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Abstract

The Review on Antimicrobial Resistance predicts that in thirty years infections with
antibiotic-resistant microorganisms will become one of the leading causes of death.
The discovery of new antibiotics has so far been too slow to ensure continuous
use of antibiotics in the face of growing resistance. Therefore, efforts to curb
resistance emergence gain in importance. These efforts comprise two complementary
strategies. The first focuses on the mechanisms of resistance emergence, in the hope
that it would enable development of pharmacological agents constraining resistance
emergence. The second aims at improving antibiotic use practices, based on studies
of the impact of antibiotics on resistance emergence within patient populations.
Antibiotic resistance emerges in bacterial cells, negatively influences the human gut
microbiome, and transfers between people. Hence, antibiotic resistance has impacts
across several levels of biological organization.

This thesis describes four projects, which concerned various aspects of antibiotics
resistance. The first two projects deal with basic resistance emergence mechanisms,
on the level of bacterial strains and bacterial consortia, whereas the other two deal
with finding better practices for antibiotic use on a population level.

During the first project, I analyzed changes in genomes of MRSA strains
isolated from several patients throughout antibiotic therapies and developing MRSA
infections. I observed changes in number and types of virulence factors responsible for
interacting with the human body, which are attributed to mobile genetic elements.
In the second project, I showed that, prompted by antibiotic therapy, within the
human gut microbiome resistance transfers from bacterial genomes onto plasmids,
prophages, and free phages. Hence, resistance emergence depends not only on the
antibiotic therapy but also on the state of the gut microbiome, which again results
from the patients’ overall health and previous antibiotic therapies.

The third project, SATURN, employed machine learning methods for a large
set of data regarding patients’ demographics, comorbidities, antibiotic therapies,
surgeries, and colonization with multi-drug resistant bacteria. The final classifiers
were made available on the AskSaturn website where the doctors can compare
antibiotic therapies based on the probability of colonization with multi-drug resistant
bacteria. The fourth project, Tübiom, focused on the antibiotic-influenced gut
microbiomes of the healthy population.

The first two projects rely on genome and metagenome sequencing data. For
them, I designed specialized bioinformatics analysis pipelines. The latter two projects
use mixed data, which were analyzed with machine learning algorithms. These
projects also involved web development and data visualization. Although each of
the projects requires different data and methods, each of them provides a crucial
part in a pipeline aiming at utilizing gut microbiome information in medical practice
to constrain resistance emergence.
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Chapter 1

Introduction

The Review on Antimicrobial Resistance predicts that in 2050 ten million
people worldwide will lose their life due to infections with antibiotic-resistant
microorganisms (AMR) [1]. It is an extreme increase in comparison to ∼ 700, 000
deaths caused by infections with AMR in 2014. This increase is driven by the
overuse of antibiotics in medicine and agriculture causing emergence of antibiotic
resistance [2]. Already in 2014 the WHO classified antibiotics resistance as a severe
threat to public health [3], as resistance causes billions of euros of healthcare costs
and millions of excessive days of hospital stay for patients in the US and EU alone [4].

The fight against antibiotics resistance is carried out on two fronts: the discovery
of novel antibiotics and constraining resistance emergence. New antibiotic discovery
is so slow and laborious, that out of the eighteen biggest pharmaceutical companies,
only three keep working in this field [5]. Even when new compounds are introduced,
resistance soon curbs their therapeutic potential. Consequently, we are in a desperate
need to advance in the latter front. Combating the emergence of resistance would
ensure continuous safe use of known antibiotics and the future use of those newly
developed.

On the one hand, resistance emergence can be restrained by introducing better
antibiotic use practices and education of both doctors and patients. Those actions are
termed antibiotic-stewardship. Since therapeutic and resistance-emergence effects
depend on the patients’ characteristics, data-driven solutions to suggest therapies
minimizing the probability of antibiotic resistance emergence are needed. On the
other hand, future pharmacological solutions could potentially decrease resistance.
Still, details of mechanisms of resistance emergence remain unknown.

Concentrations of therapeutic antibiotics in the human body are orders
of magnitude higher than those occurring naturally in the environment [6].
Therefore, they exert high ecological pressure on the gut microbiomes resulting
in a series of undesirable side effects. First, they cause perturbations of the
taxonomic composition of the human gut microbiome and its internal metabolic
processes. Second, they decrease colonization resistance, freeing space for potential
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pathogens [7, 8], and cause a rapid increase in both the overall diversity of antibiotic
resistance genes, termed resistome and the frequency of horizontal gene transfer
(HGT).

Strengthening of the resistome worsens the prognosis for future antibiotic
therapies and facilitates the accumulation of antibiotic resistance genes (ARG)
in bacterial cells, leading to the emergence of multi-drug resistant organisms
(MDR), which could include dangerous pathogens. Since the human organism is not
a closed system, MDR transfer to other people, causing resistance in the population.
Consequently, the phenomenon of antibiotic resistance affects all levels of biological
organization.

Projects presented in this thesis furthered both approaches of the fight against
resistance emergence. The first two projects focused on resistance emergence
mechanisms, the other two projects on developing better practices of antibiotic
usage. The projects concerned multiple levels of biological organization, as presented
in Fig. 1.1.

Figure 1.1: Projects discussed in the thesis ordered by levels of biological organization.
The top row denotes the main projects concerning antibiotic resistance emergence.
Bottom row enumerates other projects unrelated to antibiotic resistance described in
Chapter 7.

On the lowest level, an antibiotic interacts with its molecular target in a bacterial
cell. The target could be modified so that it disables that interaction. Other
cell-level resistance mechanisms, such as chemical modification and efflux prevent an
antibiotic from meeting its target. Resistant genes are encoded on bacterial genomes
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or plasmids. Their quality and quantity determine the survival or death of cells.
Changes in the bacterial genomes during antibiotic therapy are the focus of the
project described in Chapter 3. I investigated the resistance and virulence genes
in the genomes of the hospital-acquired methicillin-resistant Staphylococcus aureus
(MRSA) strains isolated from patients undergoing antibiotic therapies. The strains
were isolated from patient samples and sequenced. The project relied on the genome
assembly and annotation.

The next organization level concerns bacterial consortia, such as the gut
microbiome, which plays a central role in the emergence of resistance. Resistant
genes transfer between bacterial cells through horizontal gene transfer and as a result
are retained in the patient’s gut. That is the focus of the second project described in
Chapter 4. I analyzed how the resistance transfers between the bacterial genomes,
and mobile genetic elements, during antibiotic therapy and 30 days of recovery.
I analyzed the whole-genome-sequencing and phageome-only sequencing of the gut
microbiome.

The two next projects concern the population level. The SATURN project
described in Chapter 5 analyzed data of 10,000 hospitalized patients. I attempted
to determine a relationship between patient’s characteristics and the administered
treatments to the probability of colonization with the multi-drug resistant bacteria.
The second project, Tübiom aimed at investigating the healthy population. I wanted
to check if there are lifestyle choices promoting microbiomes that were more resistant
towards the antibiotic therapy (Chapter 6).

Although not all of the projects shared the same biological question, they were
often connected by methodological aspects. Each project required the development
of a novel pipeline. However, sometimes it was possible to cross-apply some of the
methods, e.g., the k-mer processing required in the Phase Turtle! project was also
applied to analyze the phageome and microbiome datasets in Chapter 4. Therefore,
in the last Chapter 7 the two side projects, dealing with other biological questions
than antibiotic-resistance are shortly described.
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Chapter 2

Background

2.1 Mechanisms of antibiotics action and resistance

The term antibiotic refers to natural or synthetic compounds that in low
concentrations restrict the growth of bacterial cells, or cause their death [9]. Since
their discovery, antibiotics have become an indispensable tool in everyday medical
practice, employed to fight pathogenic bacteria infecting the human body. The
antibiotic era started with a series of lucky coincidences in the lab of Alexander
Flemming in 1928. It took another twelve years before Penicillin was commercially
available, and before antibiotics could transform medical practice. At that time,
it seemed that bacterial infections were contained forever [10]. However, for the
majority of antibiotics, resistance was observed shortly after their introduction into
commercial usage (Fig. 2.1).

Figure 2.1: Timeline of antibiotic introduction to commercial usage and discovery of
resistance [3, 11].
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6 CHAPTER 2. BACKGROUND

Nature has invented many diverse antimicrobial compounds, that scientists have
extended and modified. They are classified according to their chemical makeup,
mechanism of action, effect on the bacterial cell, spectrum of activity and medical
application. Bacteria fall into two broad groups according to the structure of the cell
envelope [12]. Gram-positive bacteria have a thick peptidoglycan cell wall (retaining
the crystal violet stain), while Gram-negative bacteria have a thin wall with an outer
membrane. The two main groups of bacteria also determine the first classification of
antibiotics: broad-spectrum antibiotics which are active against both Gram-positive
and -negative bacteria, and narrow spectrum which work only against a specific
group of bacteria.

The second classification is determined by an effect the antibiotic has on the
bacterial cell. Antibiotic is classified as bactericidal when it causes the cell death
or bacteriostatic if it inhibits essential processes causing bacteria to stop growing
and dividing [13]. When prescribing bacteriostatic antibiotic doctors rely on the
patient’s immune system to destroy the pathogenic cells. Researchers criticize this
classification as too simplistic since none of the antibiotics can be fully either
bacteriostatic or bactericidal. In the end, the antibiotic effect depends not only
on the molecular mechanism of action but also on the bacterial species. Moreover,
antibiotics are classified based on in vitro studies, which might not correspond with
their in vivo activity. Therefore, rather than just belonging to one of the classes,
each antibiotic has potential to be both bactericidal and bacteriostatic depending
on the microbial and non-microbial conditions [14].

Lastly, antibiotics are grouped based on their molecular targets and action
mechanisms. This classification is the most important for this thesis as an antibiotic
resistance mechanism depends on the mechanism of action. Fig. 2.2 presents
major chemical groups of antibiotics separated by the general mechanism of action
discussed in the following subsections.

Figure 2.2: Classification of antibiotics according to the chemical groups, effects on
the bacterial cell and action mechanisms.
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Transcription inhibitors

Transcription and translation are the two steps of gene expression, both of which
are vital and conserved processes in bacteria, and consequently, are excellent targets
for antibiotics [15]. Transcription is a process of synthesizing an RNA molecule
complementary to one of the DNA strands, performed by a complex of RNA
polymerase (RNAP) consisting of α2ββ′ω protein subunits [16, 17]. The RNA
polymerase moves along a DNA molecule, unwinds the helix and catalyzes the
formation of the bonds between nucleotides to form a new RNA molecule.

The transcripts can be mRNAs, substrates for translation, but also other
functional RNAs. The antibiotics that target transcription bind to the β subunit
and block either elongation of the RNA chain, like Rifamycins or interaction of
RNAP with a promoter on the DNA molecule [18, 19].

Translation inhibitors

Translation involves a single mRNA molecule, multiple tRNAs carrying amino acids,
and protein factors facilitating initiation (IF1, IF2, IF3), elongation (EF-G and
EF-Tu), and release (RF1, RF2, RF3), and, most importantly, a ribosome. It is
a complex of the large (50S) and small (30S) subunits, which consist of a rRNA-based
scaffold and several accompanying proteins. The large subunit is built of two rRNA
molecules (5S and 23S rRNAs) and 31 proteins, and the small subunit has one rRNA
molecule (16S rRNA) and 21 proteins. RNA constitutes a majority of the ribosome’s
weight and is the primary target for a large group of chemically diverse antibiotics.

Translation consists of three steps: initiation, elongation, and termination [20].
In the initiation step, the ribosome assembles on the start codon on the mRNA
molecule. First, the IF3 binds to the 30S ribosomal subunit. Next, the 3’ end of the
16S rRNA molecule pairs with the Shine-Dalgarno sequence upstream from the start
codon, and the 30S/mRNA complex is formed. Finally, the binding of the complex
to the 50S ribosomal subunit facilitated by the IF2 [21].

A single elongation cycle, adds one amino acid to the new peptide. It takes
three steps [22]. The first step is decoding, when aminoacyl-tRNA is placed on
the ribosomal A aminoacyl site (A-site), with the help of the EF-Tu factor. Next,
the peptidyl-transferase center (PTC) catalyzes the formation of the peptide bond
between an amino acid on the tRNA in the A-site and the last amino acid of the new
polypeptide chain attached to the tRNA in the P-site. The second step is transferring
the new polypeptide from the tRNA bound in the peptidyl site (P-site) onto the
tRNA in the A-site. Eventually, in the last step, the EF-G facilitates translocation
of the tRNAs between A and P, and P and E sites, leaving the A-site empty so
another cycle can begin. Elongation continues until a stop codon is encountered,
it is terminated with the help of the two protein release factors 1 and 2 (RF1 and
RF2). They recognize the stop codons and cleave the polypeptide from the tRNA
in the P site.
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Antibiotics targeting translation had been studied for decades, but their
molecular action mechanisms could be finally described in detail using
crystallography. Almost all translation inhibitors interact with rRNA and bind to,
or near one of the significant sites: A-site on the 16S rRNA, the catalytic center of
the ribosome, the PTC located on the 23S rRNA and peptide exit tunnel on the
23S rRNA [23, 24]. Binding sites of the several antibiotic groups overlap with each
other [20], so they share action and resistance mechanisms.

Aminoglycosides and typical tetracyclines constitute large classes of
broad-spectrum antibiotics that target the A-site [25]. Aminoglycosides are
bacteriostatic against Gram-negative and bacteriocidal against Gram-positives.
Typical tetracyclines are primarily bacteriostatic. They include several naturally
occurring compounds, like chlortetracycline or oxytetracycline, and a large group
or semisynthetic compounds. Typical tetracyclines are used in therapy and as
a growth promoter in agriculture [26].

Streptogramins consist of two molecules: streptogramin A and B, each having
a different binding site, but working together. First, streptogramin A binds in
the proximity of the P-site on the large ribosomal subunit, what introduces
a conformational change enabling streptogramin B to block the exit tunnel [27].
Streptogramins were used in agriculture all over the world, but since 1999 their use
has been banned in Europe [28]. Streptogramins used in therapy, like pristinamycin,
fight infections with methicillin-resistant Staphylococcus Aureus (MRSA). Other
antibiotics targeting the ribosomal exit tunnel include lincosamides, and macrolides,
such as erythromycin and azithromycin. Some lincosamides, like clindamycin, have
two binding sites, one in the PTC and around the exit tunnel.

Linezolid is an important antibiotic effective against bacteria resistant to other
antibiotics, e.g., vancomycin- or methicillin-resistant Staphylococcus aureus [29]. It
targets the PTC site [30, 31], but is active only against Gram-positive bacteria since
the Gram-negatives are resistant due to the efflux pump [32].

The most straightforward resistance mechanism against all of the antibiotics
targeting rRNAs is mutations in the rRNA genes. However, bacterial genomes
often carry multiple copies of rRNA operons, hence for the high level of
resistance, mutation of the majority of those repeats is required. Since rRNA
is a ribozyme, mutations in vital parts of the ribosome have high fitness costs.
Therefore, enzymes modifying the rRNAs post-transcription like methyltransferases
constitute popular resistance mechanisms [20]. Methyltransferases confer resistance
to macrolides and linezolid [33, 34]. Since binding sites of some antibiotics
overlap, the methyltransferase can cause cross-resistance, like in the case of
cfr methyltransferase that confers resistance not only to linezolid but also
streptogramins, chloramphenicol, and clindamycin.

The second relevant mechanism of resistance employs ribosomal protection
proteins (RPPs). RPPs are homologous to the elongation factors, and like them, they
are GTPases [35] so they can actively remove an antibiotic bound to the ribosome.
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RPPs are the primary resistance mechanism for tetracyclines [36]. Other mechanisms
of resistance include decreased membrane permeability [37] and efflux pumps,
ABC-transporters [34], enzymatic inactivation of an antibiotic by acetyltransferases
or phosphotransferases [38].

Targeting cell envelope

The bacterial cell envelope is the first line of protection against environmental
conditions. The cell envelope is composed of a membrane(s), a peptidoglycan cell wall
and other outer structures. Its composition differs in Gram-negative and -positive
bacteria. In Gram-negatives, there are two membranes separated by a cell wall and
a periplasm. Whereas in the Gram-positives there is no outer membrane, but the
cell wall is ∼ twenty times thicker [39]. The cell envelope is crucial for bacterial
survival, accessible, and their synthesis is conserved. Therefore, the cell envelope is
a target for several antibiotics including the highly relevant group of β-lactams and
glycopeptides.

The cell membrane of Gram-positive bacteria is targeted by daptomycin, the first
introduced lipopeptide antibiotic [40]. Although the particularities of daptomycin’s
action mechanism remain unclear, it appears to be binding to the membrane.
Daptomycin invades the membrane it with its lipophilic tail. Next, more antibiotic
molecules oligomerize in the bacterial membrane so that they finally destabilize it
and cause an efflux of potassium ions [41, 42]. The refined model proposes that
daptomycin molecules assemble on the inner and outer leaflets of the membrane
and create the pore that causes ion leakage [43]. The role of the phospholipid
phosphatidylglycerol molecules is unknown. However, they are crucial for the
daptomycin’s binding to the membrane. The FDA approved daptomycin in 2003 for
medical therapy of skin infections caused by Gram-positive pathogens. Nowadays,
it is used intravenously mostly to treat MRSA infections.

After the integrity of the cell membrane is lost, an extensive cell envelope stress
response is activated [44]. The lia genes driving the response network are among the
daptomycin resistance genes. Other resistance mechanisms concern genes responsible
for producing envelope components, e.g., enzymes modifying phospholipids or
producing phospholipid phosphatidylglycerol [45, 46].

Atypical tetracyclines are chemical derivatives of typical tetracyclines [47]. Like
typical tetracyclines, they are also classified as broad-spectrum but have a different
action mechanism and are bacteriocidic. Chelocardin depolarizes membrane and
disturbs the integrity of the cell membrane, so far neither the details of action
mechanism nor of the resistance are known [48].

Bacterial cell wall is a rigid external skeleton composed of muramic acid held
together by pentapeptide side chains. Its role is not only protection but also
withstanding the turgor pressure of the cell [39]. The process of cell wall synthesis has
three stages. Firstly, mur enzymes synthesize peptidoglycan units in the cytoplasm.
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In the second stage, peptidoglycans are transported to the membrane where they
are linked into strands by a transglycosylase. Finally, in the third stage, the strands
are cross-linked by one of the transpeptidases and form a two-dimensional sheet
of murein. Almost all steps of cell wall synthesis and assembly are targets of
various classes of antibiotics, especially the final crosslinking that is targeted by
β-lactams [49, 50].

β-lactam antibiotics target transpeptidases responsible for cross-linking
peptidoglycan peptide side-chains. They mimic D-alanyl-D-alanine that is
a substrate for the transpeptidases. They modify the serine residue of the active site
preventing further catalytic activity of those enzymes [51]. Targets of the penicillin
constitute a broad family of enzymes termed penicillin-binding proteins (PBPs),
they are located in the bacterial periplasm and fulfill wall-related functions [52, 53].

β-lactams include penicillins, cephalosporins, and carbapenems, all of them are
equipped with a β-lactam ring and belong to broad-spectrum antibiotics. They are
the most used antibiotics since they constitute more than a half of the antibiotic
market in the US [54]. Their extensive usage caused an increase in the resistance,
primarily mediated by enzymes disrupting the β-lactam ring, i.e., β-lactamases [55].

β-lactamases are structurally related to the penicillin-binding proteins (PBPs),
and similarly, they constitute a large and diverse group of enzymes, with various
ranges of activity regarding substrates and conditions. They evolve quickly
in response to numerous derivatives of the β-lactam antibiotics [56]. Among
thousands of known β-lactamases, especially dangerous are the extended-spectrum
β-lactamases (ESBLs), that confer resistance to multiple β-lactams at once, e.g., the
penicillins, all-generation cephalosporins, and aztreonam [57]. ESBLs are classified
into nine families: TEM, SHV, CTX-M, PER, VEB, GES, TLA, BES, and OXA,
depending on the profile of resistance and protein sequence [58]. Other mechanisms
of β-lactam resistance include mutated inherently resistant PBPs, found, among
others, in methicillin-resistant Staphylococcus Aureus (MRSA), reduced number of
porins in the outer membrane of the Gram-negative bacteria and a variety of efflux
pumps [59].

Glycopeptides are defined as narrow-spectrum antibiotics since they affect
only Gram-positive bacteria [60]. They inhibit cell wall synthesis through binding
to the peptide elements of peptidoglycan [61]. The most popular glycopeptide
is vancomycin. Vancomycin resistance is conferred by the dehydrogenase VanH
and ligase VanA that together provide an alternative path for peptidoglycan
cross-linking [62]. Vancomycin is used in MRSA treatment. However, nowadays
doctors observe a rise of vancomycin-resistant Staphylococcus aureus (VRSA) [63].
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Replication inhibitors

First step of bacterial cell division is DNA replication. It is an extremely controlled
process as its fidelity is vital for the survival of the bacterial species, and as such,
it is another conserved process targeted by antibiotics. Replication happens in
two Y-like replication forks, where the DNA is unwinded, and two new strands
are synthesized [64]. As the replication forks move along the bacterial genome,
a DNA super tension builds ahead of them. Since bacterial genomes are circular,
the DNA has no free end to turn and remove the tension, but if it is not removed,
the replication cannot proceed. Therefore, bacteria produce enzymes for removing
tension called topoisomerases. The topoisomerase I cuts one of the DNA strands,
moves it and ligases it again so that there is no tension. The type II topoisomerase
cuts both strands and is, therefore, able to remove supercoiling [65].

In Gram-negative bacteria, the type II topoisomerase, also called gyrase, is the
primary target for quinolones [66]. Quinolones stabilize binding between the gyraze
and DNA, which leads to fragmentation of the DNA and cell death [67]. When the
replication forks meet, the two new DNA molecules are separated by the type II
topoisomerase. The Topoisomerase IV that also removes the positive supercoils and
constitutes the primary target of the quinolones in Gram-positive bacteria [68].

Quinolones are widely used broad-spectrum antibiotics. Nowadays, they are
equipped with an additional fluorine atom that increases their affinity to
topoisomerases [69]. Hence they are referred to as fluoroquinolones. The main
fluoroquinolone resistance mechanism relies on mutations in the genes encoding the
targeted topoisomerases. Both topoisomerases consist of two copies of each of the two
subunits encoded by gyrA and gyrB, parC and parE for gyraze and topoisomerase
IV respectively [70]. Other mechanisms of quinolone resistance encoded on plasmids
include topoisomerase protection proteins, quinolone modification enzymes, and
efflux pumps [68].

Overview of antibiotic resistance

Definitions of antibiotic resistance differ depending on the context. The most general
one defines resistance as an ability of bacteria to grow and divide in the presence of an
antibiotic. In microbiology, resistance is a non-binary value relative to the antibiotic
concentration. In medicine, resistance is defined with respect to the success of the
antibiotic treatment, but in fact, each particular therapeutic outcome depends on
microbiological and non-microbiological factors [71]. The resistance rate is a portion
of resistant isolates among all of the isolates, so in environmental studies, those
measurements are much less accurate. For this thesis, antibiotics resistance refers to
the binary state of presence of molecular mechanisms potentially enabling bacteria
to withstand antibiotic presence.

Resistance mechanisms are classified depending on their origin and molecular
background. According to the first classification, resistance mechanisms can be
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intrinsic, acquired and adaptive. Intrinsic resistance includes general features of
bacteria that make them immune to an antibiotic, e.g., cell membrane permeability,
porins, and efflux pumps. Acquired resistance denotes features transferable by
HGT, i.e., enzymes modifying antibiotic or its target. Adaptive resistance by
definition depends on the presence of antibiotics and works through epigenetic
modifications [72]. According to the second classification, resistance genes fall
into four classes: enzymes neutralizing antibiotics, enzymes modifying antibiotic’s
targets, mutated target genes and efflux pumps [73]. Table 2.1 outlines dominant
resistance genes for the most popular antibiotic classes.

As presented in Table 2.1, there are multiple resistance mechanisms for each
antibiotic. However, that is not the only complication. Firstly, our knowledge is
incomplete as resistance mechanisms are still being discovered, and not necessarily
in the context of new or modified antibiotics. Secondly, resistance mechanisms can
comprise multiple steps, like in the case of the MarA protein, which upregulates
expression of quinolone efflux pumps and at the same time suppresses the expression
of porin proteins reducing quinolone intake [86]. On the one hand, resistance
mechanisms can be synergistic. On the other hand, a single resistance mechanism
can provide resistance to multiple antibiotics, as in the case of rRNA methylation
which can cause cross-resistance to some antibiotics targeting ribosome [81]. Multiple
resistance mechanisms contribute in various degrees to a resistance phenotype
- depending on antibiotic and bacterial species. Thus, it is difficult to infer
a phenotypical resistance solely from the genetic background.

Antibiotics resistance emergence (AR emergence)

Antibiotic resistance could be contained if it did not spread amongst bacteria,
especially pathogens. A bacterium can acquire resistance in two ways: through
mutations in the antibiotic target or by horizontal gene transfer (HGT). The
mutation rate of the bacterial genomes is estimated to be one change per 109
nucleotides per cell generation [64]. This is both high and low. High, because it just
takes around 200 new bacterial cells (for a bacterium with a genome size of 5 ∗ 106)
for a mutation to appear. However, low, since it would have to be an extremely lucky
mutation to cause resistance. Thus horizontal gene transfer (HGT) is the primary
mechanism of resistance emergence [89].
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Table 2.1: The primary resistance mechanisms according to the antibiotic class.

Antibiotics Antibiotic modification Target of modification or
protection Efflux pumps

Aminoglycosides
[74, 75]

N-acetyltransferases: AAC,
O-nucleotidyltransferases:

ANT,
O-phosphotransferases: APH

16S rRNA mutations,
RNA-methylotransferases:

armA, rmtA-H

AcrAD,
MexXY-OprM,
EmrE, LmrA,

MdfA

Tetracyclines
[36, 26] monooxygenase: Tet(X)

RPPs:
Tet(O,M,S,W,Q,T),

otr(A)
Tet(A-E,G-J,V,Z)

Chloramphnicol
[76]

acetyltransferases: cat,
phosphotransferase: cmlv methyltransferase: clbC cml, cmr, fex,

flo, cmx, MdfA

Oxazolidinones
[77, 78, 79]

mutations of 23S rRNA,
L3 and L4 ribosomal

proteins,
methyltransferase: cfr

ABC
transporters:

optrA,

Streptogramis
[80] acetyltransferasses: vat RNA methylase: erm

putative ABC
transporters:
vga, msr

Macrolides
[81, 82] esterase RNA methylase: erm

mef, msr, lmrP,
srmB, tlrC,

ABC
transporters:
carA, msrE

Lincosamides [81] nucleotidyltransferases: lnu RNA methylase: erm

Rifamycin [83, 84]
monooxygenase: rox,

phosphotransferase: rph,
glycosyltransferase

mutations of rpoB, rpoB
protection protein RbpA

Glycopeptides
[62] dehydrogenase: VanH

β-lactams
[85, 59] β-lactamases, ESBLs

Quinolones
[86, 87]

mutations in gyrA, parC,
parE, protection protein

Qnr

norA,
MexAB-OprM,

oqxAB

Lipopeptides [88] rpoB, rpoC, MprF, liaR,
CdsA
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Horizontal gene transfer (HGT)

Although events of HGT are both random and rare, bacterial evolution is governed
by inter- and intracellular movements of genetic material. Intercellular movement
is facilitated by three processes: transformation, conjugation, and transduction.
Transformation happens when a bacterium incorporates naked DNA directly from
the environment. For a natural transformation to occur, two conditions must be
met. First, there has to be naked DNA in the environment originating either
from lysed bacteria or exported in a mesosome. Second, the recipient bacterial
cell needs to be competent, able to intake extracellular DNA. This process starts
with a double-stranded DNA binding to the surface of a bacterium. Next, it is
fragmented and transported - those processes differ between Gram-positive and
-negative bacteria, but none of them is known in full detail [90]. However, we
know the state of competency is regulated by a network involving more than
twenty genes. If the imported DNA is not a plasmid, it has to integrate into the
bacterial genome in the process of recombination. There are multiple bacterial
species among known human pathogens that are both donors and acceptors of the
natural transformation [91].

Conjugation is a mechanism for transferring plasmids between bacteria. Unlike
natural transformation, during conjugation bacteria are in physical contact,
connected with a pilus. In theory, via means of conjugation, an entire chromosome
could be transferred. However, in practice it is a slow process that would require
bacteria to remain in contact for a long time, therefore transferring an entire
chromosome is extremely rare [89, 92]. Conjugation is controlled by ∼ 40 genes
encoded in the transfer region of the conjugative elements, such as plasmids or
transposons. Conjugation happens between two bacteria, out of which one possesses
the conjugative elements, and another is deprived of it [93].

Transduction is intermediated by bacterial viruses, or phages for short (Fig. 2.3).
After it attaches to a bacterial cell, the phage introduces its genome into
the bacterium. Subsequently, the phage genome integrates into the bacterial
chromosome. A phage can remain integrated, and be passed to daughter cells as
during division (lysogenic cycle). Otherwise, a phage can enter a lytic lifecycle.
After its proteins are expressed, phage particles are composed, resulting in lysis
of the bacterial cell and release of all new phage particles. Some of the new phage
particles carry not only the phage genome but also fragments of host genomes. Those
particles continue to infect further cells and transferring genetic material between
bacteria.

