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Summary 
 

Glioblastoma (GBM) is the most aggressive primary brain tumor, leading to death in 

less than 15 months despite tumor resection, radiation, and chemotherapy. The 

development of new and effective treatment options is therefore crucial. Mistletoe 

extracts (ME) have been used in complementary and alternative cancer therapy for 

decades. Mistletoe lectins I-III, also called viscumins (ML), and viscotoxins are the 

main active components, providing anti-cancer activity by different mechanisms 

including immuno-modulation, dose-dependent cytotoxicity, and mitigation of tumor 

cell motility. In clinical trials, viscumin treatment of cancer patients led to an 

improvement in the quality of life and to prolonged survival for some tumor entities. 

Here we show anticancer effects of the ME ISCADOR Qu, the recombinant ML-1 

Aviscumine, and native ML-1. We found that each of the three viscumins reduced cell 

proliferation but even to a different extent. The reduction in proliferation was 

accompanied by changes in glioma cell cycle distribution and gene expression. In 

higher concentrations viscumins induced cell death in GBM cells in vitro. 

Nevertheless, at the same concentration we observed no toxic effects in organotypic 

mouse brain cultures in situ. The viscumin receptor CD75s was expressed in all tested 

GBM cell lines so far and its level of expression correlated well with the cell’s 

vulnerability towards viscumin induced cell death. We detected CD75s in 6 out of 7 

human GBM tissues but not in human and murine healthy brain tissue. This makes 

viscumins suitable for a localized drug application in the brain. Viscumins 

significantly reduced glioma cell motility and the expression and activity of cancer 

motility-associated factors in GBM cell lines. Viscumins also provided beneficial 

immune-stimulating effects. They enhanced the vulnerability of GBM cells towards 

natural killer (NK) cell and T cell mediated killing. Besides, in GBM cells viscumins 

altered the expression of immune response related genes that are associated to pro-

inflammatory processes. Furthermore, we found synergistic therapeutic effects in 

GBM cells if viscumins were used in combination with irradiation and chemotherapy. 

Additionally, adjuvant viscumin therapy prolonged the survival of glioma bearing 



 

X 
 

mice in two different mouse models. In mice, serum levels of pro-inflammatory 

cytokines were increased after ISCADOR Qu injections. These findings provide the 

basis for clinical trials to investigate the therapeutic efficacy of adjuvant viscumin 

treatment in glioblastoma patients. 
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1. Introduction 

1.1 Glioblastoma (GBM) 
 
GBM is the most malignant brain tumor in adults with an incidence rate of 

approximately 3 per 100,000 persons in the US and European countries. This is the 

highest incidence rate of all brain tumors and rises to about 8 per 100,000 in the group 

of over 55 years old persons [1]. The prognosis of GBM patients is infaust; the one 

year survival rate is currently 37.2% and the five year survival only 5.1% [2]. In the 

last decade, GBM standard therapy consists of maximal safe tumor resection, 

radiotherapy, and chemotherapy using temozolomide (TMZ). The median survival is 

12.1 months after surgery and radiotherapy and rises to 14.6 months if TMZ therapy is 

added [3]. No significant improvements with drug therapy were achieved in the last 

years despite testing several novel therapeutic approaches. Due to advances in surgery 

and radiotherapy the median survival could be increased to 18-20 months [4]. 

Nevertheless, for elderly patients (> 70 years) the median survival did not improve and 

is still only 4 months [5]. GBM are preferentially located at frontal and temporal lobes 

and show massive necrosis and haemorrhage (see Figure 1). It is also possible that the 

GBM cells invade over the corpus callosum to the contralateral hemisphere. Typical 

symptoms of GBM are partial or generalised seizures, focal neurological deficits, 

cognitive dysfunction, elevated intracranial pressure and edema leading to headache, 

vomiting, nausea, drowsiness, and visual deficits [6]. The incurable nature of GBM 

and the bad prognosis originates from its strongly invasive, angiogenic, and 

immunosuppressive features. Furthermore, GBM and especially recurrent GBM are 

mainly multi-drug and radiation resistant. New treatment approaches are therefore 

essential to improve the treatment of this malignant brain tumor. 
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Figure 1: Formalin fixed brain containing a GBM on the left hemisphere with necrosis and 
haemorrhage. Source: http://neuropathology-web.org/chapter7/chapter7bGliomas.html, status 
from 24.06.2018. 

 

1.1.1 GBM classification 
 
In 2016 the world health organisation (WHO) renewed the classification of central 

nervous system (CNS) tumors [7]. From now on, not only histological but also 

molecular parameters are used for classification. According to the new classification 

GBM belong to the group of diffuse astrocytic and oligodendroglial tumors. As shown 

in Figure 2, this group includes astrocytic tumors WHO grade II and III, 

oligodendrogliomas WHO grade II and III, diffuse gliomas of childhood, and WHO 

grade IV GBM.  

GBM are subdivided into isocitrate dehydrogenase (IDH)-wildtype, IDH-mutant, and 

not otherwise specified (NOS) if the IDH status cannot be tested. IDH-wildtype GBM 

largely correlate with de novo primary GBM and IDH-mutant GBM with secondary 

GBM developing from lower grade gliomas [8]. IDH-wildtype GBM are more 

common in older patients with a median age of 62 years at diagnosis, while IDH-

mutant GBM affect younger patients with a median age of 44 years. IDH-wildtype 

tumors count for 90% of GBM cases. Additionally, these tumors are further divided 

into giant cell GBM, gliosarcoma, and epithelioid GBM (for review see [9]). 
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Figure 2: Classification of diffuse gliomas. Isocitrate dehydrogenase (IDH)-wildtype and IDH-

mutant GBM not only differ in their IDH status but also in telomerase (TERT) promoter 

mutations, epidermal growth factor receptor (EGFR) amplification, and tumor protein p53 

(TP53), ATRX, and Phosphatase and tensin homolog (PTEN) mutation status. Modified from [7]. 

 
1.1.2 Therapy resistance 

 
One general problem of treating brain tumors is the blood-brain barrier (BBB) that 

protects the tumor from many anti-cancer drugs like doxorubicin, vincristine, or 

erlotinib. Resistance towards these drugs is also induced by overexpression of 

transmembrane ATP-binding cassette (ABC) transporters, which are responsible to 

export foreign substances [10, 11]. High activity of these transporter leads to the so 

called multi-drug resistance (MDR). The best option to treat GBM is therefore to use 

drugs that can cross the BBB, like the lipophilic TMZ. TMZ, sold as Temodal®, is an 

orally administered DNA alkylating agent that modifies DNA or RNA at N7 and O6 
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sites on guanine and the N3 on adenine by the addition of methyl groups. The 

methylated sites can remain mutated, can be fixed by DNA mismatch repair (MMR), 

can be removed by base excision repair (BER), or can be dealkylated by enzymes such 

as O6-methylguanine methyl transferase (MGMT). When MGMT and BER proteins 

are expressed, GBM cells become resistant to TMZ [12, 13]. MGMT silencing by 

promotor methylation is a predictive factor for the impact of GBM therapy. The 

median overall survival increases from 12.2 to 18.2 months if the MGMT promotor is 

methylated [13]. 

Another mode of resistance results from the hypoxic tumor environment. GBM cells 

are largely resistant to acidosis present at low oxygen levels that result from fast GBM 

cell proliferation and the subsequent low supply of nutrients and oxygen due to low 

blood vessel density [14]. The distance of hypoxic GBM cells to the vasculature makes 

them often unreachable for anti-cancer drugs. Furthermore, many of these drugs rely 

on the formation of reactive oxygen species (ROS), but ROS formation is reduced in 

hypoxic conditions due to low oxygen supply. Finally, hypoxic GBM cells become 

inactive and stop to proliferate. This way tumor cells escape the effects of anti-

proliferative drugs (for review see [15, 16]).  

Glioblastoma stem cells (GSCs) are another major cause for GBM drug resistance and 

tumor recurrence. In the tumor these cells occur in low frequency and show self-

renewing features, express stem cell markers, and hold multi-lineage potential (for 

review see [17]). GSCs are highly resistant towards most therapy approaches [18, 19]. 

Targeting these cells is a promising future approach to treat GBM. Furthermore, 

several microRNAs, small noncoding RNAs regulating gene expression, are 

differentially expressed in GBM cells and are associated to GBM drug resistance. 

MicroRNA (miR)-21 is overexpressed in GBM and prevents TMZ induced apoptosis 

of GBM cells [20]. miR-195, miR-455, and miR-10a* are upregulated in GBM and 

linked to TMZ resistance [21]. Besides, some miRNAs are associated with the 

vulnerability of GBM cells towards chemotherapy. miR-200a-3p is downregulated in 

GBM and its overexpression leads to increased TMZ sensitivity [22]. MGMT 

expression is downregulated by miR-181d, and also miR-211 and miR-130a can 

influence GBM chemosensitivity [23-25]. Taken together, GBM drug resistance is 
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determined by several features, including the integrity of the BBB, ABC transporters, 

MGMT, MMR, BER, hypoxia, GSCs, and microRNAs. 

 

1.1.3 Migration and invasion 
 
The invasive growth and the ability of GBM cells to migrate away from the tumor core 

make a complete surgical resection of GBM nearly impossible. GBM cells that invade 

into the surrounding tissue also escape focal irradiation and might cause GBM 

recurrence. In GBM several mechanisms are involved that enhance tumor cell 

migration and invasion. Important aspects are the degradation and remodelling of the 

extracellular matrix (ECM), alterations of the cytoskeleton, the hypoxia induced switch 

from proliferation towards migration, cell shrinkage to reduce the cell volume, reduced 

cellular adhesion, and alterations in the expression of transcription factors, ion 

channels, proteases, chemokines, and cytokines (for review see [26]).  

The degradation of the ECM is essential for invasive processes since this way glioma 

cells conquer the space they need to migrate. Responsible for this degradation are 

matrix metalloproteinases (MMPs), secreted or membrane-anchored endoproteinases 

that can be grouped according to their substrate specificity (e.g. gelatinases or 

collagenases). The expression of the more than 20 MMP family members in the 

normal brain is very low, and enhanced expression is normally disease associated [27]. 

In GBM, MMPs are mainly overexpressed and activated. The expression of the 

gelatinases MMP-2 and MMP-9 is especially important for GBM invasion and 

correlates with GBM grade and progression [28, 29]. MMP-2 and MMP-9 can activate 

latent tumor growth factor- (TGF-/TGFB) leading to a feedback loop where TGF- 

induces MMP-2 and MMP-9 expression [30-32]. The membrane-anchored MMP-14 

activates MMP-2 by cleaving the pro-peptide. MMP-2 is not solely expressed on GBM 

cells but also on surrounding microglia cells [33-35]. Besides MMP-2 and -9, MMP-3, 

-7, -12, -13, -16, -19, and -26 are overexpressed in GBM cells and are mainly linked to 

enhanced glioma invasion [36-43]. The four tissue inhibitors of metalloproteinases 

(TIMP) members, TIMP1-4, can inhibit but also help to activate MMPs. For example, 

TIMP-2 forms a complex with MMP-14 and pro-MMP-2 that enhances MMP-2 
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activation [35, 44]. Because TIMPs are able to activate and to inhibit MMPs, their 

function during GBM migration and invasion remains unclear. 

TGF- is massively secreted by GBM cells. TGF- not only supports the activation of 

MMPs but also promotes a general pro-migratory GBM cell phenotype [45]. TGF- 1-

3 are members of the TGF- cytokine family. Mainly TGF-1 and TGF-2 hold key 

functions in tumor progression [46]. They bind to the TGF- receptor (TGF-

R/TGFBR) I complex, leading to the phosphorylation of TGF-RII subsequently 

inducing the phosphorylation of mothers against DPP homolog (SMAD) 2/3. Finally, 

this complex regulates gene expression in the nucleus [47]. TGF- influences the 

interaction of GBM cells with the ECM also by upregulating versican and integrin 

v3, thereby enhancing migration [48, 49]. Through upregulation of miR-10a/b, 

TGF- suppresses phosphatase and tensin homolog (PTEN) in GBM [50]. TGF-

expression is also enhanced after irradiation, thereby inducing a more invasive GBM 

phenotype [51]. Although the migration and invasion of GBM is of great importance 

and research was focused on GBM cell motility for long time, no therapy is currently 

available that targets invaded GBM cells or reduces GBM migration. 

 

1.1.4 Immunosuppressive mechanisms 
 
In GBM patients several pathways and mechanisms lead to a local, tumor-associated 

suppression of the immune system. One the one hand an intact BBB limits the entry of 

immune cells into the brain. On the other hand GBM cells actively enforce 

immunosuppression (for review see [52]). In the healthy brain only few immune cells 

are present, but if the BBB is disrupted due to a pathological condition, the 

permeability for immune cells increases [53-55]. Antigens from the brain drain 

towards lymph nodes into the body where antigen-presenting cells (APC) present them 

to naïve T cells [56]. Upon activation T cells upregulate 4 and 1 integrins which 

enables them to bind to vascular cell adhesion molecule (VCAM)-1 on vascular cells 

and to cross the BBB [57, 58]. 

Also regulatory T cells (Tregs) are among the immune cells that are attracted by the 

tumor. Tregs are anti-inflammatory T cells that help to maintain tolerance to self-
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antigens and to inhibit autoimmunity. In GBM patients the increase of Tregs in the 

tumor area and blood is linked to a worse prognosis and to the tumor grade [59, 60]. 

The amount of GBM infiltrating Tregs could be reduced by inhibiting TGF- 

signalling [61]. TGF- provides not only pro-migratory functions as described in the 

previous chapter but is additionally a strongly immunosuppressive cytokine in GBM. It 

induces the differentiation of CD4+ T cells into Tregs, inhibits granzyme B and 

interferon- expression in CD8+ T cells, and downregulates the expression of the 

activating receptor NKG2D on NK cells [62-65]. Furthermore, TGF- reduces the 

expression of NKG2D ligands like MHC class I polypeptide-related sequence A 

(MICA) or UL16 binding protein 2 (ULBP2) on the cell surface of GBM cells [66]. 

Several other immunosuppressive factors are secreted by GBM cells like the vascular 

endothelial growth factor (VEGF), interleukin (IL)-10, arginase, nitric oxide, 

prostaglandin E-2, and the regeneration and tolerance factor (RTF) [67-72]. 

Macrophages and microglia cells are the main infiltrating immune cells found in 

GBM. They count for up to 12% of the tumor bulk and are manipulated by GBM cells 

to secrete pro-tumorigenic factors [73]. Macrophages can be differentiated into M1 

macrophages that harbor anti-tumorigenic functions and secrete pro-inflammatory 

cytokines, or alternatively into immunosuppressive M2 macrophages. Glioma secreted 

TGF- modulates macrophages to differentiate into the M2 phenotype [74]. These M2 

macrophages secrete TGF-, epidermal growth factor (EGF), VEGF, MMP-2, and 

MMP-9, thereby fostering GBM immunosuppression, migration, and angiogenesis 

[75-78]. 

GBM cells do not only secrete immunosuppressive factors but also express cell surface 

proteins that interact with immune cells to prevent an immune response. The most 

prominent example is programmed cell death ligand (PDL)-1 that binds to 

programmed cell death (PD)-1 on activated T cells and induces T cell exhaustion. This 

mechanism protects GBM cells from cytotoxic T cell attacks [79, 80]. CD95L is 

another protein expressed on GBM cells. It binds to its receptor on T cells where it 

induces apoptosis [81, 82]. Furthermore, GBM cells inhibit immune cells by 

expressing non-classical major histocompatibility complex (MHC) class I proteins [83, 

84]. Even the hypoxic tumor environment and certain tumor metabolites are 
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immunosuppressive and lead to T cell apoptosis and anergy [85-87]. To understand 

and circumvent the immunosuppressive mechanisms in GBM will help to successfully 

develop novel GBM immunotherapeutic approaches. 

 
1.1.5 New therapy options 

 
Since the introduction of the current standard therapy for GBM that includes maximal 

safe surgical resection, radiation, and TMZ-based chemotherapy, many new therapy 

approaches have been tested. Unfortunately, most of them did not provide benefit in 

the overall survival of GBM patients. Treatment strategies like intensifying or 

prolonging TMZ application, blocking angiogenesis by application of the anti-VEGF 

antibody bevacizumab (Avastin), or application of the v3/v5 integrin inhibitor 

cilengitid in combination with standard therapy, were unfortunately not successful [88-

91]. New therapy strategies combine tumor-treating fields (TTF) with GBM standard 

therapy. In TFF, alternating electrical fields are used to disrupt cell division. With this 

approach a significant increase in overall survival could be achieved in GBM patients 

[92]. 

Currently, immune therapies using tumor vaccines or immune checkpoint inhibitors 

are tested in clinical trials. For the constitutively active, truncated epidermal growth 

factor receptor version III (EGFRvIII), which is expressed in many GBM, the phase III 

ACT IV clinical trial using the vaccine rindopepimut was terminated ahead of schedule 

because the therapy failed to prolong the overall survival of the GBM patients, 

although previous trials were promising [93]. The company Northwest Biotherapeutics 

currently started a phase III clinical trial using DCVax®-L, a dendritic cell vaccine, in 

combination with standard therapy (ClinicalTrials.gov identifier: NCT00045968). In 

this trial autologous dendritic cells are pulsed with tumor lysates to promote anti-tumor 

immune-responses. The aim of immune checkpoint inhibitors is to block suppressive 

signals from the tumor that would lead to T cell anergy, exhaustion, or apoptosis. At 

the moment, ipilimumab, a cytotoxic T lymphocyte-associated antigen-4 (CTLA4) 

antibody and nivolumab, a PD-1 antibody, are tested in phase III clinical trials 

(ClinicalTrials.gov Identifier: NCT02017717). For these antibody therapies adverse 
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side effects have to be controlled closely because inflammatory and autoimmune 

events occurred. Other emerging GBM therapies include adoptive immunotherapy 

[94], oncolytic virus therapy [95, 96], as well as nanoparticles that are loaded with 

anti-tumoral agents [97]. Besides, targeting microRNAs and GSCs might have 

therapeutic potential in the future (for review see [17, 98]). 

 

1.2 Extracts of Viscum album plants 
 
The European mistletoe (Viscum album L) is an hemiparasite growing on a wide range 

of host trees [99]. Aqueous extracts of Viscum album L were used the first time in the 

1920s to treat cancer. This idea is based on the considerations of Rudolf Steiner, the 

creator of anthroposophy. The first Viscum album extract (ME) was generated 1917 by 

the physician Ita Wegman [100]. Since 1926 this extract is called ISCADOR, and it is 

still produced today. Currently, ME like ISCADOR, Iscucin, Helixor, or 

abnobaVISCUM are manufactured as anticancer agents by several companies. Every 

company uses different plant parts, harbours the plant at different seasons, or uses 

different extraction and fermentation methods. In addition, the companies offer several 

ME dependent on the host tree. Five types of ISCADOR are available: ISCADOR Qu 

(oak tree), ISCADOR M (apple tree), ISCADOR P (pine tree), ISCADOR A (fir tree), 

and ISCADOR U (elm tree) [101]. Variations in the plant material and the 

manufacturing process lead to tremendous differences in the molecular content of ME. 

In general, ME contain about 1000 different proteins, polysaccharides, triterpenes, and 

flavonoids [102]. The anticancer activity is mainly produced by mistletoe lectins (ML), 

also called viscumins 1-3 and by viscotoxins (VT). 

 

1.2.1. Viscumins 
 
ML 1-3 are glycosylated proteins present in most ME. They consist of an A- and B-

chain connected via disulfide bonds and belong in the group of type 2 ribosome-

inactivating proteins (RIP) [103]. The A-chain is a highly specific N-glycosidase that 
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inhibits protein synthesis by catalytically inactivating ribosomes [104, 105]. The B-

chain is a carbohydrate binding lectin that, in case of ML-1, specifically binds the 

sialic acid containing ganglioside CD75s [106]. This binding is probably necessary for 

the cellular uptake, as a direct correlation between ML-1 toxicity and the receptor 

ganglioside was suggested [107]. The uptake mechanism is not fully understood, but it 

is believed to be similar to that of ricin, which is also a type 2 RIP and a structural 

analogue of ML-1 (for review see [108]). 

The main anticancer activity is mediated by ML-1, which is the best characterized ML 

so far. Several ME are standardized to their ML-1 content, thus enhancing 

reproducible effects [109]. In in vitro studies ML-1 was cytotoxic for tumor cell lines, 

inducing apoptosis and inhibiting tumor cell proliferation of cancer cells derived from 

leukemia, breast cancer, colon cancer, melanoma, and hepatocellular carcinoma [110-

116]. In F98 rat GBM cells, ML-1 reduced cell proliferation, and our group showed 

that the ML-rich ME ISCADOR Qu has cytotoxic and anti-proliferative effects in 

human GBM cell lines [117, 118]. ME and ML are furthermore described to modulate 

the cell cycle distribution of tumor cells. Besides, ME and ML provide anti-angiogenic 

function due to the induction of cell death in endothelial cells [119-124]. One obvious 

key function of ML-1 as type 2 RIP is to inhibit protein synthesis, but it modifies gene 

expression of cancer cells, too [125]. Our group showed altered gene expression in 

GBM cells upon treatment with ML-rich ISCADOR Qu. Many pro-tumorigenic genes 

were downregulated and anti-tumorigenic genes upregulated [118]. Especially the 

expression of migration associated genes like MMPs or TGF- was downregulated, 

and, presumably a result of this reduced expression, GBM cell migration was 

mitigated. In total, ML-1 provides several direct effects on tumor cells, including 

induction of cell death, inhibition of proliferation and angiogenesis, modulation of 

gene and protein expression, and reduction of tumor cell motility. 

