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Zusammenfassung
Der Ursprung hochenergetischer kosmischer Strahlung und die zugrunde lie-
genden Beschleunigungsmechanismen sind Bestandteil aktueller Forschung in
der Astroteilchen-Physik. Um diesen Fragen auf den Grund zu gehen, muss eine
große Anzahl von Teilchenschauern gemessen werden, die beim Eindringen kos-
mischer Strahlung in die Atmosphäre enstehen. Die Idee des Extreme Universe
Space Observatory (EUSO) ist deshalb, die Atmosphäre aus demWeltall zu be-
obachten, um auf einer großen Fläche Teilchenschauer und deren Fluoreszenz-
licht aufzuzeichnen. Dies erfordert empfindliche Lichtdetektoren. Neben den
herkömmlich benutzten Photomultiplier-Tubes sind Silizum-Photomultiplier
(SiPM) eine vielversprechende Alternative, da sie keine Hochspannung benöti-
gen und zudem leichter sind. Derzeit gibt es noch keine experimentellen Erfah-
rungen mit SiPM im Weltall, insbesondere im Hinblick auf die hohe thermische
Dunkelrate und starke Temperaturempfindlichkeit der Detektoren.

Die vorliegende Arbeit besteht aus zwei Teilen: Im ersten Teil wird mithilfe
eines experimentellen Aufbaus der Einfluss der Temperatur auf die Verstär-
kung von SiPM untersucht. Dazu wird ein Algorithmus zur Echtzeitmessung
der Verstärkung entwickelt, der es erlaubt die Verstärkung ohne externe Tem-
peraturmessung zu stabilisieren. Im zweiten Teil werden Daten einer SiPM-
Prototyp-Kamera analysiert, die während eines EUSO-Ballonflugs im Frühling
2017 aufgenommen wurden. Eine statistische Auswertung der Daten ergibt eine
Abschätzung des Untergrundes für die Messung kosmischer Strahlung, sowohl
durch thermisches Rauschen im Detektor als auch durch den physikalischen
UV-Hintergrund der Atmosphäre. Außerdem werden zeitlich veränderliche Si-
gnale identifiziert, die zum Beispiel durch Wolken verursacht werden können.
Zum Schluss wird ein Vergleich der SiPM-Prototyp-Kamera mit der Hauptka-
mera des Ballons gezeigt, bei der herkömmliche Photomultiplier-Tubes benutzt
wurden.

Silizium-Photomultiplier, SiPM, Kosmische Strahlung, Astroteilchen-Physik



Abstract
The origin and the underlying acceleration mechanisms of ultra high energy
cosmic rays (UHECR) are one of the topics of research in astroparticle physics.
To answer these questions, measurements with high statistics are needed of the
extensive air showers the UHECR produce in the earth’s atmosphere. By going
to space, the proposed Extreme Universe Space Observatory (EUSO) aims to
detect atmospheric showers over a large area using the fluorescence method,
which requires sensitive light detectors. Silicon photomultipliers (SiPM) have
emerged as promising alternatives to conventional photomultiplier tubes, with
various advantages such as lower weight and lower operating voltage. However,
the ability of SiPM to detect light in a near-space environment has yet to be
demonstrated, and the influence of the high rate of thermal noise and strong
dependence on ambient temperature has to be assessed.

This work is divided into two parts. First, the temperature dependence of
the SiPM gain is studied with an experimental setup. A novel algorithm is
presented to measure the SiPM gain in real-time, which allows the stabilization
of the gain without the need for external temperature measurements. In the
second part, data of a prototype SiPM camera, which was flown on a EUSO
super pressure balloon pathfinder in the spring of 2017, were analysed. This
includes a statistical analysis of the background for UHECR search, both from
thermal detector noise and from physical UV background in the atmosphere.
Furthermore, transient events were identified, which hint at moving clouds. In
the end, a brief comparison between the SiPM prototype and the main camera
using photomultiplier tubes is shown.

silicon photomultiplier, SiPM, cosmic rays, astroparticle physics
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Chapter 1

Introduction

Astroparticle physics is a young field at the interface between particle physics,
astronomy and cosmology. It studies physics at the most extreme scales, as the
evolution and structure of the universe at the cosmological scale is driven by
the properties of elementary particles and interactions at the smallest scale [1].
As a result, it is possible (and even necessary) to study cosmological events
to learn about fundamental particle physics [2, 3]. At the same time, new
advances in particle physics can have huge implications on our understanding
of the universe as a whole [4].

One messenger from the extreme universe are cosmic rays (CR), high energy
particles from outside the solar system or even the Milky Way. They span sev-
eral orders of magnitude in energy and are the highest-energy particles we can
measure [5]. Although there has been a huge effort to study CR for the past
100 years [6, 7, 8, 9], there are still a lot of unanswered questions regarding
their origin and the mechanisms, which accelerate particles to such energies.
In order to detect CR, we exploit the fact that they create showers of sec-
ondary particles in the earth’s atmosphere, such as electrons and muons [10].
As the secondary particles excite atmospheric nitrogen, the emitted fluores-
cence light can be used to learn about the energy, direction and composition
of the CR [11]. Today, CR experiments like the Pierre Auger Observatory [12]
and the Telescope Array [13] measure CR at the highest energies with fluores-
cence telescopes, which look at the atmosphere, and surface detectors, which
measure the shower particles directly, at the same time. This is necessary,
since high energy CR are very rare events. In order to collect enough statis-
tics, which allows for meaningful measurements, large areas of the atmosphere
need to be observed. As this is increasingly difficult from the ground, the pro-
posed Extreme Universe Space Observatory (EUSO) [14] aims to go to space
to observe larger areas of the atmosphere and thus find answers for the ques-
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tions regarding the highest-energy CR. In order to reliably detect CR from
above using the fluorescence method, a sensitive camera is needed to track the
air shower and to distinguish the fluorescence light from the background light
in the atmosphere. Conventionally, photomultiplier tubes (PMT) have been
used as detectors in such cameras [15, 12]. Nearly two decades ago, silicon
photomultipliers (SiPM) have emerged as promising solid-state alternatives to
PMT with several advantages, especially to space experiments, such as lower
weight, lower operating voltage and general robustness [16]. In recent years,
SiPM have become mature devices, which have replaced PMT for many ap-
plications. However, SiPM have a few drawbacks, like a high rate of thermal
noise, which mimics photon signals, called dark counts. Furthermore, some
sensor properties depend heavily on the ambient temperature.
To demonstrate the EUSO idea of detecting CR by looking down to earth,
there are several pathfinders. The latest pathfinder was EUSO-SPB, which
consisted of a scaled down EUSO-like camera onboard a super pressure bal-
loon, which flew at an altitude of ∼ 33 km [17]. It was launched in April 2017
from New Zealand and flew for 12 days before it was prematurely let down. In
addition to a conventional PMT camera with 2304 pixels, it included the sili-
con photomultiplier elementary cell addon (SiECA), a prototype SiPM camera
with 256 pixels [18]. This allows a very first look at the SiPM performance
in near-space and can be used to estimate if the SiPM dark counts are a hin-
drance to CR detection or if SiPM can indeed be used for future experiments.

This work is structured as follows: In chapter 2, an introduction is given
to CR physics and their detection by air showers in the atmosphere. Fur-
thermore, the concepts of CR detection from above and the design of EUSO
are presented. In chapter 3, the fundamentals of light detection with SiPM
are outlined, and their properties are explained. This chapter also includes
an overview of recent developments, which helped the detectors to reach ma-
turity. In chapter 4, the discussion of the experimental work of this thesis
begins. The temperature dependence of SiPM is studied, with an emphasis
on the SiPM gain. Different methods to stabilize the gain are discussed and a
novel approach is presented, which exploits the thermal dark counts as a mea-
sure of the detector temperature. In chapter 5, data of the SiECA prototype
camera are analysed. This includes the definition of cuts to discard unphysical
data, the separation of transient events from static background and a statis-
tical analysis of the data content to evaluate the contribution of dark counts
to atmospheric background and transient events. In the end, a brief compari-
son between SiECA and the PMT camera of EUSO-SPB is shown. Chapter 6
concludes this work and summarizes the results of this thesis.



Chapter 2

Cosmic Rays

Even in modern physics, the origin of ultra high energy cosmic rays (UHECR),
the acceleration mechanisms and distribution of their sources are not fully un-
derstood. This chapter will introduce the physics of cosmic rays and present
many of the unanswered questions, especially in the ultra high energy region.
The detection of high energy cosmic rays will be outlined with a focus on space-
bound or near-space experiments in the framework of the Extreme Universe
Space Observatory (EUSO).

2.1 The Cosmic Ray Spectrum

Charged particles which hit the earth from space are called cosmic rays (CR).
Most CR (99 %) are atomic nuclei, most notably protons (90 %), alpha parti-
cles (9 %) and heavier nuclei (1 %) up to iron. Electrons only make up a small
fraction (1 %) of CR. Their energies range over many order of magnitude from
109 eV to the highest observed energies 1020 eV, and most likely higher [5, 19].
CR come from outside the solar system and are isotropic at most energies due
to propagation in the galactic magnetic field [20]. Solar wind particles are typi-
cally not considered to be CR, since their energies are far lower (<108 eV). The
flux of CR dN

dE
depends heavily on the CR energy E and can be approximately

described by a power law
dN

dE
∝ E−α, (2.1)

with a spectral index of α ≈ 2.7. The all-particle spectrum of the CR flux for
energies above 1013 eV is shown in Figure 2.1. The spectrum is multiplied by
E2.6 to reveal features in the changing of the spectral index α. The three most
distinctive features are marked in Figure 2.1: the knee between 1015 eV and
1016 eV, which marks a steepening of the spectrum towards higher spectral
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Figure 2.1: All particle spectrum of CR flux, scaled by E2.6, against the pri-
mary particle energy E. The three features mark changes in the spectral index
of the flux, from [22].

indices α, the second knee, observed by the KASCADE collaboration [21],
where the spectrum steepens further, and the ankle around 2× 1018 eV, where
the spectrum flattens again. An additional feature is the strong suppression
above 5× 1019 eV. Due to the small statistics of the measurements and large
systematic uncertainties (see section 2.2), the reasons for the spectral features
are still not known with absolute certainty. In the following, some of the more
popular models, which offer explanations for certain features, are presented.

Studying the abundances of primary CR nuclei below 1015 eV reveals large
similarities with solar system abundances [10] and almost no dependence of the
abundances on primary energy (with a few exceptions [23]). Thus, CR below
the knee are assumed to be of galactic origin. The appearance of the knee could
mark the limits of galactic accelerators, e.g. supernova remnants [22]. Since the
shock front of a supernova only has a finite lifetime, CR can only be accelerated
up to certain energies, which are near the knee region ∼ 1015 eV [24, 25].
Other acceleration mechanisms (e.g. γ-ray bursts) are also able to describe
knee-like spectral features [26]. Apart from source spectra, the knee could also



5

be explained by propagation effects, such as leaky box models [27, 28], where
the galactic magnetic field B fails to confine the CR with increasing rigidity

R =
p

Z
= rLB, (2.2)

where p and Z are the CR momentum and charge, and rL is the Larmor radius.
As CR escape the galaxy, the measured flux decreases, and the knee feature
appears. In such a model, the second knee can be explained by a heavier pri-
mary component, which escape the galaxy at higher energies, whereas the knee
is caused by the escape of lighter primaries, such as protons.

It is believed that the ankle marks the transition from galactic primaries to
extragalactic primaries, i.e. the extragalactic flux starts to dominate the galac-
tic flux. The CR in this energy regime are called ultra high energy cosmic rays
(UHECR). However, the detailed composition (ratio of primary abundances)
is still unclear, as is the contribution of galactic and extragalactic fluxes. Com-
position studies should be able to answer these questions, but are difficult due
to the limited statistics and high systematic uncertainties. At the highest en-
ergies, a strong suppression is expected, as the primaries start to interact with
the cosmic microwave background (CMB) via photo-pion production

p+ γCMB → ∆+ → p+ π0

p+ γCMB → ∆+ → n+ π+.
(2.3)

This is called the Greisen-Zatsepin-Kuzmin (GZK) cutoff [29, 30]. All exper-
iments, which measure these UHECR, see a cutoff at similar energies [31, 32,
33, 34, 35]. However, to prove that this cutoff is due to the GZK effect, again
composition studies need to be carried out, as the GZK models favour a very
light composition over intermediate mass nuclei. In mixed composition models
a similar cutoff is expected due to photo-dissociation of heavy nuclei [36]. So
far, the data is compatible with both models [37]. Although the flux is very
low at the highest energy, data [38, 39] agrees on a small iron component of
primaries. This is puzzling, as iron has a high acceleration efficiency and is
expected to be comparably stable in the CMB [11]. With the current experi-
ments, any statement on the composition beyond the absence of heavy nuclei
is very challenging. As extragalactic intermediate nuclei eventually fragment
to protons on their way to earth, an intermediate nucleus component requires
medium scale anisotropies of CR due to nearby sources. So far, there is only
one hint at such a “hotspot” reported by the Telescope Array collaboration
with 3.4σ [40].
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At energies below 1015 eV, CR can be detected directly by balloon or satel-
lite experiments. Since the flux drops rapidly with increasing energy, larger
detectors would be needed to gather sufficient statistics. As this is not feasi-
ble, CR above 1015 eV are detected from ground exploiting the fact that high
energy CR form extensive air showers (EAS) by creating secondary particles in
the atmosphere. In the following section, the underlying mechanisms of EAS
are explained.

2.2 Detection of Ultra High Energy Cosmic Rays

2.2.1 Extensive Air Showers

Above 1015 eV, the hadronic particles can interact with nuclei in the air like
nitrogen, oxygen and argon at an altitude of 15 km — 35 km. These inter-
actions produce a shower of secondary particles, called extensive air showers
(EAS), which can be detected from the ground. The most abundant secondary
particles are charged and neutral pions, π± and π0. As the subsequent shower
particles are created from the decay of these mesons, three shower components
can be distinguished, a hadronic component, which contains long-lived mesons,
an electro-magnetic component consisting of e± and γ, and a muonic compo-
nent of µ± and νµ/ν̄µ. A schematic overview of EAS is shown in Figure 2.2.

Electro-Magnetic Component

The electro-magnetic (em.) component consists of particles, which only inter-
act electro-magnetically, namely e± and γ. The em. component is created by
a decay of neutral mesons into two γ

π0 → γ + γ. (2.4)

It is sustained by the creation of further em. particles via pair production of
a e+/e−-pairs and the production of γ by bremsstrahlung of e±. The e− are
also subject to ionization energy loss, which is dominated by bremsstrahlung
losses until the e− reach a critical energy Ec, which is ∼ 86 MeV in air. Some
properties of the em. component can be described by the Heitler model [42]. In
this model, after a certain distance λem, a particle is destroyed and its energy
is distributed to two new particles. After n interactions, 2n particles have been
created. Thus, the number of particles N at a certain atmospheric depth X

can be described as
N(X) = 2

X
λem . (2.5)

Obviously, this process cannot continue infinitely. Once particles reach their
critical energy Ec, bremsstrahlung is no longer the dominant mechanism for
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Figure 2.2: Schematic overview of EAS development. The three branches
distinguish muonic, hadronic and electro-magnetic components and highlight
the most important interactions, from [41].

energy loss and the shower runs out. Since the energy is evenly distributed,
the total number of particles at this energy is

Nmax =
E0

Ec
, (2.6)

where E0 is the total available energy for the em. shower. Therefore the at-
mospheric depth at the shower maximum Xmax is given by

Xmax(E0) ∼ λem ln
(E0

Ec

)
. (2.7)

These predictions by the simple Heitler model are confirmed in more exhaustive
models [43, 44] and detailed shower simulations [45].

Hadronic and Muonic Component

For the description of hadronic showers, an extended Heitler model can be
used [46]. Here, the energy of the hadronic particles is split between charged
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particles (2
3
, π±) and neutral particles (1

3
, π0). The neutral particles will rapidly

decay into an em. shower (see Equation 2.4). After a certain distance λhad,
the charged particles either interact with nuclei in the air, or they will decay,
if their energy is below a typical decay energy Edec, and produce muons (see
below). Since the em. particles outnumber other contributions (see Figure 2.3),
the depth of the shower is mainly given by its em. component

Xmax(E0) ∼ λhad +X0 ln
( E0

2ntotEc

)
, (2.8)

where ntot is the number of particles produced in the shower. Muons are
created in the decay of the charged particles in hadronic showers

π+ → µ+ + νµ

π− → µ− + ν̄µ.
(2.9)

As one muon is produced per charged particle, the total number of muons is
given by

Nµ =
( E0

Edec

)α
, (2.10)

where α = lnnch
lnntot

is the fraction of charged particles produced in the hadronic
shower, which depends on energy, air density and hadronic interactions.

So far in the description for hadronic showers, the primary particle was as-
sumed to be a proton. For heavier primaries, the superposition model can be
used [47]. Due to the high shower energies, a nucleus with mass A and energy
E0 can be treated as A independent primaries with energy Eh = E0

A
. This yields

NA
max ≈ A · Eh

Ec
=
E0

Ec
= Nmax

XA
max ≈ Xmax(

E0

A
)

NA
µ ≈ A1−α ·Nµ.

(2.11)

As can be seen, there is almost no difference in the number of particles in
the shower for heavier nuclei (compare Equation 2.6). However, the position
of the shower maximum and the number of muons depend on the mass of the
primary. In this way, the mass of the primary and thus the composition of CR
is accessible experimentally.

The lateral and longitudinal distributions of EAS are summarized in Fig-
ure 2.3. The lateral spread of the em. shower is mainly determined by Coulomb
scattering of electrons. Muons have larger lateral spread as they are mostly
produced high up in the atmosphere and small lateral momenta are translated



9

Figure 2.3: Simulated lateral (a) and longitudinal (b) shower profile for 1019 eV

proton. The electro-magnetic particles are the most frequent, from [48].

to big footprints. In general, there are large fluctuations between showers, even
for the same energy and primary. Showers of heavy primaries tend to show
smaller shower-to-shower fluctuations [10], which can be understood from the
superposition model.

2.2.2 Detection of Extensive Air Showers

To detect EAS from ground, the properties of the shower and its secondary
particles are used. Over the years multiple detection strategies have emerged.
The most obvious strategy — which was also how CR were initially discovered
in 1912 by Hess [49] — is to measure the particles of the EAS directly. For this,
modern UHECR experiments use so-called surface detectors, which measure
electrons or muons created in the EAS. Secondly, since many particles created
in the EAS are relativistic, Cherenkov radiation is created in the atmosphere,
which allows the measurement of UV light from the ground. A third approach
is to measure the fluorescence light from the excitation of nitrogen atoms in
the atmosphere, which also falls in the UV spectrum. These methods will
be discussed in more detail in the following section. There are also attempts
to measure the radio emission from air showers. Recent developments of this
technique are reviewed in [50].
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Surface Detectors

Surface detectors are able to measure the charged secondary particles of EAS.
Typically, this is achieved with scintillation detectors, where light is recorded
from charged particles, which pass through the scintillating material. As an al-
ternative to scintillation detectors, water Cherenkov detectors are used, which
make use of the Cherenkov effect [51] in water of the secondary particles. Water
Cherenkov detectors have a larger thickness (∼ m instead of ∼ cm for scin-
tillation detectors), which increases their sky coverage for large zenith angles.
This is particularly useful for experiments which are interested in the highest
energies (see the water Cherenkov array of the Pierre Auger Observatory [52]).
Surface detectors measure particles from the em. shower component as well as
muons, but the em. component can be blocked with appropriate shielding if
only muons are of interest.
In order to register the lateral distribution of the shower, surface detector
arrays track the arrival times of the incoming particles and thus are able to
reconstruct the orientation of the shower and ultimately the orientation of the
primary CR. The position of the shower core can be determined by mea-
suring the incoming particle densities, which are fitted to lateral distribution
functions, such as the Nishimura-Kamata-Greisen function [53]. For the re-
construction of the primary CR energy, several different methods can be used.
As discussed before (see subsection 2.2.1), the number of muons can work as
a measure for the primary energy, e.g. for KASCADE, the number of muons
in a ring around the shower axis can be used as a measure for the primary
CR energy [54]. Alternatively, one can use a correlation between the number
of electrons and number of muons for energy reconstruction [55]. While all
of the above methods depend on shower simulations, there are also methods
independent of simulations, using the fact that primaries arrive isotropically,
as used by the Pierre Auger collaboration [32]. To detect the mass of the
primary, the ratio of muons and electrons can be used (see Equation 2.11).

Cherenkov Light Detectors

Cherenkov radiation is emitted when a particle moves in a dielectric medium
faster than the medium’s speed of light [51, 56]. The light is emitted with a
continuous spectrum in forward direction. Roughly one third of the charged
particles in EAS emit Cherenkov light, most abundantly electrons [57]. The
Cherenkov light can be detected on ground with photomultiplier tubes (PMT)
(or silicon photomultipliers, see chapter 3) looking towards the sky. Cherenkov
light detectors can be distinguished into two categories: Light integrating de-
tectors and imaging detectors. Light integrating detectors consist of an array
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of PMT distributed over a large area, often equipped with Winston cones to
maximize the collected light. They measure the lateral density distribution
of Cherenkov light and thus the electrons of EAS. Similarly to surface detec-
tor arrays, this allows the measurement of primary energy, shower direction
and mass of the primary. Examples of integrating Cherenkov detectors are
BLANCA [58] and TUNKA [59].

An alternative to integrating detectors are imaging Cherenkov detectors,
called imaging Cherenkov telescopes, where the light is recorded on a focal
plane image of a pixelated detector. This allows for a geometric reconstruc-
tion of the shower profile, as the detected light follows the air shower. Thus,
the method is much more independent from simulations than surface detectors
or integrating Cherenkov detectors. Since only the projection of the shower on
the focal plane is recorded, imaging Cherenkov telescopes generally have poor
resolution for the direction of the primary CR. Modern experiments such as
H.E.S.S. [60], MAGIC [61] and VERITAS [62] overcome this caveat by em-
ploying several telescopes at once and using stereo observation. Today, the
imaging Cherenkov method is primarily used for γ-ray astronomy, which is
mainly interested in γ-induced EAS.

Fluorescence Detectors

At energies above ∼ 1017 eV, particles in EAS can excite nitrogen atoms in the
atmosphere. In their de-excitation, they isotropically emit UV photons, which
can be used to measure the EAS from any direction. Due to the band struc-
ture of the nitrogen atom, which involves vibrational and rotational states,
the UV photons are emitted with a characteristic spectrum of several lines, as
shown in Figure 2.4. The number of emitted photons per deposited energy is
called fluorescence yield and depends on atmospheric conditions like tempera-
ture and gas mixture. It is known only to a precision of ∼ 14 % [63]. However,
measurements show that the fluorescence yield does not depend on the energy
of the shower particles, thus allowing a calorimetric measurement of the de-
posited energy, from which the primary energy of the CR can be reconstructed.

