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Abstract 

Retinitis pigmentosa and age-related macular degeneration are two leading causes of 

degenerative blindness. While there is still not a definitive course of treatment for either of 

these diseases, there is currently the world over, many different treatment strategies being 

explored. Of these various strategies, one of the most successful has been retinal implants. 

Retinal implants are microelectrode or photodiode arrays, that are implanted in the eye of a 

patient, to electrically stimulate the degenerating retina. Clinical trials have shown that many 

patients implanted with such a device, are able to regain a certain degree of functional vision. 

However, while the results of these ongoing clinical trials have been promising, there are still 

many technical challenges that need to be overcome. One of the biggest challenges facing 

present implants is the inability to preferentially stimulate different retinal pathways. This is 

because retinal implants use large-amplitude current or voltage pulses. This in turn leads to 

the indiscriminate activation of multiple classes of retinal ganglion cells (RGCs), and therefore, 

an overall reduction in the restored visual acuity. To tackle this issue, we decided to explore a 

novel stimulus paradigm, in which we present to the retina, a stream of smaller-amplitude 

subthreshold voltage pulses.  By then correlating the retinal spikes to the stimuli preceding 

them, we calculate temporal input filters for various classes of RGCs, using a technique called 

spike-triggered averaging (STA). In doing this, we found that ON and OFF RGCs have electrical 

filters, which are very distinct from each other. This finding creates the possibility for the 

selective activation of the retina through the use of STA-based waveforms. Finally, using 

statistical models, we verify how well these temporal filters can predict RGC responses to 

novel electrical stimuli. In a broad sense, our work represents the successful application of 

systems engineering tools to retinal prosthetics, in an attempt to answer one of the field’s 

most difficult questions, namely selective stimulation of the retina. 
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Introduction 

We navigate our world by processing and responding to the inputs from our five senses.  Of 

these five senses, it can be argued that vision is one of the most important. Therefore, visual 

impairment or worse, blindness is extremely debilitating from both an economic and 

psychosocial perspective. It has been shown that patients with age-related macular 

degeneration (AMD) or retinitis pigmentosa (RP) are at a higher risk of developing depression 

in comparison to their peers who do not have any sensory dysfunction. The risk of developing 

depression in these cases also increases with the age of the patient (Casten & Rovner, 2008; 

Moschos et al., 2015). The correlations between depression and visual disability are also seen 

across various other eye diseases such as glaucoma and refractive errors (Moschos et al., 

2015; Owsley et al., 2007; Skalicky & Goldberg, 2008). Moreover, even when controlled for 

visual acuity, AMD/RP patients who develop depression can experience worse subjective 

vision-related functions than those AMD/RP patients who do not (Hahm et al., 2008; Rovner 

& Casten, 2001). Additionally, in the U.S.A. alone the annual economic impact of blindness is 

5.5 billion dollars, and more than 209,000 quality-adjusted life years (Frick et al., 2007). 

Factoring in the ever-increasing life expectancy rates, the number of cases of eye diseases such 

as AMD is projected to increase in the future (Owen et al., 2012; Rudnicka et al., 2015). For 

these reasons, much effort has been made over the years in finding cures, or at least 

treatments for the diseases mentioned above. This effort has in turn given rise to effective 

treatment options for cataracts and glaucoma, the two leading causes of blindness world over 

(World Health Organization, 2010). Though treatment options such as stem cell therapy, 

photopharmacology, optogenetics and retinal prosthetics do exist for RP and AMD, the third 

most common cause of blindness (Lorach et al., 2013), these strategies are still in their nascent 

stage with much room for improvement. Of these varied strategies, retinal prosthetics have 

to date had the best restored visual acuity. Therefore, the main focus of this thesis is the 

characterization of a novel prosthetic stimulation strategy that has applications to the 

treatment of patients with RP and AMD. In this chapter, the reader will find an introduction 

to the anatomy of the eye and the retinal circuitry. This is followed by a brief description of 

some eye diseases namely cataracts, glaucoma, AMD, and RP. Finally, the various treatment 

options for RP and AMD are discussed with particular emphasis placed on prosthetic based 

approaches.  
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Basic Anatomy of the Human Eye 
The eye is the organ of sight (Figure 1.1). Light reaches the retina through the pupil, the 

circular opening at the front of our eye (Litzinger & Rio-Tsonis, 2002). The size of the pupil 

determines the amount of light reaching the retina and is controlled by the iris, the coloured 

part of the eye surrounding the pupil. The highly pigmented iris ensures that incoming light 

only enters the eye through the pupil and not the iris itself. The iris, in turn, is surrounded by 

the sclera, which is a white, opaque, fibrous structure that forms a protective outer layer for 

the eye (Litzinger & Rio-Tsonis, 2002). 

 

Figure 1.1: Anatomy of the eye. Images reaching the eye are focused onto the retina by the 

cornea and lens. The photons impinging the retina are subsequently converted to 

electrochemical signals, which are then sent to the visual cortex for higher processing. From 

Blausen.com staff (2014) “Medical gallery of Blausen Medical 2014”. WikiJournal of 

Medicine 1 (2). doi:10.15347/wjm/2014.010. ISSN 2002-4436. Used according to Creative 

Commons Attribution 3.0 Unreported license. 

To have clear vision, light has to be focused onto the retina. This is done jointly by the cornea 

and the lens. Light reaching the eye first passes through the cornea, a transparent circular 

layer present at the front of the eye which is responsible for the majority of the refraction 

(refractive power ~ 43 diopters) (Olsen, 1986). The lens which is behind the pupil focuses the 

already refracted light onto the retina by dynamically changing its curvature. This dynamic 

change in curvature is what enables us to shift our focus from near to far objects and vice 

versa and is in turn controlled by the ciliary muscle. When relaxed, the lens flattens and 

focusses on long-range objects. Conversely, when the ciliary muscle contracts, the lens 

becomes more spherical and focuses on close-range objects. This ability of the lens to change 

its shape and therefore, the range of focus is called accommodation. Between the retina and 
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the sclera lies the choroid layer (Litzinger & Rio-Tsonis, 2002). The choroid layer is made up 

of connective tissue and is highly vascular. It, therefore, provides nourishment and oxygen to 

the outer layers of the retina. The retina is light-sensitive tissue that transduces incoming 

photons into electrochemical signals before projecting to the visual cortex through the optic 

disc via retinal ganglion cell axons. The optic disc also corresponds to the blind spot of the eye. 

The major blood vessels that supply the retina enter the eye via the optic disc (Litzinger & 

Rio-Tsonis, 2002). 

 

Cellular Components of the Retina 
The retinal circuitry consists of several different layers containing different cell types (Figure 

1.2). The primary retinal cell types are photoreceptors, horizontal cells, bipolar cells, amacrine 

cells and retinal ganglion cells (RGC). Other important components are the retinal pigment 

epithelium (RPE) and Müller cells. 

 

Figure 1.2: Components of the 

Retina. The retina consists of 

many different cell types. Each of 

these cell types has various 

subclasses, with specific 

functions, anatomical structures 

and layers of differentiation. 

Source location of image is 

https://commons.wikimedia.org

/wiki/File:Retina_layers.svg. 

Created by Peter Hartmann, on 

13th July 2013. Used according to 

Creative Commons Attribution-

Share Alike 3.0 Unreported 

license 
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Retinal Pigment Epithelium 

The retinal pigment epithelium (RPE) is a pigmented cell layer which lies between the choroid 

and the photoreceptors (Litzinger & Rio-Tsonis, 2002). It serves many important functions 

such as regulating the level of immune activity in the eye by secretion of immunosuppressive 

factors, phagocytosis of the photoreceptor outer segments (OS), improving visual quality by 

absorption of scattered light, reducing oxidative stress, and regeneration of photopigments 

(Litzinger & Rio-Tsonis, 2002; Strauss, 2005). 

