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1 Introduction 
 

1.1 Cancer statistics 

Cancer is one of the major burdens of the 21st century, both in economically 

developed and less developed countries.  

As estimated in the GLOBOCAN series of the International Agency for 

Research on Cancer, the worldwide incidence and mortality for all cancers 

increased to 14.1 million new-diagnosed cases and 8.2 million cancer-related 

deaths in 2012 (Ferlay et al, 2015).  

When age-standardized rate as a weighted mean of the age-specific rates is 

taken as a basis, the most common types in men remain lung, prostate and 

colorectal cancer, respectively breast, colorectal and cervical carcinoma in 

women (Torre et al, 2015). Worldwide, most cancer patients die from lung, liver 

or stomach cancer (Ferlay et al, 2015).  

In developed regions, however, colorectal cancer is the second leading cause 

of cancer-related death in men, respectively the third in women (Torre et al, 

2015). Malignant neoplasia are number two following heart disease as cause of 

death in the United States (Siegel et al, 2016).  

Looking worldwide, cancer is responsible for even more deaths than coronary 

heart disease or stroke (Ferlay et al, 2015). 
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Figure 1. Worldwide estimated age-standardized incidence and mortality rates for both 
sexes in 2012, taken from Ferlay et al. (Ferlay et al, 2013) 

The unrestricted use of this figure is granted by the publisher.  

1.2 Selected tumor entities and therapeutic options so far 

In this thesis, we focused on three tumor entities, i.e., colorectal carcinoma, 

renal cell carcinoma and soft tissue sarcoma. As specified in section 1.4, cell 

lines of these origins were selected because of their assured high-grade 

resistance towards oncolytic virotherapy. Moreover, it is of great importance to 

analyze these cancer types in detail because of their world frequency and quite 

limited treatment options. 

 Colorectal cancer 

Colorectal cancer (CRC), as one of the most common types in both sexes, is 

diagnosed in localized stages only in 39 % of the cases (Siegel et al, 2017). 

Due to the use of CRC screening, however, precursor lesions and CRC are 

detected earlier and in some cases exclusive endoscopic resection is sufficient 
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(von Karsa et al, 2013). In localized stage, surgery is the favored treatment 

option for CRC, provided that resection with adequate margins and lymphaden-

ectomy is feasible (Cunningham et al, 2010). For invasive rectal cancer, the 

total excision of the mesorectum is indispensable (Quirke et al, 2009). 

Combinatorial approaches with chemotherapy and radiation treatment are 

common practice in rectal cancer (Cunningham et al, 2010), since chemo-

radiation provides a lower incidence of local recurrence (Bosset et al, 2006). For 

colon cancer, the recommendation of adjuvant chemotherapy depends on the 

lymph node status. The application of targeted drugs in early stage disease is 

also discussed with caution, since bevacizumab and cetuximab (monoclonal 

antibodies against vascular endothelial factor (VEGF), respectively against 

epidermal growth factor receptor (EGFR)) seem to have no or only small effect 

on survival rates for this subgroup, but do include severe side-effects 

(Cunningham et al, 2010).  

Fortunately, CRC diagnosed as oligometastatic but resectable disease is no 

longer a death sentence (Cunningham et al, 2010; Jones et al, 2014). Even for 

patients suffering from unresectable metastatic disease, combinatorial 

treatment containing targeted therapy and multiple cytotoxic agents has 

increased overall survival to more than 30 months (Fakih, 2015; Kasi et al, 

2015). Nevertheless, for most patients with stage IV disease, CRC remains 

incurable. Thus, the 5-year survival rate decelerates to 14 % when patients are 

diagnosed at distant stages (Siegel et al, 2017).  

 Kidney cancer 

Kidney cancer is ranked the ninth most common cancer type in men, 

respectively the fourteenth in women (Ferlay et al, 2013). Although improved 

relative survival rates have been reported recently, the incidence of renal cell 

carcinoma has increased (Capitanio & Montorsi, 2016).  

Moreover, masses are often diagnosed in advanced or metastatic stages 

(Siegel et al, 2016). Due to robot-assisted or laparoscopic nephron-sparing 

surgery and active surveillance, radical nephrectomy (the former standard of 
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care) can be prevented in most cases of local-stage disease (Sun et al, 2012). 

Renal cell carcinoma has been considered both chemo- and radioresistant for 

quite a long time. However, radiotherapy (RT) offers adjuvant treatment options 

in selected patients and palliative low-dose RT improves pain level and cancer-

related symptoms in unresectable metastatic disease (Dengina et al, 2017). 

With limited success and severe side effects, those patients were formerly 

treated with immunomodulatory drugs like interferon α and interleukin-2. Today, 

targeted therapies affecting mainly VEGF, PDGFR and mTOR pathways reduce 

toxic effects and convince with sustainable response rates in this subgroup 

(Capitanio & Montorsi, 2016). Nevertheless, an ongoing, complete remission 

remains the great exception.  

 Sarcomas 

Soft-tissue and bone sarcomas, which are tumors of mesenchymal cell origin, 

play a minor role in adults, but following leukemia and cancers of the brain and 

nervous system, sarcomas are the third most common cancer type in children 

(Siegel et al, 2016). In this age group, soft-tissue sarcomas occur more 

frequently with rhabdomyosarcoma as the most common histologic subtype 

(von Mehren et al, 2016).  

Dependent on the affected region of the body, cancer stage and tumor histology 

treatment options diverge. Surgical resection as standard of care is usually 

accompanied by pre- or postoperative radiation and/or chemotherapy (von 

Mehren et al, 2016). In advanced metastatic stage and unresectable disease, 

the application of the chemotherapeutic agent doxorubicin alone or in 

combination with ifosfamide has been first-line therapy for more than three 

decades (Skafida et al, 2017). Nevertheless, other chemotherapeutic treatment 

regimen showed promising results (von Mehren et al, 2016). Recently, 

pazopanib, a receptor tyrosine kinase inhibitor, has been recommended for the 

application in palliative situations (von Mehren et al, 2016). However, with a 

median overall survival of 14–17 months, the outcome of patients with 

metastatic disease is unacceptable (Frezza et al, 2017).  



    Introduction  

  

5 
 

Summing up, there are three major treatment options to defeat various types of 

cancer: Surgery, chemotherapy and radiation treatment. Additionally, a plenti-

tude of innovative therapeutics is offered including, i.e., hormone-therapy, 

targeted therapy using small molecules or monoclonal antibodies and immuno-

therapy.  

However, all of these treatment options offer limited success for any number of 

reasons. On the one hand, therapeutic options and response rates are 

dependent on cancer type, stage and subgroup analysis. On the other hand, 

cancerous cells behave heterogeneously: they evolve continuously and may 

have acquired drug resistance and additional features during the time of first-

line treatment (Bell, 2007; Melcher et al, 2011). Furthermore, each therapy 

implies severe side-effects and may be therefore not appropriate for each 

patient to the same extent.  

Especially in metastatic stage disease, a complete remission and cure of cancer 

is most rare (Melcher et al, 2011; Ottolino-Perry et al, 2010). Thus, novel 

therapeutic approaches, which are established with the knowledge of the need 

of individualized medicine, are desperately required. 

1.3 Oncolytic virotherapy  

Oncolytic viruses (OVs) have an inherent potential to destroy cancer cells 

without causing damage to normal tissue (Russell & Peng, 2007; Russell et al, 

2012). OVs are live, self-replicating agents that can be attenuated for safety 

concerns and genetically armed to improve their anticancer efficacy (Bell, 

2007). Until now, the molecular and cellular mechanisms of tumor cell killing are 

not completely elucidated, but selective, direct tumor cell lysis and the 

subsequent occurrence of systemic antitumor immunity seem to be of prime 

importance (Kaufman et al, 2015).  

 Historical overview 

Described first in the early 20th century, oncolytic virotherapy has been 

extensively researched over the last century. The discovery of viruses as 
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cancer therapeutics, however, happened by accident. Cases of cancer patients, 

who experienced clinical remission after contagion with an infectious disease, 

were reported since the turn of the 19th century (DePace, 1912; Dock, 1904; 

Kelly & Russell, 2007). While the discovery of viruses and their function as 

triggers of infectious diseases was at its very beginning, occasional case 

reports of cancer patients in remission provided us with another perspective. In 

some cases the observed tumor regress was associated with a coincidental 

infection of known viral etiology, e.g., a contagion with wildtype measles virus 

(Bluming & Ziegler, 1971; Pasquinucci, 1971; Taqi et al, 1981; Zygiert, 1971). 

Even though remissions were short-lasting and incomplete, first clinical trials, 

promoting viruses as novel anticancer agents, were executed shortly after 

(Bierman et al, 1953; Hoster et al, 1949; Southam & Moore, 1952).  

Although temporary cancer regress in patients suffering from 

immunosuppressive malignancies had been demonstrated, arising virus 

infection of normal tissue became an unacceptable side-effect (Cattaneo et al, 

2008; Kelly & Russell, 2007). In the 1950s and 1960s, after enhanced cell 

culture techniques and rodent models had been established, oncolytic viruses 

were characterized enthusiastically (Alemany, 2013; Kelly & Russell, 2007). 

However, once these viruses were applied to immunocompetent animals and 

men, the previously observed regress was no longer convincingly reproducible 

(Moore, 1954; Southam & Moore, 1952). The host´s immune response against 

the virus was traded as prime suspect, and, as a consequence, virus 

oncotherapy was almost abandoned in the 1970s (Alemany, 2013).  

Later on, the unintentional immune rejection turned out to be a “double-edged 

sword”: in preclinical (Boone et al, 1971; Kaji et al, 1969; Lindenmann & Klein, 

1967) and clinical (Asada, 1974) trials researchers were able to detect a 

sustainable antitumor immunity after application of OVs (Alemany, 2013; 

Melcher et al, 2011). Subsequently, the concept of viruses as 

immunotherapeutic agents attracted interest. Although attempts had been made 

to induce specific tropism by successive passage of oncolytic viruses in cultured 

cancer cells (Moore, 1952), the third and enduring phase of research oncolytic 

virotherapy started only two decades ago, when genetically engineered OVs 
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have become available (Alemany, 2013; Cattaneo et al, 2008; Kelly & Russell, 

2007).  

Referring to the current state of research, clinical trials seem to overcome 

previous hurdles. In 2005, world´s first oncolytic agent, the modified adenovirus 

H101, was accredited for cancer treatment by the Chinese regulatory authorities 

(Garber, 2006; Jiang et al, 2006). Currently, talimogene laherparepvec (T-VEC), 

a modified herpes simplex virus encoding granulocyte-macrophage colony-

stimulating factor, was approved by the US Food and Drug Administration and 

the European Commission as “first-of-its-kind” cancer treatment of melanoma 

(Andtbacka et al, 2015; Ledford, 2015; Zhang, 2015). By overcoming remaining 

obstacles, oncolytic virotherapy shall become the long-awaited cure of 

metastatic cancer. 

 Mechanisms of tumor cell destruction 

Oncolytic viruses do selectively infect, replicate within and lyse tumor cells, 

while attack of normal tissue occurs only to a limited extent (Kaufman et al, 

2015; Russell et al, 2012). Cancer cell specific cell entry followed by viral 

replication, initiation of cell death programs and cell lysis are indispensable 

components of direct tumor cell killing. Some OVs, like herpes simplex and 

measles virus, infiltrate cells by docking to specific receptors, which are 

fortunately overexpressed on cancer cells (Alemany, 2013; Kaufman et al, 

2015). Others, like vaccinia virus, enter host cells by endocytic process 

(Kaufman et al, 2015).  

Effective antiviral response mechanisms, based most frequently on the 

inhibition of protein translation, will be executed, if a normal cell experiences 

viral entry (Alemany, 2013; Kaufman et al, 2015). Thus, so called Toll-like-

receptors, which are activated by local interferon (IFN) release or triggered by 

viral fragments, stimulate several downstream pathways for the induction of 

apoptosis and viral clearance (Elde et al, 2009; Kaufman et al, 2015).  

In cancer cells, however, cell cycle regulating pathways are often defective 

(Alemany, 2013; Kaufman et al, 2015). Most commonly, this is due to mutations 
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of the antiviral IFN pathway, the EGFR cascade, the protein kinase B, protein 

kinase R or human rat sarcoma (RAS) family (Bell, 2007; Kaufman et al, 2015). 

Thereby, abnormal cells are enabled to avoid immune detection and to resist 

apoptosis (Bell, 2007; Kaufman et al, 2015; Russell et al, 2012). Fortunately, 

mutations in cell cycle regulating pathways offer specific tropisms to oncolytic 

viruses. Vaccinia virus, for example, is most reliant on RAS signaling, which is 

induced by the activation of EGFR (Parato et al, 2012). Accordingly, poxviruses 

show a natural selectivity for EGFR-overexpressing cancer cells (Kaufman et al, 

2015). 

 

Although being a “double-edged sword”, the emerging immune response after 

oncolytic virus treatment plays another leading role in oncolytic virotherapy - 

perhaps it is the more important one (Alemany, 2013; Russell et al, 2012). 

Coming along with direct tumor cell killing, oncolytic viruses are able to induce a 

strong and sustainable anticancer immunity by release of tumor-associated 

antigens (TAA), death signals (cellular proteins that stimulate the host immune 

system) and neo-antigens (new, cancer-specific antigens) (Kaufman et al, 

2015). The host anticancer immune reaction consists of systemic innate and 

tumor-specific adaptive immune response. Antigen-presenting cells process 

TAA and neo-antigens, represent those fragments on their cell surface and, 

thereby, activate antigen-specific CD4+ and CD8+ T cells (Kaufman et al, 2015). 

CD8+ T cells and natural killer cells, which are either stimulated by 

downregulated major histocompatibility complex (MHC) class I expression or by 

type I IFN, identify and subsequently eliminate the tumor cells (Zamarin et al, 

2014). Thus, targeting the host immune response to cancer cells may lead to 

tumor regression even at distant, uninfected tumor sites (Kaufman et al, 2015; 

Russell et al, 2012). 
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Figure 2. Mechanisms of tumor cell destruction  

 

Summing up, oncolytic virotherapy is a promising new approach in cancer 

treatment due to two distinct mechanisms of action: direct tumor cell killing and 

the subsequent occurrence of anticancer immune response (Kaufman et al, 

2015). 

So far, numerous DNA and RNA viruses have demonstrated their ability to act 

as such anticancer agents. To name only a few, recombinant adenovirus (Ad) 

(Jiang et al, 2006), recombinant herpesvirus (Andtbacka et al, 2015), human 

reovirus (Norman & Lee, 2000), recombinant enteroviruses (Yla-Pelto et al, 

2016), Newcastle disease virus (NDV) (Cassel & Murray, 1992), vesicular 

stomatitis virus (VSV) (Hastie & Grdzelishvili, 2012), recombinant vaccinia virus 

(VACV) (Kirn & Thorne, 2009) and attenuated measles virus (MeV) (Russell & 

Peng, 2009) have revealed convincing oncolytic potential in several preclinical 

and clinical trials (Alemany, 2013; Kaufman et al, 2015).  
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 Obstacles and limitations 

Despite all advantages of oncolytic virotherapy, obstacles to a successful 

application in immunocompetent men have come into focus in the last decades. 

Thus, premature viral clearance due to preexisting or quickly generated anti-

bodies and activated T lymphocytes constitutes a problem (Chiocca & Rabkin, 

2014; Kaufman et al, 2015). Secondly, evidence has grown that oncolytic 

viruses are also blocked by haemagglutination and components of the 

complement system (Kaufman et al, 2015; Magge et al, 2013; Tesfay et al, 

2014). Additionally, tumors pursue intelligent strategies to evade immune 

detection: by recruiting tumor-promoting immune cells and expression of 

immune-inhibitory surface molecules, cancer cells create an immuno-

suppressive tumor microenvironment in order to protect the tumor and promote 

malignant degeneration (Hanahan & Weinberg, 2011; Kaufman et al, 2015). 

Furthermore, virus delivery is halted by sequestration of virions in liver and 

spleen, procured by the mononuclear phagocytic system, as well as by poor 

extravasation of viral agents from tumor blood vessels (Russell et al, 2012). In 

addition, physical barriers like hypoxia, acidosis, calcification and high interstitial 

pressure - conditions that characterize tumor microenvironments - limit oncolytic 

virus efficacy (Kaufman et al, 2015). Finally, extracellular matrix proteins and 

cancer-associated fibroblasts, although non-permissive to viral replication, 

reduce the delivery of viral progeny (Alemany, 2013; Kaufman et al, 2015; 

Lopez et al, 2009).  

Besides the manifold challenges of virus delivery, the lack of selective cancer 

cell tropism is a hurdle that needs to be conquered both for improved anticancer 

efficacy and better safety of oncolytic agents (Rudin et al, 2011). However, the 

attenuation of oncolytic viruses for safety concerns includes quite often the 

limitation of their oncolytic potential (Kelly & Russell, 2007; Russell et al, 2012). 

OVs, as self-replicating agents, are able to multiply independent of the applied 

dose. On the one hand, this constitutes a certain benefit, since small doses of 

viral particles can achieve a clinical effect (Kaufman et al, 2015). On the other 
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hand, tumor lysis syndrome and massive cytokine release in answer to a 

successful virus replication may represent the second side of the coin 

(Alemany, 2013). Another safety topic addresses the theoretical concern of 

virus evolution: Genetically attenuated oncolytic agents could regain their wild 

type pathogenicity, which would lead to a safety problem not only for patient but 

for contacts (Russell et al, 2012). In addition, the risk of virus integration into the 

host genome provides ground for discussion (Kaufman et al, 2015).  

As detailed in section 1.3.2, the partial inhibition of antiviral mechanisms in most 

cancers make tumor cells an ideal breeding ground for oncolytic viruses. 

Nevertheless, maintained antiviral activity can lead to a limited sensitivity or 

even resistance to oncolytic viruses (Russell et al, 2012).  

Accordingly, the ideal oncolytic virus needs to combine an outstanding safety 

profile with convincing antitumor mechanisms - mediated through direct tumor 

cell killing and subsequent induction of anticancer immune response. The viral 

agent needs to be successfully delivered by systemic application and should be 

able to reach all kinds and states of tumor cells. 

 Approaches to overcome limitations 

Since the first promising attempt in 1991, the concept of an ideal oncolytic virus 

has been further promoted by the application of three principles of genetic 

engineering, referred to as shielding, targeting and arming (Martuza et al, 

1991). Moreover, oncolytic viruses have been combined with well-established 

therapies like chemotherapy, radiation treatment and immunotherapy for quite a 

while (Cattaneo et al, 2008; Kaufman et al, 2015; Ottolino-Perry et al, 2010). A 

novel therapeutic approach, as executed in this thesis for oncolytic vaccinia and 

measles vaccine virus, is pursued by combinatorial treatment using two distinct 

oncolytic virus constructs.  

1.3.4.1 Combination of oncolytic viruses 

In order to overcome partial resistance of cancer cells towards oncolytic 

virotherapy, the application of two complementary oncolytic virus constructs 
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represents a sustainable approach. Although the idea of gaining a benefit from 

synergistic interactions has been pursued by combination therapies before, 

here, the innovative character is due to the fact that both viral agents can be 

genetically engineered to compensate each other´s malfunctions (Le Boeuf et 

al, 2010; Tysome et al, 2012). Furthermore, oncolytic viruses are able to 

destroy cancer cells in more than one way: they induce apoptosis as well as 

necrosis or pyroptosis in infected cells (Kaufman et al, 2015). These multitude 

forms of induced cell death may provide an advantage over the key-and-lock 

principle of a combination of oncolytic viruses with highly acclaimed targeted 

therapy (Le Boeuf et al, 2010). 

In 1991, Japanese researchers demonstrated a first coinfection of swine 

testicular cells by Hog Cholera Virus and NDV (Kumagai et al, 1961). Some 

years later, Tsuchiya and Tagaya reported on viral superinfection of Yaba virus-

infected cells (Tsuchiya & Tagaya, 1970), and the improved ability of an 

enterovirus to form plaques after pretreatment with poxviruses (Tsuchiya & 

Tagaya, 1972a; Tsuchiya & Tagaya, 1972b). Tysome et al. presented a 

sequential combination applying wildtype adenovirus (Ad5) and the attenuated 

Lister vaccine strain of vaccinia virus (VVLister) in an immunocompetent Syrian 

hamster model (Tysome et al, 2012). An intratumoral administration of three 

doses of Ad5 followed by three doses of VVLister eradicated the sub-

cutaneously established pancreatic, respectively kidney, Syrian hamster tumor 

cell lines (Tysome et al, 2012). Le Boeuf et al., who combined a vaccinia virus 

(VV) and a VSV strain, explained their decision to apply VV as a DNA-based 

virus and VSV as RNA-based component as follows (Le Boeuf et al, 2010). 

Firstly, the risk of virus evolution was effectively prohibited because replication 

cycles take place at different locations inside the cell (Le Boeuf et al, 2010). 

Secondly, in contrast to one “supervirus” with an unpredictable risk of infection 

of normal tissue, both attenuated viruses convinced with outstanding safety 

profiles (Le Boeuf et al, 2010). Thirdly, two immunologically distinct agents 

might have increased the chance to circumvent the antiviral immune response, 

thus, offering possibilities for multiple virus injections. Furthermore, DNA-viruses 

offer great packing capacities for additional transgenes. In return, the smaller 
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RNA-viruses do quickly replicate, which enables them to escape the adaptive 

immune response (Le Boeuf et al, 2010). 

In detail, Le Boeuf et al. chose a double-deleted VV-version (VVDD), which is 

contingent upon functional EGFR pathways in E2F-overexpressing cancer cells 

(Le Boeuf et al, 2010). VVDD encodes B18R, a soluble type I IFN receptor, 

which blocks the emerging cellular antiviral response (Le Boeuf et al, 2010). 

Fittingly, the utilized recombinant version of VSV (VSVΔ51) is most sensitive to 

IFN, which hinders viral replication in normal cells but retargets this virus to 

cancer cells with a reduced IFN release (Le Boeuf et al, 2010). In the course of 

the work, Le Boeuf et al. equipped VSVΔ51 with p14FAST, a gene product that 

supports VV spreading by induction of cell fusion (Le Boeuf et al, 2010). Thus, 

two supportively acting virus platforms had been generated and provided a 

great example of how attenuation of oncolytic agents can go hand in hand with 

enhanced oncolytic potential. VVDD and VSVΔ51 got genetically armed to 

express fluorescent proteins (VVDD with eGFP, VSVΔ51 with DsRed) in order 

to observe viral infection and spreading within the infected cell culture (Le Boeuf 

et al, 2010). As observed under fluorescence microscope, the majority of 

double-treated cells was not coinfected, instead, the initial infection by VVDD 

sensitized neighboring cells for the following VSVΔ51 treatment (Le Boeuf et al, 

2010). Le Boeuf et al. investigated their coinfection model in vitro, both in 

immunodeficient and –competent murine tumor models, and, ex vivo, on human 

cancer samples (Le Boeuf et al, 2010). The researchers were able to 

demonstrate that “synergistic interaction between oncolytic viruses augments 

tumor killing” (Le Boeuf et al, 2010).  

1.4 Selected oncolytic virus platforms and human cancer cell lines of this thesis  

 Measles virus  

The measles virus, first isolated from 11-year old David Edmonston by Enders 

and Peebles in 1954, belongs to the family of Paramyxoviridae (Enders & 

Peebles, 1954). Ranging in size from 100-300 nm (Griffin, 2001), the virion is 

built up of a phospholipid bilayer envelope, which contains the transmembrane 
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glycoproteins H (haemagglutinin) and F (fusion glycoprotein), and the M- (matrix 

protein) protein that connects the inner leaflet with the ribonucleoprotein (RNP) 

complex. This nucleocapsid consists of nucleoprotein (N), phosphoprotein (P), 

large protein (L) and the negative single-stranded RNA. The measles virus 

genome also encodes for the nonstructural proteins V and C (Griffin, 2001; 

Lamb & Kolakofsky, 2001).  

