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MEG Magnetoencephalography 

EEG  Electroencephalography 

EcoG Electrocorticography 

fMRI Functional magnetic resonance imaging 

PET  Positron emission tomography 

NIRS Near infra-red spectroscopy 
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Abstract  

The brain is composed of several functionally specialized areas. Communication between 

these brain regions serves as the main substrate for complex cognitive processes and 

behaviours that require a continuous integration of information. The kind of interaction 

concluding between disparate brain regions both, time-locked to, or independent of 

external events can be indexed by functional communication. There is abundance of 

literature suggesting the modulation of the underlying functional communication between 

different brain regions by manipulating the behaviour i.e. different variations in motor 

tasks and cognitive tasks. But, the outcome of all these studies only suggests the 

correlative nature of the task induced functional communication without suggesting the 

causal relation. In the presented dissertation, we have trained healthy participant to 

volitionally modulate their functional connectivity between the target brain regions using 

real-time magnetoencephalography neurofeedback (rt-MEG Neurofeedback) and 

assessed its effects on behavioural outcome. Together with literature reports, our result 

hint towards a causal relationship between changes of functional connectivity and 

changes in perceptual and behavioural performance.  

In the first study, 30 healthy participants learned to modulate their functional connectivity 

between primary motor cortices using real-time neurofeedback. Effects of the training on 

the behavioural outcome was assessed by investigating their motor performance prior 

and after the training. We conclude from this study that the increase of the functional 

communication between the two primary motor cortices results in the deterioration of the 

motor performance in a bimanual finger tapping task. In the second study, 8 healthy 

participants learned to modulate their fronto-parietal communication using a ViBM 

paradigm in neurofeedback setup. Effect of the training on the perceptual threshold were 

assessed. We demonstrated that the modulation of the fronto-parietal communication is 

feasible and does influence participants’ perceptual thresholds suggesting that the 

improvement in the fronto-parietal communication does reduce the perceptual threshold 

measured before (Pre-test) and after (Post-test) the neurofeedback training.  

This doctoral dissertation provides evidence supporting a causal relation between the 

modulation of functional connectivity and behaviour and perception and thus provides 
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new insights in the intra-cortical communication and thus in the hierarchical organization 

of the human brain.  

 



5 
 

 

 

 

 

 

 

 

 

 

 

Dedicated 

to 

Mummy, Daddy & Alvi. 

 



6 
 

Introduction 

Functional Connectivity  

Brain functions are distributed across different, functionally specialized regions 

that communicate between each other. To sustain day-to-day life functions, the 

communication between brain regions is constantly modulated and adapted to 

current processing needs. Thus, the spatial and temporal communication between 

different brain regions is highly dynamic (Fries, 2005; Fries, 2015; Miltner, et al., 

1999; Siegel, et al., 2012; Singer, 1999; Varela, et al., 2001). Hierarchically, brain’s 

connectivity includes a pattern of anatomical links (anatomical connectivity), 

temporal statistical dependencies (functional connectivity) and causal interactions 

(effective connectivity) within the nervous system (Singer, 1999; Sporns, 2007). 

It’s well known that the anatomical connections are the underlying basis of all kinds 

of neuronal communication (Friston, 2011). However, an existing anatomical 

connection does not mean that it is involved in the exchange of information in a 

certain situation or task. One approach to quantify the neuronal communication is 

to use the measure of functional connectivity and effective connectivity.  

Functional connectivity estimates are based on correlation or covariance analyses 

of multi-channel time series recorded at different location as in 

electroencephalography (EEG), magnetoencephalography (MEG), EcoG and 

multichannel recordings (Astolfi, et al., 2007; Sakkalis, 2011; Schoffelen and 

Gross, 2009; Srinivasan, et al., 2007). The mainstream neuroscience 

predominantly focussed on the identification of functionally defined brain areas. 

With the development of various measures and the availability of multichannel 

recording systems, the estimation of the functional communication between 

disparate brain regions became feasible. With the shift of the focus of research 

towards functional connectivity it became evident, that many of the 

neuropathophysiological conditions are arising from disturbed or disrupted brain 

network communication. These studies suggest the pivotal role of communication 

in the normal, functioning healthy brain. In our studies, we explore the aspect of 

functional communication between two target brain regions. Functional 
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communication constitutes the statistical dependencies such as correlation, 

coherence and transfer entropy (Gerstein and Perkel, 1969). Whereas, in an 

effective communication, a model with a set of assumptions is fitted, and then 

assessing the influence of one system on the other with or without a mediator. 

Following which, we always compare a model with a model on the other hand 

functional connectivity is not dependent on any predefined model except the null 

hypothesis (Aertsen, 1991).  

In the here presented research we have used the squared magnitude coherence 

to index the measure of the functional connectivity.  

C𝑥𝑦(𝑓) =
[S𝑥𝑦(𝑓)]2

[S𝑥𝑥(𝑓)]x[S𝑦𝑦(𝑓)]
 

 

Magnitude squared coherence (MSC) is a frequency domain cross-correlation 

estimate between two given signals. It allows for the quantification of the correlated 

activity between two target brain regions in specific frequency bands (Carter, et 

al., 1973; Carter, 1987; Carter, 1993; Knapp and Carter, 1976).  

 

Neurofeedback 

Neurofeedback is a subfield of biofeedback in which participants are trained to gain 

voluntary control on electro-magneto-physiological processes in the human brain 

(figure 1). Neurofeedback uses the brain activity captured by neuroimaging 

modalities to extract meaningful information and to visualize it to the participants. 

Receiving feedback about their own brain activity, participants learn to modulate it 

and eventually get volitional control over it. Depending upon the kind of modality 

being used to acquire the neurophysiological signals, neurofeedback can be 

categorized into two - invasive and non-invasive - types. MEG, EEG, PET, fMRI, 

and NIRS are the imaging modalities been used for non-invasive neurofeedback 

where the neurophysiological signal is recorded either by the electrodes attached 

on the scalp (EEG) (Birbaumer, 2006; Broetz, et al., 2010), by highly sensitive 
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magnetic field detectors (superconducting quantum interference devices: SQUIDs) 

capturing the magnetic activity of the brain in MEG (Caria, et al., 2011; Mellinger, 

et al., 2007), by measuring the blood flow and calculating the BOLD signal (fMRI) 

(Sitaram, et al., 2007; Sitaram, et al., 2008; Weiskopf, et al., 2004) and by inferring 

the penetration and absorption of the near infra-red light at the scalp (NIRS) 

(Birbaumer, et al., 2008; Chaudhary, et al., 2015; Chaudhary, et al., 2016; 

Gallegos-Ayala, et al., 2014), and by PET (Ciernik, et al., 2003; Wolpaw, et al., 

2000). Invasive neurofeedback approaches make use of electrocortical recordings 

(EcoG) (Deepajothi and Selvarajan, 2016; Leuthardt, et al., 2006). During 

neurofeedback training, subjects receive online visual or auditory feedback of 

his/her brain activity measured in real-time (Birbaumer, et al., 2008; Birbaumer, et 

al., 2013; Chaudhary, et al., 2015) in order to learn its voluntary modulation. 

Recently, our group demonstrated that in addition to brain activity, brain 

connectivity can be fed back and learnt to be modulated (Kajal, et al., 2017; Kajal, 

et al., 2015b). Voluntary modification of the neurophysiological signals, during 

neurofeedback, have been suggested as therapeutic intervention in various 

psychiatric and neurological disorders (Birbaumer, 2006; Birbaumer, et al., 2008). 

In the presented doctoral dissertation, we demonstrate the feasibility of a training 

in healthy participant to volitionally modulate the functional connectivity between 

two target brain regions. These studies are the first step towards the development 

of treatments of neurological and psychiatric diseases with disturbed functional 

connectivity’s. 
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Figure 1) Plot showing the principle layout of the neurofeedback setup used in our 

study. The neurophysiological signals were captured non-invasively using MEG, 

processed online using the software BCI2000 and translated into a visual feedback 

signal (Mellinger, et al., 2007). 

 

Efficient neurofeedback designs make use of operant conditioning. In operant 

conditioning a previous neutral discriminative stimulus is linked to a response by 

providing reward whenever the response follows the discriminative stimulus. After 

the training the appearance of the discriminative stimulus elicits the response quasi 

automatically.  Linking the brain activation and connectivity patterns to 

corresponding discriminative stimuli makes the neurofeedback training more 

efficient. With a short training it is possible to establish a sustainable and reliable 

link between discriminative stimuli and the corresponding responses.  

 

In our experiments, we have used MEG-based real-time neurofeedback based on 

inter-hemispheric and intra-hemispheric functional connectivity. The 
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neurophysiological signals were processed in real-time using BCI2000 and the 

target feature, in our case functional connectivity, was then translated into visual 

feedback. Participants were asked to increase the visual feedback as much as 

possible. Learned successful control of the feedback stimulus reflects successfully 

acquired control over functional connectivity between the predefined brain regions. 

In the first experiment of my thesis, we have targeted the functional connectivity 

between left and right motor cortex to test the feasibility of our approach. With a 

behavioural readout that is directly related to the trained connectivity’s, as in the 

first experiment, the chances to be able to demonstrate behavioural effects are 

higher than in experiments in which modulated connectivity affects behaviour only 

after a cascade of multiple processing steps (Kajal, et al., 2017; Kajal, et al., 

2015b). In the second experiment we aimed to train the modulation of fronto-

parietal functional connectivity using neurofeedback with a more therapeutic 

perspective. Disturbed fronto-parietal connectivity has been described for 

psychiatric disorders showing deficits in the processing of emotional face 

expressions such as schizophrenia and autism. To investigate whether 

neurofeedback training of fronto-parietal functional connectivity can alter the 

threshold for the perception of emotional stimuli we carried out a feasibility study 

in healthy control subjects. 
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Included Studies 

Learned control of inter-hemispheric connectivity: Effects on 

bimanual motor performance. 

In the first part of our study, we have explored the possibility of modulating the 

functional connectivity in motor cortical areas. We have taken primary motor cortex 

into consideration because we can expect a direct readout, behaviour. Symmetric 

or asymmetric bimanual movements are characterized by specific patterns of inter-

hemispheric neuronal communication. Yet, studies exclusively inferred functional 

connectivity (dependent variable) as a function of different motor tasks 

(independent variable). We proposed a novel approach developed in our lab 

involving real-time sensor-level Magnetoencephalography (MEG)-neurofeedback 

by training thirty healthy individuals to volitionally control coherence between two 

brain areas using instrumental learning paradigms. To disentangle effects of 

training from effects of task repetition the group of healthy participants was evenly 

divided into two groups: Contingent feedback group (experimental group) and 

Sham feedback group (control group). Our study was divided in four main parts: 

pre-test session, functional localizer session, neurofeedback session and post-test 

session. All the sessions were performed on separate days. Pre-test and post-test 

sessions were used to assess the impact of the neurofeedback training on the 

functional connectivity and most relevantly on behaviour. In both the sessions, all 

the healthy participants were subjected to two types of discriminative stimuli (SD+ 

and SD-) while carrying out a bimanual finger tapping task. In the pre-test, the 

discriminative stimuli do not have any meaning. However, in the post-test, after a 

successful neurofeedback training in which SD+ was associated to up-regulation 

and SD- to down-regulation of coherence, discriminative stimuli have acquired the 

potential to alter brain connectivity. Pre-test and post-test were performed on the 

first and fifth day of the experiment. The pre-test session is subsequently followed 

by the functional localizer sessions scheduled for the second and third day. The 

functional localizer session consists of further two parts: a) Identification of the 

subject specific MEG sensors (day 2) and subject specific frequency (day 3). The 
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parameters assessed in the functional localizers session (MEG sensors and 

subject specific frequency) were further used to decide the parameters for the 

neuro-feedback session (figure 2). In the neurofeedback session (day 4) healthy 

participant were trained to modulate the functional connectivity between left and 

right motor cortices. In the neurofeedback session, participants were trained to 

volitionally up-regulate and down-regulate the functional connectivity using MEG 

neurofeedback. Participants were prompted to up- and down regulate using a 

visual cue serving as discriminative stimuli. This approach directly modulates brain 

activity as an independent variable and investigates resulting changes in behavior 

as a dependent variable. Using this innovative approach, we investigated a hitherto 

unclear role of interhemispheric functional connectivity in complex, bimanual 

movements. Subjects who were trained with contingent feedback of ongoing 

neural coherence learned to both increase and decrease coherence, while those 

presented sham feedback failed to learn. Further, the successful group showed a 

differentiation in their performance in the bimanual asymmetric finger-tapping task. 

We found an inverse correlation between coherence increase and tapping speed, 

hinting towards the causal role of interhemispheric motor cortical coherence in 

bimanual asymmetric movements. We believe, our work opens up a novel 

approach to the correction of motor disability using neurofeedback in addition to 

providing new insight in the motor coordination (Kajal, et al., 2017; Kajal, et al., 

2015a). 
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Figure 2) Schematic showing the paradigm used for the modulation of the inter-

hemispheric functional connectivity between left and right primary motor cortices 

(Mellinger, et al., 2007). Cue Phase (A): the discriminative stimuli are presented 

for 2 s, suggesting whether the current trial is either up-regulation (increase of 

coherence) or down-regulation (decrease of coherence). B) Following, the cursor 

appears and remains stationary for 3 s. Then participants begin the self-regulation 

of the functional communication between the left and right primary motor cortices. 

C) Thereafter, the active phase of the neurofeedback session starts and lasts for 

5 s. In this phase, the cursor moves in the x-direction at a constant velocity and in 

the y-direction with a speed proportionally to the functional connectivity calculated 

from the immediately preceding 3 s interval. D) in this phase, feedback is given. A 

successful trial is indicated by the target changing the colour from red to yellow for 

1 s. In contrast, the target remains red in case of unsuccessful trials. E) represents 

the inter-trial intervals 
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Learned control of fronto-parietal connectivity: Effects on the 

perceptual threshold. 

 

In this experiment, we have trained the healthy volunteers to volitionally modulate 

the fronto-parietal (FP) circuit intra-hemi spherically and studied its effects on the 

perceptual threshold as a behavioural outcome. Literature suggests that FPN plays 

an important role in the perception of emotion with a sequential interaction of top-

down and bottom-up processes which are triggered with the presentation of the 

emotional stimuli. While bottom-up processes help in the registration of the 

information in the brain, it is the top-down processes that are crucial for the 

identification of the emotional meaning. The interaction between bottom-up and 

top-down processing has been very well explained using the global neuronal 

workspace model, suggesting that there emerge reverberant self-amplifying loops 

with the presentation of the visual stimuli. The information in the reverberant self-

amplifying loops will reach to the level of consciousness if they are not disrupted, 

blocked and/or masked by another visual stimulus (Cul, et al., 2006; Dehaene and 

Changeux, 2003; Dehaene, et al., 2006; Dehaene and Naccache, 2001; Del Cul, 

et al., 2006b). 

We could demonstrate that these interactions happen in the gamma frequency 

band when emotional stimuli were presented in a backward masking paradigm 

(study i. Kajal et al 2018, manuscript submitted, is under review and attached) near 

the PT. We have presented an emotional face either happy or sad as a prime 

stimulus and a neutral face stimulus of the same person as a mask stimulus. In the 

experiment modulating the sensor-level intra-hemispheric functional connectivity, 

we have used a visual backward masking (ViBM). In the ViBM (figure 3), the delay 

between the prime and the mask stimulus is varied across trials by selecting 

random delays from 10 predefined intervals. The prime stimulus will be correctly 

identified if the delay between the prime stimulus and the mask exceeds subjects’ 

PT. If the delay remains below the PT level, the prime stimulus still activates 

bottom-up processes, but fails to initiate the subsequent top-down processes. In 
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this case, a propagation of the emotional content of the prime stimulus to 

conscious processing is disrupted by the mask stimulus, and subjects are not 

aware of the emotion presented. 

The training of FPN was done at the participants’ PT. There are two well 

established a) Method of constant stimuli (MCS) and b) Adaptive method (AM). 

We have studied the difference between the estimated perceptual threshold using 

MCS and AM. Since the PT not only reflects the sensory capabilities but also 

depends on participants’ bias we also investigated any contamination of the 

perceptual threshold estimates due to participants’ bias and finally devised a novel 

method for its correction for the AM (study ii. Kajal et al 2018, manuscript 

submitted, is under review and attached). Details of all the above included studies 

are as follows:  

Brain networks controlling the perception of the emotional valance. 

Literature suggests that fronto-parietal network connections and communications 

plays an important role in the perception of the emotional valence of the presented 

visual stimuli. Lack of communication or dysfunction between the fronto-parietal 

network leads to the impairment of emotional valence perception. This is 

commonly prevalent in the patients with neuropsychiatric condition such as 

schizophrenia and autism. 

In our experiment, to study the neural correlates of the perception of the emotional 

valence, a face stimulus either happy or sad looking was presented with a mask 

delay at the perceptual threshold such that they were correctly perceived only 

occasionally. These trials are then sorted and segregated according to perceived 

and not perceived. Finally, neural correlates for conscious perception of the 

emotion were extracted. This helped us to study the neural correlates/networks 

involved in the conscious perception of the emotional stimuli. Various top-down 

and bottom-up influences affecting the perception of emotional face expression 

could be identified.  We could demonstrate a significant top-down modulation from 

frontal regions towards parietal regions using phase slope index in 35 Hz near the 
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perceptual threshold. We also demonstrated inter-hemispheric lateralization 

between left and right hemispheres: right hemispheric fronto-parietal 

communication was stronger compared to the left hemisphere during perceived 

trials. Right FPN and right parietal regions demonstrated more interhemispheric 

functional communication during perceived as compared to the not-perceived 

trials, and furthermore, functional communication between left frontal regions and 

right parietal regions is higher during not-perceived as compared to perceived 

trials.  

 

Adaptive procedure for the estimation of the perceptual threshold: effects of the 

observer’s bias. 

In this experiment, different threshold procedures were compared in 12 healthy 

participants using a ViBM paradigm. In the ViBM paradigm, an emotional visual 

prime stimulus was presented followed by a mask stimulus after a variable delay. 

Prime and mask stimuli were emotional faces and the delay was selected randomly 

from the predefined stimuli. We explored different avenues of the near perceptual 

threshold. According to the presented literature, there are two different measures 

to estimate the perceptual threshold. A) Method of constant stimuli, and B) 

Adaptive methods. The basic difference between both the methods is that in the 

former one predefined stimuli are presented in the pseudo-random manner and 

responses are recorded. Then, the near perceptual threshold is estimated by fitting 

a sigmoid function to the percentage of correct responses for the individual classes 

of predefined stimuli and by determining the class corresponding to a predefined 

performance level. In the latter one, the presented delay dependents on the 

participant’s responses in previous trials. If the participant responded incorrectly in 

the current trial, then the level of difficulty is decreased in the subsequent trial. The 

delay was decreased if the participant responded correctly twice. The two correct 

responses did not need to occur in consecutive trials. In the adaptive method, the 

delay will converge to the perceptual threshold towards the end of the experiment.  
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We proceeded with the aim, firstly, to understand if there is any difference between 

MCS and AM for the estimation of NPT. Second, since bias is a main 

contaminating factor for the estimation of the perceptual threshold, we proposed 

the deduction of the bias in the MCS method using the SDT. Third, we have also 

proposed a novel algorithm to remove the bias contamination in the AM. We have 

done a simulation study for the implementation of the bias correction in the AM. 

