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Abstract

In the last decades design methods in control engineering made substantial progress in
the areas of robotics and computer animation. Nowadays these methods incorporate the
newest developments in machine learning and artificial intelligence. But the problems
of flexible and online-adaptive combinations of motor behaviors remain challenging for
human-like animations and for humanoid robotics. In this context, biologically-motivated
methods for the analysis and re-synthesis of human motor programs provide new insights
in and models for the anticipatory motion synthesis.

This thesis presents the author’s achievements in the areas of cognitive and develop-
mental robotics, cooperative and humanoid robotics and intelligent and machine learning
methods in computer graphics. The first part of the thesis in the chapter “Goal-directed
Imitation for Robots” considers imitation learning in cognitive and developmental robotics.
The work presented here details the author’s progress in the development of hierarchical
motion recognition and planning inspired by recent discoveries of the functions of mirror-
neuron cortical circuits in primates. The overall architecture is capable of ‘learning for
imitation’ and ‘learning by imitation’. The complete system includes a low-level real-time
capable path planning subsystem for obstacle avoidance during arm reaching. The learning-
based path planning subsystem is universal for all types of anthropomorphic robot arms,
and is capable of knowledge transfer at the level of individual motor acts.

Next, the problems of learning and synthesis of motor synergies, the spatial and spatio-
temporal combinations of motor features in sequential multi-action behavior, and the
problems of task-related action transitions are considered in the second part of the thesis
“Kinematic Motion Synthesis for Computer Graphics and Robotics”. In this part, a new
approach of modeling complex full-body human actions by mixtures of time-shift invariant
motor primitives in presented. The online-capable full-body motion generation architecture
based on dynamic movement primitives driving the time-shift invariant motor synergies
was implemented as an online-reactive adaptive motion synthesis for computer graphics
and robotics applications.

The last chapter of the thesis entitled “Contraction Theory and Self-organized Scenarios
in Computer Graphics and Robotics” is dedicated to optimal control strategies in multi-
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agent scenarios of large crowds of agents expressing highly nonlinear behaviors. This last
part presents new mathematical tools for stability analysis and synthesis of multi-agent
cooperative scenarios.

iv



Zusammenfassung

In den letzten Jahrzehnten hat die Forschung in den Bereichen der Steuerung und Rege-
lung komplexer Systeme erhebliche Fortschritte gemacht, insbesondere in den Bereichen
Robotik und Computeranimation. Die Entwicklung solcher Systeme verwendet heutzuta-
ge neueste Methoden und Entwicklungen im Bereich des maschinellen Lernens und der
künstlichen Intelligenz. Die flexible und echtzeitfähige Kombination von motorischen Ver-
haltensweisen ist eine wesentliche Herausforderung für die Generierung menschenähnlicher
Animationen und in der humanoiden Robotik. In diesem Zusammenhang liefern biologisch
motivierte Methoden zur Analyse und Resynthese menschlicher motorischer Programme
neue Erkenntnisse und Modelle für die antizipatorische Bewegungssynthese.

Diese Dissertation präsentiert die Ergebnisse der Arbeiten des Autors im Gebiet der
kognitiven und Entwicklungsrobotik, kooperativer und humanoider Robotersysteme sowie
intelligenter und maschineller Lernmethoden in der Computergrafik. Der erste Teil der
Dissertation im Kapitel “Zielgerichtete Nachahmung für Roboter” behandelt das Imitati-
onslernen in der kognitiven und Entwicklungsrobotik. Die vorgestellten Arbeiten beschrei-
ben neue Methoden für die hierarchische Bewegungserkennung und -planung, die durch
Erkenntnisse zur Funktion der kortikalen Spiegelneuronen-Schaltkreise bei Primaten in-
spiriert wurden. Die entwickelte Architektur ist in der Lage, ‘durch Imitation zu lernen’
und ‘zu lernen zu imitieren’. Das komplette entwickelte System enthält ein echtzeitfähiges
Pfadplanungssubsystem zur Hindernisvermeidung während der Durchführung von Armbe-
wegungen. Das lernbasierte Pfadplanungssubsystem ist universell und für alle Arten von
anthropomorphen Roboterarmen in der Lage, Wissen auf der Ebene einzelner motorischer
Handlungen zu übertragen.

Im zweiten Teil der Arbeit “Kinematische Bewegungssynthese für Computergrafik und
Robotik” werden die Probleme des Lernens und der Synthese motorischer Synergien, d.h.
von räumlichen und räumlich-zeitlichen Kombinationen motorischer Bewegungselemente
bei Bewegungssequenzen und bei aufgabenbezogenen Handlungsübergängen behandelt.
Es wird ein neuer Ansatz zur Modellierung komplexer menschlicher Ganzkörperaktionen
durch Mischungen von zeitverschiebungsinvarianten Motorprimitiven vorgestellt. Zudem
wurde ein online-fähiger Synthesealgorithmus für Ganzköperbewegungen entwickelt, der
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auf dynamischen Bewegungsprimitiven basiert, die wiederum auf der Basis der gelern-
ten verschiebungsinvarianten Primitive konstruiert werden. Dieser Algorithmus wurde für
verschiedene Probleme der Bewegungssynthese für die Computergrafik- und Roboteran-
wendungen implementiert.

Das letzte Kapitel der Dissertation mit dem Titel “Kontraktionstheorie und selbstorga-
nisierte Szenarien in der Computergrafik und Robotik” widmet sich optimalen Kontrollstra-
tegien in Multi-Agenten-Szenarien, wobei die Agenten durch eine hochgradig nichtlineare
Kinematik gekennzeichnet sind. Dieser letzte Teil präsentiert neue mathematische Werk-
zeuge für die Stabilitätsanalyse und Synthese von kooperativen Multi-Agenten-Szenarien.
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Chapter 1

Introduction

1.1 Thesis Overview

The flexible modelling of human motion becomes an increasingly important problem for
technological applications. This problem is important for computer vision where the track-
ing and analysis of human movements and activities is necessary for many applications in
video analysis, e.g. for communication devices or for driver assistance systems (41,89,113,296).
An important recent problem for internet applications is also the automatic labelling and
searching of videos with human actions and activities (3,134). Another technical domain
where the simulation of human movements with high degree of realism is central is com-
puter graphics. Recent animation movies such as Lord of the Rings (4,280) or Valerian
(317) (VFX: Weta Digital Ltd.) achieve a degree of realism of the simulation of human
motion that makes it almost indistinguishable from real motion. Another domain, where
the realization of human-like motor behavior becomes increasingly important is humanoid
robotics. Human-like motor behavior of robots is important for two reasons: first, because
the flexibility and versatility of human motor behavior is still unachieved by present hu-
manoid robots. This makes it interesting to transfer concepts from flexible human motor
control to humanoid robots in order to realize complex highly adaptive behaviors for such
systems. The second reason is that humanoid robots are built increasingly for direct
interaction with humans. For many applications, this makes it necessary to implement
human-like motion in order to increase the acceptance of such systems for human users
(43). A further argument is that humanoids will be used increasingly with humans in
joint tasks (31,83,84,289). This makes it necessary to integrate human and robot behavior
in terms of a smooth interaction, which likely is more similar if the robot behaves in a
human-like manner, making its actions easier to predict.

The transfer of human-like characteristics from humans to technical systems is a non-
trivial problem. First, no unified theory about the organization and control principles of
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1. Introduction

human motor behavior exist. This makes it a challenge to find flexible and adaptive frame-
works for the modeling of complex human behavior. While a huge number of approaches
exist to generate human-like motion kinematics based on recorded data by interpolation or
retrieval of trajectory segments (12,106,107,256,340), e.g. exploiting motion capture, the chal-
lenge for many applications is to generate complex and structured human motion online
and in an adaptive manner. For applications in robotics, in addition the problem emerges
that human motion typically violates the physical constraints of humanoid robot systems.
In this case it is a nontrivial problem to decide which aspects of the human motion should
be reproduced by the technical system to improve its performance. This is even more
so as technical implementations of human-like behaviors can be accomplished exploiting
technology that is not biologically inspired. An example is the impressive performance of
the robots by Boston Dynamics (73), which exploits high-energy effector technology and
standard control approaches using extremely fast control loops rather than biologically-
inspired concepts.

In this thesis I present work on the development of flexible motion representations in
different domains: cognitive and developmental robotics, humanoid robotics, and machine
learning methods in computer graphics. This work has been realized at the University
do Minho, Portugal, and at the Eberhard Karls Universität Tübingen, Germany. The
thesis is based on a series of papers which are specified in detail below. The work has
been accomplished as part of the EU projects ArteSImit (FP6), the projects AMARSi and
KoroiBot (FP7), and the project CogIMon (H2020).

The Thesis consists of the three main chapters. Chapter 2 covers topics in cognitive
and developmental robotics, proposing a brain-inspired architecture that realizes a robotics
system for imitation learning. Chapter 3 covers a new approach for online kinematic motion
synthesis for reactive motion synthesis in computer graphics as well as for the synthesis
of movements for humanoid robots. The approach integrates this synthesis algorithm in
the full control architecture that guarantees dynamic balance during walking. Chapter 4
finally treats new mathematical tools for the synthesis of human-like multi-agent motion
and stability analysis of the underlying complex nonlinear dynamics.

The major innovations of this thesis can be characterized as follows: 1) online reactive
architecture for the kino-dynamic motion planning of goal-directed reaching movements
with a robot arm, capable of online imitation of motion and imitative learning of new motor
skills; 2) online reactive kinematic synthesis algorithm for complex full body motion, which
is based on learned Dynamic Movement Primitives (DMPs), and which is implemented in
two ways: as generative architecture for motion in a computer animation system, and as a
part of a general control architecture for the humanoid biped robot HRP-2; 3) new meth-
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Overview of Chapter 2

ods for nonlinear stability methods in the framework of Contraction Theory implemented
both for the design of the networks of coupled DMPs that control agent motion, and as
a nonlinear control synthesis framework, a design tool applied to the multi-agent control
scenarios.

All chapters of the thesis treat the problem of learning motor features from examples
of human behavior. This includes the problems of transfer of motor features at the level
of individual motor acts (geometric correspondence problem, cf.222,258), as well as transfer
at a higher level: the learning and synthesis of motor synergies, which define spatial and
spatio-temporal combinations of motor features. Also this thesis considers the problems
of synthesis of sequential multi-action behavior, both in goal-directed and spontaneous
activities, and the problems of task-related action transitions. A further problem treated
in this thesis is the implementation of multi-agent control strategies for crowds of agents
that realize human full-body motion, and which are characterized by highly nonlinear
agent models. Basic control strategies for navigation of individual agents are derived from
simplified models of human navigation. The flexible combinations of behaviors, navigation
and the synthesis of complex transient behaviors requires elaborated tools from modern
theories of nonlinear control in order to guarantee stable system behavior.

In the following, I give a more detailed overview of the contents of the individual
chapters. Each chapter starts with an overview of its research area and with the review of
the literature. References to the current literature are given in the main text of the chapters.

1.2 Overview of Chapter 2

Chapter 2 presents work in the area of cognitive and developmental robotics. It addresses
problems of hierarchical motor planning and online control of complex sequential behav-
iors. A biologically plausible motion synthesis architecture is proposed for the learning-for-
imitation, learning-to-imitate, and learning-by-imitation problems. My approach combines
ideas of optimal path planners in configurational space with ideas of pre-selection of motor
action sub-goals and means. The pre-selections take place on high levels of general sub-
sumption architecture (39). The robotics architecture presented in this chapter is inspired
by recent finding in biological motor control, the discovery of mirror neurons in cortical
areas F5 and PFG of primates (93,253,318). The top levels of motor feature selections
are realized by interconnected populations of Neural Fields, building up to a ladder-type
hierarchy of pairwise coupled sensor and motor representations of actions. I propose a new
modified Hebb-like learning rule for the Neural Fields, which allows automatic spatial and
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1. Introduction

temporal fusion and splitting of concept representations. This conceptually new approach
was successfully implemented by me as a robotics architecture, controlling a real KUKA
robot arm in the framework of EU project ArteSImit (FP6) at the University do Minho,
Portugal. My main contributions to this work include the development of the low-level
connectionist motion planning paradigm, based on learned and online refined probabilistic
road maps in configuration space. This paradigm resulted in a universal path planning
algorithm, realized in C/C++ capable of real time optimal planning. This algorithm is
transferable to any robotics arm with up to 8 degrees of freedom, admitting arbitrary
static and kinematic constraints. The other main achievements include the design of a
hierarchical architecture for the representation of motion features, capable of online motion
planning and re-planning, flexibly combining sub-goals and means of a motor action. This
architecture is capable of learning new motor skills from a demonstrator for motor imitation.

The results presented in Chapter 2 are published in the following papers:
W. Erlhagen, A. Mukovskiy, E. Bicho, G. Panin, C. Kiss, A. Knoll, H. van Schie and
H. Bekkering. Action Understanding and Imitation Learning in a Robot-Human Task. In:
“Artificial Neural Networks: Biological Inspirations, ICANN, 2005”. Duch, W. et al. editors.
LNCS 3696, pp.: 261-268. Springer-Verlag, Berlin, Heidelberg, 2005. (78)
W. Erlhagen, A. Mukovskiy, E. Bicho, G. Panin, C. Kiss, A. Knoll, H. van Schie and
H. Bekkering. Goal-Directed Imitation for Robots: A Bio-Inspired Approach to Action
Understanding and Skill Learning. Journal of Robotics and Autonomous Systems, 54(5):
353-360, 2006. (79)
W. Erlhagen, A. Mukovskiy and E. Bicho. A Dynamic Model for Action Understanding
and Goal-directed Imitation. Brain Research, 1083(1): 174-188, 2006. (76)
W. Erlhagen, A. Mukovskiy, F. Chersi and E. Bicho. On the Development of Intention
Understanding for Joint Action Tasks. In IEEE 6th Int. Conf. on Development and
Learning, ICDL 2007, pp.: 140-145, 2007. (80)
They were presented at the following conference:
W. Erlhagen, A. Mukovskiy, E. Bicho and H. Bekkering. Development of Action Un-
derstanding in Imitation Tasks. Proc. Of IEEE Int. Conf. on Robotics and Automation,
ICRA’2005, April, 2005, Barcelona, Spain. (77)

1.3 Overview of Chapter 3

Chapter 3 presents work in computer graphics and robotics. It solves the problem
of learning motion control primitives from examples of human motion, including both
goal-directed and free performed actions, where motion data was acquired by motion
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Overview of Chapter 3

capture techniques. During the project many datasets were collected for free walking
with different styles, dancing, navigational walking, walking with arm reaching at different
phases of gait cycle, arm reaching towards perturbed targets, goal-directed walking and
arm reaching. The flexible models for the generation of motion are based on unsupervised
learning techniques, including unconstrained and constrained anechoic mixture models,
and methods of shift-invariant ICA and PCA. The estimation techniques developed by me
include approaches for the hierarchical step-wise estimation of anechoic mixtures of source
signals, defining spatio-temporal time-shift-invariant and non-invariant kinematic motor
primitives. I developed a general multilayer architecture for the online-reactive generative
synthesis of realistic human motion based on anechoic mixture models. The main control
module of the architecture is a network of interconnected canonical dynamical systems,
which define dynamic motion primitives (DMPs). To test the approach I developed a
computer animation architecture that was used for the online generation of adaptive motion
in diverse scenarios, e.g. collective dancing, crowd navigation, goal directed walking and
arm reaching. During the work, a number of machine learning techniques were proposed to
establish online behavioral control of the animation by external variables. These methods
include the learning of mappings from task parameters of goal-directed actions onto the
manifold of weights and delays of kinematic motion primitives defined by anechoic mixtures,
which participate in the synthesis.

This developed architecture, which was originally tested in computer graphics, was
extended to a kinematic control synthesis block that then was embedded in the control
architecture of a walking humanoid robot. The proposed solution guaranteed dynamic
stability during walking. It was tested successfully on a robot physics simulator as well as
on the real HRP-2 humanoid robot, realizing the online control of walking combined with
arm reaching and other tasks performed with the upper body. I show the feasibility of the
proposed embedded kinematic control not only for the flexible instantaneous multi-action
behaviors, but also for the online control of transitional multi-action sequences. Addition-
ally, I used a Contraction Theory framework for the design of the stable networks of DMPs
in the proposed kinematic pattern synthesis architecture.

The results presented in Chapter 3 are published in the following papers, conference
papers, and book chapters:
A. Park, A. Mukovskiy, L. Omlor and M. A. Giese. Synthesis of Character Behaviour
by Dynamic Interaction of Synergies Learned from Motion Capture Data. Skala, V. (ed):
Proceedings of the 16th Int. Conf. in Central Europe on Computer Graphics, Visualization
and Computer Vision (WSCG), Plzen, Czech Republic, pp.: 9-16. 2008. (236)
A. Park, A. Mukovskiy, L. Omlor and M. A. Giese. Self-organized Character Animation
based on Learned Synergies from Full-body Motion Capture Data. Int. Conf. on Cognitive
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Systems (CogSys), Springer-Verlag, Berlin. 2008. (235)
A. Mukovskiy, A. Park, L. Omlor, J. J. E. Slotine and M. A. Giese. Self-organization
of Character Behavior by Mixing of Learned Movement Primitives. Proc. of the 13th Fall
Workshop on Vision, Modeling, and Visualization (VMV 2008), October 8-10, Konstanz,
Germany. 2008.210.
M. A. Giese, A. Mukovskiy, A. Park, L. Omlor and J. J. E. Slotine. Real-Time Synthesis
of Body Movements based on Learned Primitives. Book chapter. In Cremers D, Rosen-
hahn, B., Yuille, A. L. (eds): “Statistical and Geometrical Approaches to Visual Motion
Analysis”, Springer Verlag, Lecture Notes in Computer Science 5604, pp.: 107-127. 2009.
(103)
A. Mukovskiy, W. M. Land, T. Schack and M. A. Giese. Modeling of Predictive Hu-
man Movement Coordination Patterns for Applications in Computer Graphics. Journal of
WSCG, 23(2), pp.: 139-146. 2015. (209)
A. Mukovskiy, C. Vassallo, M. Naveau, O. Stasse, P. Souères and M. A. Giese. Adaptive
Synthesis of Dynamically Feasible Full-body Movements for the Humanoid Robot HRP-2
by Flexible Combination of Learned Dynamic Movement Primitives. Robotics and Au-
tonomous Systems, Vol.91, pp.: 270-283. 2017. (215)
A. Mukovskiy, N. Taubert, D. Endres, C. Vassallo, M. Naveau, O. Stasse, P. Souères
and M. A. Giese. Modeling of Coordinated Human Body Motion by Learning of Structured
Dynamic Representations. In: Laumond, J. P., et al. (Eds.): “Geometric and Numerical
Foundations of Movements,” Springer STAR Series, Springer-Verlag Berlin Heidelberg.
Vol.117 of the series Springer Tracts in Advanced Robotics, pp.: 237-267. 2017. (214)

1.4 Overview of Chapter 4

The final Chapter 4 is dedicated to computer animation applications and mathemat-
ical problems related to the development of new stability analysis and synthesis tools
exploiting the framework of Contraction Theory (183). Here, I developed a number of
control scenarios for crowds of walking avatars, including multiple-feedback controls for
the individual avatars based on their instantaneous positions, velocities, walking direc-
tions and gait phases. All these control feedbacks are inherently non-linear. Contraction
theory is a tool for the stability analysis of essentially nonlinear systems, developed by
Prof. J. J. E. Slotine and his colleagues at M.I.T. This tool, when applied as a synthesis
principle, allows the composability of control blocks in parallel or hierarchical schemes.
In this project I developed a number of mathematical tools guaranteeing the sufficient
contraction conditions for composite nonlinear systems. The derivations of these tools are
presented in the main text and in the appendix of this thesis. The mathematical results
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obtained were successfully implemented for the control of interacting crowds of multiple
agents driven by nonlinear DMPs. The results are illustrated by a number of videos, while
performance measures are evaluated and compared with the theoretical results. The scien-
tific impact of this work extends beyond applications in computer graphics and robotics,
as it also has a general impact on the methods of nonlinear control of multi-agent scenarios.

The results of this chapter are published in the following full papers, conference papers,
and book chapters:
A. Park, A. Mukovskiy, J. J. E. Slotine and M. A. Giese. Design of Dynamical Stability
Properties in Character Animation. In: The 6th Workshop on Virtual Reality Interaction
and Physical Simulation. VRIPHYS’09, Nov. 5-6, Karlsruhe, Germany, pp.: 85-94. 2009.
(237)
A. Mukovskiy, J. J. E. Slotine and M. A. Giese. Design of the Dynamic Stability Prop-
erties of the Collective Behavior of Articulated Bipeds. Proc. of 10th IEEE-RAS Int. Conf.
on Humanoid Robots, Humanoids, 2010. Dec. 6-8, 2010, Nashville, TN, USA, pp.: 66-73,
2010. (213)
A. Mukovskiy, J. J. E. Slotine and M. A. Giese. Analysis and Design of the Dynamical
Stability of Collective Behavior in Crowds. Journal of WSCG. Skala V. (ed): Proc. of
the 19th Int. Conf. on Computer Graphics, Visualization and Computer Vision 2011
(WSCG’2011), Jan.31-Febr.3, 2011, Plzen, Czech Republic. 2011. (211)
A. Mukovskiy, J. J. E. Slotine and M. A. Giese. Dynamically Stable Control of Articu-
lated Crowds. Journal of Computational Science, 4(4), pp.: 304-310, 2013. (212)
M. Ajallooeian, J. van den Kieboom, A. Mukovskiy, M. A. Giese and A. J. Ijspeert. A
General Family of Morphed Nonlinear Phase Oscillators with Arbitrary Limit Cycle Shape.
Physica D: Nonlinear Phenomena, 263, pp.: 41-56. 2013. (5)
M. Karklinsky , M. Naveau, A. Mukovskiy, O. Stasse, T. Flash and P. Souères. Robust
Human-Inspired Power Law Trajectories for Humanoid HRP-2 Robot. In Proc. Of 6th
IEEE Conf. Biomedical Robotics and Biomechatronics, pp.: 106-113. 2016. (148)
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Chapter 2

Goal-directed Imitation for Robots

2.1 Introduction and Experimental Paradigm

There has been a growing interest in creating autonomous robots which are capable of
developing motor and cognitive skills through real-time interactions with their environment.
Research in movement learning suggests that trying to imitate an experienced teacher (e.g.,
a human) is a powerful means of speeding up the learning process (for reviews see275,276).
This form of social learning in robots is not restricted to movements. It may be com-
plemented by acquiring more abstract knowledge such as, for instance, structurally new
motor behaviors composed of a set of parametrized motor primitives.

In this part I summarize results of an interdisciplinary project which aimed at exploring
new ways of imitation and imitation learning in artefacts based on recent discoveries in
cognitive psychology and neuroscience. The basic idea was to get new insights into the
relevant functional mechanisms underlying imitation from behavioral and neuronal data.
Central questions for robot imitation that I have addressed in my work concern “what
to imitate” and how to solve the correspondence problem across dissimilar embodiments
and task constraints222. Often these differences do not allow for a matching at the level
of movement trajectory or path. In the goal-directed theory of imitation proposed by H.
Bekkering and colleagues22,341 imitative behavior can be considered successful whenever
the goal of an action in terms of the desired outcome of the movement is reproduced. The
action means, on the other hand, may or may not coincide with the observed one. The
focus on the consequences of the movement requires that the imitator understands the
demonstrator’s behavior as an intentional motor act directed at a specific goal (e.g., plac-
ing an object at a certain position). The “matching hypothesis” forwarded by Rizzolatti
and colleagues253 based on their discovery of the mirror system states that an action is
understood if its observation activates the motor representations controlling the execution
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of a similar goal-directed action (“motor simulation”).

Here I present a dynamic model, which aims at substantiating the idea of a distributed
neuronal network in which action understanding and goal-directed imitation occurs within a
continuous dynamic process. In its architecture, the model reflects the basic functionality of
neuronal population of distinct but anatomically connected areas in the frontal, temporal
and parietal cortex, which are known to be involved in action observation and action
execution. Contextual information, action means and action goals are explicitly represented
as dynamic activity patterns of localized pools of neurons.

Specifically, I apply an imitation paradigm consisting of a grasping-placing sequence
to show how the mapping from perception to action may contribute to the inference of
the action goal. I also simulate how knowledge about the action goal can be used to
flexibly change between different means to reproduce the witnessed action effect. A second
objective of the present modeling study is to illustrate how learning within the network
can be exploited for skill growth. The focus is on changes in environmental constraints and
on observed means not in the motor repertoire of the imitator. To directly illustrate the
functionality of the dynamic model I use a simulator of robot arm. The model implements
a cognitive “decision module” which decides about the means the artifact uses to reproduce
the observed or inferred action effect. Since our approach is focused on the goal of the
action and do not assume that demonstrator and imitator share the same embodiment,
the implementation may be seen as a contribution to solving the correspondence problem.
The proposed controller implements action understanding and goal-directed imitation as
a continuous process which combines sensory evidence, contextual information, and a
goal-directed mapping of action observation onto action execution. As a theoretical frame-
work, the implementation is based on dynamic neural fields9 previously used to endow
autonomous robots with cognitive capabilities (e.g., memory, decision making,30,75,247).

The complete control architecture including vision, cognition and path planning is
validated in variations of a paradigm in which the robot system learns to imitate a grasp-
ing and placing sequence displayed by a human model. The learning is accompanied by
structural changes in the controller representing knowledge transferred from the human to
the robot during imitation.

2.1.1 Experimental Paradigm

To test the idea of a goal-directed organization of imitative behavior in a robot-human
task, a paradigm was adopted, which has been originally developed for experiments with
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human subjects (324). The paradigm employs an object that must be grasped and then
placed at one of two laterally presented targets that differ in height. Importantly, the
grasping and transporting behaviors are constrained by an obstacle in form of a bridge
(see Fig. 2.1). Depending on the height of the bridge, the lower target may only be reached
by grasping the object with a full grip and transporting it below the bridge. Placing the
object at the higher target, on the other hand, may require combining a precision grip and
a hand trajectory above the bridge.

(a) Experimental set-up with human.
(b) KUKA arm in robot simulator en-
vironment.

Figure 2.1: Bridge Paradigm. The robot has to imitate a human grasping an object
and placing it at one of the two targets behind the bridge obstacle.

The robot had to reproduce the observed or inferred action consequence (placed object).
The work was conducted on a robot platform consisting of an industrial 6-Degrees-of-
Freedom robot arm (KUKA, Germany) on which a four-fingered anthropomorphic robot
hand (GRAALTECH, University of Genova, Italy) was mounted. A real-time vision system
provided information about the scene parameters and the human hand motion.

2.2 System Architecture

Three interconnected modules (vision, cognition, path planning) define the robot control
architecture (see Fig. 2.2).

2.2.1 Vision Module

The vision module provides the environmental variables of the task setting (Cartesian
position of bridge, object and goals) by means of a semi-automatic calibrated stereo camera
system. All outputs are stored in the general configuration structure, globally available for
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Figure 2.2: Schematic diagram of the control architecture. The central part re-
sponsible for the selection of means and goals in the imitation task reflects recent
neurophysiological findings in 4 interconnected brain areas. The functionality of
the STS-PF-F5 pathway is to match action observation and action execution. The
matching is controlled by the goal representations in area PFC. The figure is adopted
from79.

the other modules of the controller. The demonstrator’s hand and the object are identified
and tracked in real time on the basis of a chroma-space blob segmentation in the YUV
color space using a monocular camera view. The hand tracking algorithm is based on a
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Figure 2.3: Snapshots from the experimental set-up. The upper row depicts the
visual analysis of teacher’s world configuration and of the teacher’s action. The right
inset displays the view from the robot camera. The vision module detects the color of
the object and the target hight relative to the bridge (blue bar). With a fixed height
of the bridge, the higher target is classified as small spatial gap. The vision module
also detects the features of teacher’s action as grip type (PG) and arm trajectory type
(AT), the last is estimated from the wrist position relative to the bridge. Bottom row
shows two snapshots of the robot in action. The figure is adopted from78.

mutual information optimization approach327 which maximizes the consistency between
an observed image and postures of a hypothetic hand model (26-degrees-of-freedom). The
hand trajectory (above or below the bridge) and the placing goal (high or low) are classified
on the basis of a distance measure relative to the respective object. The categorization of
the grasping behavior (full or precision) is based on the orientation of the palm relative to
the object.

Fig. 2.3 demonstrates snapshots from a real experimentation scene with KUKA robot
arm. The snapshots on the upper row show two views of the teacher’s table. The upper
right inset displays the view from the robot camera. In all imitation tasks, the exact
geometrical parameters of the teacher’s scene are different from the task parameters of
the KUKA environment. The Vision module extracts only the symbolic, categorized
information from the teacher’s scene and actions. Bottom left inset also shows a view on
teacher’s table at the back near the wall and its frontal robot camera observing the table.

2.2.2 Cognitive Module

In the cognitive module decisions about the action goal and the means to achieve that
goal are made. Its layered architecture is biologically inspired, as it represents the basic
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functionality of neuronal populations in brain areas known to be involved in action observa-
tion/execution tasks (for details see76). The STS-PF-F5 pathway is believed to represent
the neural basis for matching between the visual description of an action in area STS
and its motor representation in area F5. Direct physiological evidence for this hypothesis
comes from the existence of “mirror neurons” in F5 that become active both when the
animal makes a particular action and when it observes another individual making a similar
action. The fundamental idea here is that the matching takes place on the level of motor
primitives that represent complete goal-directed motor behaviors such as, for instance,
“grasping an object with a full grip’253, see also275 for an excellent overview in the context
of robotics research. Motor primitives do not encode the fine details of the movement
and thus provide a sufficiently abstract level of description for imitation learning across
dissimilar embodiments.

Subpopulations of neurons in the premotor area F5 are thought to represent distinct
goal-directed motor acts such as for instance grasping, holding or placing an object. Perrett
and colleagues described neurons with strikingly similar firing characteristics with respect
to hand-object interactions in the superior temporal sulcus (STS) of macaque (for review
see50). The major difference to the mirror neurons in F5 is that the goal-related neurons
in STS do not discharge during active movements. With respect to the direct matching
hypothesis this suggests that neuronal populations in STS may provide a visual description
of a goal-directed action, which is then mapped onto a similar motor representation in F5.
For the modeling, separate action observation and action execution layers are proposed, in
which neuronal populations encode abstract motor primitives. Concretely for the bridge
paradigm, we distinguish two types of grasping primitives (precision grip (PG) and full
grip(FG)) and two types of transporting primitives for avoiding the obstacle (below (BT)
or above (AT) the bridge).

The representations in the intermediate layer PF reflect recent neurophysiological
findings in brain area PF that suggest a goal-directed organization of action means. Using
a grasping-placing task, Fogassi and colleagues93 described a population of grasping mirror
neurons which showed a selective response in dependence of the final goal of the action
(placing vs. eating) to which the grasping act belongs. For the bridge paradigm, this
finding is abstracted by assuming representations of specific combinations of primitives
(e.g., PG-AT) which allow achieving a specific placing goal. Possible goals parameterized
by their height relative to the bridge (spatial gap, Fig. 2.1), are assumed to be encoded
in neuronal populations of the “prefrontal area” PFC. The reciprocal connections between
PFC and PF are learned during the imitation experiments. Functionally, they allow to
override a direct matching between primitives in STS and F5 if necessary. Beside the
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direct stimulation by the vision system (placed object), the goal representations in PFC
may be influenced by two additional information sources: i) The task input represents
memorized information about the number, identity (height) and probability of goals (for
details of a computational implementation see81). It reflects the fact that in a known task
setting the robot may engage in partial motor preparation even before the observation
of the human model. ii) The second input represents object cues (e.g. color) which may
become associated with the goal during imitation.

Dynamics of Decision Making and Learning

Each individual layer of the cognitive module is formalized by a dynamic field. The partic-
ular form as employed here was originally introduced by Amari9 as a mathematical model
for the dynamics of pattern formation in neuronal tissue. The main idea is that the inter-
play between excitatory and inhibitory interactions in local populations of neurons may
sustain the population activity for extended periods of time. The build-up of self-sustained
activity patterns in populations encoding action goal and means may thus be seen as the
process of stabilizing and maintaining the task relevant information.

In the modified Amari model139, the activity u(x, t) of a neuron at field location x at
time t is governed by the following integro-differential equation:

τ
δ

δt
u(x, t) = −u(x, t) + h+

∑
i

Si(x, t)+ (2.1)

+f1(u(x, t))[
∫
w(x− x′)f2(u(x′, t))dx′ − winhib

∫
f2(u(x′, t)dx′]

where τ > 0 defines the time scale of the dynamics and h < 0 the resting level to which the
field activity relaxes without external stimulation. The non-linear functions fi(u), i=1,2;
are of sigmoid shape,

fi(u) = 1
1 + exp (−βi(u− θi))

(2.2)

with threshold θ1 > θ2 and slope parameter β1 = β2 (cf.139). The strength of the excitatory
connections w to field neighbors is expressed in terms of the distance between locations,
that is, w(x, x′) = w(x − x′). We used gaussian profiles with standard deviation σs

and amplitude As. The feedback inhibition depends on the overall activity in the field
and is controlled by the constant winhib > 0. Since the excitatory process is spatially
restricted, the globally inhibitory process dominates at larger distances. Finally, the term∑
i Si(x, t) represents the summed external input to the field which consists of excitation

from connected layers and input from the vision module. The latter is modeled as gaussian
functions of adequate intensity.
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Figure 2.4: Panel A: The temporal evolution of a self-stabilized activation pattern
representing a decision for a PG-grip. Note that at the time of stimulus onset, t = 0,
the field appears to be already pre-activated by the constant input from the task layer
in PFC. Panel B: The time course of the maximally excited field element is compared
for the case with pre-activation (solid line) and without pre-activation (dashed line).
The figure is adopted from79.

Here the model parameters were adapted to guarantee a bistable regime of the dynam-
ics in which a transient input may act as a switch between a homogeneous rest state and
a localized activity profile9. In Fig. 2.4, Panel A, we exemplify the evolution of such a
profile in response to an input to a neuronal population representing the precision grip
(PG). The build-up of excitation is accompanied by an increase in lateral inhibition which
causes a suppression of activation in the population representing the grip alternative (FG).
There is a threshold, uTH=0, for triggering a self-sustained pattern. Weak external inputs
(e.g., task input) may only bring the activation close to that threshold. As shown in Panel
B, this “preshaping” mechanism may nevertheless drastically alter the time course of the
suprathreshold response triggered by a sufficiently strong input81. The observed speed-up
of processing may, in turn, affect the decision processes in connected layers.

The learning of synaptic connections between neuronal populations in any two layers
of the model network is based on Hebbian learning (for discussion of theoretical aspects
see67). Keysers and Perrett153 have suggested that a correlation-based learning rule within
the STS-PF-F5 circuit may explain how mirror properties may evolve. In addition, we
propose that also the synaptic links of area PF to the goal representations in PFC may
develop using such biologically plausible rules.

A basic assumption is that the time scale of the synaptic modification is small compared
to the time scale of the neuronal dynamics. The synaptic efficiency can thus be treated as
constant on the fast time scale of the pattern formation. When the network has relaxed
to a stable state, a Hebb rule is applied during a developmental period defined by a
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internal reinforcement signal. Note that the transient phase of the dynamics could have
been included in the learning process as well without qualitatively changing the results
presented here. Fig. 2.5 sketches the connections a(x, y) between neurons in two distinct
network layers which are modified during practice and the connections w(x, x′) between
two neurons within the same layer which are assumed to remain fixed and are chosen to
guarantee the bistable behavior of the layer dynamics.

Figure 2.5: Sketch of the connectivity within layers, w(x, x′), and between layers,
a(x, y), of the model network. The figure is adopted from76.

The equation for the correlation-based synaptic modification between neuron x in layer
1 and neuron y in layer 2 is given by (Fig. 2.5):

τs
δ

δt
a(x, y, t) = −a(x, y, t) + η f2(ū1(x))f2(ū2(y)) (2.3)

where ū1, ū2 denote the equilibrium solutions of the relaxation phase in layer 1 and layer
2, respectively, η > 0 defines a scaling parameter, τ � τs denotes the time scale and
f is the sigmoidal threshold function. Note that the activity patterns coding for the
distinct, categorical choices in each network layer are assumed to be non-overlapping such
that the strength a(x, y, t) is not affected by the representation of alternative means or
goals. The time window for learning is defined by an internally generated reinforcement
signal representing a successful path planning. Technically we implement the monitoring
process by multiplying the right hand side of equation 2.3 with a function that takes on
for simplicity the value 1 during the learning period and the value 0 otherwise. At the
end of the learning process, the synaptic strength a(x, y, t) becomes the time-independent
A(x, y):

A(x, y) = η f2(ū1(x))f2(ū2(y)) (2.4)

Since the self-stabilized activity patterns ū1 and ū2 are symmetric and bell-shaped, also the
evolving connection profile is symmetric with maximum connection strength to the maxi-
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mum excited neuron in the other layer. The equilibrium solution in layer 1 (equivalently
for layer 2) is then given by:

ū1(x) =
∫
w(x− x′)f(ū1(x′)dx′ + h+ S2(x) (2.5)

with the input from layer 2

S2(x) =
∫
A(x, y′)f(ū2(y′)dy′

For the model simulations, the strength of the learned synaptic connections between layers
is adjusted using the parameter. Depending on whether or not an existing activation
pattern should drive the evolution of suprathreshold activity in a subsequent layer or
should only preshape neuronal representations, its effective input strength is chosen above
or slightly below the threshold ATH for the ignition of an active response.

2.3 Path Planning

2.3.1 Path Planners and their Role in Sensory-motor Planning

The path planning module plays a central role in my architecture, despite its position
as the lowest motion planning level producing the detailed kinematic trajectories to be
followed by the robot PD controllers. The main motivation for the connectionist path
planning module is not only to have a system capable of the reliable real time motion
planning for the systems with many degrees of freedom (like standard robot arms with 7-9
DoFs), but also to have a system for constrained or prioritized planning, with pre-selection
and prioritization of the motor acts as specified by higher levels of my architecture.

Another important feature of the proposed design is its capacity for “learning for
imitation”. When the low-level planing is performed without pre-selection and prioritization
from the higher motion-planing levels, then the resulting solutions in form of bundles of
trajectories can be clustered and categorized in an unsupervised way or be associated
with important, behavior-related features of the environment. Thus, the autonomous
performance of the low-level planning system itself is providing the motor repertoire,
which is categorized by the higher levels. In my system, the next level above the path
planning module, called F5, is associating the stereotypical bundles of trajectories with
discrete motor features. These bundles or beams of trajectories are described as subsets of
states in configuration space (C-space), where kinodynamic planning takes place. These
subsets (or areas in C-space), once learned and represented in F5, can be pre-selected from
F5 in the form of state-prioritization, by lowering the cost function of states falling into
the intersections of the multiple pre-selections. The reduction of the state cost function
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shifts the resulting planned path towards areas of such preferential pre-selections.
Related methods of planning with pre-selections in C-space were developed by157 for

the sequential planning of multiple concatenated motion clips. A similar approach of
combining low-level geometric and high-level semantic planners was proposed by46,47,111.
The inspiration for the hybrid multi-level planners roots in earlier work of R. Brooks on the
subsumption architecture. The subsumption architecture couples sensory information to
action selection in an intimate and bottom-up fashion13. It does this by decomposing the
complete behavior into sub-behaviors. These sub-behaviors are organized into a hierarchy
of layers. Each layer implements a particular level of behavioral competence, and higher
levels are able to subsume lower levels in order to create viable behavior. The layers, which
all receive only pieces of sensory information in ranges of their behavioral competence, all
work in parallel and generate outputs affecting the lower layers. The higher layers may
utilize the lower-level competencies as constraints resulting from planning trials of lower
layers (similar to111).

In a similar way, my system architecture is based on a hierarchy of planning levels
for motor action representations. The whole sensory-motor architecture has a ladder
hierarchy: the motor action representations at each layer of the motor hierarchy are
connected to the corresponding scene parameter representations of the visual hierarchy95.
This structure assumes also a hierarchical organization of skill learning. The connections
from the lower layers of visual representations of simple geometric scene features are linked
to simple motor-acts representations. These connections are learned earlier relative to
those in-between the higher visual-motor layers.

I call this hierarchical approach to sensory-motor learning “learning to imitate”. It is
intended to solve the motion features transfer problem in imitation learning (known also
as the correspondance problem, see222). The critical geometric motion features cannot be
copied from one actor (teacher) to another actor (student) directly due to the difference in
body geometries and variable environmental constraints263. So, motion features need to be
categorized and abstracted, and such categorization as result of learning is dependent on
the individual experience of each actor. An abstraction, as a result of categorization, leads
to the formation of motor representations on the higher levels, which in their turn, are
associated with more abstract sensory-derived concepts describing the scene geometry96.
For the lower level C-space planner, the chosen combined motor features are affecting the
planning while acting as constraints and pre-selection in the space of trajectories.

Optimal kinodynamic planners in configuration space (C-space planners) are very com-
mon in robotics, for motion planning involving a few degrees-of-freedom (DoFs), e.g. see the
robotics books48,167,195. Extensions of C-space planners for higher dimensional C-spaces
have been proposed recently20,49,151. This research resulted in stochastic algorithms for off-
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line and online C-space re-sampling during planning, an approach known as Probabilistic
Road Maps (PRMs)152,170,290. The suboptimal online re-sampling method called Rapidly-
exploring Random Trees169,171 became popular in the last years (e.g.7,118,138,140,239,320).
Recently, the interest of scientists is directed towards integration of such approaches with
stochastic identification and control frameworks37,146,147,219,311,312, Dynamic Bayesian Net-
works (DBNs)101,315 and POMDPs297,310. Some researchers employ the game-theoretic
approach for the local optimization for planners204 and for the optimal controllers233.
Substantial research efforts were invested in the design of multi-resolution C-space and
policy space refining methods200,201,264.

C-space shortest path planners for low-dimensional configuration spaces can be real-
ized on regular lattices representing the discrete configurations. The nodes of the lattices
are assumed to be connected regularly with the nearest neighbors. In this case, with an
appropriate regularization of the connection weights, the shortest path finding algorithm
can be reformulated as breadth-first search, (e.g.114,173,265). The last can be realized in
the connectionist paradigm as a wave expansion neural network (e.g.149). Multiple models
of such neural networks were proposed with applications in robotics42,172,176,177,216. In a
series of papers from the 1990s, David A. Rosenbaum and colleages proposed a C-space
kinodynamic planner for arm reaching and grasping tasks, where the connection structure
of the C-space sampling PRM can be learned by trial-and-error. Here, the robot practices
the reaches in different environments, in the presence of gravitational and dynamic-reactive
forces259–263. Our approach explores similar ideas for learning the connection structure.
Other approaches similar to ours were also realized by119,120,172.

