Punktgruppe C_3 eine Untergruppe der gesamtmolekularen Punktgruppe.

Symmetrieart	Е	C_3^a	C_3^2
Α	1	1	1
E1	1	Е	ε*
E ₂	1	$arepsilon^*$	Е

Tabelle 19. Charaktertafel der C₃ Symmetriegruppe, welche Symmetrieelemente und irreduzible Repräsentatoren zeigt. C_3^{α} repräsentiert eine Drehung von $\frac{2\pi}{3}$ (120°), C_3^2 von (240°) um die Symmetrieachse; E (kursiv) ist die Identität. C₃ besitzt drei Operationen die Identität (E), eine Rotation bei 120°(C_3^{α}) und bei 240°(C_3^2) um die Symmetrieachse. Sie zeigt ebenfalls drei irreduzible Repräsentationen, von denen E₁ und E₂ entartet sind. A ist nicht entartet. Das Dipolmoment ist zu keiner Zeit durch irgendeine Operation der Gruppe beeinträchtigt und wird daher der Symmetriespezies A zugeordnet.

Für jeden erlaubten Übergang muss das Übergangsmoment $\langle \psi_i | \mu | \psi_j \rangle$ begrenzt bzw. endlich sein. Da das Übergangsmoment μ symmetrisch zu den Operationen der C_3 -Gruppe ist, müssen alle erlaubten Übergänge mit den Energiezuständen (i und j) gleicher Symmetrie koppeln d.h. $A \leftrightarrow A$; $E \leftrightarrow E$; $A \neq E$. Diese Regel ist generell für alle Moleküle mit interner Rotation gültig. Die Schwingungsquantenzahl einer Methylgruppe wird generell als $\psi_{\nu,\sigma}$ bezeichnet. Hierbei ist v die Schwingungsquantenzahl und σ die Symmetriequantenzahl des Schwingungszustandes; $\sigma = +1$ und $\sigma =$ -1 entsprechen den zwei entarteten Zuständen E₁ und E₂ und $\sigma = 0$ entspricht dem nicht entarteten Zustand A.

Abbildung 20. Die potentielle Energie sowie die Energiezustände eines einfaches symmetrischen Rotators (CH_3) , wobei die Korrelation zwischen der eingeschränkten internen Rotation, mit der Quantenzahl v und drei freien interne Rotation, mit der Quantenzahl m dargestellt wird [21].

Der Tunneleffekt, über die Potentialbarrieren hinweg, spaltet den dreifach entarteten Zustand in zwei Unterniveaus, A und E, auf. Da Aceton zwei symmetrische Rotatoren (Methylgruppen) besitzt, wird der Rotationsübergang in vier Unterniveaus aufgespaltet. Die Symmetriequantenzahlen σ und σ' können erlaubten Werte 0,1 und 2 annehmen. Für die verschiedenen Unterniveaus gilt dann: Dem nicht entarteten Zustand *AA* entsprechen die Symmetriezahlen (σ_1 , σ_2) = (0,0). Dem vierfachentarteten Zustand *EE* entsprechen dann (σ_1 , σ_2) = (0,1) (0,2) (1,0) (2,0). Für den zweifach entarteten Zustand *AE* gilt: (σ_1 , σ_2) = (1,1) (2,2) und für den zweifach entarteten Zustand *EA* gilt: (σ_1 , σ_2) = (1,2) (2,1).

Die geeigneten molekularen Modelle zur Untersuchung der internen Rotation, sind Moleküle, die insgesamt asymmetrisch sind und einen symmetrischen Rotator angehängt haben. In dem folgenden Abbildung 21 werden die unterschiedlichen Konstellationen zwischen Grundgerüst und Anhängsel aufgezeigt, der blau markierte Teil zeigt, die Energieniveaus und Übergänge für ein asymmetrisches Molekül mit symmetrischen Rotatoren, wie Aceton.

Abbildung 21. Energieniveaus und Übergänge am Beispiel eines asymmetrischen Moleküls mit symmetrischem Rotator [21]

Im angeregten Zustand (v_{17} , bei einer Wellenzahl von 125 cm^{-1}) wechselwirken die gesamten Molekülrotationen und die interne Rotation so miteinander, dass es zu einer vierfachen Aufspaltung des Rotationsübergangs kommt, also; - eine Aufspaltung pro Rotationsunterniveau [22].

Die Torsionsfeinstruktur der Rotationsspektren von Molekülen mit zwei Methylgruppen gestattet die Bestimmung des Hinderungspotentials der internen Rotation [24]. Moleküle mit zwei Methylgruppen, wie Aceton, werden als Zweikreisel (nach Herschbach, D.R.) bezeichnet. Hier tritt zunächst eine Wechselwirkung zwischen den beiden Methylgruppen auf, die als interne Rotation oder Torsion bezeichnet wird, eine sogenannte Torsion-Torsion-Wechselwirkung. Der Störungsrechnung, mit der sich das bereits erwähnte Hinderungspotential berechnen lässt, wird in dieser Arbeit nicht nachgegangen. Das Molekül Aceton stellt man sich mit einem asymmetrischen, nicht in sich drehbaren, starren Rumpf mit zwei gleichen, drehbaren, symmetrischen Kreiseln vor. Da die beiden Methylgruppen als gleich angesehen werden, wird auch von einem gemeinsamen Hinderungspotential ausgegangen. In Abbildung 22 ist ein Zweikreisel graphisch dargestellt [24].

Abbildung 22. Molekül mit zwei Methylgruppen, die jeweils einen Rotator darstellen und mit einem starren Rumpf verbunden sind.

Dem Molekül ist es somit möglich, eine Gesamtrotation und eine interne Drehung durchzuführen, wobei hier nur die Konstanten der gesamten und internen Rotation beachtet werden.

Die kinetische Energie für die Gesamt- und interne Rotation kann wie folgt beschrieben werden [34]:

$$T = \frac{1}{2}I_x\omega_x^2 + \frac{1}{2}I_y\omega_y^2 + \frac{1}{2}I_z\omega_z^2 + \frac{1}{2}I_\alpha\dot{\alpha}_2^2 + I_\alpha\lambda_x\omega_x(\dot{\alpha}_1 + \dot{\alpha}_2) + I_\alpha\lambda_z\omega_z(\dot{\alpha}_1 - \dot{\alpha}_2)$$
(5.1)

Wobei I_x , I_y und I_z die drei Trägheitsmomente darstellen über Hauptträgheitsachsen x, y und z; ω_x , ω_y , ω_z sind die Winkelgeschwindigkeitskomponenten um die drei Hauptträgheitsachsen; I_a ist das Trägheitsmoment von einem der internen Rotoren um seine Symmetrieachse; $\dot{\alpha}_1$ und $\dot{\alpha}_2$ sind die internen Winkelgeschwindigkeiten der Rotatoren 1 und 2 bezüglich des starren Rumpfs; λ_x und λ_z sind Richtungscosinus zwischen der x-Hauptträgheitsachsen und der Kreiselachse [16].

5.3 Doppelresonanzspektroskopie von Aceton und Ergebnisse

Das Rotationspektrum von Aceton wurde grundsätzlich bei Raumtemperatur aufgenommen, in einem Sub-Millimeter-Bereich der Ohio State University mit einem FASSST System (Fast Scan Sub-Milimeter Spektroscopy Technique). Bei dieser Technik wird die Quelle Backward Wave Oscillator (BWO) sehr schnell über einen Breiten Frequenzbereich ($10^4 MHz$) abgescannt. Durch dieses Spektrometer ist es möglich in nur wenigen Minuten ausreichend Daten zu sammeln. Es stellte sich heraus, dass die Zuordnung des Grundzustandes und v_{12} des angeregten Zustandes mehr oder weniger einfach waren, wobei es im Torsionzustand des v_{17} doch Probleme gab. Obwohl es möglich war, mehr als 700 Linien zwischen 119-375 GHz (FASSST) zu allen vier Torsions-Teilzuständen, die dazu gehörten (AA, EE, AE und EA) sowie einige niedrige J- Übergänge zwischen 72 GHz -119 GHz aufgezeichnet wurden, zuzuordnen, erwies es sich als schwierig, eine zufriedenstellende Anpassung der zugeordneten Linien zu erreichen. Das Hauptproblem ist die Identifizierung einer bestimmten Species der Linien in einem sehr reichen Spektrum. In diesem Fall braucht man ein selektives Verfahren, daher war die Zuordnung des Grundzustandes und v_{12} nicht sehr schwierig, während der v_{17} Probleme verursachte. Oft korrelieren diese Linien ziemlich stark, daher stellt sich heraus, dass alle zugeordneten Linien für v_{17} vom R-Typ waren. Die Standardabweichung der Anpassung war 0.485 MHz, größer als die Messgenauigkeit, aber trotzdem nicht sehr schlecht für die Analyse einer komplizierten großen Amplitude im Schwingungszustand.

Daher stellt sich die Frage, warum sollte man eigentlich eine neue Untersuchung des Rotationsspektrum des v_{17} Zustandes von Aceton beginnen, wenn bereits mehr als 600 Linien bereits zugeordnet und angepasst worden sind und letztlich auch von Armieieva [117] 1200 gemessene Linien von Grund, v_{12} und v_{17} Zustand?

Ein Doppelresonanz-Experiment fügt etwas hinzu, was dem FASSST-Spektrum fehlt,- die **Selektivität**. Diese Selektivität macht es möglich, mit einer reduzierten Anzahl von Messungen, relevante Daten zur Analyse hinzufügen. Um einen Eindruck von den Intensitäten des DR-Experimentes zu bekommen, wurden zunächst ein paar DR-Signale von den Übergängen in dem Grundzustand und v_{12} angeregten Zustandes aufgezeichnet und analysiert. Die erste Suche von v_{17} zeigte jedoch kein Signal. Es erwies sich als notwendig den Suchbereich bis zu sieben Mal des Wertes der Standartabweichung zu vergrößern.

Die Aufnahme der beiden ersten DR-Frequenzen bei Fit mit den 612 bisher bekannten Frequenzen änderte die Rotationskonstante A (mit einer Standardabweichung von 1MHz) um 3 MHz, wobei die anderen Parameter kaum beeinflusst wurden.

5.4 Experimenteller Vorgang von Aceton

In der vorliegenden Arbeit von Aceton sollten, aufbauend auf früheren Forschungen, neue Übergangssignale gemessen werden. Zudem sollte überprüft werden, in wieweit die theoretischen Berechnungen von den tatsächlich gemessenen Übergangsfrequenzen entfernt liegen. Die gemessenen Daten führen zu verbesserten Berechnungen und Vorhersagen.

Der Schwingungszustand von Aceton wird aufgrund der Wechselwirkung zwischen Gesamtrotation und interner Rotation der beiden Methylgruppen in vier Torsionsunterniveaus aufgespalten.

AA	10	$(K_{a,}K_c:ee\leftrightarrow oo)$
AA	6	$(K_{a,}K_{c}:oe\leftrightarrow eo)$
EE	16	
AE	6	$(K_{a,}K_{c}:ee\leftrightarrow oo)$
AE	2	$(K_{a,}K_{c}:oe\leftrightarrow eo)$
EA	4	

 Tabelle 19. Torsionsunterniveaus von Aceton

Die Suche nach DR Übergängen begann mit den intensivsten Übergängen an (01).

Es ist auch zu erwähnen, dass die letzten Messungen die natürlich auch eine geringe Intensität haben nicht zu erkennen waren. Nach mehreren Versuchen war uns klar, dass es auch an unsere Geräte lag, die nach und nach in ihrer Funktionalität nachließen. Daher müssten wir eine Alternative finden, um noch die ein oder zwei letzten Übergänge messen zu können.

Freundlicherweise konnten wir dies am I. Physikalischen Institut der Universität Köln weiterführen, und es gelang uns, die Signale aufzuzeichnen.

Aus Zeitmangel in Köln, konnten wir den letzten gewünschten Übergang nicht erzielen. Das gesuchte Signal wäre wahrscheinlich auch nicht messbar gewesen, da es einer der schwächsten Signale ist. Jedoch ist es uns gelungen zwei andere deutliche Signale zu sehen.

5.5 Auswertung

Im Folgenden sollen die gefundenen Signale in Tabellen dargestellt und der Reihenverlauf der Übergänge beschrieben werden.

Das Molekül Aceton existiert nur in einer Form, d.h. es gibt keine Konformations-möglichkeiten. Daher liegt der Fokus hauptsächlich auf den Unterniveaus (AA, EE, AE, EA), die zwischen der internen Rotation und der Gesamtrotation entstehen.

