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1. Introduction

Ion channels control movement of ions, which is recognized as the major mechanism by

which cellular electrophysiological homeostasis is maintained. Depending on different

gating, there are three types of ion channels (Figure 1). Over one thousand human

voltage-gated sodium channel (VGSC) mutations have been identified that are relevant

to neurological, skeletal muscle and cardiovascular disorders (Brunklaus et al., 2014).

After the patch-clamp technique was developed, it was convenient for researchers to

investigate the electrophysiological characteristics of mutations at the cellular level.

Recently, many epilepsy-associated ion channel mutations have been reported (Orsini et

al., 2017).

Epilepsy, which is a neurological disease and caused by the synchronized abnormal

electrical activity of neurons, is characterized by recurrent, transient, and unprovoked

seizures. There are 40-50 million people worldwide who have epilepsy (Orsini et al.,

2017). With respect to the original site of seizure onset, the newest seizure types are

classified into three main categories: (1) focal onset, (2) generalized onset and (3)

unknown onset (Fisher, 2017). According to previous studies, genetic factors are an

important cause of many epilepsy phenotypes (Kaplan et al., 2016, Orsini et al., 2017).

Figure 1: Three types of ion channels.
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1.1. VGSCs

VGSCs contain α-subunit and β-subunit (some VGSCs contain two β-subunits). The

former forms the channel tunnel and conducts sodium ions (Na+) passing through the

pore (Catterall, 1992, Catterall, 2000, Isom, 2001). The function of β-subunit is to

promote membrane localization and modulate the kinetic characteristics of the channels

(O'Malley and Isom, 2015).

1.1.1. The family of human VGSC α-subunits

The human VGSCs have nine principal α-subunits—sodium channel protein types 1-9

(hNaV1.1-hNaV1.9) (https://www.ncbi.nlm.nih.gov/protein/) and distribute in different

mammals tissues (Brunklaus et al., 2014). VGSC α-subunit genes (SCN1A-SCN6A,

SCN8A-SCN11A) encode VGSC α-subunits and locate on the human chromosomes

12q13, 17q23, 2q24 and 3p22, respectively (Meisler et al., 2010). The SCN1A through

SCN5A genes encode hNaV1.1 through hNaV1.5, and the SCN8A to SCN11A genes

encode hNaV1.6 through hNaV1.9. The human VGSCs express in the nervous system,

skeletal muscle and cardiac myocytes (Table 1) (Brunklaus et al., 2014). hNaX which is

involved in salt intake has not yet been functionally expressed and fully identified

(Watanabe et al., 2000, Shen et al., 2017).



3

Table 1: Human VGSC α-subunits, revised from (Brunklaus et al., 2014).

p and q: chromosome short and long arm; SCN1A-6A and SCN8A-11A: VGSC α-subunit
gene family; hNaV1.1-1.9 and hNaX: human VGSC α-subunit proteins.

Gene Protein Human chromosome Channel distribution

SCN1A hNaV1.1 2q24 central nervous system, cardiac

myocytes

SCN2A hNaV1.2 2q24 central nervous system

SCN3A hNaV1.3 2q24 central nervous system, cardiac

myocytes

SCN4A hNaV1.4 17q23 skeletal muscle

SCN5A hNaV1.5 3p22 cardiac myocytes, skeletal muscle,

central nervous system

SCN8A hNaV1.6 12q13 central nervous system, peripheral

nervous system

SCN9A hNaV1.7 2q24 peripheral nervous system

SCN10A hNaV1.8 3p22 peripheral nervous system

SCN11A hNaV1.9 3p22 peripheral nervous system

SCN6A hNaX 2q21 cardiac myocytes, uterus, skeletal

muscle

1.1.2 The structure of VGSC α-subunits

Four domains (DI-DIV) constitute a VGSC α-subunit, and six segments (S1-S6)

constitute a domain (Figure 2). All of these four domains are equally required for the

sodium channels (Stuhmer et al., 1989). The domains mainly act as voltage-sensing and

ion conducting, which control voltage-dependent gating and allow the Na+ to pass

through the membrane (Shen et al., 2017). The channel’s voltage sensor locates in S4

transmembrane segment (Stuhmer et al., 1989). A critical hydrophobic amino acid

sequence which inactivates the VGSC channels locates in short intracellular loop

connecting DIII-IV (Catterall, 2001).
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Figure 2: The human VGSC α-subunit.

1-6: segment 1-6; I-IV: domain I-IV; OUT: extracellular membrane; IN: endocellular membrane;
+: positive charge; voltage sensing: S4 segments; inactivation: short intracellular loop
connecting DIII-IV; NH3+: N-terminal; COO-: C-terminal.

The two-dimensional structure of the VGSC α-subunits are shown spread out and in a

row; in actuality, the domains of VGSCs are clustered. With the help of X-ray

crystallography, nuclear magnetic resonance and image reconstruction, the channel’s

space structure was discovered (Catterall, 2001, Sato et al., 2001). The three-

dimensional structure provided a feasible way to understand how the channels work.

1.1.3. The function of VGSCs

VGSCs have three different conformational states (Figure 3): (1) the closed state: the

membrane is negatively charged inside and positively charged outside with the sodium

ions sequestered outside the membrane; (2) the open state: when membrane potential

changes, voltage sensor shifts the position within the protein, the activation gate is

opened, and sodium ions pass across the sodium channel; and (3) the inactivated state:

the inactivation gate is automatically closed, and the sodium ions are sequestered



5

outside the membrane. When potential changes happen in the membrane, the voltage

sensor segment moves toward outside relative to the rest of the protein, and then the

activation gate is opened, at which point positively charged sodium ions pass through

the sodium channel within several milliseconds. The membrane potential becomes more

positively charged. The negatively charged intracellular membrane soon changes its

potential to zero or even more positive, this process is called “activation”. According to

the activation-inactivation coupling mechanism, the inactivation is related to the

activation (Chen et al., 1996). Inactivation gate automatically closes after membrane

potential is high enough, and sodium ions cannot pass through the channel (even though

activation gate still opens). At this time, the sodium channels are in their inactivation

state. Due to lack of positively charged sodium ions passing through the channel, the

membrane’s potential cannot maintain original level even decrease. When the

membrane’s potential level is low enough, the membrane returns to the resting potential.

The inactivation gate is reopened, and the activation gate is closed again, at which point

it is ready for another action potential.

Figure 3: The conformational states of VGSCs.

+: positive charge; -: negative charge.
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1.1.4 VGSC β-subunits

In mammals, VGSC β-subunits are of four types, namely subunit β1, β2, β3 and β4.

They are encoded by the SCN1B-SCN4B genes. The β1-subunit has another splice

variant known as β1B-subunit (Isom et al., 1992, Patino and Isom, 2010). Previous

studies have shown that each VGSC β-subunit only has one segment with intracellular a

C-terminal and extracellular an immunoglobulin-like fold N-terminal (Isom et al., 1995,

Catterall, 2014). VGSC β-subunits mainly distribute in neural and cardiac and mutations

cause epilepsy and cardiac diseases (O'Malley and Isom, 2015) and modulate channel

gating and cell-cell interactions (Catterall, 2000). In heterologous systems, β1 and β2-

subunits contribute to extracellular interactions, and β2-subunit increases the sodium

current density by enhancing the α-subunit expression in the cell surface (O'Malley and

Isom, 2015).