Naturally, host cell entry begins with viral H-protein binding the cellular receptor 

SLAM, which subsequently enables F-protein to initiate membrane fusion 

(Griffin, 2001; Yanagi et al, 2006). While laboratory propagation, wild-type 

measles virus was forced to adapt to many different human and animal cells 

lacking SLAM. Resulting, mutants became accustomed to enter host cells via 

CD46 and nectin-4 (Dorig et al, 1993; Naniche et al, 1993; Noyce et al, 2011). 

Interestingly, whereas normal cells exhibit only low CD46 receptor densities, 

many cancer cells overexpress CD46 as possible safeguard mechanism to 

avoid complement-mediated lysis (Anderson et al, 2004; Fishelson et al, 2003). 

Transcription and all further steps of viral replication take place in the cytoplasm 

and are coordinated by P-, N- and L-protein. The N-gene is transcribed most 

frequently because of its upstream position in the genome. This fact is of some 

importance as it advocates where to place transgenes, for example light-

emitting GFP, the best. A sufficient production of negative single-stranded 

RNAs ends the replication cycle and newly assembled viral progeny begin to 

spread. Even though the mechanism of virus release is not completely under-

stood, in polarized epithelial cells close contact of the M-protein to the RNP 

complex seems to be important (Lamb & Kolakofsky, 2001; Nakatsu et al, 

2013). Syncytia formation, a different cell shape and the appearance of 

inclusion bodies inside infected cells herald the oncoming cell death (Griffin, 

2001).  
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Figure 3. Schematic structure of MeV 

The measles virus is built up of a phospholipid bilayer envelope (dark grey), which contains the 
transmembrane glycoproteins haemagglutinin (H) and fusion (F), and connects to the matrix 
protein (M). The M-protein surrounds the negative single-stranded RNA (not shown) that is 
associated with the nucleoprotein (N), the phosphoprotein (P) and the large protein (L). 

 

Wild-type measles virus can lead to severe complications especially when 

immunosuppressed individuals are infected (Griffin et al, 2008; Schneider-

Schaulies & ter Meulen, 2002). Attenuated strains, however, convince with 

similar oncolytic activity while side effects of infection are reduced to flu-like 

symptoms. The first live attenuated measles vaccine strain, the Edmonston-B-

strain, was generated by inoculation of wild-type Edmonston strain to chick 

embryos (Griffin, 2001). Since 1965, the Schwarz vaccine, a further 

development of the Edmonston B strain, has been traded as standard measles 

vaccine in most countries of the world. Until now, more than a billion people 

have been immunized (Griffin, 2001). Except for recipients with extremely 

compromised immune system, these attenuated virus strains are safe products 

and suitable for children from 9 months on (Griffin, 2001; Griffin et al, 2008).  

In comparison to wild-type MeV, reduced pathogenicity of attenuated versions is 

achieved by receptor targeting (Russell & Peng, 2009) and mutation of viral 

nonstructural proteins. Thus, point mutations in the gene encoding nonstructural 

protein V lead to a reduced suppression of type I interferon upon inoculation 

with measles vaccine viruses (Ohno et al, 2004; Takaki et al, 2011). In cells with 

functional interferon signaling, viral clearance will be initiated immediately. In 
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cancer cells, however, defects of cell cycle regulating pathways lead to 

unhindered virus infection and replication of these mutants.  

In this thesis we applied MeV-GFP, a vector derived from the Edmonston-B-

strain, which carries the marker gene GFP in the leader position next to the N-

gene. 

 

 

Figure 4. MeV-derived reporter gene vector MeV-GFP, provided by the courtesy of Prof. 
Dr. Ulrich M. Lauer 

The blue arrow encodes green fluorescent protein (GFP). 

 

 Vaccinia virus  

Vaccinia virus belongs to the Poxvirus family and is a member of the Orthopox-

virus genus. With a diameter of 260-380 nm and a genome capacity of 190 kbp 

encoding approximately 250 genes, it represents the largest virus we know 

(Malkin et al, 2003; Moss & Earl, 2001). During replication, the double-stranded 

DNA virus exists in four different forms: the intracellular mature virion (IMV), the 

intracellular enveloped virion (IEV), the cell-associated enveloped virion (CEV) 

and the extracellular enveloped virion (EEV) (Schmidt et al, 2012; Smith et al, 

2002). The mature virion is built up of the viral core, which contains the s-

shaped double-stranded DNA genome, viral enzymes and proteins, two lateral 

bodies with unknown function, and a phospholipid bilayer with approximately 25 

viral surface proteins incorporated (Moss, 2007; Schmidt et al, 2012). The 

vaccinia virus has the ability to invade lots of different cell types by endocytosis, 

however, detailed information about host cell entry remains nebulous (Harrison 

et al, 2004; Schmidt et al, 2012). Immediately after delivery of the core into the 

cytoplasm, early viral mRNAs are transcribed (Schramm & Locker, 2005). The 

translated gene products are essential for the following viral replication 

(Schramm & Locker, 2005), intermediate gene expression and suppression of 

an emerging cellular immune response (Moore & Smith, 1992; Thorne et al, 
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2005). Among DNA viruses, poxviruses are unique because they replicate 

preferentially in the cytoplasm. To replicate almost independently of the cellular 

replication machinery, VACV brings its own equipment like a virally encoded 

DNA-dependent RNA polymerase and a multitude of RNA-processing enzymes 

(Harrison et al, 2004; Thorne et al, 2005). During replication process, 

components are sheltered by so called “mini-nuclei”, membranes derived from 

the rough endoplasmic reticulum (Schramm & Locker, 2005; Tolonen et al, 

2001). Viral replication is accompanied by transcription and translation of 

intermediate and late genes, the resulting proteins contribute to the correct 

assembly of viral progeny (Schramm & Locker, 2005).  

Starting as IMV, the most abundantly produced form, vaccinia virus leaves the 

host cell only via cell lysis. The IEV is additionally wrapped in an intracellular 

membrane derived from endosome or trans-Golgi network, while the CEV 

occurs after fusion of an IEV with the cell membrane. Thus, as soon as 6 hours 

post infection (hpi), a direct cell-to-cell spread becomes feasible (Thorne et al, 

2005). EEV is the released version of a CEV and able to spread systemically 

(Thorne et al, 2005). While IMV and EEV differ antigenically, CEV moves 

without entering the extracellular space, thus, VACV escapes host cell immune 

detection most efficiently (Appleyard et al, 1971; Rodriguez et al, 1987; Turner 

& Squires, 1971).  
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Figure 5. Schematic structure of the intracellular mature virion (IMV) of VACV, modified 
from Mayer (Mayer, 2014) 

An IMV is built up of a viral core, which contains the double-stranded DNA genome associated 
with viral enzymes and regulatory proteins, two lateral bodies with unknown function, and a 
phospholipid bilayer (outer and inner membrane) with several viral surface proteins integrated. 
The use of this modified figure is granted by N. Mayer.  

  

Until now, the real origin of vaccinia virus remains unclear: In the 18th century 

Edward Jenner, who was looking for a vaccine against smallpox, isolated a 

virus strain from milkmaids called “vaccinia” (Jenner, 1800). Since 1958 

vaccinia virus strains had been applied in a worldwide vaccination campaign 

leading to a complete eradiation of smallpox in 1978 (Fenner, 1993). In the 

1930th, Downie clarified that the applied vaccine strains differ significantly from 

Jenner´s cowpox isolate (Downie, 1939). Despite this knowledge gap 

concerning its origin, vaccinia virus is one of the best studied and most applied 

vaccines we know (Thorne et al, 2005). Through years of vaccination program 

many different vaccinia virus constructs have been developed, not least to 

reduce adverse effects, which occurred commonly after immunization with first 

generation vaccines (Lane et al, 1969; Walsh & Dolin, 2011). Besides its role in 

smallpox eradication, engineered vaccinia virus has been applied as a vaccine 

vector against infectious diseases and cancers (Jager et al, 2006; Kanesa-

thasan et al, 2000; Rochlitz et al, 2003), established itself as a “research tool” to 
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investigate eukaryotic cells and, finally, revealed oncolytic activity (Kirn & 

Thorne, 2009; Thorne et al, 2005). 

Wild type vaccinia virus has the ability to adapt host cells for virus replication 

and spreading by expression of virally encoded vaccinia growth factor (VGF) 

and thymidine kinase (TK) (Kirn & Thorne, 2009). VGF, as an EGF homologue, 

activates EGFR-RAS signaling pathways, while viral TK increases the number 

of nucleotides, which are necessary for virus replication (Buller et al, 1985; 

Buller et al, 1988; Kirn & Thorne, 2009). Furthermore, virally encoded 

immunosuppressive proteins, like B18R, block effectively emerging antiviral 

response (Kirn & Thorne, 2009; Symons et al, 1995). In order to reduce 

pathogenicity of wild type vaccinia virus, numerous attenuated versions miss 

functional VGF, TK or immunosuppressive protein synthesis. According to these 

restrictions, mutants are targeted to malignant cells, whereas normal tissue is 

affected to a limited extent only.  

In this thesis we applied GLV-1h254, a relative of well examined GLV-1h68, 

both derived from the LIVP strain (Lister strain from the Institute for Research 

on Viral Preparations, Moscow, Russia). LIVP was generated from Lister strain, 

an attenuated vaccine used extensively during smallpox eradication (Sugimoto 

& Yamanouchi, 1994). GLV-1h68, established in 2007 by Zhang et al., encodes 

Renilla luciferase-Aequorea green fluorescent protein (RUC-GFP), ß-

galactosidase and ß-glucuronidase by genetic engineering of the nonessential 

gene loci F14.5L, J2R (viral TK) and A56R (haemagglutinin/HA) (Zhang et al, 

2007). By deletion of viral TK and inactivation of A56R, GLV-1h68 is 

significantly attenuated but maintains genetic stability and competence of 

replication (Zhang et al, 2007). GLV-1h254 was designed by using GLV-1h71, a 

RUC-GFP- version of GLV-1h68, as starting strain (Chen et al, 2011; Wang et 

al, 2013). GLV-1h254 itself encodes red light-emitting TurboFP635, a 

polypeptide, which gene expression cassette was inserted in the HA locus of 

the parental strain (Wang et al, 2013).  
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Figure 6. VACV-derived vector GLV-1h254 (encoding TurboFP635), taken from Wang et 
al. (Wang et al, 2013).  

The unrestricted use of this figure is granted by the publisher. 

 Evaluated human cancer cell lines 

In pretests, ACHN, HCT15 and KM12, three solid human tumor cell lines, 

received from the U.S. National Cancer Institute´s NCI 60 panel (Shoemaker, 

2006), were screened for primary high-grade resistance to both VACV and 

MeV. These pretests were either conducted by our group ((Noll et al, 2013), 

unpublished data by C. Raff respectively) or by other authors (Ascierto et al, 

2011). Furthermore, CCS and SRH, two soft-tissue sarcoma cell lines of human 

origin, which were established and characterized at the University Children´s 

Hospital Tübingen, were defined resistant towards MeV treatment by Berchtold 

et al. (Berchtold et al, 2013). Several preclinical and clinical trials dealt with 

oncolytic vaccinia virus strains and their potential application to human 

sarcomas. For example, vaccinia strain GLV-5b451, encoding an Anti-VEGF 

single-chain antibody, has been brought into place against four canine cancer 

cell lines including soft-tissue sarcoma (Adelfinger et al, 2015). GLV-1h68 has 

shown promising results when applied to four human sarcoma cell lines in vitro 

and in vivo (He et al, 2012). Moreover, GLV-1h68 used in combination with 

chemotherapy, surgery and radiation treatment increased cytotoxic effects to at 

least some soft-tissue sarcoma cell lines in an animal model (Wilkinson et al, 

2016). Nevertheless, to our knowledge, sarcoma cell lines SRH and CCS have 

not been inoculated with oncolytic vaccinia virus strains so far.  

In order to evaluate whether there is a synergistic potential of a sequential 

inoculation applying vaccinia virus GLV-1h254 and Edmonston B vaccine strain-
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derived reporter gene vector MeV-GFP, we here established a novel treatment 

regime.  

As outlined before for VV and VSV (section 1.3.4.1), we considered the 

combined application of DNA-based vaccinia and RNA-based measles virus to 

be appropriate due to a variety of reasons. VACV and MeV convince with 

outstanding safety profiles, since both virus constructs have been used in 

worldwide vaccination programs (Fenner, 1993; Griffin et al, 2008). Their 

oncolytic potency has been demonstrated in numberless preclinical (Blechacz 

et al, 2006; Grote et al, 2001; Guo et al, 2005; Kim et al, 2006; Kirn et al, 2007; 

McCart et al, 2001; McDonald et al, 2006; Myers et al, 2008; Peng et al, 2001; 

Phuong et al, 2003; Thorne et al, 2007; Zhang et al, 2007) and clinical (Downs-

Canner et al, 2016; Galanis et al, 2015; Galanis et al, 2010; Gomella et al, 

2001; Heinzerling et al, 2005; Heo et al, 2013; Mastrangelo et al, 1999; Mell et 

al, 2017; Park et al, 2008; Zeh et al, 2015) trials.  

What is more, VACV and MeV were supposed to complement each other in 

terms of genetic and immunogenic diversity (Griffin et al, 2008; Miller et al, 

2008; Putz et al, 2006; Turner & Squires, 1971), packaging capacities (Smith & 

Moss, 1983; Zuniga et al, 2007), replication time (Kirn & Thorne, 2009; Lamb & 

Kolakofsky, 2001) and diverse susceptibility to host cellular IFN response 

(Colamonici et al, 1995; Fontana et al, 2008; Kirn et al, 2007; Ohno et al, 2004; 

Takaki et al, 2011). 

In fact, Noll et al. demonstrated that in ACHN and HCT15 cells, which were 

found to be high-grade resistant to both MeV-SCD and MeV-GFP treatment, a 

strong IFN release was initiated upon MeV-SCD infection (Noll et al, 2013). 

Among other findings, like reduced primary infection rates, altered viral growth 

curves and correspondingly reduced expression of virus-encoded proteins in 

these cell lines, this finding indicates that the incomplete blockage of the innate 

cellular immune defense serves as one mechanism of action of reduced 

sensitivity of high-grade resistant tumor cell lines to measles vaccine virus 

treatment (Noll et al, 2013).  
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Correspondingly, Berchtold et al. screened eight sarcoma cell lines to 

investigate whether these cells reveal susceptibility to oncolytic MeV-SCD and 

MeV-GFP treatment (Berchtold et al, 2013). Indeed, three cell lines, CCS, SRH 

and SCOS, were found to be resistant to MeV infection (Berchtold et al, 2013). 

CCS, SRH and SCOS cells showed lower primary infection rates and achieved 

only poor virus titers in viral growth assays, when compared to susceptible 

sarcoma cell lines. Although reduced CD46 expression and the absence of 

SLAM or nectin-4 offered a first explanation for these findings, further data 

supported the idea that the inhibition of replication accompanied by IFN-

dependent host cellular response are of quite more importance (Berchtold et al, 

2013). Of note, the researchers were unable to identify a clear correlation 

between the induction of other intracellular receptors, like Toll-like receptor 3 

and melanoma differentiation-associated gene 5, and the induction and 

secretion of IFN-ß upon MeV-SCD infection and resistance patterns (Berchtold 

et al, 2013).  

However, to buy into Berchtold et al.: “These data suggest that resistance to 

virotherapy is at least in part due to elevated levels of cytoplasmic pathogen 

receptors and ISGs” (Berchtold et al, 2013). 

As described before (section 1.3.4.1), VVDD revealed an IFN-dependent 

antiviral response mechanism, due to expression of B18R, which most 

effectively supported coinfection by VSVΔ51 (Le Boeuf et al, 2010). Tysome et 

al. assumed that synergistic interactions of oncolytic adenovirus and VV are at 

least in part due to altered IFN signaling (Tysome et al, 2012). Although 

susceptibility of human cancer cell lines to GLV-1h68 seemed to be 

multifactorial conditioned, Ascierto et al. highlighted that downregulated IFN 

signaling of susceptible cells should be taken into account (Ascierto et al, 2011). 

Consequently, we expected VACV GLV-1h254, as a GLV-1h68 relative, and 

MeV-GFP to complement each other in any possible way.  
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1.5 Aim of this thesis 

Although oncolytic virotherapy is an exciting new approach in cancer treatment, 

a wide array of human tumors exhibits primary resistance towards it.  

In prior work, ACHN, HCT15 and KM12, three solid human tumor cell lines 

originating from renal and colon cancer, respectively, were identified highly 

resistant to both VACV and MeV treatment. Additionally, CCS and SRH, two 

soft-tissue sarcoma cell lines of human origin, were defined resistant to MeV-

derived virotherapeutics.  

Here, we investigated whether a combinatorial treatment regime applying two 

virotherapeutic vectors of completely different origins in the sense of a double-

infection, i.e., VACV-derived vector GLV-1h254 (encoding TurboFP635) and 

MeV-GFP (encoding GFP), was able to overcome remaining limitations.  

First, appropriate virus concentrations at which cell masses of ACHN, HCT15, 

KM12, SRH and CCS cells were reduced less than 25 % were determined in 

single infection approaches.  

Thereafter, different schemes of sequential infections using altering orders of 

virus treatment, time points of secondary infection and dosages were con-

ducted.  

Then, we examined whether synergistic or additive effects explained improved 

cell death registered upon double-infections and investigated virus-specific 

marker protein expression by electrophoresis and western blot.  

In addition, we also analyzed the impact of plating densities on confluence, 

virus spreading and oncolysis and described a phenomenon called “viral 

competition”, which is novel to double-infections combining virotherapeutics of 

vaccinia virus and measles vaccine virus origin.  
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2 Material and Methods  
 

2.1 Material 

Unless otherwise identified, all mentioned materials and chemicals have been 

used in the highest possible purity. They were either declared as sterile goods 

or autoclaved at 121°C and 2 bar for 20 minutes. Deionized and additionally 

filtered water (H2Odd) has been used in all experiments, otherwise it is declared 

differently. 

 Consumables and Chemicals 

Cell scraper Corning Inc. 

Cell strainer 40 µm BD Falcon 

Combitips 2.5/5/12 ml Eppendorf 

Conical tube 1.5 ml Biozym 

Conical tube 2.5 ml Biozym 

Conical tube/Falcon 15 ml Greiner Bio-one, Corning Inc. 

Conical tube/Falcon 50 ml Corning Inc. 

Cryo tubes 1 ml Corning Inc. 

Reaction tubes 500/1500/2000 µl, safe lock Eppendorf 

Flat bottom 96 well plate  Greiner Bio-one 

Tissue culture dishes 15 cm Costar 

Tissue culture E-plate 96 well Roche Applied Science 

Tissue culture flask 25/75/150 cm² Greiner Bio-one, TPP 

Tissue culture plate 24 well TPP 

Tissue culture plate 6 well Falcon, Corning Inc. 

Tissue culture plate 96 well Falcon, TPP 

Pasteur pipets WU Mainz 

Pipets 5/10/25/50 ml Costar, Corning Inc.  

Pipet tips 10/100/200/1000 µl Biozym, PEQLAB 

Pipet tips for multichannel pipet 1200 µl Eppendorf 
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Descosept  Dr. Schuhmacher GmbH 

Isopropanol (70 %) SAV Lp GmbH 

Sekusept ECOLAB 

Sterillium BODE Chemie Hamburg 

Fuji Photo Film LTD 

HyperfilmTM ECL Amersham Biosciences 

Parafilm Bemis Company, Inc. 

PVDF membrane Amersham Biosciences 

Precision wipes Kimberley Clark 

Latex and nitrile gloves Ansell, Hartmann  

Mycoplasma detection kit Roche 

Sponges Amersham Biosciences 

Whatman papers Amersham Biosciences  

 

Acetic Acid Merck 

Acrylamide Rotiphorese Gel 30 Carl Roth 

APS 10 % Sigma-Aldrich 

Bromophenol blue Sigma-Aldrich 

CMC Sigma-Aldrich 

Crystal violet dye  Carl Roth  

DMSO AppliChem   

ECL solution (western blotting detection  Amersham Biosciences 

Reagents and analysis system, 0.125 ml/cm2) 

Ethanol  Carl Roth 

Formaldehyde Carl Roth 

Full Range Rainbow Protein Marker Amersham Biosciences 

Glycerol 86 % Carl Roth 

Glycine Carl Roth 

H2Odd MilliQ Synthesis System 

HCI Carl Roth 

IGEPAL PA-630 (10 %) Sigma-Aldrich 

KCl Carl Roth  
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KH2PO4  Carl Roth 

Milk powder Carl Roth 

NaCl Merck 

Na2HPO4 Carl Roth  

NaN3  Sigma-Aldrich 

PFA 4.0 % Otto Fischar GmbH 

SDS Carl Roth 

SRB Sigma-Aldrich 

Sucrose Carl Roth 

TCA Carl Roth 

TEMED Carl Roth  

TRIS  Carl Roth 

Triton-X-100  Carl Roth 

Trypan blue solution 0.4 % Sigma-Aldrich 

Tween-20  Sigma-Aldrich  

2-mercaptoethanol Carl Roth 

 

 Antibodies (Western Blot) 

Target Name, species Dilution, Buffer Source 

GFP anti-GFP, mouse 1:2500 in 5 % milk in 
TBS-Tween, NaN3 

(0.05 %) 

Roche 

Human vinculin V9131, mouse 1:5000 in TBS-Tween, 
NaN3 (0.05 %) 

Sigma 

ß-galactosidase Anti-ß-
galactosidase, 

rabbit 

1:200 in TBS-Tween Invitrogen 

ß-actin Anti-ß-actin, mouse 1:5000 in TBS-Tween, 
NaN3 (0.05 %) 

Sigma 

Vaccinia (Ab35219) 
Anti-vaccinia virus, 

rabbit 

1:500 in TBS-Tween, 
NaN3 (0.05 %) 

abcam 

MeV N-Protein Ab23974, rabbit 1:1000 in TBS-Tween, 
NaN3 (0.05 %) 

abcam 

Mouse IgG HRP-coupled, goat 1:4000 in TBS-Tween BioRad 
Rabbit IgG HRP-coupled, goat 1:4000 in TBS-Tween BioRad 
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 Media, Sera and Buffer 

DMEM   BIOCHROME, Sigma-Aldrich 

(with stable L-glutamine, 4.5 g/l glucose) 

EDTA-Trypsin (0.05 % Trypsin) Lonza, Sigma-Aldrich 

FBS BIOCHROME, Gibco 

OPTI-MEM® Gibco 

PBS PAA, Sigma-Aldrich  

Pen/Strep BIOCHROME 

 

Self-made solutions: 

 

Acidified isopropanol (e.g. 30 ml)  HCl 3 ml 

(10 % HCl in Isopropanol) Isopropanol (70 %) 27 ml  

 

CMC medium CMC 7.5 g 

 DMEM 495 ml  

 FBS 25 ml 

 Pen/Strep  5 ml 

    

Crystal violet stain Crystal violet (408.6 g/mol) 1.3 g 

(Crystal violet 0.13 %, Ethanol 5 %, Formaldehyde 37 % 300 ml 

Formaldehyde 11.1 %) Ethanol 100 % 50 ml 

 H2Odd filled up to 1 l  

 

2 % FBS-supplemented DMEM DMEM 500 ml 

Inactivated at 56 °C for 30 minutes: FBS 10 ml 

 Storage at  4 °C 
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10 % FBS-supplemented DMEM DMEM 500 ml 

