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Abstract

Proton magnetic resonance spectroscopic imaging (‘H MRSI) is a powerful tech-
nique for mapping the spatial distribution of metabolites in the human body, essen-
tially, allowing researchers and clinicians to perform “virtual biopsy” in a non-invasive
manner. These metabolite maps can provide sensitive markers of disease and injury,
or can be used to provide insight into the neurochemical processes of the brain. 'H
MRSI, therefore, has great potential for clinical diagnostics, as well as biomedical and
neuroscience research.

Perhaps the greatest hindrance to the application of MRSI in research and clinics is
the time-consuming nature of such experiments. Even though acquiring reliable MRSI
data with high spatial resolution and more tissue coverage is desirable for answering
many neuroscientific or clinical questions, this comes at the price of even more prolonged
scan times.

Compared to lower field strengths, MRSI at ultra-high field strengths has the ad-
vantage of higher signal-to-noise-ratio (SNR) as well as increased spectral resolution.
These advantages enable the quantification of more metabolites with greater accuracy
in the brain. Furthermore, some of the additional SNR can be traded off for shorter
scan times through acceleration techniques. However, to be able to benefit from these
advantages at ultra-high fields, there are many technical challenges that should be
overcome.

The focus of this thesis is, therefore, to develop acquisition sequences, image recon-
struction methods, and acceleration techniques to overcome these challenges and enable
high resolution whole brain metabolic imaging in the human brain by magnetic reso-
nance spectroscopic imaging at 9.47T. In doing so, we hope to bring metabolic imaging

through 'H MRSI one step closer to clinical practice.
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1 Synopsis

1.1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive medical imaging modality that enables
the acquisition of high quality images with excellent soft-tissue contrast. The underlying
principle of MRI lies in the interaction of matter with electromagnetic radiation. The proton
nucleus ('H) is the most commonly used nucleus in MRI due to its high sensitivity and
natural abundance (in humans and animals). For imaging, the total signal from the protons
in water is used to form the image. However, nuclei of the same element in different molecules
experience different chemical environments. This, in turn, results in slightly different resonant
frequencies, albeit small in amplitude. MR spectroscopy is a sub-branch of MR imaging that
attempts to measure these smaller resonances. Although MR spectroscopy with other nuclei
(such as carbon and phosphorous) is possible, proton spectroscopy dominates the field. The
scope of this thesis is limited to proton (*H) spectroscopy.

The advantage of spectroscopy! is that it allows us to detect several different metabolites
and their concentrations ¢n vivo while keeping the tissue intact. However, since the metabolite
resonances are much smaller (in fact, orders of magnitude smaller) than the dominating
water resonance peak, detecting these metabolites reliably and accurately is challenging.
Fortunately, recent advances in hardware and MR technology have considerably improved
the sensitivity of spectroscopy. Better radio frequency (RF) coils and higher field strengths,
particularly the introduction of ultra high field strength (UHF) MRI scanners, give MR
spectroscopy a hopeful future. Ultra high field strengths (7T and higher) offer much higher
signal-to-noise ratio (SNR). In fact, the SNR increases super-linearly with the field strength
[1]. Additionally, the higher spectral resolution as a result of the higher field strength, allows
us to better separate the resonance peaks.

So far the majority of MR spectroscopy studies have often been conducted as single voxel

spectroscopy (SVS). This means that a single spectrum is usually acquired from a specific

Tn the remainder of this thesis, the term “spectroscopy” refers to “'H MR spectroscopy” and will be used
interchangeably.
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voxel in the region of interest (ROI). This is largely due to the fact that the required scan time
for measuring a single voxel is rather short and high SNR data can be acquired from rather
large voxels in a reasonable scan time. Since historically, the inherent low SNR of spectroscopy
required multiple averages of the signal, this meant that multi-voxel spectroscopy imaging was
deemed to be too time-consuming. Nevertheless, magnetic resonance spectroscopic imaging
(MRSI) or chemical shift imaging (CSI) is slowly drawing attention in the MR community.

MRSI acquires a spectrum from each voxel in the imaging region, in this way, giving us
both spatial and spectral information from the tissue at hand. It goes without saying that
the advantage of MRSI over SVS is that it covers a much larger area and allows us to see full
images rather than a single spectrum. However, the required scan time for MRSI is much
more than SVS, since spectra from multiple voxels are being acquired. It can be argued that
the reason for a renewed interest in MRSI is largely due to the introduction of UHF MRI
scanners. The higher SNR provided by UHF MRI scanners results in better spectral quality
and more reliable quantification of a larger number of metabolites. Some of this additional
SNR can be traded off for more spatial resolution (smaller voxels) and shorter scan times
(acceleration).

The goal of this thesis is to advance spectroscopic imaging methodology at ultra-high
fields towards high resolution and whole-brain metabolite mapping in the hopes of eventual
common-place use in clinics. The acquisition and data processing techniques used for over-
coming the technical challenges at UHF to enable the acquisition of high resolution MRSI
data at UHF, specifically 9.4T, is described further in section 1.2.

Perhaps the biggest drawback of MRSI is the long scan duration that is required. This
is often the reason that makes this modality less attractive for clinical applications. The
reason that MRSI is more difficult to accelerate than other MR imaging applications is,
once again, attributed to the lower available SNR. 3D sequences can offer more SNR than
2D sequences, however, the application of 3D sequences is more challenging at UHF due
to static (By) magnetic field and radio frequency field (B;) inhomogeneities. Furthermore,
due to By inhomogeneities, dynamic slice-wise shim updating is an attractive method for

improving the shim quality. However, this technique only works for 2D multi-slice sequences.
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The focus of this thesis is on 2D sequences for this reason, even though multi-band [2] and 3D
sequences such as EPSI [3] could potentially offer more acceleration?. Therefore, the scope
of this thesis is limited to in-plane acceleration.

Aside from the low SNR, another challenge that arises in accelerating MRSI data from
the human brain, is the lipid signal originating from the subcutaneous lipid region that is
orders of magnitudes larger than the metabolites of interest within the brain. This causes
a problem for parallel imaging methods such as SENSE [4] and GRAPPA [5] that result in
structured aliasing artifacts, as the aliased lipids can be hard to resolve and any small unre-
solved trace of the aliasing will completely overshadow the metabolites of interest. Naturally,
lipid suppression or outer volume suppression pulses can be employed to reduce the lipid sig-
nal strength, but this would again drastically lengthen the scan duration. Outer volume
suppression schemes are lengthy in nature due to the many pulses required, in contrast lipid
suppression usually require only one or two inversion pulses (single and double inversion re-
covery, respectively). However, at UHF, the specific absorption rate (SAR) requirements for
adiabatic inversion pulses typically used for lipid suppression is much more demanding and
result in long repetition times (TR) due to safety concerns. We investigated an alternative
low-SAR inversion pulse using a single inversion recovery scheme for lipid suppression in [6].
However, we concluded that there is a trade off between the achieved lipid suppression factor
and the length of TR, which in the end proved not to be beneficial for the overall achieved
acceleration factor. Another major drawback of this type of global lipid suppression is that
they will also suppress the lipids in pathologies (e.g. tumors, necrosis) which would otherwise
be valuable information in the spectral content.

With this in mind, this thesis focused on in-plane acceleration of multi-slice 2D phase-
encoded MRSI data from the brain with neither lipid suppression nor outer volume suppres-
sion. Conventional parallel imaging methods such as SENSE and GRAPPA were improved

upon and tailored for this application with a focus on controlling the artifacts. This is de-

2It should also be noted that sequences such as EPSI require large gradient strengths and slew rates. At
UHF, these requirements are even greater and exceed what the hardware of most scanners can provide. This
is due to the fact that the required spectral bandwidth is much larger at higher field strengths, and, therefore,
there is very little time between the sampling points for the gradients to change. The limitations of EPSI
are further discussed in the appended publications.
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scribed in further detail in section 1.3. We also investigated the compressed sensing approach
for acceleration utilizing the concept of sparsity and random undersampling, which is also
described further in section 1.3. Our findings showed that after optimizing, an acceleration
factor of 4 was easily feasible for all of these acceleration/reconstruction methods, despite
the presence of the unsuppressed lipid signals. However, some of the investigated methods
could achieve an even higher in-plane acceleration factor.

Although the absolute quantification of metabolite concentrations is outside the scope
of this thesis, three aspects relating to quantification are addressed here. As mentioned
before, the small resonances of metabolites are usually overshadowed by the large water
resonance peak. Therefore, water suppression is often employed to enable the detection of
the metabolites. Water suppression schemes typically excite a narrow bandwidth around the
water peak and use spoiler gradients to de-phase the signal, thereby, reducing the effective
water signal. For better suppression, additional excitation pulses and spoiler gradients can
be used [7]. However, there has been evidence that water suppression pulses may result in
chemical exchange, and therefore alter the detected concentrations of the metabolites that
undergo chemical exchange [8, 9, 10]. Although not a common method, non-water suppressed
spectroscopy is a feasible alternative. The problem with non-water suppressed spectroscopy,
besides the large water peak, is the gradient modulation side-bands artifacts that become
more prominent. Gradient modulation side bands occur as spurious peaks in the spectra
due to mechanical vibrations of the gradient coils [11]. In water suppressed MRSI, these
artifacts are less problematic. However, in non-water suppressed MRSI these resonances
can cause severe problems and hinder the accurate quantification of some of the metabolites
of interest. Nevertheless, non-water suppressed MRSI is still possible with methods such
as metabolite-cycling [12, 13]. This method is discussed in more detail in section 1.4.1.
Eventually, this methodology allows us to study the effects of chemical exchange resulting
from water suppression.

Next, we looked at the macromolecules and how they affected the quantification of the
metabolite signals. Due to the ultra short echo times of the sequences used in our studies,

the macromolecular signals are large, and contribute greatly to the acquired spectra. The
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findings of this investigation can be found in conference proceedings and are described in
more detail in section 1.4.

Lastly, we present a method for very high acceleration of a water reference spectroscopic
image. One of the common methods for spectroscopy quantification is to use an internal water
reference. However, this means that the MRSI scan needs to be repeated once more without
the water suppression pulses. This doubles the scan time required for an MRSI study. To
reduce the required scan time, a low resolution water reference is typically acquired (usually
a resolution of 2x2 lower than the MRSI data). However, in this thesis we present a method
for even higher acceleration of the water reference which retains the original spatial resolution
and can be used for eddy current correction and internal water referencing (section 1.4).

A disadvantage of MRSI over SVS is that achieving a homogeneous magnetic field over
a large region is more difficult. Inhomogeneities in the static (By) magnetic field result in
multiple problems. Image distortion and signal dropouts are some problems that occur, not
only for MRSI but also for MRI [14, 15]. For spectroscopy, poor By homogeneity also leads to
line-broadening of the spectral peaks which make quantification less reliable. In addition, any
spectrally selective RF pulses, such as water suppression pulses, are affected by the shift in
the central water frequency which can cause undesirable effects. At this point, it is also worth
noting that although ultra high field strengths have much higher SNR, the magnetic field is
also more inhomogeneous due to larger By susceptibility effects. Improved By homogeneity
can be attained using slice-wise dynamic shim updating rather than whole-volume static
shimming [16, 17, 18]. However, this method is only applicable to 2D multi-slice sequences
where each slice can be individually shimmed. In Publication 7 we further investigated the
effects and limitations of By shimming on metabolite mapping using both a very high order
spherical harmonics By shimming system and a dedicated multi-coil setup.

At last, we reach the final goal of this thesis, that is: metabolite mapping of the whole
brain at UHF. In Publication 7, we present metabolite maps for the whole brain acquired at
9.4T. Many of the methods presented in the thesis culminated to this point and were utilized
in the final metabolite maps. In particular, dynamic By shimming was used to acquire all the

data to ensure sufficiently good By homogeneity; a modified GRAPPA (as described in 1.3.3)
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was used to acquire the accelerated MRSI data; the water reference was acquired using very
high acceleration (as described in 1.4.3) and finally the data were processed and fit using the
methods described in the first publication presented in this thesis.

We present for the first time, arguably, the best whole brain metabolite maps acquired
from healthy volunteers utilizing the advantages offered by a 9.4T field strength. We hope
that, in doing so, MRSI becomes not only feasible and practical for clinical use but also a

more attractive imaging modality for neuroscience studies in general.

1.2 High and Ultra High Resolution Metabolite Mapping at Ultra
High Field Strengths

As mentioned in the previous section, there are two main advantages of higher field strengths
for spectroscopy: higher SNR and higher spectral resolution. To illustrate the benefits of
ultra high field strengths, our first study investigated the feasibility of a free induction decay
(FID) MRSI [19, 20] for ultra high resolution single slice spectroscopic imaging at 9.4T. In this
study, a slice-selective ultra-short echo time (TE) and ultra-short repetition time (TR) 'H
FID MRSI sequence without lipid suppression and without outer volume suppression (OVS)
was used. Lipid suppression and OVS were omitted to keep the TR short (TR=220ms)
which in turn kept the scan duration short. Another advantage of the FID sequence is that
it makes it possible to use ultra-short TEs (TE=1.56ms) which means that the SNR loss due
to Ty relaxation is minimal. This makes more metabolites detectable compared to sequences
with longer TEs. Furthermore, since only a slice selection is used for localization, there is no
in-plane chemical shift displacement.

In Publication 1, two spatial resolutions were used for metabolite mapping: a voxel
size of 97 pL (3.12x3.12x10 mm?®) and 24.3 uL (1.56x1.56x10 mm?*) which corresponded to
in-plane matrix sizes of 64x64 and 128x128, respectively. A custom numerically optimized
water suppression scheme was used. It consisted of 3 pulses and the flip angles were opti-
mized to be robust against a B;T inhomogeneity range of 50% to 150%. The residual water
peak was less than 1% on the whole slice. An automatic post-processing pipeline was de-

veloped which included steps such as automatic eddy current correction, zero and first order
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phase correction, as well as residual water removal and retrospective lipid removal using L2
regularization [21]. The final spectra were fit using LCModel [22] with a basis set simulated
using the PyGAMMA library [23].

We showed that 12 metabolites (NAA, NAAG, Cho (PCh 4+ GPC), tCre (PCr + Cr), ml,
Glu, Gln, GABA, GSH, Tau, Scyllo, and Asp) could be reliably mapped with a resolution of
97 uL. The reproducibility was shown by repeating the scan on multiple subjects. Significant
gray/white matter contrast that corresponded to the underlying anatomical structure could
be observed in the metabolite maps (e.g. tCho, GSH, Glu, Gln, mI, NAAG). Similar contrasts
can be seen for the higher resolution of 24.3 yL. Although higher spatial resolution can be
discerned in these maps, the robustness of the fits was less reliable than for the 97 uL
resolution. Higher spatial resolution means that the voxels are smaller and hence have less
SNR. The reduced SNR results in less reliable fits. Figure 1 shows some of the metabolite
maps for the two resolutions. The quality of these maps is unmatched compared to what is
currently published in the literature. This is largely due to the higher field strength (9.4T)
used in this study.

This study served two purposes: 1) to outline the necessary data acquisition and post-
processing steps required for reliable metabolite mapping at UHF and 2) to illustrate the
quality of high and ultra-high resolution metabolite maps that can be obtained using a 9.4T

MRI scanner in a reproducible manner.

1.3 Acceleration

Perhaps the biggest drawback to MRSI is the long scan duration that are required. In light of
this, we investigated multiple acceleration methods for use at UHF MRI scanners. For reasons
discussed earlier, the focus was only put on in-plane acceleration methods. Undersampling
was not performed in the time domain but only in the k-space domain. This is largely due to
the fact that undersampling the time domain is typically done by moving to another point
in k-space from sample to sample (therefore undersampling simultaneously in time and one

k-space direction), however, the gradient slew rates required for this is much higher at UHF
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Figure 1: Representative ratio metabolite maps (/Creatine) acquired at high (a) and ultra-
high (b) spatial resolutions at 9.4T. The nominal voxel size is 97 uL and 24.3 uL, respectively.
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scanners®. In contrast, undersampling in k-space could be achieved relatively easily since

both k-space directions were phase encoded and any of the sample points could be dropped.

1.3.1 Compressed Sensing

MR signals are sparse by nature, this means that much of the contained information is
compressible. One can exploit this concept to only partially acquire the MR signal and
recover the full image using sparse reconstruction techniques. This is the underlying concept
behind acceleration through sparse sampling. Compressed sensing [24] is one such method
that has proven to be a promising acceleration technique in the MR imaging community.
Compressed sensing utilizes two principles to reconstruct the missing k-space points: 1)
random undersampling and 2) sparsity of information. The random undersampling in k-
space results in noise-like aliasing artifacts, as opposed to the structured aliasing artifacts in
parallel imaging methods such as sensitivity encoding (SENSE) [4] or the generalized auto-
calibrating partially parallel acquisition (GRAPPA) [5] (Figure 2). Secondly, the data is
assumed to be sparse and therefore by enforcing sparsity constraints on the data, the missing
k-space points can be reconstructed.

However, compressed sensing has not been used extensively in spectroscopic imaging
applications. Using compressed sensing for MRSI is difficult because the SNR is much lower
than for regular imaging. The SNR needs to be sufficiently high for the peaks of interest to be
resolved from the noise-like aliasing artifacts. In addition, finding a good sparsity transform
for the overlapping spectral peaks for proton spectroscopy in the frequency domain can be
difficult. For x-nuclei spectroscopy on the other hand, the spectral peaks are better separated
and hence more sparse in the frequency domain. This allows the data to be better compressed
in the frequency domain. Therefore, most applications of compressed sensing in spectroscopy
have been for x-nuclei [25, 26, 27].

We implemented compressed sensing at UHF for non-lipid-suppressed 'H MRSI data

by randomly undersampling k-space and tailoring a sparse reconstruction algorithm to the

3The gradient slew rates need to be higher because the sampling frequency of the ADC needs to be higher
at UHF to cover the larger frequency range of interest. Therefore, there is less time between the sample
points of the ADC to move to a different location in k-space.
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Fully sampled Accelerated

Figure 2: Effect of random undersampling: if the k-space is undersampled in a random
manner, the aliasing artifacts will be noise-like. The k-space masks of the fully sampled
(right) and the randomly undersampled case with an effective acceleration factor of R = 4
(left) are shown in the top row. All k-space masks include the elliptical shuttering. The
light orange color marks the k-space points that are acquired. The bottom row shows the
resulting brain images.

problem at hand. By taking advantage of the higher SNR of UHF, we could achieve better
reconstruction for high acceleration factors. In Publication 3, we showed that reconstruc-
tion could only be achieved by coil-combining the data in the image domain and applying a
sparsity minimization optimization. Performing a coil-by-coil reconstruction did not provide
enough SNR for the reconstruction to be successful. Sparsity was minimized in the image
domain using a 2D wavelet transform and was also minimized in the image and time do-
main using a 3D total variation. Data consistency was enforced in the k-space domain. The

minimization problem was thus:
min || Fuz = yly + M Wz], + ATV (2)],

Where F, is the undersampled Fourier transform, y is the measured k-space data (used for
enforcing data consistency), U is the 2D wavelet transform in the two spatial dimensions,
TV is the 3D total variation, and A;,A\ are tuning parameters that were optimized and found

to be 0.001 and 0.003, respectively. A conjugate gradient descent algorithm was used for
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the reconstruction. Further details of the reconstruction can be found in Publication 3.
Random variable density masks were used to undersample the k-space data and different
acceleration factors were investigated. The post-processing and fitting steps were the same
as described in section 1.2 and Publication 1.

Indeed, we could achieve reasonable metabolite maps using acceleration factors of R=4 or
5. As the acceleration increased, the maps became noisier. The higher noise level was due to
the lipid signals from the subcutaneous fat that could not be properly resolved and since the
undersampling resulted in noise-like aliasing, this resulted in noise in the fitted metabolite
maps. In Publication 3, we also looked at a low-rank method that enforces sparsity in the
k-space domain (SAKE [28])and obtained similar results to compressed sensing. However, the
reconstruction time for the SAKE method was an order of magnitude longer than compressed
sensing, and hence compressed sensing was deemed to be the more practical option. High
resolution metabolite maps obtained from compressed sensing with an acceleration factor of

R=5 (scan time ~ 3 minutes for a single slice) are shown in Figure 3.

1.3.2 SENSE Revisited

One of the most common approaches for acceleration in the MR community is parallel imag-
ing. Essentially, in parallel imaging, the localized receive coil sensitivity profiles are used as
an extra spatial encoding technique. Using prior knowledge about the sensitivity profiles,
the k-space is only partially sampled during the acquisition, and the missing k-space points
are later filled in. One such technique for filling the missing points in k-space is SENSE
[4]. When k-space is undersampled in a Cartesian manner, the aliasing artifacts appear as
repeated versions of the image overlaying the actual signal in a shifted manner (Figure 4).
The reconstruction problem in this case reduces down to resolving the aliased versions of
the image from the actual underlying signal. With SENSE, explicit knowledge of the coil
sensitivity profiles are used to solve the system of linear equations to unalias the image.
Conventional algorithms used for solving SENSE equations [4] are usually able to re-
solve the aliasing artifacts to an acceptable level for moderate in-plane acceleration factors.

Depending on the RF coil geometry, noise amplification can become problematic as the accel-
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Figure 3: High resolution (in-plane matrix size of 64x64) metabolite maps of four major
metabolites obtained using compressed sensing with an acceleration factor of R=5 (scan
time of 3 minutes) from the brains of three healthy volunteers.
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Fully sampled Accelerated

Figure 4: Effect of Cartesian undersampling: if the k-space is undersampled in a cartesian
manner, the aliasing artifacts will be repeated versions of the image overlaying the actual
signal. The k-space masks of the fully sampled (right) and the regularly undersampled case
with an acceleration factor of R = 4 (left) are shown in the top row. All k-space masks include
elliptical shuttering. The light orange color marks the k-space points that are acquired. The
bottom row shows the resulting brain images.

eration factor increases. Apart from the lower available SNR in MRSI data, what makes the
application of SENSE to non-lipid-suppressed 'H MRSI challenging, is the presence of strong
unsuppressed lipid signals originating from the subcutaneous lipid region near the skull. Any
small traces of unresolved aliasing artifact (resulting from the ill-conditioning of the SENSE
problem) which may be tolerable for other imaging applications, becomes a severe problem
for non-lipid-suppressed MRSI quantification. The reason for this, is that the aliased signal
stemming from the lipid region is orders of magnitude larger than the signal from inside
the brain. This means that an improved and robust version of the SENSE reconstruction
technique is necessary for this application.

Recently, Kirchner et al [29], presented an improved version of SENSE which includes
solving a regularized optimization problem on an over-discretized spatial grid. Unaliasing the
accelerated data in this manner accounts for sub-voxel coil sensitivity variations which helps
with resolving the aliasing artifacts more efficiently. Furthermore, by directly controlling

the shape of the spatial response function (SRF), the near- and far-reaching lipid bleeding
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Over-discretization SENSE reconstruction

Spectral processing  Target Function
and fitting

Figure 5: Reconstruction process shown in a clock-wise order: (1) original MRSI grid, (2)
over-discretized MRSI grid achieved by zero-padding in k-space, (3) high resolution coil sen-
sitivity maps used for SENSE reconstruction, (4) high resolution By map used for frequency
shift correction on a sub-voxel level, (e) target function used to combine voxels to go back
to the original MRSI resolution, (f) resulting metabolite maps after spectral processing and
fitting.

artifacts are minimized. In an intermediate step, a high resolution By field map can be used
to correct for intra-voxel frequency shifts. This will also decorrelate the noise covariance of
the neighboring voxels, which in turn will result in a boost in SNR [30]. The process of this
reconstruction technique is summarized in the schematic shown in Figure 5.

Given the advantages of this robust SENSE reconstruction technique, in this thesis we
decided to investigate its benefits for accelerating non-lipid-suppressed and high resolution
'H MRSI data. The performance of the algorithm (in terms of residual aliasing artifacts,
the resulting SNR, and the accuracy of the metabolite maps) was compared to a conven-
tional SENSE algorithm for different acceleration factors, the details of which can be found
in Publication 4. As expected, compared to conventional SENSE, the over-discretized al-
gorithm proved to be more efficient in resolving the lipid aliasing artifacts. In fact, up to

an acceleration factor of four (R = 2x2) the aliasing artifacts were almost completely re-
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Figure 6: Accelerated (R=2x2) metabolite mapping using the over-discretized SENSE recon-
struction at 9.4T: Ratio metabolite maps of three major metabolites (/Creatine) acquired
from two healthy volunteers are shown.

solved. Additionally, an SNR boost of ~20% was observed for all acceleration factors when
the over-discretized SENSE method is used. This enabled the reproducible acquisition of high
resolution metabolite maps in 3.75 minutes (Figure 6). For any acceleration factor higher
than two in any phase encoding direction, even the improved SENSE algorithm was not able
to resolve all the lipid aliasing artifacts. This limits the highest in-plane acceleration factor
achievable through this method. However, the SNR boosting technique used in this recon-
struction method is a powerful tool that can be combined with other acceleration techniques

to correct for intra-voxel frequency shifts and increase the SNR.

1.3.3 GRAPPA Revisited

GRAPPA [5] is another parallel imaging method that is commonly used for acceleration.
Points in k-space are dropped in a regular Cartesian manner during acquisition and then
filled in during the reconstruction process. In this way, SENSE and GRAPPA are solutions
to the same acceleration problem. However, instead of using the explicit coil sensitivity
profiles as the prior knowledge for reconstructing the missing points, GRAPPA directly fills
in the missing k-space points by interpolating over the measured points with an optimized
kernel. The relationship between the missing point and its neighboring measured point is

approximately linear and can be predicted accordingly.
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In order to estimate the linear relationship between the missing point and neighboring
points, a calibration step needs to be performed. This calibration can be performed externally
on a separately acquired image such as an anatomical image that is usually acquired in every
study. The k-space data can be used to regress the relationship between the missing points
and neighboring points. Alternatively, a region in k-space can be fully sampled and this fully
sampled region can be used to calibrate for the kernel and then predict the missing points in
the rest of the k-space?.

In Publication 5, we explored GRAPPA to see if the reconstruction could be improved
by reducing the aliasing artifacts. As mentioned previously, one of the most problematic
aspects with accelerating non-lipid-suppressed 'H MRSI is that subcutaneous fat signal is
orders of magnitude larger than the metabolites of interest within the brain. Resolving the
aliased lipids requires a robust method for predicting the missing k-space points. With this
in mind, we investigated a machine learning approach using neural networks. The neural
networks were trained on an anatomical image in the calibration phase. The networks were
then used to predict the missing k-space points. We showed in the publication that training
neural networks proved to be more robust than using the conventional linear regression
method for GRAPPA.

Furthermore, to achieve even higher acceleration factors, we recognized the fact that the
more important k-space information is in the center of k-space and that noise and higher
spatial frequency information is encoded in outer k-space®. We defined different regions in
k-space: 1) a center region that was fully sampled, 2) a mid-region that was undersampled
at a factor of R=4, and 3) finally an outer region that was heavily undersampled at a factor
of R=16. Different neural networks were trained for each region, the details of which can
be found in Publication 5. The process of reconstructing the missing points is shown in
Figure 7.

Our proposed method (called MultiNet PyGrappa) consisting of a combination of variable

4This is normally referred to as “self-calibration” because the calibration is performed on the same data
that needs to be reconstructed.

®Note that this principle is often used in compressed sensing. Even though random undersampling is
performed, the center of k-space is more densely sampled than outer k-space.
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Figure 7: Step-by-step process of the proposed reconstruction technique is shown in this
schematic. The missing kspace points are shown in black. Four different neural networks are
trained: First, a 2-voxel cross-neighbour neural network fills in some of the missing points
in the outer region of kspace. Then, a 2-voxel adjacent-neighbour is used to predict more of
the missing points in the outer region so that now almost all of the kspace is undersampled
by a factor of 2x2. Next, a 1-voxel cross-neighbor neural network is trained and used to fill
in the central missing point in each small grid, and finally, a 1-voxel adjacent-neighbour fills
in the rest of the missing points to form the reconstructed data.

density sampling and training multiple neural networks for reconstructing the missing k-
space points, resulted in very high in-plane acceleration factors. In the article, we showed
that acceleration factors of up to R=9 could be achieved with the resulting metabolite maps
having good agreement with the fully sampled metabolite maps. Metabolite maps using this
reconstruction are shown in Figure 8 for acceleration factors of R=7 and R=9. Therefore,
the total scan duration for a k-space matrix size of 64x64 with R=7 was approximately 2.5
minutes. This is the fastest reported acquisition time (with TR = 300ms) achieved through

in-plane acceleration.

1.4 On the Concerns of Quantification

As mentioned before, absolute quantification of the fitted metabolite maps is outside the
scope of this thesis since it needs a comprehensive correction of B, 1/~ coil loading effects, and
T, /T4 relaxation times [31]. Nevertheless, some aspects of quantification were studied in this
work. Firstly, we investigated chemical exchange effects due to water suppression pulses by

performing non-water-suppressed MRSI. Next, we looked at the effect of the macromolecular
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Figure 8: Accelerated (R=7 and R=9) metabolite mapping using the multiNet PyGRAPPA
reconstruction at 9.4T: Metabolite maps of two major metabolites acquired from three
healthy volunteers are shown. The fully sampled metabolite maps are also shown for com-
parison
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baseline on the fitting of the spectra; i.e. how the macromolecule signals affect the accuracy
and quantification of the metabolites. This is important because the FID MRSI sequence that
was used throughout the study, used very short TE and TRs and hence the macromolecular
baseline significantly affects the acquired spectra. Finally, we investigated the acceleration
of water reference acquisition, which can be used for eddy current correction, as well as for

quantification using internal water referencing [32].

1.4.1 Non-water Suppressed MRSI

Most MRS studies use water suppression pulses to reduce the water signal so that the water
peak does not overshadow the smaller metabolite peaks. However, there is some interest in
the community to investigate whether or not the water suppression pulses affect the spectra.
Additionally, the simultaneous acquisition of water and metabolite signals is advantageous in
that the water peak can be used for internal referencing in quantification as well as frequency
shift and eddy current correction. Despite this, non-water suppressed spectroscopy is not
commonly done because it introduces more challenges than water suppressed MRS. Firstly,
the large water peak makes it difficult to sample the entire signal range unless a high resolution
analog-to-digital converter (ADC) is available. Fortunately, with the advances in hardware,
this problem is becoming less and less of a concern. Secondly, the large water peak is
usually broad and overlaps with the metabolite peaks making it difficult to disentangle the
metabolites from the water signal. Since the Ty" relaxation time is typically lower at higher
field strengths, the water peak is broader at UHF, which makes this even more problematic.
Thirdly, the unsuppressed water peak results in large gradient modulation side-bands in the
spectra [11]. The gradient modulation side-bands can lie on top of the metabolite signals and
this can confuse the fitting algorithm. This being said, there have been methods developed to
remove the gradient modulation side-band artifacts both prospectively and retrospectively.
In this thesis, we focused on prospective methods for removing gradient modulation side-
bands. One such method is the metabolite cycling method [10, 13]. It involves alternately
acquiring an inverted and non-inverted spectra. The inverted spectra are effectively inverted

over the spectral range of the metabolites of interest. The two spectra can then be subtracted
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Figure 9: Schematic representation of metabolite cycling: (a) the inverted and non-inverted
spectra are subtracted to retain only the metabolite signal. (b) the inverted and non-inverted
spectra are added to retain only the water peak.

to retain only the metabolite signals (Figure 9) and in doing so the water peak as well as
the gradient modulation side-bands are removed. By adding the two acquired spectra, the
metabolite signals are canceled out, leaving the water peak which can be used as a reference.

Although metabolite cycling has been utilized in a number of studies for SVS, it has not
been used much for spectroscopic imaging. Since inverted and non-inverted spectra need to
be acquired, this makes the scan duration twice as long. Furthermore, at UHF, the adiabatic
inversion pulse used in this method causes problems due to the strict SAR restrictions and
thus sequences with very short TR are impossible to implement without exceeding the RF
safety constraints. In Publication 2, we designed a low SAR adiabatic inversion pulse for
metabolite cycling at 9.4T and 3T. This allowed us to study the effects of water suppression
and if or how it differs from non-water suppressed MRSI.

In this study, we implemented a metabolite cycling scheme with FID MRSI for the first
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time. A comparison of the water suppressed and non-water suppressed metabolite maps
showed that there were significant differences in the concentration of creatine. There has
been evidence in previous SVS studies that suggest that the measured concentrations of
creatine may be affected by the water suppression pulses due to chemical exchange effects
8, 9]. Our findings also showed similar differences at 3T and 9.4T. The concentration ratio
of creatine/NAA was approximately 0.1 higher for non-water suppressed MRSI at both field

strengths.

1.4.2 Macromolecules

Due to the complex nature of macromolecules, very little is known about their properties
and their regional differences. Therefore, simulating basis sets for the macromolecules is
difficult, which makes their incorporation into the fitting routine for quantification purposes
very challenging. Previous studies [33, 34, 35] have measured the macromolecular baseline
by nulling the metabolite signals and thereafter used the measured baseline as part of the
basis set in the fitting algorithm. This is sensible for single voxel spectroscopy, however,
for spectroscopic imaging where there may be regional differences in the macromolecular
content (e.g. differences between the macromolecular signals for white and gray matter),
a single macromolecular baseline may not be the best approach. In [36] a single measured
macromolecule baseline was used for fitting spectroscopic imaging data and differences be-
tween white and gray matter for the concentration of the macromolecular signal were found,
thus, indicating that concentrations of macromolecules may differ for different regions. In
addition to regional differences, there might be relaxation time differences between different
macromolecular components in different tissue types. For sequences with ultra short TRs
and TEs such as the 'H FID MRSI sequence, this makes the use of a single macromolecular
baseline even less justified. If different components of the macromolecular baseline relax at
different rates, the shape of the macromolecule baseline will change depending on the TE and
TR values. Taking all these factors into consideration, it seems like the best approach for the
accurate quantification of our spectroscopic data is to have a model of different macromolec-

ular components rather than a single measured baseline. Using this model, we can then also
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Figure 10: Different macromolecule components used to model the complex structure of the
acquired macromolecule baseline (shown in black).

map different macromolecule components across the brain.

To this end, we first acquired a macromolecular baseline using the double inversion recov-
ery (DIR) technique with wide-band, uniform rate, and smooth truncation (WURST) pulses,
with a similar method as described in [36]. MRSI data with a moderate spatial resolution
(in-plane matrix size of 32x32) was acquired since the high SAR of the WURST pulses re-
quired the repetition times to be very long (TR = 4550ms). It should be noted, that due
to the high SAR at UHF, acquiring macromolecular baselines for the full MRSI matrix is
infeasible as the scan duration would be much too long. The details of the pulse and sequence
of the DIR are described in [37] (Publication 7 of section 2.2.2). We then parameterized
the macromolecular baseline by fitting Lorentzian peaks to the spectra based on [38]. To
prevent overfitting, we then combined highly correlated peaks to simplify the model. The
resulting components of the macromolecular baseline were then incorporated into the basis
set used for the fitting procedure and can be found in Figure 10.

By fitting the modeled macromolecular baseline to the high resolution MRSI data, we
were able to map the spatial variations of the different components. These maps (shown in

Figure 11) revealed regional differences in the concentration of different macromolecule com-
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Figure 11: Maps of three individual macromolecule components obtained from the brain of
a representative healthy subject by fitting the acquired spectroscopic imaging data with our
modeled macromolecule basis set.

ponents. Furthermore, they showed that the gray/white matter contrast can vary between
different macromolecule components.

In the next step, the parameterized model of the macromolecular baseline was fit to MRSI
data acquired at different flip angles. In addition, due to B;™ inhomogeneity, the voxels of
each MRSI dataset experienced a range of flip angles. This allowed us to estimate the T,
relaxation effects by fitting a curve between the flip angle and the concentrations. MRSI
data with two different TRs were acquired for this purpose (300 ms and 500 ms) and the
spectra were fit with the macromolecular baseline components included in the basis set. The
measured and fit data for the relaxation effects are shown in Figure 12. The results show
that different macromolecule components have different relaxation times, and furthermore
there are relaxation time differences between different tissue types.

Finally, we compared the metabolite concentration levels resulting from fitting the MRSI
data with three different basis-sets: without macromolecules, with a single measured macro-
molecule baseline, and with our modeled macromolecule baseline (Figure 13). The results
showed that if the macromolecular baseline is not incorporated, the concentrations of many
metabolites are estimated higher than when the macromolecules are incorporated into the

baseline. Using a single molecular baseline can improve the accuracy of the quantification.
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Figure 12: (a) Signal intensity vs. flip angle: The signal intensity of three macromolecule
components measured at different flip angles are shown for white (WM) and gray matter
(GM) separately. The fitted curves along with the confidence intervals are also shown on
each plot in blue. (b) The estimated Tivalues for the three macromolecule components

resulting from the fitted curves.
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Figure 13: Metabolite maps resulting from fitting with no macromolecule component (No
MM), with the single MM baseline (Measured MM) and with our proposed MM model
(Modelled MM), shown for 6 metabolites for two different subjects.

However, since there are regional and relaxation time differences between different macro-
molecular components in different tissue types, only using a modeled macromolecular baseline
can account for all these variations. It was shown that this results in different contrasts and
concentration levels for the different TRs due to the T relaxation effects [39] (Publication
10 of section 2.2.3).

In summary, macromolecules can affect the accuracy of the quantification of metabo-
lites. Furthermore, relaxation effects and regional differences of individual macromolecular
components also significantly affect the quantification, especially for ultra-short TR and TE
spectroscopic imaging applications. In future, this can be used to better quantify the macro-

molecules and metabolites in MR spectroscopy.

1.4.3 Water Reference Acquisition

Unsuppressed water spectra are often acquired for MRSI studies to be used as an internal

reference for quantification, as well as for eddy current and phase correction purposes. In
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order to shorten the total scan time, this water reference image is typically acquired at a
lower resolution than the actual MRSI data. However, it has previously been shown [40] that
the acquisition of a full resolution water reference can be reliably accelerated using SENSE
[4]. Higher accuracy can be achieved this way compared to the low resolution acquisition.
However, only moderate acceleration factors were achieved in that study and this was only
done for low resolution MRSI applications. In this study, we investigated accelerating the
acquisition of a high resolution water reference even further using compressed sensing.

