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Abstract

This thesis studies the motion control of wheeled mobile robots. Its focus is set on high
speed control on challenging terrain. Additionally, it deals with the general problem of
path following, as well as path planning and obstacle avoidance in difficult conditions.

First, it proposes a heuristic longitudinal control for any wheeled mobile robot, and
evaluates it on different kinematic configurations and in different conditions, including
laboratory experiments and participation in a robotic competition.

Being the focus of the thesis, high speed control on uneven terrain is thoroughly stud-
ied, and a novel control law is proposed, based on a new model representation of skid-
steered vehicles, and comprising of nonlinear lateral and longitudinal control. The lateral
control part is based on the Lyapunov theory, and the convergence of the vehicle to the
geometric reference path is proven. The longitudinal control is designed for high speeds,
taking actuator saturation and the vehicle properties into account. The complete solu-
tion is experimentally tested on two different vehicles on several different terrain types,
reaching the speeds of ~ 6ms~!, and compared against two state-of-the-art algorithms.

Furthermore, a novel path planning and obstacle avoidance system is proposed, to-
gether with an extension of the proposed high speed control, which builds up a navigation
system capable of autonomous outdoor person following. This system is experimentally
compared against two classical obstacle avoidance methods, and evaluated by following
a human jogger in outdoor environments, with both static and dynamic obstacles.

All the proposed methods, together with various different state-of-the-art control ap-
proaches, are unified into one framework. The proposed framework can be used to con-
trol any wheeled mobile robot, both indoors and outdoors, at low or high speeds, avoiding
all the obstacles on the way. The entire work is released as open-source software.






Kurzfassung

Diese Arbeit befasst sich mit Bewegungsregelung von fahrenden Robotern. Der Schwer-
punkt liegt auf der Regelung bei hohen Geschwindigkeiten auf schwierigem Terrain.
Dabei wird die Pfadverfolgung, sowie Pfadplanung und Hindernisvermeidung unter an-
spruchsvollen Bedingungen behandelt.

Zuerst wird ein Algorithmus zur Lingsregelung von fahrenden Robotern vorgestellt,
der auf verschiedenen kinematischen Antrieben und unter verschiedenen Bedingungen
evaluiert wurde, inklusive Laborexperimenten und der Teilnahme an einem Roboterwett-
bewerb.

Als Schwerpunkt der Arbeit wurde Fahrregelung bei hohen Geschwindigkeiten auf
unebenem Terrain griindlich erforscht, wobei als Ergebnis ein neuartiges Regelungs-
gesetz enwickelt wurde, welches auf einer neuen Modelldarstellung von Kettenantrieb
basiert, und aus einer nichtlinearen Langs- und Querregelung gebildet wird. Die Quer-
regelung basiert auf der Lyapunov-Theorie, wobei die Konvergenz des Fahrzeugs zum
geometrischen Referenzpfad bewiesen wurde. Die Lingsregelung wurde fiir hohe Ge-
schwindigkeiten entwickelt, wobei die Sittigung der Aktoren, sowie die Eigenschaften
des Fahrzeugs beriicksichtigt sind. Die Gesamtlosung wurd experimentell auf zwei ver-
schiedenen Fahrzeugen und auf mehreren verschiedenen Terraintypen ausgewertet. Der
Ansatz wurde mit zwei anderen Algorithmen aus dem aktuellen Stand der Technik ver-
glichen, wobeei Geschwindigkeiten von ~ 6ms~! erreicht wurden.

Weiterhin wird ein neues System fiir Pfadplanung und Hindernisvermeidung vorge-
stellt, zusammen mit einer Erweiterung des vorgestellten Regelungsalgorithmus fiir hohe
Geschwindigkeiten, was insgesamt ein Navigationssystem zur autonomen Personenver-
folgung im AuBenbereich bildet. Dieses System wurde experimentell mit zwei klassi-
schen Hindernisvermeidungsmethoden verglichen, und durch Verfolgung eines Léufers
im AuBenbereich mit sowohl statischen als auch dynamischen Hindernissen ausgewertet.

Alle vorgestellten Methoden, zusammen mit zahlreichen Regelungsalgorithmen aus
dem aktuellen Stand der Technik, sind in ein System vereinigt. Dieses System kann jeden
fahrenden Roboter ansteuern, im Innen- und AuBlenbereich, bei niedrigen oder hohen
Geschwindigkeiten, wobei allen Hindernissen ausgewichen wird. Die ganze Arbeit ist
quelloffen verfiigbar.
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Chapter 1

Introduction

The rapid technology development is changing our lives every day. Robotic systems are
increasingly employed in many applications that were initially meant only for humans.
Apart from stationary robots, which revolutionized the ways of production, mobile robots
are becoming increasingly popular. In industrial plants, mobile robots have become a
cheaper and a much more flexible solution than the classic conveyor belts. Automated
vehicles are undertaking agricultural tasks, while planetary exploration can hardly be
imagined without space rovers. Inspection of hazardous areas with mobile robots saves
human operators from the risk of being exposed. Many mobile robots find their role in
surveillance, or search and rescue applications, and service robots are being employed
in museums, restaurants, or retirement homes. Transportation in general is in a highly
dynamic and changing phase. Many car manufacturers, together with the suppliers and
research institutes, are working towards the common goal of making motor vehicles au-
tonomous. In this case, a car would not be a machine operated exclusively by a human,
but rather an autonomous mobile robot capable of solving complex tasks and making de-
cisions by itself. Obviously, this would be a revolution, and it would completely change
the ways of transportation, and the very concept of a motor vehicle.

One of the main tasks for mobile robots is motion control. It is crucial to have a safe,
stable and smooth motion, regardless of the task. If the robot has a large deviation from
the planned path, not only the task would be jeopardized, but a failure of unpredictable
proportions could happen. If a planetary rover would deviate from the path, and fall into
a ditch, many years of research and development, as well as a huge financial investment
would fail. If an autonomous car would be in a situation which requires reducing its
speed and braking in front of a pedestrian, it would be of utmost importance for the
longitudinal control to work properly. In order to act properly in such critical situations,
and to meet the performance requirements, a careful design of motion control laws needs
to be made, taking the desired motion into account.

When designing a robust and reliable motion control law to deal with dynamic and
cluttered environments, a number of parameters and constraints need to be considered.
Usually, both kinematic and dynamic model need to be employed. Modelling the dy-
namics of the vehicle and of the environment usually includes a complex and tedious
procedure. Such a modelling needs to be made for each different robot configuration
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individually, and the resulting model applies only for the specific vehicle. The question
which arises here is: Is there a control approach applicable to all kinematic configu-
rations, without having the need of complex modelling and control design, while still
providing satisfactory results?

Furthermore, motion control gets increasingly complex and challenging as the driving
speed increases, and as the terrain gets more uneven and slippery. This is a common case
in agricultural, exploration, search and rescue, mining, or surveillance tasks. Such off-
road scenarios are impossible for some kinematic configurations, such as omnidirectional
drives, since they can only move on flat ground. Vehicles with Ackermann steering are
capable of coping with such conditions, but the complexity of the steering system makes
them expensive to produce and prone to defect. Another, special type of kinematics, the
so called skid steering, has proven to be very robust, maneuverable, and relatively cheap
to produce. There is no mechanical steering system, and there are no moving parts. In
order for the vehicle to steer, the individual wheels need to be controlled with different
speeds. Such vehicles are very well suited for outdoor scenarios, and make the majority
of off-road solutions on the mobile robots market.

However, even though skid-steered robots offer many advantages, they are difficult to
model and to control. The kinematic model includes dynamics implicitly, and the motion
is terrain-dependent. To model the vehicle motion, complex interactions between the
wheels and the ground need to be taken into account, which include e.g. friction and
torsion. Most of the work on modelling and control of such vehicles deals with low or
moderate speeds. The question which arises here is: Is it possible to accurately and
robustly control skid-steered vehicles at high speeds on rough terrain?

Off-road applications are usually highly dynamic, including static and dynamic obsta-
cles, as well as rough terrain. Additional difficulty in these conditions is human-robot
interaction. An example application incorporating the main challenges of off-road con-
ditions would be a jogger-following scenario, in which a robot accompanies a human
jogger, keeping the desired distance and speed, while avoiding all the obstacles on the
way. Here the question is: Is there a navigation system allowing a robot to follow a hu-
man at higher speeds in all-terrain conditions, while avoiding both static and dynamic
obstacles?

Another important issue in the field of mobile robots is having a unified navigation
framework. The first question we have posed deals with the issue of having a control law
applicable to all kinematic configurations. Having a simple and robust solution is ben-
eficial, but having different advanced control solutions for all kinematic configurations
unified in one system would be of a great value, whether it is for research or educational
purposes. In this way, for each special configuration, there would already exist a model
and at least one control law dealing with robust motion control. The final question we
pose is: Is there a unified navigation system for all wheeled mobile robots?
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1.1 Contributions

The initial goal of this thesis was to develop a navigation system which would allow a
wheeled mobile robot to follow a jogger in rough terrain conditions, while simultane-
ously avoiding static and dynamic obstacles on the way. A solution to this problem is
proposed here, as well as solutions to the rest of the previously posed questions. The
contributions can be listed as follows:

* Proposing a new longitudinal control for any wheeled mobile robot, which pro-
vides a robust and straightforward solution for safe and stable navigation in clut-
tered and dynamic environments. The proposed control is fused with the approach
proposed in (Mojaev and Zell, 2004) and experimentally evaluated in two differ-
ent manners: in the robotic competition SICK Robot Day 2014, and in laboratory
conditions.

— In the competition, a warehouse scenario was simulated. The goal was to
fetch and deliver special objects during a specified time window, while driv-
ing in an arena together with three other robots at the same time. At this com-
petition, among 14 international teams, our team Attempto Tiibingen won the
2nd place.

— In the laboratory conditions, an Ackermann-steering, a bi-steerable, and an
omnidirectional robot were used to evaluate the approach on different kine-
matic configurations. The results are compared against the approach pro-
posed in (Mojaev and Zell, 2004), and further developed in (Li et al., 2007).

* Proposing a new control approach for skid-steered vehicles at high speeds on chal-
lenging terrain types. The approach consists of two nonlinear control laws: a
lateral and a longitudinal one. The individual contributions are as follows:

— A new representation of skid-steered vehicles in path coordinates is intro-
duced.

— A new kinematic control law based on the Lyapunov theory is proposed,
which deals with the convergence of the vehicle to the path.

— A new longitudinal control scheme based on the kinematic parameters is in-
troduced, taking into account actuator saturation, convergence to the path,
and the asymmetry of steering.

— The complete solution is thoroughly tested on two different skid-steered vehi-
cles, a Robotnik Summit XL robot, and a Segway RMP 440 robot, on several
different terrain types and at speeds up to 6m s~ !, comparing the performance
against two other state-of-the-art algorithms.

* Developing a fully autonomous system for person following in all-terrain condi-
tions, at higher speeds, using skid-steered vehicles. The system consist of:
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— a new path planning approach, which is able to find locally optimal paths,
taking into account kinematic constraints and obstacles on the way, even at
higher speeds,

— a control approach, which is an extension of the previously mentioned high
speed control approach for skid-steered vehicles.

The whole system is evaluated in two different ways:
— static obstacle avoidance,
— jogger following, while avoiding both static and dynamic obstacles.

Both experimental parts were conducted outdoors, while the second one includes
all-terrain conditions. In the experiment with unknown static obstacles, the pro-
posed approach is compared against two classical obstacle avoidance methods. In
the jogger following scenario, the goal was to show human-robot interaction in
rough conditions. The terrain conditions include flat, uneven, dry, wet, or even
snowy and icy terrain. The environment conditions include cluttered and very dy-
namic situations with pedestrians, dogs, cars, etc.

* Implementing twelve different path following algorithms dealing with different
kinematic configurations and integrating them in a unified navigation framework
for any wheeled mobile robot. The framework is written in the Robot Operating
System (ROS) framework, which is described in (Quigley et al., 2009), and of-
fers many more features than the standard ROS Navigation Stack, described in
(Marder-Eppstein, 2017b). With the proposed framework, it is possible to control
any wheeled mobile robot using ROS, regardless of its kinematic configuration.
The framework offers motion control at low and high speeds with obstacle avoid-
ance, both indoors and outdoors. All the above listed contributions are a part of
this framework and the complete code is open-source available.

1.2 Structure of the Thesis

After Chapter 1, the remainder of this thesis is organized as follows. In Chapter 2
some basics on motion control of mobile robots are given. First, motion control of mo-
bile robots is defined and classified. Then, some basic Lyapunov theory is introduced,
where the terms like autonomous system, stability or equilibrium are introduced. Fur-
thermore, the backstepping technique is introduced as an important nonlinear control
design method. These theoretical basics are mostly based on (Khalil and Grizzle, 1996)
and (Slotine et al., 1991). In Chapter 3, we describe the details of the first contribution
listed above. The chapter is based on the following publications:

* Huskié, G., Buck, S. and Zell, A., 2016, July. A Simple and Efficient Path Fol-
lowing Algorithm for Wheeled Mobile Robots. In International Conference on
Intelligent Autonomous Systems (pp. 375-387). Springer, Cham.
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* Buck, S., Hanten, R., Huski¢, G., Rauscher, G., Kloss, A., Leininger, J., Ruff,
E., Widmaier, F. and Zell, A., 2015, July. Conclusions from an object-delivery
robotic competition: Sick robot day 2014. In Advanced Robotics (ICAR), 2015
International Conference on (pp. 137-143). IEEE.

In Chapter 4 a novel high speed control approach for skid-steered vehicles on challenging
terrain is introduced. Furthermore, two state-of-the-art algorithms are described, used
for the comparison against the proposed approach. The first state-of-the-art algorithm is
proposed in (Soetanto et al., 2003), and extended in (Indiveri et al., 2007). The second
one is proposed in (Pentzer ef al., 2014b), based on (Pentzer et al., 2014a). Additionally,
an extension of the proposed approach is described, utilizing both the kinematic and the
dynamic model of skid-steered vehicles. The control design is based on backstepping.
The chapter is mostly based on the work described in:

* Huski¢, G., Buck, S. and Zell, A., 2017, May. Path following control of skid-
steered wheeled mobile robots at higher speeds on different terrain types. In
Robotics and Automation (ICRA), 2017 IEEE International Conference on (pp.
3734-3739). 1EEE.

* Huskié, G., Buck, S., Herrb, M., Lacroix, S. and Zell, A., High-Speed Path Fol-
lowing Control of Skid-Steered Vehicles. In International Journal of Robotics Re-
search. (submitted)

In Chapter 5 we propose our autonomous system for tracking dynamic objects (e.g. hu-
mans) in all-terrain conditions, at higher speeds, using skid-steered vehicles. Further-
more, two classical obstacle avoidance methods are described, against which the pro-
posed approach is compared. These classical obstacle avoidance methods are proposed
in (Koren and Borenstein, 1991) and (Fox et al., 1997). The chapter is mostly based on
the publication:

* Huskié, G., Buck, S. and Zell, A., 2017, September. Outdoor Person Following
at Higher Speeds using a Skid-Steered Mobile Robot. In Intelligent Robots and
Systems (IROS), 2017 IEEE International Conference on. IEEE.

In Chapter 6 we describe a unified and generic navigation framework for wheeled mobile
robots. The framework contains all the approaches described in the previously chapters,
and in this chapter, the remaining approaches are described, as well as the framework in
general. The chapter is mostly based on:

* Huskié, G., Buck, S. and Zell, A. GeRoNa: Generic Robot Navigation. In Journal
of Intelligent & Robotic Systems. (submitted)

In Chapter 7, the work is summarized and the results are discussed.
Research described in this thesis included practical work with different robotic sys-
tems. All of these robots are presented in Figure 1.1.
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Figure 1.1: All the robots used for the research described in this thesis.



Chapter 2
Motion Control of Mobile Robots

2.1 Motion Control Classification

Motion control of mobile robots deals with the basic issue of converting ideal motion
plans into motion execution. One approach would be to directly set the planned mo-
tion as command. However, it is well known that such open-loop control is not robust
to modelling errors, nor to any external disturbances. This is why the more reasonable
approach would be to use methods based on feedback control. These methods suppose
that the variables involved in the control loop are measurable by real-time sensors. Usu-
ally, those variables are the position and the orientation, and they represent the state of
the robot, as measured by proprioceptive (e.g. odometry), or exteroceptive sensors (e.g.
laser scanner). Control inputs of wheeled mobile robots are usually linear and rotational
velocities, when controlling a kinematic model. If dealing with a dynamic model, usually
wheel torques are used.

Motion planning strategies have a feasible reference state trajectory as an output, and
motion control answers the question how to make the physical mobile robot track exactly
this reference trajectory by using the actuators with which the vehicle is equipped. The
reference state trajectory can consist of only one pose, a set of poses, or a set of poses
with a timing law assigned to it.

Depending on this, motion of wheeled mobile robots can be classified into three tasks:

* Point stabilization: Starting from a given initial configuration, the robot needs to
reach a desired goal configuration.

* Path following: Starting from a given initial configuration, the robot needs to fol-
low a geometric path.

* Trajectory tracking: Starting from a given initial configuration, the robot needs to
follow a trajectory (geometric path with an associated timing law).

Discussions on motion control of wheeled mobile robots and its classification can be
found in (De Luca et al., 1998), (Morin and Samson, 2008), (Aguiar and Hespanha,
2007), and (Soetanto et al., 2003).
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2.1.1 Point Stabilization

Point stabilization is the problem of controlling the robot to reach the desired configura-
tion by using only the current error information, without the need of planning a trajectory
between the initial and the desired point. Point stabilization for nonholonomic mobile
robots is considerably more difficult than path following and trajectory tracking, since
the problem cannot be solved with a smooth pure state feedback, as stated in Brockett
et al. (1983). This problem can be understood by considering a parallel parking maneu-
ver of a car, i.e. bringing the error to zero in the lateral direction, along which the car
cannot move directly. As a solution, there are two main approaches: discontinuous and
hybrid feedback laws, as e.g. (Aguiar et al., 2000) and (Hespanha and Morse, 1999),
and smooth time-varying control laws, as e.g. (de Wit et al., 1993) and (Godhavn and
Egeland, 1997).

.

GOAL
START

Figure 2.1: Point stabilization: moving from one configuration to another.

2.1.2 Trajectory Tracking

Tracking a geometric reference parametrized with time becomes especially challenging
in the case of underactuated vehicles, 1.e. the ones that have less actuators than state
variables. As stated in (Aguiar and Hespanha, 2007), the classical approach for trajectory
tracking of underactuated vehicles uses local linearization and decoupling of the multi-
variable model to steer the same number of degrees of freedom as the number of available
control inputs. This can be done by using standard linear, or nonlinear control methods.
Alternative approaches use linearization of the vehicle error dynamics around trajectories
that lead to LTI (linear time-invariant) systems. This is combined with gain scheduling
and linear parameter varying design methods, which can be found in e.g. (Kaminer et al.,
1998). These approaches guarantee stability only in a neighbourhood of the selected
operating points. Another approach is to use feedback linearization methods, such as
in e.g. (Walsh et al., 1994). Furthermore, Lyapunov-based methods, such as the one
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in (Aguiar and Hespanha, 2007), can overcome some of the limitations of the already
mentioned approaches.

START

GOAL

P(t)
y

Figure 2.2: Trajectory tracking: tracking a geometric path P parametrized with time t.

2.1.3 Path Following

In path following, the robot needs to converge to and follow a geometric path that is
specified without a temporal law. Pioneer work can be found in (Samson, 1995), (Sam-
son, 1992), (de Wit et al., 1993) and (Kanayama et al., 1990). Further work can be found
in (Jiang and Nijmeijer, 1999) and (Micaelli and Samson, 1993). There is an underlying
assumption in the path following problem, which states that the robot’s forward speed
tracks a desired speed profile, while the controller acts on the robot’s orientation to drive
it to the path. When compared to trajectory control laws, in path following smoother
convergence to the path is achieved, and the control signals are less likely pushed to sat-
uration. The fundamental difference between path following and trajectory tracking can
be found in (Aguiar et al., 2005) and (Aguiar et al., 2004).

This thesis deals with the problem of path following, since in dynamic and outdoor
environments it is the most reasonable choice. For instance, while driving outdoors and
avoiding obstacles on the way, it is only important to have a smooth and safe navigation,
i.e. geometric following. The timing law does not have to be pre-specified. It is more
reasonable if the speed is a free control parameter. More about the related work on path
following using different mobile robot configurations can be found in Section 3.1.

The geometric reference path that needs to be followed is parametrized by some arbi-
trary path parameter. This parameter is usually chosen to be the arc length of the path. To
describe the relationship between the robot and the reference path, the most commonly
used approach is the one based on the Serret-Frenet frame moving along the reference
path, consisting of three vectors: tangent, normal and binormal to the curve. Since the
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motion of a wheeled mobile robot is mostly considered planar, the Serret-Frenet frame
consists of the tangent and normal vectors.

By using this approach, it is possible to define the Serret-Frenet frame either in the
orthogonal projection from the robot to the path, or on an arbitrary point on the path
in front of the robot. The latter one is then considered to be a virtual vehicle, i.e. a
desired configuration on the path which needs to be reached and tracked. The difference
between these methods can be found in e.g. (Plaskonka, 2015). In this thesis, several
control algorithms are described, using both of the Serret-Frenet constructions.

After the relationship between the robot and the reference path is modelled in such
a way, usually a Lyapunov-based approach is employed, since the model described in
the newly constructed Serret-Frenet frame is exactly the error model. This allows a
straightforward construction of a Lyapunov function candidate, where the equilibrium is
reached when the robot converges to the path.