Inactivated at 56 °C for 30 minutes: FBS 50 ml 

 Storage at  4 °C 

 

22 % FBS-supplemented DMEM DMEM 50 ml 

Inactivated at 56 °C for 30 minutes: FBS 11 ml 

Prepared prior to use Storage at  4 °C 

 

26 % FBS-supplemented DMEM DMEM 50 ml 

Inactivated at 56 °C for 30 minutes: FBS 13 ml 

Prepared prior to use Storage at  4 °C 

 

Freezing medium (e.g. 25 ml) DMEM 17.5 ml 

(70 % DMEM, 20 % FBS and 10 % DMSO) FBS 5 ml 

 DMSO 2.5 ml 

 

Loading buffer (6x) TRIS 1 M pH 6.8 37.5 ml 

 Glycerol 86 % 30 ml 

 SDS 12.3 g 

 Bromophenol blue 60 mg 

 H2Odd filled up to 100 ml 

Prior to use: 2-mercaptoethanol 60 µl/ml 

 

Lysis buffer stock solution (50 ml) TRIS 1 M pH 7.6 50 mM (5 ml)  

 NaCl 5 M 150 mM (3 ml) 

 IGEPAL PA-630  

 (10 %)  1% (10 ml)    

 H2Odd 32 ml 

 Storage at  4 °C 

 

MTT stock solution (30 ml) MTT      75 mg (2.5 mg/ml) 

 colorless DMEM 30 ml 
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 filtered (pore size 0.45 µm) and   

 dissolved at 37 °C water bath    

 

PAGE buffer (1x) TRIS 125 mM (15.1 g/l) 

 Glycine 72 g/l 

 SDS 5 g/l 

 H2Odd filled up to 1 l 

 pH 8.3 

 

PBS (not used in cell culture) NaCl 137 mM (8 g) 

 KCl 2.7 mM (0.2 g) 

 Na2HPO4 10 mM (1.44 g) 

 KH2PO4 1.8 mM (0.24 g) 

 H2Odd filled up to 1 l  

 

8 % resolving gel (15 ml) H2Odd 6.9 ml 

 30 % acrylamide mix 4.0 ml 

 1.5 M TRIS pH 8.8 3.8 ml 

  SDS 10 % 0.15 ml 

 APS 10 % 0.15 ml 

 TEMED 0.009 ml 

 

15 % resolving gel (15 ml) H2Odd 3.4 ml 

 30 % acrylamide mix 7.5 ml 

 1.5 M TRIS pH 8.8 3.8 ml 

 SDS 10 % 0.15 ml 

 APS 10 % 0.15 ml 

 TEMED 0.006 ml 

  

SRB dye (0.4 % in 1 % acetic acid) SRB 4 g 

 Acetic acid 10 ml 

 H2Odd filled up to 1 l 
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5 % stacking gel (10 ml) H2Odd 6.8 ml 

 30 % acrylamide mix 1.7 ml 

 1.0 M TRIS pH 6.8 1.25 ml 

 SDS 10 % 0.1 ml 

 APS 10 % 0.1 ml 

 TEMED 0.01 ml  

 

Stripping buffer TRIS 1.0 M (3 ml) 

 SDS 10 % 10 ml 

 2-Mercaptoethanol 

  100 mM (340 µl) 

 H2Odd 47.5 ml 

  

10 x TBS NaCl 1.5 M (438.3 g) 

 TRIS 0.5 M (302.85 g) 

 pH     7.4, adjusted with HCl 

 H2Odd filled up to 5 l 

 

TBS-Tween (0.02 %) Tween-20  5 ml of 20 % 

 10 x TBS 500 ml 

 H2Odd filled up to 5 l 

 

TCA solution (10 %) TCA 100 g 

 H2Odd filled up to 1 l 

 

Transfer buffer (10x)  Glycine 390 mM (146.25 g) 

 TRIS 435 mM (264 g) 

 H2Odd filled up to 5 l 

 

Transfer buffer (1x) Transfer buffer (10x) 280 ml 

 MeOH 560 ml 

 H2Odd filled up to 2.8 l 
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TRIS base buffer (10 mM, pH 9, 5 % sucrose) TRIS 10 mM (1.21 mg/100 ml) 

sterile-filtered  H2Odd filled up to 100 ml 

 Sucrose 5 g 

 pH 9, adjusted with HCl  

 

TRIS solution (10 mM, pH 10.5) TRIS 10 mM (1.21 g/l) 

 H2Odd filled up to 1 l 

 pH 10.5, adjusted with HCl 

 

TRIS solution (1.0 M, pH 6.8) TRIS  1 M (121 g/l) 

 H2Odd filled up to 1 l 

 pH 6.8, adjusted with HCl 

 

TRIS solution (1.0 M, pH 7.6) TRIS  1 M (121 g/l) 

 H2Odd filled up to 1 l 

 pH 7.6, adjusted with HCl 

 

TRIS solution (1.5 M, pH 8.8) TRIS 1.5 M (181.71 g/l) 

 H2Odd filled up to 1 l 

 pH 8.8, adjusted with HCl  
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400 µm 

ACHN 

400 µm 

HCT15 

400 µm 

KM12 

 Cell lines 

2.1.4.1 Human tumor cell lines 

 
 

 
 
 
human kidney cancer 
Source: U.S. National Cancer Institute´s NCI 60 
panel 
 
 
Bright-field picture 

 
 

 

 
 
 
human colorectal adenocarcinoma 
Source: U.S. National Cancer Institute´s NCI 60 
panel 
 
 
Bright-field picture 

 
 

 
 
 

 

 
 
 
human colorectal adenocarcinoma 
Source: U.S. National Cancer Institute´s NCI 60 
panel 
 
 
Bright-field picture 
 
 
 
 
 
sclerosing spindle cell rhabdomyosarcoma 
Species: human 
Source: established and characterized at the 
University Children´s Hospital Tübingen 
 
Bright-field picture 

400 µm 

SRH 
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400 µm 

CCS   
 
clear cell sarcoma 
Species: human 
Source: established and characterized at the 
University Children´s Hospital Tübingen 
 
Bright-field picture 

 

2.1.4.2 Other cell lines  

 

 
 
African green monkey kidney epithelial cells 
Species: simian 
Source: German Collection of 
Microorganisms and Cell Cultures (DSMZ, 
Braunschweig) 
Bright-field picture 
 
 
 

 

 
 
African green monkey kidney fibroblasts 
Species: simian  
Source: ATCC® CCL-70TM 
 
Bright-field picture, modified from Mayer (Mayer, 
2014). The use of this picture is granted by 
N. Mayer. 
 
 

 

All cell lines were cultivated as permanent cell cultures, and grew as adherent 

monolayers in Dulbecco´s modified Eagles medium (DMEM) supplemented with 

10 % fetal bovine serum (FBS) in culture flasks. 
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 Viruses 

MeV-GFP Wolfgang Neubert 

VACV GLV-1h254 Genelux Corp. 

 Laboratory Equipment 

All-in-one BZ-9000 fluorescence microscope KEYENCE 

Autoclave 3850 EL Systec 

Autoclave VARIOKLAV HP Medizintechnik GmbH 

Banded ear protectors Peltor 

Blotting system BioRad 

Centrifuge Eppendorf, Heraeus 

Counter LVP 

Cylinder & beaker 500/1000/2000 ml  Hirschmann, VITLAB, VWR 

Cryo Freezing Container (Mr. Frost) Nalgene  

Laboratory bottle, Duran Schott 

Electronic pipet Eppendorf 

Electrophoresis chamber Amersham Biosciences 

Fluorescence microscope Olympus 

Forceps Servoprax 

Freezing cabinet (-150 °C)  Sanyo 

Gel caster Amersham Biosciences 

Haemocytometer Hecht Assistant 

Heating cabinet Binder 

High-definition camera, F-view Soft Imaging System GmbH 

lncubator Heraeus, Memmert 

Laminar Flow Work Bench Heraeus 

Light microscope Olympus 

Magnetic stirrer IKA Labortechnik 

Manual repeating pipet (Multistep) Brand 

Microchronometer Oregon Scientific 

Microtiter plate reader (Tecan GENios) Tecan  
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Multichannel pipette Eppendorf 

pH controller Hanna instruments 

Photo cassette Dr. GOOS Suprema GmbH  

Pipet Boy Integra  

Pipets Eppendorf  

Precision scale Sartorius 

Refrigerator (-20 °C) Liebherr  

Refrigerator (-80 °C)  Heraeus, Forma Scientific, 

Skadi 

Shaker Heidolph 

Thermostatic circulator 2219 Multitemp II LKB Bromma 

Ultrasound Sonifier 450 Branson 

Vortexer Vibrofix Electronics Janke+Kunkel IKA 

  Labortechnik 

Water bath 342 (37 °C) Köttermann 

xCELLigence SP system  Roche Applied Science 

15-pocket comb Amersham Biosciences 
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2.2 Methods 

 Safety 

All experimental work was done in laboratories with Biosafety Level 2 approval 

(BSL2, Directive 2000/54/EC). Infectious virus particles or precarious organics 

were treated under laminar flow hoods. All materials and laboratory equipment 

were both disinfected and inactivated by UV ray (at least 15 minutes) as well as 

autoclaved whenever possible. 

 Cell culture 

All cell lines were cultured in 75 cm2 tissue culture flasks with vented caps in 

DMEM supplemented with 10 % FBS without any antibiotics added. Flasks 

were incubated at 37 °C in a humid atmosphere containing 5 % CO2. All work 

was done in a laminar flow work bench under sterile conditions. Cell lines were 

tested for mycoplasma contamination at regular intervals with a mycoplasma 

detection kit. During cultivation, cell lines were examined regularly under a light 

microscope with a 4 - 10 x objective to ensure subconfluent growth of the 

monolayer and to detect any lack of nutrients or contamination.  

Before use, FBS and EDTA-Trypsin were stored at -20 °C and FBS was heat-

inactivated at 56 °C for 30 minutes. Open bottles of FBS, EDTA-Trypsin, media 

and PBS were stored in the fridge at 4 °C. Prior to use, media, PBS and EDTA-

Trypsin were warmed in the water bath at 37 °C unless otherwise specified.  

 General cell culture 

For harvesting of cells, DMEM was removed with a pipet and cells were washed 

with PBS. Thereafter, cells were incubated with 1 ml EDTA-Trypsin at 37 °C 

and flasks were agitated gently until the cell layer came off. Subsequently, 

EDTA-Trypsin was inactivated with 9 ml 10 % FBS-supplemented DMEM and 

cells were resuspended by using a pipet. If necessary, the cell suspension was 

additionally filtered through a 40 µm cell strainer. To split cells, one half of the 

generated single cell suspension was transferred to a new tissue culture flask 
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and filled up with fresh medium supplemented with 10 % FBS. Split ratios of 

different cell lines diversified and were empirically determined. Culture flasks 

were stored in the incubator at 37 °C.  

2.2.3.1 Counting cells with a haemocytometer 

In order to plate cells, it was necessary to define the number of viable cells in 

the created cell suspension. Accordingly, 10 µl of the cell suspension were 

added to 90 µl of Trypan blue solution, a diazo dye, to generate a 1:10 dilution. 

Trypan blue is used to differentiate between dead and viable cells. As living 

cells appear highlighted, dead cells appear dark blue, when analyzed under a 

light microscope. Unless otherwise specified, Trypan blue was used for all 

counting. 

Cells were counted by using an improved Neubauer counting chamber. The 

Newton ring, a light reflection that appears when the covering glass is rubbed 

against the chamber, indicates that the covering glass is fixed accurately, which 

is essential to guarantee a gap of no more than 0.1 mm. Accordingly, one 

square contains a define volume of 0.1 µl. After the chamber was assembled 

correctly, 10 to 12 µl of the prepared 1:10 dilution were transferred to one 

corner of the chamber. Depending on capillary forces, the volume now 

distributed equally over the squares. Every living cell in a large square, 

consisting of 16 smaller squares, was now counted properly under a light 

microscope with a 10 x objective. The factor of dilution was taken under 

consideration by multiplication by 10. Accordingly, the concentration of cells 

was calculated as follows:  

 

𝑐𝑒𝑙𝑙𝑠

𝑚𝑙
=

𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑣𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑟𝑔𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑
𝑥 104 𝑥 10 
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2.2.3.2 Plating of cells 

After calculating the concentration of viable cells via haemocytometric 

technique, the desired concentration for plating was diluted using 10 % FBS-

supplemented DMEM. Most cell lines were plated in 0.5 ml cell suspension/well 

at a density of 5 x 104 cells per well in 24-well plates. Cells were seeded with a 

manual repeating pipet and incubated at 37 °C for one to two nights depending 

on the cell line processed. 

2.2.3.3 Confluence trials 

Tumor cell confluence, which is required for optimal virus spreading, was 

analyzed for each cell line in separate pretests. Thus, cells were plated at 

different densities in 24-well plates and examined under a light microscope with 

a 4 - 10 x objective up to 6 days. The extent of the reached confluence, 

expressed as percentage, as well as the consumption of media and the 

detachment of cells were documented daily. 

2.2.3.4 xCELLigence system for monitoring of cell viability and virus spreading  

The xCELLigence system allows to monitor real-time cell viability and cell 

proliferation by the measurement of electrical impedance. Interdigitated micro-

electrodes, which are integrated in special 96-well E-plates, register changes of 

electrical impedance. The readout, displayed as cell index, provides information 

about cell viability and correlates well with the actual cell number. Thereby, the 

xCELLigence system helps to review the chosen cell counts and selected time 

points to run cell viability assays like SRB and MTT assay (Ke et al, 2011). In 

addition, it may clarify the impact of cell confluence on the efficiency of virus 

spreading. 

In order to determine suitable cell numbers for the following xCELLigence trial, 

cells were plated in sextuplicates in 200 µl 10 % FBS-supplemented DMEM at 

various densities in a 96-well plate. The next day, cells were either infected with 

VACV GLV-1h254 or mock-treated in 20 µl 2 % FBS-supplemented DMEM. 
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Cells were incubated until 96 hpi. Virus infection and spreading, as well as the 

development of confluence were evaluated under a fluorescence microscope. 

Virological methods are described in detail in section 2.2.4.1.1.  

For xCELLigence trial, cells were split one day before plating to avoid growth 

inhibition. The following day, 50 µl of 10 % FBS-supplemented DMEM were 

added to each well of a 96-well E-plate and a background measurement was 

performed. Thereafter, cells were plated at the selected densities in 100 µl 

2.5 % FBS-supplemented DMEM. Thus, a final concentration of 5 % FBS was 

obtained. The E-plate was incubated at 37 °C overnight. At 22.5 hrs after 

plating, cells got either infected in triplicates with VACV GLV-1h254 in 10 µl 

DMEM or were mock-treated. Triton 0.1 % X-100, which was used as a positive 

control for cell death, was applied to three wells of each plating density. At 

1.5 hpi, 50 µl of 26 % FBS-supplemented DMEM were added to each well to 

receive a final concentration of 10 % FBS in a total volume of 210 µl. Electrical 

impedance was measured every 30 minutes, starting after seeding of the cells 

until the experiment was ended (after an observation period of approximately 

130 hrs). Electrical impedance was measured using the xCELLigence SP 

system. RTCA Software 1.2 was applied to calculate cell index values. All 

values were normalized. 

2.2.3.5 Cryoconservation and thawing of cells 

Cells in tissue culture flasks were first examined under a light microscope with a 

4 - 10 x objective to evaluate the density of the cell layer. Confluent but not 

overgrown cells were favorite to generate a concentrated cell suspension. 

Freezing medium, containing 70 % DMEM, 20 % FBS and 10 % DMSO, was 

prepared next. Cells were harvested as outlined above and settled by 

centrifuging at 1200 rpm for 3 minutes at 22 °C. Cell supernatant was 

discarded, the cell pellet was resolved in the prepared freezing medium and the 

cells were resuspended carefully with a 25 ml pipet. The volume was distributed 

to cryo tubes, 1 ml each. The last cryo tube served as a sterility check and was 

labelled. Cryo tubes were frozen with an isopropanol bath at -80 °C for one day 

and transferred afterwards to a freezing cabinet at -145 °C or into liquid nitrogen 
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for long time storage. The labelled cryo tube was thawed the next day and 

checked for growth behavior and contamination.  

For thawing, frozen cryo tubes were shortly dipped into the water bath (37 °C). 

The defrosted cell suspension was transferred with 9 ml of FBS-supplemented 

DMEM into a conical tube and resuspended carefully. Thus, DMEM inactivates 

the cytotoxic DMSO. Cells were now centrifuged at 1200 rpm for 2 minutes, 

supernatant was removed and the remaining cell pellet was resuspended in 

10 ml fresh FBS-supplemented DMEM. The cell suspension was then 

transferred into a fresh culture flask.  

 Virological methods 

2.2.4.1 Infection of cells 

2.2.4.1.1 Single virus infection with VACV GLV-1h254 

Plates were labelled with the assay number, plate number and date. Cells were 

seeded in 0.5 ml cell suspension/well at the determined plating density in 24-

well plates. Plates were incubated at 37 °C for one to two nights depending on 

the cell line processed. On the infection day, the plates were examined under a 

light microscope to check for sufficient cell adherence and a subconfluent 

monolayer. The current cell count of each cell line was determined via 

haemocytometer technique, as described above, and calculated as an average 

of four wells.  

 

𝑐𝑒𝑙𝑙𝑠

𝑤𝑒𝑙𝑙
= (

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑟𝑔𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑
𝑥 104 𝑥 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛)/4 

 

The following calculation of multiplicity of infection (MOI) based on the received 

cell count. To exemplify, MOI 1 stands for one infectious virus particle per cell at 

the time point of infection. The following formula calculates the required volume 

(amount of virus in µl) of the virus stock which is needed to create a virus 

dilution that fit the counted cell number/well at the determined MOI:  
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𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑣𝑖𝑟𝑢𝑠 (µ𝑙) =

𝑐𝑒𝑙𝑙𝑠
𝑤𝑒𝑙𝑙

∗
1000

𝑣𝑖𝑟𝑢𝑠 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
𝑤𝑒𝑙𝑙

(µ𝑙)
∗ 𝑀𝑂𝐼

𝑣𝑖𝑟𝑢𝑠 𝑡𝑖𝑡𝑒𝑟 (𝑝𝑓𝑢 𝑚𝑙⁄ )
∗ 𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 (µ𝑙) 

 

Virus aliquots were thawed carefully for a few seconds in the water bath 

(37 °C). Subsequently, aliquots were vortexed and sonicated three times 

30 seconds each and intercalated on ice again. Now, the calculated amount of 

virus was diluted in 2 % FBS-supplemented DMEM. Since cells were infected at 

various MOIs, a serial dilution, starting with the calculated virus dilution, was 

prepared. Therefore, virions were diluted in DMEM supplemented with 2 % 

FBS. 

DMEM was removed from the cells and each well was washed carefully with 

0.5 ml PBS. Next, 100 or 150 µl 2 % FBS-supplemented DMEM were added to 

each well to prevent cells from drying out. Now, cells were either infected with 

GLV-1h254 at ascending viral concentrations in 100 or 150 µl 2 % FBS-

supplemented DMEM or mock-treated (only medium was added). Plates were 

incubated at 37 °C and agitated gently every 20 minutes to allow the virus 

suspension to disperse equally. At 1.5 hpi, the inoculum was removed and 

every well was filled with 500 µl 10 % FBS-supplemented DMEM. Respectively, 

in experiments where it was important to keep the inoculum on the cells, 200 µl 

22 % FBS-supplemented DMEM were added without removing the inoculum to 

receive a final concentration of 10 % FBS-supplemented DMEM. Plates were 

stored in the incubator for maximum 96 hpi. 

2.2.4.1.2 Single virus infection with MeV-GFP  

Plates were labelled as described above. Cells were seeded confluence-

optimized in 24-well plates and incubated overnight, respectively for two nights. 

Cell adherence and confluence were evaluated under a light microscope prior to 

infection. The current cell count was calculated as detailed in section 2.2.3.1 for 

each cell line separately.  
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The measles vaccine virus (MeV-GFP) was thawed on ice and vortexed briefly. 

Every aliquot was used only once after thawing. To infect cells at various MOIs, 

a serial dilution with room-tempered OPTI-MEM® was prepared. Next, the 

medium was removed carefully from the wells, cells were washed with PBS and 

150 µl of OPTI-MEM® were pipetted to the cells. The infection medium or only 

OPTI-MEM® were added in 100 µl suspension per well. Plates were incubated 

at 37 °C and agitated gently every 20 minutes until 1.5 hpi. After 1.5 hrs 

absorption period, the inoculum was removed and replaced by 500 µl of 

10 % FBS-supplemented DMEM. Plates were placed in the cell culture 

incubator for 96 hpi.  

2.2.4.1.3 Combined infection with VACV GLV-1h254 and MeV-GFP  

For each experiment we needed at least four 24-well plates and an additional 

plate for cell counting, labelled as mentioned above. For Keyence microscopy, 

cells were plated in an open µ-Slide with 8 wells, respectively. After plating, 

cells were incubated at least overnight. The next day, the plates were examined 

for cell adherence and extent of confluence. On the infection day, the current 

cell count was calculated as explained above. Each virus and its serial dilution 

was prepared separately. VACV was treated as described in section 2.2.4.1.1. 

A serial dilution of measles vaccine virus was performed by the use of 2 % FBS-

supplemented DMEM instead of OPTI-MEM®. 

Now, medium was removed from the plates, cells were washed with PBS and 

150 µl of 2 % FBS-supplemented DMEM were added to each well. Cells were 

inoculated with the first virus at various MOIs in a volume of 100 µl/well or 

mock-treated. The plates were stored in the incubator and swayed in 20-

minutes periods. The second virus was added in a volume of 50 µl at diverse 

time points, while mock-treated and single-infected cells were inoculated with 

50 µl 2 % FBS-supplemented DMEM.  

At 1.5 hpi with the second virus, 200 µl DMEM + 22 % FBS were added. Culture 

plates were stored in the incubator for 96 hpi with the first virus. 
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2.2.4.2 Amplification of MeV 

To produce a sufficient amount of measles vaccine viruses, Vero cells were 

plated in 10 % FBS-supplemented DMEM in 15 cm culture dishes, each dish 

containing 1 x 107 cells. Culture dishes were incubated overnight at 37 °C. Vero 

cells were chosen for amplification, as they guarantee an optimal environment 

for the replication of measles vaccine virus (Griffin, 2001).  

On the infection day, medium was removed from subconfluent monolayers, 

cells were washed once with PBS and incubated with 9 ml OPTI-MEM®. 

Subsequently, Vero cells were infected with MeV-GFP at MOI 0.03 in 1 ml 

OPTI-MEM® and incubated for 3 hrs at 37 °C. During this incubation period, 

dishes were gently agitated for an equal disperse of the virus suspension. The 

inoculum was discarded at 3 hpi, and culture dishes were filled with 20 ml 

10 % FBS-supplemented DMEM. Dishes were stored in the incubator for 

another 48 hrs. 

Best conditions for harvest were indicated on the one hand by the extent of 

syncytia building, and on the other hand by the attachment of virus particles to 

the cell surface. Accordingly, virus spreading and syncytia building were 

examined under both a light and a fluorescence microscope daily. On the 

harvesting day, supernatant was removed and 1 ml OPTI-MEM® was added to 

each dish. The cell layer was popped off with a cell scraper and cells were 

assembled in a 50 ml conical tube. The tube was quickly frozen in liquid 

nitrogen at -160 °C and subsequently stored at -80 °C. This freezing process 

broke off the cell membranes and released the virus particles. Next, the frozen 

tube was thawed quickly in a water bath at 37 °C, vortexed and centrifuged at 

4000 x g for 15 minutes at 4 °C. The centrifugation process separated the cell 

remnants, which accumulate in a cell pellet, from the virus particles in the 

supernatant. The virus suspension was aspirated and transferred into a fresh 

tube, vortexed and distributed to cryo tubes at various volumes (100 µl, 200 µl 

and 500 µl). Finally, the virus aliquots were stored at -80 °C. The amplification 

of MeV-GFP was kindly supported by Irina Smirnov. 
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2.2.4.3 Production of vaccinia virus aliquots out of a stock solution 

The vaccinia virus stock solution (VACV GLV-1h254) was kindly provided by 

Genelux Corp., San Diego, USA.  