Compressed sensing is a good candidate for accelerating the water reference acquisition,
since the amplitude of the signal is within the same order of magnitude across the brain.
Therefore, in this regard, the data for the water reference is much sparser. Furthermore, we
are mostly interested in recovering the water peak which is very sparse in nature. Also, for
the application of eddy current and phase correction, only the phase of the FID signal is
important and the phase in the image and time domain is also very sparse.

In Publication 6, we investigated an acceleration factor of R=14 and R=28 and used
the same reconstruction method as described in section 1.3.1 (also see Publication 3).
Comparison of the water reference with an acceleration factor of R=14 and a reduced res-
olution water reference (2x2 times lower resolution than the MRSI data) showed that the
Bland-Altman plots indicate very similar results. The water reference maps (integrated over
the spectra) are shown in Figure 14. Therefore, we could achieve an acceleration factor of
R=14 that performed similarly to the reduced resolution water reference (effectively R=4),
even though it is 3.5 times faster. This greatly reduces the overhead scan time.

Furthermore, for the purpose of eddy current and zero™ order phase correction, an ac-
celeration factor of R=28 was achievable, since the phase of the signals is much sparser than
the magnitudes. Performing eddy current correction with the accelerated water reference
(R=28) was comparable to using the reduced resolution water reference (Figure 15). The
differences in the metabolites could not visibly be seen, and the Bland-Altman plots showed
minimal differences.

Therefore, a water reference image could be acquired for a 64x64 k-space matrix in under

1 minute.
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Figure 14: Magnitude (top row) and phase (bottom row) of the water reference image ac-
quired at full resolution, four times reduced resolution, and full resolution accelerated using

compressed sensing with a factor of R=14 and R=28.
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Figure 15: Comparison of eddy current and phase correction using the reduced resolution
(R=4) versus compressed sensing (R=28) water reference images for metabolite mapping:
ratio metabolite maps (/Creatine) of five metabolites from a healthy volunteer are shown.
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1.5 Whole-Brain Metabolite Mapping

Needless to say, the extensive investigation of accelerating MRSI acquisition was not without
purpose. The culmination of our studies were to reach a point where we could eventually
performing whole brain metabolite mapping in a feasible scan time at 9.4T. Although whole
brain metabolite maps have previously been shown at 3T scanners [41, 42] using EPSI [3],
these maps are often limited in their SNR and resolution, and the data from several voxels
cannot be analyzed due to poor By homogeneity. The metabolite maps are often aggregated
over multiple volunteers and lack good spatial specificity. This is largely due to the low
SNR of MRSI at 3T. While this can be useful for group studies, this is very limiting in a
clinical setting. If good quality single subject metabolite maps can be obtained, this will
be clinically more relevant as it would allow diagnosis on single subjects/patients. In this
study, we showed that we can achieve high resolution metabolite maps that are much richer
in spatial information and more reliable than any previously shown whole brain metabolite
maps from single volunteers.

As mentioned multiple times throughout this thesis, we focused on 2D sequences so that
we could perform dynamic slice-wise By shimming to acquire good quality metabolite maps.
In Publication 7, we first investigated the effect of By shimming on the acquired metabolite
maps at 9.4T using two different shimming approaches: a very high order spherical harmonics
(up to 4™ degree) By shim system versus a 16-channel multi-coil system. The results showed
that the metabolite maps benefit greatly from advanced By shimming approaches. Dynamic
shimming performed using a 4" degree spherical harmonic shim system resulted in a similar
quality as the 16-channel multi-coil system combined with 2" degree spherical harmonic
shims.

An 18Tx/32Rx transceiver head RF coil was used to acquire the whole brain MRSI data
since it provided good B; coverage across the whole brain [43]. The water reference scan
required 45 sec per slice using compressed sensing for reconstruction (section 1.4.3) and the
MRSI scan required approximately 2.5 mins per slice using the neural network GRAPPA
reconstruction (section 1.3.3). A scan protocol of 10 slices with a slice thickness of 8 mm

(no distance factor) was used to cover the entire cerebrum. Therefore, the MRSI data was
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Figure 16: Whole-brain metabolite maps of four major metabolites (/Cre) acquired from a
healthy subject at 9.4T using a multi-slice 2D phase-encoded *H FID MRSI sequence with
ultra-short TE and TR along with dynamic By shimming are shown.

acquired in 25 mins, which is comparable to the scan duration for the EPSI sequence for whole
brain MRSI at 3T. The water reference was acquired in 7 mins. Each slice was dynamically
By shimmed. The processing and fitting of the data was the same as the process described
in section 1.2.

Finally, in Publication 7, we showed metabolite maps for the whole brain acquired at
9.47T. This is the first time that whole brain metabolite mapping has been performed at UHF.
Due to the higher SNR of UHF, the metabolite maps are of much higher quality than the
metabolite maps for 3T shown in previous studies. The publication also shows the achieved
By maps for acquiring these metabolite maps. Some of the maps are shown in Figure 16 to
demonstrate the quality of metabolite maps that could be achieved. Figure 17 shows the

sagittal and coronal view of the maps.
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Figure 17: Metabolite maps of three major metabolites (/Cre) shown from the same volunteer
as in Figure 16 on the central sagittal and coronal slices.

1.6 Summary and Outlook

In this thesis, a variety of aspects regarding human brain metabolite mapping at 9.4T using
MR spectroscopic imaging was addressed. Robust acquisition and reconstruction techniques
were employed to acquire high and ultra-high resolution metabolite maps of several metabo-
lites. The effect of water suppression on the metabolite concentrations in comparison to
non-water suppressed MRSI was also studied. Other aspects pertaining to metabolite map-
ping, namely the contribution of macromolecules, as well as the accelerated acquisition of a
high resolution water reference image were investigated. Furthermore, various acceleration
techniques were introduced and optimized to achieve high in-plane acceleration factors. Fi-
nally, by combining a robust acceleration technique with dynamic By shim updating, high
quality whole-brain metabolite maps acquired in about 25 minutes at 9.4T were presented.

Despite the remarkable advances in the field of MR spectroscopic imaging, there are still
some aspects that must be further investigated. One of the main issues remains to be the
quantification of the metabolite levels in absolute units. Indeed, one of the major limitations
of the current thesis was that the acquired MRSI data were not absolutely quantified. This
is due to the extremely challenging nature of MRSI quantification at ultra-high fields, which
requires a comprehensive correction for B;* and By~ field inhomogeneity, relaxation times,
and partial volume effects. Another important aspect that can greatly benefit the quality
of the acquired MRSI data is the use of parallel radio frequency transmission. Using multi-

ple radio frequency power amplifiers instead of one, can help overcome B; ™ inhomogeneity,
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especially at ultra-high fields.

We believe that the comprehensive study of acceleration and MRSI for metabolite map-
ping in this thesis has demonstrated the potential of UHF scanners for metabolite mapping.
The rich information that MR spectroscopy offers has great potential for applications in
neuroscience, psychology and clinics. The ability to measure metabolites in the brain could
enlighten us to the neurochemical processes of the brain. There is also diagnostic potential
in measuring and mapping metabolites to investigate causes and treatments of diseases such
as multiple sclerosis, depression and mental disorders. We hope that the investigations and
results presented in this thesis can further improve and progress the study of brain function,

and bring MRSI one step closer to its commonplace application in research and clinics.
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3 Statement of Contributions

3.1 High and ultra-high resolution metabolite mapping of the hu-
man brain using 'H FID MRSI at 9.4T

An ultra-short TE and TR 'H FID MRSI sequence was optimized for use at 9.4T. A robust
and optimized water suppression scheme was incorporated in the sequence. MRSI datasets at
high (nominal voxel size 97pL) and ultra-high (nominal voxel size 24pL) spatial resolutions
were acquired from the brains of healthy subjects at 9.4T. The reconstruction and post-
processing steps necessary for robust quantification of the data were implemented. Finally,
high quality metabolite maps of 12 metabolites at both high and ultra-high spatial resolutions

were presented and evaluated.

o S. Nassirpour - Optimized the water suppression scheme and implemented it in the
pulse sequence. Tested the sequence with phantom experiments. Enabled the acquisi-
tion of ultra-high spatial resolution MRSI matrices in the pulse sequence. Collected the
in-vivo MRSI data at 9.4T. Implemented the reconstruction scripts and post-processing
steps. Implemented the lipid removal post-processing technique. Analyzed the MRSI

data and metabolite maps. Wrote the majority of the manuscript.

o P. Chang - Optimized and modified the gradients in the pulse sequence to achieve
the shortest echo time. Collected MRSI data at 9.4T. Implemented parts of the post-

processing steps.

e A. Henning - Supervised and advised on the manuscript.

3.2 Non-water Suppressed 'H FID-MRSI at 3T and 9.4T

This study demonstrated the first implementation of the metabolite cycling technique in
the FID MRSI sequence for performing non-water suppressed 'H spectroscopic imaging with
ultra-short TE at both 3T and 9.4T. A low-SAR asymmetric adiabatic inversion pulse was

designed and optimized for use at both field strengths which resulted in reasonable TR values
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and scan times. The data quality as well as the in-vivo metabolite concentrations measured
with this method were compared to the ones obtained from a water suppressed 'H FID MRSI
sequence at both 3T and 9.4T.

e S. Nassirpour - Optimized the required inversion times and pulse duration at both
field strengths through numerical simulations. Fine-tuned the required inversion times
and necessary transmit powers through phantom and preliminary in-vivo experiments
at both 9.4T and 3T. Collected the in-vivo MRSI data both water suppressed and non-
water suppressed at 9.4T and 3T. Wrote reconstruction scripts to process the non-water
suppressed MRSI data. Quantified and analyzed the acquired water-suppressed and
non-water suppressed data from both field strengths and performed statistical analyses.

Wrote parts of the manuscript.

« P. Chang - Designed and optimized the low-SAR adiabatic pulse through Bloch simu-
lations for both 3T and 9.4T. Implemented the optimized metabolite cycling pulse into
the pulse sequence for both field strengths. Finalized scan protocols for data acquisi-
tion at both field strengths. Collected the in-vivo MRSI data both water suppressed
and non-water suppressed at 9.4T and 3T. Wrote reconstruction scripts to process the

non-water suppressed MRSI data. Wrote parts of the manuscript.
e N. Avdievich - Provided the RF coil for 9.4T.

e A. Henning - Supervised and advised on the manuscript.

3.3 Compressed Sensing for High-Resolution Non-lipid-Suppressed
'H FID MRSI of the Human Brain at 9.4T

This study is the first report of using sparse sampling for acceleration of high resolution
non-lipid-suppressed 'H MRSI data. Two different methods, namely compressed sensing and
low-rank reconstruction, are investigated for reconstructing the randomly undersampled data.
The two methods are compared based on performance techniques such as speed, accuracy of

the resulting metabolite maps, lipid contamination, and reliability of fit. The effect of matrix
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size on the achievable acceleration factor is studied. Acceleration factors of up to 4 or 5 are
successfully achieved and reproducible high resolution metabolite maps acquired with this

technique at 9.4T are presented.

e S. Nassirpour - Designed the optimized variable density undersampling masks. De-
signed test criteria for comparing the two reconstruction algorithms. Collected in-vivo
MRSI data both accelerated and fully sampled at 9.4T. Compared coil-by-coil ver-
sus coil combined compressed sensing and incorporated the SENSE coil combination
into the compressed sensing reconstruction. Implemented and optimized the low-rank
reconstruction method. Studied the effect of matrix size on the reconstruction perfor-
mance. Quantified and analyzed the accelerated MRSI data and performed statistical

analyses. Wrote parts of the manuscript.

o P. Chang - Implemented different random undersampling masks in the pulse sequence
to modify the sampling scheme. Implemented and optimized the compressed sensing
reconstruction method. Designed test criteria for comparing the two reconstruction
algorithms. Collected in-vivo MRSI data both accelerated and fully sampled at 9.4T.
Investigated and compared the performance of two different RF coils for acceleration of
the MRSI data using random undersampling. Quantified and analyzed the accelerated

MRSI data and performed statistical analyses. Wrote parts of the manuscript.
e N. Avdievich - Provided the RF coil for 9.4T.

e A. Henning - Supervised and advised on the manuscript.

3.4 Over-discretized SENSE reconstruction and By correction for
accelerated non-lipid-suppressed 'H FID MRSI of the human
brain at 9.4T

In this study, high resolution non-lipid-suppressed 'H MRSI data were accelerated using an

improved over-discretized SENSE reconstruction. The benefit of the over-discretized method

o8



compared to a conventional SENSE reconstruction was investigated for 7 different accel-
eration factors. An SNR boosting technique using over-discretized By correction was also
implemented and evaluated for each acceleration factor. The highest achievable accelera-
tion factor was found to be R=2x2. The improved SENSE reconstruction as compared to
GRAPPA for this acceleration factor. Reproducible metabolite maps acquired at 9.4T using

this technique were presented.

e S. Nassirpour - Designed the performance criteria for evaluating the accelerated data.
Implemented the conventional and over-discretized SENSE reconstruction scripts for
the 9.4T datasets. Collected in-vivo MRSI data both accelerated and fully sampled
at 9.4T. Quantified the acquired data. Implemented GRAPPA and performed the
comparison. Performed the acceleration factor comparison. Wrote the majority of the

manuscript.

« P. Chang - Designed the performance criteria for evaluating the accelerated data.
Implemented the undersampling masks in the pulse sequence. Contributed to the
implementation of the improved SENSE reconstruction and optimized the scripts for
memory and speed. Performed statistical analyses on the reconstructed data. Collected
in-vivo MRSI data both accelerated and fully sampled at 9.4T. Wrote parts of the

manuscript.
e T. Kirchner - Provided advice on the over-discretized reconstruction.

o A. Henning - Supervised and advised on the manuscript.

3.5 MultiNet PyGRAPPA: Multiple Neural Networks for Recon-

structing Variable Density GRAPPA (a 'H FID MRSI Study)
In this study, a novel acceleration/reconstruction approach suitable for accelerating the ac-
quisition of non-lipid-suppressed *H FID MRSI data is presented. The proposed method is

an improved version of the parallel imaging acceleration method known as GRAPPA. By

combining variable density undersampling together with multiple neural networks, a robust
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reconstruction of accelerated data for acceleration factors of up to 7 and 9 is presented. This
is the highest in-plane acceleration factor achieved for non-lipid-suppressed MRSI data. High
resolution metabolite maps acquired with this technique at 9.4T in about 2.5 minutes are

presented.

e S. Nassirpour - Implemented parts of the neural network reconstruction. Suggested
the variable density sampling scheme to achieve higher acceleration. Compared different
acceleration factors. Collected in-vivo MRSI data at 9.4T. Implemented conventional
GRAPPA for comparison with the proposed method. Performed all the comparisons
between different acceleration factors. Analyzed and quantified the acquired data.

Wrote parts of the manuscript.

o P. Chang - Optimized the variable density undersampling masks through simulation.
Implemented the undersampling masks in the pulse sequence. Implemented parts of the
neural network reconstruction. Analyzed and quantified the acquired data. Collected

in-vivo MRSI data at 9.4T. Wrote parts of the manuscript.

e A. Henning - Supervised and advised on the manuscript.

3.6 Accelerated Water Reference Acquisition for 'H MRSI using

Compressed Sensing

This study investigated the acceleration of high resolution water reference acquisition for 'H
MRSI studies. Compressed sensing was employed for achieving very high acceleration factors
(up to R=28). The accelerated water reference images were compared to the most common
approach of acquiring a reduced resolution water image. It was shown that for eddy current
and phase correction purposes an acceleration factor of 28 can be used. For internal water
referencing purposes, a more moderate acceleration factor of 14 is recommended. With this
technique, high resolution water reference images can be acquired from each MRSI slice in

under a minute.
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o S. Nassirpour - Studied the sparsity of the water reference signal for potential com-
pressed sensing application through simulation studies. Collected in-vivo MRSI data
and water references at 9.4T. Performed all the comparisons between different accel-
eration factors. Evaluated the performance of the proposed method compared to the
reduced resolution approach for eddy current and phase correction purposes. Wrote

parts of the manuscript.

o P. Chang - Implemented the random undersampling masks in the sequence. Collected
in-vivo MRSI data and water references at 9.4T. Optimized the compressed sensing
reconstruction for water reference acquisition. Performed the Bland-Altman analyses.

Wrote parts of the manuscript.

e A. Henning - Supervised and advised on the manuscript.

3.7 In Vivo Whole Brain Proton Spectroscopic Imaging at 9.4T:

A Focus on Dynamic Slice-wise By Shimming

Dynamic By shimming using a very high degree spherical harmonic shim system and a multi-
coil shim system were compared. Advantage of dynamic shimming over static global shim-
ming was shown in the human brain. Applications in proton spectroscopic imaging were
shown for both shim systems. Dynamic By shimming was then used to show whole brain
metabolite maps acquired at 9.4T. For the first time, we show whole brain metabolite maps

from ultra high field strengths at high spatial resolution.

e S. Nassirpour - Developed the acceleration and reconstruction schemes for MRSI
acquisition. Collected the MRSI data with the very high order shim system. Processed
and analyzed the MRSI data. Wrote the parts of the manuscript.

« P. Chang - Iimplemented all the hardware/software interface with the very high order
By shim system. Implemented the dynamic shim updating pipeline. Collected the
MRSI data with the very high order shim system. Performed the processing and

analysis for By shim comparisons. Wrote the parts of the manuscript.
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o A. Aghaeifar - Provided the multi-coil shim setup and helped collect the in vivo data

with the multi-coil.

e A. Henning - Supervised and advised on the manuscript.
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ARTICLE INFO ABSTRACT

Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution
of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain
insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths,
MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical
shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet
with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution
and loss of SNR due to T, relaxation effects) and presents the first metabolite maps acquired at 9.4 T in the
healthy human brain at both high (voxel size of 97.6 uL) and ultra-high (voxel size of 24.4 uL) spatial
resolutions in a scan time of 11 and 46 min respectively. In comparison to lower field strengths, more
anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12
metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-amino-
butyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the

Keywords:
Spectroscopic imaging
Ultra-high magnetic field
Human brain

Metabolite mapping
94T

FID MRSI

methodology behind these maps is provided.

1. Introduction

Magnetic resonance spectroscopic imaging (MRSI) is a non-inva-
sive imaging method which combines both spectroscopic and imaging
techniques to acquire spatially resolved spectra. These spectra can be
used to map the distribution of brain metabolites (termed the “neuro-
chemical profile”). The spatial resolution in MRSI studies is usually
limited by the available signal to noise ratio (SNR) and lengthy scan
times, and hence is much lower than those of other imaging applica-
tions. Ideally, by reliably mapping a large number of metabolites at a
high spatial resolution, one can achieve valuable insight into diseases
with complex and local distribution of metabolites such as multiple
sclerosis, tumors or focal ischemia (Mlynarik et al., 2008).

It has been shown previously that MRSI can benefit greatly from
ultra-high field strengths and a number of MRSI studies at ultra-high
fields on human brain have already been reported (7T and initial
results on 9.4 T) (Scheenen et al., 2008; Henning et al., 2009; Posse
et al., 2013; Boer et al., 2012; Bogner et al., 2012; Chadzynski et al.
2015). The higher chemical shift dispersion, spectral resolution and
signal to noise ratio achievable at higher field strengths was shown to
greatly enhance the information content of the spectra (Henning et al.,

2009; Bogner et al., 2012). Earlier studies at 7 T and above reported
the detection of a comprehensive neurochemical profile only by single
voxel spectroscopy (Tkac et al., 2001; Deelchand et al., 2010) and at
lower field strengths either by 2D MRS methods (Schulte et al., 2006;
Thomas et al., 2003; Fuchs et al. 2014) or spectral editing (Rothman
et al., 1984; Hetherington et al., 1985; Rothman et al., 1993; Mescher
et al., 1998; de Graaf and Rothman, 2001; Zhu et al., 2011).
Additionally, by using ultra short echo time (TE) sequences such as
Free Induction Decay (FID) MRSI (Ienning et al., 2009; Bogner et al.,
2012; Boer et al., 2012), the SNR loss due to T, relaxation effects can
be reduced. As a result, low concentrated and J-coupled metabolites
such as Glutamate (Glu) and Myo-inositol (mI) can also be reliably
detected (Henning et al., 2009; Bogner et al., 2012). Studies on 7 T
using such sequences have hence shown to enable the mapping of a
larger number of metabolites at higher spatial resolutions as compared
to lower fields or even the studies performed at higher fields but with
different sequences such as STEAM or semi-LASER localization (Ryner
et al., 1995; Scheenen et al., 2008; Chadzynski et al., 2015;).
Another factor affecting the quality of the metabolite maps is the
spatial resolution in which the MRSI study is performed. Due to
decreased size of the side lobes of the point spread function (PSF) at
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higher spatial resolutions, signal bleeding from far-reaching voxels is
reduced. Furthermore, the smaller voxel size translates into decreased
partial volume effects and better local By homogeneity (Gruber et al.,
2003; Kirchner et al., 2016). As a result, metabolite maps acquired at
higher spatial resolutions are more accurate and reveal more anato-
mical details. The typical in-plane matrix size of clinical MRSI studies
at 3 T used for metabolite mapping in the brain is usually rather low
with matrix sizes of about 16x16 or 20x20 (Hanson et al., 2000). This
roughly translates to an in-plane voxel size of 20 mmx20 mm. Recently
higher resolution maps have also been published at 7 T with matrix
sizes of 32 x 32 which roughly translates to an in-plane voxel size of
6.2 mmx6.2 mm (Henning et al., 2009) or 64x64 (~3.1 mmx3.1 mm
in-plane resolution) (Bogner et al., 2012; Boer et al., 2015). Acquiring
at higher spatial resolutions directly translates into longer scan times
which might not be practical in a clinical setting. Recently, Hangel et al.
(2016) proposed that by using an optimized short TR and TE sequence
such as FID-MRSI on a 7 T magnet, one can acquire MRSI data at an
ultra-high spatial resolution of 128x128 (~1.5 mmx1.5 mm in-plane
resolution) in a scan time of 41 min.

Considering the advantages offered by an ultra-high field magnet
and an optimized short TR and TE FID-MRSI sequence, it is therefore
proposed that high quality spectra from the human brain with high
spectral resolution and ultra-high spatial resolution can be acquired at
9.4T and can be used to map the spatial distribution of several
metabolites in a reasonable scan time. In this paper, we present the
first metabolite maps of 12 metabolites acquired at 9.4 T in the healthy
human brain using a FID-MRSI sequence and provide a comprehensive
description of the methodology and post-processing techniques behind
them. For comparison purposes we acquired the maps both at a high
spatial resolution of 64x64 (which translates into a nominal voxel size
of 97.6 uL) and an ultra-high spatial resolution of 128x28 (nominal
voxel size of 24.4 uL). The results are then compared and the
competing effects of high spatial resolution and lower SNR are
discussed.

2. Methods

All experiments were conducted on a 9.4 T whole-body scanner
(Siemens, Erlangen, Germany) with an in-house developed 16 channel
transmit (operating in circularly polarized (CP) mode) and 31 channel
receive coil (Shajan et al., 2014). In-vivo single-slice 'H FID MRSI
datasets were acquired from brains of 10 healthy volunteers (5 for the
high-resolution study and 5 for the ultra-high resolution one) using a
customized FID MRSI sequence (Henning et al., 2009; Bogner et al.,
2012). In all studies, the slice position was chosen to run through the
periventricular white matter parallel to the Corpus Callosum. All
studies in volunteers were approved by the local ethics committee
and all volunteers gave their written informed consent. The details of
the study are described in the sections below.

2.1. Data acquisition

As with any short TR MRSI sequence that uses water suppression, it
is necessary to use the shortest possible water suppression scheme that
would sufficiently suppress the water peak (residual water peak < 2%
was empirically proven to be sufficient for avoiding baseline distortions
resulting from the residual water peak and gradient modulation
sideband artefacts). Additionally, for water suppression at 9.4 T, it is
necessary to optimize the scheme such that it is insensitive to both T;
variations and B;* inhomogeneity, as the latter is more severe at higher
fields. This would ensure that the water suppression scheme would
work equally well across the entire volume of interest, and hence avoid
ghosting artifacts caused by unsuppressed water peak residuals from
the neighboring voxels.

A numerical optimization was hence performed using a non-linear
constrained optimization algorithm performed by MATLAB's fmincon
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function (The Mathworks, Natick, MA, USA) to find the optimal
number of pulses and the flip angles of the water suppression scheme.
The objective of the minimization problem was that the residual water
signal should be minimized over a range of T; values (1~3 seconds)
corresponding to those occurring in the brain at 9.4 T and a range of
B;" values (assuming up to 50% inhomogeneity). As a result of this
optimization and in the interest of keeping the water suppression
scheme as short as possible, a 3-pulse water suppression scheme was
found to be the optimal choice and was incorporated in the sequence
prior to excitation. The water suppression pulses were unmodulated
Hanning-filtered Gaussian pulses with a bandwidth of 180 Hz, dura-
tion of 5 ms and flip angles of 90°, 79.5° and 159° respectively. The
inter-pulse delay between the three water suppression pulses as well as
between the last water suppression pulse and the excitation pulse were
all 20 ms. These pulses were interleaved with spoiler gradients with a
spoiling momentum of 168 ms.mT/m which is sufficient for spoiling
the signal (Bernstein et al., 2004). The entire water suppression scheme
was 62.2 ms long. No additional fat or outer volume suppression was
applied in this experiment in the interest of keeping the scan time
clinically feasible and also avoiding high values of specific absorption
rates (SAR) at 9.4 T.

An image-based second-order B, shimming on a rectangular
shimming volume (with the same dimensions as the imaging volume)
was performed for these studies using the vendor implemented B, shim
routine. The following parameters were used for the FID-MRSI
sequence: FOV 200x200 mm?, slice thickness 10 mm, acquisition delay
(TE) 1.5 ms, nominal flip angle 28 degrees (calculated according to
Ernst formula for a T; value of about 1800 ms) that had to be scaled to
47 degrees in the protocol because the average flip angle produced by
the coil across the slice was 55% of the nominal flip angle, TR 220 ms,
spectral bandwidth 4000 Hz and 512 complex data points (acquisition
time 128 ms which causes no truncation artifacts due to the shorter T,
relaxation times at 9.4 T). To further reduce the scan-time, an elliptical
k-space shuttering scheme was used for the phase encoding. For
comparison of high versus ultra-high spatial resolution MRSI proto-
cols, two different studies were performed: one with a matrix size of
128x128 leading to a nominal voxel size of 1.56x1.56x10 mm?, and
the other with a matrix size of 64x64 leading to a nominal voxel size of
3.12x3.12x10 mm>. These scan protocols resulted in a scan time of
46 min for the 128x128 scan, and about 11 min for the 64x64 scan.

For eddy current and zero-order phase correction purposes, a water
reference scan using the same sequence without incorporating the
water suppression scheme was acquired from each subject. In order to
avoid lengthy scan times, this water reference scan had half the spatial
resolution of the original MRSI slice in each direction leading to one
fourth of the original acquisition time. This way an additional 11 min
and an additional 2.5 min scan time was added to the 128x128 and the
64x64 scan respectively. Afterwards in post-processing, the same water
signal from each voxel in the water reference scan was used to correct
the eddy current artifacts in a grid of 4 neighboring voxels in the
original scan.

After each MRSI examination, a T»-weighted 2D FLASH scout
image (TR 312ms, TE 9 ms, flip angle 25°) was recorded as an
anatomical reference with the same slice position and properties as
the MRSI study. Additionally, a contrast-minimized gradient echo
image of the same slice was acquired with a short-TE 3D FLASH
sequence (TR 5 ms, TE 0.8 ms, flip angle 15°). This image was later
used for B;™ correction (Wang et al., 2005), i.e., to compensate for the
signal intensity variations induced by receiver inhomogeneity. Since
tissue contrast cannot be completely eliminated even in the contrast-
minimized image because of variations in the relaxation times of
different tissue compartments, spatial low-pass Gaussian filtering was
used to reduce the residual contrast. For visualization purposes, By and
B; maps were also acquired from the same slice with the same B, shim
settings. For By mapping a 2D gradient echo sequence with TR of
100 ms and delta TE of 0.76 ms was used. For B; mapping, an Actual
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Flip Angle Imaging sequence (AFI) (Yarnykh, 2007) with a flip angle of
60 degrees, TR; /TR, of 20 ms/100 ms and TE of 4 ms.

2.2. Reconstruction and spectral processing

All spectra were processed using a custom script written in
MATLAB. The reconstruction steps were conducted in the following
order and included spatial Hamming filtering, eddy current and zero-
order phase correction using the low resolution water reference image
(Klose, 1990) and coil combination using the singular-value-decom-
position (SVD) method (Bydder et al., 2008). Post-processing steps
included prediction of the missing points at the beginning of the FIDs
using a backward linear prediction autoregressive algorithm (AR)
based on Burg's method (Kay, 1998) and residual water peak removal
using Hankel Lanczos (HLSVD) method (Cabanes et al., 2001) using 10
decaying sinusoids in the range of 4.4-5 ppm. Since the basis-set
chosen for the fitting procedure in the next step of the analysis was not
truncated and hence its linear phase did not match that of the acquired
spectra, the predication of the missing points was performed to remove
the linear phase introduced by the acquisition delay from all the
spectra. The removal of the residual water peak was also necessary to
avoid baseline distortions resulting from the previous steps (Henning
et al., 2009). Lastly, in order to reduce the lipid artifacts introduced by
the bleeding of the subcutaneous fat signal into the voxels of interest,
an Lo-regularized fat suppression algorithm was applied to the
reconstructed spectra (Bilgic et al., 2014). According to this non-
iterative and fast method, by dividing the image into a brain and a fat
region and requiring the lipid and metabolite spectra to be approxi-
mately orthogonal, effective lipid artifact reduction is achieved. The
masks required for this method were defined manually using
MATLAB's graphical user interface. No additional apodization or phase
correction was applied.

2.3. Fitting

The spectra were fitted using the LCMODEL software (Provencher,
1993) in the range of 1.5 to 4.2 ppm. The basis-set was simulated using
the GAMMA library (https://scion.duhs.duke.edu/vespa/gamma) and
included spectra of 18 brain metabolites (namely GPC, Tau, Cre, Glc,
Naa, Asc, Lac, GABA, NAAG, GSH, Glu, PE, mI, PCh, Ala, Gln, Scyllo
and Asp) with a linewidth of 5 Hz. Metabolite maps were then created
in MATLAB using the fitting results. In order to account for the strong
receive inhomogeneity, the metabolite maps were corrected using the
contrast-minimized gradient echo image. Alternatively, ratio maps
(normalized to the Creatine (Cr) map) were also calculated.

3. Results

The results of each step of this study are presented in the following
subsections.

3.1. B; and By homogeneity

As mentioned in the previous section, for visualization purposes
and in order to show the level of homogeneity of the fields that were
present during the acquisition of these MRSI studies, By and B; ™ field
maps were acquired at the end of each MRSI scan. Fig. 1 shows one
example of such shimmed B, map along with the B1™ map. The
location of the slice is also shown in this figure. The standard deviation
of the frequency shifts in the shimmed By map across all 10 volunteers
was 29.40 Hz. This level of B, homogeneity resulted in a voxel-wise full
line width at half maximum (FWHM) as reported by LCMODEL for
total Creatine (3.03 ppm) equal to 20.03 + 0.55 Hz (mean + standard
deviation) averaged over the entire FOV of all 5 respective volunteer
datasets for the high resolution scan (64x64) and 16.30 + 0.88 Hz for
the ultra-high resolution one (128x128). The spatial variation of the B;
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field resulted in variable flip angles across the brain with a mean flip
angle equal to 56% + 10% of the nominal flip angle across the entire
FOV of all 10 volunteers.

3.2. Water suppression

To assess the performance of the proposed water suppression
scheme, water suppression maps were produced by dividing the
amplitude of the residual water peak in each voxel after water
suppression to the original unsuppressed water peak of the same voxel.
Fig. 1 shows an example of such map. The proposed water suppression
scheme achieves an average suppression of 99.49% +0.17% of the
original peak across the entire slice and all 10 volunteer datasets.

3.3. Prediction of the missing FID points

The missing point prediction procedure was found to solve the
linear phase problem introduced by the missing points at the beginning
of the FID due to the acquisition delay in all spectra. As a representa-
tive example, Fig. 2 shows an example reconstructed spectrum after all
the processing steps mentioned in the Methods section are applied
once with and once without the linear backward prediction of the
missing point.

3.4. Retrospective fat suppression using L, regularization method

The fast Lo-regularized lipid suppression method was used with a
Beta of 0.65 (as suggested in Bilgic et al. (2014)) and resulted in
effective lipid signal artifact reduction. Fig. 3 shows example spectra
from four different regions of the brain: three voxels from a region near
the skull where the contamination is the largest and one from a more
benign central region. The entire fat suppression algorithm after
manually defining the masks of the brain and fat region, took
1.67 seconds on the whole dataset for the 64 x 64 study and
3.4 seconds for thel28 x 128 dataset. These run times are based on
a 2.3 GHz 6-core Intel CPU.

3.5. Spectra and metabolite maps

In order to show the quality and the information content of the
acquired spectra, Fig. 4 shows representative sample spectra along with
their fitting results from both the high resolution and the ultra-high
resolution scan, both picked from the same position in the brain. The
voxel position is also shown on the anatomical reference image for each
case. As can be seen from this figure by visual inspection of the sample
spectra we can distinguish up to12 metabolite peaks. The SNR of the
high resolution dataset appears to be higher than that of the ultra-high
resolution. This is also confirmed by the SNR values calculated from
the reconstructed spectra right after the HLSVD water removal as the
ratio between the absolute NAA peak maximum between 1.8 and 2.2
ppm and the root mean square of the residual of a linear fit to the real
part of the spectrum between 10 and 11 ppm: an average of 121.6 +
7.02 for the 64x64 scan versus 75.02 £ 3.55 for the 128 x 128 scan
across the entire brain slice and all volunteers.

Fig. 5 shows the contrast-minimized image used for B;™ correction
before and after Gaussian spatial filtering, along with two sample
metabolite maps from the high resolution scan before (left) and after
(right) By~ correction. Some spatial variations of the metabolite levels
in the uncorrected maps (especially in the periphery of the slice) appear
to have the same pattern and can be traced back to the receiver
inhomogeneity that is also apparent in the contrast-minimized image.
This artifact seems to be compensated for after B'; correction using the
contrast-minimized image and the spatial variations seen in the
corrected maps (right), such as higher Glu concentrations in gray
matter and higher NAAG concentrations in white matter, are in better
agreement with the anatomical reference.
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Fig. 1. The slice position along with the measured By, B;* and water suppression quality maps. The B, values are shown as a percentage of the nominal flip angle of 90 degrees. The
water suppression quality map shows the amplitude of the residual water peak as a percentage of the original unsuppressed one.
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Fig. 2. sample reconstructed spectrum before (left) and after (right) the prediction of the

missing FID points. This spectrum was selected from the central voxel of the 64 x 64
resolution study.
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The B;™ -corrected metabolite maps from 12 different metabolites
along with their Cramer-Rao lower bound (CRLB) maps are shown for
the high resolution and the ultra-high resolution studies of two
representative volunteers in Figs. 6 and 8 respectively. As can be seen,
the CRLB values of most of the metabolites (i.e. NAA, Cre, tCho, GSH,
Glu, mI and GABA) in both high and ultra-high resolution datasets are
lower than 20 in practically all voxels across the brain. This results in
reliable quantification of the peaks. However, for the following lower
concentrated metabolites: Scyllo, Gln, Tau, Asp (and NAAG for the
ultra-high resolution dataset) the CRLB maps are shown on a different
scale. The reason for this is due to higher CRLB values in some of the
voxels where the fitting is not as reliable. The same maps but this time
normalized to the Creatine (Cre) peak are shown again in Figs. 7 and 9
for both cases.

The metabolite maps from all 12 metabolites are shown in Fig. 10
for 4 additional volunteers (an additional 2 for the high-resolution case
and an additional 2 for the ultra-high resolution one). The maps
indicate good reproducibility of the study as similar spatial patterns are

Voxel 2

0.5ppm

Fig. 3. Four representative spectra from different positions in the brain with (magenta) and without (white) applying the L,-regularized fat suppression algorithm. The position of these

voxels are indicated in white on the anatomical reference image (top left).
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Fig. 4. Comparison of sample spectra from the high resolution (top row) versus ultra-high resolution scan (bottom row). Each row shows the position of the voxel were the spectrum was
chosen from (left), the visual inspection of the spectrum (middle) and the LCMODEL fit results (right). All spectra are shown in the range of 1.8 to 4.2ppm.

observed across volunteers.

Finally, the water suppression quality (defined as the percentage of
the original unsuppressed water peak that has been suppressed), SNR,
FWHM (as reported by LCMODEL for total Creatine), as well as the
CRLB and metabolite concentration ratio between a gray and white
matter-rich region of interest are summarized in Table 1 for the high
and ultra-high resolution datasets separately. The results are averaged
across all volunteers. Note that the metabolite ratio between gray and
white matter has not been reported for some of the lower concentrated
metabolites as due to the lack of that metabolite in gray or white
matter, LCMODEL has not fitted anything to them. This is also clear
from the high CRLB values indicated in red in the same table.

4. Discussion

Single-slice FID MRSI on human brain at 9.4 T was performed in
this study and was used to map the spatial distribution of several brain
metabolites. Two different spatial resolutions were compared: a high
spatial resolution of 64 x 64 and an ultra-high resolution of 128 x 128.
By optimizing the water suppression scheme and without applying any
additional fat suppression we were able to shorten the scan to a
clinically acceptable scan time. The high spectral resolution and SNR
offered by the ultra-high field strength of 9.4 T as well as the benefits of
the FID sequence such as low signal loss and negligible J-evolution
combined with effective reconstruction and post processing steps
enabled reliable quantification of spectra from a larger number of
voxels which resulted in maps with better anatomical correspondence
as compared to previous 7 T results for low concentrated metabolites
such as Gln and GABA (Henning et al., 2009; Bogner et al., 2012).