Die Empfindlichkeit der Doppelresonanz-Instrumentierung wurde an vorhergesagten DRs innerhalb dieser Zustände getestet, die in Tabelle 20 angegeben sind. Einige Transitions-möglichkeiten weichen jedoch um mehr als 0,5-0,1 MHz für Pump bzw. Signalübergänge von den vorhergesagten ab.

Pump transitions (MHz)Signal transitions (MHz)										
(all ^b	(all ${}^{b}Q, \pm 0.5 \text{ MHz}$) (${}^{b}R, \pm 0.1 \text{ MHz}$)									
Grou	nd state									
$\sigma_1 \sigma_2$	J' _{Ka'Kc'}	J" _{Ka"Kc}	Vobs	v_{pred}	J' _{Ka'Kc'}	J" _{Ka"Kc}	Vobs	Vpred		
		"				"				
00	432	4 ₂₃	23549.0	23549.025	4 ₂₃	312	53729.39	53729.259		
	432	4 ₂₃	23549.0	23549.025	514	4 23	61926.28	61926.368		
01	422	4 ₁₃	18654.3	18654.308	4 ₁₃	322	51082.95	51082.991		
	312	303	20426.4	20426.492	423	312	53686.69	53686.607		
	432	4 ₂₃	23469.2	23469.238	4 ₂₃	312	53686.69	53686.607		
11	432	4 ₂₃	23427.0	23427.019	4 ₂₃	312	53652.60	53652.505		
12	432	4 ₂₃	23352.2	23352.289	514	4 ₂₃	61890.56	61890.650		
<i>v</i> ₁₂ St	ate									
$\sigma_1 \sigma_2$	$J'_{Ka'Kc'}$	$J''_{Ka''Kc}$	Vobs	Vpred	$J'_{Ka'Kc'}$	$J''_{Ka''Kc}$	Vobs	Vpred		
		"				"				

00	422	413	18416.5	18416.590	4 ₁₃	322	50938.52	50938.652
	441	432	21322.2	21322.108	4 ₃₂	321	65631.72	65632.006
01	422	413	18680.3	18680.373	4 ₁₃	322	51258.00	51258.082
	432	423	22549.5	22549.536	4 23	312	53315.20	53515.298
	432	423	22549.5	22549.536	514	4 ₂₃	61887.00	61886.688
11	441	432	22810.7	22810.970	523	4 ₃₂	66457.50	66456.095
	4 ₃₂	423	23931.2	23931.210	5 ₂₃	4 ₃₂	66457.50	66456.095
	432	423	23931.2	23931.210	4 23	312	54158.33	54158.892

Tabelle 20. Beobachtete Doppelresonanz-Übergänge im Grund und ν_{12} - Zustand von Aceton^{a, b}

^aVorhergesagte Frequenzen mit spektroskopischen Parametern für den Grundzustand aus [112] und v₁₂ aus [87] ^b Fettgedruckt sind die gemeingemen Pandel in den Pump, und Signelübergöngen

^b Fettgedruckt sind die gemeinsamen Pendel in den Pump- und Signalübergängen.

Wie sich später herausstellte, weisen viele Frequenzen der DR bis zu sieben Standardabweichungen der ursprünglichen Vorhersagen auf. Es ist also offensichtlich, dass die ursprüngliche Anpassung von Linien in [88]tatsächlich die Parameter des Hamilton-Operators mit ausreichender Genauigkeit nicht bestimmt hat. Der erste DR im (01) Unterzustand wurde zwischen den 4₂₂-4₁₃ (Pump) und 5₂₄-4₁₃ (Signal)- bei 18659,4 und 62334,75 MHz beobachtet. Die Suche nach anderen DRs konnte mit den Ergebnissen der least-Quadrate-fits, die diese beiden Übergänge enthielten, deutlich verengt werden. Schließlich konnten 8 Pump (^bQ-) und 16 Signal (^bR) Übergänge mit Rotations-Quantum Nummer J zwischen 2 und 5 im (01) Unterzustand von v₁₇ erkannt werden. Für den Unterzustand (00) war die jeweilige Anzahl von Übergängen 6 und 9; für das (11) Unterprodukt 2 bzw. 2. Die Intensitäten waren zu klein für reproduzierbare Beobachtungen im (12) Zustand. Alle v₁₇ beobachtete Pump- und Signalübergänge sind in Tabelle 21 aufgelistet. Ein schematisches Diagramm (nicht maßstabsgetreu) der beobachteten DR-s in dem (01) -Unterzustand ist in Abbildung 16 gezeigt.

Pump transitions (MHz)						Signal transitions (MHz)				
(all ^b	$Q, \pm 0.5 \text{ M}$	IHz)			$(^{b}R, \pm$	0.1 MHz	2)			
$\sigma_1 \sigma_2$	J' _{Ka'Kc'}	J" _{Ka"Kc}	Vobs	ν_{pred}		J' _{Ka'Kc'}	J" _{Ka"Kc}	Vobs	Vpred	
00	321	312	10159.9			423	312	52633.31		
	4 ₃₁	4 ₂₂	10600.6			533	422	72453.45		
	5 ₃₂	5 ₂₃	16401.5			5 ₂₃	432	66853.46		
	3 ₃₁	3 ₂₂	16850.4			413	3 ₂₂	50678.04		
	331	322	16850.4			440	3 31	76686.56		
	422	4 ₁₃	18007.9			4 ₁₃	322	50678.04		
	4 ₂₂	4 ₁₃	18007.9			4 ₂₂	3 ₃₁	51836.24		
	422	4 ₁₃	18007.9			5 ₂₄	4 ₁₃	61702.68		
	4 ₂₂	4 ₁₃	18007.9			5 33	422	72453.45		
	4 ₃₂	4 ₂₃	21856.5			432	321	64329.64		
	4 ₃₂	4 ₂₃	21856.5			514	423	61268.56		
01	321	312	12662.0			3 12	221	40452.12		
	3 ₂₁	312	12662.0			3 ₂₁	2_{21}	53114.39 ª		
	321	312	12662.0			432	321	61692.47		
	321	312	12662.0			321	212	66252.45		
	321	312	12662.0			431	321	74755.78 ª		
	331	322	13627.5			413	322	51512.94		
	331	322	13627.5			331	211	57414.96 ª		
	331	322	13627.5			431	331	72413.66 ª		
	4_{41}	432	15734.3			4 ₃₂	321	61692.47		
	4_{41}	432	15734.3			5 ₂₃	4 ₃₂	68860.63		
	5 ₃₂	523	18353.7			523	432	68860.63		
	422	4 ₁₃	18659.4			4 ₁₃	322	51512.94		
	422	4 ₁₃	18659.4			5 ₂₄	4 ₁₃	62334.75		
	4 ₂₂	413	18659.4			4 ₂₂	322	70172.74 ª		
	4 ₂₂	413	18659.4			533	4 ₂₂	73067.40		
	312	303	19981.5			312	2_{21}	40452.12		

	312	303	19981.5	4_{14}	303	43627.38
	312	303	19981.5	423	312	53298.70
	432	423	21055.5	4 ₂₃	312	53298.70
	4 ₃₂	423	21055.5	4 ₃₂	321	61692.47
	432	423	21055.5	514	4 ₂₃	61841.71
	4 ₃₂	423	21055.5	5 ₂₃	4 ₃₂	68860.63
	322	313	21295.4	404	313	43554.86
	322	313	21295.4	413	322	51512.94
11	422	413	18184.4	413	322	49979.51
	422	413	18184.4	524	4 ₁₃	63595.27
	322	313	23406.2	413	322	49979.51

Table 21. Übergänge beobachtet durch Mw-Mw-Doppelresonanzen im v_{17} - Zustand von Aceton. ^aKeinÜbergangvomb-TypeinesasymmetrischenRotorsohneInnenrotor.

Mit den verfügbaren Daten von v_{17} [88] und den beobachteten DR-Übergängen wurden mehrere Weighted-least-squares-fits durchgeführt. Zu Beginn wurde der gleiche Parametersatz aus variablem und festem Parameter mit der gleichen Version eines früheren ERHAM-codes wie in [88]verwendet. Wir verwendeten schließlich die Version V16g-r3 von ERHAM [118]. In der ursprünglichen Arbeit über v_{17} [88] war die Frequenz einer Mischung von zwei nahezu degenerierten, nicht aufgelösten Übergängen inkonsistent zu einem oder beiden Transitionen zugeordnet worden. Daher nahmen wir das System von Illyushin und Hougen [78] an, indem wir immer die Frequenz für die gewichteten Durschnitt verwendeten, aber die acht Übergänge, die durch 0 in der Spalte "incl" der Tabelle S2 von [78] markiert waren, erhielten ein Gewicht von Null. Somit wurde eine Nachrüstung nur der Daten von [88] ohne DRs: mit einer Gewichts-Standardabweichung von 4,84 abgeschlossen, was gut mit 4,85 in [88] übereinstimmt. Die Ergebnisse der Anpassung nach den kleinsten Quadraten werden hier angegeben, Abbildung 22 umfasst alle im oben genannten Refit verwendeten Übergängen und alle in Tabelle 21 aufgeführten DR-Übergänge mit demselben Parametersatz und denselben festen variablen wie in [88]. Die Übergangsfrequenzen wurden mit dem inversen Quadrat der geschätzten experimentellen Unsicherheiten gewichtet: letztere betrugen 0,5 MHz für die Pumpübergängen und 0,1 MHz für alle anderen Übergängen (einschließlich derjenigen in Lit [88]). Für die zwei Passungen (Fit 2) sind alle Transpositionen mit Energie-Niveaus mit Rotationsquantenzahlen J>20 beteiligt: Tabelle 22 enthält die Residuen aus beiden Fits für die DR-Übergänge, die vollständige Liste aller in beiden Fits verwendeten Übergänge ist in Tabelle S1 verfügbar. Die resultierenden spektroskopischen Konstanten sind in Tabelle 23 aufgeführt.

$\sigma_1 \sigma_2$	Ј'_{Ка'Кс'}	N'	Ј"_{Ка"Кс"}	Ν″	V _{obs}	<i>v_{obs}-v_{calc}</i> Fit 175
00	3 ₂₁	5	3 ₁₂	3	10159.90	0.01
00	4 ₃₁	7	422	5	10600.60	0.11
00	5 ₃₂	7	5 ₂₃	5	16401.50	2.27
00	3 ₃₁	6	3 ₂₂	4	16850.40	0.75
00	4 ₂₂	5	4 ₁₃	3	18007.90	0.34
00	4 ₃₂	6	4 ₂₃	4	21856.50	0.77
00	4 ₁₃	3	3 ₂₂	4	50678.04	-0.57
00	4 ₂₂	5	3 ₃₁	6	51836.24	-0.29
00	4 ₂₃	4	3 ₁₂	3	52633.31	0.65
00	514	3	4 ₂₃	4	61269.56	0.65
00	524	4	4 ₁₃	3	61702.08	-0.27
00	4 ₃₂	6	3 ₂₁	5	64328.54	0.04
00	5 ₂₃	5	4 ₃₂	6	66853.46	-0.43
00	5 ₃₃	6	422	5	72453.45	1.13
00	4 ₄₀	9	3 ₃₁	6	76686.56	-0.96
01	3 ₂₁	5	3 ₁₂	3	12662.00	-1.83
01	3 ₃₁	6	322	4	13627.50	1.17
01	4 ₄₁	8	4 ₃₂	6	15734.30	0.29

Tabelle 22.	Doppelresonanz	z-Übergängen vot	$_{\rm os}$ im v_{17} Zustand

01	5 ₃₂	7	5 ₂₃	5	18353.70	2.61
01	4 ₂₂	5	413	3	18659.40	0.76
01	3 ₁₂	3	3 ₀₃	1	19981.50	2.09
01	4 ₃₂	6	4 ₂₃	4	21055.50	-1.02
01	322	4	3 ₁₃	2	21295.40	1.12
01	312	3	2 ₂₁	4	40452.12	1.83
01	4 ₀₄	1	3 ₁₃	2	43554.86	0.05
01	4 ₁₄	2	3 ₀₃	1	43627.38	0.21
01	4 ₁₃	3	322	4	51512.77	-0.13
01	321	5	2 ₂₁	4	53114.39 ^b	0.28
01	4 ₂₃	4	3 ₁₂	3	53298.70	-0.07
01	3 ₃₁	6	2 ₁₁	3	57414.96 ^b	0.33
01	4 ₃₂	6	3 ₂₁	5	61692.30	0.83
01	514	3	4 ₂₃	4	61841.71	-0.52
01	524	4	4 ₁₃	3	62334.75	0.78
01	321	5	2 ₁₂	2	66252.45	0.38
01	5 ₂₃	5	4 ₃₂	6	68860.43	-0.29
01	4 ₂₂	5	3 ₂₂	4	70172.74 ^b	1.21
01	4 ₃₁	7	3 ₃₁	6	72413.66 ^b	-0.50
01	5 ₃₃	6	4 ₂₂	5	73067.40	1.06
01	4 ₃₁	7	3 ₂₁	5	74755.78 ^b	1.55
11	422	5	413	3	18184.40	-1.34
11	322	4	3 ₁₃	2	23406.20	3.06
11	4 ₁₃	3	3 ₂₂	4	49979.77	0.72

