
Regression Testing of Transcompiled
Cross-Platform Applications

Dissertation

der Mathematisch- und Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Dipl.-Inform. Matthias Hirzel

aus Münsingen

Tübingen
2018

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 20.09.2018
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Herbert Klaeren
2. Berichterstatter: Prof. Dr. Torsten Grust

Abstract

Regression testing is a well-accepted and widely used way to ensure that already
existing functionality still works as expected when code has been modified in
order to realize new features or to resolve known bugs. To this end, devel-
opers re-execute previously created tests and check whether these tests still
pass. However, depending on the application, regression testing might be very
time consuming. This already applies when testing small units, but plays a
more and more decisive role when integrated functions and especially end-to-
end tests (such as UI or web tests) have to be re-executed. In the worst case,
executing all the tests takes several days or even weeks. Consequently, it takes
far too much time to get feedback about test failures. In order to solve this
problem, researches have presented many different techniques. Originally, these
techniques have been tailor-made for standard desktop applications. With the
dawn of web applications, it has turned out that the approaches available so far
are not directly applicable to web applications. So more and more researches
have attended to the special challenges to realize regression testing techniques
for this new kind of application. In both standard desktop and web applica-
tions, especially regression test selection and test prioritization have shown to
be a good strategy to reduce the testing effort.

Today, another kind of applications becomes more and more important:
Transcompiled cross-platform applications. The basic idea is to create an ap-
plication in a source programming language A and to compile it automatically
with a special transcompiler into another target programming language B.
This way of developing new software has several advantages in different ar-
eas: In web applications for example, it is easier to write the software in a
specific source programming language that has sophisticated debug support.
In mobile applications, it is a means of cost reduction. The developers write
an application only once. By transcompiling the code, they can deliver many
different platforms such as Android, iOS, and Windows Phone. Apart from
that, with transcompilation, it is basically possible to create both a desktop
application and a web application without writing the code twice. Neverthe-
less, this new way of developing code creates several challenges in regression
testing. Once more, existing approaches for desktop or web applications are
not directly applicable.

In this thesis, we investigate three main problems that affect regression test-
ing in the special context of transcompiled cross-platform applications. First,

i

ii

we focus on the test effort reduction problem that comprises three questions: (a)
Which tests should run at all, (b) how to execute tests in an efficient, memory-
and time-saving way, and (c) which execution order would be suitable if many
tests should be re-executed. A main challenge is the nature of UI/web tests
as they execute many different functions in different application states rather
than isolated, small functions as unit tests do. Even small code changes might
affect lots of tests that are all intended to check different functionality. In addi-
tion, the distinction between source and target programming language as well
as the dependencies in between makes it difficult to determine a reduced set of
UI/web test cases that should be re-executed due to code changes.

The second problem addresses fault localization in transcompiled cross-
platform applications. UI/web tests execute code in the target programming
language. If a test fails, the decisive question is which parts in the code of
the source programming language are responsible for the failure. Due to the
automatic transcompilation and additional code optimization and obfuscation,
it is difficult to identify the reasons.

As a solution to these problems, we present an approach that improves and
extends an already existing regression test selection technique. Our approach
consists of several steps. First of all, it analyzes which code changes have
been made in the source programming language. Based on this analysis, we
select all the UI/web tests that run corresponding pieces of code in the target
programming language. As a prerequisite, we have to close the gap between
the source and the target programming language. To overcome this issue, we
introduce and investigate two special code instrumentation techniques. They
are universally applicable in different transcompilers and address the special
challenges in transcompiled cross-platform applications. Both instrumentation
techniques also take into account the problem to identify precisely which code
change(s) in the source programming language might be responsible for a failure
when running a test on the code of the target language.

In order to make our approach more effective, we explore different settings.
Our aim is to reduce the overhead for the analysis and to keep the memory
consumption as low as possible. To this end, we propose and evaluate several
heuristics that decide individually how fine-grained the analysis of the source
code should be. Besides, we apply lookaheads and two search algorithms to
detect more possible bugs in a single analysis.

In order to decide which execution order is suitable if many tests have to
be re-executed, we combine our regression test selection technique with one
of six novel prioritization techniques. The overhead of the extra test case
prioritization is very low. At the same time, the prioritization gives a clear
test execution order. Thus, the most important tests that have the biggest
chance to reveal faults run first. This even enables developers to reduce the set
of tests on their own if the test selection chooses many tests for re-execution
and if there are constraints (e.g. execution time) that prevent to re-execute all
the tests. Moreover, the combination of test selection and prioritization can be
used to realize continuous integration even for UI/web tests.

iii

Finally, the third challenge arises from the coverage identification problem.
In order to ensure that the software application works as expected, it is very
important to have many tests that cover all possible use cases. Usually, this
is checked by applying different code coverage metrics. However, existing code
coverage tools cannot be applied in transcompiled cross-platform applications.
They fail to determine which parts of the code in the source programming
language are covered by UI/web tests. We introduce an extension of our in-
strumentation technique that is applicable for both unit tests, integration tests,
and for UI/web tests in particular. It supports standard desktop applications,
but more importantly, it calculates multiple coverage measures for transcom-
piled cross-platform applications.

Zusammenfassung

Regressionstests sind eine anerkannte und weit verbreitete Methode um die kor-
rekte Funktionsweise bereits existierender Features in Software-Anwendungen
sicherzustellen, nachdem neue Funktionalität hinzugefügt oder bekannte Fehler
behoben wurden. Zu diesem Zweck führen Entwickler bereits existierende Tests
erneut aus und prüfen, ob sie noch immer fehlerfrei durchlaufen. Je nach Art
der Software-Anwendung können Regressionstests jedoch sehr zeitintensiv sein.
Dies kann bereits auf den Test kleiner Komponenten (englisch: Units) zutreffen,
spielt aber eine immer größere Rolle wenn zusammengesetzte Funktionen oder
End-to-end Tests – wie (Benutzer-) Oberflächentests oder Webtests – erneut
ausgeführt werden müssen. Im schlimmsten Fall dauert die Ausführung aller
Tests mehrere Tage oder sogar Wochen. Folglich dauert es viel zu lange bis
man Feedback zu fehlgeschlagen Tests erhält. Um dieses Problem zu lösen
haben Forscher viele verschiedene Techniken vorgestellt. Ursprünglich waren
diese auf gewöhnliche Desktop-Anwendungen zugeschnitten. Mit dem Aufkom-
men von Web-Anwendungen hat sich dann herausgestellt, dass sich die bislang
verfügbaren Ansätze darauf nicht direkt übertragen lassen. Aus diesem Grund
haben sich immer mehr Forscher den speziellen Herausforderungen gewidmet,
die sich aus der Realisierung von Regressionstesttechniken für diese neue Art
von Anwendung ergeben. Sowohl in Desktop- als auch in Web-Anwendungen
haben sich speziell Regressionstestselektion und Testpriorisierung als eine gute
Strategie erwiesen, um den Testaufwand zu reduzieren.

Heutzutage gewinnt eine andere Art von Anwendung immer größere Bedeu-
tung: Transkompilierte plattformübergreifende Anwendungen. Der Grundge-
danke dabei ist, eine Anwendung in einer Ausgangsprogrammiersprache A zu
erstellen und mit Hilfe eines speziellen Transkompilers automatisch in eine an-
dere Zielprogrammiersprache B zu kompilieren. Diese Art der Entwicklung
neuer Software hat mehrere Vorteile in unterschiedlichen Bereichen: Beispiels-
weise ist es in Web-Anwendungen einfacher, die Software in einer speziellen
Ausgangsprogrammiersprache zu schreiben die umfangreiche Unterstützung
zum Debuggen bietet. In mobilen Anwendungen trägt diese Art zu entwick-
eln zur Kostenreduktion bei. Entwickler schreiben eine Anwendung nur ein
Mal. Durch Transkompilieren des Codes können verschiedene Plattformen wie
Android, iOS und Windows Phone bedient werden. Abgesehen davon ist es
mit Transkompilation grundsätzlich möglich, sowohl eine Desktop-Anwendung
als auch eine Web-Anwendung zu erstellen ohne den Code doppelt schreiben
zu müssen. Nichtsdestotrotz bringt diese neue Art der Code-Entwicklung

v

vi

mehrere Herausforderungen beim Regressionstesten mit sich. Einmal mehr
lassen sich bestehende Ansätze für Desktop- oder Web-Anwendungen nicht di-
rekt übertragen.

In dieser Dissertation untersuchen wir drei Hauptprobleme die Regressions-
tests im speziellen Kontext von transkompilierten plattformübergreifenden An-
wendungen betreffen. Zunächst konzentrieren wir uns auf das Problem der Test-
aufwandsreduktion. Es umfasst drei Fragen: (a) Welche Tests sollen überhaupt
ausgeführt werden, (b) wie können Tests effizient, speicherschonend und zeit-
sparend ausgeführt werden, (c) welche Ausführungsreihenfolge ist geeignet wenn
mehrere Tests ausgeführt werden müssen. Eine wesentliche Herausforderung
ist die Beschaffenheit von Oberflächen-/Webtests. Sie führen viele verschiedene
Funktionen in unterschiedlichen Anwendungszuständen aus, anstatt sich auf
kleine, isolierte Funktionen zu beschränken wie es Komponententests tun. Selbst
kleine Code-Änderungen können mehrere Tests betreffen, die aber alle unter-
schiedliche Funktionalitäten prüfen. Des weiteren macht es die Unterschei-
dung zwischen Ausgangsprogrammiersprache und Zielprogrammiersprache und
deren gegenseitige Abhängigkeiten schwer, eine kleine Menge an Oberflächen-/
Webtests zu bestimmen die aufgrund von Änderungen erneut ausgeführt wer-
den sollten.

Das zweite Problem richtet sich an die Fehlerlokalisierung in transkom-
pilierten plattformübergreifenden Anwendungen. Oberflächen-/Webtests führen
Code in der Zielprogrammiersprache aus. Wenn ein Test fehlschlägt ist die
entscheidende Frage, welche Teile im Code der Ausgangsprogrammiersprache
für den Fehlschlag verantwortlich sind. Aufgrund der automatischen Transkom-
pilierung und damit häufig einhergehenden zusätzlichen Code-Optimierungen
und -Ver-schleierungen ist es schwierig, die Gründe zu identifizieren.

Als Lösung für diese Probleme stellen wir einen Ansatz vor, der eine bereits
existierende Regressionstestselektionstechnik verbessert und erweitert. Unser
Ansatz besteht aus mehreren Schritten. Zunächst analysiert er, welche Code-
Änderungen in der Ausgangsprogrammiersprache gemacht wurden. Basierend
auf dieser Analyse wählen wir alle Oberflächen-/Webtests aus, die entsprechende
Code-Teile in der Zielprogrammiersprache ausführen. Voraussetzung hierfür
ist, dass wir die Lücke zwischen der Ausgangs- und der Zielprogrammiersprache
schließen können. Um diese Problematik zu lösen, führen wir zwei spezielle
Code-Instrumentierungstechniken ein und untersuchen diese. Sie sind uni-
versell in verschiedenen Transkompilern einsetzbar und gehen die besonderen
Herausforderungen in transkompilierten plattformübergreifenden Anwendung-
en an. Beide Instrumentierungstechniken berücksichtigen auch das Problem,
in der Ausgangsprogrammiersprache exakt diejenigen Code-Änderungen(en)
zu identifizieren, welche für den Fehlschlag eines Tests bei der Ausführung des
Codes der Zielprogrammiersprache verantwortlich sein könnten.

Um unserer Ansatz effizienter zu machen, untersuchen wir unterschiedliche
Einstellungen. Unser Ziel ist es, den Aufwand für die Analyse zu reduzieren
und den Speicherverbrauch so gering wie möglich zu halten. Zu diesem Zweck
schlagen wir mehrere Heuristiken vor und untersuchen diese. Jede Heuristik

vii

entscheidet individuell, wie feingranular die Analyse des Quellcodes sein soll.
Außerdem wenden wir Lookaheads und zwei Suchalgorithmen an, um mehr
mögliche Bugs in einer einzigen Analyse aufzudecken.

Um entscheiden zu können, welche Ausführungsreihenfolge geeignet ist wenn
viele Tests erneut ausgeführt werden müssen, kombinieren wir unsere Regres-
sionstestselektionstechnik mit einer von sechs neuen Priorisierungstechniken.
Der Mehraufwand der zusätzlichen Testfallpriorisierung ist sehr gering. Gleich-
zeitig gibt die Priorisierung eine klare Testausführungsreihenfolge vor. Dem-
entsprechend werden die wichtigsten Tests mit der größten Chance zur Fehler-
aufdeckung als erstes ausgeführt. Dies ermöglicht es Entwicklern sogar, die
Menge der Tests selbst zu reduzieren falls die Testselektion viele Tests hat und
es Einschränkungen (z.B. Ausführungszeit) gibt, welche die erneute Ausführung
aller Tests verhindert. Darüber hinaus kann die Kombination von Testselektion
und Priorisierung verwendet werden, um kontinuierliche Integration selbst für
Oberflächen-/Webtests umzusetzen.

Die dritte Herausforderung ergibt sich schließlich aus dem Code-Abdeckungs-
problem. Um die erwartungsgemäße Funktionsweise der Software-Anwendung
sicherzustellen ist es wichtig, viele Tests zu haben, die alle möglichen Use Cases
abdecken. Üblicherweise prüft man die Testabdeckung mit Hilfe verschiedener
Metriken. Bereits verfügbare Tools zur Berechnung dieser Metriken sind je-
doch nicht in transkompilierten plattformübergreifenden Anwendungen einsetz-
bar. Sie können nicht ermitteln, welche Teile des Codes in der Ausgangspro-
grammiersprache von Oberflächen-/Webtests überdeckt werden. Wir führen
eine Erweiterung unserer Instrumentierungstechnik ein, die sowohl für Kompo-
nententests, Integrationstests und speziell für Oberflächen-/Webtests anwend-
bar ist. Sie unterstützt normale Desktopanwendungen, berechnet aber ins-
besondere für transkompilierte plattformübergreifende Anwendungen mehrere
Testabdeckungsmaße.

Acknowledgements

I am indebted to Prof. Herbert Klaeren for the possibility to do my doctorate
in his group and for his continuous support even when he had already retired.
During my student days, he introduced me to software engineering and in
particular to testing as an option to ensure software quality. He offered me the
opportunity to do research on this topic and gave advice on papers and early
drafts of this dissertation. I am also grateful to my co-supervisor Prof. Torsten
Grust for his interest in my work.

A special thanks to Holger Gast for many helpful discussions about tech-
nical details of my research and further suggestions. Konstantin Grupp has
implemented the very basic infrastructure and an initial version of the code
comparison algorithm for our Eclipse plug-in in his bachelor thesis [122]. I
give many thanks to itdesign GmbH for allowing me to evaluate my approach
on their software Meisterplan. I would also like to express my gratitude to
Jonathan Brachthäuser as well as Julia Trieflinger for creating web tests for
the software Hupa and for seeding errors in this application. Besides, I want
to thank Jonathan Brachthäuser, Dennis Butterstein, Yufei Cai, Paolo Giar-
russo, Tillmann Rendel, and Julia Trieflinger for many pleasant lunch breaks
and discussions.

Last but not least, I would like to thank my family for having supported
me all the time.

ix

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Summary of Contributions . 6

1.2.1 Test Effort Reduction Problem 6

1.2.2 Fault Localization Problem 7

1.2.3 Coverage Identification Problem 8

1.3 Outline . 9

I Background, Definitions, and Terms 11

2 Basics of Regression Testing 13

2.1 Regression Testing: Intent and Test Categories 13

2.2 Testsuite Minimization, Test Prioritization, and Test Selection 14

2.3 Code Instrumentation . 19

2.4 Control Flow Graph . 20

2.5 Abstract Syntax Tree . 21

2.6 Fault Localization vs. Change Impact Analysis 23

2.7 Test Case Creation . 24

3 Basics of Transcompilation 25

3.1 Transcompilers . 25

3.2 Basics on Transcompilers Used to Investigate our Contributions 31

xi

xii CONTENTS

II Generic Approach for Standard and Transcompiled Cross-

Platform Applications 35

4 Graph Walk-based Test Selection 37

4.1 Introduction . 37

4.2 Related Work . 38

4.3 Regression Test Selection for Transcompiled Cross-Platform Ap-

plications . 52

4.3.1 Background . 52

4.3.2 Calculating Changes Made in the Source Code of Transcom-

piled Cross-Platform Applications and Selecting Tests . 60

4.3.3 Localizing Changes in the Source Code 75

4.4 Basic Instrumentation Approach 76

4.4.1 Challenges when Instrumenting Source Code 76

4.4.2 Purpose of Code Instrumentation and Expected Informa-

tion . 77

4.4.3 Our Code Instrumentation Structure 78

4.4.4 Processing Data Generated by Instrumentation Code . . 87

4.4.5 Syntactic and Semantic Requirements on Instrumenting

Source Code . 88

4.5 Compiler-Independent Instrumentation 88

4.6 Compiler-Dependent Instrumentation 94

4.7 Prototype Tool Implementation: Compiler-De-pendent Approach 97

4.8 Evaluation: Compiler-Dependent Approach 98

4.8.1 Software under Evaluation 100

4.8.2 Experimental Setup . 100

4.8.3 Threats to Validity . 101

4.8.4 Results . 103

4.9 Discussion . 106

4.10 Conclusion and Future Work 111

5 Efficiency of Code Analysis and Fault Localization 113

5.1 Introduction . 113

CONTENTS xiii

5.2 Related Work . 114

5.3 Motivation and Challenges . 118

5.4 Approach . 119

5.4.1 Analysis Levels at Various Precision 120

5.4.2 Dynamically Customizable Analysis Level Based on a

Heuristics . 122

5.4.3 Trace Collection Costs and Analysis Costs 127

5.4.4 Recognizing More Code Changes with Lookaheads . . . 128

5.5 Tool Implementation . 132

5.6 Evaluation: Compiler-Independent Approach 132

5.6.1 Software under Evaluation 134

5.6.2 Experimental Setup . 135

5.6.3 Threats to Validity . 135

5.6.4 Results . 136

5.6.5 Discussion . 146

5.7 Conclusion and Future Work 147

6 Prioritizing Regression Tests based on the Execution Frequency

of Modified Code 149

6.1 Introduction . 149

6.2 Related Work and Weaknesses of Existing Approaches 150

6.3 Motivation . 155

6.4 Approach . 157

6.4.1 Considering Execution Frequency of Modified Code . . 157

6.4.2 Global Frequency-based Prioritization

Technique (GFP) . 160

6.4.3 Local Frequency-based Prioritization

Technique (LFP) . 161

6.4.4 Change Frequency-based Prioritization

Technique (CFP) . 162

6.4.5 Discussing Frequency-based Prioritization Techniques . 162

6.4.6 Dynamic Feedback for Frequency-based Prioritization . 163

6.5 Evaluation . 164

xiv CONTENTS

6.5.1 Software under Evaluation 165

6.5.2 Variables and Measures 165

6.5.3 Experimental Setup . 166

6.5.4 Threats to Validity . 167

6.5.5 Results . 168

6.6 Discussion . 174

6.7 Conclusion and Future Work 175

7 Code Coverage for Any Kind of Test in Transcompiled Cross-

Platform Applications 177

7.1 Introduction . 177

7.2 Overview and Related Work . 178

7.3 Motivation and Challenges . 181

7.4 Approach . 182

7.4.1 Code Coverage of Transcompiled Applications 182

7.4.2 Discussing the Instrumentation Approach in Terms of

Code Coverage . 184

7.5 Tool Implementation . 185

7.6 Evaluation . 186

7.6.1 Software under Evaluation 186

7.6.2 Experimental Setup . 187

7.6.3 Threats to Validity . 187

7.6.4 Results . 188

7.7 Discussion . 191

7.8 Conclusion and Future Work 192

III Overview: Solutions and Contributions for Challenging

Problems 193

8 Conclusions 195

8.1 Summary And Results . 195

8.2 Future Work . 200

CONTENTS xv

Appendix 203

A Terminology . 203

A.1 General Terms . 203

A.2 Testing . 203

A.3 Graphs . 206

B Excerpt of a Source Map Created by GWT 208

C Tries . 210

Bibliography 211

List of Figures

2.1 Example code used by Apiwattanapong et al. [12, page 7] to

illustrate problems in recognizing changes. 18

2.2 Excerpt of a tree representing a class. 22

3.1 Code excerpt taken from Stockwatcher [100]. 26

3.2 Transcompiled code: OBFUSCATED variant. 27

3.3 Transcompiled code: PRETTY variant. 28

3.4 Transcompiled code: DETAILED variant. 29

4.1 Deficiencies in ordinary RTS techniques. 57

4.2 StockWatcher: original version (left) and modified version

(right). 58

4.3 One of the permutations representing the modified version of

StockWatcher in JavaScript. 60

4.4 Steps in our technique. 61

4.5 Parsing Java source code. 64

4.6 Inheritance in Java code, adapted version taken from Harrold

et al. [126, Figure 3b]. 64

4.7 EJIG with bindings. 65

4.8 Artificial return nodes in Harrold et al.’s JIG [126, Figure 3b]. 66

4.9 Statements, conditional expressions, and fields in the EJIG. . . 67

4.10 Conditional expression in the EJIG of P 68

4.11 Fields in the EJIGs. 69

4.12 Statements, expressions, and fields in the EJIG. 70

xvii

xviii LIST OF FIGURES

4.13 Problems when generating globally qualified class names for anony-

mous classes. 71

4.14 Method for instrumenting code used by CodeCover; the ex-

ample is taken from Hanussek et al. [124, page 19]. 79

4.15 Instrumentation before statements in two consecutive versions. 79

4.16 Instrumentation with relative numbers in two consecutive versions. 83

4.17 Simple Java example code. 85

4.18 Rule of thumb: Function calls as instrumentation code in front

of code entities. 90

4.19 Field instrumentation, class variables instrumentation, and class

instrumentation. 91

4.20 Standard and function instrumentation. 91

4.21 Sending CIDs to the analysis tool via WebSockets. 92

4.22 Persisting CIDs passed to the logging server. 93

4.23 Fault localization. 99

4.24 Percentage of expected and actually selected tests in Stock-

Watcher and in Hupa. 105

4.25 Code changes responsible for a test selection in Stockwatcher. 106

4.26 Code changes responsible for a test selection in Hupa. 107

5.1 Test selection in various precision levels. 121

5.2 Declarative code change taken from Orso et al. [215], extended

by class HyperA. 125

5.3 Two-stage algorithm to find matching nodes after modification. 129

5.4 Options of Eclipse plug-in GWTTestSelection. 133

5.5 Eclipse plug-in GWTTestSelection. 133

5.6 Test duration Hupa. 138

5.7 Test duration Meisterplan. 138

5.8 Checkout and test selection time Meisterplan. 144

6.1 Fault revealing tests, adapted from Elbaum et al. [71, page 106]. 156

6.2 Validator for user inputs with marked additions in version P ′

compared to P . 156

LIST OF FIGURES xix

6.3 Example matrix f and resulting metrics for several tests covering

the same CIDs with n = 4,m = 5, p = 7. 158

6.4 Metrics assigning each test ti an integer value as an estimate for

its importance. 159

6.5 Revised example matrix f and resulting metrics for DGFP after

t1 has been executed. 164

6.6 Errors in software. 167

6.7 APFD values for our techniques applied to standard Java appli-

cations. 169

6.8 APFD values for our techniques applied to transcompiled GWT

applications. 170

7.1 Problem of transferring coverage data back to source program-

ming language in a transcompiled cross-platform web application.181

7.2 Excerpt of a HTML-report created with TC3 to display (un)covered

code in Hupa. 189

B.1 Excerpt of a Source Map Created by GWT, PRETTY variant. . . 208

B.2 Transcompiled code: OBFUSCATED variant. 209

C.1 Example of a trie, taken from Knuth [168, page 495]. 210

List of Tables

4.1 Examples of CIDs. 85

4.2 Overview of advantages and disadvantages of code instrumenta-

tion approaches. 108

5.1 Number of CIDs affected by code modifications in Hupa for E*

precision level. 139

5.2 Test selection Hupa. 141

5.3 Test selection Meisterplan. 142

6.1 Definitions of our different prioritization techniques. 161

6.2 APFD values of alternative techniques. 171

6.3 Runtime of prioritization techniques in seconds. 172

7.1 Mapping of CIDs to syntactical elements. 184

7.2 Code coverage metrics for Abbot. 189

7.3 Code coverage metrics for Hupa. There are only web tests avail-

able. Only our tool supports web tests. 189

7.4 Code coverage metrics for JTopas. 189

7.5 Code coverage metrics for XML-Security. 189

xxi

List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability 108
APFD Average of the Percentage of Faults Detected 16
AST Abstract Syntax Tree 62
BD Body Declaration 120
CDG Control Dependence Graph 20, 39
CFG Control Flow Graph 20
CFP Change Frequency-based Prioritization Technique 162
CI Continuous Integration 14, 116
CID Code Identifier 81
DCFP Dynamic Change Frequency-based Prioritization Technique 163
DGFP Global Dynamic Frequency-based Prioritization Technique 163
DLFP Local Dynamic Frequency-based Prioritization Technique 163
DOM Document Object Model 43
DSL Domain Specific Language 1
E* Expression Star 120
ECN External Code Node 55
EJIG Extended Java Interclass Graph 62
GFP Global Frequency-based Prioritization Technique 160
GWT Google Web Toolkit 3
IDE Integrated Development Environment 33
JABA Java Architecture for Bytecode Analysis 57
JDT Java Development Tools 22
JIG Java Interclass Graph 55
LFP Local Frequency-based Prioritization Technique 161
NLOC Non-Empty Lines Of Code 3
NCSS Non-Commented Source Statements 3
PDG Program Dependence Graph 39, 207
PDT PHP Development Tools 22
RAP RemoteApplicationPlatform 3
RTS Regression Test Selection 5
SDG System Dependence Graph 39, 208
SRT Selective Regression Testing 5
TCP Test Case Prioritiztion 5
TSM Test Suite Minimization 5

xxiii

xxiv LIST OF ABBREVIATIONS

Chapter 1

Introduction

Today, there exist many special compilers that allow to write an application in a
specific programming language and to translate the resulting code into another
programming language automatically (e.g. [45, 70, 98, 120, 130, 151, 203, 207,
286]). These special compilers are usually referred to as transcompilers or
source-to-source compilers. The motives for using a transcompiler are eclectic.
This includes efforts to solve issues that arise during requirements analysis,
software design, and software development. Moreover, it is advantageous for the
cost planing. However, using a transcompiler impacts the test and bug fixing
process. Dealing with emerging problems in software testing and maintenance
is the main topic of the thesis. First, we want to consider the different aspects
in more detail that reason the usefulness and the usage of transcompilers.

When creating a new software from scratch, developers are always faced
with the question which programming language should be used. Everybody
will agree that there is no best programming language that should always be
used to realize software projects. Moreover, it is common in software projects
that several languages interact in order to accomplish an overall task. Often,
domain specific languages (DSLs) are consulted in order to solve a task. So
it is impossible to find an always and universally valid answer to the question
which programming languages should be used. Developers have to analyze
which programming languages are the most suitable to implement the software.
During the analysis, many aspects have to be considered [32, 222]: Among
others, developers require information about possible future customers and
the field of use of the software. This includes knowledge about future target
platform(s) and whether the application should be portable. Beyond that,
developers have to assess how easily the application can be adapted to new
or changed needs when using a certain language. From a developer’s point of
view, the effort to solve a problem and the vitality of a language are important
factors in order to be able to get the software ready for production as fast as
possible. Finally, the application’s performance is very important for users.

Sometimes, the analysis might come to a tradeoff between the different as-
pects when deciding which programming languages to use. This implies that
the language of choice has several advantages but also involves some draw-

1

2 CHAPTER 1. INTRODUCTION

backs. For example, a language like C# offers platform specific libraries to
create user interfaces with a native look and feel. However, when targeting at
several platforms, this language cannot be used directly. The same applies to
mobile applications, often referred to as apps. The most wide spread platforms
Android, iOS, and Windows Phone differ extremely. None of them uses the
same language for implementing apps. An app developed for a specific platform
(e.g. Android) is naturally incompatible to other platforms (e.g. iOS, Windows
Phone). Developing the same app for several operating systems is very time
consuming and expensive.

When targeting multiple platforms, web applications could offer an alter-
native. They benefit from minimal system requirements. Given an up-to-date
browser and an internet connection, they are available from everywhere. This
is very convenient from both a customer’s and a developer’s point of view.
Developers have a great benefit as it is very easy to offer new functionality or
to fix bugs rapidly. Furthermore, today’s web applications are not inferior to
desktop applications with respect to functionality and performance. Especially
the client side does no longer only display contents to the user but is able to
perform sophisticated tasks. The power of these applications is often due to
JavaScript and due to the advent of AJAX [90]. This technique offers varied
possibilities to load additional data or to manipulate contents dynamically and
asynchronously in order to display further information in the browser as needed
without requiring a full reload of the web page [90]. So, the user experience is
highly interactive and does not differ much from standard desktop applications.

Nevertheless, web applications are associated with disadvantages, too. In
general, they are considered to be harder to test (e.g. [15, 76, 225]). And
due to the dynamically and loosely typed semantics as well as because of the
prototype-based inheritance in JavaScript, code is additionally considered to
be more error-prone [15, 132]. Other problems arise from diverging browser
behavior [132] and from AJAX. Being highly beneficial for the user experience,
the asynchronous data transfer impedes testing particularly and therefore adds
further challenges (e.g. [15, 86, 188, 226]). Apart from that, another drawback
might be the weak support for debugging.

As a general solution to these problems, frameworks that allow focusing on
easy development and testing become more and more popular when deciding on
the (main) programming language that should be used to create an application.
The platform on which the software is going to run plays a minor role. The
resulting source code will be compiled into another programming language
by a transcompiler that is integrated in the framework. This language fits
the requirements of the future platform as well as possible. The process of
compiling code from a specific source programming language in another target
language is called transcompilation.

Using such a framework has many advantages. Depending on the transcom-
piler, the final application might be provided for example as web application,
which runs in a browser. In doing so, a strongly typed language with a mature
debugging system can be used. This contributes to a reduction of faults and

1.1. MOTIVATION 3

facilitates the bug fixing. In the area of mobile applications, it suffices to de-
velop the application once. The transcompiler automatically creates code that
is tailored for all leading mobile platforms (i.e. Android, iOS, and Windows
Phone). Multiple development of the same app may be dropped. Naturally,
this reduces the costs for software development and software maintenance. The
same applies when a desktop application should be delivered as native app for
different operating systems (e.g. Mac, Windows) that uses platform specific
libraries to create user interfaces with a native look. The initial application
written by the developer becomes platform independent (also called cross- or
multi-platform), depending on the framework and its transcompiler.

When having a closer look at examples of transcompiling approaches, we
want to point out Google Web Toolkit (GWT) [98], Haxe [130], Remote Appli-
cation Platform (RAP) [70], Xamarin [286], NeoMAD [203] or Codename One
[45]. GWT compiles source code from Java to JavaScript [98], RAP is based
on SWT in order to create web UIs [70]. Haxe offers JavaScript, PHP, Java,
and other target languages [131]. Xamarin uses source code written in C# and
transcompiles it to provide native iOS, Android, or Windows Phone mobile
apps [286]. Codename One and NeoMAD achieve the same by transcompiling
Java source code [45, 203].

However, despite all the advantages described before, using transcompilers
also entails new difficulties. Now, we look at the overall situation and the
emerging consequences for transcompiled cross-platform applications.

1.1 Motivation

Testing transcompiled applications leads to new challenges in ensuring their
quality and correctness. When looking at the state of the art, approaches to
improve the quality of software can be categorized into static and dynamic
approaches according to Sneed [259]. Today, there exist many methods whose
intention is to reveal and remedy faults as soon as possible. Examples for static
approaches are software reviews. These include, as described in the IEEE
Standard 1028-2008 [145], technical reviews, inspections, and walk-throughs
(among others). They can be applied at a very early stage in the software
development even when fully executable code does not exist yet. Another
example of a static approach is deductive verification. Deductive verification
(e.g. [82]) uses mathematical statements and the Hoare calculus [137] to prove
that an implementation is correct in terms of its specification. So naturally,
this approach requires that an implementation is available and that it is at least
partially finished. Finally, code metrics like non-empty lines of code (NLOC)
and McCabe metric [184] as well as semantic analysis help to improve the source
code. Both NLOC (also known as non-commented source statements, NCSS,
see e.g. Rutar et al. [239]) and the McCabe metric provide information about
the complexity of the source code.

As already reported by many authors (e.g. [3, 156, 166]) before, consider-
ing these static techniques individually does not ensure software quality and

4 CHAPTER 1. INTRODUCTION

correctness in a satisfying way. It is important to combine several static testing
techniques. But these approaches are still not able to reveal all kinds of faults.
For this reason, dynamic test techniques are additionally necessary. Only the
combination of all these approaches affords high quality software.

Dynamic approaches include testing in the sense that the software is exe-
cuted. Testing can be divided in many methods according to the phase in the
software development process in which the software is tested. In an early stage,
it is already possible to test small units of the software in order to check whether
the result of an individual component, a function, or an algorithm matches the
expected one. This is called unit testing (see also Section A.2, Paragraph “Unit
Test” in the Appendix with a citation taken from the terms and definitions in
the “Systems and software engineering – Vocabulary” [149]) and is a rather fast
testing process. However, just testing small units is insufficient because it nei-
ther ensures the appropriate collaboration of single units nor incorporates the
interaction of software modules that consist of several units. This is the goal of
a later stage in the software test phase. It is commonly known as integration
testing (see also Section A.2, Paragraph “Integration Testing”), which is more
complex and more time consuming. Nevertheless, all these dynamic testing
strategies only consider the functional part of the software. One of the most
complex and time consuming testing strategies affects testing the user inter-
face. Only hereby, it is possible to judge the overall behavior of the application
and to inspect the user interface and the associated events. Depending on the
kind of software application, this way of testing is called UI or web testing.
Here, test engineers usually produce a test case for each use case. To this end,
capture and replay tools are frequently utilized. There are many different tools
such as TestComplete [258] or Ranorex [221], which are all-embracing test-
ing tools for desktop, web, and mobile applications. Within the scope of web
applications, user interactions in the browser can be recorded with the help of
for example Selenium [252], HTMLUnit [89], Sahi [244], or Watir [282].

Of course, running any of these tests only once in a while still does not
ensure software quality. Even small code changes have the potential to impair
already existing functionality that should work as before. In order to ensure
that the software still works as expected, basically all existing test cases (i.e.
unit tests, integration tests as well as UI/web tests) have to be executed anew.
The general term for this testing strategy is regression testing (see also Sec-
tion A.2, Paragraph “Regression Testing” in the Appendix for the definition in
the “Systems and software engineering - Vocabulary” [149]). It provides con-
fidence into the software and helps to reveal bugs soon, which is decisive. As
described by Boehm and Basili [31] and Schach [247], fixing bugs becomes more
and more expensive the later they are discovered in the development process.
So we can conclude that as long as a software evolves, coding and testing is
an iterative process that never stops. In the style of Sepp Herberger, we can
rephrase one of his statements on soccer1 in the context of testing like this:

1Original statement by Sepp Herberger: “Nach dem Spiel ist vor dem Spiel.” [53]; In
English: “After the game is before the game.”

1.1. MOTIVATION 5

After a test run is before the test run. Yet, the more test cases are created,
the longer it takes to run the entire set of test cases. (This set of test cases is
referred to as test suite.) In fact, regression testing accounts for a major part
of the software cost: Rothermel and Harrold [233] have described that accord-
ing to e.g. Schach [247], two thirds of the total development costs are spent for
software maintenance. In addition, they cite (among others) Leung and White
[177] who have stated that up to 50% of the maintenance cost can be allotted
to regression testing. So we infer that, surprisingly, up to 33% of the software
cost may go to regression testing. We even expect this value to be higher when
considering web applications. The execution of web tests in a (ideally headless)
browser (supported e.g. by Selenium [253]) involves extra time for starting-up
the browser and especially for waiting for possible server responses.

To reduce the costs for regression testing, researchers have come up with
new techniques, often subsumed as [290, page 68] test suite minimization
(TSM), test case prioritization (TCP), and regression test selection (RTS) or
selective regression testing [38, page 211] (SRT), respectively. We discuss these
three techniques in more detail in Section 2.2.

However, none of the standard techniques that reduce the regression testing
effort have been created with the special characteristics of transcompiled appli-
cations in mind. In existing approaches, developers work on the same, shared
code basis that is also used by test cases. Here, it is rather straightforward
to calculate which test cases might fail due to code changes. By contrast, in
transcompiled applications, UI/web tests run code in a different language. For
this reason, it is very difficult to determine which tests should be re-executed
according to some special criteria such as changes in the code of the source
programming language or due to lessons learned about existing tests and their
probability to reveal a fault in the source language. Besides, it is a challeng-
ing task to locate faults in the source code when a UI/web test fails. This is
especially true when the transcompiler additionally obfuscates the code. At
the very least, the developer has to be an expert in all the different languages
supported by the transcompiler. In case of web applications, this could be
for example JavaScript or PHP (see the Haxe transcompiler [131]). In case of
mobile devices, this could be both C#, Java, and Objective-C (see NeoMAD
[203] or Codename One [45]).

A similar problem occurs when developers wish to determine how thor-
oughly the source code is covered by test cases. In order to know where addi-
tional testing is necessary, it is desirable to know the code coverage (also called
test coverage) in the source programming language (see also Paragraph “Test
Coverage” in the Appendix A.2). For this purpose, coverage tools usually cal-
culate percentages that describe the coverage for special syntactical elements
like statements or branches. Established tools additionally offer the possibil-
ity to highlight the source code in order to indicate the coverage. However,
these reports naturally display results for the code that has been executed by
a test – but this is not the code developers are interested in. In transcom-

6 CHAPTER 1. INTRODUCTION

piled applications, again, tests do not run code in the language written by the
developer.

Hence, it would be desirable to use efficient regression testing techniques
and code coverage techniques in transcompiled cross-plattform applications.
But up to now, existing techniques are barely usable.

1.2 Summary of Contributions

The thesis contributes to three essential areas of regression testing in the special
context of transcompiled applications.

1.2.1 Test Effort Reduction Problem

With the test effort reduction problem, we want to comprise three questions:
(a) Which tests should run at all, (b) how to execute tests in an efficient
way, and (c) which execution order would be suitable if many tests should be
re-executed. Question (a) and (b) have been investigated by Rothermel and
Harrold [233] in the context of selective retest techniques as the regression test
selection problem (a) and as the test suite execution problem (b). Question (c)
has been posed by Wong et al. [284] and expresses the problem to prioritize
test cases according to specific criteria. Usually, the criteria define properties
that help to decide which tests are the most important ones, for example in
order to detect faults in the source code as soon as possible (see also Yoo and
Harman [290]).

Up to now, there are only approaches for non-transcompiled applications
available. These approaches are based on reducing test suites that run code
written by developers rather than code generated by a compiler. In transcom-
piled applications, this precondition is not met. Our work bridges the gap
between code written by developers in a programming language A and its
counterpart that results from a transcompilation into a programming language
B. Please keep in mind that the tests (UI or web tests) run the code of the
transcompiled application – i.e. code generated in programming language B
– whereas developers modify solely code written in programming language A.
Thus, we are able to conclude which tests are affected by a code change (in
language A). We exploit this knowledge to reduce the set of test cases used for
regression testing. At the same time, we know which tests should be executed
at all. This insight addresses problem (a).

Of course, the analysis has to be fast and should not exceed a certain RAM
limit. For this reason, we investigate several ways to reduce the runtime and the
memory consumption required for the analysis. On the one hand, we introduce
a dynamically adaptable heuristics that performs analyses at different precision
levels to keep the runtime and the memory consumption low. On the other
hand, we propose a lookahead strategy to reveal more faults in fewer analyses.
All these measures contribute to solving problem (b).

1.2. SUMMARY OF CONTRIBUTIONS 7

Additionally, we present and compare three novel static test prioritization
techniques and three dynamic counterparts that prioritize the test execution
according to a sequence of formal criteria. This will be an answer to prob-
lem (c). The results of the comparison are the basis for a recommendation
which of our prioritization techniques is the most effective. Finally, we con-
tribute to overcoming the common nightly build and test cycle. This strategy
builds the complete software every evening and schedules test runs during the
night in order to inform developers about bugs when they arrive the next morn-
ing. With our technique, we provide a fast executable and repeatable cycle of
code changing, test determining, test case executing and bug/test case fixing
that highly resembles continuous integration [84].

For easy usage, we have implemented a prototype of our technique which
is available as Eclipse2 plug-in.

Both the approaches and parts of the results of our work contributing to
the test effort reduction problem have partially been published in the following
papers [133–136]:

• M. Hirzel. Selective Regression Testing for Web Applications Created
with Google Web Toolkit. In Proceedings of the 2014 International Con-
ference on Principles and Practices of Programming on the Java Plat-
form: Virtual Machines, Languages, and Tools, PPPJ 14, Cracow, Poland,
pages 110-121, New York, NY, USA, 2014. ACM.

• M. Hirzel and H. Klaeren. Graph-Walk-based Selective Regression Test-
ing of Web Applications Created with Google Web Toolkit. In Gemein-
samer Tagungsband der Workshops der Tagung Software Engineering 2016
(SE 2016), Wien, pages 55-69, 2016.

• M. Hirzel, J. Brachthäuser and H. Klaeren. Prioritizing Regression Tests
for Desktop and Web-Applications Based on the Execution Frequency of
Modified Code. In Proceedings of the 13th International Conference on
Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, PPPJ 16, Lugano, Switzerland, pages
11:1–11:12, New York, NY, USA, 2016. ACM.

• M. Hirzel and H. Klaeren. Code Coverage for Any Kind of Test in
Any Kind of Transcompiled Cross-Platform Applications. In Proceedings
of the Second International Workshop on User Interface Test Automa-
tion, INTUITEST ’16, Saarbrücken, Germany, pages 1–10, New York,
NY, USA, 2016. ACM.

1.2.2 Fault Localization Problem

The fault localization problem arises whenever a test case fails during regres-
sion testing. Developers have to investigate the code (written in the source

2https://eclipse.org/

https://eclipse.org/

8 CHAPTER 1. INTRODUCTION

programming language) in order to locate the fault(s) [285]. In general, this
can be a very time consuming and difficult task [285]. In transcompiled cross-
platform applications, this is even more complicated. Test cases run code in
the target language. Thus, developers have to track and comprehend errors
that emerged during the execution of a test case in order to be able to identify
the faulty source code.

Our method for reducing the test effort provides crucial data to assist devel-
opers in solving this problem. At best, our approach is able to point developers
to a single code change that has lead to the test failure. No further debugging
is needed. At least, it determines a subset of code changes that might be the
reason for the test failure.

The fault localization problem has been addressed in the following papers
[133, 135]:

• M. Hirzel. Selective Regression Testing for Web Applications Created
with Google Web Toolkit. In Proceedings of the 2014 International Con-
ference on Principles and Practices of Programming on the Java Plat-
form: Virtual Machines, Languages, and Tools, PPPJ 14, Cracow, Poland,
pages 110-121, New York, NY, USA, 2014. ACM.

• M. Hirzel and H. Klaeren. Graph-Walk-based Selective Regression Test-
ing of Web Applications Created with Google Web Toolkit. In Gemein-
samer Tagungsband der Workshops der Tagung Software Engineering 2016
(SE 2016), Wien, pages 55-69, 2016.

1.2.3 Coverage Identification Problem

Tests can never prove that there are no faults in a software application. If a
test passes, the only assertion is that the executed piece of code does not fail
for the given input. Because of this, it is very important to have many tests
that seek to cover all possible use cases with many possible inputs. That is, a
test suite should be as complete as possible. The problem to decide whether
a test suite is complete or which parts of the code require additional tests is
known as the coverage identification problem [233].

We propose a technique that is able to calculate the coverage of any kind of
test at low cost. Our technique is usable for both unit tests, integration tests,
and UI/web tests. The technique supports standard desktop applications, but
more importantly, it is the first that calculates the standard coverage mea-
sures (statement coverage, branch-, loop-, method-, and class coverage) for
transcompiled applications and it highlights the coverage in the code written
by developers. To demonstrate the easy usage in the everyday life of a devel-
oper, we provide a prototype of our technique as Eclipse plug-in.

The results of our solution for the coverage identification problem in the
context of transcompiled applications has been published in the following paper
[134]:

1.3. OUTLINE 9

• M. Hirzel and H. Klaeren. Code Coverage for Any Kind of Test in
Any Kind of Transcompiled Cross-Platform Applications. In Proceedings
of the Second International Workshop on User Interface Test Automa-
tion, INTUITEST ’16, Saarbrücken, Germany, pages 1–10, New York,
NY, USA, 2016. ACM.

1.3 Outline

The thesis is structured in three main parts. In the first part, we provide back-
ground on regression testing and transcompiled cross-platform applications. As
the thesis links regression testing and transcompiled applications, two topics
that are independent in the first place, we will dedicate an own chapter for
both fields.

Chapter 2 examines basics of regression testing in particular. We explain
the main intention, general terms and formal notation. Afterwards, we depict
existing categories of regression testing techniques. Then, we discuss different
state-of-the art techniques which many regression testing techniques rely on.
This encompasses concepts of code instrumentation, control flow graphs, and
abstract syntax trees. We also differentiate fault localization from change im-
pact analysis, another technique used in the field of regression testing. Finally,
we summarize common test creation methods.

Chapter 3 covers transcompiled cross-platform applications in detail. We
consider the compilation process with transcompilers in general and present
transcompilers used in our evaluations as well as particularities that are im-
portant to understand subsequent decisions.

The second part addresses our generic approach for standard and transcom-
piled cross-platform applications. We propose a solution to the problem of re-
ducing the test effort, localizing faults in the source code written by a developer,
and identifying parts that need additional testing.

Chapter 4 presents challenges and the basic idea to solve the test effort
reduction problem with an extended regression test selection technique. We
elaborate two different possibilities to bridge the gap between code written by
the developer and code created by the transcompiler. The results will be evalu-
ated and considered under various aspects in order to find the most appropriate
solution. In doing so, we also address the ability to locate faults precisely.

The basic idea explained in Chapter 4 is only the first step. Chapter 5
deals with possible ways to accelerate the analysis and to reduce the memory
consumption. Furthermore, we show how the total number of analyses can be
reduced. Again, all our concepts are discussed in an evaluation in a real-world
application scenario.

To optimize the test effort further, we combine our extended test selection
technique with test prioritization. In Chapter 6, we explain problems of existing
prioritization techniques and propose novel alternatives that exploit the results

10 CHAPTER 1. INTRODUCTION

of our extended test selection. The advantages of our new techniques are shown
in a comparison with already existing ones.

The coverage identification problem is the topic of Chapter 7. Here, we
focus on how to provide common code coverage metrics for transcompiled ap-
plications and on how to indicate which source code written by developers are
(un)covered by the current test suite. We demonstrate that our approach can
be applied to calculate the code coverage of all the different kinds of test cases,
namely unit tests, integration tests, and UI/web tests.

Finally, the third part revisits our contributions. The concluding Chapter 8
summarizes our results and presents possible directions for future research.

Part I

Background, Definitions, and
Terms

11

Chapter 2

Basics of Regression Testing

Regression Testing is the general term for re-executing tests repeatedly. In
Section 2.1, we remind the main intent of regression testing and explain pre-
conditions first. Afterwards, we summarize in Section 2.2 three main categories
of regression testing techniques. We define the basic terms, and depict benefits
and drawbacks. Based on these facts, we argue which technique is suitable
to support regression testing of transcompiled cross-platform applications. In
Section 2.3, we discuss basic approaches for instrumenting software. We outline
important terms and the basic set-up. After that, we have a look at the funda-
mentals of a widely used regression testing approach that is based on graphs (see
Section 2.4). With these basics in mind, we introduce in Section 2.5 abstract
syntax trees that can be used to create control flow graphs. In Section 2.6,
we introduce fault localization and change impact analysis, explain differences,
and discuss important implications. Finally, we present in Section 2.7 possible
ways to create test cases and we talk about basic assumptions that are relevant
for our approach.

2.1 Regression Testing: Intent and Test Categories

Main Intent and Preconditions: When adding new features to a software
system, an important part of the development process is to test the new fea-
tures. At the same time, it is equally important to repeatedly check that the
behavior of existing parts of the system is left unchanged. This is the main
intend of regression testing (see also Section A.2, Paragraph “Regression Test-
ing”). It ensures that the extended software behaves as expected, and at the
same time prevents that new functionality compromises existing parts of the
program. For this purpose, a set of test cases tj , j ∈ N is required. These test
cases are usually grouped into one or several test suites Ti (i ∈ N) and pass
when applied to a specific program version P . As soon as P has been extended
by new features or as soon as the implementation of some part of P has been
changed, it is difficult to guarantee that the new version P ′ of the software
works as expected. Executing all tests tij of test suites Ti regularly and ob-
serving no faults gives confidence in the system as a whole and in all features

13

14 CHAPTER 2. BASICS OF REGRESSION TESTING

which are covered by the tests. This strategy is called retest-all approach (e.g.
[232, page 529]) and is the simplest way of doing regression testing.

An important precondition of regression testing is the comparability of test
runs. Rothermel and Harrold [232] call this controlled regression testing as-
sumption [232, page 531]. When executing tests repeatedly, it has to be ensured
that the software under test has exactly the same internal state and that all
parameters (such as test inputs, the database, necessary files etc.) are exactly
the same as in a previous test run. Only thus, we can conclude from a failed
test that existing functionality of a software program has been affected by code
changes, newly added, or removed code.

Effects of Code Changes on Tests: While regression testing focuses on
running existing tests to reveal bugs introduced by code modifications, it is also
important to ensure that new features are tested thoroughly. For this reason,
it is necessary to determine which parts of the code in a new version P ′ are
not covered by test suites Ti. According to these findings, new test cases have
to be created. In the same way, tests tji ∈ Ti might have to be updated or
might not be required any more. To distinguish the different possible effects
of code changes on tests, Leung and White [177, page 63] split them in five
categories: Reusable, retestable, obsolete, new-structural and new-specification.
The first two categories subsume tests after code modifications. Reusable tests
are not affected by changes and can be reused in the new program version P ′

directly. The counterpart of this kind of tests are retestable tests, that have
to be re-executed as they are affected by code changes. The remaining three
categories address on the one hand test cases that are not suitable any more
to test the software. These tests are called obsolete tests. On the other hand,
new-structural and new-specifiation tests have to be created in order to test
the structure of a program or the specification in an appropriate way.

Fowler recommends in his article on Continuous Integration (CI) [84] to
integrate changed source code in a version control system (also known as repos-
itory) at least once a day. He also recommends to build the system afterwards
and to run test cases, because code changes could impair existing, unchanged
functionality.

2.2 Testsuite Minimization, Test Prioritization, and
Test Selection

In large applications with big test suites, regression testing can take several
hours until results are available (e.g. [233]). Some authors even report on
several days [264] or even weeks [235, 264]. Thus, this kind of testing can be
very time expensive which in turn is contradictory to continuous integration
[84]. According to this principle, developers should integrate their local code
modifications into the main software code base as soon as a new feature has
been finished or a bug has been fixed, but at least once a day. The code

2.2. TESTSUITE MINIMIZATION, TEST PRIORITIZATION, AND
TEST SELECTION 15

base should be managed by a version control system in a repository. Each
code integration is followed by building the software and running the tests [84].
The idea is that in doing so, bugs and problems occurring in the interaction
of different software components can be detected earlier. Nevertheless, this
requires that test results do not arrive with a massive delay as reported before.
For this reason, Fowler [84] recommends multiple test stages. While the first
one focuses on fast running tests, other stages run more time-consuming tests
later on. We agree that this setup is helpful, but we also want to point out
that the realization is difficult with large test suites or when systems have to
rely on many time-consuming tests that have to run regularly.

As a way out, developers have proposed regression test approaches to reduce
the testing effort and thereby shorten the time until test feedback is available.
The different approaches can be divided into three main categories (e.g. [290,
page 68]): Test Suite Minimization, Test Case Prioritization, and Test Case
Selection. We explain the main ideas and the differences in the following para-
graphs. For a detailed survey on existing approaches, we refer the reader to
Yoo and Harman [290], Engström et al. [78], Rothermel and Harrold [232], or
Orso and Rothermel [213].

Test Suite Minimization: According to Yoo and Harman [290], the ob-
jective of test suite minimization (TSM) is to run non-redundant tests only.
Redundant test cases are tests ti in a test suite T that satisfy all the same
test criterion rj (i, j ∈ N). There may be many test criteria defining software
quality rules. Consequently, each criterion rj must be covered by at least one
test case in order to be able to check whether a software program fulfills the
software quality requirements. During the test execution, only one test case
representative is executed per criterion rj .

Test Case Prioritization: As the name indicates, test case prioritization
(TCP) does not reduce the size of a test suite T . It still runs all the tests
but changes the order in which individual tests are executed (e.g. [290]). The
new test execution order meets a specific performance goal [71]. Usually, the
goal is to find faults as soon as possible (e.g. [71, 290]). In order to meet
the performance goal, many approaches are imaginable. For example, tests
might be ordered according to the number of statements they execute [71]. In
general, as already noticed by Li et al. [180], many approaches rely on the
Greedy Algorithms. It tries to find for a given problem/criterion the currently
best choice (e.g. [180, 262]). Li et al. call this the “next best search philosophy”
[180, page 226]. At best, all elements are sorted in an optimal order after
applying the Greedy algorithm for the first time. However, this is not always
the case. For this reason, developers have come up with many more approaches
such as the Additional Greedy Algorithm that incorporates data from previous
iterations (e.g. [180]). We discuss more approaches in Chapter 6 and we present
our own, novel prioritization strategies.

Judging the performance of TCP techniques is only possible retrospectively

16 CHAPTER 2. BASICS OF REGRESSION TESTING

by means of a metric (e.g. [290]). The reason is that we do not know which
tests reveal (a) bug(s) before the tests have been executed [290]. The standard
metric in the literature is called Average of the Percentage of Faults Detected
(APFD) [74, page 164]. It measures the ability of an approach to detect faults
as soon as possible. As explained by Elbaum et al. [74], the codomain attains
values in the interval I = [0; 100], where higher values indicate a better fault
detection. The metric requires as input the number of tests n in a test suite
T , the number m of code modifications resulting in a failure of at least one of
the test cases, and an ordered test suite T ′. We refer to the first test in T ′

that detects fault number i as TFi. Then, the APFD metric is the result of
the equation:

APFD = 1− TF1+TF2+···+TFm
nm + 1

2n

In order to have an advantage over a retest-all approach, TCP techniques
will usually stop as soon as a predefined criterion (e.g. time limit) is fulfilled.
However, this leads to the risk that the test run is canceled although there
are still tests left which would reveal additional faults if they would have been
executed. In the end, TCP techniques might fail to detect all newly introduced
faults. Vice versa, it is also possible that that the test run is canceled too late.
Thus, tests have been executed unnecessarily which impairs the overall test
execution time.

Test Case Selection: Test selection aims to identify and to execute only
these tests of the original test suite T that are affected by code changes and
therefore are able to detect faults (fault-revealing tests [233, page 185]). After
selecting tests, we obtain a new test suite T ′ of fault-revealing tests. More
formally, it is T ′ ⊆ T (e.g. [233]).

Ideally, the new test suite T ′ is significantly smaller than the original test
suite T . To achieve this goal, regression test selection (RTS) techniques try to
detect changes made during the development of a program version in order to
determine exactly these tests which are affected by the modifications. That is,
test selection techniques always consider an original program version P and a
new, more sophisticated program version P ′ and analyze them.

To obtain knowledge about code changes made in a new program version
P ′, Apiwattanapong et al. [12] list several approaches. An obvious and straight-
forward solution might be to use for example Diff [121] from Unix or similar
tools whose intent is exactly to determine textual differences between two ver-
sions of source code files. Indeed, there are several approaches that are more
or less inspired by Diff. Examples mentioned by Apiwattanapong et al. [12]
are UMLDiff, an algorithm proposed by Xing and Stroulia [287], or srcDiff,
a combination of a special XML-format (called srcML) with Diff which has
been proposed by Maletic and Collard [182]. For more examples, we want to
refer the reader to the original paper of Apiwattanapong et al. [12].

Beyond that, there are many more different approaches that investigate
how the analysis could be realized. Rothermel and Harrold [232] list in total

2.2. TESTSUITE MINIMIZATION, TEST PRIORITIZATION, AND
TEST SELECTION 17

12 RTS techniques (namely techniques based on Linear Equation, Symbolic
Execution, Path Analysis, Dataflow, Program Dependence Graph, System De-
pendence Graph, as well as techniques based on Modification, Firewall, Clus-
ter Identification, Slicing, Modified Entity, and Graph Walk [232, page 548]).
Some of them are safe [229, page 203], i.e., they select exactly all the tests
affected by a code change. Consequently, they achieve the same result as a
retest-all approach would do. Among the techniques investigated by Rother-
mel and Harrold [232], only the following RTS techniques are safe: Interpro-
cedural Linear Equation technique, Firewall, Cluster Identification, Modified
Entity, and Graph Walk technique. In the last-named technique, P and P ′

are represented as a graph. According to Rothermel and Harrold [232], it is
the most precise RTS technique with respect to the ability to select tests that
could be fault-revealing due to code modifications that change the output of P ′

(Rothermel and Harrold call this modification-revealing tests [232, page 530])
and to ignore tests that do not have a chance to reveal faults.

Discussing the Approaches: As already mentioned in the Introduction,
an essential goal in our research is to provide a fast and efficient way to do
regression testing in order to support continuous integration [84] on all testing
levels, especially for UI/web tests. For this reason, we would like to run as
few tests as possible. At the same time, we do not want to miss tests that are
fault-revealing. Kim and Porter conclude in their paper [163] that the TSM
technique applied in their evaluation achieves a high test suite reduction. Un-
fortunately however, it misses many faults. Chen et al. [38] argue that “in
the maintenance phase changes to a system are usually small and are made to
correct problems or incrementally enhance functionality. Therefore, techniques
for selective software retesting can help to reduce development time” [38, page
211]. Yoo and Harman [290, page 98] remark that RTS techniques have been
investigated extensively due to the safe selection of test cases. Neither mini-
mization nor prioritization techniques have a similar concept. Yoo and Harman
point out that these techniques require additional metrics to judge their fault
detection ability. Besides, TCP techniques and TSM techniques may always
fail to reveal faults.

For these reasons, a safe RTS technique seems to satisfy our demand the
best. Retrospectively, this choice fits to recent observations by Legunsen et al.
[174] who remark in a recent paper (2016) that “Regression test selection (RTS)
is the most widely used approach to speeding up regression testing” [174, page
583].

Rothermel and Harrold [232] have shown that graph walk-based techniques
are the most precise with respect to the ability to ignore tests that cannot
reveal faults while selecting all tests that could be fault-revealing [232]. These
results have additionally been confirmed by a more recent review of Engström
et al. [78]. Therein, the authors try to categorize 28 regression test selection
techniques and to establish an order reflecting their relative merits. They have
remarked that unsafe techniques can be highly efficient in reducing the number

18 CHAPTER 2. BASICS OF REGRESSION TESTING

of test that have to rerun. However, they have also pointed out that unsafe
techniques have a high risk to miss fault-revealing tests. When looking at safe
techniques, they have noticed that a graph walk-based technique shows the
biggest test suite reduction.

Another motivating argument for using graphs rather than Diff-based tools
has been given once more by Apiwattanapong et al. [12]. As noticed by them,
Diff-based tools are insufficient in the context of object-oriented programming
languages. In a small example, they explain the main problem why a Unix-
based Diff tool is not suitable to detect code changes. We reuse their example
(see Figure 2.1) and summarize their argumentation to provide a better under-
standing.

1 public class A {
2 void m1() {...}
3 }
4

5 public class B extends A {
6

7 void m2() {...}
8 }
9

10 public class E1 extends
Exception {}

11 public class E2 extends E1 {}
12 public class E3 extends E2 {}
13

14 public class D {
15 void m3(A a) {
16 a.m1();
17 try {
18 throw new E3();
19 }
20 catch(E2 e) {...}
21 catch(E1 e) {...}
22 }
23 }

(a) Program version P

1 public class A {
2 void m1() {...}
3 }
4

5 public class B extends A {
6 void m1() {...}
7 void m2() {...}
8 }
9

10 public class E1 extends
Exception {}

11 public class E2 extends E1 {}
12 public class E3 extends E1 {}
13

14 public class D {
15 void m3(A a) {
16 a.m1();
17 try {
18 throw new E3();
19 }
20 catch(E2 e) {...}
21 catch(E1 e) {...}
22 }
23 }

(b) Program version P ′

Figure 2.1: Example code used by Apiwattanapong et al. [12, page 7] to illus-
trate problems in recognizing changes.

Figure 2.1 shows two versions of a Java program. Imagine that an external
library hooks into D.m3 of the program version P depicted in Figure 2.1a and
that it passes an instance of B as argument. A UI test case t checks the correct
functionality. So t traverses line 16 and calls A.m1(). In the new program
version P ′ (see Figure 2.1b), the method B.m1() overrides the method A.m1()

(see line 6). As a consequence, the behavior of P ′ might differ because now,
t calls B.m1(), a piece of code that was never executed before. Diff-like tools
would just recognize the pure textual change in line 6 (B.m1()) and would not

2.3. CODE INSTRUMENTATION 19

be able to detect the indirectly affected parts of the code (a.m1() in line 16).
Starting from this, it would only be possible to select tests that traverse B.m1().
t would be missed erroneously as it never executed B.m1(). If A.m1() has been
overridden accidentally, it might neither be possible to identify nor to localize
this fault in the source code.

Similarly, Diff-based tools would not be able to recognize changes in the
exception handling. In line 12 in Figure 2.1b, E3 extends E1 rather than E2.
Now, exceptions thrown in line 18 could be handled in the catch-block in line 21
rather than the one in line 20. This is extremely problematic because – as
observed in a study by Apiwattanapong et al. [12] – changes affect quite fre-
quently dynamic bindings and the type of variables. They group these kinds
of changes (with some less frequent kinds of changes) and call them “object-
oriented changes” [12, page 19]. As a result, they have noted that even more
than 50% of the changes are object-oriented changes. Tools that cannot deal
correctly with those changes and their effects on tests such as t are inadequate.
Moreover, Apiwattanapong et al. point out that some changes in the code even
do not affect the functionality program at all. As example, they enumerate
comments or reordered class members (such as functions or global variables).

Finally, there are empirical studies that report on considerable test suite
reduction results when applying graph walk-based techniques [29, 78, 119, 126,
231, 232, 234] even though some of these studies also report that in some
cases, the test suite reduction was low [119, 126] at rather high analysis costs
[232, 234]. On top of this, as we focus on UI/web tests applied to transcom-
piled cross-platform applications, we have to take special factors into account
such as UI/web tests that traverse larger parts of the application code. This
might additionally lead to a low test suite reduction rate and a time consum-
ing analysis (e.g. [78, 232]) which of course threatens our endeavor to achieve
efficiency. But the safety argument is very important for us. Besides, as noted
by Yoo and Harman [290], graph walk techniques seem to be used the most
frequently in the literature. For these reasons, we take this concept as starting
point for our own technique. In case of low test suite reduction rate, we would
address this problems with the assistance of test prioritization in order to get
an advantage over the classic retest-all approach.

2.3 Code Instrumentation

There are approaches in all three categories of regression testing techniques that
require knowledge about which test cases execute which code elements/ which
parts of the code (e.g. [270] (TSM); [56, 71, 153] (TCP); [126, 223, 229, 294]
(RTS)). This is usually done by instrumenting code and creating traversal traces
(e.g. [233]). That is, additional code is injected into the regular source code
in order to create some kind of log messages. Of course, this implies an extra
overhead for both adding instrumentation code and creating log messages that
has to be compensated by the regression test approach in order to perform
better than a classical retest-all approach.

20 CHAPTER 2. BASICS OF REGRESSION TESTING

In general, the strategy of adding instructions somewhere in a program is
well known for a long time. An early variant has already been used in 1961 by
Jacoby and Layton in their paper about “Automation of Program Debugging”
[152] in order to analyze errors.

There are two different possibilities of instrumenting code: The first pos-
sibility is to insert instrumentation code into binaries or class files. In the
second one, instrumentation code is added directly to plain source or target
code. Several techniques require this instrumentation task to be done as very
first step. This is called off-line or static instrumentation (e.g. [91, 140]). In
contrast, other techniques perform this operation dynamically (on-the-fly, e.g.
[91, 140]) at runtime. In all cases, the additional instrumentation code has to
be syntactically correct and must not change the functionality of a program.

Apart from using instrumentation code for tracing code execution, there are
more use cases. Code instrumentation is also used for debugging/logging (e.g.
[124, 200]) and profiling (e.g. [26]); see also Appendix A.2, Paragraph “Instru-
mentation”.

2.4 Control Flow Graph

Rothermel and Harrold [232] have found that graph walk techniques are the
most precise safe techniques. Both P and P ′ are represented as a graph. In
the literature, different kinds of graphs have been investigated. Control flow
graphs (CFGs) play a very prominent role [290] and seem to be more efficient
than control dependence graphs (CDGs) [233].

In this section, we define some basic terms concerning graph theory in
general and control flow graphs in particular. More details about control flow
graphs and their usage for representing programs can be found in the papers
of Allen [8] and Rothermel and Harrold [233].

Directed Graph: A directed graph is defined as a tuple of two sets V and E.
V formally represents the set of vertices. In a software program P , the ver-
tices are nodes representing syntactical elements. Allen [8] introduces nodes
as blocks of a program. However, we do not want to restrict nodes to blocks.
Instead, we consider nodes to be any syntactical element in a program. That
is, nodes may represent classes, body declarations, blocks, statements, or even
expressions. E is defined by Allen as the set of edges that connects two nodes.
Consequently, in a program with |V | nodes, an edge e is a tuple of nodes ni and
nj (i, j ≤ |V | ∈ N). More formally, it is E =

{
ek = (ni, nj) | 1 ≤ k ≤ |V |2

}
. ni

represents the start node, nj is the target node. Therefore, Allen calls nj the
immediate successor of ni. Conversely, he calls ni the immediate predecessor
of nj .

A software program always has one or several starting points. This kind of
node in the control flow graph is called entry node. It has no predecessor node.
Likewise, a program has one or several end points. The corresponding nodes

2.5. ABSTRACT SYNTAX TREE 21

are called exit nodes. Allen [8] denotes a control flow graph as connected if all
nodes can be reached via at least one edge.

A directed graph G = (V,E) can be divided into subgraphs G′ = (V ′, E′)
with V ′ ⊆ V and E′ ⊆ E. Each subgraph defines a path whose nodes n′ ∈ V ′

and whose edges e′ ∈ E′. The path is expressed as sequence of immediate
successors.

Modeling Programs as Control Flow Graphs via Directed Graphs:
“A control flow graph is a directed graph” [8, page 2]. Therefore, it uniquely
represents all nodes and edges of a program. Its paths describe in which order
nodes can be traversed by a program. By instrumenting the program code, it is
possible to record for each test t which edges it traverses [233]. Rothermel and
Harrold denote these data as edge trace for t [233, page 176]. More information
is also available in the Appendix A.3.

Let C be the control flow graph of a program version P . Every single
modification in the source code of a program, that is new code, modified code or
removed code, is reflected by the control flow graph and results in a new control
flow graph C ′. So both program versions are represented unambiguously by
their corresponding CFGs. Depending on the modifications made in the original
program P , the new graph C ′ differs from C in new, changed, or removed nodes
and/or in new, changed, or removed edges connecting these nodes. Naturally,
the new control flow graph C ′ shows partially different control flow paths.
Rothermel and Harrold recognize changes with the aid of execution traces [233,
page 178]: When executing a test case t on P and on P ′, all the traversed
statements form execution traces ET (P (t)) and ET (P ′(t)), respectively. If
these execution traces do not coincide in their nodes and their edges, the CFGs
of P and P ′ differ. Consequently, P ′ has been modified and thus, t reveals a
modification. Rothermel and Harrold denote t as modification-traversing for
P and P ′ [233, page 178]. This makes obvious that execution traces play an
important role in the detection of new, modified, or removed code.

2.5 Abstract Syntax Tree

Basically, all the terms and definitions of tree structures apply to abstract
syntax trees (AST) as well. For this reason, we summarize the most important
ones and continue with syntax specific details. More details can be found for
example in the book of Knuth [167], that served as basis for the summary in
the next paragraph.

Structure of a Tree, Basic Terms and Definitions: An abstract syntax
tree represents source code in a tree. The tree consists of nodes and edges and
has always a root node. Each node may have zero, one or several child nodes.
Child nodes that have the same parent node are called siblings. Each child
node c1, . . . , cm of a root node r can be considered as a subtree T1, . . . , Tm. The

22 CHAPTER 2. BASICS OF REGRESSION TESTING

Type
Declaration

Modifier SuperClass
Type

SuperInterface
Type

Body
Declaration

Function
Declaration

Global
Variable

Type
Declaration

Figure 2.2: Excerpt of a tree representing a class.

root nodes of the subtrees are c1, . . . , cm. If a node has no child node, it is
called leaf. Nodes are connected with other nodes via edges. They describe
which nodes can be reached by other nodes. Let r be the root node and let |ln|
be the count of parent nodes that have to be traversed to reach the root node r
starting from n. Knuth calls this value the level of a node in a tree. Thus, the
level lr of r is 0. Other authors rather use the term depth of a node instead of
level. For example, Battista et al. [27] defines the depth of a node n as “the
number of edges of the path” [27, page 43] of V that have to be traversed to
reach n when starting from r.

Syntax specific details – Level of nodes in an AST: The root node of
a tree is the most coarse-grained representation of the source code. Each child
node provides more information about syntactical components of the parent
node. Consequently, leaves provide the most detailed information of the source
code. In class-based programming languages for example, a node representing
a class may have a child node that represents the class modifier (in order to
declare the visibility), a child node that represents potential super-classes or
-interfaces and a child node that represents body declarations (see Figure 2.2).
Body declarations may have global variables, functions, or other type declara-
tions as children.