Apart from the effects on cancer cell lines, ML-1 has been described to stimulate 

immune cells and to thereby enhance anti-tumoral immune responses. ML-1 induces 

the release of cytokines from immune cells like tumor necrosis factor (TNF)-, IL-1, 

IL-5, IL-6, IL-10, and granulocyte monocyte colony-stimulating factor (GM-CSF) 

[126-130]. ML-1 induced IL-2 secretion was described for immune cells, but also the 
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opposite was reported [131, 132]. Contrarily and as it was expected by immunologists, 

interferon (IFN)- secretion in PBMCs was not influenced by ML-1 treatment [131]. 

The induction of TNF-, IL-1, IL-1 and IL-6 was more specifically described for 

monocytes and macrophages as an inflammatory response to ML-1, whilst 

lymphocytes did not secrete IL-1 after ML-1 treatment [133-135]. In addition, after 

ME treatment an increase of IL-4 and a decrease of IFN- were reported for CD4+ and 

CD8+ T cells [136, 137].  

ML-1 also changes the activity and maturation of immune cells. ME stimulated the 

maturation of dendritic cells (DC). In a mouse model, low doses of ML-1 increased 

DC tumor infiltration, whilst high doses of ML-1 led to DC apoptosis [138-140]. 

Additionally, the anti-tumoral activity of macrophages was enhanced by ME, but no 

effect was seen with pure ML-1 [141, 142]. The Korean viscumin (K-ML) that shows 

strong homology to ML-1 (> 90% A-chain, > 80% B-chain) increased macrophage 

activity [143, 144]. K-ML also modulates lymphocytes and NK cells [143]. Upon ML-

1 treatment T cells show more proliferation, faster maturation, and stronger activation 

[145, 146]. Nevertheless, high ML concentrations can induce lymphocytic cell death 

[131, 147]. Mechanisms why ME and ML provide immune-stimulatory activity are 

based on the upregulation of CD95L in CD4+, CD8+ T cells, and CD19+ B cells 

[148], but enhanced T cell migration was also observed [149]. Additionally, our group 

and others showed an enhancement of NK cell mediated tumor cell killing by ME and 

ML [118, 150, 151]. The effect of ME on NK cells is not only related to ML-1, as 

other ME ingredients like viscotoxins and rhamnogalacturonan also enhance NK cell 

mediated lysis of tumor cells [152-154]. Summing up, ML-1 influences the immune 

system in several ways, including the induction of cytokine expression and secretion to 

promote inflammatory and anti-tumoral immune responses but also by stimulating DC, 

monocytes, macrophages, NK cells, and T cells. 

ME and ML-1 showed anti-tumoral effects in many murine tumor models [155]. In 

melanoma, a ME applied as a single intraperitoneal (i.p.) injection inhibited tumor 

growth [156]. Immune-deficient mice transplanted with human ovarian cancer cells 

and treated with recombinant ML-1 survived longer [157]. In a urinary bladder 

carcinoma mouse model intravesical ME application enhanced survival [158]. 
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Intraperitoneally applied ISCADOR M or subcutaneous (s.c.) injections of 

recombinant ML-1 showed anti-carcinogenic and anti-metastatic effects as well as 

prolonged survival in sarcoma bearing mice [159, 160]. ML showed anti-tumoral 

effects when provided orally to mice with non-Hodgkin lymphoma [161]. Other 

tumors in which ME or ML provided anti-tumoral effects, at least in mouse models, 

were pancreatic cancer, breast cancer, acute lymphoblastic leukemia, and Ehrlich 

carcinoma [162-165]. Our group showed reduced tumor growth upon ISCADOR Qu 

treatment in a subcutaneous GBM mouse model [118]. Furthermore, ML-1 reduced the 

tumor volume in an intracerebral F98 rat brain tumor model [117]. 

Aviscumine is a recombinant, non-glycosylated ML-1 produced in E. coli (Melema 

Pharma AG). The advantage to use Aviscumine lays in the fact that the application of a 

defined single substance avoids the complexity and the component variation of ME. In 

vitro Aviscumine provides cytotoxic effects on tumor cells and shows synergism if 

used in combination with chemotherapeutics and radiation [166-168]. Aviscumine also 

showed promising results in phase I clinical trials where infusions or injections (s.c.) 

were well tolerated [169-171]. In a phase II study with stage IV metastatic melanoma 

patients Aviscumine was clinically active [172]. Eck et al. did not find differences 

between glycosylated and recombinant, non-glycosylated ML-1 [173]. Nonetheless, in 

the present study one goal was to compare the anti-cancer effects of Aviscumine, 

ISCADOR Qu, and native, purified ML-1. 

 

1.2.2. Viscotoxins 
 
Viscotoxins (VT) are small (~ 5 kDa), cytotoxic proteins that belong to the group of 

plant thionins. Their original function is to protect plants against bacteria and fungi 

[174]. VT are cysteine rich and form three disulfide bonds which are highly conserved 

within the VT family [175]. The VT A1, A2, A3, and B are present in ME and play, 

next to ML, a role in mediating anticancer effects [176]. It is suggested that VT bind to 

DNA since their structure contains a helix-turn-helix motif [177]. Whether this is true 

and plays a role in mediating anticancer effects is not known. There is much more 

insight into the interaction of VT with cell membranes. VT are positively surface 
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charged, which allows an interaction with negatively charged heads of phospholipids 

[177-179]. This interaction leads to membrane stiffness, changes in fluidity, and finally 

to membrane defects and disruption [178, 179]. In a comparison of cytotoxicity, VT 

A2 and A3 act similar, while VT B is less active, although all VT have highly 

conserved 3D structures [180]. These findings indicate that unspecific membrane lysis 

leads to the cytotoxic effects of VT. 

Not only cytotoxic effects are described for VT. If patients are treated with VT they 

develop an immunological response and form VT antibodies [181]. Furthermore, VT 

increase NK cell mediated killing of tumor cells, probably by enhancing tumor cell 

membrane destabilization [152]. Finally, granulocyte activity can be enhanced by VT 

treatment [182, 183]. Whether VT can also stimulate other types of immune cells 

remains elusive. 

 

1.2.3. Clinical trials 
 
So far more than 80 clinical trials using ME or ML were conducted for many tumor 

entities [184]. Several systematic reviews summarizing the results are available. In 

2003 Ernst et al. reviewed ten randomized control trials (RCTs) and came to the 

conclusion that only the studies with a “weak” design found benefits for ME, 

especially an improvement in quality of life (QoL). “Stronger” designed studies did 

not show a benefit of ME/ML on survival or QoL [185]. In 2008 Horneber et al. came 

to similar findings also reviewing RCTs. They included 21 trials and found only weak 

evidence for a survival benefit and some benefit for improved QoL for breast cancer 

patients during chemotherapy [184]. Kienle and Kiene published several systematic 

reviews and came to more promising result. They published that in 26 RCTs 22 

showed an improvement in QoL, no change was reported in three cases, and one did 

not present results [186]. Furthermore, they concluded that a survival benefit is shown 

in 8 of 17 trials (RCTs and non-RCTs), but due to poor study design the results must 

be considered with caution [187]. For breast and gynecological cancer they evaluated 

35 trials (19 RCTs and 16 non-RCTs). 22 trials tested survival and of these 12 trials 

showed a statistically significant survival benefit and the remaining trials showed 



Introduction 

14 
 

either a trend or no changes. 24 trials tested the QoL also during chemotherapy. 21 of 

these trials reported significant improvements in the QoL [188]. Finally, Ostermann et 

al. evaluated 49 studies using ISCADOR. By evaluating the hazard ratios with a 

random effect meta-analysis they found that ISCADOR treatment is associated with a 

significant prolonged survival [189]. 

Many of the clinical trials were of poor quality and lack proper documentation, 

especially the very old studies lack transparency and a clear description of ME usage. 

Also small sample sizes and unclear inclusion/exclusion criteria make the 

interpretation of the results difficult [189]. In the studies many different ME (providing 

either very high or very low ML content) were used and the treatment protocols 

differed, sometimes it is not even clear which ME was used [185]. This makes the 

interpretation and the comparison of these trials difficult. Assessment of the effects of 

every available ME and well-designed clinical trials of high quality would be 

necessary to make a clear statement whether ME (and which) have a positive effect on 

the survival and the QoL of cancer patients. 

For glioma results from solely one study with only 38 patients is currently available. 

20 patients received ME and standard therapy and 18 patients received standard 

therapy alone. In this study a significant prolongation of survival after ME treatment 

for grade III & IV gliomas is shown [190]. Apart from the small sample size, the trial 

enrolled patients with different glioma grades. The survival time differs hugely 

between these grades, but it is not mentioned how these patients were distributed 

between the treatment and the control group. This unknown patient distribution alone 

can lead to the reported survival benefits and limits the overall significance of the 

study. A clinical trial with GBM patients only remains to be done. 

 

1.2.4. ME/ML-1 usage, routes of application, and side effects 
 
The standard route of ME application are subcutaneous injections. The 

anthroposophical approach is to start with low to homeopathic doses of the extracts 

and to increase the doses in a period of several weeks until an optimal tolerated dose is 

reached. Subcutaneous ME/ML-1 injections are tolerated well by patients. Known side 
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effects include flue like symptoms, fever, headache, fatigue, gastrointestinal 

symptoms, and local reactions at the injection site (for review see [191]). Especially 

the very common local reddening at the injection side makes blinded clinical trials 

almost impossible. 

Sometimes ME or ML are also applied i.v. as an off-label intervention. Reasons for 

this route of application is (i) a missing response to s.c. injections, (ii) to induce fever 

and stimulate the immune system, and (iii) that it might be a last option for high-risk 

and advanced stage cancer patients [192]. In clinical trials only the recombinant ML-1 

Aviscumine (applied i.v.) was tested so far. For intravenous infusion with ME/ML-1 

flue like symptoms, fatigue, fever, shivering, nocturia, urticaria, erythema, pruritus, 

and liver toxicity were reported [169, 170, 192]. Pseudoallergic and allergic reactions 

are reported more frequently after i.v. infusion compared to s.c. injections [192]. 

The much rarer applied off-label intratumoral ME/ML-1 therapy also leads to mild or 

moderate side effects including fever, gastrointestinal disorders, pain, headache, 

dyspnea, hypertension, and erythema, which occur more frequently than in the other 

routes of application, probably due to the generally higher doses of ME/ML-1 used for 

intratumoral injections (for review see [193]). So far, no clinical trial using 

intratumoral ME/ML-1 injections was performed, although this route of application 

could lead to the best anti-cancer effects and attraction of immune cells to the tumor. 
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1.3 Aim of the thesis 
 
Because of the very aggressive features of GBM, the 14-16 months median survival 

time for GBM patients, even with best and newest available therapies, is unchanged 

for years. Therefore, the development of new therapy approaches is utterly important. 

Lately, natural compounds that can be used as adjuvant cancer agents are running more 

and more in the focus of attention. In German-speaking countries Viscum album-based 

drugs are used for decades in the treatment of nearly all types of cancer, but little is 

known about their effects if used as adjuvant GBM therapeutics. Therefore, I pursued 

the goal to understand more about the complex anti-cancer functions of viscumins in 

the context of GBM. To achieve this goal, three different viscumin-based drugs were 

used. ISCADOR Qu is a ME generated from plants growing on oak trees and contains 

high ML concentrations. Aviscumine is a recombinant, not glycosylated ML-1 

produced in E-Coli and purified to good manufacturing practice (GMP) quality. Native 

ML-1 was isolated from plants growing on ash trees. Different aspects of the anti-

cancer functions of the three drugs were analyzed in vitro and in vivo using two 

different GBM mouse models. Firstly, the cytotoxicity of the viscumins in GBM cell 

lines, non-neoplastic cells, primary cell lines, and in murine hippocampal slice cultures 

were determined. Next, the effects of viscumins on proliferation and cell cycle 

distribution were evaluated. Thirdly, viscumin-mediated modulation of motility-

associated genes expression in GBM cells and the influence of viscumins on glioma 

cell migration were analyzed. Fourthly, and since viscumins are known to be immune-

stimulatory agents, their effects on the activity of NK cells and T cells, on the immune 

cell-mediated killing of GBM cells, as well as their ability to change the expression of 

immune response related genes were tested. Finally, viscumins are normally given as 

adjuvant therapeutics in cancer patients. For this, the therapeutic effect of viscumins, if 

used as adjuvant therapeutics in combination with tumor irradiation and TMZ was 

evaluated both in vitro and in glioma bearing mice. These experiments were performed 

to facilitate the basis for clinical trials where the anti-GBM effects of viscumins will be 

further investigated and it will be decided whether viscumins can be used as effective 

adjuvant therapeutics to treat glioma. 
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2. Material and methods 

2.1 Materials 

2.1.1 Equipment 
 
Equipment Manufacturer 

10 / 100 / 1000 μl pipettes Eppendorf (Hamburg, Germany) 

7500 Fast Real time PCR Applied Biosystems (Darmstadt, Germany) 

Accu Jet Pipette Pro Controller Hirschmann (Eberstadt, Germany) 

Axio Imager Z1 fluorescent 

microscope 

Carl Zeiss (Oberkochen, Germany) 

Biofuge Pico centrifuge Heraeus (Hanau, Germany) 

Biorad Immunoblot Equipment Biorad (Munich, Germany) 

ChemiDocTM Imaging System Biorad (Munich, Germany) 

CO2 Incubator Sanyo (Munich, Germany) 

CyAn ADP flow cytometer Beckman Coulter (Krefeld, Germany) 

Eclipse TS100 microscope Nikon (Kingston, UK) 

ELISA reader Thermo Electron 

Multiscan EX 

Thermo Electron Corporation (Karlsruhe, 

Germany) 

Gammacell-40 Irradiator MDS Nordion (Toronto, Canada) 

Hamilton 10 µl syringe, 701 N, 26s 

ga, ps 2 

Hamilton (Bonaduz, Switzerland) 

Hera Safe Clean Bench Heraeus (Hanau, Germany) 

Imager.Z1 Carl Zeiss (Oberkochen, Germany) 

LSM 510 META Confocal 

microscope 

Carl Zeiss (Oberkochen, Germany) 

MACS MultiStand Miltenyi (Bergisch Gladbach, Germany) 

MilliQ Integral (ultrapure water 

preparation) 

Millipore/Merck (Darmstadt, Germany) 

MiniMACS Separator Miltenyi (Bergisch Gladbach, Germany) 



Material and methods 

18 
 

Mithras LB940 Fluorimeter Berthold Technologies (Bad Wildbad, 

Germany) 

Mouse stereotaxic instrument Stoelting (Dublin, Ireland) 

Multifuge 3 S-R centrifuge Heraeus (Hanau, Germany) 

Multipipettes Eppendorf (Hamburg, Germany) 

NanoDrop ND 1000 Peqlab (Erlangen, Germany) 

Neubauer cell counting chamber Marienfeld (Bad Mergentheim, Germany) 

Power Pac power supply unit Biorad (Munich, Germany) 

Thermomixer Comfort Eppendorf (Hamburg, Germany) 

Wallac Victor 1420 Multilabel counter PerkinElmer (Rodgau, Germany) 

 

 

2.1.2 Consumables 
 
Consumable Manufacturer 
Amicon centrifugal filter units 3 kDa 

NMGG 

Millipore (Schwalbach, Germany) 

Assay plate white, 96 well format Corning (New York, USA) 

Cell culture flasks T25 / T75 / T125 Greiner Bio-One (Frickenhausen, Germany) 

Cell culture insert 8.0 µm pore size, 24 

well format 

Becton Dickinson (Heidelberg, Germany) 

Cell scraper Corning (New York, USA) 

Combitips advanced 2.5 / 5 ml Eppendorf (Hamburg, Germany) 

ELISA Kit RayBio® Human VEGF or 

TGF-ß 1 & 2 

RayBiotech (Norcross, GA, USA) 

Falcon centrifuge tubes 15 / 50 ml Corning (New York, USA) 

Filter paper Peqlab (Erlangen, Deutschland) 

Microlance 3 needles Becton Dickinson (Heidelberg, Germany) 

Microscope slides 76x26 mm R. Langenbrick (Emmendingen, Germany) 

Microscopical cover slips R. Langenbrick (Emmendingen, Germany) 

Mouse Inflammation Array G1 

(Catalog number: AAM-INF-G1-8) 

RayBiotech (Norcross, GA, USA) 
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MS columns Miltenyi (Bergisch Gladbach, Germany) 

MycoAlert mycoplasma detection kit Lonza (Cologne, Germany) 

NK cell isolation kit, human Miltenyi (Bergisch Gladbach, Germany) 

PERMA-HAND silk suture, black 

braided, 6-0, 11 mm, 3/8 circle 

Ethicon (Somerville, NJ, USA) 

Pipette tips Ratiolab (Dreieich, Germany) 

Polypropylene tubes 1.3 / 5 ml Greiner Bio-One (Frickenhausen, Germany) 

PVDF 0.45 transfer membrane Serva (Heidelberg, Germany) 

Reaction tubes 0.5 / 1.5 / 2 ml Greiner Bio-One (Frickenhausen, Germany) 

RNA-Isolation kit Macherey-Nagel (Düren, Germany) 

RT-qPCR adhesive film Biozym Scientific (Hessisch Oldendorf, 

Germany) 

RT-qPCR plates Thermo Fisher Scientific (MA, USA) 

Serological pipettes 5 / 10 / 25 ml Corning (New York, USA) 

Surgical blades, sterile B. Braun (Melsungen, Germany) 

Syringe with Sub-Q needle 1 ml Becton Dickinson (Heidelberg, Germany) 

Syringes Inject-F/Inject Solo 1-20 ml B. Braun (Melsungen, Germany) 

TaqMan array human cyclins & cell 

cycle regulation 96-well plate (Catalog 

number: 4418768) 

Thermo Fisher Scientific (MA, USA) 

TaqMan array human immune 

response 96-well plate (Catalog 

number: 4414073) 

Thermo Fisher Scientific (MA, USA) 

TaqMan array human tumor 

metastasis 96-well plate (Catalog 

number: 4414098) 

Thermo Fisher Scientific (MA, USA) 

Water (ultrapure) Milli Q Integral (Millipore/Merck, 

Darmstadt, Germany) 

Well plates 6 / 12 / 24 / 48 / 96 Becton Dickinson (Heidelberg, Germany) 

Zymogram gel 10% Biorad (Munich, Germany) 
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2.1.3 Chemicals, media, and reagents 
 
Material Manufacturer 

1,4-Dithiothreitol (DTT) Sigma-Aldrich (Taufkirchen, Germany) 

5-Bromo-2-deoxyuridine (BrdU) Sigma-Aldrich (Taufkirchen, Germany) 

5-Sulfosalicylacid Merck (Darmstadt, Germany) 

Accutase PAA Laboratories (Cölbe, Germany) 

Acetic acid Merck (Darmstadt, Germany) 

ACK lysis buffer Thermo Fisher Scientific (MA, USA) 

Acrylamide Carl Roth (Karlsruhe, Germany) 

Adenosine 5′-triphosphate disodium salt 

(ATP) 

Sigma-Aldrich (Taufkirchen, Germany) 

Ammonium persulfate (APS) Carl Roth (Karlsruhe, Germany) 

Ascorbic acid Sigma-Aldrich (Taufkirchen, Germany) 

Bicoll Merck (Darmstadt, Germany) 

BIOMYC-1 / 2 / 3 antibiotic solution 

100X 

PromoCell (Heidelberg, Germany) 

Bovine serum albumin (BSA) Carl Roth (Karlsruhe, Germany) 

Bradford reagent Carl Roth (Karlsruhe, Germany) 

Bromophenol blue Merck (Darmstadt, Germany) 

Calcium chloride Sigma-Aldrich (Taufkirchen, Germany)  

Coenzyme A, trilithium salt Merck (Darmstadt, Germany) 

Collagen I, rat tail Enzo Life Sciences (New York, USA) 

Coomassie brilliant blue R250 Merck (Darmstadt, Germany) 

Crystal violet (CV) Merck (Darmstadt, Germany) 

D-glucose Sigma-Aldrich (Taufkirchen, Germany) 

Dimethyl sulfoxide (DMSO) Carl Roth (Karlsruhe, Germany) 

D-Luciferin Sigma-Aldrich (Taufkirchen, Germany) 

D-Luciferin sodium salt Promega (Madison, USA) 

dNTP´s 20 mM Peqlab (Erlangen, Germany) 

Dulbecco’s modified eagle’s medium Sigma-Aldrich (Taufkirchen, Germany) 
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(DMEM) 

Dulbecco’s phosphate buffered saline 

(PBS) 

Sigma-Aldrich (Taufkirchen, Germany) 

Endothelial basic medium (EBM-2) Lonza (Basel, Switzerland) 

Endothelial growth medium (EGM-2) Lonza (Basel, Switzerland) 

Ethanol 99% Merck (Darmstadt, Germany) 

Ethylene glycol-bis(2-aminoethylether)-

N,N,N′,N′-tetraacetic acid (EGTA) 

Sigma-Aldrich (Taufkirchen, Germany) 

Ethylenediaminetetraacetic acid  (EDTA) Sigma-Aldrich (Taufkirchen, Germany) 

Fetal bovine serum (FBS) Sigma-Aldrich (Taufkirchen, Germany) 

Formamide Merck (Darmstadt, Germany) 

Gamunex 10% Grifols (Barcelona, Spain) 

Glycerol Carl Roth (Karlsruhe, Germany) 

Glycine Carl Roth (Karlsruhe, Germany) 

Gly-Gly Sigma-Aldrich (Taufkirchen, Germany) 

Goat serum Sigma-Aldrich (Taufkirchen, Germany) 

H2O2 Carl Roth (Karlsruhe, Germany) 

Haematoxylin Merck (Darmstadt, Germany) 

Horse serum Sigma-Aldrich (Taufkirchen, Germany) 

Human serum Sigma-Aldrich (Taufkirchen, Germany) 

Hygromycin B Invivogen (Toulouse, France) 

Igepal (NP-40) Sigma-Aldrich (Taufkirchen, Germany) 

Insulin Sigma-Aldrich (Taufkirchen, Germany) 

Isopropanol Merck (Darmstadt, Germany) 

K2HPO4 Carl Roth (Karlsruhe, Germany) 

L-Glutamine 200 mM Sigma-Aldrich (Taufkirchen, Germany) 

Magnesium sulfate VWR (Darmstadt, Germany) 

Matrigel matrix basement membrane Corning (New York, USA) 

Methanol VWR (Darmstadt, Germany) 

M-MLV reverse transcriptase Promega (Madison, USA) 

M-MLV RT 5xBuffer Promega (Madison, USA) 
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Modified eagle’s medium (MEM) Sigma-Aldrich (Taufkirchen, Germany) 

Mouse IgG1 isotype control Covance (Dedhan, USA) 

Mouse IgM κ isotype control BioLegend (Fell, Germany) 

Mowiol 4-88 Carl Roth (Karlsruhe, Germany) 

NaN3 Carl Roth (Karlsruhe, Germany) 

N-Methyl-D-aspartate (NMDA) Sigma-Aldrich (Taufkirchen, Germany) 

Normal rabbit IgG Santa Cruz Biotechnology (Heidelberg, 

Germany) 

Oligo dT-nucleotide 100 μM Sigma-Aldrich (Taufkirchen, Germany) 

Paraformaldehyde AppliChem (Darmstadt, Germany) 

Penicillin/Streptomycin (100x) PAA Laboratories (Cölbe, Germany) 

Pericyte medium ScienCell (San Diego, USA) 

Poly-L-lysine hydrobromide Sigma-Aldrich (Taufkirchen, Germany) 

Ponceau S Merck (Darmstadt, Germany) 

Propidium iodide (PI) Sigma-Aldrich (Taufkirchen, Germany) 

Protein marker PanReac AppliChem (Darmstadt, 

Germany) 

Proteinase inhibitor cocktail set III 

Chalbio. 