With the results from this study, we were able to conclude that there is significant 

positive correlation for the perceptual threshold estimated using MCS and AM. We 

conclude from our simulation study that the bias correction needs the more trials 

the higher the bias. We thus suggest to preferably eliminate the contamination of 

the bias by designing the experiment accordingly and by altering the assignment 

of the response keys on trial to trial basis.  

Learned modulation of fronto-parietal connectivity: Effects on perception. 

Eight healthy participants were trained to volitionally up-regulate and down-

regulate the fronto-parietal functional communication using a ViBM task with 

subject specific near the perceptual threshold with MEG. From the study it was 

concluded that the volitional modulation of a complex network such as the fronto-

parietal network is possible and does have a significant impact of the near 

perceptual threshold. We have used the ViBM at presenting subject-specific near 

perceptual threshold stimuli. The final goal of this research is to implement the 

training of the FPN circuit in the patients suffering from the disconnection or 

disruption syndrome such as schizophrenia and autism, where the effects to be 

obtained on the single patient cases.  
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Figure 3) schematic showing the paradigm used in the ViBM task. 

In this schematic showing the single trial of the neurofeedback trials using ViBM. 

A fixation cross was presented for 2 s, followed by the discriminative stimuli either 

a ‘1’ or 2’ was presented. ‘1’ requests up-regulation of the coherence and ‘2’ 

requests the down regulation of the coherence. Then a prime stimulus, either a 

happy or sad face, is presented for the duration of 16.7 ms. The delay between the 

prime and the mask stimulus is kept constant near the perceptual threshold. Then, 

a mask stimulus of 250 ms duration with a neutral emotional valence of the same 

individual as in prime was presented, and the thermometer appeared on the screen 

providing visual feedback about the match between the requested and produced 

fronto-parietal network connectivity. The feedback stimulus stayed for 1 s on the 

screen (Cul, et al., 2006; Dehaene and Changeux, 2003; Dehaene, et al., 2006; 

Dehaene, et al., 1998; Dehaene and Naccache, 2001). 
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Discussion 

In the presented doctoral dissertations, I could demonstrate a convincing impact of 

learned modulation of functional connectivity on behavior: modulation of inter-

hemispheric functional connectivity of primary motor cortex resulted in a significant effect 

on motor performance, and modulation of fronto-parietal functional connectivity 

significantly affected the perceptual threshold for detecting the emotional valence of face 

images. Modulating functional connectivity between target regions as independent 

variable and assessing its effects on behavior as independent variable further adds to our 

understanding about the importance of functional communication within the cortex. Going 

beyond the correlative nature of neuroimaging studies relating changes in 

neurophysiological parameters with changes in behavior, this type of approach even 

suggests a causal relationship between the volitional modulation of the functional 

connectivity and the behavioral outcome.  

Study I 

In the first study, we trained 30 healthy participants to volitionally modulate the functional 

connectivity between left and right primary motor cortices. Training induced changes in 

functional connectivity were related to the modulation of speed in a bimanual finger-

tapping motor task assessed in a pre- and post-training-test. We have found a negative 

correlation between finger tapping speed in the bimanual motor task and the functional 

communication between left and right primary motor cortices. Our result is in line with 

previous findings, suggesting a decrease in interhemispheric coupling for asynchronous 

bimanual motor tasks (Gross, et al., 2005). Also, a decrease in the functional 

communication during various polyrhythmic bimanual finger-tapping tasks had been 

found. Studies investigating the role of phase synchronization of motor-related brain 

activities with respect to out-of-phase asymmetric bimanual movements, and in-phase, 

anti-phase and polyrhythmic movements point to the importance of flexible modulation of 

inter-hemispheric coupling in skilled motor performance (Houweling, et al., 2010a; 

Houweling, et al., 2010b; Kristeva, et al., 1991; Mayston, et al., 1999; van Wijk, et al., 

2012). High levels of inter-hemispheric functional communication within motor cortices 

appear to reflect the controlled execution of bimanual motor tasks. Lower levels of 
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coupling portray well-trained, “automatized” execution of motor tasks such as 

asynchronous bimanual movements. If increased inter-hemispheric coupling of motor 

cortices is an index for controlled execution and low coupling a signature of automatized 

motor execution or completely independent motor sequences, then the up- and down-

regulation of functional communication might alter the mode of operation of motor control. 

Congruent with the findings of our study, up-regulation would then be associated with 

controlled motor execution and thus, slowed down motor performance, and down-

regulation with automatized and accordingly fast motor processing.  

Study II 

In the second neurofeedback study, we have trained 8 healthy participants to modulate 

the intra-hemispheric fronto-parietal communication near the perceptual threshold for the 

detection of emotions in visual face stimuli. Results demonstrate the ability to train the 

modulation of fronto-parietal network communication at the perceptual threshold. 

Furthermore, we could demonstrate an inverse relation between the increase in functional 

communication between fronto-parietal network and the decrease in perceptual 

threshold. In other words, increase in functional fronto-parietal communication results in 

the reduction of the threshold for detecting the emotional valence of visually presented 

face expressions, and thus provides a conclusive role in the modulation of perception.  

Our finding further complements the theory of the global workspace model (Cul, et al., 

2006; Dehaene and Changeux, 2003; Dehaene, et al., 2006; Dehaene and Naccache, 

2001). The global workspace theory posits that the conscious visual perception is a result 

of the formation of a high-level brain-scale neuronal assembly involving recurrent long-

distance interactions among distributed thalamo-cortical loops, especially involving the 

prefrontal cortex and higher cortical association areas. A stimulus exceeding the 

perceptual threshold can simultaneously activate many distant areas and yield a long-

lasting pattern through reverberating activity. It has been suggested that attaining such 

distributed pattern results in a consciously reportable state is because its active contents 

are broadcasted to many functionally specialized brain regions, including those for verbal 

or motor report. When an incoming activation fails to exceed the threshold, it can still 

briefly propagate through the processors but quickly vanishes, as it is not supported by 
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recurrent self-amplifying loops (Dehaene and Changeux, 2003; Dehaene, et al., 1998; 

Dehaene and Naccache, 2001; Ramachandran and Cobb, 1995). 

The backward masking paradigm, in which a shortly presented prime stimulus is masked 

by a subsequent masking stimulus has been introduced to study this model. In the 

backward masking paradigm, the prime stimulus does not reach the level of 

consciousness, unless the temporal delay between the prime and mask is above the 

perceptual threshold (Del Cul, et al., 2006b) due to non-generation of the reverberant and 

self-amplifying loops between fronto-parietal communications. The registered prime 

stimulus will get the emotional meaning only when these loops are not being disturbed or 

disrupted by the mask stimuli thus affecting the perceptual threshold (Global workspace 

model). Our results suggest that the modulation of the fronto-parietal communication 

results in differential changes in the perceptual threshold. This study, using the learned 

modulation of the fronto-parietal communication in conjunction with the modulation of the 

perceptual threshold, provides the basis for translational applications in patients with 

impaired fronto-parietal communication such as schizophrenia and autism patients 

suffering from disconnection syndrome (Bateson, et al., 1956; Breakspear, et al., 2006; 

Cul, et al., 2006; Deleuze and Guattari, 1988; Friston, 2002; Lynall, et al., 2010).     

Functional connectivity estimates 

Estimates for the functional connectivity represents temporal correlation among the 

activity of different neural assemblies and magnitude squared coherence estimates are 

used in our study as a metric of the functional coupling between different brain regions.  

The computation of the coherence is based on the values of auto-spectra and cross-

spectra between the two signals over the infinite length of the window. 

𝑆𝑥𝑦 = 𝓍 (𝑓) 𝑋 𝑦∗(𝑓) (1) 

Where x(f) is the discrete Fourier coefficient at frequency f of the finite time series X(t), 

and y*(f) is the complex conjugate of the Y(t). The magnitude-squared coherence is a 

measure that estimates the extent to which a signal can be predicted from another using 

a linear time invariant system, and thus gives an estimate of the functional coupling when 

applied to neuromagnetic brain signals. 



22 
 

To provide a real-time feedback and to obtain a reliable estimate of coherence in study 

1, functional coupling was quantified for the most recent 3 s interval. The interval was 

divided into 28 segments of 0.208 ms duration and windowed with a Welch window. In 

order to exploit the data most efficiently a 50% overlap between windows was chosen. 

Although feedback was given only at the end of a trial in study 2 the same window length 

as in study 1 was selected. 

Stationarity of the signal is one of the important assumptions for the estimates of 

coherence. The stationary assumption is relaxed using the Short Time Fourier Transform 

(STFT), instead of the classical Fast Fourier Transform approach and coherence may be 

estimated around a few time instants. However, stationarity is still a required criterion 

within each time interval for which coherence is estimated, meaning that in practice one 

should decide on the optimal section length (window) over which each coherence 

estimate is measured. Window length and window overlap affect the frequency resolution 

and robustness of the estimate of the functional coupling. To which extend different 

aspects of connectivity are captured using different window length is however not well 

explored yet in neuronal coupling. Varying the window length could result in inconsistent 

estimates of coherence with a high degree of variability (Hutchison, et al., 2013). The 

reliability of the coherence estimate can be improved either by using frequency smoothing 

or the temporal smoothing of the spectral estimates. In the frequency smoothing the 

equation 1 is replaced by its convolution with the smoothing window for each frequency. 

In another technique, called temporal smoothing, the observation is divided into a 

succession of the k segments. An estimate of the spectrum is computed for every window 

using equation (1) and then k spectra are averaged to provide the estimate of the global 

window. I have used the temporal smoothing method for the neurofeedback studies using 

weighted overlapping segment averaging method. I have used the Welch method with 

the 50% overlap, which is proved to be a robust method against the bias (systemic error) 

incorporation and variance fluctuations (Firth, 1993; Groß, et al., 2001; Izatt, et al., 1997; 

Welch, 1967).  
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Causal inference  

Consider an example of a car, the engine of the car controls the speed and generates 

sound. As the speed of the car is increased, there is a variation in the sound of the car. 

Looking at this, can we infer that the speed of the car is dependent on the variation of the 

sound from the car? To prove this inference, the only option is to intervene. Either we can 

mute the sound, manipulate the sound by adding a sound absorber or vary the supply of 

the engine with gas. Only the latter intervention will have an impact on the speed of the 

car and thus suggests a causal link between the engine and speed with sound being a 

mere by-product. Varying the speed of the car by pushing it does not create any sound 

and doesn’t consume any fuel and thus reflects a different working mode. Now replace 

this analogy of the speed of the car with the behavior, and measured brain activity either 

with the engine and the sound from the car.  

In neuroscience, the relation between different brain activities and the corresponding 

behavior is studied by defining different conditions (motor or cognitive tasks) and 

assessing their effects on the measured neural activity for the target regions using various 

imaging modalities. The inferences made about the relation between brain activation and 

behavior are usually “correlative” in nature and do not provide any “causal” relation. The 

important question is how can we determine which of the observed brain activations are 

causal for behavior and which are mere by-products? Traditionally, lesion studies are 

most appropriate to investigate the causal link between brain function and its behaviour. 

Lesioning a brain region (similar to closing the fuel support line or muting the car sound) 

and observing accompanying changes in behaviour (similar to the changing the speed of 

the car) can only be explained by an effect of the lesion on behaviour, but not in the 

inverse direction. Similarly, brain stimulation techniques such as deep brain stimulation 

(DBS) or transcranial magnetic stimulation (TMS) are suitable tools to induce temporally 

defined, reversible ‘virtual lesions’ (Cohen, 1989; Cohen, et al., 1997; Pascual-Leone, 

1997; Pascual-Leone, et al., 1994a; Pascual-Leone, et al., 1996; Pascual-Leone, et al., 

1998a; Pascual-Leone, et al., 1998b; Pascual-Leone, et al., 1994b; Pascual-Leone, et 

al., 2000; Pascual‐Leone, et al., 1991). Note, causal effects of both, lesions and brain 

stimulation, on behaviour do not need to be exerted via direct neural pathways.  
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In neurofeedback, the discriminative stimuli are associated with the control of brain 

activation patterns. Like brain stimulation, activation patterns can be switched on and off 

by presenting the corresponding discriminative stimuli. Thus, neurofeedback trained 

control of brain activation would then also allow for the inference of causal effects. 

However, this assumption is only true if the discriminative stimuli modulate the target brain 

region directly. In case the discriminative stimuli affect behaviour first and the target brain 

area only subsequently, the causality would be reversed. Without knowing the pathways 

through which discriminative stimuli affect the activation in the target regions, a causal 

interpretation is not possible. Unfortunately, brain imaging studies correlating changes in 

behaviour with changes in brain activation patterns do not provide any causal information 

of how the discriminative stimulus drives the target brain regions. 

Being able to modulate behaviour in the post-test session, i. e. bimanual motor speed in 

study 1 and modulation of the perceptual threshold in the study 2, raises the question of 

whether the acquired volitional control of brain activation patterns drives behaviour in a 

causal fashion. In other words: can it be ruled out that behaviour is the mediator through 

which brain activation patterns are changed?  

To solve this issue, the temporal sequence of discriminative stimulus, activation of the 

target region and finally the behaviour will offer a solution. Using neuroimaging methods 

with high temporal resolution such as EEG or MEG can provide information about the 

time lag of activation of different brain regions and thus about causality. Measures such 

as Granger causality, phase slope value or derived metrices such as the phase lag index 

are capable of extracting time delays between different brain regions and thus allow for 

the inference of causality.  

While in study 1 the causal nature of motor cortex controlling behavior has been shown 

in countless studies (Amassian, et al., 1989; Bejjani , et al., 1999; Bohning, et al., 1999; 

Cohen, 1989; Corbetta and Shulman, 2002; Fox, et al., 1997; Frank, et al., 2007; 

Ilmoniemi, et al., 1997; Martin and Gotts, 2005; Pascual-Leone, et al., 1994a; Pascual-

Leone, et al., 1998a; Pascual-Leone, et al., 1998b; Paus, 1998; Romei, et al., 2012; 

Sitaram, et al., 2007; Sitaram, et al., 2008; Weiskopf, 2012; Weiskopf, et al., 2004) and 

thus can be taken for granted, we studied the directionality and thus the causality of 
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fronto-parietal connections using the phase-slope index revealing an influence on right 

frontal brain regions on right parietal cortex.  
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Conclusion 

Previous studies in cognitive neuroscience gave the evidence of the modulation of the 

behavior and assessed its effects on the modulation the functional communication 

between the target brain regions. In the presented dissertation, we have modulated the 

inter-hemispheric (primary motor cortices) (study I) and fronto-parietal (Study II) functional 

communication and studied its effects on behavior i.e. bimanual motor performance and 

perceptual threshold, respectively. Our results complement the previous studies and 

suggest a causal relation between modulation of the functional communication and 

measured behavior, furthermore, giving insight into the hierarchical nature of the brain 

network organization and architecture.  
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Abstract 

Conscious perception of the emotional valence of faces has been proposed to involve 

top-down and bottom-up information processing. Yet, it is still unclear how the 

cooperation of both processes is implemented and what are the underlying neuronal 

mechanisms. Using the visual backward masking (ViBM) paradigm, we assessed the 

participation of the neural networks involved in the conscious perception of the 

emotional stimuli near the perceptual threshold (NPT) using magnetoencephalography 

(MEG). Stimulating at the perceptual threshold enabled us to compare consciously 

perceived emotions with not correctly perceived facial expressions for physically quasi 

identical stimuli. Twelve healthy participants were asked to detect the emotional 

valence of a prime face stimulus (either happy or sad) presented for 16 ms. The prime 

stimulus was followed by a mask after a variable delay, showing a neutral face of the 

same person as of the prime. To remain at the participants’ perceptual threshold, we 

used an adaptive method in which the delay in the current trial was decided on the 

outcome in the previous trial. We identified the networks for the perception of the 

emotional stimuli and the top-down modulation of stimulus processing using coherence 

analyses. We hypothesize that the networks activated during the interaction of the top-
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down and bottom-up processed are the key substrates responsible for the perception 

of the emotional valence of faces. We found a fronto-parietal network with activities 

oscillating in the lower gamma band and thus exerting top-down control on the 

processing of emotional stimuli. Moreover, we found parietal networks active in the 

gamma band for successfully identified emotional face expressions. For not perceiving 

the emotional valence of faces an enhanced coupling between left frontal and right 

parietal regions was found.  

Introduction  

Growing evidence hints towards the integration of bottom-up, sensory driven signals 

and top-down mediated cognitive control playing a vital role in the perception of 

emotional stimuli (Breitmeyer, et al., 2006; Ghazanfar and Schroeder; Green, et al., 

2006; Park and Friston, 2013). Bottom-up processes that comprise various low-level 

processes such as visual feature extraction (color, shape, size and orientation 

(McCarthy and Warrington, 2013)) characterize the emotion-relevant aspects 

(emotion-as-stimulus-properties) of the presented stimuli (Brozoski, et al., 1979; 

Northoff, et al., 2006). Mapping of neural correlates of the bottom-up processes 

suggests the active participation of amygdala and hypothalamus in addition to the 

encoding of the affective properties (AP) of the presented visual emotional stimuli in 

the visual system (McRae, et al., 2012; Ochsner, et al., 2009). In parallel to the 

encoding of the AP, visual pathways via the ventral portion of the striatum, 

hypothalamic and brain stem nuclei also contribute to the bottom-up processing by 

updating any change in the information (mismatch, disruption of information flow 

(Adolphs, 2002; Dosenbach, et al., 2008). Thus, the function of the bottom-up 

processing comprises reception, registration, awareness of the visual information and 

eventually updating if there is any change in the registered information. Regarding the 

processing of the emotional stimulus content it is at that level where top-down 

processes come into play (Engel, et al., 2001; Sarter, et al., 2001). Although the 

emotional stimuli have been registered in the brain by the bottom up processes, the 

emotional meaning of the stimuli results from top-down processes. The top-down 

generation of the emotional response is based on the integration of AP and situational-

cues (past experience, skill and memory) thus enabling an individual to comprehend 

the occurrence of a stimulus with a certain kind of emotional properties (Bar, et al., 

2006).  
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The mechanisms involved in top-down processing of the registered AP, suggests the 

formation of recurrent long-distance interactions. These interactions involve thalamo-

cortical loops, especially prefrontal cortex and higher cortical areas, which are 

inundated by self-amplifying reverberance of network activity. In addition to the above 

described mechanism, it has also been suggested attaining a consciously reportable 

state involves the broadcasting of the AP to many functionally specialized brain 

regions, including those for verbal or motor report (McRae, et al., 2012; Zanto, et al., 

2011). This broadcasting follows a selective way and might adopt re-routing and/or by-

passing certain networks for the information and avoiding the visual cortex network 

(Pessoa and Adolphs, 2010). Processing of emotional stimuli in the brain involves rapid 

modulations of top down processes to initiate appropriate behavioural outcomes. A 

plethora of studies suggest that there are two different networks enhancing the top 

down mediation of emotional stimulus information: fronto-parietal and cingulo-

opercular networks. Fronto-parietal networks have been suggested to initiate and 

adjust the control of the information propagation while the cingulo-opercular networks 

maintain information until they are over-written or disturbed by another information 

whichever is before (Dosenbach, et al., 2008).  