Fluorescence light in the atmosphere is usually observed with telescopes,
similar to the imaging Cherenkov telescopes described above. As such, they
share the suboptimal angular resolution of single telescopes (4° to 5°), which
is improved by using stereo observation to ∼ 0.6° [65]. Since fluorescence
telescopes observe the development of the shower directly, measurements of
the shower maximum Xmax are much more precise than for surface detectors,
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Figure 2.4: Spectrum of nitrogen in the atmosphere as measured by [64]. The
majority of the intensity lies in the UV band.

which observe only the developed shower. The most prominent examples of
fluorescence telescopes are the aforementioned Pierre Auger Observatory [12]
and Telescope Array [13]. Due to the different strengths of surface detectors
and fluorescence telescopes both experiments measure in “hybrid mode”, i.e.
they use both surface detectors and fluorescence telescopes. Since the surface
detectors have a 100 % duty cycle, they contribute the most data to the energy
spectrum. In contrast to this, fluorescence telescopes can only record data on
clear, moon-less nights with a duty cycle of 15 % to 20 %. In order to minimize
systematic uncertainties, e.g on the energy scale, fluorescence measurements
are used to calibrate the surface detectors. For mass composition studies, flu-
orescence data is preferred, as the shower maximum Xmax can be observed
directly.

In order to improve statistics, especially at the highest energies, large areas
of the atmosphere need to be observed, which requires giant experiments with
many fluorescence telescopes. To overcome this obstacle, the JEM-EUSO ex-
periment was proposed to observe the atmosphere from space, which allows for
observation of a much larger area. The concepts behind UHECR observation
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from above are outlined in the next section.

2.3 The EUSO Idea

The idea to detect CR in the atmosphere from above by looking down goes
back to the 1970s [66]. Since then, several experiments have been proposed,
but such an experiment has yet to be carried out. A brief historical overview
can be found in [67]. The Extreme Universe Space Observatory (EUSO) is the
latest attempt at measuring CR from above. To resolve the many open ques-
tions about CR (see above), especially at the highest energies, measurements
of UHECR are needed with large exposure. Since they are detected using prop-
erties of EAS in the atmosphere, the exposure can be maximized by observing
a larger area in the atmosphere. Thus, an experiment, which looks down onto
the atmosphere, e.g. from the International Space Station (ISS) at an altitude
of 400 km, can help in improving the understanding of CR. This principle
is illustrated in Figure 2.5. Additionally, such an experiment offers uniform
exposure for both northern and southern hemisphere, which eliminates system-
atic uncertainties, that arise in the comparison of different detectors (see [68]).
In the following, the discussion will focus on the proposed EUSO experiment
onboard the Japanese Experimental Module of the ISS, JEM-EUSO, which is
described in detail in [14]. The projected exposure of JEM-EUSO is shown
in Figure 2.6.

As discussed in section 2.2, the radiation of fluorescence light in EAS allows
for detection of CR in the atmosphere from any direction. Thus, JEM-EUSO
consists of two main parts: A UV camera, which records the fluorescence light
of the EAS, and an atmospheric monitoring system to enable precise track re-
construction, since the fluorescence yield depends heavily on the atmosphere.
The UV camera is designed in a modular way, where the detector is divided
into 137 Photo Detection Modules (PDM), which consist of 36 multi-anode
photomultipliers with 64 pixels each, giving each PDM ∼ 2300 pixels. As each
pixel has a size of 3 mm× 3 mm, they provide a spatial resolution of ∼ 0.5 km

on ground (at 400 km altitude). In order to properly track CR in the atmo-
sphere, the time resolution of the camera is 2.5µs ≡ 1Gate Time Unit (GTU).
Apart from direct fluorescence light, the camera can also detect reflected flu-
orescence and Cherenkov light from EAS. The standard mode of operation
for JEM-EUSO is nadir mode, where the camera looks vertically onto an area
of 1.4× 105 km2. To further increase the observed area, the camera can be
tilted [72].
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Figure 2.5: Schematic overview of the JEM-EUSO observation principle.
Shown here is the nadir mode, where the telescope looks vertically down from
400 km in ISS orbit, from [69].

In comparison to ground-based observation, JEM-EUSO faces the addi-
tional challenge of a larger UV background, since the upward radiance is larger
than the downward one [73]. As the whole experiment hinges on the ability
to distinguish EAS light from background, the UV background is discussed
in the following. In general, the UV background can be distinguished into a
diffuse part and a transient part. The diffuse part is dominated by airglow in
the atmosphere, e.g. de-excitation of nitrogen and oxygen atoms. Addition-
ally, there is a component of reflected or scattered light from the downward
radiance, such as moonlight, starlight and diffuse extragalactic light [73]. To
minimize these contributions, observation is in general only possible during
moonless nights. For the transient part, man-made light contributes heavily
and is dominant above big cities [72]. Furthermore, there are a plethora of
transient light events associated with lightnings in the atmosphere (see [74] for
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Figure 2.6: (a) Exposure of JEM-EUSO in nadir and tilt mode compared to
other experiments. (b) Relative deviation of JEM-EUSO exposure for CR with
different zenith angles θ, from [70, 71].

an introduction). While clouds also contribute to the background, JEM-EUSO
is not impacted by them in a major way [75]. Low-altitude clouds can even
help by attenuating man-made background.

So far, there is no launch date for the JEM-EUSO mission. Meanwhile,
there are several pathfinders and prototypes to research the techniques and
methods for a JEM-EUSO-like space mission. These pathfinders include a
balloon flight in Timmins, Canada in 2014 named EUSO-BALLOON [76] and
EUSO-TA [77], which is located at the Telescope Array site and and measures
CR from below using a EUSO PDM. Furthermore, MINI-EUSO is a scaled
down prototype of JEM-EUSO consisting of only one PDM, which will observe
the atmosphere from the Russian module of the ISS [78]. A major part of this
work is dedicated to EUSO-SPB, which is the second EUSO balloon mission,
onboard a NASA superpressure balloon. It included a prototype camera us-
ing silicon photomultipliers, which is discussed in detail in chapter 5. In the
following chapter, silicon photomultipliers will be introduced.
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Chapter 3

The Silicon Photomultiplier

As this work is about silicon photomultipliers (SiPM), this section aims to give
an overview of the working principle of the silicon-based light detector. Fur-
thermore, advantages and drawbacks compared to conventional photomultipli-
ers are outlined and recent developments in the SiPM sector are highlighted.
For an exhaustive review of silicon light detectors with an emphasis on SiPM,
the reader is referred to [16].

3.1 Photodiodes

The simplest form of a light detector made out of semiconducting material is
a p-n junction diode. At the p-n junction there exists an electric field, which
depletes the junction region of mobile charge carriers. The region is thus called
depletion region. A photon with sufficient energy ~ω ≥ Eg, where Eg is the
band gap of the material, can be absorbed and produce an electron-hole pair.
Through the electric field in the depletion region, the charge carriers, i.e. elec-
trons and holes, are separated and a current can be measured at the terminals
of the diode. In principle, such a photodiode can be made from any semi-
conducting material, whose band gap Eg is low enough for the generation of
electron-hole pairs with optical photons. A popular choice for photodiodes
(and solid state electronics) is silicon, as the higher band gap (1.12 eV com-
pared to 0.67 eV for germanium) generates less noise from thermal excitation.
Additionally, it has other convenient properties, such as the easy formation of
a passivization layer by silicon oxide [16]. This chapter will focus on silicon-
based light detectors.
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3.1.1 PIN diodes

The efficiency of a p-n junction as a light detector can be greatly improved by
applying a reverse bias voltage, i.e. positive voltage applied to the n side. The
applied voltage enhances the potential difference across the p-n junction, thus
accelerating created charge carriers to their readout terminals. This reduces
the loss of charge carriers due to trapping or recombination. Secondly, the size
of the depletion region increases with the increasing applied voltage, resulting
in a larger active volume. Another way to increase the size of the depletion
region is the introduction of an undoped intrinsic semiconductor layer between
the n and p layer, resulting in a PIN diode. As a light detector, the PIN diode
has multiple advantages to the p-n diode, first of all the larger sensitive area.
Secondly, the undoped intrinsic layer reduces the capacitance of the device,
and thus electrical noise [16]. Additionally, the intrinsic layer has fewer im-
purities and therefore fewer energy states in the band structure. As a result,
the dark current from the thermal generation of electron-hole pairs is reduced.
Since the noise of a PIN diode is proportional to the area, its size typically
does not exceed a few cm2. PIN diodes need a minimum of several hundreds
of photons per sensitive area to detect light signals.

3.1.2 Avalanche Photodiodes

As described above, the electric field across the p-n junction is enhanced by a
reverse bias voltage. Therefore, for large applied voltages, the motion of the
electrons and holes is dominated by the acceleration of the electric field. At
strong electric fields, the charge carriers can collide with either the lattice or
other carriers, which leads to the production of additional electron-hole pairs
through impact ionization [79, 80]. As a result, the amount of charge carriers no
longer follows the amount of absorbed photons, instead, the charge carriers are
multiplied internally. Given high enough electric fields, the electron-hole pairs
generated through impact ionization can in turn produce additional electron-
hole pairs. This results in avalanche multiplication, which is used by avalanche
photodiodes (APD). As the mobility of electrons is higher than the mobility of
holes, the impact ionization for electrons can take place at lower electric fields.
Thus, for lower voltages, only electrons take place in the impact ionization
process and the avalanche develops only in the n direction of the diode and runs
out if it reaches the readout terminal. For higher applied voltages both charge
carriers contribute to the avalanche and a runaway avalanche happens, which
develops in both directions. The threshold voltage is called the breakdown
voltage Vb. To make use of the multiplication of charge carriers, APD are
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Figure 3.1: Gain of an APD (Hamamatsu S8148) against the incident photon
wavelength, from [81].

operated below Vb. The multiplication factor is generally called the gain G of
the device. As the avalanche in an APD develops linearly, electron-hole pairs,
which are generated in the vicinity of the n side near the readout terminal,
generate a smaller gain, since the avalanche runs out before it can undergo
full amplification. Thus the gain of the APD depends on the wavelength of
the incident photon, as shown in Figure 3.1. This also limits the sensitive
area of APD to a few mm2, since for good energy resolution, a uniform field
distribution is needed. The gain of the APD changes exponentially with the
applied bias voltage, therefore the relative change in gain is much higher for
large applied voltages. A similar behaviour can be seen in the dependence of
the gain on the temperature. Because of this, APD are usually operated at
gains between 50 and 200 far below the breakdown voltage. They can detect
as little as 10− 20 photons per sensitive area.

3.1.3 Single Photon Avalanche Diodes

To further increase the sensitivity to the single-photon level, the applied voltage
can be increased above the breakdown voltage. In the resulting high electric
fields across the p-n junction, holes will be accelerated enough to generate new
electron-hole pairs through impact ionization. As the avalanche of holes devel-
ops in the opposite direction of the electron avalanche, and both new electrons
and holes are generated as the avalanche continues, it is self-sustaining. Ac-
cordingly, the devices are called Geiger-mode photodiodes. Since the device
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cannot detect further photons while in breakdown, the avalanche has to be
quenched, e.g. by a voltage drop across a serial resistor or an active quench-
ing circuit. Today, the devices are known as single photon avalanche diodes
(SPAD). Since each generated electron-hole pair has a chance to start the
breakdown, Geiger-mode photodiodes are binary devices (they detect if at
least one photon was absorbed, not how many) with high gain. In contrast to
APD, the gain is independent of the wavelength of the incident photon. They
are the basic building block of the silicon photomultiplier, which will be dis-
cussed in the following. Due to the thermal generation of electron-hole pairs,
the size of SPAD is limited to a few hundred µm2.

3.2 Silicon Photomultipliers

Silicon photomultipliers (SiPM) were invented in 1998 by V. Golovin and Z.
Sadygov in Russia [82, 83] and overcome the drawback of the SPAD’s inability
to count photons. In principle, a SiPM consists of many small SPAD. They
are connected in parallel and thus share bias voltage and readout, but each
diode is passively quenched and operated independently. Alternative names
for SiPM are multi-pixel photon counter (MPPC) or Geiger-mode avalanche
photodiodes (G-APD). A schematic view of a SiPM is shown in Figure 3.2. In
the context of SiPM the SPAD are typically called microcells. Each microcell
still works as a binary device, but due to parallel readout, photon counting
is possible, as different photons can trigger avalanches in different microcells.
Since each microcell avalanche produces the same signal a, the signal A of the
SiPM is proportional to the number of fired cells Nfired

A =
∑
Nfired

a = Nfired · a. (3.1)

During an ongoing avalanche in a microcell, no further photons can be de-
tected. For a linear response of the SiPM to photons, it is crucial that the
rate of incident photons is small compared to the inverse recovery time of the
microcell, to allow for complete recovery before detection of the next photon.
Similarly, there is a geometric nonlinearity if multiple photons hit the same
microcell, which can be described as

Nfired ≈ Ncells

(
1− e−

Np.e.
Ncells

)
, (3.2)

where Ncells is the number of microcells of the SiPM and Np.e. is the number
of produced photoelectrons (avalanches). Modern commercial SiPM usually
are 1× 1 mm2 or 3× 3 mm2 in size with a microcell pitch between 10 µm and
75 µm [85, 86], which guarantees sufficient dynamic range for typical applica-
tions. In the following, properties of SiPM are examined more closely.
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Figure 3.2: Schematic overview of the topology of a SiPM, from [84]. This
SiPM has a n-on-p structure, which is suitable for detecting red and infrared
photons. For the detection of UV photons, a p-on-n structure would be used
(see subsection 3.3.2).

3.3 Properties of SiPM

3.3.1 High Gain

One of the most distinctive properties of SiPM compared to other silicon light
detectors is its high gain G, which enables the detection of single photons.
The gain G is the amplification factor of the original generated photoelectron,
i.e. the amount of charge carriers, which are detected from one photon. It is
proportional to the microcell capacitance Ccell

G =
Ccell

e
· (V − Vb), (3.3)

where e is the elementary charge, V is the applied voltage and Vb is the break-
down voltage. The quantity V −Vb is called the overvoltage Vover and is one of
the most important parameters of the SiPM, since many properties depend on
the overvoltage, in addition to the gain. In order to achieve a signal with good
resolution (compare Equation 3.1), fluctuations in microcell capacitance have
to be kept to a minimum. Since the microcells are produced on the same wafer
with the same process, this is not an issue for modern SiPM. The SiPM gain is
comparable to the typical photomultiplier gain G ≈ 105 − 107. Typical SiPM
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Figure 3.3: Superposition of 1000 triggered LED pulses from a SensL B-Series
30035 SiPM, taken from [87].

signals are shown in Figure 3.3. Due to the runaway avalanche (and passive
quenching), the SiPM gain does not depend on the wavelength of the incident
photons. Since each microcell signal produces the same signal, the gain can
be accessed experimentally by comparing two SiPM signals of different height,
i.e. the baseline and a 1 p.e. signal. This is easily measured as the difference
of two peaks in a pulse integral spectrum, as seen in subsection 4.1.3.

As shown in Equation 3.3, the SiPM gain depends proportionally on the ap-
plied voltage. This sensitivity of the gain G to the voltage can be parametrized
as a voltage coefficient kV

kV =
dG

dV
. (3.4)

An example measurement is shown in Figure 3.4a. The breakdown voltage
itself depends on the temperature, which influences the mobility of the charge
carriers. Therefore, the gain also depends on the temperature. A temperature
coefficient kT can be defined in a similar way to kV

kT =
dG

dT
. (3.5)

An example measurement of this effect is shown in Figure 3.4b. As the temper-
ature dependence of the gain can cause problems for experiments, techniques
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Figure 3.4: Dependence of SiPM gain on applied voltage (a) and surrounding
temperature (b). The measurement of these data is detailed in subsection 4.1.3.

to stabilize the gain need to be used. A novel approach, which uses dark
counts instead of external temperature readings to stabilize the gain is pre-
sented in chapter 4.

3.3.2 Photo Detection Efficiency

The photo detection efficiency (PDE) describes the probability of an incident
photon to be detected by the SiPM. It is the product of the quantum efficiency
QE of silicon, the fill factor εgeo of the sensitive microcell area to the total SiPM
area and the probability to trigger an avalanche εGeiger

PDE = QE · εgeo · εGeiger. (3.6)

The quantum efficiency of silicon is ∼ 95 % and cannot be increased signif-
icantly. Since the microcells are separated geometrically and the quenching
resistors take up some space, a good fill factor is achieved by using large mi-
crocells. Typical values range from 0.4 to 0.8. As larger cell sizes (for the same
area) limit the dynamic range, and introduce a higher recovery time due to
higher capacity (τ = RC), there is a trade-off to be made about the microcell
size.
Due to their higher mobility, electrons are more likely to trigger an avalanche
than holes. Therefore, photons, which are absorbed in the p layer, have a
higher probability to detected [88], which introduces a wavelength dependence
to the PDE. Depending on the topology of the SiPM (p-on-n vs n-on-p), the
PDE can either peak near the UV or in the red waveband. PDE values for
modern SiPM range from 30 % up to nearly 50 % at peak wavelength [89]. An
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Figure 3.5: Measurement of the PDE of a SensL B-Series 30035 SiPM, taken
from [87].

example measurement of SiPM PDE versus wavelength is shown in Figure 3.5.
Since the trigger probability εGeiger increases with increasing acceleration of
charge carriers, larger overvoltages increase the SiPM PDE.

3.3.3 Dark Counts

Photon signals in a SiPM are created from the generation of an electron-
hole pair, which leads to an avalanche and thus a 1 p.e. signal. Due to this,
each source of electron-hole pairs mimics photon signals. The resulting pulses,
which do not come from incident photons are thus called dark counts. The
greatest contributor to the dark counts are thermally generated electron-hole
pairs. At room temperature, they lead to a dark count rate of ∼ 1 MHz per
3 × 3 mm2 for recent devices. As they are thermally generated, cooling the
device significantly reduces the dark count rate. Beside thermally generated
electron-hole pairs, electron-hole pairs are generated by field-assisted tunnel-
ing [90]. However, the contribution to the dark count rate is small and only
plays a significant role for devices, in which the thermal generation of electron-
hole pairs is suppressed, e.g. by cooling.

As electrons are more likely to trigger an avalanche than holes, a ther-
mal generation of an electron-hole pair on the p side has a better chance to
produce a signal. As a result, p-on-n devices (which peak in the UV) show
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lower dark count rates than n-on-p devices, since the p layer is much thinner
(compare Figure 3.2).

3.3.4 Optical Crosstalk

During the avalanche, ∼ 3 photons are emitted from the device per 105 charge
carriers on average [91, 92]. These photons are either absorbed within the
microcell, or they can leave the microcell to illuminate the environment or
penetrate into other microcells. There, they can be absorbed like any external
photon and trigger another avalanche, resulting in a signal >1 p.e., even when
only one incident photon hit the detector. This effect is called optical crosstalk.
Typical values range from 10 % up to 50 %, depending on the overvoltage.
Since higher numbers of charge carriers lead to more emitted light, this effect
is particularly pronounced at high gains, i.e. high overvoltages.

3.3.5 Interdependence of Properties

As seen above, all important SiPM parameters depend on the overvoltage,
which makes finding an optimum working point a trade-off between desired
and undesired properties. For example, high gain and PDE are desireable
features, since they result in a good single photon resolution. Both features
can be achieved by applying a high overvoltage, but this also increases the
optical crosstalk and dark count rate, which both lead to an overestimation
of the photon rate. Additionally, in contrast to conventional photomultipliers,
gain and PDE are interconnected, as they cannot be changed independently.
On a photomultiplier, the PDE is mostly given by the quantum efficiency of the
photo-cathode and the gain can be tweaked by changing the supply voltage,
with relatively little effect on other parameters. To satisfy the requirements
for many experiments, there has been an ongoing effort to improve the SiPM
properties in recent years, which will be discussed in the following.

3.4 Recent Developments

For many experiments, especially in the cosmic ray sector, high PDE is crucial
to reach high sensitivity. Major improvements to the SiPM PDE have been
made in the last years. As described in Equation 3.6, the PDE is made up
of three factors, all of which have seen improvements. While the quantum
efficiency of silicon cannot be changed, new materials for the passive layer on
top of the SiPM are used. The use of silicone resin instead of epoxy to coat
the SiPM provides a higher transparency in the UV waveband. Improvement
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Figure 3.6: Expected PDE of two Hamamatsu SiPM with epoxy and with sili-
con window. The silicon window extends the PDE towards lower wavelengths.
Taken from [93].

of the geometric fill factor was possible, as the use of “through-silicon via”
technology (TSV) reduces the space needed for wiring on the photosensitive
area, see Figure 3.7. Additionally, improvements to dark count rate and opti-
cal crosstalk allow operating the SiPM at higher overvoltage and thus higher
avalanche trigger probability. Today, there are devices available with PDE of
50 %.

For the reduction of optical crosstalk, trenches were introduced between
microcells, which limit propagation of photons from one microcell to the next.
For further crosstalk reduction, a potential barrier can be introduced between
the active layer of the SiPM and the bulk. This also reduces the dark count
rate, as thermally generated electron-hole pairs can no longer diffuse into the
active volume. Modern SiPM have a crosstalk probability of ∼ 10 % at their
working point, and dark count rates of 100 kHz per mm2 are common. As
a bonus, the improved fabrication processes, which reduce dark counts, also
improve other effect like the temperature dependence of the breakdown voltage.

Since UHECR experiments often need to track the propagation of light
through the atmosphere, multi-pixel detectors are needed. In recent years,
SiPM arrays have emerged to meet this requirement. Due to their fabrication
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Figure 3.7: SiPM arrays by Hamamatsu. In this picture two arrays with
3× 3 mm2 pixel size are shown (left and right) and one array with 6× 6 mm2

pixel size. The dots in the middle of the pixels come from the use of TSV
technology. Picture taken from [94].

process, they show excellent uniformity in SiPM properties such as breakdown
voltage and gain while limiting dead space between the single pixels. The
SiECA camera used for the EUSO-SPB balloon flight discussed in chapter 5
uses 8× 8 SiPM arrays, other examples are shown in Figure 3.7.

