Designer Transcription Activator Like Effector Chromatin Affinity Purification (dTALE-ChAP)
 a novel in planta method to unravel the protein coverage at a promoter of choice

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)
vorgelegt von

Stefan Markus Fischer
aus Stuttgart

Tübingen

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation:
25.10.2018

Dekan:
Prof. Dr. Wolfgang Rosenstiel

1. Berichterstatter:

Prof. Dr. Klaus Harter
2. Berichterstatter:

Prof. Dr. Thomas Lahaye

1. Table of Content

ABBREVATION LIST 8
SUMMARY 10
ZUSAMMENFASSUNG 11
2. INTRODUCTION 12
21. Chromatin 12
2.1.1. Transcriptional Initiation at a Core Promoter 14
2.2. PAMP Triggered Immunity 15
2.2.1. Flg22 Perception at the Cell Surface by FLS2 15
2.2.2. Activation of the MAPK Signal Cascade Pathway 16
2.2.3. WRKYs and their Role in PTI 17
2.3. Flg22 Responsive Genes 18
2.4. Analysis of DNA - Protein Interaction. 20
2.5. Designable DNA Binding Proteins 21
2.5.1. \quad Zinc Finger Proteins 22
2.5.2. Clustered Regularly Interspaced Palindromic Repeats 22
2.5.3. TALEs. 23
2.5.4. Comparison of Zinc Finger, CRISPR and TALEs. 24
2.6. Locus Specific Chromatin Precipitation 25
2.7. The Glucocorticoid Receptor System 25
2.8. AIM OF the WORK 26
3. MATERIAL 27
3.1. OrGANISMS 27
3.1.1. Escherichia coli strains 27
3.1.2. Agrobacterium tumefaciens strains. 27
3.1.3. Arabidopsis thaliana lines 28
3.1.4. Nicotiana benthamiana lines 28
3.2. DNA 29
3.2.1. Vectors provided for the thesis 29
3.2.2. Vectors generated during this work. 29
3.3. General chemicals and solutions 29
3.3.1. Chemicals 29
3.3.2. Special Chemicals used in this work 30
3.3.3. Antibiotics 30
3.3.4 Hormones and Elicitors 30
3.3.5. Antibodies 30
3.3.6. Size standards 31
3.3.7. Enzymes and Kits 32
3.4. BUFFERS AND SOLUTIONS FOR THE WORK WITH BACTERIA 32
3.4.1. Growth media 32
3.4.2. Media and buffers to obtain chemically competent cells 33
3.5. BUFFERS AND SOLUTION FOR WORK WITH PLANTS 33
3.5.1. Stable transformation of A. thaliana 34
3.5.2. Transient expression of proteins in Nicotiana benthamiana 34
3.6. BuFFERS AND SOLUTIONS FOR WORK WITH RNA 34
3.7. BUFFERS AND SOLUTIONS FOR WORK WITH DNA 35
3.7.1. Extraction of plasmid DNA (alkaline lysis) 35
3.7.1.1. Extraction of genomic DNA from Arabidopsis thaliana seedlings 35
3.7.2. Agarose gel solutions 35
3.7.3. Buffer for agarose gel electrophoresis 36
3.7.4. PCR solutions 36
3.8. BUFFERS AND SOLUTIONS FOR WORK WITH PROTEINS 36
3.8.1. Extraction buffer 36
3.8.2. SDS-page 36
3.8.3. Coomassie staining 37
3.8.4. Western blot 37
3.8.5. Immunodetection 37
3.9. Buffers and solutions for X-CHIP and dTALE-ChAP 38
3.9.1. X-ChIP 38
3.9.2. dTALE-ChAP 38
3.9.3. FASP Buffers 39
3.10. Plant Growth conditions 40
3.11. Machines 40
3.12. SOFTWARE 41
3.13. Online resources 41
3.14. External devices 41
4. METHODS 42
4.1. MoLECULAR-BIOLOGICAL METHODS 42
4.1.1. Preparation of competent cells 42
4.1.1.1. Preparation of chemically competent Escherichia coli cells 42
4.1.1.2. Preparation of chemically competent Agrobacterium tumefaciens cells 42
4.1.2. Transformation of chemically competent cells 43
4.1.2.1. Transformation of chemically competent Escherichia coli cells 43
4.1.2.2. Transformation of chemically competent Agrobacterium tumefaciens 43
4.1.3. Verification of the Agrobacterium tumefaciens transformation 43
4.1.4. Generation of bacterial glycerol stocks 43
4.1.5. Extraction of nucleic acids 44
4.1.5.1. Extraction of plasmid DNA (alkaline lysis) 44
4.1.5.2. Extraction of plasmid DNA (midi prep) 44
4.1.5.3. Extraction of RNA from Arabidopsis thaliana seedlings 44
4.1.5.4. Extraction of genomic DNA from Arabidopsis thaliana seedlings 45
4.1.6. Restriction of plasmid DNA 45
4.1.7. DNase digestion after RNA extraction 45
4.1.8. Reverse transcription, generation of $c D N A$ 46
4.1.9. Polymerase Chain Reaction (PCR) 46
4.1.10. \quad Quantitative Reverse Transcriptase and quantitative PCR (qRT-PCR \& qPCR) 47
4.1.11. Cloning of dTALEs 47
4.1.12. Cloning by homologous recombination 47
4.1.13. Gateway ${ }^{T M}$ Cloning. 47
4.1.13.1. pENTR/D-TOPO® Cloning 47
4.1.13.2. LR-Reaction 48
4.1.13.3. BP-Reaction 48
4.1.14. Denaturing extraction of nuclear proteins of A. thaliana seedlings 48
4.2. Cell-biological methods 49
4.2.1. Cultivation of Escherichia coli 49
4.2.2. Cultivation of Agrobacterium tumefaciens 49
4.2.3. Transformation of Arabidopsis thaliana plants 49
4.2.4. Transient expression of proteins in Nicotiana benthamiana 50
4.2.5. Fluorescence Activated Cell Sorting Analysis of Protoplasts. 50
4.2.6. Microscopy 50
4.2.6.1. Microscopical analysis of transiently transformed Protoplasts 50
4.2.6.2. Microscopical analysis of transiently transformed tobacco leaves 51
4.2.6.3. Microscopical analysis of transgenic Arabidopsis thaliana roots 51
4.3. PhYSIOLOGICAL METHODS 51
4.3.1. Seed surface sterilization 51
4.3.2. Cultivation of Arabidopsis thaliana 52
4.3.2.1. Cultivation of Arabidopsis thaliana on soil 52
4.3.2.2. Cultivation of Arabidopsis thaliana on $1 / 2 \mathrm{MS}$ plates 52
4.3.2.3. Cultivation of Arabidopsis thaliana in liquid media 52
4.3.3. Cultivation of Nicotiana benthamiana 53
4.3.4. Protoplast transformation for microscopy 53
4.3.5. Protoplast transformation for promoter reporter assays 53
4.3.6. Promoter reporter assays. 53
4.4. BIOCHEMICAL METHODS 53
4.4.1. Agarose gel electrophoresis 53
4.4.2. Extraction of DNA-fragments from agarose gels 54
4.4.3. Measurement of nucleic acid concentration in solutions 54
4.4.4. DNA-sequencing 54
4.4.5. SDS-Polyacrylamide-Gel-Electrophoresis (SDS-PAGE) 54
4.4.6. Coomassie staining 55
4.4.7. Western Blot 55
4.4.8. Immunodetection 55
4.5. BIOINFORMATICAL METHODS 56
4.5.1. Prediction of transcription factor binding sites 56
4.5.2. Evaluation of MS data. 56
4.5.3. Over-representation tests 56
4.6. X-CHIP 57
4.7. DTALE-CHAP 58
4.7.1.1. Growth and treatment of Arabidopsis thaliana seedling. 58
4.7.1.2. Formaldehyde crosslinking 58
4.7.1.3. Nuclei isolation 58
4.7.1.4. Nuclei Lysis 59
4.7.1.5. Immunoprecipitation 59
4.7.1.6. In solution trypsin digestion 60
4.7.1.7. Detergent removal and Protein Digestion by FASP 60
5. RESULTS 62
5.1. Analysis of FRK1 Regulation 62
5.1.1. Induction of pFRK1 with flg22 62
5.2. The dTALE-ChAP Workflow 63
5.3. Experimental Settings for the dTALE-ChAP 66
5.3.1. \quad Structure of the dTALEs and their binding sites in pFRK1 66
5.3.2. Definition of the promoter area and prediction of transcription factor binding sites. 68
5.3.3. Localization of dTALEs - translocation to the nucleus 71
5.3.3.1. Localization in A. thaliana protoplasts 71
5.3.3.2. Localization in N. benthamiana 73
5.3.3.3. Localization in transgenic A. thaliana lines 76
5.3.3.4. Purification of dTALE C from A. thaliana nuclei. 79
5.3.4. Induction of pFRK1 in dTALE A. thaliana lines 81
5.4. DNA binding of dTALEs 83
5.4.1. Induction of Promoter - Luciferase Reporter genes with dTALE-AD C and dTALE-AD D 83
5.4.1.1. Induction of $p F R K 1:: L U C$ by dTALE-AD C and dTALE-AD D 83
5.4.1.2. Induction of $p B S 3$ dTALE::LUC with dTALE-AD C and dTALE-AD D. 88
5.4.2. Precipitation of pFRK1 fragments with dTALEs 91
5.4.2.1. Workflow of dTALE-based cross-linking chromatin immunoprecipitation (X-ChIP) 91
5.4.2.2. X-ChIP results. 93
5.5. THEDTALE-CHAP 99
5.5.1. First trial of dTALE-ChAP with dTALE C. 99
5.5.1.1. Quantification of Peptides 99
5.5.1.2. Over-representation Tests 100
5.5.2. Trial 2 repetition of the dTALE C-ChAP 106
5.5.2.1. Quantification of peptides 106
5.5.2.2. Over-representation tests dTALE C-ChAP trial 2 107
5.5.3. Trial 3 repetition of the dTALE C-ChAP 111
5.5.3.1. Quantification of Peptides dTALE-ChAP trial 3 111
5.5.3.2. Over-representation Test dTALE-ChAP Repetition 3 112
5.5.4. Overlap of dTALE-ChAP trial 1, 2 and 3. 115
5.5.5. Changes in the proteome after flg22 Treatment 118
5.5.5.1. ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$ ratios of identified Proteins of dTALE-ChAP trial 3 118
5.5.5.2. Transcription Related Proteins found in dTALE-ChAP Repetition 3 120
6. DISCUSSION 122
6.1. PFRK1 is an ideal Promoter to Establish the dTALE-ChAP 122
6.2. Prediction of cis Regulatory Elements by Bioinformatic Tools is Prone to False Positives 123
6.3. dTALEs Translocate Fast into the Nucleus after DEX Treatment in A. thaliana Protoplasts 124
6.4. dTALEs reach the nucleus 30 min after DEX treatment in N. benthamiana epidermal leaf cells 125
6.5. T2 Seed Pools are an Eligible Way to Generate High Masses of Plant Material, Circumvent Silencing Effects and Compensate Biological Variance 126
6.6. DTALES ACCUMULATE TO LOW LEVELS IN ARABIDOPSIS THALIANA 127
6.7. DTALE-AD C AND DTALE-AD D SPECIFICALLY BIND TO THEIR DNA TARGET 127
6.8. X-CHIP 129
6.8.1. Appropriate Fixation is Crucial for a Successful X-ChIP Experiment 129
6.8.2. Flg22 Treatment Opens the Chromatin and Increases dTALE Binding Site Accessibility 130
6.9. DTALE CHAP 131
6.9.1. Sample Preparation and Removal of Sample Impurities. 131
6.9.2. Epigenetic Modifications at pFRK1 in Response to Flg22 132
7. CONCLUSIONS AND OUTLOOK. 136
8. LITERATURE 137
9. CURRICULUM VITAE. 150
11. SUPPLEMENT 152
11.1. SUPPLEMENTARY FIGURES 152
11.2. Vector Maps 157
11.3. SUPPLEMENTARY TABLES 165
DANKSAGUNGEN 223

Abbrevation List

~	approximately
(v/v)	volume per volume
(w/v)	weight per volume
AP2	Apetala 2
APS	ammonium persulfate
ATAC-seq	Assay for Transposase Accessible Chromatin sequencing
BAK1	BRI1-Associated Receptor Kinase 1
BIR	BAK1-Interacting Receptor-Like Kinase
bp	base pairs
BRI1	Brassinosteroid-Insensitive 1
C-terminus	carboxy terminus
cDNA	complementary DNA
ChAP	Chromatin Affinity Purification
ChIP	Chromatin Immuno-precipitation
chip seq	Chromatin Immuno-precipitation - sequencing
Col-0	Columbia-0
CRISPR	Clustered Regularly Interspaced Short Palindromic Repeats
Ctd	C-terminal domain
DEX	dexamethasone
DMSO	dimethylsulfoxid
DNA	desoxyribonucleic acid
dTALE	designer Transcription Activator Like Effector
dTALE-ChAP	designer Transcription Activator Like Effector - Chromatin
	Affinity Purification
eGFP	enhanced Green Fluorescent Protein
EREBP	ethylene-responsive element binding protein
et al.	et alii
FAIRE-qPCR	Formaldehyde-Assisted Isolation of Regulatory Elements -
flg22	quantitative Polymerase Chain Reaction
FLS2	Flagellin 22
FRK1	Flagellin-sensitive 2
GR	Flagellin 22 induced Receptor Like Kinase 1
HD2B	Glucocorticoid Receptor
InR motif	Arabidopsis Histone Deacetylase 2
MAMP	Initiator element motif
MAPK	Microbe associated molecular pattern
MEKK	Mitogen-Activated Protein Kinase
MKK	Mitogen-Activated Protein Kinase Kinase
MQ	Masase
MS	

N-terminus	amino terminus
ntd	N-terminal domain
OD	optical density
PAMP	Pathogen Associated Pattern
PCR	Polymerase Chain Reaction
pfrk1	promoter of FRK1
PVDF	Polyvinylidenfluorid
qPCR	quantitative PCR
RT	reverse transcriptase
SDS-PAGE	Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis
SOB	super optimal broth
TALE	Transcription Activator Like Effector
TEMED	tetramethylethylenediamine
TF	transcription factor
X-ChIP	ChIP followed by qPCR

Summary

The novel in vivo method developed in this work, allows to analyze the proteome associated with any promoter of interest and is called dTALE-ChAP. This method makes use of a set of designer Transcription Activator Like Effectors (dTALEs), designed as bait proteins for Chromatin Affinity Purification (ChAP) with subsequent mass spectrometry (MS). To demonstrate the use of the dTALE-ChAP, stable transformed dTALE-expressing Arabidopsis thaliana lines were used. The target of choice to establish the method was the well-known promoter of the Flagellin22 induced Receptor Like Kinase 1 (pFRK1).

To establish the method, several pretests had to be performed. First, expression of the dTALEs and their dexamethasone (DEX)-inducible nuclear translocation was confirmed in transgenic Arabidopsis thaliana lines by microscopy. Second, it was demonstrated by promoter-reporter gene assays in Arabidopsis protoplasts, that dTALEs specifically bind to their DNA target sequence, derived from the pFRK1. Third, it was shown by Chromatin Immuno-Precipitation, that a dTALE can precipitate pFRK1 fragments from nuclear extracts of transgenic Arabidopsis lines. Finally, the dTALE-ChAP was performed and several proteins including histones were identified to be associated with pFRK1. Thus, the dTALE-ChAP was successfully established and such a method was used for the first time in plants.

This new method allows to analyze the dynamics and post-translational modifications of DNA associated proteins over time in any organism. In future, methods like the dTALE-ChAP will help to better understand transcriptional regulation.

Zusammenfassung

In dieser Arbeit wurde der dTALE-ChAP entwickelt. Dabei handelt es sich um eine neuartige in vivo Methode, die es erlaubt das Proteom an einem beliebigen Promoter zu analysieren. Bei dieser Methode werden designer Transcription Activator Like Effectors (dTALES) genutzt, die als Ankerproteine für Chromatin Affinity Purification (ChAP) mit anschließender Massenspektroskopie (MS) dienen. Die dTALEs erlauben es jede beliebige DNA Region zu untersuchen. Der dTALE-ChAP wurde mittels stabil transformierten, dTALE exprimierenden Arabidopsis thaliana Linien etabliert. Ziel war es mit dem dTALE-ChAP Proteine, die an den Promoter des Gens Flagellin 22 Induced Receptor Like Kinase 1 (pFRK1) binden, unvoreingenommen zu identifizieren.

Der dTALE-ChAP wurde schrittweise mittels mehrerer Vorexperimente etabliert. Zunächst wurde die Expression der dTALE-GFP Fusionsproteine und der Dexamethason-induzierbare Kernimport in transgenen Arabidopsis thaliana Linien mikroskopisch untersucht. Anschließend wurde in Promoter-Reportergen Versuchen gezeigt, dass in Arabidopsis Protoplasten dTALEs spezifisch an ihre, aus pFRK1 abgeleitete Zielsequenz binden. Darüber hinaus wurde mittels Chromatin Immmunoprezipitation (ChIP) bestätigt, dass mit einem dTALE ein pFRK1 Fragment aus Kernrohextrakten der transgenen Arabidopsis Linien aufgereinigt werden kann. Schließlich wurde der dTALE-ChAP erfolgreich durchgeführt. Es konnten mehrere Proteine identifiziert werden, die mit pFRK1 assoziiert sind, einschließlich Histone. Somit wurde die prinzipielle Funktionsweise des dTALE-ChAPs bestätigt und eine solche Methode erstmalig in Pflanzen eingesetzt.

Diese neue Methode erlaubt es, die Dynamiken und post-translationalen Modifikationen von DNA-assoziierten Proteinen in einer zeitlichen Auflösung, unabhängig vom Organismus zu analysieren. Methoden wie der dTALE-ChAP können in Zukunft helfen, die transkriptionelle Regulierung von Genen besser zu verstehen.

2. Introduction

2.1. Chromatin

All living organisms can be divided into three kingdoms: eukarya, bacteria and archaea (Woese, Kandler, \& Wheelis, 1990). The variety of the organisms is encoded in their desoxyribonucleic acid (DNA). Desoxyribonucleic acid (DNA) is present as a condensed macromolecule. Amongst the three kingdoms two different organizational forms of the DNA is found which is reflected in the differentiation of organisms into the Prokaryota and Eukaroyta (Woese et al., 1990). The differentiation into prokaryotes and eukaryotes was estimated 1.6 billion years ago (Wang, Kumar, \& Hedges, 1999) Prokaryotes have their DNA organized in one circular molecule, whereas eukaryotes show a more complex DNA structure. The eukaryotic genome is organized as chromatin, comprising several linear DNA macromolecules called chromosomes, that are located in a separated organelle, the nucleus (Vellai \& Vida, 1999). The fundamental packing unit of eukaryotic DNA is the nucleosome (Lewin, Cassimeris, Plopper, \& Lingappa, 2007) (Figure 1). One nucleosome consists of an 11 nm diameter histone octamer, modularly built of two copies of histone protein H2a, H2b, H3 and H4 (Finch et al., 1977; Kornberg, 1974; Lewin et al., 2007; Luger, Mäder, Richmond, Sargent, \& Richmond, 1997; Richmond, Finch, Rushton, Rhodes, \& Klug, 1984). A 147 base pair long DNA double helix stretch is wrapped two times around the central histone core and is attached to the nucleosome by the histone protein H 1 (Lewin et al., 2007). The 30 nm in diameter nucleosome - DNA string of pearls is further coiled into chromosomes.

Beside the differences in the structure of the genome, prokaryotic and eukaryotic cells differ in the regulation of transcription. Prokaryotes regulate several genes via one promoter region whereas eukaryotes have each gene regulated by its own promoter, at least in most cases (Martinez, 2002). It is assumed, that this complex transcriptional regulation was one of the prerequisites for evolving multicellular organisms. After developing multi cellular organisms of one cell type, organisms evolved comprising different tissues consisting of different specialized cells. The central step for developing different tissues is the differentiation from stem cells to specialized cells. Every specialized cell has an individual set of transcription factors adapted to its specific task (Kornet \& Scheres, 2008). The term transcription factor subsumes DNA binding proteins that modulate transcription (Riechmann et al., 2000). In
addition to the molecular specialization by transcription factors, the specialized identity of a differentiated cell is stabilized and maintained by chromatin modifications. In its inactive condensed state (heterochromatin), the DNA is not accessible for the transcription machinery. The condensed structure needs to be actively opened to be accessible. The open chromatin structure is called euchromatin. Specialized cells differ in their pattern of euchromatin and heterochromatin pattern (Leeb \& Wutz, 2012). During differentiation, the pattern of eu- and heterochromatin is established and over the time extracellular and intracellular signals are integrated (Leeb \& Wutz, 2012).

Figure 1: Packaging of eukaryotic chromatin (Sadava (2008), modified). The DNA double helix is wrapped two times around a histone octamer. The nucleosome is fixed by histone H1. The nucleosomes are connected by a DNA linker. The nucleosomes are strung like pearls on a chain and further coiled into a string that is further condensed into a chromosome.

Changes of the chromatin state are initiated by the modification of single amino acid residues of the histones. The major modifications of histones, are acetylation of lysins, methylation of lysins and arginins as well as phosphorylation of histones (Kouzarides, 2007). The silent heterochromatic state is typically associated with low levels of acetylation and high levels of methylation at histone H 3 at position K9, K27 and histone H 4 at position K2O (Kouzarides, 2007). Actively transcribed euchromatin has high levels of acetylation and is trimethylated at histone H3 at position K4, K36 and K79.

2.1.1. Transcriptional Initiation at a Core Promoter

An open euchromatic state itself is not sufficient for transcription initiation (Kouzarides, 2007). For the initiation of transcription initiation transcription factors bind to highly conserved cis regulatory elements (CREs), mainly found in the promoter region, in rare cases in introns of genes (Buck \& Lieb, 2004; Deyholos \& Sieburth, 2000). Transcription factors can directly influence the stability, the position and the binding of the transcription initiation complex (Berendzen, Stuber, Harter, \& Wanke, 2006; Martinez, 2002) and can have activating or repressive function. In addition, they can operate indirectly as co-factor. Transcription factors often form multimeric complexes and act as multi protein complexes.

The promoter of a eukaryotic gene is usually found upstream of the translation start codon (ATG). Upstream of the star codon, the pyrimidine rich initiator element (lnR) is found (Burley \& Roeder, 1996a). In 29 \% of all Arabidopsis promoters a highly conserved element 25-32 base pair upstream of the InR motif is observed, called TATA (Burley \& Roeder, 1996a; Molina \& Grotewold, 2005). The TATA marks the position of the TATA box complex during transcriptional initiation. During the initiation of polymerase II catalyzed transcription, the TATA Box complex, consisting of the general initiation factors TFIIA, TFIIB, TFII D, TFIIE and TFIIH assembles at the core promoter (Burley \& Roeder, 1996b). Thereby, TFIID is the only component of this complex with site specific DNA binding ability recognizing the TATA box element (Burley \& Roeder, 1996a). Binding of TFIID to the TATA box marks the beginning of the transcriptional initiation. The TATA Box complex directs further initiation factors, as well as polymerase II to the promoter, where they form the pre-initiation complex (Burley \& Roeder, 1996b). After the pre-initiation complex is formed, further factors are recruited and transcription starts.

Several hundred base pairs upstream of the core promoter, with the essential binding sites for transcriptional initiation, there are further binding sites of regulatory elements. These regulatory elements are the target of trans-acting factors that modulate transcription. The trans-acting factors that modulate the transcription are mostly transcription factors, such as the members of the WRKY family

2.2. PAMP Triggered Immunity

2.2.1. Flg22 Perception at the Cell Surface by FLS2

Precise and fast regulation is a vital process, especially when plants are facing challenges like pathogen attacks. Plants are not the helpless objects they seem to be at the first sight. Although, or maybe because they are fixed to one location, they have evolved mechanisms to actively defend pathogen attacks. The first step to defend pathogen attacks is the detection of the approaching pathogens. Plants detect pathogens by highly conserved molecular structures. These molecular structures are called pathogen associated patterns (PAMPs). PAMPs are recognized by the extracellular domain of pattern recognition receptors (PRRs) that are located at the cell surface (Ronald \& Beutler, 2010; Segonzac \& Zipfel, 2011). The PRRs belong either to the family of receptor kinases or the receptor like protein family (Segonzac \& Zipfel, 2011). The PRRs transmit the signal from the cell surface, over the plasma membrane, into the cytosol. In the cytosol further signaling steps are initiated eventually leading to an adequate immune response.

The first described example for a eubacterial PAMP is the flagellin-derived peptide flg22 (Felix, Duran, Volko, \& Boller, 1999). In nearly all plant species flg22 is sensed by the flagellin sensitive 2 (FLS2) receptor (Schwessinger \& Ronald, 2012). FLS2 consists of an extracellular leucine rich repeat (LRR) domain, a transmembrane domain, a juxtamembrane domain and a cytoplasmic serine/threonine kinase domain (Gomez-Gomez \& Boller, 2000). Flg22 is bound by the LRR domain of FLS2.

Upon flg22 binding, FLS2 associates with the Brassinosteroid insensitive 1-associated kinase 1 (BAK1) (D. Chinchilla, Shan, He, de Vries, \& Kemmerling, 2009; D. Chinchilla et al., 2007; Heese et al., 2007) (Figure 2). The flg22-caused heteromerization of FLS2 and BAK1 results in their
trans-phosphorylation and in the activation of the perception complex (D. Chinchilla et al., 2007; Schulze et al., 2010; Schwessinger et al., 2011). After several transphosphorylation rounds that are not completely elucidated so far, BIK1 and possibly other substrates of the FLS2-BAK1 complex get phosphorylated. The activated BIK1 is then released from the complex and is activating MAPK cascades by a yet unknown mechanism(Lu et al., 2010; J. Zhang et al., 2010).

Figure 3: Signaling cascade in response to flg 22 in A. thaliana modified after (Park, Caddell, \& Ronald, 2012; Ramirez-Prado, Abulfaraj, Rayapuram, Benhamed, \& Hirt, 2018; Ramirez-Prado, Piquerez, et al., 2018). After the perception of flg22 through FLS2, FLS2 and its co-receptor BAK1 are phosphorylated. On the intracellular site of the plasma membrane, BIK1 gets phosphorylated and dissociates from the BAK1FLS2 complex. BIK1 induces two MAPK cascades. MPK4 phosphorylates MKS1 which interacts with WRKY33 and WRKY25. MPK6 phosphorylates WRKY53, WRKY62 and WRKY6. MPK3 phosphorylates WRKY33. WRKYs induce other transcription factors or function as transcription factors itself and activate defense responsive genes like FRK1.

2.2.2. Activation of the MAPK Signal Cascade Pathway

The central pathway that is activated during the PTI response for example after perception of flg22 is the mitogen activated protein kinase (MAPK) pathway (Figure 2).

The minimal MAPK cascade is composed of a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK (Pitzschke, Schikora, \& Hirt, 2009). In response to flg22 three MAPK kinases are strongly activated (MPK3, MPK4 and MPK6 (Asai et al., 2002; Droillard, Boudsocq, Barbier-Brygoo, \& Lauriere, 2004). Asai et al. (2002) proposed, that MEKK1 (MAPKKK) is the start of the cascade, followed by MKK4/MKK5 (MAPKK) resulting in the activation of MPK3 and MPK6. The induction of MPK4 is not clearly clarified yet. The parts of the MAPK cascades are redundant and it is likely that there are parallel pathways. It was shown by Popescu et al. (2009) that in general mainly transcriptional regulators are the predominant phosphorylation targets of the MAPK cascade pathway. These include members of the largest transcription factor families of Arabidopsis: MYB, MYB-related, bZIPs, AP2/EREB, homeo box and WRKYs (Popescu et al., 2009).

2.2.3. WRKYs and their Role in PTI

WRKYs named after a highly conserved 60 amino acid long domain at the N -terminus starting with the sequence WRKYGQK (Eulgem, Rushton, Robatzek, \& Somssich, 2000; Rushton et al., 1996), build one of the biggest transcription factor family in Arabidopsis with up to 100 representatives categorized in three groups (Eulgem et al., 2000). WRKYs have many different roles in Arabidopsis like the regulation of transcriptional responses to abiotic stress, seed development, seed dormancy, germination, plant development and senescence (Rushton, Somssich, Ringler, \& Shen, 2010). Apart from the above mentioned roles, WRKYs seem to be the essential regulatory part involved in the transcriptional reprogramming during PTI (Rushton et al., 2010; Tsuda \& Somssich, 2015). WRKYs preferentially bind to sites with the minimal DNA core sequence TTGACC/T, called Wbox (Ciolkowski, Wanke, Birkenbihl, \& Somssich, 2008; Eulgem et al., 2000; Rushton et al., 1996). Wboxes are numerous in the Arabidopsis genome and equally distributed on both DNA strands (Birkenbihl, Kracher, \& Somssich, 2017). The regulatory role of WRKYs during PTI is underlined by the overrepresentation of Wboxes in the promoters of flg22 induced genes (Navarro et al., 2004; Zipfel et al., 2004). This suggests that WRKYs induce PTI response genes downstream of the MAPK cascade pathways. However, because of the high number of WRKYs and their redundant roles, the identification of functional promoter-WRKY pairs is very difficult. WRKYs have many representatives that can act as homo- and heterodimers. Because of the high
number of WRKYs and their redundant roles, the identification of promoter - WRKY pairs is very difficult and largely unknown.

2.3. Flg22 Responsive Genes

As the downstream end of the flg22 induced MAPK cascade pathway early responses of the PTI are induced. While searching for early flg22 induced genes Asai et al. (2002) identified the flg22 induced receptor like kinase 1 as one of many early flg 22 induced genes. They were able to find FRK1 transcript 30 min after flg22 treatment and showed, that the activation of FRK1 was not dependent on de novo protein synthesis (Asai et al., 2002). In reporter gene studies they also demonstrated, that the induction of FRK1 transcript accumulation was due to promoter activation. FRK1 transcript levels are also enhanced in sepals and senescent leaves, but never in non-senescent plant tissues (Robatzek \& Somssich, 2002) (Figure 4). Thus, since FRK1 transcripts are not accumulated in non-senescent tissue in absence of pathogens and hardly in response to other stresses, it is commonly used as PTI primary response and marker gene. Interestingly, the function of the FRK1 protein is not yet known.

Figure 4: FRK1 is expressed in A. thaliana in sepals and senescent leaves (source Winter (2007)). Shown are the expression levels of FRK1 in A. thaliana in different tissues during different developmental stages and are symbolized by a color code.

It is assumed, that WRKYs play an important role in the regulation of FRK1. Robatzek and Somssich (2002) found nine Wboxes in the promoter of FRK1 (pFRK1). Of the nine Wboxes the two proximal to the ATG were essential for the activation of FRK1 (Robatzek \& Somssich, 2002). Beside the presence of Wboxes, several other observations emphasize the likelihood of WRKYs to be the key regulator of FRK1. As already mentioned in section 2.2.3, WRKYs act downstream of the flg22 induced MAPK cascade.

Robatzek and Somssich (2002) demonstrated that WRKY6 and WRKY42 are able to activate FRK1. In contrast the pathogen induced WRKYs, WRKY1 and WRKY52 cannot induce FRK1 (Robatzek \& Somssich, 2002). Beside WRKY6 and WRKY42 several other WRKYs have been shown to interact with pFRK1. WRKY11, WRKY26 and WRKY53 have been shown to bind to pFRK1 in vitro (Ciolkowski et al., 2008; Miao, Laun, Zimmermann, \& Zentgraf, 2004). WRKY38, WRKY26 and WRKY43 have also been shown to bind pFRK1 in vivo (Ciolkowski et al., 2008). In Chipseq experiments, pFRK1 was found as a target for WRKY17, WRKY 40 and WRKY33
(Birkenbihl et al., 2017). It seems to be likely that WRKY53 binds to the distal part of pFRK1 (Miao et al., 2004). In contrast pFRK1 activation by WRKY6 is dependent of the interaction with the proximal part of the promoter (Robatzek \& Somssich, 2002). Besides the members of the WRKY family, bZIP1 was also shown to bind to pFRK1 in vitro (Doidy et al., 2016). Although WRKYs were shown to interact with $p F R K 1$ the exact mode of regulation is not elucidated so far. Furthermore, even though FRK1 is often used as a marker gene for the activation of PTI, the exact function of $F R K 1$ itself is not known so far.

2.4. Analysis of DNA - Protein Interaction

Elucidating the regulatory network of transcription factors at a promoter is often very difficult, as more than one transcription factor regulates a gene. Especially in cases like FRK1 where possibly different members of functionally redundant transcription factor families like WRKYs are involved, the identification of the key regulator it is difficult.

The method of choice to directly analyze the in vivo interaction of a given protein with DNAF, is Chromatin Immuno Precipitation (ChIP). The ChIP methodology was established by (Orlando, Strutt, \& Paro, 1997). ChIP is based on the covalent bit reversible association of proteins to DNA by formaldehyde fixation (Solomon \& Varshavsky, 1985). In principle ChIP comprises the following steps (Mülhardt, 2013): 1. The tissue to be analyzed is treated with formaldehyde. The amino- and iminogroups of the proteins and the DNA are coupled covalently when they are in close proximity. 2: The cells are lysed and the nuclei are purified. 3: Ultrasonic treatment leads to cracking of the nuclei and shearing of the chromatin. 4. In the precipitation step, the protein-DNA complex is enriched using bead-coupled antibodies against the protein of interest. 5: The crosslinking is reversed and the DNA is purified after proteolytic digestion of the attached proteins with ProteinaseK. 6: The DNA is analyzed, either by sequencing, qPCR or on microarrays.

ChIP based methods can identify in vivo target regions of the transcription factor of interest, as well as help to understand the processes going on at the chromatin and the underlying molecular processes (Agius, Arvey, Chang, Noble, \& Leslie, 2010; Buck \& Lieb, 2004; Bulyk, 2006; Hoffman \& Jones, 2009; Lafos et al., 2011; J. Li, Zhu, Eshaghi, Liu, \& Karuturi, 2011;

MacQuarrie, Fong, Morse, \& Tapscott, 2011; Massie \& Mills, 2008; Rhee \& Pugh, 2012; Zheng \& Hearing, 2014; Zheng \& Perry, 2011).

In the classical ChIP approaches the resolution limit for the mapping of target sites was the size of the DNA fragments, which is dependent on the ultrasonic treatment. Fragments under 200 base pair length are unfeasible. By the combination of ChIPseq with a subsequent exonuclease step, it became possible to map transcription factor binding sites down to single base pair resolution (Rhee \& Pugh, 2011; Starick et al., 2015). To circumvent a lack of antibodies for the protein of interest, tagged versions of the bait protein in combination with antibodies against the protein tag are used (Harada \& Nepveu, 2012). Drawbacks of the labor intensive ChIP approaches, especially of the ChIP-ChIP and ChIPseq are bioinformatic efforts (Szalkowski \& Schmid, 2011).

Further development of ChIP was the development of Chromatin Affinity Purification (ChAP). The term ChAP is not used uniformly (Harada \& Nepveu, 2012; Nikolov et al., 2011). In this work ChAP is used for experiments in which proteins shall be analyzed instead of the DNA (Nikolov et al., 2011). Proteins are purified from the protein-DNA complexes after chromatin immune precipitation. In ChAP experiments downstream of the precipitation step, the purified proteins are analyzed by western blotting or mass spectrometry. Since ChAP approaches identify DNA-bound proteins, transcription factors can be identified among other chromatin-associated factors that were known to bind to a certain DNA site. The prerequisite and concurrent weakness of ChIP and ChAP is that at least one protein that binds the DNA region of interest is needed.

2.5. Designable DNA Binding Proteins

Since a DNA binding protein is the prerequisite for ChIP or ChAP experiments, the lack of a known binder could be substituted by a designed DNA binding protein. Until now there are three different methodologies to design proteins that target specifically a DNA site of choice. The oldest methodology is to use Zinc Finger proteins (J. Miller, McLachlan, \& Klug, 1985). After the code of the DNA binding domain of the Transcription Activator Like Effector (TALE) proteins, coming from Xanthomonas and Ralstonia was deciphered, they were also used to design DNA binding proteins for individual target sequences (Boch et al., 2009; Moscou \&

Bogdanove, 2009). The latest method to create designable DNA binding proteins were via the clustered regularly short interspaced palindromic repeats of the CRISPR/Cas system (Bortesi \& Fischer, 2015).

2.5.1. Zinc Finger Proteins

Zinc Fingers are a class of DNA binding proteins that were discovered 1985 during the analysis of a Xenopus transcription factor (J. Miller et al., 1985). They are named after a conserved finger like structure with a zinc ion in the center (Klug, 2010). Zinc Fingers bind as tandem or triplets to the DNA (Jamieson, Miller, \& Pabo, 2003; Reynolds et al., 2003).

The structural frame work of each Zinc Finger is similar, but variation in some key amino acids encode the chemical distinctiveness (Klug, 2010). After the rules of the encoded binding specificity were encrypted, it was possible to design proteins to target a specific site by using individual specific fingers (Choo \& Klug, 1994a, 1994b). The first application of a modified Zinc Finger that binds to a specific target sequence in vitro and in vivo was published in 1994 (Choo, Sanchez-Garcia, \& Klug). The combination of Zinc Finger peptides with different functional domains, like activation domains, repressor domains or nucleases, enabled the design of site specific effector proteins.

2.5.2. Clustered Regularly Interspaced Palindromic Repeats

The principle of the clustered regularly interspaced palindromic repeat (CRISPR) Cas9 system differs from the Zinc Fingers and the TALEs. TALEs and Zinc Fingers are artificial proteins with an engineered DNA binding domain (Bortesi \& Fischer, 2015). These engineered proteins can be coupled to different functional domains. In contrast, CRISPR is based on RNA guided engineered nucleases. CRISPR arrays were initially found by Ishino, Shinagawa, Makino, Amemura, and Nakata (1987). In 2005 it was understood, that the CRISPR arrays are part of an adaptive bacterial immune system (Bolotin, Quinquis, Sorokin, \& Ehrlich, 2005; Mojica, Diez-Villasenor, Garcia-Martinez, \& Soria, 2005; Pourcel, Salvignol, \& Vergnaud, 2005). The discovery, that CRISPR is adjacent to Cas9 nucleases, revealed the role of CRISPR Cas9 in the immune system of bacteria and archaea (Barrangou et al., 2007).

DNA sequences can be specifically targeted with CRISPR by changing the sequence of the guide RNA (Jinek et al., 2012). Further on, also CRISPR approaches were developed, in which an inactive Cas9 (dCas) was used. The dCas can be combined with different functional domains. CRISPR dCas was used to shuttle functional domains to a specific sites. For example, there are approaches in which CRISPR dCas was combined with transcriptional repressor or activation domains, fluorescing tags and DNA methylases as reviewed by Bortesi and Fischer (2015).

2.5.3. TALEs

Transcription Activator Like Effectors (TALEs) are type III effector proteins that are released by pathogens like Xanthomonas and Ralstonia into the plant cell (Boch \& Bonas, 2010; de Lange et al., 2013; L. Li et al., 2013). In the plant cell the TALE activates genes and alters the gene expression in a pathogen favorable manner. The first TALE isolated from the plant pathogen Xanthomonas was called avrBs3 (Kay, Hahn, Marois, Hause, \& Bonas, 2007; Romer et al., 2007). AvrBS3 targets the Bs3 disease resistance gene in Capsicum annuum, causing a hypersensitive response, leading to necrotic leaf lesions (Kay et al., 2007; Romer et al., 2007). Since Bs3 is regulating the cell size, deregulation by the TALE AvrBs3 leads to, bigger cell sizes, which seemed to be favorable for the pathogen (Pennisi, 2012).

A TALE itself consists of an N-terminal domain, a central tandem repeat DNA binding domain and a C-terminal domain (Boch et al., 2009). The C-terminal domain harbors a nuclear localization signal as well as an activation domain (Boch et al., 2009). The central DNA binding domain consists of several tandem repeats. Each repeat is 34 amino acids long and is variable in position 12 and 13 (Boch et al., 2009; Moscou \& Bogdanove, 2009). The variable residues are called repeat variable diresidue (RVD) (Boch et al., 2009; Moscou \& Bogdanove, 2009). The basic TALE code comprises four RVDs ($\mathrm{NI}=$ adenine, $\mathrm{HD}=$ cytosine, $\mathrm{NG}=$ thymine $\mathrm{NN}=$ guanine/ adenine) (Boch et al., 2009; Moscou \& Bogdanove, 2009). The decrypted TALE code was the basis to create designer TALEs (dTALEs) that bind to a target sequence of choice by re-arranging the repeats. In a screen performed by Cong, Zhou, Kuo, Cunniff, and Zhang (2012), further RVDs with different binding affinities were identified. The critical step in creating dTALEs is the assembly of the repeats. Different approaches were established to
assemble the different repeats, but mostly based on Golden Gate Cloning (Scott, Kupinski, \& Boyes, 2014).

Once it was possible to create designer TALEs, first applications using dTALEs were developed. The activation domain was deleted and dTALEs were used with an added endonuclease (T . Li et al., 2011; J. C. Miller et al., 2011). This endonuclease TALE combination was used for gene editing. The endonuclease was guided to the target sequence, creating DNA breaks. Other approaches used TALEs as artificial transcriptional regulators. Therefore TALEs were combined with activation domains, like the VP64 domain, or repressor domains (L. Li et al., 2012; F. Zhang et al., 2011). TALEs as expression regulators can be applied in various organisms. They were used in yeast, plants and mammalian cells (Blount, Weenink, Vasylechko, \& Ellis, 2012; Bultmann et al., 2012; Cermak et al., 2011; Y. Li, Moore, Guinn, \& Bleris, 2012; Maeder et al., 2013; Morbitzer, Romer, Boch, \& Lahaye, 2010; Perez-Pinera et al., 2013; Tremblay, Chapdelaine, Coulombe, \& Rousseau, 2012). Besides the application as transcriptional regulator and nuclease the combination with different functional domains similar to the CRISPR/Cas system is possible. One example is the combination with a fluorescent tag to visualize chromatin dynamics (Miyanari, Ziegler-Birling, \& Torres-Padilla, 2013)

2.5.4. Comparison of Zinc Finger, CRISPR and TALEs

Although the Zinc Fingers are the oldest and therefore most established system, the pitfall of Zinc fingers in comparison to CRISPR/Cas and dTALEs is the complex interaction with the DNA. In TALEs each RVD encodes for one base, in CRISPR the guide RNA encodes the target sequence. In contrast, each Zinc Finger makes contact to three bases. Therefore, Zinc Fingers are not as versatile as CRISPR and TALEs. The major advantage of CRISPR over Zinc Fingers and TALEs is the mode of target detection. Whereas with Zinc Fingers and dTALEs for a new target a new DNA binding domain needs to be designed, with CRISPR the guide RNA can be easily modified (Cano-Rodriguez \& Rots, 2016).

It is difficult to compare the potency of the three methodologies. The advantage of CRISPR and dTALEs is their versatility. Reports regarding the binding capacity of dTALEs and CRISPR/Cas to chromatin are contradictory (Waryah, Moses, Arooj, \& Blancafort, 2018). Therefore, it is not possible to predict whether CRISPR or dTALEs would show the higher
binding capacity to a specific target site. For these reasons, the development of both methods was drive forward in parallel.

2.6. Locus Specific Chromatin Precipitation

With the progress of the dTALE and CRISPR technology, these proteins were implemented in target site specific ChIP methods. CRISPR was successfully used to precipitate chromatin regions (Fujita \& Fujii, 2013, 2014, 2015; Fujita, Yuno, \& Fujii, 2016, 2018; Fujita, Yuno, Suzuki, Sugano, \& Fujii, 2017). The same was true for dTALEs (Byrum, Raman, Taverna, \& Tackett, 2012; Byrum, Taverna, \& Tackett, 2013; Rathi, Maurer, Kubik, \& Summerer, 2016).

So far the none of the developed methods have been applied in plants. In addition, in all cases the bait proteins translocate uncontrolled to the nucleus. However, it cannot be excluded that big and artificial proteins may influence the surrounding genes when they are permanently bound to the chromatin.

2.7. The Glucocorticoid Receptor System

One system to make the nuclear import of fusion proteins inducible is the attachment of the vertebrate glucocorticoid receptor (GR). In the absence of its steroid ligand, the GR is kept as a multimeric chaperone complex in the cytoplasm (Cheung \& Smith, 2000; Pratt \& Toft, 1997). The GR is induced by treatment with the steroid dexamethasone(DEX), a strong synthetic glucocorticoid. Upon binding of its ligand the GR is released from the chaperone complex and translocates to the nucleus (Vandevyver, Dejager, \& Libert, 2012). The GR system is highly suited for the applications in plants, since plants do not have a comparable steroid receptor system, steroid treatment does not cause any pleiotropic effects. Thus, DEX treatment does also not cause major pleiotropic effects (Aoyama \& Chua, 1997; Schena, Lloyd, \& Davis, 1991). In this work, optimized GR-version for plants was used (Grefen et al., 2015).

2.8. Aim of the Work

This work aims to establish a new in vivo method, named dTALE-ChAP, with that the proteome bound at a promoter of choice can be analyzed. So far it is not possible to gain deep insight into dynamics of post-translational modifications of proteins at a single promoter. By developing the dTALE-ChAP, I aim to close this methological gap. In this work the proteome of the plant specific gene FRK1 will be analyzed and used as proof of principle example.

Since the basis of the dTALE-ChAP are dTALEs, my first goal is the design and generation of suitable dTALE proteins against p FRK1. These dTALEs bind specifically to target sites in $p F R K 1$ and have no enzymatic activity. They were equipped with a N-terminal GR and a C-terminal GFP and HA tag, for inducible subcellular localization and precipitation.

The second goal is to test the expression of dTALEs in planta to verify the GR-based steroid induced nuclear import. This requires several pre-experiments including studies in transiently transformed Arabidopsis cell culture protoplasts and tobacco leaves. Third, in order to have material for the dTALE-ChAP, I need to generate transgenic Arabidopsis lines and test these for expression and localization of the dTALEs. My fourth goal is to analyze the dTALE DNAbinding capacity to different regions in pFRK1 by Chromatin Immuno-Precipitation followed by qPCR.

My final goal is to perform the dTALE-ChAP including the identification of the proteins bound to $p F R K 1$ and thus to show the proof of principle of this method.

3. Material

3.1. Organisms

3.1.1. Escherichia coli strains

Table 1: Escherichia coli strains

strain	Genotype	Datasheet	Purpose
NEB 5-alpha Competent E.coli (High Efficiency) (New England Biolabs)	fhuA2 (argFlacZ)U169 phoA glnV44 80 (lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17	https://www.neb.com/- /media/catalog/datacards-or- manuals/c2987datasheet- lot2831402.pdf	Cloning and amplification of vector DNA
DB3.1 ${ }^{\text {™ }}$ (Invitrogen)	F-gyrA462 endA1 $\Delta($ sr1-recA) mcrB hsdS20(rB-, mB-) supE44 aramrr 14 galK2 lacY1 proA2rpsL20(SmR) xyl-	https://assets.thermofisher.com/TFSAssets/LSG/manuals/11782018.pdf	Amplification of Donor and Destination vectors (vectors with a ccdB cassette)

3.1.2. Agrobacterium tumefaciens strains

For all experiments with Agrobacterium tumefaciens the strain GV3101::pMP90 was used (Koncz \& Schell, 1986).

3.1.3. Arabidopsis thaliana lines

Table 2: Arabidopsis lines which have been used in this work

Name	Origin	Site of insertion	Vector	Species donor	Species receiver	Resistance
Col-0 (wildtype)	Paul Verslues					
GFP	Andreas Hecker	Description in (Hecker, 2016)			Arabidopsis thaliana Col-0	
$\begin{aligned} & \text { Fls2- } \\ & \text { SALK_062054 } \end{aligned}$	Markus Albert/ Birgit Kemmerling	T-DNA insertion in AT5G46330 (fls2) 1. exon	SALK_062054	Agrobacterium tumefaciens	Arabidopsis thaliana Col-0	Kanamycin
dTALE A line (seed pool of T2 generation was used)	Stefan Fischer	not known	$\begin{aligned} & \text { pICH50505- } \\ & \text { 35S-GR- } \\ & \text { FRK1-TALE II } \end{aligned}$	Agrobacterium tumefaciens	Arabidopsis thaliana Col-0	BASTA
dTALE B line (seed pool of T2 generation was used)	Stefan Fischer	not known	$\begin{aligned} & \text { pICH50505- } \\ & \text { 35S-GR- } \\ & \text { FRK1-TALE III } \end{aligned}$	Agrobacterium tumefaciens	Arabidopsis thaliana Col-0	BASTA
dTALE C line (seed pool of T2 generation was used)	Stefan Fischer	not known	$\begin{aligned} & \text { pICH50505- } \\ & \text { 35S-GR- } \\ & \text { FRK1-TALE IX } \\ & + \end{aligned}$	Agrobacterium tumefaciens	Arabidopsis thaliana Col-0	BASTA
dTALE D line (seed pool of T2 generation was used)	Stefan Fischer	not known	$\begin{aligned} & \text { pICH50505- } \\ & \text { 35S-GR- } \\ & \text { FRK1-TALE } \\ & \text { VIII } \end{aligned}$	Agrobacterium tumefaciens	Arabidopsis thaliana Col-0	BASTA
dTALE E line (seed pool of T2 generation was used)	Stefan Fischer	not known	$\begin{aligned} & \text { pICH50505- } \\ & \text { 35S-GR- } \\ & \text { FRK1-TALE VI } \end{aligned}$	Agrobacterium tumefaciens	Arabidopsis thaliana Col-0	BASTA
dTALE F line (seed pool of T2 generation was used)	Stefan Fischer	not known	$\begin{aligned} & \text { pICH50505- } \\ & \text { 35S-GR- } \\ & \text { FRK1-TALE X } \end{aligned}$	Agrobacterium tumefaciens	Arabidopsis thaliana Col-0	BASTA
pPGT, free GFP	Dr. Nina Jaspert	Not known	$\begin{aligned} & \text { pPGT-35S- } \\ & \text { GFP } \end{aligned}$	Agrobacterium tumefaciens	Arabidopsis thalianana Col-0	

3.1.4. Nicotiana benthamiana lines

For all experiments with tobacco Nicotiana benthamiana L. Samsun NN was used and transiently transformed.

3.2. DNA

3.2.1. Vectors provided for the thesis

Table 3: Vectors provided for this thesis

name	vector	Quelle/ source
pFRK1::LUC	Asai et al. (2002)	
dTALE A	pICH50505-35S-GR-FRK1-TALE II	Dr. R. Morbitzer (University of Tuebingen)
dTALE B	pICH50505-35S-GR-FRK1-TALE III	Dr. R. Morbitzer (University of Tuebingen)
dTALE E	pICH50505-35S-GR-FRK1-TALE VI	Dr. R. Morbitzer (University of Tuebingen)
dTALE F	pICH50505-35S-GR-FRK1-TALE X	Dr. R. Morbitzer (University of Tuebingen)
dTALE D	pICH50505-35S-GR-FRK1-TALE VIII	Dr. R. Morbitzer (University of Tuebingen)
dTALE C	pICH50505-35S-GR-FRK1-TALE IX +	Dr. R. Morbitzer (University of Tuebingen)
dTALE-AD A	pICH50505 TALE 364 AD	Dr. R. Morbitzer (University of Tuebingen)
dTALE-AD B	pICH50505 TALE 365 AD	Dr. R. Morbitzer (University of Tuebingen)
dTALE-AD E	pICH50505 TALE 366 AD	Dr. R. Morbitzer (University of Tuebingen)
dTALE-AD F	pICH50505 TALE 367 AD	Dr. R. Morbitzer (University of Tuebingen)
dTALE-AD D	pICH50505 TALE 368 AD	Dr. R. Morbitzer (University of Tuebingen)
dTALE-AD C	pICH50505 TALE 369 AD	Dr. R. Morbitzer (University of Tuebingen)
LHP1:RFP	(Hecker et al., 2015)	

3.2.2. Vectors generated during this work

Table 4: Vectors generated during this work

name	vector	cloning strategy
pBS3 dTALE A::LUC	pbt8	recombination
pBS3 dTALE B::LUC	pbt8	recombination
pBS3 dTALE C::LUC	pbt8	recombination
pBS3 dTALE D::LUC	pbt8	recombination
pBS3 dTALE E::LUC	pbt8	recombination
pBS3 dTALE F::LUC	pbt8	recombination

3.3. General chemicals and solutions

3.3.1. Chemicals

If not stated otherwise, all chemicals were ordered in analytical purity from Sigma-Aldrich (Since 2015 Merck, Darmstadt Germany) or Carl Roth (Karlsruhe Germany).

3.3.2. Special Chemicals used in this work

Table 5: Special chemicals used in this work

Chemical	Manufacturer	Catalogue number
Potassium Nitrate ${ }^{15} \mathrm{~N}$	Cambridge Isotope Labarotories Inc.	NLM-765-1
Ammonium Nitrate ${ }^{15} \mathrm{~N}$	Cambridge Isotope Labarotories Inc.	NLM-390-1
Sequencing Grade Modified Trypsin	Promega	V5111
Endoproteinase Lys-C Sequencing grade	Roche	11420429001
Dexamethason BioChemica	Applichem	A2143,0500

3.3.3. Antibiotics

Table 6: Concentration of antibiotics used
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Antibiotic } & \text { Solvent } & \text { Company } & \begin{array}{l}\text { Concentration for } \\ \text { selection } \\ \text { Agrobacterium } \\ \text { tumefaciens }\end{array} & \begin{array}{l}\text { Concentration for } \\ \text { selection } \\ \text { Escherichia coli }\end{array} \\ \hline \text { of }\end{array}\right]$

3.3.4. Hormones and Elicitors

Dexamethasone (AppliChem) was solved in ethanol to a 10 mM Stock. The stock was stored for a maximum of two month at $-20^{\circ} \mathrm{C}$.

A stock of flg22 was provided by Dr. Markus Albert (ZMBP, University of Tuebingen) and stored at $-20^{\circ} \mathrm{C}$.

3.3.5. Antibodies

Table 7: Antibodies used in this work

Name	Host	Clonality	Company	Immunogen	Dilution	Used for
anti-HA	Rat	Monoclonal clone 9E10	Roche	9E10 epitope (EQKLISEEDL sequence) derived from the human c- myc protein	TBS-T	Western Blot

anti-GFP	Mouse	Monoclonal	Roche	partially purified recombinant Aequorea victoria GFP	$1: 1000$ in TBS-T	Western Blot
anti-mouse- HRP	Goat		Sigma	Purified mouse lgG	$1: 10000$ TBS-T	Western Blot
anti-rat- HRP	Goat		Sigma	Purified rat IgG	$1: 10000$ in TBS-T	Western Blot
anti-GFP	Rabbit	Polyclonal	Abcam	ab290	Undiluted	X-ChIP

For the dTALE-ChAP GFP-Trap ${ }^{\circledR}$ _A beads (Chromotek) were used. This are anti-GFPV ${ }_{H} \mathrm{~V}$ coupled to agarose beads.

3.3.6. Size standards

Figure 5: DNA and protein size standards. For Agarose gels the DNA size standard GenLadder 1kb (Genaxxon bioscience) was used (A). For SDS-PAGE and Western Blotting the Spectra ${ }^{\text {TM }}$ Multicolor Broad Range Protein Ladder (Thermo Fisher Scientific) was used (B).

3.3.7. Enzymes and Kits

Table 8: Enzymes and kits used in this work

Enzyme/ Kit	Manufacturer
Taq DNA Polymerase	New England Biolabs
pENTR ${ }^{\text {TM }}$ /D-TOPO ${ }^{\circledR}$ Cloning Kit	Thermo Fisher Scientific
Gateway ${ }^{\circledR}$ LR Clonase enzyme mix	Thermo Fisher Scientific
Gateway ${ }^{\circledR}$ BP Clonase enzyme mix	Thermo Fisher Scientific
Restriction Endonucleases	Thermo Fisher Scientific
RiboLock RNase Inhibitor	Thermo Fisher Scientific
RevertAidTM H Minus Reverse Transcriptase	Thermo Fisher Scientific
GeneJET Gel Extraction Kit	Thermo Fisher Scientific
RNeasy Plant Mini Kit	Qiagen
Sequencing Grade Modified Trypsin	Promega
Endoproteinase Lys-C Sequencing grade	Thermo Fisher Scientific
Maxima ${ }^{\circledR}$ SYBR Green qPCR Master Mix (2X)	Qiagen
MinElute Reaction Cleanup Kit	Novagen
KOD Hot Start	

3.4. Buffers and solutions for the work with bacteria

3.4.1. Growth media

Luria-Bertani broth (LB) $\quad 25 \mathrm{~g} / \mathrm{l}$	LB media (liquid/ solid, premixed by Roth) $\mathrm{ddH}_{2} \mathrm{O}$ autoclaving

For the production of plates, the autoclaved media was cooled down to a temperature below $60^{\circ} \mathrm{C}$. Then the respective antibiotics were added. The media was poured into petri dishes (8 cm , round shape, 25 ml media/dish). After the media was solid, the petri dishes were closed and stored on $4^{\circ} \mathrm{C}$.

3.4.2. Media and buffers to obtain chemically competent cells

SOB	$20 \mathrm{~g} / \mathrm{l}$	Bacto tryptone
	$5 \mathrm{~g} / \mathrm{l}$	Yeast extract
	$0.5844 \mathrm{~g} / \mathrm{l}$	NaCl
	0.1864	KCl
	After autoclaving add filter sterilized 10 mM final concentration MgCl_{2} 10 mM final concentration MgSO_{4}	
RF1	100 mM	RbCl
	50 mM	MnCl_{2}
	30 mM	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{KO}_{2}$
	15 \% (v/v)	Glycerol
	pH 5.8 with Acetic Acid sterilize by filtration	
RF2	10 mM	MOPS
	10 mM	RbCl
	75 mM	CaCl_{2}
	pH 6.1-6.4 with HCl or KOH sterilize by filtration	

3.5. Buffers and solution for work with plants

$1 / 2 \mathrm{MS}$ agar	$2.15 \mathrm{~g} / \mathrm{l}$	Murashige and Skoog basal salt mixture (Sigma - Aldrich)
	$\mathrm{pH} \mathrm{5.7}$ with KOH	
$8 \mathrm{~g} / \mathrm{l}$	Phytoagar (Duchefa)	
	Autoclaving	

The media was cooled down after autoclaving to a temperature below $60^{\circ} \mathrm{C}$. Then it was supplemented with $5 \mu \mathrm{~g} / \mathrm{ml}$ BASTA and poured into petri-dishes ($12 \times 12 \mathrm{~cm}$, square shaped, 50 ml media/plate).

3.5.1. Stable transformation of A. thaliana

Infiltration media

$5 \%(\mathrm{w} / \mathrm{v})$	sucrose
$0.01 \%(\mathrm{v} / \mathrm{v})$	Silwett
$0.5 \mathrm{~g} / \mathrm{l}$	MgSO_{4}

3.5.2. Transient expression of proteins in Nicotiana benthamiana

Infiltration media

$1 \%(\mathrm{v} / \mathrm{v})$	$1 \mathrm{M} \mathrm{MES} \mathrm{KOH} \mathrm{(pH5.6)}$
$0.1 \%(\mathrm{v} / \mathrm{v})$	200 mM Acetosyringon in DMSO
$0.33 \%(\mathrm{v} / \mathrm{v})$	$3 \mathrm{M} \mathrm{MgCl}_{2}$

3.6. Buffers and solutions for work with RNA

	Stirred over night autoclaved 2 times to inactivate DEPC	
	10 mM	dATP
dNTPs	10 mM	dTTP
	10 mM	dGTP
10 mM	dCTP	

3.7. Buffers and solutions for work with DNA

3.7.1. Extraction of plasmid DNA (alkaline lysis)

Mini 1	50 mM	Tris/ HCl pH 8.0
	10 mM	EDTA
	After autoclaving add	
	$20 \mathrm{mg} / \mathrm{ml}$	RNAse A
Mini 2	0.2 M	NaOH
	1%	SDS
Mini 3	29.44 \% (w/v)	$\mathrm{KCH}_{3} \mathrm{COO}$
	11.4 (v/v)	glacial acetic acid
	final pH 5.5	

3.7.1.1. Extraction of genomic DNA from Arabidopsis thaliana seedlings

Edwards Buffer	200 mM	Tris/ HCl pH 7.5
	250 mM	NaCl
25 mM	EDTA	
	$0.5 \%(\mathrm{w} / \mathrm{v})$	SDS

3.7.2. Agarose gel solutions

50X TAE-buffer	2 M	Tris
	1 M	acetic acid
	0.05 M	EDTA

For TAE buffer, 50X TAE was diluted by factor 50 with MQ

3.7.3. Buffer for agarose gel electrophoresis

DNA loading buffer	$50 \%(v / v)$	glycerol
	0.2 M	EDTA
	$0.05 \%(\mathrm{w} / \mathrm{v})$	OrangeG

3.7.4. PCR solutions

dNTPs	10 mM	dATP
10 mM	dTTP	
	10 mM	dGTP
	10 mM	dCTP

3.8. Buffers and solutions for work with proteins

3.8.1. Extraction buffer

$2 \times$ SDS sample-buffer	120 mM	Tris/HCl pH 6.8
	$20 \%(\mathrm{v} / \mathrm{v})$	glycerol
$4 \%(\mathrm{v} / \mathrm{v})$	SDS	
	0.04%	bromphenol blue
	$10 \%(\mathrm{v} / \mathrm{v})$	B-mercaptoethanol

3.8.2. SDS-page

Bottom buffer

1 M	Tris- $\mathrm{HCl}(\mathrm{pH} 8.8)$
$0.27 \%(\mathrm{v} / \mathrm{v})$	SDS
Filtered to $0.45 \mu \mathrm{~m}$	filter

Upper buffer	0.25 M	Tris-HCl pH 6.8
	0.2 \% (v/v)	SDS
	Filtered through a $0.45 \mu \mathrm{~m}$ filter	
10% running gel	2 ml	30% acrylamide solution
	1.7 ml	$\mathrm{H}_{2} \mathrm{O}$
	2.25 ml	Bottom buffer
	$50 \mu \mathrm{l}$	10% (w/v) Ammonium persulfate
	$4 \mu \mathrm{l}$	TEMED

4.5% stacking gel	0.3 ml	30% acrylamide solution
0.7 ml	$\mathrm{H}_{2} \mathrm{O}$	
1 ml	Upper buffer	
	$10 \mu \mathrm{ll}$	$10 \%(\mathrm{w} / \mathrm{v})$ Ammonium persulfate
$2 \mu \mathrm{l}$	TEMED	

3.8.3. Coomassie staining

Staining solution	$10 \%(v / v)$ $45 \%(v / v)$ $0.25(w / v)$	acetic acid ethanol Coomassie brilliant blue R250
Destaining solution	$10 \%(v / v)$	acetic acid ethanol

3.8.4. Western blot

10X Running buffer	250 mM 1.94 M $1 \%(\mathrm{v} / \mathrm{v})$	Tris glycine SDS
1X Running buffer	$10 \%(\mathrm{v} / \mathrm{v})$	10X Running Buffer
10X Transfer buffer	250 mM	Tris glycine
	150 mM	10X transfer buffer 1X Transfer buffer
	$10 \%(\mathrm{v} / \mathrm{v})$ $10 \%(\mathrm{v} / \mathrm{v})$	ethanol

3.8.5. Immunodetection

10X TBS	0.5 M	Tris-HCl (pH 7.4)
	1.5 M	NaCl
1X TBS	$10 \%(\mathrm{v} / \mathrm{v})$	$10 \times$ TBS
1X TBS-T	$10 \%(\mathrm{v} / \mathrm{v})$	$10 \times$ TBS
	$0.1 \%(\mathrm{v} / \mathrm{v})$	Tween 20
		5% milk powder dissolved in TBS-T

3.9. Buffers and solutions for X-ChIP and dTALE-ChAP

3.9.1. X-ChIP

Phosphate BufferMixed to pH 7 in the final solution		$\left[200 \mathrm{mM} \mathrm{NaH} \mathrm{P}^{\text {PO}} 4\right.$
Mixed to pH 7 in the final solution		200 mM Na 2 HPO 4
MC buffer	10 mM	phosphate buffer
	50 mM	NaCl
	100 mM	sucrose
Master-M-Buffer	10 mM	phosphate buffer
	100 mM	NaCl
	10 mM	B-mercaptoethanol
	Roche cOmplete ${ }^{\text {TM }}$ Tablets EDTA free, 1 tablet/50 ml	
M1 Buffer	$15 \mathrm{ml} / 130 \mathrm{ml}$	2-methy-2-4-pentanediol
	$115 \mathrm{ml} / 130 \mathrm{ml}$	Master-M-Buffer
M2 Buffer	10 mM	MgCl_{2}
	0.5 \%	Triton X-100
M3 Buffer	100\% Master-M-Bu	

3.9.2. dTALE-ChAP

IP Dilution buffer	16.7 mM	Tris-HCl pH 8
	1.2 mM	EDTA pH 8
	167 mM	NaCl
	1.1 \%	NP40 IGEPAL CA630
	Plant Protease Inhibitor Roche complete without EDTA (Sigma Aldrich) 1 tablet per 50 ml	
Beads Washing buffer	20 mM	Tris-HCl pH 8
	150 mM	NaCl
	2 mM	EDTA pH 8
	1 \%	NP40 IGEPAL CA630
	Plant Protease Inhibitor Roche complete without EDTA (Sigma Aldrich) 1 tablet per 50 ml	
UTU	6 M	Urea
	2 M	Thiourea
	Solved in 10 mM Tris-HCl pH 8	
Reduction buffer	6.5 mM	DTT
Alkylation buffer	27 mM	iodoacetamide

3.9.3. FASP Buffers

UA	8 M Solved in 0.1 M Tris- HCl pH 8.5
UB	8 M Solved in 0.1 M Tris- HCl pH 8
ABC	0.05 M iodoacetamide in UA

3.10. Plant Growth conditions

Liquid culture in Phytochamber	constant light
Arabidopsis thaliana	$22^{\circ} \mathrm{C}, 80 \mathrm{rpm}$
1/2 MS plates in Percival	$\begin{aligned} & 16 \mathrm{~h} \text { light } \\ & 22^{\circ} \mathrm{C} \end{aligned}$
Greenhouse	
Arabidopsis thaliana	16 h light $18^{\circ} \mathrm{C}$ day / $15^{\circ} \mathrm{C}$ night 55-60 \% humidity
Nicotiana benthamiana	14 h light
	$23^{\circ} \mathrm{C}$ day $/ 20^{\circ} \mathrm{C}$ night 60 \% humidity

3.11. Machines

Thermomixer 5436
Mixer Uzusio VTX 3000L
Micro Centrifuge
Centrifuge 5417 R
SILAMAT® ${ }^{\text {S }} 6$
Incubator Inova 44
Centrifuge 5810 R
SpeedVac
CFX384 ${ }^{\text {TM }}$ Real-Time System PeqStar96 thermocycler
E220 evolution
Sorvall RC6+ centrifuge
Unimax 1010 shaker
Rotating wheel
MR Hei-Mix
PowerPac ${ }^{\text {TM }}$ Basic
S@femate 1.2
Ultrospec 3100 pro
NN-CS894
Rollordrum ${ }^{\text {™ }}$
Amersham Imager 600
Eclipse 90 i
TCS SP8
Perfect Blue ${ }^{\text {TM }}$ Gelsystem

Eppendorf
LMS
Carl Roth
Eppendorf
ivoclar vivadent ${ }^{\circledR}$
New Brunswick Scientific
Eppendorf
Heraeus Instruments
Bio-Rad
VWR
Covaris
Thermo Fisher Scientific
Heidolph
LABINCO
Heidolph
Bio-Rad
BIOAIR
Amersham Biosciences
Panasonic
New Brunswick Scientific
GE
Nikon
Leica Microsystems
Peqlab

3.12. Software

ImageJ
ApE - A plasmid editor Microsoft Office 16.16
Adobe Reader IX
Adobe Illustrator CC2018
Leica Application Suite X
Leica Application Suite AF Lite

Wayne Rasband, National Institutes of Health
M. Wayne Davis

Microsoft Corporation
Adobe Systems Software Ireland Limited
Adobe Systems Software Ireland Limited
Leica Microsystems GmbH
Leica Microsystems GmbH

3.13. Online resources

PubMed and Blast
TAIR
ARAPORT
PlantPan2
PANTHER
COGE browser
https://www.ncbi.nlm.nih.gov/
https://www.arabidopsis.org/
https://www.araport.org/
http://plantpan2.itps.ncku.edu.tw/
http://go.pantherdb.org/webservices/go/overrep.jsp
https://genomevolution.org/coge/

3.14. External devices

GATC- Biotech (Germany)

4. Methods

4.1. Molecular-biological methods

4.1.1. Preparation of competent cells

4.1.1.1. Preparation of chemically competent Escherichia coli cells

Competent cells were produced based on Hanahan (1983); Hanahan, Jessee, and Bloom (1991). Cells of a glycerol stock were stroked out on a LB-plate and incubated on $37^{\circ} \mathrm{C}$ over night. 5 ml of LB liquid media were inoculated with a colony of bacteria from the plate and incubated on $28^{\circ} \mathrm{C}$ for 6 h .400 ml SOB was inoculated with 1 ml of the pre-culture and kept on $25^{\circ} \mathrm{C}$ until $\mathrm{OD}_{600} 0.45-0.55$. The culture was cooled down on ice cold water for 15 min and centrifuged ($2500 \mathrm{~g}, 10 \mathrm{~min}, 4^{\circ} \mathrm{C}$). The pellet was resuspended in 40 ml RF1 and kept for 1 h on ice water. After the incubation the culture was centrifuged $\left(2500 \mathrm{~g}, 10 \mathrm{~min}, 4^{\circ} \mathrm{C}\right)$. The pellet was resuspended in 8 ml RF2 and kept for additional 15 min on ice cold water. The cells were aliquoted in $50 \mu \mathrm{l}$ and immediately frozen in liquid nitrogen. The cells were tested for resistance against Ampicillin, Kanamycin, Spectinomycin and Gentamycin was tested. In addition, the transformation efficiency was determined by transformation of pUC19 DNA. The cells were stored on $-80^{\circ} \mathrm{C}$.

4.1.1.2. Preparation of chemically competent Agrobacterium tumefaciens cells

Cells of a glycerol stock were stroked out on LB (Rif/Gent) and were incubated on $28^{\circ} \mathrm{C}$ for 2 days. 5 ml LB (Rif/Gent) was inoculated with one colony and kept over-night at $28^{\circ} \mathrm{C} .150 \mu \mathrm{l}$ of the over-night culture were transferred into 150 ml LB media and incubated on $28^{\circ} \mathrm{C}$ until $\mathrm{OD}_{600} 0.5-0.8$. The culture was cooled on ice cold water for 15 min . Afterwards it was centrifuged for $5 \min \left(4000 \mathrm{~g}, 4^{\circ} \mathrm{C}\right)$. The pellet was resuspended in 100 ml ice cold $0.15 \mathrm{M} \mathrm{CaCl}_{2}$ and centrifuged for $5 \mathrm{~min}\left(4000 \mathrm{~g}, 4^{\circ} \mathrm{C}\right)$. The pellet was resuspended in 10 ml 20 mM CaCl 2 . The cells were distributed into 100μ l aliquots that were frozen immediately in liquid nitrogen and stored on $-80^{\circ} \mathrm{C}$.

4.1.2. Transformation of chemically competent cells

4.1.2.1. Transformation of chemically competent Escherichia coli cells

$50 \mu \mathrm{l}$ aliquots of cells was thawed on ice. 0.1-1 $\mu \mathrm{g}$ of DNA was added. The cells were incubated on ice for 15 min . Afterwards, a heat shock of $42^{\circ} \mathrm{C}$ was applied for 1 min . After the heat shock, the cells were kept on ice for additional 10 min .1 ml of LB was added and the cell were incubated for 1 h at $37^{\circ} \mathrm{C}$ on a shaker. The cells were centrifuged (30 s , full speed). The supernatant was discarded and the pellet was resuspended in the remaining supernatant. The cells were stroked out on a LB plate with the respective antibiotics and grown over night at 37 ${ }^{\circ} \mathrm{C}$.

4.1.2.2. Transformation of chemically competent Agrobacterium tumefaciens

1-5 $\mu \mathrm{g}$ of vector DNA was added into an aliquot of cells which was thawed on ice. After 15 min of incubation, the cells were transferred for 5 min into liquid nitrogen and 5 min on $37^{\circ} \mathrm{C}$. For recovery, the cells were kept for 5 min on ice. Then 1 ml LB media was added and the cells were placed on a rotating wheel at $28^{\circ} \mathrm{C}$ for $2-4 \mathrm{~h}$. The cells were pelletized for 30 s at full speed and stroked out on a LB agar plate with antibiotics. The cells were grown on $28^{\circ} \mathrm{C}$ for 2 days.

4.1.3. Verification of the Agrobacterium tumefaciens transformation

To verify a successful transformation of Agrobacterium tumefaciens, the transformed vector DNA was extracted by alkaline lysis (see 4.1.5.1). 5μ l of the extracted vector DNA were retransformed into Escherichia coli (see 4.1.2.1). Subsequently the vector DNA was extracted from the Escherichia coli cells (see 4.1.5.1) and analyzed by enzymatic restriction (see 4.1.6).

4.1.4. Generation of bacterial glycerol stocks

For long time storage of Escherichia coli and Agrobacterium tumefaciens cells glycerol stocks were generated and stored at $-80^{\circ} \mathrm{C}$. For an over-night culture 3 ml of LB media was inoculated, with $300 \mu \mathrm{l}$ of a cell culture and kept on a rotating wheel (Agrobacterium
tumefaciens $28^{\circ} \mathrm{C} /$ Escherichia coli $37^{\circ} \mathrm{C}$). The next day, $800 \mu \mathrm{l}$ of the cell culture were mixed with 1 ml autoclaved glycerol (60%) and immediately frozen in liquid nitrogen.