Of course the benefits of an ultra-high field magnet come at a price.
As was shown in Fig. 1, there is a strong B;* inhomogeneity that affects
the signal levels in different areas of the brain. Furthermore, as can be
seen even from the gradient echo anatomical image there is a strong
receive sensitivity variation that affects the signal intensity (especially
in the periphery) of the slice. Some spatial variations of the metabolite
levels in the uncorrected maps can be traced back to these inhomo-

geneities. To compensate for this, B;™ correction was done using a
contrast-minimized gradient echo image, which has spatial signal
intensity modulations that are dominated by the receive sensitivity
B;- as it is acquired at a very low flip angle. It should be noted that a
comprehensive correction for both the B;* and B;™ profiles requires
more sophisticated methods, for example (Zoelch and Henning, 2016)
suggests using B; " maps to perform Bloch simulations to determine the
excitation profile. A combination of the latter with the herein described
B;” maps reflects the resulting signal intensity modulation of the real
data even more precisely and may be performed in future studies.
Alternatively, Cr ratio metabolite maps, that intrinsically include B;*
and B,  corrections, were calculated in addition to the B, -corrected
ones.

One solution to the B; inhomogeneity problem would be to use
parallel transmit (pTX) pulses designed for B; inhomogeneity com-
pensation which would result in a more homogenous excitation profile
as well as a better quality of water suppression (Boer et al., 2012).
Additionally, by designing spatial-spectral pulses we can selectively
excite only regions of the spectrum and the brain (i.e. excluding the
lipid) that we are interested in (Waxmann et al., 2016).

Even though the 2" order B, shimming available at our scanner
provided a reasonable FWHM of the peaks, still we see that the water
suppression performance is affected in the regions where the Bg
variations are higher (3.1). By using higher-order and degree shimming
(Pan et al., 2012) we can reduce this problem in future studies. Better
Bo shimming would also mean narrower peaks and better separation of
the metabolites (Pan et al., 2012). Additionally, by modifying the shim
routine such that an arbitrary volume of interest can be shimmed, we
may improve the shimming results by better tailoring the shim region
to the MRSI slice and by shimming the lipid region as a region of less
interest (ROLI) (Boer et al., 2012; Fillmer et al., 2015).

The resulting water suppression map after applying the numerically
optimized 3-pulse scheme in Fig. 1 shows a sufficient suppression of
the water peak (< 1%) while keeping the duration of the scheme
reasonably short (62.2 ms). The performance is indeed T; and By
insensitive as it results in equally well performance across all the
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Fig. 5. Top: The contrast-minimized image used for Bl-correction before and after
spatial filtering, Bottom: Comparison of Bj-corrected versus uncorrected metabolite
maps for two metabolites. The maps have been chosen from the high resolution MRSI
dataset (64x64).

voxels. This will eliminate the gradient modulation side bands and
prevent them from contaminating the spectra and being mistaken as
real peaks (Henning et al., 2009).

Even though the acquisition delay was chosen to be as short as
possible (1.5 ms), still the missing points at the beginning of the FID
introduce a linear phase on the spectrum which makes it difficult to
visually distinguish the peaks and also might cause the fitting software
to fail if the basis-set is not truncated to match the phase of the
acquired spectra (Henning et al., 2009). The post processing step of
predicting the missing points via linear backward prediction solves this
problem and puts all the peaks back in phase (3.3).

The studies were performed without the use of any lipid suppres-
sion techniques. Therefore spectral bleeding of the extracranial lipids
due to the non-ideal SRF shape causes severe artifacts especially in
regions close to skull. By using the L,-regularized fat suppression
reconstruction method (Bilgic et al., 2014) it was shown that these
artifacts can be effectively reduced without reducing SNR or deterior-
ating the metabolite quality. This method is non-iterative, not compu-
tationally demanding and hence very fast. However, it should be noted
that a limitation of this method is that because of the alteration of the
lipid range of the spectra, it can no longer be used to assess the
macromolecule or lipid content alterations of the spectra. Furthermore,
the exact quantification of peaks close to this range such as GABA and
NAAG might be affected.

The resulting processed spectra from both the high and ultra-high
resolution MRSI data show high information content even by visual
inspection (3.5). It can be seen that while the high resolution spectra

NeuroImage (3xxX) XXXX—XXXX

(64x64) show higher SNR, the ultra-high resolution scan results in
narrower. By comparing these values to the results reported for a
similar study performed at 7 T (64 x 64 FID MRSI sequence) (Bogner
et al., 2012; Povazan et al., 2015; Hangel et al., 2015; Strasser et al.,
2016) we can readily see the SNR gain offered by the higher field
strength. However, naturally, due to the increased field inhomogeneity
at 9.4 T the linewidths reported at 7T are lower (20.03 + 0.5 Hz at
9.4 T versus 14 + 3 Hz at 7 T).

The spectra were then fed into LCMODEL for fitting analysis. As a
result, for the first time at 9.4 T, high and ultra-high resolution maps of
12 metabolites including NAA, NAAG, Cho (PCh + GPC), tCre (PCr +
Cr), ml, Glu, Gln, GABA, GSH, Tau, Scyllo and Asp in human brains
presented. The high SNR and quality of the spectra along with the
precise localization of the sequence, resulted in minimized artifacts
which in turn resulted in maps that are in good agreement with the
anatomical reference. Characteristic differences between gray and
white matter are evident for certain metabolites from the metabolite
maps and the quantitative analysis in a gray versus white matter rich
region of interest across volunteers. The results are in good agreement
with previously reported maps on lower field strengths (such as higher
Cre, Glu, GSH and mI concentration in gray matter (Gasparovic et al.,
2006; Srinivasan et al., 2009; Henning et al., 2009; Maudsley et al.,
2009; Emir et al., 2012; Bogner et al., 2012; Povazan et al., 2015;
Hangel et al., 2015; Strasser et al., 2016; Maudsley et al., 2012), higher
NAAG concentration in white matter (Henning et al., 2009; Povazan
et al., 2015) as well as higher GABA concentration in gray matter (Emir
et al., 2012), but show more anatomical details due to higher spatial
resolution and also as a result of LCMODEL being able to fit a higher
number of voxels reliably due to the high quality of the spectra.

The comparison of high versus ultra-high resolution metabolite
maps (3.5) shows that even though for higher concentrated metabolites
(such as NAA, Cre, mI and Cho) both resolutions lead to low CRLB
values (lower than 10 in almost all voxels across the whole FOV),
naturally the ultra-high resolution one reveals more anatomical details,
but appears slightly noisier.

In comparison to lower field strengths, the added value of 9.4 T
becomes more obvious in the case of metabolites like Glu, Gln, GABA
and GSH. Studies on 7 T either did not show the maps for GABA and
GSH (Bogner et al., 2012; Povazan et al., 2015; Hangel et al., 2015;
Strasser et al., 2016) or showed very patchy maps (Henning et al.,
2009). Furthermore, at 9.4 T we were able to quantify and map Glu and
Gln separately whereas in previous studies they are often shown in one
map (Glx) (Bogner et al., 2012; Povazan et al., 2015; Hangel et al.,
2015; Strasser et al., 2016). The comparison of high versus ultra-high
resolution maps for these metabolites shows that for Glu and mI both
resolutions result in reliable maps which have CRLB values lower than
12 in all voxels across the slice. In case of GABA, still the maps are
highly reliable for both resolutions (CRLBS lower than 20), but the high
resolution map has a lower average CRLB compared to the ultra-high
case.

However, in the case of lower concentrated metabolites (such as
Gln, Asp, NAAG, Scyllo and Tau) there is a trade-off between having
higher spatial resolution and having more voxels reliably mapped (with
low CRLB values). As an example of this we can look at the NAAG and
Taurine maps and compare it between the two resolutions. The CRLB
values reveal that a larger area of the brain was mapped reliably in the
lower resolution MRSI dataset. This trade-off stems from the lower
SNR of the ultra-high resolution scan which in turn is a result of
smaller voxel size (Gruber et al., 2012).

The aforementioned trade-off between highly spatially resolved
maps and being able to map a greater number of metabolites including
those with small concentrations, can be mediated by acquiring more
averages in the high resolution study to compensate for the reduced
SNR caused by smaller voxel sizes. However this will increase the scan
time and make it impractical for clinical settings. One solution to this
would be to take advantage of parallel imaging techniques and combine
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Fig. 6. High resolution (64x64) metabolite maps for 12 different metabolites along with the anatomical reference scan (top left). The CRLB maps are shown below the metabolite map
in each box. Note the different scaling of the CRLB maps in the last four metabolites (Scyllo, Gln, Tau and Asp).
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Fig. 7. High resolution (64x64) ratio maps for 11 different metabolites along with the anatomical reference scan (top left).
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Fig. 8. Ultra-high resolution (128x128) metabolite maps for 12 different metabolites along with the anatomical reference scan (top left). The CRLB maps are shown below the
metabolite map in each box. Note the different scaling of the CRLB maps in the last five metabolites (Scyllo, NAAG, Gln, Tau and Asp).
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Fig. 9. Ultra-high resolution (128x128) ratio maps for 11 different metabolites along with the anatomical reference scan (top left).
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Fig. 10. Qualitative reproducibility assurance shown for 4 additional volunteers. Volunteers 2 and 3 have been scanned at a high spatial resolution of 64x64, while volunteers 5 and 6

have been scanned at the ultra-high spatial resolution of 128x128.

the FID MRSI sequence with acceleration techniques such as SENSE
(Kirchner et al., 2015), GRAPPA (Hangel et al., 2015), EPSI (Maudsley
et al., 2012) or CAIPIRINHA (Strasser et al., 2016). By using special
reconstruction and SNR boosting techniques, this combination was
shown to be able to accelerate the scan without deteriorating the SNR
at 7T (Kirchner et al., 2015; Kirchner et al., 2016). It has yet to be

studied how these would work in the high spatial resolution cases and
how they will affect the quality of the metabolite maps.

It should be noted that even though this study was performed at a
short TE of 1.5ms, there is a strong T; weighting due to the short TR.
One solution to this would be to apply tissue segmentation followed by
a voxel-wise relaxation attenuation correction that would account for
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Table 1

Quantitative comparison of high versus ultra-high resolution metabolite mapping at 9.4 T.

NeuroImage (3xxX) XXXX—XXXX

SNR 121.6 +7.02 75.02 +3.55
Water supp. factor 99.46 +0.23 99.65+0.15
FWHM 20.03 +0.55 16.30 + 0.80
CRLB (%) (GM = SD : WM + SD) . Ratio.
(GM/WM + SD)
64x64 128x128 64x64 128x28
NAA 2.32+0.49 : 2.18+0.73 3.31+0.92 : 3.06+1.72 1.09 +0.03 1.10 £ 0.05
Cre 1.99+0.63 : 2.16+0.65 5.21+1.86 : 5.2742.71 1.22 £0.12 1.28 £0.14
tCho 5.39+1.5 : 4.61+0.42 8.0+£2.83 : 6.11+1.70 0.77 £0.06 0.76 = 0.09
GSH 3.90+0.10 : 4.42+0.35 11.31£2.49 : 16.64=4.30 1.25 +0.07 1.17 £0.29
Glu 3.43+1.01 : 5.90+0.42 7.44+2.16 : 10.79+5.44 1.51+0.04 1.54 +0.05
ml 4.85+1.05 : 5.22+1.42 6.40+2.35 : 7.36+1.62 1.23 +£0.08 1.20 = 0.78
GABA  11.13£2.01 : 20.67+0.97 15.78+4.03 : 25.55+8.11 1.35+0.11 1.24 £0.20
NAAG 12.80+2.41 : 9.90+0.5 16.06+3.26 : 5324+216.07 0.53 +0.09 N/A
Scyllo  24.19+1.43: 287+85.08  35.69+10.23 : 435£157.98 N/A N/A
Gln 28.05+6.62 : 310+79.21  55.18+14.19 : 536+379.21 N/A N/A
Tau 26.5742.51 : 90.90+9.9 35.7245.62 : 417+145.86 N/A N/A
Asp 33.14£1.19 : 304+50.84  69.89+12.93 : 338+139.75 N/A N/A

differences in the relaxation times across different tissues (Gasparovic
et al. 2006; Zoelch and Henning, 2016). Additionally, due to the short
TE and TR of the sequence, it is advisable to include the macromole-
cules in the basis-set for more reliable quantification of the metabolites
(Povazan et. al, 2015; Geades et al., 2016).

As a final note, the slice thickness used in this study was relatively
thick (10mm) as this was a single-slice study and resolution in the
sagittal direction was not of concern. However, to match the in-plane
resolution and in future multi-slice studies, a thinner slice thickness
could be used.

5. Conclusion

In this study we showed for the first time that "H FID MRSI of the
human brain at 9.4 T along with LCMODEL analysis allows for the
visualization of the spatial distribution of 12 metabolites in a scan time.
By optimizing the water suppression scheme and other scan para-
meters combined with robust reconstruction techniques, high quality
spectra were acquired. This enabled the mapping of a larger number of
metabolites including low concentrated ones such as NAAG, Tau, Asp,
Scyllo, Gln, and GABA at high (97.6 L) and ultra-high (24.2 uL)
spatial resolutions with high reproducibility. The maps had higher SNR
and corresponded better to the underlying anatomy as compared to
previous 7 T results (Henning et al., 2009; Bogner et al., 2012; Povazan
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et al., 2015; Hangel et al., 2015; Strasser et al., 2016).

Comparison of high versus ultra-high spatial resolution maps
showed that while the ultra-high resolution MRSI data results in
anatomically detailed maps for major metabolites, the decreased SNR
makes it more difficult to map the lower concentrated metabolites
reliably in all the voxels.
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Purpose: This study investigates metabolite concentrations
using metabolite-cycled 'H free induction decay (FID) magnetic
resonance spectroscopic imaging (MRSI) at ultra-high fields.
Methods: A non-lipid-suppressed and slice-selective ultra-
short echo time (TE) 'H FID MRSI sequence was combined
with a low-specific absorption rate (SAR) asymmetric inversion
adiabatic pulse to enable non-water-suppressed metabolite
mapping using metabolite-cycling at 9.4T. The results were
compared to a water-suppressed FID MRSI sequence, and
the same study was performed at 3T for comparison. The
scan times for performing single-slice metabolite mapping with
a nominal voxel size of 0.4mL were 14 and 17.5min on 3T
and 9.4T, respectively.

Results: The low-SAR asymmetric inversion adiabatic pulse
enabled reliable non-water-suppressed metabolite mapping
using metabolite cycling at both 3T and 9.4T. The spectra and
maps showed good agreement with the water-suppressed FID
MRSI ones at both field strengths. A quantitative analysis of
metabolite ratios with respect to N-acetyl aspartate (NAA) was
performed. The difference in Cre/NAA was statistically signifi-
cant, ~0.1 higher for the non-water-suppressed case than for
water suppression (from 0.73 to 0.64 at 3T and from 0.69 to
0.59 at 9.4T). The difference is likely because of chemical
exchange effects of the water suppression pulses. Small differ-
ences in MI/NAA were also statistically significant, however,
are they are less reliable because the metabolite peaks are
close to the water peak that may be affected by the water
suppression pulses or metabolite-cycling inversion pulse.
Conclusion: We showed the first implementation of non-
water-suppressed metabolite-cycled 'H FID MRSI at ultra-high
fields. An increase in Cre/NAA was seen for the metabolite-
cycled case. The same methodology was further applied at 3T
and similar results were observed. Magn Reson Med
000:000-000, 2017. © 2017 International Society for Mag-
netic Resonance in Medicine.

Key words: metabolite cycling; MRSI; non-water-suppressed;
spectroscopic imaging; ultra-high field strengths

INTRODUCTION

The majority of 'H magnetic resonance spectroscopy
(MRS) studies use water suppression to detect the metab-
olite signals that are much smaller than the water peak.
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However, there are also a few studies that use non-water-
suppressed methods. Non-water-suppressed MRS has cer-
tain benefits over water-suppressed MRS. The water sig-
nal can be used for internal referencing in quantification,
for frequency alignment between averages, and for motion
and eddy current correction purposes (1-3). As an exam-
ple of this, non-water-suppressed spectroscopy has been
previously used to improve the signal-to-noise ratio (SNR)
and spectral quality in the spinal cord by using the large
water signal for frequency alignment between averages
(4). Water suppression may cause chemical exchange that
result in quantification errors (5-7), whereas, non-water-
suppressed spectroscopy can be used in inversion trans-
fer experiments for investigating downfield metabolite
peaks (3,8). Water suppression may also result in other
signal changes because of the nuclear Overhauser effect
(NOE) (9).

Despite the benefits of non-water-suppressed spectros-
copy, there are also challenges that need to be overcome.
One of the biggest challenges is that non-water-
suppressed spectra have large gradient modulation side-
bands (10). There are multiple techniques that can be
used to remove these sidebands which can be catego-
rized as either post-processing or experimental methods.
Sidebands can be removed in post-processing using soft-
ware methods by taking the modulus of the FID signal,
however, this results in line-broadening and a decrease
in SNR (11). A more sophisticated approach is to use the
theoretical model and algebraically extract the artifacts
using Schur decomposition (12). However, these post-
processing methods can result in inaccuracies. The side-
bands can be simulated based on theoretical models and
accounted for retrospectively, but this requires intensive
computation and is not guaranteed to be accurate. Other
post-processing methods use data acquired from water
phantoms as a reference and subtract the resulting spec-
tra from the in vivo measurements (13,14). The disadvan-
tage of using phantom reference scans is that there may
be inconsistencies between those and the in vivo meas-
urements. Furthermore, because of weight differences in
the loading of the table (i.e., phantoms are generally ligh-
ter than humans) the vibration frequencies are different
and would, again, result in inaccuracies. An alternative
to removing sidebands in post-processing is to use exper-
imental methods to prevent them from happening in the
first place. Sideband artifacts can be reduced by reduc-
ing the gradient amplitudes in the sequence where possi-
ble (15). Another popular method of removing sidebands
is metabolite-cycling (MC) (2,3). This method alternately
inverts the upfield and downfield metabolites and sub-
tracts the 2 signals to extract the metabolites from the
water peak and sidebands. However, this method
requires a wide-band sharp-transition inversion pulse
that can be very SAR-demanding.



For spectroscopic imaging (MRSI), the number of non-
water-suppressed publications is even sparser than the
single voxel studies. Previously, non-water-suppressed
MRSI was done without the consideration of gradient
modulation sidebands (16). Later, Chadzynski and Klose
(15) and Chadzynski et al. (17) successfully acquired non-
water-suppressed MRSI data at 3T while accounting for
sideband artifacts. This was achieved by acquiring spectra
from a water phantom and subtracting this from the in
vivo spectra (18) and also by reducing gradient amplitudes
(15). However, as mentioned earlier, removing sidebands
in post-processing can be inaccurate and hence, insuffi-
cient. A recent study implemented non-water-suppressed
MRSI using MC at 3T (19). So far, in all the previous stud-
ies, non-water-suppressed MRSI has only been done on
field strengths up to 3T and with localization methods
such as STEAM (19) or PRESS (15,18).

Currently, no implementations of non-water-suppressed
MRSI at ultra-high field strengths have been realized.
Although there is a large gain in SNR and spectral resolu-
tion at higher field strengths, there are also many difficul-
ties such as strong By and B; inhomogeneity and higher
specific absorption rate (SAR), which increases exponen-
tially as field strength increases. The strict SAR limita-
tions might therefore require longer scan times. For
example, the localized MC sequence that requires an adia-
batic inversion pulse might end up with long repetition
times that is evident from the single voxel studies. At 7T,
the pulse repetition time (TR) was 4000 ms (20), which is
approximately twice as long as it would be for a similar
sequence at 3T (19). Another example at 9.4T is the TR of
3000 ms for MC with STEAM (21).

At lower field strengths, the lengthy MRSI scan times
can be reduced by using non-Cartesian trajectories such
as in (19), where they used a concentric ring k-space tra-
jectory for performing MC MRSI scans. However, scan
duration can be further reduced by removing the locali-
zation, outer-volume, and lipid-suppression schemes
from the sequence. For example, a slice-selective non-
lipid-suppressed 'H FID MRSI sequence has previously
been implemented with water suppression to have short
TRs of ~200 ms (22,23)and even 57 ms (17). Further-
more, if extra care is taken into designing the MG pulse
to reduce its SAR as much as possible, one can combine
the advantages of ultra-high fields with non-water-
suppressed MC MRSI.

Therefore, in this work, we show the first implementa-
tion of non-water- and non-lipid-suppressed 'H FID MRSI
at 9.4T using a low-SAR MC RF pulse that greatly reduces
the scan time (compared to the conventional MC pulse).
We present metabolite maps acquired at 9.4T with this
technique, and we perform the same experiments at 3T for
comparison. Furthermore, we show that chemical
exchange effects are likely causes for differences between
water-suppressed and non-water-suppressed MRSI
concentrations.

METHODS
Hardware and Equipment

The ultra-high field experiments were performed on a Sie-
mens 9.4T Magnetom whole-body human scanner (Erlangen,
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FIG. 1. Magnitude (left) and phase (right) of the adiabatic asym-
metric inversion hyper-pulse. The magnitude is normalized to the
maximum voltage used for the respective scanner. The time axis
is normalized to the total pulse duration.

Germany) equipped with gradient coils with a nominal
maximum amplitude of 40 mT/m and slew rate of
200 mT/m/ms. An in-house developed RF coil with 18Tx/
32Rx and maximum BY of ~35uT (24) was used for the
measurements at 9.4T. For the 3T scans, a Siemens Prisma
scanner (Erlangen, Germany) with a commercial 64 chan-
nel TIM head-and-neck coil was used. Both 3T and 9.4T
scanners were equipped with up to 2*¢ order shim coils
for By shimming.

RF Pulse Design

Adiabatic pulses are typically more SAR demanding
than conventional non-adiabatic ones. The adiabatic
pulse of a certain duration requires a minimum level of
Bl+ to satisfy the adiabatic condition. While at 3T, a sin-
gle adiabatic inversion does not cause much SAR prob-
lems, at 9.4T even a single pulse results in much longer
repetition times. The de facto standard for MC sequences
is to use an adiabatic asymmetric inversion sech/tanh
pulse (2). In this study, to make the scan times feasible
at 9.4T, we instead use a low SAR adiabatic inversion
pulse to invert the metabolites. This pulse, referred to as
the hyper-pulse from now on, has been shown to be a
generalized form of the sech/tanh pulse. It is an analyti-
cal solution to a hypergeometric equation and is given
as (25):

o) =5 1]
where
b
Z
ft=ln———. [2]
(1 _ Z)ﬂ+b

For t € [—00,00], z € [0,1], where Qg is the amplitude of
the pulse. The variables a and b are design parameters
and were chosen to be 1.3 and 0.12, respectively (as rec-
ommended in [25]). The magnitude and phase of the
resulting pulse are shown in Figure 1.

Satisfying the adiabatic condition is dependent on the
B level and the duration of the pulse. Although the Bf
field is more or less homogeneous at 3T, at ultra-high
fields the B homogeneity is rather poor. To account for
the strong B; inhomogeneities, the RF pulse needs to be
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Bl map at 3T

FIG. 2. (A and B) Representative B maps
acquired at 3T and 9.4T, respectively. The
B values are shown as a percentage of
the nominal flip angle of 60°. (C and D) 3
Inversion profiles of the adiabatic asym-
metric inversion hyper-pulse shown as a
function of the B level and the frequency
offset for 3T and 9.4T, respectively.
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optimized for a range of B values. The pulses were
therefore optimized over a range of B] values for both
field strengths. Bf maps were acquired using an actual
flip angle imaging (AFI) sequence (26) with the following
parameters: flip angle =60°; TR;/TR,=20/100 ms; TE=4
ms; matrix size =128 x 128; field of view (FOV)= 200 x
200mm. The B] field at 3T was fairly homogeneous. The
hyper-pulse was therefore optimized for 3T to operate in
a BT range between 12 uT and 14 uT. The maximum B}
for 9.4T was found to be 33 uT, however, to account for
the strong B inhomogeneities, the hyper-pulse was opti-
mized over a range of 17 uT to 33 uT. The acquired B
maps and the spectral inversion profiles for the resulting
hyper-pulses are shown in Figure 2.

Frequency Offset Profiling

The center frequency of the designed adiabatic inversion
pulse needs to be shifted such that it covers the whole
region of the spectrum where the metabolites of interest
are located. The frequency offset of this adiabatic asym-
metric inversion pulse was therefore calculated and
experimentally fine-tuned. Low-resolution MRSI data sets
with a matrix size of 16 x 16 were acquired with an FOV
of 200 x 200mm and a slice thickness of 10 mm. A non-
inverted water image along with multiple metabolite-
inverted images were acquired with different frequency
offsets. The frequency offsets have to be chosen such that
the metabolites in the range of 2.0 ppm to 4.2 ppm are fully
inverted. Additionally, to account for B, inhomogeneities,
inversion of up to 4.5 ppm is necessary. Therefore, a range
of frequency shifts of up to 36 Hz for 3T and 120Hz for
9.4T were tested in this study. The chosen frequency shifts
were 0Hz, —12Hz, —24Hz, and —36Hz for 3T and 0Hz,
—40Hz, —80Hz, and —120Hz for 9.4T. The inversion
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pulse duration was 14 ms and 9 ms for the 3T and 9.4T,
respectively. The applied transmit voltage was 250V for
3T and 550V for 9.4T.

Data Acquisition

A total of 3 healthy volunteers were scanned with their
informed consent and in accordance with the local
ethics board committee. The volunteers were scanned at
both 3T and 9.4T scanners. For all studies, a 2D H FID
MRSI sequence (22) was used to acquire single-slice
MRSI data with a matrix size of 32 x 32, in-plane resolu-
tion of 6.25 x 6.25 mm, and a slice thickness of 10 mm.
This translates to a nominal voxel size of 0.4mL. The
slice was placed through the periventricular white mat-
ter of the cortex and parallel to the corpus callosum in
all volunteers. Two variations of the M FID MRSI
sequence were prepared: a water suppressed version by
incorporating an optimized and short 3-pulse water sup-
pression scheme with a duration of 62 ms before the
excitation pulse as described in (20), and an MC version
by incorporating the designed adiabatic asymmetric
inversion hyper pulse before excitation. The excitation
pulse occurs directly after the inversion pulse without
any delays. Both water-suppressed and MC measure-
ments were performed on each subject in the same ses-
sion. For a meaningful comparison of the 2 methods, the
bandwidth of the water suppression pulses were chosen
to be narrow enough so that they did not affect peaks
closest to the water peak (myo-inositol and creatine at
4.2 and 4.0 ppm, respectively). Both pulse sequences are
illustrated in Figure 3. Because we were not interested
in the downfield metabolites in this study, only the
upfield metabolites were inverted and this was inter-
leaved with non-inverted FID acquisitions of the water
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FIG. 3. Schematic representation of the water suppressed (top) and the metabolite-cycled (bottom) 'H FID MRSI sequence.

signal. By only inverting the upfield metabolites, this
kept the SAR lower than inverting both the upfield and
downfield metabolites.

Additionally, to compare the 2 field strengths, a total
of 10 healthy volunteers were scanned at both 3T and
9.4T with the water-suppressed sequence.

The parameters at 3T were: spectral bandwidth=
2400 Hz; acquisition time =425 ms; TR=550 ms; acqui-
sition delay=2.1 ms. The flip angle was 46°, and was
calculated from the Ernst formula for a T, of 1500 ms.
The water suppression scheme for the water-suppressed
FID MRSI sequence consisted of 3 pulses with band-
widths of 60Hz and with a 20-ms delay between each
pulse. For the MC FID MRSI sequence, the hyper-pulse
was used with a frequency offset of —12Hz, a pulse
duration of 14 ms, and an amplitude of 250V. The effec-
tive inversion bandwidth (defined as more than 90%
inversion) for a B;’ of 12 uT was ~450Hz (or 3.75 ppm).
The total scan time for the MRSI sequence at 3T was
14 min for MC.

The spectral resolution between the 2 field strengths
were kept the same at ~55 samples/ppm for consistency,
so at 9.4T the acquisition time was 128 ms and the spec-
tral bandwidth was 4000Hz. The acquisition delay was
1.5 ms and the flip angle was calculated from the Ernst
equation for a T, of 1800 ms to be 43°. The flip angles of
the water-suppression pulses were optimized for 9.4T and
had bandwidths of 100 Hz with 20-ms delay between each
pulse. For the MC pulse, the maximum voltage was used
as the amplitude (550 V) and the inversion pulse had a fre-
quency offset of —40Hz and a pulse duration of 9 ms. The
effective bandwidth of the inversion was ~1 kHz
(2.5 ppm) for the mean B} amplitude of 25 uT. With the
TR set to the minimum possible (700 ms), the total scan
time for the MRSI sequence at 9.4T was 17.5 min for MC.

After each measurement, anatomic reference images
and B maps were also acquired for each subject from

the same slice position as the MRSI studies. A T,-
weighted 2D FLASH sequence with the following param-
eters was used to acquire the scout images: flip angle =
25°%; TE=9 ms; TR=312 ms; matrix size=256 x 256;
FOV =200 x 200mm; slice thickness=10mm. The Bf
maps were acquired using an AFI sequence with the same
parameters as previously stated (in RF Pulse Design). For
all studies, an image-based 2"¢ order B, shimming was
performed on a shimming volume that had the same
dimensions as the imaged slice.

Data Processing

All reconstruction and post-processing steps were imple-
mented in MATLAB (The MathWorks, Natick, MA) First,
the data were spatially reconstructed using a spatial
Hanning filter before the 2D FFT. The non-water-
suppressed images were used for eddy current and 0™
order phase correction in both the MC and the water-
suppressed data sets (27). The coils were then combined
using the singular value decomposition (SVD) coil com-
bination method (28).

The upfield metabolites were calculated from the MC
data set by subtracting the inverted signals from the non-
water-suppressed signals. To correct for the slight non-
uniformities in the inversion profile, the spectra were
weighted by the inversion profiles based on the B map
acquired in the same scan session using the AFI
sequence:

Sinv ((l))

(1 — magnz_mv(B1,m)) 7 3

Smet(w) = Snws(w) -

where magn, inv(B1, w) is the inversion profile, the value
of which is dependent on the spectral frequency w and
the By level at that specific voxel position (as shown in
Fig. 2), Spws(w) is the non-water-suppressed spectrum,
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Sinv(w) is the metabolite-inverted spectrum, and Sper(w)
is the resulting metabolite-only spectrum.

Further post-processing steps included the removal of
the residual water signal using the Hankel-Lanczos
(HLSVD) method (29) and automatic first order phase
correction by recovering the missing points at the begin-
ning of the FID using linear back prediction with the
auto-regressive Burg method (30). No further apodization
or phase correction was applied. The metabolites were
fit using LCMODEL (31) with a basis set generated from
the Gamma library (https://scion.duhs.duke.edu/vespa/
gamma) (32) for both the 3T and 9.4T data. The simu-
lated basis-set was generated using the Govindajaru val-
ues (33) and included spectra of 18 brain metabolites
(namely GPC, Tau, Cre, Glc, Naa, Asc, Lac, GABA,
NAAG, GSH, Glu, PE, ml, PCh, Ala, Gln, Scyllo, and
Asp) and were line-broadened by 3Hz for 3T and 5Hz
for 9.4T. The spectra were fit between 1.8 to 4.2 ppm.
The metabolite maps shown in the results were overlaid
on anatomical images for better visualization.

The SNRs, CRLBs, and FWHMs were calculated from
the spectra and spectral fits. The SNR was defined as the
absolute peak of NAA over the root mean square of the
noise (calculated from the real part of the spectrum
between 10 and 11ppm) in each voxel. The mean and
standard deviations of the CRLBs of creatine were calcu-
lated for all volunteers at both field strengths. The
FWHM of the spectra were acquired from the LCModel.

The metabolite ratios of 5 major metabolites (with
respect to NAA) of the water-suppressed and the MC
MRSI were compared. The Shapiro-Wilks normality test
was used to check that the distributions were sufficiently
close to Gaussian and then Welch 2 sample t-tests were
performed to test for statistically significant differences
between the concentrations of the metabolites resulting
from the water-suppressed versus the MC spectra. The P-
value and statistical power of the t-tests were also
evaluated.

RESULTS

Figure 4 shows the results of the frequency offset profil-
ing for 9.4T. At 9.4T, for frequency offsets of —80Hz and
—120Hz, the transition bandwidth of the inversion pulse
is affecting the metabolites at ~4.4 and 4.2 ppm, respec-
tively. The frequency offset of —40Hz inverts the spec-
trum sufficiently, without the transition range affecting
the spectrum, for the range of frequencies that we are
interested in. Similarly, at 3T, for a frequency offset of
—0.1ppm (—12Hz), the range of interest is inverted and
the transition range does not affect the metabolites close
to the water peak. Hence, in all subsequent MC studies,
frequency offsets of —40Hz for 9.4T and —12Hz for 3T
were used.

Figure 5 shows representative spectra from 5 voxel
positions in the brain of the same volunteer at each of
the 2 field strengths. The quality of the spectra look very
similar between the water suppressed and the MC
acquisitions. The values in Table 1 show the average
value for SNR, CRLBs, FWHMs, and metabolite ratios
averaged across all the voxels in the brain region and
across all volunteers. Statistical comparisons of the SNR,

il N
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FIG. 4. Results of the frequency offset profiling to find the opti-
mized frequency shift for the adiabatic asymmetric inversion
metabolite-cycling pulse at 9.4T.

CRLBs, and FWHMs between the 2 field strengths are
shown in the Supporting Information for 10 volunteers.

The metabolite maps for 4 major metabolites, NAA,
creatine (Cre), glutamate (Glu), and total choline (tCho),
are shown in Figure 6. The water suppressed and MC
maps look similar for all volunteers and the tissue con-
trasts also exhibit similar patterns. The Cramer-Rao
lower bound (CRLBs) maps are also shown for both
methods in Figure 7.

A quantitative analysis of the metabolite concentra-
tions is shown in Figure 8. The metabolite ratios (with
respect to NAA) are shown for both field strengths and
both water suppressed and MC data sets. The concentra-
tions of Glu/NAA, tCho/NAA, and GSH/NAA are very
similar between water-suppressed and MC spectra. How-
ever, the concentrations of Cre/NAA and mI/NAA appear
higher when using MC compared to water suppression
(Table 2). Furthermore, the variance of the concentra-
tions is slightly higher for MC.

The statistical significance of the differences between
the concentrations is shown in Table 2 for both field
strengths. The P-values of the Shapiro-Wilk normality test
show that all distributions are very similar to a normal dis-
tribution (except for myo-inositol at 9.4T in the
metabolite-cycled case). The Welch 2 sample t-test shows
that the differences between the concentrations achieved
through water-suppressed versus MC sequences are statis-
tically significant for all metabolites except Glutamate
(which has P-values>0.05). Although all 4 remaining
metabolites had high statistical significance, a statistical
power test of the t-test shows that only the value for Cre/
NAA and mI/NAA has high statistical power. At 3T, the
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FIG. 5. Representative spectra resulting from the metabolite-cycled MRSI data set (shown in black) overlaid on the corresponding ones
acquired through water-suppressed MRSI (shown in red). The spectra are selected from the brain of a healthy volunteer at 5 different
voxel positions and are shown for both 3T (left) and 9.4T (right). All spectra are shown between the range of 1.8 ppm and 4.2 ppm.

statistical power of Cre/NAA was 0.275 and at 9.4T was
0.350. The concentration of Cre/NAA was on average
0.739 and 0.687 for MC, and 0.641 and 0.589 for water
suppression (for 3T and 9.4T, respectively). From Table 2,
P-values comparing the MC and water suppression were
<2.2e-16 for both field strengths (exact values could not
be calculated because of the limitations of the R statistical
computing software). The difference in mI/NAA was ~0.5
but the statistical power was less and this statistical signif-
icance is less reliable.

DISCUSSION

Similar scan times were achieved compared to previously
published non-water-suppressed MRSI sequences. At 3T,
the TR was 550 ms and total MRSI scan duration was
14 min for a 32 x 32 matrix size. A previous non-water-
suppressed MRSI study (15) had a scan duration of 6 mins
at 3T, however, the TR was 3 times longer (1500 ms) and
the matrix size was 4 times smaller (16 x 16). Emir et al.
(19) achieved a short scan time using a concentric ring tra-
jectory at 3T. The scan duration was ~8 min for an effec-
tive k-space size of 24 x 24. In this study, we were able to
achieve a short scan time by using a non-lipid-suppressed
FID sequence with slice-selection, and hence had short
repetition times. Furthermore, we achieve higher spatial
resolution with the effective voxel size of 0.4 mL while the

Table 1

effective voxel sizes in previous studies were 1.5 mL and
2mL in (15) and (19), respectively.