 5_{24} 4 4_{13} 3 63595.27 1.23

Tabelle 23. Spektroskopische Konstanten für v_{17} Unterzustand mit und ohne DR.-Übergänge

	Without Dr [12]	This work(Fit 1)
Ρ	0.06342(38)	0.06169(23)
В	25.73(13)	25.858(82)
A / (MHz)	10199.046(100)	10193.48(42)
<i>B</i> / (MHz)	8480.44(32)	8480.92(26)
<i>C</i> / (MHz)	4910.0962(47)	4910.0958(39)
⊿, / (kHz)	6.88(20)	5.692(78)
Δ _{<i>JK</i>} / (kHz)	-3.176529285	-3.176529285
<i>∆</i> _{<i>K</i>} / (kHz)	9.800047058	9.800047058
δ, / (kHz)	3.063(100)	2.470(39)
<i>δ_κ /</i> (kHz)	-2.87(40)	-5.14(16)
Φ」 / (Hz)	0.003292885	0.003292885
Ф _{JK} / (Hz)	0.069907036	0.069907036
Ф _К / (Hz)	-0.261678059	-0.261678059
Φ_κ / (Hz)	0.248280998	0.248280998
φ, / (Hz)	0.000794415	0.000794415
<i>ф_{лк} /</i> (Hz)	0.079565034	0.079565034
<i>φ</i> _κ / (Hz)	-0.145657072	-0.145657072
ε₁-₁ / (MHz)	-64(15)	-75(11)
ε ₁₀ / (MHz)	13220(97)	13617(56)
$arepsilon_{ ext{11}}$ / (MHz)	649(68)	206(33)
ε ₂₋₁ / (MHz)	9.66(96)	9.2(10)
--	------------	------------
ε ₂₀ / (MHz)	414(21)	442(15)
ε ₂₁ / (MHz)	78.1(85)	23.6(56)
ε ₃₀ / (MHz)	26.4(12)	31.02(68)
[A-(B+C)/2] ₁₋₁ / (kHz)	-548(73)	-114(38)
[(<i>B</i> + <i>C</i>)/2] ₁₋₁ / (kHz)	414(56)	129(31)
[(<i>B-C</i>)/4] ₁₋₁ / (kHz)	189(27)	52(15)
[A-(B+C)/2] ₁₀ / (kHz)	-970(380)	-2590(190)
[-Δ _k] ₁₀ / (kHz)	-10.7(22)	3.9(12)
[(<i>B</i> + <i>C</i>)/2] ₁₀ / (kHz)	780(150)	77(88)
[-Δ _{JK}] ₁₀ / (kHz)	9.3(14)	0.95(86)
[-Δ _J] ₁₀ / (kHz)	-1.30(33)	-1.202(37)
[(<i>B-C</i>)/4] ₁₀ / (kHz)	278(74)	-63(43)
[-δ _κ] ₁₀ / (kHz)	3.9(70)	-0.07(44)
[-δ _J] ₁₀ / (kHz)	-0.658(17)	-0.607(19)
[A-(B+C)/2] ₁₁ / (kHz)	-6330(650)	-1560(420)
[(<i>B</i> + <i>C</i>)/2] ₁₁ / (kHz)	2240(220)	630(130)
[(<i>B-C</i>)/4] ₁₁ / (kHz)	1110(110)	311(66)
[(<i>B-C</i>)/4] ₂₀ / (kHz)	-91.8(41)	-97.3(49)
[<i>g_o</i>] ₁₀ / (MHz)	35.7(50)	5.1(22)
[<i>g_b</i>] ₁₀ / (MHz)	28.4(40)	13.5(23)
S ^a	4.85	6.03
n ^b	612	655 (43)

^aEine dimensionslose Standardabweichung

^b Anzahl der angepassten Frequenzen (DR- Übergänge in Klammern)

5.3 Diskussion

In Rahmen der Arbeit an Aceton war es von Interesse, die Torsionsunterniveaus AA, EE, AE und EA von v_{17} zu erforschen. Der Grundzustand, sowie der erste angeregte Zustand (v_{17}) sind bereits ausreichend untersucht worden. Ziel war es, hauptsächlich neue Signale mit Hilfe bereits existierender theoretischer Werte zu finden und diese zu verbessern. Gerade der angeregte Zustand v_{17} ist von großem Interesse für Forscher dieses Gebietes. Daher ist es erfreulich, Signale in dieser Arbeit gefunden und bereits existierende theoretische Werte verbessert zu haben, um zukünftige Untersuchungen zu erleichtern und die Bestärkung weiterer selektiver Messungen mit dem Molekül Aceton durch führen zu können.

Es war recht schwierig, diesen Satz von DR-Übergängen zu finden. Das Rotationsspektrum von Aceton ist relativ reich, und die Aufspaltungen aufgrund der Wechselwirkungen des Torsions-Innendrehimpulses mit dem Gesamtdrehimpuls sind ziemlich groß in den angeregten Torsionzuständen. In v_{17} spreizt sich das Quartett der Torsionszustände über 40 GHz. Obwohl das molekulare elektrische Dipolmoment von 2.93D [78] entlang der Hauptträgheitsachse wesentlich ist, sind die Übergänge eher schwach, da die Verteilungsfunktion bei Raumtemperatur aufgrund der niedrigen Energien v_{12} , v_{17} und v_9 ziemlich groß ist (Skeletbiegung) bei 79, 128 [79] und 385cm-1, [80] bzw. deren Kombinationen.

Die Aufspaltung eines Rotationsübergangs in die vier Torsionskomponenten reduziert die Intensität weiter. Die ursprüngliche Zuordnung des Aceton-Spektrums im v_{17} [81] Zustand lieferte keine spektroskopischen Parameter mit zufriedenstellender Genauigkeit, um die Doppelresonanzen zuverlässig vorherzusagen, dafür gibt es zwei Gründe:

1. Der effektive Rotations-Hamilton-Operator [81,82] ist für den ν_{17} Zustand, der nahe der Torsionsbarriere [83] liegt, für die Fourier-Expansion der spektroskopischen Parameter eindeutig nicht sehr effektiv.

2. Es scheinen Coriolis- und/oder anharmonische Wechselwirkungen zwischen den Torsionsgrundzuständen v_{12} und v_{17} und ihren Kombinationszuständen und wahrscheinlich auch mit dem Gerüst Biegezustand zu bestehen. Das ERHAM-Programm kann zu dieser Zeit solche Interaktionen nicht behandeln. Außerdem gab es Instrumentierungsprobleme wie eine unvollständige spektrale Abdeckung durch die Pumpstrahlungsquellen und Detektoren.

Die Standardabweichung der kleinsten Quadrate der zuvor zugewiesenen Übergänge (4.45) [27] steigt auf 6.14, wenn die DR-Übergänge in einer Anpassung mit dem gleichen Parametersatz enthalten sind (Fit 1). Der größte Teil des Anstiegs ist auf höhere Residuen höherer J-Übergänge zurückzuführen (der Effektivwert steigt von 4,73 in der ursprünglichen Anpassung auf 6,06 in der Anpassung mit den DRs). Dies scheint darauf hinzudeuten, dass die (vermuteten) Wechselwirkungen zwischen v₁₇ und anderen Zuständen noch gravierender sind, als bisher gedacht. Die Standardfehler der meisten eingestellten Parameter sinken jedoch deutlich um mehr als 10 %, einige um mehr als 50 %, wie z.B. *A*, ΔJ , δJ , δK , ΔJ . Dieser Effekt ist offensichtlich auf die Einbeziehung der Übergänge bei niedrigem J (einschließlich ^bQ-Zweigübergänge) zurückzuführen, die auch signifikante Informationen über die Asymmetrie-Aufspaltung enthalten.

Es könnte sein, dass die Genauigkeit und die Präzision der Frequenzen der DR- Übergänge einfach nicht gut genug sind? Armieieva [117] berichtete kürzlich über viele neue Messungen von Rotationsübergängne in den Grundzuständen, v_{12} und v_{17} von Aceton in den Mm- und Sub-mm-Bereichen, unter ihnen einige, die auch DR. gemessen wurden, Tabelle 22 enthält eine Zusammenfassung der Unterschiede zwischen den in den beiden Untersuchungen gemessenen Häufigkeiten.

Die Differenzen für alle 8 Pumpübergänge von GS und ν_{12} waren kleiner als 0,3MHz. Zumindest für diese beiden Übergänge scheint die geschätzte Unsicherheit von 0,5 MHz angemessen zu sein. Unter die 34 Signalübergänge in Grundzustand, v_{12} und v_{17} , waren 26 Unterschiede kleiner als 0,1 MHz und 6 waren bis zu 0,3 MHz. Die Ungenauigkeit von 0,1 MHz scheint wenig unterschätzt zu sein.

Der Beweis, dass Modellfehler signifikant zu den großen Residuen beitragen, wird in der letzten Spalte von Tabelle 21 gezeigt. Sie enthält die Abweichungen ausgewählter DR-Frequenzen aus den neuen Messungen [117] ist 0,13 MHz, aber die Residuen der DR-Frequenzen in den ERHAM passen gut von 0,2-1,4 MHz. Angesichts der Tatsache, dass Armieieva [117] mehr als 12000 Frequenzen in den Grundzustand; ν_{12} und ν_{17} auf experimentelle Präzision Anpassen, ist es offensichtlich, dass der ERHAM-code (zumindest mit dem aktuellen Parametersatz) nicht isoliert in den ν_{17} Zustand anpassen kann, da seine Energieniveaus von Wechselwirkungen mit höheren oder niedrigen Vibrationszuständen ernsthaft beeinflusst werden. Die Tatsache, dass Fit 2 (mit J nicht größer als 20) eine deutlich geringere Standardabweichung ergibt, unterstützt diese Aussage ebenfalls.

Es war etwas überraschend, unter den 16 beobachteten Signalübergänge im (01) Substate fünf Übergänge zu finden, die nicht den b-Typ-Auswahlregeln für Dipolübergänge folgen, die für einen asymmetrischen Rotor wie Aceton mit C_{2v}-Gleichgewichtsstruktur gelten. Bei solchen Molekülen ist zwischen zwei internen Rotoren zu wählen. Diese Regeln werden in den (11) Unterzustand ungefähr eingehalten, aber oft in den (01) und (12) Unterzuständen gebrochen. Dies wurde in der Vergangenheit für Moleküle mit zwei Methyl-Innenrotoren und C_{2v}-Symmetrie für die Gleichgewichtsstruktur mit der b-Hauptträgheitsachse; die mit der C2-Achse zusammenfällt, beobachtet [112,113,85].

In Anbetracht dessen, dass bereits mehr als 700 Übergänge von allen vier Substraten zwischen 72 und 375 GHz während der vorläufigen Analyse angepasst worden waren [12], zögerten wir ursprünglich, weitere Untersuchungen zum v_{17} von Aceton durchzuführen. Aber die Möglichkeit, dass Doppelresonanzmessungen zu neuer Information führen, liegt in der Selektivität der DR-Technik.

Am Ende brachte die Zugabe von 42 DR-Übergängen bei niedrigen Quantenzahlen J im Frequenzbereich von 10-76 GHz tatsächlich neue Informationen über den Zustand von Aceton. Darüber hinaus bestätigte diese Arbeit, dass ERHAM definitiv nur eine begrenzte Anwendung hat, um anzuzeigen, wenn die Barriere niedrig ist und andere Übergänge nahe sind.