Photoreceptors 

As the human eye is inverted, incoming photons traverse the entire retinal network before 

reaching the photoreceptors lining the back of the eye. Photoreceptors represent the first 

functional layer of the retina and transduce visual information (in the form of photons) to 

graded electrochemical signals. These signals are in turn relayed to the visual cortex through 

action potentials. Photoreceptors are further classified into rods (R) and cones (C). Rods are 

highly sensitive to light and can even detect single photons (Baylor et al., 1979; Hecht et al., 

1942). They are therefore recruited for vision during low luminance (scotopic) conditions      

(10-6 to 10-3 cd/m2). As luminance increases, rod activity starts to saturate, and cones start to 

become active. The region where both rods and cones are active is called mesopic (luminance 

level 10−3 to 100.5 cd/m²). As luminance levels further increase cones are primarily active. This 

region is called photopic (luminance level 10 to 108 cd/m²). Colour vision is primarily based on 

cone activation. This recruitment of the different cell types for different luminance conditions 

is what allows humans to see over a wide dynamic range (from scotopic to photopic/high 

luminance).  Photoreceptors consist of both an outer segment (OS) and an inner segment (IS). 

The OS is responsible for the absorption of photons. The membrane potential of the OS is 

reset after photon absorption through Na+/K+ pump activity. These pumps get their energy 

(ATP) from the mitochondria present in the IS (Baker & Kerov, 2013). The cell bodies of the 

photoreceptors are found in the outer nuclear layer (ONL). 

Horizontal Cells 

Photoreceptor activity is modulated by a group of cells known as horizontal (H) cells through 

integration and inhibition. Horizontal cells integrate the response of numerous 

photoreceptors and synapse back onto them, thereby providing surround inhibition. They are 

also thought to provide inhibition to the dendrites of bipolar cells (Demb & Singer, 2015; 

Masland, 2012). This activity of horizontal cells helps to regulate photoreceptor output and is 
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furthermore believed to contribute to local gain control and edge detection (Masland, 2012; 

Szikra & Križaj, 2006). The synaptic connections between inner segments of photoreceptors 

and dendrites of horizontal cells are located in the outer plexiform layer (OPL). 

Bipolar Cells 

Photoreceptors synapse onto bipolar (Bi) cells. There are at least ten different classes of 

bipolar cells (Euler et al., 2014). These various classes form parallel image processing channels 

that dissect complex visual input into subcomponents such as temporal information, contrast, 

colour, and luminance. Depending on the type of photoreceptor they synapse with, bipolar 

cells can be classified as rod or cone bipolar cells. In contrast to other bipolar cells, rod bipolar 

cells are unique because they do not directly connect to retinal ganglion cells (RGCs). Instead, 

they first synapse onto A-II amacrine cells which then, in turn, excite ON cone bipolar cells (via 

gap junctions) and inhibit OFF cone bipolar (via glycinergic synapses). These ON cone bipolar 

cells then contact RGCs. Therefore, rod bipolar cells can be thought to override the cone 

pathway of the retina during low luminance conditions. They do not have an OFF pathway 

(Euler et al., 2014; Kolb & Famigilietti, 1974; Lamb, 2016). The above mentioned ON bipolar 

cells respond to the presence of light while OFF bipolar cells respond to the absence. 

Alternatively, differentiation can also be done based on the shape and layer of stratification 

of the bipolar cell axonal processes, or morphology of their dendrites. All these different 

classification schemes show that bipolar cells are not simple relay systems, but instead 

complex image processing units, which are fundamental to making sense of visual information 

(Euler et al., 2014). The activity of the bipolar cells is modulated by amacrine cells. Bipolar cell 

bodies are found in the inner nuclear layer (INL). 

Amacrine Cells 

Amacrine (A) cells modulate the synaptic activity between bipolar and retinal ganglion cells at 

the inner plexiform layer (IPL). Amacrine cells are highly diversified with regards to factors 

such as their dendritic shape, the dendritic layer of stratification within the IPL, and coverage 

width (MacNeil & Masland, 1998). There are at least thirty different classes of amacrine cells 

with a very even distribution across them. Like bipolar cells, these differences in amacrine cells 

are tied into their functional roles. For example, A-II amacrine cells connect the rod bipolar 

cells to the cone pathway and multiplex signals from ON bipolar cells to both ON and OFF 

retinal ganglion cells. Starburst amacrine cells are important for direction selectivity of motion 

amongst retinal ganglion cells (Famiglietti, 1987; Vaney et al., 2001). A17 amacrine cells, 
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which connect almost exclusively to thousands of rod bipolar cells, are responsible for the 

amplification of signals coming from the rod pathways under scotopic conditions (Menger & 

Wässle, 2000; Vaney, 1986). These different classes of amacrine cells form microcircuits 

within the retina that help to further refine input coming from the bipolar cells through various 

synaptic mechanisms. 

Retinal Ganglion Cells 

Retinal ganglion cells (commonly abbreviated to RGC, but represented in figure 2 as G) are the 

final output cells of the retina. They receive inputs from the bipolar cells and send their axonal 

(Ax) projections via the optic nerve to higher brain regions such as the lateral geniculate 

nucleus (LGN), pretectal nuclei, superior colliculus and suprachiasmatic nucleus. Like bipolar 

cells and amacrine cells, there are many different types of RGCs. The difference between these 

cells is based on factors such as genetic, anatomical, and response type. Recent research has 

shown that there are at least thirty types of RGCs in the mouse retina (Baden et al., 2016). In 

very broad terms, RGCs can be classified as ON, OFF, or ON-OFF, based upon their response 

to light. ON RGCs respond primarily to the presence of light, OFF RGCs respond primarily to its 

absence, while ON-OFF cells respond strongly to both. This broad classification scheme can be 

further divided based on the response to direction of motion, the presence of edges, global 

or local features, contrast, or frequency, as well as the type of responses, such as sustained or 

transient (Baden et al., 2016). These different RGC types are, therefore part of a parallel and 

distributed retinal network that breaks down complex visual scenery into many unique 

features. These features are then further processed by the visual cortex in order to 

comprehend and act upon the high dimensional visual input. RGCs are found in the ganglion 

cell layer (GC). 

Müller Cells 

Müller (M) cells, which span across the entire retinal thickness are the most common type of 

retinal glial cells. They perform many important functions such as regulation of extracellular 

K+ concentration, mechanical support to the retina, removal of debris, and neurotransmitter 

uptake. For example, photoreceptors have very large rates of oxidative metabolism which in 

turn leads to a high demand for glucose and oxygen. A by-product of this high glucose 

metabolism is the production of carbon dioxide and water. This metabolic waste is removed 

from the retina and sent to the bloodstream and vitreous by Müller cells. By doing so, the pH 

of the retina is maintained. During neuronal signaling, the size of different parts of the retinal 
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tissue changes constantly. When glutamate neurotransmitters bind to AMPA/kainate 

receptors, Na+ ions and water enter the cell. This causes swelling of the cell and shrinkage of 

extracellular space. During this process, Müller cells constantly adapt their morphology to the 

swelling of the activated retinal neurons, therefore maintaining mechanical stability in the 

retina. Müller cells are also capable of detecting mechanical stress in the retina via calcium-

dependent mechanisms. Upon detection of mechanical stress, Müller cells can intervene to 

mitigate the damage by the release of neuroprotective factors. Additionally, they serve as 

optical guides, by carrying incoming photons to the photoreceptors through the retinal layers. 

It has been shown, that the presence of Müller cells helps drastically to reduce light scatter.  

In summation, Müller cells, play an important role in maintaining a healthy function of the 

retina (Reichenbach & Bringmann, 2013). 