The advantage of non-water-suppressed MR spectros-
copy is that it is unaffected by potential chemical
exchange effects that could occur in sequences with water
suppression. Single-voxel spectroscopy studies previ-
ously showed significant signal attenuation of creatine
and lactate because of chemical exchange (5,6). The
exchange between water and total creatine has also been
shown in inversion transfer experiments for single-voxel
spectroscopy (6). However, so far MRSI studies have been
less conclusive. In this study, our results show that there
is a statistical significance between the mean metabolite
ratios of the water suppressed and MC spectra. However,
only the difference in Cre/NAA showed significant statis-
tical power. At 3T, the power of the Welch 2 sample t-test
for Cre/NAA was 0.47 and for 9.4T the statistical power
was 0.73. The concentration difference of the Cre/NAA is
clearer at 9.4T than 3T. At 9.4T, the lower Cre/NAA using
water suppression may also be attributed to the higher B,
inhomogeneity. Higher B, inhomogeneity may shift the
water suppression pulses to suppress the creatine peak
close to the water peak. However, even if this was the
case, visible differences in the creatine peak can be seen at
3.0ppm (lower for water suppression) whereas other
metabolite peaks between 3.0 and 4.0 ppm have similar
levels of concentration for water-suppressed and MG

SNRs, CRLBs, and FWHMs (Averaged across all Voxels in the Brain Region and all the Volunteers) for the Water-Suppressed Versus

Metabolite-Cycled MRSI Data Calculated at both 3T and 9.4T

SNR CRLB (Cre) FWHM (Hz)

3T Water-suppressed 32.7+4.34 6.05+1.81 6.45 +2.27
Metabolite-cycled 29.6 =3.94 9.63 £2.99 7.54 +2.63

9.4T Water-suppressed 112.6 £ 17.63 5.65 +5.40 18.99 +5.06
Metabolite-cycled 125.34 = 19.69 5.74 +£5.44 23.87 = 4.61

The SNR was defined as the absolute peak of NAA over the root-mean-square of the noise (calculated from the real part of the spec-
trum between 10 and 11 ppm) in each voxel. The CRLBs of creatine and FWHM (as reported by LCModel) are also reported.
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FIG. 6. Metabolite maps of four major metabolites using water suppressed and metabolite-cycled 'H FID MRSI at 3T and 9.4T. All

metabolite maps are normalized and shown between 0 and 1.

spectra. Another possible explanation is that because of
the Bf inhomogeneity, the lower B in some voxels may
not be sufficiently inverting the metabolites over the
required frequency range. However, these deviations were
corrected using a measured B map for each volunteer,
and furthermore, no other metabolite concentrations
showed differences with statistical significance. At 3T,
where B, and B; inhomogeneity are not as big of an issue,
a similar result was seen. Emir et al. (19) did not see a sig-
nificant difference in any of the metabolites at 3T. On the
other hand, Chadzynski and Klose (18) saw a slight
increase in concentrations for most metabolites when
using non-water-suppressed spectroscopic imaging at the
same field strength. van der Veen et al. (16) also reported a
small increase in creatine concentrations but they also
found a similar increase in choline. However, van der
Veen et al. (16) used a long echo time, used a different fit-
ting algorithm and also did not fit the creatine peak at
3.9 ppm. These previous studies were all conducted at 3T
where the statistical significance of the difference is not as
large as for 9.4T. Despite the different results from other
MRSI studies, our results were in agreement with single-
voxel studies that showed a slight increase in creatine for
non-water-suppressed spectroscopy that could be a result
of the chemical exchange effect in water-suppressed

NAA Cre

Metabolite
cycled

Water
suppressed

Metabolite
cycled

Water
suppressed

3T

9.4T

spectroscopy. Even though only upfield metabolites were
studied in this work, same methodology can be used in
future on the downfield metabolites to validate chemical
exchange saturation transfer (CEST) studies (8,34).

The increase in mI/NAA could be because of By homo-
geneity or because of an increase in NAA. It is unlikely
that the change in mI/NAA is because of chemical
exchange. However, it could also be a result of subtraction
errors from the non-water-suppressed MRSI. Metabolite
peaks closer to water may be more difficult to fit because
the residual water peak’s tail would affect the baseline
under these peaks (especially at 9.4 T). Another explana-
tion could be that the By inhomogeneity could shift the
water suppression pulses and reduce the metabolite peaks
close to 4.7 ppm. Although this may also be true for the
creatine peak at 3.9 ppm, the creatine peak at 3.0 ppm still
results in higher concentrations for the non-water-
suppressed case. The less reliable fit for myo-inositol for
the metabolite-cycled data is reflected by the higher P-
value for the Shapiro-Wilk normality test. This higher P-
value indicates that the data for mI/NAA are not distrib-
uted normally, and hence the statistical significance
shown by the t-test is not very reliable. In contrast, the dis-
tributions of the Cre/NAA concentrations follow a normal
distribution.

Glu tCho

Metabolite
cycled

Metabolite
cycled

Water
suppressed

Water
suppressed

FIG. 7. CRLB maps of 4 major metabolites acquired using water-suppressed and metabolite-cycled 'H FID MRSI at 3T and 9.4T. CRLB

maps are shown between 0% and 40%.
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FIG. 8. Quantitative comparison of the metabolite ratios (/NAA) of
5 different metabolites resulting from water-suppressed (blue) ver-
sus metabolite-cycled (red) 'H FID MRSI at 3T (top) and 9.4T (bot-
tom). Each box contains the concentration values of all the voxels
in the brain region for all the volunteers.

Comparison of the 2 field strengths (Supporting Fig. S1
and Supporting Table S1) show that the SNR of the 9.4T
was ~3 times greater than 3T. However, the linewidths of
the 9.4T were much larger because of B, inhomogeneity
and shorter T;. Despite the larger linewidths, the CRLBs
of the fits were lower for the 9.4T, especially for the
smaller metabolites. This makes the fit results more reli-
able at higher field strengths.

We also demonstrated the first implementation of non-
water-suppressed MRSI at ultra-high fields (9.4T) in the
human brain. A reasonable scan-time could be achieved

Table 2
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by using a low SAR adiabatic inversion pulse (25)
instead of the conventional sech/tanh pulse that is typi-
cally used (2). The TR was 700 ms and the scan duration
was, therefore, 17.5 min. However, the drawbacks of this
pulse compared to the sech/tanh pulse is that the inver-
sion profile is not as flat, and a higher B} is generally
required to reach the required bandwidth. The slight
non-uniformities of the inversion profile can be corrected
by measuring a B map and simulating the inversion
profiles at each voxel (as described in this study). This
correction was necessary because some regions with low
B operated in the sub-adiabatic regime. To circumvent
this, more B efficiency would be required. The retro-
spective correction is more complex and time-consuming
compared to conventional MC methods. However, the
benefit of a pulse with lower SAR is that the TR is
almost half the duration of the sech/tanh pulse (for a
similar bandwidth).

To further reduce the scan duration, non-uniform k-
space trajectories can be used (as demonstrated in [19])
along with the short TR. Accelerations methods that
under-sample k-space, such as SENSE (35), GRAPPA
(36), CAIPIRINHA (23,37), or compressed sensing (38,39)
have been demonstrated for the acceleration of water-
suppressed 'H MRSI and can also be used to reduce the
scan duration.

Limitations

A limitation of using metabolite-cycling is that it is a
subtraction method and is therefore sensitive to subtrac-
tion errors. If there are slight differences between the
inverted and non-inverted spectra then small perturba-
tions arise in the subtracted signal. This can result in
baseline distortions and make the spectra more difficult
to fit.

The B, inhomogeneity is another limitation of ultra-
high field strengths. The B, inhomogeneity affects the
cutoff frequency of the inversion pulse at different voxel
positions. This can cause the spectra to be cut off too
much and hence affect the myo-inositol peak close to
4.2ppm. Similarly, a shift in the other direction can

Statistical Analyses of the Metabolite Ratio Differences between the Water-Suppressed and the Metabolite-Cycled MRSI Data Sets for 5

Different Metabolites at 3T and 9.4T

Welch 2 Sample Statistical
Mean Relative Concentrations (/NAA) Shapiro-Wilk Normality (P-value) t-Test (P-value) Power
Water-Suppressed Metabolite-Cycled Water-Suppressed Metabolite-Cycled

3T
Cre 0.641 = 0.081 0.739+0.135 6.57E-11 4.47E-16 2.20E-16" 0.275*
Glu 0.733*=0.179 0.734 +=0.209 0.243 0.080 0.953 0.046
tCho 0.136 = 0.045 0.164 = 0.075 4.44E-06 8.41E-05 5.47E-08" 0.058
GSH 0.187 = 0.060 0.156 = 0.080 4.19E-05 2.23E-04 6.72E-05* 0.055
ml 0.391 + 0.069 0.446 =0.133 1.09E-08 3.37E-05 1.45E-07* 0.106*
9.4T
Cre 0.589 + 0.073 0.687 = 0.159 8.11E-08 4.36E-05 2.20E-16* 0.350*
Glu 0.691 +0.135 0.701 £0.174 0.071 4.33E-03 0.312 0.049
tCho 0.187 = 0.048 0.196 = 0.083 6.51E-3 4.36E-10 0.038 0.055
GSH 0.172 £ 0.040 0.199 +0.070 5.45E-16 1.01E-05 1.36E-11* 0.067
ml 0.480 + 0.074 0.539+0.178 1.14E-05 0.100 2.01E-09* 0.146*

*Values with high statistical significant/powerful.
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cause more of the water peak to be inverted, which
results in more baseline distortion. Furthermore, the
challenge of By shimming over a whole slice results in
larger linewidths in some voxel positions. Larger line-
widths not only decrease the accuracy of the fits but also
cause baseline distortion from a broader water peak.
Both the 3T and 9.4T data were acquired using 2°¢ order
spherical harmonic B, shimming. B, homogeneity can be
improved using higher order spherical harmonic shim-
ming (40,41) or using the multi-coil approach (42).

Because low repetition times were used, the short TR
may result in different saturation effects because of the
different T, relaxation times for metabolites in different
tissue types. The TRs for the water-suppressed and MC
sequences were kept the same to account for similar
relaxation effects. Corrections for T, and T, need to be
performed in quantification (43), however, this is cur-
rently not possible because the T; and T, values at 9.4T
are not known.

To account for B] inhomogeneity, the metabolite ratios
(with respect to NAA) were used in the data analysis.
However, the NAA maps are also susceptible to fitting
uncertainties and relaxation effects. It is still possible
that the concentrations of NAA are different between the
water suppressed and MC spectra. Leibfritz and Dreher
(5) also found that (besides creatine and lactate) certain
metabolites such as NAA may be affected by chemical
exchange. However, the difference was only slightly
above the limits of the experimental error. If NAA does
decrease then it could also explain why there may be an
increase in mI/NAA. To perform accurate quantification,
more sophisticated methods such as the ones described
in (44) are required to account for Bj /B; variations (that
are especially problematic at ultra-high field).

The larger variance of the distribution of concentra-
tions corresponds to the slightly higher CRLBs for MC
spectra. The larger variance in the concentrations of
some metabolites is mostly because of the larger baseline
distortion. The larger water signals for MC were seen to
cause more baseline distortion than in the case of water
suppression. The larger distortion can make it difficult
for the fitting algorithm to fit a spline baseline. Further-
more, because of the ultra-short echo times and the short
TRs, macromolecule signals are also significant and con-
tribute to the baseline if they are not accounted for in
the fitting routine. Although it is certainly possible to fit
the spectra with macromolecules (45), using a single
macromolecule baseline is not sufficient for MRSI
sequences because of regional differences. Because the
MRSI sequence has low TR, there will be different relax-
ation effects of the individual macromolecules. Using
individual macromolecule components is also possible
(46), however, it is difficult because the spectra may be
over-fit because of over-parametrization and result in
less reliable spectral fits. The presence of unsuppressed
water peaks in the MC spectra, which are orders of mag-
nitude larger than the metabolite peaks, will result in a
much bigger dynamic range of signal amplitudes com-
pared to the water suppressed signals. Depending on the
gain of the receiver analog-to-digital convertor (ADC),
this may result in quantization noise in the acquired MC
data compared to the water suppressed ones. However,

by using the large water peak for frequency alignment
between averages, previous single-voxel studies showed
an improvement of SNR when using MC compared to
water suppression methods (4,19). For MRSI applica-
tions, however, only 1 average can be acquired because
of scan time limitations. Emir et al. (19) reported similar
values of SNR for the MC and water-suppressed data
acquired at 3T. In this study, we also got similar results
and found the SNRs of the 2 techniques to be similar at
both field strengths.

CONCLUSIONS

Water suppression can cause chemical exchange effects
to occur and hence alter the quantification of the concen-
trations of metabolites. Non-water-suppressed spectros-
copy allows us to measure these exchange effects and
also allows us to acquire spectra unaffected by chemical
exchange.

In this work, we combined the benefits of a slice-
selective and non-lipid-suppressed "H FID MRSI sequence
with a low-SAR adiabatic asymmetric inversion metabo-
lite cycling pulse and were able to achieve low TRs of 550
ms and 700 ms on 3T and 9.4T, respectively. The resulting
low TR makes metabolite-cycled MRSI feasible at ultra-
high fields. Despite the advantages of non-water-
suppressed metabolite-cycling spectroscopic imaging,
implementing such technique at ultra-high fields is diffi-
cult because of the strong B, and B; inhomogeneities and
the high SAR required for the inversion pulse. Using this
technique, we were able to show the first metabolite maps
acquired with a metabolite-cycled 'H FID MRSI sequence
at 9.4T. We compared the results of this technique to a
water-suppressed version of the same sequence and per-
formed the same study at 3T for comparison.
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Fig. S1. CRLBs, SNR, and FWHM of 3T and 9.4T averaged across 10
volunteers.

Table S1. Statistical comparison of the SNR, FWHM, CRLBs, and metabo-
lite ratios between 3T and 9.4T for 10 volunteers.



Table S1. Statistical comparison of the SNR, FWHM, CRLBs and metabolite ratios between 3T and 9.4T

for 10 volunteers.

3T 94T t-test
p-value Stat. power
FWHM 5.61+1.42 23.49+7.71 0.0 1.0
SNR 30.42+9.89  107.38+36.93 0.0 1.0
CRLB NAA 4.80+1.06 4.54+0.80 2.06E-04 0.937
Cre 5.86+0.69 5.65+0.79 3.56E-04 0.76
Glu 11.52+4.59 6.84+1.78 0 1.0
tCho 9.47+1.85 7.37+1.45 0 1.0
GSH 18.82+7.26 14.55+2.81 0 1.0
ml 10.61+1.75 8.95+2.51 0 1.0
Concentration Cre 0.643+0.049 0.608+0.074 7.74E-12 0.077
(/NAA) Glu 0.699+0.180 0.661+0.122 9.95E-04 0.074
tCho 0.156+0.044 0.206+0.057 2.20E-16 0.103
GSH 0.170+0.039 0.157+0.029 2.90E-07 0.045
ml 0.375+0.049 0.44+0.076 2.20E-16 0.124
CRLB(%) SNR FWHM (Hz)
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Figure S1. CRLBs, SNR and FWHM of 3T and 9.4T averaged across 10 volunteers.
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Results: Coil-by-coil x-t sparse compressed sensing reconstruction was not able to reli-

ably recover the nonlipid suppressed data, rather a combination of parallel and sparse
reconstruction was necessary (SENSE x-t sparse). For acceleration factors of up to 5,
both the low-rank and the compressed sensing methods were able to reconstruct the
data comparably well (root mean squared errors [RMSEs] < 10.5% for Cre). However,
the reconstruction time of the low rank algorithm was drastically longer than com-
pressed sensing. Using the optimized compressed sensing reconstruction, acceleration
factors of 4 or 5 could be reached for the MRSI data with a matrix size of 64 X 64. For
lower spatial resolutions, an acceleration factor of up to R~4 was successfully
achieved.

Conclusion: By tailoring the reconstruction scheme to the nonlipid suppressed
data through parameter optimization and performance evaluation, we present high
resolution (97 puL. voxel size) accelerated in vivo metabolite maps of the human brain
acquired at 9.4T within scan times of 3 to 3.75 min.
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1 | INTRODUCTION high field strengths. Among the commonly used "H MRSI

sequences, slice-selective ultra-short TE '"H FID MRSI'” is
Proton 'H MRSTI is a powerful tool for mapping the metabo- ~ fast, and not gradient intensive. In addition to offering high
lites of the human brain that can benefit greatly from ultra- ~ SNR, it is able to detect metabolites with short T;, and has

low chemical shift displacement. This makes it a very suita-
ble candidate for fast and high resolution metabolite mapping
*Sahar Nassirpour and Paul Chang contributed equally to this work. at ultra-high fields (UHF).
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Nevertheless, MRSI scans even with such a fast sequence,
still suffer from lengthy scan times. This problem has been
mitigated at lower field strengths by the use of acquisition
schemes such as echo-planar spectroscopic imaging (EPSI) 5!
or non-Cartesian trajectories.'? Furthermore, recently several
approaches based on the principle of low-rank and the spatio-
spectral correlations of the MRSI data were proposed and
incorporated in the EPSI sequence to further accelerate the
acquisition.'*'® However, applying the same methods at UHFs
is challenging due to the higher sampling bandwidth require-
ments that will in turn require stronger gradient systems.

Several approaches have been investigated for accelerat-
ing the "H FID MRSI sequence at ultra-high fields. In-plane
acceleration using parallel imaging (PI) can be done by
means of GRAPPA,"” SENSE,*’ or CAIPIRINHA.>* How-
ever, the acceleration factors are limited by the SNR of the
spectra and the g-factor related noise amplification. Addition-
ally, depending on how the calibration data are acquired, it
will add to the scan time, such that the effective acceleration
factor is usually lower than the nominal one.

Several efforts have been made to optimize the acquisi-
tion of the FID MRSI sequence as well as the reconstruction
process of the PI methods to enable higher acceleration fac-
tors. Kirchner et al*® used SENSE acceleration together with
an over-discrete reconstruction scheme to achieve an acceler-
ation factor of 4. However, because specific absorption rate
demanding outer volume suppression pulses were still used
in this study, the scan time was 42 min for a matrix size of
20 X 16 at 7T. Hangel et al'® chose GRAPPA and showed
that for efficient 2D GRAPPA acceleration, the lipid signal
should be suppressed. They performed a specific absorption
rate-efficient double inversion recovery lipid suppression and
were able to achieve an acceleration factor of 9. For a matrix
size of 64 X 64, their required scan time was 8 min at 7T.
Note that the use of lipid suppression schemes lengthened
the TR in these studies due to the increased specific absorp-
tion rate. To acquire fast high resolution MRSI data at UHF,
no lipid suppression scheme should be applied. This enables
the use of ultra-short TRs. However, because the unsup-
pressed subcutaneous lipid signal is orders of magnitude
larger than the metabolites of interest inside the brain, any
residual aliasing artifact from the lipid ring will overshadow
the metabolites in the brain and prevent accurate quantifica-
tion. Therefore, for the nonlipid suppressed 'H FID MRSI,
more advanced acceleration methods are required.

Strasser et al’® used a controlled aliasing PI method (CAI-
PIRINHA) on the nonlipid suppressed FID MRSI sequence
to control the lipid signal better than the conventional PI
methods. They combined the 2D CAIPIRINHA with slice
CAIPIRINHA and introduced (2+1)D CAIPIRINHA for
FID MRSI, which enabled the acquisition of a 64 X 64
matrix size in an effective scan time of 3.75min at 7T.
Hangel et al* used the same strategy to acquire ultra-high

resolution MRSI data with a matrix size of 100 X 100 in an
effective time of 4.25 min at 7T. To date, these are the fastest
reported 'H FID MRSI data acquisitions at UHF. Note that
these studies used acceleration also in the third spatial direc-
tion by simultaneous excitation of multiple slices (multi-band
excitation) and resolving the slices later. Given the strong By
inhomogeneities at ultra-high fields, this method has the dis-
advantage that slice-wise dynamic shim updates cannot be
used, rather several slices have to be acquired with the same
By shim setting.

Another approach for acceleration which does not rely
on the structured nature of the aliasing artifact for recovering
the original signal, is compressed sensing (CS). The concept
of CS was introduced by Candes et al*' in 2005 and picked
up by the MR community shortly after.”*** Essentially, CS
is a technique for recovering missing data points from an
undersampled dataset by exploiting two key concepts: spar-
sity (or transform sparsity) of the underlying signal, and
incoherent, noise-like undersampling artifacts in the sparse
domain. Due to the inherent sparsity of MR images, CS is a
promising technique that can enable higher acceleration fac-
tors compared with PI methods. Successful application of CS
to any MR imaging method relies on the ability to implement
a random (or pseudo-random) undersampling scheme in the
acquisition trajectory and the sparsity of the signal.

CS has been applied in the field of MRSI since the early
years of its application in MR. Spectroscopic imaging is multi-
dimensional: it has two or three spatial dimensions and one tem-
poral dimension and is by nature very sparse. To achieve
incoherent aliasing artifacts in the image domain, one can apply
random undersampling to one or more of these dimensions. In
fact, if the random undersampling is performed across multiple
dimensions, CS can perform better.> In EPSI sequences,24 each
readout simultaneously acquires one spatial encoded and one
temporal dimension, and hence the other incrementally col-
lected spatial dimensions can be randomly undersampled. In J-
resolved spectroscopy imaging, there is an additional temporal
dimension that can also be randomly undersampled. These
undersamplings can be achieved using phase-encoding (PE)
blips in the sequence. In conventional chemical shift spectros-
copy imaging with multiple PE directions, random undersam-
pling can easily be applied to all PE directions.

The second key factor that has to be considered, is the
nature of the signal in the MRSI application at hand, specifi-
cally its degree of sparsity. CS has been previously applied to
132528 19 29 31p 30 454 23Na®1 MRS, as the very sparse
nature of X-nuclei spectra makes them a good candidate for
CS. CS has also been applied to accelerate J-resolved
MRSIL3>3 For '"H MRSI, CS has been used to accelerate
localized and lipid-suppressed sequences.’®>® The only
account of CS applied to a full-FOV 3D '"H MRSI is in Otazo
et al,>® where it has been used to further accelerate an EPSI
sequence by a factor of 4. However, the results show that the
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sensitivity maps are normalized to the maximum receive sensitivity

acceleration is limited by the degree of sparsity of the signal,
and possibly the methodology. The problem becomes even
worse for a slice-selective and nonlipid suppressed 'H MRSI
scheme. The reason is that the presence of strong lipid signals
from the subcutaneous lipid ring prevents the CS reconstruc-
tion algorithm from recovering the metabolites of interest that
have lower SNR in comparison. In fact, the combination of
the denoising and sparsifying transforms used in CS recon-
struction will treat the strong lipid signal as the major features
of the image, and the small metabolite peaks as noise.

Thus, despite the straight-forward implementation of ran-
dom undersampling in nonlipid suppressed 'H FID MRSI
sequences, CS has never been successfully applied to accel-
erate this imaging technique. In this work, we present a
methodology that enables successful application of CS to
nonlipid suppressed ultra-short TE and TR 'H FID MRSI for
high acceleration factors beyond those achieved through 2D
PI. We highlight the key factors leading to a reliable recov-
ery of the signal despite the presence of strong lipid signals,
which include the necessity of combining parallel imaging
and sparse reconstruction®” or alternatively using low rank
structural matrix completion methods.*' We study the effect
of matrix size and SNR on the achievable acceleration factor
using this method, and finally, we present high resolution in
vivo metabolite maps of the human brain acquired from an
accelerated 'H FID MRSI sequence at 9.4T.

2 | METHODS

2.1 | Data acquisition

All experiments were conducted on healthy volunteers on a
9.4T Siemens whole-body human scanner (Siemens, Erlangen,
Germany). A total of six healthy volunteers were scanned for

TxRx

Coil Sensitivity Maps

. 120%
FAI].UII]

1, and MRSI SNR maps along with the coil sensitivity maps for the 18Tx/32Rx RF coil used in this study. Coil

this study. All volunteers gave informed consent according to
the local ethics board regulations before the scans. The vendor
preimplemented image-based second-order B, shimming was
performed on a rectangular shimming volume (with the same
dimensions as the imaged slice) for all studies. An in-house
developed 18Tx/32Rx transceiver RF coil with two dedicated
transmit coils, 16 TxRx loops, and 16 dedicated vertical
receive loops arranged in two rows on a cylindrical holder was
used for data acquisition.42 Representative B, Bf’, and coil
sensitivity maps achieved with this setup in vivo are shown in
Figure 1. The By map was acquired using a 2D gradient echo
sequence with a TR of 100 ms and a delta TE of 0.76 ms. For
B, mapping, an actual flip angle imaging sequence (AFI) with
a flip angle of 60 degrees, TR;/TR, of 20 ms/100 ms and TE
of 4 ms was used.

Fully sampled high resolution single-slice MRSI data
were acquired from a nonoblique slice placed above the Cor-
pus Callosum in 3 volunteers using a nonlipid suppressed
ultra-short TR and TE "H FID MRSI sequence.'”** An opti-
mized three-pulse water suppression scheme with a duration
of 62 ms was incorporated in the sequence before excitation
as described in.” Other parameters of the sequence include:
FOV =200 mm X 200 mm, slice thickness = 10 mm, matrix
size = 64 X 64, nominal voxel size =97 pL, flip angle = 30
degrees, TE = 1.56 ms, TR =300 ms, spectral bandwidth =
8 kHz, acquisition time =128 ms, total acquisition time-
= 15 min. After each scan, a nonwater suppressed reference
scan with the same parameters as the original MRSI scan,
but at four times lower spatial resolution was acquired for
eddy current and zero-order phase correction.

The "H FID MRSI sequence used in the study has two
spatial, and one temporal dimensions. Therefore, the data can
be theoretically undersampled in three dimensions. Because
after each excitation and 2D phase-encoding the whole FID
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is acquired within one TR, the price paid for fully sampling
the temporal dimension is minimal. However, in each TR,
the two spatial dimensions are incrementally phase-encoded,
and hence easy to undersample in a fully random manner by
skipping certain points in k-space without requiring any fur-
ther modifications to gradients or the ADC read-out. To
achieve optimal randomness in the acquisition, variable den-
sity sampling masks were designed for different acceleration
factors using the method described in Cheng et al.** Because
the most valuable data with the highest SNR in MR applica-
tions are located in the center of k-space, this method divides
the kspace into concentric rings and implements random
undersampling of increasingly higher degrees as the rings
progress toward the outer k-space. The optimal mask was
generated using Monte-Carlo simulations that minimizes
peak interference. The parameters used to generate all masks
were: polynomial degree = 5, radius of fully sampled center-
= 0.12, number of Monte-Carlo iterations = 10.

2.2 | CS reconstruction optimization

CS reconstruction can be formulated as an optimization prob-
lem where the sparsity of the reconstructed signal is maxi-
mized subject to a data consistency constraint. Two sparsity
terms were used to enforce x-t sparsity: 3D total variation
(over two spatial dimensions and a time dimension) and 2D
4™ order Debauchies wavelet with a four-level decomposi-
tion over the two spatial dimensions. A norm-1 metric is typ-
ically used for the sparsity terms and a norm-2 metric is used
for the data consistency constraint. The objective function
was, thus, generally:

min ([ Fux=ylly 21 | ¥, + 22 [TV )] )

where F, is the undersampled Fourier transform, y is the
measured k-space data (used for enforcing data consistency),
W is the 2D wavelet transform in the two spatial dimensions,
TV is the 3D total variation, and A, A, are tuning parameters
that trade-off data consistency for sparsity and can be tuned
to trade-off wavelet sparsity for total variation sparsity (and
vice-versa). Also note that the x term is in the image-domain
(not k-space) and time-domain.

As mentioned earlier, the strong lipid signals present in a
nonlipid suppressed MRSI data, will have significantly
higher SNR compared with the metabolites of interest.
Therefore, the CS reconstruction should use all the help it
can get for increasing the SNR of the metabolites to be
higher than the noise-like artifacts resulting from high accel-
eration factors. This is where CS reconstruction can be com-
bined with PI, where the receive sensitivity maps of the coils
are used as an additional tool in reconstruction. It should be
noted that despite the obvious advantage of combining paral-
lel imaging with CS, this approach requires a calibration

scan to extract the coil sensitivity profiles. Any inconsisten-
cies between the actual MRSI scan and the calibration scan
(e.g., patient movement) will reduce the accuracy of the
extracted coil sensitivity map.

In this regard, a calibration-less coil-by-coil reconstruc-
tion is preferable. With this in mind, we investigated the dif-
ferences between a coil-by-coil and a SENSE x-t sparse*’ CS
reconstruction (for R =4). A conjugate gradient method was
used for solving the optimization problem in both methods.
The coil-by-coil reconstruction uses the objective function
(defined above) for each of the coil channels separately. The
parallel-sparse method combines the coil channels using the
coils sensitivity maps when calculating the sparsity measures
during the reconstruction. Therefore, in this case, the x term
is 3D (that is, two image domain and one time domain) coil-
combined data, and F,x is a 4D term that also includes the
uncombined coil channel data.

For the SENSE x-t sparse reconstruction, the coil sensi-
tivities were extracted from a low resolution 2D FLASH
scout image acquired with the same slice position and prop-
erties as the MRSI study with the following parameters:
TR =312 ms, TE=9 ms, flip angle =25°. The coil sensi-
tivities were extracted from the raw data using ESPIRIT.*
This method computes the coil sensitivities by eigenvalue
decomposition in the image-domain.

For consistency, the data are usually first normalized, so
that the same tuning parameters can be applied to differently
scaled data. Normalization is typically performed by dividing
the variable x by its maximum value. However, in our recon-
struction the data were normalized by dividing them by:

mean(x)+2 x std(x) )

where x is the undersampled k-space data, and std(x) is the
standard deviation of x. This is more robust against noise in
the data (in case, max(x) is an unusually large outlier). How-
ever, for most cases, the normalized data using both methods
will be on a similar scale and thus the tuning parameters
should be compatible for either normalization method.

The tuning parameters A, A, are usually empirically cho-
sen. Typical values for A are in the range 0.001 to 0.01. In a
previous application of compressed sensing to MRSL® 2,
was larger than A;. In this study, we fixed A; as 0.001 and
found the optimal A, by iterating over a range of
logarithmically-distributed values between le* to le 2. The
objective function was the norm-2 of the error between the
spectra of the fully-sampled data and reconstructed data:

rr}lin ||JT1 (xfull _qu'('E[(kz)) ”2 (3)

where F is the 1D Fourier transform in the time-domain
and Xuece1(A2) s the reconstructed x (using Equation 1) for a
given X,. The objective function was calculated in the spec-
tral domain between the range 0.5 to 4.5 ppm which includes
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the metabolites of interest. This optimization was run (using
the conjugate gradient method) on one dataset to find the
optimal tuning values and the optimal A, was used for all
subsequent reconstructions.

After optimizing the CS reconstruction method, we also
compared this reconstruction with a low-rank, structured
matrix completion method (simultaneous auto-calibrating
and k-space estimation [SAKE]).41 Unlike the CS method,
this method is directly applied to the k-space data and recon-
structs the missing points by enforcing low rank and struc-
tured matrix properties on the data. SAKE reconstruction
was realized using the adopted version of the Cadzow algo-
rithm*® proposed by Shin et al*' with the following parame-
ters:  kernel-window-size = 6 X 6,
number of singular values to threshold = 1.8, eigen-value
threshold = 0.9, and 200 iterations.

window-normalized

2.3 | Spectral postprocessing

After the CS reconstruction, the spectra were postprocessed
using a custom MATLAB script. The postprocessing steps
included: spatial Hamming filtering, eddy current and zero-
order phase correction using the low resolution water refer-
ence image,*’ coil combination using the singular-value-
decomposition (SVD) method,*® prediction of the missing
points at the beginning of the FIDs using a backward linear
prediction algorithm®® and residual water peak removal using
Hankel Lanczos singular value decomposition method.”® No
additional apodization or phase correction was applied. The
spectra were then fitted using the LCMODEL software.’!
The basis-set was simulated using the GAMMA library
(http://www.nmr.ethz.ch/Gamma.html) and included spectra
of 18 brain metabolites (namely glycerophosphocholine,
taurine, creatine [Cre], glucose, N-acetyl aspartate [NAA], ascor-
bate, lactate, y-aminobutyric acid, N-acetylaspartylglutamate,
glutathione, glutamate [Glu], phosphoethanolamine,
inositol, phosphocholine, alanine, glutamine, scyllo-inositol,
and aspartate) with a linewidth of SHz. No T, or T, attenuation
correction was performed on the metabolite maps.

myo-

2.4 | Acceleration comparison

To study the effect of increasingly higher acceleration fac-
tors, four different undersampling masks (Figure 2) were
used. Therefore, the effective acceleration factors and scan
times were R=2, 4, 5, and 10 and acquisition time = 7.5,
3.75, 3, and 1.5 min, respectively.

The metabolite maps of four major metabolites (NAA,
Glu, Cre, and total choline [tCho]) were compared for each
acceleration factor. Furthermore, because nonlipid sup-
pressed data were used, lipid contamination maps were cal-
culated to compare the effect of different acceleration factors.

The lipid maps were defined as the absolute integral of the
spectra between 0.3 and 1.8 ppm.

Quantitative comparisons were performed using four
metrics. First, the lipid contamination power (LCP) was
calculated. This is similar to the artifact power defined in
Strasser et al,3 however, the measure was calculated in the
spectral domain between 0.3 to 1.8 ppm. Therefore, the LCP
was defined as:

LCP=100-

ZchZTEmaskaEFmask|Sacce,(€h7 r 7f) _S)‘hll (Ch’ r 7f)|
ZchZ7Emask ZfEFmask ‘Sfull (Ch’ r ’f) |

“
where ch are the different coil channels, r is the voxel posi-
tion, f is the spectral point, mask is the spatial mask contain-
ing only the brain region, Fmask is the frequency domain
mask (between 0.3 and 1.8 ppm), and Sy and Sy are the
signals of the accelerated and fully sampled datasets, respec-
tively. The spatial mask was manually defined on each vol-
unteer. Second, an SNR ratio metric similar to the g-factor
was calculated from:

RMS(noiseyecer)
\/E . RMS(noiseﬁ,H)

®)

where the noise was calculated from the real part of the
spectrum between 10 and 11ppm, and R is the effective
acceleration factor. Third, RMSE of the metabolite maps
were calculated as:

. N2
E : Caccat(r)=Cpun (1)
r€mask Crun(T)

RMSE=100 -
N

©)

where C is the concentration of the metabolite and N is the
number of voxels in the spatial mask. Lastly, the Cramer-
Rao lower-bounds (CRLBs) of the fitted metabolite maps
were used as a metric for data fidelity.

2.5 | Effect of matrix size and SNR

It is well known that increasing the spatial resolution of the
MRSI data results in two competing effects: on one hand,
the SNR decreases as the voxel size decreases which results
in noisier spectra, but on the other hand, the FWHM and
lipid contamination also decrease which results in more accu-
rate spectra.

So far, all comparisons were done on the high resolution
(in-plane matrix size = 64 X 64) FID MRSI data. To high-
light the effect of matrix size and SNR on the highest achiev-
able acceleration factor using CS, the in-plane matrix size of
the high resolution fully sampled data was retrospectively
reduced to 48 X 48 and 32X 32 and the undersampling
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FIGURE 2 Optimal random variable density k-space undersampling masks calculated for different acceleration factors. The light orange color marks

the k-space points that are acquired

k-space masks were similarly truncated. The effect of
increasingly higher acceleration factors on the resulting
metabolite maps on these reduced resolution data was stud-
ied and the same quantitative measures were used for the
comparison.

3 | RESULTS

3.1 | CS reconstruction optimization

The optimization of the tuning parameters showed that the
minimum error value was achieved for A, =0.003. Hence,
the parameters A;=0.001 and A,=0.003 were consistently
used for the reconstruction of all datasets and acceleration
factors.

The reconstructed data for the coil-by-coil x-t sparse and
the SENSE x-t sparse method are shown in Supporting Infor-
mation Figure S1, which is available online. The coil-by-coil
x-t sparse reconstruction (red) clearly has large lipid artifacts
that distort the spectra while the SENSE x-t sparse recon-
struction (black) has reasonable spectra that can be further
processed and fitted. The metabolite maps for three major

metabolites resulting from the coil-by-coil CS reconstruction
are shown in Figure 3. It can be seen that the large distortion
in the coil-by-coil CS reconstruction resulted in a complete

Cre Glu

FIGURE 3 Metabolite maps of three major metabolites shown once
for the fully sampled case (top row), and once for the R = 4 accelerated
case (bottom row) reconstructed with the coil-by-coil sparse reconstruc-
tion. The metabolite maps are normalized between 0 and 1. The coil-by-
coil reconstruction completely fails in recovering the metabolite of inter-
est. The maps in the bottom row looked cropped at the map because the fit-
ting routine aborted the process due to the failure in fitting the spectra
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FIGURE 4 Representative spectra from four different positions in the brain shown for twofold (R = 2), fourfold (R = 4), and 10-fold (R =

ppm 0.1 45 ppm

0.1 45 ppm 0.1
10) accel-

eration. The top panel shows the accelerated spectra reconstructed with the SENSE x-t sparse CS reconstruction method, and the bottom panel shows the

spectra reconstructed with the SAKE method. Accelerated spectra (red) are overlaid on fully sampled spectra (black) for all cases

failure when quantifying the metabolites. Hence, the coil-by-
coil x-t sparse CS reconstruction method was not used any
further in the study.

3.2 | Acceleration comparison

Figure 4 shows the results of the acceleration factor compari-
son done with both the SENSE CS and the low rank
reconstruction schemes. For each reconstruction scheme, rep-
resentative spectra with acceleration factors of R = 2, 4, and
10 are overlaid on the fully sampled spectra for four different
positions in the brain. For R = 2, the reconstructed spectra
using both the CS and the SAKE reconstruction are very
similar to the fully-sampled spectra. For R = 4, the low rank
reconstruction was still able to recover the spectra very well,
whereas the CS reconstruction showed some deviations in
the lipid range in voxels closer to the skull region. As the

acceleration factor increases to R =10, the deviations
increase for both methods.

The lipid contamination maps for both reconstruction
methods are shown in Figure 5. These maps illustrate how
the lipid signal contaminates the signal in the brain as a result
of the random undersampling. It can be seen that the lipid
contamination gets higher overall as we go to higher acceler-
ation factors. However, unlike PI acceleration methods, the
artifact is randomly scattered due to the random undersam-
pling. It can be seen that SAKE resulted in less lipid artifacts
than the CS reconstruction (also evident in the spectra shown
in Figure 4). However, even for R = 10 in the CS reconstruc-
tion, the maximum lipid contamination inside the cortex was
approximately 5 to 8% of the maximum lipid signal in the
image.

The resulting metabolite maps for the same subject along
with the error in the maps compared with the fully sampled
case are shown in Figure 6. Note that no spatial smoothing
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0

FIGURE 5 Lipid contamination maps resulting from different acceleration factors. The maps in are shown without any thresholding. Row (a) shows

the full field of view while in row (b) the skull lipid ring has been set to zero to better visualize the lipid contamination inside the brain. The top panel shows

the maps reconstructed with the SENSE x-t sparse CS reconstruction method, and the bottom panel shows the maps reconstructed with the SAKE method

or interpolation was applied to these maps. For both the CS
and SAKE reconstruction, the maps show very good recon-
struction for R =2, and acceptable reconstruction for R =4
and 5. The noise increase is evident as the acceleration factor
increases. Although quite noisy, the gray/white matter con-
trast can clearly be discerned for even high accelerations of
R = 10. It can be seen that for higher acceleration factors, the
errors in the maps resulting from the SAKE reconstruction
are higher than for the CS. The CRLB maps (shown in Fig-
ure 7) for the same metabolite confirm this result: the overall
CRLB values appear to be higher for the SAKE reconstruc-
tion. In general, for each reconstruction scheme, the CRLB
maps are similar for all acceleration factors and only slightly
increase for higher accelerations. The metabolite maps for
three more metabolites (NAA, Glu, and tCho) are shown in
Supporting Information Figure S2. It can be seen that for
higher acceleration factors, the tCho maps deteriorates so
much more for the low-rank reconstruction compared with
CS.