Researchers estimate that in the majority of environments phage particles greatly
outnumber bacterial cells [94]. Their complex lifecycles relying on the arms-race with
bacteria cause phage genomes to be remarkably diverse and variable [95, 96], and
poorly characterized. In the NCBI database are only ∼2,000 complete annotated
phage genomes in comparison to the ∼35,000 bacterial genomes (as of January
2018).
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Figure 2.3: Mechanism of transduction.

Phage genomes are hugely versatile. Phages can carry any genetic material:
dsDNA, ssDNA, dsRNA, and ssRNA, circular or linear and code from four
up to hundreds of genes. The smallest regarding genome size are phages with
a single-stranded RNA (ssRNA). Genomes of such phages, MS2 or Qβ, are ∼4Kb
long and carry four proteins. The genome of the exemplary dsRNA phage φ6 is
∼13Kb bases long but comprises of 3 segments. Phage φX174 is a representative of
the ssDNA phages. Its genome is ∼5.5Kb long and contains 11 genes. dsDNA phages
have the largest genomes. They include the famous phage λ with the genome that
is 50Kb long and carries 92 genes, and massive T4 with its 170Kb genome, 288
genes, among which only about half has known function [97], including eight tRNA
genes [98].

Phages, like other viruses, are a part of the taxonomic tree. The taxonomy of
phages is based on capsid shape and host range. It has been criticized as it does
not reflect the actual relationship between phages. As an alternative, researchers
proposed various reticulate network classifications, based on the genetic similarities.
For the reticulate networks, phage genomes are mapped with many features such as
genes, k-mers, or modules, so that distances between them are computed, based on
which a reticulate network is constructed [99].

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)

Bacteria have developed the CRISPR system, so-called immune system, to protect
themselves against unknown DNA. CRISPR are cassettes of short, 26-72 bp long,
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signature fragments of foreign DNA (spacers) interleaved with 21-48 bp long identical
direct repeats. Typically not more than 50 fragments are deposited within a single
cassette, but bacteria can have multiple cassettes. CRISPR loci are adaptable, old
sequences are removed, and new can be incorporated [100]. The majority of CRISPR
spacers originate from phages, but they can also protect against plasmids [101].

CRISPR loci are transcribed together with an upstream leader sequence and cut
into small RNA molecules (crRNAs) containing a single spacer and a part of a direct
repeat [102]. Depending on the type, different mechanisms and actors are involved,
but the common feature is that crRNA guides the degradation machinery towards
the DNA molecules complementary to their sequence.

Mobile genetic elements (MGEs)

Mobile genetic elements (MGEs) include plasmids, phages, and a large class of
smaller MGEs, i.e., DNA fragments that change locations within bacterial genomes
and between bacterial cells [103]. They can be located on plasmids and bacterial
chromosomes. They are classified based on their size and genetic structure.

Transposons are MGEs composed of genetic cassettes flanked with insertion
sequences. An insertion sequence (IS) is an ORF coding for a transposase with direct
inverted repeats on each of its ends [104]. ISes are ∼0.3 kb long, and transposons are
between 2.5 and 60 kbp long. They can carry any gene and move within bacterial
genomes. Transposons can also be conjugative and transfer themselves or mobilize
plasmids to transfer between cells [105].

Integrons are ancient genetic elements found in many bacterial genomes. They are
hotspots for genetic variance, capturing potentially useful genes also those without
a promotor (gene cassettes), and securing their expression [106]. A minimal integron
consists of three elements: an integrase, a recombination site att, and a promoter Pc.
As they do not encode any mobility systems, they often couple with other MGEs
and get transferred. Integrons contribute to AR emergence since they are known to
accumulate ARGs.

Multi-drug resistance (MDR)

Overall, horizontal gene transfer enables accumulation of the MGEs with
antibiotic-resistant genes which leads to the emergence of multi-drug resistant
bacteria [107]. Definition of MDR used to include all organisms resistant to more
than one antimicrobial agent. Nowadays, multi-drug resistance is defined separately
for each bacterial species and in the context of antibiotic groups [108]. Especially
important are human pathogens, e.g., Methicillin-resistant Staphylococcus Aureus
(MRSA) and ESBL-producing bacteria. Such super-bugs are responsible for increased
mortality among patients and prolongation of hospitalization stays [109, 110].
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Methicillin-resistant Staphylococcus Aureus (MRSA)

Gram-positive MRSA is one of the most clinically significant MDRs due to its high
pathogenicity and resistance level [107]. Depending on the location, MRSA can
cause skin, joint and pulmonary infections [111]. The MRSA was first described
in the 1960’s. Since then, its resistance potential has been expanding. MRSAs are
resistant to β-lactams, glycopeptides, quinolones, aminoglycosides, oxazolidinones,
tetracyclines, chloramphenicol, and others [112]. Until 1980’s vancomycin remained
the main viable therapy for MRSA, what quickly lead to the emergence of VRSA,
a vancomycin-resistant S. Aureus strain in the early 1990’s [113].

MRSA colonization is prevalent in hospitals, nursing homes, and other
long-term care facilities (HA-MRSA). Currently, MRSAs are also found in the
community (CA-MRSA). The CA-MRSA is less resistant and toxic than HA-MRSA.
Colonization of the nose is the primary factor increasing the possibility of
infection [114]. Also, patients suffering from diabetes, using invasive devices,
with a weakened immune system or of older age are more susceptible to the
MRSA-infection. It is estimated, that as much as half of population carry S. Aureus
in their nose. Currently, the vast majority of S. Aureus isolates are resistant to
penicillins.

Since the year 2000 European Centre for Disease Prevention and Control
(ECDC) [115] has been systematically monitoring levels of antibiotic resistance
within European hospitals. Level of antibiotic resistance is defined as a proportion
of the resistant strains among all of the isolates. The EU-wide average of MRSA
resistance has been slowly decreasing (Fig. 2.4), suggesting that the stewardship
efforts have been successful. However, there is significant variance among the
European countries, and in many of them, MRSA still poses a significant threat.

Figure 2.4: Levels of MRSAs among the Staphyloccocus isolates in chosen european
countries.

Methicillin resistance is conferred by the mecA gene located on the MRSA’s
chromosome in the SCCmec cassette.mecA encodes a transpeptidase which performs
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peptidoglycan cross-linking in the presence of the β-lactam antibiotics [116]. It
is not clear how exactly did S. Aureus obtain the mecA gene. Close homologs of
the mecA were identified in a number of other staphylococci [117]. Other resistant
genes are localized on chromosomes and plasmids, some of them within transposons.
Nowadays MRSAs are equipped with an arsenal of the resistance mechanisms
including β-lactamases, modified gyraze, and topoisomerase subunits, and rRNA
modification enzymes. Moreover, MRSAs are equipped with a broad arsenal of
bacterial toxins.

ESBL-producing bacteria (ESBL)

Extended-Spectrum Beta-Lactamases (ESBL) were discovered in the 1980’s. Since
then, scientists and doctors all over the world observed the rise of ESBL producing
bacteria (ESBLs). ESBL are mostly present in common human gut bacteria
Enterobacteriaceae. However, more importantly, they were found in dangerous
pathogens such as E. coli, K. pneumoniae and S. enterica. Average resistance levels
of among E. coli isolates across the EU had been steadily increasing (Fig. 2.5).

Figure 2.5: Levels of resistance among the E. coli isolates in selected european
countries.

Extended-Spectrum Beta-Lactamases are subjected to horizontal gene transfer
(HGT) as they are located on plasmids and bacterial chromosomes in the proximity
of transposons [118]. Therefore, they are often found in the company of other
antibiotic-resistant genes, even on a single plasmid [119]. Consequently, they
evolve dynamically, spread between bacteria and patients extremely fast. Foremost,
ESBL-producing bacteria have been found in hospitals. The class profile of the
Beta-Lactamases differs depending on the antibiotic usage. However, in countries
with unrestraint access to antibiotics, as much as half of the tested volunteers carry
ESBL-producing bacteria [120].
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2.2 Human gut microbiome

Bacteria inhabit all sites on the human body [121], but exceptionally rich, diverse
and vital is the gut microbiome, i.e., bacteria, viruses, fungi, and protozoa inhabiting
gastrointestinal tract [122]. The gut microbiota remain in a mutualistic relationship
with the host [123]. An organism provides habitat and nutrition for the microbiota
which contribute their diverse metabolic pathways, they ferment carbohydrates,
produce vitamins and metabolize various xenobiotics [124]. Researchers describe the
human gut microbiome with great numbers. Trillions of bacteria inhabit the human
gut. They are divided in into ∼ 1, 800 genera, ∼ 20, 000 species which collectively
comprise an enormous genetic diversity estimated to contain ∼ 10 million unique
genes. Therefore there are∼ 450 times more bacterial genes than human genes within
the human body [125, 126, 127]. However, the human gut bacteria fall mostly into
the two phyla: the Gram-negative Bacteroides and Gram-positive Firmictues [128].

Decreasing sequencing costs enable reliable taxonomic and functional profiling
of gut microbiomes for thousands of samples. This enabled linking the divergence
of the human gut microbiome profiles to diseases ranging from gut-related
cancer [129] and inflammatory bowel disease [130], through diabetes [131] and
heart-related diseases [132], to Alzheimer’s [133] and psychiatric disorders, such as
depression [134]. The main characteristic speaking to the overall health of the gut
microbiome is a ratio of the Firmictues to Bacteroides abundance. Scientists have
observed it increases in obese mice [135, 136] and obese patients [137].

Overall, the taxonomic structure of the gut microbiome is highly variable from
person to person. However, the gut metagenomic taxonomic profiles cluster into
three enterotypes driven mostly by a domination of one of the genera Bacteroides,
Prevotella, or Ruminococcus [138]. However, the concept of enterotypes is criticized
for being not comprehensive, as the original dataset included mostly European
participants [139].

Although scientists have reliably observed gut microbiome structure depends on
a person’s health, age [140], lifestyle, diet [141], and travel, nature of interactions
between the gut microbiome and the human organism are not fully understood [142].
It is not clear which of the sides in the microbiome-organism interaction dominates,
or if the disease drives the change of the microbiome or the other way round.
Nevertheless, it is becoming evident the gut bacteria remain in the dynamic
homeostasis amongst themselves and with the host [143].

The gut-brain axis exemplifies the bidirectional nature of the
microbiome-organism interactions. Researchers identified several biochemical
pathways within the gut microbiome, producing endocrine, neurological and
immunological metabolites [144]. As a result, microbial dysbiosis contributes
to disease, and oppositely, healthy microbiome could protect from it. Therefore,
monitoring, preservation and maybe eventually manipulation of the gut microbiome,
established essential new aspects of medical therapies.
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2.2.1 Studying the gut microbiome

The gut microbiomes have been studied since the 1970’s. The first methods were
culture-based. The bacteria were cultured in anaerobic conditions using different
media so that they could be characterized [145]. The introduction of next-generation
sequencing (NGS) technologies in the 2000s opened up opportunities for large-scale,
fast, reliable and culture-free studies of microbiomes.

Nowadays, there are numerous multistep protocols for studying different aspects
of the microbiome. E.g., the functional metagenomics used for quantification of
antibiotic resistance. There, fragments of DNA extracted from the microbiome are
cloned into the E. coli cells that are next plated on selective media. Later only those
of interest, e.g., showing resistance, are sequenced [146].

Another class of methods relies on sequencing of a single gene. Especially
important is the conserved 16S rDNA gene, as its sequence is used in the taxonomy
of bacteria. Although, the overall structure of rRNA is quite conserved, locally
conservation levels vary throughout the length of 16S rDNA. Consequently, structure
of the 16S rDNA enables both efficient design of primers, which are complementary
to the conserved regions, and taxonomic profiling, which is based in the variable
regions. Bioinformatics analysis relies on the alignment of sequencing reads against
the database of the used gene. The portion of the reads aligned to different hits in
the database constitutes a profile, in the case of 16S rRNA, the hits point to the
taxa, and the result is a taxonomic profile [147].

The most straightforward approach is sequencing of the entire DNA extracted
from a microbiome sample with little or no pre-sequencing processing. This approach
is termed shotgun whole-genome sequencing (WGS). The standard bioinformatics
analysis pipeline starts from the alignment of reads to a database, in most cases,
of protein sequences such as the NCBI’s NR. The alignment, together with the
hierarchical classification of the records enables both a taxonomic and functional
profiling [148].

2.2.2 Impact of antibiotics on the human gut microbiome

An antibiotic-associated perturbation of the gut microbiome occurs already on the
second or third day of an antibiotic therapy. Consequently, antibiotics constitute
severe disturbance factors. Susceptivity to all antibiotic classes is well characterized
to some of the gut bacterial species. Despite that, the impact of the specific antibiotic
on the entire gut microbiome is unpredictable. Although the majority of gut bacteria
can be cultured, still a considerable portion of them are unknown [149]. Furthermore,
the microbiome is not merely a group of bacteria. It is a dynamic network where
eliminating some of the taxa might cause indirect and unpredictable shifts.

Antibiotics differ by their spectrum of activity, consequently so does their impact
on the gut microbiome and the adverse effects they cause [150]. Ciprofloxacin causes
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a reduction of the abundance of the Firmicutes Faecalibacterium, Ruminococcus and
Alistipes from phylum Bacteriodetes, an increase in the Bacteroides Bacteroides
and Firmicutes Lachnospiraceae [151], and a general increase of the Firmicutes to
Bacteroides ratio. At times the antibiotic effect is more specific, reducing some of
the genera and promoting the others [152, 153].

Numerous studies conducted in human and animals showed that regardless of
antibiotic class, a therapy reduces microbial diversity within the gut [154]. Also,
by killing commensal bacteria, antibiotics decrease colonization resistance, making
space for potential pathogens [7, 8]. Although researchers discovered general laws
governing the taxonomic shifts under antibiotic pressure, several studies reported,
that changes in the microbiome also depend on the state of the microbiome in the
first place, and hence they are highly individual [155].

Restoration of the taxonomic structure takes from 1 to 6 months. The speed
of the restoration is individual. However, it is facilitated by good overall health
and negative history of antibiotic therapy [156]. Therefore, depending on various
factors the effects of the particular antibiotic therapy in particular patient could be
long-term. The speed of restoration can be treated as a functional definition of the
healthiness of the gut microbiome [142, 157]. In some cases, the changes persisted for
years, like in the case of clindamycin therapy, after which the taxonomic structure
within Bacteroides took two years to restore [158].

Antibiotics promote bacterial strains harboring ARGs but also strengthen overall
AR-reservoir [159]. An increase in resistance is rarely specific towards the antibiotic.
However, both ARG abundance and their diversity increase with each therapy.
The ARG abundance normalizes after therapy, but the diversity persists, so when
a pathogen comes along it has access to a broad resistance reservoir. This worsens
prognosis for future antibiotic therapies and promotes the MDR emergence. MDRs
have also been detected up to two years after the therapy [160].

Antibiotic-resistant genes are found in microbiomes across all environments [161],
and in the gut microbiomes of healthy people all around the world. The resistome
diversity within the population positively correlates with the uncontrolled access
to the antibiotics [162, 163]. Healthy human gut microbiomes on average contain
β-lactamases, tetracycline, and aminoglycoside ARGs [160].

Although antibiotics are active against bacteria, they are in fact therapeutics of
humans. Antibiotics have severe adverse effects for the gut microbiome including
perturbations of taxonomic structure and metabolic processes, the increase in
resistome diversity, and the increase in HGT frequency. Metabolism of an antibiotic
within the gut also disturbs its pharmacokinetics affecting the final therapeutic
effect [152]. Research into those interdependencies between perturbations of the
microbiome and the host’s health is crucial, so that safe antibiotics usage is possible.
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2.2.3 Large-scale human gut microbiome studies

To fully understand inter- and intrapersonal diversity, several large-scale projects
investigating microbiomes of sizeable groups of participants have been undertaken.
The first that paved the path was the Human Microbiome Project (HMP) launched
in 2007. The project received $150 million in funding for five years. For each of the
300 non-hospitalized volunteers who took part in the project, samples from five body
parts and over several time points were collected [164].

The Human Microbiome Project (HMP) provided 16S rRNA and WGS
sequencing samples for the multiple body sites, 3000 reference bacterial genomes and
laid the groundwork for future microbiome projects. It described the structure of
the most common human gut microbiome [165]. Currently, the HMP is in its second
phase: integrative HMP, that using multi-omics approaches investigates microbiomes
during pregnancy and for patients suffering from IBD and diabetes.

The American Gut Project started in November 2012. In 2014, a collaborative
sister-project British Gut Project was launched. In 2017 they collected gut
microbiome samples from 11,336 participants, in the majority from the USA, but also
Europe and Australia. The participants filled in a questionnaire, providing details
about their health, diet, and lifestyle. It is a crowd-funded project, as the participants
pay for the analysis of their samples, but are later have access to the results. The
samples were analyzed regarding taxonomic diversity using 16S rRNA sequencing,
functional diversity with metabolomics studies [166].

In those studies, a significant number of samples was influenced by recent
antibiotic therapy. The American Gut Project reported that metabolome diversity
was higher in the group of participants who took antibiotics in the previous
month (139 people) in comparison to those participants who declared not taking
antibiotic in the previous year (117 people). However, the taxonomic diversity was
lower in the antibiotic-influenced microbiomes. The authors pinpoint the diversity
of the antibiotic therapies in their set has prevented them from performing an
antibiotic-specific analysis.

The Guangzhou Cohort Study is the newest exciting large-cohort microbiome
project. It is in its initial stage. So far they have recruited 17,214 pregnant women.
They are planning to track their microbiomes during pregnancy and compare
them to those of their children. The results will be correlated with the extensive
metadata [167].

2.3 Human gut mobileome

The gut microbiome is a dynamic network of bacteria, connected by HGT. One
of the most known examples of HGT-mediated acquisition of relevant genes is
a study of gut bacteria of several Japanese volunteers. Taxonomic profiles of their
microbiomes were similar to those of other populations. However, the genomes of
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their gut bacteria were enriched with genes enabling degradation of substances found
solely in algae [168].

Mobile genetic elements, including (pro)phages, plasmids, transposons, integrons
and insertion sequences for all bacterial cells in the microbiome constitute
a mobilome [169]. Small-scale methods to study MGEs such as plaque-based
and microscopy analysis of phages, PCR-based sequencing, plasmid or transposon
capture, provide a limited picture, and are inapplicable in metagenomics studies [170,
171]. Phages are mostly studied via sequencing, using either a specialized protocol
where the complete viruses are first isolated from the sample [172, 173] or
through screening of whole-genome shotgun (WGS) metagenomic data [174]. The
latter method enables studying of all MGEs and bacteria within a microbiome
simultaneously.

Mobile genetic elements often have a mosaic genetic structure and no distinct
genetic characteristics. They are versatile, underrepresented and misannotated in the
databases. In the majority, their genes are also found outside of MGEs. Therefore,
alignment-free MGE identification methods were developed, to be employed in the
analysis of WGS datasets. VirFinder [175] and PlasFlow [176] employ k-mer based
machine learning to identify phages and plasmids respectively. However, as the tools
were first trained on the k-mers extracted from known sequences, comprehensiveness
of the database limits their sensitivity. Therefore, MGE in silico identification
within metagenomic sequencing or assembly is computationally expensive and
error-prone [177].

The microbiome network changes under stress. The frequency of all types of HGT
within a microbiome increases under environmental pressure caused by disturbances
such as diet change, inflammation or antibiotic therapy [178]. Additionally, since
phages infect and lyse bacteria, they prolong the environmental pressure prompted
by the first factor. Phage impact depends on their host range, which is a result of the
constant double-sided evolution. On the one hand, phages benefit from a broad-range
host spectrum, and on the other hand, it comes at the cost of reduced efficiency [179].

Overall phage population in the gut microbiome, termed phageome, consists
mostly of temperate phages of the most abundant bacterial phyla: Bacteroides and
Firmicutes. Much like microbiome, phageome taxonomic profile remains stable in
an undisturbed gut, but it responds to diet changes [180]. However, phageomes
are more diverse and variant between people than the bacterial portion of the
microbiome [181]. Phageomes are diverse also in a genetic sense, as they harbor
a sizeable functional diversity, including ARGs [182, 183].

2.3.1 Impact of antibiotics on the human gut mobileome

The fate of MGEs in the face of antibiotic therapy depends on the fate of
their bacterial hosts. Although phages are not directly susceptible to antibiotics,
the antibiotic pressure on the bacteria causes shifts in the genetic landscape of
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phages [184], regarding both phage taxonomy and functional profiles. Consequently,
an impact of the particular antibiotic on phageome depends also on the antibiotic
class [185, 173].

Besides the environmental-selection of resistant strains, HGT is the secondary
factor driving AR emergence [186], especially in such a dense and diverse
environment as the gut microbiome [187]. Studies of plasmids and transposons have
been focused on known elements. Within the gut microbiome, researchers observed
conjugative transposons and plasmids transferring erythromycin resistance genes
between Bacteroides [188, 189]. However, methods for MGE identification within
microbiome WGS sequencing, enabling large-scale analysis have only been developed
recently (2017). Also, the structure and behavior of MGEs are quite complex, e.g.
plasmids can comprise transposons, that can also move between a plasmid and
a chromosome within a bacterial cell.

For those reasons, not much is known about MGEs and changes of their genetic
structure within the gut microbiome under antibiotic pressure. However, it is
clear that antibiotics affect entire microbiomes in all their aspects. They prompt
massive taxonomic and genetic changes. Therefore, accurate description of MGE
dynamics within microbiomes constitute crucial groundwork for developing methods
for controlling AR emergence.

2.4 Combating resistance emergence

Governments and global regulators such as the European Union, WHO, CDC, and
FDA have recognized the danger posed by rising antibiotic resistance. They have
developed several strategies to counteract resistance emergence treating all aspects of
the problem: promoting novel antibiotic discovery, antibiotic stewardship, education
and regulation of antibiotic usage in medicine and farming.

Some experts estimate we need as much as twenty novel antibiotic classes to
remain ahead of resistance for the next fifty years [190]. Bacteria are incredibly
diverse and fast evolving. Therefore, to be effective an antibiotic needs to target
a vital process of bacterial metabolism and a conserved molecular target so that its
mutation rate is restricted. An antibiotic also needs to reach an adequate cellular
compartment, i.e., be able to get through a bacterial wall and a membrane(s), to
a proper compartment and finally bind to its target. On top of that, an antibiotic
has to avoid possible resistance mechanisms such as efflux pumps or modification
enzymes and finally, it has to be non-toxic for human cells. All of those restrictions
make discovery of novel antibiotics an arduous process.

In 2010, the 10 by ’20 initiative was put in motion [191]. It was set to
discover ten novel antibiotic classes by 2020, by labs and companies in the
USA and Europe. The rate of discovery has already been slower than expected,
with just a few novel antibiotics introduced during this period, including several
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derivatives of cephalosporin and vancomycin, and fidaxomicin that is only active
against Clostridium difficile [192]. Recently a promising novel class of antibiotics,
cyclic peptide malacidins, was discovered in the metagenomic sequencing of the
environmental samples. Mencidins are active against MDRs such as MRSA [193].
However, they are far from being ready for introduction into medical practice.

The next strategy for combating antibiotic resistance is antibiotic stewardship,
i.e., rationalization of antibiotic usage in the treatment of patients within hospitals,
especially ICUs where gross of antibiotic usage takes place. Stewardship has multiple
forms ranging from a manual expert review of prescriptions to automatized computer
systems. The former method works post factum, and the latter method, automatic
systems assist physicians during the decision-making process. Independently on
the form, antibiotic stewardship programs work, as it was proven they improve
therapeutic effects for patients [194, 195].

Antibiotic stewardship refers to the institutional efforts to improve compliance
with guidelines optimized towards efficiency against the particular infection. The
guidelines so far are not directly optimized for the resistance emergence and
colonization with the MDR bacteria. However, the choice of therapy and its success
relies foremost on the adequate diagnosis and pathogen identification. Sequencing
and bioinformatics tools could also assist that.

Another massive problem is the use of antibiotics in agriculture. Farming is
a significant source of antibiotic pollution in the environment. However, it is beyond
the scope of this theses. Still, I should mention, the global regulators such as the
EU are gradually restricting antibiotic usage in farming, as it became clear without
those restrictions, emergence is not ever going to be defeated.

2.5 SATURN project

The European Union Council advised by the European Centre for Disease Prevention
and Control (ECDC) perceives AR emergence as a severe threat. Consequently,
EU funded 38 research projects to investigate this phenomenon, through the 7th
framework program (FP7) [196]. So far the successor programme Horizon2020
funded 19 projects to investigate AR.

One of the FP7-funded projects was the SATURN project. The name stands for
impact of Specific Antibiotic Therapies on the prevalence of hUman host ResistaNt
bacteria. The project lasted 60 months, costed e7.8M and involved 13 institutions
located in 11 countries: Switzerland, Italy, Israel, the Netherlands, Belgium, Poland,
France, Spain, Germany, Serbia, and Romania. SATURN gathered specialists in
microbiological molecular, epidemiological and clinical fields, who worked towards
a comprehensive model of multi-drug resistance for medicine [197], and providing
scientific evidence for improving antibiotic use practices.
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SATURN investigated antibiotic resistance on three levels of biological
organization. The project consisted of six work packages (WP), levels of bacterial
cells, of patients and patient groups. WP3, WP4, and WP5 were the main
observational clinical studies, WP2 was an intervention study, and WP1 and WP6
relied on the samples and data collected by the WP2-WP5 and supported the
main packages. WP1 dealt with bacterial genetics and the WP6 with antibiotic
pharmacodynamics (Fig. 2.6).

Figure 2.6: Scheme of SATURN work packages. Color highlights WP4 that we worked
on. adapted from the Saturn project website [197].

WP2 attempted to shed light on antibiotic prescription practices. It focused
on the question if it is better to mix antibiotics or cycle them. In cycling, all
patients in a ward take at the time the same antibiotic. Antibiotics are rotated
periodically [198]. In theory, this strategy should decrease the overall AR in hospital,
in comparison to an alternative approach that is antibiotic mixing, i.e., prescribing
random antibiotics. ∼ 10, 000 patients were involved in the WP2 study, among
which ∼ 4, 000 underwent antibiotic cycling and another ∼ 4, 000, the antibiotic
mixing. There was no difference in the resistance rates between the two groups [199].
Therefore both cycling and mixing strategies select resistant bacteria equally.

WP3 investigated resistance levels in the community, i.e., not hospitalized
participants treated for urinary tract infections, along with their families.
Researchers recruited two groups of participants from three EU countries: treated
and non-treated with antibiotics. The researchers observed high levels of resistance in
the European community. Fluoroquinolones turned out to be particularly harmful.
They influenced gut microflora in the early days of therapies so that the overall
duration of therapy had no impact on AR emergence. This study confirmed that
resistance transfers among members of households [200].

WP4 focused on how the rates of AR emergence among hospitalized patients
relate to patients’ features and the antibiotic therapies [201]. Data comprised records
of ∼ 10, 000 people, collected over the three years in Italy, Serbia, and Romania. I



2.6. MACHINE LEARNING 27

analyzed WP4 data as a part of my Ph.D. work. The project is described in detail
in Chapter 5.

WP5 investigated progression of the infection with Carbapenem-resistant
Enterobacteriaceae (CRE). For the infected patients, the researchers collected
rectal swabs. Researchers established that usage of the antibiotics, especially
fluoroquinolones after the positive rectal swab drives the development of the
infection [202].

The SATURN project lasted for 54 months, and besides scientific project
planning, it required great effort in coordination. During the first 18 months, the
partners spent on unification of the protocols for microbiological tests and data
collection. During the following 18 months the data and samples were collected, and
in the last phase, finally they were analyzed, and the collaborators were consulted.

2.6 Machine learning

Clinical studies primarily fall into two classes: interventional and observational [203].
In the former, researcher designs an experiment within clinical context that means
deciding on, at least a part of, patient therapies. That is rarely possible. The majority
of clinical studies are observational. They boil down to detailed observations of
patient cohorts undergoing treatments ordered by their doctors, which results in
large, complex datasets, where the data are often internally correlated, much like
SATURN WP4 dataset. Such studies constitute potential applications of machine
learning (ML) methods as they enable analysis of large datasets considering all
features simultaneously.

The term machine learning refers to algorithms that perform tasks that are not
explicitly programmed. Simple algorithm filtering data points based on a cutoff does
not fall into that category, however, if the cutoff is determined automatically, that
would be sufficient to classify the algorithm as ML. A typical example is a program
playing checkers. The program does not contain direct instructions on what to do
in each of the cases, nevertheless, it can play. First, the program analyzed a large
number of games of checkers, based on which it learned how to play [204], so that
it can also play in the situations not included in the training dataset. Analogously
the algorithm choosing the cutoff had to be instructed on how to do so, based on
some datasets of the known cases. However, it should be able to select a cutoff for
the entirely new data.

The most appealing advantage of ML is their ability to provide an answer for
new data. This feature is termed generalization. In many applications, the real-world
questions refer to the future. We provide currently known historical information and
ask the classifier about the future. Hence, the widely used term predict. Classifiers,
learn on training sets, so they can generlize and predict outcome for new datapoints.
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Depending on the field and application, ML methods are referred to by a different
term including big data analytics, data mining, pattern recognition, statistical
learning or artificial intelligence. All of those terms relate to the same class of
methods, however, used within different contexts and various goals. Data mining
relates to explorative applications of ML methods, aiming at the identification of
hidden patterns. Often, the researchers start with data mining to understand the
dataset at hand. Later those initial classifiers can be used to stratify data before the
final predictors are developed.