1.2. Epilepsy

Epilepsy is traced back to 2000 B.C., from which time it was discovered in ancient

Egyptian medical texts (1700 B.C.) (Magiorkinis et al., 2010). From the time of its first

recognition, epilepsy was considered to be associated with the divine malady, evil

spirits or demonic possession; Hippocrates, the father of medicine, was the first to doubt

its origin and deem brain dysfunction and head injuries as epilepsy’s etiology

(Magiorkinis et al., 2010). The word “epilepsy” begins with the Greek verb

“epilambanein”, which means “to seize upon”, “to attack”

(http://www.epilepsiemuseum.de/alt/introen.html). The neurological study of epilepsy

in recent times dates back to the 1860s (Eric R. Kandel, 2000).

Several mutations of the VGSC genes (SCN1A, SCN2A and SCN8A) have been

associated with epilepsies (Scheffer et al., 2017, Orsini et al., 2017).

1.3. SCN2A mutations are associated with epilepsy

There are more than 140 epilepsy-associated SCN2A mutations. According to the

previous studies, SCN2A mutations-associated epilepsy phenotype spectrum manifest as
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benign familial neonatal-infantile seizures (BFNIS), generalized epilepsy with febrile

seizures plus (GEFS+) and epileptic encephalopathies (EE) (Lerche et al., 2013,

Brunklaus et al., 2014, Howell et al., 2015). Inherited SCN2A mutations contribute to

milder phenotypes such as BFNIS, usually de novo SCN2A mutations cause severe EE

(Shi et al., 2012, Brunklaus et al., 2014). SCN2A mutations were functionally

characterized as either enhance or decrease the channel function (Liao et al., 2010a,

Liao et al., 2010b, Schwarz et al., 2016, Wolff et al., 2017).

1.3.1. BFNIS

The onset of afebrile generalized seizures in the neonatal period is the main clinical

feature of BFNIS; other characteristics of this disease are responding well to

anticonvulsants and self-limiting (Striano et al., 2006). NaV1.6 replaces NaV1.2 during

development in axon initial segments (Liao et al., 2010b). This could explain why

BFNIS is a self-limiting disease. According to the previous studies, most SCN2A-related

BFNIS cases tend to heritable missense mutations (Gardiner, 2006, Shi et al., 2012,

Yallapu et al., 2012).

1.3.2. GEFS+

Scheffer and Berkovic firstly described GEFS+ in 1997, and it appears various seizure

types and responds to most of antiepileptic drugs (AEDs), and these seizures stop

spontaneously in some cases (Ito et al., 2002, Kamiya et al., 2004). Not only SCN2A

variants but also mutations of SCN1B and SCN1A are related to GEFS+ (Lossin et al.,

2002). Proprietorial SCN2A mutations associated with the GEFS+ cases involve

inherited missense mutations (Shi et al., 2012).
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1.3.3. EE

The concept of EE was accepted by International League Against Epilepsy (ILAE) in

2001. EE are severe epileptic syndromes, and most of the cases are resistant to AED

treatment. Their clinical features manifest as generalized or focal seizures, cognitive

dysfunction or decline, behavioral and or motor slowing or regression, and

developmental regression; the clinical features may evolve from one type to another

during the maturation process (Covanis, 2012). Some cases show persistent, severe

electroencephalography abnormalities. EE affect cerebral function and usually occur in

the early of life (Engel and International League Against, 2001, Engel, 2006, Covanis,

2012). EE mainly include eight kinds of syndromes (Table 2) (Covanis, 2012). Some

human VGSC mutations have been reported that related to EE (Lerche et al., 2013,

Gokben et al., 2017). According to previously reported cases, some mutations of

SCN2A are related to early-onset EE (Syrbe et al., 2016, Wolff et al., 2017). Not all

phenotypes fit into one category and therefore unspecific EE is another category which

can occur at any age (Wolff et al., 2017). Most of these SCN2A mutations related to EE

are de novo missense or truncating (Brunklaus et al., 2014).

Table 2: Epileptic encephalopathies (Covanis, 2012).

CSWS: Epileptic encephalopathy with continuous spike-and-wave during sleep; EE: Epileptic
encephalopathies; EME: Early myoclonic encephalopathy; EIMFS: Epilepsy of infancy with migrating
focal seizures; DS: Dravet syndrome.

period EE

≤ 28 day EME

Ohtahara syndrome
≤ 1 year EIMFS

West syndrome

DS

Myoclonic encephalopathy in nonprogressive disorders
Before adolescence CSWS

Lennox-Gastaut syndrome
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1.3.4. Ohtahara syndrome

Ohtahara syndrome appears in the early infancy period (usually younger than 3 months

after birth) (Khan and Al Baradie, 2012). The main seizure types of Ohtahara syndrome

include tonic spasms, focal seizures and rarely massive myoclonus (Covanis, 2012).

Structural CNS abnormalities and, in particular, malformations of brain development

are the main etiologies of Ohtahara syndrome (Covanis, 2012). Commonly, cases

progress to West syndrome or Lennox-Gastaut syndrome (Khan and Al Baradie, 2012).

Cases are highly resistant to AEDs. However, a recent report showed that

adrenocorticotropic hormone (ACTH) can be effective in some patients (Wilmshurst et

al., 2015). Mutations in SCN2A, which are relevant to Ohtahara syndrome, are usually

de novo (Wolff et al., 2017).

1.3.5. EIMFS

EIMFS, which is an uncommon, AED-resistant and cryptogenic infancy EE (Coppola et

al., 1995, Covanis, 2012, Khan and Al Baradie, 2012). The characteristic seizures of

EIMFS are focal motor seizures which “migrate”, i.e. occur in different regions of the

cortex, and frequent secondary generalization (Covanis, 2012). Recent studies have

reported that, with vigabatrin and phenytoin treatment, some SCN2A-associated cases

can become seizure-free (Wolff et al., 2017).

1.3.6. DS

DS usually appears during the infancy period and was first reported by Dravet in 1978;

it responds incompletely to AEDs (http://www.omim.org/). Dravet syndrome cases have

mainly been associated with SCN1A mutations (Lerche et al., 2013, Brunklaus and

Zuberi, 2014, Catterall, 2014, Poryo et al., 2017). Mutations of SCN2A relevant to DS

are usually missense (Shi et al., 2009).

http://www.omim.org/


10

1.3.7. West syndrome

West syndrome appears in the infantile period (usually, 3-6 months of age) with the

clinical features of hypsarrhythmia on electroencephalography and developmental

deterioration (Covanis, 2012, Khan and Al Baradie, 2012). Most cases of West

syndrome are symptomatic; the second-most common form is cryptogenic. The etiology

of symptomatic West syndrome includes underlying structural causes and metabolic and

mitochondrial causes. SCN1A and SCN2A are the most frequently observed genes

accounting for West syndrome (Epi4k et al., 2013). According to recent studies, all

SCN2A-related West syndromes showed pharmacoresistance (Wolff et al., 2017).

However, some previous researches have shown it might respond well to the ACTH and

topiramate (Samanta and Ramakrishnaiah, 2015).

1.3.8. Intractable childhood epilepsy

Children who have one or more uncontrolled seizure in one month at least 2 years and

who have used at least three AEDs monotherapy or in drug combination during this

time are described as having intractable childhood epilepsy. Although most mutations

of drug-resistant epilepsy locate in SCN1A, some de novo SCN2A mutations are

responsible for sporadic intractable epilepsy (Ogiwara et al., 2009, Wang et al., 2012,

Wolff et al., 2017).
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1.4. Aim

This thesis aimed to investigate the features resulting from A1659V (p.Ala1659Val) and

I1640M (p.Ile1640Met) mutations of the SCN2A gene making use of the patch-clamp

technique in tsA201 cells co-expressed with SCN2A (wild-type (WT) or mutation),

together with the hβ1 and hβ2-subunit.
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2. Materials and methods

2.1. Electrophysiological experiment

2.1.1. Mutagenesis

It was performed by co-workers in the laboratory of Laurence Colleaux, Molecular and

Pathophysiological Bases of Cognitive Disorders laboratory, Paris Descartes-Sorbonne

Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital in France.