The top-down processing has been extensively studied using visual backward masking 

(ViBM) tasks (Dehaene, et al., 2006; Del Cul, et al., 2006b). In the ViBM paradigm, a 

prime stimulus is flashed and followed by a masking stimulus after a predefined 

temporal delay. The prime stimulus is not consciously perceived until the temporal 

delay between the prime and mask exceeds the perceptual threshold. When the 

temporal delay between prime and mask stimulus fails to exceed the perceptual 

threshold, information about the prime stimulus can still propagate through the bottom-

up processors  but will be unable to initiate the subsequent top-down processes, 

because the propagation of the prime stimuli to conscious processing is disturbed or 

disrupted by the following mask stimulus and thus not being supported by the 

reverberant self-amplifying loops. This defined role of the reverberant self-amplifying 

fronto-parietal loops are basis for the global neuronal workspace model (Dehaene and 

Changeux, 2003; Dehaene, et al., 1998; Dehaene and Naccache, 2001; 

Ramachandran and Cobb, 1995).      

Any behavioral outcome of top-down and/or bottom up processes results from the 

coordinated activity in disparate brain regions and differently specialized networks. 
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This coordinated activity is assumed to be reflected in synchronized activity between 

disparate brain regions. Neural synchronization is studied by simultaneously 

measuring the activity from different and disparate locations and assessing if activities 

at these locations change in a correlated manner. The strength and polarity of the 

phase synchrony of the oscillatory activity can be interpreted as a proxy for the 

underlying local neural synchrony, and changes of phase differences between signals 

as a function of frequencies index the direction of information flow. Several human and 

primate studies have reported the occurrence of different brain oscillations in 

supporting the top-down processes  (Corbetta and Shulman, 2002; Rossi, et al., 2009; 

Ungerleider, et al., 1989; Ungerleider, 2000; Webster, et al., 1994). (Del Cul, et al., 

2006b) suggested that for visual perception of emotional stimuli in the cue-delay-target 

trial, parietal cortex and frontal regions work in close collaboration (Di Lollo, et al., 

2000b; Enns and Di, 2000; Vorberg, et al., 2003a). Previous work has shown that 

fronto-parietal networks are involved in the perception of the emotion (Blonder, et al., 

1991; Van Rijn, et al., 2005), but it is unclear whether the interaction is realized through 

neuronal oscillatory  synchronization. Given that top-down processes rely on neuronal 

synchronization, the direction of information flow becomes relevant: does the 

synchronization directly reflect top-down information flow, does it rather reveal the 

relaying of information to frontal and prefrontal brain regions or even both. 

Furthermore, the direction of information flow can be elusive for the understanding of 

the interaction of top-down and bottom approach to study the network architecture. 

In our study, we hypothesize that oscillatory synchronization of long range neural 

networks are the mechanisms by which the emotional content of a stimulus is 

consciously detected. To rule out any interference from low-level stimulus features we 

compared the neural synchronization at the NPT, i. e. for a temporal delay that results 

in both, perception and non-perception of emotional face expressions.  

To study the long-range network connections involved in the perception of the 

emotional stimuli, in the first part, we have chosen a hierarchical approach particularly 

focusing on the fronto-parietal network on a rough scale by defining 4 parcels, i. e., left 

and right frontal and parietal cortex. In the post-hoc analysis, we have characterized 

the within and between parcel networks in more detail, by identifying the relevant nodes 

(areas) and edges (strength of functional coupling operationalized as imaginary part of 

the coherence) as well as the direction of information flow using phase slope index 
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(PSI). We demonstrated the differences in the quantitative strength of the activated 

brain networks during conscious and non-conscious perception of the emotion 

processing at NPT using graph theoretic measures.  

Materials and Methods 

2.1 Participants 

12 healthy subjects (M±SD=25.5±3.5years: 7 females and 5 males) with normal or 

corrected-to-normal vision participated in the study. None of the participants had a 

history of neurological or psychiatric disorders. The study was approved by the local 

ethical committee of the faculty of medicine, University of Tübingen, Germany. A 

written informed consent in accordance to the Declaration of Helsinki (Carlson, et al., 

2004) was obtained from all subjects prior to the experiment. All subjects received 

monetary compensation of 10 Euros/hour for their participation. 

2.2 Design and Procedure 

The experiment consists of 5 identical runs with each run containing 80 trials and 

lasting for 8 min, each. A ViBM paradigm was used to manipulate the detectability of 

the facial emotions by varying the delay between a shortly presented face stimulus and 

a subsequent mask. We have used the adaptive method for choosing the delay for the 

next trial dependent on the response of the current trial to stimulate participants at the 

threshold for perceiving emotional face expressions. Stimulating near the threshold 

provides a comparable number of trials with correctly and incorrectly perceived 

emotional face expressions with identical physical stimulus properties. To study the 

cortical networks necessary for correctly identifying emotional face expression brain 

oscillatory activities were recorded using a whole head magnetoencephalography 

(MEG).  
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Figure 1: Experimental paradigm 

In our ViBM paradigm, an emotional face either with a positive or negative emotional 

expression was presented shortly as prime stimulus, followed by a variable delay and 

an emotionally neutral mask (Fig 1). Evidently, the correct perception of the face 

expression becomes easier with increasing delays. Each trial started with the 

presentation of a fixation cross in the middle of the presentation screen. The fixation 

cross was flashed for 2 sec. Then the prime stimulus (either a happy or sad face) was 

presented for 16.7 ms (𝑡𝑝𝑟𝑖𝑚𝑒). The emotional faces were presented in pseudo-random 

manner across trials. The prime stimulus was followed by a mask stimulus after a 

variable delay. The delay between the prime and the mask stimuli (tdelay) could be either 

0 ms, 16.7 ms, 33.3 ms, 50.0 ms, 66.7 ms, 83.3 ms, 100.0 ms, 116.7 ms, 133.3 ms, or 

150.0 ms. The mask stimulus was flashed on the screen for 250 ms (𝑡𝑚𝑎𝑠𝑘). It 

consisted of a face picture of the same individual as that of the prime, yet with an 

emotionally neutral expression. Colored face images of both, the emotional and the 

neutral faces were taken from the NimStim Face Stimulus Set (Tottenham, et al., 

2009). 50% male and 50% female faces were selected. The mask is followed by a 

black screen. The duration of the black screen  (𝑡𝑏𝑙𝑎𝑐𝑘𝑠𝑐𝑟𝑒𝑒𝑛) was chosen such that the 

stimulation duration of all the trials was of equal length [𝑡𝑏𝑙𝑎𝑐𝑘𝑠𝑐𝑟𝑒𝑒𝑛 = 1500 𝑚𝑠 −
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( 𝑡𝑝𝑟𝑖𝑚𝑒 + 𝑡𝑑𝑒𝑙𝑎𝑦 + 𝑡𝑚𝑎𝑠𝑘)]. Thereafter the instruction cue appeared on the screen 

prompting subjects to report their valence judgement for the prime stimulus. 

Participants were requested to report their judgements with their index finger by 

pressing optical buttons provided for each hand. Response options were presented on 

the screen as visual cues ‘’NEG+POS’’ and ‘’POS+NEG’’, with ‘+’ serving as the 

fixation cross. The cue “NEG+POS” instructed participants to press the left button if 

the facial expression of the prime stimulus was perceived as negative and the right 

button if it was perceived as positive. The cue “POS+NEG” indicated to press the left 

button for positive and the right one for negative judgements. To minimize any 

response bias, the two types of cues varied randomly from trial to trial. All participants 

were requested to respond in each trial and even guess when they were not sure about 

the valence of the prime face. Responses terminated a trial. The response interval 

during which responses were accepted lasted no longer than 2100 ms. The maximum 

duration of a single trial was 4.5 sec and the inter-trial interval was 5 sec. 

To stimulate at the NPT, we have used an adaptive procedure (AM) (Leek, 2001; 

Treutwein, 1995). In the AM, the temporal delay between prime and the mask of the 

next trial is determined based on the stimuli and responses of previous trials. In the 

AM of our experiment we have implemented the ‘two-down-one-up’ rule (TDOU). The 

rule implies that after any two correct responses the temporal delay between prime 

and mask becomes shorter by one frame and thus making the task of detecting the 

emotional expression of the prime face stimuli more difficult. Notably, the two correct 

responses do not need to be in a row. When the participant responds with an incorrect 

answer, the temporal delay between prime and mask is immediately increased by one 

step and thus easing the task in the next trial. Assuming a stationary threshold, the 

temporal delay is expected to asymptotically reach the threshold for detecting 

emotional face expressions. This rule converges towards a threshold performance of 

66.7% correct.  

 

2.3 MEG Recording and Stimuli 

MEG (CTF System Inc, Vancouver, Canada) data was acquired using a whole-head 

275-axial gradiometer system with a baseline of 5 cm. The MEG is in a shielded room 

(VaccumSchmelze, Hanau Germany) at the University Clinic of Tübingen, Germany. 
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Brain magnetic data were sampled at the rate of 1072 Hz with an anti-aliasing lowpass 

filter of 208 Hz. The relative head position with respect to the magnetic field sensors 

was recorded continuously using three localization coils that were affixed to the left 

and right preauricular point and the nasion.  

Emotional stimuli were presented using an in-house Pascal based program under Dos 

6.2 and synchronized with the vertical refresh rate (60Hz) of a screen. The video output 

of the stimulation computer was send to a JVC DLA-SX21 projector to flash the stimuli 

via a mirror system on a screen in the magnetically shielded, dimly lit room. The screen 

was placed in front of participants in a viewing distance of 70 cm. Stimuli subtended a 

horizontal visual angle of ~2.5 o. Participants’ judgements of the valence of stimuli were 

recorded using in-house built optical buttons. During stimulus presentation participants 

were advised to sit still and avoid blinking as possible. 

2.4 MEG data Analysis 

Neuromagnetic MEG data were analyzed using in-house MATLAB scripts (MATLAB 

2017a) and using fieldtrip functions (Oostenveld, et al., 2011). Data visualization was 

done using BrainNet visualization toolbox (Xia, et al., 2013).  The analysis comprised 

the following steps (figure 2): 

a) Cleaning of the data 

Cleaning of the MEG data involved demeaning, detrending, 50 Hz line noise 

removal and high pass filtering (1 Hz). Magnetic brain data were then inspected 

visually and trials with a large variance across channel and samples (2.5x10-25) 

and abnormal amplitudes were discarded from further analyses. Furthermore, 

trials containing muscle artifacts indicated by strong broad-band activity, squid 

jumps, and other non-stereotyped sources were removed. MEG channels with 

a noise level > 10 fT were excluded from the analysis. Eliminated trials in the 

MEG artifact rejection were also excluded from the analysis of the motor 

response. Furthermore, independent component analysis (ICA) was used to 

remove the contaminating ocular (eye movements, eye blinks) and cardiac 

artifacts. The ICA using the infomax ICA algorithm (Amari, et al., 1997; Bell and 

Sejnowski, 1995) decomposed the preprocessed and cleaned data into 100 

components. The topography and the waveform of all components were plotted 

and visually inspected. The components containing eyeblink, eye-movement as 

well as heart beat and muscular artefacts were removed. From the remaining 
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components, a cleaned MEG signal was reconstructed. Channels containing 

strong artifacts were marked as bad and excluded from further analyses. 

  

b) Categorization of the data: Correct and In-correct trials  

The preprocessed and cleaned data of the NPT-trials were pooled according to 

the participants’ valence ratings into: perceived trails (trial in which participants 

correctly identified the prime face) and non-perceived trials (trials in which 

participants were not able to identify the correct emotion of the prime). The same 

number of perceived and non-perceived trials entered the further analysis. The 

number of trials was defined by the condition with the number of least trials. 

Trials of the same number were selected randomly for the other condition. 

Frequency analysis was done for the frequency range of 1 to 49 Hz using multi-

tapering sliding window fast Fourier transform using discrete prolate spheroidal 

sequences (DPSS) tapers (Percival and Walden, 1993) in the steps of 2 Hz. 

Frequency analysis was done separately for the whole trial containing correctly 

perceived trials and incorrectly perceived trials including baseline.  

 

c) Condition and frequency specific spatial filter estimation using DICS 

Sources of neural oscillatory activity were localized using Dynamic Imaging of 

Coherent Sources (DICS) (Gross, et al., 2001), an adaptive spatial filtering 

method for time-frequency data. In an initial step, neural generators of the 

magnetic brain activity were localized in a template brain. MEG data were co-

registered to an MRI template brain (specify the brain) via the three fiducials 

(nasion and left and right periauricular point). Discretizing the standard MRI 

template brain into a regular grid with 1 mm resolution a template source-model 

was defined reflecting potential 3000 source locations. The standard brain 

template was segmented, and the single shell spherical head-model was 

computed representing the electrical properties and the geometry of the brain. 

Based on the head-model for each grid point the respective leadfield was 

estimated. Using source- and head-model information, the leadfield reflects the 

projection of activity from a single source to the sensors. Based on the cross-

spectral density and the leadfield matrix, frequency specific spatial filters were 

estimated that describes the projection of sensor-level activity to the source 
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level. A ‘common spatial filter’ was computed for both concatenated conditions, 

i. e. correctly and incorrectly perceived facial expressions.  

 

d) Calculation of source level connectivity 

Source level activity was estimated by applying the frequency specific ‘common 

spatial filters’ to the sensor level activity for correctly perceived and incorrectly 

perceived trials. In a next step, all-to-all functional connectivity was calculated 

between all voxels inside the brain for each frequency bin, separately for 

perceived and not-perceived conditions. We have merged the voxels in an 

individual functional target region as defined by the Montreal neurological 

institute (MNI) template in one single voxel and thus we reduced the whole brain 

into 72 regions. Merging the voxels, we here refer to averaging all the possible 

connection arising from that set of voxels in the target areas and thus giving an 

estimate of connectivity within these target regions. To suppress the 

confounding problem of spatial spreading of the source activity, we have only 

subjected the absolute imaginary part of the coherence to further analyses. 

 

e) Parcellation Analysis 

To test our hypotheses of an involvement of fronto-parietal functional coupling 

in the processing of emotional face expressions and to reduce the problem of 

multiple testing, we further merged the brain regions into 4 parcels. Parcellation 

was done using the spatially normalized T1 template brain provided by the MNI 

(Collins, et al., 1998). Parcel I and II represent frontal and parcel III and IV 

parietal regions. Connectivity strength between parcel l and IV represents right 

intra-hemispheric fronto-parietal connections and parcel II and III represents left 

intra-hemispheric fronto-parietal connections, respectively.    

We have segregated the all-to-all connectivity matrix of N x N (N=72) into 4 x 4 

matrix for perceived and not-perceived trials by averaging the connectivity within 

and across areas. Within and between parcel connectivity resulted in 10 parcel 

combinations: (I, I), (I, II), (I, III), (I, IV), (II, II), (II, III), (II, IV), (III, III), (III, IV), and 

(IV, IV)). To quantify the strength of functional connectivity, we performed a 

cluster-based permutation test across frequency using paired t-test for the 

absolute part of imaginary coherence to compare the connectivity between 

perceived and not-perceived emotional face expressions. We looked for both 
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positive and negative clusters, i. e. clusters where the connectivity was larger in 

the perceived than in the not-perceived condition and vice versa. We have 

performed a total of 2048 permutation tests (212/2: 12 subjects) by flipping the 

“perceived” and “not-perceived” conditions across all subjects. To determine the 

statistical significance of the connectivity differences between “perceived” and 

“not-perceived”, the experimental result was compared with the permutation 

based random distribution. The cumulative probability value for the positive 

cluster and the negative clusters is 0.025. Network visualization was done using 

Brain-Net Viewer (Xia, et al., 2013).  

f) Phase slope index 

To identify the direction of the information flow within and between different brain 

parceled areas during the processing of perceived and non-perceived emotional 

stimuli, we studied the phase slope index on 72x72 connectivity matrix. The 

phase slope index provides information on whether the signal in one brain 

region is leading or lagging the signal in another brain area. The polarity of the 

index will tell the direction of information flow. We did the post-hoc analysis and 

estimated the direction of the flow of information for perceived and not-

perceived trials for the frequencies identified in the parcellation analysis and for 

the individual connections followed by sum and paired t-test (Benjamini and 

Hochberg, 1995).  

 

g) Network Analysis: Graph Theoretic Network Measures 

The main advantage of using graph theoretical measures over classical data 

analysis for MEG and MRI is that the network architecture of the brain is 

characterized as a comprehensive metric. In our case we have used this 

measure as post-hoc analysis for the results obtained from the cluster-based 

permutation across frequency for the parceled brain. The graph theoretical 

analysis was based on the absolute of imaginary part of coherence stored in the 

72 x 72 connectivity matrix. In the network analysis, each of the 72 brain regions 

is treated as a node and the strength of coupling from one to another region is 

considered as an edge. We have used shortest path length to understand the 

nature of the underlying networks. We have assessed the difference in the 

synchronized network organization for perceived and not-perceived trials across 
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different frequencies. (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 

2001; Benjamini and Yekutieli, 2005).  

For the statistical analysis a 72x72 all-to-all connectivity matrix for each subject 

is processed for the perceived and not-perceived networks. The connectivity 

matrix for perceived and not perceived trials were randomly mixed, vectorized 

and sorted in descending manner. Only the 20% shortest path length of the 

vectorized network areas were taken for further analysis. A t-test contrasting the 

two groups (perceived and not-perceived) was then computed for each pairwise 

association. Any association with a t -statistic exceeding 1 was admitted to the 

set of suprathreshold links used by the Network Based Statistics (NBS) 

(Zalesky, et al., 2010). The NBS was implemented with 10000 permutations to 

generate the null distribution of maximal component size. The NBS performs 

the clustering in the topological space rather that physical space. The NBS is 

the graph analogue of the cluster based statistical methods.  
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Figure 2: Represents the detail work pipeline for the analysis of the data. 

 Results  

a) Parcellation Approach 
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The goal of our study is to test the hypothesis of a participation of synchronized fronto-

parietal neural networks in the processing of emotional face stimuli. To this end, we 

studied the differential involvement of the functional connections for emotional face 

expression that are perceived either correctly or not. To avoid the problem of multiple 

comparison, we have performed the parcellation approach followed by the cluster-

based-permutation across frequency. (Benjamini and Yekutieli, 2001; Benjamini and 

Yekutieli, 2005) for the correction of type I errors.   