The source code of most programming languages can be represented by an
abstract syntax tree. The underlying procedure is well-known (e.g. [256]). In
order to obtain such an AST, a lexer identifies programming language specific
tokens. Afterwards, a parser maps the tokens to syntactical elements of the
programming language (as for example body declarations) and creates an AST.
There are many tools available that create ASTs, such as the Eclipse Java De-
velopment Tools (JDT) [62, 69] or the Eclipse PHP Development Tools (PDT)
[63, 68]. The information provided by an AST can be used to create a control
flow graph.

2.6. FAULT LOCALIZATION VS. CHANGE IMPACT ANALYSIS 23

In case of the programming language Java, a .java file in the file system
corresponds to a CompilationUnit in the Eclipse AST, which in turn could be
a Java class, interface, enum, or an annotation declaration (for JavaDoc) [65].

2.6 Fault Localization vs. Change Impact Analysis

Many authors have done research on change impact analysis (e.g. [14], [214],
[224], [242], [293]). According to Ren et al. [224], change impact analysis

“[. . .] consists of a collection of techniques for determining the ef-
fects of source code modifications, and can improve programmer
productivity by: (i) allowing programmers to experiment with dif-
ferent edits, observe the code fragments that they affect, and use
this information to determine which edit to select and/or how to
augment test suites, (ii) reducing the amount of time and effort
needed in running regression tests, by determining that some tests
are guaranteed not to be affected by a given set of changes, and
(iii) reducing the amount of time and effort spent in debugging, by
determining a safe approximation of the changes responsible for a
given test’s failure [. . .].” [224, page 432]

In contrast, according to Yu et al. [292], the main concern of fault localiza-
tion is to

“direct developer attention to likely faulty locations, and thus, re-
duce the expense of the search.” [292, page 201]

In the literature, there exists lots of work on fault localization. Wong et al.
have defined eight categories of fault localization techniques in their review
[285], namely “slice-based, spectrum-based, statistics-based, program state-
based, machine learning-based, data mining-based, model-based and miscella-
neous techniques” [285, page 710]. At first sight, slice-based techniques could
be interesting as they are usable for test selection, too. But as already ex-
plained in Section 2.2, slicing techniques are not safe and therefore, we have
decided to refrain from using this kind of technique to do the regression test
selection. Applying a slicing technique to solve the fault localization prob-
lem (see Section 1.2.2) would involve an additional analysis which causes extra
overhead (see also Section A.2 in the Appendix, Paragraph “Program Slic-
ing”, Paragraph “Backward Static Slices and Forward Static Slices”, and Para-
graph “Dynamic Slicing” for more information about slicing). For this reason,
we localize faults solely using information that can be obtained from our graph
walk technique. This ensures that the overhead to perform the fault localiza-
tion is negligible. Having regard to these deliberations, our approach to localize
faults seems either to belong to the model-based technique or to the miscella-
neous techniques in the categorization of Wong et al. [285]. The authors give
no strict definition, but as we use a graph to model two versions of a program

24 CHAPTER 2. BASICS OF REGRESSION TESTING

that are checked for differences, we would rate our fault localization approach
among the model-based techniques. Among the other techniques mentioned
above, spectrum-based approaches could be used to enhance our own technique
with little effort. More details follow in Section 4.2 and in Section 8.2.

In our research, we only address fault localization. Nevertheless, as change
impact analysis can be used to localize faults, we also mention related work on
this topic (see Section 4.2).

2.7 Test Case Creation

Basically, our approach to deal with fault localization, test effort reduction,
and coverage identification is independent from a concrete test tool. Every
test tool is fine as long as it is able to run a test case in the respective target
language. Whether the test cases are generated automatically or manually does
not matter for us as we do not investigate the time for generating test cases.

To ensure the correctness of software, different software testing methods
have been introduced. We summarize the methods that are the most important
for our research:

Unit Tests: As long as we want to check the correctness of single functions,
unit tests are suitable. Examples are representatives of the family of XUnit
frameworks (e.g. [85]) such as CppUnit [88] (C/C++), NUnit [205] (C#,
including support for Xamarin), csUnit [10] (C#, C++ and others), JUnit
[160], TestNG [273] (both Java), PHPUnit [249] (PHP), UnitJS [271] (test-
ing client side JavaScript functions), and many more. See also Section A.2 in
the Appendix, Paragraph “Unit Test”.

Capture/Replay: In order to ensure that the user interface behaves as ex-
pected, researchers have focused specifically on capture and replay. It is an easy
way to create UI/web tests. These tests can be used for both system testing
and acceptance testing (see also Section A.2 in the Appendix, Paragraph “Ac-
ceptance Test” and Paragraph “System Testing”). As already mentioned in
Section 1.1, TestComplete [258] is a suitable testing tool for both desktop,
web, and mobile applications. Besides, there also exist special approaches such
as the one presented by Joshi and Orso [158]. It enables the user to capture spe-
cific subsystems in order to reduce the amount of data that has to be processed
during program execution.

When focusing on pure web applications, Selenium [252], HTMLUnit
[89], Sahi [244], or Watir [282] are convenient. Especially Sahi seems to
be superior according to the feature matrix published by the maintainers [243].
The tool Mugshot [189] overcomes problems with capturing non-deterministic
events. To the same effect like Sahi, this might be an alternative to Selenium.
Nevertheless, we follow the recommendation made by Google in the context of
GWT [34] and use Selenium for our web tests.

Chapter 3

Basics of Transcompilation

We already introduced transcompilation as process that compiles the source
code from one programming language into another programming language
(see Introduction, Chapter 1). In this chapter, we will have a closer look at
transcompilers. In the first Section 3.1, we define some basic terms concerning
the input and the output of a transcompiler. Additionally, we compare differ-
ent output styles. Afterwards, we discuss typical code optimizations that are
often performed by transcompilers. Then, we talk about the meaning of the
term cross-platform application. At the end of Section 3.1, we consider source
maps as an approach to debug transcompiled applications.

In Section 3.2, we investigate transcompilers which we use in our evalua-
tions. We summarize several properties and outline peculiarities like the basic
structure of an application or the requirements that have to be met in order to
create specific versions for different platforms.

3.1 Transcompilers

Basics: A transcompiler, also known as source-to-source translator (e.g. [6,
page 3]) or source-to-source compiler, always takes source code (usually writ-
ten by a developer) in a programming language A as input. We refer to this
language as the source (programming) language1 like others before (e.g. [6]).
The output of the transcompiler is always source code in one or several lan-
guages Bi (i ∈ N). Analogously, we call these languages target (programming)
languages2. Aho et al. and we refer to the resulting code as target code [6,
page 9] for easy distinction. The arising application is called target application
or – in the book of Aho et al. [6] – “target program” [6, page 2]. Accordingly,
transcompiled applications (also known as source-to-source compiled applica-
tions) are written in a specific source programming language in the first place
before a transcompiler compiles the source code in another target language to
meet special requirements.

1 Aho et al. [6] just use the term “source language” [6, page 1] without emphasizing
programming languages in particular.

2Accordingly, Aho et al. [6] simply talk about a “target language” [6, page 1].

25

26 CHAPTER 3. BASICS OF TRANSCOMPILATION

1 private void addStock() {
2 final String symbol = newSymbolTextBox.getText().toUpperCase().trim

();
3 newSymbolTextBox.setFocus(true);
4 if (!symbol.matches("ˆ[0−9a−zA−Z\\.]{1,10}$")) {
5 Window.alert("’" + symbol + "’ is not a valid symbol.");
6 newSymbolTextBox.selectAll();
7 return;
8 }
9 newSymbolTextBox.setText("");

10 if (stocks.contains(symbol))
11 return;
12 int row = stocksFlexTable.getRowCount();
13 stocks.add(symbol);
14 stocksFlexTable.setText(row, 0, symbol);
15 stocksFlexTable.setWidget(row, 2, new Label());
16 stocksFlexTable.getCellFormatter().addStyleName(row, 1, "

watchListNumericColumn");
17 stocksFlexTable.getCellFormatter().addStyleName(row, 2, "

watchListNumericColumn");
18 stocksFlexTable.getCellFormatter().addStyleName(row, 3, "

watchListRemoveColumn");
19 Button removeStockButton = new Button("x");
20 removeStockButton.addStyleDependentName("remove");
21 removeStockButton.addClickHandler(new ClickHandler() {
22 public void onClick(ClickEvent event) {
23 int removedIndex = stocks.indexOf(symbol);
24 stocks.remove(removedIndex);
25 stocksFlexTable.removeRow(removedIndex + 1);
26 }
27 });
28 stocksFlexTable.setWidget(row, 3, removeStockButton);
29 refreshWatchList();
30 }

Figure 3.1: Code excerpt taken from Stockwatcher [100].

When transcompiling source code, the code of a target application may
look completely different depending on the settings of the transcompiler. Many
transcompilers allow to obfuscate the code of the target language (see for ex-
ample the GWT compiler [112]). That is, the source code is not human read-
able any more for business secret protection reasons. The other extreme is
to add additional information to the standard, non-obfuscated transcompiler
output about the source code (e.g. verbose variable names in case of GWT
[112]). Figure 3.2, Figure 3.3, and Figure 3.4 show all three possible variants
of transcompiled results when compiling a piece of Java code into JavaScript
using the GWT compiler. Figure 3.1 depicts the excerpt of the original Java
code. The code uses both standard Java- and GWT-APIs and it is taken from a
small AJAX-based example web application called Stockwatcher [100] that
is contained in the GWT tutorials. It allows users to add new stocks and to

3.1. TRANSCOMPILERS 27

1 function qk(a){
2 var b,c,d;
3 d=Fp(Eb(Ml(a.e),Ut).
4 toUpperCase());
5 xm(a.e);
6 if(!(new RegExp(’ˆ(ˆ[0−9a−zA−Z\\\\.]{1,10}$)$’)).test(d)){
7 $wnd.alert(\"’\"+d+\"’ is not a valid symbol.\ ");
8 Rn(a.e);
9 return

10 }
11 Tn(a.e);
12 if(kr(a.f,d,0)!=−1)
13 return;
14 c=Nm(a.g);
15 ir(a.f,d);
16 Wm(a.g,c,0,d);
17 Xm(a.g,c,2,new En);
18 bn(a.g.b,c,1,Vt);
19 bn(a.g.b,c,2,Vt);
20 bn(a.g.b,c,3,Wt);
21 b=new Bm(’x’);
22 Pl(b,Rl((Ok(),b.n))+’−’+’remove’);
23 Ul(b,new Gk(a,d),(mc(),mc(),lc));
24 Xm(a.g,c,3,b);sk(a)
25 }

Figure 3.2: Transcompiled code: OBFUSCATED variant.

display them on the screen. For each stock, the application generates an ini-
tial random prize that changes in predefined time intervals. Dependent on the
change delta, the change rate is colored green or red, indicating a rise or a
decline, respectively.

The OBFUSCATED variant in Figure 3.2 corresponds to the standard out-
put of the GWT compiler [112]. We have added line breaks to make it more
readable, but it has almost no resemblance with the original code written in
the source language (see Figure 3.1). Only the existence of some Strings (e.g.
line 7, is not a valid symbol) that appear only once in the whole Stock-
watcher application has enabled us to identify the function qk as pendant
to the original addStock-method in Figure 3.1. If we are interested in read-
able code, passing the PRETTY-style flag to the compiler results in code that
is comparable to the original code (see Figure 3.3). Finally, the DETAILED-
style flag results in verbose target code (see Figure 3.4) whose functions and
types consist of globally qualified names. Examples are java_lang_String or
com_google_gwt_sample_stockwatcher_client_StockWatcher_

newSymbolTextBox.

Code Optimization: Often, transcompilers (such as the GWT compiler
[181] or the Haxe compiler [128]) do not just transfer a source language into a

28 CHAPTER 3. BASICS OF TRANSCOMPILATION

1 function $addStock(this$static){
2 var removeStockButton, row, symbol;
3 symbol = $trim($getPropertyString($getElement(this$static.
4 newSymbolTextBox), ’value’).toUpperCase());
5 $setFocus(this$static.newSymbolTextBox);
6 if (!(new RegExp(’ˆ(ˆ[0−9a−zA−Z\\.]{1,10}$)$’)).test(symbol)) {
7 $wnd.alert("’" + symbol + "’ is not a valid symbol.");
8 $selectAll(this$static.newSymbolTextBox);
9 return;

10 }
11 $setText 1(this$static.newSymbolTextBox);
12 if ($indexOf 2(this$static.stocks, symbol, 0) != −1)
13 return;
14 row = $getDOMRowCount(this$static.stocksFlexTable);
15 $add 4(this$static.stocks, symbol);
16 $setText(this$static.stocksFlexTable, row, 0, symbol);
17 $setWidget(this$static.stocksFlexTable, row, 2, new Label);
18 $addStyleName(this$static.stocksFlexTable.cellFormatter, row, 1,
19 ’watchListNumericColumn’);
20 $addStyleName(this$static.stocksFlexTable.cellFormatter, row, 2,
21 ’watchListNumericColumn’);
22 $addStyleName(this$static.stocksFlexTable.cellFormatter, row, 3,
23 ’watchListRemoveColumn’);
24 removeStockButton = new Button(’x’);
25 $setStyleName(removeStockButton,
26 getStylePrimaryName(($clinit DOM(),
27 removeStockButton.element)) + ’−’ + ’remove’);
28 $addDomHandler(removeStockButton, new StockWatcher$4(
29 this$static, symbol), ($clinit ClickEvent() ,
30 $clinit ClickEvent() , TYPE));
31 $setWidget(this$static.stocksFlexTable, row, 3, removeStockButton);
32 $refreshWatchList(this$static);
33 }

Figure 3.3: Transcompiled code: PRETTY variant.

target language. Instead, they analyze the source code language and optimize
it. Some compilers (e.g. the GWT compiler [181]) even perform multiple op-
timization steps. The first optimization can start even before a single line of
the source code has been transcompiled in the target programming language.
Typical tasks that might be performed by a transcompiler (e.g. the GWT
compiler [181]) might include unreachable code elimination, dead code elimina-
tion, function inlining, or constant folding and constant propagation. After the
transcompilation, there is often potential to improve the target code further.
So, a second round of optimization might start in order to do similar code
changes as in the first optimization phase. To have a common understanding
of the optimizations listed above, we explain them in more detail. We follow
in our explanations Muchnick. More details can be found in his book [201].

Unreachable code elimination: During the compilation process, the compiler
ignores code that can never be traversed.

3.1. TRANSCOMPILERS 29

1
f
u
n
c
t
i
o
n

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
$
a
d
d
S
t
o
c
k

L
c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
2
V
(
t
h
i
s
$
s
t
a
t
i
c
)
{

2
v
a
r
r
e
m
o
v
e
S
t
o
c
k
B
u
t
t
o
n
,

r
o
w
,

s
y
m
b
o
l
;

3
s
y
m
b
o
l

=
j
a
v
a
l
a
n
g
S
t
r
i
n
g
$
t
r
i
m

L
j
a
v
a
l
a
n
g
S
t
r
i
n
g
2
L
j
a
v
a
l
a
n
g
S
t
r
i
n
g
2
(

c
o
m
g
o
o
g
l
e
g
w
t
d
o
m
c
l
i
e
n
t
E
l
e
m
e
n
t
$
g
e
t
P
r
o
p
e
r
t
y
S
t
r
i
n
g

L
c
o
m
g
o
o
g
l
e
g
w
t
d
o
m
c
l
i
e
n
t
E
l
e
m
e
n
t
2
L
j
a
v
a
l
a
n
g
S
t
r
i
n
g
2
L
j
a
v
a
l
a
n
g
S
t
r
i
n
g
2
(

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
U
I
O
b
j
e
c
t
$
g
e
t
E
l
e
m
e
n
t

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
U
I
O
b
j
e
c
t
2
L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
E
l
e
m
e
n
t
2
(
t
h
i
s
$
s
t
a
t
i
c
.

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
n
e
w
S
y
m
b
o
l
T
e
x
t
B
o
x
)
,

$
i
n
t
e
r
n
2
7
)
.
t
o
U
p
p
e
r
C
a
s
e
(
)
)
;

4
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
F
o
c
u
s
W
i
d
g
e
t
$
s
e
t
F
o
c
u
s

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
F
o
c
u
s
W
i
d
g
e
t
2
Z
V
(
t
h
i
s
$
s
t
a
t
i
c
.

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
n
e
w
S
y
m
b
o
l
T
e
x
t
B
o
x
)
;

5
i
f
(
!
(
n
e
w
R
e
g
E
x
p
(
’
ˆ
(
ˆ
[
0−

9
a−
z
A−

Z
\\

.
]
{1
,
1
0
}$

)
$
’
)
)
.
t
e
s
t
(
s
y
m
b
o
l
)
)
{

6
$
w
n
d
.
a
l
e
r
t
(
"
’
"

+
s
y
m
b
o
l

+
"
’

i
s

n
o
t

a
v
a
l
i
d

s
y
m
b
o
l
.
"
)
;

7
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
V
a
l
u
e
B
o
x
B
a
s
e
$
s
e
l
e
c
t
A
l
l

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
V
a
l
u
e
B
o
x
B
a
s
e
2
V
(
t
h
i
s
$
s
t
a
t
i
c
.

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
n
e
w
S
y
m
b
o
l
T
e
x
t
B
o
x
)
;

8
r
e
t
u
r
n
;

9
}

1
0

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
V
a
l
u
e
B
o
x
B
a
s
e
$
s
e
t
T
e
x
t

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
V
a
l
u
e
B
o
x
B
a
s
e
2
L
j
a
v
a
l
a
n
g
S
t
r
i
n
g
2
V
(
t
h
i
s
$
s
t
a
t
i
c
.

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
n
e
w
S
y
m
b
o
l
T
e
x
t
B
o
x
)
;

1
1

i
f
(
j
a
v
a
u
t
i
l
A
r
r
a
y
L
i
s
t
$
i
n
d
e
x
O
f

L
j
a
v
a
u
t
i
l
A
r
r
a
y
L
i
s
t
2
L
j
a
v
a
l
a
n
g
O
b
j
e
c
t
2
I
I
(
t
h
i
s
$
s
t
a
t
i
c
.
c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
s
t
o
c
k
s
,

s
y
m
b
o
l
,

0
)

!
=
−
1
)

1
2

r
e
t
u
r
n
;

1
3

r
o
w

=
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
$
g
e
t
D
O
M
R
o
w
C
o
u
n
t

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
2
I
(
t
h
i
s
$
s
t
a
t
i
c
.

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
s
t
o
c
k
s
F
l
e
x
T
a
b
l
e
)
;

1
4

j
a
v
a
u
t
i
l
A
r
r
a
y
L
i
s
t
$
a
d
d

L
j
a
v
a
u
t
i
l
A
r
r
a
y
L
i
s
t
2
L
j
a
v
a
l
a
n
g
O
b
j
e
c
t
2
Z
(
t
h
i
s
$
s
t
a
t
i
c
.
c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
s
t
o
c
k
s
,

s
y
m
b
o
l
)
;

1
5

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
$
s
e
t
T
e
x
t

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
2
I
I
L
j
a
v
a
l
a
n
g
S
t
r
i
n
g
2
V
(
t
h
i
s
$
s
t
a
t
i
c
.

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
s
t
o
c
k
s
F
l
e
x
T
a
b
l
e
,

r
o
w
,

0
,

s
y
m
b
o
l
)
;

1
6

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
$
s
e
t
W
i
d
g
e
t

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
2
I
I
L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
W
i
d
g
e
t
2
V
(
t
h
i
s
$
s
t
a
t
i
c
.

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
s
t
o
c
k
s
F
l
e
x
T
a
b
l
e
,

r
o
w
,

2
,
n
e
w

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
L
a
b
e
l
L
a
b
e
l

V
)
;

1
7

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
$
C
e
l
l
F
o
r
m
a
t
t
e
r
$
a
d
d
S
t
y
l
e
N
a
m
e

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
$
C
e
l
l
F
o
r
m
a
t
t
e
r
2
I
I
L
j
a
v
a
l
a
n
g
S
t
r
i
n
g
2
V
(
t
h
i
s
$
s
t
a
t
i
c
.

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
s
t
o
c
k
s
F
l
e
x
T
a
b
l
e
.
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
c
e
l
l
F
o
r
m
a
t
t
e
r
,

r
o
w
,

1
,

$
i
n
t
e
r
n
2
8
)
;

1
8

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
$
C
e
l
l
F
o
r
m
a
t
t
e
r
$
a
d
d
S
t
y
l
e
N
a
m
e

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
$
C
e
l
l
F
o
r
m
a
t
t
e
r
2
I
I
L
j
a
v
a
l
a
n
g
S
t
r
i
n
g
2
V
(
t
h
i
s
$
s
t
a
t
i
c
.

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
s
t
o
c
k
s
F
l
e
x
T
a
b
l
e
.
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
c
e
l
l
F
o
r
m
a
t
t
e
r
,

r
o
w
,

2
,

$
i
n
t
e
r
n
2
8
)
;

1
9

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
$
C
e
l
l
F
o
r
m
a
t
t
e
r
$
a
d
d
S
t
y
l
e
N
a
m
e

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
$
C
e
l
l
F
o
r
m
a
t
t
e
r
2
I
I
L
j
a
v
a
l
a
n
g
S
t
r
i
n
g
2
V
(
t
h
i
s
$
s
t
a
t
i
c
.

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
s
t
o
c
k
s
F
l
e
x
T
a
b
l
e
.
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
c
e
l
l
F
o
r
m
a
t
t
e
r
,

r
o
w
,

3
,

$
i
n
t
e
r
n
2
9
)
;

2
0

r
e
m
o
v
e
S
t
o
c
k
B
u
t
t
o
n

=
n
e
w

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
B
u
t
t
o
n
B
u
t
t
o
n

L
j
a
v
a
l
a
n
g
S
t
r
i
n
g
2
V
(
’
x
’
)
;

2
1

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
U
I
O
b
j
e
c
t
$
s
e
t
S
t
y
l
e
N
a
m
e

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
U
I
O
b
j
e
c
t
2
L
j
a
v
a
l
a
n
g
S
t
r
i
n
g
2
Z
V
(
r
e
m
o
v
e
S
t
o
c
k
B
u
t
t
o
n
,

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
U
I
O
b
j
e
c
t
g
e
t
S
t
y
l
e
P
r
i
m
a
r
y
N
a
m
e

L
c
o
m
g
o
o
g
l
e
g
w
t
d
o
m
c
l
i
e
n
t
E
l
e
m
e
n
t
2
L
j
a
v
a
l
a
n
g
S
t
r
i
n
g
2
(
(
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
D
O
M
$
c
l
i
n
i
t

V
(
)

,
r
e
m
o
v
e
S
t
o
c
k
B
u
t
t
o
n
.
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
U
I
O
b
j
e
c
t
e
l
e
m
e
n
t
)
)

+
’−

’
+

’
r
e
m
o
v
e
’
)
;

2
2

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
W
i
d
g
e
t
$
a
d
d
D
o
m
H
a
n
d
l
e
r

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
W
i
d
g
e
t
2
L
c
o
m
g
o
o
g
l
e
g
w
t
e
v
e
n
t
s
h
a
r
e
d
E
v
e
n
t
H
a
n
d
l
e
r
2
L
c
o
m
g
o
o
g
l
e
g
w
t
e
v
e
n
t
d
o
m
c
l
i
e
n
t

D
o
m
E
v
e
n
t
$
T
y
p
e
2
L
c
o
m
g
o
o
g
l
e
g
w
t
e
v
e
n
t
s
h
a
r
e
d
H
a
n
d
l
e
r
R
e
g
i
s
t
r
a
t
i
o
n
2
(
r
e
m
o
v
e
S
t
o
c
k
B
u
t
t
o
n
,
n
e
w

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
$
4
S
t
o
c
k
W
a
t
c
h
e
r
$
4

L
c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
2
V
(
t
h
i
s
$
s
t
a
t
i
c
,

s
y
m
b
o
l
)
,

(
c
o
m
g
o
o
g
l
e
g
w
t
e
v
e
n
t
d
o
m
c
l
i
e
n
t
C
l
i
c
k
E
v
e
n
t
$
c
l
i
n
i
t

V
(
)

,
c
o
m
g
o
o
g
l
e
g
w
t
e
v
e
n
t
d
o
m
c
l
i
e
n
t
C
l
i
c
k
E
v
e
n
t
$
c
l
i
n
i
t

V
(
)

,
c
o
m
g
o
o
g
l
e
g
w
t
e
v
e
n
t
d
o
m
c
l
i
e
n
t
C
l
i
c
k
E
v
e
n
t
T
Y
P
E
)
)
;

2
3

c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
$
s
e
t
W
i
d
g
e
t

L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
H
T
M
L
T
a
b
l
e
2
I
I
L
c
o
m
g
o
o
g
l
e
g
w
t
u
s
e
r
c
l
i
e
n
t
u
i
W
i
d
g
e
t
2
V
(
t
h
i
s
$
s
t
a
t
i
c
.

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
s
t
o
c
k
s
F
l
e
x
T
a
b
l
e
,

r
o
w
,

3
,

r
e
m
o
v
e
S
t
o
c
k
B
u
t
t
o
n
)
;

2
4

c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
$
r
e
f
r
e
s
h
W
a
t
c
h
L
i
s
t

L
c
o
m
g
o
o
g
l
e
g
w
t
s
a
m
p
l
e
s
t
o
c
k
w
a
t
c
h
e
r
c
l
i
e
n
t
S
t
o
c
k
W
a
t
c
h
e
r
2
V
(
t
h
i
s
$
s
t
a
t
i
c
)
;

2
5
}

F
ig

u
re

3.
4:

T
ra

n
sc

om
p

il
ed

co
d

e:
D
E
T
A
I
L
E
D

va
ri

an
t.

30 CHAPTER 3. BASICS OF TRANSCOMPILATION

Dead code elimination: Unused variables and instructions whose resulting
values are never used again are called dead. Basically, dead code might have
been introduced by the developer. But it can also be a result of previous
code optimizations. A major advantage of dead code elimination in our special
context is that the compiler has to transcompile less code and that the target
code requires less memory.

Function inlining, also known as procedure integration, substitutes a func-
tion call by the body of the called function. Muchnick especially emphasize
the benefit of being able to do further optimizations within the calling function
and to avoid aliasing of variables.

Constant folding: Whenever an expression represents a calculation that
consists of fixed operands, the compiler can evaluate the expression in order to
replace it by its resulting value.

Constant folding is beneficial because it is known from compiler theory for a
long time (see for example the book of Aho et al. [5]) that the operands usually
would be pushed onto a stack and afterwards evaluated. If the result is required
for further calculations, it will be pushed onto the stack again. Compared to
the optimization, pushing and pulling operands onto/from the stack takes more
time especially when the operation is performed several times.

Constant propagation is the natural continuation of constant folding. The
idea is to substitute variables by their values provided that these values are
known to be constant by definition or that they have been obtained by previ-
ously performed constant folding.

Sometimes, the user does not want all the optimization features as a whole.
In order to leave more freedom, transcompilers often offer flags to control the
code optimization level [108]. GWT even offers to turn it completely off (level 0)
[108]. Other transcompilers like Haxe also offer similar settings (no-opt to
disable optimizations) [128, 129].

Cross-Platform Applications: According to the Sun Microsystems [268],
the term cross-platform application describes the possibility to run an applica-
tion on different platforms.

In the area of desktop applications, we might think of Linux, Mac OS, or
Windows. Applications written for one of these operating systems can never
be executed on one of the other systems directly. If we want an application
to run on more than one (target) platform, one possibility is to re-implement
it separately. In fact, there are many examples of applications that are imple-
mented for different operating systems individually. We would like to point the
reader for example to Microsoft Office that is available for both Mac OS
and Windows as different applications.

There exist well-established alternatives to maintaining different code bases.
A famous example is Java that compiles source code into bytecode. Provided
that a version of the Java Virtual Machine is installed on the target operating
system, the application can be executed.

3.2. BASICS ON TRANSCOMPILERS USED TO INVESTIGATE OUR
CONTRIBUTIONS 31

Another alternative is a web application. Here, the web browser takes on
the same role as the Java Virtual Machine to run the desired application on any
platform. In practice however, it happens to be more complicated as browsers
sometimes differ in supported features and their way to display contents.

Finally, the third alternative is based on transcompilers. It depends solely
on the transcompiler which platforms are supported. The application in the
target language might run in a completely different environment. That is,
the application could be provided for example as web application that runs
in a browser, as a mobile application, or as desktop application. This skill
demarcates transcompilers from common compilers that do not support other
platforms at all. Their intend is for example to do code optimizations or code
obfuscation. An example for a compiler that optimizes code is Google’s Closure
Compiler [110].

Source Maps: Source Maps are a possibility to debug transcompiled code.
As per the general source map standard [175], Mozilla’s Source Map Library
[199], and an article of Fitzgerald and Nyman3 [83], a source map contains
mapping data to display the counterpart of a transcompiled piece of target code
in the original source code. To do that, the transcompiler collects information
about the source code while parsing the source files. Elements of interest are
the name of original source file and the location of the source code within this
file (usually the line number and the column). All these information will be
persisted in a separate *map file. Examples of such files can be found in the
Appendix B, Figure B.1 and Figure B.2.

Please note that source maps are no solution to the test effort reduction
problem (see Section 1.2.1). Initially, source maps are designed to be used in a
running program to display the source code that corresponds to the currently
executed target code. But the pure mapping does not provide any information
about the relevance of tests for re-execution. Besides, we never want to rerun
the entire test suite T on the current program version P ′. When considering a
previous version P , it is obvious that the test suite T will pass. Otherwise, P
would never have been successfully built and deployed. Finally, we can neither
conclude from the source map of P nor from the source map of P ′ which test
runs which parts of the application, although this is essential for all categories of
regression testing techniques. So as we can see, source maps are only suitable for
code debugging, but not to do regression testing. Nevertheless, we will use parts
of their implementation as an aid to solve the test effort reduction problem.

3.2 Basics on Transcompilers Used to Investigate
our Contributions

As we will show in the following chapters, our contributions are independent
of special transcompilers. However, in order to investigate our approach, its

3Fitzgerald is one of the source map standard contributors.

32 CHAPTER 3. BASICS OF TRANSCOMPILATION

ability to reduce a test suite and the overall performance, we have selected
several test applications. Here, we focus on GWT-based web applications for
two reasons: First, the GWT compiler is open source and can easily be adapted
according to our needs. Second, there are several small-, mid- and large-scale
GWT-based web applications available that can be used to investigate our
approach. Especially large applications help us to judge the performance of
our approach.

Nevertheless, we also discuss our approach in the context of Codename
One’s transcompiler that is able to create mobile apps for all major mobile
platforms. This way, we make clear that our approach also works for these use
cases. In the introduction, we also mentioned Haxe and Xamarin as examples
that use a transcompiler. However, our approach is currently implemented for
applications written in Java. For this reason, we will neither investigate Haxe-
based applications nor applications implemented with Xamarin as they require
code written in Haxe and C#, respectively. But in general, our approach
could also be used for these kinds of application. We will discuss this later in
Section 4.9. In order to understand the features of GWT and Codename One
better, we will have a closer look at the two transcompilers in the following
paragraphs.

Google Web Toolkit: In order to join the advantages of web applications
(see Chapter 1) and the advantages known from statically typed languages,
Google has developed the Google Web Toolkit [98] as an in-between framework
for creating AJAX-based web applications. It resembles the JavaServer Faces
framework [209] in the sense that it distinguishes between client-side and server-
side code, but unlike Java ServerFaces, both server- and client-side code is
written in Java as strongly typed language with a mature debugging system.
As a result, this eases the programming and testing process [34, 101, 104].
The server-side code is compiled into Java bytecode as usual. But the client-
side code is transformed into JavaScript using a Java-to-JavaScript compiler
(GWT compiler) [95] which uses directly the Java source code to perform its
task. Bytecode is never considered [33, 35]. Code which is shared among server
and client will be compiled in either version. Within the client-side code, GWT
explicitly allows developers to write native JavaScript code within Java code.
Up to now, this is done with the aid of the JavaScript Native Interface [97].
In the latest GWT release, a new concept has been introduced which is called
JsInterop [94].

The GWT compiler creates several versions of the web application. The
versions are called permutations [102]. Each permutation is tailored for a spe-
cific browser and even addresses the peculiarities and possible known bugs of
the different browser versions. By default, the code of the whole application is
written in a single file per permutation. Of course, this may lead to function
name clashes when a method with the same name has been defined in several
Java classes. In the same sense, variables might be shadowed or overridden.
During the transcompilation process, the GWT compiler has to take care about

3.2. BASICS ON TRANSCOMPILERS USED TO INVESTIGATE OUR
CONTRIBUTIONS 33

those potentially emerging issues. Basically, the GWT compiler resolves this
with the aid of globally qualified class names.

Apart from the typical optimizations we already mentioned before, the
GWT compiler additionally performs some more language specific tasks. For
example [181], it converts monomorphic calls into static calls, and replaces
super-types or method calls to more specific ones. Moreover, the GWT com-
piler normalizes the Java code. For string and array calls, this means that
trampolines to native JavaScript code are inserted into the source code. As
there are no types in JavaScript, multiple Java catch blocks that differ in their
type argument are transformed to case distinctions using instanceof-checks.
The former catch block remains internally unchanged. Later on, instanceof
checks and specific type casts are replaced by a call to the runtime library.
Further replacements are performed for array operations, equality checks and
getClass(). After transferring the Java code into JavaScript, the GWT com-
piler performs again optimizations and normalizations on the JavaScript code
(e.g. removing unused code, inlining of methods or substituting parameters
with their evaluated constant).

The distinction between client- and server-side code and the special treat-
ment of code used on both client- and server-side is also reflected in the standard
directory and package layout of a web application via accordingly named pack-
ages. This structure is obligatory according to the documentation [113]. There
are many more conventions such as predefined folders (src, test, war). Thus,
GWT is an example of the convention over configuration design paradigm. Be-
sides, the documentation [115] points out that a GWT application has its own
entry point method onModuleLoad which is called when launching the applica-
tion. (In regular Java applications, the entry point is the main method.)

Following the GWT conventions is straightforward when developers use
their favorite integrated development environment (IDE) with a current version
of the GWT plug-in. It also eases testing. GWT comes with special testing
support [34, 101]. It is shipped with an extension of the JUnit test framework
[160] and allows to write GWTTestCases which enable asynchronous testing
with remote procedure calls and testing of native JavaScript code (e.g. widgets,
functions) [101]. To this end, GWT relies on HtmlUnit [89], a browser without
user interface (also called “headless” [34]). However, as soon as user interactions
have to be tested, Selenium [252] tests are recommended to do web testing
[34]. So, we can summarize that GWT makes contributions to programming,
debugging, and testing, but there is no special support for web tests in general
or regression testing in particular. It does not reduce the time exposure for
testing the user interface via UI/web tests.

Apart from facilitating the programming and testing process, debugging is
much simpler as it would be in a traditional web application development. Usu-
ally, developers rely on tools like Firebug [198] to step through the JavaScript
code and to investigate the actual state of the application. JSFiddle [159] can
be used to check and run small JavaScript components. As described in a re-
cent article [109], GWT has introduced with version 2.7 a special mode, called

34 CHAPTER 3. BASICS OF TRANSCOMPILATION

Super Dev Mode. It takes advantage of source maps. This way, the browser’s
internal debugger is able to keep track of most of the underlying Java code
that corresponds to the currently in a browser executed JavaScript code. (An
exception affects Java field names and values. Even with source maps, only
JavaScript variables and values can be displayed to the user [109].) Exemplary
excerpts for source maps generated by GWT can be found in Appendix B in
Figure B.1 and in Figure B.2.

GWT is used in different products by Google itself [50], but also by many
other companies [269]. Moreover, other frameworks for creating web applica-
tions such as Vaadin [279] or Sencha GXT [255] use GWT.

Codename One: Codename One supports many different mobile platforms
[47]. These include Android, Blackberry, iOS, and Windows Phone. Some
platforms have special demands like the presence of platform specific tools.
We might think of applications targeting at iOS. Building these apps requires
a Mac with XCode [47]. So a transcompiler that is just able to transfer the
source code into a target language is not sufficient. For this reason, Codename
One offers their transcompiler as an online service in order to be platform
independent. It first transcompiles the application and afterwards starts a build
for the corresponding target platform. As input, the transcompiler expects Java
bytecode that has to be transmitted as jar file. The output will be the final
application that is ready for deployment. Similar to GWT, Codename One [46]
also provides options to decide whether code should be obfuscated.

Regarding the implementation of an application with Codename One, de-
velopers can use their IDE of choice [48]. In combination with a special plug-in
provided by Codename One [47], developers are able to simulate and debug
their application without prompting Codename One’s build server to do a full
rebuild after every single code change. Besides, the framework [49] supports
unit testing and offers a simple test recorder to check whether the functionality
meets the expectations.

So basically, developers do not repeatedly have to switch the operating
system in order to build the application for multiple platforms. Of course, this
goes hand in hand with the necessity to upload the application’s jar file to
Codename One’s build server each time when a new build is due for deployment.
This may be time consuming depending on the file size. Beyond that, people
might feel uncomfortable loosing control what happens to the bytecode.

Part II

Generic Approach for
Standard and Transcompiled
Cross-Platform Applications

35

Chapter 4

Graph Walk-based Test
Selection

4.1 Introduction

As already explained in Section 2.2 (see Paragraph “Discussing the Approaches”),
Diff-based tools are not well-suited for regression testing and fault-localization
in the context of applications written in object-oriented source programming
languages. We have also explained that among test suite minimization, test case
prioritization, and regression test selection, the latter one is the most promis-
ing to achieve our purposes. However, existing graph walk-based approaches
can not be directly applied to transcompiled cross-platform applications due
to their special characteristics. In general, regression test selection has only
been applied to web tests by a few up to now in order to reduce the test ef-
fort. Especially graph walk-based techniques are barely applied to speed up
the regression test execution in (transcompiled) web applications and to local-
ize faults. This is also reflected in the review of existing techniques for web
application testing of Doǧan et al. [60]. To the best of our knowledge, we are
the first who apply a RTS technique based on a control flow graph (CFG) on
transcompiled cross-platform applications in general and on transcompiled web
applications in particular.

In the next Section 4.2, we present related work that deals with regression
testing, test selection, and fault localization. Our work shows also similarities
to change impact analysis and code instrumentation. So we additionally have
a look at these topics. In Section 4.3, we discuss a graph walk-based test
selection technique proposed by Rothermel and Harrold [233], as well as an
extended version created by Harrold et al. [126]. We point out deficiencies
that prevent a direct usage of the existing approaches in transcompiled cross-
platform applications and we present our own approach that is built on the
previously discussed graph walk-based RTS technique and its extension.

Applying our RTS technique requires a solution for adding or transferring
instrumentation code into the code of the target language. In Section 4.4, we
discuss possible ways of instrumenting source code and emerging challenges.

37

38 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

Based on this, we detail our own requirements and purposes and refine an
existing principle that results in two different ways to add instrumentation
code. The first one is compiler-independent, but requires a preprocessor to
do the code instrumentation. It is the topic of Section 4.5. The second way
is compiler-dependent and instruments the source code on the fly during the
transcompilation. We explain this idea in Section 4.6. The first approach has
been implemented in a prototype tool which we present in Section 4.7. We
have investigated the tool in a first evaluation that is part of Section 4.8. We
continue in Section 4.9 with a discussion of the general applicability of the two
code instrumentation approaches, the effort to support other transcompilers,
the effort to support other programming languages, and the ability to solve
both the test effort reduction problem (see Section 1.2.1) and the fault local-
ization problem (see Section 1.2.2). Finally, we conclude in Section 4.10 which
instrumentation approach is the most convenient for our purposes.

This chapter is partially based on research and findings presented in former
publications [133–136].

4.2 Related Work

Our work touches related topics in several areas. No matter what kind of
application we consider (desktop application, web application, or mobile appli-
cation, transcompiled or not), solving the test effort reduction problem and the
fault localization problem shares the old and well known problem (e.g. [28]) of
identifying changes in the program and the problem of identifying those tests
that are affected by the changes. So first of all, our work is partially based on
formerly presented techniques to do regression testing in standard desktop ap-
plications. Afterwards, we additionally consider regression testing of web appli-
cations. Then, we talk about code analysis. Here, we are especially concerned
with fault localization, but we also present some existing approaches for doing
change impact analysis. Finally, from a technical point of view, our work also
builds on previous work that addresses program tracing in general and code
instrumentation in particular, which is a well-known technique often applied
to get information about program execution or to determine code coverage.

In this section, we try to outline existing contributions in the aforemen-
tioned topics. Of course, it is just an overview as it is impossible to cite all
relevant work in all these topics. Please note that none of these papers solve
the problems described in the contributions of this thesis (see Section 1.2) in
the special context of transcompiled applications.

Regression Test Selection: For non transcompiled, non web applications,
RTS is a well studied topic and many different approaches (e.g. [12, 25, 29,
38, 81, 87, 93, 119, 126, 142, 204, 208, 227–234, 236, 238, 248, 280]) have been
developed to detect changes in the code and to determine all the tests that
have to be re-executed due to these changes. We summarize in this paragraph
the most important ones. For a more extensive overview on regression test

4.2. RELATED WORK 39

selection techniques, we want to refer the reader to existing reviews that have
been conducted by Engström et al. [78], Orso and Rothermel [213], Rothermel
and Harrold [232], or Yoo and Harman [290].

Chen et al. [38] present a safe RTS technique called TestTube. It divides
the source code of an old version P of a C program into entities which corre-
spond to functions, variables, types, and preprocessor macros. Afterwards, it
runs test units to monitor which entities they execute. When dividing a mod-
ified version P ′ in the same way into entities as P before, TestTube is able
to determine which entities have been modified and which test units should be
re-executed. Chen et al. need some preconditions in order to make their tool
work. Due to these preconditions, only languages without pointer arithmetic
and type coercion are suitable.

Rothermel, Harrold and colleagues have published a series of articles with
high impact on regression test selection [126], [227], [228], [229], [230], [231],
[232], [233], [234], [236]. Initially, the approach of Rothermel and Harrold [228]
to do regression test selection has been based on the control dependence graph
(CDG) [228, page 358]. They use one control dependence graph each to repre-
sent the old and the new version of a program. Then, they walk through the
graphs and compare the corresponding nodes. According to the authors, a ma-
jor improvement compared with previous publications is that they are able to
determine all the tests that could be fault-revealing. Furthermore, they state
that their algorithm is more efficient. Later [231], Rothermel and Harrold have
improved their technique with respect to precision. According to them, their
test selection is safe at a smaller number of test cases that should rerun. More-
over, they distinguish intraprocedural and interprocedural regression testing
[231, pages 171f. and 178f.]. The basic difference is that the intraprocedural
variant only considers functions in isolation whereas interprocedural regres-
sion testing considers a program as a whole. For the intraprocedural analysis,
Rothermel and Harrold [231] now apply a program dependence graph (PDG)
[231, pages 171f.] that incorporates, according to Ferrante et al. [81], both data
and control relationships. (A more detailed explanation of the term PDG can
be found in the Appendix A.3, Paragraph “Program Dependence Graph”.) In
contrast, the interprocedural analysis is based on a system dependence graph
(SDG) [231, pages 179f.] which adds some more nodes, but most notably ad-
ditional edges to model the interprocedural data dependencies. (For SDGs,
see Appendix A.3, Paragraph “System Dependence Graph”.) Rothermel and
Harrold [233] have refined the overall technique once more when they switched
to a representation based on control flow graphs. This was due to efficiency
reasons and because it turned out that the implementation of the CFG-based
algorithm is easier. More details on this algorithm follow in Section 4.3.1 as our
own approach is based on it. In comparison with TestTube, Rothermel and
Harrold additionally argue that their technique is more precise. Rothermel and
Harrold’s techniques presented so far focus on the procedural languages C. As
C++ is also very popular, they have extended their approach for this language
[230, 236]. Finally, Harrold et al. [126] have addressed the special demands of
Java. We use some of their adaptations and explain them in Section 4.3.1.

40 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

Ball [25] builds his work upon the RTS technique presented by Rothermel
and Harrold [233] and exploits that on one condition, their algorithm selects
tests for re-execution although the new program version P ′ does not behave
differently from the old program version P . This special condition requires that
a node is visited multiple times. It has already been investigated by Rothermel
and Harrold before. They call this the “multiply-visited-node condition” [233,
page 186]. Thereupon, Ball proposes and defines the intersection graph that is
generated from the CFGs of P and P ′. With this new kind of graph, he defines
three novel algorithms that overcome the detected weakness of the algorithm
presented by Rothermel and Harrold [233]. However, these algorithms imply
greater computation costs. Moreover, Rothermel and Harrold report that a
multiply-visited-node did never occur in their evaluation. As stated by Ball
himself, it is unclear whether the multiply-visited-node condition could occur
in practice when assuming a language like C, C++, or Java. To the best of
our knowledge, he never published a follow-up paper that would show such a
constellation. For these reasons, we do not employ one of the novel algorithms
to create our CFG.

Another work that resembles the approach of Rothermel and Harrold has
been presented by Schumm [248]. In a first step, he measures the test coverage
with CodeCover [44]. It supports statement, branch-, loop-, and modified
condition/decision coverage. Afterwards, the author compares P and P ′ using
a special abstract syntax tree which he calls the “More Abstract Syntax Tree”1

(MAST) [248, page 42]. This way, he can determine changes made in P ′ and
finally, he can select test cases that have to be re-executed. In contrast to
our approach, Schumm uses coverage data (e.g. branch coverage) for deter-
mining test cases that are affected by code changes. As we will see later (see
Section 4.4.3), this solution is not applicable in transcompiled cross-platform
applications. Besides, the MAST is less precise than our approach as it only
represents types, methods, and constructors. Fields or expressions such as con-
ditional expressions remain unconsidered. Likewise, some kinds of blocks such
as try-blocks or as finally-blocks cannot be handled by their AST. Changes
in these blocks are interpreted as changes in the enclosing blocks. Naturally,
this will usually result in a larger number of tests selected for re-execution. The
test selection is more imprecise than it could be.

Although we follow Apiwattanapong et al. [12] in their argumentation that
UNIX Diff-based tools are unsuitable for RTS in the environment of object-
oriented source programming languages (see Section 2.2), we want to mention
for the sake of completeness the work of Vokolos and Frankl [280] who have
managed to create a safe RTS tool called Pythia for programs written in C
by combining the Diff tool with other scripts which utilize the C compiler
and other helper programs written for the C programming language. This way,
Pythia creates a a special form of the source code without elements hindering
a textual comparison such as comments or blank lines. The results of a study

1The author just tells that the syntax tree represents packages, types, methods, and con-
structors. A more detailed explanation why it is called “more abstract” is not available.

4.2. RELATED WORK 41

presented by Frankl et al. [87] show that both the selected number of tests
and the costs for the analysis are similar to the graph walk-based approach
proposed by Rothermel and Harrold [233]. Nevertheless, we want to emphasize
that Pythia is written for the procedural language C rather than for object-
oriented languages. So the argumentation of Apiwattanapong et al. [12] still
holds (see Section 2.2).

In a recent publication, Öqvist et al. [208] present a safe, extraction-based
regression test selection that relies on a dependency graph to find code mod-
ifications and to select test cases for re-execution. In contrast to other ap-
proaches, the technique works without code instrumentation. Furthermore, the
code analysis is extremely coarse-grained as it just considers files rather than
classes, methods, or even statements. Besides, the authors update their depen-
dency graph incrementally after code modifications. As a result, the overhead
is rather small. However, they admit that their approach is less precise than
other approaches that analyze code more fine-grained, for example at method
level. For our purposes, coping without instrumentation makes their approach
unsuitable. In transcompiled applications, we need to link code changes in the
source language with code in the target language in order to determine UI/web
tests that have to be re-executed. To this end, instrumentation is highly ben-
eficial. More details follow in the next sections.

Web Application Regression Testing: For web applications, there are
also some studies on regression test selection, but due to the fact that web appli-
cations are much younger than traditional desktop applications, there are much
fewer techniques available than for desktop applications. In general, research
has not payed much attention to selective regression testing of web applications
so far. This also becomes evident in the review of existing techniques for web
application testing of Doǧan et al. [60]. To the best of our knowledge, espe-
cially the problem of regression testing transcompiled applications has not been
considered as a whole yet. Instead, efforts have been made to ease problems
in debugging that result from e.g. the dynamic typing of JavaScript. Here, for
example Firebug [198] is an established tool to step through the JavaScript
code and to investigate the actual state of the application. JSFiddle [159] can
be used to check and run small JavaScript components.

The first papers (e.g. [76, 225, 288]) that investigated techniques for ana-
lyzing and testing web applications focused mainly on the content of web pages
and the navigation from one page to another. They could not be used for regres-
sion testing. Apart from this, today’s standard technologies like AJAX-calls
[90] that change the state of a web application without leaving the currently
displayed page have not been invented yet at that time.

Ricca and Tonella [225] identify single web pages as the main entities of a
web application. These pages are connected via hyperlinks and may consist
of forms and frames. In order to represent these basic elements of a web
application under test, Ricca and Tonella introduce a UML model, where nodes
correspond to web pages, forms, or frames. Hyperlinks correspond to edges.

42 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

The model enables the authors to analyze site structures as well as to do a semi-
automatic test generation that exploits the UML model to create sequences of
URLs (i.e. test cases).

Elbaum et al. [76] have compared Ricca and Tonella’s technique [225] to
create test cases with several new techniques that incorporate user session data.
With these new techniques, they have been able to reduce the effort to create
tests and to provide adequate input data for forms and client requests. In
addition, they have investigated the ability of the tests to reveal faults in web
applications.

An important step towards regression testing has been made by Alshahwan
and Harman [9]. They propose an approach to repair user sessions that have
become invalid because of changes. Therefore, session data (sequences of URLs)
are tracked from the original program version. As soon as the web application
changes, a repair algorithm tries to fix the session. In contrast to the approach
presented by Ricca and Tonella [225] (see above), the repaired session data
can be used for further regression testing, whereas non-repaired session data
might have become useless because the sequences are not valid any longer.
Our approach is partially orthogonal to this approach proposed by Ricca and
Tonella. We try to identify the tests that could reveal bugs or that have to be
changed due to modified use cases and we try to associate these tests with the
underlying Java code. Our approach could be connected with (an enhancement
of) their idea in order to restore a valid use case without the need of re-recording
it manually.

Xu et al. [288] also consider web applications as collection of web pages
which is traversed by users. But they have presented a technique that already
addresses the necessity to retest web applications. Their technique is based on
slicing (see Section A.2 in the Appendix) and tries to analyze which pages or
which elements (e.g. links) in a page of a web application have been added,
modified, or removed. To this end, the authors consider out-going links that
point to another page and in-going links that point to the currently consid-
ered page. Besides, they distinguish between “direct-dependent” and “indirect-
dependent” relationships [288, page 654]. Direct-dependent relationships rep-
resent structural changes in the web site such as added, modified, or removed
hyperlinks. Indirect-dependent relationships are obtained via definition-use re-
lationships of variables within a web page. Their technique does not require
a complete system dependence graph. Instead, they just consider each web
page individually and determine modifications and their corresponding effects.
Based on these analyses, they are able to decide about necessary tests. Al-
though Xu et al. pursue some targets that are similar to ours, their approach
does not fit our demands. Apart from the fact that the slicing technique is
not safe according to Rothermel and Harrold [232], the technique of Xu et al.
[288] is restricted to standard changes like adding/ removing a page element or
an entire web page. We want to remark that dynamic features like JavaScript
events are never mentioned in the paper. AJAX-calls did not exist yet and
consequently, the paper has not addressed asynchronous web applications.

4.2. RELATED WORK 43

Soechting et al. [260] propose a method to do syntactic regression testing.
With the aid of special comparators, they are able to cope with tree structures
such as those present in abstract syntax trees or HTML/XML files. Their
tool, Smart, implements a distance metric, indicating which tests should be
re-executed during regression testing. However, we want to remind that in
object-oriented programming languages like Java, this is not sufficient due to
polymorphism (see also our explanations in Section 2.2, Paragraph “Discussing
the Approaches”).

One of the few regression test selection techniques for web applications has
been proposed by Tarhini et al. [272]. They propose event dependency graphs
to represent an old and a new version of a standard web application, consisting
of pages and dependencies (visible/invisible effects and links). They determine
changed as well as possibly affected elements and select tests that are touched
by the changes. The basic idea to identify changed, added, and removed nodes
is similar to our approach. They also search in the graph representing the old
and the new version for a corresponding node. However, their technique still
focuses on web pages and corresponding HTML elements like buttons rather
than programming languages that are typically used in transcompilers (e.g.
Java or C#). They also do not care about the granularity of the elements and
related performance issues. The elements themselves as well as the dependen-
cies are managed in SQL tables. There is no information provided about how
to create the event dependency graph and the SQL tables. Notwithstanding
the year of publication (2008), they still do not consider the usage of AJAX in
detail which plays a vital role in modern web applications.

Several more recent contributions that build upon crawling AJAX code
have led to the ability to localize faults in JavaScript and to create unit test
cases which in turn can be used to do regression testing. Mesbah and colleagues
[186–188] have introduced a tool called Crawljax. This consists of a crawler
which is able to automatically analyze client side code of AJAX-based web
applications with respect to user interface states and how a single state could be
altered via user interactions. To this end, a Crawljax extension called Atusa
[186] searches for clickable elements as well as data entry points like forms. For
forms, it tries to find suitable default values or assigns, if available, custom
values from the Document Object Model (DOM). Besides, it generates a state
machine that maintains a state-flow graph. The state-flow graph represents all
possible states of the user interface and its state transitions. On this basis,
constraints (invariants) and corresponding assertions can be defined for the
user interface which allow to detect faults. Finally, starting from the state-
flow graph, paths through the web application are calculated which in turn are
transformed into JUnit test cases. Roest et al. [226] apply this approach to
perform regression testing of AJAX-based web applications. They especially
focus the problems that are associated with the non-determinism of AJAX.

When creating JUnit test cases for a web application, the technique imple-
mented in Crawljax and Atusa is powerful. It is orthogonal to our technique
with respect to transcompiled web applications. Here, a well established and

44 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

widely used method to create web tests is to use capture and replay tools like
Selenium. However, creating web tests this way requires a high manual effort.
Besides, it might happen that tests do not cover all relevant states and user
inputs. The ability of Atusa to automatically generate tests is independent
of transcompilation and fault localization in the original source code. So it
could enhance the collection of web tests with additional tests. Nonetheless,
this approach only works with JavaScript code. As a consequence, it does not
help in transcompiled applications to perform regression test selection and fault
localization.

Another technique for regression testing JavaScript code has been con-
tributed by Mirshokraie and Mesbah [193] and is also based on invariants. At
the time of publishing in 2012, the authors have stated that it was one of the
sole regression testing techniques in the scope of JavaScript based web appli-
cations. They instrument a web application on-the-fly, run it many times with
different variables, and log all the execution traces. Thereof, they try to auto-
matically derive invariants as runtime assertions and inject them in the next
program versions. Failed assertions are reported in order to draw inferences
and to get information about the code location. The approach of Mirshokraie
and Mesbah is implemented in a tool called Jsart and is a plug-in to Crawl-
jax. It is a dynamic analysis technique, whereas our analysis is – apart from
the initial test execution – static. That is, Mirshokraie and Mesbah have to
re-execute the entire web application to ascertain that all the assertions hold.
Just as the approach of Roest et al. [226], a selective test selection comparable
to ours is not available. Beyond that, there is no need in our approach to re-
execute the modified version P ′ of the application to reveal broken assertions
or to detect changes that may cause failures, respectively.

Based on Jsart, Mirshokraie et al. additionally focus in a more recent
work [194] on creating tests for JavaScript functions and events automatically.
Besides, they propose an algorithm that generates mutants in order to check
the behavior of the web application under test for regression faults.

Ocariza et al. [206] have presented in 2015 AutoFlox, another tool that is
based on Crawljax. It does not implement a regression testing technique, but
provides a dynamic analysis that automatically localizes JavaScript faults aris-
ing during DOM manipulations by means of JavaScript. The authors start in
their approach with an on-the-fly code instrumentation of statements which en-
ables them to collect execution traces. Afterwards, they perform dynamic back-
ward slicing (see Section A.2 in the Appendix, in particular Paragraph “Back-
ward Static Slices and Forward Static Slices” and Paragraph “Dynamic Slic-
ing”) in order to find the fault that leads to an exception.

Kumar and Goel [170] rely on the comparison of two event-dependency
graphs representing the old and the new version of a web application. Based
on these results, the authors are able to identify changes in the new version
and to select test cases.

Especially the crawler-based approaches are powerful and promising, but
we want to emphasize that they only work as long as the application is directly

4.2. RELATED WORK 45

written in the target language (here: JavaScript). If the application’s target
code has been created by a transcompiler, it is difficult to understand due to
which code changes in the original source code a test case has failed. This is
especially true if the target code has been optimized and obfuscated. (Please
remind that for example the GWT compiler creates several permutations of
obfuscated and highly optimized code.) So the approach is only helpful if the
code of the target language has been written by a developer rather than by a
transcompiler. For localizing faults in the source programming language, the
mentioned techniques are not applicable.

Due to the popularity of Java, more technologies like JavaServer Pages
[212] or JavaServer Faces [209] have been invented that allow to avoid writing
JavaScript code (at least to a certain degree). Here, client-side code consists of
standard HTML code combined with a special tag library that provides com-
ponents for an easy creation of user interfaces. Server-side code is completely
implemented in Java. As a consequence, there is no need for transcompiling
code because server-side code is compiled into bytecode as usual. So, the con-
cepts proposed for regression testing standard desktop applications are still and
directly usable.

Based on this insight, it is enough for Asadullah et al. [16] to focus on the
server side when considering web applications that employ Java-based frame-
works like JavaServer Faces or Spring [218]. The procedure described by the
authors in their RTS technique meets special demands like changes in the run-
time behavior due to Spring’s use of the Factory Pattern. So the main chal-
lenges of Asadullah et al. are different from ours. They neither have to deal
with transcompilation and the problem to instrument Java/ JavaScript source
code, nor do they have to deal with web tests and the problem of reducing
the execution time of this special kind of tests. In addition, their approach
is less precise as it only handles methods, but no statements (not to mention
conditional expressions).

In an elder publication, Huang et al. [143] also exploits the possibility to
work directly with bytecode. Again, the technique only handles changes at
Java method level. When it comes to modifications in JavaServer Pages or
JavaScript code, they apply a syntax analysis to detect them. Then, the tech-
nique creates groups of tests. Each of them covers all code modifications. The
final test selection is based on a metric which prioritizes the groups according
to the risk of the corresponding tests to fail.

Code Analysis and Fault Localization: As already mentioned in Sec-
tion 2.6, many different fault localization techniques have been developed in
the past. In the following paragraphs, however, we mainly focus on code anal-
ysis and fault localization techniques that are similar to our own approach. It
seems to fit the model-based technique according to the categorization of fault
localization techniques introduced by Wong et al. [285] (see also Section 2.6).
For a full overview of the available techniques and relevant papers, we refer the
reader to the review of Wong et al. [285].

46 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

In order to analyze Java code of two program versions for differences, Api-
wattanapong et al. [12] extend an existing approach proposed by Laski and
Szermer [173]. In an initial analysis, Apiwattanapong et al. compare two pro-
gram versions in several iterations, starting on class and interface level. They
try to find for each class/interface in the old program version P a correspond-
ing class/interface in the new version P ′. Based on these data, they do the
same with methods. Classes/methods without counterpart are considered as
added/deleted. Afterwards, they create special CFGs for all methods that ex-
ist in P and P ′ in order to find corresponding statements. Apiwattanapong
et al. call these graphs Enhanced CFG (ECFG) [12, page 6]. All the graphs
are simplified to so-called hammocks [12, page 12]. Hammocks are a kind
of substitute nodes that might represent several nodes in the ECFG or even
other hammock nodes. So in the end, a method can be represented by a sin-
gle hammock node. In order to determine changes in the code, corresponding
hammocks in P and P ′ are compared to each other. To this end, the ham-
mocks are recursively expanded again. Apiwattanapong et al. associate all
corresponding nodes with either the attribute “unchanged” or “modified” [12,
page 14]. The analysis continues then with corresponding successor nodes. In
order to find such a correspondence in the successor nodes, they compare the
edges starting in the current nodes. Depending on the proportion of matched
nodes to the total number of nodes, Apiwattanapong et al. decide whether
a hammock is considered as matched. This decision depends on a similarity
threshold defined by the user. The higher the threshold, the more nodes must
be be labeled “unchanged” in order to consider a hammock as matching. The
whole algorithm is intraprocedural [12, page 8]. That is, it just compares the
nodes within a method. As long as classes/interfaces or methods are not re-
named, Apiwattanapong et al. are able to recognize corresponding methods
(or classes/interfaces) in P and P ′ automatically. However, in case of renamed
methods or modified method signatures in P ′, the user needs to define manually
which elements belong together as the analysis is intraprocedural. Although
Apiwattanapong et al. argue that this “could be (partially) automated using
similarity metrics” [12, page 8], it seems that this approach lacks the possibility
to be applicable in a fully automated environment. In our technique, we adapt
an approach of Harrold et al. [126] that uses an interprocedural analysis (e.g.
[233, page 189]). We discuss this in Section 4.3.2 in more detail. It does not
require the user to do manual tasks. Renamed classes and methods will be
recognized directly as soon as there is a call. Dead code may be optionally
included in our analysis on demand. Apiwattanapong et al. have implemented
their algorithm in a tool called JDiff. We want to point out that it is tailored
to work with non-transcompiled desktop applications only. When applied on
a transcompiled application, it could at best analyze the transcompiled target
code. But in contrast to our approach, it cannot localize changes/faults in the
source code of the transcompiled applications.

Another approach to identify changes has been proposed by Nguyen et al.
[204]. They model classes and methods as nodes. Interactions between these
elements are modeled as edges. The authors call this an interaction-centric

4.2. RELATED WORK 47

approach [204, page 572] and they state further that their approach enables
them to find all kinds of changes in classes and methods, including renaming,
reordering, modifying, adding, and removing of elements. However, due to
their interaction concept, they are not able to analyze code changes on a more
fine-grained level such as statements.

Raghavan et al. [220] expand in their tool Dex a normal abstract syntax tree
by semantic information, which is useful to “connect literals and declarations to
their types and variable references to their variable declarations” [220, page 189]
in programs written in C. They call this expanded AST the Abstract Semantic
Graph (ASG) [220, page 189]. According to the authors, the original intent
of Dex has been to analyze bug fixes. Nevertheless, they explicitly emphasize
the usefulness of their tool in terms of regression testing and in the analysis of
code changes.

Hoffman et al. [138] report on a semantics-aware analysis. They apply
a differencing algorithm on two program traces obtained by running the old
and the new version of a program. Each trace consists of a series of quintu-
plets encapsulating (among others) data about the current object, thread, and
method. The algorithm generates semantic views [138, page 453] consisting of
specifically processed information about incidents in the traces. This way, the
authors are able to isolate a number of changes that might be the reason why
tests have failed. In contrast, we select tests and get information about code
that might be responsible for a test failure in a static way without the need to
run the new program version in order to obtain a second trace.

Baah et al. [24] have developed the Probabilistic Program Dependence Graph
(PPDG) [24, page 189] as a way to both localize and understand faults. As
the name already suggests, the graph builds on a common program dependence
graph, but adds sometimes some nodes and edges in the graph to meet special
requirements. Each of the nodes in the PPDG is associated with an abstract
state unifying all the possible states that can be adopted by a statement. In
addition, the authors calculate the conditional probability for each node to
be related with their parent nodes in the graph. According to Baah et al.,
“conditional probabilities measure how nodes are influenced by their parent
nodes in the PPDG.” [24, page 194] Based on these data, the authors are able
to rank nodes according to the probability to be responsible for a fault.

Hao et al. [125] have presented a technique that accompanies the developer
during the fault localization process until the reason for a test failure is detected.
Their technique is based – just as many other techniques – on the information
which tests execute which statements and which tests pass/fail. From this
data, the technique selects the statement that is the most likely the cause for a
test failure and proposes a breakpoint for the debugging process. Afterwards,
the developer has to give feedback whether or not the statement was really the
cause for the test failure. If not, the technique recalculates another statement
that should be checked. According to the authors, the advantage is that the
developer does not have to decide from a set of possible code changes which
one could be the cause for the test failure. Instead, their technique indicates

48 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

a statement to start with. This approach seems to be very interesting and
is orthogonal to our own approach. We could imagine to integrate their idea
in our technique. We could arrange the code changes identified during our
analysis according to the probability to be responsible for a test failure.

Although we do not deal with change impact analysis, this technique can
be used to localize faults in the source code as explained in Section 2.6. Chi-
anti is such a change impact analysis tool and has been introduced by Ren
and his colleagues [223, 224]. It builds on previous work proposed by Ryder
and Tip [242], two of the contributors of Chianti. The tool determines tests
whose behavior in the current program version might differ from the one in a
previous program version. To this end, the authors extract atomic changes and
investigate them for syntactic dependences. A comparison of the two program
versions by means of a CFG is not necessary. Instead, Chianti applies call
graphs (see Section A.3 in the Appendix, Paragraph “Call Graph”). In the first
prototype, Ren et al. [223] use static call graphs. In a subsequent version [224],
Ren et al. investigate dynamic call graphs. On this basis, they are able to depict
which modifications might be responsible for a test failure. In addition, atomic
changes can be used to create so-called “intermediate program versions” [224,
page 433] that contain only some of the modifications made in the current ver-
sion [224]. According to Ren et al. [224], the test selection is safe. In contrast
to our work, Chianti does not compare code in parallel and analyses the code
on method level, not on statement level or below as we do. Besides, we do not
require the new program version P ′ to be completely “syntactically correct and
compilable” [223, page 2], which is one of the preconditions Chianti imposes.
Our analysis of P ′ is completely static and can already be started while some
parts of P ′ are not finished yet. As a result of such an early analysis, we obtain
important information about changes or newly introduced features that might
impair correct functionality. This information is helpful for example in code
reviews. If the application consists of (compilable) subprojects, we can even
select already existing tests for re-execution.

Chesley et al. [39] apply Chianti in an Eclipse plug-in called Crisp. Begin-
ning with two program versions and a failed regression test case, it produces a
compilable intermediate program version that is based on the previous version
plus some of the changes introduced in the current version. The user decides
which changes are contained in the intermediate version. This way, it is pos-
sible to create versions that will not fail when rerunning the test. Creating
several versions by using Crisp gives some indication of faulty changes.

Stoerzer et al. [266] have created JUnit/CIA, another Eclipse plug-in that
uses Chianti. As the name already implies, the tool is JUnit-based and is able
to estimate which changes could cause a test failure. Based on this estimation,
it categorizes these changes with different colors according to the probability
that they really give rise to a test failure.

Zhang et al. [293] propose FaultTracer, an approach that couples change
impact analysis with spectrum-based localization of faults. Compared to Chi-
anti, it also determines atomic changes, but takes fields and overridden meth-

4.2. RELATED WORK 49

ods in a more precise way into account. Besides, it relies on already existing
spectrum-based fault localization techniques whose basic idea is to order state-
ments according to their risk to be faulty. For example, Zhang et al. apply a
statistical analysis of test execution traces that has been proposed in a paper
by Jones et al. [157]. Their analysis assumes that the probability of a statement
to be faulty rises with the number of failing tests covering this statement. As
opposed to Zhang et al., we do not use statistics to localize faults. Instead,
we use the analysis of edges as decider where a change is located in the code.
Moreover, similar to Hoffman et al. [138], Zhang et al. have to re-execute the
new program version in order to apply their technique. As a consequence, this
does not reduce the test effort as it is not a test selection. We do not necessarily
need to re-execute all the tests.

Although our approach to localize faults seems to fit the model-based tech-
nique [285] (see also Section 2.6), we take a peek at spectrum-based techniques.
There are many publications in the area of fault localization techniques that
rank suspicious parts of the source code via special metrics according to their
likelihood to be the cause of a test failure (see the review of Wong et al. [285]
for an overview). Abreu et al. [2] consider several similarity coefficients used
in spectrum-based fault localization techniques to determine such a ranking.
They also show that their own similarity coefficient proposed in an earlier pa-
per is superior to the other coefficients. In addition, they report on the ability
of different parameters and their effect to recognize correctly in which part
of the source code the cause for a test failure is located. Our own approach
considers program changes. Thereof, it determines a set of possible fault loca-
tions without any ranking of faults according to their suspiciousness. However,
our approach could be expanded by such a similarity coefficient to find faults
faster. Execution logs obtained via code instrumentation – a major prerequisite
of spectrum-based fault localization – are also available in our approach. So
this means no extra overhead.

Dallmeier et al. [51] have proposed another idea to detect and localize de-
fects. They consider sequences of method calls and state that this approach
is cheap as well as that it has a higher chance to locate defects than common
coverage techniques.

Finally, Yoo et al. [291] have formulated a variant of the fault localization
problem, the fault localization prioritization problem [291, page 19:1]. As the
name already indicates, it is a combination of fault localization and prioritiza-
tion. So, the main concern is:

“Having found a fault, what is the best order in which to rank the
remaining test cases to maximize early localization of the fault?”
[291, page 19:2]

The authors address this problem in their new technique called FLINT, which
is an acronym for “Fault Localization using INformation Theory” [291, page
19:2]. In Chapter 6, we ourselves introduce an own prioritization technique.
But our intention is to order test cases that should be re-executed due to code
modifications.

50 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

We want to emphasize that research on topics like cross-language program
analysis (e.g. [183, 219, 267]) is – despite the similar name – not directly related
to our work as this kind of research focuses on dependencies, references, and
links among different languages within the same application. In contrast, we
investigate kinds of applications that are written in a single source program-
ming language. This kind of application is transcompiled in one or several
distinct target applications. The source programming language and the target
programming language do not share any dependencies, references, or links.

Code Instrumentation: As already mentioned in Section 2.3, RTS tech-
niques require knowledge about which test cases execute which code elements/
which parts of the code. An old but still very popular way to obtain this infor-
mation is to use program tracing. For example, in a paper published in 1993
[171], Larus discusses efficient techniques that can be used to trace systems. In
particular, he explains control-flow tracing which we outline briefly. For the full
details, we refer the reader to his paper [171]. Larus takes a control-flow trace
[171, page 55] as a recording of instructions that have been traversed during
program execution. However, he explicitly points out that due to efficiency,
the entries in the control-flow trace normally represent whole basic-blocks in-
stead of single instructions. When it comes to the details how to record such
a control-flow trace, Larus mentions several ways, including the possibility “to
assign each block a unique identifier and to append the identifier to the trace
record every time the block executes” [171, page 55]. According to him, this
procedure has as major drawback that “the tracing code greatly increases both
a programs size and execution cost” [171, page 55]. For this reason, he sug-
gests to consider solely the transition from one block to another. Using these
control-flow traces and a special “trace recognition routine” [171, page 55],
he is able to reproduce the program trace. Despite the author’s objections,
we use the first-mentioned procedure as the basis for our own approach (see
Section 4.4.3).