To yield a more diluted virus suspension, the highly-concentrated virus stock 

solution needed to be diluted and distributed to smaller aliquots. TRIS base 

buffer (10 mM, pH 9), containing 5 % sucrose, was used as dilution volume. 

Accordingly, the virus stock solution was thawed quickly at 37 °C in the water 

bath, vortexed and sonicated 3 x 30 seconds. Thereafter, the stock was stored 

on ice again. Next, 45 µl of the stock solution were pipetted into a 1.5 ml conical 

tube, filled up with 855 µl of sucrose-supplemented TRIS base buffer and 

vortexed again. The obtained virus dilution was now allocated to approximately 

29 cryo tubes, 30 µl each, and stored at -80 °C. 

2.2.4.4 Titration of viruses 

To identify the virus titer of an unknown virus solution, it is essential to perform 

titration assays, both for oncolytic vaccinia and measles vaccine virus.  

2.2.4.4.1 Titration of vaccinia virus 

For the titration of virus aliquots, CV-1 cells were plated in 24-well plates at a 

density which resulted in a confluent monolayer (in this case 4 x 104 cells/well) 

after 24 hrs incubation time. The CV-1 cell line was chosen as it provides a 

suitable environment for the replication of vaccinia virus particles (Liu et al, 

2017). The next day, three virus aliquots were thawed quickly at 37 °C in a 

water bath, vortexed and sonicated 3 x 30 seconds before stored on ice again. 

Serial dilutions with factors from 10-2 to 10-7 were prepared in 2 % FBS 

supplemented DMEM. All tubes were stored on ice again. To guarantee a 

reliable value of the mean, the experimental steps described so far were 

repeated in a second approach using the same aliquot. Furthermore, aliquot 

two and three were processed likewise. Additionally, the whole titration assay 

was repeated using another three aliquots some days later.  
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DMEM was removed from the wells and CV-1 cells were infected in 200 µl/well 

at various dilutions in duplicates. Inoculated plates were stored in the incubator 

at 37 °C for one hour, interrupted only by gentle agitation every 20 minutes. 

Subsequently, 1 ml of CMC medium was added to each well, and plates were 

stored in the incubator for another 48 hrs. The CMC medium prohibits a further 

virus spreading through the medium. As a consequence, virus dispersion is 

limited to direct cell-to-cell contact, which forms plaque units (Baer & Kehn-Hall, 

2014). At 49 hpi, 250 µl crystal violet stain were brought carefully to each well 

using a manual repeating pipet. Thereafter, plates were stored overnight at 

room-temperature. Crystal violet terminates the virus infection and stains the 

wells (Baer & Kehn-Hall, 2014). The next day, supernatants were removed, 

plates were washed with H2Odd and dried under UV light. For titration, every well 

was examined with the naked eye under a light source for plaque forming units 

(pfu). These pfu appeared as pale spots on the violet stained background. In 

order to obtain a reliable result, plaques were only counted in wells, which 

showed 10 to 100 pale spots. For the determination of the virus titer, expressed 

in plaque forming units per ml (pfu/ml), we used the following calculation:  

 

𝑉𝐴𝐶𝑉 𝑡𝑖𝑡𝑒𝑟 (𝑝𝑓𝑢 𝑚𝑙) =  
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑙𝑎𝑞𝑢𝑒 𝑐𝑜𝑢𝑛𝑡 (𝑝𝑓𝑢) ∗ 5

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 0.2 𝑚𝑙 (𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) ∗ 5
⁄  

 

The volume of infection (200 µl/well) and the average plaque count were 

multiplied by 5 to obtain the pfu in a volume of 1 ml virus suspension per dilution 

factor (titer is expressed in pfu/ml). The titration of VACV GLV-1h254 was kindly 

supported by Dr. Martina Schell and Dr. Julia Beil.  

 



Material and Methods 

 

46 

 

 

10-4

10-5

10-6

10-7

200 µl virus suspension/wellB

10-3
10-2 10-4 10-5 10-6 10-7

* 2 % FBS-supplemented DMEM

A

4 µl of

virus stock 

solution



   Material and Methods  

  

47 
 

 

 

Figure 7. Performance of a serial dilution of vaccinia virus stock solution (A), infection of 
CV-1 cells at various dilution factors (B) and crystal violet stained plate (C) 

First, 4 µl of the virus stock solution were pipetted to a 1 ml conical tube prepared with 396 µl 
2 % FBS-supplemented DMEM. The volume was resuspended and vortexed rigorously, then 
100 µl were transferred to the next tube, which was already filled with 900 µl medium. 
Resuspending and vortexing were repeated, before 100 µl virus suspension were transferred to 
the next tube. This way a serial dilution with six dilution factors (10-2 to 10-7) was established 
(A). For titration assay, CV-1 cells, plated in a 24-well plate, were infected in 200 µl virus 
suspension/dilution factor (from 10-4 to 10-7) in duplicates and incubated at 37 °C (B). For 
plaque counting, the inoculated plate was dyed using crystal violet stain. After a 48 hrs-
incubation period with CMC medium, 250 µl crystal violet stain were brought to each well, the 
plate was stored at room-temperature. The next day, supernatant was discarded and plates 
were washed and dried under UV light. After drying, plaque forming units appeared as pale 
spots on the violet stained background (C).  
  

10-4

10-5

10-6

10-7

C
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2.2.4.4.2 Titration of measles vaccine virus 

To identify the unknown titer of a measles vaccine virus stock, we performed a 

TCID50 (tissue culture infective dose 50, (Rabenau et al, 2015)) endpoint 

dilution assay, using calculations by Spearman and Kärber (Kärber, 1931; 

Spearman, 1908). Due to reasons of convenience, the received TCID50 unit was 

subsequently converted into pfu/ml.  

First, a sufficient amount of Vero cells was harvested from culture flasks. The 

gained cell suspension was incubated at 37 °C in the water bath before further 

processed. Next, eight wells of a 96-well plate were filled with 270 µl OPTI-

MEM® each. One aliquot of the measles vaccine virus stock was thawed 

carefully as described above (section 2.2.4.1.2). Subsequently, 30 µl of the 

virus suspension were pipetted into the first cavity of the prepared 96-well plate 

and resuspended 5 x. Furthermore, 30 µl of this well were aspirated and 

transferred into the next and resuspended 5 x. This step was repeated until a 

serial dilution with eight dilution factors (10-1 to 10-8) was performed. Now, using 

an 8-channel electric pipet and fresh 200 µl pipet tips, the prepared serial 

dilution was transferred in sextuplicates (30 µl/well) into a fresh 96-well plate. 

The experimental steps described so far were repeated in a second approach.  
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Figure 8. Performance of a serial dilution of measles vaccine virus stock solution (A) and 
preparation of a 96-well plate for titration (B) 

Eight wells of a 96-well plate (A) were filled with 270 µl OPTI-MEM®. Next, 30 µl of the thawed 
virus stock solution were pipetted to the first well, resuspended 5 x and transferred to the 
proximate well, until a serial dilution with eight dilution factors (10-1 to 10-8) was completed. Now, 
using an 8-channel electric pipet, the prepared serial dilution was transferred in sextuplicates 
(30 µl/well) into a fresh 96-well plate (B). 
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Vero cells were now transferred in 200 µl 5 % FBS-supplemented DMEM/well at 

a density of 2 x 104 cells/well to the inoculated 96-well plate. Cells and measles 

virus particles were incubated for four days at 37 °C and observed under a 

fluorescent microscope. The TCID50 was now determined by counting every 

fluorescent cavity as “positive”, irrespective of the extent of cytopathic effect.  

To gain a stable value of the stock titer, another virus aliquot was titrated in the 

described manner. The TCID50, or rather the pfu/ml, was expressed as average 

of the mean. 

TCID50

𝑚𝑙
(

𝑝𝑓𝑢

𝑚𝑙
) =  

101+∑ 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑤𝑒𝑙𝑙𝑠−0.5 𝑥 log 10

30 µ𝑙 (𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 𝑣𝑖𝑟𝑎𝑙 𝑠𝑡𝑜𝑐𝑘 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
 

 
TCID50-formula by Spearman and Kärber 

 

The titration of measles vaccine virus was performed by Dr. Martina Schell. 

 Microscopy 

Before plating and on the infection day, cells were observed at various 

magnifications with a light microscope to check for contamination, cell 

distribution and confluence. During trials, virus-encoded GFP and TurboFP635 

expression were visualized several times under a fluorescence microscope with 

suitable excitation and emission wavelengths, or observed constantly in a 

separate trial (section 3.5.2) using the All-in-One BZ-9000 fluorescence 

microscope.  

A high-definition camera (F-view, Soft Imaging System GmbH) was connected 

to the microscope (IX50, Olympus) to take fluorescence pictures by applying the 

Olympus U-RFL-T function. Bright-field pictures were taken with a 4–10 x 

objective with the PhL, respectively the Ph1/PhC ocular. Captured images were 

processed with the Analysis 3.1 software (Soft Imaging System GmbH) and 

merged to yield overlays by Adobe Photoshop 7.0 (Adobe Systems, Mountain 

View, CA). Digital images (All-in-one BZ-9000 fluorescence microscope) were 

further processed with the BZ-II software. Here, haze reduction, black balance 

and the superimposing function were applied in order to receive sharp-cut 
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images. All images were adjusted with Microsoft PowerPoint 2010, respectively 

Microsoft PowerPoint 2013. 

 Determination of cell mass and cytotoxic effects 

After incubation with oncolytic viruses, we needed to quantify the cytotoxic 

effect of virus infection. Therefore, Sulforhodamine-B (SRB) assay (Skehan et 

al, 1990) was performed. The SRB assay measures the residual cell mass, but 

it does not differentiate between viable and dead cells (Vichai & Kirtikara, 2006). 

Therefore, results obtained by SRB were compared to those of MTT, a cell 

viability assay.  

2.2.6.1 SRB assay 

The SRB assay uses the characteristics of Sulforhodamine-B as an acid dye for 

cell staining. Thus, the remaining cell mass can be quantified in drug-toxicity 

trials. SRB binds to cellular proteins when cells were fixed with TCA or 

comparable acids before. After dissolution under mild basic conditions, the 

optical density (OD) is measured by using a microtiter plate reader (Tecan 

GENios). The OD correlates linear with the protein content and therefore with 

the remaining cell count (Skehan et al, 1990).  

The exact procedure includes the following steps. Medium was removed from 

the wells at 96 hpi the longest and cells were washed with cold (4 °C) PBS. 

Thereafter, cells were fixed with 250 µl cold (4 °C) TCA (10 % w/v) per well. 

Plates were incubated at 4 °C for at least 30 minutes. After this time period, 

TCA was removed and discarded, plates were washed three times with tap 

water, before dried under UV light for approximate 15 minutes. Subsequently, 

plates were stored in a heating cabinet (40 °C) for at least 12 hrs or overnight to 

ensure the drying process.  

In a next step, SRB dye and 1 % acetic acid needed to be prepared. 250 µl of 

room-tempered SRB dye/well were added to the cells and incubated for 

10 minutes. Thereafter, plates were washed accurately with 1 % acetic acid 

until no unbound staining solution remained. To double-check, plates were 
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tapped firmly on absorbent paper. Next, plates were ranged in the heating 

cabinet (40 °C) until they were dried completely and either measured directly or 

stored in a dark place for a couple of days. 

For the measurement of OD at 550 nm, 500 or 1000 µl/well TRIS base (10 mM, 

pH 10.5), depending on the colour intensity, were pipetted to the cells. Plates 

were stored on ice and agitated gently until the stain was dissolved completely. 

Subsequently, 80 µl/well in duplicates were transferred into a 96-well plate 

consistent with a microtiter plate reader. Results were further calculated with 

Microsoft Excel 2010. The following statistical analysis was performed with 

GraphPad Prism4 and GraphPad Prism6 (GraphPad Software). Values of 

treated cells were normalized on mock-treated cell data (set as 100 %) unless 

otherwise specified.  

2.2.6.2 MTT assay 

As another colorimetric assay, the MTT assay quantifies cell metabolic activity 

and therefore cell viability. Only viable cells convert 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide, a pale yellow tetrazolium salt, into blue 

colored formazan crystals. The OD, measured by a microtiter plate reader, is 

directly proportional to the amount of living cells (Mosmann, 1983).  

First, MTT stock solution needed to be prepared and protected from light, thus, 

the tube was wrapped with aluminum foil at any time. After various incubation 

periods with oncolytic viruses, plates were washed carefully with PBS. Next, 

250 µl MTT solution/well were added for 2 hrs at 37 °C. Thereafter, the 

supernatant was aspirated carefully and discarded. Plates were wrapped 

quickly with a strip of parafilm and stored in the refrigerator at -20 °C. For 

measurement, 1 ml of acidified isopropanol (1 N HCl in isopropanol) was added 

to each well and plates were placed on a shaker until the dye dissolved 

thoroughly. Next, 200 µl of each well were transferred to a 96-well plate 

consistent with a microtiter plate reader. Measurement was now performed 

using a 570 nm test wavelength and a 650 nm reference wavelength. The 

received data was calculated with Microsoft Excel 2010 and Microsoft Excel 



   Material and Methods  

  

53 
 

2013. The following statistical analysis was performed with GraphPad Prism4 

and GraphPad Prism6 (GraphPad Software).  

 Polyacrylamide gel electrophoresis (PAGE) and western blot 

2.2.7.1 Production of protein lysates 

Cells were plated in 24-well plates and incubated overnight as described before. 

The next day, wells were either infected by VACV at defined MOIs in 50 µl/well 

2 % FBS-supplemented DMEM, or cells were mock-treated. Thereafter, plates 

were sequentially infected at 6 hpi with MeV-GFP. At the end of the incubation 

period, supernatant was removed and wells were washed carefully with PBS. 

PBS was not discarded but pooled to reduce cell loss due to this washing step. 

Next, 125 µl EDTA-Trypsin/well were applied for the detachment of the cell 

layer. Identically treated cells were now collected in tubes. Wells were washed 

with 500 µl 10 % FBS-supplemented DMEM and the volume was transferred to 

the belonging tube to inactivate the EDTA-Trypsin. PBS and collected cells 

were merged, before tubes were centrifuged at 1200 rpm for 3 minutes at 

22 °C. In the meantime, the prepared lysis buffer was completed by adding one 

tablet complete mini, a protease inhibitor. Accordingly, supernatant was 

discarded from the centrifuged tubes, 450 µl of the finished lysis buffer were 

pipetted to each cell pellet and resuspended thoroughly, before the tubes were 

sonicated 3 x 30 seconds. Subsequently, the obtained protein lysates were 

centrifuged at 4600 rpm for 10 minutes at 4 °C. The supernatant was aspirated 

and distributed to the prepared reaction tubes, 150 µl per tube. Lysates were 

then stored at -20 °C.  

2.2.7.2 Discontinuous SDS-Polyacrylamide gel electrophoresis 

Electrophoresis, a method to investigate the mobility of macromolecules in an 

electric field, is widely used to categorize proteins according to their size, 

confirmation and charge. By using Sodium-Dodecyl-Sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE), proteins are separated exclusively according to 

their size. 2-mercaptoethanol and SDS are attached to linearize proteins, SDS 
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additionally charges polypeptides equally negative dependent on their 

molecular weight. In order to sharpen bands, a discontinuous SDS-PAGE 

(Laemmli, 1970), containing a 1.5 mm stacking gel with 5 % acrylamide and a 

resolving gradient gel with 8 to 15 % acrylamide, was performed.  

First, the gel caster was assembled and the resolving gradient gel was 

compounded using 8 % and 15 % resolving gel solutions. APS and TEMED 

were added at last because they start the polymerization. Approximately 10 ml 

of both approaches (8 and 15 % resolving gel solutions) were poured between 

the two glass plates using a pulsatile pump, which is necessary to provide a 

controlled mixture. Next, 1 ml isopropanol was pipetted on top to flatten the gel. 

After the resolving gel was polymerized, isopropanol remnants were outpoured 

and the gel was overlaid with the prepared stacking gel. Before the stacking gel 

was polymerized completely, a 15-pocket comb was inserted.  

Prior to use, the loading buffer was adjusted by adding 2-mercaptoethanol to 

cleave disulfide bonds. Now, an appropriate volume of each protein lysate was 

transferred to 1.5 ml reaction tubes. Subsequently, a calculated volume of the 

loading buffer (1/5 of the volume of each protein lysate) was added to each 

sample, and lysates were stored on ice or at -20 °C. Now, the loaded lysates 

were centrifuged at 13000 rpm for 1 minute, denatured at 95 °C for 10 minutes 

and once again centrifuged. Tubes were stored on ice before reaching room-

temperature.  

The gel cassette was now placed in a vertical electrophoresis chamber, which 

was filled with PAGE buffer (1 x). The inserted comb was removed carefully and 

the remaining cavities were flushed out with PAGE buffer (1 x). Each sample 

was pipetted at a defined volume into the slots. The first slot was reserved for 

the rainbow marker (Full Range Rainbow Protein Marker), which was used as 

molecular weight standard. All filled slots were covered with a small layer of 

PAGE buffer (1 x). Now, the assembly of the electrophoresis chamber was 

completed and the tank was filled up with PAGE buffer (1 x) to the rim. 

Electrophoresis was started at a higher voltage (100 V) for 30 minutes. 
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Thereafter, 55 V were applied overnight until the bromophenol blue front 

reached the edge of the resolving gel. 

2.2.7.3 Western Blot 

To visualize macromolecules, separated by discontinuous SDS-PAGE, proteins 

were transferred from the resolving gel to a membrane by blotting technique 

and afterwards detected by linked antibodies (Burnette, 1981; Towbin et al, 

1992). 

A PVDF membrane, which is often preferred when compared to nitrocellulose 

membranes (Mahmood & Yang, 2012), was slewed in methanol, rinsed with 

filtered water (H2Odd) and incubated with transfer buffer (1 x) on a shaker for 

15 minutes. Additionally, two sponges and three Whatman papers, which are 

necessary to assemble the blot sandwich, were soaked in transfer buffer (1 x). 

The glass plates of the gel caster (section 2.2.7.2) were removed carefully and 

the stacking gel was separated from the resolving section. Next, the resolving 

gel was placed upon the prepared membrane, air bubbles were prevented by 

the aid of a glass rod. Covered by transfer buffer (1 x), the blot sandwich was 

assembled and fixed accurately in a suitable blotting system. Blotting was 

performed at 400 mA for 90 minutes at 4 °C. Since the membrane was oriented 

in direction of the anode, negative loaded proteins were transferred to the 

membrane.  

After blotting, unspecific binding of antibodies was prohibited by blocking the 

PVDF membrane with 5 % milk in TBS-Tween (2.5 g milk powder, resolved in 

50 ml TBS-Tween) for at least 90 minutes. Thereafter, the membrane was 

rinsed thoroughly with TBS-Tween for 5 minutes, wrapped in transparent film 

and cut into various pieces dependent on the expected positions of the bands. 

The visible rainbow marker served as a landmark, since each coloured line of 

the marker stands for a specific molecular weight. 

Next, antibody solutions were diluted as detailed in section 2.1.2. Primary 

antibodies were incubated with their belonging pieces of the PVDF membrane 

on a shaker at 4 °C overnight. The following day, diluted antibody solutions 
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were recycled and the pieces of the membrane were washed 3 x 10 minutes 

with TBS-Tween to remove unstable bounded antibodies. For binding of 

secondary antibodies, directed against mouse IgG or rabbit IgG, matching 

pieces were incubated at room-temperature for 45 minutes under gentle 

agitation.  

The secondary antibody is linked to an enzyme called horseradish peroxidase 

(HRP). This enzyme converts ECL solution, which contains luminol, under basic 

conditions into a reaction product generating luminescence. The light intensity, 

which is dependent on the amount of bound protein, exposes and develops an 

X-ray film (HyperfilmTM ECL), and thereby visualizes the antibody-linked 

proteins on the membrane.  

Accordingly, after incubation with the secondary antibody, the pieces were 

rinsed 4 x 15 minutes with TBS-Tween. By avoiding air-bubbles, detection 

reagent 1 and 2 of the ECL solution were mixed at equal volumes and 

incubated with the pieces for 1 minute. Thereafter, the pieces were fixed in a 

photo cassette and exposed to a sensitive photo film (Fuji Photo Film).  

For detection of proteins with similar molecular weights, it was necessary to 

remove the linked primary and secondary antibodies. In order to do so, the 

pieces of the membrane were incubated for 30 minutes at 50 °C with a stripping 

buffer, washed 6 x 10 minutes with TBS-Tween and blocked with 5 % milk in 

TBS-Tween as described above. The detection process was then repeated with 

the application of the suitable primary antibody. 
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3 Results 
 

The aim of this thesis was to test a novel approach for overcoming resistance of 

tumor cells against virotherapy by performing sequential infections applying two 

completely different virus types, i.e., oncolytic vaccinia virus together with 

measles vaccine virus. 

Accordingly, preliminary tests with both viral vectors were performed to 

determine “appropriate” multiplicities of infection (MOIs), defined as viral 

concentrations at which the tumor cell mass was reduced less than 25 % in a 

single infection approach. Thus, highly resistant human tumor cell lines, such as 

ACHN, HCT15, KM12, SRH and CCS, were seeded at equal plating density 

and infected first with oncolytic VACV GLV-1h254 at various MOIs (section 

3.1.1). 

Based on the observation that each tumor cell line required different plating 

densities to reach confluence, we compared several initial cell counts to identify 

the most suitable one (section 3.1.2.1). As a proof of principle, xCELLigence 

trials with ACHN and KM12 cells were performed (section 3.1.2.2). Single 

infection approaches with VACV were repeated at confluence-optimized plated 

cells (section 3.1.3) and executed with MeV-GFP for the first time (section 

3.1.4).  

In order to guarantee survival of untreated cells until the end of the trial, single 

infection approaches with VACV were modified and repeated for ACHN, HCT15 

and KM12 cells (section 3.1.5). Eventually, we were able to examine different 

orders of virus treatment and different time points for secondary virus infection 

in sequential infection approaches (section 3.2). To further investigate whether 

an improved susceptibility to virus infection of double-infected cells was due to 

synergistic or additive effects, we performed sequential infections at different 

dosages of the second virus (section 3.3).  

In addition, a Keyence microscope was implemented to get a closer look at the 

observed phenomenon of “viral competition” (section 3.5.2). Moreover, data 
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obtained from SRB assays were compared to those from MTT assay to confirm 

the results and detect potential sources of error (section 3.4). 

Finally, electrophoresis and western blot were implemented to investigate the 

expression of virus-specific proteins (section 3.6).  

3.1 Identification of a suitable MOI for both viral vectors by single 

infections 

The resistance of human tumor cell lines such as ACHN, HCT15, KM12, SRH 

and CCS upon virotherapy is relative. Here, highly resistant cell lines were 

defined by cell mass reduction of less than 25 % compared to uninfected 

controls at 96 hpi. In order to determine an appropriate MOI, single virus 

infections were performed with both viral vectors. Prior to infection trials, 

vaccinia and measles vaccine virus titers were determined according to the 

methods described in section 2.2.4.4.  