To conclude, nearly all properties of SiPM have seen improvements. The
maturity of SiPM makes them viable alternatives to conventional photomul-
tiplier tubes for many experiments and applications. Especially for space or
near-space experiments their reduced weight and robustness are attractive fea-
tures, although the high dark count rates could hinder the search for rare
UHECR events. In order to test SiPM in such an environment, a prototype
SiPM camera was flown along the EUSO-SPB experiment. A detailed analysis
of the SiPM data is presented in chapter 5. As the temperature in such an
environment can change heavily, the next chapter discusses ways to stabilize
the SiPM gain.
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Chapter 4

Gain Stabilization of SiPM

In observational astroparticle physics experiments, light detectors can be sub-
ject to temperature changes in the order of 50 K (see e.g. Figure 5.17). Due
to the SiPM detection principle, many SiPM parameters depend strongly on
changes in temperature. In particular, a stable SiPM gain is crucial to good
photon counting performance. In this chapter, the effect of temperature change
on the SiPM gain is discussed as well as means to correct for this effect. A
novel approach is presented, which measures the gain continuously from dark
counts and eliminates the need for external temperature sensors for gain sta-
bilization.
Section 4.1 discusses how to extract the gain of SiPM from dark count data
by comparing the position of the 0p.e. peak and the 1 p.e. peak in dark count
spectra. Measurements at different temperatures are carried out to determine
the temperature dependence of the SiPM gain and a correction factor is calcu-
lated to stabilize the gain with respect to temperature changes. After that, a
method of simplifying these spectra is introduced, which allows for automated
gain measurements with limited statistics. In section 4.2, the extracted correc-
tion factor is used to stabilize the gain of a SiPM by measuring the changing
temperature. At last, a PID controller is utilized to stabilize the gain without
a direct temperature measurement.

4.1 Gain Extraction

As described in section 3.3, the SiPM gain is defined as the average amount
of detected charge carriers from the generation of one electron-hole pair. This
charge can be measured by integrating the signal of a 1 p.e. pulse. An easy way
to determine the gain is the creation of pulse height spectra or pulse integral
spectra, where the gain can then be read off the difference between the baseline
peak and the 1 p.e. peak. Since higher order p.e. peaks are just sums of single
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Figure 4.1: Experimental setup used in this chapter. Both SiPM and pream-
plifier are placed inside a light-tight metal box, which is depicted as grey. The
box is placed inside a climate chamber, which also holds two Pt100 resistors
to read out the temperature. The Pt100 are depicted in orange and read out
over a serial interface by a PC. The preamplified SiPM signal is digitized by a
DRS4 Evaluation board, shown in green, which is read out via USB. Finally,
a Keithley 2400 source meter both provides the supply voltage for both SiPM
and preamplifier.

p.e. pulses, it is possible to determine the gain from the different peak positions
of any consecutive peaks in the spectrum, but the distinction of 0 p.e. peak and
1 p.e. peak is usually the easiest way, as these peaks tend to have the highest
statistics.

4.1.1 Experimental Setup

While SiPM are essentially digital devices, which count photons, they still
produce analog signals and are thus read out in an analog way. In order to
reliably count photons, the charge released by a microcell avalanche, i.e. the
gain has to be known, even if not in absolute units. For the measurements
in this chapter no external light source was used. Instead, the SiPM were
operated in darkness using the ever present dark counts from thermally ex-
cited electron-hole pairs. Since the generation of electron-hole pairs and thus
dark counts is a stochastic process, data was taken using a random trigger
scheme. The SiPM data was acquired with a DRS4 Evaluation Board [95]
and processing of traces was done digitally. A single pixel C-Series SiPM from
SensL [85] was used for all measurements in this chapter. It was preamplified
with a custom made preamplifier described in [87], designed with this SiPM
in mind. The C-Series SiPM from SensL come with the unique feature of two
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output terminals. A fast terminal, which is capacitively coupled to the cells for
time-critical measurements and a slow terminal, which is read out through the
quench resistor in the standard way for SiPM. For this work, the slow output
terminal was used. Both SiPM and preamplifier were placed in a light-tight
metal box to prevent electronic pickup and to shield the sensor from incident
light. The bias voltage was supplied by a Keithley 2400 source meter [96],
which was controlled remotely from the same PC aquiring the data.
In order to measure temperature dependencies of the SiPM, the metal box with
SiPM and preamplifier was put into a commercial climate chamber. The cli-
mate chamber used was the “Kälte-Wärme-Prüfschrank 150 d/70 DU” of Weiss
Umwelttechnik, which was located in Institut für Astronomie und Astrophysik
Tübingen. To further shield the SiPM from incident light, the entrance window
of the climate chamber was closed with black foamed plastic. The temperature
inside the climate chamber was read out with two Pt100 resistors, one inside
the climate chamber, but outside the metal box and one resistor inside the
metal box, right next to the SiPM. A schematic overview of the experimental
setup is given in Figure 4.1.

4.1.2 Event Extraction

The traces were recorded by a DRS4 Evaluation Board with a sampling speed
of 2Gigasamples per second. Each trace consists of 1024 data points, thus
∼ 500 ns of data are recorded per trace. Since only dark counts were of in-
terest, the DRS4 chip was triggered randomly ∼ 450 times per second. An
example of a typical trace1 at 40 ◦C is shown in Figure 4.2. Due to their
stochastic nature, dark counts are distributed randomly throughout the traces.
In principle a dark count spectrum can be constructed by choosing an arbitrary
interval either for integration or for determining the pulse height in each trace
and building a histogram from this data. However, this has a few drawbacks,
which are addressed in the following.

Since the gain is measured by examining the position of two different p.e.
peaks in the pulse height spectrum (see subsection 4.1.3), it is vital to resolve
different p.e. peaks with good certainty. This is easy enough by eye, but can
get complicated quickly if the spectrum is noisy, since the baseline can shift
and the gain is not always known a priori. While SiPM have a excellent
single p.e. resolution, they are still subject to electrical noise, which broadens

1The preamplifier produces signals with negative polarity, which were used as is for the
analyses. For the sake of clarity, the polarity of the pulses was changed in the description
given here.
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Figure 4.2: Typical trace recorded from a SensL C-Series SiPM @ 40 ◦C with
2Gigasamples/s. The 1p.e., 2 p.e. and 3 p.e. pulses can clearly be seen at
7 mV, 14 mV and 21 mV, respectively.

the peaks in the pulse height spectrum and makes distinction of peaks more
difficult. A common way to combat such noise is digital signal processing by
using filters, i.e. a convolution of a filter with data. Depending on the kind
of noise, there exists an optimum filter, which maximizes the signal-to-noise
ratio [97]. However, since the noise is in practice also time-dependant and
therefore no single optimum filter exists, a compromise has to be found. For
this chapter, a matched filter was used, which is the optimum filter for the case
of white noise. Other filters were tested, but did not yield significantly better
results. For a waveform x(t), which consists of a noise component n(t) and a
signal component s(t)

x(t) = n(t) + s(t), (4.1)

the matched filter h(t) = s(−t) can be constructed directly from the expected
signal s(t). To extract a noise-free signal from the traces, a digital threshold
trigger is run over sample traces to extract many single noisy signals. From
these signals an average “template” pulse can be built, in which most noise is
averaged out. For the digital trigger to fire, the waveform had to be above a
certain threshold for at least 10 samples, i.e. 5 ns. The 1 p.e. trigger threshold
was chosen by eye to ∼ 0.5 p.e. and a limit was placed on the absolute pulse
height to filter pulses > 1 p.e. The template pulse constructed from 90000
1 p.e. pulses is shown in Figure 4.3. Since the shape of the pulse stays the
same for pulses > 1 p.e., the filter also matches these pulses. The filtered trace
from Figure 4.2 is shown in Figure 4.4. It can be seen that pulses are much
more pronounced in the filtered trace with regards to the baseline noise.
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Figure 4.3: Template pulse constructed from 90000 1 p.e. pulses. This pulse is
used as a matched filter in the event extraction from the traces.

For the creation of meaningful pulse height spectra, many pulses are needed.
Due to the high dark count rate (∼ MHz

mm2 ), there are traces with multiple pulses,
which are lost if the spectrum is created using only one interval as naively
suggested above. In order to make the most of every trace, care was taken to
find every single pulse in the data. To do this, local maxima were found in the
filtered traces in a window of a certain length lw, as indicated by the orange
lines in Figure 4.4. The values of the local maxima could then be used to build
a pulse height spectrum. It should be noted that most of the local maxima are
baseline events, which count into the 0 p.e. peak of the spectrum. This distorts
the ratio of 0 p.e. counts and pulse counts and thus the Poisson nature of the
spectrum. Since the position of the peaks stays the same, this is irrelevant for
the gain measurement and more pulses are counted this way, which reduces the
measurement time for gain measurements. About the length of the window lw,
there is a trade-off to be made. With a larger window, fewer 0 p.e. counts are
picked up, which is desirable, since the spectrum is dominated by the 0 p.e.
peak anyway and time is not spent processing redundant events. On the other
hand, a larger window times make it more expensive computationally to find
the local maxima, which becomes important in section 4.2, where performance
is critical. In the end, a window length of lw = 30 samples ∧= 15 ns was chosen,
which is about half the length of a pulse, as this provided a good compromise.
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Figure 4.4: Trace from Figure 4.2 filtered with the matched filter in Figure 4.3.
Only points in which filter and data overlap completely are given, thus the
x-axis is a bit shorter compared to the unfiltered trace. The orange lines
indicate the local maxima, which are extracted from the trace and used for
measurements.

4.1.3 Dark Count Spectra

The values of the local maxima in the filtered traces (see orange lines in Fig-
ure 4.4) are used to construct a pulse height spectrum from dark counts. An
example of such a spectrum can be seen in Figure 4.5. In the spectrum, single
p.e. peaks are clearly separated, which makes it easy to measure the gain. Since
the SiPM gain is defined as the amount of charge carriers detected from the
generation of one electron-hole pair, it is equivalent to the integral of a 1 p.e.
pulse. As higher order p.e. pulses are just sums of single p.e. pulses, the gain is
also represented in the difference between two arbitrary consecutive peaks in
the spectrum. The 0 p.e. peak and the 1 p.e. peak have the highest statistics,
which makes is convenient to use these two peaks for gain measurement.

To precisely measure the positions of the peaks, normal distributions are
fitted to the first two peaks

f(x) = A0 · e−
1
2

(
x−µ0
σ0

)2
+ A1 · e−

1
2

(
x−µ1
σ1

)2
. (4.2)

The starting parameters Ai, µi and σi for the fit are estimated from the spectra
by finding the location of the local maxima which correspond to the peaks. The
gain G can then be obtained by the difference of the peak positions

G = µ1 − µ0. (4.3)



35

−1 0 1 2 3 4 5 6
Local filter maximum (p.e.)

100

101

102

103

104

105
F

re
q
u

en
cy

Data

Best Fit

Figure 4.5: Dark count spectrum created from 350000 traces with a SensL
C-Series SiPM at 28 V and 25.5 ◦C. The individual p.e. peaks are clearly
separated. In orange, the best fit of a model with two Gaussians is shown,
from which the gain can be measured as the difference between the Gaussian
mean values µi.

An illustration of this is shown in Figure 4.5. Since higher order p.e. peaks
are heavily suppressed, it suffices to fit two normal distributions. Ideally, one
would fit as many Gaussians as can be seen in the spectrum, but in practice,
this makes the fit more unstable and the benefit is minimal. It should be noted
that this measures the gain in arbitrary units and not the physical charge col-
lected in every pulse. However, this is sufficient to measure the temperature
dependence of the gain and to stabilize the gain at different temperatures,
which is what this chapter is mainly concerned with, therefore no further ac-
tion was taken to translate this measurement into physical units.
This method to extract the gain was used to measure the temperature depen-
dence on the gain kT of a SensL C-Series SiPM as well as the dependence of the
voltage on the gain kV (see section 3.3). Since the SiPM gain depends linearly
on both temperature and voltage, it is easy to determine a correction coeffi-
cient kc, which can be used to correct the gain for temperature fluctuations by
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adjusting the applied voltage.2 The correction coefficient can be calculated as
kc = kT

kV
.

For the measurement of the temperature dependence, the SiPM was held
at a constant voltage of 28 V and the temperature was changed in 11 steps
from 0 ◦C to 50 ◦C. Since it took some time for the temperature in the climate
chamber to stabilize, a waiting period of 30 min was taken between setting the
temperature to the next value and starting the measurement. Due to a mis-
calibration, there was a offset of ∼ 1.7 K between the set temperature and the
measured temperature at the inner Pt100. However, the correct temperature
was read out and logged every 30 s, and the offset was the same at every tem-
perature, therefore this did not cause any problems. Once the temperature was
set, it was reasonably stable within σ = ±0.13 K. At every set temperature,
350000 traces were recorded. This value comes from a compromise between
statistics, file size and measurement time. Due to its design, the DRS4 Evalu-
ation board can record ∼ 500 traces/s. Since each trace consists of 1024 16-bit
numbers, it is at least 2 kB in size. Therefore, around 1MB are recorded per
second. From these traces, the pulses were processed as described in subsec-
tion 4.1.2 and the gain was determined as described above. The values of the
fitted gains at different temperatures are shown in Figure 4.6. The influence
of the temperature on the gain is often described as linear in literature (e.g.
[98, 99]) and by the manufacturer [85]. Therefore a fit to a linear model was
used to extract the temperature coefficient kT , although the data in Figure 4.6
deviate slightly from this

kT = (−0.117± 0.003)
%

K
. (4.4)

The uncertainties on the gain measurement were calculated by the fit of the p.e.
peaks to the Gaussians, thus they are only statistical. The uncertainties on the
temperature are very small and thus negligible, as can be seen in Figure 4.6,
where the errorbars can barely be made out.

A similar measurement can be done for the voltage dependence, where the
temperature is constant and the applied voltage is changed. This measurement
was done at a temperature of 25 ◦C, and the voltage was changed from 27.0 V

to 30.0 V in 6 steps. Apart from that, the settings used for the measurement

2Often in literature, the correction coefficient kc is given as the temperature dependence
of the breakdown voltage. However, to measure the breakdown voltage temperature de-
pendently, measurements for multiple voltages have to be carried out for each temperature,
which makes the method equivalent to the one presented here, where the gain measurement
is taken for both dependencies.
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Figure 4.6: Measurement of gain with changing temperature. The errorbars
represent the statistical uncertainty from the Gauss fit (see Figure 4.5) and
from the temperature measurement.

were the same as describes above. The fitted gain at different applied voltages
is shown in Figure 4.7. As in the measurement above, a linear model can be
fitted to the data and the voltage coefficient kV can be determined by the slope
of this fit

kV = (6.055± 0.018)
%

V
. (4.5)

From the two coefficients kT and kV , the correction coefficient kc can be cal-
culated as

kc =
kT
kV

= (19.25± 0.05)
mV

K
. (4.6)

There is a small tension between with the value given by the manufacturer,
who quotes a value of 21.5 mV

K
[85] and the one measured here. However, other

groups [99] report a similar value for SensL SiPM of 18.9 mV
K
. In section 4.2,

this correction coefficient kc will be used to stabilize the gain with changing
temperatures.
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Figure 4.7: Measurement of gain with changing voltage.

4.1.4 Dynamic Histogram

While measuring the gain from the pulse height spectrum is a tried and reli-
able technique, it relies on static conditions for the duration of a measurement.
Changes on SiPM parameters from external factors, e.g. a change in temper-
ature or a slight shift in the baseline contribute to a broadening of the peaks
in the pulse height spectrum and therefore to a decreased accuracy in the gain
measurement. This can be mitigated by using a shorter duration for each mea-
surement, but the loss in statistics leads to increased uncertainties on the gain
measurements.
Here, an alternative approach to measuring gain is presented, which simplifies
the creation of pulse height spectra in a continuous way and allows to take
“snapshots” of the gain at various times during the measurement, while being
less expensive computationally than a least square fit to the peaks of dark
count spectra. This is important for live gain measurements, as will be seen
below.

Since only the 0 p.e. peak and the 1 p.e. peak in a pulse height spectrum con-
tribute to the gain measurement, a local maximum in a filtered trace (see sub-
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section 4.1.2) can either add to the 0 p.e. peak, the 1 p.e. peak or can be
discarded for the gain measurement. Therefore, instead of contributing to a
histogram, in which the peaks are fitted later, the local maxima can be catego-
rized immediately as either 0 p.e. or 1 p.e. (or higher) and the current gain can
be given as the difference between the mean values of the already categorized
0 p.e. and 1 p.e. events

Gcurrent = µ1 − µ0, (4.7)

where µ1 and µ0 are determined as described below. To measure the gain,
the mean values of 0 p.e. pulses and 1 p.e. are known and they can be used to
categorize the next set of values, and after a few traces a new current value
for the gain is found etc. While this is similar to the creation of a histogram
with little statistics and using the gain from the last measurement as a starting
value for the fit, the method of “Dynamic Histograms” has the added benefit
that the data for the mean values does not have to be thrown away by starting
a new histogram. Instead, a new gain value can be calculated from the differ-
ence between running means of 0 p.e. and 1 p.e. values and gain can be tracked
throughout a measurement. Additionally, changes in gain through tempera-
ture, or shifts in the baseline are automatically absorbed in the running means
with no additional care needed. In the following, the implementation details
used for this work are discussed.

For stability, not only two categories for 0 p.e. and 1 p.e. pulses are used,
but also a category for 2+p.e. pulses, which is needed to separate 1 p.e. pulses
from higher ones and a category for outliers below the baseline. This results
in four categories for classification of incoming pulses. Upon arrival of a new
value from a local maximum of a filtered trace µnew, the new value is put into
the “nearest” category C, i.e. the one with the lowest difference between the
current running average value and the new value

C(µnew) = C
(

arg min ‖µi − µnew‖
)
. (4.8)

This procedure is illustrated in Figure 4.8. Using µnew, a new µi is calculated
for the respective category. While this could be done with a running mean
by saving the last n values and calculating the mean value, in practice it was
sufficient to calculate the new µi by an interpolation between the old value
µi,old and the new value µnew with a certain weight 0 < k < 1, which is also
simpler computationally

µi = µi,old · (1− k) + µnew · k. (4.9)

Numerically, this gives different values than a running mean with a width of
n values, but in both cases, the µi converges to a certain new value, albeit
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Figure 4.8: Sorting of local maxima into categories. The values are sorted
depending on their distance to the current mean value of the categories, as
described in Equation 4.8. As an example, the first local maximum at 88 ns is
categorized as a 1 p.e. value and is sorted into the 1 p.e. category. There is one
additional category for negative outliers, which was not needed in this example
trace. Not illustrated are the two local maxima indicated in Figure 4.4, which
would be sorted into the 0 p.e. category.

with different rates. The value of k can be tweaked, but in principle 1
k
behaves

like n, where for small values of k, changes in gain are picked up slower, but
outliers do not have much of an effect and the values show less fluctuations.
For the Dynamic Histogram to work best, a starting value µS0 for the 0 p.e.
value and for the gain GS have to be given. The starting µi can then be
initialized to the following values:

µ0p.e. = µS0

µ1p.e. = µS0 +GS

µ2+p.e. = µS0 + 2 ·GS

µoutlier = µS0 −GS

(4.10)

Since the success of a gain measurement using the Dynamic Histogram hinges
on the ability to characterize new pulses, care has to be taken for the “running
mean” values µi not to drift apart. Therefore, changes in baseline not only
change the µ0 p.e. value, but the change is propagated to all other categories
as well. This ensures that in particular µoutlier and µ2 p.e. are updated, since
they receive the least updates from physical pulses, as high p.e. pulses only
happen through random coincidence or optical crosstalk and outliers beyond
the baseline ideally do not happen at all. In practice, only the values for 0 p.e.
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and 1 p.e. are updated with the interpolation described in Equation 4.9. For
the remaining two µ2p.e. and µoutlier, new values are created at a certain rate
according to the currently measured base line µ0 p.e. and gain µ1 p.e. − µ0p.e. in
the same way they were initialized (see Equation 4.10). This solves two prob-
lems, as the specific values are updated constantly, even if no events occur,
i.e. no outliers happen, in a certain time. Secondly, the spacing between the
categories is guaranteed to be optimal for the current gain, and the µi do not
converge to different values, e.g. from high p.e. incident light.

To find suitable values for the weights k, the Dynamic Histogram was tested
on the data used in subsection 4.1.3, in particular the data set used to deter-
mine kT . This is convenient, since the gain values are already known and
fluctuations in gain should be minimal throughout a set temperature, as the
temperature and voltage were held constant. Here, the ability of the Dy-
namic Histogram method to accurately measure a known gain can be tested.
Furthermore, this data set acts as an extreme test on how well the method
handles rapid changes in gain. Since the temperature was changed, but care
was taken not to measure until the next temperature was reached, gain in the
data changes in an instant. For the Dynamic Histogram method, this is a real
challenge, as the 0 p.e. and 1 p.e. values have to be tracked in order not to drift
apart and in nature, the temperature changes continuously.

The gain as measured by the Dynamic Histogrammethod for various weights
k can be seen in Figure 4.10. For this, a new measurement of the gain
G = µ1 p.e. − µ1 p.e. was taken every 2000 traces for the whole data set. The
weights k were varied from k = 0.5 to k = 1× 10−5. As a further test, the
starting gain for the Dynamic Histogram was set to GS = 0.15 a.u. to test
how well such a misconfiguration would be handled. From Figure 4.10, it can
be seen that for high values of k, the gain cannot be measured reliably and
the fluctuations are very high, although the general trend of the gain can still
be observed. The first value of k, where the steps in gain can be seen, is
k = 0.005, but the gain measurement is still quite noisy. With decreasing
k, clear time constants emerge, which come from the increasing “integration
time”, since past gain measurements are given more weight. Each temperature
plateau lasted ∼ 11 min, which means the Dynamic Histogram takes multiple
minutes to measure the correct gain for smaller values of k. On the last value
k = 1× 10−5, the steps are barely visible. Since the dark count rate of SiPM
increases with temperature, the frequency of 1 p.e. pulses increases as well,
which can be seen in the amplitude of the fluctuations or the decrease in time
constant. This also explains why for k = 1× 10−5, the steps emerge again at
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higher temperatures. As a compromise between an accurate gain measurement
and a reasonably small time constant, a value of k = 0.0005 was chosen for
the temperature control in section 4.2. The method seems stable enough to
handle not only the instantly changing gain steps in most cases, but also the
misconfiguration at the start without any problems.