In other work (e.g. [26]), code instrumentation is used to assign an inte-
ger value to every edge in such a way that the accumulation of these values
is unique. In more detail, accumulating the integer values while traversing a
specific path in the program results in a final score that differs from the fi-
nal scores of all other paths. This approach is the starting point for further
slight variations (e.g. [172]). However, the intention of these approaches differ
from our purposes. For example, Larus [172] wants to find paths that are rele-
vant for performance improvements or compiler optimizations. Ball and Larus
[26] additionally mention software test coverage as possible purpose. For our
purposes, an accumulation of values is unsuitable as we need to know exactly
which parts of the code are traversed in the target programming language and
to which parts in the source programming language they correspond. This is
important to locate potential faults in the source programming language.

As already noted by Chawla and Orso [36], a wide-spread approach in Java
programs is to add instrumentation code to the bytecode (see also the discussion

4.2. RELATED WORK 51

in Section 2.3). Their tool, InsECT, implements this approach in a dynamic
and generic manner. To this end, it introduces instrumentation tasks to define
which parts of the code have to be instrumented (e.g. “method entry”/“method
exit”, “before method call”/“after method return”, “field read”/“field write”,
“start of basic block”/“end of basic block”, “before a branch”/“after a branch”,
“throw”/“catch” [36, page 2]) and which information has to be gathered. This
way, the authors wish to achieve that the tool is easier to reuse and to modify.

Similar approaches have also been used for tracing the execution of a pro-
gram. For example, Ayers et al. [23] have published a patent in which they
use identifiers to instrument blocks. When executing the program, they obtain
sequences of block identifier. These sequences enable them to reproduce the
different steps that led to a program error.

In Section 2.3, we have briefly discussed several ways to perform source
code instrumentation. Geimer et al. [92] have presented a prototype that im-
plements this approach. It pursues a similar target as InsECT that we have
just summarized before. The intention is to configure the instrumentation code
flexibly in order to support different programming languages. At the time of
publication, however, the authors were only able to provide a generic instru-
mentation for function entry and exit. The prototype implementation is based
on a performance system called TAU that has been introduced by Shende and
Malony [257]. It supports investigating “performance technology problems”
via “instrumentation, measurement, and analysis” [257, page 309]. Analyzing
the performance can be done in several ways, “including powerful selective and
multi-level instrumentation, profile and trace measurement modalities, interac-
tive performance analysis [...], and performance data management” [257, page
309]. TAU adds instrumentation code in the source code of a multitude of
programming languages, including Java, C/C++, Python, and Fortran via a
preprocessor. In addition, TAU also supports, among others, compiler-based
instrumentation, binary instrumentation, component-based instrumentation,
and virtual machine-based instrumentation. However, the instrumentation is
designed for specific performance events such as “events defined by code lo-
cation (e.g. routines or blocks), library interface events, system events, and
arbitrary user-defined events” [257, page 289].

Technically, the instrumentation approaches discussed before are not enough
for our purposes as we need more detailed information about the execution of
single statements or even expressions rather than entry/exit events in case of
Geimer et al. [92] or whole blocks in case of Larus [171] or Ayers et al. [23].
Notwithstanding this, as we deal with different potential transcompilers that
support several source programming languages, the ideas pursued by Chawla
and Orso as well as Geimer et al. to offer a generic, reusable instrumentation
technique are basically very interesting. Nonetheless, we focus in the first place
on the basics of our instrumentation and one possible realization.

Due to our focus on transcompiled applications and the need to localize
faults in the source programming language, source code instrumentation is rel-
evant. For this reason, existent tools such as Pin [146] that insert instrumen-

52 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

tation code in the executable [147] rather than in source code are not suitable.
Our instrumentation differs from the usual one as our target is not to deter-
mine whether a Java code element is covered by a branch of the CFG. In case
of GWT for example, web tests only execute JavaScript code. So client-side
Java code is never executed directly. Our instrumentation is highly special-
ized in such a way that the GWT compiler is able to maintain the binding to
the underlying source code when transferring Java code into JavaScript. This
is very important when mapping Java code modifications to the target code
executed by a web test.

Moreover, we want to mention the interesting findings of Li et al. [179].
They have checked with regard to branch coverage whether the results of a
bytecode instrumentation differ from those obtained in a source code instru-
mentation. First of all, they have noticed that there exist only three tools
under active development that offer branch coverage for methods. One of them
(EclEmma) does bytecode instrumentation, the other two perform source code
instrumentation. But most interestingly, they have found that – at least for
the tool (EclEmma) used to investigate branch coverage – “Bytecode instru-
mentation is not a valid technique to measure branch coverage” [179, page
387].

More related work (e.g. [40, 276]) dealing explicitly with instrumentation
in terms of code coverage follows in Section 7.2.

4.3 Regression Test Selection for Transcompiled
Cross-Platform Applications

Having knowledge about code modifications and their potential to change the
execution of a test is the prerequisite for a safe test selection. So it is crucial to
determine which parts in P ′ have been changed compared to P . Based on this
insight, we have to find out which tests execute these parts of the code. More
generally, we need to know for the entire application which pieces of code are
traversed by which test case. In the literature, there exist already approaches
that address this problem in a specific context. We have a closer look at the
background, now. It is important in order to understand how our own approach
differs.

4.3.1 Background

In the area of safe graph walk-based RTS techniques, one of the most influential
approaches has been presented by Rothermel and Harrold [233]. They propose
two algorithms that compare the code of a modified program version P ′ with
the code of the original program version P in order to determine all the tests
of a given test suite T that execute modified code. Rothermel and Harrold
distinguish intraprocedural and interprocedural test selection [233, pages 179f.
and 189f.]. While the first algorithm considers functions in isolation, the latter
one additionally embraces calls between functions. Consequently, it can be

4.3. REGRESSION TEST SELECTION FOR TRANSCOMPILED
CROSS-PLATFORM APPLICATIONS 53

used to analyze the entire code with its interactions and to find tests that are
affected by changed interactions. In the following subsection, we summarize
directly the interprocedural algorithm presented by Rothermel and Harrold
[233] as it is based on the intraprocedural one. For full details, we refer the
reader to the original paper of Rothermel and Harrold [233].

Basic Algorithm

We have already sketched in Section 4.2 that the basic algorithm of Rother-
mel and Harrold is the result of several previous versions that have been based
on control dependence graphs, on program dependence graphs, and on system
dependence graphs. Due to efficiency reasons and because of implementation
simplicity reasons, the basic idea of the current algorithm [233] is to model both
program versions P and P ′ as control flow graphs. While in our approach, a
node in a CFG may represent any kind of code element (even expressions, see
Section 2.4), the nodes in the CFGs of Rothermel and Harrold are restricted to
represent statements exclusively. As usual, edges represent in their approach
the control paths which may be passed through during program execution,
depending on the values the statements are evaluated to. To distinguish the
nodes, they always use the textual representation of the corresponding state-
ment as label. Some specific kinds of edges have a label, too. In case distinctions
for example, labels are used to represent the different cases. In order to deter-
mine whether a test case is modification-traversing (see Section 2.4) or not, the
algorithms proposed by Rothermel and Harrold start from entry nodes that
occur both in P and in P ′. They traverse the two CFGs of P and P ′ in parallel
and look for equally labeled edges that have coincident successor nodes. As
soon as no matching edges can be found, all the tests executing these edges are
selected for retesting.

Technically, the interprocedural test selection summarized above starts by
determining the entry procedure of P . In the programming language C for
example, this is the main()-function. For each procedure p ∈ P that is about
to be analyzed, a corresponding procedure p′ ∈ P ′ is looked for. The name of p
is minuted in a data structure called proctable and p is marked as “visited” [233,
page 191]. Afterwards, Rothermel and Harrold construct a CFG for both p and
p′ with entry nodes i and i′, respectively. Starting from these entry nodes, pairs
of nodes (np, np′) are considered, where np ∈ p and np′ ∈ p′. To avoid multiple
analysis of the same node pairs, np is marked as “np′-visited” [233, page 190].
Now, for each successor node sp of np, another node sp′ will be looked for
that follows np′ , fulfilling the one condition that the edges ep = (np, sp) and
e′p = (np′ , sp′) have the same label. Provided that the node sp is not marked
as “visited”, the labels of sp and s′p are tested by a simple lexicographical
comparison for coincidence. If there is no coincidence, all the tests executing
ep are added to the set of tests for re-execution. If the node sp represents a
call to another procedure, the algorithm depicted just now is repeated. That
is, for the called procedure q in P , a counterpart q′ is searched for in P ′ and
the CFGs for q ∈ P and for q′ ∈ P ′ are traversed in parallel. In case that these

54 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

procedures are already marked as “visited” or “selectsall” [233, page 191], no
analysis is necessary and the algorithm continues with the calling procedures. A
procedure might be marked as “selectsall” if the exit node cannot be reached.
Then, all these tests that execute nodes of the corresponding procedure are
added to the set of tests for re-execution.

The information which edges are executed by which test can be obtained
from the execution traces collected during the test execution of p (see Sec-
tion 2.4). Rothermel and Harrold store these data in the form of a “bit vector”
[233, page 177] whose values describe for each edge in P whether it has been
executed by a test case in the original test suite T .

Discussion: The algorithm of Rothermel and Harrold has several important
attributes. First of all, the authors are able to prove that their approach is
safe [232, page 532], [233, page 185] provided that P ′ is tested with equivalent
parameters and settings as P before [233]. The authors call this controlled re-
gression testing [233, page 184]. According to Rothermel and Harrold, this is
because “the modification-traversing tests are a superset of the fault-revealing
tests” [233, page 185]. Furthermore, the analysis is static and does not re-
quire the whole execution of P ′. So, the algorithm of Rothermel and Harrold
summarized above is suitable to serve as first concept to solve the test effort
reduction problem we are faced to (see Section 1.2).

Form a technical point of view, it is important to note that the algorithm
presented by Rothermel and Harrold [233] does not analyze all nodes. Nodes
that can only be reached via modified nodes are omitted [233]. This implies that
solely those procedures are analyzed that can be reached without a precedent
code change. Areas in the CFG requiring a call from a procedure that is already
marked as “selectsall” [233, page 191] (i.e. all tests are modification-traversing)
are not investigated. Even if there are more code changes in the ignored code
parts, all affected tests are already selected due to precedent code changes.
On the one hand, this approach ensures that the entire program with all its
functions will be analyzed while reducing the effort for the traversal and the
comparison of nodes. Nonetheless, we want to point out the fact that this is
insufficient for fault localization. If there are more faulty code changes in these
parts of the code that have been ignored, it is essential to know about all code
positions that might be the cause for a test failure. As Rothermel and Harrold
stop the comparison as soon as a modification has been detected, subsequent
changes remain undetected. For example, let us assume that the change due
to which the comparison has been stopped is not the reason for a test failure.
Instead, there is a faulty code change later on in another part of the code.
But as this change is still undetected, we cannot incorporate it during fault
localization.

In the context of transcompiled cross-platform applications, the approach
of Rothermel and Harrold [233] cannot be directly borrowed as it focuses on
procedural languages only. More generally, it is not directly applicable to
object-oriented languages as concepts like polymorphism or dynamic binding

4.3. REGRESSION TEST SELECTION FOR TRANSCOMPILED
CROSS-PLATFORM APPLICATIONS 55

cannot be handled yet. This has already been ascertained by Harrold et al.
[126]. To overcome these limitations, they have extended the idea of Rothermel
and Harrold [233, 236] towards a highly specialized CFG.

Specialized CFGs for Java Software

Dealing with Java language constructs like inheritance, polymorphism and dy-
namic binding, as well as exceptional handling needs adaptations in the CFG.
In order to address these special demands, Harrold et al. [126] propose the Java
Interclass Graph (JIG) [126, page 316]. We summarize this representation in
this subsection as it serves as starting point for our own approach to handle
UI/web tests in transcompiled cross-platform applications. For full details, we
refer the reader to the original paper of Harrold et al. [126].

The first special characteristic of the JIG affects the representation of types.
Harrold et al. also use CFGs and traverse them in parallel to search for edges
that do not match, just as proposed by Rothermel and Harrold in the origi-
nal approach. Harrold et al. call these edges dangerous edges [126, page 315].
Therein, primitive types do not need a special representation, yet. They are
represented by their type information which is added to the name of the vari-
able. Object types in Java, by contrast, are part of a type hierarchy. For
this reason, they are represented by globally-qualified class names that reflect
the entire inheritance chain. In doing so, the location of a change in the type
hierarchy can be determined.

The next characteristic focuses inheritance. If a call can reach multiple
methods because of polymorphism, each of the possible calls have to be repre-
sented by an edge. Harrold et al. distinguish several kinds of edges. Intuitively,
edges representing calls are denoted as call edges [126, page 317]. In order to
determine which methods can be reached, Harrold et al. use the class hierar-
chy analysis proposed by Dean et al. [52]. Of course, some calls from methods
declared by the programmer (so-called internal methods [126, page 315]) might
point to external methods [126, page 315] declared in libraries. A call to these
methods is modeled by a call edge as usual and uses the class name of the
external method as label. But as the internals of external methods are usually
not available, they are just expressed by a method entry node and a method
exit node. The entire control flow between these nodes is symbolized by a
path edge [126, page 317]. Vice versa, it might also be the case that external
methods perform callbacks to internal methods. To handle such calls, the JIG
is extended by an artificial External Code Node (ECN) [126, page 318]. An
internal method that is reachable from an external node is represented by an
edge from the ECN to a class entry node, representing the class that declares
the internal method. The class name is used as label of the edge. Another
call edge connects the class entry node with the node representing the internal
method. The regular control flow within internal methods is straightforward
represented by normal CFG edges [126, page 314]. Calls to other internal meth-
ods are modeled by call edges, which are labeled with the method name that
declares the invoked method. Again, the control flow within the called method

56 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

is represented by CFG edges. Finally, there is another special call edge called
default call edge [126, page 318]. Harrold et al. use default nodes [126, page
318] to model methods that are defined in an external class. Each class having
access to external methods is connected with a default node via a default call
edge. Harrold et al. need this in order to handle newly introduced/removed
internal methods correctly that override external methods. The default call
edge is labeled with a “*” [126, page 318].

As we can see, there exist several kinds of starting points for the algorithm
that investigates P and P ′ for code changes. Harrold et al. [126] introduce three
different ones: Apart from the main-method(s) as standard starting point(s)
in the Java programming language, there might also be nodes typifying static
methods as well as the nodes that are connected to the ECN mentioned before.
Each of these entry nodes serves as initial input for the analysis.

Finally, the JIG needs to handle exceptions. For this purpose, Harrold
et al. [126] explicitly model each try, catch, and finally block as node. Path
edges connect try nodes with nodes representing catch blocks. The exception
is used as label for the path edge. A CFG edge (labeled “caught” [126, page
319]) connects the catch node with the corresponding statements declared in
the catch block. CFG edges to the finally node are unlabeled.

Assumptions in the Approach

Harrold et al. [126] emphasize some conditions that have to be fulfilled when
applying their technique:

First of all, all tests have to be repeatable, that is, a re-execution of tests
has to yield the same results as a previous execution if no changes have been
made in the code [126]. For standard desktop applications, this condition
affects primarily the compiler, the runtime environment as well as possibly the
network infrastructure and databases. Regarding concurrent systems, however,
multi-threaded processes must be linearized if a test depends on the order of
computations. Thus, tests have to be deterministic.

Another condition is that only classes and methods declared in the project
are considered and analyzed (internal classes and methods [126]). Code from
referenced libraries (external classes or methods) is excluded as it is often writ-
ten by third parties and thus is usually not available [126].

Finally, it has to be ensured that no reflection is utilized in internal classes
[126]. Reflection would complicate the analysis greatly. Furthermore, reflection
could make it necessary to inspect even the external code that stems from
e.g. imported libraries. However, this would be contradictory to the previous
condition.

Deficiencies of Existing RTS Techniques

From the Related Work Section, it is evident that there is a wide range of
RTS techniques. However, as we have outlined in this section, the techniques

4.3. REGRESSION TEST SELECTION FOR TRANSCOMPILED
CROSS-PLATFORM APPLICATIONS 57

have been developed for one specific kind of application that relies solely on
the source programming language. For example, Rothermel, Harrold and col-
leagues have focused on RTS techniques for standard desktop applications writ-
ten in C, C++, or Java (e.g. [126, 228, 230–233, 236]). Other researchers have
addressed the special problems that occur when applying regression testing on
web applications (e.g. [9, 186–188, 193, 226, 272]). Especially some of the ba-
sic ideas proposed by Rothermel, Harrold and colleagues would actually fit our
demands. But please remind that transcompiled cross-platform applications
distinguish between a source language and one or several target languages (see
Section 3.1). In general, the strict separation of desktop and web applications
is not necessarily valid any more. In transcompiled cross-platform applications,
it is basically possible to deploy an application as desktop, mobile, or as web
application. So what we miss is a RTS technique that has all those special
characteristics in mind.

We want to explain the consequences in more detail that arise if we would
directly apply standard RTS techniques created for either desktop applications
or web applications on a transcompiled application created with GWT. Fig-
ure 4.1 sketches the overall situation. Missing details in existing RTS techniques
like the possibility to flexibly model the whole range of code entities (complete
classes, or even details like conditional expressions; see Section 2.4) are left
out in the discussion as they are less decisive. Notwithstanding, these details
constitute a deficiency.

Instru-
mented

Web-App
Source
Files
Java

Source
Files
Java-
Script

Byte-
code

Instrument

Fault localization
based on failed

web tests

Run/
Browse

Fault localization based on failed web testsTranscompiled

Platform 1
Platform 2

W
eb

 A
pp

lic
at

io
ns

Instru-
mented
Byte-
code

Web
Tests

Run

Fault localization
based on failed

web tests

Web Test
Selection

Test
Traces

JIG1

4

2

3

5
6

Figure 4.1: Deficiencies in ordinary RTS techniques.

When applying for example the “Regression Test Selection For Java Soft-
ware” presented by Harrold et al. [126] (see Section 4.3.1, Paragraph “Spe-
cialized CFGs for Java Software”), the very first problem affects the entire
test selection. For this, Harrold et al. rely on the bytecode that is executed
when running test cases. So they compile the Java source files into bytecode
as usual. Then, they inspect the resulting Java class files to model the control
flow and to build the JIGs for P and P ′ by applying a special analysis, the
Java Architecture for Bytecode Analysis (JABA) [13]. In order to obtain the
information that describes which tests execute which parts of the application,

58 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

1 public class StockWatcher
implements EntryPoint {

2 // ...
3 private Button addStockButton
4 = new Button("+");
5 private ArrayList<String>
6 stocks = new ArrayList<>();
7

8 public void onModuleLoad() {
9 // ...

10 }
11 private void addStock() {
12 // ...
13 stocks.add(symbol);
14 }
15 }

1 public class StockWatcher
implements EntryPoint {

2 // ...
3 private Button addStockButton
4 = new Button("Add");
5 private ArrayList<String>
6 stocks = new ArrayList<>();
7

8 public void onModuleLoad() {
9 // ...

10 }
11 private void addStock() {
12 // ...
13 if (stocks.contains(symbol))
14 return;
15 stocks.add(symbol);
16 }
17 }

Figure 4.2: StockWatcher: original version (left) and modified version
(right).

they instrument the bytecode. Rothermel and Harrold call this test trace in-
formation [232, page 535]. We simply refer to it as test traces. A more precise
definition that incorporates essential details of our own approach follows in
Paragraph “Technical Demands on Code Identifier” in Section 4.4.3.

As opposed to Harrold et al. [126], we cannot use Java bytecode because the
GWT compiler does not compile the source files of client-side code at all (see
cross 1 in Figure 4.1). The reason is that Java bytecode provides no advantages
when optimizing the converted JavaScript code for different browsers [33, 35].
Instead, GWT works directly with .java files when generating JavaScript code.
So, as soon as the transcompilation process starts, we leave platform 1 (see Fig-
ure 4.1) and obtain target code that runs in browsers. This JavaScript code is
executed by web tests. They never run bytecode on the client side (see cross 2)
and thus, we never get test traces from instrumented bytecode although this
is fundamental for selecting (web) tests (see cross 3). We want to emphasize
that this is not specific to GWT. In general, UI tests do not necessarily exe-
cute the code of the source language (here: Java code). Consequently, adding
instrumentation code into the bytecode is completely useless when trying to
get information about which web tests execute which parts of JavaScript code
of the transcompiled web application. In the end, selecting tests by comparing
the JIGs and checking test traces as otherwise customary is not possible (see
cross 4). The same is true for the determination of a set of code changes that
might be responsible for web test failures (see cross 5).

In order to obtain test traces from web tests, one could come up with the
idea to just instrument the JavaScript code in order to get adequate web test
traces and to adhere to the JIGs created with the aid of JABA. This way,

4.3. REGRESSION TEST SELECTION FOR TRANSCOMPILED
CROSS-PLATFORM APPLICATIONS 59

it would be easily possible to identify code modifications in the Java code.
However, this involves the problem that the detected changes are completely
unrelated to the web test traces. We want to illustrate this by reusing the
small AJAX-based GWT web application StockWatcher (see Section 3.1)
as running example. Again, the code (see Figure 4.2) is an excerpt taken from
the GWT tutorial [100]. The left half of Figure 4.2 shows the original version.
In the code on the right, we have used a different label for the button (see
line 4) and we have added an additional check (see line 13-14).

In order to be able to identify web tests that are affected by the two mod-
ifications in the Java code in Figure 4.2, the developer would have to hunt up
the changes manually in the generated JavaScript code. This is of course an
extensive and tedious task especially because the GWT compiler obfuscates
the whole JavaScript code when used with standard settings (see Figure 3.1,
Figure 3.2, and Figure 3.3 in Section 3.1). So the names of JavaScript func-
tions differ completely from the names of the method declared in the Java code.
Solely if the compiler option PRETTY is used (see Section 3.1), the GWT com-
piler generates a more readable JavaScript code shown in Figure 4.3. But even
then, it remains difficult because there is many additional code originating from
libraries (see lines 12-20). Moreover, we have to remind that GWT combines
code originating from different Java classes in a single file per permutation (see
Section 3.2) and that this code is highly optimized to deliver a performant web
application, but also to handle all established browser types, including possi-
bly existing deficiencies in single browser versions [102]. So it is still hard to
extrapolate from changes made in the Java code to the produced JavaScript
code and to determine afterwards those web tests that have to be rerun. As
we can see, it is quite difficult to bridge the gap between changes identified in
the Java code and the web tests that cover generated JavaScript code.

When the application of RTS for standard Java desktop applications is
rather cumbersome in the context of transcompiled applications, another pos-
sibility could be to use special RTS techniques intended for use in a specific tar-
get language. In our running example, this is JavaScript. As already depicted
in the Related Work (Section 4.2), there are several approaches available that
could be used in pure web applications based on JavaScript. However, none of
them do really meet our requirements. Some of them need to re-execute P ′ (e.g.
[138]). And even if we could statically determine a set of web tests that have
to rerun, the problem still arises how to refer back from JavaScript to Java in
order to localize which code changes in the source language are responsible for
a test failure when running web tests in the target language. At best, existing
techniques are able to localize changes in the target language (see 6 in Fig-
ure 4.1), but not in the source language. In general, we stumble over the same
problems as we have already explained when trying to reuse RTS techniques for
standard Java desktop applications. So again, even if there is no code obfus-
cation, additional code originating from libraries (see Figure 4.3, lines 12-20)
makes it hard to localize the corresponding Java code somewhere in the mul-
titude of Java classes. Dynamic typing additionally complicates the transfer
of change information from JavaScript back to Java. As type information is

60 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

1 function StockWatcher 0(){
2 this.addStockButton = new Button 0(’Add’);
3 this.stocks = new ArrayList 0;
4 }
5 function $onModuleLoad(this$static){ // ... }
6 function $addStock(this$static){
7 // ...
8 if ($indexOf 2(this$static.stocks, symbol, 0) != −1)
9 return;

10 $add 4(this$static.stocks, symbol);
11 }
12 function AbstractHashMap$EntrySetIterator 0(this$0){
13 var list;
14 list = new ArrayList 0;
15 this$0.nullSlotLive && $add 4(list,
16 new AbstractHashMap$MapEntryNull 0(this$0));
17 $addAllStringEntries(this$0, list);
18 $addAllHashEntries(this$0, list);
19 this.iter = new AbstractList$IteratorImpl 0(list);
20 }

Figure 4.3: One of the permutations representing the modified version of
StockWatcher in JavaScript.

missing, a precise identification of the Java code responsible for a change is
often not possible. In Figure 4.3, line 3 shows an example for type information
that has been dropped (compare line 5 in Figure 4.2, missing String).

As we can see, existing RTS techniques in general are not directly appli-
cable to GWT web applications in particular and in the special environment
of transcompiled cross-platform applications in general. Beyond that, existing
techniques often focus on one specific problem (e.g. regression test selection or
fault localization). We want to offer a solution for transcompiled cross-platform
applications that fits all our purposes (see Section 1.2).

4.3.2 Calculating Changes Made in the Source Code of Transcom-
piled Cross-Platform Applications and Selecting Tests

In order to provide a RTS technique that is able to handle transcompiled cross-
platform applications, our method for calculating changes made in the source
language is divided into ten steps (see numbers in Figure 4.4). It builds on
the basic idea of Harrold et al. [126] and Rothermel and Harrold [233] (see
Section 4.3.1). In particular, we trust in their experience that using a CFG
in a graph walk-based approach is more efficient than using a CDG, PDG, or
SDG. Consequently, we do not consider these kinds of graphs in our approach.

In the very first step, developers create the initial version of a new appli-
cation in a certain source language (see 1 in Figure 4.4). Afterwards, they
instrument and transcompile this original program version P (see 2) and ob-

4.3. REGRESSION TEST SELECTION FOR TRANSCOMPILED
CROSS-PLATFORM APPLICATIONS 61

Create

Determine Changes
Responsible for a Test Selection

Determine

Affected
Test Cases

Compare

Execute Create
Compile and
Instrument
with CIDs

Original
Program
Version P
(Source

Language)

Original Trans-
compiled

Application
(Target

Language)

UI/ Web
Tests

New Program
Version P'

(Source
Language)

Dangerous
Edges in P',
Change in-

formation for
P'

Selected
UI/ Web

Tests

1

3

4

6

2

Mark Change
in Soure Code

Execute

New Trans-
compiled

Application
(Target

Language)

Compile and
Instrument
with CIDs

Logs

Create

Logs
Create

4
7

8

9

10

5Modify/
Extend

Figure 4.4: Steps in our technique.

tain application code in the desired target language. The instrumentation
and transcompilation is done automatically, for example via a plug-in in the
IDE. Depending on the kind of application, the developers create UI/web tests
(see 3). In step 4 , they apply the UI/web tests to ensure that the application
behaves as expected. While running the application, the tests traverse instru-
mentation code that produces log files that contain information which tests
execute which parts of the code.

Until now, our RTS approach did not change the overall workflow at all.
Each of the steps presented so far has to be done anyway. The only differ-
ences are that the transcompiled code contains instrumentation code, and that
running a test case produces automatically a corresponding log file. Here, the
structure and the location of the instrumentation code in the source code are
decisive for both the web test selection and the fault localization in the source
code. Details about instrumentation follow in Section 4.5 and in Section 4.6.

Now, the developers continue with the development of the application as
usual. They modify or extend the application (in the source language), respec-
tively. As a result, they get a new version P ′ (see 5). The target of the next
step 6 is to determine all the code changes made in P ′; or more specifically,
to find all the dangerous edges and finally the modified nodes. To this end,
P ′ is compared with P . By combining this information about changes with
the data in the logs, it is possible to identify all the tests that are affected by

62 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

the code modifications and that have thus to be rerun (see 7). Please note
that this is not straightforward. In case of web applications, the data collected
during web test execution are only available in the web browser. Writing these
data to the local hard drive automatically is not possible due to the sandbox
security mechanism. Similar problems might also occur in mobile applications.
We solve this problem by means of an own logging server. Based on the test
selection and the information obtained in step 6 , we can additionally mark the
code modifications in the source code (application written in the source lan-
guage) and we are able to present the developers a set of changes that might be
responsible for the test selection (see 8). All the work for selecting tests and
localizing faults is done. The developers transcompile the application (see 9)

and execute the selected tests (see 10).

The transcompiled application should also contain instrumentation code as
there might be new or modified web tests without corresponding logs that are
required for subsequent analyses. Another reason is that a test case might
traverse other parts of the source code due to a modification. Besides, as
already described by Elbaum et al. [72], information that describe the program
execution of a test seems to become invalid already after rather small code
changes. We have also observed such a phenomenon during our research. So
we can confirm the findings of Elbaum et al. Consequently, we usually re-create
logs for tests that have been selected for re-execution.

Compared with the usual development workflow, parts of step 2 (the in-
strumentation), parts of step 4 (the creation of logs) and the steps 6 to 8
are new. A decisive step is the comparison of P ′ with P (see 6). It enables
us to detect all changes including those that affect client-side code. This is
essential for selecting tests that check client-side functionality only. Of course,
the comparison is applicable on both client-side code and on server-side code
and gives us the information for doing the test selection. For this purpose,
we generate our own CFG that is based on the source language. The next
subsection explains how this is done.

Constructing the CFG

In order to be able to do a comparison of two program versions P and P ′

that are written in a specific source language, we represent each of the two
versions by an abstract syntax tree (AST). As already outlined in Section 2.5,
there are many tools available that create ASTs for different programming
languages. Our approach is currently implemented for applications written in
Java. Nevertheless, it is also applicable in other source languages with appro-
priate transcompilers. We discuss this in more detail in Section 4.9. In our
implementation, we obtain the ASTs with the aid of the Eclipse Java Develop-
ment Tools (JDT) [69] and the Eclipse built-in parser [62]. From this, we can
construct an extended version of Harrold et al.’s JIG (see Section 4.3.1), which
we call the Extended Java Interclass Graph (EJIG). The EJIG outperforms the
JIG as it differs from the JIG in many details:

4.3. REGRESSION TEST SELECTION FOR TRANSCOMPILED
CROSS-PLATFORM APPLICATIONS 63

Supporting Today’s Language Features and Handling Transcompiler
Specifics: First of all, the EJIG is by far more up to date as it supports
Java language elements up to Java version 7. (We explain later in this section
in Paragraph “Preconditions” why we have decided to relinquish the imple-
mentation of Java 8 features in the EJIG.) Today for example, there are new
syntactical elements such as Java Generics, Enums, or foreach-loops, and we
have to cope with dependency injection as an additional way to instantiate ref-
erenced objects during initialization without passing pre-instantiated objects
as arguments. Beyond that, transcompilers might bring along even more pe-
culiarities. GWT for example introduces a special entry point (onModuleLoad,
see Section 3.2) and it offers additional annotations (e.g. @UiHandler) in order
to facilitate the binding of event handlers [99].

These language specific demands have induced us to introduce four artificial
nodes in the EJIG similarly to the external code node (ECN), which has been
introduced by Harrold et al. in their JIG in order to handle calls from external
libraries (see Section 4.3.1). Our first artificial node is labeled InjectedNode.
We connect each node that can be accessed via dependency injection to the
InjectedNode via a call edge. For the modeling of code that is annotated with
@UiHandler, we act in the same way and use a node UiHandler. As the entry
method onModuleLoad invokes implicitly a (default) constructor, we add an
extra StartupNode. Finally, the fourth node labeled RestECN connects all
methods that cannot be reached. This is helpful to analyze code that is not
referenced by productive code yet. We might think of code that implements
new features. So, the RestECN node is another kind of entry node.

Precision of the Analysis and the Model: A major improvement of the
EJIG embraces precision. The EJIG allows to drill down on the AST arbitrar-
ily. We are not limited to solely methods (in contrast to e.g. Ren et al. [224])
or statements (e.g. Harrold et al. [126]). Instead, we can choose dynamically to
represent classes, methods, statements, or even every single expressions in the
EJIG. This has several advantages. First, it is possible to precisely model for
example conditional expressions. (This is also important for solving the cover-
age identification problem, see Section 1.2.) Second, it is very useful to localize
faults in statements consisting of many nested expressions. We might think of
loops or nested method calls (in the JDT: method invocations). So we are able
to isolate precisely the reason for a change, represented as node in the AST.

Technically, we use functionality provided via the JDT [62, 69] to parse the
Java source code of each ICompilationUnit (see Section 2.5). Figure 4.5 shows
the corresponding piece of code. We collect all the ICompilationUnits from
the packages and put them in a list (see lines 2, 7-8). In line 13 we instantiate a
new Parser that handles Java code according to the Java Language Specification
JLS4. This corresponds to Java code up to Java SE 7 [67]. Afterwards (see
line 17), we create an AST for each ICompilationUnit and collect all methods,
constructors, and initializers. Starting from these elements, we apply the JDT’s
ASTVisitor [62] to traverse the corresponding ASTs.

64 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

1 private void createASTsForCompilationUnits(IJavaProject javaProject,
IProgressMonitor monitor) throws JavaModelException {

2 List<ICompilationUnit> units = new LinkedList<ICompilationUnit>();
3 IPackageFragment[] packages = javaProject.getPackageFragments();
4 for (IPackageFragment p : packages) {
5 if (p.getKind() == IPackageFragmentRoot.K SOURCE) {
6 // ...
7 for (ICompilationUnit unit : p.getCompilationUnits()) {
8 units.add(unit);
9 }

10 }
11 }
12 this.astRequestor = new EclipseASTRequestor();
13 ASTParser parser = ASTParser.newParser(AST.JLS4);
14 parser.setResolveBindings(true);
15 parser.setKind(ASTParser.K COMPILATION UNIT);
16 parser.setProject(javaProject);
17 parser.createASTs(units.toArray(new ICompilationUnit[units.size()])

, new String[0], astRequestor, monitor);
18 }

Figure 4.5: Parsing Java source code.

For a better understanding, Figure 4.6 shows a piece of Java code that we
have taken from Harrold et al. [126, Figure 3b]. Originally, they defined the
method bar (see lines 14-17) without any surrounding class. In order to obtain
valid Java code, we adapted the code slightly and put it into an extra Main
class (see lines 10-18) with a main method (see lines 11-13).

1 // A is externally defined and has a public static method foo()
2 // and a public method m()
3 package testpackage;
4 class B extends A {
5 public void m() {...};
6 }
7 class C extends B {
8 public void m(){...};
9 }

10 class Main {
11 public static void main(String[] args) {
12 new Main().bar(new B());
13 }
14 void bar(A p) {
15 A.foo();
16 p.m();
17 }
18 }

Figure 4.6: Inheritance in Java code, adapted version taken from Harrold et al.
[126, Figure 3b].

4.3. REGRESSION TEST SELECTION FOR TRANSCOMPILED
CROSS-PLATFORM APPLICATIONS 65

Figure 4.7: EJIG with bindings.

Figure 4.7 illustrates the relevant part of our resulting EJIG that we obtain
when traversing the AST of the main method and its call to bar with the
ASTVisitor. The figure is created with the aid of the GraphStream library
[118]. As we can see, we create a node for every single element of interest that
we want to represent in the EJIG. This includes the methods (e.g. node 12,
bar), constructors, and initializers themselves that we collected before (see
Figure 4.5), but we also create nodes for statements (e.g. node 38, A.foo()
and node 42, p.m()), special expressions such as conditional expressions, and
method calls (e.g. node 44, A.m(), node 9, B.m(), and node 7, C.m()). For
representing calls to external methods, we adhere to the principle proposed by
Harrold et al. [126] and solely model the call itself. As the external method
might be part of a library whose code is not available, we just model the rest of
the method as path edge to an exit node (see the red edges 33 and 39 labeled

66 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

as external path). Call edges are represented as green edges. In case of the
invocation of method m, there are three possible methods in class A, B, and C.

Node Structure: Another detail worth considering is the node structure in
the EJIGs. Conformable to the doctrine, Rothermel, Harrold, and colleagues
[126, 233] model return nodes for each method even if there does not exist a
corresponding statement in the code. Figure 4.8 shows Harrold et al.’s JIG [126]
of the bar method presented in Figure 4.6. Please note the return node after
node 7 (A.foo();). In contrast, we do not introduce return nodes artificially
and model return nodes only if they are present in the code.

Figure 4.8: Artificial return nodes in Harrold et al.’s JIG [126, Figure 3b].

Dealing with Equally-Named Elements and Class Hierarchies: Yet
another improvement in the EJIG includes the effort to do the whole analy-
sis. In the EJIG, information about object types are crucial for an adequate
representation of the control flow. The necessary identification of classes is
done for us in the Eclipse AST by means of the Eclipse bindings mechanism
[62, 64] which resolves all identifiers occurring in the parsed code. Bindings
contain sophisticated information about references, types, super classes, and
many more details. This enables us to create globally qualified class names
to represent object types. This way, we are able to distinguish classes with
the same name in different packages as well as to differentiate between classes
in inheritance chains to represent polymorphism. Unlike Harrold et al.’s ap-
proach [126], there is no need of doing a separate class hierarchy analysis
to determine all the methods that can be reached by a call due to poly-
morphism and dynamic binding. Bindings offer all the information we need
to perform the necessary calculations in a fast and effective way when pars-
ing the AST and creating the EJIGs. In Figure 4.7, the nodes and call
edges are already labeled with an appropriate binding. If a new class is in-
stantiated, we always use the globally qualified class name. For example,

4.3. REGRESSION TEST SELECTION FOR TRANSCOMPILED
CROSS-PLATFORM APPLICATIONS 67

the code in Figure 4.6, line 12 (new Main().bar(new B());) and node 32
or node 33 in Figure 4.7 illustrate this. Here, the label for the Main Ob-
ject is java/lang/Object:testpackage/Main. The label of the class B is
testpackage/A:testpackage/B and reflects the inheritance chain.

In Figure 4.10 and Figure 4.11, we give some more insights how to model
statements and expressions. To this end, we use example source code of a
program version P and its modified version P ′. The code is depicted in Fig-
ure 4.9. Line 10 of Figure 4.9a contains a conditional expression. An excerpt
of the corresponding EJIG is shown in Figure 4.10. We model each branch of
the conditional expression explicitly (see nodes 26-30 in Figure 4.10). In more
complicated conditional expressions, this helps us to precisely locate possible
faults. Moreover, it helps us to calculate for example the branch coverage to
solve the coverage identification problem (see Chapter 7).

1 package test;
2

3 public class A {
4 protected Object o =
5 new Object();
6 }

1 package test;
2

3 public class B extends A {
4 private int minVal = 0;
5

6

7

8 private void minVal(int b) {
9 int a = 1;

10 minVal = (a < b) ? a : b;
11 System.out.println(minVal);
12 }
13

14 private void m() {
15 o = 1;
16 }
17

18 public static void main(
String[] args) {

19 B b = new B();
20 b.minVal(2);
21 b.m();
22 }
23 }

(a) Source code in P

1 package test;
2

3 public class A {
4 protected Object o =
5 new Object();
6 }

1 package test;
2

3 public class B extends A {
4 private double minVal = −1.0;
5 private Object o =
6 new Object();
7

8 private void minVal(int b) {
9 int a = 1;

10 minVal = (a < b) ? a : b;
11 System.out.println(minVal);
12 }
13

14 private void m() {
15 o = 1;
16 }
17

18 public static void main(
String[] args) {

19 B b = new B();
20 b.minVal(2);
21 b.m();
22 }
23 }

(b) Source code in P ′

Figure 4.9: Statements, conditional expressions, and fields in the EJIG.

68 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

Figure 4.10: Conditional expression in the EJIG of P .

Modeling Fields: Another peculiarity affects global variables/fields and the
direct initialization of global variables (in Java: field initialization, see e.g.
class A or class B, line 4 in the example in Figure 4.9). To create the EJIGs,
we traverse all initializers, constructors and methods as described above. But
unfortunately, fields whose initialization is beyond a constructor do not show up
in the EJIG. To reflect modifications in the field initialization, we model them
in the EJIG explicitly as part of the constructor or – in case of static fields –
as part of an initializer. If there is no constructor or initializer, we introduce
the appropriate element artificially and model the fields therein. Figure 4.11
illustrates this. Instantiating a new object B invokes the default constructor
(see node 11 in Figure 4.11a). It invokes the super constructor (node 12)
which in turn initializes Object o = new Object() (node 20). Afterwards,
the constructor of class B initializes minVal.

The label of a field integrates both the type and the location of a field in the
source code. This is important to recognize type modifications or changes in the
initialization. For example, we might think of a change from int to double in
the field minVal and the assignment of another value (see Figure 4.9b, class B,
line 4). This is reflected in the EJIG of P ′ in Figure 4.11b (compare node 17
with node 15 in Figure 4.11a).

Beyond that, we detect when a field declaration hides another field declared
in a super class. The code in Figure 4.9b introduces a new field o (see class B,
line 5 and node 18 in Figure 4.11b). The method m (see lines 14-16 in P ′,
Figure 4.9b) re-initializes B.o rather than A.o as shown in the code of P . The
EJIG is fully aware of this change. Please compare node 38 in Figure 4.12a
with node 52 in Figure 4.12b and note the change in the type from test/A to
test/B.

Handling Inner and Anonymous classes: The last adaptation affects the
handling of inner classes and anonymous classes. In Java, top level classes may
comprise anonymous classes and inner classes. Despite binding information,
the usage of anonymous and inner classes brings along naming problems when

4.3. REGRESSION TEST SELECTION FOR TRANSCOMPILED
CROSS-PLATFORM APPLICATIONS 69

(a) Field minVal and o in P .

(b) Field minVal and o in P ′.

Figure 4.11: Fields in the EJIGs.

modeling their globally qualified class names. For example, already Ren et al.
[224], stated:

“In a JVM, anonymous classes are represented as EnclosingClass-
Name$<num>, where the number assigned represents the lexical order
of the anonymous class within its enclosing class.” [224, page 438]

If another anonymous class has been added or one of the existing anonymous
classes has been removed in a new program version, this might lead to changes

70 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

(a) Overridden field o in P .

(b) Overridden field o in P ′.

Figure 4.12: Statements, expressions, and fields in the EJIG.

in the name representation of the remaining anonymous classes. As a result,
it complicates a consistent representation in the EJIG, which is important for
the subsequent comparison of the two program versions. (The comparison al-
gorithm will be introduced in Section 4.3.2). Consequently, there might occur
failures to reliably detect changes made in anonymous classes or it might hap-
pen that wrong anonymous classes are compared with each other. Figure 4.13
illustrates this. We explain it in the next paragraphs.

The code in Figure 4.13a has just one anonymous class (KeyListener,
line 9). Using Eclipse’s binding directly, this class would be labeled with
number $1. Accordingly, the label of the method keyPressed would be
test/OuterClass;.()$1.keyPressed(java/awt/event/KeyEvent;). That is,
it would consists of the package name test, the name of the top level class
OuterClass, the default constructor .(), the number $1, the method name,
and the globally qualified class name for KeyEvent.

The code in Figure 4.13b, has a second anonymous class (ActionListener,
line 4). The rest of the code remains unchanged (see lines 9-16). Due to
this change, the anonymous class KeyListener would be labeled with num-
ber $2. Naturally, the label of the method keyPressed would change to
test/OuterClass;.()$2.keyPressed(java/awt/event/KeyEvent;). For this
reason, the method would be erroneously recognized as code change although
it did not change at all.

So, there are some enhancements necessary to identify anonymous classes
correctly. Ren et al. [224] use a combination of the top level class name, the
name of the method containing the anonymous class, the class name of the
anonymous class itself, and a number. We basically follow their strategy, but we
propose to consider parent nodes in the AST (e.g. button.addKeyListener)
in order to create a unique label. This solves a naming problem that has been

4.3. REGRESSION TEST SELECTION FOR TRANSCOMPILED
CROSS-PLATFORM APPLICATIONS 71

1 public class OuterClass {
2 private JButton button = new JButton("Press me!");
3 public OuterClass() {
4 // In P’, there will be another anonymous class in lines 4−8

9 button.addKeyListener(new KeyListener() {
10 @Override
11 public void keyPressed(KeyEvent e) {
12 press();
13 }
14 });
15 }
16 }

(a) Anonymous class in program version P .

1 public class OuterClass {
2 private JButton button = new JButton("Press me!");
3 public OuterClass() {
4 button.addActionListener(new ActionListener() {
5 @Override
6 public void actionPerformed(ActionEvent e) {}
7 });
8

9 button.addKeyListener(new KeyListener() {
10 @Override
11 public void keyPressed(KeyEvent e) {
12 press();
13 }
14 });
15 }
16 }

(b) Additional anonymous class in version P ′.

Figure 4.13: Problems when generating globally qualified class names for
anonymous classes.

reported by Ren et al. themselves. According to this, their naming solution
could fail “when two anonymous classes occur within the same scope and extend
the same superclass” [224, page 438].

Comparing the EJIGs of two program versions

For traversing and comparing the EJIGs of two program versions, we apply
the basic principle depicted in Section 4.3.1. However, we have adapted several
details which we want to present in this subsection.

The first adaptation concerns the comparison and the expected results. The
purpose of Rothermel, Harrold, and colleagues [126, 233] is to identify those
parts of the code in the original program P that have been changed in the new

72 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

program version P ′. The output of their compare algorithm ([126], Figure 7) is
a set of dangerous edges for P . This is inadequate for our purposes as we want
to localize faults in the new, refined program version P ′. In doing so, we would
like to have support from the IDE in use. That is, we wish to obtain a view
that lists all the changes in P ′. When selecting one of the changes, we expect
to switch to the corresponding piece of code in P ′. The old version P is not
available any more. So, the output of our algorithm is a set of dangerous nodes
of the new program version P ′. With this information, we can map the affected
test cases directly to statements in the code that might be responsible for the
change (see Section 4.5 and Section 4.6, respectively). Algorithm 1 depicts the
details of our comparison algorithm.

When comparing our algorithm with the one presented by Harrold et al.
[126], one difference affects the entry nodes. In case of Harrold et al. [126], these
include entry nodes of the main method, as well as entry nodes of methods de-
clared as static. As described before, we additionally consider GWT-specific
entry nodes and dependency injection. Furthermore, Harrold et al. seem not
to take into account that such an entry node might have been modified. (At
least, their algorithm does not indicate it.) For example, we might think of
moving the main method to another package. For this reason, we at first check
the labels of the nodes for equivalence (see line 1 in Algorithm 1). To do this,
we follow Harrold et al. and compare the labels lexicographically. Due to the
bindings mechanism, we can track any changes. If the labels do not coincide,
we add the outgoing edge of the main method to list of dangerous edges. For
this purpose, we use a helper method getAnyEdge() that determines all the
outgoing edges of a node (see lines 2-3). In a subsequent analysis (more details
follow in Section 4.3.3), we are able to identify in general which node (start
node or target node) of the dangerous edge has been modified.

Unlike the algorithm of Harrold et al. [126], our algorithm dispenses with
recursion. This avoids stack overflow problems in Java-like languages that rely
on the JVM. So in line 5 (see Algorithm 1), we push the start nodes s and s′

onto a stack and start a loop to traverse the corresponding EJIGs (see line 6).

For the moment, the rest of our compare algorithm follows the comparison
algorithm of Harrold et al. [126] in its basic principle except for our modifi-
cations (operating on P ′ rather than on P and the adaptations explained in
Section 4.3.2, “Constructing the CFG”). We first pop the topmost pair of
nodes n ∈ P and n′ ∈ P ′ from the stack (see lines 7-8) and check whether n′

has been visited in a previous iteration of our compare algorithm (see line 9). If
it has not been visited yet, we mark n′ as visited (see line 12). Afterwards, for
each edge leaving n, we try to find a corresponding edge that leaves n′. This is
implemented in the helper method match (see lines 13-14). If we cannot find
such an edge e′ (see line 15), we continue the loop in line 12. Prior to that, we
do another analysis that we introduce in Section 5.4.4. Otherwise, if we have
found two corresponding edges e and e′ in line 14, we check whether their target
nodes t and t′ (lines 19-20) coincide, too (see line 22). If this is not the case,
we add e′ to the list of dangerous edges (line 25) and perform – as opposed to

4.3. REGRESSION TEST SELECTION FOR TRANSCOMPILED
CROSS-PLATFORM APPLICATIONS 73

input : s: start node in P ; s′: start node in P ′

output: d: List of dangerous edges
1 if ¬nodeEquivalent(s′, s) then
2 e′ ← s′.getAnyEdge();
3 d ← d.add(e′);

4 end
5 stack.push(s, s′);
6 while stack not empty do
7 n← stack.pop.oldNode;
8 n′ ← stack.pop.newNode;
9 if n′ is marked visited then

10 continue;
11 end
12 mark n′ visited;
13 foreach edge e leaving n do
14 e′ ← match(n′, e);
15 if e′ is empty then
16 // handle removed code; more details follow in Section 5.4.4;
17 continue;

18 end
19 t← e.targetNode;
20 t′ ← e′.targetNode;
21 // handle special nodes, see Section 5.4.1;
22 if ¬nodeEquivalent(t′, t) then
23 // distinguish kind of modification;
24 // more details follow in Section 5.4.4;
25 d ← d.add(e′);

26 end
27 else if t′ is not marked visited then
28 stack.push(t, t′);
29 end

30 end
31 foreach edge e′ leaving n′ without counterpart do
32 // handle special cases; more details follow in Section 5.4.4;
33 d ← d.add(e′);

34 end

35 end

Algorithm 1: Comparing two EJIGs: compare.

Harrold et al. – an extra analysis to distinguish the kind of code modification
(see lines 23-24). Besides, the analysis enables us to compare nodes of two
program versions more in-depth even if changes have already been detected.
We introduce our extra analysis once more in Section 5.4.4. If the target nodes

74 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

t and t′ are unchanged, we push them on the stack (see lines 27-29). Finally,
before restarting the outer loop (pop a node pair from the stack), we add all
edges e′ leaving n′ without a counterpart e ∈ P to the list of dangerous edges
(see lines 31-34). Again, we also handle some special cases (see line 32).

Preconditions

We follow Rothermel and Harrold [233] that there should be no obsolete tests
(see Section 2.1) in the test suite left. This way, they avoid test failures due to
non code related factors like illegal test inputs. However, in contrast to Rother-
mel and Harrold, we do not consider this as a hard precondition. In practice,
the implementation is fast and we need a quick feedback about which tests
should be re-executed. It might happen that the developers do not recognize
that a specific test in a huge test suite is obsolete. But this is no problem as
the test would just fail. When localizing eventual faults in the source code, the
developer will notice that the test does not fit the current implementation any
more and that the test has to be adapted. Apart from that, research exist (e.g.
[185]) on how to determine which tests are still usable after code modifications
and which ones are not. Instead of just ignoring the obsolete tests, researches
have come up with techniques (e.g. [185]) to automatically repair them.

In Section 4.3.1, Paragraph “Assumptions in the Approach”, we have al-
ready mentioned that Harrold et al. [126] assume tests to be deterministic.
Moreover, Fowler [86] stresses that non-deterministic tests that fail randomly
are completely useless because the developer never knows whether the test fail-
ure is due to a bug or due to other factors that result in non-determinism. We
follow their argumentation and take this as precondition, too. Nevertheless,
especially in web applications, we are facing many factors that threaten this
assumption. We discuss possible threats in Section 4.8.3 in more detail.

As classes in external libraries are usually available in bytecode only, GWT
is not able to compile them. So, external classes are not analyzed by our tool.
As a precondition, we consider external code as well-tested.

Some standard Java language elements are currently not supported by the
implementation of our technique. This includes reflection and concurrency.
However, this means no restriction. GWT does not support reflection in general
[103, 105]. The same applies to concurrency [105]. So, if JavaScript is used
as the target language, multi-threading does not exist. GWT just ignores
concurrency-related keywords like synchronized. Of course, there are other
target languages that support concurrency and multi-threading in order to
utilize multi-core processors efficiently. For this purpose, our approach would
have to be extended. We could imagine that the idea of Apiwattanapong et al.
[12] to handle concurrency could be integrated.

At the time of our evaluation, the latest GWT version has been GWT 2.7.
This version did not support Java 8 yet. For this reason, we decided to re-
linquish the implementation of Java 8 features in the EJIG. Consequently, we
cannot guarantee that our prototype implementation will work correctly when

4.3. REGRESSION TEST SELECTION FOR TRANSCOMPILED
CROSS-PLATFORM APPLICATIONS 75

applied to code using Java 8 features like lambda expressions. Notwithstanding
that, the support of these syntactical features is just a technical detail that is
not decisive for our overall approach.

Currently, native JavaScript methods using JSNI [97] are not analyzed ei-
ther because the AST does not represent them. Originally, we planned to
support this in a later version of our tool implementation. In the meantime,
though, a new concept has been introduced which is called JsInterop [94] (see
Section 3.2). It is meant to be the replacement of JSNI. For this reason, we
expect that the developer is aware of this fact. If the developer cannot cope
without using JSNI, we expect that these parts of the code are tested with ex-
isting special tools like Selenium [252], UnitJS [271], or GwtMockito [169].

4.3.3 Localizing Changes in the Source Code

After the comparison of the EJIGs has been finished, we have a set of dangerous
edges, consisting of a start node and a target node. Of course, we want to
know exactly which of the two possible nodes has been changed because this
is essential for the test selection and – provided that there are test failures –
the subsequent fault localization. Moreover, we can provide a direct link to
the underlying code in the source language. Technically, the changed node
is represented by an ASTNode in the Eclipse AST. So we can highlight the
appropriate piece of code in the Eclipse IDE. Besides, we can provide extra
views with a list of all the code changes and we are able to bookmark the
modifications in the code editor.

In order to decide whether the source node or the target node of the dan-
gerous node has been changed, we have to consider many different cases. We
discuss the most important ones:

Regular Case: In the easiest case, a dangerous node indicates that the start
node coincides in P and in P ′, but the target node differs. So it is the target
node that represents the code change and thus, we can highlight the corre-
sponding ASTNode in the Eclipse view. This standard rule applies in case of
simple statements within methods or constructors.

Artificial Nodes: As another example, let us imagine that the dangerous
edge starts with an artificial node (i.e. InjectedNode, UiHandler, StartupNode,
or RestECN). Here, the target node must have been changed as the artificial
node has no real counterpart in the source code.

There are many more similar cases where the standard rule applies. How-
ever, there are also lots of exceptional cases:

External Methods: Let us imagine that the start node of the dangerous
edge is an external method. Then, the call must have been changed. As we
usually do not have access to the code of the external method, we mark the
start node as modified to register that there is a change.

76 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

Exit Nodes: Similarly, when the CFG of P ′ suddenly ends with an exit node,
some nodes have been deleted. As we cannot mark removed code in the Eclipse
editor, we highlight the start node.

Main Methods: Finally, we want to revisit modified entry nodes. In the
previous section, we briefly considered changes in the main method of P ′. Here,
the start nodes representing the main methods in P and in P ′ are not equivalent.
So once more, we identify the start nodes as changed.

4.4 Basic Instrumentation Approach

In regression test selection, it is a prerequisite to know for each single test which
code it traverses in an initial program version P . Only with this information, it
is possible to determine these tests that cover modified code in a new program
version P ′. A very popular way to obtain this knowledge is to instrument the
application’s code and to run every test case in order to collect some kind of
coverage information during the test run. As already discussed in Section 2.3,
there are basically two possibilities where to insert instrumentation code: plain
source code or any kind of target code such as bytecode. Again, some transcom-
pilers directly take the source code as input and compile it to a target language.
In case of GWT-based web applications for example, client-side Java code is
compiled to JavaScript. Java bytecode is never considered during that process.
Besides, developers usually only deal with the source language. Code of the
target language might be obfuscated (e.g. GWT, see Figure 3.2 in Section 3.1,
or NeoMad [202]). In this case, it is very difficult to comprehend what the code
in the target language actually does, why a test case fails and which code in
the source programming language is responsible for the failure. So analyzing
the code of the target language is not helpful when trying to localize faults in
the source code written by the developer. For these reasons, a generic solution
requires instrumenting the source code.

4.4.1 Challenges when Instrumenting Source Code

Instrumenting source code always rises four main questions: (a) Which in-
formation do developers expect to obtain by instrumenting source code? (b)
How should the instrumentation code look like in order to provide the required
information? (c) How can we manage to access the data produced by the in-
strumentation code? (d) Where should the instrumentation code be added?
Answers to these questions should be as generic as possible in order to be us-
able for many different transcompiler frameworks and in order to find solutions
to the three problems depicted in Section 1.2. We therefore want to inspect
the questions and their implications in more detail:

Question (a) addresses two different aspects. First, which purposes do
developers have in mind when instrumenting source code? Which kind of in-
formation do they need? Is it enough to get information whether or not a

4.4. BASIC INSTRUMENTATION APPROACH 77

certain piece of code has been traversed by a test or do developers also want
to know how intensively and thoroughly a piece of code is covered by a test
case? Besides, what is actually a piece of code? Is it a function or should even
more fine-grained components of the code be reflected? This leads to the sec-
ond aspect: In which form should the information be provided? Possible forms
start with simple result lists for every test case and might end with extensive
datasets in databases.

In order to find an adequate solution to the two aspects imposed by question
(a), we have to think about how to encode the required information. Besides,
we have to find a general pattern to structure instrumentation code internally.
This is the focus of question (b).

Question (c) asks for a solution how we can obtain the data that describe
which UI/web tests have traversed which parts of a mobile application/web ap-
plication. These data are the basis for deciding which tests have to be selected
for re-execution and for determining a set of changes in the source code that
might be responsible for a test failure. But in web tests for example, the data
are only available in the browser and it is not possible to write them to disk
directly. Besides, the size of the browser cache is limited. So, collecting these
data in the browser hits the wall quickly.

Finally, question (d) considers both syntactic and semantic requirements
on instrumenting source code. As already explained at the beginning of this
section, we create instrumentation code for the source code. Following the
usual procedure of source code instrumentation, the additional instructions
are injected to the software’s source code, thus must fulfill the syntax rules
of the corresponding source language. In the context of transcompilers, both
source code and instrumentation code will then be transcompiled into the target
language. The additional instrumentation code is always semantically related
with a piece of the source code. In the context of transcompilers, it is crucial
that the semantic relation still holds after compiling the source code into the
target language.

In the next four subsections 4.4.2 - 4.4.5, we give answers to the questions
(a) - (d).

4.4.2 Purpose of Code Instrumentation and Expected Infor-
mation

Purposes of Our Code Instrumentation: In order to solve our three main
concerns (test effort reduction problem, fault localization problem, coverage
identification problem, see Section 1.2), we need to gather information about
which test traverses which parts of the source code. This enables developers
to precisely select test cases that cover code modifications. The information
has also to be usable to assist developers in identifying code changes that are
responsible for test failures. Finally, the code instrumentation has to assist
developers in judging which parts of the code need additional testing.

78 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

Required Kind and Precision of Information: Basically, it is a simple
yes-no decision to answer the question whether or not a specific piece of code
is ever traversed by a test. Encoding this information just requires a boolean
variable. However, for estimating how thoroughly a specific piece of code is
tested, it is better to use more sophisticated instrumentation code that pro-
vides information about which piece of code is traversed how often in total,
maybe even per test case. For this reason, our future test infrastructure must
have the following properties: It has to produce instrumentation code that 1)
unambiguously identifies a piece of code and that 2) reports whenever this code
has been traversed by a test. Based on this information, the infrastructure has
to keep track on 3) how often a specific piece of code has been traversed (in
total or even by a specific test).

Source code instrumentation can be imagined at different granularity lev-
els, depending on the pieces of code we consider. For example, instrumentation
code can represent source code at function level, at statement, or even at ex-
pression level. If we would just be interested in whether a function has been
traversed, it would be enough to instrument functions. But as we want to de-
termine as exactly as possible the location of a code change, this information
is too imprecise. The same is true when judging the quality of test cases. With
instrumentation code on function level, we of course can solely provide values
about function coverage. Naturally, a finer instrumentation level needs to in-
sert more instrumentation code to identify these syntactical elements. This
increases the runtime, but offers execution information even for fine-grained
elements like conditional expressions, which are supported by many C-based
languages via a ternary operator. This enables us to check whether all possible
branches or whether a critical statement is tested thoroughly. We offer and
evaluate in our regression test selection approach various instrumentation lev-
els which can be defined by the user. We also investigate two different ways to
provide the data collected during instrumentation, a simple file-based approach
and a database-based approach.

4.4.3 Our Code Instrumentation Structure

In this Section, we define how our instrumentation code has to look like in
order to meet all requirements defined in Section 4.4.1.

Discussing Existing Ways of Code Instrumentation

When deciding how the structure of our instrumentation code should look like,
it could be helpful to consider already existing approaches. CodeCover [44]
is a tool for calculating a test suite’s code coverage. In order to provide these
data, they need to instrument code, too. We would like to explain their way of
instrumenting source code in an example (see Figure 4.14) that is taken from
a publication of Hanussek et al. [124, page 19] which describes the functional
principle of CodeCover:

4.4. BASIC INSTRUMENTATION APPROACH 79

<statement1>

<statement2>

<statement3>

(a) Statements of a program.

counter1 := counter1 + 1

<statement1>

counter2 := counter2 + 1

<statement2>

counter3 := counter3 + 1

<statement3>

(b) Statements with added instru-
mentation code in a program.

Figure 4.14: Method for instrumenting code used by CodeCover; the example
is taken from Hanussek et al. [124, page 19].

Figure 4.14 shows the pseudo-code of a program. Figure 4.14a shows three
statements. In Figure 4.14b, they have been supplemented with instrumenta-
tion code. As we can see, CodeCover uses simple counters to do this. The
authors realize the counters as serially numbered variables, but they emphasize
that any other data structure (e.g. arrays) being able to hold a value is equally
convenient. When running a test on application code instrumented like that,
we obtain as output a set of variables for each test case. The variables are
representatives of the elements of interest that have been executed.

While serially numbered variables are sufficient to just decide which parts of
the code have been traversed by a test, they are not suitable for test selection.
The main problem is that any kind of relative numbering requires us to always
re-execute all test cases. Thus, we would have to stick to the retest-all approach.
We would like to explain this in a modified version of the example taken from
Hanussek et al. [124]. Figure 4.15 shows the altered code:

f() {

counterS1 := counterS1 + 1

<statement1>

counterS2 := counterS2 + 1

<statement2>

counterS3 := counterS3 + 1

<statement3>

}

g() {

counterS4 := counterS4 + 1

<statement4>

}

(a) Program version P

f() {

counterS1 := counterS1 + 1

<statement1>

counterS2 := counterS2 + 1

<statement2a>

counterS3 := counterS3 + 1

<statement2b>

counterS4 := counterS4 + 1

<statement3>

}

g() {

counterS5 := counterS5 + 1

<statement4>

}

(b) Program version P ′

Figure 4.15: Instrumentation before statements in two consecutive versions.

80 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

Let us assume that a test t1 runs the function f() in Figure 4.15a, whereas
another test t2 runs the function g(). Now, version P will be refined to version
P ′ (see Figure 4.15b). <statement2> has been replaced by <statement2a>

and a new statement <statement2b> has been inserted. In order to obtain
data about the new statements, it is necessary to re-instrument the source
code after a code modification. As we can see, this indispensable procedure
moves the locations of counterS2, counterS3, and counterS4. counterS2

and counterS3 are still in the same function, but counterS4 has become part
of f(). Moreover, a new counter occurs in g(). So in version P ′, some counters
have been relocated and others have been added compared to version P . This
is not restricted to statements. The same applies when adding or removing
branches, loops or functions. As a consequence, test t1 covers counterS1,
counterS2, counterS3 and counterS4 and t2 covers counterS5.

So, despite the function g() has not been changed, the coverage informa-
tion of t2 differs (counterS5 instead of counterS4) and must be determined
again for P ′. This implies that the entire coverage information is not usable
any more because we do not know in advance which statements in other func-
tions are affected in the same way. For this reason, all test cases would have
to be re-executed in order determine the coverage information. Of course, this
is completely contradictory to our target of re-executing only these tests that
cover a code change in P ′. We never want to rerun all tests in order to re-
store their execution history. Consequently, it should never be necessary to
re-execute test cases that are not affected by a code modification. Besides,
we do not want to re-instrument source code that has not been changed. As
we can see, this relative kind of numbering code elements can be used only
once to collect coverage information for a certain version of the application and
becomes invalid as soon as the source code has been changed.

In the Related Work Section 4.2, we have discussed some more approaches
and we have already stressed their deficiencies. Please remind that entry/exit
events (see the approach of Geimer et al. [92]) or whole blocks (see Larus [171]
or Ayers et al. [23]) are too imprecise for a precise fault localization and a test
selection that re-executes as less tests as possible.

Another possible solution for instrumenting code has been presented by
Rothermel, Harrold, and colleagues [126, 233]. Rothermel and Harrold in-
strument the application code to obtain a “branch trace that consists of the
branches taken during this execution” [233, page 176]. Thereof, they determine
edges covered by a test. Harrold et al. process these data further in order to get
an edge-coverage matrix [126, page 315]. By using the dangerous edges that
identify modified edges in the CFG, they are able to select those tests that are
affected by code changes.

We are interested in a more straight-forward solution that goes beyond the
consideration of edges in order to localize modifications in the source language.
For this reason, we develop an own approach to instrument test cases that
addresses all the challenges listed in Section 4.4.1. This way, we will also be
able to check how thoroughly a particular piece of code is covered by tests.

4.4. BASIC INSTRUMENTATION APPROACH 81

Developing an Own Code Instrumentation Structure

We propose to use as instrumentation code unique identifiers representing code
entities like functions, statements or expressions. The basic idea resembles the
procedure of Larus [171] mentioned in Section 4.2 before. But most notably,
we do not linger over basic blocks but handle statements or even expressions,
too. Besides, we manage to realize the code instrumentation in transcompiled
applications. In order to instrument the source code automatically, we require
an abstract syntax tree (AST) for each source file. Because programs in most
programming languages can be represented by their ASTs, our approach is
universally usable. We start to traverse the AST from its root until we reach
the nodes with a certain level (see Section 2.5, Paragraph “Structure of a Tree,
Basic Terms and Definitions”) that corresponds to the instrumentation level
defined by the user. For each node in the AST traversed so far, we compute
a unique code identifier (CID). Each CID consists of a sequence of characters
(in Java: a String). For the CIDs, special rules are in place. We explain them
in the next parts.

Technical Demands on Code Identifier: A CID has to fulfill two condi-
tions: It must be deterministically computable and it has to be unique.

A unique CID means that each CID represents exactly one code entity. This
is necessary in order to avoid confusions that could arise if for example a state-
ment occurs several times in the source code. More specifically, unique CIDs
enable us to identify exactly which source code entities have been traversed by
a test.

A deterministic computation means that none of the CIDs will change dur-
ing a recalculation as long as the program code has not changed. Once the
program code has been modified, only those CIDs change that are connected
to modified code entities. All other CIDs remain unchanged. This implies that
newly introduced or removed body declarations in the AST (e.g. functions or
global variables) do not affect the CIDs of already existing body declarations
(provided that they have not been changed).

Deterministically computed CIDs are necessary for two reasons. First, for
selecting tests and for localizing faults in a newly created version P ′, we need
to reconstruct all the CIDs that have been used to instrument the original
program version P in order to obtain test traces. Actually, when the original
program version P is transcompiled for the first time into target code, any kind
of ID would be fine as long as it reflects the code structure of P and if it is able
to trace the code executed by a test. However, as soon as the code evolves, we
obtain a new version P ′ and compare it with P (see Section 4.3.2). As a result,
we get all the code changes in P ′. At that point, it is essential to find out which
test traverses the corresponding code change. All the existing CIDs refer to
code in the original version P . Consequently, we need to reconstruct the CIDs
that have been traced to the target code before. Afterwards, we transfer the
CIDs to P ′ during the comparison. If there is a code change in P ′, we query

82 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

the CID that represents the code entity in P and associate it with the new
code entity in P ′.

The second reason for using deterministically computed CIDs concerns the
effort to update a test suite. Tests that are affected by a change have to be
adapted. This invalidates the former test trace containing the corresponding
CIDs. A new test trace with the latest CIDs has to be created. But this
actually affects only those tests that are affected by a change. All the other
tests must not be executed and there should be no necessity to create a new
test trace. Their CIDs must still be valid. Otherwise, all the effort to analyze
code for selecting tests for retest would be destroyed.

Basically, we could store the CIDs calculated for P somehow (e.g. in a
database). But this entails an annoying maintenance that involves updating
changed CIDs as well as adding new/removing old CIDs. As the Eclipse JDT
provides a fast traversal of the AST via the visitor pattern, we recalculate them
instead.

Internal Structure of CIDs: To create a CID that meets all the described
technical demands, one could basically come up with the idea to encode the
whole CID as hash value or to reuse Eclipse’s binding. However, the bindings
mechanism of Eclipse only works with named entities (e.g. types or methods)
[64], but not with statements. Hash code is used for example by Ruth and Tu
[240] to encode statements for the comparison of two CFGs. Nevertheless, using
simple hash values in code instrumentation is insufficient as it does not take into
account that for example a statement might occur several times in the same
function of a file. Consequently, we would obtain the same hash value which
would violate the demand on CIDs to be unique. We refer to this problem as
identical statement problem. In order to distinguish these statements, we need
a more sophisticated encoding that reflects which statement a CID refers to.

Another idea could be to generate unique CIDs for all the code entities in a
file of the source language. This would completely suffice if the transcompiler
would keep CIDs separated that are contained in separate files of the source
language. That is, the transcompiler should maintain the source code’s file
structure in the target application. This way, the transcompiler could even
introduce new files in the target language in order to group code more than
before. The only constraint is that the transcompiler would never be allowed
to combine code in a file of the target language that has been separated in
the source language because this could violate the uniqueness requirement of
CIDs. But in fact, some transcompilers exactly do mix up code that has been
defined in different source files in the source language. An example is the GWT
compiler (see Section 3.2, “Google Web Toolkit”). It creates only one file that
contains all the target code. As a result, CIDs could not be kept apart if we
would apply our second idea. To avoid this problem, we encode in our CIDs
the path to each node in the AST. This is done by prefixing all the CIDs with
their globally qualified file name. This way, we are able to distinguish CIDs
originating from different source files.