 Preliminary tests for vaccinia virus GLV-1h254 infection 

As suggested in previous work from C. Raff (unpublished data) and M. Noll 

(Noll et al, 2013), all three selected cell lines of the NCI-60 panel (ACHN, 

HCT15 and KM12) as well as a sarcoma (CCS) and a rhabdomyosarcoma 

(SRH) cell line were seeded equally in 24-well plates. Cells were incubated 

overnight and 5 x 104 cells/well were assumed to comply with current cell 

counts. On the infection day, cells were either infected in quadruplicates with 

VACV GLV-1h254 at MOI 0.0001, 0.001, 0.01, 0.1 and 1 or mock-treated. 

During the incubation period, expression of virus-encoded TurboFP635 was 

observed daily under a fluorescence microscope (Figure 9). At 96 hpi, plates 

were analyzed by SRB assay (Figure 10).   

 

As visualized in Figure 9, we noticed differences between the cell lines referring 

their reached extent of confluence one day post infection (1 dpi). Whereas 

ACHN cells grew subconfluent, and HCT15 cells reached approximately 50 % 

confluence, KM12, SRH and CCS cells revealed a slower growth behavior. For 

CCS cells there were no pictures archived at 1 dpi. 
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Figure 9. Overlays of fluorescence and bright-field pictures from VACV single-infected 
human tumor cell lines, 1 dpi 

Cells were seeded at equal plating densities (5 x 104 cells/well in 24-well plates). Cells were 
either infected with VACV GLV-1h254 at MOI 0.0001, 0.001, 0.01, 0.1 and 1 or mock-treated. 
Fluorescence and bright-field pictures were taken at 1 dpi and overlaid afterwards. Infected cells 
show TurboFP635 expression as VACV marker for viral gene expression (HCT15 at 
MOI 0.0001: red signal is based on an artifact). Scale bar in the right lower corner applies to all 
panels. 

  

As detailed in Figure 10, ACHN and HCT15 cells were defined highly resistant 

at MOI 0.01, according to the specification given above, when analyzed by SRB 

assay. At higher MOIs cell masses were reduced more than 25 %. For KM12, 

SRH and CCS cells it was difficult to make a statement because of large 

standard deviations of means of three independent experiments. As a 

consequence, the development of confluence dependent on plating densities 

was evaluated next. 

 

 

 

800 µm 
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Figure 10. Identification of a suitable MOI in equally plated tumor cell lines infected with 
VACV GLV-1h254 in SRB assays 

Cells were plated at 5 x 104 cells/well. The next day (except CCS: one data set was obtained 
from cells infected 2 days after plating), cells were either infected in quadruplicates with VACV 
at MOI 0.0001, 0.001, 0.01, 0.1 and 1 or mock-treated. At 96 hpi, cells were fixed and the 
remaining cell mass was analyzed by SRB assay. Mock-treated (uninfected) controls were set 
100 %. Dotted lines highlight the 50 and 75 % remaining cell mass. Values are means of three 
independent experiments (except ACHN: Values until MOI 0.1 are means of four independent 
experiments, for MOI 1 two data sets are integrated). Error bars: SD. 
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 Evaluation of cell density and confluence 

To guarantee optimal conditions for uninhibited cell growth, as well as for virus 

infection and spreading, the development of confluence was analyzed. Thus, so 

called “confluence trials” were performed for each cell line. Additionally, a proof 

of principle was generated by xCELLigence trials using ACHN and KM12 cells.  

3.1.2.1 Confluence trials 

We evaluated the development of confluence, dependent on several plating 

densities, and studied cell adherence and growth rate. Furthermore, we took 

note of medium color change. ACHN, HCT15, KM12, SRH and CCS cells were 

plated at densities of 5 x 104, 1 x 105 and 2 x 105 (except SRH) cells/well in 24-

well plates. KM12 cells were additionally seeded at 4 x 105 cells per well. Cells 

were incubated for 6 days and observed daily under a light microscope. The 

reached extent of confluence was documented, expressed as an estimated 

percentage (Figure 11). 

At a plating density of 5 x 104 cells/well, ACHN cells adhered overnight and 

reached approximately 50 % confluence within two days. At this plating density, 

HCT15 and CCS cells stuck to the bottom not until two days after plating. At a 

density of 1 x 105 cells/well, ACHN, HCT15 and SRH cells reached a plateau at 

day 4 (ACHN, HCT15), respectively at day 3 (SRH). At day 5, ACHN and 

HCT15 cells showed medium color change from red to yellow, which indicated 

reduced pH values. CCS and KM12 cells, however, adhered insufficiently to the 

bottom and tended to detach at higher densities although cells did not reach 

total confluence. Additionally, KM12 cells agglomerated quickly and 

independent of the initial cell count and the medium color turned yellow at day 4 

(2 x 105 cells/well), respectively at day 5 (1 x 105 cells/well).  
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Figure 11. Extent of confluence during 6 days of incubation 

ACHN, HCT15, KM12, SRH and CCS cells were plated at 5 x 104, 1 x 105 and 2 x 105 (except 
SRH) cells/well in 24-well plates. KM12 cells were additionally seeded at 4 x 105 cells/well. Cell 
lines were examined under a light microscope for six days and evaluated by the naked eye. The 
extent of confluence related to initial cell counts is diagrammed (expressed as a percentage). 
Dotted lines highlight 50 and 100 % confluence of the cell layer.  

 

Accordingly, initial cell counts were retrospectively determined for each cell line 

in order to optimize survival of uninfected controls until 96 hpi. Unless otherwise 

specified, cells were seeded as detailed in Table 1 for all following experiments.  
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Table 1. Recommended plating densities for each cell line to build optimal confluence in 
24-well plates 

The table shows the recommended number of days before infection and plating densities at 
which cells should be plated in 24-well plates. dbi = days before infection. 

Cell line Days before infection (dbi), plating densities 

ACHN 1 dbi, 5 x 104 cells/well 

HCT15 2 dbi, 5 x 104 cells/well 

KM12 2 dbi, 4 x 105 cells/well 

SRH 2 dbi, 5 x 104 cells/well 

CCS 2 dbi, 2 x 105 cells/well 

  

3.1.2.2 xCELLigence trial 

Confluence trials, as depicted in section 2.2.3.3, were necessary to determine 

suitable initial cell counts in 24-well plates. Nevertheless, the development of 

confluence was evaluated by the naked eye only. Consequently, cells were 

further analyzed by xCELLigence system to demonstrate a proof of principle. If 

the plating density is chosen too high, uninfected controls will grow over, which 

induces growth inhibition and cell death. Additionally, the initial cell count, and 

therefore the extent of confluence, affects efficiency of infection and spreading 

of vaccinia virus particles.  

Prior to xCELLigence trial, initial cell counts suitable for 96-well plates needed 

to be identified. Thus, several plating densities (1 x 105, 5 x 104, 2.5 x 104, 1 x 

104, 5 x 103, 2.5 x 103 and 1 x 103 cells/well) of ACHN and KM12 cells were 

seeded in 96-well plates, and cells thereafter infected with VACV GLV-1h254 at 

MOI 0.1, 1 or mock-treated. Virus spreading and the development of confluence 

were monitored under a fluorescence microscope until 96 hpi.  

As a result, ACHN cells were plated at 1 x 103, 2 x 103, 4 x 103 and 8 x 103 

cells/well, KM12 cells at 2.5 x 103, 5 x 103, 1 x 104, 2 x 104 cells/well in the 

following xCELLigence trial. After 22.5 hrs, cells were infected with VACV GLV-

1h254 at MOI 0.1, 1 or mock-treated. Triton 0.1 % X-100 was used as a positive 
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control for cell death. Electrical impedance was measured at 30-minute intervals 

and all curves were normalized. Unfortunately, KM12 cells did not adhere firmly 

enough; thus, electrical impedance could not be measured sufficiently and 

values were neglected. 

As shown in Figure 12, uninfected controls of ACHN cells plated at low 

densities did still proliferate at 96 hpi. However, mock-treated cells, which were 

seeded at higher cell numbers, hit a plateau (4 x 103 cells/well 90 hpi) or even 

levelled off (8 x 103 cells/well 60 hpi). Interestingly, with higher cell numbers the 

disparity of the normalized cell index between mock treated and virus infected 

cells increased. In particular, this was evident for the MOI 0.1 treatment group. 

The xCELLigence trial was kindly supported by Dr. Dr. Sascha Venturelli, 

Christian Leischner and Dr. Martina Schell. 
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Figure 12. xCELLigence in real-time monitoring of cell proliferation 

ACHN cells were plated in triplicates at densities of 1 x 103, 2 x 103, 4 x 103 and 
8 x 103 cells/well. At 22.5 hrs after seeding, cells were either infected with VACV GLV-1h254 
MOI 0.1, 1 or mock-treated. Triton X-100 0.1 % was used as positive control for cell death. Cell 
index was continuously monitored in 30-minute intervals, starting after plating the cells. All 
values were normalized (line mark). Error bars: SD. This figure was kindly generated by Dr. Dr. 
Sascha Venturelli.  
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 Identification of a suitable MOI for vaccinia virus GLV-1h254 in 

confluence-optimized plated cells 

As specified above, appropriate MOIs should be determined by infection of 

confluence-optimized plated cells. Thus, HCT15, KM12, SRH and CCS cells 

were seeded as detailed in Table 1. Due to the fact that test conditions for 

ACHN cells did not changed, approaches were not repeated for this cell line.  

On the infection day, cells were inoculated in quadruplicates with VACV at 

MOI 0.0001, 0.001, 0.01 and 0.1 or mock-treated. MOI 1 was no longer applied, 

since cell masses of infected cells were eradicated completely in preliminary 

tests (section 3.1.1). During the incubation period, cells were observed daily 

under a fluorescence microscope. At 96 hpi, cells were fixed and analyzed by 

SRB assay (plates were washed once with tap water before washed 

approximately three times with 1 % acetic acid).  

As shown in Figure 13, virus infection and spreading were monitored by 

observation of virus-encoded TurboFP635. As assumed, the number of infected 

cells increased at ascending viral concentrations and led to plaque forming units 

(HCT15, CCS). Interestingly, although GLV-1h254 formed large plaque forming 

units at MOI 0.01 and 0.1 in HCT15 cells, analysis by SRB assay revealed less 

cell mass reduction than expected (Figure 14). KM12, SRH and CCS cells were 

almost completely infected and subsequently erased at higher MOIs.  

 

 

 

 

 

 

 

 

 

 



Results 

 

68 

 

 

 

 

Figure 13. Overlays of fluorescence and bright-field pictures from VACV single-infected 
human tumor cell lines, confluence-optimized, 4 dpi  

HCT15, KM12, SRH and CCS cells, seeded at confluence-optimized plating densities (Table 1), 
were either single-infected with VACV GLV-1h254 at MOI 0.0001, 0.001, 0.01, 0.1 or mock-
treated. Fluorescence and bright-field pictures were taken at 4 dpi and overlaid afterwards. 
Infected cells show TurboFP635 expression as VACV marker for viral gene expression. Scale 
bar in the right lower corner applies to all panels.  

 

As represented in Figure 14, HCT15 and KM12 cells were defined highly 

resistant at MOI 0.01. At MOI 0.1, however, cell counts were decreased to the 

critical value of 75 % (HCT15) or even lower (KM12). SRH and CCS cells were 

erased almost completely at ascending viral concentrations (MOI 0.01, 0.1). 

When compared to results obtained from SRB assay in section 3.1.1, here, 

means of KM12 cells show lower standard deviations, whereas those of SRH 

and CCS were unimproved. Anyhow, cell masses from SRH and CCS cells 

infected at MOI 0.001, 0.01 and 0.1 were reduced compared to those obtained 

from equally plated cells (Figure 10). Resulting, SRH and CCS cells were 

defined as resistant at MOI 0.0001 according to the definition given above. 

800 µm 
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Figure 14. Identification of a suitable MOI in confluence-optimized plated cell lines 
infected with VACV GLV-1h254 in SRB assays  

Cells were plated as detailed in Table 1. Cells were either infected in quadruplicates with VACV 
at MOI 0.0001, 0.001, 0.01 and 0.1 or mock-treated. At 96 hpi, cells were fixed and the 
remaining cell mass was analyzed by SRB assay. Mock-treated (uninfected) controls were set 
100 %. Dotted lines highlight the 50 and 75 % remaining cell mass. Values are means of three 
independent experiments. Error bars: SD. 
 

 Identification of a suitable MOI for measles vaccine virus MeV-GFP in 

confluence-optimized plated cells  

All five cell lines were seeded according to Table 1 and infected in 

quadruplicates at ascending viral concentrations (MOI 0.001, 0.01, 0.1, 1 and 

10) with MeV-GFP or were mock-treated. Cells were incubated until 96 hpi and 

virus-encoded GFP was observed daily under a fluorescence microscope. At 

96 hpi, infected cells were analyzed via endpoint SRB assay (plates were 

washed once with tap water before washed approximately three times with 1 % 

acetic acid).  
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The number of infected cells, visualized by virus-encoded GFP expression and 

syncytia formation, increased at ascending viral concentrations in all cell lines, 

except for SRH cells where only few infected cells could be visualized 

(Figure 15). At MOI 10, HCT15 cells were barely infected, whereas ACHN, 

KM12 and CCS cells represented the mentioned signs of infection especially at 

higher MOIs. 

 

 

 

Figure 15. Overlays of fluorescence and bright-field pictures from MeV-GFP single-
infected human tumor cell lines, confluence-optimized, 4 dpi 

ACHN, HCT15, KM12, SRH and CCS cells, seeded at confluence-optimized plating densities 
(Table 1), were either single-infected with MeV-GFP at MOI 0.001, 0.01, 0.1, 1, 10 or mock-
treated. Fluorescence and bright-field pictures were taken separately at 4 dpi and overlaid 
afterwards. Infected cells show GFP expression as marker for viral gene expression and 
syncytia formation as cytopathic effect. Scale bar in the right lower corner applies to all panels.  

 

 

When ACHN, HCT15, KM12, SRH and CCS cells were analyzed by SRB assay 

regarding oncolysis (Figure 16), these cell lines responded barely to virus 

infections at MOI 0.001, 0.01 or 0.1. At MOI 1, ACHN, SRH and CCS cells 

showed a cell mass reduction but less than 25 %, whereas HCT15 and KM12 

cells showed almost no tumor cell lysis. It has to be mentioned that cell counts 

of SRH and CCS cells revealed large standard deviations between three 

800 µm 
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independent experiments. At MOI 10, ACHN cells were reduced to nearly 50 %, 

HCT15 and SRH cells showed an increased cytopathic effect above the critical 

value of 75 % but with large standard deviations.  

Cell numbers of KM12 and CCS cells, however, collapsed almost completely at 

the highest MOI. Consequently, MOI 1 was defined as the critical multiplicity of 

infection for MeV-GFP for further experiments concerning ACHN, HCT15 and 

KM12 cells. 
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Figure 16. Identification of a critical MOI for each cell line infected with MeV-GFP in SRB 
assays  
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ACHN, HCT15, KM12, SRH and CCS cells were plated as described in Table 1, and infected in 
quadruplicates with MeV-GFP at MOI 0.001, 0.01, 0.1, 1 and 10 or mock-treated. At 96 hpi, 
cells were fixed and the remaining cell mass was analyzed by SRB assay. Uninfected controls 
were set 100 %. Dotted lines highlight the 50 and 75 % remaining cell mass. Values are means 
of three independent experiments. Error bars: SD. 

 Identification of a critical MOI for vaccinia virus (GLV-1h254) - plotted as 

relative to mock and relative to 0 hrs of infection 

As detailed in section 3.1.3, critical MOIs for vaccinia virus were identified by 

infection of confluence-optimized plated cells. As cell indices of infected cells 

were related to those of uninfected controls, it was essential to guarantee cell 

survival of mock-treated cells at 96 hpi. Until now, we were unable to ensure the 

survival of controls, since plating densities were recommended on data which 

were collected with the naked eye only (section 3.1.2.1). 

Here, single infection approaches with VACV were modified in order to evaluate 

growth characteristics of ACHN, HCT15 and KM12 cells from day to day by 

SRB assay and fluorescence microscopy. We focused on ACHN, HCT15 and 

KM12 cells in all further experiments, since these cell lines were resistant to 

VACV single infection at higher MOIs in contrast to SRH and CCS cells (section 

3.1.3).  

ACHN and HCT15 cells were plated according to recommended initial cell 

counts, listed in Table 1, in 24-well plates. KM12 cells were seeded at several 

densities (5 x 104, 1 x 105 and 2 x 105 cells/well). Cells were incubated overnight 

(ACHN), respectively for two nights (HCT15, KM12). One plate of each cell line 

was fixed prior to infection to obtain an output value (0 hpi). Adhered ACHN, 

HCT15 and KM12 cells (plated at 5 x 104 and 2 x 105 cells/well) were either 

infected with VACV GLV-1h254 in quadruplicates at MOI 0.001, 0.01, 0.05, 0.1 

and 0.5 or mock-treated. KM12 cells plated at 1 x 105 cells/well were either 

infected at MOI 0.001, 0.005, 0.01, 0.05 and 0.1 or mock-treated. Here, MOIs 

were adjusted to obtain the possibility to survey differences between treatment 

groups reliant on minor alterations of virus concentration. At 1.5 hpi, 200 µl 

22 % FBS-supplemented DMEM were added to the wells. Plates were 

incubated for 24, 48, 72 or 96 hpi.  



    Results  

  

73 
 

Virus-encoded TurboFP635 expression was monitored under a fluorescence 

microscope, pictures (Figure 17) were taken prior to analysis by SRB assay. 

Values were plotted either as relative to 0 hrs or as relative to mock at 96 hpi.  

 

As visualized in Figure 17, virus infection and spreading were monitored daily. 

At ascending viral concentrations and days post infection, the number of 

infected cells increased in all cell lines and the characteristic formation of virus 

plaques was detected (ACHN (A), HCT15 (B)). For KM12 (C-E), it became 

obvious that cells agglomerated quickly at all seeding densities. As a 

consequence, for this cell line total confluence was impossible to reach, as 

described before. Additionally, from 2 dpi on, mock-treated KM12 cells 

overgrew when plated at 2 x 105 cells/well (E). 

 

 

 

A 
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Figure 17. Overlays of fluorescence and bright-field pictures from VACV single-infected 
human tumor cell lines, confluence-optimized, 1-4 dpi 

Cells were infected with VACV at MOI 0.001, 0.01, 0.05, 0.1 and 0.5 (ACHN (A), HCT15 (B), 
KM12 plated at 5 x 104 (C) and 2 x 105 cells/well (E)), respectively at MOI 0.001, 0.005, 0.01, 
0.05 and 0.1 (KM12 plated at 1 x 105 cells/well) (D) or mock-treated. Fluorescence and bright-
field pictures were taken every day (1-4 dpi) and overlaid afterwards. Infected cells show 
TurboFP635 expression as VACV marker for viral gene expression and plaque formation. Scale 
bar in the right lower corner applies to all panels.  

 

The corresponding analysis of the treated cells by SRB viability assay revealed 

that mock-treated controls of ACHN and HCT15 cells still proliferated at 96 hpi 

(Figure 18 on the left (0 hrs)). Cell indices of uninfected KM12 cells, however, 

D 

E 

800 µm 
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hit a plateau when plated at 5 x 104 (at 96 hpi) and 1 x 105 cells/well (at 72 hpi) 

or even leveled off (2 x 105 cells/well at 96 hpi). It has to be noted that results 

from KM12 cells were either means of three independent experiments (1 x 105 

cells/well) or of two experiments (2 x 105 cells/well), respectively one data set (5 

x 105 cells/well). As a result, recommended plating densities for ACHN and 

HCT15 cells (Table 1) were maintained. For KM12 cells, 1 x 105 cells/well was 

chosen as new plating density. 

As expressed in Figure 18 on the right, MOI 0.01 was verified as suitable value 

in single infection approaches for ACHN and HCT15 cells, whereas MOI 0.005 

was determined as appropriate MOI for KM12 cells applied in all further 

experiments. 
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Figure 18. Identification of a suitable MOI for each cell line infected with VACV GLV-
1h254 in SRB assays, blotted relative to 0 hrs and relative to mock 

Cells were infected in quadruplicates with VACV at MOI 0.001, 0.01, 0.05, 0.1 and 0.5 (ACHN 
(A), HCT15 (B), KM12 plated at 5 x 104 (C) and 2 x 105 cells/well (E)), respectively at MOI 0.001, 
0.005, 0.01, 0.05 and 0.1 (KM12 plated at 1 x 105 cells/well) (D) or mock-treated. At 0, 24, 48, 
72 and 96 hpi, cells were fixed and the remaining cell mass was analyzed by SRB assay. 
Values were either plotted as relative to 0 hrs (on the left), or as relative to mock 96 hpi (on the 
right) with uninfected controls set 100 %. Dotted lines highlight the 50 and 75 % remaining cell 
mass on the right. Values are means of three independent experiments (except KM12 plated at 
5 x 104 cells/well: means of one experiment, plated at 2 x 105 cells/well: means of two 
experiments). Error bars: SD. 
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3.2 Double infection trials 

After threshold MOIs were determined successfully in single infection 

approaches for both viral vectors, application schemes for double infection trials 

were established.  

Here, different orders of viruses, time points of secondary virus infection and 

multiplicities of infection were investigated in order to identify the most effective 

application scheme. Accordingly, ACHN, HCT15 and KM12 cells were seeded 

at adapted plating densities and incubation periods (Table 2). 

 

Table 2. Adapted plating densities for ACHN, HCT15 and KM12 cells in 24-well plates 

The table shows the adapted and recommended number of days and plating densities at which 
tumor cells were plated in 24-well plates prior to infection. 

Cell line Days before infection (dbi), plating densities 

ACHN 1 dbi, 5 x 104 cells/well 

HCT15 2 dbi, 5 x 104 cells/well 

KM12 2 dbi, 1 x 105 cells/well 
 

 Combinatorial treatment - VACV infection prior to infection with MeV 

ACHN, HCT15 and KM12 cells were either infected by VACV GLV-1h254, as 

detailed in section 3.1.5, without application of the highest MOI (0.5 for ACHN 

and HCT15, 0.1 for KM12), or mock-treated.  

At 2, 6 or 12 hpi, cells were either double-infected by MeV-GFP at MOI 1 or 

medium was added to mock-treated and single-infected wells. MeV-GFP single-

infected controls were executed for each time point (2, 6, 12 hpi). Additionally, 

another plate was single-infected by VACV and MeV-GFP to generate single-

infected controls at 0 hrs.  

The expression of virus-encoded marker genes GFP and TurboFP635 was 

monitored daily under a fluorescence microscope. At 96 hpi (in relation to the 
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infection with the first virus), cells were fixed and analyzed by SRB assay. 

Application schemes are attached below.  

 

 

 

Figure 19. Application scheme for double-infections, VACV GLV-1h254 prior to MeV-GFP 

Cells were plated in 24-well plates 1 dbi (ACHN), respectively 2 dbi (HCT15 and KM12 cells). 
On the infection day, cells were inoculated in quadruplicates with VACV GLV-1h254 at 
ascending MOIs from 0.001 to 0.05 (KM12), respectively 0.001 to 0.1 (ACHN, HCT15),  
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or mock-treated. Secondary virus infection with MeV-GFP at MOI 1 took place at 2 (A), 6 (B) or 
12 hpi (C) with the first virus. At each time point (0, 2, 6, 12 hpi), single virus infections with 
MeV-GFP were performed as controls (not shown). Plates were incubated until 96 hpi with the 
first virus. The remaining cell mass was measured by SRB assay.  

 

Infected cells were visualized by vaccinia virus-encoded TurboFP635 and 

measles vaccine virus-encoded GFP expression (Figure 21). Additionally, the 

resulting cytopathic effect, demonstrated by plaque formation and syncytia 

building, was observed in bright-field microscopy.  