2.6.1 Machine learning algorithms and their classification

The group of machine learning algorithms is expanding as various algorithms, that
primarily belonged to statistics or data analysis, are being used as predictors. Fig. 2.7
presents three main ML tasks: clustering, classification, and regression. All three
speak to the structure of the datasets, and all three can be used as predictors. The
task depends on the data.

Figure 2.7: Three tasks of the Machine Learning. The clustering answers to a question
what grouping is in the data?, the classification: are the classes of the datapoints
separable? and regression what function is underneath the data?.

Machine learning algorithms fall into supervised and unsupervised classes. The
supervised ML algorithms require an input of a complete dataset containing both
data points and output values. Supervised methods return classifiers able to provide
output values for new data [205]. The unsupervised algorithms do not use output
values. Instead, they analyze the structure of the input data through clustering
or density estimation. For new data points, the classifier returns clusters for the
new data. If a dataset is only partially labeled, the algorithm is classified as
semi-supervised [206]. There, the combination of ML technics is used. Firstly, to
discover the missing labels based on the labeled part, and secondly, to construct the
final model.
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The MLmethods further divide by the main mathematical approach they employ.
Some of the aspects of the several ML algorithm classes are discussed below along
with the data pre-processing and classifier performance measurement methods that
were used in the thesis.

Generalized linear models

The algorithms based on linear models assume an outcome (y) depends on the linear
combination of the input variables (x1..xn), like in the equation:

f(x) = β0 + β1x1 + ...+ βnxn, (2.1)

where n is the number of features in the dataset. The objective of these algorithms
is discovering the β0..βn regression coefficients, as they enable computation of the
outcome function f(x). The majority of the algorithms using linear models are
primarily suited to solve the regression task, and with the modifications, they can
also be used to solve the binary classification task.

Learning the regression coefficients is posed as a minimization problem in
respect to the distance of the solution f(x) to the actual data. One of the most
straightforward algorithms is Least squares (LS), often used to solve regression
problems. LS minimizes global distance (S) of the model provided by the linear
function to the data points:

S =
n∑
i=1

r2i , (2.2)

where n is the number of data points, and ri is the distance of the single point
to the solution of the linear function (f(x)) like in Equation 2.1, with the current
candidates for the regression coefficients β:

ri = yi − f(xi, β). (2.3)

Finally, the regression coefficients for which the gradient of S equals zero are
computed. However, finding the perfect β in one step is hard and computationally
expensive, especially for complex datasets. Therefore, the iterative algorithms were
introduced, where each step of the iteration further approximates the solution. The
program finishes once the solution converges, the β vector stops changing, or after
the maximal number of iterations is reached. One of such algorithms is the Gradient
Descent algorithm. It uses the loss function that conveys how much the prediction
with the currently considered regression coefficients differs from the output. In one
iteration all of the dimensions of the β vector are updated in the direction of the
steepest descent of the cost function, across all points in the training data. The cost
function for a regression coefficient vector J(β) for the linear model f(x) (2.1), and



30 CHAPTER 2. BACKGROUND

m data points in the training set is defined as a sum of squared distances between
the fβ(x(i)) and the solution y(i):

J(β) =
1
2m

m∑
i

(fβ(x(i) − y(i))2. (2.4)

Therefore, the iteration step that updates the β vector is expressed by the
equation:

β
(i+1)
i := β(i)i − α

1
m

m∑
j=1

(fβ(xj)− yj)xji for j = 0, .., n, (2.5)

where α is the learning rate. In the case of the large training set m that could
take too much time. Therefore, a modification of this algorithm Stochastic Gradient
Descent (SGD) was introduced. Dataset size m is reduced by randomly selecting
the subset of training points in each iteration step, instead of using the full set.
Consequently, the SGD algorithm requires a modified cost function defined for
a single data point (x(i), y(i)):

JSGD(β, (x(i), y(i))) =
1
2
(fβ(x(i) − y(i)))2. (2.6)

In SGD, the β vector is updated with every training datapoint:

β
(i+1)
i := β(i)i − α(fβ(xj)− yj)x

j
i for j = 0, .., n, (2.7)

Although SDG solves the regression problem, it can also solve the classification
task, when y(x) consists of binary class labels. The left side of the regression equation
2.1 is replaced with a chance function of belonging to one of the classes. Since the
chance function is logistic, the algorithm is called Logistic Regression (LR). The
function f(x) with the best regression coefficients β computed for the new data
point returns a probability value of belonging to the chosen class [207, 208].

Support Vector Machines (SVM)

The Support Vector Machines (SVMs) algorithm is one of the most popular
supervised ML methods [209]. SVMs were used for discovery of gene-gene
interactions, from Gene Wide Association Studies datasets [210], for cancer-driver
gene discovery [211] and prediction of diabetes [212]. The idea of the support vectors
is inherent to other algorithms like Support Vectors Regression (SVR), which solves
the regression problem [213] and Support Vector Clustering (SVC) solving the
clustering task.

In the basic configuration, SVMs distinguishes between two classes. The
algorithm solves a regression equation of a hyperplane separating the data points
belonging to the two classes while maximizing margin between them. The margin is
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defined as a sum of the support vectors lengths. Each support vector starts in one of
the data points and is perpendicular to the hyperplane separating the data points.
Consequently, a result of SVM is a maximum margin classifier [214, 215].

If the data points are linearly separable the hard margin SVMs can be used.
However, they rarely are. Soft margin SVMs allow some data points to violate the
hyperplane, or in other words, they relax the definition of the margin to allow for
errors. The error is parameterized so that the tradeoff between the accuracy and
overfitting can be controlled [205].

However, independently on the margin, linear separation is often impossible to
find. Therefore, the SVM algorithm uses a kernel function to transform data into
another space, where hopefully the linear separation would be possible. Kernels
transform the attribute space of the original dataset into the feature space. Thanks
to kernel functions SVMs constitute a class of extremely versatile ML tools. Popular
ML toolkits include large sets of kernels such as linear, polynomial or radial basis.

Ensemble methods

The ensemble machine learning algorithms classified do not share a mathematical
core, rather they share a general approach. A single ensemble method classifier
consists of multiple base classifiers. Their rationale is that a large number of weak
classifiers improves generalization while reducing overfitting. Ensemble methods
are further divided into averaging and boosting. Averaging methods attempt to
construct a large group of independent base classifiers whereas the boosting methods
build a collection of classifiers sequentially, with each classifier attempting to improve
the previous one.

Random forest (RF) is an ensemble, bagging algorithm. Single RF classifier
consists of multiple classification trees [216]. In a classification tree, each node
represents a single decision on how to separate the input data. Splits consist of
a feature and its value, based on which separation of the data points results in
the two maximally clean groups in respect to the two classes. The features and
values can be used multiple times within one tree, therefore, trees can grow quite
large. Size of a tree is limited by parameters specifying the maximal depth and the
minimal number of data points in a leaf. A tree is built by recursive data partitioning
so that every split maximally decreases impurity of data subsets represented by
subsequent nodes (CART algorithm for building trees [217]). While building a single
tree, the algorithm uses a random subset of samples and selects the best feature
from a randomly selected subset of features. The two-tier randomization ensures
trees in an RF are independent. In the Extra-RF algorithm, the value of a split
is also randomly selected. RF is parameterized by a number of trees in a forest
and a number of features available for selection at each split. RF classifies a new
observation via asking each tree for prediction and returning the class with the most
votes.
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While randomly choosing a subset of observations for each tree in the RF,
there is on average 36.8% of observations that are never used. This subset of
observations is called Out of the bag (OOB) and is used to compute accuracy. The RF
algorithm enables independent variable importance measurements. For each feature,
the algorithm will analyze splits that use it, and measure how efficient they are in
the partitioning of the data using the Gini index.

The Adaptive Boosting algorithm (ADA boost) is another ensemble method.
Similarly to RF, ADA boost makes a prediction based on the majority vote of all
base classifiers. However, every classifier is boosted. Boosting lies in the subsequent
modifications of training data. ADA boost assigns weights to each of the samples
and modifies them with each iteration. The weight of the data point is increased
if the classifiers failed to predict a proper class for it. Therefore, each classifier is
consequently more fitted towards those problematic cases [218]. The base classifiers
are often small decision trees.

Gradient Boosting algorithm approaches boosting as the optimization task in
respect to the loss function. Algorithm modifies each sequential base classifier to
minimize the value of the loss function [219].

Artificial neural networks

The Artifical Neural Networks algorithm (NN) constitutes a separate class of ML.
A single Neural Network consists of layers of neurons or perceptions: a single input
layer, several hidden layers, and one output layer. There might be multiple hidden
layers, and each can comprise hundreds of perceptrons, depending on the complexity
of the learning problem. Single perceptron accepts multiple inputs of real numbers
and returns a numerical output. Perceptions of one layer pass values to those in the
following layer, in the one to multiple manners. A perceptron is parametrized by
weights, modifying inputs, bias, and activation [220].

The backpropagation algorithm enables finding the weights, biases, and
activation values for the given neural network [221]. The backpropagation algorithm
uses similar concepts as SGD. However, there are more dimensions to it, since
the weights and activation values depend on the values from the previous layer.
Hence, the propagation term, as it starts from the output layers, and moves towards
input layers. It also uses the averaged quadratic cost function, that is, like in SGD,
computed separately for each neuron.

2.6.2 Classifiers performance measurements

The input dataset defines the ML-task, and therefore, the main class of algorithms
to be used: supervised or unsupervised. However, there remains an ample space of
algorithms and parameters to search. Therefore, the methods enabling comparison
of the performance of the classifiers are used so that selecting of the best-performing
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combination of algorithm and parameters is possible. Below, several methods for
classifier performance measurement are discussed.

Confusion matrices Confusion matrix refers to four values often computed to
describe a performance of any tests. Confusion matrix contains a number of true
positives (TP), the number of genuinely positive data points that was also predicted
as such by the classifier. True negatives (TN), genuinely negative data points also
predicted as belonging to the negative class. False positives (FP), negative data
points predicted as positive, and false negatives (FN), positive data points that
were falsely marked by positive. Confusion matrix enables computations of the other
values such as accuracy and sensitivity. Accuracy is a portion of the correctly called
data points of both classes ( TP+TN

TP+TN+FP+FN ). Sensitivity is a portion of the correctly
called positive class data points out of the positive class data points predicted by
the classifier ( TP

TP+FN ).

Cross-validation To test the performance of the classifier with a confusion
matrix, first, the data has to be divided into train and test subsets. Often the
dataset is divided into a numb (N) of subsets, the classifier is trained using the
data of all but one sets (N − 1) and tested on the one not used for training. These
steps is repeated N times, and the average statistics for the runs is computed. This
procedure is termed cross-validation. The final classifier is typically built using all
of the available data [222].

Receiving Operator Characteristics (ROC) Receiving Operator
Characteristics (ROC) is one of the classical methods of quantifying the performance
of the classifier [223]. The ROC curve is defined as the relationship of the False
Positive rate to the True Positive rate, depending on the thresholds. For RF, the
threshold is the portion of trees needed to classify a data point as one of the classes.
The area under the ROC curve (AUROC) denotes the overall performance of the
classifier. The larger the AUROC, the better.

Overfitting Classifier training is typically optimized regarding accuracy. That
strategy often leads to overfitting. This happens when classifiers learned so much
on the training data they eventually fail to generalize. To control it, one needs to
measure prediction accuracy for both train and test subsets. The difference between
them favoring of the training set denotes overfitting, the larger the difference, the
worse the classifier.

Permutation significance test Permutation significance measurement denotes
if the classifier learns from the data at all. First, it trains the classifier on the
training set and measures the accuracy based on the test set. Next, the class labels
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are permuted, and the learning and testing steps are repeated. The proportion of
runs where the classifiers with the mixed-labeled dataset achieved better accuracy
than the native dataset is reported. The significant portion of the runs when the
mixed dataset performed better denotes the classifier failed to learn.

2.6.3 Data pre-processing

The data preprocessing comes typically before or in-between algorithm selection
steps, as feature selection and other data manipulation modify the dataset so that
the algorithm selection needed to be repeated. This section outlines several aspects
of the datasets and their pre-processing.

Curse of dimensionality ML often deals with datasets of high dimensionality.
However, the more dimensions (features) dataset has, the more data points are
needed to generalize. This relationship is exponential. This is known as the curse
of dimensionality [224]. The unsupervised ML algorithms can deal with higher
dimensionalities in respect to the number of data points, in comparison to the
supervised methods [222]. This is one of the aspects that govern the choice of
algorithms.

Variable importance and dimensionality reduction The supervised
classifiers enable feature importance measurement called permutation accuracy
importance. For a single variable at a time, its values are permuted among
observations. The classifier is trained again for such dataset. The difference in
accuracy between the classifier trained on the regular and permutated datasets
speaks to how informative or important is the feature. Permutation accuracy
importance was reported to be less biased then Gini-based method [225], in case
of the RF algorithms.

The feature importance measurements provide a unique insight into the data.
They can also drive the feature selection process that aims at removing uninformative
features to reduce dimensionality and limit the complexity of the data. There are
numerous strategies for dimensionality reduction, the choice of which depends on
the data type [226].

Informative value of the features can be estimated with a univariate approach
by evaluating the distribution of each feature and their relationship to the output
vector. The most natural approach is removing features with low variance. Other
approaches rely on testing if the distributions of the feature values differ between
classes, with methods such as Analysis of variance (ANOVA) or chi-square tests.
Features for which distributions of their values differ significantly between the classes
are highly scored.
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Data encoding Although the size of the dataset is an essential factor, researchers
used to say the data on its own is not enough, no matter how much of it you have.
Data for machine learning are typically in the form of a numerical matrix. However,
real-world high dimensional datasets are almost never entirely numerical. There are
no general rules on how to encode the specific data for the specific ML algorithms,
other than that the encoding should faithfully represent the real world data values.

Unbalanced data Often the class of interest is the minority class, like the
infected patients among all people admitted to the hospital, or MGE reads among
WGS datasets. Unbalanced data is a common problem in medical-informatics [227].
A substantial difference in representation of the classes in a training set might
cause a classifier to achieve high accuracy with zero sensitivity, and prevent it
from using minority class. There are four strategies for dealing with the problem
of unbalanced data. First is data stratification. This relies on finding a subset of the
data with lower complexity. Other strategies include over-sampling of the minority
class, under-sampling the majority class, and weighting of the data points.

Missing data No dataset is perfect. The majority of datasets is burdened with
missing data, i.e., records lacking information for some of the features. Strategy for
dealing with missing data depends on their pattern. There are three main categories
of missing data: data missing completely at random (MCAR), at random (MAR)
or not at random (NMAR). Data MCAR emerge from non-systematic errors. In
data MAR, there is an underlying distribution that governs the distribution of the
missing data. Oftenly data collected via questionnaires are burdened with MAR,
where some people are more prone to leave specific questions unanswered. The last
type is NMAR, where the pattern follows a clear structure, or there is a strong
correlation between one of the features in the dataset and the missing values.

There are several strategies for dealing with MCAR and MAR, among which
the most straightforward is listwise deletion, namely removing all incomplete data
points. It does not introduce bias for MAR and MCAR. However, of course, those
might be potentially valuable data points. In the case of NMAR, the reason for
missing data determines the strategy to deal with it. Even removing all of the records
with missing data in the case of NMAR might introduce bias.

Other methods rely on some forms of educated guessing. So that it does not
introduce bias but allows to use those data points. Standard methods include
average or median computation, maximum likelihood, or randomly drawing from
a picked distribution. Naturally, the more records there are in the data set, with more
confidence the value can be chosen as the distribution is more evident [228, 229].
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Chapter 3

MRSA from colonization to infection

3.1 Introduction

In this project, the changes in the genomes of the Methicillin-resistant Staphylococcus
Aureus (MRSA) isolates were investigated. The strains were isolated from the
SATURN patients undergoing antibiotic therapy, who were negative at hospital
admission, but had at least two or more positive MRSA samples, and developed an
MRSA infection within 30 days of the follow-up.

Five patients fulfilled that criteria: SE1582, SE1884, SE1890, SE1895, and
SE2054. All of them were treated in the same hospital. Each of the patients was
characterized by individual features and underwent unique antibiotic treatment
(Table 3.1). Here I compared the genetic makeup of the MRSA strains isolated from
different sites: the nose, lungs, and at different points during the therapy (Fig. 3.1).

Figure 3.1: Sampling pattern in relation to antibiotic therapy (gray fields) and overall
hospital stay (white fields). The nasal strains (N) were the first colonization strains,
and those found in sputum (BAL) were directly responsible for the infection. Numbers
denote days from the beginning of therapy.

The group of Prof. Surbhi Malhotra-Kumar from the University of Antwerp
isolated MRSA strains from the clinical samples of the selected patients and
performed sequencing of the DNA isolated from the colonies identified as MRSA.
My role was to analyze the differences in the genomes of the MRSAs while the
developing infection, and throughout the treatment.

37
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Table 3.1: Patients’ features and treatment schedules. Subplots are labeled by patient
identifier (e.g. SE1582). Days on which samples were taken are denoted with an S in
the timeline track.
SE1582

• 66-year-old man

• Underwent a surgery

• MRSA-positive
roommate

• Admitted from LTCF

SE1884

• 79-year-old woman

• Admitted from acute care

• Underwent a surgery

• Cardiovascular disease

• Diabetes

SE1890

• 54-year-old man

• Admitted from acute care

• Overweight

• Cardiovascular disease

SE1895

• 46-year-old woman

• Admitted from acute care

• Underwent a surgery

• Skin lesions

SE2054

• 62-year-old man

• Admitted from home

• Cardiovascular disease

• Myocardial infarction

• Underwent a surgery
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All patients were characterized by the multiple features known to increase the
probability of the MRSA infection. All of the patients underwent an extensive
antibiotic therapy, which was prolonged by the MRSA respiratory infection
(Table 3.1), and none of them took antibiotics before the hospital admission. The
majority of patients came to the hospital from another care facility. Four patients
underwent surgery. Three patients had cardiovascular disease and one suffered from
diabetes.

3.2 Bioinformatics pipeline

The dataset consisted of MiSeq sequencing of the MRSA genomes isolated from
thirteen samples of the five patients. The size of the dataset and the high variability
of features impeded comparison between the patients. Therefore, an analysis focused
on the intra-patient differences. Two strategies were employed: reference-guided
assembly and variant calling (Fig. 3.2).

Figure 3.2: Overview of the MRSA’s genome assembly and analysis pipeline. Green
color denotes the main assembly and annotation and violet the variant calling parts of
the pipeline. Blue boxes describe what information was obtained at each of the steps.
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Operons of rRNA genes constitute the largest repetitive region in the MRSA
genome. A single rRNA operon consists typically of multiple copies of genes
encoding 16S, 23S, 5S rRNAs, and tRNAs. As assembly of repetitive regions from
short sequencing reads poses a computational problem, rRNA reads were filtered
out for a separate assembly. First, in the reference genome regions annotated
as RNA were identified. They were merged if they were located less then 1000
bp apart. Next, the corrected reads were mapped onto them. The mapped
reads, along with their mates regardless whether they were mapped or not, were
separated into two sets. They were assembled separately with Spades, rRNAs with
parameters: -careful-k 19,21,33,35 –cov-cutoff 1 and the rest of the reads
with parameters: –careful-k 19,21,33,35 –cov-cutoff 10.

The contigs were aligned against the NCBI NT database with BLAST so that the
potential contaminants could be removed. The filtered scaffolds were then ordered
using a reference genome and the scaffold-builder web-server. Next, RAST was used
for annotation. Several web servers were used to answer specific questions: ResFinder
for ARGs identification, PHAST for phage identification and VirulenceFinder to
find virulence genes. Below the methods used in the pipeline (Fig. 3.2) are briefly
described. The pipeline starts from the scaffolds of the two separated assembly runs
merged into one file.

• Read mapping with Bowtie [230]
Bowtie was used to map the reads against the MRSA reference genome
Staphylococcus aureus subsp. NCTC 8325 chromosome (NC_007795.1). Next,
samtools [231] were used for manipulating and analysis of the output files.

• Assembly with Spades [232]
There are so many assembly programs that several publications were written
to compare them [233, 234, 235]. Most of the assemblers implement de Bruijn
graphs but vary in their post-processing. Spades was selected because it
included the reads correction procedure. It also implements a multisized de
Bruijn graph (using different k-mer sizes) and good algorithms for dealing
with bulge/tip and chimeric sequences. Additionally, Spades was described as
exceptionally efficient in utilizing pair-end reads.

• Plasflow [176]
Plasflow is one of the recently released tools using k-mer and machine learning
methods to classify sequences as bacterial chromosomes or plasmids. It was
used to remove plasmids before scaffold reordering.

• Contig reordering and merging with Scaffold Builder [236]
Scaffold Builder is a web-server for ordering scaffolds or contigs using the
reference genome. Unlike Mauve the Scaffold Builder can connect sequential
scaffolds if their terminal sequences are highly similar.
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• Assembly quality measurements
For the single-strain assembly task addressed in this project, the quality
measurements relying on the size of the scaffolds and comparisons to the
reference could be used. The most popular characteristics of assembly quality
are N50 and N90 [237]. N50 is the highest threshold, such that all contigs
longer than the threshold cover  50% of the reference genome, for N90 the
contigs cover  90% of the reference. Therefore the best is the assembly with
the largest N50 or N90 characteristics.

• Genome alignment with Mauve [238]
Mauve stans for Multiple Alignment of Conserved Genomic Sequence With
Rearrangements. The Mauve program is often used for whole-genome
comparison. It computes Locally Collinear Blocks (LCB) that indicate
corresponding fragments of assemblies. Mauve was used for scaffold reordering
and alignment of the genomes of strains isolated from the same patient.

• Genome annotation with RAST [239, 240, 241]
RAST stands for Rapid Annotations using Subsystems Technology. It is an
annotation server for genome assemblies of known bacteria. An input to RAST
consists of contigs and a taxonomic identifier of the closest relative of the
assembled bacteria. Briefly, the RAST pipeline relies on gene prediction and
annotation of gene function with BLASTP. However, it is quite precise since
it performs multiple iterations of filtering and comparisons with the reference.
The genes are assigned to pathways that in RAST are termed subsystems.

• Genome annotation with myRAST [239, 240, 241]
myRAST is a desktop edition of RAST, which also enables annotation of
genomes. However, instead of using the provided reference, it computes the
taxonomic correspondences locally. Therefore it can annotate fragments of
genomes, like metagenomic assemblies. In this project, myRAST was used to
annotate subsystems on all sequences, and to annotate plasmid sequences.

• Annotation of resistance genes, plasmids and virulence genes, with
ResFinder [242], PlasmidFinder [243], VirulenceFinder [244]
These tools employ BLAST programs to compare the input genomes or
assemblies with the curated protein databases. In the case of PlasmidFinder
and ViruelnceFinder, the databases are species-specific. Only the hits above
90% of similarity and covering more than 60% of length are taken into account.

• ISEScan [245]
ISEScan detects insertion sequences (ISs). An insertion sequence consists of
an ORF encoding a transposase, and two flanking inverted repeats (IR). ISes
contribute to HGT. ISEScan is an HMM-based tool. It aligns protein sequences
of the predicted genes to the transposase HMM profile. In the second step,
ISEScan finds the IRs.
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• PHASTER [246]
The Phage Search Tool PHASTER is a web-server for finding pro-phage
sequences in bacterial genomes. An input can be a genome sequence or
a scaffold file. It uses GLIMMER for gene prediction, and BLASTP to compare
translated ORFs with the prophage protein database. A cluster of phage-like
genes is denoted a prophage if it has at least six genes annotated as one of
the protease, integrase or tail, and contains an integrase and a potential phage
attachment site (att). For each site, a completeness score is assigned. Finally,
a list of phages and scores is returned, along with the classification of the hit’s
incompleteness: questionable, incomplete or intact.

• Variant calling with FreeBayes [247]
FreeBayes generates a variant call format file (VCF) from an alignment of reads
onto the reference genome. It uses a probabilistic model to decide whether the
identified difference is a SNP or an INDEL.

• Function-based comparisons with LAST+MEGAN-LR [248, 148]
The assembled scaffolds can be treated as long reads and the MRSA genome
sequencing datasets as easy metagenomic datasets. The assembled scaffolds
are aligned with LAST against the NCBI NR database. The MRSA scaffolds
were analyzed with MEGAN-LR pipeline and compared with PCAs and
phylogenetic trees using functional annotations.

The computations were performed using in-house servers and
Baden-Württemberg’s HPC services of the BwUniCluster. For the pipeline,
plotting, and analysis the Python3.6 programming language was used [249, 250].

3.3 Results of assembly and annotation

3.3.1 Raw data and contamination

The dataset consists of thirteen MiSeq sequencing samples. Reads were pair-ended
and 120 nucleotides long. Regarding read numbers the samples were quite variable,
as the smallest had ∼ 65, 000 reads and the largest ∼ 300, 000 reads (Table D.1).

The corrected reads were mapped against the reference genome, and the reads
that did not map were aligned against the NCBI NT database with BLAST. Only
one hit with a very low e − value ¬ 10−4 was allowed for each read. The most
represented species were listed. On the one hand, I expected the unmapped reads to
align well to genomes of other S. aureus strains. On the other hand, if the majority
of the reads mapped to a single species, then that would be a strong indication the
sample was contaminated. Table 3.2 outlines the most common BLAST hits among
the unmapped reads. Among the most hits were transposons, plasmids, and phage
sequences. Therefore, the samples were not contaminated.
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Table 3.2: Twenty most represented hits among the BLAST alignment of the reads
without mapping to the reference genome.

Hit name Read count Samples
S. aureus subsp. aureus strain FORC_001 905,883 Present in all samples

S. aureus strain CA15 750,043 Present in all samples
S. capitis CR01 complete genome 573,553 Present in all samples

S. aureus strain RKI4 540,755 Present in all samples
S. aureus strain M121 428,873 Present in all samples

S. aureus strain FCFHV36 391,144 Present in all samples
S. aureus genome assembly NCTC13435 303,944 Present in all samples

S. aureus subsp. aureus strain Gv69 298,285 Present in all samples
S. aureus DNA 538,486 Present in all samples

E. faecium strain E240 transposon Tn5801 333,206 Not present in SE2054
Staphylococcus phage B166 246,640 Not present in SE2054

S. aureus subsp. aureus Z172 plasmid pZ172_1 280,506 Not present in SE1890
S. aureus plasmid SAP104A 531,380 Not present in SE1890, SE2054

S. aureus plasmid rep 360,092 Only in SE1582BAL, SE1890*

3.3.2 Assembly quality

Table D.2 presents the basic assembly statistics. For each sample, the rRNA and
non-rRNA scaffolds were put together and subsequently reordered against the
reference genome (Table D.3). In the majority, the samples were characterized
by similar values. They had between 500 and 700 scaffolds, with an overall size
of ∼ 2.8Mb, which was close to the size of the reference genome. The largest
scaffold was ∼ 1.0Mb long and an average scaffold length was ∼ 5, 600bp. Samples
SE1582BAL_S1, SE1884NT4_S2, and SE1890ND_S3 deviated from those average
values. More sequence and more scaffolds characterized the first two samples, and
the last sample assembled quite well into ∼ 300 scaffolds.

Figure 3.3: Assembly fragmentation. Each box denotes a scaffold. The red line denotes
size of the reference genome.

The assembly fragmentation was similar for all samples, except the assemblies
of the samples SE1582BAL_S1 and SE2054N_S1, which were visibly more
fragmented (Fig. 3.3). All of the assemblies had a tail of small-sized scaffolds,
but the SE2054N_S1 sample had an exceptionally long one and was visibly more
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fragmented. The more significant amount of sequence and fragmentation of the
assembly of some samples might suggest the isolates carried plasmids.

3.3.3 Plasmid identification

A single MRSA cell can contain up to eight plasmids [251] with a wide range of sizes
(Fig. D.1). Plasmid sequences are versatile, and their fragments are often found
in bacterial chromosomes. Therefore reads cannot be universally filtered based on
their mapping to known plasmid sequences. Accordingly, a multistage pipeline was
employed to exclude potential plasmid scaffolds. First, the PlasFinder for reads was
executed.

Plasmid Finder was only able to assemble fragments of the known plasmids
(Fig. D.2). Those fragmentary plasmid hits enabled a comparison between the
samples. For the majority of the patients, the plasmid pattern did not change during
the sampling. Therefore, there was no instance of plasmid acquisition, which would
have made a strain infectious. The only exception was the SE1582NT4_S4 sample,
which had fragments of pKH3 and pKH12 plasmids, where the sample of the previous
timestep (SE1582BAL_S1) contained fragments of pDLK1, pNE131, and pKH12
plasmids.

3.3.4 Reference-based scaffold ordering

Next, the scaffolds were reordered again, with two different programs Scaffold builder
and Mauve. Several selections of scaffolds such as excluding low coverage, short or
plasmid scaffolds, were used. However, these reordering attempts failed, as either the
programs finished with an error or the alignment of the assembly to the reference
genome showed too many rearrangements. Therefore, the plasmid identification was
insufficient. Consequently, I used the k-mer-based tool Plasflow [176], to identify and
remove plasmid scaffolds from the assembly.

The Plasflow program split scaffolds into three classes: plasmids, bacterial
chromosomes and not classified. The chromosome and unclassified classes were
merged as they both could include prophages. Next, the bacterial chromosomes
and unclassified scaffolds were reordered with Mauve. The resulting LCB-based
alignments to the reference genomes are presented in Fig. 3.4.