4.1.5. Extraction of nucleic acids

4.1.5.1. Extraction of plasmid DNA (alkaline lysis)

5 ml LB media with the respective antibiotics was inoculated with a bacterial colony and incubated overnight on a rotating wheel at $37{ }^{\circ} \mathrm{C} .2 \mathrm{ml}$ of the culture were pelletized (30 s , $14000 \mathrm{rpm})$. The supernatant was discarded and additional 2 ml of the cell culture were pelletized on top of the pellet. The pellet was resuspended in $300 \mu \mathrm{l}$ Mini 1 solution by vortexing. $350 \mu \mathrm{l}$ Mini 2 solution was added and the tube was inverted 4 times. $350 \mu \mathrm{I}$ Mini 3 solution was added and the tubes were inverted for additional 4 times. The tubes were centrifuged (10 min , full speed). The supernatant was transferred into a new tube and mixed with $500 \mu \mathrm{l}$ chloroform isoamyl alcohol (24:1) by vortexing. The tubes were centrifuged (full speed, 10 min). After centrifugation $900 \mu \mathrm{l}$ of the upper phase was mixed with ice cold isopropanol and inverted 4 times. The tubes were incubated for 20 min at $-20^{\circ} \mathrm{C}$. The precipitated DNA was pelletized (full speed, $15 \mathrm{~min}, 4^{\circ} \mathrm{C}$). The DNA pellet was washed two times with cold ethanol ($70 \%(\mathrm{v} / \mathrm{v})$). The pellet was air dried at room temperature for 15 min and resuspended in $50 \mu \mathrm{MQ}$. The resuspended DNA was heat treated $65^{\circ} \mathrm{C}$ for 10 min to deactivate DNase.

4.1.5.2. Extraction of plasmid DNA (midi prep)

To extract plasmid DNA in higher purity and quantity, the extraction was executed with the GeneJET Gel Extraction Kit (Thermo Fisher Scientific) according to the kits manual.

4.1.5.3. Extraction of RNA from Arabidopsis thaliana seedlings

The plant tissue was frozen in liquid nitrogen. 60 mg of each sample was transferred into a 1.5 ml micro reaction tube together with 2-4 heat sterilized glass beads. Each sample was placed three times on a silamat shaker for 8 s . Between the shaking, the samples were cooled in liquid
nitrogen. After sample disruption, the RNA was extracted with the RNeasy Plant Mini Kit (QIAGEN) after the manufacturer's instruction. Deviating from the manual, the elution step was done with 3 times 30μ l RNase free water.

4.1.5.4. Extraction of genomic DNA from Arabidopsis thaliana seedlings

150 mg of plant tissue was harvested and placed with 2-4 heat sterilized glass beads (1.251.65 mm) in 1.5 ml micro-reaction tube. The tubes were immediately placed in liquid nitrogen. The tissue was mechanically disrupted with a silamat shaker three times for 8 s . Between the shaking, the samples were cooled in liquid nitrogen. The grinded plant tissue was resuspended in $300 \mu \mathrm{l}$ Edwards buffer and incubated on $65^{\circ} \mathrm{C}$ for 10 min . The samples were centrifuged (10 min full speed). The supernatant was transferred into a new tube and the DNA was precipitated by adding of $300 \mu \mathrm{l}$ isopropanol. The samples were inverted 4 times and centrifuged (full speed, $30 \mathrm{~min}, 4{ }^{\circ} \mathrm{C}$). The pelletized DNA was washed 2 times with 80% ethanol. And dissolved in $50 \mu \mathrm{l} M \mathrm{M}$. Genomic DNA was stored on $-20^{\circ} \mathrm{C}$.

4.1.6. Restriction of plasmid DNA

For the restriction of plasmid DNA restriction enzymes by Thermo Fisher Scientific were used according to the manufactures manual. $1 \mu \mathrm{l}$ of vector DNA were mixed with $0.2 \mu \mathrm{l}$ of enzyme and 2μ l of the respective buffer. This mixture was diluted with $17.5 \mu \mathrm{l}$ of MQ and kept on 37 ${ }^{\circ} \mathrm{C}$ for 1 h . The conditions for enzymatic digestions with more than one enzyme were calculated with the manufacturer's online tool:
https://www.thermofisher.com/de/de/home/brands/thermo-scientific/molecular-biology/thermo-scientific-restriction-modifying-enzymes/restriction-enzymes-thermo-scientific/double-digest-calculator-thermo-scientific.html

4.1.7. DNase digestion after RNA extraction

All steps were performed at room temperature. DNase I (Thermo Fisher Scientific) was used with the included buffer. To the 90μ l of eluted RNA, 10μ l of buffer were added. 5 units of

DNase I were added to the reaction. The samples were mixed by inverting the tube four times. The samples were incubated for 1 h at $37^{\circ} \mathrm{C} .100 \mu$ l of isopropanol were added and the samples were stored over night at $-20^{\circ} \mathrm{C}$. The next day the RNA was pelletized (30 min , full speed, 4 ${ }^{\circ} \mathrm{C}$). The pellet was washed 2 times with $500 \mu \mathrm{l}$ ethanol 80% (diluted in DEPC water). Between the washing steps the samples were centrifuged (10 min , full speed, $4^{\circ} \mathrm{C}$). After the second washing step, the liquid was removed with a pipet tip. After an additional centrifugation of 5 \min the remaining liquid was removed. The pellet was air dried for 2 min and resuspended in 30μ l preheated DEPC water ($65^{\circ} \mathrm{C}$). The samples were incubated for 1 h on ice. After and 3 min incubation step on $65^{\circ} \mathrm{C}$ the samples were stored at $-80^{\circ} \mathrm{C}$.

4.1.8. Reverse transcription, generation of cDNA

200-450 ng of RNA were diluted with DEPC water to a total volume of $12.5 \mu \mathrm{l} .1 \mu \mathrm{l}$ of oligodT primer was added. The samples were mixed and incubated for 5 min at $70{ }^{\circ} \mathrm{C}$. After a incubation of 1-2 min on ice $6.5 \mu \mathrm{l}$ of master mixed were added to the sample. The master mix was pre-prepared of $4 \mu \mathrm{I}$ RT buffer (Thermo Fisher Scientific), $2 \mu \mathrm{INNTPs}(10 \mathrm{mM}$) and $0.5 \mu \mathrm{I}$ ribonuclease inhibitor (Ribolock Thermo Fisher Scientific). The samples were mixed with the master mix and incubated for 5 min on $37^{\circ} \mathrm{C}$. After $1-2 \mathrm{~min}$ recovery on ice $1 \mu \mathrm{l}$ reverse transcriptase (Thermo Fisher Scientific) was added and the samples were kept for 60 min at $42^{\circ} \mathrm{C}$ and 10 min at $70^{\circ} \mathrm{C}$. The cDNA was stored at $-20^{\circ} \mathrm{C}$.

4.1.9. Polymerase Chain Reaction (PCR)

According to the purpose of the PCR product different polymerases were used. For analytical PCRs the Taq Polymerase of New England Biolabs was used. For the amplification of DNA fragments that were used for cloning the KOD Hot Start DNA Polymerase (Novagen) was used due to its high fidelity. The thermocycler conditions and the composition of the reaction mix were assigned to the respective PCR reaction individually.

4.1.10. Quantitative Reverse Transcriptase and quantitative PCR (qRT-PCR \& qPCR)

For all qPCR and qRT-PCR approaches the Thermo Scientific Maxima ${ }^{\circledR}$ SYBR Green Master Mix was used according to the manufacturers manual. Deviating from the instructions, the reaction volume was halved. The proportions of the components were not changed. Quality of the amplificated fragments was verified with a melting curve. The data was evaluated after the $\Delta \Delta C t$ method. The primer efficiencies were assessed, but not included in the calculation.

4.1.11. Cloning of dTALEs

All dTALE vectors used in this work were cloned and provided in the group of Prof. Dr. Thomas Lahaye (Dr. Robert Morbitzer, University of Tuebingen, General Genetics).

4.1.12. Cloning by homologous recombination

Cloning by recombination was done as described by Jacobus and Gross (2015). The insert was amplified by PCR with primers, that were designed to make a 20 bp overlap complementary to the backbone. A linear fragment of the backbone was amplified with primers that made a 20 bp overlap into the insert. The linear DNA fragments were purified by agarose gel electrophoresis and transformed into Escherichia coli.

4.1.13. Gateway ${ }^{\text {TM }}$ Cloning

Gateway ${ }^{\top M}$ Cloning is a cloning method based on the recombination system of phage λ. The method was invented and is sold by Invitrogen. The basis of Gateway ${ }^{\top M}$ Cloning are the attachment sites and two proprietary enzyme mixes (LR and BP Clonase).

4.1.13.1. pENTR/D-TOPO ${ }^{\circledR}$ Cloning

The pENTR reaction was done to generate an entry vector for Gateway ${ }^{\top M}$ Cloning. The insert, that should be implemented into the entry vector, was amplified in a PCR. The primers were designed to attach a CACC sequence to the 5^{\prime} end of the insert. The pENTR reaction was done
as described by the manufacturer. $1 \mu \mathrm{l}$ of the PCR mix was mixed with $0.5 \mu \mathrm{l}$ of salt solution and $0.5 \mu \mathrm{l}$ pENTR/D-TOPO ${ }^{\circledR}$ cloning mix. The complete reaction was incubated at room temperature and subsequently placed on ice. The complete reaction was transformed into Escherichia coli as described in 4.1.2.1.

4.1.13.2. LR-Reaction

The LR-Reaction was used to generate an expression clone based on an entry clone. The reaction was done as described in the manufacturer's manual, only the volumina were scaled down. $0.5 \mu \mathrm{l}$ of Entry clone, destination vector, buffer, $\operatorname{Tris} / \mathrm{HCl}(10 \mathrm{mM}, \mathrm{pH} 8)$ and LR Clonase were mixed and incubated over night at room temperature. The complete reaction was transformed into Escherichia coli as described in 4.1.2.1.

4.1.13.3. BP-Reaction

The reaction was done as described in the manufacturer's manual, only the voluminal were scaled. 2μ l of PCR product, 1μ lpDONR Vector, 2μ I BP Clonase Buffer and 3μ I TE Buffer (pH8) were mixed and incubated over night at room temperature. The reaction was heat treated for 10 min at $60^{\circ} \mathrm{C}$. $5 \mu \mathrm{l}$ of the reaction were transformed into Escherichia coli as described in 4.1.2.1.

4.1.14. Denaturing extraction of nuclear proteins of A. thaliana seedlings

Proteins were purified from nuclei as described in in the dTALE-ChAP protocol. The GFP-tagged proteins were precipitated with a GFP-Trap ${ }^{\circledR}$ _A. The proteins were eluted as described in the manufacturer's instructions:
(https://www.chromotek.com/fileadmin/user_upload/pdfs/Manuals/GFP-
Trap A manual .pdf).

The extracted proteins were subsequently analyzed by Western blot.

4.2. Cell-biological methods

4.2.1. Cultivation of Escherichia coli

For the cultivation on LB plates, Escherichia coli cells in solution were stroked out either with glass beads or a pipet tip. Solid LB media was used with the respective antibiotic. The plates were incubated on $37{ }^{\circ} \mathrm{C}$ over-night. The next day, the plates were stored at $4{ }^{\circ} \mathrm{C}$ for a maximum of 14 days.

For the cultivation in liquid LB media, a single colony, $5 \mu \mathrm{l}$ of cells in liquid culture or a part of a glycerol stock in the size of a half pea, was transferred into a glass tube with 5 ml LB with the respective antibiotics. The glass tube was kept overnight on $37^{\circ} \mathrm{C}$ on a rotating wheel. The next day, the glass tubes were transferred on $4{ }^{\circ} \mathrm{C}$ for short time storage.

4.2.2. Cultivation of Agrobacterium tumefaciens

For the cultivation on LB plates, Agrobacterium tumefaciens cells in solution were stroked out either with glass beads or a pipet tip on solid LB plates with the respective antibiotics. The plates were incubated for 2 days on $28^{\circ} \mathrm{C}$. After the incubation, the plates were stored at $4^{\circ} \mathrm{C}$ for a maximum of 14 days.

For the cultivation in liquid LB media, a single colony, 10μ l of cells in liquid culture, or a peasized part of a glycerol stock was transferred into 5 ml of LB media. The cultures were incubated over-night on $28^{\circ} \mathrm{C}$ on a rotating wheel. The next day, the tubes were transferred on $4^{\circ} \mathrm{C}$ for short time storage.

4.2.3. Transformation of Arabidopsis thaliana plants

5 ml LB with the respective antibiotics were inoculated with Agrobacterium tumefaciens. The culture was incubated over-night at $28^{\circ} \mathrm{C}$ on a rotating wheel. 400μ of this pre-culture was transferred into 200 ml of LB media. For the 200 ml culture, the antibiotic concentration was reduced by half. The next day, the big culture was centrifuged ($4000 \mathrm{~g}, 20 \mathrm{~min}, 4^{\circ} \mathrm{C}$). The pellets were resuspended in infiltration media. Flowers of Arabidopsis thaliana were dipped into the bacterial solution and kept in a tray with a hood over-night. Plants were dipped 3
times with of seven days in between. The seeds of the transformed plants were collected and sawed for BASTA selection. BASTA applied by spraying on 10 days old seedlings. BASTA was applied 3 times with a recovery phase of three days in between the treatments.

4.2.4. Transient expression of proteins in Nicotiana benthamiana

5 ml selective LB media was inoculated with Agrobacterium tumefaciens. The culture was incubated over-night at $28^{\circ} \mathrm{C}$. The next day Nicotiana benthamiana plants were watered and kept in a tray with a hood 2-4 h prior to the infiltration. 0.5 ml of the pre-culture was used, to inoculate 3 ml of LB media. The culture was kept for 4 h at $28^{\circ} \mathrm{C}$. The cells were pelletized (15 $\mathrm{min}, 4000 \mathrm{~g}, 4^{\circ} \mathrm{C}$. The pellets were resuspended in 1 ml pre-cooled infiltration media. The resuspended cells were mixed with the same volume of p19, in case of co-transfection the cells were mixed in equal volumes. The infiltration solutions were kept for at least 1 h on ice. $500 \mu \mathrm{l}$ of Agrobacterium tumefaciens infiltration solution was infiltrated into a Nicotiana benthamiana leaf. Protein expression was analyzed by fluorescent confocal microscopy after 2-3 days.

4.2.5. Fluorescence Activated Cell Sorting Analysis of Protoplasts

Protoplasts were removed of the 96 well plate after promoter reporter assays and collected in in 1.5 ml micro reaction tube. The proportion of fluorescing protoplasts in 5000-10000 total cells was counted in a CytoFLEX (Becton Dickinson) FACS machine.

4.2.6. Microscopy

4.2.6.1. Microscopical analysis of transiently transformed Protoplasts

The transiently transformed protoplasts were pipetted with a cut pipet tip onto a microscope slide. For DEX-treatment, $10 \mu \mathrm{M}$ DEX, solved in 0.1% ethanol was added before cover slip was placed carefully on the sample. The samples were analyzed on a Nikon Eclipse 90i fluorescence microscope.

4.2.6.2. Microscopical analysis of transiently transformed tobacco leaves

Leave disks were extracted with the backside of a 5 ml pipet tip of transiently tobacco leaves a placed on a microscope slide. Either $10 \mu \mathrm{M}$ DEX solution or MQ for mock treatment was dropped onto the leave. The sample was covered with a coverslip and excessive air was removed by pressing the coverslip onto the leave. By pressing the coverslip, the DEX solution was infiltrated into the intercellular space. Pictures were taken with a Leica TCS SP8 confocal microscope.

4.2.6.3. Microscopical analysis of transgenic Arabidopsis thaliana roots

The seedlings were grown on $1 / 2$ MS plates. The seedlings were carefully removed from the plate after 10-14 days. The seedlings were placed into a 1.5 ml micro-reaction tube with 10 $\mu \mathrm{M}$ DEX solution (0.1 \% Ethanol). After the incubation time of 1 h , the seedlings were transferred on a microscopical slide. The roots were cut and the rest of the seedling was discarded. Pictures were taken with a Leica TCS SP8 confocal microscope.

4.3. Physiological methods

4.3.1. Seed surface sterilization

Seeds were placed in a 1.5 ml micro reaction tube. The tube was placed in an exicator with an open lid. In the exicator, 50 ml of 12 \% sodium hypochlorite was mixed with 1.5 ml of hydrochloric acid (37%). The seeds were exposed to chloric gas for 6 h . The valve of the exicator was opened. The next day, the lid of the reaction tubes was closed.

4.3.2. Cultivation of Arabidopsis thaliana

4.3.2.1. Cultivation of Arabidopsis thaliana on soil

The seeds were resuspended in $0.1 \%(\mathrm{w} / \mathrm{v})$ phytoagar and stratified at $4^{\circ} \mathrm{C}$ for 24 h . The next day the seeds were transferred with a pipet on soil. The trays were covered with a hood for the first week. The Arabidopsis thaliana plants were sowed on soil were all grown in the green house.

4.3.2.2. Cultivation of Arabidopsis thaliana on $1 / 2$ MS plates

The surface sterilized seeds were transferred with an autoclaved tooth pick on $1 / 2 \mathrm{MS}$ plates. The media contained $5 \mu \mathrm{~g} / \mathrm{ml}$ BASTA for selection purposes. The plates were placed for 24 h on $4^{\circ} \mathrm{C}$ in darkness. The next day the plates were transferred into a plant incubator $\left(22^{\circ} \mathrm{C}, 16\right.$ h light). After 10-14 days, the plants were used for further experiments.

4.3.2.3. Cultivation of Arabidopsis thaliana in liquid media

Arabidopsis thaliana seedlings were grown in liquid media to be labeled with ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$. The experimental procedure was adapted from Dautel (2016); Dautel, Wu, Heunemann, Schulze, and Harter (2016); Kierszniowska, Seiwert, and Schulze (2009). Surface sterilized seeds, were placed in 1 ml of liquid media, either containing ${ }^{14} \mathrm{~N}$ or ${ }^{15} \mathrm{~N}$ as nitrogen source. The tubes were kept over-night on $4{ }^{\circ} \mathrm{C}$. The next day, the seeds were resuspended and transferred in a 250 ml Erlenmeyer flask with 50 ml liquid media with the corresponding nitrogen isotope. BASTA was added to a final concentration of $5 \mu \mathrm{~g} / \mathrm{ml}$. The seedlings were kept on a shaker (80 rpm) in constant light $22^{\circ} \mathrm{C}$. After 10 days, the media was exchanged into media without BASTA. Every treatment/ sample was labeled reciprocally. Unlabeled approaches were performed the same way, simply ${ }^{14} \mathrm{~N}$ was used as nitrogen source.

4.3.3. Cultivation of Nicotiana benthamiana

Seeds were grown on soil for 14 days. The 14 day old seedlings were separated into single pots. The Nicotiana benthamiana plants were grown for 2-3 additional weeks in the green house. The conditions for tobacco were set to $23^{\circ} \mathrm{C}$ day, $20^{\circ} \mathrm{C}$ night, 14 h light, 60% humidity.

4.3.4. Protoplast transformation for microscopy

Protoplast transformation for microscopy was executed by the transformation unit of the ZMBP as described in Schutze, Harter, and Chaban (2009).

4.3.5. Protoplast transformation for promoter reporter assays

Arabidopsis thaliana cell culture protoplasts were provided by the plant transformation unit of the ZMBP (University of Tuebingen). The protoplast transformation was done as described in Mehlhorn, Wallmeroth, Berendzen, and Grefen (2018).

4.3.6. Promoter reporter assays

The promoter-reporter assays were performed as described in Wallmeroth, Anastasia, Harter, Berendzen, and Mira-Rodado (2017). For the treatments, 10 mM DEX was solubilized in 100 $\%$ ethanol and diluted with MQ to $10 \mu \mathrm{M} / 100 \mu \mathrm{M}$ treatment solution. As control, 0.1% or 1 \% ethanol solution was used. Flg22 was diluted in MQ (100 nM).

4.4. Biochemical methods

4.4.1. Agarose gel electrophoresis

1.5 \% of agarose was diluted in 1x TAE buffer. The solution was cooked in a microwave. After the gel was cooled down to approximately $60^{\circ} \mathrm{C}$, it was poured into a gel chamber.

4.4.2. Extraction of DNA-fragments from agarose gels

For the extraction of DNA-fragments from agarose gels, the GeneJET Gel Extraction Kit (Thermo Fisher Scientific) was used according to the manufacturer's instructions.

4.4.3. Measurement of nucleic acid concentration in solutions

The concentration of nucleic acids in solution was measured with a NanoDrop 1000 Spectrophotometer (Thermo Scientific). For that, the NanoDrop was initialized with $1.5 \mu \mathrm{l}$ of MQ and subsequently blanked with the buffer, in which the nucleic acids were dissolved. Each sample was measured three times. The average was used for calculations. The 260/280 nm ratio was used to check for protein impurifications (values should be over 1.8 (DNA) and 2.0 (RNA)). The 260/230 nm ratio was used to check for impurification of solvents, salts or carbohydrates (values should be >2).

4.4.4. DNA-sequencing

Sequencing of vector DNA was done by GATC Biotech AG. The samples were prepared as requested by the service provider.

4.4.5. SDS-Polyacrylamide-Gel-Electrophoresis (SDS-PAGE)

SDS-PAGE was used to separate proteins according to their size in denatured conditions. The SDS-PAGE system of Bio-Rad was used to pour SDS gels of 1 mm thickness. The gels were placed in the running chamber. After the chamber was filled with SDS Running Buffer, the pockets were washed with a syringe. The samples were loaded with a Hamilton syringe. $5 \mu \mathrm{l}$ of Spectra ${ }^{\text {TM }}$ Multicolor Broad Range protein ladder (Thermo Scientific) was used as size standard. The gels were run for 30 min at 100 V until the running band has reached the separation gel. Then the power was increased to 120 V .

4.4.6. Coomassie staining

To stain total protein the SDS-gels were stained with Coomassie brilliant blue R250. The gels were placed in staining solution on a shaker (30 min , room temperature). The staining solution was removed and the gels were incubated in destaining solution until the protein bands got visible. The destainer solution was exchanged three times. After destaining the gels were placed between two layers of Cellophan (Roth) and tried in a hood. Finally, the gels were scanned. Complete transfer of the proteins onto the membrane in the Western Blot (4.4.7) was verified by Coomassie staining of the gel after blotting.

4.4.7. Western Blot

The proteins were transferred by a wet blot onto a PVDF membrane (Immobilon-P®, Merck). This was done in the Bio-Rad western blot chamber. The membrane was initialized with methanol and paced with the gel, sandwiched between a layer of Whatman paper (GEhealthcare) between two sponges. The transfer was executed at $4{ }^{\circ} \mathrm{C}$, either at 300 mA for 1.5 h or 65 mA overnight.

4.4.8. Immunodetection

The transferred proteins were detected with specific antibodies via luminometric measurements on the membrane. The membrane was blocked with 5 \% milk powder dissolved in TBS-T. The blocking was done at $4{ }^{\circ} \mathrm{C}$ overnight on a shaker. After blocking the membrane was washed three times with TBS-T for 10 min . Then the first antibody was incubated for 1 h at $4^{\circ} \mathrm{C}$ on the shaker. The antibody was removed and the membrane washed three times with TBS-T for 10 min . The second antibody was applied for 1 h at $4^{\circ} \mathrm{C}$ on a shaker. The membrane was washed three times with TBS-T for 10 min . Then the membrane was stored in TBS-T at $4{ }^{\circ} \mathrm{C}$ until detection. Detection was done using the Amersham ${ }^{\text {TM }} E^{\prime 2} L^{\text {TM }}$ Prime Western Blotting Detection Reagent (GE-Healthcare) according to the manufacturer's instructions in a CCD camera. Exposure in the camera was set to 1 min .

4.5. Bioinformatical methods

4.5.1. Prediction of transcription factor binding sites

PlantPan2 was accessed at http://plantpan2.itps.ncku.edu.tw/. The genomic sequence of the promoter was downloaded from https://www.arabidopsis.org/ and pasted into the online search tool.

4.5.2. Evaluation of MS data

MS data was evaluated by Prof. Dr. Waltraud Schulze (University of Hohenheim) as described in Pertl-Obermeyer et al. (2016).

4.5.3. Over-representation tests

For GO Term enrichment analysis, the online tool was accessed at: https://www.arabidopsis.org/tools/go term enrichment.jsp

The GO Term enrichment tool takes the genes, associated to the peptides that were identified in the dTALE-ChAP and compares the frequency of GO terms in the sample set, with the frequency of the same set of GO terms in the reference set. As reference set the Arabidopsis thaliana whole genome set is used. By this comparison it is possible to identify over- or underrepresented terms in the sample set.

4.6. X-ChIP

The Arabidopsis thaliana seedlings were treated directly in the media. DEX $10 \mu \mathrm{M}$ (final concentration), mock (0.1 \% ethanol final concentration) and/ or flg22 (100 nM final concentration) were used. The seedlings were kept in the Erlenmeyer flasks on a shaker at 80 rpm. After 1 h the seedlings were removed from the media and washed 2 times in MQ. Excessive water was removed by gently squeezing the seedling balls on a paper towel. The further procedure was performed as described in Hecker (2016). The tissue was fixed with 1 \% formaldehyde in MC buffer. Vacuum was applied for $3 \times 1 \mathrm{~min}$ and $1 \times 50 \mathrm{~min}$. After fixation the tissue was frozen in liquid nitrogen. Tissue was grinded and ran through Miracloth (Merck Millipore) for 3 times. The pellet was washed several times. Chromatin was sheared to 200 500 bp fragments with a S220 focused-ultrasonicator (Covaris). An aliquot of every sample was saved on $-80^{\circ} \mathrm{C}$ before the precipitation was done. The dTALE-Chromatin complexes were precipitated with 2.5μ a anti GFP antibody (Ab290, Abcam). To capture the precipitated proteins $40 \mu \mathrm{l}$ of protein Agarose beads (Santa Cruz Biotechnology sc-2001) were incubated in the sample for 6 h. After proteolytic digestion with ProteinaseK over night, the Precipitated DNA was recovered with the Mini Elute PCR Purification Kit (Qiagen). DNA was also recovered from the input samples that were aliquoted prior to precipitation. Except the volume of ERC buffer that was adapted to higher sample volume, the kit was used as described in the manufacturer's instructions. The recovered DNA was eluted in 35μ l of elution buffer. The pFRK1 levels were determined by qPCR. The qPCR data was evaluated as \% of input.

4.7. dTALE-ChAP

The dTALE-ChAP protocol is based on protocol for nuclei protein isolation provided by Prof. Dr. Gordon Simpson (University of Dundee). It was further optimized for the dTALE-ChAP and used as described below. The protocol for sample preparation for MS was kindly provided by Prof. Dr. Waltraud Schulze (University of Hohenheim).

4.7.1.1. Growth and treatment of Arabidopsis thaliana seedling

The seedlings were grown as described in 4.3.2.3. For dTALE-ChAP trial 1 just ${ }^{14} \mathrm{~N}$ media was used. For trial 2 and $3{ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$ was used reciprocally as described. In trial 1 treatments were done as described in the X-ChIP protocol. In trial 2 and 3 the DEX treatment was done as described in the X-ChIP and with 30 min delay flg22/ mock was added into the media (1 h DEX treatment, 30 min flg 22 treatment).

4.7.1.2. Formaldehyde crosslinking

After the treatment the seedlings were washed three times in $M Q$ and the vacuum infiltrated with 1% formaldehyde in MC buffer. The vacuum was applied $3 \times$ for 1 min and 20 min continuously. The vacuum was gently removed and the cross-linking reaction was quenched by adding 2 M Glycine solution to the final concentration 0.125 M and application of vacuum for further 5 min . The formaldehyde treated seedlings were washed in water in a big beaker and, after removing the excess of water, were frozen in liquid nitrogen. Seedlings were ground in liquid nitrogen into fine powder and stored at $-80^{\circ} \mathrm{C}$ until nuclei isolation.

4.7.1.3. Nuclei isolation

Flg22 treated and non-treated tissue was mixed in equal proportions (except for trial 1 were no labeling was done). ${ }^{14} \mathrm{~N}$ labeled, flg22 treated tissue was mixed with non-treated tissue labeled with ${ }^{15} \mathrm{~N}$ and vice versa. The grinded seedlings were distributed into 50 ml Falcon tubes. The Falcons were filled with seedling powder with 7.5-10 ml. The seedling powder was kept frozen all time until completely thawed in HONDA buffer. Three Falcon tubes were processed in parallel, the rest was stored in liquid nitrogen. The Falcon tubes with the resuspended seedling powder were stored on ice. After all Falcons tubes were processed, the
samples were ran through 2 layers of Miracloth (Merck Millipore) through a glass funnel into a new falcon. The Miracloth was equilibrated with HONDA buffer before it was placed in the funnel. The Miracloth was squeezed gently and rinsed in a 100 ml beaker with 50 ml of fresh HONDA buffer on ice. The extract of the beaker was rinsed through new two layers of Miracloth (pre-equilibrated with HONDA buffer). The Miracloth was squeezed gently on top of the funnel. The filtrates were distributed equally to six Falcon tubes. The Falcons tubes were filled up to 40 ml with HONDA buffer and inverted 4 times. The Falcons tubes were centrifuged (2000 g, $17 \mathrm{~min}, 4^{\circ} \mathrm{C}$). The supernatant was removed and the pellet resuspended in $2-5 \mathrm{ml}$ HONDA buffer. The six pellets of one sample were pooled into a new 50 ml Falcon tubes. The Falcon tube was filled with new 40 ml of HONDA buffer. The Falcon tube was inverted four times and centrifuged ($1500 \mathrm{~g}, 15 \mathrm{~min}, 4^{\circ} \mathrm{C}$). The washing step was repeated 2-3 times, until all green color of the pellet was removed.

4.7.1.4. Nuclei Lysis

The washed pellet was resuspended to a total volume of 4 ml with lysis buffer (including the pellet). The suspension was distributed to four milliTUBE 1 ml AFA Fiber (Covaris). The chromatin was sheared in a S220 focused-ultrasonicator (Covaris). (PIP120, Duty 5, cycle burst 200, duration 150). After the sonification Protein LowBind tubes (Eppendorf) were used. The samples were transferred into the 1.5 ml tubes and centrifuged ($16100 \mathrm{~g}, 15 \mathrm{~min}, 4^{\circ} \mathrm{C}$). The supernatants were pooled together into 15 ml Falcon tubes. The samples were diluted to 15 ml total volume by adding ChIP Dilution Buffer.

4.7.1.5. Immunoprecipitation

$20 \mu \mathrm{l}$ of GFP-Trap ${ }^{\circledR}$ _A was added per sample. (Beads pre-washed 3 times with Beads Washing Buffer). The beads were incubated in the sample over-night on $4^{\circ} \mathrm{C}$ on a rotating wheel. The next day, the beads were pelletized by centrifugation ($141 \mathrm{~g}, 3 \mathrm{~min}, 4^{\circ} \mathrm{C}$). It is important not to exceed centrifugal forces of 500 g , because the agarose beads can be damaged. The supernatant was carefully removed. The beads were resuspended in supernatant remains and pooled into a 15 ml falcon. The beads were washed 2 times with bead washing buffer and 2 times with bead washing buffer (without SDS). Between wash steps the beads were collected
by centrifugation ($400 \mathrm{~g}, 2 \mathrm{~min}, 4^{\circ} \mathrm{C}$). After the last washing step, as much supernatant as possible was removed with a pipet tip without removing the beads.

4.7.1.6. In solution trypsin digestion

The protocol for in solution trypsin digestion was provided by Prof. Dr. W. Schulze (University of Hohenheim). It was used in dTALE-ChAP trial 1 and 2.

All steps were done at room temperature to reduce unwanted derivatization of amino acid side-chains by denaturants. The samples were dissolved in a small volume of UTU. The smallest volume possible for the complete resuspension of the beads was used. The pH of the solution was verified to be pH 8 . The samples were incubated at room temperature for 30 min . Then they were sonicated in a water bath sonicater for 10 min . The beads were removed after centrifugation ($12000 \mathrm{~g}, 10 \mathrm{~min}$, room temperature). $2 \mu \mathrm{l}$ of reduction buffer were added. Then $2 \mu \mathrm{l}$ of alkylation buffer were added and the samples were incubated for 3 h at room temperature. $2 \mu \mathrm{l}(1 \mu \mathrm{~g})$ of Lys C were added and the samples were incubated for additional 3 h at room temperature. $0.8 \mu \mathrm{~g}$ of trypsin was added and the samples were incubated over night at $37^{\circ} \mathrm{C}$. The samples were centrifuged the next morning ($12000 \mathrm{~g}, 10$ min , room temperature), to remove any insoluble material. The samples were acidified with 2% trifluoroacetic acid (approximately $1 / 10$ volume) until pH 2 was reached. The samples were lyophilized in a Speed Vac (3-4 h) without heating. The samples were resolubilized, desalted with C_{18} stage tips and analyzed by Prof. Dr. Waltraud Schulze \& Dr. Xuna Wu (University of Hohenheim) via mass spectrometry as described in Pertl-Obermeyer et al. (2016).

4.7.1.7. Detergent removal and Protein Digestion by FASP

For dTALE-ChAP trial 3, the samples were purified by FASP. The FASP protocol was based on the publication of Wisniewski, Zougman, Nagaraj, and Mann (2009) and was modified by Liangcui Chu (Labratory of Prof. Dr. Waltraud Schulze, University of Hohenheim). After Immunoprecipitation the proteins were eluted from the beads as described in the manufacturer's instructions:

Trap A manual .pdf).

Aberrant to the manufacturer's instructions, no bromphenol-blue was used in the buffer. 250 $\mu \mathrm{l}$ of buffer was used per sample to elute the proteins. The $250 \mu \mathrm{l}$ were diluted with 2 ml of UA. The samples were ran over the size exclusion column in portions of 200μ l. Between the steps, the columns were centrifuged with 15 min at $14,000 \mathrm{~g}$. After the complete sample was applied on the column, the column was washed two times with 250μ UA. 150μ I of IAA solution was pipetted on the column. Columns were subsequently shaked with 600 rpm on a thermos-mixer for 1 min . Afterwards they were incubated in darkness for 30 min at room temperature. The column was washed two times with $150 \mu \mathrm{UA}$. Following it was washed 3 times with $150 \mu \mathrm{I} A B C$. Between washing it was centrifuged ($14,000 \mathrm{~g}, 15 \mathrm{~min}$). The column was transferred on a new collection tube. $50 \mu \mathrm{I}$ ABC was added (including 1.7 $\mu \mathrm{I}$ Trypsin). The columns were incubated over-night at room-temperature. The next day, the peptides were eluted 2 times with $40 \mu \mathrm{I}$ ABC (centrifugation $14,000 \mathrm{~g}, 10 \mathrm{~min}$). The Sample was acidified with 5-6 μ l of trifluoroacetic acid (10%) until pH 2 was reached. The eluted samples were desalted with C_{18} Stage Tips. Desalting was done as described in Szymanski, Kierszniowska, and Schulze (2013). MS analysis of the samples was done by Prof. Dr. Waltraud Schulze and Dr. Xuna Wu (University of Hohenheim) as described in Pertl-Obermeyer et al. (2016).

5. Results

5.1. Analysis of FRK1 Regulation

5.1.1. Induction of $p F R K 1$ with $\operatorname{flg} 22$

FRK1 is strongly induced in response to MAMPs like flg22. Flg22 is perceived via the receptor FLS2 which is located in the plasma membrane (Delphine Chinchilla, Bauer, Regenass, Boller, \& Felix, 2006). The flg22 signal is transduced via a MAP Kinase cascade into the nucleus and transcription of FRK1 is activated. Since FRK1 induction can be easily modulated by extracellular flg22 application and FRK1 is not expressed in the absence of flg22, FRK1 is an ideal gene to establish a method like the dTALE-ChAP. To determine the timepoint of the transcription start, when the transcription factors should be bound to the FRK1 promoter (pFRK1), the time from flg22 treatment till transcription activation was tested in a qPCR experiment. Arabidopsis seedlings were treated with flg22 and transcript levels were measured via qPCR with FRK1 and Actin2 specific primers (Figure 6).

Figure 6: Transcript accumulation of $\operatorname{FRK} 1$ is induced within $\mathbf{4 5} \mathbf{~ m i n}$ after DEX treatment Transcript levels of FRK1 were detected in A. thaliana seedlings after DEX treatment over time. Actin2 transcript levels were used for normalization. Error bars represent the standard deviation of three biological replicates.

It was possible to detect an elevated level of $F R K 1$ transcript 45 min after flg22 treatment. The detected transcript levels further increased until 60 min and 90 min . Mock treatment could not induce FRK1 expression. In addition, induction was not possible in fls2 Arabidopsis lines (Supplementary figure 3 B). Minor differences between the qPCR runs, constant Ct values for the reference primers and primer efficiencies between $84-97 \%$ in all three bio replicates validate the quality of the qPCR (Supplementary table 2 \& Supplementary figure 3).

Therefore, I estimated the time point of transcription initiation between 30 min and 45 min after the flg22 treatment.

5.2. The dTALE-ChAP Workflow

The main goal of the thesis was the development of a method, by which proteins can be identified, that differentially bind to p FRK1 in response to flg22. In the previous section it was determined how long the transcriptional activation of FRK1 by an extracellular flg22 signal took. In this section the workflow of the dTALE-ChAP is explained. This new in vivo method will be applied for the first time in higher eukaryotes such as plants.

By Chromatin Immuno-Precipitation (ChIP) approaches, it is assayed whether a protein binds to a target DNA sequence. Backward analysis to identify the proteome bound to a DNA sequence is not possible by ChIP. For this kind of analysis Chromatin Affinity Purification (ChAP) would be the method of choice. By ChAP, chromatin fragments are precipitated and the chromatin-bound proteins are analyzed by mass spectrometry. The pitfall of ChAP approaches is the need of a bait protein that is known to bind to area of interest. However, this is not always the case. The designer TALE-ChAP (dTALE-ChAP) is independent of a known binding protein (Figure 7).

For the dTALE-ChAP, dTALEs are used to precipitate the DNA region of interest. The dTALEs were designed to bind to p FRK1 and expressed in transgenic A. thaliana lines (Figure 7 1). The seedlings are grown in media containing ${ }^{14} \mathrm{~N}$ or ${ }^{15} \mathrm{~N}$ nitrogen isotopes. Because of an N terminal attached GR-receptor, the dTALEs are localized in the cytosol in the absence of DEX. pFRK1 is activated by flg22 treatment. The proteins that should be identified in the end, should be differentially associated with pFRK1 upon flg22 treatment (Figure 71 cyan dots). In the control the proteins should not be present or at least to lower amounts. Upon DEX treatment
the dTALEs translocate into the nucleus and bind to $p F R K 1$. After flg22 and DEX treatment, the plant tissue is fixed with formaldehyde (Figure 7 2). The tissue with the activated promoter, grown on ${ }^{14} \mathrm{~N}$ containing media and the tissue of the control plants, grown on ${ }^{15} \mathrm{~N}$ containing media, are mixed. The nuclei are purified and the chromatin is sheared using ultra sound (Figure 7 3). The dTALE - pFRK1 - protein complexes are precipitated using a GFP-trap ${ }^{\circledR}$ (Figure 7 4). The proteins are released from the precipitate and analyzed by mass spectrometry (Figure 75). Because the plants were grown on either ${ }^{14} \mathrm{~N}$ or ${ }^{15} \mathrm{~N}$ containing media, in the MS analysis the origin of the identified proteins can be discriminated. By this metabolic nitrogen labeling, the qualitative and quantitative difference in the pFRK1 associated proteome in its activated and inactivated states becomes visible.

Figure 7: Workflow of the dTALE-ChAP approach
A. thaliana seedlings were grown in liquid media containing either ${ }^{14} \mathrm{~N}$ or ${ }^{15} \mathrm{~N}$ as nitrogen source (1). The ${ }^{14} \mathrm{~N}$ labeled seedlings are treated with flg22 and DEX. The ${ }^{15} \mathrm{~N}$ labeled control seedlings are treated with DEX only. Flg22 treatment activates PFRK1 and proteins that may differentially bind to the promoter (cyan dots). DEX treatment induces the translocation of the dTALEs from the cytosol to the nucleus and their binding to p FRK1. The plant tissue is fixed with formaldehyde and the ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$ labeled samples are mixed (2). The nuclei are purified and the chromatin is sheared (3). The dTALE - pFRK1 - protein complexes are precipitated with a GFP-trap ${ }^{\circledR}$ (4). The proteins are purified analyzed by MS (5). Due to the nitrogen labeling, proteins associated with the inactive $p F R K 1$ can be discriminated in a quantitative manner from those associated with the flg22-activated pFRK1.

5.3. Experimental Settings for the dTALE-ChAP

5.3.1. Structure of the dTALEs and their binding sites in pFRK1

For the dTALE-ChAP, pFRK1 specific dTALEs were designed (Figure 8 A). The backbone of the used dTALE is its DNA binding domain (TALE domain) (Figure 8 A grey). The TALE domain is assembled of tandem repeats, which define the TALE's target sequence (Boch et al., 2009; Moscou \& Bogdanove, 2009). By reassembling the repeats, a dTALE can be designed to bind to a target sequence of choice (Morbitzer, Elsaesser, Hausner, \& Lahaye, 2011). Six different dTALEs were designed for six binding sites in pFRK1 and FRK1, respectively (Figure 8 B Supplementary figure 1): Two positions approximately 1 kb upstream of the transcription start (position A and B), two $0,5 \mathrm{~kb}$ upstream of the transcription start (B and C) and two 77 base pairs downstream of the transcription start (E and F) (Figure 8 B and Supplementary figure 1). The pairwise distribution of the six binding sites was intended to backup for the case, that one binding site might not be accessible for a dTALE, due to steric effects, chromatin status or other proteins that are already bound to the DNA. Although only fragments are precipitated, by distributing the dTALE binding sites over the complete promoter, a full coverage of the promoter was intended to be achieved (Figure 8 B).

The dTALE domain is bordered by different N - and C-terminal tags (Figure 8 A). A glucocorticoid receptor (GR) was fused to the N -terminus (Figure 8 A blue). The GR receptor was expected to retain the dTALE in the cytosol. Upon DEX treatment the dTALE should translocate into the nucleus. A 3xHA tag, as well as an eGFP were attached to the C-terminus of the dTALE domain (Figure 8 A purple and green). The 3xHA and the eGFP tag were intended to be used for Western Blot analysis, fluorescence microscopy and protein precipitation, respectively.

The natural activation domain of the dTALEs was removed. Consequently, the dTALEs should bind to DNA, without inductive transcriptional effects. Of all six dTALEs a second variant was designed. The second variant has a VP64 activation domain between the TALE domain and the 3xHA tag (dTALE-AD) (Figure 8 A yellow). The dTALE-AD variants should have an activating effect on pFRK1. They are going to be used for pre-experiments in promoter reporter assays.

Figure 8: Domain Structure of the dTALEs and their binding sites in pFRK1 and FRK1
Domain structure of dTALE and dTALE-AD variants (A). A GR receptor was fused to the Nterminus of the TALE repeat domain, followed by C-terminal 3xHA and eGFP tags. The dTALE repeat domain is flanked by an N-terminal (NTD) and a C-terminal domain (CTD) of the original TALE. The generated dTALEs with different repeat domains target six different sites in $p F R K 1$. Scheme of p FRK1 with the binding sites of dTALE A-F and dTALE-AD A-F (B). The dTALE binding sites where chosen in distance to the clusters of putative transcription factor binding sites to reduce the possibility of blocking them.

5.3.2. Definition of the promoter area and prediction of transcription factor binding sites

As demonstrated in the section 5.1.1, FRK1 transcript accumulation is strongly induced after flg22 perception during PAMP triggered immunity (Asai et al., 2002). The signal is transduced into the nucleus where FRK1 expression is initiated. Trans-acting and cis-acting elements modulate the activity at the promoter of the gene. To get an insight into the regulatory mechanisms, the promoter region of FRK1 was analyzed in detail.

The translation start, marked by the ATG codon, is found at position 8,329,893 on chromosome 2 (TAIR accession Locus 2059093). Approximately 1,300 base pair upstream of the ATG, a long non-coding RNA is annotated (AT2G07165) and marks the 5 '-end of the promoter. The functional pFRK1 was previously described by Robatzek and Somssich (2002) having a length of 1 kb . Therefore, the further promoter analysis was focused on this 1 kb upstream region. Next, this 1 kb area was analyzed for cis-regulatory elements.

35 bp upstream of the ATG, a TCAT initiation motif (InR motif) was found (Supplementary figure 1). This is known to constitute the transcription start site (Berendzen et al., 2006). Upstream of the transcription start a TATA box motif (TATAAA) was identified. The TATAAA motif is one of the known functional TATA box hexanucleotides that can be found in 29% of all Arabidopsis core promoters (Berendzen et al., 2006; Molina \& Grotewold, 2005). The TATA Box interacts with the TATA box binding protein and is responsible for the correct positioning of the transcription initiation complex. Further upstream, some TATA-like sequences were found. Since two W boxes were also identified in this area, which seems to be important for transcriptional activation, it is unlikely that the TATA box-like elements in this area are functional (Robatzek \& Somssich, 2002). WRKYs bind specifically to intact DNA double strands.

Together with the cis-regulatory elements in the core promoter, gene expression is modulated by trans-acting factors that bind to specific promoter areas. With the PlantPan2 algorithm the promoter was searched for conserved binding motifs (Chang, Lee, Huang, Huang, \& Pan, 2008; Chow et al., 2016).

PlantPan2 predicted 1092 putative binding sites in pFRK1 (Supplementary table 1). A purely sequence-based prediction, like it was done, leads to an unmanageable amount of putative binding sites. It is very likely that many false positives are under the 1092 candidates found by

PlantPan2. To narrow down the number of putative candidates, the search was limited to proteins that were already known to bind to PFRK1.

Altogether, 15 putative transcription factor binding sites were found in PFRK1 whose in vitro or in vivo binding was proven experimentally (Supplementary figure 2). The binding sites of the WRKYs were redundant and were counted as one. The positions of the predicted 15 binding sites are illustrated in Figure 9.
|| Wbox || Wbox like motif || bZIP || TATA Box $\boldsymbol{\Gamma}^{\text {Transcription start }}$
=5‘ UTR - Functional promoter (Robatzek 2002) CDS

Figure 9: Fifteen putative transcription factor binding sites can be found in pFRK1
The positions of putative transcription factor binding sites were annotated in pFRK1. WRKYs (Wbox) (blue), WRKY binding sites predicted by PlantPan2, that do not show the core Wbox element were annotated as Wbox-like motif (light blue) (Brand, Fischer, Harter, Kohlbacher, \& Wanke, 2013; Ciolkowski et al., 2008). bZIPs (cyan). Cis-regulatory elements: TATA Box (yellow) and the transcription start (black arrow). The sequence that was described as functional promoter is shown in red (Robatzek \& Somssich, 2002), the 5`UTR in grey and CDS in black.

Wboxes were the most abundant binding sites in the analysis with PlantPan2 (Figure 9 blue \& light blue bars). The 12 predicted Wboxes overlap with the 12 Wboxes described by Robatzek and Somssich (2002). Five of the predicted Wboxes might not be bound by WRKYs (Figure 9 light blue bars). These Wboxes do not show the minimal core sequence of a Wbox TTGACY, like a previously described Wbox-like motif TTGACA (light blue bars) (Brand et al., 2013; Ciolkowski et al., 2008).

Since PlantPan2 did not predict any binding site for bZIP1, the sequence was searched by eye for any putative binding site. bZIP1 binds to a hexameric structure with the core motif (ACGT) (S. G. Kang, Price, Lin, Hong, \& Jang, 2010). Three ACGT motifs were identified of which the middle one showed a perfect hexameric palindrome structure of AACGTT (Figure 9 orange bars \& Supplementary figure 1).

The binding sites of the dTALEs were chosen near the clusters of putative transcription factor binding sites, but not directly on them. With that, the chance to pull down candidate proteins was intended to be increased, but the possibility of blocking transcription factor binding sites to be minimized (Figure 9).

5.3.3. Localization of dTALEs - translocation to the nucleus

5.3.3.1. Localization in A. thaliana protoplasts

In the prior section the domain structure of the dTALEs for the dTALE-ChAP approach was presented. Additionally, the workflow of the dTALE-ChAP was outlined. The basis of the dTALE-ChAP is the expression of the dTALEs in A. thaliana and their DEX dependent subcellular localization. To test whether the dTALEs are expressed and whether the DEX dependent translocalization into the nucleus is observable, the dTALE variant without the activation domain was expressed in A. thaliana protoplasts and analyzed by confocal fluorescence microscopy (Figure 10).

The observed GFP fluorescence proved, that dTALE A-F have all been expressed. The protoplasts were treated with DEX and the GFP localization was observed over time. By observing the spatial pattern of the fluorescence signal, conclusions about the subcellular localization dynamics of the dTALEs can be made.
dTALE A, B, D, E and F expressing protoplasts, showed exclusively a cytosolic GFP signal in the absence of DEX treatment (Figure 10 A, B, D - F, untreated). In dTALE C expressing protoplasts, a presumably nuclear localization of the GFP fluorescence was visible in the absence of DEX (Figure 10 C , untreated). 5 min after DEX treatment, in all six dTALE expressing protoplasts a presumably nuclear localization became visible which became more distinct over time (Figure 10 A-F, $5 \mathrm{~min}-20 \mathrm{~min}$). To see if the spatial pattern of the fluorescence signal changes after 20 min , dTALE C and dTALE F expressing protoplasts were observed over a longer time period (Figure $10 \mathrm{C}, 45 \mathrm{~min} \& 55 \mathrm{~min}, \mathrm{~F}, 25 \mathrm{~min}$). Even after 55 min of DEX treatment a presumably nuclear localization was maintained. With the exception of dTALE C (Figure 10 C , untreated), the data suggest the nuclear import of the dTALEs upon DEX treatment

5.3.3.2. Localization in N. benthamiana

In the previous section it was shown that the dTALEs were expressed in A. thaliana protoplasts and that the DEX treatment interferes with their subcellular localization. Next the nuclear dTALE import was tested in an in planta experiment. N. benthamiana leaves were transfected with the dTALE A-F. For a better visualization of the nucleus, the leaves were in parallel transfected with LHP1-. The LIKE HETEROCRHOMATIN PROTEIN1 (LHP1) was previously shown to localize to the nucleus in N. benthamiana cells (Hecker et al., 2015).

Discs of tobacco leaves, that were transformed with the dTALEs constructs were placed in a DEX solution on a cover slip and analyzed by confocal microscopy. For each dTALE two time points were captured (Figure 11). The nucleus of the representative cell was marked with a white arrow. It was tried, to capture one cell expressing the dTALE and LHP1 as early as possible after the DEX treatment. The second picture was captured after a minimum of 60 min after DEX treatment. In Figure 11 A \& B a representative cell of a dTALE A expressing leaf is shown. 6 min after DEX treatment, the GFP signal is still located in the cytosol (Figure 11 A). 60 min after DEX treatment the GFP signal was detected in the nucleus (Figure 11 B). In a representative cell expressing dTALE B, 22 min after DEX treatment a weak cytosolic GFP signal was observed (Figure 11 C). 60 min after DEX treatment the GFP signal co-localized with the RFP signal of LHP1 (Figure 11 D). The representative in which dTALE C was expressed, showed GFP signal around the nucleus 6 min after DEX treatment (Figure 11 E). It is not completely clear if the GFP signal is located around the nucleus or in the nucleus. 60 min after DEX treatment a clear nuclear GFP signal was visible (Figure 11 F). In the leaves expressing dTALE D, the earliest timepoint that was captured after DEX treatment was 30 min (Figure 11 G). At this timepoint, weak GFP fluorescence was detectable in the nucleus (Figure 11 G). 60 min after DEX treatment, GFP fluorescence was clearly detectable in the nucleus (Figure 11 H). In a representative cell expressing dTALE E 30 min after DEX treatment, it was possible to detect cytosolic signal, as well as weak nuclear GFP signal (Figure 11 I). 105 min after DEX treatment, the GFP signal co-localized with the RFP signal in the nucleus (Figure 11 J). The nucleolus was clearly visible. Due to low expression levels, the earliest timepoint, that was captured after DEX treatment in cells expressing dTALE F was 37 min after DEX treatment (Figure 11 K). Weak GFP signal was detected in the nucleus. 100 min after DEX treatment, the GFP signal was clearly visible in the nucleus (Figure 11 L).

From the representative cells shown in Figure 11, it can be concluded, that the time period between DEX treatment until the first low level GFP fluorescence is visible in the nucleus is 30 minutes. Unfortunately, the time points between the different constructs varied greatly since, due to low transfection efficiencies it was not possible to find a dTALE expressing cell, for each construct at an early stage. The representative cell expressing dTALE A, as well as dTALE B showed no nuclear GFP signal 6 min and 22 min after DEX treatment (Figure 11 A \& C). In the representative cell expressing dTALE C it was not clearly visible if GFP signal of nuclear origin or the GFP signal is located around the nucleus 6 min after DEX treatment (Figure 11 E). 30 min after DEX treatment in the representative cells expressing dTALE C- E a weak nuclear GFP fluorescence was observed (Figure $11 \mathrm{E}, \mathrm{G} \& \mathrm{I}$). The nuclear GFP signal was clearly visible 60 min after DEX treatment or later (Figure 11 B, D, F, H, J \& L). The overlay of the GFP signal of with the nuclei marker LHP1-RFP and the recess of the nucleolus in the GFP channel left no doubt, that the dTALEs were imported into the nucleus. There was no case, in which the GFP fluorescence was detected inside the nucleus without DEX treatment.

For the dTALE ChAP approach, the dTALEs appear to be present in the nucleus in a sufficient concentration. Therefore, the period for the DEX treatment was set to 60 min in the further experiments.

Figure 11: The dTALEs translocate in response to DEX treatment from the cytosol into the nucleus The dTALEs translocated in response to DEX treatment from the cytosol to the nucleus. The dTALEs were co-expressed with LHP1-RFP. White arrow = representative nucleus; $\mathrm{BF}=$ bright field; scale bar $=20 \mu \mathrm{~m}$ dTALE-A 6 min after DEX treatment (A), dTALE A 81 min after DEX treatment (B), dTALE B 22 min after DEX treatment (C), dTALE B 60 min after DEX treatment (D), dTALE C 6 min after LEX treatment (E), dTALE C 60 min after DEX treatment (F), dTALE D 30 min after DEX treatment (G), dTALE D 60 min after DEX treatment (H), dTALE E 30 min after DEX treatment (I), dTALE E 105 min after DEX treatment (J), dTALE F 30 min after DEX treatment (K) and dTALE F 100 min after DEX treatment (L).

5.3.3.3. Localization in transgenic A. thaliana lines

In the previous section the localization of the dTALEs was analyzed in N. benthamiana leaves. It was found that it takes approximately 30 min till the GFP fluorescence can be detected in the nucleus upon DEX treatment. In this section, the TALE domain of the plasmids was once more checked for full integrity before transformation into Arabidopsis.

In rare events, TALEs can lose repeats by recombination events during the cloning procedure (Weber, Gruetzner, Werner, Engler, \& Marillonnet, 2011). If a complete repeat is lost, the rest of the coding sequence can still be in frame. The GFP would still be visible but the dTALE could not bind to its anticipated target sequence anymore. Therefore, the TALE domain of the dTALE and dTALE-AD constructs was amplified by PCR prior to plant transformation (Figure 12). The loss of at least one repeat would result in shortening of the TALE domain by 100 bp . Since the available DNA ladder was lacking fragments between 1500 bp and 2000 bp, four DNA fragments were amplified from the dTALE vector in the sizes $1500 \mathrm{bp}, 1650 \mathrm{bp}, 1750 \mathrm{bp}$ and 1900 bp (Figure 12 A-D). For that, primers were designed, which amplify a part of the vector backbone in the respective size. A mixture of the amplified fragments was loaded on the gel as well (Figure $126^{\text {th }}$ lane). The TALE domain of dTALE A-F and dTALE-AD A-F should have a size of 1845 bp . Indeed, the TALE domains of all dTALEs and dTALE-ADs showed a band of the correct size (Figure 12).

Figure 12: The DNA binding domain of all dTALEs was intact prior to plant transformation

PCR Amplification of the DNA-binding domain of dTALE and dTALE-AD plasmids, revealed the correct size of 1845 bp in every dTALE and dTALE-AD plasmid. Beside a commercial DNA ladder (Genaxxon 1 kb ladder), a 1500 bp, 1650 bp, 1750 bp and 1900 bp fragment of the dTALE vector was amplified as size standard (A-D).

After the integrity of the TALE domains was verified, the constructs were transformed into A. thaliana. Seeds of the transformants were propagated into the T2 generation under selective BASTA conditions. For the dTALE-ADs, in which a VP64 activation domain was included into the fusion, no positive Arabidopsis transformants were obtained. Either the dTALEs fluctuate into the nucleus, causing lethal effects by the activation domain, or the plasmids were degenerated prior to transformation. Of the positively selected T2 lines, 20 seeds per line were grown for 10 days on a BASTA containing MS plate. The roots were screened for GFP fluorescence by confocal microscopy. One representative root for each of the six dTALEs A-F is shown in Figure 13.

Figure 13: The dTALEs A-F localize inside the nucleus in roots of transgenic Arabidopsis seedings upon DEX treatment
Seedlings (T2 generation) were grown for 10 days on MS plates containing BASTA ($5 \mu \mathrm{~g} / \mathrm{ml}$). The seedlings were treated with DEX ($10 \mu \mathrm{M}$) for 60 min . BF $=$ bright field, white bar $=20$ $\mu \mathrm{m}$. dTALE A (A) dTALE B (B) dTALE C (C) dTALE D (D) dTALE E (E) dTALE F (F)

Because the fluorescence intensity was generally very weak in the cytoplasm, the roots were treated with DEX before the root analysis. As shown in Figure 10, then the distinct concentrated GFP signal in the nucleus was easier to detect in comparison to the weak cytosolic signal. In total 227 BASTA selected lines were sown on the BASTA MS plates for fluorescence screening. 28 lines did not germinate and were discarded. One line germinated but did not show GFP fluorescence. The remaining lines were incorporated into pools according to the dTALE variants (Table 9).

Table 9: Number of dTALE A. thaliana lines that were included in the seed pools for X-ChIP and dTALE ChAP

dTALE vector	number lines included in the pool
dTALE A	$n=6$
dTALE B	$n=7$
dTALE C	$n=143$
dTALE D	$n=13$
dTALE E	$n=12$
dTALE F	$n=17$

The advantage of using a seed pool instead of a single stable dTALE line is that in an early transgenic generation enough seeds are available to perform the dTALE-ChAP. For the dTALEChAP high amounts of plant material are required. With a single dTALE line, the seeds would have been propagated to the T4 generation involving the risk of silencing effects.

The gathered seed pools were used for the further ChIP and ChAP experiments. Because the most seeds were available for the dTALE C lines, the pre-experiments were performed with the pooled dTALE C seed batch.

5.3.3.4. Purification of dTALE C from A. thaliana nuclei

The first steps of the dTALE-ChAP protocol to be tested were the efficiency of nuclei purification and the pulldown of dTALE proteins out of the nuclear extract. Nuclei of DEXtreated dTALE C expressing transgenic Arabidopsis plants were purified and opened by sonification. dTALE C was precipitated with a GFPtrap. The purified proteins were analyzed by Western Blot (Figure 14).

Figure 14: dTALE C can be captured and purified from nuclear extracts of transgenic Arabidopsis plants
Western Blot analysis of crude nuclear extracts of GFP-trapped dTALE C obtained from transgenic A. thaliana T 2 seedlings. dTALE C was sent into the nucleus via DEX treatment ($10 \mu \mathrm{M}$) for 60 min . The proteins were detected with either a GFP antibody (A \& C) or a HA antibody (B). Controls were prepared from a GFPexpressing A. thaliana line. Input = crude nuclear extract after purification and sonification. Estimated protein sizes: dTALE C $\sim 150 \mathrm{kDa}$, GFP ~27 kDa. Roots of the GFP-expressing A. thaliana line. $\mathrm{BF}=$ bright field; white bar $=20 \mu \mathrm{~m}(\mathrm{E})$. Coomassie staining (F).

The proteins were separated by SDS PAGE and blotted on a PVDF membrane. Under the used Western Blot detection conditions, it was possible to detect proteins at ${ }^{\sim} 150 \mathrm{kDa}$ in the precipitated sample using an anti-GFP antibody (Figure 14 A sample 3). In the crude nuclear extract, no band was detected (Figure 14 A sample 2). The anti-HA antibody also detected a band of $\sim 150 \mathrm{kDa}$ in the precipitated sample but not in the nuclear extract (Figure 14 B sample 5 \& 6). These data indicate, that the band of ~ 150 kDa reflects dTALE C.

As technical controls, nuclear and precipitated samples were also prepared from a transgenic Arabidopsis line, expressing GFP (Figure 14 C). With an anti-GFP antibody, it was possible to detect a band of the expected size of 27 kDa in the precipitate (Figure 14 C sample $8 \& 9$). No GFP signal was observed in the crude nuclear extract (Figure 14 C sample 10). On a Coomassie stained gel SDS-gel, no proteins were detectable (Figure 14 E).

The subcellular localization pattern of the GFP in the transgenic Arabidopsis line was analyzed by confocal microscopy (Figure 14 D). GFP fluorescence was detected in the cytosol, as well as in the nuclei.

From these results it can be concluded, that the GFP (fusion) proteins were highly concentrated by the precipitation procedure. The results of the Western Blot also implicate, that the protocol for the purification of the nuclei and the precipitation of the dTALE proteins from crude nuclear extracts via their GFP-tag works efficiently.

5.3.4. Induction of $p F R K 1$ in dTALE A. thaliana lines

In parallel to the DEX treatment, which causes the dTALE translocation into the nucleus, FRK1 is induced with flg22. As described above, the dTALE binding sites are located near the predicted transcription factor binding sites in pFRK1 (Figure 8 B \& Figure 9). To exclude the possibility that pFRK1 is no longer inducible by flg22 when a dTALE is bound, a qPCR experiment was performed. Seedlings of the dTALE C pool were grown for 14 days in liquid culture. dTALE C translocation was induced by DEX treatment ($10 \mu \mathrm{M}$) for 30 min . Control samples were mock treated. Then the seedings were exposed to flg22 (or mock). After additional 30 min the seedlings were frozen in liquid nitrogen and the FRK1 transcript levels were detected (Figure 15). In the samples treated with flg22 for $30 \mathrm{~min}, F R K 1$ transcript levels were not elevated independent if the samples were treated with DEX or mock in parallel
(Figure 15 left). 60 min after flg22 treatment, a strong increase of $F R K 1$ transcript level was detectable (Figure 15 right). Parallel DEX treatment did not have a negative effect on the FRK1 transcript level(Figure 15 right). DEX treatment without flg22 treatment did not induce FRK1 expression. This is due to the lack of the activation domain in the dTALE plasmid (Figure 15 right).The control samples, that were mock treated, as well as the untreated controls did not show changes in FRK1 transcript levels (Figure 15). The repetition of the experiment showed similar results (Supplementary figure 4).

Figure 15: FRK1 transcript accumulation is still induced by flg22 in A. thaliana seedlings expressing nuclear-localized dTALE C
dTALE C expressing Arabidopsis seedlings were treated with DEX ($10 \mu \mathrm{M}$) or mock-treated. 30 min later the seedlings were exposed to flg22 (100 nM) or mock-exposed for 30 or 60 min . Total RNA was extracted and applied to qRT-PCR using FRK1-specific primers.

5.4. DNA binding of dTALEs

In the previous section it was demonstrated, that the binding of dTALE C to $p F R K 1$ has no significant effect on the flg22-inducibility of FRK1 transcript accumulation in transgenic Arabidopsis. Further investigations were initiated to characterize the DNA-binding capacity of the dTALEs in more detail. To do so, the dTALE-AD variants were used to test if the dTALEs bind to their target sequence in promoter-reporter assays (section 5.4.1). In addition, the physical contact and capacity of the dTALEs to precipitate their target DNA in vivo was tested by X-ChIP (section 5.4.2).

5.4.1. Induction of Promoter - Luciferase Reporter genes with dTALE-AD C and dTALE-AD D

5.4.1.1. Induction of $p F R K 1:: L U C$ by dTALE-AD C and dTALE-AD D

To test, if dTALE-AD C and dTALE AD D bind to their target sequence in pFRK1, a promoterreporter activation assay was performed. dTALE-AD C and dTALE-AD D were co-expressed in A. thaliana protoplasts together with $p F R K 1:: L u c i f e r a s e ~(L U C) . ~ T h e ~ p r o t o p l a s t s ~ w e r e ~ t r e a t e d ~$ with DEX, inducing the dTALE movement to the nucleus, where they should bind to the pFRK1::LUC reporter and activate LUC protein accumulation. The LUC activity is measured in a luminometric assay (Figure 16).

B

x p35S::dTALE-AD D \& pFRK1::LUC + DEX
— p35S::dTALE-AD D \& pFRK1::LUC + mock

Figure 16: Transactivation of p FRK1::LUC by p35s::dTALE-AD in A. thaliana protoplasts over time p35s::dTALE-AD C (A) and p35s::dTALE-AD D (B) were co-transformed with pFRK1::LUC into Arabidopsis cell culture protoplasts. After treatment with DEX, LUC activity was tracked over the indicated time in a luminometric assay. DEX treated samples are shown in blue, mock treated samples in grey. As a positive control, the p FRK1::LUC reporter was directly induced by treatment of protoplasts with 100 nM flg 22 (C). Flg22 treated samples are shown in red, flg22 and DEX treated samples in blue, untreated samples in yellow and untransfected protoplasts in grey. The onset of treatments is marked by a dotted vertical black line. Error bars represent the standard deviation of three independent protoplast transfections.

After transfection, the protoplasts were incubated for 6 h . After the addition of the substrate Luciferin, basal LUC activity was determined for 1 h in a 5 min intervals. Then, the protoplasts were treated with DEX or mock (Figure 16 B dotted black line). The Luciferase activity was measured in a 5 min interval. After 1 h the samples were treated with DEX or mock (Figure 16 dotted black line). dTALE-AD C did induce additional LUC activity response to the DEX treatment (Figure 16 A blue curve). The LUC activity stayed on the same level as in mock treated protoplasts (Figure 16 A grey). In contrast, an increase in LUC activity was observed for protoplast transfected with dTALE-AD D approximately 40 min after DEX treatment. The activity was sustainable over the complete measurement period of 12 h , with a weak decrease 200 min after DEX treatment (Figure 16 B blue). The mock treated dTALE-AD D expressing protoplast did not show an effect on LUC activity (Figure 16 B grey). However, the extend of the LUC activity was 10 times lower than the induction by flg22 (Figure 16 C red curve). Parallel application of DEX and flg22 led to a slight enhancement of LUC activity (Figure 16 C blue curve). The reporter alone did not show any Luciferase activity (Figure 16 C yellow curve). The signal remained on the same level as untransfected protoplasts (Figure 16 C grey curve).

Because dTALE-AD C appeared not to activate the pFRK1::LUC reporter and EX treatment alone seemed to have an additive effect to the flg22 treatment (Figure $16 \mathrm{~A} \& \mathrm{C}$), the experiment was repeated (Figure 17). As an additional control, the reporter was expressed alone in protoplasts and treated with DEX to exclude an inductive effect of DEX itself on the promoter.

Figure 17: Transactivation of $p F R K 1$::LUC by p35s::dTALE-AD in A. thaliana protoplasts over time $p 35 S$:: $d T A L E-A D C(\mathbf{A})$ and $p 35 S:: d T A L E-A D D(B)$ were co-transformed with $p F R K 1:: L U C$ into Arabidopsis cell culture protoplast. After treatment with $10 \mu \mathrm{M}$ DEX, LUC activity was tracked over the indicated time in a luminometric assay. DEX treated samples are shown in blue, mock treated samples in grey. A higher DEX concentration ($100 \mu \mathrm{M}$) was tested with p35S::dTALE-AD D (C) As positive control the $p F R K 1$::LUC reporter was directly induced, with 100 nM flg22. In addition, pFRK1::LUC transformed protoplasts were treated with DEX ($10 \mu \mathrm{M}$) alone and with DEX ($10 \mu \mathrm{M}$) in combination with flg22 (100 nM) (D). Flg22 treated samples are shown in red, DEX treated samples in yellow, flg 22 and DEX treated samples in blue, untreated samples in orange and non-transfected protoplasts in grey. The onset of treatments is marked by a dotted vertical black line. Error bars represent the standard deviation of three independent protoplast transfections.

Again, DEX treatment $(10 \mu \mathrm{M})$ of the protoplasts transfected with dTALE-AD C and $p F R K 1:: L U C$ did not show any LUC activity above background level (Figure 17 A , blue and grey curves). The results for dTALE-AD D transfected protoplasts were comparable to those of the first experimental trial, displaying an enhanced LUC activity upon DEX treatment ($10 \mu \mathrm{M}$) (Figure 17 B blue curve and grey curves). In this trial, it was also tested, whether a 10 times increase of the DEX concentration $(100 \mu \mathrm{M})$ would have an additional effect on dTALE-AD D induced LUC activity. As shown in Figure 17 C (blue and red curves), this was not the case. In contrast, the LUC activity decreased faster in the protoplasts treated with $100 \mu \mathrm{M}$ than in those treated with $10 \mu \mathrm{M}$ DEX. This negative effect could at least be partly due to either higher ethanol concentrations that comes with the higher DEX concentration, or to toxic effects caused by DEX itself.

As obvious from Figure 16 C, there was an additional inductive effect of DEX when applied in parallel to flg22. However, the repetition of this experiment did not reveal a significant additional effect of DEX on flg22-induced LUC activity (Figure 17 D). Furthermore, DEX treatment alone did not induce LUC activity above background and mock treatment level (Figure 17 D).

Since dTALE-AD C showed no inductive effect on p FRK1::LUC expression after DEX treatment in the reporter assays, it was tested by cytometry, to which extend dTALE-AD C and dTALE-AD D were expressed in protoplasts. Therefore, populations of 5,000-10,000 protoplasts per respective dTALE-AD construct were analyzed for GFP fluorescence (FACS) (Table 10).

Table 10:Proportion of protoplasts with GFP fluorescence
Populations of 5,000-10,000 protoplasts per transfected dTALE-AD construct and biological replicate were analyzed using fluorescence-base cytometry. Numbers show the percentage of protoplasts showing GFP fluorescence for each replicate.

sample	bio rep. 1	bio rep. 2	bio rep. 3
pFRK1:: LUC \& 35S::dTALE-AD C	1.21%	0.15%	1.21%
pFRK1:: LUC \& 35S::dTALE-AD D	1.69%	1.83%	0.68%
Control (non-transfected protoplasts)	0.05%		

dTALE-AD C incubated protoplast showed a percentage share of 1.21 \% GFP fluorescence positive cells in two independent experiments. However, the percentage share in replicate 2 was with 0.15 \% much lower (Table 10). The protoplasts incubated with the dTALE-AD D construct showed a slightly higher percentage share of GFP fluorescence positive protoplasts in two replicates compared to dTALE-AD C (Table 10). However, the percentage share was lower in replicate 3 than in the other two replicates (Table 10).

Although, differences in transfection efficiency between the dTALE constructs (and independent biological replicates) have to be acknowledged, it appears that in contrast to dTALE-AD D, dTALE-AD C is not able to trans-activate pFRK1 in vivo or it binds but is not able, perhaps due to steric problems, to communicate with basal transcription initiation machinery, although it carries a VP64 activation domain (Figure 8 B).

5.4.1.2. Induction of $p B S 3$ dTALE::LUC with dTALE-AD C and dTALE-AD D

In the previous experiments described above, I showed that dTALE-AD D but not dTALE-AD C can induce a pFRK1::LUC reporter construct. Since steric problems could not be excluded in the pFRK1::LUC context, the trans-activation capacity of both dTALEs was tested in an additional reporter system well established to test dTALEs. In this system the pBS3 promoter originating from pepper is used (Morbitzer et al., 2010). pBS3 is the target of a natural Xanthomonas derived TALE and its specific binding site within pBS3 is spatially optimal for trans-activation. Importantly, the TALE binding site within $p B S 3$ can be changed by mutagenesis PCR to a specific target site for any (d)TALE. To perform the assay, I cloned pBS3::LUC versions containing either a binding site for dTALE-AD C or dTALE-AD D. The transactivation capacity of both dTALEs on LUC enzymatic activity was tested in transfected Arabidopsis cell culture protoplasts.

Figure 18: Transactivation of $p B S 3$ dTALE-AD::LUC by p35s::dTALE-AD in A. thaliana protoplasts over time
p35S::dTALE-AD C (A) and p35S::dTALE-AD D (B) were co-transformed with the respective pBS3::LUC reporter into Arabidopsis protoplasts. After treatment with DEX ($10 \mu \mathrm{M}$) LUC activity was tracked over the indicated time by a luminometric assay. DEX treated samples are shown in blue, mock treated samples in red, untreated samples in yellow and untransfected protoplasts in black. The onset of treatments is marked by a dotted vertical black line. Error bars represent the standard deviation of three independent protoplast transfections.

Treatment with DEX led to an increase of LUC activity when both dTALE-ADs were cotransfected with their corresponding pBS3 reporter construct (Figure 18 A \& B). The LUC activity was significantly higher compared to that of mock treated protoplasts or protoplasts transfected with the reporter construct alone (Figure 18 A \& B). The LUC activity reached its maximum approximately 6 h after onset of DEX application but was above control activity for the entire measurement period of 10 h (Figure $18 \mathrm{~A} \& \mathrm{~B}$). These data demonstrate that both dTALE-ADs are capable to induce $p B S 3:: L U C$ transcription when send to the nucleus and, thus bind to DNA, at least in protoplasts. Furthermore, both pBS3::LUC reporter constructs have background activity which, however is not dependent on the presence of the dTALE-ADs.

To test the specificity in the trans-activation and binding capability of the dTALE-ADs, the pBS3::LUC reporter genes were exchanged against each other (Figure 19).

Figure 19: Transactivation of pBS3 dTALE-AD::LUC by p35S::dTALE-AD in A. thaliana protoplasts over time
p35S::dTALE-AD C (A) and p35s::dTALE-AD D (B) were co-transformed with the respective $p B S 3:: L U C$ reporter into Arabidopsis protoplasts. In addition, the dTALE-ADs were cotransformed with the promoter with the binding site of the other dTALE-AD. After treatment with DEX $(10 \mu \mathrm{M})$ LUC activity was tracked over the indicated time by a luminometric assay. DEX treated samples are shown in blue, mock treated samples in red, DEX treated samples in which the promoter with the binding site of the other dTALE-AD was co-transformed are shown in yellow, the respective mock treated control is shown in black. The onset of treatments is marked by a dotted vertical black line. Error bars represent the standard deviation of three independent protoplast transfections.