2.1.2. Obtaining plasmid DNA

According to the Genopure Plasmid MaxiPrep Kit (Roche) protocol plasmid DNA was

obtained. The purity plasmid DNA concentration and the ratio of A260/280 were

checked by using spectrophotometer (Nano Drop®, Biotechnologie GmbH, USA).

2.1.3. Cell culture

A range of mammalian cell lines can be used for in vitro studies of protein functions

(Venkatachalan et al., 2007). The tsA201 cells were derived from a human kidney cell

line. The tsA201 cells are an ideal model for expressing heterologous VGSCs because

there are only a small number of endogenous VGSCs in it. In this thesis, the SCN2A

WT or mutation alpha subunit together with hβ1 and hβ2-subunit were co-expressed in

the tsA201 cells for electrophysiological characteristics analyzing.

The procedure of the cell culture was performed as follows: Before initiating a cell

subculture, the cell growth medium (Table 3) was put in a 37 °C water bath for 15

minutes. A bench (UnityTM Labservices, Germany) was sterilized by UV lamps for 10-

20 minutes, where the cell subculture was subsequently performed. A new T-75 flask

(Falcon®, USA) was filled with 10 ml fresh cell growth medium. The cells were taken

out of the incubator (Integra Bioscience or Greiner, Frickenhausen, Germany) and put

on the bench. The old cell growth medium was discarded and replaced by 10 ml fresh

cell growth medium with a 10-ml pipette (Serologische, France) softly blown up and
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down to separate the adherent cells. The final density of cells for a subculture was

approximately 1000,000 cells/ml. The cells grew in a 5 % CO2 incubator at 37 °C. The

cell line was subcultured once a week. Cells were used for transfection until passage 30.

Table 3: The composition of cell growth medium.

Cell growth medium Products information

1 % L-glutamine Biochrom GmbH, Deutschland

10 % fetal bovine serum PAN-Biotech GmbH, Deutschland

89 % Dulbecco’s Modified Eagle Medium Life Technologies, USA

2.1.4. Transfection

The tsA201 cells were split into 35-mm petri dishes a day before transfection. The

tsA201 cells used for transfection was approximately 700,000 cells/dish. The SCN2A

WT or mutant plasmid DNA together with hβ1-GFP and hβ2-CD8 plasmid DNA were

always transiently co-transfected into tsA201 cells.

Two hundred and fifty microliters of Opti-MEM® I (1×) reduced serum medium

(Gibco® by life technologiesTM, UK) and 7.5 microliters Mirus (TransIT®-LT1

Transfection Reagent, USA) were added into a 1.5-ml tube. After an incubation time of

five minutes, a total of 2.4 µg DNA was added into each tube, with the molar ratio of

human VGSC α-subunit (SCN2A WT or mutation): hβ1-subunit: hβ2-subunit = 1: 1: 1

(human VGSC α-subunit 2.0 µg, hβ1-subunit and hβ2-subunit were each 0.2 µg). The

mixture was sufficiently mixed by vibrating the tube wall and setting for 20 minutes.

Then, the mixture was added to each dish, which was filled with tsA201 cells. These

transfected cells were finally cultured in a 37 °C incubator for 24 hours. Twenty-four

hours later, each dish of the transfected cells was split into several 35-mm petri dishes

(usually 5 petri dishes). The cells were set in a 37 °C incubator for 2-3 hours before

recording.
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Before electrophysiology recording, the old transfection growth medium was discarded

and replaced by 2 ml DPBS++-CD8 solution (a mixture of 50 ml PBS containing Ca2+

and Mg2+ and 50 µl Dynabeads CD8), and the cells were exposed to room temperature

for 2-3 minutes. Then, 2 ml bath solution took place of the DPBS++-CD8 solution in the

dish with transfected tsA201 cells. The transfected tsA201 cells were confirmed by

fluorescent microscopy. Only cells both with microbeads and green fluorescence were

used for electrophysiology recording (Figure 4).

Figure 4: The transfected tsA201 cell used for electrophysiology recording (both with
microbeads and green fluorescence under the microscope).
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2.2. Electrophysiology technique

2.2.1. Introduction for electrophysiological technology

With patch-clamp electrophysiology coming out at the end of the 1970s, patch-clamp

has gradually become the main tool for ion channel electrophysiological characteristics

analyzing.

The patch-clamp technique was divided into two types according to control current or

potential. Current-clamp consists of applying a current and measuring the changes in

membrane potential caused by the applied current; in contrast, the voltage-clamp

technique is described as controlling the membrane potential and measuring the

transmembrane current required to maintain that potential (Molleman, 2002). The

voltage-clamp technique was used in this experiment.

The patch-clamp technique has four configurations (Figure 5) (Molleman, 2002). When

the micropipette attaches the cell membrane, the cell-attached patch mode is formed.

When the attached membrane is broken, the whole-cell patch-clamp is obtained. Our

study used whole-cell patch-clamp configuration for the electrophysiological analysis.

Figure 5: Patch-clamp configurations.
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2.2.2. Platform

The basic elements of a setup consisted of an anti-vibration table on which were the

inverted microscope (Axio-Vert.A1, Zeiss) and the motorized micromanipulator (LN

Unit Junior, Germany). A faraday cage was used to prevent electromagnetic

interference. An Axopatch 200B amplifier (Molecular Devices, USA), a Digidata1320A

digitizer, a computer, pCLAMP 8 software and a 35-mm petri dish recording chamber

were used for recording (Figure 6).

Figure 6: The main basic elements of the patch-clamp setup.

A: Whole-cell voltage-clamp recording on the anti-vibration table. B: Patch-clamp amplifier
received the signal then amplified and filtered it. C: Digitizer digitized the output from the
amplifier and signals was converted from analog to digital format and stored it on a computer. D:
Computer running pCLAMP 8 data acquisition software.

2.2.3. Recording procedure

The experiment was performed at 21-23 ℃. Transiently transfected SCN2A WT and

mutant tsA201 cells were always recorded on the same day.

Before starting electrophysiology recording, all the setup were switched on and the bath

solution and pipette solution were heated in a 37 ℃ water bath after taking out of the
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cold room. Only cells which with both microbeads and green fluorescence were used for

recording. Before the pipette touched the bath solution, a positive pressure was given by

using a syringe (BD, Franklin Lakes, USA). The electrode was located in a borosilicate

glass micropipette with resistance between 1-2 MΩ when touched bath solution.

Releasing this positive pressure after a tight seal. A gigaohm seal (resistance higher than

1 GΩ) was formed with a gentle suction (by a syringe). Seal quality could be improved

by changing the voltage-clamp to a negative potential closed to the resting potential (-70

mV) to the pipette. After this step, a light and short suction pulse was applied by using a

30-ml syringe to break through the membrane. Once the membrane was broken, the

whole-cell configuration was obtained. The compensation of the capacitance and series

resistance was adjusted up to 90 %. Then the pipette solution and the cytoplasm mixed.

Thus, the whole-cell configuration equivalent circuit was obtained (Figure 7). 10

minutes later, when it reached a steady-state, and the experiment could begin to be

recorded. It was necessary to frequently check for the cell and micropipette while

recording, in case of micropipette drift. The standard parameters of each patched cell

were written down on a laboratory notebook. The parameters were as follows: pipette

resistance, seal resistance, series resistance (access resistance plus pipette resistance),

cells capacitance and percent series resistance compensation.