EMD Chemicals (San Diego, USA) 

Recombinant human IL-2 ImmunoTools (Friesoythe, Germany) 

Recombinant human VEGF-A ImmunoTools (Friesoythe, Germany) 

Ribonuclease A from bovine pancreas Sigma-Aldrich (Taufkirchen, Germany) 

RPMI1640 medium HEPES modification Sigma-Aldrich (Taufkirchen, Germany) 

Skim milk powder Carl Roth (Karlsruhe, Germany) 

Sodium chloride Merck (Darmstadt, Germany) 

Sodium citrate Merck (Darmstadt, Germany) 

Sodium dodecyl sulfate (SDS) Carl Roth (Karlsruhe, Germany) 

ß-Mercaptoethanol Carl Roth (Karlsruhe, Germany) 

Sybr Green PCR master mix Thermo Fisher Scientific (MA, USA) 

TaqMan gene expression master mix Thermo Fisher Scientific (MA, USA) 

Temozolomide (TMZ) Sigma-Aldrich (Taufkirchen, Germany) 
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Tetramethylethylenediamine (TEMED) Carl Roth (Karlsruhe, Germany) 

Thiazolyl blue tetrazolium bromide 

(MTT) 

Sigma-Aldrich (Taufkirchen, Germany) 

Trichloroacetic acid Merck (Darmstadt, Germany) 

Tricine AppliChem (Darmstadt, Germany) 

Triton X-100 Sigma-Aldrich (Taufkirchen, Germany) 

Trizma base (Tris) Sigma-Aldrich (Taufkirchen, Germany) 

Trizma hydrochloride (Tris HCl) Sigma-Aldrich (Taufkirchen, Germany) 

Trypan blue 0.4% Sigma-Aldrich (Taufkirchen, Germany) 

Trypsin-EDTA Sigma-Aldrich (Taufkirchen, Germany) 

Tween-20 Carl Roth (Karlsruhe, Germany) 

VECTASHIELD Antifade mounting 

medium with DAPI 

Vector laboratories (Burlingame, USA) 

VECTASHIELD HardSet mounting 

medium with DAPI 

Vector laboratories (Burlingame, USA) 

WesternBright ECL HRP substrate Advansta (California, USA) 
 

 

2.1.4 Antibodies flow cytometry 
 
Antibody Manufacturer 

APC anti-human CD25 (BC96) BioLegend (Fell, Germany) 

APC anti-human CD56 (5.1H11) BioLegend (Fell, Germany) 

APC anti-human CD8 (SK1) BioLegend (Fell, Germany) 

APC anti-human CD95 (DX2) BioLegend (Fell, Germany) 

APC anti-human HLA-G (87-G) BioLegend (Fell, Germany) 

FITC AnnexinV BioLegend (Fell, Germany) 

FITC anti-BrdU (3D4) BioLegend (Fell, Germany) 

FITC anti-human CD4 (RPA-T4) BioLegend (Fell, Germany) 

FITC anti-human HLA-DR, DP, DQ (Tu39) BioLegend (Fell, Germany) 

Pacific blue anti-human CD3 (UCHT1) BioLegend (Fell, Germany) 

Pacific blue anti-human HLA-A, B, C (W6/32) BioLegend (Fell, Germany) 
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PE anti-human CD273 (24F.10C12) BioLegend (Fell, Germany) 

PE anti-human CD274 (29E.2A3) BioLegend (Fell, Germany) 

PE anti-human FoxP3 (206D) BioLegend (Fell, Germany) 

PE/Cy7 anti-human CD40 (5C3) BioLegend (Fell, Germany) 

PE/Cy7 anti-human CD69 (FN50) BioLegend (Fell, Germany) 
 

 

2.1.5 Antibodies immunoblot 
 
Antibody Manufacturer 

Goat anti-mouse IgG-horseradish 

peroxidase (HRP), secondary antibody 

Santa Cruz Biotechnology (Heidelberg, 

Germany) 

Goat anti-rabbit IgG-HRP, secondary 

antibody 

Santa Cruz Biotechnology (Heidelberg, 

Germany) 

Mouse anti-human MMP-2 Oncogene (Massachusetts, USA) 

Mouse monoclonal anti-human 

GAPDH 

Santa Cruz Biotechnology (Heidelberg, 

Germany) 

Mouse monoclonal anti-human MMP-9 Santa Cruz Biotechnology (Heidelberg, 

Germany) 

Mouse polyclonal anti-human TIMP-2 R&D Systems (Minneapolis, USA) 

Rabbit monoclonal anti-human MMP-

14 

Epitomics (Burlingame CA, USA) 

Rabbit polyclonal anti-human 

SMAD2/3 

Cell Signaling (Danvers, MA, USA) 

Rabbit polyclonal anti-human α-

Tubulin 

Santa Cruz Biotechnology (Heidelberg, 

Germany) 
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2.1.6 Antibodies immunofluorescent staining and blocking 
 
Antibody Manufacturer 

Donkey polyclonal anti-mouse IgG H&L 

Alexa Fluor 594 

Abcam (Cambridge, UK) 

Goat anti-mouse IgG H&L DyLight 488 Thermo Fisher Scientific (MA, 

USA) 

Goat anti-mouse IgM TexasRed Santa Cruz Biotechnology 

(Heidelberg, Germany) 

Goat anti-mouse IgM FITC Santa Cruz Biotechnology 

(Heidelberg, Germany) 

Goat anti-rabbit IgG H&L Alexa Fluor 488 Invitrogen (Carlsbad, USA) 

Mouse anti-human NKp30 (CD337, P30-15) BioLegend (Fell, Germany) 

Mouse anti-human NKp44 (CD336, P44-8) BioLegend (Fell, Germany) 

Mouse anti-human NKp46 (CD335, 9E2) BioLegend (Fell, Germany) 

Mouse monoclonal anti-human CDw75 

(ZB55) 

Santa Cruz Biotechnology 

(Heidelberg, Germany) 

Mouse monoclonal anti-human NKG2D 

(CD314, 149810) 

R&D Systems (Minneapolis, USA) 

Rabbit polyclonal anti-ML ISCADOR AG (Arlesheim, 

Switzerland) 
 

 

2.1.7 Viscum album extracts and lectins 
 
The plant extracts ISCADOR P and Qu were kindly provided by ISCADOR AG 

(Arlesheim, Switzerland). ISCADOR P was harvested from plants growing on pine 

trees, whilst ISCADOR Qu was generated from plants growing on oak trees. The 

concentrations of the extracts were 200 mg/ml (P) and 20 mg/ml (Qu). To achieve a 

comparable viscotoxin concentration in the ISCADOR Qu20 extracts, charge numbers 

5141/02 and 5228 were mixed 1:1 (= ISCADOR Qu20 mix). For the experiments the 

ISCADOR Qu charges 3108/1, 4080/3 and the ISCADOR Qu20 mix were used. 
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Mistletoe extract Charge number ML [ng/ml] Viscotoxins [µg/ml] 

ISCADOR Qu20 3108/1 1630 62 

ISCADOR Qu20 4080/3 1095 48 

ISCADOR Qu20 5141/02 415 67 

ISCADOR Qu20 spez. 5228 1430 12 

ISCADOR Qu20 mix  922.5 39.5 

ISCADOR P200 5191 <5 75.2 

 

Aviscumine (ME-503), a recombinant ML-1 produced in E. coli, was kindly donated 

by MELEMA Pharma GmbH (Hamburg, Germany). The ML concentration was 0.93 

mg/ml (Charge 004/03/030200). 

Isolated native ML-1 (ML-1) from plants grown on ash trees (summer harvest) was 

kindly provided by C. Heyder (Abnoba GmbH, Pforzheim, Germany) in a 

concentration of 4.6 mg/ml. 
 

 

2.1.8 Murine hippocampal slice cultures 
 
Murine hippocampal slice cultures (HSC) from C57BL/6 mice were prepared at 

postnatal day 5-7 as described and were kindly provided by Ingrid Ehrlich, Hertie 

Institute for Clinical Brain Research and Center for Integrative Neuroscience 

(Tübingen, Germany)  and used after at least one week in culture [194]. 
 

 

2.1.9 Cell lines and primary cells 
 
Name Description Source 

HBVP Primary human brain vascular pericytes 

isolated from human brain tissue 

ScienCell (San Diego, 

USA) 

hCMEC/D3 Immortalized human endothelial cells 

isolated from human temporal lobe 

B. Weksler (Weill Cornell 

Medical Collage, New 



Material and methods 

27 
 

microvessels York, USA) 

LN-308 Human astrocytoma cell line (p53-/-) N. de Tribolet (Lausanne, 

Switzerland) 

LN-319 Human astrocytoma cell line (p53WT) N. de Tribolet (Lausanne, 

Switzerland) 

LNT-229 Human GBM cell line (p53WT) N. de Tribolet (Lausanne, 

Switzerland) 

LNT-229 

Luc 

LNT-229 cells stably transfected by the 

luciferase expression vector pGL4.14-

HSV-Luc 

 

MZ-18 Human GBM cell line (p53mut/mut) H. Hetschko (Frankfurt, 

Germany) 

NIH/3T3 Murine embryonic fibroblast cell line ATCC (Manassas, USA) 

PBMC Primary human peripheral blood 

mononuclear cells isolated from blood 

 

RPMI 8866 Human lymphoblastoid cell line from 

blood, B lymphocyte origin 

Sigma-Aldrich 

(Taufkirchen, Germany) 

SMA-560 Murine astrocytoma cell line D. Bigner (Duke 

University, Durham, NC, 

USA) 

SVGA Immortalized human fetal astrocytes R. Atwood (Brown 

University, Providence, 

Rhode Island, USA) 

T98G Human GBM cell line (p53mut/mut) ATCC (Manassas, USA) 

U87MG Human GBM cell line (p53WT) ATCC (Manassas, USA) 
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2.1.10 Primer 
 

Stock solution: 100 μM  

Storage: -20 °C 

Manufacturer: Sigma Aldrich (Taufkirchen, Germany) 

 
Name Sequence in 5’-3’ orientation 

hu_ANGPT1 fwd CGGTGAATATTGGCTGGGG 

hu_ANGPT1 rev GTCATACTGTAATAGGCTCGGTT 

hu_ATM fwd CCGAATGTTTTGGGGCAGTG 

hu_ATM rev TTTTCTCCGTTAGCCACGCA 

hu_BCL2 fwd GGTGAACTGGGGGAGGATTG 

hu_BCL2 rev GCCCAGACTCACATCACCAA 

hu_CCNB2 fwd GAGTTACAACCAGAGCAGCACA 

hu_CCNB2 rev TCCTCAGGTGTGGGAGAAGGA 

hu_CCNB3 fwd GAGATGACCCATGAGACCCTGT 

hu_CCNB3 rev CCACACGAGGTGAGTTGTGCT 

hu_CCND1 fwd TGAGGGACGCTTTGTCTGTC 

hu_CCND1 rev GCCTTTGGCCTCTCGATACA 

hu_CCND2 fwd CTGGGTGCTGTCTGCATGTT 

hu_CCND2 rev AGGTTCCACTTCAACTTCCCC 

hu_CCND3 fwd CCGAAACTTGGCTGAGCAGA 

hu_CCND3 rev GTGTTTACAAAGTCCGCGCC 

hu_CDKN1A fwd GATGACAAGCAGAGAGCCCC 

hu_CDKN1A rev ACTCCCCACATAGCCCGTAT 

hu_CDKN1B fwd TCGGGGTCTGTGTCTTTTGG 

hu_CDKN1B rev AGACACTCGCACGTTTGACA 

hu_ENG fwd CAAAGGCCTCGTCCTGCCC 

hu_ENG rev GGGGAACGCGTGTGCGAG 

hu_EPHB2 fwd CCACTCATCATCGGCTCCTC 

hu_EPHB2 rev GCTCAAACCCCCGTCTGTTA 
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hu_GAPDH fwd TGCACCACCAACTGCTTAGC 

hu_GAPDH rev GGCATGGACTGTGGTCATGAG 

hu_HDAC6 fwd AAGGTCGCCAGAAACTTGGT 

hu_HDAC6 rev TGGGGGTTCTGCCTACTTCT 

hu_HMOX1 fwd CAGGCTCCGCTTCTCCGATG 

hu_HMOX1 rev GGAGCCAGCATGCCTGCATTC 

hu_IL1B fwd GCTCGCCAGTGAAATGATGG 

hu_IL1B rev GGTGGTCGGAGATTCGTAGC 

hu_IL6 fwd TTCCTGCAGAAAAAGGCAAAGA 

hu_IL6 rev AAAGCTGCGCAGAATGAGATG 

hu_IL8 fwd GTGGAGAAGTTTTTGAAGAGGGC 

hu_IL8 rev CACTTCATGTATTGTGTGGGTCT 

hu_IL10 fwd CTTGATGTCTGGGTCTTGGTT 

hu_IL10 rev GCTGGAGGACTTTAAGGGTTA 

hu_IL12A fwd CCAGAAGGCCAGACAAACTCTA 

hu_IL12A rev GCCAGGCAACTCCCATTAGTT 

hu_KDR fwd GTCCTAGAGCGTGTGGCACC 

hu_KDR rev CATGATCTGTGGAGGGGGATT 

hu_MMP14 fwd CGGCCCTTTCCAGCCTCTG 

hu_MMP14 rev GAGGTCTGAGGGTCCTGCC 

hu_MMP2 fwd CCAGAGACAGTGGATGATGCC 

hu_MMP2 rev GGAGTCCGTCCTTACCGTCAA 

hu_MMP9 fwd TTCAGGGAGACGCCCATTTC 

hu_MMP9 rev AACCGAGTTGGAACCACGAC 

hu_MTA1 fwd CCCAGTAGGGGTCTGGCAAA 

hu_MTA1 rev GGTAGGACTTCCCGTTGAGC 

hu_NME fwd TTTGTGTGTCTGCCTCCCCT 

hu_NME rev AGCCGGAGTTCAAACCTAAGC 

hu_PPP2CA fwd TGGTGGTCTCTCGCCATCTA 

hu_PPP2CA rev TGACCACAGCAAGTCACACA 

hu_PTGS1 fwd TCTTGCTGTTCCTGCTCCTG 
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hu_PTGS1 rev GTCACACTGGTAGCGGTCAA 

hu_PTGS2 fwd GTTCCACCCGCAGTACAGAA 

hu_PTGS2 rev AGGGCTTCAGCATAAAGCGT 

hu_SELE fwd GCCTGCAATGTGGTTGAGTG 

hu_SELE rev GGTACACTGAAGGCTCTGGG 

hu_SERPINB5 fwd CATCCAGGTCTTTGTGCTCCT 

hu_SERPINB5 rev GGGCCTGGAGTCACAGTTATC 

hu_TGFB1 fwd GCCCTGGACACCAACTATTG 

hu_TGFB1 rev CGTGTCCAGGCTCCAAATG 

hu_TGFB2 fwd CAAAAGCCAGAGTGCCTGAA 

hu_TGFB2 rev CAGTTACATCGAAGGAGAGC 

hu_TGFBR2 fwd GGAGTTTCCTGTTTCCCCCG 

hu_TGFBR2 rev AGGGAAGCTGCACAGGAGTC 

hu_TIMP2 fwd GTTTATCTACACGGCCCCCT 

hu_TIMP2 rev TCGGCCTTTCCTGCAATGAG 

hu_TNF fwd CACAGTGAAGTGCTGGCAAC 

hu_TNF rev AGGAAGGCCTAAGGTCCACT 

hu_VEGF fwd GGCCTCCGAAACCATGAACT 

hu_VEGF rev TTCTGCCCTCCTCCTTCTGC 
 

 

2.1.11 Software 
 

Software Manufacturer 

qPCR 7500 Software v 4.2.0. Applied Biosystems (Darmstadt, Germany) 

Ascent Software 2.6 Thermo Fisher Scientific (MA, USA) 

Axiovision SE64 Carl Zeiss (Oberkochen, Germany) 

Excel Office Microsoft (Redmond, WA, USA) 

Fiji is just ImageJ Johannes Schindelin, Albert Cardona, Mark 

Longair, Benjamin Schmid, and others 

FlowJo V10 FlowJo, LLC (Ashland, OR, USA) 
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Image Lab Version 6.0 Biorad (Munich, Germany) 

JMP 13 SAS (Böblingen, Germany) 

NanoDrop 1000 Thermo Fisher Scientific (MA, USA) 

OriginPro 8 OriginLab Corporation (Northampton, MA, USA) 

Power Point Office Microsoft (Redmond, WA, USA) 

Word Office Microsoft (Redmond, WA, USA) 
 
 

2.2 Methods 

2.2.1 Cell culture 
 
Murine and human GBM cell lines as well as murine NIH/3T3 cells were maintained 

in DMEM supplemented with 10% inactivated FBS and 1% penicillin (100 

U/ml)/streptomycin (100 µg/ml; P/S). Human brain endothelial cells (hCMEC/D3) 

were used until passage 35 and maintained in EBM-2 supplemented with EGM-2 

growth factors in cell culture flasks coated with 100 µg/ml rat tail collagen I. Primary 

human brain vascular pericytes (HBVPs) were maintained in pericyte basal medium 

supplemented with 2% inactivated FBS, 1% of pericyte growth supplement (PGS) and 

1% P/S in cell culture flasks coated with 19 µg/cm2 Poly-L-lysine. RPMI 8866 cells as 

well as human PBMCs were maintained in RPMI1640 medium supplemented with 2 

mM glutamine plus 1% P/S and either 5% human serum for T cell expansion or 10% 

FBS. All cells were kept at saturated humidity in 5% CO2 at 37°C. 

RPMI8866 cells and human PBMCs were cultured as suspension cultures, all other 

cell lines grew adherently. To use adherent cells the medium was removed, the cells 

were washed once with PBS and detached 2-3 min after the addition of trypsin-EDTA. 

Detached cells were resuspended in medium supplemented with the appropriate sera, 

growth factors, and antibiotics. Suspension cells were centrifuged (5 min, 1200 rpm), 

the medium was removed, and the cell pellet was resuspended in complete medium. 

Cell numbers were determined by mixing the cell suspension 1:1 with trypan blue to 

stain dead cells. Viable cells were counted using a Neubauer cell counting chamber 

and seeded accordingly. To reduce the amount of cultured cells, the cells were split 1:2 
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up to 1:10. For freezing, the cells were suspended in freezing media (the appropriate 

culture medium, supplemented with 1% P/S, 40% FBS, 10% DMSO) and stored at -

80°C for short term or at -150°C for long term storage. To take frozen cells in culture, 

the cells were thawed in a 37 °C water bath and suspended in complete medium. After 

24 h the medium was changed to remove residual DMSO. 

 

2.2.2 Mycoplasma detection 
 
All cell lines were regularly checked for mycoplasma contamination using the Lonza 

MycoAlert mycoplasma detection kit. In brief, 500 µl cell culture supernatant was 

centrifuged (5 min, 2000 rpm) and 40 µl was transferred into a well of a 96-well white 

assay plate. 40 µl of MycoAlert reagent was added, incubated for 5 min, and 

luminescence was measured using a luminometer (value A). Subsequently, 40 µl 

MycoAlert substrate was added, incubated for 10 min and luminescence was measured 

again (value B). If value B was equal or higher than value A, the cells were ranked to 

be mycoplasma positive according to the manufacturer’s protocol. Mycoplasma 

positive cells were treated with BIOMYC antibiotic solution 1-3 according to the 

manufacturer’s instructions and were analyzed again. Only mycoplasma free cells 

were used in experiments. 

 

2.2.3 Clonogenic survival assay 
 
The efficiency of cancer cells to grow up to colonies that origin from single cells was 

measured by seeding 500 cells/well (LNT-229) or 2500 cells/well (LN-308) in 6-well 

plates. The cells were treated as indicated and cell growth was stopped if colonies 

became visible (approximately > 50 cells). Colonies were stained with crystal violet 

and were counted manually. 

 

2.2.4 Crystal violet staining 
 
The density of adherently growing cells was measured using crystal violet staining. 