In the last half century path integration models similar to PRMs (or potential field
models,224) became also popular in computational neuroscience as connectionist models
for decision making and action planning in subcortical areas as the hippocampus, the basal
ganglia and the nucleus caudate in the striatum. E.g. a model of striatum as a state-space
planner was presented in series of papers58–60. Those were based on old physiological
findings, e.g.168,191 and later resulted in a kinodynamic planning and control architecture
for robots129. Exemplary state-space based models of dynamic planning in hippocampal
place-cells system are presented in194,197,224,270.
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2.3.2 Path Planning Algorithm

Wave-expansion breadth-first search algorithm. Connectionist implementation

For generating overt behavior, the abstract motor primitives represented in layer F5 have
to be translated into the right kinematics. We employ a global planning method in C-space
(posture space)79, which is inspired by biologically plausible network models (see subsection
2.3.1). In this C-space covering sparsely connected network, which can be regarded as
PRM, each of the locally interconnected nodes represents a stored posture, that is an
array of joint angle values. It is assumed, that a model for the forward kinematics of the
arm/hand system exists, that is, the nodes are associated with the arm/hand location
in Cartesian workspace. Each node i of the C-space covering network is connected with
its k nearest neighbors. The connection weights wij = w(i, j) are assumed to decrease
exponentially with normalized euclidean distance in C-space, as w(i, j) = exp(−d(i, j)).

Starting with an external activation of a set of goal postures PG, activation spreads
in each time step to inactive nodes by summing the excitation, vj from the active neigh-
bors multiplied by the respective connection weight, vi(t) =

∑k
j=1 vj(t − 1) ∗ w(i, j) and

vPG(0) = 1 (there is no interaction between already activated units). This wave-propagation
in the network realizes a breadth-first search algorithm. When the wavefront reaches the
node corresponding to the initial posture, the activation dynamics stops. The sequence of
postures defining a path from the initial state to the goal state is then found by local back-
ward search of the maximally excited neighboring nodes. The last operation of backward
search by local maximization is an analogue of Viterbi’s algorithm in Dynamic Program-
ming. In our case, the wave-expansion method realizes the breadth-first search variant of
this algorithm. Posture nodes which are impossible due to obstacles are inhibited. The
forbidden set PO of all inhibited nodes is found by explicitly testing for spatial overlap in
Cartesian space between the to-be-assumed arm posture and the environmental obstacles
using forward kinematics. The complement of the forbidden set PO in the set of all nodes
is denoted as Pfree. Additional information from the vision and the cognitive module of
the control architecture is integrated before starting the wavefront operations (similar to
the pre-selection method of157). Moreover, the ensemble of nodes which can become part
of the wavefront is further constrained by the motor primitives in F5. For instance, we use
again forward kinematics to check whether a particular node represents “the elbow link
of the robot arm in a high position” as required by a trajectory above the bridge. This
pre-selection of a set of compatible postures, PF5, restricts the global planning process to
the subset PF5 ∩ Pfree.
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A. B.

Figure 2.6: Kinematic model of the RX-90 robot arm in a modeled scene of the
experimental workspace. Panel A depicts the prohibited arm configuration, where the
arm-obstacle collision is detected. Panel B depicts the target arm configuration, when
the gripper reached the target goal position with a collision-free posture. The lower
pictures in each panel show the distributions of the ’safety balls’ along the arm links
(blue balls). The arm safety balls that collide with the bridge safety balls in Panel A
are highlighted red.

Forward kinematics for collision detection in the workspace

Obstacles are taken into account by using forward maps: nodes representing postures that
imply arm-body self-collisions or arm-obstacle collisions are checked by forward mapping
from C-space to Cartesian workspace. The procedure works as follows. Each link of the
robot arm, the robot body and each part of an obstacle is covered by a union of virtual
safety balls. Each ball is represented by its center point (safety point) and its radius (safety
radius). The forward kinematics produces the robot arm configuration in workspace, which
gives the 3d positions of all safety points. For all pairs of safety points (one belonging to
an arm link and the other one belonging to an obstacle, to another not neighboring arm
link or to a body part), we check, if the pair is closer than the sum of their safety radii. If
they are, the node representing the arm configuration is considered to be inhibited.

The architecture was designed for many different geometries of the robot arms. For
illustrating the different C-space sampling techniques, I implemented the architecture for
2DoF and 3DoF planar arm kinematic models. The final architecture was produced for
the robot arms of Amtec with 7 DoF (in different mounting configurations), for a Staubli
RX90 with 6 DoF and for a KUKA arm with 7 DoF79. As an example, the kinematic
model of a 6 DoF RX90 arm is depicted in Fig. 2.6. Panel A demonstrates the collision
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A. B.

Figure 2.7: A. Kinematic model of 2-DoF planar arm placed in a virtual environment
with an obstacle (red balls) and a target positions for the arm end-effector (green balls).
B. C-space of 2-DoF planar arm covered with the posture-nodes. Freely available
’active nodes’ are red. The nodes inhibited by obstacle-collisions are blue. The nodes
corresponding to the arm configurations, when the end-effector reaches the target
area, are green.

detection: the arm safety balls in collision with the bridge safety balls are highlighted
red. Panel B demonstrates one of the target postures, when the end-effector of the hand
reaches the object placement target.

Panel A in Fig. 2.7 displays a 2 DoF planar arm kinematic model in its workspace.
The arm links are covered by safety cylinders (instead of balls), and the planar obstacle is
covered by a union of 16 safety balls (red). The blue ball is covering the end-effector of the
actuator, and the union of 6 green balls is covering the target. When the end-effector safety
ball (blue in Fig. 2.7) collides with a green target ball then the posture is considered as
target posture (target arm configuration). Panel B (Fig. 2.7) depicts the random coverage
of C-space of the planar arm model with the posture nodes. ”Joint 0” axis represents the
”shoulder” joint angle and the ”Joint 1” axis corresponds to the ”elbow” angle. Red dots
are the free, ’active’ nodes, while the blue ones are ’inhibited’ by arm-obstacle collisions.
The green dots correspond to the target arm configurations, regarded as the end-goals for
the path planning algorithm. The single yellow dot near the border of the red and blue
clouds represents the initial configuration of the arm. The parts of the C-space free of any
nodes are not sampled due to the constraints in configuration space imposed on by the
actuator angles. This depicted example of the C-space of a 2 DoF planar arm is used until
the end of this section for illustration of the stages of pre-selection and path planning.
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Figure 2.8: Left panel: kinematic model of the RX-90 robot arm with two-finger
gripper. The obstacle bridge is red, the object to grasp is green and the two target
positions are the tops of two magenta cylinders. Right panel: multiple snapshots
of IK-generated trajectories of the robot arm starting from several initial positions
towards the goals placed in the half-circular area above the table.

Selection and representation of the task specific trajectories

The path planning starts with a distribution of posture nodes covering the whole work
space of the artifact. For the 7 DOFs KUKA arm about two to three thousand initial
nodes are sufficient, since the refinement procedure described below guarantees, that new
nodes can be introduced when needed (e.g. in the vicinity of obstacles). Then, Inverse
Kinematics (IK) produces the ensemble of posture sequences that move the gripper from
a random starting position towards the target position. This IK-based sampling of the
C-space is running in the kinematic robot arm simulator and does not care about obstacle
avoidance.

Inverse kinematics produces a set of postures

Start with a small random subset taken from the initial
set of postures, sparsely representing the whole joint space.
Cycle (for all feasible targets):
For each posture move the hand toward the target
by inverse kinematics and obtain the sequence
of postures along the path sampled with
an appropriate time interval.

For example, in the simulations of the 7 DOFs KUKA robot arm, I used 10 initial configu-
rations for each target leading to 10 paths each consisting of a sequence of 15 postures.

An example of posture sets produced by IK, depicted in the workspace, is presented
in Fig. 2.8. The time-steps for the iterative IK are chosen to obtain a uniformly spaced
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distribution of the sampled nodes in C-space. The IK can be based on prioritization
(e.g.17) taking into account the gravitational potential energy of the arm postures. We
use Berkinblit’s model of parallelized IK for the goal directed arm reaching movements26.
Alternatively, a similar approach by G. Hinton can be used122. Also, quasi-stationary
dynamical models were exploited in other work217,282, using naturalistic arm stiffness and
damping.

Reduction of the search space: off-line refinement of the C-space representa-
tion network

Real-time path planning for artifacts with higher degrees of freedom is possible with a
technique known in the literature as the refinement procedure (first introduced in201,264).
The goal of the refinement is to sample densely only for the task-relevant regions in C-space.
Starting with a distribution of posture nodes sparsely covering free C-space, new nodes are
introduced whenever needed. This is necessary, for instance, in vicinity of obstacle borders
in C-space. Below, I describe the two types of refinements used in my path planning. The
off-line refinement is performed before the first planning trial. It includes 1) the refinement
of the C-space network done specifically for each type of robot (operating in the C-space
areas free from self-collisions), and also 2) the pre-planning off-line refinement done when
the robot is first presented with the environment with new objects and obstacles. The
online refinement of the C-space network in the vicinity of a planned path is an iterative
procedure, which includes re-planning of a planned path.

Pre-planning refinement

On the first stage of off-line re-sampling of C-space, the nodes produced by random
sampling and by IK-based production and inhibited by self-collisions are shifted towards
the areas of C-space which are free and in the vicinity of the self-collision areas. The
algorithm for this procedure is the same as the one for the re-sampling of the C-space in
presence of obstacles, which is described below. The result of this first stage of re-sampling
is specific to the particular robot geometry and independent from the path planning task
and its environmental constraints. Thus, this first stage procedure has to be done only
once for each robot and the result can be stored for future tasks.

The IK-based posture set production described above gives multiple sets of postures
sampled from trajectories produced with different preferences for motion features. These
sets are stored in my system as remembered pre-selections. They represent the regions in
C-space associated with different motion preferences. Given a new task with its preferences,
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Figure 2.9: Left panel depicts the whole C-space for 2 a DoF planar arm model
(see Fig. 2.7) and a rectangular testing window. Middle panel shows zoom-in of the
testing window. The right panel presents the positions of the mean postures in the
testing window: blue and red for the mean ’inhibited’ and mean ’active’ postures.
The light blue node is a randomly chosen inhibited node to be shifted. Shift vectors
are explained in the text.

the corresponding sub-set of posture nodes is added to the default posture set (which is
pre-stored for every robot). Next, in the following stages of re-sampling and refinement in
C-space, the nodes from this additional subset are treated just as the other nodes. This
subset creates a preference for certain areas of C-space only by increasing the density
of posture nodes in that area. Only later, during the building of the connected network
of nodes, the explicit pre-selection affects the weights of the node links, reducing these
weights for the nodes placed in pre-selected regions of C-space.

The off-line re-sampling in the presence of obstacles starts when the robot is presented
with the task environment. A sketch of this proposed re-sampling algorithm is presented
in Fig. 2.9. We choose a fixed-size rectangular testing window in C-space and positioned
it such that it contains at least one inhibited node. For a fixed window position, for all
inhibited nodes inside the window, perform the following cycle: consider each inhibited
node (tested node) and compute the mean position of the other inhibited nodes in the
window and the mean position of the rest of the free ’active’ nodes (if there are any in
the window); compute the vectors v̄2 and v̄3 (see Fig. 2.9), in absence of the active nodes
v̄3 = 0; then, the shift of the tested inhibited node will be in the direction of v̄1 = v̄2 + v̄3.
Here we don’t assign the new shifted positions to the inhibited nodes, but remember them.
After the testing window scanned all its admissible positions, we finish the default iteration
by assignment of all the new shifted positions to the tested inhibited nodes. Next, we
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Figure 2.10: The initial (first panel), the final (last panel) and intermediate distri-
butions of nodes in C-space during six iterations of the offline re-sampling procedure.

check the forward maps of the shifted nodes, which results in turning some of them into
the ’active’ set. Then, a new cycle of the new scanning path of testing window starts.

Fig. 2.10 displays the initial (first panel), the final (last panel) and intermediate distri-
butions of nodes (in C-space of a 2 DoF planar arm) during six iterations of the off-line
re-sampling procedure. The iterations stop when less than 2 percent of the nodes remain
inhibited. Usually, just few iterations are needed, when the spatial range of the testing
window is about the characteristic range of the obstacles. The larger the window size, the
fewer the number of iterations needed and the more time each iteration takes. I optimized
the total computation time of this procedure by choosing the testing window size to be
about the same as smallest diameter of the typical obstacle in C-space.

All these re-sampling steps are called refinement, because the density of the sampled
nodes increases in vicinity of the obstacle borders in C-space, while the total number of
nodes remains the same as most of them change from the inhibited to the active state.
After this procedure, I drop the remaining nodes which still stay inhibited (< 2%).

Learning the connection structure for the network of C-space nodes

I define an Euclidian metric in C-space (which is joint angle space) and the number k of
nearest neighbors (NN). For the 7 DoF KUKA arm with 2-3 thousands sample nodes I
choose k = 4. Then, I run the k-nearest neighbors (kNN) algorithm which results in the
k nearest neighbors for the given metric for all the active nodes. For this purpose we use
”Ranger”, an algorithm for nearest neighbor search in higher dimensions291,292, based on
refined kd-trees25 using median cuts and bucketing94. In detail, I run the kNN algorithm
producing 2k NN-lists, order them and store them for re-use as extended lists in the cluster
connecting stage. Next, for the symmetrization, if node i is in the list of node j, I add
node j to the list for node i. Thus, the symmetrized list enumerates all bi-directional
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Figure 2.11: Examples of bi-directional symmetric linkage. Left panel depicts
symmetrized linkage based on 2-NNs search. Middle panel demonstrates 6-NNs sym-
metrized linkage. Right panel: 20-NNs.

symmetric links of that node.
Three examples of bi-directional symmetric linkage are presented in Fig. 2.11. The

left panel corresponds to k = 2, symmetrized linkage based on 2-NNs search. The middle
panel depicts the link density for k = 6 and the right panel the same for k = 20. In the
left panel one sees many mutually disconnected clusters of nodes.

As the next step I check all triangles of links. A link [i, j] in a triangle of nodes (i, j, k)
is a candidate for removal if d2

ij > d2
jk + d2

ki. After finding all the candidates, I remove all
these links from the lists. The result of the link removal for a symmetrized linkage based
on 4-NNs search is depicted in Fig. 2.12. Link removal is performed to obtain a smoother
path in breadth-first search for the shortest path.

The smaller number of NNs in the linkage procedure described above, the smoother
the planned shortest path is. But with a smaller number of nearest neighbors, the linkage
results in multiple disconnected clusters of nodes. As the next step, I reconnected the
clusters (constellations) by shortest inter-cluster links. I search for single-connected disjoint
clusters using a breadth-first search, which can be regarded as a modification of the Floyd-
Warshall transitive closure algorithm. Next, for each pair of clusters I find the closest
pair of nodes and connect this pair of nodes with a bi-directional link. Here one can use
faster algorithms for the bichromatic closest pair search (e.g.2), but I use the pre-stored
lists of 2k-NNs (from the extended Ranger search), and search for the nearest bichromatic
connection using these lists only. An illustration of these newly introduced inter-cluster
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Figure 2.12: Left panel: the symmetrized linkage based on 4-NNs search. Right
panel: the result of the removal of the long links.

Clusters New links

Figure 2.13: The newly introduced inter-cluster connections.
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connections is depicted in Fig. 2.13.
The multi-stage procedure of linkage structure production, as described above, is

specific for a particular robot in a particular fixed environment with all obstacle positions
given and the node sets are re-sampled for the given obstacles. Thus, the connection
structure can be stored together with the sampled set of nodes for the future use. A new
task introduces new pre-selected nodes and only an update of the connection structure is
needed. The last also includes the introduction of new nodes in the kd-tree structures to
be re-used in updates of the k-NN lists by Ranger.

As a last step in connection building procedure, I assign the weights of the links
w(i, j) = w(j, i) as decreasing exponentially with euclidian distance between the nodes
in C-space, as w(i, j) = exp(−d(i, j)). If motion feature preferences are introduced, they
result in weight reduction for all the links connected to the nodes in the preference regions
of the C-space.

The goal of these stages of off-line refinement and re-sampling is to reduce the computa-
tional time when the task instructions are given to the robot. On receiving the instruction
about the motion preferences, only fast updates of node sets, their link structure and link
weights are needed. At this moment, with the selection of the set of target nodes, the fast
breadth-first search wave-expansion algorithm produces the first template solution for the
shortest path. The next iterations, which I call online refinement are done with iterative
re-planning of this path.

Online refinement of the planned path

After the first template planning, I add more nodes around and in between path nodes for
refinement of the planned shortest path.
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Figure 2.14: Left panel: the initially found template path. Right panel: the result
of path refinement after the first iteration.

”Refinement of the generated trajectory. Single iteration”
– Take all nodes that represent the planned path.
– Refinement in the vicinity of the path:
Add all nodes from the active set that are
linked to the path nodes.

Cycle:
For each path node:

Cycle:
For each pair of nodes linked to it:
introduce a new node whose corresponding posture
is a linear combination of the three postures.

– Refinement along the path:
Add new nodes representing the linear combination of
any two postures of neighboring path nodes.
– Find newly inhibited nodes and define the new active set.
– Update the connection structure of the network.
– Re-run the path planning algorithm.

Each iteration of the refinement procedure increases the size of the active set approximately
by a factor 2. Usually, it is sufficient to repeat the path refinement only 2-3 times.

Fig. 2.14 presents the result of path refinement after the first iteration.
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A.

B.

Figure 2.15: A. Two rows of snapshots: the AmTec robot arm is transporting the
object below the bridge using a full (side) grip. B. Two rows of snapshots: the AmTec
robot arm is transporting the object above the bridge using a precision (top) grip.

In some cases, the obtained planned path requires additional smoothing. For this
purpose I use the ”Elastic band” technique based on virtual local potential forces246.

Two examples of the AmTec robot arm simulator performing full (A.) or precision grip
(B.) are shown in Fig. 2.15.

An example of the KUKA robot arm simulator (79) performing full grip and trans-
porting the object below the bridge to the low target position is shown in Fig. 2.16. This
exemplary obstacle avoidance motion is presented in [video1].

1https://goo.gl/LEz3BK (tiny.cc/9b7l5y)
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Figure 2.16: KUKA robot arm is transporting the object below the bridge to the
low target position using full grip. The snapshots show postures generated by the
path planning system.

2.4 Results

A set of imitation experiments with the bridge paradigm was performed which differ
in the amount of visual information available to the robot and in the task constraints.
The aims were 1) to exemplify what kind of knowledge may be transferred from the
human to the robot by autonomously developing new representations, and 2) to illustrate
the advantages of the goal-directed organization of the control architecture in terms of
robustness, compared to more traditional via-point matching models.

2.4.1 Copying the Means

In the first set of experiments, a complete visual description of the teacher’s grasping
and transporting behavior exists and the vision system identifies the placing goal. Al-
though the robot has the knowledge how to grasp, transport and place objects in its motor
repertoire, it does not know how to combine the specific motor primitives to achieve the
same end state under the constraints of the bridge paradigm. One strategy could be
to copy the primitives displayed by the human demonstrator. The visual description of
the observed motion in layer STS resonates via the matching mechanism in the mirror
circuit with the congruent motor representations of the robot. If the covert path planning
toward the desired posture necessary to achieve the action goal turns out to be successful,
the observed action sequence becomes associated with the goal representation in layer
PFC by the learning procedure described above. Fig. 2.17 illustrates the result of this
learning by imitation in an example in which the robot copies the demonstrated precision
grip and the trajectory above the bridge to place the object at the higher goal. In the
various layers of the neural field model, the task specific information is encoded by activ-
ity profiles representing a steady state of the dynamics. Fig. 2.18 displays an example in
which the robot copies the full grip and the trajectory below the bridge (for the lower goal).
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Figure 2.17: Copying the means: the teacher shows a complete grasping-placing
sequence, here precision grip (PG) followed by a transport above the bridge (AT).
The robot reproduces the observed placing at the lower target using the same means.
The peaks of activation in layer F5 represent the means (motor primitives) selected
by the robot to reproduce the same goal. The figure is adopted from79.
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Figure 2.18: Copying the means: the teacher uses full grip (FG) in combination
with transport below the bridge (BT).
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Figure 2.19: The time course of the maximum activated neuron in PF (A) and PFC
(B) is shown as a function of the relative strength of the task input. The imitator’s
means differ from the demonstrated action sequence in both grip type and trajectory
type. A slowing down of the processing in PFC due to a weaker task input leads
in PF to selection of the demonstrated sequence of means (dashed line). For the
faster processing with stronger task input (solid lines), the PF neuron represents the
preferred response strategy associated with the perceived goal. To allow for direct
comparison, the time course of the representations in STS is plotted in (B). In both
figures, time t = 0 represents the onset of the visual stimulation in PFC. The figure
is adopted from76.

Now imagine that the embodiment of the imitator allows, in principle, to adopt the
demonstrator’s strategy to achieve the end-state. This may be the case when the obstacle
is sufficiently low. We therefore assume that during training and practice also synaptic
links between the particular goal representation and the observed strategy have been
learned. The connections are, however, weaker compared to the links to the preferred ac-
tion sequence. If the imitator is explicitly asked to pay attention to how the demonstrator
achieves the goal, the observed means should dominate the decision processes in the mirror
circuit. The intentional change in motor behavior can be achieved by weakening the task
input to the goal layer. As shown in Fig. 2.19, a weaker “expectation” about potential
targets results in a slower specification of the goal. This in turn delays the positive input
to the associated sequence of means.

The proposed purely temporal mechanism for adapting the means is not restricted
to the first part of the sequence. It works equally well when both the grasping and
the transporting behavior have to be adapted. In Fig. 2.19.A we compare the temporal
evolution of the maximum excited PF-neuron for an observed placing at the higher target.
With weak preshaping of the goal representations, this neuron represents the demonstrator’s
sequence FG/BT (dashed line) whereas with strong prior expectation the maximum excited
neuron encodes the preferred sequence PG/AT (solid line). In both cases, the evolving
pattern in the goal layer represents the perceived goal (Fig. 2.19.B). For the adaptation
case, however, a conflict is introduced since the demonstrated sequence FG/BT represents
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the observer’s preferred strategy associated with the other placing target. The resulting
competition between neuronal populations is predicted to further delay the processing in
PFC compared to the example shown in Fig. 2.19.A.

2.4.2 Discerning Motor Intention

The second set of experiments has been designed to reflect a challenge for all robotics
systems cooperating in cluttered environments with other agents. Due to occluding surfaces,
for instance, only partial visual information about the action displayed by the partner may
be available and the observing robot has to infer the action goal. The control architecture
implements the idea that a goal-directed motor simulation together with the integration
of prior task knowledge underlies the capacity to discern motor intention. Consistent with
this idea, it has been reported that mirror neurons may fire under appropriate conditions
(e.g., with additional contextual cues) even if the goal of the motor act is hidden from
view253. Umilta and colleagues318 have shown that a population of mirror neurons in
F5 may encode a goal-directed action also when the crucial part defining that action is
hidden from view. The information sufficient to trigger grasping neurons consisted of a
hand disappearing behind an occluding surface combined with the knowledge that there
is a graspable object behind the occluder.

In the example shown in Fig. 2.20, only the demonstrator’s grasping of the object
with a full grip was observable. Since the robot is familiar with the task, links between
goal representations and goal-directed sequences were established in previous trials. In
addition, the constant task input results in a pre-activation below threshold, uTH , of
all task-relevant representations. As a result of the robot’s “expectation”, the evolving
activation in STS encoding the observed FG-grip is sufficient to trigger first the sequence
FG-BT and subsequently the representation of the associated lower goal (Panel B in
Fig. 2.20). As depicted in Panel C, the robot shows its action understanding by combining
a full grip and a trajectory below the bridge to reproduce the inferred action.

2.4.3 Goal Directed Imitation

The third set of experiments illustrates that the learned link from the mirror circuit to the
goal representation is crucial. The bar of the bridge is removed for the human but not for
the robot (Panel A in Fig. 2.21). Because of this change in the environmental constraints,
the demonstrator now uses a full grip to place the object at the higher target. For the
robot, a direct matching on the level of motor primitives would result in a collision with the
bridge. As shown in the snapshot of the field model in Panel B of Fig. 2.21, the decisions
in layer F5 represent the motor primitives PG and AT previously associated with the
higher goal (compare Fig. 2.17). This choice is the result of the primacy of the goals over
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Figure 2.20: Inference task. Panel A: Only the grasping behavior is observable.
Panel B: The stable state in layer PFC of the field model represents the inferred
(lower) goal. Panel C: To reproduce the inferred action the robot combines a full grip
(FG) followed by a trajectory below (BT) the bridge as represented in the motor layer
F5 in Panel B. The figure is adopted from79.
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Figure 2.21: Goal directed imitation. Panel A: Conflict in the grasping behavior,
i.e. the teacher uses a full grip for placing the object at the higher goal. Panel B:
As shown in layer F5 of the field model, the robot decides to use a precision grip to
reproduce the observed action effect. The figure is adopted from79.

the means implemented in the control architecture. The goal representation is triggered
by direct input from the vision system. Through the learned links to layer PF, it biases
the decision processes in the mirror circuit, thus overriding the direct mappings from the
visual motion description in STS. Technically, we exploit here differences in time course
with the goal representation being processed faster in a known task setting compared to
the representations in STS (for a detailed discussion of the biological context see76).

Another example of the overt behavior of the imitator is shown in Fig. 2.22. Here,
the column on the left illustrates the imitator’s preferred strategy. In case of the higher
target with the small spatial gap the preferred learned strategy is to use a precision grip
(PG) with the above-bridge trajectory (AT), the decision based on PG/AT area activation
in layer PF. The column sequence on the right illustrates the case when the imitator
made a decision to copy also the grip type (FG) displayed by the demonstrator. While
observing FG, STS sends subthreshold input signals to the FG areas in PF. The decision
choice between PG/AT (learned), FG/AT or FG/BT is triggered only after the lower
path planning module makes a test planning trial for a trajectory with FG preference and
sends back the facilitating feedback input signal up to F5 layer, which in turn facilitates
the switching to the FG/AT decision in PF. In the demonstrated case, only the FG/AT
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Figure 2.22: The overt behavior of the imitator is shown using a robot simulator.
Each column represents two snapshots of postures generated by the path planning
system. The column on the left illustrates the imitator’s preferred strategy, the column
on the right the case when the imitator made a decision to copy also the grip type
displayed by the demonstrator.
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trajectory is possible, thus the AT representation is triggered in F5. The video of the
sequence presented in the left column of Fig. 2.22 can be found [here2]. The video of the
right sequence Fig. 2.22 is [here3].

2.4.4 Learning Color Cues

Next, we introduce an additional Neural Field (NF) representing the color cues, e.g. of
the object to grasp. This new NF is only allowed to learn bi-directional connections
with the PFC neural field, which represents the scene geometric features. After learning
of one-to-one mapping between color cue and a scene parameter value (as presented on
Fig. 2.23), the color of the object may trigger the corresponding representation in PF and
facilitate inference of the motor means. Reversely, the goal assignment, which triggers the
corresponding scene geometric features in PFC, will also trigger the color decision for the
object to grasp as illustrated in Fig. 2.24.

2.4.5 The Biological Relevance of the Results

I have presented a control architecture for imitation and learning which is inspired by
insights about the processing principles in humans and other primates. The approach
emphasizes the role of factors in imitation which are considered cognitive such as goal
inference or decision making. The experiments with the robot system illustrate that an
organization of imitative behavior toward reproducing the goal of an observed action com-
plements purely motor approaches which focus on the kinematic trajectory33,276. The
primacy of the goal over the action means allows coping with differences in embodiment
and task constraints known as the correspondence problem in robot imitation222. The
emphasis on “end state granularity”222 as a measure for successful behavior does not
exclude, however, that also the transfer of knowledge on the level of action means may
be essential (e.g. compare Fig. 2.18). Importantly, learning to understand an observed
behavior as a goal-directed action enables the robot to reuse the stored information in new
contexts and to acquire more abstract knowledge associated with that action. For instance,
association between specific object properties (e.g., color) and where to place an object of
a particular category may be learned within the proposed control architecture (see Fig. 2.2).

The idea that the movement production system is essentially involved in action un-
derstanding has been proposed in the context of robotics research before (for a review
see276). For instance, Demiris and Hayes70 used internal forward models to predict the
sensory consequences of observed actions in an imitation task. However, the questions how

2https://goo.gl/uZTsX4 (tiny.cc/de7l5y)
3https://goo.gl/BndCmC (tiny.cc/ah7l5y)
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A.

B.

Figure 2.23: Learning the color cues. Here, an object color neural field is introduced
which is allowed to learn the connections to the PFC neural field. Panel A: The light
colored object is associated with the ’small spatial gap’ in PFC (neural field representing
scene geometry). Panel B: The dark colored object is associated with the ’large spatial
gap’ in PFC, which is connected to the FG/BT representation in PF.
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Figure 2.24: Goal-triggered inference. After learning of color-goal associations as
shown at 2.23, the robot may also infer the object color from the goal assignment.

to cope with differences in embodiment, task constraints or motor skills have not been
systematically addressed. In principle, the control architecture proposed here allows for
learning to understand the purpose of a hand movement not strictly in the repertoire of
the imitator. The only condition is that the observed action effect may be achieved using
proper action means76.

2.5 Extension of the Learning Rule

Here I propose the single uniform extended Hebbian learning rule which accounts for both
the merging-and-separation of correlated or anti-correlated events representations, and for
the chaining of temporal correlated events for the learning of sequential representations.
In case of merging-and-separation, if we present temporally correlated stimuli A and B
having inputs to a single neural field (NF), the result is a merged representation for A and
B. But if we present the same A and B anticorrelated (meaning that now A and B never
show up simultaneously, but with randomly delayed time gaps, say, A after B as frequent
as B after A), then the result of learning is a separated representation pattern for A and
B. In case of the sequential chaining, if we present stimuli A and B projected onto two
separated NFs (say, NF-A and NF-B) with a constant time delay between first A, then B,
then the result is the growth of the forward synaptic connections from NF-A onto NF-B.
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The first non-canonical heterosynaptic correlation-based rule to model simultaneous
category formation and sequencing was proposed in68. The authors devised the so-called
synaptic triad mechanism. In the proposed neural network architecture they differentiate
between internal links inside clusters (intra-cluster synapses), and external, between-cluster
links (inter-cluster bundles). Clusters represent a set of competing stimuli (vowels in bird
songs), while the links between clusters reflect the sequencing of vowels in a song. The task
was to enable the resulting network to learn a set of songs (which may contain repetitive
vowels or repetitive chunks of vowels). The songs are represented as paths in the directed
graph of the cluster network. The network then can recognize (parse) the songs heard
with variations and is capable of producing of free-running or cued (externally triggered)
songs. Our task is to endow a robot with high-level sequence learning and production; for
the robot to stay close to the sequences demonstrated by a human, but, at the same time,
to be flexible in re-planning accounting for online information.

In our case, the analogues of the clusters in68 are the Neural Fields (NFs). Our main
task is to propose a shunted learning rule that can provide temporal linking between action
representations, even if those actions are separated by 200-400 ms intervals, far beyond
time intervals of active LTP/LTD plasticity, which are about 20-40 ms. The second task is
to use the same learning rule for the clustering and the separation of action representations
inside each NF, based on competition between the action representations, and based on
conflicting or complying external conditions for those motor acts. The overall task is
similar to68, if we regard their clusters as our NFs, and their inter-cluster bundle links
as our connections between separate NFs. Below is a schematic explanation of how the
new shunted Hebbian learning rule works. It is a postsynaptic-activity-dependent Hebbian
form of plasticity, first proposed in80.

For the simplified computational model of an NF with transient peaked activations, we
introduced the Neural Fields as 1D lattice arrays of neurons, where at each lattice point
we have one excitatory and one inhibitory neuron. Thus, each dynamic NF represents a
population of 2N neurons which splits into an excitatory and an inhibitory subpopulation,
each of dimension N . The activation of an excitatory and an inhibitory neuron i at time
t, ui(t) and vi(t), is governed by the following coupled system of differential equations:

τu
d

dt
ui(t) = −ui(t) + h+ Si(t) + g(ui(t))

 N∑
j=1

wuij f(uj(t))− vi(t)

 (2.6)

τv
d

dt
vi(t) = −vi(t) + g(vi(t))

 N∑
j=1

wvij f(uj(t))

 (2.7)

where the constants τu , τv and h < 0 define the time scales and the resting level of the
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Reaching
Grasping

Plugging

Figure 2.25: The time course of the transient neural population responses of the
three NFs forming a linked chain. The chain is maintained through the inter-NF
synaptic connection learning. The figure is adopted from80.

dynamics, respectively. The firing rate f(.) and the shunting term g(.) for the recurrent
excitation are taken as non-linear functions of sigmoid shape. The interaction strength
between any two neurons within the two subpopulations is defined by the fixed synaptic
weight functions, wuij , and wvij , which decrease as a function of the distance between the
neurons. We have chosen Gaussian profiles with the specific choice σu < σv and Au > Av

for the standard deviations and the amplitudes, respectively. This choice guarantees that
the inhibition dominates over larger distances. The term Si(t) represents the summed
input at time t to the excitatory neuron i.

Within a certain range of field parameters, in response to an input the excitatory
population develops a transient activity pattern with a shape shown in Fig. 2.25. This
figure demonstrates temporal dynamics of the transient peak maximal activation levels for
three sequentially connected NFs (for the labels of the three NFs see80).

The shunted Hebbian learning rule80 for increasing the synaptic efficacy, sij , between
a presynaptic neuron j and postsynaptic neuron i is:

τs
d

dt
sij(t) = h(ui(t)) [αf(uj(t))f(ui(t))− sij(t)]− βsij(t) (2.8)

with a time scale τs � τu much larger compared to the time scale of the field dynamics.
All weights passively decay with a slow rate defined by β > 0. The first term αf(ui)f(uj)
on the right side of Eq. 2.8 is the usual Hebbian modification to the synaptic weight
with scaling parameter α balanced by a memory decay. Both are shunted by a sigmoidal
function h(ui) with threshold uh > uf . For a sufficiently activated postsynaptic neuron ui,
the decay or growth of the weight to a presynaptic neuron uj appears to be proportional
to the factor h(ui). The accelerated weight decay in case of a silent uj is the responsible
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mechanism for the development of task specific subpopulations.
The shunting term h(ui) is the sigmoid function with a high threshold in Eq. 2.8, its

argument is the activity level ui of postsynaptic neuron i. The activation (when it is close
to 1) of the shunting term provides ‘active learning’ and ‘active forgetting’, called so due
to the large constant α (α > β > 0, while −βsij is the slow forgetting term). The paper80

describes how this learning rule provides the separation and the merging of motor action
representations in a single NF. If two projected representations are close in the spatial
coordinates of a single NF, then they are competing. In this case, only one activation
peak survives, if two neighboring inputs are presented simultaneously. But if the inputs
are separated more, the resulting peak activations become insensitive to each other, so
they can be regarded as belonging to two separate NFs. If we have two different inputs
projected to one NF, say, A and B, which are projected to the same spatial local region,
and if they are stimulated simultaneously, then they give rise to a single activation peak.
In the presence of a low-amplitude noisy input, when A or B is presented, the activation
peak could appear slightly skewed or shifted in every trial.

Further, if the inputs A and B are always synchronous, the links from A or B to the
NF are strenghtened at every presentation for those NF neurons which are activated by A
and B together. This merges synchronous input representations into a single one. When
presenting A or B alone, an activation peak is produced at the same spatial position of
the NF after learning. But, what if the two inputs presented are not correlated in time,
how might the NF neurons remember that another input was activating them also, but a
while ago? Assume, that now the neuron is activated by A, but B is not active at this
time, while the link from B to this neuron is still strong. The postsynaptic shunting term
h(ui) now switches on ’active learning’ for the connections from A and ’active forgetting’
for the links from B, where both processes are acting on a faster time scale compared
to passive forgetting. This means, that neurons activated asynchronously by A and B
lose their connections from B and A, but those activated solely by A or B are preserving
the connections from A or B separately. This leads to a spatial separation of A and B
representations in the NF.

The process of the separation of projected representations is illustrated in Fig. 2.26,
where panel A illustrates an early stage of learning and panel B illustrates a late stage.
Blue and red distributions of the incoming synaptic links across the NF arise from two
different input neurons, activated asynchronously (see explanation in figure caption).

There exists a temporal linking learning rule provided by the same mechanism. Imagine
that A and B are represented by two separate NFs with transitive peak activations (NF
with inhibitory dynamics Eq. 2.7). Transitivity means that the rise of activation to the
peak value takes about 40-60 ms, then the activity peak does not stay fixed, but decays
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Figure 2.26: The two snapshots illustrate the developing NF connections driven by
shunted plasticity. Panel A represents the state before and panel B the state after the
learning period. In both top panels (of A and B), the maximal transient activity of
the grasping NF is shown, with the input of one of two input neurons. In both bottom
panels (of A and B) the weight profiles from the two input neurons (blue and red
curves) to the grasping NF are plotted. Note that the influence of the initially weak
input from the input neuron manifests in a slight shift of the population response to
the left relative to the central line, the response with input from another input neuron
appears slightly shifted to the right (not shown). The interplay between the learning
and the field dynamics continuously increases this shift during practice, leading to
a nearly complete separation of the weight profiles and the population responses, as
shown in panel B.
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Figure 2.27: A schematic overview of time-asymmetric learning, affected by the
value of the threshold for shunted Hebbian learning. Lowering of the shunting term
threshold affects the learning in a similar way as reducing the delay between transient
excitations.

actively by self-inhibition within a time interval of 200-300 ms. Then, if NF A is activated
before NF B, the postsynaptic activity-dependent shunting term is enforcing the active
learning of the link from A to B. And, with the same event order, if time gap is too close,
the ’active forgetting’ of the link from B to A is also enforced.

The role of the threshold value in this time-asymmetric learning is depicted in Fig. 2.27.
The resulting learned link strengths are proportional to the average time separation between
activations of A and B (B activity peak always follows the one of A). For sufficiently high
threshold values, the links from NF-A to NF-B increase and the links from NF-B to NF-A
decrease during several presentations of B following A (see upper panel: Fig. 2.27.A).
This means, that in generative replaying of the learned sequence, when one NF excites
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the next one, the time interval between NF A activation triggering NF B will be roughly
proportional to the average time interval observed during learning. This effect is achieved
since when the time delay between two activations is too small, the learning dynamics
starts to resemble one with a lower threshold (see Fig. 2.27.B), and learning and forgetting
start to balance each other.
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Chapter 3

Kinematic Motion Synthesis for
Computer Graphics and Robotics

3.1 Introduction

The goal of the research work presented in this chapter is the development of a system
for the online kinematic simulation of highly realistic human movements in real-time by
combining motion capture with dynamical systems. The proposed real-time capable gen-
erative architecture is used in computer animation as well as in humanoid robotics.

The real-time synthesis of natural looking human movements is a challenging task in
computer graphics and robotics. While dynamical systems provide the possibility to pa-
rameterize behavior in a flexible and adaptive way, the reconstruction of details of human
movements with such systems is a challenge due to the large number of degrees of free-
dom. The chapter starts with concise literature review 3.2, and more references to related
works are presented in main sections. In the next Section 3.3 an approach is presented
for the synthesis of realistic human full-body movements in real-time that is based on the
learning of motion primitives, or synergies, from motion capture data applying a novel
blind source separation algorithm. The learned generative model can synthesize periodic
and non-periodic movements, achieving high degrees of realism with a very small number
of synergies. By application of kernel methods such components are mapped onto the
phase spaces of low-dimensional dynamical systems, which can be iterated in real-time,
and which are integrated in a stable overall system architecture103,210,214,236.

Standard dimension reduction methods, such as PCA (Principal Component Analy-
sis,142) or ICA (Independent Component Analysis,57), have been commonly applied in
computer graphics to reduce the dimensionality of motion capture data. It has been shown
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that the approximation of complex body movements requires typically 8-12 principal com-
ponents (e.g.268). It was shown for different classes of human movements that the number
of source terms for approximation of human movement data can be significantly reduced
by application of mixture models with time delays (e.g. to 3-4 terms for periodic and some
non-periodic movements)210,235,236. These compact trajectory models have the advantage
that they can be associated with relatively simple dynamical systems that synthesize
the trajectories in real-time. To embed the learned synergies into a real-time animation
system, I define “canonical” dynamical systems (dynamic primitives) that play a similar
role as Central Pattern Generators in biological systems. The idea of using dynamical
systems for the definition of movement primitives is quite common in robotics (e.g.132,276).
Below, I show how this model can be integrated with other elements of computer anima-
tion systems, such as style morphing, synchronization with external rhythms or navigation.

In the following sections 3.4 ff. a learning-based technique is presented that models
movement coordination in humans, illustrated by the example of the coordination of walk-
ing and reaching. The planning of human body movements is highly predictive. Within
a sequence of actions, the anticipation of a final task goal modulates the individual ac-
tions within the overall pattern of motion. An example is a sequence of steps, which is
coordinated with the grasping of an object at the end of the step sequence. In contrast to
this coordination of natural human movements, real-time animation systems in computer
graphics often model complex activities by a sequential concatenation of individual pre-
stored movements, where only the movement before accomplishing the goal is adapted. Our
control architecture generates adaptive predictive full-body movements for reaching while
walking with human-like appearance. It was demonstrated that the generated behavior is
robust to external perturbations, even in the presence of strong perturbations that require
the insertion of additional steps in order to accomplish the desired task, cf.209.

In the last Section 3.8 a newly devised robot control architecture is presented that
combines the online planning of complex coordinated full-body movements, based on the
flexible combination of learned Dynamic Movement Primitives (DMPs), with a Walking
Pattern Generator (WPG), based on Model Predictive Control (MPC, e.g.220,221), which
generates dynamically feasible locomotion of the humanoid robot HRP-2. This section
presents the work done together with LAAS/CNRS in Toulouse214,215. The synthesis of
predictive behaviors planned for multiple steps ahead for humanoid robots is a challenge
because standard approaches, such as optimal control, result in unrealistically large move-
ments times. The proposed approach215 addresses this problem of the flexible synthesis of
multi-step planned full body trajectories by combining the kinematic trajectories planning
with the Walking Pattern Generator. A Dynamic Filter 343 is another important block
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of the new architecture. Its function is the flexible merging of kinematically planned
upper body movements with the dynamically planned lower body motion. The Dynamic
Filter (DF) corrects the Zero Moment Point (ZMP,330) trajectories in order to guaran-
tee the dynamic feasibility of the executed behavior taking into account the upper-body
movements, at the same time ensuring an accurate approximation of the planned mo-
tion trajectories (the last are synthesized by WPG exploiting the simplified MPC model),
cf.220,300. Additional experiments demonstrated that a näıve approach, which generates
adaptive motion using machine learning methods by interpolation between feasible training
motion examples fails to guarantee the stability and dynamic feasibility of the generated
behaviors215.

3.2 Related Work

3.2.1 Kinematic Primitives for the Adaptive Synthesis of Multi-action
Sequences

The generation of realistic-looking reactive human movements is an important problem in
computer animation. Physics-based animation is an alternative approach for the online
generation of motion (e.g.85,284). Complex action sequences are segmented into individual
actions, which are characterized by solutions of optimization problems, derived from
mechanics and additional constraints (contact, friction, or specified via-points)1,181,208,347.
While these approaches generate highly adaptive behavior for individual actions, the
problem to generate natural-looking transitions between the individual actions is non-
trivial. As consequence, artifacts (e.g. hesitation, jerky movement) can emerge at transition
points342.