Kapitel 6

6. Ethylenglykol,

6.1 Einleitung

Ethylenglykol ist der Trivialname des einfachsten zweiwertigen Alkoholes mit der IUPAC- Bezeichnung Ethan–1,2-Diol. Die Summenformel lautet: C₂H₆O₂, bei Raumtemperatur ist Glykol flüssig und farblos. Eingesetzt wird Ethylenglykol unter anderem in Frostschutzmitteln [46] und Kühlflüssigkeiten von Motorkühlsystemen. Außerdem dient es zur Enteisung von Flugzeugen, Flugpisten, Türschlössern und Autoscheiben. Ein weiterer Anwendungsbereich von Ethylenglykol ist die Herstellung wichtiger Produkte, wie beispielsweise PET- oder Dioxan. Aber auch als Befeuchtungsmittel, z.B. in Tabak und zur Verbesserung der Streichfähigkeit von Lacken und Klebern wird Ethylenglykol verwendet.

Die Untersuchung der Spezies und verschiedener deuterierter Ethylenglycol- Spezies war Gegenstand vieler experimenteller und theoretischer Arbeiten: Experimentelle Arbeiten umfassen Gaselektronenbeugung, [50, 51] Infrarot (IR) Spektroskopie [52], NMR- Spektroskopie [53], Mikrowellenspektroskopie [39, 45, 47] sowie Millimeter- und Submillimeterwellen-Rotationspektroskopie [48, 54] wobei sich die theoretischen Studien auf Ab-Initio Berechnungen beziehen (quantenmechanische Berechnungen), die unter Verwendung verschiedener Ansätze durchgeführt wurden [55, 56, 57].

Im Jahre 2003 gelang es Astronomen, in einer interstellaren Wolke, in der Milchstraße und kurz darauf auch in der Abstrahlung des Kometen Hale Bopp [49], Ethylenglykol nachzuweisen.

Darüber hinaus gehört Ethylenglykol zu den komplexesten gasförmigen Molekülen, die bisher im Raum identifiziert wurden, [48].

Unser Ziel ist es, die Torsion-Spektren von Ethylenglycol zu untersuchen, um das Rotationspektrum der ersten angeregten Torsion Zustand (das energetisch bevorzugte Konformes) zu erfassen und wenn möglich zu bestimmen.

6.2 Bisherige Forschungsergebnisse

Im Jahre 1973 nahm erstmals H. Mollendal ein Mikrowellenspektrum des Ethylenglykols auf [58]. Zunächst war es unmöglich, die Peaks des Absorptionsspektrums zuzuordnen. H. Mollendal erkannte dennoch schon, dass Großamplitudenbewegungen die Struktur des Spektrums erheblich beeinflussten.

Durch die große Anzahl an Signalen schien eine Zuordnung zunächst unmöglich. Neue, selektive Techniken mussten gefunden werden, um diesem Problem entgegenzuwirken. Zum einen wurde die MBFTMW (Molecular beam Fourier transform-microwave) Technik eingesetzt. Wegen der sehr niedrigen Rotationstemperatur des Strahls, die nur einige Kelvin beträgt, kann sie nur zur Identifikation und Prüfung von Übergängen mit niedrigen J- Werten verhelfen und schließt folglich alle Übergänge mit hohen J-Werten aus. Zum anderen wurde die MWMWDR (Microwave-Microwave Double Resonance) Technik angewendet, bei der gleichzeitig zwei Mikrowellenstrahlungen unterschiedlicher Frequenzen durch die Probe geschickt werden (sehe Kapitel 3). Somit können exakte Zuordnungen zu einem der drei Energieniveau-Systeme gemacht werden. Genaueres hierzu kann den obigen Ausführungen entnommen werden. Jedoch waren es nicht nur neue Techniken, die gefunden werden mussten. Wie H. Mollendal schon erkannte, stören Großamplitudenbewegungen das Spektrum. Das, heißt, zusätzlich zu den neuen Techniken mussten neue theoretische Modelle aufgestellt werden.

Tatsächlich wurden die Mikrowellenspektren von nur zwei Konformeren bisher identifiziert [45,51,58,61,62]. In Lit. [61] konnte das Mikrowellenspektrum des g'Ga- Konformers des deuterierten Isotopomeres DOCH₂CH₂OD zugeordnet und analysiert werden, während in Lit. [62] für dasselbe Konformer das Mikrowellenspektrum des asymmetrisch substituierten monodeuterierten Isotopomeres DOCH₂CH₂OH beobachtet wurde. Das erste Spektrum für das g'Gg Konformers wurde erst später aufgenommen [51]: Das Mikrowellenspektrum des Normal-Species [58] blieb jedoch für eine lange Zeit nicht zugeordnet. Erst im Jahre 1995 wurden die ersten Übergänge des g'Ga-Konformeres identifiziert [45]. Bei dieser Species stört eine große gekoppelte Rotation der beiden Hydroxylgruppen das Spektrum stark und führt zu einer Tunnelaufspaltung von 7 GHz (worauf später noch eingegangen wird).

Die asymmetrisch substituierten Isotopomeren erfahren die Problematik des Doppel-Minimum Potentials nicht und können deswegen als starre Rotatoren beschrieben werden.

6.2.1 Frühere Studien zur Konformations-struktur von Ethylenglykol

Ethylenglykol ist Mitglied einer interessanten Klasse, die prinzipiell in der Lage ist, unterschiedliche Konformere zu etablieren und Bewegungen mit Großamplituden durchzuführen. Glykol besitzt drei interne Rotatoren: Durch Drehungen an den beiden C-O- Bindungen und der C-C Bindung kann Glykol insgesamt $3^3 = 27$ Konformere ausbilden, wobei sich die Zahl aufgrund der Symmetrie auf zehn reduziert [45]. Bei vier der zehn unterschiedlichen Konformen befinden sich die OH-Gruppen in der Anti-Stellung (A). Sechs Konformere zeigen die stabilere Gauche-Stellung (G). Die kleinen Indizes a, g, und g' geben an, ob sich das H- Atom in der OH- Gruppe in Anti oder Gauche- Stellung befinden. Von den sechs Konformeren können sich nur bei zwei Konformeren (aGg' und gGg') Wasserstoffbrückenbindungen zwischen den beiden OH- Gruppen ausbilden. Diese beiden Stellungen sind energetisch deutlich günstiger und werden somit auch in der Gas-Phase am ehesten erwartet. Beide Konformere sind in Abbildung 23 dreidimensional dargestellt.

Es ist wohl bekannt, dass in 1,2 distubstituirten Ethan die Gauch-Formen meist stabiler sind als die Anti-Formen, weil der Gauch-Effekt [59] für ein Molekül mit elektronegativen Substituenten von Bedeutung ist. Im Fall von Ethylenglykol besteht zusätzlich die Möglichkeit einer intramolekularen H- Bindung, die zur Stabilität eines G-Konformeres beitragen kann. Von den 10 gezeigten Formen in Abbildung 23 können nur die g'Ga und g'Gg- Formen intramolekulare Wasserstoffbrücken bilden, daher wird in der Gasphase erwartet, dass diese beiden Konformere energetisch begünstigt werden.

Abbildung 23. Die zehn Konformer des Ethylenglykols, dargestellt in der Newman-Projektion [60]

Großamplitudenbewegungen bestehen aus der aufeinanderfolgenden Drehung der beiden OH-Gruppen. Wie die Drehungen genau verlaufen wird am Ende des Kapitels erläutert. Die Drehungen der beiden OH-Gruppen verlaufen in einen Doppelminimumpotential. Zwei neue Energiesublevels entstehen, die durch die Vorzeichen, +' und, voneinander unterschieden werden. Findet ein Übergang innerhalb eines Teilniveaus statt, so kann das Spektrum gut zugeordnet werden, da sich die Energie des Übergangs näherungsweise nach dem Modell des starren Rotators berechnen lässt. Die Dubletts, entsprechende Übergänge in dem Fall, +' und, - ,Teil-Niveaus, haben ähnliche Energien. Gelangt das Molekül jedoch von einem Potentialminimum in das andere, so geschieht dies nicht durch Überwinden der Energiebarriere, sondern es tunnelt sich durch diese hindurch. Da durch das Tunneln weniger Energie benötigt wird als aufgewendet werden müsste, wenn das Molekül über die Barriere zu dem anderen Energiesublevel gelangen würde, müssen neue theoretische Modelle aufgestellt werden, die diesen Tunneleffekt berücksichtigen

Abbildung 24. Energieleveldiagramm das Ethylenglykol [45]

Abbildung 24 zeigt ein Energieleveldiagramm des Ethylenglykols mit $J \leq 3$. Die Rotationslevels sind durch die horizontalen Linien gekennzeichnet, die durch J, K₋₁und K₁, welche in diesem Kapitel mit K_a und K_c beschrieben werden. K_a ist dementsprechend die Annährung an einen prolaten, K_c die Annährung an einen oblaten Kreisel. Die große Zahl entspricht der Hauptquantenzahl J, die beiden Indizes entsprechen jeweils den Pseudoquantenzahlen K_a und K_c. Die linke Spalte gehört zum Sublevel,, +^{••}, die rechte zum Sublevel "- ,^{••}. Wie gewohnt stehen die dicken Pfeile für die Pumpfrequenz, die dünnen für die Signalfrequenz. Bei μ_a Übergängen bleibt die Parität von K_a unverändert, während sich die Parität von K_c ändert. Für einen μ_c Übergang dagegen ändert sich die Parität von K_a während die von K_c unverändert bleibt. Ändern sich beide Paritäten, so handelt es sich um ein μ_b Übergang. In der Tabelle sind die Arten der Übergänge zusammenfassend dargestellt.

Komponente μ	K _a	K _c
μ _a	0, ±2	±1,±3
μ_b	±1,±3	±1,±3
μ_c	<u>±1, ±3</u>	0, ±2

Tabelle 24. Übergänge

Zur Paritätsbestimmung wird überprüft, ob es durch die Drehungen der beiden OH- Gruppen zu Änderungen des Dipolmomentes entlang der drei Achsen kommt. Die Paritätsbestimmung ist molekülabhängig. Beim Ethylenglykol wird das Dipolmoment hauptsächlich durch die beiden OH-Gruppen erzeugt. Zunächst wird das Dipolmoment entlang der Molekülachse a betrachtet. Durch die Drehung der beiden OH- Gruppen ändert das Dipolmoment sein Vorzeichen und es kommt zu einer Paritätsänderung. Schaut man sich jedoch das Dipolmoment vor und nach der Großamplitudenbewegung entlang der b-Achse, die senkrecht zur a-Achse steht, an, so ändert es sich nicht, und es gibt keine Paritätsänderung. Betrachtet man das Dipolmoment entlang der c-Achse, die jeweils senkrecht zu den Achsen a und b steht, so ändert das Dipolmoment wieder sein Vorzeichen und es kommt zur Paritätsänderung.

Daraus lässt sich folgern, dass Übergänge innerhalb eines Energiesublevels stattfinden, welche μ_b -Übergänge sind. Tunnelt jedoch das Molekül, so handelt es sich um μ_a - oder μ_c –Übergänge. In der obigen Abbildung beschreiben die senkrechten Pfeile μ_b Übergänge, wärend die schrägen Pfeile μ_a – bzw. μ_c -Übergänge darstellen.

Es verstrich viel Zeit, bis das Spektrum überhaupt zugeordnet werden konnte: Erst in Jahre 1995 erschien eine Veröffentlichung von D. Christen [45]. Sie enthält die ersten Zuordnungen des g'Ga Konformeres im Schwingungsgrundzustand.

Aus der Auswertung der Spektren konnten Rückschlüsse auf die Geometrie des Konformen im Gleichgewichtszustand gezogen werden. Außerdem gelang es, Werte für die Rotationskonstanten und für weitere Parameter, beispielweise diejenigen, die zur Berechnung der Coriolis-Kopplung notwendig sind, zu bestimmen. Über die Parameter wurde es möglich, den Tunnelpfad vorherzusagen.

Im Jahre 2001 veröffentlichte D. Christen ein weiteres Paper [47], diesmal wurde versucht das etwas weniger stabile gGg^c Konformer dem Spektrum zuzuordnen sowie sein inneres Torsionsverhalten zu beschreiben.

Leider erwies sich die Zuordnung des gGg⁴ Konformeres als nicht so einfach, wie die des g³Ga Konformeres. Ein Grund hierfür scheint eine Coriolis-Wechselwirkung zwischen den beiden Energiesublevels zu sein. Entscheidender ist jedoch wahrscheinlich eine Coriolis-Kopplung zwischen dem gGg⁴ Grundzustand und einem angeregten Zustand des aGg⁴ Konformeres.

Deshalb scheinen die Rotations-Tunnel-Spektren des gGg' Konformeres in seinem Schwingungsgrundzustand hauptsächlich von einem angeregten Schwingungszustand des aGg' Konformeres gestört zu werden. Diese Wechselwirkungen scheinen der Grund dafür zu sein, dass nur etwa $\frac{2}{3}$ der 1500 gemessenen Linien innerhalb der Messgenauigkeit angepasst werden konnten.