The medium was removed and crystal violet solution (0.5% crystal violet, 20% 

methanol) was added. After 5 min of incubation the staining solution was removed and 



Material and methods 

33 
 

the cell culture plates were washed with tap water. After drying, sodium citrate (0.1 M 

sodium citrate, 50% ethanol) was added, and absorbance was measured at 560 nm 

using a Multiscan ELISA reader. 

 

2.2.5 MTT assay 
 
Mitochondrial activity, correlating to cell viability, was measured using the thiazolyl 

blue tetrazolium bromide (MTT) assay. Soluble MTT is converted into insoluble 

formazan by intracellular NAD(P)H-dependent oxidoreductases in viable cells. For 

this, MTT was added to the cell culture medium at a final concentration of 500 µg/ml. 

Upon the formation of blue formazan crystals (after ~ 0.5-2 h incubation at 37°C) the 

medium was removed, DMSO was added to solve the formazan crystals, and 

absorbance was measured at 570 nm using a Multiscan ELISA reader. 

 

2.2.6 Propidium iodide staining of murine hippocampal slice cultures 
 
Murine hippocampal slice cultures were cultured at saturated humidity in 5% CO2 at 

37°C. The culture medium was changed three times per week. 

Propidium iodide (PI) is a fluorescent molecule that is only able to enter cells if cell 

membranes are damaged. Intracellular PI intercalates into DNA and RNA. This leads 

to a fluorescence excitation maximum at 535 nm and an emission maximum at 617 

nm, which makes PI suitable for the detection of dying cells using fluorescent 

microscopy. PI was added to the medium of murine hippocampal slice cultures at a 

final concentration of 2.5 µg/ml. After incubation (1 h, 37°C), photographs were taken 

and PI positive cells were counted using Image J. 

 

Slice culture medium  

MEM 80% 

Heat inactivated horse serum 20% 

L-glutamine 1 mM 

Ascorbic acid 0.00125% 

Insulin 0.001 mg/ml 
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Calcium chloride 1 mM 

Magnesium sulfate 2 mM 

D-glucose 13 mM 

 

2.2.7 RNA isolation 
 
The NucleoSpin RNA isolation kit (Macherey-Nagel, Düren, Germany) was used to 

isolate RNA from cells according to the manufacturer’s instructions. RNA 

concentration and purity was determined by measurement at 230, 260, and 280 nm 

using a NanoDrop spectrophotometer. RNA was stored at -80°C. 

 

2.2.8 cDNA synthesis 
 
RNA was reverse transcribed into complementary DNA (cDNA) using MMV reverse 

transcriptase (Superscript II). In a final volume of 20 µl, 5 µg RNA was incubated with 

1 µl oligo-dT20-primer (100 µM) and 1 µl dNTP mix (20 mM) for 10 min at 70°C. 

After short centrifugation, 4 µl 5x First Strand Buffer was added and the sample was 

incubated for 2 min at 42°C. Subsequently, 1 µl Superscript II enzyme was added, 

followed by a one hour incubation period (42°C). The enzyme was inactivated (10 

min, 70°C), 30 µl RNase free water was added, and the samples were stored at -20°C. 

 

2.2.9 Quantitative real time PCR (RT-qPCR) 
 
To quantify differences in the amount of target mRNA in variable samples, RT-qPCR 

was used. Target gene specific primers were designed for amplification using the 

software available at the NCBI nucleotide database. For normalisation, a primer pair 

targeting the housekeeping gene glycerinealdehyde-3-phosphate dehydrogenase 

(GAPDH) was used. 

cDNAs were diluted 1:7 in water and 5 µl of pre-diluted cDNA was pipetted into 

qPCR plates in duplicates. Water was used as a negative control. 10 µl of TaqMan RT-

qPCR mix was added to each well, the RT-qPCR plate was sealed with RT-qPCR 

adhesive film and centrifuged shortly at 1200 rpm. 
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Mix per Well [µl] 

Millipore water 1.9 

Primer fwd (5 µM) 0.3 

Primer rev (5 µM) 0.3 

2x RT-qPCR Mastermix 7.5 

Total 10 

 

RT-qPCR was performed on a 7500 Fast Real time PCR cycler using the following 

settings: 

- Quantification Comparative 

- 96 Well-Plate (Thermo Fast) 

- 2 hours (Standard) 

- SYBR Green 

- Cycles: 45 

 

The resulting cycle threshold (Ct) values were analyzed using Excel. The Ct value is 

specified as the first cycle with a fluorescent signal clearly above the threshold. The 

target values were normalized to the housekeeping value (ΔCt) and then related to the 

control value (ΔΔCt). The final value is depicted as n-fold expression to the control. 

 

1. Calculation ΔCt 

ΔCt1 = Ct (Sample1; Target1) − Ct (Sample1; Target Housekeeping) 

2. Calculation ΔΔCt 

ΔΔCt = ΔCt 1 − Mean ΔCt (Control1) 

3. Calculation n‐fold expression 

n-fold expression = 2-ΔΔCt 

 

2.2.10 Gene expression microarray 
 
TaqMan gene expression microarrays to detect differentially regulated genes were 

performed according to the manufacturer’s instructions. In brief, for each sample 10 µg 

RNA was reverse transcribed, water was added to obtain a final volume of 1080 µl, 
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and 1080 µl of TaqMan gene expression master mix was added. 20 µl of the mix was 

added to each well of the TaqMan array plate. The plate was sealed and centrifuged 

shortly at 1200 rpm. Microarrays were performed using a 7500 ABI real time PCR 

cycler. The resulting Ct values were analyzed as described in 2.2.9. 

 
2.2.11 Transwell migration assay 

 
The Transwell migration assay allows the quantification of migrated cells. Transwell 

migration chambers consist of a 24 well plate filled with a chemoattractant and inserts 

that separate the lower chamber containing the chemoattractant from the upper 

chamber containing the cells by a membrane with 8 µm pores. Cells are seeded in the 

upper chamber and actively migrate towards the chemoattractant. Conditioned medium 

(CM) from NIH/3T3 mouse fibroblasts (700 µl/well) was used as chemoattractant. The 

CM was obtained 48 h after seeding 10x106 NIH/3T3 mouse fibroblasts in 20 ml of 

complete culture medium, clarified from cell debris by centrifugation (1200 rpm, 5 

min), and stored at -80°C. 20000 LNT-229 or SMA-560 cells (200 µl/well) were 

seeded into the upper chamber. In parallel, 10000 cells were seeded in a 96-well plate 

to determine proliferation (measured by crystal violet staining). After 16-20 h of 

incubation at 37°C, cells in the upper chamber were removed using a cotton bud. 

Migrated cells on the lower side of the insert membrane were fixed for 10 min in 

methanol, stained for 10 min with haematoxylin and washed with water. The 

membranes were cut using a scalpel and embedded into Mowiol on a microscopic slide 

covered with a glass slip. Migrated cells were counted manually at 10-fold 

magnification (7 visual fields per membrane). To avoid false results evoking from 

enhanced or decreased cell proliferation, migrated cell values were normalized to cell 

proliferation. 

 

2.2.12 Immunoblot 
 

2.2.12.1 Generation of protein lysates and cell culture supernatants 
 
Cells were collected using a cell scraper for the generation of protein lysates. The cells 

were centrifuged (1200 rpm, 5 min), the supernatant was removed, and the cell pellet 



Material and methods 

37 
 

was resuspended in 100 µl lysis buffer. After 15 min incubation on ice, lysed cells 

were centrifuged (13000 rpm, 15 min) to remove insoluble material and the soluble 

protein containing supernatant was collected and stored at -20°C. 

 

Lysis buffer  

Tris HCl pH 8 50 mM 

Sodium chloride 120 mM 

EDTA 5 mM 

NP-40 0.5 % 

Millipore water  

Proteinase inhibitor cocktail 10 µl in 2 ml lysis buffer short before usage 

 

For the production of cell culture supernatants, cells were incubated for 48 h in serum 

free culture medium (SFM). After collection, supernatants were centrifuged (1200 

rpm, 5 min) to remove dead cells and cell debris and stored at -80°C. Proteins from 

cell supernatants that are used for immunoblots were concentrated by acetone 

precipitation after determination of the protein concentration using the Bradford 

protein assay (see next chapter). For precipitation 20 µl of supernatant protein was 

mixed with three volumes of ice cold acetone and centrifuged (4000 rpm, 20 min). 

Protein pellets were air dried and resuspended in Laemmli buffer. 

 

Laemmli buffer  

0.5 M Tris HCl pH 6.8 2 ml 

SDS 400 mg 

Bromophenol blue 2 mg 

Glycerol 2 ml 

Millipore water to 10 ml 

 

2.2.12.2 Bradford protein assay 
 
To determine protein concentrations in lysates or supernatants the Bradford protein 

assay was used. As calibration curve a BSA solution (0, 1, 2, 4, 6, 8, 10, and 12 µg) 
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was diluted in water or serum free medium (50 µl/well). For cell lysates 1 µl of sample 

in 50 µl water or for supernatants 50 µl of the original sample were used. 150 µl/well 

of 1:5 pre-diluted Bradford reagent was added and absorbance was measured at 595 

nm. The assay was performed in triplicates and the mean was used to calculate the 

protein concentration on basis of the standard curve. 

 

2.2.12.3 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 
 
SDS-PAGE is a method to separate proteins according to their size. Proteins were 

denatured in Laemmli buffer (composition see 2.2.12.1) supplemented with 10% -

mercaptoethanol (10 min, 96°C). Equal amounts of protein (20 up to 40 µg of protein) 

were loaded on 10% polyacrylamide gels. Electrophoresis was performed at 200 V for 

45-60 min in running buffer. 

 

Polyacrylamide gel 

10% gel Separating gel [ml] Stacking gel [ml] 

Millipore water 2 1.15 

30% acrylamide 1.7 0.33 

1.5 M Tris HCl 1.3 pH 8.8 0.5 pH 6.8 

10% SDS 0.05 0.02 

10% Ammonium persulfate 0.05 0.02 

TEMED 0.002 0.002 

Total 5 2 

 

10x Running buffer [g] 

Tris 30 

Glycine 144 

SDS 10 

Millipore water to 1 l 
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2.2.12.4 Protein transfer to polyvinylidene fluoride membrane 
 
To transfer separated proteins from the acrylamide gel to a polyvinylidene fluoride 

(PVDF) transfer membrane, the membrane was activated in methanol for one minute, 

washed in water for one minute, and stored in 1x transfer buffer (100 ml 10x transfer 

buffer, 700 ml water and 200 ml methanol) until usage. The transfer was performed at 

100 V for one hour in 1x transfer buffer. 

 

10x Transfer buffer [g] 

Tris 30 

Glycine 144 

Millipore water to 1 l 

 

2.2.12.5 Immunoblot antibody incubation and detection 
 
After transfer the PVDF membrane was blocked in blocking solution (1 h, RT) 

followed by incubation with the primary antibody in TS-TMBSA (o/n, 4°C). 

Antibodies were diluted as recommended by the manufacturer. The membrane was 

washed three times in TBST, incubated with a HRP-conjugated secondary antibody 

diluted 1:10000 in blocking solution (1 h, RT), washed three times in TBST and the 

chemiluminescence signal was detected using the WesternBright ECL HRP substrate. 

For cellular proteins a housekeeping protein was used for normalisation. For 

supernatants, the membranes were stained with Ponceau S (5 min, RT), destained by 

three washes in water, and photographs were taken. All membranes were detected 

using the ChemiDocTM Imaging System and analyzed using Image Lab (V 6.0). 

 

Blocking solution 

Skim milk powder 10 g 

TBST 200 ml 
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10x TBS [g/l] 

Tris HCl pH8.0 24.2 

Sodium chloride 80 

 

TBST 

1x TBS  

Tween-20 0.05 % 

 

TS-TMBSA 

Tris HCl pH 7,5 10 mM 

Sodium chloride 150 mM 

Tween-20 1% 

Skim milk powder 5% 

BSA 2% 

NaN3 0.01% 

 

Ponceau S staining solution [g] 

Ponceau S 0.2 

5-Sulfosalicylacid 3 

Trichloroacetic acid 3 

Millipore water to 100 ml 

 

2.2.13 Zymography 
 
For the detection of matrix metalloproteinase activity zymogram gelatine gels were 

used. Supernatants were generated as described in chapter 2.2.12.1 but were 

concentrated using 3 kD Amicon centrifugal filter units according to the 

manufacturer’s instructions. Protein concentrations were determined by the Bradford 

assay (chapter 2.2.12.2). Samples were diluted 3:2 in Laemmli buffer (composition see 

2.2.12.1). 20 µg of protein/lane were loaded on ready-made 10% gelatine zymogram 

gels. Electrophoresis was performed in running buffer (composition see 2.2.12.3) at 
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150 V for 1-2 h. Gels were washed twice (30 min) in washing buffer and incubated in 

developing buffer (o/n, 37°C). Subsequently, gels were stained (15-30 min) using 

Coomassie blue and destained by several washes in destaining solution. To sharpen the 

bands, gels were incubated in Millipore water (o/n, 4°C). Zymograms were analyzed 

using the ChemiDocTM Imaging System and Image Lab (V 6.0). 

 

Washing buffer  

Tris HCl pH 7.5 50 mM 

Triton X-100 2.5% 

 

Developing buffer  

Tris HCl pH 7.5 50 mM 

Calcium chloride 10 mM 

Sodium chloride 150 mM 

NaN3 0.05% 

 

Staining solution (filtrated)  

Coomassie brilliant blue 0.2 g 

Methanol 45 ml 

Millipore water 45 ml 

Acetic acid 10 ml 

 

Destaining solution [%] 

Methanol 45 

Millipore water 45 

Acetic acid 10 

 

2.2.14 ELISA 
 
ELISAs were performed and evaluated according to the manufacturer’s instructions 

(RayBiotech, Norcross, GA, USA). Freshly prepared as well as frozen (-80°C) cell 
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culture supernatants were produced as described in chapter 2.2.12.1. If necessary, 

supernatant proteins were concentrated using 3 kD Amicon centrifugal filter units. 

Protein concentrations were determined using the Bradford array (chapter 2.2.12.2) 

and were used for normalization. 

 

2.2.15 Immunofluorescence of viscumin treated cells 
 
To visualize the uptake of viscumins by glioma cells, 1x105 GBM cells were seeded on 

poly-L-lysine covered glass slips coated (19 µg/cm2) placed in 12-well plates. The next 

day, the cells were treated with ISCADOR Qu, Aviscumine, or native ML-1 (8 ng/ml 

ML) for different time periods or were left untreated. The cells were fixed (4% 

paraformaldehyde, 10 min, RT), washed three times with PBS, and blocked (10% goat 

serum, 0.3% Triton X-100, PBS, 1 h) followed by incubation using a polyclonal rabbit 

anti-ML antibody (IgG, 2 µg/ml) or normal rabbit IgG (o/n, 4°C). For visualization of 

viscumin uptake, an Alexa Fluor 488 coupled goat anti-rabbit IgG antibody was used 

(1 h, RT). The secondary antibody was diluted as recommended by the manufacturer. 

The glass slips were mounted in VECTASHIELD Antifade mounting medium 

containing DAPI and were examined by confocal microscopy using a Zeiss LSM 510. 

Images were analyzed using the software ImageJ. 

 

2.2.16 Immunofluorescence detection of CD75s expression 
 
To determine the expression of the ML-1 binding ganglioside CD75s, 50000 glioma 

cells were seeded on poly-L-lysine coated glass cover slips (19 µg/cm2) placed in 12-

well plates. After 48 h, the cells were fixed (4% paraformaldehyde, 10 min), washed 

three times with PBS, and blocked (10% goat serum, 0.3% Triton X-100, PBS, 1 h) 

followed by incubation (o/n, 4°C) using a monoclonal mouse anti-CD75s antibody 

(IgM, 4 µg/ml) or normal mouse IgM. To visualize CD75s, the cells were stained 

using a TexasRed coupled goat anti-mouse IgM antibody (1 h, RT) and mounted using 

VECTASHIELD hard set mounting medium with DAPI. Human GBM cryosections of 

seven patients were provided by the Biobank of the Institute for Pathology (University 

of Tübingen, ethical approval 475/2016BO2). The samples were fixed and stained for 
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CD75s expression as described above. A FITC labelled goat anti-mouse IgM antibody 

was used (1 h, RT). Secondary antibodies were diluted as recommended by the 

manufacturer. CD75s staining was examined by microscopy using a Zeiss Imager.Z1 

and images were analyzed using ImageJ. All stainings and analyses of CD75s 

expression were performed under my supervision by Jennifer Theresia Miemietz as 

part of her bachelor thesis. 

 
2.2.17 Flow cytometry 

 
Adherent cells were detached using Accutase. Cells were washed once with flow 

cytometry buffer (0.5% BSA, 2 mM EDTA, 0.02% NaN3, PBS) and saturated to avoid 

background signals using Gamunex (human IgG, 0.5%, 20 min) on ice. Cell surface 

stainings were performed by incubation of the cells with fluorophore coupled primary 

antibodies in the dark (30 min, ice). Antibodies were diluted as recommended by the 

manufacturer. The cells were washed twice with flow cytometry buffer and analyzed 

using a CyAn ADP flow cytometer. 

 

2.2.18 Cell cycle analysis by BrdU incorporation 
 
To determine the amount of cells in each phase of the cell cycle (G1, S, or G2-M) 

1x105 glioma cells were seeded in 12-well plates, treated for 24 h with different 

concentrations of ISCADOR Qu, Aviscumine, or native ML-1, or were left untreated. 

To neutralize viscumin-mediated effects, a polyclonal rabbit anti-ML antibody (4.8 

µg/ml) was added to the viscumin-containing medium 30 minutes before treatment. 5-

Bromo-2-deoxyuridine (BrdU, 10 µM), incorporating into newly synthesized DNA of 

proliferating cells (S phase), was added to the cells. After 30 min cells were washed 

once using PBS, detached with Accutase, and washed again with PBS. The cells were 

fixed in 70 % ice-cold ethanol (30 min, ice) and washed twice with PBS. To denature 

the DNA, the cells were incubated in 2 M HCl (30 min, RT), neutralized by addition of 

sodium tetraborate (0.1 M, pH 8.5), washed once with flow cytometry buffer, and 

stained in the dark using a FITC coupled anti-BrdU antibody (30 min, ice). The 

secondary antibody was diluted as recommended by the manufacturer. To stain DNA 

the cells were washed twice with flow cytometry buffer and incubated in the dark 
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using PI/RNase A buffer (50 µg/ml PI, 100 µg/ml RNase A in flow cytometry buffer; 

20 min). The cells were analyzed using a CyAn ADP flow cytometer. 

 

2.2.19 Immunological studies 
 

2.2.19.1 Isolation of PBMCs from whole blood 
 
Human peripheral blood mononuclear cells (PBMCs) were isolated from whole blood 

via density centrifugation using Bicoll. Blood was diluted 1:3 in PBS and carefully 

layered on Bicoll. After centrifugation (2000 rpm, 30 min) the PBMC containing 

fraction was collected and washed twice (PBS, 2 mM EDTA). Remaining erythrocytes 

were lysed using ACK lysis buffer. PBMCs were washed once with PBS and were 

either stored frozen at -150°C or were directly used for further experiments.  

 

2.2.19.2 NK cell expansion and isolation 
 
For expansion of NK cells, PBMCs were incubated with irradiated RPMI8866 feeder 

cells (30 Gy) in a 4:1 ratio for 10 days. IL-2 (50 IU/ml) was added every second to 

third day. NK cells were isolated using the NK cell isolation kit (Miltenyi, Bergisch 

Gladbach, Germany). Purity of NK cells was determined by flow cytometry using anti-

human CD56 and CD3 antibodies. 

 

2.2.19.3 T cell expansion and activation 
 
For expansion and activation of T cells, PBMCs were incubated for 3-5 weeks with 

irradiated and either ISCADOR Qu, Aviscumine, or native ML-1 (8 ng/ml ML, 24 h) 

treated, or untreated, LNT-229 cells in a ratio of 15:1. LNT-229 cells were irradiated 

(30 Gy) prior to co-culture. IL-2 (50 IU/ml) was added to the co-culture every second 

to third day. Every week expanding non-adherent PBMCs were harvested and 

transferred to fresh, irradiated (30 Gy) and either viscumin-treated or untreated, 

irradiated LNT-229 cells. Additionally and as a source for growth factor production 

necessary for the expansion of T cells, irradiated PBMCs (30 Gy) that origin from a 

different donor were added in a ratio of 1:4. Expanded T cells from these co-cultures 

were isolated using a T cell isolation kit (Miltenyi, Bergisch Gladbach, Germany). 
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Purity and activation status of T cells was determined by flow cytometry using anti-

human CD3, CD4, CD8, CD69, and CD56 antibodies. 

 

2.2.19.4 Immune cell lysis assay 
 
LNT-229 Luc cells were seeded in 96-well plates (10000 cells/well) and allowed to 

attach. The cells were treated with ISCADOR Qu, Aviscumine, native ML-1 (8 ng/ml 

ML, 24 h), or were left untreated. After washing the cells to remove residual 

viscumins, NK or activated T cells were added at variable effector to target cell ratios 

and were co-cultured with the glioma cells for 4 h. As control, viscumin-treated or 

untreated LNT-229 Luc cells were cultured in the absence of immune cells 

(spontaneous lysis), or LNT-229 Luc cells were lysed by addition of 1% SDS 

(complete lysis). To determine luciferase activity the medium was removed, the cells 

were washed once with PBS, and 50 µl Luciferase lysis buffer was added to each well. 