The quantitative measures of the reconstruction are
shown in Figure 8 and summarized in Table 1. The LCP of
the CS reconstruction (solid black line) is clearly higher than
the SAKE reconstruction (dotted line). There is also a clear
increase in LCP as the acceleration factor, R, increases. The
CRLBs of the metabolite maps were calculated for the four

major metabolites and were higher for the low-rank recon-
struction. Although there was an increase in the CRLBs for
higher acceleration, they are only slightly increased. The
RMSE of the metabolite maps also increase as R increases.
The RMSE of tCho for the SAKE reconstruction is much
higher than the CS reconstruction for acceleration factors
beyond R = 4.

To show the capability of the proposed method for
prospective acceleration, Supporting Information Figure S3
shows the metabolite maps resulting from prospectively
applying the CS method to 3 additional volunteers with
R =5 in vivo.

33 |

Figure 9 shows the metabolite maps of Cre for two additional
resolutions of 48 X 48 and 32 X 32 in-plane matrix size with
increasingly higher acceleration factors. The accelerated

Effect of matrix size and SNR

data was reconstructed using the CS reconstruction. The
corresponding metabolite maps for three more metabolites
(NAA, Glu, and tCho) are shown in Supporting Information
Figure S4.

It can be seen that even for the lower resolution cases,
the CS reconstruction shows good reconstruction for the



NASSIRPOUR ET AL. . . . . 9
Magnetic Resonance in MedlcmeJ—

Acceleration Factor

R =4

50
.g g
a O
Q
7]
e
Q
72
175
<]
& m
g wn
o =
O 9=
W
-
)
7]
m
[75]
=
o2

FIGURE 6 Metabolite map of Cre along with the corresponding RMSE between the fully sampled and accelerated cases are shown for different
acceleration factors. The top panel shows the maps reconstructed with the SENSE x-t sparse compressed sensing (CS) reconstruction method, and the bot-
tom panel shows the maps reconstructed with the SAKE method. The metabolite maps are normalized between 0 and 1, and the RMSE is shown between
0% and 20% of the metabolite map

R~4 in both cases. As expected the maps get noisier as the sampled data was 210, 164, and 111 for the 32X 32,
acceleration factor increases. 48 X 48, and 64 X 64 case, respectively. The quantitative

The nominal voxel size for the different resolutions were measures for the two reduced resolutions are also shown in
390uL, 174puL, and 97 L for the 32 X 32, 48 X 48, and Figure 8 and once again summarized in Table 1. The
64 X 64 case, respectively. The average SNR of the fully same trends of increasing LCP, RMSE and CRLB as the

Acceleration Factor

Compressed
Sensing

SAKE

FIGURE 7 CRLB maps corresponding to the metabolite maps of Figure 6 shown for different acceleration factors and reconstruction routines
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FIGURE 8 Quantitative comparison of different acceleration factors. On each graph, the red and blue line correspond to the in-plane matrix sizes of

32 X 32 and 48 X 48 reconstructed with the SENSE x-t sparse compressed sensing reconstruction, respectively. The two black lines correspond to the

matrix size of 64 X 64 once reconstructed with the SENSE x-t sparse compressed sensing reconstruction (solid black), and once with the SAKE method

(dotted black). The average value (averaged across the whole slice for the volunteers) is shown for each measure

acceleration factor increases can be seen for the reduced
resolution cases. Even though the LCP of the 48 X 48 case
(blue line) was lower than the 32 X 32 case (red line), the
CRLB and RMSE of the maps (up to R~4) were generally
higher for the 48 X 48 case. This is due to the competing
effect of SNR that dominates the quality of the maps. After
R~4, the lipid contamination dominates and the error in the
tCho map and the CRLBs become higher for the 32 X 32
compared with the 48 X 48 case. Note that, generally, the
quantitative measures of the 64 X 64 case were better than
the two reduced resolutions.

4 | DISCUSSION

The motivation for the present work was to explore a differ-
ent approach of acceleration that does not result in strong
and structured residual lipid artifacts, and can provide suffi-
cient and reliable in-plane acceleration to compete with 3D
acceleration methods. Because conventional PI acceleration

methods cannot satisfy these requirements, we turned to
CS for this study and successfully implemented it for
acquiring accelerated nonlipid suppressed metabolite maps
of the human brain with a matrix size of 64 X 64 in approx-
imately 3.75 or 3min (for R=4 and 5, respectively) at
9.4T. To the best of our knowledge, this is the fastest 2D
acquisition of "H FID MRSI data that result in reliable
metabolite maps.

Two approaches for reconstructing randomly under-
sampled data were studied in this work: a compressed sens-
ing approach relying on the principle of data sparsity for
recovering the missing points,”> and a pure k-space based
approach relying on the principle that the structured data
matrix is low rank.*' Both methods succeed in recovering
the missing data points without introducing additional arti-
facts in the spectra. Detailed comparisons between the two
methods showed that despite the fact that the low-rank recon-
struction resulted in lower lipid artifacts, the CS method
resulted in better metabolite maps at higher acceleration fac-
tors, especially for smaller metabolites such as tCho. This
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TABLE 1 Summary of the quantitative measures of different acceleration factors for the 64 X 64 in-plane matrix size once reconstructed with
compressed sensing and once with the SAKE method (A), and the two reduced resolutions reconstructed with the CS method (B)*

(A)
R=2 R=4 R=5 R=10
LCP CS 0.50 0.76 0.97 1.50
SAKE 0.33 0.49 0.68 0.92
CRLB (Cre) CS 5.64+1.10 6.21 = 1.39 6.49 +1.88 7.34+222
SAKE 6.44 +1.54 6.87 = 1.44 7.35+2.17 8.65 +2.66
CRLB (NAA) CS 4.18 £0.88 4.58 = 1.10 493 +261 537+1.24
SAKE 4.48 = 1.48 4.73 £0.81 5.19+2.94 591 +1.59
CRLB (tCho) CS 7.63 £ 1.66 8.61 £2.40 8.96 = 2.69 10.56 = 3.98
SAKE 8.82 +2.36 9.38 =2.40 10.05 = 3.04 12.66 = 8.11
CRLB (Glu) CS 7.06 = 2.40 8.41 £4.75 9.09 = 6.45 10.77 = 7.40
SAKE 8.48 =4.23 9.09 £4.24 10.15 = 5.87 12.57 = 8.55
RMSE (Cre) CS 5.76 7.87 10.25 14.86
SAKE 5.01 7.55 10.46 18.74
RMSE (NAA) CS 9.31 10.26 14.13 17.71
SAKE 5.25 8.25 12.06 19.05
RMSE (tCho) CS 9.65 12.32 14.93 21.82
SAKE 8.45 12.33 18.04 30.76
RMSE (Glu) CS 15.21 15.07 21.34 29.88
SAKE 9.08 14.92 19.53 33.82
Noise factor CS 0.39 = 0.31 0.52 +0.37 0.57 =0.36 0.76 = 0.55
SAKE 0.56 +£0.48 0.58 = 0.44 0.62 = 0.52 0.61 =0.48
B)
LCP CRLB (Cre) RMSE (NAA) RMSE (tCho) Noise factor
48 X 48 Full - 6.51 +1.37 - - -
R=16 1.80 8.67 +2.02 14.90 13.52 0.70 = 0.54
R=3.8 2.00 8.79 =245 19.36 17.52 1.22 = 0.60
R=6.7 2.19 10.65 = 3.12 24.13 22.87 1.36 = 0.70
R=11 2.80 11.49 +£3.53 28.02 31.97 0.88 = 0.70
32X 32 Full - 6.17 £1.12 - - -
R=13 1.79 7.07 £1.82 11.42 12.91 0.71 £0.46
R=26 1.99 7.33+232 13.16 16.57 0.88 +0.54
R=3.6 2.14 7.85£2.70 14.76 16.66 0.97 = 0.65
R=5.6 2.65 12.17 £3.02 19.14 22.83 0.81 =£0.69

Abbreviations: CRLB, Cramer-Rao lower-bound; Cre, creatine; CS, compression sensing; Glu, glutamate; LCP, lipid contamination power; NAA, N-acetyl aspartate;
RMSE, root mean squared error; SAKI, simultaneous auto-calibrating and k-space estimation; tCho, total choline;

“The lipid contamination power is abbreviated to LCP in the tables. The average value (averaged across the whole slice for the volunteers) is shown for each
measure.

can be attributed to the fact that the SAKE reconstruction the fitting routine and result in less accurate metabolite maps.
had more spatial noise resulting from inconsistencies in the This is evident from the fact that for any acceleration above
prediction of the outer k-space points. These small inconsis- R =4, the low rank SAKE method results in large errors in
tencies between the spectra of neighboring voxels confound the metabolite maps of tCho.
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FIGURE 9 Metabolite maps of Cre shown for two different spatial resolutions and with different acceleration factors. The resulting scan times are

also noted under each acceleration factor (in minutes). The SENSE x-t sparse compressed sensing reconstruction was used to reconstruction the accelerated

data. The metabolite maps are normalized between 0 and 1

In contrast, the CS method manages to recover the data
points while simultaneously enforcing spatial smoothness
(by minimizing the total variation). Another important differ-
ence between the CS and SAKE methods was their speed.
The SAKE method suffers from drastically longer recon-
struction time (~24h for the reconstruction of a 64 X 64
MRSI dataset versus ~20 min when CS was used) due to the
computational complexity resulting from high dimensional
structured matrices. Hence, we concluded that the CS
approach is the more practical way for achieving high accel-
eration factors for high resolution metabolite mapping of the
even the lower concentrated metabolites and the rest of the
comparisons in this work were done using CS. It should be
noted that by using faster algorithms, or by only performing
the low rank reconstruction method on the central part of the
k-space and combining it with L1-minimization methods for
the rest of k-space,41 one can reduce the reconstruction
time of SAKE. However, the performance of this kind of
reconstruction for the application at hand has to be further
studied.

For a successful CS implementation, extra care should be
taken in selecting the sparsifying transforms tailored to the
nature of the data. Total variation function as a sparsity mea-
sure is often sufficient to reconstruct randomly undersampled
data in most applications, however, it is also known to intro-
duce some smoothing into the final reconstruction. Another
commonly used sparsity transform is the wavelet transform.
This transform is able to preserve higher frequencies, how-
ever, it can sometimes result in patchiness. We have hence
combined both of these in the reconstruction problem. We
enforced x-t sparsity by performing the wavelet transform

over the two spatial dimensions (compared with one spatial
and one time domain in Geethanath et al).36 In addition, we
used a 3D total variation whereas Geethanath et al*® used a
2D total variation over the spatial domains. Additionally, the
tuning parameters for similar reconstruction methods in
previous studies were only empirically chosen. In this work,
the optimal ratio between the tuning parameters were found
by directly optimizing the reconstruction error to be
A1=0.001, A,=0.003.

Another important result of this work is work is the
requirement for sufficient SNR for CS. Because the metabo-
lite signals are orders of magnitude smaller than the water
signal, the SNR of MRSI data is much lower than other
imaging applications. As a result, the conventional CS
approach (coil-by-coil sparse reconstruction) that success-
fully recovers the data in other imaging applications, com-
pletely failed to reconstruct the MRSI data. This is likely due
to the fact that individual coil elements have lower SNR than
the coil-combined data or that some individual coil elements
pick up more nuisance signal due to their sensitivity profile.
Because random undersampling generates noise-like aliasing,
the peaks of interest in the spectra have to be above this
noise level for the reconstruction algorithm to recover them
correctly. Even though the residual water peak is still the big-
gest signal in the acquired spectra, the main problem is the
presence of lipid signals because they have broad peaks that
overlap with the metabolites of interest.

The water signal, however, corresponds to low frequen-
cies both spatially and spectrally. Because the central part of
the k-space is always fully sampled, this is less of an issue
for the reconstruction. On the other hand, due to the presence
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of large subcutaneous lipid signals, the reconstruction treats
the metabolites as noise and mostly recovers the lipids.
Hence, we needed to boost the SNR of the initial data by
combining CS with PI** and use the SENSE x-t sparse
reconstruction. An additional benefit of using a coil-
combined method is that the reconstruction time is much
faster and the disk memory required is less because the 4D
data are now combined into 3D data.

Although we performed the reconstruction in the time
domain, it is also possible to use the frequency domain.
More terms can be introduced into the optimization
function by separating the lipid and metabolite frequency
ranges (and possibly also spatially) and using different
weights for each term. This strategy offers more flexibility
in the reconstruction and can possibly further improve the
reconstruction.

A characteristic of compressed sensing is that it denoises
the data and, therefore, increases the SNR in the reconstruc-
tion. An implication of this is that the spectral noise is
approximately constant for all acceleration factors. Unlike PI
accelerations, the SNR of the reconstructed data does not
decrease with higher acceleration. However, it is evident that
the metabolite maps are noisier for higher acceleration. The
noise does not stem from lower spectral SNR of the recon-
struction (because this remains more or less constant), but
rather comes from the higher lipid contamination that the
reconstruction is unable to resolve. This is also shown in Fig-
ure 8 from the LCP and RMSE graphs. Another implication
of the constant spectral noise is that the confidence of the fits
remains more or less constant for all acceleration factors.
Although the CRLBs do increase slightly, the difference
between R =2 and R = 10 acceleration is only a few per-
cent. This also explains why the CRLBs and g-factor values
for R=2 are in fact lower than the values for the fully
sampled data.

Comparison of different acceleration factors showed that
for R=2 and 4, the reconstruction does very well. This
enabled the reliable acquisition of the 64 X 64 matrix size in
3.75 and 3 min at 9.4T. However, for R = 10, the spectra in
the lipid range deviate quite drastically. This indicates that
there is more lipid contamination than the reconstruction is
able to deal with. Because the temporal dimension was fully
sampled, the lipid contamination most-likely comes from the
spatial aliasing resulting from strong lipid signal close to the
skull region, and hence removing the lipid ring directly from
the k-space data after acquisition will have minimal effect on
the reconstruction performance.

Furthermore, the random undersampling generates alias-
ing artifacts that are noise-like (Figure 5) rather than the
structured fold-over artifacts that are typical for PI methods
such as SENSE. MRSI data acquired with lipid suppression
can probably be better reconstructed for the higher accelera-
tion factors; however, as mentioned earlier, lipid suppression

methods often drastically increase the scan duration due to
strict specific absorption rate limitations. Another possibility
is to use a crusher coil®® to crush the lipid signal from the
skull without prolonging the scan time. This will most likely
enable higher accelerations with the CS methodology
described in the present work.

To study the effects of SNR and spatial resolution on a
successful CS implementation, the CS method was success-
fully applied to two increasingly lower spatial resolutions
with in-plane matrix sizes of 48 X 48 and 32 X 32 at 9.4T.
The results suggested that the x-t sparse CS reconstruction
enabled the acquisition of reasonable metabolite maps for
both resolutions up to R~4. Naturally, compared with the
matrix size of 32 X 32, the 48 X 48 results in more anatomi-
cally detailed maps. The fact that the highest achievable
acceleration factor for both reduced resolutions was R~4 is
likely due to the fact that the degradation in the quality of the
maps as a result of CS acceleration stems from two compet-
ing effects of more lipid contamination and higher SNR
which appear to come to a balance at R~4 for the 32 X 32
and 48 X 48 matrix sizes.

It is worth mentioning that the use of ultra-high field in
this study has positively affected the performance of the CS
methodology. The additional SNR offered by higher field
strengths plays an important role in enabling higher accelera-
tion factors. For lower field strengths with lower SNRs, other
acceleration strategies such as spatio-spectral encoding meth-
ods (e.g., references 8-11, 53,54) with inherently faster read-
outs combined with PI or subspace-based strategies might be
a more viable option for fast metabolite mapping. Further-
more, the same method may be used with 3D MRSI sequen-
ces which inherently offer more SNR. The combination of PI
and CS may result in higher acceleration factors in these
cases.

5 | CONCLUSIONS

In this work, we showed that compressed sensing can be
used for high in-plane acceleration factors for nonlipid sup-
pressed "H FID MRSI beyond those of conventional PI
methods. The practical considerations of compressed sens-
ing reconstruction (such as parameter tuning, coil-by-coil
reconstruction versus combined parallel, and sparse or low
rank reconstruction, as well as the effect of SNR and
matrix size) were systematically studied. Acceleration fac-
tors of 4 or 5 could be reached using a combined parallel
imaging with compressed sensing reconstruction (SENSE
x-t sparse). Even for higher acceleration factors, the lipid
contamination shows an incoherent, noise-like quality and
noise in the metabolite maps were the result of spatial
noise-like aliasing rather than lower spectral SNR in the
accelerated data.
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FIGURE S1. Representative spectra from R =4 accelera-
tion resulting from the coil-by-coil x-t sparse reconstruction
(red) and the SENSE x-t sparse reconstruction (black). For
visualization purposes, only every four voxel in the grid
has been shown. The spectra are shown between 0.1 and
4.2 ppm

FIGURE S2. Metabolite maps for three major metabolites
(NAA, Glu, and tCho) shown for different acceleration
factors on the same volunteer as in Figure 6. Metabolite
maps are shown for the compressed sensing reconstruction
(top) and alternatively for the low rank reconstruction
(bottom)

FIGURE S3. Metabolite maps of four major metabolites
(NAA, Cre, Glu, and tCho) resulting from applying the CS
method for prospective in vivo acceleration (with R =5) in
3 healthy subjects

FIGURE S4. Accelerated reduced resolution metabolite
maps of the same volunteer as Figure 8 using the com-
pressed sensing reconstruction for different acceleration fac-
tors. Metabolite maps with in-plane matrix sizes of 48 X 48
and 32X 32 are shown in the top and bottom panels,
respectively. The maps are shown for NAA, Glu, and tCho
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reconstruction (red) and the SENSE x-t sparse reconstruction (black). For visualization purposes, only
every four voxel in the grid has been shown. The spectra are shown between 0.1 and 4.2 ppm.
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Figure S2- Metabolite maps for three major metabolites (NAA, Glu and tCho) shown for different
acceleration factors on the same volunteer as in Figure 6. Metabolite maps are shown for the compressed
sensing reconstruction (top) and alternatively for the low rank reconstruction (bottom).
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Figure S3- Metabolite maps of four major metabolites (NAA, Cre, Glu and tCho) resulting from
applying the CS method for prospective in-vivo acceleration (with R = 5) in 3 healthy subjects.
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Figure S4- Accelerated reduced resolution metabolite maps of the same volunteer as Figure 8 using the
compressed sensing reconstruction for different acceleration factors. Metabolite maps with in-plane

matrix sizes of 48x48 and 32x32 are shown in the top and bottom panels, respectively. The maps are
shown for NAA, Glu and tCho.
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FID free induction decay

FOV field of view

GABA y- aminobutyrate

Glc glucose

GlIn glutamine

Glu glutamate

GPC glycerophosphocholine

GRAPPA Generalized autocalibrating partially parallel acquisitions
GRE gradient echo

GSH glutathione

Lac lactate

ml myo-inositol

MRSI magnetic resonance spectroscopic imaging
NAA N-acetylaspartate

NAAG N-acetylaspartylglutamate

OD over-discretized

PCh phosphocholine

PE phosphoethanolamine

PEPSI proton echo planar spectroscopic imaging
PI parallel imaging

RF radio frequency

RL right-left

RMSE root mean square error

SAR specific absorption rate

SENSE sensitivity encoding

SNR signal-to-noise ratio

Tau taurine

tCho total choline
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Abstract:

The aim of this work was to use post-processing methods to improve the data quality of metabolite maps
acquired on the human brain at 9.4T with accelerated acquisition schemes. This was accomplished by
combining an improved SENSE reconstruction with a By correction of spatially over-discretized MRSI
data.

Since MRSI scans suffer from long scan duration, investigating different acceleration techniques has
recently been the focus of several studies. Due to strong B, inhomogeneity and strict SAR limitations at
ultra-high fields, the use of a low-SAR sequence combined with an acceleration technique that is
compatible with dynamic By shim updating is preferable. Hence, in this study, a non-lipid-suppressed
ultra-short TE and TR 'H FID MRSI sequence is combined with an in-plane SENSE acceleration
technique to obtain high resolution metabolite maps in a clinically feasible scan time. One of the major
issues in applying parallel imaging techniques to non-lipid-suppressed MRSI is the presence of strong
lipid aliasing artifacts which, if not thoroughly resolved, will hinder the accurate quantification of the
metabolites of interest. To achieve a more robust reconstruction, an over-discretized SENSE
reconstruction (with direct control over the shape of the spatial response function) was combined with an
over-discretized By correction. This method is compared to conventional SENSE reconstruction for seven
acceleration schemes on four healthy volunteers.

The over-discretized method consistently outperformed the conventional SENSE resulting in an average
of 23+1.2% more signal-to-noise ratio and 8+2.9% less error in the NAA signal over a whole brain slice.
The highest achievable acceleration factor with the proposed technique was determined to be 4. Finally,
using the over-discretized method, high resolution (97uL nominal voxel size) metabolite maps can be
acquired in 3.75 minutes at 9.4T. This robust acceleration technique will enable the acquisition of high
resolution metabolite maps with more spatial coverage at ultra-high fields.
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Introduction:

In recent years, magnetic resonance imaging (MRI) methods that have been hindered by low signal-to-
noise ratio (SNR) are being revisited and revitalized by the advent of ultra-high field (UHF) MRI
scanners (i.e. magnetic field strengths of 7T and higher). In fact, the SNR has been shown to increase at a
super-linear rate with respect to the field strength [1, 2]. For magnetic resonance spectroscopic imaging
(MRSI), the use of higher field strength can lead to images with higher spatial and spectral resolution [3-
5].

Furthermore, the higher SNR allows higher acceleration using, for example, parallel imaging methods
such as SENSE [6] and GRAPPA [7]. This is beneficial to MRSI where the scan times are often very
lengthy. Reducing the scan times of MRSI studies can pave the way for new research and clinical
applications, as it enables metabolite mapping with more tissue coverage (e.g. multi-slice or whole-brain
coverage) in a clinically feasible scan time, as well as dynamic time-lapse metabolic imaging.

However, no system offering improvements is without its drawbacks. This, too, is the case for UHF MRI
where the technical challenges are in abundance. For instance, the B, and B, radiofrequency (RF) fields
are more inhomogeneous [8, 9], the static magnetic B, field is also more inhomogeneous, and there is a
higher specific absorption rate (SAR) and hence stricter SAR restrictions. These technical challenges limit
the use of certain sequences, acceleration schemes, RF pulses and lipid suppression methods. For
example, lipid suppression and outer volume suppression RF pulses typically result in a lot of SAR [8, 9].
This increases the scan duration to something that is impractical for clinical applications. Furthermore, 3D
acquisition techniques and simultaneous multi-slice acquisition techniques, such as echo-planar
spectroscopic imaging (EPSI) [10] and Hadamard-encoding [11], would be incompatible with dynamic
slice-wise B, shimming (e.g. Boer et al. [12]), hence limiting the achievable B, homogeneity.
Additionally, for spectroscopy applications, the required spectral bandwidth is higher, which makes
spatial-spectral acquisition schemes for MRSI more difficult [13]. In light of this, a slice-selective FID
MRSI without lipid and outer-volume suppression was used in this study [14-16].

At ultra-high field strengths, in-plane PI acceleration methods are favored over 3D acceleration schemes
as they are still compatible with dynamic slice-wise By shim updating, without which it would be near
impossible to acquire reliable spectroscopy data from lower positions in the brain at ultra-high fields.
Among the parallel imaging methods, the two most commonly used are SENSE [6] and GRAPPA [7] (or
variants thereof). Both of these methods have been applied previously to accelerate 'H MRSI scans in
combination with different sequences (e.g. [17, 18]). However, only GRAPPA has so far been used to
accelerate non-lipid-suppressed ultra-short TR and TE 'H FID MRSI [19]. The results of this study
suggested that due to the strong unsuppressed lipid signals originating from the subcutaneous lipid region,
which interfere with the metabolite signals in the brain when aliased, a reconstruction method that can
properly unalias the signals is of utmost importance. Conventional PI reconstruction methods result in
noise amplification (especially for higher acceleration factors) and residual aliasing artifacts in the image.
The noise amplification will increase the CRLBs and the residual aliasing artefacts will overshadow the
metabolite signals from the brain, and make quantification in the affected regions nearly impossible.
Hence, it was clear that the reconstruction methods should be improved by controlling the lipid aliasing
artifacts to allow for higher acceleration factors.
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Recently, Kirchner et al [20] presented an improved SENSE reconstruction method that proved beneficial
for reducing the near and far reaching voxel bleeding through a direct control of the shape of the spatial
response function (SRF). The reconstruction was done on an over-discretized grid at a higher spatial
resolution compared to the acquired MRSI data and coil sensitivity maps of the same higher resolution
were used to unalias the image. In this way, the intra-voxel coil sensitivity variations were taken into
account. Thereafter, a target function of an optimized shape was used to shape the voxels back into the
original resolution. The shape and properties of this target function determined the ultimate shape of the
SRF. In a later work by the same authors, they added an additional step before applying the target
function, where a high resolution shimmed B, field map was used to correct for intra-voxel frequency
shifts [21]. This additional step resulted in an increase of SNR and an improvement in the spectral
lineshapes. These improvements stemmed not only from more constructive averaging of the sub-voxels,
but also from spatial noise decorrelation. This optimized and more accurate reconstruction has so far only
been applied to lipid-suppressed "H FID MRSI where the long TRs (resulting from strict SAR limitations)
prevented the acquisition of high resolution metabolite maps. Furthermore, since a lipid suppression
scheme was used in the previous study, the benefits of the suggested method for non-lipid-suppressed
data have not yet been explored.

In this work, we combine the over-discretized SENSE reconstruction along with the B, correction method
[20, 21] and apply them for the first time to an ultra-short TR and TE non-lipid-suppressed 'H FID MRSI
sequence to enable high resolution metabolite mapping of the human brain at 9.4T in a clinically feasible
scan time. The suggested method is extensively compared to conventional SENSE reconstruction for
different acceleration factors to demonstrate the advantages, and is then used to acquire accelerated
metabolite maps at 9.4T. Finally, the method is also compared to a conventional GRAPPA reconstruction.

Theory:

In any PI method, k-space data is acquired from an array of receive coils that each have a spatially
varying receive sensitivity profile. Images are then reconstructed from this multi-channel raw data.

The relationship between the acquired k-space data and the underlying desired image in any MR
experiment can be formulated as:

s=Ep+n (1)

where s is the acquired k-space data, E is the encoding matrix, 7 is the receiver noise, and p is the
original image in spatial domain. The encoding matrix includes information about the way data is
encoded in k-space and acquired. For a 2D phase-encoded FID MRSI sequence which acquires samples
on a Cartesian grid, this reduces down to a discrete Fourier operator. In the SENSE acceleration approach,
the spatially varying receive coil sensitivities are used as an additional encoding mechanisms, such that
the encoding matrix E is the product of the discrete Fourier operator at each of the acquired points in k-
space and the coil sensitivity profiles.

Reconstruction of the original image then comes down to finding the reconstruction operator Fsuch that:

p =Fs 2)

In an ideal experiment (in the absence of noise), the analytic solution to this system of linear equations is:

F = (EFE)TEH (3)
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where Ef is the Hermitian adjoint of the encoding matrix, and 1 indicates the Moore—Penrose
pseudoinverse.

In the presence of receiver noise coupling, in a process known as noise pre-whitening, the system of
linear equations is first weighted by the inverse square root of the noise covariance matrix of the receive
system. So instead of Eq. (2), we solve the new problem posed as:

L™ p =L"1Fs 4)

where L is the square root of the noise covariance matrix i (e.g. by Cholesky decomposition) such that:
Y = LLH (5)
The noise covariance between coil elements i and j is calculated as:
Vi =<num; >=nm; (6)
The analytical solution to the new system of equations described in Eq. (4) can thus be written as:
F = (EHy1E)TEHy 1 (7)
The reconstruction matrix F calculated with Eq. (7) is the conventional SENSE reconstruction operator

commonly used [16]. It is hereafter simply referred to as SENSE.

In the over-discretized reconstruction method used in [20] however, the coils sensitivity maps are
acquired at a higher resolution compared to the MRSI data, and the MRSI data is first zero-padded in k-
space (as shown in Figure 1). The reconstruction problem is hence posed on an over-discrete grid:

Sop = Eopp +1 (8)

Where the subscript OD (over-discrete) indicates that the denoted matrices have higher resolution
compared to the original MRSI data.

Instead of solving the SENSE problem directly as cast in Eq. (8), a target SRF shape is chosen and an
objective function is defined and minimized (in the least-square sense) to directly control the deviation of
the shape of the resulting SRF from a target shape T (Figure 1):

min||[FEyp — T3 )

The analytical solution to this problem (in the presence of noise coupling) can then be written as:
F =T(EfpY ™ Eop)TEGpy™ (10)
Essentially, the operator T is used to go back to the original matrix size and shape the voxel in the original

resolution by weighing each reconstructed sub-voxel according to the shape of the chosen target function.
The shape of this operator indicates the amount of voxel bleeding from the neighboring voxels.

To incorporate the frequency shift correction on a sub-voxel level as described in [21], the operator F
described in Eq. (10) is broken into two parts:

F = TFintermediate (11)
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where
Fintermediate = (Engp_lEOD)TEngp_l (12)

First an intermediate high resolution image, Pintermidiate> 1S formed by applying the intermediate
operator to the zero-padded k-space data:

Pintermediate — l'intermediateS0OD (13)

Then, the high resolution shimmed B, field map is used to correct for the inhomogeneity induced
frequency shifts on a sub-voxel level,

Pintermediate (r,t) = Piintermediate (r,t)e —2misfo(r-t (14)

Finally, the target averaging operator is again used to shape the voxels back into the original resolution:
P = Fpmntermediate (15)

The reconstruction matrix F calculated with Eqs. (10-15) is the over-discretized target-driven SENSE
reconstruction combined with B, correction SNR boosting technique that will be investigated in this
paper. It is hereafter simply referred to as OD-SENSE and its processing pipeline is depicted in Figure 1.

Methods:

All scans in this study were performed on a 9.4T Siemens whole-body human scanner (Erlangen,
Germany) with an in-house developed 18 channel transmit, 32 channel receive RF coil [22]. Fully
sampled high resolution "H MRSI data of a single-slice were acquired from the brains of four healthy
volunteers. All volunteers gave their informed written consent prior to the scan in accordance with the
regulations of the local ethics committee board. The slice was positioned parallel to the Corpus Callosum
and running through the periventricular white matter in all volunteers.

A custom slice-selective and non-lipid-suppressed ultra-short TR and TE 'H FID MRSI sequence was
used to acquire the single-slice MRSI data [14-16]. A short and optimized water suppression scheme
consisting of 3 pulses (as described in [16]) was incorporated into the sequence prior to the excitation
pulse. Other parameters of the sequence were: FOV = 200x200 mm, slice thickness = 10 mm, in-plane
matrix size = 64x64, TR = 300 ms, acquisition delay = 1.56 ms, flip angle = 30°, spectral bandwidth =
8000 Hz, and acquisition time = 128 ms. As a result, the total scan time of fully sampled data was 15
mins, and the nominal voxel size was 97uL. B, shimming for all scans was performed using the vendor-
implemented image-based 2™ order spherical harmonic shimming routine on the same imaging volume as
the MRSI data.

In order to perform eddy current and zero-order phase correction, a water reference was acquired for each
volunteer using the same sequence but without the water suppression scheme. To avoid lengthy scan
times, this water reference scan had half the spatial resolution of the original MRSI slice in each direction
(four times faster).

An additional high resolution SENSE anatomical reference image from the same imaging volume as the
MRSI data was acquired for each volunteer using a 2D FLASH sequence with the following parameters:
TR =312 ms, TE = 9 ms, flip angle = 25°, in-plane matrix size = 256x256 (four times over-discretized in

http://mc.manuscriptcentral.com/nbm
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each direction with respect to the MRSI image). Additionally, the high resolution shimmed By map of the
MRSI imaging volume was acquired using a 2D dual-echo gradient echo (GRE) sequence with the
following parameters: TR = 100 ms, ATE = 0.76 mm, in-plane matrix size = 256x256, read-out
bandwidth = 1400 Hz. So the nominal voxel size of the anatomical image and the shimmed B, field map
were approximately 6uL (16 times smaller than the MRSI voxel size).

The fully sampled MRSI data were retrospectively undersampled with increasingly higher acceleration
factors in both the anterior-posterior and right-left directions. A total of eight different acceleration
schemes, namely, 1x1 (fully sampled), 1x2, 2x1, 1x3, 3x1, 2x2, 2x3, and 3x2 were retrospectively
implemented on the acquired data where R = nxm denotes acceleration of n in the anterior-posterior
direction and m in the right-left direction.

Two different SENSE reconstruction methods (SENSE, and OD-SENSE, as described in the previous
section) were used to reconstruct the undersampled data for each of the chosen acceleration factors. Coil
sensitivity maps were calculated from the high resolution anatomical reference image using an eigenvalue
decomposition based approach known as ESPIRIT [23]. This method calculates robust coil sensitivity
maps by forming a calibration matrix from the reference image data and performing eigen-decomposition
in the image domain. The receive coil system’s noise covariance matrix was calculated using the pixels
from a noise-only region in the anatomical reference data.

The OD-SENSE reconstruction was performed on a grid of 256x256 (four times higher resolution than
the original data in each direction) and a Gaussian shape with a characteristic width of 0.5 times the
original MRSI voxel size (equivalent to 2 sub-voxels) was used as the target SRF shape. The target
function was chosen to be Gaussian since Kirchner et al. [20] showed that this was the optimal choice.

After reconstructing the spectra using the two different SENSE reconstruction methods, the spectra were
post-processed using the same methodology as described in [16]. This included eddy current correction
using the non-water suppressed reference data, automatic phase correction, and residual water peak
removal. The processed spectra were then fitted using the LCMODEL software [24]. The basis-set was
simulated using the GAMMA library (http://www.nmr.ethz.ch/Gamma.html) and included spectra of 18
brain metabolites (namely GPC, Tau, Cre, Glc, Naa, Asc, Lac, GABA, NAAG, GSH, Glu, PE, ml, PCh,
Ala, Gln, Scyllo and Asp) with a linewidth of 5Hz. The fit range was chosen to be between 1.8 and
4.2ppm. The parameter file used for fitting the MRSI data can be found in the supporting materials.
Metabolite maps were formed from the results of the fit for each of the datasets.

A number of qualitative and quantitative metrics were used to evaluate the performance of the different
acceleration methods. Lipid contamination maps were calculated as the absolute integral of the spectra
from 0.3 to 1.8 ppm to assess the amount of far and near voxel-bleeding as well as residual aliasing
artifacts resulting from different acceleration factors. The lipid maps were normalized to the maximum
lipid signal strength. SNR values were also calculated from the reconstructed spectra as the ratio between
the absolute NAA peak maximum between 1.8 and 2.2 ppm and the root mean square of the residual
noise between 10 and 11 ppm. Baseline trends in the noise region were removed by subtracting a linear fit
in this range. This metric allowed us to evaluate how much noise is introduced as the acceleration factor
increases. Another metric used for evaluation was the RMSE of the NAA maps with respect to the fully
sampled data. The RMSEs are calculated as ratios of the fully sampled data:

(Caccel(F) - Cfull(F)>2/N (16)

RMSE = 100+ Z —
Cruu (1)

remask
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where Cgecer and gy are the concentrations of NAA (from LCMODEL) for the accelerated data and
fully sampled data, respectively, mask is the spatial mask defined to include only voxels within the brain
and N is the number of voxels inside the spatial mask. The RMSE metric indicates how accurate the
metabolite maps are (using the fully sampled data as the benchmark reference). Lastly, the CRLBs of
NAA, Glutamate, and total Choline are used as a metric to evaluate the confidence of the fits. The CRLB
values were obtained from LCModel.

Next, the most reliable reconstruction with the highest feasible acceleration factor (judging by the results
of the comparisons done above) was implemented in the sequence and was used to acquire accelerated
high resolution 'H MRSI data from the brain of three healthy volunteers to evaluate the reproducibility of
the method on different subjects. For each volunteer, metabolite maps were generated using the same
procedure described above.

Finally, the best SENSE reconstruction and acceleration was compared to a conventional GRAPPA
reconstruction for the same acceleration factor. GRAPPA reconstruction was done with the 2D-GRAPPA
operator method [25], using the central 64x64 grid of k-space data from the anatomical reference image
as auto-calibration signal (ACS) to optimize the kernel weights. Metabolite maps from both
reconstruction methods were generated and compared.

Results

Figure 2 shows the lipid contamination map for the fully sampled case as well as the accelerated case
R=2x2, which was reconstructed with the conventional SENSE and with the OD-SENSE method for a
representative volunteer. The SENSE reconstructed map clearly shows the residual aliasing artifact of the
lipid signal stemming from the subcutaneous fat. However, the OD-SENSE reconstruction is able to
better resolve the aliasing and results in less lipid contamination.

The reduction in the lipid signal due to the advantages of the OD-SENSE reconstruction can also be seen
directly in the spectra (Figure 2). Voxels 1 and 5 did not coincide with any of the aliased lipid signal
artifacts and there are, therefore, fewer differences in the spectra between the accelerated and fully
sampled data. However, the OD-SENSE still shows better data consistency and less lipid contamination.
Voxels 2, 3 and 4 are severely affected by the aliasing artifacts and thus have higher lipid signals. For all
three voxels, the OD-SENSE has lower lipid contamination than the conventional SENSE reconstruction
and is more comparable to the fully sampled spectra. To further appreciate the effect of the OD method
on the reconstructed data, representative spectra from white and gray matter regions (along with the
LCMODEL fits for Glu, NAA, and tCho) are shown in Figure S1. The residual aliasing artifacts of the
conventional SENSE reconstruction have made it impossible for the fitting routine to detect the
metabolites of interest, while the OD-SENSE reconstruction has succeeded in recovering the data.