Man kann sich fragen, wie es überhaupt durch diese beiden Konformere zu einer Störung des Spektrums kommt. Hierzu betrachten wir die Konformere nochmals genauer.

Abbildung 25. Die beiden energetisch günstigsten Konformere g'Gg und g'Ga des Ethylenglycol, die durch die große Amplitude der OH-Gruppe verbunden sind [45].

Der Hauptunterschied zwischen den beiden Konformeren ist nur die unterschiedliche Orientierung der beiden H- Atome, die nicht an der Wasserstoffbrückenbildung beteiligt sind. Beide Konformere werden daher ähnliche Rotations- und Zentrifugalverzerrungskonstanten besitzen. Weitere Unterschiede treten in den Bindungslängen und den intramolekularen Winkeln auf.

Da das gGgʻ und das aGgʻ Konformer sich nur in dem H-Atom unterscheiden, das nicht an der Wasserstoffbrückenbindung beteiligt ist und die Wasserstoffbrückenbindung hauptsächlich zur Stabilität des Moleküls beiträgt, liegen beide Konformere energetisch relativ dicht beieinander. Die beiden Konformere sind über eine Energie–Barriere von nur 6 kJ voneinander getrennt. Die Barriere ist vergleichbar mit derjenigen, die die beiden aGgʻ Konformere voneinander trennt. Die Energiebarriere, die die beiden gGgʻ Konformere trennt ist dagegen größer. Der Unterschied der Energiebarriere des gGgʻ Konformeres liegt sowohl in der Höhe als auch in der Breite der Barriere.

Abbildung 26. Das Hinderungspotential der beiden energetisch am stärksten favorisierten Konformeren des Ethylenglykol- aGg^c und gGg^c. Die Höhe der Barriere, die den zwei äquivalenten Minima von der aGg^c Konformer trennt, ist ungefähr Va=1,7 KJ/mol und dass eine das die zwei äquivalenten Minima von der gGg^c–Konformer ist Vg= 1,5 kJ/mol.

Ein weiteres Problem bei der Zuordnung des Spektrums des gGg' Konformer ist, dass es aufgrund der dichten Lage der Signale zu Überlappung oder zur falschen Zuordnung der einzelnen Übergänge kommen kann.

Trotzdem gelang es, aus den Zuordnungen der Signale Rückschlüsse zur Stabilität dieses Konformeres zu ziehen und den wahrscheinlichsten Weg der Rotation vom g'Gg konformer zur gGg' Konformer anzugeben. Mikrowellenspektren und quantenmechanische Kalkulationen wurden miteinander verglichen. Beide führten zu dem gleichen Ergebnis. Die wichtigsten Resultate werden im Folgenden kurz erläutert.

Zu Beginn musste überlegt werden, über welche Konformation das g'Gg konformer überhaupt zum gGg^c Konformer rotieren könnte. Einerseits könnte dies über eine disrotatorische Rotation der beiden OH-Gruppen ablaufen. Dieser Weg würde jedoch über das aGa konformer führen, welches aufgrund der Abstoßung seiner freien Elektronpaare eine relativ hohe Energie besitzt.

Auch die conrotatorische Rotation würde über das aGa konformer führen und ist aus dem gleichen Grund eher unwahrscheinlich. Folglich ist es am wahrscheinlichen, dass sich die beiden OH- Gruppen nacheinander drehen. Wie in der nächsten Abbildung skizziert, kann dies über zwei Pfade, die mit A und B bezeichnet werden, geschehen.

Abbildung 27. Schema Zeichnung der Gleichgewichtsstrukturen.

Im Pfad A vollzieht eine OH- Gruppe, deren Sauerstoff- Atom zur Wasserstoffbrücke beiträgt, eine 240° Drehung in der Art, dass die Wasserstoffbrücke bei der Drehung aufrechterhalten bleibt. Das Molekül gelangt über das g'Ga Konformer zum g'Gg' Konformer. Abschließend dreht sich die andere OH- Gruppe über das aGg' Konformer, bis es schließlich beim gGg' Konformer angelangt ist.

Pfad B führt das gGg Konformer. Statt der 240 ° - Drehung macht das Molekül in diesem Fall nur eine 120° Drehung, bei der die Wasserstoffbrücke jedoch gebrochen wird, daher ist der Pfad B der kürzeste Weg.

Abbildung 28. Ab initio kalkulierte Energieoberfläche. An den Achsen sind die Winkel <H₈O₆C₀C₁ und <H₉O₇C₁C₀ gegeneinander aufgetragen. Minima der Energieoberfläche sind durch Quadrate, Sattelpunkte durch Kreisen gekennzeichnet. Die durchgezogene Linie steht für den Tunnelpfad A, die gestrichelte für Tunnelpfad B.

Zunächst wurde angenommen, dass der kürzere Pfad B wahrscheinlicher wäre. Aus spektroskopischen Untersuchungen ergab sich jedoch, dass der Weg A wahrscheinlicher ist, da das gGg Konformer, welches sich im Pfad B befindet, im Vergleich zu den Konformeren im Pfad A eine sehr hohe Energie-Barriere darstellt. Außerdem wird im Pfad B die Wasserstoffbrücken-bindung gebrochen, welche erheblich zur Stabilität des Moleküls beiträgt. Im Pfad A ist der Tunnelpfad des g'Ga Konformeres zum aGg' Konformer eingeschlossen. Die Berechnungen zeigen, dass sich beide OH- Gruppen nacheinander drehen. In der Arbeit von Prof. D. Christen [51], die sich nur mit dem g'Gg konformer beschäftigte, wurde noch angenommen, dass es sich hierbei um eine konzertierte Drehung handelt. Aus diesem Beispiel wird deutlich, wie wichtig es ist, die Parameter ständig neu anzupassen. Somit ist es nötig, möglich viele Übergänge zu bestimmen, die in die Kalkulationen aufgenommen werden können.

Beide Konformere sind unter dem Gesichtspunkt der Symmetrie gleichwertig, daher besteht keine Notwendigkeit ein theoretisches Modell neue zu formulieren, da das g'Gg und g'Ga-Konformere die gleiche Art von Bewegung mit Großamplitude zeigen.

6.3 Der Hamiltonoperator für den beiden Tunnelnden Unterzustände

Der Hamiltonoperator, entsprechend den beiden Tunnel- Subzuständen, v=0 und v = 1 die in der Form geschrieben sind:

$$H^{\nu} = \sum_{\nu=0}^{1} |\nu\rangle > (E^{\nu} + H_R^{\nu})\langle\nu| + \{|0\rangle\langle1| + |1\rangle\langle0|\}H_I$$
(6.9)

Wobei E^{ν} die Vibrationsenergie ist, H_R^{ν} und H_I sind die zwei Rotationsoperatoren. Offensichtlich trägt der zweite Ausdruck in der Gl. (6.9) nur zu nicht- diagonalen Matrixelemten des Hamiltonoperators bei. Daher sind Rotationsoperatoren H_R^{ν} und H_I in [51]

$$\begin{aligned} H_R^v &= A^v J_z^2 + B^v J_y^2 + C^v J_x^2 - D_J^v J^4 - D_{JK}^v J^2 J_z^2 - D_K^v J_z^4 + d_1^v J^2 (J_+^2 + J_-^2) + d_2^v J^2 (J_+^2 + J_-^2) + \\ H_J^v J^6 + H_{JK}^v J^4 J_z^2 + H_{KJ}^v J^2 J_z^4 + H_K^v J_z^6 + h_1^v J^4 (J_+^2 + J_-^2) + h_1^v J^2 (J_+^4 + J_-^4) + h_3^v J^2) \end{aligned}$$
(6.10) und

$$H_{I} = F_{bc}(J_{x}J_{y} + J_{y}J_{x}) + \{F_{bc,J}J^{2} + F_{bc,K}J_{z}^{2} + F_{2bc,J}(J_{+}^{2} + J_{-}^{2})J^{2} + F_{bc,JJ}J^{4} + F_{bc,JK}J^{2}J_{z}^{2} + F_{bc,KK}J_{z}^{4}J_{x}J_{y} + \frac{J_{y}J_{x}}{2} + F_{ab}(J_{x}J_{y} + J_{y}J_{x}) + \{F_{ab,J}J^{2} + F_{ab,K}J_{z}^{2} + F_{2ab,J}(J_{+}^{2} + J_{-}^{2}) + F_{ab,JJ}J^{4} + F_{ab,JK}J^{2}J_{z}^{2} + F_{ab,KK}J_{z}^{4}J_{x}J_{y} + J_{y}J_{x}\}/2$$

$$(6.11)$$

Der Rotationsoperator in Gl. (6.10) ist ein Standard-Watson Typ-Rotations-Hamiltonoperator, der S-reduzierten Satz der Verzerrungskonstanten verwendet.

In Gl. (6.11) sind zwei Coriolis-Kopplungsoperatoren enthalten, die notwendig sind, um die beträchtliche Coriolis-Wechselwirkung zu beschreiben.

6.4 Versuchsdurchführung bei Ethylenglykol

Wie zuvor beschrieben aus den 10-möglichen Konformere von Ethylenglykol, können nur gGg und aGg formen intermolekulare Wasserstoffbrücken bilden, daher wird in der Gasphase erwartet, dass diese beiden Konformere energetisch begünstigt werden.

Auch wurde in diesem Kapitel erklärt, dass es so aussieht, als seien die Störungen, die im Spektrum auftreten, auf Coriolis-Wechselwirkungen zwischen dem g'Ga konformer in einem angeregten Zustand und dem g'Gg konformer nicht innerhalb der Messgenauigkeit angepasst werden. Um die Wechselwirkungen genauer zu analysieren, müssen auch die angeregten Zustände der Moleküle analysiert werden.

Meine Aufgabe bestand darin, durch die Doppelresonanz Messung nach weiteren Übergängen des gGg und aGg konformeren im ersten angeregten Zustand zu suchen und anschließend eine Zuordnung für die a-Typ Linien des aGg Konformers zu finden und dies in Zusammenhang mit den gemessenen Doppelresonanz Linien eine ordentliche Anpassung durchzuführen.

Da das Labor kurz vor dem Beginn meiner Arbeit umgezogen ist, mussten zunächst alle Geräte eingebaut und überprüft werden, ob alle funktionieren. Verschiedene Signale, sowohl Pump- als auch Signal Frequenzen, in verschiedenen Frequenzbereichen wurden nachgemessen, daher musste das Spektrometer öfters umgebaut werden. Passenden Hohlleitersysteme und passende Detektoren mussten angebracht werden. Nach einige Messung an OCS, (wobei dieses Molekül immer wieder für die Kalibrierung der Geräte verwendet wurde), schien alles zu funktionieren und so konnten die bekannten Signale der Grundzustand und einige im Torsionszustand schnell wieder aufgezeichnet werden.

J' _{KaKc} J'' _{Ka"Kc"}	V=0 Frequenzen	v=1 Frequenzen
211-202 (+)	11785,80	11889.0
220-211 (+)	29401,91	29255.4
2 ₁₁ -2 ₀₂ (-)	11810,30	11889.00
2 ₂₀₋ 2 ₁₁ (-)	29400.30	29400.00
1_{10} - $11_{01}(+)$	10747.53	10778.9
2_{12} - $1_{01}(+)$	29226.86	29064.45
110-101 (-)	10754.28	10772.4
2 ₁₂ -1 ₀₁ (-)	29210.4	29153.64

Die erst vorgenommenen Übergänge im Grund- und Torsionszustand

Tabelle 25. Nachgemessenen Linien

Aus den gemessenen Linien haben wir anschließend eine Rechnung durchgeführt, um zu schauen wie der Hamilton Operator angepasst wird. Leider war es mit der Anzahl der Linien nicht möglich eine sichere Anpassung durchzuführen, dies lag an der Tatsache, dass für eine erfolgreiche Anpassung eine gewisse minimale Anzahl an gemessenen Linien erforderlich ist, so wäre es natürlich notwendig neue Linien zu suchen. In der Zeit haben wir angefangen nach neuen μ_a Übergänge zu suchen. In dem Fall sind die Linien viel intensiver als die μ_b Linen, daher wäre es wahrscheinlicher gewesen etwas Neues zu finden. Als Pumpe wurde (11810,30) verwendet und die Suche nach einem Signal angefangen von 28-31 GHz, leider erfolglos. Dadurch dass es keine Störung zeigte, könnten wir den Fehler nicht ahnen und erkannten erst später das eigentliche Problem.