The plates were frozen to additionally and mechanically destroy cell membranes. After 

thawing, 40 µl cell lysate/well was transferred to 96-well white plates and luciferase 

activity was measured by adding 100 µl luciferin containing buffer using a Mithras 

LB940 Fluorimeter. The amount of lysis was calculated by: 

 

Lysis in percent = 100-((experimental lysis/spontaneous lysis)x100) 

 

Lysis buffer 5x 

Tricine pH 7.8 40 mM 

Sodium chloride 50 mM 

EDTA 2 mM 

EGTA 1 mM 

DTT 5 mM 

Triton X-100 1 % 
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Luciferin containing buffer pH 8 [mM] 

Gly-Gly 25 

K2HPO4 pH 8 15 

EGTA 4 

ATP 2 

DTT 1 

Magnesium sulfate 15 

Coenzyme A 0.1 

D-Luciferin 0.075 

 

2.2.20 Mouse experiments 
 

Athymic four week old female Rj:NMRI-Foxn1nu/Foxn1nu mice were purchased from 

Janvier (Le Genest-Saint-Isle, France). Immunocompetent VM/Dk mice were bred in-

house [195, 196]. The experiments were performed according to the German law 

(approval N6/16, FK/K5112). 75000 human LNT-229 or 5000 murine SMA-560 GBM 

cells were stereotactically implanted in the right striatum of the mice (volume: 2 µl; 

injection rate: 1 µl/min) using the following coordinates: 2 mm right, 1 mm frontal of 

the bregma, 3 mm depth. 

Rj:NMRI-Foxn1nu/Foxn1nu mice bearing LNT-229 tumors were intratumorally 

injected with ISCADOR Qu, Aviscumine (3 µl, 240 ng/ml ML), or PBS 7 days after 

tumor cell implantation. Additionally, mice were treated by i.p. injections of TMZ (1.5 

mg/kg or 2.5 mg/kg, depending on the experiment) or PBS at day 7, 14, and 21 after 

tumor cell implantation. For triple therapy the mice were focally tumor irradiated (3 

Gy) using a six megavoltage photon linear accelerator (LINAC 6C) at day 8 after the 

tumor cell implantation. 

VM/Dk mice bearing SMA-560 tumors were treated every third day with ISCADOR 

Qu or PBS starting from day 8 after the tumor cell implantation by s.c. injections of 

100 µl PBS containing increasing ML concentrations (6 injections: 2 x 0.8 ng/ml of 

ML, 2 x 8 ng/ml of ML, 2 x 80 ng/ml of ML). The mice were focally tumor irradiated 
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as described above at day 7. Additionally, triple treatment mice were injected i.p. with 

TMZ (2.5 mg/kg) or PBS at day 8, 14, and 20 after the tumor cell implantation.  

If observing pain, weight loss, neurological or tumor associated symptoms the mice 

were sacrificed, brains were isolated, and fixed in 4% paraformaldehyde for 

histological evaluation. 

 

2.2.21 Mouse inflammation antibody array 
 
To determine changes of cytokine levels induced by viscumin-treatment, VM/Dk mice 

were injected (s.c.) with ISCADOR Qu or PBS at increasing concentrations every third 

day for three weeks (8 injections with 100 µl; 2 x 0.8 ng/ml, 2 x 8 ng/ml, 4 x 80 ng/ml 

of ML ISCADOR Qu). The mice were sacrificed and blood was collected. After 

clotting (30 min, RT) blood serum was collected by centrifugation (2000 rpm, 10 min). 

Using these sera, a mouse inflammation antibody-array was performed according to 

the manufacturer’s protocol (RayBiotech, Norcross, GA, USA). For detection the array 

scan service (Tebu-Bio, Offenbach am Main, Germany) was utilized. Data were 

analyzed using Image Lab (V 6.0). 

 
2.2.22 Statistical analysis 

  

For in vitro assays, results were calculated as means ± standard deviation (SD) and 

compared using the two-tailed Student’s t-test using Excel (*p<0.05, **p<0.01, 

***p<0.001). All data result from at least three independent experiments (n). For in 

vivo assays, survival and median survival times were analyzed using the Kaplan-Meier 

method and compared using the log-rank test with JMP 13 (*p<0.05, **p<0.01, 

***p<0.001).  
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3. Results 

3.1 Cytotoxic effects of viscumins 
 
Cytotoxic effects of ML-rich Viscum album extracts have previously been described 

by our group [118]. In the first part of the project, toxic effects of ISCADOR Qu, 

Aviscumine, and native ML-1 were determined in several glioma cell lines but also in 

non-neoplastic cell lines, in primary non-neoplastic cells, as well as in murine 

hippocampal slice cultures. Data received from ISCADOR treatments have already 

been shown in previous experiments [118]. In the present study, the existing data for 

ISCADOR Qu were verified and compared to newly collected data received from 

Aviscumine and native ML-1 treatments. Furthermore, the uptake of viscumins by 

LNT-229 cells as well as the expression of the viscumin receptor CD75s in several cell 

lines and primary tissue were determined to evaluate whether the uptake of viscumins 

or CD75s expression correlate with viscumin-cytotoxicity and predict viscumin-

sensitivity of non-neoplastic and cancer cells. These data are essential to determine 

viscumin treatment concentrations for further experiments and to estimate possible 

toxic side effects. 

 
3.1.1 IC50

 values 
 
A common way to compare the toxicity of substances is to determine IC50 values, 

which indicate the concentration that is necessary to inhibit 50% of cell growth 

compared to untreated controls. To determine IC50 values of viscumins, glioma and 

non-neoplastic cells were treated with increasing concentrations (0.8-240 ng/ml ML) 

of ISCADOR Qu, Aviscumine, or native ML-1 for 24 and 48 h. Cell density was 

measured by crystal violet staining. The viability of the non-adherent PBMCs were 

measured using the MTT assay. Using the software OriginPro 8, the Hill equation (y = 

START + (END – START) xn / (kn+xn)) was utilized as interpolation function and to 

calculate IC50 values.  
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Table 1: IC50 values (24 h and 48 h) of viscumins in the treatment of glioma and non-
neoplastic cells. ISCADOR Qu (ISC Qu), Aviscumine (Avi), native ML-1 (ML-1). 

Cell 

IC50 24 h IC50 48 h 

ISC 
Qu 

[ng/ml 
ML] 

Avi 
[ng/ml] 

ML-1 
[ng/ml] 

ISC 
Qu 

[ng/ml 
ML] 

Avi 
[ng/ml] 

ML-1 
[ng/ml] 

Glioma 
cells 

      

LNT-229 37.09 95.60 >240 10.50 17.78 29.73 

LN-308 139.72 >240 >240 83.13 >240 >240 

LN-319 71.36 >240 >240 24.64 18.23 27.95 

U87MG 140.60 >240 >240 81.03 >240 >240 

T98G 101.19 >240 >240 51.24 158.81 113.11 

MZ-18 35.45 >240 >240 11.56 10.94 9.97 

SMA-560 35.70 10.23 19.25 17.31 2.69 8.25 

Non-
neoplastic 
cells 

      

SVGA 65.95 >240 >240 2.36 1.37 1.02 

HBVP 28.86 >240 58.37 4.85 23.59 5.01 

hCMEC/D3 >240       >240 >240 27.92 105.12 42.02 

PBMCs 
(MTT) 26.45 171.35 144.22 6.50 18.81 23.74 
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In general, ISCADOR Qu held lowest IC50 values (24 h), except for murine SMA-560 

glioma cells that are highly sensitive towards Aviscumine treatment. Viscumin-

mediated toxicity after 48 h of treatment varied. LNT-229, SMA-560, LN-319, and 

MZ-18 glioma cells were viscumin-sensitive, whilst LN-308, U87MG, and T98G cells 

were less vulnerable. All non-neoplastic cell lines and primary cells tested so far 

showed sensitivity towards viscumins. In the cohort of non-neoplastic cells, 

hCMEC/D3 human endothelial cells provided highest and immortalized astrocytic 

SVGA cells lowest IC50 values (Table 1).  

For further experiments non-toxic concentrations (all below the determined IC50 

values) were chosen. To treat LNT-229 glioma cells, a final concentration of 2.4 up to 

16 ng/ml of ML was used. To treat LN-308 glioma cells a concentration of 16 ng/ml of 

ML and to treat SMA-560 glioma cells a concentration of 2.4 up to 16 ng/ml of ML 

ISCADOR Qu, 0.8 to 4.8 ng/ml Aviscumine, or 2.4 up to 16 ng/ml native ML-1 was 

chosen. IC50 values in the cohort of tumor cell lines and non-neoplastic cells varied 

between different cell lines, ranging from low to high values but were comparable. 

Therefore, viscumin-mediated toxic side effects on non-tumor cells or tissue could not 

be excluded by these experiments. 

Furthermore, a viscumin-neutralizing antibody was used to block viscumin-mediated 

toxicity in LNT-229 cells (Figure 3). Cell death induced by Aviscumine treatment for 

48 h was completely prevented even at high concentrations that were far above the 

IC50 (17.78 ng/ml). Even at a concentration of 80 ng/ml of Aviscumine, no cell death 

was observed in LNT-229 cells (Figure 3A). On the contrary, cell death induced by the 

Viscum album extract ISCADOR Qu was only blocked at low concentrations (below 8 

ng/ml ML). Partial cell death inhibition was achieved at a concentration between 20 

and 40 ng/ml ML, and no protecting effect was detectable anymore at a concentration 

of 80 ng/ml ML indicating that cell death induced by ML present in ISCADOR Qu can 

be blocked by the addition of the antibody, whilst cell death induced by additional 

compounds present in the extract could not be inhibited by addition of the antibody 

(Figure 3B). 
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Figure 3: A viscumin-neutralizing antibody blocked cell death induction. LNT-229 cells were 

treated with Aviscumine (A) or ISCADOR Qu (B) at increasing concentrations in the absence or 

presence of a viscumin-neutralizing antibody (0, 10, 50, or 100 µg/ml). Cell density was 

measured 48 h later by crystal violet staining (n=1, mean ± SD). 
 

3.1.2 Toxicity of viscumin-based drugs in murine hippocampal slice 
cultures 

 
To further address the possibility of toxic side effects in healthy brain tissue, viscumin-

mediated toxicity was also tested in organotypic human brain and murine hippocampal 

organotypic cultures. The cultures were treated for 24 or 48 h with increasing 

concentrations of ISCADOR Qu, ISCADOR P, Aviscumine, or native ML-1 and were 

stained with PI to measure the amount of dead cells. Data collected from human brain 

tissue could not be evaluated due to very high basal levels of cell death. In mouse brain 

cultures, ISCADOR Qu and ISCADOR P induced cell death, putatively an effect of 

viscotoxins (VT) that are present in these ME. For ISCADOR Qu, 24 h and 48 h after 

treatment cell death was detectable at ML concentrations of > 24 ng/ml, which 

corresponds to 1.03 µg/ml VT. For ISCADOR P > 10 mg/ml of the extract had to be 

used to induce cell death. This counts for less than 0.25 ng/ml of viscumins but for 

3.76 µg/ml of VT. These data suggest that cytotoxic effects of ISCADOR preparations 

were a result of VT or other agents that are components of ME. No significant toxic 

effects were observed after treating mouse brain cultures with Aviscumine or native 

ML-1 (Figure 4). 
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Figure 4: Induction of cell death in murine hippocampal slice cultures. Organotypic cultures 

were treated for 24 h or 48 h with ISCADOR Qu (ISC Qu), ISCADOR P (ISC P), Aviscumine, or 

native ML-1 at increasing concentrations. Four photographs per slice were taken and PI positive 

cells were counted. Incubation with NMDA (10 µM, 30 min) 24 h prior to PI staining served as a 

positive control for cell death induction (n=3-4, mean ± SD, Student’s t-test *P < 0.05, **P < 

0.01, ***P < 0.001). 

 
3.1.3 Viscumin uptake and CD75s expression 

 

Differences in the vulnerability towards viscumin-induced cell death might be a result 

of a variable uptake of viscumins by tumor cells. ISCADOR Qu contains, besides ML-

1, also ML-2 and -3, whereas native ML-1 or Aviscumine are not. In contrast to 

ISCADOR Qu and native ML-1, Aviscumine presents a non-glycosylated form of ML-

1. This might also influence the uptake of viscumins by cells. Furthermore, 

vulnerability towards viscumins might depend on the expression of the viscumin 

receptor CD75s on the cell surface. 

Firstly, the uptake of viscumins was tested in LNT-229 cells treated with ISCADOR 

Qu, Aviscumine, or native ML-1 (8 ng/ml ML) for 1 or 6 h using immunofluorescence 

and confocal microscopy (data published in Schötterl et al. Int. J. Oncology 2017 

[197]). Viscumins were detected equally in the cytoplasm of LNT-229 cells (Figure 5) 

after 6 h, indicating a fast uptake of viscumins by tumor cells.  
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Figure 5: Viscumin uptake by LNT-229 glioma cells. LNT-229 cells were incubated for 1 or 6 

h with ISCADOR Qu, Aviscumine, or native ML-1 (8 ng/ml ML). Z-stack confocal images were 

taken (40x magnification). Viscumins were stained using a ML-specific antibody (green), nuclei 

were stained using DAPI (blue). Viscumin localized in the cytoplasm is visible in the YZ (right) 

and XZ (bottom) boxes next to each photograph. As controls for specific viscumin staining, 

untreated or native ML-1 treated LNT-229 cells, followed by incubation with isotype IgG, were 

used. Scale bars: 15 µm. Representative photographs of three independent experiments are 

shown. Modified from Schötterl et al. Int. J. Oncology 2017 [197]. 
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Besides, glycosylation of ML-1 or the presence of other components that are part of 

the ME ISCADOR Qu did not influence the uptake. Therefore, differences in cell 

death induction by ISCADOR Qu, Aviscumine, or native ML-1 were not an effect of 

differences in the uptake of viscumins. 

Next, the expression of CD75s on glioma cells, on primary human microvascular 

pericytes (HBVPs), on human GBM tissue, and on human and murine normal brain 

was analyzed. These experiments were performed under my supervision and guidance 

by Jennifer T. Miemietz during her Bachelor thesis. Six glioma cell lines, HBVPs, 

seven human GBM biopsy samples, human and murine healthy brain, and murine 

spleen were analyzed for CD75s expression. All tested cell lines as well as 6/7 GBM 

specimens showed CD75s expression, even to a different extent (Table 2 and Figure 

6A, B). Human and murine healthy brains were CD75s negative. Murine spleen was 

used as a positive control for CD75s expression since immune cells have been 

described to express CD75s [198]. Quantification of CD75s expression using Image J 

followed by correlation analyses demonstrated a strong correlation of viscumin-

induced cell death (IC50 48 h; Table 1) and CD75s staining (Figure 6C, D) for all 

glioma cell lines. The relation coefficients (R) were similar for ISCADOR Qu (R = -

0.74), Aviscumine (R = -0.75), and native ML-1 (R = -0.77). The data fortify the equal 

amount of viscumin uptake detected in LNT-229 glioma cells for all viscumin 

preparations (Figure 5). Therefore, CD75s might be a biomarker that could be used to 

predict the efficiency of a viscumin-based therapy in GBM. 
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Table 2: CD75s expression of human GBM specimen. Specific CD75s expression was 

determined by comparing the staining intensity using the ML-specific antibody to that of the IgM 

isotype control. Experiments were performed under my supervision and guidance by Jennifer T. 

Miemietz during her Bachelor thesis. Specific CD75s expression was categorized as negative (-), 

positive (+), or strongly positive (++) according to the staining intensity. 

GBM  
primary/ 

secondary  
IDH

R132H
 

mutation 

IDH  

sequence 

MGMT  

status 

CD75s  

expression 

N28615 pGBM negative n.d. unmethylated + 

N70315 pGBM negative n.d. unmethylated ++ 

N156714 pGBM negative n.d. unmethylated - 

N125014 pGBM negative n.d. unmethylated -/+ 

N152509 sGBM positive n.d. methylated ++ 

N25914 sGBM negative R132G methylated ++ 

N165014 sGBM negative R132G methylated + 
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Figure 6: CD75s expression in GBM cells and tissue and correlation analysis of CD75s 
expression and viscumin-mediated cytotoxicity (IC50, 48 h). Experiments were performed 

under my supervision and guidance by Jennifer T. Miemietz during her Bachelor thesis. A/B, 

CD75s expression in glioma cell lines (A) and healthy brain or human glioma specimen (B). 

Nuclei were stained with DAPI. As a control, cells or glioma specimen were stained using an 

isotype IgM. Photographs were taken at 63x magnification. Representative pictures of three 

independent experiments are shown. C, Relative CD75s signal density normalized to the signal 

determined for LNT-229 (n=3, mean ± SD, minimum of 4 photographs). D, Correlation analyses 

of CD75s signal density and viscumin-induced cell death (IC50, 48 h, R relation coefficient). 
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3.2 Viscumins modify proliferation and cell cycle distribution 
 
In tumor cells viscumins have been described to influence proliferation as well as cell 

cycle distribution [122, 124, 199, 200]. Here cell growth of glioma cells after viscumin 

treatment was determined and changes in cell cycle distribution were analyzed by flow 

cytometry using BrdU incorporation and quantification of the DNA content by PI. 

Furthermore, changes in the expression of cell cycle associated genes by viscumins 

were examined. These experiments help to understand the versatile actions of 

viscumins in glioma. 

 

3.2.1 Viscumin mediated changes in the growth of GBM cells 
 

To test the impact of viscumins on glioma cell proliferation, LNT-229 or SMA-560 

glioma cells were treated with several concentrations of ISCADOR Qu, Aviscumine, 

or native ML-1 (0-16 ng/ml ML). After 24 h, viscumins were removed and cell density 

was measured at different time periods. There was a clear reduction in cell growth 

detectable upon viscumin treatment (Figure 7). Interestingly, no effect for native ML-1 

on cell growth was detectable in LNT-229 and SMA-560 cells at any concentration 

tested. Growth reduction was similar for ISCADOR Qu and Aviscumine in LNT-229 

cells. As SMA-560 cells are highly sensitive to Aviscumine, very low concentrations 

were sufficient to inhibit cell growth. 
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Figure 7: Reduced proliferation of LNT-229 and SMA-560 glioma cells upon viscumin 
treatment. Cells were treated with increasing concentrations of ISCADOR Qu, Aviscumine, or 

native ML-1 for 24 h. After removal of viscumins cells were stained with crystal violet every 24 h 

to determine cell density (FC fold change, d days, n=3, mean ± SD, Student’s t-test *P < 0.05, 

**P < 0.01, ***P < 0.001). 

 
3.2.2 Cell cycle distribution 

 

To determine whether viscumin-mediated growth reduction is an effect of alterations 

of glioma cells in different phases of the cell cycle or whether glioma cells might arrest 

in a certain cell cycle phase, LNT-229 and SMA-560 glioma cells were treated with 

ISCADOR Qu, Aviscumine, or native ML-1 (0-16 ng/ml ML, 24 or 48 h). Cell cycle 

distribution was analyzed by BrdU incorporation and by measuring the cell’s DNA 

content. BrdU is a synthetic thymidine analogue that is incorporated into the DNA 

during the S phase of the cell cycle. Incorporated BrdU was detected by flow 

cytometry using a FITC-coupled BrdU antibody. PI staining reveals the DNA content 

of a cell (2N, 4N). In Figure 8 an example for the flow cytometric analysis of the cell 

cycle is depicted. BrdU negative cells with low DNA content were gated as G1 cells, 
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cells with high DNA content as G2-M cells. BrdU positive cells were divided in an S 

phase high and an S phase low according to the level of incorporated BrdU. 

 

 
Figure 8: Gating example for flow cytometric cell cycle analysis. LNT-229 cells were treated 

with ISCADOR Qu (16 ng/ml ML, 24 h) in the presence or absence of a ML-specific antibody 

(4.8 µg/ml) that functionally neutralized viscumin effects. Afterwards, BrdU was added (30 min). 

Cells were fixed and BrdU incorporation was quantified using a FITC-coupled BrdU antibody. In 

parallel, DNA was stained using PI. The population of cells in the S phase was separated in two 

fractions (high and a low) dependent on the amount of incorporated BrdU. G1 and G2-M phase 

cells were defined by the total DNA content as measured by PI staining. Representative pictures 

of three independent experiments are shown. 

 
After 24 h of ISCADOR Qu, Aviscumine, or native ML-1 treatment, only small 

alterations in the cell cycle distribution of LNT-229 cells became visible (Figure 9A). 

The amount of         S phase high cells decreased by viscumin treatment (16 ng/ml ML), 

while the amount of S phase low and G2-M phase cells increased. Treatment of LNT-

229 cells with ISCADOR Qu or Aviscumine for 48 h strengthened these effects. 

Surprisingly, native ML-1 did not induce alterations in cell cycle distribution (Figure 

9B). The effects of ISCADOR Qu or Aviscumine (48 h) were similar and included a 

strong accumulation of G2-M phase cells, while the amount of S phase cells decreased. 

The amount of G1 phase cells stayed constant. 
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Figure 9: Cell cycle distribution of ISCADOR Qu (ISC Qu), Aviscumine (Avi), or native 
ML-1 (ML-1) treated LNT-229 glioma cells. Cells were treated for 24 h (A) or 48 h (B) with 

increasing viscumin concentrations in the absence or presence of a ML-specific antibody (4.8 

µg/ml) to neutralize viscumin specific effects. DNA synthesis was determined by BrdU 

incorporation (30 min). Cells were fixed and BrdU stained using a FITC-coupled BrdU antibody. 

After RNAse digest total DNA content was determined by PI staining. Cell cycle phases (G1, S 
high, S low and G2-M) were gated as shown in Figure 8 (n=3, mean, Student’s t-test *P < 0.05, **P 

< 0.01, ***P < 0.001). 
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In murine SMA-560 glioma cells the effect of both ISCADOR Qu and native ML-1 on 

cell cycle distribution was minor after 24 h (Figure 10A) and 48 h (Figure 10B). No 

accumulation of G2-M phase cells was visible. Instead, SMA-560 cells showed a trend 

to accumulate in the G1 phase. Nevertheless, the effect of Aviscumine on cell cycle 

distribution in SMA-560 cells was prominent. A massive reduction of S phase cells 

and accumulation of G1 phase cells was detectable at 24 h. In SMA-560 cells, 

Aviscumine effects were strongest after 24 h and did not further increase. This might 

be due to the fact that SMA-560 cells proliferate faster than LNT-229 cells.  
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Figure 10: Cell cycle distribution of ISCADOR Qu, Aviscumine, or native ML-1 treated 
SMA-560 glioma cells. Cells were treated in the absence or presence of a ML-specific antibody 

(4.8 µg/ml) for 24 h (A) or 48 h (B). Newly synthesized DNA was measured by BrdU 

incorporation (30 min). Cells were fixed and BrdU stained using a FITC-coupled BrdU antibody. 