As shown above, the eye is a complex organ consisting of many different components such as 

the lens, pigment epithelium, and the retina with its various classes of different retinal cell 

types. Even if only one of these components ceases to function properly, it can lead to visual 

impairment or even blindness. In the next section, we characterize some of the leading causes 

of blindness. 

Retinal Diseases 
According to the WHO, the two leading causes of blindness are cataracts and glaucoma (Figure 

1.3). However, though they both cause major vision loss, there are many effective treatment 

options for them. In contrast, RP and AMD, the third most common cause of blindness, are 

incurable. While RP and AMD are different diseases, they share many similarities such as 

progressive vision loss through photoreceptor degeneration. They also share similar 

treatment options.  Below is a summary of these four diseases. 
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Cataracts 

The leading cause of blindness worldwide is cataracts (Figure 1.4). The lens along with the 

cornea, focusses incoming light onto the retina, to provide clear vision. The lens is made of 

mostly proteins. Cataracts occur when the proteins in the lens start to clump together, causing 

opacity and light scattering, therefore preventing light from being focused onto the retina. 

Factors affecting cataracts include age, use of certain therapeutic drugs, severe and chronic 

dehydration, prolonged exposure to Ultra-Violet light, sunlight, and improper nutrition. The 

prevalence of cataracts also varies with demographics. 

        

 Figure 1.4: Cataracts. Cataracts are the primary cause of blindness world over (51%)(Lorach 

et al., 2013). Cataracts are caused by clumping together of the proteins inside the lens, 

therefore causing blurring of vision. On the left is an illustration of how light enters a healthy 

eye, and on the right is when light enters an eye with cataracts. Images courtesy R. 

Ebenhoch, University of Tuebingen. 

It has been found that occurrence of cataracts is much higher amongst developing countries 

than in developed countries. Though cataracts are the leading cause of blindness, it is often 

Figure 1.3 Leading causes of 

blindness world over. Data 

provided by the World Health 

Organization. Figure reprinted 

from J Physiol Paris, 107(5), 

Lorach et al. 2013, Neural 

stimulation for visual 

rehabilitation: Advances and 

challenges, 421-431, 2013, with 

permission from Elsevier. 
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surgically treatable. In these surgeries, the opaque lens is replaced with an artificial lens 

(Livingston et al., 1995). 

Glaucoma 

The second major cause of blindness is glaucoma (Figure 1.5). The two main types of glaucoma 

are open-angled and close-angled glaucoma. In both cases, there is damage to the optic nerve 

of the eye leading to irreversible vision loss. While the exact cause of this disease is still a topic 

of research, in both cases, there is usually a large increase in intraocular pressure. 

 

Figure 1.5: Development of Glaucoma. Left) The flow of aqueous humour through draining 
canal in the healthy eye. Middle) Buildup of fluid when trabecular meshwork is blocked. 
Right) Increase in eye pressure due to the fluid buildup, causes optic nerve damage. Images 
courtesy R. Ebenhoch, University of Tuebingen. 

The rise in intraocular pressure is due to the inability of the eye to properly drain the aqueous 

humor. This is due to a blockage of the trabecular meshwork, caused either due to clogging 

(open-angle) or due to the forward projection of the iris (closed-angle). The main course of 

treatment is eye drops, used to reduce the intraocular pressure. If these are ineffective, laser 

therapy or surgery can also be tried (Mantravadi & Vadhar, 2015). The prevalence and type 

of glaucoma are affected by factors such as race, gender, family history of glaucoma, age, 

central corneal thickness and intraocular pressure (Wilson & Gallardo, 2010). Finally, there is 

mounting evidence that the vascular system plays a major role in glaucoma. It has been found 

that there are strong correlations between glaucoma occurrence/progression and blood 

pressure. Patients with glaucoma tend to have lower blood pressure (hypotension) and less 

ocular blood flow (Caprioli & Coleman, 2010; Flammer & Orgül, 1998; Nakazawa, 2016). 

Age-Related Macular Degeneration and Retinitis Pigmentosa 

AMD is the third most common cause of blindness (Figure 1.3).  This disease occurs most 

frequently in the developed world amongst older people and involves a loss of central vision, 

which then proceeds to the periphery (Figure 1.6). Though it does not always result in total 

blindness, the loss of central vision is extremely debilitating as it hinders many day to day 
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activities such as face recognition, reading and driving. AMD is associated with a disturbance 

in RPE pigmentation, basal laminar deposits, thickening of the Bruch's membrane and an 

accumulation of drusen (Young, 1987). Drusen are protein and lipid deposits, most likely 

generated due to an incomplete degradation of waste cellular components by the RPE (Figure 

1.7). 

   

Figure 1.6: Left) Normal Vision. Right) The vision of someone with AMD. Due to the loss of 
photoreceptors in the fovea, people with AMD develop a blind spot in the very center of their 
vision. Images adapted from National Eye Institute, National Institute of Health. Images 
retrieved from https://www.flickr.com/photos/nationaleyeinstitute/7544734596/ and   
https://www.flickr.com/photos/nationaleyeinstitute/7544733860/  

It should be noted that the factors mentioned above, such as drusen deposits and thickening 

of Bruch's membrane, are common even in the eyes of healthy elderly people and are 

therefore, not always associated with AMD. A person is at risk of AMD only when drusen are 

present in large numbers (Young, 1987). There are two types of AMD, namely dry AMD, and 

its progression wet AMD. Dry AMD is believed to be caused by drusen deposits, which when 

present in large numbers have been associated with RPE atrophy and subsequent 

photoreceptor death.  

 

https://www.flickr.com/photos/nationaleyeinstitute/7544734596/
https://www.flickr.com/photos/nationaleyeinstitute/7544733860/
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Figure 1.7: Fundus Images. Left) Normal Retina. Right) Retina with AMD. The retina on the 
right has many yellow spots (drusen deposits) and appears thinner (due to the loss of the 
photoreceptor layer). Images from National Eye Institute, National Institute of Health. 
Images retrieved from https://www.flickr.com/photos/nationaleyeinstitute/7544656150/ 
and https://www.flickr.com/photos/nationaleyeinstitute/7543920284/ 

In some cases, dry AMD triggers the release of the growth factor VEGF, which leads to 

abnormal neovascularization in the choroid, in turn giving rise to retinal scarring and 

hemorrhaging of the abnormal vessels. This then causes photoreceptor death and vision loss 

and is known as wet AMD (Sunness, 1999; Young, 1987). 

Another disease involving photoreceptor death is retinitis pigmentosa. Though in itself a rare 

disease, retinitis pigmentosa is one of the most commonly inherited retinal degenerative 

diseases. Due to faulty genetic mutations, people suffering from RP first start to lose their 

rods, before losing their cones as well.  Owing to the distribution of rods and cones in the 

retina, the visual field loss starts at the periphery, before proceeding to the fovea leading to 

tunnel vision (Figure 1.8). Early symptoms of this disease are difficulties in seeing under dim-

light conditions, night blindness, problems differentiating colour, and a reduction of the visual 

field (Hamel, 2006). 

 

https://www.flickr.com/photos/nationaleyeinstitute/7544656150/
https://www.flickr.com/photos/nationaleyeinstitute/7543920284/
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Figure 1.8: Left) Normal Vision. Right) The vision of someone with retinitis pigmentosa. 
Retinitis pigmentosa usually leads to loss of rods before being followed by cones. Therefore; 
vision loss begins in the periphery, proceeding to the fovea resulting in tubular vision. 
Images adapted from National Eye Institute, National Institute of Health. Images retrieved 
from https://www.flickr.com/photos/nationaleyeinstitute/7544734596/ and 
https://www.flickr.com/photos/nationaleyeinstitute/7544734708/ 

There are three patterns of inheritance, which can lead to RP, namely autosomal recessive, 

autosomal dominant and X-linked inheritance (Hartong et al., 2006). While the effects of RP 

are usually confined to the eye, it can also be associated with other diseases such as Usher’s 

disease, which is connected with hearing loss or Bardet-Biedl syndrome, in which RP is 

associated with obesity, cognitive impairment, polydactyly, hypogenitalism, and renal disease 

(Hartong et al., 2006). 