Cluster based permutation across frequencies revealed a significant difference 

between perceived and non-perceived emotional stimuli trials at 35 Hz (figure 4 A) ii), 

for the absolute imaginary part of the coherence (parcel I and IV: p=0.01, t=4.41, 

df=11). To assess the direction of the information flow in the right hemisphere, we have 

computed the phase slope index (PSI) for the connections crossing the frontal and 

parietal parcels and found a significance difference between perceived and non-

perceived trials. A significant positive difference between perceived and not-perceived 

trials of PSI values was found for right frontal and parietal parcels (parcel I and IV: 

p=0.01, t=2.87, df=11) in the gamma band (35 Hz). Positive PSI values suggest the 

flow of information from frontal regions to parietal regions. To clarify whether the 

directed interaction originates from perceived or non-perceived trials, PSI was 

compared against zero. While the PSI for not-perceived trials (p=0.54, t= 0.63, df=11) 

did not differ from zero, it was significantly different (p=0.04, t= 2.25, df=11) for 

perceived at 35 Hz (figure 3 A). Further analysis using the parcellation approach 

demonstrated that the right parietal parcel revealed significantly more within-parcel 

connections in the perceived than in the non-perceived condition at higher beta (29 

Hz) and lower gamma frequencies (31 and 33 Hz) for perceived and non-perceived 

trials. The right parietal cortex (parcel IV) was significantly active using the cumulative 

probability threshold (p=0.02, t=3.6, df=11) (figure 3 B). Furthermore, we have also 

investigated the contribution of interhemispheric connections for the perception of 

emotional stimuli. We found stronger connectivity for the non-perceived than for 

perceived trials between left frontal and right posterior cortex. The cumulative 

probability distribution value is (p=0.02, t=-3.54, df=11). This is basically demonstrated 

in the gamma band (37 to 41 Hz). (figure 3 C). 
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Figure 3: A: i) Division of the whole brain into four parcels. ii) Parcellation approach for 

the right and left hemisphere representing the positive connections of the network 

architecture in yellow and negative connections in red: Network organization for the 

difference between Perceived and not-perceived at 35 Hz. Iii) representing the PSI 

values for Perceived and not-perceived trials for right FPN at 35 Hz B) Shows the 

difference in network architecture between perceived and not perceived trial. i) high 

beta (29 Hz), ii) and iii) low gamma (31 and 33) in the right parietal parcel with the 

positive connections of the network architecture in yellow and negative connections in 

red. C) Shows the contribution of left frontal is contributing significantly negative toward 

right parietal cortex negatively. i) Representing the network organization at 37 Hz, ii) 

at 39 Hz and iii) at 41 Hz in early gamma from the left frontal parcel to right parietal 

parcel. The positive connections of the network architecture are represented in yellow 

and negative connections in red.  
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b) Graph Theoretical Measure approach: Post-hoc analysis 

Brain networks can be mathematically interpreted as graphs consisting of a set of 

nodes (areas) and edges (connections between nodes). The pairwise coupling is being 

summarized as the network connection matrix defining the network architecture. The 

clustering reflects the local integration and shortest path length, or the distance reflects 

the level of global integration in the network. We have estimated the shortest path 

using the Floyd-marshal algorithm (Floyd, 1962).  We studied the network organization 

using network-based statistics (NBS) toolbox (Zalesky, et al., 2010) for the post-hoc 

analysis at 35 Hz for shortest path length using the NBS with 10000 iterations (figure. 

Positive t-value indicate that shortest path distance is shorter in Perceived and 

negative t-value indicate shortest path distance in shorter in non-perceived trials 

(p=0.001, t=3.2, df=11). We also found the significant difference in the perceived and 

not-perceived trials in the right parietal hemispheres at the frequencies 29, 31 and 33 

Hz. At 29 Hz, For the fourth quadrant, p=0.04 and individual t-value for each 

connection, at 31 Hz, for the fourth quadrant, p=0.02 and at 33 Hz, For the fourth 

quadrant, p=0.03 and individual t-value for each. 
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Figure 5 A i) Shows the network organization in at the 35 Hz. Right hemisphere shows 

the significant difference for shortest path length for perceived and not-perceived trials. 

B) i), ii) and iii) show the network organization are 29 Hz, 31 Hz and 33 Hz. They 

basically demonstrate the networks in right parietal region of the brain. Thicker line 

communication representing the low value for the shortest path length and vice-versa  

 

Figure 6 plot showing the regional shortest path distance for perceived and not 

perceived trials. a) representing for the fronto-parietal communication at 35 Hz 

Perceived(M±SE=4.85±0.064) and not-perceived (M±SE=5.01±0.063) and b) 

representing for the right parietal communication perceived (M±SE=1.88±0.05) and 

not-perceived ((M±SE=2.12±0.06). 

Discussion  

ViBM in combination with neurophysiological recordings is an established paradigm to 

study the neural mechanisms underlying the perception of emotional stimuli. While 

previous work has highlighted the activation of brain regions that are mandatory for the 

correct interpretation of the valence of facial expressions, here, we studied the 

functional connections between regions, i. e. the neural networks that are involved in 

the perception of emotional face stimuli. As metric of functional connectivity coherently 

oscillating magnetic brain activity was used. To rule out any physical differences of 
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stimulus parameters between perceived and not-perceived emotional faces accounting 

for brain activation and network differences, stimuli were presented near the perceptual 

threshold resulting in perceived and not-perceived trials for the same masking 

stimulus. Neural networks characteristic for the processing of emotional face stimuli 

were identified by contrasting correctly perceived facial emotions to incorrectly 

perceived emotions. Except for correctly guessed emotional stimuli, correctly identified 

responses were assumed to reach a conscious level. In contrast, incorrectly perceived 

and correctly guessed emotions were supposed to reflect rudimentary emotional 

processing not reaching full awareness. Although in perceived trials correctly guessed 

and correctly identified emotions cannot be distinguished, there are in any case more 

consciously perceived emotions in the perceived than in the not-perceived condition 

Based on the model that the correctly identified emotional valence relies on the well-

adjusted interplay between fast bottom-up and slower top-down processes (Delorme, 

et al., 2004), one can conclude that stimulating with a prime-mask delay at the 

threshold of emotion perception provides enough time to complete the fast bottom-up 

processing of feature extraction and the presentation of the delayed mask and only 

interferes with later top-down processes. Thus, studying perception of emotions at 

NPT, we most likely assessed the cognitive analysis and interpretation of the presented 

emotional stimuli. This interpretation is supported by our findings not showing any low-

level visual areas when comparing trials with perceived and not-perceived facial 

emotions.  

In contrast, we have particularly assessed the brain networks involved in top down 

processing that is assumed to be maintained by reverberating long-range fronto-

parietal network connections. Indeed, our results show that there is stronger fronto-

parietal connectivity for correctly perceived emotional stimuli predominantly on the right 

hemisphere. In contrast, left hemispheric frontal control on right parietal cortex appears 

to be detrimental for the analysis of the emotional valence of facial stimuli.  

Parcellation Approach 

From the literature (Cahill, et al., 2004; Canli, et al., 1998; Silberman and Weingartner, 

1986; Wager, et al., 2003), we have the understanding that sensory areas closely 

interact with frontal as well as with parietal areas when they are subjected to the 

processing of the emotional stimuli. The fronto-parietal interaction most likely involves 
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an extended network spanning multiple regions in the prefrontal, frontal and parietal 

cortex rather than a point-to-point connection.  

To test the participation of frontoparietal networks in the top-down processing of 

emotional stimuli, we have adopted a cluster-based permutation across frequency 

approach on source level connectivity. We demonstrated, firstly, that the fronto-parietal 

networks were significantly more functionally coupled in the gamma band during the 

perception of emotional faces in contrast to not perceived emotional faces. Secondly, 

using the phase-slope index we could demonstrate that in these networks the direction 

of information flow is from right frontal regions towards the right parietal cortex. Thirdly, 

within-connections of the right posterior parcel were significantly stronger in high beta 

and low gamma frequency bands during perceived as compared to not perceived 

emotional faces. Fourthly, we showed that there is higher connectivity for non-

perceived stimuli than for perceived stimuli between left frontal and right parietal 

regions in the gamma frequency range.  

Gamma Frequency Band 

Fronto-parietal networks differed between perceived and not-perceived emotional 

stimuli mainly in the gamma band. Gamma frequency activity in emotion perception 

has generally been related to bottom-up sensory processing (Li and Lu, 2009; Müller, 

et al., 1999). Synchronized neuronal firing in the high frequency range in the human 

cortex has been suggested to reflect the formation of Hebbian cell assemblies 

(Eckhorn, et al., 1990; Pulvermüller, et al., 1995; Singer and Gray, 1995) and can be 

recorded with E/MEG in sensory processing. Gamma modulation has been reported 

to occur for the variation of features of visual stimulus (Müller, et al., 1996; Müller, et 

al., 1997; Tallon-Baudry, et al., 1997; Tallon, et al., 1995) and during perception (Keil, 

et al., 1999a; Keil, et al., 1999b; Tallon-Baudry, et al., 1996; Tallon-Baudry, et al., 

1997).  

Although, previous studies have investigated oscillatory brain activity in emotion 

perception with stimuli well above the perception threshold and thus the previously 

described gamma-band activity might be due to specific emotion processing, but also 

to low-level visual processing. In contrast, in our study we have stimulated the emotion 

networks near the perception threshold. By contrasting perceived and not-perceived 

emotions we could rule out networks involved in low-level feature extraction and 

highlight the fronto-parietal top-down control networks oscillating in the gamma 
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frequency range and thus interacting with bottom-up provided information. The 

participation of the gamma frequency band is found to be significant in the right parietal 

cortex which is in line with findings attributing an important role to the right hemisphere 

in emotion processing (Literature). A negative contribution (stronger connectivity for 

non-perceived stimuli) from the left frontal cortex to parietal cortices. It seems very 

plausible that the functional coupling in the gamma band is a proxy for the successful 

perception of emotional faces in our experiment using ViBM task at the NPT (Eckhorn, 

et al., 1990; Pulvermüller, et al., 1995; Singer and Gray, 1995). We argue that the 

involvement of different networks from within and between hemispheres via gamma 

oscillations is the bases for the generation and propagation of reverberant self-

amplifying fronto-parietal loops (Dehaene and Changeux, 2003; Dehaene, et al., 1998; 

Dehaene and Naccache, 2001; Del Cul, et al., 2006b) enabling the perception of 

emotions.  

Phase Slope Index (PSI) 

Using PSI, the direction of information flow from one region to another can be inferred 

(Nolte, et al., 2008). We have estimated the PSI values between individual areas in 

different parcel combinations across different frequencies identified in the cluster-

based permutation parcellation analysis for perceived and not perceived trials. We 

found that the PSI value indicates a significantly positive contribution from right frontal 

cortex (parcel I) toward right parietal cortex (Parcel IV). The positive PSI value between 

‘A’ and ‘B’ suggest the activities are leading at ‘A’ and ‘A’ is directing information 

towards ‘B’. Using this analysis, we were able to demonstrate the frontal cortex is 

leading and controlling the information flow towards parietal cortex. This finding 

supports the interpretation of fronto-parietal networks exerting frontal top-down control 

over parietal areas.  

Except for the right fronto-parietal interaction, we were unable to demonstrate any 

other significant directed information flow between left frontal region and right parietal 

cortex or any other combination. From this result one might conclude that the 

communication between left frontal and right parietal cortex is bi-directional and/or may 

be dominated by noise. However, given the predominant involvement of the right 

hemisphere in top-down emotional control it might also be argued that information 

exchange between the other regions is less relevant. 
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Our finding of right directed fronto-parietal information flow in the processing of 

emotions are consistent with previous findings on emotion perception that suggested 

strong participation of the right hemisphere in the perception of emotion irrespective of 

the valence of the emotional stimuli (Davidson, 1984; Ehrlichman, 1987; Hirschman 

and Safer, 1982).  

Positive and Negative emotional faces 

It has been documented in the literature that left hemisphere is involved in the 

processing of positive emotion processing and right hemisphere is responsible for the 

processing of the negative emotional valence (Aftanas, et al., 1998; Müller, et al., 1999; 

Tucker, 1981; Tucker and Dawson, 1984). In our experiment, using a ViBM at the NPT, 

we did not find any significant difference in network oscillations for positive and 

negative faces.  

Graph Theoretical Network Approach  

For the past two decades, various graph theoretical measures had been extensively 

used to study structural and functional neural architecture of the brain. In our analysis 

shortest path length was differentially expressed in brain networks prevalent for 

perceived and not perceived emotional face expressions with shorter average path 

lengths for the former condition. In graph-theoretical network analysis nodes 

correspond to brain areas and edges correspond to the connection between nodes. 

The shortest path length between two nodes is the minimal number of edges to reach 

one node from one another. The average shortest path length for one node is the 

average of all shortest path lengths from this node to all other nodes. Mapping the 

average shortest path length for individual brain regions provides insights how well 

individual areas are connected to the rest of the brain. A low value of the local average 

path length is an index for the integration of an area in the network. 

The pathlength of the network is an important predictor of the network performance 

(Vragović, et al., 2006). They found out that the performance of the network in basically 

dependent on the network average path length: ‘’The shorter the path length, the better 

the performance’’. While it might be objected that in diseased brains such as 

schizophrenia and epilepsy, with insufficient inhibition functional all-to-all connectivity 

between brain areas is generally increased and thus shortest path length is decreased, 

performance is most likely not improved (Andreou, et al., 2015; Yan, et al., 2017). In 
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contrast, looking at only the strongest and functionally relevant connections by 

selecting shortest path lengths as we did in our analysis might yield more meaningful 

results. In our study we demonstrated that shorter path length for the right fronto-

parietal subnetwork during the successful perception of emotional face expressions 

supports the notion of right fronto-parietal communication mediated by oscillatory 

gamma band activity being crucially important for the processing of emotions. 

The human brain consists of the disparate various functionally specialized regions, and 

the information exchange between them is always and either task dependent and/or 

default mode. Here, the task dependent communication requires to be very precise 

and efficient in the integration of the information from disparate brain regions and can 

be characterized be the graph-theoretical measures. A key feature of the healthy brain 

is to have optimum balance between segregation and integration of information being 

exchanged between brain regions (Tononi, et al., 1998). For example, shortest path 

distance, a global characteristic, is an index for the functional integration of the brain 

network (Achard and Bullmore, 2007) and thus suggests how easy it is to transport 

information or other entities within the network. Shortest path length has been 

demonstrated to promote the effective integration across cortical regions, implying that 

the longest path length might indicate the communication between connected regions 

but is slower, reduced strength of connectivity and less efficient (Achard and Bullmore, 

2007; Bassett and Bullmore, 2006) 

Our results on shortest path lengths are in line with clinical studies which have shown 

that tight integration of two region can be studied using shortest path length such as 

schizophrenia (Liu, et al., 2008; Wang, et al., 2010), autism (Barttfeld, et al., 2011), 

stroke. In schizophrenia, task related path length was found to be increased in the 

alpha, beta and gamma frequency bands (Breakspear, et al., 2006; Micheloyannis, et 

al., 2006; Rubinov, et al., 2009). Our study is in line with Dahaene et al (Dehaene, et 

al., 1998; Dehaene and Naccache, 2001) proposing the general involvement of the 

fronto-parietal regions in perception in masked stimuli paradigm. Adding to these 

findings, our results suggest a highly specific right-hemispheric fronto-parietal network 

for the successful processing of emotional stimuli.  

Conclusion and future direction 

Studies on the processing of emotional stimuli have shown that in schizophrenia, there 

is a significant increase in the global path length compared to the healthy participants 
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(Liu, et al., 2008). The perceptual threshold of the schizophrenic patient is elevated 

and thus affects the top-down control of emotional processing. It has been argued that 

the increase of the threshold for emotional processing makes these patients unable to 

perceive emotions correctly.  

We suggest that the proposed research is highly important both in terms of answering 

fundamental questions about networks involved in conscious and non-conscious 

perception of the emotional faces and thus provide the basis for novel treatments of 

neurologic and psychiatric disorders. Specifically, we suggest exploring new avenues 

towards actively understanding the neural mechanisms underlying basic perceptual 

processes in syndromes as different as neglect, schizophrenia and autism. 

Summary 

In our study, we found that in the gamma frequency band, the right fronto-parietal 

networks, parietal networks and left frontal to right parietal networks are significantly 

coupled during the perception of the emotional stimuli at near perceptual threshold. 

This gives us the understanding that the perception of emotional face expression 

involves functional coupling between different areas and is mediated by phase-locked 

oscillatory activity in the gamma frequency band. In the framework of the global 

neuronal workspace theory, results suggest that directed fronto-parietal connections 

set the coordinated interplay between bottom-up with top-down processing. 
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Abstract  

Perceptual thresholds depend on the observers’ sensory capabilities and on their 

expectations and preferred responses, i.e. their bias. The following paper presents results 

of three studies that compare different methods for the assessment of perceptual 

thresholds and introduces a new adaptive threshold estimation approach which 

incorporates bias correction.  

In Study I, we investigated an adaptive method (AM) and the method of constant stimuli 

(MCS), which were applied in a backward masking experiment. Our results show a 

positive correlation between the thresholds estimated with the two methods, yet with 

systematic differences between both approaches.  

The sensory threshold not only depend on participants’ sensitivity, but also on their bias. 

More precise threshold values could be obtained by eliminating this factor. In Study II, the 

bias-corrected threshold was estimated for the MCS using the framework of Signal 

Detection Theory (SDT). Subsequently, corrected and uncorrected threshold estimates 

were compared. Results showed that the estimates for bias-corrected thresholds were 

lower than the estimates for uncorrected ones. 

To combine the efficiency of the AMs with the capabilities of MCS to estimate a bias-

corrected threshold, we introduce and simulated a novel adaptive procedure that resorts 

to online bias-corrected response estimates (Study III). The results of the simulation 

demonstrated the advantages and limitations of the proposed method. 

Keywords: 

Adaptive procedure, method of constant stimuli, perception, signal detection theory, 

backward masking  
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Introduction 

In psychophysics, perceptual thresholds are studied to characterize an individual´s 

capability to detect (or distinguish between) sensory events (Fechner, 1860; Swets, 

1961). Here, we studied perceptual threshold estimation in a well-established visual 

backward masking paradigm (Breitmeyer and Ogmen, 2000; Di Lollo, et al., 2000a; Enns 

and Di Lollo, 2000; Vorberg, et al., 2003b). In the present study, we implemented this task 

as follows: an emotional face stimulus (prime), showing either a sad or a happy facial 

expression, was followed by a mask (showing the same face but with a neutral 

expression). Importantly, the mask was only presented after a certain delay (a black 

screen, displayed for different durations) and, the shorter the delay, the less likely the 

emotional expression of the prime would be perceived due to backward masking. The 

temporal delay at which the emotional expression of the prime can just be perceived 

defines the observer´s performance, i.e. her/his perceptual threshold for this task. In the 

present study, we estimated the perceptual threshold as the delay that resulted in 66.7% 

correct responses (see supplementary material [1]). Two distinct procedures are 

commonly used for determining perceptual thresholds: 

1. Adaptive methods (AM) subsume many different approaches such as adaptive 

staircase procedures. These procedures try to approximate the stimulus parameters that 

lead to a specific response pattern (e.g. 66.7% correct) based on the relation of an 

observer’s responses to the parameters of preceding stimuli (Treutwein, 1995; Watson 

and Pelli, 1983). 