As shown in Figure 19 A, dTALE-AD C was only able to induce LUC activity when its cognate pBS3 dTALE C::LUC reporter was present in DEX treated protoplast. No activation was observed for the pBS3 dTALE D::LUC construct designed for dTALE-AD D (Figure 19 A). Again dTALE-AD D was able to induce LUC accumulation from its specific $p B S 3$ dTALE D::LUC reporter in the presence of DEX (Figure 19 B). However, a weak LUC induction by dTALE-AD D was also observed for the non-cognate $p B S 3$ dTALE C::LUC construct (Figure 19 B).

In summary it can be said, that dTALE-AD C and dTALE-AD D can bind specifically to their DNA target sequence and activate gene expression in the context of their cognate pBS3::LUC reporter in Arabidopsis protoplast. The liability of dTALE-AD C to induce LUC expression from the $p F R K 1$ 1::LUC construct is very likely due to steric hindrance that blocks the functional
interaction of dTALE-AD C with the basal transcription initiation machinery. However, "naked" DNA is used in the transient reporter gene assay in protoplasts. This raises the question whether the dTALEs are also able to bind to their cognate DNA motif in the context of "packed" chromatin in plant tissue and whether the affinity to DNA is high enough to precipitate pFRK1 fragments.

5.4.2. Precipitation of pFRK1 fragments with dTALEs

5.4.2.1. Workflow of dTALE-based cross-linking chromatin immunoprecipitation (X-ChIP)

To address the questions raised above, X-ChIP experiments followed by qPCR were performed using transgenic Arabidopsis lines independently expressing dTALEs A - F (Figure 13). The workflow for the X-ChIP approach is outlined in (Figure 20).

Seedlings of the T2 seed pools (Table 9) were grown in liquid media and were treated with flg22 and DEX $(10 \mu \mathrm{M})$ for 60 min . Immediately after the treatments, the plant tissue was crosslinked with formaldehyde and the nuclei purified from the extracts. Afterwards the chromatin was sheared using ultrasound (Figure 20 2). In a next step the dTALE - DNA complexes were purified via GFP-antibodies coupled to agarose beads (Figure 20 3). After reversal of the crosslinking, the DNA was released from the precipitates (Figure 204). Using specific primers, the samples were tested for enrichment of $p F R K 1$ fragments by qPCR (Figure $205)$.

Figure 20: X-ChIP Workflow
A. thaliana seedlings are treated with DEX ($10 \mu \mathrm{M}$) and flg22 (100 nM) (A), DEX alone (B), flg22 alone (C) or mock treated (D). In response to DEX, the dTALEs move to the nucleus and should bind to their binding site in $p F R K 1$ (symbolized in red) (1). Due to flg22 treatment transcription factors bind to p FRK1 where they induce FRK1 expression. The plant material is fixed and the nuclei are isolated. The chromatin is sheared using ultrasound (2). The dTALE-promotertranscription factor complex is purified, using antiGFP-antibodies coupled to agarose beads (3). The DNA is isolated (4) and quantified by qPCR using $p F R K 1$-specific primers (5).

Four different experimental approaches were performed: Treatment with flg22 and DEX, flg22, DEX and mock treatment (Figure 20 A-D). The DEX treatment triggers the translocation of the dTALEs into the nucleus, flg22 activates pFRK1 (Figure 6 \& Figure 13). From the theoretical point of view, it should be possible to precipitate $p F R K 1$ fragments from samples of nuclear extracts of DEX treated seedlings (Figure 20 A \& B). In the extracts from seedlings not treated with DEX no precipitation of p FRK1 fragments is expected, since the dTALEs should
be retained in the cytosol (Figure 20 C \& D). The control samples might indicate if there is cytosolic carryover from the nuclei purification or unspecific dTALE binding.

5.4.2.2. X-ChIP results

To detect enrichment of a DNA fragment, the percentage of input was determined. For that the $\Delta \mathrm{Ct}$ values of input samples and precipitated samples where normalized to each other. Input samples were crude nuclear extracts, prior to the precipitation.

First, the dTALEs that were expected to bind 1 kb upstream of the transcription start site were tested. After the precipitation, a fragment in the region of the dTALE binding site was amplified (Figure 21 A green arrows). As control a fragment of the last exon of FRK1 was used in the qPCR as well (Figure 21 A grey arrows).

Figure 21: X-ChIP followed by qPCR of pFRK1 fragments using dTALE A did not result in the specific enrichment of their target DNA motif, using dTALE B it did result in specific enrichment of its target DNA motif
dTALE A (B) and dTALE B (C) were used to immuno-precipitate pFRK1 fragments. The samples were prepared from stable A. thaliana lines expressing dTALEs that were treated with flg22 and DEX, flg22, DEX. Precipitated DNA was quantified by qPCR with an amplicon located near the dTALE binding site (green arrows) and a control amplicon downstream in FRK1 (grey arrows) (A). The values are shown in \% of input in green for the binding amplicon, grey for the non-binding amplicon.

The precipitates that were prepared from the dTALE A expressing line showed no enrichment for the non-binding amplicon in all treatment combinations (Figure 21 B grey bars). The binding amplicon was found, but all values were under 0.4% of input in the samples prepared from the dTALE A expressing line (Figure 21 B green bars). A repetition of the experiment did
not deliver any other conclusions (Supplementary figure 5). In the X-ChIP with dTALE B no specific enrichment was found, neither for the binding amplicon nor the non-binding amplicon except in the sample that was treated with DEX and flg22(Figure 21 C). There 2.5% of input of the binding amplicon were found. Repetition of the experiment with dTALE B it was not possible to amplify any DNA fragment.

Next the dTALEs with the binding sites 500 bp upstream of the transcription start site (dTALE C \& D) were tested for their in vivo DNA-binding capacity by X-ChIP (Figure 22).
A

B

\qquad
C

Figure 22: X-ChIP followed by qPCR of pFRK1 fragments using dTALE C did result in specific enrichment the target DNA motif. Using dTALE D did not result in specific enrichment of the DNA motif. dTALE C (B) and dTALE D (C) were used to immuno-precipitate pFRK1 fragments. The samples were prepared from stable A. thaliana lines expressing dTALEs that were treated with flg 22 and DEX, flg22, DEX and mock. Precipitated DNA was quantified by qPCR with an amplicon located near the dTALE binding site (green arrows) and a control amplicon downstream in FRK1 (grey arrows) (A). The values are shown in \% of input in green for the binding amplicon, grey for the non-binding amplicon.

A pFRK1 fragment was selected near the binding site of these two dTALEs (Figure 22 A). In the first repetition with dTALE C, there was no amplification of the non-binding amplicon,
independent of the treatment (Figure 22 B grey bars). In the precipitate obtained from DEXtreated seedlings, a strong enrichment (4000% of input) was detectable for the binding amplicon (Figure 22 B green bars. The enrichment was increased 6 fold, when the seedlings were treated with DEX and flg22. Flg22 alone, as well as mock treated samples did not show any significant enrichment of the binding amplicon (Figure 22 green). A repetition of the experiment showed comparable results (Supplementary figure 5). These data suggest, that dTALE C binds tightly and specifically enough to precipitate fragments of p FRK1, when the dTALEs are present in the nucleus due to DEX treatment

Using dTALE D for X-CHIP, no enrichment of pFRK1 fragments was observed (Figure 22 C green bars). All precipitates prepared from the dTALE expressing line, revealed a more or less identical level of enrichment for the binding a non-binding amplicons, independent of the treatment (Figure 22 C). The levels of enrichment were between 0.6 and 0.9% of input. The repetition of the experiment delivered comparable results (Supplementary figure 5).

At last, the dTALE E and F with the binding sites downstream of the transcription start were analyzed (Figure 23). dTALE E did not exceed enrichment levels higher than 0.15% of input (Figure 23 B green arrows). Furthermore, no differences between the enrichment levels of the binding and non-binding amplicon was observed, independent of the seedlings' treatment. A repetition of the experiment showed comparable results (Supplementary figure 5). Subsuming the results of the X-ChIP using dTALE E, it was not possible to accomplish a specific precipitation of pFRK1 fragments (Figure 23 B).

For the X-ChIP with dTALE F similar results were obtained as for those with dTALE E (Figure 23 C).

Derived from these results I had to conclude that it is not possible to achieve specific precipitation of $p F R K 1$ fragments with dTALE E and F .

A

B

C

Figure 23: X-ChIP followed by qPCR of pFRK1 fragments using dTALE E \& F did not result in specific enrichment of their target DNA motif
dTALE E (B) and dTALE F (C) were used to immuno-precipitate pFRK1 fragments. The samples were prepared from stable A. thaliana lines expressing dTALEs that were treated with flg22 and DEX, flg22, DEX and mock. Precipitated DNA was quantified by qPCR with an amplicon located near the dTALE binding site (green arrows) and a control amplicon downstream in FRK1 (grey arrows) (A). The values are shown in \% of input in green for the binding amplicon, grey for the no binding amplicon.

Taken together, the results of the X-ChIP experiments revealed that it was only possible with dTALE B and C to precipitate pFRK1 fragments specifically (Figure 22 B). Since dTALE C seemed to be more suitable for pFRK1 precipitation than dTALE B, it was chosen to perform the dTALEChAP approach.

5.5. The dTALE-ChAP

As shown in the previous section, pFRK1 fragments can be precipitated with dTALE C. To identify protein factors, that bind to $p F R K 1$ in response to flg22 treatment, the dTALE-ChAP was performed with this dTALE. In a first trial only a limited number of samples was generated and analyzed by MS. In a second trial the procedure was optimized and a complete set of samples was processed. After further optimization, the dTALE-ChAP was done in its final optimized version, again with dTALE C.

5.5.1. First trial of dTALE-ChAP with dTALE C

5.5.1.1. Quantification of Peptides

Plants were grown from the dTALE C seed pool without metabolic labeling. One half of the population was treated with flg22 (100 nM) and DEX ($10 \mu \mathrm{M}$), the other half was mocktreated. The plants were fixed with formaldehyde for 60 min after treatment. After Chromatin Affinity Purification with dTALE C, the precipitated proteins were analyzed via mass spectrometry. A total number of 1,240 peptides, associated to 254 different proteins was obtained (Figure 24). A list of the identified peptides and proteins, respectively, is shown in Supplementary table 3.

Figure 24: Protein precipitation with dTALE C relies on DEX dependent dTALE localization dTALE C was used to precipitate p FRK1 fragments. The associated proteins were analyzed by mass spectrometry. 1,139 peptides representing 227 different proteins in the flg22 and DEX treated sample (black bar) and 101 peptides in the mock treated sample (grey bar) were identified.

In the control sample significantly less peptides were identified than in the flg22/ DEX treated sample (Figure 24 grey \& black bar). This was expected, because without DEX treatment dTALE C is retained in the cytosol. Since the dTALE and the cytosolic components and thus the dTALE are removed during the nuclei purification procedure, the difference in found proteins between the treated and the untreated sample was expected.

In the treated sample the two proteins, of which the most peptides were found per se and were strongly enriched in the flg22/DEX treated sample, were dTALE C itself and the elongation factor 1-alpha (AT5G60390.3) (Supplementary table 3). Elongation factor 1-alpha is a general translation elongation factor found in many eukaryotes (TAIR). The two proteins were quantified each with 105 peptides. In comparison, in the mock treated sample, the bait protein was quantified with 13 peptides.

5.5.1.2. Over-representation Tests

In the proceeding analysis the gene ontology terms (GO terms) for the found proteins were determined. With the Protein Analysis Through Evolutionary Relationship (PANTHER) tool an
over-representation test was done (Mi et al., 2017). The GO Term enrichment tool takes the genes, associated to the peptides that were identified in the dTALE-ChAP and compares the frequency of GO terms in the sample set, with the frequency of the same set of GO terms in the reference set. As reference set, the A. thaliana whole genome set is used. By this comparison it is possible to identify over- or under-represented terms in the sample set.

The first over-representation test was done for GO term Cellular Component (Supplementary table 4).

The strongest enriched GO terms of Cellular Components were protein members of the photosynthetic machinery. This could be caused by an unspecific carryover of chloroplast containing cellular fractions. However, the PANTHER over-representation test, does not take into account the absolute number of peptides. The list of quantified peptides revealed, that the results annotated with GO terms of chloroplastic origin, were achieved with very low peptide numbers (Supplementary table 3). Therefore, the over-representation test was repeated and all candidates were excluded from the analysis that were identified with less than five quantified peptides (Supplementary table 4). The now five strongest enriched GOterms are shown in Table 11.

After the threshold for peptide counts was set prior to the over-representation test, photosynthetic components did not overlay the result anymore. The most over-represented cellular components were then heterochromatin, nucleosome, DNA-packaging complex, tubulin complex and U4 snRNP. The top five over-represented cellular components are all located in the nucleus.

Table 11: Nuclear components are the five strongest enriched cellular components identified in an over-representation test (Fisher exact test) amongst the dTALE-ChAP data set. The frequency of identified GO terms was compared with the A. thaliana reference genome. Proteins were included in the analysis that were at least represented with five peptides in the MS. Columns: GO Term, number of genes with the GO term in the reference genome, number of genes with the GO term in sample, expected number of genes of the term, over- underrepresentation, P value

GO cellular component complete	A. thaliana REFLIST (27502)	Sample $(n=6)$	expe cted	over/under represented	fold enrichm ent	P- valu e)
heterochromatin (GO:0000792)	15	3	0.03	+	85.94	$\begin{aligned} & 9.50 \\ & \mathrm{E}-06 \end{aligned}$
nucleosome (GO:0000786)	47	9	0.11	+	82.29	$\begin{aligned} & 7.58 \\ & \mathrm{E}-15 \end{aligned}$
DNA packaging complex (GO:0044815)	51	9	0.12	+	75.83	$\begin{aligned} & 1.47 \\ & \text { E-14 } \end{aligned}$
tubulin complex (GO:0045298)	13	2	0.03	+	66.11	$\begin{aligned} & 5.46 \\ & \mathrm{E}-04 \end{aligned}$
U4 snRNP (GO:0005687)	13	2	0.03	+	66.11	$\begin{aligned} & 5.46 \\ & \mathrm{E}-04 \end{aligned}$

With the PANTHER tool, proteins associated to the identified peptides were grouped into protein classes (Supplementary table 4 \& Table 12). Again, the threshold was set to at least five quantified peptides, to be included in the over-representation analysis. With more than 100-fold enrichment compared to the frequency in the reference genome, the class of histone proteins was over-represented. Confirming, that DNA associated proteins were specifically precipitated by the dTALE-ChAP.

Table 12: Histones are the most over-represented protein class, identified in an overrepresentation test (Fisher exact test) amongst the dTALE-ChAP data set. The frequency of protein classes was compared with the A. thaliana reference genome. Proteins were included in the analysis that were at least represented with five peptides in the MS. Columns: PANTHER protein classes, number of genes with the protein class in the reference genome, number of genes with the protein class in the sample, expected number of genes of the respective protein class, over- underrepresentation, P value

PANTHER Protein Class	A. thaliana REFLIST (27502)	Sample $n=64$	Expe cted	Over / under represented	Fold enrichm ent	Raw Pvalue
histone (PC00118)	11	4	0.03	+	>100	$\begin{array}{r} 3.54 \mathrm{E}- \\ 08 \\ \hline \end{array}$
tubulin (PCOO228)	17	2	0.04	+	50.56	$\begin{array}{r} 8.85 \mathrm{E}- \\ 04 \end{array}$
translation elongation factor (PCOO222)	44	5	0.1	+	48.83	$\begin{array}{r} 1.01 \mathrm{E}- \\ 07 \end{array}$
actin and actin related protein (PC00039)	19	2	0.04	+	45.23	$\begin{array}{r} 1.08 \mathrm{E}- \\ 03 \end{array}$
translation initiation factor (PCOO224)	96	6	0.22	+	26.86	$\begin{array}{r} 1.39 \mathrm{E}- \\ 07 \end{array}$
G-protein (PCOOO20)	95	5	0.22	+	22.62	$\begin{array}{r} 3.65 \mathrm{E}- \\ 06 \end{array}$
translation factor (PC00223)	138	6	0.32	+	18.68	$\begin{array}{r} 1.07 \mathrm{E} \\ 06 \end{array}$
ribosomal protein (PCOO202)	322	10	0.75	+	13.35	$\begin{array}{r} 4.78 \mathrm{E}- \\ 09 \end{array}$
RNA binding protein (PC00031)	1115	19	2.59	+	7.32	$\begin{array}{r} 6.06 \mathrm{E}- \\ 12 \\ \hline \end{array}$
nucleic acid binding (PCOO171)	1771	24	4.12	+	5.82	$\begin{array}{r} 5.75 \mathrm{E}- \\ 13 \end{array}$
Unclassified (UNCLASSIFIED)	19939	31	46.4	-	0.67	$\begin{array}{r} 5.75 \mathrm{E}- \\ 05 \end{array}$

In addition, protein classes belonging to the translation machinery were enriched, such as translation elongation factors, translation initiation factors, translation factors, ribosomal proteins, RNA binding proteins. Furthermore, as expected, nucleic acid binding proteins were also found to be enriched in the flg22/ DEX treated sample.

The over-representation test was repeated three times for three GO terms: Molecular Function, Biological Processes and Reactome Pathways (Supplementary table 4 \& Table 13). The strongest enrichment in the GO term Molecular Funtion was translation elongation factor
activity (Table 13 A). This is consistent with the found enrichment of translation-associated protein classes described above. Other significant hits in the GO term Molecular Functions were chlorophyll binding, structural constituent of cytoskeleton, scopolin beta-glucosidase activity and protein heterodimerization activity.

When GO terms for biological processes were tested for over-representation, the five most significant hits were found: heterochromatin organization, A-adenosylmethionine metabolic process, photosynthetic electron transport in photosystem II, chromatin silencing and negative regulation of gene expression (Table 13 B).

Table 13: Translation elongation factor is the strongest enriched molecular function (A), heterochromatin organization the strongest enriched biological process (B) and eukaryotic translation elongation the strongest enriched reactome pathway (C) identified in an overrepresentation test (Fisher exact test) amongst the dTALE-ChAP data set. The frequeny of identified GO terms was compared with an A. thaliana reference genome. Proteins were included in the analysis that were at least represented with five peptides in the MS. Columns: GO Term/ PANTHER classification, number of genes with the GO term/ PANTHER classification in the reference genome, number of genes with the GO term/ PANTHER classification in the sample, expected number of genes of the term, over- underrepresentation, P value

A	GO molecular function complete	A. thaliana REFLIST (27502)	Sample $=64$	expec ted	Over/un der represe nted	Fold enrich ment	Raw P- valu e
	translation elongation factor activity (GO:0003746)	55	6	0.13	+	46.88	$\begin{aligned} & 6.19 \\ & \text { E-09 } \end{aligned}$
	chlorophyll binding (GO:0016168)	36	3	0.08	+	35.81	$\begin{aligned} & 1.03 \\ & \mathrm{E}-04 \end{aligned}$
	structural constituent of cytoskeleton (GO:0005200)	50	4	0.12	+	34.38	$\begin{aligned} & 7.66 \\ & \text { E-06 } \end{aligned}$
	scopolin betaglucosidase activity (GO:0102483)	42	3	0.1	+	30.69	$\begin{aligned} & 1.58 \\ & \mathrm{E}-04 \end{aligned}$
	protein heterodimerization activity (GO:0046982)	118	8	0.27	+	29.13	$\begin{aligned} & 5.44 \\ & \text { E-10 } \end{aligned}$
B	GO biological process complete	A. thaliana REFLIST (27502)	$\begin{aligned} & \text { Sample } \\ & =64 \end{aligned}$	expec ted	Over/un der represe nted	Fold enrich ment	Raw P- valu e
	heterochromatin organization (GO:0070828)	11	3	0.03	+	100	$\begin{aligned} & 4.27 \\ & \text { E-06 } \end{aligned}$

	S-adenosylmethionine metabolic process (GO:0046500)	10	2	0.02	+	85.94	$\begin{aligned} & 3.45 \\ & \text { E-04 } \end{aligned}$
	photosynthetic electron transport in photosystem II (GO:0009772)	10	2	0.02	+	85.94	$\begin{aligned} & 3.45 \\ & \text { E-04 } \end{aligned}$
	chromatin silencing (GO:0006342)	54	6	0.13	+	47.75	$\begin{aligned} & 5.59 \\ & \mathrm{E}-09 \end{aligned}$
	negative regulation of gene expression, epigenetic (GO:0045814)	58	6	0.13	+	44.45	$\begin{aligned} & 8.31 \\ & \mathrm{E}-09 \end{aligned}$
C	Reactome pathways	A. thaliana REFLIST (27502)	$\begin{aligned} & \text { Sample } \\ & =64 \end{aligned}$	expec ted	over/un der represe nted	fold enrich ment	Raw P- valu e
	Eukaryotic Translation Elongation (R-ATH156842)	12	5	0.03	+	> 100	$\begin{aligned} & 3.48 \\ & \mathrm{E}-10 \end{aligned}$
	Gamma carboxylation, hypusine formation and arylsulfatase activation (R-ATH-163841)	12	2	0.03	+	71.62	$\begin{aligned} & 4.74 \\ & \text { E-04 } \end{aligned}$
	Methylation (R-ATH156581)	13	2	0.03	+	66.11	$\begin{aligned} & 5.46 \\ & \text { E-04 } \end{aligned}$
	HSF1 activation (R-ATH3371511)	49	5	0.11	+	43.85	$\begin{aligned} & 1.67 \\ & \mathrm{E}-07 \end{aligned}$
	$\begin{aligned} & \text { Translation (R-ATH- } \\ & 72766 \text {) } \end{aligned}$	276	14	0.64	+	21.8	$\begin{aligned} & 4.44 \\ & \text { E-15 } \end{aligned}$

Beside the data from GO terms, PANTHER implements the reactome pathway knowledgebase (Fabregat et al., 2016). The reactome pathway database is manually curated and peer reviewed and was therefore included into the analysis. As already appeared in the previous over-representation tests, the strongest enriched pathway found, compared to the A. thaliana reference genome, was eukaryotic translation elongation (Table 13 C). The following significant over-represented pathways were Gamma carboxylation hypusine formation and arylsulfatase activatlon, methylation, HSF1 activation and translation.

In summary, the outcome of the over-respresetation tests suggests that the principle of the dTALE-ChAP approach works in principle. Histones were precipitated as well as components of the translation machinery. Chloroplastic proteins were found with low peptide numbers, pointing to some minor contaminations. No relevant transcriptional regulator was identified in the first trial.

5.5.2. Trial 2 repetition of the dTALE C-ChAP

5.5.2.1. Quantification of peptides

As shown in the previous chapter, the dTALE-ChAP approach worked in principle. However, no transcriptional regulators were found. Instead components of the translation machinery were identified besides other DNA associated proteins like histones. It can be speculated, that the timepoint of fixation was too late to capture the transcription initiating factors. Therefore, the duration of the flg22 treatment was shortened. The plant material was fixed 30 min after flg22 treatment. The time schedule for the DEX treatment was not changed. A full set of metabolic labeled samples was prepared according to Figure 7. Plant tissue grown on ${ }^{14} \mathrm{~N}$ media, in which the pFRK1 was induced, was mixed with ${ }^{15} \mathrm{~N}$ labeled, non-induced tissue an vice versa. Three biological replicates were made. After the precipitation with dTALE C the peptides were quantified by MS (Supplementary table 3 \& Figure 25).

Figure 25: Detergent impurification impairs the number of quantified peptides in the dTALEChAP
dTALE C was used to precipitate pFRK1 fragments with the associated proteins. Mass spectrometry identified a total of 847 peptides in the three biological replicates (biorep). The ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$ metabolically labeled (black and grey bars) seedlings were treated with DEX and treated with flg22 or mock. Flg22 and mock treated plant tissue was mixed prior to precipitation procedure.

The number of quantified peptides differed severely between biological replicates 1,2 and 3 (Figure 25). During the MS analysis, contamination with detergent residues caused unexpected but severe problems. The detergents, which are necessary for the purification of
nuclei, masked peaks during the MS measurement. Bioreplicate 2 and 3 contained more residual detergents,, resulting in the lower number of quantifiable peptides (Figure 25).

Due to the impurity it was not possible to separate ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$ labeled peptides. At least it was possible to perform over-representation tests as in the former chapter (5.5.1.2). A complete list of the proteins associated to the quantified peptides was used for the test. It could not be discriminated in samples that were treated flg22 or mock treated since the plant tissue was mixed prior to precipitation and MS.

5.5.2.2. Over-representation tests dTALE C-ChAP trial 2

For the overrepresentation tests, the quantified peptides of the samples of all biological replicates 1,2 and 3 were combined in one list. Tissue with induced and uninduced promoter was mixed before the precipitation. For the following analysis of this section, it has to be considered, that several peptides were not identified due to the sample contamination.

The over-representation test for cellular components showed a strong enrichment of nucleosome and DNA packaging complex (Supplementary table 4 \& Table 14). Also parts of the spliceosome (U4 snRNP and U5 snRNP) and protein-DNA complex GOs were strongly enriched (Table 14).

Table 14: Nuclear components are the five strongest enriched cellular components identified in an over-representation test (Fisher exact test) amongst the dTALE-ChAP data set.
The frequency of identified GO terms was compared with an A. thaliana reference genome. Columns: GO Term, number of genes with the GO term in the reference genome, number of genes with the GO term in sample, expected number of genes of the term, overunderrepresentation, P value

GO cellular component complete	A. thaliana REFLIST (27502)	sample $n=41$	Expe cted	Over/ under represented	fold Enrichm ent	Raw P- value
nucleosome (GO:0000786)	47	8	0.07	+	>100	$1.35 \mathrm{E}-$ DNA packaging Complex (GO:0044815) 51

U4 SnRNP (GO:0005687)	13	2	0.02	+	>100	$2.24 \mathrm{E}-$ 04
protein-DNA complex (GO:0032993)	83	8	0.12	+	64.65	$9.06 \mathrm{E}-$ 13
U5 (GO:0005682)	21	2	0.03	+	63.88	$5.36 \mathrm{E}-$ 04

The data shown in table Table 14 demonstrate, that specifically nuclear components were purified. No chloroplastic carryover was observed in this trial compared to trial. Because of that, for the further over-representation tests no tresholds were set for absolute number of quantified peptides.

The proteins that were assigned to the identified peptides in dTALE C-ChAP trial 2 were compared to the A. thaliana reference genome. Histones were significantly over-represented (Supplementary table 4 Table 15). Again, protein classes associated with translation were over-represented: translation elongation factors, translation initiation factors, translation factors. Other over-represented were G-proteins, mRNA splicing, ribosomal proteins, RNA binding proteins and nucleic acid binding proteins (Table 15).

Table 15: Histones are the most over-represented protein class, identified in an overrepresentation test (Fisher exact test) amongst the dTALE-ChAP data set. The frequency of protein classes was compared with the A. thaliana reference genomes. Columns: PANTHER protein classes, number of genes with the protein classes in the reference genome, number of genes with the protein class in the sample, expected number of genes of the term, overunderrepresentation, P value

PANTHER Protein Class	A. thaliana REFLIST (27502)	sample $\mathrm{n}=41$	Expe cted	Over/ under represented	fold Enrichm ent	raw P- value
histone (PC00118)	11	3	0.02	+	>100	1.10 E -06
translation elongation factor (PC00222)	44	4	0.07	+	60.98	7.84 E -07
G-protein (PCO0020)	95	4	0.14	+	28.24	1.44 E -05
translation initiation factor (PC00224)	96	4	0.14	+	27.95	1.49 E -05
translation factor (PCOO223)	138	4	0.21	+	19.44	5.91 E -05

mRNA splicing factor (PC00148)	150	3	0.22	+	13.42	1.53 E
ribosomal protein (PC00202)	322	5	0.48	+	10.42	1.21 E -04
RNA binding protein (PC00031)	1115	12	1.66	+	7.22	5.46 E nucleic acid binding (PC00171) 1771

Since the over-representation of protein classes pointed in the direction of translation, the data was analyzed for over-representation of GO term Molecular Functions, Biological Processes and Reactome pathways (Supplementary table 4 \& Table 16). Indeed, translation elongation factor activity was found as significantly over-represented molecular function (Table 16 A) as well as nucleosomal DNA binding. Also scopolin betaglucosidase activity, protein heterodimerization activity and betaglucosidase activity were strongly overrepresented in the data set.

Table 16: Nucleosomal DNA binding is the strongest enriched GO term Molecular Function (A), Response to symbiotic fungus the strongest enriched GO term biological process (B) and Eukaryotic Translation Elongation the strongest enriched Reactome Pathways (C) (Fisher exact test) amongst the dTALE-ChAP data set. The frequency of identified GO terms was compared with an A. thaliana reference genome. Columns: GO Term, number of genes with the GO term in the reference genome, number of genes with the GO term in sample, expected number of genes of the term, over- underrepresentation, P value

A	GO molecular function complete	A. thaliana REFLIST (27502)	sampl e n 41	Exp ecte d	Over/ under represente d	fold Enrich ment	Raw P- value
nucleosomal DNA binding (GO:0031492)	9	2	0.01	+	>100	1.18 E -04	
translation elongation factor (GO:0003746) activity	55	4	0.08	+	48.78	1.81 E -06	
scopolin glucosidase beta- activity (GO:0102483)	42	3	0.06	+	47.91	4.16 E -05	
protein heterodimerization activity (GO:0046982)	118	7	0.18	+	39.79	6.62 E	
beta-glucosidase activity (GO:0008422)	80	3	0.12	+	25.15	2.59 E	

B	GO biological process complete	A. thaliana REFLIST (27502)	sampl e $n=$ 41	Exp ecte d	Over/ under represente d	fold Enrich ment	Raw Pvalue
	response to symbiotic fungus (GO:0009610)	12	2	0.02	+	> 100	$\begin{aligned} & 1.95 \mathrm{E} \\ & -04 \end{aligned}$
	response to symbiont (GO:0009608)	14	2	0.02	+	95.83	$\begin{aligned} & 2.56 \mathrm{E} \\ & -04 \end{aligned}$
	$\begin{aligned} & \text { nucleosome assembly } \\ & \text { (GO:0006334) } \end{aligned}$	40	4	0.06	+	67.08	$\begin{aligned} & 5.49 \mathrm{E} \\ & -07 \end{aligned}$
	$\begin{aligned} & \text { chromatin assembly } \\ & \text { (GO:0031497) } \end{aligned}$	48	4	0.07	+	55.9	$\begin{aligned} & 1.09 \mathrm{E} \\ & -06 \end{aligned}$
	nucleosome organization (GO:0034728)	53	4	0.08	+	50.62	$\begin{aligned} & 1.58 \mathrm{E} \\ & -06 \end{aligned}$
	chromatin assembly or disassembly (GO:0006333)	61	4	0.09	+	43.99	$\begin{aligned} & 2.68 \mathrm{E} \\ & -06 \end{aligned}$
C	Reactome pathways	A. thaliana REFLIST (27502)	sampl e $\mathrm{n}=$ 41	$\begin{aligned} & \text { Exp } \\ & \text { ecte } \\ & \text { d } \end{aligned}$	Over/ under represente d	fold Enrich ment	Raw Pvalue
	Eukaryotic Translation Elongation (R-ATH- 156842) HSF1	12	4	0.02	+	> 100	$\begin{aligned} & \text { 7.59E } \\ & -09 \end{aligned}$
	HSF1 activation (R-ATH3371511)	49	4	0.07	+	54.76	$\begin{aligned} & 1.17 \mathrm{E} \\ & -06 \end{aligned}$
	mRNA Splicing - Minor Pathway (R-ATH-72165)	77	3	0.11	+	26.13	$\begin{aligned} & 2.32 \mathrm{E} \\ & -04 \end{aligned}$
	Cellular response to heat stress (R-ATH3371556)	114	4	0.17	+	23.54	$\begin{aligned} & 2.87 \mathrm{E} \\ & -05 \end{aligned}$
	Translation (R-ATH- 72766)	276	8	0.41	+	19.44	$\begin{aligned} & 8.24 \mathrm{E} \\ & -09 \end{aligned}$

Analysis of the GO term Biological Processes revealed that the most over-represented GO terms are related to the response to a symbiotic fungus (Table 16 B). Although the cultures were checked for fungal contamination prior the experiment, this could be a reaction of the Arabidopsis seedlings to a fungal contamination. However, these factors should be excluded due to the specific precipitation procedure. The remaining three of the five strongest enriched GO terms Biological Process were: nucleosome assembly, chromatin assembly nucleosome organization and chromatin assembly or disassembly. With regard to over-representation of GO terms in Reactome pathways were translation elongation, translation, mRNA splicing, heat stress and HSF1 activation(Table 16 C).

5.5.3. Trial 3 repetition of the dTALE C-ChAP

5.5.3.1. Quantification of Peptides dTALE-ChAP trial 3

In the previous section the dTALE-ChAP was done with the full set of plant material where ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$ labeled probes were combined. No discrimination between the differentially N labelled probes could be done, because detergent contamination interfered with the quality of the MS readout (see trial 2). Therefore filter-aided sample preparation (FASP) was included in the ChAP procedure. FASP is a method that combines the removal of detergents, but should not sacrifice low abundant proteins (Wisniewski et al., 2009). No remainings of detergents were found in the samples during mass spectrometry. Compared to the first two trials, the number of peptides was lower than in the last tests (Supplementary table 3 \& Figure 26). A total of 113 peptides was quantified in the three biological replicates independent of the nitrogen isotope.

Figure 26: Number of quantified peptides in the dTALE C-ChAP is reduced when FASP is applied
dTALE C was used to precipitate pFRK1 fragments with the associated proteins. Mass spectrometry identified an average of 113 peptides in three biological replicates. The ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$ metabolically labeled (black and grey bars) seedlings were treated with DEX and treated with flg22 or mock. Flg22 and mock treated plant tissue was mixed prior to precipitation procedure.

5.5.3.2. Over-representation Test dTALE-ChAP Repetition 3

The proteins were assigned to the found peptides. With the identified proteins the associated GO terms were analyzed for over-representation. Over-representation tests for GO term Cellular components delivered comparable results like in the previous trials (Supplementary table 4 \& Table 17). The two most enriched GO term Cellular Components were the same as in the trial 2: Nucleosomes and DNA packaging complexes. U4snRP was not found under the enriched GO terms. Under the five most over- represented GO terms of Cellular Components were nuclear-chromatin and chromatin.

Table 17: Nuclear components are the five strongest enriched cellular components identified in an over-representation test (Fisher exact test) amongst the dTALE-ChAP data set. The frequency of identified GO terms was compared with the A. thaliana reference genome. Columns: GO Term, number of genes with the GO term in the reference genome, number of genes with the GO term in sample, expected number of genes of the term, overunderrepresentation, P value

GO cellular component complete	A. thaliana REFLIST (27502)	Sample $n=45$	expe cted	Over / under represented	Fold Enrichm ent	Raw Pvalue
nucleosome (GO:0000786)	47	6	0.08	+	78.02	$\begin{array}{r} 2.91 \mathrm{E} \\ 10 \end{array}$
DNA packaging complex (GO:0044815)	51	6	0.08	+	71.9	$\begin{array}{r} 4.58 \mathrm{E} \\ 10 \end{array}$
protein-DNA complex (GO:0032993)	83	6	0.14	+	44.18	$\begin{array}{r} 7.05 \mathrm{E} \\ 09 \end{array}$
nuclear chromatin (GO:0000790)	79	3	0.13	+	23.21	$\begin{array}{r} 3.30 \mathrm{E}- \\ 04 \end{array}$
$\begin{aligned} & \text { chromatin } \\ & \text { (GO:0000785) } \end{aligned}$	170	6	0.28	+	21.57	$\begin{array}{r} 4.14 \mathrm{E}- \\ 07 \end{array}$

The analysis of the found protein classes revealed a strong over-representation of histones (Supplementary table 4 \& Table 18). The same protein classes were enriched as in the second trial of the dTALE-ChAP (Table 15) except mRNA splicing factors and ribosomal proteins (Table 15 \& Table 18)

Table 18: Histones are the most over-represented protein class, identified in an overrepresentation test (Fisher exact test) amongst the dTALE-ChAP data set. The frequency of identified GO terms was compared with the A. thaliana reference genome. Colums: PANTHER protein classes, number of genes with the protein classes in the reference genome, number
of genes with the protein class in the sample, expected number of genes of the term, overunderrepresentation, P value

PANTHER Protein Class	A. thaliana REFLIST (27502)	$\begin{aligned} & \text { Sample } \\ & n=45 \end{aligned}$	expe cted	Over / under represented	Fold Enrichm ent	Raw Pvalue
histone (PC00118)	11	2	0.02	+	> 100	$\begin{array}{r} 2.01 \mathrm{E}- \\ 04 \end{array}$
translation elongation factor (PCOO222)	44	5	0.07	+	69.45	$\begin{array}{r} 1.67 \mathrm{E}- \\ 08 \end{array}$
G-protein (PC00020)	95	4	0.16	+	25.73	$\begin{array}{r} 2.09 \mathrm{E}- \\ 05 \end{array}$
translation initiation factor (PCOO224)	96	4	0.16	+	25.46	$\begin{array}{r} 2.17 \mathrm{E}- \\ 05 \end{array}$
translation factor (PC00223)	138	5	0.23	+	22.14	$\begin{array}{r} 3.63 \mathrm{E}- \\ 06 \end{array}$
RNA binding protein (PCOOO31)	1115	10	1.82	+	5.48	$\begin{array}{r} 1.07 \mathrm{E} \\ 05 \end{array}$
nucleic acid binding (PC00171)	1771	12	2.9	+	4.14	$\begin{array}{r} 2.02 \mathrm{E}- \\ 05 \\ \hline \end{array}$

Beside histones, translation elongation factors, G-proteins, translation initation factors, translation factors, RNA proteins and nucleic acid binding proteins were significantly overrepresented compared to the A. thaliana reference genome (Table 18).

As already done with the two previous dTALE-ChAP datasets, the identified proteins were screened for over-representation of GO terms Molecular Function, Cellular Processes and Reactome Pathways (Supplementary table 4 \& Table 19).

Table 19: Nucleosomal DNA binding is the strongest enriched Molecular Function (A), translation elongation the strongest enriched Biological Process (B), and eukaryotic translation elongation the strongest enriched Reactome Pathway (C) identified in an overrepresentation test (Fisher exact test) amongst the dTALE-ChAP data set. The frequency of identified GO terms was compared with an A. thaliana reference genome. Columns: GO Term, number of genes with the GO term in the reference genome, number of genes with the GO term in sample, expected number of genes of the term, over- underrepresentation, P value

A	GO molecular function complete	A. thaliana REFLIST (27502)	Sampl en = 45	exp ect ed	Over/ under represente d	Fold Enrich ment	Raw Pvalue
	nucleosomal DNA binding (GO:0031492)	9	2	$\begin{array}{r} 0.0 \\ 1 \end{array}$	+	> 100	$\begin{array}{r} 1.42 \mathrm{E} \\ -04 \end{array}$
	translation elongation factor activity (GO:0003746)	55	4	$\begin{array}{r} 0.0 \\ 9 \end{array}$	+	44.45	$\begin{array}{r} 2.65 \mathrm{E} \\ -06 \end{array}$

	protein heterodimerization activity (GO:0046982)	118	6	$\begin{array}{r} 0.1 \\ 9 \end{array}$	+	31.08	$\begin{array}{r} 5.20 \mathrm{E} \\ -08 \end{array}$
	rRNA binding (GO:0019843)	156	5	$\begin{array}{r} 0.2 \\ 6 \end{array}$	+	19.59	$\begin{array}{r} 6.48 \mathrm{E} \\ -06 \end{array}$
	translation factor activity, RNA binding (GO:0008135)	165	4	$\begin{array}{r} 0.2 \\ 7 \end{array}$	+	14.82	$\begin{array}{r} 1.67 \mathrm{E} \\ \hline-04 \end{array}$
B	GO biological process complete	A. thaliana REFLIST (27502)	Sampl en = 45	$\begin{aligned} & \text { exp } \\ & \text { ect } \\ & \text { ed } \end{aligned}$	Over/ under represente d	Fold Enrich ment	Raw Pvalue
	translational elongation (GO:0006414)	73	4	$\begin{array}{r} 0.1 \\ 2 \end{array}$	+	33.49	$\begin{array}{r} 7.71 \mathrm{E} \\ -06 \end{array}$
	response to cytokinin (GO:0009735)	251	5	$\begin{array}{r} 0.4 \\ 1 \end{array}$	+	12.17	$\begin{array}{r} 6.01 \mathrm{E} \\ -05 \end{array}$
	translation (GO:0006412)	612	9	1	+	8.99	$\begin{array}{r} 6.10 \mathrm{E} \\ -07 \end{array}$
	peptide biosynthetic process (GO:0043043)	617	9	$\begin{array}{r} 1.0 \\ 1 \end{array}$	+	8.91	$\begin{array}{r} 6.52 \mathrm{E} \\ -07 \end{array}$
	amide biosynthetic process (GO:0043604)	693	9	$\begin{array}{r} 1.1 \\ 3 \end{array}$	+	7.94	$\begin{array}{r} 1.68 \mathrm{E} \\ -06 \end{array}$
C	Reactome pathways	A. thaliana REFLIST (27502)	Sampl en = 45	$\begin{aligned} & \text { exp } \\ & \text { ect } \\ & \text { ed } \end{aligned}$	Over/ under represente d	Fold Enrich ment	Raw Pvalue
	Eukaryotic Translation Elongation (R-ATH156842)	12	4	$\begin{array}{r} 0.0 \\ 2 \end{array}$	+	> 100	$\begin{array}{r} 1.11 \mathrm{E} \\ -08 \end{array}$
	HSF1 activation (R-ATH3371511)	49	4	$\begin{array}{r} 0.0 \\ 8 \end{array}$	+	49.89	$\begin{array}{r} 1.72 \mathrm{E} \\ -06 \end{array}$
	Cellular response to heat stress (R-ATH3371556)	114	4	$\begin{array}{r} 0.1 \\ 9 \end{array}$	+	21.44	$\begin{array}{r} 4.16 \mathrm{E} \\ -05 \end{array}$
	$\begin{aligned} & \text { Translation (R-ATH- } \\ & 72766 \text {) } \end{aligned}$	276	8	$\begin{array}{r} 0.4 \\ 5 \end{array}$	+	17.71	$\begin{array}{r} 1.79 \mathrm{E} \\ -08 \end{array}$
	Cellular responses to stress (R-ATH-2262752)	192	4	$\begin{array}{r} 0.3 \\ 1 \end{array}$	+	12.73	$\begin{array}{r} 2.95 \mathrm{E} \\ -04 \end{array}$

The two strongest enriched GO terms Molecular Functions were the same like in the dTALE ChAP data set of trial 2. Nucleosomal DNA binding was over- represented more than 100 fold, translation elongation factor activity was 44 fold over-represented (Table 19 A). Under the five strongest over-represented Molecular Functions found were: protein heterodimerization, rRNA binding and translation factor activity. Amongst the over-represented Biological

Processes the response to symbiont and symbiontic fungus as in the second trial did not appear anymore (Table 16 B \& Table 19 B). Two translation related GO terms were overrepresented: Translational elongation and translation (Table 19 B). In addition, the GO terms for response to cytokinin, peptide biosynthetic processes and amide biosynthetic processes were enriched. As suggested by the enrichments found for biological processes, the strongest over-represented Reactome Pathway was eukaryotic translation elongation (Table 19 C). Also translation was an enriched Reactome Pathway. Like already observed in the second data set of trial 2, the GO term Reactions to Heat Stress were enriched. Under the five strongest overrepresented Reactome Pathways was cellular responses to stress.

Summarizing the results of trial 3 of the dTALE C-ChAP, FASP purification of the samples helped to get rid of the remaining detergents. Again, a transcriptional regulator was not found .

5.5.4. Overlap of dTALE-ChAP trial 1, 2 and 3

In all three dTALE C-ChAP trials, parts of histones and nucleosomes were identified. In addition, members of the translation machinery were over-represented. Therefore, it was analyzed whether there is an overlap of identified proteins between all three trials. By analyzing the overlap, rare proteins can be identified, that are masked by the background of over-represented proteins. 15 proteins were found in all of the three trials (Figure 27). Between trial 1 and 2 there was an overlap of 6 proteins, between trial 2 and 3 an overlap of 9 proteins and between trial 1 and 3 an overlap of 4 proteins (Figure 27).

Figure 27: Fifteen identical proteins were identified in trial 1, 2 and 3 of dTALE C-ChAP. Numbers indicate different proteins associated to the identified peptides in dTALE C-ChAP detets. The quantities of found peptides are not taken into account.

The fifteen proteins that are found in all three trials are histones and ribosomal proteins (Table 20 yellow). Besides that, a Penttricopeptide repeat superfamily protein, a beta glucosidase, nucleolin protein and a splicing factor was found (Table 20). No transcriptional regulator was present in all of the three trials.

Table 20: Fifteen histone proteins were found in dTALE C-ChAP trial 1, 2 and 3. Proteins that were identified in all three dTALE-ChAP trials are listed. Gene descriptions were downloaded from www.arabidopsis.org Araport11, histones and ribosomal proteins are highlighted in yellow

Representative Gene Model Name	Gene Description
AT1G80550.1	Pentatricopeptide repeat (PPR) superfamily protein;(source:Araport11)
AT5G59970.1	Histone superfamily protein;(source:Araport11)
AT1G20580.1	Small nuclear ribonucleoprotein family protein;(source:Araport11)
AT3G09260.1	Encodes beta-glucosidase.The major constituent of ER bodies. One of the most abundant proteins in Arabidopsis seedlings. Exist in an soluble (inactive) and non-soluble (active) form, most probably formed in a polymerization process. Involved in the mutualistic interaction between Arabidopsis and the endophytic fungus Piriformospora indica.
AT2G41475.1	Embryo-specific protein 3, (ATS3);(source:Araport11)
AT5G65360.1	Histone superfamily protein;(source:Araport11)
AT5G10980.1	Histone superfamily protein;(source:Araport11)
AT5G27670.1	Encodes HTA7, a histone H2A protein.
AT1G52740.1	Encodes HTA9, a histone H2A protein. Loss of all H2A.Z (triple mutant with HTA8 and HTA11) results in a reduction in DNA methylation of transposons but not that of genes. Loss of H2A.Z causes misregulation of many genes involved in the response to developmental and environmental cues, and that these genes tend to have high levels of gene-body H2A.Z.
AT1G48920.1	Encodes ATNUC-L1 (NUCLEOLIN LIKE 1), the predominant form of the two nucleolin proteins found in Arabidopsis. This protein is involved in rRNA processing, ribosome biosynthesis, and vascular pattern formation. PARL1 localizes to the nucleolus and parl1 mutants accumulate elevated levels of the unspliced 35S pre-rRNA. parl1 mutants also have defects in cotyledon, leaf, sepal, and petal vein patterning and have reduced stature, reduced fertility, increased bushiness, and reduced root length. The sugar-induced expression of ribosome proteins is also reduced in parl1 mutants. The mRNA is cell-to- $e l l$ AT5obile.
AT5G54640.1	Isolated from T-DNA insertion line, the rat5 mutant is deficient in T-DNA integration. Encodes histone2A protein.
AT3G25520.1	Encodes ribosomal protein L5 that binds to 5S ribosomal RNA and in involved in its export from the nucleus to the cytoplasm.

	Identified in a screen for enhancers of as1. as1/pgy double mutants show defects in leaf vascular patterning and adaxial cell fate. Double mutant analysis indicates pgy genes function in the same pathway as REV, KAN1 and KAN2.
AT4G39260.1	Encodes a glycine-rich protein with RNA binding domain at the N-terminus. Protein is structurally similar to proteins induced by stress in other plants. Gene expression is induced by cold. Transcript undergoes circadian oscillations that is depressed by overexpression of AtGRP7. A substrate of the type III effector HopU1 (mono-ADP-ribosyltransferase).
AT2G24590.1	Barta et al (2010) have proposed a nomenclature for Serine/Arginine-Rich Protein Splicing Factors (SR proteins): Plant Cell. 2010, 22:2926.
AT4G09800.1	encodes a ribosomal protein S18C, a constituent of the small subunit of the ribosomal complex

5.5.5. Changes in the proteome after flg22 Treatment

5.5.5.1. ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$ ratios of identified Proteins of dTALE-ChAP trial 3

The peptides that were found in the third trial of the dTALE-ChAP, were analyzed if they were found in the ${ }^{14} \mathrm{~N}$ as well as the ${ }^{15} \mathrm{~N}$ labeled samples. For that, all precipitates of dTALE C-ChAP trial 3 were analyzed separately. As the metabolic N-labeling was performed reciprocally, six samples were available which were derived from three biolocial replicates (Table 212 reciprocal samples per biological replicate).

Table 21: Samples of dTALE-ChAP Repetiotion 3. Columns: Bioreplicate, sample, nitrogen isotope

		${ }^{14} \mathrm{~N}$ labeled seedlings	${ }^{15} \mathrm{~N}$ labeled seedlings
bioreplicate 1	sample 1	induced	uninduced
	sample 2	uninduced	induced
bioreplicate 2	sample 3	induced	uninduced
	sample 4	uninduced	induced
bioreplicate 3	sample 5	induced	uninduced
	sample 6	uninduced	induced

From when an identified protein was found in one sample in its ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$ labeled form, a ratio was calculated based on the number of identified peptides. The proteins associated to the peptides, of which a ratio was calculated are shown in Table 22. Since distinct peaks in the MS analysis are necessary to calculate a ratio it was possible to calculate solely eleven ratios. Three ratios were found for histones: Two proteins of the histone core H3 (AT5G10980 \& AT5G65360) and one of the histone core H4 (AT5G59970) (Table 22). The histone associated proteins were found more often in the flg22 induced samples, with ratios between 1.3 and 2.0 (Table 22). Unfortunately the protein with the highest ratio and therefore the biggest difference between induced and uninduced tissue was a protein of unknown function (Table 22 AT2G27830). A ratio was calculated in sample 1, sample 3 and sample 5 (Table 22). The found ratios were 2.2, 3.0 and 6.7 (Table 22). Therefore, the protein of unknown function was more abundant in the induced samples. A ratio of dTALE C was calculated in sample 1 and sample 6 (Table 22). The $\log 2$ ratio was in both cases approximately 0 (Table 22). As expected this proves that the dTALE was found in almost the same amounts independent of the flg22 treatment. In sample 5 a splicing factor was found with a ratio of 2.5 (Table 22 AT1G68470).

In sample 5 a glucosyl transferase was found in higher levels in the induced sample (Table 22 AT1G68470). The calculated ratio was 2.15 . In sample 6 elevated levels, with a ratio of 0.9 of AT1G48920 was found. No ratio was found for a protein that was more abundant in the uninduced promoter.

Table 22: Histones are identified more often in the precipitates, prepared of flg22 induced pFRK1. Ratios of identified proteins in dTALE-ChAP trial 3. The $\log 2$ ratio was calculated based on the identified peptide numbers in dTALE C-ChAP trial 3. A high ratio indicates higher abundance at the induced promoter, a negative ratio indicate higher abundance at the uninduced promoter. Columns: sample, protein, $\log 2$ ratio, protein name, protein description.

Sam ple	Protein	$\log 2$ ratio	Protein Name	Protein Description	
1	AT5G10980.1	1.342753147	DNA.synthesis/chro matin structure.histone.cor e.H3	histone H3 \| chr5:34724053473466 REVERSE	
1	AT2G27830.1	2.187138662	not assigned.unknown	FUNCTIONS IN: molecular_function unknown I chr2:11860218-11861475 FORWARD	
1	dTALE C	-0.151394936			
2	AT5G59970.1	2.035000811	DNA.synthesis/chro matin structure.histone.cor e.H4	histone H4 \| chr5:2414617524146726 REVERSE	
2	AT5G65360.1	1.37489758	DNA.synthesis/chro matin structure.histone.cor e.H3	histone H3 \| chr5:2611985926120581 REVERSE	
3	AT2G27830.1	3.099377542	not assigned.unknown	FUNCTIONS IN: molecular_function unknown I chr2:11860218-11861475 FORWARD	
3	AT2G24590.1	2.522177408	RNA.processing.splici ng	splicing factor, putative \| chr2:10449631-10451184 FORWARD	
5	AT1G68470.1	2.159057851	misc.UDP glucosyl and glucoronyl transferases	exostosin family protein \| chr1:25676395-25678288 REVERSE	
5	AT2G27830.1	6.744265712	not assigned.unknown	FUNCTIONS IN: molecular_function unknown I chr2:11860218-11861475 FORWARD	
6	dTALE C	-0.087631254			
6	AT1G48920.1	0.87631881	protein.synthesis.rib osome biogenesis.Pre-rRNA processing and	ATNUC-L1, PARL1 \| ATNUC-L1; nucleic acid binding / nucleotide binding	chr1:1809809518101623 FORWARD

		modifications.snoRN Ps	

5.5.5.2. Transcription Related Proteins found in dTALE-ChAP Repetition 3

Amongst the ratios that were calculated in the previous section, there was no protein associated to transcription. Ratios can only be assigned automatically and thus calculated, if the ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$ peptide peaks of the MS measurement are distinct and present in both metabolically labeled forms. However, single candidates with unclear peaks, or candidates that are identified just in one metabolically labeled form, can be analyzed manually. Therefore the list of identified peptides of trial 3 was searched for transcription-related candidates. Five proteins with a transcription-related gene description were derived (Table 23).

Table 23: Transcription Associated Genes Identified in dTALE-ChAP trial 3. Gene descriptions were accessed by Araport11 release. The MS data was screened by hand if they occur in flg22 induced or uninduced samples

Gene Name	Gene Description	More abundant in
AT5G54640.1	Isolated from T-DNA insertion line, the rat5 mutant is deficient in T-DNA integration. Encodes histone2A protein.	non-induced sample
AT3G63140.1	Encodes a protein with ribonuclease activity that is involved in plastid rRNA maturation.	induced sample
AT5G25475.4	AP2/B3-like transcriptional factor family protein;(source:Araport11)	induced sample
AT1G52740.1	Encodes HTA9, a histone H2A protein. Loss of all H2A.Z (triple mutant with HTA8 and HTA11) results in a reduction in DNA methylation of transposons but not that of genes. Loss of H2A.Z causes misregulation of many genes involved in the response to developmental and environmental cues, and that these genes tend to have high levels of gene-body H2A.Z.	exclusively found in non-induced sample
AT5G27670.1	Encodes HTA7, a histone H2A protein.	exclusively found in induced sample

Three histone proteins, an AP2/B3-like transcriptional factor family protein and a protein with ribonuclease activity were found in the protein list associated to the identified by manual analysis (Table 23). The intensities in the raw data were analyzed by hand, to check if the proteins are more abundant in the flg22 induced samples or in the non-induced controls. AT5G54640 was found more often in the non-induced samples (Table 23). AT3G63140 and

AT5G25475 were more abundant in the induced samples (Table 23). Two proteins were exlusively found in either induced or uninduced samples. AT1G52740 and AT5G27670 were only found in non-induced samples (Table 23). AT5G27670 was only present in the induced sample (Table 23).

Summarizing the results of the dTALE C-ChAP analysis, I could demonstrate the dTALE Cmediated precipitation of pFRK1-associated proteins from plant tissue. In three independent dTALE C-ChAP trials, an overlap of fifteen proteins was found, mainly histones and ribosomal proteins (Figure 27). Because of the metabolic labeling with two different N isotopes in trial 3 , it was possible to calculate the relative amounts of dTALE C precipitated proteins in flg22/DEX treated and mock/DEX treated samples for eleven proteins (Table 22). The proteins that were identified in trial 3 and were annotated with a transcription associated gene description were analyzed manually, if they were predominately found in the flg22 induced or uninduced samples (Table 23).

Overrepresentation tests, revealed strong overrepresentation mainly of parts of the translation machinery and DNA packaging complex (Table 13, Table 16 \& Table 19).

6. Discussion

The goal of this work was the establishment of a technique, the dTALE-ChAP, with which the proteome at any promoter of interest can be analyzed. The work includes a multitude of preand control experiments up to the full establishment of the dTALE-ChAP.

To do so, the following steps had to be carried out: Selection of a suitable promoter and DNA target sites within or next to the promoter, design of appropriate dTALE fusion proteins, analysis of the expression and inducible change of the dTALEs' intracellular localization, test of the dTALEs' in vivo DNA binding capacity and the implementation and optimization of the dTALE-ChAP.

These steps will be discussed in the following chapters.

6.1. \quad pFRK1 is an ideal Promoter to Establish the dTALE-ChAP

pFRK1 was chosen as a suitable promoter for the establishment of the dTALE-ChAP. AS proven by qRT-PCR experiment on RNA from Arabidopsis seedlings grown in liquid culture, it takes about 45 min after flg22 treatment until FRK1 transcript levels increased (Figure 6).

These results are consistent with the qRT-PCR findings of Frei Dit Frey et al. (2012). They could show by endpoint determination, that FRK1 transcript accumulation is initiated within 60 min after flg22 treatment in Arabidopsis. Additionally, it was shown by promoter-reporter gene assays in Arabidopsis protoplast that a pFRK1::LUC reporter gene is induced 45 min after flg22 application at earliest (Mueller et al., 2012; Pochert, 2014). Since PAMP triggered immunity is the first layer of defense response, the fast reaction of a PTI responsive gene like FRK1, was expected.

Due to its rapid inducibility by exogenous flg22, pFRK1 appeared to be highly suitable for the establishment of the dTALE-ChAP.

6.2. Prediction of cis Regulatory Elements by Bioinformatic Tools is Prone to False
 Positives

To get a first insight into the regulatory proteins that might bind to pFRK1, the promoter sequence was analyzed in silico for putative transcription factor binding sites. PlantPan2 predicted 1092 putative transcription factor binding sites. After the search query was restricted to binding sites for transcription factors that were already shown to bind to pFRK1, twelve putative binding sites remained (Figure 9). The twelve predicted Wboxes overlap with the twelve Wboxes described by (Robatzek \& Somssich, 2002). Beside the binding elements of the WRKY family three binding for bZIP1 were annotated by hand. Since FRK1 appeared only one of three replicates of a ChIPseq experiment, it has to be further examined if p FRK1 is a real target of bZIP1. WRKYs are plant exclusive transcription factors and are one of the largest transcription factor families (Bakshi \& Oelmüller, 2014). Since WRKYs are involved in the responses to pathogens, involvement of WKRYs in the regulation of FRK1 makes sense (Bakshi \& Oelmüller, 2014).

If the dTALE-ChAP works, some members of these transcription factor families are expected to be identified.

The enormous difference in the number of predicted binding sites between the purely in silico based search and the search in which the query was restricted to binding sites of transcription factors that were already published to bind to pFRK1, indicates the weakness of in silico search tools. They are highly prone to false positive results. Available search tools differ in the underlying databases. PlantPan2 was chosen because it incooperates the databases TRANSFAC, PLACE, AGRIS and JASPER in one search tool (Chang et al., 2008; Chow et al., 2016). These databases are either experimentally verified, or extracted from previously published reports. Nevertheless, 1092 putative predicted binding sites in an analyzed 1 kb promoter region demonstrates, that even though high quality databases are used by PlantPan2, the list of candidates is full of potential false positives. The best trade-off between obtaining the correct regulators and controlling false positive results, is the combination of in silico prediction with subsequent enrichment tests like ChIP experiments.

The target sites of the dTALEs that were used for the dTALE-ChAP were chosen in the region of the transcription factor binding sites but not directly on them. It can be assumed that
because of the pure size of 150 kDa of the dTALE fusion protein, it might block binding of transcription factors. The sonification conditions in the dTALE-ChAP were adjusted to shear the chromatin in fragments of an average size of 500 bp . With three target sites in the 1 kb of pFRK1, full coverage of the promoter was expected. Since dTALE binding might be sensitive to chromatin modifications, for example methylation, pairs of dTALEs were designed (Kaya, Numa, Nishizawa-Yokoi, Toki, \& Habu, 2017). With two dTALE target sites 1 kb upstream of the transcription start, two dTALE target sites 500 bp upstream of the transcription start and two target sites 77 bp downstream of the transcription start, lack of binding of single dTALEs can be compensated and full coverage of promoter analysis can still be reached. Since the dTALEs were planned to be used as bait protein, the natural activation domain was deleted in the construct, to prevent interference with FRK1 expression. Of the dTALEs a second variant with an activation domain was designed, to be used in pre-experiments.

6.3. dTALEs Translocate Fast into the Nucleus after DEX Treatment in A. thaliana

 ProtoplastsAfter the dTALEs constructs were assembled, their expression and DEX-inducible movement from the cytoplasm to the nucleus was tested in A. thaliana protoplasts. All dTALEs were expressed as GFP fusion proteins. An effect of DEX treatment on nuclear accumulation of the dTALEs was visible already 5 min after application of the steroid hormone.

With regard to the very rapid nuclear accumulation of the dTALEs in response to DEX treatment in protoplasts, the lack of a cell wall has to be considered. Due to their small size and their lipophilic nature, the kinetics of cellular steroid uptake into wall containing plant cells is limited by their diffusion through the cell wall which acts as diffusion barrier (Vandevyver et al., 2012). So far, there is no study available that compared steroid diffusion rates through plasma membranes with diffusion rates through cell wall and plasma membrane in plant cells. However, the lipopolysaccharide layer of gram positive bacteria was shown to severely impair the diffusion rate of steroids into the cells (Plésiat \& Nikaido, 1992). In general, the observed kinetics for the nuclear import of GR-GFP fusion proteins is faster in cells of organisms without cell walls compared to plant cells. (Brockmann et al., 2001; Ermakova et al., 1999). One could speculate that this is rather conditioned by the strong diffusion barrier
of the cell wall for steroids, than by different properties of nuclear transport in plant and nonplant cells.

In case of dTALE C, nuclear accumulation of GFP fluorescence was observed in the absence of DEX in A. thaliana protoplasts. This might be due to steroid independent nuclear import of dTALE C, as it was observed for other GR-GFP fusion proteins in Arabidopsis (Brockmann et al., 2001). Triggers for steroid independent GR activation are aberrant physiological conditions, like elevation of cytosolic pH , abiotic stresses such as chemical cues or heat (Bresnick, Dalman, Sanchez, \& Pratt, 1989; Meshinchi, Matic, Hutchison, \& Pratt, 1990; Sanchez, 1992). Certainly, plant protoplasts suffer under such non-physiological stress conditions. Another possibility could be the dissociation of the C-terminal GFP. Free GFP might diffuse to the nucleus.

6.4. dTALEs reach the nucleus $\mathbf{3 0} \mathbf{m i n}$ after DEX treatment in \boldsymbol{N}. benthamiana epidermal
 leaf cells

To support the protoplast results regarding the nuclear uptake of the dTALEs and to address the effect of a cell wall on the kinetics of DEX dependent dTALE translocation, the dTALEs were expressed transiently in N. benthamiana leaves. DEX dependent nuclear accumulation of the dTALEs into the nucleus was visible 30 mn after application. Saturating nuclear signals were achived 60 min after the onset of the treatment.

As far as it could be proven, this is the first dataset demonstrating the kinetics of DEX dependent nuclear uptake of GR-GFP fusion proteins in general and particularly of dTALE-GFP fusion in N. benthamiana. The nuclear uptake of the dTALEs is around five times faster in N. benthamiana than it was reported for GR-GFP proteins in transgenic Arabidopsis (Brockmann et al., 2001; Ermakova et al., 1999). This difference may be explained by the way of application of the DEX solution: Whereas the DEX solution was infiltrated into the tobacco leaves in this work, Brockmann et al. (2001) sprayed the DEX solution on the Arabidopsis plants. Thus, in contrast to Arabidopsis, the DEX had not to diffuse through the cuticula barrier in the N. benthamiana system. In addition, the data in this work also provide clear evidence, that the cell wall is indeed a strong diffusion barrier for steroids like DEX, as nuclear accumulation starts much earlier after DEX application in Arabidopsis protoplasts.
dTALE protein accumulation was surprisingly low in the N. benthamiana cells, although the transcription from the dTALE construct was driven by the 35 S promoter. Cytosolic dTALE-GFP signals were hardly detectable and distinguishable from the autofluorescence of the cell wall. A method to solve this problem from the microscopic point of view is Fluorescence Intensity Analysis Microscopy (FIDAM). FIDSAM can be used to increase the contrast between GFP and background fluorescence (Elgass et al., 2010; Schleifenbaum et al., 2010).

Although I cannot exclude the possibility that protein instability is the cause of the low dTALE accumulation, the use of alternative promoter-dTALE combinations may also increase the dTALE amounts in N. benthamiana cells.

6.5. T2 Seed Pools are an Eligible Way to Generate High Masses of Plant Material, Circumvent Silencing Effects and Compensate Biological Variance

Beside the expression tests in protoplasts and tobacco leaves, stable A. thaliana dTALE lines were generated. PCR analysis prior to plant transformation confirmed the integrity of the dTALEs' DNA sequence coding for their DNA binding domains. This verification is crucial, because of their repetitive nature, DNA sections encoding for a certain repeat of the dTALEs' DNA binding domain can be lost due to recombination events (Weber et al., 2011). The loss of such a DNA section would not cause a frame shift, but results in a dTALE, which is still visible via its GFP fluorescence, but is not longer able to bind to its target DNA. The fact, that no loss of repeats was observed, is consistent with the findings of Morbitzer et al. (2011) that the DNA assembly of the dTALEs with two subsequent cut ligations increases a high sequence fidelity.

The Arabidopsis transformants were selected and propagated under BASTA selective conditions into the T2 generation. In the T2 generation, the lines were additionally selected for GFP fluorescence before the seeds of the different dTALE lines were combined to variant specific poolsThe use of the T2 seed pools made the production of the required, high amount sof plant material for the X-ChIP and dTALE-ChAP approaches uncomplicated. It has been calculated, that single dTALE-expressing Arabidopsis lines would have had to be brought into the T4 generation to get enough seeds. Furthermore, the risk of transgene silencing, which increases during the propagation of transgenic plants over many generations, is minimized when T2 seed pools are used. In addition, the use of see pools level out the biological diversity
within the dTALE variant-specific lines which is caused, for instance, by their zygosity status or number of transgene insertions.

Intriguingly GFP fluorescence positive Arabidopsis transformants were obtained for all dTALEs but none for the dTALE-AD constructs. Perhaps, there is a basal level of import of the dTALEs and dTALE-ADs into the nucleus. Due to the activation domain, it is possible that only the dTALE-ADs cause lethal effects in Arabidopsis.

6.6. dTALEs accumulate to low levels in Arabidopsis thaliana

As far as it could be proven, this is the first report about the successful expression of GR-dTALE-GFP fusion proteins in Arabidopsis. However, dTALEs can hardly be observed in the cytoplasm in the absence of DEX due to their low expression. When the dTALE expressing lines were treated with DEX, the dTALEs accumulate inside the nucleus to a level which is comparable to that reported before for constitutively nuclear dTALE-GFP fusions (Fujimoto, Sugano, Kuwata, Osakabe, \& Matsunaga, 2016).

Although the accumulation levels of the dTALEs are very low in the transgenic Arabidopsis cells, the possibility had to be excluded, that the nuclear enriched dTALEs interfere with the flg22-induction of FRK1 expression. If such an interference is observed it implicates, that the nuclear, pFRK1-bound dTALEs suppress or block protein accession to the promoter required for its activation. At least for the tested dTALE C, which binds to pFRK1 at 500 bp upstream of the transcription start, this is not the case: There is no difference in FRK1 transcript accumulation in the transgenic Arabidopsis seedlings whether the dTALE C is present inside the nucleus or not. This result shows that the necessary factors for pFRK1 activation were not hindered from binding, at least not by dTALE C, which was used in the dTALE-ChAP.

6.7. dTALE-AD C and dTALE-AD D specifically bind to their DNA target

To demonstrate the in vivo binding capacity of dTALEs, I perfomed reporter gene assays have been performed with two different reporter constructs in Arabidopsis protoplasts using dTALE-AD C and D as examples.

It was possible to induce the p FRK1::LUC reporter by dTALE-AD D approximately 40 min after DEX treatment. This correlates very well with the findings of the dTALEs' nuclear accumulation in tobacco, where it took approximately 30 min after DEX treatment till the GFP fluorescence got visible in the nucleus. Furthermore, the lack of LUC activity in the absence of DEX treatment demonstrates, that the tested GR-dTALEs do not leak into the nucleus to an extent required for p FRK1::LUC activation. The induction of p FRK1::LUC can be clearly assigned to the activity of dTALE-AD D. DEX treatment itself was not sufficient to induce p FRK1::LUC, how it was reported before for other defense-related genes (H.-G. Kang, Fang, \& Singh, 1999)

Direct induction of the pFRK1::LUC reporter with flg22 revealed a strong increase of LUC activity 40 min after application, that fits well to the results of comparable promoter reporter assays (Mueller et al., 2012; Pochert, 2014).

However, the binding affinity of dTALEs to their target site does not necessarily correlate with their efficiency for gene induction (Bultmann et al., 2012). In that regard, the weak induction of dTALE-AD D or the lack of induction by dTALE-AD C must not represent weak or no DNA binding.

It is possible that the steric orientation of the DNA-bound dTALEs is not optimal to induce the pFRK1::LUC reporter like flg22 does. Furthermore, it was shown in a recent study, that genes up-regulated by TALEs (UPA) share a conserved and essential AvrBS3 responsive element, in which a TATA-like motif is directly linked to the TALEs' binding element (Kay, Hahn, Marois, Wieduwild, \& Bonas, 2009). In pFRK1::LUC the TATA box is located approximately 450 bp downstream of the dTALE-AD C and D binding sites. Therefore, it can be speculated, that the TATA box of $p F R K 1$ is not close enough to the binding site of dTALE-AD C and dTALE-AD D for the efficient activation of the reporter construct. The distance between the dTALE binding sites to the transcriptional start site was shown to possibly playing a role in gene activation in mammalian cells (Bultmann et al., 2012). Contradictory to that, Perez-Pinera et al. (2013), however were not able to show such a correlation.

To address this problem in more detail, the alternative pBS3::LUC reporter gene was generated and tested. pBS3 has previously been shown to be a suitable promoter to test dTALEs (Morbitzer et al., 2010). Therefore, the respective DNA-binding sites of dTALE-AD C and dTALE-AD D were cloned into the $p B S 3$ promoter and transcriptionally fused to LUC. In contrast to the previously used $ß$-gucoronidase (Morbitzer et al., 2010), the LUC enzyme
activity reflects de novo transcription more realistic and allows a much better temporal resolution (Thompson, Hayes, \& Lloyd, 1991).
dTALE-AD C and dTALE-AD D induced their respective $p B S 3:: L U C$ reporter, but not the opposite one, demonstrating that both dTALE-ADs are able to bind to their target DNA in vivo in a sequence-specific manner. Thus, it has also to be assumed for these two dTALEs, that binding strength does not necessarily correlate with the induction efficiency (Bultmann et al., 2012). To get more insight into this aspect of dTALE-ADs' properties, the binding affinities can be determined by isothermal titration calorimetry or by fluorescence polarization as it was done with other TALE proteins (Bultmann et al., 2012; Stella et al., 2013).

6.8. X-ChIP

6.8.1. Appropriate Fixation is Crucial for a Successful X-ChIP Experiment

Another approach for the determination of in vivo binding of the dTALEs within $p F R K 1$ is an XChIP approach. If the dTALEs indeed bind to their target DNA sequence efficiently, they should precipitate pFRK1 from crude chromatin preparations isolated from nuclear extracts of Arabidopsis plants.

It was not possible to specifically precipitate pFRK1 fragments, neither with the dTALEs A and B, which should bind 1 kb upstream, with dTALEs E and F, which should bind downstream, nor with dTALE D, which binds 500 bp upstream of the transcription start site in the protoplasts assays. A specific precipitation of p FRK1 fragments was only achieved with dTALE C.

The most sensitive part and potential source of producing unspecific background in X-ChIP in general is the fixation step, thus, the cross-linking of the bait protein (here the dTALE) to its target DNA. Especially long fixation times may result in high background signal, even in true negative controls (Baranello, Kouzine, Sanford, \& Levens, 2016; Carey, Peterson, \& Smale, 2009; Fan \& Struhl, 2009; Marinov, Kundaje, Park, \& Wold, 2014; Teytelman, Thurtle, Rine, \& van Oudenaarden, 2013). In contrast to the applied 50 min of fixation, often short fixation times of 10-15 min were sufficient in other ChIP approaches (Ascenzi \& Gantt, 1999; Bowler et al., 2004; Gendrel, Lippman, Martienssen, \& Colot, 2005; Gendrel, Lippman, Yordan, Colot, \& Martienssen, 2002; Haring et al., 2007; Jackson et al., 2004; Johnson, Cao, \& Jacobsen,
2002). On the other hand, the application of shorter fixation times can prevent the precipitation of DNA at all (Baranello et al., 2016).

In summary, it must be said, that the optimal fixation time has to be found out individually for each dTALE, because they certainly differ in their DNA affinity, properties of interacting surfaces, spatial orientation to the target DNA. All these factors influence the cross-linking efficiency.

6.8.2. Flg22 Treatment Opens the Chromatin and Increases dTALE Binding Site Accessibility

As shown by the X-ChIP and in accordance with the data from the protoplast assays, a specific enrichment of DNA target sites deriving from pFRK1 was achieved with dTALE C that binds 500 bp upstream of the transcription start site. Interestingly, a strong increase of fragment enrichment was detected when the plants were treated with flg22 in addition to DEX. With dTALE B a weak enrichment was achieved, only in the presence of flg22. One could discuss, that the flg22 induction leads to a change in the chromatin status of $p F R K 1$, making the DNA target site more accessible for dTALE C. Although in the COGE browser no significant level of methylation in the region of pFRK1 is annotated (E. Lyons \& Freeling, 2008; Eric Lyons et al., 2008), the given interpretation fits to the unpublished observation, that according to Formaldehyde-Assisted Isolation of Regulatory Elements qPCR (FAIRE-qPCR) data, pFRK1 gets more accessible 15 min after flg 22 treatment (Behammed M. Personal communication). These results are substantiated by Assay for Transposase Accessible Chromatin sequencing (ATACseq) data (Figure 28 A , Behnammed M, unpublished). In addition, the H3K27me3 methylation mark decreases 15 min after flg22 treatment (Figure 28 A , Benhamed M , unpublished).