Another alternative to generate long movement sequences is by concatenation of motion
captured segments from large databases255,256,340 (as recorded from real human perfor-
mance using motion capturing technics, MoCap). The concatenation of the captured
trajectories typically requires tedious post-processing in order to adapt recorded move-
ments to additional constraints105 and it is difficult to transfer this approach to real-time
applications. Most of these methods are based on search algorithms with considerable
computational costs and are thus not suitable for the online synthesis of realistic human
motion. Recent approaches have tried to simplify this procedure by automatic selection and
concatenation of recorded motion segments, ensuring that the generated motion sequences
fulfill constraints defined by the animator12,107.

Approaches more close to ours are based on learned low-dimensional parameterizations
of whole body motion, which are embedded in mathematical frameworks for the online
generation of motion (e.g.126,178,268,331,332). Several methods have been proposed that
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segment action streams into individual actions, where models for the individual actions
are adapted online in order to fulfill additional constraints, such obstacle avoidance or the
correct positioning of end-effectors159,238. The dependencies between constraints in such
action sequences have been recently exploited to generate more realistic animations. In87

captured motion examples are blended according to a prioritized ”stack of controllers”.
In286 the instantaneous blending weights of controllers are pre-specified differently for dif-
ferent body parts involved in the current action and the priority of the different controllers
is governed by their sequential order. In127 the synthesis of locomotion plus arm pointing
at the last step is carried out by blending of captured actions determining the weights
by ”inverse blending optimization”. In this study arm pointing was blended with the arm
swinging motion of the last step. The choice of the the arm pointing primitives depended
on the gait phase, according to an empirical rule introduced by authors.

Skilled human motor behavior can be highly predictive in complex task performance.
Within complex activities, action goals and the associated constraints influence actions
that appear long before the constraint within the behavioral stream, and thus allow the
generation of smooth and optimized behaviors over complex action sequences. This was
investigated, for example, in a study on the coordination of walking and reaching. Human
subjects had to walk towards a drawer and to grasp an object, which was located at
different positions in the drawer. Humans optimized their behavior already significantly
before object contact, consistent with the hypothesis of maximum end-state comfort during
the reaching action165,257,335, and steps prior to the reach were modulated in order to
accomplish the goal. The issue of predictability and the importance of model-based
identification were also emphasized in the early days of classical control theory, see86.

Whole body movements of humans and animals are organized in terms of muscle
synergies or movement primitives28,91. Such primitives characterize the coordinated in-
volvement of subsets of the available degrees of freedom in different actions. An example
is the coordination of periodic and non-periodic components of the full-body movements
during reaching while walking, where behavioral studies reveal a mutual coupling between
these components51,56,190. The realism and human-likeness of synthesized movements in
robotics and computer graphics can be improved by taking such biological constraints into
account, cf.92.

3.2.2 Related Approaches in Humanoid Robotics

There is a great interest in robotics to exploit the biological concept of movement primitives.
E.g.303 extracted primitives from human reaching movements using Principle Component
Analysis (PCA), successfully implementing reaching behavior on an HRP-2 humanoid robot.
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Movement primitives, including the use of force feedback, have also been proposed by97,98.
A related concept is the DMP-network that generates planned trajectories by appropriately
designed nonlinear dynamical systems132,276. Such systems based on dynamic movement
primitives have been proposed for the generation of complex movements in real-time5,131.
But all these online DMP-based methods of modeling the kinematic trajectories do not
guarantee the dynamic feasibility of the resulting motion, which is a critical issue.

For the synthesis of dynamically feasible walking in combination with grasping move-
ments a number of different approaches were proposed. For the DARPA robotic challenge
valve manipulation task,6 proposed a hybrid controller with a goal-driven fast foot step
planner combined with visual servoing for the reaching and grasping of the valve.162 pro-
posed a control architecture for the humanoid robot Atlas that automatically finds foot
steps around and over obstacles, in order to reach for a goal object and to realize more
complex actions. Other solutions for the combination of walking and vision-controlled
reaching of a static and mobile targets during walking have been proposed in301 and34.

Some researchers have used randomized motion planning algorithms for whole-body
walking combined with manipulation tasks in constrained environments62. For example,144

proposed a method that is based on a virtual kinematic tree for the planning of foot
placements, which was successfully implemented on the HRP-2 robot. A framework that
decomposes reach-to-grasp human movements into sequences of kinematic tasks has been
developed in299. Further work applied imitation learning207, where walking and grasping
were modeled as a sequence of separate actions. A task priority approach based on
a generalized inverse kinematics was used in346 in order to organize several sub-tasks,
including stepping and hand motion. The related approaches to optimize multi-action
behaviors in robotics were proposed in a series of papers100–102, where authors computed
optimized stance locations with respect to the position of a reaching target, using a
dynamical systems approach for the generation of reaching behavior.

The control of human-like multi-joint systems taking into account contact constraints
and guaranteeing dynamic balance is a challenging problem. Current solutions range from
near real-time whole body Model Predictive Control (MPC) with regularized modeling
of contacts in order to decrease the computational cost156,305 to approaches based on
optimal control with precise modeling of contact phases, requiring typically hours of off-
line computation time158. Another solution, based on prioritized IK, that integrates DMPs
with MPC for individual actions has been proposed by329.

The Walking Pattern Generator (WPG) used in the robotic control architecture pre-
sented in this chapter is based on Model Predictive Control. The first WPG of this class
was proposed by143. This method computes the reference nominal Zero Moment Point
trajectory (ZMP,330) from the desired placements of feet during the gait cycle. A simplified
linear inverted pendulum dynamics (Cart-Table Model) was used to link the Center of
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Mass (CoM) and the ZMP. Preview control was exploited to compute the CoM trajectory
from the desired ZMP. Due to the model simplifications, the real ZMP trajectory deviates
from the desired one. This deviation is the result of neglecting the inertial and Coriolis
forces generated by the leg swing and by fast movements of the upper-body. In order to
alleviate this problem, the authors ran the full body inverse dynamics in order to compute
a better approximation of the real ZMP. This new ZMP trajectory can be computed for
the preview horizon in real-time. The resulting ZMP error was transformed into a resulting
CoM error via the Preview Control, following the approach proposed by143. This result
can then be exploited to correct the CoM trajectory. The described two steps of preview
control combined with an evaluation of the inverse dynamics can be repeated iteratively,
successively reducing the ZMP error. This approach for the dynamic correction can be
interpreted as a kind of Newton-Raphson iteration300, and is referred to as a Dynamic
Filter in Section 3.8. Another improvement of MPC-based WPG is the integration of the
computation of the optimal ZMP trajectory within the constrained quadratic optimization
framework that computes the optimal CoM trajectory, see336. This approach requires
only the specification of the preplanned foot positions as input, returning the optimal
trajectories for the ZMP and the CoM. The default modern approach for nonlinear MPC
relies in addition on another improvement of the same framework made by121, which is the
further extension of the approach by336. This reformulation of the optimization framework
allows to exploit positional and angular velocities of the CoM as reference trajectories (for
a time horizon of the next two steps), returning the foot placements and the optimal ZMP
trajectories as result of the nonlinear predictive control problem. This framework, which is
described in detail in [Naveau et al.220 and221, was exploited in our system, as presented
below in Section 3.8.

3.3 Kinematic Motion Synthesis Architecture

This section starts with a description of the motion capture data sets in 3.3.1, followed
by descriptions of the motion trajectory representations and the motion retargeting tech-
niques in 3.3.2. Next, the core steps of the developed method are presented: 1) a novel
unsupervised learning method for the approximation of trajectory sets based on anechoic
mixing models with very few source components in 3.3.3; 2) the machine learning methods
for the learning of online capable control of generated motions in 3.4.2; 3) a method for
establishing mappings between the learned synergies and simple dynamical systems, called
dynamic primitives, that can be combined into more complex systems with well-defined dy-
namical properties in 3.3.4. The section also presents the full architecture for the kinematic
synthesis of motion trajectories. Its performance is illustrated by a number of examples
and multi-agent interactive scenarios 3.6.
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a)

b)

Figure 3.1: a) The Vicon system. b) PluginGait marker set.

3.3.1 Data Sets

The motion primitives were learned from motion capture data that was recorded in the
Tübingen University Clinic using a Vicon/Nexus Motion Capture System with 8-12 cam-
eras (Fig. 3.1.a), using 41 reflecting markers of the PluginGait marker set (Fig. 3.1.b) and
a sampling frequency of 120 Hz. The first dataset comprises different types of gaits,
periodic gaits, straight walking with neutral and different emotional styles (e.g. happy
and sad, illustrated on Fig. 3.2), and walking with a stooped posture. In addition, walking
along a circular path (forward and backward) with rotations of 90◦ per full gait cycle, and
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a) b)

Figure 3.2: ’Sad’ a) and ’Happy’ b) walking styles recorded from human subject and
retargeterd to CoMan humanoid model.
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a) b)

Figure 3.3: a) The arm reaching targets placement on vertical frontal plane. b) The
CoMan humanoid reaching the jumping target in simulation.

turning on spots (120 degrees) left or right per double step were recorded. Movements
were retargeted to a skeleton model with 17 joints using an axis-angle representation (nor-
malized quaternion representation) for the parametrization of the 3D rotations between
adjacent segments. In addition, the recorded gaits were combined with non-periodic arm
movements, such as swinging the right or left arm up, or holding the arm in a fixed
posture during the whole gait cycle (for the so called “bridge dance” scenario). For these
recorded movements the arm moved independently of the legs, thus the arm lifting actions
were recorded at different phases of the gait cycle. This dataset was used in the project
dedicated to computer animation DFG Forschergruppe “Perceptual Graphics” and EC
FP6-43403 project “COBOL”.

The second dataset was recorded for the controlled experiments on human arm reaching.
It was collected in the Computational Sensomotorics Lab, University Clinic Tübingen using
a Vicon MoCap system (using the PluginGait marker set) integrated with an VR setup.
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Figure 3.4: The setup combining MoCap on a treadmill with VR projected on a
stereo screen. The arm reaching targets are presented at specific phases of the walking.
(Figure adopted from56).

The VR setup is capable of displaying targets positioned relative to the human body and it
is capable of online control of displayed objects aligned in time with the subject’s motion.
For the training dataset the reaching targets were displayed in VR on two vertical
planes at two distances from the chest and at 25 positions inside each plane. The training
dataset is named as such, since it was used for training of robot algorithms, which were
implemented on a Coman robot physical simulator. The subject was asked to perform
right arm reaching and grasping of virtual objects with 4 different hand orientations at
the final posture. The final hand posture orientations are specified by an orthonormal
hand frame anchored at wrist joint, where the 1st frame vector is aligned with the middle
finger direction, the 2nd is the open hand normal vector and the 3rd one is aligned in a
direction of the thumb. For all trials we asked our subjects to approach the final open
hand posture keeping the 1st frame vector possibly close to the horizontal plane and in the
direction orthogonal to the frontal plane. For the 4 different subsets of trials we asked our
subjects to keep the hand as close as possible to one of the 4 following orientations of the
3rd frame vector: a) horizontal (3rd vector in horizontal plane, hand is facing downwards),
b) skew-closed (3rd vector is at 45◦ in respect to horizontal plane), c) vertical (90◦ - 3rd
vector is vertical), d) skew-open (3rd vector is rotated 135◦ from the ’horizontal’ position
a). After cleaning and reconstruction, the resulting dataset consisted of 176 trajectories
for all 4 final hand orientations for one subject.

For the evaluation dataset the movements of 5 human subjects were captured, who
performed reaching to stable targets at 8 different positions in a single vertical plane at a
distance of 55cm from the chest (placed symmetrically at 8 directions nπ/4, n = [0 . . . 7],
and a distance of 30cm from the central point opposite to the chest center). Each target
was randomly repeated 8 times, giving 64 reaches in total. Additionally subjects performed
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Figure 3.5: Two rows of snapshots of two reaching while walking trajectories. Two
arm reaches towards two different goals start at different phases of the gait cycle.

64 reaches to moving targets. For these we presented the target initially at one of 8 initial
positions (same as for the stationary targets), but during the arm reaching the target
jumped in the vertical frontal plane with one of 8 possible displacements (8 directions:
nπ/4, n = [0 . . . 7], fixed distance of 15cm), see the scheme on the Fig. 3.3. The jumps
occurred at the moment when the hand (the base of index finger) crossed a distance of
30cm from the target’s vertical plane. The set of 128 reaching trajectories (64+64) was
captured 4 times for each subject, each time for one of 4 preferred final hand postures
orientations, providing 512 trajectories for each subject. These arm reaching datasets were
captured with the subjects standing still without stepping.

Additionally, a set of reaching while walking trajectories was recorded for the
subjects walking normally straight on the treadmill in front of the VR projection screen.
See Fig. 3.4. In this setup we also tracked the stepping events, the touchdown of the
left heel. The targets were presented at different times relative to the stepping events, to
cover all possible gait phases. The reaching targets were presented for short time intervals
(typically 0.4-0.6 sec) to force the subjects towards reaching without adaptation of the
normal gait pattern. The targets were presented by VR in the right-arm reachable space in
front of the subject. It allowed to collect a large dataset of the adaptive reaching motions
at all the phases of the gait cycle. The reconstructions of two reaching while walking
trajectories are presented on Fig. 3.5. These datasets for arm reaching while standing or
walking were used in the robotics EC FP7-ICT-248311 project “AMARSi” (WP7) and in
FP7-ICT-249858 project “TANGO”.

The drawer walking-reaching task dataset is the motion capture data from a single
human subject that executed a drawer opening task, walking towards a drawer and then
reaching for an object in the drawer. The dataset consists of the trajectories of ten trials of
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Figure 3.6: Illustration of human behavior in the drawer walking-reaching task. The
panels illustrate intermediate postures (normal walking step, step with initiation of
reaching, standing while opening the drawer, and object reaching).

single participant, recorded at the University of Bielefeld with an optical motion capture
system (Vicon Motion Systems, Oxford, UK) consisting of 12 MX-F20 CCD cameras at a
frame rate of 200 Hz with a spatial accuracy of about 0.25 mm. The PluginGait marker
set was used with 41 markers. The initial distance of the subject standing in front of
the drawer was about 3 meters and the position of the object to grasp inside the drawer
was varied. The setup is described in detail in165. The indicator screen on the top of the
drawer gave a hint about one of 4 positions of the graspable object (a dowel) inside the
drawer. The dowel could be located in the front left or right, or back left or right inside
the drawer. To grasp the dowel in the front of the drawer, the drawer had to be opened at
least 14 cm to permit clearance of the hand, whereas a minimum of 28 cm was needed to
allow clearance for grasping the dowel at the back position. The typical recorded motion
consisted of a reduced gait cycle - a transitional step from standing to walking; and the
rest of walking, drawer opening, object grasping and lifting sequence. These last parts of
sequences used for modelling while segmented into three subsequent movements, (which
we call ’actions’): 1) a normal walking step; 2) a shortened step which ends with the left
hand is reaching the drawer. This step showed a high degree of adaptability, and was
typically adjusted in order to create an optimum distance from the drawer (maximum
comfort) for the reaching movement during the last action; 3) the drawer opening (pulling)
with the left hand and the right hand reaching for the object. (209, Fig. 3.6, see also video
[movie1].)

The analysis of the distances between the pelvis and the drawer or the object in these
action sequences reveals the predictive nature of human movement planning, as shown in
Fig. 3.7 where the distances are ordered according to the initial distance to the drawer.

1https://goo.gl/5HKiG7 (tiny.cc/st8l5y)
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Figure 3.7: Predictive planning in human trajectories. Distances from the pelvis to
the front panel of the drawer (green, yellow, red), and the distance between the front
panel and the object (blue) for different trials. Mainly the second action is adjusted
as function of the initial distance from the goal. The figure is adopted from209.

The length of the first two steps (of normal gait cycle, depicted as green bar) is relatively
constant across trials. The distance from the drawer during standing while grasping (in-
dicated as red bar) is almost constant, but positively correlated with the depth of object
placement inside the drawer, the blue bar. The major distance adjustment is made in
the second adaptive step of the final reduced gait cycle (yellow bar). The length of the
first step is not significantly correlated with the initial distance to the drawer at the start
of normal gait cycle, the start of the green bar (linear regression: R2 = 0.08, p = 0.429),
while the correlations with the distance to the drawer after first step, and the length of the
second step are highly significant (R2 = 0.95, p = 1.4 · 10−6). This dataset was used for
the learning of new walking-and-grasping sequences in robot control architectures in EU
projects: EC FP7 grant agreements FP7-ICT-248311 “AMARSi” and FP7-ICT-611909
“Koroibot”.

3.3.2 Kinematic Angle Trajectories Representations and Retargeting

The Vicon/Nexus MoCap system (Vicon Motion Systems, part of Oxford Metrics, Ox-
ford, UK) exports marker positions in a global coordinate frame as CSV or C3D files
(https://www.c3d.org/). The goal of the re-targeting procedure is the optimal reconstruc-
tion of the motion of the skeleton of human avatars or of robots, that have geometries and
joint angles constraints different from the one of the recorded human subject.
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Unconstrained human avatars

The work presented in Section 3.6 used unconstrained human avatars built in Matlabr

(The MathWorks, Inc.) using simple ellipsoid-like shapes for the limb segments. The first
step in motion re-targeting is the estimation of the positions of the joint rotation centers
from the recorded marker positions. A nominal trajectory is a section of a recording
where all the markers are present (without gaps). The markers are grouped in subsets
- each subset belongs to a single rigid-body (one marker may belong to more than one
subset). Here also a tree structure of linkage of the rigid bodies is considered, where we
assume no kinematic looped-chains to exist in the human skeleton. The minimum sum of
squared errors estimation procedure is used to reconstruct a single rotation center (Center
of Rotation, CoR) for each pair of linked rigid bodies. This procedure is adopted from53.
Here, for the nominal trajectory, we obtain also information about the average markers
positions in the coordinate frames of the corresponding rigid bodies, anchored at their
CoRs. The estimated joint center (CoRs) trajectories (translational and rotational, for
the associated stable local coordinate frames) are used at the next step for de-noising and
gap filling of the markers trajectories for the other snapshots of motions recorded in the
same session, (i.e. with the same markers placement as in the nominal trajectory). This
optimal reconstruction and de-noising is done in Matlabr for the imported C3D Vicon
files. For example, the reconstructed CoRs were used as point-light stimuli in the work
done together with Weizmann Institute of Science, Rehovot,66.

A nominal human avatar was built in Matlabr using the average links lengths of
recorded human subjects. This nominal (reference) avatar has a nominal PluginGait
marker set placement, which defines the local coordinate systems for each limb segment
(’rigid body’). The joint centers are defined based on a prior knowledge of human limb
junction positions with respect to the marker set used. For every session with new markers
placement, a new avatar is created, where the limb junction positions are re-identified from
the marker positions. The retargeting of each posture in default recording was done by
following the linkage tree structure from its root,226. The matching of the limb segments
lengths is done by scaling and the rotational matching is done by solving the orthogonal
Procrustes problem (to find the optimal rotational correspondence between the markers of
the same rigid body in the default and in the nominal session). The numerical solution of
the orthogonal Procrustes problem uses SVD decomposition, cf.74. The zero posture in the
nominal session, corresponding to the zero rotations of limb segments, was the T-posture,
where a human participant stretches the arms sideways at shoulder height. The output
of this scaling-and-rotation procedure is the default rotation for every time step of the
nominal skeleton from its T-pose for the best matching of the markers positions in the
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new recorded clip. The best results are achieved when we first match the two T-poses of
the nominal and default marker sets and save the mismatch rotations as constant biases,
to be used later as correction offset values for all other poses. The result was saved using
Denavit-Hartenberg parametrization (DH-format, cf.287) of rotations and translations for
every limb segment frame for the nominal skeleton.

The axis angles representation of the joint rotations is introduced for learning new
motions. Any 3D rotation of a rigid body can be represented by a unit vector w in the
direction of the rotation axis (‖w‖ = 1) and an angle of revolution θ about that vector.
The rotation formula by O. Rodrigues (254) for the matrix ŵ and rotational orthogonal
matrix Q is:

ŵ :=


0 −w3 w2

w3 0 −w1

−w2 w1 0

 (3.1)

Q = I + sin (θ)ŵ + (1− cos (θ))ŵ2 (3.2)

The three parameters of the axis angle parametrization are then defined as the entries
of the vector θw with length θ and direction w. The mapping from the so(3) rep-
resentation θw to the orthogonal rotation Q ∈ SO(3) is called the exponential map:
exp : so(3) → SO(3). And the transform is the matrix exponential as Q = exp (θŵ).
Considering det(ŵ − λI) = −(λ3 + λ), which gives us due to Cayley-Hamilton theorem
(29,99): ŵ3 = −ŵ. Using this identity for ŵ, one can separate terms in the Taylor ex-
pansion of the matrix exponent and obtain Rodrigues’ formula (3.2) for Q. Reversibly,
using matrix logarithm of orthogonal rotation matrix Q we may obtain the skew symmetric
matrix θŵ that provides θ and a normalized vector w. The simplified inverted formulas are
θ = arccos (Trace(Q)−1

2 ) and w = 1
2 sin (θ) [Q3,2 −Q2,3, Q1,3 −Q3,1, Q2,1 −Q1,2] can be

obtained from Rodrigues’ formula (3.2). The unit quaternion q corresponding to the axis
angle in our notation is: q = (cos ( θ2),w sin ( θ2)).
All the joint frames rotations recorded in the DH-format are saved as axis angles as 3D
vectors θw. This representation allows good linearized morphing and interpolation of
rotations. The norm of this representation is affected by the 2π rotational angle ambiguity.
In all the manipulations with axis angles, we keep track of rotations, relating them to the
reference T-pose as zero point, and removing 2π offsets when necessary.

In computer graphics applications the unconstrained human avatars from the Com-
plete Characters Library created by Rocketbox Studios GmbH were used. The motion
clips are retargeted to these characters using MotionBuilder (Autodesk). The resulting
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a) b)

Figure 3.8: a) Retargeting of the movements from a human to the unconstrained
skeleton of the HRP-2 robot. A snapshot from a long sequence of Fig. 3.6. b)
Retargeting of the movements to the constrained kinematic model of the HRP-2 robot
in Matlab. The small inset compares the unconstrained (red) and constrained (green)
postures of robot skeleton at a moment during the normal gait cycle.

scenes are exported in COLLADA format (open standard XML schema developed by Sony
Computer Entertainment and the Khronos Group). The resulting joint angle rotations
in DH-format are exported using custom scripts made for MotionBuilder. Additional
custom scripts are created resolving the correspondence problems of frame orientations
between the COLLADA format and our export format. The resolved DH-representations
are converted to axis angles. The learning and generation of new trajectories is done in
the axis angles representation. The online animations of these characters are made using
the Horde3D graphics engine (278, http://www.horde3d.org/), which is controlled from
the Psychophysics Toolbox (155, http://psychtoolbox.org/) in Matlabr.

Constrained kinematic skeletons of humanoid robots

For the robotics applications (see Section 3.8) the learning of the kinematic motion gen-
erative models is done in the space of angles of the robot actuators. These actuators
have angular limits and the retargeted motion must respect these limits. As first step
the motion is retargeted to an unconstrained robot skeleton model in MotionBuilder (Au-
todesk). This retargeting is done by rescaling, translation and rotation while respecting
the non-sliding constraints using the built-in IK tools of MotionBuilder. The kinematic
skeletons of the robots and their joint angle limits are provided by Istituto Italiano di
Tecnologia (IIT) for CoMan and iCub humanoid robots and by Kawada Industries, Inc.
and AIST for the HRP-2 humanoid robot. The robot joint rotation matrices are exported
from MotionBuilder in DH-format by custom scripts or in BVH file format (Biovision).
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The output is a motion clip, unconstrained with respect to the actuators angles limits. An
illustration of this preprocessing is given in [movie2], which shows the angular trajectories,
animating a human avatar, and the corresponding retargeted trajectories for a HRP-2
kinematic model in MotionBuilder. A snapshot from the movie is presented in Fig. 3.8.
See also the snapshots of the walking CoMan above at Fig. 3.2.

As the next step, the complete trajectories of the unconstrained robot skeleton are
reconstructed in Matlabr (The MathWorks, Inc.). In Matlabr I use the custom IK tool
for the matching of the target skeleton (which is controlled by the actuators angles) against
the posture of the imported unconstrained motion. During the matching the actuators
limit values are avoided by IK corrections in the actuators’ angle space. These iterative
corrections are proportional to the gradient of a barrier function, projected to the null
space of Jacobian of the end effector. The Jacobian of the end effector for a particular
posture is the linear part of the mapping from actuator angles velocities onto the space
of linear translational and rotational velocities of the end-effector. In this procedure I
am trying to keep position and rotation of a particular end effector unchanged, while
moving the actuator angles possibly away from their limits. If no limits are violated, then
configuration matching is exact. Here, the temporal smoothness cost is introduced when
computing barrier functions. The temporal smoothness is enforced by minimizing sums of
squared displacements of the postures relative to their time-neighbors. The total smooth-
ness cost E of trajectory can be defined as E =

∑T−1
t=2 ‖2qt − qt−1 − qt+1‖, where qt is the

vector of actuator angles at time t (the two postures q1 and qT are fixed). The gradient
of the smoothness cost in respect to the intermediate postures dE/dqt; t = [2 : T − 1] is
also projected to the null space of the Jacobian of the end effector. The resulting robot
actuator angle trajectories and the resulting hand and feet postures after this retargeting
constitute the dataset for the training of learning algorithms and evaluation.

For the robotics application, the trajectories of the drawer walking and reaching task
were resampled, resulting in a normalized duration of 1.6 sec for each action (3 actions
are segmented as presented in Fig. 3.7). The data was split into two subsets, separating
the stored pelvis trajectories (time course of pelvis position and pelvis direction in the
horizontal plane), and the upper body trajectories (HRP-2 actuators angles). The pelvis
position trajectories were rescaled, ensuring the maximally admissible propagation velocity
for the HRP-2 (0.5 m/sec). The pelvis yaw-angle trajectories were rescaled by a constant
factor, and a fraction of the yaw angle trajectory was added back to the trunk yaw-angle
for compensation. As input to the Walking Pattern Generator (WPG) we used the time
course of pelvis velocities in the horizontal plane, and of the pelvis yaw angular velocity.
The upper body arm reaching motions were retargeted separately as described above in

2https://goo.gl/ucbVA2 (tiny.cc/gv8l5y)
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Figure 3.9: Offline pre-processing of motion capture data from humans for the
HRP-2 walking and reaching task.

order to satisfy actuators angles limiting constraints. An overview of the pre-processing
steps is given in Fig. 3.9. In order to augment the training data set for the learning
of the mappings between the task parameters and the model parameters, we generated
additional artificial kinematic data by scaling of the pelvis forward propagation velocities
for all gait cycles uniformly (by the factors 0.8, 0.92, and 1.2), while keeping the upper
body trajectories fixed. In this way, a total of 30 training examples were generated from
the original 10 motion capture trials215.

3.3.3 Learning of Kinematic Movement Primitives

In this section the new approach for the online synthesis of complex human movements is
presented, that is inspired by concepts from biological motor control. A classical idea in
this field is that complex motor behavior might be structured in terms of lower-dimensional
primitives, or synergies. In motor control unsupervised learning methods have been applied
successfully to extract low-dimensional spatio-temporal components from trajectories and
EMG signals63,65,135,271. Standard dimension reduction methods, such as PCA, that are
based on instantaneous mixture models have been commonly applied in computer graphics,
where the approximation of complex body movements requires typically 8-12 principal
components (e.g.268). Applying the novel statistical method I learn compact models for
human motion trajectories, exploiting time-shift invariant synergies. In a series of papers
we have shown for different classes of human movements that the number of source terms
for the accurate approximation of human movement data can be reduced by mixture
models with time delays (e.g. to less than 3 terms for periodic and some non-periodic
movements)103,210,235.

The original joint angle trajectories ξ̂n(t), n = [1 : N ], after subtraction of the mean
values mn =

∫
ξ̂n(t)dt, were approximated by a weighted mixture of source signals. A

compact model for the joint angle trajectories ξn(t) = ξ̂n(t)−mn can be obtained by fitting
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an anechoic mixture model that is given by:

ξn(t) =
∑
k

wnksk (t− τnk) + ηn(t) (3.3)

with ηn(t) assumed to be non-delayed uncorrelated white noise. The functions sk, k = [1 :
K] denote hidden source signals, and the parameters wnk are the mixing weights. In con-
trast to blind source separation techniques, like PCA or ICA (57), this mixing model allows
for time shifts τnk of the sources in the linear superposition. Time shifts (delays), source
signals and mixing weights are determined by an algorithm based on a time-frequency
integral transform. The task of this anechoic demixing algorithm is to estimate simulta-
neously the shapes of hidden source signals sk(t), their weights wnk and delays τnk, given
the dataset ξn(t). This problem is computationally difficult. Each source signal can be
regarded as linear mixture of harmonics with fixed local weights and delays, where both
are locally defined for a particular source signal. The harmonic is the Fourier component,
the sinusoidal wave form of a fixed frequency. It can be represented as weighted and shifted
sine, or as linear combination of sine and cosine of the same frequency. In case of discrete
time signals, the harmonics can be defined similarly, as built from the eigenspaces of the
time-shift operator, cf.189. Thus the weights of harmonics are not independent in anechoic
mixtures: their local weights fixed for each source are multiplied with global weights of
the sources in mixtures. The local delays of harmonics, while being fixed for each source,
are added to the global delays of the sources in mixtures.

Anechoic demixing using Wigner-Ville distribution marginals

The first version of the algorithm used for the over-determined problem of anechoic demixing
was based on the Wigner-Ville spectrum (192,193) that is defined by the partial Fourier
transform of the symmetric autocorrelation function of the signal ξ (the upper bar denotes
complex conjugate, and i2 = −1), where the result is presented in form of a spectrogram,
with new time t and frequency ω:

Wξ(t, ω) :=∫
E

{
ξ(t+ ν

2 ) ξ(t− ν

2 )
}
e−2πiωνdν (3.4)
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Applying this integral transform to equation (3.3) results in:

Wξn(t, ω) =
∫
E

{∑
l

∑
k

wnlwnksl(t+ ν

2 − τnl)sk(t−
ν

2 − τnk)
}
e−2πiωνdν ≈

≈
∑
k

|wnk|2Wsk(t− τnk, ω) (3.5)

where the last approximation is performed under the assumption that the sources are
statistically independent (assuming the statistical independence of the local weights of
harmonics across sources).

As two dimensional representation of one dimensional signals, this equation is redundant
and can be solved by computing a set of projections onto lower dimensional spaces that
specify the same information as the original problem. With additional approximation
assumptions, from computing the zero and the first moments of Wigner-Ville distributions
of Wξn(t, ω), the following two equations are obtained227–229, providing the separation of
the amplitudes |wnk| of source signal weights (F denotes Fourier transform):

|Fξn |2(ω) =
∑
k

|wnk|2 |Fsk |
2(ω) (3.6)

|Fξn |2(ω) · ∂
∂ω

arg {Fξn} (ω) =∑
k

|wnk|2|Fsk |
2(ω) · [ ∂

∂ω
arg{Fsk}(ω) + τnk] (3.7)

As the first step, using Non-negative Matrix Factorization (NMF,174,175), applying non-
negative PCA or ICA, the amplitudes of weights |wnk|2 and the amplitudes of the source
harmonics |Fsk |2(ω) can be extracted using (3.6). Then, after initializing the delays τnk,
one can compute arg{Fsk}(ω) from equation (3.7). The new sources sk are defined by
their harmonic amplitudes |Fsk |2(ω) and harmonic phases arg{Fsk}(ω). Given the sources
one may find their optimal delays in mixtures numerically by cross-correlation based
methods, e.g. Gerchberg-Saxton phase retrieval algorithm302,313. With the new delay
estimates one iteratively solves again equations (3.6-3.7) obtaining the new estimates of
sources. The latest version of the algorithm229 exploited the framework of Fractional
Fourier Transform and Linear Canonical Transform (230,231,267), and was extended to
non-negativity constraints.

The version of the algorithm presented above does not put any constraints on the source
signal shapes, but enforces the statistical independence of the signals, which is minimal
cross-correlation between the signals for all time-shifts. However, the algorithm also allows
to put positivity constraints on the weights together with any user-specified constraints

69



3. Kinematic Motion Synthesis for Computer Graphics and Robotics

Figure 3.10: Comparison of different blind source separation algorithms for our
captured data set including periodic and non-periodic movements. The approximation
quality measure Q is shown as a function of the number of sources for traditional
blind source separation algorithm (PCA) and the new algorithm of anechoic demixing
based on Wigner-Ville marginals. The figure is adopted from210.

on signals delays. The anechoic demixing algorithm was used in series of papers on com-
puter animation of different walking gait styles, e.g. in103,210,235,236. Different versions of
approximate anechoic demixing algorithms were proposed in the last years, which allow
positivity constraints for source signals. The first versions of an EM-like (Expectation-
Maximization) procedure for non-negative anechoic demixing was proposed in65 and64 and
it was continued by69. The anechoic NMF was proposed by206. The recently developed
unified framework allow the estimation of anechoic mixtures with positivity constraints
for the sources and for their global mixing weights: see56 and55.

Detailed comparisons for periodic and non-periodic trajectory data show that this
model provides a more compact approximation of human movement trajectories, requiring
fewer source terms than models based on instantaneous mixtures. This is illustrated in
Fig. 3.10 for the data set of different walks. The figure shows the approximation quality
as function of the number of sources sk. Instead of explained variance we used quality
measure that is more sensitive to differences in the regime of small approximation errors. It
was given by the expression Q = 1− ‖X−X̂‖F‖X‖F , where Xn,t = ξn(t) signifies the original data
matrix and X̂ its approximation by the source model, and where the norm is the Frobenius
norm. The approximation quality of the recorded trajectory set including periodic and
non-periodic movements, with only four source signals was Q = 0.92, sufficient for an
accurate approximation of the walking trajectories. Their shapes are depicted on Fig. 3.11.
There, source signal number 4, which has discontinuity at the borders of the motion period
is called the non-periodic source signal. Its delay is always fixed and equal zero for all
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Figure 3.11: Four source-signals extracted from the data set containing gaits com-
bined with non-periodic arm movements, which are sufficient for an almost perfect
approximation of the original trajectories. Source 4 corresponds to the synergy that
is associated with the non-periodic movements in the data set. The figure is adopted
from210.

trajectories, but its weight may change across trajectories. PCA and ICA require more
than 7 sources to achieve the same level of accuracy. Varying the mixing weights and
delays for the different motion styles, a continuous spectrum of intermediate motion styles
can be generated by interpolation (blending) of these parameters,235,236.

Anechoic demixing with constrained delays using Shift Invariant Subspace
Analysis

In other applications the statistical independence of the source weights might be less
important, but clustering of the sources delays might be more important. For example,
for smooth morphing between motion clips one may use the source signals with delays
fixed across motion styles for any particular DoF, but different for the same source across
joint angles. For this purpose I adapted the Shift Invariant Subspace Analysis (SISA)
algorithm, which was presented as part of Shifted ICA (SICA) by205. The version presented
below does not put any constraints on source shapes and currently does not implement
positive constraints for the weights. A similar computational framework allowing positivity
constraints on source signal is the FADA algorithm55.
Following205 I represent the discrete time sampled trajectories ξn(t), n = [1 : N ], t = [1 : T ]
(with their mean values extracted) as data matrix Xn,t = ξn(t). Then the anechoic model
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3.3 is approximating the data as:

Xn,t =
∑
k

Wn,kSk,t−τn,k + ηn,t (3.8)

here Wn,k is the weight of source signal number k (which is the matrix row Sk,:) in data
trajectory number n, the corresponding discrete time delay is denoted as τn,k. ηn,t = ηn(t)
is assumed to be non-delayed uncorrelated white noise as above. Denoting the row-wise
discrete Fourier transform as tilde on top of a variable, we have 3.8 in frequency domain
as:

X̃n,f =
∑
k

Wn,kS̃k,fe
−i2π f−1

T
τn,k + η̃n,f (3.9)

where f = [2 : T ] is now indexing discrete Fourier transform harmonics. Using the notation
W̃

(f)
n,k = Wn,k • e−i2π

f−1
T
τn,k for the weight matrix dependent on f (and τ ’s), we re-write

equation (3.9) as a set of f optimal estimation problems to be solved simultaneously:

X̃f = W̃ (f)S̃f + η̃f (3.10)

The anechoic demixing problem can be solved approximately obtaining Sk,t, Wn,k and
τn,k by the following (SISA) algorithm205,344,345:
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SISA algorithm
Initialize source signals Sk,: by othonormal set of sinusoidal harmonics:

Sk,t = αkRe(e2πikt/T ) + βkIm(e2πikt/T ).
Compute the optimal weights αn,k, βn,k in each trajectory n by linear regression,

the weights Wn,k =
√

(αn,k)2 + (βn,k)2, the delays τn,k = arctan (βn,k/αn,k).
External cycle (iteration including re-estimation of delays)

Internal cycle (iterative solving for joint-diagonalization task)
S-update (optimal sources shapes estimation):

with the default W and τ estimate amplitudes and phases
of harmonics, by linear regression († is pseudoinverse):
S̃f = (W̃ (f))†X̃f

W-update (optimal weights W estimation):
with the default S and τ find W by linear regression:
Wn,: = X̃n,:(S̃(n))†

here S̃(n)
k,f = S̃k,fe

−2πi f−1
T
τn,k , thus S̃(n)

k,: is the F.t. of the delayed
version of source signal Sk,: with its delay in trajectory n

End of Internal cycle
τ-update (delay re-estimation)
Delay clustering (optional)
W-update (with new delays τ)

End of External cycle
At the exit, do few more iterations of Internal cycle,
of the paired S-update and W-update.

The iterative solving of weights and delays (alternation between S-update and W-
update) in the Internal cycle can be regarded as a simultaneous matrix diagonalization
problem (e.g.309) solved by intermittent linear estimations344. The delays re-estimation
τ-update in External cycle can be also done with the Gerchberg-Saxton phase retrieval
algorithm302. In case of only two sources, the delays estimation can be done algebraically,
cf.344,345, and the currently used τ-update for 3 or more sources is described below. In
practical applications, the estimation of optimal source shapes, weights and delays for up
to 6-7 sources converges with 5-6 iterations of the External cycle, and 2-4 iterations of
each Internal cycle.

The τ-update finds the optimal delays of all of K sources for the best linear mixture
in data sample n, given the source signals shapes. The simplest algorithm for this delay
re-estimation (for K > 2), is as follows:
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τ-update algorithm
External cycle
Internal cycle
• For the default delays of all sources, leave one randomly selected source out

and re-estimate the optimal weights for K − 1 shifted sources left;
• Extract these K − 1 sources with their optimal weights from trajectories;
• Find the maximum cross-correlation between the residual trajectories

and the left-out source - it gives a new delay of this left out source
End of Internal cycle

Do the local optimization of the delays using gradient descent (205)
End of External cycle

The algorithm presented above can be appropriately modified for the estimation of
source signals and weights, but enforcing their delays to be equal across subsets of tra-
jectories. For that purpose, each τ-update must be followed by delay clustering (before
the final W-update in the External cycle of SISA algorithm). Delay clustering must also
account for delay disambiguation. The resulting source shapes are close to some harmonics,
or they have a dominant frequency, where most energy is concentrated. If the dominant
is the first harmonic, then all the delays which differ approximately by nπ, n ∈ Z are
substituted by the same circular average, the cluster mean value. If dominant harmonic is
number f , then the equivalence class is nfπ, n ∈ Z. The clustering is done as follows. For
a source signal with dominant harmonic f plot all the delays τ of this source (as varied
across the subsets of trajectories) on the unit circle of complex plane as e2πifτ/T . For bal-
ancing, double the number of points adding their inverted images −e2πifτ/T . Do 1d-PCA
in the plane, now regarded as 2d real plane. The largest PCA component direction angle
is the cluster mean angle, which gives the new τ . Set the new delay values for the source
signal for the subsets of considered trajectories to the value of the new τ . This algorithm
with the delay clustering results in minimizing the sum of squared errors of the anechoic
mixture approximation, enforcing the source delays to be equal across the specified subsets
of trajectories. For example, one can enforce all the delays of a particular source signal
to be equal across the trials of motion, but still different across the DoFs, or joint angles.
Without the delay constraint this version of SISA guarantees a smaller approximation error
than the version based on Wigner-Ville marginals, since the independence of source signals.
But the solution given by SISA is not unique, there exists a space different solutions with
the same approximation error. With the delay constraints introduced the solution space
dimension is decreasing, but the approximation error is increasing: see comparisons in the
next subsection.
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t=0.88sec t=1.95sec t=2.85sec t=3.63sec

Normal 
step

Short step
with reaching

Drawer 
opening and
grasping

3 periodic sources
(with the delays fixed)
+1 non-periodic

3 periodic 
(from previous action)
+2 additional periodic sources 
(with the delays fixed)

+1 non-periodic sources

Action 1 Action 2 Action 3

Figure 3.12: Drawer walking-reaching-opening scenario. Three elementary actions
extracted for learning and their control dependencies: 1) normal step; 2) step with
initiation of reaching; and 3) standing with opening of the drawer and reaching for the
object. The sequence demonstrates the step-wise regression approach in modelling of
the subsequent actions with different subsets of source signals.

Stepwise estimation of spatially localized anechoic primitives

The coordination of arm reaching during walking on a treadmill (see dataset description in
3.3.1), as analyzed by56, requires simultaneous control of arm reaching towards a goal and
timing relative to the gait cycle. In order to model such motion we represent the whole
body trajectory as a mixture of spatially overlapping synergies. The periodic primitives
(time-shift invariant synergies) control the gait-related part of the motion of the whole
body, while the non-periodic bump-like primitive is controlling the reaching-related move-
ment of the upper body. Here I use a stepwise regression approach: first, approximate
the normal gait cycle by periodic sources, then, approximate the residual of joint angles
of the upper body (trunk, neck and arms) by a non-periodic primitive. In this model
the delays of the periodic primitives are assumed to be fixed for each joint angle across
different gaits and the weights of these periodic source signals are learned as functions of
the step size. The weights of the non-periodic primitives are dependent on target position
with respect to the trunk (in the chest coordinate frame), and they are dependent on
the phase of the gait cycle, when the arm reaching starts. The timing of switching-on
of the non-periodic primitive is the moment of target presentation. A similar stepwise
regression approach is used in the modelling of the bridge dance, which will be described
later (3.6), where the non-periodic primitive controls the arm lifting for the arm bridge for-
mation, but the delays of periodic primitives were not fixed across dancing steps in this case.
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Figure 3.13: Comparison of approximation quality for different methods for blind
source separation as function of the number of sources, using a step-wise regression
approach (residuals after subtraction of the contribution of the non-periodic source
signal). Solid lines: Approximation quality for trajectories of all three actions as a
function of the number of (periodic) source functions for anechoic demixing (blue)
and principle component analysis (PCA) (green). The purple dotted line shows the
approximation quality for the first action, fixing the delays across trials. The red
dashed line shows approximation quality when 2 additional sources (with fixed delays)
were included in order to model the remaining residuals. Circles mark the chosen
numbers of sources in our implementation. The figure is adopted from209.