A plot, in which both the gain measurements from the Dynamic Histogram
with k = 0.0005 as well as the gain measurements from the spectra can be seen,
is given in Figure 4.9. Here, a couple of things can be observed. For lower
temperatures up to 30 ◦C, the gain measurements match very well and the
Dynamic Histogram is able to pick up the unphysical instantaneous changes in
gain without any problems. At higher temperatures, there is some tension be-
tween the gain measurements, and the gain measurement starts to become less
precise. This can again be attributed to the higher dark count rates at higher
temperatures, which essentially decreases the integration time, since there are
more 1 p.e. pulses arriving in 2000 traces, after which a new gain snapshot is
taken. The optimization to integrate according to the amount of arriving 1 p.e.
pulses seems straightforward, but was not carried out in this work.

Overall, the Dynamic Histogram method manages to measure the gain suc-
cessfully. Even more nuanced features in Figure 4.9 like the rise in gain for the
two last plateaus due to a slight temperature dip can be made out, which are
lost in the dark count spectrum gain values.

4.2 Gain Stabilization

For measurements with a SiPM, it is desirable to have stable gain, as it is key to
good resolution for various applications. Therefore, the gain of a SiPM is often
held at a certain level with some kind of stabilization scheme. Here, a standard
way to stabilize the gain is discussed, which uses the control coefficient kc
measured above combined with a temperature measurement from an external
sensor. Furthermore, the fine-grained gain measurement with the Dynamic
Histogram is used to stabilize the gain by itself without external temperature
measurements using a PID controller.

4.2.1 Direct Stabilization

One of the easiest ways to stabilize the gain of a SiPM is to measure the
temperature at the SiPM and adjust the applied voltage with temperature
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Figure 4.9: Comparison of gain as measured by the Dark Count Spectrum
method and Dynamic Histogram method. The red line shows the temperature
at each measurement point on the y-axis on the right hand side.

changes according to a correction coefficient. This is the “Direct Stabiliza-
tion” explored in this section. In the temperature dependant measurements
of a SensL C-Series SiPM above, this correction coefficient kc was determined
in Equation 4.6. The stabilization scheme used here works as follows:
At the beginning of a measurement a goal temperature Tg and starting voltage
VS were set. For convenience, the current temperature at the start was chosen.
For later measurements, the then-current temperature Tcurr is read and the
change in temperature is calculated

∆T = Tg − Tcurr. (4.11)

From this, a new voltage was calculated, which gave the SiPM the same gain
as in the starting conditions Tg and VS, according to kc

Vnew = VS + kc ·∆T (4.12)

and the new voltage is applied to the SiPM. To shield against incorrect tem-
perature readings, the voltage is set only if the new voltage falls into a safety
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Figure 4.10: Gain measured by the Dynamic Histogram method with the data
used for Figure 4.6. The orange lines indicate a discontinuity in time, where
the temperature was stabilizing for ∼ 30 min. Note the different scale on (a).
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interval 26 V < V < 30 V. This procedure is carried out every 10 s.

For the gain stabilization the same experimental setup as above was used,
which can be seen schematically in Figure 4.1. Again, only dark count data
was considered and the climate chamber was kept in darkness during the sta-
bilization runs. Additionally, the SiPM was located inside a light-tight metal
box. Of the two temperature sensors, the one inside the metal box, right next
to the SiPM, was used to stabilize the gain. During the stabilization runs, a
random trigger was used to record ∼ 500 traces/s, temperature readings and
applied voltage were logged every 10 s.

In total, two stabilization runs were performed for the direct stabilization,
lasting ∼ 1 h and ∼ 3 h, respectively. During these runs, the temperature in-
side the climate chamber was set to values between 50 ◦C and 10 ◦C while the
gain was kept stable by the scheme described above. Since only temperature
readings were used in the stabilization, the gain was measured offline after the
run. For the gain measurement, the Dynamic Histogram method was used,
since it allows a more fine-grained tracking of the gain and is more robust3 for
the large amount of data than fitting dark count spectra. The gain measure-
ments over the course of the two stabilization runs can be seen in Figure 4.11.
These plots show the gain measurement in blue and the temperature readings
of the inner temperature sensor in orange. It can be said that the gain sta-
bilization works as intended for periods where the temperature was stable, as
the gain returned to its starting value (∼ 0.163 in Figure 4.11a), regardless
of the absolute temperature. However, during periods, where the temperature
changes, the gain does not remain at a constant value and changes as well.
This effect is particularly pronounced in Figure 4.11a, and demonstrates one
of the main flaws of this method of gain stabilization. For this particular run,
the temperature sensor was in contact with the metal box, which has differ-
ent heat capacity and thermal conductivity than the air, which surrounds the
SiPM. Thus the gain is stabilized with a faulty temperature measurement,
which results in wrong gain values. In the second run (see Figure 4.11b), care
was taken to prevent the contact between temperature sensor and metal box,
and thus the gain is much more stable in the presence of temperature changes.

In a real experiment, the problem with temperature readings is not as vital
as here, since both the temperature sensor and SiPM would be mounted to the

3In general, good starting values for the fit of the peaks in dark count spectra are not
available due to shifting baselines and changing gain, which also influences the ratio of peaks.
This results in many faulty gain measurements for the large number of spectra fitted.
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(a) Direct stabilization run on 2015–11–18.
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(b) Direct stabilization run on 2015–11–19.

Figure 4.11: Stabilization runs with direct gain stabilization. On the first
run, the temperature sensor was in contact with the metal box, therefore the
measured temperature and the SiPM temperature differ, which results in over-
or undershooting in the gain. On the second run, care was taken to prevent
this contact.
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same printed circuit board, and the temperature gradients are arguably not as
high as in this experiment, but it is still a source for potential problems in an
experiment.

It should be noted that the direct stabilization, as used here, presumes a
linear relation between gain and temperature, as does the manufacturer ([85])
and as is commonly used in literature (e.g. [98, 99]). However, the measure-
ments done to determine the correction coefficient kc (see Figure 4.6) show
a slight deviation from this. Furthermore, a commercial voltage supply for
SiPM from manufacturer Hamamatsu [100], which is used in chapter 5, uses a
second order polynomial instead of a first order line. This means there is still
room for improvement for a direct gain stabilization and the implementation
shown here is merely typical, to compare with the PID stabilization, which is
described in the next section.

4.2.2 PID Stabilization

So far, the Dynamic Histogram method was used to measure the gain “offline”,
on data, which was recorded beforehand. However, it is also possible to mea-
sure the gain in real time by feeding new traces to the Dynamic Histogram as
they are recorded. In order for such a scheme to be feasible, processing of a
trace must not take longer than recording the next trace, i.e. event extraction
(see subsection 4.1.2) and insertion into the Dynamic Histogram (see subsec-
tion 4.1.4) must happen quickly. In the current implementation, this takes
∼ 210 µs. For comparison, one trace lasts ∼ 500 ns, which is considerably
faster, but since only ∼ 500 traces/s can be recorded, real time gain tracking
is possible with this setup.

As real time gain measurements are available, one can use the gain as the
process variable for the feedback loop instead of the temperature. To stabilize
the gain to a certain value Gg, a proportional-integral-derivative controller
(PID controller) can be used. As the name suggests, a PID controller uses a
weighted sum of three terms to determine the new control value (which in this
case is the applied voltage)

V (t) = Kp∆G(t) +Ki

∫ t

0

∆G(t′)dt′ +Kd
d∆G(t)

dt
, (4.13)

with the weights Kp, Ki and Kd for the proportional term, integral term and
derivative term, respectively. The error value ∆G(t) is equivalent to the change
in temperature in Equation 4.11 for the temperature control case and given as



48

16:01 16:02 16:03
Time 2015-11-23

0.1550

0.1575

0.1600

0.1625

0.1650
G

ai
n

(a
.u

.)

23.0

23.5

24.0

24.5

25.0

25.5

26.0

T
em

p
er

at
u

re
(°

C
)

Gain

Temperature

(a) Kp = 10, Ki = 2, Kd = 0, duration:
168 s.
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(b) Kp = 6.5, Ki = 0.5, Kd = 6.5, dura-
tion: 363 s.
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(c) Kp = 13, Ki = 0.5, Kd = 10, dura-
tion: 549 s.
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(d) Kp = 18, Ki = 0.5, Kd = 18, dura-
tion: 389 s.

Figure 4.12: Evolutions of the PID stabilized gain for different PID weights.
The jumps in temperature are due to the limited resolution of the temperature
readout.

the difference between the set gain Gg and the currently measured gain Gcurr

∆G(t) = Gg −Gcurr. (4.14)

In order to reliably stabilize the gain, values for Kp, Ki and Kd have to be
found, which maintain the set gain Gg while minimizing oscillations around
Gg and overshooting and still providing a reasonable response time. To find
suitable values, a PID scheme was built into the live gain measurement with
the Dynamic Histogram. For every 2000 traces, a new error value ∆G was
generated, from which a new voltage was calculated using Equation 4.13. Var-
ious values for the weights were tested by setting the goal gain Gg to a certain
value and observing the evolution of the system. Examples of this can be found
in Figure 4.12. In practice, it was difficult to find parameters which provide
both a fast response time and show only minimum overshooting. The over-
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Figure 4.13: Gain stabilization run on 2015–11–24 using the PID stabilization.
The initial set voltage was 28.0 V.

shooting is mostly driven by the integral term (compare Figure 4.12a), which
is useful to eliminate accumulating errors, that cannot be corrected using the
proportional term. For the gain stabilization, this turned out to not be an
issue, resulting in a small Ki value, where the overshooting only happens for
drastic gain changes. Furthermore, a bigger Kd value prevents overshooting
(compare Figure 4.12c, 4.12d), at the expense of less stability for the most
likely case, where the temperature does not change much. Since the drastic
gain changes in the data are artificial, the overshooting does not happen with
continuous data and causes no further problems in the stability. In the end,
values between the ones used in Figure 4.12c and Figure 4.12d were chosen
Kp = 13, Ki = 0.5, Kd = 13.

Two different stabilization runs were performed for the PID stabilization.
In the first one, the typical use case for gain stabilization was tested; holding
the gain at a constant value while the surrounding temperature changes. For
this test, the goal gain was set to Gg = 0.16 a.u and the initial voltage applied
to the SiPM was 28.0 V. Over the time of ∼ 40 min, the temperature was
changed from room temperature to ∼ 10 ◦C and ∼ 45 ◦C, and back to room
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temperature in reverse order. The results from this run can be seen in Fig-
ure 4.13. Is it apparent that gain stabilization works very well, as the gain
stays at the set gain Gg regardless of absolute temperature or temperature
gradient. Additionally, the gain fluctuations are smaller in amplitude than
their counterparts in the direct gain stabilization case (see Figure 4.11b). To
quantify this, the relative standard deviations of both data can be considered,
which are σdirect = 5.9 % for the direct stabilization, and σPID = 1.8 % for the
PID stabilization. Thus the PID stabilization is more accurate by a factor of
∼ 3.
Like in Figure 4.9, the time constant for the mean values of µ0 p.e. and µ1 p.e.

are temperature dependent, which makes the frequency of gain updates seem
temperature dependant, e.g. at the lowest temperatures, there are less 1 p.e.
pulses from thermal excitation, thus a single gain measurement with the Dy-
namic Histogram takes into account less data points than it does for higher
temperatures. This makes the measurement at high temperatures seem more
volatile. Regardless, the measurement shows no major contribution from this
effect on the overall stability of the gain.

The second stabilization run demonstrates the capability of the PID stabi-
lization to set the SiPM to specific gains. To test this, the SiPM was held at
a constant temperature of ∼ 26 ◦C at a initial voltage of 28.0 V. The initial
goal gain was set to Gg = 0.18 a.u., and throughout the run, it was set to
Gg = 0.15 a.u. and subsequently Gg = 0.14 a.u., while the temperature stayed
constant. The results from this run are shown in Figure 4.14. In this plot,
it can be seen that the SiPM gain is held stable regardless of Gg, although
there is some slight overshooting when settling on a new gain value, which was
also present in earlier measurements. It is however noticeable, that the last
Gg = 0.14 a.u. is not reached exactly, but a gain value slightly below 0.14 a.u.
is held. The reasons for this are not clear, but since the difference between the
goal gain and the actual gain remains constant, this behaviour could possibly
be fixed with more optimum PID weights. In particular the integration weight
Ki could be adjusted to eliminate the residual error.

So far, gain measurements from the Dynamic Histogram were used to show
the stability of the PID stabilization. While the gain values used in the plots
were produced offline on recorded data, gain measurements from the live Dy-
namic Histogram were used in the PID controller to stabilize the gain. Thus
the quantity, which is stabilized, is also used as a metric for the stabilization.
As was shown above, the gain measurement with the Dynamic Histogram
matches quite well (and is arguably superior) to the gain measurement done
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Figure 4.14: Gain stabilization run on 2015–11–24 using the PID stabiliza-
tion. Throughout the run, the goal gain Gg is set to three different values.
The apparent jumps in temperature are due to the limited resolution of the
temperature readout.

with dark count spectra, therefore these measurements strongly suggest that
the SiPM gain is in fact being stabilized. As a further verification of a suc-
cessful gain stabilization, spectra with both kinds of gain stabilization and
without gain stabilization are compared. As only dark count data were used,
it is possible to generate a dark count spectrum as described in subsection 4.1.3
from the data taken in Figure 4.13. Unfortunately, no data was taken with
the same temperature curve used in Figure 4.13 with direct stabilization or
without gain stabilization at all. However, data of the system for different
temperatures without gain stabilization are available from the measurement
for Figure 4.6. Thus, it is possible to construct an equivalent spectrum by
combining the data from different temperatures in a way, which mimics the
temperature curve in Figure 4.13. Additionally, the same temperature range
was covered in the direct stabilization run shown in Figure 4.11b, therefore a
comparable dark count spectrum is available for the direct stabilization case as
well. As the three data sets differ in length, the length of the smallest data set
(PID stabilization) was chosen for every spectrum, i.e. 1 500 000 traces, which
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correspond to a duration of ∼ 41 min.

The resulting spectra are shown in Figure 4.15. The spectra confirm what is
also seen in the Dynamic Histogram gain plots, that the PID stabilization pro-
vides a better stabilization than the direct stabilization based on temperature
measurements. It is interesting to note that even in the non-stabilized case,
there is a clear distinction between 0 p.e. peak and 1 p.e., but the distinction
of higher p.e. peaks becomes increasingly hard.
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Figure 4.15: Dark count spectra with a temperature curve similar to the one
used in Figure 4.13. The PID stabilization produces the best separation be-
tween p.e. peaks. The broadening of the peaks comes from different gain due
to changing temperatures and is most pronounced at higher p.e. peaks.
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4.3 Viability of PID Gain Stabilization

This section aims to explore the viability of the PID gain stabilization as de-
scribed above in the context of an EUSO-like experiment. Thus, particularly
the SiPM Elementary Cell Add-on (SiECA) of the EUSO Super Pressure Bal-
loon mission will be taken as reference. It is thoroughly discussed in chapter 5
below.

In order for the PID gain stabilization to work, two conditions have to be
met. First, the raw traces of the single pixels need to be available to categorize
the pulses. In SiECA, only a high level view of the data (i.e. trigger counts
per pixel) is written out. Secondly, the rate of traces and 1p.e. signals needs
to be high to measure the gain precisely in a short amount of time. As SiECA
was triggered externally every 15 s, and only then data was processed, both
conditions are not met, thus the method is not applicable to SiECA. Fur-
thermore, the required power consumption for the digital processing of every
detector pixel is too high for the relatively small power budget of a balloon
flight mission. Nevertheless, one can think of similar experiments, e.g. on a
space station, which do not have such a tight power budget and where the
Dynamic Histogram method is in principle available. Therefore, the data of
SiECA can be used to estimate if the Dynamic Histogram and the PID gain
stabilization can work in a space-born experiment.

Apart from the data acquisition, the main difference between SiECA and
the measurements in this chapter is that SiECA uses a more recent SiPM array
by Hamamatsu, whereas in this chapter, a single pixel SensL C-Series SiPM
was used. On a single pixel level, they are comparable as both have the same
3× 3mm2 dimensions and both are sensitive in the UV, but the newer Hama-
matsu SiPM of SiECA has decreased dark count rates. Since the Dynamic
Histogram and thus the gain measurement depends on dark counts, lower dark
count rates mean more data has to be sampled in order to measure the gain
precisely. Thus, the temperature gradients, which can be handled by the gain
stabilization, cannot be as steep for lower dark counts rates. Furthermore, the
atmosphere at altitudes in which SiECA was operated is considerably colder
than the laboratory environment in which the gain stabilization was tested.
This further decreases the dark count rate and adds to this effect.

For the SensL SiPM, the dark count rate can be measured with the data
used in Figure 4.9 by counting the 1 p.e. peaks, which are categorized by the
Dynamic Histogram. This leads to a dark count rate of λdc, SensL ∼ 400 kHz
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at 10 ◦C, the lowest temperature for which the gain stabilization was tested.
In EUSO-SPB, SiECA was operated at ∼ −30 ◦C and showed a dark count
rate of ∼ 20 kHz (see chapter 5), a reduction by a factor of ∼ 20. Thus, the
temperature gradients, which can be stabilized against, are ∼ 20 times less
steep than in the experiment above at 10 ◦C. The steepest gradient, which
was tested in the above experiment was a change of 34.6 K in 11 min, which
results in an average temperature gradient of 189 K

h
. However, this change was

handled without any problems by the PID stabilization using the Dynamic
Histogram and steeper changes in temperature were not possible with the cli-
mate chamber. Therefore, this gives a conservative estimate of the capabilities
of the method. The steepest temperature gradient of SiECA in EUSO-SPB
is < 3 K

h
, as will be seen in the next chapter. With the low dark count rate

of SiECA, the PID stabilization is able to handle a temperature gradient of
at least 189 K

h
/20 ≈ 9.5 K

h
, which is far greater than the gradients experienced

by SiECA. Thus, the gain stabilization as presented here can work for real
experiments, given the necessary DAQ systems.

4.4 Conclusions and Outlook

In this chapter, the change in SiPM gain due to temperature effects was dis-
cussed and measured experimentally. Furthermore, means to correct for the
change in gain by altering the applied voltage were presented including a novel
approach, which does not rely on external temperature measurements.
First, the experimental setup was described, which allows recording dark count
data from SiPM while controlling the ambient temperature. With these dark
count data, a matched filter was used to extract events from traces by picking
the local maxima of a filtered trace. From said events, dark count spectra
were created, which allow measurements of the SiPM gain by comparing the
position of the 0 p.e. peak and 1 p.e. peak. Using the gain measurement from
dark count spectra, the dependency of SiPM gain on temperature and applied
voltage were measured, and a correction factor was determined, which allows
adjustments of the applied voltage based on a measured temperature difference
to keep a stable gain.
Then, a novel approach was presented to construct simplified dark count spec-
tra by keeping track of the positions of the 0 p.e. and 1p.e. peaks and sorting
incoming events into the correct category. This allows for an effective gain
measurement in real time. Suitable parameters for the Dynamic Histogram
were found and the gain measurements of the new method were validated by
comparison to dark count spectra measurements.
In the end, two gain stabilization methods were tested. The first one uses
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temperature measurements from an external sensor and the correction factor,
which was determined beforehand to stabilize the SiPM gain. This approach
is simple to implement and works quite well and can be considered state of the
art. In the experiment, care had to be taken to keep the temperature sensor
from contact with other materials, especially for steep temperature gradients.
In the second scheme, a PID controller was used to stabilize the gain by itself
with online gain measurements from the Dynamic Histogram, which enables
this novel approach. This worked very well and the system was able to keep
a stable gain even for high temperature gradients. To further verify successful
gain stabilization, dark count spectra from data using both gain stabilization
schemes and no stabilization were compared.

While the PID stabilization with the Dynamic Histogram works well in the
laboratory, it has a few drawbacks compared to the direct stabilization. In
order to measure the gain online, the traces have to be available, i.e. a fully
digital approach to data acquisition is needed. For experiments with a strict
power budget, e.g. balloon missions, this is not feasible. Adding to this, the
extraction of events from the traces is fairly expensive computationally, which
makes it prohibitive for some experiments. However, the implementation used
in this work was done purely on the CPU. Significant performance improve-
ments should be possible by using GPU or FPGA for this task.
Furthermore, in the current implementation, a new gain value is generated
every 2000 traces. This is not ideal, since it does not take into account the
rate of 1 p.e. events, which can become quite low for extreme cooling of the
SiPM or bright illumination. Before being used in a real experiment, these
effects have to be taken into account and moreover, optimum PID parameters
need to be found.



Chapter 5

EUSO-SPB

In this chapter, data recorded by the EUSO super pressure balloon mission
(EUSO-SPB) is evaluated, in particular data by the silicon photomultiplier
elementary cell add-on (SiECA). After a brief introduction of the experiment,
the SiECA data set is explored. This includes the categorization of event
types and the development of cuts to distinguish physical from unphysical
data. A model of the data is developed and fitted to the data, which leads to
estimates of the UV night sky background rates and SiPM dark count rates.
Furthermore, transient light events recorded by SiECA are identified. In the
end, the SiECA results are briefly compared to the data of the main camera
of EUSO-SPB.

5.1 EUSO-SPB

The EUSO super pressure balloon mission (EUSO-SPB) is a pathfinder for
the detection of Ultra High Energy Cosmic Rays (UHECR) from space. It was
launched on April 24th 2017 from Wanaka, New Zealand under the balloon
program of the NASA Columbia Scientific Balloon Facility. EUSO-SPB was
the third SPB test flight from Wanaka, with a projected duration of up to
100 days at a floating altitude of ∼ 33 km. Its main scientific goal was the
measurement of UHECR from sub-orbital space by observing the fluorescence
of nitrogen molecules in the atmosphere [17] (see subsection 2.2.2), and the
measurement of background UV light over the ocean and of UV light from
clouds. Due to an anomaly in the super pressure balloon, EUSO-SPB could
not stay at its floating altitude and the flight was terminated prematurely after
12 days on May 6th 2017. In the following, a brief overview of the EUSO-SPB
instrument and its systems will be given. For a more detailed description, the
reader is referred to [101, 17] and references therein.

57
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Figure 5.1: Left: Picture of the complete EUSO-SPB instrument. Right:
Schematic view of EUSO-SPB instrument. Taken from [101].

5.1.1 Main Instrument

EUSO-SPB is the second balloon flight with a EUSO-like detector, succeed-
ing the EUSO balloon flight from Timmins, Canada in 2014 [102, 103]. As a
pathfinder for a JEM-EUSO-like mission, the design of the main camera, the
Photo Detection Module (PDM), follows the original JEM-EUSO design [72].
A picture of the complete instrument as well as a schematic is shown in Fig-
ure 5.1.