Wir änderten die Pumpfrequenz auf (10747,5) so hätten wir mehr Intensität und führten die suche weiter bis zu 36 GHz und auch dieses war erfolglos.

Erst als wir anfingen die Phase einzustellen, sahen wir, dass die Phase nicht konstant blieb und bemerkten das beim Synthesizer Systron Donner (Model 1720) die Modulation nicht funktionierte, es wurde in dem Fall nur teilweise moduliert. Dies Konnten wir natürlich durch die Kalibrierung an OCS nicht festlegen, da OCS ein sehr starkes Signal gibt.

Daher war Aus den bisher durchgeführten Untersuchungen nicht möglich, weitere Informationen bezüglich möglicher Übergangsfrequenzen für Pumpe- oder Signalfrequenzen zu erhalten.

Der zweite Schritt war, aus den zuvor gemessenen Spektren des aGg' Konformeren aus der Universität Köln eine Zuordnung für die a Type- Linien im erst angeregten Torsionszustand (aGg') zu finden.

6.5 Vorgehen der Analyse

Die Verfügbare Spektren wurden von der AK Dr. Holger Müller aus dem I. Physikalischen Institut der Universität Köln aufgenommen und uns freundlicherweise zu Verfügung gestellt.

Auch hier herrscht ein ähnlicher Vorgang wie bei der Zuordnung von 1,2,3 Triazin. Es gibt einige Merkmale, um eine passende Analyse des Spektrums zu erhalten. In dem Fall gibt es die **Dubletts** (Abbildung 29 grün gefärbt), die beim ersten Blick der Beobachtung des Grundzustandes am leichtesten zu erkennen sind.

Abbildung 29. Ein allgemeiner Verlauf der Linien im Grundzustand

Wie es aus dem Abbildung 29 zu entnehmen ist, verlaufen im allgemein die Linien bei niedrigen K-Werte sehr weiter auseinander, hier wäre es sehr schwer gewesen nach den Angeregten Zustand zu suchen, mit höheren K-Werte nähren sich die Linien, so dass wir die **K=5** und **K=6** Werte als **Dubletts** bezeichnen und die weitere Linien verlaufen auch sehr parallel, in dem Fall ist für die Suche nach den Angeregten Zustand leichter, bei Höhere K- Werte anzufangen um eine Serie von

Linien zu finden. In Abbildung 30 ist ein konkreter Fall vom Verlauf der Linien im Grundzustand zu sehen und die Serie der Linien, die in dem Fall zu sehen sind, sind in der Tabelle 27 dargestellt.

Abbildung 30. Verlauf der Linien bei 99000 MHz-99400 MHz.

Übergänge	Frequenzen
954-853	99169.96
9 ₅₅ -854	99166.79
9 ₆₄ -8 ₆₃	99082.00
9 ₆₃ -8 ₆₂	99082.00
9 ₇₃ -8 ₇₂	99044.86
9 ₇₂ -8 ₇₁	99044.86

Tabelle 27. Eine Serie der Übergänge aus dem Grundzustand.

So fing die Suche, wir gingen aus dem Dubletts vom Grundzustand aus, haben auf die Spektra, +/um die 800 MHz nach Linien gesucht die ungefähr 40% der Intensität erfühlen und die Differenzen zwischen den benachbarten Frequenzen übereinstimmen. Nachdem wir einen Dublett bei k=5 oder k=6 festgelegt haben, konnten somit K=7 und K=8 Linien auch übernommen werden, wir kamen auf einige Linien die später für die Anpassung verwänden wurden.

J' _{KaKc} J'' _{Ka"Kc"}	Vobs	
95418530	98564.31	
95518540	98561.64	
96418630	98474.64	
96318620	98474.64	
97318720	98439.12	
97218710	98439.12	
11 5 7 1 10 5 6 0	119163.18	
11 5 6 1 10 5 5 0	119182.63	
11 6 6 1 10 6 5 0	118983.00	
11 6 5 1 10 6 4 0	118983.20	
11 7 5 1 10 7 4 0	118893.00	
11 7 4 1 10 7 3 0	118893.00	
11 8 3 1 10 8 2 0	118857.75	
11 8 4 1 10 8 3 0	118857.75	
$1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0$	10772.42	
2 1 2 0 1 0 1 0	29064.45	

Tabelle 27. Auserwählten Linien. Die fett gedruckten Linien sind gemessene μ_b Ubergänge.

Bei der Berechnung wurden alle Parameter aus dem Grundzustand genommen und Festgehalten (Tabelle 28). Wir haben die Grundzustandsparameter festgehalten und Änderungen benutzten, soweit sie wirklich benötigt wurden. Am Anfang nur Delta (E), Delta (B), und Delta (C) und dann einen Spfit durchgeführt. Damit die μ_b Übergängen mit bei der Anpassung genommen werden können, musste die Rotationskonstante A auch freigegen.

Code	Parameter	Abweichung	
10099	Del (A)	-21.347(79)	
20099	Del (B)	4.561(119)	
30099	Del(C)	-46.167 (36)	
11	Del(E*)	-292.68 (79)	
1199	- Del (DJK)	0.03544 (240)	
40199	Del(d1)	-0.01006 (48)	
MICROWAVE AVG = 2.038613 MHz,			
MICROWAVE RMS = 5.085842 MHz,			
	RMS = 3.23129		

Tabelle 28. Theoretische Berechnung wo die Rotation und die angegeben Zentrifugalverzerrungs-konstanten freigegeben sind.

Wie es aussieht ist die Standardabweichung noch ganz schön groß und somit ist es nicht klar, ob wir tatsächlich die richtigen Linien erwählt haben und um weiteren Parameter freigeben zu können müssten natürlich mehrere Linien gefunden werden.

6.6 Diskussion

Wärend dieser Arbeit ist es uns gelungen einige starke Doppelresonanz-Signale zu sehen, da es aber wenige gemessene Linien sind, ist die Standardabweichung bei der Anpassung sehr groß gewesen und die Möglichkeit weitere Parameter zu verwenden war auch sehr gering.

Es ist offensichtlich, dass erst weitere Messungen durchgeführt werden müssen, um verlässliche Vorhersagen über die Lage von unbekannten Übergängen tätigen zu können.

In dem Fall haben wir einen Anfangsmodell für die Zuordnung an die a-Typ Linien des aGg^c Konformeres angefangen. Dabei ist eine gute Anpassung aus 14 a-Typ Linien und dazu noch 2 Linien aus der Doppelresonanzmessung herausgekommen.

Durch die Fehlende Geräte an der Uni Tübingen war es leider nicht möglich weitere Messungen durchzuführen.

7. Zusammenfassung

In dieser Arbeit wurden drei verschiedenen Molekülen, 1,2,3-Triazin, Aceton und Glykol analysiert.

Das erst Molekül war 1,2,3-Triazin. Das Hauptziel dieser Arbeit war es, die Rotationsübergänge (hauptsächlich Q- Zweige) des 1,2,3-Triazins zuzuordnen und anschließend die Rotations- und Zentrifugalverzerrungskonstanten zu bestimmen. Das isolierte Molekül weist C_{2v}- Symmetrie mit symmetrischen Positionen für zwei Stickstoffatome im Ring auf. Das Dipolmoment liegt entlang der C₂- Achse durch das (mittlere) N₂-Atom, das entweder die a- oder die b- Achse sein muss. Die Analyse des Spektrums zeigt, dass die C₂-Achse die a-Achse ist, und dass das Molekül beinahe ein zufälliger symmetrischer Kreisel ist. Der Asymmetrie-Parameter $\varkappa = (2B - (A + C)/(A - C))$ hat einen Wert von 0.98. Die große Ähnlichkeit der Bandenköpfe in den Mikrowellenspektren der isomeren 1,2,3-Triazin und 1,2,4-Triazin hat die Zuordnung für das 1,2,3-Isomer ermöglicht. Reine Rotationsübergänge mit J bis 65 wurden identifiziert und an einen Watson-Hamilton-Operator A=6334.1694(64), B=6271.3135(64), C=3151.2485(68) angepasst. Ab initio Berechnungen mit der gekoppelten Clustermethode, die sowohl Einzel-, Doppel- als auch ausgewählte Dreifach-angeregten Zuständen (CCSD(T)) berücksichtigen, ergeben eine sehr große Übereinstimmung mit den Spektraldaten.

Das zweite analysierte Molekül war Aceton. Entscheidend für spektroskopische Untersuchungen sind die Struktur und Symmetrieeigenschaften des Moleküls. Aceton besteht aus einem starren Rumpf, der Carbonylgruppe, an die zwei gleiche internen Rotatoren, die beiden Methylgruppen, gebunden sind. Die Wechselwirkung zwischen Gesamtrotation und der internen Rotation der Methylgruppen führt zu einer Aufspaltung der Rotationsniveaus in vier Rotationszuständen. Die beschreibende Symmetriezahlen, σ können die Werte 0, 1, und 2 annehmen.

Das Molekül Aceton existiert nur in einer Form, d.h. es gibt nur eine Konformations-möglichkeit. Daher liegt die Schwierigkeit der Untersuchung und Analyse hauptsächlich im Auseinanderhalten der Unterniveaus (AA, EE, AE, EA), die zwischen der internen Rotation und der Gesamtrotation entstehen. Da bei früheren Untersuchungen des Rotationsspektrums von Aceton im Zustand v_{17} keine Rotationsübergänge zwischen Energieniveaus mit niedrigen Rotationsquantenzahlen J und keine Q-Zweig-Übergänge identifiziert wurden, wurden diese Übergänge nun mittels Mikrowellen-Mirowellen-Dopperesonanzspektroskopie gesucht und zugeordnet. Schließlich wurden 15, 23, 4 und 0 Übergänge in den (00) = AA, (01) = EE, (11) = AE und (12) = EA Torsionsübergänge gefunden. Obwohl die dimensionslose Standardabweichung der kleinsten Quadrate der Parameter des Effective Rotational Hamiltonian (ERHAM) zu ihren Frequenzen in Kombination mit denen, die in früheren Arbeiten verwendet wurden, um $\approx 23\%$ zunahm, sanken die Standardabweichungen der meisten spektroskopischen Parameter um mehr als 20%, stiegen aber bei anderen, wahrscheinlich aufgrund der Änderung bei der Anpassung gemischter Übergänge. Ein Vergleich der Ergebnisse mit denen neuerer Untersuchungen von Aceton bestätigt, dass ERHAM-code nicht in der Lage ist, den Zustand v_{17} zu beschreiben, ohne die Wechselwirkungen mit anderen Schwingungszuständen zu berücksichtigen.

Als drittes Molekül wurde Ethylenglykol analysiert. Ethylenglykol ist Mitglied einer interessanten Klasse von Molekülen, die in der Lage ist, unterschiedliche Konformere zu etablieren und Bewegungen mit Großamplituden durchzuführen. Glykol besitzt drei interne Rotatoren: durch Drehung an den beiden C-O Bindungen und der C-C Bindung kann Glykol insgesamt 27 Konformere ausbilden, wobei sich die Zahl aufgrund der Symmetrie auf zehn reduziert. Von den Zehn Konformeren können sich nur bei zwei Konformeren (aGgʻ und gGgʻ) Wasserstoffbrückenbindungen zwischen den beiden OH-Gruppen ausbilden. Diese beiden Stellungen sind energetisch deutlich begünstigt und werden somit auch in der Gas-Phase am ehesten erwartet. Die Aufgabe bestand darin aus den aufgenommenen Spektren eine Zuordnung zu finden, um Rückschüsse auf die Wechselwirkung verschiedener Zustände der beiden Konformeren zu ziehen.

Die erste Zuordnung des gGa Konformeren im Schwingungsgrundzustand wurde erst im Jahre 1995 veröffentlicht. Im Grundzustand sind die beiden Konformere über eine Energie-Barriere von 6kJ voneinander getrennt. Die Tatsache, dass viele Übergänge des g'Gg Konformeren nicht innerhalb der Messgenauigkeit angepasst werden konnte, lies vermuten, dass Coriolis Wechselwirkungen mit einem angeregten Zustand des aGg' Konformeren störend wirkten. Um diese Wechselwirkungen genauer zu analysieren, müssen auch angeregte Zustände der Moleküle analysiert werden. Zu diesem Zweck wurden in dieser Arbeit einige Doppelresonanzmessungen durchgeführt und davon Anpassungen gemacht, die aber nicht ausreichend waren, um eine bessere Aussage über die Parameter zu machen; durch das Nachlassen der Funktionalität einiger Geräte im Labor, war es nicht möglich, weitere Messungen durchzuführen.