2. Method of constant stimuli (MCS) (McKee, et al., 1985b; Treutwein, 1995) refers to a 

procedure in which predefined stimuli are presented with parameters that - in an ideal 

case - should cover the whole perceptual range (i.e., 0% to 100% correct responses). 

Thresholds are then derived in a separate step, namely from a fitted psychometric 

function that relates stimulus parameters to a participants’ response pattern. In the 

presented study, we applied the ‘two-down one-up procedure’ (TDOU) as an AM. In the 

TDOU approach, the delay between the prime and the mask decreases by one step (16.6 

ms: 1 frame) after two correct responses and increases by one step with each incorrect 

response. Assuming a stationary threshold, the delay is expected to asymptotically 

approach the threshold, which is defined by a performance level of 66,7%, since we have 
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intermingled the two procedures and therefore there are not subsequent correct answer. 

Differently, if the correct answers are consequent, the performance level would have been 

of 70.7% (see supplementary material [1]). In AMs, stimulus parameters (here: delays) 

are more densely sampled when they are close to the individual´s threshold value (Levitt, 

1971a; Levitt, 1971b). Therefore, the AM procedure was expected to provide a highly 

reliable threshold estimate. In contrast to the AM, the MCS approach included different 

predefined delays, presented across trials in a pseudo-randomized order (Leek, 2001). 

To determine the threshold (66.7% correct), a sigmoid psychometric function (logistic 

regression) was fitted to the correct responses as a function of the predefined delays. 

Considering that, AMs sample the delays predominantly around the threshold, whereas 

the MCS explores the whole range of delays, AM is regarded as being more efficient than 

MCS, in as-much-as a smaller number of trials are needed for threshold estimation 

(Watson and Fitzhugh, 1990). Furthermore, in the case of MCS, the approximate range 

should be known prior to the experiment. This represents a disadvantage as compared 

to AM. Yet, MCS has the advantage that by fitting a sigmoidal function to the total range 

of experimentally acquired psychophysical data, a robust estimate of the threshold can 

be obtained (Hesse, 1986; Taylor, 1971; Watson and Fitzhugh, 1990; Watson and Pelli, 

1983). This paper compares the results obtained by the methods described above, with 

an additional focus on their ability to handle a participant’s bias.  

The bias is a systematic tendency of the observer to over- or under- estimate the 

presented stimulus parameters (Luce, 1963; Macmillan and Creelman, 1990; Macmillan 

and Creelman, 2004; Macmillan, et al., 2004). There are several types of biases that can 

occur at different stages of perceptual processing, e.g. at the sensory, the decision 

making, and the response selection level. A participant’s bias can contaminate threshold 

estimates relevantly. It can be corrected during data analysis or reduced by an 

appropriate design of the threshold estimation procedure. In our paradigm, we attempted 

to control the response bias by pseudo-random orderly assignment of buttons to be 

pressed to indicate the different valences of the administered face stimuli, i.e. sad vs 

happy. However, sensory and decision-making biases might still be affecting the 

observer’s perception. In situations where the observer is biased, the proportion of correct 

responses is not a thorough measure of the observer’s perceptual sensitivity. In this 
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context, signal detection theory (SDT) has been proposed as a framework to estimate the 

sensitivity ( ) by modelling perception as a decision-making process (Green and 

Birdsall, 1978; Harvey, 1992; Macmillan and Creelman, 1990; Macmillan and Creelman, 

2004; Macmillan, et al., 2004; Swets, 1961; Wickens, 2001) [for details see 

supplementary material 2]. While MCS allows the implementation of SDT for estimating 

an observer’s bias, in case of AMs no generally accepted strategy exists. To combine the 

efficiency of the AMs with the capabilities of MCS to estimate a bias-corrected threshold, 

a novel adaptive procedure is introduced. In standard TDOU, each delay depends on the 

observer’s response to the previous trial. The new method updates the estimate of an 

observer’s bias continuously and selects a delay for the upcoming trial based on the bias-

corrected response. While the observer’s response is either correct or incorrect, the bias-

corrected response is characterized by a certain probability for being correct. Thus, when 

determining the masking delay of the following trial, the (bias-corrected) TDOU-algorithm 

would be build on probabilistic considerations. 

The paper aims to articulate the theoretical framework of the new method. 

In the current paper, we compared TDOU- and MCS-based performance estimates in a 

backward masking paradigm comprising of visual emotional face stimuli (Study I). 

Subsequently, using the framework of SDT, the influence of bias correction on threshold 

estimates was investigated for the MCS procedure (Study II) using the data of the first 

experiment. The first part of the paper, including the Studies I and II, aims at introducing 

the problem of bias and it explains the principles of the methods to which we refer to 

develop a new approach for the threshold calculation (Study III). Therefore, we propose 

the new adaptive method which uses SDT to estimate a participant’s bias-corrected 

responses online and which uses this probabilistic response estimate to guide the AM. 

Study III demonstrates the feasibility of the procedure and discusses prerequisites, 

advantages and possible limitations of the approach.  

Method  

Participants  

Twelve healthy, right-handed participants (mean age: 25.5 years; 7 females and 5 male 

individuals) participated in the study. Participants did not have a history of psychiatric or 

d '



 

101 
 

neurological illness and had normal or corrected-to-normal vision. The experiment was 

approved by the local ethics committee for medical research (Faculty of Medicine, 

University Hospital Tübingen). Prior to the experiment, participants gave their written 

informed consent.  

Experimental Procedure 

The experimental paradigm consisted of a modified version of the visual backward 

masking task, developed by (Del Cul, et al., 2006a) and inspired by the work of (Di Lollo, 

et al., 2000a; Enns and Di Lollo, 2000; Vorberg, et al., 2003b). In the original study, Arabic 

numbers were used as stimuli. In the current experiment, emotional faces were used, to 

estimate individual perceptual thresholds. 

Each experimental trial (Fig.1) started with the display of a fixation cross for 2s, followed 

by the prime stimulus. The latter could be either an emotionally positive (happy) or 

negative (sad) face, presented for 16 ms. After a given delay, the prime stimulus was 

masked by an emotionally neutral face of the same identity, presented for 250 ms. To 

determine the delay corresponding to the threshold at which the emotional expression of 

the prime was reliably perceived, a black blank screen was displayed between the prime 

and the mask stimulus. The delay corresponded to one of ten different values (0 ms, 16.7 

ms, 33.3 ms, 50.0 ms, 66.7 ms, 83.3 ms, 100.0 ms, 116.7 ms, 133.3 ms, 150.0 ms), 

according to the frame rate of 60 Hz of the projector. After the mask, another black blank 

screen was shown for a duration of [Tblank= 1500 ms – (Tprime + Tdelay+ Tmask)] to 

guarantee that the response indicator affects the processing of the prime and mask 

stimulus in the same way. Afterward, participants had to indicate the emotional valence 

of the prime by pressing a corresponding optical response button (either the one in their 

left or their right hand). To prevent any response bias, the assignment of the left/right 

response buttons to positive/negative valence judgements was counter-balanced across 

trials. The association was indicated by the following visual cues: “POS+NEG” and 

“NEG+POS”, with ‘+’ serving as fixation cross. “POS+NEG” instructed to press the left 

button if the participant perceived that the prime was emotionally more positive than the 

mask, and the right button if the prime was negative. “NEG+POS” instructed to press the 

left button if the participant perceived that the prime was emotionally more negative than 
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the mask, and the right button if the prime was positive. Participants were requested to 

respond to each trial, and to make a guess about the emotional valence of the faces 

(happy or sad) when they were unsure about the right answer. The inter-trial interval was 

5 sec. 

The experiment consisted of 5 runs, each lasting for 15 minutes. Each run had 152 trials, 

including 80 trials for the AM, and 72 trials for the MCS. The MCS involved 10 different 

delays, including 20 trials with a delay of 0.0 ms and 150.0 ms, and 4 trials including the 

following delays: 16.7 ms, 33.3 ms, 50.0 ms, 66.7 ms, 83.3 ms, 100.0 ms, 116.7 ms, and 

133.3 ms. In each run, the trials for MCS and TDOU were presented in a pseudo-

randomized order. The emotional faces of different identities were pseudo-randomly 

selected and consisted of 50% female and 50% male faces.  

The stimuli were presented using a Pascal-based program in the Dos 6.2 operating 

system (developed at the MEG center of Tübingen) and were synchronized with the 

vertical screen refresh rate of 60 Hz. Images were presented on a screen in front of the 

participant using a SANYO PLC-XP41L projector. Color images of faces from the 

NimStim Face Stimulus Set (Tottenham, et al., 2009) were used as stimuli.  

All the data analyses, including statistical tests, were performed using in-house scripts, 

running on MatLab version 2014. 
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Fig.1: Threshold measurement protocol. After the presentation of a fixation cross (2 sec), 

the prime stimulus (an emotionally positive or negative face) was presented for 16 ms. 

After a variable delay (Delay *: 0.0 ms, 16.7 ms, 33.3 ms, 50.0 ms, 66.7 ms, 83.3 ms, 

100.0 ms, 116.7 ms, 133.3 ms, and 150. ms.), the mask (neutral face) was shown for 250 

ms. The black screen, presented for duration Tblank (β *: [1500 ms – (Tprime + Tdelay+ 

Tmask)]), was followed by the response instructions. Participants were asked to compare 

the prime stimulus with the mask and to press the right- or left-hand button in order to 

indicate the emotional valence of the prime.   
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Study I: Comparison of AM (TDOU) and MCS  

In the first study, we compared the thresholds estimated through AM and MCS, both at a 

level of 66.67% correct responses. The trials were intermingled between the two 

methods, reducing the potential influence of further external factors on the procedure and 

the results. 

Methods 

For the estimation of the thresholds, trials belonging to AM and MCS were separated. 

Since the delay is assumed to converge towards a performance level of 66.67%, with an 

increasing number of trials, in case of the TDOU rule (see supplementary material [1]), 

the threshold can be determined by averaging the delays across a certain number of 

trials. In the present study, the average of the last 20 trials of each run was used. We 

assume that the varying delays have reached an asymptotic level after 60 trials, and 

averaging the delays of the last 20 trials, should result in a stable final value. Finally, the 

mean of the thresholds estimated for each run was calculated. In the MCS, the 

psychometric function was estimated by analyzing the frequency of correct responses for 

the ten different delays. Considering Fechner’s law of logarithmic relation between 

perceived and physical magnitudes of sensory input (Dehaene, 2003), the logarithm of 

all delays was calculated. The logarithm involves the possibility to obtain a minus infinity 

for a delay of zero, to avoid this problem, 1 ms was added to all delays prior to the 

transformation. Afterwards, a Weibull psychometric function was fitted to the frequencies 

of correctly identified emotional face expressions:  
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k = - log
1- a

1- g

æ

è
ç

ö

ø
÷

1

b

 (2) 

= logarithmic transformation of delays 

= performance at chance level: in our example set to 0.5 

= threshold 

f x( ) =1- 1- g( )e
-
kx

t

æ

è
ç

ö

ø
÷

b

x

g

t



 

105 
 

= performance level defined as threshold (0.667) 

= slope of the psychometric function 

The Weibull function asymptotically converges towards 50% for a delay of 0.0 ms and 

towards 100% for increasing delays. The Weibull function fitted to the psychophysical 

data resulted in a threshold estimate , i.e. a delay for which a performance level of  

was reached. Furthermore, a value for the slope of the psychometric function, reflecting 

contrast sensitivity, was obtained. However, this parameter is not discussed any further 

here. The MCS threshold was defined as 66.67% correct, which is well above chance 

level, and corresponds to the threshold level of the AM. 

Results  

In a first step, the perceptual thresholds for the AM and the MCS were estimated and 

subsequently compared. Two participants were discarded from the experiment, as it was 

not possible to fit a sigmoid Weibull function to their MCS data. Fig.2a shows the 

perceptual threshold calculated using AM for a typical participant. The graph contains the 

participant’s correct and incorrect responses for 5 runs. In contrast to our expectation, the 

threshold is only asymptotically reached in a few runs. Fig.2b shows the procedure to 

estimate the threshold using MCS for the same participant as in Fig.2a. The percentage 

of correct answers is represented for each delay. Across all participants, no significant 

difference (t(9)= 0.9, p = 0.39) between the threshold estimates for AM (M ± SE: 43.47 ± 

3.79) and MCS (M ± SE: 38.28 ± 7.00) were found. Moreover, Fig.2c illustrates a 

significant correlation between participants’ AM and MCS estimates (r = 0.579, t(8) 

=2.008, p = 0.04 (one sided)).  

a

b

t a
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Fig.2 a-c: a) Plot showing the AM method for threshold estimation in a single participant 

using the TDOU rule. White dots indicate correct responses and black dots represent 

incorrect answers. The x-axis represents the number of trials and the y-axis the delay. b) 

Threshold estimation of the same participant, using MCS. The x-axis shows mask delays 

on a logarithmic scale and the y-axis indicates the percentage of correct responses. The 

threshold is defined as 66.67% of correct answers. c) Correlation between participants’ 

threshold estimates using AM and MCS. r = 0.579 and p = 0.04 across 10 participants. 

Discussion 

The described experiment investigated the comparability between two perceptual 

threshold estimation techniques (AM and MCS), using a backward masking paradigm. 

Although thresholds were determined quasi simultaneously for both methods, only a 

rather moderate correlation was obtained.  
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Previous investigations, assessing the similarity of threshold estimations with MCS and 

AMs, have produced heterogeneous results (Hesse, 1986; Kollmeier, et al., 1988; Shelton 

and Scarrow, 1984; Shelton, et al., 1982; Stillman, 1989). Several simulation studies have 

shown a certain consistency between threshold estimation, using MCS and AMs. Our 

present experiment confirmed these results. The study reveals that the AM threshold is 

lower than the MCS threshold for MCS thresholds that are higher than 40 ms. In contrast, 

when participants had MCS thresholds lower than 40 ms, thresholds obtained for the AM 

were higher than that of the MCS. A possible explanation for the systematic inconsistency 

between AM and MCS is that, if in AM the adaptive procedure reaches lowest (0.0 ms) 

or highest delays (150 ms), the next delay might not be chosen according to the TDOU 

procedure because of floor and ceiling effects (in our case, floor effect correspond to 1.9% 

± 0.4% and the ceiling effect to the 0.0%). 

As previously described, the AM is expected to sample the performance near the 

threshold and thus should result in a rather reliable threshold estimate. Even if the AM 

starts from a delay that is far away from the ultimate threshold delay, the latter will be 

reached in a comparatively small number of trials depending on track length and step-

size. In the MCS, on the other hand, the psychometric function is fitted to the observer’s 

data for the whole range of delays. Therefore, in MCS the threshold estimate depends on 

the type of psychometric function, the transformation of the delay data, and is possibly 

also affected by data points that are further away from the threshold of interest, and thus 

the MCS estimates might differ from the ones obtained using AM. 

 

Study II: Bias and MCS 

When assessing a participant’s perceptual threshold, bias has an impact on the threshold 

estimate. In an ideal bias-free scenario, the lowest individual thresholds would be 

obtained. The introduced bias will lead to either an increase  or decrease of the estimated 

threshold value. In case of the MCS, bias correction has been implemented using Signal 

Detection Theory (SDT) (Clark, 1966). In the following experiment, using the data of the 

Study I, the uncorrected and bias-corrected MCS threshold estimates are compared. In 

addition to demonstrating how threshold estimates are affected by bias and its correction, 
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the study also serves as an introduction to the bias correction procedure implemented in 

the new adaptive method presented in Study III. 

Methods 

In SDT, the representation of the intensity of a sensory stimulus is assumed to follow a 

probabilistic function, usually modeled as a normal distribution. In case of two distinct 

stimuli and two respective response alternatives (stimulus A, for instance ‘happy face’, 

vs. stimulus B, ‘sad face’), the perceptual decision outcome depends on whether or not 

the intensity of the sensory representations exceeds a decision criterion (Kingdom and 

Prins, 2010; Prins, 2016). The criterion for sensory decisions can vary according to 

previous information and decision biases. Hence, the decision criterion (supplementary 

material [2]) directly reflects the observer’s bias (Fig.2a). 

In our experiment, each stimulus would be characterized by its own probability density 

function. Overlapping probability functions for happy and sad face images will be found 

for two stimuli that can only be discriminated at chance level. The higher the separation 

between the probability density functions of two stimuli, the better they can be 

discriminated. The separation between the probability density functions is a measure of 

the sensitivity  (pronounced as ‘d prime’) of a detector.  

SDT allows the estimation of both sensitivity  and criterion  (and thus bias) based on 

participants’ response behavior, i.e. the number of hits (the percentage of correctly 

identified happy faces), correct rejections (the percentage of correctly identified sad 

faces), misses (incorrectly perceiving the happy face as sad) and false alarms (incorrectly 

perceiving the sad face as happy) (Table S1). Accordingly, we determined the probability 

of correctly detecting a happy face ( ), the probability of correctly detecting a sad 

face ( ), the probability of incorrectly detecting a sad face (happy faces erroneously 

perceived as sad: ), and the probability of incorrectly detecting a happy face (sad 

faces erroneously perceived as happy: ) for each delay. Afterwards, , the 

distance between the probability density function for HF (happy face) and SF (sad face) 

was separately estimated for each delay, namely as the difference between the Z-

transforms, with the following formula:  

d ' = Z pCH t( )( ) -Z pIS t( )( ) . (3) 

d '

d ' g

pCH t( )

pCS t( )

pIH t( )

pIS t( ) d '
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The criterion  was estimated as follows:  

g = -
1

2
Z pCH t( )( ) +Z pIS t( )( )( ) . (4) 

Subsequently, based on , the probabilities , , , and  were 

computed for an assumed bias of zero, and the bias-corrected percentage of correct 

answers for each delay was estimated with the following formula:  

pcorr t( ) =
pCH t( ) + pCS t( )

pCH t( ) + pCS t( ) + pIH t( ) + pIS t( )
. (5) 

The standard correction was applied when any response probability  had a value of 

1 or 0 because the Z-transform is not defined in such cases. While in case  was 1, it 

was replaced by 1-1/2N (where N is the total number of trials with a particular delay). In 

case  was 0, the probability was replaced by the following formula: 0+1/2N. Fitting a 

Weibull function to the bias-corrected percentage of correct responses for all delays

 allowed us to estimate a bias-corrected threshold. Bias-uncorrected and -

corrected thresholds were compared by means of correlation analyses. The corrected, 

unbiased psychometric function is represented by the criterion of 0. 