4.4. BASIC INSTRUMENTATION APPROACH 83

Having these preliminary considerations in mind, we can define the gen-
eral structure of a CID that consists of a mixture of paths, hash values and
hexadecimal numbers:

<path_to_fileName_fileExtension><HashValue(s)><HexNumber>

Part 1: The path_to_fileName_fileExtension represents the globally
qualified file name. In Java, this corresponds to the globally qualified class
name.

Part 2: The next part of the CID comprises one one several HashValue(s).
It represents type declarations (e.g. classes) and body declarations (e.g. fields
or methods). CIDs of unchanged nodes in the AST must never change when
code has been added or removed. They have to be stable. For this reason,
we cannot use relative numbers for the identification of types or body dec-
larations. Depending on the AST and the parser in use, this could lead to
the problem that we have described in Section 4.4.3 with respect to Code-
Cover. New or removed methods would shift the relative numbering. We
illustrate this in more detail in Figure 4.16. In the original program ver-
sion P , there are two methods f() and h(). f() is represented by the rel-
ative CID <pathToClassName.java001>, h() is represented by the relative
CID <pathToClassName.java002>. Both f() and h() contain the same state-
ment s1 (see Figure 4.16a). In method h(), let <pathToClassName.java002s1>
be the CID for s1. For s1 in f(), let <pathToClassName.java001s1> be the
CID. In Figure 4.16b, a new method g() has been added in order to provide
a new feature. It has also a statement s1. Now, s1 in h() is identified by the
number 003 in the CID <pathToClassName.java003s1>.

1 void f() {
2 <pathToClassName.java001s1>
3 // s1
4 }
5

6

7

8

9

10

11 void h() {
12 <pathToClassName.java002s1>
13 // s1
14 }

(a) Program version P

1 void f() {
2 <pathToClassName.java001s1>
3 // s1
4 }
5

6 void g() {
7 <pathToClassName.java002s1>
8 // s1
9 }

10

11 void h() {
12 <pathToClassName.java003s1>
13 // s1
14 }

(b) Program version P ′

Figure 4.16: Instrumentation with relative numbers in two consecutive versions.

In order to test the new feature, a developer implements a new test t.
Actually, it would be enough to create a new test trace for t. So, the test trace

84 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

would show the CID <pathToClassName.java002s1>. However, a previously
created test trace for method h() in P also shows exactly the same the CID
<pathToClassName.java002s1>. So, the CID represents two different code
entities. Or more general, unchanged code entities would be represented by
other CIDs than before. In the end, we would have to update the CIDs for
all test traces instead of updating only those CIDs that are affected by a code
change. To circumvent the problem, we exploit that names of functions and
global variables have to be unambiguous. With respect to Java, class names as
well as method and field names have to be unique. In order to get a general
representation for these names, hash values are perfectly suitable as they are
stable.

Part 3: As opposed to body declarations, statements can easily be repre-
sented relative to a method declaration. If a statement has been changed, the
corresponding branch/path in the enclosing method has to be retested anyway.
While doing this, a new test trace will be created for this test. We therefore
have decided to encode the paths to statements relative to methods using a
hexadecimal number HexNumber. This is the last part in our CID structure.
Using a hexadecimal number usually requires less characters than using the
statement as identifier and circumvents the identical statement problem. Be-
sides, we can use a trie (see Section C in the Appendix) to persist the data in
a memory-saving way.

The combination of globally qualified file name, hash value, and hexadeci-
mal number is well-suited to serve as CID. An enhancement would have been
to encode the entire combination (globally qualified file name plus hash value
plus hexadecimal number) as a whole as hash value. However, we have decided
against the additional encoding of the CIDs as single hash value to facilitate
the debugging process. A simple hash value would make it very hard to check
whether the instrumentation works as expected.

Examples: We want to put the structure of CIDs into practice. To this end,
we give two code examples that use Java as source language. In the first one,
we consider the initialization of a field that has been introduced manually in
the constructor of the class Stockwatcher presented in Figure 4.2:

1 Button addStockButton = new Button("Add");

The corresponding CID is client_StockWatcher_javaa354014b6275a99a0x2
and can be divided in four parts:

client StockWatcher java︸ ︷︷ ︸
Globally qualified file name

Hash value
representing type︷ ︸︸ ︷
a354014b 6275a99a︸ ︷︷ ︸

Hash value representing
body declaration

Statement︷︸︸︷
0x2

Finally, our second example (see Figure 4.17) shows code of a class that
contains a method with several statements.

4.4. BASIC INSTRUMENTATION APPROACH 85

1 package test;
2

3 public class Branch {
4

5 public static void main(String[] args) {
6 if(true) {
7 ;
8 }
9 else {

10 ;
11 }
12 }
13 }

Figure 4.17: Simple Java example code.

ASTNode Start End CID

Method- 5 12 test Branch java1627510bfa690ec7
Declaration
IfStatement 6 11 test Branch java1627510bfa690ec70x40x0
Then 6 8 test Branch java6e016941fa690ec70x40x00x0
Statement
Empty- 7 7 test Branch java1627510bfa690ec70x40x00x00x0
Statement
Else 9 11 test Branch java1627510bfa690ec70x40x00x1
Statement
Empty- 10 10 test Branch java1627510bfa690ec70x40x00x10x0
Statement

Table 4.1: Examples of CIDs.

Table 4.1 shows the corresponding ASTNodes, their location in the code and
the corresponding CID. For example, the MethodDeclaration starts in line 5
and ends in line 12.

Algorithm to Create CIDs for a Software Project: After we have spec-
ified the structure of a CID, we want to explain its calculation. In general, we
use an algorithm called calcCIDs (see Algorithm 2) that relies on the under-
lying AST of the source code. It takes two arguments: the AST of a source
file f and a set of node types that have to be represented by CIDs. These
node types have to be defined by the user. All other node types will not be
reflected by CIDs. In our implementation, we offer menus with predefined
options. In the initial step, calcCIDs starts with the root node of the AST
and pushes it on a stack (see line 1 in Algorithm 2). The next steps are
processed in a loop. In the first place, calcCIDs takes the topmost node n

86 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

(line 3) and checks whether this node type should be represented by a CID
(line 4). At the moment, this is true as n is the root node of the AST rep-
resenting the whole file (in Java: a class). So calcCIDs calculates for n the
globally qualified file name. To this end, calcCIDs invokes the helper function
createGloballyQualifiedFileNameOf(f) (see line 6). Afterwards, calcCIDs
stores the node n and the corresponding CID as key/value pair in a Map s (see
line 10). Finally, our algorithm determines all the child nodes of n and pushes
them on the stack (see line 11).

input : AST of the source file f ; Set t of node types that should be
represented by CIDs

output: Map s that assigns CIDs to nodes n in the AST
1 stack.push(root element of AST);
2 while stack not empty do
3 n ← stack.pop();
4 if typeOf(n) in t then
5 if n has no parent node then
6 cid ← createGloballyQualifiedFileNameOf(f);
7 else
8 cid ← concatenate(getCIDofParentNode(s, n),

getIdentifierOf(n));

9 end
10 s.put(n, cid);
11 stack.push(childNodesOf(n));

12 end

13 end

Algorithm 2: Calculating CIDs: calcCIDs.

Now, the loop restarts in order to calculate CIDs for all other nodes in the
AST. If the stack is not empty and if the type of the topmost node matters,
calcCIDs pops a new node n and calculates its CID as concatenation of the
CID of n’s parent node and the identifier of the current node n (see line 8).
For this purpose, calcCIDs calls getCIDofParentNode which simply fetches
the appropriate CID of n’s parent node from the Map s. Another function
getIdentifierOf(n) returns the new identifier i. If n represents a function
or a global variable, i is a hash value (see Section 4.4.3, Paragraph “Internal
Structure of CIDs”). Otherwise, i is a relative number that is encoded as
hexadecimal number. This way, we can build up the CID incrementally.

In case of programs written in Java, we exploit the Eclipse JDT to traverse
the AST via the visitor pattern rapidly in order to calculate the CIDs. Of
course, there are similar tools available for other programming languages such
as the Eclipse PHP Development Tools (PDT) [63, 68].

4.4. BASIC INSTRUMENTATION APPROACH 87

4.4.4 Processing Data Generated by Instrumentation Code

Of course, solely adding instrumentation code is not enough. We also need a
way to get the information which parts of a program have been traversed. As we
have seen in Paragraph “Discussing Existing Ways of Code Instrumentation” in
the previous subsection, relevant data about program execution can be collected
for example in variables, by creating branch traces or some other kind of log
file. Basically, we could imagine to trace the program execution in a similar
technical way. The main question however is always, how can we access the
data collected in variables or in any similar way, shape or form?

As the tests may be of any kind (unit tests, integration tests, UI/web tests),
we need a mechanism that is universally able to provide the data gathered when
executing instrumentation code. Especially web tests impose restrictions as the
data are only available within a web browser in the first place. It is not possible
to directly persist data on the local hard drive due to security reasons. Nev-
ertheless, we need a possibility that allows us to transfer the data efficiently.
AJAX is a pervasive concept to transfer data between client and server. For this
reason, we have initially investigated XMLHttpRequests to pass the data to an
own http-logging server module whose main task is to persist the data collected
by the instrumentation code. The main disadvantage of XMLHttpRequests
however is that the connection has to be re-established every time when data
are about to be transmitted to the logging server. This has always required
extra time while deteriorating the throughput. Besides, it has been difficult
to notify the client automatically when it should interrupt, stop or delay col-
lecting instrumentation data. This has for example been necessary when the
application under test had to perform some initial setup steps that did not be-
long to the actual test case. For these reasons we have investigated a solution
employing the WebSocket protocol. It is described in the official standard [148]
in the following way:

“The WebSocket Protocol enables two-way communication between
a client running untrusted code in a controlled environment to a re-
mote host that has opted-in to communications from that code. The
security model used for this is the origin-based security model com-
monly used by web browsers. The protocol consists of an opening
handshake followed by basic message framing, layered over TCP.
The goal of this technology is to provide a mechanism for browser-
based applications that need two-way communication with servers
that does not rely on opening multiple HTTP connections (e.g., us-
ing XMLHttpRequest or <iframe>s and long polling).” The Web-
Socket protocol, Version 13 [148]

Especially the possibility to have a two-way communication that remains
open is a big advantage and meets our requirements. Consequently, we have
decided to realize the data processing with the aid of the Web Socket protocol
in combination with a logging server. More details about the logging server
and its functionality follow in Section 4.7.

88 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

4.4.5 Syntactic and Semantic Requirements on Instrumenting
Source Code

Especially in the area of code coverage, the problem of relating instrumentation
code with source code arises. In existing tools like for example CodeCover
[44], instrumentation code is associated with a statement via its position in
the source code [124]. There, the rule is just to insert the instrumentation
before the statement it represents. But of course, adding instrumentation code
into source code must obey the usual syntactical rules of the source language.
Moreover, the instrumentation code is always semantically related with a piece
of source code. This semantic relation depends usually on the exact location
of the instrumentation code and must be preserved after any kind of code
optimization and even after transcompilation. That is, in the target code, the
semantic relation must still hold.

Based on these insights, we have investigated two different approaches to
instrument code that incorporate the special demands of transcompilers. The
first approach follows in a large part the standard approach of instrumenting
source code: We add instrumentation code next to the corresponding code in
the source language and take special precautions to not break any semantic
relations between instrumentation and source code. Details follow in the next
Section 4.5.

The second approach completely avoids adding instrumentation code into
the source code. Instead, the approach directly adds instrumentation code in
the target code. This way, we do not risk to break during transcompilation any
semantic relations between source code and its corresponding instrumentation
code. Unfortunately, this freedom is not for free and has its own disadvantages.
We explain the entire approach in Section 4.6.

4.5 Compiler-Independent Instrumentation

Our compiler-independent approach injects code identifiers as instrumentation
code that will be transcompiled to the target programming language just as
the normal source code. In the target language, we log which identifiers are
executed by a test. The entire instrumentation process requires three steps. It
aims at injecting information into the source code in such a way that it is still
usable after transcompilation in order to collect information about which test
executes which parts of the target code. This information is used to select tests
for re-execution and to identify code changes that might be responsible for a
test failure.

Assumptions

Our approach is based on the following assumptions: First, we presume that
the toolkit used to compile an application to a target language works correctly.
In the same sense, we also assume that the compiler maintains the logic of the

4.5. COMPILER-INDEPENDENT INSTRUMENTATION 89

code. That is, a specific sequence of function calls will be maintained by the
transcompiler. This implies that a common function call declared in front of a
certain statement s will still be executed before s when it has been compiled to
another language. More generally, function calls used as instrumentation code
are still usable for determining code coverage after transcompilation. In the
next subsections, we explain the three steps required for our instrumentation
method in detail.

Step 1 – Code Instrumentation

We start by determining CIDs for all code entities by traversing the AST in
the manner explained in Section 4.4.3. Please remind that the CIDs consist of
simple sequences of characters. We inject these CIDs into the program source
code as instrumentation code. This is done in a pre-processing step before
transcompilation. In order to avoid polluting the local working copy with in-
strumentation code, we use a copy of the source code of P . During transcom-
pilation, both the source code and the instrumentation code are transferred
into the target language. When the transcompiler obfuscates the target code,
it will look completely different than before except for the CIDs: As they are
normal sequences of characters (in Java: Strings), they are maintained during
transcompilation and show up unaltered in the target code.

In contrast to other techniques (e.g. CodeCover, see Section 4.4.3), we
cannot use variables in instrumentation code because they could be obfuscated
during transcompilation. In this case, it could be hard to identify the vari-
ables and thus, it could be impossible to retrieve their values. Besides, our
injected instrumentation code should be usable regardless of the kind of appli-
cation. Our solution for this problem looks as follows: Instrumentation code
always consists of two parts: one (or several concatenated) CID(s) and a sim-
ple function call that takes the CID(s) as argument. Figure 4.18 illustrates
this principle. The instrumentation code – i.e. the corresponding function call
instrument(...) – is highlighted with gray color. It refers to an interface
of a separate module. This module will always be injected during source code
instrumentation. More details on its functionality follow in the explanation of
the next step. In most languages, function calls have to be inserted in the code
as part of a statement. So as a rule of thumb, we inject instrumentation code
as statement in front of the code entity they identify.

However, some programming languages impose syntactical restrictions which
prevent this straightforward solution. Depending on the source language in use,
we have to consider individual exceptional cases. To provide a better under-
standing, we discuss different exceptional cases for Java:

Global Variables, Fields, Classes: Global variables are of great interest
for us for multiple reasons. For the test selection and fault localization, we
need to know whether the type of a global variable has been modified or which
global variables have been added or removed. For calculating the code coverage

90 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

1 function f() {
2 instrument(<unique id representing int x = a * b;>);

3 int x = a ∗ b;

4 instrument(<unique id representing g(x)>);

5 g(x);
6 }
7

8 function g(number x) {
9 // ...

10 }

Figure 4.18: Rule of thumb: Function calls as instrumentation code in front of
code entities.

of UI/web tests (see Chapter 7), we want to reveal whether global variables
are never used or whether they are never initialized. Consequently, we have
to add instrumentation code for these syntactical elements. Nevertheless, in
languages like Java, injecting instrumentation code outside methods results in
syntax errors. (Please remind that instrumentation code consists of simple
function calls.) For this reason, we exploit the language’s rules which define
when the global variables (= Java fields) will be initialized. In Java, field
initialization is performed by the Java compiler within the (default) construc-
tor. Consequently, we insert instrumentation code within the constructor after
possibly present (super-) constructor calls. Figure 4.19 gives an example (see
instrument(<unique id representing i>)). If the class misses a construc-
tor, we insert a default constructor manually and borrow the visibility modifier
declared by the class.

Considering class variables, an instance of the class is not stringently re-
quired. So we add instrumentation code in the (default) constructor as usual
and additionally, we insert instrumentation code in a static initializer that
might have been inserted into the AST if it did not exist yet (see
instrument(<unique id representing j>) and the static initializer in Fig-
ure 4.19).

With regard to classes, we follow the same strategy and add instrumentation
code in the constructor in order to keep track of which classes are executed by
a test case (see instrument(<unique class-id>)).

Functions, Initializers, Blocks: In order to track that a test executes a
function, an initializer, or a(n) (anonymous) block, we inject instrumentation
code at the top of the body (see the function-id in Figure 4.20). For the
statement in m(), the general rule of thumb applies. That is, the instrumenta-
tion code is injected in front of the corresponding statement (see return 1 in
Figure 4.20). So, even if an exception in thrown by the web application, it is
ensured that the corresponding instrumentation code is executed before.

4.5. COMPILER-INDEPENDENT INSTRUMENTATION 91

1 class C {
2 private int i;
3 private static int j;
4

5 C() {
6 instrument(<unique class−id>);
7 instrument(<unique id representing j>);

8 instrument(<unique id representing i>);

9 }
10

11 static {
12 instrument(<unique id representing j>);
13 }
14 }

Figure 4.19: Field instrumentation, class variables instrumentation, and class
instrumentation.

1 public int m() {
2 instrument(<unique function-id representing m()>);

3 instrument(<unique statement−id>);
4 return 1;
5 }

Figure 4.20: Standard and function instrumentation.

Step 2 – Test Execution and CID Logging

The objective of this step is to gather data about which test executes which
source code. In general, our approach requires tests to be executed on the
instrumented, transcompiled application in order to find out which parts of
the code/ which CIDs are traversed by tests. Then, the collected data have
to be passed to the tool that performs the test selection and the mapping
on the source language in order to assist developers in localizing faults. We
refer to this tool as analysis tool. So, after code instrumentation has been
finished, we transcompile the application and run the tests. During test exe-
cution, instrumentation code is executed just as other application code in the
target language. Please note that the instrumentation code still consists of
(transcompiled) function calls that take a sequence of characters as argument.

If the code under test belongs to a desktop application or to server-side code
of a web application, the callee (that is part of a module M) directly connects
to a built-in database of our analysis tool and inserts all the CIDs obtained as
arguments into this database.

If the code under instrumentation belongs to a web application or a mobile
applications, our analysis tool acts as logging server. The callee sends the CIDs
via the WebSocket protocol to the logging server, which inserts them into the

92 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

database. Figure 4.21 shows the relevant code for GWT-based web applica-
tions. Here, the callee (instrument(String nodeIdentifier), line 1) passes
CIDs (see line 3) to another piece of code that implements the WebSocket API.
Having a closer look at the whole method instrument(String nodeIdentifier),
it becomes evident that this is no regular Java code (please note the keyword
native and the special syntax that resembles Java comments (/*- ... -*/)).
In fact, we exploit that GWT allows us via the JavaScript Native Interface
(JSNI) [97] to write native JavaScript code within regular Java code (see
lines 2-4). This enables us to write Java instrumentation code consisting of
simple method calls to native JavaScript code. Here, the native JavaScript
function sendToLoggingServer(nodeIdentifier) refers to code that imple-
ments the WebSocket API (see lines 10-17). It is injected in the web application
via the GWT ScriptInjector [114] which adds JavaScript code to the Document
Object Model.

1 public native void instrument(String nodeIdentifier) /∗−{
2 if(nodeIdentifier !== ’’) {
3 \$wnd.sendToLoggingServer(nodeIdentifier);
4 }
5 }−∗/;
6

7 // Entry point for GWT applications, similar to the main()−method in
regular Java

8 public void onModuleLoad() {
9 ScriptInjector.fromString("

10 var loggingServer = new WebSocket(’ws://localhost:8090/
loggingServer’);

11 loggingServer.onopen = function() {};
12 loggingServer.onmessage = function(evt) { ... };
13 loggingServer.onclose = function() { ... };
14 function sendToLoggingServer(nodeIdentifier) {
15 ...
16 loggingServer.send(’testName=’+testCaseName+’&id=’+

nodeIdentifier);
17 }
18 ");
19 }

Figure 4.21: Sending CIDs to the analysis tool via WebSockets.

Finally, the function sendToLoggingServer(nodeIdentifier) (see line 14)
passes the CIDs to the logging server which in turn persists them in a database.
Figure 4.22 illustrates the code of the logging server.

The database holds information on which CIDs have been traversed by a
specific test. So all the test traces are persisted in a database. There, we also
store how often a CID has been executed by a specific test. So, if a CID is al-
ready present in the database, a counter is incremented instead of adding a new
database entry. This enables us to easily provide further statistics on the test
thoroughness a piece of code is tested with. We call this the execution frequency

4.5. COMPILER-INDEPENDENT INSTRUMENTATION 93

1 @OnWebSocketConnect
2 public void onConnect(Session session) { ... }
3

4 @OnWebSocketMessage
5 public void onMessage(String msg) {
6 writeToDatabase(msg);
7 }

Figure 4.22: Persisting CIDs passed to the logging server.

of a code entity. (This is especially important in Chapter 6). Optionally, we
are able to assign the execution frequency to individual test cases.

Step 3 – Selecting Test Cases and Localizing Emerging Faults in the
Source Code

We want to select test cases that execute code changes. As a result of step 2,
we know which CIDs have been executed by the test cases. But the code
changes are still unknown. We determine them with the aid of our method
for calculating changes made in the source code (see Section 4.3.2), which is
based on a comparison of the nodes in the EJIG of P and P ′. As output, we
obtain the code changes and lots of meta data that describe these changes.
We call them code change meta data. They encompass the node in the AST
that corresponds to the code change, as well as the affected source file, the line
number, the kind of change (added, modified, or removed code), and how the
code looked like in the previous program version P . This enables us to mark
the code changes within an IDE.

All the code change meta data are available in our database. Now, we
have to decide which test cases cover the code changes. To achieve this, we
join the table containing information on code change meta data and the table
containing data about test traces. This way, we can depict which test case is
affected by a code change and conversely, which code change(s) might be the
reason if a test case fails. This highly enhances the fault localization and eases
the debugging process. Nevertheless, before joining the databases, we need
some additional information.

For the test selection, we need to know which code change corresponds to
which CID in the test traces. For this purpose, we recalculate the CIDs for the
old version P and link the code changes in P ′ to the CIDs obtained from the
test execution of P . We base the linking process on the set of dangerous edges
obtained during the comparison of the EJIGs. Similarly to the fault localization
presented in Section 4.3.3, several different cases have to be considered. Usually,
we can borrow the CID from the node in P that corresponds to the code change
in P ′. That is, if the target node of a dangerous edge in P ′ has been modified
(this is the Regular Case in Section 4.3.3), we use the CID obtained for the
target node in P . This is also true if a node has been removed at the end of

94 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

a method in P ′. We borrow the CID c from the target node in P . With this
information, we are able to search in the test traces for c. All tests that have
executed c in P are selected for re-execution. Please note that during fault
localization, we need to highlight the start node of the dangerous edge in the
source code as the modified node (i.e. the target node) does not exist any more.
So the highlighted node in the Eclipse view might differ from the node that has
been changed and whose CID is used determine the test selection. Of course,
there are also special cases in which we have to use the CID belonging to the
start node in P . For example, this applies to exit nodes (see Section 4.3.3).

4.6 Compiler-Dependent Instrumentation

The basic idea of the compiler-dependent instrumentation approach is to avoid
inserting CIDs as instrumentation code in the source programming language.
Instead, we keep the CIDs apart from the source code in either an XML file
or a database. In the end of course, we still need to know which tests execute
which code entities. The CIDs have to show up in the target programming
language so that tests can traverse them. So, we have to add the CIDs as
instrumentation code in the target language. The core challenge for a successful
implementation of our technique is the question on how the mapping of CIDs
to the target code generated by a transcompiler could be accomplished. Some
transcompilers support source maps (see Section 3.1). But even if not, each
transcompiler provides at least some functionality to parse and transfer the
code from a source language into a target language. This is our starting point
for injecting instrumentation code.

In general, the main steps of our approach to map code identifiers to target
code are the same for all transcompilers. But of course, each transcompiler
could have some peculiarities depending on its general abilities and its imple-
mentation. Besides, programming languages usually have different syntactical
rules. Thus, it is difficult to define a universal, for many programming lan-
guages valid solution for adding instrumentation code to the source code of the
target language. This is why the details of our approach will usually differ and
why we expect to have always some exceptional cases per source programming
language and its corresponding transcompiler.

Our compiler-dependent approach consists of four main steps. Three out
of four of these steps are similar to the compiler-independent approach. How-
ever, as the transcompiler does not automatically add instrumentation code
any longer while translating the code of the source language into the target
language, we have to take care ourselves of the CIDs not getting separated
from the code entity they identify. This mapping is part of the additional
step. Again, we explain the steps of our approach in general. In each step,
we additionally explain more specific details by taking the example of GWT’s
transcompiler.

4.6. COMPILER-DEPENDENT INSTRUMENTATION 95

Assumptions

Our approach is based on the following basic assumptions: We presume that
the code of the transcompiler is open source as we need to do some adaptations.
This implies that we can build a new version of the transcompiler ourselves.

Step 1 – Code Instrumentation

The first step is completely independent from a specific transcompiler. The
only requirement is that an abstract syntax tree is available. We start by
determining CIDs for all code entities in the way explained in Section 4.4.3 by
traversing the AST representing the original program version P . In addition,
we collect data on the line number of the corresponding code entity and on
the globally qualified file name. For brevity, we refer to the combination of
these data and the CIDs as source code meta data. Usually, the transcompiler
is an external program. To provide the source code meta data for all kinds of
transcompilers, we would have to create a universal interface. This is difficult
as the transcompiler might differ completely in their architecture. So, in order
to ensure that the data are available for all transcompilers, we persist the data
either in an XML file or in a database.

Step 2 – Mapping Code Identifiers to Target Code

We exploit the transcompiler’s abilities and some basics of source maps (see
Section 3.1) to take on the task of injecting the CIDs as instrumentation code
in the target code. Especially the name of the original source file as well as
the line number of the corresponding code entity within the source file are
indispensable to make our approach work.

With respect to GWT, it has turned out during an extensive analysis of
its open source code [106, 116] that at its heart, GWT also uses the AST
provided by the Eclipse JDT to represent a Java application. Based on this
AST, GWT maps every single node to a node of another AST representing the
JavaScript application. So, there exists a mapping between the nodes of the
Java AST and the nodes of the JavaScript AST. Besides, GWT collects source
code information for each node representing Java code. We refer to these data
as GWT meta data. They include the globally qualified class name as well as
the line number2. So in the end, GWT gathers and maintains essentially the
same data as we do. We utilize this for our purposes.

Now, the main question is how to make the transcompiler add the CIDs
into the target code. Here, we had to keep in mind that the transcompiler
is still undergoing a process of extensions and improvements and that there
are new GWT versions to appear. This is of course not specific to GWT but
also applies to other transcompilers. Consequently, we have tried to find an
easy solution that reduces the necessary changes made in the GWT compiler to

2Details can be found in com.google.gwt.dev.jjs.SourceOrigin.java of the dev/core

module in the GWT Git repository [117].

96 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

an absolute minimum. However, the GWT compiler does not provide special
hooks for this purpose. At the end of the day, we have managed to implement
our approach with three different kinds of changes.

Our first adaptation of the GWT compiler extends the valid compiler op-
tions [95] by a new parameter that accepts either a path pointing to an XML
file or data to connect to a database. We refer to this file/database as node
identifiers data source. It contains all the CIDs together with the line number
of the code entity that is represented by a CID and the globally qualified class
name of the Java class a CID belongs to. If several CIDs are connected to code
entities that occur in the same line of code, the CIDs are concatenated in a
special way.

Furthermore, we combine the GWT meta data and our own source code
meta data that contain the CIDs. For this purpose, we expand the GWT meta
data by an own object that encapsulates the corresponding CIDs. In order
to find the CIDs that fit the data gathered by the GWT compiler, we match
the file names and line numbers provided in the GWT meta data against our
source code meta data. This way, the GWT compiler knows the CID for each
source code entity that has to be transcompiled.

Another required change of the transcompiler concerns the output of the
CIDs in the JavaScript code. For this, we have adapted the GWT compiler in
our initial version in such a way that the CIDs are arguments of log-statements.
As a result, as soon as a test case traverses the CIDs, they are logged to the
console. Another, vastly better possibility is to use WebSockets just as already
explained in Section 4.4.4 before. So, we directly inject the same code in
the JavaScript code of the web application that we have illustrated in the
lines 10-17 in Figure 4.21. But in either case, adapting the GWT compiler
involves of course decisions at which position the CIDs should be added in the
target language. For JavaScript as target language of GWT, similar rules apply
as already described in step 1 of Section 4.5. In particular, we reapply our rule
of thumb according to which we inject the CIDs as instrumentation code in
front of the code entity they identify. Again, there are some special cases that
have to be incorporated:

Omitted brackets: Notoriously, the GWT compiler extremely optimizes the
JavaScript code. This includes the exclusion of brackets where they are not
necessary. This affects for example if- or loop-statements. Naturally, adding in-
strumentation code within this syntactic simplifications changes the semantics.
Consequently, we have to manually add brackets.

Constants: Another optimization affects constant propagation (see Para-
graph “Code Optimization” in Section 3.1) which is rather delicate. For exam-
ple, the GWT compiler replaces Java constants (fields declared as static final)
by their value. So, the CID might get separated from the code entity it identifies
and consequently, assigning a different value to the constant in a new program
version P ′ might remain undetected. Solving this difficulty requires a deeper

4.7. PROTOTYPE TOOL IMPLEMENTATION:
COMPILER-DE-PENDENT APPROACH 97

intervention in the transcompiler code. But the only remaining alternative
would be to turn off code optimization in the transcompiler.

Please note that in the compiler-independent approach, this problem does
not arise as the constant initialization is performed within the constructor
(see step 1 of Section 4.5). So the transcompiler always transfers the CID
representing the constant into the target language.

Step 3 – Test Execution and CID Logging

In general, this step does not differ from step 2 in our compiler-independent
approach (see Section 4.5). The objective is to gather data which test executes
which source code. To this end, we run UI/web tests that produce test traces
that are persisted in a file or, in later versions of our approach, in a database.
We can rely on the same WebSocket-based interface as we did in the compiler-
independent approach.

Step 4 – Selecting Test Cases and Localizing Emerging Faults in the
Source Code

Just as the previous step, selecting test cases and localizing emerging faults in
the source code follows the same procedure as described in step 3 in Section 4.5.
So we want to refer the reader to this section to recall the details.

4.7 Prototype Tool Implementation: Compiler-De-
pendent Approach

We have implemented a prototype of the compiler-dependent approach as an
Eclipse plug-in called GWTTestSelection. As the name indicates, the pro-
totype has been tailored for transcompiled cross-platform applications based
on GWT. The plug-in consists of several modules: One of them calculates the
EJIG with the aid of the Eclipse JDT. Another one performs the calculation of
code changes (see Section 4.3.2). The tasks of the other modules comprise the
calculation of the CIDs (see Section 4.4.3), their mapping to JavaScript (see
“Step 2 – Mapping Code Identifiers to Target Code” in Section 4.6) and the
calculation of code entities that are suspected of being responsible for a test
selection (see “Step 4 – Selecting Test Cases and Localizing Emerging Faults
in the Source Code” in Section 4.6). The results are available in a separate
analysis report file and in Eclipse’s code editor. In our initial prototype tool,
the logging server has still been implemented using AJAX. Details about the
improved version that relies on WebSockets follow in Section 5.5.

GWTTestSelection expects the existence of an Eclipse project in the
current Eclipse workspace. It is the current program version P . For this ver-
sion, GWTTestSelection calculates CIDs. Besides, during test execution,
it creates test traces. So initially, P is the program under test. Beginning with
additional code enhancements or bug fixes, P becomes the new version P ′. In

98 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

order to be able to decide which tests have to be re-executed, GWTTestSe-
lection requires a previous version P for the comparison. This version can
be provided in two different ways. First, P can exist locally as a additional
(renamed) Eclipse-Project in the workspace. The Eclipse plug-in offers a wiz-
ard to choose the appropriate projects. Second, our Eclipse plug-in includes
functionality to checkout P from a version control system and to import this
preceding project version temporarily. In order to avoid name clashes, our
plug-in appends a time stamp.

Figure 4.23 shows a screenshot of our initial prototype tool. The Eclipse
code editor in the upper region displays a class of a modified program version
and the localized changes. The lower part contains the control panel of our
Eclipse plug-in. It enables the creation of the CIDs for an initial or a changed
program version and it is able to launch our adapted GWT compiler to create
an instrumented version of the web application. At the time of the evaluation,
the instrumentation level has been set to instrument all the statements and
even some kinds of expressions (e.g. conditional expressions). In later versions,
this is adaptable according to the users needs. Additionally, the control panel
lets the user start calculations to localize changes and to determine affected
web tests. Besides, the control panel offers some additional analysis options
such as investigating special methods. Here, we might think of methods that
are only reachable via dependency injection. If our technique would be applied
for example in web applications created with JavaServer Faces we could analyze
methods that are only called from XHTML-templates that are used to create
the user interface of the web application.

To ensure that the plug-in works as expected, our Eclipse plug-in offers an
additional feature. We can turn on a unit testing mode in which the analysis
results are compared to our expectations. To this end, we define for each class
in P and/or P ′ how the expected analysis result should look like and we insert
differences into the source code (see comments in Figure 4.23).

In subsequent chapters, we show extended versions of the plug-in.

4.8 Evaluation: Compiler-Dependent Approach

We have evaluated our Eclipse plug-in GWTTestSelection with five re-
search questions in mind:

RQ1 Is our EJIG suitable to model GWT-based web applications in such a
way to localize code changes correctly?

RQ2 Does our approach select all the tests for re-execution that are indeed
affected by a code change? That is, is the test selection safe after tracing
the mapping of Java source code to JavaScript code?

RQ3 Have web tests been selected unnecessarily?

RQ4 How efficiently does our tool work?

4.8. EVALUATION: COMPILER-DEPENDENT APPROACH 99

F
ig

u
re

4.
23

:
F

au
lt

lo
ca

li
za

ti
on

.

100 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

4.8.1 Software under Evaluation

For our evaluation, we use two Java-based web applications that have been
transcompiled to JavaScript by using the GWT transcompiler. These are
StockWatcher and Hupa. As already mentioned in Section 3.1, Stock-
Watcher is a small example taken from the GWT tutorials [100] that dis-
plays self-defined stocks and their value fluctuations. The tutorial introduces
different versions of StockWatcher. To test our comparison algorithm, our
change localization, and our test selection thoroughly, we use the version that
generates and maintains all the data on client side instead of generating the
data on server side. This version consists of almost 300 non-empty lines of code
in two classes. Although the code basis of is very small, it has been suitable to
investigate the functionality of GWTTestSelection towards correctness.

In order to gain more confidence and to show the applicability of our our
compiler-dependent approach in a real web application, we have additionally
chosen Hupa [144] as software under test in our study. Hupa is a mid-sized
open source GWT-based mail client that provides all the basic functionality of
modern mail clients. This includes receiving, displaying, sending and organizing
mails. For retrieving mails, Hupa uses the IMAP protocol. We have checked
out the source code from the public repository in the revision 1580208 which
was the most recent version at the time of the investigation. It consists of
approximately 40.000 non-empty lines of code in 484 classes and interfaces.
Initially, we have planned to compare this version with older revisions from
the repository. Unfortunately, these revisions always contain a large number
of changes. This is contrary to the usual way of doing small increments that
are regression tested afterwards. Besides, several of the older revisions are
corrupted due to merge conflicts. For this reason, we have created own versions
introducing typical changes.

4.8.2 Experimental Setup

For the evaluation of StockWatcher, we need several program versions and a
set of test cases. To this end, we have created 11 versions that contain different
kinds of changes, including behavioral, logical, and optical changes to simulate
modifications as they occur in a standard development process. For example,
we have altered case distinctions, modified conditions in loops, or injected faults
in the calculation of the relative performance of the stocks. Optical changes
have been possible as StockWatcher makes no use of GWT’s UIBinder [99].
So, the entire layout is defined in plain Java. To simulate optical modifications,
we have swapped the columns in the UI and we have altered CSS class names
used to layout the web application.

Unfortunately, there are no web tests available for StockWatcher. For
this reason, we have created web tests ourselves. To each of the versions, we
have applied 12 web tests representing user stories such as adding and removing
stocks as well as handling illegal inputs.

The evaluation of Hupa is based on four versions, emerged from the original

4.8. EVALUATION: COMPILER-DEPENDENT APPROACH 101

revision. As already explained, previous revisions of Hupa were buggy. So we
had to re-create these revisions by extracting some of the original changes
from the Hupa repository, ignoring the merge conflicts. This way, we have
tried to guarantee real conditions. In the end, each of the versions contains
modifications concerning the behavior, the code structure, or the client-side
logic. For example, we have restored a previous algorithm used to attach files
to a mail. To simulate changes in the structure, we have refactored and renamed
the code. As opposed to our previous web application under evaluation, the
mail client employs the UIBinder to define the user interface. So, we did not
move widgets on the screen. However, Hupa uses CSS for some widgets. Here,
we have made modifications in CSS names.

As the developers of Hupa do not provide any web tests, we have created
40 simple web tests with Selenium. The tests implement user stories such as
sending, responding, or deleting a mail.

All measurement in this evaluation have been performed on an Intel Core i5
at 2.4 GHz with 8 GB RAM. The Eclipse settings have been left untouched.

4.8.3 Threats to Validity

External Threats to Validity

The GWT compiler has several compiler options (OBFUSCATED, PRETTY, and
DETAILED) [112] that determine how the output should look like. We have to
ensure that our tool works independently from the code style applied by the
GWT compiler. Technically, we have encapsulated and attached the instrumen-
tation code to the code entity that has to be transcompiled. The transcompiler
extracts the instrumentation code not before the obfuscation has been finished.
So at least, to the best of our knowledge, we can be sure that the instrumen-
tation code and the corresponding code entities are never separated. For each
transcompiled code entity, a piece of instrumentation code is added in the target
code, notwithstanding code obfuscation. In order to confirm this in practice, we
have conducted our evaluations twice. First, we have used the compiler option
PRETTY to obtain code that is still similar to the original Java code. Afterwards
we have employed standard compiler options (OBFUSCATED). In both test runs,
the results concerning fault localization and regression test selection have been
identical. So, obfuscation had no effects. Of course, we cannot conclude from
this observation that there are no bugs in our code. But the test did not reveal
any faults so far.

Fowler [86] discusses several problems that might lead to unpredictable non-
deterministic test behavior: In particular, asynchronous calls with the aid of
AJAX might lead to missing or wrong data that corrupt the state of an ap-
plication and thus the whole test. Fowler also points out possible solutions
such as callbacks. According to him, pure wait-commands that always wait
for a fixed time are not enough because sometimes, the predefined wait time is
not enough or, conversely, the result is already available but the test execution
cannot proceed as the predefined wait time is not up yet. We want to mention

102 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

that of course, developers of test tools are aware of these difficulties. Accord-
ingly, test tools provide functionality to cope with asynchronous client-server
interactions to avoid faults as a result of e.g. pending server responses. For
example, Selenium provides special waitFor()-commands [251] that succeed
as soon as a condition becomes true. Otherwise, after a predefined timeout,
the command returns false and the test fails.

Nevertheless, Fowler [86] stresses that there exist situations in which this
kind of dealing with non-determinism is still not enough. He points out that
whenever a call c does not expect a response, commands like waitFor() do not
help any more. Here, additional tests are necessary to ensure that the call c
worked as expected.

Another kind of problem emerges according to Fowler [86] from resource
leaks. As examples, he mentions memory leaks and database connections.
However, we consider this problem to be less difficult to solve. As a possible
solution, virtualization (e.g. with Docker container [59]) could be used. For
example, each test could run in an own container with an extra database that
is based on a predefined image.

Referring to Sprenkle et al. [263], another potential error source concerns
web page faults. The authors divide this kind of faults into “form faults”,
“appearance faults”, and “link faults” [263, page 225]. With regard to our
approach, naturally, everything is fine if the user interface and its entire ap-
pearance is completely written in the source language. In this case, every single
change would be detected by our technique. In practice however, plain HTML
and CSS is frequently used to define the layout of a web application. Besides,
there are also frameworks that use a different way to define the layout. GWT
for example provides two possibilities of creating the user interface of a web ap-
plication. The first one relies almost completely on Java. Solely for the layout
of widgets, GWT applies CSS [107]. According to this, each and every modifi-
cation concerning the functionality or the structural layout can be detected by
our comparison algorithm. This includes even changes in the layout of a widget
due to modifications in the assignment of CSS class names or CSS ids. Solely
changes within the CSS style sheet cannot be detected. They need to be ana-
lyzed with standard, Diff-based tools. But this is no problem as styles defined
with CSS usually have no effect on the behavior of web tests. This is also true
for changes in e.g. margins of UI-widgets. Although this affects the position of
a widget, it is immaterial as modern test tools refer to widgets within tests via
ids or name attributes. Thus, we do not consider changes within style sheets.

The second possibility to define the user interface in GWT is based on the
UIBinder framework [99], a declarative way of programming user interfaces.
Instead of using Java to define the layout and the position of each widget,
XML and HTML is applied. The widgets are bound to a Java owner class. So,
the layout and the position of widgets are defined using the document object
model. However, the Java owner class is still responsible for the entire pro-
cessing of user interactions in the client as the UIBinder does not offer loops,
conditionals, or if statements [99]; and it cannot display data dynamically.

4.8. EVALUATION: COMPILER-DEPENDENT APPROACH 103

Therefore, nothing changes in compiling Java code to JavaScript. When using
UIBinder, modifications in the logic can still be found with our algorithm. In
addition, modifications or the removal of widgets can also be detected. As op-
posed to this, because all the layout definitions are outsourced in a HTML file,
modifications in the page structure of the web application or broken hyperlinks
cannot be detected with our algorithm. But as already explained above, a
shifted widget is no problem when identifying widgets by means of ids or name
attributes. Besides, we can detect changes in HTML easily with Diff-based
tools. The same is applicable to issues with CSS as explained before. For this
reason, we do not pay attention to changes within HTML files.

Internal Threats to Validity

In order to judge the ability to identify code changes correctly, it is not enough
to apply our approach on two web applications. This is because we could
miss special cases in which our tool GWTTestSelection would actually fail.
But as these special cases do not show up by accident in the software under
evaluation, they remain undetected. For this reason, we have created many
pairs of small example Eclipse projects whose modified version P ′ contains
many different kinds of syntactical changes. For each pair, we created unit
tests by defining exactly where a code change has been made. We additionally
define the CID that identifies the code modification, and how the code looked
like before if this is possible.

Threats to Construct Validity

We assume that the compiler works correctly when transferring the applica-
tion’s source code into the target language. Besides, we expect that the code’s
internal logic is fully retained. This is important as instrumentation code is
always implicitly connected to a code entity. Following the rule of thumb ex-
plained in Section 4.6, “Step 2 – Mapping Code Identifiers to Target Code”,
instrumentation code has always to be executed right before the correspond-
ing code entity. Potential code optimization performed by the compiler must
not destroy this implicit connection in order to be able to determine the code
coverage. However, we can trust in this expectation in the same way as other
approaches do when adding instrumentation code in source code, in bytecode,
or binaries respectively. Moreover, in case of GWT, compiler optimization can
be turned off in case of doubt [108]. Other transcompilers like Haxe offer similar
settings [128, 129].

4.8.4 Results

In the next subsections, we present the results of our research questions which
we obtained during our evaluations.

104 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

RQ1: EJIG – Suitability to Model GWT-Based Web Applications in
Such a Way to Localize Changes Correctly

When analyzing StockWatcher and Hupa, our tool has identified all code
modifications correctly. It has provided information about the CID and a hint
how the code has been modified. When turning on the unit testing mode,
GWTTestSelection additionally inserts this information as comments in
front of these lines of code that contain the code modification(s) (see Fig-
ure 4.23). If code has been removed, the comment is attached after the previ-
ous line of code. When no such line exists, the change is displayed after the
beginning of the next enclosing block.

The EJIGs representing P and P ′ have succeeded in modeling all parts
of the program versions that are necessary to identify the changes introduced
in P ′. So, when adding our experience made with the small test projects
mentioned in Paragraph “Internal Threats to Validity” of Section 4.8.3, the
EJIG is suitable to model GWT-based web applications.

RQ2: Is the Test Selection Safe?

We have thoroughly analyzed which code modifications should affect which web
test case. Starting from this analysis, we have a set of test cases S expected
to be selected for re-execution. Afterwards, GWTTestSelection has deter-
mined the test selection. We have compared the expected set of test cases S
with the results calculated by our tool. For both StockWatcher and Hupa,
GWTTestSelection did not miss a web test. Moreover, GWTTestSelec-
tion has listed for each web test due to which code change(s) it has been
selected for re-execution. Consequently, the test selection has been safe af-
ter tracing the mapping of Java source code to JavaScript code. That is,
GWTTestSelection selects at least all the tests affected by a code change
for re-execution.

RQ3: Unnecessarily Selected Web Tests

Apart from a safe test selection, another goal has been to reduce the total
number of selected test cases to a minimum. That is, we desire the number
of unnecessarily selected tests to be as low as possible in order to obtain a
preferably low test case selection. The results of the test selection are illustrated
in Figure 4.24. On the left, it shows the overall percentage of tests that need
to be rerun due to changes made in the code of StockWatcher and Hupa.
On the right, it displays the percentage of tests actually selected by our tool.
In case of StockWatcher, we have expected that 80% of the tests should be
selected for re-execution. This rather high value is due to the timer employed
in the application to update and reload the stock prices in a fixed time interval.
Reloading and updating the data requires the traversal of a major part of the
application and therefore, some of our code modifications affected many web

4.8. EVALUATION: COMPILER-DEPENDENT APPROACH 105

tests. When considering the tests selected by GWTTestSelection, 89% of
the tests have been selected without missing one of the expected tests.

Figure 4.24: Percentage of expected and actually selected tests in Stock-
Watcher and in Hupa.

Wen applying GWTTestSelection to Hupa, it has turned out that the
total number of tests selected for retest is considerably lower (see Figure 4.24).
GWTTestSelection has selected 37% of the tests for retest. Actually, we
have expected 33% of the tests to be re-executed.

Earlier studies (e.g. [126]) have also observed such variations in the number
of tests selected for retest. According to them [126], this is due to the kind
of modifications. If there are only small changes, it is more likely that only
a few tests are selected for retesting. This is consistent with our observations
we have made in the evaluations. Whenever we have replaced big parts of the
code, the number of selected tests has increased.

RQ4: Efficiency of Our Tool

The application of our tool to a web application like StockWatcher provides
not much information on efficiency as the EJIGs are small and fast to calculate.
Nevertheless, we have combined all the web tests to a test suite for re-execution
with the Selenium IDE. As the web application uses a timer to update the
stocks in predefined intervals, the total time required for executing the web
tests depends heavily on the time interval size. But even if we omit those
tests that depend on the timer, the test suite has taken more time than our
tool. Beyond that, if we restart our tool to repeat an analysis, we observe a
significant time reduction by approximately more than a half. This is because
the EJIG(s) have already been calculated and thus, the data are still available
in memory. Even if we repeat the analysis using one new version and a version
whose EJIG has already been calculated, we can still observe a time reduction
compared to the time consumption that is necessary to calculate two EJIGs
for the first time.

In order to assess the efficiency of GWTTestSelection, Hupa is more
suitable as the EJIGs for both the old and the changed program version are

106 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

large. So, the comparison is more complex and the analysis of test traces is
more time-consuming. Again, we have used the Selenium IDE to run our tests.
Despite the huge amount of logged CIDs, our tool has finished the analysis after
approximately 90 seconds, whereas the test suite has taken twice the time. So,
our tool works efficiently. Apart from the pure time reduction, our tool has the
additional benefit that it is able to localize faults. Naturally, the traditional
retest-all approach does not support this.

Figure 4.25: Code changes responsible for a test selection in Stockwatcher.

During our analysis, we have observed many cases in which only a subset
of the overall number of changes has been responsible for a test selection. At
best, a test case can be referred back to a single code change. Figure 4.25
shows the results we have obtained from the analysis of two of our Stock-
watcher versions (original versus one of the modified versions). Figure 4.26
shows the results for Hupa. The horizontal axis shows the different test cases.
The bar displays how much code modifications are responsible for a test selec-
tion. Some of these tests are not affected at all by the changes (see the test
cases with number 1, 4, 24-26, 29-31, 34-37, 40 in Figure 4.26) and therefore
do not exhibit a bar in the chart (0% of the changes, i.e. no test selection). In
all other cases, the developer gets precise information about a definite set of
modifications that should be investigated if a test fails. So, the bug fixing pro-
cess benefits enormously from the fault localization and the references between
code modifications and test cases.

4.9 Discussion

Code Instrumentation: We have investigated in Section 4.5 and in Sec-
tion 4.6 two different code instrumentation approaches. In the previous two
sections, we have investigated the compiler-dependent approach. During the
implementation, we have discovered several advantages and disadvantages in
comparison to the compiler-independent approach. Table 4.2 gives an overview:

4.9. DISCUSSION 107

F
ig

u
re

4.
26

:
C

o
d

e
ch

an
ge

s
re

sp
on

si
b

le
fo

r
a

te
st

se
le

ct
io

n
in

H
u
pa

.

108 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

Code Instrumentation Variant
Compiler-
Independent

Compiler-
Dependent

Duplicate original source code • desirable 3 unnecessary
Instrumenting code of source
language

7 necessary 3 unnecessary

Compiler modifications 3 unnecessary 7 necessary
Risk to break relation between
code entity and CID

7 yes, during
transcompilation

3 no

Reusable for other services 3 yes 3 yes

Table 4.2: Overview of advantages and disadvantages of code instrumentation
approaches.

When instrumenting code in our compiler-independent variant, developers
might feel uncomfortable if a tool starts injecting code directly into the produc-
tion code. Indeed, if the source code contains modifications that are not under
revision control yet, a bug in the instrumentation tool might destroy them. So
it is desirable to create a temporary copy of the source code that will be used
to do the instrumentation. (In fact, our compiler-independent variant creates a
copy before doing the instrumentation.) Of course, this takes some extra time,
depending on the size of the software project. Our compiler-dependent variant
avoids these upcoming problems completely.

With regard to instrumenting the target code, both versions have to cal-
culate the same CIDs. Nevertheless, the versions differ in the way they deal
with these CIDs. Our compiler-dependent version uses a database whereas the
compiler-independent version has to insert the instrumentation code within
the source code. Especially when trying to write with several threads in the
same source file, we have to take care of data integrity and consistency. This is
harder than just adding CIDs and their associated meta-data into the database,
which is designed for persisting many data entries in a fast way while ensuring
ACID properties3. Beyond that, we can use the database data for statistical
calculations. For example, in order to solve the coverage identification problem
(see Section 1.2.3), we query the database and perform several calculations (see
Chapter 7).

To make our compiler-dependent variant work, we have to extend the
transcompiler’s source code to incorporate CIDs while transfering code from
the source to the target language. This implies that the source code of the
transcompiler is open source and that there is a minimal documentation avail-
able that supports external developers in realizing these extensions. Naturally,
compilers differ both in their implementation and in the programming lan-
guage they are written in. Unfortunately, they often do not offer hooks where

3ACID stands for Atomicity, Consistency, I solation, and Durability.

4.9. DISCUSSION 109

additional functionality can easily be added to the compiler. (For example,
we might think of the GWT compiler.) Thus, the extensions are individual
and highly specialized to every transcompiler. In the end, adaptations of the
transcompiler have to be redone as soon as the original vendor decides to offer
a new version. This implies a deep analysis of the underlying changes, which
requires lots of time. (The naming of this variant harks back to this issue.) As
a whole, our compiler-dependent variant requires much additional work that
has to be done for every transcompiler and any of its versions. In contrast, our
compiler-independent variant is generic. It can be used for any transcompiler,
even for non-open source ones. (We might think for example of Codename
One’s transcompiler.)

Our compiler-independent variant relies heavily on the relation between
source code and its instrumentation code. It is mandatory that the transcom-
piler leaves this relation intact. As opposed to that, our compiler-dependent
version attaches instrumentation code to every code entity that has to be
transcompiled. Both parts are encapsulated and remain together until the
transcompiler writes the target code into a file. So we have a better control
over the compiler and the insertion of CIDs into the target langauge. If the
transcompiler supports source maps, they can even be extended to provide
information about CIDs.

Finally, if we are interested in offering additional services such as calculat-
ing the code coverage, both variants are suitable even though we expect the
compiler-dependent variant to be faster as already discussed above.

General Applicability: In order to decide which approach is more useful,
we have to consider some more aspects that go beyond the pure code instru-
mentation. In general, both approaches explained in Section 4.5 (“Compiler-
Independent Instrumentation”) and in Section 4.6 (“Compiler-Dependent In-
strumentation”) are completely generic as they can be applied to many transcom-
pilers and because they are not dependent on a specific programming lan-
guage. Moreover, our method for calculating code changes also works for non-
transcompiled desktop or web applications. In this case, instrumentation code
is executed for example as bytecode as usual. The principle of inserting CIDs
into a database in order to send queries remains valid. We enlarge upon these
aspects in more detail in the next two paragraphs.

Effort to Support Other Transcompilers: Our Eclipse plug-in supports
transcompiled web applications created with GWT and it is also able to handle
standard Java desktop applications. Beyond that, both approaches can basi-
cally be used to support other transcompilers. Of course, this is by far more
easier for our compiler-independent instrumentation as discussed before. Ig-
noring the additional effort in the compiler-dependent instrumentation to map
code identifiers to the target code, there are only two crucial requirements in
both approaches.

First, we require an AST representing the application in its source language;

110 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

or more general: we require that the source programming language is based on
an abstract syntax tree. This is sufficient to generate unique CIDs for all the
code entities of the source programming language that should be investigated
for code changes and that could be the reason for a test selection, respectively.

As second demand, it must be possible to insert a module M in the ap-
plication’s target language in order to pass CIDs to the Eclipse plug-in (see
Figure 4.21). If the application is cross-platform, the ability of M to estab-
lish a bi-directional persistent connection via WebSockets meets exactly this
requirement. When regarding mobile applications, this means no restriction.
Transcompilers like Codename One also support WebSockets [265]. But even
if not, it is just a technical question to implement this. Otherwise, if it is a
standard desktop application, a common connection to a database is sufficient.

In case of our compiler-independent approach, both the instrumentation
code (calling the module M) as well as the module M itself may be transcom-
piled to the target programming language. Solely the CIDs may not be changed
due to transcompilation or obfuscation. Our own code instrumentation struc-
ture (see Section 4.4.3) takes this into account. We relinquish to follow other
approaches that use variables for code instrumentation because these variables
could be obfuscated during transcompilation (see for example GWT or Neo-
Mad). Consequently, it is difficult to localize code changes in the source lan-
guage. To avoid this, we use method calls and pass CIDs as arguments (type
String) to the module M . These strings always have a meaning that must be
preserved. They will neither be modified during transcompilation nor during
code obfuscation. In addition, the order of method calls has to be maintained
by the transcompiler because the logic may never be changed. This ensures that
the association established between the CID and the statement it represents
will not break during transcompilation. So, assigning CIDs to the elements of
an AST has the big advantage that we can trace the translation of code entities
from the source language to the target language and back.

In our compiler-dependent approach, too, CIDs may not change. But as
the instrumentation code is directly injected into the final source code of the
target language, we neither have to cope directly with transcompilation nor
with obfuscation. The injected functions call the module M and pass the CIDs
as arguments as described above. The basic principle, the advantages of our
code instrumentation, and the effort to send the CIDs to the Eclipse plug-in
is the same as in the compiler-independent approach. Nevertheless, we cannot
ignore the additional effort to support other transcompilers. The necessity
to extend the implementation of the transcompiler by ourselves can be very
troublesome and is a clear downside.

Effort to Support Other Programming Languages: The approaches in
Section 4.5 and in Section 4.6 explain how we obtain test traces by running
tests in a target language and how the information can be mapped to the source
language in order to localize possible faults. In our compiler-independent ap-
proach, the general rule of thumb (inserting instrumentation code as function

4.10. CONCLUSION AND FUTURE WORK 111

call in front of the code they identify) is applicable to all AST-based program-
ming languages. The exceptional cases depicted in step 1 of Section 4.5 might
have to be adapted or extended for other programming languages. Our cur-
rent rule set of exceptional cases is valid for Java. However, there are many
other languages with similar syntactical rules like C++, C#, PHP, JavaScript,
or Haxe. We expect the effort to fully support these languages to be minor.
Moreover, such an adaptation is possible without loss of generality of the over-
all approach as the three steps depicted in Section 4.5 are still valid. This is
even true for passing CIDs to the Eclipse plug-in with the aid of WebSockets
as this protocol is widely supported by other languages. In addition, as long
as there is no fundamental change in the concept of a programming language,
our rule set and the exceptional cases remain valid even in new versions of the
programming language.

In our compiler-dependent approach, first of all, the four steps depicted in
Section 4.6 remain valid when other languages should be supported. Consid-
ering the effort, it could be roughly the same as in the compiler-independent
approach, but it might be higher. The reason is that we have to distinguish
between source and target languages. In the compiler-independent approach,
we only consider the source programming language of the transcompiler. If the
rule of thumb and the exceptional cases are fixed, we can support arbitrary
target languages. In our compiler-dependent approach, this is different. As we
have explained in step 2 of Section 4.6, we have to decide at which position
the CIDs should be added in the target language. If there is only one target
language, the effort is roughly the same as in our compiler-independent ap-
proach. However, some transcompilers such as Haxe [131] offer multiple target
languages. So, we might have to implement step 2 several times.

4.10 Conclusion and Future Work

We have presented an enhanced regression test selection technique for transcom-
piled cross-platform applications. It builds on a technique that has originally
been created for pure desktop applications. The enhancements in our technique
are a result of the challenges we have been faced to. First, we have improved
the way to compare two program versions in order to select test cases for re-
execution. Besides, we have refined the fault localization. In order to address
any kind of application, we have managed to design an own basic instrumen-
tation approach as an refinement of former principles. It focuses in particular
on how to transfer data collected during the execution of instrumentation code
from an arbitrary application to a system on a different platform. Here, we
have to deal with applications that have been transcompiled from a source
language (the language they have been written in) to a different target lan-
guage. Besides, the application might run on different platforms or even in the
cloud. This constellation has resulted in a transcompiler-independent and a
transcompiler-dependent instrumentation approach.

In our evaluation, we have shown the feasibility and the functional principle

112 CHAPTER 4. GRAPH WALK-BASED TEST SELECTION

of our compiler-dependent approach. As we have seen, it is able to reduce the
test effort and to localize code modifications in the code of the source program-
ming language. However, when comparing the compiler-dependent approach
with the compiler-independent approach, the first-mentioned has more advan-
tages. Notwithstanding this, it also lists the biggest disadvantages (see the
discussion in Section 4.9 and consider especially Table 4.2). The significant
additional work to provide and maintain this variant and the exclusive appli-
cability to open source transcompilers reduces the chance to be used in the
field. For these reasons, we investigate and evaluate the compiler-independent
approach in the next chapter in more detail.

Furthermore, we believe that the performance and the efficiency of our RTS
technique can still be optimized and that we need additional insights in order
to provide an adequate solution for reducing the test effort and for localizing
code modifications. We additionally incorporate these purposes in the next
chapter. Beyond that, the coverage identification problem (see Section 1.2.3)
has not been handled yet.

Chapter 5

Efficiency of Code Analysis
and Fault Localization

5.1 Introduction

Analyzing code by means of control flow graphs requires time and a powerful
system with enough RAM. These resources are limited though. Especially in
large applications, generating two control flow graphs for the old and the new
program version and the subsequent analysis might demand very much RAM
and processing power. This deteriorates the performance, or even worse, makes
the analysis unfeasible. Thus, it is very important to perform the analysis in a
resource-saving way.

Ideally, the analysis would always be fast and precise in order to select only
these tests that are in fact affected by a code change. This is extremely impor-
tant in the area of UI/web tests, which take much time for test execution and
which stress performance particularly. In the best case, only a small number of
tests is selected for re-execution so that test selection clearly outperforms the
retest-all approach. But in practice, analysis effort and analysis precision are
negatively correlated. A fast analysis is always borne by the analysis precision
and the ability to locate faults precisely in the source code, and vice versa. For
this reason, it is important to optimize the test selection procedure to achieve
better efficiency.

We start in Section 5.2 with related work. In Section 5.3, we discuss the
challenges to apply a CFG-based RTS technique in a cost-efficient way on
transcompiled applications. As it is difficult to find large mobile open source
applications, we focus on testing GWT-based web applications. However, our
findings are also applicable to other transcompilers because the underlying pro-
cedure is always the same as explained in the previous chapter. In Section 5.4,
we present solutions to the challenges discussed before. We investigate several
analysis levels at various precision. They serve as basis for a proposal of a dy-
namically customizable analysis level based on a heuristics that improves the
performance so that even the analysis of large-scale transcompiled applications
on customary computers is possible. Additionally, we investigate how the ef-

113

114
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

fort to do regression testing can be reduced in general. We pick up an idea
proposed by Apiwattanapong et al. [12] that uses lookaheads and advance it
according to our needs. This way, we are able to provide additional information
about the kind of code modification (added, modified, or removed code) which
in turn supports the fault localization. The findings of all our investigations
have been the starting point for an extension of our Eclipse plug-in. It seeks
to overcome the common nightly build and test cycle towards a fast executable
and repeatable cycle of code changing, test determining, test case execution,
and bug localization/test case fixing that resembles continuous integration [84].
Details can be found in Section 5.5. Then, in Section 5.6, we apply our tool
with different parameter settings in an evaluation in order to find an efficient
trade-off between a low memory consumption and the ability to detect code
changes as exact as possible. We also investigate the runtime and the ability to
reduce the analysis overhead with the aid of lookaheads. We discuss the results
in detail and conclude in Section 5.7.

This chapter is partially based on two of our publications [133, 135].

5.2 Related Work

Cost Model: For judging the cost efficiency of RTS techniques, Leung and
White have proposed one of the first “cost model to compare regression test
strategies” [178, page 201] in an eponymous paper. In their cost model, they
incorporate the costs for the system analysis (Ca), the test selection (Cs), the
test execution (Ce), and the result analysis (Cr). Ca consists of costs incurred
because of test engineers who have to accustom themselves to the application
under test. The latter costs Cr include costs “Cu for understanding the program
and specification in order to judge whether the program behavior or output is
correct, and the cost Cc for comparing each test output to the expected output”
[178, page 204]. Besides, they distinguish old tests (To) and new tests (Tn).
The sum of all these components gives their definition of the costs C for the
retest-all approach:

C(retest− all) = [Ca(To) + Cs(To) + Ce(To) + Cu(To) + Cc(To)] +

[Ca(Tn) + Cs(Tn) + Ce(Tn) + Cu(Tn) + Cc(Tn)]

In the same way, they define the costs for techniques that use test selection

C(testselection) = [Ca(Ts) + Cs(Ts) + Ce(Ts) + Cu(Ts) + Cc(Ts)] +

[Ca(Tn) + Cs(Tn) + Ce(Tn) + Cu(Tn) + Cc(Tn)] ,

where Ts represents tests selected by the corresponding RTS technique in use.
Naturally, the RTS technique is more cost-efficient when C(testselection) <
C(retest− all). The most important conversion of these equation is:

C(testselection) < C(retest− all) if

Cs(Ts) < [Ce(To)− Ce(Ts)] + [Cc(To)− Cc(Ts)]

5.2. RELATED WORK 115

which means that “the selective strategy is more economical than the retest-all
strategy if the cost for selecting a subset of the previous tests is less than the
cost for executing and checking the extra previous tests needed for the retest-
all strategy” [178, page 205]. For more coherences, we refer the reader to the
paper of Leung and White [178].

Another cost model has been proposed by Do and Rothermel [54]. They
consider nine different kinds of costs such as costs for “test setup”, “identifying
obsolete test cases”, or costs for resolving faults that have been detected late
[54, page 143f.]. Some of these costs are very hard to determine in practice. For
example, it has not been possible to determine costs for identifying obsolete
test cases in the industrial application we have used in our evaluation. For this
reason, we take the cost model of Leung and White as a basis for judging the
efficiency of our technique.

Cost Efficiency: There are many empirical evaluations that report on the
cost efficiency of RTS techniques [78, 119, 229, 232, 234, 238]. Rothermel and
Harrold [232] have compared many different techniques, including the graph
walk technique. An important observation has been that graph walk techniques
are more precise, but have higher analysis costs.

In a more recent review, Engström et al. [78] have compared 28 RTS tech-
niques. They have ascertained that all techniques (including the one that
has served as starting point for our own approach) showed to be less costly
compared with the retest-all approach. When considering the fault detection
effectiveness, the authors have found that safe RTS techniques are superior.

Graves et al. [119] have compared the cost-effectiveness of several tech-
niques, including a safe technique and the rest-all approach. As representative
of the safe technique, they have investigated the safe graph walk-based RTS
technique proposed by Rothermel and Harrold [233] which has served as one of
the starting points of our own RTS technique. Graves et al. [119] have solely
studied (non-transcompiled) C programs. Their results have been promising.
Admittedly, the evaluated safe regression technique could sometimes merely
reduce the test suite by 1%. But in contrast, their technique achieved some-
times a test reduction of 95%. When considering the whole picture, Graves
et al. have observed that merely 60% of the test cases have been selected for
re-execution.

Compared with the findings of Graves et al., Rothermel and Harrold [234]
have observed similar results for several small applications that consist of 138 to
516 lines of code. For these programs, their RTS technique has selected 54,3%
of the tests for re-execution on average. Nevertheless, Rothermel and Harrold
have also found cases in the small programs where the test reduction was rather
low. On the other hand, the results of the analysis of the largest application in
their study are again very promising. The application consists of almost 50 000
lines of code and belongs to a real software applications that has evolved over
a long time. The test reduction has been more than 95%. Of course, the test
suites in all these studies did not contain UI/web tests and the authors have

116
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

not incorporated the extra effort that is necessary to deal with transcompiled
applications. We investigate the impact of these new circumstances in today’s
applications and whether the promising numbers of test suite reductions still
hold in our environment.

In another paper, Rothermel et al. [238] have found that the structure of the
test suite is relevant for the cost-effectiveness of RTS techniques. They refer to
this as test suite granularity [238, page 130]. According to them, a fine-grained
test suite consisting of many small tests rather than a few big tests requires
more execution time and detects less faults. Nevertheless, the authors also
remark that a more coarse-grained test suite involves the danger that there is
(almost) no test suite reduction. Naturally, this is – as we want to emphasize –
counterproductive for applying a RTS technique efficiently.

Kim et al. [164] have detected that the number of tests selected for re-
execution is related to the test interval. According to them, the bigger the test
interval, the more tests are selected for re-execution. However, as explained in
Section 2.1 and in Section 2.2, we want to remind that code changes should
anyway be integrated in a repository frequently. More details can also be found
in Fowler’s article on Continuous Integration (CI) [84]. The commits are the
trigger for new builds and test runs. So, as the intervals are small, we do not
expect the concern of Kim et al. to be the reason for a potentially high number
of selected tests.

Analysis Effort, Analysis Levels, and Heuristics: Apiwattanapong et al.
[12] incorporate lookaheads [12, page 6] in their tool JDiff (see Section 4.2,
Paragraph “Code Analysis and Fault Localization”) that is able to detect code
changes in the object-oriented language Java. As soon as the analysis of P and
P ′ detects that the current nodes n ∈ P and n′ ∈ P ′ do not correspond to each
other, they try to find matching nodes by using a lookahead in a Breadth-First
Search. They always compare n to the successor nodes m′i (i ∈ N) of n′ and
they compare n′ with the successor nodes mj (j ∈ N) of n. If the search could
not find a corresponding node, they continue the comparison of n (n′) with
the successor(s) of m′i and the comparison of n′ with the successor(s) of mj ,
respectively. Apiwattanapong et al. continue this procedure until they find
a corresponding node or until the lookahead value is reached. If they detect
matching nodes p ∈ P and p′ ∈ P ′, they check the edges starting from p and
p′ for a match and – if successful – continue the analysis with the successor
nodes. So, Apiwattanapong et al. use the lookahead to find for the nodes in P
corresponding nodes in P ′. If the analysis fails to find matching nodes before
the maximum lookahead values is reached, they consider the nodes n ∈ P and
n′ ∈ P as “modified” [12, page 16]. All remaining nodes in P are considered as
deleted, remaining nodes in P ′ are considered as added. We also use a looka-
head, but in order to find a point in the code where the comparison can be
resumed in order to analyze the rest of the code for additional code modifica-
tions. For this purpose, we use the lookahead in a two-stage analysis process.
Apiwattanapong et al. do not analyze code modifications in detail. Besides, in

5.2. RELATED WORK 117

some cases at least, their algorithm takes more time to find coinciding nodes
than ours. Let us assume that the current nodes n and n′ do not match due
to code modifications. Let us also assume that the successor node of n in P
is q, which in turn has a successor node r. r is succeeded by u. Likewise, let
us assume that n′ in P ′ has a successor node s, which in turn has a successor
node t. t is succeeded by u′, which matches u. Apiwattanapong et al. have to
perform three analyses with lookaheads in order to detect that u and u′ are
matching nodes. In contrast, with our two-stage algorithm, we perform a sin-
gle lookahead analysis and check directly whether nodes have been modified,
added or removed. Consequently, we are faster in detecting code modifications.
Further details on our two-stage analysis follow in Section 5.4.4.

A different technique focusing on the reduction of analysis overhead has
been presented by Orso et al. [215]. They investigate the code at two stages.
They perform a high-level analysis (stage 1) narrowing the choice of code that
should be analyzed in a subsequent code investigation (stage 2). In stage 1, they
use a partitioning algorithm that is based on a special Interclass Relation Graph
[215, page 244]. This way, they are able to identify changes of statements or
declarative changes. In stage 2, they compare only these parts of the code that
are affected by changes. Although we share the idea of reducing the analysis
overhead via a precedent investigation, we use a simplified approach to check
quickly which parts of the code require a precise check for changes. Unlike
Orso et al., we do not exclude parts of the code from the analysis for security
reasons. Instead, we reduce the analysis granularity dynamically as needed and
argue that our approach is not insecure.

The approach of Bible et al. [29] is close to our suggested technique. They
report on advantages and problems of a coarse-grained safe regression testing
technique and another safe technique that analyzes the code on statement level.
On this basis, they develop a prototype for a hybrid technique that tries to
combine the best properties of both approaches. However, we want to remark
that they have no facility to adjust the analysis level as needed. Besides, they
do not employ project related data to decide on which analysis level might fit
the best.