At ascending viral concentrations the number of infected cells increased in all 

cell lines (ACHN, HCT15 and KM12). Major differences between the time points 

of infection with the second virus (2, 6 or 12 hpi with MeV) were not perceived.  

However, we made a peculiar observation concerning combinatorial treated 

cells: 

Exemplified by ACHN cells infected at MOI 0.001 (VACV), followed by 

inoculation with MeV-GFP at MOI 1 (at 2 hpi), we noticed that most of the cells 

were infected “only” in a singular manner, either by VACV or by MeV-GFP 

(Figure 20). 

 When VACV was applied at a low MOI (0.001), the majority of the cells was 

infected by the second virus, i.e. MeV-GFP, and consequently expressed 

primarily the GFP marker protein.  

 When compared to double-treated ACHN cells at higher MOIs (0.01, 0.05, 

0.1 of VACV), it was just the other way round. Now, most of the cells 

expressed the TurboFP635 marker protein. 

We called this phenomenon “viral competition” and followed it up in further 

trials. 
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Figure 20. Fluorescence and bright-field pictures from combinatorial infected ACHN 
cells, VACV GLV-1h254 prior to MeV-GFP at 2 hpi. Selection of Figure 21 
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ACHN cells were seeded in 24-well plates and either infected by VACV at MOI 0.001 (A) or 
MOI 0.1 (B), respectively. At 2 hpi, cells were additionally inoculated with MeV-GFP at MOI 1. At 
4 dpi, fluorescence (TurboFP635, GFP) and bright-field (BF) pictures were taken using Olympus 
IX50 fluorescence microscope. The image in the bottom right corner shows the overlay of both 
fluorescence pictures. Infected cells showed TurboFP635 and GFP expression as marker for 
VACV and MeV-GFP viral gene expression. Scale bar in the right lower corner applies to all 
panels. 
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Figure 21. Overlays of fluorescence and bright-field pictures from double-infected human 
tumor cell lines, VACV GLV-1h254 prior to MeV-GFP 

ACHN (A), HCT15 (B) and KM12 (C) cells were plated in 24-well plates as listed in Table 2. 
Cells were either infected by VACV GLV-1h254 at ascending MOIs from 0.001 to 0.05 (KM12), 
respectively up to 0.1 (ACHN, HCT15), or mock-treated. Secondary virus infection with MeV-
GFP at MOI 1 took place at 2, 6 or 12 hpi (row three to eight). Single virus infections as controls 
were performed with MeV-GFP (right column) at each time point (0, 2, 6, 12 hpi), respectively 
with VACV (first and second row) at 0 hrs. Pictures were taken at 4 dpi (ACHN, HCT15) prior to 
SRB assay analysis, respectively at 1 dpi (KM12). Fluorescence pictures are overlays. Infected 
cells show TurboFP635 and GFP expression as marker for viral gene expression, as well as 
plaque (VACV) and syncytia (MeV) formation. Scale bar in the right corner applies to all panels. 
Of note: One overlay picture of HCT15 (B) shows a place holder (right column, 4th picture from 
bottom). 
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Analysis by SRB assay (Figure 22) revealed that all three cell lines single-

infected by VACV GLV-1h254 at MOI 0.001 and 0.01, respectively at 0.005 

(KM12) (columns in red), and by MeV-GFP at MOI 1 (columns in green) showed 

no or only slight oncolytic effects.  

In contrast, double-treated cells presented a convincing oncolytic effect, when 

infected by VACV at MOI 0.001 or 0.01, respectively 0.005 (KM12), followed by 

MeV-GFP at MOI 1 (columns in yellow).  

In ACHN and KM12 cells differences between time points of secondary virus 

infection were negligible (neighboring columns in yellow did not reveal any 

major differences); for HCT15 cells, however, best results were achieved at 

6 hpi.  

In the single-infection treatment group, the application of higher MOIs of VACV 

led to cell mass reduction below 75 % remaining cell mass. Accordingly, we 

further on concentrated on VACV infections employing only one definite MOI; 

i.e., MOI 0.01 for tumor cell lines ACHN and HCT15, and MOI 0.005 for tumor 

cell line KM12, used for any further investigations. 
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Figure 22. Cytopathic effects of combinatorial treatments with VACV GLV-1h254 prior to 
MeV-GFP in SRB viability assay. 

ACHN, HCT15 and KM12 cells were plated in 24-well plates 1 dbi (ACHN), respectively 2 dbi 
(HCT15 and KM12 cells) as listed in Table 2. Cells were either inoculated in quadruplicates with 
VACV GLV-1h254 at ascending MOIs from 0.001 to 0.05 (KM12), respectively from 0.001 to 0.1 
(ACHN, HCT15), or mock-treated. Single-infected controls at all applied MOIs were 
implemented (red columns). Secondary virus infection with MeV-GFP at MOI 1 took place at 2, 
6 or 12 hpi (yellow columns) with the first virus. At each time point (2, 6, 12 hpi and additionally  
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at 0 hrs), single virus infections with MeV-GFP were performed as controls (green columns). 
Plates were incubated until 96 hpi with the first virus, the remaining cell mass was measured by 
SRB assay. Mock-treated controls were set 100 %. Dotted lines highlight the 50 and 75 % 
remaining cell mass. Values are means of three independent experiments. Error bars: SD. 

 Combinatorial treatment - MeV infection prior to infection with VACV 

In section 3.2.1, tumor cells were infected with VACV first. Here, we infected 

vice versa and inoculated initially with MeV-GFP at ascending viral 

concentrations.  

For this purpose, ACHN, HCT15 and KM12 cells were either infected by MeV-

GFP at MOI 0.001, 0.01, 0.1 and 1, or mock-treated.  

Secondly, tumor cells were either infected by VACV GLV-1h254 at MOI 0.01 

(ACHN, HCT15), respectively MOI 0.005 (KM12), at 2, 6 or 12 hpi or medium 

was added to mock-treated and single-infected wells.  

VACV single-infected controls were performed for each time point (2, 6, 12 hpi). 

Additionally, one plate was single-infected by VACV and MeV-GFP at “0 hrs” to 

generate a 0 hrs reference. Plates were incubated until 96 hpi.  

Virus-encoded fluorescent proteins were observed daily under a fluorescence 

microscope. At the end of viral treatment, plates were fixed and analyzed by 

SRB viability assay. Application schemes are attached below. 
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Figure 23. Application scheme for double-infections, MeV-GFP prior to VACV GLV-1h254  

Cells were plated in 24-well plates as listed in Table 2. On the infection day, cells were 
inoculated in quadruplicates with MeV-GFP at ascending MOIs from 0.001 to 1, or mock-
treated. Secondary virus infection with VACV at MOI 0.01 (ACHN, HCT15), respectively 0.005 
(KM12) took place at 2 (A), 6 (B) or 12 (C) hpi. At each time point, single virus infections with 
VACV were performed as controls. Plates were incubated until 96 hpi with the first virus. The 
remaining cell mass was measured by SRB assay. 
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As shown in Figure 25, infected cells were detected by vaccinia virus-encoded 

TurboFP635 and measles vaccine virus-encoded GFP expression. In bright-

field microscopy pictures, the resulting cytopathic effect was visualized by 

plaque formation (VACV) and syncytia building (MeV-GFP).  

Expectedly, at ascending viral concentrations the number of MeV-infected cells 

increased in all tumor cell lines (ACHN, HCT15 and KM12).  

For HCT15 and KM12 cells, we noticed differences in TurboFP635-expression. 

Thus, at 6 hpi, less HCT15 cells expressed the fluorescent, at 12 hpi, much 

more KM12 cells glowed red compared to cells inoculated at other time points. 

For ACHN cells, no major differences were perceived.  

Furthermore, the phenomenon of “viral competition” was observed again, now 

for the combinatorial order “MeV infection prior to infection with VACV”: 

Sequentially treated ACHN and HCT15 cells (rows three to eight of each picture 

collection, Figure 25) were found to be either infected by VACV or by MeV, but 

not by both viral vectors.  

 According to the concentration of the viral vector being applied first, tumor 

cells were either already “occupied” (when infected at high MOIs) or “free” 

for secondary virus infection with the other virus type (see also Figure 24 as 

a closeup view).  

 In KM12 tumor cells, however, this phenomenon was not observed. Quite 

the contrary, coinfected KM12 tumor cells at 6 and 12 hpi expressed 

TurboFP635, the viral marker protein of the second virus, to a great extent.  
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Figure 24. Fluorescence and bright-field pictures from combinatorial infected ACHN 
cells, MeV-GFP prior to VACV GLV-1h254 at 2 hpi. Selection of Figure 25 

ACHN cells were seeded in 24-well plates and either infected by MeV-GFP at MOI 0.01 (A) or 
MOI 1 (B), respectively. At 2 hpi, cells were additionally inoculated with VACV GLV-1h254 at  

A 

B 
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MOI 0.01. At 4 dpi, fluorescence (TurboFP635, GFP) and bright-field (BF) pictures were taken 
using Olympus IX50 fluorescence microscope. The image in the bottom right corner shows the 
overlay of both fluorescence pictures. Infected cells showed TurboFP635 and GFP expression 
as marker for VACV and MeV-GFP viral gene expression. Scale bar in the right lower corner 
applies to all panels. 
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Figure 25. Overlays of fluorescence and bright-field pictures from double-infected human 
tumor cell lines, MeV-GFP prior to VACV GLV-1h254 

ACHN (A), HCT15 (B) and KM12 (C) cells were plated in 24-well plates as listed in Table 2. 
Cells were either infected by MeV-GFP at ascending MOIs from 0.001 to 1, or mock-treated. 
Secondary virus infection by VACV GLV-1h254 at MOI 0.01 (ACHN, HCT15), respectively 
MOI 0.005 (KM12), took place at 2, 6 or 12 hpi (row three to eight). Single virus infections as 
controls were performed with VACV (right column) at each time point (0, 2, 6, 12 hpi), 
respectively at 0 hrs with MeV-GFP (first and second row). Pictures were taken at 4 dpi prior to 
SRB assay analysis. Fluorescence pictures are overlays. Infected cells show TurboFP635 and 
GFP expression as marker for VACV and MeV-GFP viral gene expression, as well as plaque 
formation (VACV) and syncytia building (MeV-GFP). Scale bar in the right lower corner applies 
to all panels.  
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In a next step, the cytopathic effect in this experiment was examined by SRB 

viability assay (Figure 26). As a result, double-infected ACHN and KM12 tumor 

cells (columns in yellow) showed improved rates of oncolysis. Particularly, 

tumor cell masses were reduced below 75 % remaining cell mass when tumor 

cells were inoculated with MeV-GFP at MOI 1 followed by VACV GLV-1h254 at 

MOI 0.01 (ACHN), respectively MOI 0.005 (KM12). HCT15 cells, on the 

contrary, did not benefit from sequential infections. 

Except for ACHN and KM12 cells treated with MeV-GFP at the highest 

MOI (MOI 1), MeV-GFP infected controls (columns in green) showed no 

oncolytic effect. Controls of VACV infection (columns in red) revealed variations 

dependent on different time points of secondary virus treatment. Especially, 

ACHN cells treated at 2 hpi showed a slightly reduced cell mass compared to 

other controls. 
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Figure 26. Cytopathic effect of combinatorial treatment with MeV-GFP prior to VACV GLV-
1h254  

ACHN, HCT15 and KM12 cells were plated in 24-well plates as listed in Table 2. Cells were 
either inoculated with MeV-GFP at ascending MOIs from 0.001 to 1 or mock-treated. 
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Single-infected controls were implemented (green columns). Secondary virus infection by VACV 
GLV-1h254 at MOI 0.01 (ACHN, HCT15), respectively MOI 0.005 (KM12) was performed at 2, 6 
or 12 hpi with the first virus (yellow columns). At each time point (2, 6, 12 hpi and additionally at 
0 hrs), single virus infections with VACV as controls were executed (red columns). Plates were 
incubated until 96 hpi with the first virus, the remaining cell mass was measured by SRB assay.  
Mock-treated controls were set 100 % (grey column 1 to 4 at 0, 2, 6 and 12 hpi). Dotted lines 
highlight the 50 and 75 % remaining cell mass. Values are means of three independent 
experiments. Error bars: SD. 

 

When taking the results detailed in section 3.2.1 into account, the following 

annotations had to be made: 

 Oncolysis was best, when VACV was applied prior to MeV.  

 Different time points of secondary virus infection (2, 6 or 12 hpi) modified 

the cytotoxic effect only marginally. Nevertheless, best results were 

ascertained at 6 hpi.  

Resulting, tumor cell lines were double-infected with MeV-GFP as secondary 

virus at 6 hpi in the following trials. 

3.3 Combinatorial treatment - VACV prior to modified MeV infection  

Next, we wanted to investigate whether an improved cytotoxic effect of the 

combinatorial treatment regime was due to synergistic or just additive effects.  

Thus, cells were infected by VACV at MOI 0.01 (ACHN, HCT15), respectively at 

MOI 0.005 (KM12) first or mock-treated.  

On the assumption that a synergistic effect would already appear at slightly 

lower MOIs of the second virus, cells were double-infected by MeV-GFP at 

ascending viral concentrations (MOI 0.1, 0.25, 0.5 and 1) at 6 hpi or medium 

was added. Virus-encoded fluorescent proteins were observed daily to monitor 

virus infection and spreading. At 96 hpi with the first virus, plates were analyzed 

by SRB assay. The application scheme is attached below.  
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Figure 27. Application scheme for double-infections, VACV GLV-1h254 prior to MeV-GFP 
at 6 hpi at ascending viral concentrations  

Cells were plated in 24-well plates and infected in quadruplicates by VACV GLV-1h254 at 
MOI 0.01 (ACHN, HCT15), respectively MOI 0.005 (KM12), or mock-treated. At 6 hpi, cells were 
double-infected by MeV-GFP at ascending viral concentrations (MOI 0.1, 0.25, 0.5 and 1) or 
medium was added to mock-treated and single-infected wells. Plates were incubated until 
96 hpi with the first virus.  

 

Infected cells showed red (VACV) and green (MeV) fluorescence, as well as 

plaque formation and syncytia building in the corresponding bright-field pictures 

(Figure 28). At ascending viral concentrations of the second virus, the number 

of green fluorescence emitting cells increased in all cell lines, except for HCT15 

cells.  

 

 

 

 

 

 

 

 

1-2 dbi “0 h“

+ VACV GLV-1h254 MOI 0.01/MOI 0.005

12 hpi2 hpi 6 hpi

+ MeV GFP MOI 0.1 – MOI 1

96 hpi

plating of cells end of treatment+ FCS

A 



    Results  

  

99 
 

 

 

 

 

 

 

 

Figure 28. Overlays of fluorescence and bright-field pictures from combinatorial infected 
human tumor cell lines, VACV GLV-1h254 prior to MeV-GFP at 6 hpi 

ACHN (A), HCT15 (B) and KM12 (C) cells were plated in 24-well plates as listed in Table 2. 
Cells were either infected by VACV at MOI 0.01 (ACHN, HCT15), respectively MOI 0.005 
(KM12), or mock-treated. At 6 hpi, MeV-GFP at ascending MOIs from 0.001 to 1 or medium was 
added to mock-treated and VACV single-infected cells. Pictures were taken at 3 dpi. 
Fluorescence pictures are overlays. Infected cells show TurboFP635 or GFP expression as 
marker for VACV or MeV-GFP viral gene expression, as well as plaque formation (VACV) and 
syncytia building (MeV-GFP). Scale bar in the right lower corner applies to all panels.  
  
  

Results of a subsequent SRB assay analysis (Figure 29) displayed the 

following:  

 No synergistic effect was found. The plotted cell mass reduction of double-

infected cells (columns in yellow) was commensurate to the increased MOIs 

of MeV-GFP (columns in green). 

 Worth mentioning, HCT15 cells were only slightly diminished at ascending 

viral concentrations and showed less oncolytic efficiency than in previous 

work performed under equal conditions (see section 3.2.1). 

C 

B 



Results 

 

100 

 

 

 

 

 

 



    Results  

  

101 
 

 

 

Figure 29. Cytopathic effect of combinatorial treatment with VACV GLV-1h254 prior to 
MeV-GFP at 6 hpi in SRB assays 

ACHN, HCT15 and KM12 cells were plated in 24-well plates as listed in Table 2. Cells were 
either inoculated in quadruplicates with VACV GLV-1h254 at MOI 0.01, respectively MOI 0.005 
(KM12), or mock-treated. MeV-GFP infection followed at 6 hpi at MOI 0.1, 0.25, 0.5 or 1 (yellow 
columns), or medium was added to mock-treated and VACV single-infected (red column) cells. 
Single-infections with MeV-GFP as controls are pictured on the right side of the dash (green 
columns). Plates were incubated until 96 hpi with the first virus, the remaining cell mass was 
measured by SRB assay. Mock-treated (grey columns) controls were set 100 %. Dotted lines 
highlight the 50 and 75 % remaining cell mass. Values are means of three (KM12), four (ACHN) 
and six (HCT15) independent experiments. Error bars: SD. 

3.4 Comparison between SRB and MTT assay results 

To assure that the measured cell mass reduction, analyzed by SRB assay, 

actually represented cell death, MTT assay was complementarily performed 

and results were compared. Since plates were not only fixed and analyzed at 96 

hpi, but additionally at 0, 24, 48 and 72 hpi, it was possible to plot changes in 

cell masses over the course of the entire incubation period. As a proof of 

principle, the comparison between SRB and MTT assay results was done for 

ACHN cells only.  

Accordingly, ACHN cells were seeded in 24-well plates and infected in 

quadruplicates by VACV GLV-1h254 at MOI 0.01 or mock-treated. At 6 hpi, 
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cells were inoculated with MeV-GFP at MOI 1 as second virus or DMEM was 

added to mock-treated and VACV single-infected cells. One plate was fixed 

prior to infection (0 hrs) both for the SRB and MTT method. Double-infected 

plates were incubated for 24, 48, 72 or 96 hpi, fixed with TCA and analyzed by 

SRB or MTT assay. Values were plotted in relation to “0 hrs” and in relation to 

mock. Additionally, virus-encoded TurboFP635 and GFP were monitored daily 

under a fluorescence microscope (Figure 31). The application scheme is 

attached below. 

 

 

Figure 30. Application scheme for double-infections, VACV GLV-1h254 prior to MeV-GFP, 
24-96 hpi 

ACHN cells were plated in 24-well plates and infected in quadruplicates the next day. First, 
VACV was applied at MOI 0.01 or cells were mock-treated. At 6 hpi, infected and uninfected 
cells were inoculated with MeV-GFP at MOI 1, medium was added to mock-treated and VACV 
single-infected wells. Plates were incubated 24, 48, 72 or 96 hpi with the first virus. Cell mass 
was measured by SRB or MTT assay.  

 

As shown in Figure 31, infected cells were examined daily under a fluorescence 

microscope to supervise the process of infection and spreading in ACHN cells. 

Whereas at 1 dpi, there was almost no fluorescence detectable, at 4 dpi, 

infected cells showed high intensities of green and red fluorescence. Mock-

treated cells were uninfected and viable at 4 dpi.  

In conclusion, the combinatorial treatment with VACV 6 hrs prior to MeV-GFP 

infection was successfully conducted and equal conditions could be ensured for 

the following analysis by SRB (A) or MTT (B) assay.  
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Figure 31. Overlays of fluorescence and bright-field pictures from combinatorial infected 
ACHN cells, VACV GLV-1h254 prior to MeV-GFP at 6 hpi, 1-4 dpi 

ACHN cells were plated in 24-well plates (A = SRB), (B = MTT) and either infected by VACV at 
MOI 0.01 or mock-treated. At 6 hpi, MeV-GFP at MOI 1 was added to uninfected (right column) 
and infected cells (fourth column) or medium was added to mock-treated (first and second 
column) and VACV single-infected (third column) cells. Cells were observed and pictures were 
taken daily under a fluorescence microscope. Fluorescence pictures are overlays. Infected cells 
show TurboFP635 and GFP expression as marker for VACV and MeV-GFP viral gene 
expression. Scale bar in the right lower corner applies to all panels.  
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Analysis by SRB and MTT assay are depicted below (Figure 32). Expectedly, 

the highest cytotoxic effects were reached in combinatorial treated cells (A). 

Uninfected controls, measured by SRB assay, proliferated well until 72 hpi, at 

96 hpi, however, cells reached a plateau. In MTT assay, mock-treated cells 

proliferated until 96 hpi, but means showed larger standard deviations.  

In another representation of the data, when values from mock-treated cells were 

set 100 % and other values were plotted in relation to the corresponding mock, 

best cell mass reductions were obtained in double-infected cells at 96 hpi, with 

no discrepancy between SRB or MTT assay (B). 
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Figure 32. Comparison between SRB and MTT assay results. Cytopathic effect of 
combinatorial treatment of ACHN cells with VACV GLV-1h254 prior to MeV-GFP at 6 hpi 
relative to 0 hrs (A), relative to mock (B) 

ACHN cells were plated in 24-well plates. The next day, one plate/trial was fixed prior to 
infection to gain output values (“0 hrs”, A), other cells were either infected by VACV at MOI 0.01 
or mock-treated. At 6 hpi, MeV-GFP MOI 1 was added to VACV-infected or uninfected cells  
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(MeV single control) or medium was added to mock-treated and VACV single-infected wells. At 
24, 48, 72 and 96 hpi with the first virus, cells were fixed and measured by SRB or MTT assay. 
Values are means of three independent experiments and were either plotted as relative to 0 hrs 
(A) or as relative to mock (B) at 24, 48, 72 and 96 hpi. B: Grey columns show mock-treated 
(uninfected) controls, which were set 100 %. Dotted lines highlight the 50 and 75 % remaining 
cell mass. Red (VACV) and green (MeV) columns represent single-infected controls, yellow 
columns show combinatorial treated cells. Error bars: SD.  

3.5 Monitoring of viral marker gene expression to further investigate the 

phenomenon of “viral competition”  

 Fluorescence microscope Olympus IX50 images 

In sections 3.2.1 and 3.2.2, fluorescence pictures showed VACV and MeV-GFP 

infected cells at 4 dpi. At this time point, the cell layer of coinfected cells was 

already diminished to a great extent. Consequently, one might assume that the 

impression of “viral competition” was only received because less viable cells 

remained (after infection with the first agent), which could be infected in the 

second round, and subsequently express the fluorescent marker protein of the 

second virus. In order to exclude this assumption, we here present another set 

of bright-field and fluorescence pictures of sequentially infected ACHN cells 

taken at 2 dpi. Cells were plated and infected as described in section 3.2.1.  

As pictured in Figure 33, the corresponding bright-field images of sequentially 

infected ACHN cells ascertained vitality at 2 dpi. Nevertheless, infected cells, 

visualized by VACV-encoded TurboFP635 and measles vaccine virus-encoded 

GFP expression, exhibited “viral competition”.  

 The majority of ACHN cells, infected first with GLV-1h254 at MOI 0.01 

and second by MeV-GFP at MOI 1, expressed GFP.  

 At a tenfold higher MOI of VACV (MOI 0.1), ACHN cells expressed 

mainly the red fluorescent protein TurboFP635, although the viral 

concentration of MeV-GFP did not change.  

Cells expressed either TurboFP635 or GFP but not both viral marker proteins at 

the same time. Thus, “viral competition” arose independent of the condition of 

the cell layer. 
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Figure 33. Fluorescence and bright-field pictures from combinatorial infected ACHN 
cells, VACV GLV-1h254 prior to MeV-GFP at 2 hpi  

ACHN cells were seeded in 24-well plates and either infected by VACV at MOI 0.01 (A) or 
MOI 0.1 (B), respectively. At 2 hpi, cells were additionally inoculated with MeV-GFP at MOI 1.  
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At 2 dpi, fluorescence (TurboFP635, GFP) and bright-field (BF) pictures were taken using 
Olympus IX50 fluorescence microscope. The image in the bottom right corner shows the 
overlay of both fluorescence pictures. Infected cells showed TurboFP635 and GFP expression 
as marker for VACV and MeV-GFP viral gene expression. Scale bar in the right lower corner 
applies to all panels.  