The whole-cell sodium currents between 1-10 nA were chosen for data analyzing.

Compensating the series resistance up to 90 % and controlling the maximal voltage

error≤5 mV.
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Figure 7: The whole-cell voltage-clamp equivalent circuit (Molleman, 2002).

Raccess: access resistance, Rpipette: pipette resistance, Rleak: leak resistance, Rm: membrane
resistance, Cpipette: pipette capacitance, Cm: membrane capacitance. The series circuit consists of
the Rpipette, the Raccess and the Rm, the Rleak parallel to the circuit. The series resistance is equal to
the sum of Rpipette and Raccess.

2.2.4. Micropipettes

Borosilicate glass micropipettes were pulled from a Sutter P97 Puller. The

micropipettes were made and used immediately (usually within 24 hours) to avoid

pollution and ensure sealing quality. Pipettes resistance varied from 1 to 2 MΩ.

2.2.5. Electrophysiology recording from transfected tsA201 cells

The electrophysiological experiments were under the condition of room temperature

(21-23 ℃ ). The transfected tsA201 cells were incubated with 2 ml DPBS++-CD8
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solution (as mentioned earlier) for 2-3 minutes before recording. Then the transfected

cells cultured in the bath solution were confirmed by fluorescent microscopy with a 35-

mm petri cell culture dish as the recording chamber. The cells that bounded microbeads

and showed green fluorescence were chosen for recordings. The recorded sodium

currents ranging from 1 to 10 nA were chosen for evaluation.

2.2.6. The solution for electrophysiology recordings

For electrophysiology recordings, the following pipette and bath solutions were used (in

mM), as published previously (Schwarz et al., 2016) (Table 4):

Table 4: Electrophysiology recording solution.

The intracellular solution (pipette solution), the extracellular solution (bath solution).

Solution Composition PH Osmotic

pressure

(mOsm)

Intracellular

(in mM)

CsF

130

MgCl2
2

EGTA

5

HEPES

10

NaCl

5

- 7.4

CsOH

adjusted

290

Extracellular

(in mM)

CaCl2
2

Dextrose

4

HEPES

5

MgCl2
1

NaCl

140

KCl

4

7.4

NaOH

adjusted

300
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2.3. Whole-cell voltage-clamp protocols

2.3.1. Activation

To study activation a stepwise protocol was used. The cells were progressively

depolarized to test pulses between -105 to +97.5 mV with 7.5 mV increments at a -120

mV command pulse. The parameter of the activation curve was fit with Boltzmann

equation:

   




 



VK
VV

V
2
1max exp1

1
g
g

g : conductance and equal to  revVV
I

 , V : given pulse, recV : reversal potential,

maxg : maximum conductance, 2
1V : half-maximum activation voltage, VK : slope

factor.

2.3.2. Fast inactivation

It was determined by holding and test pulse procedure. The membrane was depolarized

for 300 ms at various prepulses (between -170 and -20 mV, with 7.5 mV increments)

and finally to -20 mV test pulse.

The parameter inactivation curve was fit to Boltzmann equation:

   




 



VK
VV

VI
2
1max exp1

1
I

(Imax) I : (maximum) current amplitude, V : voltage of conditioning pulse, 2
1V : half-

maximum inactivation voltage, VK : slope factor.
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2.3.3. The time constant of fast inactivation and persistent current

The current decay during activating depolarizations can be described as a fast

inactivation time constant. The data were fit to an exponential function of second-order:

        CttAttAtI SSff   00 expexp

I : current, fA and sA : fast and slow amplitude, f and s : fast and slow time constant,
0t : delay, C : constant.

To determine the persistent current, a protocol depolarizing from -80 to +10 mV with 10

mV increments within 95 ms at a -120 mV command pulse was used.

2.3.4. Recovery from fast inactivation

Firstly, all the sodium channels were inactivated to depolarize all cells to -20 mV at a -

120 mV command pulse within 100 ms. Then repolarized to -80, -100 and -120 mV,

respectively. Subsequently, the second depolarization to -20 mV was performed at

increasing intervals, resulting in increasing amplitude and reflecting the characteristic of

recovery associated with fast inactivation.

The data were fit with an exponential function of second-order:

        CtAttAtI 











 

2
2

1

0
1 exp1exp1 

1A and 2A : amplitude 1 and 2, 1 and 2 : time constant 1 and 2, 0t : delay, C : offset.
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2.4. Data and statistical analysis

Originally recorded traces were copied from patch-clamp setup computer and presented

to another computer off-line with Clampfit 10.4. Original data were conserved in

Microsoft Excel and final graphics were acquired with Origin 6.1 software, statistical

tests were run with SigmaPlot 14.0. All data were checked for normality testing

(Shapiro-Wilk test) and equal variance testing (Brown-Forsythe). Post Hoc test was

used for the power test. One way ANOVA was analyzed distributing normally with

equal variance data; Kruskal-Wallis ANOVA on ranks was used for data that were non-

normal or unequal variance. Mean ± SEM (standard errors of the mean) was used as

data representation. Significant difference levels were described as: p-value<0.05,

<0.01 and <0.001. One way ANOVA test was marked as #, ## and ###, meaning p value

<0.05, <0.01 and <0.001; Dunnet’s test was used to correct multiple comparisons

between WT and mutation groups; Kruskal-Wallis ANOVA on ranks test was marked

as ※
,

※※and ※※※, meaning p-value <0.05, <0.01 and <0.001; Dunn’s test was used to

correct multiple comparisons between WT and mutation groups.
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3. Results

The clinical investigations of the p.Ile1640Met (I1640M) and p.Ala1659Val (A1659V)

mutations were performed by our collaborators Prof. Rima Nabbout and her team in

Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker-

Enfants Malades Hospital, Imagine Institute, Paris Descartes University, APHP &

Inserm U1129, Paris, France.

The A1659V and I1640M mutations relate to patients with severe forms of neonatal-

onset epilepsy. Both had a similar neonatal electro-clinical phenotype.

3.1. The location of the I1640M and A1659V mutations of SCN2A relate to

neonatal-onset epilepsy in the hNav1.2

In this experiment, there are two neonatal-onset epilepsy-associated SCN2A mutations

(A1659V and I1640M), which locate very close to each other in DIV. As it is shown in

Figure 8, the position of the I1640M mutation is in the DIV-S4, whereas the A1659V

mutation situates in the intracellular loop of the DIV-S4-S5. The mutations together

with amino acid sequences of surrounding mutations are highly conservative during

evolution among different species (Table 5).
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Figure 8: The location of the I1640M and A1659V mutations of SCN2A associated with
neonatal-onset epilepsy in the hNaV1.2.

The position of I1640M mutation is DIV-S4 and A1659V mutation is DIV-S4-S5. 1-6: segment
1-6; I-IV: domain I-IV; OUT: extracellular membrane; IN: endocellular membrane; +: positive
charge; voltage sensing: S4 segments; inactivation: short intracellular loop connecting DIII-IV;
NH3+: N-terminal; COO-: C-terminal.

Table 5: The surrounding amino acid sequences of I1640M and A1659V mutations in
different species.