I use the stepwise regression approach also in modelling of multi-action sequences,
in the drawer walking-reaching-grasping task (see description in 3.3.1, 3.6. I introduce
different types of source signals for the three different sequential actions. The non-periodic
source signal is defined by s0(t) = cos (πt/T ), t = [1 : T ] (where T is the period of the
gait cycle). In rare cases, though the periodic source signals are continuous functions,
they still might have discontinuous first derivatives. In these cases one needs to filter the
source signals by smoothing (e.g. with a Savitzky-Golay filter272), then to re-estimate
the optimal weights. This is the approach I follow in the drawer walking-reaching task
model. But if the goal is to model the discontinuity of the first derivative at the ends of
the trajectories, then one needs to employ more non-periodic source signals, e.g.: snonper0 =
cos (πt/T ), snonper1 = cos (πt/(2T )), snonper2 = sin (πt/(2T )), t = [1 : T ].

The three actions of the training sequences are modeled as follows (see209 and Fig. 3.12):
1st action: The weights of the non-periodic sources were determined in order to account for
the non-periodic part of the training trajectory. Then, this component was subtracted from
the trajectory data. The periodic source signals were determined by anechoic demixing,
constraining all delays belonging to the same source signal to be equal for a particular
joint angle. This constraint simplifies the blending between different motion styles, since
the delays of the sources are identical over styles, so that they do not have to be blended.
Compared to the unconstrained anechoic model, this constraint requires the introduction
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Figure 3.14: The source signals extracted by the anechoic de-mixing algorithm for
the drawer walking-reaching scenario. In the left column - periodic source signals
extracted from the first action and the non-periodic source signal (dashed line). a): 3
periodic sources; c): 4 periodic sources. In the right column - the additional periodic
source signals used for modeling of the second and the third actions. b): 2 additional
sources for the case a) - 4+2 total sources; d): 3 additional sources for the case c) -
5+3 total sources.

of more sources for the same approximation quality (see Fig. 3.13). The first gait cycle
is modeled with sufficient accuracy using three periodic sources in addition to the non-
periodic one.
2nd action: In order to model the second adaptive step with the left arm reaching towards
the drawer, five periodic sources are required. The first three periodic sources are identical
to the ones used for the approximation of the first action, and also their corresponding
delays are the same. Their weights were re-estimated, optimized in order to minimize the
remaining approximation error in the 2nd action. The contributions of these three periodic
sources (and of the non-periodic sources), were subtracted from the training data, and two
additional periodic sources were learned from the residuals (with constant delays across
trials).
3rd action: In order to approximate this action, we used the same non-periodic and five
periodic source signals, with the same time delays, that were identified for the modeling
of the second action, while the weights of all these sources were re-estimated.

The estimated source functions are shown in Fig. 3.14. The dotted curve illustrates
the non-periodic source. The source functions illustrated in panel a) (and panel c)) are
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Figure 3.15: Absolute values of the weights for an example trajectory of the data
set. The mixing weights are shown from the different actions within the sequence for
the periodic source function with minimum frequency and for the non-periodic source.
The color code is the same for both panels. The figure is adopted from209.

used for the approximation of all three actions, and the two in panel b) (and panel d))
are additional - only for actions two and three.
Fig. 3.13 shows the approximation quality as a function of the number of source func-
tions for the first and the second action, comparing anechoic demixing without delay
constraints229, the default SISA algorithm with constant delays over the different condi-
tions, and a reconstruction using PCA. The measure for approximation quality was defined
again as Q = 1−(‖X−X̂‖2F )/‖X‖2F , where X is the matrix with the samples of the original
signal, and X̂ is the reconstructed signal, ‖ · ‖2F is the squared Frobenius norm. Especially
the model without constraints for the delays achieves significantly better approximation
quality than PCA. The reconstruction error for the first action (purple circle on Fig. 3.13)
is 95.6%, while the one with the two additional sources, used for actions 2 and 3, is 96.7%
for the whole dataset (red circle).

The absolute values of the amplitudes of the weights for a single trajectory are depicted
in Fig. 3.15, separately for the two source signals that carried the maximum amount of
variance. This are the non-periodic source signal and the periodic source signal with the
lowest frequency. The figure shows that the primitives clearly contribute to the different
degrees of freedom of the human body. The non-periodic source primarily contributes
to the joint angles of the arm, while the periodic source function strongly influences the
hip and the leg joints. This reflects the organization of human full body movements in
terms of movement primitives. The figure also shows that the contribution of the sources
changes between the steps. In the first action the contribution of the first periodic source
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is dominant, while in the second and last actions the non-periodic source function has a
dominant contribution reflecting the non-periodic reaching movement.

3.3.4 The DMP Architectures for the Online Synthesis of Kinematic
Motion Trajectories

Real-time animation necessitates flexible systems that can react in an online fashion, adapt-
ing to external constraints. Such online systems are suitable for the self-organization of
complex behaviors by the dynamic interaction between multiple autonomous characters
in the scene. The learned generative model can synthesize periodic and non-periodic
movements, achieving high degrees of realism with a small number of synergies. By intro-
duction of dynamic couplings between the primitives the temporal coordination between
the different source components can be ensured. In an abstract sense, the resulting system
is similar to a set of coupled ’Central Pattern Generators’ (CPGs) in a biological system.

For the online generation of the source signals we construct a nonlinear mapping
between the solutions of the dynamical systems and the source signals. This gives flexibility
for the choice of the dynamical system, which can be optimized in order to simplify the
design of a stable overall system dynamics. As basic building blocks for the dynamics we
use nonlinear oscillators for the synthesis of periodic behaviors, and a fixpoint attractors
for the synthesis of non-periodic movements. We decided to use nonlinear dynamical
systems whose structural properties do not change in the presence of weak couplings. In
this way we can design the qualitative properties of the different dynamic primitives – to
some degree – independently from their interaction with other system components. The
idea to map desired behaviors onto solutions of nonlinear dynamical systems is common
in behavioral research, robotics40,132,276 and computer animation92.

The limit cycle attractor of the Van der Pol oscillator as DMP

As basic dynamics for the generation of the periodic signals we used a limit cycle oscillator:
The Van der Pol oscillator, for adequate choice of the parameters, has an asymptotically
stable limit cycle323,333. It was used in several of our own publications103,210,235,236. Its
dynamics is given by the differential equation:

ẍ (t) + ν
(
x (t)2 − ρ

)
ẋ (t) + ω2

0 x (t) = 0 (3.11)

The parameter ω0 determines the eigenfrequency of the oscillator, and the parameter ρ
the amplitude of the stable limit cycle. The force that pushes the state back towards the
limit cycle is determined by the parameter ν > 0. For appropriate choice of the oscillator
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parameters, in absence of external input signals, the form of the stable limit cycle can
be made almost perfectly circular in the x-ẋ plane (phase plane), assuming appropriate
scaling of the two axes. This property is critical for the online implementation of the phase
delays.

One source is non-periodic and has a ramp-like characteristics (Fig. 3.11). This source
is crucial for the approximation of non-periodic point-to-point arm movements. I model
this behavior by a fixed point attractor. Considering that natural arm movements are
characterized by a bell-shaped velocity profile202,295, we chose a nonlinear dynamics that
generates solutions with this property. In addition this dynamics can generate identical
movements in opposite directions by the change of a single parameter. This dynamics is
given by the differential equation:

ẋ(t) = ux(t)(1− x(t)) (3.12)

We restrict the values for x to the interval I = [0, 1]. For u < 0 this dynamics has a stable
fixpoint at 0, and for u > 0 a stable fixpoint at 1 that is approached asymptotically from
inside the interval I. The value of |u| determines how fast this fixpoint is approached. The
solution of this differential equation can be computed analytically and is given by x(t) =(
1 + tanh(u2 (t− t0))

)
/2, showing that its derivative ẋ(t) = u

4

(
1− tanh2(u2 (t− t0))

)
is

bell-shaped. By clipping we ensure that in presence of noise x does not leave the per-
missible interval. For the online simulations of Van der Pol oscillators we use 5-step
Adams-Bashforth method (e.g.44,115).

The dynamical primitives that generate the signals for different synergies must be syn-
chronized for the generation of coordinated behavior. Synchronization can be accomplished
by introducing couplings between the dynamic primitives. The oscillatory primitives are
modeled by Van der Pol oscillators. Applying concepts from Contraction Theory333 (see
also Chapter 4), it can be shown that complex networks of such oscillators can be guaran-
teed to have a single stable solution if the oscillators are coupled by velocity couplings. For
3 Van der Pol oscillators coupled symmetrically and bi-directionally this type of coupling is
defined by the equations (the value of parameter k > 0 is specifying the uniform coupling
force):

ẍ1 + ν
(
x2

1 − ρ
)
ẋ1 + ω2

0 x1 = α (ẋ2 − ẋ1) + k (ẋ3 − ẋ1)

ẍ2 + ν
(
x2

2 − ρ
)
ẋ2 + ω2

0 x2 = α (ẋ1 − ẋ2) + k (ẋ3 − ẋ2) (3.13)

ẍ3 + ν
(
x2

3 − ρ
)
ẋ3 + ω2

0 x3 = α (ẋ1 − ẋ3) + k (ẋ2 − ẋ3)
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Figure 3.16: Exemplary coupling of multiple avatars, each of them comprising three
coupled oscillators (Osc1..3), permits the simulation of the behavior of coordinated
crowds. The figure is adopted from210.

For values of α below a specific bound, which depends on the coupling graph, the overall
system dynamics has only a single stable solution. It is characterized by synchronization
of all oscillators. The same type of couplings can be introduced between oscillators that
represent dynamic primitives of different characters in the scene. This allows the modeling
of synchronized behavior of multiple avatars (e.g. soldiers in lock-step). To implement
such couplings we only connected the oscillators assigned to the source with the lowest
frequencies (Osc1 in Fig. 3.16). By introducing directional couplings it is also possible to
make multiple characters following one, who acts as a leader333.

To synchronize the non-periodic primitives with external events the sign of the param-
eter u in equation (3.12) was switched dependent on an external signal, which triggers
the raising of the arm. In this way, the previously stable fixed point of this dynamics
becomes unstable, while its unstable fixpoint becomes stable. In addition, we added a
short pulse input to this equation that displaces the state away from the unstable fixpoint.
This ensures a transition to the novel stable point with a well-defined timing.

The mapping of DMPs onto the source signals

To map the attractor solutions of the differential equations defining the dynamic primitives
onto the source signals we construct a nonlinear mapping. This mapping is defined by
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Figure 3.17: Online implementation of delays. a) Direct implementation introduces
explicit delay lines, resulting in a complex system dynamics that is difficult to control.
b) Approximation by a rotation in the phase space, defined by the instantaneous
orthogonal transformation Mτij

in the phase plane of the oscillator avoids a dynamics
with delays. The figure is adopted from103.

a concatenation of a rotation in phase space, modeling the influence of the time delays
τij , and a nonlinear function, which is learned from the training data by Support Vector
Regression (SVR),52,325.

Treating the oscillatory primitives first, the purpose of the mapping is to associate
the points x = [x, ẋ]T along the attractor in the phase plane of the oscillators with the
corresponding values of the source function sj . We try to avoid the introduction of explicit
time delays in the implementation since this would lead to complex system dynamics. As
illustrated in Fig. 3.17 we try to approximate the terms sj (t− τij) in (3.3) in the form:

sj(t− τij(t)) ≈ fj
(
Mτijx(t)

)
(3.14)

where Mτij is a scaling transform and an orthogonal transformation combined:

Mτij =
[

cos(φij) − sin(φij)
sin(φij) cos(φij)

]
Θ (3.15)

This transformation is a concatenation of a scaling and rotation in the two dimensional
phase space. The matrix Θ is diagonal and scales the axes of the phase plane in a way
that makes the attractor solution of the Van der Pol oscillator approximately circular.
The rotation angles are given by φij = −2π τijT , where T is the duration of one period of
the stable oscillatory solution. The nonlinear function fj(x) maps the phase plane onto a
scalar. It is learned from training data pairs that were obtained by temporally equidistant
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Figure 3.18: Illustration of the dynamic architecture for real-time animation. Peri-
odic and non-periodic movements are generated by dynamic primitives. The solutions
of these dynamical systems are mapped onto the source signals by a nonlinear mapping
that models the time delays and a nonlinear transformation that is learned by SVR.
Joint angle trajectories can be synthesized by combining the signals linearly according
to the learned mixture model (3.3). A kinematic model converts the joint angles into
3-D positions for animation.

sampling of the signals x(t) and sj(t−τij(t)), where we used the solutions of the uncoupled
dynamic primitives (the stable limit cycles of oscillators). The functions were learned by
Support Vector Regression52 using a Gaussian kernel.

For the non-periodic source, the solution of the point-attractor equation (3.12) was
mapped in a similar way onto the values of the non-periodic source signal. In principle,
the effect of the time delay can be modeled by an application of a conformal mapping to
the solution of this equation. The overall system dynamics for the animation of different
walking and dancing styles was defined by three oscillators and the point attractor dynam-
ics (3.12). The state variables of the dynamic primitives were mapped onto the source
signals by the described nonlinear observers. The synthesized source signals were then
linearly combined according to (3.3), where the complete reconstruction of the joint angle
trajectories requires the addition of the average joint angles mi. An overview of the whole
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algorithm is given in Fig. 3.18.

The limit cycle attractor of Andronov-Hopf oscillator as DMP

In the following work in computer graphics209,211–213,237 and robotics5,148,214,215 we used
the classical Andronov-Hopf oscillator as DMP (canonical dynamics). The Andronov-
Hopf oscillator is a nonlinear oscillator whose choice of parameters is characterized by
a limit cycle that corresponds to a circular trajectory in phase space. This oscillator
is characterized by the decoupled phases and radial dynamics, where phase dynamics is
indifferent to external perturbations and the radial dynamics is stable. This property
facilitates the application of Contraction Theory for the stabilization of inter-coupled
dynamics of networks of such oscillators (see details in Chapter 4).

For appropriate re-parametrization (rescaling of time and state-space axes) the dynam-
ics of this oscillator is described by the differential equations11:ẋ1(t) =

(
1−

(
x2

1(t) + x2
2(t)

))
x1(t)− ω x2(t)

ẋ2(t) =
(
1−

(
x2

1(t) + x2
2(t)

))
x2(t) + ω x1(t)

(3.16)

Here ω is the eigenfrequency of the oscillator’s phase. Introducing polar coordinates
r(t) =

√
x2

1(t) + x2
2(t) and φ(t) = arctan(x2(t)/x1(t)), this system can be rewritten:

ṙ(t) = r(t)
(
1− r2(t)

)
φ̇(t) = ω

The radial dynamics is asymptotically stable (cf. Chapter 4), and the limit cycle attractor
is a circle with radius equal to 1.

The DMP dynamics be written compactly in vector form (with x = [x1, x2]T ):

ẋ(t) = f(x(t)) (3.17)

If the oscillator is coupled unidirectionally (and by linear coupling of phase variables) with
another oscillator providing an input signal xext(t), then the dynamics of the influenced
oscillator is represented as:

ẋ(t) = f(x(t)) + α(xext(t)− x(t)) (3.18)

where α is the linear coupling strength.
For the online simulation of the Andronov-Hopf oscillators I use 5-step Adams-Bashforth
or 4th-order Runge-Kutta methods (cf.44). The phase space variable x is mapped onto
the source functions sj by nonlinear mapping functions fj(x), which were learned by
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Figure 3.19: Architecture for the online synthesis of body movements using dynamic
primitives. The DMPs architecture is modified using time-locking of the non-periodic
primitive, as triggered by the leading DMP.

Support Vector Regression (using a Radial Basis Function kernel and the LIBSVM Matlabr

library52). The learned source functions sj(t) and corresponding states x(t) from the
attractor solution of the limit cycle oscillator were used as training data.

Exploiting the fact that the attractor solution of the Andronov-Hopf oscillator lies on
a circle in state space, the delays can be replaced by appropriate rotations of the variables
of the phase space x, see Fig. 3.17. The scaling matrix Θ (3.15) is just an identity matrix
in this case. In this way, we obtained a dynamics without explicit time delays, avoiding
difficulties with the design of appropriate controllers.

In DMPs architecture we used one leading oscillator, and the other oscillators were
coupled to this leading oscillator in the described form (star topology of the coupling graph,
where couplings are unilateral from the center to the leaves of the star). The stability
properties of this form of coupling were studied in detail in237, and in the next Chapter 4,
where I show that this dynamics has a single exponentially stable solution.

The state of the leading oscillator was also used for the control of the non-periodic
source function. In order to generate such a function online, the phase of the leading
Andronov-Hopf oscillator was derived from the state variables according to the relation-
ship φ(t) = mod2π(arctan(x2(t)/x1(t))), (ensuring 0 ≤ φ < 2π). The non-periodic source
signal was not learned, but defined as s0(t) = cos(φ(t)/2), and its corresponding delay
was set to zero for all trajectories samples. The modification of the system architecture is
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presented on Fig. 3.19.

3.4 Motion Style Morphing by Anechoic Mixture Parame-
ter Blending

The proposed model for the real-time generation of trajectories permits style morphing
by linear interpolation of the average angles mi, the mixing weights wij and the delays
τij . The interpolation of the mean angles and of the weight matrices is straight forward.
However, the interpolation of the delays requires and additional approximation to avoids
artifacts that are caused by ambiguities in the estimation of the delays. The technique of
the delays interpolation presented below was used in the Bridge and Welsh dance synthesis
scenarios103,210 presented in Section 3.6.

For periodic source signals ambiguities in the estimation of weights and delays can arise
that have to be removed prior to interpolation. Periodic source signals fulfill sj(t+ rT ) =
sj(t) with integer r. In addition, source signals can be approximately periodic, fulfilling
sj(t+ qT/n) ' sj(t) with integer q and n. Such ambiguities are specifically a problem for
the source signals that model the higher frequency components, where T/n is an integer
fraction of the gait cycle time T . This (approximate) periodicity can cause ambiguities in
the estimated delays, which might differ by multiples of T/n. If such delays are linearly
interpolated they introduce phase differences between the sources that do not interpolate
correctly between similar motion styles. To remove such ambiguities, the delays in the
estimation step of the anechoic de-mixing algorithm are replaced by the modified source
delays τ̃ij = τij − qT/n, where q was chosen to minimize the values of the delay differences.
This is done by finding the local extrema (closest to zero) of the cross correlation function
between the original and time shifted versions of the source signals. This made it possible
to restrict and interpolate the delays within the intervals [−T/2n, T/2n], removing the
ambiguity.

With the corrected time delays τ̃ij and weights the interpolation between two movement
styles (a) and (b), e.g. neutral and emotional walking, can be characterized by the equations

mi (t) = α (t)ma
i + (1− α (t))mb

i (3.19)

wij (t) = α (t)waij + (1− α (t))wbij (3.20)

τ̃ij (t) = α (t) τ̃aij + (1− α (t)) τ̃ bij (3.21)

The time-dependent morphing parameter α(t) specifies the movement style at time t.
Additionally, the gait speed can be adjusted by interpolating the eigenfrequencies of the
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oscillators:
ω0(t) = α (t)ωa0 + (1− α (t))ωb0 (3.22)

3.4.1 Event-based Transitions between Actions in Multi-action Sequences

For the online blending between different actions in multi-action sequences (like the drawer
walking-reaching scenario,209), we constrained the delays of the source signals during the
extraction of the anechoic mixtures obtaining the same delay value for a particular source
and particular angle across all actions. So, in event-based morphing we only blend online
the mixing weights wij and angle mean values mi.

For the weights associated with the periodic sources, the corresponding weight matrices
were linearly blended according to the relationship W (t) = (1 − α(t))Wprev + α(t)Wpost,
where Wprev is the weight matrix (wij) in the step prior to the transition and Wpost the
one after the transition. The mean values for each of the angle trajectories were morphed
accordingly: m(t) = (1 − α(t))mprev + α(t)mpost, where mprev is the mean value in the
step prior to the transition and mpost is the one after the transition. The time-dependent
blending weight α(t) was constructed from the phase variable φ(t) of the leading oscillator.
Identifying the transition point, where the weights switch between the subsequent actions
with phase φ = 0, the blending weight was given by the equation (here, regarding only
two adjunct actions, we use convention: φ ∈ [−2π; 0[ for a previous action, and φ ∈ [0; 2π[
for a next one):

α(t) =


0 φ < −βπ,

(1 + sin(φ(t)
2β ))/2 φ ∈ [−βπ;βπ],

1 φ > βπ

 (3.23)

The parameter β = 1/5 determines the width of the interpolation interval and was chosen
to guarantee natural-looking transitions209.

The weights of the non-periodic source had to be treated separately since they can have
different signs before and after the transition. Since the timing of this source is completely
determined by the phase φ(t) of the leading oscillator, we constrained the blending by
allowing sign changes for these weights only at the point where this phase crosses zero
(φ(t) = 0). The ramp-like non-periodic source is normalized in a way so that s0(0) = 1 and
s0(T ) = −1 (T being the duration of an oscillation of the leading oscillator in the attractor
state). The following morphing rule W (t) = sign(φ(t))[(α(t)−1)Wprev+α(t)Wpost] ensures
a smooth transition making the weights for this source converge at the boundaries between
the actions to the intermediate value Wtrans = (mprev +mpost)/2 + (Wpost −Wprev)/2.
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Figure 3.20: Learned nonlinear mappings between action length and duration and
the mixing weight of the 1st source for hip flexion angle: a) 1st action, b) 2nd action.
The figure is adopted from209.

Normal step
(repeated)

Short step
with reaching

Drawer 
opening and
grasping
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Parameters optimized according
to “end-state comfort hypothesis

Step length inferred from
residual target distance

Figure 3.21: Drawer walking-reaching-opening scenario. Three elementary actions
extracted for learning and their control dependencies: 1) normal step; 2) step with
initiation of reaching; and 3) standing with opening of the drawer and reaching for
the object.

3.4.2 Learning of Behavior Specific Mappings between Action Parame-
ters and Mixing Weights

In order to make the generated behavior adaptive for conditions that were not in the
training data and for dynamic changes of the environment, I devised an online control
algorithm for the blending of the weights W and angle mean values m, separately for each
action. For this purpose, I learn nonlinear functions that map the step lengths and the
duration of the steps onto the mixing weights. For the learning of this highly nonlinear
mapping, Locally Weighted Linear Regression (LWLR,16) is used. Fig. 3.20 shows an
example for the weights of the first periodic source.

The required step lengths are computed online from the total distance to the drawer.
The schematic view is presented in 3.21. The length of the step of the second action was
optimized in order to generate an optimum (maximally comfortable) distance for the third
action, which was estimated from the human data to be about 0.6m. The total distance
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between the start position and the drawer D was then redistributed between the first
two actions using a linear weighting scheme, specifying the relative contributions by the
weight parameter γ. The remaining distance D − 0.6m was then distributed according
to the relationships D1 = (D − 0.6m)γ and D2 = (D − 0.6m)(1 − γ), where we fitted
γ = 0.385 based on the human data. This approach is motivated by the hypothesis that
in humans predictive planning optimizes end-state comfort, i.e. the distance of the final
reaching action165.
This algorithm is extended by a method that introduces additional normal steps (corre-
sponding to action 1), in cases where the goal distance exceeds the distance that can be
modeled without artifacts by a three-action sequence. If the distance between the goal
and the agent was too short for the introduction of long steps, instead a variable number
of short steps as in action 2 were introduced.

3.4.3 Semi-supervised Learning for Style vs Content Separation

The Structural Learning problem in motion synthesis

Structural Learning, the learning and inference of the hidden parameterized style manifold
of human motion structure is a hot topic in recent research35,36. Researchers are interested
in human strategies for the synthesis of articulated motion36 as well as in motion synthesis
algorithms for the purpose of robotics188 and computer animation17.

There is the well-known problem of redundancy of degrees of freedom (DoFs) for human
limbs28. E.g. for an arm (actuator) with 7 DoFs, a one-dimensional manifold (or variety)
of actuator’s postures corresponds to a single final position of the end-effector, the hand
with its 6 DoFs of position and orientation in space. This is redundancy in an inverse
statics (IS) task: for a given hand position and orientation we want to infer the ”most
appropriate” arm-configuration, one from many. Even in case of a planar arm with 2 links
and 2 DoFs and with a point-like end-effector, for any reachable target point - the 2 feasible
arm configurations provide the target touching. A similar redundancy is present in the
inverse kinematics (IK) task, which is to find the mapping from the desired instantaneous
6-DoF velocity of the hand onto the instantaneous velocities of 7 joint angles of the arm.
These redundancies allow humans to exploit the flexibility in the arm reaching task, pro-
viding the freedom for concurrent tasks during the execution of the main one. Those
auxiliary lower priority tasks can be: obstacle avoidance at final or intermediate postures,
reduction of work against gravitational forces, optimization of torque loads across limbs319,
utilization of reactive and Coriolis forces in fast motion, intrinsic noise reduction117,314,
minimization of torque control269, and other tasks of enhancing the robustness of motion
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Figure 3.22: The snapshots of two reaching trajectories (red and blue) of a 3-DoFs
planar arm starting with the same configuration (green, joint centers are red circlets)
and reaching the same goal (light green star). The trajectories are produced by the
prioritized inverse kinematics, preferring arm joint configurations with ”elbow down”
or ”elbow-up”.

with respect to the expected online disturbances. The computational framework for the
inverse kinematics in robotics, which takes into account multiple parallel tasks, was first
proposed by187 (cf.154) and then developed in full mathematical detail by288. Later, this
approach was named Stack-of-Tasks 82 and extended to constrained inverse dynamics (ID)
tasks as well188.

The unconstrained local inverse kinematics and inverse dynamics tasks are linear. In
general motion synthesis using learning-based approaches we consider more general nonlin-
ear mappings between task space (e.g. hand state-space) and effector state space (e.g. arm
joint angles). As an example, in Fig. 3.22 there are snapshots of two alternative reaching
trajectories of a 3-DoFs planar arm presented. Both trajectories start with the same initial
arm configuration, both have the same trajectories of the end-effector in working space -
a vertical straight line. But these two trajectories are produced with different arm joint
angles prioritization by means of prioritized inverse kinematics, in the framework proposed
in17. The red one uses the preferred negative shoulder angle, keeping the shoulder below
the horizontal line (and preferred positive elbow angle ”elbow down” style), whereas the
blue trajectory was made with ”elbow-up” style preference (with the preferred positive
shoulder angle and negative elbow angle). In this prioritized IK framework17, the style
preference is the second priority task, which does not interfere with the main task - moving
the end-effector along the prescribed vertical trajectory.
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Figure 3.23: Sketch of an example distribution of arm reaching trajectories repre-
sented as dots in extended goal-style space (on the left panel). The same trajectories
represented in the space of primitives weights (feature space on the right).

The task of semi-supervised learning of goal-style representations for arm
reaching movements.

For motion synthesis, we might approximate the set of different planar arm reaching trajec-
tories by a linear mixture of primitives, e.g. by PCA components. For the example of the
planar arm motions depicted above, in the space of the weights of the PCA components of
the arm joint angles one may distinguish two submanifolds corresponding to each reaching
goal, or even to each end-effector reaching trajectory. The directions in this space corre-
sponding to the preference of the style of reaching motion can be parameterized by style
variable(s). If such style submanifold attached to every goal value is an affine subspace in
feature space, identical at every goal point, we may take any fixed linear subspace of the
feature space and use it for style parametrization. For example, we may take one or two
largest PCA components of the point distribution in feature space and claim those 1d or
2d subspaces as representing a 1d or 2d motion-style parameter.

Let us consider goal-space (which is the task space, the space of parameters of arm
reaching targets, (e.g. 3d-positions and 3d-orientations), which is extended by style param-
eter(s) - see the left panel of Fig. 3.23. This extended representation makes it possible to
learn a regression mapping from the extended goal-style space onto the feature space, the
space of primitives weights. In order to synthesize a new motion towards new target, first
we need to infer the feasible values of the style parameter(s) given the goal value. Then, as
second step we might use the learned mapping between the goal-style and feature spaces
to infer the appropriate weights of the motion primitives. For example, if we continuously
morph the motion online, in pursuit of a moving target, we recompute at each time-step
the new primitives weights for a new goal position, but simultaneously, we try to stay
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Figure 3.24: Synthetic examples of the testing distributions in extended goal-style
space - the product of goal space and feature space W1W2. The affine style subspaces
are one-dimensional - blue thick lines. Left panel - the mean value of style parameter
is constant, but the style subspace is smoothly varying along with the goal values.
Right panel - the mean value of style parameter is also variable.

close to the style parameter value chosen at the last time-step. Thus, the style preference
at the last time-step must be used to generate a prior for optimal inference of the style
parameter at the next time-step. If at the first stage of the 2-stage inference we obtain
the style parameter as an average of its posterior distribution inferred without any prior,
we may get the averaged value of the style parameter from the area in-between ”elbow-up”
and ”elbow-down” subsets (Fig. 3.23). In the second stage, it may result in very inexact
inference of primitives weights in the feature space and finally in a large task-space error.
Thus, prioritization in style inference is necessary.

The default approach for semi-supervised learning combined with non-linear
regression.

In feature space the affine style manifold corresponding to every goal point may be not just
a translated linear subspace, but the mean point of the style parameter distribution, and
the style manifold principal directions may vary (may be smoothly) along the variation
of the goal value. In Fig. 3.24 we present two synthetic trial distributions where the style
subspace is a 1d affine space in the 2d feature space W1W2, but it is smoothly varying along
with the goal values. We may choose the style-goal distribution model, where the affine
style varies its orientation or it may also vary the mean value of its localized distribution.

We present a simple machine learning approach to learn complex distributions in
extended goal-style space. The aim of our machine learning approach is to assure not
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Figure 3.25: Results of the learned regression models for the two artificial testing
distributions presented in the previous figure. The inferred means of local style
distributions are shown as green lines. The positions of points corresponding to a
fixed style value (constant across goals) are depicted as blue lines.

only the smoothness of the mean values of modelled style distributions across goals, but
also the smoothness of the affine transform in transitions from one goal base point to
another. We exploit the semi-supervised learning approach - the values of goal parameters
are known, but the style parameter manifolds must be learned in an unsupervised fashion.
The style-goal (style-content) separation in semi-supervised machine learning was first
introduced for bilinear and multi-linear models306. We are extending this approach to
nonlinear dependencies of the affine style manifold on the goal parameters.

As nonlinear regression learning technique we use the Locally Weighted Linear Re-
gression (LWLR) approach16. It is a kernel-based approach, which combines the local
inference of linear models with the optimal averaging of the predictions provided by these
local models. Another machine learning technique which can be used here is nonlinear
regression with a Gaussian Process prior248, e.g. with the stationary (homogeneous) or
non-stationary covariance function. For the sake of clarity, below we present an example
using the Radial Basis Function (RBF) kernel method as the non-linear regression.

For the testing examples we use a uniform distribution of N points equally spread
in the rectangle of interval ranges of goal gi, i ∈ [1 . . . N ] and style values. Next, we
warp the supporting rectangle to embed it in 3d full space as shown in Fig. 3.24 (right
panel). The resulting 2d feature space (W1W2) values for all N points are collected in data
matrix X, which has N rows and 2 columns. For the local style mean-values estimation
we use K Radial Basis Functions with their centers ck (k ∈ [1 . . .K]) equally distributed
along the range of the goals. We take Gaussian functions with fixed width σ as basis

93



3. Kinematic Motion Synthesis for Computer Graphics and Robotics

functions. The value of each basis function k evaluated at goal position gi, i ∈ [1 . . . N ]
is: Ψik = exp (−(gi−ck)2

2σ2 ). All the values are collected in matrix Ψ (of N rows and K

columns). Then, the mean values M evaluated at every goal position gi are obtained by:

M = Ψ(ΨTΨ)†ΨTX

Here, the † symbol denotes pseudoinverse of the kernel (ΨTΨ). The size of matrix M is
N -by-2 for our test examples. The last formula for M provides the local regularization
across goal positions together with the averaging across style dimension(s). The resulting
inferred locations of the mean values M are depicted as green lines in Fig. 3.25.
In order to infer the new mean-point m̃ at new goal input g̃, compute vector ψk =
exp (−(g̃−ck)2

2σ2 ), then m̃ = ψ̄(ΨTΨ)†ΨTX.

As next step we perform iterative estimation of the directions of the style fibers at every
goal position. The procedure is similar to EM -like semi-supervised learning for bilinear
models, but using the RBF network. We denote the 2-dimensional style fiber direction
vector in feature space as v. Each of these 1-dimensional style affine subspaces in feature
space must have its origin at the estimated mean point Mi,:. The matrix V is the concate-
nation of all these style-spanning row vectors, this matrix has size N -by-2. Introduce a
data matrix of residuals R = X−M, where the estimated mean values are extracted. We
also introduce the vector of local style values to infer for each point i ∈ [1 . . . N ]: s. Then,
the iterative algorithm runs as follows:
1) Initialize the style values as s = (diag(RRT ))1/2;
2) for a number of iterations, do:

a non-linear regression step using RBF:
V = Ψ(ΨTΨ)†ΨT (R ◦ [s1̄T ]),

for i ∈ [1 . . . N ]:
si = Vi,:RT

i,:/norm(Vi,:);
end of i-cycle;
with the renewed values of s go back to non-linear regression step.

The norm of 2-dimensional row vector Vi,: is: norm(Vi,:) =
√

(Vi,1)2 + (Vi,2)2. The
operation of taking the diagonal of a matrix and converting it to column vector is denoted
as diag(·).
In order to infer the new style direction vector ṽ at new goal input g̃, use previously
computed vector ψ̄, then ṽ = ψ̄(ΨTΨ)†ΨTR.

This algorithm can be regarded as bilinear estimation in a semi-supervised style-content
learning framework306, where linear estimation is substituted by nonlinear RBF regression.
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Figure 3.26: Sequential snapshots of arm reaching movement towards a stable target
by CoMan.

The results of estimation of style directions and style values for our testing examples are
depicted in Fig. 3.25, where the thick blue line is corresponding to the style parameter
values equal to the maximal value.

Evaluation of semi-supervisory learned mappings

In order to test the style-preserving regression I used the reaching dataset for learning. It
is the second dataset of right arm reaching movements described in Section 3.3.1. The
content input is the reaching goal position and hand orientation angle at the moment of
reaching. The content input together with the inferred most probable style are mapped
to the parameters of motion (weights of source signals) by means of learned LWLR. In
case of the moving targets I track and low-pass filter the target positions online during
reaching, and map their filtered positions to the weights of the generated source signals,
thus modifying the motion during flight. The illustration of the single reaching movements
with specified skew-closed hand orientation (3rd hand-frame vector is at 45◦ with respect
to the horizontal plane) is demonstrated in Fig. 3.26. The additional video [movie3]
demonstrates 4 different reaching movements: for 2 different final hand postures while
reaching a stable and a jumping target.

The comparison of arm reaching movements generated with and without style-inference
technique are presented in Fig. 3.27 and the related videos are [movie4] for panel a) and
[movie5] for panel b). The inference of motion parameters given the goal positions is done
with and without the style-preserving technique. In the last case, the resulting motion is
characterized by a larger reaching error.

3https://goo.gl/fBn2mK (tiny.cc/yw8l5y)
4https://goo.gl/jUAri9 (tiny.cc/ny8l5y)
5https://goo.gl/5ZzzjL (tiny.cc/5z8l5y)
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a) b)

Figure 3.27: The figure demonstrates the distributions of the interpolated positions
of the reaching goals (orange balls). The simplified avatar of iCub is animated by
the Horde3D graphics engine278. Panel a Left avatar: produced by style-preserving
morphing (target error: 1-2 cm). Right avatar: general LWLR with respect to the
goals, not style-preserving (target error: 7-8 cm). Panel b shows front and side views
of reaching, left column - style-preserving; right column - not style-preserving. See
video linked in text.

The style-preserving regression was used in modelling the arm reaching while walking
on treadmill (the dataset is described in Section 3.3.1). Here, the source signals are
subdivided into two synergies: 1st subset of 3 periodic anechoic sources controlling the
whole body along the normal walking gate cycle (the source delays are fixed across walking
grasping trials, but are different for different joint angles and the source weights vary for
every trial); and the 2nd subset of 3 periodic sources plus a bump-like source (the delays
and the weights vary across joints and across trials). The second subset of source signals
contributes most to the upper body degrees of freedom at the time interval when the arm
reach is performed. The delays of the bump-like source are aligned in time with the target
reaching movement. The goal-style separation framework is tested for the synthesis of
adaptive walking and grasping of stationary and moving targets. For the latter, weights
and delays are adaptively changed along with time, accounting for the predicted target
trajectory and grasping moment. The regression inputs are the time of goal reaching with
respect to gait phase and the default position of the target in the chest coordinate frame
(with respect to the upper body). The default target position was the predicted position
computed using the simplified version of the sliding control framework15,293 and low-pass
filtered.

Fig. 3.28 displays snapshots of the synthesized motions on a kinematic model of the
human body. In the figure, 4 different stable target positions are reached all at the same
phase of the gait cycle. In Fig. 3.29 2 different target positions are reached at 2 different
phases of the gait cycle. The figure presents two successive moments at 0.8 sec and at
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Figure 3.28: The synthesized arm reaching during walking. 4 different stable target
positions are reached all at the same phase of the gait cycle.

t = 0.8 s

t = 1.1 s

Figure 3.29: The synthesized arm reaching during walking. 2 different target posi-
tions are reached all at 2 different phases of the gait cycle. Before reaching the target
balls are green, for a short period after reaching the target balls are red, and they
turn blue after that period. See video linked in text.
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1.1 sec (0.0 sec is the start of the gait cycle). The corresponding video can be found at
[movie6]. The synthesized online-reactive arm reaching during walking for the moving
targets is demonstrated in the videos [movie7] and [movie8].

3.5 Navigation

For the modelling of ground walking in computer graphics applications I use the simplified
algorithms of computing the propagation and rotation velocities of the avatars from the
resulting synthesized joint angle trajectories. These trajectories also contain three axis
angles of the root node of the kinematic chain of our avatar model, which is the pelvis
frame. In reconstruction of pelvis frame orientation we align its heading direction with the
first global horizontal coordinate axis, which nullifies the pelvis pan angle, (but does not
affect its pitch and roll). The instantaneous pan angle velocity of the pelvis is computed
later from the instantaneous rotational velocity of the support foot relative to the pelvis
coordinate frame (projected onto the global vertical coordinate axis). This computation is
to be done similar to the inference of the pelvis propagation velocity after deciding which
is the supporting foot. So, at every time instance, after the reconstruction of the full body
posture of the avatar in the global coordinate frame, the algorithm is identifying which
one is the support leg. The simplest approach is to identify which toe base or hill (left
or right) is at the lowest position in global coordinate frame. The lowest one defines the
supporting foot, but there are also more sophisticated algorithms proposed by105,160. The
posture reconstruction errors may heavily affect the decision on the lowest feet elements.
Within a certain error-defined threshold of the hight differences of lowest feet elements it
is not possible to identify the supporting foot. The relative vertical positions of the ankles
also do not provide enough information, since in many dances and walks the phase when
the supporting foot is rising on its toes is very prominent. In such moments the vertical
positions of the support leg ankle joint and hill are higher than those of the swinging
leg. For normal walking forward, the horizontal velocity of the ankle joint is directed
forward in respect to the pelvis heading direction for the swinging leg, and this velocity is
directed backward for the support leg. This information helps to identify the supporting
foot for some simple scenarios. For this purpose, we compute the horizontal velocities of
the ankle joints and feet elements (hills and toe bases) in the coordinate frame of the pelvis.
The decision of the supporting foot is then based on the relative height of the lowest feet
element and based on the horizontal velocity of both ankle joints with respect to the pelvis

6https://goo.gl/K2H3eS (tiny.cc/h18l5y)
7https://goo.gl/sLfW92 (tiny.cc/818l5y)
8https://goo.gl/F8aTAV (tiny.cc/k28l5y)
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heading direction in the global coordinate frame. When the supporting foot is identified,
the rotational velocity (pan angle velocity with respect to the vertical axis of the global
coordinates) and the horizontal propagation velocity of its lowest element with respect to
the pelvis frame are taken as new pan angle rotational velocity and propagation velocity
for the pelvis, (assuming that this supporting foot element is stable on the ground). For
more complicated scenarios of dances with sharp turns, employing stepping forward and
backward (and when the ankle joint relative motion is not informative any more), we also
employed a method of pre-computing the two possible pelvis propagation and pan angle
rotation velocities, supposing each of two feet being possibly supporting, and then using
the information about instantaneous pelvis accelerations to decide, when the supporting
foot switching is acceptable and results in the least jerk and acceleration of the pelvis.

Using the morphing of the model parameters online (eq. 3.21) one may produce different
walking gait styles, including gradual changes of the walking direction of the avatars to the
left or right. We use this online control of the walking direction for the control of navigation
for the purposes of goal directed walking, avoiding stable and moving obstacles. For this
purpose our trajectory generation algorithm is combined with a simplified version of an
online-reactive navigation model, (similar to those, that have been applied successfully in
robotics before277,334). We extended this model by inclusion of predicted collisions in the
navigation dynamics235, and a similar approach was employed also by234. The navigation
dynamics was given by a differential equation for the heading direction ϕi of the characters.
The turning rate of the avatars was controlled by morphing between straight and curved
walking steps. The morphing weights were dependent on the temporal change of heading
direction ϕ̇i. The navigation dynamics specifies this change by a differential equation that
integrates three different components (where pi denotes the position of character i):

dϕi
dt

= hgoal(ϕi,pi,p
goal
i )︸ ︷︷ ︸

goal-finding

+
∑
j

havoid(ϕi,pi,pj)︸ ︷︷ ︸
instantaneous obstacle avoidance

+
∑
j

hpcoll(ϕi, ϕj ,pi,pj)︸ ︷︷ ︸
predictive obstacle avoidance

(3.24)

The first term determines a goal-finding term, where ϕgoal
i defines the goal direction angle

relative to character i:

hgoal
(
ϕi,pi,p

goal
i

)
= sin(ϕgoal

i − ϕi) (3.25)

This term introduces a force that steers the avatars towards the goal (cf. Fig. 3.30a).
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a)

b)

c)

Figure 3.30: Navigation dynamics depending on: a) Goal-finding term, b) instanta-
neous obstacle-avoidance term, and c) predictive obstacle-avoidance term. The figure
is adopted from103.
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Figure 3.31: An examplary video showing the comparison of a synchronization
behavior generated by my method with a standard approach such as PCA. The figure
is adopted from103. See text for more details.