 All-in-One BZ-9000 fluorescence microscope pictures 

In previous sequential infection trials we observed that the majority of cells 

expressed either red or green fluorescent. Nevertheless, singular cells glowed 

yellow, which might indicate coinfection of one and the same cell by VACV and 

MeV-GFP.  

To further distinguish between an actual superinfection and overlapping of 

neighboring, fluorescent-emitting cells, the Keyence microscope was applied. 

With the All-in-One BZ-9000 fluorescence microscope we were able to follow up 

viral marker gene expression in a real-time manner and, moreover, to monitor 

the infection of singular cells by ensured planar cell growth. 

For this purpose, ACHN tumor cells were plated at 1.5 x 104 cells/well in an 

open µ-Slide with 8 wells and incubated with VACV at MOI 0.01 or mock-treated 

the next day. At 6 hpi, second virus infection with MeV-GFP at MOI 1 was 

performed. Each well was reviewed for expression of viral marker proteins. 

Thus, virus-encoded GFP and TurboFP635 expression were observed 

constantly until 98 hpi using the All-in-One BZ-9000 fluorescence microscope 

(KEYENCE, Osaka, Japan).  

In Figure 34, digital images of sequentially infected cells at 63 hrs (counted from 

the beginning of the record) are presented. Here, a subconfluent cell layer 

ensured planar cell growth and therefore monitoring of singular cells.  

Using this technique, the following result was obtained:  

 Superinfections of one and the same cell arose at a quite low frequency 

(arrows point to double-infected cells). The majority of ACHN cells revealed 

sole infection either by VACV or by MeV-GFP. 
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Figure 34. All-in-One BZ-9000 fluorescence microscope pictures of sequentially infected 
ACHN cells, VACV GLV-1h254 prior to MeV-GFP at 6 hpi 

ACHN cells were plated in an open µ-Slide and inoculated first with VACV GLV-1h254 at 
MOI 0.01, followed by MeV-GFP infection at MOI 1 at 6 hpi. At 63 hrs (counted from the 
beginning of the record), fluorescence and bright-field pictures were taken using All-in-One BZ-
9000 fluorescence microscope. The upper photo shows an overlay of the lower images and the 
corresponding bright-field picture. VACV infected cells express TurboFP635, MeV infected cells 
show GFP expression. Arrows point to singular cells, which are double-infected by VACV and 
MeV-GFP.  

 

TurboFP635 GFP 

GLV-1h254 MOI 0.01 + MeV-GFP MOI 1 at 6 
hpi 
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3.6 Western blot analysis - viral protein expression in infected ACHN cells  

Electrophoresis and western blot were implemented to investigate the 

expression of virus-specific proteins. In order to monitor changes in cell masses 

over the course of the entire incubation period and to detect its influence on 

viral protein expression, we abstained from harmonization of the protein 

content. Thus, the 8-15 % gradient gel SDS-PAGE was performed without 

protein quantification and equalization by Bradford assay. Vinculin was chosen 

as loading control. 

ACHN cells were plated at 5 x 104 cells/well in 24-well plates and incubated 

overnight. The next day, after determination of the current cell count, cells were 

infected by VACV at MOI 0.01 or mock-treated. At 6 hpi, cells were either 

additionally infected with MeV-GFP at MOI 1 or medium was added to mock-

treated and VACV single-infected wells. At 24, 48, 72 and 96 hpi, cell lysates 

were prepared for the following analysis by Western blot. 

The following results (Figure 35) were ascertained: 

 Western blot analysis approved the expression of the viral proteins ß-

galactosidase and Vaccinia (antigen A27L) for VACV (A), respectively N-

protein and GFP for MeV (B).  

 As expected, Vinculin showed alterations of the protein content over the 

course of time. Whereas mock-treated cells survived until 96 hpi, VACV 

single- and double-infected cells exhibited reduced protein contents from 

72 hpi on. Contrarily, Vinculin of MeV single-infected cells indicated high 

remnant cell mass at 72 hpi. 

 VACV single- and double-infected cells exhibited increased expression of ß-

galactosidase and Vaccinia antigen A27L at 72 hpi. At 96 hpi, however, the 

expression of both viral proteins decreased (A). Furthermore, we monitored 

a slight difference between the VACV single and double infection group. At 

72 and 96 hpi, the expression of Vaccinia antigen A27L in single-infected 

cells was higher than in double-infected cells. The expression of ß-

galactosidase, however, showed no alterations.  
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 Similarly, Western blot analysis showed enhanced expression of MeV viral 

proteins (N-protein and GFP) in single- compared to double-infected cells at 

72 and 96 hpi (B).  

 

 

 

 

 

 

Figure 35. Western blot analysis of viral protein expression in ACHN cells 

ACHN cells were plated at 5 x 104 cells/well in 24-well plates. The next day, cells were either 
infected with VACV at MOI 0.01 or mock-treated. At 6 hpi, cells were inoculated with MeV-GFP 
at MOI 1 or medium was added to single-infected and mock-treated cells. Cells were harvested 
24, 48, 72 and 96 hpi. Lysates of mock-treated, single- and double-infected cells were 
separated by 8-15 % gradient SDS-PAGE and blotted on a PVDF membrane. Antibodies 
against Vinculin were used for “housekeeping” protein detection as loading control (A, B).  
Viral protein detection was realized by using antibodies against ß-galactosidase and Vaccinia 
antigen A27L (VACV) (A), and antibodies against MeV N-protein and GFP (MeV-GFP) (B). 
VACV was detected at 14 kDa, GFP at 27 kDa, MeV N-Protein at 58 kDa, Vinculin at 115 kDa 
and ß-galactosidase at 130 kDa. 

B 

A 
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4 Discussion 

Although the combined application of standard care and novel therapeutics has 

recorded considerable successes in the treatment of various cancers, a 

complete, sustainable remission remains rare.  

Oncolytic viruses can be designed to complement established treatment 

modalities, thus, offering a promising attempt to handle metastatic disease. 

These anticancer agents fight tumors both by direct cell killing and the here-

inafter establishment of a specific antitumor immune response (Kaufman et al, 

2015). Naturally or by genetic engineering, virus constructs are exclusively 

directed against cancerous cells, while normal tissue is spared (Russell & Peng, 

2007; Russell et al, 2012). 

Remaining obstacles to a successful application of virotherapy have been over-

come in some cases, as indicated by the accreditation of adenovirus H101 in 

2005 (Garber, 2006; Jiang et al, 2006) and herpes simples virus T-VEC in 2015 

(Andtbacka et al, 2015; Ledford, 2015; Zhang, 2015).  

Nevertheless, inherent resistance of cancer cells towards oncolytic virus 

treatment remains a major issue. Thus, maintained antiviral activity of cancer 

cells hinders oncolytic viruses to completely eradicate tumor sides (Russell et 

al, 2012).  

Besides other approaches, Le Boeuf et al. applied the attenuated Western 

Reserve strain of vaccinia virus together with a vesicular stomatitis virus to 

circumvent cellular innate immunity of highly resistant tumor cells (Le Boeuf et 

al, 2010). Furthermore, Tysome et al. performed sequential infections using the 

attenuated Lister vaccine strain of vaccinia virus and wildtype adenovirus 

(Tysome et al, 2012). Both research teams were able to demonstrate that a 

combinatorial treatment regime was superior to single virus infections.  

The susceptibility to cellular innate antiviral immune response is traded as a 

central issue to a successful application of oncolytic viruses. Le Boeuf et al. 

revealed that some high resistant tumor cell lines derived from the NCI-60 panel 

are equipped with partial responsiveness to IFN (Le Boeuf et al, 2010).  
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Subsequently, the researchers applied a double-deleted vaccinia virus to com-

plement a recombinant VSV version, which replication and spreading is most 

effectively hindered by IFN (Le Boeuf et al, 2010). The authors confirmed that a 

combined application of both virus constructs did not only support infection and 

spreading of VSV; moreover, it established the basis for synergistic interaction 

(Le Boeuf et al, 2010).  

Here, in this wok, we set out to investigate whether these findings are 

reproducible when now applying the virotherapeutic vector GLV-1h254 (being 

derived from the attenuated Lister strain of vaccinia virus) together with 

oncolytic measles vaccine virus MeV-GFP.  

The application of immunological distinct viruses may not only increase chances 

for multiple virus infections, but improve tumor cell destruction by collaboration 

of both viral agents in multiple ways (Le Boeuf et al, 2010; Tysome et al, 2012).  

Three out of five tumor cell lines investigated in this thesis, i.e., ACHN, HCT15 

and KM12, have been defined resistant to VACV infection by Ascierto et al. 

(Ascierto et al, 2011). The treated cell lines exhibited a most heterogeneous 

susceptibility to GLV-1h68, a close relative to GLV-1h254. Thus, resistance was 

not only found to be independent of tumor cell origin, it was also found to be 

independent of the chosen vaccinia virus strain in further investigations 

(Ascierto et al, 2011). When results were confirmed by the application of a VSV, 

Ascierto et al. were convinced that common virotherapy resistance patterns 

must exist (Ascierto et al, 2011). Additionally, ACHN, HCT15 and KM12 cells 

were declared highly resistant to MeV-SCD infection (Noll et al, 2013). Noll et 

al. suspected the incomplete blockage of the innate cellular immune defense of 

these tumor cell lines as crux of the matter (Noll et al, 2013). Thus, a functional 

IFN release upon MeV-SCD infection is traded as key mechanism to a reduced 

susceptibility to virus infection (Noll et al, 2013).  

Recombinant vaccinia virus GLV-1h68 has been assigned for the treatment of 

human sarcomas as well (He et al, 2012). He et al. detected oncolytic activity 

against fibrosarcoma, osteosarcoma, fibrohistiocytoma and rhabdomyosarcoma 

cell lines in vitro and in vivo. Notably, the chosen MOI for infection of sarcoma 
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cells appeared quite high (MOI 5) and supports the presumption that 

responsiveness to oncolytic virotherapy was weaker than intended. Although 

SRH and CCS cells, two sarcoma cell lines investigated in this thesis, were not 

evaluated by this research group, cell lines were found to be resistant to MeV-

SCD infection by Berchtold et al. (Berchtold et al, 2013). Although CD46 

expression and primary infection were guaranteed for both cell lines, SRH and 

CCS cells presented either a transient or “slow and weak” virus production in 

viral growth curve analysis (Berchtold et al, 2013). Berchtold et al. attributed 

these findings to differential patterns of innate immune defense. Thus, MeV-

SCD infection resulted in a strong induction of RIG-I and IFIT1 in SRH cells 

(Berchtold et al, 2013). 

4.1 Tumor cell resistance against oncolytic virotherapy is relative and can 

be diminished by ascending viral concentrations.  

First, it was necessary to define threshold MOIs for each viral vector in single 

infection approaches to satisfy the criterion of resistance, defined as cell mass 

reduction of less than 25 % compared to uninfected controls 96 hpi. As 

demonstrated repeatedly by applying VACV and MeV at ascending viral 

concentrations, tumor cell resistance is relative and can be partially overcome 

by increased virus titers. Evidence of this observation has also been provided 

by other members of our group (Berchtold et al, 2013; Lange et al, 2013; Noll et 

al, 2013; Yurttas et al, 2014).  

Now, one might assume that the hurdle of resistance could be overtaken by 

simply employing elevated virus titers; however, this approach cannot be traded 

as a serious solution. At first, the production of high titer lysates has already 

become a challenge since most viruses are propagated in laborious tissue 

cultures (Kaufman et al, 2015). Secondly, even if a high titer production is 

feasible, premature viral clearance, neutralization of virus particles and limited 

virus delivery may represent further obstacles in vivo.  

Moreover, as demonstrated in this thesis, resistant tumor cell lines are not 

completely erased, but “only” diminished at ascending viral concentrations. As a 
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consequence, surviving tumor cells, for example non-cycling cells, may prepare 

the breeding ground for new tumor growth soon afterwards (Kaufman et al, 

2015). Resulting, we here established a treatment regime applying two different 

virus constructs in order to fight cancer by interlocking mechanisms.  

4.2 Determination of threshold MOIs depends on cellular confluence.  

As suggested by previous work from C. Raff (unpublished data) and M. Noll 

(Noll et al, 2013), who had screened the commonly applied NCI-60 panel for its 

susceptibility either to VACV- or MeV-based virotherapeutics, we initially plated 

all tumor cell lines equally (section 3.1.1). For reasons of practicability, we 

additionally seeded the sarcoma cell lines SRH and CCS uniformly. Whereas 

ACHN and HCT15 cells grew well and were considered to be ready to VACV-

infection already the next day, KM12, CCS and SRH cells revealed insufficient 

confluence 1 dpi.  

The following analysis by SRB viability assay provided corresponding results: 

While values of ACHN and HCT15 cells showed small standard deviations, 

those of KM12, SRH and CCS differed enormously. Moreover, even though the 

experimental setting was comparable, our SRB assay results diverged from the 

results previously obtained by C. Raff. Based on this finding, we decided to 

have a closer look at the chosen initial cell counts, resulting confluence and 

growth inhibition, and its influence on virus spreading. 

Thus, so called “confluence trials” were performed to optimize the density of cell 

layers right before virus infection, as well as to guarantee survival of mock-

infected controls until the end of the experiment. We noticed that (i) pro-

longation of the time that HCT15, KM12, SRH and CCS cells were plated before 

any subsequent infection, as well as (ii) increased initial cell counts (CCS and 

KM12) led to enhanced cell density and therefore confluence.  

Encouraged by Niepel et al., who recommended to take diverging cell division 

times into account, we then determined individual incubation periods and plating 

densities for each cell line (Table 1) (Niepel et al, 2017).  
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However, we have to admit that the survival of mock-infected cells was not 

guaranteed by these "confluence trials”. Since monitoring of cell density was 

performed with the naked eye, analysis was most vulnerable to error. A clear 

differentiation between a confluent and an overgrown well was not practicable, 

especially with cell lines such as CCS and KM12 that agglomerated quickly 

(independent of their initial cell count) but never reached total confluence.  

In accordance, Skehan et al. have reported problems concerning fixation of 

cells growing as floating aggregates (Skehan et al, 1990). Moreover, Niepel et 

al. emphasized the underestimated relevance of interfering factors to drug 

sensitivity assays like SRB (Niepel et al, 2017). The authors underlined that the 

condition of the applied cell culture at the time point of seeding, initial cell 

counts and cell division time “are (...) variables with a substantial impact on cell 

proliferation” (Niepel et al, 2017). Since evidence grows that high cell numbers 

support drug resistance (Chauffert et al, 1998; Dimanche-Boitrel et al, 1993; 

Fang et al, 2007; Garrido et al, 1995; Hafner et al, 2016; Niepel et al, 2017), 

Niepel et al. suggest to perform experimental trials in the time frame of steady 

state growth (Niepel et al, 2017). 

VACV infected “optimized-plated” SRH and CCS cells (section 3.1.3) showed 

reduced cell masses, when compared to non-optimized plated cells (section 

3.1.1). Improved virus spreading due to tighter cell-to-cell contacts may offer an 

explanation. Worth mentioning, washing steps of the applied SRB assay were 

accidentally modified: after staining with SRB dye, plates were washed once 

with tap water instead of using 1 % acetic acid for washing exclusively. As this 

aminoxanthene dye dissociates under basic conditions, the remained cell mass 

may have been underestimated (Skehan et al, 1990; Vichai & Kirtikara, 2006). 

On the contrary, since this mistake affected all treated cell lines and not only 

SRH and CCS cells, the interference might be negligible. Surprisingly, although 

fluorescence pictures of infected HCT15 and KM12 cells (section 3.1.3) showed 

large plaque forming units (HCT15) and a high proportion of TurboFP635 

expression at higher MOIs, cell masses were even less reduced than before 

(see section 3.1.1). We presume that suitable initial cell counts might have led 

to a more sufficient cell attachment and reduced cell loss during procedure 
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steps of the SRB assay (Vichai & Kirtikara, 2006). Additionally, lower standard 

deviations of KM12 cells supported this conclusion.  

In MeV single infection trial (section 3.1.4), virus infection was successfully 

conducted, demonstrated by virus-encoded GFP expression and syncytia 

formation in all cell lines, except for SRH. Although analysis of SRB data 

represented reduced cell masses at MOI 1 and 10, SRH cells seemed only 

marginally infected on the belonging overlay pictures. A closer examination of 

these photographs exhibited a subconfluent cell layer of SRH cells at 96 hpi. 

Poor cell-to-cell contract might have led to reduced virus spreading, and, 

consequently, limited virus marker gene expression. In accordance, Berchtold 

et al. declared SRH and CCS cells as resistant to MeV-SCD infection (Berchtold 

et al, 2013). For HCT15 cells, overlays of fluorescence and bright-field pictures 

revealed marginal signs of infection, and remnants were inappreciably reduced 

at 96 hpi in SRB assay analysis. Consistent with our findings, Noll et al. defined 

ACHN, HCT15 and KM12 cells highly resistant to MeV-SCD infection at MOI 1 

(Noll et al, 2013). Whereas, ACHN and KM12 cells exhibited a primary infection 

rate > 20 % by MeV-GFP at MOI 1, less than 3 % of HCT15 cells expressed 

GFP (Noll et al, 2013). Moreover, viral growth curves exhibited only transient 

viral replication in HCT15 cells, and western blot analysis confirmed decreased 

expression of MeV-encoded proteins at 72 and 96 hpi (Noll et al, 2013). The 

researchers argued that a strong interferon response by intense expression of 

IFIT1 might be responsible for the mentioned differences between HCT15 and 

other highly resistant cell lines (Noll et al, 2013).  

To confirm findings regarding confluence, its impact on virus spreading and 

survival of uninfected controls, an xCELLigence trial was performed. By 

registration of differences in electrical impedance, cell viability and proliferation 

is evaluated in real-time (Ke et al, 2011). Contingent upon selected cell 

numbers, mock-treated ACHN cells either proliferated until 96 hpi 

(1000 cells/well, respectively 2000 cells/well), hit a plateau (4000 cells/well) or 

levelled off (8000 cells/well). This finding indicated that high plating densities 

cause growth inhibition or cell death of uninfected controls. Furthermore, the 

disparity of the normalized cell index between mock-treated and VACV MOI 0.1 
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infected cells increased dependent on higher plating densities. Accordingly, we 

assumed that the efficiency of virus spreading and oncolysis correlates with the 

initial cell counts of infected cells and therefore with confluence. The higher the 

cell-seeding density, the better the virus spreading - as long as cells range in 

the exponential increase phase. Niepel et al. considered the xCELLigence 

platform as a reliable tool to assess confluence in real-time, nevertheless they 

emphasized its limitations, since its application is restricted to monolayers 

(Niepel et al, 2017).  

Both observations of the xCELLigence trial were affirmed by another single-

infection approach using VACV (section 3.1.5). To survey the survival of mock-

treated and infected cells reliant on initial cell counts, cells were assessed daily 

by fluorescence microscopy and SRB assay. For KM12 cells, which were plated 

at several densities, agglomeration of cells was registered independent on the 

initial cell count, but at 2 x 105 cells/well, KM12 cells overgrew and levelled off 

when analyzed by SRB assay. Accordingly, we admit that KM12 cells were 

plated far too high in previous trials. Although bright-field pictures revealed 

dense cell layers of ACHN and HCT15 cells already 1dpi, we maintained initial 

cell counts because the SRB assay result ensured proliferation until 96 hpi. 

Retrospectively, uninfected controls of ACHN and HCT15 cells indicated cell 

growth after log phase at this time point. As a consequence, plating numbers 

should have been determined by daily performance of the SRB method in the 

first place.  

In accordance with findings of the xCELLigence trial, KM12 cells were erased 

more efficiently when plated at the higher cell-seeding density. Although values 

of 2 x 105 cells/well must be interpreted with caution (since the corresponding 

mock declined at 96 hpi), cell remnants of the MOI 0.01 treatment group were 

diminished to a greater extent. Thus, we demonstrated once again that virus 

spreading is reliant of confluence. Surprisingly, at 1 x 105 cells/well, infected cell 

remnants were less reduced than at 5 x 104 cells/well. Improved cell attachment 

of 1 x 105 cells/well might have had influence.  
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Finally, when results of section 3.1.5 were compared to those generated in 

section 3.1.1 and 3.1.3, respectively, we noticed differences regarding cell 

indices of remnants. In section 3.1.5, infected ACHN and HCT15 cells were 

reduced to a greater extent, although plating conditions and initial cell counts 

did not change. However, from section 3.1.5 on, we variegated the mode of 

infection: at 1.5 hpi, the virus-containing inoculum was no longer removed, but 

22 % FBS-supplemented DMEM was added to the wells. Thus, the incubation 

period of vaccinia virus particles was greatly prolonged and SRB assay results 

may display enhanced oncolysis. 

4.3 Combinatorial virus infections are superior to single infections. 

As detailed above, the extensive determination of reliable threshold MOIs for 

each viral vector was necessary in the run. Thereafter, oncolytic vaccinia and 

measles vaccine virus were examined in several application schemes in double-

infection approaches with ACHN, HCT15 and KM12 cells. Thus, different orders 

of viruses and time points of secondary virus infection were tested to identify the 

most promising design.  

In section 3.2.1, ACHN, HCT15 and KM12 cells were infected with VACV at 

various MOIs prior to MeV at MOI 1 at 2, 6 or 12 hpi. As reflected by 

fluorescence pictures, VACV marker protein expression was dependent on 

ascending viral concentrations. Moreover, we observed a phenomenon called 

“viral competition”, which is discussed in detail in section 4.6.  

As analyzed by the SRB assay, remnant cell masses of all three cell lines were 

found to be reduced more effectively when double-infected. At threshold MOIs, 

cell indices of combinatorial treated ACHN and KM12 cells were reduced below 

the critical value of 75 % remaining cell mass, independent of the time point of 

secondary virus infection. Double-treated HCT15 cells, however, reached the 

borderline only when infected with MeV at 6 hpi.  

In section 3.2.2, cells were infected vice versa (ACHN, HCT15 and KM12 cells 

were infected with MeV at various MOIs prior to “fixed-dosage (MOI)” infection 

with VACV). A dose-dependent MeV marker protein expression was 
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documented in all cell lines by fluorescence pictures. In the SRB assay 

analysis, double-infected ACHN and KM12 cells showed an improved oncolytic 

effect in the 2 hpi- (ACHN), respectively 6 hpi- and 12 hpi-treatment group 

(KM12). Of note, remnant HCT15 cells did not benefit from sequential 

infections. Consequently, all three highly resistant tumor cell lines were 

combatted best when inoculated first with VACV. Moreover, at threshold MOIs 

cell indices of double-infected cells did no longer comply with the criterion of 

high-grade resistance.  

Time points for secondary virus infection were aligned to vaccinia virus life 

cycle. Since early viral mRNAs are known to suppress the emerging cellular 

immune response (Moore & Smith, 1992; Schramm & Locker, 2005; Thorne et 

al, 2005), 2 hpi appeared to be an appropriate time period for the following 

measles virus infection. Whereas differences between MeV-second-infected 

remnants at 2, 6 and 12 hpi (section 3.2.1) were found to be negligible and with-

out correlation to the belonging controls, variations in VACV-second-treated 

cells (section 3.2.2) corresponded to up- and downturns of the single-infected 

controls. Fittingly, the belonging fluorescence pictures highlighted unequal 

TurboFP635 expression in HCT15 and KM12 cells. Thus, we reasoned, 

fluctuations were most likely explainable by execution errors than by real 

differences. Nevertheless, for reasons of feasibility, we decided to further on 

perform all double-infections at 6 hpi with VACV. 