The methods that use the Serret-Frenet framework together with Lyapunov theory usu-
ally include kinematic modelling. This can be extended by modelling the full dynamic
behaviour. Furthermore, it is possible to design a pure geometric controller, without ex-
plicitly modelling the vehicle. In this case, the control becomes generic and can be used
for any model.

START

GOAL

P(s)
y

Figure 2.3: Path following: following a geometric path P parametrized with arc length s.

2.2 Lyapunov Stability Basics

In order to deal with motion control of mobile robots, especially path following, some
basics of nonlinear control theory need to be introduced. These basics and further details
can be found in (Khalil and Grizzle, 1996) and (Slotine et al., 1991).

Stability theory is a key concept in systems theory and engineering in general, espe-
cially in motion control of mobile robots. Fur the purpose of the work presented in this

10



2.2 Lyapunov Stability Basics

thesis, some basic notions in stability of equilibrium points are given. In control theory
in general, there are other kinds of stability, such as input-output stability, or stability of
periodic orbits.

In the case of stability of equilibrium points, it is usually meant in the sense of Lya-
punov, a Russian mathematician and engineer who developed the concept. An equilib-
rium point can be understood as a point of balance. In the mathematical sense, it is a
solution which is stable, if all solutions starting at nearby points are stable as well. Oth-
erwise, it is unstable. Furthermore, it is asymptotically stable if all solutions starting at
neighbouring points not only stay in the neighbourhood, but also tend to the equilibrium
point as time approaches infinity.

2.2.1 Fundamental Terms

A finite-dimensional dynamical system can be described with a so-called unforced state
equation

X = f(t,x), 2.1

where x is the state, and ¢ is the time. A special case of system (2.1) arises when the
function f does not explicitly depend on time 7, so it becomes an autonomous, or time
invariant system

i= f(x). (2.2)

An important concept in dealing with the state equation is the equilibrium point. An
equilibrium point is the point x = x* in state space, if it has the property that if the system
starts at x*, it will remain at x* for all future time. For the system (2.2), the equilibrium
points are the real roots of the equation

f(x)=0. (2.3)

A constraint is imposed to the system defined in Eq. (2.1), named the Lipschitz condi-
tion, where f(t,x) satisfies the inequality

Hf(tax)_f(tay)H <L||X—y||, (24)

for all (¢,x), and (z,y) in some neighbourhood of the initial values (y,xp). The func-
tion f(z,x) is said to be Lipschitz in x, and the positive constant L is called a Lipschitz
constant.

Lemma 1. If f(t,x) and [d f/dx](t,x) are continuous on [a,b] X D, for some domain
D C R", then f is locally Lipschitz in x on |a,b|xD.

Lemma 2. If f(t,x) and [0 f/0x](t,x) are continuous on [a,b] x R", then f is globally
Lipschitz in x on [a,b] x R" if and only if [0 f / dx] is uniformly bounded on |a,b] x R".

11



Chapter 2 Motion Control of Mobile Robots

2.2.2 Stability of Autonomous Systems

Let us consider the autonomous system from Eq. (2.2), where f : D — R is a locally
Lipschitz map from a domain D C R" into R". Let us suppose that the equilibrium is at
the origin x = 0, and f(x) satisfies f(0) = 0. This can be done without a loss in generality,
because any equilibrium point can be shifted to the origin by changing the variables.

Definition 1. The equilibrium point x =0 of Eq. (2.2) is

e stable if, for each € > 0, there is a & = 6(€) > 0 such that

[X(O)]] <& = lx(1)]| <&Vt >0 (2.5)

* unstable if it is not stable.

 asymptotically stable if it is stable and & can be chosen such that

[x(0)]] < & = limx(z) = 0. (2.6)

To show that the origin is stable, for any value of €, a value of 6 needs to be produced,
possibly dependent on &, such that a trajectory starting in a 6 neighbourhood of the origin
will never leave the € neighbourhood. Now we can state Lyapunov’s stability theorem.

Theorem 1. Let x = 0 be an equilibrium point for (2.2) and D C R" be a domain con-
taining x = 0. Let V : D — R be a continuously differentiable function such that

V(0)=0 and V(x) >0 in D—{0} (2.7)
V(x)<0 in D (2.8)

Then, x =0 is stable. Moreover, if
V(x) <0 in D—{0} (2.9)

then x = 0 is asymptotically stable.

A continuously differentiable function V (x) satisfying (2.7) and (2.8) is called a Lya-
punov function. A function V (x) satisfying condition (2.7), i.e. V(0) =0 and V(x) >0
for x # 0 is said to be positive definite. 1f it satisfies a weaker condition V (x) < 0 for
x # 0, it is positive semidefinite. A function V (x) is said to be negative definite or neg-
ative semidefinite if —V (x) is a positive definite or positive semidefinite, respectively.
Now Lyapunov’s theorem can be rephrased.

Theorem 2. The origin is stable if there is a continuously differentiable positive definite
function V (x) so that V (x) is negative semidefinite, and it is asymptotically stable if V (x)
is negative definite.

12



2.2 Lyapunov Stability Basics

An important feature of Lyapunov’s stability theorem is that its conditions are only
sufficient. If a Lyapunov function candidate cannot satisfy the conditions for stability
or asymptotic stability, it does not mean that the equilibrium is not stable or asymptoti-
cally stable. It only means that this particular Lyapunov function cannot establish such
stability property.

When the origin x = 0 is asymptotically stable, it is often of interest to see how far
from the origin the trajectory can be and still converge to the origin as ¢ approaches
infinity. This region can be defined as region of attraction.

Definition 2. Let ¢(t;x) be a solution of (2.2) that starts at initial state x at time t = 0.
Then, the region of attraction is defined as the set of all points x such that ¢(t;x) is

defined for all t < 0 and lim;_, ¢ (t,x) = 0.

If, for any initial state x, the trajectory ¢ (¢;x) approaches the origin as t — oo, no matter
how large ||x|| is, then the asymptotically stable equilibrium point at the origin is said to
be globally asymptotically stable. In this case, the region of attraction is the whole space
R.

Theorem 3. Let x =0 be an equilibrium point for (2.2). Let V : R" — R be a continuously
differentiable function such that

V(0)=0 and V(x) >0, Vx#0 (2.10)
||x]| = 0=V (x) = o0 (2.11)
V(x) <0, Vx#0 (2.12)

then x = 0 is globally asymptotically stable.

A function satisfying the condition ||x|| — oo = V(x) — oo is said to be radially un-
bounded.

2.2.3 The Invariance Principle

If in a domain about the origin there is a Lyapunov function whose derivative along the
trajectories of the system is negative semidefinite, and if it can be established that no
trajectory can stay identically at points where V (x) = 0, except at the origin, then the
origin is asymptotically stable. This idea follows from LaSalle’s invariance principle.

Lemma 3. If a solution x(t) of (2.2) is bounded and belongs to D for t > 0, then its
positive limit set LT is a nonempty, compact, invariant set. Moreover, x(t) approaches
LT ast — oo,

Now LaSalle’s theorem can be stated.

13



Chapter 2 Motion Control of Mobile Robots

Theorem 4. Let Q C D be a compact set that is positively invariant with respect to (2.2).
LetV : D — R be a continuously differentiable function such that V(x) <0 in Q. Let E
be the set of all points in Q where V(x) = 0. Let M be the largest invariant set in E. Then
every solution starting in Q approaches M ast — oo.

Unlike Lyapunov’s theorem, LaSalle’s theorem does not require the function V(x) to
be positive definite. Furthermore, the construction of the set 2 does not have to be tied
in with the construction of the function V (x).

2.2.4 Stability of Nonautonomous Systems

Let us consider the nonautonomous system (2.1), where f : [0,0) x D — R" is piecewise
continuous in ¢ and locally Lipschitz in x on [0,e0) x D, and D C R”" is a domain that
contains the origin x = 0. The origin is an equilibrium point for (2.1) at = 0 if

f(t,0) =0, Vr>0. (2.13)
Definition 3. The equilibrium point x =0 of (2.1) is
* stable if, for each € > 0, there is 6 = 8(€,t9) > 0 such that

Ixw)| <8 = x(t)| <&, Vi>1>0 (2.14)

* uniformly stable if, for each € > 0, there is 6 = §(&) > 0, independent of ty, such
that (2.14) is satisfied.

* unstable if it is not stable.

* asymptotically stable if it is stable and there is a positive constant ¢ = c(to) such
that x(t) — 0 as t — oo, for all ||x(19)]| < c.

* uniformly asymptotically stable if it is uniformly stable and there is a positive
constant ¢, independent of ty, such that for all ||x(t)|| < ¢, x(t) — 0 as t — oo,
uniformly in ty, i.e. for each 1 > 0, there is T =T (n) > 0 such that

() <, Ve <to+T(n), Vilx(to)l] < (2.15)

o globally uniformly asymptotically stable if it is uniformly stable, §(€) can be cho-
sen to satisfy limg_,. 8 (€) = oo, and, for each pair of positive numbers 1 and c,
there is T =T(n,c) > 0 such that

Ix(0)[l <n, Vi Zit+T(n,c), Vix(io)l <c. (2.16)
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2.2 Lyapunov Stability Basics

For autonomous systems, the invariant set theorems are very useful when it comes
to stability analysis, while the conclusions about asymptotic stability can be drawn even
when V (x) is only negative semidefinite. On the other hand, the invariant set theorems are
not applicable to nonautonomous systems. This makes the stability analysis of nonau-
tonomous systems more difficult in general. An important results which helps in this
case is the so-called Barbalat’s lemma. It is a purely mathematical result concerning
the asymptotic properties of functions and their derivatives, but when properly used for
dynamic systems, especially for nonautonomous systems, it solves many problems. Now
we can state Barbalat’s lemma.

Lemma 4. If the differentiable function f(t) has a finite limit as t — oo, and if f is
uniformly continuous, then f(t) — 0 ast — oo,

Definition 4. A function f is said to be uniformly continuous on [0, o) if
VA>0, In(A) >0, V11 =0, Vr >0, [t—n|<n=|f(t)—f(t)|<A. (2.17)

In other words, f is uniformly continuous if one can always find an 1 which does not
depend on the specific point #1, and in particular, such that 7 does not shrink as #; — oo.
A convenient approach to analyse continuity is to examine the function’s derivative. A
sufficient condition for a differentiable function to be uniformly continuous is that its
derivative is bounded. Now a practical corollary of Barbalat’s lemma can be stated.

Corollary 1. If the differentiable function f(t) has a finite limit as t — oo, and is such
that f exists and is bounded, then f(t) — 0 ast — oo,

When analysing dynamic systems, especially when designing a controller for mobile
robots, the next Lyapunov-like corollary is used.

Lemma 5. If a scalar function V (x,t) satisfies the following conditions
 V(x,t) is lower bounded,
* V(x,t) is negative semidefinite,
e V(x,t) is uniformly continuous in time,

then V(x,t) — 0 ast — oo.

Using this kind of a Lyapunov-like analysis differs from the classical Lyapunov anal-
ysis. The function V can simply be a lower bounded function of x and ¢, instead of a
positive definite function, and the derivative V must be uniformly continuous, in addition
to being negative or zero. This is usually being done by proving that V is bounded. In
such analysis, the primary difficulty is to properly choose the scalar function V.
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Chapter 2 Motion Control of Mobile Robots

2.3 Backstepping

In order to understand the control structure introduced in Section 4.6, the main idea of the
backstepping technique needs to be clarified. It is a technique for designing stabilizing
control laws for a special class of nonlinear dynamic systems in a recursive way. As
described in (Khalil and Grizzle, 1996), let us consider the system

n=rf(n)+emn);g,
é,:l/t,

where [n7,&]T € R"*! is the state and u € R is the control input. The functions f : D —
R" and g : D — R" are smooth in a domain D C R” that contains 1 = 0 and f(0) = 0.
The goal is to design a state feedback control law to stabilize the origin (n = 0,& = 0).
We assume that both f and g are known. Let us suppose that 1 = f(n) + g(n)& can
be stabilized by a smooth state feedback control law & = ¢ (1), where ¢(0) = 0, which
means that the origin of

(2.18)

n=fm)+egmneon) (2.19)

is asymptotically stable. Furthermore, let us suppose that there is a smooth and positive
definite Lyapunov function V(1) that satisfies

2A%

oy LM +emem] < -wn), ¥n €D, (2.20)

where W (n) is positive definite. Now, the following expression holds

= F(m)+g(meo(n)]+gm)[&—o(n)]

2.21
E 2.21)
With a change of variables
z=5—-9(n) (2.22)
we get a system
n= () +s(mo(m)] +5(n)z. 2.23)
I=u—¢.
Since f, g, and ¢ are known, the derivative ¢ can be computed using the expression
e
¢=%[f(n)+g(n)é}- (2.24)
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By defining v = u — ¢ the system is reduced to

n=[f(m)+gmen)] +gn)z

2=,

(2.25)

which is similar to the initial system, except that the first component has an asymptoti-
cally stable origin when the input is zero.
Using the Lyapunov function candidate

)

Ve(n,8) =V(n)+ 52", (2.26)
the first time derivative is
A% 0
Ve==—[f(n)+e(mom)] + 5 -g(n)z+zv
n n (2.27)
A% ’
<-W(n)+ %g(n)zﬂv-
By choosing
v:—g—:; (n)—kz, k>0, (2.28)
we get
Ve < —W(n)—k2, (2.29)

which shows that the origin (n = 0,z = 0) is asymptotically stable. Since ¢(0) = 0,
then the origin (n = 0,& = 0) is asymptotically stable as well. By employing all the
substitutes, we get the feedback control law

o= S +¢n)&] — Grslm) —k[E o). 030

The idea of the procedure can be summarized in the next lemma.

Lemma 6. Let us consider the system (2.18), with ¢(n) as a stabilizing state feedback
control law with the property ¢(0) = 0. Let V(1) be a Lyapunov function that satisfies
(2.20), with some positive definite function W (n). Then, the state feedback control law
(2.30) stabilizes the origin of (2.18) with V(1) + [£ — ¢ ()] 2/2 as a Lyapunov function.
Furthermore, if all the assumptions hold globally and V(1) is radially unbounded, the
origin will be globally asymptotically stable.

The backstepping technique is very important when it comes to incorporating the mo-
bile robot’s kinematic model into the dynamic model. The principle of the above intro-
duced equations is visualized in Figure 2.4.
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f(-) +g() ()

Figure 2.4: The block diagram of system (2.18) in the original form, after introducing ¢(n) and
after backstepping —@ (1) through the integrator.
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Chapter 3

Generic Path Following Control of
Wheeled Mobile Robots

3.1 Introduction

Most of the path following solutions existing in the literature are developed for a specific
mobile robot configuration. A comprehensive classification of different mobile robot
configurations was done by Campion et al. in (Campion et al., 1996), detailing all possi-
bilities of structural properties of the wheels.

Path following for omnidirectional drives is tackled by Kanjanawanishkul and Zell in
(Kanjanawanishkul and Zell, 2009), where the authors employ model predictive control
(MPC) to design the control law, by using a virtual vehicle formulation. Given the error
derived from the state vectors of the robot and the path, the MPC control law explicitly
deals with the virtual vehicle dynamics. Pioneer work on the virtual vehicle concept is
presented in (Kanayama et al., 1990), where a stable, Lyapunov-based path following
control law is proposed for nonholonomic vehicles, i.e. for all wheeled vehicles which
are not omnidirectional.

A thorough study on feedback control of Ackermann (car-like) vehicles, including
path following, is made by De Luca et al. in (De Luca et al., 1998). In (Coulter, 1992)
and (Thrun et al., 2006) two geometric path following control algorithms are proposed,
which in principle do not rely on any kinematic model. However, both of the algorithms
assume the steering characteristic to be Ackermann vehicles. Path following of car-like
vehicles in the presence of sliding is tackled in (Lenain et al., 2006), using a special
kinematic model accounting for sliding, and a model predictive control law. In (Nizard
et al., 2016) a path following controller for bi-steerable vehicles is presented. The refer-
ence path is transformed to two synchronized paths, and the approach is evaluated on an
electrical public transport vehicle EZ10.

Unicycle motion control is a popular example in control theory applications, which
is the reason for many research results in this area. Some examples can be found in
(Samson, 1995), (Lapierre et al., 2006), (Morro et al., 2011), and (Ghommam et al.,
2010). Path following solution for skid-steered vehicles is proposed in (Lucet et al.,
2008) using sliding mode control. More work on path following of skid-steered vehicles
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can be found in (HuskiC et al., 2017d), (Pentzer et al., 2014b) and (Rajagopalan et al.,
2016).

Even though all the above mentioned algorithms are interesting and efficient solu-
tions, they are model-dependent, and designed for a certain type or a group of mobile
robots. There are, however, some algorithms which are model-independent and in that
sense generic. They use pure geometric tracking and can be utilized by any kinematic
configuration. One such algorithm can be found in (Oftadeh et al., 2014). The authors
introduce a concept of a generalized wheel, and simplify the kinematic and nonholo-
nomic constraints. Because of this advantage, it is possible to derive a time-optimal
solution for the speed of the robot, such that the actuator velocities stay within specified
bounds. In (Egerstedt et al., 2001) two model-independent path following solutions are
proposed. Both of the solutions are based on the virtual vehicle principle. This approach
was extended by Macek et al. in (Macek et al., 2005) with an additional velocity control.

Mojaev and Zell have developed a generic path following algorithm in (Mojaev and
Zell, 2004), and evaluated it on a differential drive. This approach was utilized for omni-
directional drives by Li et al. in (Li et al., 2007) for the development of a ball dribbling
robot. In this chapter, we are proposing an approach to provide safer, more accurate
and stable path following performance, outperforming the algorithm proposed in (Mo-
jaev and Zell, 2004), and offering more features in the linear velocity control than the
algorithm proposed in (Macek et al., 2005). The contributions of this chapter are as
follows:

 proposing a novel heuristic linear velocity control,

* introducing this linear velocity control to the approach proposed in (Mojaev and
Zell, 2004),

» utilizing the approach for Ackermann and bi-steerable drives,

 experimentally evaluating the algorithm performance on

— an omnidirectional drive (in a robotic competition and in laboratory condi-
tions),

— Ackermann and bi-steerable drives (laboratory conditions).

3.2 Orthogonal Projection Based Control

To understand the principle of the presented approach, Figure 3.1 should be observed.
The world frame is defined with the axes X,,,Y,, and the origin O. The robot’s center of
mass can be seen as point R. The geometric reference path is denoted with P, and the
robot’s orthogonal projection to the path is point 7. The moving reference frame {P } is
defined with its origin at point 7. Abscissa X; and ordinate X,, are unit tangent and unit
normal vectors at point 7', respectively. Along the axis X, the orthogonal distance from
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Figure 3.1: Orthogonal projection based path following

the robot to the path is denoted with x,, and along the axis X;, the tangential distance
with x;. The tangential angle of the path at point 7" is denoted with 6;. This is, in
fact, the angle between the moving reference frame and the world frame. The robot’s
translational velocity is represented with v, and the robot’s moving direction angle is o.
If we denote x,( as the distance from the robot to the path at point T, it is possible to
define the following exponential law

Xp = Xpge F, (3.1
where k is a positive constant which regulates the speed of convergence. The orthogonal
distance x, is now an exponential function of the tangential distance, with an initial
value x,, at point T. If we denote the angle of the exponential function’s tangent as ¢,

dx;,

the following applies: tan ¢, = o - Now, this angle can be expressed as

¢ = arctan(—kxy). (3.2)

If we denote the desired velocity with v,, the robot’s model in the moving reference
frame is then

X; = v, CcOS @, (3.3)

Xp = vy sin Q.

The model in Eq. (3.3) can be used to control any robot, regardless of the kinematics,
since the robot is modelled just as a geometric point. In order for the robot to converge
to the reference path, the angle ¢, needs to converge to zero. In (Mojaev and Zell,
2004), a differential drive was controlled using PD control with ¢, as error input. In their
work, control rotational velocity is expressed as ® = K, ¢ + Kd% where K, and K; are

dt >
proportional and derivative gains, respectively.
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Omnidirectional drives are able to move in any direction, regardless of their orien-
tation. This means that they can independently move and simultaneously change their
orientation, i.e. rotate. Because of this property, it was possible for Li et al. in (Li et al.,
2007) to directly use ¢, as direction angle, and use separate PD control for rotation. In
this case, using @, as direction angle, the robot will always converge to the path by fol-
lowing the exponential function in the local coordinate frame. The robot’s control model
in the world frame is then

Vy = V08 QL 3.4)
vy = v sina, '

where o0 = ¢ + 6;, and vy, v, are the robot’s translational velocity components. Rotation
control is then @ = ki (eg + k2ég), where ki, k are proportional and derivative gains, re-
spectively, and eg = 6, — 0 the error between the desired orientation 6, and the measured
orientation 6. In the case of nonholonomic robots, 6 corresponds with ¢, and there is
no independent rotation. A stability analysis of this algorithm can be found in (Li et al.,
2007).

By using this formulation, the inherent singularity, which appears when x, = P
can be avoided, where ¢4, 1s the maximum curvature of the path. This problem was
analysed by Samson in (Samson, 1992).

3.3 Longitudinal Control

The main limitation of the described algorithm is its lack of linear velocity control, since
the desired velocity v, is a positive constant. At higher velocities, the performance would
greatly decrease in the following ways:

* at highly curved parts of the path, the tracking accuracy decreases,

* in cluttered and/or dynamic environments, danger of colliding with obstacles in-
creases,

* abruptly going from full velocity to zero at the goal position increases the final
positioning error, the danger of tipping over, and may damage the actuators,

* driving fast and rotating at the same time introduces unwanted dynamic effects
(applies only to omnidirectional drives).

These problems can be solved with a heuristic approach described in the following text.