Gligoric et al. [93] analyze code very coarse-grained at file level. They avoid
the creation of CFGs. Instead, they compare the checksums of files in order to
detect changes. For the test selection, they merely model the dependency of
files that are traversed by a test class or by a test case. This approach speeds
up the analysis but is of course less precise. The authors admit that their tech-
nique – implemented as extension of JUnit in a tool called Ekstazi – usually
selects more tests than more fine-grained techniques. Nevertheless, they state
that Ekstazi is faster than the retest-all approach. Furthermore, they have
compared their tool with another recent RTS tool called FaultTracer [293]
(see Section 4.2, Paragraph “Code Analysis and Fault Localization”) which
is, according to their findings, even slower than the retest-all approach. With
respect to the findings of other authors (see the beginning of this section), we
are concerned that changes affect many or even all tests. The number of tests

118
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

selected for re-execution is decisive. The fastest analysis cannot outperform
the retest-all approach if the RTS technique is not able to reduce the number
of selected tests. We expect this concern to be especially true in the context
of UI/web tests as these kinds of tests do not necessarily check mostly distinct
functions like JUnit tests usually do, but rather execute lots of classes/files.
Gligoric et al. have solely focused on projects with standard JUnit tests, but
have not considered transcompiled (web/mobile) applications. Beyond that,
the very coarse-grained analysis at file level contradicts our target to precisely
locate changes/possible faults in the source code (see the fault localization
problem, Section 1.2.2). The time for locating and fixing bugs has also to be
taken into account. Gligoric et al. do not consider this aspect. For this reason,
we introduce a heuristics as trade-off between a fast analysis and the lowest
possible number of tests selected for re-execution.

5.3 Motivation and Challenges

Every RTS technique should achieve two goals: a) an exact localization of code
changes in order to select only these tests that are actually affected, and b) the
benefit of the technique has to outweigh the overhead of a retest-all approach.
In case of web tests that run in a web browser, runtime is limited by factors
like the client-server communication or the data loading from databases. For
this reason, web tests are known to be time intensive. For example, in the
company that allowed us to investigate our approach, the test suite consists of
105 tests and takes 9 hours when using the common restest-all approach. So
in fact, running a few tests more or less makes a huge difference. Therefore,
techniques that aim at reducing the test effort have potential to boost the test
selection.

Basically, the test suite could be split into several parts in order to run
them in parallel and to reduce the time consumption. Nevertheless, this is
accompanied by an increase of costs. On the one hand, there have to be enough
powerful virtual machines available that have to be maintained and kept up
to date. On the other hand, every machine requires a license of the testing
platform. Especially the costs for licenses and support are considerable1 and
usually cannot be provided in a sufficiently large number to support continuous
integration.

With regard to the choice of technique, we want to remind that a safe RTS
technique is preferable as it does not miss test cases that reveal a bug (see
Section 2.2). The findings of Graves et al. [119] encourage us. According to
them, the safe RTS technique has performed well in terms of cost-effectiveness.
Despite the fact that there has been some cases in which their technique was
merely able to reduce the test suite by 1%, there have also been cases in which
95% fewer tests had to be executed than in a retest-all approach. On the me-
dian, a test reduction of 40% has been achieved while revealing all faults. In

1Standard business testing tools are priced at more than 2000 e (see e.g. http:

//smartbear.com/product/testcomplete/pricing/)

http://smartbear.com/product/testcomplete/pricing/
http://smartbear.com/product/testcomplete/pricing/

5.4. APPROACH 119

contrast, Orso et al. [215] (see also Section 5.2) report that safe selective regres-
sion testing techniques are less cost-efficient compared to unsafe techniques in
particular when applied to big software systems. According to them, the rea-
son is that the safe technique takes more time than the retest-all approach. As
the article is more than ten years old and as today’s computers have signifi-
cantly more internal memory and power, these results seem not to be crucial
any more. Instead, the efficiency of our technique might be compromised by
the additional time needed for:

• instrumenting the Java code,

• executing the instrumented application with its transmission of CIDs to
the logging server and their insertion into a database for further process-
ing,

• creation of EJIGs for the old program version P and the new program
version P ′,

• comparing the two graphs,

• selecting tests cases by querying the database to find these ones that
traverse the CID of a changed node in the EJIG.

Especially the nature of UI/web tests can have a significant impact on the
number of selected tests for re-execution. Distinct UI/web tests do not test
mostly disjoint functions as unit tests usually do, but might execute the same
UI code. Therefore, modifications in the code may affect easily many UI/web
tests, which makes a test suite reduction harder. This concern is also confirmed
by Rothermel et al. [238] who have observed that it is more effective when the
test suite contains many small tests rather than a few big tests.

All these findings and reflections make obvious that it is beneficial to do
further research on a technique that is highly optimized for test selection and
fault location.

5.4 Approach

A main factor that influences the time exposure is the precision used to per-
form the analysis of the Java code. Here, we can distinguish various levels of
precision. For example, the code could be analyzed for code changes rather
coarse-grained by comparing method declarations. A more fine-grained anal-
ysis could perform this comparison on statement or even on expression level.
The precision level impacts the instrumentation of the Java code. By logging
the execution of every entity (methods, statements, expressions), the level of
precision has a high impact on the performance overhead introduced by instru-
mentation. Queries to select the tests that have to be re-executed therefore
take longer. Besides, when doing a fine-grained analysis of the code, the EJIGs
contain more nodes. So any comparison of the two graphs potentially takes

120
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

more time and additionally, it leads to increased memory consumption. How-
ever, a fine-grained analysis results in a better fault localization and therefore
in a reduced test selection, which is one of our main targets. For this reason, we
introduce two levels of precision for our analysis which we call Body Declaration
and Expression Star. They will serve as starting point to define a heuristics for
finding a trade-off.

The runtime of the analysis is additionally affected by the completeness of
the analysis. Harrold et al. [126] stop comparing the CFGs of P and P ′ as
soon as a code modification has been detected. If a test case t covers this code
modification, they just add t to the set of test cases that have to be re-executed
on P ′. This approach is of course completely valid and does not impair a safe
test selection. However, we add for consideration that there might be more
code changes throughout the remaining program execution that affect other
test cases. Without a continuing analysis, bugs in these code changes might not
be detected before a future analysis gets started. Moreover, in the approach of
Harrold et al., it might happen that a test case is selected for re-execution due to
a code modification mi, but the test case fails due to another code modification
mj that appears later in the code. Using mi for searching for bugs would be
clearly misleading. In the approach of Harrold et al. however, code modification
mj could only be detected by a subsequent analysis. Consequently, it would
be helpful to know all possible code changes that might be the cause for a test
failure. As already explained in Section 5.2, Apiwattanapong et al. [12] have
proposed a lookahead [12, page 6] to find matching nodes within hammock
nodes. We take this idea up to do a more in-depth analysis using two different
algorithms. There, the lookahead defines an upper limit of how many levels of
successor nodes will be investigated to find additional changes. More details
follow in Section 5.4.4.

In this section, we describe the details of our approach to deal with the
mentioned factors.

5.4.1 Analysis Levels at Various Precision

We introduce the analysis precision level Expression Star (E*) which calculates
CIDs and generates nodes in the EJIG on expression level with some exceptions.
For example, all literals have been excluded as they would increase the logging
amount enormously without providing any benefit for fault localization.

In the analysis precision level Body Declaration (BD), nodes represent body
declarations in the code. In Java, we might think of methods, types or fields. So
this level is less precise and is not able to distinguish modifications in different
statements within a method. As a consequence, it risks selecting too much tests.
The example code in Figure 5.1a shows a method of an initial program version
P . In P ′, there is a code modification in the else-branch (see Figure 5.1b,
where the call bar() has been changed to bazz()). Figure 5.1c shows for each
test case the list of CIDs it has traversed during the last test run. To keep the
example simple, we just name the CIDs cid1, cid2, and cid3. Solely test 2

5.4. APPROACH 121

traverses the changed code (see Figure 5.1d). When comparing P ′ with the old
version P , E* considers the CIDs in the case distinction and selects only test 2.
In contrast, BD only considers the CID representing the method declaration
(cid1) and will select both tests.

1 private void m(boolean mycase) {
2 InstrumentationLoggerProvider.get().instrument("cid1");
3 if(mycase) {
4 InstrumentationLoggerProvider.get().instrument("cid2");
5 foo();
6 } else {
7 InstrumentationLoggerProvider.get().instrument("cid3");
8 bar();
9 }

10 }

(a) Original version P with a code modification in the else-branch.

1 private void m(boolean mycase) {
2 InstrumentationLoggerProvider.get().instrument("cid1");
3 if(mycase) {
4 InstrumentationLoggerProvider.get().instrument("cid2");
5 foo();
6 } else {
7 InstrumentationLoggerProvider.get().instrument("cid3");

8 bazz();
9 }

10 }

(b) Version P ′ with a code modification in the else-branch.

CIDs traversed by
test 1 test 2

cid1 cid1
cid2 cid3

(c) CIDs in distinct test cases.

Test selection in
Test E* BD

Test 1 × ×
Test 2 ×

(d) Test selection results per precision level.

Figure 5.1: Test selection in various precision levels.

The EJIG created by the BD-level usually contains less nodes than the EJIG
created by E* which leads to a reduced memory consumption. Furthermore, we
would expect an improvement of the runtime as there are less nodes to compare.
In the creation of the EJIG itself via the BD-precision level, we do not expect a
significant speedup. Technically, the EJIGs are created by traversing the AST
provided by the Eclipse Java Development Tools (JDT) as already mentioned
in Section 2.5. We drill down the Eclipse AST and stop creating nodes for
the EJIG as soon as the current node in the Eclipse AST does not match the
analysis precision level any longer. Due to the fact that method invocations are
expressions, we have to continue walking through the AST even if the BD-level

122
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

is selected for precision in order to model calls of methods in the control flow.
So, even in an EJIG that is based on a BD-precision level, we need to create
nodes that represent method invocations. We call this kind of nodes glue nodes
because without them, the control flow gets interrupted.

Although we need to traverse method invocations even if the BD-level is
selected for precision, we solely want to have nodes in the final set of code
modifications that fit the BD-level. This way, we expect to gain an edge over
the fine-grained precision level. Of course, this affects the Algorithm 1 in
Section 4.3.2. Algorithm 3 shows the version of the original algorithm with
an update in line 21. Here, we call a helper method handleGlueNodes. It
just checks whether the target nodes t′ is not marked visited yet and whether
t and t′ fit the chosen precision level. If so, the algorithm continues as usual
with line 22. Otherwise, we directly push the node pair t and t′ on the stack

and continue with the loop in line 13.

5.4.2 Dynamically Customizable Analysis Level Based on a
Heuristics

We want to find a reasonable trade-off that considers the strengths and dis-
advantages of the E*- and BD-precision level in order to optimize runtime
performance and memory consumption, but at the same time guaranteeing
both a precise selection of test cases and the identification of code changes in
the underlying Java code.

The key idea of a dynamically adaptable analysis level is that there might be
cases (e.g. when parts of the code usually never change at all or only to a limited
extent), in which a detailed analysis does not really provide more information
but requires more memory and potentially loses time in preparing or inspecting
code. For this reason, we propose a hybrid form of analysis in order to reduce
the gap between precision and performance. In this context, it is crucial to find
a competitive decider. Especially in the area of test prioritization, heuristics
are frequently used to decide on which test should be selected preferably. More
details can be found for example in the survey of Yoo and Harman [290]. We
modify this strategy to decide which parts of the code might be investigated
less thoroughly.

In order to find a suitable decider at which precision level a CompilationUnit
in the Eclipse AST (i.e. a class, interface or enum) should be analyzed, we have
focused on the potential of single source files to contain code that cause a test
to fail. In a first approach, we have mediated using the change frequency
of java files as decider. Alternatively, we have reflected on analyzing those
CompilationUnits on E*-precision level that have been responsible for an in-
creased test selection in a previous analysis. Kim and Porter [163] have also
investigated different kinds of data obtained during previous test runs. Their
most similar idea has been to check which tests revealed faults the most often
in the past. (More details follow in Section 6.2). The major difference to our
first plans is that they focus on the ability of a test to reveal faults rather than

5.4. APPROACH 123

input : s: start node in P ; s′: start node in P ′

output: d: List of dangerous edges
1 if ¬nodeEquivalent(s′, s) then
2 e′ ← n′.getAnyEdge();
3 d ← d.add(e′);

4 end
5 stack.push(s, s′);
6 while stack not empty do
7 n← stack.pop.oldNode;
8 n′ ← stack.pop.newNode;
9 if n′ is marked visited then

10 continue;
11 end
12 mark n′ visited;
13 foreach edge e leaving n do
14 e′ ← match(n′, e);
15 if e′ is empty then
16 // handle removed code; more details follow in Section 5.4.4;
17 continue;

18 end
19 t← e.targetNode;
20 t′ ← e′.targetNode;
21 handleGlueNodes(t, t’);
22 if ¬nodeEquivalent(t′, t) then
23 // distinguish kind of modification;
24 // more details follow in Section 5.4.4;
25 d ← d.add(e′);

26 end
27 else if t′ is not marked visited then
28 stack.push(t, t′);
29 end

30 end
31 foreach edge e′ leaving n′ without counterpart do
32 // handle special cases; more details follow in Section 5.4.4;
33 d ← d.add(e′);

34 end

35 end

Algorithm 3: Comparing two EJIGs - Handle glue nodes.

on source files. For our purposes, we would have to go one step further in order
to analyze the potential of single source files to let tests fail. Elbaum et al. [71]
have pursued a strategy that partially fits our demands. They have determined
functions that showed to be faulty in previous program versions.

124
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

However, when analyzing the industrial software Meisterplan (see Sec-
tion 5.6.1) for our evaluation, we have detected that the number of changes are
neither Gaussian distributed, nor do the test selection prone code changes in P
correlate significantly with changes in P ′. Of course, this may be different from
software to software but obviously, the change frequency and the likelihood of
CompilationUnits being responsible for a high test selection in the past are
not suitable criteria for all kinds of applications. For these reasons, we had to
refine out strategy.

Our final heuristics does not rely on data from previous test runs any more.
Instead, the heuristics uses a check to decide which source files have been
changed. Here, a change can be an addition, a modification, or a removal of
a file in P ′. (For simplicity, we refer to them as changed files.) This is done
by querying the code repository before the creation of the EJIGs starts. Of
course, irrelevant changes (e.g. white spaces or blank lines) are ignored. The
heuristics takes the list of changed files as input and influences directly the
number of nodes both in P and in P ′. When traversing the ASTs of P and
P ′, the heuristics checks for each CompilationUnit whether it is affected by
a code change. If there is a match, the heuristics creates corresponding nodes
until the E*-precision level is reached. Otherwise, the EJIGs contain only
nodes that represent body declarations or more coarse-grained elements plus –
as explained before – glues nodes to handle method invocations that connect
method declarations.

Our heuristics is similar to the one proposed by Orso et al. [215] (see also
Section 5.2). In favor of a quick and easy computation, it is less precise as we
do not analyze any relationships among classes. Orso et al. consider the class
hierarchy or relations between classes. They argue that a heuristics depending
solely on modifications in the source files fails to identify and treat declarative
changes in the context of inheritance precisely. Besides, they state that such
a test selection is not safe. This is true in their specific approach for a new
RTS technique that is based on partitioning and selection. We also agree that
this is a valid remark in the context of choosing whether a compilation unit
should be analyzed at all. In our case however, this claim does not apply since
we only use the heuristics for adapting granularity between BD and E*. We
still analyze the whole code, but represent the code in some CompilationUnits
more coarse-grained. So our approach is still safe. Their argumentation that
a heuristics based solely on modifications is not able to identify declarative
changes does also not apply in our case. To illustrate this, we use the relevant
part of the same example as Orso et al. employ in their argumentation (see
Figure 5.2) and extend it by an additional class HyperA. We deliberately omit
a code change (Orso et al. have changed the statement in line 10 of P ′ from
i-- to i++) as the authors just use this as an example for a declarative code
change that is easy to recognize. Of course, we are also able to recognize this
declarative code change.

In the example in Figure 5.2, LibClass represents a library that returns an
instance of type A or SuperA. A.foo() has been added in P ′ (see Figure 5.2b in

5.4. APPROACH 125

1 public class SuperA {
2 int i=0;
3 public void foo() {
4 System.out.println(i);
5 }
6 }
7

8 public class A extends SuperA {
9 public void dummy() {

10 i−−;
11 System.out.println(−i);
12 }
13

14

15

16 }
17

18 public class B {
19 public void bar() {
20 SuperA a = LibClass.

getAnyA();
21 a.foo();
22 }
23 }
24

25 // Library that returns either
an instance of SuperA or A:

26 public class LibClass {
27 public static SuperA

getAnyA() {
28 return new A();
29 }
30 }
31

32

33 public class HyperA {
34 public void dummy() {
35 // do something
36 }
37 }

(a) Version P

1 public class SuperA {
2 int i=0;
3 public void foo() {
4 System.out.println(i) ;
5 }
6 }
7

8 public class A extends SuperA {
9 public void dummy() {

10 i−−;
11 System.out.println(−i);
12 }
13 public void foo() {
14 System.out.println(i+1);
15 }
16 }
17

18 public class B {
19 public void bar() {
20 SuperA a = LibClass.

getAnyA();
21 a.foo();
22 }
23 }
24

25 // Library that returns either
an instance of SuperA or A:

26 public class LibClass {
27 public static SuperA

getAnyA() {
28 return new A();
29 }
30 }
31

32

33 public class HyperA {
34 public void dummy() {
35 // do something
36 }
37 }

(b) Version P ′

Figure 5.2: Declarative code change taken from Orso et al. [215], extended by
class HyperA.

comparison to Figure 5.2a) and this is why SuperA.foo() is not traversed any
more in P ′ if the library returns an instance of type A. In the EJIG, this modi-
fication is represented by a modified call edge. When looking at the EJIG of P ,
there are two call edges pointing from a.foo() in B.bar() to SuperA.foo().
The call edges represent the possible return types of LibClass.getAnyA() (i.e.
SuperA and A). In P ′, the EJIG has a redirected call edge (dangerous edge)

126
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

whose start node is a.foo() in B.bar() which points to A.foo(). (The other
call edge is left untouched.) Our heuristics will consider A in P ′ as changed and
it will do a fine-grained analysis on any code within A. In terms of our heuris-
tics, this is correct and meets our expectations. With respect to test selection,
our algorithm would select any test for re-execution that traverses the two call
edges starting from a.foo() in B.bar(). It does not matter whether the library
returns an instance of type SuperA or A. The selection remains safe. Only tests
that traverse one of these call edges will be selected for re-execution, which is
absolutely precise and exactly what we would expect. Other tests instantiating
A that just call A.dummy() will not be selected for re-execution. This is different
from the approach of Orso et al. who have to deal with the problem that all
tests instantiating A have to be selected for re-execution, regardless of whether
they traverse A.foo() or not.

Now we would like to extend the example of Orso et al. to discuss another
declarative change. Imagine that in P ′, A just extends from an already existing,
unchanged class HyperA instead of overriding SuperA.foo(). (So please ignore
lines 13-15 in Figure 5.2b.) For the sake of type correctness, also assume that
the (external) library LibClass returns an instance that fits our code (i.e., it
has to return an instance of HyperA instead of SuperA, see line 28). In this case,
there is a single declarative change in the inheritance chain (A extends HyperA

instead of A extends SuperA). Our heuristics will again analyze A in detail,
but actually, the code in A did not change. Instead, a test case might now
execute the dummy()-method of A rather than the one of HyperA. Nevertheless,
this does not affect the safety of our approach as we just represent A more fine-
grained as necessary. Again, the call edge changed and any test that traverses
the caller of the dummy-method will be selected for re-execution. The same is
true when considering class B. It calls a library that now always returns either
an instance of HyperA or A. Tests traversing a.foo() in B will be selected as
the call edges in P ′ differ from those in P .

So on the one hand, we run the risk that that our heuristics analyzes code
more fine-grained as necessary. But on the other hand, the heuristics is easy
to compute and does not require much additional time. Moreover, we analyze
the code to a high probability at a high precision level when it is actually
necessary. Besides, with our heuristics, we reduce the memory consumption
whenever there is no doubt that a fine-grained analysis is unnecessary.

As already mentioned in Section 5.2, our heuristics has the basic idea of
using a hybrid form of analysis in common with the approach proposed by
Bible et al. [29]. They have also tried to improve the efficiency by reducing
the analysis overhead. However, they have applied this strategy on the whole
software under test. This differs from our approach in such a way, that we
assign each class the analysis granularity and the lookahead individually. We
expect that a coarse-grained analysis of the entire source code would lead to
a big loss in precision and an increasing number of test cases selected for re-
execution. Here, we want to remind the example in Figure 5.1 in Section 5.4.1
where we cannot distinguish tests that execute specific branches.

5.4. APPROACH 127

5.4.3 Trace Collection Costs and Analysis Costs

The total costs Ctraces for collecting test traces depend on the costs for the
code instrumentation Cinstr plus the costs Clog for traversing and sending the
CIDs to the logging server plus the costs Ctranscomp∆ for transcompiling instru-
mentation code. Ctranscomp∆ is the difference between the costs Ctranscompinstr

for transcompiling an instrumented code version P and the costs Ctranscomp for
transcompiling the source code of P without any instrumentation code. So:

Ctraces = Cinstr + Ctranscomp∆ + Clog

Ctranscomp∆ = Ctranscompinstr − Ctranscomp

All parts in Ctraces increase linear with the number of instrumentations. We
use the number of nodes representing a code entity in E* and BD, respectively,
to compare the total costs for collecting traces on our precision levels. In real
programs, the set of nodes represented by BD is smaller than the set of nodes
represented by E*. The BD-precision level is therefore cheaper in terms of test
tracing.

The costs for our heuristics CHtraces basically depend on the number of
CompilationUnits represented on E*-level and are bounded by the costs for
collecting traces on BD-level and E*-level, respectively. So, theoretically, it is

CBDtraces ≤ CHtraces and CHtraces ≤ CE∗traces

(CBDtraces is only equals to CE∗traces if the source code consists of body decla-
rations solely. In real programs however, there are always statements, too. So
CBDtraces = CE∗traces will never occur in practice.) As we do not know in ad-
vance which CompilationUnits will change in P ′, the entire trace collection for
P has to be done on E*-precision level. Hence, the costs CHtraces and CE∗traces
are the same. So, in terms of cost for collecting traces, using a heuristics does
not pay off yet.

Our heuristics takes effect when investigating the costs for analyzing and
comparing the EJIGs. Some parts of the EJIGs are represented fine-grained
on E*-level, the rest is represented coarse-grained on BD-level. So:

CBDanalysis
≤ CHanalysis

and CHanalysis
≤ CE∗analysis

When there are only a few changes, most nodes in the EJIGs represent body
declarations. Then it is:

CHanalysis
= c · CE∗analysis

+ (1− c) · CBDanaylsis

where c ∈ [0; 1] is the percentage of nodes that have to be represented fine-
grained. So in the best case, it is:

CHanalysis
= lim

c→0

(
c · CE∗analysis

+ (1− c) · CBDanaylsis

)
= CBDanaylsis

128
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

We can link our insights to the cost model presented by Leung and White
[178, page 205] (see Section 5.2). To this end, we transpose their equation:

Cs(Ts) < [Ce(To)− Ce(Ts)] + [Cc(To)− Cc(Ts)]

Cs(Ts) + Ce(Ts) + Cc(Ts) < Ce(To) + Cc(To)

In this equation, Ctraces = Cinstr + Ctranscomp∆ + Clog is equivalent to Ce(Ts)
(the test execution costs). Cs(Ts) includes the checkout of P , the comparison
of P and P ′, and the check for tests that are affected by changes. So Cs(Ts)
corresponds in our case to CHanalysis

. That is, the costs for test selection plus
the costs for executing the selected tests plus the costs for checking the output
of these tests has to be smaller than the costs for executing all the old tests plus
the costs for checking the output of all the old tests. In more detail, Ce(Ts) and
Cc(Ts) have to outweigh the extra costs Cs(Ts) although Ce(Ts) itself includes
additional costs for instrumentation, transcompilation, and logging.

5.4.4 Recognizing More Code Changes with Lookaheads

Code modifications are often not local to one particular position in the code.
For instance, a refactoring that changes an instance variable name may cause
multiple method bodies to change at several positions. However, many RTS
techniques are unable to localize these positions exactly as they only detect
changes at file or method/function level (e.g. [16, 38, 93, 142, 143]). Graph-
based RTS techniques (e.g. [126, 228, 230, 233, 236, 272]) usually compare the
program versions P and P ′ only up to the first occurrence of a code modifi-
cation. Other changes that occur in the CFG later are not examined by these
techniques any more. Their identification requires other techniques like change
impact analysis (see Section 2.6) or manual inspection. Both possibilities of
course require additional time. Missed impacts of code changes emerge not
before the RTS technique is re-executed.

In order to reduce this overhead to find additional modifications, we adopt
a feature of the approach presented by Apiwattanapong et al. [12] that uses
lookaheads [12, page 6] to detect more changes. In contrast to Apiwattanapong
et al., we employ a two-stage algorithm which is applied directly on the different
nodes of the EJIG. It is implemented in a helper method nextNodeOracle

which is located in line 24 in Algorithm 3 of Section 5.4.1. Algorithm 4 shows
the updated part (lines 22-26). The two-stage algorithm uses as input the last
matching nodes in P and P ′, and a reference to the stack that enables pushing
of new nodes. Besides, we use a user defined lookahead value that defines an
upper limit how many levels of successor nodes (see Section 2.5) have to be
analyzed in order to find a coinciding node where the comparison of nodes can
be resumed. Figure 5.3a and Figure 5.3b sketch the situation. In both cases,
there are two CFGs representing P and P ′. The node n1 is the last matching
node. In a Parallel Search (first stage), we try to find whether a successor node
has just been modified in P ′ (see node na in Figure 5.3a) and whether there is a
common node in P and in P ′ from where the program execution coincides again.

5.4. APPROACH 129

In the example, this applies to n3. In more detail, we consider all the successor
edges of the differing nodes in P and P ′ and check the kind of edges, the label of
the edges, as well as the labels of their target nodes tiP and tiP ′ , i ∈ N against
each other. The comparison of the kind of edge is important to distinguish
call edges from CFG edges (see Section 4.3.1, Paragraph “Specialized CFGs for
Java Software”) and to distinguish overridden methods in class hierarchies. If
we find a coinciding node c in P and in P ′ (i.e. a node with the same label that
can be reached via the same kind of edge that has the same edge label), we
stop the algorithm and continue our CFG analysis from c as usual. Otherwise,
we consider the successor edges and their corresponding target nodes of tiP
and tiP ′ . This procedure continues until we find coinciding nodes or until we
reach a maximum number of levels of successor nodes defined by a lookahead
parameter.

input : s: start node in P ; s′: start node in P ′

output: d: List of dangerous edges
22 if ¬nodeEquivalent(t′, t) then
23 // distinguish kind of modification;
24 nextNodeOracle(e, e’, stack);
25 d ← d.add(e′);

26 end

Algorithm 4: Comparing two EJIGs: compare - Distinguish kind of
modification.

n1

n2

n3

n4

n1

na

n3

n4

P P'

CFG edge

(a) Parallel Search

n1

n2

n1

na

nb nc nd

P P'

ne ninf ng nh n2

CFG edge call edge

(b) Breadth-First Search

Figure 5.3: Two-stage algorithm to find matching nodes after modification.

In the example in Figure 5.3a, we start the search from node na. Here, it
would be sufficient to set the lookahead value to 1 in order to find the next
matching node n3 in P and P ′. If the Parallel Search algorithm is successful,
the comparison of the EJIGs representing P and P ′ continues normally. In the

130
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

example, we continue with the successor of n3. This way, we are able to detect
additional changes that cannot be found by standard approaches as explained
above.

If the Parallel Search-algorithm does not succeed, we continue with a second
stage. Therein, we use a Breadth-First Search to determine whether nodes
have been added or removed in P ′. In Figure 5.3b, this applies for the nodes
(na – ni). Between n1 and n2, the nodes na and nd are new. To detect this, we
start our Breadth-First Search from the node nP in P that differs from nP ′ in
P ′ with three parameters: the label of the actually expected node nP , and the
edge eP that has to be traversed to reach this node nP . The third parameter
is the differing node nP ′ in P ′. (In our example, it is nP = n2, eP = call edge
and nP ′ = na.) The algorithm starts to compare nP against the target nodes
tiP ′ , i ∈ N of nP ′ and eP against the edges that have to be traversed in order
to reach tiP ′ . In the example in Figure 5.3b, nP = n2 is compared against the
set of target nodes {nb, nc, nd}. This comparison continues until the coinciding
node has been found or until we reach the maximum looakahead value. In the
example, nodes with level 1 (i.e. {nb, nc, nd}) do not contain the node n2. So
we consider the set of successor nodes of tiP ′ . This is {ne, nf , ng, nh, ni, n2}.
Here, we find node n2. The algorithm exits and the comparison of P and P ′

continues from n2 as usual.

If the Breadth-First Search does not succeed, we repeat the Breadth-First
Search with changed input. We restart the algorithm with swapped input from
the node n′P in P ′ that differs from nP in P with three parameters: the label
of the actually expected node n′P , and the edge e′P that has to be traversed to
reach this node n′P . The third parameter is the differing node nP in P . The
workings remains the same as described before.

If one of the two algorithms succeeds, we are able to determine the kind
of code change. A success of the Parallel Search algorithm indicates modified
code. In the example in Figure 5.3a, we consider the edge with start node n1

and target node na as modified edge and add it to the list of dangerous edges.
If the Breadth-First Search succeeds with the first input variant (see example
in Figure 5.3b), code has been added. A success with the second input variant
indicates removed code. Consequently, we consider the edge with start node n1

and target node na as added edge and add it to the list of dangerous edges. If
both algorithms fail, the non-coinciding node nP ′ is simply marked as modified.
In general, if we cannot find a counterpart for a specific node nP ′ in a method
m and if subsequent comparisons also fail to detect corresponding nodes before
the maximum lookahead value is reached, we stop the analysis and mark nP ′ as
modified. The analysis continues with the comparison of other methods that
have not been analyzed yet. The remaining nodes in m stay without analysis.
This is no problem as these nodes cannot be reached without traversing the
already detected change of node nP ′ . So we cannot miss to select tests for
re-execution that are affected by a change.

Apart from the Parallel Search and the Breadth-First Search algorithms,
we can additionally infer on the kind of modification by means of logic and

5.4. APPROACH 131

combinatorics. In line 32 for example, we handle such – rather technical and
maybe secondary – special cases for edges e′ in P ′ that have no counterpart
(provided that the target node of the edge has not been marked as visited yet
and that the target node is not a glue node). As these edges only exist in
the new program version, we can consider them as added. That is, either the
target node or the start node of the edge have been added. We analyze this
in a helper method handleSpecialCases (see the updated Algorithm 5 that
shows the lines 31-34 of the original Algorithm 1). Similarly, if we cannot find
a counterpart of the edge e in P (see line 16), we can consider it as removed
and we add the edge to the set of dangerous edges.

input : s: start node in P ; s′: start node in P ′

output: d: List of dangerous edges
15 if e′ is empty then
16 handleMissingEdges(e);
17 continue;

18 end

31 foreach edge e′ leaving n′ without counterpart do
32 handleSpecialCases(e’);
33 d ← d.add(e′);

34 end

Algorithm 5: Comparing two EJIGs - Handle special cases.

Our main reason for employing a Breadth-First Search rather than any
other search algorithm is that we expect just a few nodes to be inserted or
removed from an EJIG. In general, we do not assume the solution of our search
to be far from the last coinciding node in the EJIGs. Of course, our assumption
might be wrong in some cases. But in these cases, an analysis of a large
number of successor nodes requires overly much time which deteriorates the
effectiveness of our approach compared with a retest-all approach. For this
reason, it is better to stop the search for a coinciding node when reaching a
certain lookahead value.

Our RTS technique does not necessarily need a lookahead. If the lookahead
value is set to 0, it does not analyze additional subsequent parts of the code. As
soon as the lookahead is applied, our algorithm implies extra time which results
in a longer runtime of the entire analysis compared to standard approaches
without a lookahead. The additional runtime rises with the lookahead value.
Especially a big lookahead leads to an increasing complexity. In particular,
this affects the BD-precision levels because a method has usually many possible
successor nodes as there are various calls to other methods. In Figure 5.3b for
example, all the outgoing edges from the grey nodes could be method calls. In
our evaluation, we therefore use various lookaheads to investigate their impact
on memory consumption and to find a useful configuration.

132
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

5.5 Tool Implementation

We have implemented our RTS technique as extension of our Eclipse plug-
in GWTTestSelection to support an easy and quick usage in the daily
development process.

The version of GWTTestSelection used for the evaluation of the compiler-
independent approach has some additional modules. One of them performs the
Java source code instrumentation. To do this, the Eclipse JDT is used to
parse the Java code and to insert CIDs as instrumentation code into the Java
source code. Another module implements the functionality for the built-in
logging server. It offers several interfaces. One of them enables test cases to
activate/deactivate the logging server automatically. Optionally, the logging
server can be started/stopped manually in the Eclipse plug-in or by calling a
script. In order to call these interfaces, additional commands are inserted into
the source code of test cases. These commands might differ depending on the
kind of test and the test framework in use, but the interface of the logging
server always remains the same. For efficiency reasons, we buffer a certain
amount of CIDs on client side while running the web tests. The buffered data
are transformed into JSON in order to send them to the logging server. The
server itself buffers the CIDs received by the instrumented web application
once more for efficiency reasons and writes them to a database2. Our tool is
completely independent from any tools suitable to create UI/web tests (e.g.
Selenium [251] or TestComplete [258]). The extended Eclipse plug-in of-
fers a big settings menu that can be invoked directly via the settings button,
or alternatively via the Eclipse Preferences menu. Here, the user can choose
between two static precision levels and our dynamic heuristics in order to define
code instrumentation granularity as well as the analysis granularity. All anal-
yses can be combined with arbitrary settings for lookaheads (see Figure 5.4).
The result of the analysis is displayed in two tables in the Eclipse plug-in (see
Figure 5.5). In the table on the left, the code changes are listed. For an easy
access, the user can double click on the table entries in order to jump directly
to the corresponding code in the Eclipse code editor view. Additionally, we
have introduced a new bookmark. That is, the user obtains an overview of the
code changes via the Eclipse Bookmark menu. The table on the right shows
for each code change in the table on the left the corresponding test cases that
might be affected and that should be re-executed. So, GWTTestSelection
is a great assistance in the bug localization and bug fixing process.

5.6 Evaluation: Compiler-Independent Approach

In order to assess our solutions to provide an efficient selective regression test-
ing technique for transcompiled cross-platform applications, we discuss our
approach in terms of six research questions:

2The database is not built-in and has to be setup by the user.

5.6. EVALUATION: COMPILER-INDEPENDENT APPROACH 133

Figure 5.4: Options of Eclipse plug-in GWTTestSelection.

Figure 5.5: Eclipse plug-in GWTTestSelection.

134
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

RQ1 How accurate can code changes be categorized as added, modified and
removed?

RQ2 To which extent will a fine-grained source code instrumentation and
analysis take more time compared to a coarse-grained one? What does it
mean for memory consumption?

RQ3 In which sense will lookaheads affect the analysis runtime and the de-
tection of code changes?

RQ4 Can a dynamically adaptable, on a heuristics based analysis level out-
perform a static, user-predefined analysis level?

RQ5 How many tests are selected with our approach and how much differ
the results from a retest-all approach?

RQ6 Is our technique cost-effective compared to a retest-all approach?

5.6.1 Software under Evaluation

In our study, we focus on two web applications created with GWT and its
transcompiler. We reuse the open source mail client Hupa [144] (see Sec-
tion 4.8.1). For the analysis of Hupa, we have checked out the source code of a
series of revisions from the public repository. At the time of the investigation,
the latest version was revision number 1684702. It consists of approximately
40.000 non-empty lines of code (NLOC) in 979 classes and interfaces. (Please
note that the revision numbers are not consecutive.)

In order to apply and assess our approach thoroughly, we have additionally
chosen an industrial application as second experimental object. Meisterplan
[150] is a highly dynamic and interactive resource and project portfolio planning
software for executives. Projects are visualized as Gantt diagrams. To each
project, data like the number of employees, their hourly rates and their spent
time may be assigned. Meisterplan accumulates allocation data from the
different projects and creates histograms. Additionally, the existing capacity is
intersected with the allocation data. This way, bottlenecks in capacity become
visible. It enables the user to optimize the resource planing by either delaying a
project or redistributing resources. Changes in capacity, project prioritization
or strategy can be simulated by drag and drop. Dependencies between projects
are visualized with the aid of arrows. To enhance project and cost analyses,
views and filters are provided.

The last version of the source code of Meisterplan that we have inves-
tigated consists of approximately 170.000 non-empty lines of code (without
imports) in roughly 2300 classes and interfaces. The test suite comprises 105
web tests. The software is built and deployed using Maven. This process and
the entire testing is part of continuous integration using Jenkins3. All web

3https://jenkins-ci.org/

https://jenkins-ci.org/

5.6. EVALUATION: COMPILER-INDEPENDENT APPROACH 135

tests are created with the aid of TestComplete [258], an automated testing
platform.

To evaluate these two applications, we have considered 13 pairs of versions of
Hupa and 21 pairs of Meisterplan. Each of these pairs have been evaluated
with various settings. In total, we have conducted 272 analyses.

5.6.2 Experimental Setup

As already explained in Section 4.8.2, ancient revisions of Hupa contain a large
number of changes. This is contrary to the usual way of doing small increments
that are regression tested afterwards. Besides, there are merge conflicts in many
revisions. The choice of our start revision respects these obstacles. In total, we
have selected six revisions of the Hupa repository including the most recent one
to do this evaluation. In order to get more reliable data, we have asked a college
to do error seeding. This way, four additional versions have been created. (As
they do not compile any more, we use them for localizing faults.) Another
four versions have been implemented by ourselves. In order to guarantee real
conditions, we have extracted some changes from ancient Hupa revisions.

Our Hupa web test suite comprises 32 web tests created with Selenium.
Unfortunately, the developers of Hupa do not provide any own web tests. For
this reason, we have asked another college to create web tests. He has never
seen Hupa or its source code so far. Again, we have created some additional
ones.

The developers of Meisterplan maintain an own web test suite. We have
selected revisions used for the nightly retest-all approach and the corresponding
web tests to do our evaluation. As we would like to integrate our approach
in the continuous integration process, we have additionally selected revisions
committed during the day to investigate how our approach performs in this
situation.

The evaluation of Meisterplan has been performed on an Intel Xenon 3.2
GHz with 8 GB RAM. The Eclipse settings allowed a maximum heap size of
6 GB. For Hupa, we have used an Intel Core i5 2.4 GHz with 8 GB RAM.

5.6.3 Threats to Validity

For getting reliable and representative results, our evaluation has to take several
conditions into account. We discuss these conditions and how we have tried to
heed them.

External Threats to Validity

In order to be able to judge the performance and the efficiency of our approach,
it is essential to investigate large applications created with a transcompiler.
However, it is difficult to find open source applications of a suitable size. In
addition, open source applications usually do not provide any UI tests. For this

136
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

reason, we are grateful having the opportunity to investigate Meisterplan.
It is a big industrial application based on a transcompiler. We had access to
real revisions and a big web test suite. In addition, we investigate Hupa as
representative of a mid-sized application. When combining these tools, they
fulfill our demands to be able to judge the performance and the efficiency of
our approach appropriately.

When considering the performance and the efficiency of our approach, the
comparability could be threatened by the amount of (background) processes
performed by the testing machine. As already mentioned, running all web tests
in the Meisterplan test suite takes 9 hours. So we had to run the tests for the
22 revisions on several days after rebooting the test system. For this reason,
we always tried to ensure that the same processes were running and that only
relevant programs were executing.

Internal Threats to Validity

The implementation of our approach could maybe contain a fault. Of course, we
have checked the behavior by applying the tool to small example projects and
by comparing the results to our expectations. Nevertheless, in large projects
such as Meisterplan, there might arise special cases due to the interaction of
many complex program states. For this reason, we have always inspected our
results for abnormalities manually.

Threats to Construct Validity

Our approach introduces a lookahead value in order to find additional faults in
the source code. To this end, the approach employs two algorithms: Parallel
Search and Breadth-First Search. Especially when using rather large lookahead
values, it could happen that one of the algorithms detects a node that corre-
sponds to the searched one accidentally. Such a scenario might arise when an
expression appears several times in a method for some reason. For this reason,
we have investigated our approach on the one hand with various lookahead
values. On the other hand, we have always manually inspected whether the
faults identified by our tool contain false positives. Besides, this procedure has
enabled us to observe whether our tool missed a fault.

Programming languages frequently offer syntactical simplifications like omit-
ted brackets in if- or loop-statements. This impairs the ability to insert instru-
mentation code without changing the semantics of the source code. For this
reason, we require the usage of blocks in if- and loop-statements. However,
this is no hard restriction as modern IDEs offer to automatically add missing
blocks on save.

5.6.4 Results

In the following subsections, we discuss the results of our evaluation in terms
of our research questions.

5.6. EVALUATION: COMPILER-INDEPENDENT APPROACH 137

RQ1: Accurate Categorization of Code Changes as Added, Modified,
or Removed

Our tool has categorized all the code changes as added, modified, or removed.
We have observed some cases where the changes have been labeled more gener-
ally as modified instead of as added or removed. This is due to the combination
of the lookahead value and the number of code entities affected by a modifi-
cation. For example, if very much additional statements have been inserted in
a method, the Breadth-First Search fails to find a location in the code where
the common comparison can be resumed. So, as explained in Section 5.4.4, we
mark the code as modified. However, it has never happened that added code
has been labeled completely wrong as removed or vice versa. So in general, the
combination of code change categorization and extra meta information about
how the code looked like before/after it has been changed helps the developer
to understand modifications without an additional Diff-based tool.

RQ2: Time and Memory Consumption of a Fine-Grained Instrumen-
tation/Analysis Compared with a Coarse-Grained Variant

Figure 5.6 and Figure 5.7 show the runtime needed to analyze the version pairs
of Hupa and Meisterplan, respectively. As we have 13 pairs for Hupa and
21 pairs for Meisterplan, we use box plots to report on the results. The
horizontal axis represents the parameter settings used in the different analysis
methods. We have used the same analysis methods for both applications. The
precision level E* has been investigated with lookahead values 20, 10, 5, and 1.
We denote this precision level with the different lookahead values as E* L20,
E* L10, E* L5, and E* L1, respectively. The BD precision level has been
tested with lookahead values 5 and 1. We use as abbreviations BD L5 and
BD L1. Apart from this, we have considered 2 heuristics. The first one is called
E*-BD L5-5. It tries to balance the lookaheads in the E* and the BD level
and sets both values to 5. The second one – E*-BD L10-1 – considers the
extremes and defines lookahead = 10 for E* and lookahead = 1 for BD. Due
to lack of space in tables or figures, we will also use the term H L5-5 instead of
E*-BD L5-5 and H L10-1 instead of E*-BD L10-1, where “H” is a shortcut for
heuristics.

The horizontal line of the box plots represents the median. The boxes be-
low/above the median contain the lower/upper 25% of the values. The vertical
lines (whiskers) at both ends of a box show the other values ignoring possible
outliers.

Our results show that there are only little differences in runtimes. Due to
its medium size, Hupa shows the same median in almost all settings except for
E* L5 and BD L1. In these precision levels, Hupa shows slightly better median
values. When looking at the runtime of Meisterplan, E* L10 and BD L5
perform slightly better than the other static precision levels. When setting the
outliers to the median, we have learned from a variance analysis that there are
significant differences (p = 5%, X2 = 56.06, df = 27). However, a subsequent

138
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

Figure 5.6: Test duration Hupa.

Figure 5.7: Test duration Meisterplan.

t-test has shown that only E*-BD L5-5 shows a significant better runtime
compared to E* L5. This is somewhat contradictory to our expectations. When
there is enough internal memory, a fine-grained analysis does not provide any
disadvantages. Nevertheless, when analyzing Meisterplan on E*-level, each
EJIG requires 5,5 times more nodes than at the BD-level in the latest version.
Considering Hupa, there are still 3,6 times more nodes in the E*-level.

As far as RQ2 is concerend, a more detailed analysis is no problem as long
as there is enough memory available. The similar runtimes are a result of
the necessity to traverse the Eclipse AST even on BD-level as described in

5.6. EVALUATION: COMPILER-INDEPENDENT APPROACH 139

Settings (Precision level and Lookaheads)
Versions E* L1 E* L5 E* L10 E* L20

v2v1 28 28 28 28
v3v2 1 1 1 1
v4v3 16 20 20 21
v5v4 6 12 15 15
v6v5 1 3 3 3
v7v6 9 9 9 9
v8v6 11 11 11 11
v9v6 16 16 22 25
v10v6 10 11 11 11
v11v2 22 25 25 25
v12v2 16 17 17 20
v13v2 46 85 85 88
v14v2 10 10 10 10

Table 5.1: Number of CIDs affected by code modifications in Hupa for E*
precision level.

Section 5.4.1. Nodes with many call edges slow down the analysis as many
edges have to be checked in order to chose the appropriate path to continue
the analysis. A more coarse-grained analysis takes effect not before considering
the memory consumption. Here, large numbers of nodes can be handled more
easily.

RQ3: Affect of Lookaheads on Analysis Runtime and Code Change
Detection

Table 5.1 shows the number of CIDs that are affected by code modifications
in Hupa for the E* precision level with different lookahead values. The first
column shows the versions that have been compared. For example, v2v1 de-
notes the comparison of version 2 with version 1. The remaining columns show
the settings used in the comparisons. Our findings indicate that the number
of detected code modifications rises with the lookahead, which is desirable in
order to reduce the effort for subsequent analyses.

In addition, we have noticed that the lookahead value should not be selected
to large as it might happen that our algorithm detects nodes which coincide
accidentally. This might for example happen when an expression re-emerges
in the CFG, but it is also true for lookaheads used in an analysis on BD-
level. Here, we might for example think of helper methods that are called
from multiple methods. In these cases, it seems that two coinciding nodes nP

and nP ′ have been found and that the analysis can continue from these nodes.
In actual fact, the successor nodes of nP and nP ′ already do not coincide
any more. So, if there is a fundamental code change, a large lookahead value

140
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

might result in recovering nodes although there is no common node in P and P ′

available. Consequently, we could stop the comparison earlier in order to reduce
the runtime, but recovering coinciding nodes prevents the algorithm to detect
that. We have repeatedly observed situations like this during our experiments
to find a suitable lookahead for the BD-level when using big values (lookahead
≥ 10).

Apart from that, during our analysis, we have observed outliers in the time
required to analyze the EJIGs when the lookahead value has been set to a big
value. Examples are E* L20 or BD L5 (see Figure 5.7). Repeating the same
analyses have confirmed that it did not happen by accident. Consequently,
memory was at a critical point. The reason is that in cases with big lookaheads,
the number of nodes we have to keep on the stack might increase exponentially.
Therefore, the memory usage rises. Let us consider the example in Figure 5.3b
again. If we would set the lookahead to the value 1, we would have to keep
three nodes (nb, nc, nd) on the stack when analyzing the successor nodes of na.
(Please note that na has already been removed from the stack.) Setting the
lookahead value to 2, we would also have to analyze the nodes ne, . . . , ni, n2.
That is, after adding the successor of nd on the stack, it would contain six
nodes. In general, if a node represents a method declaration, it might have
more outgoing edges than a statement. This is because method declarations
often have many call edges. For this reason, the memory usage for an analysis
on BD-level usually rises faster with an increasing lookahead value than for an
analysis on statement level. Due to this fact, we have used in our evaluation a
lower maximum lookahead for analyses on BD-level than on E*-level.

Thus, with respect to RQ3, setting the lookahead value has to be done with
deliberation. However, a higher lookahead can be beneficial for the detection
of code changes.

RQ4: Benefits of a Dynamically Adaptable Analysis Level Based on
a Heuristics

When choosing the settings for our two heuristics, we have tried to take into
account the results of our static precision levels and the experiences we made
with large lookahead values. As already described, Hupa has the best median
runtime values for the settings E* L5 and BD L1 (see Figure 5.6). Meister-
plan performs the best for E* L10 and BD L5 (see Figure 5.7). So, a mixture
of these settings have been the most promising.

When comparing our heuristics against each other, the balanced one
(E*-BD L5-5) performs a bit better than E*-BD L10-1. Besides, it is clearly
better than the static variant E* L5. So, the settings E*-BD L5-5 could be
the heuristics of choice. In general however, we can see that our heuristics
provide no significant runtime improvement compared to static analysis lev-
els. At first sight, it does not matter whether a static precision level or a
heuristics is applied. But on second sight, it becomes evident that especially
E*-BD L5-5 unifies in many cases the best results when looking at the test
selection (see e.g. v7v5 in Table 5.3) or at the runtime. Beyond that, it offers

5.6. EVALUATION: COMPILER-INDEPENDENT APPROACH 141

Settings (Precision levels and Lookaheads)

V
er

si
o
n

s

E
*

L
10

E
*

L
5

B
D

L
5

E
*

L
1

B
D

L
1

E
*

L
20

H
L

5-
5

H
L

10
-1

E
x
p

v2v1 0% 0% 0% 0% 0% 0% 0% 0% 0%
v3v2 0% 0% 47% 0% 47% 0% 0% 0% 0%
v4v3 97% 97% 97% 97% 97% 97% 97% 97% 6%
v5v4 97% 97% 97% 97% 97% 97% 97% 59% 0%
v6v5 9% 9% 13% 9% 13% 9% 9% 9% 0%
v7v6 0% 0% 0% 0% 0% 0% 0% 0% fault loc.
v8v6 97% 97% 47% 97% 47% 97% 97% 97% fault loc.
v9v6 44% 44% 44% 44% 44% 44% 44% 44% fault loc.
v10v6 97% 97% 97% 97% 97% 97% 97% 97% fault loc.
v11v2 9% 9% 97% 9% 97% 9% 9% 9% 9%
v12v2 97% 97% 97% 97% 97% 97% 97% 97% 3%
v13v2 97% 97% 97% 97% 97% 97% 97% 97% 0%
v14v2 97% 97% 97% 97% 97% 97% 97% 97% 0%

Table 5.2: Test selection Hupa.

a tradeoff in memory consumption. Considering the latest version of Meis-
terplan, it is theoretically necessary to keep approximately 145 000 nodes
per EJIG in the internal memory. As described in Section 5.4.3, the BD-level
gains a lot from a lower analysis overhead. This leads to a significant reduc-
tion of nodes. In case of Meisterplan, it is a factor of up to 5,5. In case
of Hupa, it is still a factor of up to 3,6. Our heuristics benefits from this
as it guarantees a precise analysis, but reduces in the best case the costs for
the analysis to CHanalysis

= 1
5,5 · CE∗analysis

in case of Meisterplan, and to

CHanalysis
= 1

3,6 · CE∗analysis
in case of Hupa.

Thus, the main advantage of our heuristics with respect to RQ4 is the reduc-
tion of nodes during the analysis which in turn reduces the memory consump-
tion. So we can conclude that a heuristics outperforms a static analysis level.

RQ5: Ability of Test Selection to Reduce the Test Effort

Table 5.2 and Table 5.3 show how many tests are selected for re-execution.
Each row represents a pair of versions with eight possible settings. The first
column shows which versions have been compared. (For example, v2v1 denotes
the comparison of version 2 with version 1.) The value in the last column (Exp)
indicates our expectations how many tests should be selected for re-execution.
We have obtained these values from real test executions by looking up from
the corresponding test reports which tests actually failed. (Please note that in
Table 5.2, four versions have been used for fault localization only as mentioned
above in Section 5.6.2.)

142
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

Settings (Precision levels and Lookaheads)

V
er

si
on

s

E
*

L
1
0

E
*

L
5

B
D

L
5

E
*

L
1

B
D

L
1

E
*

L
2
0

H
L

5
-5

H
L

1
0
-1

E
x
p

v2v1 100% 100% 100% 100% 100% 100% 100% 100% 21%
v3v2 100% 100% 100% 100% 100% 100% 100% 100% 4%
v4v3 6% 6% 6% 6% 6% 6% 10% 6% 3%
v5v4 100% 100% 100% 100% 100% 100% 100% 100% 0%
v6v5 62% 0% 0% 0% 0% 0% 0% 9% 0%
v7v5 9% 12% 9% 9% 9% 29% 9% 9% 1%
v8v3 100% 100% 100% 100% 100% 100% 100% 100% 6%
v9v8 99% 19% 19% 25% 19% 28% 19% 99% 0%
v10v8 99% 99% 99% 19% 99% 99% 99% 99% 0%
v11v10 100% 100% 100% 55% 55% 100% 100% 60% 0%
v12v10 100% 100% 100% 100% 100% 100% 100% 100% 0%
v13v12 51% 51% 100% 51% 100% 100% 100% 100% 0%
v14v8 99% 99% 99% 99% 99% 99% 99% 99% 0%
v15v14 100% 100% 0% 100% 0% 100% 0% 0% 1%
v16v15 100% 100% 100% 99% 100% 99% 99% 99% 0%
v17v15 100% 100% 100% 100% 100% 100% 100% 0% 1%
v18v17 100% 100% 96% 100% 96% 100% 96% 100% 0%
v19v18 100% 100% 100% 100% 100% 100% 100% 100% 0%
v20v19 100% 100% 100% 100% 100% 100% 100% 100% 0%
v21v20 97% 97% 97% 100% 97% 97% 97% 100% 0%
v22v21 99% 99% 99% 99% 99% 99% 99% 99% 0%

Table 5.3: Test selection Meisterplan.

Our findings show that the BD-level sometimes select more tests than the
E*-level as expected (see e.g. Hupa, v3v2, BD L5 and BD L1 or Meisterplan,
v13v12, BD L5 and BD L1). However, we have also observed some outliers. For
example, the comparison v17v15 in Meisterplan shows 0% for H L10-1. This
is due to Java Heap Space Error. The same is true for v15v14 when analyzing
the BD-levels. This emphasizes the need for a memory-saving approach.

There are cases, in which only a small subset of the test suite is selected
for re-execution. This is especially true for the Meisterplan versions v4v3,
v6v5 and v7v5 which have been committed by the developers during a single
day. Hupa also has versions which do not need to be retested with all of the
web tests in the test suite (see e.g. v6v5 and v11v2). Nevertheless, there are
also many cases, in which almost all tests are selected for re-execution. Here,
it becomes evident that web tests are more complex than unit tests due to
side-effects on other code. In many cases, we have observed that only a few
modifications are responsible for selecting almost all web tests for re-execution.
The most crucial factor is whether the effect of a code change can be stemmed

5.6. EVALUATION: COMPILER-INDEPENDENT APPROACH 143

on a small subset of tests. However, if the change affects the initialization phase
of the application, this is very hard.

Conversely, it may always be true that specific parts of the code are executed
by each UI/web test for some reason (e.g. application initialization). As soon
as a piece of code in these specific parts has been modified, all UI/web tests
have to be re-executed. Therefore, a solution might be to select only one of
these test cases as representative to get a quick feedback whether this special
test execution already results in an error. In fact, this kind of deliberations
belong to already existing test prioritization or minimization techniques. But
of course, the validity of such a simplification is weak. The very first question is
which test should be selected as representative. Beyond that, another question
is how to proceed if the execution of a representative does not fail. It might
happen that this is due to a special state of the application and that one of the
omitted tests would reveal a fault due to a different state of the application.
Most importantly, a solution that reduces the test results artificially is not safe
any longer. We come back to these questions later on.

In the end, our technique decreases the testing effort by up to 100% (see
for example v2v1 in Hupa or v6v5 in Meisterplan) compared to a retest-all
approach. But in many cases there is even no improvement. On average, our
technique has been able to reduce the test suite by 25% in case of Meister-
plan (H L10-1). In case of Hupa, the test suite reduction has even been 46%
on average (H L10-1). So our evaluation shows some parallels to the evalua-
tion of Graves et al. [119] and Rothermel and Harrold [234] (see Section 5.2).
However, we have made some progress in reducing the effort and the memory
consumption with the aid of our heuristics and the lookahead. Besides, we have
shown that the technique has potential to be applicable even in the context of
UI/web tests. The crucial factors for reducing the test selection are the struc-
ture of the application and the code modifications. Consequently, we have to
adopt additional measures to avoid that our RTS technique is executed in vain.

RQ6: Cost Efficiency of Test Selection Compared to Retest-All

To find a response to RQ6, we have to look at the overall costs which depend
on the application itself. We want to recall the equation of Leung and White
[178, page 205] (see Section 5.4.3):

Cs(Ts) < [Ce(To)− Ce(Ts)] + [Cc(To)− Cc(Ts)]

Cs(Ts) + Ce(Ts) + Cc(Ts) < Ce(To) + Cc(To)

In practice, is it difficult to ascertain values for Cc(Ts) and Cc(To). According
to Leung and White, Cc(To) represents the costs for checking whether the old
tests used for program version P fit the expected results. Accordingly, Cc(Ts)
represents the same with regard to Ts, where Ts contains a subset of the tests
in To plus new tests that check new functionality in P ′ [178]. However, neither
the test suite of Meisterplan nor the test suite of Hupa has changed during
our evaluation: There have been no additional tests, and no tests have been

144
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

Figure 5.8: Checkout and test selection time Meisterplan.

removed from the test suites. So it is always Ts ⊆ To. That is, when comparing
our RTS approach with the retest-all approach in terms of costs for checking the
test results, our RTS approach is always cheaper or at most equally expensive.
But more important, today’s test tools (such as Selenium or TestComplete)
automatically check whether a test fits the expected results. So we do not
expect the costs Cc(Ts) and Cc(To) to be decisive for assessing the cost efficiency
of our RTS approach. Consequently, we do not consider them further and
simplify the equation as follows (see also Section 5.4.3):

Cs(Ts) + Ce(Ts) < Ce(To)

CXanalysis
+ Cinstr + Ctranscomp∆ + Clog < Ce(To)

where Xanalysis represents the granularity of the analysis.

Meisterplan takes 4:30 minutes to instrument the code on E*-level. The
delta for transcompiling the code is less than 1 minute. Executing the web tests
and logging the CIDs has an overhead of 90 minutes. That is, on average, each
test takes 51 seconds longer due to logging overhead. Comparing the current
version with a previous one requires a checkout. Figure 5.8 shows the resulting
boxplot for Meisterplan. According to this, the median for a checkout is
166 seconds. The analysis of P and P ′ with our heuristics E*-BD L5-5 takes
additional 149 seconds (which is 2 seconds slower as E* L10). Finally, the
test selection requires 223 seconds (median value, see Figure 5.8). In total,
when applying our approach to Meisterplan, the extra effort is 14:28 minutes
(4:30 minutes + 1 minute + 166 seconds + 149 seconds + 223 seconds) for
doing the analysis plus 90 extra minutes for executing the tests and logging the
CIDs. So, the total extra time is 104:28 minutes. As the retest-all approach
takes 9 hours, a single test takes on average 5:09 minutes. In contrast, when
looking at our RTS technique, the total time for running tests and doing all the
additional tasks is nearly 10:45 hours. Naturally, in order to be efficient, our

5.6. EVALUATION: COMPILER-INDEPENDENT APPROACH 145

approach must not exceed the 9 hours (540 minutes) and consequently, it has
to decrease the amount of tests selected for re-execution. The total time for
the extra effort (instrumentation, delta for transcompiling, checkout, analysis,
and test selection) is fixed at 14:28 minutes. So we have only 525:32 minutes
left. Each Meisterplan test takes in our approach on average 6 minutes
(5:09 minutes + 51 seconds runtime overhead due to logging instrumentation
code). So we can execute 87,59 tests at the maximum without exceeding the
time required for the retest-all approach. Thus, our approach should decrease
the amount of tests selected for re-execution by 18 tests (≈ 17%). Consequently,
our approach is efficient for the versions v4v3, v6v5, v7v5, and v9v8.

Please note that instrumenting code and logging CIDs are initial tasks that
are done once when creating and checking test cases (see Section 4.4.3). Ideally,
only a few tests have to be re-executed and thus, it is sufficient to log CIDs for
these tests only. The CIDs for non-affected tests remain untouched. So these
initial tasks do not have to be repeated as a whole. This reduces the effort for
applying our RTS approach in subsequent analyses.

Considering Hupa, we have to deal with the following values. The in-
strumentation takes 40 seconds. To finish testing and logging, 6 additional
minutes are necessary. Transcompiling requires less than 10 extra seconds. A
checkout takes 40 seconds. The median for analyzing the code with our heuris-
tics E*-BD L5-5 is 14 seconds. Finally, the time for selecting tests that have
to be re-executed is less than 2 seconds. So, the extra effort when applying
our approach to Hupa is 1:46 minute plus 6 extra minutes for executing all
the tests and logging the CIDs. So each test needs additional 11,25 seconds.
The retest-all approach takes in total 9:13 minutes. So, a single test requires
17,28 seconds. As the total time for the extra effort is always 1:46 minutes, we
have only 7:27 minutes left. Each Hupa test takes in our approach on average
29 seconds (17,28 seconds + 11,25 seconds runtime overhead due to logging
instrumentation code). So in the end, we can run 15 tests without exceeding
the runtime of the retest-all approach. In total, our approach should decrease
the test suite by 17 tests (≈ 53%). Consequently, our approach is efficient for
the versions v2v1, v3v2, v6v5, v7v6, v9v6, and v11v2.

Summing up the time required for checkout, comparison of P and P ′ and
test selection, we are done in less than one minute. This enables us to over-
come the common nightly build and test cycle towards a fast executable and
repeatable cycle of code changing, test determining and bug localization.

As we can see, Hupa’s test suite reduction must be greater than Meis-
terplan’s test suite reduction. This has nothing to do with the size of the
application. The reason is the test setup of Hupa: When using our test suite,
Hupa does not require loading any settings or databases. For this reason, the
usual test execution can proceed immediately whereas the instrumented exe-
cution has to make sure that the CIDs have been memorized. This extra time
prevents that the next test execution can start immediately after the previous
test has been finished. Due to this delay, we have a rather high extra time for
running the tests and for logging. This is the main reason why our approach

146
CHAPTER 5. EFFICIENCY OF CODE ANALYSIS AND FAULT

LOCALIZATION

should decrease the test suite by 53%. In case of Meisterplan, memorizing
CIDs does not deteriorate the result as there is always a preparation phase
for setting up the database and for establishing a specific application state be-
fore starting the actual test. Here, it becomes apparent that especially large
applications with a big test suite gain from our approach.

In general, regarding RQ6, our technique can be efficient both in medium
sized applications with small test suites and in big systems with large test suites
as long as changes do not affect all tests.

5.6.5 Discussion

Code Modifications and Test Selection: Our evaluation shows that our
technique is able to reduce the testing effort. However, the approach has to
be refined in order to deal even with those situations when the test selection
is not able to reduce the test suite. In a first step, we have optimized the test
selection. At the beginning of our experiment, some of the results have even
been worse. It has turned out that this was due to modifications in fields. As
soon as a web test traversed the constructor, the CID representing the modified
field has been executed. This has resulted directly in a test selection regardless
of whether the field has been unused. Now, we consider field modifications only
if their value is really used in methods executed by a test.

Memorizing CIDs in the Database: In RQ6, it has turned out that the
efficiency suffers from memorizing CIDs in the database. In order to be more
efficient, an expedient could be to start a new instance of our new logging server
on another port. This way, the next test can start immediately and we do not
have to wait until the CIDs of the previous test have been memorized.

Costs for Logging Process, Test Selection and Nature of Web Tests:
According to our evaluation, another cost factor is the logging process. (Please
remind that in Meisteplan, a test execution takes approximately 51 seconds
extra to run the instrumented tests). Unfortunately, our heuristics is not able
to reduce these costs as it is CHtraces = CE∗traces . Consequently, using solely the
BD-level might improve the efficiency. However, an analysis on BD-level tends
to select more tests as shown in our evaluation. So, a trade-off could be to do
the fine-grained analysis on statement level rather than on E*-level. This would
speed up the analysis a little. Nevertheless, even this trade-off might result in
a higher test selection than an analysis on E*-level. For example, an analysis
on statement level cannot distinguish changes in conditional expressions. So it
is neither a satisfying solution for these cases in which most or even all of the
tests are selected for re-execution.

As already mentioned before (see Section 5.6.4), we have observed many
situations where only a few changes have been responsible for selecting most of
the tests. Of course, it is possible to some degree to optimize tests in such a way
that they cover as much distinct code as possible. But web tests are different

5.7. CONCLUSION AND FUTURE WORK 147

from unit tests. They do not test a small unit, but run many functions to setup
the application and to perform standard actions. So it is hard to completely
avoid that tests cover the same functionality. For this reason, we have to search
for other solutions. The test selection remains the most relevant cost factor.

5.7 Conclusion and Future Work

In our evaluation, we have seen that our compiler-independent approach is able
to identify precisely all the code changes in the source programming language.
Besides, it selects exactly those UI/web tests that are affected by the code
changes.

However, regression testing transcompiled applications using UI/web tests
takes much time. When looking solely at the time required for detecting code
changes, a more coarse-grained analysis is beneficial. It reduces the time-effort
for instrumenting code and logging CIDs. Besides, less internal memory is re-
quired for holding the CFGs for P and P ′. Nevertheless, there is a risk that
more tests are selected for re-execution which in turn deteriorates the efficiency
of our RTS technqiue. Our evaluation shows that we have found an efficient
trade-off between a low memory consumption and the ability to localize code
changes exactly with the aid of a heuristics. It reduces the memory consump-
tion significantly with a low risk to select more tests than a purely fine-grained
analysis level would do. This is essentially for outperforming the retest-all
approach and helps to execute tests in an efficient way (see Section 1.2.1).
Furthermore, it supports the developer in the bug fixing process. Lookaheads
improve the efficiency additionally as we are able to find more code changes in
a single analysis. So, we have managed to refine the fault localization process.
At best, no subsequent errors show up when re-executing the selected tests. In
addition, followup analyses like change impact analysis are unnecessary. Infor-
mation about the kind of code changes contribute to solve the fault localization
problem (see Section 1.2.2).

Nevertheless, according to our evaluation, our heuristics-based RTS tech-
nique (H L5-5) is still not able to outperform the retest-all approach in 70,6% of
the comparisons. The results of our evaluation have revealed a big dependency
on the kind of code change. Our approach is efficient as long as modifications
do not affect the whole web application and if UI/web tests focus on a specific
functionality rather than testing many different and unrelated features. This
finding is of course also valid in other contexts (e.g. desktop applications or
mobile applications) as well. Consequently, we have not solved the test effort
reduction problem (see Section 1.2.1) in a satisfactory way. For this reason, we
have to take further actions so that applying the RTS technique is not in vain
even when many tests are selected for re-execution.

Chapter 6

Prioritizing Regression Tests
based on the Execution
Frequency of Modified Code

6.1 Introduction

In Chapter 4 and Chapter 5, we have seen that there are sometimes cases
where regression test selection techniques select many or even all tests for re-
execution. Possible reasons include a large number of changes in the code base
or a single code change that has a big impact on the application. We have
observed in the previous chapters that the latter often occurs in the context of
end-to-end testing with web tests. Due to their special nature, they often do
not test mostly disjoint functions as unit tests usually do, but might execute
parts of the client-side code repeatedly. Of course, it is very unsatisfactory
when there is no or only a small test suite reduction. In these cases, using re-
gression test selection may be even more expensive than simply re-executing all
tests because additional time for code instrumentation, logging, and analyzing
program versions is necessary.

In order to still have an advantage over the retest-all approach, test prior-
itization is an expedient. As explained in Section 2.2, test prioritization does
not reduce the number of tests to be re-executed, but tries to re-order them in
such a way that fault-revealing tests are executed first (e.g. [71, 290]). This is
a challenging task: The information which tests reveal a fault is not available
before re-executing the tests [290]. So no one knows in advance which is the
optimal test case ordering. But combining regression test selection with test
case prioritization promises additional benefits: As already described by Do
et al. [58], starting the test execution with those tests that have the highest
chance to reveal faults gives fast feedback. Besides, it is possible to stop the
test execution due to time constraints while being aware that the most im-
portant tests have been executed [58]. Thus, as noticed by others before (e.g.
[4, 77, 142, 153, 191, 192, 216, 217, 264, 284, 289]), it is possible to enjoy the

149

150
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

best of both worlds by combining the two techniques. Initially, there is the safe
regression test selection. Adding test prioritization results in an optimized test
execution order. If necessary, re-executing the selected tests can be stopped.
Of course, this might sacrifice safety as we might miss to execute tests that
reveal faults not detected by other tests yet.

In Section 6.2, we point out related work and already existing approaches.
There, we also discuss weaknesses of these approaches. Afterwards in Sec-
tion 6.3, we explain challenges of test case prioritization in more detail. In
Section 6.4, we present our novel test case prioritization technique that is based
on the execution frequency of modified code entities (functions, statements, or
even expressions) covered by test cases, and remark main differences to other
approaches. In brief, we prioritize those tests that execute the (most) code
changes as often as possible (execution count of modified code). To the best
of our knowledge, we are the first to base the execution order of tests on this
decision criterion. Additionally, we introduce a dynamic feedback mechanism
to adjust the order of tests at runtime. In the same section, we propose three
static and three dynamic ways to implement our technique. Each implemen-
tation uses a differing algorithm. We provide a formalization and explain the
algorithm in examples. In order to judge the efficacy and performance, we in-
vestigate the different realizations in an evaluation in Section 6.5 and compare
them to already existing approaches in the literature. Finally, we discuss the
results in Section 6.6 and conclude in Section 6.7.

This Chapter is based on our publication “Prioritizing Regression Tests for
Desktop and Web-Applications Based on the Execution Frequency of Modified
Code” [136]1.

6.2 Related Work and Weaknesses of Existing Ap-
proaches

There are many different properties that might be considered when trying to
find a suitable test prioritization order that runs fault-revealing tests as soon
as possible. For this reason, researchers have come up with a wide range of
definitions of prioritization criteria seeking to sort tests in an optimal way.
Yoo and Harman [290] have presented a survey that covers the full diversity
of existing approaches. We focus on the most similar approaches compared to
ours.