Species I1640M A1659V

Homo I L R L I K G A K M S L P A L F N I

H.s. (mutated) I L R L M K G A K M S L P V L F N I

Pan troglodytes I L R L I K G A K M S L P A L F N I

Macaca mulatta I L R L I K G A K M S L P A L F N I

Mus musculus I L R L I K G A K M S L P A L F N I

Danio rerio I L R L I K G A K M S L P A L F N I
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As mentioned before, the function of the S4 segment is important and as the voltage

sensing of VGSCs, and the intracellular linker of S4-S5 directly connects to the S4

segment. These two mutations are located in highly conservative and functionally

critical regions. Either I1640M or A1659V mutant, together with two auxiliary hβ1 and

hβ2-subunit genes, were co-transfected into the tsA201 cells for electrophysiological

analyses.
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3.2. Prediction functional damage with both mutations using PolyPhen-2 software

The two mutants were predicted by using PolyPhen-2 software, yielding scores of 1.000

(A1659V) and 0.993 (I1640M), respectively (Figure 9). The predictions suggested that

both mutations were highly likely to be damaging to hNaV1.2.

Figure 9: PolyPhen-2 software predicted scores.

These two mutations were predicted to likely be damaging, with scores of 1.000 (the A1659V
mutation) and 0.993 (the I1640M mutation).

As mentioned above, according to the particular location and the PolyPhen-2 prediction

scores of these two mutations, we stated a hypothesis that these two variations could

change the functional characteristics of hNaV1.2. To detect the functional defects caused

by these two mutations, we analyzed the kinetics and voltage-dependent characteristics

of hNaV1.2 in the transfected tsA201 cells.
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3.3. The functional characteristics of WT and mutations in hNaV1.2

To test the hypothesis that functional defects of hNaV1.2 could be caused by the

A1659V and I1640M mutations, The SCN2AWT or mutant plasmid DNA together with

hβ1-GFP and hβ2-CD8 plasmid DNA were transiently co-transfected into tsA201 cells.

To analyze the electrophysiological features of hNaV1.2 making use of the whole-cell

voltage-clamp technique. The detailed functional features of hNaV1.2 were analyzed by

current density, persistent currents, activation and fast inactivation curves, the time

constants of fast inactivation and recovery from fast inactivation.

3.3.1. hNaV1.2 whole-cell Na+ current traces

hNaV1.2 whole-cell Na+ current traces were shown in Figure 10 below. In this thesis,

the peak whole-cell Na+ currents ranging from 1 nA to 10 nA were ultimately chosen

for electrophysiological analyses.

Figure 10: Representative whole-cell Na+ current traces.

Black traces: WT; red traces: A1659V mutation; blue traces: I1640M mutation.
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3.3.2. Current density

Figure 11: Current density.

The two mutants exhibited similar current density compared with WT. Black: WT; red:
A1659V mutation; blue: I1640M mutation. Compare to table 6 for results.

The current density equals to peak current amplitude (pA)/capacitance (pF). The

I1640M mutation and WT had a similarity current density. The A1659V-transfected

tsA201 cells showed a slightly lower current density (-452.7 ± 95.5 pA/pF, Table 6)

compared to the WT (-543.9 ± 62.4 pA/pF, Table 6), but no statistical difference

compared to WT (Figure 11, Table 6).

Table 6. Current density.

Current density: current peak (pA)/capacitance (pF); n: cells number. WT: n=31; A1659V: n=15;
I1640M: n=18. Mean ± SEM was used for data presentation. The P-value of Kruskal-Wallis
ANOVA on ranks marked as ※: <0.05, ※※: <0.01, ※※※: <0.001.

current density (pA/pF) n

WT -543.9 ± 62.4 31

A1659V -452.7 ± 95.5 15

I1640M -549.7 ± 74.4 18



29

3.3.3. Persistent current

Figure 12: Persistent current.

The persistent currents, termed as ISS/IPeak. ISS: the current amplitude；IPeak: the maximum peak
current. Black: WT; red: A1659V mutation; blue: I1640M mutation. Compare to table 7 for
results.

The persistent currents, termed as ISS/IPeak. For the A1659V mutation, the persistent

current was significantly increased compared to the WT (at -30 mV: A1659V: 5.190%

± 0.012 vs. WT: 2.000% ± 0.004, ※※P < 0.01; at -20 mV: A1659V: 2.490% ± 0.003

vs. WT: 1.020% ± 0.002, ※※※P < 0.001; at -10 mV: A1659V: 2.360% ± 0.002 vs.

WT: 1.030% ± 0.001, ###P < 0.001; at 0 mV: A1659V: 2.810% ± 0.003 vs. WT:

0.929% ± 0.001, ※※※P < 0.001; at +10 mV: A1659V: 2.790% ± 0.003 vs. WT:

0.886% ± 0.001, ※※※P < 0.001; A1659V, n =14；WT，n=21, Figure 12, Table 7-A).

The A1659V mutation caused a larger persistent sodium current (INa) than the WT (at -

30, -20, -10, 0 and +10 mV). This increasing persistent INa meant that A1659V mutation

increased the inward INa which could explain abnomal neuronal electrical activity. In
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contrast, the persistent currents of the I1640M mutation had no statistical difference

comparing with WT (Figure 12, Table 7-B).

Table 7. Persistent current.

ISS/IPeak (steady-state current/initial peak current): the persistent current (as mentioned above); n:
cells number. The A1659V mutation (at -30, -20, -10, 0 and +10 mV) was significantly
increased compared to WT. Mean ± SEM was used for data presentation. The P-value of One-
way ANOVA marked as #: <0.05, ##: <0.01, ###: <0.001. Dunnet’s test was used to correct
multiple comparisons; The P-value of Kruskal-Wallis ANOVA on ranks marked as ※: <0.05, ※※:
<0.01, ※※※: <0.001. Dunn’s test was used to correct multiple comparisons.

A
V (m V) WT A1659V

ISS/IPeak (%) n ISS/IPeak (%) n

-40 9.500% ± 0.019 21 14.900% ± 0.030 14

-30 2.000% ± 0.004 21 5.190% ± 0.012※※ 14

-20 1.020% ± 0.002 21 2.490% ± 0.003※※※ 14

-10 1.030% ± 0.001 21 2.360% ± 0.002### 14

0 0.929% ± 0.001 21 2.810% ± 0.003※※※ 14

+10 0.886% ± 0.001 21 2.790% ± 0.003※※※ 14

B

V (m V) WT I1640M

ISS/IPeak (%) n ISS/IPeak (%) n

-40 9.500% ± 0.019 21 13.100% ± 0.026 17

-30 2.000% ± 0.004 21 3.250% ± 0.008 17

-20 1.020% ± 0.002 21 1.730% ± 0.004 17

-10 1.030% ± 0.001 21 1.350% ± 0.002 17

0 0.929% ± 0.001 21 1.330% ± 0.001 17

+10 0.886% ± 0.001 21 1.130% ± 0.003 17
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3.3.4. Activation and fast inactivation curves

Figure 13: Fast inactivation (A) and activation curves (B).

Conductance-voltage (g-V) relationship was shown in the activation curves. The current
amplitudes normalizing to the largest current amplitudes were shown in fast inactivation curves.
The figure was fitted to Boltzmann function. The half-maximum inactivation voltage of two
mutations significantly shifted (I1640M shifted by 7 mV and A1659V shifted by 8 mV)
comparing to the WT. A: black: WT, n=30; red: A1659V mutation, n=15; blue: I1640M
mutation, n=18. B: Black: WT, n=31; red: A1659V mutation, n=15; blue: I1640M mutation,
n=18. Compare to table 8 and 9 for results.