The alignments show evidence for rare and small rearrangements with respect to
the reference genome. Neither of the assemblies contained the ∼ 0.5 Mb fragment
of the reference located in the middle of the genome between ∼ 1.4and1.5 Mb.
Conversely, all assemblies, excluding those of the patient SE2054 isolates, contained
a large block in the beginning, which did not have a counterpart in the reference.
At this point, after Plasflow-based scaffold separation, Mauve reordering and the
alignment, the assembled scaffolds fall into two categories: plasmid scaffolds and
genome scaffolds (Fig. 3.5).
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Figure 3.4: The LCB-alignments of the assembled genomes and the reference located
on the latter bar. Red color denotes LCBs without a corresponding block.

The plasmid scaffold group consisted of the scaffolds annotated as plasmids by
Plasflow and chromosome scaffolds with conflicting rearrangements. The genome
scaffold group contained scaffolds used for rearrangement regardless whether they
had a correspondence in the reference. The final group comprised fragments of
the reference sequence that were not covered by the assembly. For the assembled
genomes, those were regarded as deletions. Analogously, the sequences in the
assembly without a corresponding block in the reference was termed insertions.
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Figure 3.5: Scaffold groups identified through LCB alignment to the reference.

Characteristics of deletions and insertions

The deletions carried genes belonging to multiple subsystems (Fig. 3.6). In all of
the samples, the most significant number of genes referred to the Phage subsystem,
suggesting that the strains differed from the reference genome in a large portion by
prophages.

Figure 3.6: The number of genes found in the deletions based on the myRAST
subsystems.

The patterns fall into two groups. Samples of the four patients SE1582, SE1884,
SE1890 and SE1895 had a similar pattern, whereas samples of the SE2054 patient
differed visibly. This suggests the patient SE2054 was infected with different MRSA
strain than the other patients, for which the reference genome was not the closest
known relative.

The gene content of the insertions was much less consistent. The insertions were
characterized by a unique set of subsystems represented by a single gene (Fig. 3.7).
There was no correspondence between the samples of the same patients. This
suggests that the insertions were random, and therefore, were signs of the errors in
sequencing and assembly process, rather than of a biological phenomenon. Therefore,
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from now on, the analysis focused on the three groups of scaffolds: genome, plasmid,
and deletions.

Figure 3.7: Numbers of genes found in the insertions. The labels denote myRAST
subsystems.

3.3.5 Phage detection and characteristics

The previous step revealed that phage genes constituted the most significant
portion of the genetic content of the deletions. Hence, the next steps included
phage taxonomic annotation. First, VirFinder was used to determine the relative
abundance of prophages in different scaffold groups. The distribution of the resulting
p-values (Fig. 3.8), showed that scaffolds of the deletions and plasmids were enriched
with phages in comparison to the genomic scaffolds.

Figure 3.8: VirFinder p-values for scaffolds for all samples, separated by the scaffolds
groups. The dashed line represents the p-value cutoff (0.05), below which the scaffolds
are assumed to contain phages.
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These results supported the separation of the scaffolds, but also the choice of the
reference. Phages constitute a vital part of the MRSA’s genome and contribute to the
virulence. Several phage strains encode toxins, such as toxin A and leukocidin [252].
In the next step, PHASTER web server was used to confirm the results of VirFinder
and to identify the phages (Fig. 3.9).

Figure 3.9: Phages identified by PHASTER in the three groups of scaffolds: the
assembled genomes, plasmids, and deletions. Numbers on the heatmap represent the
number of proteins. There were multiple phage taxa assigned to every region. In the
figure, only the most frequent phage name is shown.

PHASTER identified phage regions in the deletions and plasmids, which
confirmed the results of VirFinder. However, none of them included an intact
phage. The majority of samples contained an incomplete Phage 11 in the deletions.
In the plasmid sequences, PHASTER found several phage proteins, which is not
uncommon, as the phage and plasmid proteins are often mislabeled in the database.

The samples of the same patient did not share the phage pattern. This was
unexpected, as the rest of the features like resistant genes or insertion sequences,
showed a strong clustering within the single patient. Only two phages: phiJB and
phiNM3 were found intact, and they were located only in the genomic sequences.
Both of them are transducing, and able to transfer resistance genes, which has been
shown before [253]. They could refer to one phage since they share 93% of the
sequence.

The reference genome contained only one intact phage 47, which was not found
in any of the sequencing samples. This means that the incomplete and questionable
phages were artifacts of the sequencing, assembly, and reordering. Nevertheless,
almost every sample had between 10 and 40 phage proteins.
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3.3.6 Insertion sequences

Fig. 3.10 presents the number of detected insertion sequences by family and scaffold
group. Insertion sequences are the smallest possible MGE. They flank transposons.
All of the deletions, except those of the SE2054 patient, had two IS30. With those,
the phage proteins found by PHASTER, and the high proportion of phage sequence
detected by VirFinder, it is safe to say the gaps in the assembly in comparison to
the reference sequence, were mostly due to the MGEs.

Figure 3.10: The composition of the IS families.

Unlike in the case of phages, the pattern of ISes was much more consistent within
the patient samples. In each of the scaffold group, two IS families dominated the
distribution of the IS families. IS1182 and IS21 dominated the genome sequences,
and IS1182 dominated plasmid sequences. In the genomes, the IS family distribution
resembled the IS distribution of the reference. This confirms the correctness of the
assembly.

3.3.7 Genetic rearrangements between isolates

The next step was an alignment of the assembled and ordered MRSA genomes to
each other within a single patient. The alignment revealed small rearrangements,
and almost no insertions or deletions (Fig. 3.11).

The rearrangements were mostly localized around the 2.0 Mb position, and
right where the average VirFinder p-values decreased (Fig. 3.12). Suggesting this
region was enriched with phages. This could explain the rearrangements but also
the misassembly. Therefore, in the following step focused on the differences between
the annotations.
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Figure 3.11: Mauve alignment of samples within one patient. Red color denotes the
elements that lacked in the reference in at least one of the other sequences.

Figure 3.12: The line represents VirFinder p-value averaged across all samples, and
the light blue area indicates the standard deviation.

3.3.8 Basic annotation statistics

The assembled genomes were annotated with the myRAST web-server using default
settings. Table 3.3 presents the numbers of genes per sample in the genomic
sequences and plasmid sequences.

In the majority of the samples, the rRNA operon read filtering seemed not to
work correctly, as there were several rRNA operons found in the non-RNA read
assembly (not shown). Although the separation was imperfect, it improved the
assembly. In the majority of the samples, the numbers of rRNAs, tRNAs, and
CDSs were similar to those of the reference genome. The exceptions were samples
SE1582NT4_S4 with a lower number of tRNAs and SE1890Nt3_S4 with a low
number of rRNAs. Sample SE1582NT4_S4 also had abnormally low N90, which
suggests that it did not assemble well.
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Table 3.3: Numbers of annotated tRNAs, rRNAs and genes (CDS) in all of the
samples for the two scaffold groups: Plasmids and Genomes.

Plasmids Genomes
Sample CDS tRNA rRNA CDS tRNA rRNA

SE1582
BAL_S1 150 18 4 2,767 33 20
NT4_S4 77 30 2 3,127 64 25
SE1884
BAL_S1 102 19 1 2,760 32 20
NT4_S2 180 29 2 2,754 30 20
ND_S4 87 35 3 2,759 33 18
SE1890
BAL_S3 101 22 2 3,204 61 23
Nt3_S4 91 23 3 3,054 66 23
ND_S3 79 0 1 2,803 41 19
SE1895
N_S1 86 0 0 2,787 33 19
Nt2_S2 83 22 1 2,764 33 21
ND_S3 105 40 3 2,781 23 19
SE2054
N_S1 128 29 0 2,646 35 22
N3_S2 121 25 0 2,637 37 22

Reference 2,796 69 34

3.3.9 Plasmids

Several subsystems found in the plasmid sequences supported the results that those
sequences contained MGEs (Fig 3.13). The transposon Tn522 subsystem was well
represented in the samples of the patients SE1582, SE1895, and two samples of the
SE1890 patient. Two first samples of the SE1884 patient had some phage genes. In
the majority of the samples β-lactamase was found. Plasmid sequences in all of the
samples had a gene conferring resistance to streptothricin. Finally, samples of the
SE2054 contained a well-represented subsystem responsible for cadmium resistance.

Figure 3.13: Subsystem content in the plasmid sequences.
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3.3.10 Gene-level differences across sampling

Subsystems provide a high-level classification of the annotated functions. However,
only between 30-40% of the annotated genes were assigned to a subsystem. This was
also the case for the reference genome. Therefore, by focusing on the subsystems,
much information could have been lost. Consequently, the gene-level annotations
were compared, although for visualization some of the genes were grouped.

Figure 3.14: Heatmaps presenting the number of genes that differ between the
samples within a single patient. Some of the genes, like synthetases, phages or
prophage-associated genes were grouped.

Fig. 3.14 presents the genes, numbers of which differ between samples.
The majority of those genes were enzymes of the basal metabolism, such as
synthases, transferases, and non-enzymes such as tRNAs. Also, large portions of the
differentiating genes in almost all of the samples were phage-related, which agrees
with the results discussed previously.

The number of differentiating genes corresponded to neither the time between
the samples nor the level of the LCB-based rearrangements. The samples of the
SE1895 patient had the most time between them (29 days) also turned out to have
the smallest number of differentiating genes. However, the SE1582 patient took the
most significant number (six) of varying antibiotic classes. One of the patients took
four antibiotics, and the rest of the patients’ antibiotic therapies comprised three
antibiotic classes.
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For all but the SE1895 patient, differences in the multiple resistance genes such as
gentamycin, penicillin, erythromycin, tetracyclines, and methicillin resistance genes
were observed. In many samples, the number of virulence genes such as exotoxins
and serine proteases fluctuated. However, overall no pattern in the changes of gene
numbers was observed.

3.3.11 Antibiotics resistance and virulence factors

Two gene classes determine the overall pathogenicity of MRSA strains: virulence
factors such as toxins, adhesins, and antibiotic resistance genes. Two specialized tools
to annotate those features VirFinder and ResFinder were used. Since the previous
steps showed that the genome/plasmid separation could be imperfect, the tools were
applied to both of those sets of scaffolds (Fig. 3.15).

Figure 3.15: Presesnce/absence matrix of the resistance genes and virulence factors.

All of the isolates carried a typical for MRSA arsenal of toxins including
hemolysins (hlg), leukotoxins (luk), staphylokinase (sak) and aureolysin (aur). With
them, MRSA cells can attack the red blood cells, white blood cells, plasminogen,
and fight inflammation, respectively. Enterotoxins such as sei, sem, sen, seo that
attack the intestine, were observed in samples of the SE2054 patient.
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The MRSAs proved to be true MDRs as they contained tetracycline,
macrolide-resistant genes, and beta-lactamases. In most of the cases, patterns of the
virulence and resistance factors cluster by the patient. All strains contained mecA
conferring resistance to methicillin. The mecA is a marker for MRSA. Therefore, it
is worrisome the mecA of the SE2054 patient was localized on the plasmid scaffolds.
This supports the hypotheses that the strains isolated from the SE2054 patient were
more distant from the reference than the other isolates.

3.4 MEGAN analysis

To determine relationships between the isolates the LAST+MEGAN-LR pipeline
was performed separately for the genomic and plasmid sequences. MEGAN assigned
all of the genomic scaffolds to the Staphylococcus aureus node or to species nodes
below it. The plasmid scaffolds went mostly to the bacterial node, which was to
be expected, however, unexpectedly there were also viruses and Eukaryota found
(Fig. D.4).

On the one hand, the genomes of the isolates from the SE2054 patient were
similar to each other but distant from all of the other isolates (Fig. 3.16). The
majority of the isolates did not group by the patient but remained close to each
other. On the other hand, in the plasmid tree, all of the samples were equally distant
from each other. The trees agreed with the results of other methods.

Figure 3.16: Neighbor-Joining tree based on the functional assignments
(Interpro2Go).
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3.5 Variant calling

Variant calling was performed to reveal nucleotide-level differences in the strains.
A typical variant calling protocol consists of mapping reads onto a reference genome
and its analysis with a statistical model. The FreeBayes program identifies two types
of variants: single nucleotide polymorphisms (SNPs) and short insertions/deletions
(INDELS).

For the cleaned read mapping against the reference genome, the FreeBayes
program was used. The SNPs and INDELs with the lowest quality were excluded
(Fig. D.3). Fig. 3.17 shows the number of SNPs and INDELs per gene and sample.
Once more, the samples of the SE2054 patient largely differed than the rest of the
isolates.

Figure 3.17: Numbers of SNPs (red) and INDELs (blue).
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The SNP/INDEL patterns for the samples of all but the SE2054 patient
were quite similar. This means the genetic differences found by the assembly and
annotation could be located on MGEs, primarily since there were multiple lines of
evidence presented before for the presence of MGEs in the MRSA genomes and on
the presumed plasmids.

The majority of the proteins with SNPs and INDELs were virulence factors,
namely the proteins responsible for direct contact with the cells of the human body.
The most significant number of SNPs and INDELs was found in the clumping factor
B, myosin-cross-reactive antigen, intercellular adhesin proteins, staphylocoagulasses,
leukotocixns and fibrinogen-binding proteins.

3.6 Summary and conclusions

All samples were successfully assembled and annotated with multiple tools. The
results confirmed and complemented each other. The most variability was observed
in the sequences of proteins located on the surface of the cell, participating in contact
with the host. This makes sense since the time-distance between the samples is not
that large. All of the variability, from genome rearrangements to genetic alterations,
plasmids, and bacteriophages are a function of time, the pressure of the host immune
system and the antibiotics therapy. Unfortunately, the small number of patients and
the complexity of the therapies made it difficult to correlate the variability to any
particular feature of metadata.

The hypotheses that antibiotics therapy drives the emergence of resistance on the
cellular level could not be tested in this project. There were too few patients, with
too complex and unique antibiotic therapies. Nevertheless, in this study, the MRSA
isolates of the patient with the most elaborate therapy had the highest variability.

The MRSA isolates were rich in virulence factors and antibiotic-resistant genes.
Moreover, they were riddled with MGE-related regions and proteins, consequently,
they had a high potential for driving AR emergence. The results can surely be
improved with deeper sequencing or using a technology providing longer reads, or
optical maps to enable better reordering rather than using an arbitrary reference
genome. Both parts of this project, sequencing and bioinformatics analysis, were
performed before the long-read sequencing was accessible.



Chapter 4

Gut mobileome under antibiotics

4.1 Introduction

The gut microbiomes of two healthy individuals were studied throughout six-days
long ciprofloxacin therapy and subsequent 28 days of recovery. Authors analyzed
the abundance of antibiotics resistance genes (ARGs) and confirmed that antibiotic
pressure causes AR emergence in gut bacterial communities [254].

In their discussion, the authors point at horizontal gene transfer (HGT) as
an essential factor in AR emergence [255]. This chapter describes a follow-up
study, aiming at characterizing HGT within the gut microbiome under pressure of
ciprofloxacin, focusing on the plasmids, transposons, and especially bacteriophages.

Usually, microbiome sequencing samples contain bacterial, phage and plasmid
DNA. The constant genetic exchange between bacterial chromosomes and mobile
genetic elements (MGEs) makes them difficult to quantify in the microbiome
sequencing data. To analyze the phage fraction of the gut microbiome, the
phage-only sequencing was carried out alongside the standard whole-genome
microbiome sequencing [172, 173].

Dr. Silke Peter and Prof. Matthias Willmann planned and carried out the
collection of samples and sequencing. My role was to develop an analysis scheme
to describe mobile genetic elements and their dynamics within the gut microbiome,
focusing on their role in AR emergence. The long-term goal is to develop methods
that do not require specialized phage-only sequencing. This setup provided a unique
opportunity to compare both datasets across multiple timesteps.

This chapter is divided into three parts: Methods, Results, and Conclusion. The
Methods section outlines the technicalities of the pipeline: the programs, parameters,
databases and statistical methods. In the following section, the results are presented
and discussed. Some results relied on multiple methods, and therefore the order they
are presented differs from the one in the Methods section.

57
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4.2 Methods

4.2.1 Sequencing

Two healthy volunteers were administered 500 mg Ciprofloxacin twice daily orally.
The stool samples were collected at six different timepoints: day 0 (before treatment),
days 1, 3 and 6 (during antibiotic treatment) and days +2 and +28 (after treatment).
Samples were processed, stored, the DNA extraction for the stool metagenome was
performed as described before [254], and the sequencing was performed at GATC
Biotech AGusing a paired-end sequencing with a read length of 2x300 bp on an
Illumina MiSeq with an insert size of 550 bp. The enrichment and extraction of
virus-like particles (VLPs) was performed as described previously [172, 173]. The
phage sequencing was performed on a NextSeq 500 system (mid-output kit, 2x150).

4.2.2 Bioinformatics pipeline

The sequences of mobile genetic elements (MGEs) are changeable, versatile, and
poorly represented in the current databases. Therefore, the classical read-based
analysis was not well applicable. However, the alternative approach based on reads
assembly and annotation is burdened with assembly and database biases. Therefore,
both types of analysis were employed (Fig. 4.1).

The read-based approach provides a global picture of the shifts in the data, and
the assembly-based a detailed analysis of the bacterial chromosomes, MGEs, and
their genes. To minimize potential bias, the parameters were chosen conservatively.
So, the assembly-based analysis was burdened by false negative, rather than a false
positive error.

First, the reads of the Phageome set were preprocessed with CutAdapt [256]. The
reads of the Microbiome set were merged, trimmed and filtered. Next, the analysis
pipeline was applied to all samples of both sets: the sequencing of the isolated VLPs
(Phageome set) and metagenomic sequencing of the WGS set (Microbiome set).

As both sets were human gut samples, the sequencing most probably contained
human sequences. However, the Phageome set was also potentially contaminated
with bacterial sequences. The contamination identification pipeline employed
sections of the both read- and assembly- based analysis. It is described in detail
in Section 4.2.5. The reads with an alignment to the identified contaminants were
filtered out. Finally, three read sets were created: all reads Raw, filtered reads Cleaned
and reads mapped to the assembled and filtered scaffolds Assembly.

4.2.3 Read-based analysis

The read-based analysis consisted of two parts: the classical metagenomics approach
based on the read alignment to a database, and a database-free approach based on
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Figure 4.1: Data analysis pipeline. Reads preprocessing was done with
Cutadapt [256]. Each sample was analyzed in two ways: assembly-based and
read-based.

a k-mer analysis. The first path of the pipeline provided an overview of the data
and a direct comparison to the first study.

Firstly, the reads were aligned with MALT [257] against the following
databases: 16S rRNA NCBI, CRISPR-spacer (blastn and semi-global mode),
CARD database [258] and selected bacterial genomes from RefSeq database (malt
parameters: mq=1, blastx, semi-global mode). The alignments against 16S rRNA
NCBI database and the selected bacterial genomes from RefSeq were used for
estimation of contamination levels.

The alignment against the CRISPR database was used to estimate the
phage fraction within the Microbiome dataset. The spacer abundance values were
normalized by the number of the reads in the sample. Next, for each of the samples,
a CRISPR profile was computed and used for PCA computations. The details of the
CRISPR-spacer database construction are described in Section 4.2.4.

The alignment of the reads to the CARD database provided rough estimates of
the ARGs abundances. The hits were filtered with two cutoffs: 90% identity, and
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the coverage spanning at least 80% of the protein’s length. Next, the number of the
aligned reads was averaged over the protein’s length and the number of reads in the
sample.

Secondly, the k-mers for both DNA-strands of the reads were extracted with
Jellyfish [259]. Each sample was represented by a vector of the relative k-mers
counts. K-mers of the following sizes were used for analysis: 15, 25, and 55. The
appropriate size of the k-mer needed to be used so that the most abundant k-mers
encapsulate all of the diversity between the samples. Low-complexity and low-count
k-mers were ignored. The numerical k-mer profiles were used to compute PCs.
Next, the binarized profiles were used to compute pairwise Pearson product-moment
correlation coefficients (with numpy.corrcoeff function).

4.2.4 Assembly-based analysis

On the one hand, phage genomes are relatively small, so they should assemble well,
on the other hand, the phage community in the gut is expected to be quite diverse, so
the depth of sequencing might turn out to be insufficient. Nevertheless, two assembly
strategies were employed. First, the k-mer sizes were tested on the sets of all reads
for each of the variants, i.e., the set and participant (pooled assembly). Assembly
was performed with RayMeta (v. 2.3.1) [260] for the k-mer size with all of the odd
numbers from 19 to 39, and 55.

Secondly, the best parameters of the pooled assembly were used to assemble each
of the samples separately (separated assembly). Assembly runs of the Phageome
set were performed with pair-ended information, but for the Microbiome set, the
assembly was performed without it.

Evaluating assembly quality, especially in the case of metagenomics, poses a
problem. Most common strategies rely on maximizing N50, so they favor assemblies
with the most significant number of the longest scaffolds. However, since phage
genome size spans from thousands to small hundreds of thousands of bases, the
scaffolds size criterion is not applicable. In the case of this assembly, the quality
analysis relied on the number of predicted genes and their distribution on the
scaffolds. Basic assembly quality statistics were controlled with Quast [261], genes
were predicted with Prodigal [262].

Every scaffold was annotated with a range of features informing on various
aspects of the microbiome and phageome (Fig. 4.2). Below the methods are
described.

Alignment to CARD and PHASTER databases The LAST program [248]
was used to align scaffolds against the CARD database and phage protein database
PHASTER [246]. Then the hits were filtered by the e-value (¬ 0.001) and separated
into forward and reverse strands. For each of the strands, the hits were grouped into
pileups: if the alignment coordinates were overlapping, I assumed the hits aligned to
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Figure 4.2: Features collected for scaffolds organized in a mindmap. The tree icon
denotes the features used later in Random Forest runs.

a single ORF. For each pileup, the best alignment was chosen. Those were filtered
by the coverage, span, bit-score, percentage identity and finally the lowest e-value.
In the rare case that in the end there were multiple hits, their descriptions were
merged.

Taxonomic profiling The scaffolds were aligned against the NCBI NR with
LAST. The resulting files were meganized and analyzed using MEGAN [148].
MEGAN-LR [263] placed scaffolds on to the NCBI taxonomic tree. The resulting
profile was not abundance-aware, as it used the assembled scaffolds. Nevertheless, it
could be used as a general sanity check and for comparison with the previous study.

Gene prediction and annotation Genes were predicted with Prodigal [262].
They were first used to compute gene density, a portion of overlapping ORFs and
portion of the ORFs with reverse orientation. Next, the protein sequences were
extracted and input into myRAST [239] for the functional annotation and aligned
against the ACLAME proteins. The alignments were filtered based on the e-value
(¬ 0.01) and percentage identity ( 60%). The scaffolds were annotated with a
vector of the detected gene families. Each scaffold could have multiple proteins
identified as one of the 32,000 families.

Gene density values were computed for all of the available phage genomes in the
NCBI database and an equal number of the randomly selected bacterial genomes.
Their distributions were compared to the density computed for the predicted genes
for the scaffolds in the Microbiome and Phageome sets.

The ACLAME database contains 122,154 proteins of three MGE types: plasmids,
viruses, and prophages, classifies into ∼32,000 gene families. Gene families can be
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attributed to single or multiple classes of mobile genetic elements. 29,816 proteins
had a single class (plasmid: 16,632, vir: 9,124, proph: 4,060), 2,604 had two classes
(proph and vir: 1,745, proph and plasmid: 592, plasmid and vir: 267) and 499 proteins
were assigned to all three classes.

Cirpofloxacin resistance genes The ARG annotation was followed by the
sequence-wise analysis of the ciprofloxacin-resistant genes. The sequence of the
proteins conferring resistance to ciprofloxacin was analyzed in detail. The resistant
gyrases were found on the assembled scaffolds through the multistep pipeline: gene
prediction, extraction of the protein sequence, and their subsequent alignment to
the CARD database. Next, the relevant mutations were confirmed at the nucleotide
level through the analysis of the pileups of reads. Finally, the protein alignment of
all of the detected proteins to the appropriate reference, along with the pileup codon
counts were plotted.

CRISPR spacer database and annotation The CRISPR spacers are widely
used as markers for phage sequences [264, 265]. This approach requires an extensive
database of CRISPR spacer sequences. Two public CRISPR spacer databases were
used: CRISPI [266] and CRISPR [267], the spacers were obtained with CRASS [268]
from the Microbiome reads, and a number of public sets: samples downloaded from
the SRA NCBI database (SRR [269], TS29 [270]) and fecal samples from the Human
Microbiome Project (HMP [271]).

The CRISPR spacers were aligned against the assembled scaffolds with
BLASTn [272]. Hits were only considered if the percent identity was larger than 90%,
and the alignment covered over 90% of the spacer. On the other hand, scaffolds with a
CRISPR cassette are probably bacterial. Therefore, the CRASS runs were performed
on the scaffolds to exclude those that contain CRISPR cassettes. Filtering for phages
based on the CRISPR spacer alignment has been used in various studies [265].

Phage scaffolds identification The phageome contained only phage sequences,
whereas the Microbiome comprised both bacterial and phage sequences. Therefore
a method identifying a scaffold as phage within a metagenomic dataset was needed.
The tools to identify phage sequences have been developed mostly in the context
of bacterial genome annotation, i.e., detecting prophages. However, there are two
tools primary suited for detecting phage scaffolds within metagenomics assembly:
VirSorter [273] and VirFinder [175]. VirSorter uses a wide range of metrics to rule
whether a given sequence is viral or not. VirFinder uses k-mers and machine learning
to identify phage scaffolds. In case of VirSorter the results are binary, but with
VirFinder an arbitrary cutoff has to be defined (p-value ¬ 0.05). Both methods
were applied, but VirSorter returned no results. Hence only VirFinder was further
used. VirFinder is trained on known phages deposited in the database. This means
its machine-learning classifier does not encapsulate the entire space of phage genetic
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diversity. Consequently, VirFinder’s prediction for such a rich dataset like the human
gut sequencing is burdened with a high rate of false negatives. To enrich the phage
scaffold selection a Random Forest (RF) [216] was used.

The RF classifier was trained based on the positive class consisting of the scaffolds
the VirFinder gave a low p-value (6 0.05). Each scaffold was encoded as a vector
of numerical values representing the various phage, sequence and gene features
presented in Fig. 4.2. A single cycle consisted of training and prediction steps. The
classifier was trained on the undersampled dataset containing 90% of the positive
data points and an equal number of randomly chosen negative data points. Hence,
each run leaves a large number of unused scaffolds. For those, the new classifier was
used to make a prediction. The cycle was repeated 500 times, so that in the end for
all of the negative scaffolds the prediction will be done multiple times.

If at least 80% of the cycles resulted in a positive prediction by the RF classifier,
the scaffold was denoted as a phage. The Out-Of-Bag accuracy (OOB) was used
to evaluate the performance of the classifier, and mean decrease in accuracy to
investigate feature importance. Further parameters of the RF classifiers were selected
using the provided mechanism of parameter selection (grid_search).

The RF parameters had to be first selected so that the overfitting was minimized.
The first test for overfitting measured the differences in accuracy between the train
and test subsets across 500 runs under the cross-validation regime (40 to 60 %).
Second test measures proportions of scaffolds denoted as phage by the entire RF
set across a range of the cutoff values. The rationale is that better RF classifiers
produce a flatter trajectory less dependent on the cutoff value.

Phage integration analysis Microbiome phage scaffolds were aligned against all
scaffolds from the subsequent timestep within the Microbiome dataset. If the phage
scaffold aligned entirely to a much longer non-phage scaffold, we assumed that was a
possible integration occurrence. A new integration occurrence happened when there
was no integration at the same time-point.

Phage taxonomic assignment For the scaffolds that have a valid alignment to
one or more proteins from the PHASTER database, taxonomic identification was
possible. The proteins in the PHASTER database had an NCBI phage taxonomic
name. Hence, a single scaffold could have multiple PHASTER alignments with
multiple taxa. The bit score sum was computed for each taxon from the proteins
assigned to a scaffold. Next, a scaffold was assigned a phage taxon with the highest
bit score sum. If there were more than one taxa with the highest bit-score sum, a
viral name was not assigned.

MGE detection: Plasmids, Transposons and Integrons Other MGEs, such
as plasmids, transposons, and integrons need to be identified within the metagenomic
assembly. Plasmids were identified in two steps. Firstly, the PlasFlow program was
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used with a 0.95 cutoff [176]. Secondly, scaffolds were filtered with at least one protein
from a plasmid family in the ACLAME classification. Next, the insertion sequences
were annotated on the scaffolds with ISEscan [245]. The scaffolds that were not
classified as phages and had at least two IS found were classified as containing
transposons. Analogously, scaffolds with integrons were defined as those that are
not phage and have an integrase.

ACLAME protein family assignments enabled a parallel MGE classification. This
was defined as the largest common subset of protein assignments for proteins on
a single scaffold. However, provided all proteins had all annotations to all three
families, this scaffold would appear as both phage and plasmid. Therefore, this
classification is not independent.

4.2.5 Contamination assessment

Removing human sequences was relatively straightforward as they are not similar
to those of the microbiome. However, separating phage from bacterial sequences
posed a more significant challenge, as the phage genomes are often incorporated
into bacteria. The bacterial sequence needed to be covered in a large portion and
continuously by the phage reads so that it was evident that the bacterium is a
contaminant. Fig. 4.3 presents the pipeline for contamination estimation.

Figure 4.3: Contamination estimation pipeline.