In conclusion, based on the data from the Arabiopsis protoplast assays and on the X-ChIP results obtained with transgenic Arabidopsis plants, the dTALE C transgenic seed pool was chosen for the implementation of dTALE-ChAP.

6.9. dTALE ChAP

The dTALE-ChAP was carried out with dTALE C in three different trials. Most importantly, all non-nuclear cellular protein contaminations have to be removed from the precipitate as much as possible by several washing steps. In the first trial chloroplastic remains were detected. In the other two trials it was possible to achieve an enrichment of the nuclear components without cholorplastic contaminations.

6.9.1. Sample Preparation and Removal of Sample Impurities

The first trial was used to test, whether the dTALE-ChAP approach worked in principle and how much non-nuclear protein contaminations were identified in the MS analysis. Indeed, a significant difference in the number of peptides between the DEX-treated and the control sample was observed in the precipitates. Thus, the dTALE-ChAP - the specific enrichment of peptides derived from promoter-associated proteins by dTALEs - worked. The contamination level with cytosolic proteins was low, but contamination with peptides derived from chloroplastic proteins was significant.

Unfortunately, remains of detergents and SDS caused problems in the MS analysis of the metabolically labeled precipitates of the second trial. For the dTALE-ChAP protocol, in-solution digestion of the precipitated proteins was chosen for MS analysis, because rare peptides were expected to be identified. However, this method carries the risk that detergents required for opening of the nuclei, contaminate the final samples and make the final MS analysis almost impossible (Wisniewski et al., 2009). Due to metabolic labeling ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$ labeled tissue was mixed, resulting in a higher biomass per sample. Due to this higher biomass, it was necessary to use more buffer. This could explain, that total higher amount of detergent in trial 2 caused the problems. The in gel approach, which is a method more robust against impurities, was no alternative to be applied, cause it comes along with the loss of rare peptides (Wisniewski et al., 2009).

Thus, the dTALE-ChAP protocol was further optimized for the metabolically labeled precipitates of the third trial by applying Filter Aided Sample Preparation (FASP) successfully (Wisniewski et al., 2009). FASP is a size exclusion chromatography for small sample sizes, that retains high molecular weight substances like DNA and proteins on the column, whilst low
molecular weight compounds, such as detergents are washed out (Wisniewski et al., 2009). After in column digestion of the proteins, the peptides are eluted and analyzed by MS.

Since peptide overlaps were found between all three trials (excluding the control sample of trial 1), consisting mainly of histones, I propose, that the fundamental principle of the dTALEChAP works. A comparison of these data with the result of similar approaches is not possible so far, since dTALEs have not yet been used for in vivo ChAP experiments in plans. In mammalian cells, at least peptides of histone protein H 2 A and ribosomal protein L 5 were also found in a dTALE-based ChAP approach (Fujita et al., 2013). Peptides of related plant proteins were also detected in my three dTALE-ChAP trial with A. thaliana.

6.9.2. Epigenetic Modifications at pFRK1 in Response to Flg22

Independent of the metabolic labeling and the discrimination between flg22 induced und noninduced plants, the over-representation tests revealed a significant enrichment in the precipitates for peptides and thus proteins representing translation and heterochromatin related GO terms. Since heterochromatin is the inactive DNA state and opening of the chromatin in the area of pFRK1 has already been detected already 15 min after flg22 treatment (Figure 28 A , Benhamed M , unpublished), one could speculate, that 1 after flg22 treatment translation is already ongoing and transcription is turned down. Therefore, the flg22 treatment was shortened for the second and third dTALE-ChAP trial. Again, the predominant enriched peptides in the precipitate are linked to GO terms that were not transcription related, but related to GO terms linked to nucleosome and DNA packaging complexes, as well as histones. Again, it seems like translation is still ongoing. Therefore, it is highly likely, that again the sampling time point was set too late, to precipitation the transcription initiating proteins.

In other ChAP-like approaches, followed by mass spectrometry performed with cultured mammalian cells, some proteins were identified, that are usually precipitated with chromatin (Vermeulen et al., 2010). This list of proteins, includes the ribosomal proteins L5 and L8, as well as histone H2A (Vermeulen et al., 2010). Peptides of the related A. thaliana proteins were found in all three dTALE-ChAP trials.

In all three dTALE-ChAP trials, peptides were significantly over-represented after flg22 treatment of the plants, that are linked to the GO term Chromatin and Nucleosome Packaging and Modellings. These results indicate a massive change in chromatin packaging after flg22 treatment. In the first trial, the tissue was fixed 1 h after flg22 application. In this data set, peptides associated with the GO term Chromatin Silencing and Methylation were enriched. After shortening the flg22 treatment in trial 2 and 3 to 30 min , chromatin re-arrangements are still going on, but chromatin silencing processes are not yet predominant. These results suggest, that chromatin silencing processes start within 1 h after flg22 treatment. Contrary to that, a significant increase of FRK1 transcript was detected between 60 to 90 min after DEX treatment in the qPCR (Figure 6). In the promoter reporter assay, activation of pFRK1 was sustained over the period of 12 h , after a single flg22 treatment (Figure 16 \& Figure 17).

It was shown by ATAC-seq that the chromatin in the area of pFRK1 opens within 15 min after flg22 application (Figure 28 A kindly provided by Dr. M. Benhamed; (Buenrostro, Giresi, Zaba, Chang, \& Greenleaf, 2013; Buenrostro, Wu, Chang, \& Greenleaf, 2015)).

The ATAC-seq data fits well to the results derived from the X-ChIP approach. Signifcantly more pFRK1 fragments were precipitated by TALE C, 60 min after the onset of flg22 treatment compared to the non-treated control. The analysis of histone methylation revealed H3K27 next to pFRK1 (Figure 28 B). H3K27 is linked to inactive genes and heterochromatin (Lachner, O'Sullivan, \& Jenuwein, 2003). The H3K27 methylation marks are reduced upon flg22 treatment. This process may represent the activation and opening of the chromatin which enables transcription factors to bind and transcription is initiated. I could be speculated, that the peptides of proteins linked to the GO term Methylation, that were found to be overrepresented in dTALE-ChAP trial $1,1 \mathrm{~h}$ after flg22 treatment, are the antagonists, that are resetting the chromatin marks into the in uniduced state, by increasing methylation marks.

Beside methylation also other epigenetic modifications like deacetylation are an essential part of the immune response in Arabidopsis (Ramirez-Prado, Abulfaraj, et al., 2018). There is a direct link between the PAMP induced MAPK pathway and histone deacetylase HD2B (Latrasse et al., 2017). They found pFRK1 as a target of HD2B. But the exact interaction of HD2B with FRK1 in response to flg22 is not completely clear so far. Since HD2B is associated with downregulation of genes, the exact mechanism needs to be further elucidated.

Figure 28: The chromatin status of $\operatorname{FRK} 1$ changes within 15 min after flg22 application (data provided by Dr. M. Benhamed; figure modified). The graph represents the amount precipitated DNA. Samples were treated for 15 min with flg22 (blue) or mock (blue) (A). Upstream of the promoter H3K27me3 marks are reduced after flg22 treatment (red) compared to mock treatment (red) (B); pFRK1 is marked with a red box

The identified peptides were compared in a quantitative manner (Table 22). By doing that, it was found that just peptides were identified, that where more abundant in the precipitates, derived from nuclei, prepared from flg22 treated plants, compared to the mock treated control. This effect might be explained by the flg22-triggered opening of the chromatin. (Figure 28 A) resulting in an enhanced accessibility for dTALE C to the $p F R K 1$ promoter. In turn, this enables an increased precipitation of pFRK1 fragments as seen in the X-ChIP with dTALE C (Figure 22). This logically causes more DNA associated proteins, such as histones, in the ChAP precipitates. In further dTALE-ChAP trials, this differential precipitation of p FRK1 fragments, as a consequence of chromatin rearrangements, has to be corrected by quantifying the precipitated amount of p FRK1 DNA in the samples. It would be conceivable to determine the amount of precipitated $p F R K 1$ by qPCR, as it is done in the X-ChIP in parallel to the MS. With
this data a correction factor could be calculated. So far in no other approach a comparable correction for precipitation efficiency was done.

Unfortunately, it was not possible to identify transcriptional regulators in the three dTALE CChAP trials, except one member of AP2/B3-like transcriptional factor family in trial 3. The functions of this identified protein is not clear yet. However, other members of the AP2 transcription factor family are phosphorylated by MAPKs on protein microarrays (Popescu et al., 2009). Possibly, the AP2 like transcription factor found here, is phosphorylated by flg22 induced MAPKs and then binds to pFRK1. AP2/EREBP proteins are known to be involved in plant's responses to biotic, pathogenic and environmental stresses, as well as hormone signal transduction (Brown, Kazan, McGrath, Maclean, \& Manners, 2003; Chakravarthy et al., 2003; Gutterson \& Reuber, 2004; Knight, Veale, Warren, \& Knight, 1999; Magome, Yamaguchi, Hanada, Kamiya, \& Oda, 2004; Stockinger, Gilmour, \& Thomashow, 1997; Yi et al., 2004). The finding, that a AP2/B3-like transcription factor is interacting with pFRK1 could be the starting point of further studies.

7. Conclusions and Outlook

Taken together it was possible to demonstrate, that the principle of the dTALE-ChAP was working. Although an AP2/B3-like transcriptional factor family protein of unknown function was the only transcriptional regulator which could be identified, an insight in the chromatin changes after flg22 treatment was achievd. It could be proposed, that transcription initiation at the promoter and therefore the binding of the transcription factors happens earlier than the tested timepoints of 30 min and 60 min . Therefore, it would be promising to test earlier timepoints. The validation of found transcription factor candidates might be re-evaluated by X-ChIP experiments using the found candidates as bait proteins.

The dTALE-ChAP is an in vivo method that was applied in plants the first time. In contrast to the similar approaches that were developed in parallel to this work, nobody used bait proteins, with inducible cellular localization. After optimization of the protocol what includes a correction step for differences in precipitation efficiencies between activated and inactivated promoters. So far, no approach is known which includes such a correction step. Beside including a correction factor and optimizing the duration of flg 22 treatment, an essential step that needs to be improved is the fixation step.

In future, the dTALE-ChAP can be a valuable in vivo method for analyzing transcriptional regulation. The dTALE-ChAP can be applied at any promoter, not restricted to an organism. After including the correction factor for precipitation efficiency, the dTALE-ChAP would be the only method taking Chromatin accessibility in a Chromatin Affinity Purification Step into account. So far, the dTALE-ChAP was the only approach in which a designed bait protein, with an inducible subcellular localization was used.

8. Literature

Agius, P., Arvey, A., Chang, W., Noble, W. S., \& Leslie, C. (2010). High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions. PLoS Comput Biol, 6(9). doi:10.1371/journal.pcbi. 1000916
Aoyama, T., \& Chua, N. H. (1997). A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J, 11(3), 605-612. doi:doi:10.1046/j.1365313X.1997.11030605.x
Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., . . . Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415(6875), 977-983. doi:10.1038/415977a
Ascenzi, R., \& Gantt, J. S. (1999). Subnuclear distribution of the entire complement of linker histone variants in Arabidopsis thaliana. Chromosoma, 108(6), 345-355.
Bakshi, M., \& Oelmüller, R. (2014). WRKY transcription factors: Jack of many trades in plants. Plant Signaling \& Behavior, 9, e27700. doi:10.4161/psb. 27700
Baranello, L., Kouzine, F., Sanford, S., \& Levens, D. (2016). ChIP bias as a function of crosslinking time. Chromosome Res, 24(2), 175-181. doi:10.1007/s10577-015-9509-1
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., . . . Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712. doi:10.1126/science. 1138140
Berendzen, K. W., Stuber, K., Harter, K., \& Wanke, D. (2006). Cis-motifs upstream of the transcription and translation initiation sites are effectively revealed by their positional disequilibrium in eukaryote genomes using frequency distribution curves. BMC Bioinformatics, 7, 522. doi:10.1186/1471-2105-7-522
Birkenbihl, R. P., Kracher, B., \& Somssich, I. E. (2017). Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity. Plant Cell, 29(1), 20-38. doi:10.1105/tpc.16.00681
Blount, B. A., Weenink, T., Vasylechko, S., \& Ellis, T. (2012). Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology. PLoS One, 7(3), e33279. doi:10.1371/journal.pone. 0033279
Boch, J., \& Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol, 48, 419-436. doi:10.1146/annurev-phyto-080508081936
Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., . . . Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326(5959), 15091512. doi:10.1126/science. 1178811

Bolotin, A., Quinquis, B., Sorokin, A., \& Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(Pt 8), 2551-2561. doi:10.1099/mic.0.28048-0
Bortesi, L., \& Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv, 33(1), 41-52. doi:10.1016/j.biotechadv.2014.12.006
Bowler, C., Benvenuto, G., Laflamme, P., Molino, D., Probst, A. V., Tariq, M., \& Paszkowski, J. (2004). Chromatin techniques for plant cells. Plant J, 39(5), 776-789. doi:10.1111/j.1365-313X.2004.02169.x
Brand, L. H., Fischer, N. M., Harter, K., Kohlbacher, O., \& Wanke, D. (2013). Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by
molecular dynamics and in vitro binding assays. Nucleic Acids Res, 41(21), 9764-9778. doi:10.1093/nar/gkt732
Bresnick, E. H., Dalman, F. C., Sanchez, E. R., \& Pratt, W. B. (1989). Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J Biol Chem, 264(9), 4992-4997.
Brockmann, B., Smith, M. W., Zaraisky, A. G., Harrison, K., Okada, K., \& Kamiya, Y. (2001). Subcellular localization and targeting of glucocorticoid receptor protein fusions expressed in transgenic Arabidopsis thaliana. Plant Cell Physiol, 42(9), 942-951. doi:10.1093/pcp/pce120
Brown, R. L., Kazan, K., McGrath, K. C., Maclean, D. J., \& Manners, J. M. (2003). A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol, 132(2), 1020-1032. doi:10.1104/pp.102.017814
Buck, M. J., \& Lieb, J. D. (2004). ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics, 83(3), 349-360.
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., \& Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods, 10(12), 1213-1218. doi:10.1038/nmeth. 2688
Buenrostro, J. D., Wu, B., Chang, H. Y., \& Greenleaf, W. J. (2015). ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol, 109, 2129 2129. doi:10.1002/0471142727.mb2129s109

Bultmann, S., Morbitzer, R., Schmidt, C. S., Thanisch, K., Spada, F., Elsaesser, J., . . Leonhardt, H. (2012). Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res, 40(12), 5368-5377. doi:10.1093/nar/gks199
Bulyk, M. L. (2006). DNA microarray technologies for measuring protein-DNA interactions. Curr Opin Biotechnol, 17(4), 422-430. doi:10.1016/j.copbio.2006.06.015
Burley, S. K., \& Roeder, R. G. (1996a). Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem, 65(1), 769-799. doi:10.1146/annurev.bi.65.070196.004005
Burley, S. K., \& Roeder, R. G. (1996b). Biochemistry and Structural Biology of Transcription Factor IID (TFIID). Annual Review of Biochemistry, 65(1), 769-799. doi:10.1146/annurev.bi.65.070196.004005
Byrum, S. D., Raman, A., Taverna, S. D., \& Tackett, A. J. (2012). ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Rep, 2(1), 198-205. doi:10.1016/j.celrep.2012.06.019
Byrum, S. D., Taverna, S. D., \& Tackett, A. J. (2013). Purification of a specific native genomic locus for proteomic analysis. Nucleic Acids Res, 41(20), e195. doi:10.1093/nar/gkt822
Cano-Rodriguez, D., \& Rots, M. G. (2016). Epigenetic Editing: On the Verge of Reprogramming Gene Expression at Will. Curr Genet Med Rep, 4(4), 170-179. doi:10.1007/s40142-016-0104-3
Carey, M. F., Peterson, C. L., \& Smale, S. T. (2009). Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc, 2009(9), pdb prot5279. doi:10.1101/pdb.prot5279
Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., .. . Voytas, D. F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 39(12), e82. doi:10.1093/nar/gkr218

Chakravarthy, S., Tuori, R. P., D'Ascenzo, M. D., Fobert, P. R., Despres, C., \& Martin, G. B. (2003). The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell, 15(12), 3033-3050. doi:10.1105/tpc. 017574
Chang, W. C., Lee, T. Y., Huang, H. D., Huang, H. Y., \& Pan, R. L. (2008). PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics, 9, 561. doi:10.1186/1471-2164-9-561
Cheung, J., \& Smith, D. F. (2000). Molecular chaperone interactions with steroid receptors: an update. Mol Endocrinol, 14(7), 939-946. doi:10.1210/mend.14.7.0489
Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., \& Felix, G. (2006). The Arabidopsis Receptor Kinase FLS2 Binds flg22 and Determines the Specificity of Flagellin Perception. The Plant Cell, 18(2), 465-476. doi:10.1105/tpc.105.036574
Chinchilla, D., Shan, L., He, P., de Vries, S., \& Kemmerling, B. (2009). One for all: the receptorassociated kinase BAK1. Trends Plant Sci, 14(10), 535-541. doi:10.1016/j.tplants.2009.08.002
Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J. D., . . . Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 448(7152), 497-500. doi:10.1038/nature05999
Choo, Y., \& Klug, A. (1994a). Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci U S A, 91(23), 1116811172.

Choo, Y., \& Klug, A. (1994b). Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci US A, 91(23), 11163-11167.
Choo, Y., Sanchez-Garcia, I., \& Klug, A. (1994). In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature, 372(6507), 642-645. doi:10.1038/372642a0
Chow, C. N., Zheng, H. Q., Wu, N. Y., Chien, C. H., Huang, H. D., Lee, T. Y., . . . Chang, W. C. (2016). PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res, 44(D1), D1154-1160. doi:10.1093/nar/gkv1035
Ciolkowski, I., Wanke, D., Birkenbihl, R. P., \& Somssich, I. E. (2008). Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol, 68(1-2), 81-92. doi:10.1007/s11103-008-9353-1
Cong, L., Zhou, R., Kuo, Y. C., Cunniff, M., \& Zhang, F. (2012). Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun, 3, 968. doi:10.1038/ncomms1962
Dautel, R. (2016). MOLECULAR CHARACTERIZATION OF THE ARABIDOPSIS THALIANA HISTIDINE KINASE 1 AND TRANSITIONS FROM THE MULTISTEP PHOSPHORELAY SYSTEM TO SER/THR/TYR PHOSPHORYLATION
. (Doktor der Naturwissenschaften Dissertation), Eberhard Karls Universität Tübingen, Tübingen.
Dautel, R., Wu, Xu N., Heunemann, M., Schulze, Waltraud X., \& Harter, K. (2016). The Sensor Histidine Kinases AHK2 and AHK3 Proceed into Multiple Serine/Threonine/Tyrosine Phosphorylation Pathways in Arabidopsis thaliana. Molecular Plant, 9(1), 182-186. doi:10.1016/j.molp.2015.10.002
de Lange, O., Schreiber, T., Schandry, N., Radeck, J., Braun, K. H., Koszinowski, J., . . . Lahaye, T. (2013). Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol, 199(3), 773-786. doi:10.1111/nph. 12324
Deyholos, M. K., \& Sieburth, L. E. (2000). Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell, 12(10), 1799-1810.
Doidy, J., Li, Y., Neymotin, B., Edwards, M. B., Varala, K., Gresham, D., \& Coruzzi, G. M. (2016). "Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run". BMC Genomics, 17, 92. doi:10.1186/s12864-016-2410-2
Droillard, M. J., Boudsocq, M., Barbier-Brygoo, H., \& Lauriere, C. (2004). Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett, 574(1-3), 42-48. doi:10.1016/j.febslet.2004.08.001
Elgass, K., Caesar, K., Wanke, D., Harter, K., Meixner, A. J., \& Schleifenbaum, F. (2010). Application of FLIM-FIDSAM for the in vivo analysis of hormone competence of different cell types. Anal Bioanal Chem, 398(5), 1919-1925. doi:10.1007/s00216-010-4127-4
Ermakova, G. V., Alexandrova, E. M., Kazanskaya, O. V., Vasiliev, O. L., Smith, M. W., \& Zaraisky, A. G. (1999). The homeobox gene, Xanf-1, can control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo. Development, 126(20), 4513-4523.
Eulgem, T., Rushton, P. J., Robatzek, S., \& Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci, 5(5), 199-206. doi:https://doi.org/10.1016/S1360-1385(00)01600-9
Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., . . . D'Eustachio, P. (2016). The Reactome pathway Knowledgebase. Nucleic Acids Res, 44(D1), D481-487. doi:10.1093/nar/gkv1351
Fan, X., \& Struhl, K. (2009). Where does mediator bind in vivo? PLoS One, 4(4), e5029. doi:10.1371/journal.pone. 0005029
Felix, G., Duran, J. D., Volko, S., \& Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal, 18(3), 265-276. doi:DOI 10.1046/j.1365-313X.1999.00265.x
Finch, J. T., Lutter, L. C., Rhodes, D., Brown, R. S., Rushton, B., Levitt, M., \& Klug, A. (1977). Structure of nucleosome core particles of chromatin. Nature, 269, 29. doi:10.1038/269029a0
Frei Dit Frey, N., Mbengue, M., Kwaaitaal, M., Nitsch, L., Altenbach, D., Häweker, H., . . . Robatzek, S. (2012). Plasma Membrane Calcium ATPases Are Important Components of Receptor-Mediated Signaling in Plant Immune Responses and Development (Vol. 159).

Fujimoto, S., Sugano, S. S., Kuwata, K., Osakabe, K., \& Matsunaga, S. (2016). Visualization of specific repetitive genomic sequences with fluorescent TALEs in Arabidopsis thaliana. J Exp Bot, 67(21), 6101-6110. doi:10.1093/jxb/erw371
Fujita, T., Asano, Y., Ohtsuka, J., Takada, Y., Saito, K., Ohki, R., \& Fujii, H. (2013). Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP). Sci Rep, 3, 3171. doi:10.1038/srep03171
Fujita, T., \& Fujii, H. (2013). Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin
immunoprecipitation (enChIP) using CRISPR. Biochem Biophys Res Commun, 439(1), 132-136. doi:10.1016/j.bbrc.2013.08.013
Fujita, T., \& Fujii, H. (2014). Identification of proteins associated with an IFNgamma-responsive promoter by a retroviral expression system for enChIP using CRISPR. PLoS One, 9(7), e103084. doi:10.1371/journal.pone. 0103084
Fujita, T., \& Fujii, H. (2015). Isolation of specific genomic regions and identification of associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Methods Mol Biol, 1288, 43-52. doi:10.1007/978-1-4939-2474-5_4
Fujita, T., Yuno, M., \& Fujii, H. (2016). Efficient sequence-specific isolation of DNA fragments and chromatin by in vitro enChIP technology using recombinant CRISPR ribonucleoproteins. Genes Cells, 21(4), 370-377. doi:10.1111/gtc. 12341
Fujita, T., Yuno, M., \& Fujii, H. (2018). enChIP systems using different CRISPR orthologues and epitope tags. BMC Res Notes, 11(1), 154. doi:10.1186/s13104-018-3262-4
Fujita, T., Yuno, M., Suzuki, Y., Sugano, S., \& Fujii, H. (2017). Identification of physical interactions between genomic regions by enChIP-Seq. Genes Cells, 22(6), 506-520. doi:10.1111/gtc. 12492
Gendrel, A. V., Lippman, Z., Martienssen, R., \& Colot, V. (2005). Profiling histone modification patterns in plants using genomic tiling microarrays. Nat Methods, 2(3), 213-218. doi:10.1038/nmeth0305-213
Gendrel, A. V., Lippman, Z., Yordan, C., Colot, V., \& Martienssen, R. A. (2002). Dependence of heterochromatic histone H 3 methylation patterns on the Arabidopsis gene DDM1. Science, 297(5588), 1871-1873. doi:10.1126/science. 1074950
Gomez-Gomez, L., \& Boller, T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell, 5(6), 1003-1011.
Grefen, C., Karnik, R., Larson, E., Lefoulon, C., Wang, Y., Waghmare, S., . . . Blatt, M. R. (2015). A vesicle-trafficking protein commandeers Kv channel voltage sensors for voltagedependent secretion. Nature Plants, 1, 15108. doi:10.1038/nplants.2015.108
https://www.nature.com/articles/nplants2015108\#supplementary-information
Gutterson, N., \& Reuber, T. L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 7(4), 465-471. doi:https://doi.org/10.1016/j.pbi.2004.04.007
Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol, 166(4), 557-580.
Hanahan, D., Jessee, J., \& Bloom, F. R. (1991). Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol, 204, 63-113.
Harada, R., \& Nepveu, A. (2012). Chromatin affinity purification. Methods Mol Biol, 809, 237253. doi:10.1007/978-1-61779-376-9_16

Haring, M., Offermann, S., Danker, T., Horst, I., Peterhansel, C., \& Stam, M. (2007). Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods, 3(1), 11. doi:10.1186/1746-4811-3-11
Hecker, A. (2016). Charakterisierung des pflanzlichen Chromatin Remodeling Komplexes um das GAGA-Bindeprotein BPC6 mittels etablierter und neu entwickelter Methoden. (Doktor der Naturwissenschaften Dissertation), Eberhard Karls Universität Tübingen, Tübingen.
Hecker, A., Brand, L. H., Peter, S., Simoncello, N., Kilian, J., Harter, K., . . . Wanke, D. (2015). The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the

POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs. Plant Physiol, 168(3), 1013-1024. doi:10.1104/pp.15.00409
Heese, A., Hann, D. R., Gimenez-Ibanez, S., Jones, A. M., He, K., Li, J., . . . Rathjen, J. P. (2007). The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A, 104(29), 12217-12222. doi:10.1073/pnas. 0705306104
Hoffman, B. G., \& Jones, S. J. (2009). Genome-wide identification of DNA-protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing. J Endocrinol, 201(1), 1-13. doi:10.1677/JOE-08-0526
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., \& Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 169(12), 5429-5433. doi:10.1128/jb.169.12.5429-5433.1987
Jackson, J. P., Johnson, L., Jasencakova, Z., Zhang, X., PerezBurgos, L., Singh, P. B., . . . Jacobsen, S. E. (2004). Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma, 112(6), 308-315. doi:10.1007/s00412-004-0275-7
Jacobus, A. P., \& Gross, J. (2015). Optimal cloning of PCR fragments by homologous recombination in Escherichia coli. PLoS One, 10(3), e0119221. doi:10.1371/journal.pone. 0119221
Jamieson, A. C., Miller, J. C., \& Pabo, C. O. (2003). Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov, 2(5), 361-368. doi:10.1038/nrd1087
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., \& Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. doi:10.1126/science. 1225829
Johnson, L., Cao, X., \& Jacobsen, S. (2002). Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr Biol, 12(16), 1360-1367.
Kang, H.-G., Fang, Y., \& Singh, K. B. (1999). A glucocorticoid-inducible transcription system causes severe growth defects in Arabidopsis and induces defense-related genes. The Plant Journal, 20(1), 127-133. doi:10.1046/j.1365-313X.1999.00575.x
Kang, S. G., Price, J., Lin, P.-C., Hong, J. C., \& Jang, J.-C. (2010). The Arabidopsis bZIP1 Transcription Factor Is Involved in Sugar Signaling, Protein Networking, and DNA Binding. Molecular Plant, 3(2), 361-373. doi:https://doi.org/10.1093/mp/ssp115
Kay, S., Hahn, S., Marois, E., Hause, G., \& Bonas, U. (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science, 318(5850), 648-651. doi:10.1126/science. 1144956
Kay, S., Hahn, S., Marois, E., Wieduwild, R., \& Bonas, U. (2009). Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3Deltarep16. Plant J, 59(6), 859-871. doi:10.1111/j.1365-313X.2009.03922.x
Kaya, H., Numa, H., Nishizawa-Yokoi, A., Toki, S., \& Habu, Y. (2017). DNA Methylation Affects the Efficiency of Transcription Activator-Like Effector Nucleases-Mediated Genome Editing in Rice. Frontiers in Plant Science, 8, 302. doi:10.3389/fpls.2017.00302
Kierszniowska, S., Seiwert, B., \& Schulze, W. X. (2009). Definition of Arabidopsis sterol-rich membrane microdomains by differential treatment with methyl-beta-cyclodextrin and quantitative proteomics. Mol Cell Proteomics, 8(4), 612-623. doi:10.1074/mcp.M800346-MCP200
Klug, A. (2010). The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q Rev Biophys, 43(1), 1-21. doi:10.1017/S0033583510000089

Knight, H., Veale, E. L., Warren, G. J., \& Knight, M. R. (1999). The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell, 11(5), 875-886.
Koncz, C., \& Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molecular and General Genetics MGG, 204(3), 383-396. doi:10.1007/bf00331014
Kornberg, R. D. (1974). Chromatin structure: a repeating unit of histones and DNA. Science, 184(4139), 868-871.
Kornet, N., \& Scheres, B. (2008). Stem cell factors in plants: chromatin connections. Cold Spring Harb Symp Quant Biol, 73, 235-242. doi:10.1101/sqb.2008.73.043
Kouzarides, T. (2007). Chromatin Modifications and Their Function. Cell, 128(4), 693-705. doi:https://doi.org/10.1016/j.cell.2007.02.005
Lachner, M., O'Sullivan, R. J., \& Jenuwein, T. (2003). An epigenetic road map for histone lysine methylation. Journal of Cell Science, 116(11), 2117-2124. doi:10.1242/jcs. 00493
Lafos, M., Kroll, P., Hohenstatt, M. L., Thorpe, F. L., Clarenz, O., \& Schubert, D. (2011). Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet, 7(4), e1002040. doi:10.1371/journal.pgen. 1002040
Latrasse, D., Jegu, T., Li, H., de Zelicourt, A., Raynaud, C., Legras, S., . . . Hirt, H. (2017). MAPKtriggered chromatin reprogramming by histone deacetylase in plant innate immunity. Genome Biol, 18(1), 131. doi:10.1186/s13059-017-1261-8
Leeb, M., \& Wutz, A. (2012). Establishment of epigenetic patterns in development. Chromosoma, 121(3), 251-262. doi:10.1007/s00412-012-0365-x
Lewin, B., Cassimeris, L., Plopper, G., \& Lingappa, V. R. (2007). Chromatin and chromosomes: Jones and Bartlett Publishers.
Li, J., Zhu, L., Eshaghi, M., Liu, J., \& Karuturi, K. M. (2011). Deciphering transcription factor binding patterns from genome-wide high density ChIP-chip tiling array data. BMC Proc, 5 Suppl 2, S8. doi:10.1186/1753-6561-5-S2-S8
Li, L., Atef, A., Piatek, A., Ali, Z., Piatek, M., Aouida, M., . . . Mahfouz, M. M. (2013). Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. Mol Plant, 6(4), 1318-1330. doi:10.1093/mp/sst006
Li, L., Piatek, M. J., Atef, A., Piatek, A., Wibowo, A., Fang, X., .. . Mahfouz, M. M. (2012). Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol, 78(4-5), 407-416. doi:10.1007/s11103-012-9875-4
Li, T., Huang, S., Jiang, W. Z., Wright, D., Spalding, M. H., Weeks, D. P., \& Yang, B. (2011). TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and Fokl DNA-cleavage domain. Nucleic Acids Res, 39(1), 359-372. doi:10.1093/nar/gkq704
Li, Y., Moore, R., Guinn, M., \& Bleris, L. (2012). Transcription activator-like effector hybrids for conditional control and rewiring of chromosomal transgene expression. Sci Rep, 2, 897. doi:10.1038/srep00897
Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., \& He, P. (2010). A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A, 107(1), 496-501. doi:10.1073/pnas. 0909705107
Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., \& Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at $2.8 \AA$ resolution. Nature, 389, 251. doi:10.1038/38444

Lyons, E., \& Freeling, M. (2008). How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J, 53(4), 661-673. doi:10.1111/j.1365313X.2007.03326.x
Lyons, E., Pedersen, B., Kane, J., Alam, M., Ming, R., Tang, H., . . . Freeling, M. (2008). Finding and Comparing Syntenic Regions among Arabidopsis and the Outgroups Papaya, Poplar, and Grape: CoGe with Rosids. Plant Physiol, 148(4), 1772-1781. doi:10.1104/pp.108.124867
MacQuarrie, K. L., Fong, A. P., Morse, R. H., \& Tapscott, S. J. (2011). Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet, 27(4), 141148. doi:10.1016/j.tig.2011.01.001

Maeder, M. L., Linder, S. J., Reyon, D., Angstman, J. F., Fu, Y., Sander, J. D., \& Joung, J. K. (2013). Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods, 10(3), 243-245. doi:10.1038/nmeth. 2366
Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y., \& Oda, K. (2004). dwarf and delayedflowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J, 37(5), 720-729.
Marinov, G. K., Kundaje, A., Park, P. J., \& Wold, B. J. (2014). Large-scale quality analysis of published ChIP-seq data. G3 (Bethesda), 4(2), 209-223. doi:10.1534/g3.113.008680
Martinez, E. (2002). Multi-protein complexes in eukaryotic gene transcription. Plant Mol Biol, 50(6), 925-947.
Massie, C. E., \& Mills, I. G. (2008). ChIPping away at gene regulation. EMBO Rep, 9(4), 337-343. doi:10.1038/embor. 2008.44
Mehlhorn, D. G., Wallmeroth, N., Berendzen, K. W., \& Grefen, C. (2018). 2in1 Vectors Improve In Planta BiFC and FRET Analyses. In C. Hawes \& V. Kriechbaumer (Eds.), The Plant Endoplasmic Reticulum : Methods and Protocols (pp. 139-158). New York, NY: Springer New York.
Meshinchi, S., Matic, G., Hutchison, K. A., \& Pratt, W. B. (1990). Selective molybdate-directed covalent modification of sulfhydryl groups in the steroid-binding versus the DNAbinding domain of the glucocorticoid receptor. J Biol Chem, 265(20), 11643-11649.
Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., \& Thomas, P. D. (2017). PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res, 45(D1), D183D189. doi:10.1093/nar/gkw1138
Miao, Y., Laun, T., Zimmermann, P., \& Zentgraf, U. (2004). Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol, 55(6), 853867. doi:10.1007/s11103-004-2142-6

Miller, J., McLachlan, A. D., \& Klug, A. (1985). Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J, 4(6), 1609-1614.
Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., . . . Rebar, E. J. (2011). A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 29(2), 143-148. doi:10.1038/nbt. 1755
Miyanari, Y., Ziegler-Birling, C., \& Torres-Padilla, M. E. (2013). Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol, 20(11), 1321-1324. doi:10.1038/nsmb. 2680
Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J., \& Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 60(2), 174-182. doi:10.1007/s00239-004-0046-3

Molina, C., \& Grotewold, E. (2005). Genome wide analysis of Arabidopsis core promoters. BMC Genomics, 6, 25. doi:10.1186/1471-2164-6-25
Morbitzer, R., Elsaesser, J., Hausner, J., \& Lahaye, T. (2011). Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res, 39(13), 5790-5799. doi:10.1093/nar/gkr151
Morbitzer, R., Romer, P., Boch, J., \& Lahaye, T. (2010). Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A, 107(50), 21617-21622. doi:10.1073/pnas. 1013133107
Moscou, M. J., \& Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326(5959), 1501. doi:10.1126/science. 1178817
Mueller, K., Bittel, P., Chinchilla, D., Jehle, A. K., Albert, M., Boller, T., \& Felix, G. (2012). Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato. Plant Cell, 24(5), 2213-2224. doi:10.1105/tpc.112.096073
Mülhardt, C. (2013). Der Experimentator Molekularbiologie / Genomics: Springer Berlin Heidelberg.
Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T., \& Jones, J. D. (2004). The transcriptional innate immune response to flg22. Interplay and overlap with Avr genedependent defense responses and bacterial pathogenesis. Plant Physiol, 135(2), 11131128. doi:10.1104/pp.103.036749

Nikolov, M., Stutzer, A., Mosch, K., Krasauskas, A., Soeroes, S., Stark, H., . . . Fischle, W. (2011). Chromatin affinity purification and quantitative mass spectrometry defining the interactome of histone modification patterns. Mol Cell Proteomics, 10(11), M110 005371. doi:10.1074/mcp.M110.005371

Orlando, V., Strutt, H., \& Paro, R. (1997). Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods, 11(2), 205-214. doi:10.1006/meth.1996.0407
Park, C. J., Caddell, D. F., \& Ronald, P. C. (2012). Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor-mediated signaling. Front Plant Sci, 3, 177. doi:10.3389/fpls.2012.00177
Pennisi, E. (2012). The tale of the TALEs. Science, 338(6113), 1408-1411. doi:10.1126/science.338.6113.1408
Perez-Pinera, P., Ousterout, D. G., Brunger, J. M., Farin, A. M., Glass, K. A., Guilak, F., . . . Gersbach, C. A. (2013). Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods, 10(3), 239-242. doi:10.1038/nmeth. 2361
Pertl-Obermeyer, H., Wu, X. N., Schrodt, J., Mudsam, C., Obermeyer, G., \& Schulze, W. X. (2016). Identification of Cargo for Adaptor Protein (AP) Complexes 3 and 4 by Sucrose Gradient Profiling. Mol Cell Proteomics, 15(9), 2877-2889. doi:10.1074/mcp.M116.060129
Pitzschke, A., Schikora, A., \& Hirt, H. (2009). MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol, 12(4), 421-426. doi:10.1016/j.pbi.2009.06.008
Plésiat, P., \& Nikaido, H. (1992). Outer membranes of Gram-negative bacteria are permeable to steroid probes. Molecular Microbiology, 6(10), 1323-1333. doi:10.1111/j.13652958.1992.tb00853.x

Pochert, S. (2014). Reportergenanalyse von transient transformierten Arabidopsis thaliana Protoplasten. (Bachelor of Science Bachelorthesis), Eberhard Karls Universität Tübingen, Tübingen.

Popescu, S. C., Popescu, G. V., Bachan, S., Zhang, Z., Gerstein, M., Snyder, M., \& Dinesh-Kumar, S. P. (2009). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 23(1), 80-92. doi:10.1101/gad. 1740009
Pourcel, C., Salvignol, G., \& Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151(Pt 3), 653-663. doi:10.1099/mic.0.27437-0
Pratt, W. B., \& Toft, D. O. (1997). Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev, 18(3), 306-360. doi:10.1210/edrv.18.3.0303
Ramirez-Prado, J. S., Abulfaraj, A. A., Rayapuram, N., Benhamed, M., \& Hirt, H. (2018). Plant Immunity: From Signaling to Epigenetic Control of Defense. Trends Plant Sci. doi:10.1016/j.tplants.2018.06.004
Ramirez-Prado, J. S., Piquerez, S. J. M., Bendahmane, A., Hirt, H., Raynaud, C., \& Benhamed, M. (2018). Modify the Histone to Win the Battle: Chromatin Dynamics in PlantPathogen Interactions. Front Plant Sci, 9(355), 355. doi:10.3389/fpls.2018.00355
Rathi, P., Maurer, S., Kubik, G., \& Summerer, D. (2016). Isolation of Human Genomic DNA Sequences with Expanded Nucleobase Selectivity. J Am Chem Soc, 138(31), 9910-9918. doi:10.1021/jacs.6b04807
Reynolds, L., Ullman, C., Moore, M., Isalan, M., West, M. J., Clapham, P., . . . Choo, Y. (2003). Repression of the HIV-1 5' LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. Proc Natl Acad Sci U S A, 100(4), 16151620. doi:10.1073/pnas. 252770699

Rhee, H. S., \& Pugh, B. F. (2011). Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell, 147(6), 1408-1419. doi:10.1016/j.cell.2011.11.013
Rhee, H. S., \& Pugh, B. F. (2012). Genome-wide structure and organization of eukaryotic preinitiation complexes. Nature, 483(7389), 295-301. doi:10.1038/nature10799
Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D., \& Klug, A. (1984). Structure of the nucleosome core particle at 7 Å resolution. Nature, 311, 532. doi:10.1038/311532a0
Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., . . Yu, G. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290(5499), 2105-2110.
Robatzek, S., \& Somssich, I. E. (2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev, 16(9), 1139-1149. doi:10.1101/gad. 222702
Romer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U., \& Lahaye, T. (2007). Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science, 318(5850), 645-648. doi:10.1126/science. 1144958
Ronald, P. C., \& Beutler, B. (2010). Plant and animal sensors of conserved microbial signatures. Science, 330(6007), 1061-1064. doi:10.1126/science. 1189468
Rushton, P. J., Somssich, I. E., Ringler, P., \& Shen, Q. J. (2010). WRKY transcription factors. Trends Plant Sci, 15(5), 247-258. doi:10.1016/j.tplants.2010.02.006
Rushton, P. J., Torres, J. T., Parniske, M., Wernert, P., Hahlbrock, K., \& Somssich, I. E. (1996). Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J, 15(20), 5690-5700.
Sadava, D. (2008). DNA is Packed into a Mitotic Chromosome. Retrieved from https://www.nature.com/scitable/content/DNA-is-Packed-into-a-Mitotic-Chromosome-3497

Sanchez, E. R. (1992). Heat shock induces translocation to the nucleus of the unliganded glucocorticoid receptor. J Biol Chem, 267(1), 17-20.
Schena, M., Lloyd, A. M., \& Davis, R. W. (1991). A steroid-inducible gene expression system for plant cells. Proc Natl Acad Sci U S A, 88(23), 10421-10425.
Schleifenbaum, F., Elgass, K., Sackrow, M., Caesar, K., Berendzen, K., Meixner, A. J., \& Harter, K. (2010). Fluorescence intensity decay shape analysis microscopy (FIDSAM) for quantitative and sensitive live-cell imaging: a novel technique for fluorescence microscopy of endogenously expressed fusion-proteins. Mol Plant, 3(3), 555-562. doi:10.1093/mp/ssp110
Schulze, B., Mentzel, T., Jehle, A. K., Mueller, K., Beeler, S., Boller, T., . . . Chinchilla, D. (2010). Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem, 285(13), 9444-9451. doi:10.1074/jbc.M109.096842
Schutze, K., Harter, K., \& Chaban, C. (2009). Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Methods Mol Biol, 479, 189202. doi:10.1007/978-1-59745-289-2_12

Schwessinger, B., \& Ronald, P. C. (2012). Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol, 63, 451-482. doi:10.1146/annurev-arplant-042811-105518
Schwessinger, B., Roux, M., Kadota, Y., Ntoukakis, V., Sklenar, J., Jones, A., \& Zipfel, C. (2011). Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet, 7(4), e1002046. doi:10.1371/journal.pgen. 1002046
Scott, J. N., Kupinski, A. P., \& Boyes, J. (2014). Targeted genome regulation and modification using transcription activator-like effectors. Febs j, 281(20), 4583-4597. doi:10.1111/febs. 12973
Segonzac, C., \& Zipfel, C. (2011). Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol, 14(1), 54-61. doi:10.1016/j.mib.2010.12.005
Solomon, M. J., \& Varshavsky, A. (1985). Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A, 82(19), 6470-6474.
Starick, S. R., Ibn-Salem, J., Jurk, M., Hernandez, C., Love, M. I., Chung, H. R., . . . Meijsing, S. H. (2015). ChIP-exo signal associated with DNA-binding motifs provides insight into the genomic binding of the glucocorticoid receptor and cooperating transcription factors. Genome Res, 25(6), 825-835. doi:10.1101/gr.185157.114
Stella, S., Molina, R., Yefimenko, I., Prieto, J., Silva, G., Bertonati, C., . . . Montoya, G. (2013). Structure of the AvrBs3-DNA complex provides new insights into the initial thyminerecognition mechanism. Acta Crystallogr D Biol Crystallogr, 69(Pt 9), 1707-1716. doi:10.1107/s0907444913016429
Stockinger, E. J., Gilmour, S. J., \& Thomashow, M. F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A, 94(3), 1035-1040.
Szalkowski, A. M., \& Schmid, C. D. (2011). Rapid innovation in ChIP-seq peak-calling algorithms is outdistancing benchmarking efforts. Briefings in Bioinformatics, 12(6), 626-633. doi:10.1093/bib/bbq068
Szymanski, W. G., Kierszniowska, S., \& Schulze, W. X. (2013). Metabolic labeling and membrane fractionation for comparative proteomic analysis of Arabidopsis thaliana suspension cell cultures. J Vis Exp(79), e50535. doi:10.3791/50535

Teytelman, L., Thurtle, D. M., Rine, J., \& van Oudenaarden, A. (2013). Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci U S A, 110(46), 18602-18607. doi:10.1073/pnas. 1316064110
Thompson, J. F., Hayes, L. S., \& Lloyd, D. B. (1991). Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene, 103(2), 171-177. doi:https://doi.org/10.1016/0378-1119(91)90270-L
Tremblay, J. P., Chapdelaine, P., Coulombe, Z., \& Rousseau, J. (2012). Transcription activatorlike effector proteins induce the expression of the frataxin gene. Hum Gene Ther, 23(8), 883-890. doi:10.1089/hum.2012.034
Tsuda, K., \& Somssich, I. E. (2015). Transcriptional networks in plant immunity. New Phytol, 206(3), 932-947. doi:10.1111/nph. 13286
Vandevyver, S., Dejager, L., \& Libert, C. (2012). On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic, 13(3), 364-374. doi:10.1111/j.1600-0854.2011.01288.x
Vellai, T., \& Vida, G. (1999). The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1428), 1571-1577. doi:10.1098/rspb.1999.0817
Vermeulen, M., Eberl, H. C., Matarese, F., Marks, H., Denissov, S., Butter, F., . . . Mann, M. (2010). Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell, 142(6), 967-980. doi:10.1016/j.cell.2010.08.020
Wallmeroth, N., Anastasia, A. K., Harter, K., Berendzen, K. W., \& Mira-Rodado, V. (2017). Arabidopsis response regulator 22 inhibits cytokinin-regulated gene transcription in vivo. Protoplasma, 254(1), 597-601. doi:10.1007/s00709-016-0944-4
Wang, D. Y., Kumar, S., \& Hedges, S. B. (1999). Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci, 266(1415), 163-171. doi:10.1098/rspb.1999.0617
Waryah, C. B., Moses, C., Arooj, M., \& Blancafort, P. (2018). Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing. In A. Jeltsch \& M. G. Rots (Eds.), Epigenome Editing: Methods and Protocols (pp. 19-63). New York, NY: Springer New York.
Weber, E., Gruetzner, R., Werner, S., Engler, C., \& Marillonnet, S. (2011). Assembly of designer TAL effectors by Golden Gate cloning. PLoS One, 6(5), e19722. doi:10.1371/journal.pone. 0019722
Winter, e. a. (2007). Developmental Map AT2G19190, Arabiopsis eFP Browser at bar.utoronta.ca. Retrieved from https://www.arabidopsis.org/servlets/TairObject?id=34421\&type=locus
Wisniewski, J. R., Zougman, A., Nagaraj, N., \& Mann, M. (2009). Universal sample preparation method for proteome analysis. Nat Methods, 6(5), 359-362. doi:10.1038/nmeth. 1322
Woese, C. R., Kandler, O., \& Wheelis, M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A, 87(12), 4576-4579.
Yi, S. Y., Kim, J.-H., Joung, Y.-H., Lee, S., Kim, W.-T., Yu, S. H., \& Choi, D. (2004). The Pepper Transcription Factor CaPF1 Confers Pathogen and Freezing Tolerance in Arabidopsis. Plant Physiol, 136(1), 2862-2874. doi:10.1104/pp.104.042903
Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G. M., \& Arlotta, P. (2011). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol, 29(2), 149-153. doi:10.1038/nbt. 1775
Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., . . . Zhou, J. M. (2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are
targeted by a Pseudomonas syringae effector. Cell Host Microbe, 7(4), 290-301. doi:10.1016/j.chom.2010.03.007
Zheng, Y., \& Hearing, P. (2014). The use of chromatin immunoprecipitation (ChIP) to study the binding of viral proteins to the adenovirus genome in vivo. Methods Mol Biol, 1089, 79-87. doi:10.1007/978-1-62703-679-5_6
Zheng, Y., \& Perry, S. E. (2011). Chromatin immunoprecipitation to verify or to identify in vivo protein-DNA interactions. Methods Mol Biol, 754, 277-291. doi:10.1007/978-1-61779-154-3_16
Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D., Felix, G., \& Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428(6984), 764-767. doi:10.1038/nature02485

9. Curriculum Vitae

Stefan Markus Fischer

Education

12/2013 - present	PhD Student Centre for Plant Molecular Biology, University of Tuebingen, Department of Plantphysiology
10/2011-10/2013	Master of Science Centre for Plant Molecular Biology, University of Tuebingen, Department of General Genetics, Grade 1,2
$\mathbf{1 0 / 2 0 0 8 - 1 0 / 2 0 1 1}$	Bachelor of Science Centre for Plant Molecular Biology, University of Tuebingen Department of General Genetics; Grade 1,9
$\mathbf{0 7 / 1 9 9 8 - 0 7 / 2 0 0 7}$	Abitur Otto-Hahn Gymnasium, Nagold

Awards and stipends

2016-2017	Doctoral fellowship, Landesgraduiertenförderung Baden-Württemberg
2015	Reinhold von Sengbusch Poster Award 2015

Publications

01/2016 Fischer S. M., Böser A, Hirsch J. P. and Wanke D., Quantitative Analysis of Protein-DNA Interaction by qDPI-ELISA, Springer Protocols, Methods in Molecular Biology Vol. 1482 pp 49-66

09/2015 Smykowski, A., Fischer S. M., and U. Zentgraf, Phosphorylation Affects DNA-Binding oft he Senescence-Regulating bZIP Transcription Factor GBF1, Plants, 2015. 4(3): p. 691

Conferences

07/2017
$3^{\text {rd }}$ Summer academy in Plant Molecular Biology 2017, Bad Heiligenkreuztal, Poster Presentation
04/2017 $9^{\text {th }}$ Regio Plant Science Meeting 2017, Tübingen, Poster Presentation

02/2017	30. Tagung Molekularbiologie der Pflanzen 2017, Dabringhausen, Poster Presentation
07/2016	$2{ }^{\text {nd }}$ PhD Symposium 2016,
	Tübingen, Talk
07/2015	$2^{\text {nd }}$ Summer Academy in Plant Molecular Biology
	Freudenstadt, Poster Presentation
02/2015	28. Tagung Molekularbiologie der Pflanzen,
	Dabringhausen, Poster Presentation (Awarded with R.v.S.
	Poster Award)
02/2015	$8^{\text {th }}$ Regio Plant Science Meeting 2015,
	Ulm, Poster Presentation
09/2013	Botanikertagung 2013, Tübingen

11. Supplement

11.1. Supplementary figures

Transcriptionfactor binding sites
WBox WBoxlike motif ahl20 bZIP

Functional domains

TATA Box Transcriptionstart (InR motif) ATG

functional protomoter (Robatzek and Somssich (2002)) 5'UTR
dTALE binding sites

dTALE-A	ATTCTAAAGTAATCTTCA
dTALE-B	GTATGATCATACATTAAT
dTALE-E	ICTTTCTTGTTCATGCTC
dTALE-F	CATGCTCAAGATCAATCT
dTALE-C	ATATAGTAATAAACTCAA
dTALE-D	GTTATAGCATATATAGTA

Supplementary figure 1: Overview of pFRK1 with cis-regulatory elements and putative binding sites of transcription factors and the dTALEs in pFRK1
Sequence 1051 bp up- and 108 bp downstream of the annotated ATG is shown.
Tandem Repeat: \quad CpG island : *

TTGGTTAGTGATTGCAGGTTGGAAAGATTTACCTTCTAGACCTGTCTTACGAAGCTAGTATTCTAAAGTAATCTTCATAAACCGAATTCAGAAAACAAAAAA AACCAATCACTAACGTCCAACCTTTCTAAATGGAAGATCTGGACAGAATGCTTCGATCATAAGATTTCATTAGAAGTATTTGGCTTAAGTCTTTGTTTTT

AAGAAAAGGAGTCCAAAAATTGTATGATCATACATTAATATCAGAATAGTCTCTTTTGTTAAATAAATATCTGAAGAATATATATCTCTTTGATTATTTTG TTCTTTTCCTCAGGTTTTAACATACTAGTATGTAATTATAGTCTTATCAGAGAAAAACAATTTATTTATAGACTTCTTATATATAGAGAAACTAATAAAAC

TGGATGGCAATGAAACTAAGAATATATATTCATTGACTTAGAAGTCGACAAAAAA,AAAAATAAAA,AAAATTATTGACTTAATTACTAGTTGACCAATATATAT
ACCTACCGTTACTTTGATTCTTATATATAAGTAACTGAATCTTCAGCTGTTTTTTTTTATTTTTTTAATAACTGAAATTAATGATCAACTGGTTATATATA

ATTATTAAAAAGAACATATTGTATCGTTGAAAGCGGATCATCGGGTTTTAAAAGAAAAAACACATCGTTGAAACTTGAAAGTGATGACTAATAAAAAAGATCT
A.A.ACGTGTCCGGTCACCTACCAATGTGGTTTTGCAAATTATTGTCAAGTACCTTGACTATATTAAATAAA,A,A.A.ATTCACCGTAACACATTGATATTCAAC

TGATTCCTAAAAAAATATACAAACTATTGGGAGTTGTGAGATTTTTTATATCAGTGTTGGTCTCTTTACATTTGTGATGTGGTGTTATAGCATATATAGT

AATAAACTCAAAAGGAAAATTAGATGTGTTTTGACCATTTATTAAAATGAACCTTTTCTTGTCAAAACATTTGAAAAAATACTAGTTTTTTTTTTTGGCAACG
TTATTTGAGTTTTCCTTTAATCTACACAAAACTGGTAAATAATTTTACTTGGAAAAGAACAGTTTTGTAAACTTTTTATGATCAAAAAAAAAAACCGTTGC

TTGTAAATAATAGTTAAA,AATAGATTTTAAGTCTCGTTTTTTTTATGCATATAGTTTCATTCGCTTTATTAGACTCAAATATACTTTTAATTAAAATTTTGC

AGAGAATTAAAGGTAATCATTTGCCAAGGAAAAAACCATGCAAATATGCAATAAGTAGAAATAATGTTAATGAGAGTAAGCGTTGACATATATTACGTCCT

TAAAACAGTTGCTCATTGCTCTAGCCCAGAGAAAGCAGCTCAATTAAGTAAATGGCGATGTTAAAATCTCTTTCATCGATTTTATTCACAAGCTTTGCTC

```
WRKY6:
WRKY26:
WRKY40:
WRKY33 WRKY5 RKY11: WRKY18: WRKY26: AHL20: \(\square\) RKY33: \(\square\)
```

Supplementary figure 2: PlantPan2 output. Search query 1 kb upstream of TSS and 100 bp downstream.

A
B

Supplementary figure 3: qPCR after flg22 treatment of A. thaliana seedlings
A Ct values of the Actin2 reference primers
B Relative FRK1 expression [$\Delta \Delta \mathrm{Ct}]$ of the bio replicates shown separately. FRK1 was induced within 45 min by flg22 treatment. Mock treatment did not have an effect. fls2 plants did not express FRK1 RNA after flg22 treatment. Actin2 was used as reference gene.

Supplementary figure 4: FRK1 transcript accumulation is still induced by flg22 in A. thaliana seedlings expressing nuclear-localized dTALE C (bioreplicate 2)

dTALE C expressing Arabidopsis seedlings were treated with DEX ($10 \mu \mathrm{M}$) or mock-treated. 30 min later the seedlings were exposed to flg22 (100 nM) or mock-exposed for 30 or 60 min . Total RNA was extracted and applied to qRT-PCR using FRK1-specific primers.

Supplementary figure 5: Repetition of X-ChIP followed by qPCR of pFRK1 fragments using dTALEs. dTALE A (A), dTALE C (B), dTALE D (C), dTALE E (D) and dTALE F (E) were used to immuno-precipitate PFRK 1 fragments. The samples were prepared from stable A. thaliana lines expressing dTALEs that were treated with flg22 and DEX, flg22, DEX and mock. Precipitated DNA was quantified by qPCR. The values are shown in $\%$ of input in green for the binding amplicon, grey for the no binding amplicon.

11.2. Vector Maps

Vector $8421 . .6636$
link1eb 10414..10437
Insert 10414.. 10437
ocst 9696.. 10409
GCTT 9692.. 9695
eGFP 8915.. 9688
3xHA 8798.. 8914

VP64 AD 8624.. 8797

+63 aa Miller 8429..8617 Insert 8374..8420| Insert 8307..8373 Insert 8206..8306 Insert 8116..8205 Insert 8017..8115 Insert 7675..8373 Insert 7921..8016 Insert 7828..7920 Insert 7731..7827/
Insert 7675..7730/ Insert 4857.. 10413 Insert 7096.. 7674 Insert 6997.. 7095 Insert 6901.. 6996 Insert 6637..7095 Insert 6808..6900 Insert 6711.. 6807
Insert 6637.. 6710
35S pro short (no Bsal and Bpil) $4873 . .5302$
356 N-term 6227.. 6634
CACC-TATG 6226.. 6226
GR Rezeptor R/RobM 6229.. 6205
GR Rezeptor 5393.. 6223
Omega leader 5319.. 5380

LEII DNA binding motif $2189 . .2179$
364 TALEII DNA binding motif 2180.. 2198

NOS-Terminator 7258.. 7524

FRK-Promotor 2663.. 5461

11.3. Supplementary tables

Supplementary table 1: Predicted transcription factor binding sites in $p F R K 1$

P os itio it	$\begin{aligned} & \text { Matri } \\ & \times 10 \end{aligned}$	Family	$\begin{aligned} & \mathrm{s} \\ & \mathrm{tr} \\ & \mathrm{a} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \hline \text { sim } \\ & \text { iliar } \\ & \text { sco } \\ & \text { re } \end{aligned}$	Hit Sequen ce	TFID or Motif name
2	$\begin{aligned} & \text { TF_m-m } \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 341 \end{aligned}$	(Motif sequence only)		1	TGGT a	MYB1at
2	TF_m otif_s ${ }_{36}$ eq_ 366	(Motif sequence only)	-	1	$\begin{aligned} & \mathrm{tgGT} \mathrm{\pi A} \\ & \mathrm{G} \end{aligned}$	MYBATRD22
4	$\begin{aligned} & \text { TF-m_m } \\ & \text { otif } \\ & \text { eq- } \\ & 267 \end{aligned}$	Trihelix	+	0.8	GTtag	ATS601380
4		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	${ }_{0}^{0.8}$	$\underset{\operatorname{tg}}{\text { GTAG }}$	MYB1LEPR
6	$\begin{aligned} & \hline \text { TFma } \\ & \text { trixid } \\ & \overline{-}_{3} \mathbf{0 2 8} \\ & \hline \end{aligned}$	Homeod omain; D-ZIP	+	${ }_{0}^{0.9}$	$\begin{aligned} & \stackrel{\operatorname{tag} T G A}{ } \\ & \Pi \mathrm{mg} \end{aligned}$	AT2622800:AT2644910:AT4416780;AT4637790;AT5606710:AT5647370
6	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & \overline{-}_{4}^{028} \end{aligned}$	Homeod omain; H D-ZIP	+	${ }_{0}^{0.9}$	$\begin{aligned} & \text { tagTGA } \\ & \begin{array}{l} \text { tgc } \end{array} \end{aligned}$	AT2646680
8	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & -\overline{028} \\ & \hline 6 \end{aligned}$	Homeod omain; D-ZIP	+	${ }_{9}^{0.9}$	$\frac{\text { gTGAT }}{\text { Tgc }}$	AT2622800:AT3660390:AT4616780;AT4637790:AT5606710;AT5647370
8	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & \overline{9}_{9}{ }^{299} \end{aligned}$	Homeod omain; w ox	+	${ }_{8}^{0.9}$	$\begin{aligned} & \text { gTGAT } \\ & \text { Tgc } \end{aligned}$	AT1620700;AT1120710
8	$\begin{aligned} & \text { TF_m } \\ & \text { otifs } \\ & \text { equ-_ } \\ & 435 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.7 5	$\begin{aligned} & \operatorname{tgTGAT} \\ & \operatorname{tgc} \end{aligned}$	Platgapb
9	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_0 } \\ & 237 \end{aligned}$	Gatatity	+	1	TGATT	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
9	$\begin{aligned} & \text { TF-m_m } \\ & \text { otif_s } \\ & \text { eq_0 } \\ & 268 \end{aligned}$	(Motif sequence only)	+	1	tgat	arriat
1	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { etif_0 } \\ & 257 \end{aligned}$	NF- YB;NF- YA;NF-YC	-	0.8	ATGC	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
1	TF_m otif_s eq_0 249	(Motif sequence only)	-	0.8	CAGGT	ABREATERDI
${ }_{8}^{1}$	TF_m otif_s eq_0 257	NF- YB;NF- YA;NF-YC	-	0.8	GTTG	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
${ }_{8}^{1}$	TF-m otif_s eq_0 258	Dehydrin	-	0.8	GTTG	U01377
${ }_{8}^{1}$	TF_m otif_s ${ }_{455}{ }^{\text {eq_ }}$ 455	(Motif sequence only)	-	$\begin{aligned} & 0.7 \\ & 5 \end{aligned}$	${ }_{A A}^{\text {gttGGA }}$	E2FAntrnk
${ }_{3}^{2}$	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { equ_0 } \\ & 239 \end{aligned}$	Dof	+	1	AAAGA	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;ATGG62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
2	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_o } \\ & 254 \end{aligned}$	AP2; FRF	-	0.8	AAGAT	AT3612330
${ }_{5}^{2}$	$\begin{aligned} & \text { TF-m_m } \\ & \text { otif_s } \\ & \text { equ-0 } \\ & 237 \end{aligned}$	GATA, tily	+	1	Agatt	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
2		Myb/SAN T;MYB;A RR-B	+	1	Agatt	AT2601760;AT3616857;A4616110;AT4618020;AT4631920;ATG65880;AT1667710;AT1649190;ARG251180;AT5692240
${ }_{5}^{2}$	$\begin{aligned} & \text { TF-m } \\ & \text { otifos } \\ & \text { equ- } \\ & 268 \end{aligned}$	(Motif sequence only)	+	1	AGATT	ARR1at
${ }_{7} 7$	TF-m otif_s eq_0 254	AP2; FRF	+	0.8	ATTTA	AT3612330
${ }_{8}^{2}$	$\begin{aligned} & \text { TF__m } \\ & \text { otif_s } \\ & \text { eq_o } \\ & 267 \end{aligned}$	Trinelix	+	0.8	ITTAC	AT5601380
$\stackrel{2}{8}$	TF_m otifs eq 0 319	Trihelix	-	1	ttacc	AT163320
$\stackrel{2}{8}$	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eif_o } \\ & 275 \end{aligned}$	(Motif sequence only)	+	0.8	tтAC	Wboxativpr 1
${ }_{8}^{2}$	$\begin{aligned} & \text { TF-m } \\ & \text { otifs } \\ & \text { eq_- } \\ & 321 \end{aligned}$	(Motif sequence only)	-	1	ttacc	gTiconsensus
3 1	$\begin{aligned} & \text { TF-m_m } \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 239 \end{aligned}$	Dof	-	1	ACCT	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
3 4	$\begin{aligned} & \text { TF_m-m } \\ & \text { otif_s } \\ & \text { eta-0 } \\ & 254 \end{aligned}$	AP2; RF	+	0.8	тста	AT3612330
3 7	TF_m otif_s eq_0 254	AP2; RF	-	0.8	TAGAC	AT3612230
${ }_{7}$	TF-m otif_s eq_0 261	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	tagac	SURECOREATSULTR11
${ }_{7} 7$	$\underset{\substack{\text { Trim } \\ \text { otifs }}}{ }$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	tagac	WBoxATNPR1

	${ }_{275}^{\text {eq] }}$					
3 8	$\begin{aligned} & \hline \text { Tfma } \\ & \text { trixid } \\ & \overline{8}_{8} \mathbf{0 1 8} \\ & \hline \end{aligned}$	bz1P		${ }_{6}^{0.9}$	agact GTct	AT1006000:Ar2631370:AT2640620
3 8	$\begin{aligned} & \text { TFma } \\ & \text { trixiD } \\ & \overline{3}_{3}^{019} \end{aligned}$	bz1P		$\stackrel{0}{0.7}$	${ }_{\text {agacct }}^{\text {gT }}$	AT3619290;ATG63400
4 0	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eqq-0 } \\ & 249 \end{aligned}$	(Motif sequence only)	+	0.8	Accto	ABreatrroi
4	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otifs } \\ & \text { eq- } 0 \\ & 261 \end{aligned}$	(Motif sequence only)		0.8	өтст	surecoreatsultral
4 5	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { oti-s } \\ & \text { eq-0 } \\ & 508 \\ & \hline \end{aligned}$	sbp	.	${ }_{5}^{0.7}$	${ }_{\text {tctac }}^{\text {Gaa }}$	
4		Trinelix	+	0.8	стtac	AT5601380
${ }_{7}$		bzip	+	0.8	тася	AT1677920;AT3612250;ATS06950;ATG60690;aT5G10030;AT5665210;A11622070
5 3	$\begin{aligned} & \text { TF-m } \\ & \text { Totif } \\ & \text { ote-s } \\ & \text { eta } \\ & 254 \\ & \hline \end{aligned}$	AP2; EFF	+	0.8	Agcta	AT3614230
${ }_{1}^{6}$		AP2; ERF	+	0.8	тстА	AT3612330
${ }_{4}^{6}$	$\begin{array}{\|l\|} \hline \text { TFma } \\ \text { TFma } \\ \text { trixiD } \\ -4038 \\ \hline 4 \end{array}$	$\begin{aligned} & \mathrm{NaC} ; \mathrm{NA} \\ & \mathrm{M} \end{aligned}$		${ }_{9}^{0.8}$	${ }_{\text {atat }}^{\text {traAt }}$	AT1133060;AT3649530:ATG63588:ATG624590
6 5	$\begin{aligned} & \text { TF_m_m } \\ & \text { otif_s } \\ & \text { eq_0 } \\ & 239 \end{aligned}$	Dof	+	1	AaAGt	AT1629160;AT1664620;AT2G37590;AT3G21270;AT3G45610;AT3647500;AT4G38000;ATGG39660;AT5G60200;AT5660850;AT5G62940;AT2G46590;AT1607640;AT1621340;AT1626790;AT1647655;AT1G51700;AT166 9570;AT2628510;AT2628810;AT2G34140;AT3G50410;AT3655370;AT3661850;AT4G00940;AT4621050;AT4621080;AT4624060;AT5602460;AT5662430;AT5665590;AT5666940
${ }_{6}^{6}$	$\begin{aligned} & \text { TFma } \\ & \text { TrixiD } \\ & -034 \\ & \hline 9 \end{aligned}$	Myb/SAN T;ARR-B	+	${ }_{9}^{0.9}$	${ }_{\text {a agtaA }}^{\text {TCTt }}$	AT4618020
${ }_{8}^{6}$		2F-HD	-	1	gtaat	AT1675240
${ }_{8}^{6}$	$\begin{aligned} & \text { 241-m } \\ & \text { TFtif_s } \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 267 \\ & \hline \end{aligned}$	Trinelix		0.8	gtaat	AT5601380
7	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { otifos } \\ & \text { ean } \\ & 237 \\ & \hline \end{aligned}$	6atatitiy	.	1	Aatct	AT1G51600;AT2G45050;AT3606740;AT3616870;AT3G21175;AT3624050;AT3G54810;AT3660530;AT4G17570;AT4624470;AT4626150;AT4G32890;AT4G34680;AT5625830;AT5G26930;AT5656860;AT5G66320;AT2G1 8380;AT3650870;AT4636620
7	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { eti-s } \\ & 252 \\ & \hline \end{aligned}$	Myb/SAN T;MYB;A RR-B		1	Aatct	
7	$\begin{aligned} & \text { L5L-m } \\ & \hline \text { TFtif } \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 268 \end{aligned}$	(Motif sequence only)	-	1	Aatct	arriat
7		AP2; ERF	+	0.8	Атст	AT3614230
7	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { ete- } \\ & 271 \end{aligned}$	bzlp	.	0.8	стTA	AT1677920;AT3612250;ATS06950;ATG60690;AT5G10030;AT5665210;A11622070
8	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { eti-s } \\ & \text { eq-0 } \\ & \hline 248 \\ & \hline \end{aligned}$	(Motif sequence only)	+	0.8	Aacce	MYBCOREATYCCB1
8 2	$\begin{aligned} & \text { 240-m } \\ & \text { TFtifl } \\ & \text { otif_s } \\ & \text { eq- } \\ & 258 \\ & \hline \end{aligned}$	Dehydrin	+	0.8	ccgas	U0137
${ }_{3}^{8}$		NF- YB ,NF YA; $\mathrm{NF}-\mathrm{YC}$	+	0.8	cgat	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
${ }_{9}^{8}$	$\begin{aligned} & \text { TFma } \\ & \text { Trixid } \\ & \bar{z}_{3} 050 \end{aligned}$	MADS box;MIKC	+	${ }_{2}^{0.9}$	$\begin{aligned} & \text { cagaaa } \\ & \text { caaaaa } \\ & \text { aAGAA } \\ & \text { Aagg } \\ & \hline \end{aligned}$	
9	$\begin{aligned} & \begin{array}{l} \text { TFma } \\ \text { trixiD } \end{array} \\ & \hline-013 \\ & \hline 4 \\ & \hline \end{aligned}$	AT-Hook	+	${ }_{8}^{0.9}$	${ }_{\text {graaca }}^{\text {AaAA }}$	AT4621895:AT562260
9		Trinelix	-	0.8	gaac	AT5001380
9	$\begin{aligned} & \text { 267 } \\ & \begin{array}{l} \text { TFtif } \\ \text { otif_s } \\ \text { eq-o } \\ 261 \end{array} \end{aligned}$	(Motif sequence only)	+	0.8	gaac	surecoreatsutrra
$\stackrel{9}{2}$	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & \overline{4}_{4} 27 \end{aligned}$	$\underset{\substack{\text { mads } \\ \text { boximic }}}{ }$		${ }_{8}^{0.8}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { aacAA } \\ \text { AAAAa } \\ \text { gaaaag } \\ \text { gagt } \\ \hline \end{array}$	AT2645660
$\stackrel{9}{2}$	$\begin{aligned} & \text { TFma } \\ & \text { trixiD } \\ & \text { troug } \\ & \hline 9 \\ & \hline \end{aligned}$	$\underset{\substack{\text { mads } \\ \text { boximicc }}}{ }$	+	${ }_{8}^{0.8}$	$\begin{array}{\|l\|} \hline \text { aaacAA } \\ \text { AAAAa } \\ \text { gaaaag } \\ \text { gagt } \\ \hline \end{array}$	AT4G22950;AT4G24540;AT4G37940;AT5G51860;AT5G51870;AT5G60910;AT5662165;AT1G26310;AT2G14210;AT2G22630;AT2G45650;AT2G45660;ATGG30260;AT3G57230;AT3G5730;;AT3G61120;AT4G09960;AT461 1880
$\stackrel{9}{2}$	$\begin{aligned} & \begin{array}{l} \text { TFma } \\ \text { trixlD } \\ \overline{1}_{1} \end{array}{ }^{250} \end{aligned}$	MADS box;MIKC	+	${ }_{7}^{0.8}$		AT5651870;AT2 C4565:AT3654340
${ }_{2}$	$\begin{aligned} & \text { TF_m } \\ & \text { otif } \\ & \text { etifos } \\ & \text { equ } \\ & \hline 43 \end{aligned}$	(Motif sequence only)	+	1	${ }_{\text {a }}^{\text {a }}$ aCA	anaeroiconsensus
9	$\begin{aligned} & \text { TFma } \\ & \text { Trixid } \\ & \hline \overline{8}_{8} 000 \end{aligned}$	$\underset{\substack{\text { mads } \\ \text { boximic }}}{ }$	+	0.9	${ }_{\text {acaas }}^{\text {Acaaga }}$	
${ }_{4}$	$\begin{aligned} & \text { TF-m } \\ & \text { otifos } \\ & \text { oti-s } \\ & 404 \\ & \hline 404 \\ & \hline \end{aligned}$	(Motif sequence only)	+	${ }_{8}^{0.8}$	$\begin{aligned} & \text { ACAAA } \\ & \text { aaa } \end{aligned}$	XYıat
0	$\begin{aligned} & \text { TF-m } \\ & \text { otifos } \\ & \text { ota_- } \\ & 239 \\ & \hline \end{aligned}$	Dof	+	1	ataga	AT1629160;AT1664620;AT2G37590;AT3G21270;AT3G4561;;AT3647500;AT4G38000;AT5G39660;AT5660200;AT5G60850;AT5662940;AT2646590;AT1607640;AT1621340;AT1G26790;AT1647655;AT165170;;AT166 9570;AT2G28510;AT2G28810;ARG34140;AT3G50410;AT3G55370;AT3661850;AT4G00940;AT4621050;AT4621080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5666940
1 0 0 5		Dof	+	1	AaAGG	9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940