The activation curve records the changes of the whole-cell peak current upon different

step depolarizations and reflects the speed and ease of channel opening. For the

activation curve (measured during voltage steps from -105 to +20 mV), defects caused

by the A1659V mutation (V1/2 activ. = -21.7 ± 1.4 mV, Figure 13-B, Table 8) showed a

slight depolarizing shift compared to WT (V1/2 activ. = -23.8 ± 0.9 mV, Figure 13-B,

Table 8), but no statistical difference compared to the WT. The I1640M mutation also

showed no statistical difference comparing to WT in the activation curve (Figure 13-B,

Table 8). The slopes of activation curves of two mutations were no statistical

differences compared to WT (Figure 13-B, Table 8).
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Table 8. The parameter of activation curves.

V1/2 activation: voltage of half-maximum activation; k: slope of activation curve; n: cells
number. Mean ± SEM was used for data presentation.

V1/2 activation (mV) k n

WT -23.8 ± 0.9 -5.1 ± 0.3 31

A1659V -21.7 ± 1.4 -6.1 ± 0.4 15

I1640M -23.1 ± 1.3 -5.2 ± 0.3 18

The fast inactivation curve demonstrated a significant 8 mV depolarizing shift for the

A1659V mutation (A1659V: -56.5 ± 0.8 mV vs. WT: -64.3 ± 0.5 mV, A1659V: n =15,

WT: n=30, ###P < 0.001, Figure 13-A, Table 9) compared to the WT. For the I1640M

mutation, there was also a significant depolarizing shift of 7 mV (I1640M: -57.7 ± 0.6

mV vs. WT: -64.3 ± 0.5 mV, I1640M: n =18, WT: n=30, ###P < 0.001, Figure 13-A,

Table 9) compared to the WT. The slopes of fast inactivation curves of two mutations

were no statistical differences comparing to the WT (Figure 13-A, Table 9). This

change (significant shift in depolarizing direction in fast inactivation curve) increased

more available channels at a given membrane potential that could be activated for an

action potential and therefore reflected another gain-of-function (GOF) effect.

Table 9. The parameter of fast inactivation curves.

V1/2 inactivation: voltage of half-maximum fast inactivation; k: slope of fast inactivation curve;
n: cells number. There was a significant difference between the two mutations and the WT in
the V1/2 inactivation. Mean ± SEM was used for data presentation. The P-value of One-way
ANOVA marked as #: <0.05, ##: <0.01, ###: <0.001. Dunnet’s test was used to correct multiple
comparisons.

V1/2 inactivation (mV) k n

WT -64.3 ± 0.5 4.6 ± 0.1 30

A1659V -56.5 ± 0.8### 5.1 ± 0.2 15

I1640M -57.7 ± 0.6### 4.7 ± 0.2 18
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3.3.5. The time constant and time course of recovery from fast inactivation
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Figure 14: A: The time course of recovery from fast inactivation (at -100 mV); B: The time
constant of recovery from fast inactivation. Compare to table 10 (A, B and C) for results.

At -80, -100 and -120 mV, the A1659V mutation showed a decreased time constant of

recovery from fast inactivation comparing to WT ( (at -80 mV) A1659V: 10.6 ± 0.7 ms

vs. WT: 28.9 ± 1.5 ms, A1659V: n =15, WT: n=29, ※※※P < 0.001; (at -100 mV)

A1659V: 2.2 ± 0.1 ms vs. WT: 4.4 ± 0.2 ms, A1659V: n =15, WT: n=30, ※※※P < 0.001;

(at -120 mV) A1659V: 1.4 ± 0.1 ms vs. WT: 2.0 ± 0.1 ms, A1659V: n =15, WT: n=30,
※※※P < 0.001; Figure 14-A and B, Table 10-A, B and C).

The I1640M mutation also caused a decreased time constant of recovery from fast

inactivation at -80, -100 and -120 mV comparing to the WT ( (at -80 mV) I1640M: 8.0

± 0.4 ms vs. WT: 28.9 ± 1.5 ms, I1640M: n =18, WT: n =29, ※※※P < 0.001; (at -100

mV) I1640M: 1.7 ± 0.1 ms vs. WT: 4.4 ± 0.2 ms, I1640M: n =17, WT: n =30, ※※※P <

0.001; (at -120 mV) I1640M: 1.1 ± 0.1 ms vs. WT: 2.0 ± 0.1 ms, I1640M: n =18, WT: n

=30, ※※※P < 0.001; Figure 14-A and B, Table 10-A, B and C).

Table 10. The time constant of recovery from fast inactivation.

τrec: time constant of recovery from fast inactivation; n: cells number. Both I1640M and
A1659V mutations accelerated the recovery from fast inactivation at -80 mV (A), -100 mV (B)
and -120 mV (C) comparing to WT. Mean ± SEM was used for data presentation. The P-value
of Kruskal-Wallis ANOVA on ranks marked as ※: <0.05, ※※: <0.01, ※※※: <0.001. Dunn’s test
was used to correct multiple comparisons.

A

τrec (ms) at -80 mV n

WT 28.9 ± 1.5 29

A1659V 10.6 ± 0.7※※※ 15

I1640M 8.0 ± 0.4※※※ 18

B

τrec(ms) at -100 mV n

WT 4.4 ± 0.2 30

A1659V 2.2 ± 0.1※※※ 15

I1640M 1.7 ± 0.1※※※ 17
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C

τrec(ms) at -120 mV n

WT 2.0 ± 0.1 30

A1659V 1.4 ± 0.1※※※ 15

I1640M 1.1 ± 0.1※※※ 18

3.3.6. The time constant of fast inactivation

Figure 15: The time constant of fast inactivation.

Black: WT; red: A1659V mutation; blue: I1640M mutation. Compare to table 11 for results.

For the A1659V mutation, the time constant of fast inactivation at -40 mV was

increased compared with the WT (A1659V: 4.40 ± 0.45 ms vs. WT: 2.69 ± 0.42 ms, ※P

< 0.05, A1659V: n =14, WT: n=27; Figure 15, Table 11-A). Slowing of transition from

activation to fast inactivation may increase the inward INa. The I1640M mutation of the

fast inactivation time constant had no statistical difference compared to the WT (Figure

15, Table 11-B).
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Table 11. The time constant of fast inactivation.

τh, time constant of fast inactivation; n: cells number. At -40 mV the A1659V mutation caused
an increased time constant compared with the WT. Mean ± SEM was used for data presentation.
The P-value of Kruskal-Wallis ANOVA on ranks marked as ※: <0.05, ※※: <0.01, ※※※: <0.001.
Dunn’s test was used to correct multiple comparisons.

A
V (m V) WT A1659V

τh (ms) n τh (ms) n

-40 2.69 ± 0.42 27 4.40 ± 0.45※ 14

-30 1.68 ± 0.17 31 2.48 ± 0.40 15

-20 0.90 ± 0.07 31 0.98 ± 0.07 15

-10 0.55 ± 0.03 31 0.65 ± 0.04 15

0 0.39 ± 0.01 31 0.44 ± 0.02 15

+10 0.31 ± 0.01 31 0.33 ± 0.02 15

B
V (m V) WT I1640M

τh (ms) n τh (ms) n

-40 2.69 ± 0.42 27 1.42 ± 0.36 18

-30 1.68 ± 0.17 31 1.40 ± 0.25 18

-20 0.90 ± 0.07 31 0.77 ± 0.07 18

-10 0.55 ± 0.03 31 0.53 ± 0.04 18

0 0.39 ± 0.01 31 0.39 ± 0.02 18

+10 0.31 ± 0.01 31 0.32 ± 0.02 18
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3.4 The functional consequences of the A1659V and I1640M mutations in

hNaV1.2

As mentioned above, the A1659V and I1640M mutations changed the kinetics and

voltage-dependent characteristics of hNaV1.2 in the transfected tsA201 cells (Table 12).