Level of contamination was first assessed by the relative counts of the 16S rRNA
reads in the Phageome and Microbiome sets. Potentially, the 16S rRNA gene or
its fragments could be picked up by phages and consequently be present in the
Phageome set. However, their proportion should be significantly lower than in the
Microbiome. The proportions of the 16S rRNA reads were compared between the
corresponding samples of the Phage and Microbiome sets.
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The alignment of the reads to the 16S rRNA NCBI’s database also provided
the taxonomic profile for the Microbiome set. The full bacterial genomes of the
taxa found in 16S rRNA alignment were selected from the RefSeq database to
construct a limited RefSeq. The preprocessed Phageome reads were mapped against
the sub-selected RefSeq. Next, the coverage profiles were computed, so that each
record was represented by a vector of its length holding the number of reads
covering each position. If the reads cover the entire length of the genome, it
proves that the bacterial genomic DNA was present in the sample. Subsequently,
the reads mapped to the most extensively covered genomes were extracted and
assembled with Ray, separately for each sample. The resulting scaffolds were ordered
with scaffold-builder [236] and compared to each other and the reference with
MAUVE [238].

Assembled scaffolds were aligned against the NCBI nucleotide database (NCBI
nt) with Minimap [274] (Fig. 4.3). The alignments were filtered by the coverage of the
scaffold ( 90%) and identity ( 90%). If scaffolds collectively covered a significant
portion of the record in the NCBI nt database given NCBI nt hit was denoted as
contamination. The coverage threshold differed depending on the type of the record:
for the bacterial genome ( 20%), and for the plasmid sequence ( 70%). Later,
the scaffolds with a strong alignment to those were filtered out.

Finally, the preprocessed reads of both sets were mapped with Bowtie2 [230] to
the database of potential contaminations: the human genome in case of Microbiome
and human genome with the Bacteroides species caccae and cellulosilyticus identified
in the previous step in the case of Phageome.

Because the contamination assessment used the scaffolds, I did not rerun the
assembly for the Cleaned reads. Instead, the scaffolds were filtered. The filtering
removed scaffolds with a high-quality alignment (coverage  80% and identity 
80%) to human contaminants in the case of the Microbiome set, and the identified
bacterial genomes or plasmid sequences in the case of the Phageome set. The list of
the contamination taxa was defined separately per sample. The subsequent steps of
filtering included removing scaffolds with CRISPR cassettes and those shorter than
500 bp.

4.2.6 GC-content analysis

GC content was analyzed with the Kernel Density Estimation (KDE) function. KDE
fits the density function to the given histogram, smooths the data, and presents only
the relative values. The GC-content for the sequencing reads had two maxima in the
KDE plots. The bacteria responsible for the GC-content shape were investigated.
First, peaks were detected and the ratio of their heights was computed. Using the
taxonomic assignments the sets of scaffolds were created so that they contain all but
the selected taxa. If the peak ratios changed, the taxon in question was assumed to
be responsible for it.
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4.2.7 Abundance trajectory analysis

At the core of the analysis is the concept of a abundance trajectory, i.e., level of
abundance for each of the timepoints. In the case of metagenomic sequencing the
abundance cannot be measured directly - therefore, we used an approximation of
the abundance. First, with Bowite2 [230] the cleaned reads were mapped to the
scaffolds. Next, with samtools [275] the number of reads per position was computed.
The average coverage (cov) per scaffold is computed according to the formula:

cov =
∑L
i=1 covi
NL

× 106 (4.1)

here, L is the scaffold length, covi is coverage of the i − th position and N is
the total number of reads in the sample, the value was scaled by 106. The average
coverage of the scaffolds was an approximation for abundance.

Feature abundance is the sum of the average coverage for all scaffolds with
a defined feature and its value, e.g. GC  50%. Any annotated feature or its
combination can be used (Fig. 4.2), e.g., antibiotic resistance for scaffolds longer
than 1000 bp. Feature abundance for each of the consecutive timepoints constitutes
the feature abundance trajectory.

The feature abundance trajectories were computed for all of the lowest-level
features of the functional annotations, the ARGs from the CARD database, HMM
profiles for the ARGs and functional gene assignments from myRAST. Separately,
the trajectories were computed for the phage taxonomic assignments. The feature
abundance trajectory for a single gene or a profile could also be computed for any
on the scaffold selection. The scaffolds were selected so that they reflect the MGEs.
In the Phageome, there was just one scaffold group: all scaffolds, encapsulating all
free phages. In the Microbiome, there were several scaffold groups: phage, bacterial
(non-phage), plasmid, transposon, and integrons. All possible feature abundance
trajectories were computed for all features, scaffold selections, participants, and
datasets.

Next, the trajectories were scaled (to range 0.0 to 1.0) and clustered with
Agglomerative Clustering (four clusters, complete linkage, cosine affinity). For each
cluster, the average scaled trajectory was computed. All observed average scaled
trajectories were sorted, numbered and color-coded. Finally, for each participant,
scaffold group and classification (e.g., all functional annotations), the profile of the
trajectories were plotted in horizontal stack-charts.

The features were organized hierarchically. Therefore, the higher level trajectories
comprised, the lower level trajectories. The first level constituted global analysis
with no feature selection incorporating all scaffolds and resulting in a single global
abundance trajectory. Next, the phylum-level analysis included a vast majority of
the scaffolds described a division between Gram-positive and -negative bacteria. The
third level: general MGE and antibiotics level, included selections of MGEs, carriage
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of ARGs, the ACLAME classification and HMMs. The last gene-level analysis
described the particular genes within the functional annotations, taxa within the
taxonomic assignments, and profiles within the HMM profiles.

Abundance trajectories enabled analysis of the dynamics between the phages
and the bacteria. However, the phage scaffolds needed to be paired with their
hosts. WiSH [276] assigns a phage to its best host based on the shared k-mers.
The sub-selected RefSeq served as a database of the potential host genomes. The
scaled abundance trajectories of phages and their hosts along with their ratio were
plotted. The ratio takes values from the range −1 to 1. The larger the positive value,
the more the host abundance exceeds the phage abundance. Growing values denote
the phage abundance decreasing in respect to its host’s abundance.

Additionally the diversity trajectories were analyzed. The diversity was computed
based on the feature abundance, with Shannon’s alpha-diversity (H), according to
the equation:

H = −
R∑
i=1

pi ln pi, (4.2)

where R is the number of features, and pi the proportion of k-mers or of the
feature abundance [277, 278, 279].

4.3 Results

4.3.1 Data and contamination

The Microbiome samples were comparable to the Phageome samples regarding the
number of reads, but there was more sequence as the Microbiome reads were longer
(Fig. 4.8). Overall, the samples had between 10 and 40 million reads each. There
were substantial differences in the amount of sequence between them, even among
those of the single participant and dataset. The differences were smaller in the
Microbiome dataset than in the Phageome dataset. Those differences could affect
the downstream assembly and the coverage analysis.

All steps from the contamination pipeline suggested the Phageome dataset was
contaminated with bacteria. Firstly in participant A the 6th and +2nd samples and
participant B the 3rd and +28nd samples had a higher proportion of the 16S rRNA
reads that in the corresponding sample of the Metagenomic dataset (Table 4.1).

Secondly, the alignment of the Phageome scaffolds to the NCBI NT database
revealed bacterial genomes and plasmids in the same samples as identified by the
16S rRNA analysis (Fig. 4.4). The reads mapping to the subselected RefSeq identified
the Bacteroides dorei and Bacteroides cellulosilyticus in participants A and B,
respectively.
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Table 4.1: Numbers and proportions of reads aligned to the 16S rRNA database for
both sets.

Number of reads in A (%�) Number of reads in B (%�)
Day Phageome Microbiome Phageome Microbiome
0 8,547 (0.7) < 25,494 (2.0) 6,606 (0.7) < 21,802 (2.2)
1 7,811 (0.5) < 12,074 (0.8) 7,804 (0.6) < 12,479 (0.9)
3 44,955 (1.1) > 25,765 (0.6) 23,737 (1.7) > 13,346 (0.9)
6 7,122 (0.3) < 24,224 (1.1) 15,647 (0.9) < 17,156 (1.0)
+2 32,258 (1.0) > 22,893 (0.7) 8,383 (0.3) = 6,100 (0.3)
+28 5,965 (0.5) < 15,456 (1.3) 44,499 (1.5) > 20,596 (0.7)

Alignment of the reads to the bacterial genomes of the sub-selected RefSeq
covered substantial portions of the bacterial genomes. However, the alignments were
scattered and incomplete, in which case I am convinced the reads came from phages.
Nevertheless, several bacterial genomes were covered throughout their entire length.
In participant A the genome of the Bacteroides caccae was well covered in the
3rd, 6th, and +2nd samples, and in participant B Bacteroides vulgatus, Bacteroides
cellulosilyticus, and Bacteroides ovatus were well covered by the aligned reads, in
the 3rd, 6th, +2nd and +28th samples.

Figure 4.4: Contaminations in Phageome. Coverage of the NCBI-NT alignments with
the scaffolds (a, c) and subselected RefSeq alignments with the reads (b, d).

Thirdly, de novo assembly of the bacterial genomes from the aligned reads worked
only for the samples of two days per participant, i.e., 1st, 6th days in A and 3rd,
6th days in B. Mauve alignments of the assembled genomes to their corresponding
reference (not shown) proved that those were high-quality assemblies although, in
both participants, the assembly did not cover the entire reference. Especially as
that was metagenomics sequencing, such high-quality assembly proved the bacterial
contamination of the Phageome samples.
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Other groups have also reported bacterial reads in the phageome sequencing
projects [183]. This raised the question whether they are not a sign of interesting
biological phenomena, such as sporulation. Spores are small enough to pass
through the phage filter and could have undergone DNA-extraction alongside VLPs.
However, sporulation is a complicated process controlled by an extensive network
of genes. Therefore, I checked if any such genes were present in the annotation
of the assembled scaffolds on the contaminations. The only gene corresponding to
the sporulation found was the Spore maturation protein A-like protein. However,
there were no alignments to the HMM of the Spo0A profile, which is a sporulation
driver [280].

Finally, the reads were filtered based on the sample-specific list of
contaminations. The set of reads without mapping to the identified contaminants
make up the cleaned set. Scaffold filtering consisted of the three steps: length,
no CRISPR cassette, and no mapping to the contaminants. Only a few scaffolds
contained CRISPR cassettes in the pooled assembly of the Phageome set and even
fewer in the separated assembly. No such scaffolds were found in the Microbiome
set. The three-step scaffold filtering resulted in the greater convergence of the GC
content distributions.

Analysis of the GC-content distributions is the first quality check for the
sequencing data, as anomalies in the GC distributions can point to contamination.
The microbiome GC-content distributions for the assembled scaffolds were
characterized by a distinct secondary peak for both participants, but more distinct
in participant B (Fig. 4.5). Interestingly the height of the peak changed throughout
sampling. It is distinct on the first and last days of the therapy but disappeared
on the 6th and +2nd days. The secondary GC-peak decreased during therapy
with ciprofloxacin, suggesting that it was composed of sequence coming from
ciprofloxacin-susceptible bacteria, i.e., Gram-negatives.

Figure 4.5: GC-content distribution for the Microbiome scaffolds. Filtered
scaffolds denote scaffolds without taxonomic annotation to Alistipes, Firmicutes,
Subdoligranulumvariabile, Faecalibacterium, Clostridiales.
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Removing scaffolds with a taxonomic annotation to Alistipes, Firmicutes,
Subdoligranulumvariabile, Faecalibacterium, Clostridiales bacteria resulted in
decreasing of the secondary GC-peak. However, it was not completely removed,
suggesting there were other taxa with high GC content. The Alistipes bacteria are
Gram-negative, but Firmicutes, Faecalibacterium, Clostridiales are Gram-positive.
Therefore it contradicted the hypothesis that Gram-negatives were responsible for
the peak. Nevertheless, GC content is not a deterministic characteristic for bacterial
taxa, and even small taxonomic groups of bacteria can include bacteria with a wide
range of the GC content [281]. However, at this point, I assumed the secondary peak
of the GC content was not a sign of the contamination.

4.3.2 Read-based analysis

Cleaned reads were aligned against the CARD database. Overall, ARGs were present
in both datasets, and some their abundance changed in response to antibiotic
therapy primarily in the Microbiome set. The results suggest that TetQ was the
most abundant ARG (Fig. 4.6). The ARGs found in Phageome participant A were
more diverse than those found in participant B, which, however, was not the case
in the Microbiome dataset. The OXA-347 gene was found in participant A, in
both datasets, which agreed with discoveries of the original study. There was a
correspondence between the most abundant genes detected in both sets for the
same participant. In participant A, among the first ten most abundant genes seven
genes repeated in both datasets, whereas in B, six genes repeated.

Figure 4.6: The read-based abundance of ARG for the most abundant genes.



4.3. RESULTS 71

The k-mer-based correlation showed the therapy-related change was not limited
to the ARGs, as both sets changed under the pressure of antibiotics (Fig. 4.7). The
correlation matrices were more comparable within a single patient than between
the datasets. In participant A’s Phageome and Microbiome, first two samples, and
of the days from 3rd and 6th, were correlated with each other but anti-correlated
with samples of the 0th and 1st days. In Phageome the next three days were anti-
or weakly correlated to other samples. In Microbiome the samples of the 3rd to
+2nd days were correlated with each other. The last samples of Microbiome and
Phageome correlated again with the first two days. Therefore, both Phageomes and
Microbiomes in participant A restored their structure from the initial time-point
after 28 days of recovery. In participant B, the first three days, and then the 6th and
+2nd days were weakly correlated with each other in both Phageome and Microbiome
sets. The last sample was not correlated to any other samples. The microbiome of
the participant B did not return to the initial time-point.

Figure 4.7: Correlation matrices for cleaned reads kmer size 25. The overall shape
of the correlation matrices was independent of the underlying read selection and was
robust towards the k-mer size.

In all variants, the communities reached semi-stable states under the antibiotic
pressure. Changes in the Phageome went hand-in-hand with the changes in the
Microbiome. After the therapy participant A’s Microbiome and Phageome returned
to the initial structure, which did not happen for participant B. The k-mer
correlation pattern confirmed the findings of the original publication, which found
similar patterns using PCA of taxonomic assignments.

4.3.3 Detection of mobile genetic elements

The pooled assembly, with k-mer size 25, resulted in the most scaffolds with both
detected and predicted genes (Table E.4). Therefore, k-mer size 25 was used
for the separated assembly without further testing. As expected, the separated
assembly generated more sequence, in the form of shorter scaffolds, however, with
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disproportionately more predicted genes. Therefore, the separated assembly was
used for further analysis.

As expected, assembly caused information loss, as only between 40% to 82%
of the reads were used to construct the assembly (Fig. 4.8). The proportion was
lower in the Phageome than in the Microbiome, as was the number of scaffolds with
meaningful annotation. This suggests that the Phageome had insufficient sequencing
depth.

Figure 4.8: Number of reads aligned to the filtered scaffolds.

Plasmid identification

According to the ACLAME classification, obtained via protein alignment, in the
Phageome dataset, viral and prophage scaffolds outnumbered those with the proteins
assigned to plasmids (Fig. 4.9). In the Microbiome dataset, the proportions were
reversed. There were much less viral or prophage and more plasmid scaffolds. An
exception was the last sample of the Phageome participant B, which resembled
more the microbiome than phageome profile, as it had a significant share of
plasmid scaffolds. It is also one of the samples that were ruled as contaminated.
In participant’s B Phageome, the last time point appeared to be contaminated with
plasmid sequences.

The results of Plasflow did not correlate with the ACLAME classification
(Fig. 4.10). Across the three ACLAME MGE classes, the majority of scaffolds
remained unclassified. In Phageome a relatively large portion of the scaffolds was
classified as plasmids and bacterial chromosomes, especially in case of the ACLAME
virus class. In Microbiome the PlasFlow annotations had similar proportions across
all ACLAME classes.

The final plasmid classification was a two-step procedure: PlasFlow classification
as plasmid and at least one plasmid ACLAME protein. The first step used k-mers
and the second step a database-based protein classification. On its own, the PlasFlow
method identified too many scaffolds, especially within the Phageome, and notably
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Figure 4.9: Distribution of the ACLAME protein classes for scaffolds with at least
two ACLAME proteins. Columns represent scaffolds and rows correspond to ACLAME
protein families: vir for phage, and prop for prophage.

Figure 4.10: Results of PlasFlow in relation to the ACLAME classification. Each
scaffold can be represented multiple times across all three selection.

the most among the scaffolds with ACLAME viral proteins. However, researchers
have reported that phage genes are often miss-classified as plasmid [282]. In the end,
∼ 1.7% of the Microbiome scaffolds were denoted as plasmids.

Transposon identification

The next MGE class is transposons. Since there were no dedicated tools for finding
the transposons, the ISes were identified first. The most abundant IS class (Fig. 4.11),
IS21 usually is associated with Bacillus and Bacteroides [283], which are normal
human gut bacteria. However, the second most abundant class, IS66 is found in
the soil bacteria Agrobacterium and Rhizobium, while the next most abundant IS3
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is naturally present in both mentioned gut and soil bacteria. This suggests the IS
assignment to families is burdened with an error, as the most abundant bacteria
among the scaffolds with IS, were Bacteroides and Firmicutes. Nevertheless, there
was a considerable number of scaffolds at least two identified and annotated ISes,
and consequently transposons.

Figure 4.11: IS families and taxonomic profile for the transposon scaffolds.

Phage identification

Phages were detected with the five separate tools, which results were unified using
the random forest. This section discusses first the results of the individual methods
and the random forest in the end.

In the first place, the distribution of the gene densities were investigated. The
gene densities of the phage genomes from the NCBI database were higher than for
the bacterial genomes (Fig. 4.12). Independently of the assembly and dataset, the
distribution of the density computed for predicted genes was nearly identical with
a peak close to 100% - which was higher than the database derived gene density.
Also, the gene density for the assembly was less concentrated suggesting there
were errors in the gene prediction and miss-assemblies. Nevertheless, the overlap
between the gene densities for the database records was too large for the gene density
measurement to be used as the unequivocal identifying factor for the phage sequence.

The second phage identification method entailed using a CRISPR database.
It firstly required collecting the database from various sources including existing
public databases, and public sequencing datasets from which the spacers were
extracted. The final CRISPR database contained 356,000 unique CRISPR spacers.
Still, a relatively small portion of the scaffolds had an alignment to any of the known
spacers (Table 4.2).
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Figure 4.12: Distribution of the gene density for the bacterial and phage genomes
from the database and the Phageome scaffolds in both strategies. SA stands for
separated assembly and PA for pooled assembly.

Table 4.2: CRISPR spacers in all sets and number of scaffolds the spacers aligned to
in pooled assembly (PA) and separated assembly (SA).

Phageome (PA) Phageome (SA) Microbiome (SA)
Spacer set # spacers A B A B A B
HMP [271] 99,975 10,734 10,681 2,163 2,314 9,256 13,640

Microbiome [254] 6,883 1,008 1,188 222 229 558 1,078
SRR [269] 3,638 682 807 251 228 835 1,156
TS29 [270] 2,917 555 643 204 164 451 621

CRISPR [266] 125,495 8,469 9,440 413 347 1,293 2,484
CRISPI [267] 75,329 5,980 6,622 588 617 1,666 2,544

Total 355,999 15,356 16,520 2,869 3,108 12,486 19,373

The size of the CRISPR spacer sets did not correspond to the number of detected
scaffolds. The most significant number of scaffolds aligned to the spacers extracted
from the HMP datasets, although the group of spacers derived from HMP was not the
largest. However, none of the rarefaction curves of the number of scaffolds selected
by the increasing proportion of the CRISPR database, showed that the collected
CRISPR spacer database was incomplete (Fig. E.5).

The next method VirFinder was based solely on the sequence of the scaffolds, so it
did not require a database. Scaffolds with the VirFinder p-value 6 0.05 were denoted
as phage. Among the participant’s A Microbiome 7-8% scaffolds were denoted as
phage, and in participant B, it was 5-6% (Fig. 4.13). In the Phageome dataset the
percentage varied across timepoints but overall was about twice as large as for the
Microbiome.

The p-values provided by VirFinder were informative on their own. They differed
between the datasets, participants and across the individual time-steps (Fig. 4.14).
All distributions were skewed towards the low p-values, suggesting the majority
of the scaffolds in both datasets were phage. The pattern of p-value distributions
correlated to the antibiotic therapy. Overall, the maxima of the p-value distributions
were roughly located in the same positions in both Microbiome and the Phageome.
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Figure 4.13: Portion of scaffolds denoted by VirFinder as p-value 6 0.05 for both
datasets.

The distributions of the first and last samples were quite similar to each other but
differed between the participants. In the Phageome dataset the p-value distributions
were uniformed between the participants, with a sharp peak ∼ 0.08. Interestingly, in
the last Phageome sample, there was an increase in the proportion of the scaffolds
with high p-value∼ 0.6. Therefore they resembled more the Microbiome distribution,
which is consistent with the ACLAME classification patterns.

Figure 4.14: Distribution of the VirFinder p-values.

Each of the phage-detection methods resulted in selecting a varying number of
scaffolds, and what was worse, those sets rarely overlapped (Table 4.3). Each of
the phage identification methods relied on a different aspect of the phage genome.
However, each method’s ability to discover phages was limited by the scope of the
underlying database. None of the methods was sufficiently sensitive to detect the
majority of the phages. This lead to the idea of employing a Random Forest classifier
based on the scaffold features, with a ground truth being a low p-value from the
VirFinder.
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Table 4.3: Numbers of scaffolds identified as phage by the four methods, along with
the number of co-discovered scaffolds.

Phageome Microbiome
Dataset A B A B

VirFinder 5,009 5,265 15,214 21,740
CRISPR spacer 2,625 2,676 6,730 9,369

Phage gene 510 406 661 1,173
ACLAME MGE classification: viral 424 296 353 668
Scaffolds co-discovered with two methods

VirFinder and CRISPR 524 459 792 1,057
CRISPR and Phage gene 180 166 139 199

Phage gene and ACLAME 210 109 70 93
CRISPR and RF 357 395 1,017 1,444

Depth-controlled RFs performed better than those with the default parameters
in respect to overfitting (Fig. E.6), as measured by the difference in accuracy and
proportion of phage scaffolds. The average OOB-accuracy of the RF runs with the
best parameters (Table E.5) reached 69% for participant A and 68% for participant
B in both datasets.

The RF also provided a feature importance ranking. It differed between the
Phage and Microbiome datasets (Table 4.4). In all runs, the number of functional
genes, CRISPR spacers, and GC content were among the most influential features.
On the one hand, contrary to the Microbiome runs, in the case of the Phageome, the
ACLAME classifications and number of viral genes had non-zero importance. On the
other hand, in the Phageome dataset contrary to the Microbiome runs, predicated
gene coverage, number or predicted genes, number of reverses oriented ORFs and
proportion of overlapping genes had no importance. This supports the assumption
that the Phageome dataset contained phage scaffolds solely, as the primary genetic
structure features were non-discriminating.

Feature selection, i.e., removing features with a low mean decrease in accuracy,
resulted in decreasing OOB accuracy. Therefore, all features were incorporated into
the RF model. Finally, RF mining resulted in selecting scaffolds across all ranges
of p-values from VirFinder, therefore those scaffolds could not be selected based on
a more relaxed p-value cutoff (Fig. E.7).

Although the accuracy of the individual RF classifiers was not convincing, the
ensemble approach resulted in selecting scaffolds that would not have been chosen
by using a more liberal p-value cutoff. Therefore, RF was an efficient way to combine
the phage detection methods. As a result, a large number of phage scaffolds were
selected and analyzed. The RF identified 1,218 and 1,317 scaffolds in the Phageome,
and 7,944 and 12,708 in the Microbiome for participants A and B respectively.

Phage detection methods seemed highly unreliable. However, I am convinced the
selected sets were enriched with MGE sequences. Finally, the phages accounted for
10-12% of all Microbiome scaffolds, which agrees with the previous research reporting
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Table 4.4: Mean decrease in accuracy for RF. Red and orange denote the highest and
second highest values respectively within the variant.

Phageome Microbiome
Feature A B A B

Number of MyRast functional genes 26.5 ±2 26.2 ±2 26.9 ±1 15.9 ±1
Scaffolds’ GC-content 15.0 ±2 23.3 ±2 16.9 ±2 29.6 ±1

Scaffolds’ length 11.9 ±1 14.3 ±1 15.8 ± 1 20.7 ±1
Number of CRISPR spacers 13.4 ±2 12.6 ±1 10.5 ±1 4.5 ±1

Number of viral genes (MyRast) 10.0 ±2 6.0 ±1 2.4 ±1 5.3 ±1
Portion of genes with unknown function 5.0 ±1 6.2 ±1 4.7 ±1 2.2

Number of viral genes (Phaster) 6.4 ±1 4.4 ±1 0.0 0.0
ACLAME classification (vir) 4.3 ±1 1.0 0.0 0.0

ACLAME classification (proph) 1.8 ±1 0.0 0.0 0.0
ACLAME classification (plasmid) 0.9 0.4 0.0 0.0

Predicted gene coverage 0.0 0.0 6.3 ±1 5.0 ±1
Number of predicted genes 0.0 0.0 5.5 ±1 5.9 ±1

Portion of reverse oriented ORFs 0.0 0.0 1.9 ±1 2.9 ±1
Portion of the overlapping genes 0.0 0.0 2.2 1.05

that there are 4-22% phage reads within the standard human gut metagenomic
sequencing. This also supports the hypotheses that the majority of bacteria have
integrated prophages, which may occupy significant proportions of the bacterial
chromosomes [284]. In the Phageome dataset, the percentage varied: reaching
maximum (18%) on the 3rd day for participant A and steadily decreasing in
participant B from 20 to 8%. Finally, the Microbiome dataset consisted foremost
of bacterial (∼ 90%), then phage (∼ 10%), plasmid (∼ 2%), transposon (∼ 0.05%)
and integron (∼ 0.3%) scaffolds (Fig. E.8).

4.3.4 Abundance trajectory analysis

High-level analysis

The coverage values had a large variance, but for the vast majority of the scaffolds,
especially in the Phageome dataset, the coverage was near-zero (Fig. E.9). However,
the idea of feature abundance utilized those differences. Feature abundance analysis
progressed from the most global to the most detailed. The first level included all
scaffolds. The global feature abundance trajectories for both participants in the
Microbiome set decreased on the 3rd, 6th and +2nd days and increased back up
to the initial levels, on the +28th day (Fig. 4.15).

This pattern was not present in the Phageome trajectories. The last sample in
the Phageome set participant’s B was characterized by unusually high abundance.
This sample showed unusual patterns in a number of the previous steps, so had to
be kept in mind for the downstream analysis.
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Figure 4.15: Global abundance and number-of-scaffolds trajectories for all scaffolds
in both participants and both sets.

Next, feature abundance trajectory analysis level focused on the changes of
relative abundances of the Firmicutes and Bacteroidetes. The abundance ratio of
those phyla is one of the most widely used global descriptors of the gut microbiome’s
evolution. The studies agree the fluoroquinolone antibiotics cause an increase of the
ratio [285]. However, the trajectories of the Bacteroides and Firmicutes differed
between the participants (Fig. 4.16).

Figure 4.16: Abundance trajectories for the Firmicutes and Bacteroides phyla in the
Microbiome dataset.

Behavior of the participant A’s Microbiome agreed with the previous research.
The Firmicutes’s abundance started increasing before the Bacteroides got entirely
suppressed as if the bacterio-static effect was enough to free ecological space for
the Firmicutes. In participant B there was no direction within the trajectories.
Both phyla had high abundance in the first two days. Next, the abundance of the
Bacteroides bacteria decreased where Firmicutes was high but only for one day, and
then the relationship reversed, Firmicutes had low abundance where Bacteroides
were high. Lastly, the Firmicutes restored their abundance whereas the abundance
of the Bacteroides ended lower.

Researchers discovered that the abundance of Firmicutes genera Faecalibacterium
and Ruminococcus and Bacteroides genus Alistipes decreased under pressure of the
ciprofloxacin therapy but the Bacteroides genus Bacteroides and the Lachnospiraceae
family increased [151]. Exactly this pattern was observed in the participant A’s
Microbiome (Fig. 4.17). However, in the participant B’s Microbiome Bacteroidetes
abundance started increasing too early, on the 6th day.
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Figure 4.17: Abundance trajectories for the genera and families that are the most
impacted by ciprofloxacin for the Microbiome set.

Mobile genetic elements, and resistance trajectory analysis

Fig. 4.18 shows abundance trajectories for MGEs, ARGs grouped by the antibiotic
and MGEs with the ARGs for the Microbiome and Phageome datasets.

The signal in the Phageome set was weaker than for the equivalent selections
in the Microbiome set. The patterns also differed between the two participants.
However, overall, increase in abundance for MGEs and ARGs coincided with the
antibiotics therapy. There were three therapy-related trajectory patterns: trajectory
characterized by a relatively low abundance on the first two days, a subsequent
increase from the 3rd to +2nd days, and a decrease on the last day, and trajectory
characterized by an increase from the 6th to +2nd or until +28th days of sampling.
The first trajectory type was more prevalent for participant A and the latter two
types for participant B.

Phage abundance trajectories universally dropped on the 3rd day and then
continued slowly rebuilding in the second part of sampling. In Microbiome
participant B, MGEs had therapy-related trajectories. In participant A’s
Microbiome, the patterns were less unified. The integron scaffolds were the most
abundant on the 3rd day when all other MGEs reached minimal abundance.
Phageome trajectories for MGEs were weak - which agrees with the hypotheses
that the Phageome dataset contained mostly phage scaffolds.