3.3.1 Path Curvature

The following idea is inspired by the one proposed in (Macek et al., 2005). First, we
define path curvature.
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If a 2D curve P is parametrized by the arc length s, then x; = p(s), and y; = ¢(s) are
the x and y coordinates of the desired path, respectively. If we denote p’ = ‘?9—’;, q = %,

n__d*p o 9%
and p” = 55, ¢° = 5, then the curvature k can be computed as

B p/q// _p//q/
=—7,
(p/2+q/2)3

which is further detailed, e.g., by Toponogov in (Toponogov, 2006).

Now, we define a free control parameter which we name path-look-ahead distance, an
arbitrarily chosen distance in path coordinates. It starts at the orthogonal projection 7',
and ends between T and the goal position, at most exactly at the goal position. So, if we
denote the path-look-ahead distance with I, then I € [0,s¢ — s7|. Here, sy and s are
the point 7" and the goal position in path coordinates, respectively. The proposed penalty
factor using the curvature measure for a discretized path is then

K (3.5)

ilK '
Ee = ¢ KxXitip Il (3.6)

where K > 0 is a free parameter which determines the speed of convergence, it is the
index of orthogonal projection 7', i;_ is the index of the point positioned at the path-look-
ahead distance from the projected point, and k; is the curvature in the current point with
the index i. By using this penalty factor to scale the linear velocity as v = v, &, tracking
accuracy remains high even in the areas of high path curvature.

3.3.2 Distance to Obstacles

To be sure that the robot will avoid collisions with static and dynamic obstacles in its
environment, a safety measure should be considered, similar to the proposed curvature
penalty factor. This penalty factor is proposed as

Ko

Co=¢€ @, (3.7)

where d, is the distance to the obstacles of interest, and K|, is a convergence parameter.
This distance to the obstacles of interest can be chosen in different ways. In this work,
we use the distance to the nearest obstacle, since it provides satisfying results. Using this
penalty factor as v = v,,&,, danger of colliding with obstacles is greatly reduced, and the
navigation has a much higher safety level.

3.3.3 Distance to the Goal Position

In order to avoid dangerous sudden braking at the end of the path, it is necessary to
introduce asymptotic deceleration, as the robot approaches the goal. This penalty factor
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can be defined as
Ke

Ge=e %, (3.8)
where K, > 0 is a parameter which determines the convergence of the asymptote, and
d, 1s the distance to the goal in path coordinates. By using this penalty factor as v =
vin&g, there is no danger of tipping over, tracking accuracy remains preserved at the goal
position, and the actuators are not stressed with extreme values.

3.3.4 Angular Velocity

An omnidirectional robot’s linear and angular velocity are kinematically independent,
but at higher velocities, different dynamic effects occur. If these effects are not explicitly
accounted for, they might lead to unwanted behaviour.

We then propose the following rotation penalty factor

Ep = ¢ Kalol, (3.9)

where K, > 0 regulates the convergence, and the linear velocity is then v = v,&,. If the
robot needs to change its orientation during the drive, it will shortly decelerate to keep
the tracking accuracy, until the rotation is complete. This way, the tracking accuracy is
preserved, and there are no unwanted dynamic effects.

3.3.5 Final Heuristic Longitudinal Control

By using all of the proposed penalty factors for the linear velocity, the final expression is
then given as

it K, K
V= vpexp (— (KKZ \;q|+1<w|w|+d—”+d—g>>. (3.10)
0 8

i=ip

This expression gives a compact and efficient solution for linear velocity control, which
allows the robot to cope with the problems of complex paths in cluttered and dynamic
environments.

3.4 Orthogonal-Exponential Approach

Now we introduce the proposed longitudinal control solution to the path following con-
trol presented in Section 3.2. This integral control algorithm we address as Orthogonal-
exponential approach. The robot’s model in the moving reference frame is then

X; = vcos @, G.11)
Xp = vsin @, '
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3.5 Experimental Results

where v is defined as in Eq. (3.10), and ¢, = arctan(—kx,), as in Eq. (3.2).

Omnidirectional robot can now be directly controlled, similar as in (Li et al., 2007).
We use the error angle ¢, in robot coordinates, such that ®¢. = ¢. + 6, — 6.

For the Ackermann and bi-steerable drive we propose a PID control with ®¢, as error
input: @ = KpRo. + K; OTR(])cdt + KD%, where Kp,Kj,Kp are proportional, integral
and derivative gains, respectively. The bi-steerable drive is assumed to be symmetrical:
¢©r = — @y, where @y and @, are front and rear axle steering angles, respectively. The
resulting steering is then: @ = ¢y — ¢@,. With {Kp = 1,K; = 0,Kp = 0}, i.e. using a
P controller, the steering angle control becomes ¢ = ®¢.. This choice of parameters
showed satisfying results and was used in the experiments.

To analyse the stability of the whole system, we follow the work of (Li et al., 2007)
and choose the Lyapunov candidate function as

1 1
V= 5xnz + E‘PCZ’ (3.12)

and then the derivative can be found as
V= XpXp + ¢c¢c
vsin(arctan(—kx,)) (3.13)
1+ (kxp)? '

= xpvsin(arctan(—kx,)) + arctan(—kx;,)

Using the properties of the functions arctan and sin, we conclude that V < 0 and that
the equilibrium (x,, = 0, ¢. = 0) is globally asymptotically stable.

The robot’s linear velocity v, computed as in Eq. (3.10), is positive and doesn’t vanish
with time. The velocity stays in the interval v € (0,v,), regardless of the control param-
eter values. This implies that the global asymptotic stability is preserved by using the
longitudinal control proposed in Section 3.3.

3.5 Experimental Results

The proposed orthogonal-exponential approach was experimentally evaluated in two dif-
ferent manners:

» with an omnidirectional drive, we participated as Team Attempto Tiibingen in the
international robotics competition SICK Robot Day 2014 and won the 2nd place,

* in our laboratory, path following experiments were conducted using an omnidirec-
tional drive, Ackermann and bi-steerable drive.

The robots we used can be seen in Figure 3.3. The omnidirectional robot Arnie is based
on hardware used at RoboCup competitions, with details described in (Li, 2009). The
computer configuration consists of an Intel Core2Duo P8700 dual-core processor with
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Figure 3.2: Five runs (different colors) of following a U-curve with an omnidirectional robot,
where v, = 1.3ms~'. The golden dashed line in (a) and (b) represents the desired path.
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2.53GHz clock speed and 2GB of RAM. The pyramid-shaped construction on top of
the robot is designed for collecting the objects in SICK Robot Day 2014. Inside this
construction there is a PointGrey Firefly camera, used for reading the bar codes from the
objects. In front of the robot there is a SICK LMS100 laser scanner, and in the back, a
SICK TiM551, both used for obstacle detection and mapping. Furthermore, there is an
Allied Vision Marlin camera for sign detection.

The reconfigurable Ackermann and bi-steerable robot Gloin is equipped with a i7-
4785T Intel CPU with 4 real and 8 virtual cores, 2.20 GHz each, and 8GB of RAM. The
sensors used for the experiments consist of a Hokuyo UTM-30LX laser scanner, and
internal wheel encoders.

(b) Reconfigurable Ackermann and bi-steerable
(a) Omnidirectional robot Arnie robot Gloin

Figure 3.3: Robots used for the experiments presented in this chapter.

3.5.1 SICK Robot Day 2014

The SICK Robot Day is a bi-annually hosted robotic competition by the well known
sensor producer SICK AG, in Waldkirch, Germany. In the SICK Robot Day 2014, where
14 international teams participated, the competition scenario resembled the one of an
automated warehouse. There were four robots competing at the same time to collect and
deliver special objects in a limited time window. The robots were fully autonomous, and
had to detect filling and delivery stations, as well as navigate in the arena, while avoiding
collisions with other robots. The goal was to collect and deliver the most objects in
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the specified time window, while correctly delivered objects were awarded with positive
points, and wrong deliveries would lead to penalty points.

Having such a dynamic environment and a strict time limit required the motion of the
robot to be suitable for cluttered environments, avoiding all the collisions, and driving
fast when the area is clear. Furthermore, in order to detect the special stations, the robot
would need to drive through the arena and look around for the special number signs. In
order to do so while driving, the natural solution was to use an omnidirectional drive and
to rotate while driving. These requirements were met with the Orthogonal-exponential
approach. This approach allows independent translation and rotation of an omnidirec-
tional drive, and the linear velocity control in Eq. (3.10) deals with dynamic and cluttered
environments, while the speed increases, if there is no danger ahead.

A typical path following scenario in the training arena can be observed in Figure 3.4,
visualized in ROS/RViz. The black and white number signs stand above the special
delivery stations. After picking up a special object from one of the fetching stations in
the middle of the arena (visualized as green cylinders), the goal is to read a bar code
from the fetched object, to find the corresponding number sign, and to deliver the object
to the station located underneath the correct number sign. In this example, the bar code
was corresponding to the number sign 2, so the robot delivered the object to the proper
station located under this sign. Thick blue line represents the driven path, and thin red
line represents the planned reference path. Blue and red dots represent the walls detected
by the laser scanner, and the blue square in the middle represents the central point for the
fetching stations.

Figure 3.4: A representative example of path following inside the training arena.

Our team won the 2nd place, and was able to quickly solve the tasks without any
collision. More details about the competition and the complete system can be found in
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(Buck et al., 2015).

3.5.2 Laboratory Experiments

In this section, results from the laboratory experiments with a U-shaped curve will be
explained in detail. All the results in the tables were averaged over 5 experiments. The
errors and the velocities are plotted relative to the path. In the area of the highest cur-
vature, there was a planted obstacle near the path, such that the robot would hit it, if the
deviation from the path was too large. This area is illustrated with a red circle in the fol-
lowing figures. The obstacle was hit every time while driving with the old approach, and
avoided every time using the proposed approach. This emphasizes the advantage of the
inherent safety measures of the proposed approach. A typical path following scenario
in laboratory conditions, visualized in ROS/RViz, can be observed in Figure 3.5. The
thick blue line represents the actual path driven by the robot, and the thin green line the
planned reference. The rectangles along the driven path represent the safety area around
the robot in each pose. The red dot is the point to which the robot had to adjust its ori-
entation, and it is placed on a rectangular obstacle. While driving, the omnidirectional
robot rotates independently, in order to “look™ at this point. We refer to this point as
look-at point. This way the independent translational and rotational control were tested.

Figure 3.5: A representative example of path following inside the laboratory.

Omnidirectional robot Similar as in Figure 3.5, a look-at point was set on the planted
obstacle, such that the robot had to change its orientation accordingly during driving. The
desired velocity was chosen as the maximum at which the old approach could still fol-
low the path (v, = 1.3ms™!). A comparison between the old and the proposed approach
can be seen in Figure 3.2. Different colors of the paths represent individual experiments
repeated 5 times. As it can be observed in Figure 3.2a and Figure 3.2b, the driven path
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Table 3.1: Proposed vs. original algorithm: omnidirectional drive

omni emaxlcm] eapglem]  olem]  Viax[§] Vag[§]
original 48.44 —7.17 17.14 1.32 1.16
proposed  28.73 —6.23  10.71 1.73 0.93
A[%)] 407 19.06 3751 23.69  20.12

deviates more from the reference (golden dashed line), when driving with the old ap-
proach, and the motion is oscillating more, which is especially visible in the upper part
of Figure 3.2a. In Figure 3.2¢ and Figure 3.2d the tracking errors of the both approaches
are presented. In Figure 3.2c, in the area between the waypoints ~ 55 and 80, a large
error can be observed, which corresponds to the area of the highest curvature in Fig-
ure 3.2a and Figure 3.2b, where the obstacle was planted. At this location the obstacle
was hit in every experiment, using the old approach, and there was no collision at all by
using the proposed approach. In Figure 3.2e and Figure 3.2f the speed profiles of both
approaches are shown. By using the old approach, the speed is approximately constant.
The desired speed was 1.3ms™!, but the low level control of the robot could keep the
average speed at 1.16ms~!. By using the proposed approach, the robot would accel-
erate along the straight segments, and reach the speed of 1.73ms~!, while the average
speed is then 0.93m s~ !. Table 3.1 shows the improvement the proposed approach offers.
The maximum tracking error with the old approach is 48.44cm, and with the proposed
approach 28.73cm. This means that the tracking error with the proposed approach is
40.7% smaller than in the case of the old approach. The average error with the proposed
approach is then 19.06% smaller than with the old approach. The proposed approach
is also more reliable with a 37.51% decrease in standard deviation. The velocities are
comparable.

Bi-steerable robot A comparison between the old and the proposed approach for the
bi-steerable configuration, with the command velocity v, = 0.7ms ™!, can be seen in Fig-
ure 3.6. As it can be seen in Figure 3.6a and Figure 3.6b, using the proposed approach,
the path following performance is more accurate and repeatable. In the upper part of
Figure 3.6a oscillating motion can be observed when using the old approach. Further-
more, in the area denoted with the red circle, there is a collision in every experiment,
since the deviation from the reference path is too large. In Figure 3.6c and Figure 3.6d
the tracking errors of the both approaches are shown. In Figure 3.6c there is a peak
at around the waypoint number 60, which corresponds to the large error in the curve,
while hitting the obstacle with the old approach. Between the waypoints 60 and 120 the
above mentioned oscillating motion can be observed. The speed profiles are shown in
Figure 3.6e and Figure 3.6f. The old approach has an average speed of 0.42m s~ !, while
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Table 3.2: Proposed vs. original algorithm: bi-steerable drive

2-steer  epax[cm| eavglem| ofem]  viax[§]  Vag[§]
original 37.62 —-5.2 12.34  0.66 0.42
proposed  17.83 —3.74 7.93 0.72 0.37
Al%] 52.6 28.13  35.74 8.61 13.68

Table 3.3: Proposed vs. original algorithm: Ackermann-steering drive

Ackermann e, [cm] ege[cm]  ofcm] vmax[%] vavg[%]

original 38.28 —8.42 17.06  0.55 0.4
proposed 18.43 —-3.618 7.57 0.8 0.41
Al%] 51.85 57.03 55.63 30.85 —2.08

the proposed approach reaches the speed of 0.72ms~! in the straight segments, with an
average speed of 0.37ms~'. Table 3.2 shows that the maximum tracking error with the
old approach reaches 37.62cm, while with the proposed approach, the maximum error
is 17.83cm. This means that the proposed approach has a 52.6% smaller maximum er-
ror. The average error with the proposed approach is 28.13% smaller than with the old
approach, and the standard deviation decreases by 35.74%.

Ackermann-steering robot The results with the Ackermann-steering configuration
can be seen in Figure 3.7. It is clear from Figure 3.7a and Figure 3.7b that the proposed
approach offers more accurate motion. The motion in Figure 3.7a is not oscillating, as in
the case of Figure 3.2a and Figure 3.6a, but a certain drift seems to be present, and the
deviation from the path is large. This comes from the fact that the actuators are slow, and
have a certain delay before they start moving. If driving with a constant speed and not
decelerating before the curve, as in the case of the old approach, there will always be un-
dersteering present. The red circle represents the collision area, similar as in the previous
experiments. In Figure 3.7c and Figure 3.7d the error profiles are shown. Similar as be-
fore, in Figure 3.7c, in the area between waypoints 60 and 80 there is a large error peak,
when using the old approach, which corresponds with the collision area. As presented
in Table 3.3, the proposed approach has a 51.85% smaller maximum error, a 57.03%
smaller average error and a 55.63% smaller standard deviation. When driving with the
old approach, the maximum speed is 0.55m s~!, and the average speed is 0.4ms~!. With
the proposed approach, the maximum speed reaches 0.8ms~!, while the average speed
is0.41ms™!.
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3.6 Conclusions

In this chapter, we propose a new heuristic linear velocity control for wheeled mobile
robots for safe, stable and accurate path following in dynamic and cluttered environ-
ments. It is an alternative to complex model-based and predictive controllers which
model the dynamics of the robot and the environment. The proposed longitudinal control
can be used in addition to any path following controller which assumes constant linear
velocity. It is coupled with the approach proposed in (Mojaev and Zell, 2004), and then
utilized for Ackermann and bi-steerable drives. Its performance is experimentally eval-
uated using an omnidirectional robot and a reconfigurable Ackermann and bi-steerable
robot. The proposed solution can be used on any wheeled mobile robot, regardless of
the kinematic configuration. The performance was also evaluated in the international
robotics competition SICK Robot Day 2014, where it coped with a highly dynamic en-
vironment and led our team to win the 2nd place (detailed in (Buck et al., 2015)).
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Chapter 4

High Speed Path Following Control of
Skid-Steered Vehicles

4.1 Introduction

Navigation of autonomous or automated vehicles should be safe, accurate, and robust,
which is especially challenging at higher speeds and on rough terrain. After a collision-
free path has been planned in the surrounding environment, the vehicle should be able to
exactly follow the planned route.

Path following at higher speeds on rough terrain is still an ongoing and challenging
research topic. Some work on aggressive driving with car-like vehicles based on Model
Predictive Control (MPC) is presented in (Williams et al., 2016) and (Williams et al.,
2017). Oft-road control of car-like vehicles at high speeds using observer-based control
can be found in (Lenain et al., 2011), (Lenain et al., 2010) and (Deremetz et al., 2017).
Similar work on double-steering vehicles can be found in (Lucet et al., 2009). Reactive
high speed navigation on rough terrain is tackled in (Shimoda et al., 2007) and (Spenko
et al., 2004). A comprehensive study on mobile robots on rough terrain can be found in
(Tagnemma and Dubowsky, 2004). High speed path following based on pure pursuit and
receding strategy is proposed in (Elbanhawi et al., 2016), while backstepping steering
control can be found in (Xin and Minor, 2012). All of these approaches offer interesting
solutions for driving at higher speeds on rough terrain, but none of them deals with skid-
steered vehicles, which are especially suitable for outdoor applications, but difficult to
model and to control.

Trajectory tracking control of skid-steered vehicles can be found in (Caracciolo et al.,
1999), (Koztowski and Pazderski, 2004), or (Yi et al., 2007). Similar work can be found
in (Koztowski and Pazderski, 2006), (Yi et al., 2009), and (Miller and Murphey, 2012).
However, these approaches do not offer experimental evaluation at higher speeds. One
solution to path following using skid-steered vehicles is proposed in (Pentzer et al.,
2014b), where a unicycle control strategy is used to control a skid-steered robot with
the help of a kinematic mapping. This mapping is based on the parameter estimation
proposed in (Pentzer et al., 2014a). Their proposed path following solution is experi-
mentally evaluated at speeds up to Ims~!. Path following which takes wheel slip into
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account was proposed in (Rajagopalan et al., 2016), where the maximum speed of the
robot in the experiments reaches Ims~!. In (Ostafew et al., 2016), tracking of manu-
ally defined paths with constraints using a learning-based Nonlinear Model Predictive
Control (NMPC) is done with skid-steered vehicles at speeds up to 2m s~ 1. In (Indi-
veri et al., 2007) a unicycle control strategy from (Soetanto et al., 2003) is extended for
higher speeds and experimentally evaluated on a skid-steered vehicle.

In (Huski¢ et al., 2017d) and (Huski€¢ et al., 2017b) a robust path following algo-
rithm for skid-steered vehicles is proposed, and experimentally compared against the
approaches proposed in (Pentzer et al., 2014b) and (Indiveri et al., 2007) at speeds up to
6ms~—'. This chapter is based on the work proposed in (Huski¢ et al., 2017d) and (Huski¢
et al., 2017b). The proposed algorithm is compared against the two already mentioned
state-of-the-art algorithms on two different robots: Robotnik Summit XL and Segway
RMP 440. With the Robotnik Summit XL, the comparison is made on three different
terrain types, and on two different paths. Using the Segway RMP 440, the comparison is
made on three different terrain types and two different path types.

Before going into mathematical and experimental details, a short description of the
technology show DLR SpaceBot Camp 2015 is given, during which a part of the mathe-
matical framework presented in this chapter was developed.

4.2 DLR SpaceBot Camp 2015

The DLR SpaceBot Camp 2015 was a robotics technology show organized by the Ger-
man Aerospace Center (DLR), which replicated a scenario of exploring an unknown
planet surface with a robotic system. The robotic system could have been one robot, or
a team of robots, as long as the whole system weighed under 100kg. Ten different teams
from different German universities and research institutes were selected and financed by
the DLR.

The tasks can be divided in three main categories:

* Finding and identifying three special objects (a blue cup, a yellow cuboid-formed
battery, and a red box as a base object);

* Grasping the cup and the battery, and transporting them to the base object;
* Assembling the three objects to a complete system.

The robotic system was supposed to solve the tasks as autonomously as possible.
There was a replicated control station “on Earth”, which was allowed to communicate
with the robotic system only in special time windows. This communication had constant
delays and occasional blackouts. The simulated planet surface was an arena consisting
of a small hill, two rocks and a terrain mixture of gravel, macadam and sand. In Fig-
ure 4.1 the photo of the arena is shown, together with a map of it constructed by our
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» S ew

(a) Simulated planet surface in the exhibi-
tion arena (b) Elevation map of the arena

Figure 4.1: The terrain in the exhibition arena and the constructed elevation map

robot. Since our robotic system consisted of two Robotnik Summit XL robots, it was
important to study the properties of skid-steered vehicles on a challenging terrain. One
of the Robotnik Summit XL robots in the exhibition arena can be seen in Figure 4.2. The
default hardware was modified in order to fit the needs of the exhibition, and besides the
Hall-effect sensors and the internal gyroscope, the robot was equipped with four RGB-
D Asus Xtion Pro Live cameras, one 9DOF Razor Inertial Measurement Unit, one 3D
laserscanner Velodyne Puck VLP-16, and two 2D laser scanners SICK Tim 5xx. For the
manipulation tasks, there was a 6DOF Crustcrawler Pro-Series robotic arm made of dif-
ferent Dynamixel MX and AX sensors. The computer configuration consists of an Intel
Core 17-4790S processor with 4 cores and 16 GB of RAM. Even though high speeds are
not pursued in planet exploration with rovers, examining the behaviour of skid-steered
vehicles in rough conditions resulted in a controller which is not only capable of coping
with rough terrain, but also with high speeds.