Results 

Fig.3a illustrates the impact of a non-zero bias for each delay in a single participant. The 

percentage of correct responses  is lower when the criterion  deviates from 0 

compared to the situation , despite the same . The percentage of correct 

responses  is maximum, when the criterion value is 0. In other words, the 

performance of the observer improves when there is no bias. In conclusion, the bias value 

affects the psychometric function as well as the estimated thresholds (Fig. 3c). In the 

framework of SDT, the observer’s bias for different delays can be represented by the 

receiver operating characteristic (ROC) curve (Egan, 1975; Metz, 1978) (Fig.3b). In the 

plot, each iso-sensitivity curve represents the perceptual performance for individual 

delays with varying biases (see supplementary materials [2]). A filled circle marks the 

observed bias for each delay. The bias-corrected sensitivities located on the diagonal 

with slope -1 are marked with black diamonds.  

g

d ' pCH t( ) pCS t( ) pIH t( ) pIS t( )

p t( )

p t( )

p t( )

pcorr t( )
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Fig.3c contains the percentage of correct identification of happy and sad faces for each 

delay in a single participant. The uncorrected performance is represented by grey, and 

the bias-corrected performance by black dots. After fitting psychometric Weibull functions 

to the uncorrected (grey) and corrected performance (black), the respective individual 

thresholds were determined. In case of the presented participant, a reduced threshold for 

the bias-corrected performance is evident (Fig.3c). 

When comparing bias-corrected and uncorrected thresholds of the participants, a strong 

correlation was found (r = 0.99; p ≤ 0.0001) (Fig.3d). The slope of the linear regression 

has a value lower than 1.0 (namely 0.9453), indicating that the average thresholds are 

lower for bias-corrected performance than for uncorrected performance. 

Discussion 

In the second study, we estimated the participants’ perceptual thresholds, using MCS and 

applied bias correction using the SDT framework. Across all participants, bias-corrected 

thresholds were lower than uncorrected thresholds. Obviously, the observer’s bias affects 

the threshold estimates and can lead to an underestimation of the observer’s 

performance.  

According to the SDT framework, we would expect participants’ decisions to be based on 

a fixed criterion that does not vary with delays. However, in contrast to our expectation, 

the bias in the experimental data varied unsystematically for different delays (e.g. 

compare Fig.3a). In other words, participants might change their decision strategies for 

the differential identification of happy and sad faces depending on the level of the delays. 

For short delays, it is possible that observers focus on easily detectable features, which 

are not necessarily very reliable. In case of longer delays, more complex aspects might 

come into play, leading to a shift of the detection criterion. Considering this, bias 

correction is an important procedure to obtain valid sensory thresholds. Moreover, at least 

in case of our experimental paradigm, there is need for more systematic studies, in which 

the application of different strategies for solving the task can be disentangled.  
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Fig.3 a-d: a) shows the sensory representation of a single participant for 10 different 

delays.  (probability of correctly detecting a happy face),  (probability of correctly 

detecting a sad face), (probability of incorrectly detecting a happy face), and  

(probability of incorrectly detecting a sad face) are represented in different grey levels. 

 is represented by the distance between the two probability density functions. The 

participant’s decision criterion  for each delay is indicated by a vertical dashed black 

line. The bias-corrected criterion c is represented by a vertical solid line. b) represents 

the data derived from the same participant in a ROC curve. Each iso-sensitivity curve 

shows the relation between  rate and the probability of incorrectly detecting a happy 

face for a specific delay, corresponding to one sensitivity level (all delays are 

represented). Besides the original bias (grey dots), the bias values of 0 (black diamond) 

are represented. The higher the , the darker and the more solid the lines of the iso-

sensitivity curves c) The difference between the uncorrected and corrected threshold 

derived from the psychometric function for a single participant. The grey curve with grey 

markers represents the uncorrected performance and the solid black line with black dots 

indicates the bias-corrected performance values and the corresponding psychometric 

function. d) shows the correlation between the uncorrected threshold and the corrected 

threshold for all participants. If the corrected and uncorrected were the same, the 

regression line (solid line) would follow the dashed line (1st diagonal). The calculated R-

value of the correlation is 0.99 and is highly significant (p<0.0001).  

pCH pCS
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Study III: Bias Correction for AM 

In the third study, a new adaptive threshold detection method is proposed and simulated. 

The AM procedure estimates the threshold using the TDOU rule. In addition, the 

procedure considers an initial estimate of the observer’s bias. Along with the adaptive 

procedure, the bias estimate will be continuously updated during each trial and 

subsequently used to determine an observer’s bias-corrected response. The bias-

corrected response in combination with the TDOU rule will be applied to select stimulation 

parameters, i.e. here the mask delay, for the following trial. Using simulations, we 

demonstrate the feasibility of the approach and its efficiency in handling biases of varying 

size. 

Methods 

The rules of this approach are summarized in a flowchart and were tested through a 

simulation. A virtual observer’s performance for different numbers of trials and several 

levels of bias was simulated to estimate the thresholds (with and without bias correction), 

for both AM and MCS. As a final step, the results are summarized, and potential 

advantages and disadvantages of the new method are illustrated.  

Figure 4 depicts the four different conditions that need to be considered in the approach.  

a) Assuming that in a certain trial a ‘happy face’ (HF) is presented and the observer’s 

criterion to classify the stimulus as ‘happy’ or ‘sad’ is at a level of  (this 

situation describes the case of a bias towards happy faces) (Fig.4a), the probability 

to choose ‘sad face’ as a response corresponds to the rate of . In contrast, 

the probability to select HF as a response is referred to as . The probability 

 can be thought of as being composed of , where 

 is the cumulative probability for 
, 

and 

 

is 

the probability for . represents participant’s perception criterion and 

 the bias-free perception criterion.  is assumed to be normally 

distributed. In the proposed method, the selection of the next stimulus is based on 

g < 0

pIS t( )

pCH t( )
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a participant’s bias-corrected response. In case the virtual observer (VO) 

responded with ‘sad face’ (SF), the response was wrong, regardless of any 

potential bias. However, given the response bias towards HF, whenever VO 

answers HF, only a proportion  of these responses can be accepted as 

HF. In case of the remaining trials, the response will be converted to SF. In an 

individual trial, depending on the estimated proportion, the response will be kept 

or changed, based on random selection. In detail, a random number  will be 

drawn from a uniform distribution between 0 and 1. If , the observer’s 

response will be changed from HF to SF, i.e., from correct to incorrect.  

b) Likewise, for HF stimuli, a HF response will remain unchanged when the criterion 

is set at a level of  (this situation describes the case of a bias towards sad 

faces) (Fig.4b). The probability of incorrectly perceiving a happy face , i.e. 

responding with SF to the HF stimulus, can be split into a proportion depending on 

the bias-free criterion 
 
and a proportion that corresponds to the observer’s bias 

. If the random variable the SF response will be changed to HF.  

c) For SF stimuli, a SF response will remain unchanged when the criterion is set at a 

level of (this situation describes the case of a bias towards happy faces in the 

presence of a SF stimulus) (Fig.4c). The probability of (responding with HF to 

the SF stimulus), can be split into a proportion depending on the bias-free criterion 

 
and a proportion corresponding to the observer’s bias . In case 

the HF response will be changed to SF.  

d) Finally, for SF stimuli a HF response will remain unchanged when the criterion is 

set at a level of  (describing a bias towards sad faces) (Fig.4d). The 

probability of correctly perceiving a sad face , i.e. responding with SF to the 

pCHa

pCHa + pCHb
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SF stimulus, can be split into a component depending on the bias-free criterion 

and a proportion that corresponds to the observer’s bias . If the random 

variable , the SF response will be changed to HF.  In all four cases 

the bias-corrected response is used for the selection of the next stimulus 

according to the TDOU rule in the subsequent step of the algorithm.  

In the simulation, corrections of the responses were carried out only after acquiring a 

robust estimate of the bias for the individual delays. A minimum of 25 trials, and a 

minimum of at least 3 trials in each of the SDT response categories for the current delay 

 ( , , , ) was requested prior to application of the 

correction procedure. The bias correction was not applied in the same time for each delay 

since the same delay does not occur consecutively.  

pCSa pCSb

r >
pCSa

pCSa + pCSb

t pCH t( ) pCS t( ) pIH t( ) pIS t( )
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Fig.4: In the AM with bias correction, the observer’s bias is estimated and the stimulus 

will be chosen depending on the TDOU rule and the bias-corrected response. Since in a 

single trial it is unknown whether the decision was based on a bias, a probabilistic 

correction will be carried out. For this purpose, probabilities for ( , ,

, ) will be split into a component that describes the probability for the 

unbiased criterion  (solid vertical line) and the proportion due to the bias-dependent 

criterion  (dashed vertical line). The unbiased proportion of the probabilities refers to  

and the component that is due to the response bias to . In a) and b) HF stimuli and in 

c) and d) SF stimuli are presented. In a) and c) the correction needs to be considered for 

the response HF, while in b) and d) it needs to be considered for the response SF.  

The flowchart below displays rules for the selection of a delay for the next trial, 

implemented through an algorithm that is based on corrected responses.  

pCH t( ) pCS t( )
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Fig.5: The flowchart describes the algorithm presented in the suggested approach.    
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After the bias estimation, it is possible to correct a participant’s response by taking the 

initial bias value (criterion in the original position) into account and using a new bias-free 

decision criterion set to 0.  

 

Fig.6: Simulation of AM with or without correction for biases of  and . As 

threshold estimates, the average of mask delays across the last 50 trials was taken. 

Averages are represented as horizontal lines extending from trial 150 to 200. 

To verify the suitability of our approach for the on-line bias correction, a simulation was 

performed. We simulated the threshold’s procedure for AM and MCS both with and 

without bias correction. A virtual observer’s detection skills were defined for ten delays. 

Each delay was assigned to different  according to: =12Δt.  Since the  of 0.861 

corresponds to a percentage of correct answer of 66.7%, the preset threshold is 72 ms. 

Furthermore, different observer’s biases were considered (0.0, 0.2, 0.5) (Fig.6). 

The same delays used in the experimental paradigm were adopted to the simulation i.e, 

0.0 ms, 16.7 ms, 33.3 ms, 50.0 ms, 66.7 ms, 83.3 ms, 100.0 ms, 116.7 ms, 133.3 ms, 

g = 0 g = 0.5

d ' d ' d '
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150.0 ms. Once the virtual observer’s detection skills were defined, their performance for 

four different numbers of trials (100, 200, 500, and 1000 trials) was simulated.  

During the simulation, HF and SF were presented in pseudo-random order. The 

probabilistic decisions of how HF and SF were perceived, were modeled in the framework 

of SDT and were based on Gaussian normal distributions centered at  and with 

standard deviations of 1. The VO’s performance depending on the mask delay was 

expressed as  and increased linearly with increasing delays: =12Δt (see above). To 

simulate the VO’s decision, a random number rs was chosen from the normal distribution 

with standard deviation of 1 and  for HF and  for SF. Depending on 

whether  exceeded the predefined decision criterion : , the virtual observer’s 

response was HF. Conversely, in case of , the response was SF.  

The results of the simulation for each set of parameters (level of biases and number of 

trials) were iterated for 1000 times and the corresponding thresholds were inferred. Note 

that the observer’s responses are based on a probabilistic selection of responses. 

Therefore, the simulated thresholds vary for the same stimulus conditions. 

Results 

In table 1, the mean and standard deviations values across the 1000 repetitions for 

corrected and uncorrected thresholds and different bias values and different trial numbers 

are presented. Table 2 summarizes the estimated biases values that were inferred from 

the VO’s response as a function of trials.  

The simulation revealed that in the case of a low number of trials (≤ 200), both for 

corrected and uncorrected thresholds, the MCS fails to fit the Weibull function, while the 

AM is not affected by this problem. Furthermore, in the uncorrected AM procedure, the 

estimated thresholds are independent from the number of trials. Conversely, in the 

corrected AM, the estimated threshold values approach the threshold which has been 

preset in the simulation. In general, the results show that the threshold values are 

consistently lower in MCS than in AM. The reliability of the threshold, indicated by the 

standard deviation, is independent from number of trials in both, bias uncorrected and 

bias corrected AM. Moreover, reliability is lower for AM as compared to MCS (Table 1).  

±d '/ 2

d ' d '

m = d '/ 2 m = -d '/ 2

rS g rS ³g

rS <g
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Table (1): threshold estimates of AM and MCS with and without bias correction for a bias 

of 0.0, 0.2 and 0.5 and for trial numbers of 100, 200, 500, 1000. For each condition, mean 

and standard deviations across 1000 simulations are presented. ‘Inf’ indicates that the 

simulation failed in fitting a sigmoid Weibull function and thus the threshold could not be 

estimated.   

Threshold Trials = 0.0 = 0.2 = 0.5 

Method 
 

AM MCS AM MCS AM MCS 

uncorrected 

 

100 74.6± 

22.02 

Inf 76.5± 

22.73 

Inf 82.0± 

22.16 

Inf 

200 73.7± 

22.77  

Inf 76.7± 

22.28 

Inf 81.1± 

23.00 

Inf 

500 73.7± 

22.62 

69.7± 

14.16 

75.2± 

22.13 

71.0± 

14.08 

80.2± 

22.90 

79.0± 

14.33 

1000 74.2± 

22.15 

70.6± 

9.64 

73.1± 

22.05 

71.0± 

9.59 

80.2± 

22.25 

79.5± 

9.49 

corrected 100 75.2± 

22.05 

Inf 75.6± 

22.25 

Inf 81.7± 

23.51 

Inf 

200 73.6± 

23.42 

Inf 75.4± 

23.36 

65.3±2

26.12 

81.8± 

22.61 

Inf 

500 73.6± 

22.40 

68.5± 

14.26 

73.6± 

22.01 

68.1± 

14.29 

77.3± 

23.63 

67.2± 

15.14 

1000 72.7± 

22.98 

69.9±

9.67 

72.9± 

22.25 

69.0± 

9.71 

74.3± 

22.43 

69.1± 

10.04 



 

121 
 

Bias correction is based on the estimation of the bias, derived from the participant’s 

previous responses. In Table 2, the estimated biases are presented for different trial 

numbers and at different simulated bias levels. The accuracy of the bias, deviation from 

the simulated preset bias value, and their precision, reflected by the standard deviation 

(the lower the standard deviation, the higher is the precision) became higher with an 

increasing trial numbers. The performance of the bias estimates is comparable for both 

AM and MCS, however with smaller errors for AM (Table 2).  
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Simulate

d Bias  

= 0.0  =0.2  = 0.5 

Trials  AM MCS
 

AM MCS
  

AM MCS
 

100   -0.0210± 

0.1677 

-0.0006± 

0.3364 

0.0839± 

0.1671 

0.1335± 

0.3371 

0.2250± 

0.1715 

0.3316± 

0.3179 

200  -0.0027± 

0.1334 

-0.0029± 

0.2947 

0.1406± 

0.1335 

0.1837± 

0.2908 

0.3335± 

0.1471 

0.4636± 

0.2896  

500  -0.0006± 

0.0608 

0.0007±  

0.1972 

0.1897± 

0.0653 

0.2091± 

0.1966 

0.4748± 

0.0690 

0.5117± 

0.1998 

1000  0.0007± 

0.0432 

-0.0010± 

0.1368 

0.2004± 

0.0428 

0.2057± 

0.1369 

0.5016± 

0.0472 

0.5145± 

0.1458 

 

Table (2) shows the estimated biases values determined by AM and MCS with bias 

correction. Mean bias estimates  and standard deviations  across 1000 simulations 

are presented for simulated decision criteria of 0.0, 0.2 and 0.5 and for trial numbers of 

100, 200, 500 and 1000.   

g
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Discussion 

In Study III, a new approach for the bias correction of adaptive threshold procedures (AM) 

was proposed.  

In case of low trial numbers (100-200), the MCS suffers from an inability to reliably fit a 

sigmoid psychometric function to the experimentally acquired data while the AM still 

allowed a threshold to be acquired. In a real experiment the failure of fitting the 

psychophysical curve is equivalent to the loss of the corresponding participant. The 

relevance of this issue is evidence from the experimental data presented here, in which 

two participants had to be excluded. In conclusion, the higher the number of trials, the 

better the signal-to-noise ratio and the fitting of the sigmoid psychometric function. This 

leads to an improvement of the reliability of estimates produced by MCS. 

Results of the bias uncorrected AM show that the threshold estimate does not change 

with the number of trials. Assuming that the delays used for stimulation in AM converge 

towards the threshold rather quickly, and using the averaged delay of the last 50 trials in 

each run, threshold delays should be independent from trial number especially for trial 

numbers larger than hundred. Since there were only 10 steps of delays, the lowest delay 

(0.0 ms) could be reached within 20 trials using the TDOU rule even if the procedure 

starts at the maximum delay (150 ms). With increasing number of trials, the bias corrected 

AM yielded threshold estimates approaching the value preset in the stimulation. 

Depending on the strength of the bias, the needed number of trials increases 

considerably. 

We observed that the thresholds are consistently lower in MCS as compared to AM. As 

previously discussed, the floor effect (Study I) in selecting the delays, for low thresholds 

in AM, could result in an overestimate of the threshold value. Nevertheless, considering 

the standard deviations of the thresholds for AM and MCS, the ranges of the estimated 

thresholds are largely overlapping and thus are not distinguishable.  

Considering reliability, the standard deviation of threshold estimates in the AM is constant, 

independently of the number of trials and bias-levels. However, in contrast to MCS, the 

standard deviation of threshold levels is rather high rendering the AM method less 
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reliable. With the TDOU rule applied here, only a few trials determine the variation of the 

stimulus delay in the upcoming trials making the approach sensitive to random variations 

due to noise. Using an alternative rule that considers the response of more trials will most 

likely reduce the effects of noise and will enable the estimation of threshold levels for 

performance levels higher than 66.7%. 

To estimate a bias-corrected threshold, the proposed AM method relies on bias-corrected 

responses of the observer to determine the stimulus delay for the next trial according to 

the TDOU rule. For this purpose, a first estimate of the bias is generated during the initial 

trials. Afterwards, when the bias estimate is available, the algorithm used for bias 

correction becomes effective. Along with the threshold procedure, the bias estimate is 

constantly updated and thus becomes increasingly more reliable. This strategy, however, 

implies that a sufficiently high number of trials has been sampled to get a reliable estimate 

of the bias. Our simulations show that it takes around 200-500 trials in MCS and AM 

respectively. 

The need for high number of trials becomes especially relevant for strong biases because 

the tails of the probability density functions defined in the SDT framework become smaller 

and thus increasingly difficult to estimate. The results of the simulation demonstrate that 

bias-uncorrected threshold estimates for AM and MCS lead to more corrupted threshold 

estimates the stronger the bias. In both methods, bias correction improves threshold 

accuracy, in particular for high biases.  However, an effective bias correction requires a 

large number of trials, insofar as a bias reduces the areas of probability density function 

that need to be determined (see: S1a-b). Since for stronger biases the required trial 

numbers to obtain a stable estimate is high for both methods the advantage of AM over 

MCS with only a few trials is lost.  

 

General Discussion 

In this paper, we investigated different methods to calculate perceptual threshold 

estimates in a backward masking paradigm, namely an adaptive method (AM) and the 

method of constant stimuli (MCS).  
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Despite similarities between data obtained with AM and MCS, our results show that there 

can be some discrepancy between both methods. This difference seems partly due to 

floor and ceiling effects that introduce a violation of the rule determining the delay in the 

next trial. This problem can be avoided adapting the step size for increasing trials 

numbers in the AM procedure (i.e.: bigger step size at the beginning and smaller at the 

end). In our experiment, however, determining the threshold delay for a visual mask 

stimulus, the step size could not be altered because of the fixed frame rate of the stimulus 

projector. 