In total, there are around 4 million people around the world suffering from RP or AMD, with 

a global prevalence rate of 1 in 4000 for either of these diseases (Hamel, 2006; Hartong et al., 

2006; Pascolini & Mariotti, 2012; Resnikoff et al., 2004) 

Treatment Options 
While for cataract and glaucoma over time well-established treatment regimes were 

developed, there is still much room for improvement with regards to the treatment options 

used for RP or AMD. The major areas of research for RP and AMD are in stem cells, 

photopharmacology, gene therapy, optogenetics, neuroprotection, and prosthetics. Each of 

these different strategies has had varying degrees of success in restoring vision already lost 

due to photoreceptor death.  Provided below is an overview of some of these techniques. 

https://www.flickr.com/photos/nationaleyeinstitute/7544734596/
https://www.flickr.com/photos/nationaleyeinstitute/7544734708/
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Gene Therapy 

In gene therapy, DNA is introduced into the patient usually by using a viral vector. The function 

of the newly introduced gene varies depending on the disease. In the case of retinitis 

pigmentosa, the goal is to replace the mutated gene responsible for photoreceptor death. 

There are two primary methods of introducing the viral vector into the eye for treating retinal 

diseases. One is through subretinal injections, where the vector is introduced into the regions 

adjacent to the RPE and photoreceptors, causing a temporary retinal elevation, called bleb. 

This method has a very high efficacy for the gene transfer but is technically challenging. The 

second method is through intravitreal injections. Though these are technically much simpler, 

their efficiency at reaching the outer retina is low due to barriers, such as the inner limiting 

membrane (ILM), that blocks the passage of the vector. Intravitreal injections are therefore 

useful for targeting retinal ganglion cells or Müller glial cells for diseases such as Leber's 

hereditary optic neuropathy (LHON) or for certain optogenetic based therapies (Acland et al., 

2001; Dalkara et al., 2009; Martin et al., 2002). In contrast, for diseases involving 

photoreceptors such as RP, subretinal injections are the preferred method of introducing viral 

vectors. However, a complication of gene therapy for RP is that there are over forty possible 

mutations that could cause the disease (Daiger et al., 2007). Therefore, gene therapy is highly 

individualized and could vary from patient to patient, requiring personalized treatments. This, 

in turn, raises the costs for developing such treatments. Moreover, the side effects of gene 

therapy, are not yet fully known and may be potentially deadly. When administrating a gene, 

it is crucial that it targets only the intended cell type, and not alters the functionality of any 

other cell type. Furthermore, the introduction of viral vectors can at times trigger an immune 

response which can harm the patient. For these reasons, it is essential to have animal models 

that resemble as closely as possible the disease in humans. In the case of retinitis pigmentosa, 

to date the best animal models are primates due to their similarities to humans with regards 

to their eye structure and size, the thickness of nerve fiber layer and inner limiting membrane, 

and the configuration of the high acuity part of the fovea  (Yin et al., 2011). However, 

developing the appropriate transgenic primate models of RP-based blindness is expensive. 

Moreover, when one factors in the multiple genetic mutations that can cause this disease 

(Daiger et al., 2007), developing a primate model for every single mutation further amplifies 

the costs. Recognizing these issues to be serious confounds in the development of gene-based 

treatment for rare diseases like RP,  government organizations such as the EU (European 
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Union) have provided financial incentives to pharmaceutical companies working on such 

projects (European Medicines Agency, 2014). These incentives include market exclusivity for 

a given period of time, and tax credits on clinical research.  

Nevertheless, despite the difficulties detailed above, gene therapy has shown much promise 

in the past in the treatment of retinal diseases. For example in MacLaren et al., 2014, a viral 

vector encoding for the REP1 protein was introduced into the eye using subfoveal injections 

for treatment of choroideremia. All six patients involved in this clinical trial found 

improvements in visual acuity post-treatment. This improvement is believed to be due to 

improvements in rod-cone function.  

Stem Cell-Based Approaches 

Stem cells are undifferentiated cells, which can either produce more stem cells or differentiate 

into varied types of specialized cells. There are broadly speaking two types of stem cells in the 

mammalian species, namely induced pluripotency stem cells (iPSC) and embryonic stem cells 

(ESC). Induced pluripotency stem cells are created from adult cells while embryonic stem cells 

are created from the inner cell mass of a blastocyst.  

They are an area of active research, in treating neurodegenerative diseases, spinal chord 

injury, and even blindness. Diseases such as AMD or RP, where the death of RPE or the 

photoreceptors leads to vision loss are good candidates for the application of stem cell-based 

therapies. Detailed below are some stem cell-based approaches to treating AMD and RP. 

Stem Cell Approach for AMD using Transplanted RPE 

Since RPE atrophy is associated with AMD, researchers have transplanted RPE cells, derived 

from stem cells, in animal models either through subretinal injections of disassociated cells or 

through RPE cells with structural support in the form of scaffoldings (Lu et al., 2012; Stanzel 

et al., 2014). Both these methods come with their own set of advantages and drawbacks. 

While dissociated cell injections allow for a greater area of coverage, there is a higher chance 

of breaching the blood-brain barrier, thereby triggering an immune response. Moreover, 

survival of transplanted cells is lower due to the damaged Bruch's membrane. Finally, creating 

the polarized, monolayer RPE structure with disassociated cells is much more complicated 

(Alexander et al., 2015; Binder, 2011). On the other hand, while delivering cells with 

mechanical support do not face issues such as the formation of the correct RPE structure, the 

area of coverage is smaller. Despite these technical challenges, there have already been stem 
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cell-based trials with fairly promising results in both animals and humans. For example in 

Kamao et al., 2014, human induced pluripotent stem cell-derived RPE (hiPSC-RPE) cell sheets 

without any scaffolding were generated. This hiPSC-derived RPE displayed characteristics such 

as tight junctions with the polarized secretion of growth factors, phagocytotic capabilities, and 

gene expression patterns similar to RPE. Following this iPSCs-RPE derived from monkey 

somatic cells (miPSC-RPE) were introduced into the eyes of four monkeys (three as allografts 

and one as an autograft) without any immunosuppression. Follow-up analysis showed no signs 

of immune rejection or tumors for the autograft recipient alone. Moreover in Schwartz et al., 

2012 two patients were transplanted with human embryonic stem cell-derived RPE (hESC-

RPE). One patient suffered from Stargardt’s macular dystrophy and the other from dry age-

related macular degeneration. Both patients showed signs of improvement in visual function 

following treatment. Importantly, the transplanted cells did not show any signs of 

hyperproliferation, tumorigenicity, ectopic tissue formation, or apparent rejection even after 

four months. The results of these two studies add to evidence that stem cell-derived RPE can 

be transplanted safely into humans to treat AMD.  

Stem Cell Approach for RP using Transplanted Photoreceptors 

In diseases such as RP, where there is a degeneration of rod photoreceptors followed by 

cones, transplantation of photoreceptors, obtained from stem cells, is a promising approach. 

There are multiple strategies involving transplantation of photoreceptors, one of which is to 

transplant intact, partial, or whole retinal sheets. However, research in animal models shows 

that such sheets do not always integrate well with the recipient circuitry (Ghosh et al., 1999; 

Ghosh et al., 2004). Another strategy is the transplantation of dissociated cells. However, to 

date transplantation of photoreceptor precursor cells has met with the most success 

(Lakowski et al., 2010; MacLaren et al., 2006). This success is measured by the transplanted 

precursor cell’s ability to differentiate and express the morphological features characteristic 

of a fully-developed photoreceptor cell (Eberle et al., 2012; Warre-Cornish et al., 2014).  