4.3 Skid Steering

A skid steering mechanism is similar to the one of a differential drive, but not identical.
While a differential drive has two non-steerable wheels on one axle, a skid steered vehicle
has 2 - k non-steerable wheels, where k is an integer greater than 1. Instead of wheels, a
skid-steered vehicle can also have tracks, while the principle stays the same. In the rest of
the text, one track, or one side of the wheels, will be referred to as a tread. Furthermore,
it is assumed that differential drives have only contact points between the wheels and
the ground, while skid-steered vehicles have contact patches between the treads and the
ground.

In order for such a vehicle to steer, one tread has to move faster than the other, which
means the other one needs to skid, hence the name of the mechanism. Since these vehi-
cles always skid, it means that the nonholonomic constraint, which assumes pure rolling,
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Figure 4.2: Robotnik Summit XL in the exhibition arena.

is violated. Such a motion highly depends on the contacts between the treads and the
ground, which involves complex interactions such as torsion of both the treads and the
ground surface. This makes it difficult to model such a behaviour without having a full
dynamical model which includes the friction between the treads and the ground. This
kind of models can be very complex and their parameters difficult to estimate. Such
models can be found in (Wong, 2001) and (Yu et al., 2010). Furthermore, the majority
of commercial robots only offers velocities as control commands, while a real dynamical
model would need torques (which are usually assumed to be linearly proportional to the
motor currents). Controlling a dynamic model with velocity inputs would then require
transformations such as the one proposed in (Martins et al., 2017).

Driven by these reasons, for the work presented in this chapter we have embraced a
type of kinematic modelling which implicitly takes dynamics into account, and can be
easily configured for different robots with different dynamic characteristics. The idea for
such a modelling comes from (Martinez et al., 2005), and it was further developed in
(Mandow et al., 2007).

4.3.1 ICR Kinematics

If a skid-steered vehicle is observed as a rigid body with planar motion, there is a point
in the plane in which the motion of the vehicle can be represented by pure rotation. This
point is the Instantaneous Center of Rotation (ICR). It can be seen in Figure 4.3, where
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the ICR is expressed in the vehicle’s local coordinates (x,y). The angular velocity is
denoted with ®, and the linear velocity vector is v = (vx,vy). Control inputs for this
system are the speeds of the left and the right tread, V; and V.

Figure 4.3: Skid steering kinematics based on Instantaneous Centres of Rotation (ICRs). All
three ICRs are estimated by solving an optimization problem whose solutions are made of ICR
coordinates.

The motion of a particle on the tread is composed of the input speed of the tread and
the component that comes from the motion of the entire vehicle. This means that the
treads have their own ICRs, different from the ICR of the entire vehicle. As opposed
to differential drives, where the ICRs of the left and the right wheel coincide with the
ground contact points, in the case of skid-steered vehicles, the tread ICRs usually lie
outside of the treads. This offset is a direct consequence of the slippage between the
treads and the ground, and it is terrain-dependent. In Figure 4.3, the ICRs of the left and
the right tread are denoted as ICR; and ICR,, respectively.

As stated in (Martinez et al., 2005), because of Kennedy’s ICR theorem, all the three
ICRs lie on the same line, and have the same x-coordinate x;cg. The ICR y-coordinates of
the vehicle, the left, and the right tread, are denoted as y;cg, yicri, and yjcgrr, respectively.
Furthermore, all three ICRs have the same angular velocity.

Now, the following expressions can be derived:

Vy = YICR®,
Vy = —XICRO,

“.1

which describe the motion of the entire body. The speeds of the left and the right tread
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can be written as

Vy — 0]
Vl: X )(;ICRI :
]
4.2
Vr:Vx_)’ICRrw “42)
o

where o4 and o, are fuzzy parameters which describe mechanical issues such as tire
inflation or belt transmission, as proposed in (Mandow et al., 2007).

Using Eq. (4.1) and Eq. (4.2), the kinematic equations of skid-steered vehicles based
on ICR parameters can be expressed as:

_ oqViyicrr — 0 Viyicri
X — Y
YICRr — YICRI

oV — o4V
Vy =XICRT (4.3)
YICRr — YICRI
Vi — oV,
YICRr = YICRI
If g =04 =1, x;cr = 0, yicri = —Yicrr = w, where 2w is the distance between the

right and the left tread, then Eq. (4.3) represents the kinematic model of a differential
drive. The ICR parameters (x;cr, Yicri,VICRr, O, &) of skid-steered vehicles can be seen
as a deviation from an ideal differential drive. This allows a control law developed for
skid-steered vehicles to be applied to differential drives, when the ICR parameters are
adjusted accordingly.

Following the work of Caracciolo et al. in Caracciolo et al. (1999), the relation be-
tween the local and global velocities can be expressed as

X]  [cos® —sinB] [vy
[Y] - [sin 0 cos6 } [vy} ' 4.4)
Furthermore, a nonholonomic constraint for the skid-steered vehicle is defined in Carac-
ciolo et al. (1999), expressed as
x1cr0 +vy = 0. (4.5)
This constraint can be expressed in Pfaffian form as
X
[—sin@ cos® xicr| |Y| =A(q)g=0. (4.6)
0

. T . . . .
Now, defining n = [vx (0} as a pseudo-velocity control input vector, it is possible to
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express the generalized velocities as

q==S(q)n, 4.7

where S(g) is a full rank matrix with columns in the null space of A(g). We choose the
matrix S(q) as proposed by Koztowski et al. in Koztowski and Pazderski (2004). This
way, it is possible to use the longitudinal and angular velocity as control inputs, and not
the lateral velocity, as proposed in Caracciolo et al. (1999). Now it is possible to describe
the vehicle’s motion in global coordinates as

Y| =|sinO —xjcpcos6
6 0 1

X cos®  xjcrsinO
{ x] 4.8)

Here, X and Y are the linear velocity components in global coordinates, while 6 =
o, where 6 is the global orientation of the vehicle. The boundedness of xjcg is dis-
cussed in (Caracciolo et al., 1999), (Koztowski and Pazderski, 2004) and (Koztowski
and Pazderski, 2006). In our work, we experimentally identify the ICR parameters
(X1CR, YICRI, YICRr O, &) for different terrain types, by using evolutionary algorithms,
similar as in (Mandow et al., 2007). This kind of identification provides realistic values
for x;cg which are always bounded.

4.4 Path Following

In order to define and solve the path following problem, one practical approach is to
transform the model of the vehicle to path coordinates.

4.4.1 Transformed Kinematic Model

If we observe Figure 4.4, a skid-steered vehicle is depicted similarly as in Figure 4.3,
having its centre Q and orientation 6 in the world frame. The geometric reference path
is denoted with P and parametrized by the path parameter s : [0,00) — [0,0), a free
control parameter which can be arbitrarily specified. For the path following problem,
this parameter is usually chosen as the arc length of the path. The world frame { W}
is defined by the coordinates (X,,,Y,,) and zero O, while there is a Serret-Frenet frame
{F } moving along the path, defined by its coordinates (x,,y,), and having its origin in
the point P. This moving reference frame is rotated in the world frame by the angle 6,,
which is the angle of the path tangent in the point P. The curvature along the path is
defined as c(s) = d6;,/ds, which means that 6; = c(s)s. The path following problem can
now be defined as making the (x,,y.) coordinates, as well as the difference 6, = 6 — 6,
converge to zero.
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Chapter 4 High Speed Path Following Control of Skid-Steered Vehicles

Figure 4.4: Path following geometry with a skid-steered vehicle.

Let us now define a vector ¢, which is the robot’s position vector in world coordinates,
pointing from the point O to the point Q, and a vector p, pointing from O to P, which
is the position vector of the Serret-Frenet frame. If we now define a vector r in the
Serret-Frenet frame, pointing from P to Q, the following relation holds

q=R(6)r +R(6,)i +p, (4.9)

where R(6;) is the rotation matrix from {F } to {W'}, around the angle 6.

If we consider that

e

. S X
r= |: €:| 7R(0t)p: 0, q=|Yw|, (4.10)
y 0

we can derive the dynamics of the error coordinates:

X = [cos 6, sin6] [);W} — (1 —c(s)ye),
w @.11)

Ye=[—sin6, cos6] Bﬁw} —c(s)s$xe.
w

Using the global velocities from Eq. (4.8), we derive the skid steering model in path
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coordinates:

Xe = V5 €08 0, + x;cp@sin O, — s(1 —c(s)ye),
Ye = Vy8in 0, — x;cr@ cos 6, — c(s)sx,, (4.12)
0, = o —c(s)s, 6, =c(s)s.

4.4.2 Kinematic Control

The kinematic model of skid-steered vehicles in path coordinates from Eq. (4.12) can
now be used to develop a path following control law. Since the model is consisting of
error coordinates, it is convenient to use the Lyapunov stability theory, and to propose
the Lyapunov function candidate

1 1
V:5(x§+y§+g}sin(ee—w(ye,vx))|>, (4.13)

where Y(y,, vy) is a function for smooth transient maneuvers, having the property y(0,v,) =
0, similarly chosen as in (Micaelli and Samson, 1993) and (Soetanto et al., 2003). Here,
o and ky, are positive parameters.

By deriving the Lyapunov function candidate, we get
v :l Sin(ee - W(yea Vx)) COS(Ge - W(y€7 Vx))

o |sin(6 — W (ye,vx))|
Xe(Vy €08 B, + xjcR €OS 0, + xjcp @ 8in B, — §)+

(ee - li/(yea VX))+
4.14)

VeVy SN O, — Y XjcRW COS 6,.

In order for V to be less or equal to zero, the following expressions need to be defined:

§ = vy cos 0, + x;cr® sin 6, + Yx,,

|sin(6e — W(ye,vx))| )
sin(6, — Y(Ve, vy)) cos(0, — W(ye,vy)) (4.15)

ée = lp()’e?v)f) +
( — OYeVySin 0, + Gyexjcr®cos 6, — £ (0, — w(ye, vx))2> ,

where ¥ and { are positive parameters. With these expressions it is now possible to
control the dynamics of the moving reference frame on the path, and the rotation of
the vehicle in path coordinates, i.e. Eq. (4.15) presents the path following control for
skid-steered vehicles, based on the ICR kinematic model in path coordinates.
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4.4.3 Stability Analysis

In this section we analyse the convergence properties of the closed loop system, when
Eq. (4.15) is applied to Eq. (4.12).

Proposition 1. Let us assume that the linear and angular velocities follow the desired
profiles, do not tend to zero, as time t tends to infinity, and are bounded, together with
their first derivatives. The path curvature is also bounded, where c(s) € [Cmin, Cmax], With
Cmax being the maximum, and c, the minimum allowed curvature. By applying the
control from Eq. (4.15) to the model in Eq. (4.12), the error coordinates x,(t), y.(t), and
0.(t) asymptotically tend to zero, as t goes to infinity. This means that the vehicle will
converge to the geometric reference path.

Proof. The first derivative of the proposed Lyapunov function candidate defined in Eq.
(4.14) will become negative semi-definite when the control from Eq. (4.15) is applied,
which yields

¢

;ﬂ%—w@wwf<a (4.16)

This means that the Lyapunov function candidate defined in Eq. (4.13) is positive,
bounded, and monotonically decreasing, hence x,, y, and 6, — y(y., vy) are also bounded.
By experimentally identifying a bounded x;cg, the lateral velocity v, is also bounded.
Since v, and ¥(ye, vy) are also chosen to be bounded, and 6, is normalized and bounded
between [—7, 7], s and 0, are also bounded. This implies that %, and y, are bounded as

well. It can be seen that

V= —y?—

V = 2t 25 (0 W(3e0)) 6 Y w0) @1

is bounded, since Y(y,,vy) is bounded as well. Because of V being bounded, V is uni-
formly continuous. Now, by using Barbalat’s lemma, V converges to zero, as t goes
to infinity, hence 6, — y(y,,v,) and x, tend to zero as well. Since the boundedness of

0, — (ye,vy) can be derived, 8, — (y,,v,) is uniformly continuous and converges to
zero. This means that the right hand side of equation

|Sin(ee_W(y€7vx))‘ .
sin(@e — l//(ye, Vx)) cos(@e - ll/()’e, Vx))

96 - ‘V(ye,VX) =

( — OYeVy8iN B, + Oy xjcrR® cOs 6, — (4.18)

£(6, - w<ye,vx>>2),
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needs to tend to zero as well. The two-sided limit

li | sin(0, — W(Ye,vx))]
08—y (ye,vx)—0 SIN( O, — Y (Ve, Vx)) cOS(Oe — W (Ye, Vx))

(4.19)

does not exist, in this case the convergence needs to be analysed from the left and from
the right. To simplify the notation, if we replace 6, — y(y,,v,) with u, we will have

: | sinu| . . |siny|

lim — = lim lim —

u—0— siInucosu  u—0- COSU u—0~ SInu (4.20)
. |siny| ’
= lim —— =—1,
u—0~ SInu
and similarly
) sinu

lim | | =1. (4.21)

u—0+ sinucosu

Since 6, — W(y.,vy) tends to zero, the expression {(6, — W(y.,v,))? tends to zero
as well. Now the expressions Oy.xjcgr®cos 8, and —oy,.v,sin 6, need to tend to zero.
Taking into account the assumptions about vy, x;cg, and @, it is clear that y, converges to
zero. This implies that y(y., vy) tends to zero as well, which further implies that 6, also
tends to zero. Now that all the error coordinates (x,,y., 6,) converge to zero, as ¢ tends
to infinity, the vehicle will asymptotically converge to the reference path. ]

4.5 Speed Control

The reachable curvature for a skid-steered vehicle can be expressed as

c— oVr — oV . 4.22)

V(0yicriVr — apyicrVi)? + (= 0xicr Ve + 04xicr V) )2

If we want to forbid turning on the spot while driving, similarly as in (Indiveri et al.,
2007), we need to restrict the wheel speeds to be of a same sign, limited with a maximum
value V,, i.e. V,V, € [0,V,,].

To find the curvature extrema, we need to observe two cases. In the first case we have
V; =0, and V, = V,,, and the maximum curvature can be derived as

1

Yicr TXicr

(4.23)
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In this case, the vehicle’s speed can be computed as

04YicrVim

= " 4.24)
YICRI — YICRr

X

In the second case, we have V,, =0, and V; = V,,,, and the minimum curvature is expressed
as

1
Cmin = = — s (4.25)
\/ Yicr: T Xicr
while the vehicle’s speed is
b= — 0UYICRrVim 4.26)

YICRI = YICRr
When planning the reference path, it should be assured that c(s) € [cmin, Cimax)-

If the loop is closed with the control law from Eq. (4.15), the curvature in the closed
loop can be expressed as

Cop = Oc +cs . 4.27)

\/v§ + [xicr (e + c5))?

The speeds of the left and right tread in the closed loop are then

Ve — yicri(6e + ¢5)

V, =
! @
_ Vx—VICRI " Cel* \/V)zc + [xicr(6e +cs)]
. W (4.28)
V. — Vx — yICRr(Oe + CS)
=
o
_ Vx — YICRr " Ccl * \/ngc + [XICR(Ge + CS)]
= o .
The maximum speeds of the left and the right tread can now be expressed as
Va + |Vicrice| \/V,% + [x1cr (6, + c5)]?
max {Vl} = o ,
: (4.29)
Vx + [Yicrrcel \/ v+ [xicr(6e +cs)?
max {V,} = oc .
T

Since the convergence of the closed system variables has been proven, the following
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properties can be used:

. C
limc, = ——,
[—o0 1+ (xICRC)

lim 6, =0, (4.30)

t—oo

lim § = vy,
t—voo

in order to compute Eq. (4.29) when t — . The maximum speeds of the left and the
right tread are now

ve(1+ |yrcricl)

max{Vl} = o ,
431
w0+ ereel) *3D
maX{Vr} = p .
r

Assuming that the vehicle’s motors exhibit the same maximum speed, we can write
max {Vl} = max {Vr} = V,». The speed of the entire vehicle can be then expressed as

Ve — 0y Vin
X — 3 ..
1+ |yreric
4.32
v, (4.32)
Vy = ——/——
1+ |yicrec|’
depending whether we use the left or the right tread to compute it.
Now, the following speed control scheme can be introduced:
_arleRle
0>0:v, = YICRr—YICRI’ V=e
@i __ Y <e.
L+[yicrrel
(4.33)
04YicrrVim V>e
®<0:v, = ylcgr;wcm ’ -
[Ym
I+yicricl’ V<,

where € is a positive parameter. As stated in (Huski¢ et al., 2017d), since skid-steered
vehicles behave asymmetrically, depending on the mechanical construction and on the
terrain structure, the speed should be adjusted accordingly. This is the reason why a
distinction is made whether the vehicle is turning right or left.

If the vehicle is turning left, the right tread speed V,. is dominant, and V,,, can be applied,
in order to maximize the speed, and to take the actuator saturation into account. The
exhibited speed should never be greater than V,,. Furthermore, the Lyapunov function
candidate from Eq. (4.13) is used here as a path following error measure. If the error is
greater than a positive threshold € , the expression from Eq. (4.24) is used. On the other
side, if the error is smaller than €, the speed of the entire vehicle is computed using Eq.
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(4.32). Similar analysis can be made if the left tread speed V; is dominant.

By using this speed control scheme, asymmetric behaviour of the vehicle is taken into
account, together with the path following error, and the actuator saturation. The vehicle
will not turn on spot while driving, and the speed is maximized.

The path following control law defined in Eq. (4.15), combined with the speed control
defined in Eq. (4.33), presents an integral solution for path following of skid-steered
vehicles at higher speeds on different terrain types. This algorithm we refer to as HBZ,
by using the surname initials of the authors of the paper in which we initially proposed
this approach (Huski¢ et al., 2017d).

4.6 Dynamic Control

The control law (4.15) deals explicitly with the kinematic model of skid-steered vehi-
cles, and the dynamics is only implicitly included. In order to account for the dynamics
explicitly, let us consider a generalized dynamic model of a nonholonomic robot with
generalized coordinates (g1, ...,¢n ), subject to m constraints. This generalized model can
be described as

M(q)g+R(q) = B(q)7, (4.34)

where M(q) € R™" is a symmetric, positive definite inertia matrix, R(g) € R"*! rep-
resents generalized resistive forces, B(q) € R"*",r = n —m, is the input transformation
matrix, and T € R"*! is the input vector.

As stated in (Koztowski and Pazderski, 2004), the model (4.34) describes the dynamics
of a free body and does not include the nonholonomic constraint (4.5). For this purpose,
as proposed in (Caracciolo et al., 1999), a vector of Lagrange multipliers A is introduced
such that

M(q)4+R(q) = B(q)T+A” (g)A. (4.35)

Now Eq. (4.35) offers a dynamic model with the nonholonomic constraint. However,
in order to control the system, it would be more suitable to express the model in terms
of the velocity vector . In order to do so, Eq. (4.35) needs to be multiplied by S7 (q),
which results in

S"(q)M(q)4+S" (9)qR(4) = S" (q)B(q)T+ 5" (9)A” (q)A. (4.36)

By deriving Eq. (4.7) we get '
4=S(qg)n+S(g)n. (4.37)
Including Eq. (4.36) into Eq. (4.37), we get

S"(q)M(q)S(q)n +S" (q)M(q)S(q)71 +5" (q)R(q) = S" (q)B(q)T+5" (9)A" (q)A.
(4.38)
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Now, by noticing that S (g)A” (g)A = 0, and by setting

S"(q)M(q)S(q) =M, S"(q)M(q)S(q)=C, S"(q)R(q) =R, S"(q)B(q) =B,
(4.39)
we get

Mn+Cn+R=Br. (4.40)

The complete equations of motion of a nonholonomic mobile robot are now defined by

—_— 7
_ 1 - (qzn (4.41)

Mn+Cn+R=Br7.
As suggested in (Fierro and Lewis, 1995), let u be an auxiliary input, and apply the
nonlinear feedback

=B '(q)[M(qu+Cn+R], (4.42)

the dynamic control problem can be converted into the kinematic control problem

g=S8(gn.N=u (4.43)

Path following approaches usually deal with the kinematic part of the model, i.e. with
(4.7). The path following control law from Eq. (4.15) deals with the same issue, only
transformed to path coordinates. The velocity vector 1) is assumed to track the desired
velocity profile perfectly. However, this perfect tracking is not assured by a pure kine-
matic control law. In order to guarantee that the velocity will track its desired profile, the
above introduced procedure needs to be employed. This way, the prescribed control 1 is
converted into a torque control 7, such that the desired velocity behaviour is exhibited,
and parameters such as mass, friction, etc., are taken into account.

4.6.1 Backstepping Kinematics into Dynamics for Skid-Steered
Vehicles

To lift the assumption of a perfect speed tracking, we need to employ the technique
of backstepping. More details can be found in (Khalil and Grizzle, 1996), (Fierro and
Lewis, 1995), and (Soetanto et al., 2003). Let us define a virtual control law for ée,
which represents the desired behaviour of 0, in (4.15) as

|Sin(9e - W()’e,Vx>)| .
sin(Ge — l[/(ye,vx))COS(ee - ‘I/()’eavx))

0= W(ye,vx) +
(4.44)

( — OYeVy 8in 6, + Oy xjcpr@cos 6, — (6, — W(ye, vx))2> )
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Now, let e = 6, — ¢ be the difference between the actual and desired values of 6,. If we
replace 6, by € + ¢ in the expression for V, we get

4

R . L L)

Vo2 1_
¥ & 5in(8 — W(ye, 1)) €05 (6o — W (e, ve))

€. (4.45)

The function V can now be augmented in a way to take into account € and a desired
velocity profile v, as

w:v+%k%um—mﬁy (4.46)

The first time derivative of Eq. (4.46) is then
Vi =V+ee+ (ve—vg)(¥—vy). (4.47)

In order for the first derivative of the new Lyapunov candidate to be negative semidefinite,
i.e. Vi <0, the following expressions need to be defined
L1 | sin(6, — W(Ye,vx))|
E=——_ € — kg€,
0 sin(6, — Y(ye, vx)) cos(6e — Y(ye, vx)) (4.48)
Ve = Vg —kvd(vx —vd).