The focal surface of the PDM consists of 36 multi-anode photomultipliers
(PMT), with 64 pixels each, resulting in 2304 pixels. The 36 multi anode PMT
are grouped into 9 Elementary Cells (EC), with 2× 2 multi anode PMT each.
Each pixel has a size of 3 × 3mm2. In order to minimize light pollution out-
side the desired UV waveband, Schott BG3 filters [104] are glued to the multi
anode PMT. In addition to the focal surface, the PDM contains ASIC based
readout [105], a high voltage power supply and the PDM board, which hosts
the FPGA providing the logic for the PDM. In contrast to the first EUSO
balloon flight, where the camera was triggered externally, the PDM board is
capable of self triggering the readout of the PDM using a trigger algorithm
described in [106].

The optics of EUSO consist of two PMMA fresnel lenses with a diameter
of 1 m. Before the flight, the optics were calibrated [107] at Colorado School
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of Mines. The calibration included measurement of the point spread function
with a result of 10 mm. This corresponds to 3 pixels in the PDM. Additionally,
the optical throughput of the system was measured, with a resulting efficiency
of 30 %. The field of view was measured with laser pulses and by observing
stars in the night sky to (11.10± 0.15)°. At the nominal flight altitude of
33 km, this corresponds to a field of view on ground of ∼ 6 km. The energy
threshold for CR from trigger and optics is 1018 eV.

To facilitate communication with the instrument and downloading flight
data, the gondola was equipped with two Iridium Pilot antennas. In addition
to the data runs, a small 40 s portion of the data were downloaded directly
after recording to monitor the system. Therefore a UV LED, which fired every
16 s, was mounted near the first lens to illuminate the PDM. Power to the in-
strument was provided by a battery pack, which was charged during daytime
by solar panels, which were mounted alongside the gondola (see Figure 5.1).

Beside the PDM, EUSO-SPB was equipped with two auxiliary cameras. The
University of Chicago Infrared Camera (UCIRC) [108] and the silicon photo-
multiplier elementary cell add-on (SiECA). The purpose of UCIRC was the
measurement of clouds and monitoring of atmospheric conditions by observ-
ing clouds in two different bands with a field of view larger than the PDM’s.
Therefore, it was mounted outside the optical path as can be seen in Figure 5.1.
However, due to low temperatures, UCIRC was shut off for most of the flight
and did not provide much meaningful data.

5.1.2 SiECA

SiECA is a single EC research and development camera to study the use of
SiPM as light detectors in a EUSO-like experiment. It is designed to func-
tion as an additional EC to the PDM, which increases the focal surface of the
detector and shares the optics of the PDM. SiECA uses 2 × 2 Hamamatsu
S13361–3050AS–08 SiPM arrays, an 8×8 array of 3×3mm2 pixels. Instead of
the normal epoxy window, silicone resin windows are used, which increases the
sensitivity in the UV band (see Figure 3.6). To minimize light pollution, the
same BG3 filters, which are used for the PDM, are glued to the SiPM pixels.
Each SiPM array is voltage biased by two Hamamatsu C11204–02 [100], one
for the lower half of the array and one for the upper half, adding up to a total of
eight voltage supplies for SiECA. Through four temperature sensors mounted
on the PCB next to the SiPM, the voltage supplies also provide gain stabi-
lization (compare subsection 4.2.1). Eight CITIROC ASICs by Weeroc [109]
digitize the signals of the four SiPM arrays, again dividing each SiPM into
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Figure 5.2: Left: Schematic of SiECA mounted next to the PDM. Right:
Picture of SiECA. Taken from [18].

an upper and lower half. In order to use the same optics, SiECA is mounted
alongside the PDM, which is shown in Figure 5.2.

5.2 Data Quality

As discussed in section 5.1 the main scientific goals of the EUSO-SPB mission
were the measurement of UHECR and the UV background over water and
clouds, with the SiECA prototype being an ancillary research and development
test. During the flight, complications concerning electrical interfere emerged
between SiECA and the PDM, which led to instability in the PDM whenever
SiECA was turned on. Because of this, after the anomaly in the super pressure
balloon was detected, taking data with the PDM was prioritized to reach the
scientific goals of the mission. Thus, only few data were recorded by SiECA
in comparison to the PDM. This section will give an overview of the data and
discuss the SiECA data for use in reaching the EUSO-SPB scientific goals.

5.2.1 Data Overview

Due to its design as an add-on to the PDM, SiECA does not have any trigger
logic on its own. In its intended operation, the triggers of the PDM would
be passed down to SiECA which allows for synchronous triggering and the
use of SiECA as an extension of the PDM. Due to technical problems dur-
ing commissioning and obvious time constraints, this scheme could not be
implemented and instead a random trigger scheme was used for SiECA. In
this scheme, SiECA was triggered externally every 15 s from the data proces-
sor stack of EUSO-SPB. However, since it was designed with a synchronous
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Figure 5.3: Flight curve of EUSO-SPB showing the flight altitude over time.
The anomaly with the balloon can be seen in the steep drops during night
time. Orange dots indicate the time when SiECA data was recorded.

trigger in mind, no precision clock was provided, which means the data was
timestamped by the CPU of the data processor, with a precision of only 1 s.

Each trigger produced a trace, which consists of 128 data points with each
data point lasting 1 Gate Time Unit (GTU, 2.5 µs). This amounts to a total
length of 320 µs per trace. During the time of the balloon flight 284 traces were
recorded by SiECA, thus only ∼ 90 ms of flight-data is available. In addition
to this, there are 94 traces from on-site tests in Wanaka, but most of them are
empty or do not contain valid data. See subsection 5.2.4 for a more detailed
description.

After each trigger, the recorded data is transmitted from SiECA to the data
processor of EUSO-SPB and can later be downloaded along with the data from
other systems. During the flight, two Iridium [101] satellite antennas were used
to transmit the data from the balloon down to earth. For the analyses, the
downloaded raw binary data was converted with a script supplied with the
data to an easily explorable ROOT [110] tree file format. In this format, each
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Table 5.1: Overview of completeness values in SiECA data. For any incomplete
traces, only the last four GTUs are missing.

incomplete complete

number of traces 231 147
number of traces in-flight 176 108

missing recorded

number of GTUs 924 47460
number of GTUs in-flight 704 35648

trace contains count data for each of the 256 pixels and 128 GTUs. In addition
to the pixel data, there are two types of metadata: a Unix timestamp (with
a precision of 1 s) and the completeness of the trace. Due to the nature of
the download and the priorities shifting to UHECR detection with the PDM,
not all traces contain the full 128 GTUs. The completeness value denotes
how many GTUs were downloaded for each trace. In practice this does not
present as much of a problem as may seem, because there are only two types
of completeness values in the data: 124 and 128. A value of 128 means the
trace is complete, 124 means the last four bins are missing. Since traces miss
at most the last four bins, all traces are used for the analyses, although for
incomplete traces, the missing four bins (which still contain some arbitrary
data in the .root files) are discarded. An overview of the completeness of the
data can be seen in Table 5.1.

In addition to the pixelated photo-detectors, there were multiple auxiliary
systems onboard. In particular, NASA provided a differential GPS receiver
called Compass, which was able to precisely measure time, position and orien-
tation of the balloon. Using this data, the flight curve of the balloon is plotted
in Figure 5.3. It can be seen that there are two records of data at the target
altitude of ∼ 33 km, as well as a few records in the fourth night, on April 28th.
Because of interference between SiECA and the PDM, no more data was taken
after the anomaly became apparent. A thorough look at the records can be
found in subsection 5.2.4.

5.2.2 Trigger Counting

To understand the images SiECA produces, it is important to understand how
the data is generated. SiPM signals in SiECA are digitized in the Citiroc ASIC
by Weeroc [109]. In this ASIC the raw SiPM signals are amplified, and if some
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trigger condition is met, digital signals are produced to indicate which channels
triggered in a set period of time. The Citiroc ASIC uses one of two different
amplifiers, one with high gain, one with lower gain, to allow for a higher
dynamic range. For SiECA only the high gain amplifier is used. Whenever
an amplified signals exceeds a set threshold, a digital logic signal is emitted
until the signal falls below the threshold again, which happens typically in
∼ 10 ns [98]. For each channel, the amount of triggers are counted within 1
GTU, and this count is then written into a buffer to be read out. While this
approach can lead to an underestimation of the real photon count e.g. when
multiple photons hit one pixel within the time window of 10 ns, for low counts
this gives a good approximation of the real photon rate. Since SiECA is simply
counting triggers, the probability of missing a photon can be estimated using
Poisson statistics as

prandom = 1− e−∆T ·R , (5.1)

where ∆T is the length of the coincidence time window and R is the rate of
incoming photons (over threshold). For 10 counts per GTU and a coincidence
time window of 10 ns, this yields a coincidence probability of 0.04 %, which
can be neglected. As will be seen in subsection 5.2.5, 10 counts per GTU is a
very conservative estimate, therefore even less photons are missed due to such
coincidence.
The reason for the low count rates is the way SiECA was calibrated before
the flight. Since SiPM have a (compared to PMT) high dark count rate of
∼1 MHz mm−2 at room temperature, triggering on a single p.e. can lead to
pile-up and thus an overestimation of the recorded light, as triggers would be
dominated by dark counts. To avoid this issue, the amount of triggered events
in 1 GTU has to be lowered. While this could be achieved by applying a lower
supply voltage to the detector, gain and PDE would be sacrificed, which both
depend on the applied voltage, see Figure 4.6, [87]. To keep the trigger rate
manageable while still having high gain and PDE, the trigger threshold of the
detector was increased. Since the dark counts happen only at the 1 p.e.-level
and higher p.e. dark counts only happen because of coincidence as described in
Equation 5.1 (neglecting a few % from optical crosstalk), increasing the trigger
threshold drastically lowers the amount of triggers due to dark counts [111].
This decrease can be described by a Borel-distribution [112]. To find the opti-
mal configuration for the flight, various combinations of thresholds and gains
were tested in the Single Photon Calibration Stand at KIT [69] by the Karl-
sruhe group. For each setting, the excess photons were determined, which are
defined as the difference between the trigger count in one illuminated pixel and
the average trigger count of all other dark pixels for one trace (128 GTUs). By
maximizing the excess photons, optimal settings were found and one uniform
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threshold was set for the whole detector. More details can be found in [18].
This works because the pixels were flat fielded to show uniform gain across the
detector and the gain was stabilized against temperature changes as described
in subsection 5.1.2. The temperature stabilization was provided by the bias
voltage supplies (Hamamatsu C11204–02 [100]), relying on four temperature
sensors on the detector surface. The threshold in the actual flight configura-
tion is not known in absolute units of p.e. A method to estimate the threshold
using the flight data is presented in subsection 5.3.6, which yields a threshold
of ∼ 1.5 p.e.

5.2.3 Camera Images

To convert the flat 256 pixel array from the .root data files to the pixel posi-
tions on the detector, a pixel mapping is required. In this thesis, a mapping
from [113] was used, which was supplied alongside the raw data. This map-
ping places the observer behind the camera looking through the optics down
to earth. A visualization of the mapping can be seen in Figure 5.4, and an
example image from the camera is shown in Figure 5.5. In this chapter, the
coordinates of rows and columns in the camera images will be denoted by an
y- and x-coordinate, respectively.

In this pixel mapping, it is easy to see how the detector is constructed: The
whole detector can be divided into four parts, one for each 64 pixel SiPM array.
Each SiPM array is itself vertically divided into two parts. This division comes
from the fact that the Citiroc ASIC only has 32 input channels and therefore
each SiPM array is read out by 2 ASICs. The same division is also found
for the bias voltage supplies, with each voltage supply serving the same 32
pixels as are processed by one ASIC. The example image in Figure 5.5 shows
one trace containing 128 GTUs. Since the count rates are typically low (see
subsection 5.2.5), and each pixel contains at the most 1–2 counts per GTU,
count rates are averaged over the whole trace, which lasts 128×2.5 µs = 320 µs

and is generated from one trigger. In Figure 5.5 the mean count rate per GTU
and pixel is shown. It can immediately be seen that each pixel of the detector
worked. However, the trigger rate on the top right of the detector is evidently
lower than for the remaining pixels. This feature is present in all the data and
can be traced back to the division of each detector into two regions. For this
particular region, either the trigger threshold was higher than for the remaining
pixels, therefore yielding less triggers or the gain was lower, with an unchanged
trigger threshold. This particular event shows a cloud moving through the field
of view of the detector, which is further discussed in section 5.4.
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Figure 5.4: Pixel mapping used in this thesis, starting at (7, 5) for pixel #
0. The color gradient follows the increasing channel numbers. The division
of the detector into 4 SiPM arrays can easily be seen from this. Each SiPM
array is furthermore divided vertically, e.g. for the bottom left SiPM array, the
divisions are from 0 to 31 and from 32 to 63.

5.2.4 Voltage Biased Data

As can be seen in Figure 5.3, SiECA data is spread across a few time periods
of data taking with pauses in between, which will be called “records” in the fol-
lowing. In this section, the data quality of the various records will be analysed
and it will be discussed which record can be considered for the analysis. From
the flight curve seven records of data can be made out, two before the start
of the flight, and during the flight one on April 25th, one on April 26th and
three on April 28th. To evaluate the data, the spectrum of each record is con-
structed by averaging the counts of all pixels for each GTU in the record. From
these spectra, it can be inferred if the detector was turned on. The spectra for
the different records are shown in Figure 5.6. It can be seen that each record
shows events between 5 and 10 counts, which will later be classified as “spikes”.
They appear even if the detector was turned off. Apart from that, only three
records show any data beside the first bin: The one on April 25th as well as
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Figure 5.5: Example camera image from SiECA, each pixel is averaged over
one trace, i.e. 128 GTUs. Each averaged pixel trigger rate is given in counts

GTU .
This image shows a cloud moving through the field of view on 2017–04–28
07:38:32.

the last two records on April 28th. When magnifying the first bin of these
spectra (see Figure 5.7), it becomes apparent that only for those three records
data was recorded, the other records show a flat zero, except for spikes. This
yields three records of voltage biased data on two days: the 25th and the 28th.
Since the timestamps of each event are known, a simple timestamp cut on the
data can be used in order to filter voltage biased data. This will be called the
unbiased data cut in the following. From the 47460 complete GTUs, 21604
can be considered valid data. Table 5.2 gives an overview over the records.
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Figure 5.6: Averaged spectra of the 7 records of data.
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Figure 5.7: Magnification of the first bin of Figure 5.6. Only the records April
25th, 28th 2 and 28th 3 contain physical data.
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Table 5.2: Overview of voltage biased GTUs in SiECA data.

Record GTUs is voltage biased

April 20th 2017 7284 no
April 24th 2017 4528 no
April 25th 2017 15188 yes
April 26th 2017 9156 no
April 28th 2017 1 9156 no
April 28th 2017 2 3408 yes
April 28th 2017 3 3008 yes
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5.2.5 Event Classification

Up until now, two different cuts were used, the completeness cut described
in subsection 5.2.1, which works on GTU level and removes the GTUs, which
were not written completely (this only affects the last four bins of any trace).
The second cut was the unbiased data cut described in subsection 5.2.4, which
works on a trace level and removes any trace, which was recorded during a
time when the detector was not voltage biased. In addition to these two cuts,
there are several more cuts needed to remove unphysical data from the data
set for the analysis. All the following cuts will work on the GTU level and
only remove the GTUs in question, while the remaining GTUs of the trace
remain in the data set. An overview of all cuts is shown in Figure 5.8. In this
histogram, the average counts of all pixels in one GTU are plotted. The colors
indicate the remaining data after a certain cut. From this histogram alone,
data can be distinguished into four broad categories:

• Very low count rates in the first bin. Due to the relatively high
trigger threshold, the first bin includes background counts from the ul-
traviolet night sky background as well as dark counts from the SiPM
themselves. This data will be discussed thoroughly in section 5.3.

• There is a clustering of GTUs between 5 and 9 average counts.
These GTUs are called “spikes”, which are an anomaly in the detector
with a very distinct signature both in time and in the images they pro-
duce. These items will be discussed in subsection 5.2.6.

• The peak at the highest counts is one of the most obvious features in
the histogram, as well as the sharp cutoff after this peak. These GTUs are
called “pattern GTUs”, because they produce a distinct image pattern,
but unlike the spikes happen at seemingly random times. Both the high
counts and the cutoff indicate a saturation in the detector. These events
will be discussed in subsection 5.2.7.

• The continuum between the spikes and the pattern GTUs is
the last category in the histogram. These are either pattern-like GTUs
where the pattern occurred only a fraction 1 GTU, resulting in a lower
count rate than the usual 80 counts, or events where single pixels exhibit
unusually high counts.

As will be seen below, physical events predominantly appear in the first bin
of Figure 5.8. In the following, the unphysical events will be categorized, and
cuts will be defined to distinguish the unphysical data from the physical data.
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Figure 5.8: Average counts in SiECA per GTU shown for a bin width of 1.
The colored area indicates the remaining data after a certain cut. Almost all
physical data lies in the first bin. The incomplete GTU cut and unbiased data
cut only remove some data in the first bin. The majority of the spectrum does
not survive the pattern cut, the remaining data with higher mean counts are
removed by the high count cut.

5.2.6 Spikes

Spike GTUs can easily be recognized when looking at timelines of traces as can
be seen in Figure 5.9. In these timelines the average counts of all pixels per
GTU are plotted over time. For spikes, the 124th GTU shows between 5 and
9 counts while the neighbouring GTUs have much lower count rates, see Fig-
ure 5.9b. When looking at the camera images of such GTUs, spikes produce
a distinct pattern, which can be seen in Figure 5.10. It is worth noting that
while the average count for the GTUs is only around 8 cts

GTU
, single pixels which

contribute to the pattern exhibit up to 200 counts in one GTU. Since this pat-
tern only shows up in the 124th GTU, a connection to incomplete traces seems
plausible, however the spikes happen in both cases, for complete as well as in-
complete traces. The reasons for the spike events are unclear, but the pattern
hints at malfunctions in the electronics: When comparing the channel numbers
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Figure 5.9: Timelines for different types of events in SiECA data. Mean pixel
count for the detector is plotted over corresponding GTU.

from the used channel mapping (see Figure 5.4) of pixels involved, it can be
seen that the pattern is made up of two spots of consecutive pixel numbers,
from 14–19 and from 141–147. This suggests some form of electrical crosstalk
in the wiring of those pixels.

For the actual analyses, these pixels do not pose a problem, since the high
count rates of up to 200 counts per GTU only appear in the spikes events and
these GTUs can therefore be cut from the analysis data. For this cut, a GTU
is classified as a spike if it occurs on the 124th GTU and the maximum count
of a single pixel exceeds 40.



73

0 2 4 6 8 10 12 14
x

0

2

4

6

8

10

12

14

y

0

25

50

75

100

125

150

175

Figure 5.10: Camera image showing spike event on 124th GTU. These events
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Figure 5.11: Examples of GTUs showing pattern events.

5.2.7 Pattern Events

While spike GTUs produce the highest count rates in single pixels, pattern
GTUs have the highest count rates across the whole detector. When looking
at these high count GTUs, it can be seen that even if the actual GTUs look
different, they all share one underlying pattern, see Figure 5.11. To extract
this pattern, an average is taken over all GTUs with a high average count
rate. From Figure 5.8, an average count rate of 65 counts can be chosen as
a threshold for this cut (this may seem arbitrary, but the pattern will later
be used directly as a cut, so the exact threshold value is not vital here). The
pattern extracted from this data can be seen in Figure 5.12. From the high
difference in count rate of neighbouring pixels and the distribution of count
rates, it is unlikely that this pattern was caused by a physical event on the
detector. It is also interesting to note that in comparison to the spike GTUs
the whole detector has a high count rate and no consecutive channels are show-
ing special features. Moreover, it is surprising how the borders between high
and lower counts do not follow the bias voltage and ASIC division, and even
cut through this division as can be seen in the upper part of the pattern image.

As with the spikes, the reasons for the pattern GTUs are not clear. Since
for most pattern GTUs, the whole detector shows high counts and there are no
higher count events (see Figure 5.8), the detector seems to saturate. In order
to remove these GTUs reliably, a better method to distinguish pattern GTUs
from GTUs with valid data is needed. Since the average pattern is known
(see Figure 5.12), a template matching approach can be used to classify GTUs
as pattern GTUs. The algorithm used is described in [114] and implemented
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Figure 5.12: Camera image of average pattern in cts
GTU . This image is used as

a feature to match pattern events against.

in [115]. It is based on a normalized cross-correlation of an image to a specified
feature image and outputs a correlation coefficient between 1 (perfect match)
and -1 (perfect anti-match). In this case the feature image is the average
pattern image which has the same dimensions as every other camera image,
therefore potential limitations of the normalized cross-correlation correlation
such as image scaling, rotation and perspective distortion are not an issue here.
Since the method is normalized, even GTUs, in which the pattern lasted only
for a fraction of 1 GTU and will therefore have a lower amplitude will produce
a high match score. This can easily be seen when plotting the match scores of
a camera image against its average count rate, as shown in Figure 5.13. For
this plot, only the incomplete GTU cut and unbiased data cut were used, the
spike events are still present. Several populations of events can be made out.
The biggest population clusters at very low average count rates and match
scores between -0.2 and 0.2. These traces include the majority of physical
events and should not be removed by the cut. On the other hand, the events
with high match score are pattern events, which cluster at high count rates.
Besides these two clusters, two branches can be made out. The first branch
consists of events in the upper left area of the plot, which have high match
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Figure 5.13: Match score of GTUs plotted against the average count rate. The
colorbar indicates the density of GTUs on the plot. A match score of 0.25 is
used as a threshold for the pattern cut.

scores. These are events, in which the pattern can clearly be made out. The
example pattern GTUs in Figure 5.11 fall into this category. It is interesting
to note that there exist pattern events with very low average count rates. The
second branch consists of events on the bottom right of the plot with mod-
erate match scores, but high average count rates. These events often show
the pattern only in a fraction of the pixels, such as the GTUs in Figure 5.15.
Additionally, the spike events are visible as a clustering at a match score of 0
and average count rates between 5 and 9. From these data, it is not obvious
what the best values for a cut on pattern events is. In the end, a match score
of 0.25 was defined as the threshold for pattern GTUs. This removes most of
the pattern events and preserves the clustering of non-pattern events at low
count rates completely. Some pattern events still remain after the cut, but will
be removed by a following cut later on.

When looking at timelines of traces containing pattern GTUs, it can be
seen that unlike spikes, pattern events can last longer than one single GTU
(see Figure 5.9c). This is further explored in Figure 5.14a, which shows the
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Figure 5.14: Properties of pattern events.

distribution of durations of pattern events. The duration of the event is de-
fined as the amount of consecutive GTUs which pass the pattern cut. While
there is a peak at 5 GTUs, it is difficult to infer anything about the nature
of the patterns from the duration alone. Figure 5.14b shows the distribution
of time between the first GTU of a trace and the first occurrence of a pattern
event. There is a slight enhancement in the first GTU, but apart from that
the distribution appears to be flat, which hints at an external source for the
pattern, rather than the trigger itself.