The metabolite ratio maps for three major metabolites (/Cre) are shown in Figure 3 and the corresponding
CRLB maps are shown in Figure 4. Note that the CRLB maps are of the metabolites only (not over
creatine). These figures show the maps for accelerations in one phase encoding direction (AP) for R=2
and R=3. Figure S2 and S3 of the supporting material show the corresponding metabolite ratio maps and
CRLB maps, respectively, resulting from acceleration of R=2 and R=3 in the other phase encoding
direction (RL). The effect of the aliasing artifacts is visible in some of the metabolite maps. The
advantage of OD-SENSE in reducing the aliasing artifacts can be seen, for example, in the total choline
maps for R=2 in the AP direction. The OD-SENSE shows almost no aliasing artifacts, while the
conventional SENSE has clear residual aliasing. This is also supported by the quantitative analysis in
Table 1 where the number of voxels with a CRLB greater than 15% (for NAA) is much lower for OD-
SENSE than SENSE. These voxels are most likely heavily affected by the residual aliasing artifacts. The
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metabolite maps for the OD-SENSE are much more similar to the fully sampled data than the
conventional SENSE reconstruction. Table 1 shows this quantitatively with the RMSE, where the OD-
SENSE reduced the error by up to 10+2% for R=2 and approximately 5+1.4% for R=3. The higher SNR
of the OD-SENSE reconstruction can be seen in the CRLB maps. This is supported by the SNR values
given in Table 1, where there is an improvement of approximately 20+1% for OD-SENSE.

The metabolite maps for simultaneous acceleration in both AP and RL directions are shown in Figure 5.
The respective CRLB maps are shown in Figure 6. Again, the OD-SENSE reconstruction is able to reduce
the aliasing artifacts and this also increases the number of voxels that can be fit. The metabolite maps for
OD-SENSE are more similar to the fully sampled data than for conventional SENSE. Table 1 shows an
improved RMSE of approximately 10+£2% for the OD-SENSE. For R=2x2, the amount of the residual
lipid aliasing is less than for R=3 using OD-SENSE (Table 1). In other words, aliasing could be better
resolved if it is spread over two directions than only in one direction with similar acceleration factor. It
appears that the highest acceleration factor in which the OD-SENSE is able to resolve the lipid aliasing
artifacts is R=2x2. Accelerating by higher than a factor of 2 in any phase encoding direction results in an
excessive amount of residual lipid signals in the brain which makes the mapping of the metabolite in
those areas nearly impossible.

The SNR values of NAA were calculated for each voxel and aggregated across the brain region
(excluding the skull and subcutaneous fat) for four volunteers. Figure 7 shows the boxplot of the SNR
values for the fully sampled, as well as conventional and over-discrete SENSE reconstructions for all
seven different acceleration schemes. The noise increases as the acceleration factor increases. However,
the SNR for the over-discrete SENSE reconstruction is higher than the conventional SENSE. The exact
mean and standard deviations of the noise are given in the first column of Table 1. Paired-sample t-tests
were performed to compare the significance of the SNR gain between SENSE and OD-SENSE
reconstructions for all acceleration factors. The tests resulted in p-values of P<0.01 across all
acceleration factors. To quantify the SNR gain, Cohen effect size values were calculated for each pair and
shown in Table 1. The boost in SNR had the highest effect size for R=2 (AP or RL) and R=4. The overall
gain in SNR resulting from applying the over-discrete reconstruction in combination with B, correction
compared to the conventional SENSE reconstruction was on average about 23.14+1.2%.

The RMSEs of the NAA maps and the CRLBs of the NAA, glutamate and choline maps (with respect to
the fully sampled data) are shown in Figure 8. Paired-sample t-tests were performed to evaluate the
significance of the CRLB reduction between SENSE and OD-SENSE for all acceleration factors. The
tests resulted in p-values of P < 0.01 across all acceleration factors. To quantify the improvement, Cohen
effect size values were again calculated for each pair and shown in Table 1. It can be seen that for all
acceleration factors there is a modest effect size of CRLB reduction. The biggest effect is seen for R=2x2,
where the OD-SENSE reconstruction is able to greatly reduce the residual aliasing artefacts in both
directions. For R=3 the effect size is less. This is due to the fact that when accelerating 3 times in one
direction, even with OD-SENSE there are still residual aliasing artefacts.

The three major metabolite ratio maps (/Cre) for two representative volunteers scanned using prospective
undersampling of R=2x2 are shown in Figure 9. The maps did not show discernible residual aliasing
artifacts. In addition to the metabolite maps, representative spectra from gray and white matter regions are
shown for each volunteer.

Figure 10 shows the results of GRAPPA reconstruction for R=2x2. Three major metabolite ratio maps
(/Cre) are shown for the same volunteer as in Figure 3 to 6. It is evident that there are more residual
aliasing artifacts (arising from subcutaneous lipid ring) that affect the metabolite maps when GRAPPA is
used. The lipid traces are indicated by yellow arrows in NAA, Glu and tCho maps. On the contrary, the
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OD-SENSE maps show reasonable consistency with the fully sampled maps and do not have strong signs
of structured residual aliasing. The SNR of the GRAPPA reconstruction was on average 29+1.7% lower
than the OD-SENSE reconstruction.

Discussion

In-plane acceleration using parallel imaging for a non-lipid-suppressed 'H FID MRSI sequence in the
human brain is limited due to the presence of strong subcutaneous lipid signals. This problem has so far
only been mediated by using post-processing lipid removal methods [26] or moving away from in-plane
acceleration to through-plane [27]. In the interest of being able to apply slice-wise By shim updates, and
to avoid any artificial lipid removal or global lipid suppression method that removes diagnostically
relevant lipid content (e.g. brain tumors) and affects the macromolecular content of the spectra, this study
investigated the feasibility of high in-plane acceleration using an improved SENSE reconstruction [20,
21] for high resolution non-lipid-suppressed metabolite mapping of the human brain at 9.4T.

Compared to conventional SENSE reconstruction, over-discrete SENSE combined with over-discrete By
correction improves the quality of the reconstruction through 3 major mechanisms: Firstly, the intra-voxel
coil sensitivity variations are taken into account by solving the SENSE equations on a much higher
resolution grid using high resolution coil sensitivity maps. Secondly, the intra-voxel frequency offsets
induced by poor By shimming are corrected for on the same over-discretized grid, and meanwhile, the
noise content of these sub-voxels will be de-correlated due to these shifts, which will result in destructive
addition of noise in the next step. Finally, the resulting target-driven SRF shape helps reduce the voxel-
bleeding by shaping the original voxels in a controlled manner.

This study showed that the OD-SENSE indeed resulted in a more reliable reconstruction of accelerated
data and reduced structured aliasing lipid artifacts. The number of voxels with CRLBs of NAA greater
than 15% give an indication of how much lipid aliasing artefacts are affecting the metabolite maps. The
mean CRLBs give an indication of how much the fits are affected due to the noise introduced by the
SENSE reconstruction. This can also be compared by looking at the SNRs of the different reconstruction
methods.

The metabolite maps for R=2 were in good agreement with the fully sampled data. The reduction of the
aliased lipid artifacts resulted in lower RMSEs of the NAA maps. In comparison, even for R=2, the
conventional SENSE reconstruction could have residual aliasing artifacts. It was also shown that R=2x2
acceleration is possible when an OD-SENSE reconstruction is used. The RMSE values for this
acceleration factor were about 11% for the NAA map. This is comparable to the 2D CAIPIRINHA
acceleration method which results in an RMSE of ~12% on 7T for the same acceleration factor [27]. For
higher acceleration factors, such as R=6, the aliasing artifacts became more prominent even when OD-
SENSE was used.

As expected, lower spectral noise in the OD-SENSE reconstruction was observed due to the B, correction
that boosted the SNR of the spectra (on average by ~23%). This, therefore, resulted in lower CRLBs since
the spectra could be fit more reliably. As a result, high resolution metabolite maps could be acquired with
an acceleration factor of 4 (3.75 minutes scan time) from several volunteers using the OD-SENSE
reconstruction and the 'H FID MRSI sequence. Ultrashort TE values (less than 2ms) could be achieved
with this sequence. Without lipid suppression, ultra-short TR values could be achieved due to the low-
SAR nature of the sequence [11,16]. In addition, the sequence is easily scalable to any field strength.

In comparison, the proton echo-planar spectroscopic imaging (PEPSI) technique [10] has provided a good
solution for reducing MRSI scan times by using fast echo-planar readouts. This technique has enabled the
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acquisition of metabolite maps from 18 slices with an in-plane matrix size of 50x50 in 25.5 minutes on 3T
[28], which in turn has enabled the application of 1H MRSI in clinical studies (e.g. [29,30]). The
advantage of this sequence is that firstly it acquires fully sampled data and secondly it uses lipid
suppression. Compared to a fully sampled FID MRSI, this sequence would require a total scan time of
165 minutes at a TR of 300 ms (with the same k-space matrix size of 50x50x18), which is obviously not
feasible. To achieve comparable scan times, an acceleration factor of ~6.5 is required. Note that PEPSI
sequences can potentially also be performed without lipid suppression to reduce scan times. However, to
the best of our knowledge, this has not yet been done. The trade-offs between SENSE and EPSI at 3T was
investigated by Zierhut et al. [31]. All methods investigated were of comparable quality. It should be
noted that in this study a PRESS localization was used for all MRSI sequences.

Although PEPSI is a fully sampled sequence and thus devoid of image aliased artefacts, it becomes more
and more difficult to apply at higher field strengths due to the higher receive bandwidth requirements. At
7T, the minimum required bandwidth 4.7 ppm (over the metabolite range) is typically achieved [3].
However this could cause spectral aliasing if there are spectral peaks or other spurious peaks outside the
sampling bandwidth.

A great benefit of using a FID MRSI sequence without localization is the higher SNR that can be
achieved. The normalized SNRs of the NAA signals is approximately three times higher than previously
reported (also after accounting for the field strengths). This is also due to the very short TRs that make the
sequence more time efficient.

Aside from SENSE another common PI acceleration method, known as GRAPPA was compared to the
OD-SENSE method, which once again demonstrated the advantages of the OD-SENSE reconstruction.
Even though SENSE and GRAPPA are similar in nature, they differ in the way they reconstruct the image
from the undersampled data. GRAPPA tries to estimate the missing k-space points by forming a kernel
that represents the relationship between the neighboring acquired points and the ones missing. The kernel
is obtained from some form of calibration data and is applied to predict every missing point in k-space,
and finally the unaliased image is formed from the fully reconstructed k-space data. On the other
hand,SENSE is among the family called image domain PI that unalias the data using the properties of the
image domain itself. Using the explicit receive coil sensitivity maps (in image domain) obtained from a
calibration scan, a system of equations is solved to resolve the aliased voxels. Unlike GRAPPA, the
SENSE reconstruction equations readily lend themselves to different objective functions and
regularization methods [32] and that is why a reconstruction like OD-SENSE can be used to improve the
reconstruction and achieve higher accelerations. Even though it is possible to perform regularization also
in the GRAPPA reconstruction approach, these methods have been much less explored for GRAPPA
compared to SENSE. Our results showed that, indeed, using the OD-SENSE and By correction method,
which is by nature an SNR boosting approach that also directly controls the shape of the resulting SRF,
the reconstructed data showed less residual aliasing and more SNR (by ~ 29£1.7%) than GRAPPA and
hence allowed more reliable fitting for R=4.

Needless to say, achieving higher acceleration factors to further reduce the scan time can be done by
combining the OD-SENSE method with through-plane acceleration (such as Hadamard multi-band
approaches [27, 33]). Although, as emphasized before, the application of these methods limits the ability
of applying dynamic slice-wise B, shim updates. It may still be possible to perform this in a benign
shimming region like the upper part of the brain. Another approach to achieve higher in-plane only
acceleration factors would be to use other acceleration schemes such as compressed sensing [34] that are
by nature de-noising mechanisms and result in noise-like aliasing artifacts instead of structured ones. The
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advantage of conventional parallel imaging methods like SENSE and GRAPPA over compressed sensing
however, is that these methods can be applied in combination with other acceleration schemes such as
EPSI as they regularly undersample the data, whereas compressed sensing requires the sampling
trajectory to inherently change to realize random or pseudo-random undersampling.

Finally, it is worth noting that the SNR boosting technique (through an over-discrete grid and using the
shimmed B, map to correct for frequency shifts on a sub-voxel level and then using a target function to
shape the original voxel size) is not limited to the investigated acceleration methods in this work, and can
be used as an additional step to any other acceleration reconstruction to gain additional SNR and better
lineshapes.

Conclusion

In this study, we investigated the feasibility of using SENSE as a method for accelerating the acquisition
of non-lipid-suppressed '"H FID MRSI of the human brain at ultra-high fields. An improved SENSE
reconstruction method, namely the over-discretized target-driven SENSE reconstruction in combination
with By correction was used and compared to conventional SENSE and GRAPPA reconstruction for
multiple acceleration factors in two different phase encoding directions. The improved SENSE
reconstruction proved advantageous in reducing the residual structured aliasing artifacts resulting from
unsuppressed subcutaneous lipid signals and enabled reliable and reproducible acceleration of R=2x2.
This resulted in the acquisition of high resolution metabolite maps of the human brain with a nominal
voxel size of 97uL at 9.4T in 3.75 minutes.
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SNR [a.u.] CRLB [%] RMSE

(NAA) [%]
(NAA)

Cohen NIGR Cohen Percentag
Effect Size Effect Size e>15
R=1x1 133.64 35.85 - 4.10 0.74 - 0 -

R=1x2 SENSE 100.34 30.03 0.61 4.95 1.66 0.26 3.6 20.50
SENSE-OD 120.47 36.14 4.54 1.33 0.57 10.74

R=2x1 SENSE 96.70 26.59 0.73 4.58 1.12 0.31 0.19 12.08

SENSE-OD 119.12 34.56 4.27 0.81 0 3.98

R=1x3 SENSE 87.36 52.72 0.30 5.36 1.80 0.24 2.83 23.76
SENSE-OD 102.80 50.37 4.93 1.59 1.04 17.02

R=3x1 SENSE 85.16 45.63 0.39 5.23 1.76 0.21 5.94 27.49
SENSE-OD 105.41 57.03 4.88 1.64 2.36 21.22

R=2x2 SENSE 72.71 22.96 0.68 5.34 1.78 0.33 3.96 22.06
SENSE-OD 89.78 27.06 4.81 1.44 0.57 11.16

R=2x3 SENSE 67.31 48.35 0.23 5.95 1.86 0.25 3.25 26.33
SENSE-OD 77.32 37.74 5.50 1.67 1.88 15.67

R=3x2 SENSE 64.47 35.36 0.35 6.09 2.17 0.12 10.56 34.54
SENSE-OD 78.52 43.39 5.84 2.09 7.63 32.07

Table 1- Quantitative comparison of the conventional versus over-discretized SENSE reconstruction approaches for different acceleration factors
(R =right-left x anterior-posterior). The mean and standard deviation of SNR and CRLB of NAA as well as the mean of the RMSE of the NAA
metabolite maps averaged across all voxels in the brain region of four volunteers are shown for the fully sampled and seven acceleration schemes.
T-tests were performed on the SNR and CRLB values of the SENSE and OD-SENSE reconstructions for each acceleration factor. The p-values for
all cases were < 0.01. To quantify the statistical significance of the difference of performance between the SENSE and OD-SENSE
reconstructions, Cohen eftect sizes were calculated and shown in the table. The average percentage of the voxels in the slice having a CRLB
greater than 15% are also shown
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Figure Legends:

Figure 1- Reconstruction process: (a) original MRSI grid, (b) over-discretized MRSI grid achieved by
zero-padding k-space, (c) coil sensitivity maps used for SENSE reconstruction, (d) acquired high
resolution By map used for B correction of the spectra on a sub-voxel level, (e) target function used to
combine voxels to go back to the original MRSI resolution, (f) resulting metabolite maps after spectral
processing and fitting.

Figure 2- Normalized lipid contamination maps (overlaid on anatomical reference images) and
representative spectra from five different voxel positions (indicated on the anatomical reference image)
resulting from an acceleration factor of R=2x2 reconstructed with conventional, and with OD-SENSE.
The corresponding spectra and lipid contamination map for the fully sampled case is also shown for
comparison. All lipid maps are calculated as the absolute integral of the spectrum from 0.3 to 1.8 ppm and
shown between 0 to 10% of the maximum lipid signal for better visualization. The residual artefacts are
indicated with yellow arrows. All spectra are shown between 0.5 and 4.2 ppm.

Figure 3- Effect of different acceleration factors and reconstruction schemes on metabolite mapping:
Ratio metabolite maps of three major metabolites (/Cre) resulting from the fully sampled, as well as
accelerated datasets (accelerated only in the anterior-posterior direction) reconstructed with conventional
SENSE, and with OD-SENSE. The residual artefacts are indicated with yellow arrows.

Figure 4- Effect of different acceleration factors and reconstruction schemes on the confidence of fitting:
the CRLB maps of the corresponding metabolites in Figure 3. Note that the CRLB maps are shown for
individual metabolites. The maps are shown for the fully sampled, as well as accelerated datasets
(accelerated only in the anterior-posterior direction) reconstructed with conventional SENSE, and with
OD-SENSE.

Figure 5- Effect of different acceleration factors and reconstruction schemes on metabolite mapping:
Ratio metabolite maps of three major metabolites (/Cre) resulting from the fully sampled, as well as
accelerated datasets (accelerated in both phase-encoding directions, i.e. R = right-left x anterior-posterior)
reconstructed once with conventional SENSE, and once with OD-SENSE. The residual artefacts are
indicated with yellow arrows.

Figure 6- Effect of different acceleration factors and reconstruction schemes on the confidence of fitting:
the CRLB maps corresponding to the metabolite maps of the three major metabolites in Figure 5. The
maps are shown for the fully sampled, as well as accelerated datasets (accelerated in both phase-encoding
directions, i.e. R = right-left x anterior-posterior) reconstructed with conventional SENSE, and with OD-
SENSE.

Figure 7- Box plot of SNR values resulting from different acceleration factors and reconstruction
schemes: Each box includes the SNR values aggregated across the whole slice through the brain for four
volunteers. The main acceleration direction (anterior-posterior or right-left) are indicated at the bottom of
each box.

Figure 8- Quantitative comparison of the effect of different acceleration factors and reconstruction
approaches: The RMSE of the NAA maps (the error between the accelerated and the fully sampled maps)
versus different acceleration factors is shown on the left. The dark and light blue bars both correspond to
more acceleration in the anterior-posterior (AP) direction, reconstructed with conventional SENSE (dark
blue) and with OD-SENSE (light blue). The yellow and brown bars both correspond to more acceleration
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in the right-left (RL) direction, once reconstructed with conventional SENSE (yellow) and once with OD-
SENSE (brown). The CRLB of NAA, glutamate, and total choline for different acceleration factors are
also shown. Only the net acceleration factor is indicated on the x-axis but the exact acceleration factors
from left to right written as “R = (right-left) x (anterior-posterior)” are: 1x1, 1x2, 2x1, 1x3, 3x1, 2x2, 2x3,
and 3x2.

Figure 9- Accelerated (R=2x2) metabolite mapping using the OD-SENSE reconstruction at 9.4T: Ratio
metabolite maps of three major metabolites (/Cre) acquired from two additional healthy volunteers are
shown. Representative spectra chosen from white and gray matter voxels are also shown.

Figure 10- Comparison of OD-SENSE and GRAPPA reconstruction for an acceleration factor of 4
(R=2x2): Ratio metabolite maps (/Cre) and the corresponding CRLB maps of three major metabolites
reconstructed using a 2D GRAPPA operator are shown for the same subject of which maps are depicted
in Figure 3-6. Yellow arrows point to where clear residual aliasing artifacts are present in the maps. On
the contrary the same maps obtained using the OD-SENSE reconstruction in Figure 5 and 6 do not show
any significant aliasing artifact.

Table 1- Quantitative comparison of the conventional versus over-discretized SENSE reconstruction
approaches for different acceleration factors (R = right-left x anterior-posterior). The mean and standard
deviation of SNR and CRLB of NAA as well as the mean of the RMSE of the NAA metabolite maps
averaged across all voxels in the brain region of four volunteers are shown for the fully sampled and
seven acceleration schemes. T-tests were performed on the SNR and CRLB values of the SENSE and
OD-SENSE reconstructions for each acceleration factor. The p-values for all cases were < 0.01. To
quantify the statistical significance of the difference of performance between the SENSE and OD-SENSE
reconstructions, Cohen effect sizes were calculated and shown in the table. The average percentage of the
voxels in the slice having a CRLB greater than 15% are also shown.

Supporting Materials Figure 1- Representative spectra (gray) along with their LCMODEL fit
(red) from white and gray matter voxels. The spectra are shown for the fully sampled case as
well as accelerated with a factor of 4 reconstructed once with conventional and once with OD
SENSE. The LCMODEL fit for Glu, NAA, and tCho components are shown in dotted gray lines.

Supporting Materials Figure 2- Effect of different acceleration factors and reconstruction schemes on
metabolite mapping: Ratio metabolite maps of three major metabolites (/Cre) resulting from the fully
sampled, as well as accelerated datasets (accelerated only in the right-left direction) reconstructed with
conventional SENSE, and with OD-SENSE.

Supporting Materials Figure 3- Effect of different acceleration factors and reconstruction schemes on
the confidence of fitting: the CRLB maps corresponding to the metabolite maps of the three major
metabolites of Figure S1 are shown. The maps are shown for the fully sampled, as well as accelerated
datasets (accelerated only in the right-left direction) reconstructed with conventional SENSE, and with
OD-SENSE.
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Figure 1- Reconstruction process: (a) original MRSI grid, (b) over-discretized MRSI grid achieved by zero-
padding k-space, (c) coil sensitivity maps used for SENSE reconstruction, (d) acquired high resolution Bg
map used for B correction of the spectra on a sub-voxel level, (e) target function used to combine voxels to
go back to the original MRSI resolution, (f) resulting metabolite maps after spectral processing and fitting.
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Figure 2- Normalized lipid contamination maps (overlaid on anatomical reference images) and
representative spectra from five different voxel positions (indicated on the anatomical reference image)
resulting from an acceleration factor of R=2x2 reconstructed with conventional, and with OD-SENSE. The
corresponding spectra and lipid contamination map for the fully sampled case is also shown for comparison.
All lipid maps are calculated as the absolute integral of the spectrum from 0.3 to 1.8 ppm and shown
between 0 to 10% of the maximum lipid signal for better visualization. The residual artefacts are indicated
with yellow arrows. All spectra are shown between 0.5 and 4.2 ppm.

86x119mm (300 x 300 DPI)

http://mc.manuscriptcentral.com/nbm



Page 43 of 54 NMR in Biomedicine - For Peer Review Only

w N - ONO U A WN =
—_ w (e}
Full
SENSE OD-SENSE SENSE

OD-SENSE

Figure 3- Effect of different acceleration factors and reconstruction schemes on metabolite mapping: Ratio
46 metabolite maps of three major metabolites (/Cre) resulting from the fully sampled, as well as accelerated
47 datasets (accelerated only in the anterior-posterior direction) reconstructed with conventional SENSE, and
48 with OD-SENSE. The residual artefacts are indicated with yellow arrows.
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Figure 4- Effect of different acceleration factors and reconstruction schemes on the confidence of fitting:
the CRLB maps of the corresponding metabolites in Figure 3. Note that the CRLB maps are shown for
individual metabolites. The maps are shown for the fully sampled, as well as accelerated datasets
(accelerated only in the anterior-posterior direction) reconstructed with conventional SENSE, and with OD-
SENSE.
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Figure 5- Effect of different acceleration factors and reconstruction schemes on metabolite mapping: Ratio
46 metabolite maps of three major metabolites (/Cre) resulting from the fully sampled, as well as accelerated
47 datasets (accelerated in both phase-encoding directions, i.e. R = right-left x anterior-posterior)

48 reconstructed once with conventional SENSE, and once with OD-SENSE. The residual artefacts are indicated
49 with yellow arrows.
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Figure 6- Effect of different acceleration factors and reconstruction schemes on the confidence of fitting:
the CRLB maps corresponding to the metabolite maps of the three major metabolites in Figure 5. The maps
are shown for the fully sampled, as well as accelerated datasets (accelerated in both phase-encoding
directions, i.e. R = right-left x anterior-posterior) reconstructed with conventional SENSE, and with OD-
SENSE.
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Figure 7- Box plot of SNR values resulting from different acceleration factors and reconstruction schemes:
Each box includes the SNR values aggregated across the whole slice through the brain for four volunteers.
The main acceleration direction (anterior-posterior or right-left) are indicated at the bottom of each box.
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Figure 8- Quantitative comparison of the effect of different acceleration factors and reconstruction
approaches: The RMSE of the NAA maps (the error between the accelerated and the fully sampled maps)
versus different acceleration factors is shown on the left. The dark and light blue bars both correspond to

more acceleration in the anterior-posterior (AP) direction, reconstructed with conventional SENSE (dark
blue) and with OD-SENSE (light blue). The yellow and brown bars both correspond to more acceleration in
the right-left (RL) direction, once reconstructed with conventional SENSE (yellow) and once with OD-SENSE
(brown). The CRLB of NAA, glutamate, and total choline for different acceleration factors are also shown.
Only the net acceleration factor is indicated on the x-axis but the exact acceleration factors from left to right
written as "R = (right-left) x (anterior-posterior)” are: 1x1, 1x2, 2x1, 1x3, 3x1, 2x2, 2x3, and 3x2.
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Figure 9- Accelerated (R=2x2) metabolite mapping using the OD-SENSE reconstruction at 9.4T: Ratio
metabolite maps of three major metabolites (/Cre) acquired from two additional healthy volunteers are
23 shown. Representative spectra chosen from white and gray matter voxels are also shown.
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Figure 10- Comparison of OD-SENSE and GRAPPA reconstruction for an acceleration factor of 4 (R=2x2):
Ratio metabolite maps (/Cre) and the corresponding CRLB maps of three major metabolites reconstructed
using a 2D GRAPPA operator are shown for the same subject of which maps are depicted in Figure 3-6.
Yellow arrows point to where clear residual aliasing artifacts are present in the maps. On the contrary the
same maps obtained using the OD-SENSE reconstruction in Figure 5 and 6 do not show any significant
aliasing artifact.
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51 Figure S1- Representative spectra (gray) along with their LCMODEL fit (red) from white and
52 gray matter voxels. The spectra are shown for the fully sampled case as well as accelerated with
>3 a factor of 4 reconstructed with conventional and OD SENSE. The LCMODEL fit for Glu, NAA,

55 and tCho components are shown in dotted gray lines.
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Figure S2- Effect of different acceleration factors and reconstruction schemes on metabolite
mapping: Ratio metabolite maps of three major metabolites (/Cre) resulting from the fully
sampled, as well as accelerated datasets (accelerated only in the right-left direction)
reconstructed with conventional SENSE, and with OD-SENSE.
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51 Figure S3- Effect of different acceleration factors and reconstruction schemes on the confidence
of fitting: the CRLB maps corresponding to the metabolite maps of the three major metabolites
of Figure S1 are shown. The maps are shown for the fully sampled, as well as accelerated
55 datasets (accelerated only in the right-left direction) reconstructed with conventional SENSE,
56 and with OD-SENSE.
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Abstract

Magnetic resonance spectroscopic imaging (MRSI) is a powerful tool for mapping metabolite levels
across the brain, however, it generally suffers from long scan times. This severely hinders its
application in clinical settings. Additionally, the presence of nuisance signals (e.g. the subcutaneous
lipid signals close to the skull region in brain metabolite mapping) makes it challenging to apply
conventional acceleration techniques to shorten the scan times. The goal of this work is, therefore, to
increase the overall applicability of high resolution metabolite mapping using 'H MRSI by introducing
a novel GRAPPA acceleration acquisition/reconstruction technique. An improved reconstruction
method (MultiNet) is introduced that uses machine learning, specifically neural networks, to
reconstruct accelerated data. The method is further modified to use more neural networks with
nonlinear hidden layers and is then combined with a variable density undersampling scheme (MultiNet
PyGRAPPA) to enable higher in-plane acceleration factors of R=7 and R=9 for a non-lipid suppressed
ultra-short TR and TE 'H FID MRSI sequence. The proposed method is evaluated for high resolution
metabolite mapping of the human brain at 9.4T. The results show that the proposed method is superior
to conventional GRAPPA: there is no significant residual lipid aliasing artifact in the images when the
proposed MultiNet method is used. Furthermore, the MultiNet PyGRAPPA acquisition/reconstruction
method with R=7 results in reproducible high resolution metabolite maps (with an in-plane matrix size
of 64x64) that can be acquired in 2.8 minutes on 9.4T. In conclusion, using multiple neural networks
to predict the missing points in GRAPPA reconstruction results in a more reliable data recovery while
keeping the noise levels under control. Combining this high fidelity reconstruction with variable
density undersampling (MultiNet PyGRAPPA) enables higher in-plane acceleration factors even for
non-lipid suppressed 'H FID MRSI, without introducing any structured aliasing artifact in the image.

Keywords: MRSI, Metabolite Mapping, Acceleration, GRAPPA, Neural Networks
Introduction

Shortly after its introduction in 2002 (Griswold et al. 2002), the generalized partial parallel acquisition
(GRAPPA) acceleration method was adopted by the magnetic resonance spectroscopy imaging
(MRSI) community to accelerate the lengthy MRSI scans. Contrary to the sensitivity encoding
(SENSE) (Pruessmann et al. 1999) acceleration method, GRAPPA does not require explicit
knowledge of the receive coil sensitivity profiles. It is easy to implement and can be applied in any
phase encoding direction. This makes it a suitable candidate for acceleration of MRSI sequences.
GRAPPA was first incorporated in a localized MRSI sequence (Banerjee et al. 2006) in both phase-
encoding directions to accelerate the scan by a net factor of R ~ 2. Later on, GRAPPA (still with
moderate acceleration factors) was used in combination with proton echo-planar spectroscopy imaging
(PEPSI) sequences (Tsai et al. 2008, Sabati et al. 2014) to accelerate the MRSI studies even further.

Given that applying PEPSI sequences at ultra-high fields is challenging due to higher gradient strength
and receive bandwidth requirements, one of the most promising MRSI techniques at ultra-high fields
is the slice-selective non-lipid suppressed ultra-short TR and TE 'H FID MRSI sequence (Bogner et al.
2012, Boer et al. 2012, Nassirpour et al. 2018). Hence, the next natural step was to incorporate
GRAPPA into this sequence to accelerate the scans even further. However, it was soon discovered that
extra care should be taken in applying conventional parallel imaging (PI) methods such as GRAPPA
to non-lipid suppressed 'H MRSI sequence. The reason for this is the presence of strong lipid signals
near the skull (for brain metabolite mapping) which can be orders of magnitude stronger than the
metabolites of interest inside the brain. Any remaining unresolved and structured aliasing artifact
resulting from reconstruction errors in the conventional PI acceleration methods can completely distort
the signal inside the brain and make quantification impossible. To overcome this, Hangel et al (Hangel
et al. 2015) suggested incorporating a double-inversion recovery (DIR) lipid suppression scheme into
the 'H FID MRSI sequence. The DIR method is very effective for reducing the lipid signals and hence
enabling higher PI acceleration factors, however, the major limitation is the strict specific absorption



rate (SAR) limitations at ultra-high fields. As a result of this, the repetition time (TR) is prolonged by
a significant factor which is only partially compensated by using higher GRAPPA acceleration factors.

The most recent development for accelerating ultra-high field MRSI using an ultra-short TR and TE
'H FID MRSI sequence was when Strasser et al (Strasser et al. 2017) took another PI approach and
used (2+1) D CAIPIRINHA to enable higher acceleration factors despite the presence of unsuppressed
lipids. They accomplished this by controlling the aliasing pattern through optimizing the
undersampling scheme. However, the high acceleration factor resulting from this method relies on
simultaneous acquisition of signal from multiple slices, which limits the use of slice-wise By shim
updating. It was also shown that the method sometimes still suffers from residual lipid contamination
artifacts.

Given that the remaining lipid aliasing artifacts are a direct result of inaccuracies in the GRAPPA
reconstruction process, and in the interest of enabling slice-wise dynamic B, shim updating, in this
study we take a different approach and try to enable high in-plane GRAPPA acceleration factors for
non-lipid suppressed 'H FID MRSI by introducing a novel and more accurate GRAPPA acquisition
and reconstruction scheme.

Since the early years of GRAPPA, the imaging community has introduced several variations to the
reconstruction process that would increase its accuracy. Among these advances was the realization that
separating the reconstruction to the low and high frequency regions in k-space and having separate
kernels for each, will increase the accuracy of the reconstruction and suppress the residual aliasing as
well as noise amplification artifacts (Park et al. 2005, Miao et al. 2011). Park et al (Park et al. 2005)
further used this property to introduce 1D variable density sampling with higher acceleration factors in
the outer k-space without losing accuracy. Another group (Wang et al. 2005) used a multi-line, multi-
column interpolation approach for finding a more accurate GRAPPA reconstruction kernel. By
increasing the number of training points, this method improves the quality of reconstruction. Huang et
al (Huang et al. 2008) used an image-support based approach for more accurate data recovery.

Additionally, regularization has been proven to be advantageous in PI reconstruction techniques and
hence (Qu et al. 2006) used Tikhonov and singular-value decomposition to regularize the GRAPPA
reconstruction optimization problem to control the trade-off between noise and residual artifacts in the
resulting image. In another approach, Huo et al (Huo et al. 2008) introduced Robust GRAPPA, in
which they assign weights to the training data in a way that would discount the contribution of the
outliers to the coefficient estimation. Other groups used cross-validation (Nana et al. 2008) to better
determine which neighboring lines and columns should be used in forming the reconstruction kernel.
A more recent advance for improving the GRAPPA reconstruction was the introduction of nonlinear
GRAPPA by Chang et al (Chang et al. 2012). All GRAPPA reconstruction methods so far assume a
linear relationship between the acquired data points and the missing data, and hence, form a linear
optimization problem to find the optimal reconstruction kernel. However, Chang et al. (Chang et al.
2012) observed a nonlinear relationship between the acquired auto-calibration signal (ACS) and the
missing data points in the presence of noise. Their reconstruction optimization problem takes these
nonlinearities into account by introducing up to 2™ order polynomial terms into the system of
equations used for kernel optimization. Their reconstruction method proved superior to conventional
GRAPPA for higher acceleration factors.

In this work we present a novel and improved GRAPPA reconstruction method (MultiNet GRAPPA)
that combines the advantages of regularization, cross-validation, and localized coil calibration, and
accounts for nonlinearities by using multiple neural networks in the reconstruction process. We show
the advantages of this approach over the conventional GRAPPA reconstruction for accelerating non-
lipid suppressed ultra-short TR and TE 'H FID MRSI and further introduce a modified version
combined with a variable density sampling scheme (MultiNet PyGRAPPA) that enables higher
acceleration factors. Finally, we show the reproducibility of this approach for fast and high resolution
metabolite mapping of the human brain at 9.4T.



Methods
Data Acquisition

High-resolution MRSI data were acquired using a slice-selective 'H FID MRSI sequence (Henning et
al. 2009, Bogner et al. 2012) with ultra-short TE and TR without any outer volume or lipid
suppression schemes. An optimized 3-pulse water suppression scheme with a total duration of 62 ms
was implemented in the sequence and optimized for a range of T, values and B, inhomogeneity levels
between 50-150% (Nassirpour et al. 2018). Five healthy volunteers were scanned using a Siemens
9.4T whole-body human scanner (Erlangen, Germany). All volunteers gave their informed consent
and were scanned in accordance with the local ethics committee regulations. An in-house built
transceiver RF coil with 18 transmit and 32 receiver elements was used for all 9.4T scans (Avdievich
et al. 2017). 2™-order image-based By shimming was performed on a rectangular shimming volume
with the same dimensions as the imaging volume using the vendor implemented shimming routine.

Fully-sampled MRSI data from a single slice running through the periventricular white matter parallel
to the Corpus Callosum was acquired from each volunteer using the described custom 'H FID MRSI
sequence with the following parameters: FOV = 200x200 mm; slice thickness = 10 mm; Flip angle =
30°; matrix size = 64x64; acquisition delay = 1.56 ms; TR = 300 ms; spectral bandwidth = 8000 Hz;
acquisition time = 128 ms; total scan time = 15 mins. The nominal voxel size was 97uL.

After each MRSI scan, a high resolution reference anatomical image (at 4x4 times higher resolution
than the MRSI data) with the same slice position and dimensions as the MRSI data was acquired using
a 2D FLASH sequence with the following parameters: TR =312 ms, TE = 9 ms, flip angle = 25°.

MultiNet GRAPPA: Multiple Neural Network based GRAPPA Reconstruction

The fully sampled MRSI data were retrospectively undersampled by a factor of 2 in each direction. In
addition, an elliptical shuttered sampling was applied to further increase the acceleration. The effective
acceleration factor was R=5.47 for a matrix size of 64x64 (Figure 1). Note that since acquiring fully
sampled lines for use as ACS in the GRAPPA reconstruction methods would significantly add to the
MRSI scan time, for all studies the anatomical reference image acquired through an imaging sequence
was used as ACS data. This makes the net acceleration factors much higher, as imaging sequences run
much faster than MRSI scans.