7.1 Summary

In this thesis, three different molecules: 1,2,3-triazine, acetone and glycol were analyzed.

The first molecule analyzed was 1,2,3-triazine. The main objective of this work was to classify the rotational transitions of the Q-branches in the 1,2,3-triazine recorded spectrum and then to determine the rotational and centrifugal distortion constants. The isolated molecule has C_{2v} symmetry with symmetrical positions for two nitrogen atoms in the ring. The dipole moment lies along the C_2 axis through the (mean) N_2 atom, which must be either the a or the b axis. Spectrum analysis shows that the C_2 axis is a- axis, and that the molecule is almost an accidental symmetric top. The asymmetry parameter $\varkappa = (2B - (A + C)/(A - C))$ has a value of 0.98. The close similarity of the band heads in the microwave spectra of the isomeric 1,2,3-triazine and 1,2,4-triazine enabled the assignment for the 1,2,3-isomer. Pure rotation transitions with J up to 65 were identified and fitted to a Watson type Hamiltonian A=6334.1694(64), B=6271.3135(64), C=3151.2485(68). Ab initio calculations using the coupled cluster method, which take into account single, double and selected triple excited state (CCD(T)), result in a very close agreement with the spectral data.

The further analyzed molecule was acetone. However, the structure and symmetry properties of the molecule are decisive for spectroscopic investigations. Acetone consist of a rigid frame, the carbonyl group, as well as two identical internal rotators, the two methyl groups. The interaction between the total rotation and the internal rotation of the methyl groups leads to a splitting of the rotation levels into four substrates. The descriptive symmetry numbers can assume the values 0, 1, and 2.

The molecule acetone exists only in one form, i.e. there is only one conformational possibility. Therefore, the difficulty of investigation and analysis lies mainly in keeping apart the sublevels (AA, EE, AE, EA) that arise between the internal rotation and the total rotation.

Since earlier studies of the rotational spectrum of acetone in the v_{17} state did not identify any rotational transitions between energy levels with low rotational quantum numbers J, these transitions were now searched for and assigned by microwave-microwave-double resonance spectroscopy. Finally, 15, 23, 4 and 0 transitions were found in the (00) = AA, (01) = EE, (11) = AE und (12) = EA torsion transitions. Although the dimension-less standard deviation of the least squares of Effective Rotational Hamiltonian (ERHAM) parameters to their frequencies increased by 23% in combination with those used in earlier work, the standard errors of most spectroscopic parameters decreased by more than 20% but increased for others, probably due to the change in the adaptation of mixed transitions. A comparison of the results with those of other recent studies of acetone confirm that ERHAM- code is not able to describe the state v_{17} without considering the interactions with other vibration states.

Ethylene glycol was analyzed as the third molecule. Ethylene glycol is a member of an interesting class which is able to establish different conformers and to perform movements with large amplitudes. Glycol has three internal rotors: by rotation at the two C-O bonds and the C-C bond, glycol can form a total of 27 conformers, whereby the number is reduced to ten dues to symmetry. Of the ten conformers, only two conformers (aGg' and gGg') can form hydrogen bonds between the two OH groups. These two positions are energetically clearly more favorable and are therefore also most likely to be present in the gas-phase. My task was to find an assignment from the recorded spectra in order to understand the interaction between different states of the two conformers.

The first assignment of g'Ga conformers in the vibration state was only published in 1995. In the ground state, the two conformers are separated by an energy barrier of 6 kJ. The fact that many transitions of the g'Gg conformer could not be adapted within the measurement accuracy suggested that Coriolis interactions with an excited state of the aGg' conformer were disturbing. In order to analyze these interactions more precisely, excited states of the molecules must also be analyzed.

For this purpose, some double resonance measurements were carried out in this thesis and adjustments were made, which were not enough to gain better understanding of the parameters.

8. Literaturverzeichnis

- Christen, D., Hegelund, F., Palmer, M.H., *The microwave spectrum of 1,2,4- Tria*zine and the rotational constants obtained from simultaneous analysis of microwave ground state- and high-resolution IR-Transitions, in: Asian Chemistry Letters Vol.4, Nos. 1& 2, 113-119, (2000)
- Christen, D., Hegelund, F., Nelander, B., Palmer, M.H., Wugt Larsen, R., *High resolution infrared and microwave study of the v₂₀ and v₂₁ levels near 300 cm⁻¹ in 1,2,4 -Triazine, in: Journal of Mol. Structure of Spec. 217, 9-18, (2003)*
- 3. M. H. Palmer D. Christen: *The 1,2,4- Triazine N14 Quadrupole coupling constants, as derived from a joint study microwave spectroscopy and ab initio calculations at the equilibrium geometry,* J. Mol. Spectrosc. **612,** 401 407, (2002)
- 4. H. L. Jetter: Dissertation, 1970
- 5. G. Gegenbauer: Dissertation, 1977
- 6. W. Gordy: *Microwave Molecular Spectra* (264-269), Chemical Applications of Spectroscopy, Part 2, 1970
- 7. Ph. R. Bunker: Molecular Symmetrie and Spectroscopy, 1979
- 8. D.K. Coles and W.E. Good, Phys. Rev. 70, 979 (1946)
- 9. J.H. Van Vleck, Phys. Rev. 71, 468 (1947)
- 10. J. Bardeen and C.H. Towens: Calculation of Nuclear Quadrupole Effects in Molecules, 1947
- 11. J. E. Wollrab: Rotational Spectra and Molecular Structure, 1967
- 12. D. Kivelson, E.B. Wolson, J. Chem. Phys. 21, 1229 (1953)
- 13. J. K. G. Watson, J. Chem. Phys. 45, 1360 (1966); 46 1935 (1965); 48, 4517 (1968)
- 14. R. Hamm, Günther und W. Zeil, z. Naturforsch. 32a, 754-760, 1977
- 15. Holger S.P. Müller: Geometrieberechnung, Physikalisches Institut Universität zu Köln
- 16. H. Pickett, J. Mol. Spectrosc. 148 (1991) 371
- 17. Per Jensen, theoretische Chemie IV, Bergische Universität Wuppertal, 1995
- 18. S. C. Wang, On the asymmetrical top in quantum mechanics, Phys. Rev. 34, 243-252

- H. B. G. Casimir, '*Rotation of a Rigid Body in Quantum Mechanics*,' Wolters, The Hague, 193118
- 20. G. W. King, R. M. Hainer; and P. C. Cross, *The asymmetric rotor I. Calculation and symmetry classification of energy levels*, J. Chem. Phys. **11**, 27-42(1943).
- 21. J. D. Swalen and C.C. Costain, *Internal molecules with two internal rotors: Microwave spectrum of acetone*, J. Chem. Phys. **31**, 1562 1574 (1959).
- 22. R. Peter and H. Dreizler, *Das Mikrowellenspektrum von Aceton im orsions Grundzustand*, Z. Naturforsch. A 20, 301-312 (1965).
- 23. Peter Groner: *Effective rotational Hamiltonain for molecules with two periodic large amplitude motions, in:* Journal of chemistry and Physics **107** (1997).
- F. Combes, M. Gerin, A. Wooten, G. Wlodarczak, F. Clausset, P.J. Encrenaz, Atron. Astrophys. 180 (1987) L13 – L16.
- L.E. Snyder, F.J. Lovas, D.M. Mehringer, N.Y. Miao, Y. –J. Kuan, J.M. Hollis, P.R. Jewell, Asrophys. J. 578 (2002) 245 -255.
- 26. Lister, David G., Mcdonald, John N. Owen, Noel L., *Internal Rotation and Inversion*, Academy Press, 1978
- 27. Groner, Peter, Medvedev, Ivan R., De Lucia, Frank C., Drouin, Brian J., *'Rotational spectrum of acetone, CH₃COCH₃, in the v₁₇ torsional exited state '', in: Journal of Molecular Spectroscopy 251(2008) S:180-184*
- 28. I. P. Lorenz, N. Kuhn, S. Berger, D. Christen., Molekülsymmetrie und Spektroskopie,2016
- 29. Ali. G. Ozkabak, John G. Phils and Liopnel Goodman: *Methyl Torsional Interactions in Aceton, in:* Journal of American Chemical Society **112** (1990), 7854 – 7860
- Dreizler, Helmut, '' Verallgemeinerung der '' Bootstrap-Methode'', in: z. Naturforschung 20a (1965), 297-301
- 31. B. Wilson, Jr., and J. B. Howard, J. Chem: Phys. 4, 262 (1936)
- 32. Darling, B. T., and Dennison, D. M., Phys. Rev., 57, 128, (1940)
- 33. Richard Nelson und Louis Pierce: Microwave Spectrum, Structure, and Barrier to Internal Rotation of Aceton, J. Mol. Structure 18 (1965), 344-352
- 34. Areti Kosma Bariaktarovits: The rotational spectra of ethylene glycol and acetone /HOCH3CHOH and CH3COCH3/ in the first torsional excited states, Dissertation Universität Tübingen, 2008.

- 35. Unrath Zulassungsarbeit 2010
- 36. Müller Zulassungsarbeit 2011
- 37. Marlies Ulrike Greiner Zulassungsarbeit 2010
- 38. A. Adel and D. M. Dennison, Phys. Rev. 43, 716; 44, 99 (1933)
- A.S. Dawydow, Quantenmechanik, VEB Deutscher Verlag der Wissenschaften, Berlin 1974
- 40. Philip. R. Bunker, *Molecular Symmetry and Spectroscopy*, Herzberg Institute of Astrophysics National Research council Ottawa, Canada, 1979
- 41. G.W. Chantry, *Modern Aspects of microwave spectroscopy*, Academic Press London New York Toronto Sydney San Francisco, 1979
- 42. Werner Zeil, neuere Entwicklungen auf dem Gebiet der Mikrowellen Spektroskopie, in: Die Naturwissenschaft **57**, Heft 6 (1970); S.274-279
- 43. Werner Zeil: Qualitative und quantitative Analysen von Gasmischen durch Mikrowellenspektroskopie, in Fesenius 'Zeitschrift für analytische Chemie 289 (1978),1-19
- 44. J.M Vacherand, B.P. Van Eijck, J.Burie and J.Demaisen
- 45. Dines Christen, *Schwingungsspektroskopie mit Mikrowellen?* Fakultät für Chemie und Pharmazie der Universität Tübingen, 1990
- 46. G. W. Chantry, *Modern Aspect of Microwave Spectroscopy*, Academic Press London NEW York Toronto Sydney a Francisco, 1979
- Dieter Meschede: Gehrten Physik, Springer Verlag Berlin Heidelberg New York, 22 Auflage, 2004
- 48. H. Meinke, Friedrich Wilhelm Grundlach: Taschenbuch der Hochfrequenztechnik; Hans Grundlagen Komponenten, Systeme, Springer Verlag Berlin Heidelberg, 5: Auflage, 1992
- 49. J.B. -Bossa, M.H. Ordu, H. S.P. Müller, F. Lewen, S. Schlemmer: Laboratory spectroscopy of 1,2-propanediol at millimeter and submillimeter wavelengths, 2014
- 50. O. Zakharenko, J.-Bossa, F. Lewen, S. Schlemmer, S. H. P. Müller: Millimeter and submillimeter wave spectroscopy of higher energy conformers of 1,2-propandiol, 2017