Pearson et al., 2012 show that rod-based vision and behaviour improves after the 

transplantation of photoreceptor precursor cells in an adult mouse model of congenital 

stationary night blindness. Currently, this strategy is being refined further, based on a number 

of factors, such as survival rates of transplanted cells and their ability to integrate with the 

host circuitry. 
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Optogenetics and Photopharmacology 

In optogenetics and photopharmacology, molecules capable of detecting light are introduced 

into the retina, with the aim to compensate for the loss of photoreceptors. These light 

detecting molecules can be introduced either in the form of light-sensitive proteins that 

embed themselves into the surface of the target retinal cell (cone cell body, bipolar cells or 

retinal ganglion cells) (Boyden et al., 2005; Nagel et al., 2003), or as molecules that attach 

themselves to an existing ion channel, thereby making them light sensitive and acting as a 

switch (photoswitches). Some of the most commonly used optogenetic proteins for 

depolarization and hyperpolarization are from the channelrhodopsin family (Nagel et al., 

2003) and halorhodopsin family (Han & Boyden, 2007), respectively. 

There are various advantages and drawbacks to both, the optogenetic and 

photopharmacology approach. The genetic approach of embedding light-sensitive molecules 

into a cell membrane is a long-term approach, which has been shown to establish visual 

function and responses in mouse models of blindness (Busskamp et al., 2010; Doroudchi et 

al., 2011). However, since it is long lasting, if there are adverse effects such as a strong immune 

response, it would be very hard to control. Moreover, if a better treatment method is 

developed in the future, patients who underwent an optogenetic treatment will not be eligible 

for it. In the case of the photopharmacology approach, the molecule which attaches itself to 

existing ion channels degrades over time. Therefore, this approach does not have the 

drawbacks associated with optogenetics as it is temporary. On the other hand, due to its 

temporary nature, the photopharmacology approach requires multiple intravitreous 

injections to introduce the photoswitches to the retina. Intravitreous injections, though not 

uncommon, require a certain level of expertise to perform.  

Another important question in such approaches (optogenetic or photopharmacology), is the 

target site for the molecule. If RGCs are targeted for inducing light sensitivity, it skips the 

existing retinal circuitry of bipolar cells and amacrine cells and their associated image 

processing. This, therefore, might be a suitable option for late-stage degenerate patients 

where the retina is known to undergo significant rewiring (Jones et al., 2016; Marc et al., 

2003). Conversely, for early-stage degeneration, bipolar cells might be a more appropriate 

target, as this enables the use of existing retinal circuitry when the rewiring is still minimal. 

Nevertheless, even if the bipolar cells are successfully targeted in a retina which has not 

undergone major rewiring, there is some image processing that must be compensated for due 
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to the loss of photoreceptors (Marc et al., 2003). It has been proposed that the use of goggles, 

which project a pre-processed visual scene (that compensates for the photoreceptor loss) to 

the retina, could help overcome this issue (Nirenberg & Pandarinath, 2012). Finally, the 

amplification of the individual photonic signals is also a crucial concern. While isolated 

photons falling on a rod are detected and amplified through the high-density packing of the 

visual pigments and the associated biochemical cascade, this is not the case with artificially 

introduced light sensitivity through optogenetics or photopharmacology. The amount of 

current produced by a single light-sensitive protein or photoswitch is small. Therefore, a high 

concentration of these molecules is required. However, a large concentration of light-sensitive 

molecules could trigger an immune response (Vinores et al., 1995), as some diseases such as 

RP are known to breach the blood-brain barrier compromising the immune-privilege of the 

eye. Hence, to amplify signals coming from single photons, one could also engineer these 

molecules to have longer closing times, thereby allowing more current into the bipolar or 

retinal ganglion cells. This approach would, however, suffer from temporal smearing. Despite 

these many hurdles, there have been some promising studies, demonstrating that 

optogenetics can re-introduce light perception in the diseased retina. For example, in (Lagali 

et al., 2008)  channelrhodopsin-2 was introduced into the ON bipolar cells of the rd1 mouse. 

The ON bipolar cells, so targeted, became photosensitive and could in turn drive light-induced 

activity in the downstream RGCs. Effects of this light-induced activity were seen at both, 

cortical and behavioral level, through the successful performance of optomotor tasks. In 

addition to this, the photopharmacology approach has also shown promise, by being able to 

restore visual responses in a mouse model of blindness (Polosukhina et al., 2012). Such 

studies, therefore, demonstrate the viability of an optogenetic- or photopharmacology-based 

approach in treating degenerative retinal diseases. 

Retinal Prosthesis 

The most successful approach to vision restoration for RP to date has been with retinal 

implants. In general, retinal implants aim to replace the lost photoreceptors through the 

activation of the RGCs either directly or indirectly via the retinal network, using current or 

voltage pulses. This activation of RGCs in turn elicits visual percepts in patients (Zrenner, 

2002). Based on the site of implantation, retinal devices can be broadly classified as subretinal, 

epiretinal, or suprachoroidal (Zrenner, 2013)(Figure 1.9). In this section, these three implant 

strategies are discussed, including a detailed description of the first subretinal and epiretinal 
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devices to obtain regulatory approval for commercial sale. Though suprachoroidal implants 

have not yet been commercialized, the results of the most recent clinical trials with such 

devices are also discussed.    

                            

Figure 1.9: Different Implant Strategies based on site of implantation. Subretinal devices are 
implanted in the subretinal space between the RPE and bipolar cells. Epiretinal devices are 
tacked onto the RGCs. Suprachoroidal devices are implanted on the outer side of the choroid. 
Figure from (Zrenner, 2013). Reprinted with permission from AAAS. 

Subretinal Implants 

The Tuebingen retinal implant is the first subretinal device to obtain approval for commercial 

sale. This device is implanted in the region where the degenerate photoreceptors used to be. 

This strategy aims to activate still-intact bipolar cells. By doing so, the Tuebingen implant 

makes use of the native image processing, present in the remnant IPL circuitry (Zrenner, 

2013).  However, it also contends with the retinal rewiring associated with RP and AMD (Jones 
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et al., 2016). This retinal rewiring has a detrimental effect on the natural image processing 

done by the remnant IPL. The extent to which the rewiring affects the natural image 

processing is believed to depend on the extent of rewiring. 

The current Tuebingen implant (Retinal Implant Alpha- IMS) consists of a micro-photodiode 

array with 1500 stimulating electrodes (Stingl et al., 2015). It is 3.0 x 3.0 mm in size with an 

inter-photodiode distance of 70 µm. The shape of the implant corresponds to a square visual 

field with 15 degrees visual angle diagonally (Stingl et al., 2015). A prototype of the device 

had to be powered with a subdermal cable that connected the subretinal implant to an 

external power source, through an opening behind the ear (Zrenner et al., 2011). Later 

versions are powered using a transmitter coil that allows for an inductive power transfer. 

Below is a schematic drawing of such an implant as well as the position in the eye (Stingl et 

al., 2015) (Figure 1.10). 

 

Figure 1.10: Tuebingen subretinal implant. The (1) subretinal implant is placed in the region 
where the photoreceptors used to be.  The implant is connected via a (2) subretinal foil with 
gold wires and a (7) subdermal cable to a (3) subdermal receiver antenna. The subdermal 
receiver antenna is in turn connected via wireless transfer to an (6) external power box 
through an (5) external transmitter antenna, placed behind the ear. The (6) power box also 
contains hardware that enables the patient to change the settings of the chip in order to 
adjust to different brightness and contrasts of the environment. Figure from Zrenner, 2013. 
Reprinted with permission from AAAS. 
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Due to the site of implantation, subretinal implants are easier to position and to fix in 

comparison to epiretinal devices (Zrenner, 2002). Since the Tuebingen implant makes use of 

the remnant native image processing of the retina, there is no external visual processing unit. 