One possible aspect that has been considered in the past is to incorporate
data from a test history (e.g. [71, 161, 163]). Elbaum et al. [71] for example
consider as criterion the test performance in previous test runs by investigating
the rate of executed fault-prone functions. For this purpose, they introduce a
fault index representing the fault-proneness of every function in the program.
The index is updated after every test execution. In order to find a test-ordering,

1My own contributions to the publication [136] are as follows: Scientific ideas: 85%; Data
generation: 100%; Analysis and interpretation: 85%; Paper writing: 70%.

6.2. RELATED WORK AND WEAKNESSES OF EXISTING
APPROACHES 151

the fault indexes of all the functions covered by a test are put together. The
test with the highest sum of fault indexes has the highest priority.

Kim and Porter [163] have also considered history-based test prioritization
techniques. Their implementations take different kinds of data into account
that result from previous test runs. In the first implementation, test cases that
have been executed rarely in the past will be prioritized in the next test run.
Another idea (realized by Kim and Porter in a second implementation) is to
give these tests a higher chance to get selected early for re-execution that have
revealed faults in the past. Finally, the third implementation of prioritizes tests
that cover functions which have not been executed in the past test runs.

Apart from historical data, structural code coverage (e.g. [126, 290]) has
been used as criterion in many approaches (e.g. [56, 71, 74, 235, 237]). Here,
tests are usually ordered according to the number of covered functions, blocks,
or statements. For simplicity, we subsume functions, blocks, and statements as
code elements. Tests covering the most code elements have the highest priority
(Greedy algorithm, see Paragraph “Test Case Prioritization” in Section 2.2).
Rothermel et al. [235] as well as Elbaum et al. [71, 74] propose several tech-
niques considering the coverage of statements or functions. The authors refer
to them as “total statement coverage prioritization” (e.g. [71, page 104], [235,
page 181]) and “total function coverage prioritization” (e.g. [71, page 105]). In
addition, Do et al. [56] consider coverage of blocks. They call it “total block
coverage prioritization” [56, page 42]. We follow Yoo and Harman and refer
to these kinds of coverage prioritization as total approaches [290, pages 87,
88]. Moreover, Rothermel et al. [235] and Elbaum et al. [71, 74] present tech-
niques estimating the probability that a test exposes faults. Finally, Elbaum
et al. [71, 74] additionally introduce a technique that tries to estimate the
probability that any fault exists.

In order to improve prioritization results, some strategies assume that sim-
ilar tests are negligible. There are many properties imaginable according to
which tests could be considered as similar. Some approaches iteratively reduce
the priority of tests that cover the same code elements as other tests which have
already been executed. Rothermel et al. [235] as well as Elbaum et al. [71, 74]
have presented refined versions of their prioritization techniques. Therein, the
authors additionally take into account whether statements or functions have
already been covered by a previous test. They start with the test that covers
the most statements or functions. Then, the authors incorporate these coverage
data in the decision which of the remaining tests should run next. That is, they
try to find a test that traverses the most statements or functions not covered
by a previous test yet. Do et al. [56] have pursued the same idea with blocks.
The authors call these variants “additional statement coverage prioritization”
([71, page 104], [235, page 181]), “additional function coverage prioritization”
[71, page 105], and “additional block coverage prioritization” [56, page 42], re-
spectively. In the past, this strategy has also been used in related approaches
(e.g. [192, 217]). In some papers (e.g. [192]), it is also called “feedback mech-
anism” [192, page 278]. We follow Yoo and Harman and subsume them as

152
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

additional approaches [290, pages 87, 88] or – accordingly – we denote them as
feedback approaches. Other strategies investigate the sequences of covered code
elements and their (dis)similarity in order to find a single test as representative
for a group of related tests (e.g. [80, 176]). More details about this kind of
strategy follow at the end of this section.

Elbaum et al. [75] go one step further and propose two strategies to se-
lect the most effective prioritization technique. To this end, they consider five
prioritization techniques. The first two techniques (available as total - and ad-
ditional approach, see above) are based on the coverage of functions. The next
two techniques (available as total - and additional approach) rely on the cover-
age of functions that differ. The last technique prioritizes tests randomly. The
basic strategy of Elbaum et al. just relies on APFD values (see Section 2.2,
Paragraph “Test Case Prioritization”). The second strategy tries to incorpo-
rate specifics of the current program version under test, the code changes, and
the corresponding test cases.

We also use coverage in our novel test case prioritization, but we incorporate
this information only when our main decider, the execution frequency of code
entities, fails to provide an unambiguous prioritization order. We will explain
more details in Section 6.4. The additional approach [290, pages 87, 88] or
feedback mechanism [192, page 278] has inspired us to develop a solution that
greedily refines the prioritization order. As opposed to other approaches, our
mechanism is completely dynamic as it modifies the prioritization order on the
fly at runtime.

Test prioritization and test selection are well-suited to each other, even
though test prioritization does not aim at reducing the number of executed
tests. As already mentioned, there are some situations (large number of code
changes, change with big impact on the application, test structure and -design)
when it is hard to reduce a test suite at all. In consequence, different techniques
combining (elements of) RTS and TCP have been proposed in the literature
(e.g. [4, 77, 142, 153, 191, 192, 216, 217, 264, 284, 289]). Similar to RTS
techniques, these approaches first try to detect changed code elements. After-
wards, tests are ordered according to a prioritization strategy, e.g. the number
of changes covered by a test. We summarize some approaches in more detail:

Sampath et al. [246] have formalized three different ways to combine differ-
ent prioritization strategies if a single strategy is not able to determine a clear
test prioritization order due to ambiguities. They call these ways (a) “Rank”,
(b) “Merge”, and (c) “Choice” [246, page 1327]. The first one applies different
prioritization strategies according to a predefined order. “Merge” combines
several strategies at the same time. Finally, “Choice” decides via a selection
function which strategy provides the best result. Based on these definitions,
our own prioritization technique relies on “Rank” to combine different priori-
tization strategies.

There are several papers that use code change information for test prior-
itization as we do. One of the first approaches have been proposed by Wong
et al. [283]. There, the authors have investigated the effect of a minimization

6.2. RELATED WORK AND WEAKNESSES OF EXISTING
APPROACHES 153

technique on the ability to detect faults. They have detected significant advan-
tages with respect to the size of the test set and the effectiveness. Later, Wong
et al. [284] have combined modification-based test selection with a minimiza-
tion technique and a prioritization technique. The prioritization arranges tests
according to coverage in descending order.

Huang et al. [142] have presented a technique for selecting and prioritizing
tests in binary Java applications. They use an extension of the tool Javap

that belongs to the JDK to disassemble the code. Afterwards, they investigate
methods for changes. Based on these data, they prioritize test that are affected
by changes. For the prioritization order, they take several criteria into account:
These include how many changed methods a test covers, how often a changed
method is executed by a test, how many methods a test covers, and the time
that a test is expected to take for its execution. Their approach has some
similarities to our approach, but it relies on changes in methods, not on changes
in single code entities. Besides, they give higher priority to tests that cover more
changes. In contrast, we select tests first that cover changes more often.

Aggrawal et al. [4] apply a version specific test selection to obtain infor-
mation about changed lines of code. The test prioritization prefers tests that
cover the most changed lines of code. Mirarab and Tahvildari [191] also use
code change information and consider additionally coverage metrics and soft-
ware quality metrics to create a bayesian network. This model serves as a basis
to decide upon a prioritization order. Beyond that, the same authors describe
in another paper [192] an additional approach (see above). Zhao et al. [296]
present a hybrid form that additionally takes a code-coverage-based clustering
approach into account to detect similarities in test cases in order to reduce
their priority.

Panigrahi and Mall [216] also combine a regression testing technique with
prioritization. They use an extended system dependency graph and apply
forward slicing in order to determine code changes on statement-level in a sub-
sequent program version. For each change, they write the modified statement
itself and the line numbers of both the original and new program version in a
file. In addition, they instrument blocks in the code of the original program
with print-statements. Based on these data, they select all the tests that cover
code changes. When re-executing tests, they start with the test covering the
most code changes. Later, Panigrahi and Mall have refined their approach fur-
ther [217]. They still use the extended system dependency graph-based RTS
technique to determine code changes and they still prioritize the tests according
to the number of covered changes in the first place. But for determining the
final execution order, they assign weights to changes. For each change that has
already been executed by a tests, the weight is reduced by a fixed value. Tests
with the highest sum of weights are preferred. This prioritization approach is
contrary to ours. We assume that testing a piece of code thoroughly with many
different tests is done by intention (see Section 6.4). Apart from the approach
of Panigrahi and Mall [217], a very similar approach has also been presented
by Srivastava and Thiagarajan [264] before. They use a binary matching tool

154
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

called BMAT to identify changed blocks. Then, they assign weights to each test
according to the overall number of modified blocks covered by the test. After
finishing the test, the weights are recalculated. As opposed to Panigrahi and
Mall, already executed blocks are no longer considered as modified. Jeffrey and
Gupta [153] rely on statement/branch coverage and additionally apply relevant
slicing to obtain a prioritization order.

In contrast to our work, none of the approaches considers the execution
frequency of a code change to cover as much application states as possible,
which will – according to our assumption – increase the possibility to detect a
fault.

Test prioritization has also been applied to web services (e.g. [17, 37]) as
well as to web applications (e.g. [143, 245]). Sampath et al. [245] prioritize test
cases – among others – according to the test length, according to the frequency
a sequence of web pages is accessed in a test, and randomly. Moreover, Chen
et al. and Huang et al. have seized on the idea to combine test selection and
test prioritization. Huang et al. [143] check method changes in Java bytecode
(see Section 4.2) and prioritize tests according to the risk to fail. Again, none
of the authors do consider changes and the frequency with which these changes
are executed by a web test.

To the best of our knowledge, execution frequency has almost never been
considered as coverage measure. Only the approach of Fang et al. [80] is close to
ours as they also apply the execution frequency of code entities. However, they
start with the test that covers the most code elements. They use the execution
count to order sequences of program entities. Based on these sequences, they
apply an edit distance function to calculate the similarity of remaining tests. In
the end, most dissimilar tests are executed first. Similarly, Leon and Podgurski
[176] also use dissimilarity metrics to run those tests first that are the most
different. As opposed to our approach, they do not use a RTS technique to
identify code modifications and do not consider the execution frequency of
changed code as decider on which tests should run with high priority. Moreover,
we regard similar tests as an indicator of fault-prone code and do not lower their
priority.

Epitropakis et al. [79] present a solution to incorporate three different pri-
oritizing criteria to achieve multi-objective regression test case prioritization.
The criteria incorporate the capability to detect faults, the coverage of modi-
fied code, and the coverage of faults in the past. This is somewhat similar to
our approach as we also consider many different criteria for prioritizing test
cases. However, our criteria are different as we use the accumulated execution
frequencies of traversed code modifications. Besides, we do not consider criteria
like the ability of a test to detect faults by investigating its previous test runs.

Walcott et al. [281] also rely on multiple prioritization criteria. In a first
analysis, they prioritize tests according to a specific time constraint. The results
serve as input for a subsequent calculation that determines a fitness-value by
means of code coverage.

Yoo and Harman [289] propose a “multi-objective formulation of the re-

6.3. MOTIVATION 155

gression test case selection problem” [289, page 140]. They investigate two
approaches to find an optimal subset of the original test suite that a) covers
the most code without exceeding a certain time limit and b) requires the least
time to achieve a specific code coverage. In the first approach, they incorpo-
rate code coverage and execution cost. The second approach additionally uses
information about the ability to detect faults in previous test runs.

The prioritization techniques described above exhibit different strengths
and weaknesses. A high structural coverage (of blocks/methods) does not nec-
essarily correlate with the ability of a test to detect a fault. Furthermore,
approaches prioritizing tests according to the number of traversed code modifi-
cations have the risk that a unique prioritization order is impossible because all
tests are affected by the same fundamental code changes. This may especially
be true in the context of web applications. Finally, approaches based on the
similarity of tests assume that tests reveal the same faults if a given similarity
criterion matches. These approaches just pick a representative of a class of sim-
ilar tests. However, tests that appear similar still might explore different parts
of the application’s state space and thus can result in different test outcome.

In our opinion, existing approaches insufficiently consider recent code changes
and possibly fault-revealing states. However, the application’s state space is
crucial for the ability to detect faults. It is therefore decisive to put the soft-
ware in a fault-revealing state. We hypothesize that similar tests have been
developed intentionally as they check different states of the application. We
also hypothesize that code modifications often lead to a change of the applica-
tion state. Based on this assumptions, we conclude that one should prioritize
tests which run modified code the most often as these tests have the highest
chance to detect a fault.

6.3 Motivation

Test prioritization seeks to find faults as soon as possible [290]. To achieve
this, the goal is to find an optimal ordering of tests revealing these faults. The
example in Figure 6.1 shows tests and the faults they are able to reveal. Tests
tA − tE have been taken from Elbaum et al. [71, page 106]. To explain our
motivation, we have added two more tests tF and tG. Elbaum et al. argue that
an ordering starting with the execution of tC followed by tE (order tCtE) is
superior because it detects all the faults the most rapidly.

In practice, the problem is that no one knows in advance which test will
detect a fault [290]. Even when using a test selection technique, we only have
knowledge about code modifications. We do not know yet which modification
leads to a test failure. Thus, which decider recognizes that tCtE is the best choice?

Furthermore, the order tCtE might not be optimal when there are sev-
eral possible solutions. Taking test tF into account, order tBtF tE covers the
same faults. When searching for a decider which of the two possible solu-
tions should be applied, some approaches use the number of faults previously
detected and/or the number of statements covered by the tests. However in

156
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

Fault revealed by test case
1 2 3 4 5 6 7 8 9 10

Test A × ×
B × × × ×
C × × × × × × ×
D ×
E × × ×
F × × ×
G ×

Figure 6.1: Fault revealing tests, adapted from Elbaum et al. [71, page 106].

1 public boolean validate(String s) {
2 s = s.trim();
3 return s.matches("[a−zA−Z]∗");
4 }

Figure 6.2: Validator for user inputs with marked additions in version P ′

compared to P .

practice, examples can be found for which this strategy is not optimal. As a
simple example, Figure 6.2 shows a code snippet of a program in two different
versions P and P ′. The code snippet validates user inputs, for example in a
mail search dialog. In the subsequent version P ′, valid user inputs have been
restricted by adding a call to trim() (see the statement in line 2), which might
cause tests to fail.

Imagine that test tG validates several possible search items that have been
inserted into the search box of a mail client. Another test tD takes a search
item in order to check whether the mail body will be displayed correctly when
double clicking on a search result. Both test cases tD and tG cover the same
code change that has been added erroneously (see line 2 in Figure 6.2). Test tD
covers more statements as it also checks the double click in the search results.
Nevertheless, it is conceivable that tG has a higher chance to fail and to reveal
this fault because it checks more possible inputs. So it is more reasonable to
prioritize test case tG rather than tD.

A similar problem occurs when a fundamental code modification affects (al-
most) all test cases, as we have seen in the previous chapters. In this situation,
(almost) all tests are affected by the same single code change. So it does not
suffice to consider the number of covered faults per test case. The number of
executed statements might be misleading as described previously. Besides, we
found that using historical data did not correlate with current code changes
in one application. For this reason, we propose an approach considering the
number of traversed code entities per test case.

6.4. APPROACH 157

6.4 Approach

Our approach builds on the assumption that the chance to detect a fault is
greater when a code modification is executed in many different application
states. In general, there are many reasons why a code entity, such as a state-
ment, is being executed multiple times. For instance it might (a) be part of
a loop which itself is executed many times or (b) be enclosed in a function
that is called multiple times by either the application itself or by tests. Hence,
we propose to take the execution frequency of code modifications into account
when prioritizing tests cases.

While a test executes a code entity several times, it might change parts of
the application state or use different parameters. This can reveal faults that
only show up in certain application states.

In the same sense, we also assume that a different test which partially
executes the same code modification as other tests does this intentionally and
therefore also has potential to reveal a fault. Thus, in our approach we favor
tests that execute more code modifications than others.

In the remainder of this section, we explain our approach in detail. We
present various variants that incorporate the number of code modifications
and their execution frequency in different ways. For each of the variants we
propose an additional approach, incorporating a dynamic feedback mechanism,
that uses knowledge about test failures during test execution. This allows to
dynamically adjust the test prioritization and reevaluate made decisions.

6.4.1 Considering Execution Frequency of Modified Code

To perform prioritization, our technique always considers two versions of a
program P and P ′. For our purposes, we use the CIDs (see Section 4.4.3)
and the trace of a test. Please remind that CIDs represent unique identifier
assigned to every source code entity. In Java this can be for instance methods,
statements, or even expressions leading to a different granularity of the analysis.

Further, we specify the term test trace (see Section 4.3.1 and Section 4.4.3)
and define it to be a multi set of CIDs that are traversed during the execution of
the test. The order of the entities is not important for our approach, however,
we count for each entity in the trace how often it has been traversed by a test.

Our approach is divided into two steps. The first step performs regression
test selection and thereby tries to reduce the set of tests we have to consider for
prioritization. At the same time, it provides the necessary information required
for step two: For every test, it provides its corresponding test trace. And it
expounds which CIDs in the trace correspond to source code modifications.
The second step then performs the actual prioritization.

Step 1 – Regression Test Selection

This first step is independent of the choice of RTS technique. Many differ-
ent techniques have been studied in the past. Graph walk-based approaches,

158
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

Execution Frequency
Test c∆

1 c∆
2 c∆

3 c∆
4 c∆

5 c6 c7

t1 4 0 4 2 0 0 1
t2 0 4 3 0 1 7 0
t3 2 1 4 0 2 2 1
t4 2 5 0 1 0 0 0

(a) Matrix f of execution frequencies per test and CID.

Metrics
Test sum∆ count∆ max∆ count

t1 10 3 4 4
t2 8 3 0 4
t3 9 4 4 6
t4 8 3 5 3

(b) Result of the test metrics.

Figure 6.3: Example matrix f and resulting metrics for several tests covering
the same CIDs with n = 4,m = 5, p = 7.

slicing-, and firewall-based approaches are only a few examples. More details
can be found for instance in the survey of Yoo and Harman [290]. Based on
our discussion in Section 2.2 (see Paragraph “Discussing the Approaches”),
we apply our graph walk-based RTS technique that we have explained in Sec-
tion 4.3.2. At every code entity, the application source code is instrumented
to report the corresponding CID to a central logging server that inserts the
CIDs into a database. This enables us to create traces for a test, identifying
all the code entities which are executed by the test. As our RTS technique is
completely generic, our prioritization technique will be applicable for instance
to both desktop and web applications.

Figure 6.3a shows an output of the first phase as a matrix f which we will
use as a running example. Every entry fij in the matrix represents how often
code-entity cj has been traversed while executing test ti. We will refer to an
entry fij as execution frequency. CIDs representing code changes are marked
with ∆. Thus, c6 and c7 denote CIDs that do not represent a code change.
(Explanations on Figure 6.3b follow in Section 6.4.2.)

Step 2 – Prioritization

The second step of our approach computes a prioritization of the tests in form of
a strict total ordering of the tests, using the matrix of execution frequencies as
its sole input. After establishing necessary preliminaries, we propose multiple
prioritization techniques and give their formal definitions.

6.4. APPROACH 159

sum∆
i =

∑
1≤j≤m

fij

counti =
∑

1≤j≤p
min(fij , 1)

count∆
i =

∑
1≤j≤m

min(fij , 1)

max∆
i = max

1≤j≤m

fij ∗

 fij
max(max

1≤k≤n
(fkj) , 1)


idi = i

Figure 6.4: Metrics assigning each test ti an integer value as an estimate for
its importance.

Let T be a test suite or – more formally – a set of test cases, let n be the
number of test cases in T , p be the total number of CIDs and m to be the
number of CIDs that correspond to changes. Without loss of generality, we
assume CIDs cj with 1 ≤ j ≤ m to represent code changes and CIDs with
j > m and j ≤ p to represent unchanged code entities. For each test ti and
each CID cj we record the frequency of ti executing cj in the matrix f and
reference the execution frequency fij by indexing.

Each of our priorization techniques is based on a series of test metrics. A
test metric M assigns each test ti a corresponding integer value as an estimate
of the chance of ti to reveal a fault. Figure 6.4 gives five such metrics (sum∆

i ,
counti, count

∆
i , max∆

i , and idi) that will be explained in more detail when
used to define our prioritization techniques.

Definition 1 (Lifting of Metrics). Given a metric M we define a corresponding
order ti .M tl on tests ti and tl by

ti .M tl iff Mi ≤Ml

�

That is, to compare two tests we pointwise compare the corresponding
integer values yielded by the metric. The resulting relation .M is a total
preorder2 and induces an equivalence relation for tests according to metric M :

ti ∼M tl iff ti .M tl ∧ ti &M tl

We also refer to the total preorder on tests .M induced by a metric M as
prioritization criterion (PC) and use the name of the metric also for the pri-
oritization criterion (that is, the preorder) when it is clear from the context.

2Since a metric might assign the same value to two distinct tests, .M is not antisymmetric.

160
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

For instance, we use sum∆ to refer to the preorder (T,.sum∆) and to refer to
the metric for a test ti as sum∆

i .

In general, a metric M might assign the same integer values to two or
more distinct tests resulting in no strict order for the tests in the correspond-
ing equivalence class ∼M . To allow a more fine-grained ordering of tests we
introduce the hierarchical composition for two total preorders PC1 and PC2.

Definition 2 (Hierarchical Composition). For every two tests ti and tl the
hierarchically composed order PC1B2 = PC1 B PC2 is defined by:

ti .PC1B2 tl iff (ti �PC1 tl)∨
(ti ∼PC1 tl) ∧ (ti .PC2 tl)

�

That is, two tests can either strictly be ordered by PC1 or if they are
equivalent with regard to PC1 they are (not strictly) ordered by PC2. The
hierarchical composition of two total preorders is again a total preorder and
hence hierarchical composition can be applied recursively. In addition, the
hierarchical composition is associative.

Finally, given the matrix of execution frequencies, a prioritization technique
uses a series of PCs to create a suggested ordering of execution of the tests in
the test suite T . A strict total order is achieved by terminating the sequence
of hierarchical compositions with the metrics id. Thus the scheme for defining
some X-frequency-based prioritization technique using k prioritization criteria
is:

XFP = PC1 B PC2 B · · · B PCk B id

6.4.2 Global Frequency-based Prioritization
Technique (GFP)

The first prioritization technique of global frequency-based prioritization (GFP)
builds on the assumption that tests which execute the most code changes are
the most likely to reveal a fault. To this end, GFP applies sum∆ which simply
accumulates the execution frequencies of all code changes covered by a test ti
(PC1). The definition of the corresponding metric can be found along the
other metrics in Figure 6.4. Tests with a higher accumulation value (global
frequency) have a higher priority than tests with a lower global frequency.

To find an ordering of tests with the same global frequency, count∆ is
applied. Here, the frequency is ignored and it is only counted how many code
changes have been executed by a test ti, hence modeling a coverage of changes
(PC2). A test covering more changes has higher priority. Please note again
that PC2 only affects tests whose order is not unambiguous, yet. The same
applies to all subsequent prioritization criteria.

6.4. APPROACH 161

GFP = sum∆ B count∆ B count B id

LFP = max∆ B count∆ B count B id

CFP = count∆ B sum∆ B count B id

PC1 PC2 PC3 PC4

Table 6.1: Definitions of our different prioritization techniques.

If there are still ambiguities, count is applied to also include CIDs that do
not correspond to code changes, hence modeling a general, classic code coverage
metric (PC3). Tests achieving a higher code coverage are executed earlier.

Finally, as for all of our prioritization techniques, if no ordering can be
decided after applying the first three prioritization criteria, the last criterion
id arranges the tests in the order they appear in the matrix of frequencies
(PC4).

The prioritization criteria that GFP uses are defined in Table 6.1.

Example: In the example of Figure 6.3a test t1 covers three changes c∆
1 , c∆

3 ,
and c∆

4 . Summing up the corresponding execution frequencies gives sum∆
1 = 10.

All other tests in this example yield lower values as can be seen in Figure 6.3b
and thus t1 has the highest priority. Applying sum∆ (PC1) gives the following
equivalence classes from high to low priority: {t1}, {t3}, {t2, t4}. We can notice
that t2 and t4 cannot be distinguished according to PC1, so following our
definition of hierarchical composition, count∆ B count B id will be applied to
find an ordering for this equivalence class. The criterion count∆ (PC2) gives 3
for both t2 and t4, so again count B id needs to be applied. Finally, PC3 gives
count2 = 4 and count4 = 3 leading to the strict ordering {t1}, {t3}, {t2}, {t4}.

If in the previous example t2 and t4 would have been equivalent according
to PC3 then id (PC4) would give id2 = 2 and id4 = 4. In general, id always
results in a stable and strict total ordering since every test has a unique and
stable row index.

6.4.3 Local Frequency-based Prioritization
Technique (LFP)

The local frequency-based prioritization technique (LFP) builds on the assump-
tion that for every code change, there is an optimal test: The test that executes
this code change the most often. To this end, for each code change cj , this tech-
nique first selects the test ti with the greatest execution frequency fij (local
maximum, max∆, PC1). This selection mechanism is encoded numerically in
the equation for max∆

i in Figure 6.4 by first dividing by the maximum of a

162
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

column j followed by rounding3. Tests are then prioritized in descending order
of their corresponding maximum.

Similar to GFP, tests that are equivalent according to max∆ are further
ordered by count∆ (PC2), count (PC3), and id (PC4).

Example: For each code changes in Figure 6.3a we first determine the test
with the highest frequency for that code change as: t1 for c∆

1 with f11 = 4, t4 for
c∆

2 with f42 = 5, t1 and t3 for c∆
3 with f13 = f33 = 4, t1 for c∆

4 with f14 = 2 and
t3 for c∆

5 with f35 = 2. Selecting the maximum of these highest frequencies for
each test results in the metric max∆ in Figure 6.3b. In particular test t2 never
has a highest frequency for any of the code changes and is assigned max∆

2 = 0 in
turn. Applying max∆ gives the following equivalence classes {t4}, {t1, t3}, {t2}.
To further compare t1 and t3 PC2 gives count∆

1 = 3 and count∆
3 = 4 which

leads to the strict ordering {t4}, {t3}, {t1}, {t2}. It is not necessary to apply
PC3 or PC4 in this example.

6.4.4 Change Frequency-based Prioritization
Technique (CFP)

The change frequency-based prioritization technique (CFP) prioritizes tests
that execute the most changes. If two tests execute the same amount of changes
it prefers the test that has a higher global frequency. It thus works in exactly
the same way as GFP but swaps PC1 and PC2 in order to investigate whether
global frequency or number of code changes tend to have a higher relevance in
practice.

Example: To prioritize the tests in Figure 6.3a with CFP we first apply
count∆ to obtain {t3}, {t1, t2, t4}. Applying sum∆ (PC2) yields {t3}, {t1}, {t2, t4}
and count (PC3) finally gives {t3}, {t1}, {t2}, {t4}.

6.4.5 Discussing Frequency-based Prioritization Techniques

As opposed to CFP, the techniques GFP and LFP imply that we might exe-
cute tests first that do not cover the maximum number of modifications. In
Figure 6.3 for example, t3 covers 4 code changes (c∆

1 , c∆
2 , c∆

3 , c∆
5). All other

tests cover less changes. Despite this fact, t3 will not be executed first in GFP
and LFP. However, this does not contradict the goal of test prioritization. As
t3 executes specific changes less often, it might fail to reveal a fault. In com-
parison, t1 (in case of GFP) or t4 (in case of LFP) respectively might set the
application under test in more states and thus might be able to expose a fault.
Besides, a test covering less code modifications might finish faster. So, there
might be more time to run other tests.

Another implication of our GFP- and CFP-technique is that several highly
prioritized tests might cover the same code changes. If a test has already failed,

3To avoid division by zero the denominator needs to be at least 1, whence max(..., 1).

6.4. APPROACH 163

another test covering the same faulty modification runs in vain. For this reason,
we propose the following dynamic feedback mechanism.

6.4.6 Dynamic Feedback for Frequency-based Prioritization

In previous evaluations (e.g. [56, 74, 192, 237]), it became apparent that pro-
posed prioritization techniques often performed better in conjunction with the
additional approach [56, 74, 237], also known as feedback mechanism [192, page
278]. These kinds of techniques use knowledge gained during the current pri-
oritization of tests and recursively include this information to re-prioritize the
remaining tests. Thus, the final test execution order is not known before all
tests have been executed.

Employing a similar strategy, we propose for the (static) X -frequency-based
prioritization technique (X PF; see Section 6.4.1, step 2) a dynamic counter-
part. It aims at lowering the priority of not yet executed test cases that will
traverse one or several CIDs due to which previously executed tests have already
failed. Thus, the dynamic X -frequency-based prioritization technique (DX PF)
continuously adapts the test execution ordering at runtime by re-calculating
prioritization criteria using information about test failures as input.

Initially, the dynamic technique employs static X PF to specify an ordering
of the tests in the test suite T . After each test case execution, it checks the
result of the test t that has just finished. If test t has succeeded, the next test
in the prioritization order will be executed as usual. If test t has failed, the
prioritization is re-evaluated. For this purpose, it checks which code changes
have been shown to be fault-revealing. Their execution frequencies will be
excluded from further re-prioritization. If DX PF cannot determine the exact
code changes that has lead to a test failure, it ignores all CIDs that have been
traversed by a failed test. Afterwards, X PF is applied to the remaining test
cases resulting in a test suite T ′ with a new test prioritization order. The test
system repeats this process until all tests have been executed or until another
predefined stop criterion is fulfilled.

The dynamic feedback variant can be applied to any static (X)-frequency-
based prioritization technique. Considering the above introduced strategies, we
refer to the resulting variants as Dynamic Global Frequency-based Prioritiza-
tion Technique (DGFP), Dynamic Local Frequency-based Prioritization Tech-
nique (DLFP), and Dynamic Change Frequency-based Prioritization Technique
(DCFP), correspondingly.

Example: Let us illustrate the dynamic variant for GFP, DGFP by revisiting
our example in Figure 6.3. This technique accumulates solely the execution
frequencies of those code changes that have not been shown to be fault-revealing
in any previously executed tests. Whenever a test fails during test execution,
the accumulation has to be re-calculated for all tests not yet executed.

DGFP starts by prioritizing tests using GFP. As already showed in Sec-
tion 6.4.2, this results in the ordering {t1}, {t3}, {t2}, {t4}. Let us assume

164
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

Execution Frequency
Test c∆

1 c∆
2 c∆

3 c∆
4 c∆

5 c6 c7

t2 0 4 3 0 1 7 0
t3 2 1 4 0 2 2 1
t4 2 5 0 1 0 0 0

(a) Revised matrix f of execution frequencies per test and CID. c∆
3 will be ignored

when calculating metrics, see Figure 6.5b.

Metrics
Test sum∆ count∆ max∆ count

t2 5 2 0 3
t3 5 3 2 5
t4 8 3 5 3

(b) Revised result of the test metrics incorporating the failure of t1 due to c∆
1 .

Figure 6.5: Revised example matrix f and resulting metrics for DGFP after t1
has been executed.

that t1 fails due to c∆
3 . This triggers a new re-prioritization of the remain-

ing test cases t2, t3, t4. During the recalculation, c∆
3 s execution frequencies fi3

(1 ≤ i ≤ 4) will be ignored. Thus, we obtain new results of the test metrics,
which can be found in Figure 6.5.

Figure 6.5a shows the revised matrix. As c3 is excluded from further calcu-
lation of metrics, t4 gives gives sum∆

4 = 8 when summing up the corresponding
execution frequencies. All other remaining tests yield lower values as can be
seen in Figure 6.5b. Applying sum∆ (PC1) gives the following equivalence
classes: {t4}, {t2, t3}. The criterion count∆ (PC2) gives 3 for t3 and 2 for t2.
This already leads to the strict re-ordering {t4}, {t3}, {t2}.

At some point, it might happen that there are only tests left that do not
cover any code changes or whose execution frequencies are excluded. So in
this case, there are no execution frequency data left and thus, the dynamic
approach cannot further improve the execution order with the aid of PC1 or
PC2. We would fall back to structural code coverage (PC3). For this reason,
we cancel any further re-ordering and the last known prioritization order will
be used to run the remaining tests. This way, a strict ordering is guaranteed.

6.5 Evaluation

In order to assess our solutions to provide an efficient selective regression testing
technique for desktop and web applications, we have implemented our prioriti-
zation techniques as library. This enables us to discuss our approach in terms
of the following three research questions:

6.5. EVALUATION 165

RQ1 How do our techniques perform compared to standard coverage-based ap-
proaches [56, 71], bayesian network-approaches [191, 192], and similarity-
based approaches [80]?

RQ2 Is a dynamically adapted execution order able to outperform a static
prioritization order?

RQ3 Is our technique suitable to enrich a RTS technique in a cost effective
way? How effective is the prioritization in terms of reducing test execution
time?

6.5.1 Software under Evaluation

Previous test prioritization approaches often use software provided in the
“Software-artifact Infrastructure Repository (SIR)” [55, 162]. It contains a
wide range of applications in different versions that can be used to investigate
new techniques. In order to be able to compare the results of our prioritization
techniques with already existing test prioritization approaches, we utilize the
SIR and choose three Java desktop applications as benchmark that have been
frequently used in the literature: JMeter, JTopas, and XML-Security. Ad-
ditionally, we enhance our study by two web applications created with Googe
Web Toolkit (GWT), namely Hupa [144] and Meisterplan [150].

JMeter [275] is a load and performance tool to test web services and web
applications. According to the SIR [55, 162], the most recent version contains
43.400 LOC in 389 classes. JTopas [30] is able to tokenize and parse text files
or streams. It is the smallest tool in our evaluation and contains 5400 LOC
in 50 classes as stated in the SIR [55, 162]. XML-Security [11] encompasses
libraries supporting XML-signature syntax as well as XML-encryption syntax.
According to the SIR [55, 162], it contains 16800 LOC in 143 classes.

As representatives of transcompiled cross-platform web applications, we
reuse once more Hupa [144] and Meisterplan [150]. As already described in
Section 5.6.1, Hupa comprises approximately 40.000 non-empty lines of code
(NLOC) in 979 classes and interfaces. As Meisterplan is an industrial appli-
cation with approximately 170.000 NLOC (without imports) in roughly 2300
classes and interfaces, it is very-well suited to serve as test object. It is the
largest application in our evaluation.

6.5.2 Variables and Measures

During our evaluation, we have used different variable settings. We provide an
overview below.

Independent Variables

Our evaluation depends on two independent variables: regression test selec-
tion technique that offers many different settings to analyze the software, and
prioritization technique.

166
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

Regression test selection technique: As described in Section 6.4.1, our
prioritization technique uses the results of a previous regression test selection
step as input. Our regression test selection technique offers several parameters
(see Section 5.4). The user can decide to analyze the software statically on
a predefined analysis level or to use a heuristics which decides dynamically
which analysis granularity of the code is the best one. Additionally, the user
can define a lookahead value that enables a more in depth-analysis finding more
code modifications.

For the evaluation, we have used a parameter settings which is the result of
our findings in Section 5.6.4. It takes advantage of a heuristics that analyses
modified code on the static analysis level Expression Star (= statement level
that also considers e.g. conditional expressions) with a lookahead value 5.
Unmodified code will be analyzed on body declaration level with the same
lookahead value 5.

Prioritization technique: We investigate three different versions of our pri-
oritization technique and additionally analyze for each of them the impact of a
feedback mechanism. So in total, we consider six test prioritization techniques.

Dependent Variables

We evaluate the results of our prioritization technique on the basis of a metric,
called Average of the Percentage of Faults Detected (APFD) [71] (see also
Section 2.2, Paragraph “Test Case Prioritization”) which is the standard metric
in the literature. It measures the ability of an approach to detect faults as soon
as possible [237].

Using the APFD metric, an objective comparison with previously published
approaches is possible. This is even true when considering our dynamic feed-
back techniques. The APFD metric is applied only when the prioritization
order does not change any more after all tests have been finished.

6.5.3 Experimental Setup

For each of the applications described in Section 6.5.1, several versions are
available. The desktop applications contain seeded errors which are indepen-
dent. Thus, we know for each code modification whether it is a fault. The web
applications represent regular revisions taken from a repository with real errors
(if there are any) plus some versions with seeded errors (as explained in Sec-
tion 6.5.1). From our regression test selection, we know which code change(s)
might be the cause of a test failure. However, in case of real, not seeded errors
in Hupa and Meisterplan, we do not know exactly which code change is/
which combination of code changes are faulty in the end. So, in case of a test
failure, we consider all changes covered by the failed test as faults. This way,
we are able to compare our results.

6.5. EVALUATION 167

Figure 6.6 provides an overview on the overall number of versions available
per software, the aggregate amount of faults in all versions of a software, and
the number of tests in the latest version. The evaluation has been performed
on a Intel Core i5 2.4 GHz with 8 GB RAM.

JMeter JTopas XML-Security

versions 6 4 4
faults 9 6 5
tests 78 128 83

Hupa Meisterplan

versions 4 6
changes considered as faults4 84 1364

tests 32 106

Figure 6.6: Errors in software.

6.5.4 Threats to Validity

The results of our evaluation and our conclusions might be threatened by dif-
ferent factors. We will discuss these issues and how we have tried to minimize
their effects.

External Threats to Validity

In general, the results might again depend on the size of the applications used
for the evaluation. Besides, the kind of application (desktop application ver-
sus web application) might influence the ability to generalize the results. To
limit these factors, we have studied both desktop applications and web ap-
plications of different size. As we also investigate an industrial application,
we can benefit from real faults and real tests cases. However, in order to be
able to compare our results with previous results in the literature, the range
of possible applications have been predetermined to some degree by the selec-
tion of former state-of-the-art publications. Concerning the applications in the
“Software-artifact Infrastructure Repository (SIR)” [55, 162], errors have been
seeded manually, so these faults might differ from those emerging in industrial
environments. Besides, we rely on the original software obtained from the SIR
to preserve comparability without additionally seeding errors. However, some
other authors additionally seeded errors.

4More details on considering code changes as faults follow in Section 6.5.4.

168
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

Internal Threats to Validity

Our instrumentation and our logging tool as well as our tool to determine
the test prioritization could contain a fault. To exclude this threat as far as
possible, we have executed our tools on a set of small programs and manually
inspected the results.

Another threat to validity of our conclusions might arise out of the number
of faults. Some applications contain seeded faults, some contain faults emerging
during further development. Nevertheless, the number of faults has been rather
small except of three versions in Meisterplan. We could imagine that a
higher number of faults lead to additional or other insights. In case of the
Meisterplan versions, the company could not tell us anymore which code
modifications are actually faults. For this reason, we have considered all code
changes covered by a failed test as faults, which might be wrong.

Finally, we have noticed that some of the test suites belonging to SIR-
projects seem to have evolved slightly. Comparing the statistics of previous
papers, the number of test-methods sometimes slightly differed (e.g. [56, 295]).
For this reason, our results might be not completely comparable with results
obtained from other techniques. Nevertheless, the differences are small, so we
still get a good indication on how our technique performs.

Threats to construct validity

We use the APFD metric that measures the weighted average percentage of
detected faults. Elbaum et al. [73] introduce a “cost-cognizant” [73, page 331]
version of the APFD metric that considers the severity of faults as well as costs
for test cases. Especially the test costs (i.e. time) play an important role in
our case, too. However, as all necessary data (mainly code instrumentation and
creation of test execution logs) can be obtained from the previous regression
test selection, our ordering algorithm takes only a few seconds. Besides, as
we do not have data on the severity (e.g. time to correct faults or damages
caused by a fault) and – again – in order to be able to compare our results with
approaches in the literature, we use the APFD metric.

6.5.5 Results

In the following subsections, we discuss the results of our evaluation in terms
of our research questions.

RQ1: Comparing Performance of our Technique with existing Ap-
proaches

Figure 6.7 and Figure 6.8 show the APFD values obtained during our evalu-
ation. We use box plots to report on the results of each software under test.
The horizontal line within the box plots represents the median. The boxes be-
low/above the median contain the lower/upper 25% of the APFD values. The

6.5. EVALUATION 169

GFP DGFP LFP DLFP CFP DCFP Opt

70

80

90

100

JMeter

AP
FD

GFP DGFP LFP DLFP CFP DCFP Opt

95

96

97

98

99

Xml−security

AP
FD

GFP DGFP LFP DLFP CFP DCFP Opt

93
94
95
96
97
98
99

JTopas

AP
FD

Figure 6.7: APFD values for our techniques applied to standard Java applica-
tions.

vertical lines (whiskers) at both ends of the box show the other values ignoring
possible outliers. The horizontal axis of the figures represents the proposed
techniques as well as the optimal technique that orders the tests according to
their ability to detect faults as fast as possible. Of course, this is only possible
because we have knowledge which tests fail.

Our techniques achieve very high APFD values which are sometimes close or
even equals to the optimum. Furthermore, we note that the value distribution
of our technique is often very small. When comparing the median values of all

170
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

GFP GDFP LFP LDFP CFP CDFP Opt

94

95

96

97

98

Hupa

AP
FD

GFP DGFP LFP DLFP CFP DCFP Opt
80

85

90

95

100

Meisterplan

AP
FD

Figure 6.8: APFD values for our techniques applied to transcompiled GWT
applications.

six prioritization variants, the difference always lies in the interval I = [0; 6, 1].
So none of our techniques falls extremely behind the others. Having a closer
look at the results, LFP and (D)CFP outperforms GFP in most of the cases.
Considering XML-Security, (D)CFP shows slightly better results than all
other techniques. However, when considering JMeter, LFP is better. Besides,
LFP has – with one exception – always a smaller deviation than CFP (see
whiskers).The same is also true for DLFP that falls behind DCFP in one case
only.

In order to judge the performance of our technique better, we compare
our results with those obtained by other state-of-the-art techniques published
in former times. Our comparison includes structural coverage techniques in-
vestigated by Do et al. [56]. Table 6.2a shows the results of their study [56,
page 50]. It includes the following techniques: original ordering (T1), random
ordering (T2), and orderings according to some variants of block/method cov-
erage with/without considering change information (T3+T4/T5-T8). In detail,
T3 prioritizes tests according to the total number of blocks. T4 additionally
incorporates feedback. T5 prioritizes tests according to the total number of
methods. Similar to T4, T6 adds the feedback-mechanism to T5. T7 runs
tests first that show the highest coverage of methods that have been modified.

6.5. EVALUATION 171

Do et al.
Objects M Test-method level

SD T1 T2 T3 T4 T5 T6 T7 T8

JMeter M 48 60 34 74 34 77 42 55
SD 37 19 38 24 38 18 35 35

XML-S. M 48 71 96 96 97 87 96 96
SD 34 17 3 3 3 12 3 3

JTopas M 35 61 68 97 68 97 77 75
SD 21 12 50 2 51 2 19 19

(a) Mean value (M) and standard deviation (SD) of APFD values in Do et al.’s former
assessment [56, page 50].

Mirarab et al.
S1 S2 S3 S4

JMeter [65; 75] [62; 72] [70; 75] [62; 72]
XML-Security [90; 95] [90; 95] [90; 95] [90; 95]

(b) Median APFD values of a technique replicated from Mirarab and Tahvildari [192,
page 284].

Fang et al.
T1 T2 T3 T4

JTopas [60; 65] [55: 60] [50; 55] [50; 55]
XML-Security [80; 85] [80: 85] [65; 70] [65; 70]

T5 T6 T7 T8

JTopas [55; 60] [45; 50] [30; 35] [55; 60]
XML-Security [80; 85] [80; 85] [80; 85] [75; 80]

(c) Median APFD values of a technique replicated from Fang et al. [80, page 349].

Table 6.2: APFD values of alternative techniques.

Do et al. obtain change information by using the diff function provided by
Unix. Finally, T8 extends T7 by a feedback mechanism.

Table 6.2b and Table 6.2c summarizes the median values we have gathered
from boxplots presented by Mirarab and Tahvildari [192, page 284] and Fang
et al. [80, page 349]. As it is difficult to determine the exact values from their
boxplots, we use intervals I = [a; b]. Fang et al. have considered similarity to
prioritize test cases. They present four own approaches (T5-T8) and compare
them to other similarity-based approaches. T5 and T6 are based on an algo-
rithm called “Farthest-first Ordered Sequence” [80, page 337]. T7 and T8 use
an algorithm called “Greed-aided-clustering Ordered Sequence” [80, page 337].
Mirarab and Tahvildari have used bayesian networks to prioritize test cases.
They have evaluated their approach with four different settings S1-S4. For each

172
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

of these settings, they obtain several APFD values. We unify the APFD values
of every setting in the corresponding interval in Table 6.2b.

Compared with the approaches in Table 6.2, our techniques achieve higher
APFD-values, which especially outperform the results of Do et al. [56] (com-
pare e.g. JMeter in Table 6.2a with the corresponding values in Figure 6.7).
Furthermore, we observe that our standard deviation is usually smaller. Re-
garding XML-Security, the overall results of Fang et al. [80] and Do et al.
are more similar to ours, but especially Fang et al. show lower values as we do.

In summary, the evaluation of our test-prioritization technique shows that
considering the execution frequency as main factor is a good criterion to cal-
culate a test prioritization order which is close to the optimum.

RQ2: Dynamically Adapted Execution Order vs. Static Execution
Order

As a first result, we can see that the dynamically adapted execution orders
created with DGFP and DCFP are never worse than its statically calculated
counterpart. Solely DLFP repeatedly falls behind the static variant. In some
cases (e.g. XML-Security’s DGFP, JMeter’s DCFP, and Meisterplan’s
DCFP), the dynamic variant performs better due to the knowledge about failed
tests. Of course, this benefit involves an increasing runtime as the prioritization
order has to be recalculated after each failed test. Basically, this is no problem
as long as the following conditions are met: a) the runtime of the prioritiza-
tion technique is low, and b) the dynamically adapted order prioritizes fault
revealing tests.

Software whose tests will be prioritized
JMeter XML-Security JTopas Hupa Meisterplan

GFP 1,77 1,81 1,94 2,55 38
DGFP 1,93 1,76 2,05 2,98 91
LFP 1,46 1,94 1,97 2,71 34
DLFP 2,31 1,77 1,85 3,43 75
CFP 1,74 1,82 1,67 2,65 34
DCFP 1,89 1,97 2,24 3,24 91

Table 6.3: Runtime of prioritization techniques in seconds.

Table 6.3 shows median values for the runtime of all technqiues. The run-
time for static variants of the desktop applications has been shown to be always
less than two seconds. Regarding the larger applications Hupa and Meister-
plan, the static variants still required less than one minute to calculate the
test execution order.

Concerning the dynamic variants, the runtime increases. The main reason
for requiring more runtime is the criterion PC3 (highest structural coverage)
as all the CIDs affected by a test have to be summed up. In large applications

6.5. EVALUATION 173

with several millions of CIDs, this becomes easily a time factor especially when
the prioritization order has to be updated often due to many tests failures.
This is in particular true for Meisterplan.

In total, dynamic techniques only provide a rather small benefit compared
to the static ones. This is somewhat different to the findings of some researchers
who observed significant improvements when using a feedback mechanism (e.g.
[56]), but confirms the findings of other authors (e.g. [192]) who also observed
small improvements, but an even worse runtime overhead than we have noticed.
Thus, we conclude that the results are twofold as a dynamic approach improves
the APFD value, but impairs the runtime. If we expect many test failures, the
static technique is preferable as we do not have to re-calculate the prioritization
order.

RQ3: Prioritization as Supplement to RTS Techniques

RTS techniques always have an overhead for analyzing the code and selecting
the tests affected by code changes. When comparing RTS techniques with a
retest-all approach, they have to reduce the number of tests in order to be
cost effective. Sometimes however, a change affects all tests so the RTS tech-
nique is unable to determine a subset of the original test suite that is still
safe according to the definition of Rothermel and Harrold [232]. Besides, the
test execution order is unclear. To avoid running all tests requires knowledge
about the probability that a test will reveal a fault. The extra overhead should
be minimal. Our prioritization technique is very well suited as it is able to
define such an order very quickly. All required data (i.e. code modifications,
execution frequency, test traces) are already available from the test selection
and therefore, the effort is completely negligible. Regarding the desktop ap-
plications, the techniques have always finished in less than two seconds. Even
prioritizing tests for the industrial application has been very fast. So basically,
our prioritization technique could be applied to the result of the test selection
even if only a few tests have been selected for re-execution. According to Do
et al. [57], this is considerably better than executing these tests unordered or
randomly.

When applying dynamic techniques, we have to take into account how often
the order will be recalculated. This implies that we have to estimate, how error-
prone the code is. If the source base is almost stable, a dynamic technique would
be a good choice. Otherwise, a static technique should be preferred. In any
case, our techniques are able to define a test prioritization order that usually
accomplishes in running fault revealing tests soon. The extra time-effort is
minimal. This is very important as developers can decide to run only a subset
of the original test suite. The risk to miss fault due to a test that has not been
executed is rather small.

Due to the low extra time-effort, the overall time for determining changes
in P ′ (see in particular Section 4.3.2, Section 5.4.2 and Section 5.4.4), and for
prioritizing affected test cases remain low. For example, when checking out an
old version P of Meisterplan and determining the changes that have been in-

174
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

troduced in the new version P ′, our Eclipse plug-in requires for the analysis 315
seconds (median value, see RQ6, Section 5.6.4). When combining this analysis
with the LFP or CFP technique, the analysis requires in total 349 seconds. If
we additionally take the test selection into account, the overall time is 572 sec-
onds. But actually, we do not have to wait for the test selection result. Instead,
we can do the prioritization contemporaneously with the test selection. As the
prioritization is faster than the test selection, the total time is 538 seconds at
the maximum. But by the way, we believe that additional code optimizations
could reduce this runtime further. That is, in any case, the combination of RTS
and TCP techniques can be used during the usual development several times
a day in order to determine a subset of test cases that needs to be re-executed.
If the set of tests that should be re-executed is too large and if we just want
to get a quick feedback whether the most important tests reveal any faults,
we can start a smoke test (see Appendix A.2, Paragraph “Smoke Test”) that
just executes some of the tests with the highest priority. Depending on how
much time the smoke test may take, we can dynamically determine the num-
ber of tests that will be executed. This way, we overcome the common nightly
build and test cycle and get early feedback. This highly resembles continuous
integration [84] as developers are able to commit their work several times a
day and because they are able to test the changes even with UI/web tests. We
explicitly say that it resembles continuous integration due to the extra analyses
that are required for example to instrument code whenever test cases have been
adapted or to do the test selection and prioritization.

6.6 Discussion

Test Suite Granularity: Do et al. [56] have considered in their paper the
effects of different test suite granularities. They have investigated tests at class
and at method level. Tests at class level may consist of an arbitrary-sized set
of test methods. Executing a test class always implies executing all of the test
methods within that class. As opposed to that, tests at method level execute
only a single test method.

Actually, we could do easily the same. But in our opinion, considering tests
at class level is too imprecise. Imagine a test class C consisting of many test
methods. Let us assume that the test selection (see step 1) selects many test
classes for re-execution, including C, but only a single test method in C covers
a code change. As a consequence, all test methods in C would be executed,
even though it is obvious from the test selection step that only one test method
has the chance to reveal a fault. This is contradictory to our target to run only
a subset of the original test suite in order to be cost effective. Furthermore,
we have analyzed the applications on statement level and we have considered
even expressions (e.g. conditional expression) to keep the set of selected tests
as small as possible. For this reason, we consider in our approach every test
method to be a test.

6.7. CONCLUSION AND FUTURE WORK 175

Dynamic Prioritization Variant: As already discussed in Section 6.4.5,
our main motivation for the dynamic feedback mechanism has been to avoid
running tests in vain. This could easily happen when a test has already failed
and another one covering similar code is about to start. It has turned out that a
dynamic approach in fact often improves the APFD value, but only to a small
extend. This is due to the relatively high APFD values we already obtain
in our static variants. In case of parameterized tests, it might even happen
that the dynamic variant provides no benefit at all. This is for example true
for JTopas. The test suite contains several parameterized tests. All of them
already have a high priority in the static variant.

Moreover, it could happen that the dynamic variant ends up in a worse
APFD value than its static counterpart. This might occur in the following
situation. Let us imagine that there are three test cases r, s, and t. t runs with
two different parameter settings p1 and p2. So in the end, there are four tests r,
s, tp1 and tp2 . Let us assume that a dynamic prioritization strategy results in
the following ordering: {tp1}, {tp2}, {r}, {s}. Now, test tp1 fails. Consequently,
the dynamic prioritization reduces the priority of tp2 . The new ordering is:
{r}, {s}, {tp2}. However, the different parameter settings p2 could have revealed
another bug. If this is the case and if the tests r and s cannot reveal any
faults, the APFD value becomes worse due to the re-ordering. So as already
stated before, the developer has to decide as the case arises whether a dynamic
prioritization strategy could be beneficial.

Running Tests in Parallel: When searching for opportunities to reduce
the runtime overhead, companies try to run tests in parallel. Our approach of
combining a regression test selection technique with a test prioritization ap-
proach meets this demand. For our static variants, the only requirement is
that tests run independently. Regarding our dynamic variants, further work
has to be done. These approaches gain from knowledge of failed tests. Even
if all processes that run in parallel have this knowledge, it has to be ensured
that similar tests with differing parameters do not run in parallel on separate
machines. Otherwise, this could impact the runtime benefit gained by parallel
execution. To solve this problem, test groups are adequate. This concept is
already known from unit testing tools like TestNG [274]. But even without
using a test framework that supports groups, it is straightforward to provide
meta data on which tests belong together. These tests should not run in par-
allel.

6.7 Conclusion and Future Work

Test case prioritization is a possibility to improve the execution order of a test
suite when other techniques are not able to find an unambiguous one. To the
best of our knowledge, we are the first who use the execution frequency of code
modifications as major measure to prioritize tests. We have presented three
different static variants of our technique plus three dynamic counterparts with

176
CHAPTER 6. PRIORITIZING REGRESSION TESTS BASED ON

THE EXECUTION FREQUENCY OF MODIFIED CODE

a feedback mechanism. To assess the performance of our technique, we have
evaluated the different variants on three Java desktop and two web applications
of different size. One of the web application has been an industrial application
of large scale. The other applications have been of mid- or low scale size. In
order to compare our results with findings in former papers, we have used the
standard APFD metric.

The results of our evaluation show that our prioritization techniques per-
form very good. The APFD-values are sometimes close or even equals to the
optimum. Most important, both our prioritization techniques LFP/DLFP and
CFP/CDFP have outperformed existing state-of-the-art techniques. Thus, we
are able to detect faults earlier than others.

When comparing our static techniques with the dynamic counterparts that
rely on a feedback mechanism, we have observed that the dynamic techniques
provide rather small improvements at a higher runtime. As the APFD values of
our static variants are already high and the deviation is rather small, it has to be
decided individually whether one of our dynamic variants is able to outperform
the static counterpart. If we do not expect many test failures, the dynamic
technique is a clear option. In this case, we do not have to re-calculate the
prioritization order often and consequently, we do not loose much time. But
especially when looking at the industrial application, the additional runtime
overhead of the dynamic techniques has been too large to be cost efficient.

Finally, combining our prioritization technique with our RTS technique
solves the test effort reduction problem (see Section 1.2.1). Our regression
test selection reveals which tests should run at all. Even if the RTS technique
already achieves a high reduction, the prioritization gives a clear advice about
the execution order of the selected tests. But most notably, if the RTS technique
has selected many or even all tests for re-execution, our prioritization runs the
most important tests first in order to find faults as soon as possible. This
way, if there are time constraints that prevent us from executing all the tests,
we know that the tests with the biggest potential to reveal faults have been
executed. Of course, this kind of test reduction is not safe any more.

With our approach, it is possible to establish a workflow similar to contin-
uous integration that even runs UI/web tests. Developers commit their work
several times per day. In smoke tests, our approach checks with the most im-
portant tests whether the application still works as expected. This is highly
beneficial as we get a fast feedback about faults that arise during the user
interaction. We are not restricted to small and isolated unit tests any more.
Consequently, we overcome the common nightly build and test cycle. This
supports developers in faster creating software of high quality.

Concerning the three problems listed in Section 1.2, the coverage identifi-
cation problem is the only one that is left. We attend to this topic in the next
chapter.

Chapter 7

Code Coverage for Any Kind
of Test in Transcompiled
Cross-Platform Applications

7.1 Introduction

Up to now, we have concentrated on ways to reduce the effort of regression
testing by means of regression test selection and test case prioritization. While
doing so, we have always worked with already existing test suites. An additional
problem associated with selective retest techniques [233] is to decide whether a
test suite is complete or which parts of the code require additional tests. In this
chapter, we focus this problem which is known as the coverage identification
problem [233]. We provide a general solution that is usable for all kinds of
tests including UI/web tests, and that supports standard desktop applications
as well as transcompiled cross-platform applications.

We start in Section 7.2 with an overview of state-of-the-art approaches.
Then, we explain in Section 7.3 problems of these approaches in more detail and
which challenges emerge when applying them on transcompiled cross-platform
applications. Afterwards, we show in Section 7.4 how our approach solves the co-
verage identification problem (see Section 1.2.3) in our special context. Thereby,
we are able to decide whether a test suite is complete or which parts of the
code require additional tests. Section 7.5 presents an extended version of our
Eclipse plug-in TC3 that calculates the following metrics: statement coverage,
branch coverage, loop coverage, method coverage, and class coverage. In Sec-
tion 7.6 and in Section 7.7, we investigate, evaluate, and discuss the results of
our approach when applied in various kinds of real software projects. Our main
target is to reveal deficiencies in test suites. In this context, we also compare
the results of our coverage tool with the results of other code coverage testing
tools in terms of correctness and efficiency. Finally, we conclude in Section 7.8.

This chapter is based on our publication “Code Coverage For Any Kind Of
Test In Any Kind Of Transcompiled Cross-Platform Applications” [134].

177

178
CHAPTER 7. CODE COVERAGE FOR ANY KIND OF TEST IN

TRANSCOMPILED CROSS-PLATFORM APPLICATIONS

7.2 Overview and Related Work

One possibility to solve the coverage identification problem consists in measur-
ing to which extent the code of an application is covered by test cases. This is
an old way to dynamically assess the completeness of a test suite. For exam-
ple, Miller and Maloney [190] have already described in 1963 a way to check
whether the whole program works as expected with differing input data. In
general, having many specific tests that collectively achieve a high coverage
increases the likelihood to reveal most of the errors in the code. Of course, as
already shown for example by Sneed [259], there might still be lots of faults
in the software left. But it is generally accepted that exploiting code coverage
data is at least a good starting point to recognize which functionality needs
additional testing.

Today, for almost all programming languages, diverse code coverage tools
are available differing in the way how the statistics are obtained. Common to
many coverage tools is the approach to insert instrumentation code into the
application. Differences affect the kind of files selected for adding instrumen-
tation code and the point in time when instrumentation code is added. Some
techniques insert instrumentation code into binaries (e.g. [261]) or into Java
bytecode in .class files (e.g. [43, 195, 210]), others add instrumentation code
directly to plain source code (e.g. [19, 44, 254]). Several techniques require this
instrumentation step before any test or program is executed (e.g. [211]). This is
called off-line or static instrumentation [140, 211]. In contrast, other techniques
perform this operation dynamically (on-the-fly) at runtime [140, 211].

In the environment of Java, existing code coverage tools often focus on a
specific kind of test and/ or application. For example, tools like JaCoCo/
EclEmma [139, 140, 195], JCov [210, 211], or Cobertura [42, 43] instru-
ment Java bytecode. In today’s web applications however, bytecode is usually
never executed on the client side. So these tools are unable to report on the
code coverage of web tests. They focus on unit testing. Sometimes, there are
adaptations available for unit testing frameworks like JUnit [160]. For exam-
ple, EclEmma is able to run unit tests for the Remote Application Platform
via JUnit RAP [196] in order to calculate code coverage. But of course this is
no end-to-end testing.

Moreover, to the best of our knowledge, there is almost no tool available
that supports transcompiled cross-platform applications. For GWT, solely the
framework itself offers a partial solution for client-side code coverage via a
barely known possibility to instrument the JavaScript code that has just been
created by the GWT compiler [96]. After executing the web application, the
browser’s local storage provides key/value pairs that contain for each Java
source file the line numbers (keys) and a flag indicating whether the line has
been traversed (value) [96]. However, this information meets line coverage only,
the most simple coverage metric. GWT is unable to compute more advanced
coverage statistics like branch coverage. For server-side code coverage and for

7.2. OVERVIEW AND RELATED WORK 179

measuring the coverage of GWTTestCases (see Section 3.1), the GWT tutorial
still recommends EclEmma to calculate the code coverage [111].

Approaches determining the code coverage by instrumenting source code
(e.g. [19, 44, 254]) are close to our approach. Hanussek et al. [124] describe the
instrumentation process for CodeCover [44]. To provide for example state-
ment coverage in Java, they add instrumentation code in front of statements
as we do in our compiler-independent variant. To this end, they generate a
parser by using the Java Tree Builder [278] in order to build up an AST which
is used to insert instrumentation code and to generate instrumented source
files. Besides, they require a modified abstract syntax tree which contains only
information about the source code that is of interest for calculating the code
coverage. This additional tree is the link between their coverage log and the
corresponding source code. One of the main differences compared to our ap-
proach is the kind of instrumentation code. They add simple counters (see
Section 4.4.3) whereas we assign unique identifiers to code elements of the soft-
ware under test. These identifiers remain unchanged during a transcompilation
and/ or a potential code obfuscation. Another main difference is that we do
not need an additional syntax tree as this would require additional memory.

The proprietary tool Atlassian Clover [19] is also similar as it calculates
the code coverage by instrumenting source code, too [22]. Furthermore, it uses
a database to calculate the coverage as we do [20]. However, if we would like
to use it for determining the code coverage of a GWT-based web application,
it is not able to instrument client-side code properly as described in the official
documentation [18, pages 224-227], [21]. According to this, the problem is
that client-side code with Clover instrumentation code will fail to run. Thus,
only code coverage of server-side code can be determined. The documentation
recommends the user to use mock-frameworks like Mockito or EasyMock,
or to use GWTTestCases instead of web tests.

Finally, the proprietary Java Test Coverage Tool offered by Semantic
Designs [254] does not require class files for code instrumentation either. But
it offers less detailed coverage measures as it only supports coverage values for
methods or even more coarse-grained elements like classes [254].

When comparing tools based on source code instrumentation with tools
based on bytecode instrumentation, we want to remind the interesting find-
ings of Li et al. [179] (see Section 4.2). They have noticed that there exist
only three tools under active development that support branch coverage for
methods. The first one is EclEmma (bytecode instrumentation), the other
two are Clover and CodeCover (source code instrumentation). But most
interestingly, they have found that – at least for the tool EclEmma used to
investigate branch coverage – “Bytecode instrumentation is not a valid tech-
nique to measure branch coverage” [179, page 387]. Apart from that, they have
discovered that both CodeCover and Clover have weaknesses in their im-
plementation of branch coverage. Li et al. outline that branch coverage should
theoretically subsume statement coverage. However, according to their results,
neither EclEmma, nor CodeCover, nor Clover implement branch coverage

180
CHAPTER 7. CODE COVERAGE FOR ANY KIND OF TEST IN

TRANSCOMPILED CROSS-PLATFORM APPLICATIONS

correctly. As a result, branch coverage does not subsume statement coverage
in these tools.

With regard to efficiency, there is research on how the amount of instrumen-
tation code added to a source file can be reduced. Tikir and Hollingsworth [276]
propose a dynamic instrumentation approach to reduce the number of instru-
mentation points by using dominator trees. The idea of reducing the amount
of instrumentation code at runtime has also been pursued by Chilakamarri and
Elbaum [40]. They use an approach called “disposable coverage instrumenta-
tion” [40, page 267] to remove instrumentation code after it has been executed.
Häubl et al. [127] present a runtime system that takes advantage of a virtual
machine designed to collect profiling data for an application. Their system
does not need to instrument code to provide coverage information. Approaches
to reduce the instrumentation overhead could basically be orthogonal to our
code coverage method. However, all these approaches are dynamic and fail to
provide code coverage data for transcompiled applications.

Kim [165] allege many reasons why code coverage calculation is problem-
atic in large software applications. Among others, they reason this with a bad
performance due to necessary code instrumentation and the uncertainty that
the extra effort will pay off. For these reasons, they present an approach that
incorporates error-proneness of modules, their size, and whether code has just
been added. They rely on observations made by other authors who state that
many defects are located in a small number of modules (e.g. [31]; this is also
called Pareto-like distribution, see Appendix A.1, Paragraph “Pareto-like Dis-
tribution”). Accordingly, Kim perform in general a coarse coverage analysis
and argue that a precise coverage analysis would waste time for instrumenting
code. They perform a precise code coverage only on added and error-prone
code. The distinction between precise and coarse-grained analysis is reminis-
cent of our method when analyzing two program versions for code changes (see
Section 5.4.2). Basically, it would be no problem to implement the approach of
Kim in our code coverage technique. In our evaluation in Section 5.6 however,
we could not confirm a Pareto-like distribution. Right now, we believe that it
is desirable to obtain precise code coverage measures for the whole software as
it displays exactly which parts of a function is uncovered by tests. Sometimes,
it is even a firm requirement to prove a certain (100%) statement coverage. In
addition, we claim – other than Kim – that calculating code coverage precisely
is not extremely time and resource expensive in a coherent testing environment
like the one proposed by us.

To overcome the restrictions of focusing on specific tests and not supporting
transcompiled cross-platform applications, we explain in this chapter how we
adapt our method based on logging code identifiers (CIDs) of traversed pieces of
code. This way, we are able to manage and display code coverage for any kind
of test (unit, integration, or UI/web test) regardless of whether the software
under test (desktop, mobile, or web applications) is transcompiled or directly
developed in the target language.

7.3. MOTIVATION AND CHALLENGES 181

7.3 Motivation and Challenges

Similarly to the problem of localizing faults in the source code, the main prob-
lem when investigating the code coverage of a software under test is that tests
run the application in the target programming language and that the appli-
cation might be platform independent. Figure 7.1 shows this principle in the
ellipse on the right. Let us imagine the following situation: A test engineer
wants to know which parts of the code of a web or mobile application are not
covered by existing test cases yet. This is decisive for creating additional test
cases that address the uncovered parts of code. For testing the user interface
and for checking the overall behavior of a web application/mobile application
that has been transcompiled, the test engineer runs acceptance tests (i.e. we-
b/user interface tests) that simulate actions in a browser/in the smartphone.
As a result, data ctl describe the coverage in the target language. Basically, we
could use ctl to calculate a percentage describing the code coverage. Besides,
we could even highlight the source code of the target language with red and
green colors (which is common in code coverage tools) to indicate which parts
of the code are (un)covered.

Web-
App

Source
Files

Language
A

Source
Files

Language
B

Byte-
code

Unit
tests

Coverage

Web Tests

Browse

Coverage

Coverage
Transcompiled

tl

sl

Platform 1

c

c

Platform 2

App-
Store

Source
Files

Language
A

Source
Files

Language
B

Byte-
code

Unit
tests

Coverage

UI Tests

Coverage

Coverage
Transcompiled

tl

sl

Platform 1

c

c

Platform 2

Mobile

W
eb

 A
pp

lic
at

io
ns

M
ob

ile
 A

pp
lic

at
io

ns

Figure 7.1: Problem of transferring coverage data back to source programming
language in a transcompiled cross-platform web application.

However, we want to remind that when analyzing where additional test
cases are required, application developers would always have to have domain
knowledge about possibly many different target languages depending on the
transcompiler. In case of Haxe, there are 12 different target languages

182
CHAPTER 7. CODE COVERAGE FOR ANY KIND OF TEST IN

TRANSCOMPILED CROSS-PLATFORM APPLICATIONS

in total [131]. While this drawback could be handled, things get very diffi-
cult when source code of the target language has been obfuscated additionally.
Now, recognizing which parts of the code require additional testing is hard.
Deducing coverage in the source language (csl) from ctl is very time consuming
and still very difficult for developers. For these reasons, analyzing the source
code of the target language is not helpful. Instead, we are interested in getting
data csl about (un)covered code in the source language used by developers.
Consequently, a code coverage tool should be able to transfer ctl back to csl.

Unfortunately, existing instrumentation approaches just provide coverage
for applications executed on the same platform (see the ellipse on the left in
Figure 7.1), but do not support a transfer of coverage data from the target
language back to the source language, or are unable to calculate the code
coverage for all parts of the software. As an example, even the proprietary
tool Atlassian Clover [19] cannot determine the code coverage of client-side
code in GWT applications, although it instruments source code rather than
bytecode [21, 22]. In order to test client-side code, Clover needs additional
workarounds trying for example to simulate the client-side of a GWT web
application inside the JVM by means of mocks or specialized tests based on
JUnit (GWTTestCase) [21].

7.4 Approach

Our method to calculate the code coverage of a software under test aims at
collecting coverage information that can be assigned unambiguously to the code
of the source language to identify (un)covered source code. To achieve this, we
can reuse most of our general approach explained in Section 4.5 and Section 4.6,
respectively. We explain the differences in the next section in detail.

7.4.1 Code Coverage of Transcompiled Applications

For selecting test cases, it was sufficient to know which code entities have
been traversed by a test. Depending on the coverage measures that should
be computed, it is additionally necessary to know how much classes, meth-
ods, loops, branches, and statements the tests should have been traversed in
theory to achieve 100% code coverage. To this end, we adapt the last step
in our basic approach (see Section 4.5). The first two steps (see Section 4.5,
“Step 1 – Code Instrumentation” and “Step 2 – Test Execution and CID Log-
ging”) remain the same. The instrumentation level has to be set to expression
star (see Section 5.4.1). This is necessary to include data on conditional ex-
pressions in the branch coverage measure.

Calculating Code Coverage and Creating Reports (Step 3)

We want to calculate percentages that describe to which extent code fulfills
certain code coverage criteria (i.e. statement coverage, branch coverage, loop-,

7.4. APPROACH 183

method-, and class coverage). As a result of step 2, we know which CIDs have
been executed by a specific test and how often a CID has been executed by a
test. Now, we have to determine which CIDs fulfill a specific coverage criterion.
In addition, we have to calculate which code entities should be covered by
the tests to achieve total coverage for every coverage criterion. That is, we
have to count the total amount of functions, statements, branches, conditions,
and optionally other syntactical elements to provide the usual code coverage
measures.