After RNAse digest, total DNA content was determined by PI staining. Cell cycle phases (G1, S 
high, S low and G2-M) were gated as shown in Figure 8 (n=3, mean, Student’s t-test *P < 0.05, **P 

< 0.01, ***P < 0.001). 
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3.2.3 Modulation of cell cycle associated gene expression by viscumins 
 

To identify underlying mechanisms how viscumins might reduce proliferation, the 

expression of cell cycle associated genes was analyzed in LNT-229 glioma cells using 

a RT-qPCR-based microarray that allows to determine the expression of 44 genes 

involved in the regulation of proliferation. 35/44 genes were differentially expressed in 

viscumin-treated compared to untreated cells. The expression of 21/35 differentially 

expressed genes found in the microarray were validated by RT-qPCR. 13 genes were 

found to be false positives. Regulated genes (microarray and RT-qPCR) are depicted 

in Figure 11A. In the panel of cyclins, cyclin A1, A2, B1, B2, B3, E1, and E2 were not 

regulated by viscumins (data not shown). Cyclin D1, D2, and D3 were differentially 

expressed in viscumin-treated cells (Figure 11B). Cyclin D1 was upregulated, whilst 

cyclin D2 and D3 were downregulated. The cyclin dependent kinase inhibitors 

CDKN1A (p21) and CDKN1B (p27) were not regulated at all (data not shown). In the 

panel of histone deacetylases (HDACs), five HDACs were not regulated (HDAC2, 

HDAC3, HDAC5, HDAC7, and HDAC9), and only HDAC6 was downregulated 

(Figure 11B and data not shown). Furthermore, E2F transcription factor 1 and 2 (E2F1, 

E2F2), ataxia telangiectasia and Rad3-related protein (ATR), and retinoblastoma 

protein (RB1) were not regulated, whilst ataxia telangiectasia mutated (ATM), 

TGFB1, and TGFB2 were downregulated, and protein phosphatase 2 catalytic subunit 

alpha (PPP2CA) was upregulated (Figure 11B, Figure 12B, and data not shown). It is 

remarkable, that native ML-1 led to changes in the expression of cell cycle regulating 

genes, although there was no noticeable effect of native ML-1 on cell growth and cell 

cycle distribution. 

In conclusion, viscumin treatment of LNT-229 and SMA-560 glioma cells induced a 

reduction in proliferation as well as alterations in cell cycle distribution. Effects of 

ISCADOR Qu and Aviscumine were comparable, while the effects of native ML-1 

were minor. 
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Figure 11: Viscumins caused changes in the expression of cell cycle associated genes. A, 

Gene expression heat map depicting changes in viscumin treated LNT-229 glioma cells (24 h, 8 

ng/ml ML) based on a RT-qPCR microarray analysis (red = upregulated, green = downregulated, 

white = no change). B, RT-qPCR of assorted genes in viscumin-treated LNT-229 cells. Cells 

were treated as in A (n=3, mean ± SD, Student’s t-test *P < 0.05, **P < 0.01, ***P < 0.001, 

ISCADOR Qu (I), Aviscumine (A), native ML-1 (M)).  

 

3.3 Influence of viscumins on glioma cell migration 
 
As previously described by our group, ISCADOR Qu provides anti-migratory effects 

linked to changes in gene expression of motility associated genes [118]. In the present 

study, effects of ISCADOR Qu, Aviscumine, and native ML-1 were compared and 

novel viscumin-regulated, motility-associated genes were identified by RT-qPCR 

based gene expression microarray analysis, followed by RT-qPCR validation. MMP 

and TGF- expression and activation status were tested by immunoblot, ELISA, and 
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zymography. Viscumin-based anti-migratory effects were analyzed using a transwell 

migration assay (data published in Schötterl et al. Int. J. Oncology 2017 [197]). 

 
3.3.1 Gene expression 

 
In 2012 our group demonstrated that in GBM cells ISCADOR Qu reduced the 

expression of genes that are mainly upregulated in glioma but induced expression of 

genes that are often downregulated in glioma [118]. In the present study these analyses 

were expanded to determine whether Aviscumine or native ML-1 show comparable 

effects. For this, LNT-229 cells were treated with ISCADOR Qu, Aviscumine, native 

ML-1, or the cells were left untreated (24 h, 8 ng/ml ML). RNA was isolated and 

transcribed into cDNA. Using a RT-qPCR based microarray that allows determining 

the expression of 92 metastasis and motility associated genes, 49 differentially 

regulated genes were detected. RT-qPCR based validation identified 10/49 genes to be 

false positive. The remaining 39 genes are depicted in Figure 12A. 19 genes were 

found to be down- and 20 genes to be upregulated by viscumins. In the ISCADOR Qu 

group 16 mRNAs were down- and 9 upregulated. In the Aviscumine group 8 mRNAs 

were down- and 19 up-, and in the native ML-1 group 7 mRNAs were down- and 14 

upregulated. Nevertheless, the panel of regulated genes varied between the different 

treatment groups.  

Most of the 19 genes found to be downregulated harbour pro-migratory or pro-invasive 

properties. Two genes were of pro-tumorigenic nature: HRAS is an oncogene, and 

VEGFA is involved in angiogenesis. The function of 4 genes regarding their 

involvement in cancer generation and progression is discussed in the literature 

(TNFSF10, KISS1R, RBL1, and RBL2). The 20 upregulated genes showed functional 

diversity: 4 upregulated genes reduce cell migration (BRMS1, FGF2, NME, and 

SERPINB5), whilst 9 harbour pro-migratory properties (FAT1, IL18, KRAS, LYPD3, 

MMP1, MMP10, PTGS2, S1004A, and SERPIN1). 4 genes have been described to be 

either pro- or anti-migratory dependent on the surrounding micro-milieu (HGF, IL1B, 

MET, and MYC). 3/20 genes were not directly connected to cell motility but provide 

pro-angiogenic (PECAM1 and VEGFA) or oncogenic function (ERBB2). 
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Figure 12: In LNT-229 glioma cells viscumins modulated the expression of motility-
regulating genes. A, Gene expression heat map depicting changes in viscumin treated LNT-229 

glioma cells (24 h, 8 ng/ml ML) based on a RT-qPCR microarray analysis (red = upregulated, 

green = downregulated, white = no change). B, RT-qPCR analysis of genes identified in A. Cells 

were treated as in A (n=3, mean ± SD, Student’s t-test *P < 0.05, **P < 0.01, ***P < 0.001; 

ISCADOR Qu (I), Aviscumine (A), native ML-1 (M)). Modified from Schötterl et al. Int. J. 

Oncology 2017 [197]. 

Viscumin-mediated modulation of EPHB2, MTA1, MMP-14, TGFB1, TGFBR2, 

NME, SERPINB5, PTGS2, and IL1B expression was also validated by RT-qPCR 

(Figure 12B). By microarray, MTA1 was only found to be downregulated by 

ISCADOR Qu. Nevertheless, the more sensitive RT-qPCR analysis showed that 

MTA1 expression was also reduced by Aviscumine and native ML-1. Similar results 

were generated for TGFB1 and TGBR2. Vice versa, MMP-14 that showed reduced 

expression in the microarray was only downregulated by ISCADOR Qu. Some 

differences in gene expression using the RT-qPCR based microarray and RT-qPCR 
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were also found for MMP-2. Since important regulators of cell migration like TGFB2 

and tissue inhibitor of metalloproteinase (TIMP)-2 were not included in the microarray 

panel, the expression of these genes were also tested by RT-qPCR. TIMP-2 was 

downregulated by ISCADOR Qu and Aviscumine, whereas TGFB2 was 

downregulated by all viscumins.  

 

3.3.2 TGF- 
 
In GBM TGF- is an essential tumor promoting cytokine that induces the suppression 

of anti-tumoral immune attacks but also pushes glioma cell migration and invasion 

[201]. Previously, our group showed that in glioma cells TGF- expression was 

reduced by ISCADOR Qu [118]. Here we demonstrate that this is also true for 

Aviscumine and native ML-1. Downregulation of TGF- could be abrogated by the 

addition of a ML-neutralizing antibody (Figure 13A). In addition to TGF-, also the 

mRNA levels of the TGF- receptor 2 (TGFBR2) were reduced upon viscumin 

treatment (Figure 12B). Viscumin-mediated changes in the expression of TGF- were 

also determined for secreted TGF- protein. These analyses were partially done by 

Vivien Veninga during her bachelor thesis under my supervision and guidance. Not 

only TGF- mRNA but also the level of secreted TGF- protein was reduced by 

viscumins, an effect that was also abrogated by the addition of a ML-neutralizing 

antibody (Figure 13B).  

SMAD2 is an important intracellular TGF- signal transducer. No viscumin-

modulating effects on SMAD2 mRNA expression had been found by the RT-qPCR 

based analyses. Nevertheless, SMAD2 protein was reduced after viscumin treatment, 

but again, this effect was abrogated by the addition of the ML antibody (Figure 13C, 

D). Summing up, the study demonstrated that TGF- expression, the expression of 

genes and proteins involved in TGF- signalling like TGFBR2 or SMAD2, and TGF-

-regulated genes were negatively regulated by viscumins. 
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Figure 13: Viscumins modulated the expression of TGF- and SMAD2. A, RT-qPCR analysis 

of LNT-229 cells treated with viscumins (8 ng/ml ML, 24 h) in the absence or presence of a ML-

neutralizing antibody (4.8 µg/ml). B, TGF- 1 was quantified in medium of viscumin treated 

LNT-229 cells by ELISA. Parts of the ELISA analyses were performed by Vivien Veninga during 

her bachelor thesis under my supervision and guidance. C, Representative western blots showing 

SMAD2 expression in viscumin treated LNT-229 cells. GAPDH was used as loading control. 

Cells were treated as in A. D, Quantification of SMAD2 protein levels relative to GAPDH 

(A/B/D, n=3, mean ± SD, Student’s t-test *P < 0.05, **P < 0.01, ***P < 0.001). Modified from 

Schötterl et al. Int. J. Oncology 2017 [197]. 
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3.3.3 Matrix metalloproteinases 

 
Matrix metalloproteinases (MMPs) are responsible for the degradation of the 

extracellular matrix (ECM), one important process that finally facilitates the invasion 

of GBM cells into the healthy brain. It is known for long that in glioma TGF- 

influences the expression and activity of MMPs and also of MMP inhibitors or 

activators [30, 202]. Our group has shown that ISCADOR Qu reduced the expression 

of MMPs [118]. The present study broadens these analyses to evaluate if Aviscumine 

and native ML-1 provide similar effects. Using the RT-qPCR based microarray, we 

found MMP-9 and -14 to be downregulated by all three viscumin-based drugs, whilst 

MMP-1 and -10 were upregulated by Aviscumine, and MMP-1 was upregulated by 

native ML-1 (Figure 12A). Further RT-qPCR analyses revealed that MMP-2 and -14 

were significantly downregulated by ISCADOR Qu, whilst the expression of TIMP-2 

was downregulated by ISCADOR Qu and Aviscumine (Figure 12B). 

Interestingly, viscumin-mediated differences in MMP-2, MMP-14, and TIMP-2 

mRNA did not directly reflect to protein levels. On the protein level a more general 

downregulation of MMP-2, MMP-14, and TIMP-2 was detectable. ISCADOR Qu (8 

ng/ml ML) or native ML-1 (16 ng/ml), reduced MMP-2 and TIMP-2 protein levels, 

whilst these effects were lesser for Aviscumine (8 ng/ml). The viscumin-mediated 

downregulation to the above mentioned proteins was abrogated by the addition of a 

ML-neutralizing antibody (Figure 14A). 

Measuring MMP-2 activity by gelatinase-based zymography showed that only 

ISCADOR Qu but not Aviscumine or native ML-1 reduced both MMP-2 and -9 

activities (Figure 14C) suggesting that viscumins mainly influence the expression but 

not the activation of MMPs and that additional compounds, which are present in MEs 

like ISCADOR Qu, might be necessary to mitigate MMP activity. 
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Figure 14: In LNT-229 cells viscumins modulated the expression of MMPs and TIMP-2. A, 

LNT-229 cells were treated with viscumins (24 h) in the presence or absence of a ML-

neutralizing antibody. MMP expression was analyzed in supernatants (SN) or lysates as indicated. 

B, Quantification of MMP-2 and TIMP-2 protein. C, LNT-229 cells were treated as in A. MMP 

activity was analyzed in supernatants by zymography (n=3, mean ± SD, Student’s t-test *P < 

0.05, **P < 0.01, ***P < 0.001). Modified from Schötterl et al. Int. J. Oncology 2017 [197]. 
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3.3.4 Cell motility 

 
As shown above, treatment of LNT-229 cells with viscumins led to changes in the 

expression of motility associated genes. Our group has shown that cell migration was 

reduced in ISCADOR Qu treated glioma cells [118]. The present study enlarges these 

analyses to determine whether Aviscumine or native ML-1 provide similar anti-

migratory capacity. Indeed, all viscumin-based drugs reduced the migration of both 

human LNT-229 and murine SMA-560 glioma cells (Figure 15). 

 

 

 
Figure 15: Viscumins reduced glioma cell migration. The cells were treated with ISCADOR 

Qu, Aviscumine, or native ML-1 (24 h, 8 ng/ml of each ML, except SMA-560 cells: 0.8 ng/ml 

Aviscumine) or were left untreated in the absence or presence of a ML-neutralizing antibody. For 

migration 2x104 cells were seeded in transwell chambers. After 24 h migrated cells were counted. 

Values were normalized to proliferation controls to avoid effects resulting from viscumin-based 

changes in proliferation (n=3, mean ± SD, Student’s t-test *P < 0.05, **P < 0.01, ***P < 0.001). 

Modified from Schötterl et al. Int. J. Oncology 2017 [197]. 
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3.4 Immune-modulating effects of viscumins 
 
It is known for decades that viscumins are able to stimulate cells of both the adaptive 

(e.g. T cells) and the innate (e.g. NK cells) immune system [138, 143, 149, 203-205]. 

One mode how viscumins act is by induction of pro-inflammatory interleukins and 

interferon- [130, 206, 207]. Additionally, in glioma cells viscumins reduce the 

secretion of TGF- (see chapter 3.3). Nevertheless, the mechanisms how viscumins 

lead to a stimulation of immune cells, and how they might help to induce an anti-tumor 

cell response have not been elucidated in detail. In the present study effects of 

ISCADOR Qu, Aviscumine, and native ML-1 on the NK and T cell mediated killing of 

glioma cells were analyzed. 

 

3.4.1 Viscumins enhance the NK cells mediated lysis of LNT-229 glioma 
cells 

 

Our group demonstrated in a former study that viscumin-rich ISCADOR Qu but not 

viscumin-poor ISCADOR P enhanced the NK cell mediated cell killing of LNT-229 

cells [118]. In the current study we additionally analyzed the effects of Aviscumine 

and native ML-1 in NK cells from three different healthy human donors. LNT-229 Luc 

cells were treated with ISCADOR Qu, Aviscumine, native ML-1 (24 h, 8 ng/ml ML), 

with ISCADOR P (24 h, 1 mg/ml ME), or were left untreated. After intense washing to 

remove residual viscumins, NK cells were added at increasing effector to target ratios 

for 4 h. Luciferase activity was measured to determine NK cell mediated glioma cell 

lysis. As shown in Figure 16A/B, both ISCADOR Qu and Aviscumine enhanced the 

NK cell mediated lysis of glioma cells, whilst ISCADOR P and native ML-1 did not 

(n=1, data not shown).  
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Figure 16: Viscumins enhanced the NK cell mediated glioma cell killing. A/B, LNT-229-Luc 

cells were treated ISCADOR Qu (A), Aviscumine (B), or were left untreated (24 h, 8 ng/ml ML). 

NK cells were added at increasing effector (E) to target (T) ratios and luciferase activity was 

measured. Experiments were carried out in 6 replicates. C, LNT-229 Luc cells were treated as in 

A, but prior to the addition of NK cells at a ratio of E/T = 20:1, NK cells were incubated with 

neutralizing antibodies for either NKG2D, NKp30, NKp40, NKp46, or all (each 10 µg/ml, 30 

min, n=3, mean ± SD, Student’s t-test *P < 0.05, **P < 0.01, ***P < 0.001). Modified from 

Schötterl et al., KVC, 2016 [208].  
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To identify if viscumins were bound on target cells and compete for the binding of NK 

cells to the target cell by specific NK cell surface molecules, the function of the 

activating NK cell receptors NKp30, NKp44, NKp46, and NKG2D on NK cells was 

blocked by addition of neutralizing antibodies prior to co-cultivation of NK and target 

cells. Neutralizing NKp30, NKp44, NKp46, or NKG2D resulted in a reduction of 

target cell lysis but did not influence the viscumin-mediated enhancement of glioma 

cell lysis. The blockade of all NK cell surface binding proteins, by this inhibiting the 

binding of NK cells to their targets, abrogated the NK cell mediated lysis of both, 

viscumin-treated and untreated target cells (Figure 16C). Data shown in this chapter 

are partially published (Schötterl et al., KVC, 2016 [208]). 

 

3.4.2 Viscumins enhance the T cell mediated lysis of LNT-229 glioma 
cells 

 
It has been described in the literature that viscumins influence the activity and motility 

of T cells [142, 149, 209]. Therefore, we analyzed whether viscumins are able to 

enhance the T cell mediated killing of glioma cells. For this we chose an allogenic 

approach. T cells from PBMCs of three healthy human donors (D15, 17, 18) were 

expanded in the presence of irradiated human LNT-229 cells as described in the 

methods part. T cells were purified from co-cultures using a T cell isolation kit. Purity 

and activity were determined by flow cytometry (FACS) using anti-human CD3, CD4, 

CD8, CD69, and CD56 antibodies. On average > 95% of cells were CD3+, and in this 

population > 50% of cells were CD69+. There was a slight but significant enhancement 

of glioma cell lysis if target LNT-229 cells were pre-treated with viscumins prior to the 

addition of T cells (Figure 17, 1st to 6th bar of each graph). Nonetheless, the increase of 

glioma cell lysis was variable and dependent on the T cell donor as well as on the 

viscumin preparation. 

To determine whether viscumin treatment of glioma cells enhances the expansion of 

naïve T cells, LNT-229 cells used for co-cultures during the T cell expansion period 

were pre-treated with ISCADOR Qu, Aviscumine, or native ML-1 (8 ng/ml ML, 24 h) 

prior to co-cultures. Residual non-bound viscumins were removed by intensive 
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washing steps prior to the addition of PBMCs. T cells generated by this approach 

showed enhanced glioma cell lytic activity compared to T cells generated by co-

culturing PBMCs with non-treated glioma cells (Figure 17, 7th to 12th bar of each 

graph). Even glioma cells which have never been treated with viscumins were killed 

more efficiently. In this approach, native ML-1 showed only minor effects and only in 

T cells of one donor. Aviscumine showed enhancing activity in 2/3 T cell donors and 

ISCADOR Qu in T cells of all donors tested so far.  

To determine direct effects of viscumins on immune cells, PBMCs were cultured for 

24 h and 48 h in the presence or absence of increasing concentrations of ISCADOR 

Qu, Aviscumine, or native ML-1. Viscumins induced cell death in PBMCs (IC50 24 h: 

26.45 ng/ml ML ISCADOR Qu, 171.35 ng/ml Aviscumine, 144.22 ng/ml native ML-

1; IC50 48 h: 6.50 ng/ml ML ISCADOR Qu, 18.81 ng/ml Aviscumine, 23.74 ng/ml 

native ML-1) demonstrating that PBMCs, compared to glioma cells, were highly 

vulnerable towards viscumin treatment (Table 1, Figure 18A). 