Since 6, = 6 — 6, then 6, = 0 — 6, = ® — ¢(s)$, and 6, = ® — c§ — gs?, where g = d;—(j).
Now, the derivative of € can be written as

E=0,—0=m—c(s)§—gs*— 9. (4.49)
The auxiliary control vector can be then defined as

Vd — kvd (Vx - Vd)

A 1 | i (Ge_ll/( e x))| . 2 -
¢-5 Sin(Oe*llfs(I;e,vx))coz(evefq/(ye,vx)) € —ke&+c(s)5+ gs

(4.50)

The control from Eq. (4.50) represents the acceleration control vector of the entire sys-
tem (4.43), making sure that the velocity vector tracks the desired profile, and that the
robot follows the geometric reference path, taking all the dynamic parameters into con-
sideration.

Proposition 2. Let us consider the dynamic model (4.43) together with the control law
(4.50) and the virtual vehicle dynamics from (4.15). Let v; be a bounded desired velocity
profile with bounded first and second order derivatives. Furthermore, v; does not tend
to zero witht — oo. Then x,, y, 0, and v, — v, tend asymptotically to zero, as time goes

to infinity.

Proof. The proof is similar to the one in Section 4.4.3. Since V; is negative semidefinite
and bounded below, V; is positive, bounded and monotonically decreasing. Therefore,
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Xe» Ve, Be, € and vy are also bounded, since y/(y,,v,) and v, are assumed to be bounded.
Then, %,, y., € and v, are bounded as well. Since V; is bounded, V; is uniformly con-
tinuous, and by Barbalat’s lemma, V; — 0 as t — . As a consequence, the variables
Xes Yes ey W(Ve,Vvx), € and vy — v, tend to zero, as ¢ tends to infinity. This means that
the vehicle converges to the geometric reference path, while tracking the desired speed
profile asymptotically. ]

4.7 The SLPINL Controller

This controller is a state-of-the-art controller used for comparison with the proposed
controller. It is based on the work presented in (Soetanto et al., 2003), and its extension is
presented in (Indiveri et al., 2007). The name SLPINL comes from the surname initials of
the authors of both contributions. Using a similar notation and reasoning, as for deriving

Figure 4.5: Geometry of the SLPINL algorithm.

Eq. (4.12), by observing Figure 4.5 we get a kinematic model of a unicycle in path
coordinates as

%o = —$(1—c(s)ye) +vcos6,,
Ye = —c(s)sxe + vsin b, (4.51)
0. = 0 —c(s)s,

where c¢(s) is the path curvature, s an arbitrary path parameter, and (x,, ., 6,) are the
error coordinates, as defined before.
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By using the Lyapunov function candidate

1 1
V= §(x§+yg)+z/

2
(6. — 6 (ye,v))", (4.52)
where lim;_.v(t) # 0, 6(0,v) = 0, and y,vsind(y.,v) < 0,Vy, Vv, the following path
following control law can be derived

s =vcos 0, + ki x.,

sinf, —sin & (4.53)

e =5 —yyev PR — k(6. — 8),

where k1, ky and 7y are positive parameters.

This kinematic control law proposed in (Soetanto et al., 2003) is extended in (Indiveri
et al., 2007) by proposing an additional speed control

%, V=>e
S A (4.54)
ke V<€

where V,, denotes the maximum speed of the vehicle, k(s) the reference path curvature,
and b is a positive parameter. Similar as for Eq. (4.33), the speed is limited if the path
following error measured by the Lyapunov function candidate is large, and the speed
increases, when the path curvature decreases. Again, actuator saturation is taken into
account, and the vehicle will not turn on the spot at higher speeds.

The SLPINL algorithm, initally proposed in (Soetanto ef al., 2003), and then extended
in (Indiveri et al., 2007), offers a very efficient path following control for unicycles, and
can even be used on skid-steered vehicles at moderate speeds (see (Indiveri et al., 2007)).

4.8 The PBR Controller

This controller is another state-of-the-art controller used for comparison. It is proposed
in (Pentzer et al., 2014b), and its name is an abbreviation of the authors’ surname initials.
It is a path following algorithm designed for skid-steered vehicles, where the control law
is initially developed for unicycles, but the reference path is transformed in a way to
account for the ICR coordinates of a skid-steered vehicle. This relies on the fact that
a skid-steered vehicle can be seen as a differential drive with an offset equal to the ICR
coordinates. Discussion on this can also be found in (Huskié et al., 2017d) and (Mandow
et al., 2007). By observing Figure 4.6, the following kinematic equations can be derived
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> 4

Figure 4.6: Geometry of the PBR algorithm.

_ Vivicrr — Vivicri
X 9

YICRr — YICRr

- (Ve = Vi) xicr (4.55)

y — 9
YICRr — YICRI
Vl B Vr

- b
YICRr — YICRI

which is very similar to the ICR model presented in Eq. (4.3), just without the additional
parameters o4 and o,. Both of these models are based on the work proposed in (Martinez
et al., 2005) and (Mandow et al., 2007).

In order to estimate the ICR coordinates, this approach uses an online Extended Kalman
Filter (EKF), as described in (Pentzer et al., 2014b), with more details in (Pentzer et al.,
2014a). The equations of motion for the EKF are expressed as

X ] [Vycos O —vysin @ +wy ]
Y vy sin @ — v, cos 6 4wy
: V,—V,
) 6 = leer*y;cm TWao , (4.56)
YICRr \
VICRI wy
| XICR | i Wy ]

where wy, wy, wg, W, Wy, wy are additive zero-mean Gaussian process noises, such that
the ICR coordinates are assumed to be constant. Global localization and measurements
of wheel or track speeds are required to be fused with Eq. (4.56) for the EKF to produce
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estimates of the ICR coordinates. Further details and convergence analysis can be found
in (Pentzer et al., 2014a).
Now that the ICR coordinates are estimated, the next control law is used

v =u(t),

in@, 457
a):—klvdsuel — ka|v|6, 7

e

where the function u(#) must satisfy lim, . u(t) # 0, and k; and k, are positive param-
eters. Similar as before, 6, = 6 — 6; is the robot orientation in path coordinates, with 0
being the global robot orientation, and 6; the tangent angle in the nearest point on the
path, and d is the length of the orthogonal projection to the path. More details on this
control law can be found in (de Wit ef al., 1993).

The control in Eq. (4.57) 1s developed for unicycles, but in order to use it for skid-
steered vehicles, the ICR coordinates need to be taken into account. As it can be seen in
Figure 4.6, the left and the right ICR can be considered as the left and the right wheels of
a virtual differential drive, whose center is translated from the center of the skid-steered

vehicle by the vector

q XICR

q= [qx} - |:)’1CRI_YICRr:| : (4.58)
y 2

So, the vector q actually represents an offset between the original skid-steered vehicle
and the virtual differential drive. If the original reference path P is translated by this
vector q, such that the virtual differential drive tracks the new path P’, by using the
control in Eq. (4.57), the original vehicle will follow the original path P.

The PBR controller provides an interesting solution for skid-steered vehicles with on-
line ICR estimation, relying heavily on the EKF performance. More details can be found
in (Pentzer et al., 2014b) and (Pentzer et al., 2014a).

4.9 Experimental Evaluation

The experimental evaluation of the proposed algorithm (HBZ) consists of two parts.
First, the algorithm is evaluated on a Robotnik Summit XL robot, up to its practical
maximum speed of 2.5m s ™!, on three different terrain types. The proposed approach is
experimentally compared against the SLPINL and the PBR controller.

The second part of the evaluation is done on a Segway RMP 440 robot, up to the
speeds of 6ms~!. Similar as with the Robotnik Summit XL, an experimental comparison
between SLPINL, PBR and HBZ is made on three different terrain types.

For both evaluations parts, an offline estimation of the ICR parameters is made for
different terrain types, similar as in (Mandow et al., 2007), by using evolutionary algo-
rithms. For the implementation, two software tools were used: CS::APEX, detailed in
(Buck et al., 2016b), and EvA2, detailed in (Kronfeld et al., 2010).
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All three controllers, HBZ, SLPINL and PBR, are implemented in C++/ROS (detailed
in (Quigley et al., 2009)), and integrated into the GeRoNa framework, a generic and
modular navigation framework for any wheeled mobile robot, described in Chapter 6.

4.9.1 Robotnik Summit XL

With a practical maximum speed of ~ 2.5m s~ !, and the weight of ~ 50kg, the Robotnik
Summit XL is a medium-sized skid-steered robot with good performance. The robot
used in the experiments presented in this section is shown in Figure 4.7. The computer
configuration is the same as described in Section 4.2, while the sensor equipment used
for these experiments consists of the internal Hall-effect sensors, the internal gyroscope,
and a 3D laser scanner Velodyne Puck VLP-16 together with a 9DOF Razor IMU.

Figure 4.7: The Robotnik Summit XL robot used in the experiments.

The experiments with this robot were conducted on the following terrain types:

1. relatively flat, grassy terrain;

2. very smooth vinyl floor;

3. macadam - crushed stones mixed with dust and sand.

For each experiment, PBR and SLPINL were commanded with the same desired
speed, in order to achieve similar mean speeds. The proposed approach was commanded

with even higher speeds, in order to emphasize its advantages. A video demonstrating
the experiments can be found at: https://youtu.be/plaoHHEfM3o0.
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Table 4.1: Experiments with the Robotnik Summit XL robot on grass, at the maximum speed at
which each algorithm could perform. For the case of HBZ, the maximum speed of the robot is
reached.

Algorithm Mean Speed [ms~!] Max Speed [ms~!] Mean Error [m] Max Error [m]

SLPILN 1.55 2.25 0.56 1.83
PBR 1.94 2.29 0.83 3.61
HBZ 2.15 2.53 0.07 0.22

Grass On the grassy terrain, a 159.83m long path was used, having long segments,
and abrupt curves. The path was covering a small football field behind our institute
building, hence the rectangular-like shape. For the ground truth, a fusion was made
using an internal gyroscope and the odometry coming from Hall effect sensors. The
localization error was measured while following a planned path at different speeds, by
using CS::APEX, proposed in (Buck et al., 2016b). The resulting error at the average
speed of 0.89m s~ ! was (Xerr, Verr, Oerr) = (0.015m,0.69m,2.9°). At the average speed
of 2.15ms ™!, the error was (X, Yerr, Oerr) = (0.62m, —0.65m,3.85°).

Path following performance of SLPINL, PBR and HBZ at some representative speeds
on grass can be seen in Figure 4.8 and Figure 4.9. A direct comparison between the three
algorithms at different speeds can be observed in Figure 4.10.

The mean and maximum values of the speed and error, when driving at higher speeds,
can be seen in Table 4.1. For SLPINL, when the desired speed is set to 2m s~! the
maximum measured value is 2.25m s~ !, and the system reaches its critical oscillations,
where the error reaches 1.83m. Because of the inherent speed control of the algorithm,
the overall mean speed is then 1.55m s~ !. For the case of PBR, when the desired speed is
setto 2m s~ !, the mean speed is 1.94m s~ !, the error reaches 3.61m s~ !, and the system is
on the border of stability. The mean error in this case is 83cm. When the HBZ controller
is commanded with 2.5ms~!, the mean speed is 2.15ms~!'. The maximum measured
error is 22cm in this case, while the mean error is 7cm.

The Robotnik Summit XL robot can theoretically reach a velocity of 3ms~!, if it
would move on a perfectly straight line. Since there always has to be some correction
control, i.e. the vehicle needs to slightly turn, then the left or the right wheels need to
drive faster than the commanded speed, which is not feasible. This is the reason why the
practical maximum speed lies at ~ 2.5ms~!. In this way, the left and right wheels can
drive at speeds up to 3ms~!, in order to steer.

Vinyl On vinyl and macadam, a lemniscate was used as a reference path, overlaid five
times, so the robot needed to follow the curve five times in a row in order to finish one
run. This way, the repeatability of the algorithms was tested. Furthermore, the curvature
of the lemniscate was chosen to be very high, when compared to the dimensions of the
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Figure 4.8: Path following performance with Robotnik Summit XL on grass, following a 159.83m
long path. The desired speed is the maximum speed at which SLPINL and PBR still perform

without major oscillations.
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unstable. In the case of HBZ, the desired speed is the maximum speed of the robot.
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Figure 4.10: Performance comparison on grass using the Robotnik Summit XL robot.

robot, in order to make the path following task more challenging.

This terrain type is typical for indoor environments, having a very smooth surface,
which makes the motion of the vehicle prone to slipping. For the ground truth in this
case, three special pillars were used as landmarks for localization. The pillars were
easily recognized with a 3D laser scanner mounted on top of the robot, and a Kalman
filter was used to estimate their positions, if some of them were not seen in the current
time step. Otherwise, a simple triangulation was used to determine the robot’s pose.

Some results at representative speeds can be seen in Figure 4.11 and Figure 4.12. The
results in Figure 4.11 show the performance of SLPINL and PBR, when commanded
with a desired speed of 1m s~1. In both of the cases, the error reaches the value of
~ 31cm. The HBZ controller is commanded with 2ms~!, having the average speed of
1.34m s~ !, and the maximum error stays below 10cm. In Figure 4.12 the results are seen,
when SLPINL and PBR are commanded with 1.5ms~!. In both cases, the error reaches
values above 1m. The experiments were conducted in a closed room, and hence had to
be stopped, in order to avoid colliding with walls. The HBZ controller was commanded
with 2.5ms~!, reaching speeds of 2.3ms~!, and having an average speed of 1.64ms~!.
The maximum error in this case reaches 46.6cm, and the average error 8.5cm.

Macadam This terrain type was particularly difficult, since the surface made of crushed
stones and dust would move as the robot would drive over it, which would then increase
the effect of skidding. The ground truth was computed in the same way as for the vinyl
terrain type, and the reference path was the same, as well. Path following results at rep-
resentative speeds, together with the error profiles, can be observed in Figure 4.13 and
Figure 4.14. In Figure 4.13e a localization error as a sudden jump of 88cm can be
noticed, while driving with HBZ, but the robot does not lose track. After the localiza-
tion jump, the maximum path following error remains below 14cm, and the mean error
is 5.2cm. For the case of SLPINL and PBR in Figure 4.13, there were no localization
jumps, but the path following error reaches 42.7cm with SLPINL, and 45.3cm with PBR.
SLPINL and PBR were commanded with Ims—!, and HBZ with 1.5ms~!.
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Figure 4.11: Path following performance with Robotnik Summit XL on vinyl, following a 110.77m
long path. The desired speed is the maximum speed at which SLPINL and PBR still perform with

an acceptable deviation.
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Figure 4.12: Path following performance with Robotnik Summit XL on vinyl, following a 110.77m
long path. The desired speed was chosen as the speed at which SLPINL and PBR have such a
large deviation, that the limited testing space is violated (the robot would hit the walls, if it wasn’t
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Figure 4.13: Path following performance with Robotnik Summit XL on macadam, following a
110.77m long path. The desired speed is the maximum speed at which SLPINL and PBR still
perform with an acceptable deviation.
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Figure 4.14: Path following performance at higher speeds with Robotnik Summit XL on macadam,
following a 110.77m long path. The desired speed was chosen as the maximum speed before

SLPINL and PBR become unstable.
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Table 4.2: Evaluation of the HBZ controller on vinyl with three different ICR parameter sets.

Parameters Mean Speed [ms~!] Max Speed [ms™!'] Mean Error [cm] Max Error [cm]

grass 1.45 1.96 4.9 44.8
vinyl 1.34 1.74 4.5 15.6
macadam 1.41 1.92 4.6 34.2

While driving at higher speeds, which can be observed in Figure 4.14, SLPINL loses
track when commanded with 1.5ms ™!, where the mean speed is then 0.94m s~ The
error reaches 1.86m in this case, and only one lap is performed, instead of five. The PBR
controller was also commanded with 1.5ms~!, having the mean speed of 1.48ms™!.
The maximum error is 2.12m, and the mean error 85.6cm. The HBZ controller was
commanded with 2.5ms~!, and the mean speed was 1.68m s~!. The maximum error is
95.1cm, and the mean error 18.3cm.

Parameters In all of the presented experiments conducted with a Robotnik Summit
XL robot, the parameters for the HBZ controller were as follows: y =8, { =40, o = 1.
The ICR parameters identified for grass were

(XICR, YICRI; YICRr: Ot , O ) grass = (0.28,0.39,—-0.49,0.9,0.91). (4.59)
The ICR parameters for vinyl were
(XICR, YICRI, YICRrs @5 O )yinyt = (0.26,0.49,—-0.35,0.8,0.83). (4.60)
The ICR parameters for macadam were identified as
(X1CR, YICRI; YICRr> Oty O ) macadam = (0.22,0.48,—0.47,0.88,0.9). (4.61)

For every experiment, the appropriate parameter set was used, depending on the ter-
rain. However, it was reasonable to examine the influence of the ICR parameters to the
path following performance. In order to do so, an additional experiment on vinyl was
made, where the HBZ controller was commanded with 2ms~! to follow the five time
overlaid lemniscate, like before. This time, three different runs were made, every time
with different ICR parameters. The results can be seen in Table 4.2.

By observing Table 4.2 it is obvious that the maximum error is significantly smaller
when vinyl parameters are used, but the mean error in all three cases is less than Scm.
This leads to the conclusion that the HBZ controller is robust to changes of the ICR
parameters. The reason for this lies in the fact that the ICR parameters, being estimated
offline, are a good approximate guess of the kinematics, and implicitly of the dynamics.
The fast feedback control then drives the system in order to minimize the error, even
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if the ICR parameters are not optimally chosen. Furthermore, the most influential ICR
parameter for the feedback control is x;cr, which in this example has similar values for
all three runs, and the control parameters 7, {, and o are kept the same.
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Figure 4.15: An extension of the HBZ controller tested on a 1791.6m long path, over various
terrain types, using only one parameter set.

In (Huski¢ et al., 2017c), an extension of the HBZ controller was evaluated using a
Robotnik Summit XL robot for person following. The feedback control, however, is the
same as the one presented in this chapter. Many long-run tests on various different terrain
types and under many different conditions, such as on ice and snow, were performed to
further evaluate the approach. In all of those experiments, the grass parameters shown
in Eq. (4.59) were used, together with the previously mentioned controller parameters:
y =38, { =40, o = 1. This further emphasizes the robustness of the approach. In
Figure 4.15 an example run of 1791.6m can be seen, using the same parameter set on
many different terrain types, including asphalt, grass, gravel, dirt, etc. This is described
in Chapter 5 in detail.

4.9.2 Segway RMP 440

Segway RMP 440 is a robust and relatively large skid-steered robot, weighing around
150kg and reaching speeds of ~ 8ms~!. The robot used for the experiments presented
in the following text was equipped with an Intel Core 17 610E 2.53GHz processor and
8 GB of RAM. The sensor suite included wheel encoders and an internal fiber optic
gyroscope. The robot can be seen in Figure 4.16.

The experiments were conducted on three different terrain types:

1. relatively flat mixture of grass and dirt;

2. very uneven terrain with relatively high grass;
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3. asphalt partially covered with crushed stones.

On the first terrain type, a detailed comparison between SLPINL, PBR and HBZ is made
at speeds up to 2ms~!. On the second terrain type, the HBZ controller is thoroughly
tested at speeds up to ~ 6ms~!. On the third terrain type, some experiments with the
HBZ controller were made at moderate speeds. In all of the experiments conducted with
the Segway RMP 440 robot, the following parameter set was used:

(XI1CR> YICRI> YICRrs @1, O ) RMP440 = (0.6,0.74,—0.7,0.96,0.94). (4.62)

The controller parameters ¥, {, and o were varying, but the values were similar to the
ones used for the Robotnik Summit XL robot. The ground truth for all the experiments
with the Segway RMP 440 robot was determined by fusing the odometry measurements
with an internal gyroscope. A video demonstrating the conducted experiments can be
found at: https://youtu.be/SCv0Obu-Zug8.

Grass/Dirt On this terrain type, a comparison between SLPINL, PBR and HBZ is
made on two different reference paths: a three times overlaid oval-like path, and a three
times overlaid lemniscate. The terrain was relatively flat, with some parts covered with
short grass, and some parts made of dirt mixed with gravel. Some results gained on an
oval reference path, including the desired and the actual path, as well as the error profiles,
can be observed in Figure 4.17 and Figure 4.18. A direct comparison between the three
algorithms at different speeds can be seen in Figure 4.19.

As it can be observed in Figure 4.17, Figure 4.18, and Figure 4.19, the SLPINL con-
troller is very accurate at speeds lower than 1m s~!, while the accuracy decreases, as the
speed increases above 1m s~1. At 1.53ms ™!, the error reaches the maximum of 1.3m,
while the mean error is 38.4cm. The PBR controller is fairly accurate at lower speeds,
and the error increases relatively slowly, as the speed increases. However, the error in-
creases faster, when the speed is higher than 1.5ms~!. When driving with a mean speed
of 1.49m s~ !, the mean error is 17.6cm. At 1.98m s !, the error reaches its maximum of
1.29m, while the mean error is 39.4cm. The HBZ controller has a mean error of 7.3cm,
when driving at 1.6ms~!. When driving with a mean speed of 2ms~!, the mean error is
13.1cm, and the maximum error S0cm.