The second term implements obstacle avoidance, where obstacles can also be defined by
moving objects like other avatars (Fig. 3.30b). This term is given by the expression:

havoid
(
ϕi,pi,pj

)
=

sin (ϕi − ϕij) · exp
(
−(ϕij − ϕi)2

2σ2
ϕ

)
· exp

(
−
d2
ij

2σ2
d

)
(3.26)

More realistic collision avoidance is accomplished by inclusion of a third term in the
navigation dynamics that is dependent on the predicted future positions of the avatars
(Fig. 3.30c). This helps to prevent collisions by steering the characters away from each
other already at an early stage, when a collision is likely to occur in the future. The
prediction assumes straight trajectories of the avatars and computes the closest point
between their predicted trajectories. This third term has the form:

hpcoll
(
ϕi, ϕj ,pi,pj

)
=

sin(ϕi − ϕpc
ij ) · exp

(
−

(ϕpc
ij − ϕi)2

2σ2
ϕ

)
· exp

−
(
dpc
ij

)2

2σ2
d

 (3.27)

Where ϕpc
ij signifies the direction of the predicted collision point (Fig. 3.30c). See103,235

for more details.

3.6 Computer Graphics Applications

In the following scenario I compare the synchronized propagation of a group of avatars
animated using my architecture generating anechoic source signals with the same archi-
tecture using more canonical dynamic systems generating PCA components (cf. Fig. 3.31
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and demo [movie9]).
Avatar 3 acts as a ’leader’. It is driven by three coupled oscillators without additional

external couplings. The other two avatars are coupled to this leader and start with equal
initial phases that are different from the phase of the leader. The movement of one charac-
ter (avatar 1) was generated applying our novel method, using an anechoic mixture model
with three sources. The movement of the second character (avatar 2) was generated with
a PCA model with 7 components in order to obtain the same approximation quality. This
avatar was driven by 7 coupled Van der Pol oscillators, where we tried to optimize the
coupling for maximum naturalness of the obtained animation. The detailed comparison
shows that the avatar whose motion was generated by the novel architecture (oscillator
dynamics with 6 degrees of freedom) shows a natural-looking transition from its initial
state to the equilibrium state that is synchronized with the leader. The movement of the
avatar whose movement was generated using PCA (oscillator dynamics with 14 degrees of
freedom) shows artifacts. These artifacts are even increased if translational body motion
is added by enforcing the kinematic foot-contact constraints on the ground, resulting in a
turning motion of the avatar (see Fig. 3.31 and demo [movie10]. If the internal coupling
strength within the avatars is increased the synchronization between multiple avatars
slows down and an unnatural reduction of step size arises. If the number of components
in the PCA model is increased to 12, similar problems remain also for stronger coupling
forces (cf. demo [movie11]). The proposed novel trajectory model thus produces more
natural transitions between different coordination states. Present work focuses on a more
systematic quantitative comparison between different methods.

Online style morphing and integration of periodic and non-periodic synergies

The algorithm for online style morphing (Section 3.4) was tested by applying it to a
complex sequence of locomotion patterns, which is a subset of steps from a folk dance. The
movements were generated by interpolation between five prototypical gaits in our data set:
straight walking neutral and happy, rotation steps of backward and forward walks, walking
with stooped posture and turning on the spot. Even though these types of locomotion
were quite different we were able to approximate them with only three different source
terms. Applying the proposed technique for the interpolation between weights, posture
vectors, and time delays we were able to create realistic transitions between these different
patterns, resulting in a complex sequence of steps that could be part of a dancing scenario

9https://goo.gl/4eC9cY (tiny.cc/p38l5y)
10https://goo.gl/aTkPnF(tiny.cc/248l5y)
11https://goo.gl/j8RsDa (tiny.cc/p68l5y)
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Figure 3.32: Dancing figure from a folk dance. The sequence was generated online
by blending and recombination of the learned synergies with dynamically changing
morphing weights. An external trigger signal initiates the raising and lowering of the
arms of the avatars. See text for further details.

(demo [movie12]).
We tested that our method correctly identifies the spatial localization of periodic and

non-periodic motion components (synergies) in the training data. The mixing weights wij
for the fourth non-periodic source are significantly different from zero only for the angles
of the shoulder and elbow joint, reflecting the fact that in our data set the non-periodic
movements were mainly executed with the arms. The separation of different spatially lo-
calized movement components makes it possible to modify the movement styles of different
synergies separately. This is particularly true for periodic and non-periodic primitives, and
novel movement patterns can be generated by combining such primitives in ways that were
not present in the training data. A simple example can be downloaded as [movie13]. In
this case, an arm movement is superposed with different relative timings on the periodic
movements of the feet of the two avatars. The sequence is generated using the blending
method described in Section 3.4 by recombining the learned synergies with dynamically
changing morphing weights and an external trigger signal that initiates the raising and
lowering of the arms of the avatars. The whole sequence can be coupled easily to an
external rhythm that represents, for example, the beat of the music.

The same method can be applied for more complex scenarios, like dancing of two
couples. As illustrated in Fig. 3.32 and demonstration [movie14], one of the two couples
forms a bridge with the arms while locomoting forwards, while the second couple walks
through this bridge one-by-one, in a crouched posture. Then the partners turn around
and change roles. The whole scenario was simulated online, modulating the dynamics by
a few binary control signals that define the action mode of each avatar (forming bridge,
crouching, or turning). In this case, periodic and non-periodic movement primitives were

12https://goo.gl/xN98MG (tiny.cc/s78l5y)
13https://goo.gl/v6Grzs (tiny.cc/m88l5y)
14https://goo.gl/wkmWQ8 (tiny.cc/ba9l5y)
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Figure 3.33: Simulation of a ’folk dance’. Behavior is self-organized by combining
the different elements described in this chapter. Characters act fully autonomously
and synchronize with the music in the central corridor. See text for details. The figure
is adopted from210.

coupled in a way that permits an initiation of the the arm movement at any time during
the step cycle (e.g. dependent on whether the partner has already completed his turning
step).

Self-organization of a rhythmic crowd dance

To further explore the capabilities of the proposed framework we tried to self-organize a
folk dance scenario, where a larger group of avatars has to walk in synchrony with the
music in a formation. After reaching the wall of the ball room the characters have to run
back to their initial point and to re-synchronize with the music and the other dancers. A
video showing this self-organized animation scenario can be downloaded as [movie15].

Fig. 3.33 illustrates the simulated scenario. It is characterized by four spatial sectors:
1) At the entrance of the corridor the characters wait for the corresponding partner and
start to move in synchrony. This behavior is implemented by the introduction of couplings
between the avatars of one couple and between subsequent couples within the corridor and
a coupling to an external periodic signal derived from the music.
2) At the end of the corridor the two avatars of each couple separate, and the coupling
between their oscillators is removed. This results in an asynchronous movement that is
controlled by the navigation dynamics (Section 3.5). In addition, within this zone the

15https://goo.gl/qc5gzY (tiny.cc/ua9l5y)
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b)

a)

Figure 3.34: Avoidance behavior and change of emotional style. a) Avatars starting
from different positions with a sad emotion are heading towards their goals (red
circles). b) At the meeting point the emotional style changes to happy. In addition,
the characters avoid each other. The figure is adopted from236.

emotional walking style of the characters changes from happy to neutral. The curved
walking paths were generated by defining appropriate intermediate goal points.
3) Along the straight paths outside the corridor the avatars accelerate to catch up with
their partner at the beginning of the corridor in time, simulated by a temporary increase
of the eigenfrequency of the corresponding oscillators.
4) In the last zone the characters decelerate, modeled by a decrease of the eigenfrequency
of the oscillators. A difficult problem is the re-synchronization with the correct foot at
the entrance of the corridor. This is accomplished by slightly adjusting the oscillator
frequencies to ensure re-synchronization with the appropriate leg.

Examples of pedestrian navigation with obstacle avoidance

In order to test the obstacle avoidance navigation algorithms we tested the following
scenarios. For the first one see Fig. 3.34. A group of avatars that meet in the center of the
scene changes their affect upon contact with the others. This behaviour was implemented
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by making the affect of each avatar dependent on the distance from the others. In addition,
the avatars avoid each other, due to the navigation dynamics described in Section 3.5. In
this simulation, navigation and changes of emotional styles were combined, based on only
three prototypical gaits: neutral walking with rotation right or left and emotional straight
walking. The demos 16 show examples of navigation with emotional changes from neutral
to happy, neutral to sad, and sad to happy.

In order to produce the morphs between straight emotional gaits and neutral curved
walking (Left and Right), we first created an intermediate balanced mixture by interpolating
the mixing weights according to the relationship:

wij = 3
4w

emotional
ij + 1

8((1 + βLR)wLeftij + (1− βLR)wRightij ) (3.28)

Where parameter βLR, with 0 < βLR < 1, was adjusted for different emotional styles in
order to balance left-right declinations from the straight line. Corresponding with Section
3.4, morphing was done in a piecewise linear manner dependent on the sign of the change
of the heading direction.

The second scenario based on a similar implementation is shown in Fig. 3.35. Here
two groups of avatars cross each other, avoiding collision. When they meet each other
their emotions switch to another affect. The simulation shows that the proposed frame-
work integrates style morphing and autonomous navigation of characters. Examples are
demonstrated in demos 17, including transition between neutral and emotional gaits and
different emotional gaits.

The second scenario [demo18] is illustrated in Fig. 3.36. A group of avatars that meets
in the center of the scene changes their affect upon contact with the others. This behaviour
was implemented by making the affect of each avatar dependent on the distance from the
others. In addition, the avatars avoid each other and avoid stationary pillars, due to the
navigation dynamics described in Section 3.5. In this simulation, navigation and changes
of emotional styles were combined, based on only three prototypical gaits: neutral walking
with rotation right or left, and emotional walking. In order to produce the emotional gait
for blending with left and right neutral paces, we first created an intermediate balanced
mixture by interpolating the mixing weights. Corresponding with Section 3.4, gait morph-
ing was based on a piece-wise linear interpolation dependent on the sign of the change of
the heading direction dφ/dt.

16https://goo.gl/m5UqfB (tiny.cc/6d9l5y) https://goo.gl/e7QQnE (tiny.cc/2f9l5y)
https://goo.gl/3q8whT (tiny.cc/0g9l5y)

17https://goo.gl/qJRw4R (tiny.cc/4h9l5y) https://goo.gl/xzThvS (tiny.cc/2i9l5y)
https://goo.gl/QTbXrw (tiny.cc/ik9l5y)

18https://goo.gl/6FcRRq (tiny.cc/gl9l5y)
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a)

b)

Figure 3.35: Avoidance behavior and change of emotional style. Three avatars,
starting from the left side, change their emotion from happy to sad while proceeding
to their goals. A second group of 3 avatars starting from the right side change their
emotions from sad to happy while avoiding the opposing group. The figure is adopted
from236.

Figure 3.36: Reactive online control of locomotion. Agents avoid the obstacles
(pillars) and other agents in the scene. Trajectories are generated by morphing between
steps with different length, and curvatures of the walking path (left, straight, right),
where blending weights are controlled by a navigation dynamics that controls the
heading direction dependent on obstacle and goal positions.
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Figure 3.37: Two synthesized trajectories, illustrated in parallel for two conditions
with different initial distance of the character from the drawer. Both animations look
highly natural even though these goal distances were not present in the training data.

3.7 Modelling and Online-reactive Simulations of Walking-
and-reaching Sequential Behaviors

In this section I present the online animations of multi-step human movements. The
planning is predictive and optimizes the ’comfort’ during the execution of the final action.
The proposed system exploits the concept of movement primitives in order to implement a
flexible and highly natural-looking coordination of periodic and non-periodic behaviors of
the upper and lower limbs, and to realize smooth transitions between subsequent actions
within the sequence. The learning was done on the walking-reaching task dataset (Section
3.3.1). Stepwise estimation of spatially localized anechoic primitives is described in the
last subsection of Section 3.3.3 and the learning of behavior specific mappings between
action parameters and mixing weights is described in detail in Section 3.4.2 above.

Two example sequences of concatenated actions generated by our algorithm, for dis-
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Figure 3.38: Postures at the transition between actions 2 and 3 for different lengths
of the second action (red: 0.53 m , green: 0.39 m). Even though the distances to
the drawer are the same in the last action the postures differ due to the predictive
planning of the second action.

tances to the goal object that were not in the training set are shown in Fig. 3.37. An
example video can be downloaded from [Demo19].

A more systematic evaluation shows that the system can, without introducing addi-
tional steps, create natural looking coordinated sequences for goal distances between 2.34
and 2.94 m [Demo20]. If the specified goal distance exceeded this interval our system
introduced additional gait steps, making the system adaptive for goal distances beyond 3
meters. This is illustrated in [Demo21] that presents two examples of generated sequences
for goal distances 3.84 and 4.62 m. With 3 actions the largest achievable range of goal dis-
tances without artifacts was about 60 cm, while adding another step increases this range to
about 78 cm. Adding two or more normal gait steps our method is able to simulate natural-
looking actions even for goal distances longer than 5 m. The next [Demo22] illustrates the
sequence of three actions of first type followed by actions 2 and 3 for the goal distance 5.3 m.

Fig. 3.38 illustrates that, like in humans, the posture at the transition between the
second and third actions depends on the previous step. In one case the step lengths for
action 2 were 0.53m and 0.39m, while the distance in the last step was identical (0.6m).
This illustrates that in fact the posture for the reach is modified in a predictive manner
over multiple steps, where the predictive planning modifies the posture at the beginning
of the last action even if the distance to the goal object for this action is identical. A
planning scheme that is not predictive would predict here the same behaviors for the last ac-

19https://goo.gl/QhR9SE (tiny.cc/fm9l5y)
20https://goo.gl/1jM5uG (tiny.cc/in9l5y)
21https://goo.gl/o8xh83 (tiny.cc/2n9l5y)
22https://goo.gl/tvjTi2 (tiny.cc/bp9l5y)

109



3. Kinematic Motion Synthesis for Computer Graphics and Robotics

Figure 3.39: Online perturbation experiment. The goal (drawer) jumps away during
the approach of the character. The online planning algorithm introduces automatically
an action of type 2 (short step) to adjust for the large distance to the goal.

tion since the relevant control variable (distance from the object) is identical for both cases.

An even more extreme demonstration of this online adaptivity is shown in movie
[Demo23]. Here the drawer jumps away during the approach by a large distance so that
it can no longer be reached with the originally planned number of steps. (Fig. 3.39). The
online planning algorithm adapts to this situation by introducing an additional step so
that the behavior is successfully accomplished. Again the behavior has a very natural
appearance even though this scenario was not part of the training data set.

3.8 Adaptive Synthesis of Feasible Full Body Movements
for HRP-2

In previous sections I have presented a kinematic pattern synthesis architecture that
provides flexible online planning of coordinated full-body movements, based on learned
dynamic movement primitives. This section presents the results of the work done together
with LAAS/CNRS, Toulouse, of the implementation of the architecture to control real robot
behavior, where the kinematic pattern synthesis is combined with a control architecture
that is based on a Walking Pattern Generator exploiting nonlinear Model Predictive

23https://goo.gl/EzTpsh (tiny.cc/tp9l5y)
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Control. The proposed merged architecture is suitable for online generation of human-like
coordinated full-body movements with long planning horizons. It generates dynamically
feasible behavior of the robot, ensuring appropriate balance control during walking in
presence of fast online replanning.

The central innovation of this work is the integration of the described online-planning
algorithm with a control architecture for the HRP-2 humanoid robot, which is based on
Nonlinear Model Predictive Control (NMPC). This does not only involve the combination
of trajectories derived from human data, as described in Section 3.3.2, but it requires specif-
ically the approximation of human data by dynamically feasible trajectories, exploiting
the NMPC framework. These feasible trajectories form a novel training set, from which a
new set of optimized dynamic primitives was derived.

All other approaches in humanoid robotics have only limited capability for allowing the
realization of such human-like long-term predictive motion planning in combination with a
guarantee of dynamic balance during walking in combination with other tasks for the robot
upper body. Common alternative approaches, such as the optimization of such complex
behavior by model-based optimal control approaches [158] are presently computationally
too costly to allow the online generation, where even the optimization of short multi-
step sequences can take easily hours of computation time with the presently available
optimization methods. The functionality and flexibility of the proposed architecture is
demonstrated by simulation using the OpenHRP physics simulator and also in trials on
the real HRP-2 robot. In addition, the proposed system realizes predictive motor behavior
that is compatible with the end-state comfort hypothesis [257,335].

3.8.1 Overview of Robot Control Architecture

The control architecture for the HRP-2 robot is shown in Fig. 3.40. It consists of three
main building blocks. The online kinematic synthesis algorithm, which was laid out in
Section 3.3.4, provides input to the control architecture (shaded box in Fig. 3.40) in terms
of two sets of variables: the linear and angular velocity of the pelvis (variables vref and
ωref), and the joint angles of the upper body qupper body.

The first building block is a Walking Pattern Generator (WPG) that computes from
the variables vref and ωref , for one gait cycle, foot placements xfeet and trajectories of the
Center of Mass (CoM) xCoM and of the Zero Moment Point (ZMP) xZMP that ensure the
dynamic stability of the gait330. This computation is based on model predictive control
(MPC), and further details about the underlying computations can be found in the next
subsection and in220,221.

The second block is a Dynamic Filter (DF) that corrects the preplanned foot, CoM,
and ZMP trajectories, taking into account the planned whole-body motion, resulting in the
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Figure 3.40: Control system for the humanoid robot HRP-2. The Walking Pattern
Generator computes foot positions and CoM and ZMP trajectories, which are further
adjusted by the Dynamic Filter, depending on the planned upper body motion. The
resulting trajectories are consistent with the dynamic stability constraints of the robot.
The approximation of the planned upper body movement and dynamic stability of
walking are guaranteed by a Stack-of-Task approach, where optimal trajectories are
computed by sequential quadratic programming. (See text and215 for details.)

corrected trajectories xcor
feet, xcor

CoM and xcor
ZMP. The DF operates in closed-loop together with

the WPG, and further details about the underlying algorithms are described in220,221,300.
The third building block is the generalized Inverse Kinematics (IK) module that im-

plements a ’Stack-of-Task’ approach. This module combines the corrected CoM and ZMP
trajectories, and the upper-body motion (specified by joint angles). This module outputs
joint angle trajectories for the legs and the upper-body that respect the dynamic stability
constraints of the robot, at the same time approximating, as far as possible, the planned
behavior of the upper body. For this purpose the task of stabilizing the locomotion is
given the highest priority, and the approximation of the planned trajectories is realized in
the null-space of the control signals for this prioritized task. The resulting optimization
problem is solved by a sequential quadratic programming approach (QP-solver).

The resulting optimal trajectories q are dynamically feasible and can be realized by
the low-level controller of the HRP-2 robot. During motion execution, the real-world
environmental and task parameters and the current state of the robot are fed back to
the kinematic planner, closing the control loop for an adaptive interaction between online
planning and MPC in the real world.

3.8.2 WPG based on Optimal Predictive Control

The Walking Pattern Generator (WPG) is based on Model Predictive Control (MPC).
The first WPG of this class was proposed by143. This method computed the reference
nominal Zero Moment Point (ZMP) trajectory from the desired placements of feet during
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the gait cycle. A simplified linear inverted pendulum dynamics (’Cart-Table Model’) was
used to link the Center of Mass (CoM) and the ZMP. Preview control was exploited for
computing the CoM trajectory from the desired ZMP. Due to the model simplifications,
the real ZMP trajectory deviates from the desired one. This deviation is the result of
neglecting the inertial and Coriolis forces generated by the leg swing and by fast move-
ments of the upper-body. In order to alleviate this problem, the authors ran the full body
inverse dynamics in order to compute a better approximation of the real ZMP. This new
ZMP can be computed for the preview horizon in real-time. The resulting ZMP error
was transformed into a resulting CoM error via Preview Control, following the approach
proposed by143. This result can then be exploited to correct the CoM trajectory. The
described two steps of preview control combined with an evaluation of the inverse dynamics
can be repeated iteratively, successively reducing the ZMP error. This approach for the
dynamic correction can be interpreted as a kind of Newton-Raphson iteration300, and was
referred to as Dynamic Filter in the previous Section 3.8.1.

Another improvement of MPC-based WPG is the integration of the computation of
the optimal ZMP trajectory within the constrained quadratic optimization framework that
computes the optimal CoM trajectory336. This approach requires only the specification
of the preplanned foot positions as input, returning the optimal trajectories for the ZMP
and the CoM. Our approach for nonlinear MPC relies in addition on another improvement
of the same framework made by121, which is the further extension of the approach by336.
This reformulation of the optimization framework allows to exploit positional and angular
velocities of the CoM as reference trajectories (for a time horizon of the next two steps),
returning the foot placements and the optimal ZMP trajectories as result of the nonlinear
predictive control problem. This framework (which is described in detail in220,221) was
exploited in our system.

3.8.3 Approximation of Dynamically Feasible Training Trajectories by
Robot Movements

In order to link the described approach for the online synthesis of movements with the
NMPC approach described above, we transform a set of human-compatible movement
trajectories that were generated by interpolation from the original human data into tra-
jectories that result in dynamically feasible behavior of the robot. For this purpose, we
approximated the human-like trajectories by the ones generated by physics-based simu-
lations, exploiting the NMPC framework discussed in Section 3.8.1. This training of our
learning-based approach using dynamically feasible training data is one of the key concepts
of our approach. The details of retargeting and transformation in dynamically feasible
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trajectories are following below.

In order to validate our new architecture, we first tested the system by the realization
of open-loop control, simulating a physical model of the HRP-2 robot (using the OpenHRP
simulator). In a first set of simulations the robot started from a parking position and made
a transition to a normal step. At the end of this step the pelvis velocities (propagation and
angular) were determined and used as initial conditions for the generation of a three-action
sequence. At the end of the last action, a step back to the final parking position was
generated by spline interpolation of the pelvis angular and positional coordinates between
the final state of the last step of the action sequence and the final position, introducing two
additional steps on the spot. We also generated examples of four-action sequences. For
this purpose, the retargeted trajectories were extended by an additional normal walking
gait cycle. In order to augment the training data set for the learning of the mappings
between the task parameters and the model parameters, we generated additional artificial
kinematic data by scaling of the pelvis forward propagation velocities for all gait cycles
uniformly (by the factors 0.8, 0.92, and 1.2), while keeping the upper body trajectories
fixed. In this way we generated a total of 30 training examples from the original 10 motion
capture trials. Examples of the generated three- and four-action sequences are shown in
movie24.

These trajectories were dynamically feasible for the robot, but still based on movement
primitives learned from human data. In order to construct primitives for the control of the
robot, 30 trajectories were simulated with the OpenHRP physics simulator of the robot as
novel training data. The new optimized movement primitives were learned from this newly
produced training data. For this purpose, the trajectories were approximated using 4
sources for the approximation of the first step, and 3 additional ones for the approximation
of the residuals of the other steps, because this resulted in the best approximations with a
small number of sources (Fig. 3.14).

A systematic validation of the approximation quality, dependent on the number of
learned sources, is presented in Fig. 3.41. This figure shows histograms of the reproduction
errors of the step sizes of the first two actions and the resulting arm reaching distance
for the last action for different choices of the number of source functions. In all cases
the spatial errors of the parameters, realized by the full control system, are small, always
below 10 mm and often below 5 mm. This shows that in spite of the high complexity of
the operations that are necessary to transform the original human motion into a motion
sequence that is feasible for the robot, the final control system produces movements that
approximate the planned step sizes and reaching distances quite accurately.

24https://goo.gl/7IZ0P1 (tiny.cc/pq9l5y)
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Figure 3.41: Reconstruction accuracy of the step-sizes and reaching goal distances
for different numbers of sources. The figure shows the histograms of the spatial errors.
The first number indicates the number of sources learned from the first step (action
1), and the second number the number of sources used to approximate the residuals
of the other actions (2 and 3). The figure is adopted from215.

Some of these feasible re-synthesized trajectories were also tested using the real HRP-2
robot (cf. Fig. 3.42). A demonstration of the resulting behaviors for the three-action
sequence is shown in movie25, and a four-action sequence is shown in movie26.

We also quantified the improvement of the behavior resulting from the inclusion of the
Dynamic Filter in comparison with an architecture without this stage. Fig. 3.43 shows the x-
coordinate trajectories of the Zero Moment Point (ZMP) for different model variants: 1) the
idealized inverted pendulum model, which provides a reference trajectory for the underlying
MPC approach (solid blue line xreference

ZMP ); 2) the architecture without the Dynamic Filter
correction (green dashed-dotted line xunfiltered

ZMP ); 3) application of the Dynamic Filter only
to the lower body degrees of freedom, assuming the upper body degrees-of-freedom to be
frozen (magenta dashed-dotted line xDF(legs only)

ZMP ) and 4) when the Dynamic Filter takes in
account the full body motion (orange dashed-dotted line xDF(full body)

ZMP ). The trajectory of
a model without Dynamic Filter correction (green) deviates significantly from the planned
reference trajectory (blue). The inclusion of the Dynamic Filter results in a much better
approximation of the reference trajectory (orange color curve). This correcting effect of the
Dynamic Filter is significantly reduced when it is only applied to the lower body degrees-
of-freedom (magenta curve). This implies that only if the Dynamic Filter is applied to all
degrees of freedom the robot motion is close to the planned dynamically feasible motion.
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1 2

3 4

5 6

Figure 3.42: Real HRP-2 robot performing a 4-action walking-reaching sequence in
the laboratory of LAAS/CNRS. The figure is adopted from215.
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Figure 3.43: Trajectories of the Zero Moment Point (ZMP) (in walking direction, x
coordinate) for different architectures. The blue curve xreference

ZMP indicates the reference
ZMP trajectory computed from the linear inverted pendulum model. The green curve
xunfiltered

ZMP shows the ZMP trajectory without filter correction. The trajectory with
filter correction of all degrees-of-freedom is indicated in orange color xDF(full body)

ZMP ,
and the case where the Dynamic Filter was only applied to the lower-body degrees-of-
freedom is indicated by the magenta trajectory xDF(legs only)

ZMP . The figure is adopted
from215.

3.8.4 Further Experiments on the Open-HRP Simulator and the real
HRP-2

Inference of adaptive behaviors for novel gait distances

In order to test the architecture, with an online generation of new behaviors (step lengths
and reaching movements) dependent on the state of the robot, we synthesized the control
signals for 30 different 4-action sequences, where a spectrum of step sizes was generated by
linear morphing of the source weights. The first normal walking step length spanned 30
values in the range of 50.5 and 56.1cm, and the size of the second step was linearly sampled
within the interval between 16.3 and 35.9cm. The reaching distance of the box in the last
step varied in the interval of 66.3 to 75.5cm. The distance between the object and the front
of the drawer was varied within the interval between 12.4 and 27.3 cm. The generated
behaviors for the most extreme step sizes (smallest and largest) are shown in Fig. 3.44.
Movie27 shows these action sequences. For all tested intermediate step sizes that were
not part of the initial training set a human-like coordinated behavior was generated.

We also tested the feasibility of walking-and-reaching sequences generated in the on-
25https://goo.gl/jjAVfT (tiny.cc/mr9l5y)
26https://goo.gl/RqT6Q3 (tiny.cc/7r9l5y)
27https://goo.gl/IcwrXb (tiny.cc/3s9l5y)
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shorter steps longer steps

Figure 3.44: Synthesized behaviors simulated with the OpenHRP simulator for the
two most extreme goal distances. The figure is adopted from215.

118



Adaptive Synthesis of Feasible Full Body Movements for HRP-2

a) b) c) d) e)

Figure 3.45: The snapshot sequences of two scenarios of drawer jumping, simulated
in the OpenHRP environment.Two rows represent two different initial positions of
the drawer, but the same final position of it. The snapshots are made at equal time
intervals. Moment b) is when the drawer in the upper row jumps to its new position.
Moment c) is when the drawer in the upper row jumps to its new position. Moment
d) is the final reach with the left arm. e) is the reaching of the object inside drawer
with the right hand.
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Figure 3.46: ZMP variability in the lateral plane (y-direction). See the text for
more explanations. The figure is adopted from215.

line scenario of drawer jumping. The total kinematic trajectories were produced by the
kinematic synthesis architecture based on learned representations of feasible elementary
movements. The online-adaptive control was implemented at the kinematic level (Sec-
tion 3.3.4). The resulting trajectories were sent in real time without closed-loop feedback
to the robot control architecture (WPG+DF+SoT modules) controlling the robot in
OpenHRP environment. The resulting animation can be found in the movie28 and snap-
shots of the behavior for two different drawer jumping distances are presented in Fig. 3.45.

A more quantitative assessment of the performance is given in Fig. 3.46, which shows
the variability of the ZMP in the lateral plane. The figure compares feasible trajectories,

28https://goo.gl/upHLsx (tiny.cc/yt9l5y)
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which are generated by the WPC from original trajectories without interpolation to novel
step sizes or goal distances, with the behaviors of the system for novel goal distances that
were not part of the training set and that required adaptation of the behavior using the
online planning architecture. We compared again the behaviors for the different numbers
of sources for the anechoic mixing model (in total between 5 and 9 sources). The analysis
is based on 30 newly synthesized four-action sequences for novel goal distances.

The ZMP trajectory in the lateral plane was computed within all stance intervals, and
the standard deviation (STD) of the difference between this trajectory and the reference
ZMP trajectory was computed. The figure shows error bars with mean and variances as
well as the maximum ranges of the variation. The ZMP variability is relatively independent
of the number of sources for the reconstruction of trajectories and even for an inference of
novel step distances the variability is not significantly higher than for the original trajec-
tories generated with the WPG. This shows that the closed-loop system produces highly
stable behaviors in terms of the variation of the ZMP.

Comparison with simple machine learning approach

One might ask if the proposed complex architecture is really necessary, and if one could
not just learn dynamically feasible trajectories generated with the WPG and interpolate
between the corresponding full-body kinematic angle trajectories using machine learning
techniques. This approach would be based on the hope that the generated interpolations
of the control signals also result in dynamically feasible behaviors when the training
trajectories were dynamically feasible. We tested our method against such a simpler
approach.

For this test we created training data consisting of 30 dynamically feasible walking-
reaching trajectories, which were directly generated by the MPC-based WPG. Each of
these trajectories results in dynamically stable behavior of the robot. The resulting
full-body angle trajectories were again approximated with anechoic mixing models with
different numbers of sources (between 5 and 9). Based on this training data 30 new
trajectories for the new goal distances were computed, using either the simple machine
learning approach discussed above, or with our method of learning upper-body and base
trajectories separately.

The behaviors generated with the simple machine learning approach often resulted in
falling of the robot, specifically during the last action (box opening and reaching for the
object, where both arms are extended). The instability frequently also emerges earlier,
already after the robot stops during the reaching step. A demonstration of this behavior is
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given in movie29, which compares the behavior generated by the näıve machine learning
approach with the stable behavior obtained with our method. The parameters of the
target behaviors are exactly identical for the two simulations.

The distribution of falling events
Algorithm slow speed (tr.1-

10)
middle speed
(tr.11-20)

fast speed (tr.21-
30)

”ML 3+2” 0 10 7
”ML 4+3” 1 0 2
”ML 5+4” 0 5 10
Our method 0 0 0

Table 3.1: Fraction of trials with falls of the robot within 30 test trials with novel
goal distances that were not part of the training set. Simple interpolation using
machine learning techniques, approximating the trajectories with different numbers
of sources (ML) is compared with our method that integrates online planning with
the MPC control system. (For the ML conditions, the first number indicates the
number of sources for the approximation of the first action, and the second number
the additional sources introduced for the approximation of the other steps).

A quantitative analysis is given in Tab. 3.1, that shows how often the robot fell down
out of the 30 novel synthesized behaviors. The simulations are grouped according to the
speed of the walks. In addition, we tested interpolations generated with different numbers
of source functions for the machine learning approach, and compared this with our method
using 4+3 sources. For the low speed behaviors the machine learning approach leads to
stable behavior in some cases, and to falling in others, where the success of the method
varies in a non-systematic manner with the number of source functions used for the ap-
proximation. For the fast speed movements the simple machine learning approach always
results in falling in a significant number of cases. Contrary to this result, our method
always results in stable behavior without falling.

The superiority of our approach is also confirmed by an additional analysis of the
mechanical parameters that determine whether the behaviors can be realized on the real
HRP-2 robot. Fig. 3.47.a shows the peak values of the ankle pitch torques for behaviors
created directly using the MPC-based WPG, behaviors generated with the näıve machine
learning approach (ML) of approximating the full body angle trajectories, and our method.
For the näıve machine learning approach almost all torque peak values exceed 30 Nm,
which is infeasible for the robot (red shaded region in Fig. 3.47.a). This is especially true
if this approach is used for the learning-based inference of new trajectories. Contrasting
with this result, the torques for behaviors generated directly with the WPG and the ones
generated with our method are always in the feasible range. This is true both for the off-line

29https://goo.gl/6hbX6g (tiny.cc/gu9l5y)
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Figure 3.47: a) Peak ankle torques and b) peak ground reaction forces obtained for
testing trials with different methods: WPG: trajectories generated with the WPG;
näıve ML: interpolation of feasible control signals using machine learning methods; and
with our method. We compare also resynthesis of training behaviors, using different
numbers of sources for the approximation of the trajectories, and the synthesis of new
trajectories for new target distances. (Blue error bars indicate mean and standard
deviation. Red lines indicate the ranges between minimum and maximum value). The
figure is adopted from215.

reconstruction and for the learning-based inference using our method, and independent of
the number of source functions.

A similar result emerges for the analysis of the ground reaction forces (maximal normal
force of the feet during the 4-action sequence). The maximum admissible force for the
real HRP-2 is 800 N. Fig. 3.47.b shows that for the näıve ML approach in many cases the
ground reaction force is larger than this limit, except for the reconstruction with 9 sources.
Especially for the synthesis of new inferred behaviors, the peak ground reaction forces
are always infeasible. This contrasts with the results obtained with our method. Here in
all cases, for the off-line reconstruction and for the learning-based inference, the ground
reaction forces are always in the feasible range and quite similar to the peak values that
are obtained when the behavior is directly computed by the WPG using MPC.

These results convincingly show that the proposed architecture provides a significant
benefit over simpler approaches that just interpolate between control signals obtained from
training data that corresponds to stable behaviors of the robot. The integration of online
planning with the MPC-based control architecture in combination with the Dynamic Filter
always results in stable and robust behavior, even largely independently of the accuracy
of the learned trajectory model (number of source functions).
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Chapter 4

Contraction Theory and
Self-organized Scenarios in
Computer Graphics and Robotics

4.1 Introduction and Related Work

The online simulation of human behavior is a core problem in computer animation with
important applications such as computer games. While the dominant approach for the
generation of realistic human movements is based on off-line synthesis using motion cap-
ture, this approach cannot easily be transferred to real-time applications. Only recently,
researchers have started to develop methods to learn models for online synthesis from mo-
tion capture data126,268,285. Dynamical systems derived, for example, from biomechanical
or physical models seem particularly appropriate for real-time synthesis40,112,308. However,
it has turned out that models for the generation of human movements with high degree
of realism typically have to be rather detailed8,123,307, resulting in complex dynamical
systems whose properties are difficult to control. Consequently, the dynamical stability
properties of such systems have rarely been addressed, and given their complexity it is an
open question whether they can be treated at all.

An important domain of the application of dynamical systems in computer animation
is the simulation of autonomous and collective behavior of many characters, e.g. in crowd
animation218,316. Some work in this domain has been inspired by observations in biology
showing that coordinated behavior of large groups of agents, such as flocks of birds, can
be modeled as an emergent behavior that results from the dynamic interactions between
individual agents, without requiring a central mechanism that ensures coordination45,61.
One example is the tendency of multiple agents to synchronize their behavior, for example
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during walking or applauding. It is well-known that such behaviors can be analyzed effi-
ciently within the framework of nonlinear dynamics243. This makes it interesting to exploit
the underlying principles for the automatic synthesis of collective behavior in computer
animation38,250,304.

The control of collective behavior of groups of agents has been treated in mathemati-
cal control theory232,274, typically assuming simplified often linear models for the agents.
Group coordination and cooperative control have also been studied in robotics, e.g. in
the context of the navigation of groups of vehicles137,249, or with the goal to generate
collective behavior by self-organization. Examples are the spontaneous adaptation to
perturbations of inter-agent communication or changes in the number of agents203,223.
Many approaches have analyzed asymptotic stability for consensus scenarios, proposing
quadratic Lyapunov functions and linear combinations of quadratic Lyapunov functions
for systems with a switching structure of the interactions (e.g.182). But in the most in-
teresting cases, quadratic Lyapunov functions for the switching systems did not exist137.
This non-existence was demonstrated theoretically in225. See also179 for a review of the
general problems of stability of such systems. These problems drew attention towards
tools derived from the concept of uniform exponential stability (cf.321), e.g. Contraction
Theory183, which provides constructive ways for the design of switching interactions in
complex nonlinear systems.

In the previous Chapter 3 I presented a new method that approximates complex human
behavior by relatively simple nonlinear dynamical systems. Consistent with related ap-
proaches in robotics40,98,252,276 and biology91, this method generates complex movements
by combining learned movement primitives235. The resulting system architecture is simple
and thus suitable for a treatment of its dynamical stability properties. In this chapter I
present the development of a systematic method for the design of the dynamics of inter-
active crowds. For this purpose, I approximate human movements by relatively simple
mathematical models, combining dynamical models with appropriate learning methods. In
the following I also introduce a novel framework for the analysis and design of the stability
properties of systems for interactive character animation. Exploiting models that are
based on learned movement primitives, I obtain a system dynamics that can be analyzed,
even for situations with multiple characters. I introduce Contraction theory as the new
theoretical approach that permits a treatment of the dynamical properties of networks of
coupled nonlinear dynamical elements. Previously, Contraction theory has been applied
successfully to analyze other types of complex systems183,242,294,333. Contraction theory is
a method to derive the conditions for uniform exponential convergence of complex nonlin-
ear systems. Contraction theory is based on famous theorem of N. N. Krasovskii, proven
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by means of functional analysis161. Contrary to classical stability analysis for nonlinear
systems, Contraction theory permits to re-use stability results for system components in
order to derive conditions that guarantee the stability of the overall system. It provides
a useful tool specifically for modularity-based stability analysis and design. Contraction
theory has been already successfully used for synchronization of DMPs (Dynamic Move-
ment Primitives) controlling Unmanned Aerial Vehicles240 and it also has been used for
CPG-based closed-loop control of Autonomous Underwater Vehicles281. But the stability
properties for crowd animation systems realizing human behaviors with realistic levels of
complexity have never been treated before.

4.2 Contraction Theory for Analysis of Stability of Nonlin-
ear Systems

Dynamical systems describing the behavior of autonomous characters are essentially non-
linear. This makes the analysis of their stability properties a difficult problem. A major
difficulty of this analysis is that for nonlinear, as opposed to linear dynamical systems,
stability properties of parts usually do not transfer to composite systems. Contraction
theory183 provides a general method for the analysis of nonlinear systems, which permits
such a transfer, making it suitable for the analysis of complex systems with many com-
ponents. The classical approach for stability analysis of nonlinear systems is to compute
first the stationary solutions of the dynamics, and then to establish its local stability by
linearization in the neighborhood of this solution. Already the computation of stationary
solutions is often difficult or possible only numerically. Contraction theory takes a different
approach and characterizes the system stability by the behavior of the differences between
solutions with different initial conditions. If these differences vanish exponentially over
time, and its solution converges towards a single trajectory, independent from the initial
states, the system is called globally asymptotically stable. Interestingly, the analysis of
such differences between solutions is often simpler than the classical linearization approach,
making systems tractable that would be impossible to analyze with the classical approach.

In the following a single character will be described by a dynamical system of the form

ẋ = f(x, t) (4.1)

where the variable x signifies the dynamical state of the character. For a walking avatar,
this dynamics could be given by a limit cycle oscillator, whose periodic solution is mapped
onto the joint angles of the character. The nonlinear mapping between dynamical state x
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and the joint angles is learned using kernel methods (see Section 3.3.4 for details). The
learned nonlinear mapping is bounded and acts as nonlinear observer of the state variable
that does not modify the overall stability properties of the system, unless the joint angles
are fed back into the dynamical state. The dynamics (4.1) can also be interpreted as
describing a Central Pattern Generator (CPG) that drives the movement of the character.

In the following I present bounds for the convergence of solutions of the dynamical
system of the form (4.1). These bounds depend on the eigenvalues of matrices that are
derived from the Jacobian of the system J (x, t) = ∂f(x,t)

∂x . Given a square matrix A, the
matrix As = (A + AT )/2 signifies its symmetric part. Lets also define the real-valued
matrix functions λmin(As) and λmax(As) which correspond to the smallest, respectively
largest, eigenvalue of the symmetric matrix As. The matrix As is positive definite (denoted
by As > 0) if λmin(As) > 0, and negative definite (denoted by As < 0) if λmax(As) < 0
(see the definitions in mathematical supplement - Appendix B). If the matrix is itself
a function of state and time (i.e., As(x, t)) we say that it is uniformly positive definite
if there exists a real β > 0 such that ∀x, ∀t : λmin(As(x, t)) ≥ β. Likewise, we say it
is uniformly negative definite if there exists a β > 0 such that ∀x, ∀t : λmax(As(x, t)) ≤ −β.

4.2.1 General Theorems of Contraction Analysis

virtual 
displacement 
dx(0)

dx(t), t>0

trajectories

virtual 
velocity   
dx(t)

x(0)

x(0)

Figure 4.1: Two trajectories of a dynamical system and the virtual displacement.

Assume x(t) is one solution of the system and x̃(t) = x(t) + δx(t) a neighboring
one. The function δx(t) is also called a virtual displacement (see Fig. 4.1). If the virtual
displacement is small enough the last equation together with equation (4.1) implies

˙δx(t) = J (x, t)δx(t)

implying through d
dt ||δx(t)||2 = 2δxT (t)Js(x, t)δx the inequality:

||δx(t)|| ≤ ||δx(0)|| e
∫ t

0 λmax(Js(x,s)) ds (4.2)
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If the Jacobian is uniformly negative definite this equation implies that any nonzero virtual
displacement decays exponentially to zero over time. This decay occurs with a convergence
rate (inverse timescale) that is bounded from below by ρc = − supx,t λmax(Js(x, t)). By
’concatenating’ such virtual displacements at fixed points in time one can show that any
difference between the trajectories decays to zero with at least this time constant183. This
has the consequence of all trajectories converging towards a single trajectory exponentially.
Therefore, this motivates:

Definition 1. With respect to the dynamical system ẋ = f(x, t), the regions in state space
for which the symmetrized Jacobian matrix Js = 1

2( ∂f
∂x + ∂f

∂x
T ) is uniformly negative definite

are called contracting regions. All solutions that start in these regions converge towards a
single trajectory for t→∞.

The previous argument can be extended by measuring the length of the virtual displace-
ment using a different metric (coordinate system). By assuming a uniformly invertible
square matrix Θ(x, t), which in most cases is state- and time-dependent, one can introduce
the transformed displacement δz(t) = Θ(x, t)δx(t). Analogous to the previous case one
finds:

d

dt
(δzT δz) = 2δzT δ̇z = 2δzT (Θ̇ + Θ ∂f

∂x)Θ−1︸ ︷︷ ︸
F

δz

This implies the following general result:

Theorem 1. Assume that for the system (4.1) it is possible to find a square matrix Θ(x, t)
such that Θ(x, t)TΘ(x, t) is uniformly positive definite, and such that the generalized
Jacobian

F = (Θ̇ + Θ ∂f
∂x)Θ−1 (4.3)

is uniformly negative definite, then all system trajectories converge exponentially to a single
trajectory, and the system is called contracting. The rate of convergence of ||δz(t)|| is at
least ρc = − supx,t λmax(Fs(x, t)). The matrix M(x, t) = Θ(x, t)TΘ(x, t) is also called the
contraction metric.