Additionally, we analyzed effects of viscumins on T cell viability and activity using 

flow cytometry-based detection of cell death (PI and annexin V) and of activation 

surface proteins like CD69, CD25, and HLA-DR. For this, expanded T cells were 

cultivated in the absence or presence of ISCADOR Qu or Aviscumine (0-8 ng/ml ML, 

24 h or 48 h). In accordance to the data observed for PBMCs, also T cell viability was 

reduced by both ISCADOR Qu and Aviscumine (Figure 18D, E). Although CD69 

expression was not modulated by viscumins (data not shown), CD25 and HLA-DR 

surface expression was significantly reduced after 48 h of viscumin treatment (Figure 

18B, C) indicating that viscumins, even if used in concentrations that do not influence 

glioma cells, mitigate immune cell activity. The viscumin-mediated downregulation of 

immune cell activation markers on expanded T cells was paralleled by the reduction of 

their lytic activity on glioma cells (Figure 18F, G). 
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Figure 17: T cell mediated killing of glioma cells was enhanced by viscumins. Results for 

three individual donors (D15, 17, 18) are depicted. PBMCs were co-cultured with untreated (Co, 

label on top of bars) or ISCADOR Qu (ISC Qu), Aviscumine (Avi), or native ML-1 (ML-1) 

pretreated LNT-229 glioma cells for 3-5 weeks to achieve allogenic T cell activation. Activated T 

cells were added in different effector to target (E:T) ratios (as indicated by light grey 5:1, dark 

grey 10:1 and black color 20:1, respectively) to untreated (Ctrl, x-axis) or viscumin-treated (ISC, 

Avi, ML-1; 8 ng/ml ML; x-axis) LNT-229 Luc cells for 4 h. Luciferase activity was measured 

and used to calculate the amount of glioma cell lysis. (Mean ± SD of 6-8 replicates; Student’s t-

test compared to the Ctrl (*) or the Co (*) */*P < 0.05, **/**P < 0.01, ***/***P < 0.001). 
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Figure 18: Viscumins induced cell death in PBMCs and reduced T cell lytic activity. A, 

PBMC viability measured by MTT. PBMCs were treated with increasing concentrations of 

ISCADOR Qu (ISC Qu), Aviscumine (Avi), or native ML-1 (24 or 48 h). B-E. Flow cytometric 

analysis of T cells treated for 48 h with increasing concentrations of ISCADOR Qu (ISC Qu) or 

Aviscumine (Avi). CD25 (B) and HLA-DR (C) surface expression, PI (D) and Annexin V (E) 

staining. F-G. LNT-229 lysis assay. T cells were left untreated (Ctrl) or were treated with 

ISCADOR Qu (F) or Aviscumine (G) (2.4 ng/ml ML, 24 h). Afterwards, these cells were co-

cultured for 4 h at different effector to target (E:T) ratios with LNT-229 Luc cells. The remaining 

luciferase activity was measured and used to calculate the amount of glioma cell lysis. (n=3; 

mean ± SD; Student’s t-test compared to control *P < 0.05, **P < 0.01, ***P < 0.001) 
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3.4.3 Viscumin mediated changes of immune response associated gene 
expression 

 
To identify the underlying mechanisms how viscumins might induce the immune cell 

mediated killing of glioma cells, LNT-229 glioma cells were treated with ISCADOR 

Qu, Aviscumine, or native ML-1 (24 h, 8 ng/ml ML), and viscumin-based changes in 

the expression of immune response related genes were analyzed using a RT-qPCR 

based microarray that allows the detection of 92 genes, followed by RT-qPCR 

validation. 

After removal of targets that are not expressed in glioma, 42 differentially regulated 

genes were identified by the use of the microarray (Figure 19A). ISCADOR Qu 

treatment of LNT-229 cells downregulated 15 and upregulated 21 mRNAs. 

Aviscumine downregulated 4 and upregulated 24 mRNAs, whilst native ML-1 

downregulated 15 and upregulated 18 mRNAs. In total, 23 mRNAs were upregulated, 

15 were downregulated, and 4 were either up- or downregulated dependent on the used 

viscumin. 17/23 genes are known to provide pro-inflammatory functions (IL1A, IL1B, 

IL6, IL8, IL12A, IL15, IKBKB, CCL2, CSF1, CSF2, CSF3, CD86, PTGS2, TNF, 

SELE, C3, VEGFA), 3 are described to be anti-inflammatory (IL10, LIF, SMAD3), 2 

are known to be anti-apoptotic (BCL2, BCL2L1), and 1 is described to provide pro-

apoptotic features (FAS). The 4 either up- or downregulated genes are pro-

inflammatory (NFKB2, ICAM1, EDN1, LY96). In the panel of downregulated 

mRNAs, 13 mRNAs are described to provide pro-inflammatory activity (STAT3, 

HLADR, NOS2, SKI, LRP2, SMAD7, FN1, LTA, NFATC3, NFATC4, CXCL11, 

ACE, CD34), whereas 2 mRNAs are known to hold anti-inflammatory capacity 

(TGFB1, HMOX1). 

The expression of 8 differentially expressed genes identified by microarray analysis 

was further determined by RT-qPCR. By this the microarray data were validated 

(Figure 19B). These data demonstrated that treatment of LNT-229 cells with viscumins 

enhanced the expression of many pro-inflammatory genes and might explain the 

enhanced immune cell mediated killing of glioma cells after viscumin treatment. 

Additionally, this more “pro-inflammatory phenotype” of glioma cells might support 

immune cell attraction to the tumor and might boost an anti-tumor immune response. 
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Figure 19: Viscumins modulated the expression of inflammation associated genes. A, Gene 

expression heat map depicting changes in viscumin treated LNT-229 glioma cells (24 h, 8 ng/ml 

ML) based on a RT-qPCR microarray analysis (red = upregulated, green = downregulated, white 

= no change). B, RT-qPCR analysis of genes identified in A. Cells were treated as in A (n=3; 

mean ± SD; Student’s t-test compared to control *P < 0.05, **P < 0.01, ***P < 0.001, ISCADOR 

Qu (I), Aviscumine (A), native ML-1 (M)). 

 

3.5 Viscumins as adjuvant cancer therapeutics in vitro 
 

Viscumins are generally used as adjuvant cancer therapeutics in the clinic, which are 

administered in parallel to standard cancer treatment (tumor irradiation and TMZ-

based chemotherapy). In our study we were interested whether viscumins might 

support the effects of standard glioma therapy or might even synergize with tumor 

irradiation and/or chemotherapy.  

In a first approach we measured clonogenic survival of human (LNT-229, LN-308) 

and murine (SMA-560) glioma cells as described in the methods part. For this human 

GBM cells were treated with viscumins in combination with TMZ as indicated in 
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Figure 20. Concentrations for single treatments were adapted to every cell line in a 

way that single treatments never reached a therapeutic effect of > 40% of clonogenic 

survival reduction. After 24 h, specific treatment groups were additionally irradiated. 

The medium was changed to remove residual viscumins and TMZ. Since SMA-560 

cells do not form colonies, a similar approach was used, but cells were seeded in 

microtiter plates and the assay was stopped if control groups have grown to 

confluency. Additive effects of the three single treatments were calculated using the 

Webb method [210]. Therapeutic effects were defined to be synergistic if values 

determined for triple treatment were lower than calculated additive effects.  

In LNT-229 cells adjuvant viscumin therapy yields synergistic effects for ISCADOR 

Qu and Aviscumine and an additive effect for native ML-1 (Figure 20A). In LN-308 

cells adjuvant viscumin treatment showed additive effects (Figure 20B), and in SMA-

560 cells adjuvant viscumin treatment showed synergy (Figure 20C). In total, adjuvant 

viscumin therapy in parallel to irradiation and TMZ showed additive to synergistic 

effects regarding clonogenic survival in all tested glioma cell lines. These supporting 

effects seemed to be independent on the cell susceptibility towards viscumins, TMZ, or 

irradiation. 
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Figure 20: Additive and synergistic effects of viscumins regarding clonogenic survival of 
glioma cells. LNT-229 (A), LN-308 (B), and SMA-560 (C) cells were exposed to irradiation, 

TMZ, or viscumin (light grey bars) or were exposed to radio-chemotherapy in combination with 

ISCADOR Qu (ISC Qu), Aviscumine (Avi), or native ML-1 (combined, black bars). Dark grey 

bars indicate the predicted effect of combined treatment calculated using the Webb method [211]. 

The following conditions were chosen: LNT-229: 3 Gy, 3 µM TMZ, 3.6 ng/ml ML ISCADOR 

Qu or Aviscumine, 4.8 ng/ml native ML-1; LN-308: 1.5 Gy, 10 µM TMZ, 16 ng/ml of each 

viscumin; SMA-560: 3 Gy, 30 µM TMZ, 6.5 ng/ml ML ISCADOR Qu, 1.5 ng/ml Aviscumine or 

2 ng/ml native ML-1. (n=3, mean ± SD, Student’s t-test *P < 0.05, **P < 0.01, ***P < 0.001). 
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3.6 Viscumins as adjuvant cancer therapeutics in vivo 
 
The promising in vitro data we observed using adjuvant viscumin treatment of glioma 

cells prompted us to test whether this is also true in vivo. We used two different mouse 

GBM-models: Rj:NMRI-Foxn1nu/Foxn1nu (NMRI) mice bearing orthotopically 

growing human LNT-229 tumors provide a model that allows to analyze direct effects 

of viscumins on tumor growth, but it has the disadvantage that determination of anti-

tumoral immune responses are not possible in these immunocompromised mice. To 

determine putative viscumin-mediated immune-stimulating effects, we used an 

immunocompetent syngeneic mouse glioma model (SMA-560 cells orthotopically 

growing in VM/Dk mice). In a preliminary dose-escalation study executed in 

collaboration with the group of M. Mittelbronn (Neurological Institute, Edinger 

Institute, Frankfurt/Main), we determined the highest well tolerated doses of 

ISCADOR Qu and Aviscumine when injected in brains of NMRI mice and found them 

to be approximately > 0.7 ng of ML. We did not use native ML-1 in these experiments 

since in vitro native ML-1 showed only minor therapeutic immune-stimulatory effects 

compared to ISCADOR Qu and Aviscumine. In a first experiment using the LNT-229-

NMRI nude mouse model, we performed single or double treatments. Single treatment 

mice received a single intra-tumoral injection of Aviscumine or ISACDOR (0.7 ng of 

ML) nine days after tumor implantation, or received TMZ (2.5 mg/kg i.p.) at day 9, 16, 

and 23. Double treatment mice received viscumins and TMZ. Survival was determined 

by the preparation of Kaplan-Meyer survival curves.  

Only TMZ showed a significant benefit in the median survival compared to the control 

treatment. Aviscumine single treatment mice showed a trend towards prolonged 

survival, whereas animals of the ISCADOR Qu treatment group lived even shorter 

than control animals (Figure 21 and Table 3). Post mortem, mouse brains were 

pathologically examined by our collaborator Naita M. Wirsik (Group Mittelbronn, 

Neurological Institute, Edinger Institute, Frankfurt/Main). All tumors showed necrosis 

(data not shown), but the differences in proliferation, invasion, and apoptosis rate of 

control and treatment groups were variable and differences were negligible in total 

(Figure 21C). 
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Figure 21: Combinational treatment of LNT-229 tumors with viscumins and TMZ (Kaplan 
Meyer survival curves). A, Mice were intratumorally injected with either PBS or ISCADOR Qu 

(ISC Qu, 0.7 ng ML in total) at day 9 after tumor cell implantation. At day 7, 14, and 21 mice 

received i.p injections with PBS or TMZ (2.5 mg/kg). B, Mice were treated as in A, but 

Aviscumine (Avi, 0.7 ng) was used instead of ISCDOR Qu (n=7-8). C, Post mortem pathological 

evaluation of proliferation (left), tumor cell invasion (middle), and apoptosis (right) performed by 

our collaborator Naita M. Wirsik (Group Mittelbronn, Neurological Institute, Edinger Institute, 

Frankfurt/Main). 
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Table 3: Combination treatment of LNT-229 tumors with viscumins and TMZ (median 
survival).  Mice were treated as indicated in Figure 21 and median survival was determined. 

Group Control ISC 
Qu Avi TMZ ISC Qu 

+ TMZ 
Avi 

+ TMZ 

Median 
survival 
(days) 

67 61 87 83 81 95.5 

p-value 
log-
rank 
(Ctrl) 

- 0.06 0.15 0.0034 0.02 0.0001 

p-value 
log-
rank 
(TMZ) 

- - - - 0.0788 0.7209 

 

The observation that there were only minor effects of double treatment using 

viscumins and TMZ prompted us to perform an adjuvant viscumin treatment study, 

meaning that viscumins were used in combination with standard glioma radio-

chemotherapy using the LNT-229 NMRI mouse glioma model and intra-tumoral 

viscumin injections. Due to the shortened survival of intratumorally ISCADOR Qu 

treated glioma mice we observed in our former experiment we skipped ISCADOR Qu 

in this experiment. Ten days after LNT-229 cell implantation, NMRI mice received an 

intra-tumoral injection of Aviscumine (0.7 ng) as well as a first injection (i.p.) of TMZ 

(1.5 mg/kg). The TMZ concentration was further reduced due to the fact that LNT-229 

cells are highly TMZ-sensitive [212] and due to its strong pro-survival effect in the 

previous experiment. The next day (day 11 post tumor cell implantation), some 

treatment groups additionally received a focal tumor irradiation of 3 Gy. The TMZ 

treatment was repeated at day 18 and 25 (Figure 22A). 

Aviscumine led to a trend for prolonged survival compared to the control group 

(Aviscumine 62 d, control 46.5 d, p=0.0803) as already shown in the first experiment 
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but was even more effective than irradiation alone (Aviscumine 62 d, irradiation 57 d, 

p=0.1222). Also the lower TMZ concentration led to a strong survival benefit. 

Nevertheless, even if not significant, Aviscumine, if used in combination with 

irradiation and TMZ, further prolonged the median survival of glioma-bearing mice 

(TMZ + irradiation 84 d, Aviscumine + TMZ + irradiation 90.5 d, p=0.1704, Figure 22 

B/C). 

 
Figure 22: Adjuvant Aviscumine treatment of LNT-229 glioma bearing NMRI mice. A, 

Treatment pattern. B, Kaplan Mayer survival curves. Mice were intratumorally sham-injected 

with PBS or with Aviscumine (Avi, 0.7 ng) at day 10. Focal tumor irradiation (3 Gy) was 

performed 24 h later followed by weekly intraperitoneal TMZ injections (1.5 mg/kg) for three 

weeks. C, Median survival (n=6-8 animals, p-values, Log-rank test). 
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mouse model. Since ISACDOR Qu showed the best immune-stimulatory effects of all 

viscumins tested so far (chapter 3.4), subcutaneous repeating ISCADOR Qu injection 

at increasing concentration analogous to the human clinical treatment pattern were 

used. Some treatment groups received focal tumor irradiation (3 Gy and/or weekly 

TMZ i.p. injections, 2.5 mg/kg). The detailed treatment scheme is depicted in Figure 

23A. Combined radio-chemotherapy showed nearly equal effects on survival as 

ISCADOR Qu monotherapy did. Adjuvant viscumin treatment further and 

significantly prolonged the survival of glioma bearing mice. Kaplan Meyer survival 

curves and median survival times are shown in Figure 23B/C. 

To determine immune-stimulating effects of an ISCADOR Qu treatment, healthy 

VM/Dk mice were treated with ISCADOR Qu the same mode that was used to treat 

glioma mice (Figure 23A). After finishing the treatment, cytokine levels were 

determined in the serum of mice as described in the methods part. 10/40 cytokines that 

can be detected by this approach were found to be upregulated (IL-6, BLC, TIMP1, 

CCL24, CXCL9, CCL25, CXCL5, MIP-1, CX3CL1, and CSF3) and only one 

showed a reduced serum level (Leptin) (Figure 23D). All upregulated cytokines 

provide pro-inflammatory functions indicating that the superior effect of ISCADOR 

Qu might result from an immune-stimulatory effect that works in combination to the 

additional anti-tumoral effects of viscumins. 
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Figure 23: Adjuvant ISCADOR Qu therapy prolonged the survival of SMA-560 glioma 
bearing VM/Dk mice. A, Treatment pattern: Irradiation (red arrow), ISCADOR Qu (blue arrow), 

ISCADOR Qu + TMZ (green arrow). B, Kaplan Mayer survival curves of the sham, ISCADOR 

Qu, TMZ + irradiation and combined treatment groups. C, Median survival of treatment groups 

(n=7-8 animals; p-values, Log-rank test). D, Differential expression of cytokines in the serum of 

VM/Dk mice injected with ISCADOR Qu or PBS (n=4 animals; mean ± SD). 
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4. Discussion 
 

The aim of this thesis encompassed the evaluation of effects of viscumin-based drugs 

as adjuvant therapeutics in the treatment of experimental GBM and to identify the 

putative mechanisms the anti-tumoral effects of these agents rely on. 

 

4.1 Cytotoxicity of viscumins in tumor and non-neoplastic cells 
correlates to the expression of the ML receptor CD75s 

 

The fact that viscumins induce cell death has been shown by several groups and for 

different cancer entities like leukemia, breast cancer, colon cancer, melanoma, and 

hepatocarcinoma. In a previous study our group has shown that viscumin-rich Viscum 

album L extracts (ISCADOR Qu, ISCADOR M) induced cell death in glioma cells, 

whereas a viscumin-poor extract (ISCADOR P) did not [110-116, 118]. To determine 

cancer cell specific cytotoxic effects, several GBM but also non-neoplastic either 

primary or immortalized cell lines as well as human and mouse brain organotypic 

cultures were treated with ISCADOR Qu, ISCADOR P, Aviscumine, or native ML-1. 

Additionally, we performed a dose escalation study in healthy NMRI mice to 

determine the highest well-tolerated dose of ISCADOR Qu and Aviscumine. In the 

panel of GBM cell lines, the sensitivity towards viscumin-induced cell death and 

growth inhibition varied. Two cell lines (LN-308, U87MG) were highly resistant, 

whilst others were more sensitive (LNT-229, MZ-18). Nevertheless, in vitro most 

tumor cell lines showed higher resistance towards viscumin induced cell death than 

non-neoplastic cells (Table 1). These results are in accordance with published data that 

demonstrated that high viscumin concentrations induce cell death also in immune and 

endothelial cells [120, 123, 131, 147]. Nonetheless, the results collected from in vitro 

experiments did not reflect to the data we observed in situ or even in vivo since in 

organotypic mouse brain cultures only very high concentrations of ISCADOR Qu, but 

not Aviscumine, nor native ML-1, induced cell death (Figure 4). Similar results were 

collected from mice that received intracerebral viscumin injections. We hypothesized 
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that different vulnerabilities towards viscumin induced cell death or different 

cytotoxicity levels of ISCADOR Qu, Aviscumine, or native ML-1 might be due to the 

different uptake of these drugs. This is not the case since all drugs were equally taken 

up by glioma cells (Figure 5). We further analysed whether the different vulnerability 

of cancer and non-transformed cells was an effect of expression of the viscumin 

receptor CD75s on target cells. Indeed, we found CD75s to be expressed on all GBM 

cell lines tested so far. The level of CD75s surface expression correlated well with the 

cell lines susceptibility towards viscumin induced cell death (Figure 6). In tissue 

samples we found CD75s to be expressed in 6/7 GBM specimen but not in the 

surrounding non-neoplastic tissue nor in healthy human or mouse brains (Table 2, 

Figure 6). This and the short half-life of ML-1 (< 15 min; [169]) might explain the 

insensitiveness of mouse brain tissue towards the viscumin-mediated cytotoxic effect 

and might also explain that in mice even intracerebral injection of 0.7 ng of viscumin 

did not induce adverse unwanted effects. Finally, our observations fit well to the 

observation that in cancer patients high doses of viscumins, applied either as extracts 

like ISCADOR or as single substances like Aviscumine, have been described to be 

well tolerated [191]. In contrast to brain tissue, CD75s was detected in the spleen, the 

organ where immune cells, known to express CD75s, are highly prominent (Figure 6) 

[198, 213, 214]. The high expression of CD75s in immune cells might also explain the 

observation that these cells are highly vulnerable to viscumin induced cell death (Table 

1 and Figure 18). 

To determine whether the cytotoxic effects of viscumin-based drugs we observed at 

high concentrations were an effect of viscumins or of additional components present in 

the extract (ISCADOR Qu), we added a viscumin-neutralizing antibody and measured 

cell death induction in cell culture (Figure 3). For Aviscumine, cell death induction 

could be completely blocked by addition of the antibody, whilst this was only partially 

the case for ISCADOR Qu. This indicates that cytotoxic effects achieved from a high 

dose treatment of glioma cells with ISCADOR Qu were not only produced by 

viscumins but also by additional compounds present in this extract like viscotoxins that 

are able to disrupt cell membranes and by this mechanism induce cell death [178, 179]. 

The data collected in this study constrain that the use of viscumin containing extracts, 
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or even better, viscotoxin-reduced Viscum album extracts or purified recombinant 

viscumins is safe and well tolerated. 

 

4.2 Viscumins inhibit glioma cell proliferation and alter the cell cycle 
distribution 

 
It has been described in the past that viscumins are able to inhibit the proliferation of 

tumor cells by inducing a cell cycle arrest either in the G1 or the G2-M phase, 

dependent on the cell line [121, 122, 124]. Our group has previously shown that 

ISCADOR Qu inhibits the growth of LNT-229 and SMA-560 glioma cells and of 

subcutaneously growing LNT-229 and SMA-560 tumors [118]. In line with these 

findings, ISCADOR Qu and Aviscumine, even at low concentrations far below IC50 

values, reduced proliferation and induced a cell cycle arrest (Figure 7, Figure 9, and 

Figure 10). Unexpectedly, native ML-1 did not show these effects at any tested 

concentration. This might be explained by our findings that in our portfolio of 

viscumin-based drugs, native ML-1 was the agent with lowest toxicity but also lowest 

efficacy. One could speculate that a further increase of the concentration of native ML-

1 might also inhibit proliferation (Table 1). On the other hand, it might be possible that 

during the purification process the protein loses parts of its activity.  

Alterations in cell growth and cell cycle distribution were accompanied by changes in 

the expression of cell cycle regulators. Cyclin D1 was upregulated by viscumins, 

whilst Cyclin D2 and D3 were reduced (Figure 11). Furthermore, the tumor suppressor 

PPP2CA was upregulated in viscumin treated cells (Figure 11). PPP2CA negatively 

regulates cell cycle progression by dephosphorylation of several cell cycle regulators 

[215, 216]. Proliferation is also regulated by epigenetic modifications and it has 

previously been published that HDACs are able to modulate the function of cell cycle 

regulators and of cellular skeleton proteins, by this attenuating tumor cell growth. 

Inhibition of HDACs can induce a G2-M arrest and finally mitotic catastrophe [217-

219]. We found HDAC6 to be downregulated in viscumin treated LNT-229 glioma 

cells. This viscumin mediated downregulation of HDAC6 might explain the G2-M 

arrest (Figure 9). The kinase ATM was also downregulated after viscumin treatment. 
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ATM is involved in the cell cycle regulation if cells harbour double strand breaks 

[220]. Interestingly, ATM, PPP2CA, and HDAC6 enhance the vulnerability of tumor 

cells towards chemotherapy and irradiation in glioma and other tumors [221-225]. This 

might be of importance if viscumin therapy will be combined with glioma therapy. 

This item will be discussed in detail in chapter 4.4. 