There is, however, an external device under the control of the patient to used adjust the global 

gain and sensitivity of the photodiodes. This helps the device operate within its dynamic range 

at different luminance conditions.  However, since the gain and sensitivity control are global, 

local luminance adaptation is not possible (unlike in the healthy retina). Below (Figure 1.11) is 

a figure showing how the charge output by the photodiodes varies with luminance at different 

gain and sensitivity settings (Zrenner et al., 2011). 

 

To date, the highest restored visual acuity in humans (20/546) has been with the Tuebingen 

subretinal implant (Stingl et al., 2015). 

Epiretinal Implants 

The first epiretinal implant to obtain approval for commercial sale is the Argus-II implant. This 

device is implanted on the ganglion cell side of the retina with an aim to directly activate the 

 

Figure 1.11: Sensitivity and gain 
settings of the implant. Top) The 
illuminance-charge output 
curves on the far-left and far-
right of the figure correspond to 
the highest and lowest sensitivity 
of the photodiodes respectively. 
Bottom) The illuminance-charge 
output curves that saturate at 
bottom and top of the figure 
correspond to the lowest and 
highest gain settings of the 
photodiodes respectively. Figure 
adapted from Zrenner et al., 
2011 and reused with permission 
according to CC-BY version 4.0 
license 
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RGCs (output cells of the retina). In doing so, it can more easily bypass abnormalities brought 

on by retinal rewiring. The epiretinal device is held in place either with cellular contacts, 

microtacks, or through mechanical pressure (Zrenner, 2002).  Epiretinal devices tend to 

activate ganglion cell axons, in addition to the target ganglion cell bodies. Axonal stimulation 

leads to a smearing of visual percepts, contributing to a reduction in restored visual acuity 

(Weiland & Humayun, 2014; Zrenner, 2002). To compensate for the bypassed image 

processing of the IPL retinal network, epiretinal implants require an external camera and an 

external visual processing unit (VPU).  An advantage of using an external VPU is, that 

improvements in image processing algorithms, can be more easily provided to the patients 

(da Cruz et al., 2016; Humayun et al., 2012; Zrenner, 2002). The Argus-II implant consists of 

camera-mounted glasses connected to the VPU. On the side of the glass frame is a transmitter 

coil. The camera captures the visual scenery directly in front of the patient’s head and relays 

it to the VPU (Figure 1.12). 

 

Figure 1.12 Camera-mounted glasses with the external visual processing unit for the 
Epiretinal implant. Since epiretinal devices are placed on ganglion cell side, they bypass the 
intrinsic image processing done by the retina. Therefore, an external visual processing unit 
is required to compensate for the image processing of the retina. Figure adapted from da 
Cruz et al., 2016 and reused with permission under CC BY-NC-ND 4.0 license 

The VPU processes the image and then uses the coil to instruct the implant on the 

spatiotemporal pattern of electrical stimuli that must be delivered to the retina. The Argus-II 
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epiretinal device consists of 60 stimulating electrodes (da Cruz et al., 2016; Humayun et al., 

2012). To date, the best-restored visual acuity with an epiretinal device is about 20/1260 

(Humayun et al., 2012). Another epiretinal device which has received regulatory approval (in 

2016) is Pixium Vision’s Iris II implant. It consists of 150 electrodes and (like the Argus device) 

an external camera and image processing unit. Clinical trials with the device are currently 

underway. 

Suprachoroidal Implants 

A third category of implants are suprachoroidal implants. These devices are implanted in the 

space between the choroid and sclera (Zrenner, 2013). Since these devices also target bipolar 

cells (like subretinal implants) they benefit from the natural image processing done by the IPL 

network, too. Moreover, in comparison to the subretinal implants, the surgical procedure 

associated with the device is much simpler as it does not require penetrating through multiple 

layers of the eye to implant the device. It also has the ability to maintain stable contact with 

the neural tissue (Fujikado et al., 2011; Shepherd et al., 2013; Shivdasani et al., 2014). 

However, since thresholds depend on the retinal-electrode distance, suprachoroidal implants 

tend to have higher thresholds for retinal activation (Shepherd et al., 2013). This has the 

disadvantage of reducing the overall range of discrete stimulation levels available for encoding 

the visual scene. The larger distance also increases the spatial spread of the voltage/current 

pulses, thereby reducing the resolution and, therefore, the visual acuity that can be achieved 

(Fujikado et al., 2011; Shepherd et al., 2013; Shivdasani et al., 2014; Zrenner, 2013).  To date, 

one of the major proponents of this device is the bionic vision group in Australia. A prototype 

of their device, consisting of 33 platinum stimulating electrodes, was implanted in 3 patients 

as a part of their clinical trials. Figure 1.13 shows the implant in more detail. 
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Figure 1.13 The Australian suprachoroidal implant. A) Arrangement of platinum stimulating 
electrodes B)  Intraocular array is linked to a percutaneous connector via a helical lead wire 
consisting of platinum/iridium wires C) Of the 33 electrodes, only 20 electrodes stimulate 
independently. D) Connector is implanted percutaneously behind the ear E) External Wires 
connect the implant via the percutaneous connector to an external power supply. Figure 
adapted from Ayton et al., 2014, and reused with permission according to CC-BY version 4.0 
license. 

The implant is powered directly from a power source external to the body using 

platinum/iridium wires and a percutaneous connector. Visual function testing showed that all 

3 subjects performed significantly better when the device was turned on (Ayton et al., 2014). 

Summary of Retinal Implants 
With hundreds of patients implanted worldwide, retinal prosthetics have come a long way 

from their conceptualization in the early-/mid-nineties. Three prosthetic companies, namely 

Second Sight, Retina Implant AG, and Pixium Vision, have received regulatory approval for 

their respective devices. Results of ongoing clinical trials are promising, with some of the 

implanted patients being able to distinguish different cutlery, make out shapes, read letters, 

words, localize objects, and navigate their environment (Ayton et al., 2014; Fujikado et al., 

2011; Humayun et al., 2012; Zrenner et al., 2011). 

Despite such encouraging results, restored visual acuity tends to fall below the theoretical 

limit that can be achieved with an implanted device (Stett et al., 2000). Moreover, there are 

also many patients with virtually no real improvement in their vision. This is because there are 
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still many technical issues that must be overcome. For example, one of the major problems 

facing retinal implants is the fading of visual percepts. Fading refers to diminishing visual 

percepts in patients when provided with constant amplitude stimulation above a certain 

frequency. The frequency at which fading sets in varies from patient to patient (Pérez Fornos 

et al., 2012; Stingl et al., 2015). Fading places, a biological limit on the temporal acuity that 

can be restored. Other major problems facing retinal implants are high stimulation thresholds, 

spatial spread of stimulation and indiscriminate retinal activation (Shepherd et al., 2013; 

Weiland & Humayun, 2014; Zrenner, 2013). 

However, with clinical trials underway world over, the various retinal prosthetic strategies 

provide an ever-increasing cohort of implanted patients and in turn a basis for understanding 

how effective these devices can be in their present form, and to inform on future avenues of 

research within the field of retinal stimulation. Potential areas for improvement are a lower 

cost of manufacturing, less risky surgical procedures, and improved spatial and temporal 

acuity. 

For a more detailed overview of all these different treatment options, the reader is referred 

to the report, Restoring Vision to the Blind, by the Lasker/IRRF Initiative for Innovation in 

Vision Science. 