Further experiments on the same terrain were conducted by using a lemniscate ref-
erence path overlaid three times, such that one run includes three laps around the path.
Some results are shown in Figure 4.20 and Figure 4.21. A direct comparison of SLPINL,
PBR and HBZ on a lemniscate at different speeds can be observed in Figure 4.22.

By observing Figure 4.20, Figure 4.21, and Figure 4.22, similar conclusions as in the
case of the oval-shaped path can be made. At speeds lower than 1ms~!, the SLPINL
controller has a higher accuracy than the PBR controller. As the speed increases, the
error quickly increases as well. At 1.32m s~! the maximum error is 81.7cm, and the
mean error 28.4cm. When driving with the mean speed of 1.36m s ™!, the maximum error
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Figure 4.16: The Segway RMP 440 robot used in the experiments.

reaches 1.1m, and the mean error is 42.1cm. The reason for such a big error increase at
similar mean speeds, is that the desired speeds are different.

In the first case, the commanded speed is 1.5m s~ ! and in the second case 1.75ms!.
Because of the inherent speed control of the SLPINL algorithm, the actual speed never
reaches the commanded input. Obviously, for this path, the speed of ~ 1.3ms~! is the
maximum at which this algorithm can perform, since the value is not crossed, even if the
commanded speed increases. The PBR controller has a fair accuracy at lower speeds, but
when the speed is increased, the error increases slower than in the case of the SLPINL
controller. When driving at 1.74m s~1, the error reaches the maximum of 1.3m, while
the mean error is 45.9cm. The HBZ algorithm has a very high accuracy through the
whole spectrum of speeds. When driving with a mean speed of 1.6ms™!, the mean error
is 7.9cm, while at 2m s, the mean error increases to 16.3cm.

In order to test the robustness to parameter changes, an additional experiment was
conducted on this terrain by following the oval path, in a similar way as before. This
time, all the parameters were the same as for the Robotnik Summit XL robot on grass,
as described in Section 4.9.1. The desired and the actual path, together with the error
profile, can be seen in Figure 4.23. When driving with a mean speed of 0.81ms~!, the
maximum error is 19.3cm, and the mean error 5.9cm. The results are similar to the ones
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Figure 4.17: Path following performance with Segway RMP 440 on grass/dirt, following a 98.65m
long oval path. The desired speed is the maximum speed at which SLPINL and PBR still perform
without larger deviation.
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Figure 4.18: Path following performance with Segway RMP 440 on grass/dirt, following a 98.65m
long oval path. The desired speed is the speed at which SLPINL and PBR have the maximum
deviation allowed by the limited green surface next to the parking lot at LAAS. If a deviation
would be larger, the robot would collide with the parked cars, or the neighbouring fence.
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Figure 4.19: Performance comparison on an oval-shaped path on grass/dirt using the Segway
RMP 440 robot.

gained with HBZ at 1.6ms~!, with the proper ICR parameter set. The fact that the HBZ
algorithm was in this case transferred from one vehicle to another very different one,
without any parameter tuning, and having a relatively small tracking error, demonstrates
the robustness of the approach.

Uneven ground Further experiments were conducted at higher speeds on a very un-
even ground with relatively high grass. A lemniscate path was used as a reference again,
this time, however, having a larger scale. The path was partially covering a relatively
deep ditch in the ground, which made the experiments even more challenging. In these
experiments, only the HBZ algorithm is evaluated, since all the previous experiments
showed that SLPINL and PBR become rather unstable at ~ 2m s~

In Figure 4.24 the desired and the actual paths at some representative speeds are
shown, together with the error profiles. In Figure 4.25 the performance of the HBZ
algorithm at different speeds can be observed. When driving with a mean speed of
2.25ms~ !, the maximum error is 38.96cm, while the mean error is 9.8cm. If the mean
speed increases to 3.86m s~! the maximum error is 1m, and the mean error 25.4cm. The
main reason for the increased error at high speeds is the relatively deep ditch, which was
located in the lower right part of the lemniscate. This can be observed in Figure 4.24e,
since there are some visible oscillations at this spot.

Since the terrain was very difficult to cope with, the speed of 3.86m s ! was the highest
mean speed achieved. Driving faster on a reference path of this scale, and on this kind of
a terrain, would probably lead to tipping over. In order to drive faster while staying safe
as well, the terrain should be relatively flat, and the reference path should have a bigger
radius of curvature. However, the experiments described here are more challenging,
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Figure 4.20: Path following performance with Segway RMP 440 on grass/dirt, following a 98.65m
long lemniscate. The desired speed is the speed at which SLPINL and PBR still have an accept-
able deviation.
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Figure 4.21: Path following performance with Segway RMP 440 on grass/dirt, following a 98.65m
long lemniscate. The desired speed is the speed at which SLPINL and PBR have the maximum
deviation allowed by the limited green surface next to the parking lot at LAAS. If a deviation
would be larger, the robot would collide with the parked cars, or the neighbouring fence.
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Figure 4.22: Performance comparison on a lemniscate on grass/dirt using the Segway RMP 440
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Figure 4.23: Path following performance with Segway RMP 440 on an oval path on grass/dirt,
using the ICR parameters from the Robotnik Summit XL robot.
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since the path is on the border of being feasible, both because of the terrain, and the
curvature of the path, relative to the speed of the vehicle.

If the speed control from Eq. (4.33) is properly set, the motion shall stay safe, even if
the commanded speed is higher than being feasible. If the commanded speed is 3.5ms™!
on the reference lemniscate on this uneven terrain, the mean speed is 3.12m s~ ! since
the speed control regulates the motors so that the tracking error stays as small as pos-
sible. Furthermore, if the curvature of the path increases, the speed decreases. If the
commanded speed is 6ms~!, the maximum speed will reach 6.16ms~! indeed, but Eq.
(4.33) will reduce the overall mean speed to 3.19m s~!. This means that the vehicle is
allowed to accelerate up to the allowed maximum, if the tracking error and the curva-
ture are small enough, otherwise, the speed is reduced to a safe value. The comparison
between these two cases can be seen in Figure 4.26.

This effect can be best observed in Figure 4.26g and Figure 4.26h. When the desired
speed is 3.5ms~!, the speed profile is smooth. When commanding 6ms~!, the peaks
of =~ 6m s~ ! show up while driving on the straight line segments of the lemniscate, and
the rest of the time the speed remains around ~ 3ms~!. When entering a straight line
segment and accelerating, the vehicle would sometimes even lose contact between the
front wheels and the ground, and drive only on the rear wheels for a short period. The
angular velocities are similar in both cases, and the error increases in the case of the high
commanded speed, as it can be observed in Figure 4.26d.

Old asphalt Some further experiments at moderate speeds were conducted on old as-
phalt with smaller cracks and areas covered with crushed stones. Using a skid-steered
vehicle on asphalt usually leads to unstable behaviour, since the friction between the
ground and the wheels is very high. In order to skid, large forces need to be applied,
which then exhibit discontinuous impulses. This can be observed as a swinging be-
haviour of the vehicle, which could even lead to tipping over, if e.g. the centre of mass
is high. This effect is especially dangerous, if the vehicle is turning on the spot.

Since the asphalt used for these experiments was covered with crushed stones at some
areas, it was possible for the vehicle to exhibit a relatively smooth motion. An oval-
shaped path was used as a reference, similar as before. The desired and the actual path,
the error profile, together with the angular and longitudinal velocities for one representa-
tive experiment can be observed in Figure 4.27. The mean speed in this case is 1.85ms ™!,
the maximum error 14cm, and the mean error 6.2cm.

4.10 Conclusions

In this chapter, we propose a high speed controller for skid-steered vehicles on rough
terrain, and thoroughly evaluate it on two different robots, on different terrain and path
types, and compare it with two state-of-the-art algorithms through a whole spectrum of
speeds.
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Figure 4.24: Path following performance at high speeds with Segway RMP 440 on a very uneven
terrain with high grass, following a 400.14m long lemniscate.
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Figure 4.25: HBZ performance on a very uneven terrain using the Segway RMP 440 robot.

The proposed algorithm is a combined solution of a nonlinear control law designed for
path following, and a control scheme for the longitudinal velocity. The path following
control guarantees that the vehicle will converge to the path. The speed control maxi-
mizes the speed, while minimizing the tracking error. Both control solutions are based
on an experimentally identified kinematic model for skid-steered vehicles.

A comprehensive experimental comparison between the proposed solution and two
other state-of-the-art algorithms is made, on two different vehicles and on various ter-
rain types, by following several path types. All the terrain scenarios used in the exper-
iments can be seen in Figure 4.28. The experiments include two major difficulties for
the path following task: rough terrain and high speeds. The maximum speed reached is
6.16ms™ 1.

In the experimental evaluation, it is clear that the proposed approach outperforms the
two state-of-the art algorithms on both vehicles, and on each terrain and path type. The
difference gets more obvious as the speed increases. The SLPINL algorithm, however,
shows very good performance at lower speeds. At higher speeds, the error increases
rapidly. The PBR algorithm usually has a small offset even at lower speeds. The reason
lies in the fact that this approach relies heavily on the convergence of the Extended
Kalman Filter (EKF), which is needed for the online estimation of the ICR parameters.
The EKF does not necessarily find the optimal values, which leads to an offset. The PBR
controller, however, performs better than SLPINL at higher speeds, since it takes ICR
parameters into account, even though it uses a simple control law for unicycles.

The proposed approach shows very stable performance even at high speeds and rough
terrain. In the experiments it is shown that it recovers from localization errors, and that
it is robust to parameter changes. The complete solution was cloned from one vehicle
to another, very different one, without any parameter tuning, and still gave satisfying
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R,

(a) grass

(c) vinyl (d) uneven ground

(e) macadam (f) old asphalt

Figure 4.28: All the terrain types used for the experiments. On the left hand side the terrain types
on which Robotnik Summit XL was tested are shown, and on the right hand side the terrain types
on which Segway RMP 440 was tested.
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results. Furthermore, in (HuskiC et al., 2017c) the proposed approach is extended for
person following and obstacle avoidance, and tested with the same parameter set on
various different terrain types, on large-scale paths.

Since the model utilized for the control is a kinematic model which takes the dynamics
into account only implicitly, it would be reasonable to extend this work by explicitly
modelling the dynamics and the wheel slip.
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Chapter 5

Outdoor Person Following at Higher
Speeds using a Skid-Steered Mobile
Robot

5.1 Introduction

Fast and safe autonomous outdoor navigation of mobile robots is an open and challeng-
ing problem, with various possible applications, such as agriculture, search and rescue,
exploration or inspection. Furthermore, human-robot cooperation (such as person fol-
lowing) in rough terrain conditions, dynamic environments, and at higher speeds makes
the task even more challenging. Another difficulty is the use of skid-steered vehicles,
which are relatively cheap, robust and highly maneuverable, but difficult to model and to
control at higher speeds, as previously discussed.

Person following at low or moderate speeds is well explored and described in the lit-
erature. Cosgun et al. provide an approach for autonomous person following, while
avoiding obstacles, for telepresence robots in (Cosgun et al., 2013). In their experi-
ments, they use a differential drive, and the speed is limited to 0.55m s~ Pucci et al.
propose an interesting nonlinear control law in (Pucci et al., 2013), where they follow a
person using a unicycle-like robot. In the real experiments, the maximum speed reaches
~ 1.5ms~!, and there is no obstacle avoidance. Park and Kuipers introduce an approach
for autonomous person pacing and following in (Park and Kuipers, 2013), where their
differentially driven robot exhibits smooth and collision-free behaviour in dynamic en-
vironments, by driving at speeds up to ~ 1.0ms~!. Person following with a MetraLabs
Scitos G5 robot at speeds up to 0.3ms~! is proposed by Liu et al. in (Liu et al., 2014)
and (Liu et al., 2015). Leigh et al. propose a method for person following using 2D laser
scanners in (Leigh et al., 2015), using a skid-steered Clearpath Robotics Husky robot.
They use a combination of two PID controllers to reactively follow the person, without
avoiding obstacles on the way, and move at speeds up to 1.0ms~!. Garzon Oviedo et
al. introduce a person tracking and following system in (Garzon Oviedo et al., 2015),
where they use a Robotnik Summit XL robot and move at speeds up to 1.46ms~'. The
maximum speed of all these approaches is lower than the average speed in the approach
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Figure 5.1: A typical outdoor jogger following scenario using our Robotnik Summit XL mobile
robot.

we are proposing.

An interesting concept of a person following robot has been recently announced by the
Italian company Piaggio (see (PiaggioFastForward, 2017)). This cargo-carrying robot is
indeed intended for outdoor purposes, but limited to urban scenarios.

Lenain et al. propose an efficient control strategy for target tracking in (Lenain et al.,
2014), where they use a car-like robot to follow another robot driving at around 2.5ms~!.
These speeds are comparable to ours, but we use a skid-steered robot, which is more chal-
lenging to control, due to its terrain-dependent kinematics. Furthermore, our approach
actively avoids obstacles, which seems not to be the case in (Lenain et al., 2014).

Our contributions can be listed as follows:

* We propose a new path planning algorithm, which considers the vehicle’s kine-
matics and dimensions, and provides smooth and obstacle-free paths;

* We extend our path following control law described in Chapter 4 for dynamic
object (person) following;

* We experimentally evaluate the performance of our obstacle avoidance by compar-
ing it with two classical obstacle avoidance approaches on a real outdoor robot;

* We experimentally evaluate the complete navigation system for outdoor person
following in various rough terrain scenarios at higher speeds.

Our approach is also highly modular, which means that each component can be easily
exchanged or extended. Instead of following a person, with minor modifications we
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can follow any dynamic object, i.e. another robot, which may be very interesting for
multi-robot systems.

5.2 Framework

Our navigation system consists of a global path planner, based on the A* path planning
algorithm ((Hart et al., 1968)), a local path planner, and a high speed controller. The
global path planner provides a general direction from the robot to the person, while the
local path planner provides optimized and collision-free paths in the local area around
the robot. The path following controller then assures the convergence of the robot to the
best local path. The person’s pose is determined by using a Kalman-filter-like tracking
of LIDAR data coming from a 3D laser scanner Velodyne Puck VLP-16. Our obstacle
detection is based on the algorithm proposed by Buck et al. in (Buck et al., 2016a).
Localization is done by using a fusion of Hall effect sensors and an internal gyroscope.
A block diagram of our navigation system can be seen in Figure 5.2.

Person Detection
and Tracking

+ Target Pose

Global Planning

Obstacle Obstacle Cloud | * Global Path |
i —» !
Detection Local Planning
Robot Pose 3 * Local Path :v
Localization ! :
High-Speed
Control

Control Commands

Figure 5.2: A block diagram of our navigation system.

5.3 Local Path Planner

While global path planning in unknown environments might take a lot of time, and driv-
ing reactively incurs the danger of getting into local minima, we propose a solution for
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both problems. We use an inexpensive A* global planner for a fast global search, and a
novel local planner for a refined search in a reduced search space.

Given a global path, we restrict the search space for the local planner to a customizable
area around the global path, excluding all the obstacles on the way. The general idea of
the local planner can be seen in Fig.5.3.

Figure 5.3: The idea of the proposed local planner. The green full line represents the global path,
the red arrow is the target pose, the black line is the driven path, and the blue line is the current
local path. Yellow boxes represent obstacles, the red dashed lines the restricted areas around
each obstacle, and the blue dashed line the border of the search space around the global path.

5.3.1 Initial Search

The initial search is based on the Hybrid A* approach (described in (Dolgov et al.,
2008)). For the Hybrid A* approach, a node in the tree is expanded by simulating the
kinematics of a car-like vehicle, applied for a small period of time, corresponding to the
resolution of the grid. We also use a car-like kinematics, even though we use a skid-
steered robot in our experiments. Paths generated in this way are drivable by almost
every ground mobile robot (including skid-steered robots), regardless of its kinematics.
This serves the modularity of our approach, since for using our navigation system on a
kinematic configuration other than skid steering, one would just have to change the high
speed controller (as depicted in Figure 5.2).

While Hybrid A* assumes a grid-like structure of the search space, we propose a dif-
ferent kind of discretization. Instead of constructing a rectangular grid in the entire search
space, we construct a circle around each node, with the radius being the distance to the
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neighbouring node of the same level. In this way, there is no unnecessary discretization
of the entire search space. The principle can be seen in Figure 5.4.

Figure 5.4: The proposed circular discretization. Node A is the parent node for nodes B, C, and
D, which are gained by using car-like kinematics. Around each node, a circle is constructed,
where the radius is the distance to the neighbouring node of the same level.

By defining the radii of the circles to equal the distance between the nodes of the same
level, it is guaranteed that the discretization is dependent on the kinematics. An example
of a search tree demonstrating the node expansion can be seen in Figure 5.5.

5.3.2 Scoring

For the search described in the previous section, it is necessary to define a scoring system
for nodes, i.e. the costs of each node. Each node is associated with the nearest point on
the global path, as depicted in Figure 5.6.

The heuristic for each node is computed as the distance in path coordinates from the
nearest point on the global path to the goal of the global path. Additional costs are
computed by using five different criteria:

* distance to the global path,

distance difference between the current node and its parent,
e curvature in the current node,

* curvature difference between the current node and its parent,

pose of the nearest obstacle.
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Figure 5.5: The initial search tree. Black circles represent nodes, and magenta lines connections
between them. Blue arrows indicate that some nodes cannot be expanded, and blue circles show
that some nodes are only partially expanded. However, the search space is fully covered.

The nodes far away from the global path get high costs, as well as the nodes which
increase the distance to the global path, when compared to their parent node. Similarly,
the nodes with higher curvature get higher costs, as well as the nodes whose curvature
increases, in comparison to their parent. All of these criteria are computed as linear
functions, except for the position of the nearest obstacle.

—— )
\ Ne—
\ Q/‘\i\,;‘\ ‘

Figure 5.6: The computation of costs. Each node is associated with the nearest point on the global
path.

The distance to the nearest obstacle is computed taking into account the dimensions
of the robot, plus an additional static safety area around the robot, and a dynamic front
safety area, scaled with the current speed of the robot. Cost computation using obstacle
distance is done as follows. If the angle between the current node and the nearest obstacle

is denoted with o, where o € [—%, %], and the angle between the current node and the

86



5.3 Local Path Planner

nearest point on the global path with 3, then the following cost function can be defined

cos%D <eﬁ—l>, 5.1

with k being a positive parameter, and d,,;, the distance to the nearest obstacle. This
provides a realistic model of obstacle influence, allowing safe paths in dynamic and
cluttered environments at higher speeds. The angles & and 3 are defined in Figure 5.7.
The green line represents the global path, and the blue dots are its points. Two grey
objects represent obstacles, and the two red dots are the nearest obstacle points. The
dotted line lying on the robot’s y-axis, together with the orange arrows, represents the
area in which o is defined. This means that the obstacle point A will be taken into
account, while B will not, since & would be outside of range in this case.

C:cosa(l—

Figure 5.7: The definition of a, B and dy;p.

Costs computed in this way provide a realistic estimation of obstacle influence, being
rigorous concerning the distance to obstacles, and simultaneously allowing configura-
tions close to the obstacles, if the robot is passing by them. This allows safe paths in
dynamic environments, and through narrow passages, even at higher speeds.
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5.3.3 Restructuring

After the best local path is found, it may often contain segments that have curvatures of a
different sign (as it can be seen on the red path in Figure 5.8a). Different curvatures on a
short local path provide either jerky behaviour while following the path at higher speeds,
or the speed is reduced in the curves, which then reduces the overall speed.

In order to overcome this problem, we propose to restructure the graph, after the initial
search is finished. If we only save the leaf nodes, and neglect the rest of the graph (except
for the nodes of the best path), then we have the structure shown in Figure 5.8. The
inspiration for this idea comes from the Theta* algorithm presented in (Nash ez al., 2007).
However, unlike Theta*, we don’t only search for the shortest path in continuous space,
but rather use this as a mid-step. The next step is to construct new paths by only using

XW Xw

» Xw

(a) Initial search (b) Considering only the leaf nodes

Figure 5.8: After the initial search is finished, only the leaf nodes are considered.

the saved final leaves, and by applying car-like kinematics again. The newly constructed
paths are scored again, and the ones that are too close to an obstacle are discarded. Then,
the best of the valid paths is chosen. If it happens that no new, restructured path is found,
we use the best non-restructured path. The construction of a new, restructured path can
be seen in Figure 5.9, constructed for the same node as the red path in Figure 5.8a. By
restructuring the initial search graph in this way, each local path has constant curvature,
which allows smooth motion at higher speeds.
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Figure 5.9: Construction of restructured paths shown on one example node. Here, R is the radius
of the curvature,  is the angle increment for one time step, s is the current, and s’ the next
state, while h represents the linear distance between these two states, and o the angle between
the robot’s orientation and this linear distance. All of these variables can be computed by using
car-like kinematics.

5.4 Path Following Control

After the local planner has generated an optimized and smooth local path, the robot needs
to follow this geometric reference. We use the path following control law defined in Eq.
(4.15) for the lateral control, and three different layers of longitudinal control. The first
layer is the high speed control defined in Eq. (4.33).

In order to cope with unpredictable dynamic obstacles at higher speeds, we extend this
speed control by using a modified version of (3.10). The output speed of the expression
(4.33) is restrained by using the following expression:

ko .