Among the antibiotic-grouped ARG trajectories, fluoroquinolone resistance genes
were the most abundant in the participant A’s Microbiome, the second most
abundant, after β-lactams in the B’s Microbiome, and in both cases characterized
by therapy-related trajectories. The resistance against aminoglycosides decreased
between the 6th and +2nd days. Therefore its pattern was similar to the global
trajectory. Phageome trajectories of the resistomes were shifted as the increase
started on a later date than in the Microbiome trajectories. A similar pattern was
observed for the Phageome. However, their values were much lower. Interestingly, it
appeared a large portion of the ARGs could also be attributed to the MGEs. As in
the Microbiome dataset, both participants MGEs with ARGs and AR-HMMs had
almost uniformly strong therapy-related trajectories.
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Figure 4.18: Feature abundance trajectories of MGEs.
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Gene-level analysis

Although the high-level abundance trajectories show clear patterns, the holy grail
is to analyze the dynamics within microbiome with gene-level resolution. A unique
trajectory characterized every gene. Fig. 4.19 presents the most abundant average
scaled trajectories for the lowest functional unit in the MyRast, CARD, and
AR HMM classifications. Trajectory clustering, average computation, and scaling
enabled identifying genes with similar behaviors. Even then, there were hundreds of
trajectories observed.

Figure 4.19: Average scaled trajectories for all features.

Although particular trajectories do not repeat across the underlying scaffold
selections and annotation systems, they fall into ten classes: a flat trajectory
with no clear direction, six patterns of trajectories with a certain maximum on
one of the sampling days, therapy-related trajectories, and anti-therapy-related
pattern. The trajectory types are color-coded in the Figures 4.19 and 4.20. The
profiles were divided depending on the MGEs and feature scaffold selections:
i.e., Bacteria, Phages, Integrons, Transposons, Plasmids, and functional genes,
taxonomic annotations, ARGs, and HMM-profiles. The results described below are
based on simultaneous analysis of the three resources: average scaled trajectories in
Fig. 4.19, trajectory profiles in Fig. 4.20 and lists of features assigned to trajectories
in the tables that were too large to be included.
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(a) Microbiome|All scaffolds

(b) Microbiome|Bacterial scaffolds

(c) Microbiome|Phage scaffolds

(d) Phageome|All scaffolds

(e) Microbiome|Plasmids

(f) Microbiome|Transposons

(g) Microbiome|Integrons

Figure 4.20: Feature-abundance trajectory profiles. Each horizontal plot denotes a
trajectory profile of the genes, indicated by the label in the y-axis and the scaffold
selection, e.g., the first bar presents that 10% of the taxa in the Microbiome of
participant A had trajectory number 53, 19% trajectory num 78 and so on. Numbers
denote trajectories (Fig. 4.19) and the percentage. The gray bars present portion of
genes with low-count trajectories (<5%).
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The trajectory profile for taxonomic assignments differed between the two
participants. A significant portion of the taxa had an anti-antibiotic trajectory,
i.e., they corresponded to those bacteria that were susceptible to ciprofloxacin.
The Gram-positive bacteria were prevalent in the trajectories with an abundance
increasing during the antibiotic-related therapy such as the trajectory number 78,
and of Gram-negative bacteria within those decreasing during the therapy such as
the trajectory number 121 (Fig. 4.20(a)).

Phage scaffolds were represented into both profiles represented in Fig. 4.20(c) and
4.20(d). The first selection included the free phages and the prophages incorporated
in the bacterial genomes. The latter comprised solely free phages. In participant
A and both phage selections, a significant proportion of functional genes had
a therapy-related trajectory. Both of those sets for both participants included
numerous phage-related proteins such as phage tail, phage terminase, portal proteins
and a large proportion of the proteins with unknown function.

A significant proportion of the functional genes had flat trajectories.
House-keeping genes are present in all bacteria, and their abundance does not depend
on the administration of antibiotics. The functional assignments included also efflux
pumps, mobile genetic elements, toxins, and other HGT-related proteins, which
had therapy-related trajectories, e.g., site-specific recombinases and conjugative
transposon proteins. In the same time, the phage-related and unknown genes were
less often found in the Microbiome bacterial scaffolds (Fig. 4.20(b)).

Only a small proportion of the bacterial scaffolds carried full ARGs. As it
was reported before [286], this number was even smaller for Phageome. However,
among the ARGs between 22% and 43% were characterized by the therapy-related
trajectories almost independently of the selection of the scaffolds, also including
MGEs.

The majority of the identified ARGs were not ciprofloxacin-specific, and included
ABC transporters, efflux pumps and extended-spectrum beta-lactamases, such as
OXA-347, which was found on bacterial and plasmid scaffolds of the participant
A, confirming both the original study and the read-based analysis. Mostly, the
fluoroquinolone-resistance genes found were gyrA genes, coding for mutated resistant
gyrases.

There were many more scaffolds with an AR HMM profile, than with the ARGs.
A significant portion of the AR HMM profiles on the bacterial scaffolds in participant
B follow the participant B therapy-related trajectory. In the case of transposons,
those include the multiple-antibiotic resistance protein marC. This suggests that
full ARGs were rare within the metagenomics assembly, but partial or potentially
further related ARGs are quite common. AR HMM profile alignment was a more
sensitive method, however, potentially prone to false positive errors.

Finally, truly a tiny fraction of scaffolds had an alignment to any viral proteins,
enabling their taxonomic annotation. The majority of the annotated phages were
related to the human gut microbiome, including Bacilli, Clostridia, Staphylococcus.
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There was a weak correspondence between the same-patient samples of the two sets.
Unculturable crAssphage was found in samples of both participants. The phages
had a range of different trajectories, including those related to antibiotic therapy
(Fig. 4.21).

(a) Phageome

(b) Microbiome

Figure 4.21: Feature abundance trajectories for phage taxonomic annotations.

4.3.5 Ciprofloxacin resistance

Two genes conferring resistance to fluoroquinolones including ciprofloxacin were
found in the assembly. Both genes, ARO3003831 and ARO3003995, encode mutated
gyrases gyrA to which the fluoroquinolone antibiotics cannot bind. In the Phageome
dataset, the abundance trajectory of ARO3003831 increased in the second half of
sampling consistently for both participants (Fig. 4.22).

(a) ARO:3003931

(b) ARO:3003995

Figure 4.22: Feature abundance trajectories for gyrases.

In participant A’s Microbiome, gyrase trajectories on the bacterial and phage
scaffolds had the therapy-related trajectories. In the Microbiome dataset of
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participant B the gyrase was present on the bacterial chromosome scaffolds
throughout sampling. However, their abundance increased on the phage scaffolds
on the 6th and +2nd days. The abundance of ARO:3003995 was much lower than
that of ARO:3003931. ARO:3003995 had therapy-related trajectories on phages in
participant A’s Microbiome, however they were not present in bacteria.

In both participants, the gyrases were found on bacterial chromosomes before the
therapy, but prompted by the antibiotic they transferred to plasmids, pro-phages
and the free phages in participant A. In participant B the transfer omitted the
plasmids, but gyrases also shifted first to prophages and later to the free VLPs.

Figure 4.23: Protein sequence alignment for ARO:3003931 gyrase.
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As the resistance of gyrases relies on the point mutations, their detection in the
metagenomic analysis could be subject to false positive. However, in the case of both
analyzed gyrases, both mutations were highly supported by the reads mapping to
the mutation sites. The great majority of the mapped reads carried the mutated
codon (Fig. 4.23). The amino acids in the 82 position differed across the alignment
of the gyraze sequences isolated from various scaffolds. However the mutations in
this position cluster according to the MGEs within the set and participant.

4.3.6 Global diversity trajectories

To avoid database bias, the diversity was measured based on the clustered scaffolds.
First, scaffolds longer than 200 bp for all samples within a variant were put together.
Second, they were clustered (90% sequence similarity) using CD-HIT [287]. Third,
the longest sequences within a cluster were taken. Subsequently, the reads for each
sample separately were mapped onto the cluster representatives. Finally, cluster
representative was treated as the unit of diversity, and the proportion of reads
mapped onto them as an abundance. In the very end the Shannon index was
computed (Fig. 4.24).

Figure 4.24: Shannon index computed in a read-recruiting manner.

The global diversity in the Microbiome set decreased in response to antibiotic
therapy. The decrease was more rapid in A patient than B, but in both, it happened
on the 3rd day of antibiotic therapy and restored on the last day of sampling. This
was not the case in the Phageome set, where the diversity maximized on the 6th day.

4.3.7 Diversity trajectories

The functional diversity of the Phageome increased in both participants. In the
Microbiome, it decreased on the 6th day of therapy in participant B regardless of the
MGE selection. In the Microbiome of participant A, bacteria and phage functional
diversity dropped on the 3rd day but it increased back already on the 6th day, whereas
the plasmid diversity remained constant.
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(a) Functional

(b) ARGs

Figure 4.25: Diversity trajectories for functional genes and ARGs.

The resistome diversity increased in Phageome for both participants in the second
half of sampling (Fig. 4.25(a)). It remained elevated even on the last day of sampling,
especially in the case of participant B. Microbiome diversity trajectories differed
between the MGE annotations. Participant A’s ARGs diversity decreased on the 3rd
day and restored already on the 6th day, independently of the MGE selection. In the
case of participant B, the decrease happened later, on the 6th day and the restoration
was slower, as it happened on the last day. Plasmid resistome diversity trajectories
were elevated during the therapy. Overall the diversity trajectories were harder
to interpret the abundance trajectories, but they confirmed the ARGs diversity
increased on phages after the therapy.

4.3.8 Phage/host dynamics

Not only did the abundance of MGEs increase under the antibiotic pressure but also
so did the frequency of the occurrences of the integration of phages into the bacterial
genomes. Fig. 4.26 shows the increase had an antibiotic-related pattern, between 1st
and 3rd, or 3rd to 6th days, for participants A and B, respectively. The phages that
incorporated were enriched with the AR HMMs. Overall approximately 5% of the
Microbiome phage scaffolds had an alignment to the AR HMM profile but, among
those that were considered integrated the majority had an AR HMM profile.

However, each of the phage/host trajectories was unique. I tried to find a
phage/host relationship pattern that suggested a transduction event of a gene
increasing the fitness of the bacterial host, such as an ARG. Such a pattern
was observed in Flavobacterium psychrophilum and Sphingobacterium mizutani
in participant A, and Bacillus cereus, Chryseobacterium piperi in participant B
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Figure 4.26: The proportion of phage scaffolds that have integrated into the bacterial
chromosomes within the following timestep, and proportion of those with an alignment
to the AR HMM profile.

(Fig. E.10). The corresponding difference trajectories were relatively constant for
some time and followed by a rapid decrease, indicating an increase of the phage
abundance, and then a rapid increase, indicating an increase in the host abundance.

4.4 Summary and conclusions

The antibiotics exert environmental pressure on bacteria and phages. In the
Microbiome, antibiotics prompted an increase in abundance of the overall MGEs
and ARGs, specific to fluoroquinolones and beta-lactamases. Moreover, I was
able to track the transfer of the ciprofloxacin resistance gene, from the bacterial
chromosomes, onto plasmids, pro-phages, and free phages in the last place. The
resistance to ciprofloxacin is conferred by the mutated gyrazes, where the mutation
decreases their affinity to the antibiotic - I showed the sequence of the protein carried
the mutation on the relevant position and that changed when transferring to MGEs.

From the bioinformatics perspective, this study presented a unique setup as it
incorporated the time-series samples sequencing of both the total gut microbiome
and the free-phage fraction. The ground step of the pipeline: metagenomic assembly,
causes data loss and introduces bias. However, it enables the association between
the various features, such as taxonomic and functional assignments, time steps and
abundance. This together with the metadata provided by the databases, enables
a unique trajectory-based high-resolution analysis of the individual elements of
the microbiome. The trajectory-oriented approach to the metagenome analysis is
scalable regarding samples and applicable in the analysis of other time-series dataset.

Identification of the MGEs within the whole metagenomic sequencing data is
a difficult task, as all of the elements: phages, plasmids, transposons, integrons
have similar genetic traits. Machine learning was used to separate the metagenomic
assembly - this class of methods is able to utilize multiple various features at once.
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With all certain errors in the classification of the individual scaffolds, I hope the final
sets were greatly enriched with them, and therefore, enabled the feature trajectory
analysis. Nevertheless, the separation of the MGEs, especially in the time-series
scheme, facilitates a more detailed analysis of the dynamics within the microbiome.

The taxonomic analysis of the MGEs makes little sense. They are weakly
represented in current databases, carry unknown genes, or genes misclassified as
other MGEs [282]. Their biology does not support the tree-like taxonomy, as they
could be associated with multiple bacterial hosts. Therefore the separation of the
MGEs before the bacterial taxonomic analysis could improve the latter. However,
the association between the MGEs and their bacterial hosts could be discovered by
other methods as shown in this chapter. The result should be a network rather than
a tree.

I showed that antibiotics resistance emergence is mediated by HGT, in time as
short as a month. This phenomenon can be studied with WGS of metagenomes.
However, it requires a novel step before classical metagenomics analysis, to separate
the dataset into the MGEs and bacterial sequences. The analysis could be improved
with the long read sequencing technologies, which would enable skipping the
assembly step.



Chapter 5

SATURN project

5.1 Introduction

Antibiotics facilitate colonization by the multi-drug resistant strains such as
MRSA or ESBL-carrying Enterobacteriaceae (ESBLs). During the SATURN
Work-Package 4 (WP4) for three years in three clinical centers in three countries,
scientists collected detailed data about admitted patients and repeatedly tested for
the presence of MRSA and ESBLs. The question posed by the SATURN project
was to stratify antibiotics therapies by their impact on the probability of acquiring
MRSA and ESBL, to improve the guidelines for prescribing antibiotics.

I aimed to construct a machine learning (ML) model that would enable the
discovery of relationships between patients characteristics, antibiotics therapy, and
colonization with MRSA or ESBLs, without the expert involvement. The second
aim was to provide a predictive tool to select better antibiotics therapies from
presented alternatives. Prof Evelina Tacconnelli coordinated the SATURN WP4.
The SATURN project team collected the data. Members of Prof. Tacconelli’s
research group worked on collecting and cleaning the data. Dr. Primrose Beryl
Gladstone performed a parallel analysis using logistic regression. Prof. Bernhard
Schölkopf from Max Planck for Intelligent Systems advised on how to construct
the data vector initially for SVM. The RF part was discussed with Prof. Michael
Cummings, University of Maryland.

The data were carefully collected in the medical and surgical wards of the Italian
Università Cattolica Sacro Cuore (UCSC), the Romanian Institute for Infectious
Diseases Matei Bals (IDMB) and the Clinical Centre of Serbia (CCS). All of
the institutions followed the same protocols and questionnaires designed by the
SATURN consortium. The staff was trained to ensure the data were comparable.
ESBL microbiological tests were based on the fecal swabs and MRSA tests on
the nasal swabs. Samples were analyzed at the local laboratories in the hospitals.
Negative or unclear results were confirmed by microbiological tests on bacteria
plated and after overnight growth in an ESBL-selective medium. Samples were
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plated on ESBL medium and incubated at 37◦C in the air for 18 to 24 hours.
If ESBL-positive colonies were observed, a single colony of each morphology was
subcultured and ESBL presence confirmed. For each patient, extensive metadata
were collected, regarding their demographics, age, gender, comorbidities such as
surgeries and diseases, they also contained a detailed description of the patients’
treatment and stay in the hospital.

First, on admission, all of the background data were collected: patient’s medical
history, reasons for admission, whether they were taking antibiotics at the moment
of admission, and tests for the presence of MRSA and ESBLs were performed
(Fig. 5.1). Next, the patients underwent treatment, which potentially included
antibiotics therapy. The details of the antibiotics therapy were collected: antibiotics,
dates, and dosage. A patient could have received more than one antibiotic. On the
day of discharge, the tests for MRSA or ESBL were performed again. If the
patient was treated with antibiotics, they entered the follow-up study. The follow-up
MRSA/ESBL and blood samples were taken on days 0th, 3rd, 7th, 15th and 30th of
antibiotic therapy, or after it. Each time the patient was tested for MRSA and ESBL
the basic blood parameters were measured. Hence, the follow-up could be concluded
during the hospital stay, but could also be continued after the discharge.

Figure 5.1: Scheme of data collection for SATURN WP4.

This chapter describes my contributions to the analysis and machine learning
for the WP4 dataset. The chapter does not adhere to the classical Methods
and Results division. The significant portion of the machine learning especially
feature-engineering depends on the data itself. Therefore, in the first place I describe
the data and its encoding, and later the machine learning, feature importance, and
finally the AskSaturn website.
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5.2 Data processing

Before machine learning can be applied data had to be prepared. First, the data
needed to be migrated from the original files into the database. Then, they had to
be encoded. Namely, the real-world values had to be transformed into the features.
Next, the data were analyzed, and missing data were inputted. Finally, the data
could be scaled and balanced (Fig. 5.2).

Figure 5.2: Data processing pipeline.

5.2.1 Database construction

The dataset was first provided in the form of a six Excel sheets. Three per every
country: main, antibiotics therapies and follow up, which corresponded to the
questionnaires patients and stuff filled in the hospitals. The main part consisted
of 146 columns containing information collected at the moment of admission. The
antibiotics sheet had only 16 columns and contained all details about the antibiotics
therapies. Finally, the follow-up sheet had 416 columns with data of all five follow-up
samples, MRSA and ESBL positivity and blood parameters. Most of the columns
held binary data, and the majority of the table is empty.

Every patient was identified by a unique patient id (PID). If they were admitted
to the hospital multiple times during the three years period of this study, each time
they were given another PID. The PID was a primary key enabling relating the
tables. The Excel database was not normalized as most of the cells were empty.
Therefore, this data storage method had many disadvantages: it was slow to query,
and burdened with the platform- and version- incompatibility.

Therefore, the data needed to be migrated into a structure that would enable easy
and fast access. Because of the mentioned problems with format conversion, I wanted
to avoid using a type-controlled structure not to introduce errors. Dataset was also
not too large, therefore the size was not a concern. Additionally, it was static and
was not to be further altered. Knowing all that, I decided to use a document-based
database in opposition to SQL-based one, avoiding laborious construction of the
relation-database, type control, and normalization.
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Among the many available engines, MongoDB [288] was selected, as it is an
open-source project with a well documented Python API and supported by a large
community. A record in MongoDB is a document, a dictionary, which can be embedded
as the values can be of any type. The MongoDB is organized in sets of documents called
collections. The MongoDB Python API translates Python dictionaries into database
documents and vice versa. Navigating this database is intuitive, as every field is
accessible by specifying a sequence of the keys. Most importantly, Mongo enables
building SQL-like queries from the Python level.

The final database for SATURN data was split into three collections - one for
every country. Every patient was described with one nested document. If the field is
empty, it is not added to the document. Therefore every record had a different size.
The database was queried to construct input for machine learning.

5.2.2 Feature engineering

The input for ML is a data matrix (X), where columns are features and rows are
observations. In this study, rows are feature vectors, each describes a single patient.
The last Y column contained class labels describing MRSA/ESBL positivity and
negativity. Encoding is the process of creating a feature vector from a database
record. Encoding uses a functional programming style in Python. The CodePatient
class has a database record and functions generating all of the feature values, e.g.
code_BMI. To create a feature vector computer iterates through all of the functions in
the CodePatient class, and calls those functions which name starts with code. In this
step, the functions can be filtered so that various feature vectors can be constructed.
The results of those functions are added to the dictionary encoding a single patient.
To ensure all feature vectors are sorted in the same way, the GroupCoder iterated over
all of the CodePatient dictionaries using a static list of keys. Finally, GroupCoder
holds the X array and the Y vector, and list of PIDs.

The data features can be classified depending on their data type or the real-world
semantics. The majority of the features are binary, but some are categorical or
numerical. Encoding of the binary features was straightforward. Categorical data
needed to be expanded into multiple binary columns and numerical had to be scaled.
The diseases are grouped and simplified for encoding. As each disease is described
with specific features in the data, each of them required a separate function. However,
overall the diseases are encoded with binary features, as a rule not taking into
account their details. Table 5.1 describes how the features were encoded.
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Table 5.1: Features
Features Description

Positivity See Paragraph 5.2.2

Age, BMI, Female, Male

Age was encoded directly, body mass index (BMI)
was computed from patients weight and height.
Gender was encoded with two exclusive binary
columns.

Ward type Surgical or Medical ward, encoded with exclusive
binary columns.

Previous antibiotics Positive if patient took antibiotics within the
month prior to admission.

Previous hospitalization, ICU Positive if a patient had been hospitalized or in
ICU within the last three months respectivelly.

Admission from LCTF
Positive if the patient was admitted from another
care facility such as acute care, extended care
facility, institutions.

Domiciliary assistance Positive when patient used domiciliary nursing or
medical assistance.

Heart disease
Positive if patient had any of the diseases:
myocardial infarction, congestive heart failure,
peripheral vascular disease

Cardiovascular disease Positive if patient had Cardiovascular disease

Malignancy Positive if patient had malignancy in the past, or
active independently of its type.

Neurological disease
Positive if patient had hemiplegia, dementia,
cerebrovascular disease or any other major
neurological disease.

Chronic skin lesions, renal, lung,
connective tissue disease, respiratory,
liver diseases, diabetes, organ damage,
ulcer, HIV, infectious and parasitic
diseases

Binary features, positive if patient had any of the
diseases.

Immunodeficiency
Positive if patient was immunodeficient,
independelty of the cause such as HIV, radio or
chemo-therapy, post-transplant etc.

Surgeries, Transfers Number of surgeries, number of times the patient
was transferred within the hospital

ESBL, MRSA roommates Binary feature, positive if patient had
a roommate carrying ESBL or MRSA

Dialysis, invasive devices Binary features denoting if patient underwent
dialysis or used other invasive devices.

Bedridden, diarrhea, wounds Binary features describing patients state while in
hospital

Season Four binary columns denoting the seasons of the
hospitalisation

Antibiotic therapies see Paragraph 5.2.2

Length of hospitalization see Paragrah 5.2.2

Colonization pressure see Paragraph 5.2.2
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Positivity A patient was labeled positive if at least one sample of the follow-ups:
3rd, 7th, 15th or 30th or discharge was positive. The patient was labeled negative
when all of the collected samples were negative and if there was at least one more
sample tested apart from the admission and 0th follow-up.

Length of hospitalisation The number of days between the dates of admission
and discharge, or the date of the first positive sample if it was earlier than admission.
Therefore, only the time of hospitalization before the positive sample was taken into
account.

Colonization pressure The probability of colonization depends on the frequency
of the patient’s interactions with the MDR carriers. The colonization pressure is
an average proportion of the positive patients within the hospital population, over
the days of the patient’s recent hospitalization history. The period depends on the
sampling timing. In the case of this dataset, it was four days. Feature vectors included
an average of the colonization pressure from admission to the hospital to discharge
or the first positive sample.

Antibiotic therapies First, to decrease the complexity of the data Prof.
Tacconelli grouped the antibiotics so that from the original 68 classes, the
17 super-classes were created: Aminoglycosides, Anti/Anaerobes, Carbapenems,
Cephalosporins, Clindamycin, Colistin, Cotrimoxazole, Daptomycin, Glycopeptides,
Linezolid, Macrolides, Metro, Penicillins, Quinolone, Tetracyclines, Tigecycline,
Piperacillin. This step was necessary because otherwise, almost all of the records
would be unique and it would be impossible to generalize across the patients.

The antibiotic therapy was encoded up to the first positive sample, or the
discharge day if the patient remained negative at all times. First, we encoded the
number of days each separate antibiotic was taken, the number of days pairwise
combinations of antibiotics were prescribed and finally the permutations, describing
the sequence of prescribed antibiotics. The permutations were encoded with the
binary features.

Although using the antibiotic superclasses, the therapy of a single patient can
be very complicated. In Fig. 5.3 the antibiotic therapy for one of the patients in the
dataset is shown, and in Table 5.2 the encoding for that therapy is presented. For
some patients, the antibiotic therapy before admission was also recorded in detail.
However, as it was not recorded for all of the patients, the details of the therapy
before admission were ignored and denoted only with a binary feature. Finally, the
data vector had 468 features.
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Figure 5.3: Antibiotic therapy for one of the
patients. Columns represent days of therapy and
rows prescribed antibiotics. Red fields indicate the
days the antibiotics were taken, and blue when
they were not. In the timeline row, A stands for
admission, F for follow-up samples and E/M for
samples positive for ESBL/MRSA.

Single antibiotic therapy
Clindamycin 5
Cephalosporins 5
Linezolid 6
Quinolone 5
Combinations
Clindamycin and Cephalosporins 5
Clindamycin and Linezolid 3
Clindamycin and Quinolone 2
Linezolid and Quinolone 2
Cephalosporins and Linezolid 3
Cephalosporins and Quinolone 2
Linezolid and Quinolone 5
Permutations (order)
Clindamycin before Linezolid 1
Clindamycin before Quinolone 1
Cephalosporins before Linezolid 1
Cephalosporins before Quinolone 1
Linezolid before Quinolone 1

Table 5.2: Encoding.

5.2.3 Missing data

Records of 300 patients lacked information about BMI (Fig. 5.4). The missing data
were inputted by randomly choosing a value from the distribution model fitted to the
distribution of the known data. In 98% of the cases, both height and weight values
were missing. Therefore, rather than modeling the two-dimensional distribution,
which would assume one of the values is known, after ensuring the BMI was not
correlated to main features such as age, I fitted a normal distribution of the BMI.

Figure 5.4: Number of patients with missing BMI separated by positivity/negativity
for MRSA and ESBL. Distribution of the known BMI values along with the density
plot for the probabilistic model used for BMI imputation.
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Other missing feature values could not have been modeled. In the majority
of cases, one of the admission or discharge dates were missing. These dates were
especially important as they provided a frame for the hospitalization and therapy
lengths, and antibiotic usage. Therefore, those records were removed from the
analysis. 93 records were removed from the MRSA dataset and 85 from the ESBL
dataset.

5.2.4 Patients and cohorts

The data had been collected for three years in the three hospitals located in three
countries: Serbia, Romania, and Italy. In total 10,197 patients were recruited for
the WP4 study. Among them 8,933 patients were ESBL-negative, and 9,889 were
MRSA-negative at admission. Therefore, they were eligible for the study. Although
this was a single dataset, it was treated as two parallel projects, with two unrelated
outcomes: colonization with MRSA and ESBL. Roughly 40% of patients were
treated with antibiotics and underwent follow-up MRSA/ESBL screenings. All of
the patients were tested at hospital discharge (Fig. 5.5).

(a) ESBL (b) MRSA

Figure 5.5: Numbers of patients at admission and discharge in each of the three
centers. Cohort-2 denotes patients who were not treated with antibiotics and cohort-3
denotes patients who were treated with antibiotics.

Patients who did not take antibiotics were tested only twice: at admission and
discharge. The patients who took antibiotics could have been tested up to five
times depending on how long they stayed in the hospital. Regarding all that, we
considered three groups of patients: cohort-1: patients positive at the admission



5.2. DATA PROCESSING 99

screening, cohort-2: patients negative at admission, not taking antibiotics, cohort-3:
patients negative at admission, taking antibiotics.

The machine learning analysis used only two groups of patients: cohort-2
consisting of patients taking antibiotics and undergoing a followup, and all patients
who were negative at admission namely the cohorts-2 and -3 together. Therefore,
four patient groups were analyzed: cohort-2 and cohorts-2 and -3 for both ESBL
and MRSA positivity.

5.2.5 Features

Features were divided into three groups depending on the data type and real-world
meaning. There were numerical demographic features, binary demographic features
including comorbidities and features encoding antibiotic therapy. The distribution of
the demographic characteristics and comorbidities did not differ between the cohorts,
and overall the features did not show any anomalies (Fig. 5.7). Colonization rate,
and as a consequence colonization pressure, was larger for ESBL than for MRSA. It
fluctuated heavily across the sampling time (Fig. 5.6).

(a) ESBL

(b) MRSA

Figure 5.6: Number of patients, colonized patients and colonization pressure for both
MRSA and ESBL and three countries, across three sampling years. HA stands for
Hospital Acquired.
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Figure 5.7: Distribution of features across all four patient groups.
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The rate and structure of the colonization pressure differed between the hospitals.
In Italy, ESBL colonization pressure could be mostly attributed to the positive
patients admitted to the hospital rather than ESBL emergence inside the hospital.
This seemed to be an opposite case to Romania, where the colonization pressure
curve reflected the variation of the number of patient with the hospital-acquired
ESBL (HA-ESBL).

On average patients were 56 years old, and were characterized by a healthy BMI
∼ 25. Average antibiotic therapy was nine days long, although characterized by
a significant variance, as standard deviation was seven days. Patients stayed in the
hospital on average for twelve days ± ten days, before they became positive, or got
discharged. However, the average hospitalization length was three days longer in the
antibiotic-taking patient group than for all of the patients.

Figure 5.8: Antibiotics usage in cohorts-2 and 3. The top bar charts present the
number of days each antibiotic was prescribed, as a single-therapy and in combinations.
The middle heatmaps present the number of days the combinations of antibiotics were
prescribed. The bottom heatmaps present number of instances of the transitions from
one antibiotic (y-axis) to the other (x-axis).
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As expected the antibiotic usage in the data was not uniformly distributed.
Cephalosporins that constitute a large group of broad-spectrum antibiotics was
by far the most commonly prescribed class of antibiotics (Fig. 5.8). Consequently,
combination therapies with cephalosporins were also the most popular. The second
most used were quinolones, and the next penicillins.