One apparent feature of the pattern are two uppermost lines of pixel (line
14 and 15 in Figure 5.12). When examining the way SiECA is mounted next
to the PDM, pixels with big y-components are expected to be closest to the
PDM. Since there was electrical interference between SiECA and the PDM
(which caused SiECA to be shut down after the anomaly was discovered), the
pattern might be the effect of this interference on SiECA. Since the precision
of SiECA timestamps is only 1 s, it is not possible to correlate the pattern
events with effects in the PDM. Due to the template matching cut it is how-
ever possible to exclude pattern GTUs from the analysis, and since the rise
and fall time of pattern events seems to be less than 1 GTU, it can be assumed
that they do not produce artifacts in neighbouring GTUs.

In subsection 5.2.5, a continuum of events was present between spikes and
the peak of pattern events at 80 couts. Some of these events survive even
the template matching cut. A collection of typical events can be seen in Fig-
ure 5.15. In these images, some pixels show the same behaviour as in pattern
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Figure 5.15: Examples of camera images where only some pixel follow the
pattern. These events are not caught by the template match cut.

GTUs while the other pixels have low counts. Due to this, the GTUs are
not detected by the template matching cut. However these are only 17 GTUs
and can thus be eliminated by cutting any non-pattern pixels with an average
count rate above 15 counts.

There is still one class of GTUs left that appear to show unphysical data:
When looking at the remaining GTUs with the highest count rates, there are
some GTUs in which one single pixel (with coordinates x : 7, y : 5) shows high
counts while the remaining detector stays at low counts. This is problematic
because from the point spread function of the optics [107], such a high count
rate should be spread across multiple neighbouring pixels instead of being fo-
cused in one single pixel. To cut these GTUs, every GTU is cut where this
particular pixel has > 5 counts and is the highest value of the GTU. This will
be called the single pixel cut. Additionally, high counts (above 40 cts

GTU) only
appear in pattern events, spike events and the single pixel events described
here. Therefore one can simplify the spike cut and the continuum cut by elim-
inating all events where the highest count is above 40 cts

GTU . This cut will be
called high counts cut. It also cuts off some few single pixel events, but these
will be eliminated by a later cut anyway.

By using all the defined cuts, the subset of valid GTUs, which will later
be used for the analysis, can be extracted. Table 5.3 gives an overview of the
cuts in the order they are applied and of the remaining GTUs after each cut
in the data set. As can be seen, more than half of the GTUs in the data set
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Table 5.3: Overview of cuts for SiECA data.

cut GTUs

No cuts 48384
Incomplete GTU 47460
Unbiased data 21604
Pattern 20672
High counts 20596
Single pixel 20572

are recorded when SiECA was not voltage biased. From the remaining 21604
GTUs, which represent ∼54 ms of data, only 1032 GTUs (∼2.5 ms) are cut out.

5.2.8 Estimation of Cosmic Ray Detection Likelihood

The main scientific goal of the EUSO-SPB mission was the detection of cosmic
rays traversing the atmosphere. Due to its short recording time, it is unlikely to
find such an event in the SiECA data. This section will give a rough estimation
of the likelihood to detect such an event in SiECA data. From [116], around
one detected CR is expected for the duration of measurement with the PDM.
This value is based on simulations using an expected detector performance
before that flight and expected cloud coverage. For this estimation a value
of 1 is used. As discussed in the above section, the SiECA data set after
the unbiased data cut consists of 21604 GTUs, which represent ∼ 54 ms of
data taking. For the sake of simplicity, further GTU cuts are not used, as they
remove only a small fraction of GTUs. For the PDM, the duration of the flight,
for which data was downloaded, was ∼ 30 h. During this duration, the PDM
was recording using an optimized trigger [106, 117]. In the value of expected
CR for the PDM, the trigger is already included. In contrast to the PDM,
SiECA is triggered externally every 15 s. Thus, the probability of recording a
CR with SiECA is given by the fraction of the durations both detectors were
recording

pCR =
54 ms

30 h
= 5× 10−7. (5.2)

Since this number is very low, no further effects such as geometric dimensions,
optics point spread function or detection efficiencies are taken into account.
Even this rough estimate illustrates that the likelihood of detecting a CR with
SiECA data is very low, therefore no in-depth searches for cosmic rays were
attempted.
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5.3 UV Background Estimation

After having defined the cuts to distinguish the physical data from unphysical
data, one can look into the content of the remaining data to better understand
the detector and measure the UV night sky background.

5.3.1 Pixel Spectra Content

To evaluate the remaining data, the spectra of the pixels can again be studied.
For simplicity, an average of all detector pixels is taken instead of examin-
ing 256 spectra separately. Since the remaining data consists of three records
(see Table 5.2) and data was taken under different conditions for each record
(e.g. altitude, compare Figure 5.3), the spectra have to be viewed separately
and cannot be combined. The pixel spectra for the three records are shown
in Figure 5.16. Since the measurements from the ASIC are trigger counts,
Poisson-like distributions are expected, assuming a constant rate of triggers1.
What is seen instead are distributions with several features. Compared to the
first record, the spectrum of the third record looks much more irregular, even
having three different peaks. From this it can be inferred that for the duration
of data taking, the third record saw (at least) three periods were a specific
trigger rate was predominant. In the same way, it can be assumed that for the
first record, the rate was much less variable.

However, the trigger rate seen in the spectra are not to be taken as trigger
rates from real photons. Since SiPM have rather high dark count rates, the
spectra contain not only triggers from photons, but also from dark counts. This
means that three different kinds of contributions are expected in the spectra:

Dark counts which happen in every pixel because of thermal excitation of
electron-hole pairs. Due to the gain stabilization of the voltage supply,
the overvoltage for each pixel is kept constant throughout the flight and
the dark count rate depends only on the probability of thermal excitation,
i.e. on the temperature.

UV background light describes the residual light in the UV band, where
the detector is sensitive. These events are a background for CR search.
In the field of view of the camera, UV night sky background can be
assumed to be diffuse and therefore uniform across the detector.

1For single pixels (and a constant rate), a Poisson spectrum is present. Due to averaging,
non-integer values are produced, and the distribution cannot be Poisson anymore, even
though the shape of the distribution is similar.
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Figure 5.16: Mean counts per GTU for data which passes all cuts. The presence
of peaks hints at different trigger rates for different periods of recording.

Transient light events which only appear for a short duration of time. These
can be cosmic rays as well as high clouds moving through the field of view
or lights from planes or ships. These events typically will only appear in
a few pixels of the detector and can cause an enhancement in the spectra.

Of these signals, UV background and transient light events are of physical
interest. Since this section is concerned with UV background estimation, the
transient light events appear mainly as nuisance and data is selected in a way
which minimizes transient light event contribution. In section 5.4 however,
transient light events will be interesting as such events can make it possible to
directly compare SiECA and the PDM.

From this, the irregular spectrum of the third record (see Figure 5.16c) can
be explained with transient light events. Since transient light events dominate
the trigger rate for a short period of time, they manifest in the spectrum as
enhancements at higher rates. To get strong enhancements, the light events
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Figure 5.17: Temperature of the sensor closest to SiECA. The steep drop in
the first record comes from missing temperature sensor data, a smooth decline
is to be expected.

need to stay in the field of view for a very long time, e.g. slow moving clouds.
Since only trigger counts are measured, there is no easy way to separate the
dark counts from the UV background in the spectra. Both trigger rates λi
can be described as Poisson distributed random variables with distributions
P(λdc, k) and P(λbg, k) for dark count rate and night sky background rate, re-
spectively. Because these two events happen independently, their sum is also
Poisson distributed P(λdc +λbg, k). From one spectrum alone, it is impossible
to make out which fraction of the counts come from dark counts and which from
background, since they both happen at the same time with a constant rate (as-
suming no transient light events and a constant temperature). However, the
dark count rate depends on the temperature and the night sky background
is expected to differ slightly from night to night (e.g. due to moonlight and
static cloud coverage). In the following, a method to disentangle both rates is
presented, which uses this coherence of rates either in time (dark counts per
pixel) or in space (background across the detector).

To estimate the dark count rates of the different records, the temperatures
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of the detector have to be determined. Although there were four temperature
sensors mounted on the detector to enable the voltage supply stabilization of
gain [18], they were only used internally and not read out. Due to an issue in
the voltage supply of the PDM not being able to turn on in low temperatures,
both the PDM voltage supply and the PDM were heated. Because of this,
SiECA is thermally isolated from the PDM and the temperature readings of
the PDM’s temperature sensors are not applicable to SiECA. Therefore, the
temperature sensor on the front lens was chosen to measure the temperature
of SiECA. The temperature of the detector for the records of valid data can
be seen in Figure 5.172. Immediately it can be seen that the first and the third
record are recorded at the same temperature. The dark count rate of SiPM
depends on the temperature and overvoltage (and the gain is stabilized), thus
the same dark count rate can be assumed for data recorded in the first and in
the third record in a given pixel. Naturally, the dark count rate differs from
pixel to pixel, but for each given pixel, it is the same in both records, and as
the temperature is constant, so is the dark count rate for each pixel. Therefore
the pixel spectra, i.e. the probability to observe k counts per GTU, can be
described in the following way:

Pi,1(λ, k) = Pi(λdci , k) + Pi(λbg1, k)

Pi,2(λ, k) = Pi(λdci , k) + Pi(λbg2, k)

...

(5.3)

Each Poisson pixel spectrum P of detector i (one of the 256 pixels) consists of
two components: A dark count rate λdci which stays the same for every pixel
i (due to constant temperature) and a background rate λbgn for the nth night.
In this context, the term “night” will be used for any extended period of data
taking with constant conditions, guaranteeing the same uniform background
rate across the detector. Since there are 256 pixels, this gives 256×N coupled
equations for N given nights. Before the discussion of means to extract the
rates from the pixel spectra and solve the set of equations, it has first to be
determined how many records qualify as “nights”.

2The SiECA data points were inserted into the plot by matching the nearest timestamp
of data taking with timestamps of the front lens temperature time series. For some of the
first record of SiECA data, no data for the front lens temperature was available, which looks
like a steep drop in temperature for SiECA. This drop can be expected to have happened
smoothly over the time of data taking.
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5.3.2 Data Selection

Due to higher temperature, the data in the second record shows a higher dark
count rate than in the first and third records. Since the model in Equation 5.3
assumes a constant dark count rate for each pixel, the addition of a temper-
ature dependence and thus varying dark counts per pixel is not trivial and
introduces additional parameters into the model. Thus, the second record
was discarded for this analysis. For the first and third record, data was not
recorded continuously at all times, but with short breaks between patches of
data. These patches can be used as basis for the “nights” and one can define
patches as continuous durations of recording with a gap of at least 300 seconds
to the next patch. From the data in the first and third record, which survive
all cuts, 7 such patches are present, an overview can be seen in in Table 5.4.

To use the model described in Equation 5.3, dark count rates have to be
constant for each pixel, and the night sky background rate has to be constant
for each night. Since a constant dark count rate is given by the constant
temperature, patches have to be found with minimal transient light event con-
tribution to ensure constant night sky background rates across the detector.
In other words, a cut on transient light events has to be found.

For the patches, both the average pixel spectra per patch and the average
camera image per patch can be analysed. Examples of this can be seen in Fig-
ure 5.18. Both the images of the first two patches and the spectra are very
similar, in counts as well as shape. Other patches show varying deviations from
this, e.g. patch 5 (see Figure 5.18e, 5.18f) has a similar image, but a spectrum
with multiple peaks. This implies that the background rate changed during
recording due to transient light events, but in a diffuse way across the detector.
Patch 7 (see Figure 5.18e, 5.18f) only has 1 peak in the spectrum, but clearly a
higher rate on the right side of the detector (in section 5.4, this will be linked
to a cloud moving slowly through the field of view). Since the first two patches
have the lowest counts and appear to be very clean, the average image of these
two patches can be used as a template for the background, i.e patches with-
out transient light events, for template matching similar to the pattern cut in
subsection 5.2.7. By demanding a match score > 0.9 and uniform background
rates, i.e. only one peak in the spectrum, which was determined by eye, only
four patches qualify: 1, 2, 3 and 6. These patches can be used as nights with
independent background rates to solve the system described in Equation 5.3.
It should be noted that the fourth night (patch 6) has much lower statistics
compared to the other three, which makes it unclear if inclusion of this night to
the data set improves the result. This question is resolved in subsection 5.3.4



85

0 5 10 15
x

0

5

10

15

y

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(a) Patch 1 image, match score 0.99.

0.0 0.2 0.4
Mean counts / GTU

100

101

102

103

F
re

qu
en

cy

(b) Patch 1 spectrum.
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(d) Patch 3 spectrum.
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(f) Patch 5 spectrum.
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(h) Patch 7 spectrum.

Figure 5.18: Examples of average camera images and corresponding spectra
for some patches. Patch 5 and patch 7 contain transient events as seen by the
multiple peaks in the spectrum (5.18f) and the low match score (5.18g).
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with toy simulations.

Table 5.4: Overview of “nights” in the first and third record.

Patch Start Duration in GTUs

1 2017–04–25 10:41:31 5776
2 2017–04–25 10:53:16 1999
3 2017–04–25 11:36:58 6392
4 2017–04–25 12:09:11 317
5 2017–04–28 09:28:38 389
6 2017–04–28 09:35:42 676
7 2017–04–28 09:45:36 1120

5.3.3 Poisson Model Fits

In subsection 5.3.1, the pixel spectra were modeled as sums of Poisson dis-
tributed random variables described by certain parameters (in this case, the
rates λdc and λbg), which can be written as P (x|θ), where P describes the
distribution, x describes the data and θ describes the parameters of the distri-
bution. To obtain the rates λi, the parameters θ which best describe the data
need to be found. To infer these parameters from the data, estimators can be
used, which are functions of the data used to estimate the value of the parame-
ter θ [118]. For the analysis of SiECA data, two commonly adopted estimators
were used: The maximum likelihood estimator and the least squares estimator,
which are both frequentist methods (see [118, 119] for further reading). In this
section, a short outline will be given of their differences and a toy simulation
will be used to estimate their properties estimating Poisson distributed spectra.

The maximum likelihood estimator works by finding the parameter θ
which maximizes the likelihood function L(θ). The likelihood can be ob-
tained as the probability of the data under assumption of the parameters
L(θ) = P (x|θ) [118]. As the data consists of counts for single GTUs and pix-
els, the counts can be viewed as independent and identically distributed (per
pixel/night), thus the likelihood can be written as

L(θ) =
n∏
i

f(xi; θ), (5.4)

where f is the probability distribution function describing the process (Poisson
in this case), xi are the data points (counts) and θ are the parameters of
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the Poisson distributions. Since only the maximum of the likelihood function
is relevant and the logarithm ln is strictly increasing, one can also use the
logarithm of the likelihood lnL(θ) instead of the likelihood L(θ). In this case,
the product becomes a simple sum, which is easier to handle computationally.
This is sometimes called the log-likelihood. The number of events n in the
product in Equation 5.4 is considered fixed. If the number of observed events
n is also randomly distributed (e.g. through a Poisson distribution with mean
µ), it can be included into the likelihood as

L(θ) =
µn

n!
e−µ

n∏
i

f(xi; θ), (5.5)

where µ is the mean of the Poisson distribution. This is called the extended
likelihood estimator [120]. In this chapter both the extended maximum likeli-
hood estimator and the usual maximum likelihood estimator are used to infer
rates from Poisson spectra. For both versions of the maximum likelihood es-
timator as described above, the data is used in unbinned form, since certain
binning can lead to aliasing and therefore loss of information for the data set.
However, for the SiECA data set, each data point for every pixel consists of
integer values (counts). Because of this, it is possible to construct the spectra
in a way that no information is lost, e.g. by ensuring integer bins and a number
of bins nbins > max(counts) for each spectrum. In this case, the unbinned data
can be reconstructed from the binned histogram. For the following analyses,
care was taken not to alias the spectra, therefore binning does not pose a prob-
lem, even when using binned data.

In physics, it is often possible to describe measurements yi as sets of inde-
pendent Gaussian distributed random variables xi with mean values µ(xi, θ)

and variances σi. To find the optimal parameters θ, the log-likelihood can be
used as described above

lnL(θ) = −1

2

∑
i

(yi − µ(xi, θ))
2

σ2
i

. (5.6)

To maximize the right-hand side, the sum has to be minimized. This is the
basis of the least squares estimator

χ2 =
∑
i

(yi − µ(xi, θ))
2

σ2
i

. (5.7)

Instead of maximizing the likelihood L(θ), the quadratic sum of the differ-
ences between data and assumed model values weighted by the variances is
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minimized. This quantity is called χ2 3. Although Gaussian variables were
used to define χ2 (and the likelihood L(θ) and χ2 coincide for Gaussian vari-
ables), the least squares method can be used even if the measurements yi are
not Gaussian as long as they are independent [119]. In order to calculate χ2,
the variances σi of the data points have to be known. These are often not
known a priori and must be estimated from the data. For Poisson variables
xi, the variances are given by

√
xi [121]. However, this poses a problem for

binned data spectra with very low count rates (as in this case), as the variances
become poorly estimated or even undefined in case of bins with 0 counts. In
this chapter, this problem was mitigated by estimating the variances from the
Poisson model µ(xi, θ) instead of the data. In the following, the two different
types of estimators, maximum likelihood and least squares, will be treated as
two independent methods for extracting parameters from Poisson spectra, as
both can give valid results and have their strengths and weaknesses.

The SiECA data set consists of binned Poisson spectra with low mean values
µ. In order to test the different estimators’ ability to infer the mean values µ
from the spectra, toy simulations were performed. For this, Poisson distributed
data was randomly ([122]) generated for 45 different mean values between 0.001
and 0.9. Each distribution contained 5000 data points, which is similar to the
statistics found in SiECA data usable for physics analysis (see Table 5.4). For
each distribution, the optimal mean values were found using the estimators
described above. To minimize the effect of statistical fluctuations, this pro-
cedure of generating data and fitting was carried out 20000 times per mean
value µ. For every data set and estimator, the same start value of µ = 0.1 was
used for the optimization.
The χ2 minimization was implemented using [123], where the raw data was
first transformed into a histogram and χ2 was defined as

χ2 =
∑
i

(yi − P(xi, λ))2

P(xi, λ)
, (5.8)

where λ denotes the optimization parameter and estimate of µ, and the sum
runs over every integer bin in the histogram.
For both usual and extended maximum likelihood estimation, a freely available
implementation [124] was used, due to the increased numerical complexity
compared to the least squares minimization, which proved to be too slow for
the complete fit in subsection 5.3.4 when implemented in [123]. In order to find
the error in the estimation for increasing mean values µ, for each distribution

3Under certain conditions, the minimum follows the χ2-distribution, and is in general
called χ2 because of this, even when the particular distribution differs [119].
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a relative error was calculated as

δµi =
|µ− λi|

µ
, (5.9)

where µ is the true value, λ is the optimal parameter from the estimation and
the index i takes into account the 20000 optimal values per estimator and µ.
From the distribution of δµi, the error in estimation for a particular estimator
is given as the mean value of this distribution

∆µ = δµ =
|µ− λ|
µ

. (5.10)

The errors in estimation ∆µ for 45 different values of µ can be seen in Fig-
ure 5.19. As expected, the errors ∆µ get smaller for higher values of µ, since
the data is more evenly distributed in the histogram and the statistical fluctu-
ations of the 1st bin become less important. In the same way, the uncertainties
σ∆µ get smaller since outliers become less likely. The errors of estimation are
reasonably low, reaching above 5 % only for the lowest values of µ. No sig-
nificant difference can be seen in the error of estimation ∆µ for any method,
however the maximum likelihood methods tend to have marginally smaller
errors as well as uncertainties σ∆µ. When fitting single Poisson spectra, the
usual maximum likelihood estimation gives the same values as the extended
one, they are not distinguishable in Figure 5.19. It is worth noting that the
distribution of errors is not the same for the χ2 method and the maximum
likelihood methods. When taking the signed difference instead of the absolute
value in Equation 5.9, the mean value ∆µ should be almost zero if the distri-
bution is symmetric. For the χ2 case however, negative values are obtained
which indicate that said method tends to overestimate the true value, while
in the maximum likelihood case there is no preference in either direction. As
the relative errors ∆µ are similar however and the effect is small, this does not
cause further problems.

5.3.4 Linear Approach

As described in Equation 5.3, each pixel spectrum can be considered a sum of
two background spectra

P(λ, k) = P(λdc, k) + P(λbg, k), (5.11)

one from the SiPM dark counts λdc and one from night sky background λbg.
From single spectra the two rates are impossible to disentangle however, since
both background events happen at the same time with constant rates. By
selecting the data for diffuse night sky background rates, the night sky rate
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Figure 5.19: Errors of estimation for single Poisson spectra with low counts
for three different estimators. For single spectra, extended and normal maxi-
mum likelihood estimators give the same result. The least squares estimator
performs only marginally worse.

λbg can be constrained to be the same across the detector for every pixel in
each night. At the same time, due to constant temperature, each pixel has the
same dark count rate λdc for every night. Using this, a model can be build
with 256×n parameters f(x, θ) and the methods described in subsection 5.3.3
can be used to fit the parameters θ to the data x. Here, x denotes the whole
data set described in subsection 5.3.1 and θ are the 256 × n parameters with
the following constraints:

Pi,n(λ) = Pi,n(λdci) + Pi,n(λbgn) ∀i ∈ {pixels},∀n ∈ {nights}, (5.12)

where P(λ) is the Poisson distribution P(λ, k), {pixels} denotes the set of 256
pixels and {nights} denotes the n nights. Because of the high dimensionality
of the model and the amount of constraints, finding the best fit parameter θ
is computationally intensive and can take a lot of time. Before estimating the
accuracy of the method with toy data, a computationally simpler approach is
presented:
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Hybrid Linear System

For this problem, sums of Poisson distributions have to be considered. It can
be shown that given two Poisson distributed random variables X ∼ P(λ1)

and Y ∼ P(λ2), the sum of the variables X + Y is Poisson distributed again
X + Y ∼ P(λ1 + λ2) [125]. Using this, a system of linear equations for the
rates can be formulated

λdc,1 + λbg,1 = λ1

λdc,2 + λbg,1 = λ2

...

λdc,1 + λbg,2 = λ257

λdc,2 + λbg,2 = λ258

...