For the A1659V mutation, which is located in the linker of DIV-S4-S5, caused the

inactivation curve shifted 8 mV towards a depolarizing direction, a decreasing time

constant at -80, -100 and -120 mV in the recovery from fast inactivation, an increasing

persistent INa at -30, -20, -10, 0 and +10 mV, and a longer time constant at -40 mV in

fast inactivation. The I1640M mutation, which locates in the DIV-S4, shifted 7 mV in

depolarizing direction in fast inactivation and also decreased time constant of recovery

from fast inactivation at -80, -100 and -120 mV. Neither A1659V nor I1640M mutation

showed a statistical difference comparing to WT in the activation curve and current

density.

Table 12. The electrophysiological characteristics of A1659V and I1640M mutations in
hNaV1.2.

Both of the A1659V and I1640M mutations in transfected tsA201 cells affected different
parameters of fast inactivation of hNaV1.2 but did not significantly change parameters of
activation.

Functional analyses The A1659V mutation The I1640M mutation

V1/2 of fast inactivation curve depolarizing shift depolarizing shift

The time constant of recovery

from fast inactivation (at -80,-100

and -120 mV)

decreased decreased

Persistent current (at -30, -20, -10,

0 and +10 mV)

increased -

The time constant of fast

inactivation (at -40 mV)

increased -

Current density - -

Activation curve - -
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4. Discussion

The hNaV1.2 is encoded by SCN2A and composed of 2005 amino acid residues. hNaV
1.2 is mainly distributed in the human brain, and the phenotype spectrum of mutations

in SCN2A include BFNIS, GEFS+ and EE (Brunklaus et al., 2014). Previous studies

have shown SCN2A mutations GOF effect alongside a depolarizing shift in inactivation

curve, an increasing sodium current density, shifting in hyperpolarizing direction in

activation curve, or acceleration recovery from fast inactivation, as well as loss-of-

function (LOF) effect alongside shifting in depolarizing direction in activation curve,

shifting in hyperpolarizing direction in inactivation curve or a prolonging recovery from

fast inactivation (Schwarz et al., 2016, Wolff et al., 2017).

This dissertation provided the functional studies of two additional neonatal-onset

epilepsy-associated SCN2A mutations. The results presented in this thesis that these two

mutations associated with neonatal-onset epilepsy caused different GOF effects in

hNaV1.2.

4.1. The functional consequences of two neonatal-onset epilepsy-associated

SCN2A mutations

4.1.1. The I1640M mutation affected the hNaV1.2 fast inactivation not activation

process

In this thesis, we performed functional studies in tsA201 cells co-expressing hNaV1.2

WT or mutants and auxiliary hβ1 and hβ2-subunits by using electrophysiology

technique (as mentioned above). The I1640M mutation locates in DIV-S4 of hNaV1.2.

Previous studies showed that DIV-S4 mutations altered fast inactivation process

(Chanda et al., 2004). This thesis presented in fast inactivation curve the I1640M

mutation shifted 7 mV in depolarizing direction. This change indicated that this DIV-S4

mutation affected the fast inactivation process. In contrast, there were no significant

changes in the I1640M mutation in the activation curve.
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On the basis of earlier studies, DIV-S4 affected more in fast inactivation than in the

activation process, whereas the DI-S4 and DII-S4 affected activation process (Lerche et

al., 1996, Cha et al., 1999). The S4 segment is unequally charged in different domains

(Chen et al., 1996) which may explain why the S4 segments play different roles in

activation and fast inactivation process in different domains (Kontis and Goldin, 1997).

4.1.2. The A1659V mutation affected the hNaV1.2 different parameters of the fast

inactivation process

Previous studies showed that the mutations in DIV-S4-S5 affected fast inactivation

(Popa et al., 2004). This thesis showed that the A1659V mutation, which locates in

DIV-S4-S5, in fast inactivation curve shifted 8 mV in depolarizing direction, increased

persistent INa, slowed to fast inactivation and accelerated recovery from fast inactivation.

All mentioned above indicated that inactivation state was severely destabilized by this

mutation which corroborated the findings presented in previous studies.

4.1.3. The I1640M and A1659V mutations both affected the process of fast

inactivation

After an action potential, the channel has no response to the potential change, this

process is called refractory period. This period is affected by recovery from fast

inactivation; whereas fast inactivation time constants indicate the decay of current after

a depolarization. This thesis presented that the two mutations accelerated recovery from

fast inactivation, which meant cutting down the refractory period. This functional study

also showed a larger persistent INa and a slowing fast inactivation for A1659V mutation.

A slower fast inactivation and increasing persistent INa implied an increase in the inward

movement of sodium ions (for the A1659V mutation). Moreover, the depolarizing shift

of these two mutations in fast inactivation curve indicated more channels available for

the opening during the process of the action potential.

All these alterations indicated that two mutations caused different GOF defects in

hNaV1.2. Therefore, it can be hypothesized that the functional effect caused by the two
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mutations may induce a neuronal hyperexcitability which can lead to seizures in

neonatal-onset epilepsy.

4.1.4. Functional studies for epilepsy-associated SCN2Amutations

Many epilepsy-associated SCN2A mutations have been reported previously, but only

some of them have been functionally studied (Liao et al., 2010a, Liao et al., 2010b,

Lauxmann et al., 2013, Schwarz et al., 2016, Wolff et al., 2017). The phenotypic

spectrum of these mutations ranges from mild BFNIS to severe EE (Table 13). The

mutations of severe epilepsy syndrome tend to emerge de novo. The relationship

between genotype and phenotype in GOF mutations has not been entirely clear until

now, with different mutations resulting in same phenotype and the same mutation

causing various phenotypes (a phenomenon known as pleiotropy). However, as can be

seen here for the two mutations causing relatively severe phenotypes, in particular for

the A1659V mutation, the severity of the phenotype seems to correlate in part with the

severity of the electrophysiological changes, which were usually milder in cases causing

BFNIS. Other members of our lab have recently confirmed this by comparing clinical

and electrophysiological in vitro phenotypes of all mutations published so far

(Lauxmann et al., submitted). The results presented here, fit into this scheme. However,

due to the pleiotropy, the unknown genetic background factors must be considered to

explain phenotypic variability besides the direct effects of the mutations. In addition to

GOF changes, many LOF changes have been described (for references see Table 13).

Wolff et al. (2017) recently established the relationship between the onset of disease and

GOF/LOF changes. They showed that GOF mutations were associated with early-onset

(earlier than three months in life) whereas LOF mutations were related to late-onset.
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Table 13. The functional studies of mutations in SCN2A associated with epilepsy, revised
from (Wolff et al., 2017).

BFNIS: Benign familial neonatal-infantile seizures, BFNS: Benign familial neonatal seizures,
BNS: Benign neonatal seizures, d: day(s), DS: Dravet syndrome, EE: Epileptic encephalopathy,
EIMFS: Epilepsy of infancy with migrating focal seizures, EOEE: Early onset epileptic
encephalopathy, FS: Febrile seizures, GOF: gain-of-function, IS: Infantile spasms, LOF: loss-
of-function, m: month(s), LGS: Lennox-Gastaut syndrome, MAE: Myoclonic-atonic epilepsy,
OS: Ohtahara syndrome, TCS: Tonic-clonic seizure, w: week(s), y: year(s).