Conversely, the existence of a uniformly positive definite metric M(x, t) = Θ(x, t)TΘ(x, t)
with respect to which the system is contracting is a necessary condition for the global expo-
nential convergence of trajectories183. Furthermore, all transformations Θ corresponding
to the same M result in the same eigenvalues for the symmetric part of F294, and thus the
same convergence rate. (The proofs can be found in183,294.)

Contraction analysis can be applied to hierarchically coupled systems that are given by
the dynamics

d

dt

(
x1

x2

)
=
(

f1(x1)
f2(x1,x2)

)
(4.4)
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where the first subsystem is not influenced by the state of the second. The correspond-

ing Jacobian F =
[

F11 0
F21 F22

]
implies for the dynamics of the virtual displacements:

d
dt

(
δx1

δx2

)
=
[

F11 0
F21 F22

](
δx1

δx2

)
. If F21 is bounded, then the exponential conver-

gence of the first subsystem, (following from [F11]s < 0), implies thus convergence of the
whole system, if in addition [F22]s < 0. This follows from the fact the term F21δx1 is just
an exponentially decaying disturbance for the second subsystem. (See183 for proof).

4.2.2 Partial Contraction and Flow-invariant Manifolds

Many systems are not contracting with respect to all dimensions of the state space, but
show convergence with respect to a subset of dimensions. A typical example is an exter-
nally driven nonlinear oscillator. By its tendency to self-initiate oscillatory solutions it is
unstable, and thus non-contracting, within a region around the the origin of state space.
However, independent of the initial state, it might converge exponentially against a single
trajectory that is determined by the external driving signal. Partial contraction333 allows
to capture this property in a mathematically well-defined manner. The key idea is to
construct an auxiliary system that is contracting with respect to a subset of dimensions
(or submanifold) in state space.

Theorem 2. Consider a nonlinear system of the form

ẋ = f(x,x, t) (4.5)

and assume that the auxiliary system

ẏ = f(y,x, t) (4.6)

is contracting with respect to y uniformly for all relevant x. If a particular solution of the
auxiliary system verifies a specific smoothness property, then all trajectories of the original
system (4.5) verify this property with exponential convergence. The original system is then
said to be partially contracting.

A ’smooth property’ is a property of the solution that depends smoothly on space and
time, such as convergence to a particular solution or value. The proof of the theorem is
immediate noticing that the observer-like system (4.6) has y(t) = x(t) for all t ≥ 0 as
a particular solution. Since all trajectories of the y-system converge exponentially to a
single trajectory, this implies that also the trajectory x(t) obeys this specific property with

128



Contraction Theory for Analysis of Stability of Nonlinear Systems

exponential convergence.

Related to partial contraction are the following methods that will be crucial for the
derivation of results on the synchronization of groups of avatars. Again starting from the
equation (4.1), we assume the existence of a flow-invariant linear subspaceM, i.e. a linear
subspace M such that ∀t : f(M, t) ⊂ M. This implies that any trajectory starting in
M remains in M. Further, we assume that p = dim(M) and consider an orthonormal
basis (e1, ..., en) where the first p vectors form a basis of M and the last n− p a basis of
M⊥, the orthogonal space of M. We define an n× (n− p) matrix V whose columns are
eTp+1, ..., eTn . VT can be regarded as projection onM⊥, which implies x ∈M ⇔ VTx = 0.
It holds that VTV = In−p and VVT + UUT = In, where U is the matrix formed by the
first p basis vectors as columns.

Theorem 3. Assume that for the dynamical system (4.1) a flow-invariant linear subspace
M exists with the associated orthonormal projection matrix VT . A particular solution
xp(t) of this system converges exponentially to M if the auxiliary system

ẏ = VT f
(
Vy + UUTxp(t), t

)
(4.7)

is contracting with respect to y for all relevant xp, then starting from any initial condition,
all trajectories of the original system will exponentially converge to the invariant subspace
M. If furthermore all the contraction rates for (4.7) are lower-bounded by some constant
λ > 0, uniformly in xp and in a common metric, then the convergence to M will be
exponential with a minimum rate λ.

The proof of this theorem can be found in242. It implies that a simple sufficient
condition for global exponential convergence toM is given by the following inequality that
needs to hold uniformly:

VT
[
∂f
∂x

]
s
V < 0 (4.8)

Fig. 4.2 schematically depicts a flow-invariant linear subspaceM. Such that any trajectory
starting in M remains in M: ∀t, f(M, t) ⊂M.

An even more general condition can be derived if there exists a constant invertible
transform Θ on M⊥ such that

ΘVT
[
∂f
∂x

]
s
VΘ−1 < 0 (4.9)

is fulfilled uniformly242.
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Figure 4.2: Illustration of a flow-invariant linear subspace M and a trajectory
converging to this flow-invariant manifold M.

Finally, we introduce here a theorem that provides sufficient conditions for synchroniza-
tion of a network that is composed from N identical dynamical systems that communicate
through a common medium or channel with state variable χ. The relevant dynamics is
given by

ẋ = f(x, χ, t),

χ̇ = g(χ,Ψ(x), t)
(4.10)

x containing the state variables of the individual systems and all components of f having
the same form f . Exploiting the Partial contraction theorem 2 the following result can be
derived266:

Theorem 4. (Quorum sensing) If the reduced order virtual system ẏ = f(y, χ, t) is
contracting for all relevant χ then all solutions of the original system converge exponentially
to a single trajectory, i.e. |xi(t)− xj(t)| → 0 as t→ +∞.

4.3 Linear Coupling of Nonlinear DMPs

Contraction analysis can be applied to guarantee the stability of networks of coupled
dynamical elements, such as oscillators. The animation systems discussed in the follow-
ing exploit character models whose behavior is driven by nonlinear limit cycle oscillators.
The stationary solution of these oscillators is given by a sinusoidal oscillation with a con-
stant equilibrium amplitude. Groups of interacting characters can be modeled by coupled
networks of such nonlinear oscillators. In the following, we describe how methods from
Contraction theory can be exploited to analyze the dynamics of such networks, providing
mathematical results that help to design the behavior of animations of the collective be-
havior of such interacting characters.
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The state feedback coupling term is called diffusive, when it is a linear function of
differences of the corresponding state variables. We assume in the following n systems
with linear diffusive coupling of the form (cf.333):

ẋi = f(xi, t) +
∑
j 6=i

Kij(xj − xi) ∀i = 1, ..., n (4.11)

Here if the dimensionality of each vector xi is N , then the dimensionality of each square
matrix Kij is N ×N . In the case of diffusive coupling, after synchronisation, the dynamics
of each subsystem is equivalent to the dynamics of uncoupled subsystem.

The matrix L with the blocks (Lii =
∑
j 6=i Kij and Lij = −Kij for j 6= i) is called

the Laplacian matrix of the coupling (see333). With this matrix and the definitions
x = [xT1 , ...,xTn ]T and f(xi, t) = [f(x1, t)T , ..., f(xn, t)T ]T the equation system can be written
in vector form: ẋ = f(x, t)− Lx. This implies that the Jacobian of the system is given by
J (x, t) = D(x, t)− L, where

D(x, t) =


∂f
∂x(x1, t) 0 0

0 . . . 0
0 0 ∂f

∂x(xn, t)

 . (4.12)

For diffusive coupling, we assume again the existence of a flow-invariant linear subspace
M of the x space that contains a particular solution of the form x∗1 = · · · = x∗n. For this
solution all state variables xi are identical and thus in synchrony. In addition, for this
solution the coupling term in equation (4.11) vanishes so that the form of the solution is
identical to the solution of the uncoupled systems ẋi = f(xi, t).

Introducing VT as a projection matrix corresponding to the subspaceM⊥, a sufficient
condition for convergence to this solution is given by the matrix inequality VT (D(x, t)−
L)sV < 0. From this inequality the following sufficient condition for exponential conver-
gence can be derived242

λmin(VTLsV) > sup
x,t

λmax

([
∂f
∂x(x, t)

]
s

)
(4.13)

which implies the following minimum convergence rate:
ρc = − supx,t λmax(VT (D(x, t)− L)sV).
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4.3.1 The Andronov-Hopf Oscillator

The dynamics of an individual character is modeled by an Andronov-Hopf oscillator, a
nonlinear oscillator that is characterized by a limit cycle that corresponds to a circular
trajectory in phase space. After re-parametrization (rescaling of time and state-space axes)
the dynamics of this oscillator is described by the differential equations11:ẋ(t) =

(
1−

(
x2(t) + y2(t)

))
x(t)− ω y(t)

ẏ(t) =
(
1−

(
x2(t) + y2(t)

))
y(t) + ω x(t)

(4.14)

which can be written in vector form (with x = [x, y]T ):

ẋ(t) = f(x, t) (4.15)

The Jacobian for a single Andronov-Hopf oscillator is given by

J (x) = ∂f
∂x =

[
−(x2 + y2 − 1)− 2x2 −2xy − ω

−2xy + ω −(x2 + y2 − 1)− 2y2

]

implying |Js(x)− λI| = (1− r2 − λ)(1− 3r2 − λ) with r2 = x2 + y2. The eigenvalues of
the matrix Js(x) are thus bounded by 1 from above.

Introducing polar coordinates r(t) =
√
x2(t) + y2(t) and φ(t) = arctan(y(t)/x(t)), the

system (4.14) can be rewritten:

ṙ(t) = r(t)
(
1− r2(t)

)
φ̇(t) = ω

(4.16)

The symmetrized Jacobian in this coordinates is given by

Js =
[

1− 3r2 0
0 0

]
(4.17)

showing that, according to Definition 1, this system is semi-contracting242 in the region
|r| > 1/

√
3 where its symmetrized Jacobian is uniformly negative definite. Introduction of

the new variable ρ = 1/r2 > 0 transforms the dynamics into the form:

˙(r2) = 2r2
(
1− r2

)
⇒ ρ̇ = 2(1− ρ)

In these coordinates ρ and φ, the eigenvalues of the symmetrized Jacobian are −2 and 0,
so that the system is semi-contracting in the whole phase plane. The system is contracting
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with respect to the variable ρ, while the dynamics of φ is indifferent.

4.3.2 Symmetric Diffusive Coupling of Linear Phases of Multiple Oscil-
lators

Given the decoupled r (radial) and φ (phase) dynamics of the Andronov-Hopf oscillator we
may separately couple the phases of such oscillators. As an example of phase coupling one
may use symmetrical linear diffusive coupling, which results in uniformly exponentially
convergent dynamics (in fact, partially contracting towards the manifold φi = φj ,∀i, j).
Thus, for all-to-all coupling, for every oscillator i (k > 0 is the uniform coupling strength):

d

dt
φi = ω + k

∑
j

(φj − φi) (4.18)

where all differences and sums are taken on the unitary circle (e.g. the circular mean
average phase would be φ̂ = angle(

∑
i exp [φi

√
−1])). Instead of all-to-all coupling we may

use a general symmetrical linear diffusive coupling, where the coupling network structure
is described by an undirected single-connected coupling graph (e.g. with the equal weights
of the bidirectional coupling links). With link weights k > 0 and Aij the adjacency matrix
of the coupling graph (see A.1):

φ̇i = ω + k
∑
j

Aij(φj − φi) (4.19)

In vector notation with L ≥ 0 the Laplacian matrix of the coupling graph (A.1):

φ̇ = ω − kLφ (4.20)

The Jacobian of this system is given by J (φ, t) = −kL. If the coupling network is
balanced and singly-connected (A.1), then the Laplacian matrix of the coupling graph is
a symmetric positive definite matrix with a single zero eigenvalue corresponding to the
eigenvector 1̄/

√
N (1̄ is the vector of N ones). The dynamics has a flow-invariant linear

subspace M that contains the particular solution φ∗1 = · · · = φ∗n. For this solution all
phase variables φi are identical and thus in synchrony. In this case, the coupling term
in equation (4.20) vanishes, so that the form of the solution is identical to the one of an
uncoupled system. If VT is a projection matrix onto the invariant subspace M⊥, then by
Eq.(4.8) the sufficient condition for convergence towards M is given by VT (−kL)sV < 0.
This implies λmin

(
VT (kL)sV

)
= kλ+

L > 0, with λ+
L being the smallest non-zero eigenvalue

of the symmetrical part of the Laplacian matrix Ls. For singly-connected coupling graphs
(with all the positive weights of the bidirectional links) all nonzero eigenvalues of Ls are
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a) 21 21

pair 1 pair 2

b)

Figure 4.3: a) Two simulations (pair 1 and pair 2) of the same system of two paired
avatars. In each simulation a pair of avatar synchronizes, but the synchronization
moment is dependent on initial phases. b) The resulting trajectories are depicted as
blue and green lines. See Demo video (tiny.cc/zmdm5y).

real positive, see A.1. Thus, this system is partially contracting (all oscillators converge
towards the same linearly propagating phase, their differences computed by modulus 2π)
for any k > 0 with uniform contraction rate ρc = kλ+

L .
Fig. 4.3 and the associated video (tiny.cc/zmdm5y) illustrate the dynamics of the

convergence towards the linear flow-invariant manifold in case of two paired linear phases:φ̇1 = ω + k(φ2 − φ1)

φ̇2 = ω + k(φ1 − φ2)

Fig. 4.3 depicts two simulations of the same system of two paired avatars, where in each
simulation a pair of avatar synchronizes, but the synchronization moment is dependent on
their initial phases.

4.3.3 All-to-all Symmetric Linear Diffusive Coupling of Multiple DMPs

The case of two Andronov-Hopf oscillators

The constraints that guarantee the synchronization of two symmetrically coupled oscillators
can be proven following242. The dynamics of two Andronov-Hopf oscillators with symmetric
diffusive linear coupling is given (using 4-dimensional state vector x = [xT1 ,xT2 ]T , with
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xi = [xi, yi]T , i = 1, 2, and the definition according to equation (4.15)) by:

(
ẋ1

ẋ2

)
=

(
f(x1)
f(x2)

)
− k

[
I −I
−I I

]
︸ ︷︷ ︸

L(2)

(
x1

x2

)

⇔ ẋ = f(x)− k L(2)x (4.21)

According to the corollary of Theorem 3, a flow-invariant manifold M of this system is
given by the linear 2-dimensional subspace (in the 4-dimensional state space of x) that
is defined by the linear relationship x1 = x2. For points on this manifold the coupling
term vanishes, and the solution of the coupled system coincides with the solutions of the
uncoupled individual oscillators.

By interchanging the columns of the matrix L(2) − λI we compute det(L(2) − λI) =
λ2(λ − 2)2. This implies that the matrix L(2) has rank 2. Its nullspace is 2-dimensional
and thus coincides with M. If according to Theorem 3 the matrix VT is a projector onto
M⊥ this implies that the matrix VTL(2)V has only eigenvalues equal to 2.

A sufficient condition for global exponential convergence of the coupled oscillator system
can be derived from equation (4.13, Section 4.3):

λmin
(
VT (kL(2))V

)
= 2k > sup

x,t
λmax

([
∂f
∂x

]
s

)
= 1 (4.22)

The equality on the right side states that the eigenvalues of the Jacobian matrix Js(xi) of a
single Andronov-Hopf oscillator are bounded by 1 from above (see 4.3.1). This implies that
a sufficiently strong coupling with k > 1/2 guarantees the global exponential convergence
to a stable behavior.

The case of multiple Andronov-Hopf oscillators

The last analysis can be extended for to any number N of coupled oscillators. In this case,
the 2N -dimensional square matrix L has the form:

L =


(N − 1) 0 −1 0 . . .

0 (N − 1) 0 −1 . . .

−1 0 (N − 1) 0 . . .

0 −1 0 (N − 1) . . .

. . .


i.e., Lii = N − 1 and Lij = −1 if i 6= j and (i + j)mod2 = 0, and Lij = 0 otherwise. By
rearranging the columns and rows this matrix can be restructured in the form:

L =
[

LG 0
0 LG

]
(4.23)
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where LG is the Laplacian matrix of the complete graph with N vertices (A.2):

LG =

 (N − 1) −1 −1 . . .

−1 (N − 1) −1 . . .

−1 −1 (N − 1) . . .

. . .


Note that LG = NI − 1̄1̄T . The matrix 1̄1̄T has rank 1 and eigenvector 1̄/

√
N with

eigenvalue N (1̄ is the vector of N ones), while all other eigenvalues are 0. From det(LG−
λI) = det(−11T − (λ−N)I) = 0 follows that the matrix LG has one eigenvalue 0 and all
other N − 1 eigenvalues are N. From this follows with equation (4.23) that two eigenvalues
of matrix L are 0, while all non-zero eigenvalues are N .

For equation (4.22) one obtains the inequality Nk > supx,t λmax
([

∂f
∂x

]
s

)
= 1. Global

exponential convergence to a stable synchronized solution is thus guaranteed for k > 1/N .

4.3.4 Symmetric Linear Diffusive Couplings with more General Struc-
ture

Following the procedure in333, we discuss next systems with more general symmetric
coupling of N oscillators, where we assume equal coupling gains k. The corresponding
dynamics is (xi = [xi, yi]T , i = [1, . . . , N ]):

ẋi = f(xi) + k
∑
j∈Ni

(xj − xi) , ∀i = 1, . . . , N (4.24)

where Ni denotes the set of indices of all oscillators that are coupled with oscillator i. The
couplings are assumed to be bidirectional, defining an undirected coupling graph. This
implies j ∈ Ni iff i ∈ Nj . By construction the coupling graph is balanced, i.e. the sum of the
(weighted) connections towards each oscillator equals the sum of (weighted) connections
away from this oscillator. The corresponding state-coupling matrix L is symmetric and has
a block structure: L = LG

⊗
Ip. It is derived from the Laplacian matrix of the coupling

graph LG (cf. A.1), where p is the dimensionality of the individual sub-systems (Ip is
the identity matrix of dimension p, and

⊗
signifies the Kronecker product). The blocks

of L at positions (i, j) are given by −I and the i-th diagonal block is given by niI, ni
signifying the number of elements in Ni. Like in the previous sections, this matrix, by

appropriate sorting of columns and rows, can be brought in the form
[

LG 0
0 LG

]
. Since

the network is balanced (A.1), the sum of the rows of the Laplacian matrix are zero and
1̄/
√
N is an eigenvector with eigenvalue 0. Again, the block structure implies that all

eigenvalues of LG appear twofold in the matrix L. Consequently, two of its eigenvalues
are zero, independently of the form of the sets Ni.
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Figure 4.4: Examples of undirected coupling graphs with N nodes. a) chain (”path
graph”); b) ring; c) all-to-all coupled network (complete graph); d) star ; e) wheel; f)
general symmetric coupling with link strength k (showing the neighborhood Ni of the
node i).

Following again the argumentation in the last sections one can derive a necessary
condition for the exponential convergence from equation (4.13):

λmin
(
VT (kL)sV

)
= kλ+

L > sup
x,t

λmax

([
∂f
∂x

]
s

)
= 1 (4.25)

Here, λ+
L signifies the smallest non-zero eigenvalue of the matrix LG that depends on the

form of the coupling. The matrix VT defines the projection to orthogonal complement of
the flow invariant manifold x1 = · · · = xn. The condition for exponential convergence is
thus k > 1/λ+

L .
Fig. 4.4 shows a number of coupling graphs that have been used in our animation system.

Panel a shows a symmetric chain (or “path graph”) of a set of N oscillators. In this case,
the first nonzero eigenvalue of the matrix LG can be shown to be λ+

L = 2(1− cos(π/N))333.
For a symmetric ring (panel b) one can show λ+

L = 2(1− cos(2π/N)) A.2. A star coupling
of N > 2 oscillators can be interpreted as a network, where N −1 oscillators are connected
bidirectionally with the one in the center of the star, with the same weights, while they
are not coupled with each other (Fig. 4.4.d). If the first oscillator is in the center this
implies for the elements of the Laplacian matrix (LG)1,1 = N − 1, (LG)1,i = (LG)i,1 = −1,
(LG)i,i = 1, for i > 1, while all other entries are zero. It can be shown that the eigenvalues
of this matrix are 0, 1 (the last - (N − 2) times), and N , (see A.2). This implies λ+

L = 1
and thus the partial contraction condition is k > 1.

All these results for the star, ring, chain and all-to-all coupling networks are summa-
rized in Table 4.1.
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Type λ+
L stability condition coupling scheme

Star coupling 1 k > 1

All-to-all coupling N k > 1/N

Chain coupling 2(1− cos(π/N)) k > 1/λ+
L

Ring coupling 2(1− cos(2π/N)) k > 1/λ+
L

Table 4.1: Different types of linear symmetric diffusive coupling of N Andronov-Hopf
oscillators. λ+

L denotes the minimal non-zero eigenvalue of the Laplacian matrix of
each coupling graph. The stability condition for the homogeneous interaction link
strength k in the 3rd column is the sufficient condition for the partial contraction of
the coupled DMPs. Section 4.3.4.
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4.3.5 Simulations of Collective Behavior of the Networks of Coupled
Oscillators

The following section presents a number of examples illustrating the behavior of groups
of characters when the underlying dynamics fulfills or violates the bounds for contracting
system behavior.

The individual dynamic primitives that control each individual character are given by
Andronov-Hopf oscillators. The translation of the characters was computed by enforcing the
kinematic constraints for the ground contact of the feet. Character speed was modulated
by appropriate choice of the eigenfrequency ω of the oscillators.

The first set of demonstrations shows synchronization between a group of three char-
acters with all-to-all coupling, for different coupling strengths. As shown in Section 4.3.3
for three oscillators in this case the dynamics is contracting for k ≥ 1/3.

Movie1 shows a group of characters, starting with random initial step phases, for
the case that the coupling strength k = 0.334 fulfills this theoretical bound. In this case
the dynamics quickly converges to a stable state, the characters walking in synchrony.
Contrasting with this case, Movie2 shows an example where the coupling strength k =
0.111 violates the theoretical bound, resulting in very slow synchronization (reaching the
equilibrium state only after hundreds of steps). The fact that the system still converges to
a stable solution reflects that the bounds derived by Contraction theory define sufficient
conditions for uniform exponential stability, but not necessary conditions for asymptotic
stability. For an even stronger violation of the theoretical bound, as shown in Movie3 for
the choice k = −2.0, results in a system dynamics that does not result in the formation
of a coordinated behavioral pattern anymore. But the strong coupling deforms the limit
cycles in phase space, resulting in unnatural joint trajectories and very slow propagation
of the characters in a transient period.

The following set of demonstrations was generated assuming a bidirectional chain
(”path”) coupling between the oscillators. As shown in Section 4.3.4 for three oscillators
(characters) in this case the dynamics is contracting for k ≥ 1. Movie4 shows an example
with k = 1.0 that fulfills the theoretical bound, resulting in the quick synchronization of
the characters. Contrasting with this example, Movie5 shows the case k = 0.333 that
violates the contraction condition. In this case the characters do not realize coordinated
behavior within the observed time interval.

1https://goo.gl/U9ZB1Q (tiny.cc/nx9l5y)
2https://goo.gl/9XkVdN (tiny.cc/7y9l5y)
3https://goo.gl/yR7UMv (tiny.cc/u09l5y)
4https://goo.gl/ZkpB55 (tiny.cc/g19l5y)
5https://goo.gl/zRrFBG (tiny.cc/319l5y)
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Figure 4.5: a) Dispersion of the phase of the oscillators, averaged over 100 simulations
with random initial conditions, as function of time (gait cycles). After an offset
time, during which the dispersion remains relatively constant, it decays exponentially.
Convergence rates were estimated by fitting linear function to this decay. b) Offset
times (in gait cycles) as function of the coupling strength. (End of offset time interval
was defined by the point where the regression line crosses the level R̂ = 1.) The figure
is adopted from237.

4.3.6 Theoretical vs. Empirical Convergence Rates

As a more systematic validation of our theoretical bounds we also computed empirical
convergence rates λexper = 1/τexper for groups of characters of different size N . These
rates were obtained assuming approximately exponential convergence of the sizes of virtual
displacements: ||δx|| ∼ e−t/τexper . The norm of the virtual displacements was approximated
by the angular dispersion R̂ = (1− 1

N |
∑
j e

iφj |)
1
2 of the phases φj of the oscillators (163),

averaged over 100 simulations with random initial conditions.
Fig. 4.5a) shows the logarithm of this dispersion measure as a function of time (in gait

cycles). It shows an initial constant segment (offset time), and after that a nearly linear
decay with time, from which the time constant τ exper can be estimated by linear regression.
Fig. 4.5b) shows the offset times as function of the coupling strength for different types of
coupling.

Fig. 4.6a) shows the dependency between coupling strengths k and the convergence
rate λexper as estimated from simulations in the regime of the exponential convergence.
As derived from the theoretical bound, the convergence rate varies linearly with coupling
strength. In case of three oscillators the ring coupling is equivalent to all-to-all coupling.
Fig. 4.6b) shows the slope dλexper(k)/dk of this linear relationship as function of N , the
number of oscillators in the network. We find a close similarity between the theoretically
predicted relationship (dashed curves) and the results from the simulation (indicated by
the stars). In addition, it is evident that for all-to-all coupling the convergence rate in-
creases with the number of oscillators, while for chain or ring coupling the convergence
speed decreases with the number of oscillators (for fixed coupling strength). These results
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Figure 4.6: a) The relationship between convergence rate and coupling strength k
for different types of coupling graphs. b) Slopes of this relationship as function of
the number N of Andronov-Hopf oscillators, comparing simulation results (indicated
by asterisks) and derived from the theoretical bounds (Section 4.3.4). The figure is
adopted from237.

show in particular that the proposed theoretical framework is not only suitable for prov-
ing asymptotic stability, but also for guaranteeing the convergence speed of the system
dynamics.

4.3.7 Leader-group Asymmetric Interaction

I also consider scenarios where multiple characters are coupled asymmetrically to a single
one, which can act as a ’leader’ that controls the pattern of the others. Assume first a
follower scenario, where a single oscillator is coupled to the group of N identical oscillators
that are already synchronized. The underlying dynamics is defined by:

ẋ0 = f(x0)− k
(
Nx0 −

∑
i

xi

)
= f(x0)− kN (x0 − xmean)

A particular solution of this system is x0 = xmean. If the system is partially con-
tracting in x0 this implies the exponential convergence of the follower state x0 to the
equilibrium state xmean of the other oscillators. This condition is obviously fulfilled if
kN > supx,t λmax

([
∂f
∂x

]
s

)
= 1.

In a leader scenario, the single oscillator feeds unidirectionally into all otherN oscillators
with the same coupling strength α, but not vice versa. This situation is described by the
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a) b)

Leader

Followers

Figure 4.7: a) Scheme: single oscillator (Leader) feeds unidirectionally into each
of N all-to-all coupled oscillators (Followers) with the same coupling strength α. b)
Scene view: the group of followers synchronize in gait phase with the leader. The
progress bar below shows the periods of synchronization (green) and the period of
perturbation (red) - see videos linked in main text.

dynamics (for 1 ≤ i ≤ N):

ẋ0 = f(x0)

ẋi = f(xi) + kI
∑
j∈Ni (xj − xi) + α(x0 − xi)

(4.26)

The coupling scheme is depicted in Fig. 4.7. Since the leader oscillator does not
receive external inputs it oscillates autonomously, and x0 can be treated as external input.
Denoting x̃0 = [xT0 , ...,xT0 ]T , re-write the second equation as:

ẋ = f(x)− kLx− αx + αx̃0 (4.27)

This implies J (x, t) = D(x, t)− kL− αI, and the contraction conditions (see Section 4.3)
are: λmin (kLG + αI) > supx,t λmax

([
∂f
∂x

]
s

)
= 1. For the special case that the N oscilla-

tors (except for the leader oscillator) are all-to-all symmetrically coupled this contraction
condition becomes kN + α > 1. This implies that for kN < 1 contracting behavior can
still be guaranteed when the coupling α to the leader oscillator is sufficiently strong. The
minimum convergence rate is then given by ρc = kN + α.

Simulations of leader-group scenarios

As discussed above, one can introduce a leader that can entrain all other characters in
the scene by its own behavior. In addition, coupling with a leader can synchronize other
characters in the scene that would not synchronize otherwise. We showed that, assuming
k signifies the coupling strength between the members of the group and α the strength of
the coupling between the members and the leader, contracting behavior is obtained for
kN + α > 1.
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Different behaviors are illustrated in the following movies, showing five characters.
One of them is the leader (dark grey) that was coupled unidirectionally to all members
of the of group. Without the leader the group (α = 0) shows exponential convergence
for k > 1/4. Movie6 shows a case with k = 0.01, i.e., the system is non-contracting and
no coordinated behavior is reached in the simulation. If a leader with sufficiently strong
coupling to the other group members (α = 1) is introduced the theoretical contraction
bound is fulfilled. As shown in Movie7, in this case fast convergence to a coordinated
behavior is observed even for small values of k. The next example shown in Movie8

corresponds to the case k = 0.2 and α = 0.25, fulfilling also the theoretical bound for
contraction. The characters converge very quickly to a coordinated behavior. This case
shows an example where all characters are initially not coupled (yellow bar on time line)
and start with random initial phases. After activation of the coupling (green bar) the
leader experiences a phase perturbation. The group quickly adopts the behavior of the
leader. Movie9 shows a corresponding example where a perturbation of the same size is
not applied to the state of the leader but to the one of a group member. In this case, the
group member quickly adopts again a group’s behavior.

4.4 Stability Conditions for Crowd Control

The previous sections described self-organized multi-agent behaviors achieved by synchro-
nization of the underlying DMPs. This section introduces more complex scenarios of
self-organized group behaviors, where each agent is described semi-empirically as a com-
plex nonlinear dynamical system with non-smooth nonlinearities. Interactive behavior of
multiple characters can be modelled by making the states of the oscillators and the mixing
weights dependent on the explicit behavior of the other characters in the scene. Such
couplings result in a highly nonlinear overall system dynamics.

The animation of each avatar is based on a learning-based approach for the modeling
of human movements using DMPs as presented above: Ch. 3, Section 3.3.4. The DMP
eigenfrequencies can be controlled online resulting in changes of the walking gait frequency.
Then, by blending of the mixing weights wij and the phase delays τij , intermediate gait
styles can be generated (Ch. 3, Section 3.4). This technique was applied to generate walk-
ing along paths with different curvatures (instantaneously controlling heading direction),
changes in step length, and emotional gait styles. All these controls result in a complex
nonlinear mapping from the state of the DMPs to the workspace parameters of each agent

6https://goo.gl/9Ydddf (tiny.cc/z29l5y)
7https://goo.gl/mBpxC5 (tiny.cc/a39l5y)
8https://goo.gl/44vqn5 (tiny.cc/h39l5y)
9https://goo.gl/SvtZVC (tiny.cc/l49l5y)
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Figure 4.8: Variables exploited for speed and position control. Every character i
is characterized by its position zi(t), phase φi(t) and instantaneous eigenfrequency
ωi(t) = φ̇i(t) of the corresponding Andronov-Hopf oscillator, and a step-size scaling
parameter µi(t).

(e.g. instantaneous position and orientation). The feedback loops are closed based on the
resulting workspace parameters at each time instance. I run empirical estimations of the
shape of the mapping function and its derivatives for different values of the control parame-
ters. Using these estimates I propose sufficient conditions on the feedback parameters that
guarantee the global exponential stability in simple scenarios and the partial contraction
in consensus behavior of interacting crowds.

4.4.1 Crowd Control Architecture

Flexible control of the locomotion of articulating agents requires the control of multiple
variables, specifying a control dynamics with multiple coupled levels. For the examples
discussed here below our system included the control of the following variables: 1) phase
within the step cycle, 2) step length, 3) gait frequency, and 4) heading direction. The control
of step phase was accomplished by linear phase coupling of the Andronov-Hopf oscillators
(Section 4.3.1) that correspond to different agents, resulting in phase synchronization.
These oscillators have a stable limit cycle that corresponds to an oscillation with constant
amplitude and the (time-dependent) phase φ(t). In absence of external couplings the
phase increases linearly, i.e. φ(t) = ωt + φ(0), where ω is the stable eigenfrequency of
the oscillator. Control of step frequency was accomplished by varying this parameter in
a time-dependent manner in dependence of the behavior of the characters in the scene.
Step-length and direction were controlled by morphing between gaits with different step
lengths or path curvatures, blending the parameters of the anechoic mixing model (see
above). In this case the controlled variables are the blending coefficient of these mixtures.
(Ch. 3, Section 3.4).
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The formulation of the system dynamics in terms of speed control is simplified by
the introduction of the positions zi for each individual character along its propagation
path (see Fig. 4.8). This variable fulfills the differential equation żi(t) = φ̇ig(φi), where
the positive function g determines the instantaneous propagation speed of the character
depending on the phase within the gait cycle. This nonlinear function was determined
empirically from a kinematic model of a character. By integration of this propagation
dynamics one obtains zi(t) = G(φi(t) + φ0

i ) + ci, with an initial phase shift φ0
i and some

constant ci depending on the initial position and phase of avatar i, and the monotonously
increasing function G(φi) =

∫ φi
0 g(φ)dφ, where we assume G(0) = 0.

In the following we will analyze four different control rules, whose combination allows
to generate flexible locomotion behavior of a crowd of characters:

I) Control of step frequency: A simple form of speed control results if the frequency
of the oscillators φ̇i is made dependent on the behavior of the other characters. Assuming
that ω0 is the equilibrium frequency of the oscillators without interaction, this can be
accomplished by the control dynamics:

φ̇i(t) = ω0 −md

N∑
j=1

Aij [zi(t)− zj(t)− dij ] (4.28)

The constants dij specify the stable pairwise relative distances in the final formed order
for each pair (i, j) of characters. The elements of the coupling graph’s adjacency matrix
A determine whether characters i and j are interacting and thus dynamically coupled.
These parameters were set to Aij = 1, if the characters were coupled, and they are zero
otherwise (with Aii = 0). For example, we choose Aij = 1, ∀i 6= j for all-to-all coupling,
and Aij = 1,∀ mod (|i − j|, N) = 1 for ring coupling. The constant md > 0 determines
the coupling strength.

With the Laplacian matrix Ld of the coupling graph (that is assumed to be strongly
connected 237,242), defined by Ldij = −Aij for i 6= j and Ldii =

∑N
j=1Aij , and the constants

ci = −
∑N
j=1Aijdij , the last equation system can be re-written in vector form:

φ̇ = ω01−md(LdG(φ+ φ0) + c) (4.29)

II) Control of step length: Step length was varied by morphing between gaits
with short and long steps. Detailed analysis showed that the influence of step length on
propagation speed could be well approximated by simple linear rescaling. If the propagation
velocity of character i is vi(t) = żi(t) = φ̇i(t)g(φi(t)) = ωi(t)g(φi(t)) for the normal step
size, then the velocity for modified step size could be approximated by vi(t) = żi(t) =
(1 + µi)ωi(t)g(φi(t)) with morphing parameter µi. The empirically measured propagation
velocity as function of gait phase is shown in Fig. 4.9 a) for different values of the step

145



4. Contraction Theory and Self-organized Scenarios in Computer Graphics and Robotics

Figure 4.9: a) Propagation velocity for different values of the step-length morphing
parameter (µ = [0 . . . 0.25]) as function of the gait cycle phase φ. Empirical estimates
are well approximated by a linear rescaling of the propagation speed function defined
above ż ≈ (1 + µ)g(φ), for constant ω = 1. b) The heading direction control depends
on the difference between the actual heading direction ψheading and the goal direction
ψgoal. Movement along parallel lines was modelled by defining ’sliding goals’ that
moved along the lines. The figure is adopted from213.

length parameter µi.
In order to realize speed control by step length the morphing parameter µi was made

dependent on the difference between actual and desired position differences dij between
the agents µi = −mz

∑N
j=1A

z
ij [zi(t)− zj(t)− dij ], resulting in the control rule:

żi(t) = ωi(t)g(φi(t))(1−mz

N∑
j=1

Azij [zi(t)− zj(t)− dij ])

with the constant coupling strength mz > 0. Here the adjacency matrix Az of the coupling
graph corresponds to the Laplacian matrix Lz (according to the equivalent relationships as
specified above). In vector notation the dynamics for the control of speed by step length
can be written as:

ż = ωg(φ+ φ0)(1−mz(Lzz + c)) (4.30)

III) Control of step phase: By defining separate controls for step length and step
frequency the position and step phase of the characters can be varied independently. This
makes it possible to simulate arbitrary spatial patterns of characters, at the same time
synchronizing their step phases. The additional control of step phase can be accomplished
by simple addition of a linear coupling term in equation (4.29):

φ̇ = ω01−md(LdG(φ+ φ0) + c)− kLφφ (4.31)

with k > 0 and the Laplacian Lφ. (All sums or differences of angular variables were
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computed modulo 2π).
IV) Control of heading direction: The control of the heading directions ψi of the

characters was based on differential equations that specify attractors for goal directions
ψgoali , which were computed from ’sliding goals’ that were placed along straight lines at
fixed distances in front of the characters (Fig. 4.9 b). The heading dynamics was given by
a nonlinear differential equation, independently for every character:

ψ̇i = ωi(t)(−mψ sin (ψi − ψgoali ) + gψ(φi(t) + φ0
i )) (4.32)

where ψgoali = arctan (∆ξgoali /∆zgoali ), with ∆ξgoali specifying the distance to the goal line
orthogonal to the propagation direction and ∆zgoali being a constant (Fig. 4.9 b). The
first term describes a simple direction controller whose gain is defined by the constant
mψ > 0. The second term approximates oscillations of heading direction, where gψ is again
an empirically determined periodic function. Control is realized by making the morphing
coefficients that determine the contributions of left vs. right-curved walking dependent on
the change rate ψ̇i of the heading direction.

The mathematical results derived in the following sections apply to subsystems derived
from the complete system dynamics defined by equations (4.30), (4.31) and (4.32). In
addition, simulations will be presented that illustrate the range of behaviors that can be
modelled by the full system dynamics.

4.4.2 Analysis of Scenarios of Crowd Formation Control

In the following we derive stability conditions for the formation of coordinated behavior of
crowds, providing contraction bounds for four scenarios corresponding to control problems
with increasing levels of complexity. Corresponding crowd behaviors are illustrated by
demo movies.

1) Control of step phase without position control: This simple control rule
permits to simulate step synchronization, as in the case of a group of soldiers (Section
4.3.2). The dynamics is given by (4.31) with md = 0 (omitting the position control term).
In case of phase coupling the sufficient condition for partial contraction becomes kλ+

Lφ > 0
with the uniform contraction rate ρc = kλ+

Lφ for any k > 0. See Movie10.
2) Speed control by variation of step frequency:
The dynamics of this scenario is given by equations (4.29) and (4.30) with mz = 0.

Assuming arbitrary initial distances and phase offsets of different propagating characters,
implying by G(φ0

i ) = ci that ci 6= cj , for i 6= j, we redefine dij as dij − (ci − cj) in (4.28),
and accordingly c in equation (4.29). Furthermore, we assume for this analysis a scenario
where the characters follow one leading character whose dynamics does not receive input

10https://goo.gl/KA1BrD (tiny.cc/r59l5y)
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from the others. In this case all phase trajectories converge to a single unique trajectory
only if ci = cj for all i, j, as consequence of the strict correspondence between gait phase
and position that is given by equation (4.29). In all other cases the trajectories of the
followers converge to one-dimensional, but distinct attractors that are uniquely defined
by ci. These attractors correspond to a behavior where the followers’ positions oscillate
around the position of the leader. The partial contraction of the dynamics with c = 0
guarantees that the resulting attractor area is bounded in phase space (cf. Ch.3.7.VII
in183).

For the analysis of contraction properties lets consider an auxiliary system obtained
from (4.29) by keeping only the terms that depend on φ: φ̇ = −mdLdG(φ+φ0). According
to Theorem 3 the symmetrized Jacobian of this system projected onto the orthogonal
complement of the flow-invariant linear subspace φ∗1 + φ0

1 = . . . = φ∗N + φ0
N determines

whether this system is partially contracting. By virtue of a linear change of variables,
the analysis of contraction properties of this system is equivalent to the analysis of the
contraction properties of the dynamical system φ̇ = −mdLdG(φ) on trajectories converging
to the flow-invariant manifold φ∗1 = . . . = φ∗N .

The sufficient conditions for (exponential) partial contraction towards the flow-invariant
subspace are, (see equation (4.13)): VTJs(φ)V = −mdVTB(φ)V < 0, introducing
B(φ) = LdDg + Dg(Ld)T and VT signifying the projection matrix onto the orthogonal
complement of the flow-invariant linear subspace. For diffusive coupling with a symmetric
Laplacian the linear flow-invariant manifold φ∗1 = . . . = φ∗N is also the null-space of the
Laplacian. In this case, the eigenvectors of the Laplacian that correspond to nonzero
eigenvalues can be used to construct the projection matrix VT .

For example, in the case of N characters with symmetrical all-to-all coupling with
Ld = NI− 11T ≥ 0 we obtain 1

2VT (LdDg + Dg(Ld)T )V = NVTDgV > 0 for Dg > 0. In
this case, the contraction rate is given by ρmin = md minφ (g(φ))λ+

Ld , with λ+
Ld = N .

For general symmetric coupling with positive links with equal coupling strength md > 0
a weak sufficient contraction condition can be derived (see Appendix B.3.2): λ+

min(Ld)/λ+
max(Ld) >

(maxφ(g(φ))−minφ(g(φ)))/(maxφ(g(φ)) + minφ(g(φ))). This condition was also presented
(in a weaker form) in my work212 as λ+

min(Ld)/λ+
max(Ld) > maxφ(|g(φ)−mean(g(φ))|)/mean(g(φ)),

with mean(g(φ)) = 1/T
∫ T

0 g(φ)dφ. Appendix B in this Thesis presents the full derivation
for the necessary and sufficient conditions for positive definiteness of anticommutators of
two symmetric real matrices. Based on Theorem 6 (B.3.3), the strong sufficient condi-
tions for the partial contraction of the system are: (1−α)2/(1+α)2 + (1−β)2/(1+β)2 < 1 with
α = λ+

min(Ld)/λ+
max(Ld) and β = minφ(g(φ))/maxφ(g(φ)). This sufficient condition permits to

constrain the admissible coupling topologies dependent on g(φ), see the discussion at the
end of Appendix B.3.4. Alternatively, it is also possible to introduce low-pass filtering in
the control dynamics to increase the smoothness of the function g(φ), see213.
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Figure 4.10: Self-organized reordering of a crowd with 16 characters. Control
dynamics affects simultaneously direction, distance and gait phase. See [Demo7].

These stability bounds are illustrated by Movie11 that shows convergent behavior of
the characters when the contraction condition md > 0, (Ld)s ≥ 0 is satisfied for all-to-all
coupling.

Movie12 shows the divergent behavior of a group when this condition is violated when
md < 0. In these and the next demonstrations the actual values of interaction parameters
md,mz,mψ > 0 (in cases, when they additionally satisfy the sufficient contraction condi-
tions) were obtained by matching the corresponding convergence rates to those of the real
human behavior in crowds334.