Overview of Thesis Work 
Even though retinal implants have enjoyed considerable success in comparison to the other 

treatment options for RP/AMD, there are still many open issues, as detailed above. The bulk 

of basic research in retinal prosthetics has to date focused on these issues through exploration 

of different stimulation parameters such as pulse-width and its effect on activation thresholds, 

effect of electrode designs and spatial configurations with respect to spread of electrical 

stimulation, differential activation of RGCs using different waveforms like sine waves or 

sawtooths, biophysical modeling of retinal responses to electrical stimulation, characterizing 

desensitization (a possible retinal correlate of fading) to repetitive pulse stimulation, and 

comparison of anodic versus cathodic stimulation on activation thresholds (Boinagrov et al., 

2014; Im & Fried, 2015; Jensen & Rizzo, 2007; Jensen et al., 2005; Khalili Moghadam et al., 

2013; Guo et al., 2014; Twyford & Fried, 2016). Though these studies have helped make 

progress in our understanding of prosthetic activation of RGCs, there is still a gap between a 

systems level comprehension and the experimental data. For example, while there have been 
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attempts to explore different waveforms for preferential activation of the retina, the choice 

of these waveforms has been ad hoc and not grounded in any thorough, systematic 

exploration of the stimulus space of the various classes of RGCs. Therefore, in this thesis, we 

decided to bridge this gap by exploring a novel linear systems approach to characterize 

electrically driven RGC responses, recorded using microelectrode arrays. Using white noise 

stimulation and reverse correlation, we build black-box models of the retina for visual and 

electrical stimulation (Figure 1.14).  

 

Figure 1.14: Left) The wild type retina is visually stimulated in order to classify cell type and 
to characterize its visual input filters. Middle) The same retina is also provided with electrical 
stimulation in order to determine its electrical input filters. Right) Finally, the same electrical 
stimulus is given to the rd10 retina in order to understand how the functionality of the retinal 
circuit changes with photoreceptor loss and retinal rewiring. Using this approach, we hope 
to comprehend, in a systematic manner, the differences in spiking patterns (bottom of 
image) between visually- and electrically-driven retina (wild type and degenerate). 

In designing our stimuli, we aimed to minimize indiscriminate RGC activation brought about 

by large-amplitude suprathreshold pulses, by using smaller-amplitude subthreshold pulses 

instead. By using these smaller pulses, the retina is forced to integrate across time to reach 

activation threshold. This in turn allows us to search for correlations between RGC spikes, and 

the temporal stimuli preceding them. The details of the design of the electrical noise stimulus 

and linear filter estimation techniques are found in the summary of results section and Sekhar 

et al., 2016 (Appendix 2).  The visual and electrical black-box models for each cell, are 

compared, in order to find possible correlations between visually and electrically driven 
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responses for various cell types. Subsequently, these electrical noise methods were also 

extended to the rd10 retina (a mouse model of RP) at late stage degeneration. This shed light 

on how the functionality of the retina changes with photoreceptor loss and retinal rewiring. 

The results of this analysis are also found in the summary of results section and Sekhar et al., 

2017 (Appendix 3). In a final step, statistical models, namely generalized linear models (GLM), 

are used to quantify how effective linear filters are at capturing the response dynamics of 

RGCs and if the response patterns of different cell types deviate significantly from linearity. 

This is an on-going study. The results so far, are detailed in the summary of results section 

and Appendix 4. In the section below, a brief primer is given on MEA-based data collection 

techniques and the theoretical foundations of reverse correlation and generalized linear 

modeling. 
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Methods 

All data in this thesis was obtained using microelectrode arrays (MEAs) to record from 

explanted retinas. MEAs deploy a large number of electrodes to record from a given biological 

tissue at different spatial locations. The tissue that is being recorded, can range from cardiac 

to neural. Spiking activity of the tissue manifests as large and sudden decreases in the 

extracellular potential. Due to the use of numerous electrodes, MEAs can collect large 

amounts of data relatively quickly. Moreover, the activity of a population of cells to a given 

stimulus can also be studied  (Meister et al., 1994). However, unlike in a single-electrode 

setup, it is more difficult to choose the cell type that is being recorded. Therefore, the 

recorded spikes need to go through a rigorous sorting procedure before being assigned to 

specific cells. Establishing a good contact between tissue and electrode is also crucial for the 

data collection process. Therefore, Teflon inserts are placed on the retinas once they are 

mounted onto the MEAs (Figure 1.15). 

 

Figure 1.15: Experimental Setup. The retina is mounted on the MEA, which is then recessed 
in the MEA chamber. A Teflon insert is placed on the retina to press it onto the MEA and 
ensure good tissue-electrode contact. The retina is constantly perfused with ACSF at 33o C at 
a pH of 7.4. Signals from the electrodes are sent to the amplifier before being sampled at 
50kHz/channel by the digitizer. Figure from Jalligampala et al., 2017, reused with permission  
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Once the retina is in the chamber, it is constantly perfused with artificial cerebrospinal fluid 

(ACSF) at 33o C to keep it alive and healthy. The temperature is maintained using both a 

heating plate for the MEA chamber and a heated perfusion cannula. The Teflon insert has a 

semipermeable dialysis membrane which allows essential nutrients from the ACSF to reach 

the retina. The ACSF is continuously bubbled with carbogen (95% O2, 5% CO2) in order to 

maintain a pH of 7.4. The MEA used is a standard 60 electrode array made of TiN (Titanium 

Nitride) electrodes arranged in an 8x8 manner with an inter-electrode distance of 200 

micrometers (Multi Channel Systems MCS GmbH Reutlingen, Germany). One of these 60 

electrodes, serves as the reference electrode, whereas the other 59 are recording electrodes. 

The diameter of an electrode is 30 micrometers. The MEA electrodes are planar and rest on a 

glass substrate. 

Retinal Preparation 
The mouse is asphyxiated with CO2 inhalation before cervical dislocation and decapitation. A 

heat pen is used to make a small fiducial marking on the corneas of both eyes of the mouse. 

After pulling out the eyes using sharply curved forceps, the cornea is removed by cutting 

around it, using scissors. 

The point of entry of the scissors is the corneal mark made by the heat pen. Next, the lens is 

removed, and the sclera is peeled using two 5s forceps. Finally, the optic nerve is severed. This 

allows the retina to detach from the RPE and to float out of the eyecup. Vitreous humor is 

removed before cutting each retinal piece into two halves. The retina is then flattened onto 

the MEA electrodes with either forceps or brushes. Following this, a Teflon insert is placed on 

the retina to provide good tissue-electrode contact and the MEA with the mounted retina is 

placed inside the MEA chamber and perfused with ACSF as mentioned above. 

Spike Sorting  
The recorded extracellular voltage traces are passed through a preamplifier before being fed 

to an amplifier for a total gain of 1100. The recorded signals are then filtered with a bandwidth 

of 1 Hz–3 kHz to isolate the spiking potentials. The signals from the electrodes are sampled at 

a rate of 50 kHz/channel. The recorded voltage traces are filtered offline with a 12-pole Bessel 

filter with a low cut-off frequency of 51Hz. Due to their temporal kinetics, electrical 

stimulation artifacts are also isolated during this filtering process. Next, the filtered potentials 
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are passed through an automated spike sorting stage. Finally, a manual check is done to 

ensure minimal spike sorting errors (for example, assignment of spikes to wrong cell clusters).  

Cell Validation 
The putative spiking events are assigned manually scores of 1 (lowest) - 5 (highest), based on 

their 1) waveform shape 2) ISI histogram lockout 3) Cross-correlograms against other sources, 

and 4) stability over time. Only clusters with a weighted average score of 2.833 or higher are 

further analyzed.  After the isolation of reliable clusters, the spike times are sent to MATLAB 

using NeuroExplorer (Plexon Inc., TX, USA).  Using MATLAB, linear filters (based on spike-

triggered averages) are estimated for the different RGCs. The efficacy of these STA filters is 

then evaluated using generalized linear models (GLMs).  

Below is a brief overview of systems identification, spike-triggered averaging, and GLMs as 

applied in this thesis. 