	${ }_{239}^{\text {ea }} 0$					
1	$\begin{array}{\|l\|l\|} \hline \text { TF-m_m } \\ \text { otifos } \\ \text { equ-0 } \\ 248 \end{array}$	(Motif sequence only)	+	0.8	aAagg	MYECOREATCrces
1 0 6		Dof	+	1	atga	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
1	$\begin{array}{\|l\|} \hline \text { TE-m } \\ \text { otifs } \\ \text { eti- } \\ \text { eq- } \\ \hline \end{array}$	(Motif sequence only)	+	0.8	Gagtc	SURECOREATSULTR11
1 1 1 1	$\begin{array}{\|l\|l\|} \hline \text { TFtim-m } \\ \text { otifos } \\ \text { equ-s } \\ 275 \\ \hline \end{array}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		0.8	ятсса	wboxativpr
1 1 3	$\begin{array}{\|l\|l} \hline \text { Tfma } \\ \text { trixiD } \\ { }_{8} \mathbf{0 5 0} \end{array}$	MADS box;MIKC	+	${ }_{9}^{0.8}$	ccatas	
1 1 1 3	$\begin{array}{\|l\|} \hline \text { TE_m } \\ \text { TEtifs } \\ \text { otif_s } \\ \text { eq- } \\ \hline 257 \\ \hline \end{array}$	NF- YB;NF- YA;NF-YC	+	0.8	ccaas	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;ATGG47670;AT5G50470;ATSG50480
1 1 8	TF_m otif_s eq_o 257	NF-YB;NE-YA;NF-YC		0.8	ATGt	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
1 1 9	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otifos } \\ \text { equ-0 } \\ \text { so8 } \\ \hline \end{array}$	SBP		${ }_{5}^{0.7}$	$\begin{aligned} & \text { tugtat } \\ & \text { Gat } \end{aligned}$	
1	$\begin{aligned} & \text { TFma } \\ & \text { trixiD } \\ & \overline{2}_{2}^{026} \end{aligned}$	gata	+	1	$\begin{aligned} & \text { tatGAT } \\ & \text { cat } \end{aligned}$	AT360670;:AT3G11870:AT4616141:AT4622150;AT562630;AA5G94300;ATS658860
1 2 3	TFma trixiD \bar{z}_{2}^{026}	gata		1	${ }_{\text {atatc }}^{\text {ata }}$ At	
1 2 4 4	TF_m otif_s eq_0 237	Gatatity	+	1	teatc	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3621175;AT3224050;AT3G54810;AT3660530;AT4617570;AT4G24470;AT4626150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5656860;AT5666320;AT2G1 8380;AT3650870;AT4636620
1 2 5		Gatatity		1	Gatca	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;ATSG66320;AT2G1 8380;AT3G50870;AT4G36620
1 3 0	TFma trixid -209 ${ }_{0}$	$\begin{array}{\|l} \text { Homeod } \\ \text { omain;H } \\ \text { D-ZIP } \end{array}$	-	${ }_{8}^{0.9}$	$\begin{aligned} & \text { tacATT } \\ & \text { AAta } \end{aligned}$	AT11005230;AT1617920:AT2632370:AT661150:AT4621750;AT5646880
1 3 0	$\begin{array}{\|l\|l\|} \hline \text { Tf }-\mathrm{m} \\ \text { otifs } \\ \text { eq- } \\ 254 \\ \hline \end{array}$	AP2; $\mathrm{RFF}^{\text {F }}$	-	0.8	tacat	AT3614230
1 1 1 1		$\begin{aligned} & \text { Homeod } \\ & \text { omain;H } \\ & \text { D-ZIP } \end{aligned}$	-	${ }_{0}^{0.9}$	$\begin{aligned} & \text { acATTA } \\ & \text { Atat } \end{aligned}$	AT1605230:AT1117920:AT1673360:AT1679880;AT3603260;ATG661150:AT5646880
1 1 1 1 1	TFma trixid 8	$\begin{aligned} & \text { Homeod } \\ & \text { omain;H } \\ & \text { D-zIP } \end{aligned}$	+	${ }_{5}^{0.9}$	$\underset{\substack{\text { acata } \\ \text { ATatc }}}{\text { a }}$	AT1005230:AT1617920:AT3661150:A74600730:AT5646880
2	TFma trixid ${ }_{4}^{-014}$ ${ }_{4}$	AT-Hook	-	${ }_{8}^{0.9}$	$\begin{aligned} & \text { catTAA } \\ & \text { TAtcag } \end{aligned}$	AT4621895;aT5662260
1 3 3	$\begin{array}{\|l\|} \hline \text { T } \\ \hline \text { TF-m } \\ \text { otifs } \\ \text { equ_- } \\ 241 \\ \hline \end{array}$	2F-HD	+	1	ATta	AT1675240
1	$\begin{aligned} & \text { TFma } \\ & \text { trixiD } \\ & \overline{4}_{4}^{033} \end{aligned}$	Myb/SAN T;MYBrelated	+	${ }_{7}^{0.9}$	$\begin{aligned} & \text { traATA } \\ & \text { TCa } \end{aligned}$	AT1118330;AT3G10113
[1	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { Ttif_s } \\ \text { otif-s } \\ \text { eq-0 } \\ \hline 241 \\ \hline \end{array}$	2F-HD		1	ttat	AT1675240
1		Myb/SAN related related	-	${ }_{0}^{0.8}$	$\begin{aligned} & \text { taATAT } \\ & \text { Cag } \end{aligned}$	AT1001520;AT309660:AT4601280;ATG602800;ATSG52660
1		$\begin{aligned} & \text { MYB- } \\ & \text { related } \end{aligned}$	+	${ }_{5}^{0.9}$	$\begin{aligned} & \text { taATAT } \\ & \text { Caga } \end{aligned}$	AT5617300
1	$\begin{array}{\|l\|l\|} \hline \text { TF-m_m } \\ \text { otif_s } \\ \text { eq- } \\ \hline 43 \\ \hline \end{array}$	Gatatity		1	atatc	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
1		gatatity		1	tatca	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
1	Trma trixid \mathbf{Z}^{2305} 0	$\begin{aligned} & \text { Myb/SAN } \\ & \text { T;MYB;G } \\ & \text { 2-like } \end{aligned}$		${ }_{2}^{0.9}$	$\begin{aligned} & \text { caGAA } \\ & \text { TAgtc } \end{aligned}$	AT564230
1 4 4 2	TFma trixid $\overline{9}^{004}$	Myb/SAN T;MYB;G 2-like	+	(10.8	$\begin{aligned} & \text { agaAt } \\ & \text { Agtct } \end{aligned}$	AT5642630
1 4 2 2	$\begin{array}{\|l\|} \hline \text { TF_m } \\ \text { otif_s } \\ \text { eqq-0 } \\ 010 \\ \hline 0 \end{array}$	HsF	+	${ }^{0.8} 8$	$\begin{aligned} & \text { AGAAT } \\ & \text { agtct } \end{aligned}$	AT3G24520;AT1G32330;AT1G46264;AT1G67970;AT2G26150;AT2G41690;AT3G02990;AT3G22830;AT3G51910;AT3G63350;AT4G11660;AT4G13980;AT4G17750;AT4G18880;AT5G03720;AT5G16820;AT5G43840;AT5G4 5710;AT5G54070;AT5G62020
1 4 3	TF_m-m otif eq- eq- 434		+	${ }_{3}^{0.8}$	$\begin{aligned} & \text { GAATA } \\ & \text { gtc } \end{aligned}$	P1BS
1 4 8 8	Trma trixid $\overline{-}_{8}^{063}$	Dof	-	${ }^{0.9}$	$\begin{aligned} & \text { gtcTCT } \\ & \text { TTtg } \end{aligned}$	AT5665590
1 4 4 8	TF-m otif_s eta- 261	(Motif sequence only)		1	ятстс	SURECOREATSULTr11
1 5 1 1	$\begin{array}{\|l\|} \hline \text { TE-m } \\ \text { otif_s } \\ \text { eta-0 } \\ 239 \end{array}$	Dof	.	1	тстT	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
1	$\begin{array}{\|l\|} \hline \text { 25-m } \\ \hline \text { TFtifs } \\ \text { otes } \\ \text { eq_o } \\ \hline 777 \end{array}$	(Motif sequence only)		1	${ }_{\text {a }}^{\text {tetgr }}$	Gareat
1 1 7 7	TFtim otif_s equ- 267	Trinelix	+	0.8	gtta	AT5601380
1 	$\begin{gathered} \text { Tftif_m } \\ \text { otit } \end{gathered}$	(Motif sequence only)		0.8	gTta	wboxatppr1

	${ }^{\text {eq }} 270$					
${ }_{5}^{1}$		AP2; ERF		0.8	taAat	AT361230
${ }_{1}^{1}$	(ex	AT-Hook		${ }_{8}^{0.9}$	anata	AT4635390
${ }_{6}^{1}$	Tfma trixid \bar{L}_{2}^{014}	AT-Hok	+	1	${ }_{\text {anata }}^{\text {a }}$	AT4621895;AT562260
1	TFma trixlD 057 1	тBP	+	${ }_{6}^{0.9}$	${ }_{\text {ata }}^{\text {ataA }}$	AT1655520:A7361345
1 	TFma trixiD $\overline{9}_{9} 002$	${ }_{\text {Mra-a }}^{\text {Mred }}$	+	${ }_{8}^{0.9}$	${ }_{\text {taxata }}^{\text {tatg }}$	AT2646830
1 6 3	TFma trix1D $-{ }_{4}^{033}$	Myb/SAN T;MYBrelated	+	1	${ }_{\text {tatata }}^{\text {trat }}$	AT1618330:AT361013
1 6 3		${ }_{\substack{\text { Mrab-ed }}}^{\text {reat }}$	+	${ }_{8}^{0.9}$	$\begin{aligned} & \text { taaATA } \\ & \text { TCtg } \end{aligned}$	AT5617300
1 3 3	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \hline \text { Ttif_s } \\ \text { otiq-s } \\ 254 \\ \hline \end{array}$	AP2; ERF		0.8	taAat	AT3612330
1 6 4	TFma trixid 032 0	Myb/SAN T;MYBrelated		1		AT1601520;AT3609600:AT4601280;ATS02880;AT5622660
6	TFma trixiD $\overline{4}_{4}^{036}$	Myb/SAN T;MYBrelated		1	${ }_{\text {a a }}^{\text {atata }}$	AT3609600:AT4601280
1 6 4 4	TFma trixiD $\overline{9}_{9}^{036}$	Myb/SAN T;MYBrelated	+	1		AT1601060:AT6377260
1 6 4 4		${ }_{\text {Mrabed }}^{\substack{\text { Mreded }}}$	+	${ }_{6}^{0.9}$		AT5617300
$\begin{aligned} & 1 \\ & 6 \\ & 6 \end{aligned}$	TF_m otif_s eq_0 243	Gatatitiy		1	atatc	AT1651600;AT2645050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3660530;AT4617570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5656860;ATGG66320;AT2G1 8380;AT3650870;AT4636620
1 7	$\begin{array}{\|l\|} \hline \text { Tf-m } \\ \text { otif } \\ \text { equ_0 } \\ 237 \\ \hline \end{array}$	Gatatity		1	татст	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;ATG660530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5625830;AT5G26930;AT5656860;AT5G66320;AT2G1 8380;AT3650870;AT4636620
1-1	$\begin{array}{\|l\|l\|} \hline \text { FF_m-m } \\ \text { otifos } \\ \text { eq-0 } \\ 254 \\ \hline \end{array}$	APi; RF	+	0.8	АтстG	AT361230
1 6 9		TBP	+	${ }_{4}^{0.9}$	$\begin{aligned} & \text { tctagaag } \\ & \text { aaTAT } \\ & \text { ATatctc } \\ & \mathrm{tt} \end{aligned}$	AT1655520:A73613445
1 6 9	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixid } \\ \overline{2}_{2} 057 \end{array}$	TBP	+	${ }_{4}^{0.9}$	$\begin{aligned} & \text { tctgaag } \\ & \text { ataTAT } \\ & \text { ATatctc } \\ & \text { tt } \\ & \hline \end{aligned}$	AT1655520;A7361345
\%	TF-m otifs etion 069	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	${ }_{0}^{0.8}$	${ }_{\text {ctgAA }}^{\text {gratat }}$	tuatsar
1 7 7 1		bzlp	+	0.8	tgat	AT1677920;AT3612250;AT506950;ATG60660;AT5G10030;AT6665210;A11622070
1 7 2 2	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ \hline 049 \\ \hline 1 \end{array}$	TBP		${ }_{7}^{0.9}$	$\begin{aligned} & \hline \text { gaagaa } \\ & \text { t ATATATA } \\ & \text { tctcttg } \\ & \hline \end{aligned}$	AT1655520;A7361344
1 7 2 2		TBP	-	${ }_{7}^{0.9}$	gaagaa tATATA tatata tctettIg \qquad	AT1655520:A7313345
1 7 7	TF_m otif_s eq_0 281	bzlp	+	1	${ }_{t}^{\text {AAGAA }}$	AT1688640
1 7 4	(ex	Myb/SAN T;MYB;G 2-like		${ }_{9}^{0.9}$	${ }_{\text {agat }}^{\text {atata }}$	AT5616560
1 7 5	TF_m otif_s eq_0 434	(Motif sequence only)	+	${ }^{0.8}{ }_{3}$	${ }_{\text {ctat }}^{\text {gata }}$	P1BS
1	(tay	AT-Hook	+	${ }_{8}^{0.9}$	${ }_{\text {atat }}^{\text {antat }}$ Atat	AT1663880
1 7	(tan	AT-Hook		${ }_{9}^{0.9}$	${ }_{\text {atata }}^{\text {atata }}$	AT1663880
1 7 6	(ersma	TBP	+	1	${ }_{\text {at }}^{\text {atat }}$	AT1655520;A7613445
1 7 7	TF_m otif_s ete-s 254	AP2; RF	+	0.8	atata	AT3612330
1 7 8	$\begin{array}{\|l\|} \hline \text { TFma } \\ \text { trixild } \\ \hline 003 \\ \hline 0 \\ \hline \end{array}$	${ }_{\text {Mrab-ed }}^{\text {reser }}$	-	${ }_{9}^{0.9}$	${ }_{\text {ctata }}^{\text {tatata }}$	AT2646830
1 7 7	(ex	Myb/SAN T;MYBrelated	+	+ $\begin{aligned} & 0.9 \\ & 5\end{aligned}$	${ }_{\substack{\text { tatata } \\ \text { Tct }}}$	AT1618330:A73610113
1 	TF_m otif_s eta- 254	AP2; ERF	.	0.8	tatat	AT3612230
$\stackrel{1}{7}$	(ex	Myb/SAN T;MYBrelated	+	${ }_{8}^{0.9}$	${ }_{\text {atc }}^{\substack{\text { atatat } \\ \text { Cta }}}$	AT1601060;ATG637260
1 7 9	TF_m otif_s eq_0 254	AP2; ERF	+	0.8	Atata	AT3612330
[10		AP2; RF	-	0.8	tatat	AT3614230

	${ }_{254}^{\text {eq.0 }}$					
1 8 1 1		GATA, iliy $^{\prime}$		1	atatc	AT1651600;AT2G45050;AT3G06740;AT3G16870;AT3621175;AT3G24050;AT3654810;AT3G60530;AT4617570;AT4G24470;AT4G26150;AT4632890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;ATJG66320;AT2G1 8380;AT3650870;AT4G36620
1 8 8 2		GATatitiy		1	татст	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
1 8 8 3	$\begin{array}{\|l\|l\|} \hline \text { TF_m-m } \\ \text { otif_s } \\ \text { eq-0 } \\ 254 \end{array}$	AP2;ER	+	0.8	atctc	AT3614230
1 8 8 3	$\begin{aligned} & \text { LTF-m } \\ & \text { otif_s } \\ & \text { eq_o } \\ & 261 \end{aligned}$	(Motif sequence only)		0.8	Atcta	surecoreatsultral
8	Tat-m otif_s eq_- 239	Dof	.	1	тстт	AT1G29160;AT1G64620;AT2G37590;ATBG21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
1 8 8 8		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	${ }_{4}^{0.8}$	TTGAA	wbboxpcwrkr
1 8 8 9	$\begin{array}{\|l\|l\|} \hline \text { Ftim-m } \\ \text { otif-s } \\ \text { eta-0 } \\ 254 \\ \hline \end{array}$	AP2;RF	-	0.8	тбат	AT3612230
1 8 8 9	TF_m otif_s oti_s 275 275	(Motif sequence only)	+	0.8	тбat	wboxativer ${ }^{1}$
1 9 0		Gatatitiy	+	1	tgat	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
!	TFI-m otif_s eq_- eq- 268	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	1	t'att	arriat
1 9 2 2		AT-Hook	-	1	$\begin{aligned} & \text { ATTATt } \\ & \text { ttg } \end{aligned}$	AT4621895:AT562260
1 9 2 2	TFma trixiD $\overline{-}_{4} \mathbf{0 1 5}$	AT-Hook		1	${ }_{\text {attart }}^{\text {ati }}$	AT4621895:AT562260
1 9 2	$\begin{array}{\|l\|} \hline 4 \\ \hline \text { TF-m } \\ \text { otifos } \\ \text { eqq-0 } \\ 241 \\ \hline \end{array}$	2F-HD	+	1	attat	AT1675240
1 9 3		AT-Hook		1	$\underset{\mathrm{tgt}}{\text { TATTt }}$	AT4621895;AT662260
? 2	$\begin{array}{\|l\|l\|} \hline \text { TF_m } \\ \text { otifs } \\ \text { eta- } \\ 263 \end{array}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	-	0.8	GT6GA	sorlipiat
2 0 1 1	TF-m otif_s et-5 254	AP2;ER	.	0.8	tgGat	AT3614230
2 0 2		6atatity	+	1	6вatg	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
2 0 4 4	TF_m otif_s eq_o 263	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$.	0.8	AtGgC	Sorlipat
2 0 6		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	-	0.8	GGCAA	wboxatinpr
2 0 7	TFtims otif eq- eq 257	NF- yb;NF- YA;NF-YC	+	0.8	GCAat	AT1609030;AT1617590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5606510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
2 1 2 2		Trinelix	-	0.8	gaac	AT5601380
2 $\begin{aligned} & 1 \\ & 2 \\ & 2\end{aligned}$		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	gaac	surecoreatsutrp11
2 1 4 4	(tema	TBP	+	${ }_{0}^{0.9}$	$\begin{aligned} & \text { aactaa } \\ & \text { gaaTATA } \\ & \text { ATattc } \\ & \text { att } \end{aligned}$	AT1655520:47613345
2 1 4 4	(tema	TBP	+	${ }_{6}^{0.9}$	$\begin{array}{\|l\|} \hline \text { aactaa } \\ \text { gaaTAT } \\ \text { ATattc } \\ \text { att } \\ \hline \end{array}$	AT1655520:A7613345
2 1 4 4	TF-m otif_s ete- 254	AP2;RF	+	0.8	Aacta	AT3614230
1 7 7	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ \hline \\ \hline & 049 \\ \hline \end{array}$	TBP	-	${ }_{5}^{0.9}$	$\begin{aligned} & \text { taagaat } \\ & \text { ATATAT } \\ & \text { tcattga } \\ & c \\ & \hline \end{aligned}$	AT1655520:A73613445
${ }_{2}^{2}$	$\begin{array}{\|l\|l\|} \hline \text { FFma } \\ \text { trixid } \\ z_{2} & \\ \hline \end{array}$	TBP		${ }_{0}^{0.9}$	$\begin{aligned} & \text { taagat } \\ & \text { ATATAt } \\ & \text { tcattga } \\ & c \\ & \hline \end{aligned}$	AT1655520;47613345
2 1 8 8	TF_m otif_s eq-0 281	bzlp	+	1	${ }_{t}^{\text {afaba }}$	AT1668640
2 1 9	(tema	$\begin{aligned} & \text { Myb/SAN } \\ & \text { T;MYB;G } \\ & \text { 2-like } \end{aligned}$		${ }_{9}^{0.9}$	${ }_{\text {agat }}^{\text {atata }}$	AT5616560
2 2	TF-m otif_s eta- 434	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	${ }_{3}^{0.8}$	${ }_{\text {g }}^{\text {gatat }}$ (tat	P1BS
2 2 1 1	(tema	AT-Hook	+	1	${ }_{\text {a }}^{\text {atatat }}$ At	AT1663880
2 2 1 1	(tema	AT-Hook		1	${ }_{\text {datata }}^{\text {paft }}$	AT1963480
2 2 1 1	(tema	TBP	+	1	${ }_{\text {at }}^{\text {ãtat }}$	AT1655520;AT361344
2 2 2 2	${ }_{\substack{\text { Ftifm } \\ \text { otits }}}$	AP2:ERF	+	0.8	atata	AT3614230

	${ }_{254}^{\text {eq.0 }}$					
2 2 3 3	$\begin{array}{\|l\|l\|} \hline \text { TF-m } \\ \text { otif_s } \\ \text { ete-0 } \\ 254 \end{array}$	AP2; ERF		0.8	tatat	AT361230
2 2 4	$\begin{array}{\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ -041 \\ \hline 9 \end{array}$	твP		1	${ }_{t}^{\text {Atatat }}$	AT1655520;AT3613445
2 2 4 4	$\begin{array}{\|l\|l\|} \hline \text { TF_m-m } \\ \text { otif_s } \\ \text { eta-0 } \\ 254 \\ \hline \end{array}$	AP2; FFF	+	0.8	atata	AT3614230
2 2 4 4	TF-m otif_s eta 434	(Motif sequence only)		${ }_{3}^{0.8}$	$\begin{aligned} & \text { atatat } \\ & \text { TCC } \end{aligned}$	P1BS
2 2 5		AP2; ERF		0.8	tatat	AT3614230
2 3 0	TFma trixiD $\overline{2}_{2}^{045}$	WRKY		${ }_{9}^{0.9}$	tcattg ACtt	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT3G0 1970;AT3G04670;AT3G5640;;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260
2 3 3 0	$\begin{array}{\|l\|l\|} \hline \text { Frma } \\ \text { trixiD } \\ \hline \\ \hline \end{array}$	wRKY		${ }_{2}^{0.9}$	tcattg ACtta	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G5 8710;AT3G62340;AT4G01720;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
2 3 0 0	$\left.\begin{array}{l}\text { Tfma } \\ \text { trixid } \\ \overline{7}^{045} \\ \hline\end{array}\right]$	wRkr		${ }_{7}^{0.9}$	tcattG ACtt	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G56400;AT3G5 8710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G31550;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
2 3 3 0	TF_m otif_s ete_ 009	(Motif sequence only)		0.7	$\underbrace{\text { tatc }}_{\text {Actit }}$	Ls7atpr1
2 3 3 1	TFma trixiD \bar{z}_{2}^{038}	${ }_{\text {M }}^{\text {NaC,NA }}$		1	${ }_{\text {canct }}^{\text {catt }}$	
1 3 1 1	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ \hline \\ \hline \mathbf{4} 4 \\ \hline \end{array}$	wrkr		${ }_{8}^{0.9}$	$\begin{aligned} & \text { cattG } \\ & \text { ACta } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69310;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;ATSG26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050
2 3 1 1		wRKY		${ }_{1}^{0.9}$	$\underset{\text { ACt }}{\substack{\text { catt }}}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT2G4 7260;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;A T5G43290;AT5G45050
21	TFma trixiD $\overline{5}^{044}$	wrkr	-	1	$\begin{aligned} & \text { amGA } \\ & \mathrm{ctt} \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT1G80840;AT2G21900;AT2G34830;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G04450;AT4G1 8170;AT4G22070;AT4G24240;AT4G39410;AT5G15130;AT5G26170;AT5G28650;ATSG41570;AT5G43290;AT5G45050;AT5G45260
2 3 3 2	Tf_m otifs etios eq-0 257	NF- YB;NF- YA;NF-YC		0.8	Atta	AT1609030;AT1617590;AT1621970;AT1G30500;AT1G54160;AT1G54830;AT1656170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3620910;AT3G53340;AT4614540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;ATGG47670;AT5G50470;AT5G50480
2 3 3 2		wRkY	+	1	тGact	AT1G13960;AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1G69810;AT1G80590;AT1G80840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
2 3 3 3	TF-m otif-s eq- 275	(Motif sequence only)	+	1	төас	wboxatipri
2 3 4 4	$\begin{array}{\|l\|l\|} \hline \text { Tf_m_m } \\ \text { otifis } \\ \text { eta-0 } \\ 246 \end{array}$	Homeod omain;TA LE	+	1	taact	AT1623380;AT1662360:AT1670510:AT4608150
2 3 3 4	TF_m otif_s eq_o 270	WRKY	+	1	tgact	AT1G13960;AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1G5560;AT1G62300;AT1G64000;AT1G66550;AT1668150;AT1G69310;AT1G69810;AT1G80590;AT1G80840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G 110;ATSG28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
2 3 3 4	$\begin{array}{\|l\|l\|} \hline \text { FF_m-m } \\ \text { otifos } \\ \text { ete- } \\ 271 \end{array}$	bzlp	+	0.8	tяact	AT1677920;AT3612250;AT5606950:ATG06960;AT5610030;ATG665210;AT1622070
2 3 3 9	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otif-s } \\ \text { eq-0 } \\ 254 \\ \hline \end{array}$	${ }^{\text {AP2 }}$: RF		0.8	tagas	AT3614230
2 4 2 2	Tfma trixiD -004 1 1	B3;ARF	+	${ }_{2}^{0.9}$	${ }_{\text {a }}^{\text {aactc }}$ GAcaa	AT2633860
2 4 2 2		B3,ARF		${ }_{2}^{0.9}$		AT2633860
退 4	TFma trix1D $\bar{\sigma}^{015}$	B3;ARF;	+	${ }_{0}^{0.9}$	${ }_{\text {grea }}^{\text {gtcGA }}$	AT1619220;A11619850:AT1630330;ATG620730;ATGG37020;ATG60450
2 4 4 4	TF-m otif_s eq_- 258	Dehydrin		0.8	GTCGA	บ0137
2 4 4 4		(Motif sequence only)	-	0.8	GTCGA	wboxatinpi
2 4 5		Dehydrin	+	0.8	tcgac	ט0137
4 5		(Motif sequence only)	+	0.8	tcgac	wboxativpr 1
2 4 4	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & -027 \\ & \hline 4 \end{aligned}$	$\underset{\substack{\text { mads } \\ \text { boxikic }}}{ }$		${ }_{4}^{0.9}$	$\begin{aligned} & \text { cgacAA } \\ & \text { AAAAa } \\ & \text { aataaa } \\ & \text { aaaa } \end{aligned}$	AT264560
${ }_{6}^{4}$	TFma trixlD \mathbf{g}^{049}	$\underset{\substack{\text { mads } \\ \text { box,mikc }}}{ }$	+	${ }_{4}^{0.9}$	$\begin{aligned} & \text { cgacAAA } \\ & \text { AAAaa } \\ & \text { aataaa } \\ & \text { aaaa } \\ & \hline \end{aligned}$	AT4G22950;AT4G24540;AT4G37940;ATGG51860;AT5G51870;AT5G60910;AT5G62165;AT1G26310;AT2G14210;AT2G22630;AT2G45650;AT2G45660;AT3G30260;AT3G57230;AT3G57390;AT3G61120;AT4G09960;AT4G1 1880
6		bzlp	-	0.8	cgaca	AT1677920:AT3612250:AT5 606950:ATS006960AT5G10030:ATG655210:AT1622070
2 4 7	TFma trixid $\overline{4}_{4}^{013}$	${ }^{\text {at-Hook }}$	+	${ }_{7}^{0.9}$	${ }_{\text {grazaA }}^{\text {gaca }}$	AT4621895:AT562260
2 4 7 7	Tf_m otif_s eti_0 275	(Motif sequence only)		0.8	GACAA	wвoxatinpr1
2 4 4 8	TFma trixiD $-{ }_{4}^{027}$	$\underset{\substack{\text { Mads } \\ \text { boxikic }}}{ }$		${ }_{9}^{0.8}$	acaaAA AAAaat аааааа att	AT264560
2 4 4 8	$\begin{gathered} \text { Tfma } \\ \text { trixid } \end{gathered}$	$\underset{\substack{\text { mads } \\ \text { boximica }}}{ }$	+	${ }_{9}^{0.8}$	${ }_{\text {acaza }}^{\text {anaat }}$	AT4G22950;AT4G24540;AT4G37940;ATGG51860;AT5G51870;AT5G60910;AT5G62165;AT1G26310;AT2G14210;AT2G22630;AT2G45650;AT2G45660;AT3G30260;AT3G57230;AT3G57390;AT3G61120;AT4G09960;AT4G1 1880

	${ }^{-049}$				${ }_{\substack{\text { araaaa } \\ \text { att }}}$	
2		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	${ }_{8}^{0.8}$	${ }_{\text {acas }}^{\text {acas }}$	XYLAT
	$\begin{aligned} & \hline \text { Tfma } \\ & \text { trixiD } \\ & \overline{6}^{047} \\ & \hline \end{aligned}$	AT-Hook	+	${ }_{3}^{0.9}$	aаaaaa AAAa	AT1648610
2 1 1		AT-Hook	+	${ }_{2}^{0.9}$	aaaaaa aataAA AAAa	AT1648610
2 2	(tema	AT-Hook	+	1	${ }_{\text {ast }}^{\text {a a }}$ A	AT4621895;AT5662260
2 2	(tema	AT-Hook	+	${ }_{5}^{0.9}$	aaaaaa AAAt	AT1648610
2 2	(tema	AT-Hook	+	1		AT1619485;AT1648610
2 5 4	(tima	AT-Hook	+	1	${ }^{\text {a aaa }}$ at	AT1619485;AT1648610
2 5 5	(tema	AT-Hook	+	1	${ }_{\text {a }}^{\text {a }}$ aAT ${ }^{\text {a }}$	AT4621895;AT562260
2 5 5	(tima	AT-Hook	+	1	${ }_{\text {a }}^{\text {a }}$ a $A^{\text {a }}$	AT4621895:AT662260
2 7	(tema	cSD	+	1	${ }_{\text {antas }}^{\text {Aas }}$	AT2621060:AT6438880
2 2	$\begin{aligned} & \mathrm{T} \text { Tma } \\ & \text { trixid } \\ & \overline{\mathrm{g}}^{012} \\ & \hline \end{aligned}$	AT-Hook	+	1	${ }_{\text {art }}^{\text {araaA }}$	AT1619900;AT1648610
2 6 0	$\begin{aligned} & \hline \text { TFma } \\ & \text { trixid } \\ & { }_{0} 0 \end{aligned}$	AT-Hook	+	1	${ }_{\text {ast }}^{\text {aad }}$ A	AT4621895:AT562260
2 6 0	Tfma	$\begin{aligned} & \text { Homeod } \\ & \text { omain;H } \\ & \text { D- } \\ & \text { ZIP;bzIP } \end{aligned}$		0.9	$\begin{aligned} & \text { aaaaaa } \\ & \text { a TTATT } \\ & \mathrm{g} \end{aligned}$	AT1226960;AT1669780:AT300122;AT5G15150;AT5665310
2 1 1	(tema	$\begin{aligned} & \text { Homeod } \\ & \text { omain;bz } \\ & \text { IP; HD-zIP } \end{aligned}$	+	${ }_{0}^{0.9}$	$\begin{aligned} & \text { a⿱aaаaA } \\ & \text { \#ATtg } \\ & \text { ac } \end{aligned}$	AT3601470
2 6 1 1	$\begin{aligned} & \text { TFma } \\ & \text { trixiD } \\ & \overline{8}_{8}{ }^{014} \end{aligned}$	AT-Hook	+	1	${ }_{\text {a }}^{\text {a a }}$ ata	AT1619485;AT1648810
1 2 6 1	$\begin{aligned} & \text { TFma } \\ & \text { Trixid } \\ & \text { trive }^{054} \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;H } \\ & \text { D- } \\ & \text { ZIP;bzIP } \\ & \hline \end{aligned}$		${ }_{5}^{0.9}$	$\begin{aligned} & \text { aaaaaa } \\ & \text { TATTg } \\ & \text { ac } \end{aligned}$	AT1669780:AT3601220:AT3601470:ATG615150
2 6 2	$\begin{aligned} & \text { TFma } \\ & \text { TrixiD } \\ & \overline{2}_{2} \end{aligned}$	AT-Hook	-	${ }_{7}^{0.9}$	$\stackrel{\text { a a }}{\text { TAAA }}$	AT1663880
2 2	(tema	AT-Hook	+	1	$\stackrel{\text { ȧAAA }}{\square}$	AT1619485;A11948810
2 6 2	$\begin{aligned} & \text { TFma } \\ & \text { TrixiD } \\ & { }_{7}^{\mathbf{7}} \mathbf{7} \end{aligned}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;H } \\ & \text { D- } \\ & \text { Z\|P;bzlP } \end{aligned}$	-	${ }_{6}^{0.9}$	${ }_{\text {a }}^{\substack{\text { aaaat } \\ \text { TATga }}}$	AT1169780;AT3601220:AT301470;ATG615150
2 4 4	$\begin{aligned} & \hline \text { TFma } \\ & \text { trixiD } \\ & \hline-002 \\ & \hline 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { bZIP;Ho } \\ & \text { meodom } \\ & \text { ain;HD- } \\ & \text { ZIP } \\ & \hline \end{aligned}$	+	1	${ }_{\text {aftga }}^{\text {aaAT }}$	AT5603790
2 4 4	(tion	$\begin{aligned} & \text { Homeod } \\ & \text { omain; } \\ & \text { IP;HDZ-ZIP } \end{aligned}$	+	${ }_{3}^{0.9}$	$\begin{aligned} & \text { aaatTA } \\ & \pi \mathrm{gg} \end{aligned}$	ATS665310
2 4 4	(tema	$\begin{aligned} & \text { Homeod } \\ & \text { omain;H } \\ & \text { D- } \\ & \text { ZIP;bzIP } \end{aligned}$		${ }_{9}^{0.9}$	${ }_{\text {aft }}^{\text {a }}$ ât	AT1166780;AT3601220:AT3601470:ATG615150
2 6 4	$\begin{aligned} & \text { TFma } \\ & \text { trixiD } \\ & { }_{1} \mathbf{1} \end{aligned}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;H } \\ & \text { D- } \\ & \text { ZIP;bzIP } \end{aligned}$		${ }_{4}^{0.9}$	$\begin{aligned} & \text { аааттA } \\ & \pi \mathrm{g} \end{aligned}$	AT122666;:AT1669780:AT360122;AT5G15150;AT5665310
2 4 4	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq- }-0 \\ & 472 \end{aligned}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;bZ } \\ & \mathbb{I P} ; H D-Z I P \end{aligned}$		${ }_{8}^{0.8}$	$\begin{aligned} & \text { aaatTA } \\ & \pi G \end{aligned}$	AT5665310
2 5	(tima	$\begin{aligned} & \text { Homeod } \\ & \text { omain;H } \\ & \text { D-ZIP; } \end{aligned}$	+	1	${ }_{\substack{\text { a } \\ \text { Tgatat } \\ \text { Tat }}}$	AT1226960;AT1669780:AT262243;APB601220;AT5615150
2 5	(tima	Homeod omain; H D-ZIP	+	0.9 6	${ }_{\text {Ttg }}^{\text {anta }}$	AT1226960;AT1669780:AT3601220;474640060;AT5615150
2 6 6		2F-HD	+	1	atat	AT1675240
2 6 7		wRKY		${ }_{9}^{0.9}$	${ }_{\text {ctamb }}^{\text {tatr }}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT3G0 1970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260
2 8 8	(tema	${ }_{\text {M }}^{\text {Nac;NA }}$		1	taTTGA Ctt	
2 9		wRKY		1	${ }_{\text {att }}^{\substack{\text { atta } \\ \mathrm{ct}}}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT1G80840;AT2G21900;AT2G34830;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G04450;AT4G1 8170;AT4G22070;AT4G24240;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
2 6 9		NF- Yb;NF- YA;NF-YC		0.8	atga	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
2 7 0	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq-0 } \\ & 339 \end{aligned}$	WRKY	+	1	tract	AT1613960;AT16 18860:AT1629280;AT1G29860;AT1G30650;AT1655600;AT1662300;AT1664000;AT1666550;AT1668150;AT1669310;AT1669810;AT1680590;AT1680840;AT2003340;AT2G23320;AT2624570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2640740;AT2G40750;AT2644745;AT2G46130;AT2646400;AT2647260;AT3G01080;AT3G01970;AT3604670;AT3656400;AT36587110;AT4601250;A T4601720;AT4G0445;;AT4G12020;AT4618170;AT4G22070;AT4623810;AT4624240;AT4626440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4639410;ATGG07100;AT5G13080;AT5G15130;AT5622570;AT5G24 110;AT5G28650;AT5G45050;AT564526;;AT5G46350;AT56 49520;AT5652830;AT5656270
${ }_{2}^{2}$	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 275 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	1	tтGac	wboxatinpi
1 7 1 1	${ }_{\substack{\text { Ftim } \\ \text { otifs }}}$	Homeod omain;TA LE	+	1	tgact	AT1123380:AT1623360:AT1670510:A74608150

	${ }_{246}^{\text {eq. }}$					
2 7 1	$\begin{array}{\|l\|l\|} \hline \text { Tf_m } \\ \text { otif-s } \\ \text { eq_-0 } \\ 270 \\ \hline \end{array}$	WRKY	+	1	tgact	AT1G13960;AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1G5560;AT1G62300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1G69810;AT1G80590;AT1G80840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G4640;;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
1 7 7 1	$\begin{aligned} & \text { Tf } \mathrm{F} \text { m } \\ & \text { otifis } \\ & \text { eq-0 } \\ & 271 \end{aligned}$	bzlp	+	0.8	тGACt	AT1677990;AT3612250:ATG06950;ATG606960;A5G11033;ATG665210:A71622070
2 7 1 1	$\begin{aligned} & \text { TF-m } \\ & \text { otifos } \\ & \text { eti_0 } \\ & 450 \\ & \hline 50 \end{aligned}$	(Motif sequence only)	+	${ }_{0}^{0.7}$	$\begin{aligned} & \text { TGACTt } \\ & \text { aa } \end{aligned}$	Palinoromiccooxgm
1 7 7 3	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixid } \\ \overline{2}^{041} \end{array}$	${ }_{\text {S }}^{\substack{\text { Sox } \\ \text { YABB }}}$	+	1	$\underset{\text { пTac }}{\substack{\text { actaA }}}$	AT1623420
2 7 4 4	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixiD } \end{array}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;bz } \\ & \text { IP;HD- } \\ & \text { Z\|P;Wox } \\ & \hline \end{aligned}$	+	${ }_{6}^{0.9}$	${ }_{\text {ctact }}^{\text {ctat }}$	AT463550
2 7 7 4	$\begin{aligned} & \hline \text { TFma } \\ & \text { trix1D } \\ & \overline{8}^{062} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;bZ } \\ & \text { IP;HD- } \\ & \text { ZIP;WOX } \\ & \hline \end{aligned}$		${ }_{6}^{0.9}$	cttaAt TAct	AT463550
2 7 5	$\begin{array}{\|l\|l\|} \hline \text { Tf_m } \\ \text { otif_s } \\ \text { eqq_- } \\ 241 \end{array}$	2F-HD		1	ttat	AT1675240
2 7 8	TF-m otif_s eq_- 241	2F-HD	+	1	attac	AT1675240
2 7 7 8	$\begin{array}{\|l\|l} \hline \text { TF_m } \\ \text { otif_s } \\ \text { eq_-0 } \\ 267 \end{array}$	Trinelix	+	0.8	attac	AT5601380
\%8 8 2	TFma trixiD $\overline{1}_{1}$ 1	WRKY		${ }_{9}^{0.9}$	$\begin{aligned} & \text { ctagTT } \\ & \text { GACc } \end{aligned}$	AT1G18860;AT1G29280;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G80590;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT3G6 2340;AT4G04450;AT4G11070;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;ATGG22570;AT5G24110;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;ATGG45260
2 8 3	$\begin{array}{\|l\|l\|l\|} \hline \text { Trma } \\ \text { trixid } \\ \overline{2}^{044} \end{array}$	wRKY		${ }_{0}^{0.9}$	$\begin{aligned} & \operatorname{tag} \operatorname{tag} \\ & \text { ACca } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260
2 2	$\begin{array}{\|l\|l\|} \hline \text { Tfma } \\ \text { trixiD } \\ \bar{\sigma}^{-044} \end{array}$	wRKY		1		AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT2G21900;AT2G23320;AT2G34830;AT2G40740;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G0 4450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
2 2	TFma trix ${ }_{-0}$ -044	wRkr		${ }_{0}^{0.9}$	$\begin{aligned} & \text { tagTGG } \\ & \text { ACcaaa } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT2G21900;AT2G25000;AT2G34830;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G0 4450;AT4G11070;AT4G18170;AT4G22070;AT4G24240;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050
2 2		wRKY		${ }_{8}^{0.9}$	$\begin{aligned} & \begin{array}{l} \text { tagTTG } \\ \text { ACcaa } \end{array} \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G5 8710;AT3G62340;AT4G01720;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
2 8 3 3	TFma trixiD $\overline{7}^{045}$	wRKY		${ }_{0}^{0.9}$	$\begin{aligned} & \operatorname{tag} \operatorname{tag} \\ & \text { ACca } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G56400;AT3G5 8710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G31550;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
2 8 8 3	$\begin{array}{\|l\|l\|l\|} \hline \text { Tfma } \\ \text { trixid } \\ \overline{9}^{062} \end{array}$	wRKY	+	${ }_{6}^{0.9}$	${ }_{\text {ata }}^{\text {tagTra }}$	AT2647745
2 8 3	$\begin{array}{\|l\|} \hline \text { TFma } \\ \text { trixid } \\ { }_{1} \mathbf{0 6 3} \\ \hline \end{array}$	wRkY	+	${ }_{7}^{0.9}$	$\begin{aligned} & \text { tagTG } \\ & \text { Acca } \end{aligned}$	AT562570
2 8 3	$\begin{array}{\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ \hline 063 \\ \hline \end{array}$	WRKY	+	${ }_{2}^{0.9}$	$\begin{aligned} & \text { tagTGG } \\ & \text { Acca } \end{aligned}$	AT3601970
2 8 3	TF_m otif_s eq_0 254	AP2; FPF		0.8	tagt	AT361230
2 8 4	TFma trixiD $\overline{2}^{038}$	${ }_{\text {M }}^{\text {NaC,NA }}$		1	${ }_{\text {ab }}^{\substack{\text { abca } \\ \text { Aca }}}$	
2	$\begin{array}{\|l\|l\|} \hline \text { Tfma } \\ \text { trixid } \\ \overline{4}^{044} \end{array}$	wRKY		${ }_{8}^{0.9}$	${ }_{\text {abTG }}^{\text {abcaa }}$	AT1618860;AT1G29280;AT1G29860;AT1G55600;AT1662300;AT1G64000;AT1666550;AT1666560;AT1668150;AT1G69310;AT1669810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT365640;;ATG58710;AT3662340;AT4G04450;AT4611070;AT4618170;AT4622070;AT4623810;AT4624240;AT4639410;AT5615130;AT5G22570;AT5626170;ATG628650;AT5G41570;AT5643290;A T5645050
2 8 4	TFma trixiD 7^{044} 7^{2}	WRKY		${ }_{9}^{0.9}$	$\begin{array}{\|l\|l} \hline \text { agTGG } \\ \text { ACcaa } \end{array}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT2G21900;AT2G24570;AT2G34830;AT2G40740;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G0 4450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
2 8 4	$\begin{array}{\|l\|} \hline \text { TFma } \\ \hline \text { trixid } \\ { }_{0} 0145 \\ \hline \end{array}$	wrkr	-	1	$\begin{aligned} & \text { agTG } \\ & \text { ACccaa } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT2G21900;AT2G30590;AT2G34830;AT2G40740;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G0 4450;AT4G11070;AT4G18170;AT4G22070;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
2 2	Tema	WRKY		1	abTc Accaa	
[2	$\begin{array}{\|l\|l} \hline \text { Tfma } \\ \text { trixiD } \\ \hline 045 \\ \overline{3}_{3} \end{array}$	wRKY	-	${ }_{2}^{0.9}$	$\begin{aligned} & \text { agTG } \\ & \text { Acc } \end{aligned}$	AT1618860;AT1G29280;AT1629860;AT1655600;AT166230;;AT1664000;AT1666550;AT1666560;AT1668150;AT1669810;AT1G80590;AT2G21900;AT2G34830;AT2640740;AT2G40750;AT2G44745;AT2G46400;AT264 7260;AT3G01970;AT3604670;ATG65640;;AT3658710;AT3662340;AT4604450;AT4611070;AT4618170;AT4G22070;AT4623810;AT4624240;AT4G39410;AT5G15130;AT5622570;ATG626170;AT5628650;AT5641570;A T5G43290;AT5G45050
2 8 4	$\begin{array}{\|l\|l\|} \hline \text { Tfma } \\ \text { trixiD } \\ { }_{4} \mathbf{0 4 5} \\ \hline \end{array}$	wRKY		1		AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G01250;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;A T5G43290;AT5G45050;AT5G45260
2 8 4	$\begin{array}{\|l\|l\|} \hline \text { Tfma } \\ \text { trixid } \\ \hline \text { O45 } \\ \hline \end{array}$	wRkY		1	${ }_{\text {abTG }}^{\text {abcaa }}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G4640;;AT3G01970;AT3G0 4670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23550;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260
2	$\begin{array}{\|l\|l\|} \hline \text { Tfma } \\ \text { trixiD } \\ \overline{8}_{8} \mathbf{8 4 5} \\ \hline \end{array}$	WRKY		1	$\underset{\substack{\text { abTc } \\ \text { Accaa }}}{\substack{\text { a }}}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G6400;;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G0 4450;AT4G11070;AT4G18170;AT4G22070;AT4G24240;AT4G31800;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050
2 8 4	TFma trixiD $\overline{2}_{2}^{046}$	WRKY		1	$\begin{aligned} & \text { agTG } \\ & \text { ACca } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G6 2340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;ATSG45260;AT5G46350
2 8 4 4		WRKY		1	agT6	AT1618860;AT1G29280;AT1G29860;AT1G55600;AT1662300;AT1G64000;AT1G66550;AT1666560;AT1668150;AT11699810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2644745;ATG46400;AT360 1970;AT3G04670;AT3G56400;ATG658710;AT3662340;AT4G04450;AT4G11070;AT4618170;AT4G22070;AT4623810;AT4924240;AT4G39410;AT5G15130;AT5G22570;AT5626170;ATG628650;AT5G41570;AT5G43290;A T5G45050;AT5G45260;ATGG49520
2 8 4		wRKY		1	${ }_{\text {abTc }}^{\text {abca }}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260;AT5G52830
2 8 4	TFma trixiD ${ }_{6}{ }^{-46}$	wRKY		1	${ }_{\text {ab }}^{\substack{\text { agTG } \\ \text { Accaa }}}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G6230;:AT1G64000;AT1668150;AT1699810;AT2G21900;AT2G34830;AT2G44745;AT3601970;AT3G04670;AT3G58710;AT3G62340;AT4604450;AT4G18170;AT4G2 2070;AT4624240;AT4G39410;AT5G15130;AT5626170;AT5628650;AT5641570;AT5G43290;AT5645050;AT5664810
2	$\begin{aligned} & \text { TFma } \\ & \text { trixiD } \\ & \overline{8}_{8}^{046} \\ & \hline \end{aligned}$	wRKY		1	${ }_{\text {abTG }}^{\text {abca }}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3GO 1970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;ATSG43290;A T5G45050;AT5G45260
${ }_{8}^{2}$	$\begin{gathered} \text { TFma } \\ \text { trixio } \end{gathered}$	WRKY		${ }_{6}^{0.9}$	$\underset{\substack{\text { abTc } \\ \text { Accaa }}}{\substack{\text { a }}}$	AT4631800

	0^{063}					
2	$\begin{array}{\|l\|l} \hline \text { TF_m } \\ \text { otif_s } \\ \text { eq_-0 } \\ \text { oco } \end{array}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		${ }_{2}^{0.8}$	$\underset{\substack{\text { abtta } \\ \text { çast }}}{ }$	UpRE1at
2 8 5	$\begin{array}{\|l\|l\|} \hline \text { Tfma } \\ \text { trixiD } \\ \overline{3}^{-044} \\ \hline \end{array}$	WRKY		1	$\begin{aligned} & \text { gTGGA } \\ & \text { Cca } \end{aligned}$	AT1129860;AT1664000;AT1666550;AT1G66560;AT1666600;AT1668150;AT1669810;AT1G80590;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3601970;AT3G56400;AT3662340;AT4604450;AT4G11070;AT461 8170;AT4623810;AT4G39410;ATG622570;AT5G26170;AT5G41570;AT5G43290;AT5G45050;ATGG45260
2 8 5 5	$\begin{array}{\|l\|l\|l\|} \hline \text { TFma } \\ \text { trixi } \\ \hline 044 \\ \hline \\ \hline \end{array}$	wRKY	-	1	$\begin{aligned} & \text { gTGGA } \\ & \text { Cca } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT1G80840;AT2G21900;AT2G34830;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G04450;AT4G1 8170;AT4G22070;AT4G24240;AT4G39410;AT5G15130;ATSG26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
2 8 5 5	$\begin{array}{\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ \hline-044 \\ \hline 9 \end{array}$	WRKY		${ }_{9}^{0.9}$	${ }_{\text {cta }}^{\substack{\text { gTGA }}}$	
2 8 8 5	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ -045 \\ \hline 9 \end{array}$	wRKY		1	$\begin{aligned} & \text { gTTGA } \\ & \text { Cca } \end{aligned}$	AT1G29280;AT1G29860;AT1664000;AT1666550;AT1G66560;AT1669810;AT1680590;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3601970;AT3656400;AT3662340;AT4611070;AT4618170;AT4623810;AT4G2 4240;AT5 G01900;AT5622570;AT5G26170;AT5G4157;;AT5 G43290;AT5G45050;AT5G45260
2 8 5	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixa } \\ \hline 046 \\ \hline 0 \end{array}$	WRKY		1	$\begin{aligned} & \text { gTTGA } \\ & \text { Cca } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT165560;;AT1662300;AT1G64000;AT1G66550;AT1666560;AT1668150;AT1669810;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT3601970;AT3604670;AT3G5 6400;AT3G58710;AT3662340;AT4604450;AT4611070;AT4618170;AT4622070;AT4623810;AT4624240;AT4G39410;AT5G13080;AT5615130;AT5G22570;AT5G26170;AT5628650;AT5G41570;AT5G43290;AT5G45050;A T5G45260
2 8 5 5	$\begin{array}{\|l\|l\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ \mathbf{S}^{046} \end{array}$	WRKY		1	$\begin{aligned} & \text { gTTGA } \\ & \text { Cca } \end{aligned}$	AT1613960;AT203340;AT2637260;AB601080:AT4612020;AT4626440;AT4626600;AT4630935;AT5607100;AT656670
2 	$\begin{aligned} & \text { Trma } \\ & \text { TrixiD } \\ & \overline{1}_{1} \end{aligned}$	TBP	+	${ }_{4}^{0.9}$	$\begin{array}{\|l\|} \hline \text { gttgacc } \\ \text { aatAT } \\ \text { ATatatt } \\ \text { at } \end{array}$	AT1655520:A7313345
2 8 5 5	$\begin{aligned} & \text { TFma } \\ & \text { trix1D } \\ & y_{2} 057 \\ & \hline \end{aligned}$	TBP	+	${ }_{4}^{0.9}$	$\begin{array}{\|l\|l\|} \hline \text { gttgacc } \\ \text { aatAT } \\ \text { ATatatt } \\ \text { at } \\ \hline \end{array}$	AT1655520:A7313345
2	$\begin{array}{\|l\|l\|l\|} \hline \text { Tfma } \\ \text { trixiD } \\ -053 \\ \hline \end{array}$	wRKY		${ }_{8}^{0.8}$	TTGAC	
2 8 8	$\begin{array}{\|l\|} \hline \text { Tf_m } \\ \text { otif_s } \\ \text { eq_0 } \\ 339 \\ \hline \end{array}$	WRKY	+	1	$\begin{aligned} & \text { TTGAC } \\ & c \end{aligned}$	AT1G13960;AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1G69810;AT1G80590;AT1680840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
2 8	$\begin{array}{\|l\|l\|} \hline \text { TF-m } \\ \text { otifis } \\ \text { eq_0 } \\ \text { eq_ } \\ \hline \end{array}$	(Motif sequence only)	+	1	тбас	wboxatinpi
2 8 7	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trix } \\ \hline 049 \\ \hline 0 \end{array}$	твP	+	${ }_{4}^{0.9}$	$\begin{array}{\|l\|l\|} \hline \text { tgacca } \\ \text { ataTAT } \\ \text { ATattat } \\ \hline \text { ta } \end{array}$	AT1655520:47313345
2 8 7		TBP	+	${ }_{4}^{0.9}$	$\begin{array}{\|l\|} \hline \text { tgacca } \\ \text { ataTAT } \\ \text { ATattat } \\ \text { ta } \\ \hline \end{array}$	AT1655520:A7313345
2	$\begin{array}{\|l\|l} \hline \text { TF_m } \\ \text { otifis } \\ \text { eteq_o } \\ 246 \\ \hline 246 \end{array}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;TA } \\ & \text { LE } \end{aligned}$	+	1	тtacc	AT1123380;AT1662360;A11670510;at4608150
2 8 7	TF_m otif_s eq_0 270	WRKY	+	1	TGACC	AT1G13960;AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1G69810;AT1G80590;AT1G80840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G004670;AT3G56400;AT3G58710;ATTG001250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
2 8 7		bz1P	+	0.8	taacc	AT1677920;AT3612250,AT5606950:AT506960;AT5G10030:AT5665210:AT1622070
\% 2	$\begin{aligned} & \begin{array}{l} \text { Trma } \\ \text { trixiD } \end{array} \\ & \hline 049 \\ & \hline 1 \end{aligned}$	TBP		${ }_{5}^{0.9}$	$\begin{array}{\|l\|l\|} \hline \text { gaccaa } \\ \text { tatATA } \\ \text { tattatt } \\ \text { aa } \\ \hline \end{array}$	AT1655520:AT361344
¢ 2	$\begin{array}{\|l\|l\|l\|} \hline \text { TFma } \\ \text { trixid } \\ z^{0557} \\ \hline \end{array}$	твP		${ }_{5}^{0.9}$	$\begin{aligned} & \text { gaccaa } \\ & \text { tATATA } \\ & \text { tattatt } \\ & \text { aa } \end{aligned}$	AT1655520:47313345
2	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixa } \\ \hline \\ \hline 1 \\ \hline \end{array}$	TBP		${ }_{5}^{0.9}$	$\begin{aligned} & \text { ccaatat } \\ & \text { ATATAt } \\ & \text { tattaaa } \end{aligned}$	AT1655520:A7613345
$\stackrel{2}{2}$		твP		${ }_{5}^{0.9}$	ccaatat ATATAAt tattaaa a	AT1655520:473613445
\% 2	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otif_s } \\ \text { eqi_0 } \\ 257 \\ \hline \end{array}$	NF- YB;NF-YA;NF-YC	+	1	ccaat	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;ATSG12840;ATSG2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
退	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otif-s } \\ \text { eq_ } \\ \hline 63 \\ \hline \end{array}$	$\begin{aligned} & \text { Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8 6	${ }_{\text {at }}^{\text {ccat }}$	leafratag
20	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixi } \\ \hline & \\ \hline-000 \end{array}$	${ }^{\text {AT-Hook }}$	+	${ }_{8}^{0.9}$	${ }_{\text {a }} \begin{aligned} & \text { atat } \\ & \text { Atata }\end{aligned}$	AT1663880
20	$\begin{array}{\|l\|l} \hline \text { Tfma } \\ \text { trixiD } \\ -000 \\ \hline \end{array}$	${ }^{\text {AT-Hook }}$	-	1	$\begin{aligned} & \text { aataTA } \\ & \text { TATa } \end{aligned}$	AT1663880
20	$\begin{array}{\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ \mathbf{q}^{041} \\ \hline \end{array}$	тBP	+	1	${ }_{\text {at }}^{\text {ãat }}$	AT1655520:A7613345
2 9 3 3	$\begin{array}{\|l\|l} \hline \text { TF }-\mathrm{m} \\ \text { otif-5 } \\ \text { eq- } \\ \text { eq } \\ \hline 24 \\ \hline \end{array}$	AP2; FFF	+	0.8	atata	AT3612330
	$\begin{aligned} & \text { Trma } \\ & \text { TrixiD } \\ & \overline{3}_{3} \end{aligned}$	AT-Hook	+	1	${ }_{\text {tatt }}^{\text {tatata }}$	AT1663880
2 9 4	$\begin{array}{\|l\|l\|l\|} \hline \text { Trma } \\ \text { trixiD } \\ -000 \\ \hline \\ \hline \end{array}$	${ }^{\text {AT-Hook }}$		${ }_{8}^{0.9}$	${ }_{\text {tate }}^{\text {tata }}$	AT1663880
2 2 9 4	$\begin{array}{\|l\|l} \hline \text { TF }-\mathrm{m} \\ \text { otif-s } \\ \text { eq-a } \\ 254 \\ \hline \end{array}$	AP2; FRF	-	0.8	tatat	AT3612330
2 9 5	$\begin{aligned} & \text { Trma } \\ & \text { trixiD } \\ & \overline{2}_{2} 028 \end{aligned}$	Homeod	+	1	$\begin{array}{\|l\|l} \text { atataT } \\ \text { ATTAtt } \\ \text { a } \end{array}$	AT2336610
	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { Totif_s } \\ \text { eq_-0 } \\ \text { eq4 } \\ \hline \end{array}$	AP2:ERF	+	0.8	atata	AT3614230
2 9 6	$\begin{array}{\|l\|l} \hline \text { Totifes } \\ \text { otif-s } \\ \text { eq_o } \\ 254 \\ \hline \end{array}$	AP2; RFF		0.8	tatat	AT361230
${ }_{9}^{2}$	${ }_{\substack{\text { TEma } \\ \text { trixi }}}^{\text {den }}$	TBP		1	${ }_{t}^{\text {ATATAT }}$	AT1655520:A7313345

	9^{0041}					
${ }_{7}^{2}$	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eta-0 } \\ & 254 \end{aligned}$	AP2; EFF	+	0.8	atata	AT361230
2 9 9 8	TF_m otif s. otif_s eq_o 254	AP2; EFF		0.8	tatat	AT3612330
3 0 1 1	$\begin{aligned} & \text { TF_m } \\ & \text { otif } \\ & \text { eti-s } \\ & 241 \end{aligned}$	2F-HD	+	1	attat	AT1675240
1 3 0 4		2F-HD	+	1	atta	AT1675240
3 0 0 8	$\begin{aligned} & \text { Tf_m } \\ & \text { otif_s } \\ & \text { eqa-0 } \\ & 239 \end{aligned}$	Dof	+	1	ataga	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
3 1 7	$\begin{aligned} & \text { Ta-m } \\ & \text { otif } \\ & \text { eq_-s } \\ & 257 \\ & \hline 257 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NF}-\mathrm{A} \\ & \text { YB;NF- } \\ & \text { YA;NFFYC } \end{aligned}$		0.8	Атדt	AT1609030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3605690;AT3G14020;AT3620910;AT3G53340;AT4114540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5650480
3 2 2 0	$\begin{aligned} & \text { TF_m } \\ & \text { otifs } \\ & \text { eti-s } \\ & 243 \end{aligned}$	GATA, tily	-	1	gtatc	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;ATSG26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
3	$\begin{aligned} & \text { L4s-m } \\ & \hline \text { TFtif } \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 267 \end{aligned}$	Trinelix	-	0.8	gtatc	AT5001380
3 2 0	$\begin{aligned} & \text { Tf_m } \\ & \text { Totifs } \\ & \text { eq- } \\ & 261 \end{aligned}$	(Motif sequence only)	-	0.8	gtatc	surecoreatsutrpu1
3 2 1 1	$\begin{aligned} & \text { Tol-m } \\ & \text { TFtif } \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 237 \end{aligned}$	6atatity	.	1	tatce	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3650870;AT4636620
1 2 3 3	$\begin{aligned} & \hline \text { Tf_m } \\ & \text { otif } \\ & \text { eq- } \\ & 248 \\ & 248 \end{aligned}$	(Motif sequence only)	-	0.8	тCGT	мувcoreatcrcbi
3 2 4 4	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eqa-0 } \\ & 066 \end{aligned}$	wrkr	+	${ }_{3}^{0.7}$	$\begin{aligned} & \text { CGTG } \\ & \text { ааавсg } \end{aligned}$	AT200480
3 2 2 6	$\begin{aligned} & \text { Tf_m } \\ & \text { otif_s } \\ & \text { eqa-0 } \\ & 275 \end{aligned}$	(Motif sequence only)	+	0.8	тваА	wboxatinpr
3 2 2 9	$\begin{aligned} & \text { Ta_m } \\ & \text { otif } \\ & \text { ete-s } \\ & 239 \\ & \hline \end{aligned}$	Dof	+	1	AaAGC	AT1629160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;ATSG62940;AT2G46590;AT1607640;AT1G21340;AT1626790;AT1G47655;AT1651700;AT1G6 9570;AT2628510;AT2628810;AT2G34140;AT3G50410;AT3655370;AT3661850;AT4G00940;AT4621050;AT4621080;AT4624060;AT5002460;AT5G62430;AT5665590;AT5G66940
3 3 1 1	TF_m otif s. eq_0 248	(Motif sequence only)	+	0.8	Agc66	мувcoreatcrcei
1 3 3 2 2	$\begin{aligned} & \hline \text { TFma } \\ & \text { trixid } \\ & \overline{8}_{8} \mathbf{0 0 1} \end{aligned}$	Myb/SAN T;MYB;A RR-B	+	0.9	${ }_{\text {cta }}^{\substack{\text { grgat } \\ \text { TCate }}}$	AT2001760
3 3 3 3	$\begin{aligned} & \text { TFma } \\ & \text { TrixiD } \\ & \overline{1}_{2}^{026} \end{aligned}$	gata	.	1	${ }_{\text {cgeat }}^{\text {chat }}$	AT3606790:AT3616870:AT46161411:AT4226150:AT5626930:ATG64330:AT5656860
3 3 4 4	$\begin{aligned} & \text { TE-m } \\ & \text { otifls } \\ & \text { oti-s } \\ & \text { eq- } \\ & 237 \\ & \hline \end{aligned}$	GATa, itiy	+	1	gGatc	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;ATG66632;AR2G1 8380;AT3650870;AT4636620
4 3 3 5	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { ete- } \\ & 237 \end{aligned}$	GATA, tity	-	1	6atca	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
3 3 3 8	$\begin{aligned} & \text { Tf_m } \\ & \text { otifs } \\ & \text { eq_-0 } \\ & 237 \end{aligned}$	6atatity		1	catce	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
3 3 3 9	$\begin{aligned} & \text { TF_m } \\ & \text { otifs } \\ & \text { eta_- } \\ & 257 \end{aligned}$	NF-YB;NF-YA;NF-YC	-	0.8	atcg	AT1609030;AT1G17590;AT1621970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1672830;AT2G38880;AT2G47810;AT3605690;AT3G14020;ATGG20910;AT3G53340;AT4614540;AT5G06510;ATG612840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
9		Dehydrin		0.8	Atcg	v0137
3 3 9 9	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq-i- } \\ & 248 \end{aligned}$	(Motif sequence only)	+	0.8	atcg	мувcoreatcrcbi
${ }_{0}^{4}$	$\begin{aligned} & \text { Tr_m } \\ & \text { otif-s } \\ & \text { eqe-s } \\ & 331 \\ & \hline \end{aligned}$	TCP	+	1	${ }_{T}^{\text {tG6G6 }}$	AT3627010
1 3 4 0	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq- } 0 \\ & 402 \\ & \hline 4 \end{aligned}$	(Motif sequence only)		${ }_{0}^{0.8}$	$\stackrel{\operatorname{tcg} G G T}{\pi}$	UP2atmso
4 1	$\begin{aligned} & \text { Tu2 } \\ & \begin{array}{l} \text { TF-m } \\ \text { otifos } \\ \text { eq-_0 } \\ 251 \end{array} \end{aligned}$	TCP	-	1	c6G6t	AT3627010
1 3 5 0	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { otifos } \\ & \text { efo } \\ & 239 \\ & \hline \end{aligned}$	Dof	+	1	ataga	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
1 3 5 3	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { et- } \\ & 321 \end{aligned}$	(Motif sequence only)	+	1	${ }_{a}^{\text {a AaAA }}$	Gticonsensus
3 5 6	$\begin{array}{\|l\|l\|} \hline \text { TF-m } \\ \text { otif_s } \\ \text { eq_o } \\ 343 \\ \hline 43 \\ \hline \end{array}$	(Motif sequence only)	+	0.8 6	$\begin{aligned} & \text { AAACA } \\ & \text { ca } \end{aligned}$	ANAEROICONsENSUS
3 5 9	$\begin{aligned} & \text { S4s-m } \\ & \text { TFtif } \\ & \text { otif_s } \\ & \text { eqq-0 } \\ & 249 \\ & \hline \end{aligned}$	(Motif sequence only)		0.8	cacat	ABreatreot
3 6 0	$\begin{aligned} & \text { Tf_m } \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 009 \end{aligned}$	(Motif sequence only)	+	0.7	$\begin{aligned} & \text { ACATC } \\ & \text { gttga } \end{aligned}$	Ls7atpr1
3 1 1	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { ot-s } \\ & \text { eq-0 } \\ & 237 \\ & \hline \end{aligned}$	6atatity		1	catcg	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
3 6 3 3	TF_m otif s. otif_s eq_0 248	(Motif sequence only)		0.8	тс6т	mybcoreatcrcbi
3	$\begin{gathered} \text { TF-m } \\ \text { otif_s } \end{gathered}$	(Motif sequence only)	+	0.8	тGAA	wboxatinpr

	${ }_{\text {27 }}^{\text {eq, }}$					
3	$\begin{aligned} & \text { TF-m } \\ & \text { otif } f_{5} \\ & \text { eq-0 } \\ & 267 \end{aligned}$	Trinelix		0.8	gaac	AT5601380
3	$\begin{aligned} & \text { TF_m } \mathrm{m} \\ & \text { otiff } \\ & \text { equ-s } \\ & 261 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	gaac	SURECOREATSULTR11
3 7 1	$\begin{aligned} & \text { TF-m } \\ & \text { otifs } \\ & \text { otif-s } \\ & \text { eq-0 } \\ & 249 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	Астт	Abreatreoi
1 7 7	$\begin{aligned} & \hline \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_o } \\ & 275 \\ & \hline 275 \end{aligned}$	(Motif sequence only)	+	0.8	тGaa	wBoxativer 1
3 7 4	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_0 } \\ & 421 \\ & \hline \end{aligned}$	AP2; RF	-	${ }_{8}^{0.8}$	${ }_{\text {tga }}^{\text {TGAG }}$	AT264022
3 7 7	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_o } \\ & 239 \end{aligned}$	Dof	+	1	AAAGT	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;ATJG62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
3 7 7	$\begin{aligned} & \hline \text { TFtmo } \\ & \text { otits } \\ & \text { eq- } \\ & 249 \\ & 249 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	Aagt	Abreatrroi
3	$\begin{aligned} & \text { TF-m_ } \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 390 \end{aligned}$	(Motif sequence only)		1	${ }_{6 A}^{\text {gitat }}$	ANAEROBCONSENSUS
7 7 9	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { otif } \\ & \text { eq- } \\ & 435 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	${ }_{8}^{0.8}$	$\begin{aligned} & \text { GTGAT } \\ & \text { gac } \end{aligned}$	platapa
3	$\begin{aligned} & \text { TF_-m } \\ & \text { otif_s } \\ & \text { eq_0 } \\ & 237 \end{aligned}$	6atatity	+	1	tgatg	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
3	$\begin{aligned} & \text { TF-m_m } \\ & \text { otif_s } \\ & \text { equ-0 } \\ & 271 \end{aligned}$	bzlp	+	0.8	tgatg	AT1677920;AT3612250,AT5606950;ATG06960;AT5G10030;AT5665210;AT1622070
3	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { otifo } \\ & 275 \\ & 275 \end{aligned}$	(Motif sequence only)	+	0.8	Atac	wboxatiopr
3 8 3 3	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_o } \\ & 246 \end{aligned}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;TA } \\ & \text { LE } \end{aligned}$	+	1	tgact	AT1123380;AT1662360;A11670510;AT4688150
3 8 8	$\begin{aligned} & \hline \text { TF-m } \mathrm{m} \\ & \text { otifif } \\ & \text { eq-s } \\ & 270 \\ & 270 \end{aligned}$	WRKY	+	1	tGact	AT1G13960;AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1655600;AT1G62300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1G69810;AT1680590;AT1G80840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
3	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { eqiop } \\ & \text { 271 } \end{aligned}$	bzlp	+	0.8	tgact	AT1677920;AT3612250:AT5606950:ATG06960;AT5G10030;AT5665210;AT1622070
3	$\begin{aligned} & \begin{array}{l} \text { TFma } \\ \text { trixid } \\ \hline 013 \\ \hline 1 \end{array}{ }_{2} . \end{aligned}$	AT-Hook	+	1	${ }_{\text {actait }}^{\text {act }}$	AT1619485:AT1648810
3	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 241 \end{aligned}$	2F-HD	.	1	стаat	AT1675240
3 8 8	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eqtos } \end{aligned}$	NF- YB;NF- YA;NF-YC	+	0.8	сtaat	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & \overline{2}_{2}^{2022} \end{aligned}$	cSo	+	1	$\begin{aligned} & \text { aATAA } \\ & \text { Aaa } \end{aligned}$	AT2621060;AT6938880
3 9 1 1	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & \overline{8}_{8} 063 \end{aligned}$	Dof	+	${ }_{9}^{0.9}$	${ }_{\text {a }}^{\text {a }}$ GAAAA	AT566550
退 $\begin{aligned} & 3 \\ & 9 \\ & 2\end{aligned}$	$\begin{aligned} & \text { TFma } \\ & \text { Trixid } \\ & \text { trid }^{026} \\ & \bar{s}^{2} \end{aligned}$	6atatity	-	${ }_{8}^{0.9}$	${ }_{\text {amaa }}^{\substack{\text { ãcta }}}$	AT2645050:AT3G45170:AT3G51080:ATSG25830:AT5666320
	(1)	6atatity		${ }_{8}^{0.9}$	$\begin{aligned} & \text { aaaAG } \\ & \text { ATCtaa } \end{aligned}$	AT2988300:AT2045050:ATG33280;ATSG25830:AT5666320
	(emma	Gatatitiy	-	1	${ }_{\text {amaa }}^{\text {acta }}$	AT2688300:AT2645050:AT4334680:ATSG25830:AT5666320
3 9 3 3	$\begin{aligned} & \begin{array}{l} \text { TFma } \\ \text { trixiD } \end{array} \\ & \hline 001 \\ & \hline 6 \\ & \hline \end{aligned}$	$\begin{gathered} \text { MYB;ARR } \\ \hline \end{gathered}$	+	${ }_{5}^{0.9}$	$\begin{aligned} & \text { aaAGA } \\ & \text { TCtaa } \end{aligned}$	AT1667710
3 3 9 3	$\begin{aligned} & \hline \text { Tfma } \\ & \text { trixid } \\ & \bar{\sigma}_{6} 001 \\ & \hline \end{aligned}$			${ }_{5}^{0.9}$	${ }_{\text {a }}^{\substack{\text { aaga } \\ \text { TCTaa }}}$	AT1967710
3 9 3	(tema	Myb/SAN T;MYB;A RR-B	+	${ }_{1}^{0.9}$	${ }_{\text {apaga }}^{\text {afa }}$	AT2601760
3 9 3		Myb/SAN T;MYB;A RR-B	-	${ }_{1}^{0.9}$	${ }_{\text {araga }}^{\text {a }}$	AT2601760
3 9 9	$\begin{aligned} & \text { TFma } \\ & \text { trix1D } \\ & { }_{2} \mathbf{2 0 4 4} \end{aligned}$	6atatity	+	${ }_{9}^{0.9}$		AT5625330
3 9 9 3	$\begin{aligned} & \hline \text { TFma } \\ & \text { trixid } \\ & \overline{2}_{2} \mathbf{0 0 4} \\ & \hline \end{aligned}$	6atatity	.	1	${ }_{\text {a aaga }}^{\substack{\text { çaa }}}$	AT5625830
3 9 3			+	1		AT2645050:AT3G20050:ATS62883:AT5666320
3 9 3	(tfma	Gatatitiy	.	1		AT2645050:AT3620050:ATG62833:ATG66632
3	(tema			${ }_{9}^{0.9}$		AT2988300:AT2045050:ATG65480;ATSG25830:AT5666320
3 9 3		6atatity	+	1		AT268830;:AT2645050:ATG66053:ATSG25830:AT5666320
3 9 3	$\underbrace{\text { a }}_{\substack{\text { Tfma } \\ \text { tixio }}}$	6atatity		1	$\underset{\substack{\text { araga } \\ \text { TCTaa }}}{ }$	AT298830:AT2045050:ATGG6053:ATSG25830:AT5666320