3) Step size control combined with control of step phase: The dynamics is
given by equations (4.30) and (4.31) with md = 0. This dynamics defines a hierarchically
coupled nonlinear system (of Eq.(4.4) type). While the dynamics would be difficult to
analyze with classical methods, the dynamics for z(t) that is given by equation (4.30)
is partially contracting in the case of all-to-all coupling for any bounded external input
φ(t) if mz > 0, Lz ≥ 0, and ω(t) > 0. These sufficient conditions can be derived
from the positive-definiteness of the symmetrized Jacobian applying similar techniques
as above. The Jacobian of this subsystem is J (φ,ω) = −mzDz

g(φ, ω)Lz, with diagonal
matrix (Dz

g(φ, ω))ii = ωig(φi + φ0
i ) that is positive definite since g(φ) > 0 and ω > 0.

In the case of all-to-all symmetric coupling this subsystem is (exponentially) contracting
and its relaxation rate is determined by ρz = mz minφ (g(φ))λ+

Lz for any input from the
dynamics of φ(t), see equation (4.31). The dynamics of φ(t) is contracting when (Lφ)s ≥ 0
and its relaxation rate is ρφ = kλ+

Lφ , where λ+
Lφ is the smallest non-zero eigenvalue of

(Lφ)s (see Part 1 of this section). The effective relaxation time of the overall dynamics
is thus determined by the minimum of the contraction rates ρφ and ρz. For the cases of
general symmetric coupling with a symmetric Laplacian matrix Lz, the partial contraction
sufficient conditions for the z(t) subsystem are: (1−α)2/(1+α)2 + (1−β)2/(1+β)2 < 1 with
α = λ+

min(Lz)/λ+
max(Lz) and β = minφ(g(φ))/maxφ(g(φ)). The last inequality is the corollary of

Theorem 6 (B.3.3).
Demonstrations of this control dynamics satisfying the contraction conditions are shown

11https://goo.gl/iLBk6h (tiny.cc/w79l5y)
12https://goo.gl/PcKqRm (tiny.cc/s89l5y)
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a)

b)

Figure 4.11: Control dynamics affects row distances via gait phase velocities. a)
When the sufficient contraction conditions of the system dynamics are satisfied, the
crowd organizes into an ordered formation where all agents synchronize their velocities.
b) For a violation of the necessary contraction conditions the crowd formation behavior
becomes unstable.

in Movie13, without control of step phase, and in Movie14, with control of step phase.
4) Advanced scenarios: A simulation of a system with stable dynamics including

both types of speed control (via step size and step frequency) and step phase control
is shown in Movie15. A larger crowd with 16 avatars simulated using the open-source
animation engine Horde3d278, is shown in Movie16. In this simulation an additional
dynamics for obstacle avoidance and control of heading direction was activated during
the group formation period. Then this navigation dynamics was deactivated, and speed
and position control according to the discussed principles result in the final coordinated
behavior of the crowd. (For a larger crowd of 36 avatars see Movie17.) Movie18 shows
the divergence of the dynamics for md < 0, violating the necessary contraction condition
for the step phase dynamics (Ld ≯ 0). The two simulations shown in Movie19 and
Movie20 illustrate the convergence for a crowd with 49 avatars for two different values of
the strength of the distance-to-step size coupling, the parameters of gait phase coupling
remaining constant. Again, after a short initial period of speed control via step frequency,
it is switched to speed control via step size, and at this moment the step synchronization
based on direct phase coupling is switched on.

5) Control of heading direction: For the control of heading direction in the presence
of couplings that affect the step phases, the contraction conditions can be derived from

13https://goo.gl/qzw7d4 (tiny.cc/489l5y)
14https://goo.gl/kHox6f (tiny.cc/399l5y)
15https://goo.gl/AJmPaB (tiny.cc/8aam5y)
16https://goo.gl/6Anoc8 (tiny.cc/qbam5y)
17https://goo.gl/dvJYss (tiny.cc/ndam5y)
18https://goo.gl/fKqgKE (tiny.cc/xeam5y)
19https://goo.gl/HJKUFp (tiny.cc/ffam5y)
20https://goo.gl/6Jwgfp (tiny.cc/hgam5y)
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the result on hierarchically coupled systems discussed above in Part 3 of this section. For
the analysis of the stability of the dynamics defined by equation (4.32) it is sufficient to
analyze the contraction properties of the dynamics for the heading direction ψ, treating
the additional term ω(t)gψ(φ(t)) as an external input to the ψ subsystem.

Assuming a constant goal direction (see also the next Section 4.4.3), the uncoupled
dynamics for one character, given by ψ̇ = −ω(t)mψ sin (ψ − ψgoal) is contracting in the
intervals ]ψgoal−π+2πn, ψgoal+π+2πn[, n ∈ Z for constant mψ > 0. (If φ(t) is a smooth
strictly increasing function of t with the substitution ψ(φ(t)) = ψ(φ) (and ω(t) = dφ/dt)
the last differential equation can be rewritten as: dψ/dφ = −mψ sin (ψ(φ)− ψgoal)).

Another possibility to realize direction control is to feed back the circular mean average
direction of all characters as joint control parameter χ = angle( 1

N
∑

i exp [ψi
√
−1]). In this

case the ”quorum sensing” dynamics (cf.266) is given by

ψ̇i = ωi(t)(sin (χ− ψi) + gψ(φ(t))), ∀i ∈ [1 . . . N ], (4.33)

which is suitable for the application of Theorem 4. This implies that the overall dynamics
is contracting if the dynamics ψ̇i = ωi(t) sin (χ(t)− ψi) is contracting for any χ(t). The
same Theorem guarantees contraction, when the consensus variable χ is estimated by a
low-pass filter (with time-constant α > 0): αχ̇ = −χ + angle( 1

N
∑

i exp [ψi
√
−1]). The

simulation shown in Movie21 illustrates the consensus scenario defined by equation (4.33),
(without a synchronization of gait cycles). In the next subsection I will present more
detailed analysis of stability of Schöner-Dose navigational dynamics for crowds with more
general coupling graphs, without introduction of a consensus signal.

4.4.3 Analysis of Schöner-Dose Dynamics of Heading Direction Control

Contraction properties for heading direction angle of a single agent

Lets consider first the single agent case ψ̇(t) = f(ψ(t)), where the scalar ψ is the heading
direction angle and in particular f(ψ) = − sin(ψ). This system has a stable stationary point
at ψ = 0 and unstable point at ψ = π. Following Ch. 3.9 in183, we find the local coordinate
system Θ(ψ) in the ψ domain, for which the resulting local symmetrized Jacobian Js(ψ) =
(J (ψ) + J (ψ)T )/2 < 0 is negative in the new metric M(ψ) = ΘT (ψ)Θ(ψ) (and not
explicitly dependent on time). The resulting PDE is:

∂Θ(ψ)
∂ψ

· f(ψ) + Θ(ψ)∂f(ψ)
∂ψ

= J (ψ)Θ(ψ) (4.34)

21https://goo.gl/PrCrAU (tiny.cc/7gam5y)
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Then, taking a constant desired J = −I, we need to solve (in our one dimensional case it
is an ODE):

dΘ(ψ)
dψ

f(ψ) + Θ(ψ)df(ψ)
dψ

= −Θ(ψ) (4.35)

finding Θ(ψ), in our case, a scalar function of ψ. With f(ψ) = − sin(ψ):

d

dψ
(− sin (ψ)Θ(ψ)) = −Θ(ψ) (4.36)

Integrating with Θ(0) = 1/2 leads to Θ(ψ) = 1/(1 + cos(ψ)). The resulting metric is
singular at ψ = π + 2πn, n ∈ Z, so that the contraction regions are ]2nπ − π, 2nπ + π[.
Schöner-Dose dynamics277 uses f(ψ) = − sin(ψ) exp (−kψ2) for some k > 0, where the
gaussian shunting term is evaluated for the main component part of ψ ∈ [−π, π]. If, in
general, we have a dynamics in the form of f(ψ) = − sin(ψ)g(ψ) for some periodic g(ψ) > 0
with ψ ∈ [−π, π], then:

d

dψ
(− sin (ψ)g(ψ)Θ(ψ)) = J (ψ)Θ(ψ) (4.37)

Setting Θ̃(ψ) = Θ(ψ)g(ψ) and J (ψ) = −g(ψ) < 0, we arrive at a similar equation as
before:

d

dψ
(sin (ψ)Θ̃) = Θ̃ (4.38)

with partial solution Θ̃(ψ) = 1/(1 + cos(ψ)), so that Θ(ψ) = 1/(g(ψ)[1 + cos(ψ)]), where
the denominator has zeros only at Θ(2nπ + π) = 0, and the contracting regions are
]2nπ − π, 2nπ + π[ as before.

Asymptotic stability of multi-agent heading direction angles coupling

We now consider multi-agent consensus dynamics for f(ψ) = − sin(ψ), for all-to-all sym-
metric coupling of N agents with constant strength k > 0:

ψ̇i = − k

N

N∑
j=1

sin (ψi − ψj), ∀i, j ∈ [1 . . . N ] (4.39)

Introducing the potential function:

U(ψ) = − k

2N

N∑
i=1

N∑
j=1

cos (ψi − ψj) (4.40)

we obtain: ψ̇i = − ∂U
∂ψi

and the potential U(ψ) has minima at ∀i, j: ψi = ψj + 2nπ,∀n ∈ Z.
Since dU

dt =
∑N
j=1

∂U
∂ψj

dψj
dt = −k

∑N
j=1 ( ∂U∂ψj )2 ≤ 0 (with dU

dt = 0 at prescribed minima and
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strictly negative in some finite area around them), then U(ψ) plays the role of a Lyapunov’s
function. Next we consider Schöner-Dose type coupling:

ψ̇i = −k
N∑
j=1

sin (ψi − ψj)g(ψi − ψj),∀i, j ∈ [1 . . . N ] (4.41)

In case of g(.) > 0 the periodic function f(∆ψ) = sin (∆ψ)g(∆ψ) has two zeros at ∆ψ = 0
and ∆ψ = π. It may be regarded as f(∆ψ) = −F ′(∆ψ), a derivative of a smooth periodic
function F (∆ψ). This function has a maximum at ∆ψ = 0 and a minimum at ∆ψ = π.
Again, we construct U(ψ) = −k

∑N
i=1

∑N
j=1 F (ψi − ψj), which has global marginally stable

manifold of minima at ∀i, j: ψi = ψj + 2nπ,∀n ∈ Z. And U(ψ) has saddle points where
some ψi differ by πn from the others. But again, ψ̇i = − ∂U

∂ψi
with dU

dt = −k
∑N
j=1 ( ∂U∂ψj )2 < 0

(outside minima of U(ψ)), and U(ψ) is Lyapunov function of the system, assuring global
marginal stability of the stable manifold.

For general diffusive coupling with coupling graph Laplacian L:

ψ̇i = −k
N∑
j=1

Lijf(ψi − ψj), ∀i, j ∈ [1 . . . N ] (4.42)

where f(ψi − ψj) the same as above, we have: U(ψ) = −k
∑N
i=1

∑N
j=1 LijF (ψi − ψj), and

dU
dt = −[ψ̇]T (L + LT )[ψ̇], so: dU

dt ≤ 0 for Ls = (L + LT )/2 ≥ 0.

Contraction properties of multi-agent heading direction angle coupling

While the demonstration of the global asymptotic stability for Schöner-Dose dynamics is
straightforward and simple due to the existence of a global Lyapunov function, the proof
of contraction can be obtained (if not using nonlinear coordinate change) for a limited area
around the stable stationary fixed point. Contraction analysis can also be done relative to
other norms (see Lohmiller and Slotine 1998, Ch.3.7(II),183), such as ‖δz‖inf = maxi|δzi|
and ‖δz‖1 =

∑
i |δzi|, with associated balls defined accordingly. Using the same reasoning

as in standard matrix measure results (see for details266), the corresponding convergence
results are:

d

dt
‖δz‖inf ≤ maxi(Jii +

∑
j 6=i
|Jij |)‖δz‖inf (4.43)

d

dt
‖δz‖1 ≤ maxj(Jjj +

∑
i 6=j
|Jij |)‖δz‖1 (4.44)
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so that, to guarantee contraction we need diagonal dominance of the Jacobian matrix.
Consider diffusive coupling with coupling graph Laplacian L (Lij > 0,∀i 6= j) and k > 0:

ψ̇i = −k
∑
j

Lij sin(ψi − ψj) (4.45)

The non-diagonal elements of the Jacobian matrix for this dynamics are Jij = kLij cos(ψi−
ψj), and the diagonal elements are:Jii = −k

∑
j 6=i Lij cos(ψi − ψj). The Jacobian is row-

wise diagonally dominant when
∑
j 6=i Lij cos(ψi − ψj) ≥

∑
j 6=i Lij | cos(ψi − ψj)|, which is

true if ∀(i, j) : |ψi−ψj | < π/2. Thus, the dynamics is partially contracting with respect to
‖.‖inf norm in the area where |ψi−ψj | < π/2, ∀(i, j). In case of a symmetric coupling graph
Laplacian L = LT > 0 the resulting Jacobian is also column-wise diagonally dominant, and
the dynamics is partially contracting with respect to the ‖.‖1 norm. The partial contraction
with respect to the ‖.‖2 norm can be demonstrated (after change of variables) using the
tools presented in Appendix B, Section B.3.

4.5 Warped Limit Cycle Attractors for Robotics Applica-
tions

A single Andronov-Hopf oscillator in polar coordinates (r2 = x2 + y2, φ = arctan(y/x)) is
given by (Section 4.3.1):

ṙ = r
(
1− r2)

φ̇ = ω
(4.46)

Changing the radial variable in polar coordinates to ρ = 1/r2 > 0:

ρ̇ = 2 (1− ρ)

φ̇ = ω
(4.47)

The stable attractor solution is a circle ρ = const = 1, but we can morph the limit cycle
shape by making ρ dependent on φ. In morphing we should preserve the limit cycle to
be homotopically equivalent to the circle by looping around zero just once. In case of our
autonomous (time-invariant) system, the corresponding vector field of tangential vectors
for the trajectories in the phase plane must be aligned with the tangent vectors on the
limit cycle. Let f(φ) = ρ∗(φ) be the desired new shape, with f a periodic continuous
function of φ. The tangent vector field on the limit cycle has a radial component with
length proportional to f ′φ = df/dφ, while the orthogonal component is proportional to
dφ/dφ ≡ 1. The tangent vector field for all trajectories in the phase plane must have the
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Figure 4.12: Demonstration of limit cycle attractor shape morphing. The attractor
(depicted in red) is the concatenation of a half-ellipse and a half circle. Left panel
shows the dynamics in the phase plane using polar coordinates (ρ, φ). The resulting
phase space with polar coordinates (r, φ) is at the right. See explanation of the
variables in the text.

same directions to be locally “parallel” to the attractor line if translated along the radial
rays, and in addition the dynamics must have the contracting component. The simplest
form of warped shape attractor preserving the autonomy of the φ-dynamics (φ̇ = const = ω)
is, with some α > 0:

dρ

dφ
= α[f(φ)− ρ] + ωf ′φ (4.48)

where we made a linear change of variables, since φ(t) = ωt + φ0, making φ our scaled
time coordinate, (e.g. with φ0 = 0).

The example of morphing the limit cycle shape is presented on Fig. 4.12, where we
used half of a circle for the lower half-plane (r∗ = 2, for φ ∈ [π; 2π[) and half of an ellipsoid
for the upper half-plane in polar coordinates of (r, φ), appropriately translated into f(φ)
in polar coordinates of (ρ, φ). In (r, φ) coordinates for φ ∈ [0;π[ the desired half-ellipsoid
is defined by: r∗ = 2/

√
cos2(φ) + 4 sin2(φ) (vertical half-axis is equal to 1, and horizontal

one is equal to 2), and the desired ρ∗ = 1/(r∗)2. The new convergence rate was made
proportional to a constant α > 0. The system is contracting for ρ in the whole phase space
excluding the zero-point, since its Jacobian is Jρ = −α < 0.

In the second example we preserve the circular shape of the limit cycle attractor (for
ρ∗ = 1/4, r∗ = 1/

√
ρ∗ = 2), but we morph the convergence rate coefficient α(φ) > 0, which

is a periodic function of φ, taking a small value of α = 0.04 for upper hemiplane (which is
φ ∈ [0;π[) and large value of α = 0.8 for lower half-plane (φ ∈ [π; 2π[), see Fig. 4.13. Thus
(now f ′φ = 0):

dρ

dφ
= α(φ)[1/4− ρ] (4.49)

The system is contracting as its Jacobian is Jρ = −α(φ) < 0 for any α(φ) > 0. Thus,
we can establish any desired varying convergence rate α(φ) > 0 for the system in (ρ, φ)
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Figure 4.13: Demonstration of warping of the convergence dynamics by variable
contraction rates in upper and lower hemiplanes of the phase space. The attractor is
the circle (r = const = 2, φ ∈]0, 2π[) depicted in red. Left panel shows the dynamics
in the phase plane using polar coordinates (ρ, φ), the resulting phase space with polar
coordinates (r, φ) is at the right.

coordinates, or derive it from the desired varying convergence rate in (r, φ) coordinates,
while the dynamics remains contracting.

We saw that by decoupling the φ and r dynamics of the Andronov-Hopf oscillator we
have an opportunity to morph its shape and convergence rate as functions of phase. Thus,
when we couple such warped oscillators by their phases (Section 4.3.2), assuming that the
coupling results in partial contraction of phase dynamics, the overall system is partially
contracting. The last is due to the system’s hierarchical coupling structure (Section 4.2.1,
Ch.3.8.3 in183): the phase dynamics is not affected by the radial dynamics, and the radial
dynamics is contracting for any phase dynamics regarded as external input.

We designed a general family of warped Andronov-Hopf oscillators in collaboration
with colleagues from EPFL, Lausanne5. The family of warped Andronov-Hopf oscillators
was used as DMPs132 in a general architecture of interconnected CPGs (similar to130). We
used the linear symmetric diffusive coupling between the phases of CPGs, with the linear
phase dynamics of each component (see Section 4.3.2).

4.5.1 Equi-affine Transform Preserving “Power Laws” and Partial Con-
traction for the Modeling and Control of Walking

In this section I present the work done in collaboration with LAAS/CNRS in Toulouse,
France and the Weizmann Institute of Science in Rehovot, Israel. The task is to design a
kinematic pattern synthesis architecture to control humanoid robot navigation behavior,
varying its walking speed and velocity. The kinematic pattern consists of a predefined
walking trajectory and velocity along this trajectory. This pattern must satisfy the desired
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kinematic properties - the different “power laws”, which constrain the propagation velocities
as a specific function of the path curvature. In order to control the real humanoid biped
online, the kinematic policy must be defined for the whole phase space - i.e. it is a vector
field defined at each position of the biped in the 2D workspace plane where the navigation
path is defined. Thus, the vector field dictates the desired velocity at every point of the
workspace plane, and drives the biped back towards the prescribed path in a stable way.

The main idea is to build the vector field from a kinematic policy that is uniformly
stably convergent towards the desired trajectory for all perturbations experienced by
biped. The work is presented in conference proceedings148. The walking paths, which we
tested in this work are ellipses of different shapes. We design the policy vector field to
be uniformly partially contracting in some neighborhoods of these elliptic paths. Thus,
every trajectory which converges to the nominal elliptic path, is exponentially stable in
its neighborhood. On the other hand every such transient trajectory must satisfy the
power law prescribed uniformly for any trajectory in some finite region of the workspace
including attractor. We solve the task by using the canonical dynamical system, the
Andronov-Hopf oscillator, which has a circular limit cycle attractor trajectory. Using the
circular symmetry of the phase portrait of this dynamical system we re-scale the velocity
vector field, using a scaling factor dependent only on the distance to the center of the phase
plane, which guarantees the desired power law. We prove that such rescaled velocity vector
field remains uniformly contracting with respect to the radial variable in a circular strip
around the circle attractor of the Andronov-Hopf oscillator. As a next step we introduce
the equi-affine transform mapping the phase plane dynamics onto the workspace plane.
By doing this we create any elliptic shape of the desired path in the workspace plane and
simultaneously preserve the desired power law along every trajectory dictated by the vector
field policy. This power law preservation property is substantial for equi-affine transforms
of the Euclidean plane24,90,244. Thus, using the equi-affine transformed Andronov-Hopf
oscillators with radially rescaled velocities, we guarantee that the power law is enforced for
every trajectory, (not only on the attractor trajectory), and simultaneously we guarantee
the partial contraction property of the image of the equi-affine map of the vector field,
since the designed underlying canonical system is made uniformly partially contracting.

Power laws observed in human motion analysis

The speed of human motion is characterized by the one-third power law as the movement
speed v decreases when curvature κ increases, following the quantitative relation v = γκ−β ,
with γ the piecewise constant velocity gain factor and β = 1/3 the power law exponent. It
appears for different end effectors under general settings: for drawing164 and pointing283

hand motion, smooth pursuit eye movements71, leg motions136. For locomotion along
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elliptic trajectories, it was found that the center of the head obeyed the one-third power
law326. Power law behaviors appear to emerge from jerk minimization251,328, cf. also32,128.
Alternatively, the specific one-third power law, which is equivalent to moving with a
constant equi-affine speed244, may result from equi-affine metrics used by the human
brain90, possibly in a mixture with Euclidean and full affine metrics24.

The goal of the study with a humanoid biped robot was to investigate experimentally
the different walking gaits derived from different power laws in order to compare the
resulting dynamic properties and power consumption of the robot and to optimize the
kinematic driving policies for the gait pattern generations regarding the effectiveness of the
resulting performance. The Walking Pattern Generator used in this research is described
in detail in Chapter 3 before.

Polar morphed Andronov-Hopf oscillator

The Andronov-Hopf oscillator in inverted polar coordinates is given as:φ̇ = ω

ρ̇ = α(1− ρ)
(4.50)

Here ρ = 1
r2 = 1

x2+y2 , φ = tan−1( yx), where x, y are Cartesian coordinates of the point
in the phase plane. ρ and φ are describing the radial (inverted squared radius) and the
angular dynamics correspondingly, and ω, α > 0 positive constants. For any reference
path of the limit cycle attractor, r0(φ), given in polar coordinates, this oscillator can be
morphed as shown above: φ̇ = ω

ρ̇ = α(F (φ)− ρ) + ω dFdφ

(4.51)

This is still partially contracting with respect to ρ, with F (φ) = 1
r2

0(φ) depending on the
limit cycle shape.

Next we focus on regularization of the phase portrait with a power law v = h(κ) = γκ−β ,
with γ a global constant and β the exponent value. We constrain the power law application
to the ring area of the phase plane around the circle attractor of the Andronov-Hopf oscil-
lator, where all trajectories have positive curvature, guaranteeing that the regularization
process will result in finite speeds, see details in148. The phase plane portraits of equi-affine
transformed oscillators with different power law regularization are depicted on Fig. 4.14.
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a) b)

c) d)

e) f)

Figure 4.14: Morphing and regularization of an Andronov-Hopf oscillator. a) The
unit cycle oscillator, b) an elliptic morphing by equi-affine transform of the phase
plane, and c)-f) four power law regularizations according to β = −1/3, 0, 1/3, 2/3
power laws. The figure is adopted from148.

The power law circularly regularized Andronov-Hopf oscillator is radially con-
tracting

For the unit circle Andronov-Hopf oscillator, the power law function depends on curvature
which is independent of φ. Denote ρ̃ = ρ− 1 = 1

r2 − 1 and h(ρ̃) ≥ C > 0 a constant times
the regularization power law function. Since h(ρ̃) > 0 in the area where the curvature is
strictly positive, the regularized dynamics are:φ̇ = ωg(ρ̃)

˙̃ρ = −ρ̃h(ρ̃)
(4.52)

With g(ρ) = h(ρ̃)
r . The ρ̃ dynamics are independent of φ. The Jacobian of the ρ̃ subsystem

is J = −(h(ρ̃)− ρ̃h′(ρ̃), and after the coordinate change Θ(ρ̃) = 1
h(ρ̃) (see183) it is:

JΘ = (Θ̇ + ΘJ )Θ−1 = (4.53)

=
(
h′ρ̃

h
+ 1
h

(−h− ρ̃h′)
)
h

= −h ≤ −C < 0
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The dynamics of ρ̃ are therefore contracting. The dynamics of φ are bounded in ρ̃ and
therefore it admits the nonlinear local ρ̃ dependent coordinate system where φ is indifferent,
similar to the original oscillator. The method of coordinate transform used here is similar
to the one presented in Section 4.4.3.
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Chapter 5

Conclusions and Outlook

The presented PhD thesis addresses topics in learning of motor features from examples
of human behavior. The challenge is to generate complex and structured human motion
online and in an adaptive manner. For applications in robotics, the problem emerges that
human motion typically violates the geometrical and physical constraints of humanoid
robot systems. In this case, it is a nontrivial problem to decide which aspects of human
motion should be reproduced by the robot system, while guaranteeing the robustness of
the performance in the face of perturbations.

The problems treated in Chapter 2 of the thesis include the task of imitation learning of
motor features at the level of individual motor acts and of their elementary combinations.
The proposed approach combines ideas of optimal path planners in configurational space
(C-space) with ideas of pre-selection of action sub-goals and motor means. The proposed
hierarchical representation of observable and executable motion features (together with
motion subgoals) allows for the learning of robot-specific motor actions. The top levels
of motion feature selection are realized by interconnected Neural Fields, building up a
hierarchy of coupled sensor and motor representations of actions. Such architecture is
suitable for a conditioned imitation of motion and for the imitative learning of new motor
skills from observing human actions. The employed imitation paradigm puts the highest
preference on reproducing the goal of an observed action. The primacy of the goal over the
action means allows coping with differences in embodiments and task constraints known as
the ’correspondence problem’ in robot imitation. Also, learning to understand an observed
behavior as a goal-directed action enables the robot to reuse the stored information in new
contexts and to acquire more abstract knowledge associated with that action. As a part of
general architecture, I also described the real-time capable module for the kino-dynamic
motion planning of goal-directed reaching movements with a robot arm of 7-8 degrees of
freedom (DoF). This low level path planning and obstacle avoidance subsystem is uni-
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versal for the very different geometry of an anthropomorphic robot arm, and it employs
a version of a probabilistic roadmap path planner in adaptively re-sampled C-space. In
this chapter I presented techniques of offline and online re-sampling of the posture spaces,
which accelerate substantially the computation time needed for the solution of the path
planning problem for 7-8 degrees of freedom robot arms. I also describe the extension of the
high levels of proposed architecture exploiting the neural fields with transient excitatory
dynamics and the augmented correlation-based learning rule, which is dependent on the
activation level of postsynaptic neuron.

Chapter 3 of the thesis considers the motion transfer problem at the level of learning
and synthesis of motor synergies, which define spatio-temporal combinations of motor
features. The representation of spatio-temporal synergies of motion kinematics is based
on unsupervised learning techniques, dimensionality reduction methods, including uncon-
strained and constrained anechoic mixture models, which can be considered shift-invariant
generalizations of ICA and PCA. The problems considered in this chapter include those
of synthesis of sequential multi-action behavior, both in goal-directed and spontaneous
activities, and those of task-related action transitions. Here I describe the online reactive
kinematic synthesis algorithm for complex full body motion, which is based on learned
Dynamic Movement Primitives (DMPs), and which is implemented in two ways: as gener-
ative architecture for motion in a computer animation system, and as a part of a general
control architecture for the humanoid biped robot HRP-2. For the last case, the approach
integrates the kinematic synthesis algorithm in the full control architecture that guaran-
tees dynamic balance of the biped during walking. Also, a number of machine learning
techniques are described which establish online control of the motion by external variables.
These methods include the learning of mappings from task parameters of goal-directed
actions onto the manifold of weights and delays of kinematic motion primitives. The
technique of semi-supervised learning in style-preserving bilinear regression is developed
for the tasks of structural learning in motor control. The proposed solutions were tested
successfully on a robot physics simulator as well as on the real HRP-2 humanoid robot,
realizing the online control of walking combined with arm reaching and other tasks per-
formed with the upper body. I demonstrate the feasibility of the proposed embedded
kinematic control not only for flexible instantaneous behaviors, but also for online control
of transitional multi-action sequences.

The next problem treated in Chapter 4 of this thesis is the implementation of multi-
agent control strategies for crowds of agents that realize human full-body motion, and
which are characterized by highly nonlinear agent models. I propose a number of con-
trol scenarios for crowds of walking avatars, including multiple-feedback controls for the
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individual avatars based on their instantaneous positions, velocities, walking directions
and gait phases. Basic control strategies for navigation of individual agents are derived
from simplified models of human navigation. The flexible synthesis of complex transient
behaviors requires elaborate tools from modern theories of nonlinear control in order to
guarantee stable system behavior. Here, the framework of Contraction Theory was used as
a new approach to nonlinear stability analysis and as the control synthesis tool. Contrac-
tion theory applied as a synthesis principle, allows the composability of control blocks in
parallel or hierarchical schemes. I present a number of mathematical tools guaranteeing the
sufficient contraction conditions for composite nonlinear systems. The derivations of these
tools are presented in the main text and in the appendix of this thesis. The mathematical
results obtained were successfully implemented for the control of interacting crowds of
multiple agents driven by nonlinear dynamic motion primitives (DMPs, or networks of
interconnected DMPs). The results are illustrated by a number of videos, while perfor-
mance measures are evaluated and compared with the theoretical results. Additionally,
the concept of a morphable oscillator and its applications are introduced in this chapter.

All the chapters are considering the problems of robust motion transfer from humans
to artefacts.
The first Chapter 2 proposes a solution for goal-directed imitative motion planning based
on a pre-learned repertoire of robot-specific motor acts, represented as pre-selections of
subsets of arm configurations in C-space. For motion planning in new environment, those
pre-selections are activated from the higher decision-making levels of the motor features
hierarchy, where those activations can be triggered by environmental context cues or by
the motor features cues demonstrated by human subject (teacher). On the lower level of
motion planning, the pre-selection technique accelerates the planning process by means
of a reduction of the search space. Nevertheless, when the online refinement of C-space
is combined with iterative re-planning, the resulting planned trajectory is optimal, while
staying close to the pre-selected trajectories bundle. This architecture provides the mech-
anism of copying action sub-goals and motion features on an abstract higher level, and
allows the robot to re-use (and re-learn if necessary) its own repertoire of obstacle-avoiding
arm reaches. Thus the architecture provides the solution to the ’geometric correspondence
problem’ in imitation of the arm reaching, transporting, placing acts and their simple
combinations.

The next Chapter 3 focuses on transfer of the fine-structure of features of kinematic
trajectories. The proposed approach reproduces the kinematic motion patterns very close
to those demonstrated by a human actor, while providing superior naturalness of the
motion in transitions between motor actions. The key solution proposed here, which ad-
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dresses those two challenges simultaneously, is the use of an anechoic mixture model as a
dimensionality reduction technique. The anechoic source signals represent spatio-temporal
motion primitives. For some applications of computer animation those extracted primi-
tives approximate the full body motion in a holistic manner. For applications in humanoid
robotics I exploited the modular approximation by estimation of full body motion prim-
itives, controlled by gait parameters, superimposed with upper body motion primitives,
controlled by the parameters of arm reaching motion and by the reaching target position
with respect to the trunk. The proposed modular step-wise approximation approach allows
flexible control of arm reaching in any phase of the gait cycle. It allows a further extension
of the architecture by introducing filtering of the lower body motion, in order to provide
stability and robustness of the bipedal walking. The approach is implemented on the
humanoid robot HRP-2, where the lower body motion (represented as Centre of Mass
(CoM ) and feet trajectories) is modified online using NMPC architecture220,221. This ar-
chitecture provides dynamic stability of locomotion while taking into account the desirable
upper-body motion as well. In this framework, the learning of the associations between
gait and arm reaching parameters and the parameters of kinematic generative model is
done using a set of trial trajectories generated by the whole architecture implemented
on the OpenHRP physics simulator. This set of trial trajectories is generated to cover
all combinations of different step sizes of sequentially adjacent steps in double-gait-cycle
sequences (as for example in the drawer reaching task). Thus, this approach of controlling
goal-specific spatio-temporal kinematic motion primitives in modular fashion has demon-
strated an advantage in the architecture where the primal goal of stability of bipedal gait
cycle should be achieved together with the robust reproduction of arm reaching movements
during walking. The robustness of the total synthetic architecture has been demonstrated
in several experiments described in this chapter.

The last Chapter 4 deals with the problems of imitation of collective motion of crowds
of artificial agents. The individual navigation strategies of artificial agents are mimicked
based on human examples, while the interactive and collective control strategies satisfy
global stability properties. Again, the modular approach is shown to be advantageous here
and is implemented in a hierarchical control architecture. The motion of the individual
agents and their navigation strategy is generated using the kinematic motion synthesis
architecture proposed in the previous chapter. The collective crowd control is based on
Contraction Theory. This theory provides the tools of modular compositional control for
ensembles of inter-connected non-linear dynamical systems. I derived the conditions for
the stable combinations of step-size with gait phase synchronisation control and for other
compositional schemes, while implementing a variable topology of agents’ interactions.
Here, the derived sufficient conditions for the uniform exponential stability of the com-
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posite non-linear system guarantees the global exponential convergence of the total crowd
behavior, while taking into account the wide range of variability of agents’ behavior in
different phases of motion.

The modularity-based approaches to complex full-body motion synthesis as proposed
in this thesis can be extended in several ways.
The subsumption architecture proposed in Chapter 2 admits interesting extensions. First,
the higher level planners, modelled as networks of interconnected Neural Fields, may be ex-
tended to represent the semantic networks of inter-dependent motor acts as coupled to the
corresponding motor subgoals networks. During the execution of multi-action sequences
some planned motor acts may possibly fail. In such scenarios error-correcting re-planning
can be performed online by such an extended bi-layered architecture as was shown in pilot
experiments. A second possible direction of research is distributed multi-agent planners.
In cases when agents participating in a single collaborative task have the same configura-
tion state space planners, the agents may still have limited individual information about
the global environment. The information exchange and update takes place only during
the execution. Here, the update of a global value-function of the task results from an
active inference during execution, similar to so-called ’inverse reinforcement learning’. Such
distributed planners need an extensive analysis of convergence and stability properties of
the online updating-and-replanning algorithms.

Similar future research directions can be proposed for the DMP-based online kinematic
planners of Chapter 3. E.g. for the problem of mutual interaction of separate controllers
for the lower and the upper body parts in walking and arm-reaching tasks. Here, the
arm reaching controller that affects the upper-body DoFs, operates in a trunk-related
local coordinate frame. But the arm configuration changes due to this control, and also
influences the CoM dynamics, which is overcompensated by WPG control. The last, in
its turn, affects the trunk position and tilt. For the proposed architecture for the HRP-2
humanoid, the instantaneous agreement between controllers is achieved via the hierarchical
framework of Stack-of-Tasks, using a QP-solver221,300, such that the performed goal-related
arm reaching stays as precise as possible in global task-related coordinates. However, the
problem of stable synthesis of spatial and temporal superpositions of versatile behaviors
in changing environment remains unsolved for more general scenarios.

The Contraction Theory methods developed in the last Chapter 4 need to be extended
for scenarios involving modular controllers of non-linearly interacting body parts, as de-
scribed above. As next possible extensions, Contraction Theory methods could also be
developed for new multi-agent scenarios, involving the delayed communication between
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the agents and for cases when the agents are dynamically controlled robots interacting in
joint collaborative tasks in shared workspace.
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Appendix A

Some Facts from Algebraic Graph
Theory

A.1 Definitions and Facts from Algebraic Graph Theory

For a graph G = G(V,E) we have: V is a non-empty vertex (node) set and E is an edge
(link) set. If there is a direction of flow associated with each edge, G is called a directed
graph, otherwise it is undirected. If positive weights are associated with the directed or
undirected edges, the graph is called weighted. The adjacency matrix of a non-weighted
graph of order n is defined as

A(G) = [aij ] ∈ Rn×n

where aij = 1 for all i 6= j if (i, j) ∈ E, otherwise aij = 0. For weighted undirected graphs
aij = aji ≥ 0.
The vertex degree matrix (also called valency matrix):

D(G) = diag(d1, . . . , dn) ∈ Rn×n

is a diagonal matrix with di =
∑
j aij .

The matrix

L(G) = D−A (A.1)

is defined as Laplacian matrix of the graph G (sometimes called admittance matrix, Kirch-
hoff matrix or discrete Laplacian). For an undirected graph G with order n, L is symmetric
and positive semi-definite. The first eigenvalue is always zero, corresponding to the eigen-
vector 1/

√
n[1, 1, . . . , 1]T = 1√

n
1̄ - since all the row-sums of L(G) are 0s (as di =

∑
j aij).
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Denoting c as the number of connected components of G,

rank(L) = n− c

The second minimum eigenvalue of the graph Laplacian, λ2 = λ2(L) is called the algebraic
connectivity, which is zero if and only if the graph is not connected108. The multiplicity of
the zero eigenvalue equals the number of connected components of the graph10.

An orientation of an undirected graph is an assignment of a direction to each edge.
Assign an arbitrary orientation σ to an undirected graph G. We get the incidence matrix :

Q = Q(Gσ) = [qij ] ∈ Rn×τ (A.2)

where τ is the number of the links in E. For each oriented link k which starts from node i
and ends at node j, we have qik = 1 and qjk = −1. All the other entries of Q are equal to
0. Moreover,

L = QQT (A.3)

which holds for any choice of the orientation σ. Two non-isomorphic graphs might have
the same eigenvalue spectrum of their Laplacian matrices72,110,196.

If the graph is weighted, we have the weighted Laplacian matrix:

L = QWQT

where W ∈ Rτ×τ is a diagonal matrix with the kth diagonal entry corresponding to
the weight of the kth link. For non-weighted graphs, from (A.3), the inner product
(Lx, x) = (QQTx, x) = (QTx,QTx) =

∑
[ij]∈E(xi−xj)2 (summation for all the edges [ij]),

and for the weighted case:

(Lx, x) =
∑

[ij]∈E
aij(xi − xj)2 (A.4)

We consider n coupled dynamical systems, each described by a first-order ODE:
ẋ1(t) = f1(x1, . . . , xn) +

∑
j 6=i a1j(xj − x1)

. . .

ẋn(t) = fn(x1, . . . , xn) +
∑
j 6=i anj(xj − xn)

(A.5)
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where all aij = aji ≥ 0 - this is the case of symmetric diffusive coupling. Then the Jacobian
matrix of the system is J =

[
∂fi(x)
∂xj

]
− L(G), with L(G) the symmetric Laplacian matrix

of the undirected coupling graph G.

For non-symmetric diffusive coupling: aij 6= aji. This is the case of a directed diffusive
coupling network. The coupling is called balanced if the weights of incoming links are equal
to the weights of outgoing links at every vertex:

∑
j 6=i aij =

∑
j 6=i aji, the corresponding

row-sums and column-sums of the adjacency matrix of the weighted coupling graph are
equal. But the matrix L in the Jacobian of the network dynamics J = [ ∂f

∂x ] − L is not
symmetric, though its row-sums as well as its column-sums are all zeros. We will call
it the Laplacian matrix of a directed graph. In Contraction Theory we are interested
in symmetrized Jacobians. If we symmetrize the corresponding Laplacian matrix of the
directed balanced graph, we obtain a symmetric positive semidefinite matrix (L + LT )/2,
which is symmetric and has all properties of a graph Laplacian with the same number of
nodes, but with the links weights the averaged weights of the forward and backward links
connecting a pair of nodes242.

In the remainder of this Appendix we will consider only finite, undirected and non-
weighted graphs. According to Weyl’s Theorem, (Theorem 4.3.1 in125), if square matri-
ces A and B are Hermitian and the eigenvalues λi(A), λi(B) and λi(A + B) are arranged
in increasing order, for each k = 1, 2, . . . , n, we have (as corollary to the Courant-Fisher
Min-max Theorem, e.g. Ch.2, §44 in339)

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B) (A.6)

If L is the Laplacian matrix of a connected undirected graph G, then matrix L has only one
zero eigenvalue λ1(L). Let us add an undirected link to G between the nodes i and j. Then
the Laplacian matrix of the new graph becomes L+E[ij], where symmetric matrix E[ij] has
ones in two places on the diagonal E[ij]

ii = E[ij]
jj = 1 and minus ones at the corresponding

off-diagonal positions E[ij]
ij = E[ij]

ji = −1, while all other entries of matrix E[ij] are zeros.
E[ij] is a rank-1 matrix, and its first n− 1 eigenvalues are zeros, the last and the largest
one is equal to 2. Nevertheless, the first (the smallest) eigenvalue of new Laplacian matrix
remains zero. But the second eigenvalue, the algebraic connectivity, is non-decreasing when
adding the new link, according to Weyl’s Theorem (A.6): λ2(L) ≤ λ2(L+E[ij]) ≤ λ2(L)+2.

The last result can be improved based on the fact that the addition of matrix E[ij] is a
rank-1 modification. In this case we have interlacing of the resulting eigenvalues, (Th.8.1.5
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in109, Ch.2, §40-41 in339, Theorem 4.3.4 in125):

0 = λ1(L) = λ1(L + E[ij]) ≤ λ2(L) ≤ λ2(L + E[ij]) ≤ λ3(L) ≤ . . . ≤ λn(L) ≤ λn(L + E[ij])
(A.7)

which is Theorem 3.2 in199. Notice that the sum of eigenvalues of the Laplacian
∑n
i=1 λi(L) =

trace(QQT ) = trace(QTQ) is equal on one hand to the twice number of edges of the un-
weighted graph and on the other hand (by the trace formula) equal to the sum of the
degrees of all vertices of the graph:

n∑
i=1

λi(L) = 2|E| =
∑
i

di (A.8)

Thus, in our case of adding one link to G, we have
∑n
i=1(λi(L + E[ij])− λi(L)) = 2, and

at least one inequality λi(L) ≤ λi(L + E[ij]) in (A.7) must be strict199.

Dropping a link from an undirected graph results in nullifying the corresponding col-
umn of the incidence matrix Q. The nonzero eigenvalues of L = QQT are the same as
the nonzero eigenvalues of QTQ10. Further, nullifying a single column from the incidence
matrix Q results in reducing the rank of QTQ by 1, so that the new reduced matrix QTQ
can be regarded as a principle submatrix of the old one. We have the following result
concerning (n− 1)-by-(n− 1) principle submatrices of a symmetric matrix of size n-by-n
(Cauchy interlacing property, as corollary to the Courant-Fisher Min-max Theorem, see:
Th.4.3.8 in125):

Cauchy’s Interlacing Theorem: If A is a Hermitian matrix and B is a principle
submatrix of A, then the eigenvalues of B interlace the eigenvalues of A.

Due to this theorem, by deleting a link from a graph, the new nonzero eigenvalues of
the Laplacian matrix L interlace the old ones, see322 54. This theorem also provides the
interlacing property (A.7) for connected graphs.

Generalized Cauchy’s Interlacing Theorem: Let A be an n× n real symmetric
matrix and B be an r × r, 1 ≤ r ≤ n, principal submatrix of A, obtained by deleting
n− r rows and the corresponding columns from A. If λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A) and
λ1(B) ≤ λ2(B) ≤ . . . ≤ λr(B) are the eigenvalues of A and B, respectively, then for each
integer k such that 1 ≤ k ≤ r: λk(A) ≤ λk(B) ≤ λk+n−r(A).