- 51. D. Christen, L. H. Coudert, R.D. Suenram and F.J. Lovas, the rotational/concerted torsional Spectrum of the g'Ga conformer of ethylene glycol, journal of molecular spectroscopy 172, 57-77 (1995)
- 52. J. Hollis, F. J. Lovas, L. H. Coudert: *Interstellar Antifreeze: Ethylene Glycol*, the Astrophysical Journal, **571**, L000, 2002
- 53. D. Christen, L.H. Coudert, J.A. Larsson, D. Cremer: *The Rotational- Torsional Spectrum of the g'Gg Conformer of Ethylene Glycol: Elucidation of an Unusual Tunneling Path*, Journal of Molecular Spectroscopy **205**, 185-196 (2001)
- 54. Holger S.P. Müller and Dines Christen: Millimeter and submillimeter wave spectroscopy investigations into the rotation-tunneling spectrum of g'Gg ethylene glycol, Journal of Molecular Spectroscopy 228 (2004) 298 – 307
- J. Crovisier, D. Bockelee-Morvan, N. Biver, P. Colom, D. Despois, D.C. Lis, Astron. Astrophys. 418 (2004) L35-L38.
- 56. W. Kaminati and G. Korbelli, Conformation of ethylene glycol from the rotational spectra of the non-tunneling O-monodeuterated species, J. Mol. Spectrosc. 90, 572-578 (1966)
- 57. P. -E. Kristiansen, K.-M. Marstokk, and Mollendal, *Microwave spectrum of HOCH*₂*CD*₂*OH and the assignment of a second Hydrogen. Bonded conformation of ethylene glycol*, Acta Chem. Scand. A **41**, 403-414 (1987)
- 58. H. Takeuchi and M. Tasumi, *Infrared- induced conformational isomerization of ethylene glycol*, Chem. Phys. **77**, 21-34 (1983)
- 59. KG- R. Pachler. And P.L. Wessels, *Rotational isomerism X. A nuclear magnetic resonance study of 2-fluoro-ethanol and ethylene glycol* J. Mol. Struct. 6, 471 (1970)
- 60. Dines Christen and Holger S.P. Müller: *The millimeter wave spectrum of aGg* ' *eth-ylene glycol: The quest for higher precision*, Phys. Chem. Chem Phys., 2003, **5**, 3600-3605
- 61. T.-K. Ha, H. Frei, R. Meyer, and H.H. Günthard, Conformation of ethylene glycol: Isomeric group, ab initio study of internal H bonding and ir-matrix spectra oft hespeciesCH₂OHCH₂OH, CD₂OHCD₂OH and CH₂ODCH₂OD, Theor. Chem. Acta 34, 277 (1974)

- 62. L. Radom, W. A. Iathan, W. J. Hehre and J. A. Pople, *Molecular orbital theory of the electronic structure of organic compounds*. XVII. Internal rotation in 1,2- disubstituted ethanes, J. Am. Chem. Soc. 95, 694 (1973)
- 63. P. Groner, J. Mol. Specrosc. (theochem) 108, 121-128 (1984)
- 64. K. -M. Marstokk and H. Mollendal, J. Mol. Struct. 22, 301-303 (1974)
- 65. S. Wolfe. Acc. Chem. Res. 5, 102-111(1972)
- 66. Von Alsenoy, C., Van den Enden, L., Schäfer, L., Ab initio studies of structural features not easily amenable to experiment: Part 31. Conformational analysis and molecular structures of ethylene glycol, in: Journal of Molecular Spectroscopy 108, 121-128 (1984)
- 67. E. Walder, A. Bauder, and Hs. H. Günthard, Chem. Phys. 51, 223-239 (1980)
- 68. W. Caminati and G. Corbelli, J. Mol. Spectrosc. 90, 572-578 (1981)
- F. J. Lovas, D.F. Plusquellic, Brook H. Pat, Justin L. Neill, Mathew T. Muckle, Anthony J. Remijan, Microwave spectrum of 1,2- propanediol, Journal of Molecular Spectroscopy (2009) 82-93
- 70. Dudley R. Herschbach, *Calculation of Energy Level for Internal Torsion and Over-All Rotation. III**, The journal of chemical physics. Volume 31, Number 1, 1959
- 71. R. C. Woods: A General Program for the Calculation of Internal Rotation Splitting in Microwave Spectroscopy, Part II. The n- Top Problem*, Journal of Mol. Spectrosc. 22, 49-59 (1967)
- 72. Herbert M. Pickett: *The Fitting and Prediction of Vibration -Rotation Spectra with Spin Interactions*, Journal of Molecular spectrosc. **148**, 371-377 (1991)
- 73. L. H. Coudert and J.T. Hougen: *Tunneling Splittings in the Water Dimer: Further Development of the Theory*, Journal of Molecular spektrosc. **130**, 86-119 (1988)
- 74. H. M. Hollis, F.J. Lovas and P.R. Jewell: Interstellar Glycolaldehyde: The First Sugar, the Astrophysical Journal, 540: L107-L110, Sept.10, 2000
- 75. Harald. H. Nielsen, *The Vibration- Rotation Energies of Molecules, reviews of modern physics,* Vol. 23, No.2, pp. 90-136, (1951)
- 76. Holger S.P. Müller Privat comunication, Geometrierechnung
- 77. Georg de Sorensen, Effective Vibration- Rotation Hamiltonian of a molecule with a Large
- 78. V. V. Ilyushin, J. H. Hougen, J. Mol. Spectrosc. 289 (2013) 41-49

- 79. F. Combes, M. Gerin, A. Wootten, G. Wlodarczak, F. Clausset, P. J. Encrenaz, Astron. Astrophys. 180 (1987) L13-16.
- M. De Reus, H. Fischer, F. Arnold, J. De Gouw, R. Holzinger, C. Warneke, J. Williams, Atoms. Chem. Phys. 3 (2003) 1709-1723
- D. N. Friedel, L. E. Snyder, A. J. Remijan, B. E. Turner, Astrophys. J. 632 (2005) L95-98.
- 82. P. Groner, J.Mol. Spectrosc. (2012) 278, 52-67
- F. Arnold, J. Schneider, K. Gollinger, H. Schlager, P. Schulte, D. E. Hagen, P. D. Whitefield, P. van Velthofen, Geophys. Res. Lett. 24 (1997) 57-60.
- 84. J. J. Harrison, N. Humpage, N. D. C. Allen, A. M. Waterfall, P. F. Bernath and J. J. Remedios, Mid-wavelength infrared absorption cross sections for acetone (propanone), J. Quant. Spectrosc. Rad. Trans. 112, 457-464 (2011).
- A. Perrin, F. Kwabia-Tchana, J. M. Flaud, L. Manceron, J. Demaison, N. Vogt, P. Groner, W. J. Lafferty, J. Mol. Spectrosc. 315 (2015) 55-62
- Winnewisser, P. Groner, F. C. De Lucia, E. Herbst, Astrophys. J. Suppl. Ser. 144 (2003) 277-286.
- P. Groner, E. Herbst, F. C. De Lucia, B. J. Drouin, H. M\u00e4der, J. Mol. Struct. 795 (2006) 173-178.
- 88. P. Groner, I. R. Medvedev, F. C. De Lucia, B. J. Drouin, J. Mol. Spectrosc. 251 (2008) 180-184.
- 89. F. W. Loomis, R. W. Wood, Phys. Rev. 32 (1928) 223-236
- 90. D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger,
 F. C. De Lucia, Rev. Sci. Instrum. 68 (1997) 1675-1683.
- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F.Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N.

Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari,
A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M.
Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O.
Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016

- 92. D. Christen, J. Mol. Structure. 599 (2001) 255-259
- 93. E.D. Anderson, D. L. Boger, Organic Letters, 13 (2011) 2492
- 94. H. Neunhoeffer, M. Clausen, H. D. Voetter, H. Ohl, C. Krueger, K. Angermund, Liebigs Ann. Chem., (1985), 1732-51
- 95. K. Yamaguchi, A. Ohsawa, H. Arai, H. Ohnishi, H. Igeta, Y. Iitaka, Chem. & Pharm. Bull., **31** (1983), 3762-4.
- 96. J. Hynes, Jr., W. W. Doubleday, A. J. Dyckman, J. D. Godfrey, Jr., J. A. Grosso, S. Klau, K. Leftheris, J. Org. Chem. 69 (2004) 1368–1371
- 97. A. Ohsawa, H. Arai, H. Ohnishi, H. Igeta, J. Chem. Soc., Chem. Commun. (1981) 1174-1174
- 98. A. Ohsawa, H. Arai, H. Ohnishi, T. Itoh, T. Kaihoh, M. Okada, H. Igeta, J. Org. Chem. 50 (1985) 5520–5523
- 99. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. **157**, 479 (1989)
- 100. A. Karton, S. Daon, and J. M. L. Martin, Chem. Phys. Lett. 510, 165 (2011)
- 101. K. Raghavachari, Chem. Phys. Lett. 589, 35 (2013).
- 102. P.R. Spackman, D. Jayatilaka, and A. Karton J.Chem. Phys. 145, 104101 (2016)
- 103. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
- 104. F. Weigend, Phys. Chem. Phys. 8, 1057–1065 (2006).
- 105. D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).
- 106.L. Morina, R. A. Aitken, M. H. Palmer, D. Christen, *The rotational spectrum of* 1,2,3- triazine.
- 107.L. Morina, M. Unrath, M. Müller, S. Obst, D. Christen, P. Groner, *Microwave-microwave double-resonance spectroscopy of acetone in the torsional excited state* v17.
- 108. T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160.
- 109. R. Nielson, L. Pierce, J. Mol. Spectro. 18 (1965)344-352.
- 110. F: Oldag; D. H. Sutter, Z. Naturforsch. A 47 (1992) 527-532.
- 111. J. M. Vacherand, B. P. van Eijck, J. Burie, J. Demaison, J. Mol. Spectrosc. **118** (1986).
- 112. P. Groner, S. Albert, E. Herbst, F. C. De Lucia, F. J. Lovas, B. J. Drouin, J. C. Pearson, Astrophys. J. Suppl. Ser. 142 (2002) 145-151.
- 113. P. Groner, S. Albert, E. Herbst, F. C. De Lucia, Astrophys. J. 500 (1998) 1059-1063
- 114.C.P. Endres, B. J. Drouin, J. C. Pearsonm, H. S. P. Müller, F. Lewen, T. F. Giesen A&A 504 (2009)635-640
- 115.P. Groner, C. W. Gillis, J. Z. Gillies, Y. Zhang, E. Block, J. Mol. Spectrosc. 226 (2004) 169-181
- 116.F. Combes, M. Gerin, A. Wooten, G. Wlodarczak, F. Clausset, P. J. Encrenaz, Astron. Astrophy. 180 (1997) L13-16
- 117.I. A. Armieiev, V. V. Ilyushin, E. A. Alekseev, O. A. Dorovskaya, L. Margules, R.A. Montiyenko, Radio Physics and Radio Astronomy, 21 (2016) 43-47
- 118.Z. Kisiel, in J. Demaison, K. Sarka, E. A. Cohen (Eds.), Spectroscopy from Space (2001, Kluwer Academie Publishers, Dordrecht), 91-106;
- 119. Kroto, H. W. Molecular rotation spectra, 1975, by John Wiley &sons,Ltd. S 114-115

9. Appendix

9.1 Publikationsliste

Teile dieser Arbeit und Ergebnisse darüber hinaus wurden bereits in internationalen Fachzeitschriften veröffentlicht oder stehen davor.

- L. Morina, M. Unrath, M. Müller, S. Obst, D. Christen, P. Groner, *Microwave-microwave double-resonance spectroscopy of acetone in the torsional excited state v*₁₇, 2018
 https://doi.org/10.1016/j.jms.2018.11.019
- L. Morina, R. A. Aitken, M. H. Palmer, D. Christen, *The rotational spectrum of* 1,2,3- triazine 2018. https://doi.org/10.1016/j.jms.2018.11.012

9.2 Danksagung

Es ist mir eine große Ehre mit Herrn Prof. Dr. Dines Christen zusammen gearbeitet zu haben. Ganz besonders, da ich die letzte Doktorandin von ihm bin. Er hat in den letzten Jahren viel Zeit in mich und meiner Arbeit investiert. Nie waren meine vielen Fragen unerwünscht. Zudem hat er mich immer wieder aufs Neue motiviert und zu verstehen gegeben, dass es auch für ihn nichts Wichtigeres gäbe als meine Forschung. Für all das möchte ich ihn danken und zurufen, dass ich mir keinen besseren Doktorvater hätte wünschen können.

Ein weiterer Dank geht an Malgorzatta Polek, Elke Nadler, Benedetta Casu, Regina Jäger und Tanja Wolfer, für den freundschaftlichen und Kollegialen Umganges die mich immer unterstütz haben.

Ich bedanke mich auch beim Herrn Dr. Wolfgang Langer, der mir ermöglicht hat während meiner Arbeit dem Praktikum für die Lehrämtler zu Organisieren und zu begleiten. Es war mir eine große Freude mit Studenten gearbeitet zu haben.

Ein großer Dank geht auch an AK Prof. Dr. Stephan Schlemmer aus der I.Physikalisches Institut der Universität zu Köln, die mir ermöglicht haben Messungen in Köln durchzuführen, ganz besonders Herrn Dr. Holger S. P. Müller, Herrn Dr. Frank Lewen und Frau Dr. Elena Zakharenko.

Zuletzt, aber in meinem Herzen dafür ganz weit vorn kommt meine eigene Familie. Herzlichen Dank an meinem Lieben Mann Valmir und an unseren großartigen Sohn Rron. Ihr habt mich immer wieder aufgerichtet. Ihr könnt euch nicht vorstellen, wie wichtig dieser Rückhalt für mich war.