5.2.6 Undersampling

The SATURN dataset was unbalanced. In the ESBL cohorts-2 and -3 only 28%, and
in the MRSA cohort just 4% of the patients were positive. Therefore, the dataset
needed to be undersampled or weighted. The dataset was of high dimensionality,
and also unbalanced regarding antibiotic therapies and comorbidities, i.e., not all
feature values were equally represented. Therefore, I preferred to undersample the
dataset rather than weight the samples.

I tested multiple domain-based approaches to undersampling, such as limiting
the dataset only to those patients who took only antibiotics of a single class, or
conversely, at least two antibiotics, to the group of patients with no antibiotic
before admission. However, neither of this domain-based selection methods yielded
a balanced dataset.

Therefore, undersampling of the majority class was used. The undersampled
dataset comprised of the of the samples of the positive class and an equal number
of the randomly chosen negative classes. The undersampling was parametrized
by the size of the proportion of the minority class. Consequently, each time the
undersampling was performed the dataset undergoing machine learning differs -
mostly in the negative class.

5.3 Machine learning

The undersampled dataset constituted direct input into the ML. Training the ML
classifier often follows the basic pipeline as presented in Fig. 5.9. In our case, the
process of feature selection, the ML algorithm and parameter selection were repeated
multiple times. Since, on the one hand, the ML methods were used for feature
selection, and on the other hand, feature selection could influence the method and
parameter selection.

Figure 5.9: Pipeline for developing a ML model.
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5.3.1 Algorithm selection

There are several extensive toolkits for application of various machine learning
tools. One of the most extensive is Python’s sklearn. Multiple steps were applied
before the final classifier could be developed. The first step entailed finding the
best-suited classifiers among those programmed in the sklearn package [250]. To
avoid parameter bias, in this initial step I used a parameter grid search, which
allows the specification of a list of parameters and their values so that the computer
can test a classifier with all possible combinations of parameters under a five-fold
cross-validation regime for the scaled and balanced datasets.

The selection of the ML algorithm relied on three measurements: accuracy,
overfitting and permutation significance. Fig. 5.10 presents both preferences
computed across all classifiers and their parameter selection. The objective was to
select the classifier, dataset, and parameters maximizing the accuracy, minimizing
overfitting and permutation significance p-value.

The majority of the models built for ESBL cohorts were successful and managed
to generalize, as evidenced by low overfitting and permutation significance p-value.
Further, the runs of ESBL cohorts-2 and -3 performed better than the ESBL
cohort-3. The ensemble ML methods such as RF or Extremely Randomized RF
performed better regarding accuracy than linear models such as Logistic Regression
or SVM. Unfortunately, regarding overfitting, the ML methods ranking appeared
worse. However, the ensemble tree-based method with the lowest average overfitting
was RF. Random Forests and Neural Networks were the two algorithms picked for
further analysis of the cohorts 2 and -3 dataset.

Models trained for the MRSA dataset performed quite bad. This was
understandable as the proportion of the positive patients in the dataset was very
low. Therefore, from this point onwards, I focused on the analysis of the ESBL
dataset.
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Figure 5.10: Performance of machine learning algorithms.



5.3. MACHINE LEARNING 105

5.3.2 Undersampling parameter selection

An unbalanced dataset causes a decrease in sensitivity and an increase in the
accuracy of the fitted models. Precisely this was observed for RF and NN runs of the
ESBL-cohorts 2 and -3 (Fig. 5.11). However, the decrease in sensitivity was steeper
and more substantial than the accompanying increase in accuracy. The decrease
begins right when the negative class started outnumbering the positive class. The
pattern was confirmed with Neural Networks (NN). NN achieved similar sensitivity
with lower accuracy. The parameters for both algorithms were selected based on the
previous step, i.e., were the best regarding accuracy and overfitting.

(a) RF

(b) NN

Figure 5.11: Accuracy and sensitivity of NN and RF classifiers relative the
undersampling parameter. False denotes no undersampling.

Finally, undersampling at a level of 0.9 was used. Therefore, at this point, two
decisions had been made. The ESBL-cohorts-2 and -3 dataset was used with 0.9
undersampling. The 0.9 undersampling also emphasized the need to repeat all tests
several times so that all of the data points were used.
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5.3.3 Feature selection

The feature selection objective was increasing the accuracy of the trained classifier
by improving the ratio of the vector size to the number of data points. The first
step of feature selection was to remove features with no positive values at all,
which reduced the number of features from 469 features to 345. The next step was
removing features with a deficient proportion of positive values, namely those that
characterized ¬ 0.2% of the overall patients. This step further reduced the number
of features to 118. For such a dataset with reduced dimensionality, the machine
learning algorithm and parameter selection was repeated (Fig. 5.12). The ranking of
the ML algorithms had not changed for the reduced data set in either the accuracy or
overfitting. However, it managed to increase the accuracy, especially for the MRSA
dataset.

Figure 5.12: Accuracy for different ML tools and 118-feature dataset.

For such prepared dataset, more elaborate feature selection was further pursued.
First, I measured the scores of the univariate feature importance. For the MRSA
dataset, neither method could be computed. Therefore, it seems the MRSA dataset
was weak and little information value with respect to MRSA-colonization. For
the majority of the features, the ANOVA and Chi-square measurements did not
agree with each other. Those methods were blind towards the complex multi-feature
relationship with the classes. Therefore, I employed an ML-based approach to select
features.

The classifiers were trained for each of the features separately (just one), the
features for which accuracy was higher than 50% were regarded as important. Next,
the classifier was trained for the increasing number of features starting from those
with the highest accuracy in the previous step (adding). The more important the
feature, the more it improves the accuracy. In the last approach, singular, the
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classifiers were trained for all but one feature, here, the most important features
were those whose removal caused the most significant drop in accuracy (Fig. 5.13).

Figure 5.13: Feature selection strategies. Columns represent features and rows data
points. Red denotes the features used and gray not used. Numbers denote the sequential
steps.

All feature selection strategies showed the majority of the 118 features were
uninformative, consequently the features could be further reduced (Fig. F.11). Fig.
5.14 presents comparative scores of the features of the three strategies.

Figure 5.14: Parallel coordinates for feature scores across three feature selection
strategies. The higher the position on the axes the more important the feature.
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Unimportant features were those that scored low in all three of the measurements,
conversely, the features that scored high in at least one of the feature selection
strategies comprised a reduced dataset. Finally, 56 features were selected. Among
the removed features were such intuitively important ones like the length of
hospitalization, admission from LTCF and age. Those features had been selected
in the previously attempted univariate approach.

Next, I rerun the parameter and algorithm selection for the 56-feature set and full
cohort-2 and cohort-3 datasets. The ranking of methods remained unchanged, with
RF coming in the first place. However, comparing to the parameter and algorithm
selection for the 118-feature dataset (Fig. 5.12) the accuracy for different methods
was better and had smaller variance. This suggests that the feature selection reduced
the noise in the dataset. This reduction did not cause a reduction in performance,
or even a slight improvement (Fig. 5.15). The smaller complexity of the dataset also
improves the computational time.

Figure 5.15: Classifier selection ranking for the dataset with 56 features, and the
comparison between the best-parameter RF for 56-feature and the 118-feature dataset.

5.4 Results

5.4.1 Final pipeline

In the process of finding the optimal combination of ML algorithm and parameters,
feature selection, undersampling parameters, the pipeline has changed (Fig. 5.16) in
comparison to the one I assumed in the beginning (Fig. 5.9).

The pipeline started with the ML algorithm selection. This enabled to pick
the undersampling parameter based on the best scoring ML algorithms. Then
multiple different strategies for feature selection were attempted, starting from the
variance-based, univariate and ML-based methods. Finally, the two-step strategy
was used. The first step was reducing the features from 470 to 118 based on their
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Figure 5.16: Final pipeline.

representation in the data, and the second step was the further reduction to 56
features based on the RF. Every time the ML algorithm selection step was repeated.
The accuracy-based ranking of the algorithms did not change. However, the overall
performance increased with the feature reduction. Finally, the permutation feature
importance can be measured.

5.4.2 Features driving ESBL colonization

For the RF classifier and 56-feature dataset, the permutation feature importance
was measured. Overall, non-antibiotic-therapy features proved to be more important
for the ESBL colonization (Fig. 5.17) than those describing antibiotic therapy
(Fig. 5.18). The most important features were the length of the antibiotic therapy,
being treated in a surgical ward, and BMI. Next important feature was the antibiotic
therapy before hospitalization. This could also be regarded as contributing to the
overall length of antibiotic therapy and supports a conclusion that overall antibiotic
usage drives ESBL-colonization.

Figure 5.17: Average permutation feature importance for colonization with ESBL.
Blue color indicates antibiotic-related features.

As presented in Fig. 5.8, antibiotic-therapy features were unevenly represented
in the database. Therefore, the important features could be influenced by the
amount of information in the dataset. The features were ranked from the most
to the least common (Fig. 5.18), and from the most important to least important.
On the one hand, combination and permutation therapies such as quinolone after
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cephalosporins, carbapenems after cephalosporins had an increasing ranking. On the
other hand, other features mostly connected to linezolid, carbapenems and linezolid,
linezolid and quinolone had lower importance than the data ranking.

Figure 5.18: Average RF-based permutation importance for antibiotic-therapy
features. Right-hand side parallel coordinates plot shows differences in rank between
the data and feature importance.

In RF antibiotic therapy features (not shown), the feature ranking for therapy
features corresponded to the antibiotic usage. This suggests the RF could have failed
to learn from the diverse antibiotic usage.

5.4.3 AskSaturn website

The second aim of the project was enabling doctors to score antibiotic therapies
for their patients regarding the probability of the colonization with ESBLs.
I designed a website that first collects the demographic features of the patient,
then comorbidities and antibiotic therapies, and predicts the probability of ESBL
colonization for the two provided therapies. However, doctors do not have access
to the full list of features, e.g., roommates positivity, therefore, the features had to
be further reduced. For simplicity, I also removed antibiotics with low importance.
The website classifier should be small to enable fast querying, therefore finally it
had only 20 features. The minimal RF classifier performed with similar accuracy,
however slightly worse regarding overfitting.

The website consists of a form gathering basic-patient information and two panels
enabling encoding of the two alternative antibiotics therapies to be compared (Fig.
5.19). In the results, the probability of ESBL-colonization depending on the therapy
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is shown. The user can quickly move between the panels and adjust the antibiotic
therapies. The results are updated every time the compute button is hit.

Figure 5.19: Panels from the AskSaturn website available under the address
http://asksaturn.informatik.uni-tuebingen.de.

5.5 Summary and conclusions

The result showed the antibiotic therapy on its own drives colonization with
ESBL-producing bacteria. However, the antibiotics usage could be stratified to
minimize the probability of colonization with MDR bacteria as the probability
differs depending on the antibiotic therapy. This relationship is quite complex
and identifying clear guidelines is difficult. Therefore, the website enabling doctors
to compare antibiotic therapies regarding the probability of ESBL-colonization is
especially useful, as the ML-classifiers can handle complex therapies.

In this Chapter, I focused on the successful approaches. However, on each step of
this project relied on choosing one of the multiple available approaches. Therefore,
here, more than in the other projects, I have a feeling so much more could be done
and tested, regarding feature encoding, algorithm/parameter selection and feature
selection steps. The SATURN dataset was complex and sparse - namely there rarely
were patients differing only in some of the features, and not all of them. However, this
is extremely hard to achieve for this class of data, as the prescription of antibiotic
therapy depends on the patient’s demographics and comorbidities.

The solution could be separating the dataset to be able to answer the two
questions separately: stratify by the patients’ demographic and comorbidities to
discover the space of the antibiotic therapies and conversely stratification by
antibiotic therapy, to discover the impact of the comorbidities. This leads to the
popular conclusion that more data is needed. In the same time, machine learning
methods constitute a powerful toolkit enabling implicitly reasoning from multiple
various features simultaneously.

h
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Chapter 6

Tübiom project

6.1 Introduction

Antibiotic therapy causes an increase in abundance and diversity of the resistome in
the patient’s gut, and as a result, it impairs future antibiotic therapies. Therefore,
the effect of an individual therapy on a particular patient’s health also depends on
the state of the person’s microbiome. This dependency remains uncharacterized.

Characterization of the gut-health relationship requires a detailed analysis of
the thousands of gut microbiome profiles. However, since the microbiome analysis
is quite susceptible to the processing protocols and sequencing itself, those needed
to be performed in a controlled way for all of the samples. Therefore, researchers
undertook large-scale microbiome projects such as American Gut. However, they do
not have access to our population.

Therefore, a broad collaboration of research groups and the CeMeT company
located in Tübingen brought to life the Tübiom project. In the first phase, the goal
was to collect 10,000 samples of fecal swabs and perform 16S rRNA sequencing
to compute gut microbiome profiles [289]. For the second phase, the hope was to
identify interesting phenotypic groups of participants to study further, with the deep
whole-genome sequencing. Currently, the project is paused, with ∼ 3,500 samples
collected. We encouraged the participants to submit multiple samples, especially
if they underwent antibiotics therapies or went on a trip to a distant country.
Therefore, Tübiom had the potential to provide a coherent dataset to measure the
variability of the microbiome in the local population.

Our group was entrusted with setting up both the website and the backend. The
primary role of the website was to show the results to the participant. The backend
included the databases, for samples and patient information, and the bioinformatics
pipeline for computing the taxonomic profiles from the 16S rRNA sequencing
samples. Sina Beier wrote the analysis pipeline, the website and databases were
set up by Patrick Groupp (MSc student), Theresa Harbig and I designed and
programmed the data visualization, and Prof. Huson supervised the entire process.

113
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Since a team performed the vast majority of work in this project, I will use a pronoun
we throughout this chapter.

We presented the informatics and bioinformatics infrastructure created for the
Tübiom project during the German Bioinformatics Conference 2016 [290]. In this
chapter, I shortly described the Tübiom setup, the visualizations that we have
developed and the first collected data, focusing on my responsibilities.

6.2 Tübiom setup

In the first place, a participant had to register on the website, where they had to fill in
a questionnaire and order a sampling kit (Fig. 6.1). Next, a kit and use instructions
were sent to their house. The participant could also receive a kit first, and then
they would register it on the website later using the kit’s identifying number. Once
CeMeT received the sample back, the DNA was extracted, and the sample was
sequenced.

Figure 6.1: Setup of the Tübiom project.

The analysis pipeline, presented in Fig. 6.2 ran automatically after the files with
the sequencing reads appeared in the designated folder. The computed taxonomic
profile was stored in the profile table in the database. Once the sample was
sequenced, taxonomic profile computed and the metadata inputted, the user could
view and analyze the taxonomic profile of their samples on the website. The
participant’s online profile was connected to the samples identified by the kit’s
numbers. Each taxonomic profile had their metadata since the samples might differ
according to circumstances, such as recent antibiotic usage or a trip to a distant
country.
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Figure 6.2: Pipeline for analysis of the Tübiom 16S rRNA sequencing data developed
by Sina Beier.

6.3 Data visualization

Visualization of the microbiome profiles for this project was a different task, then
when it serves the scientific publication. In scientific reports and publications, the
audience consists of scientists, mostly of experts in the field. Also usually the
publication plots are static figures presenting the author’s message. In Tübiom
the audience consisted of the general public interested in health and science. The
visualization needed to be designed to serve the future data. Consequently, to provide
context we assumed the Tübiom participants, as non-experts were mostly interested
in a comparison of their samples to other profiles.

Therefore, we computed the overall average profile for the samples with normal
BMI as the primary baseline. After there were enough samples in the database,
the average profiles of the other large phenotypic groups such as vegetarians,
young people, or those regularly exercising, were computed. The computation of
the metadata-defined average profiles was fully automatized. The phenotypic group
could be defined by any SQL expression using the metadata columns. We intended
to update the list of the average profiles often, along with the growing number of
samples in the database.

A taxonomic profile is on its own a complex dataset. In Tübiom the taxonomic
profile consisted of the five taxonomic levels: phylum, class, order, family, and genus,
since on the one hand, domain and kingdom levels are not informative for the human
gut microbiome analysis, and on the other hand, the species level is too specific for
the 16S rRNA analysis. With each taxonomic level, there are more taxa, starting
with 8 phyla to ∼ 1, 800 genera. Consequently, the metagenomic datasets constitute
challenging data to visualize.
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In the vast majority, visualizations of the metagenomic datasets that include
multiple taxonomic levels have two forms: taxonomic trees, like in MEGAN, or
sunburst plots, popular in web-based visualization tools [291]. Out of them, only the
phylogenetic tree supports visualization of multiple data series, and consequently,
a comparison of the profiles. In such visualization, leaves of the taxonomic tree can
contain bar charts with multiple series. However, we thought those were too complex
and difficult to interpret to be used in this setting.

Consequently, we decided to rely mostly on the most straight-forward bar charts
and stack charts for the main visualization (Fig. 6.4). Before the participant had to
make any decisions in the panel 2 , we presented a bar chart with the values of
the three main phyla compared to the average profile for healthy participants in the
panel 1 (Fig. 6.3). The bar chart was our overview. This way we implemented the
first rule of the interactive visualization, the famous Shneiderman’s mantra zoom
and filter, then details on demand [292].

Figure 6.3: The main view of the participant’s samples and selected comparison
profiles.

The next panel contains the detailed plots for comparison of the selected profiles,
on the level set before in the panel 3 . Bar charts in the panel 4 enabled direct
analysis of the proportions of taxa selected in the left and right panels. The color
distinguished between the participant’s samples and the phenotype group profiles.
The drop-down menus contained all of the taxa of the level. Stack charts in the next
panel 5 showed the comparison of the profiles on the selected taxonomic level. The
final horizontal bar chart 6 presented the distance between the profile selected in
the above drop-down menu and the rest of the samples.
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Figure 6.4: The main view of the participant’s samples and selected comparison
profiles.

The panels presented in Fig. G.12 were not included in the default view. They
were only accessible under an advanced analysis button. Panel 7 showed the
taxonomic profile again, with values encoded with color instead of bar height. In
such heatmap, it is easier to analyze the low abundant taxa, and to read, when
analyzing the low taxonomic levels, where there are much more taxa. So we thought
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it would be suitable for users with more expertise. The final panel 8 included
sunbursts. They presented all taxonomic levels at once. The colors corresponded to
those in the stack chart in the panel 5 . All of the plots provided hints - when
hovered on different elements of the plots, the adequate values were displayed.

6.4 Metadata for collected samples

One of the motivations for Tübiom was gathering data for the local population
that differs from the populations sampled by the American or British gut projects.
However, as the project relied on volunteers, the sampled population was not fully
representative. It turned out that women were more willing to take part in the
Tübiom project, consequently, among the first ∼ 3, 500 participants 71% were female
(Fig. 6.5). The distribution of the metadata suggested that the participants were
both healthy and health-aware. The majority of participants had normal BMI, rarely
consumed alcohol, did not smoke and regularly exercised. The age distribution was
quite broad including a handful of infants and young children.

Figure 6.5: Distribution of the main metadata features for 3,491 samples.



6.5. ANALYSIS OF THE PRELIMINARY DATA 119

6.5 Analysis of the preliminary data

So far we know that the relationship of the gut microbiome with the host’s body is
bidirectional and complicated. Accordingly, we did not expect the Tübiom data will
right away reveal a strong correlation with any of the metadata features. Instead,
we hoped that the dataset of such a large size and high quality would enable the
discovery of those more elusive relationships. Our approach relied on stratifying the
samples based on the metadata to reduce the complexity and training ML classifiers
to discover the relationships between the remaining metadata and the taxonomic
profiles.

Sample collecting and sequencing took longer than planned. Consequently, we
were only able to perform a preliminary analysis of the full data points (metadata
and taxonomic profile) for the first 1,252 samples. The metadata for each sample
consisted of the 109 features. The microbiome taxonomic profiles were projected
onto a genus level, and the values were normalized, in the end, the profiles consisted
of the 769 taxa. The dimensionality, meaning the number of samples in relation to
the number of features, of this small dataset was not sufficient for the ML.

However, it provides an overview of the diversity and quality of the data the
Tübiom would provide. Fig. 6.6 presents the vectorized metadata of the initial
dataset. Some metadata features were encoded with binary values, some were
numerical and some categorical. The more heterogeneous the metadata, the more
ways a data vector can be encoded, as some columns could be expanded, and others
collapsed.

Figure 6.6: Metadata for preliminary set. Rows represent participants (data items),
and columns the features. Red represents positive values (1.0) and grau negative (-1.0),
white: value not known. In the color columns the values were
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Even this small dataset was not entirely correct: some values were missing (white
fields), and some samples had to be filtered out as they lacked too many values (not
shown). On the one hand, it meant our set up for collecting data needed work, as
it did not ensure full correctness. On the other hand, this also suggested we needed
to expand the analysis pipeline to ensure missing data imputation.

However, the sequencing and bioinformatic analysis appeared to be working
correctly. The taxonomic profiles were quite variable (Fig. 6.7), as some had high
diversity (Fig. 6.8), and a single taxon dominated others, what reached even 82%
like Bacteroides.

Figure 6.7: Distribution of the values of the taxonomic profiles for the first 50 most
abundant genera.

6.5.1 Antibiotic therapies and antibiotic-affected microbiome
profiles

I planned to analyze Tübiom dataset focusing on a comparison of the untreated
profiles, to those affected by an antibiotic therapy. Among the first 1,252 samples,
413 participants had taken antibiotics within a month before collecting the sample.
However, according to the dataset, the majority of the antibiotic therapies were only
one day long (Fig. 6.8). Consequently, either the data were incorrect, a large group
of participants sent a sample within the first day of the therapy, or the participants
did not follow the orders of their doctors. However, all explanations appear to be
unlikely.

Importantly, the taxonomic profiles for antibiotic-influenced samples had on
average lower taxonomic diversity, especially in the case of ciprofloxacin usage
(Fig. 6.8), which agreed with previous research. The variability between the values
meant that the response to the antibiotic therapies varied, suggesting it dependent
on the other features.
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Figure 6.8: Distribution of the length of antibiotic therapy and taxonomic diversity
depending on the antibiotic therapy. The numbers in the boxplot labels denote the
number of samples used for the distribution.

6.6 Summary and conclusions

My contribution to the Tübiom project was data visualization and web development,
neither of which falls strictly into the realm of bioinformatics. Nevertheless, the
Tübiom project can be treated as a complement to the SATURN project, since it
investigated the healthy population outside of the hospital. Although the Tübiom
participants lead healthy lifestyles, a large proportion (∼ 30%) of samples was
affected with recent antibiotic therapy. However, their response varied depending
on the length of therapy, antibiotic and between the participants. The preliminary
analysis of the first 1,252 data points showed decreased Shannon diversity in the
samples belonging to participants who underwent antibiotic therapies, especially
to those who took ciprofloxacin. Hence, the full dataset would have been a great
resource to study the influence of antibiotic therapies on the gut microbiomes, in
relation to other meta-data features such as diet or lifestyle.
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Chapter 7

Other projects

7.1 Analysis of the molecular dynamics trajectories
of RNA

The bacterial ribosome or precisely its two main components, the two rRNA
molecules are targets for eight antibiotic classes [20]. Previously, I worked on
designing a sequence of a short anti-sense artificial nucleic acid to inhibit bacterial
translation through binding to the 16S rRNA [293]. The design process relied on
finding rRNA regions with the best score, which encapsulated features speaking to
the functional importance and physical characteristics of the region. Accessibility of
the rRNA regions was measured based on the behavior of an RNA in the molecular
dynamics trajectory.

Molecular dynamics (MD) is a widely used method for investigating dynamical
properties of biomolecules. It employs a purely macro-scale model [294], where
each atom is a sphere of a certain size connected with other atoms by harmonic
bonds and subjected to electrostatic forces. All of the energy terms are input into
a Newtonian equation of motion with which positions of atoms are computed. As
all in silico modeling methods, MD is criticized for over-simplification of both
representation of molecules and laws of physics [295, 296, 297, 298]. However,
it has great advantages. MD enables observation of molecular behavior in the
atom-detailed scale. MD was successfully used to simulate riboswitches [299],
protein-RNA complexes [300] and even the entire ribosome [301]. Although, when
simulating RNA molecules especially delicate protocols need to be employed, MD
is quite useful, as it enables observing formation and breaking of the secondary
and tertiary contacts in RNA molecules [302]. To that end, I created tool MINT.
It measures all types of nucleotide/nucleotide interactions in the RNA molecules
during the MD trajectories [303].

During the Ph.D., I developed a novel approach for the analysis and visualization
of RNA dynamics. Based on the output from MINT, a graph of interactions
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is computed: the nodes represent nucleotides and edges correspond to the
Watson-Crick, Hoogsteen, Sugar edge or stacking interactions. The edge weights
indicate strength of the interaction expressed by a proportion of trajectory in
which the interaction was observed. The graph encapsulates entire molecular
dynamics into a distinct mathematical entity. The graphs enabled comparison of
the dynamics of the similar structures, e.g., mutational variants. After the two
analysis are performed, their contact graphs are deducted. The deducted contact
graph represents differences in the interaction patterns.

Retrotransposons are transposon elements that undergo transcription. The
tertiary structure of the transcribed RNA molecule is crucial for retrotransposition.
Collaborators from the Max Planck Institute for Developmental Biology dr.
Oliver Weichenrieder and Steffen Schmidt who investigate retrotransposing RNAs,
suggested that I perform an MD-based analysis of the structures of the two
retrotransposition elements. Namely, the small but crucial fragment on the 3’ tail of
the eel’s UnaL2 LINE element (PDB: 2FDT) and the human Alu SRP14/16 complex
(PDB: 5AOX). For both elements, the retrotransposition frequency (RFr) of several
mutation variants were measured. I investigated the impact those mutations have
on the structure of the RNA molecule.

The native and each of the mutated structures underwent the same extremely
cautious MD protocol. First, the molecules are protonated and solvated with a water
box. Next, ions are added (Mg2+, Na+, Cl−). All components of the solvent are
minimized. The solution is fixed, and the minimization steps are performed: water
minimization, water and ions minimization. Next, the system is thermalized - with
a fixed solution the temperature is being gradually raised. Equilibration follows
the thermalization step. The harmonic energy constraints were put on the solute
to prevent it from moving too quickly, and being destroyed at the beginning
of the simulation. Initially, the structures are almost completely restrained, next
the constraints are slowly loosened to the moment the structure is equilibrated
and the unconstrained simulation can be performed. Finally, for the production
trajectories, the MINT analysis, and the networks are computed. Computations
were performed using NAMD program [294] mostly on the Paderborn computational
cluster OCuLUS.

7.1.1 Analysis of the structure of 3’ end of the UnaL2 LINE
element

The first structure was a 36-nucleotide fragment of the 3’ tail of the eel’s Long
Interspersed Nuclear Element (LINE) [304]. It consists of two helices, one bulge
and a hairpin loop (Fig. 7.1). This fragment is crucial for retrotransposition. The
researchers mutated the cysteine located in the middle bulge. Replacing it with
Adenine (mutation: C8A) resulted in the increase of the RFr to a 120%, and mutating
it to Guanine (C8G) resulted in RFr decrease to 4%. The MD trajectories for native
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and mutated structures were performed, the 210 ns production trajectories were
analyzed with MINT, and the deducted contact graphs were computed.

Figure 7.1: Secondary and tertiary structures of the native 3’ end of the UnaL2 LINE
element RNA molecule.

The deducted contact graphs revealed that mutations of the nucleotide on the
8th position caused changes in the interactions in the lower part of the molecule
(Fig. 7.2). Both mutations caused loss of the tertiary hydrogen bonds between the
8th nucleotide and the C26 and G27 located on the other side of the helix, and the
stacking interaction with the U28. However, C8A mutation enabled binding of the
G9 to the U30, and the C8G mutation promoted hydrogen binding between C8 and
G25. Changes introduced by C8G mutation caused breakage of the WC-pairing at
the beginning of the helix.

Figure 7.2: Deducted contact graphs for native structure and the two mutated
molecules.



126 CHAPTER 7. OTHER PROJECTS

A possible explanation is that the strong hydrogen binding in the middle of
the molecule between the G8 and G25 nucleotides impeds the reverse transcriptase
unwind the molecule during retrotransposition, which results in the low RFr of the
molecule with the C8G mutation. This agrees with the results for the analysis of
C8A-mutated structure, where the hydrogen bonds were removed, and replaced by
a weaker stacking interaction, which resulted in an RFr increase up to 120%.

7.1.2 Analysis of the structure of Alu SRP9/14 complex

In the cytoplasm, Alu RNA forms a complex with two proteins SRP 9 and 14. All
of those elements are crucial for retrotransposition. The G25C mutation in the Alu
RNA causes ∼ 50% decrease in RFr [305]. I compared simulations of the native and
mutated structures of the complex. The mutated nucleotide on the 25th position was
a center of the interaction between the RNA and the protein. The 25th nucleotide
is located almost directly opposite from the pseudo-knot, which was proven to be
crucial for retrotransposition (Fig. 7.3).

Figure 7.3: Structure of the complex and the contact difference graph (native-G35C).