Study II highlights the need of bias-correction to reliably estimate perceptual thresholds. 

We applied a SDT-based bias-correction to participants’ responses retrieved during study 

I with the MCS procedure and show that thresholds are consistently underestimated 

without such correction. 

The estimation of an observer’s bias allows distinguishing if there are true differences in 

perceptual thresholds, such as under different experimental conditions or in patients as 

compared to healthy participants. SDT enables to distinguish between the observer’s 

sensitivity and the bias that can vary independently from each other. In case of patients 

with depression, for example, the suggested method could be applied to differentiate 

between the altered sensory performance and a disease-related, predominantly negative 

evaluation of the valence of visual stimuli (i.e. a systematic bias).  

 

Although signal Detection Theory (SDT) is a powerful framework for the correction of 

perceptual biases during the estimation of sensory thresholds, there was a debate about 

its validity. As described above, the foundation of SDT is represented by the criterion and 

the sensitivity. The assumptions related to the criterion were criticized by various authors 

(Balakrishnan, 1998a; Balakrishnan, 1998b; Balakrishnan, 1999; Balakrishnan and 

Macdonald, 2002). In an attempt to verify the basic assumptions of SDT, Balakrishnan 

applied new nonparametric measures to experimental data. The author came to the 

conclusion that those assumptions are not supported and that SDT does not reliably 

represent/account for the full range of perceptual and decision processes. Note, however, 

that Balakrishnan’s conclusions have been challenged by Treisman (Treisman, 2002) 

who argues that the underlying principles of SDT are still valid and who provided an 
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alternative interpretation of Balakrishnan’s results. In the meantime, several authors have 

continued to study the possible applications of SDT (Mueller and Weidemann, 2008; 

Pastore, et al., 2003). Being aware of the ongoing debate on this issue, we are confident 

that the SDT fits the purpose of the study presented here. 

 

Finally, a new method was presented in Study III, which now also allows for efficient bias-

correction in AM procedures. In this study, bias correction based on SDT was applied in 

a simulation, both, for the MCS and AM in a novel approach. When it comes to the bias 

correction many trials were needed in any case. In particular in case of strong biases the 

problem of a sufficient trial number becomes very strong. Therefore, it is important to 

reduce the bias by choosing an appropriate experimental design.  

 

The more reliable results for the MCS that is indicated by the lower standard deviations 

speaks in favor of the MCS at least for higher trial numbers. In contrast, combining AM 

with bias correction is certainly beneficial when there is a need for keeping trial numbers 

low. AM with bias correction becomes the method of choice if during an experiment 

stimulation should constantly be applied at the threshold. In an experiment in which 

sensory performance is trained, adapting the stimulation parameters to the threshold 

allows for keeping the challenge. The framework presented here combining AM with the 

SDT-based bias correction doubtlessly leaves space for further improvements that 

particularly aim at increasing the reliability of the AM procedure. Moreover, the conducted 

studies revealed new characteristic and the relation with bias of the classical methods to 

calculate the threshold, contributing with new insights to the better understanding of the 

threshold estimation.  
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Abstract 

Perception of the emotion concludes with the active communication between fronto-

parietal networks (FPN), and literature suggests that this communication is either 

disrupted or disturbed in the neuropsychiatric conditions such as schizophrenia and 

autism. In the current study, we trained healthy participants to volitionally modulate the 

functional connectivity between FPN using real-time neurofeedback 

magnetoencephalography (rtMEG). Participants in our experiment were presented with 

masked stimuli of emotional face expression at near the perceptual threshold (NPT). 

During the processing of the emotional stimuli, functional connectivity in the FPN was 

estimated in real-time and were presented as feedback stimulus at the end of the trial. 
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Subjects were instructed to modulate their connectivity, for up-regulation and down-

regulation trials respectively. We have assessed the effects of training on the FPN and 

the threshold by comparing pre-test and post-test performance. A significant difference in 

the functional connectivity for up-regulation and down regulation trials of the 

neurofeedback session was found, suggesting that participants successfully achieved the 

modulation of FPN. Furthermore, we also found a significant reduction in the perceptual 

threshold in post-test compare to pretest. Our finding demonstrates that healthy 

participants can be trained to modulate the functional connectivity in the FPN using MEG-

neurofeedback and suggest gamma band activity to be critically involved in the control of 

FPN. 

 

Introduction 

Perception of emotions is a crucial ability for smooth and appropriate social interaction in 

day-to-day life. This ability is diminished in patients suffering from neuropsychiatric 

conditions like schizophrenia and autism (Andreasen, et al., 2012; Bateson, et al., 1956; 

Deleuze and Guattari, 1988; Endicott and Spitzer, 1978; Kay, et al., 1987). A plethora of 

literature both in humans and experimental animals suggests that these neuropsychiatric 

conditions are basically the outcome of a disrupted or disturbed communication of fronto-

parietal communication (Andreasen, et al., 1999; Friston; Friston, 2002; Hoffman and 

McGlashan, 2001; Stephan, et al.; Stephan, et al., 2009).  

 

The decisive role of FPN in the perception of emotions suggests, neurofeedback as a 

suitable and side-effect free means to restore or support the functional communication in 

the FPN in patients suffering from impaired processing of emotional stimuli. 

Neurofeedback making use of non-invasive brain computer/machine interfaces (BC/MI) 

has proven to be a promising tool to selectively modulate brain activation and 

communication with the help of feedback (Birbaumer, et al., 2008; Birbaumer, et al., 2013; 

Sitaram, et al., 2017; Sulzer, et al., 2013; Weiskopf, et al., 2004; Wyckoff and Birbaumer, 

2014). Previous neurofeedback studies using magneto-electrophysiological signals 

functional magnetic resonance imaging (fMRI): (Birbaumer, et al., 2013; Caria, et al., 

2012; Shibata, et al., 2011; Sitaram, et al., 2017; Sitaram, et al., 2008; Sulzer, et al., 2013; 
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Weiskopf, 2012; Weiskopf, et al., 2004), magneto/electro-encephalography (MEEG): 

(Buch, et al., 2008; Mellinger, et al., 2007; Schalk, et al., 2004; Schalk and Mellinger, 

2010) and near infrared spectroscopy (NIRS): (Chaudhary, et al., 2017; Sitaram, et al., 

2009) have mainly demonstrated the training of the localized brain activity within the 

region of interest. However, although various neuroimaging experiments have firmly 

established functional specialization as a principle of brain organization, almost all 

cognitive abilities and neuropsychiatric conditions are associated with functional 

integration of interconnected networks (Bullmore, 2012; Lynall, et al., 2010). Assessing 

the integration between disparate brain regions has been made possible with the 

development of various data analysis methods (Fries, 2005; Fries, 2015).    

 

Yet, there are a very few studies showing the modulation of interregional coupling. One 

of the pioneering work from our laboratory demonstrated the training of  healthy 

individuals to modulate their interhemispheric functional connectivity of bilateral primary 

motor cortices (Kajal, et al., 2017; Kajal, et al., 2015b) and assessed effects of the 

modulation of the functional inter-hemispheric communication of the motor behaviour.  

FPN networks plays a very important role in the perception of emotion with a conclusive 

interaction of various top-down and bottom-up processes which are triggered with 

presentation of the emotional stimuli. We could demonstrate that these interactions 

happen in the gamma frequency band when emotional stimuli were presented in a 

backward masking paradigm (Kajal et al 2018, article in preparation) at NPT. In the visual 

backward masking paradigm (ViBM), a delay between the prime and the mask stimulus 

is varied as predefined, resulting in a conscious perception of the prime stimulus if the 

delay exceeds subjects’ NPT. In our current experiment, we have presented an emotional 

face either happy or sad as a prime stimulus and a neutral face stimulus of the same 

person as a mask stimulus. If the delay remains below the NPT level, the prime stimulus 

still activates bottom-up processes, but fails to initiate the subsequent top-down 

processes. In this case, a propagation of the emotional content of the prime stimulus to 

conscious processing is disrupted by the mask stimulus, and subjects are not aware of 

the emotion presented. In contrast, the meaning to the unconsciously processing emotion 

is provided by top-down processes (i.e., emotional meaning). The interaction between 
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bottom-up and top-down processing has been very well explained using the global 

neuronal workspace model, suggesting that there is generation of reverberant self-

amplifying loops with the presentation of the visual stimuli. These reverberant self-

amplifying loops will reach to the level of consciousness if they are not disrupted, blocked 

and/or masked by another visual stimulus, before the certain duration defined as the near 

perceptual threshold (NPT) (Cul, et al., 2006; Dehaene, et al., 1998; Dehaene and 

Naccache, 2001; Del Cul, et al., 2006b).  

In the current study, we strived to study, if it is possible to train healthy participants to 

volitionally modulate the FPN circuit responsible for top-down modulation of the 

processing of emotional stimuli. We expected that the successful modulation of the FPN 

would result in changes of participants’ threshold. The answers to the above questions 

will add to our understanding of the neural networks involved in the conscious perception 

and thus can provide specific treatment of neurological and psychiatric disorders.  

 

We trained eight healthy individuals using real-time magnetoencephalography 

neurofeedback (rt-MEG) instrumental conditioning to modulate their intra-hemispheric 

FPN. Up-regulation and down-regulation was linked to the visual discriminative stimulus, 

with ‘1’ indicating up-regulation and ‘2’ cueing down-regulation of FPN. Depending on the 

success of modulating functional connectivity feedback was given.  Assuming successful 

instrumental condition, the originally neutral discriminative stimuli not eliciting any specific 

change in functional connectivity will be linked to up- and down-regulation of FPN. The 

effect of the training on the threshold for perceiving emotional stimuli was assessed by 

comparing the differential thresholds for up- and down-regulation cues between the pre- 

and the post-training sessions.  

We hypothesize that neurofeedback training enables the control of FPN coupling and thus 

to alter the threshold of emotional face stimuli. To infer changes in perception, individual’s 

threshold was assessed prior to (pretest) and after (posttest) the neurofeedback training 

and compared. We hypothesized that learned up-regulation of FPN elicited by the 

discriminative stimulus ‘1’ will decrease the perceptual threshold, and presentation of ‘2’ 
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will down-regulation the fronto-parietal network leading to an increase of the perceptual 

threshold.  

 

Material & Methods  

 

Participants 

The connectivity-based neurofeedback study was performed on 8 healthy participants 

(M±SD= 26±4.3 years, 5 males) with no history of neurological or psychiatric illness. All 

participants had normal or corrected-to-normal vision. None of the participants was under 

any medication. The study was approved by the local ethical committee of the faculty of 

medicine, University of Tübingen, Germany. A written informed consent in accordance to 

the Declaration of Helsinki was obtained from all subjects prior to the experiment 

(Carlson, et al., 2004). They gave written informed consent to participate in the 

experiment and received a financial compensation of 10 Euro / hour for their participation 

in the experiment.   

Experimental Procedure 

The experimental procedure includes three main experimental parts that were presented 

across three days: (1) the pre-test session served to get an estimate of the perceptual 

threshold (PT) for detecting emotion valance using a ViBM paradigm. Different delays 

ranging from 0 to 150 ms were presented and PT was determined using the method of 

constant stimuli (MCS). Furthermore, MEG sensors were identified from which the 

feedback signal was to be calculated (day one); (2) neurofeedback training session: 

subjects were trained to control FPN functional connectivity using ViBM task (day two); 

(3) post-test session: which was identical to the pretest and assessed the effects of 

neurofeedback training on FPN functional connectivity and the PT (day three). 

In the following, all the different sessions of the experiment are explained in detail. Pre- 

and post-test sessions are explained together as their setup is essentially the same. 

Pre-test and Post-test session (Day one and three) 
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Pre-test and post-test session used a ViBM paradigm to assess subject specific PT. In 

the ViBM paradigm, an emotional face (either with positive or negative emotion valence) 

is masked by the neutral face after a predefined delay. Color images of faces from the 

NimStim Face Stimulus Set were used as visual stimuli (Tottenham, et al., 2009). The 

predefined delay has been chosen in a pseudo-random fashion from the following delays: 

0.0 ms, 16.7 ms, 33.3 ms, 50.0 ms, 66.7 ms, 83.3 ms, 100.0 ms, 116.7 ms, 133.3 ms, 

150.0 ms. By fitting a Weibull function to the percentage of correctly identified emotions 

of face expressions the delay corresponding to a performance of 67.7 % percent correct 

was chosen (Rinne, 2008). Chance level corresponded to a performance of 50 %. The 

pre-test experimental procedure consists of 10 runs and each run consists of 80 trials. 

Each pre-defined delay was presented for eight trials.  

In both pre-test and post-test session, each trial (figure 1) started with a presentation of 

the fixation cross on the screen for 2 secs, followed by the cue stimulus. The cue stimulus 

served as discriminative stimulus and was presented for 1 sec. The cue stimulus could 

either be ‘1’ or ‘2’. Across trials, the presentation of the cue occurred in pseudo-random 

order. In the pretest, the cue stimulus does not have any meaning. After the 

neurofeedback training, the cue stimulus is expected to have assumed the ability to 

modulate FPN connectivity. In the post-test session, cue ‘1’ denotes up-regulation of the 

functional connectivity and cue ‘2’ denotes the down-regulation of the functional 

connectivity. After the discriminative cue stimulus, the prime stimulus, a face with either 

positive or negative emotional valance, was presented on the screen for 16.7 ms (Tprime). 

After the prime stimulus, a black screen was presented which served as a variable delay 

between the prime and mask stimuli. Matching the vertical refresh rate of the projector, 

the variable delay (Tdelay) could take any of ten different values (0.0 ms, 16.7 ms, 33.3 

ms, 50.0 ms, 66.7 ms, 83.3 ms, 100.0 ms, 116.7 ms, 133.3 ms, 150.0 ms) and was 

selected pseudo-randomly for each trial. After the delay, a mask stimulus – the face of 

the same individual shown as prime stimulus yet with a neutral expression, was presented 

on the screen for a duration of 250 ms (Tmask). After the mask, another black screen was 

shown for a duration of [Tblank= 1500 ms – (Tprime + Tdelay+ Tmask)]. Following the second 

black screen lasting for 500 ms, a response instruction screen was presented. The 

response signaled either “POS+NEG” or “NEG+POS” and was pseudo-randomized 
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across the trials. The instructions were presented in the center of the screen, with the ‘+’ 

symbol serving a fixation point. The duration of the instruction screen presentation was 1 

sec. The instruction “POS+NEG’’ instructed participants to press the right button if they 

had perceived the prime face as a negative face or the left button if they had perceived a 

positive face presented as a prime. Participants responded pressing one of the two in-

house optical response buttons and were instructed to respond in each trial even if they 

were uncertain about the valence of the prime stimulus. The trial was terminated after 

participant’s response, or after a maximum time duration of 2000 ms. Each of the pre-test 

and post-test session lasted a maximum of the 1.5-hour duration. 

 

 

 

Figure 1: Example of a single pretest and posttest trial. Fixation cross was presented for 

2 seconds, followed be cue; either ‘1’ or ‘2’ for 1 sec and then followed by a 16.7 ms long 

prime stimulus (either positive or negative emotion). Delay was then presented for a 

variable amount of time (0 ms, 16.7 ms, 33.3 ms, 50.0 ms, 66.7 ms, 83.3 ms, 100.0 ms, 

116.7 ms, 133.3 ms, 150.0 ms), and was followed by the mask stimulus (neutral face) 

which lasted for 250 ms. The black screen was presented again, now for the duration of 
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Tblank (β *: 1500 ms – (Tprime + Tdelay+ Tmask)) and was followed by the response instruction 

screen (i.e. “POS+NEG”). A trial ends as soon as the participant has entered his/her 

response or the maximum trial duration of 2000 ms had elapsed. From subject’s 

responses the threshold delays were computed separately for up- and down-regulation 

trials. 

 

Neurofeedback session (Day two) 

 

In the neurofeedback session healthy participants were trained to up- and down-regulate 

FPN connectivity. Coherence was used as an index to measure the strength of functional 

coupling. Coherence was estimated from the MEG neuromagnetic time-series in-between 

the sensors selected during the pre-test session.  

The sequence of stimuli was identical to the pre- and posttest session except for the 

feedback. Each trial starts with a presentation of a fixation cross for the duration of 2 sec. 

This is followed by a cue stimulus either ‘1’ or ‘2’. Cue stimulus ‘1’ denotes the up- and ‘2’ 

denotes the down-regulation of the FPN connectivity. After the presentation of the cue 

stimulus, a prime stimulus (stimulus face could either be a positive or negative face) is 

presented for 16.7 ms duration followed by a black screen for a fixed mask delay. The 

fixed mask delay is the subject specific PT obtained in the pre-test session. After the fixed 

mask delay, the mask stimulus (face with neutral emotion) was presented for the duration 

of 250 ms. After a black screen presented for the duration of 500 ms, the reward bar 

(thermometer), except for the trial belonging to baseline estimation, is presented as visual 

feedback. The reward bar was presented for the duration of 1 sec. The length of the bar 

indicated how well participants managed to match the requested connectivity in the 

ongoing trial. The feedback reward is always calculated against a baseline estimated at 

the beginning of the current run. A trial ends after 2 sec. All participants were instructed 

to try to increase the length of the bar using different strategies for cue ‘1’ and ‘2’. ViBM 

task in neurofeedback was identical to the one used in pretest and posttest phase and is 

described in Fig.2. But in the neurofeedback session, a fixed delay between the prime 

and mask stimulus was used (instead of variable delays in the pre- and post-test session) 
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and no response was given after the presentation of the mask stimulus (remember the 

indication answer screen seen in Fig.1). 

 

A neurofeedback session consisted of ten runs, each run containing eighty trials (figure 

2). In each run, the first eight trials were used as the baseline estimation. All trials were 

presented with a constant delay at NPT between prime and mask. Real-time functional 

connectivity is estimated between predefined sensors for FPN in right and left 

hemispheres at 35 Hz, respectively. The feedback for each trial is calculated from the 

sensors identified for left and right hemispheres for FPN in the pretest session. The 

feedback is always calculated from the difference between functional connectivity 

estimates of the baseline, i. e. the initial trial in each run, and the current trial. The 

feedback value is estimated by taking the absolute value of the difference between the 

mean of the real time functional connectivity estimate of left and right hemispheres and 

the baseline estimate of the current run. This feedback value is then scaled by the factor 

of 10 to translated it into the visual feedback signal. 
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Figure .2: Example of a feedback trial. A fixation cross was presented for 2 seconds, 

followed by the cue either ‘1’ or 2’. Then a prime stimulus is presented for the duration of 

16.7 ms. The delay between the prime and the mask stimulus is kept constant near the 

PT. Then, a mask stimulus of 250 ms duration, and the thermometer appeared on the 

screen providing visual feedback about the match between the requested and produced 

FPN connectivity. The feedback stimulus stayed for 1 s on the screen. 