λdc,255 + λbg,n = λ256·n−1

λdc,256 + λbg,n = λ256·n,

(5.13)

which consists of 256 + n unknowns and 256 · n equations. Each equation
corresponds to one single pixel spectrum in the data. Since the rates of single
Poisson spectra can be extracted with good accuracy (see subsection 5.3.3),
the rates λi can be considered known values. This system can be expressed in
vector form as

ri(x) =
∑
j

aijxj − λi, (5.14)

where i ∈ {0..256 · n} and j ∈ {0..256 + n}. The vector xj consists of the
desired rates λdc/bg,j. For a solution ‖ri(x)‖ has to be minimized. Since the
matrix aij has more rows than columns, the system is called overdetermined
and has in general no solution [126]. Is is however possible to find a vector
xj which minimizes ‖ri(x)‖ using the least squares method [127]4. This xj
does not satisfy every equation in the system, but gives values that come clos-
est to solving the system exactly. The maximum likelihood method and the
least squares method can be combined to solve this system using a hybrid
approach: The maximum likelihood estimator gives slightly more accurate re-
sults (see subsection 5.3.3) while being computationally more expensive. Here,
each spectrum only has to be fitted once, to get the right hand side values λi
in Equation 5.13. The resulting system of equation can be solved using the
faster least squares methods.

4Is it of course also possible to solve this system with a maximum likelihood estimator.
However, there are a plethora of least squares methods and optimizations for this problem,
which speed up the procedure, which is why this family of methods was preferred here.
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In order to assess the viability of obtaining both SiPM dark counts rates λdc,i

and as night sky background rates λbg,n as well as to estimate the accuracy
such a fit, toy simulations were carried out.

Toy Simulations

For such a simulation to work, toy data are needed which resemble the real
data as close as possible. The actual rates are not known a priori, but the rates
can be constrained from the spectra and camera images. The data set consists
of three or four nights, which have different average rates. Due to the constant
temperature across all nights, the dark count rates λdc,i do not change and an
upper bound can be placed on the dark count rate by selecting the night with
the lowest average rate λdc which is ∼ 0.04 cts

GTU
in the second night. In this

night, the night sky rate λbg is the lowest (since λdc = const) and λdc cannot
be higher than this rate. For the upper bound, the rate of the brightest pixel
max(λdc) ∼ 0.14 cts

GTU
is selected. In the same way, an upper bound for the

background counts is given by the highest average night count (λbg ∼ 0.11 cts
GTU

from the third night), with a maximum of max(λbg) ∼ 0.39 cts
GTU

. Using these
values, data can be generated for a detector with p pixels in n nights by ran-
domly generating λdc,i with i ∈ {0..p} using a uniform distribution from 0.001
to 0.15. The background rates λbg,j with j ∈ {0..n} are picked from a uni-
form distribution from 0.001 to 0.4. For similar statistics to the real data set,
each spectrum contains 5000 counts. Using these rates, the rate for each pixel
spectrum can be calculated according to Equation 5.13 and the spectra can be
generated from Poisson distributions as in subsection 5.3.3.

With the generated data sets, best fit values of the rates can be produced
and the different methods can be compared to the true values for the rates and
to each other. For this comparison, all four methods described above are used,
namely χ2 minimization, usual and extended maximum likelihood approaches
and the hybrid approach of extracting the rates first with a maximum likeli-
hood extractor before solving the system of equations with the least squares
method. For each method, the same starting values of λdc, start = 0.005 and
λbg, start = 0.2 were used. These values were chosen with the maximum likeli-
hood estimator in mind, which needs relatively specific starting values in order
to converge successfully in comparison to the χ2 minimization which is much
more lenient with regards to its starting values. Therefore the starting value
λbg, start was chosen as the mean value of the interval of its uniform distribution
and λdc, start was chosen to be significantly smaller, as experience showed this
to be necessary.
Similar to the toy simulation in subsection 5.3.3, it is important to understand
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how well the methods work on any data set. Because of this, toy simulations
were not only performed for the SiECA data set with 256 pixels and 3 nights,
but for setups with smaller detector size as well. While in subsection 5.3.3,
a single Poisson spectrum fit was done in less than a second, regardless of
method, a fit to the complete data set can take minutes with the hybrid ap-
proach or the χ2 minimization and up to hours with the maximum likelihood
approaches (especially when using the extended version). This makes it very
hard to collect large statistics, and limits the simulation to setups with up to
256 pixels and 50 fits per setup. Simulations were run for setups with 3 nights
and varying amount of pixels from 5 to 256. Since the true values of the rates
µi are known, the relative error can again be used as a measure for each fit

δµi =
|µ− λi|

µ
, (5.15)

where λi are the best fit values. Since it can be cumbersome to give the relative
error of every single pixel and night rate especially for high amounts of pixels,
two mean values will be given instead: One for the relative error of estimation
for the night rates ∆λbg = δµbg and one for the dark counts ∆λdc = δµdc. For
each setup, 50 data sets were simulated and fitted. Due to the asymmetric
nature of the distribution of mean values ∆λi, the median value is given in-
stead of the mean value. The error is calculated as the 15.87th and 84.13th
percentile, which corresponds to 1σ for a Gaussian distribution.

Simulation Results

The result of the simulations for varying setups with 3 nights can be seen
in Figure 5.20. At first glance, it can be seen that for both nights and dark
counts, the χ2 minimization gives the smallest error of estimation ∆λ, with
∆λdc < 20 % for the dark count rate and ∆λbg < 10 % for a SiECA-like setup
with 256 pixels. The fact that night rates are estimated with a smaller error
is understandable due to having much more pixels than nights. For low pixel
counts, the χ2 minimization is beaten by the maximum likelihood methods,
which perform similar to each other in this regime. For increasing pixel counts
the usual maximum likelihood error increases while the extended maximum
likelihood error follows the χ2 method and stays competitive. Even though
it sounds attractive in theory, the hybrid approach fails to give a solid esti-
mation of the parameters for the data set. For the dark count rates, it never
manages to converge and for the night rates, it completely stops working at
∼ 125 pixels. Due to only having 50 fits per setup, the results are subject to
statistical fluctuations, which manifest in erratic curves, which can be expected
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to be smooth for high numbers of fits. As this is much more pronounced in
the maximum likelihood estimators, the χ2 minimization seems more robust
with regards to small changes in the data set, which is further emphasized
by the smaller errors bars in the χ2-case. This was also experienced in the
methods’ dependency on the starting values for the fits, where the χ2 mini-
mization would arrive at the optimal values over a large set of starting values.
Therefore, the χ2 minimization was chosen as the best method to fit the model
to the SiECA data set as it showed to have the smallest error of estimation,
highest robustness and is computationally simpler than maximum likelihood
methods and therefore much faster.

For simplicity, the spectra for the toy simulation were generated with 5000
counts per spectrum. In the real SiECA data set, the counts per spectrum
vary per night, which can be seen in Table 5.4. The fourth qualifying “night”
(patch 6) in particular contains only 676 counts. Therefore, another simulation
was run using only the χ2 estimator to predict if the nonuniform distribution
of counts alters the error of estimation and to decide if it is worth including
the fourth night with low statistics. The simulation was setup in the same
way as above with the difference of using [5776, 1999, 6392, 676] counts for
the spectra in consecutive nights, with one simulation using 3, the other using
4 nights. Instead of 50 fits per setup, 2000 fits were used since the expensive
maximum likelihood fits could be excluded. The result of the simulations are
summarized in Table 5.5. As can be seen, the inclusion of the fourth night
increases the error of estimation slightly due to large statistical uncertainties
in the fourth night pixel spectra, but the difference is small and well within
any reasonable fluctuations. Additionally, the fourth night data are the only
data in the set from the later records (on April 28th, see subsection 5.3.1),
therefore it was included in the fit.

Table 5.5: Summary of the error of estimation ∆λ for excluding and including
the fourth night.

Three nights Four nights

∆λbg 0.016+0.024
−0.009 0.019+0.032

−0.008

∆λdc 0.132+0.091
−0.051 0.132+0.101

−0.049

SiECA Data Fit

The actual fit was performed with both the χ2 minimization and the extended
maximum likelihood estimator (EMLE). The results for the night sky back-
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(a) Median error of estimation ∆µ for dark count rates over number of detector
pixels.
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(b) Median error of estimation ∆µ for night rates over number of detector pixels.

Figure 5.20: Results for toy simulation with 3 nights and varying pixel num-
bers. For the sake of readability, errors are given as shaded regions only for
the two best methods.
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ground rates can be seen in Table 5.6. It can be seen that the values for the
background rates differ much from night to night and span over two orders
of magnitude. The first two nights have the lowest rates, which was already
known from subsection 5.3.1, as they were used as a definition for a clean av-
erage image when searching for qualifying nights. The third and fourth night
show much higher rates, but it is hard to infer if this is due to cloud coverage
or the lower flying height (see Figure 5.3). While it is reassuring to see both
estimators arrive at similar rates λbg, the discrepancy between the actual val-
ues is bigger than the 2 % error of estimation derived above. This is a hint
that the linear model used for this fit describes the data insufficiently. The
following subsections will improve on this simple model.

Table 5.6: Counting rates of the night sky background for different “nights”
using the linear model. Nights correspond to the patches defined in Table 5.4.
The last row shows the average dark count rate.

Night λbg with χ2 ( cts
GTU) λbg with EMLE ( cts

GTU)

1 1.44× 10−3 1.80× 10−3

2 9.97× 10−4 1.06× 10−3

3 5.96× 10−2 5.58× 10−2

4 1.63× 10−1 1.46× 10−1

λdc 5.61× 10−2 5.41× 10−2

The resulting dark count values λdc with the χ2 minimization and extended
maximum likelihood estimation are shown in Figure 5.21. As expected, the
distribution of rates follows the clean average image (similar to Figure 5.18a)
for both methods. In these images, two features stand out: The area in the top
right with 4×8 pixels shows lower rates than the remaining pixels. Since these
32 pixels share one voltage supply, it is plausible that they received a supply
voltage lower than the rest. The second pixel on the bottom row stands out
with a much higher count rate than the remaining pixels. Like with the night
sky background rates, there is little difference in the rates estimated by the two
different methods, however the χ2 minimization estimates slightly higher rates
for most pixels. This behaviour could already be seen in subsection 5.3.1, when
looking at single Poisson spectra. The average dark count rate by χ2 mini-
mization is λdc = 0.056 cts

GTU = 22.5 kHz, which is a surprisingly high value. A
characterization of the same SiPM used for SiECA by [98] showed a dark count
rate of λdc ∼ 150 kHz at 0 ◦C. From the temperatures of the SiECA SiPM at
time of recording (∼ −30 ◦C), this rate is expected to be ∼ 10× lower [99],
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(a) Dark count rates obtained by χ2 method in 10−3 cts
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(b) Dark count rates obtained by extended maximum likelihood method in 10−3 cts
GTU .
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GTU

Figure 5.21: Resulting dark count rates distribution using the linear model.
Both methods are in good agreement.
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which leads to an expected rate of λdc, exp ∼ 15 kHz, comparable to the mea-
sured rate. However, due to the calibration procedure (see subsection 5.2.2),
a threshold higher than 0.5 p.e. is expected and thus a lower trigger rate. In
principle, results with a higher dark count rate and a lower background rate
could be explained if the fit is unable to distinguish the rates properly and
the lowest background rate is set to a near 0 value, only giving the differences
in rates between the nights and adding the missing offset to the dark counts.
However, the toy simulations were unable to reproduce such a scenario and
the fit was able to separate the rates properly, as shown above. Still, the linear
model is a simplification where every detector has the same properties and
perfect detection efficiency. The next section tries to improve on these flaws
by introducing the photon detection efficiency as a fit parameter.

5.3.5 Photon Detection Efficiency

When studying the distribution of dark count rates (see Figure 5.21), it is ap-
parent that not all pixels have the exact same rate. Since the dark count rate
as well as gain and other SiPM parameters depend on the overvoltage, the dif-
ferent pixels can be expected to have different overvoltages. This however also
impacts the pixels’ ability to detect incoming photons, which is parametrized
as photon detection efficiency (PDE). Due to differences in PDE the appar-
ent rates from the night sky background as seen in specific pixels are ex-
pected to be different, even if the actual rate λbg stays the same across the
detector. To account for this effect, a new class of parameters εi is intro-
duced to the model, which describe the detector efficiency for each pixel. This
changes Equation 5.12 to

Pi,n(λ) = Pi,n(λdci) + Pi,n(εi · λbgn) ∀i ∈ {pixels},∀n ∈ {nights}, (5.16)

where εi is the PDE for every pixel. For the model, this nearly doubles the
amount of free parameters from 260 = 256λdc+4λbg to 516 = 256λdc+256 ε+

4λbg. To estimate the ability of the fit to deal with the increased amount of
parameters, toy simulations were performed with the updated model. Both
dark counts rates λdc and background rates λbg are handled in the same way
as for the linear model. The additional efficiencies εi are taken randomly from
a uniform distribution of values between 0.15 and 0.35, which are typical values
for PDEs (see e.g. [87]). For the Poisson spectra generation, the background
rates were multiplied with the detector efficiency of the respective pixel. Each
data set was fitted with the linear model described in subsection 5.3.4 and the
model including the detector efficiencies to compare both the efficiency model
with the true values and to estimate the linear model’s error when dealing
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with data in which pixels have nonuniform efficiencies. The simulations were
run for one setup with 256 pixels and 4 nights for 200 times using the χ2 min-
imization method. An overview of the results are shown in Table 5.7. It is

Table 5.7: Overview of fit results for toy simulation with varying detector
efficiencies. The results are presented as error of estimation ∆λ as described
in Equation 5.9.

Linear model Efficiency model

∆λbg 0.77+0.03
−0.05 0.33+0.13

−0.12

∆λdc 0.60+0.50
−0.29 0.48+0.69

−0.35

∆λε — 0.30+0.09
−0.06

no surprise that the model with the efficiency parameter has smaller errors of
estimation, since the data was constructed using this exact model. However,
is it notable that both models have similar errors regarding the dark count
rate λdc. When estimating the background rate λbg, the linear model collapses
completely with an error above 70 %. Even the model which takes efficiency
into account has a much larger error when compared to the results of the linear
model in Table 5.5. There are several reason for this. The most obvious one
is the increased amount of fit parameters, which allow for more local minima
in the χ2 minimization and therefore a more complicated fit. Additionally, in
the model dark count rate and PDE are treated as two completely indepen-
dent quantities, which they clearly are not. Both depend on the overvoltage
of the SiPM and are therefore correlated, but for a more realistic model even
more parameters would be needed, which is unfeasible. For the real data, the
assumption of independence between the parameters is stronger, since the ef-
ficiency can not only be PDE but also include efficiencies of the optics. The
dark count rate in the data can also be enhanced by electric noise which can
cause extra triggers and further weakens the correlation.

The fit to the data was performed using the χ2 minimization, the results for
the background rates are summarized in Table 5.8 and the dark count rates
and PDE values are shown in Figure 5.22. When comparing the night sky
background rates to the results of the linear model (see Table 5.6), it can be
seen that except for the second patch, all rates are approximately one order
of magnitude higher, but the ratios of rates in different patches stays about
the same. From the model, higher background rates make perfect sense, since
the rates are multiplied by an efficiency < 1, and the difference in count rate
can be distributed not only to the dark count rates but also to the efficiencies.
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In the linear model, the pixel with the lowest count rate essentially gives an
upper bound to the background rate, since pixels cannot have negative dark
count rates. The addition of an efficiency mitigates this effect, since said pixel
can be given lower efficiency, which results in overall higher background rates.

The same argument can be used to understand the lower dark count rates
(see Figure 5.22a) compared to Figure 5.21a. The PDE distribution (see Fig-
ure 5.22b) mostly follows the dark count rate distribution. As expected, the
hot pixel at coordinate (1, 0) has the highest PDE with 63.6 % and the top right
area has the lowest PDE with 5.0 %. Both of these values seem unphysical.
The high value of 63.6 % is outright impossible as there are no commercially
available SiPM with PDEs in this region. The low values are possible in prin-
ciple, but only for very low overvoltages, which make it hard to detect any
signal at all. To ensure that these extreme values do not alter the best fit
values for the other pixels, two subsets of the data were fitted without the
extreme pixels. For the first subset (subset1), the hot pixel at (1, 0) was cut
from the data, for the second subset (subset2) both the hot pixel and the top
right area were cut. Results from these fits can be seen in Table 5.8. The only
value that changes significantly is the background rate for the second patch,
where the subsets produce higher values, although the absolute difference is
still small. The other parameters, particularly the PDE values stay the same,
which confirms the model’s ability to describe the data, even if the interpreta-
tion of the efficiency parameter as the true PDE is questionable as it describes
a combination of efficiencies, not only the PDE.

Table 5.8: Counting rates of the night sky background for different “nights”
using efficiency models. Nights correspond to the patches defined in Table 5.4.
The last row shows the average dark count rate.

Night λbg ( cts
GTU) full λbg ( cts

GTU) subset1 λbg ( cts
GTU) subset2

1 1.28× 10−2 1.26× 10−2 1.50× 10−2

2 1.62× 10−3 1.90× 10−3 3.53× 10−3

3 3.69× 10−1 3.54× 10−1 3.64× 10−1

4 8.79× 10−1 8.44× 10−1 8.50× 10−1

λdc 4.80× 10−2 4.76× 10−2 5.25× 10−2

A interesting feature can be seen in some pixels when comparing the dark
count rates with the efficiencies (see Figure 5.22). For most pixels, the relative
values are similar, which means a pixel with high dark count rate will also have
a high efficiency. For some pixels however, this does not hold true, e.g. pixels
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(b) PDEs from the data obtained by using the efficiency model in %.

Figure 5.22: Resulting dark count rates and PDE distribution using the effi-
ciency model.
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with (x, y) coordinates (10, 11) and (11, 11). Both pixels have a relatively high
dark count rate, but show very low efficiencies. This hints at a time-dependent
rate, which was only present in these pixels and not in the rest of the detector,
i.e. transient light events, leading to a higher dark count rate.

As pixel (1, 0) and the top right region differ much in count rate from the
rest of the detector and cannot be satisfyingly explained due to PDE, other
possibilities have to be considered. Since the threshold of the detector is not
known precisely, the next chapter will discuss the influence of the detector
threshold to the data.

5.3.6 Thresholds

So far the detector threshold has not entered into the discussion of the data
and the reconstruction of the rates. Implicitly it was assumed that whenever
an electron-hole pair (and therefore a charge carrier avalanche) was created,
the SiPM would generate a signal. Since in a ideal finger-spectrum of a SiPM,
there is a distinct valley between the pedestal and the 1 p.e. peak, a threshold
of 0.5p.e. was used implicitly for the above discussion. In subsection 5.2.2 a
time window of 10 ns was used to estimate the loss of photons due to random
coincidence. The same principle can be used to describe the expected rate un-
der the influence of a (integer5) threshold. The following estimations are based
on timing coincidence, the contribution of optical crosstalk is not included.

Due to the constant temperature, the dark count rate can be modeled as
a Poisson process with a constant rate λdc. For the night sky background the
real source spectrum is unknown, but the “nights” used for the analysis were
constructed in a way which guarantees an almost constant rate (see subsec-
tion 5.3.1), therefore the background rate can be modeled as constant as well.
Whenever a single 1 p.e. signal is created, an interval T = 10 ns exists for co-
incidence to reach a particular threshold. Since for a 0.5p.e. threshold, every
signal is above threshold, this is trivial. Considering two constant rates r1 and
r2, the trigger rate R becomes

R0.5 = r1 · P (≥ 0 in T ) + r2 · P (≥ 0 in T )

= r1 + r2,
(5.17)

where P (≥ 0 in T ) is the probability to detect 0 or more signals in T , which
of course is 1. Since r1 and r2 are rates, a single count, which starts the

5Integer in this case means that the difference between thresholds can only be 1, although
the particular thresholds are applied in between two integer bins in the spectrum, i.e. 0.5
and 1.5.
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coincidence interval, happens (r1 + r2) times per unit of time. For a threshold
of 1.5 p.e., the trigger rate R can be expressed in a similar way

R1.5 = r1 · P (≥ 1 in T ) + r2 · P (≥ 1 in T ),

= (r1 + r2) · P (≥ 1 in T )

= (r1 + r2) ·
(
1− Pr1·T (0) · Pr2·T (0)

)
,

(5.18)

where P (≥ 1 in T ) is the probability to detect 1 or more signals in T and Pr(k)

denotes the probability to measure 0 events for a Poisson variable with mean
value r. For each single signal, a second signal is needed to reach the trigger
threshold. This signal can either come from r1 or r2, and can be expressed
by 1− probability of measuring nothing at all from both variables in T, which
is 1− Pr1·T (0) · Pr2·T (0). Extended to a 2.5 p.e. threshold, the rate becomes

R2.5 = (r1 + r2) · P (≥ 2 in T )

= (r1 + r2) ·
(

1−
(
Pr1·T (0) · Pr2·T (0)

+ Pr1·T (0) · Pr2·T (1) + Pr1·T (1) · Pr2·T (0)
))
,

(5.19)

because two additional signals are needed to reach the threshold, which is the
inverse of the probability to measure either 0 from both rates, exactly 1 from
r1 and 0 from r2, or vice versa. This leads to an expression for a k.5 p.e.
threshold

Rk.5 = (r1 + r2) ·
(

1−
k−1∑
i=0

k−1−i∑
j=0

Pr1·T (i) · Pr2·T (j)

)
. (5.20)

With this expression, it is possible to examine changes in integer threshold
to the observed rate by the detector using expected values. From the PDM,
∼ 2 cts

pixel GTU are expected for the background rate λbg. For the dark counts,
an expected rate λdc ∼ 0.05 cts

GTU was constructed for a trigger threshold of
0.5 p.e. in subsection 5.3.4. Although the fitted values seem to be higher, this
value can be used as an estimate of the trigger threshold. The trigger rates
at certain thresholds are shown in Figure 5.23. Due to the nature of timing
coincidence and the narrow coincidence window of T = 10 ns, the trigger rates
drop rapidly with increasing threshold, more than 10−2 per threshold step.
From this and the measured trigger rates (∼ 10−2, see subsection 5.3.4), a
threshold of 1.5 p.e. seems the most likely for SiECA.

One apparent feature of the rate distribution over the detector is the dark
area in the top right and the hot pixel at (1, 0). The strong deviation from the
mean trigger rate could be explained by introducing different trigger thresholds
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Figure 5.23: Detector trigger rates for varying thresholds with λbg = 2 cts
GTU

and λdc = 0.05 cts
GTU . The short coincidence time window of T = 10 ns causes

the rate to drop rapidly per threshold.