	$-{ }^{026}$					
3 3 3		Gatatitiy	+	${ }_{9}^{0.9}$	${ }_{\text {a }}^{\text {ajaga }}$ TCTaaa	AT262830;:AT2645050:AT463280;ATSG25830;AT5666320
3 3 3		Gata,tily	+	${ }_{0}^{0.9}$		AT2945050;AT3645170:AT4636200;ATSE25830:AT5666320
3 9 3	(tema	Gata,tify		${ }_{9}^{0.9}$		AT2645050:AT3645170;AT4636240;A5G25830;AT5666320
3 3 3 3		Dof	+	1	AAAGA	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
3 9 4 4	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { TFma } \\ \text { trixid } \\ \hline 025 \\ \hline \\ \hline 9 \end{array} \\ \hline \end{array}$	Gata,tify	+	${ }_{5}^{0.9}$	${ }_{\text {a }}^{\text {agat }}$ cat	AT160800;:AT2628340:AT2645050;ATG625830;AT5666320
4 4 4		Gatatity		${ }_{2}^{0.9}$	${ }_{\text {andat }}^{\text {ancat }}$ Cat	AT160800:AT2628340:AT2 645050;ATSG25830:AT5666320
3 9 4		Gata,tily	+	${ }_{7}^{0.9}$	${ }_{\text {ata }}^{\text {afat }}$ Cat	AT1608010:AT2628340:AT2 645050;ATG625830:AT5666320
4 3 4 4	Tfma trixid O26 026	Gatatitiy		${ }_{4}^{0.9}$		AT1608010;AT2028340:AT2 Ca5050;ATG25830;AT5666320
4 9 4 4	TFma trixid 026 	Gata,tily	+	1	${ }_{\text {a }}^{\text {afat }}$ Casa	AT2645050:AT3645170;AT3651080;A5G25830;AT5666320
4 9 4 4	TFma trixiD $\bar{\sigma}_{6}^{026}$	Gatatity	+	1	${ }_{\text {ajagat }}^{\text {ajaa }}$	AT2628340;AT2045050:AT3554810;ATG25830:AT5666320
4 3 4 4		APi $:$ ERF	-	0.8	Aagat	AT361230
4 3 5	TFma trixiD \bar{L}_{1} 1	gata		1	${ }_{\text {agatc }}^{\text {Ta }}$	AT165160:AT4624470
3 9 5	Tf_m otif_s etac 237 23	Gata,tify	+	1	аватс	AT1G51600;AT2G45050;AT3G06740;ATGG16870;AT3G21175;AT3G24050;AT3G54810;ATTG60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5625830;AT5G29930;AT5656860;AT5G66320;AT2G1 8380;AT3650870;AT4636620
3 9 6	TF_m otif_s eq_0 237	Gatatity		1	GATCT	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
3 9 7	$\begin{array}{\|l\|l\|} \hline \text { TF_m } \\ \text { otifs } \\ \text { etop } \\ 254 \\ \hline \end{array}$	APi ; ERF	+	1	ATCTA	AT3612330
1 9 9		BE51		${ }_{7}^{0.8}$	tctaaA CGTGtc cg	AT1675080
4 0 0	TFma trix1D \bar{L}_{2}^{018}	bzlp	+	${ }_{5}^{0.9}$	$\begin{aligned} & \text { taaACG } \\ & \text { TGtccg } \end{aligned}$ g	AT1645299,AT3619290
4	Trma trixiD $\overline{3}_{3}$	bzlp		${ }_{3}^{0.9}$		AT1649720:AT3619290
4 0 0 0	TFma trixiD $\overline{4}_{4}^{018}$	bzlp	+	${ }_{4}^{0.9}$		AT1699720;AT3619290
4	TF_m otif_s ete_- o29	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$.	0.8		ACEATCHS
4 0 1 1	TFma trixiD $\overline{7}^{018}$	bzlp	+	${ }_{6}^{0.9}$		AT2636270
4 0 0 1	(tema	bzlp	+	${ }_{8}^{0.8}$	$\begin{aligned} & \text { AAACG } \\ & \text { tgt } \end{aligned}$	AT3619290;ATGG34000
4 0 0 1	(tema	bzlp	-	${ }_{8}^{0.8}$	${ }_{\text {Tat }}^{\text {ajacG }}$	AT3619290;AT6G34000
1 0 0 1	(tema	bzlp		${ }_{5}^{0.9}$		AT2635530:ATC636730
4 0 1 1		bzlp	-	${ }_{5}^{0.8}$		AT1603970;AT664080
4 0 1 1	$\begin{array}{\|l\|} \hline \text { T } \\ \hline \text { TF-m } \\ \text { otif_s } \\ \text { eq-o } \\ 410 \end{array}$	ВнН	+	${ }_{8}^{0.8}$	AAACG tgt	AT1632640
4 0 1 1	$\begin{array}{\|l\|l\|} \hline \text { TF_m-m } \\ \text { otifis } \\ \text { eta-0 } \\ 410 \end{array}$	Внн		${ }_{5}^{0.7}$	${ }_{\text {TGT }}^{\text {apacG }}$	AT163640
2	Tat-m otif_s eq_o 240	bzlp	.	1	Aacgt	AT3656620:AT4602640
0	TF_m otif_s et_- 300	Внн	+	${ }_{3}^{0.8}$	${ }_{8}^{\text {A ACGT }}$	AT1 109530:AT2620180:A74617880:AT5646760
4 0 2	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eqq-0 } \\ & 300 \end{aligned}$	ьнเн		${ }_{3}^{0.8}$	${ }_{6}^{\text {aACGT }}$	AT11609330:A72620180:AT4617880:AT5646760
4 0 2	TF-m otif_s eq_- 248 248	(Motif sequence only)	+	0.8	AAcGt	MYECOREATCYCB1
4 0 2	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { TFtif } \\ \text { otif-s } \\ \text { eq-o } \\ \hline 249 \end{array} \\ \hline \end{array}$	(Motif sequence only)		0.8	AacGt	ABRELTERO1
4 0 2	$\begin{array}{\|l\|} \hline \text { Tf_m } \\ \text { otif_s } \\ \text { ete-0 } \\ 279 \\ \hline \end{array}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	1	${ }_{8}^{\text {a }}$ (${ }^{\text {cGt }}$	T/GBoxatp ${ }^{\text {2 }}$
4 0 0 2		$\begin{aligned} & \hline \begin{array}{l} \text { Motif } \\ \text { sequence } \\ \text { only) } \end{array} \\ & \hline \end{aligned}$		1	${ }_{\text {a }}^{\text {afcGt }}$ Gt	Abreratcal

	${ }_{\text {eq,0 }}^{\text {374 }}$					
${ }_{0}^{4}$	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq_- } \\ & 240 \end{aligned}$	bzlp	+	1	AcGt	AT3654620;AT4602640
4 0 3	$\begin{aligned} & \text { Totif } \\ & \text { otif-s } \\ & \text { eq_o } \\ & 249 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	1	AcGT	ABRELTtroi
4 0 3		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	1	$\begin{aligned} & \text { ACGTG } \\ & \text { tc } \end{aligned}$	ACGtabremotifazosem
4 0 3	$\begin{aligned} & \text { TF-m } \\ & \hline \text { Totifs } \\ & \text { eqi_s } \\ & 354 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	1		gadownat
0	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { oti-s } \\ & \text { eq- } \\ & 261 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		0.8	яттт	surecoreatsutral
4 0 0 5	$\begin{aligned} & \text { Tf } \mathrm{m} \\ & \text { otif } \\ & \text { eq- }-\mathrm{c} \\ & 263 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		0.8	ятөт	Sorlupat
4 0 7	$\begin{aligned} & \hline \text { Tf_m } \\ & \text { otif_s } \\ & \text { eq- } \\ & 258 \end{aligned}$	Dehydrin		0.8	GTç	v0137
4 0 9	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 248 \end{aligned}$	(Motif sequence only)		0.8	ccgat	MYECOREATCYCB1
4 1 1 1		$\begin{aligned} & \text { Homeod } \\ & \text { omain;TA } \\ & \text { LE } \end{aligned}$		1	GGTCA	AT1623380;AT1662360;A11970510;at4008150
4 1 1		WRKY		1	GGTCA	AT1613960;AT1618860;AT1629280;AT1629860;AT1G30650;AT1655600;AT1662300;AT1 G64000;AT1666550;AT11668150;AT1669310;AT1669810;AT1680590;AT11680840;AT2603340;AT2G23320;AT2624570;AT2G2 T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4622070;AT4G23810;AT4G24240;AT4G26440;AT4626640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;ATSG28650;ATG45050;AT5G45260;AT5G46350;ATG499520;ATG652830;AT5G56270
4 1 1		bzlp	-	0.8	GGTCA	AT1677920;AT3612250;ATS06950;ATG60690;AT5G10030;AT5665210;A11622070
1 1 1 2	$\begin{aligned} & \text { Tfma } \\ & \text { TrixiD } \\ & \overline{6}^{033} \end{aligned}$			${ }_{8}^{0.9}$		AT1622640:AT2616720:AT4609460
4 1 2		Trinelix	+	0.8	gtcac	AT5601380
4 1 2	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq-0 } \\ & 267 \\ & \hline \end{aligned}$	Trinelix		0.8	gtcac	AT5601380
4 1 2	$\begin{aligned} & \text { TF-m } \begin{array}{l} \text { Totifs } \\ \text { otifos } \\ \text { eq- } 61 \end{array} \end{aligned}$	(Motif sequence only)		0.8	gtcac	surecoreatsutral
4 1 2	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eq_- } \\ & 263 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	gtcac	Sorlipiat
4 1 2	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 275 \end{aligned}$	(Motif sequence only)		0.8	gtcac	wboxatwpr1
4 1 3	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & \overline{2}^{-032} \end{aligned}$	${ }_{\text {T, }}^{\substack{\text { Mrb }}}$		${ }_{3}^{0.9}$	$\begin{aligned} & \text { tcacct } \\ & \text { Acca } \end{aligned}$	AT5699330
4 1 3	$\begin{aligned} & \mathrm{T} \text { Trma } \\ & \text { trixid } \\ & \bar{g}_{051} \end{aligned}$	${ }_{T}^{\text {Mv//SaN }}$		${ }_{9}^{0.8}$	$\begin{aligned} & \text { tcacct } \\ & \text { ACCaat } \\ & \mathrm{g} \end{aligned}$	AT323250
4 1 3	$\begin{aligned} & \text { TFma } \\ & \text { Trixid } \\ & \text { trive } \\ & \hline 1 \\ & \hline 1 \end{aligned}$	${ }_{\text {TimMB }}^{\text {My }}$		${ }_{5}^{0.8}$	$\begin{aligned} & \text { tract } \\ & \text { Accaat } \\ & \mathrm{g} \end{aligned}$	AT369690;ATSG57620:ATS665990;099776__ARATH
4 1 3		$\underset{\substack{\text { mimuM }}}{\text { My/fan }}$		${ }_{8}^{0.9}$	${ }_{\text {tracct }}^{\text {Acca }}$	AT569330
4 1 3	$\begin{aligned} & \text { TFma } \\ & \text { trix } \\ & \overline{\text { trix }} \\ & \overline{7} \end{aligned}$			${ }_{0}^{0.9}$	$\begin{aligned} & \text { tracct } \\ & \text { ACCa } \end{aligned}$	AT5699330
4 1 3	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & \overline{8}_{8} \mathbf{8 5 8} \\ & \hline \end{aligned}$	мүв		${ }_{6}^{0.9}$	${ }_{\text {tracct }}^{\text {tra }}$	AT5612870
4 4 4	$\begin{aligned} & \text { Trma } \\ & \text { trixiD } \\ & \overline{2}_{2} \mathbf{0 3 5} \end{aligned}$	${ }_{\text {TMM }}^{\text {mba }}$		1	${ }_{\text {cacc }}^{\text {cact }}$	AT2616720:AT4609460:AT4639990:AT4638620
4 4 4	$\begin{aligned} & \hline \text { Tfma } \\ & \text { trixid } \\ & \bar{L}_{2} \mathbf{0 5 9} \\ & \hline \end{aligned}$	мүв	+	${ }_{0}^{0.9}$	cacct Accaa	AT4601680
4 1 4	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { oti_s } \\ & 249 \\ & \hline \text { eq } \\ & \hline \end{aligned}$	(Motif sequence only)		0.8	сасст	Abreattroi
4 1 4 4	$\begin{aligned} & \mathrm{TF}-\mathrm{m} \\ & \text { otif_s } \\ & \text { eq- } 0 \\ & 440 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	1	${ }_{\text {cacct }}^{\text {cacc }}$	mybplant
4 1 5	$\begin{aligned} & \text { TF-m } \\ & \text { Tftifs } \\ & \text { et_- } \\ & 254 \\ & 254 \end{aligned}$	AP2:ERF	+	0.8	ACCTA	AT361433
4 1 6		Dehydrin	+	0.8	cctac	บ0137
4 2 0 0	$\begin{aligned} & \text { TF-m } \\ & \hline \text { TFif } \\ & \text { otif_s } \\ & \text { eq-5 } \\ & 257 \end{aligned}$	NF- $\mathrm{Yb} ; \mathrm{NF}-$ YA;NF-YC	+	1	ccaat	AT1609030;AT1617590;AT1G21970;AT1G30500;AT1G54160;AT1654830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3605690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5606510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;ATG64767;;AT5G50470;AT5G50480
4 2 0 0	$\begin{aligned} & \text { TF } \mathrm{T}-\mathrm{m} \\ & \text { otifs } \\ & \text { eq_- } \\ & 363 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	1	$\begin{aligned} & \text { CCAAT } \\ & \mathrm{gt} \end{aligned}$	learyatag
4 2 3 3	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq_- } \\ & 249 \\ & 249 \end{aligned}$	(Motif sequence only)	+	0.8	atota	Abreattroi
4 2 5 5		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		0.8	яTGGt	sorlipiat
5 2 6		(Motif sequence only)		1	тG6Tt	mув1at

4 2 7	$\begin{array}{\|l\|l\|} \hline \text { TF-m-m } \\ \text { otifos } \\ \text { eq-0 } \\ \text { o53 } \end{array}$	(Motif sequence only)		0.7		sorkrepsat
4 2 2 8	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otif_s } \\ \text { eq-0 } \\ 490 \end{array}$	(Motif sequence only)	+	1	$\begin{aligned} & \text { G7Tा! } \\ & \text { caa } \end{aligned}$	anarroaconsensus
4 3 3 1	TFma trixiD $\overline{4}_{4}^{048}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;H } \\ & \text { D- } \\ & \text { ZIP;bzIP } \end{aligned}$.	${ }_{2}^{0.9}$	${ }^{\text {ttgcaaa }}$ TtATtg	AT1126966;AT1669780;AT3601220;ATG615150;AT665310
l 4	TFma trixiD \bar{B}_{8}^{005}	Homeod omain;bz IP;HD-ZIP	+	${ }_{6}^{0.9}$	$\begin{array}{\|l\|l} \hline \text { tgcaaA } \\ \text { TATtg } \\ \text { t } \mathrm{e} \\ \hline \end{array}$	AT3601470
2		$\begin{aligned} & \text { Homeod } \\ & \text { omain; } \\ & \text { D- } \end{aligned}$ $\mathrm{ZlP} ; \text { bZIP }$		${ }_{5}^{0.9}$	$\begin{aligned} & \text { tgcaaa } \\ & \text { TAATMg } \\ & \text { tc } \end{aligned}$	AT1669780;AT3601220:AT3601470:ATG15150
4 3 3 3	$\begin{aligned} & \text { TFma } \\ & \text { TrixID } \\ & \text { tris1 } \\ & \hline 7 \end{aligned}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;H } \\ & \text { D- } \\ & \text { ZIP;bzIP } \end{aligned}$		${ }_{7}^{0.9}$	${ }_{\text {great }}^{\substack{\text { gcaã } \\ \text { TATgt }}}$	AT1669780;AT3601220:AT3601470;AT5615150
4 3 4 4	$\begin{array}{\|l\|l} \hline \text { TF_m_m } \\ \text { otif_s } \\ \text { equ_0 } \\ 257 \end{array}$	NF-YB;NF-YA;NF-YC	+	0.8	caat	7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
4 4 3 4 4		(Motif sequence only)	+	1	${ }_{\text {caitat }}^{\text {caAt }}$	Cargcwsgat
4 3 3 4	$\begin{array}{\|l\|l\|} \hline \text { TFtim } \\ \text { otif } \\ \text { eq-s } \\ \text { eq2 } \end{array}$	(Motif sequence only)	.	1	${ }_{\text {crast }}^{\text {crati }}$	cargcwbgat
4 3 5 5	$\begin{aligned} & \begin{array}{l} \text { TFma } \\ \text { trixiD } \end{array} \\ & \hline 002 \\ & \hline 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { bzIP;Ho } \\ & \text { meodom } \\ & \text { ain;HD- } \\ & \text { ZIP } \\ & \hline \end{aligned}$	+	1	${ }_{\text {a }}^{\text {a }}$ ATgTt	AT560379
4 3 3 5	$\begin{array}{\|l\|} \hline \text { TFma } \\ \text { trixid } \\ \hline{ }^{0111} \\ \hline \end{array}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;bz } \\ & \text { IP;HD-ZIP } \end{aligned}$	+	${ }_{3}^{0.9}$	$\begin{aligned} & \text { ааатTA } \\ & \Pi \mathrm{g} \end{aligned}$	AT5665310
4 3 5	TFma trixid $\overline{1}_{1} 047$	$\begin{aligned} & \hline \text { Homeod } \\ & \text { omain;H } \\ & \text { D- } \\ & \text { ZIP;bzIP } \end{aligned}$		${ }_{9}^{0.9}$	${ }_{\text {aft }}^{\text {aaATt }}$	AT1669780:AT3601220:AT3601470:ATG15150
4 3 3 5	TFma trixiD $\overline{1}_{1} 054$	$\begin{aligned} & \text { Homeod } \\ & \text { omain; } \\ & \text { D- } \\ & \text { Z1P;bzIP } \end{aligned}$		${ }_{4}^{0.9}$	${ }_{\text {a }}^{\text {amatrA }}$	AT1126966;AT1669780;AT3601220;ATG615150;AT665310
4 3 5	$\begin{array}{\|l\|l} \hline \text { Tf }-\mathrm{m} \\ \text { otifs } \\ \text { eti-0 } \\ 472 \\ 472 \end{array}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain; } \\ & \text { IP; } \mathrm{HD} \text {-ZIP } \end{aligned}$		${ }_{8}^{0.8}$	$\begin{aligned} & \text { aaattA } \\ & \pi G \end{aligned}$	AT5665310
4 3 3 6	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixid } \\ \hline 028 \\ \hline 1 \\ \hline \end{array}$	Homeod omain;H omain;H D-ZIP	+	1	$\begin{aligned} & \text { аäTAT } \\ & \mathrm{T}_{\mathrm{gt}} \end{aligned}$	AT1126966;AT1669780;AT262243;AT3601220;AT515150
4 3 6	TFma trixid -209	Homeod omain;H D-ZIP	+	${ }_{6}^{0.9}$	${ }_{\text {atg }}^{\text {TATtA }}$	AT1122666:AT1669780:AT3601220:AT4640060:AT5615150
4 3 7 7		2F-HD	+	1	атат	AT1675240
l 4		$\begin{aligned} & \mathrm{NF}-\mathrm{y} \\ & \text { YB;NF- } \\ & \text { YA;NFFCYC } \end{aligned}$		0.8	ATGt	AT1G09030;AT1G17590;AT1621970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AR2G38880;AT2G47810;AT3605690;AT3614020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;ATSG2 7910;AT5G38140;AT5G47640;AT5G47670;AT5650470;AT5G50480
4 4 4 1	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otifs } \\ \text { eq_ } \\ 275 \\ 275 \end{array}$	(Motif sequence only)	+	0.8	төтс	wboxatippr
1 4 4 2		Homeod omain;TA LE \qquad	-	1	tetca	AT1623380:AT1662360:AT1670510:A74088150
4 4 4 2	TF-m otif_s etion eq1 271	bzlp		0.8	tatca	AT1677920;AT3612250:AT5606950:ATG06960;AT5G10030;AT5665110:AT1622070
4 4 4 2	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otifos } \\ \text { eta_-0 } \\ 339 \end{array}$	wRKY		0.9 5	$\begin{aligned} & \text { tGTCA } \\ & \text { A } \end{aligned}$	AT1G13960:AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1G55600;AT1662300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1G69810;AT1G80590;AT1680840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
4 4 4 3	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otifis } \\ \text { eqe_0 } \\ \text { 275 } \\ \hline \end{array}$	(Motif sequence only)	.	1	GtcaA	wBoxatepri
4 4 4 5	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otif_s } \\ \text { eqq-0 } \\ 249 \end{array}$	(Motif sequence only)	.	0.8	CaAGt	ABrELATRO1
4 4 4 7	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otifs } \\ \text { eq_- } \\ 244 \\ \hline \end{array}$	SBP	-	1	agtac	AT2638810:AT2647070
4 4 4 8	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eqt_0 } \\ & 244 \\ & \hline 10 \end{aligned}$	SBP	+	1	gtacc	AT2G33810:AT2647070
[4	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { FTim-m } \\ \text { otifis } \\ \text { eq- } \\ 267 \end{array} \\ \hline \end{array}$	Trinelix		0.8	gTacc	AT5601380
4	$\substack{\text { Tfma } \\ \text { trixid } \\ \text { tion } \\ \overline{5}^{045} \\ \hline \\ \hline \\ \hline \\ \hline}$	wRKY		${ }_{1}^{0.9}$	accta ACtat	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G5 8710;AT3G62340;AT4G01720;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
4 5 0	(ex	wrky	+	$\stackrel{0.8}{9}$	acctrg Acta	Ат3601970
4 5 0	TF_m otif_s equ_0 en 239	Dof		1	Acct	AT1G29160;AT1664620;AT2G37590;AT3621270;AT3G45610;AT3647500;AT4G38000;ATGG39660;AT5G60200;AT5G60850;ATTG62940;AT2G46590;AT1607640;AT1G21340;AT1G26790;AT1647655;AT1651700;AT166 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3655370;AT3661850;AT4G00940;AT462105;;AT4621080;AT4624060;AT5G02460;AT5G62430;AT5665590;AT5G66940
4 4 1 1	(ex	${ }_{M}^{\text {Nac;NA }}$		1	${ }_{\substack{\text { cctac } \\ \text { cta }}}$	
[TFma trix1D $\overline{3}_{3}^{045}$	WRKY		${ }_{1}^{0.9}$	${ }_{\substack{\text { cctras } \\ \text { ct }}}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT2G4 7260;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;A T5G43290;AT5G45050
1 4 5 2		wrky		1	$\begin{aligned} & \text { cTTGA } \\ & \text { Cta } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT1G80840;AT2G21900;AT2G34830;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G04450;AT4G1 8170;AT4G22070;AT4G24240;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
1 4 5 3		wRKY	+	1	тGact	AT1G13960;AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1G69810;AT1G80590;AT1G80840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G4640;;AT2G47260;AT3G01080;AT3G01970;AT3G04670;ATBG56400;AT3G58710;AT4G01250;A

	${ }_{\text {eq, }}{ }_{39}$					T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;ATSG22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
${ }_{5}^{4}$	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_- } \\ & \text { } 275 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	1	твас	wboxatnpr1
4 4 4 4	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eqq-0 } \\ & 246 \end{aligned}$	Homeod omain;TA LE	+	1	TGACt	AT1623380;AT1662360:A11670510:AT4608150
4 4 4 4	$\begin{aligned} & \text { Tf-m } \\ & \text { otifis } \\ & \text { eq_o } \\ & 270 \\ & \hline \end{aligned}$	WRKY	+	1	tgact	AT1G13960;AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1G5560;-AT1G62300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1669810;AT1G80590;AT1G80840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;ATSG15130;AT5G22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
4 4 4 4	$\begin{aligned} & \text { TF-m } \begin{array}{l} \text { Totifs } \\ \text { otif } \\ \text { eq- } \\ \text { } 271 \end{array} \end{aligned}$	bzlp	+	0.8	тGact	AT1677920:AT3G12250:ATS00695:ATSG06960:AT5G1033;AATG65210:AT1622070
4 5 6	$\begin{aligned} & \hline \begin{array}{l} \text { TFma } \\ \text { trixiD } \\ \overline{4}_{4} 014 \end{array} \\ & \hline \end{aligned}$	AT-Hook	+	${ }_{3}^{0.9}$	$\underset{\text { actaTA }}{\text { TAAat }}$	AT4621895;AT562260
4 5 8 8	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eqi_0 } \\ & 254 \end{aligned}$	AP2:ERF	-	0.8	tatat	AT3614230
4 4 9	$\begin{aligned} & \hline \text { TFma } \\ & \text { trixid } \\ & \bar{s}_{5}^{000} \\ & \hline \end{aligned}$	AT-Hook	+	${ }_{2}^{0.9}$	$\begin{aligned} & \text { atATTA } \\ & \text { Aata } \end{aligned}$	AT4614665
产	$\begin{aligned} & \hline \text { Tfma } \\ & \text { trixiD } \\ & \overline{6}^{047} \end{aligned}$	${ }^{\text {at-Hook }}$	+	${ }_{1}^{0.9}$	$\begin{aligned} & \hline \text { tattaaa } \\ & \text { traAAA } \\ & \text { AAt } \end{aligned}$	AT1648610
4 6 1 1	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { otif_s } \\ & \text { eqno } \end{aligned}$	2F-HD	+	1	AtTA	AT1675240
1 4 6 3	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 254 \end{aligned}$	AP2: ERF		0.8	taAat	AT3614230
4 5 5	$\begin{aligned} & \hline \text { Tfma } \\ & \text { trixid } \\ & \bar{z}^{022} \\ & \hline \end{aligned}$	cSD	+	1	${ }_{\text {a }}^{\text {afta }}$ Aa	AT2621060;A76638880
4 8 8	$\begin{aligned} & \hline \text { Tfma } \\ & \text { trixiD } \\ & \overline{9}^{012} \\ & \hline \end{aligned}$	AT-Hook	+	1	${ }_{\text {art }}^{\text {araa }}$	AT1619900:AT1648610
4 8 8	$\begin{aligned} & \text { TFma } \\ & \text { trix } \\ & { }_{0}=014 \end{aligned}$	AT-Hook	+	1	${ }_{\text {ajt }}^{\text {aat }}$	AT4621895;AT562260
[4	$\begin{aligned} & \hline \text { Tfma } \\ & \text { trixid } \\ & \overline{8}_{8} \mathbf{0 1 4} \\ & \hline \end{aligned}$	AT-Hook	+	1	${ }_{\text {att }}^{\text {apaA }}$	AT1619485:AT1648610
4 7 0	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & \bar{z}^{015} \end{aligned}$	AT-Hook	+	1	$\stackrel{\text { äaAA }}{\square}$	AT1619485;AT1648810
4 7 5	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 275 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	тсас	WBOXATNPR1
4 7 9	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 248 \end{aligned}$	(Motif sequence only)	-	0.8	ccGta	Myecoreatcrcb
4		bzlp	-	0.8	сGta	AT1077920;AT3612250:ATS06959:ATG60696;AT5G10030;AT5665210:A11622070
4 8 1 1	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq- }-0 \\ & 267 \end{aligned}$	Trinelix	+	0.8	gtac	AT5601380
4 8 1 1	$\begin{aligned} & \text { TF }-\mathrm{m} \\ & \text { otif } \\ & \text { eq- } \\ & 267 \\ & 267 \end{aligned}$	Trinelix		1	gtac	AT5601380
4 8 2 2	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq_- } \\ & 377 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	${ }_{4}^{0.8}$	$\begin{aligned} & \text { TAACA } \\ & \text { ca } \end{aligned}$	Gareat
4 8 8 5	$\begin{array}{\|l\|l\|} \hline \text { TF-m } \\ \text { otif } \\ \text { ets } \\ \text { eq-0 } \\ 249 \end{array}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		0.8	cacat	Abreatreoi
4 8 8 8	$\begin{aligned} & \hline \text { TFma } \\ & \text { trixid } \\ & { }_{0}^{0610} \\ & \hline \end{aligned}$	${ }_{\text {Mrab-ed }}^{\substack{\text { Mre }}}$		${ }_{8}^{0.9}$	${ }_{\text {atchat }}^{\text {atc }}$	AT5617300
4 8 8 8	$\begin{aligned} & \text { TF }-\mathrm{m} \\ & \text { otif-s } \\ & \text { eq- }-0 \\ & 257 \\ & \hline \end{aligned}$	NF- Yb;NF- YA;NF-YC		0.8	АтTGA	AT1609030;AT1617590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1656170;AT1G72830;AT2G38880;AT2G47810;AT3605690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;ATJG2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
4 8 8	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otifis } \\ & \text { eq-0 } \\ & 254 \end{aligned}$	AP2; FPF	-	0.8	тбат	AT361430
4 8 8	$\begin{aligned} & \text { TF-m } \\ & \text { otifis } \\ & \text { eq-0 } \\ & \text { } 275 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	тбat	wвoxatwpr1
4 9 9	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & \mathbf{4}_{4} \mathbf{4 3 3} \end{aligned}$	Myb/SAN т;MYBrelated		${ }_{7}^{0.9}$	${ }_{\text {teata }}^{\text {tita }}$	AT1618330:A7361011
¢	$\begin{aligned} & \text { Tf }-\mathrm{m} \\ & \text { otifs } \\ & \text { eq_- } \\ & 237 \end{aligned}$	6atatity	+	1	tgata	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
4 9 9		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		${ }_{0}^{0.8}$	${ }_{\text {tgatat }}^{\text {ti }}$	${ }^{\text {P1BS }}$
4 9 1		GATAatiy	+	1	Gatat	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
4 9 5		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		0.8	тCAA	wboxatipr 1
4 9 7	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eq- } 0 \\ & 302 \end{aligned}$	ВНเН	+	1	${ }_{\text {g }}^{\text {caAct }}$	AT5608130,AT362674
4 9 7		ВНLH		1	${ }_{6}^{\text {caAct }}$	AT5608130;AT362674
7 9 7		(Others)		1	${ }_{\text {cast }}^{\text {cact }}$	014712

	${ }_{313}^{\text {ea }} 10$					
$\stackrel{4}{9}$	TF-m otif_s eq- 342 34	(Motif sequence only)	+	1	$\underset{\text { cact }}{\text { cast }}$	mybzconsensusat
${ }_{9}^{4}$	TF_m otif_s eq_o 248	(Motif sequence only)	+	0.8	Ааст'	MYBCOREATCYCB1
5	Trma trix1D $\overline{5}_{5}^{034}$			1	${ }_{\text {ctast }}^{\text {ctat }}$	AT1679430;AT3612730:AT3624120:AT4613640
5 0 1	TFma trixlD \bar{z}_{2}	${ }_{T}^{\text {myb/SAN }}$.	1		AT360030
5 0 0	TFma trix1D $\overline{-}_{8}^{035}$	${ }_{T}^{\text {Myb/SAN }}$.	${ }_{9}^{0.9}$	$\begin{gathered} \text { tGATTC } \\ \text { ctaa } \end{gathered}$	AT5618240
0	TF_m otif_s eq_o 237	Gatatity	+	1	tgatt	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4617570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5626930;AT5G56860;ATG66632;AT2G1 8380;AT3G50870;AT4636620
1 0 1 1	TF_m otif_s eq_0 268	(Motif sequence only)	+	1	tgatt	arriat
5	TFma trixid $\overline{0}^{014}$	AT-Hook	+	1	${ }^{\text {a a a }}$ A ${ }^{\text {a }}$	AT4621895; 45662260
5	Trma trixiD $\overline{-}_{8}^{014}$	AT-Hook	+	1	${ }_{\text {a }}^{\text {a }}$ a ${ }^{\text {a }}$	AT1199485;:471648610
5 1 1	TFma trixiD $\overline{7}^{013}$	AT-Hook	+	1		AT4621895;ATS662260
5 1 3	TF_m otif_s eq_o 434	(Motif sequence only)		${ }_{3}^{0.8}$	$\begin{array}{\|l} \text { ааатАт } \\ \text { Ac } \end{array}$	P1BS
5 1 1 5	Ta-m otif_s et-5 254	AP2; RF	+	0.8	atata	AT3614230
5	TF_-m otif_s eq_0 254	AP2; ERF	+	0.8	AACtA	AT3614230
5 2 2 5	TF_m otif_s eq_o 131	AP2	.	${ }_{5}^{0.8}$	$\begin{aligned} & \text { tattgge } \\ & \text { agTGT } \\ & G \end{aligned}$	AT4637750
5 2 2 6	$\begin{array}{\|l\|l\|} \hline \text { TF_m-m } \\ \text { otifos } \\ \text { eta- } \\ 257 \\ \hline \end{array}$	Nf- yb;NF- YA;NF-YC	-	1	ATG6	7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;ATSG50480
5 3 7 7	TFma trixiD -056 9	TBP	-	${ }_{8}^{0.9}$	$\begin{array}{\|l\|l\|} \text { tgagatt } \\ \text { tTITAT } \\ \text { at } \end{array}$	AT1655520:AT3613445
5 3 8	TF_m otif_s eta- 254	AP2; ERF	.	0.8	gagat	AT3614230
5 8 8	TF_m otif_s eq_o 261	(Motif sequence only)	+	0.8	gagat	SURECOREATSULTR11
[5	TF_m otif_s eq_0 237	Gatatitiy	+	1	agat	AT1G51600;AT2G45050;AT3606740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4626150;AT4G32890;AT4G34680;AT5G25830;ATG626930;AT5G56860;ATG66320;AT2G1 8380;AT3650870;AT4636620
[$\begin{aligned} & 5 \\ & 3 \\ & 9\end{aligned}$	TF_m otif_s eq_o 252	Myb/SAN RR-B	+	1	Agat	AT2601760:AT3616857:A4411610:AT4618020:AT4631920;AT5G58880:A11667710:AT1649190;AT2625180:AT5649240
5 3 3 9	TEI_m otif_s eta- 268	(Motif sequence only)	+	1	agat	arriat
5 3 9	TF_m otif_s eq_o 403	(Motif sequence only) \qquad		1	AGATt tt	сСа1атнсв81
5 4 0	(ex	AT-Hok	-	${ }_{9}^{0.9}$	${ }_{\text {tita }}^{\substack{\text { gatr }}}$	AT1619485;471648610
5 4 4 2	(ex	твP		${ }_{8}^{0.9}$	${ }_{\text {cter }}^{\substack{\text { terte } \\ \text { Tate }}}$	AT1655520:A73613445
5 4 4 5	(ex	твP	-	1	${ }_{\text {t }}^{\text {trata }}$	AT1655520;473613445
5 4 7		AP2; ERF	.	0.8	tatat	AT3614230
5 4 4 8		Gatatity	-	1	atatc	AT1651600;AT2G45050;AT3606740;AT3G16870;AT3621175;AT3G24050;AT3654810;AT3G60530;AT4G17570;AT4G24470;AT4626150;AT4632890;AT4G34680;AT5G25830;AT5626930;AT5G56860;AT5666320;AT2G1 8380;AT3650870;AT4636620
5 4 4		Gatatity		1	tatca	AT1651600;AT2G45050;AT3606740;AT3G16870;AT3621175;AT3G24050;AT3G54810;AT3G60530;AT4617570;AT4G24470;AT4626150;AT4G32890;AT4G34680;AT5G25830;AT5626930;AT5G56860;AT5666320;AT2G1 8380;AT3650870;AT4636620
5 5 2	(eme	C2H2	-	1	${ }_{\text {Tt }}^{\text {catc }}$	
[(enter	С2н2	.	1	${ }_{\text {Tt }}^{\text {cagta }}$	AT1602030;AT2645120:AT3G19580:ABG69993:AT3660580;AT5604300;AT5643170
[${ }_{\text {B3 }}{ }_{\text {Apzaf; }}$.	1	төтє	AT1122556;:41613260
[TFtim-m otif eq-s 349 349	(Others)		${ }_{6}^{0.8}$	${ }_{T}^{\text {trit6 }}$	x67670:467671
5 5 5	TF_m otif_s eq_0 257	NF- YB;NF- YA; NF -YC		0.8	бтв	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;ATGG38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
5 5	$\underbrace{}_{\substack{\text { Tfitm } \\ \text { otifs }}}$	Dehydrin	-	0.8	єтб6	U0137

	${ }_{258}^{\text {eq．}}$					
5	${ }_{\text {a }}^{\substack{\text { Tfma } \\ \text { trixo } \\ \hline 0803}}$	Dof	－	${ }_{8}^{0.9}$		AT566559
5	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif-s } \\ & \text { eq- }-0 \\ & 261 \end{aligned}$	（Motif sequence only）		1	ятет	SURECOREATSULTR11
5	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { ete- } \\ & 239 \end{aligned}$	Dof	．	1	тCTT	AT1G29160；AT1G64620；AT2G37590；AT3G21270；AT3G45610；AT3G47500；AT4G38000；AT5G39660；AT5G60200；AT5G60850；AT5G62940；AT2G46590；AT1G07640；AT1G21340；AT1G26790；AT1G47655；AT1G51700；AT1G6 9570；AT2G28510；AT2G28810；AT2G34140；AT3G50410；AT3G55370；AT3G61850；AT4G00940；AT4G21050；AT4G21080；AT4G24060；AT5G02460；AT5G62430；AT5G65590；AT5G66940
5	$\begin{aligned} & \text { TF-m } \\ & \text { otif-s } \\ & \text { eq-0 } \\ & 267 \end{aligned}$	Trinelix	＋	0.8	mTac	AT5601380
5	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 275 \end{aligned}$	（Motif sequence only）	＋	0.8	tтac	wboxatinpr
5 7 7	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otifs } \\ & \text { eq-a } \\ & 254 \end{aligned}$	AP2； EFF	－	0.8	tacat	AT3614230
$\begin{aligned} & 5 \\ & 6 \\ & 9\end{aligned}$	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { ete- } \\ & 302 \end{aligned}$	внн	＋	1	CATTg	AT5608130；AT362674
5 9	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { et_- } \\ & 302 \\ & 302 \end{aligned}$	ьнн		1	${ }_{\substack{\text { catr } \\ 6}}$	AT5608130：AT322674
5		NF－ YB；NF－ YA；NF－YC	．	0.8	Attr	AT1G09030；AT1G17590；AT1G21970；AT1G30500；AT1G54160；AT1G54830；AT1G56170；AT1G72830；AT2G38880；AT2G47810；AT3G05690；AT3G14020；AT3G20910；AT3G53340；AT4G14540；AT5G06510；AT5G12840；AT5G2 7910；ATSG38140；AT5G47640；AT5G47670；AT5G50470；ATSG50480
5 7 1	$\begin{aligned} & \text { Ta_m } \\ & \text { Ttif_s } \\ & \text { eq-0 } \\ & 009 \\ & \hline \end{aligned}$	（Motif sequence only）		0.7	$\underset{\text { Ttgtta }}{\text { tut }}$	L57atpr1
5		Gata，tify	＋	1	tgatg	AT1G51600；AT2G45050；AT3G06740；AT3G16870；AT3G21175；AT3G24050；AT3G54810；AT3G60530；AT4G17570；AT4G24470；AT4G26150；AT4G32890；AT4G34680；AT5G25830；AT5G26930；AT5G56860；AT5G66320；AT2G1 8380；AT3G50870；AT4G36620
5 7 7	$\begin{aligned} & \text { TF-m } \\ & \text { otif-s } \\ & \text { eq-0 } \\ & 271 \end{aligned}$	bz1p	＋	0.8	tgatg	AT1677920：AT3612250：AT5069950：ATS00960；AT5610030；ATG655210：AT1622070
5 7 7	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_o } \end{aligned}$	（Motif sequence only）	＋	0.8	atcto	Abreatred
5	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { ete- } \\ & 263 \end{aligned}$	（Motif sequence only）		0.8	GTGGt	Sorlipiat
5	（tyma	TBP	＋	${ }_{0}^{0.9}$	$\begin{aligned} & \hline \text { gttatag } \\ & \text { caTATA } \\ & \text { Tagtaat } \end{aligned}$ a	AT1655520：AT361344
5	$\begin{aligned} & \hline \begin{array}{l} \text { Tfma } \\ \text { trixid } \\ \bar{x}^{057} \end{array} \\ & \hline \end{aligned}$	твP	＋	${ }_{1}^{0.9}$	$\begin{aligned} & \hline \text { gttatag } \\ & \text { caTATAA } \\ & \text { Tagtaat } \\ & \text { a } \end{aligned}$	AT1655520：A73613445
近	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_o } \\ & 267 \end{aligned}$	Trinelix	＋	0.8	gttat	AT5601380
5	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otifs } \\ & \text { ete-s } \\ & 434 \end{aligned}$	（Motif sequence only）	＋	${ }_{3}^{0.8}$	$\begin{aligned} & \text { GCATA } \\ & \text { tat } \end{aligned}$	P18S
5	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq_-0 } \\ & 254 \end{aligned}$	AP2； EFF	＋	0.8	atata	AT3612230
5 9 3	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq_-0 } \\ & 254 \end{aligned}$	AP2； RFF		0.8	tatat	AT3614230
5 9 4		AP2； FFF	＋	0.8	atata	AT3612230
5 9 8		AT－Hook	＋	1	agtaAT AAA	AT1619485；A11948810
5 9 9	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eta- } \\ & 241 \end{aligned}$	2F－HD	－	1	gtaat	AT1675240
5 9 9	$\begin{aligned} & \text { TF-m } \\ & \text { otif-s } \\ & \text { et- } \\ & 267 \\ & \hline \end{aligned}$	Trinelix	－	0.8	gtaat	AT5601380
的 $\begin{aligned} & 6 \\ & 0 \\ & 2\end{aligned}$		$\underset{\substack{\text { mass } \\ \text { boxiMic }}}{ }$	＋	${ }_{2}^{0.8}$	ataaact caaaaG GAAAtt a	
术	（erse	$\underset{\substack{\text { mads } \\ \text { boximic }}}{ }$	＋	0.8 6	$\begin{aligned} & \text { aaactc } \\ & \text { aaaá } \\ & \text { GAAA } \end{aligned}$	
近	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eta-s } \\ & 399 \end{aligned}$	（Motif sequence only）	．	${ }_{4}^{0.8}$	${ }_{\text {as }}^{\text {acta }}$	
	$\begin{aligned} & \text { Tf_m } \\ & \text { otifs } \\ & \text { eqa_0 } \\ & 275 \end{aligned}$	（Motif sequence only）		0.8	стсаA	wboxatippr
［1		Dof	＋	1	afag	AT1G29160；AT1G64620；AT2G37590；AT3G21270；AT3G45610；AT3G47500；AT4G38000；AT5G39660；AT5G60200；AT5G60850；AT5G62940；AT2G46590；AT1G07640；AT1G21340；AT1G26790；AT1G47655；AT1G51700；AT1G6 9570；AT2G28510；AT2G28810；AT2G34140；AT3G50410；AT3G55370；AT3G61850；AT4G00940；AT4G21050；AT4G21080；AT4G24060；AT5G02460；AT5G62430；ATGG65590；AT5G66940
［1	$\begin{aligned} & \text { TF-m } \\ & \text { Ttifs } \\ & \text { eta_s } \\ & 248 \\ & 248 \end{aligned}$	（Motif sequence only）	＋	0.8	AaAGG	MYECOREATCYCB1
6 1 2	$\begin{aligned} & \text { TF-m } \\ & \text { otifs } \\ & \text { ete-s } \\ & 239 \\ & \hline \end{aligned}$	Dof	＋	1	AagGA	AT1G29160；AT1G64620；AT2G37590；AT3G21270；AT3G45610；AT3G47500；AT4G38000；AT5G39660；AT5G60200；AT5G60850；ATSG62940；AT2G46590；AT1G07640；AT1G21340；AT1G26790；AT1G47655；AT1G51700；AT1G6 9570；AT2G28510；AT2G28810；AT2G34140；AT3G50410；AT3G55370；AT3G61850；AT4G00940；AT4G21050；AT4G21080；AT4G24060；AT5G02460；AT5G62430；AT5G65590；AT5G66940
［ 6	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq- } 0 \\ & 321 \\ & 321 \end{aligned}$	（Motif sequence only）	＋	1	${ }_{\mathrm{t}}^{\mathrm{GGAAA}}$	griconsensus
6 1 8	TF＿m otif eq＿0 241	2F－HD	＋	1	attag	AT1675240
8 1 1 8	${ }_{\substack{\text { Tfitm } \\ \text { otits }}}$	NF－ YB；NF－ YA；NF－YC		0.8	attag	AT1G09030；AT1G17590；AT1G21970；AT1G30500；AT1G54160；AT1G54830；AT1G56170；AT1G72830；AT2G38880；AT2G47810；AT3G05690；AT3G14020；AT3G20910；AT3G53340；AT4G14540；AT5G06510；AT5G12840；AT5G2 7910；AT5G38140；AT5G47640；AT5G47670；AT5G50470；AT5G50480

	${ }_{257}^{\text {eq. }} \mathbf{2 5}$					
6 2 0	$\begin{array}{\|l\|l\|} \hline \text { Tf_m } \\ \text { otif-s } \\ \text { eq-5 } \\ 254 \end{array}$	AP2; RrF		1	tagat	AT361430
¢	$\begin{array}{\|l\|l\|} \hline \text { Trma } \\ \text { trixiD } \\ \\ \overline{0}_{3} 19 \\ \hline \end{array}$	bz1P		${ }_{5}^{0.7}$	agatGT GT	AT3619290,AT6G34000
\%	$\begin{aligned} & \begin{array}{l} \text { Tf }-\mathrm{m} \\ \text { otif } \\ \text { eq-s } \\ 237 \end{array} \\ & 237 \end{aligned}$	Gatatitiy	+	1	agatg	AT1651600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3660530;AT4617570;AT4G24470;AT4G26150;AT4G32890;ATG634680;AT5G25830;AT5G26930;AT5G56860;ATGG66320;AT2G1 8380;AT3650870;AT4636620
	TF -m otif_s eq_o 249	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	AtGta	ABRELATERO1
6 2 2 4	$\begin{array}{\|l\|l\|} \hline \text { Tatif } \\ \text { otif } \\ \text { eq_o } \\ 343 \\ \hline \end{array}$	(Motif sequence only)		${ }_{6}^{0.8}$	${ }_{T}^{\text {trgTt }}$	ANAEroiconsensus
6 2 5	$\begin{array}{\|l\|} \hline \text { TF-m } \mathrm{m} \\ \text { otifis } \\ \text { eqq-0 } \\ 415 \end{array}$	(Motif sequence only)		${ }_{8}^{0.8}$	$\begin{aligned} & \text { gtgTT } \\ & \text { TG } \end{aligned}$	CDA1ATCAB2
6 2 7	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ \hline 044 \\ \hline \\ \hline \end{array}$	wrky		${ }_{9}^{0.9}$	$\begin{aligned} & \text { gttric } \\ & \text { Acca } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT2G21900;AT2G23320;AT2G34830;AT2G40740;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G0 4450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;ATSG15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
6 2 7	$\begin{array}{\|l\|l\|} \hline \text { Tfma } \\ \text { trixiD } \\ \overline{8}_{8} \mathbf{8 4 4} \\ \hline \end{array}$	wRkr		${ }_{8}^{0.9}$	$\underset{\text { Accat }}{\text { gttrig }}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT2G21900;AT2G25000;AT2G34830;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G0 4450;AT4G11070;AT4G18170;AT4G22070;AT4G24240;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050
\%	Tfma trix1D \bar{L}_{2}	${ }_{\text {M }}^{\text {NaC,NA }}$		1	$\begin{aligned} & \mathrm{ttTTGA} \\ & \mathrm{cca} \end{aligned}$	
¢	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ \hline 045 \\ \hline 1 \end{array}$	WRKY		1	$\begin{aligned} & \text { tetTGA } \\ & \text { Ccat } \end{aligned}$	
6	Tfma trixiD $\overline{8}_{8}^{\text {045 }}$	wrky	-	1	ttTGGA Ccat	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G0 4450;AT4G11070;AT4G18170;AT4G22070;AT4G24240;AT4G31800;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050
\%	$\begin{array}{\|l\|l\|} \hline \text { Tfma } \\ \text { trixiD } \\ z^{0046} \\ \hline \end{array}$	WRKY		${ }_{9}^{0.9}$	$\begin{aligned} & \text { tutga } \\ & \text { Cca } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G6 2340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260;AT5G46350
6	TFma trixiD $\overline{3}_{3}^{046}$	WRKY	.	1	ttTGA Ccat	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260;AT5G49520
[$\begin{array}{\|l} \hline \text { TFma } \\ \text { trix1D } \\ -046 \\ \hline \\ \hline \end{array}$	WRKY		1	$\begin{gathered} \text { ttTGA } \\ \text { Cca } \end{gathered}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260;AT5G52830
\%	Tfma trixiD $\bar{\sigma}^{046}$	wrky	.	1	$\begin{aligned} & \text { ttTGGA } \\ & \text { Ccat } \end{aligned}$	AT1G18860;AT1629280;AT1G29860;AT1G55600;AT1G62300;AT1664000;AT1668150;AT1669810;AT2621900;AT2G34830;AT2G44745;AT3601970;AT3G04670;AT3G58710;AT3G62340;AT4604450;AT4G18170;AT4G2 2070;AT4624240;AT4G39410;AT5G15130;AT5G26170;ATG62865;AT5641570;AT5G43290;AT5G45050;AT5664810
\% $\begin{aligned} & 6 \\ & 2 \\ & 8\end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ \hline 046 \\ \hline & \hline \end{array}$	WRKY		${ }_{9}^{0.9}$	$\begin{aligned} & \text { tettga } \\ & \text { Cca } \end{aligned}$	AT1618860;AT1629280;AT1G29860;AT1655600;AT166230;;AT1664000;AT1G66550;AT1666560;AT1668150;AT1669810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2644745;AT2G46400;AT360 1970;AT3G04670;AT3656400;AT3G58710;AT3662340;AT4G04450;AT4G11070;AT4618170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5626170;AT5628650;AT5641570;AT5G43290;A T5G45050;AT5G45260
¢	Tfma trixiD \bar{o}^{063} 0	WRKY		${ }_{0}^{0.9} 5$	$\begin{aligned} & \text { ttTGGA } \\ & \text { Ccat } \end{aligned}$	AT4631800
¢	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Trma } \\ \text { trixiD } \end{array} \\ \overline{3}^{044} \end{array}$	WRKY		${ }_{9}^{0.9}$	$\begin{aligned} & \mathrm{t} T \mathrm{t} G \mathrm{AC} \\ & \mathrm{ca} \end{aligned}$	AT1G29860;AT1G64000;AT1G66550;AT1G66560;AT1G66600;AT1G68150;AT1G69810;AT1G80590;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G01970;AT3G56400;AT3G62340;AT4G04450;AT4G11070;AT4G1 8170;AT4G23810;AT4G39410;AT5G22570;AT5G26170;AT5G41570;AT5G43290;AT5G45050;AT5G45260
${ }_{6}$	$\begin{array}{\|l\|l\|l\|} \hline \text { Trma } \\ \text { trixid } \\ \hline \text { º44 } \\ \hline \end{array}$	WRKY	.	1	$\begin{aligned} & \text { ttctac } \\ & \text { ca } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1655600;AT1G62300;AT1964000;AT1G68150;AT1669810;AT1G80840;AT2621900;AT2G34830;AT2G44745;AT3G01970;AT3604670;AT3G58710;AT3662330;AT4G04450;AT461 8170;AT4622070;AT4G24240;AT4G39410;AT5G15130;ATG626170;AT5G28650;AT5G41570;AT5G43290;ATGG45050;AT5G45260
¢	$\begin{array}{\|l\|} \hline \text { TFma } \\ \text { trixiD } \\ \overline{9}^{044} \\ \hline 9 \end{array}$	WRKY		${ }_{7}^{0.9}$	tTTGAC ca	AT1613960:AT203340:AT2630250:ATC37260:AT3601080:AT4612020:AT4626440;AT462660:AT4430935:AT5607100
\% ${ }_{2}^{2}$		WRKY	-	${ }_{6}^{0.9}$	$\begin{aligned} & \text { tTTGAC } \\ & \text { ca } \end{aligned}$	AT1629280;AT1629860;AT1664000;AT1666550;AT1G66560;AT1669810;AT1680590;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3601970;AT3G56400;AT3662340;AT4611070;AT4618170;AT4623810;AT462 4240;AT5601900;AT5G22570;AT5G26170;AT5G41570;AT5G43290;AT5G45050;AT5G45260
\%	TFma trixiD $\overline{5}^{046}$	WRKY		${ }_{9}^{0.9}$	tTTGAC	
${ }_{2}^{6}$	$\begin{array}{\|l\|l} \hline \text { Tf_m } \\ \text { otif_s } \\ \text { eta } \\ \text { eq-0 } \\ \hline 99 \\ \hline \end{array}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	1	$\prod_{\mathrm{cc}}^{\substack{\text { mGA }}}$	wbboxpcwrkr
6 3 3	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixix } \\ \hline \\ \hline & 053 \\ \hline \end{array}$	WRKY		${ }_{7}^{0.8}$	TTGAC cattta	AT1613960:AT203340:AT2004880:ATC37260:AT3601080:AT4612020:AT4626440:AT462660:AT4430935:AT5607100
处	TF_m otif_s eq_0 339	WRKY	+	1	${ }_{c}^{\text {¢GAC }}$	AT1G13960;AT1G18860;AT1G29280:AT1G29860;AT1G30650;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1668150;AT1G69310;AT1G69810;AT1G80590;AT1G80840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
6 3 0	TF-m otif_s eq_o 275	(Motif sequence only)	+	1	тGac	wвохațPR1
6	$\begin{array}{\|l\|l\|} \hline \text { TF-m } \\ \text { otif_s } \\ \text { eqq_0 } \\ 246 \end{array}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;TA } \end{aligned}$ LE	+	1	taacc	AT1623380;AT1662360;A1670510;AT4608150
1 3 1 1	TF-m otif_s eq_o 270	WRKY	+	1	tgacc	AT1G13960;AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1G69810;AT1680590;AT1G80840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2644745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;ATSG28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
1 3 1 1		bzip	+	0.8	tgacc	AT1677920;AT3612250:AT506950;ATS00696;AT5G10030;AT5665210:A71622070
1 3 4 4	TF-m otif_s eq_0 257	NF- YB;NF- $\mathrm{YA} ; \mathrm{NF}-\mathrm{YC}$	+	0.8	ccat	AT1G09030;AT1G17590;AT1G2190;:AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5606510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
6 3 4 4	TF-m otif_s eq_- 248 248	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		0.8	cсat	MYвCOREATYC¢1
4 3 3 6	TF-m otif_s eq_0 254	AP2; EFF	+	0.8	ATTA	AT361430
6 4 4 0	$\begin{array}{\|l\|l\|} \hline \text { TF-m }-\mathrm{m} \\ \text { otifs } \\ \text { eqq- }-0 \\ 241 \end{array}$	2F-HD	+	1	attas	AT1675240
(10	${ }_{\substack{\text { Them } \\ \text { ctifes }}}$	Dof		1	Acct	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940

	${ }_{239}^{\text {eq. }}$					
6 5 1 1		Dof		1	ccri	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
1 5 1	TF_m otifs otif_s eq_o 248	(Motif sequence only)		0.8	cctr	MYвCOREATCYCB1
1 6 5 8		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	птт	wboxatinpr 1
6 5 9	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq_- } \\ & 246 \\ & 246 \end{aligned}$	Homeod omain;TA LE		1	tetca	AT1623380;AT1662360:A11670510:AT4608150
(bzlp		0.8	тGtca	AT1677920;AT3612250;ATS06950;ATG60660;AT5G10030;ATG665210:A11622070
6 5 9	$\begin{aligned} & \text { TF-m } \\ & \hline \text { Totifs } \\ & \text { eti_s } \\ & 339 \\ & 339 \end{aligned}$	wRKY		${ }_{5}^{0.9}$	tGTCA	AT1G13960;AT1G18860:AT1G29280;AT1G29860;AT1G30650;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1G69810;AT1G80590;AT1G80840;AT2G03340;AT2G23320:AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
6 5 9		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		${ }_{0}^{0.9}$	$\begin{aligned} & \operatorname{tgTCAA} \\ & A \end{aligned}$	wbboxpcwrkr
($\begin{aligned} & \text { TF-m } \\ & \text { otifs } \\ & \text { eq_- } \\ & 275 \\ & 275 \end{aligned}$	(Motif sequence only)		1	gtcaa	wBoxatinpr ${ }^{\text {1 }}$
6 6 6	$\begin{aligned} & \text { TFma } \\ & \text { Trix } \\ & \text { trix }^{\mathbf{0} 222} \end{aligned}$	TCR; $\mathrm{CPP}^{\text {P }}$	+	${ }_{7}^{0.9}$	$\begin{aligned} & \text { ca7TTG } \\ & \text { Aааа } \end{aligned}$	AT4629000
6 6 6 6	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eq_- } \\ & 302 \end{aligned}$	ВнL	+	1	CATtr	AT5608130;AT326774
6 6 6 6		Внн	-	1	${ }_{6}^{\text {catt }}$	AT5608130;AT326774
6 6 7	$\begin{aligned} & \text { Tf } \mathrm{T} \text { m } \\ & \text { otif-s } \\ & \text { eq-5 } \\ & 257 \end{aligned}$	NFYB; NF -YA;NF-YC		0.8	ATtr	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1654160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
6 6 6 9	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 275 \end{aligned}$	(Motif sequence only)	+	0.8	тбaa	wboxatinpr 1
6 7	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq- } 0 \\ & 321 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	1	${ }_{\square}^{\text {a AaAA }}$	GTiconsensus
1 7 7 6		Внн	+	${ }_{5}^{0.7}$	$\begin{aligned} & \text { ATACT } \\ & \text { agt } \end{aligned}$	AT1632640
处	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { eq- } \\ & 254 \\ & 254 \end{aligned}$	AP2; RF	.	0.8	tagt	AT3612330
6 8 8	$\begin{aligned} & \text { Trma } \\ & \text { TrixiD } \\ & \bar{q}_{8} \mathbf{0 5 0} \end{aligned}$	MADS box;MIKC	-	${ }_{1}^{0.9}$	$\begin{aligned} & \text { tutter } \\ & \pi T G g \end{aligned}$	
6 9 9 1		NF- YB,NF- YA ; NF-YC	.	0.8	пт66	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
1 9 2 2	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { et_- } \\ & 263 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$.	0.8	тбGc	sorlipiat
6 9 2	$\begin{aligned} & \text { TF_m } \\ & \text { Totifs } \\ & \text { eq_0 } \\ & 275 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	товс	wвoxatwpr1
6 9 9	$\begin{aligned} & \text { TFma } \\ & \text { Trixid } \\ & \bar{c}_{2} \mathbf{0 2 4} \end{aligned}$	Dof	+	${ }_{7}^{0.9}$	$\begin{aligned} & \text { tggcAA } \\ & \text { CGTtg } \end{aligned}$	ATS660850
6 9 4	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eqa_0 } \\ & 275 \end{aligned}$	(Motif sequence only)		0.8	GGCAA	wвoxatinpr1
6 9 9	$\begin{aligned} & \text { TFma } \\ & \text { TrixiD } \\ & \overline{5}^{012} \end{aligned}$	AP2;B3	+	${ }_{9}^{0.9}$	${ }_{\text {greac }}^{\substack{\text { gcac } \\ \text { GTgt }}}$	AT1650680;at1051120
6 9 5		AP2;B3		${ }_{9}^{0.9}$	${ }_{\substack{\text { graac } \\ \text { GTgt }}}^{\text {ct }}$	AT1650680:AT1651120
6 9 9	$\begin{aligned} & \text { Tf_m } \\ & \text { otifis } \\ & \text { eq_-0 } \\ & 267 \end{aligned}$	Trinelix	-	0.8	gcaac	AT5601380
6 9 9	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq- } \\ & \text { eq- } \\ & 263 \\ & \hline \end{aligned}$	(Motif sequence only)	+	0.8	gcaac	Sorlipiat
6 9 6	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & \bar{c}_{2} \mathbf{0 2 4} \\ & \hline \end{aligned}$	Dof		${ }_{7}^{0.9}$		ATS66085
6 9 7	$\begin{aligned} & \text { TF-m } \\ & \text { TFtifs } \\ & \text { oteq_- } \\ & \text { eq-0 } \\ & 240 \end{aligned}$	bzlp		1	Aacgt	AT3656620:AT402640
${ }_{6}^{6}$		(Motif sequence only)	+	0.8	Aacgt	MYECOREATYC61
7		(Motif sequence only)	.	0.8	Aacgt	ABRELATERO1
6 9 8	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq- } 0 \\ & 240 \\ & \hline \end{aligned}$	bzlp	+	1	AcGT	AT3554620;AT4602640
6 9 8	$\begin{aligned} & \text { TF-m } \\ & \text { TFtifs } \\ & \text { eti_s } \\ & \text { eq-0 } \\ & 009 \end{aligned}$	(Motif sequence only)	+	0.7	$\begin{aligned} & \text { ACGT } \\ & \text { gtaaa } \end{aligned}$	LSTATPR1
6 9 8	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 248 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		0.8	AcGt	Myвcoreatrycb
6 9 8	$\substack{\text { Ftim } \\ \text { otit }}_{\text {ct }}$	(Motif sequence only)	+	0.8	AcGt	ABRELTERO1

	${ }_{\text {eqa_0 }}^{\text {eqa }}$					
7	$\begin{aligned} & \text { TFma } \\ & \text { TrixiD } \\ & \overline{-}_{6} 014 \\ & \hline \end{aligned}$	AT-Hook	+	1	${ }_{\text {gret }}^{\substack{\text { graat }}}$	AT4621895;AT5662260
7		Trinelix	-	0.8	gtaa	AT5601380
\bigcirc		(Motif sequence only)	-	0.8	gtaas	wBoxativer 1
7 0 4	$\begin{aligned} & \text { TF-m_m } \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 254 \end{aligned}$	AP2; RF	.	0.8	taat	AT3614230
7	$\begin{aligned} & \begin{array}{l} \text { TFma } \\ \text { trix1D } \end{array} \\ & -047 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \hline \text { Homeod } \\ & \text { omain;H } \\ & \text { D- } \\ & \text { ZIP;bzIP } \\ & \hline \end{aligned}$	+	${ }_{2}^{0.9}$	${ }_{\text {atag }}^{\text {ataA }}$	AT166978;AT3601220:AT3601470;AT5G15150
0	$\begin{aligned} & \text { TE_m } \\ & \text { Ttif } \\ & \text { otif_s } \\ & \text { eq- } \\ & 241 \end{aligned}$	2F-HD		1	atait	AT1675240
7 1 1	$\begin{aligned} & \text { TF-m_m } \\ & \text { otiffs } \\ & \text { eq-0 } \\ & 254 \end{aligned}$	AP2; ERF	.	0.8	tagt	AT361230
7 1 3	TF_m otif-s eto- 267 267	Trinelix	+	0.8	Gtta	AT5601380
1 1 3	$\begin{array}{\|l\|l\|} \hline \text { Tf_m } \\ \text { otif_s } \\ \text { eqa_0 } \\ 275 \end{array}$	(Motif sequence only)	.	0.8	бтta	wboxatwpr1
7 2 0	$\substack{\text { TFma } \\ \text { trixiD } \\ -004 \\ 4 \\ 4 \\ \hline \\ \hline \\ \hline \\ \hline}$		-	${ }_{1}^{0.9}$	ataga Tuta	AT2620570
7 2 1	TF_m otif_s eq_o 254 254	APi $:$ ER	-	1	tagat	AT361230
$\begin{aligned} & 1 \\ & 2 \\ & 2\end{aligned}$	Ta_m otif_s eq_- 237 $23-$	Gata,tily	+	1	Agat	AT1G51600;AT2645050;AT3G06740;ATGG16870;AT3G21175;AT3G24050;AT3G54810;ATTG60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5625830;AT5G29930;AT5656860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
7 2 2	$\begin{array}{\|l\|l\|} \hline \text { TF-m-m } \\ \text { otifis } \\ \text { eq-0 } \\ 252 \end{array}$	Myb/SAN T;MYB;A RR-B	+	1	agat	AT2601760;AT3611857;AT4616110;A4611820;AT4631920;ATG65888;AT1667710;A11699190;AT2625180;AT6G99240
2	TF_m otif_s eq_o 268	(Motif sequence only)	+	1	Agat	arriat
7 2 2	TF_m otif_s eq_o 403 403	(Motif sequence only)	.	${ }_{6}^{0.8}$	AGATT ta	сса1атнсв1
7 1 1	Tf_m otif_s ete-0 261	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$.	1	яттс	SURECOREATSULTR11
1 3 3 3	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otifos } \\ \text { eti_- } \\ 249 \\ 249 \end{array}$	(Motif sequence only)	-	0.8	стсGt	Abreatreoi
7 3 4 4	TFtifs otif eq-s 248	(Motif sequence only)	.	0.8	тсеा	MYECOREATCYCB1
7 4 1 1	Trma trixid $\overline{1}_{1}{ }^{013}$	AT-Hook	-	1	$\prod_{\text {cat }}^{\text {ctatg }}$	AT1619485;A11948610
1 4 4 2	TFma trixiD -025	EN3,EIL	+	${ }_{9}^{0.9}$	${ }_{\text {ctatac }}^{\text {tratac }}$	AT3620770:ATS621120:AT5G65100
7 4 2 2	TFma trixid $-\mathbf{0 2 5}$	En3; Ell	-	${ }_{9}^{0.9}$	${ }_{\text {ctatac }}^{\text {tuat }}$	AT3G20770:ATG621120:AT5665100
7 4 6	TF_m otif_s eq_o 434	(Motif sequence only)	+	${ }_{3}^{0.8}$	$\begin{aligned} & \text { GCATA } \\ & \text { tag } \end{aligned}$	P1BS
4 4 8	TF_m otif_s eq_o 254	APi:ERF	+	0.8	atata	AT361230
7 1 1	TF_m otif_s eq_o 254	AP2; RF		0.8	tagt	AT3614230
1 5 3	TF-m otif_s equ_0 267	Trinelix	+	0.8	өттс	AT5601380
7	TF_m TFtif_s eq-0 261	(Motif sequence only)	.	0.8	өтाс	SURECOREATSULTrı1
7 5 8	TF_m otif_s eq-0 257	NF- Yb;NF- YA;NF-YC	-	0.8	AtcG	AT1G09030;AT1617590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1656170;AT1G7283;;AT2G38880;AT2G47810;AT3G05690;AT3614020;AT3G20910;AT3G53340;AT4G14540;AT5606510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5650480
7 6 2	TF-m otif_s eq_0 239	Dof		1	6стा	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
6	(tema	AT-Hook	-	1	$\prod_{\text {aga }}$	AT1619485;AT1948610
7 6 7	TF_m otif_s eq_- 241 241	2F-HD	+	1	attag	AT1677240
7 7	TF_m otif_s eq_0 257	NF- YB;NF- YA;NF-YC	-	0.8	attag	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;ATGG47670;AT5G50470;AT5G50480
7 6 9		AP2; RF		0.8	tagac	AT3614230
7 6 9	TF_m otif_s eq_o 261	(Motif sequence only)	+	0.8	tagac	surecoreatsutrril
9		(Motif sequence only)	+	0.8	tagac	wboxatinpr ${ }^{\text {a }}$

	${ }_{275}^{\text {eq. }}$					
7	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq4_0 } \\ & 261 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		0.8	Gactic	surecoreatsutral
7 7 2	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eq-a } \\ & 399 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		${ }_{4}^{0.8}$	${ }_{\text {a }}^{\text {actca }}$	wBboxpcwrkr
7 7 3		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		0.8	стCaA	wboxatwpr1
7	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq_-0 } \\ & 257 \end{aligned}$	NF- Yb;NF- YA;NF-YC	+	0.8	caat	AT1909030;AT1617590;AT1G21970;AT1G30500;AT1654160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3605690;AT3G14020;AT3620910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
7		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$.	${ }_{3}^{0.8}$	${ }_{\text {ac }}^{\text {aatAT }}$	P1BS
7 7 8	$\begin{aligned} & \text { Tf } \mathrm{m} \\ & \text { otifs } \\ & \text { eq- } \\ & 254 \\ & 254 \end{aligned}$	AP2:ERF	+	0.8	Atata	AT3614230
7 8 8 0	$\begin{aligned} & \hline \text { TFma } \\ & \text { trixiD } \\ & \overline{3}_{3}{ }^{023} \end{aligned}$	Dof	-	1	$\underset{\text { Traa }}{\text { atact }}$	AT1664620
7 8 8	$\begin{aligned} & \text { Tfma } \\ & \text { trixid } \\ & \overline{7}^{023} \\ & \hline \end{aligned}$	Dof		${ }_{9}^{0.9}$	$\underset{\text { atactr }}{\text { ata }}$	AT3647500
8	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 410 \end{aligned}$	bHLH	+	${ }_{5}^{0.7}$	${ }_{\text {te }}^{\text {ATACtt }}$	AT1632640
7 8 8 2	$\begin{aligned} & \text { TFma } \\ & \text { trixiD } \\ & \overline{5}_{5} 023 \end{aligned}$	Dof		1	${ }_{\text {actrit }}^{\text {ą }}$	AT3621270
7 8 2 2	(tema	Dof	-	1	$\begin{aligned} & \text { actाTा } \\ & \text { aat } \end{aligned}$	AT463800
7 8 2 2	$\begin{aligned} & \text { Trma } \\ & \text { trixid } \\ & \bar{S}^{024} \\ & \hline \end{aligned}$	Dof		1	${ }_{\text {actrat }}^{\text {actr }}$	ATS662940
7 8 8 2		Dof	.	1	Actit	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
7 8 4	$\begin{aligned} & \text { Tfma } \\ & \text { trixid } \\ & \overline{2}_{2}^{\text {o41 }} \\ & \hline \end{aligned}$		+	1	${ }_{\text {\#Traa }}^{\text {\#ta }}$	AT1623420
7 8 5 5		$\begin{aligned} & \text { Homeod } \\ & \text { omain;bz } \\ & \text { IP;HD- } \\ & \text { ZP; } \mathrm{WOX} \\ & \hline \end{aligned}$	+	1	${ }_{\text {traat }}$ Trat	AT463550
7 8 8	$\begin{aligned} & \hline \text { TFma } \\ & \text { trixiD } \\ & \hline 062 \\ & \hline-8 \\ & \hline \end{aligned}$	Homeod omain;bz IP;HD ZIP;WOX		1	${ }_{\text {THAas }}$	AT463550
7 8 6	$\begin{aligned} & \text { TFma } \\ & \text { TrixiD } \\ & \bar{L}_{2}^{041} \end{aligned}$	${ }_{\text {Sox }}^{\text {SoxAB }}$	-	1	${ }_{\text {traat }}^{\text {Aat }}$	AT1623420
7 8 8	$\begin{aligned} & \text { Tf } \mathrm{m} / \mathrm{m} \\ & \text { otifs } \\ & \text { eq4-0 } \\ & 241 \\ & \hline \end{aligned}$	2F-HD	-	1	taat	AT1675240
7 8 7	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & \bar{s}^{0000} \end{aligned}$	AT-Hook	+	${ }_{8}^{0.9}$	$\begin{aligned} & \text { taATTA } \\ & \text { Aatt } \end{aligned}$	AT461465
7 8 7	$\begin{aligned} & \text { Trma } \\ & \text { trixid } \\ & { }_{7} 000 \\ & \hline \end{aligned}$	AT-Hook	+	${ }_{7}^{0.9}$	${ }_{\text {taATtA }}$	AT4635390
7 7 7	$\begin{aligned} & \text { Tfma } \\ & \text { trixid } \\ & \overline{3}^{022} \end{aligned}$	TCR;CPP	.	${ }_{7}^{0.9}$	$\begin{aligned} & \text { taataA } \\ & \text { AATTt } \\ & \mathrm{g} \end{aligned}$	AT4614770
7 8 9	$\begin{aligned} & \text { TF-m } \\ & \hline \text { TFtif_s } \\ & \text { eqiop } \\ & 241 \\ & 241 \end{aligned}$	2F-HD	+	1	Atta	AT1675240
7 9 1	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq_ } 0 \\ & 254 \end{aligned}$	APi; RF	-	0.8	taAat	AT361230
8 0 0 2	$\begin{aligned} & \text { TF-m } \\ & \text { otifs } \\ & \text { eq- }-0 \\ & 261 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	GAGAA	SURECOREATSULTR11
8 8 0 6		2F-HD	+	1	АтTAA	AT1675240
8	(tema	$\begin{aligned} & \text { bZIP;Ho } \\ & \text { meodom } \\ & \text { ain;HD- } \\ & \text { ZIP } \end{aligned}$		${ }_{4}^{0.8}$	$\begin{aligned} & \hline \text { aaaget } \\ & \text { aAACA } \\ & \text { Tttgca } \\ & \text { a } \\ & \hline \end{aligned}$	AT1630990
¢	$\begin{aligned} & \hline \text { Trma } \\ & \text { trixiD } \\ & \hline \mathbf{~} 051 \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { bZIP;Ho } \\ & \text { meodom } \\ & \text { ain;HD- } \\ & \text { ZIP } \\ & \hline \end{aligned}$	-	${ }_{2}^{0.8}$	$\begin{aligned} & \text { aaaget } \\ & \text { aAACA } \\ & \text { Tttgca } \\ & \text { a } \\ & \hline \end{aligned}$	AT1630490;AT1652150:AT2 637710;T4033880;AT5660690
8		$\begin{aligned} & \hline \text { bZIP;Ho } \\ & \text { meodom } \\ & \text { ain;HD- } \\ & \text { ZIP } \\ & \hline \end{aligned}$		${ }_{2}^{0.8}$	$\begin{aligned} & \text { aaaggt } \\ & \text { aATCA } \\ & \text { Tttgcca } \\ & \text { a } \\ & \hline \end{aligned}$	AT1630490:AT1652150:AT2 637710:AT4033880:AT5660690
8 0 0		Dof	+	1	afag	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;ATGG65590;AT5G66940
8 0 9		(Motif sequence only)	+	0.8	AaAGG	MYBCOREATYCCB1
8 1 0	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 239 \\ & \hline \end{aligned}$	Dof	+	1	AagGt	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;ATGG62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3661850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;ATSG66940
8 1 2 2	$\begin{aligned} & \text { Tr-m } \\ & \text { otif } \\ & \text { et-s } \\ & 321 \\ & \hline \end{aligned}$	(Motif sequence only)	+	1	${ }_{t}^{\text {GGTAA }}$	gticonsensus
8 1 1 3		Homeod omain; D-ZIP		${ }_{8}^{0.9}$	${ }_{\text {greme }}^{\text {grate }}$ Att	AT2622800;A72649910:AT4616780;AT4637990:AT5606710:ATG47370
8 1 1 3	${ }_{\substack{\text { Tfma } \\ \text { trixi }}}^{\text {d }}$	Homeod omain; D-LIP		${ }_{3}^{0.9}$	$\begin{aligned} & \text { gtaAtc } \\ & \text { Attt } \end{aligned}$	AT2646880