Neural networks (NN) were trained to predict the missing data points using the anatomical image as
training data. Only the central k-space points of the high resolution anatomical data in a grid of 64x64
were used for training. Two neural networks were trained: one for cross-neighbors and another for
adjacent-neighbors (as shown in Figure 2). The adjacent neighbors are the 4-connected voxels (i.e.
voxels in the Von Neumann neighborhood). The cross-neighbors are the 8-connected voxels (i.e.
voxels in the Moore neighborhood) excluding the 4-connected voxels. The neighbor voxels were used
to train the networks to predict the voxel of interest. Single layer NN with 128 hidden nodes were used
for each NN. A Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm was used to calculate the
weights.
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Figure 1- k-space undersampling masks used in this study are shown in the left column for a regular
undersampling scheme of R=2 in each direction resulting in a net acceleration factor of R~5 due to
the additional elliptical shuttering mask (top row), a variable density PyGRAPPA undersampling
scheme resulting in R~7 (middle row), and another one resulting in R~9 (bottom row). Three different
regions in kspace are defined and annotated with different colors for the PyGRAPPA undersampling
schemes. The Voronoi sampling density curves are shown for the two PyGRAPPA schemes in the right
column. The normalized sampling density curves are shown between 0 and 1.

To reconstruct the data, the cross-neighbor NN was first used to predict the missing k-space values.
After these values were filled-in, the adjacent-neighbor NN was used to predict the remaining missing
points.
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Figure 2- Schematic depiction of the multiple neural network based GRAPPA reconstruction
(MultiNet GRAPPA) using two neural networks: first a cross-neighbor neural network is trained and
used to predict the central missing point in each grid (left), next, an adjacent-neighbor neural network
is trained and used to predict the rest of the points (right).

For comparison, a traditional GRAPPA reconstruction using the 2D-GRAPPA operator method
(Blaimer et al. 2006) was performed, again using the anatomical scout image as ACS to calibrate the
kernel weights.

The metabolite maps from the fully sampled, conventional GRAPPA reconstructed and multiple
neural network based (MultiNet) GRAPPA reconstructed MRSI data were compared. The data were
post-processed as described in (Nassirpour et al. 2018), which includes eddy current correction,
automatic phase correction, residual water peak removal, and coil combination. The metabolite maps
were generated by fitting the processed data using LCModel (Provencher 1993). The spectra were fit
between 1.8 and 4.2 ppm. The basis-set was simulated using the GAMMA library
(http://www.nmr.ethz.ch/Gamma.html) and included spectra of 18 brain metabolites (namely GPC,
Tau, Cre, Glc, Naa, Asc, Lac, GABA, NAAG, GSH, Glu, PE, ml, PCh, Ala, Gln, Scyllo and Asp)
with a linewidth of 5SHz. No T /T, correction was applied to the metabolite maps.

MultiNet PyGRAPPA: Enabling Higher Acceleration Using Variable Density Sampling

The centre of k-space contains the low spatial frequency information and determines the main
contrasts in the image. Hence, it is more important and has more impact on the aliasing artifacts in the
reconstructed image. On the contrary, the outer k-space which contains the high spatial frequency
information determines detailed lines and edges. This is an important concept which is exploited in
many acceleration schemes such as compressed sensing (Lustig et al. 2007). Similarly, with the neural
network kernel-based GRAPPA approach described here, we can take advantage of this and sample
different parts of the k-space with different sampling densities according to their contribution to the
overall quality or artifacts in the image. The MultiNet GRAPPA reconstruction approach can easily be
separated to different regions in k-space. Multiple neural networks with different properties can be
trained for each k-space region. For example, by changing the hidden layer of the neural network to be
nonlinear for the reconstruction of the outer k-space region, we can account for the nonlinear
relationship between the missing and acquired data points due to higher levels of noise present in the
outer regions of k-space. This will result in a more reliable reconstruction, which in turn enables
higher net acceleration factors than those achievable through conventional GRAPPA.



Figure 1 shows two variable density undersampling schemes that were used to achieve higher
acceleration factors in this study. In both schemes, the centre-most part of k-space was fully sampled,
the “inner” k-space region was undersampled by a factor of 2x2 and the “outer” k-space region was
undersampled by a factor of 4x4. The size of the centre was always kept to be 8x8, and the size of the
inner region was 40x40 and 32x32 which resulted in effective acceleration factors of R=7.14 and
R=8.79, respectively. These two undersampling schemes will be referred to as R=7 and R=9,
respectively, in the remainder of this paper. The figure also shows the calculated sampling density
function for each of the variable density undersmapling masks. The sampling density curves were
calculated as the reciprocal of the area of the Voronoi cells at each kspace point. Due to the similarity
of the shape of these density curves to a pyramid, the proposed acquisition scheme is hereafter referred
to as PyYGRAPPA.

To optimally reconstruct the data, firstly, the outer k-space points were filled in using the method
described in the previous subsection. However, the difference is that the neighbour voxels are two
voxel spaces away instead of one. After the outer k-space points are filled, the remaining missing
points are the same as a 2x2 undersampling in the outer and inner regions. These missing points are
then filled in using the NNs described previously. Therefore, a total of four NNs are required to
reconstruct the data: a cross-neighbour NN in addition to an adjacent-neighbour NN with 2-voxel
distance for filling the outer region, and a cross-neighbour and adjacent neighbour NN with 1-voxel
distance for filling the inner region and the remaining missing points of the outer region. Figure 3
shows the step-by-step process of how the missing k-space points are reconstructed using the
corresponding NNs.

2-voxel 2-voxel 1-voxel 1-voxel
cross-neighbour adjacent-neighbour cross-neighbour adjacent-neighbour

Figure 3- Step-by-step process of MultiNet PyGRAPPA for predicting the missing points of the
proposed variable density sampling schemes. The missing kspace points are shown in black. Four
different neural networks are trained: First, a 2-voxel cross-neighbour neural network fills in some of
the missing points in the outer region of kspace. Then, a 2-voxel adjacent-neighbour is used to predict
more of the missing points in the outer region so that now almost all of the kspace is undersampled by
a factor of 2x2. Next, a 1-voxel cross-neighbor neural network is trained and used to fill in the central
missing point in each small grid, and finally, a 1-voxel adjacent-neighbour fills in the rest of the
missing points to form the reconstructed data.

Since the central k-space region is always fully sampled in these variable density sampling schemes, it
can also be used as additional training data for the NNs. Similarly, the measured inner-region k-space
samples can be used to train the 2-voxel distance NNs in the reconstruction of the outer region.
Therefore, for training the 2-voxel distance NNs, the inner and central regions of the MRSI data were
used in addition to the anatomical image. For training the 1-voxel distance NNs, the central region of



the MRSI data was used in addition to the anatomical image. Only the first 8 time points of the MRSI
data were used for training due to their higher SNR.

For the hidden layer of the 1-voxel distance NNs the identity function was used. However, for the 2-
voxel distance NNs, logistic functions were used for more flexibility and to account for possible
nonlinearities.

Metabolite maps from the fully sampled, R=7, and R=9 MultiNet PyGRAPPA reconstructions were
compared. The metabolite maps were generated using the same process as described in the previous
subsection.

The different acceleration schemes were further quantitatively evaluated using four metrics: the lipid
contamination power (LCP), SNR ratio (similar to g-factor), root-mean-square-errors (RMSEs) of
three major metabolite maps (NAA, Cre, and Glu), and the corresponding Cramer-Rao lower-bounds
(CRLBs). The lipid contamination power is defined as

Zch ZFEmask ZfeFmasleaccel (Ch' F' f) - Sfull (Ch, F' f)l <1)

Zch Zfemask ZfeFmaslefull (Ch, T, f)l
Where the coil channels, voxel position and spectral points are denoted by ch, r, and f, respectively.

Mask is the spatial mask defined to contain only the brain region and Fmask is the frequency domain
mask between (0.3 and 1.8 ppm) that contains most of the contribution of lipid signals. The spatial
masks were manually defined for each subject. Lastly, S,cce; denotes the accelerated data and Spyyy;

LCP = 100"

denotes the fully sampled data.
The SNR ratio metric is defined similarly to the g-factor and is approximated by:

RMS(nOiseaccel) (2)

VR RMS(noisegy;;)
The RMSE of the metabolite maps is calculated for each metabolite by:

ZFEmask (Caccel(F) - ffull(F)>2
Crun ()
N
Where C is the concentration of the metabolite and N is the number of voxels in the spatial mask. The
CRLBs are taken from the values reported from LCModel.

RMSE =100 (3)

Results
MultiNet GRAPPA

Figure 4 shows the metabolite maps for NAA and Glutamate. The fully sampled data, conventional
GRAPPA reconstructed data (R=2x2) and MultiNet reconstructed data (R=2x2) are shown in the
figure for three subjects. The advantage of the proposed MultiNet reconstruction over the conventional
GRAPPA reconstruction can be seen from the residual aliasing artifacts present in the metabolite maps
resulting from the conventional GRAPPA reconstruction. The residual aliasing is especially prevalent
in subject 3 for both metabolites. However, the residual aliasing can also be seen for subject 1 for
Glutamate, and for subject 2 for NAA. The MultiNet reconstruction also results in metabolites maps
that appear more similar to the fully sampled data by visual inspection than those resulting from
conventional GRAPPA reconstruction.
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Figure 4- Comparison of conventional GRAPPA reconstruction (denoted as GRAPPA) and the
proposed neural network based GRAPPA reconstruction (denoted as MultiNet) for the case of R=2x2
acceleration: Metabolite maps are shown for two major metabolites in three subjects. All maps are
normalized and shown between 0 and 1. The maps are shown for the fully sampled case (R=1) and the
accelerated case (R=2x2) reconstructed once with GRAPPA and once with MultiNet.

Figure 5 shows the lipid contamination maps for the same three subjects and for the different
reconstruction methods. The lipid contamination is defined as the integral of the absolute signal
between 0.3 to 1.8 ppm. The maps shown in the figure are normalized to their maximum value. The
lipid contamination maps from the conventional GRAPPA reconstruction show more aliasing artifacts
than the MultiNet GRAPPA. In comparison, the maps of the MultiNet GRAPPA and the fully sampled

data look very similar. No visible aliasing artifacts are present in the MultiNet GRAPPA lipid
contamination maps.
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Figure 5- Lipid contamination maps shown between 0 and 10% of the strongest lipid contribution
near the skull region for better visualization. The maps are shown for three subjects for fully sampled
(R=1) versus accelerated (R=2x2) acquisitions, once reconstructed with conventional GRAPPA, and
once with the proposed neural network based GRAPPA (MultiNet).
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MultiNet PyGRAPPA

Figure 6 and 7 show the metabolite and CRLB maps of two major metabolites for the fully sampled,
along with the highly accelerated R=7 and R=9 MultiNet PyGRAPPA reconstructions on three
subjects. Compared to the fully sampled data, the accelerated maps show good consistency albeit
slightly more noisy. The grey/white matter contrast and the anatomical structure can still be seen. The
noise in the R=9 case is higher than in the R=7 case. Higher noise levels for higher accelerations also
occurs for conventional GRAPPA reconstructions. However, the advantage of the MultiNet method as
can be seen in this figure, is that it does not result in structured aliasing artifacts such as lipid rings.
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Figure 6- Reproducibility of highly accelerated metabolite mapping using the proposed MultiNet
PyGRAPPA method: metabolite maps of two major metabolites are shown for three volunteers and for
three cases: 1) fully sampled (R=1), 2) variable density undersampled and multiple neural network
GRAPPA reconstructed (MultiNet PyGRAPPA) with R=7, and 3) R=9. All maps are normalized and
shown between 0 and 1.
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Figure 7- Reproducibility of highly accelerated metabolite mapping using the proposed MultiNet
PyGRAPPA method: CRLB maps of two major metabolites are shown for 3 volunteers and for three
cases: 1) fully sampled (R=1), 2) variable density undersampled and multiple neural network
GRAPPA reconstructed (MultiNet PyGRAPPA) with R=7, and 3) R=9.

Figure 8 shows the lipid contamination maps for the subjects for the R=7 and R=9 MultiNet
PyGRAPPA reconstructions. Despite the high in-plane acceleration factors, there are no visible
aliasing artifacts and lipid rings in these maps.
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Figure 8- Lipid contamination maps shown for three subjects between 0 and 5% of the strongest lipid
contribution near the skull region for better visualization. The maps are shown for the case of fully
sampled, and the proposed MultiNet PyGRAPPAacceleration method with R=7 and R=9.
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Table 1 shows the results for the quantitative assessment of the reconstructions using the metrics
described above, namely: lipid contamination power, SNR ratio, RMSE of three major metabolite



maps, and the corresponding CRLBs. The values are averaged over five volunteers across the whole
slice. An acceleration factor of 2x2 (R=4) with MultiNet reconstruction was compared to the R=7 and
R=9 PyGRAPPA. On average, the lipid contamination power, RMSEs, and CRLBs increase as the
acceleration factor increases. However, the lipid contamination power is not significantly affected by
the acceleration factor. As expected, the CRLBs increase as the acceleration factor increases, however,
the CRLBs are still quite low (typically between 6% and 12%).

The SNR ratio (equivalent to a g-factor calculation) for R=4 is approximately 1.1 when averaged over
the whole slice and across volunteers. However, the SNR ratio is below 1.0 (approximately 0.8) for
R=7 which indicates that the noise from acceleration increases at a lower rate than vVR. For R=9, the
SNR ratio is slightly higher, approximately 0.93 on average.

R=4 R=7 R=9
LCP 0.46 0.47 0.54
CRLB (Cre) 9.12+0.97 9.14+1.13 10.18 + 1.44
CRLB (NAA) 6.21+0.75 6.55 + 0.80 6.98+ 1.01
CRLB (Glu) 12.40 + 1.58 1254+ 1.61 12.99 = 1.52

RMSE (Cre) 745 8.77 12.13
RMSE (NAA) 5.29 579 7.92
RMSE (Glu) 9.94 11.30 15.93
SNR ratio 1.09 < 0.25 0.81+0.20 0.93+0.22

Table 1- Quantitative evaluation of the proposed MultiNet GRAPPA reconstruction method for a
range of acceleration factors. Eight metrics are used for the evaluation (lipid contamination power,
SNR ratio (similar to g-factor), RMSE (%), and CRLB (%) of the maps for three major metabolites).
The values are averaged across five healthy volunteers.

Discussion

Metabolite mapping using 'H MRSI is a promising tool for assessing the spatial distribution of several
metabolites in different regions of the brain in a non-invasive manner. To increase the clinical
applicability of 'H MRSI, it is crucial to increase the SNR and in general the data quality as much as
possible, but also decrease the lengthy scan times. The slice-selective ultra-short TE and TR non-lipid
suppressed '"H FID MRSI sequence (Bogner et al. 2012, Boer et al. 2012, Nassirpour et al. 2018)
seems to be a suitable candidate for achieving this goal since it can be easily implemented both at
lower and ultra-high fields, is not SAR demanding, does not require specific hardware specifications,
does not suffer from in-plane chemical shift artifacts and has negligible SNR loss due to T, relaxation
as a result of very short echo times. As a result of all this, it is by nature a fast sequence which can be
used with TRs as short as a few hundred milliseconds (Nassirpour et al. 2018, Hangel et al. 2018) or
even as low as 50ms (Chadzynski et al. 2017). The resulting spectra from this sequence have already
been shown to be of good quality and result in reliable and high resolution metabolite maps. The next
step, of course, is to accelerate this sequence in order to enable high resolution metabolite mapping
with multi-slice or whole brain coverage in a reasonable scan time.

At ultra-high field strengths, in-plane (2D) acceleration methods are preferable for accelerating this
sequence, since any use of 3D or multi-band acquisition schemes will limit the ability of using tailored
By shim settings for each slice of the brain. This is due to the fact that signal is being simultaneously
acquired from a bigger region in these acquisition schemes. This problem is more severe at ultra-high
fields, since the air cavities close to the brain tissue especially when imaging the lower slice positions
in the brain, will result in poor By shimming. This, in turn, will result in poor spectral quality which
severely hinders reliable metabolite quantification.



The challenge in using in-plane PI acceleration methods is that they suffer from residual aliasing
artifacts and severe noise amplification at higher acceleration factors. The residual aliasing artifact is
especially problematic since there are unsuppressed and strong lipid signals present near the skull
region when no lipid suppression scheme is used. When folded into the brain, these signals can distort
the spectra to the point where it is impossible for the fitting routine to resolve other metabolite peaks.

In this work, we present a novel acquisition and reconstruction method (MultiNet PyGRAPPA) for in-
plane acceleration that enables acceleration factors as high as R=7 or 9 while keeping the noise levels
under control and without introducing any structured aliasing artifacts. The method is based on a 2D
variable density sampling acquisition scheme and the use of machine learning, specifically multiple
neural networks with different hidden layers, to recover the missing data points as reliably as possible.
To the best of the authors’ knowledge, this is the first GRAPPA acceleration/reconstruction method
that when used with non-lipid suppressed "H FID MRSI sequence, does not introduce lipid rings inside
the brain resulting from residual aliasing artifacts. This eliminates the need for any SAR demanding
lipid suppression schemes (Henning et al. 2009, Hangel et al. 2015) or post-processing lipid removal
methods such as the L,-regularized algorithm (Bilgic et al. 2014).

The use of neural networks for GRAPPA reconstruction (MultiNet GRAPPA) showed a clear
improvement over the regular GRAPPA reconstruction. The aliasing artifacts were much less, which
directly impacts the metabolite maps. The 1-voxel distance NNs use identity activation functions as
the hidden layer. Although this reduces to a linear perceptron, using a NN to train and calculate the
weights improves the robustness of the regression. In comparison, a regular multivariate regression is
susceptible to noise and outliers.

In general, the higher the SNR of the training data, the better the weights of the network can be
estimated, and thus the missing k-space points can be more accurately predicted. The predictive power
of the NN is dependent on the quality of the training data. In this study, an anatomical FLASH image
was used for training but, in general, any anatomical image (such as GRE or MPRAGE sequences) can
be used for this purpose. Even though the advantage of the proposed MultiNet GRAPPA
reconstruction was shown for the specific case of non-lipid suppressed 'H FID MRSI, this method can
be used to reconstruct GRAPPA accelerated data for any MR imaging application, as the chosen
application in this paper is in fact one of the most challenging ones in terms of resolving aliasing
artifacts due to the strong contrast between the intensity of unsuppressed lipid signals and the
metabolites of interest.

Compared to Cartesian regular undersampling, variable density sampling (pyGRAPPA) schemes
result in a better spatial response function (SRF). The aliased peaks are further from the original peak
and have less power compared to those resulting from regularly undersampled data with similar net
acceleration factors. This means that if there are inaccuracies in the reconstruction process which
would result in some percentage of the aliased peak to remain in the image, the power of the residual
signal is much less than that of the regularly undersampled data. Controlling the artifact power in this
manner is the key concept behind the idea of variable density sampling. So if there is a way to push
the in-plane PI acceleration to achieve higher acceleration factor, especially in case of non-lipid
suppressed MRSI sequences, it has to be through controlling the aliasing artifacts.

Conventional GRAPPA reconstruction itself can be applied to reconstruct the variable density
undersampled data, however, by nature there will be severe noise amplification especially from the
outer k-space regions if no regularization measure is taken. This is where the multiple neural network
approach suggested in this work proves to be most advantageous.

In addition to the implicit regularization that is inherent to neural networks, the other advantage of
NN is the ability to use a nonlinear hidden function to capture nonlinearities. This is beneficial for the
2-voxel distance NNs where the relationship between the inputs are more nonlinear due to the
presence of noise (Chang et al. 2012). This allows the NNs to predict the missing k-space points more



accurately and is the key benefit that enables the reconstruction of the highly accelerated data while
keeping the noise levels under control. Note that since the regularization is implicit when using neural
networks, no prior knowledge is needed to reconstruct the data reliably.

The SNR ratio (defined similar to g-factor) is even lower for PyGRAPPA with R=7 and R=9
compared to the R=4 regular undersampling scheme. This is likely due to the fact that for the R=7 and
R=9 variable density schemes, the center of k-space is fully measured, whereas for R=4, the entire k-
space is undersampled by 2x2. Since the center of k-space has the most contribution, if the center is
undersampled, more noise will be introduced compared to undersampling outer k-space. Therefore the
SNR ratio can be improved using a variable density sampling scheme rather than a uniformly
undersampled k-space. Furthermore, the proposed sampling scheme reduces the aliasing artifacts: the
lipid contamination traces are greatly reduced, even for higher acceleration factors of R=7 and R=9.

The proposed acceleration and reconstruction scheme incorporated into an ultra-short TR and TE 'H
FID MRSI sequence with a TR of 300ms, enabled high resolution metabolite mapping of the human
brain. For a nominal voxel size of 97ul. (matrix size of 64x64), the total scan time was 2 minutes 50
seconds with R=7, and 2 minutes 7 seconds for R=9. This is faster than the fastest accelerated '"H FID
MRSI published in the literature so far, which was reported using the (2+1) D CAIPIRINHA method
(Strasser et al. 2017) to be 3.75 minutes for the same matrix size. Our proposed method is about 1.5
times and 2 times faster than this, with R=7 and R=9, respectively. This will make a great impact for
multi-slice and whole brain coverage metabolite mapping.

The only factor limiting the achievable acceleration factor using the proposed method (beyond R=7 or
R=9) is the limited initial SNR of the spectroscopy data. This is more of a limitation at lower field
strengths since at ultra-high fields (>7T) the initial SNR of the data is much higher than at lower fields.
SNR boosting techniques such as any denoising method can be used to mediate this problem, and
improve the quality of the metabolite maps, however, most denoising techniques come at the price of
trading off spatial and spectral resolution for higher SNR. Recently, Kirchner et al (Kirchner et al.
2017) introduced a denoising method using over-discretized B, correction that improves the SNR
while resulting in better line-shapes without sacrificing the spatial resolution. Using this technique, the
MultiNet PyGRAPPA method presented in this paper can also be applied at a lower field strengths to
enable fast and high resolution metabolite mapping.

A limitation of this study was that only 2" order B, shimming was used for shimming at 9.4T. It is
well know that using better By shimming will improve the quality of the MRSI data (Pan et al. 2012,
Chang et al. 2018), which will in turn enable more reliable acceleration due to the higher SNR and less
lipid contamination in the original data.

Conclusion

This paper presents a novel acquisition and reconstruction scheme (MultiNet PyGRAPPA) for highly
accelerated metabolite mapping using the non-lipid suppressed 'H FID MRSI sequence. The proposed
method is an improvement on conventional GRAPPA, combining a variable density sampling scheme
with multiple neural networks to predict the missing data points. The machine learning based
reconstruction method proves superior to conventional GRAPPA and results in less noise and residual
aliasing artifacts. The proposed MultiNet PyGRAPPA method was applied at an ultra-high field of
9.4T for high resolution (matrix size = 64x64) metabolite mapping of the human brain and resulted in
smooth and reliable maps acquired in 2.8 minutes (with R=7). MultiNet PyGRAPPA is compatible
with dynamic slice-wise B, shim updating and can be used to increase the clinical applicability of 'H
MRSI.
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Highly Accelerated Water Reference Acquisition for "TH MRSI using Compressed Sensing
Introduction

Proton magnetic resonance spectroscopic imaging ("H MRS]I) is susceptible to time-dependent magnetic
field distortions produced by eddy currents. These eddy currents are mostly induced by time-varying
gradients of the imaging sequence and are more severe for fast imaging sequences such as EPSI [1] or
ultra-short TR 'H FID MRSI [2, 3, 4]. To retrospectively correct for the distortions caused by these time-
dependent frequency shifts in the acquired spectra, usually a non-water suppressed (NWS) reference
image is acquired in the same session and is afterwards used for eddy current and automatic phase
correction in a process known as Klose eddy current correction [5]. Additionally, for quantification
purposes, the signal obtained from the unsuppressed water peak can be used for internal referencing.

Despite the advantages of acquiring a NWS reference image for every water-suppressed 'H MRSI
dataset, this naturally comes at the price of a significantly prolonged scan time, i.e. double the scan time
in the case of 2D FID MRSI if a fully-sampled NWS image is acquired at the same spatial resolution as
the metabolite image. To reduce this overhead scan time, conventionally a reduced resolution NWS
image is acquired (e.g. at 2 times lower resolution in each phase encoding direction (e.g. [6]) resulting
in the MRSI scan time being prolonged by 125% instead of 200%). Afterwards, the water signal from
each voxel is used to correct for the spectra of four voxels in the original MRSI image. This proves to
be sufficient for the purposes of eddy current and automatic phase correction as it has been previously
shown to result in reliable metabolite maps [7]. However, for internal referencing and quantification
purposes, this low resolution NWS image will be too coarse and suffer from severe partial volume
effects. Furthermore, prolonging the scan by 25% may be feasible for low resolution or single-slice
MRSI studies, but for high resolution metabolite mapping with larger coverage the additional 25% scan
time will severely hinder the clinical use of such sequences.

Ideally, NWS reference images should be acquired at the same spatial resolution as the actual water-
suppressed MRSI images in an accelerated manner. This can be achieved through conventional MRI
acceleration methods. The NWS image is specifically suitable for acceleration as one of the key factors
enabling high acceleration factors in any MR imaging application is high initial signal to noise ratio
(SNR). The SNR of water in 'H spectra is much greater than for other metabolites and therefore for
water reference acquisition, k-space can be heavily undersampled. Furthermore, the water signal is
spatially more uniform across the brain and therefore sparser than water-suppressed data where the lipid
signals from the subcutaneous fat can dominate. This makes the water reference image even more
compressible.

Recently, Birch et al [8] made an attempt at accelerating the acquisition of NWS reference images using
parallel imaging, specifically using SENSE [9]. They compared a SENSE accelerated NWS acquisition
method (R=3) to a reduced resolution approach (R=2) and showed that in addition to being faster, the
SENSE accelerated approach succeeds in reliably reconstructing the NWS image at the same resolution
as the original metabolite image and is hence more accurate than the reduced resolution approach.

Despite the successful application of SENSE for acceleration of NWS reference image acquisition, the
acceleration factors achievable through parallel imaging methods are generally limited. For multi-slice
and high resolution metabolite mapping these acceleration factors will not be enough. Instead, different
acceleration approaches such as compressed sensing [10] seem more suitable for this purpose as they
enable higher acceleration factors without introducing structured aliasing artifacts or noise amplification
in the image. The high SNR and the sparse nature of the water image makes it a perfect candidate for
this purpose.

The aim of this work is to highly accelerate the acquisition of NWS reference images (up to R=28) using
compressed sensing. Different acceleration factors will be explored and the accuracy of the proposed
method will be evaluated by comparing the compressed-sensing accelerated NWS images to the reduced
resolution approach. The reproducibility of the proposed method will also be evaluated in the context of



high resolution metabolite mapping using an ultra-short TE and TR 'H FID MRSI sequence at 9.4T.
The results of this study enable the acquisition of single-slice high resolution NWS reference images in
about 44 seconds.

Methods
Data Acquisition

Three healthy volunteers were scanned for this study in accordance with the local ethics committee
regulations. Subjects were scanned on a whole-body Siemens Magnetom 9.4T human scanner (Erlangen,
Germany). An in-house developed RF head coil with 16 transmit-only and 31 receive-only coil elements
[11] was used for all scans. Single-slice 'H MRSI data were acquired from the brains of each of the
volunteers. The slice was always positioned above the Corpus Callosum as shown in Figure 1.

Water-suppressed '"H MRSI data was acquired from each subject using a slice-selective 'H FID pulse
sequence [3, 7] with no lipid suppression and no outer volume suppression. The water suppression
scheme consisted of three pulses with an interval of 20 ms between each pulse and the flip angle were
optimized for a B,* range of 50% to 150% [7]. The acquisition parameters were: 64x64 matrix size;
200x200 mm field of view (FOV); 10 mm slice thickness; 8000 Hz spectral bandwidth, 1.5 ms
acquisition delay, and 300 ms repetition time (TR). The water-suppressed MRSI data were all acquired
fully sampled and thus the acquisition time was approximately 15 mins.

For the first subject, a fully sampled water reference was also acquired with the same matrix size as the
MRSI data. The acquisition parameters for the water reference were identical to the above mentioned
MRSI sequence except without the water suppression pulses. The fully sampled water reference was
then retrospectively undersampled using two undersampling factors of R=14 and R=28. To efficiently
exploit the high SNR and sparsity of the water signal for acceleration of the water reference scan using
compressed sensing, undersampling was realized through random variable-density undersampling
masks generated for each acceleration factor as shown in Figure 1. Additionally, the resolution was
retrospectively reduced to a 32x32 matrix size (denoted as the “reduced resolution” water reference) for
comparison and proof of concept.

To test the reproducibility of the suggested accelerated NWS reference acquisition method, two water
references were acquired for each of the following two subjects: a reduced resolution water reference (4
times less spatial resolution than the MRSI data) and a randomly undersampled compressed sensing
mask with the highest acceleration factor (R=28). The acquisition time was 5 minutes for the reduced
resolution and 44 seconds for the compressed sensing scan.

An anatomical reference image of the slice was also acquired after each MRSI scan using a 2D FLASH
sequence. The FOV and position of the image were the same as for the MRSI data. The sequence
parameters were: TR =312 ms, TE = 9 ms, flip angle = 25°.

Data Reconstruction

The randomly undersampled k-space data was reconstructed using compressed sensing optimization
where the objective function consisted of a data consistency term using a norm-2 metric, a total variation
term using norm-1 and a sparsity term also using a norm-1 metric. The sparsity term was a 2D 4™ order
Debauchy wavelet in the spatial (image) domain and the total variation term was 3D (over the two spatial
domains and the time domain). The total variation and sparsity terms were calculated on the coil
combined data which used coil sensitivity maps to combine and uncombine the data. The data
consistency term was calculated over all four dimensions, i.e. two k-space dimensions, the time domain
and the coil channels. Formally, the objectively function was, therefore:

mxinllTux = yllz + 4 |[Wxll; + TV (0)|l4 (D



where F, is the undersampled Fourier transform, y is the measured k-space data (for data
consistency), W is the sparsity transform, TV is the total variation, and A, 4, are weighting
factors for the sparsity terms. The weighting factors were chosen to be 1; = 0.001 and 4; =
0.003. For every reconstruction, the k-space data were normalized so the same weighting
factors could be used for different datasets.

The coil sensitivity maps used in the compressed sensing reconstruction were calculated from the
anatomical scout image. ESPIRIT [12] was used to generate these coil sensitivity maps using eigenvalue
decomposition. Calculating the sparsity terms on the coil combined data rather than individual coil
channels can improve the reconstruction since the higher SNR of the coil combined data allows the
noise-like aliasing (due to the random undersampling) to be better resolved from the measurement noise.

A conjugate gradient descent method was used to minimize the objective function and reconstruct the
missing k-space data. Four iterations of the gradient descent were performed before the gradients were
reinitialized and run again. Sufficient convergence was reached after four iterations of reinitialization.

The compressed sensing water reference was compared to the reduced resolution water reference image.
Each water reference was used for eddy current and phase correction of the MRSI data and their effect
on the final metabolite maps were compared. The MRSI data was reconstructed and post processed
following the steps described in [7] which involved spatial Hanning filter, eddy current correction, SVD
coil combination and HLSVD water removal. No further smoothing or apodization filtering was
performed. The reconstructed spectra were fit using LCModel [13] and a basis set of 18 metabolites
simulated using the GAMMA library (https://scion.duhs.duke.edu/vespa/gamma). Metabolite maps
were extracted from the LCMODEL fit results for each dataset.

Data Analysis

Bland-Altman plots were generated to compare the water peak amplitude between the fully sampled
NWS reference image and the compressed sensing accelerated one. For comparison the same plot was
generated for the reduced resolution reference image (interpolated in the image domain to the original
resolution).

Furthermore, Bland-Altman plots were generated for the major metabolites that were fit with LCModel.
The metabolite concentrations resulting from eddy current and phase correction once with the reduced
resolution water reference and once with the highly accelerated compressed sensing water reference
were compared. The percentage difference of the reduced resolution and the compressed sensing
methods were calculated for the Bland-Altman plots as:

_ CONCreg.res. — CONCcs 2)

" mean(conccs)
Where the subscripts red.res. and cs indicate concentrations resulting from the reduced resolution

versus the compressed sensing method, respectively.

Results

For proof of concept, a fully sampled water reference was acquired and compared to the compressed
sensing reconstruction of the water reference (using a randomly undersampled mask with two different
acceleration factors). Figure 2 shows the water references for the fully sampled data, the compressed
sensing reconstruction for the two acceleration factors and the reduced resolution data from the first
subject. The magnitude images show the concentration of the water signal for the coil-combined data
and the phase images show the phases of the first time point for the coil-combined data. Naturally, the
reduced resolution image looks like a smoother version of the fully sampled case and shows less
anatomical details. The compressed sensing water image with R=28 looks similar to the reduced
resolution in the amount of blurring resulting from the high acceleration factor. The R=14 accelerated



image however, shows more anatomical details and appears to have a higher spatial resolution than the
highly accelerated one. All of the phase images are in good agreement to the fully sampled high
resolution NWS image and are almost identical.

To quantitatively evaluate the change in the water peak amplitude resulting from compressed-sensing
acceleration versus reduced resolution NWS acquisition, Bland-Altman plots comparing each of these
methods to the fully sampled high resolution NWS image are shown in Figure 3. Despite the fact that
the compressed sensing in this case has an acceleration factor that is more than 3 times faster than the
reduced resolution, the agreement limits of the reduced resolution (Refreciive=4) and compressed sensing
(R=14) are similar (less than 10% for most voxels).

Figure 4 shows the acquired reduced resolution (Refrecive=4) and highly accelerated compressed sensing
NWS reference image (R=28) for subjects 2 and 3. Once again, a comparison of the magnitude images
between the reduced resolution and compressed sensing reconstruction is very similar despite the very
high acceleration factor of the compressed sensing method. The phase images look almost identical.

Each of the different water references were used for eddy current and phase correction of the MRSI data
that was acquired for the respective volunteers. The resulting metabolite maps were then compared for
multiple metabolites. The ratio metabolite maps (/Creatine) for three major metabolites (NAA,
Glutamate and total Choline) are shown in Figure 5. Three lower concentrated metabolites, namely,
GABA, Scyllo-inositol and Taurine are also shown in this figure. The metabolite maps are shown for
two subjects using the reduced resolution water reference for eddy current and phase correction versus
the ones using the highly accelerated compressed sensing water reference. The difference between the
reduced resolution and compressed sensing for eddy current and phase correction is virtually
indistinguishable in the metabolite maps.

Analysis of the degree of agreement, between using the reduced resolution and compressed sensing
water references for eddy current and phase correction, was performed using Bland-Altman plots. The
Bland-Altman plots for the four major metabolites are shown in Figure 6. The concentrations of
metabolites with CRLBs greater than 30% were discarded. The three horizontal lines show the mean
(middle line) and the agreement limits (top and bottom lines). The agreement limits are defined as
1.965 * std.dev from the mean. The 95% confidence intervals of the mean and the agreement limits
are also shown. The detailed data from the Bland-Altman plots are given in Table I. Since there are
many samples, the confidence intervals are very small. This leads to statistically significant systematic
biases between the two datasets (the reduced resolution and compressed sensing data). The mean biases
are 0.52% for Glutamate, -0.2% for NAA, -0.15% for Creatine and -0.45% for total Choline. The
standard deviations of the differences are 2.05% for Glutamate, 1.24% for NAA, 1.95% for Creatine
and 2.92% for total Choline. The plots show that for Glutamate, NAA and Creatine, 95% of the
differences between the two water references fall within a £2% interval. For total Choline, which can
be more difficult to reliably quantify, 95% of the differences fall within the £3% interval. Therefore,
there is a small overestimate of Glutamate when using the reduced resolution for eddy current correction
compared to compressed sensing, and there is a small underestimation of NAA, Creatine and total
Choline. These biases are all smaller than 1% of the respective mean concentrations.

Discussion

The purpose of this study was to reliably accelerate the acquisition of the water reference that is often
acquired for '"H MRSI studies. This water reference can be used for quantification as well as phase and
eddy current correction. Despite what is usually done in the field (i.e. acquiring at a reduced spatial
resolution equivalent to R=4), in this study the acquisition of the water reference was highly accelerated
using a random and variable density undersampling scheme with effective acceleration factors of up to
R=28. Whereas for eddy current and phase correction purposes only the phase of the water reference
data is of use, for internal referencing and quantification purposes the magnitude of the water reference
also needs to be accurate and ideally of high spatial resolution. The results of this study show that



depending on the application, by carefully choosing the acceleration factor for the compressed sensing
method, these requirements can be met to a satisfactory extent while reducing the scan time well beyond
what is conventionally used in the field. This reduction of overhead scan time will be of great value for
high resolution multi-slice or whole brain coverage MRSI studies.

For eddy current and phase correction purposes, a compressed sensing water reference acquisition even
with a high acceleration factor of R=28 works as well as a fully sampled and high resolution water image.
This is due to the fact that the spatial phase distributions are even sparser than the magnitude images.
Therefore, since it is only the phase that is used for eddy current correction (and correction of the phase
0), the compressed sensing water reference with even R=28 can be used for eddy current correction
without any loss of accuracy. Compared to the conventional reduced resolution water reference, this
offers 7 times shorter scan time (44 seconds compared to 5 minutes).

Indeed, when the reduced resolution and the highly accelerated (R=28) compressed sensing water
references are used for eddy current correction, the metabolite maps fit with LCModel (using identical
settings for both) resulted in very similar maps. A visual inspection of metabolite maps for the four
major metabolites shown in this paper, show that there are no perceivable differences between the
metabolite concentration maps.

The Bland-Altman plots of the metabolite concentrations (using the reduced resolution and highly
accelerated compressed sensing water references for eddy current and phase correction) show that there
are slight systematic biases between the two methods. Due to the large number of samples, the 95%
confidence intervals of statistical significance are very narrow. However, the estimated biases are
approximately 0.5% or less for each of the metabolites. The differences between the concentrations are
very small. The agreement limits are also quite narrow: less than +3% for the major metabolites.