This generalized interlacing theorem is also corollary to the Courant-Fisher Min-max
Theorem, see: Th.4.3.15 in125). The corollary from this generalized interlacing theorem is
known as the Poincaré separation theorem, see125.

The last theorem established the interlacing property for the Laplacian eigenvalues of
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two graphs, where one is obtained from another by dropping one vertex of degree n− r,
see Th.3.1 in116.

The Cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph
denoted as G1�G2 = (V1 × V2, E), such that ((v1, v2), (w1, w2)) ∈ E if and only if either
v1 = w1 and v2, w2 ∈ E2 or v1, w1 ∈ E1 and v2 = w2. The Laplacian eigenvalues
of the Cartesian product G1�G2 of graphs G1 and G2 are equal to all the possible
sums of eigenvalues of the two factors: λi(L(G1)) + λj(L(G2)), i = 1, . . . , |V (G1)|, j =
1, . . . , |V (G2)|,88. And λ2(L(G1�G2)) = min [λ2(L(G1)), λ2(L(G2))]. The adjacency
matrix of the Cartesian product graph G1�G2 is the Kronecker sum of their adjacency
matrices: A(G1�G2) = A(G1) ⊗ In2 + In1 ⊗ A(G2), where ⊗ is Kronecker product
(A ⊗B = [aijB]), and the diagonal size of square matrix A(Gk) is denoted as nk. The
Laplacian matrix of the Cartesian product of two graphs is the Kronecker sum of their
Laplacians.

The tensor product of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph denoted
as G1 ×G2 = (V1 × V2, E), such that ((v1, v2), (w1, w2)) ∈ E if and only if v1, w1 ∈ E1

and v2, w2 ∈ E2. The tensor product of two connected graphs is not always connected, it
is connected if and only if both factors are connected and at least one factor is nonbipar-
tite133. The adjacency matrix of the tensor product of two graphs G1 ×G2 is the tensor
product (Kronecker product) of their adjacency matrices A(G1 ×G2) = A(G1)⊗A(G2),
and its eigenvalues are all the pairwise products of the eigenvalues of those two adjacency
matrices of factors. General solution for obtaining Laplacian eigenvalues of graphs tensor
product in terms of eigenvalues of two Laplacians of the factors is not known, but a good
approximation is given by273.

In88 the important results on algebraic connectivity bounds are derived:
λ2(L(G)) ≤ n

n−1 min {d(i); i ∈ V (G)},
λn(L(G)) ≥ n

n−1 max {d(i); i ∈ V (G)},
If G1 is a spanning subgraph of G2 then λ2(L(G1)) ≤ λ2(L(G2)).
Another important inequality for the algebraic connectivity is obtained in198:
λ2(L(G)) ≥ 4

n diam(G) , where diam(G) is the diameter of G.

A.2 Some Examples

Let Kn denote the complete graph on n vertices. Lemma 2 in10 states: The eigenvalues of
L(Kn) are 0, with multiplicity 1, and n, with multiplicity n−1. Indeed, L(Kn) = nIn−Jn,
where In is identity matrix of size n-by-n and Jn is the square matrix of all ones, of size
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n-by-n. Thus, the vector 1n of size n with all the components equal to 1 is the eigenvector
with eigenvalue 0, and for all the other vectors u orthogonal to it: Jnu = 0.

Let Ḡ denote the graph complimentary to G. That is, Ḡ has the same set of vertices
as G, and the two vertices are joined by an edge in Ḡ if and only if they are not joined in
G. For graph G with n vertices: L(G) + L(Ḡ) = L(Kn). Vector 1n is a zero-eigenvalue
eigenvector for all these Laplacian matrices. If u orthogonal to 1n is the eigenvector of
L(G) with the eigenvalue λ, L(G)u = λu, then L(Ḡ)u = L(Kn)u − L(G)u = (n − λ)u.
Since the eigenvalues of L(Ḡ) are also non-negative, one must have λ ≤ n. λ = n if and
only if L(Ḡ)u = 0, and the dimension of the space of such vectors u is one less than the
nullity of L(Ḡ). Thus, the multiplicity of eigenvalue n of L(G) is equal to one less than
the number of connected components of Ḡ, see10.

The eigenvalues of standard Laplacian of the complete bipartite graph Km,n on m+ n

vertices are: {m+ n, m, n, 0} with multiplicities {1, n− 1, m− 1, 1} respectively10.

Consider the star graph of n+1 vertices and n edges G, where the single central vertex
is connected to all the other n vertices. Orient all the links towards central vertex, then the
matrix QTQ = In+Jn has size n-by-n and it has no zero eigenvalues (like any such matrix
for a connected graph with tree structure, where the number of links is one less then the
number of vertices). One eigenvalue of QTQ (which corresponds to the eigenvector 1n)
equals to n+1 and the other n−1 eigenvalues equal 1 (they correspond to the eigenvectors
orthogonal to 1n). Also, those are the n non-zero eigenvectors of Laplacian of the star
graph of n+ 1 vertices.

If G is the cycle (ring network) with n vertices, then the eigenvalues of L(G) are
4sin2(πk/n), k = 1, 2, . . . , n. The smallest non-zero eigenvalue is λ2 = 4sin2(π/n) =
2(1− cos (2π/n)). The eigenvectors and eigenvalues of the cycle graph are computed in298,
Lecture 2, Lemma 2.4.4. If G is the path (chain network) with n vertices, the eigenvalues
of L(G) are 4sin2(πk/(2n)), k = 0, 1, . . . , n − 1. The smallest non-zero eigenvalue is
λ2 = 4sin2(π/(2n)) = 2(1−cos (π/n)). If G is the wheel with n+1 vertices, the eigenvalues
of L(G) are n + 1, 1, 1 + 4sin2(πk/n), k = 1, 2, . . . , n − 1. The eigenvalues of the wheel
graph can be computed by considering its complement, while taking into account the
eigenvalues of the cycle graph with n vertices.
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Appendix B

Stability Conditions for Non-linear
Dynamical Systems

B.1 Some Definitions and Facts from Matrix Analysis

A square matrix H ∈ Cn×n is called Hermitian if H∗ = H, where H∗ denotes the trans-
posed and complex conjugate matrix. The real Hermitian matrix S ∈ RN×N is symmetric
when ST = S, where ST denotes matrix transpose. The eigenvalues of Hermitian matrices
are real numbers (23,125).

For the square, nonsingular and invertible matrix X, the square matrices A and
B = X−1AX are similar, and the conjugation by X is called a similarity transformation.
A similarity transformation preserves the eigenvalue spectrum.

The inertia of a Hermitian or real symmetric matrix is a triplet of the numbers of
negative, zero and positive eigenvalues. Two real square matrices A and B are called
congruent if there exists a real invertible matrix X: B = XTAX. Sylvester’s law of inertia
states that two congruent real symmetric matrices have the same inertia125.

A Hermitian (or real symmetric) matrix H is called positive definite if for any non-zero
complex vector x: x∗Hx > 0 (denoted as H > 0). H is positive semi-definite (denoted as
H ≥ 0) if x∗Hx ≥ 0, ∀x 6= 0 ∈ CN . A Hermitian (or real symmetric) matrix H is called
negative definite if for any non-zero complex vector x: x∗Hx < 0 (denoted as H < 0). H
is negative semi-definite (denoted as H ≤ 0) if x∗Hx ≤ 0, ∀x 6= 0 ∈ CN .

Loewner order 184 is the partial order defined by the convex cone of positive semi-definite
matrices: if A and B are two Hermitian matrices, A ≥ B if (A−B) is positive semi-definite.
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A > B if (A −B) is positive definite. In the following we denote λmin(A) the minimal
real eigenvalue of a Hermitian matrix A and λmax(A) is its maximal real eigenvalue. For
two Hermitian matrices A and B we will use the sign � if the minimum eigenvalue of
one matrix exceeds the maximum eigenvalue of another: A � B if λmin(A) > λmax(B),
similarly A � B if λmin(A) ≥ λmax(B).

By definition, the positive definiteness must be tested with respect to non-zero complex
vectors. The positivity of xTSx with respect to real vectors ∀x 6= 0 ∈ Rn does not suffice
to guarantee positive definiteness with respect to any non-zero complex vector. But, for
the specific case of real symmetric matrices (S = ST ) we have for ∀x,y ∈ RN :

(x− iy)TS(x + iy) = xTSx + yTSy

Thus, S = ST > 0 iff xTSx > 0,∀x 6= 0 ∈ Rn. This means, that for real symmetric
matrices we may test positive definiteness using real vectors only.

The principle of biorthogonality: if a square matrix M has two different eigenvalues λ
and µ, then any left eigenvector of M corresponding to µ (y, such that y∗M = µy∗) is
orthogonal to any right eigenvector of M corresponding to λ (x, such that Mx = λx). On
one hand: y∗Mx = y∗(λx) = λ(y∗x), on the other hand: y∗Mx = (µy∗)x = µ(y∗x), so
that, if λ 6= µ, then necessarily: y∗x = 0. If a square matrix of size N is real symmetric,
and all its eigenvalues are distinct, then it has N pairwise orthogonal eigenvectors. In this
case of a real symmetric matrix S a decomposition can be written as S =

∑N
i=1 λivivTi ,

where vi are real eigenvectors corresponding to distinct real eigenvalues λi of S.

For the symmetric real invertible matrices L and D, the spectra of the eigenvalues of
LD and DL are the same. And if W is a matrix whose columns are right eigenvectors of
LD, then DW is a matrix whose columns are right eigenvectors of DL.

Remark 1. For two symmetric real matrices S1 � S2 (λmin(S1) > λmax(S2)): from
xTS1x > yTS2y, ∀x ∈ RN , ‖x‖2 = 1, and ∀y ∈ RN , ‖y‖2 = 1 it follows xT (S1 − S2)x > 0
∀x 6= 0 ∈ RN (S1 − S2 is positive definite). And if λmin(S1) > maxi (|λi(S2)|), then
xT (S1 ± S2)x > 0 ∀x 6= 0 ∈ RN (S1 ± S2 are positive definite).

When all the eigenvalues of a matrix A have negative (positive) real part, such a matrix
is said to be negative (positive) stable. The theorem of Lyapunov (186) states that A
is negative (positive) stable if and only if there exists a real symmetric positive definite
matrix H, such that ATH + HA is negative (positive) definite. A stable matrix A is
said to be diagonally stable if there exists a full rank diagonal matrix D > 0, for which
ATD + DA > 0. If A is diagonally stable, then for each positive diagonal matrix D̃ > 0,
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the matrices AD̃ and D̃A are also diagonally stable (19). (The definitions for D-stable
(14,104) and S-stable matrices and their relations to diagonally stable matrices (27) can be
found elsewhere, e.g. see141).

B.2 Lur’e-Persidskii Systems

Consider a system of N coupled dynamical systems, each one described by a first order
ODE:

φ̇i(t) =
N∑
j=1

Aij(G(φj(t))−G(φi(t))), ∀i ∈ [1 . . . N ] (B.1)

with Aij = Aji ≥ 0, Aii = 0,∀i, j ∈ [1 . . . N ] time-constant coefficients. This form
of coupling is called symmetric diffusive coupling with A the adjacency matrix of the
coupling graph. Assume that the nonlinear function G(φ) is differentiable and invertible
with dG(φ)/dφ = g(φ) > 0, ∀φ. We also assume that it satisfies the conditions: G(0) = 0,
G(φ)φ > 0. Using φ(t), the vector with components φi(t) we write the dynamics in vector
notation as:

φ̇ = −LG(φ) (B.2)

with time-constant matrix L the Laplacian of the coupling graph, corresponding to the
adjacency matrix A, Lij = −Aij for i 6= j and Lii =

∑N
j=1Aij . L is a symmetric positive

semi-definite matrix. In the following we consider connected coupling graph, in this case
the single zero eigenvalue of L corresponds to the eigenvector 1̄/

√
N .

Next, I prove the asymptotic Lyapunov-type stability (cf.166) of the equilibrium con-
sensus manifold, where φi = φj , ∀i, j, exploiting the Diagonal Stability approach (e.g.150).
It is based on pioneering work of A.I. Lur’e (185), E.A. Barbashin (18) and Persidskii (241)
on Lyapunov’s asymptotic and absolute stability for nonlinear systems.

Lemma 1. The consensus manifold φ1 = φ2 = . . . = φN of system (B.2) is asymptotically
stable.

Lemma 1 is proven by explicit construction of a Lyapunov function. For the function
G(τ) with properties as listed above, a Persidskii-type integral

∫ t
0 G(τ)dτ is a nonnegative

convex function of t, and it equals zero only for t = 0. The average φ̄(t) = 1
N

∑
i φi(t) is

constant in time ˙̄φ(t) = 0 (due to Aij = Aji,∀i, j in (B.1) and L1̄ = 0 in (B.2)). Thus, we
can introduce a Persidskii-type Lyapunov function V (φ), which equals zero V (φ) = 0 if
and only if φi = φj = φ̄,∀i, j (cf.150):

V (φ) =
∑
i

∆ii

∫ φi−φ̄

0
G(τ)dτ > 0 (B.3)
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where ∆ > 0 is some full rank positive diagonal matrix. Taking into account dφ̄
dt = 0 on

each trajectory, compute V̇ (φ) = dV (φ)/dt =
∑
i [∂V (φ)/∂(φi−φ̄)]d(φi−φ̄)

dt :

V̇ (φ) = −G(φ− φ̄)T (LT∆ + ∆L)G(φ− φ̄) (B.4)

V̇ (φ) ≤ 0, if there exists such a full rank diagonal ∆ > 0, that (LT∆ + ∆L) ≥ 0
(150). And V̇ (φ) = 0 only for φi = φj = φ̄,∀i, j, exactly at the points where V (φ) = 0.
With our positive semi-definite symmetric L, we may choose ∆ = I, which gives us the
Lyapunov function B.3 and proves the asymptotic stability of the consensus manifold
∀i, j : φi = φj = φ̄. �

B.3 Partial Contraction and its Necessary and Sufficient
Stability Conditions

In this part I consider the necessary and sufficient conditions for positive definiteness of
Lyapunov-Volterra type matrices, which are the anticommutators of two full rank real
symmetric matrices. (The anticommutator of two square matrices A and B is defined
as AB + BA.) Consider again the dynamical system of Persidskii-type (B.5). The con-
traction analysis of this system (see Ch. 4, Section 4.4.2) is the core of our analysis of
stability of different scenarios of multi-agent self-organized behavior presented in this thesis.

φ̇ = −LG(φ) (B.5)

Here, as above the time-constant square matrix L ∈ RN×N is the Laplacian of the
coupling graph, and the nonlinear function G(φ) is differentiable and invertible with
dG(φ)/dφ = g(φ) > 0, and it satisfies the conditions: G(0) = 0, G(φ)φ > 0, as in the
previous section.

In the framework of Contraction theory we analyse the sufficient conditions which
guarantee the symmetrized Jacobian of the dynamical system to be uniformly strictly
negative definite. In case of partial contraction towards a linear flow invariant manifold,
which is a linear subspace of the whole phase space, (see Ch. 4, Section 4.2.2), we are
interested in negative definiteness conditions for the Jacobian locally projected onto the
orthogonal complement to this linear manifold. With the symmetric constant matrix L,
the symmetrized Jacobian matrix of (B.5) is

Js(φ) = −(LD(φ) + D(φ)L) (B.6)
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where matrix D(φ) is dependent on the current configuration, the point in phase space
φ. In the following part of this Appendix we denote this matrix as D ∈ RN×N (keeping
in mind its variability). It is a full-rank diagonal matrix with strictly positive diagonal
elements Dii = g(φi) > 0, ∀i ∈ [1 . . . N ]. In all the problems that we address, g(φ) is a con-
tinuous function with values bounded to a positive interval 0 < gmin(φ) ≤ g(φ) ≤ gmax(φ).

The sufficient stability conditions for the exponential convergence towards the flow-
invariant manifold (the line subspace φ1 = . . . = φN ) is:

VT (LD + DL)V > 0 (B.7)

where V is a matrix whose columns are eigenvectors of L corresponding to non-zero eigen-
values of the Laplacian L and the single zero eigenvalue corresponds to the eigenvector
1̄/
√
N in linear subspace of φ1 = . . . = φN . Lets denote the minimal zero eigenvalue of L as

λ1 and all other positive eigenvalues of L as 0 < λ2 = λmin ≤ . . . ≤ λi ≤ . . . ≤ λN = λmax.
The sufficient stability conditions (B.7) must hold for any admissible matrix D. In tran-
sient states of the convergence towards the flow-invariant manifold this diagonal matrix
may take all the values of admissible interval g(φ): 0 < gmin(φ) ≤ Dii ≤ gmax(φ), with
minimal and maximal values denoted as dmin and dmax.

The problem is to find the relations between dmin, dmax, λmin, λmax, which guarantee
VT (LD + DL)V > 0, for the fixed constant matrix L = LT > 0; and for all possible
distributions of Dii in the positive interval [dmin; dmax].

V is the matrix, whose columns are normalized eigenvectors of L corresponding
to non-zero eigenvalues. V has a size of N by N − 1. Thus, VTV = I(N−1) and
VVT = I(N) − 1

N 1̄(N)1̄T(N) has rank (N − 1). In the following we omit the dimension-
ality notations for I(N) and 1̄(N) since the sizes of the identity matrices (denoted as I) and
unit vectors (denoted as 1̄) will be clear.

Lets introduce a diagonal positive matrix Λ of non-zeros eigenvalues of L: Λ = VTLV.
Moreover, we have: VTDLV = VTD(VVT + 1

N 1̄1̄T )LV = (VTDV)(VTLV) = D̃Λ, due
to 1̄TL = 0. We denote D̃ = VTDV > 0. Thus, we have VT (LD + DL)V = ΛD̃ + D̃Λ
for the symmetric real, strictly positive definite full rank matrices Λ and D̃.

The minimal and maximal diagonal values of Λ are the minimal and maximal non-zero
eigenvalues of L, denoted as λmin and λmax. The matrix D̃ corresponds to the quadratic
form of D restricted to the N − 1-dimensional subspace (which is orthogonal to the vector
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1̄). V is the orthogonal projection. In this case, the eigenvalues of D̃ (denoted below
as d̃i, i ∈ [1 . . . N − 1]) interlace the eigenvalues of D (di, i ∈ [1 . . . N ]) due to Cauchy’s
Interlacing Theorem (Th.4.3.8 in125, see also Appendix on Graphs). So, arranging all of
them in increasing order: dmin = d1 ≤ d̃min = d̃1 ≤ d2 ≤ d̃2 ≤ . . . ≤ d̃N−2 ≤ dN−1 ≤
d̃max = d̃N−1 ≤ dmax = dN .

The bounds for d̃min and d̃max can be tight: d̃min = dmin and d̃max = dmax simul-
taneously. E.g. for N = 4 take D with the diagonal values {2; 2; 1; 1}, then for the
vector u ∈ Range(V), u = [0 0 1 1]T /

√
2 (‖u‖22 = 1) we have uTDu = 1 and for the

vector v ∈ Range(V), v = [1 1 0 0]T /
√

2 (‖v‖22 = 1) we have vTDv = 2. Since the
orthogonal projection V preserves 2-norm, (‖Vx‖22 = ‖x‖22), we have d̃min = dmin = 1
and d̃max = dmax = 2. For the problems of stability analysis considered in this Appendix,
the diagonal values D might be any combination of the values in the positive interval
[dmin; dmax]. In these cases, d̃min might take its minimal value dmin, whenever d̃max takes
its maximal value dmax. Then, we are interested in such conditions of positive definiteness
of ΛD̃ + D̃Λ, whenever the eigenvalue spectrum of D̃ is contained within the positive
interval [dmin; dmax].

For a positive definite matrix, the inverted condition number (in 2-norm) is the ratio
between its minimal and maximal non-zero eigenvalues. In our case, we denote the inverted
condition number of matrix Λ as α = λmin/λmax, 0 < α ≤ 1 and β = dmin/dmax, 0 < β ≤ 1
is the inverted condition number of matrix D. Denoting β̃ = d̃min/d̃max, we have (due to
the eigenvalues interlacing property): β̃ ≥ β > 0.

Using an orthogonal transform with orthonormal matrix O (OT = O−1) the symmetric
matrix (ΛD̃ + D̃Λ) can be transformed to (AB + BA), with symmetric full rank matrices
A = OTΛO and B = OT D̃O having the same real eigenvalues spectra as matrices Λ and
D̃ respectively. Thus the problem of positive definiteness of (ΛD̃ + D̃Λ) is equivalent to
the positive definiteness conditions for any (AB + BA), where full rank symmetric real
matrices A and B have the same eigenvalue spectra as Λ and D̃. More generally, we may
reformulate our problem as:

Problem 1. In terms of the inverted condition numbers α and β for a pair of symmetric
real matrices A > 0 and B > 0, find the necessary and sufficient conditions for AB+BA >

0.

Regarding the equivalent roles of the symmetric positive definite matrices A and B in
anticommutaator (AB + BA), the necessary and sufficient conditions must be symmetric
with respect to 0 < α ≤ 1 and 0 < β ≤ 1. We may also rescale the matrices A and
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B by multiplying them with some positive scalars, setting the minimum and maximum
eigenvalues of A to (1 − ζ) and (1 + ζ), 0 ≤ ζ < 1, and the minimum and maximum
eigenvalues of B to (1 − η) and (1 + η), 0 ≤ η < 1. Thus, after rescaling: ζ = 1−α

1+α and
η = 1−β

1+β . Reversing: α = 1−ζ
1+ζ and β = 1−η

1+η .
If, e.g. α = 1, then A = λmax(A)I and AB + BA = 2λmax(A)B > 0, because B > 0.
Similarly, AB+BA > 0 when β = 1 and A > 0. Thus, one obvious sufficient condition for
the positive definiteness of the anticommutator of two positive definite symmetric matrices
is that at least one of them is a positive scalar multiplied by identity matrix.

Remark 2. For two positive definite symmetric real matrices A > 0 and B > 0, the
matrix AB + BA is not always positive definite (or positive semi-definite), and may have
eigenvalues of different signs. (E.g. see338).

In the next paragraphs I demonstrate this property by some examples. Consider a
similarity transform with full rank orthogonal matrix O which diagonalizes a matrix A:
OTAO = Λ and OTBO = D̃. This transform preserves the eigenvalue spectra of the
transformed A and B and OT (AB+BA)O = ΛD̃+D̃Λ for some diagonal matrix Λ > 0.

ΛD̃ + D̃Λ can be represented as a Hadamard product (◦), an element-wise product
(for two matrices X and Y, [X ◦ Y]ij = XijYij): D̃ ◦ (1̄λ̄T + λ̄1̄T ), where the column
vector λ̄ = diag(Λ), λ̄i = Λii. By the famous Schur’s Theorem the Hadamard product of
two positive definite matrices is positive definite,279. But in our case, the rank-1 matrix
M = 1̄λ̄T + λ̄1̄T is not positive definite. For some ε > 0 introduce the decomposition:

1̄λ̄T + λ̄1̄T = 1
2ε((λ̄+ ε1̄)(λ̄+ ε1̄)T − (λ̄− ε1̄)(λ̄− ε1̄)T ) (B.8)

So,
D̃ ◦ (1̄λ̄T + λ̄1̄T ) = 1

2ε(Λ+D̃Λ+ −Λ−D̃Λ−) (B.9)

where the diagonal matrix Λ+ has elements (Λ+)ii = (λ̄+ε1̄)i and (Λ−)ii = (λ̄−ε1̄)i. E.g.
if D̃ has zero eigenvalue, we can choose x for (Λ+)−1x to be equal to an eigenvector of D̃
corresponding to a zero eigenvalue and get: xT (D̃◦(1̄λ̄T+λ̄1̄T ))x = − 1

2εx
T (Λ−D̃Λ−)x < 0.

It follows that, a necessary condition for the positive definiteness of the anticommutator
of two positive semi-definite symmetric matrices is that both of them must be strictly
positive definite.

For the decomposition (B.8) above we can choose ε =
√

(λ̄T λ̄)/N (here N is the diagonal

size of Λ) in order to get an orthogonal decomposition with l+ = λ̄ + 1̄
√

(λ̄T λ̄)
N ) (and

Λ+ = diag(l+)) orthogonal to l− = λ̄ − 1̄
√

(λ̄T λ̄)
N (and Λ− = diag(l−)), cf. Eq. (B.9).

Notice, that lT−Ml− = lT−(1̄λ̄T + λ̄1̄T ))l− < 0. Then, for a symmetric real D̃ > 0:
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lT−(D̃ ◦M)l− = trace(D̃Λ−MΛ−) = trace(D̃1/2Λ−MΛ−D̃1/2), which is the trace of a
matrix congruent to the matrix Λ−MΛ−. The congruence transform preserves inertia,
but Λ−MΛ− is not positive definite: 1̄T (Λ−MΛ−)1̄ = lT−Ml− < 0. Thus, we might
choose a (non-diagonal) D̃ to obtain lT−(D̃ ◦M)l− < 0. (See also Ch.3.4 in124). This
shows that even strict positive definiteness of the matrices Λ and D̃ is not sufficient to
guarantee the positive definiteness of the anticommutator ΛD̃ + D̃Λ. For example, if

D̃ =
[
1 1
1 1.02

]
, with eigenvalues(D̃) ≈ {2.01005; 0.00995} > 0 and Λ =

[
3 0
0 2

]
, then

eigenvalues(ΛD̃+D̃Λ) ≈ {10.1313; −0.0513}. The derivation of the worst case for 2-by-2
matrices follows in the next subsection B.3.1.

B.3.1 The Necessary Conditions for Positive Definiteness of the Anti-
commutator of two Positive Definite Symmetric Real Matrices

Consider a general 2-by-2 symmetric real matrix D̃ = V T

[
1 + ζ 0

0 1− ζ

]
V , (0 < ζ < 1),

where V is an orthogonal matrix V TV = I. An orthogonal rotation in 2D real plane
can be parameterized by a single parameter - the rotation angle. Varying this param-
eter, we find that the minimum of the minimal eigenvalue of (ΛD̃ + D̃Λ) is achieved

when V =
[

1 1
−1 1

]
/
√

2. For this V and for a diagonal matrix Λ =
[
1 + η 0

0 1− η

]
,

(0 < η < 1), we have ΛD̃ + D̃Λ = 2
[
1 + η ζ

ζ 1− η

]
, with characteristic polynomial:

µ2 − 2µ + (1 − η2 − ζ2). The minimal eigenvalue µ is negative, when η2 + ζ2 > 1 . In
terms of the previously defined α and β: the minimal eigenvalue of ΛD̃ + D̃Λ is negative,
when (1−α)2/(1+α)2 + (1−β)2/(1+β)2 > 1. The borderline of this inequality is depicted as a
red line in Fig. B.1.

Suppose we have two general N -by-N dimensional positive symmetric real matrices,
where one matrix is fixed and the system of eigenvectors of the second variable matrix
may be rotated (but its the eigenvalue spectrum stays preserved). Then, choose the two-
dimensional linear subspace spanned by two eigenvectors of the fixed matrix corresponding
to its minimal and maximal eigenvalues. For some variation of directions of the eigenvectors
of the variable matrix we may get them laying in our chosen two-dimensional linear subspace
rotated by π/4 with respect to the eigenvectors of the fixed matrix laying in this subspace.
Then, in this 2-dimensional subspace, we have the worst case analyzed above for the case of
two general 2-by-2 positive symmetric real matrices. Thus, we have the following theorem:
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Figure B.1: Red line (cf. Eq. (B.10)): the necessary and sufficient conditions of
positive definiteness of anticommutator of two positive definite symmetric real matrices.
Blue line: weak sufficient conditions, Eq. (B.13-B.14). Green lines: stronger sufficient
conditions, Eq. (B.18-B.19). On the axes are the inverted condition numbers of the
two matrices. The arrows point inside the area of stability.

Theorem 5. For two positive definite symmetric real matrices A > 0 and B > 0, α =
λmin(A)/λmax(A), β = λmin(B)/λmax(B), the necessary condition for positive definiteness
of AB + BA is:

(1−α)2/(1+α)2 + (1−β)2/(1+β)2 < 1 (B.10)

It means that we can always find symmetric real matrices A > 0 and B > 0, with α

and β violating (B.10), to obtain AB + BA that is not positive definite.

B.3.2 The Sufficient Conditions for Positive Definiteness of the Anti-
commutator of two Positive Definite Symmetric Real Matrices

Weak sufficient conditions.

For two positive definite matrices D̃ > 0 with minimal and maximal eigenvalues dmin
and dmax, and diagonal Λ > 0 with minimal and maximal eigenvalues (diagonal elements)
λmin and λmax, we analyse the sufficient conditions for positive definiteness of the matrix
ΛD̃ + D̃Λ.
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Lets use the following separation of terms: ΛD̃+D̃Λ = 2mD̃+[D̃(Λ−mI)+(Λ−mI)D̃],
for a positive m = mini (Λ)ii = λmin. Lets also denote the maximal residual of the diago-
nal elements of Λ as M = maxi (Λ−mI)ii = λmax − λmin. Denote the two terms in this
decomposition as S1 = 2mD̃ and S2 = D̃(Λ−mI) + (Λ−mI)D̃. Then S2 is not positive
definite in general (see Remark 2 above).

For the matrices S1 and S2 we may apply the argument stated in Remark 1 by testing
their 2-norms. The 2-norm of S2 is dominated by 2dmaxM . The sufficient condition for
positive definiteness of matrix ΛD̃ + D̃Λ is: 2dminm > 2dmaxM , (where on the left side
is the minimum 2-norm of S1 and on the right side is the maximum 2-norm of S2):

dmin
dmax

>
λmax − λmin

λmin
(B.11)

In terms of the inverted condition numbers α = λmin/λmax and β = dmin/dmax: β > 1/α− 1,
α > 1/(1+β).

In order to obtain better sufficient conditions, take m = (λmin + λmax)/2 and the
residual M = (λmax − λmin)/2, then the limiting inequality is:

dmin
dmax

>
λmax − λmin
λmax + λmin

(B.12)

In terms of α and β:

β >
1− α
1 + α

(B.13)

inverting leads to:

α >
1− β
1 + β

(B.14)

In terms of the previously introduced ζ and η these conditions are: η < (1−ζ)/(1+ζ) or ζ <
(1−η)/(1+η). I also re-write the last inequality using new variable dmean = (dmin + dmax)/2
as:

λmin
λmax

>
dmax − dmean

dmean
(B.15)

These weak sufficient conditions were first presented in212. In Fig. B.1 this condition
borderline is depicted as a blue continuous line.

Stronger sufficient conditions.

Now consider again the matrix ΛD̃+D̃Λ = D̃◦(1̄λ̄T + λ̄1̄T ), where Λ > 0 a is diagonal
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Figure B.2: Figure plots results presented in Fig. B.1 but in parameters ζ and η.
Red line, Eq. (B.10): the necessary and sufficient conditions of positive definiteness
of anticommutator of two positive definite symmetric real matrices. Blue line: weak
sufficient conditions, Eq. (B.13-B.14). Green lines: stronger sufficient conditions,
Eq. (B.18-B.19). The arrows point inside the area of stability.

matrix of real positive values, D̃ > 0 is a real symmetric strictly positive-definite matrix
and the column vector λ̄ = diag(Λ), λ̄i = Λii. Use the decomposition as in Remark 2:

1̄λ̄T + λ̄1̄T = 1
2ε((λ̄+ ε1̄)(λ̄+ ε1̄)T − (λ̄− ε1̄)(λ̄− ε1̄)T ) (B.16)

and
D̃ ◦ (1̄λ̄T + λ̄1̄T ) = 1

2ε [(Λ + εI)D̃(Λ + εI)− (Λ− εI)D̃(Λ− εI)] (B.17)

Choose ε in order to maximize the minimal value of the first term in square brackets
and respectively minimize the absolute value of the maximal value of the second term.
Choosing ε = (λmax + λmin)/2, we get the sufficient condition for positive definiteness as:
(λmax + 3λmin)2dmin > (λmax − λmin)2dmax, which is:

β >

( 1− α
1 + 3α

)2
(B.18)

or α > (1−
√
β)/(1+3

√
β). Due to the symmetry of the roles of α and β, we also have:

α >

( 1− β
1 + 3β

)2
(B.19)
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or β > (1−
√
α)/(1+3

√
α). In the Fig. B.1 these condition borderlines are depicted as green

dotted and dashed lines.

B.3.3 The Necessary and Sufficient Conditions for Positive Definite-
ness of the Anticommutator of two Positive Definite Symmetric
Real Matrices

I now give the proof that the necessary conditions for positive definiteness of anticom-
mutator of two positive definite symmetric real matrices as derived above [B.3.1] are the
sufficient conditions for positive definiteness of the anticommutator. The proof sketch is
from Dr. Fedor V. Petrov from St. Petersburg conveyed by personal communication.

Theorem 6. Assume two real symmetric positive definite matrices A and B, with the
range of eigenvalues of A as [1− ζ; 1 + ζ], 0 ≤ ζ < 1, and the range of eigenvalues of B
as [1− η; 1 + η], 0 ≤ η < 1, Then, AB + BA > 0, iff ζ2 + η2 < 1 .

The proof is as follows.

AB + BA > 0 can be written as ((AB + BA)u,u) > 0 for a real vector u. Further,
((AB + BA)u,u) = 2(Au,Bu). Represent A = I + X, B = I + Y, where matrices X,
Y are such, that their 2-norms are less or equal than ζ, η correspondingly. Then, the
angle between Au and u 6= 0 takes all the values between 0 and arcsin (ζ), and the angle
between Bu and u takes all the values between 0 and arcsin (η).
Sufficiency: If ζ2 + η2 < 1, then the sum arcsin (ζ) + arcsin (η) < π/2, and by the triangle
inequality of the two planar angles (the 1st is between u and Au and the 2nd is between
u and Bu) the angle between Au and Bu is less than π/2.
Necessity (see Th. 5 in B.3.1): If ζ2 + η2 > 1, one may find the 2-dimensional subspace
embedding u, Au, Bu, where the angle between Au, Bu is greater than π/2. �

This proof is based on the Kantorovich inequality 145,180. V.L. Kantorovich attributed
this type of inequality to G. Pólya’s and G. Szegõ’s book ”Problems and Theorems in
Analysis I. Series. Integral Calculus. Theory of Functions.” (245, Ch.2 ”Inequalities”, §1,
Problem ]92). The Kantorovich inequality establishes the relation between the minimal
λmin(A) > 0 and the maximal λmax(A) eigenvalues of a positive definite symmetric real
matrix A and the maximal angle between two real vectors x 6= 0 and Ax. The Kantorovich
inequality is:

(x,x)2

(x,Ax)(x,A−1x) ≥
4λmaxλmin

(λmax + λmin)2 (B.20)
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For the angle ∠(y,Ay) between y 6= 0 and Ay we have: cos2∠(y,Ay) = (y,Ay)2

(Ay,Ay)(y,y) ≤ 1 by
the Cauchy-Schwarz inequality, which states for two vectors: (x,y)2 ≤ (x,x)(y,y). Then,
sin2∠(y,Ay) = 1 − (y,Ay)2

(Ay,Ay)(y,y) . Changing the variable to x = A1/2y: sin2∠(y,Ay) =

1− (A−1/2x,A1/2x)2

(A1/2x,A1/2x)(A−1/2x,A−1/2x) = 1− (x,x)
(x,Ax)(x,A−1x) . And (x,x)

(x,Ax)(x,A−1x) ≥
4λmaxλmin

(λmax+λmin)2 by

the Kantorovich inequality. Then, sin2∠(y,Ay) ≤ (λmax+λmin)2−4λmaxλmin
(λmax+λmin)2 = (λmax−λminλmax+λmin )2.

Finaly, ∠(y,Ay) ≤ arcsin (ζ) in terms of the previously defined 0 ≤ ζ < 1: λmax = 1 + ζ

and λmin = 1− ζ. Related problems were also analyzed in21 (cf.337).

The geometric proof of sufficient conditions along the lines of Theorem 6 can be ex-
tended for the case of a general non-symmetric real square matrix A and a real symmetric
positive definite matrix B. Lets denote A+ = (A + AT )/2, A− = (A − AT )/2 for a
real square matrix A = A+ + A−. For the following we assume A+ is positive definite
with λmax(A+) > λmin(A+) > 0 the maximal and minimal eigenvalues of A+. (Posi-
tive definiteness of A+ implies also <e(λ(A)) > 0, Bendixson-Hirsch theorem:23, p.217).
Denote ζ = λmax(A+)−λmin(A+)

λmax(A+)+λmin(A+) . And for a real symmetric positive definite B denote

η = λmax(B)−λmin(B)
λmax(B)+λmin(B) . Introduce ν = 2‖A−‖2

λmax(A+)+λmin(A+) . Then, the sufficient conditions

for positive definiteness of ATB + BA > 0 are η2 <

[
ζν−
√

1+ν2−ζ2

1+ν2

]2
. When ν → 0 the

conditions approximate those of Theorem 6 as ζ2 + η2 < 1.

B.3.4 The Role of the Sufficient Conditions for Partial Contraction in
Design of Convergent Multi-agent Behavior

All the derived sufficient conditions and the tight necessary and sufficient conditions
from this subsection play an important role in establishing the sufficient conditions for
contraction, for the positive definiteness of equation B.7. Indeed, for any variable D(φ) > 0
we may choose such a connected coupling graph for diffusive symmetric coupling, so its
Laplacian matrix L will have non-zero eigenvalues satisfying the necessary and sufficient
conditions for the positive definiteness of Eq. B.7). We can always choose all-to-all
coupling, for which L = NI − 1̄1̄T and Λ = VTLV = NI, where the columns of V are
orthogonal eigenvectors of L corresponding to N −1 of its non-zero eigenvalues (A.2). And
VT (LD + DL)V = ΛD̃ + D̃Λ = 2ND̃ > 0, ∀D > 0, where D̃ = VTDV > 0.
If we drop a single symmetric bidirectional link from an all-to-all coupled graph, then the
non-zero eigenvalues of L (and the eigenvalues of Λ) will be: N (N − 2 times) and N − 2
(once). If we drop k such bidirectional links which have no common vertex at their ends,
then the non-zero eigenvalues of L (and the eigenvalues of Λ) will be: N (N − k− 1 times)
and N − 2 (k times), see App. A. Thus, the inverted condition number of Λ changes from
1 (for all-to-all coupling graph) down to (N − 2)/N = 1− 2/N . Dependent on the ratio

185



Stability Conditions for Non-linear Dynamical Systems

dmin/dmax (the limiting inverted condition number for D̃), this provides an estimate of how
robust the coupling scheme is (e.g. all-to-all coupling) to dropouts of symmetrical links.
Similar estimates for the Laplacian inverted condition number changes can also be made
for dropouts of symmetrical links, whenever they might have a common vertex, while the
total graph connectivity is still preserved. This has practical value for designing interaction
networks of agents possessing individual non-linear dynamics. The aim of this design is to
preserve the contraction properties of the group dynamics in cases of communication link
dropouts.
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[1] Y. Abe, M. Da Silva, and J. Popović. Multiobjective control with frictional contacts. ACM
SIGGRAPH/Eurograph. Symp. on Comp. Anim., 2007. 53

[2] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum spanning
trees and bichromatic closest pairs. Discrete & Computational Geometry, 6(3):407–422, 1991.
28

[3] J. K. Aggarwal and M. S. Ryoo. Human activity analysis: A review. ACM Comput. Surv.,
43(3):16:1–16:43, 2011. 1

[4] M. Aitken, G. Butler, D. Lemmon, E. Saindon, D. Peters, and G. Williams. The Lord of
the Rings: The visual effects that brought middle earth to the screen. In ACM SIGGRAPH
2004 Course Notes, number 11 in SIGGRAPH’04, New York, NY, USA, 2004. ACM. 1

[5] M. Ajallooeian, J. van den Kieboom, A. Mukovskiy, M. A. Giese, and A. J. Ijspeert. A general
family of morphed nonlinear phase oscillators with arbitrary limit cycle shape. Physica D:
Nonlinear Phenomena, 263:41–56, 2013. 7, 55, 84, 156

[6] A. Ajoudani, J. Lee, A. Rocchi, M. Ferrati, E. M. Hoffman, A. Settimi, D. G. Caldwell,
A. Bicchi, and N. G. Tsagarakis. A manipulation framework for compliant humanoid COMAN:
Application to a valve turning task. In 14th IEEE-RAS Int. Conf. On Humanoid Robots
(Humanoids, 2014), pages 664–670, 2014. 55

[7] B. Akgun and M. Stilman. Sampling heuristics for optimal motion planning in high dimensions.
In 2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 2640–2645, 2011. 20

[8] I. Albrecht, J. Haber, and H. P. Seidel. Construction and animation of anatomically based
human hand models. Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (SCA 2003), pages 98–109, 2003. 123

[9] S.-i. Amari. Dynamics of pattern formation in lateral-inhibition type neural fields. Biological
Cybernetics, 27(2):77–87, 1977. 10, 15, 16

[10] W. N. Anderson Jr. and T. D. Morley. Global convergence of quorum sensing networks. Lin.
and Multilin. Alg., 18:141–145, 1985. 168, 170, 171, 172

[11] A. A. Andronov, A. A. Vitt, and S. E. Khaikin. Theory of Oscillators. Dover Publ. Inc.,
New York, 1987. 84, 132

187



Bibliography

[12] O. Arikan, D. A. Forsyth, and J. F. O’Brien. Motion synthesis from annotations. ACM
Trans. on Graphics, SIGGRAPH ’03, 22(3):402–408, 2003. 2, 53

[13] Ronald C. Arkin. Behavior-Based Robotics. The MIT Press, Cambridge, MA, 1998. 19

[14] Kenneth J. Arrow and Maurice McManus. A note on dynamic stability. Econometrica,
26(3):448–454, 1958. 175

[15] H. Asada and J.-J. E. Slotine. Robot Analysis and Control. John Wiley & Sons, Inc., New
York, NY, USA, 1st edition, 1992. 96

[16] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning for control. A.I.
Review, 11:75–113, 1997. 88, 93

[17] P. Baerlocher and R. Boulic. An inverse kinematic architecture enforcing an arbitrary number
of strict priority levels. The Visual Computer, 20(6):402–417, 2004. 25, 89, 90

[18] E. A. Barbashin. The construction of Lyapunov functions. Differential Equations, 4:1097–
1112, 1968. Transl. of ’Differentsial’nye Uravneniya’, 4 (1968), 2127–2158. 175

[19] G. P. Barker, A. Berman, and R. J. Plemmons. Positive diagonal solutions to the Lyapunov
equations. Linear and Multilinear Algebra, 5(4):249–256, 1978. 175

[20] J. Barraquand and J.-C. Latombe. Robot Motion Planning: A distributed representation
approach. The Int. J. of Robotics Research, 10(6):628–649, 1991. 19

[21] F. L. Bauer and A. S. Householder. Some inequalities involving the euclidean condition of a
matrix. Numerische Mathematik, 2(1):308–311, 1960. 185
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