T to the model. For a mean threshold T = n.5 p.e., the top right area has a
higher threshold Ttop = n.5+1 p.e. resulting in a lower trigger rate and the hot
pixel at (1, 0) a lower threshold T(1, 0) = n.5− 1 p.e.. This threshold effect can
be introduced into both the linear model and the efficiency model. However,
instead of describing the measured spectrum as a sum of Poisson spectra like
in Equation 5.12, each spectrum is described by a single Poisson spectrum with
altered rate

P(λi, n) = P
(
RTi(λdci , λbgn)

)
∀i ∈ {pixels},∀n ∈ {nights}, (5.21)

where RTi(λdci , λbgn) denotes the trigger rate as described in Equation 5.20
with rates (r1, r2) = (λdci , λbgn). For the efficiency model, r2 is additionally
multiplied with the efficiency parameter r2 = εi · λbgn . Since the efficiency
parameters were introduced to explain the difference in trigger rates between
the regions, for the fit they serve a similar purpose.

Fits of the modified model without efficiencies to the data were carried
out for two different average thresholds, T = 1.5 p.e. and T = 2.5 p.e. For
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comparison of the resulting rates, it is not convenient to give every dark count
rate like in Figure 5.21, therefore the given values are summarized to 7 rates:
The night sky background rates of the four nights λbgi , one rate λ(1, 0) for
the hot pixel at (1, 0), one average value for the top right area λtop and one
value for the mean of the remaining pixels λdc. This summary can be seen
in Table 5.9. As expected, the model with higher thresholds produces higher
values for the rates. The values for the night sky background rates follow the
same trends as in the linear model or the efficiency model, in that the ratio
of the fourth to the third patch is ∼ 2, even if the second patch rate in the
T = 2.5 p.e. case is surprisingly low. For the dark count rates the introduction
of thresholds reverts count rates qualitatively. The hot pixel at (1, 0) which
has the highest trigger rates in the models without thresholds now shows the
lowest value because of its low threshold, and the top right area needs high
rates due to high threshold.

The same trend can be seen when adding efficiencies to the threshold model,
see Table 5.10. The hot pixel, which was fitted with a 63.6 % PDE above
receives the lowest PDE with 3.1 % and the top right area goes from 5.0 %

to 58.0 % in the T = 1.5 p.e. case. These values seem unphysical since such
extreme PDEs are not likely, in particular not for the top right area where
the upper half of the pixels of the same SiPM needed to show much higher
PDE than the lower pixels on the same device. It is worth remembering that
all camera pixels share one threshold value and the different thresholds in the
model are created by different gains. To have a higher threshold, the top right
area needed to have low gain, which is in tension with the high dark count
rates and PDEs which are fitted, especially with regards to the lower half of
the same device. This leads to the conclusion that the threshold model does

Table 5.9: Resulting rates for the SiECA data set fitted with the threshold
model without efficiencies. The rates are given in cts

GTU .

T = 1.5 p.e. T = 2.5 p.e.

λbg1 0.039 0.232
λbg2 0.028 0.0016
λbg3 1.41 6.66
λbg4 3.01 12.7

λ(1, 0) 0.048 4.93
λtop 12.9 33.2
λdc 4.0 18.9
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Table 5.10: Resulting rates for the SiECA data set fitted with the threshold
model including efficiencies. The rates are given in ( cts

GTU).

T = 1.5 p.e. T = 2.5 p.e.

λbg1 0.52 4.62
λbg2 0.20 3.81
λbg3 8.19 22.7
λbg4 15.9 38.8

λ(1, 0) 0.137 5.32
λtop 10.2 28.4
λdc 3.55 17.5

ε(1, 0) 3.1 20.2
εtop 58.0 53.9
εdc 25.9 35.9

not describe the data properly. This conclusion may not be surprising, since
the model uses integer thresholds, which are a simplification valid only for
extremely thin peaks in the finger spectrum. In reality, the single peaks in the
finger spectrum are Gaussian distributed with a certain width σ, which can
lead to overlap in the tails of different peaks depending on the noise of the
detector. In such a case, the threshold can not only be set to integer values,
but on a continuum between peaks. In a perfect model, each pixel’s gain, dark
count rate and detector noise would be modelled, and the threshold would be
determined based on one fixed value by gain and noise alone. However, this
would result in even more parameters to fit and is therefore not feasible with
the available data set and was thus not attempted.

5.3.7 Subset Fit

All of the three presented models, namely the linear model, efficiency model
and the threshold model suffer from the same problem. They are unable to
properly deal with the strong differences in rate of the average pixel, the hot
pixel and the top right area. Both the efficiency model and the threshold model
try to solve this problem, but ultimately fail as they result in unphysical val-
ues. However, there is a common pattern in the results of all the models. The
ratio of λbg,4/λbg,3 has a value of ∼ 2.5 in every model. This suggests that
there is indeed a significant change in triggers between the third and fourth
night. As the values for the first two nights are dominated by the extreme pix-
els, one can look at the “average” subset of the data, excluding the hot pixel
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and top right area. This was already done for the efficiency model as a test
of robustness. Since the efficiency was introduced to bridge the gap between
the extreme regions and the average pixels, it makes sense to use this subset
also for the linear model. As the addition of the efficiency parameters weakens
the model’s ability to separate background and dark count rates (compare Ta-
ble 5.7), using the simpler linear model is preferred. Additionally, the average
subset most closely resembles the ideal data set used for verification of the
method in subsection 5.3.4. The fit to the average subset of the linear model
is shown in Table 5.11 as well as the fit to the full data set carried out in sub-
section 5.3.4 for comparison.

Table 5.11: Resulting rates of the linear model fitted to only the average subset
of the data. For comparison, the fit to the full data is given in the first column.

Night λbg ( cts
GTU) full λbg ( cts

GTU) subset

1 1.44× 10−3 1.07× 10−2

2 9.97× 10−4 9.25× 10−3

3 5.96× 10−2 7.96× 10−2

4 1.63× 10−1 1.88× 10−1

λdc 5.61× 10−2 4.95× 10−2

From the results in Table 5.11 the fit to the subset finds a slightly lower dark
count rate, but increased background rates. In the case of the first two nights,
the values are increased by one order of magnitude. This behaviour was also
seen in the efficiency fit and is most likely caused by the exclusion of the top
right area, which artificially increases the dark count rate due to lower pho-
ton detection efficiency. The result suggests that for the first two nights, the
count rates are still dominated by dark counts and even in the third and fourth
night, the dark counts contribute to the total count rate in a significant man-
ner. Since the subset most closely resembles the data set of the verification
(see section 5.3.4), these values can be considered the most trustworthy and
will be used for the comparison to the PDM in the following section. Overall,
the dark count rates seem to be quite large, as a rate of ∼ 5× 10−2 cts

GTU is ex-
pected for the SiPM at 0.5 p.e. threshold. Since the actual threshold is clearly
higher, a decreased dark count rate is expected. A contribution of counts due
to interference (see section 5.4) could explain the increased rate. In the final
subset fit, the average dark count rate is ∼ 5 times higher than the lowest UV
background rate. As SiPM dark count rates are likely to decrease even more
in the following years (see section 3.4), and the dark count rate is arguably
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inflated, one can be optimistic that the dark count is not prohibitive for CR
experiments using SiPM.

5.4 Comparison of SiECA and PDM data

Due to the low statistics of the SiECA data set, it is difficult to obtain with
certainty absolute values for the measured rates and efficiencies. Due to its
nature as an auxiliary device however, the performance of SiECA can be mea-
sured with respect to the PDM. This can be achieved by studying events,
which happen in both detectors at the same time, or transition from one de-
tector to the other. Ideally, such an event would be a CR which passes through
the PDM and goes through the SiECA field of view. Apart from cosmic rays,
other events which do not change in brightness from one detector to the other
also qualify. These events were classified as transient light events in subsec-
tion 5.2.1 and can be high clouds or light from a plane passing through the
field of view. Apart from transient light events, there is a light source intrinsic
to EUSO-SPB, which might qualify. The PDM was monitored using a bright
health LED, which fired every 16 s. Since it provides a very bright signal, it
makes an ideal tool for comparison. Due to the SiECA random trigger how-
ever, no signal of the health LED could be found in the data.

5.4.1 Transient Light Events

In subsection 5.3.2, a criterion was developed to find transient light events as a
means to cut them and focus on clean background data. Using this cut, three
patches of data recording can be made out, which contained significant tran-
sient light events, one in the first record, on April 25th, and one in each record
on April 28th. An example of a spectrum which contains transient light events
can be seen in Figure 5.18f. To resolve these transient light events, camera
images have to be averaged over the duration of one trace, 128 GTUs. Both
the first transient light event on April 25th and the last transient light event
on April 28th seem to be static in camera space with decreasing trigger in-
tensity. However, the lack of movement could be due to the small amount of
recorded traces per transient light event. An example of such a transient light
event can be seen in Figure 5.24a. For the remaining transient light event on
April 28th, more data is available and a blob of light can be seen moving from
the center toward the bottom right out of the field of view and a second blob
can be seen emerging from the bottom left and moving towards the top right
in consecutive camera image averages. The transient light event consists of
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(a) Transient light event on 2017–04–25
12:27:54.
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(b) Transient light event on 2017–04–28
07:35:18.
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(c) Transient light event on 2017–04–25
07:37:47.
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(d) Transient light event on 2017–04–25
07:38:32.

Figure 5.24: Examples of transient light events. The third and fourth image
show the same event, ∼ 1 min apart.

25 traces of 128 GTUs and lasts about 10 min, several snapshots can be seen
in Figure 5.24b to Figure 5.24d. The event itself is separated into two parts
of consecutive triggers with 15 s between traces, separating the first blob of
light and the second blob of light by ∼ 2 min. Since clouds recorded by the
PDM showed a similar velocity (∼ 0.5 EC

GTU) and distribution of light [17], it is
plausible that this transient light event shows clouds as well.

To search for the corresponding event in the PDM, the timestamps of the
SiECA transient light event can be matched with the closest timestamps in
the PDM data, and the same 128 GTU averages can be taken, which results in
25 camera images from the PDM. Due to the slow velocity of the clouds, the
small time resolution of ∼ 1 s of SiECA does not pose a problem. An example
of such an camera image can be seen in Figure 5.23 During the time of this
transient light event, only 2 of the 9 ECs of the PDM were turned on, which
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Figure 5.25: PDM image during the time of potential cloud event in SiECA.

makes matching the blobs of light near impossible. However, the patterns of
movement seen in the two working ECs of the PDM support the assumption
of moving clouds in the field of view. This proves that SiECA is indeed able
to measure physical events.

5.4.2 Night Sky Background

Another way to compare the performance of SiECA and the PDM is by looking
at the night sky background itself. The night sky background light is uniform
on a per-night-basis not only for all SiECA pixels, but for the PDM as well.
By comparing the trigger rates from the night sky background in SiECA with
the overall trigger rates in the PDM, which does not suffer from dark counts,
one can compare both devices’ performance in measuring UV light.

In the above section, cuts were defined on the data to obtain a data set
which contains as little as possible transient light events and four patches to
use for the night sky background analysis (see Table 5.4). Since some PDM
ECs were shut off during the time (see Figure 5.25), care has to be taken
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Table 5.12: Comparison of SiECA λbg with top left PDM EC trigger rate λEC.
Additionally, the fraction of active pixels of the PDM ϕpx is given.

Patch λbg ( cts
GTU) λEC ( cts

GTU) ϕpx

1 1.07× 10−2 1.07 0.23
2 9.25× 10−3 1.04 0.23
3 7.96× 10−2 1.24 0.57
4 1.88× 10−1 1.26 0.88

to only use ECs, which were active for every patch of the SiECA data set.
The amount of active ECs varies over the time of recording, from two ECs as
in Figure 5.25, to every EC working for later timestamps. Since the top left
EC is the only one which is active for whole duration, data from this EC is
chosen as a reference to compare SiECA against. For SiECA, the results from
the linear model to the average subset were chosen (see Table 5.11), since the
problematic differences in rate of the extreme pixels are not present here. The
comparison of the SiECA background rates with the trigger rates of the top
left EC in the PDM can be seen in Table 5.12.

In an ideal case with a perfect threshold of 0.5p.e., these values should corre-
late heavily and change in a similar way. Qualitatively, this is the case, as the
ordering of the values is the same for both detectors. Quantitatively however,
the values differ dramatically, the SiECA rates λbg span multiple orders of
magnitude while the PDM values λEC only change for ∼ 20 %. A plot showing
the values’ correlation can be seen in Figure 5.26a. The Pearson correlation
efficient between both value sets is ρbg,EC = 0.89, which hints at a connection
between the values. Due to the difference in magnitude of the values it is clear
however, that the values obtained by the efficiency model λbg are not easily
compatible with the PDM values λEC. The strong deviations in magnitude
between λbg and λEC could possibly be explained with a more comprehensive
threshold model, which includes Gaussian distributed p.e. peaks, since the
simpler integer threshold model in subsection 5.3.6 showed signs of being very
sensitive to small changes in one of the two rates, i.e. the background rate.
However, this is not in the scope of this work and was not investigated further.

A remarkable feature in Table 5.12 is that the rate λbg increases as a higher
fraction of PDM pixels were active. Since there was interference between the
two cameras, it is possible that the increasing amounts of triggers in SiECA is
due to increasing interference with the PDM when more pixels are active. A
plot showing this correlation can be seen in Figure 5.26b. These two value sets
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(a) Correlation plot between the PDM
trigger rate in the top left EC and the
fitted SiECA background rate. The
two sets have a correlation coefficient of
ρbg,EC = 0.89.
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(b) Correlation plot between the frac-
tion of active pixels and the fitted SiECA
background rate. The two sets have a
correlation coefficient of ρbg,ϕpx = 0.99.

Figure 5.26: Correlation plots for SiECA background rate λbg.

are strongly correlated with a Pearson correlation coefficient of ρbg,ϕpx = 0.99.
This makes it likely that the rates λbg are affected by the interference. Due
to the low statistics of only four data points, it is very difficult to ascribe the
change in rates to one particular of the two effects or to estimate the relative
strengths of both effects. It should be noted that the PDM rate λEC also
shows signs of this correlation with the active pixel fraction, as the Pearson
correlation coefficient is quite high ρEC,ϕpx = 0.93.
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5.5 Conclusions and Outlook

In this chapter, a thorough look into the SiECA data set of the EUSO-SPB
flight was presented including classification of pathological events, estimation
of the UV night sky background, the search for interesting time-dependent
phenomena and a brief comparison to the PDM data.
At first, an overview was given of the SiECA data set by means of trigger
rate histograms for single GTUs. From this, different classes of unphysical
data were identified and methods were developed to reliably cut these events
from the physical data. Most notably, these include spike events which show
a distinct signature in time and in the images they produce, as well as pattern
events which happen at seemingly random times and show a distinct pattern in
the images. Using the developed cuts, a subset of valid data was constructed,
which was used as a basis for physics analysis.

A model describing the camera spectra through Poisson distributions was
developed, which separates the counts into temperature dependent dark counts
and time dependent UV background counts. Cuts were developed to identify
data subsets with and without the presence of time dependent light sources.
Using different subsets, a method was developed to disentangle the dark count
rates from the background rates in the spectra. The feasibility of this method
was shown in toy simulations. With this method, rates were extracted from
the valid data subset and evaluated. A few adjustments of the model were
proposed and carried out in order to better describe the specific features of
the data, including the introduction of an efficiency parameter motivated by
the SiPM PDE and the addition of detector thresholds. A threshold model
was developed and a mean threshold in the order of 1.5 p.e. was estimated.
By using a subset of the pixels, which eliminates threshold effects, rates could
be extracted for the dark count rate and the UV background rate. While the
dark count rate seems unusually high, it is still only ∼ 5 times higher than the
lowest UV background rate.

A comparison of the performance of SiECA with the PDM was conducted
by utilizing time dependent light sources such as clouds. At least two events
were found in the SiECA data set with features similar to clouds which were
found in the PDM data. Due to the high amount of inactive PDM pixels it was
however not possible to directly match a single cloud in both detectors. The
constructed UV background light rate in SiECA was compared to the PDM
trigger rates and correlations were found between the rates as expected, but
also between the amount of active PDM pixels and observed UV background
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rates, which hints at noise as a source of the increasing counts. As SiPM dark
count rates and UV background rate are comparable even with this inflated
dark count rate due to noise, SiPM dark counts are not prohibitive for CR
experiments in near space

While the model worked well in the simulations, it had problems to describe
the SiECA data set perfectly. This is mostly due to the relatively small data
set as fits with more complex models, which describe the intricacies of the
detector, were not feasible. A model, which takes into account the Gaussian
nature of the p.e. peaks should cope better with the small differences in gain
and thus threshold, which are present in the detector. With a larger data set,
different values of dark counts for different temperatures could be used, even
the suspected correlation between active PDM pixels and count rates could be
utilized. Another fact, which the model used in this work does not consider,
is the presence of electric noise in the system. Instead of describing a dark
count rate and a background rate, the current models describe a static rate
and a time dependent rate, both of which could also partially be caused by
noise. This would explain e.g. the high dark count rate in presence of a 1.5 p.e.
threshold.
With larger statistics and an improved model, it could become possible to
benefit from the intrinsic SiPM dark counts and characterize the detector under
live conditions.



Chapter 6

Summary and Outlook

Silicon photomultipliers (SiPM) are promising alternatives to conventional
photomultipliers for the search for cosmic rays in space or near-space envi-
ronments. The main goal of this thesis was to evaluate if SiPM are suitable
candidates for CR detection from above. Despite their many advantages like
lower weight and lower supply voltage, there are in particular two drawbacks
of SiPM investigated in this thesis, which could prohibit the use of SiPM for
CR detection from space: The strong dependence of SiPM parameters on the
ambient temperature and the comparably high dark count rate.

Chapter 4 describes the study of temperature dependence of the SiPM gain,
for which a setup was built to measure the gain of one SiPM pixel at different
temperatures using a commercial climate chamber. With a fast, digital data
acquisition based on a DRS4 chip, the dependence of the temperature on the
SiPM gain was measured. To correct for the changes in gain, the supply volt-
age needs to be adjusted according to the temperature. For this, a correction
factor was determined from the data to stabilize the gain by measuring the
current temperature. An algorithm was developed to reliably and efficiently
measure the SiPM gain in real-time over a large temperature range, based on
an abstraction of the standard practice to measure histograms of SiPM signals
to determine the gain. It exploits the presence of dark counts by using them
for continuous gain measurement. The results of the algorithm were verified
with a conventional method to measure the gain and were in good agreement.
The availability of real-time gain measurements allows a novel way of gain
stabilization, which does not rely on external (and potentially error-prone)
temperature measurements: A PID controller uses the real-time gain mea-
surements to stabilize the gain to a given value. Using the climate chamber,
the novel gain stabilization scheme was shown to work well, especially for high
temperature changes. A comparison between the different methods was car-
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ried out, where the novel method provided a better stabilization (∼ 3× smaller
gain fluctuations) than the conventional method using external temperature
measurements.
To investigate the viability of the novel method in a near-space experiment,
the temperature changes in the climate chamber were compared to the tem-
perature changes measured in the EUSO super pressure balloon (EUSO-SPB)
flight. Considering the different dark count rates of the different SiPM and
lower overall ambient temperature, the temperature changes in the climate
chamber were still ∼ 3× higher than in the EUSO-SPB experiment. Since the
gain stabilization worked without any problems in the climate chamber, the
novel method can handle the temperature changes in EUSO-like experiments.

So far, the novel method of gain stabilization can be considered as a proof of
concept. In order to work reliably in an experiment with many pixels, there are
still some optimizations to be done, e.g. the current implementation does not
take into account the temperature dependence of the dark count rate, which
leads to more uncertainty in the gain measurement at high temperatures. Fur-
thermore, the method relies on a purely digital approach to data acquisition,
which can be prohibitive for experiments with a tight power budget, such as
balloon experiments.

In chapter 5, data from the SiPM elementary cell addon (SiECA) of the
EUSO-SPB pathfinder were analysed, which are the first data of a SiPM cam-
era for UHECR search in near-space. It was distributed over 7 separate data
sets. Cuts were defined to discard the unphysical data, e.g. data where the
SiPM were not voltage biased or certain pixels showed unphysical high counts.
This included the construction of a noise pattern, which could be eliminated
from the data with a normalized cross-correlation method. The remaining data
showed no cosmic-ray-like event. An algorithm was developed to distinguish
the 7 data sets as either static (4) or including transient events (3), based on
the relative brightness across the detector and the spectral shape of the data
set.
The counts of the 4 static data sets consist of SiPM dark counts and UV back-
ground. To disentangle the two rates, a model was developed, which uses the
fact that the counts are Poisson distributed. It exploits the consistency of
per-pixel dark count rates due to constant ambient temperature throughout
recording, and the uniformity of the UV background across the detector for
each data set. Toy simulations were carried out to evaluate different fit meth-
ods, and both a least squares and maximum likelihood approaches worked for
extracting the different rates. The rates extracted from the data show that
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dark count rates and UV background rates are in the same order of magnitude
(∼ 10−2 cts/2.5 µs/pixel). Furthermore, the inclusion of threshold effects to the
model allows estimation of the unknown SiECA pixel threshold to ∼ 1.5 p.e.
For the 3 data sets including transient events, two moving light dots were iden-
tified by averaging the recorded traces, which resemble the movement of clouds
seen in the EUSO-SPB main camera. A comparison with the EUSO-SPB main
camera confirms correlations to the SiECA count rates and hints at electrical
crosstalk of some sort as an additional source of counts in both cameras.
From the available data, it can be concluded that the SiECA prototype mainly
worked as intended. All pixels were functional and the camera was able to
record atmospheric UV background light and moving light with features char-
acteristic for clouds. A comparison of the dark count rates and UV background
rate demonstrates that SiPM dark counts are not prohibitive for the detection
of CR from near-space using SiPM.

There is still huge potential for CR observation from above. A second bal-
loon flight is planned as a direct successor to EUSO-SPB, called EUSO-SPB2.
It will have an improved camera with Schmidt design optics and observe in
tilt mode instead of nadir mode. This allows the observation of nearly hor-
izontal extensive air showers. Furthermore, EUSO-SPB2 will feature an in-
creased time resolution to detect Cherenkov light in addition to fluorescence
light. EUSO-SPB2 will work as a pathfinder for the ambitious probe of ex-
treme multi-messenger astrophysics (POEMMA) mission, which will consist of
two twin satellites flying in formation using both a fluorescence camera and
a Cherenkov camera, which will use SiPM as light detectors. Beside the ob-
servation of charged CR with increased exposure, it will detect γ-rays and the
Cherenkov radiation of up-going τ decays from cosmogenic ντ neutrinos.
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