 

One hour before the MEG-neurofeedback training, participants were informed and 

familiarized with the experimental paradigm and the tasks to be performed. During the 

experiment, participants sat upright in the MEG chair facing a 40 cm X 30 cm screen 

displaying instructions and feedback. We have monitored all the participants using a video 

camera during the whole experiment to avoid participants from sleeping and making 

unwanted movements during the experiment. Head movements were monitored 

continuously using the MEG head localization system. Participants were informed to 

freely choose and try any cognitive strategy to modulate their FPN connectivity and to 

use what works best for them 

 

Selection of the near perceptual threshold and the frame rate at which the 

stimulation was provided. 

The near perceptual threshold was estimated by fitting a sigmoid psychometric function 

(logistic regression) was fitted to the correct responses as the function of the predefined 

delays. The correct responses considered here were irrespective of the presented happy 

or sad face. The delay corresponding to the 66.7 % correct responses was the subject 

specific perceptual threshold. Here we would like to highlight the point that the NPT 

presented was rounded to match the refreshing frame rate of the projector. We have used 

the projector with the refresh rate of 60 Hz with frame rate of 16.66 ms.  

 

Feedback Setup 

The real-time neurofeedback training was implemented using the BCI2000 program 

(Mellinger, et al., 2007; Schalk, et al., 2004) and Pascal based program under Dos 6.2. 
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MEG data acquisition hardware was connected to the PC running Linux operating system, 

and data acquisition was done through the Acquire software (Acquire, CTF Inc.). To 

access the data in real time a CTFs Acquire program wrote 44 samples of raw digitalized 

data into a shared memory in regular time intervals (70.4 ms). A second program was 

connected as a relay to the BCI2000 with a TCP/IP-based socket interface. Frequencies 

and sensors identified in pretest session are used as parameters in BCI2000 program. 

Visual stimuli and feedback was presented using Pascal based program under Dos 6.2. 

This program was communicating with the BCI2000 computer through USB 2.0 

connection. The BCI2000 program is only used to calculate the reward value and this 

value is sent to the pascal-based program for the presentation as a reward to the 

participant.  

MEG data acquisition and Stimuli presentation 

MEG (CTF System Inc, Vancouver, Canada) data was acquired using a whole-head 275-

axial gradiometer system. The MEG is in a shielded room (VaccumSchmelze, Hanau 

Germany) at the MEG Centre, University Clinic of Tübingen, Germany. Neuromagnetic 

data was sampled at the rate of 1172 Hz using an anti-aliasing lowpass filter of 390 Hz. 

The relative head position with respect to the sensors of the MEG was recorded 

continuously during the scan using three fiducial coils which were affixed to the nasion 

and left and right preauricular points. Using the head localization information, it was 

ensured that the participant’s head was exactly repositioned to the pre-test session 

across the following sessions. 

 

Visual stimuli were presented using a Pascal based program under Dos 6.2 and were 

synchronized with the vertical refresh rate (60Hz) of the screen. The video output of the 

stimulation computer was send to a JVC DLA-SX21 projector, which then flashed the 

visual stimuli via a mirror system on a screen in front of the participants in the magnetically 

shielded room. The rate of th frame loss during the presentation of the delay was less 

than 1%. Participant’s responses were recorded using two in-house built optical buttons. 

Emotional stimuli for the experiment are chosen from the colour images of faces contains 

50% of female and 50% of male faces.  
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Coherence: Index for the functional connectivity 

Coherence is used as the measure of the functional coupling between two disparate brain 

regions. In our experiment coherence is analyzed as a magnitude squared coherence 

between two signals, both in the online (neurofeedback) and offline (pretest and posttest) 

analysis. Coherence between two signals x and y is defined as: 

 

Cxy =
[Sxy(f)]

2

[Sxx(f)] ∗ ⌈Syy(f)⌉
 

 

 

Where, Sxy denotes the cross-spectral density between signals x and y, and Sxx and Syy 

are auto-spectral densities of signals x, and y (respectively), at some frequency (f).  

 

Offline Data Analysis 

The offline analysis was done using the in-house MATLAB scripts and using fieldtrip 

toolbox. 

Signal Processing 

The offline analysis of the pretest, posttest and neurofeedback session included 

demeaning, detrending, low pass filtering 100 Hz, high-pass filtering 1 Hz, and power line 

noise removal (50 Hz). The whole dataset was visually inspected trial-by-trial. Trials 

containing a large variance across channels (2.5 x 10-25) and abnormal amplitudes were 

discarded from further analysis. Furthermore, trials containing muscle artifacts, squid 

jumps, showing broad band activity were also eliminated. Independent component 

analysis (ICA) using the infomax ICA algorithm was applied to remove the contamination 

followed by ocular (eye movement and eye blinks) and cardiac artefacts (Amari, et al., 

1997; Bell and Sejnowski, 1995). To this end the preprocessed and cleaned signal 

recorded from 272 sensors was decomposed into 100 components. The topography and 

the waveform of all the components were plotted and visually inspected. All the 

component containing the eye blinks, eye movement, heart beat and muscular artefacts 

(1) 
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were removed. From the remaining components an artifact-cleaned dataset was 

reconstructed.  

Offline analysis of Pretest and Posttest 

a) Threshold estimation 

We have adopted the method of constant stimuli (MCS) (McKee, et al., 1985a) for 

the estimation of the PT for pretest and posttest sessions. In the offline analysis, 

to estimate the subject specific PT, a sigmoid psychometric function (logistic 

regression) was fitted to the percent correct responses as the function of the 

predefined delays. The correct responses considered here were irrespective of the 

presented happy or sad face. The delay corresponding to the 66.7 % correct 

responses, was further used as the NPT for the neurofeedback session and for 

identification of the sensors in the offline analysis of the pretest. 

 

Figure 3: Above plot shows the fitting of the psychometric function to the correct 

responses to the participants.  

 

b) Identification of the Channels to be used in the neurofeedback session 

The preprocessed and cleaned data was further segregated into two: perceived 

(trials in which the participants reported the emotional valance of the presented 

prime face correctly) and not-perceived trials (trials in which the participants 

reported the emotional valence of the presented prime face incorrectly). Frequency 

analysis was done separately for perceived and not-perceived trials at 35 Hz using 
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a multi-tapering sliding window fast Fourier transform with discrete prolate 

spheroid sequences (DPSS) tapers (Percival and Walden, 1993). Same number 

of trials for both perceived and not-perceived trials were selected for further 

analysis. Sensor-level all-to-all squared magnitude coherence was estimated 

separately for the perceived and not-perceived trials. Paired t-test was performed 

for all sensors across trials and t-statistic topoplots were plotted with the reference 

sensors from left and right frontal areas. MEG sensors corresponding close to 

frontal and parietal regions and showing the strongest difference in t-statistic for 

squared magnitude coherence for perceived and not-perceived trials were 

selected and used for providing the real-time feedback. A minimum of 6 sensors 

from each hemisphere were selected to be used in the following neurofeedback 

session. 

 

 

 

 Figure 4) Topoplots showing the t-statistic for the difference between perceived 

and not-perceived trials for a single subject. A) plot showing the t-statistic 

difference with left frontal sensors as a reference sensor. B) plot showing the t-

statistic difference with right frontal sensors as a reference sensor.   

Offline analysis for the neurofeedback session 
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The preprocessed and cleaned data from the neurofeedback session was further 

segregated into two: up-regulation and down regulation trials. For the neurofeedback 

session, each of the trials belonging either of the up- and down-regulation was further 

analyzed for the estimation of the squared magnitude coherence and power. The 

coherence spectra and power spectra were estimated from the Fourier spectra at 35 Hz 

for the preselected sensors used in the online neurofeedback session for the feedback 

calculation. Statistical analysis was done using paired t-test(s) for the coherence and 

power estimated for the up- and down-regulation. To study the possible contribution of 

the head movement in the modulation of the functional connectivity, we have done the 

paired t-test for on the fiducial movements for up and down regulation of the functional 

connectivity. Statistical analysis was done using SPSS and in-house scripts using 

statistical toolbox of the MatLab 

Results 

Neurofeedback session 

Differential modulation of the functional connectivity between the selected channels for 

requested up- and down-regulation of gamma band activity was assessed as a measure 

of the success of the neurofeedback training. The paired t-test comparing average 

functional connectivity for runs belonging to up-regulation and down-regulation between 

frontal and parietal channels at the training frequency of 35 Hz, suggests a significant 

difference between up- and down-regulation (figure 5) during the neurofeedback session 

(p=0.04, t=2.3 df=7; up-regulation (M±SE = 0.04±0.03); down-regulation (M±SE = 

0.02±0.03)) 
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Figure 5) Plot showing the difference in the functional connectivity modulation between 

up and down regulation. The metric of the functional connectivity used is the squared 

magnitude coherence.  

 

To rule out the possibility of the modulation of the functional connectivity merely by the 

power modulation, we did the paired t-test on the power estimates for the up-regulation 

and down-regulation trials of the neurofeedback session (figure 6). We did not find any 

significant difference for the power modulation between up and down regulation (p=0.68, 

t=-0.429, df=7, up-regulation (M±SE = 0.01±0.009), down-regulation (M±SE = 0.02±0.01). 

Furthermore, to assess participation of the power modulation towards the modulation of 

the functional connectivity, we correlated power and functional connectivity for up-

regulation (p=0.23, r=0.47, df=8), and for the down-regulation (p=0.55, r=0.24, df=8) and 

thus suggest a non-significant participation. 

 



 

148 
 

 

   

 

Figure 6: Plot showing the difference in the power modulation between up and down 

regulation.  

Furthermore, to rule out the possibility of the modulation of the functional connectivity 

merely by participants’ systematic head movements, we studied the differential 

movement of the participants head in the MEG scanner for up and down regulation from 

the three fiducials. We performed a paired t-test for differential head movement between 

mean movement of the three fiducials for up-regulation and down-regulation, respectively. 

We did not find any significant head movement in the scanner across runs for left auricular 

(p=0.7, t =0.4, df=5), right auricular (p=0.82, t=-0.23, df=5) and nasion (p=0.74, t=0.34, 

df=5). This finding suggests that the differential head movement across trials did not 

modulate the estimate of the neuromagnetic functional connectivity 

 

Pre-test and Post-test session 
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To assess the effects of the neurofeedback training on the PT, we performed the 2-way 

ANOVA with within factor SESSION (Pre- and Post-test) x within factor TRAINING (Up- 

and Down-regulation) for the NPT estimates. We found a significant difference in the 

SESSION (p=0.03, t=2.694, f (1,7) =7.25; Pre-test (M±SE = 54.81±2.16), Post-test (M±SE 

= 50.97±2.66)). We did not find any significant difference in the TRAINING. Our results 

suggest that the NPT have decrease significantly from pre-test to post-test (figure 7).  

 

 

 

Figure 7: Plot showing the significant difference between PT for pre-test and post-test. 

a) plot representing the sigmoid function for a single subject b). plot representing the 

group level analysis for the pre- and post-test  

 

To study the possible effects of the neurofeedback training on functional coupling 

between the FPN at NPT, we have performed a 2-way ANOVA with within factor 

SESSION (Pre- and Post-test Session) x within factor TRAINING (Up and Down 

regulation) on the functional connectivity estimates for the preselected feedback 

channels. We found a significant difference in the connectivity measures between pre-

test and post-test SESSION (p=0.04, f (1,7) =6.04), Interaction of SESSION x TRAINING 

(p=0.04, f (1,7) =6.04). Our results suggest that prior to the neurofeedback training, there 
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was no significant difference between up and down regulation for the functional 

connectivity as shown in the pre-test session but after the neurofeedback training session, 

it is clearly evident as a significant difference between up and down regulation session 

as shown dominantly in the post-test session (figure 8). To study the transfer effects of 

the volitional modulation of the functional connectivity between FPN on the NPT, we did 

the Spearman rank correlation analysis between the difference in the functional 

connectivity for up and down regulation in the neurofeedback session with difference 

between up and down regulation trials for pre-test and post-test session. We find a 

significant negative correlation between the FPN functional connectivity and the NPT 

suggesting that the NPT is inversely dependent on the FPN communication. These 

results further strengthen our results suggesting that the near perceptual threshold is 

being modulated with the volition modulation of the functional connectivity (Figure 9).  

 

 

 

Figure 8: Plot Showing the interaction from pre and post-test connectivity 
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Figure 9) Rank correlation between the difference of upregulation and downregulation for 

Neurofeedback and NPT for difference between Posttest upregulation – downregulation and Pretest 

upregulation -downregulation. 

Furthermore, for the post-hoc analysis, we segregated the preselected feedback 

channels into two: a) MEG sensors belonging to left hemisphere and MEG sensors 

belonging to the right hemisphere. We performed the 2-way ANOVA on the functional 

coupling with within factor SESSION (Pre- and Post-test Session) x within factor 

TRAINING (Up and Down Regulation) for the left and right hemisphere, separately. For 

right hemisphere, we found a significant difference in the connectivity measures between 

pre-test and post-test SESSION (p=0.04, f (1,7) =5.64, df=7), TRAINING (p=0.04, f (1,7) 

=5.84) and interaction of SESSION x TRAINING (p=0.04, f (1,7) =5.84, df=7). This post-

hoc analysis suggests that right hemisphere is contributing significantly in the modulation 

of the FPN in the perception in emotional face stimuli. Furthermore, Post-hoc analysis 

suggested that functional connectivity in the down-regulation for the right hemisphere 
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sensors in the post-test is significantly correlated with the perceptual threshold estimates 

in the post-test for the down-regulation (Figure 10). 

 

 

 

 

Figure 10) Plot showing the correlation between Functional connectivity in the Posttest 

session during the downregulation trials and Perceptual threshold during the 

downregulation trials in Posttest session.  

 

 

Discussion  

In the current experiment, we have trained 8 healthy subjects to acquire volitional control 

over their FPN functional connectivity using masked delay paradigm at NPT at 35 Hz 

using neurofeedback. We have demonstrated that the modulation of the FPN has a 

significant effect on the PT, as the PT is significantly reduced from pretest to posttest. 

One might argue that this significant decrease in the NPT from pretest to posttest is 

merely an effect of repeatedly training the perceptual task. We would like to add to this 

information that reduction in NPT is not just the training effect, but it also includes the 
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contribution from the neurofeedback training. To back up this conclusion, we have studied 

the correlation between up and down regulation of functional connectivity in the 

neurofeedback session with the PT estimates in pre-test and posttest. A significant 

negative correlation suggests that the resulting reduction in the NPT is inversely 

associated with the neurofeedback training of the functional connectivity. 

Potential confounding variable 

Effect of power on the coherence modulation 

It is well known from the literature that the measure of coherence between the two signals 

cannot be singled out without the potential influence for the power (Pikovsky, et al., 1997). 

In our study, we also studied the influential effect of amplitude modulation separately for 

up and down regulation runs in the neurofeedback session. Non-significant difference for 

the amplitude modulation between up and down regulation trials further gave us the 

confidence of the modulation of the functional connectivity as the measure of the phase 

rather than by the amplitude modulation furthermore, the power estimate in the 

downregulation trials are relatively higher than upregulation. This non-significant power 

difference for up and down regulation further strengthened our results that we have 

demonstrated the modulation of functional connectivity between FPN without any 

significant contribution from the power modulation is plausible. We have also 

demonstrated the non-significant correlation between power estimates and functional 

connectivity estimates for upregulation and downregulation trials, further suggesting the 

non-significant contribution of the power in the functional connectivity modulation.  

Volume Conduction 

Volume conduction is often a significant problem in mostly all the neuro-electromagnetic 

studies. Volume conduction includes smearing of the neuronal activity to all the nearby 

sensors, and thus making the very probable for the synchronized activity. It is often 

suggested that the problem of volume conduction can be significantly avoided by using 

the imaginary part of the coherence. But using the imaginary part of coherence also 

comes with disadvantage as the connectivity estimates between long range connectivity 

already have the phase shift concluded with shifted pi (Nolte, et al., 2004). And thus in 
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our study, studying the connectivity only with the imaginary part of the coherence, could 

lead to missing out the communication which are the multiples of pi (Fries, 2005; Fries, 

2015) .Considering the fact that, in our study we are modulating the long range 

connectivity between FPN, using only the imaginary part of the coherence can lead us to 

missing the important information. Thus, we have used the squared magnitude coherence 

as the feedback signal (Carter, et al., 1973; Carter, 1972).   

Significance of the modulation of the functional connectivity on fronto-parietal 

communication 

We have demonstrated in the current study that the volitional modulation of the functional 

communication between FPN plays an inverse role on the part of the near perceptual 

threshold. With this finding we conclude that an improvement in the FPN communication 

can lead to the reduction in the PT and thus plays a conclusive role in the modulation of 

the perception.  

Global workspace model suggests that in the masked visual paradigm, the prime stimulus 

will reach the level of consciousness only when the temporal delay between the prime 

and mask is above the perceptual threshold of the participants. This is where, various 

top-down and bottom-up process comes into play. According to this model, with the 

presentation of the prime stimulus, there is generation of reverberant and self-amplifying 

loops running between fronto-parietal networks. The registered prime stimulus will get the 

emotional meaning only when these loops are not mask, disturbed or disrupt by the 

subsequent stimuli. The threshold to reach the level of consciousness serves as the 

perceptual threshold. Our study is also in line and supporting the global workspace model 

and suggests that the modulation of the functional communication between FPN is 

resulting in the differential changes in the perceptual threshold. In our study we have 

demonstrated that with the improvement in the FPN communication, there is the negative 

correlation towards the estimated perceptual threshold suggesting that the improvement 

in FPN is result in the reduction in the perceptual threshold.  

It is well known fact the left and right hemisphere are not identical in terms of function and 

plethora of studies  has also shown the lateralization of the left and right hemisphere in 

the perception of the emotion (Demaree, et al., 2005; Reuter-Lorenz and Davidson, 1981; 
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Silberman and Weingartner, 1986; Wager, et al., 2003). A variety of studies in both 

unimpaired and lesioned subjects have suggested that the right hemisphere is very much 

specialized in the processing of the emotional aspect of the presented information 

(Reuter-Lorenz and Davidson, 1981). Continuing in the same lineage, we would also like 

to highlight that we have trained the two hemispheres, left and right, differentially, 

supported by the results in our post-hoc analysis. We have found that the right 

hemisphere is participating significantly in the modulation of the perception leaving out 

the left hemisphere and playing the role in modulation of the behavior. This modulation 

can also be interpreted as based on the literature suggesting dominant role of the right 

hemi sphere in the emotion perception. Furthermore, we have found a significant 

correlation between perceptual threshold and functional connectivity estimates only in the 

right hemisphere. Which also provides a strong evidence and is in-line with our previous 

study emphasizing the importance of the right hemisphere in the emotion perception.   

Future Directives and it potential effect in helping the patients with schizophrenia 

and autism 

With our current study, we have provided the evidence that it is possible to volitionally 

modulate the fronto-parietal functional connectivity using masked emotional stimuli. 

Patients suffering from neuropsychiatric disorders such as schizophrenia and autism are 

deficient in the perception of the emotional stimuli. Studies have shown that in these 

patients fronto-parietal communication is disturbed which leave them devoid of the 

perception of the emotional stimuli. Our finding of the volitional modulation of the fronto-

parietal communication and thus restoring the gapped communication could prove to be 

a very important tool for treating these patients.  
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