To achieve this, we traverse the AST of the software written by the devel-
oper and calculate for each syntax element of interest (e.g. statement, function
etc.) its CID. As a result, we obtain a table that maps each CID to its kind
of syntactical element. The data will be stored in a database. For a better
understanding, we illustrate this in an example based on the code presented in
Section 4.5. We re-illustrate the examples in Figure 4.19 and in Figure 4.20 for
convenience. There, we can see several pseudo-CIDs:

1 class C {
2 private int i;
3 private static int j;
4

5 C() {
6 instrument(<unique class−id>);
7 instrument(<unique id representing j>);
8 instrument(<unique id representing i>);
9 }

10

11 static {
12 instrument(<unique id representing j>);
13 }
14 }

Figure 4.19, taken from Section 4.5: Field instrumentation, class variables
instrumentation, and class instrumentation.

1 public int m() {
2 instrument(<unique function−id representing m()>);
3 instrument(<unique statement−id>);
4 return 1;
5 }

Figure 4.20, taken from Section 4.5: Standard and function instrumentation.

In Table 7.1, the first column shows all the pseudo-CIDs in Figure 4.19
and Figure 4.20. The remaining columns represent syntactical elements like
type declarations (TD), method declarations (MD), field declarations (FD),
or statements (S). Hence, Table 7.1 assigns each pseudo-CID in Figure 4.19
and Figure 4.20 one or several syntactical element(s). We refer to these data as
syntax analysis. Please note that the mapping is neither injective nor surjective

184
CHAPTER 7. CODE COVERAGE FOR ANY KIND OF TEST IN

TRANSCOMPILED CROSS-PLATFORM APPLICATIONS

CID Syntactical Elements
TD FD MD S

<unique class-id> ×
<unique id representing i> ×
<unique id representing j> ×
<unique function-id representing m()> ×
<unique statement-id> ×

Table 7.1: Mapping of CIDs to syntactical elements.

(see also Appendix A.1, Paragraph “Properties of Functions”). That is, a CID
can correspond to more than one syntactical element. For example, a then-
statement corresponds to both statements and branches. Conversely, some
syntactical elements might not be used in a project at all. But many different
CIDs point to a specific syntactical element.

Finally, in order to calculate the code coverage, we join the tables contain-
ing information on test traces (see Section 4.5) and syntax analysis. This way,
we can extract which CIDs executed by tests fulfill which coverage criteria.
Besides, we can extract from the syntax analysis the total amount of state-
ments, branches, loops, methods, and classes. Using these values, we are able
to determine the final code coverage measures. We are even able to display
exactly, how often a code entity has been traversed by tests by querying its
execution frequency. In addition, our data affords us to determine which/how
much code entities a test case traverses. But most importantly, we can use the
data in order to check whether a specific syntactical element represented by a
CID is covered by a test. Based on this knowledge, we highlight the code in
the source language with green and red colors to indicate the coverage status.
Now, developers can see where additional tests are necessary.

7.4.2 Discussing the Instrumentation Approach in Terms of
Code Coverage

Apart from the discussion in Section 4.9, there are additional aspects of our
code instrumentation approach that we want to discuss with respect to code
coverage.

Instrumenting Code Explicitly

Our approach is based on inserting CIDs for each code entity of interest. We
do not use implicit CIDs in our approach. That is, when traversing for example
the instrumentation code that belongs to the field i (see Figure 4.19), we do
not conclude that class C is covered. Instead, we add an additional CID in the
first line of the constructor representing the class declaration. When calling

7.5. TOOL IMPLEMENTATION 185

the constructor, the CID will be passed to the logging server which in turn will
persist the CID in the database.

Our explicit way of instrumenting source code has the advantage that we
do not have to care about semantics. There is no need to deduce the pass of a
code entity (in the example: class C) from the pass of another code entity (in
the example: field i). Querying the database is therefore straight forward. For
example, in order to calculate the class coverage, we traverse the AST of the
source code and identify all nodes representing classes and their corresponding
CIDs. Afterwards, we query the database in order to check which of the CIDs
representing a class declaration have been executed by a test.

General Applicability

As already discussed in Section 4.9, our approach is completely generic as it
can be applied to both transcompiled and non-transcompiled desktop, mobile,
or web applications and to most programming languages in general. Basically,
all programming languages can be inspected using an abstract syntax tree. The
only restriction is the availability of frameworks like the Eclipse JDT to parse
the syntax of the code quickly and the effort for creating and comparing CFGs.
Apart from that, we handle each code entity in the same way which makes it
easy to calculate the code coverage for other syntactical elements. In particular,
we consider conditional expressions which are unsupported by some tools (e.g.
the “Java Test Coverage Tool” [254]). Moreover, our approach makes it easy
to determine the code coverage of additional syntactical elements in the source
language. For example, we might include try-/catch-blocks (unconsidered by
e.g. EclEmma [197]).

7.5 Tool Implementation

We have implemented a prototype of our code coverage approach as Eclipse
plug-in called TransCompiledCodeCoverage (TC3), which is an exten-
sion to our previously described Eclipse plug-in GWTTestCaseSelection.
It supports an easy and quick usage in the development process of web appli-
cations created with GWT and in Java desktop applications. Additionally, the
tool could be extended easily to support mobile applications that are written
in Java. The basic principle is identical to the one applied for GWT-based web
applications. We explain this in Section 7.7 when discussing adaptations that
have to be done to use the approach in other frameworks or in other languages.

TC3 offers the following coverage metrics: Statement coverage (S), branch
coverage (B), loop- (L), method-/ function- (M), and class coverage (C). De-
spite our approach enables us to calculate even code metrics for expressions,
we only support conditional expressions in order to provide data for branch
coverage. However, because of our generic instrumentation approach, we are
able to calculate the coverage of any kind of code entity.

186
CHAPTER 7. CODE COVERAGE FOR ANY KIND OF TEST IN

TRANSCOMPILED CROSS-PLATFORM APPLICATIONS

TC3 consists of several modules which have mostly been described in Sec-
tion 4.7 and particularly in Section 5.5. TC3 introduces some new interfaces.
Thereby, it is possible to pass the name of the test that is currently running.
This is helpful if code coverage should be calculated for single tests rather than
for the whole application. If the software under test is a web application, client
and logging server can establish a connection via the WebSocket protocol. This
way, it is possible to pass and persist the CIDs that have been traversed by web
tests. In case of desktop applications, this detour is of course not necessary. In-
stead, CIDs are written directly to the database. An additional module has the
task to collect absolute data about the total number of statements, branches,
loops, methods, and classes that could be traversed theoretically. Again, this is
accomplished by traversing the AST of the software with the aid of the Eclipse
JDT. Finally, another module calculates the code coverage and creates HTML-
reports. Herein, source code is highlighted with green or red color, depending
on whether it is covered by a UI/web test or not.

Our tool is mostly independent from any test tool. Examples are JUnit
[160] or TestNG [273] for testing desktop applications/server-side code and
Selenium [252] or TestComplete [258] for testing client-side code. For mo-
bile applications that run on Android devices, Selendroid [250] is an option to
test the user interface.

7.6 Evaluation

In order to assess our code coverage technique, we discuss this approach by
asking the following three research questions:

RQ1 Is our approach able to reveal deficiencies in test suites, i.e. where addi-
tional test cases are required?

RQ2 Does our tool completely calculate the code coverage of UI/web tests
and are the results correct?

RQ3 How long does our coverage technique take to get a result and how effi-
cient is TC3 compared to others?

7.6.1 Software under Evaluation

In order to show the applicability of our approach on cross compiled applica-
tions, we again use Hupa [144] as web application created with Google Web
Toolkit (GWT). As we additionally want to demonstrate the usability in other
applications, we enhance our study by desktop applications. The Java desk-
top applications JTopas [30] and XML-Security [11] from the “Software-
artifact Infrastructure Repository (SIR)” [55, 162] meet our demand for real
world applications, so we reuse them. Furthermore, we investigate some small
Swing-based Java applications provided by the contributors of Abbot [1].

Abbot [1] is a framework that enables developers to test Java user interfaces
automatically. We have used the example code shipped with version 1.3. It

7.6. EVALUATION 187

consists of 1.300 non-empty lines of code in 17 classes. For analyzing the
code coverage of JTopas and XML-Security, we have always used the most
recent version and the corresponding test suite that has been available in the
SIR repository. (According to SIR [55, 162], JTopas encompasses 5.400 lines
of code (LOC) in 50 classes, XML-Security contains 16.800 LOC in 143
classes.)

When investigating Hupa, we have also used the latest revision in the public
repository (revision number 1684702).

7.6.2 Experimental Setup

Both JTopas and XML-Security are shipped with a JUnit test suite. Un-
fortunately, no UI tests are available. For this reason, these applications are
suitable solely for unit testing and do not provide insights in transcompiled
applications. Nevertheless, existing code coverage tools work fine with these
applications. So we use them as benchmarks to check our code coverage results
for correctness and completeness.

The test suite provided by Abbot runs tests that examine user interfaces
created with the Swing library. The tests are also JUnit-based, so we can
compare our results with other tools once again. In case of Hupa, our Hupa
web test suite comprises 35 web tests created with Selenium. Because we do
not have (unit) tests for the server side, we investigate Hupa only on client
side which is our main concern. That is, results displayed for Hupa represent
the coverage of client-side code.

For every test suite, we have calculated the code coverage using our tool
TC3. To check our results, we have calculated the coverage with other tools,
namely Atlassian Clover [19] and EclEmma [195]. This way, we are able to
compare the results of our tool with established ones. The evaluation has again
been performed on an Intel Core i5 2.4 GHz with 8 GB RAM.

7.6.3 Threats to Validity

The results of our evaluation and our conclusions might be threatened by dif-
ferent factors. We will discuss these issues and how we have tried to minimize
their effects.

External Threats to Validity

It is difficult to find a transcompiled open source application shipped with
web tests. With regard to industrial transcompiled applications, it is usually
not allowed to publish any results. For this reason, we have used only one
transcompiled web application in our study. Of course, this might influence
the ability to generalize our results. To gain confidence in our approach and
the validity of the results, we have additionally studied desktop applications.
As our approach is generic, the procedure remains the same leaving aside the

188
CHAPTER 7. CODE COVERAGE FOR ANY KIND OF TEST IN

TRANSCOMPILED CROSS-PLATFORM APPLICATIONS

fact that we do not need a logging server. CIDs traversed by tests can be
inserted directly into the database. Besides, using desktop applications in our
evaluation enables us to compare our results with other code coverage tools.

Another threat to validity might be the size of the applications. The per-
formance and the ability to cope with large applications depends heavily on
this measure. In this context again, we try to limit these factor by comparing
the efficiency of our tool with other tools.

Internal Threats to Validity

In addition to the threat of possible faults contained in the modules that are
responsible for inserting instrumentation code for logging CIDs, there might be
also a fault in the module that creates the HTML-report. To provide confidence
in our tool, we first have made initial checks on a set of small programs and
we have manually inspected the results. In particular, we run our tool on real
world applications and compare our code coverage results with the results of
established code coverage tools.

7.6.4 Results

In the following subsections, we will discuss the results of our evaluation in
terms of our research questions.

RQ1: Ability of our Approach to Reveal Deficiencies in a Test Suite

Table 7.2 and Table 7.3 show code coverage metrics for the software projects
with a user interface. The columns show the coverage metrics we have investi-
gated. The last column depicts the total number of Java classes in the project
(more details follow later in this section). The rows contain the names of the
coverage tools we have used. These are Clover and EclEmma, which serve
as reference for our own tool TC3.

We have obtained the code coverage by running the corresponding test
suites of our software projects. The values in the table cells represent the code
coverage of the entire project. For example, column 2 in Table 7.2 presents the
branch coverage when running the test suites. Not all tools provide the same
code coverage metrics. Unsupported metrics are labeled with ×. For example,
Clover does not provide results for class coverage.

As far as RQ1 is concerned, our tool TC3 has calculated coverage values
for all the metrics listed in the tables and for both the transcompiled web
application and the desktop applications. Besides, TC3 creates a HTML-report
that shows for each class in detail which parts of the class’s code (in the source
language) are (un)covered by UI/web tests. An example of a HTML-report
created with TC3 for Hupa can be found in Figure 7.2. Thus, the percentages
indicate how thoroughly the web/desktop application is tested. By using the
report, the developer can easily check which functionality is not covered by
tests and therefore might fail when used by clients.

7.6. EVALUATION 189

Tools Code Coverage Metrics
S B L M C #Classes

Clover 63% 55% × 48% ×
17EclEmma 57% 56% × 51% 72%

TC3 56% 54% 88% 48% 76%

Table 7.2: Code coverage metrics for Abbot.

Tools Code Coverage Metrics
S B L M C #Classes

Clover × × × × ×
484EclEmma × × × × ×

TC3 24% 13% 18% 28% 25%

Table 7.3: Code coverage metrics for Hupa. There are only web tests available.
Only our tool supports web tests.

Tools Code Coverage Metrics
S B L M C #Classes

Clover 39% 29% × 40% ×
50EclEmma 33% 28% × 40% 50%

TC3 30% 29% 35% 38% 44%

Table 7.4: Code coverage metrics for JTopas.

Tools Code Coverage Metrics
S B L M C #Classes

Clover 35% 38% × 27% ×
143EclEmma 34% 37% × 31% 52%

TC3 31% 37% 49% 27% 52%

Table 7.5: Code coverage metrics for XML-Security.

Figure 7.2: Excerpt of a HTML-report created with TC3 to display (un)covered
code in Hupa.

190
CHAPTER 7. CODE COVERAGE FOR ANY KIND OF TEST IN

TRANSCOMPILED CROSS-PLATFORM APPLICATIONS

RQ2: Completeness and Correctness of the Code Coverage of (Trans-
compiled) Applications

In order to check the correctness and the completeness of our code coverage
for UI/web tests, we investigate the coverage results presented in Table 7.2,
Table 7.4, and Table 7.5 in detail. Table 7.3 is not usable as Clover and
EclEmma are not able to measure the code coverage of a transcompiled ap-
plication.

As we can see, Clover and EclEmma often differ slightly in their coverage
results. This has also been detected by Alemerien and Magel [7]. We have
found that this is due to a divergent computation model. When considering for
example statement coverage, we have observed that the tools show divergent
total numbers. Consequently, the results will differ. Obviously, the tools do
not follow the same definition of statements. This seems also to be true for
other syntactical elements like branches. Regarding methods, it is known [197]
that EclEmma sometimes takes implicit default constructors or initializers into
account when calculating the cover coverage. This is because the tool relies on
bytecode [197]. We assume this as the reason for divergent values (compare for
example the method coverage in Table 7.2 or Table 7.5).

When calculating statement coverage, we totally adhere to the Eclipse ab-
stract syntax tree [62] and the Eclipse JDT [66]. That is, we rely completely on
Eclipse’s AST. It tells us about the kind of code entity and it helps us to insert
our instrumentation code. In the same sense, we use from the Eclipse JDT
AbstractTypeDeclaration as representatives of classes. EclEmma on the
contrary also considers elements that correspond to ClassInstanceCreation

in the JDT-API (i.e. in Java code: new <Type>, where <Type> might repre-
sent an interface declaration). As these elements correspond to expressions in
the Java-AST, we do not take them into account. For this reason, our class cov-
erage results differ in some cases from the results obtained by EclEmma. How-
ever, when ignoring ClassInstanceCreation-elements in the HTML-report
provided by EclEmma, we found that in case of Abbot, the class coverage
percentages are identical.

Taken as a whole, our results (percentages and HTML-reports) are very
similar to the results of the other tools. Having regard to the given explana-
tions, our approach seems to work correctly with respect to RQ2.

RQ3: Runtime and Efficiency of our Coverage Technique

Coverage approaches that instrument the source code are known to be slower
than approaches based on instrumenting bytecode or binaries. The main reason
is that techniques instrumenting source code always require a separate build
[22]. As Clover also instruments source code rather than bytecode, we use
this tool for our comparison.

We have observed that our approach is generally more time consuming. In
the case of XML-Security and JTopas, our approach requires two times
longer than Clover for instrumentation. The values often varied even though

7.7. DISCUSSION 191

we tried to stop all background activities that could distort our comparison.
TC3 has always spent most of the time on instrumenting the code. Calculat-
ing coverage values with TC3 takes additional time. Clover presents results
almost instantly. We will have to do further optimization to improve the effi-
ciency. In particular, our tool currently takes almost no benefit of concurrency.
This could be a first starting point for future work.

Notwithstanding, the time spent on instrumentation and on calculating the
coverage results has never exceeded 3 minutes, even in the case of our biggest
transcompiled cross-platform application Hupa. On average, Hupa has taken
122 seconds to complete. XML-Security has required 1 minute on average.
JTopas and Abbot have been faster as there are less classes to instrument.
So, although TC3 is slower than other tools, it does not take overly much time.

7.7 Discussion

Easy Recalculation of Coverage Data: Our approach requires a database
to persist test traces. This is similar to other existing tools like Clover that
also uses a database [20]. Based on the data in our database, it is possible to
recalculate the code coverage directly as long as the source code did not change.

Need for Executing Tests Manually: Right now, calculating the code
coverage can only be done semi-automatically. This is because our tool is
completely independent from the tool that is responsible for running the test
suite. In case of unit tests, this could be for example JUnit or TestNG; in
case of web tests, this could be for example Selenium or TestComplete. Of
course, it is technically possible to provide additional settings that permit the
user to define the required test tool and to start the tests automatically. Then,
the entire process (code instrumentation, test execution and CID logging, and
calculating the code coverage) is fully automated.

Mobile Applications and Effort to Support Corresponding Transcom-
pilers: As already mentioned in Section 4.9, adding instrumentation code and
creating test traces remain the same in the area of transcompiled mobile ap-
plications. It is just important that the corresponding transcompiler supports
WebSockets. But this does not impose any restrictions as transcompilers ei-
ther support WebSockets directly (e.g. Codename One [265]) or it is just a
technical question to provide an implementation. Having a closer look at TC3,
it currently injects a module M into the code that uses native JavaScript to
implement WebSockets. This module has to be replaced to address the frame-
work capabilities or the corresponding WebSocket extension provided by other
developers. So in the end, we obtain for each UI test a test trace that describes
exactly which code entities have been traversed. We want to emphasize that
when utilizing the syntax analysis (see Section 7.4.1), we can calculate coverage
measures for mobile applications in the same way as described for web- and
desktop applications.

192
CHAPTER 7. CODE COVERAGE FOR ANY KIND OF TEST IN

TRANSCOMPILED CROSS-PLATFORM APPLICATIONS

7.8 Conclusion and Future Work

In this chapter, we have presented a novel approach to calculate the code cover-
age. The approach is generic in the sense that it is applicable to cross-platform
web-, desktop-, and mobile applications. In particular, it allows to compute
the code coverage of transcompiled applications, whose source code has been
compiled from a source programming language into code of another target pro-
gramming language. Thus, we succeed to map the code coverage ascertained
in a completely different target system back to the original source code. In the
end, this solves the coverage identification problem (see Section 1.2.3) even for
transcompiled cross-platform applications.

Our approach is implemented as an Eclipse plug-in and has been evaluated
on both desktop and transcompiled web applications. We support the follow-
ing widespread metrics: statement coverage, branch coverage, loop coverage,
method coverage, and class coverage. The results of the evaluation show that
our technique helps to decide where additional tests are required. By consider-
ing desktop applications, we have been able to compare our tool with other code
coverage tools in terms of correctness and performance. On the one hand, it has
turned out that our technique requires more runtime. The most time expensive
task is instrumenting the code. As this is rather technical, we firmly believe
that we can speedup the runtime via code optimization and concurrency. Fur-
thermore, using a database server instead of a local MySQL distribution could
additionally enhance calculations. This is left for future work. On the other
hand, to the best of our knowledge, our tool is the only one that supports
calculating the code coverage of transcompiled (web) applications. Besides, as
we rely on source code instrumentation and as we also consider conditional
expressions, we are able to calculate branch coverage correctly. Some tools
ignore conditional expressions, which in turn results in wrong coverage results.
Other tools rely on bytecode instrumentation, which is known to be potentially
unsuitable for calculating branch coverage [179].

Part III

Overview: Solutions and
Contributions for Challenging

Problems

193

Chapter 8

Conclusions

8.1 Summary And Results

Our main intention has been to provide solutions for the test effort reduc-
tion problem, the fault localization problem, and the coverage identification
problem in the context of transcompiled cross-platform applications that use
UI/web tests to ensure software quality. As a first starting point, we have an-
alyzed lots of existing approaches. However, they have all shown deficiencies
and none has directly been applicable for our purposes. Due to transcompi-
lation, the applications that we consider exist in two different languages: a
source programming language and a target programming language whose code
is usually highly optimized and obfuscated. The application is implemented
in the source programming language, but the final, transcompiled application
that runs on the device of the end user is written in the target programming
language. UI/web tests execute the application in the same way as the end
user does. So code changes made by a developer in the source programming
language affect UI/web test cases that execute code in the target language.
As we have outlined, the distinction between source and target programming
language as well as the dependencies in between makes it difficult to determine
a reduced set of UI/web test cases that should be re-executed due to code
changes. Another difficulty is to find the reason for a test failure in the source
programming language that has emerged when running the application in the
target language. Finally, the gap between source and target programming lan-
guage makes it difficult to determine the coverage of UI/web tests in the code
of the source programming language.

In our research, we have found a way to close this gap and to solve all three
problems. The first step has been to develop a tool that efficiently determines
changes made in the source programming language of a modified program ver-
sion. This is a precondition to identify all the UI/web tests that run modified
transcompiled code in the target language. To this end, we have created a spe-
cial control flow graph – the Extended Java Interclass Graph (EJIG) – as an
improvement of an already existing Regression Test Selection (RTS) technique
[126, 233]. We represent both the new and the old program version as EJIG

195

196 CHAPTER 8. CONCLUSIONS

and compare these graphs node by node in order to find code changes. From
this, we have demonstrated to be able to select a (preferably small) subset of
UI/web tests that needs to be re-executed. This way, we avoid to re-execute the
entire test suite, which reduces the test execution effort. Just as the original
RTS technique, our improved RTS technique is safe and ensures that we detect
exactly the same faults that a retest-all approach would detect.

Compared with other techniques, the main improvements of our RTS tech-
nique are:

• Our technique is applicable to UI/web tests that run on transcompiled
cross-platform applications.

• The calculation of EJIGs is simpler and more straightforward compared
with other approaches in the literature. We rely on the Eclipse Java
Development Tools to create the EJIGs. Additional analyses of e.g. class
hierarchies are unnecessary. In particular, this improves efficiency.

• We provide a more precise analysis of the source language that enables
us to precisely identify and localize code changes, even in e.g. conditional
expressions.

However, apart from the information about code changes, selecting tests
requires some additional information about code executed by UI/web tests. In
a second step, we have introduced an instrumentation approach that enables
us to find out which UI/web tests traverse which parts of the target language.
It is tailored to and fits exactly the demands of transcompiled applications
that might run on completely different platforms. Here, we have solved several
challenges:

• Which information must the instrumented source code provide?

• How should the structure of the instrumentation code look like to provide
the required information?

• How can we access the data produced by the instrumentation code?

• Where should the instrumentation code be added in order to support
many different transcompiler frameworks?

We have introduced a generic approach that is universally applicable in different
transcompilers. It is based on code identifiers (CIDs) that represent code enti-
ties in the source programming languages via a special structure. On top of this,
we have created two different approaches to instrument the code and to transfer
the CIDs from the source to the target language without any modification dur-
ing transcompilation and obfuscation. The first one – the compiler-dependent
approach – exploits the internals of the transcompiler whereas the second one –
the compiler-independent approach – works completely independently. In both
approaches, we register each CID that is traversed when executing the appli-
cation in the target language. When looking at the pros and cons of the two
approaches, we have ascertained the following facts:

8.1. SUMMARY AND RESULTS 197

• The compiler-dependent approach is very promising. On the one hand,
there is no risk that the relation between code entities and their cor-
responding CIDs gets broken during code optimization or during the
transcompilation process. Besides, it is not necessary to insert instru-
mentation code in the source code. On the other hand, compiler adapta-
tions seem to be inevitable which are tedious for external developers. So
this approach unifies big advantages, but also a strong disadvantage. We
found that for regular end-users, it is far too expensive to maintain a tool
that implements this approach. A transcompiler might evolve rapidly
as we have seen in case of Google Web Toolkit. Instead, this approach
should be provided by the developers of the corresponding transcompiler
themselves. Alternatively, it could also be interesting for third parties by
offering such a tool as a (fee-based) service.

• The compiler-independent approach is more suitable in supporting transcom-
pilers with many different target languages. Basically, it works with every
transcompiler. The only prerequisite is that there is a well-defined set of
rules that clearly determines where instrumentation code has to be in-
jected in the source programming language. Especially due to the high
maintenance effort that is necessary in the compiler-dependent approach,
we have used the compiler-independent approach for further investiga-
tions. However, we want to emphasize that all of our investigations could
have been performed with the compiler-dependent approach as well.

In general, a main prerequisite for applying an arbitrary technique is that
it is efficient. In our special case, when focusing on the test effort reduction
problem and the fault localization problem, the analysis needs to be fast, the
memory consumption has to be low, the test selection should pick exactly these
tests that are really affected by code changes, and the localization of faults
should be easy and time-saving. Precise test selection and exact fault localiza-
tion are closely related, but impact memory consumption and time effort. For
this reason, we have looked in a third step at possibilities of our technique to
fulfill all these conditions in our special context and to improve the state of the
art known from other techniques.

We have investigated and compared several analysis precision levels. To
this end, we have implemented several analysis precision levels that can be
adjusted by the user.

• Naturally, the fine-grained analysis provides better results for test selec-
tion (i.e. it selects less unnecessary tests) than a more coarse-grained
analysis levels that models the applications less detailed. Besides, the
fine-grained analysis localizes code changes/possible faults more precisely
which reduces the time for bug fixing.

• However, the fine-grained analysis consumes much memory than the less
detailed analyses. Especially in large real world applications, this might
end up in memory problems. Surprisingly, the coarse-grained analyses

198 CHAPTER 8. CONCLUSIONS

often have execution times similar to fine-grained analyses. It has turned
out that this is due to the need to analyze method invocations (i.e. plain
expressions) in order to represent calls in the CFG.

• In order to combine the bigger test suite reduction from the fine-grained
analysis levels and the lower memory consumption from the less detailed
analysis levels, we have developed a heuristic that individually decides
about which parts of the source code have to be analyzed precisely and
which parts can be analyzed coarse-grained. It has turned out that with
the heuristics, the test selection remains similar to the fine-grained anal-
ysis. In addition, the memory consumption can be reduced significantly.

In order to reduce the overall time-effort to reveal all the faults in a new
program version, we have made additional investigations:

• To detect more possible faults in a single analysis, we have applied a looka-
head strategy that is based on a formerly published lookahead strategy
[12]. Other than previous techniques, we do not stop the analysis of e.g.
a function as soon as a change has been detected. Instead, we try to re-
sume the analysis at an appropriate position in order to analyze the rest
of the function. This way, we can point out more potential faults in a
single analysis. If there are consequential errors, other approaches cannot
detect these faults immediately. Instead, they need another analysis with
test selection, re-execution of the selected tests, and fault localization.
To achieve our goal, we have used two different search strategies and a
lookahead to find a point in the code where we can continue our analysis.
In an evaluation, we have pointed out that our strategy accomplished
our demands and expectations to reduce the overhead for subsequential
analyses.

• We have shown that the test selection can (sometimes) be reduced signif-
icantly no matter what kind of instrumentation approach we use. With
our heuristics and lookaheads, the technique often shows potential to be
more efficient than a retest-all approach. However, this heavily depends
on the kind of code change and on the structure of the UI/web test. As
this kind of tests does not execute a small isolated unit in the source
code, a code change might affect many different test cases. For this
reason, there might be cases where the test reduction is not enough to
outperform the retest-all approach. Consequently, additional measures
are necessary to ensure that the analysis provides a benefit compared
with a retest-all approach.

To solve problems with low test suite reductions that arise from the special
nature of UI/web tests, we have developed in a fourth step several novel prior-
itization techniques that build on the results obtained from our test selection.
With these techniques, we can find out which tests have the highest potential
to reveal faults and therefore should run first. If we do not have enough time

8.1. SUMMARY AND RESULTS 199

to execute all the tests, we know that the most important ones have been exe-
cuted. For this purpose, we have introduced, investigated, and compared three
static approaches that incorporate several criteria. The basic assumption has
been that the chance to detect a fault is greater when a code modification is
executed in many different application states. So we have proposed to take
the execution frequency of code modifications into account when prioritizing
tests cases. Apart from this, we have also included other criteria like cover-
age of changes by a test, common code coverage, or the determination of an
optimal test for a given code change. For each of the static approaches, we
have additionally proposed a dynamic counterpart that adjusts the execution
order at runtime based on the test execution result. The main insights of our
evaluations have been:

• We have found out that our test case prioritization techniques are almost
for free, that is, they require only little additional time for execution.
This is because they benefit heavily from the results of our preceding test
selection, which provides all necessary data about code changes and exe-
cution frequency. This information is already available from the analysis,
the code instrumentation, and the logging.

• Our prioritization techniques are highly performant as they achieve very
high APFD values. Sometimes, the APFD vales are close or even equals
to the optimum.

• When comparing the static prioritization techniques with their dynamic
counterparts, the dynamic ones only provide a rather small benefit com-
pared to the static ones. If there is a high chance for many failures, the
static techniques should be preferred.

• In total, our prioritization technique is very well suited as supplement to
RTS techniques because it is able to quickly define a clear order in which
tests should be executed. So in total, with our heuristics, the lookaheads,
and our prioritization, our RTS technique is applicable to UI/web tests
in transcompiled cross-platform applications in an efficient way.

Naturally, however, the best test selection is useless if essential parts of the
code remain untested. In order to understand which functionality in the code
of the source programming language needs additional UI/web tests, we have
presented an extension of our instrumentation and tracing approach to provide
detailed code coverage metrics. The main results of this final step are:

• Similar to the test prioritization, all necessary data are available from the
test selection process. So, the code coverage analysis is cheap, although
it takes more time than an existing state-of-the-art tool.

• Unlike some other code coverage techniques, we are able to calculate
branch coverage correctly, as we also consider conditional expressions.

200 CHAPTER 8. CONCLUSIONS

• To the best of our knowledge, there is almost no tool available that fully
supports code coverage for UI/web tests in transcompiled cross-platform
applications.

8.2 Future Work

While solving the test effort reduction problem, the fault localization problem,
and the coverage identification problem in the context of transcompiled cross-
platform applications, many questions and challenges arised. We have answered
most of them, but some topics and tasks are still open and could be addressed
in future work. Here is a list of the main topics and tasks:

First of all, there are some technical topics left that could be included in
our RTS technique:

• Currently, our comparison algorithm does neither support the Java reflec-
tion mechanism, nor concurrency (see Section 4.3.2, Paragraph “Precon-
ditions” for the reasons). For these purposes, our approach would have
to be extended. Especially when considering multi-threading, we could
imagine that some of the ideas proposed by Apiwattanapong et al. [12]
could be integrated.

• Some transcompilers offer to embed code written in other programming
languages within the source programming language. These secondary
programming languages might require special methods when determining
code changes in a new program version. A prominent example is Google
Web Toolkit that offers to include JavaScript. Currently, we do not model
these parts of the code in our approach. However, there are approaches
(e.g. [154, 155]) that could be used to model these parts as well. An
interesting question is how these approaches could be integrated in order
to model the complete control flow in a cross-language way.

When trying to facilitate fault localization, we could imagine that our tech-
nique could be enhanced further:

• As mentioned in Section 4.2, spectrum-based fault localization techniques
order statements according to their risk to be faulty. Currently, our
analysis indicates in the best case the exact code location that causes a
test failure. Often however, a set of code changes might be responsible.
An order that reflects the probability of a code change to be the reason
for a test failure could be helpful. Of course, it has to be investigated
whether the extra analysis effort pays off in practice.

In the area of (re-) creating test traces for test selection and code coverage
analysis, there is in particular one interesting question open:

• It concerns the effort to recreate traces for tests that have been selected
for re-execution. Currently, we usually recreate the whole traces auto-

8.2. FUTURE WORK 201

matically while running the selected tests. Although this is done auto-
matically, it requires instrumentation code in the target language that
naturally slows down the test execution. This problem is not unique to
transcompiled applications. It is a general problem. To overcome result-
ing drawbacks, Chittimalli and Harrold [41] have proposed an approach
for pure desktop applications to re-compute coverage information auto-
matically. Although the approach does not fit our demands in transcom-
piled cross-platform applications directly, it might be a first starting point
for future work to reduce the overhead for recreating test traces.

In order to reduce the effect of code changes on the number of tests selected
for re-execution, we have been concerned with the optimal design of UI/web
tests. One possible approach is to modularize tests in such a way that they are
reusable. This way, we are able to create test traces for small test cases that
attend to a small specific part in the user interface. In fact, we have used this
approach several times (e.g. for the login in Meisterplan). However, this
introduces dependencies among test cases that have to be taken into account
during prioritization. And it still cannot resolve another major problem that
we have recognized. It affects the traversal of code just for initializing or
navigation reasons. It might happen that a UI/web tests traverses code changes
although it actually focuses on completely different functionality and thus has
nothing to do with these code changes. Nonetheless, it could be selected for re-
execution. Modularizing the tests does not suffice as the preceding tests have
to be executed anyway. Although we could turn off logging in order to create
a test trace for the test we are interested in, we would lose time due to the
execution of the preceding test. So, as another optimization, our idea has been
to create a kind of snapshot of the individual application state and to resume
from this state for several follow-up tests in the user interface. This way, it
would be possible to test individual parts of the user interface of an application
without the need to return to a specific view. We would expect that the impact
of some kinds of code changes could be minimized. This could reduce the effect
of code changes on UI/web tests which in turn leads to smaller subsets of tests
that have to be re-executed. Traversing code just for initializing or navigation
reasons would be obsolete. Nevertheless, this idea is very challenging. Major
questions in this context are:

• How is it possible to capture the state of a web/mobile/desktop applica-
tion?

• How can an application state (taken as kind of snapshot) be recovered?
This of course includes recovering the data from the internal memory as
well as setting up the user interface as it has been left before.

• Does our expectation prove to be true that tests starting from a previously
captured application state can further reduce the set of tests that have
to be executed after code modifications?

202 CHAPTER 8. CONCLUSIONS

• Which option requires less time: running the preceding tests and the
main test or capturing the application state and resetting the application
in this state?

Finally, we have explained that the rule set for code instrumentation might
have to be adapted in other languages. Even if the overhead is small: it would
be nice to get rid of the need to do adaptations.

• It would be interesting to explore whether a completely dynamic and
generic instrumentation approach could be established that can be used
for any kind of source programming language without the need of a single
adaptation. Geimer et al. [92] have already pursued a way to create a
dynamic, generic instrumentation technique for multiple programming
languages. But as explained by the authors, there are also several open
questions left. For us, another open question is in particular whether an
enhancement of their approach could be applied in our special settings as
well.

Appendix

A Terminology

A.1 General Terms

Pareto-like Distribution:

“Software defect distribution following Pareto distribution (i.e small
number of modules causing majority of defects).” Kim [165, page
148]

Properties of Functions:

“(a) Injective (One-to-One) Functions. Let f : X → Y . The
function f is called one-to-one or injective if different elements in X
have different images in Y i.e., if f(a) = f(a′)⇒ a = a′, ∀ a, a′ ∈ X.

Another way of defining injective function is that every element of
domain X has a unique image in the co-domain Y and there is no
element of Y which is image of more than one element of domain
X.” Gupta [123, page 79]

“(b) Surjective (Onto) Functions. Let f : X → Y . The func-
tion f is called surjective function if each element in Y , is the image
of at least one element in X. In other words, in surjective functions,
the range of f is equal or co-domain Y i.e., ∀ b ∈ Y, b = f(a) for
some a ∈ X.” Gupta [123, page 79]

A.2 Testing

Test Case:

“1. A set of test inputs, execution conditions, and expected results
developed for a particular objective, such as to exercise a particular
program path or to verify compliance with a specific requirement.
IEEE Std 1012-2004 IEEE Standard for Software Verification and
Validation.3.1.31. 2. Documentation specifying inputs, predicted
results, and a set of execution conditions for a test item. IEEE
Std 1012-2004 IEEE Standard for Software Verification and Vali-
dation.3.1.31 ” ISO/IEC/IEEE [149, page 368]

203

204 CHAPTER 8. CONCLUSIONS

Acceptance Test:

“The test of a system or functional unit usually performed by
the purchaser on his premises after installation with the partici-
pation of the vendor to ensure that the contractual requirements
are met. ISO/IEC 2382-20:1990, Information technology – Vocab-
ulary – Part 20: System development.20.05.07.” ISO/IEC/IEEE
[149, page 5]

Integration Test:

“The progressive linking and testing of programs or modules in
order to ensure their proper functioning in the complete system.
ISO/IEC 2382-20:1990, Information technology – Vocabulary – Part
20: System development.20.05.06. Syn: integration testing”
ISO/IEC/IEEE [149, page 181]

Integration Testing:

“Testing in which software components, hardware components, or
both are combined and tested to evaluate the interaction among
them. IEEE Std 1012-2004 IEEE Standard for Software Verifica-
tion and Validation.3.1.14; IEEE Std 829-2008 IEEE Standard for
Software and System Test Documentation.3.1.14 ” ISO/IEC/IEEE
[149, page 181]

Regression Testing:

“1. Selective retesting of a system or component to verify that mod-
ifications have not caused unintended effects and that the system or
component still complies with its specified requirements 2. Testing
required to determine that a change to a system component has not
adversely affected functionality, reliability or performance and has
not introduced additional defects. ISO/IEC 90003:2004, Software
engineering – Guidelines for the application of ISO 9001:2000 to
computer software.3.11. 3. Functional testing that follows modifi-
cation and maintenance” ISO/IEC/IEEE [149, page 295]

Smoke Test:

“The smoke test (build verification test) focuses on test automa-
tion of the system components that make up the most important
functionality. Instead of repeatedly retesting everything manually
whenever a new software build is received, a test engineer plays
back the smoke test, verifying that the major functionality of the
system still exists.” Dustin et al. [61, pages 43-44]

A. TERMINOLOGY 205

System Testing:

“Testing conducted on a complete, integrated system to evaluate the
systems compliance with its specified requirements. IEEE Std 829-
2008 IEEE Standard for Software and System Test Documentation.
3.1.37 ” ISO/IEC/IEEE [149, page 361]

Test Coverage:

“1. The degree to which a given test or set of tests addresses all
specified requirements for a given system or component. 2. Extent
to which the test cases test the requirements for the system or soft-
ware product. ISO/IEC 12207:2008 (IEEE Std 12207-2008), Sys-
tems and software engineering – Software life cycle processes.4.51 ”
ISO/IEC/IEEE [149, page 369]

Instrumentation:

“A common prerequisite for a number of debugging and performance-
analysis techniques is the injection of auxiliary program code into
the application under investigation, a process called instrumenta-
tion.” Geimer et al. [92, page 696]

Unit Test:

“1. Testing of individual routines and modules by the developer
or an independent tester. 2. A test of individual programs or
modules in order to ensure that there are no analysis or program-
ming errors. ISO/IEC 2382-20:1990, Information technology – Vo-
cabulary – Part 20: System development.20.05.05. 3. Test of
individual hardware or software units or groups of related units”
ISO/IEC/IEEE [149, page 386]

Program Slicing:

“A program slice consists of the parts of a program that (poten-
tially) affect the values computed at some point of interest. Such a
point of interest is referred to as a slicing criterion, and is typically
specified by a pair (program point, set of variables). The parts of a
program that have a direct or indirect effect on the values computed
at a slicing criterion C constitute the program slice with respect to
criterion C. The task of computing program slices is called program
slicing.

The original concept of a program slice was introduced by Weiser
[. . .]. Weiser claims that a slice corresponds to the mental ab-
stractions that people make when they are debugging a program,

206 CHAPTER 8. CONCLUSIONS

and advocates the integration of program slicers in debugging en-
vironments. [. . .] Weiser defined a program slice S as a reduced,
executable program obtained from a program P by removing state-
ments, such that S replicates part of the behavior of P . Another
common definition of a slice is a subset of the statements and con-
trol predicates of the program that directly or indirectly affect the
values computed at the criterion, but that do not necessarily con-
stitute an executable program. An important distinction is that
between a static and a dynamic slice. The former is computed
without making assumptions regarding a programs input, whereas
the latter relies on some specific test case.” Tip [277, pages 1-2]

Backward Static Slices and Forward Static Slices:

“The slices mentioned so far are computed by gathering statements
and control predicates by way of a backward traversal of the pro-
grams control flow graph (CFG) or PDG, starting at the slicing
criterion. Therefore, these slices are referred to as backward (static)
slices. Bergeretti and Carré [. . .] were the first to define the notion
of a forward static slice, although Reps and Bricker [. . .] were the
first to use this terminology. Informally, a forward slice consists of
all statements and control predicates dependent on the slicing cri-
terion, a statement being “dependent” on the slicing criterion if the
values computed at that statement depend on the values computed
at the slicing criterion, or if the values computed at the slicing cri-
terion determine the fact if the statement under consideration is
executed or not. Backward and forward slices are computed in a
similar way; the latter requires tracing dependences in the forward
direction.” Tip [277, page 3]

Dynamic Slicing:

“In the case of dynamic program slicing, only the dependences that
occur in a specific execution of the program are taken into account.
A dynamic slicing criterion specifies the input, and distinguishes
between different occurrences of a statement in the execution his-
tory; typically, it consists of triple (input, occurrence of a statement,
variable). In other words, the difference between static and dynamic
slicing is that dynamic slicing assumes fixed input for a program,
whereas static slicing does not make assumptions regarding the in-
put.” Tip [277, page 3]

A.3 Graphs

Call Graph: According to Ryder [241, page 216], a call graph is a “directed
graph”.

A. TERMINOLOGY 207

“The nodes of the graph are the procedures of the program; each
edge represents one or more invocations of a procedure Pj by a
procedure Pi.” Ryder [241, page 216]

More formally:

“[. . .] to form the call graph of a program we must examine all pro-
cedure definitions and their references, and determine all possible
formal procedure parameter associations with external procedures.
The reference relations between procedures in a program can be
represented by a directed graph G = {N,E} called a call graph
where:

1. each node Ni corresponds in a one-to-one manner to a proce-
dure Pi and its procedure vector set;

2. if Pi contains a reference B0(B1, . . . , Bk) then for each expan-
sion Pj0(Pj1 , . . . , Pjk) of that reference, there is a directed edge
(Ni, Nj0) in the graph and (Pj1 , . . . , Pjk) is in the procedure
vector set of Nj0 .”

Ryder [241, page 219]

Please note: According to this definition, call graphs only model calls from
one procedure to another. So it is a special CFG (see Section 2.4) (on proce-
dure/method level). In our approach, we use CFGs on different levels, more
precisely, on method, statement, and even on expression level, respectively.

Program Dependence Graph (PDG):

“The PDG represents a program as a graph in which the nodes are
statements and predicate expressions (or operators and operands)
and the edges incident to a node represent both the data values on
which the node’s operations depend and the control conditions on
which the execution of the operations depends. [. . .] The set of
all dependences for a program may be viewed as inducing a partial
ordering on the statements and predicates in the program that must
be followed to preserve the semantics of the original program.

Dependences arise as the result of two separate effects. First, a
dependence exists between two statements whenever a variable ap-
pearing in one statement may have an incorrect value if the two
statements are reversed. [. . .] Dependences of this type are data
dependences. Second, a dependence exists between a statement
and the predicate whose value immediately controls the execution
of the statement. [. . .] Dependences of this type are control depen-
dences.” Ferrante et al. [81, page 322]

208 CHAPTER 8. CONCLUSIONS

System Dependence Graph (SDG):

“A system dependence graph includes a program dependence graph,
which represents the system’s main program, procedure dependence
graphs, which represent the system’s auxiliary procedures, and some
additional edges. These additional edges are of two sorts: (1) edges
that represent direct dependences between a call site and the called
procedure, and (2) edges that represent transitive dependences due
to calls.” Horwitz et al. [141, pages 35-36]

B Excerpt of a Source Map Created by GWT

1 # jsName, jsniIdent, className, memberName, sourceUri, sourceLine, fragmentNumber
2 $addStock,com.google.gwt.sample.stockwatcher.client.StockWatcher::$addStock(Lcom/google/gwt/sample/

stockwatcher/client/StockWatcher;)V,com.google.gwt.sample.stockwatcher.client.StockWatcher,
$addStock,com/google/gwt/sample/stockwatcher/client/StockWatcher.java,101,0

3 $onModuleLoad,com.google.gwt.sample.stockwatcher.client.StockWatcher::$onModuleLoad(Lcom/google/gwt/
sample/stockwatcher/client/StockWatcher;)V,com.google.gwt.sample.stockwatcher.client.StockWatcher,
$onModuleLoad,com/google/gwt/sample/stockwatcher/client/StockWatcher.java,39,0

4 $refreshWatchList,com.google.gwt.sample.stockwatcher.client.StockWatcher::$refreshWatchList(Lcom/google
/gwt/sample/stockwatcher/client/StockWatcher;)V,com.google.gwt.sample.stockwatcher.client.
StockWatcher,$refreshWatchList,com/google/gwt/sample/stockwatcher/client/StockWatcher.java,147,0

5 $updateTable,com.google.gwt.sample.stockwatcher.client.StockWatcher::$updateTable(Lcom/google/gwt/
sample/stockwatcher/client/StockWatcher;Lcom/google/gwt/sample/stockwatcher/client/StockPrice;)V,
com.google.gwt.sample.stockwatcher.client.StockWatcher,$updateTable,com/google/gwt/sample/
stockwatcher/client/StockWatcher.java,183,0

6 $updateTable 0,com.google.gwt.sample.stockwatcher.client.StockWatcher::$updateTable(Lcom/google/gwt/
sample/stockwatcher/client/StockWatcher;[Lcom/google/gwt/sample/stockwatcher/client/StockPrice;)V,
com.google.gwt.sample.stockwatcher.client.StockWatcher,$updateTable,com/google/gwt/sample/
stockwatcher/client/StockWatcher.java,167,0

7 StockWatcher 0,com.google.gwt.sample.stockwatcher.client.StockWatcher::StockWatcher()V,com.google.gwt.
sample.stockwatcher.client.StockWatcher,StockWatcher,com/google/gwt/sample/stockwatcher/client/
StockWatcher.java,25,0

8 addPanel,com.google.gwt.sample.stockwatcher.client.StockWatcher::addPanel,com.google.gwt.sample.
stockwatcher.client.StockWatcher,addPanel,com/google/gwt/sample/stockwatcher/client/StockWatcher.
java,30,−1

9 addStockButton,com.google.gwt.sample.stockwatcher.client.StockWatcher::addStockButton,com.google.gwt.
sample.stockwatcher.client.StockWatcher,addStockButton,com/google/gwt/sample/stockwatcher/client/
StockWatcher.java,32,−1

10 lastUpdatedLabel,com.google.gwt.sample.stockwatcher.client.StockWatcher::lastUpdatedLabel,com.google.
gwt.sample.stockwatcher.client.StockWatcher,lastUpdatedLabel,com/google/gwt/sample/stockwatcher/
client/StockWatcher.java,33,−1

11 mainPanel,com.google.gwt.sample.stockwatcher.client.StockWatcher::mainPanel,com.google.gwt.sample.
stockwatcher.client.StockWatcher,mainPanel,com/google/gwt/sample/stockwatcher/client/StockWatcher.
java,28,−1

12 newSymbolTextBox,com.google.gwt.sample.stockwatcher.client.StockWatcher::newSymbolTextBox,com.google.
gwt.sample.stockwatcher.client.StockWatcher,newSymbolTextBox,com/google/gwt/sample/stockwatcher/
client/StockWatcher.java,31,−1

13 stocks,com.google.gwt.sample.stockwatcher.client.StockWatcher::stocks,com.google.gwt.sample.
stockwatcher.client.StockWatcher,stocks,com/google/gwt/sample/stockwatcher/client/StockWatcher.
java,34,−1

14 stocksFlexTable,com.google.gwt.sample.stockwatcher.client.StockWatcher::stocksFlexTable,com.google.gwt.
sample.stockwatcher.client.StockWatcher,stocksFlexTable,com/google/gwt/sample/stockwatcher/client/
StockWatcher.java,29,−1

15 StockWatcher$1,,com.google.gwt.sample.stockwatcher.client.StockWatcher$1,,com/google/gwt/sample/
stockwatcher/client/StockWatcher.java,71,−1

16 StockWatcher$1 0,com.google.gwt.sample.stockwatcher.client.StockWatcher$1::StockWatcher$1(Lcom/google/
gwt/sample/stockwatcher/client/StockWatcher;)V,com.google.gwt.sample.stockwatcher.client.
StockWatcher$1,StockWatcher$1,com/google/gwt/sample/stockwatcher/client/StockWatcher.java,71,0

17 this$0,com.google.gwt.sample.stockwatcher.client.StockWatcher$1::this$0,com.google.gwt.sample.
stockwatcher.client.StockWatcher$1,this$0,com/google/gwt/sample/stockwatcher/client/StockWatcher.
java,71,−1

18 StockWatcher$2,,com.google.gwt.sample.stockwatcher.client.StockWatcher$2,,com/google/gwt/sample/
stockwatcher/client/StockWatcher.java,80,−1

19 StockWatcher$2 0,com.google.gwt.sample.stockwatcher.client.StockWatcher$2::StockWatcher$2(Lcom/google/
gwt/sample/stockwatcher/client/StockWatcher;)V,com.google.gwt.sample.stockwatcher.client.
StockWatcher$2,StockWatcher$2,com/google/gwt/sample/stockwatcher/client/StockWatcher.java,80,0

20 onClick,com.google.gwt.sample.stockwatcher.client.StockWatcher$2::onClick(Lcom/google/gwt/event/dom/
client/ClickEvent;)V,com.google.gwt.sample.stockwatcher.client.StockWatcher$2,onClick,com/google/
gwt/sample/stockwatcher/client/StockWatcher.java,81,0

Figure B.1: Excerpt of a Source Map Created by GWT, PRETTY variant.

B. EXCERPT OF A SOURCE MAP CREATED BY GWT 209

1
#
{

’
u
s
e
r
.
a
g
e
n
t
’

:
’
g
e
c
k
o
1
8
’
}

2
#

j
s
N
a
m
e
,

j
s
n
i
I
d
e
n
t
,

c
l
a
s
s
N
a
m
e
,

m
e
m
b
e
r
N
a
m
e
,

s
o
u
r
c
e
U
r
i
,

s
o
u
r
c
e
L
i
n
e
,

f
r
a
g
m
e
n
t
N
u
m
b
e
r

3
F
,
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
J
a
v
a
S
c
r
i
p
t
E
x
c
e
p
t
i
o
n
,
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
J
a
v
a
S
c
r
i
p
t
E
x
c
e
p
t
i
o
n
.
j
a
v
a
,
4
6,
−
1

4
Q
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
J
a
v
a
S
c
r
i
p
t
E
x
c
e
p
t
i
o
n
:
:
$
c
l
i
n
i
t
(
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
J
a
v
a
S
c
r
i
p
t
E
x
c
e
p
t
i
o
n
,
$
c
l
i
n
i
t
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
J
a
v
a
S
c
r
i
p
t
E
x
c
e
p
t
i
o
n
.
j
a
v
a
,
4
6
,
0

5
[
.
.
.
]

6
Y
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
J
a
v
a
S
c
r
i
p
t
O
b
j
e
c
t
:
:
h
a
s
h
C
o
d
e

d
e
v
i
r
t
u
a
l
$
(
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
)
I
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
J
a
v
a
S
c
r
i
p
t
O
b
j
e
c
t
,
h
a
s
h
C
o
d
e

d
e
v
i
r
t
u
a
l
$
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
e
m
u
l
/

j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
.
j
a
v
a
,
7
8
,
0

7
Z
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
J
s
D
a
t
e
:
:
c
r
e
a
t
e
(
D
)
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
J
s
D
a
t
e
;
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
J
s
D
a
t
e
,
c
r
e
a
t
e
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
J
s
D
a
t
e
.
j
a
v
a
,
3
5
,
0

8
$
,
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
S
c
h
e
d
u
l
e
r
,
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
S
c
h
e
d
u
l
e
r
.
j
a
v
a
,
3
3,
−
1

9
e
b
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
I
m
p
l
:
:
a
p
p
l
y
(
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
)
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
I
m
p
l
,
a
p
p
l
y
,
c
o
m
/
g
o
o
g
l
e

/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/
I
m
p
l
.
j
a
v
a
,
2
8
0
,
0

1
0

[
.
.
.
]

1
1

v
b
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
S
c
h
e
d
u
l
e
r
I
m
p
l
:
:
p
u
s
h
(
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
J
s
A
r
r
a
y
;
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/
S
c
h
e
d
u
l
e
r
I
m
p
l
$
T
a
s
k
;
)
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/

J
s
A
r
r
a
y
;
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
S
c
h
e
d
u
l
e
r
I
m
p
l
,
p
u
s
h
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/
S
c
h
e
d
u
l
e
r
I
m
p
l
.
j
a
v
a
,
1
4
4
,
0

1
2

x
b
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
S
t
a
c
k
T
r
a
c
e
C
r
e
a
t
o
r
:
:
f
i
l
l
I
n
S
t
a
c
k
T
r
a
c
e
(
L
j
a
v
a
/
l
a
n
g
/
T
h
r
o
w
a
b
l
e
;
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
S
t
a
c
k
T
r
a
c
e
C
r
e
a
t
o
r
,
f
i
l
l
I
n
S
t
a
c
k
T
r
a
c
e
,
c
o
m
/
g
o
o
g
l
e
/

g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/
S
t
a
c
k
T
r
a
c
e
C
r
e
a
t
o
r
.
j
a
v
a
,
4
1
8
,
0

1
3

[
.
.
.
]

1
4

F
b
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
S
t
r
i
n
g
B
u
f
f
e
r
I
m
p
l
A
p
p
e
n
d
:
:
$
a
p
p
e
n
d
(
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/
S
t
r
i
n
g
B
u
f
f
e
r
I
m
p
l
A
p
p
e
n
d
;
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
I
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.

i
m
p
l
.
S
t
r
i
n
g
B
u
f
f
e
r
I
m
p
l
A
p
p
e
n
d
,
$
a
p
p
e
n
d
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/
S
t
r
i
n
g
B
u
f
f
e
r
I
m
p
l
A
p
p
e
n
d
.
j
a
v
a
,
4
1
,
0

1
5

I
b
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
S
t
r
i
n
g
B
u
f
f
e
r
I
m
p
l
A
p
p
e
n
d
:
:
$
r
e
p
l
a
c
e
(
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/
S
t
r
i
n
g
B
u
f
f
e
r
I
m
p
l
A
p
p
e
n
d
;
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
I
I
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
)
V
,
c
o
m
.

g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
S
t
r
i
n
g
B
u
f
f
e
r
I
m
p
l
A
p
p
e
n
d
,
$
r
e
p
l
a
c
e
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/
S
t
r
i
n
g
B
u
f
f
e
r
I
m
p
l
A
p
p
e
n
d
.
j
a
v
a
,
7
1
,
0

1
6

[
.
.
.
]

1
7

K
b
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
U
n
l
o
a
d
S
u
p
p
o
r
t
:
:
c
l
e
a
r
I
n
t
e
r
v
a
l
0
(
I
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
U
n
l
o
a
d
S
u
p
p
o
r
t
,
c
l
e
a
r
I
n
t
e
r
v
a
l
0
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/

U
n
l
o
a
d
S
u
p
p
o
r
t
.
j
a
v
a
,
2
5
,
0

1
8

L
b
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
U
n
l
o
a
d
S
u
p
p
o
r
t
:
:
c
l
e
a
r
T
i
m
e
o
u
t
0
(
I
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
U
n
l
o
a
d
S
u
p
p
o
r
t
,
c
l
e
a
r
T
i
m
e
o
u
t
0
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/
U
n
l
o
a
d
S
u
p
p
o
r
t
.

j
a
v
a
,
2
9
,
0

1
9

M
b
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
U
n
l
o
a
d
S
u
p
p
o
r
t
:
:
s
e
t
I
n
t
e
r
v
a
l
0
(
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
J
a
v
a
S
c
r
i
p
t
O
b
j
e
c
t
;
I
)
I
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
U
n
l
o
a
d
S
u
p
p
o
r
t
,
s
e
t
I
n
t
e
r
v
a
l
0
,
c
o
m

/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/
U
n
l
o
a
d
S
u
p
p
o
r
t
.
j
a
v
a
,
3
3
,
0

2
0

N
b
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e
.
c
l
i
e
n
t
.
i
m
p
l
.
U
n
l
o
a
d
S
u
p
p
o
r
t
:
:
s
e
t
T
i
m
e
o
u
t
0
(
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
J
a
v
a
S
c
r
i
p
t
O
b
j
e
c
t
;
I
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/
D
i
s
p
o
s
a
b
l
e
;
)
I
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
c
o
r
e

.
c
l
i
e
n
t
.
i
m
p
l
.
U
n
l
o
a
d
S
u
p
p
o
r
t
,
s
e
t
T
i
m
e
o
u
t
0
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
c
o
r
e
/
c
l
i
e
n
t
/
i
m
p
l
/
U
n
l
o
a
d
S
u
p
p
o
r
t
.
j
a
v
a
,
4
0
,
0

2
1

[
.
.
.
]

2
2

Z
c
,
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
e
v
e
n
t
.
d
o
m
.
c
l
i
e
n
t
.
K
e
y
P
r
e
s
s
E
v
e
n
t
,
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
e
v
e
n
t
/
d
o
m
/
c
l
i
e
n
t
/
K
e
y
P
r
e
s
s
E
v
e
n
t
.
j
a
v
a
,
2
3,
−
1

2
3

c
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
e
v
e
n
t
.
d
o
m
.
c
l
i
e
n
t
.
K
e
y
P
r
e
s
s
E
v
e
n
t
:
:
$
c
l
i
n
i
t
(
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
e
v
e
n
t
.
d
o
m
.
c
l
i
e
n
t
.
K
e
y
P
r
e
s
s
E
v
e
n
t
,
$
c
l
i
n
i
t
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
e
v
e
n
t
/
d
o
m
/
c
l
i
e
n
t
/
K
e
y
P
r
e
s
s
E
v
e
n
t
.
j
a
v
a
,
2
3
,
0

2
4

a
d
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
e
v
e
n
t
.
d
o
m
.
c
l
i
e
n
t
.
K
e
y
P
r
e
s
s
E
v
e
n
t
:
:
$
d
i
s
p
a
t
c
h
(
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
e
v
e
n
t
/
d
o
m
/
c
l
i
e
n
t
/
K
e
y
P
r
e
s
s
E
v
e
n
t
;
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
e
v
e
n
t
/
d
o
m
/
c
l
i
e
n
t
/
K
e
y
P
r
e
s
s
H
a
n
d
l
e
r
;
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.

e
v
e
n
t
.
d
o
m
.
c
l
i
e
n
t
.
K
e
y
P
r
e
s
s
E
v
e
n
t
,
$
d
i
s
p
a
t
c
h
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
e
v
e
n
t
/
d
o
m
/
c
l
i
e
n
t
/
K
e
y
P
r
e
s
s
E
v
e
n
t
.
j
a
v
a
,
7
8
,
0

2
5

[
.
.
.
]

2
6

c
l
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
P
r
i
c
e
:
:
S
t
o
c
k
P
r
i
c
e
(
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
D
D
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
P
r
i
c
e
,
S
t
o
c
k
P
r
i
c
e
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/

s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
P
r
i
c
e
.
j
a
v
a
,
1
2
,
0

2
7

a
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
P
r
i
c
e
:
:
c
h
a
n
g
e
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
P
r
i
c
e
,
c
h
a
n
g
e
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/

S
t
o
c
k
P
r
i
c
e
.
j
a
v
a
,
7,
−
1

2
8

b
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
P
r
i
c
e
:
:
p
r
i
c
e
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
P
r
i
c
e
,
p
r
i
c
e
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
P
r
i
c
e
.

j
a
v
a
,
6,
−
1

2
9

c
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
P
r
i
c
e
:
:
s
y
m
b
o
l
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
P
r
i
c
e
,
s
y
m
b
o
l
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/

S
t
o
c
k
P
r
i
c
e
.
j
a
v
a
,
5,
−
1

3
0

d
l
,
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
,
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
.
j
a
v
a
,
2
6,
−
1

3
1

e
l
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
:
:
$
a
d
d
S
t
o
c
k
(
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
;
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.

S
t
o
c
k
W
a
t
c
h
e
r
,
$
a
d
d
S
t
o
c
k
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
.
j
a
v
a
,
1
0
2
,
0

3
2

f
l
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
:
:
$
o
n
M
o
d
u
l
e
L
o
a
d
(
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
;
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.

S
t
o
c
k
W
a
t
c
h
e
r
,
$
o
n
M
o
d
u
l
e
L
o
a
d
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
.
j
a
v
a
,
4
0
,
0

3
3

g
l
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
:
:
$
r
e
f
r
e
s
h
W
a
t
c
h
L
i
s
t
(
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
;
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.

c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
,
$
r
e
f
r
e
s
h
W
a
t
c
h
L
i
s
t
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
.
j
a
v
a
,
1
4
8
,
0

3
4

h
l
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
:
:
$
u
p
d
a
t
e
T
a
b
l
e
(
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
;
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/

S
t
o
c
k
P
r
i
c
e
;
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
,
$
u
p
d
a
t
e
T
a
b
l
e
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
.
j
a
v
a
,
1
8
4
,
0

3
5

i
l
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
:
:
$
u
p
d
a
t
e
T
a
b
l
e
(
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
;
[
L
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/

S
t
o
c
k
P
r
i
c
e
;
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
,
$
u
p
d
a
t
e
T
a
b
l
e
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
.
j
a
v
a
,
1
6
8
,
0

3
6

j
l
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
:
:
S
t
o
c
k
W
a
t
c
h
e
r
(
)
V
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
,
S
t
o
c
k
W
a
t
c
h
e
r
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/

s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
.
j
a
v
a
,
2
6
,
0

3
7

a
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
:
:
a
d
d
P
a
n
e
l
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
,
a
d
d
P
a
n
e
l
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/
s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/

S
t
o
c
k
W
a
t
c
h
e
r
.
j
a
v
a
,
3
1,
−
1

3
8

b
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
:
:
a
d
d
S
t
o
c
k
B
u
t
t
o
n
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
,
a
d
d
S
t
o
c
k
B
u
t
t
o
n
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/

s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
.
j
a
v
a
,
3
3,
−
1

3
9

c
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
:
:
l
a
s
t
U
p
d
a
t
e
d
L
a
b
e
l
,
c
o
m
.
g
o
o
g
l
e
.
g
w
t
.
s
a
m
p
l
e
.
s
t
o
c
k
w
a
t
c
h
e
r
.
c
l
i
e
n
t
.
S
t
o
c
k
W
a
t
c
h
e
r
,
l
a
s
t
U
p
d
a
t
e
d
L
a
b
e
l
,
c
o
m
/
g
o
o
g
l
e
/
g
w
t
/
s
a
m
p
l
e
/

s
t
o
c
k
w
a
t
c
h
e
r
/
c
l
i
e
n
t
/
S
t
o
c
k
W
a
t
c
h
e
r
.
j
a
v
a
,
3
4,
−
1

4
0

[
.
.
.
]

F
ig

u
re

B
.2

:
T

ra
n

sc
om

p
il

ed
co

d
e:

O
B
F
U
S
C
A
T
E
D

va
ri

an
t.

210 CHAPTER 8. CONCLUSIONS

C Tries

“A trie – pronounced “try” – is essentially an M -ary tree, whose
nodes are M -place vectors with components corresponding to digits
or characters. Each node on level l represents the set of all keys
that begin with a certain sequence of l characters called its prefix ;
the node specifies an M -way branch, depending on the (l + 1)st
character.” Knuth [168, pages 492 - 495]

“Trie memory for computer searching was first recommended by
René de la Briandais [Proc. Western Joint Computer Conf. 15
(1959), 295-298]. He pointed out that we can save memory space
at the expense of running time if we use a linked list for each node
vector, since most of the entries in the vectors tend to be empty.
[...] Searching [...] proceeds by finding the root that matches the
first character, then finding the child node of that root that matches
the second character, etc.” Knuth [168, pages 494 - 495]

The search process becomes clear when looking at the example depicted in
Figure C.1, which we have taken from Knuth [168, page 495].

Figure C.1: Example of a trie, taken from Knuth [168, page 495].

Bibliography

[1] Abbot. Abbot framework for automated testing of Java GUI components and
programs. http://abbot.sourceforge.net/, 2011. [Last access: 05th May,
2016].

[2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the Accuracy of Spectrum-
based Fault Localization. In Proceedings of the Testing: Academic and Indus-
trial Conference Practice and Research Techniques - MUTATION, TAICPART-
MUTATION ’07, pages 89–98, Washington, DC, USA, 2007. IEEE Computer
Society.

[3] W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky. Validation, Verification,
and Testing of Computer Software. ACM Comput. Surv., 14(2):159–192, June
1982.

[4] K. K. Aggrawal, Y. Singh, and A. Kaur. Code Coverage Based Technique for
Prioritizing Test Cases for Regression Testing. SIGSOFT Softw. Eng. Notes, 29
(5):1–4, Sep. 2004.

[5] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley Series in Computer Science and Information Process-
ing. Addison-Wesley Publishing Company, 1986.

[6] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools (2Nd Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2006.

[7] K. Alemerien and K. Magel. Examining the Effectiveness of Testing Coverage
Tools: An Empirical Study. International Journal of Software Engineering and
Its Applications, 8(5):139–162, 2014.

[8] F. E. Allen. Control Flow Analysis. SIGPLAN Not., 5(7):1–19, July 1970.

[9] N. Alshahwan and M. Harman. Automated Session Data Repair for Web Ap-
plication Regression Testing. In Software Testing, Verification, and Validation,
2008 1st International Conference on, pages 298–307, Apr. 2008.

[10] J. W. Anderson, P. Lawson, M. Renschler, and M. Lange. csUnit. http://www.
csunit.org/, 2009. [Last access: 30th Apr., 2017].

[11] Apache Santuario. XML Security. http://santuario.apache.org/, 2016. [Last
access: 27th Jan., 2016].

[12] T. Apiwattanapong, A. Orso, and M. J. Harrold. JDiff: A differencing technique
and tool for object-oriented programs. Automated Software Engg., 14(1):3–36,
Mar. 2007.

[13] Aristotle Research Group. JABA: Java Architecture for Bytecode Analysis.
http://www.cc.gatech.edu/aristotle/Tools/jaba.html, Nov. 2005. [Last
access: 04th Dec., 2013].

211

http://abbot.sourceforge.net/
http://www.csunit.org/
http://www.csunit.org/
http://santuario.apache.org/
http://www.cc.gatech.edu/aristotle/Tools/jaba.html

212 BIBLIOGRAPHY

[14] R. Arnold and S. Bohner. Software Change Impact Analysis. IEEE Computer
Society Press, 1996.

[15] A. Arora and M. Sinha. Web Application Testing: A Review on Techniques,
Tools and State of Art. International Journal of Scientific & Engineering Re-
search, 3(2):1–6, Feb. 2012.

[16] A. Asadullah, R. Mishra, M. Basavaraju, and N. Jain. A Call Trace Based Tech-
nique for Regression Test Selection of Enterprise Web Applications (SoRTEA).
In Proceedings of the 7th India Software Engineering Conference, ISEC ’14, pages
22:1–22:6, New York, NY, USA, 2014. ACM.

[17] B. Athira and P. Samuel. Web services regression test case prioritization. In Com-
puter Information Systems and Industrial Management Applications (CISIM),
2010 International Conference on, pages 438–443, Oct 2010.

[18] Atlassian. Documentation for Clover 4.0. https://confluence.

atlassian.com/alldoc/files/71598770/650641563/1/1408328787139/

CLOVER-4-0-20140818-PDF.pdf, 2014. [Last access: 03rd Mar., 2016].

[19] Atlassian. Java Code Coverage. https://www.atlassian.com/software/

clover/overview, 2016. [Last access: 03rd Mar., 2016].

[20] Atlassian. Managing the Coverage Database. https://confluence.atlassian.
com/display/CLOVER/Managing+the+Coverage+Database, 2016. [Last access:
24th June, 2016].

[21] Atlassian. Using Clover with the GWT-maven plugin. https:

//confluence.atlassian.com/display/CLOVER/Using+Clover+with+the+

GWT-maven+plugin, 2016. [Last access: 03rd Mar., 2016].

[22] Atlassian. Why does Clover use source code instrumentation? https:

//confluence.atlassian.com/pages/viewpage.action?pageId=79986998,
Mar. 2016. [Last access: 03rd Mar., 2016].

[23] A. Ayers, A. Agarwal, and R. Schooler. Method for Back Tracing Program
Execution, Mar. 2002. URL https://www.google.com/patents/US6353924.
US Patent 6,353,924.

[24] G. K. Baah, A. Podgurski, and M. J. Harrold. The Probabilistic Program De-
pendence Graph and Its Application to Fault Diagnosis. In Proceedings of the
2008 international symposium on Software testing and analysis, ISSTA ’08, pages
189–200, New York, NY, USA, 2008. ACM.

[25] T. Ball. On the Limit of Control Flow Analysis for Regression Test Selection. In
Proceedings of the 1998 ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA ’98, pages 134–142, New York, NY, USA, 1998.
ACM.

[26] T. Ball and J. R. Larus. Efficient Path Profiling. In Proceedings of the 29th
Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 29,
pages 46–57, Washington, DC, USA, 1996. IEEE Computer Society.

[27] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algo-
rithms for the Visualization of Graphs. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edition, 1999.

[28] P. Benedusi, A. Cimitile, and U. De Carlini. Post-maintenance testing based on
path change analysis. In Proceedings of the Conference on Software Maintenance,
pages 352–361, 1988.