The G25C mutation caused loss of the strong binding between G25 and G5.
However, the G5 formed a strong hydrogen bond with the A107. The mutation also
caused loosening of the stacking interactions on the site of the protein interface.
Interestingly another strong hydrogen bond appeared between the U39 and G15.
The U39 is typically a part of the pseudo-knot that is crucial to the biological
function of Alu. This could be a cause for the decrease in the retrotransposition
frequency.
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7.1.3 Summary and conclusions

I established a reliable molecular dynamics protocol to perform simulations of RNA
molecules and RNA/protein complexes. The novel approach to the analysis of the
trajectories provided explanations of the mutation-caused changes of the structure.
In the first structure, most of the differences were located around the mutated
nucleotide or its interacting partner located on the other side of the helix. However,
in the second, more complex structure, the analysis revealed a whole sequence of
changes. The mutation of the nucleotide located in the center of interaction with
the two proteins resulted in the destruction of the pseudo-knot on the opposite side
of the structure. In the sequence-sense that is a long distance interaction, however,
it was revealed by my MD/MINT analysis.

In the future, the molecular dynamics of the native structure could enable
a precise prediction of the structural changes, and biological function for the various
mutated sequences. This will enable clustering of retrotransposon sequences, e.g.,
those found in the human genome, into active and inactive.

7.2 Phase the turtle!

7.2.1 Introduction

Cells of diploid organisms have two copies of each chromosome. Although they
carry the same genes, their sequence may vary on the nucleotide level. During the
crossing-over, those small differences are mixed. Sequence fragments are called allele,
and a collection of alleles inherited together is a haplotype. Each chromosome has
multiple haplotype blocks. A probability of the two genes to be in the separate
haplotypes grows proportionally to the distance separating their loci. Therefore the
probability of finding two alleles in the same individual differs depending on their
location. This phenomenon is called linkage disequilibrium.

The majority of the genome sequences of diploid organisms deposited in
databases are consensuses of the two haplotypes [306]. Knowledge about haplotypes
and their frequency in the population is especially crucial for medicine [307, 308],
as the single nucleotide polymorphisms (SNPs) can confer a diseased phenotype.
Separating the haplotype sequences, or phasing uncovers the exact sequence of the
genome.

Computational approaches to haplotype phasing fall into two groups depending
on the data. Either, they consist of the large numbers of genomes of unrelated
individuals, or of the genomes of the members of a single family. In the first variant,
all of the methods are based on statistical modeling of haplotype frequencies within
a given population [309]. In the second variant, the parents and offspring genomes,
enable direct determination of the haplotype blocks. Those methods are developed
for human genomes and are not always applicable to other organisms.
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This project aimed at obtaining a full, phased genome of a Diamondback
terrapin. The University of Maryland researchers formed a collaboration between
the Center for Bioinformatics and Computational Biology (CBCB) and the local
Biology department. They sequenced the genome of a female turtle and fourteen of
her progeny. Complicated reproductive biology of the turtle made it impossible to
determine the father of the progeny. Therefore, this case falls into neither existing
haplotype-phasing approaches and requires developing a novel approach (Fig. 7.4).

Figure 7.4: Project scheme. The colorful blocks represent haplotypes coming from
the mother, and the gray colors those coming from father, whose sequence we did not
know.

The turtle’s genome was sequenced using two technologies: PacBio generating
long scaffolds but characterized with relatively high error rate and Illumina MiSeq
producing short, high-quality paired-end reads 300bp long reads, with 20x coverage.
The genomes of the 14 embryos were sequenced with HiSeq Illumina technology,
generating 100bp long paired-end reads, with 20x coverage.

Prof. Pop’s group performed initial steps of analysis. The k-mers correlation
analysis revealed that among the 14 progeny, groups of 3 and 11 embryos shared
a father. My role in the project was to phase the haplotypes for the turtle’s
genome. The work started during the 2nd BEST summer school and continued
during my internship in the Prof. Pop’s lab at the University of Maryland. Since
all of the analysis was done in close collaboration with Victoria Cepeda and under
the supervision of the professors from CBCB, I used pronoun we throughout this
section.
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7.2.2 Phasing pipeline

We assumed each PacBio read belonged to a single LD block, but its sequence was
a consensus of two haplotypes. MiSeq reads are homozygous since they come from
one of the DNA strands. The short reads were first mapped with Bowtie2 [230]
against the PacBio scaffolds. Next, Pilon [310] was used to correct the PacBio
sequencing errors. Our goal was sorting MiSeq reads, into two haplotypes, in the
context of a single PacBio read at the time (Fig. 7.5).

Figure 7.5: Reads mapped to the PacBio scaffolds, were sorted into two sets for each
haplotype. Next, for each side separately Pilon introduced the haplotype changes.

In order to separate the mapped reads according to the haplotype, first,
we counted k-mers (size 19) in all of the short reads using jellyfish and
jellyfish-matrix [259, 311]. A k-mer corresponded to a single allele. Next, each
mother’s k-mer was assigned a binary segregation profile encoding its presence in
the progeny sequencing data (Fig. 7.6). An ideally homozygous profile consisted of
solely 1’ns, and an ideally heterozygous profile was encoded by a complementary
pair, e.g.: 10110011001 and 01001100110.

Figure 7.6: Each k-mer extracted from the mothers sequencing, was assigned a binary
profile vector based on the presence or absence in the embryos.

At this point, each scaffold was linked to a set of reads, and each read to
a number of k-mers, each with a segregation profile. Most of the aligned reads had
a homozygous profile since most of the sequence in both haplotypes was identical.
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If the scaffold was heterozygous, the profiles of the mapped reads should include
complementary profile pairs (Fig. 7.7). However, the profiles were not ideal due to
the sequencing errors, k-mer frequency sampling and the fact that a k-mer could
be present in the father’s genome. If the k-mer came from the homozygous locus
in the father, their profile was also homozygous, independently whether the locus
was heterozygous in the mother’s genome. Therefore, the 0 in the profile denoting
an absence of a k-mer in an embryo was more informative than its presence. The
profiles of the reads mapped to a single scaffold were clustered. Subsequently, the
clusters were used to sort reads into the haplotypes.

Figure 7.7: Histogram of profiles found in reads aligned to one of the scaffolds. As
expected the most abundant are homozygous and empty profiles that emerged from
the k-mer frequency cutoff. The third most frequent profile is also erroneous since it
is doubtful that an allele omits a single progeny. On the fourth and fifth positions,
there are reciprocal profiles responsible indicating the two haplotypes. There is little
difference in the distribution of profiles between those located close to the SNPs and
others.

For each scaffold, four clusters were computed: homozygous and empty profiles,
A, B haplotype profiles and erroneous profiles. The profiles with almost only zeros or
ones were uninformative. The first cluster contained the most abundant informative
profile (A) and all of the profiles which share at least one zero with its representative.
Analogously cluster B contained the most abundant informative profile that did not
share zeros with the cluster A representative. The clustering algorithm was inspired
by the CD-Hit [287] algorithm (Fig. H.13).

Using the profile clusters, we separated the reads aligned to a single scaffold.
In the case, their distribution was dominated by one of the clusters the read was
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assigned to the adequate group. Otherwise, if both A and B clusters were equally
represented the read was assigned to the mixed category, which might be used later
to resolve the rare situations when the LD break was located within a scaffold.
The last step of the pipeline (Fig. 7.8) was running Pilon for the scaffolds with
heterogenous sites and the two sets of reads.

Figure 7.8: Steps of the pipeline. All of the clustering, sorting and file manipulations
were performed with Python.

7.2.3 Validation

The haplotype separation of the reads was validated by the mapping of the embryos’
reads onto the phased scaffolds. The representative profiles enoded the segregation
pattern. Therefore, we should be able to find reads solely of the embryos indicated
by an adequate representative profile (Fig. 7.9).

Figure 7.9: Comparison the number of aligned reads per embryo to the representative
profiles for an exemplary scaffold.

7.2.4 Summary and conclusions

We managed to solve the phasing issue in an atypical setup, with the unique, k-mer
based approach. The entire pipeline was set up on the University of Maryland
computational cluster. It computed for the majority of the 21,684 PacBio scaffolds.
However, it requires more work. In some cases, we ran into computational problems,
as the files became extremely large. Also, each of the steps in the pipeline could be
parametrized. Especially we should check if the k-mer frequency cutoffs influence
the results. Next steps should be rerunning pipeline, including validation steps to
find out the most successful set of parameters.



132 CHAPTER 7. OTHER PROJECTS



Chapter 8

Discussion and outlook

Antibiotics are primarily natural substances used by microorganisms in their struggle
for ecological space. We weaponized them to fight bacterial infections. It came
with great success but also with a high toll. Scientists observed emergence of the
dangerous multi-drug resistant bacteria and rise of resistance levels, so high that
it threatens a continuous safe use of antibiotics. Antibiotics were introduced into
the therapy before their impact was fully understood. Nowadays, the sequencing,
bioinformatics tools, and data mining methods enable insight into the mechanisms
of resistance emergence on all of the levels of biological organization.

The resistance starts in the bacterial cell. First, I investigated how the genomes
of Methicillin-resistant Staphylococcus Aureus (MRSA) change throughout antibiotic
therapy. The observed genetic differences between the MRSA strains concerned
mostly the virulence factors, whose function is fighting the environment that is
the human body, often, in the presence of high antibiotic concentrations. It was not
possible to directly prove that the antibiotic was driving the micro-evolution of those
strains as the isolates came from different states of infection and there were too few
patients, with too complicated and individual therapies in the dataset. However,
the observed variability between the isolates could in a large portion be attributed
to mobile genetic elements. MRSAs are multi-drug resistant bacteria packed with
virulence and resistance factors, and even more with transposons, phages, and
plasmids. This emphasizes the crucial role of horizontal gene transfer (HGT) in
resistance emergence.

The second project focused on resistance emergence mediated by HGT.
I investigated the dynamics of the gut microbiome under the antibiotic-excreted
ecological pressure. I observed the expected shifts in the microbiome composition as
well as an increase of the phage integration events. The resistance appeared firstly
in the antibiotic’s direct pressure point, the bacterial chromosomes, and secondly, in
the mobile genetic elements: the plasmids, prophages, and lastly in the free phages.

133
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The genetic information travels through the microbiome as if it was a network
with two types of nodes: bacteria and phages, connected by HGT events. It seems
the phages work as a temporary reservoir, like a retention pool on the river, storing
genetic information, as they do not respond to the ecological pressure of an antibiotic.
Antibiotic therapies remove some of those nodes, leaving ecological space for the
resistant bacteria. The connections between bacteria are strengthened and thickened
as HGT is prompted. Such an analysis was possible only for the dataset of the deep
sequencing enabling metagenomic assembly for time-series samples. The network of
each person’s gut microbiome is different, and so is its response to antibiotic therapy.
This was also shown by the analysis of the preliminary data from the Tübiom project.
The gut microbiomes’ responses vary depending on the lifestyle, past treatments,
and the therapy itself.

During the third project, I investigated the impact of different antibiotic
therapies on the probability of colonization with MDRs. The data, coming from this
observational study, were quite large, diverse and unbalanced regarding antibiotic
usage and colonization. We showed that MRSAs pose less threat than other
MDR types. The length of the antibiotic therapy drove colonization with extended
spectrum beta-lactamase-producing Enteriobacteriaccae (ESBL). However, using an
extensive machine learning pipeline, we were able to observe that the impact of some
antibiotics or their combinations was lower than others. To help doctors navigate
those complicated dependencies, we launched the AskSaturn website, that compares
the antibiotic therapies with respect to the predicted probability of getting colonized
by MDR.

Choosing a therapy based on the patient’s features, treatment history and the
current state of health is a definition of personalized medicine or medicine P4 [312].
The hope is that in the future the medical practice will be fully personalized with
information about the patient’s genome and full medical history available to their
doctors. Currently, the idea of personalized medicine is being implemented by the
identification of the clusters of patients for whom the therapy outcomes are similar.
This boils down to the analysis of the large and diverse datasets of patients. From
a data perspective, each patient and therapy denotes a long data vector of mixed
data types, much like those discussed in the SATURN project. Therefore, on the
one hand, the main workhorse in the analysis of those datasets are machine learning
methods. On the other hand, a large portion of the features will in the future rely
heavily on sequencing data and bioinformatics analysis.

Results of all of the projects presented in this thesis showed that the adverse
effects of antibiotic therapy depend on the intricate inner workings of the gut
microbiome. The SATURN project confirmed that antibiotics were the main reason
driving the colonization with MDR. No other patient characteristic or comorbidities
turned out to be as important. Knowing that the gut response to antibiotic
differs between patients and that it depends on their lifestyle and past treatments
- personalization of antibiotic therapy needs more basic research into the gut
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microbiome. It also requires communication of the results in the form of research
papers and tools providing doctors meaningful, actionable access to the study results,
of which a modest example is our AskSaturn website.

Analysis of the metagenomic sequencing resembles pooling since it is not possible
to sequence each bacterium of the gut microbiome. Researchers analyze small
samples hoping they are representative for the entire gut microbiome. For this
reason research into the gut microbiome needs large datasets of sequencing samples
along with the metadata prepared with unified and carefully controlled methods.
However, that is not enough. Researchers have also stressed the importance of
time-series analysis, as only such data enables discovery of the interactions [155].
Characterization of the MGEs within the gut, to be able to track resistance
accurately, requires scaffolds. However, metagenomic assembly is quite error-prone.
Here, long-read sequencing technologies paired with the new algorithms enable
functional and taxonomical annotations and comparisons of the large datasets [263].

During my Ph.D. I had the opportunity to work on the projects dealing
with various aspects of antibiotics resistance. In the methodological aspects, those
projects were quite diverse. However, each of them corresponded to one of the crucial
parts of a pipeline to provide the gut microbiome information to the routine medical
practice. Such a pipeline will enable better antibiotic usage and control of resistance
emergence.
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Appendices

A List of abbreviations

A
AR Antibiotic Resistance
ARG Genes conferring Antibiotic Resistance
AMR Antibiotic-Resistant Microorganisms

B
BLAST Basic Local Alignment Search Tool

C
CBCB Center for Bioinformatics and Computational Biology
CDC Centers for Disease Control and Prevention
CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

E
ECDC European Centre for Disease Prevention and Control
ESBL Extended-Spectrum β-lactamases
EU European Union

F
FDA Food and Drug Administration
FP7 7th Framework Program

H
HGT Horizontal Gene Transfer
HMP Human Microbiome Project

I
IBD Inflammatory Bowel Disease
INDELs Insertion/Deletions
IR Inverted Repeats
IS Insertion Sequence
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L
LCB Locally Collinear Blocks
LD Linkage Disequilibrium
LTCF Long-Term Care Facility

M
MAR data Missing At Random
Mb 106 base pairs
MCAR data Missing Completely At Random
MDR Multi-Drug Resistant bacteria
MGE Mobile Genetic Elements
MRSA Methacilin-resistant Staphylococus Aureus

N
NMAR data Not Missing At Random
NN Neural Networks

P
PC Principal Component

R
RPPs Ribosomal Protection Proteins
RNAP RNA Polymerase

S
SATURN Specific Antibiotic Therapies on the prevalence of

hUman host ResistaNt bacteria
SNPs Single Nucleotide Polymorphisms
SVM Support Vector Machines

R
RF Random Forest
RFr Retrotransposition frequency

V
VLP Virus Like Particles

W
WHO World Health Organisation
WGS Whole Genome Sequencing
WP Work packages in the SATURN project
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B Contributions

Prof. Daniel Huson advised me during all of the work throughout my Ph.D. I
was a member of the International Max Planck Research School and received
input and support from my Theses Advisory Committee that included Prof. Eliza
Izaurralde and Prof. Richard Neher from the Max Planck for Developmental Biology
in Tübingen.

Chapter 3 | MRSA from colonization to infection

Samples were collected within the SATURN project. As all of the selected samples
came from Serbia, they were initially processed by the Serbian team from the Clinical
Centre of Serbia under the supervision of dr. Biljana Jovanovic. The sequencing was
carried out by the group of Prof. Surbhi Malhotra-Kumar from the University of
Antwerp. I was responsible for the assembly and analysis of the data.

Chapter 4 | Gut mobileome under antibiotics

Dr. Silke Peter and Prof. Matthias Willmann planned and carried out the collection
of the samples and sequencing, for the original ASARI study. Dr. Silke Peter
processed and isolated DNA for the phage sequencing, that was carried out by Prof.
Robert Schlaberg from Department of Pathology, University of Utah, and Institute
for Clinical and Experimental Pathology, UT, Salt Lake City, USA.

Chapter 5 | SATURN

Prof. Evelina Tacconnelli coordinated the work-package 4 of the SATURN project.
The data were collected by the SATURN project team and members of Prof.
Tacconelli’s research group. Dr. Primrose Beryl Gladstone performed an analysis of
the data based using the logistic regression. Prof. Bernhard Schölkopf, Max Planck
for Intelligent Systems advised on how to construct the data vector initially for SVM.
The RF part was discussed with Prof. Michael Cummings form the University of
Maryland.

Chapter 6 | Tübiom project

Tübiom project was organized by a collaboration between several research groups
in Tübingen and the CeMeT GmBH, which also performed sequencing. Our group
was responsible for creating websites, managing databases and microbiome profile
computation. Sina Beier wrote the analysis pipeline, the website and the underlying
databases were set up by Patrick Groupp (MSc student). Theresa Harbig and
I designed and programmed the data visualizations. We heavily relied on the
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expertise of Dr. Isabel Flade from CeMeT GmBH, who was also performing sample
processing and sequencing. The website, database, and the analysis pipeline were
hosted using the CeGaT computational infrastructure.

Chapter 7 | Other projects

Analysis of the MD trajectories of RNA molecules

The molecular dynamics protocols were based on the work done for the MSc projects.
Dr. Oliver Weichenrieder and Steffen Schmidt from the Max Planck Institute for
Developmental Biology Tübingen suggested the two molecules used for the analysis.

Phase the turtle!

Sequencing of the Diamondback terrapin turtle and her progeny was carried out by
the University of Maryland. The initial bioinformatics work including assembly was
performed by Ph.D. students in the Center for Bioinformatics and Computational
Biology. I came to the project during the 2nd Bioinformatics Exchange Students and
Teachers summer school in Maryland. Then, I went on an internship in Center for
Bioinformatics and Computational Biology Maryland in the February 2015 where
we continued working on the projects with Victoria Cepeda, supervised by the three
professors: Mihai Pop, Michael Cummings, and Steve Mount.
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D Supplementary Material | MRSA from
colonization to infection

Table D.1: Initial statistics of the spades-corrected reads. Sample date column
contains the dates the samples were taken from the patient. Size was computed via
simple summing lengths of all of the reads in the sample, and coverage was estimated
via dividing the size by the size of the reference genome (2 902 619). Both files assigned
to a single sample should contain a roughly similar number of reads, have similar size
and coverage, what is the case for all of the samples. The samples were taken in 2012
(SE1582) and 2013 for all other samples. All samples were sequenced in 2015 dates.

Sequencing
date

Sample
date Samples Number of reads Amount of sequence Coverage

SE1582
25-03 06-11 BAL R1 301,838 1,668,811,552 575

R2 312,579 1,668,202,571 575
18-04 19-11 NT4_S4 R1 219,258 1,191,793,143 411

R2 303,431 1,180,272,344 407
SE1884
18-04 12-02 BAL_S1 R1 65,109 354,617,126 122

R2 75,267 353,292,007 122
18-04 22-02 NT4_S2 R1 134,398 766,990,881 264

R2 233,981 752,845,860 259
15-08 26-02 ND_S4 R1 238,724 1,271,720,312 438

R2 298,514 1,265,075,493 436
SE1890
18-04 11-02 BAL_S3 R1 128,274 775,085,477 267

R2 187,644 767,205,491 264
13-05 14-02 Nt3_S4 R1 236,144 1,028,737,930 354

R2 313,531 1,019,725,018 351
13-05 27-03 ND_S3 R1 210,451 1,239,657,010 427

R2 389,925 1,218,075,700 420
SE1895
15-08 11-02 N_S1 R1 117,121 752,966,412 259

R2 158,140 747,909,730 258
15-08 12-02 Nt2_S2 R1 89,403 629,749,620 217

R2 135,856 624,382,700 215
13-05 21-03 ND_S3 R1 176 601 1 315 932 715 453

R2 291 804 1 301 823 509 448
SE2054
13-05 05-04 N3_S2 R1 135,279 816,581,530 281

R2 227,854 804,874,740 277
13-05 12-04 N_1 R1 170,486 897,273,708 309

R2 251,747 887,178,336 306
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Table D.2: Assembly statistics the Spades runs for the MRSA strains isolated from
patients from different timepoints across the antibiotics therapy.

Sample Num. Scaffolds Size Min. Max. Med. Avg. N50 N90

Assembly statistics for reads that did map to rRNAs.
SE1582
BAL_S1 178 11 4,019 204 1,217 240 365 321 208
NT4_S4 140 10 2,972 193 747 243 297 272 211
SE1884
BAL_S1 267 7 5,529 197 1,976 712 789 1,065 596
NT4_S2 143 7 3,467 205 1,133 295 495 865 234
ND_S4 332 15 5,511 125 831 248 367 650 190
SE1890
BAL_S3 196 19 5,575 9 878 248 293 408 205
Nt3_S4 335 7 5,884 125 1,593 898 840 977 748
ND_S3 296 11 5,513 125 956 477 501 645 275
SE1895
N_S1 444 10 6 445 36 2,043 413 644 1,381 260
Nt2_S2 452 18 7,237 54 1,411 185 402 1,068 156
ND_S3 228 15 4,840 70 1,015 259 322 396 166
SE2054
N3_S2 366 12 6,237 61 2,568 304 519 835 304
N_S1 372 10 6,044 95 2,059 397 604 1,294 231

Assembly statistics for reads that did not map to rRNAs.
SE1582
BAL_S1 4,677,829 1,038 3,063,988 36 178,725 224 2,951 49,248 7,082
NT4_S4 3,215,327 655 2,944,558 36 178,687 209 4,495 51,451 13,434
SE1884
BAL_S1 1,027,738 792 2 919 473 36 133,608 77 3,686 51,367 13,415
NT4_S2 2,070,723 1 393 3 078 254 36 133,720 216 2,209 43,457 4,699
ND_S4 3,874,473 668 2,897,961 36 133,780 80 4,338 51,538 13,544
SE1890
BAL_S3 2,177,776 863 2,982,277 36 136,189 198 3,455 47,221 12,171
Nt3_S4 3,133,320 449 2,908,787 36 133,745 187 6,478 49,236 13,544
ND_S3 3,734,560 423 2,915,227 36 136,189 200 6,891 49,236 13,415
SE1895
N_S1 2,299,719 642 2,951,860 36 133,745 207 4,597 51,484 13,415
Nt2_S2 1,972,950 673 2,937,476 36 136,189 144 4,364 49,236 13,415
ND_S3 3,907,472 814 2,927,208 36 133,993 54 3,596 49,248 12,908
SE2054
N3_S2 2,431,691 677 2,863,318 36 202,540 71 4,229 49,846 15, 180
N_S1 2,696,889 603 2,854,612 36 173,193 71 4,734 49,580 14, 701
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Table D.3: Assembly statistics after assembly and ordering.
Sample Num. Size Min. Max. Med. Avg. N50 N90

SE1582
BAL_S1 914 3,108,182 36 1,423,316 219 3,400 868,898 541,419
NT4_S4 539 2,938,646 36 1,451,782 202 5,452 602,353 54,206
SE1884
BAL_S1 655 2,976,587 36 1,524,182 59 4,544 1,524,182 459,024
NT4_S2 1 251 3,048,306 36 1,437,734 212 2,436 872,009 458,706
ND_S4 513 2,816,844 36 1,035,005 64 5,490 785,834 164,148
SE1890
BAL_S3 728 2,919,187 9 1,438,221 191 4,009 719,175 108,441
Nt3_S4 298 2,783,330 36 944,927 70 9,340 719,758 451,414
ND_S3 294 2,842,405 36 949,031 105 9,668 868,639 440,875
SE1895
N_S1 503 2,844,719 36 1,449,745 195 5,655 1,449,745 458,199
Nt2_S2 541 2,953,037 36 1,034,270 71 5,458 779,674 448,012
ND_S3 670 2,839,476 36 944,732 48 4,238 870,185 440,799
SE2054
N3_S2 578 2,756,233 36 873,630 58 4,768 324,945 123,733
N_S1 499 2,744,829 36 880,579 54 5,500 579,290 125,300

Reference 2,821,361

Figure D.1: Distribution of the size of the complete plasmids of the S. Aureus found
in NCBI (106) as of September 2018.
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Figure D.2: Presence/absence heatmap for plasmids based on the Plasflow runs for
reads.

Figure D.3: Histogram of SNP and INDEL qualities from FreeBayes. The quality is
defined as −log10x where x is probability the output allele is wrong. Red lines denotes
cutoff: 1000 for SNPs and 610 for INDELs - everything lower then cutoff is excluded
from analysis.
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(a) Genomes

(b) Plasmids

Figure D.4: LAST+MEGAN-LR taxonomic annotation of the genomic and plasmid
scaffolds.
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E Supplementary Material |
Gut mobileome under antibiotics pressure

Table E.4: Assembly quality statistics for the pooled and separated assembly stategties
for k-mer 25.

K #Scaff. Max. scaff. N50 Tot. length Predicted genes
Pooled assembly

Phage | A

23 832,443 511,149 14,057 89,507,509 44,550
25 860,417 490,755 14,997 89,442,525 876,730
27 752,382 456,089 15,990 87,633,581 778,730
29 636,945 453,097 16,698 86,287,015 673,591

Phage | B

23 677,524 283,536 16,113 114,168,468 28,661
25 714,822 414,336 16,930 112,797,718 775,783
27 652,966 408,617 18,208 110,874,669 718,350
29 579,888 424,240 18,616 109,158,037 650,126

Separated assembly

Phage | A

0 153,500 178,458 1,786 13,521,179 156,536
1 217,070 240,912 3,287 12,399,639 218,380
3 408,478 245,922 19,324 25,527,969 400,043
6 262,850 268,573 18,506 24,635,812 267,716
+2 321,755 254,477 18,899 33,255,036 327,199
+28 134,118 129,394 5,704 11,300,454 136,972
SUM 1,497,771 268,573 - 120,640,089 1,506,846

Phage | B

0 150,953 166,135 2,955 8,415,674 151,092
1 175,657 166,088 6,914 7,470,370 174,550
3 208,154 222,378 5,777 14,071,527 210,950
6 163,288 295,336 29,993 30,182,804 179,575
+2 117,808 122,256 6,498 23,239,384 128,266
+28 426,024 204,409 6,565 63,875,494 457,207
SUM 1,241,884 295,336 - 147,255,253 1,301,640

Microbiome | A

0 300,335 146,934 3,432 70,366,968 344,741
1 308,781 148,061 2,633 70,100,769 353,686
3 174,283 117,093 5,233 51,539,491 210,535
6 222,303 115,288 3,787 68,088,430 268,335
+2 132,288 91,584 5,934 58,993,467 173,594
+28 283,884 86,739 1,568 61,614,432 322,699
SUM 1,421,874 148,061 - 380,703,557 1,673,590

Microbiome | B

0 1,052,066 95,632 1,667 175,505,980 1,139,007
1 584,744 95,310 1,876 101,185,762 650,853
3 565,967 93,048 2,469 76,529,178 616,995
6 181,045 77,360 3,718 58,126,443 220,381
+2 114,994 70,173 3,631 40,908,611 141,944
+28 551,686 122,815 2,999 129,162,426 639,726
SUM 3,050,502 122,815 - 581,418,400 3,408,906
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Figure E.5: Rarefaction curves of the number of scaffolds with an alignment to any
of the CRISPR spacers vs. portion of whole spacer database.

Figure E.6: RF overfitting control. a) Box plot presents distributions of difference in
accuracy between the train and the test sets. b) A portion of phage scaffolds across
different cutoffs across the number of RF runs and two max_depth parameters: None
(10 to 100) and 5 (200 and 500).

Table E.5: Random Forest (RF) parameters.

Parameter Value Description
n-trees 10,000 Forest size
max_depth 5 Maximal depth of the trees
max_features 3 Number of features considered for the best split
min_samples_split 2 Minimal number of samples required for splitting
runs 500 Number of RF runs.
vote cutoff 90% Portion of positive predictions required to denote a scaffold as phage
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Figure E.7: VirSorter p-values for scaffolds selected by RF.

Figure E.8: Proportions of scaffolds of the two sets for all groups undergoing the
abundance trajectory analysis.

Figure E.9: Average coverage (abundance measurement) per scaffold. The blue line
denotes the highest value in the Phageome and the red denote the average.
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Figure E.10: Abundance of the phages and their bacterial hosts detected by WiSH,
along with the trajectories of their relative difference in abundance.
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F Supplementary Material | SATRUN

Figure F.11: Average accuracy along with the standard deviation in the three schemes
of the feature selection.
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G Supplementary Material | Tübiom project

Figure G.12: Advanced plots of the Tübiom project. The plots were hidden in the
default view. They present profiles of the samples and general profiles the user selected
previously.
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H Supplementary Material | Phase the turtle!

Figure H.13: Profile clustering algorithm. Firstly, the profiles are reversely sorted by
abundance. Program classifies one, the most abundant profile, at the time. At each step,
it decides if to assign a profile to one of the four clusters or to stop. After processing,
the profile is removed from the list. Profiles containing mostly zeros or ones is assigned
to an uninformative cluster. The first encountered informative profile is assigned to
cluster A, and this profile becomes the representative for the cluster. Analogously the
cluster B is created with the first informative profile that did not share zeros with the
A’s representative. If the profile shares zeros with the representatives of both clusters
the program includes that and all further profiles into the erroneous cluster.
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