Mutations/inheritance First

seizure

onset

Phenotype or

type of seizure

Functional

change

Published in

V423L / de novo 1d, 6d OS GOF Wolff et al., 2017

F1597L / de novo 3d EIMFS GOF Wolff et al., 2017

P1622S / de novo 21m MAE LOF Wolff et al., 2017

V261M / de novo 1d BFNS GOF Liao et al. 2010

M252V / maternal 4m BFNIS GOF Liao et al. 2010

R1882G / de novo 2d BIS GOF Schwarz et al. 2016

A263V / de novo 1d-3w BNS, OS, EE GOF Schwarz et al. 2016

Johannesen et al. 2016

Touma et al. 2013

Wolff et al., 2017

Liao et al. 2010

Y1589C / familial 3m BFIS GOF Lauxmann et al. 2013

R1319Q / maternal 3m BFIS LOF+GOF Scalmani et al, 2006

Misra et al. 2008

L1330F / familial 6w BFIS LOF

GOF

Misra et al. 2008

Scalmani et al, 2006

L1563V / familial 3m BFIS GOF

LOF

Misra et al. 2008

Scalmani et al, 2006

Xu et al. 2007

Misra et al. 2008

R102X / de novo 19m EE LOF Kamiya et al. 2004

E1211K / de novo 11m IS LOF+GOF Ogiwara et al. 2009

I1473M / de novo 1m EE GOF Ogiwara et al. 2009
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R223Q / familial 3m BFNIS GOF Scalmani et al. 2006

A263T / de novo 3d EOEE GOF Nakamura et al. 2013

R188W / paternal 8m FS GOF Sugawara et al. 2001

E717G* fs / de novo 3y EE LOF Horvath et al. 2016

I1021Y* fs / de novo N/A,

14m

LGS, EE LOF Carvill et al. 2013

Howell et al. 2015

R1312T / unknown 11m DS LOF Shi et al. 2009

R1435X / de novo 3y Epilepsy LOF Trump et al. 2016

4.2. The relationship between human VGSC mutations and treatment response to

AEDs

VGSCs are the targets of the sodium channel blockers, which are first-line AEDs that

stabilize the inactivation process of VGSCs thereby preventing high frequency neuronal

activating and reducing the number of action potentials (https://learn.pharmacy.unc.edu/)

(Depondt, 2006). Previous studies showed that sodium ion channel gene mutations may

be associated with response to AEDs treatment.

The research on response to AEDs treatment and discovering new AEDs has become

the focus of clinicians’ concerns. Until now, there have been few studies focusing on

the relationship between the mutations of VGSC genes and the response to AEDs

treatment. One functional study about a mutation of SCN1B associated with GEFS+

showed that this mutation reduced the channel sensitivity to phenytoin, and it revealed

that the mutation could alter the response to AEDs as a result of channel gating function

changes (Lucas et al., 2005). Another previous study reported that defects in the

functions of VGSCs were a potential factor resistant to AEDs (Jang et al., 2009). Wolff

et al. (2017) showed functional characterization changes could predict the response to

the AEDs treatment and that GOF made a good response to sodium channel blockers,

whereas LOF showed an insufficient response (Wolff et al., 2017).

https://learn.pharmacy.unc.edu/
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As mentioned above, the epileptic phenotype associated with different mutations

showed different responses to AEDs treatment. This indicates that it is crucial for

clinicians to make individualized therapy plans for epilepsy patients. According to

results presented here, the carriers of the two mutations investigated in this thesis should

respond well to sodium blockers.
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5. Summary

Human brain VGSCs are related to the action potential of the neuron. Functional

changes happen in human VGSCs can induce neuronal hyperexcitability and result in

seizures. SCN2A which codes for the hNav1.2 channel, is one important gene associated

with neonatal-onset epilepsy. Neonatal-onset epilepsy is defined as an onset within four

weeks after birth. A severe neonatal-onset epilepsy can cause permanent developmental

regression and resistance to AEDs treatment.

In this dissertation, both A1659V and I1640M mutations of SCN2A associated with

neonatal-onset epilepsy were functionally analyzed using electrophysiology technique.

Either the WT or the mutation, with the hβ1 and hβ2, were co-expressed in tsA201 cells

for functional studies. Both mutations shifted in depolarization direction in fast

inactivation and speed up recovery from it. Moreover, A1659V mutation presented

increasing persistent INa and slower fast inactivation. All these functional changes

indicated clear GOF effects. These functional consequences predict an increase in

channel availability for action potentials, a shorter refractory period and more inward

sodium current that can depolarize the neuronal cell membrane. The detected changes

can therefore well explain a neuronal hyperexcitability which can result in epileptic

seizures.

Further studies need to be performed using neurons and neuronal networks to

understand neuronal hyperexcitability. First consequences for treatment result from

such studies since GOF mutations in SCN2A can be well treated by Na+ channel

blockers. However, further drugs are needed, since not all patients respond and some

have severe side effects.
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6. Zusammenfassung

Für die Depolarisation bei einem Aktionspotential von Nervenzellen im menschlichen

Gehirn sind in erste Linie spannungsabhängige Natriumkanäle (NaV) verantwortlich.

Funktionelle Veränderungen in diesen Kanälen können eine neuronale Übererregbarkeit

verursachen und dadurch Anfälle auslösen. SCN2A, welches für den

spannungsabhängigen Natriumkanal hNaV1.2 kodiert, ist ein wichtiges Gen welches mit

neonatalen Epilepsien assoziiert ist. Neonatale Epilepsien sind durch das erstmalige

Auftreten eines Anfalls in den ersten vier Wochen nach der Geburt definiert. Schwere

neonatale Epilepsien können zu Entwicklungsrückschritten führen und sind oft

therapierefraktär.

In dieser Dissertation wurden die beiden SCN2A Mutationen A1659V und I1640M mit

Hilfe der elektrophysiologische technik untersucht, welche beide neonatale Epilepsien

verursachen. Für funktionelle Untersuchungen wurden entweder der Wildtyp oder eine

der Mutationen zusammen mit den Untereinheiten hβ1 und hβ2 in tsA201 Zellen

transfiziert. Beide Mutationen verursachen eine depolsarisierende Verschiebung bei der

spannungsabhängigen Inaktivierung aus einem Gleichgewichtszustand und zusätzlich

eine beschleunigte Erholung von der schnellen Inaktivierung. Zusätzlich zeigt die

A1659V Mutation einen größeren persistierenden Strom und eine Verlangsamung der

Zeitkonstante der schnellen Inaktivierung. All diese funktionellen Veränderungen

deuten auf einen klaren Funktionszugewinn hin. Diese funktionellen Veränderungen

weisen auf eine erhöhte Verfügbarkeit der Kanäle für ein Aktionspotential hin, sowie

einer verkürzen Erholungsphase nach einem Aktionspotential und einem vergrößertem

Natrium-Einwärts-Strom, welcher zu einer Depolarisation der neuronalen Zellmembran

führen kann. Die gefunden Veränderungen können daher sehr gut eine neuronale

Übererregbarkeit erklären, was epileptischen Anfällen verursachen kann.

Weitere Untersuchungen in Neuronen und neuronalen Netzwerken müssen durchgeführt

werden, um eine Übererregbarkeit zu bestätigen. Erste Konsequenzen für die

Behandlung ergeben sich aus solchen Studien, da Mutationen mit Funktionszugewinn in

SCN2A gut mit Na-Kanal-Blockern behandelt werden können. Dennoch werden weitere
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Medikamente benötigt, da nicht alle Patienten auf die Behandlung ansprechen und

einige unter schweren Nebeneffekten leiden.
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