Interestingly, the above mentioned genes were also regulated in glioma cells treated 

with native ML-1 although native ML-1 did not induce a cell cycle arrest in LNT-229 

cells (Figure 9 and Figure 11). Therefore, cell cycle inhibitory effects of viscumins are 

obscure and further investigations are necessary to explain in detail how viscumins 

attenuate tumor cell proliferation. One could also speculate that the accumulation of 

LNT-229 cells in G2-M after viscumin treatment might be unrelated to a cell cycle 

arrest but might be caused by a disturbance of mitosis. Actually, it has been shown that 

some herbal compounds induce an arrest in G2-M. Curcumin, a diarylheptanoid, 

disrupts mitotic spindle structures thereby inducing a G2-M arrest [226]. Besides, a 

polyphenol molecule isolated from licorice roots leads to a stop in G2-M by 

microtubule disruption [227]. In total, viscumins attenuate glioma cell proliferation, 

putatively by the retention of glioma cells in either G1 or G2-M. Nevertheless, the 

underlying mechanisms how viscumins influence cell cycle progression of glioma cells 

remain elusive. 

 

4.3 Viscumins reduce the motility of GBM cells 
 

Our group has previously shown that ISCADOR Qu mitigates glioma cell motility 

[118]. With a few exceptions, ISCADOR Qu, Aviscumine, and native ML-1 modify 

the expression of migration and invasion associated genes in glioma cells. Pro-

migratory genes like the EPH receptor B2 (EPHB2), metastasis-associated protein 1 

(MTA1), TGF-1, TGF-2, and TGFBR2 were downregulated in viscumin treated 

LNT-229 cells (Figure 12). In glioma, TGF- is an important pro-tumorigenic 

cytokine and, apart from its immunosuppressive effects, it induces glioma invasion and 

migration by enhancing the expression of MMPs [30, 201]. TGF- as wells as 
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SMAD2, a central TGF- signal transducer protein whose activity is regulated by 

phosphorylation, were downregulated after viscumin treatment (Figure 13) [228]. 

Whether TGF- target genes like EPHB2, MTA1, or MMP-2 are directly regulated by 

viscumins or whether their downregulation is an effect of lower TGF-expression or 

lesser activation of the TGF-β signalling pathway needs further investigation. EPHB2 

overexpression reduces cell adhesion and increases migration of glioma cells, while 

EPHB2 silencing reduces migration and is linked to Ras, a proto-oncogene that we 

found downregulated by native ML-1 and ISCADOR Qu (Figure 12A) [229, 230]. 

MTA1 enhances the invasiveness of pancreas carcinoma cells and is amplified in 

invasive cells from recurrent GBM [231, 232].  

Downregulation of motility associated genes was more prominent in ISCADOR Qu 

treated cells compared to Aviscumine or native ML-1. This might be due to several 

other components present in Viscum album extracts that are absent in purified or 

recombinant ML and that might potentiate the effects of ML. Nevertheless, even if 

minor components like flavonoids or triterpenes can modulate mRNA expression (for 

review see [233, 234]), viscumins seemed to be the main inducers of altered gene 

expression in LNT-229 cells since addition of a viscumin specific antibody that 

neutralized their function abrogates the viscumin mediated differential expression of 

motility associated factors (Figure 13 and Figure 14). In the category of genes that 

were exclusively regulated by ISCADOR Qu several pro-migratory factors were 

downregulated: Lowering caspase-8 (CASP8) expression reduces migration of glioma 

cells [235]. CEACAM1, an adhesion molecule, promotes migration and invasion in 

cancer [236, 237]. The netrin-1 receptor DCC enhances cell migration by activating 

CDC42, Rac1, and by filopodia formation [238]. MMP-2, MMP-14, and TIMP-2 are 

responsible for the degradation of the ECM during glioma cell invasion and migration 

[239]. The nuclear proto-oncogene SET1 is associated with the invasion of breast 

cancer and knocking down SET1 blocks migration and invasion of breast cancer cells 

[240]. The KISS1 receptor (KISS1R) function is still under discussion in the context of 

cancer, but it was recently published that KISS1R stimulates invadopodia formation 

and invasion of cancer cells [241]. The function of the retinoblastoma like protein 

(RBL1) in regard to glioma cell motility is controversially discussed as it is 
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overexpressed in GBM and colon cancer. Nonetheless, its expression decreases during 

invasion [242]. 

In the cohort of mRNAs that were upregulated upon viscumin treatment 4 genes 

provide anti-migratory functions (BRMS1, FGF2, NME, and SERPINB5), 9 have been 

published to be pro-migratory (FAT1, IL-18, KRAS, LYPD3, MMP1, MMP10, 

PTGS2, S1004A, and SERPIN1), whereas 4 genes could be either pro- or anti-

migratory depending on the circumstances of their expression (HGF, IL1B, MET, and 

MYC). The breast cancer metastasis suppressor 1 (BRMS1) inhibits glioma 

progression via modulating invasion, migration, and adhesion [243]. Fibroblast growth 

factor 2 (FGF2) is upregulated in the less invasive pro-neural GBM subtype in 

comparison to the more invasive mesenchymal subtype. Patients with low FGF2-

dependent PDGF receptor A (PDGFRA) expression have a better prognosis compared 

to patients with high PDGFRA levels [244, 245]. The NME/NM23 nucleoside 

diphosphate kinase 1 (NME) is suggested to play a role in glioma invasion and 

migration [246, 247]. Serpin family B member 5 (SERPINB5), which is often silence 

in GBM due to promoter methylation, effectively suppresses migration and invasion of 

cancer cells [248, 249]. Even if we found some pro-migratory genes being upregulated 

by viscumins there seemed to be no functional consequence since ISCADOR Qu, 

Aviscumine, and native ML-1 significantly reduced GBM motility (Figure 15). Not all 

genes we found by gene expression array analysis were validated by RT-qPCR, so 

there is still the possibility that differentially expressed factors have to be graded as 

false positives. This might explain some of the discrepancies. Nevertheless, patients 

carrying invasively growing tumors might benefit from adjuvant viscumins therapy. 

 

4.4 Viscumins support anti-tumoral immune effects 
 

In the past years several in vivo and in vitro studies have shown that viscumins boost 

the immune system and promote anti-tumoral activity [168, 172, 189, 250-253]. In our 

lab it was shown that ISCADOR Qu enhances NK cell mediated killing of glioma cells 

[118]. Here we firstly extended these investigations related to immune-supporting 
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effects of Aviscumine and native ML-1. Secondly, we measured the effect of these 

three viscumin-based drugs in the context of anti-glioma T cell activity. 

Anti-glioma NK cell activity was not only supported by the treatment of glioma cells 

with ISCADOR Qu but also by using Aviscumine (Figure 16A, B). Native M-1 war 

not tested. The enhanced killing we observed seemed not to be mediated by a specific 

surface protein of NK cells but is probably a more general effect that needs further 

investigation. NK cells are activated by binding of the activating NK receptors like 

NKG2D to their corresponding ligands, which are up-regulated on the cell surface of 

dangerous cells but often downregulated on tumor cells. Additionally, NK cells 

transmit their cytotoxicity by a set of activating natural cytotoxicity receptors like 

NKp30, NKp44, and NKp46, which recognize their ligands on tumor cells. Inhibition 

of each of these interacting proteins reduced the killing of glioma cells but did not 

significantly influenced supporting effects of viscumins (Figure 16 C). Only the 

inhibition of all receptor-ligand interactions between NK and glioma cells abrogated 

the NK cell mediated killing of glioma cells in both, viscumin treated and control 

glioma cells, indicating that the viscumin-mediated enhancement of the NK cell 

mediated killing of glioma cells was not dependent on a single receptor-ligand 

interaction. The stimulating viscumin effect seemed to be a more general feature. The 

mechanism how viscumins stimulate NK cells to kill their glioma targets still remains 

elusive. One could hypothesize that viscumins might stick on target cells and act like a 

glue to strengthen the interaction between NK and cancer cells. Nonetheless, we did 

not block the interaction of every known, rare NK cell surface interacting protein. 

Therefore, we could not exclude that one of these proteins or its interaction partners on 

glioma cells might be the target of viscumins. 

Besides stimulation of the NK cell mediated killing of glioma cell, viscumins also 

supported the T cell mediated killing of glioma cells and enhanced the generation of 

activated, tumor- specific T cells. Nevertheless, these activating effects of viscumins 

varied between the preparations we used but also in the cohort of donors the T cells 

were isolated from. ISCADOR Qu was the most competent booster among the three 

tested drugs. This superior effect might rest on additional compounds like triterpenes, 

flavonoids, oligo- and polysaccharides, or triterpenes that are present in the extract but 
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not in Aviscumine or native ML-1. Most of these additional compounds have been 

described to influence immune cell functions [254-256].  

Activation of T cells, and especially the expansion of activated and target specific T 

cells is dependent on the presence of several immuno-stimulating or pro-inflammatory 

cyto- and chemokines. We therefore tested whether viscumins modulate the expression 

of cytokines in glioma cells as well as in mice (see also chapter 4.6.). Viscumin 

treatment of glioma cells led to an increased expression of immune-modulating and 

pro-inflammatory genes like IL-1A, IL-1, IL-6, IL-8, IL-12A, IL-15, IKBKB, 

BCL2L1, CCL-2, CSF-1, -2, -3, CD86, PTGS2, TNF, CD62/SELE, C3, and VEGFA 

(Figure 12, 19). IL-1 is an important mediator of the immune response and induces 

the expression of IL-6, IL-8, and PTGS2/COX2, the latter being the most important 

prostanoid source in inflammatory processes [257-260]. The release of the pro-

inflammatory cytokine IL-6 is induced by TNF, a cytokine that is known to enhance 

macrophage recruitment to brain tumors and thereby reduces tumor growth [261]. 

Several studies have already shown enhanced TNF levels in the blood of cancer 

patients upon viscumin therapy, and even elevated IL-6 levels have been found upon 

viscumin treatment [126-128, 131]. The anti-apoptotic factor BCL2L1 is essential for 

the immune system as it promotes the survival of T cells, whereas IL-12A activates the 

innate and adaptive immune system and pushes the immune response against tumor 

cells, also in glioma [262-264]. CD62/SELE is mainly expressed by endothelial cells. 

It is an adhesion molecule that recruits leukocytes to the site of inflammation [265]. 

Additionally, we found immune-suppressive IL-10 to be upregulated by viscumins. 

Viscumin mediated induction of IL-10 has already been described in PBMCs, but 

viscumin mediated downregulation of IL-10 was also reported [126, 131]. The anti-

inflammatory, cytoprotective, and antioxidant factor HMOX1 we found to be 

downregulated in viscumin-treated glioma cells promotes the termination of 

inflammation and modulates glioma cell proliferation [266, 267]. HMOX1 expression 

is linked to a poor prognosis of GBM patients [268]. TGF- is a major 

immunosuppressive cytokine in glioma [269]. Both TGF-β mRNA as well as protein 

was reduced in viscumin treated glioma cells (Figures 12, 13). We suggest that the 

enhancement of the T cell mediated killing of glioma cells relies on multiple 
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processes: (i) Induction of the expression of pro-inflammatory and immune-

stimulating cytokines, (ii) reduction of the expression of immune-suppressive factors, 

(iii) enhancement of the tumor-specific T cell activity, and (iv) elevation of the 

production and expansion of tumor specific T cells (Figure 17). In this context, one 

could suggest that viscumin treatment of glioma cells that are used to prime naïve T 

cells induced cell death in glioma cells and by this led to the presentation of neo-

antigens by the dying tumor cells. These neo-antigens might be taken up by antigen 

presenting cells that are present in the co-cultures during the T cell priming period and 

that will help to expand the population of anti-tumor specific T cells. Additionally, 

damage-associated molecular patterns (DAMPs) might be released by viscumin treated 

glioma cells. DAMPs boost the immune response by binding to DAMP receptors, thus 

enhancing the secretion of pro-inflammatory cytokines and attracting immune cells to 

the tumor [270]. Nevertheless, we did not examine this issue, therefore further 

investigation will be necessary to clarify the detailed mechanism how viscumins 

support an anti-cancer T cell response. 

Despite the viscumin mediated immune-stimulating effects we observe in glioma cells 

upon viscumin treatment, a direct treatment of PBMC and T cells with viscumins 

induced death in these cells, reduced the expression of T cell activity marker proteins, 

and decreased the killing of glioma cells by T cells (Figure 18, Table 1). Besides us, 

other groups also demonstrated viscumin mediated toxicity in human immune cells 

[149, 271, 272]. The vulnerability of immune cells towards viscumins could be 

explained by the elevated expression of CD75s on these cells [214, 273, 274]. The 

viscumin concentration we used to treat PBMCs or T cells was rather high and is 

above the concentration that is achieved in the serum of cancer patients [275]. Other 

groups have shown a viscumin mediated increase of HLA-DQ and IL-2 receptor 

expression in human lymphocytes both in vitro and in vivo. Additionally, elevated 

levels of the complement factor C3 (being upregulated in glioma cells upon viscumin 

treatment, Figure 19A) as well as elevated numbers of activated innate and adaptive 

immune cells were found in the blood of cancer patients during viscumin therapy [146, 

276-278]. 
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4.5 Viscumins enhance cytostatic effects if used as adjuvant 
therapeutics  

 

A natural compound that is well tolerated by cancer patients and that can be used as 

adjuvants to optimize the impact of a standard therapy might provide benefit for cancer 

patients and also for GBM patients. Viscumins are mainly used in combination with 

standard cancer treatment in the clinic. Best results in treating glioma should be 

achieved if viscumins are applied in combination with TMZ and/or tumor irradiation. 

In vitro we identified at least additive effects of viscumins in the reduction of the 

clonal survival of glioma cells. In viscumin sensitive human and murine glioma cells 

(LNT-229, SMA-560) combined viscumin-radiochemotherapy accomplished the level 

of a superadditive/synergistic effect for all three tested viscumin-based drugs (Figure 

20), which might be explained by viscumin mediated changes in the expression of cell 

cycle regulators like PPP2CA, ATM, or HDAC6 (Figure 11), finally leading to a cell 

cycle arrest of glioma cells in G1 or G2-M. ATM, which is downregulated in 

ISCADOR Qu and Aviscumine treated LNT-229 cells, has been described to be 

upregulated in glioma tissue. Inhibition of ATM reduces glioma growth, and 

additionally glioma cells were sensitized for irradiation and TMZ-based chemotherapy 

[221, 222, 279-281]. PPP2CA showed elevated expression in viscumin treated LNT-

229 cells and is able to interact with ATM [225]. Therefore, besides its function as a 

phosphatase of cell cycle regulating proteins, PPP2CA might modulate proliferation 

also via ATM. HDAC6 promotes cell proliferation and confers resistance to 

temozolomide in glioblastoma [223, 224]. Therefore, the viscumin mediated reduction 

of HDAC6 expression in glioma cells might also be responsible for the synergistic 

effect of an adjuvant viscumin therapy, at least in vitro. The G1/S-specific cyclin D1 

(CCND1), being upregulated during viscumin treatment, is a regulatory component of 

the cyclin D1-CDK4 complex and controls the cell cycle during the G1/S transition. 

Cyclin D1 overexpression perturbs DNA replication and induces DNA double-strand 

breaks in irradiation resistant cells [282]. In combination with ATM, viscumin 

mediated disturbed expression of CCND1 might violate the DSB repair machinery 

thereby enhancing the effects of irradiation in glioma cells. Our data should be kept in 
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mind in the clinic since TMZ application and irradiation doses might need to be 

adapted if patients receive an adjuvant viscumin therapy. 

 

4.6 Adjuvant viscumin therapy prolongs the survival of glioma-
bearing mice 

 

To unravel both, immuno-supporting as well as cancer-suppressive impacts like 

cytotoxic or cytostatic effects or even reduction of glioma cell invasion of an adjuvant 

viscumin therapy, two different mouse glioma models were used. Using a xenograft 

model (orthotopically growing LNT-229 tumors in NMRI nude mice), we analyzed the 

effect of a single, high dose intratumoral viscumin injection in combination with local 

tumor irradiation and/or TMZ-based chemotherapy. Intratumoral viscumin injections 

were used in the first approaches since we observed in our in vitro experiments that a 

direct treatment of glioma cells with viscumins provided the anti-cancer effects 

mentioned above. Besides, this route of administration is lately used to treat solid 

tumors [162, 163]. As demonstrated in Figure 21 A, the injection of ISCADOR Qu per 

se, or in combination with TMZ, was not successful and even shortened the survival of 

tumor mice indicating that intra-tumoral high dose ISCADOR Qu injections were 

highly irksome and did not provide benefit. In contrast, Aviscumine monotherapy 

provided some benefit but was not better than TMZ (Figure 21 B).  This might be due 

to the fact that LNT-229 cells that were used to develop tumors in the mice are highly 

TMZ sensitive. Therefore, TMZ alone provided a superior therapeutic impact. Post 

mortem histological analyses did not show significant differences in tumor size, 

proliferation, invasion, or apoptosis in the different treatment groups. Nonetheless, 

these post mortem analyses only reflect the situation just prior to tumor associated 

death since the mice were sacrificed when developing neurological symptoms. Effects 

were therefore measured in those tumor cells that survived all therapy approaches and 

these data might not be representative to demonstrate effects of a viscumin-based 

cancer treatment. In a second approach, based on the unwanted adverse effects of 

intratumoral ISADOR Qu injections we observed and based on our in vitro data where 

we demonstrated synergy if Aviscumine was adjuvantly used in combination with 
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irradiation and TMZ, we started a therapy of LNT-229 glioma bearing NMRI nude 

mice using an intratumoral injection of Aviscumine in combination with local tumor 

irradiation and intraperitoneal TMZ injections. Again, we observed a therapeutic 

impact if animals were solely treated with Aviscumine (Figure 22), but the therapeutic 

impact of Aviscumine did not reach the effect of tumor irradiation in combination with 

TMZ. Nevertheless, if Aviscumine was used in combination with irradiation and TMZ, 

this treatment, even being not significant, prolonged the median survival of glioma 

mice for further six days.  

To determine immune-supporting anti-cancer effects of viscumins, we used a 

syngeneic mouse glioma model (SMA-560 tumors in VM/Dk mouse brains) and did 

serial subcutaneous injections with increasing concentrations of ISCADOR Qu since 

this route of application is routinely used in tumor patients. Due to the short half-life of 

viscumins and due to the knowledge that viscumins hardly pass the blood-brain 

barrier, mainly immune-supporting effects will be determined in this mouse model. 

We did not use Aviscumine in this approach since in our in vitro analyses it provided 

lesser immune-stimulating effects than ISCADOR Qu. In contrast to LNT-229 cells, 

SMA-560 cells are mainly resistant to TMZ [283] so the therapeutic impact of TMZ 

was small in the group of mice receiving irradiation and TMZ. Interestingly, 

ISCADOR Qu monotherapy provided a similar period of prolonged survival as glioma 

standard therapy did. If ISCADOR Qu was applied adjuvantly in parallel to TMZ and 

irradiation, a significant further prolongation of survival was observed (Figure 23). We 

postulate that the therapeutic impact of an adjuvant ISCADOR Qu treatment was 

mainly based on anti-tumor immune effects. This was supported by the observation 

that mainly pro-inflammatory cytokines like BLC, CCL24, CXCL9, CCL25, 

CCL3/MIP-1, CX3CL1, and CSF3 were detected in the serum of VM/Dk mice 

treated with ISCADOR Qu (Figure 23 D). Besides, TIMP1 and MMPs, factors mainly 

known to push tumor cell invasion, were upregulated upon ISCADOR Qu injections. 

Nevertheless, enhanced levels of TIMPs and MMPs are in accordance with the 

immune-supporting impact of viscumins since these proteins have been described to be 

involved in a general activation of the immune system. MMPs provide both, pro-

inflammatory and anti-inflammatory features. MMPs cleave pro-IL-1 into the active 
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form but also degrade IL-1 [284, 285]. TIMP-1 can bind to CD63 and like a cytokine 

promotes the growth and survival of B cells and granulocytes [286]. 

To sum up, the results of the in vivo experiments indicate that s.c. viscumin therapy 

with increasing doses as it is currently used for many kinds of tumors as well as 

intratumoral viscumin application is working positively together with glioma standard 

therapy in the tested murine models and its application might be beneficial for glioma 

patients. 
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5. Conclusion 
 

In the present study we demonstrate that viscumins provide therapeutic impact in the 

treatment of GBM, especially if used as adjuvant therapeutics. Viscumins provide both 

cytotoxic and cytostatic functions, they mitigate glioma cell motility, lead to the 

downregulation of factors involved in the TGF-ß signalling pathway, and boost NK 

cell as well as T cell mediated glioma cell killing. Nevertheless, different viscumin-

based drugs possess diverse advantages and disadvantages. While Viscum album 

extracts like ISCADOR Qu provide superior anti-cancer and immune-supporting 

effects, maybe due to several additional compounds present in the extracts that 

enhance the function of viscumins, they also provide enhanced toxicity in non-

neoplastic cells as well as in the brain. For this multi-compound Viscum album extracts 

should not be used to treat brain tumors by intratumoral injections. On the other hand, 

a profound prolongation of survival was observed if ISCADOR Qu was 

subcutaneously administered in parallel to glioma standard therapy. Aviscumine also 

showed anti-cancer therapeutic effects, however its grade of action was lower than that 

of ISCADOR Qu. Nonetheless, intracerebral injections of Aviscumine seemed to be 

save, at least in mice and even if not significant, adjuvant Aviscumine therapy further 

prolonged the survival of glioma mice. 

In total, our data demonstrate that viscumins are feasible adjuvant therapeutics, at least 

to treat experimental glioma. Nevertheless, the route of administration as well as the 

concentration and preparation of viscumin-based drugs will be of importance in the 

treatment of glioma and should be kept in mind. Only future high-quality clinical trials 

can provide final evidence whether an adjuvant viscumin therapy will be beneficial in 

the treatment of glioma patients. 
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