Co — e_ dmin C(JSOC, (52)

where k, is a positive constant, and d,,;;, and o are the previously defined distance to
the nearest obstacle, and the angle between the robot and the obstacle, respectively. The
constraint ¢, is multiplied with the output speed from (4.33), and will exponentially
increase, as the obstacle gets closer, and decrease, as it moves away. At the same time,
this effect gets weighted more, if the obstacle is positioned in front of the robot, and less,
if the obstacle is on the side of the robot.
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5.4.1 Person Following Control

In order to achieve smooth dynamic target (person) following, we need to define a de-
sired curvilinear distance between the robot and the person, which we denote with I(z).
Furthermore, we denote the person’s position in path coordinates as s, and the current
robot’s position as s. Now, if the current curvilinear distance is As = s, — s, then we can
define the person following error as e, = As — [(¢). By using the control law (4.15), this
error’s dynamics can be written as:

where v), is the speed of the person. In order for this error to converge to zero, we define
the following control expression:

(vp — Xicr®sin 6, — kix, — [(1) + kee) (5.4)

where k, is a positive constant, and by properly initializing the robot, it has to be ensured
that 6, # (2k+ 1) 7, where k is a positive integer. By defining v, in this way, the person
following error’s dynamics reduces to é, = —k.e,, which is an asymptotically stable
linear system. For this idea we were inspired by (Lenain et al., 2014).

Now, we state that V,, = vy, and input this control expression to the control scheme
(4.33), which is then restrained by (5.2). In this way, we guarantee that the robot
smoothly keeps its desired distance to the person, by adjusting its speed according to
the person’s position and pace. Furthermore, expression (4.33) assures accurate follow-
ing in curved areas, while the expression (5.2) acts as a safety measure for unexpected
dynamic obstacles. Using this speed control scheme, the final speed magnitude will
never be greater than V,,, which is bounded, thus the stability is preserved.

Now two classical obstacle avoidance algorithms are introduced, which are used as
comparison algorithms against the proposed algorithm consisting of a local planner de-

scribed in Section 5.3 and a path and person following controller described in Section
54.

5.5 The Potential Field Method

The first classical algorithm for comparison is a very well known method, originally pro-
posed in (Koren and Borenstein, 1991) for robot manipulator path planning, and further
developed and used in many contexts, such as the mobile robot obstacle avoidance de-
scribed in (Siegwart et al., 2004). It can also be used as a path following algorithm with
inherent obstacle avoidance, if the goal position is always set to coincide with the next
point of the reference path.

Let the robot’s environment be represented by potentials, in such a way that the po-
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tential increases, as the robot approaches the obstacles. By deriving the potentials, the
forces acting upon the robot can be defined. So, if an attractive potential of the goal
position is defined as a parabolic function, the attractive force can be defined as

Fatt(Q) = _katt(q_ngal)7 (5.5)
where kg, is a positive parameter, ¢ is the robot’s position g = [x y|?, and dgoal the goal
position. Similarly, repulsive forces that drive the robot away from the obstacles can be
expressed as

<
po. (5.6)
>p

0

L_L 4—Y0bst
o LG o
0, p(q)

where k., is a positive parameter, p(g) is the minimal distance from the robot to the
obstacle, pg is a positive parameter which determines the distance of influence of an
obstacle, and ¢,y 1s the position of the nearest obstacle.

The resulting force that acts upon the robot can be expressed as F(q) = Fuu(q) +
Frep(q), such that the angle of the resulting force may be used as the control steering for
the robot.

The Potential Field Method provides a robust obstacle avoidance approach, which may
be used for path planning and path following, having its weaknesses with local minima
and concave obstacles.

5.6 The Dynamic Window Approach

The second classical algorithm used for comparison is the Dynamic Window Approach
(DWA), a very well known obstacle avoidance method proposed in (Fox et al., 1997) for
synchro-drives, which considers only short time intervals, or windows, when computing
the next steering command, in order to reduce the computation effort and increase the
speed. Inside this window, the trajectories are approximated by circular curvatures, and
the search space is reduced to the admissible velocities, taking dynamic constraints into
consideration. The search among the admissible velocities inside one window maximizes
a properly chosen objective function.

Circular trajectories By defining the robot configuration with a triplet (x,y,0), and
observing the motion in a time interval [, 1,,|, where the linear and angular accelerations
are kept constant in a time interval [#;,¢;11](i = 1...n), the motion of a synchro-drive can

be approximated with
n—1

x(tn) = x(t0) + Y, Filtis1), (5.7)
i=0
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where
Fi(l‘ _ Z’_l: [sin@(ti) - sin(@(t,-) + (Di(l‘ - l‘i))} , W=#0 (5.8)
* l‘ViCOSG(l‘i)7 (xl)i:()7 .
and
n—1
Y(tn) = y(t0) + Y Fy(tiv1), (5.9)
i=0
with
Fi(r) = o [cosB(t;) —cos(B(t;) + wi(r —1:))], @#0 (5.10)
Y tvisinG(t,-), (1),':0' .

Here, v; € [v(ti),v(ti+1)] and w; € [(D(l‘i), (L)(ti+1)].

Admissible velocities If the term dist (v, ®) represents the distance to the closest obsta-
cle on the corresponding curvature, and v;, and @), represent the accelerations for break-
age, then the set of admissible velocities can be defined as

Vo ={(v,0)|v < ~/2dist (v, )V,
Ao < \/2dist (v, a))d)b},

representing the set of velocities which allow the robot to stop on time, without colliding
with obstacles.

(5.11)

Dynamic window In order to reduce the search space and take the dynamics into ac-
count, a dynamic window is used, containing only the velocities that can be reached
within the next time interval. If ¢ is the time interval, and (v,, ®,) is the actual velocity,
the dynamic window V,; can be defined as

Vi :{(v, w)lv e [va —Vt, Vg +\>t}

5.12
Ao € [0, — ot 0,+ ot] }, 612

having its center at the actual velocity and reaching its borders by applying the accelera-
tions during the time interval 7.

Search space If the space of possible velocities is defined as Vs, then the resulting
search space can be defined as

V, =V,NV,NV,. (5.13)
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Objective function After defining the search space, the next objective function is com-
puted over V,

G(v,0) =0 (o -angle(v,®) + B - dist (v, ®)

5.14
+ v-velocity(v,®)). 619

Here, the target heading angle(v, ®) measures the angle difference between the predicted
robot position and the target direction, the term dist (v, @) represents the distance to the
closest obstacle that intersects with the curvature, and velocity(v, ®) is a projection on
the translational velocity v. Furthermore, o, o, B and 7 are positive constants.

The Dynamic Window Approach is a fast obstacle avoidance method which takes the
dynamics of the vehicle into account, and therefore provides smooth and collision-free
trajectories even at higher speeds.

5.7 Experimental Evaluation

In order to experimentally evaluate the performance of our proposed approach, we have
separately tested obstacle avoidance and person following. In all the experiments, a
Robotnik Summit XL robot was used, and the maximum speed was around 2.5m s 1
which is the practical maximum speed of the robot.

5.7.1 Obstacle Avoidance

We have compared our approach with the Potential Field Method (PFM), and the Dy-
namic Window Approach (DWA). These two algorithms are widely used, and the DWA
is considered to be a state-of-the-art open-source obstacle avoidance algorithm, available
at (Marder-Eppstein, 2017a). The high speed obstacle avoidance algorithm proposed
in (Shiller et al., 2013) assumes known environments and the robot’s average speed in
real experiments is 1.2ms~!. Our approach deals with unknown environments, and with
much higher speeds.

For our experiments, an oval-shaped static path was given on a clear meadow, with
three cardboard boxes as obstacles distributed along its circumference. The path was
overlaid three times, in order to test the repeatability of the approaches. The total length
of the path was 99.15m. All the three approaches had the task of approximately following
the static path, while avoiding obstacles on the way.

The results can be seen in Figure 5.10, where the planted obstacles are represented
by red circles. Both our approach and the DWA were commanded with the maximum
speed. Our approach achieves all the three overlaid ovals, while successfully avoiding all
the obstacles. The DWA successfully avoids two obstacles, while the third one stops the
robot. The PFM was commanded with Ims™!, since it was impossible to follow the path
at higher speeds. As seen in Figure 5.10, after successfully avoiding all three obstacles
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Figure 5.10: Obstacle avoidance with three obstacles (red circles) on a three times overlaid,
99.15m long, static oval path.
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on the first oval, the second time only the first obstacle is avoided, while the next one is
run over.

5.7.2 Person Following

For the person following evaluation, many fully autonomous drives have been made, in
various outdoor scenarios, including narrow, cluttered and highly dynamic environments
with pedestrians, joggers, and cars, on uneven and challenging terrain. A typical situation
can be seen in Figure 5.12. Videos demonstrating the performance of our approach can
be found at: https://youtu.be/407twdWFm4s.

As an example run, in Figure 5.11a a 3D model of our institute and the surroundings
is shown, together with the path where our robot autonomously followed a person. The
speed profile for this run can be seen in 5.11b.

5.8 Conclusions

We propose a fully autonomous navigation system for outdoor person following at higher
speeds using a skid-steered vehicle. Our obstacle avoidance outperforms the classical,
well known obstacle avoidance algorithms, as it is shown in the experiments. Our person
following with inherently embedded obstacle avoidance runs at the speeds higher than the
ones achieved by the state-of-the-art algorithms available in the literature. Our approach
shows robust behaviour in arbitrary outdoor environments, autonomously avoiding any
danger on the way.

The applications of the proposed approach could be numerous, varying from search
and rescue, agricultural, mining, or delivery tasks. The extension of this work would
include person identification, since the followed person is perceived as a dynamic ob-
ject. Another potential extension would be explicit modelling of moving obstacles and
predicting their motion.
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Figure 5.11: A fully autonomous person following run at our institute. During this run, the robot

encountered various static and dynamic obstacles, all of which were successfully avoided.
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Figure 5.12: A typical situation when performing autonomous jogger following. The jogger (on
the right, white sweater) is being followed, and the pedestrians on the left are avoided.
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Chapter 6
GeRoNa: Generic Robot Navigation

6.1 Introduction

Navigation for mobile robots includes all actions that drive the robot from its current
pose to a desired destination. This implies that the current position already needs to be
known, i.e. the robot needs to be able to localize itself, and the desired destination needs
to be defined. By having all this initial information, the robot should be able to plan its
collision-free motion from the current to the desired pose.

A well known open-source framework for solving this problem is the ROS Navigation
Stack, presented in (Marder-Eppstein, 2017b). It is a 2D navigation package, which takes
the information from the odometry and the sensors as input, then computes the velocity
command and sends it to the mobile base. The framework is written in C++/ROS (Robot
Operating System). Details on ROS can be found in (Quigley et al., 2009). Although
the ROS Navigation Stack is a very useful framework, and already implemented on sev-
eral different robot platforms, it still has some major limitations, as stated in (Marder-
Eppstein, 2017b):

* The framework is meant for only differential drives and holonomic wheeled robots.

* Itrequires a planar laser mounted on the robot, needed for map building and local-
1zation.

* It performs best on robots that are nearly square or circular, and it may have diffi-
culties with large rectangular robots in narrow spaces.

These limitations prevent the usage on arbitrary robots, and in outdoor environments,
where planar lasers are not enough for mapping and localization. Furthermore, the
framework’s simple control does not account for different kinematic and dynamic ef-
fects, which become crucial in high speed and outdoor applications. Driven by these rea-
sons, we have developed another framework, which we named GeRoNa (Generic Robot
Navigation), and which can be used on an arbitrary wheeled mobile robot, regardless of
its kinematics, sensors, or dimensions, both indoors and outdoors. This framework is
written in ROS with C++, as well, and is already open-source available. It is also highly
modular, so that each component can be easily exchanged, or extended.
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GeRoNa assumes that the robot has at least odometry data, which is the minimum re-
quired input, while the output is the computed command velocity. Optionally, if the robot
has some exteroceptive sensors, their streams are unified as a point cloud, which can be
used for obstacle detection. Furthermore, arbitrary SLAM (Simultaneous Localization
and Mapping) algorithms can be used. Otherwise, simple odometry is sufficient. The
goal position can be either chosen by the user, or autonomously, e.g. by decision making
in an exploration scenario. After the goal pose is set, the robot plans its collision-free
path using A*-based path planning, and then follows the path by using one of the state-
of-the-art control algorithms from the provided collection. This collection consists of
twelve different control algorithms, and can be easily extended. Furthermore, the robot
can avoid both static and dynamic obstacles, even at speeds up to 2.5ms~!, and follow
dynamic objects, as described in Chapter 5. The framework was successfully tested on
eight different real-world robotic platforms, both indoors and outdoors, in cluttered and
dynamic environments, flat and rough terrains, moving from low speeds up to 6ms~!,
and includes all the work previously described in this thesis, as well as some other state-
of-the-art algorithms.

A video demonstrating GeRoNa can be found at: https://youtu.be/Ppdi7dQ7Vzw.

6.2 Framework

The GeRoNa architecture is shown in Figure 6.1. The implementation is split into three
modules: high level interface, path planning and path following. Communication be-
tween modules and with client applications is implemented using the ActionLib library,
which is provided as a ROS package. In contrast to standard, topic-based communica-
tion, this allows the system to constantly give feedback about the current state of ex-
ecution. This means that high level code has fine-grained control over the navigation
system.

The architecture is also kept modular concerning dependencies on available data. This
means that both the planning and following modules can use available mapping and
localization data, but they also work if no such information is available. The same is
true for obstacle detection. The above mentioned point cloud interface is kept as generic
as possible, such that all kinds of sensor setups can be used. Algorithms for obstacle
detection can range from a standard planar LIDAR setup, where every measurement
results in an obstacle point, to more elaborate algorithms, such as (Buck et al., 2016a),
where 3D sensor data is processed and filtered.

6.2.1 High Level Interface

The interface to high level applications is responsible for controlling the path following
process and is called path_control. It is implemented as a facade for the navigation
system and therefore represents the primary interface for client applications.
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6.2 Framework
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Figure 6.1: System architecture of the GeRoNa framework. Three components are included: A
high level interface (path_control), several path planning algorithms (path_planner), and a path
following sub-system (path_follower.) Mapping, localization and obstacle detection algorithms
are supported, but not included.

A goal specification for the navigation is given as an action to this module. The
path_control module then instructs the path_planner module to generate a path, which
is then relayed to the path_following node. Due to the feedback mechanism of Action-
Lib, path_control can constantly supervise the path following behaviour and is able to
stop the robot when an interruption occurs. The module is also able to issue requests to
replan the global path multiple times, without relying on the high level application. Due
to the modular approach, it is also possible for users to communicate with path_planner
and path_follower directly.

6.2.2 Path Planning

The path_planning module contains several implementations of path planning algorithms.
The goal specification can request a specific planner, otherwise a default planner will au-
tomatically be used to find a path to the given goal. In Section 6.3 we present three path
planning algorithms that are available by default. It is also easy to add new path planners.

6.2.3 Path Following

The path_follower module is responsible for following a given path as accurately as
possible. It is further subdivided into a local planner system and a set of controllers. The
individual components are described in more detail below, where the high speed local
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planner is shown in Section 6.3. We especially focus on the available implementations
of different controllers in Section 6.4.

6.3 Planning Algorithms

Path planning in GeRoNa can be divided into global planning and local planning. Both
of these planning profiles are described in this section.

6.3.1 Global Planning

Global planning plans a path between the robot and the goal pose in a given map. The
map is optional and needs to be provided by some external node. As the robot perceives
obstacles, they are integrated into the map before the search. If no map is available, only
the obstacles are used for planning.

There are three planning algorithms available:

¢ Kinematic Path Planner,
 Static Planner,

¢ Course Planner.

Kinematic Path Planner This planning algorithm is based on the A* approach de-
scribed in (Hart ef al., 1968). Here, a node in the search tree is expanded by simulating
the kinematics of an Ackermann vehicle for a small period of time, taking into account
the resolution of the grid. Paths generated using the Ackermann kinematics are smooth
and drivable by almost every wheeled mobile robot.

Static Planner This algorithm specifies a simple sequence of straight lines and curves,
starting at the goal pose specified in the request. The sign of the straight line determines
the direction, where a negative distance means that the robot should drive in reverse. An
example path planned by this algorithm can be seen in Figure 6.2. The robot is seen
as a gray object, and the path is represented as follows: a green curve segment with a
central angle 7 and a radius of 4m, a straight green line of length 4m, another green
curve segment with a central angle —7 and a radius of 4m, and a red straight line of
length —4m. The red line needs to be driven in reverse.

Course Planner The course planner uses directed path segments, and plans a topo-
logical path on these segments. An example can be observed in Figure 6.3. The blue
arrows represent the directed path segments, the purple circles and the dark green arcs
smooth crossings, and the light green line represents the planned path from the goal pose,
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Figure 6.2: An example path planned by the Static Planner, visualized in ROS/RViz.

denoted by the red arrow, up to the robot, represented by the grey object. This search
is very fast, since already defined directed segments are used, and the only grid search
is the one used for finding the path between the goal pose and the closest directed path
segment, as seen in the lower right corner.
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Figure 6.3: An example path planned by the Course Planner in the long corridors at our institute.

6.3.2 Local Planning

Details on the local planning are described in Chapter 5.
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6.4 Control Algorithms

All the control algorithms described in the previous chapters are integrated into GeRoNa.
In this section, additional controllers available in GeRoNa are described. The controllers
in GeRoNa are classified as the algorithms that send control commands to the robot
and can be used for path following. Most of the controllers are pure path following
algorithms, while some of them are obstacle avoidance, or target tracking algorithms,
capable of following a geometric reference path.

6.4.1 The Input-Scaling Controller

This controller is the path following algorithm presented in (De Luca et al., 1998). To
simplify its naming, we will refer to it as the Input-scaling controller, named after the
control derivation procedure. This controller can be used for unicycles, Ackermann steer-
ing, and bi-steerable vehicles. Kinematic models of these vehicles are assumed to be
subject to the nonholonomic constraint, i.e. there is only pure rolling in the longitudinal
direction, and no lateral nor longitudinal slipping.

Unicycle The basis for modelling of such behaviour is the kinematic model of a single
wheel. A single wheel exhibits pure rolling in its longitudinal direction, and can rotate
around its vertical axis. In Figure 6.4 this behaviour is visualized, where v stands for the
linear velocity, 6 is the orientation, and X and y are the longitudinal and lateral velocity
components in the global frame, respectively. This kind of a kinematic model of a single
wheel in global coordinates is usually referred to as the unicycle model. The unicycle
model can be applied to differential drives, since in the global sense, the vehicle can
be seen as a single wheel. Namely, differential drives steer in a way that their wheels
turn with different speeds, but globally seen, the whole vehicle rotates around its vertical
axis. The same applies for synchro-drives. This kind of modelling might even be used
to approximate skid-steered vehicles, where the steering principle is equivalent to the
differential one, even though not identical. This has been discussed in Chapter 4. The
kinematic model of a unicycle can now be written as

X cosO 0
y|=|sine 0 m (6.1)
0 0 1

where v and @ represent the linear and rotational velocity, respectively. Following e.g.
(Samson, 1992), this model can be expressed in path coordinates as

. cos 6, 0
s 1—dc(s) v
d| = sin @ 0 { } , (6.2)
ée c¢(s)cos 6, ®

T T1=dc(s)
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Figure 6.4: Kinematic representation of a unicycle.

where s is an arbitrary path parameter, d is the orthogonal distance from the robot to the
path, ¢(s) is the path curvature, and 6, = 6 — 0, is the orientation error, where 6 is the
robot’s global orientation, and 6, = c(s)s is the angle between the current tangent of the
path and the global x axis.

Following the work presented in (De Luca et al., 1998), the model in Eq. (6.2) can
be transformed to the so called chained form, a canonical form for kinematic models
of nonholonomic robots suitable for systematic development of control strategies. For
a two-input system, which covers the most of the kinematic models of wheeled mobile
robots, the chained form with generalized coordinates xi,...,x, and inputs u;,u; can be
expressed as

fC] =u,
x2 = uy,
X3 = xou, (6.3)

Xp = Xp_1U1.

In order to transform the model in Eq. (6.2) to the chained form, the following change of
coordinates should be used

X1 S,
xy = (1 —dc(s))tan 6,, (6.4)
X3 = d,
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together with the input transformation

_ 1 —dc(s)

%
cos 6,

ui,

©— 1 cos2 6,
- dc(s)
dc(s) sin 6, cos Ge}

ds 1 —dc(s)

+uy {c(s) (1 + sin? 96) + (6.5)

d

As stated in (De Luca et al., 1998), when u; is a piecewise-continuous, bounded, and
strictly positive or negative function, a controllable system transformation can be derived

Z] =Uui,
X2 = X3u1,

X3 = Xaui,
(6.6)

Xn—1= Xnlt1,
Xn =u,

where
x - (%17%23"~7%ﬂ71axn) - (X],xn,---,x3,x2) . (67)

In the case of a unicycle, the transformed controllable system can be expressed as

Zl =Uui,
X2 = X3u1, (6.8)
X3 = u.

Following the procedure originally proposed in (Samson, 1992), and further developed
in (De Luca et al., 1998), the first input for the unicycle model is chosen as u; = v, where
v is the linear velocity, and the second one is derived as up = —kj you; — ka|u1|x3, where
k1 and ky are positive constants. By using the transformation (6.7), the inputs for the
unicycle model can be written as

ui=v,
(6.9)
uy = —kiuy1xz — kouixz.