Le Boeuf et al. established a double-deleted vaccinia virus (VVDD) prior to 

recombinant VSVΔ51 to sensitize a resistant monolayer to VSV-derived onco-

lysis (Le Boeuf et al, 2010). This combination was most successful because of 

its rational design. Since Le Boeuf et al. handled partial responsiveness to IFN 

as prime suspect of a reduced susceptibility to oncolytic virotherapy, they 

applied a VACV version with a soluble IFN-receptor to suppress remaining 

antiviral immune response (Le Boeuf et al, 2010). Furthermore, even a 

synergistic effect was established by applying a VSV version that additionally 

expressed a protein, which improved the spreading of VACV.  
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Here, in this work, we were challenged by the fact that ACHN, HCT15 and 

KM12 tumor cells were resistant both to oncolytic vaccinia and measles virus 

treatment. Nevertheless, since double-infections with VACV prior to MeV-GFP 

(“VACV first, MeV second”, section 3.2.1) proved to be superior both to single- 

and the “alternative round” double-infection regime (“MeV first, VACV second”, 

section 3.2.2), we reasoned that a vaccinia-mediated IFN blockage might have 

turned the scales.  

B18R, the soluble type I IFN-receptor Le Boeuf reported on, is expressed 

ubiquitously as ascertained by comparison of genome sequences of various 

vaccinia virus strains (Qin et al, 2015). Among others, Lister strain VACV107 

encodes B18R, respectively open reading frame number 194 (Qin et al, 2015). 

Accordingly, we assumed that VACV GLV-1h254 might encode this soluble IFN 

receptor as well.  

Moreover, Smith et al. reviewed that poxviruses apply a multitude of strategies 

to inhibit host antiviral responses (Smith et al, 2013). In addition to B18R, VACV 

establishes lots of immune-modulatory proteins to block complement factors, 

cyto- and chemokine production, and counteracts host cell signaling pathways 

to inhibit apoptosis and viral clearance (Smith et al, 2013).  

In another study, Tysome et al. proved that three Syrian hamster tumor cell 

lines supported viral gene expression after oncolytic adenovirus and vaccinia 

virus treatment (Tysome et al, 2012). In vitro, HPD-1NR, HPD-2NR and HaK 

cells were either infected with Ad5 or VVLister but not combined. In vivo, the 

combined application of Ad5 and VVLister erased established tumors in an 

immunocompetent Syrian hamster model. Although the study design was not 

directly comparable to our setting, the advantage of a sequential treatment 

regime was demonstrated convincingly. 

4.4 No hint of synergism - the superiority of sequential infections is 

explained by additive effects.  

In general, the combined application of drugs - in our case of two genetically 

distinct oncolytic agents (i.e., a DNA type (VACV) and an RNA type (MeV) 
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virus) - leads to three different types of interaction. Besides the most wanted 

synergism, both addition and antagonism are alternative mechanisms. While 

synergistic interaction improves outcomes, addition fulfills and antagonism falls 

behind the expectation gained from the singular activity of each component 

(Bukowska et al, 2015).  

In this context, Le Boeuf et al. were able to induce synergism between VSV and 

VACV, both in vitro and in vivo (Le Boeuf et al, 2010). Beyond that, also 

Tysome et al. demonstrated synergistic interaction in vivo since they were able 

to halve the applied doses of Ad5 and VVLister in the combinatorial setting 

(Tysome et al, 2012). In contrast to Le Boeuf et al., who constructed their OVs 

most carefully, we hypothesized that our “unmodified” virotherapeutic agents 

might complement each other naturally. In this line, we were convinced that 

VACV-encoded immune-modulatory proteins support the infection and 

spreading of a second virus that is most dependent on IFN signaling. Moreover, 

we assumed that syncytia formation emerging upon MeV-GFP infection, would 

lead to a ping-pong effect in terms of virus infection and spreading of both 

counterparts. 

To further investigate whether there are synergistic or only additive effects, 

ACHN, HCT15 and KM12 cells were infected with VACV at defined threshold 

MOIs followed by an infection with MeV at slightly deviating viral concentrations 

6 hpi. Fluorescence pictures of HCT15 cells showed barely signs of MeV 

infection. Fittingly, cell indices of infected HCT15 cells were reduced 

inappreciably. As expected, in double-infected ACHN and KM12 cells, GFP 

expression and syncytia formation were dependent on the virus concentration 

applied, and corresponding cell masses were reduced in accordance. What is 

more, cell mass reduction of each double-infected cohort was reflected by its 

belonging single-infection treatment group. Thus, we did not receive any hints of 

synergism, but of additive effects here.  
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4.5 Both viabilitiy assays, SRB and MTT, exhibit comparable results.  

SRB and MTT viability assays are widely applied colorimetric assays to 

determine cell counts after a wide variety of cytotoxic treatments. Both methods 

convince with cost-efficiency, time saving and practicability.  

Because the SRB dye binds to cellular proteins, the amount of subsequent 

dissolved dye is directly proportional to the cell number stained (Skehan et al, 

1990). Although this assay detects cytotoxic effects most accurately, it is not 

able to differentiate between viable and dead cells (Vichai & Kirtikara, 2006).  

The MTT assay, however, detects metabolic active, viable cells by enzymatic 

conversion of a tetrazolium salt into a dark-colored formazan dye (Mosmann, 

1983). Thus, the MTT assay is a great tool to review results obtained with the 

SRB method. 

In order to evaluate whether the results of the SRB assay were comparable to 

those of the MTT assay, and, moreover, to investigate, if reduction of cell mass 

actually indicated cell death, a comparative trail was performed (section 3.4).  

For this purpose, sequential infection with VACV followed by MeV was 

performed. Then, infected and uninfected ACHN cells were analyzed at 0, 24, 

48, 72 and 96 hpi with the SRB or MTT assay, respectively. Fluorescence and 

bright-field pictures ensured equal cell-seeding and comparable rates of 

infection. 

When values from mock-treated cells were set 100 % and other values were 

plotted in relation to the corresponding mock, there were no differences 

between SRB and MTT assay results detectable. Thus, we reasoned, cell mass 

reductions analyzed by SRB assay actually indicated cell death.  

Analogically, other groups have demonstrated that results of both assays are 

highly comparable (Haselsberger et al, 1996; Perez et al, 1993; Rubinstein et 

al, 1990). However, the generated signal of the MTT assay is dependent on the 

overall cell count, but in addition, it is reliant on the metabolic activity of each 

and every cell (Riss et al, 2004). Riss et al. explicated that different factors, e.g. 

growth inhibition, altered pH and depletion of nutrients, reduce the amount of 
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produced formazan, which deregulates the “linearity between absorbance and 

cell number” (Riss et al, 2004). Consequently, the SRB and MTT method need 

to be performed at logarithmic cell phase growth (van Meerloo et al, 2011; 

Vichai & Kirtikara, 2006). In our experiment, cell growth of uninfected controls 

plateaued in the SRB assay analysis at 96 hpi. Although mock-treated cells 

proliferated until the end of the trial in the MTT assay, growth curves indicated 

that cells were measured after log phase. 

4.6 The majority of sequentially infected cells exhibits sole infection by 

“only” one virus.  

Many viruses have evolved mechanisms to prevent superinfection of an already 

“occupied”, i.e. primarily infected cell.  

For this phenomenon, downregulation of viral entry receptors, blockage of 

secondary virus RNA translation and genome replication, as well as activation 

of IFN signaling pathway are held responsible (Schaller et al, 2007).  

Prohibition of superinfection has been demonstrated for a wide variety of 

distinct viruses, such as hepatitis C virus (HCV) (Schaller et al, 2007; Tscherne 

et al, 2007), human immunodeficiency virus type 1 (Wildum et al, 2006), Old 

and New World arenaviruses (Huang et al, 2012; Huang et al, 2015), NDV (Li et 

al, 2012), rubella virus (Claus et al, 2007) and West Nile virus (Zou et al, 2009).  

Among other poxviruses, VACV is known to circumvent superinfection both by 

blockage of the “membrane fusion step” (Laliberte & Moss, 2014) and 

expression of virally encoded proteins like haemagglutinin (A56) and K2 (Turner 

& Moyer, 2008; Wagenaar & Moss, 2009), A33 and A36 (Doceul et al, 2010).  

In the majority of cases reviewed, superinfection exclusion was observed upon 

secondary virus infection with progeny of the same virus construct. In addition, 

researchers also reported of “heterologous superinfection exclusion” upon 

secondary virus infection with related or even distinct viruses (Eaton, 1979; 

Huang et al, 2015; Karpf et al, 1997; Nasar et al, 2015; Parkman et al, 1964; 

Tscherne et al, 2007).  
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As illustrated by fluorescence pictures, Le Boeuf et al. observed that DsRed and 

GFP expression did mainly not occur in the same cell after coinfection with 

VACV and VSV (Le Boeuf et al, 2010). However, the oncolytic potential of this 

combinatorial approach was undoubted. Consequently, the researchers 

presumed that a “sensitization of neighboring cells” upon VACV infection must 

have led to enhanced susceptibility to the following application of VSV (Le 

Boeuf et al, 2010).  

Here, in our work, we noticed that the majority of sequentially infected cells 

were either infected by VACV or by MeV but not by both viral agents 

simultaneously (sections 3.2.1, 3.2.2 and 3.5.1). Furthermore, successful 

secondary virus infections, here monitored by viral marker gene expression, 

were demonstrated to be dependent on viral concentrations of the first agent: (i) 

at low MOIs of the first virus, cells were infected to a greater extent by the 

second virus; (ii) at higher MOIs of the first virus, it was the other way round and 

cells were already occupied by the first agent. We called this phenomenon “viral 

competition” and considered a kind of superinfection exclusion as responsible 

reason.  

By performing our Keyence trial (section 3.5.2), i.e., applying real-time All-in-

One BZ-9000 fluorescence microscope, it was possible to monitor planar cell 

growth and, more important, real-time infection of singular cells. Although the 

majority of sequentially infected cells illuminated either red or green, some cells 

were double-infected by VACV and GFP, visualized by a yellow glow. To our 

knowledge, this is the first report of “viral competition” concerning heterologous 

superinfection exclusion in regards to VACV and MeV. 

However, since analysis of SRB assays (sections 3.2.1 and 3.2.2) revealed that 

remnant cells were reduced more effectively when being infected sequentially, 

“viral competition” did not hinder the oncolytic potential of these coinfection 

trials. 
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4.7 Western blot analysis verifies the observed phenomenon of “viral 

competition”: Viral protein expression is altered in double-infected cells.  

Western blot analysis was performed to confirm the expression of viral proteins 

upon combinatorial treatment with VACV and MeV, as well as to further 

investigate the observed phenomenon of “viral competition”. 

In order to study changes of cell mass over the course of the entire incubation 

period, we abstained from equalization of the protein content by Bradford assay.  

As demonstrated in section 3.6, both single- and double-infected ACHN cells 

expressed VACV and MeV proteins. From 24 to 96 hpi, alterations of the protein 

content of infected cells suggested proceeding cell loss due to virus infection 

and following oncolysis. Especially VACV-infected cells exhibited reduced cell 

masses at advanced time points. Thus, a prior finding of the SRB assay was 

confirmed: cell death of double-infected cells is most contingent upon VACV 

infection.  

In accordance to our findings, Le Boeuf et al. indicated that tumor cell infection 

by both candidates was mainly triggered by VACV (Le Boeuf et al, 2010). At 

96 hpi, ß-galactosidase and Vaccinia protein expression decreased relative to 

levels reached at 72 hpi. Since viral proteins were extracted from cell lysates, 

this observation was no surprise: at 72 and even more at 96 hpi, cell masses 

were erased almost completely; consequently, the breeding ground for 

production of new virions was diminished. Nevertheless, N-protein and GFP 

were highly expressed until 96 hpi. Thus, ACHN cells survived MeV sole 

infection until the end of the experiment. In accordance with this finding, 

N. Mayer demonstrated survival of MeV single-infected sarcoma cells until 

144 hpi (Mayer, 2014). 

Concerning the phenomenon of “viral competition”, we observed that viral 

proteins were expressed higher in single- than in double-infected cells at 72 and 

96 hpi. At these advanced time points, cells were almost completely infected by 

both viral agents, which might have triggered “viral competition” regarding 

uninfected cells. We suppose that the described phenomenon of heterologous 
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superinfection exclusion contributed to this finding. Although other groups 

barely applied western blot analysis to follow up superinfection exclusion, 

Tscherne et al. indicated reduced protein levels upon secondary virus infection 

with HCV (Tscherne et al, 2007). 
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5 Perspectives 

VACV- and MeV-based virotherapeutics have already proved to be safe and 

effective weapons in the fight against various cancer entities. In this thesis we 

investigated whether a combined application of VACV GLV-1h254 and MeV-

GFP in vitro would overcome limiting barriers to a successful treatment of highly 

resistant human tumor cell lines.  

In the course of the work we encountered methodical difficulties referring to cell 

viability assays. With respect to our elaborated findings, we recommend to 

determine suitable initial cell counts for each in vitro experiment by SRB assay. 

This suggestion was also made by Vichai and Kirtikara, who explain the 

procedure in detail (Vichai & Kirtikara, 2006). Thus, logarithmic cell growth of 

controls will be guaranteed until the end of the experiment, while monolayers 

are allowed to grow subconfluent. Although Skehan et al. reported about 

possible modifications of the SRB assay to fix cell aggregates, we suggest to 

apply this method only to firmly adhered cells (Skehan et al, 1990).  

Furthermore, we emphasize the importance of comparative trials. Thus, results 

are confirmed and, moreover, become accessible for further interpretation, 

demonstrated in this thesis by comparison of the SRB and MTT data. In 1992, 

Sasaki et al. introduced another cytotoxicity assay that measures the activity of 

a cytosolic enzyme, the lactate dehydrogenase (LDH), which is released upon 

cell death (Sasaki et al, 1992). While the SRB and MTT assay mirror the 

reduction of cell mass and metabolic activity, respectively, the LDH method 

actually indicates cytolysis. Accordingly, we propose to supplement the LDH 

assay in further studies.  

Another exciting side show of this thesis is the described phenomenon of “viral 

competition”. As explicated before, the majority of sequentially infected cells 

exhibited sole infection, nevertheless, singular cells were coinfected by both 

virus constructs. In 1964, Parkman et al. indicated that rubella virus interfered 

with heterologous virus constructs like enteroviruses, mumps, influenza, para-

influenza and rubeola (Parkman et al, 1964). Nevertheless, research primarily 

focuses on homologous superinfection exclusion. Further studies should pursue 
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the here described phenomenon and its underlying mechanism applying 

additional methods as well as other oncolytic virus platforms.  

Moreover, the survival of MeV single-infected ACHN cells until 96 hpi (section 

3.6) attracted our interest. In a previous paragraph, we argued that the 

experimental settings of cytotoxicity assays must be kept consistent to obtain 

reliable results. Consequently, we do not advise to simply stretch time frames of 

such assays, but apply another method to detect potential delayed oncolytic 

effects. 

Primary resistance phenomenon of human tumor cell lines towards oncolytic 

virotherapy remains a major hurdle to a successful application of this novel 

approach. In this thesis, we ascertained that sequential infections with VACV 

GLV-1h254 and MeV-GFP were superior to single infections. Best results were 

achieved, when VACV was applied first, while differences between time points 

of secondary virus infection were negligible. Admittedly, we did not receive any 

hint of synergistic interaction between the applied oncolytic viruses, and additive 

effects were only marginal. Nevertheless, it might be of some interest to further 

explore the molecular mechanisms of the described viral interactions and their 

impact on IFN signaling.  

In addition, studies should investigate the potential capacity of other “oncolytic 

tag-teams” by sequential infection of a wide range of tumor entities (Le Boeuf & 

Bell, 2010). To increase the occurrence of synergistic interaction, team partners 

must be matched thoroughly. Careful evaluation of each other´s benefits and 

malfunctions will be indispensable in order to develop well-fitting counterparts. 

Regarding the complex interactions between the host immune response and 

oncolytic viruses, Tysome et al. highlighted the importance to apply 

immunocompetent tumor models (Tysome et al, 2012). 

 



Summary 

 

130 

 

6 Summary 

Oncolytic viruses such as VACV and MeV are live, self-replicating biological 

anticancer agents, which have supplemented established therapies for quite a 

while (Bell, 2007). While sparing normal tissue, OVs destroy cancer cells by 

direct tumor cell lysis and the establishment of a host antitumor immune 

response (Kaufman et al, 2015). Nevertheless, primary resistance phenomenon 

to this novel approach hinders its widespread application.  

In 2010, Le Boeuf et al. published a promising attempt by demonstrating 

synergistic interaction between a VACV and a VSV strain (Le Boeuf et al, 

2010). MeV and VACV proved to be safe, and moreover, convinced in some 

cases with outstanding oncolytic efficacy. On the basis of highly resistant tumor 

cells, we here investigated in vitro whether Le Boeuf´s findings were 

reproducible for VACV GLV-1h254 and vaccine-based measles construct MeV-

GFP. In accordance with the researchers, we supposed that partial responsive-

ness to IFN could have led to a reduced susceptibility of resistant tumor cells to 

oncolytic virotherapy (Le Boeuf et al, 2010). With GLV-1h254, however, we 

aimed to suppress the upcoming host antivirus immune reaction.  

Prior to double infection trials, it was necessary to determined suitable virus 

concentrations of both vectors for each cell line. We noticed that every cell line 

required different plating densities to reach confluence and, moreover, that cell 

density influenced survival of uninfected controls as well as virus spreading. 

After determination of threshold MOIs, we examined different orders of virus 

treatment and time points for secondary virus infection in double infection trials. 

SRB assay analysis ensured the superiority of the combinatorial treatment 

regime. Thus, sequential infections applying VACV prior to MeV-GFP achieved 

best results, while differences between time points of secondary virus infection 

had only minor impact. Admittedly, synergistic interaction was not observed and 

additive effects were limited.  

Naturally, our in vitro setting is unable to reflect the complex interactions 

between oncolytic agents and the host immune response. Thus, we recommend 

to pursue the here described findings in an immunocompetent tumor model. 
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This procedure albeit is hindered by the highly restricted host range of measles 

viruses, which only allows replicative infections in primates and humans. 

Sequential infections illustrated a phenomenon called “viral competition”. The 

majority of double-infected cells was either infected by one or the other, but not 

by both virus constructs simultaneously. The Keyence microscope was applied 

to examine this finding in detail. Although most sequentially infected cells 

exhibited sole infection, some of them glowed yellow, which indicated 

coinfection by VACV and MeV-GFP. Further trials applying SRB assay and 

western blot ensured that “viral competition” did not limit the oncolytic potential 

of the combinatorial treatment regime. However, further studies should focus on 

the underlying mechanism of the here described phenomenon and its 

occurrence with other oncolytic virus platforms. 
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7 Zusammenfassung 

Onkolytische Viren wie beispielsweise Vaccinia- und Masernimpfviren sind 

lebende, sich selbst replizierende biologische Krebsmedikamente, die schon 

seit einigen Jahren zusammen mit etablierten Therapien eingesetzt werden 

(Bell, 2007). Während normales Gewerbe geschont wird, zerstören onkolytische 

Viren Krebszellen zielgerichtet durch Tumorlyse sowie durch die Etablierung 

einer wirtseigenen, gerichteten Immunreaktion gegen die malignen Zellen 

(Kaufman et al, 2015). Primäre Resistenzphänomene hochresistenter Tumor-

zellen verhindern zurzeit einen flächendeckenden Einsatz dieser neuen Thera-

peutika.  

Im Jahr 2010 präsentierten Le Boeuf et al. einen vielversprechenden Ansatz (Le 

Boeuf et al, 2010). Durch den kombinierten Einsatz von Vaccinia und Vesicular 

stomatitis Viren konnte ein Synergismus erreicht, und dadurch primäre 

Resistenzen überwunden werden (Le Boeuf et al, 2010). Masern- und Vaccinia-

viren haben bewiesen, dass sie nicht nur sicher sind, sondern in einigen Fällen 

auch äußerst effizient Tumorzellen bekämpfen.  

Auf der Grundlage hochresistenter menschlicher Tumorzellen haben wir in 

dieser Arbeit untersucht, ob Le Boeufs Erkenntnisse auf das Vacciniavirus GLV-

1h254 und das Masernimpfvirus MeV-GFP übertragbar sind. In 

Übereinstimmung mit den Forschern vermuteten wir, dass eine noch in Teilen 

bestehende Interferonantwort der Tumorzellen für das Auftreten primärer 

Virotherapie-Resistenzen verantwortlich sein könnte (Le Boeuf et al, 2010). Mit 

dem Einsatz des Vacciniavirus GLV-1h254 versuchten wir nun die gegen beide 

Viren gerichtete Immunreaktion zu unterbinden.  

Bevor mit den Doppelinfektionen begonnen werden konnte, war es nötig die für 

jede Tumorzelllinie passende Konzentration beider Viruskonstrukte zu 

bestimmen. Dabei fiel auf, dass jede Zelllinie unterschiedliche 

Auslegezellzahlen benötigte um Konfluenz zu erreichen, und mehr noch, dass 

dies sowohl das Überleben nicht infizierter Kontrollen als auch die 

Virusausbreitung beeinflusste.  
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Nachdem die passenden Virusmengen bestimmt worden waren, untersuchten 

wir in Doppelinfektionsversuchen unterschiedliche Reihenfolgen und Zeitpunkte 

der Applikation der beiden Viruskonstrukte.  

Mit Hilfe des SRB Assays konnten wir die Überlegenheit eines kombinierten 

Verfahrens gegenüber Einzelinfektionen herausstellen. Doppelinfektionen mit 

Vaccinia als erstem Virus erzielten dabei die besten Ergebnisse, während der 

Zeitpunkt der Zweitinfektion die Resultate nur unwesentlich beeinflusste. 

Synergismus konnte dennoch nicht bestätigt werden, und auch die beob-

achteten additiven Effekte fielen nur gering aus.  

Naturgegeben ist unser in vitro-Setting nicht ausreichend um die komplexen 

Zusammenhänge zwischen onkolytischer Virotherapie und wirtseigener 

Immunreaktion zu bewerten. Wir empfehlen daher die hier erzielten Ergebnisse 

in einem immunkompetentem Tiermodel nachzuvollziehen. Zugegebenermaßen 

wird dieser Ansatz dadurch erschwert werden, dass Masernviren ausschließlich 

Primaten- und menschliche Zellen infizieren und sich in ihnen vermehren 

können. 

Während der Doppelinfektionsversuche beobachteten wir ein Phänomen, das 

wir „viralen Wettkampf“ tauften. Die Mehrzahl der doppelinfizierten Zellen war 

entweder vom ersten oder zweiten Viruskonstrukt infiziert, nicht jedoch von 

beiden gleichzeitig. Das Keyence Mikroskop half diese Beobachtung weiter zu 

verfolgen. Obwohl sich die meisten Zellen als einzelinfiziert zeigten, leuchteten 

einige wenige gelb auf und wurden somit als koinfiziert bewertet. Nachfolgende 

Analysen unter Verwendung des SRB Assays und Western Blot stellten sicher, 

dass der „virale Wettkampf“ nicht zu einer eingeschränkten Effektivität der 

Doppelinfektionen führte. Zukünftige Forschung sollte sich auf die zugrunde-

liegenden Mechanismen des hier beschriebenen Phänomens und ihr mögliches 

Auftreten bei weiteren onkolytischen Viren konzentrieren.  
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