	$\overline{4}^{0028}$					
8		$\begin{aligned} & \text { Homeod } \\ & \text { omain;H } \\ & \text { D-ZIP } \end{aligned}$		${ }_{8}^{0.9}$	${ }_{\text {at }}^{\text {gitatc }}$	AT262880；AT3660390：AT4616780：AT4037799；ATG606710；AT647370
8	（tama	Homeod omain；H D－ZIP		${ }_{9}^{0.9}$	$\begin{aligned} & \text { gtaATC } \\ & \text { Attt } \end{aligned}$	AT2628800；AT4616780：AT4617460；AT4637799：AT5606710；AT647370
8 1 3	$\begin{aligned} & \hline \text { Tfma } \\ & \text { trixid } \\ & { }_{4}^{063} \end{aligned}$	$\begin{aligned} & \mathrm{Sox}_{\mathrm{y}, \mathrm{YABB}} \end{aligned}$		1	${ }_{\text {great }}^{\substack{\text { graatc } \\ \text { Art }}}$	AT262580
8 1 1 3	$\begin{aligned} & \text { TF-m } \\ & \text { otif-s } \\ & \text { eq_-s } \\ & \text { e75 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { bZIP;Ho } \\ & \text { meodom } \\ & \text { ain;HD- } \\ & \text { ZIP } \\ & \hline \end{aligned}$	＋	${ }_{1}^{0.8}$	$\begin{aligned} & \text { GTAAT } \\ & \text { cattrg } \end{aligned}$	AT1630990
8	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otifs } \\ & \text { ete- } \\ & 241 \end{aligned}$	2F－HD	－	1	gtaat	AT1675240
8 1 1 3	TF＿m otif＿s eq＿0 267	Trinelix		0.8	gtaat	AT5601380
8 1 3	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { ete- } \\ & \text { } 076 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	＋	${ }_{1}^{0.8}$	gTaAt catttg	ноzIPIIAT
8 1 4	$\begin{aligned} & \hline \text { TFma } \\ & \text { trixid } \\ & \hline 029 \\ & \hline \mathbf{8} \\ & \hline \end{aligned}$	Homeod omain；H D－ZIP	－	${ }_{9}^{0.9}$	${ }_{\text {atur }}^{\text {taATC }}$	AT166978：AT2618550：AT3601220：AT5615150
8	$\begin{aligned} & \text { Trma } \\ & \text { trixiD } \\ & \bar{S}_{3} 041 \end{aligned}$	$\underset{\substack{\text { Sox } \\ \text { Y }}}{ }$	＋	1	${ }_{T}^{\text {taatca }}$	AT2C26580，AT4600180
8 1 1 5	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_o } \\ & 237 \end{aligned}$	Gatatity		1	AATCA	8380；AT3G50870；AT4G36620
8	TF＿m otif＿s ${ }_{268}^{\text {eq＿}}{ }^{2}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		1	Aatca	arriat
8 1 8 8	$\begin{aligned} & \text { Tf_m } \\ & \text { otifs } \\ & \text { equ-0 } \\ & 302 \end{aligned}$	ВНแH	＋	1	Catrg	AT5608130：AT362674
8 1 8 8	$\begin{aligned} & \text { TF-m } \\ & \text { otifs } \\ & \text { eti-s } \\ & \text { oq- } \end{aligned}$	ВнเН	．	1	${ }_{6}^{\text {catt }}$	AT5608130，AT362674
8	$\begin{aligned} & \text { Tf_m } \\ & \text { otifs } \\ & \text { eq-5 } \\ & 257 \end{aligned}$	NF－ YB；NF－ YA；NF－YC		0.8	ATTG	AT1G09030；AT1617590；AT1G21970；AT1G30500；AT1G54160；AT1G54830；AT1G56170；AT1G72830；AT2G38880；AT2G47810；AT3G05690；AT3G14020；AT3G20910；AT3G53340；AT4G14540；AT5G06510；AT5G12840；AT5G2 7910；AT5G38140；AT5G47640；AT5G47670；AT5G50470；AT5G50480
退	$\begin{aligned} & \begin{array}{l} \text { FF_m } \\ \text { otif_s } \\ \text { ete- } \\ 275 \end{array} \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	＋	0.8	тосс	wboxatinpr1
8	$\begin{aligned} & \hline \text { TF-m } \\ & \text { otif } \\ & \text { ete-s } \\ & 263 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	＋	0.8	Gccaa	Sorlipiat
8	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_o } \\ & 275 \end{aligned}$	（Motif sequence only）	－	0.8	occaa	wboxatinpr1
P	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otifs } \\ & \text { ete-s } \\ & 257 \end{aligned}$	NF－ YB；NF－ YA； NF －YC	＋	0.8	ccaag	AT1609030；AT1G17590；AT1G21970；AT1G30500；AT1G54160；AT1G54830；AT1G56170；AT1G72830；ATZG38880；AT2G47810；AT3G05690；AT3G14020；AT3G20910；AT3G53340；AT4G14540；AT5G06510；ATSG12840；AT5G2 7910；AT5G38140；AT5G47640；AT5G47670；AT5G50470；AT5G50480
\％ $\begin{aligned} & 8 \\ & 2 \\ & 6\end{aligned}$	$\begin{aligned} & \hline \text { TF_m } \\ & \text { otif_s } \\ & \text { eta_-0 } \\ & 239 \end{aligned}$	Dof	＋	1	AAG6A	AT1G29160；AT1G64620；AT2G37590；AT3G21270；AT3G45610；AT3G47500；AT4G38000；AT5G39660；AT5G60200；AT5G60850；ATSG62940；AT2G46590；AT1G07640；AT1G21340；AT1G26790；AT1G47655；AT1G51700；AT1G6 9570；AT2G28510；AT2G28810；AT2G34140；AT3G50410；AT3G55370；AT3G61850；AT4G00940；AT4G21050；AT4G21080；AT4G24060；AT5G02460；AT5G62430；AT5G65590；AT5G66940
8 8 8	$\begin{aligned} & \text { TF_m } \\ & \text { otif-s } \\ & \text { ete-0 } \\ & 321 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	＋	1	${ }_{\square}^{\text {GGAAA }}$	gTiconsensus
处	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otif } \\ & \text { eta- } \\ & 321 \\ & 321 \end{aligned}$	（Motif sequence only）	＋	1	${ }_{a}^{\text {GAAAA }}$	gticonsensus
8 3 2	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otifs } \\ & \text { eq-o } \\ & 341 \end{aligned}$	（Motif sequence only）	＋	1	$\begin{aligned} & \text { a } A A C C \\ & A \end{aligned}$	Myв1at
8 3 3 3		（Motif sequence only）		0.8	$\underset{\substack{\text { a accat } \\ \text { GCAA }}}{ }$	sorkrepsat
1 3 4		вз	＋	1	${ }_{\text {achat }}^{\text {accast }}$ GCaat	AT1628300
退		Nf－ YB；NE－ YA； NF －YC	＋	0.8	CaAat	AT1609030；AT1617590；AT1G21970；AT1G30500；AT1G54160；AT1G54830；AT1G56170；AT1672830；AT2G38880；AT2G47810；AT3G05690；AT3G14020；AT3G20910；AT3G53340；AT4G14540；AT5606510；AT5G12840；AT5G2 7910；AT5G38140；AT5G47640；ATG647670；AT5G50470；AT5G50480
8 4 1		（Motif sequence only）	－	0.7	${ }_{\substack{\text { aaatat } \\ \text { GCAA }}}$	sorkrepsat
8 4 4 1	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otifos } \\ & \text { eq_-0 } \\ & 434 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	．	${ }_{3}^{0.8}$	$\begin{aligned} & \text { ааатАт } \\ & \text { GC } \end{aligned}$	P1BS
1 4 3		$\underset{\substack{\text { Mads } \\ \text { boxikc }}}{ }$	＋	${ }_{6}^{0.8}$	$\begin{aligned} & \text { atatgca } \\ & \text { atagagt } \\ & \text { AGGAAA } \\ & \text { ta } \end{aligned}$	
8 8 5	TF＿m otif＿s eq＿0 eq＿0 169	（Others）	．	${ }_{3}^{0.8}$	$\begin{array}{\|l\|l} \hline \text { atgcaat } \\ \text { agataG } \\ \text { AAA } \end{array}$	U81388， 41369,481370
8 4 7 7	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq-s } \\ & 257 \\ & 257 \end{aligned}$	NF－ YB；NF－ YA； NF － YC	＋	0.8	GCaAt	AT1G09030；AT1G17590；AT1G21970；AT1G30500；AT1G54160；AT1G54830；AT1G56170；AT1G72830；AT2G38880；AT2G47810；AT3G05690；AT3G14020；AT3G20910；AT3G53340；AT4G14540；AT5606510；ATSG12840；AT5G2 7910；AT5G38140；AT5G47640；AT5G47670；AT5G50470；AT5G50480
8 5 5 5	TF＿m eq＿0 254	AP2； EFF	－	0.8	tagas	AT361230
［ $\begin{aligned} & 8 \\ & 5 \\ & 6\end{aligned}$	$\begin{aligned} & \text { TFma } \\ & \text { trixid } \\ & { }^{2014} \\ & \hline 6 \end{aligned}$	AT－Hook	＋	1	${ }_{\text {agaaat }}^{\text {at }}$	AT4621895；AT5662260
8 8 0 0	TF＿m otif s． eq＿0 241	2F－HD	－	1	atait	AT1675240
8 8 5 5		Trinelix	＋	0.8	GTAA	AT5601380

	${ }_{267}^{\text {eq. }}$					
8 5 5	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { TF-m } \\ \text { otifos } \\ \text { eq-0 } \\ 275 \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { (Motif } \\ & \text { senuence } \\ & \text { only) } \end{aligned}$		0.8	GTTA	wBoxativpr
\% 8	$\begin{array}{\|l\|l\|} \hline \text { TF-m } \\ \text { otif } \\ \text { eti-s } \\ 241 \end{array}$	2F-HD		1	tаat	AT1675240
8 7 1	$\begin{array}{\|l\|l\|} \hline \text { TF-m } \\ \text { otifos } \\ \text { equ-0 } \\ 261 \end{array}$	(Motif sequence only)	+	0.8	Gagag	surecoreatsultrı1
1 7 7	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otif } \\ \text { eti-s } \\ 267 \\ \hline \text { en } \end{array}$	Trinelix	-	0.8	gtaag	ATS601380
8	TFma trixid $\overline{1}_{1}^{046}$ 1	wRKY		${ }_{8}^{0.9}$	${ }_{\text {aggr }}^{\text {ata }}$	AT1G18860;AT1G29280;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G80590;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT3G6 2340;AT4G04450;AT4G11070;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;ATGG22570;AT5G24110;AT5G2617;;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
8	$\begin{array}{\|l\|} \hline \text { Trma } \\ \text { trixid } \\ { }_{2}^{0044} \\ \hline \end{array}$	WRKY		${ }_{8}^{0.9}$	$\begin{aligned} & \mathrm{gcgTGG} \\ & \text { ACat } \end{aligned}$	AT1G18860;AT1629280;AT1G29860;AT1G30650;AT1G55600;AT1662300;AT1G64000;AT1666550;AT1G66560;AT1968150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;ATG46400;AT360 1970;AT3G04670;AT3656400;AT3G58710;AT3662340;AT4G04450;AT4611070;AT4618170;AT4G22070;AT4G23810;AT4G24240;AT4639410;AT5615130;AT5G22570;AT5626170;AT5628650;AT5641570;AT5G43290;A T5G45005;AT5G45260
8 7 9	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Trma } \\ \text { trixiD } \\ \hline 045 \\ \hline \\ \hline \end{array} \\ \hline \end{array}$	wRKY		${ }_{7}^{0.9}$	$\begin{aligned} & \mathrm{g} \mathrm{~g} \text { ACTTG } \\ & \text { ACata } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G5 8710;AT3G62340;AT4G01720;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
8	TFma trixid $\overline{7}_{7}^{045}$	wRkr		${ }_{9}^{0.9}$	$\underset{\text { ACat }}{\substack{\text { cgTtG }}}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G56400;AT3G5 8710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G31550;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;ATGG43290;AT5G45050;AT5G45260
8 7	$\begin{aligned} & \hline \text { TFma } \\ & \text { trix1D } \\ & \mathbf{K}_{0} \end{aligned}$	wRKY	+	${ }_{4}^{0.9}$	$\underset{\text { Acat }}{\substack{\mathrm{gcgTG}}}$	AT264774
8	$\begin{array}{\|l\|l\|} \hline \text { Trma } \\ \text { trixi0 } \\ \hline 063 \\ \hline 1 \\ \hline \end{array}$	wRKY	+	${ }_{3}^{0.9}$	$\begin{aligned} & \mathrm{gcgTtG} \\ & \mathrm{ACat} \end{aligned}$	ATS622570
$\stackrel{8}{7}$	$\begin{aligned} & \text { TFma } \\ & \text { TrixiD } \\ & \overline{1}_{2}^{063} \end{aligned}$	wrkr	+	${ }_{4}^{0.9}$	$\begin{aligned} & \mathrm{gcgTtG} \\ & \text { ACat } \end{aligned}$	AT301970
${ }_{7}^{8}$	$\begin{array}{\|l\|} \hline \text { TF_-m } \\ \text { otifos } \\ \text { equ-0 } \\ 248 \\ \hline \end{array}$	(Motif sequence only)		0.8	6cgr	MYвCOREATCYCB1
¢	$\begin{array}{\|l\|l\|} \hline \text { TFma } \\ \text { trixid } \\ - & \\ \hline \end{array}$	wrkr		${ }_{9}^{0.9}$	$\begin{aligned} & \text { CgTTG } \\ & \text { ACatat } \end{aligned}$	AT1618860;AT1G29280;AT1629860;AT1G55600;AT1662300;AT1G64000;AT16681150;AT1G69810;AT2G21900;AT2G24570;AT2G38830;AT2G40740;AT2644745;AT3601970;AT3G04670;AT3G58710;AT3662340;AT460 4450;AT4611070;AT4618170;AT4622070;AT4623810;AT4624240;AT4G39410;AT5G15130;AT5622570;AT5G26170;AT5628650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
退		WRKY		${ }_{9}^{0.9}$	${ }_{\text {cterc }}^{\text {chata }}$	AT1618860;AT1629280;AT1629860;AT1655600;AT1662300;AT1664000;AT1668150;AT1669810;AT2G21900;AT2G30590;AT2G34830;AT2G40740;AT2644745;AT3601970;AT3604670;AT3658710;AT3662340;AT460 4450;AT4G11070;AT4618170;AT4622070;AT4624240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5643290;AT5G45050;AT5G45260
8	$\begin{aligned} & \begin{array}{l} \text { TFma } \\ \text { trixID } \\ \bar{S}^{045} \\ \hline \end{array}{ }^{2} \end{aligned}$	wRkY		${ }_{4}^{0.9}$	$\begin{aligned} & \text { cgTG } \\ & \text { ACa } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1669810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT2G4 7260;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;ATSG26170;AT5G28650;ATSG41570;A T5G43290;AT5G45050
	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { TFma } \\ \text { trixiD } \\ \hline \end{array} \\ \hline 645 \\ \hline \end{array}$	WRKY		1	${ }_{\text {ctatc }}^{\text {çata }}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G01970;AT3G0 4670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23550;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260
	$\begin{array}{\|l\|l} \hline \text { TF_m } \\ \text { otif_s } \\ \text { eq_o } \\ \text { of } \\ \hline \end{array}$	wrkr	+	${ }_{3}^{0.7}$	cgme acatat	AT2604880
8 8 8 2	TFtif-m otif eq-s en 339	wrkr	+	${ }_{5}^{0.9}$	TGGAC	AT1G13960;AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1G69810;AT1G80590;AT1680840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2GG0750;AT2G44745;AT2G46130;AT2GG44400;AT2G47260;AT3G01080;AT3G01970;AT3GG4670;AT3G56400;AT3G58710;AT4G001250;A T4G01720;AT4GO4450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;ATSG28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
	$\begin{array}{\|l\|l\|} \hline \text { TF_m } \\ \text { otif_s } \\ \text { eti_0 } \\ 275 \end{array}$	(Motif sequence only)	+	1	твас	weoxativer 1
8 8 8	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otifs } \\ \text { equ_- } \\ 246 \\ \hline \end{array}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;TA } \\ & \text { LE } \end{aligned}$	+	1	taaca	AT1123380:A71662360:A11670510;AT4608150
		bzlp	+	0.8	ttaca	AT1677920;AT3612250:AT5606950:ATG06960;ATSG10030;AT5665210:AT1622070
8 8 7 7	TFma trixiD $\overline{9}^{041}$	твP		1	${ }_{t}^{\text {ATATAT }}$	AT1655520:A7613345
8 8 8 7	$\begin{array}{\|l\|l\|} \hline \text { TF-m-m } \\ \text { otif_s } \\ \text { eq-0 } \\ 254 \\ \hline \end{array}$	AP2; FFF	+	0.8	atata	AT361230
	$\begin{array}{\|l\|} \hline \text { T54-m } \\ \hline \text { otifos } \\ \text { eqq-0 } \\ \hline 254 \\ \hline \end{array}$	AP2; FFF		0.8	tatat	AT361230
旡 8		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	-	0.8	$\begin{aligned} & \text { tatatiA } \\ & \text { CGT } \end{aligned}$	L57atpr1
$\stackrel{8}{9}$	$\substack{\text { Tfma } \\ \text { trixid } \\ \overline{2}^{001}}$ 2^{00}	$\begin{aligned} & \mathrm{NaC;} \mathrm{NA} \\ & \mathrm{M} \end{aligned}$	+	0.8 6	$\begin{aligned} & \text { attaCG } \\ & \text { Tctct } \end{aligned}$	AT3615500
1 8 9 1	TF_m otif_s eq-0 241	2F-HD	+	1	attac	AT1675240
$\stackrel{8}{9}$	TF_m-m otif_s equ-0 267	Trinelix	+	0.8	attac	AT5601380
\% $\begin{aligned} & 1 \\ & 9 \\ & 2\end{aligned}$		bzlp	+	0.8	тася	AT1677920;AT3612250:AT5606950:ATG06960;AT5G10030;ATG665210:AT1622070
	$\begin{array}{\|l\|l} \hline \text { TF-m } \\ \text { otif_s } \\ \text { eteop } \\ 450 \\ \hline \end{array}$	(Motif sequence only)	+	${ }_{5}^{0.7}$	$\begin{aligned} & \text { חTACGt } \\ & \text { cc } \end{aligned}$	Palinoromiccioxam
¢ $\begin{aligned} & 8 \\ & 9 \\ & 2\end{aligned}$	$\begin{array}{\|l\|} \hline \text { TE-m } \\ \text { otifs } \\ \text { eta_- } \\ 450 \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} \text { Motif } \\ \text { sequence } \\ \text { only) } \end{array} \end{aligned}$		${ }_{5}^{0.7}$	ttacGT cc	Palinoromiccioxam
3		bzlp		1	tacgi	AT3654620:AT4022640
8	TF_-m otif_s eq-0 249	$\begin{aligned} & \begin{array}{l} \text { (Motif } \\ \text { sequence } \\ \text { only) } \end{array} \\ & \hline \end{aligned}$		0.8	tacgt	abreatrod
${ }_{9}^{8}$	$\begin{gathered} \text { Trtif_m } \\ \text { otit } \end{gathered}$	bzlp	+	1	AcGt	AT3654620:AT4002640

	${ }_{\text {equ }}^{\text {eq }}$ 20					
8 9 4	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { eq- } \\ & \text { oq-0 } \end{aligned}$	(Motif sequence only)	+	0.7	ACGTC ctggt	Ls7atpr1
8 9 4	TF_m eq_0 249	(Motif sequence only)	+	0.8	AcGic	Abreateroi
8 9 5	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otifs } \\ & \text { eq- } \\ & \text { 271 } \end{aligned}$	bzip	-	0.8	cGtc	
9	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { equ-0 } \\ & \text { eq } \\ & \hline \end{aligned}$	sbp	-	${ }_{0}^{0.7} \begin{gathered}\text { a }\end{gathered}$	$\begin{aligned} & \text { tgGTCC } \\ & \text { Gaa } \end{aligned}$	
9 0 1	$\begin{aligned} & \text { Tatif } \\ & \text { otifs } \\ & \text { eq_o } \\ & 265 \\ & \hline \end{aligned}$	(Motif sequence only)	+	0.8	GGTCC	sorlprat
1 0 1	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otifis } \\ & \text { eq-0 } \\ & 265 \end{aligned}$	(Motif sequence only)		0.8	GGTcc	Sorlprat
1 0 2 2	$\begin{aligned} & \text { TF-m } \mathrm{m} \\ & \text { otifs } \\ & \text { eq- } 0 \\ & 258 \end{aligned}$	Dehydrin	-	0.8	GTccG	U0137
9 0 3	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { eq_-0 } \\ & 508 \end{aligned}$	sbp	+	${ }_{5}^{0.7}$	${ }_{\substack{\text { tcCGA } \\ \text { Acat }}}$	
9 0 4	$\begin{aligned} & \text { TF_m } \\ & \text { otif } \\ & \text { et_-s } \\ & 258 \\ & \hline 258 \end{aligned}$	Dehydrin	+	0.8	ccgas	U0137
9		HSF		${ }_{8}^{0.8}$	${ }_{\text {ctar }}^{\text {craca }}$	AT3G24520;AT1G32330;AT1646264;AT1G67970;AT2G26150;AT2G41690;AT3G02990;AT3G22830;AT3G51910;AT3G63350;AT4611660;AT4613980;AT4617750;AT4618880;AT5603720;AT5G11820;AT5G43840;ATG64 5710;AT5G54070;AT5662020
1 0	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { equ_0 } \\ & 281 \end{aligned}$	bzip	-	1	атст	AT1668640
1 1 2	$\begin{aligned} & \hline \text { Tfma } \\ & \text { trixiD } \\ & \overline{8}_{8} \mathbf{0 2 3} \\ & \hline \end{aligned}$	Dof	+	1	${ }_{\text {tetaA }}^{\text {tat }}$	AT4638000
1 6		Dof	+	1	AaAGt	AT1G29160;AT1964620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;ATSG60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1647655;AT1G51700;AT166 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3655370;AT3661850;AT4600940;AT4621050;AT4621080;AT4G24060;AT5602460;AT5G62430;AT5G65590;AT5666940
${ }_{7}^{1}$	$\begin{aligned} & \text { TFma } \\ & \text { trixiD } \\ & \hline 039 \\ & \hline 4 \end{aligned}$	$\begin{aligned} & \mathrm{NaC} ; \mathrm{NA} \end{aligned}$	+	${ }_{4}^{0.9}$	$\underbrace{\substack{\text { abas } \\ \text { CGtaa }}}_{\text {apgTt }}$	AT1676420;AT2224430:AT3604060;ATB615170;AT3G18400;ATG62003;AT5618270;AT5653950
1 1 1 8	$\begin{aligned} & \hline \text { Tfma } \\ & \text { trixid } \\ & \overline{7}^{038} \end{aligned}$	$\begin{aligned} & \mathrm{NAC} ; \mathrm{NA} \\ & \mathrm{M} \end{aligned}$	+	1	$\begin{aligned} & \text { agTG } \\ & \text { CGtaa } \end{aligned}$	AT2633880:AT561380
1 9 9	$\begin{aligned} & \begin{array}{l} \text { TFma } \\ \text { trixiD } \end{array} \\ & \hline-001 \\ & \hline 3 \end{aligned}$	${ }_{\text {M }}^{\text {NaC,NA }}$		${ }_{3}^{0.9}$		AT3618400
9 9 9		${ }_{\text {mac, }}^{\substack{\text { na }}}$	+	${ }_{8}^{0.9}$	${ }_{\text {grectac }}^{\substack{\text { gitac } \\ \text { GTac }}}$	AT1676420;AT2224430:AT3604060;ATG615170;AT3618400;ATG29093;AT5618270;ATG653950
1 9 9	$\begin{array}{\|l\|} \hline \text { TFma } \\ \text { trixid } \\ { }_{7}{ }^{309} \end{array}$	${ }_{\text {M }}^{\text {NaC,NA }}$	+	${ }_{9}^{0.9}$	${ }_{\text {greac }}^{\text {grtacc }}$	
9 9 9	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { ete- } \\ & 267 \\ & \hline \end{aligned}$	Trinelix	+	0.8	өттс	AT5601380
1 9 9	$\begin{aligned} & \text { TF }-\mathrm{m} \\ & \text { otif } \\ & \text { eq- } \\ & 263 \\ & 263 \end{aligned}$	(Motif sequence only)		0.8	өттс	Sorlpiat
2	$\begin{aligned} & \text { TFma } \\ & \hline \text { trixid } \\ & \bar{L}^{-039} \end{aligned}$		+	1	$\begin{aligned} & \text { tTGCG } \\ & \text { Taaca } \end{aligned}$	
, 2	$\begin{aligned} & \text { TF-m } \\ & \text { otifos } \\ & \text { oqu- } \\ & \text { eq- } \\ & 508 \\ & \hline \end{aligned}$	SBP	+	${ }_{5}^{0.7}$	$\begin{aligned} & \text { tgccta } \\ & \text { Aca } \end{aligned}$	
1 2 2 3	$\begin{aligned} & \text { TF_-m } \\ & \text { otif_s } \\ & \text { equ_0 } \\ & 271 \end{aligned}$	bzlp	-	0.8	cGtas	
2 2 4	$\begin{aligned} & \begin{array}{l} \mathrm{T} \text { Tma } \\ \text { trixid } \\ \hline 063 \\ 7 \end{array}{ }^{063} \end{aligned}$	${ }^{\text {c2 }}$ 2	+	1	${ }_{\text {gra }}^{\text {graca }}$	AT560430
2 2 4 4		Trinelix	+	0.8	gtac	AT5601380
${ }_{4}^{2}$	$\begin{aligned} & \text { TF-m } \\ & \text { Totifs } \\ & \text { ot- } \\ & 267 \\ & \hline \end{aligned}$	Trinelix		1	gtac	AT5601380
2 2 6	$\begin{aligned} & \hline \text { TFma } \\ & \hline \text { trixid } \\ & -211 \\ & \hline 1 \end{aligned}$	C2H2	+	1	$\underset{\text { a }}{\text { a }}$	AT1627733;AT3699930;AT3660580;AT5604340;AT643170
9 2 6	TFma trixid \bar{S}_{3}^{2121}	С2 H^{2}	+	1	${ }_{\text {a }}^{\text {a }}$ acac	AT1602030:AT2645120:AT3G19580:ATG699930:AT3660580;AT5604300;AT5643170
9 3 0	$\begin{aligned} & \text { TF }-\mathrm{m} \\ & \text { otif } \\ & \text { eta- } \\ & \text { eq- } \\ & \hline 411 \\ & \hline \end{aligned}$	2F-HD	-	1	ctaat	AT1675240
9 3 0	$\begin{aligned} & \text { 241 } \\ & \hline \text { TFtif } \\ & \text { otif_s } \\ & \text { eq- } \\ & 257 \end{aligned}$	NF- YB;NF- YA;NF-YC	+	0.8	стаat	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
9 3 3		Trinelix	-	0.8	atac	AT5601380
3 3 4 4	$\begin{aligned} & \hline \text { TFma } \\ & \text { trixiD } \\ & -062 \\ & \hline \mathbf{3} \\ & \hline \end{aligned}$	AP2	+	${ }_{1}^{0.9}$	$\begin{aligned} & \text { taacct } \\ & \text { TAga } \end{aligned}$	AT268550
4 3 4 4	$\begin{aligned} & \begin{array}{l} \text { TFma } \\ \text { trix1D } \end{array} \\ & \hline \mathbf{- 0 6 2} \end{aligned}$	AP2	+	${ }_{1}^{0.9}$	$\begin{aligned} & \text { taaCCT } \\ & \text { TAga } \end{aligned}$	AT5660120
4 9 3 6		Dof		1	ACCT	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;ATSG60200;ATSG60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940

	${ }_{239}^{\text {eq. }}$					
${ }_{4}^{9}$		AP2; ERF		0.8	taga	AT3612330
9	$\begin{aligned} & \text { Titify } \\ & \text { otif-s } \\ & 254 \end{aligned}$	AP2; ERF		0.8	Aagat	AT361430
9 4 4	$\begin{array}{\|l\|l\|} \hline \text { Tfma } \\ \text { trixid } \\ \hline 058 \\ \hline 9 \\ \hline \end{array}$	мソв		${ }_{4}^{0.9}$	$\underbrace{\text { GTg }}_{\text {agatg }}$	AT5612870
4 4 4	TF-m otif_s ete- 237	GATA,	+	1	agatg	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
4	$\begin{array}{\|l\|} \hline \text { Tf_m } \\ \text { otifos } \\ \text { eta-0 } \\ 341 \end{array}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		${ }_{5}^{0.9}$	$\begin{aligned} & \text { TGGTT } \\ & \mathrm{g} \end{aligned}$	mybiat
9 4 8		мүв		${ }_{6}^{0.9}$	$\begin{aligned} & \text { ggtTGG } \\ & \pi \mathrm{ga} \end{aligned}$	AT5612870
9 4 8 8	$\begin{array}{\|l\|l\|} \hline \text { Trma } \\ \text { trixid } \\ \hline 059 \\ \hline \end{array}$	мソв	+	${ }_{2}^{0.9}$	$\begin{aligned} & \text { ggtTGG } \\ & \text { TTga } \end{aligned}$	AT4601680
9 4 8 8	TF_m otif_s eti_0 440	(Motif sequence only)		1	$\underbrace{\substack{\text { gTt }}}_{\text {git }}$	Mreplant
4	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_0 } \\ & 257 \\ & \hline \end{aligned}$	NF- Yb;NF- YA;NF-YC		0.8	өт66	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;ATSG47670;AT5G50470;ATSG50480
${ }_{9}^{9}$	TFI-m otif_s eq_- 258	Dehydrin	-	0.8	¢T66	บ0137
9 5 0	(tema	wRKY		${ }_{9}^{0.9}$	$\begin{aligned} & \mathrm{ttgg} \pi \\ & \text { GACt } \end{aligned}$	AT1618860;AT1629280;AT1662300;AT1664000;AT1666550;AT1666560;AT1668150;AT1680590;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3601970;AT3G04670;AT3656400;ATG58710;AT366 2340;AT4G04450;AT4G11070;AT4G22070;AT4623810;AT4G24240;AT4G39410;AT5G15130;AT5622570;AT5G24110;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
9 5 1	TFma \bar{L}_{2} \bar{L}^{0044}	wRKY		${ }_{9}^{0.9}$	$\underbrace{\substack{\text { teta }}}_{\text {tegra }}$	AT1G18860;AT1G29280;AT1G29860;AT1G30650;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1668150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT3G5640;;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;ATSG43290;A T5G45050;AT5G45260
1 9 5 1	TFma trixiD ${ }_{6} \mathbf{0} 44$	wRKY		${ }_{9}^{0.9}$	tggTTG ACta	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT2G21900;AT2G23320;AT2G34830;AT2G40740;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT460 4450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
1 9 5 1	(tema	wRKY		${ }_{3}^{0.9}$	tggTtG ACtat	AT1618860;AT1G29280;AT1G29860;AT1655600;AT1662300;AT1G64000;AT1668150;AT1669810;AT2621900;AT2G25000;AT2G34830;AT2G44745;AT2G46400;AT3601970;AT3G04670;AT3G58710;AT3662340;AT460 4450;AT4G11070;AT4G18170;AT4G22070;AT4G24240;AT4G39410;ATSG15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050
1 9 1 1		wRKY		1	$\begin{aligned} & \text { tggTG } \\ & \text { ACta } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT3G0 1970;AT3G04670;AT3G5640;;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260
1 5 1	TFma trixid 045	wRKY		${ }_{8}^{0.9}$	${ }_{\substack{\text { tegTrat } \\ \text { ACtat }}}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G5 8710;AT3G62340;AT4G01720;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
1 9 5 1	$\left.\begin{array}{l}\text { Tfma } \\ \text { trixid } \\ \overline{7}^{045} \\ \hline\end{array}\right]$	wRKY		${ }_{9}^{0.9}$	$\underset{\text { ACta }}{\mathrm{tgg} \Pi \mathrm{G}}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66560;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G56400;AT3G5 8710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G31550;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
		WRKY	+	0.9	$\underbrace{\substack{\text { teta } \\ \text { Act }}}_{\text {tegra }}$	A2644745
1 9 5 1	${ }_{\substack { \text { Tfma } \\ \text { trix) } \\ \begin{subarray}{c}{063{ \text { Tfma } \\ \text { trix) } \\ \begin{subarray} { c } { 0 6 3 } } \\{1}\end{subarray}}$	wRKY	+	${ }_{2}^{0.9}$	$\begin{aligned} & \text { tggTG } \\ & \text { ACta } \end{aligned}$	AT562570
1 9 5 1	(tema	wRKY	+	${ }_{1}^{0.9}$	${ }_{\text {Aga }}^{\text {tegTc }}$	AT3601970
1 5 1	$\begin{array}{\|l\|l\|} \hline \text { TF_m-m } \\ \text { otif_s } \\ \text { ete-0 } \\ 341 \end{array}$	(Motif sequence only)	.	${ }_{5}^{0.9}$	$\begin{aligned} & \text { TGGTT } \\ & \mathrm{g} \end{aligned}$	мув1at
$\begin{aligned} & 1 \\ & 5 \\ & 5 \\ & 2\end{aligned}$		$\underset{M}{\text { NaC,NA }}$		1		
		wRKY		1	$\underbrace{\substack{\text { getat }}}_{\text {getrat }}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69310;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050
$\begin{aligned} & 9 \\ & 5 \\ & 2\end{aligned}$		wRKY		${ }_{9}^{0.9}$	$\begin{aligned} & \text { ggTct } \\ & \text { ACtat } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1664000;AT1G68150;AT1G69810;AT2G21900;AT2G24570;AT2G34830;AT2G40740;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G0 4450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
$\begin{aligned} & 2 \\ & 5 \\ & 2\end{aligned}$	(tema	wRKY		1	$\begin{aligned} & \text { ggTct } \\ & \text { Actat } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT2G21900;AT2G30590;AT2G34830;AT2G40740;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G0 4450;AT4G11070;AT4G18170;AT4G22070;AT4G24240;AT4G39410;AT5G15130;ATGG22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
$\begin{aligned} & 2 \\ & 5 \\ & 2 \\ & 2\end{aligned}$		wRKY		1	$\underbrace{\substack{\text { getat }}}_{\text {grma }}$	
$\begin{aligned} & 2 \\ & 5 \\ & 2\end{aligned}$	(tema	wrkr	-	${ }_{6}^{0.9}$	$\underbrace{\text { gbTG }}_{\text {gct }}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT2G4 7260;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;ATSG41570;A T5G43290;AT5G45050
9	(tema	wRKY		1	$\underbrace{\substack{\text { Actat }}}_{\text {g8T6 }}$	AT1618860;AT1629280;AT1629860;AT1G55600;AT1662300;AT1G64000;AT1666550;AT1666560;AT1668150;AT1G69810;AT1680590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2646400;AT360 1970;AT3G04670;AT3656400;AT3G58710;AT3G62340;AT4G01250;AT4604450;AT4611070;AT4618170;AT4G22000;AT4623810;AT4624240;AT4G39410;AT5G15130;AT5622570;AT5626170;AT5G28650;ATG641570;A T5G43290;AT5G45000;ATGG45260
2 5 2 2	(tema	wRKY	-	1	$\underbrace{\substack{\text { grle }}}_{\text {AgTrat }}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G01970;AT3G0 4670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23550;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;ATGG43290;A T5G45050;AT5G45260
$\begin{aligned} & 2 \\ & 5 \\ & 2\end{aligned}$	(emma	wRKY		1	$\begin{aligned} & \text { ggTGG } \\ & \text { Acta } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1669810;AT1G80590;AT2G21900;AT2G34830;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G6 2340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260;AT5G46350
9 5 2	(tema	wrkr		1	$\underbrace{\text { getc }}_{\text {Actat }}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260;AT5G49520
2	(tema	wRKY		1	$\underbrace{\text { gemb }}_{\text {Acta }}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT3G5640;;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260;ATJG52830
2 5 2 2	(tema	wRKY		1	$\begin{aligned} & \text { ggTG } \\ & \text { ACtat } \end{aligned}$	AT1618860;AT1629280;AT1629860;AT1G55600;AT166230;;AT1G64000;AT1668150;AT1669810;AT2G21900;AT2G34830;AT2G44745;AT3G01970;AT3604670;AT3G58710;AT3G62340;AT4604450;AT4G18170;AT462 2070;AT4G24240;AT4G39410;AT5G15130;AT5G26170;ATGG2865;:AT5641570;AT5G43290;AT5G45050;AT5G64810
[${ }_{\substack{\text { Tfma } \\ \text { trixid }}}^{\text {a }}$	WRKY		1	${ }_{\substack{\text { cta } \\ \text { cta }}}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT1G80840;AT2G21900;AT2G34830;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G04450;AT4G1 8170;AT4G22070;AT4G24240;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260

	5_{5}^{044}					
9	(emma	wrkr		${ }_{7}^{0.9}$	$\begin{gathered} \mathrm{g} \operatorname{gTGA} \\ \mathrm{Cta} \end{gathered}$	AT1G29280;AT1629860;AT1664000;AT1G66550;AT1G66560;AT1669810;AT1G80590;AT2G40740;AT2G40750;AT2G47745;AT2G46400;AT3601970;AT3G56400;AT3G62340;AT4611070;AT4618170;AT4G23810;AT4G2 4240;AT5G01900;AT5G22570;ATGG26170;AT5G41570;AT5G43290;AT5G45050;AT5G45260
9	(emma	WRKY		1	$\begin{aligned} & \mathrm{g} \pi G \mathrm{GA} \\ & \mathrm{Cta} \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1669810;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT3G01970;AT3G04670;AT3G5 6400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G13080;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G4329;;AT5G45050;A T5G45260
9	$\begin{aligned} & \text { TF-m } \\ & \text { otif_s } \\ & \text { equ_0 } \\ & \text { equ } \\ & \hline \end{aligned}$	wrkr	+	1	тGact	AT1G13960;AT1618860;AT1G29280;AT1G29860;AT1G30650;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1G69810;AT1G80590;AT1G80840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
9	$\begin{aligned} & \text { TF-m } \\ & \text { otifs } \\ & \text { eq_- } \\ & 275 \end{aligned}$	(Motif sequence only)	+	1	төac	wвoxatinpr1
9 5 5	$\begin{aligned} & \text { TF-m } \\ & \text { otifos } \\ & \text { equ-0 } \\ & 246 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;TA } \\ & \text { LE } \end{aligned}$	+	1	tgact	AT1123380;AT1662360;A1670510;AT4608150
9	$\begin{aligned} & \text { 240-m } \\ & \text { TFtif_s } \\ & \text { otif_s } \\ & \text { eq- } \\ & 270 \end{aligned}$	WRKY	+	1	tGact	5000;AT2G30250;AT2G30590;ATG34830;AT2G37260;AT2G38470;AT2640740;AT2G40750;AT2644745;AT2G46130;AT244640;;AT2647260;AT3601080;AT3601970;AT3604670;AT3656400;AT3658710;AT4601250;A T4G01720;AT4604450;AT4612020;AT4618170;AT4G22070;AT4623810;AT4624240;AT4G26440;AT4G26640;AT4G30935;AT463155;;AT4G31800;AT4G39410;AT5G07100;AT5G13080;AT5G15130;AT5G22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5646350;AT5G49520;AT5652830;AT5656270
9	$\begin{aligned} & \text { LTO-m } \\ & \begin{array}{l} \text { Totif_s } \\ \text { oti_0 } \\ \text { 271 } \end{array} \end{aligned}$	bzip	+	0.8	taact	
¢	$\begin{aligned} & \text { TF-m } \\ & \text { Ttif } \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 243 \end{aligned}$	Gatatity		1	Ctatc	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
9	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { oti-s } \\ & \text { eq- } \\ & 237 \\ & \hline \end{aligned}$	GATAA, ity	-	1	tatca	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;ATG624050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
9	$\begin{aligned} & \text { TF-m_m } \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 254 \end{aligned}$	AP2; ERF	+	0.8	atcaa	AT3614230
9	$\begin{aligned} & \hline \text { TF_m } \mathrm{m} \\ & \text { otif_s } \\ & \text { eq__0 } \\ & 275 \end{aligned}$	(Motif sequence only)		0.8	atcaa	wBoxatipr ${ }^{\text {a }}$
9	$\begin{aligned} & \text { TF_-m } \\ & \text { Ttif_s } \\ & \text { equ-0 } \\ & 255 \end{aligned}$	$\begin{aligned} & \text { AP2;RAV; } \\ & \text { B3 } \end{aligned}$	+	1	caAca	AT1625560:A11913260
9	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { otifos } \\ & \text { eq- } \\ & 237 \\ & \hline \end{aligned}$	GATAA, ity	-	1	catct	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3660530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5625830;AT5G26930;AT5656860;AT5G66320;AT2G1 8380;ATG650870;AT4G36620
9	$\begin{aligned} & \text { TFtim } \\ & \text { otif } \\ & \text { oq- } \\ & \text { eq-0 } \\ & 254 \\ & \hline \end{aligned}$	AP2; ERF	+	0.8	Астт	AT3G14230
9	$\begin{aligned} & \text { TFma } \\ & \text { trixID } \\ & \overline{8}_{8}^{044} \end{aligned}$	wrkr		$\begin{aligned} & 0.9 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { tatte } \\ & \text { ACcaa } \end{aligned}$	AT1618860;AT1629280;AT1629860;AT1655600;AT1662300;AT1G64000;AT1668150;AT1669810;AT2621900;AT2G25000;AT2G38830;AT2G47745;AT2646400;AT3601970;AT3604670;AT3G58710;AT3662340;AT460 4450;AT4G11070;AT4618170;AT4G22070;AT4G24240;AT4G39410;AT5615130;AT5G26170;AT5G28650;AT5641570;AT5G43290;AT5G45050
? 7		${ }_{M}^{\mathrm{NaCa}} \mathrm{NA}$		1	$\begin{aligned} & \text { tatTGA } \\ & \text { Cca } \end{aligned}$	AT1601720:AT1658880:A1955889:AT1669490:AT3640970:ATG615500:A73615510:AT4627410
9	$\begin{aligned} & \text { TFma } \\ & \text { Trix1D } \\ & \hline 045 \\ & \hline 1 \end{aligned}$	wrkr		1	$\operatorname{ta} T G A$ Ccaa	AT1613960;AT2033440:AT2637260;ARC38470;AT3601080;AT4612020;AT4626440;AT4926640;AT4630935;AT607100
9		WRKY		1	$\begin{aligned} & \text { tatGGA } \\ & \text { Ccaa } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT2G21900;AT2G34830;AT2G40740;AT2G44745;AT2G46400;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G0 4450;AT4G11070;AT4G18170;AT4G22070;AT4G24240;AT4G31800;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050
9 7	(tema	wrkr		1	taTTGA Ccaa	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260;AT5G49520
9 7	(ex	WRKY		${ }_{9}^{0.9}$	$\begin{aligned} & \text { tatcoa } \\ & c_{\text {craa }} \end{aligned}$ Ccaa	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1964000;AT1668150;AT1669810;AT2621900;AT2G34830;AT2G44745;AT3601970;AT3604670;AT3G58710;AT3G62340;AT4G04450;AT4G18170;AT4G2 2070;AT4624240;AT4G39410;AT5G15130;AT5626170;ATG62865;AT5641570;AT5G43290;AT5G45050;ATG664810
9 7	(emma	wrkr		${ }_{9}^{0.9}$	$\underset{\substack{\text { ta } a t G A}}{ }$ Cca	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G66550;AT1G66560;AT1G68150;AT1G69810;AT1G80590;AT2G21900;AT2G34830;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G0 1970;AT3G04670;AT3G56400;AT3G58710;AT3G62340;AT4G04450;AT4G11070;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G39410;AT5G15130;AT5G22570;AT5G26170;AT5G28650;AT5G41570;AT5G43290;A T5G45050;AT5G45260
9 7	(eme	WRKY		${ }_{6}^{0.9}$	taTGA Ccaa	AT4631800
9 7 1	(eme	wrkr		${ }_{9}^{0.9}$	$\begin{aligned} & \text { aדtGA } \\ & \text { Cca } \end{aligned}$	AT1G29860;AT1G64000;AT1G66550;AT1G66560;AT1G66600;AT1G68150;AT1G69810;AT1G80590;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G01970;AT3G56400;AT3G62340;AT4G04450;AT4G11070;AT4G1 8170;AT4G23810;AT4G39410;AT5G22570;AT5G26170;AT5G41570;AT5G43290;AT5G45050;AT5G45260
1 7 1	(ex	WRKY		1	$\begin{aligned} & \text { attgA } \\ & \text { Cca } \end{aligned}$	AT1G18860;AT1G29280;AT1G29860;AT1G55600;AT1G62300;AT1G64000;AT1G68150;AT1G69810;AT1G80840;AT2G21900;AT2G34830;AT2G44745;AT3G01970;AT3G04670;AT3G58710;AT3G62340;AT4G04450;AT4G1 8170;AT4G22070;AT4G24240;AT4G39410;AT5G15130;AT5G26170;AT5G28650;AT5G41570;AT5G43290;AT5G45050;AT5G45260
1 7 1	(trma	WRKY		${ }_{7}^{0.9}$	$\begin{aligned} & \text { äTGA } \\ & \text { Cca } \end{aligned}$	
1 7 7 1	(emma	wRKY		${ }_{3}^{0.9}$	$\begin{aligned} & \text { a } \begin{array}{l} \text { CTGA } \end{array} \end{aligned}$	AT1G29280;AT1G29860;AT1G64000;AT1G66550;AT1G66560;AT1G69810;AT1G80590;AT2G40740;AT2G40750;AT2G44745;AT2G46400;AT3G01970;AT3G56400;AT3G62340;AT4G11070;AT4G18170;AT4G23810;AT4G2 4240;AT5G01900;AT5G22570;AT5G26170;AT5G41570;AT5G43290;AT5G45050;AT5G45260
1 7 1	(tema	WRKY	-	${ }_{8}^{0.9}$	$\begin{aligned} & \text { atדGA } \\ & \text { Cca } \end{aligned}$	AT1613960;AT2033440:AT2637260;AB601080;AT4612020:AT4626440;AT4626640;AT4630935;AT5607100;AT565670
1 7	$\begin{aligned} & \text { TF_m } \\ & \text { TFtif } \\ & \text { otif_s } \\ & \text { eq- } \\ & 257 \end{aligned}$	NF- YB;NF- YA; $\mathrm{NF}-\mathrm{YC}$		0.8	atta	AT1609030;AT1617590;AT1621970;AT1G30500;AT1G54160;AT1G54830;AT1656170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;ATG612840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
1 7 7 2	(tersa	wrkr		${ }_{9}^{0.8}$	TGGAC caaatg	
9 7	$\begin{aligned} & 4 \\ & \hline \text { TF-m } \\ & \text { otif_s } \\ & \text { equ-0 } \\ & 339 \end{aligned}$	wRKY	+	1	${ }_{c}^{\text {¢GGaC }}$	AT1G13960:AT1G18860-AT1G29280-AT1G29860/AT1G30650/AT1G55600:AT1G62300-AT1G64000;AT1G66550-AT1G68150-AT1G69310;AT1G69810;AT1G80590-AT1G80840-AT2G03340;AT2G23320;AT2G24570-AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G24240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;ATGG13080;AT5G15130;AT5G22570;AT5G24 110;ATSG28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
9 7 2	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eqi_0 } \\ & 275 \end{aligned}$	(Motif sequence only)	+	1	тGac	wboxatwpr1
7 7 7	$\begin{aligned} & \text { TF_-m } \\ & \text { otif_s } \\ & \text { eqion } \\ & 246 \end{aligned}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain;TA } \\ & \text { LE } \end{aligned}$	+	1	tgacc	AT1123380:AT1662360:AT1670510;AT4688150
9 7 3		wRkY	+	1	taacc	AT1G13960;AT1618860;AT1G29280;AT1G29860;AT1G30650;AT1G5560;AT1G62300;AT1G64000;AT1G66550;AT1G68150;AT1G69310;AT1G69810;AT1G80590;AT1G80840;AT2G03340;AT2G23320;AT2G24570;AT2G2 5000;AT2G30250;AT2G30590;AT2G34830;AT2G37260;AT2G38470;AT2G40740;AT2G40750;AT2G44745;AT2G46130;AT2G46400;AT2G47260;AT3G01080;AT3G01970;AT3G04670;AT3G56400;AT3G58710;AT4G01250;A T4G01720;AT4G04450;AT4G12020;AT4G18170;AT4G22070;AT4G23810;AT4G22240;AT4G26440;AT4G26640;AT4G30935;AT4G31550;AT4G31800;AT4G39410;AT5G07100;AT5G13080;ATSG15130;AT5G22570;AT5G24 110;AT5G28650;AT5G45050;AT5G45260;AT5G46350;AT5G49520;AT5G52830;AT5G56270
3 7 7	$\underset{\substack{\text { Ftifm } \\ \text { otits }}}{ }$	bzlp	+	0.8	tgacc	AT1177920;AT3612250:AT506959:ATG06960:AT5G10030;AT5665210:AT11222070

	${ }_{\text {eq }}^{\text {eq-0 }}$					
${ }_{7}^{9}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { TF_m-m } \\ \text { otifos } \\ \text { eq- } \\ 146 \end{array} \\ \hline \end{array}$	С2 ${ }^{2}$	+	${ }_{3}^{0.7}$	$\begin{aligned} & \text { CCAAA } \\ & \text { tgttutt } \\ & \text { tt } \end{aligned}$	AT1639970
7	$\begin{array}{\|l\|l} \hline \text { Tf }-\mathrm{m} \\ \text { otifis } \\ \text { eq- } \\ 257 \end{array}$	NF- YB;NF YA;NF-YC	+	0.8	cCaAA	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
7	$\begin{array}{\|l\|l\|} \hline \text { Tf_m-m } \\ \text { otifis } \\ \text { eqa-0 } \\ 257 \end{array}$	NF- YB;NF- YA;NF-YC	+	0.8	caat	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
7	TF-m otif_s eq_- 302	ьнн	+	1	${ }_{\text {g }}^{\text {caAat }}$	AT5608130;AT326774
7	$\begin{array}{\|l\|l\|} \hline \text { TF-m } \\ \text { otif-s } \\ \text { eq-s } \\ 302 \\ \hline 0 \end{array}$	Внн	-	1	${ }_{6}^{\text {caAt }}$	AT5608130;AT326774
¢ $\begin{aligned} & 8 \\ & 8 \\ & 2\end{aligned}$		AT-Hook		${ }_{4}^{0.9}$	$\begin{aligned} & \text { gTTTT } \\ & \text { ttttttt } \\ & \text { aa } \end{aligned}$	AT1648610
9 9 2		$\underset{y}{\text { Sox } \times \text { ABB }}$	+	1	${ }_{\text {tutat }}^{\text {HTAA }}$	AT1623420
9	TFma trixid ${ }_{8} \mathbf{0 6 2}$	Homeod omain;bz IP; HD- ZP; ZIP; WOX	+	${ }_{7}^{0.9}$	${ }_{\text {tratat }}^{\text {tata }}$	AT463550
9 9 3	TFma trixiD $\overline{-}_{8}^{062}$	$\begin{aligned} & \text { Homeod } \\ & \text { omain; } \\ & \text { IP;HD } \\ & \text { ZIP;WOX } \end{aligned}$	-	${ }_{7}^{0.9}$	${ }_{\text {traAt }}^{\text {That }}$	AT463550
9 9 4				1	${ }_{\text {trant }}^{\text {Ataa }}$	AT1623420
9 4 4	$\begin{array}{\|l\|l\|} \hline \text { Ff_m } \\ \text { otifs } \\ \text { eta-s } \\ 241 \end{array}$	2F-HD	-	1	taat	AT1675240
9	TFma trixiD 058 5	TBP	+	${ }_{5}^{0.9}$	${ }_{\text {atata }}^{\text {ataca }}$	AT1655520:AT3613445
9 7 7	$\begin{array}{\|l\|l\|} \hline \text { Tf_m-m } \\ \text { otif_s } \\ \text { eta- } \\ 241 \end{array}$	2F-HD	+	1	атtat	AT1675240
9	$\begin{array}{\|l\|l\|} \hline \text { Trma } \\ \text { trixid } \\ -056 \\ \hline \end{array}$	TBP	+	${ }_{7}^{0.9}$	$\begin{array}{\|l\|l\|} \hline \text { ttatAAA } \\ \text { Aacagt } \\ \text { tic } \end{array}$	AT1655520:AT361345
1 1 0 0 4 4	$\begin{array}{\|l\|l\|} \hline \text { TF_m } \\ \text { otif_s } \\ \text { eta- } \\ 248 \\ 248 \end{array}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	Aacag	MYвCOREATYCB1
1 0 0 0	$\substack{\text { TF-m } \\ \text { otif_s } \\ \text { eq_- } \\ 302}$ 30	ВНLН	+	1	${ }_{8}^{\text {cagti }}$	AT5608130:AT362674
1 1 0 0 0 6		ВНLН	-	1	${ }_{6}^{\text {cagt }}$	AT5608130:AT362674
1 1 0 0 6	TF_m otif_s eq_o 313	(0thers)	+	1	$\begin{aligned} & \text { CAGTT } \\ & \mathrm{g} \end{aligned}$	014712
1 0 0 0 0	$\begin{array}{\|l\|} \hline \text { Tf_m } \\ \text { otifos } \\ \text { eta- } \\ 248 \\ 248 \end{array}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$.	0.8	CAGt	MYвCOREATYC¢1
1 0 0 6	$\begin{array}{\|l\|} \hline \text { TF-m } \\ \text { otif-s } \\ \text { eqe-s } \\ \hline 442 \\ \hline \end{array}$	(Motif sequence only)		1	${ }_{\text {c }}^{\text {c }}$ cagt	myz2Consensusat
1 1 0 0 8 8		Trinelix	+	0.8	¢тGc	AT5601380
(1)	TF_m otif_s eq_o 263	(Motif sequence only)		0.8	ятвс	Sorlipiat
1 1 1 5	$\begin{array}{\|l\|l\|} \hline \text { TF-m } \\ \text { otif_s } \\ \text { eq- } \\ 257 \\ \hline \end{array}$	NF- Yb;NF- YA;NF-YC		0.8	attoc	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;ATSG47670;AT5G50470;AT5G50480
1 1 0 1 1 9	$\begin{array}{\|l\|l} \hline \text { TF-m } \\ \text { otifs } \\ \text { eq- } \\ \text { eq-0 } \\ 254 \end{array}$	AP2:ERF	+	0.8	сттА	AT311230
1 1 0 2 3 3		$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	-	0.8	Agcce	sorlprat
1 1 0 2 3	$\begin{array}{\|l\|l\|} \hline \text { TF_m } \\ \text { otif_s } \\ \text { eq_o } \\ \hline 334 \\ \hline \end{array}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$		1	${ }_{\text {a acccc }}$	stelatertc
1 1 0 2 9 9	$\begin{array}{\|l\|} \hline \text { Tf_m } \\ \text { otifs } \\ \text { eq- } \\ 261 \\ 261 \end{array}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	gagaa	surecoreatsultral
1 1 0 3 3 2	$\begin{array}{\|l\|l\|} \hline \text { TF-m } \\ \text { otif_s } \\ \text { ete-0 } \\ 239 \end{array}$	Dof	+	1	atagc	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
3 1 0 3 3 4	TFma trixid -002 1	C2H2	+	${ }_{1}^{0.9}$	${ }_{\text {agcag }}^{\text {agas }}$	AT4636610
1 1 0 0 3 4 4	TF-m otif_s eq-0 291	(Motif sequence only)	+	1	${ }_{c}^{\text {agcag }}$	ANAERO2CONSENSUS
1 1 0 3 9	TF_m otif_s eta-0 275 27	(Motif sequence only)	.	0.8	ctcas	wboxatinfi
1 0 4 4 0	TF_-m otif_s eta 257	NF- YB;NF- YA; $\mathrm{NF}-\mathrm{YC}$	+	0.8	tcaat	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;AT5G2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;AT5G50480
1 1 0 4 1 1		AT-Hook	+	${ }_{2}^{0.9}$	$\begin{aligned} & \text { caATTA } \\ & \text { Agta } \end{aligned}$	AT4614465
${ }_{0}^{1}$		2F-HD	+	1	Атta	AT1675240

4 3	${ }_{241}^{\text {eq_o }}$					
1 0 4 4 4	$\begin{aligned} & \hline \text { Trma } \\ & \text { trixid } \\ & \bar{L}^{038} \\ & \hline \end{aligned}$	NAC;NA M		0.9	${ }_{\text {AAa }}^{\text {traAG }}$	AT1G33060;AT3G49530;AT4G35580;AT5624590
1 0 4 4	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { eti-s } \\ & \text { eq-0 } \end{aligned}$	Trihelix		0.8	GTAAA	AT5601380
1 0 4 4 8	$\begin{aligned} & \hline \text { TF-m } \\ & \text { otifs } \\ & \text { otifos } \\ & \text { eq-5 } \\ & 275 \\ & \hline \end{aligned}$	(Motif sequence only)		0.8	GTAAA	WBOXATNPR1
1 0 4 4 9	TF_m otif ond otif_s ${ }_{254}^{\text {eq_o }}$	AP2; RRF		0.8	taAAT	AT3614230
1 0 0 5 1	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { etifos } \\ & 257 \end{aligned}$	NF- YB;NF- YA;NF-YC		0.8	AATGG	AT1G09030;AT1G17590;AT1G21970;AT1G30500;AT1G54160;AT1G54830;AT1G56170;AT1G72830;AT2G38880;AT2G47810;AT3G05690;AT3G14020;AT3G20910;AT3G53340;AT4G14540;AT5G06510;AT5G12840;ATGG2 7910;AT5G38140;AT5G47640;AT5G47670;AT5G50470;ATSG50480
1 1 0 5 1	TF-m otif_s ${ }_{248}^{\text {eq_0 }}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \\ & \text { only) } \end{aligned}$	+	0.8	AATGG	MYBCOREATCYCB1
1 0 0 5 2	$\begin{aligned} & \hline \text { TF-m } \\ & \text { otifs } \\ & \text { equ-s } \\ & 263 \\ & \hline 1 \end{aligned}$	(Motif sequence only)		0.8	ATGGC	SORLP1AT
1 0 0 5 3	TF_m otif_s ${ }^{\text {eq_0 }} 0$ 271	bzlp	+	0.8	TGGCG	AT1677920;AT3G12250;AT5606950;AT5G06960;ATSG10030;AT5665210;AT1622070
1 0 5 6	$\begin{aligned} & \text { TF-m } \\ & \text { Ttifs } \\ & \text { otifos } \\ & \text { eq- } \\ & 237 \end{aligned}$	GATAAtity	+	1	cgatg	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
1 0 0 6 0	$\begin{aligned} & \hline \text { TF-m } \\ & \text { otif } \\ & \text { eq-s } \\ & 267 \\ & 267 \end{aligned}$	Trihelix	+	0.8	GTTAA	ATS601380
1 0 0 0 0	$\begin{array}{\|l\|l\|} \hline \text { TF_m } \\ \text { otif_s } \\ \text { eq_o } \\ \hline 275 \\ \hline \end{array}$	(Motif sequence only)		0.8	GTTAA	wboxatnpr1
1 0 0 6 2	$\begin{aligned} & \hline \text { TF-m } \\ & \text { otif } \\ & \text { eti-s } \\ & 403 \\ & 403 \end{aligned}$	(Motif sequence only)	+	0.8 6	$\begin{aligned} & \text { taaAAT } \\ & c T \end{aligned}$	CCA1ATHCB1
1 0 6 5	TF_m otif_s ${ }^{\text {eq_ }} 0$ 237	GATA:tify		1	AATCT	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
5 1 0 6 5	TF-m otif_s ${ }_{252}{ }^{\text {eq_ }}$	Myb/SAN T;MYB;A RR-B		1	AATCT	AT2601760;AT3G16857;AT4616110;AT4618020;AT4G31920;AT5658080;AT1667710;AT1649190;AT2G25180;AT5G49240
1 0 0 6 5	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_o } \end{aligned}$ 268	(Motif sequence only)	-	1	AATCT	ARR1AT
1 1 0 6 6	$\begin{aligned} & \text { TF-m } \\ & \text { otif } \\ & \text { ete-s } \\ & 254 \end{aligned}$	AP2; RRF	+	0.8	ATCTC	AT3614230
1 0 0 6 6	$\begin{aligned} & \text { TF-m } \\ & \text { Ttif_s } \\ & \text { oti-s } \\ & 261 \\ & 261 \end{aligned}$	(Motif sequence only)	-	0.8	ATCTC	SURECOREATSULTR11
1 0 0 6 9	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eq_0_0 } \\ & 239 \end{aligned}$	Dof		1	TCTT	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940
1 0 7 7 4	$\begin{aligned} & \hline \text { TF_m } \\ & \text { otif } \\ & \text { etifo } \\ & 237 \\ & 237 \end{aligned}$	GATA,tify	-	1	CATCG	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;ATSG26930;AT5G56860;ATSG66320;AT2G1 8380;AT3G50870;AT4G3620 8380;AT3G50870;AT4G36620
1 0 0 7 5	$\begin{aligned} & \text { TF-m_m } \\ & \text { otiff } \\ & \text { eq-_ } \\ & 254 \end{aligned}$	AP2; ERF	+	0.8	ATCGA	AT3614230
1 0 7 7	$\begin{aligned} & \text { TF-m_m } \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 254 \end{aligned}$	AP2; ERF	-	0.8	TCGAT	AT3614230
1 0 7 7 7	$\begin{aligned} & \hline \text { TF-m } \\ & \text { otif_s } \\ & \text { equ_0 } \\ & 237 \end{aligned}$	GATAAtify	+	1	CGATT	AT1G51600;AT2G45050;AT3G06740;AT3G16870;AT3G21175;AT3G24050;AT3G54810;AT3G60530;AT4G17570;AT4G24470;AT4G26150;AT4G32890;AT4G34680;AT5G25830;AT5G26930;AT5G56860;AT5G66320;AT2G1 8380;AT3G50870;AT4G36620
1 0 7 7 7	$\begin{aligned} & \text { TF-m_m } \\ & \text { otif_s } \\ & \text { eq-0 } \\ & 268 \end{aligned}$	$\begin{aligned} & \text { (Motif } \\ & \text { sequence } \end{aligned}$ only)	+	1	CGATT	ARR1AT
1 0 8 1 1		AT-Hook		1	TTATt сас	AT1619485;AT1648610
1 0 8 8 5		(Motif sequence only)	+	0.8	ttcac	wBoxatnpr1
1 0 0 9 2	$\begin{aligned} & \text { TF_m } \\ & \text { otif_s } \\ & \text { eqq-0 } \\ & 239 \end{aligned}$	Dof		1	बctr	AT1G29160;AT1G64620;AT2G37590;AT3G21270;AT3G45610;AT3G47500;AT4G38000;AT5G39660;AT5G60200;AT5G60850;AT5G62940;AT2G46590;AT1G07640;AT1G21340;AT1G26790;AT1G47655;AT1G51700;AT1G6 9570;AT2G28510;AT2G28810;AT2G34140;AT3G50410;AT3G55370;AT3G61850;AT4G00940;AT4G21050;AT4G21080;AT4G24060;AT5G02460;AT5G62430;AT5G65590;AT5G66940

Supplementary table 2: Primer efficiencies of the qPCR runs

	Primer	Efficiency
Bio rep. 1	FRK1	97.14%
	Actin2	91.38%
Bio rep. 2	FRK1	84.12%
	Actin2	86.03%
Bio rep. 3	FRK1	88.33%
	Actin2	92.64%

Supplementary table 3: Identified Peptides of dTALE ChAP Repetition 1, 2 \& 3

dTALE-ChAP trial 1			
Gene	Peptide number with flg22 and DEX	peptide number control	
AT5G60390.3	105	13	
TALE369	105	3	
AT3G09260.1	46	1	
AT5G59970.1	45	12	
AT1G20620.1	25		
AT1G54270.1	25		
AT2G34420.1	21	3	
AT3G18080.1	20		
AT5G44340.1	20		
AT3G08580.2	19		
AT2G30620.2	18	2	
AT3G44310.3	18		
AT1G07790.1	16	25	
AT1G78830.1	16		
AT3G14310.1	15		
AT1G43170.9	14		
AT2G41840.1	14	1	
AT2G16600.2	13		
AT5G09810.1	13		
AT4G14960.2	12		
AT5G26260.1	12		
AT5G02560.1	11		
AT3G04920.1	11		
AT1G66280.1	11		
AT3G17390.1	10		
AT5G27670.1	9	3	
AT1G48920.1	9	1	
AT2G21660.1	8		
AT5G47210.1	8		
AT5G52470.1	8		
AT3G09630.2	7	1	
AT4G01700.1	7		
AT1G76010.1	7		
AT3G49010.5	7		
AT1G20580.1	7		
AT1G33140.1	7		
AT3G20370.1	7		
AT1G78850.1	6		
AT5G59870.1	6		

ATCG00680.1	6		
AT1G56070.1	6		
ATCG00020.1	6		
AT1G19880.1	6		
AT1G26630.1	6		
AT3G18780.2	6		
AT5G65360.1	6	1	
AT5G26280.2	5		
AT5G56030.1	5		
AT5G44500.2	5		
AT3G04120.1	5	1	
AT4G27090.1	5	1	
AT2G31880.1	5		
AT5G44020.1	5		
AT2G34040.2	5		
AT5G54640.1	5	4	
AT1G52740.1	5		
AT3G55280.3	5		
AT4G17390.1	5		
AT3G59540.1	5		
AT4G00100.1	5		
AT4G13940.1	5	1	
AT5G38420.1	4		
ATCG00490.1	4		
AT2G19730.3	4	1	
AT4G11010.1	4		
AT2G05100.1	4		
AT1G74060.1	4		
AT1G48600.1	4		
AT2G27530.2	4		
AT3G62290.3	4		
AT4G34555.1	4		
AT5G03350.1	4		
AT5G15200.1	4		
AT1G20696.3	3		
AT3G44110.2	3		
AT4G34870.1	3		
AT1G80490.1	3		
AT5G52040.1	3	1	
AT2G04160.1	3		
AT5G59850.1	3		
AT5G10980.1	3	6	
AT5G02500.1	3		

AT1G29930.1	3		
AT3G10610.1	3		
AT5G17920.2	3		
AT4G09800.1	3		
AT2G41475.1	3		
AT2G22170.1	3		
AT2G45220.1	3		
AT1G59359.1	3		
AT2G05380.1	3	8	
AT3G62870.1	3		
AT4G19410.1	3		
AT2G01250.1	3		
AT3G25520.2	3		
AT3G49910.1	3		
AT4G38680.1	2		
AT4G20360.1	2		
AT1G14320.1	2		
AT1G31330.1	2		
AT4G31580.2	2		
AT3G07590.2	2		
AT5G42020.2	2		
AT3G61240.2	2		
AT5G45775.1	2		
AT5G07090.2	2		
AT3G04840.1	2		
AT5G08690.1	2		
AT1G16300.1	2		
AT5G09510.2	2		
AT4G39200.2	2		
AT1G03220.1	2		
AT3G01290.1	2		
AT1G03880.1	2		
AT1G68560.1	2		
AT5G11200.1	2		
AT1G02780.1	2	1	
AT2G05830.1	2		
AT4G26630.2	2		
AT3G16420.3	2		
AT4G27170.1	2		
AT5G19780.1	2		
ATCG01060.1	2		
AT1G67090.1	2		
ATMG01190.1	2		

AT4G10340.1	2	
AT4G38740.1	2	
AT1G79930.2	2	
AT4G39260.3	2	
AT1G67430.2	2	
AT3G53430.1	2	
AT1G17860.1	2	
AT5G36890.2	1	
AT2G24590.1	1	
AT1G08360.1	1	
AT2G45640.2	1	
AT5G22650.2	1	
AT1G75280.1	1	
AT5G46070.1	1	
AT1G26110.2	1	
AT1G22060.1	1	
AT4G14320.1	1	
AT5G18380.3	1	
AT2G16700.2	1	
AT3G26060.1	1	
AT4G15160.2	1	
AT2G32700.6	1	
AT2G17720.1	1	
AT2G02470.2	1	
AT3G06720.2	1	
AT3G61440.3	1	
AT2G19520.1	1	
AT2G45180.1	1	
AT4G22140.2	1	
AT5G17270.1	1	
AT4G22485.1	1	
AT5G20290.1	1	
AT4G23680.1	1	
AT5G26210.1	1	
AT4G23990.1	1	
AT5G27850.1	1	
AT1G09770.1	1	
AT3G46000.1	1	
AT4G27000.1	1	
AT5G45280.2	1	
AT1G10200.1	1	
AT5G48760.2	1	
AT4G27160.1	1	2

AT3G55460.1	1		
AT3G09440.2	1		
AT2G39880.1	1		
AT4G27500.1	1		
AT5G60790.1	1		
AT4G29040.1	1		
ATCG00280.1	1		
AT4G30290.1	1		
AT4G02520.1	1		
AT4G31500.1	1		
AT3G19390.1	1		
AT1G33590.1	1		
AT3G19760.1	1		
AT4G31880.2	1		
AT1G26550.1	1		
AT4G33865.1	1		
AT5G22010.1	1		
AT2G21060.1	1		
AT5G24550.1	1	1	
AT3G11630.1	1		
AT2G27830.1	1	5	
AT4G35310.1	1		
AT1G18080.1	1		
AT4G36690.2	1		
AT5G35760.1	1		
AT4G38600.2	1		
AT1G27650.2	1		
AT3G12860.1	1		
AT2G32080.2	1		
AT3G13790.2	1		
AT3G53020.1	1		
AT3G13920.3	1		
AT2G33040.1	1		
AT3G14210.1	1		
AT1G17370.2	1		
AT3G14220.1	1		
AT3G54400.1	1		
AT2G21580.2	1		
AT5G54270.1	1		
AT5G02960.1	1		
AT5G55190.1	1		
AT3G15730.1	1		
AT3G59620.1	1		

AT5G03850.1	1		
AT5G59910.1	1		
AT5G06870.1	1		
AT1G16610.2	1		
AT1G66270.2	1		
AT5G62300.2	1		
AT3G16460.2	1		
AT1G73260.1	1		
AT5G09440.1	1		
AT2G43920.2	1		
AT1G79330.1	1		
AT4G01880.1	1		
AT1G12090.1	1		
AT1G24310.1	1		
AT3G18740.1	1		
AT3G53740.1	1		
AT1G80550.1		1	
AT5G35530.1		1	
AT2G37470.1		1	
dTALE-ChAP trial 2	peptide number sample N14 induced	/ N15 unindu	
	biorep. 1	biorep 2	biorep 3
AT1G07930.2			
AT1G11190.1			1
AT1G20580.1			
AT1G43170.4			
AT1G48920.1	6		
AT1G52740.1			
AT1G54270.2	4		
AT1G57860.1			
AT1G62070.1	1		
AT1G67430.2			
AT1G68470.1			1
AT1G80550.1		4	6
AT2G01210.1	1		
AT2G24590.1			
AT2G30620.2			
AT2G32240.1			
AT2G41475.1		1	
AT2G45970.1		2	1
AT3G02880.1	1	1	7
AT3G09260.1			
AT3G18080.1			

AT3G25520.2	7		
AT3G46030.1	18		
AT4G03080.1			
AT4G09800.1	2		
AT4G27610.3	1		
AT4G39260.3			
AT5G07090.2			
AT5G10980.1	18		
AT5G16590.1		8	14
AT5G27670.1			
AT5G36890.2			
AT5G44500.2			
AT5G50410.1			
AT5G54640.1	6		
AT5G59970.1	90		
AT5G65360.1	5		
dTALE C	103	19	18
	peptide number sample N15 induced	/ N14 unindu	
	biorep. 1	biorep 2	biorep 3
AT1G07930.2	22		
AT1G11190.1			
AT1G20580.1	5		
AT1G43170.4	1		
AT1G48920.1	7		
AT1G52740.1	7		
AT1G54270.2	1		
AT1G57860.1	1		
AT1G62070.1			
AT1G67430.2	2		
AT1G68470.1			
AT1G80550.1	3		6
AT2G01210.1			
AT2G24590.1	4		
AT2G30620.2	2		
AT2G32240.1	1		
AT2G41475.1			
AT2G45970.1		1	
AT3G02880.1		6	
AT3G09260.1	4		
AT3G18080.1	2		
AT3G25520.2	3		
AT3G46030.1	30		

AT4G03080.1	2		
AT4G09800.1	7		
AT4G27610.3			
AT4G39260.3	10		
AT5G07090.2	5		
AT5G10980.1	36		
AT5G16590.1		14	8
AT5G27670.1	2		
AT5G36890.2	4		
AT5G44500.2	1		
AT5G50410.1	2		
AT5G54640.1	28		
AT5G59970.1	153		
AT5G65360.1	36		
dTALE C	71	13	1
dTALE ChAP trial 3			
peptide number sample N14 induced / N15 uninduced	sum of 3 bioreplicates		
dTALE C	6		
AT5G59970.1	7		
AT5G02570.1	3		
AT5G54640.1	2		
AT1G11190.1	1		
AT4G09800.1	2		
AT1G48920.1	1		
AT1G49730.4	1		
AT3G14220.1	1		
AT3G13920.3	1		
AT1G64550.1	1		
AT1G68470.1	1		
AT5G10980.1	3		
AT1G78830.1	2		
AT1G80550.1	1		
AT2G01210.1	1		
AT2G01850.1	1		
AT2G17360.2	1		
AT2G27830.1	1		
AT2G37230.1	1		
AT2G41475.1	2		
AT2G45970.1	1		
AT3G02880.1	2		
AT5G27770.1	1		
AT3G14950.1	1		