The procedure of finding these control inputs is called the input-scaling procedure, since
the second control input is scaled by the first one, otherwise there would be a singularity
at u; = 0. Furthermore, this also implies that the second control input goes to zero when
the first one is zero. Further details can be found in (De Luca et al., 1998).
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Ackermann and double steering For the kinematic modelling of Ackermann and dou-
ble steering (bi-steerable) vehicles, it is reasonable to use the so called bicycle model to
describe the motion. With this simplified model it is assumed that the Ackermann vehi-
cle has perfectly aligned front wheels, where both of them have the same steering angle.
For the case of bi-steerable vehicles, this assumption applies to the rear wheels as well.
For both of these kinematic configurations, the distance between the two wheels on the
same axis is neglected. In Figure 6.5a and Figure 6.5b the bicycle model of Ackermann
and bi-steerable vehicles is shown, from which the basic relations between the length of
the vehicle [, its steering angle ¢, and the radius of curvature r can be concluded. For
Ackermann vehicles this relation can be expressed as

[
tang = —. (6.10)
r
In the case of bi-steerable vehicles, this relation becomes

tan(p:zi. (6.11)

r

It is easy to see that with this simple model bi-steerable vehicles can make exactly two
times sharper turns than Ackermann vehicles. Using these two relations and by observ-

P,

1 r

(a) Ackermann (b) bi-steerable

Figure 6.5: Kinematic representations of Ackermann and bi-steerable vehicles.

ing Figure 6.5, the kinematic model of an Ackermann vehicle with rear-wheel driving
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can be expressed as

X cosf6 O

y| | sin@ O] |v

6|  |[tan¢/I O [(D]’ (6.12)
o 0 1

where v and @ represent linear and steering velocity, respectively. For an ideal bi-
steerable vehicle, the expression tan ¢ // becomes 2tan @ /1. In order to be able to follow
a geometric path, it is reasonable to represent this kinematic model in path coordinates
as

cos 6, 0

s 1—dc(s)

d 5in@, 0 P}

) | T tang  c(s)cos B, ) (6.13)
6.8 (T T 1—dc(s) ) Of L@

¢ 0 I

for the Ackermann steering, and with 2tan ¢ /I, instead of tan¢ /I, for ideal bi-steerable
vehicles. Now, similar as with the unicycle, this model can be expressed in the chained
form as

X1 =s,
dc(s 1+sin’ 6,
Xy = —%dtan 6. — c(s) (1 —dc(s)) Weee
(1—de(s))’ tan g (6.14)
Icos3 6, ’
x3 = (1 —dc(s))tan 6,,
x4 =d,
with the output transformation defined as
1 —dc(s)
V= ui,
cos 6, (6.15)
o= 062<u2 — OClul),
where
dx, Jdx»
S ACTCy
o ==+ ad( dc(s))tan 6,+
dxy (tan@ (1 —dc(s))
26, ( [cos 0, —e) ), (6.16)

o — I cos® 6, cos? ¢
T (—de(s)?
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Now, by following the above mentioned input-scaling procedure, the outputs for an Ack-
ermann vehicle are
up =,

(6.17)
uy = —ki|uy|xs — kourxz — k3fuy |x2,

where k1, k>, and k3 are positive constants. For an ideal bi-steerable drive, in equations
(6.14) and (6.16) the term tan@ /I should be replaced by 2tan¢ /I, and the rest of the
procedure remains the same.

The Input-scaling controller is an accurate path following algorithm for unicycles,
Ackermann and bi-steerable vehicles. When used for the latter two, access to the steering
angle measurements is necessary.

6.4.2 The Pure Pursuit Controller

This is a well known algorithm presented in (Coulter, 1992). The idea is to always
look ahead of the robot at a certain point on the reference path, and approach this point
by moving along a locally constructed arc. This local goal point can be considered
as a virtual vehicle, and its distance from the robot is a parameter named lookahead
distance. The principle of the algorithm can be seen in Figure 6.6, where the radius of
the current arc is denoted as r, and the angle between the vehicle’s orientation and the
line connecting the vehicle and the lookahead point as &. Similar as in (Snider et al.,

path

lookahead point

20

Figure 6.6: Geometry of the Pure Pursuit algorithm.
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2009), by applying the law of sines, the following relations can be derived:

r . lah
sin(3 — o) sin(2a)’
ro_ e (6.18)
cosa 2sinccoso’
. Lan
- 2sina’

where [, is the lookahead distance. Now, the control command for Ackermann vehicles
can be expressed as

2lsina
¢ = tan"! ( o ) (6.19)
lah
while the same control for ideal bi-steerable vehicle would be computed as
Isina
¢ =tan"! ( — > (6.20)
lah

In practice, the lookahead distance is usually scaled by the speed, since the minimum
radius of curvature increases at higher speeds, in order to avoid slippage or tipping over.
A common solution is to scale the lookahead distance proportionally, such that /., = kv,
where k is a positive constant.

The Pure Pursuit controller provides a smooth solution for Ackermann and bi-steerable
vehicles, since it is locally always moving along arcs.

6.4.3 The Stanley Controller

This algorithm was used by the Stanford University on an autonomous car named Stan-
ley, which led them to win the DARPA Grand Challenge. The algorithm is described in
detail in (Thrun et al., 2006) and (Hoffmann et al., 2007). The main idea can be derived
by observing Figure 6.7. The lateral error e between the vehicle and the closest point on
the path P needs to be minimized, for which a nonlinear feedback function can be used,
providing exponential convergence, as shown in (Hoffmann ez al., 2007). The steering
control law is given as

¢ =6, +tan"! (k;e), (6.21)

where 0, represents the difference between the orientation of the vehicle, and the angle
of the path tangent in the point P, while k is a positive parameter. The first part of Eq.
(6.21) sets the control steering angle to compensate for the orientation error, while the
second part steers the robot towards the path, as the lateral error increases.

The Stanley controller provides a robust solution for Ackermann vehicles, even if
using only the kinematic equations of the controller. For the dynamical part of the con-
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Figure 6.7: Geometry of the Stanley algorithm.

troller, see (Hoffmann et al., 2007).

6.4.4 The Ackermann-PID Controller

This algorithm is a simple PID controller for Ackermann robots. The main idea is to fit a
line to the path and then drive the robot towards that line. For this we select the next way
point wp,, on the path in front of the robot and construct a line through wp, and wp,,_1,
as shown in Figure 6.8.

Then the front and rear axle positions are predicted into the future. For both predic-
tions the signed distance to the line is calculated, resulting in two error terms ey and
er.

Then the overall error for the PID controller to minimize is then simply given by
€=k1-€f+k2-€r+9t—9, (6.22)

where 6, is the angle of the line and 6 is the orientation of the robot, while k| and k; are
positive parameters. This simple law thus drives the angle difference between the line
and the robot, as well as the distances to the line to zero.
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path
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Figure 6.8: Geometry of the Ackermann-PID algorithm.

6.4.5 The OFC Controller

The Object Following Controller (OFC), as proposed by the authors in Olmedo et al.
(2014) and Leigh et al. (2015), is a reactive controller for dynamic object following
based on PID control. The OFC controller uses two vectors to compute the position and
the orientation error of the tracked dynamic object with respect to a fixed goal position,
defined in robot’s coordinates. The OFC controller will steer the robot in such a way,
that the dynamic object’s position and the goal position coincide. As it can be seen
in Figure 6.9, the first vector is defined from the robot’s center O to the goal position
G, and is a constant, while the second vector is defined from the robot’s center O to
the position of the tracked object M. By using a PID controller, the command angular
velocity is computed using the angle 6, of the difference vector r as an error input, while
the magnitude of the difference vector r is used as an input for a second PID controller,
in order to compute the linear velocity.

The OFC controller offers a simple, reactive approach for following of dynamic ob-
jects. It is also possible to follow any path, instead of a dynamic object, just by letting
the goal position coincide with the next point of the reference path in front of the robot.
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a0 P

Figure 6.9: The idea of the OFC algorithm.

6.5 Conclusions

We present a modular framework GeRoNa for navigation of any wheeled mobile robot.
GeRoNa is implemented in ROS/C++ and the code is available open-source at this link:
https://github.com/cogsys-tuebingen/gerona. In the online documentation, the usage of
individual software components is explained. In this thesis, the theoretical background
of all components is given, as well as experimental evaluation and comparison between
the algorithms of a same type.

GeRoNa offers more than the ROS Navigation Stack, presented in Marder-Eppstein
(2017b), since it can be used to control any wheeled mobile robot, regardless of its di-
mensions, kinematics, or sensors. It provides not only several state-of-the-art algorithms,
but also authors” work which outperforms state-of-the-art. The framework can be used
indoors, as well as outdoors, regardless of the terrain conditions, even in highly dynamic
environments at higher speeds.
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Chapter 7

Conclusions

This thesis presents a study on control of wheeled mobile robots, especially at higher
speeds, and in outdoor conditions. The study comprises of examining path following in
general, as well as high speed control, planning, obstacle avoidance and person following
using skid-steered vehicles at higher speeds on challenging terrain.

As a result of examining path following of wheeled mobile robots in general, a simple,
yet robust heuristic method is developed. The proposed method deals with longitudinal
control of mobile robots, independent of the kinematic configuration. Such a control
scheme provides safer navigation in cluttered and dynamic areas, taking into account the
neighbouring obstacles, the distance to the goal position, curvature of the geometric ref-
erence path and the current angular velocity. This solution is then coupled with the lateral
control proposed in (Mojaev and Zell, 2004), which was further developed in (Li, 2009).
The integral solution is implemented on three different kinematic configurations: om-
nidirectional, Ackermann and bi-steering. The implementation on the omnidirectional
robot is evaluated in the dynamic and challenging robotic competition SICK Robot Day
2014. The competition simulated a warehouse scenario, in which four robots were sup-
posed to collect and deliver special objects at the same time. The goal was to collect
as many objects as possible in a specified time window, while safely navigating among
other robots. Using the presented approach, our team Attempto Tiibingen scored 2nd,
among 14 international teams. Further evaluation of the approach includes experiments
in laboratory conditions on the three mentioned kinematic configurations, and compar-
ing the approach with the one presented in (Mojaev and Zell, 2004). The results show
smoother and more stable motion, when using the proposed approach. Furthermore, in
the case of the proposed approach, the experiments are more repeatable and reliable,
having much lower standard deviation values. The reason lies in the fact that the pro-
posed longitudinal control stabilizes the vehicle in sharp curves, as well as in the vicinity
of obstacles, while driving with a constant speed increases the risk of largely deviating
from the path, or hitting an obstacle. The presented experiments consist of a U-shaped
geometric reference path, and a planted obstacle in the area of highest curvature. In five
consecutive runs, the proposed approach did always follow the path without touching
the obstacle, while the compared approach did deviate from path and hit the obstacle in
every run. This approach is published in (Huski¢ et al., 2016) and (Buck et al., 2015).
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As a result of studying the motion at higher speeds on different terrain types, a non-
linear robust control law for skid-steered vehicles is developed, which allows high speed
control on uneven terrain. Skid-steered vehicles per se present a challenging problem
in terms of modelling and control, which becomes even more challenging in high speed
and off-road conditions. The proposed control algorithm consists of two parts: a lateral,
and a longitudinal one. As a first step, a new representation of skid-steered vehicles in
path coordinates is derived. This new kinematic model is used to develop the lateral
control using the Lyapunov theory. The lateral control guarantees the convergence of
the vehicle to the path, and the stability is proven. The experimentally identified model
is furthermore used to design longitudinal control, where reachable curvatures are taken
into account, as well as actuator saturation, together with the asymmetry of skid steer-
ing, and the previously constructed Lyapunov function. The integral solution provides a
robust and accurate control law for skid-steered vehicles, even at high speeds and rough
terrain. The approach is evaluated on several different terrain types, using a Robotnik
Summit XL robot at speeds up to ~ 2.5ms~!, and a Segway RMP 440 robot at speeds
up to ~ 6ms~!. In contrary to many related manuscripts, where a new control law is
presented without comparing it with other approaches, we make a thorough experimental
comparison between the proposed approach, and two other state-of-the-art approaches.
The first state-of-the-art approach, named SLPINL here, is proposed in (Soetanto et al.,
2003), and extended in (Indiveri et al., 2007), while the second one, here named PBR, is
proposed in (Pentzer et al., 2014b), which is mainly based on (Pentzer et al., 2014a) and
(de Wit et al., 1993). In the experiments, while driving with both Robotnik Summit XL
and Segway RMP 440 on different paths, different speeds, and different terrain types, the
proposed approach outperforms the two state-of-the-art approaches by far.

The reason lies in the completeness of the control law. The model in path coordinates
is based on the kinematic model presented in (Mandow et al., 2007), where the parame-
ters are experimentally evaluated, capturing dynamics implicitly in the kinematic model.
The lateral control takes into account the most important parameter from the kinematic
model, the longitudinal offset, which is experimentally found and bounded. There is no
need in artificially setting this parameter to a fixed value, like in e.g. (Caracciolo et al.,
1999). By using the Lyapunov theory, the model is then driven towards the path. Finally,
the longitudinal control maximizes the speed, while minimizing the error, and taking the
entire kinematic model into account.

The experiments conducted with Segway RMP 440 at high speeds on uneven terrain
covered with high grass, with a lemniscate as a geometric reference path, show an inter-
esting property of the proposed longitudinal control. Even if commanded with a desired
speed of 6ms~!, the average speed is similar to the one when commanded 3.5ms™!.
This is a result of the longitudinal control not letting the vehicle drive beyond its capa-
bilities. The desired speed is only reached on the straight segments of the path, while in
the curves, the speed is reduced in order to keep the track of the path. If the radius of
curvature of the path was bigger, the longitudinal control would allow the robot to drive
faster in the curves, and meet the desired speed value. The results on high speed control
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on rough terrain with skid steered vehicles are published in (Huski¢ ef al., 2017d) and
(Huski€ et al., 2017b).

An alternative to the proposed approach would be an algorithm based on the kine-
matic model proposed in (Wong, 2001). In this case, kinematic model is not expressed
in coordinates of the Instantaneous Centres of Rotation, but rather in wheel slip ratios.
This type of a model is adaptive and requires an accurate estimation of the individual
wheel speeds. However, such estimations usually require additional sensors like Inertial
Measurement Units (IMU), and highly depend on the calibration and measurement ac-
curacy. The proposed approach does not require any additional sensors, it can be used by
any vehicle with a minimal localization system, such as odometry. This allows an easy
transfer between vehicles, which was confirmed by testing the approach on two vehicles
of very different dimensions and dynamic properties, namely the Robotnik Summit XL,
and the Segway RMP 440 robot.

After the kinematic modelling and control design of skid-steered vehicles, a control
design that couples the kinematic with the dynamic model is introduced. It is derived
using a generalized dynamic model, extending the approach presented in (Huskic et al.,
2017d) and (Huski¢ et al., 2017b). The resulting control law takes both the kinematic
and the dynamic law into account, and the stability of the entire system is proven. In this
way, it is possible to take dynamic effects into account, such as e.g. friction, or inertia.

As a result of studying planning, obstacle avoidance, and person following at higher
speeds in outdoor conditions, a new approach is developed, which enables a skid-steered
vehicle to follow a human jogger in all-terrain conditions. The approach consists of two
parts: path planning and control.

The path planning part is a two-layer system, where the top layer we refer to as the
global planner, and the bottom layer as the local planner. The global planner is basically
an A* planner, as described in (Hart et al., 1968). This planner finds a kinematically
feasible path from the robot to the current position of the person that needs to be followed.
This gives a general direction to the local planner, which then searches for a locally
optimal path in the vicinity of the global path, taking kinematics, dimensions of the
robot, as well as obstacles into account. The search uses a new circular search space
discretization, where around each node there is a constructed circle with a radius equal
to the distance between the two neighbouring nodes of the same level. Local paths that
go outside of the pre-specified vicinity of the global path, or go near to an obstacle,
are cancelled. Otherwise, the costs are computed taking the distance to the global path,
curvature, and distance to the nearest obstacle into consideration. The costs depending
on the distance to the obstacles are computed in a way that they allow paths passing close
to, but not through an obstacle. This allows higher speeds even in cluttered and narrow
areas.

The control part is based on the control proposed in (Huski€ et al., 2017d) and (Huski¢
et al., 2017b), where the longitudinal control is extended by terms that take into account
the distance to the nearest obstacle, as well as distance to the tracked person. There
is a desired distance between the robot and the person, which is easily defined as a
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parameter, and the longitudinal control then adapts the speed of the robot, so that the
desired distance is kept. If the person slows down, the robot will slow down as well. If
the person accelerates, the robot keeps up.

The integral approach is evaluated in two different ways: as an obstacle avoidance
method, and as a navigation system for person following. In the first case, instead of fol-
lowing a running person, the robot was set to follow a static path with three planted ob-
stacles on unknown positions. The approach is then tested against two classical obstacle
avoidance methods, the Dynamic Window Approach, proposed in (Fox et al., 1997), and
the Potential Fields Method, described in (Siegwart et al., 2004). The comparison was
performed by having the desired speed set to 2.5m s~ !, and the goal was to safely follow
the path three times in a row. Only the proposed approach could finish the task without
collisions or stopping, keeping the average speed close to the desired one. This was an
expected result, since the proposed approach is a complex navigation system consisting
of explicit modelling and control design. The two classical approaches provide good
results at lower and average speeds, but at slightly higher speeds, the Potential Fields
Method fails. The Dynamic Window Approach outperforms it by far, since it models the
dynamics of the vehicle, and predicts its trajectories in the future. However, by lacking
explicit modelling and advanced control design, the Dynamic Window Approach cannot
deal with high speeds we set as desired.

As a navigation system for person following, the proposed approach is tested by fol-
lowing a jogger with a Robotnik Summit XL robot on various terrain types, in many
different situations. The terrain types include asphalt, grass, gravel, macadam, snow and
ice. During the experiments, many static and dynamic obstacles were on the way, such as
other joggers, children, cars or dogs. In all the experiments, the robot was able to safely
and smoothly avoid the obstacles and follow the tracked person. This system can also
be employed to follow any dynamic object, such as another mobile robot, which would
be interesting for multi-robot systems. The proposed approach is published in (Huskié
et al., 2017c). Further contributions in the field of person following, developed as a part
of this thesis, are published in (Liu ef al., 2014) and (Liu et al., 2015).

An alternative to the proposed approach would be a system with integrated trajectory
generation and tracking, producing optimal trajectories, and using e.g. Model Predic-
tive Control (MPC). Advantages of path following over trajectory tracking are already
discussed in Chapter 2. Furthermore, techniques like MPC can be computationally ex-
pensive, while a fast person following and obstacle avoidance system needs a fast and
lightweight system. The proposed approach is designed to be as simple as possible, in
order to be as fast as possible, and allow robust high speed obstacle avoidance in real-
life conditions. Furthermore, the proposed approach is designed to be modular, where
the path planning is separated from the path following. In this way, the individual com-
ponents can easily be exchanged and extended. This means that by using another path
following control law, the complete approach can be used on e.g. an Ackermann-steering
vehicle, while the rest of the system remains the same.

As a further result of studying path following control in general, twelve different con-
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trol algorithms, together with the described local planning approach, have been imple-
mented and integrated into one framework. The framework is written in C++/ROS and
can be used by any wheeled mobile robot, regardless of the kinematic configuration.
When controlling a mobile robot with the proposed framework, a generic control ap-
proach can be used, such as the one previously described and published in (Huski¢ et al.,
2016), or a specialized approach for the specific kinematic type. The framework also of-
fers different path planning modes, and all the contributions previously mentioned. This
means that the framework offers high speed control, as well as obstacle avoidance, in
all-terrain conditions, both indoors and outdoors. The framework is an alternative to the
well known ROS Navigation Stack, described in (Marder-Eppstein, 2017b), offers solu-
tions to its drawbacks, and more features. The main drawbacks of the ROS Navigation
Stack are that it is not supporting different kinematic types, it is only supporting planar
laser scanners as sensors, and it supports only quadratic or circular robots. All of these
drawbacks are eliminated in the proposed framework, offering more features, such as
model-based controllers for each kinematic type. The simple control in ROS Navigation
Stack does not consider the specific kinematic limitations, nor does it consider the ef-
fects important for high speed applications on uneven terrain. The proposed framework
is published in (Huski¢ et al., 2017a), focusing on the control aspects.

Since all contributions of the thesis are integrated into the proposed framework, and
released as open-source software, the complete work is transparent and accessible to
the research community. This allows the reproducibility of the results of both the con-
tributed, as well as the implemented state-of-the-art algorithms.

The presented results answer some, yet open other questions, and can serve as a base
for further research and rapid development of autonomous robotic systems.

7.1 Future Work

It would be reasonable to further investigate the dynamic control design presented in
Chapter 4. Dynamic modelling of skid-steered vehicles can indeed be complex and te-
dious, yet at speeds even higher than tested in the presented experiments, it is probably
necessary. The most important component of such a model would be the description of
the interactions between the wheels and the ground, and the friction. The friction still
represents a challenge when it comes to modelling, even though it is one of the basic
physical quantities. Some basic work on modelling of skid-steered vehicles is presented
in (Wong, 2001), and it can be taken as a starting point. Furthermore, modelling the
effects acting upon the wheels can be done in a similar way as it is described in (Pacejka,
2005).

Depending on the dimensions of the vehicle, when driving on a very uneven terrain at
even higher speeds, as in the case of the Segway RMP 440 robot presented in Chapter 4,
a tilt control component would be necessary in order to keep the vehicle from tipping
over.

119



Chapter 7 Conclusions

Another component that could be investigated more is the kinematic model. While
estimating the ICR parameters offline, and using constant values, offers a very robust
approach, it would still be of great interest to investigate online estimation of ICR pa-
rameters. An online estimation of ICR parameters is already done in (Pentzer et al.,
2014a) by using an EKF, but this approach proved to be inadequate at higher speeds. It
would be more reasonable to find an equivalence between the ICR model, and a model
based on the wheel slip.

The approach described in Chapter 5 could be used at even higher speeds, and in that
case, a special modelling of dynamic obstacles would be beneficiary. Modelling and
predicting the behaviour of all the dynamic objects would lead to a safer navigation.
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