For quantification purposes, the magnitude of the water reference data is also of importance. Even
though the compressed sensing accelerated water references are acquired at the same high spatial
resolution as the original MRSI data, the apparent resolution after reconstruction is lower than the fully
sampled case. This is a known side-effect of the compressed sensing reconstruction for very high
acceleration factors. The total variation term in the compressed sensing reconstruction is known to result
in some spatial smoothing. Reducing the weighting factor for this term could improve the spatial
resolution of the reconstruction at the price of having less SNR. Increasing the weighting factor of the
data consistency term (by decreasing the weighting factors of the two other terms) could possibly also
improve the spatial resolution. Another method of improving the compressed sensing reconstruction is
simply to acquire more k-space points but this, of course, increases the scan time. The results of this
study show that for a compressed sensing acceleration of R=14, the accuracy of the water amplitudes
are similar to that of what is usually done in the field (reduced resolution approach). However, it is
important to note that the acquisition time of the compressed sensing water reference for this
acceleration factor was 3.5 times shorter than the reduced resolution approach. Needless to say, a
compressed sensing acquisition with an acceleration factor of less than R=14, will result in more
accurate water reference images than the reduced resolution approach while still requiring less scan time.

Previously, Birch et. al [8] also made an attempt at accelerating the acquisition of the water reference
images.In this work, SENSE was used to accelerate the water reference acquisition for quantification
purposes. However, the MRSI data in that study was acquired at a very low spatial resolution and
therefore the resulting reduced resolution water reference was very inaccurate. Another difference is
that Birch et al. [8] only achieved an acceleration factor of R=3, which is reasonable for a low resolution
MRSI scan however, for multi-slice high resolution MRSI studies, this will not be enough. Instead of
using parallel imaging which has a limited achievable acceleration factor in practice, in this study we
exploited the sparsity of the water image to achieve much higher in-plane acceleration factors.

Conclusion



In this study the acquisition of the water reference image that is often needed for MRSI studies was
accelerated through compressed sensing. Acceleration factors of up to R=28 were investigated and
compared to what is commonly done in the field, i.e. a reduced resolution approach (equivalent to R=4).
The Bland-Altman analysis results showed that for quantification and referencing purposes an
acceleration factor of R=14 results in similar accuracy as the reduced resolution approach while reducing
the scan time by a factor of 3.5. For eddy current and phase correction purposes however, an acceleration
factor of R=28 using the proposed method can be reliably used without any loss in accuracy. This results
in an acquisition time of 44 seconds for a high resolution matrix size (64x64). This can in turn greatly
reduce the overhead scan time for multi-slice high resolution metabolite mapping.
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Undersampling masks

R=14 R =28

MRSI slice position

Figure 1- Right: Slice position (shown in yellow) and shim box (overlaid in green) of all MRSI scans
done in this study, Left: Variable-density random k-space undersampling masks with effective
undersampling factors of 14 and 28 used for compressed sensing acceleration. The acquired k-space
points are shown in orange.
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Figure 2- Comparison of the magnitude and phase of the non-water suppressed reference images
acquired fully sampled at high resolution (first column), reduced spatial resolution with 2x2 times lower
spatial resolution than the original MRSI scan (second column), and accelerated through compressed
sensing by R=14 (third column), and R=28 (fourth column).
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Figure 3- Bland-Altman plots showing the agreement between the fully sampled water reference image
once with the reduced resolution (left) and once with the compressed sensing accelerated (right) water
reference images. The y-axis shows the mean differences between water amplitudes resulting from the
two methods (in percentage) and the x-axis shows the mean amplitude of water across the two methods.
The limits of agreement are also indicated with black lines.
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Figure 4- Reproducibility of the proposed method: comparison of the magnitude and phase of the non-
water suppressed reference images acquired once at reduced spatial resolution and once with high
acceleration through compressed sensing ( R=28) shown for two additional volunteers.
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Figure 5- Comparison of eddy current and phase correction using the reduced resolution (R=4) versus
compressed sensing (R=28) water reference images for metabolite mapping: ratio metabolite maps
(/Creatine) of seven metabolites from two different volunteers are shown.
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Figure 6- Bland-Altman plots for metabolite concentrations showing the agreement between the case
of eddy current and phase correction using the reduced resolution (R=4) versus the compressed sensing
(R=28) water reference image. The y-axis shows the mean differences between metabolite
concentrations between the two cases in percentage and the x-axis shows the mean concentrations across
the two methods. The limits of agreement are also indicated with black lines.



NAA

Confidence interval

tCho

Parameter Unit Standard error Confidence from to
difference mean (d) -0.20 0.04 0.08 -0.28 -0.11
standard deviation (s) 1.24
d-1.96s -2.64 0.07 0.15 -2.78 -2.49
d+1.96s 2.24 0.07 0.15 2.09 2.38
Cre

Confidence interval

Parameter Unit Standard error Confidence from to
difference mean (d) -0.15 0.07 0.13 -0.28 -0.02
standard deviation (s) 1.95
d-1.96s -3.98 0.12 0.23 -4.21 -3.75
d+1.96s 3.67 0.12 0.23 3.44 3.90
Glu

Confidence interval

Parameter Unit Standard error Confidence from to
difference mean (d) 0.52 0.07 0.14 0.38 0.66
standard deviation (s) 2.04
d-1.96s -3.45 0.12 0.24 -3.73 -3.25
d+1.96s 4.53 0.12 0.24 4.29 4.77

Confidence interval

Parameter Unit Standard error Confidence from to
difference mean (d) -0.45 0.10 0.19 -0.65 -0.25
standard deviation (s) 2.92
d-1.96s -6.17 0.17 0.34 -6.52 -5.83
d+1.96s 5.27 0.17 0.34 4.92 5.61

Table 1- Bland-Altman plot statistics for the plot shown in Figure 6. For each metabolite the difference
mean (d) and standard deviation (s) between the two methods are shown, along with agreement limits

calculated as d+1.96s.
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In Vivo Whole Brain Proton Spectroscopic Imaging at 9.4T: A Focus on Dynamic Slice-wise By
Shimming

Abstract

Purpose: To compare different By shimming approaches at 9.4T and to evaluate their performance in
the context of high resolution multi-slice metabolite mapping of the human brain with whole brain
coverage.

Methods: Two different Bo shimming approaches, namely, a very high degree spherical harmonic insert
shim and a multi-coil system were used to perform By shimming on the human brain at 9.4T. High-
degree static shimming was compared to both low- and high-degree dynamic slice-wise shimming.
Dynamic shimming using spherical harmonics was also compared to multi-coil slice-wise shimming.
Based on the results, the optimal Bo shim solution was used to perform whole brain metabolite mapping
at 9.4T for the first time.

Results: Better By homogeneity achieved through dynamic shimming using either of the shim systems
resulted in a more accurate quantification of spectra. The dynamic shim quality obtained using 4" degree
spherical harmonics was comparable to the 16-channel multi-coil setup. The multi-coil setup was chosen
for whole brain metabolite mapping study due to its more practical hardware setup, and high resolution
metabolite maps acquired at 9.4T with whole brain coverage were presented.

Conclusion: Metabolite mapping at 9.4T benefits greatly from advanced By shimming approaches.
Dynamic shimming performed using a 4™ degree spherical harmonic shim system resulted in a similar
quality as a 16-channel multi-coil system combined with 2™ degree spherical harmonic shims. High
resolution metabolite maps with whole brain coverage using the multi-coil approach show promise for
the advance of MRSI at ultra-high fields.

Introduction

Proton magnetic resonance spectroscopic imaging (‘H MRSI) has a lot of potential for clinical
applications and neuroscientific exploits. It offers a method to identify the neurochemical profile of the
brain in a non-invasive manner. Spatial distributions of metabolites and amino acids, such as Glutamate
and N-Acetylaspartic acid (NAA), that are involved in neurotransmission processes can be mapped
using '"H MRSI. Mapping metabolites in the human brain can further illuminate our understanding of
how the human brain functions.

There are methods available for whole brain metabolite mapping at 3T, namely, echo-planar
spectroscopic imaging (EPSI) [1] and Hadamard-encoded spectroscopic imaging [2]. While this has
allowed research into metabolic function of Parkinson’s disease [3] and traumatic brain injury [4], the
low signal-to-noise ratio (SNR) results in poor spatial resolution and spectral specificity. Furthermore,
while EPSI can be used for group studies, the low SNR means that metabolic information is often not
reliable enough for single subject analysis.

In light of this, efforts have been made to perform MRSI at ultra-high field strengths, which offer super-
linear increase in SNR with respect to the field strength. Single slice metabolite maps have been acquired
using free induction decay (FID) MRSI at 7T [5, 6] and 9.4T [7], which showed improved metabolite
maps at higher spatial resolutions.

However, despite the higher SNR and advances in ultra-high field (UHF) MRI, there are still many
technical challenges that make whole brain metabolic mapping difficult. Without a spatially
homogenous magnetic field, the many advantages of ultra-high field strengths cannot be fully exploited
[8]. '"H MRSI is, in general, very susceptible to inhomogeneities in the magnetic field and can suffer
from insufficient water suppression performance [9, 10, 11], or poor quality spectra with broadened



linewidths and low signal to noise ratio (SNR) if insufficient Bo shimming is performed. The poor quality
of the spectra then directly affects the reliability of the fits for metabolite quantification and result in
metabolite maps that do not fully reflect the underlying anatomy. Furthermore, By inhomogeneities can
affect the water suppression pulses and result in metabolites being suppressed rather than the water peak.
In general, any spectrally selective pulses will be effected by By inhomogeneities. Therefore, to acquire
reliable metabolite maps, we need to first address the issue of By inhomogeneity.

Koch et al. [11] and Boer et al. [9] addressed the issue of By field inhomogeneity using dynamic By
slice-wise updating with a second- and third-degree spherical harmonic (SH) shim system, respectively.
They showed improved spectra for multi-slice 'H MRSI but did not show any metabolic maps. Pan et
al. [12] used very high degree SH shim coils (up to full 4" degree and partial 5" and 6" degree) to
improve the By homogeneity using a static global shim for MRSI at 7T. Again, no metabolite maps were
shown.

In recent years, the By shimming community has moved towards arrays of localized shim coils rather
than using high degree spherical harmonic shim coils [13, 14]. The array of localized shim coils (or
multi-coil system) can also be used to dynamically update the slice-wise By shims of multi-slice
sequences, which has been shown to be advantageous for By shimming [14, 15]. While higher degree
spherical harmonic shimming generally increases the homogeneity of the magnetic field over all, the
multi coil setup can, depending on the design, produce local field patterns that more closely match the
local inhomogeneities caused by the tissue susceptibility differences (e.g. close to the sinus air cavities)
[14]. In other words, using higher degree spherical harmonics By shimming systems likely provides
more degrees of freedom for producing global field patterns that result in a more homogenous field
distribution overall, whereas the multi-coil approach is more suited to producing locally complicated
patterns.

The question of which By shimming setup is optimal when imaging different regions of the brain is still
a point of discussion in the field and a thorough comparison of the two methods for shimming different
regions of interest is missing. Given the differences between the two shim approaches, for each MRI
imaging application (depending on the focus being on a small region of the brain versus on multiple
slices), a certain By shim setup might be more beneficial over the other approach. Additionally, each of
these shimming methods can be applied in a static or dynamic manner. While it is known that performing
dynamic shim updates improves the quality of the images compared to static shimming, for some
imaging applications such as 3D sequences, dynamic shim updating is not possible. Then the question
is whether or not using more shim coils for static shimming can ever come close to the same shim quality
as dynamic shimming (with fewer coils).

To the best of our knowledge, no previous study has directly compared the use of higher degree spherical
harmonic By shimming to the multi-coil approach for in-vivo human brain metabolite mapping at ultra-
high fields using dynamic slice-wise Bo shim updating.

In this work, we systemically compare the By shimming quality using a very high degree SH shim system
and the multi-coil approach. The two different shimming approaches were then used to acquire multi-
slice MRSI data for comparison. Finally, using the optimal and most feasible By shimming method,
multi-slice MRSI data with whole cerebrum coverage were acquired from the human brain at 9.4T. For
the first time, we present high resolution in vivo metabolite maps covering the whole cerebrum at ultra-
high field.

Methods
Equipment

All measurements were performed on a Siemens Magnetom 9.4T whole-body human scanner (Erlangen,
Germany). For all experiments, an in-house developed 18Tx/32Rx transceiver head RF coil [16] was
used.



A multi-coil shim array with 16 identical circular shim coils arranged in two rows, as shown in Figure
la, was used for the localized multi-coil (MC) By shimming. The local shim coils were 100 mm in
diameter and had 25 turns [17]. The multi-coil shim array was used in combination with the 1 and 2™
degree spherical harmonic shim coils from the vendor. Therefore, the system consisted of 2™ degree SH
coils + 16 localized shim coils. Unless otherwise stated, any further mention of the MC shim system
will refer to the 2™ degree SH coils + 16 MC coils.

An insert shim from Resonance Research Inc. (Billerica, MA) with complete 4™-degree SH shim coils
and partial 5%- and 6™-degree shim coils was used for the very high-degree By shimming. This insert
shim system will be referred to as the very high order/degree shim (VHOS) system and is shown in
Figure 1b. For a fair comparison with the MC system, only the 3™- and 4"-degree shim coils of the insert
shim were used, since this also amounts to 2™ degree SH coils + 16 VHOS SH coils. This system shall,
henceforth, be denoted as the SH4 shim system. SH terms up to 2™ degree terms shall be denoted as
SH2.

In this study, we investigated Bo shimming in the human brain in vivo using two different approaches:
very high-degree SH (up to 4" degree) shim coils and a 16 channel MC shim array. Therefore, both
hardware setups used up to 2™ degree shim coils and 16 additional shim coils.

Reference Field Measurements

The reference By maps produced by each of the 16 local shim coils is shown in Figure 2 [17]. These
reference maps were acquired on an oil phantom and interpolated to a 1 mm isotropic resolution.

Reference field maps were also acquired for the VHOS system on a silicon oil spherical phantom. Each
coil channel was driven with 0.5 A and the shim fields were measured using a 2D dual echo GRE with
the following parameters: in-plane resolution = 1.56 x 1.56 mm?; number of slices = 50; slice thickness
=4 mm (0% distance factor); FOV = 200 x 200 mm?; TE = 4.00/4.76 ms; TR = 1200 ms; read-out
bandwidth = 1500 Hz/Px. The reference shim fields were then modelled using spherical harmonic
decomposition based on the Legendre functions as described in [18]. The SH shim fields for the 3™ and
4™ degree terms are shown in Figure 2 (on a unit sphere in arbitrary units for illustrative purposes).
Actual measured shim fields can be found in [18].

In vivo By Shimming Comparison

To compare the quality of each of the By shim setups in vivo, 3 healthy volunteers were scanned at 9.4T.
All volunteers gave their written consent prior to the scan according to the regulations of the local ethics
committee. On each volunteer By field reference maps were acquired using a 2D GRE sequence with
the same parameters as mentioned in the previous subsection from a 50 mm volume: 25 slices with 2
mm slice thickness (0% distance factor). The middle slice was placed above the corpus callosum with a
transversal orientation. The two different By shimming approaches (i.e. SH shimming and MC) were
implemented on the volunteers as described below. Thereafter, for each shim setting, three MRSI slices
were acquired: a top slice, center slice and bottom slice. Each MRSI slice had a thickness of 10 mm.
Thus, each MRSI slice used 5 slices of the By field reference map for shimming. The slices of the By
field maps and the MRSI slices are illustrated in Figure 3.

For SH By shimming, we compared dynamic slice-wise By shimming of both SH2 and SH4 systems on
the three volunteers. The term “dynamic slice-wise” shimming and “dynamic” shimming will be used
interchangeably in the remainder of this paper. In order to allow for the eddy currents to settle, a 5
second delay after each shim update was implemented in the sequence for all dynamically shimmed
acquisitions in this study. Considering that even with the fastest sequence, the acquisition time for a high
resolution MRSI slice is on the order of a few minutes, the effect of this delay on the total scan time was
negligible. In addition, a static global SH4 By shim was performed over the entire 200x200x50 mm
volume for comparison as illustrated in Figure 3.



Spectroscopic imaging data were acquired for each slice and each of the shim configurations. An FID
MRSI sequence without lipid or outer-volume suppression was used with the following parameters [7]:
FOV = 200x200 mm?; slice thickness = 10 mm; acquisition delay = 1.56 ms; nominal flip angle = 28°;
repetition time (TR) = 300 ms; bandwidth = 4000 Hz; k-space matrix = 64x64. The flip angles and
gradients of the water suppression were optimized for a range of B," values (between 50% and 150%),
which was important due to the large B,* inhomogeneity at 9.4T (especially at lower slices in the brain)
[18]. The sequence was accelerated using elliptical shuttering and undersampling of k-space by a factor
of R = 2x2 (in each phase encoding direction) except for the center 8x8 k-space points which were fully
sampled. The reconstruction was performed using GRAPPA. A highly accelerated water reference
spectroscopic image was also acquired for eddy current and phase correction. Further details of the
processing and fitting of the spectral data and acquisition of the water reference spectra are described in
the next section.

Additionally, an anatomical reference was acquired for each slice using a To-weighted 2D FLASH scout
image (TR =312 ms, TE =9 ms, flip angle 25°) with the same slice position and properties as the MRSI
sequence.

Therefore, the scanning procedure consisted of the following protocols:

Anatomical scout reference;

By field reference maps;

FID MRSI on the top, middle and bottom slices with SH2 shim (slice-wise);
By field maps of the top, middle and bottom slices with SH2 shim (slice-wise);
FID MRSI on the top, middle and bottom slices with SH4 shim (slice-wise);
By field maps of the top, middle and bottom slices with SH4 shim (slice-wise);
FID MRSI on the top, middle and bottom slices with SH4 shim (global);

By field maps of the top, middle and bottom slices with SH4 shim (global).

X NN RPN =

For MC By shimming, we compared slice-wise dynamic By shimming of SH2 to MC on the same 3
volunteers in another session. Therefore, the scanning procedure consisted of the same protocols as
listed above except for steps 4 and 5 where an MC slice-wise was used and steps 7 and 8 were excluded.

Due to long scan times and different hardware setup requirements, the SH and MC measurements were
conducted in different sessions. Therefore, the dynamic SH2 shims were used as references for the
comparisons. The standard deviations of the By field maps of each of the slices were used to evaluate
the quality of the shims.

To evaluate the quality of the MRSI data acquired with different By shim settings, the Cramer-Rao lower
bound (CRLB) of the spectral fits as reported by LCMODEL, as well as the SNR values (calculated as
the absolute peak of NAA over the root mean square of the noise) were compared.

Whole Brain Metabolite Mapping

To show the advantages of advanced By shimming methods on ultra-high fields for in vivo metabolite
mapping, the most optimal and feasible shimming method (as indicated by the results of the previous
section) was used to acquire high resolution metabolite maps of the human brain with whole brain
coverage at 9.4T. Three healthy volunteers were scanned for this purpose using'H MRSI.

As mentioned previously, a slice-selective ultra-short TE proton FID MRSI sequence was used to
acquire the spectroscopic imaging data. For coverage over the whole cerebrum, the same sequence
parameters were used as described in the previous section, except for the following changes: slice
thickness = 8 mm; number of slices = 10; undersampling factor of R = 7. Therefore, the total coverage
was an FOV of 200x200x80 mm in approximately 25 minutes.

Water reference MRSI spectra were acquired using a highly undersampled acceleration scheme for eddy
current correction. An acceleration factor of R = 28 was achieved by randomly undersampling k-space



and reconstructing the data using compressed sensing as described in [19]. The scan duration for the
water reference scan amounted to approximately 8 minutes.

The whole-brain data were acquired with slice-wise Bo shimming using the MC setup. Again, a B field
reference map, from which the shim currents could be calculated, was first acquired. For practical
reasons, a static global SH2 was first performed on the whole FOV, then the shim currents of the MC
(only the 16 localized shim coils) were updated during the scan for each slice. The MRSI sequence was
modified to enable communication with the MC shim coils using a standard user datagram protocol
(UDP) [17]. The shim values were sent to the MC shim amplifiers before the beginning of each MRSI
slice acquisition.

The MRSI data were then processed as previously described in [7]. LCModel [20] was used to fit the
spectra and generate the metabolite maps. Again, the CRLBs and SNRs were used to evaluate the MRSI
data quality.

An MP2RAGE sequence accelerated using CAIPIRINHA was used to acquire 600 um isotropic
anatomical images in ~12 mins [21]. Bi" correction was performed on the anatomical maps using a B,*
map acquired using an AFI sequence [22] as described in [23].

Results
In vivo By Shimming Comparison

For the first comparison, we looked at the VHOS system and compared high degree static (SH4) to both
low (SH2) and high (SH4) degree dynamic By shimming. The three slices with 10 mm slice thickness
were evaluated. The comparison between static global shimming, dynamic slice-wise SH2 (D2) and
dynamic slice-wise SH4 (D4) shimming are shown for a representative volunteer in Figure 4 (left).
Clearly, the Bo maps resulting from dynamic SH4 are much more homogeneous than dynamic SH2 for
all slices with a 2 Hz improvement on the top slice and a 10 Hz improvement on both the center and
bottom slices. The static global SH4 (S4) also shows some improvement over dynamic SH2, however
the improvement is very small on the top slice. The figure also shows the histograms of the By field
distributions between -100 and 100 Hz. The histograms give a rough indication of the linewidth of the
spectra acquired from the whole slice for each position and shim setting. Compared to dynamic SH2,
the static SH4 and dynamic SH4 histograms have taller and thinner distributions.

In the next comparison, we looked at the difference between using a dynamic SH2 By (D2) shimming
and the dynamic MC (DMC) B, shimming for each of the slices. The results of this study are also shown
for a representative volunteer in Figure 4 (right). As expected, the dynamic MC proves to be superior to
dynamic SH2 on all slices. The dynamic SH2 results for this volunteer are similar to the volunteer shown
for the VHOS system on the left of the same figure. However, the improvement over dynamic SH2 for
the bottom slice was slightly more for dynamic SH4 than the dynamic MC (10 Hz compared to 7 Hz).
The histograms, once again, show narrower linewidths for dynamic MC than dynamic SH2.

Table 1 shows the means and standard deviations of the frequency shifts in the shimmed By maps
averaged over all volunteers for each shim setting. The improvement from dynamic SH2 to dynamic
SH4 is comparable to the improvement seen from dynamic SH2 to dynamic MC (approximately 3-4 Hz,
7-8 Hz and 8-9 Hz for the top, middle and bottom slices, respectively). This is similar to what was shown
in Figure 4. The averaged standard deviations of dynamic SH2 vary slightly between the two
comparisons due to different positioning of the heads mandated by the different hardware setups.
Improvements can be seen on all slices for both dynamic SH4 and dynamic MC methods compared to
dynamic SH2. However, the improvement is always less for the top slices compared to the center and
bottom slices.

Comparison of static and dynamic shimming shows that, on average, static SH4 shimming outperforms
dynamic SH2 shimming for the center and bottom slices. However, the improvement is traded-off for
the homogeneity of the top slice, since the top slice of dynamic SH2 is better than the top slice of static



SH4. Furthermore, the improvement of static SH4 for the center and bottom slices is only about 4 or 5
Hz compared to the potential 8 to 9 Hz that could be achieved with dynamic SH4.

The resulting metabolite maps along with their respective Cramer-Rao lower bound (CRLB) maps for
the VHOS comparisons are shown in Figure 5. The metabolite maps are shown for NAA, Glutamate
and total Choline relative to the Creatine concentrations. The metabolite maps acquired from dynamic
SH2 shimming are different to the maps acquired from dynamic SH4 shimming. For NAA on the bottom
slice the signal dropout due to the residual By inhomogenity from the nasal cavity is smaller when using
dynamic SH4 than when using dynamic SH2. Also, in the CRLBs of NAA, more voxels could be reliably
fit for the center and bottom slices when dynamic SH4 shimming was used. The effect of good shimming
is more obvious for the Glutamate and total Choline metabolite maps. The Glutamate maps resemble
the underlying anatomical structure much more closely for dynamic SH4 than SH2. This is evident in
all the slices and is also reflected in the CRLB maps which have more voxels being reliably fit for the
dynamic SH4 case. A similar effect can be seen for total Choline. CRLB values averaged across all
volunteers are given in Table 1.

The resulting metabolite and CRLB maps for the same volunteer are shown for the MC comparisons in
Figure 6. Compared to the VHOS metabolite maps, the slice position was slightly higher due to different
hardware setups and the effect of the nasal cavity is less observed. Since the position was slightly higher,
the metabolite maps from dynamic SH2 were already quite good for the center slice. However, we still
see very good improvement of the dynamic MC over dynamic SH2 (particularly for the bottom slice).
Again, the metabolite maps resemble the underlying anatomical structure better for the dynamic MC
shimming, especially for Glutamate in the top and bottom slices, and for total Choline in all slices. The
grey and white matter contrast is clearer in the total Choline maps for dynamic MC. Furthermore, the
improved fitting is also clearly reflected in the CRLB maps for the bottom slice and the total Choline in
the top slice. CRLB values averaged across all volunteers are given in Table 1.

The average (and standard deviation) CRLBs of Creatine and NAA, and the average (and standard
deviation) SNR of the NAA averaged across the slice for all volunteers are summarized in Table 1
for each By shim setting.

Overall, it is evident that better By homogeneity not only improves the reliability of the quantification
process (i.e. more voxels can be reliably fit due to higher SNR and better spectral lineshapes) but also
with better By shimming, the metabolite concentration maps are more reflective of the underlying
anatomical structure.

Whole Brain Metabolite Mapping

The standard deviations of the shimmed By field maps for each of the volunteers are shown for each
slice in Table 2. These results were obtained using a global static SH2 By shim in addition to slice-wise
MC By shim updates. It can be seen that with this shim setup, that the shim quality improves as we move
away from the bottom slices (which are affected by the nasal air cavity), only to get worse as they
approach the very top slices affected by the subcutaneous lipid layer.

The metabolite maps (over Creatine) for each of the slices are shown for a representative volunteer in
Figure 7. The bottom- and top-most slices were omitted due to poor data quality. The metabolite maps
show good gray/white matter contrast for metabolites such as Glutamate and total Choline. In Figure 8,
sagittal and coronal cross sections of the metabolite maps can be seen to be in agreement with the
underlying anatomical structures.

The same evaluation metrics as in the previous section were used to evaluate the quality of the MRSI
data across each slice and the results are shown for all volunteers in Table 2. The SNR appears to be
highest on the middle slices (where the shimming performance is the best). Overall, the SNR is sufficient
for a reliable quantification of the metabolites with an average CRLB of 6.9% (+1.1%) for NAA and
9.8% (*1.1%) for Creatine across all datasets. The only exception is the two outer-most slices where the



By shim quality achieved through this setup (static SH2 + dynamic MC) is still not sufficient for reliable
quantification of the spectroscopy data.

Discussion
In vivo By Shimming Comparison

The goal of this work was to provide further insight into the benefits of two different By shimming
concepts, namely very high degree SH and MC shimming setups, for performing By shimming in the
human brain at 9.4T.

The two By shim setups were compared in vivo for dynamic slice-wise shimming by evaluating the By
field maps and spectroscopic imaging data. In addition, performing global shimming over the whole
imaging volume (static SH4 shimming) was compared to performing dynamic slice-wise shim updating.
In all cases dynamic slice-wise shim updating using SH2 shims was taken as a benchmark. The results
showed that including more degrees of spherical harmonic (SH4) while performing static shimming
improves the quality of the shim overall. The results showed that when it is not possible to perform
dynamic slice-wise By shimming (due to lack of driving hardware/software or due to acquisition
sequence limitations), one can still achieve reasonable shim quality by including higher degree SH and
performing global static shimming.

Alternatively, the shim quality can be further improved by performing dynamic shim updates using
either the SH4 or MC systems. Unsurprisingly, this proves to always be consistently advantageous over
dynamic SH2 shimming. The amount of improvement gained from going to higher degree SH versus
including a MC design was comparable to each other for similar slice positions. The highest
improvement was seen on inferior slice positions, where due to the susceptibility difference between the
air in the nasal cavities and the brain tissue, severe B inhomogeneities are present. This has also been
confirmed before for the case of dynamic SH shimming by Koch et al. [11], Boer et al [9], and Pan et al
[12].

It is well known that the quality of By shimming directly affects the quality of the acquired spectra in
MRSI applications [11, 12]. This can be due to the fact that as a result of lower local By inhomogeneity,
the spectral lines are sharper and the SNR is higher, which means that quantification is much more
accurate. Additionally, the quality of water suppression is affected by By inhomogeneity. In regions with
high residual By distortion, the water suppression will fail, leaving a strong residual water peak that will
distort the quantification of the metabolites of interest. High resolution metabolite maps acquired with
the two improved By shim setups of this study further highlight the advantages of these advanced shim
setups compared to dynamic slice-wise SH2 shimming. Qualitatively speaking, the maps acquired with
dynamic SH4 shimming and dynamic MC shimming are similar. In all cases however, the maps look
much more accurate than only performing dynamic SH2 shimming as they reflect the underlying
anatomy much better. The white/gray matter contrasts are much clearer and the confidence in fits are
higher as a result of improved By shimming. The positioning of the slices between the datasets shown
in Figure 5 and 6 are somewhat different, since the experiment was conducted in two different session
with two different hardware setups and positioning limitations. The slice positions shown in Figure 5
are lower than in Figure 6, this could explain the less reliable fits (higher CRLBs) and noisier metabolite
maps for the dynamic SH4 shimming than for the dynamic MC shimming results.

Additionally, the physical weight of the VHOS system when inserted into the bore, adversely affected
the quality of the acquired MRSI data by shifting the frequency of the gradient modulation sidebands
closer to the spectral range of interest. These modulation sidebands appear as spurious peaks in the
acquired spectra as a result of the acoustic resonation of the gradient system. It was observed that by
additional weight of the VHOS system to the exam table (~100 Kg), the sidebands were shifted to a
lower frequency which resulted in the spurious peaks to overlap with the NAA peak. Since the NAA
peak is often used as the reference for the fitting algorithm, the quality of the fits and the resulting maps
were affected by the confound effect of this overlap. Given that the multi-coil setup is much lighter in



weight, such effect was not observed when using the MC shim system. This could further explain the
less reliable fits for the dynamic SH4 shimming than for the dynamic MC shimming results.

It should further be noted that, even though the results of this study show that for multi-slice imaging in
the brain at 9.4T, both the multi-coil plus 2™ degree spherical harmonics setup and the 4" degree
spherical harmonics setup perform comparably well, the manufacturing of the local shim coils are in
practice much easier than the higher degree SH. The requirements on manufacturing shim coils to
generate spherical harmonic functions over a large spatial region are much more demanding than
building local shim coils. Furthermore, SH shim coils are more prone to eddy currents due to their large
inductance [18], while the local shim coils are smaller and have much less eddy currents that may be
induced due to switching gradient or shim currents [24]. Using SH shim coils for dynamic By shim
updating often requires pre-emphasis and calibration of the system [9, 14, 25, 26] while the MC does
not.

As a result of the limitations described above, for the whole-brain MRSI study of this work, we chose
the more practical MC Bg shimming setup.

Whole Brain Metabolite Mapping

Due to the practical hardware limitations of the system, the By shimming for the whole brain study was
performed using a static global SH2 shim along with the MC system which was used for dynamic shim
updates. In comparison, the previous section where the SH2 shim coils were also dynamically slice-wise
updated would result in slightly better By homogeneity. Nevertheless, good metabolite maps could be
acquired for major metabolites at high resolution with a coverage over the whole cerebrum. This is the
first time that metabolite maps with such coverage have been shown at 9.4T.

The spectra from the very low or very high slices of the brain could not be reliably fit due to poor B,
coverage and insufficient Bo homogeneity. The hot spots in the low slices near the anterior of the brain
result from signal dropout due to poor By homogeneity. This is a common problem for By shimming
since this is close to the nasal cavity [15, 17, 27]. Therefore, for better brain coverage for whole brain
metabolite mapping, we firstly need high SNR and transmit coverage from the RF coil which needs to
be available for inferior positions in the brain, and secondly, we need By shimming that can adequately
compensate for the Bo inhomogeneity caused by the nasal cavity. By shimming can be improved for the
multi-coil array by optimizing the positions of the coil loops [28] and shapes of the coils [29]. In general,
there is still a need for better By shimming techniques for UHF MRI [8].

Conclusion

In this study, we compared the performance of a very high degree spherical harmonic By shim system
to a 16-channel multi-coil setup for By shimming of the human brain at 9.4T. The two different By
shimming approaches were compared in vivo for a slice-wise dynamically shimmed multi-slice MRSI
application. High resolution metabolite maps were acquired from three slices across the human brain
using each of the By shimming methods. Both methods showed substantial advantages over low degree
(up to 2") spherical harmonic dynamic shimming. The results emphasize the importance of slice-wise
By shimming for metabolite mapping at ultra-high fields and suggest that either of the two By shimming
approaches can be used to achieve similar results. However, given the practical limitations associated
with the manufacturing of the VHOS system, the multi-coil system was chosen to perform whole-brain
metabolite mapping of the human brain. For the first time, high resolution metabolite maps with high
coverage of the human brain acquired at 9.4T are presented.
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Fig. 1 (a) Localized multi-coil array and (b) the very high degree spherical harmonic insert shim array.

Multi-coil Shim Fields Spherical Harmonic Shim Fields

Az: -37.5°; EL 30°

Fig. 2 (Left) Magnetic fields generated by each coil element of the MC shim array and (right) magnetic
fields generated by the 3™ and 4™ degree SH (on a unit sphere for illustrative purposes).



B, reference field map slices
— MRSI slices (dynamic slice-wise By shimming)
—— Whole FOV (static global shim volume)

Fig. 3 Illustration of the slice placement for the top, middle and bottom slices of the MRSI data and the
corresponding slices of the By reference maps. The FOV used for global shimming is also shown.
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Fig. 4 By fields and histograms after shimming with the global SH (S4) and dynamic SH (D4) with
dynamic 2™ degree shimming as a reference (D2). Also, B fields and histograms after dynamic slice-
wise shimming with the MC shim array (DMC) with the dynamic 2™ degree shimming as a reference

(D2).
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Fig. 5 Metabolite maps for NAA, Glutamate and total Choline (over Creatine) using SH shimming.
CRLB maps are also shown (note: this are not shown over Creatine and are only shown for the
corresponding metabolites: NAA, Glutamate and Choline). Dynamic slice-wise shimming using up to
2™ degree SH shim terms and also using up to 4" degree SH shim terms are shown for comparison.
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Fig. 6 Metabolite maps for NAA, Glutamate and total Choline (over Creatine). CRLB maps are also
shown (note: this are not shown over Creatine and are only shown for the corresponding metabolites:
NAA, Glutamate and Choline). Dynamic slice-wise shimming using up to 2™ degree SH shim terms are
shown as a reference and compared to using dynamic slice-wise MC shimming.
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Fig. 7 Whole brain metabolite maps for NAA, Glutamate and total Choline (over Creatine). Slice 1
and 10 omitted due to poor data quality.
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Fig. 8 Whole brain metabolite maps for NAA, Glutamate and total Choline (over Creatine) shown in
the coronal, sagittal and transverse orientations.



Table 1 Comparison of the standard deviation of the By maps, CRLBs of Creatine and NAA, and SNR
of NAA for MC shimming and SH shimming averaged across three volunteers.

0Bo (Hz) D2 S4 D4 D2 DMC
Top 12.7+2.1 13.6 1.6 10.6 £2.4 18.1+14 142 +3.8
Centre 223+3.5 18.7+2.6 145+22 194+14 12.7+2.1
Bottom 29.6 £4.4 25.4+4.0 20.5+3.3 27.0+ 1.8 19.4+3.0
CRLB (Cre)

Top 103+1.5 - 94+1.3 85+1.7 77+1.0
Centre 8.6t14 - 82+1.2 83+1.2 7.0+£0.7
Bottom 9.1+1.7 - 81+1.5 92+19 82+1.5
CRLB (NAA)

Top 7.0£1.6 - 6.8+ 1.5 6.2+19 58+14
Centre 6.0+1.7 - 5.7+14 50+1.0 47+0.8
Bottom 7.0+£19 - 6.5+1.6 5.8+£2.2 53+£20
SNR

Top 34+9 - 39+ 11 41 £ 10 43 £ 10
Centre 42 £ 10 - 49 + 12 51+ 15 60+ 16
Bottom 27+ 11 - 34+ 10 36+ 14 40+ 13

Table 2 Comparison of the standard deviation of the By maps, CRLBs of Creatine and NAA, and SNR
of NAA for whole brain MRSI using global 2™ degree shimming + dynamic slice-wise MC shimming
for three volunteers.

1 2 3 4 5 6 7 8 9 10
0By (Hz)
Subject 1 60.98 44.60 23.98 11.86 10.99 13.43 11.05 9.10 13.34 19.00
Subject 2 66.67 46.70 25.50 14.20 9.33 8.60 13.84 11.19 14.95 21.38
Subject 3 60.47 56.23 36.28 23.96 15.43 12.66 8.84 9.79 12.70 28.00
CRLB (Cre)
Subject 1 - 12.0£2.2 | 11.5£1.9 | 11.3+1.8 | 9.6+1.8 9.2£1.6 9.4£1.5 10.1+1.4 | 9.9+1.8
Subject 2 - 11.8+2.4 | 11.1£2.0 | 104+19 | 9.71.7 8.7£1.3 8.7+1.1 9.2+1.2 9.3+1.3
Subject 3 - 11.0+1.9 10.542.1 10.6+2.0 8.7£1.8 8.3t1.4 8.3+1.1 8.0£1.0 10.2+1.8
CRLB (NAA)
Subject 1 - 8.742.2 7.742.4 7.1+1.8 7.0+1.4 6.4+1.3 6.7+1.1 7.0+1.3 8.6+2.3
Subject 2 - 9.14£2.6 7.942.4 7.1+£1.9 6.4+1.4 5.9+1.0 5.8+1.1 6.4+1.3 7.2+1.8
Subject 3 - 7.7£2.8 6.94+2.6 7.6£2.0 6.0£1.0 5.240.9 5.1£1.1 5.3+0.8 7.942.0
SNR
Subject 1 - 15443.6 | 253452 | 31.3+£53 | 37.0+4.8 | 39.6+3.5 | 352435 | 272422 | 27.0£5.2
Subject 2 - 14.1£29 | 21.2+5.1 | 277449 | 321744 | 41.2+53 | 37.7#43 | 31.0+£25 | 30.5+4.8
Subject 3 - 19.0£3.0 | 24.2+4.8 | 333+5.8 | 33.845.1 | 453+44 | 39.1£3.6 | 34.3+3.7 | 322447