Supplementary table 4: Over-representation Tests of identified Peptides in dTALE-ChAP Repetition 1, 2 \& 3

dTALE ChAP trial 1 no treshold	trial 1 no tresho Id	Analysis Type:	PANTHER Overrepresentatio n Test (Released 20171205)						
		Annotation Version and Release Date:	GO Ontology database Released 2018-06-01						
		Analyzed List:	upload_1 (Arabidopsis thaliana)						
		Reference List:	Arabidopsis thaliana (all genes in database)						
		Test Type:	FISHER						
		GO cellular component complete	Arabidopsis thaliana - REFLIST (27502)	$\begin{array}{\|l} \hline \text { uplo } \\ \text { ad_1 } \\ (235 \\ 1 \\ \hline \end{array}$	upload _1 (expec ted)	upload _1 (over/u nder)	upload_1 (fold Enrichm ent)	upload _1 (raw Pvalue)	uplo ad_1 (FDR)
		chloroplast ribulose bisphosphate carboxylase complex (GO:0009573)	3	2	0.03	+ +	78.02	$\begin{array}{r} 7.03 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 7.78 \\ \mathrm{E}-03 \\ \hline \end{array}$
		ribulose bisphosphate carboxylase complex (GO:0048492)	3	2	0.03	+	78.02	$\begin{array}{r} 7.03 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 7.70 \\ \mathrm{E}-03 \\ \hline \end{array}$
		chloroplast stromal thylakoid (GO:0009533)	10	4	0.09	+	46.81	$\begin{array}{r} 4.70 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & 7.04 \\ & \mathrm{E}-05 \end{aligned}$
		PSII associated light-harvesting complex II (GO:0009517)	6	2	0.05	+	39.01	$\begin{array}{r} 1.94 \mathrm{E}- \\ 03 \end{array}$	$\begin{aligned} & 1.98 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		thylakoid light-harvesting complex (GO:0009503)	6	2	0.05	+	39.01	$\begin{array}{r} 1.94 \mathrm{E}- \\ 03 \end{array}$	$\begin{aligned} & 1.96 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		pICln-Sm protein complex (GO:0034715)	6	2	0.05	+	39.01	$\begin{array}{r} 1.94 \mathrm{E}- \\ 03 \end{array}$	$\begin{aligned} & 1.94 \\ & \mathrm{E}-02 \end{aligned}$
		tubulin complex (GO:0045298)	13	4	0.11	+	36.01	$\begin{array}{r} 1.10 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.51 \\ & \mathrm{E}-04 \\ & \hline \end{aligned}$
		SMN-Sm protein complex (GO:0034719)	7	2	0.06	+	33.44	$\begin{array}{r} \hline 2.47 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.39 \\ & \mathrm{E}-02 \end{aligned}$
		nucleosome (GO:0000786)	47	12	0.4	+	29.88	$\begin{array}{r} 8.13 \mathrm{E}- \\ 14 \\ \hline \end{array}$	$\begin{aligned} & 2.47 \\ & \mathrm{E}-12 \end{aligned}$
		U2AF (GO:0089701)	8	2	0.07	+	29.26	$\begin{array}{r} \hline 3.08 \mathrm{E}- \\ 03 \end{array}$	$\begin{aligned} & 2.95 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		DNA packaging complex (GO:0044815)	51	12	0.44	+	27.54	$\begin{array}{r} 1.88 \mathrm{E}- \\ 13 \end{array}$	$\begin{aligned} & \hline 5.26 \\ & \mathrm{E}-12 \end{aligned}$
		U4 snRNP (GO:0005687)	13	3	0.11	+	27.01	$\begin{array}{r} \hline 3.10 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.92 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
		proton-transporting ATP synthase complex, catalytic core $F(1)$ (GO:0045261)	14	3	0.12	+	25.08	$\begin{array}{r} 3.74 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 4.62 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
		cytosolic small ribosomal subunit (GO:0022627)	108	22	0.92	+	23.84	$\begin{array}{r} 1.86 \mathrm{E}- \\ 22 \end{array}$	$\begin{aligned} & \hline 7.08 \\ & \mathrm{E}-21 \end{aligned}$
		heterochromatin (GO:0000792)	15	3	0.13	+	23.41	$\begin{array}{r} 4.46 \mathrm{E}- \\ \hline 04 \\ \hline \end{array}$	$\begin{aligned} & 5.27 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
		light-harvesting complex (GO:0030076)	25	5	0.21	+	23.41	$\begin{array}{r} 5.02 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.40 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
		cytosolic large ribosomal subunit (GO:0022625)	147	28	1.26	+	22.29	$\begin{array}{r} 1.35 \mathrm{E}- \\ 27 \end{array}$	$\begin{aligned} & \hline 6.50 \\ & \mathrm{E}-26 \\ & \hline \end{aligned}$
		$\begin{array}{\|l} \hline \text { commitment complex } \\ \text { (GO:0000243) } \\ \hline \end{array}$	16	3	0.14	+	21.94	$\begin{array}{r} 5.26 \mathrm{E}- \\ \hline 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 6.08 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
		box C/D snoRNP complex (GO:0031428)	11	2	0.09	+	21.28	$\begin{array}{r} \hline 5.24 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.80 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		cytosolic ribosome (GO:0022626)	324	58	2.77	+	20.95	$\begin{array}{r} \hline 1.06 \mathrm{E}- \\ 55 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.76 \\ & \mathrm{E}-53 \\ & \hline \end{aligned}$
		photosystem I (GO:0009522)	41	7	0.35	+	19.98	$\begin{array}{r} 1.57 \mathrm{E}- \\ 07 \end{array}$	$\begin{aligned} & \hline 2.83 \\ & \text { E-06 } \end{aligned}$
		small ribosomal subunit (GO:0015935)	134	22	1.15	+	19.21	$\begin{array}{r} \hline 1.18 \mathrm{E}- \\ 20 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.33 \\ & \mathrm{E}-19 \\ & \hline \end{aligned}$

	cytosolic part (GO:0044445)	372	59	3.18	+	18.56	$\begin{array}{r} 6.04 \mathrm{E}- \\ 54 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.60 \\ & \mathrm{E}-51 \\ & \hline \end{aligned}$
	ribosomal subunit (GO:0044391)	340	50	2.91	+	17.21	$\begin{array}{r} 4.43 \mathrm{E}- \\ 44 \end{array}$	$\begin{aligned} & 3.14 \\ & \mathrm{E}-42 \end{aligned}$
	protein-DNA complex (GO:0032993)	83	12	0.71	+	16.92	$\begin{array}{r} \hline 3.04 \mathrm{E}- \\ 11 \end{array}$	$\begin{aligned} & \hline 7.87 \\ & \mathrm{E}-10 \end{aligned}$
	U5 snRNP (GO:0005682)	21	3	0.18	+	16.72	$\begin{array}{r} \hline 1.07 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.14 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	large ribosomal subunit (GO:0015934)	204	28	1.74	+	16.06	$\begin{array}{r} 4.28 \mathrm{E}- \\ 24 \\ \hline \end{array}$	$\begin{aligned} & 1.75 \\ & \mathrm{E}-22 \\ & \hline \end{aligned}$
	proton-transporting two-sector ATPase complex, catalytic domain (GO:0033178)	22	3	0.19	+	15.96	$\begin{array}{r} 1.20 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{array}{r} 1.28 \\ \mathrm{E}-02 \\ \hline \end{array}$
	nucleolus (GO:0005730)	445	60	3.8	+	15.78	$\begin{array}{r} \hline 3.95 \mathrm{E}- \\ 51 \\ \hline \end{array}$	$\begin{aligned} & \hline 6.00 \\ & \mathrm{E}-49 \end{aligned}$
	plastoglobule (GO:0010287)	80	10	0.68	+	14.63	$\begin{array}{r} 4.98 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{aligned} & 1.08 \\ & \mathrm{E}-07 \\ & \hline \end{aligned}$
	ribosome (GO:0005840)	469	58	4.01	+	14.47	$\begin{array}{r} 1.97 \mathrm{E}- \\ 47 \\ \hline \end{array}$	$\begin{aligned} & 2.62 \\ & \mathrm{E}-45 \\ & \hline \end{aligned}$
	photosystem II (GO:0009523)	67	8	0.57	+	13.97	$\begin{array}{r} 2.44 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.32 \\ & \mathrm{E}-06 \end{aligned}$
	small nucleolar ribonucleoprotein complex (GO:0005732)	43	5	0.37	+	13.61	$\begin{array}{r} 5.32 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{aligned} & 6.99 \\ & \mathrm{E}-04 \\ & \hline \end{aligned}$
	U1 snRNP (GO:0005685)	27	3	0.23	+	13	$\begin{array}{r} \hline 2.06 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & 2.05 \\ & \mathrm{E}-02 \end{aligned}$
	photosystem (GO:0009521)	92	10	0.79	+	12.72	$\begin{array}{r} \hline 1.70 \mathrm{E}- \\ 08 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.47 \\ & \mathrm{E}-07 \\ & \hline \end{aligned}$
	mitochondrial protontransporting ATP synthase complex (GO:0005753)	28	3	0.24	+	12.54	$\begin{array}{r} 2.27 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & 2.21 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	nuclear speck (GO:0016607)	84	9	0.72	+	12.54	$\begin{array}{r} \hline 1.00 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.90 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	endoplasmic reticulum lumen (GO:0005788)	38	4	0.32	+	12.32	$\begin{array}{r} \hline 4.37 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 5.22 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	ribonucleoprotein complex (GO:1990904)	811	73	6.93	+	10.53	$\begin{array}{r} 2.39 \mathrm{E}- \\ 51 \end{array}$	$\begin{aligned} & 4.23 \\ & \mathrm{E}-49 \end{aligned}$
	nuclear body (GO:0016604)	113	10	0.97	+	10.36	$\begin{array}{r} 1.02 \mathrm{E}- \\ 07 \end{array}$	$\begin{aligned} & 1.91 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	chromatin (GO:0000785)	170	14	1.45	+	9.64	$\begin{array}{r} 6.57 \mathrm{E}- \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 1.59 \\ & \mathrm{E}-08 \end{aligned}$
	proton-transporting ATP synthase complex (GO:0045259)	37	3	0.32	+	9.49	$\begin{array}{r} \hline 4.71 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.39 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	U2 snRNP (GO:0005686)	37	3	0.32	+	9.49	$\begin{array}{r} \hline 4.71 \mathrm{E}- \\ 03 \end{array}$	$\begin{aligned} & \hline 4.35 \\ & \mathrm{E}-02 \end{aligned}$
	nuclear chromatin (GO:0000790)	79	6	0.68	+	8.89	$\begin{array}{r} \hline 8.68 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.13 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	plasmodesma (GO:0009506)	1011	75	8.64	+	8.68	$\begin{array}{r} \hline 2.92 \mathrm{E}- \\ 47 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.45 \\ & \mathrm{E}-45 \\ & \hline \end{aligned}$
	symplast (GO:0055044)	1011	75	8.64	+	8.68	$\begin{array}{r} \hline 2.92 \mathrm{E}- \\ 47 \end{array}$	$\begin{aligned} & \mathrm{B} .10 \\ & \mathrm{E}-45 \end{aligned}$
	cell-cell junction (GO:0005911)	1013	75	8.66	+	8.66	$\begin{array}{r} \hline 3.33 \mathrm{E}- \\ 47 \end{array}$	$\begin{aligned} & \hline 3.22 \\ & \mathrm{E}-45 \\ & \hline \end{aligned}$
	cell junction (GO:0030054)	1013	75	8.66	+	8.66	$\begin{array}{r} \hline 3.33 \mathrm{E}- \\ 47 \end{array}$	$\begin{aligned} & \hline 2.95 \\ & \mathrm{E}-45 \\ & \hline \end{aligned}$
	spliceosomal complex (GO:0005681)	151	11	1.29	+	8.53	$\begin{array}{r} \hline 1.49 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.72 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	U2-type spliceosomal complex (GO:0005684)	57	4	0.49	+	8.21	$\begin{array}{r} 1.80 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & 1.89 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	intracellular non-membranebounded organelle (GO:0043232)	1670	112	14.27	+	7.85	$\begin{array}{r} \hline 1.17 \mathrm{E}- \\ 69 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.24 \\ & \mathrm{E}-66 \\ & \hline \end{aligned}$
	non-membrane-bounded organelle (GO:0043228)	1670	112	14.27	+	7.85	$\begin{array}{r} 1.17 \mathrm{E}- \\ 69 \end{array}$	$\begin{aligned} & \hline 6.22 \\ & \text { E-67 } \\ & \hline \end{aligned}$
	nuclear lumen (GO:0031981)	1053	68	9	+	7.56	$\begin{array}{r} 5.70 \mathrm{E}- \\ 39 \\ \hline \end{array}$	$\begin{aligned} & 3.57 \\ & \mathrm{E}-37 \end{aligned}$
	apoplast (GO:0048046)	496	32	4.24	+	7.55	$\begin{array}{r} \hline 3.05 \mathrm{E}- \\ 18 \end{array}$	$\begin{aligned} & \hline 1.05 \\ & \mathrm{E}-16 \\ & \hline \end{aligned}$
	external encapsulating structure (GO:0030312)	777	47	6.64	+	7.08	$\begin{array}{r} \hline 1.84 \mathrm{E}- \\ 25 \\ \hline \end{array}$	$\begin{aligned} & \hline 8.15 \\ & \mathrm{E}-24 \\ & \hline \end{aligned}$
	cell wall (GO:0005618)	777	47	6.64	+	7.08	$\begin{array}{r} \hline 1.84 \mathrm{E}- \\ 25 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.82 \\ & \mathrm{E}-24 \\ & \hline \end{aligned}$

	intracellular organelle lumen (GO:0070013)	1279	72	10.93	+	6.59	$\begin{array}{r} 1.09 \mathrm{E}- \\ 37 \end{array}$	$\begin{aligned} & \hline 6.43 \\ & \text { E-36 } \end{aligned}$
	membrane-enclosed lumen (GO:0031974)	1279	72	10.93	+	6.59	$\begin{array}{r} 1.09 \mathrm{E}- \\ 37 \end{array}$	$\begin{aligned} & \hline 6.09 \\ & \mathrm{E}-36 \\ & \hline \end{aligned}$
	organelle lumen (GO:0043233)	1279	72	10.93	+	6.59	$\begin{array}{r} 1.09 \mathrm{E}- \\ 37 \end{array}$	$\begin{aligned} & \hline 5.79 \\ & \text { E-36 } \\ & \hline \end{aligned}$
	vacuolar membrane (GO:0005774)	650	34	5.55	+	6.12	$\begin{array}{r} \hline 1.04 \mathrm{E}- \\ 16 \end{array}$	$\begin{aligned} & \hline 3.44 \\ & \mathrm{E}-15 \\ & \hline \end{aligned}$
	vacuolar part (GO:0044437)	652	34	5.57	+	6.1	$\begin{array}{r} \hline 1.13 \mathrm{E}- \\ 16 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.64 \\ & \mathrm{E}-15 \end{aligned}$
	nuclear part (GO:0044428)	1396	69	11.93	+	5.78	$\begin{array}{r} \hline 1.14 \mathrm{E}- \\ 32 \end{array}$	$\begin{aligned} & \hline 5.75 \\ & \mathrm{E}-31 \end{aligned}$
	vacuole (GO:0005773)	1114	55	9.52	+	5.78	$\begin{array}{r} 9.68 \mathrm{E}- \\ 26 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.47 \\ & \mathrm{E}-24 \end{aligned}$
	cytosol (GO:0005829)	2261	108	19.32	+	5.59	$\begin{array}{r} \hline 1.18 \mathrm{E}- \\ 52 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.50 \\ & \mathrm{E}-50 \\ & \hline \end{aligned}$
	chromosomal part (GO:0044427)	333	15	2.85	+	5.27	$\begin{array}{r} \hline 3.29 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{aligned} & \hline 5.74 \\ & \text { E-06 } \\ & \hline \end{aligned}$
	chromosome (GO:0005694)	386	15	3.3	+	4.55	$\begin{array}{r} 1.94 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & \hline 3.17 \\ & \mathrm{E}-05 \end{aligned}$
	nuclear chromosome part (GO:0044454)	161	6	1.38	+	4.36	$\begin{array}{r} 3.08 \mathrm{E}- \\ 03 \end{array}$	$\begin{aligned} & 2.92 \\ & \mathrm{E}-02 \end{aligned}$
	chloroplast thylakoid membrane (GO:0009535)	407	15	3.48	+	4.31	$\begin{array}{r} 3.61 \mathrm{E}- \\ \hline 06 \\ \hline \end{array}$	$\begin{aligned} & \hline 5.73 \\ & \text { E-05 } \\ & \hline \end{aligned}$
	plastid thylakoid membrane (GO:0055035)	408	15	3.49	+	4.3	$\begin{array}{r} 3.71 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & 5.72 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
	protein-containing complex (GO:0032991)	3150	112	26.92	+	4.16	$\begin{array}{r} 1.20 \mathrm{E}- \\ 42 \end{array}$	$\begin{aligned} & \hline 7.94 \\ & \mathrm{E}-41 \end{aligned}$
	thylakoid (GO:0009579)	591	21	5.05	+	4.16	$\begin{array}{r} \hline 7.02 \mathrm{E}- \\ 08 \\ \hline \end{array}$	$\begin{aligned} & 1.36 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	thylakoid membrane (GO:0042651)	428	15	3.66	+	4.1	$\begin{array}{r} 6.47 \mathrm{E}- \\ \hline 06 \end{array}$	$\begin{aligned} & \hline 9.29 \\ & \text { E-05 } \end{aligned}$
	photosynthetic membrane (GO:0034357)	429	15	3.67	+	4.09	$\begin{array}{r} 6.65 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & \hline 9.42 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
	nuclear chromosome (GO:0000228)	174	6	1.49	+	4.04	$\begin{array}{r} 4.44 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.18 \\ & \mathrm{E}-02 \end{aligned}$
	whole membrane (GO:0098805)	994	34	8.49	+	4	$\begin{array}{r} \hline 1.18 \mathrm{E}- \\ 11 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.14 \\ & \mathrm{E}-10 \\ & \hline \end{aligned}$
	thylakoid part (GO:0044436)	470	16	4.02	+	3.98	$\begin{array}{r} 4.52 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & \hline 6.87 \\ & \mathrm{E}-05 \end{aligned}$
	chloroplast thylakoid (GO:0009534)	517	17	4.42	+	3.85	$\begin{array}{r} \hline 3.54 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & \hline 5.70 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
	plastid thylakoid (GO:0031976)	518	17	4.43	+	3.84	$\begin{array}{r} 3.63 \mathrm{E}- \\ \hline 06 \end{array}$	$\begin{aligned} & \hline 5.67 \\ & \mathrm{E}-05 \end{aligned}$
	chloroplast stroma (GO:0009570)	749	22	6.4	+	3.44	$\begin{array}{r} 7.87 \mathrm{E}- \\ 07 \end{array}$	$\begin{aligned} & 1.35 \\ & \mathrm{E}-05 \end{aligned}$
	plastid stroma (GO:0009532)	772	22	6.6	+	3.34	$\begin{array}{r} 1.28 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & 2.12 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
	bounding membrane of organelle (GO:0098588)	1317	36	11.25	+	3.2	$\begin{array}{r} 1.13 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.61 \\ & \text { E-08 } \end{aligned}$
	nucleoplasm part (GO:0044451)	410	11	3.5	+	3.14	$\begin{array}{r} \hline 9.97 \mathrm{E}- \\ \hline 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.08 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	intracellular organelle part (GO:0044446)	5417	145	46.29	+	3.13	$\begin{array}{r} \hline 2.08 \mathrm{E}- \\ 44 \\ \hline \end{array}$	$\begin{aligned} & 1.70 \\ & \mathrm{E}-42 \end{aligned}$
	organelle part (GO:0044422)	5424	145	46.35	+	3.13	$\begin{array}{r} \hline 2.43 \mathrm{E}- \\ \hline 44 \\ \hline \end{array}$	$\begin{aligned} & 1.85 \\ & \mathrm{E}-42 \end{aligned}$
	plant-type cell wall (GO:0009505)	380	10	3.25	+	3.08	$\begin{array}{r} 1.92 \mathrm{E}- \\ 03 \end{array}$	$\begin{aligned} & 1.98 \\ & \mathrm{E}-02 \end{aligned}$
	nucleoplasm (GO:0005654)	511	12	4.37	+	2.75	$\begin{array}{r} 1.80 \mathrm{E}- \\ 03 \end{array}$	$\begin{aligned} & 1.87 \\ & \mathrm{E}-02 \end{aligned}$
	chloroplast envelope (GO:0009941)	684	16	5.84	+	2.74	$\begin{array}{r} \hline 3.39 \mathrm{E}- \\ \hline 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.24 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	plastid envelope (GO:0009526)	703	16	6.01	+	2.66	$\begin{array}{r} 4.54 \mathrm{E}- \\ \hline 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 5.31 \\ & \mathrm{E}-03 \end{aligned}$
	organelle membrane (GO:0031090)	1891	42	16.16	+	2.6	$\begin{array}{r} 1.58 \mathrm{E}- \\ 08 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.29 \\ & \mathrm{E}-07 \end{aligned}$
	membrane protein complex (GO:0098796)	670	14	5.73	+	2.45	$\begin{array}{r} 2.23 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & 2.19 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	chloroplast part (GO:0044434)	1429	29	12.21	+	2.37	$\begin{array}{r} 2.12 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{aligned} & 2.88 \\ & \mathrm{E}-04 \end{aligned}$

		chloroplast (GO:0009507)	3975	80	33.97	+	2.36	$\begin{array}{r} 6.37 \mathrm{E}- \\ \hline 14 \\ \hline \end{array}$	$\begin{aligned} & 1.99 \\ & \mathrm{E}-12 \end{aligned}$
		plastid part (GO:0044435)	1457	29	12.45	+	2.33	$\begin{array}{r} 2.81 \mathrm{E} \\ \hline 05 \end{array}$	$\begin{aligned} & \hline 3.78 \\ & \mathrm{E}-04 \\ & \hline \end{aligned}$
		plastid (GO:0009536)	4034	80	34.47	+	2.32	$\begin{array}{r} \hline 1.65 \mathrm{E}- \\ 13 \end{array}$	$\begin{aligned} & \hline 4.75 \\ & \mathrm{E}-12 \\ & \hline \end{aligned}$
		extracellular region (GO:0005576)	2926	58	25	+	2.32	$\begin{array}{r} 1.08 \mathrm{E}- \\ \hline 09 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.55 \\ & \mathrm{E}-08 \\ & \hline \end{aligned}$
		envelope (GO:0031975)	1210	23	10.34	+	2.22	$\begin{array}{r} \hline 3.74 \mathrm{E} \\ \hline 04 \end{array}$	$\begin{aligned} & 4.57 \\ & \mathrm{E}-03 \end{aligned}$
		organelle envelope (GO:0031967)	1210	23	10.34	+	2.22	$\begin{array}{r} \hline 3.74 \mathrm{E} \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.52 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
		cell periphery (GO:0071944)	4525	86	38.67	+	2.22	$\begin{array}{r} 1.59 \mathrm{E}- \\ 13 \end{array}$	$\begin{aligned} & \hline 4.69 \\ & \mathrm{E}-12 \end{aligned}$
		plasma membrane (GO:0005886)	3881	67	33.16	+	2.02	$\begin{array}{r} 1.55 \mathrm{E}- \\ 08 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.29 \\ & \mathrm{E}-07 \\ & \hline \end{aligned}$
		cytoplasmic part (GO:0044444)	10752	168	91.87	+	1.83	$\begin{array}{r} \hline 2.23 \mathrm{E}- \\ 23 \\ \hline \end{array}$	$\begin{aligned} & \hline 8.77 \\ & \mathrm{E}-22 \\ & \hline \end{aligned}$
		membrane (GO:0016020)	8459	126	72.28	+	1.74	$\begin{array}{r} \hline 5.00 \mathrm{E}- \\ 13 \\ \hline \end{array}$	$\begin{aligned} & 1.36 \\ & \mathrm{E}-11 \end{aligned}$
		cytoplasm (GO:0005737)	13219	182	112.95	+	1.61	$\begin{array}{r} 7.36 \mathrm{E}- \\ 20 \end{array}$	$\begin{aligned} & 2.61 \\ & \mathrm{E}-18 \end{aligned}$
		nucleus (GO:0005634)	9826	110	83.96	+	1.31	$\begin{array}{r} 6.04 \mathrm{E}- \\ \hline 04 \end{array}$	$\begin{aligned} & 6.91 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
		intracellular organelle (GO:0043229)	17998	199	153.79	+	1.29	$\begin{array}{r} 7.14 \mathrm{E}- \\ 11 \end{array}$	$\begin{aligned} & 1.81 \\ & \mathrm{E}-09 \end{aligned}$
		organelle (GO:0043226)	18037	199	154.12	+	1.29	$\begin{array}{r} 7.35 \mathrm{E} \\ \hline 11 \end{array}$	$\begin{aligned} & 1.82 \\ & \mathrm{E}-09 \end{aligned}$
		intracellular part (GO:0044424)	20009	209	170.97	+	1.22	$\begin{array}{r} 2.22 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{aligned} & \hline 5.01 \\ & \mathrm{E}-08 \end{aligned}$
		intracellular (GO:0005622)	20022	209	171.08	+	1.22	$\begin{array}{r} 2.24 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.95 \\ & \mathrm{E}-08 \\ & \hline \end{aligned}$
		intracellular membrane-bounded organelle (GO:0043231)	17644	180	150.77	+	1.19	$\begin{array}{r} 5.10 \mathrm{E}- \\ 05 \end{array}$	$\begin{aligned} & 6.77 \\ & \mathrm{E}-04 \\ & \hline \end{aligned}$
		membrane-bounded organelle (GO:0043227)	17746	180	151.64	+	1.19	$\begin{array}{r} 8.71 \mathrm{E} \\ \hline 05 \end{array}$	$\begin{array}{r} \hline 1.12 \\ \mathrm{E}-03 \\ \hline \end{array}$
		cell part (GO:0044464)	22024	219	188.19	+	1.16	$\begin{array}{r} \hline 3.59 \mathrm{E} \\ 08 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.07 \\ & \mathrm{E}-07 \\ & \hline \end{aligned}$
		cell (GO:0005623)	22025	219	188.2	+	1.16	$\begin{array}{r} \hline 3.59 \mathrm{E}- \\ 08 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.20 \\ & \mathrm{E}-07 \end{aligned}$
		cellular_component (GO:0005575)	25076	228	214.27	+	1.06	$\begin{array}{r} 6.77 \mathrm{E}- \\ \hline 04 \end{array}$	$\begin{aligned} & \hline 7.57 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
		membrane part (GO:0044425)	5608	22	47.92	-	0.46	$\begin{array}{r} 8.93 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & 1.25 \\ & \mathrm{E}-04 \end{aligned}$
		integral component of membrane (GO:0016021)	4853	17	41.47	-	0.41	$\begin{array}{r} 6.13 \mathrm{E}- \\ \hline 06 \\ \hline \end{array}$	$\begin{aligned} & 8.93 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
		intrinsic component of membrane (GO:0031224)	5102	17	43.6	-	0.39	$\begin{array}{r} 1.16 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & 1.96 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
		Unclassified (UNCLASSIFIED)	2426	7	20.73	-	0.34	$\begin{array}{r} 6.77 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.65 \\ & \text { E-03 } \\ & \hline \end{aligned}$
trial 1 treshold = at least 5 found peptides	Cellula r Comp onent	Analysis Type:	PANTHER Overrepresentatio n Test (Released 20171205)						
		Annotation Version and Release Date:	GO Ontology database Released 2018-06-01						
		Analyzed List:	upload_1 (Arabidopsis thaliana)						
		Reference List:	Arabidopsis thaliana (all genes in database)						
		Test Type:	FISHER						
		GO cellular component complete	Arabidopsis thaliana - REFLIST (27502)	uplo ad_1 (64)	upload _1 (expec ted)	upload _1 (over/u nder)	upload_1 (fold Enrichm ent)	upload _1 (raw P- value)	uplo ad_1 (FDR)

	heterochromatin (GO:0000792)	15	3	0.03	+	85.94	$\begin{array}{r} 9.50 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & 2.20 \\ & \mathrm{E}-04 \end{aligned}$
	nucleosome (GO:0000786)	47	9	0.11	+	82.29	$\begin{array}{r} 7.58 \mathrm{E}- \\ 15 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.48 \\ & \mathrm{E}-13 \end{aligned}$
	DNA packaging complex (GO:0044815)	51	9	0.12	+	75.83	$1.47 \mathrm{E}-$ 14	$\begin{aligned} & \hline 8.22 \\ & \mathrm{E}-13 \end{aligned}$
	tubulin complex (GO:0045298)	13	2	0.03	+	66.11	$\begin{array}{r} 5.46 \mathrm{E}- \\ 04 \end{array}$	$\begin{aligned} & \hline 9.84 \\ & \mathrm{E}-03 \end{aligned}$
	U4 snRNP (GO:0005687)	13	2	0.03	+	66.11	$\begin{array}{r} \hline 5.46 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 9.68 \\ & \text { E-03 } \\ & \hline \end{aligned}$
	protein-DNA complex (GO:0032993)	83	9	0.19	+	46.6	$\begin{array}{r} \hline 8.15 \mathrm{E}- \\ 13 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.77 \\ & \mathrm{E}-11 \end{aligned}$
	U5 snRNP (GO:0005682)	21	2	0.05	+	40.93	$\begin{array}{r} \hline 1.30 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.13 \\ & \mathrm{E}-02 \end{aligned}$
	U1 snRNP (GO:0005685)	27	2	0.06	+	31.83	$\begin{array}{r} \hline 2.07 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.19 \\ & \mathrm{E}-02 \end{aligned}$
	small nucleolar ribonucleoprotein complex (GO:0005732)	43	3	0.1	+	29.98	$\begin{array}{r} 1.69 \mathrm{E}- \\ 04 \end{array}$	$\begin{aligned} & \hline 3.38 \\ & \mathrm{E}-03 \end{aligned}$
	nuclear chromatin (GO:0000790)	79	5	0.18	+	27.2	$\begin{array}{r} \hline 1.54 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.81 \\ & \mathrm{E}-05 \end{aligned}$
	cytosolic large ribosomal subunit (GO:0022625)	147	9	0.34	+	26.31	$\begin{array}{r} 9.96 \mathrm{E}- \\ 11 \end{array}$	$\begin{aligned} & \hline 4.07 \\ & \mathrm{E}-09 \\ & \hline \end{aligned}$
	nucleolus (GO:0005730)	445	24	1.04	+	23.18	$\begin{array}{r} 2.58 \mathrm{E}- \\ 26 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.74 \\ & \mathrm{E}-23 \\ & \hline \end{aligned}$
	chromatin (GO:0000785)	170	9	0.4	+	22.75	$\begin{array}{r} 3.40 \mathrm{E}- \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 1.25 \\ & \mathrm{E}-08 \end{aligned}$
	chromosome, centromeric region (GO:0000775)	59	3	0.14	+	21.85	$\begin{array}{r} 4.09 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.50 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	photosystem II (GO:0009523)	67	3	0.16	+	19.24	$\begin{array}{r} \hline 5.85 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 1.02 \\ & \mathrm{E}-02 \end{aligned}$
	large ribosomal subunit (GO:0015934)	204	9	0.47	+	18.96	$\begin{array}{r} 1.58 \mathrm{E}- \\ 09 \end{array}$	$\begin{aligned} & \text { 5.60 } \\ & \text { E-08 } \end{aligned}$
	cytosolic ribosome (GO:0022626)	324	14	0.75	+	18.57	$\begin{array}{r} 3.66 \mathrm{E}- \\ 14 \\ \hline \end{array}$	$\begin{aligned} & 1.94 \\ & \mathrm{E}-12 \\ & \hline \end{aligned}$
	chromosomal region (GO:0098687)	101	4	0.24	+	17.02	$\begin{array}{r} \hline 1.06 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.17 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	cytosolic part (GO:0044445)	372	14	0.87	+	16.17	$\begin{array}{r} \hline 2.24 \mathrm{E}- \\ 13 \end{array}$	$\begin{aligned} & 1.13 \\ & \mathrm{E}-11 \\ & \hline \end{aligned}$
	plastoglobule (GO:0010287)	80	3	0.19	+	16.11	$\begin{array}{r} 9.61 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 1.60 \\ & \mathrm{E}-02 \end{aligned}$
	ribosomal subunit (GO:0044391)	340	12	0.79	+	15.17	$\begin{array}{r} \hline 2.82 \mathrm{E}- \\ 11 \\ \hline \end{array}$	$\begin{aligned} & 1.20 \\ & \mathrm{E}-09 \\ & \hline \end{aligned}$
	photosystem (GO:0009521)	92	3	0.21	+	14.01	$\begin{array}{r} 1.42 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & 2.29 \\ & \mathrm{E}-02 \end{aligned}$
	nuclear chromosome part (GO:0044454)	161	5	0.37	+	13.35	$\begin{array}{r} 4.27 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{aligned} & \hline 9.65 \\ & \mathrm{E}-04 \end{aligned}$
	ribosome (GO:0005840)	469	14	1.09	+	12.83	$\begin{array}{r} 4.59 \mathrm{E}- \\ 12 \end{array}$	$\begin{aligned} & 2.03 \\ & \mathrm{E}-10 \\ & \hline \end{aligned}$
	plasmodesma (GO:0009506)	1011	30	2.35	+	12.75	$\begin{array}{r} 6.48 \mathrm{E}- \\ 26 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.44 \\ & \mathrm{E}-23 \end{aligned}$
	symplast (GO:0055044)	1011	30	2.35	+	12.75	$\begin{array}{r} \hline 6.48 \mathrm{E}- \\ 26 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.30 \\ & \mathrm{E}-23 \end{aligned}$
	cell-cell junction (GO:0005911)	1013	30	2.36	+	12.73	$\begin{array}{r} \hline 6.85 \mathrm{E}- \\ 26 \\ \hline \end{array}$	$\begin{aligned} & 1.82 \\ & \mathrm{E}-23 \end{aligned}$
	cell junction (GO:0030054)	1013	30	2.36	+	12.73	$\begin{array}{r} \hline 6.85 \mathrm{E}- \\ 26 \\ \hline \end{array}$	$\begin{aligned} & 1.46 \\ & \mathrm{E}-23 \\ & \hline \end{aligned}$
	nuclear chromosome (GO:0000228)	174	5	0.4	+	12.35	$\begin{array}{r} 6.10 \mathrm{E}- \\ 05 \end{array}$	$\begin{aligned} & 1.35 \\ & \mathrm{E}-03 \end{aligned}$
	cytosolic small ribosomal subunit (GO:0022627)	108	3	0.25	+	11.94	$\begin{array}{r} \hline 2.21 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.36 \\ & \mathrm{E}-02 \end{aligned}$
	chromosomal part (GO:0044427)	333	9	0.77	+	11.61	$\begin{array}{r} 9.48 \mathrm{E}- \\ 08 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.72 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	nuclear lumen (GO:0031981)	1053	26	2.45	+	10.61	$\begin{array}{r} 2.77 \mathrm{E}- \\ 20 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.68 \\ & \mathrm{E}-18 \\ & \hline \end{aligned}$
	chromosome (GO:0005694)	386	9	0.9	+	10.02	$\begin{array}{r} 3.20 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{aligned} & \hline 8.28 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	ribonucleoprotein complex (GO:1990904)	811	18	1.89	+	9.54	$\begin{array}{r} 3.32 \mathrm{E}- \\ 13 \end{array}$	$\begin{aligned} & 1.60 \\ & \mathrm{E}-11 \end{aligned}$
	apoplast (GO:0048046)	496	11	1.15	+	9.53	$\begin{array}{r} 2.26 \mathrm{E}- \\ 08 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.06 \\ & \mathrm{E}-07 \end{aligned}$

	intracellular organelle lumen (GO:0070013)	1279	28	2.98	+	9.41	$\begin{array}{r} 1.37 \mathrm{E}- \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 1.82 \\ & \mathrm{E}-18 \end{aligned}$
	membrane-enclosed lumen (GO:0031974)	1279	28	2.98	+	9.41	$\begin{array}{r} 1.37 \mathrm{E}- \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 1.62 \\ & \mathrm{E}-18 \\ & \hline \end{aligned}$
	organelle lumen (GO:0043233)	1279	28	2.98	+	9.41	$\begin{array}{r} \hline 1.37 \mathrm{E}- \\ 20 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.46 \\ & \mathrm{E}-18 \\ & \hline \end{aligned}$
	vacuolar membrane (GO:0005774)	650	14	1.51	+	9.26	$\begin{array}{r} 3.05 \mathrm{E}- \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 1.20 \\ & \mathrm{E}-08 \\ & \hline \end{aligned}$
	vacuolar part (GO:0044437)	652	14	1.52	+	9.23	$\begin{array}{r} \hline 3.17 \mathrm{E} \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 1.20 \\ & \mathrm{E}-08 \\ & \hline \end{aligned}$
	intracellular non-membranebounded organelle (GO:0043232)	1670	35	3.89	+	9.01	$\begin{array}{r} \hline 8.54 \mathrm{E}- \\ 26 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.51 \\ & \mathrm{E}-23 \\ & \hline \end{aligned}$
	non-membrane-bounded organelle (GO:0043228)	1670	35	3.89	+	9.01	$\begin{array}{r} \hline 8.54 \mathrm{E}- \\ 26 \end{array}$	$\begin{aligned} & 1.30 \\ & \mathrm{E}-23 \\ & \hline \end{aligned}$
	vacuole (GO:0005773)	1114	22	2.59	+	8.49	$\begin{array}{r} \hline 4.27 \mathrm{E}- \\ 15 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.84 \\ & \mathrm{E}-13 \end{aligned}$
	nuclear part (GO:0044428)	1396	26	3.25	+	8	$\begin{array}{r} \hline 2.43 \mathrm{E}- \\ 17 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.15 \\ & \mathrm{E}-15 \end{aligned}$
	external encapsulating structure (GO:0030312)	777	14	1.81	+	7.74	$\begin{array}{r} \hline 2.90 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{aligned} & \hline 9.95 \\ & \mathrm{E}-08 \\ & \hline \end{aligned}$
	cell wall (GO:0005618)	777	14	1.81	+	7.74	$\begin{array}{r} 2.90 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{aligned} & \hline 9.64 \\ & \mathrm{E}-08 \\ & \hline \end{aligned}$
	whole membrane (GO:0098805)	994	14	2.31	+	6.05	$\begin{array}{r} 6.08 \mathrm{E}- \\ 08 \\ \hline \end{array}$	$\begin{aligned} & 1.80 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	cytosol (GO:0005829)	2261	31	5.26	+	5.89	$\begin{array}{r} 3.14 \mathrm{E} \\ 17 \\ \hline \end{array}$	$\begin{aligned} & 2.57 \\ & \mathrm{E}-15 \\ & \hline \end{aligned}$
	bounding membrane of organelle (GO:0098588)	1317	14	3.06	+	4.57	$\begin{array}{r} \hline 1.73 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.09 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
	protein-containing complex (GO:0032991)	3150	33	7.33	+	4.5	$\begin{array}{r} \hline 4.62 \mathrm{E}- \\ 15 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.89 \\ & \mathrm{E}-13 \\ & \hline \end{aligned}$
	intracellular organelle part (GO:0044446)	5417	43	12.61	+	3.41	$\begin{array}{r} \hline 2.36 \mathrm{E}- \\ 16 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.79 \\ & \mathrm{E}-14 \\ & \hline \end{aligned}$
	organelle part (GO:0044422)	5424	43	12.62	+	3.41	$\begin{array}{r} 2.48 \mathrm{E}- \\ 16 \\ \hline \end{array}$	$\begin{aligned} & 1.76 \\ & \mathrm{E}-14 \end{aligned}$
	organelle membrane (GO:0031090)	1891	14	4.4	+	3.18	$\begin{array}{r} \hline 9.72 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.11 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	plasma membrane (GO:0005886)	3881	26	9.03	$+$	2.88	$\begin{array}{r} 1.95 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{aligned} & \hline 5.31 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	chloroplast (GO:0009507)	3975	25	9.25	+	2.7	$\begin{array}{r} \hline 1.26 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & \hline 3.18 \\ & \mathrm{E}-05 \end{aligned}$
	plastid (GO:0009536)	4034	25	9.39	+	2.66	$\begin{array}{r} \hline 1.66 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.00 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
	cell periphery (GO:0071944)	4525	28	10.53	+	2.66	$\begin{array}{r} 2.70 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.17 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	extracellular region (GO:0005576)	2926	17	6.81	+	2.5	$\begin{array}{r} 2.93 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 5.56 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	membrane (GO:0016020)	8459	40	19.68	+	2.03	$\begin{array}{r} 1.94 \mathrm{E}- \\ 07 \end{array}$	$\begin{aligned} & 5.41 \\ & \mathrm{E}-06 \end{aligned}$
	cytoplasmic part (GO:0044444)	10752	48	25.02	+	1.92	$\begin{array}{r} 7.85 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{aligned} & 2.53 \\ & \mathrm{E}-07 \end{aligned}$
	cytoplasm (GO:0005737)	13219	52	30.76	$+$	1.69	$\begin{array}{r} \hline 5.61 \mathrm{E}- \\ 08 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.70 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	nucleus (GO:0005634)	9826	37	22.87	+	1.62	$\begin{array}{r} \hline 3.59 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 6.70 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	intracellular organelle (GO:0043229)	17998	56	41.88	+	1.34	$\begin{array}{r} \hline 1.01 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.14 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	organelle (GO:0043226)	18037	56	41.97	+	1.33	$\begin{array}{r} 1.02 \mathrm{E}- \\ 04 \end{array}$	$\begin{aligned} & \hline 2.14 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	intracellular membrane-bounded organelle (GO:0043231)	17644	53	41.06	+	1.29	$\begin{array}{r} 1.54 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.44 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	membrane-bounded organelle (GO:0043227)	17746	53	41.3	+	1.28	$\begin{array}{r} \hline 1.60 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.50 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	intracellular part (GO:0044424)	20009	59	46.56	+	1.27	$\begin{array}{r} \hline 1.91 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.75 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	intracellular (GO:0005622)	20022	59	46.59	+	1.27	$\begin{array}{r} 1.91 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.69 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	cell part (GO:0044464)	22024	61	51.25	+	1.19	$\begin{array}{r} 8.45 \mathrm{E}- \\ 04 \end{array}$	$\begin{aligned} & 1.45 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	cell (GO:0005623)	22025	61	51.25	+	1.19	$\begin{array}{r} 8.45 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 1.43 \\ & \mathrm{E}-02 \end{aligned}$

Protei n Class	Analysis Type:	PANTHER Overrepresentatio n Test (Released 20171205)						
	Annotation Version and Release Date:	PANTHER version 13.1 Released 2018-02-03						
	Analyzed List:	upload_1 (Arabidopsis thaliana)						
	Reference List:	Arabidopsis thaliana (all genes in database)						
	Test Type:	FISHER						
	PANTHER Protein Class	Arabidopsis thaliana - REFLIST (27502)	uplo ad_1 (64)	upload _1 (expec ted)	upload _1 (over/u nder)	upload_1 (fold Enrichm ent)	upload _1 (raw Pvalue)	uplo ad 1 (FDR)
	histone (PC00118)	11	4	0.03	+	>100	$\begin{array}{r} 3.54 \mathrm{E}- \\ 08 \end{array}$	$\begin{aligned} & 1.56 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	tubulin (PCOO228)	17	2	0.04	+	50.56	$\begin{array}{r} 8.85 \mathrm{E}- \\ 04 \end{array}$	$\begin{aligned} & 1.56 \\ & \mathrm{E}-02 \end{aligned}$
	translation elongation factor (PC00222)	44	5	0.1	+	48.83	$\begin{array}{r} 1.01 \mathrm{E}- \\ 07 \end{array}$	$\begin{aligned} & \hline 3.57 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	actin and actin related protein (PCOOO39)	19	2	0.04	+	45.23	$\begin{array}{r} 1.08 \mathrm{E}- \\ 03 \end{array}$	$\begin{aligned} & 1.73 \\ & \mathrm{E}-02 \end{aligned}$
	translation initiation factor (PCOO224)	96	6	0.22	+	26.86	$\begin{array}{r} 1.39 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{aligned} & 4.09 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	G-protein (PCOOO20)	95	5	0.22	+	22.62	$\begin{array}{r} \hline 3.65 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & \hline 8.04 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
	translation factor (PC00223)	138	6	0.32	+	18.68	$\begin{array}{r} \hline 1.07 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & 2.69 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
	ribosomal protein (PC00202)	322	10	0.75	+	13.35	$\begin{array}{r} 4.78 \mathrm{E}- \\ 09 \end{array}$	$\begin{aligned} & \hline 2.80 \\ & \mathrm{E}-07 \\ & \hline \end{aligned}$
	RNA binding protein (PCOOO31)	1115	19	2.59	+	7.32	$\begin{array}{r} 6.06 \mathrm{E}- \\ 12 \end{array}$	$\begin{aligned} & \hline 5.34 \\ & \mathrm{E}-10 \end{aligned}$
	nucleic acid binding (PC00171)	1771	24	4.12	+	5.82	$\begin{array}{r} 5.75 \mathrm{E}- \\ 13 \end{array}$	$\begin{aligned} & 1.01 \\ & \mathrm{E}-10 \end{aligned}$
	Unclassified (UNCLASSIFIED)	19939	31	46.4	-	0.67	$\begin{array}{r} 5.75 \mathrm{E}- \\ 05 \end{array}$	$\begin{aligned} & 1.13 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
Molec ular Functi on	Analysis Type:	PANTHER Overrepresentatio n Test (Released 20171205)						
	Annotation Version and Release Date:	GO Ontology database Released 2018-06-01						
	Analyzed List:	upload_1 (Arabidopsis thaliana)						
	Reference List:	Arabidopsis thaliana (all genes in database)						
	Test Type:	FISHER						
	GO molecular function complete	Arabidopsis thaliana - REFLIST (27502)	uplo ad_1 (64)	upload _1 (expec ted)	upload _1 (over/u nder)	upload_1 (fold Enrichm ent)	upload _1 (raw Pvalue)	uplo ad_1 (FDR)
	translation elongation factor activity (GO:0003746)	55	6	0.13	+	46.88	$\begin{array}{r} 6.19 \mathrm{E}- \\ 09 \end{array}$	$\begin{aligned} & 1.95 \\ & \text { E-06 } \end{aligned}$
	chlorophyll binding (GO:0016168)	36	3	0.08	+	35.81	$\begin{array}{r} 1.03 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.02 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	structural constituent of cytoskeleton (GO:0005200)	50	4	0.12	+	34.38	$\begin{array}{r} 7.66 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & 1.61 \\ & \mathrm{E}-03 \end{aligned}$
	scopolin beta-glucosidase activity (GO:0102483)	42	3	0.1	+	30.69	$\begin{array}{r} 1.58 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 2.93 \\ \mathrm{E}-02 \\ \hline \end{array}$

	glycosyl compound catabolic process (GO:1901658)	60	3	0.14	+	21.49	$\begin{array}{r} 4.29 \mathrm{E}- \\ \hline 04 \\ \hline \end{array}$	$\begin{aligned} & 4.22 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	chromatin assembly or disassembly (GO:0006333)	61	3	0.14	+	21.13	$\begin{array}{r} 4.49 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 4.14 \\ \mathrm{E}-02 \\ \hline \end{array}$
	DNA packaging (GO:0006323)	63	3	0.15	+	20.46	$\begin{array}{r} 4.92 \mathrm{E}- \\ \hline 04 \end{array}$	$\begin{aligned} & \hline 4.46 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	carbohydrate derivative catabolic process (GO:1901136)	97	4	0.23	+	17.72	$\begin{array}{r} 9.11 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{aligned} & 1.28 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	regulation of gene expression, epigenetic (GO:0040029)	149	6	0.35	+	17.3	$\begin{array}{r} 1.64 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & 5.38 \\ & \text { E-04 } \end{aligned}$
	gene silencing (GO:0016458)	161	6	0.37	+	16.01	$\begin{array}{r} 2.53 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.11 \\ & \mathrm{E}-04 \\ & \hline \end{aligned}$
	DNA conformation change (GO:0071103)	115	4	0.27	+	14.95	$\begin{array}{r} 1.72 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.02 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	response to cytokinin (GO:0009735)	251	7	0.58	+	11.98	$\begin{array}{r} \hline 2.29 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & \hline 6.74 \\ & \mathrm{E}-04 \end{aligned}$
	chromatin organization (GO:0006325)	359	10	0.84	+	11.97	$\begin{array}{r} 1.30 \mathrm{E}- \\ 08 \end{array}$	$\begin{aligned} & \hline 6.99 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	translation (GO:0006412)	612	17	1.42	+	11.94	$\begin{array}{r} 5.07 \mathrm{E}- \\ 14 \end{array}$	$\begin{aligned} & 2.99 \\ & \text { E-10 } \end{aligned}$
	peptide biosynthetic process (GO:0043043)	617	17	1.44	+	11.84	$\begin{array}{r} 5.77 \mathrm{E}- \\ 14 \end{array}$	$\begin{aligned} & 1.70 \\ & \mathrm{E}-10 \end{aligned}$
	negative regulation of transcription, DNA-templated (GO:0045892)	239	6	0.56	+	10.79	$\begin{array}{r} 2.26 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{aligned} & 4.30 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	negative regulation of RNA biosynthetic process (GO:1902679)	240	6	0.56	+	10.74	$\begin{array}{r} 2.31 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 4.26 \\ \mathrm{E}-03 \\ \hline \end{array}$
	negative regulation of nucleic acid-templated transcription (GO:1903507)	240	6	0.56	+	10.74	$\begin{array}{r} 2.31 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 4.13 \\ \mathrm{E}-03 \\ \hline \end{array}$
	amide biosynthetic process (GO:0043604)	693	17	1.61	+	10.54	$\begin{array}{r} 3.57 \mathrm{E}- \\ 13 \end{array}$	$\begin{aligned} & \hline 7.02 \\ & \mathrm{E}-10 \end{aligned}$
	negative regulation of RNA metabolic process (GO:0051253)	248	6	0.58	+	10.4	$\begin{array}{r} 2.77 \mathrm{E}- \\ 05 \end{array}$	$\begin{aligned} & 4.80 \\ & \mathrm{E}-03 \end{aligned}$
	peptide metabolic process (GO:0006518)	707	17	1.65	+	10.33	$\begin{array}{r} 4.88 \mathrm{E}- \\ 13 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.19 \\ & \mathrm{E}-10 \\ & \hline \end{aligned}$
	negative regulation of nucleobase-containing compound metabolic process (GO:0045934)	275	6	0.64	+	9.38	$\begin{array}{r} 4.86 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 7.74 \\ \text { E-03 } \\ \hline \end{array}$
	chromosome organization (GO:0051276)	529	11	1.23	+	8.94	$\begin{array}{r} 4.29 \mathrm{E}- \\ 08 \end{array}$	$\begin{aligned} & 1.81 \\ & \mathrm{E}-05 \end{aligned}$
	cellular amide metabolic process (GO:0043603)	847	17	1.97	+	8.62	$\begin{array}{r} 8.07 \mathrm{E}- \\ 12 \end{array}$	$\begin{aligned} & \hline 9.51 \\ & \mathrm{E}-09 \\ & \hline \end{aligned}$
	negative regulation of cellular macromolecule biosynthetic process (GO:2000113)	305	6	0.71	+	8.45	$\begin{array}{r} 8.50 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{aligned} & 1.25 \\ & \mathrm{E}-02 \end{aligned}$
	negative regulation of macromolecule biosynthetic process (GO:0010558)	306	6	0.71	+	8.43	$\begin{array}{r} 8.65 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{array}{r} 1.24 \\ \mathrm{E}-02 \\ \hline \end{array}$
	ribosome biogenesis (GO:0042254)	423	8	0.98	+	8.13	$\begin{array}{r} 6.89 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & \hline 1.56 \\ & \mathrm{E}-03 \end{aligned}$
	negative regulation of cellular biosynthetic process (GO:0031327)	326	6	0.76	+	7.91	$\begin{array}{r} 1.22 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 1.59 \\ \mathrm{E}-02 \\ \hline \end{array}$
	negative regulation of biosynthetic process (GO:0009890)	331	6	0.77	+	7.79	$\begin{array}{r} 1.32 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 1.69 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	ribonucleoprotein complex biogenesis (GO:0022613)	512	9	1.19	+	7.55	$\begin{array}{r} 3.14 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & \hline 8.42 \\ & \mathrm{E}-04 \\ & \hline \end{aligned}$
	response to cadmium ion (GO:0046686)	342	6	0.8	+	7.54	$\begin{array}{r} 1.57 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 1.89 \\ & \mathrm{E}-02 \end{aligned}$
	response to cold (GO:0009409)	411	7	0.96	+	7.32	$\begin{array}{r} 5.17 \mathrm{E}- \\ 05 \end{array}$	$\begin{aligned} & \hline 8.03 \\ & \mathrm{E}-03 \end{aligned}$
	cellular protein-containing complex assembly (GO:0034622)	495	8	1.15	+	6.94	$\begin{array}{r} \hline 2.10 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.13 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	negative regulation of nitrogen compound metabolic process (GO:0051172)	383	6	0.89	+	6.73	$\begin{array}{r} 2.86 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 3.12 \\ \mathrm{E}-02 \\ \hline \end{array}$
	response to temperature stimulus (GO:0009266)	600	9	1.4	+	6.45	$\begin{array}{r} \hline 1.10 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.32 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$

		Eukaryotic Translation Elongation (R-ATH-156842)	12	5	0.03	+	> 100	$\begin{array}{r} 3.48 \mathrm{E}- \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 6.60 \\ & \text { E-08 } \\ & \hline \end{aligned}$
		Gamma carboxylation, hypusine formation and arylsulfatase activation (R-ATH-163841)	12	2	0.03	+	71.62	$\begin{array}{r} 4.74 \mathrm{E}- \\ 04 \\ \hline \end{array}$	2.00
		Methylation (R-ATH-156581)	13	2	0.03	+	66.11	$\begin{array}{r} 5.46 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.18 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		HSF1 activation (R-ATH-3371511)	49	5	0.11	+	43.85	$\begin{array}{r} 1.67 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{aligned} & \hline 8.42 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
		Translation (R-ATH-72766)	276	14	0.64	+	21.8	$\begin{array}{r} 4.44 \mathrm{E}- \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 3.37 \\ & \mathrm{E}-12 \\ & \hline \end{aligned}$
		GTP hydrolysis and joining of the 60S ribosomal subunit (R-ATH72706)	201	9	0.47	+	19.24	$\begin{array}{r} 1.39 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{array}{r} 2.11 \\ \mathrm{E}-07 \\ \hline \end{array}$
		Cellular response to heat stress (R-ATH-3371556)	114	5	0.27	+	18.85	$\begin{array}{r} 8.57 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & 3.82 \\ & \mathrm{E}-04 \\ & \hline \end{aligned}$
		SRP-dependent cotranslational protein targeting to membrane (R-ATH-1799339)	206	9	0.48	+	18.77	$\begin{array}{r} 1.72 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{array}{r} 2.17 \\ \mathrm{E}-07 \\ \hline \end{array}$
		Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) (R-ATH-975956)	210	9	0.49	+	18.42	$\begin{array}{r} 2.02 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{array}{r} 2.18 \\ \mathrm{E}-07 \\ \hline \end{array}$
		Formation of a pool of free 40S subunits (R-ATH-72689)	220	9	0.51	+	17.58	$\begin{array}{r} \hline 2.98 \mathrm{E}- \\ 09 \end{array}$	$\begin{aligned} & 2.83 \\ & \text { E-07 } \end{aligned}$
		Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) (R-ATH-975957)	227	9	0.53	+	17.04	$\begin{array}{r} 3.88 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{aligned} & 3.27 \\ & \mathrm{E}-07 \\ & \hline \end{aligned}$
		Nonsense-Mediated Decay (NMD) (R-ATH-927802)	227	9	0.53	+	17.04	$\begin{array}{r} 3.88 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{array}{r} 2.94 \\ \mathrm{E}-07 \\ \hline \end{array}$
		L13a-mediated translational silencing of Ceruloplasmin expression (R-ATH-156827)	233	9	0.54	+	16.6	$\begin{array}{r} 4.83 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{array}{r} 3.33 \\ \mathrm{E}-07 \\ \hline \end{array}$
		Cap-dependent Translation Initiation (R-ATH-72737)	241	9	0.56	+	16.05	$\begin{array}{r} 6.41 \mathrm{E}- \\ 09 \end{array}$	$\begin{aligned} & 4.05 \\ & \mathrm{E}-07 \\ & \hline \end{aligned}$
		Eukaryotic Translation Initiation (R-ATH-72613)	247	9	0.57	+	15.66	$\begin{array}{r} 7.88 \mathrm{E}- \\ 09 \end{array}$	$\begin{array}{r} 4.59 \\ \mathrm{E}-07 \\ \hline \end{array}$
		Cellular responses to stress (R-ATH-2262752)	192	6	0.45	+	13.43	$\begin{array}{r} \hline 6.75 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.20 \\ & \mathrm{E}-04 \\ & \hline \end{aligned}$
		Gene Expression (R-ATH-74160)	741	18	1.72	+	10.44	$\begin{array}{r} \hline 7.47 \mathrm{E}- \\ 14 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.83 \\ & \mathrm{E}-11 \\ & \hline \end{aligned}$
		Metabolism of proteins (R-ATH- 392499)	696	15	1.62	+	9.26	$\begin{array}{r} 6.35 \mathrm{E}- \\ 11 \end{array}$	$\begin{aligned} & 1.61 \\ & \mathrm{E}-08 \\ & \hline \end{aligned}$
		Unclassified (UNCLASSIFIED)	24272	39	56.48	-	0.69	$\begin{array}{r} 2.25 \mathrm{E}- \\ 08 \end{array}$	$\begin{aligned} & 1.22 \\ & \text { E-06 } \end{aligned}$
dTALE-ChAP trial 2	Cellula r Comp onent	Analysis Type:	PANTHER Overrepresentatio n Test (Released 20171205)						
		Annotation Version and Release Date:	GO Ontology database Released 2018-06-01						
		Analyzed List:	upload_1 (Arabidopsis thaliana)						
		Reference List:	Arabidopsis thaliana (all genes in database)						
		Test Type:	FISHER						
		GO cellular component complete	Arabidopsis thaliana - REFLIST (27502)	uplo ad_1 (41)	upload _1 (expec ted)	upload _1 (over/u nder)	upload_1 (fold Enrichm ent)	upload _1 (raw Pvalue)	uplo ad_1 (FDR)
		nucleosome (GO:0000786)	47	8	0.07	+	> 100	$\begin{array}{r} 1.35 \mathrm{E}- \\ 14 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.58 \\ & \mathrm{E}-12 \end{aligned}$
		DNA packaging complex (GO:0044815)	51	8	0.08	+	> 100	$\begin{array}{r} \hline 2.45 \mathrm{E}- \\ 14 \end{array}$	$\begin{aligned} & \hline 5.20 \\ & \mathrm{E}-12 \end{aligned}$
		U4 snRNP (GO:0005687)	13	2	0.02	+	> 100	$\begin{array}{r} \hline 2.24 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 6.62 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$

	protein-DNA complex (GO:0032993)	83	8	0.12	+	64.65	$\begin{array}{r} 9.06 \mathrm{E}- \\ 13 \\ \hline \end{array}$	$\begin{aligned} & 1.60 \\ & \mathrm{E}-10 \end{aligned}$
	U5 snRNP (GO:0005682)	21	2	0.03	+	63.88	$\begin{array}{r} 5.36 \mathrm{E}- \\ 04 \end{array}$	$\begin{aligned} & 1.39 \\ & \mathrm{E}-02 \end{aligned}$
	U1 snRNP (GO:0005685)	27	2	0.04	+	49.69	$\begin{array}{r} 8.56 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 2.17 \\ & \mathrm{E}-02 \end{aligned}$
	U2 snRNP (GO:0005686)	37	2	0.06	+	36.26	$\begin{array}{r} 1.55 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & 3.82 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	nuclear chromatin (GO:0000790)	79	4	0.12	+	33.96	$\begin{array}{r} \hline 7.13 \mathrm{E}- \\ 06 \\ \hline \end{array}$	$\begin{aligned} & 2.53 \\ & \mathrm{E}-04 \\ & \hline \end{aligned}$
	spliceosomal tri-snRNP complex (GO:0097526)	42	2	0.06	+	31.94	$1.97 \mathrm{E}-$ 03	$\begin{aligned} & 4.64 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	chromatin (GO:0000785)	170	8	0.25	+	31.57	$\begin{array}{r} \hline 2.07 \mathrm{E}- \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 1.37 \\ & \mathrm{E}-08 \\ & \hline \end{aligned}$
	small nucleolar ribonucleoprotein complex (GO:0005732)	43	2	0.06	+	31.2	$2.06 \mathrm{E}-$ 03	$\begin{aligned} & \hline 4.75 \\ & \mathrm{E}-02 \end{aligned}$
	cytosolic large ribosomal subunit (GO:0022625)	147	5	0.22	+	22.82	$\begin{array}{r} \hline 3.06 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & 1.12 \\ & \mathrm{E}-04 \\ & \hline \end{aligned}$
	nucleolus (GO:0005730)	445	15	0.66	+	22.61	$\begin{array}{r} \hline 7.46 \mathrm{E}- \\ 17 \end{array}$	$\begin{aligned} & \hline 7.93 \\ & \mathrm{E}-14 \end{aligned}$
	nuclear chromosome part (GO:0044454)	161	4	0.24	+	16.67	$\begin{array}{r} 1.06 \mathrm{E}- \\ 04 \end{array}$	$\begin{aligned} & \hline 3.51 \\ & \mathrm{E}-03 \\ & \hline \end{aligned}$
	cytosolic ribosome (GO:0022626)	324	8	0.48	+	16.56	$\begin{array}{r} 2.77 \mathrm{E}- \\ 08 \\ \hline \end{array}$	$\begin{aligned} & 1.40 \\ & \text { E-06 } \\ & \hline \end{aligned}$
	large ribosomal subunit (GO:0015934)	204	5	0.3	+	16.44	$\begin{array}{r} 1.44 \mathrm{E}- \\ 05 \end{array}$	$\begin{array}{r} 4.93 \\ \mathrm{E}-04 \\ \hline \end{array}$
	chromosomal part (GO:0044427)	333	8	0.5	+	16.11	$\begin{array}{r} \hline 3.40 \mathrm{E}- \\ 08 \end{array}$	$\begin{aligned} & 1.64 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	nuclear chromosome (GO:0000228)	174	4	0.26	+	15.42	$\begin{array}{r} \hline 1.42 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.56 \\ & \mathrm{E}-03 \end{aligned}$
	cytosolic part (GO:0044445)	372	8	0.55	+	14.43	$\begin{array}{r} 7.83 \mathrm{E}- \\ 08 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.47 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	chromosome (GO:0005694)	386	8	0.58	+	13.9	$\begin{array}{r} 1.03 \mathrm{E}- \\ 07 \end{array}$	$\begin{aligned} & 4.39 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
	ribosomal subunit (GO:0044391)	340	7	0.51	+	13.81	$\begin{array}{r} \hline 7.38 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{aligned} & 2.80 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
	spliceosomal complex (GO:0005681)	151	3	0.23	+	13.33	$\begin{array}{r} 1.56 \mathrm{E}- \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.78 \\ & \mathrm{E}-02 \end{aligned}$
	ribosome (GO:0005840)	469	8	0.7	+	11.44	$\begin{array}{r} 4.42 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.74 \\ & \mathrm{E}-05 \end{aligned}$
	nuclear lumen (GO:0031981)	1053	16	1.57	+	10.19	$\begin{array}{r} \hline 9.82 \mathrm{E}- \\ 13 \end{array}$	$\begin{aligned} & 1.49 \\ & \mathrm{E}-10 \end{aligned}$
	plasmodesma (GO:0009506)	1011	15	1.51	+	9.95	$\begin{array}{r} 8.54 \mathrm{E}- \\ 12 \end{array}$	$\begin{aligned} & 8.25 \\ & \mathrm{E}-10 \end{aligned}$
	symplast (GO:0055044)	1011	15	1.51	+	9.95	$\begin{array}{r} 8.54 \mathrm{E}- \\ 12 \\ \hline \end{array}$	$\begin{aligned} & 7.56 \\ & \mathrm{E}-10 \end{aligned}$
	cell-cell junction (GO:0005911)	1013	15	1.51	+	9.93	$\begin{array}{r} 8.78 \mathrm{E}- \\ 12 \end{array}$	$\begin{aligned} & 7.18 \\ & \mathrm{E}-10 \\ & \hline \end{aligned}$
	cell junction (GO:0030054)	1013	15	1.51	+	9.93	$\begin{array}{r} \hline 8.78 \mathrm{E}- \\ 12 \\ \hline \end{array}$	$\begin{aligned} & \hline 6.66 \\ & \mathrm{E}-10 \end{aligned}$
	ribonucleoprotein complex (GO:1990904)	811	12	1.21	+	9.93	$\begin{array}{r} \hline 1.67 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{aligned} & \hline 9.84 \\ & \mathrm{E}-08 \\ & \hline \end{aligned}$
	intracellular organelle lumen (GO:0070013)	1279	17	1.91	+	8.92	$\begin{array}{r} \hline 1.27 \mathrm{E}- \\ 12 \end{array}$	$\begin{aligned} & 1.69 \\ & \mathrm{E}-10 \\ & \hline \end{aligned}$
	membrane-enclosed lumen (GO:0031974)	1279	17	1.91	+	8.92	$\begin{array}{r} \hline 1.27 \mathrm{E}- \\ 12 \\ \hline \end{array}$	$\begin{aligned} & 1.50 \\ & \mathrm{E}-10 \end{aligned}$
	organelle lumen (GO:0043233)	1279	17	1.91	+	8.92	$\begin{array}{r} \hline 1.27 \mathrm{E}- \\ 12 \\ \hline \end{array}$	$\begin{aligned} & 1.35 \\ & \mathrm{E}-10 \\ & \hline \end{aligned}$
	intracellular non-membranebounded organelle (GO:0043232)	1670	22	2.49	+	8.84	$\begin{array}{r} 1.53 \mathrm{E}- \\ 16 \end{array}$	$\begin{aligned} & \hline 8.12 \\ & \mathrm{E}-14 \end{aligned}$
	non-membrane-bounded organelle (GO:0043228)	1670	22	2.49	+	8.84	$1.53 \mathrm{E}-$ 16	5.42 E-14
	nuclear part (GO:0044428)	1396	16	2.08	+	7.69	$\begin{array}{r} \hline 6.38 \mathrm{E}- \\ 11 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.52 \\ & \mathrm{E}-09 \\ & \hline \end{aligned}$
	vacuole (GO:0005773)	1114	12	1.66	+	7.23	$\begin{array}{r} \hline 5.41 \mathrm{E}- \\ 08 \\ \hline \end{array}$	2.50
	vacuolar membrane (GO:0005774)	650	6	0.97	+	6.19	$\begin{array}{r} 3.94 \mathrm{E}- \\ \hline 04 \\ \hline \end{array}$	$\begin{aligned} & 1.10 \\ & \mathrm{E}-02 \end{aligned}$
	vacuolar part (GO:0044437)	652	6	0.97	+	6.17	$\begin{array}{r} 4.01 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 1.09 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$

		Analyzed List:	upload_1 (Arabidopsis thaliana)						
		Reference List:	Arabidopsis thaliana (all genes in database)						
		Test Type:	FISHER						
		Reactome pathways	Arabidopsis thaliana - REFLIST (27502)	uplo ad_1 (41)	upload -1 (expec ted)	upload _1 (over/u nder)	upload_1 (fold Enrichm ent)	$\begin{aligned} & \hline \text { upload } \\ & -1 \text { (raw } \\ & \text { P- } \\ & \text { value) } \\ & \hline \end{aligned}$	uplo ad_1 (FDR)
		Eukaryotic Translation Elongation (R-ATH-156842)	12	4	0.02	+	>100	$\begin{array}{r} 7.59 \mathrm{E}- \\ \hline 09 \end{array}$	$\begin{aligned} & \hline 5.75 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
		HSF1 activation (R-ATH-3371511)	49	4	0.07	+	54.76	$\begin{array}{r} \hline 1.17 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & \hline 2.22 \\ & \mathrm{E}-04 \\ & \hline \end{aligned}$
		mRNA Splicing - Minor Pathway (R-ATH-72165)	77	3	0.11	+	26.13	$\begin{array}{r} 2.32 \mathrm{E}- \\ 04 \end{array}$	$\begin{aligned} & 2.20 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		Cellular response to heat stress (R-ATH-3371556)	114	4	0.17	+	23.54	$\begin{array}{r} 2.87 \mathrm{E}- \\ 05 \end{array}$	$\begin{aligned} & 3.62 \\ & \mathrm{E}-03 \end{aligned}$
		Translation (R-ATH-72766)	276	8	0.41	+	19.44	$\begin{array}{r} 8.24 \mathrm{E}- \\ 09 \end{array}$	$\begin{aligned} & 3.12 \\ & \mathrm{E}-06 \\ & \hline \end{aligned}$
		Cellular responses to stress (R-ATH-2262752)	192	4	0.29	+	13.97	$\begin{array}{r} 2.05 \mathrm{E}- \\ \hline 04 \\ \hline \end{array}$	$\begin{aligned} & 2.22 \\ & \mathrm{E}-02 \end{aligned}$
		GTP hydrolysis and joining of the 60S ribosomal subunit (R-ATH72706)	201	4	0.3	+	13.35	$\begin{array}{r} 2.43 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 2.05 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		SRP-dependent cotranslational protein targeting to membrane (R-ATH-1799339)	206	4	0.31	+	13.02	$\begin{array}{r} 2.67 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 2.02 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) (R-ATH-975956)	210	4	0.31	+	12.78	$\begin{array}{r} 2.86 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 1.97 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		Formation of a pool of free 40S subunits (R-ATH-72689)	220	4	0.33	+	12.2	$\begin{array}{r} \hline 3.41 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 2.15 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) (R-ATH-975957)	227	4	0.34	+	11.82	$\begin{array}{r} 3.83 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 2.23 \\ \mathrm{E}-02 \\ \hline \end{array}$
		Nonsense-Mediated Decay (NMD) (R-ATH-927802)	227	4	0.34	+	11.82	$\begin{array}{r} \hline 3.83 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.07 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		L13a-mediated translational silencing of Ceruloplasmin expression (R-ATH-156827)	233	4	0.35	+	11.52	$\begin{array}{r} 4.22 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 2.13 \\ \mathrm{E}-02 \\ \hline \end{array}$
		Cap-dependent Translation Initiation (R-ATH-72737)	241	4	0.36	+	11.13	$\begin{array}{r} 4.78 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 2.26 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		Eukaryotic Translation Initiation (R-ATH-72613)	247	4	0.37	+	10.86	$\begin{array}{r} 5.23 \mathrm{E}- \\ 04 \end{array}$	$\begin{aligned} & 2.33 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		Gene Expression (R-ATH-74160)	741	11	1.1	+	9.96	$\begin{array}{r} 8.75 \mathrm{E}- \\ 09 \\ \hline \end{array}$	$\begin{array}{r} 2.21 \\ \mathrm{E}-06 \\ \hline \end{array}$
		Metabolism of proteins (R-ATH392499)	696	8	1.04	+	7.71	$\begin{array}{r} 7.93 \mathrm{E}- \\ 06 \end{array}$	$\begin{aligned} & \hline 1.20 \\ & \mathrm{E}-03 \end{aligned}$
dTALE ChAP trial 3	Cellula r comp onent	Analysis Type:	PANTHER Overrepresentatio n Test (Released 20171205)						
		Annotation Version and Release Date:	GO Ontology database Released 2018-06-01						
		Analyzed List:	upload_1 (Arabidopsis thaliana)						
		Reference List:	Arabidopsis thaliana (all genes in database)						
		Test Type:	FISHER						
		GO cellular component complete	Arabidopsis thaliana - REFLIST (27502)	uplo ad_1 (45)	upload _1 (expec ted)	upload _1 (over/u nder)	upload_1 (fold Enrichm ent)	upload _1 (raw Pvalue)	uplo ad_1 (FDR)

	Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) (R-ATH-975956)	210	4	0.34	+	11.64	$\begin{array}{r} 4.11 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 3.12 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	Formation of a pool of free 40S subunits (R-ATH-72689)	220	4	0.36	+	11.11	$\begin{array}{r} 4.88 \mathrm{E}- \\ 04 \end{array}$	$\begin{aligned} & \hline 3.36 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) (R-ATH-975957)	227	4	0.37	+	10.77	$\begin{array}{r} 5.48 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 3.46 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	Nonsense-Mediated Decay (NMD) (R-ATH-927802)	227	4	0.37	+	10.77	$\begin{array}{r} 5.48 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 3.20 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	L13a-mediated translational silencing of Ceruloplasmin expression (R-ATH-156827)	233	4	0.38	+	10.49	$\begin{array}{r} 6.03 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 3.27 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
	Cap-dependent Translation Initiation (R-ATH-72737)	241	4	0.39	+	10.14	$\begin{array}{r} 6.83 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.45 \\ & \mathrm{E}-02 \end{aligned}$
	Eukaryotic Translation Initiation (R-ATH-72613)	247	4	0.4	+	9.9	$\begin{array}{r} \hline 7.48 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.54 \\ & \mathrm{E}-02 \end{aligned}$
	Gene Expression (R-ATH-74160)	741	10	1.21	+	8.25	$\begin{array}{r} \hline 2.88 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.27 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$
	Metabolism of proteins (R-ATH392499)	696	8	1.14	+	7.02	$\begin{array}{r} \hline 1.63 \mathrm{E}- \\ 05 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.48 \\ & \mathrm{E}-03 \end{aligned}$

Danksagungen

Ich möchte mich zuallererst bei Klaus Harter bedanken, der mir die Möglichkeit gegeben hat, in seiner Arbeitsgruppe meine Doktorarbeit zu schreiben. Ich möchte mich für das entgegen gebrachte Vertrauen, die Unterstützung und die vielen aufmunternden Worte bedanken. Vor allem, dass er nach wie vor an das Projekt geglaubt hat, egal welcher Stein über den Weg gerollt kam. Des weiteren möchte ich mich bei Thomas Lahaye, sowie dem anderen Mitglied meines Promotionskomitees Frederic Brunner bedanken, für die großartige Unterstützung und hilfreichen Hinweise.

Ich danke Allen, die mit ihrer Expertise während des Projektes zugearbeitet haben und hervorragende Kollaborationspartner waren. Insbesondere seien hier Waltraud Schulze und Xuna Wu für ihre Hilfe bei den MS Experimenten, sowie Robert Morbitzer für die Klonierung der dTALEs erwähnt.

Ein riesen Dankeschön gilt einer Person, ohne die dieses Projekt nicht möglich gewesen wäre: Luise Brand. Luise, ohne dich wäre ich jetzt nicht da wo ich jetzt bin. Du warst ein hervorragender Gegenpol, hast mich immer wieder in Spur gebracht und auf Kurs gehalten. Ohne dich hätte ich das nicht geschafft!

Ich möchte mich bei allen Kollegen des ZMBPs, der Pflanzenphysiologie vor Allem bei den aktuellen und alten Mitgliedern von Bay 6-8 bedanken. Ihr habt meine Zeit hier unvergesslich gemacht. Vielen Dank an Brigitte und das Gärtnerei Team. Anne und Rebecca, nun hat es auch der letzte der alten Riege fast geschafft, vielen Dank euch zwei. Danke Juan, Nina klein, Nina groß, Andi, Sachie, Heunes (Quallenmann), Üner, Fredi, Nata, Angela, Claudi, Nilles, Thomas, Rosa, Lydia, Sabine und Lisa. Ich hatte viel Spaß mit euch.

Der letzte Absatz gilt meiner Familie, meinen Eltern und Großeltern und natürlich auch meinen Freunden. Vielen Dank für fortwährende Unterstützung, das Ertragen schlechter Launen und die ein oder andere finanzielle Spritze.

Mama \& Papa danke, dass ihr mir immer den Rücken freigehalten habt und mich immer in meinen Vorhaben unterstützt habt.

Und jetzt von ganzem Herzen: Endlich fertig!