[29] J. Bible, G. Rothermel, and D. S. Rosenblum. A Comparative Study of Coarse-

https://confluence.atlassian.com/alldoc/files/71598770/650641563/1/1408328787139/CLOVER-4-0-20140818-PDF.pdf
https://confluence.atlassian.com/alldoc/files/71598770/650641563/1/1408328787139/CLOVER-4-0-20140818-PDF.pdf
https://confluence.atlassian.com/alldoc/files/71598770/650641563/1/1408328787139/CLOVER-4-0-20140818-PDF.pdf
https://www.atlassian.com/software/clover/overview
https://www.atlassian.com/software/clover/overview
https://confluence.atlassian.com/display/CLOVER/Managing+the+Coverage+Database
https://confluence.atlassian.com/display/CLOVER/Managing+the+Coverage+Database
https://confluence.atlassian.com/display/CLOVER/Using+Clover+with+the+GWT-maven+plugin
https://confluence.atlassian.com/display/CLOVER/Using+Clover+with+the+GWT-maven+plugin
https://confluence.atlassian.com/display/CLOVER/Using+Clover+with+the+GWT-maven+plugin
https://confluence.atlassian.com/pages/viewpage.action?pageId=79986998
https://confluence.atlassian.com/pages/viewpage.action?pageId=79986998
https://www.google.com/patents/US6353924

BIBLIOGRAPHY 213

and Fine-Grained Safe Regression Test-Selection Techniques. ACM Trans. Softw.
Eng. Methodol., 10(2):149–183, Apr. 2001.

[30] H. Blau. JTopas. http://jtopas.sourceforge.net/jtopas/, Nov. 2004. [Last
access: 27th Jan., 2016].

[31] B. Boehm and V. R. Basili. Software Defect Reduction Top 10 List. Computer,
34(1):135–137, Jan. 2001.

[32] C. Britton. Choosing a Programming Language. https://msdn.microsoft.

com/en-us/library/cc168615.aspx, Jan. 2008. [Last access: 31th Mar., 2016].

[33] S. Chandel. Please Don’t Repeat GWT’s Mistake! GoogleGroups. https://

groups.google.com/d/msg/google-appengine/QsCMpKbyOJE/HbpgorMhgYgJ,
Oct. 2008. [Last access: 24th Mar., 2014].

[34] S. Chandel. Testing methodologies using GWT. http://www.gwtproject.org/
articles/testing_methodologies_using_gwt.html, Mar. 2009. [Last access:
25th Mar., 2014].

[35] S. Chandel. Is GWT’s compiler java->javascript or java bytecode -> javascript?
GoogleGroups. https://groups.google.com/d/msg/google-web-toolkit/

SIUZRZyvEPg/OaCGAfNAzzEJ, July 2009. [Last access: 24th Mar., 2014].

[36] A. Chawla and A. Orso. A Generic Instrumentation Framework for Collecting
Dynamic Information. SIGSOFT Softw. Eng. Notes, 29(5):1–4, Sep. 2004.

[37] L. Chen, Z. Wang, L. Xu, H. Lu, and B. Xu. Test Case Prioritization for Web
Service Regression Testing. In Service Oriented System Engineering (SOSE),
2010 Fifth IEEE International Symposium on, pages 173–178, June 2010.

[38] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo. TestTube: A System for Selec-
tive Regression Testing. In Proceedings of the 16th International Conference on
Software Engineering, ICSE ’94, pages 211–220, Los Alamitos, CA, USA, 1994.
IEEE Computer Society Press.

[39] O. C. Chesley, X. Ren, and B. G. Ryder. Crisp: A Debugging Tool for
Java Programs. In In Proc. International Conference on Software Maintenance
(ICSM2005), pages 401–410, Sep. 2005.

[40] K.-R. Chilakamarri and S. Elbaum. Leveraging Disposable Instrumentation to
Reduce Coverage Collection Overhead: Research Articles. Softw. Test. Verif.
Reliab., 16(4):267–288, Dec. 2006.

[41] P. K. Chittimalli and M. J. Harrold. Re-computing Coverage Information to
Assist Regression Testing. In 2007 IEEE International Conference on Software
Maintenance, pages 164–173, Oct 2007.

[42] Cobertura. FAQ Cobertura Wiki. https://github.com/cobertura/

cobertura/wiki/FAQ, Sep. 2014. [Last access: 23th Sep., 2017].

[43] Cobertura. Cobertura - A code coverage utility for Java. http://cobertura.

github.io/cobertura/, Mar. 2016. [Last access: 03rd Mar., 2016].

[44] CodeCover. An open-source glass-box testing tool. http://codecover.org/,
2016. [Last access: 07th Mar., 2016].

[45] Codename One. Codename One - Cross-Platform Mobile Native Development
Using Java. https://www.codenameone.com/, 2016. [Last access: 05th May,
2016].

[46] Codename One. Codename One - Advanced Topics - Under The Hood. https:
//www.codenameone.com/manual/advanced-topics.html, 2016. [Last access:
23th May, 2016].

http://jtopas.sourceforge.net/jtopas/
https://msdn.microsoft.com/en-us/library/cc168615.aspx
https://msdn.microsoft.com/en-us/library/cc168615.aspx
https://groups.google.com/d/msg/google-appengine/QsCMpKbyOJE/HbpgorMhgYgJ
https://groups.google.com/d/msg/google-appengine/QsCMpKbyOJE/HbpgorMhgYgJ
http://www.gwtproject.org/articles/testing_methodologies_using_gwt.html
http://www.gwtproject.org/articles/testing_methodologies_using_gwt.html
https://groups.google.com/d/msg/google-web-toolkit/SIUZRZyvEPg/OaCGAfNAzzEJ
https://groups.google.com/d/msg/google-web-toolkit/SIUZRZyvEPg/OaCGAfNAzzEJ
https://github.com/cobertura/cobertura/wiki/FAQ
https://github.com/cobertura/cobertura/wiki/FAQ
http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
http://codecover.org/
https://www.codenameone.com/
https://www.codenameone.com/manual/advanced-topics.html
https://www.codenameone.com/manual/advanced-topics.html

214 BIBLIOGRAPHY

[47] Codename One. Codename One - Manual: Introduction. https://www.

codenameone.com/manual/, 2016. [Last access: 23th May, 2016].

[48] Codename One. Codename One - Getting Started. https://www.codenameone.
com/download.html, 2016. [Last access: 23th May, 2016].

[49] Codename One. Codename One - Performance, Size & Debugging. https:

//www.codenameone.com/manual/performance-debugging.html, 2016. [Last
access: 23th May, 2016].

[50] R. Cromwell. People sometimes ask me why Google itself doesn’t use
GWT. https://plus.google.com/+RayCromwell/posts/ivVepvxCu3g, Dec.
2011. [Last access: 14th July, 2014].

[51] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight Defect Localization for Java.
In Proceedings of the 19th European Conference on Object-Oriented Program-
ming, ECOOP’05, pages 528–550, Berlin, Heidelberg, 2005. Springer-Verlag.

[52] J. Dean, D. Grove, and C. Chambers. Optimization of Object-Oriented Programs
Using Static Class Hierarchy Analysis. In Proceedings of the 9th European Con-
ference on Object-Oriented Programming, ECOOP ’95, pages 77–101, London,
UK, UK, 1995. Springer-Verlag.

[53] DFB - Deutscher Fuball-Bund e.V. Sepp Herberger. http://www.dfb.de/

die-mannschaft/historie/bundestrainer/sepp-herberger/, 2016. [Last ac-
cess: 27th May, 2016].

[54] H. Do and G. Rothermel. An Empirical Study of Regression Testing Techniques
Incorporating Context and Lifetime Factors and Improved Cost-benefit Models.
In Proceedings of the 14th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, SIGSOFT ’06/FSE-14, pages 141–151, New York,
NY, USA, 2006. ACM.

[55] H. Do, S. G. Elbaum, and G. Rothermel. Supporting Controlled Experimentation
with Testing Techniques: An Infrastructure and its Potential Impact. Empirical
Software Engineering: An International Journal, 10(4):405–435, 2005.

[56] H. Do, G. Rothermel, and A. Kinneer. Prioritizing JUnit Test Cases: An Em-
pirical Assessment and Cost-Benefits Analysis. Empirical Software Engineering,
11(1):33–70, 2006.

[57] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. An Empirical Study of the
Effect of Time Constraints on the Cost-benefits of Regression Testing. In Pro-
ceedings of the 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, SIGSOFT ’08/FSE-16, pages 71–82, New York, NY,
USA, 2008. ACM.

[58] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. The Effects of Time Con-
straints on Test Case Prioritization: A Series of Controlled Experiments. IEEE
Trans. Softw. Eng., 36(5):593–617, Sep. 2010.

[59] Docker. Docker - Build, Ship, and Run Any App, Anywhere. https://www.

docker.com/, 2017. [Last access: 06th July, 2017].

[60] S. Doǧan, A. Betin-Can, and V. Garousi. Web application testing: A systematic
literature review. Journal of Systems and Software, 91:174 – 201, 2014.

[61] E. Dustin, J. Rashka, and J. Paul. Automated Software Testing: Introduction,
Management, and Performance. Pearson Education, 1999.

[62] Eclipse. Abstract Syntax Tree. http://www.eclipse.org/articles/

Article-JavaCodeManipulation_AST/index.html, Nov. 2006. [Last access:
04th Dec., 2013].

https://www.codenameone.com/manual/
https://www.codenameone.com/manual/
https://www.codenameone.com/download.html
https://www.codenameone.com/download.html
https://www.codenameone.com/manual/performance-debugging.html
https://www.codenameone.com/manual/performance-debugging.html
https://plus.google.com/+RayCromwell/posts/ivVepvxCu3g
http://www.dfb.de/die-mannschaft/historie/bundestrainer/sepp-herberger/
http://www.dfb.de/die-mannschaft/historie/bundestrainer/sepp-herberger/
https://www.docker.com/
https://www.docker.com/
http://www.eclipse.org/articles/Article-JavaCodeManipulation_AST/index.html
http://www.eclipse.org/articles/Article-JavaCodeManipulation_AST/index.html

BIBLIOGRAPHY 215

[63] Eclipse. Abstract Syntax Tree - PHP Development Tools. http://www.eclipse.
org/pdt/articles/ast/PHP_AST.html, May 2008. [Last access: 04th Apr.,
2016].

[64] Eclipse. IBinding. http://help.eclipse.org/kepler/index.jsp?topic=

%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%

2Fjdt%2Fcore%2Fdom%2FIBinding.html, 2013. [Last access: 04th Dec., 2013].

[65] Eclipse. Eclipse CompilationUnit. http://help.eclipse.org/kepler/index.

jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%

2Feclipse%2Fjdt%2Fcore%2Fdom%2FCompilationUnit.html, 2013. [Last
access: 30th June, 2016].

[66] Eclipse. JDT Core Component. http://www.eclipse.org/jdt/core/index.

php, 2014. [Last access: 28th Apr., 2014].

[67] Eclipse. Eclipse Documentation: AST. http://help.eclipse.org/luna/

index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%

2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FAST.html, 2014. [Last access: 14th
Apr., 2017].

[68] Eclipse. PHP Development Tools (PDT). http://www.eclipse.org/pdt/,
2015. [Last access: 04th Apr., 2016].

[69] Eclipse. Eclipse Java Development Tools (JDT). http://www.eclipse.org/

jdt/, 2016. [Last access: 04th Apr., 2016].

[70] Eclipse. Remote Application Platform. http://www.eclipse.org/rap/, Mar.
2016. [Last access: 02nd Mar., 2016].

[71] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing Test Cases for
Regression Testing. In Proceedings of the 2000 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA ’00, pages 102–112, New
York, NY, USA, 2000. ACM.

[72] S. Elbaum, D. Gable, and G. Rothermel. The Impact of Software Evolution on
Code Coverage Information. In Proceedings of the IEEE International Confer-
ence on Software Maintenance (ICSM’01), ICSM ’01, pages 170–179, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

[73] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating Varying Test
Costs and Fault Severities into Test Case Prioritization. In Proceedings of the
23rd International Conference on Software Engineering, ICSE ’01, pages 329–
338, Washington, DC, USA, 2001. IEEE Computer Society.

[74] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test Case Prioritization: A
Family of Empirical Studies. IEEE Trans. Softw. Eng., 28(2):159–182, Feb. 2002.

[75] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky. Selecting a Cost-
Effective Test Case Prioritization Technique. Software Quality Journal, 12(3):
185–210, Sep. 2004.

[76] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II. Leveraging User-Session
Data to Support Web Application Testing. IEEE Trans. Softw. Eng., 31(3):
187–202, Mar. 2005.

[77] S. Elbaum, G. Rothermel, and J. Penix. Techniques for Improving Regression
Testing in Continuous Integration Development Environments. In Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 235–245, New York, NY, USA, 2014. ACM.

[78] E. Engström, P. Runeson, and M. Skoglund. A Systematic Review on Regression
Test Selection Techniques. Inf. Softw. Technol., 52(1):14–30, Jan. 2010.

http://www.eclipse.org/pdt/articles/ast/PHP_AST.html
http://www.eclipse.org/pdt/articles/ast/PHP_AST.html
http://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FIBinding.html
http://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FIBinding.html
http://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FIBinding.html
http://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FCompilationUnit.html
http://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FCompilationUnit.html
http://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FCompilationUnit.html
http://www.eclipse.org/jdt/core/index.php
http://www.eclipse.org/jdt/core/index.php
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FAST.html
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FAST.html
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FAST.html
http://www.eclipse.org/pdt/
http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/
http://www.eclipse.org/rap/

216 BIBLIOGRAPHY

[79] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke. Empirical Evaluation
of Pareto Efficient Multi-objective Regression Test Case Prioritisation. In Pro-
ceedings of the 2015 International Symposium on Software Testing and Analysis,
ISSTA 2015, pages 234–245, New York, NY, USA, 2015. ACM.

[80] C. Fang, Z. Chen, K. Wu, and Z. Zhao. Similarity-based test case prioritization
using ordered sequences of program entities. Software Quality Journal, 22(2):
335–361, 2013.

[81] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program Dependence
Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst., 9(3):
319–349, July 1987.

[82] J.-C. Filliâtre. Deductive Software Verification. International Journal on Soft-
ware Tools for Technology Transfer, 13(5):397–403, 2011.

[83] N. Fitzgerald and R. Nyman. Compiling to JavaScript, and De-
bugging with Source Maps. https://hacks.mozilla.org/2013/05/

compiling-to-javascript-and-debugging-with-source-maps/, May
2013. [Last access: 19th May, 2016].

[84] M. Fowler. Continuous Integration. http://martinfowler.com/articles/

continuousIntegration.html, May 2006. [Last access: 15th Sep., 2014].

[85] M. Fowler. Xunit. https://www.martinfowler.com/bliki/Xunit.html, Jan.
2006. [Last access: 30th Apr., 2017].

[86] M. Fowler. Eradicating Non-Determinism in Tests. http://martinfowler.com/
articles/nonDeterminism.html, Apr. 2011. [Last access: 17th Apr., 2014].

[87] P. G. Frankl, G. Rothermel, K. Sayre, and F. I. Vokolos. An empirical compar-
ison of two safe regression test selection techniques. In Proceedings of the 2003
International Symposium on Empirical Software Engineering, ISESE ’03, pages
195–204, Washington, DC, USA, 2003. IEEE Computer Society.

[88] Freedekstop. CppUnit. https://freedesktop.org/wiki/Software/cppunit/,
Apr. 2017. [Last access: 30th Apr., 2017].

[89] Gargoyle Software Inc. HtmlUnit. http://htmlunit.sourceforge.net/, Feb.
2014. [Last access: 19th Mar., 2014].

[90] J. J. Garrett. Ajax: A New Approach to Web Applications. http:

//adaptivepath.org/ideas/ajax-new-approach-web-applications/, Feb.
2005. [Last access: 19th Mar., 2014].

[91] O. Gaudin. Measure Coverage by Integration Tests
with Sonar Updated. http://www.sonarqube.org/

measure-coverage-by-integration-tests-with-sonar-updated/, June
2012. [Last access: 17th May, 2016].

[92] M. Geimer, S. S. Shende, A. D. Malony, and F. Wolf. A Generic and Config-
urable Source-Code Instrumentation Component, pages 696–705. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[93] M. Gligoric, L. Eloussi, and D. Marinov. Practical Regression Test Selection with
Dynamic File Dependencies. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ISSTA 2015, pages 211–222, New York, NY,
USA, 2015. ACM.

[94] G. Gokdogan. JsInterop v1.0: Nextgen GWT/JavaScript Interop-
erability. https://docs.google.com/document/d/10fmlEYIHcyead_

4R1S5wKGs1t2I7Fnp_PaNaa7XTEk0/edit?pref=2&pli=1, Oct. 2015. [Last
access: 23th May, 2016].

https://hacks.mozilla.org/2013/05/compiling-to-javascript-and-debugging-with-source-maps/
https://hacks.mozilla.org/2013/05/compiling-to-javascript-and-debugging-with-source-maps/
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/bliki/Xunit.html
http://martinfowler.com/articles/nonDeterminism.html
http://martinfowler.com/articles/nonDeterminism.html
https://freedesktop.org/wiki/Software/cppunit/
http://htmlunit.sourceforge.net/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://www.sonarqube.org/measure-coverage-by-integration-tests-with-sonar-updated/
http://www.sonarqube.org/measure-coverage-by-integration-tests-with-sonar-updated/
https://docs.google.com/document/d/10fmlEYIHcyead_4R1S5wKGs1t2I7Fnp_PaNaa7XTEk0/edit?pref=2&pli=1
https://docs.google.com/document/d/10fmlEYIHcyead_4R1S5wKGs1t2I7Fnp_PaNaa7XTEk0/edit?pref=2&pli=1

BIBLIOGRAPHY 217

[95] Google. Understanding the GWT Compiler. https://developers.

google.com/web-toolkit/doc/latest/DevGuideCompilingAndDebugging#

DevGuideJavaToJavaScriptCompiler, Oct. 2012. [Last access: 13th Mar.,
2013].

[96] Google. Add instrumentation for collecting client-side code
coverage. https://github.com/gwtproject/gwt/commit/

8549003236db60c0c70cdd61387293c5fe543616, July 2012. [Last access:
03rd Mar., 2016].

[97] Google. Coding Basics JSNI. http://www.gwtproject.org/doc/latest/

DevGuideCodingBasicsJSNI.html, Dec. 2013. [Last access: 11th Dec., 2013].

[98] Google. Overview. http://www.gwtproject.org/overview.html, Dec. 2013.
[Last access: 03rd Dec., 2013].

[99] Google. UIBinder. http://www.gwtproject.org/doc/latest/

DevGuideUiBinder.html, Dec. 2013. [Last access: 04th Dec., 2013].

[100] Google. Tutorial Stockwatcher. http://www.gwtproject.org/doc/latest/

tutorial/gettingstarted.html, 2014. [Last access: 20th Apr., 2014].

[101] Google. Architecting Your App for Testing. http://www.gwtproject.org/doc/
latest/DevGuideTesting.html, 2014. [Last access: 22th Apr., 2014].

[102] Google. Compiling Java to JavaScript. http://www.gwtproject.org/doc/

latest/tutorial/compile.html, May 2014. [Last access: 21th May, 2014].

[103] Google. Deferred Binding Benefits. http://www.gwtproject.org/doc/latest/
DevGuideCodingBasicsDeferred.html, Apr. 2014. [Last access: 17th Apr.,
2014].

[104] Google. Developing with GWT. http://www.gwtproject.org/overview.

html#how, Mar. 2014. [Last access: 25th Mar., 2014].

[105] Google. Language support. http://www.gwtproject.org/doc/latest/

DevGuideCodingBasicsCompatibility.html, Apr. 2014. [Last access: 17th
Apr., 2014].

[106] Google. Making GWT Better: Working with the Code. http://www.

gwtproject.org/makinggwtbetter.html#workingoncode, Apr. 2014. [Last ac-
cess: 27th Apr., 2014].

[107] Google. Styling Existing Widgets. http://www.gwtproject.org/doc/latest/
DevGuideUiCss.html#widgets, May 2014. [Last access: 11th May, 2014].

[108] Google. Compiling and Debugging. http://www.gwtproject.org/doc/latest/
DevGuideCompilingAndDebugging.html, June 2015. [Last access: 08th June,
2015].

[109] Google. Super Dev Mode. http://www.gwtproject.org/articles/

superdevmode.html, Dec. 2015. [Last access: 22th May, 2016].

[110] Google. Closure Compiler. https://developers.google.com/closure/

compiler/, 2016. [Last access: 23th May, 2016].

[111] Google. Code Coverage. http://www.gwtproject.org/doc/latest/

DevGuideTestingCoverage.html#eclemma, 2016. [Last access: 03rd Mar.,
2016].

[112] Google. FAQ - Debugging and Compiling. http://www.gwtproject.org/doc/

latest/FAQ_DebuggingAndCompiling.html, May 2016. [Last access: 05th May,
2016].

[113] Google. Organizing Projects. http://www.gwtproject.org/doc/latest/

DevGuideOrganizingProjects.html, 2016. [Last access: 22th May, 2016].

https://developers.google.com/web-toolkit/doc/latest/DevGuideCompilingAndDebugging#DevGuideJavaToJavaScriptCompiler
https://developers.google.com/web-toolkit/doc/latest/DevGuideCompilingAndDebugging#DevGuideJavaToJavaScriptCompiler
https://developers.google.com/web-toolkit/doc/latest/DevGuideCompilingAndDebugging#DevGuideJavaToJavaScriptCompiler
https://github.com/gwtproject/gwt/commit/8549003236db60c0c70cdd61387293c5fe543616
https://github.com/gwtproject/gwt/commit/8549003236db60c0c70cdd61387293c5fe543616
http://www.gwtproject.org/doc/latest/DevGuideCodingBasicsJSNI.html
http://www.gwtproject.org/doc/latest/DevGuideCodingBasicsJSNI.html
http://www.gwtproject.org/overview.html
http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html
http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html
http://www.gwtproject.org/doc/latest/tutorial/gettingstarted.html
http://www.gwtproject.org/doc/latest/tutorial/gettingstarted.html
http://www.gwtproject.org/doc/latest/DevGuideTesting.html
http://www.gwtproject.org/doc/latest/DevGuideTesting.html
http://www.gwtproject.org/doc/latest/tutorial/compile.html
http://www.gwtproject.org/doc/latest/tutorial/compile.html
http://www.gwtproject.org/doc/latest/DevGuideCodingBasicsDeferred.html
http://www.gwtproject.org/doc/latest/DevGuideCodingBasicsDeferred.html
http://www.gwtproject.org/overview.html#how
http://www.gwtproject.org/overview.html#how
http://www.gwtproject.org/doc/latest/DevGuideCodingBasicsCompatibility.html
http://www.gwtproject.org/doc/latest/DevGuideCodingBasicsCompatibility.html
http://www.gwtproject.org/makinggwtbetter.html#workingoncode
http://www.gwtproject.org/makinggwtbetter.html#workingoncode
http://www.gwtproject.org/doc/latest/DevGuideUiCss.html#widgets
http://www.gwtproject.org/doc/latest/DevGuideUiCss.html#widgets
http://www.gwtproject.org/doc/latest/DevGuideCompilingAndDebugging.html
http://www.gwtproject.org/doc/latest/DevGuideCompilingAndDebugging.html
http://www.gwtproject.org/articles/superdevmode.html
http://www.gwtproject.org/articles/superdevmode.html
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
http://www.gwtproject.org/doc/latest/DevGuideTestingCoverage.html#eclemma
http://www.gwtproject.org/doc/latest/DevGuideTestingCoverage.html#eclemma
http://www.gwtproject.org/doc/latest/FAQ_DebuggingAndCompiling.html
http://www.gwtproject.org/doc/latest/FAQ_DebuggingAndCompiling.html
http://www.gwtproject.org/doc/latest/DevGuideOrganizingProjects.html
http://www.gwtproject.org/doc/latest/DevGuideOrganizingProjects.html

218 BIBLIOGRAPHY

[114] Google. ScriptInjector (GWT Javadoc). http://www.gwtproject.org/

javadoc/latest/com/google/gwt/core/client/ScriptInjector.html,
2016. [Last access: 22th May, 2016].

[115] Google. Client. http://www.gwtproject.org/doc/latest/

DevGuideCodingBasicsClient.html, Apr. 2017. [Last access: 15th Apr.,
2017].

[116] Google. GWT Git repositories - Git at Google. https://gwt.googlesource.

com/, Apr. 2017. [Last access: 02nd Apr., 2017].

[117] Google. Master - GWT - Git at Google. https://gwt.googlesource.com/gwt/
+/master, Apr. 2017. [Last access: 02nd Apr., 2017].

[118] GraphStream Team. GraphStream - A Dynamic Graph Library. http://

graphstream-project.org/, 2015. [Last access: 20th Apr., 2017].

[119] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An
Empirical Study of Regression Test Selection Techniques. ACM Trans. Softw.
Eng. Methodol., 10(2):184–208, Apr. 2001.

[120] Grooscript. Grooscript - library to convert groovy code to javascript. http:

//grooscript.org/, 2017. [Last access: 07th Aug., 2017].

[121] O. Group. The Open Group Base Specifications Issue 7 - diff. http://pubs.

opengroup.org/onlinepubs/9699919799/utilities/diff.html, 2016. [Last
access: 5th Mar., 2018].

[122] K. Grupp. Eclipse Plugin zur Ermittlung von Codeänderungen für Regression-
stests. Bachelor’s thesis, Wilhelm-Schickard Institut, 2013.

[123] S. B. Gupta. Comprehensive Discrete Mathematics & Structures. Laxmi Publi-
cations, 2005.

[124] R. Hanussek, S. Kie, T. Scheller, and M. Wittlinger. CodeCover: Glass Box
Testing Tool Design. http://codecover.org/development/Design.pdf, May
2008. [Last access: 07th Mar., 2016].

[125] D. Hao, L. Zhang, T. Xie, H. Mei, and J.-S. Sun. Interactive Fault Localization
Using Test Information. Journal of Computer Science and Technology, 24(5):
962–974, Sep. 2009.

[126] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha,
S. A. Spoon, and A. Gujarathi. Regression Test Selection for Java Software. In
Proceedings of the 16th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, OOPSLA ’01, pages 312–326, New
York, NY, USA, 2001. ACM.

[127] C. Häubl, C. Wimmer, and H. Mössenböck. Deriving Code Coverage Informa-
tion from Profiling Data Recorded for a Trace-based Just-in-time Compiler. In
Proceedings of the 2013 International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools,
PPPJ ’13, pages 1–12, New York, NY, USA, 2013. ACM.

[128] Haxe. Dead Code Elimination - Haxe. http://haxe.org/manual/cr-dce.html,
May 2016. [Last access: 05th May, 2016].

[129] Haxe. Haxe - Global Compiler Flags. https://haxe.org/manual/

compiler-usage-flags.html, May 2016. [Last access: 05th May, 2016].

[130] Haxe. Haxe - The Cross-platform Toolkit. http://haxe.org/, Mar. 2016. [Last
access: 02nd Mar., 2016].

[131] Haxe. Haxe - Compiler Targets. https://haxe.org/documentation/

http://www.gwtproject.org/javadoc/latest/com/google/gwt/core/client/ScriptInjector.html
http://www.gwtproject.org/javadoc/latest/com/google/gwt/core/client/ScriptInjector.html
http://www.gwtproject.org/doc/latest/DevGuideCodingBasicsClient.html
http://www.gwtproject.org/doc/latest/DevGuideCodingBasicsClient.html
https://gwt.googlesource.com/
https://gwt.googlesource.com/
https://gwt.googlesource.com/gwt/+/master
https://gwt.googlesource.com/gwt/+/master
http://graphstream-project.org/
http://graphstream-project.org/
http://grooscript.org/
http://grooscript.org/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
http://codecover.org/development/Design.pdf
http://haxe.org/manual/cr-dce.html
https://haxe.org/manual/compiler-usage-flags.html
https://haxe.org/manual/compiler-usage-flags.html
http://haxe.org/
https://haxe.org/documentation/introduction/compiler-targets.html
https://haxe.org/documentation/introduction/compiler-targets.html

BIBLIOGRAPHY 219

introduction/compiler-targets.html, Feb. 2017. [Last access: 27th Feb.,
2017].

[132] P. Heidegger and P. Thiemann. Recency Types for Dynamically-Typed, Object-
Based Languages . In International Workshop on Foundations of Object-Oriented
Languages (FOOL), Jan. 2009.

[133] M. Hirzel. Selective Regression Testing for Web Applications Created with
Google Web Toolkit. In Proceedings of the 2014 International Conference on
Principles and Practices of Programming on the Java Platform: Virtual Ma-
chines, Languages, and Tools, PPPJ ’14, pages 110–121, New York, NY, USA,
2014. ACM. http://doi.acm.org/10.1145/2647508.2647527.

[134] M. Hirzel and H. Klaeren. Code Coverage for Any Kind of Test in Any Kind
of Transcompiled Cross-Platform Applications. In Proceedings of the Second
International Workshop on User Interface Test Automation, INTUITEST 2016,
pages 1–10, New York, NY, USA, 2016. ACM. http://doi.acm.org/10.1145/
2945404.2945405.

[135] M. Hirzel and H. Klaeren. Graph-Walk-based Selective Regression Testing of
Web Applications Created with Google Web Toolkit. In Gemeinsamer Tagungs-
band der Workshops der Tagung Software Engineering 2016 (SE 2016), Wien,
23.-26. Februar 2016, pages 55–69, 2016.

[136] M. Hirzel, J. I. Brachthäuser, and H. Klaeren. Prioritizing Regression Tests for
Desktop and Web-Applications Based on the Execution Frequency of Modified
Code. In Proceedings of the 13th International Conference on Principles and
Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools, PPPJ ’16, pages 11:1–11:12, New York, NY, USA, 2016. ACM. http:
//doi.acm.org/10.1145/2972206.2972222.

[137] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun.
ACM, 12(10):576–580, Oct. 1969.

[138] K. J. Hoffman, P. Eugster, and S. Jagannathan. Semantics-Aware Trace Anal-
ysis. In Proceedings of the 2009 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’09, pages 453–464, New York, NY,
USA, 2009. ACM.

[139] M. R. Hoffmann, B. Janiczak, and E. Mandrikov. EclEmma - JaCoCo Java Code
Coverage Library. http://eclemma.org/jacoco/, Feb. 2016. [Last access: 03rd
Mar., 2016].

[140] M. R. Hoffmann, B. Janiczak, and E. Mandrikov. JaCoCo - Implementation
Design. http://eclemma.org/jacoco/trunk/doc/implementation.html, Feb.
2016. [Last access: 03rd Mar., 2016].

[141] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, Jan. 1990.

[142] S. Huang, Y. Chen, J. Zhu, Z. J. Li, and H. F. Tan. An Optimized Change-
driven Regression Testing Selection Strategy for Binary Java Applications. In
Proceedings of the 2009 ACM Symposium on Applied Computing, SAC ’09, pages
558–565, New York, NY, USA, 2009. ACM.

[143] S. Huang, J. Zhu, and Y. Ni. ORTS: A Tool for Optimized Regression Testing
Selection. In Proceedings of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and applications, OOPSLA ’09,
pages 803–804, New York, NY, USA, 2009. ACM.

[144] Hupa. Overview. http://james.apache.org/hupa/index.html, June 2012.
[Last access: 24th May, 2014].

https://haxe.org/documentation/introduction/compiler-targets.html
https://haxe.org/documentation/introduction/compiler-targets.html
http://doi.acm.org/10.1145/2647508.2647527
http://doi.acm.org/10.1145/2945404.2945405
http://doi.acm.org/10.1145/2945404.2945405
http://doi.acm.org/10.1145/2972206.2972222
http://doi.acm.org/10.1145/2972206.2972222
http://eclemma.org/jacoco/
http://eclemma.org/jacoco/trunk/doc/implementation.html
http://james.apache.org/hupa/index.html

220 BIBLIOGRAPHY

[145] IEEE. IEEE Standard for Software Reviews and Audits. IEEE STD 1028-2008,
pages 1–52, Aug 2008.

[146] Intel. Pin - A Dynamic Binary Instrumentation Tool. http://www.pintool.

org/, June 2012. [Last access: 30th May, 2017].

[147] Intel. Pin 3.2 User Guide. https://software.intel.com/sites/landingpage/
pintool/docs/81205/Pin/html/, Feb. 2017. [Last access: 30th May, 2017].

[148] Internet Engineering Task Force (IETF). RFC 6455. https://tools.ietf.

org/html/rfc6455, Dec. 2011. [Last access: 17th June, 2016].

[149] ISO/IEC/IEEE. Systems and software engineering – Vocabulary.
ISO/IEC/IEEE 24765:2010(E), pages 1–418, Dec 2010.

[150] itdesign. Cloud PPM Software for Project Portfolios that Work. https://

meisterplan.com/, 2017. [Last access: 10th Sep., 2017].

[151] J2ObjC. What J2ObjC is. https://developers.google.com/j2objc/, 2017.
[Last access: 07th Aug., 2017].

[152] K. Jacoby and H. Layton. Automation of Program Debugging. In Proceedings
of the 1961 16th ACM National Meeting, ACM ’61, pages 123.201–123.204, New
York, NY, USA, 1961. ACM.

[153] D. Jeffrey and R. Gupta. Test Case Prioritization Using Relevant Slices. In
Computer Software and Applications Conference, 2006. COMPSAC ’06. 30th
Annual International, volume 1, pages 411–420, Sept 2006.

[154] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for javascript. In
Proceedings of the 16th International Symposium on Static Analysis, SAS ’09,
pages 238–255, Berlin, Heidelberg, 2009. Springer-Verlag.

[155] S. H. Jensen, M. Madsen, and A. Møller. Modeling the html dom and browser
api in static analysis of javascript web applications. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ESEC/FSE ’11, pages 59–69, New York, NY, USA,
2011. ACM.

[156] C. Jones. Software defect-removal efficiency. Computer, 29(4):94–95, Apr 1996.

[157] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of Test Information to
Assist Fault Localization. In Proceedings of the 24th International Conference
on Software Engineering, ICSE ’02, pages 467–477, New York, NY, USA, 2002.
ACM.

[158] S. Joshi and A. Orso. SCARPE: A Technique and Tool for Selective Capture
and Replay of Program Executions. In 2007 IEEE International Conference on
Software Maintenance, pages 234–243, Oct 2007.

[159] JSFiddle. Create a new fiddle. http://jsfiddle.net/, 2016. [Last access: 23th
May, 2016].

[160] JUnit. Overview. http://junit.org/, Feb. 2016. [Last access: 04th Mar.,
2016].

[161] A. Khalilian, M. A. Azgomi, and Y. Fazlalizadeh. An improved method for
test case prioritization by incorporating historical test case data. Science of
Computer Programming, 78(1):93 – 116, 2012.

[162] S. Khurshid, D. Marinov, G. Rothermel, T. Xie, W. Motycka, M. B. Dwyer,
S. Elbaum, J. Hatcliff, H. Do, and A. Kinneer. Software-artifact Infrastructure
Repository. http://sir.unl.edu/. [Last access: 03rd Jan., 2016].

[163] J.-M. Kim and A. Porter. A History-based Test Prioritization Technique for
Regression Testing in Resource Constrained Environments. In Proceedings of

http://www.pintool.org/
http://www.pintool.org/
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://meisterplan.com/
https://meisterplan.com/
https://developers.google.com/j2objc/
http://jsfiddle.net/
http://junit.org/
http://sir.unl.edu/

BIBLIOGRAPHY 221

the 24th International Conference on Software Engineering, ICSE ’02, pages
119–129, New York, NY, USA, 2002. ACM.

[164] J.-M. Kim, A. Porter, and G. Rothermel. An Empirical Study of Regression Test
Application Frequency. In Proceedings of the 22Nd International Conference on
Software Engineering, ICSE ’00, pages 126–135, New York, NY, USA, 2000.
ACM.

[165] Y. W. Kim. Efficient Use of Code Coverage in Large-scale Software Development.
In Proceedings of the 2003 Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON ’03, pages 145–155. IBM Press, 2003.

[166] H. Klaeren. Skriptum Softwaretechnik (Entwurf), 2011. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.230.

5157&rep=rep1&type=pdf.

[167] D. E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fun-
damental Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 1997.

[168] D. E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1998.

[169] Kuefler, Erik and Broyer, Thomas. GwtMockito: Better GWT unit testing.
https://github.com/google/gwtmockito, May 2017. [Last access: 18th June,
2017].

[170] A. Kumar and R. Goel. Event Driven Test Case Selection for Regression Test-
ing Web Applications. In Advances in Engineering, Science and Management
(ICAESM), 2012 International Conference on, pages 121–127, March 2012.

[171] J. R. Larus. Efficient Program Tracing. Computer, 26(5):52–61, May 1993.

[172] J. R. Larus. Whole Program Paths. In Proceedings of the ACM SIGPLAN 1999
Conference on Programming Language Design and Implementation, PLDI ’99,
pages 259–269, New York, NY, USA, 1999. ACM.

[173] J. Laski and W. Szermer. Identification of Program Modifications and its Appli-
cations in Software Maintenance. In Software Maintenance, 1992. Proceerdings.,
Conference on, pages 282–290, Nov 1992.

[174] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An extensive
study of static regression test selection in modern software evolution. In Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, pages 583–594, New York, NY, USA, 2016.
ACM.

[175] J. Lenz and N. Fitzgerald. Source Map Revision 3 Proposal. https:

//docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_

2gc6fAH0KY0k/edit?pref=2&pli=1, Feb. 2011. [Last access: 23th May, 2016].

[176] D. Leon and A. Podgurski. A Comparison of Coverage-Based and Distribution-
Based Techniques for Filtering and Prioritizing Test Cases. In Proceedings of the
14th International Symposium on Software Reliability Engineering, ISSRE ’03,
pages 442–453, Washington, DC, USA, 2003. IEEE Computer Society.

[177] H. K. N. Leung and L. White. Insights into Regression Testing. In Proceedings
of the Conference on Software Maintenance 1989, pages 60–69, October 1989.

[178] H. K. N. Leung and L. White. A Cost Model to Compare Regression Test
Strategies. In Proceedings of the Conference on Software Maintenance 1991,
pages 201–208, 1991.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.230.5157&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.230.5157&rep=rep1&type=pdf
https://github.com/google/gwtmockito
https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit?pref=2&pli=1
https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit?pref=2&pli=1
https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit?pref=2&pli=1

222 BIBLIOGRAPHY

[179] N. Li, X. Meng, J. Offutt, and L. Deng. Is Bytecode Instrumentation as Good
as Source Code Instrumentation: An Empirical Study with Industrial Tools
(Experience Report). In Software Reliability Engineering (ISSRE), 2013 IEEE
24th International Symposium on, pages 380–389, Nov 2013.

[180] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for regression test
case prioritization. IEEE Transactions on Software Engineering, 33(4):225–237,
2007.

[181] R. Lublinerman. Inside the compiler. https://docs.google.com/

presentation/d/1n0BSQGCBkxfHLzDVFCMyWjqTYuraUr09uc7n5n6JuLU/edit?

pli=1#slide=id.p18, Jan. 2015. [Last access: 27th Apr., 2015].

[182] J. I. Maletic and M. L. Collard. Supporting Source Code Difference Analysis.
In Proceedings of the 20th IEEE International Conference on Software Mainte-
nance, ICSM ’04, pages 210–219, Washington, DC, USA, 2004. IEEE Computer
Society.

[183] P. Mayer and A. Schroeder. Cross-Language Code Analysis and Refactoring. In
Proceedings of the 2012 IEEE 12th International Working Conference on Source
Code Analysis and Manipulation, SCAM ’12, pages 94–103, Washington, DC,
USA, 2012. IEEE Computer Society.

[184] T. J. McCabe. A Complexity Measure. IEEE Trans. Softw. Eng., 2(4):308–320,
July 1976.

[185] A. M. Memon and M. L. Soffa. Regression Testing of GUIs. In Proceedings of
the 9th European Software Engineering Conference Held Jointly with 11th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-11, pages 118–127, New York, NY, USA, 2003. ACM.

[186] A. Mesbah and A. van Deursen. Invariant-based Automatic Testing of AJAX
User Interfaces. In Proceedings of the 31st International Conference on Soft-
ware Engineering, ICSE ’09, pages 210–220, Washington, DC, USA, 2009. IEEE
Computer Society.

[187] A. Mesbah, E. Bozdag, and A. v. Deursen. Crawling AJAX by Inferring User
Interface State Changes. In Proceedings of the 2008 Eighth International Con-
ference on Web Engineering, ICWE ’08, pages 122–134, Washington, DC, USA,
2008. IEEE Computer Society.

[188] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-Based Web Ap-
plications Through Dynamic Analysis of User Interface State Changes. ACM
Trans. Web, 6(1):3:1–3:30, Mar. 2012.

[189] J. Mickens, J. Elson, and J. Howell. Mugshot: Deterministic Capture and Replay
for Javascript Applications. In Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation, NSDI’10, pages 11–11, Berkeley,
CA, USA, 2010. USENIX Association.

[190] J. C. Miller and C. J. Maloney. Systematic Mistake Analysis of Digital Computer
Programs. Commun. ACM, 6(2):58–63, Feb. 1963.

[191] S. Mirarab and L. Tahvildari. A Prioritization Approach for Software Test Cases
Based on Bayesian Networks. In Proceedings of the 10th International Conference
on Fundamental Approaches to Software Engineering, FASE’07, pages 276–290,
Berlin, Heidelberg, 2007. Springer-Verlag.

[192] S. Mirarab and L. Tahvildari. An Empirical Study on Bayesian Network-based
Approach for Test Case Prioritization. In Software Testing, Verification, and
Validation, 2008 1st International Conference on, pages 278–287, April 2008.

[193] S. Mirshokraie and A. Mesbah. JSART: Javascript Assertion-based Regression

https://docs.google.com/presentation/d/1n0BSQGCBkxfHLzDVFCMyWjqTYuraUr09uc7n5n6JuLU/edit?pli=1#slide=id.p18
https://docs.google.com/presentation/d/1n0BSQGCBkxfHLzDVFCMyWjqTYuraUr09uc7n5n6JuLU/edit?pli=1#slide=id.p18
https://docs.google.com/presentation/d/1n0BSQGCBkxfHLzDVFCMyWjqTYuraUr09uc7n5n6JuLU/edit?pli=1#slide=id.p18

BIBLIOGRAPHY 223

Testing. In Proceedings of the 12th International Conference on Web Engineer-
ing, ICWE’12, pages 238–252, Berlin, Heidelberg, 2012. Springer-Verlag.

[194] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. JSEFT: Automated Javascript
Unit Test Generation. In 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), pages 1–10, April 2015.

[195] Mountainminds. EclEmma - Java Code Coverage for Eclipse. http://eclemma.
org/, Sep. 2012. [Last access: 03rd Mar., 2016].

[196] Mountainminds. EclEmma - Launching in Coverage Mode.html. http://www.

eclemma.org/userdoc/launching.html, Sep. 2012. [Last access: 20th June,
2016].

[197] Mountainminds. JaCoCo - Coverage Counters. http://eclemma.org/jacoco/

trunk/doc/counters.html, Apr. 2016. [Last access: 05th May, 2016].

[198] Mozilla. Firebug. https://getfirebug.com/, 2016. [Last access: 23th May,
2016].

[199] Mozilla. Source Map. https://github.com/mozilla/source-map, 2016. [Last
access: 23th May, 2016].

[200] MSDN. Introduction to Instrumentation and Tracing. https://msdn.

microsoft.com/en-us/library/aa983649%28VS.71%29.aspx, 2016. [Last ac-
cess: 24th Apr., 2016].

[201] S. S. Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann
Publishers, 1997.

[202] Neomades SAS. 5. Developing an application with NeoMAD - NeoMAD 3.9 doc-
umentation. http://docs.neomades.com/en/3.9/user-guide/developing.

html, 2015. [Last access: 21th Apr., 2016].

[203] Neomades SAS. NeoMAD, cross platform mobile development. http://

neomades.com/en/, 2016. [Last access: 21th Apr., 2016].

[204] H. A. Nguyen, T. T. Nguyen, H. V. Nguyen, and T. N. Nguyen. iDiff: Interaction-
based Program Differencing Tool. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’11, pages
572–575, Washington, DC, USA, 2011. IEEE Computer Society.

[205] NUnit. NUnit - Home. http://www.nunit.org/, 2015. [Last access: 30th Apr.,
2017].

[206] F. S. Ocariza, G. Li, K. Pattabiraman, and A. Mesbah. Automatic Fault Local-
ization for Client-side JavaScript. Software Testing, Verification and Reliability,
26(1):69–88, Jan. 2016.

[207] Opal. Opal - Ruby to JavaScript Compiler. http://opalrb.com/, 2017. [Last
access: 07th Aug., 2017].

[208] J. Öqvist, G. Hedin, and B. Magnusson. Extraction-Based Regression Test Se-
lection. In Proceedings of the 13th International Conference on Principles and
Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools, PPPJ ’16, pages 5:1–5:10, New York, NY, USA, 2016. ACM.

[209] Oracle. JavaServer Faces Technology. http://www.oracle.com/technetwork/

java/javaee/javaserverfaces-139869.html, 2014. [Last access: 22th May,
2016].

[210] Oracle. JCov. https://wiki.openjdk.java.net/display/CodeTools/jcov,
Jan. 2016. [Last access: 03rd Mar., 2016].

[211] Oracle. JCov FAQ. https://wiki.openjdk.java.net/display/CodeTools/

JCov+FAQ, Jan. 2016. [Last access: 03rd Mar., 2016].

http://eclemma.org/
http://eclemma.org/
http://www.eclemma.org/userdoc/launching.html
http://www.eclemma.org/userdoc/launching.html
http://eclemma.org/jacoco/trunk/doc/counters.html
http://eclemma.org/jacoco/trunk/doc/counters.html
https://getfirebug.com/
https://github.com/mozilla/source-map
https://msdn.microsoft.com/en-us/library/aa983649%28VS.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa983649%28VS.71%29.aspx
http://docs.neomades.com/en/3.9/user-guide/developing.html
http://docs.neomades.com/en/3.9/user-guide/developing.html
http://neomades.com/en/
http://neomades.com/en/
http://www.nunit.org/
http://opalrb.com/
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
https://wiki.openjdk.java.net/display/CodeTools/jcov
https://wiki.openjdk.java.net/display/CodeTools/JCov+FAQ
https://wiki.openjdk.java.net/display/CodeTools/JCov+FAQ

224 BIBLIOGRAPHY

[212] Oracle. JavaServer Pages Technology. http://www.oracle.com/technetwork/
java/javaee/jsp/index.html, 2016. [Last access: 22th Dec., 2016].

[213] A. Orso and G. Rothermel. Software Testing: A Research Travelogue (2000–
2014). In Proceedings of the on Future of Software Engineering, FOSE 2014,
pages 117–132, New York, NY, USA, 2014. ACM.

[214] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging Field Data for
Impact Analysis and Regression Testing. In Proceedings of the 9th European
Software Engineering Conference Held Jointly with 11th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, ESEC/FSE-11,
pages 128–137, New York, NY, USA, 2003. ACM.

[215] A. Orso, N. Shi, and M. J. Harrold. Scaling Regression Testing to Large Software
Systems. In Proceedings of the 12th ACM SIGSOFT Twelfth International Sym-
posium on Foundations of Software Engineering, SIGSOFT ’04/FSE-12, pages
241–251, New York, NY, USA, 2004. ACM.

[216] C. Panigrahi and R. Mall. An approach to prioritize the regression test cases of
object-oriented programs. CSI Transactions on ICT, 1(2):159–173, 2013.

[217] C. Panigrahi and R. Mall. A heuristic-based regression test case prioritization
approach for object-oriented programs. Innovations in Systems and Software
Engineering, 10(3):155–163, 2014.

[218] Pivotal. Spring Framework. http://projects.spring.io/

spring-framework/, 2016. [Last access: 22th Dec., 2016].

[219] T. Polychniatis, J. Hage, S. Jansen, E. Bouwers, and J. Visser. Detecting Cross-
Language Dependencies Generically. In Proceedings of the 2013 17th European
Conference on Software Maintenance and Reengineering, CSMR ’13, pages 349–
352, Washington, DC, USA, 2013. IEEE Computer Society.

[220] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine. Dex: A
Semantic-Graph Differencing Tool for Studying Changes in Large Code Bases.
In Proceedings of the 20th IEEE International Conference on Software Mainte-
nance, ICSM ’04, pages 188–197, Washington, DC, USA, 2004. IEEE Computer
Society.

[221] Ranorex. Test Automation for GUI Testing. https://www.ranorex.com/, 2017.
[Last access: 07th Aug., 2017].

[222] J. Reghunadh and N. Jain. Selecting the optimal programming lan-
guage. http://www.ibm.com/developerworks/library/wa-optimal/

wa-optimal-pdf.pdf, Sep. 2011. [Last access: 31th Mar., 2016].

[223] X. Ren, F. Shah, F. Tip, B. G. Ryder, O. Chesley, and J. Dolby. Chianti: A
Prototype Change Impact Analysis Tool for Java. Technical report, 2003.

[224] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: A Tool for
Change Impact Analysis of Java Programs. In Proceedings of the 19th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’04, pages 432–448, New York, NY, USA,
2004. ACM.

[225] F. Ricca and P. Tonella. Analysis and Testing of Web Applications. In Proceed-
ings of the 23rd International Conference on Software Engineering, ICSE ’01,
pages 25–34, Washington, DC, USA, 2001. IEEE Computer Society.

[226] D. Roest, A. Mesbah, and A. v. Deursen. Regression Testing Ajax Applications:
Coping with Dynamism. In Proceedings of the 2010 Third International Confer-
ence on Software Testing, Verification and Validation, ICST ’10, pages 127–136,
Washington, DC, USA, 2010. IEEE Computer Society.

http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/
https://www.ranorex.com/
http://www.ibm.com/developerworks/library/wa-optimal/wa-optimal-pdf.pdf
http://www.ibm.com/developerworks/library/wa-optimal/wa-optimal-pdf.pdf

BIBLIOGRAPHY 225

[227] G. Rothermel. Efficient, Effective Regression Testing Using Safe Test Selection
Techniques. PhD thesis, Clemson, SC, USA, 1996. AAI9703440.

[228] G. Rothermel and M. J. Harrold. A Safe, Efficient Algorithm for Regression Test
Selection. In Software Maintenance ,1993. CSM-93, Proceedings., Conference on,
pages 358–367, Sep 1993.

[229] G. Rothermel and M. J. Harrold. A Framework for Evaluating Regression Test
Selection Techniques. In Proceedings of the 16th International Conference on
Software Engineering, ICSE ’94, pages 201–210, Los Alamitos, CA, USA, 1994.
IEEE Computer Society Press.

[230] G. Rothermel and M. J. Harrold. Selecting Regression Tests for Object-Oriented
Software. In Proceedings 1994 International Conference on Software Mainte-
nance, pages 14–25, Sep 1994.

[231] G. Rothermel and M. J. Harrold. Selecting Tests and Identifying Test Coverage
Requirements for Modified Software. In Proceedings of the 1994 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA ’94, pages
169–184, New York, NY, USA, 1994. ACM.

[232] G. Rothermel and M. J. Harrold. Analyzing Regression Test Selection Tech-
niques. IEEE Transactions on Software Engineering, 22(8):529–551, Aug. 1996.

[233] G. Rothermel and M. J. Harrold. A Safe, Efficient Regression Test Selection
Technique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210, Apr. 1997.

[234] G. Rothermel and M. J. Harrold. Empirical Studies of a Safe Regression Test
Selection Technique. IEEE Trans. Softw. Eng., 24(6):401–419, June 1998.

[235] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test Case Prioritization:
An Empirical Study. In Proceedings of the IEEE International Conference on
Software Maintenance, ICSM ’99, pages 179–188, Washington, DC, USA, 1999.
IEEE Computer Society.

[236] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression Test Selection for C++
Software. Software Testing, Verification and Reliability, 10(2):77–109, 2000.

[237] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Prioritizing Test Cases For
Regression Testing. Software Engineering, IEEE Transactions on, 27(10):929–
948, Oct 2001.

[238] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and B. Davia. The
Impact of Test Suite Granularity on the Cost-effectiveness of Regression Testing.
In Proceedings of the 24th International Conference on Software Engineering,
ICSE ’02, pages 130–140, New York, NY, USA, 2002. ACM.

[239] N. Rutar, C. B. Almazan, and J. S. Foster. A Comparison of Bug Finding
Tools for Java. In Software Reliability Engineering, 2004. ISSRE 2004. 15th
International Symposium on, pages 245–256, Nov 2004.

[240] M. Ruth and S. Tu. A Safe Regression Test Selection Technique for Web Ser-
vices. In Proceedings of the Second International Conference on Internet and
Web Applications and Services, ICIW ’07, pages 47–52, Washington, DC, USA,
2007. IEEE Computer Society.

[241] B. Ryder. Constructing the Call Graph of a Program. IEEE Transactions on
Software Engineering, 5:216–226, 1979.

[242] B. G. Ryder and F. Tip. Change Impact Analysis for Object-oriented Programs.
In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, PASTE ’01, pages 46–53, New
York, NY, USA, 2001. ACM.

226 BIBLIOGRAPHY

[243] Sahi. Compare Sahi with Others. http://sahi.co.in/

compare-sahi-with-others/, 2014. [Last access: 10th May, 2014].

[244] Sahi. Test Automation Tool For Browser Based Web Applications - Sahi. http:
//sahi.co.in/, 2014. [Last access: 19th Mar., 2014].

[245] S. Sampath, R. C. Bryce, G. Viswanath, V. Kandimalla, and A. G. Koru. Pri-
oritizing User-Session-Based Test Cases for Web Applications Testing. In Pro-
ceedings of the 2008 International Conference on Software Testing, Verification,
and Validation, ICST ’08, pages 141–150, Washington, DC, USA, 2008. IEEE
Computer Society.

[246] S. Sampath, R. Bryce, and A. M. Memon. A Uniform Representation of Hybrid
Criteria for Regression Testing. IEEE Transactions on Software Engineering, 39
(10):1326–1344, Oct 2013.

[247] S. R. Schach. Practical Software Engineering. The Aksen Associates series in
electrical and computer engineering. Taylor & Francis, 1992.

[248] S. Schumm. Praxistaugliche Unterstützung beim selektiven Regressionstest.
Diplomarbeit, Universität Stuttgart, Fakultät Informatik, Elektrotechnik und
Informationstechnik, Germany, Oktober 2009. URL http://www2.informatik.

uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2923&engl=0.

[249] Sebastian Bergmann. PHPUnit The PHP Testing Framework. https://

phpunit.de/, 2017. [Last access: 30th Apr., 2017].

[250] Selendriod. Selendroid - Selenium for Android. http://selendroid.io/, 2015.
[Last access: 05th May, 2016].

[251] SeleniumHQ. Selenium-IDE. http://docs.seleniumhq.org/docs/02_

selenium_ide.jsp, May 2014. [Last access: 31th May, 2014].

[252] SeleniumHQ. Selenium - Web Browser Automation. http://docs.seleniumhq.
org/, 2014. [Last access: 19th Mar., 2014].

[253] SeleniumHQ. Selenium WebDriver. http://www.seleniumhq.org/docs/03_

webdriver.jsp#htmlunit-driver, Oct. 2016. [Last access: 06th Nov., 2016].

[254] Semantic Designs. Java Test Coverage Tool. http://www.semanticdesigns.

com/Products/TestCoverage/JavaTestCoverage.html?Home=TestCoverage,
2015. [Last access: 03rd Mar., 2016].

[255] Sencha. GXT - Java Framework for Building Web Apps Using Google Web
Toolkit. http://www.sencha.com/products/gxt/, 2016. [Last access: 23th
May, 2016].

[256] P. Sestoft. Programming Language Concepts. Undergraduate Topics in Computer
Science. Springer International Publishing, 2nd edition, 2017.

[257] S. S. Shende and A. D. Malony. The Tau Parallel Performance System. The
International Journal of High Performance Computing Applications, 20(2):287–
311, 2006.

[258] SmartBear Software. TestComplete. http://smartbear.com/product/

testcomplete/overview/, 2015. [Last access: 19th Dec., 2015].

[259] H. M. Sneed. Software-Testen, Stand der Technik. Informatik Spektrum, 11(6):
303–311, 1988.

[260] E. Soechting, K. Dobolyi, and W. Weimer. Syntactic Regression Testing for
Tree-Structured Output. In 2009 11th IEEE International Symposium on Web
Systems Evolution, pages 39–48, Sept 2009.

[261] SoftwareVerify. C++ code coverage. http://www.softwareverify.com/

cpp-coverage.php, Mar. 2016. [Last access: 03rd Mar., 2016].

http://sahi.co.in/compare-sahi-with-others/
http://sahi.co.in/compare-sahi-with-others/
http://sahi.co.in/
http://sahi.co.in/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2923&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2923&engl=0
https://phpunit.de/
https://phpunit.de/
http://selendroid.io/
http://docs.seleniumhq.org/docs/02_selenium_ide.jsp
http://docs.seleniumhq.org/docs/02_selenium_ide.jsp
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://www.seleniumhq.org/docs/03_webdriver.jsp#htmlunit-driver
http://www.seleniumhq.org/docs/03_webdriver.jsp#htmlunit-driver
http://www.semanticdesigns.com/Products/TestCoverage/JavaTestCoverage.html?Home=TestCoverage
http://www.semanticdesigns.com/Products/TestCoverage/JavaTestCoverage.html?Home=TestCoverage
http://www.sencha.com/products/gxt/
http://smartbear.com/product/testcomplete/overview/
http://smartbear.com/product/testcomplete/overview/
http://www.softwareverify.com/cpp-coverage.php
http://www.softwareverify.com/cpp-coverage.php

BIBLIOGRAPHY 227

[262] M. Soltys. An Introduction to the Analysis of Algorithms., volume 2nd ed. World
Scientific Publishing Company, 2012.

[263] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Automated Replay and
Failure Detection for Web Applications. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’05, pages
253–262, New York, NY, USA, 2005. ACM.

[264] A. Srivastava and J. Thiagarajan. Effectively Prioritizing Tests in Development
Environment. In Proceedings of the 2002 ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA ’02, pages 97–106, New York,
NY, USA, 2002. ACM.

[265] Steve Hannah. Websockets library for Codename One. https://github.com/

shannah/cn1-websockets, 2015. [Last access: 05th May, 2016].

[266] M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip. Finding Failure-inducing Changes
in Java Programs Using Change Classification. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
SIGSOFT ’06/FSE-14, pages 57–68, New York, NY, USA, 2006. ACM.

[267] D. Strein, H. Kratz, and W. Lowe. Cross-Language Program Analysis and Refac-
toring. In Proceedings of the Sixth IEEE International Workshop on Source Code
Analysis and Manipulation, SCAM ’06, pages 207–216, Washington, DC, USA,
2006. IEEE Computer Society.

[268] I. Sun Microsystems. Java Look And Feel Design Guidelines. http://www.

oracle.com/technetwork/java/hig-142147.html?printOnly=1, 2001. [Last
access: 20th Dec., 2017].

[269] P. G. Taboada. GWT Reference List. http://gwtreferencelist.appspot.

com/, June 2014. [Last access: 14th July, 2014].

[270] S. Tallam and N. Gupta. A Concept Analysis Inspired Greedy Algorithm for
Test Suite Minimization. SIGSOFT Softw. Eng. Notes, 31(1):35–42, Sep. 2005.

[271] N. Talle. Unit testing framework for Javascript - Unit JS. http://unitjs.com/,
2014. [Last access: 30th Apr., 2017].

[272] A. Tarhini, Z. Ismail, and N. Mansour. Regression Testing Web Applications.
Advanced Computer Theory and Engineering, International Conference on, 0:
902–906, 2008.

[273] TestNG. Welcome. http://testng.org/, Dec. 2015. [Last access: 03rd Mar.,
2016].

[274] TestNG. Documentation - TestNG Test-Groups. http://testng.org/doc/

documentation-main.html#test-groups, 2016. [Last access: 11th June, 2016].

[275] The Apache Software Foundation. Apache JMeter. http://jmeter.apache.

org/, 2016. [Last access: 27th Jan., 2016].

[276] M. M. Tikir and J. K. Hollingsworth. Efficient Instrumentation for Code Cov-
erage Testing. In Proceedings of the 2002 ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA ’02, pages 86–96, New York,
NY, USA, 2002. ACM.

[277] F. Tip. A Survey of Program Slicing Techniques. Technical report, Ams-
terdam, The Netherlands, The Netherlands, 1994. Also available as http:

//www.franktip.org/pubs/jpl1995.pdf.

[278] UCLA Compilers Group. JTB - The Java Tree Builder. http://compilers.

cs.ucla.edu/jtb/, 2016. [Last access: 24th June, 2016].

https://github.com/shannah/cn1-websockets
https://github.com/shannah/cn1-websockets
http://www.oracle.com/technetwork/java/hig-142147.html?printOnly=1
http://www.oracle.com/technetwork/java/hig-142147.html?printOnly=1
http://gwtreferencelist.appspot.com/
http://gwtreferencelist.appspot.com/
http://unitjs.com/
http://testng.org/
http://testng.org/doc/documentation-main.html#test-groups
http://testng.org/doc/documentation-main.html#test-groups
http://jmeter.apache.org/
http://jmeter.apache.org/
http://www.franktip.org/pubs/jpl1995.pdf
http://www.franktip.org/pubs/jpl1995.pdf
http://compilers.cs.ucla.edu/jtb/
http://compilers.cs.ucla.edu/jtb/

228 BIBLIOGRAPHY

[279] Vaadin. Vaadin User Interface Components for Business Apps. https:

//vaadin.com/, 2016. [Last access: 23th May, 2016].

[280] F. I. Vokolos and P. G. Frankl. Pythia: A Regression Test Selection Tool Based
on Textual Differencing, pages 3–21. Springer US, Boston, MA, 1997.

[281] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos. Time-Aware
Test Suite Prioritization. In Proceedings of the 2006 International Symposium
on Software Testing and Analysis, ISSTA ’06, pages 1–12, New York, NY, USA,
2006. ACM.

[282] Watir. Watir: Web Application Testing in Ruby. http://watir.com/, 2014.
[Last access: 19th Mar., 2014].

[283] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of Test Set
Minimization on Fault Detection Effectiveness. In Proceedings of the 17th Inter-
national Conference on Software Engineering, ICSE ’95, pages 41–50, New York,
NY, USA, 1995. ACM.

[284] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A Study of Effec-
tive Regression Testing in Practice. In Software Reliability Engineering, 1997.
Proceedings., The Eighth International Symposium on, pages 264–274, Nov 1997.

[285] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A Survey on Software
Fault Localization. IEEE Trans. Softw. Eng., 42(8):707–740, Aug. 2016.

[286] Xamarin Inc. Get started with Xamarin. https://www.xamarin.com/, 2016.
[Last access: 05th May, 2016].

[287] Z. Xing and E. Stroulia. UMLDiff: An Algorithm for Object-oriented Design
Differencing. In Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’05, pages 54–65, New York, NY, USA,
2005. ACM.

[288] L. Xu, B. Xu, Z. Chen, J. Jiang, and H. Chen. Regression Testing for Web
Applications Based on Slicing. In Proceedings of the 27th Annual International
Conference on Computer Software and Applications, COMPSAC ’03, pages 652–
656, Washington, DC, USA, 2003. IEEE Computer Society.

[289] S. Yoo and M. Harman. Pareto Efficient Multi-objective Test Case Selection.
In Proceedings of the 2007 International Symposium on Software Testing and
Analysis, ISSTA ’07, pages 140–150, New York, NY, USA, 2007. ACM.

[290] S. Yoo and M. Harman. Regression Testing Minimization, Selection and Priori-
tization: A Survey. Softw. Test. Verif. Reliab., 22(2):67–120, Mar. 2012.

[291] S. Yoo, M. Harman, and D. Clark. Fault Localization Prioritization: Comparing
Information-Theoretic and Coverage-Based Approaches. ACM Trans. Softw.
Eng. Methodol., 22(3):19:1–19:29, July 2013.

[292] Y. Yu, J. A. Jones, and M. J. Harrold. An Empirical Study of the Effects of Test-
Suite Reduction on Fault Localization. In Proceedings of the 30th international
conference on Software engineering, ICSE ’08, pages 201–210, New York, NY,
USA, 2008. ACM.

[293] L. Zhang, M. Kim, and S. Khurshid. Localizing Failure-Inducing Program Edits
Based on Spectrum Information. In Proceedings of the 2011 27th IEEE Interna-
tional Conference on Software Maintenance, ICSM ’11, pages 23–32, Washing-
ton, DC, USA, 2011. IEEE Computer Society.

[294] L. Zhang, M. Kim, and S. Khurshid. FaultTracer: A Change Impact and Re-
gression Fault Analysis Tool for Evolving Java Programs. In Proceedings of the

https://vaadin.com/
https://vaadin.com/
http://watir.com/
https://www.xamarin.com/

BIBLIOGRAPHY 229

ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE ’12, pages 40:1–40:4, New York, NY, USA, 2012. ACM.

[295] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei. Bridging the Gap
Between the Total and Additional Test-case Prioritization Strategies. In Pro-
ceedings of the 2013 International Conference on Software Engineering, ICSE
’13, pages 192–201, Piscataway, NJ, USA, 2013. IEEE Press.

[296] X. Zhao, Z. Wang, X. Fan, and Z. Wang. A Clustering-Bayesian Network Based
Approach for Test Case Prioritization. In Computer Software and Applications
Conference (COMPSAC), 2015 IEEE 39th Annual, volume 3, pages 542–547,
July 2015.

	1 Introduction
	1.1 Motivation
	1.2 Summary of Contributions
	1.2.1 Test Effort Reduction Problem
	1.2.2 Fault Localization Problem
	1.2.3 Coverage Identification Problem

	1.3 Outline

	I Background, Definitions, and Terms
	2 Basics of Regression Testing
	2.1 Regression Testing: Intent and Test Categories
	2.2 Testsuite Minimization, Test Prioritization, and Test Selection
	2.3 Code Instrumentation
	2.4 Control Flow Graph
	2.5 Abstract Syntax Tree
	2.6 Fault Localization vs. Change Impact Analysis
	2.7 Test Case Creation

	3 Basics of Transcompilation
	3.1 Transcompilers
	3.2 Basics on Transcompilers Used to Investigate our Contributions

	II Generic Approach for Standard and Transcompiled Cross-Platform Applications
	4 Graph Walk-based Test Selection
	4.1 Introduction
	4.2 Related Work
	4.3 Regression Test Selection for Transcompiled Cross-Platform Applications
	4.3.1 Background
	4.3.2 Calculating Changes Made in the Source Code of Transcompiled Cross-Platform Applications and Selecting Tests
	4.3.3 Localizing Changes in the Source Code

	4.4 Basic Instrumentation Approach
	4.4.1 Challenges when Instrumenting Source Code
	4.4.2 Purpose of Code Instrumentation and Expected Information
	4.4.3 Our Code Instrumentation Structure
	4.4.4 Processing Data Generated by Instrumentation Code
	4.4.5 Syntactic and Semantic Requirements on Instrumenting Source Code

	4.5 Compiler-Independent Instrumentation
	4.6 Compiler-Dependent Instrumentation
	4.7 Prototype Tool Implementation: Compiler-De-pendent Approach
	4.8 Evaluation: Compiler-Dependent Approach
	4.8.1 Software under Evaluation
	4.8.2 Experimental Setup
	4.8.3 Threats to Validity
	4.8.4 Results

	4.9 Discussion
	4.10 Conclusion and Future Work

	5 Efficiency of Code Analysis and Fault Localization
	5.1 Introduction
	5.2 Related Work
	5.3 Motivation and Challenges
	5.4 Approach
	5.4.1 Analysis Levels at Various Precision
	5.4.2 Dynamically Customizable Analysis Level Based on a Heuristics
	5.4.3 Trace Collection Costs and Analysis Costs
	5.4.4 Recognizing More Code Changes with Lookaheads

	5.5 Tool Implementation
	5.6 Evaluation: Compiler-Independent Approach
	5.6.1 Software under Evaluation
	5.6.2 Experimental Setup
	5.6.3 Threats to Validity
	5.6.4 Results
	5.6.5 Discussion

	5.7 Conclusion and Future Work

	6 Prioritizing Regression Tests based on the Execution Frequency of Modified Code
	6.1 Introduction
	6.2 Related Work and Weaknesses of Existing Approaches
	6.3 Motivation
	6.4 Approach
	6.4.1 Considering Execution Frequency of Modified Code
	Step 1 – Regression Test Selection
	Step 2 – Prioritization

	6.4.2 Global Frequency-based Prioritization Technique (GFP)
	6.4.3 Local Frequency-based Prioritization Technique (LFP)
	6.4.4 Change Frequency-based Prioritization Technique (CFP)
	6.4.5 Discussing Frequency-based Prioritization Techniques
	6.4.6 Dynamic Feedback for Frequency-based Prioritization

	6.5 Evaluation
	6.5.1 Software under Evaluation
	6.5.2 Variables and Measures
	Independent Variables
	Dependent Variables

	6.5.3 Experimental Setup
	6.5.4 Threats to Validity
	External Threats to Validity
	Internal Threats to Validity
	Threats to construct validity

	6.5.5 Results
	RQ1: Comparing Performance of our Technique with existing Approaches
	RQ2: Dynamically Adapted Execution Order vs. Static Execution Order
	RQ3: Prioritization as Supplement to RTS Techniques

	6.6 Discussion
	6.7 Conclusion and Future Work

	7 Code Coverage for Any Kind of Test in Transcompiled Cross-Platform Applications
	7.1 Introduction
	7.2 Overview and Related Work
	7.3 Motivation and Challenges
	7.4 Approach
	7.4.1 Code Coverage of Transcompiled Applications
	Calculating Code Coverage and Creating Reports (Step 3)

	7.4.2 Discussing the Instrumentation Approach in Terms of Code Coverage
	Instrumenting Code Explicitly
	General Applicability

	7.5 Tool Implementation
	7.6 Evaluation
	7.6.1 Software under Evaluation
	7.6.2 Experimental Setup
	7.6.3 Threats to Validity
	External Threats to Validity
	Internal Threats to Validity

	7.6.4 Results
	RQ1: Ability of our Approach to Reveal Deficiencies in a Test Suite
	RQ2: Completeness and Correctness of the Code Coverage of (Trans-compiled) Applications
	RQ3: Runtime and Efficiency of our Coverage Technique

	7.7 Discussion
	7.8 Conclusion and Future Work

	III Overview: Solutions and Contributions for Challenging Problems
	8 Conclusions
	8.1 Summary And Results
	8.2 Future Work

	Appendix
	A Terminology
	A.1 General Terms
	A.2 Testing
	A.3 Graphs

	B Excerpt of a Source Map Created by GWT
	C Tries

	Bibliography