Systems Identification 
The use of statistical methods to construct mathematic models for describing the behaviour 

of a particular system, based on observed data/measurements, is called systems identification 

(Söderström & Stoica, 1989). A ‘system’ can be anything from a pendulum to biological tissue, 

such as the retina. Such systems models can be broadly classified as white-, grey- or black-box 

models (Estrada-Flores et al., 2006; Söderström & Stoica, 1989). White-box models are those 

where the mechanistic operations of the subcomponents of the systems are explicitly 

modelled. An example of these, would be Newton's laws of motions, or the Hodgkin-Huxley 

models, used to capture spike generation and spike propagation in neurons. Though the 

white-box approach allows explicit access to the subsystem components, such models can 

become very complicated. In contrast, black-box models try to capture the observable input-

output relation without involving the subsystem components. The subsystem dynamics are 

treated essentially like a black box (not observable) (Figure 1.16). Such models, though lacking 

in the explicit knowledge of the internal workings of a system, are highly tractable. Grey-box 

models are a hybrid mix of both black- and white-box models (Estrada-Flores et al., 2006; 

Söderström & Stoica, 1989).  
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Figure 1.16: The three different classes of models based on complexity of implementation 
and required knowledge of the system and its subcomponents.   

Ultimately, the type of system identification done depends on the question at hand. In 

neuroscience, both white- (Hodgkin & Huxley, 1952) and black-box models (Chichilnisky, 

2001) have found great use. To date, many models of retinal responses to electrical 

stimulation have been white-box, with explicit modeling of spike generation based on the 

Hodgkin-Huxley equations. Black-box models of retinal responses to electrical stimulation 

have been limited mostly to the identification of voltage-/current- response curves for RGCs. 

In this thesis, the black-box modeling approach of retinal responses to prosthetic stimulation 

was extended by using white noise stimulation and reverse correlation. 

White Noise Stimulation and Analysis 
Traditional visual electrophysiology used flashes, drifting bars, gratings, and spots as their 

primary visual stimuli (Enroth-Cugell & Pinto, 1972; Hubel & Wiesel, 1968; Levick & Zacks, 

1970; Rodieck, 1965). Though these stimuli are capable of strongly driving the retina, they 

suffer from numerous disadvantages, such as confounds brought on by adaptation of 

responses, and an inefficient sampling of stimulus space. White noise stimulation presents a 

way around these confounds (Chichilnisky, 2001; Marmarelis & Naka, 1973a, 1973b, 1973c; 

Pillow & Simoncelli, 2003;  Schwartz et al., 2006).  The term ‘white’ refers to the uniform 

power distribution of the component frequencies (spatial or temporal) in the stimulus – in 
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analogy to the relatively flat power spectrum of white light. Therefore, the stimulus is 

unbiased in its sampling.  

In this method, stimuli, which fluctuate randomly around a mean are presented at a certain 

temporal rate, to the neural tissue. The randomness of the stimuli helps mitigate adaptation, 

and helps to sample the stimulus space better. By correlating the neural spikes to the stimuli 

immediately preceding them, the neural network is characterized by a linear input filter and a 

nonlinear spike-generator (an 𝐿𝑁 model); in other words, a black-box representation 

(Chichilnisky, 2001). The linear input filter is obtained by averaging all the stimuli preceding 

spikes. This process is called spike-triggered averaging (Figure 1.17).  

 

Figure 1.17: White Noise Stimulation and Reverse Correlation: The grey trace represents the 
random fluctuation of a stimulus around a certain mean. The superimposed red trace 
represents the stimulus fluctuations that correlated with the occurrence of spikes. By 
averaging the stimuli preceding these spikes, a spike-triggered average or linear input filter 
is obtained.  Figure adapted from Fairhall et al., 2006 

Provided in the next section, is the mathematical proof of why STAs represent the linear input 

filter of the neuron. 
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Spike-Triggered Average 
Let 𝑅(𝑠) be the expected response of a cell to a given stimulus 𝑠. It is given by   

𝑅(𝑠) = ∑ 𝑓𝑃(𝑓|𝑠)
𝑓

 

        …… equation 1.1                 

Where 
𝑅(𝑠) is the expected response 
𝑠 is the stimulus 
𝑓 is the average spike count in time-bin immediately following 𝑠 
𝑃 is probability of spike count 𝑓 in time-bin given a stimulus 𝑠 
 
The 𝑆𝑇𝐴 can, in turn, be expressed as a sum of stimulus vectors 𝑠, where each stimulus vector 

is weighted by its probability of occurrence 𝑃(𝑠) and its expected response 𝑅(𝑠). This product 

is normalized by the  average firing rate < 𝑓 > .  Mathematically, this can formalized as per 

the equation 1.2: 

𝑆𝑇𝐴 =  
∑ 𝑠𝑃(𝑠)𝑅(𝑠)𝑠

< 𝑓 > 
 

        …… equation 1.2                        

In the 𝐿𝑁 model, the firing rate is assumed to be equal to the output of a static nonlinear 

function 𝑁 acting on the dot product of the stimulus vector 𝑠 and the weight vector 𝑤. Hence  

 

𝑅(𝑠)  =  𝑁(𝑤. 𝑠) 
 
 
        …… equation 1.3                        

Inserting  equation 1.3 into equation 1.2 we obtain 

𝑆𝑇𝐴 =  
∑ 𝑠𝑃(𝑠)𝑁(𝑤. 𝑠)𝑠

< 𝑓 > 
 

        …… equation 1.4                        

Since the stimuli 𝑠 are drawn from a circular distribution, for every 𝑠 there is another stimulus 

𝑠 ∗ which is radially symmetric around 𝑊 and for which 𝑃(𝑠)  =  𝑃(𝑠 ∗). Therefore 𝑠 + 𝑠 ∗ is 

in the direction of 𝑊, implying that 𝑁(𝑤. 𝑠)  =  𝑁(𝑤. 𝑠 ∗) (Figure 1.18) 
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Figure 1.18 The s & s* vectors represent equilength stimulus vectors drawn randomly from 
a circular distribution with equal probability. When we average all the stimuli preceding 
spikes, we obtain the STA vector which is in the direction of input filter 𝑾. Figure adapted 
from Chichilnisky, 2001 and reused with permission 
  
Now the equation 1.4 can be rewritten as 

𝑆𝑇𝐴 =  
∑ 𝑃(𝑠)𝑁(𝑤. 𝑠)𝑠𝑠

< 𝑓 > 
+  

∑ 𝑃(𝑠 ∗)𝑁(𝑤. 𝑠 ∗)𝑠 ∗𝑠

< 𝑓 > 
 

        …… equation 1.5                        

This simplifies to the following: 

𝑆𝑇𝐴 =  
∑ (𝑠 + 𝑠 ∗)𝑃(𝑠)𝑁(𝑤. 𝑠)𝑠

< 𝑓 > 
 

        …… equation 1.6                        

But as shown above 

                (𝑠 +  𝑠 ∗)  ∝  𝑤. 

        …… equation 1.7                        

Hence                                                               

     𝑆𝑇𝐴 ∝  𝑤 
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This is why the STA is taken to represent the input filter of the cell. For a more elaborate 

version of this proof, the reader is referred to Chichilnisky, 2001. 

Another more intuitive way to think about the STA is, as a vector pointing to the mean of a 

subset of all the presented stimuli, where the stimulus subset consists only of stimuli that are 

immediately followed by spikes.  

The efficacy of these STAs (linear filters) in capturing the response properties of RGCs was 

estimated using GLMs (generalized linear models). In the following section, a brief overview 

of the theoretical framework of GLMs and the linear nonlinear Poisson (LNP model), a special 

case of GLMs, is presented. The outcome of this GLM analysis is provided in the summary of 

results section and in Appendix 4. 

Linear Nonlinear Poisson Models 
One of the most commonly used statistical models in neuroscience is the LNP model. The LNP 

model, a special case of the GLM, consists of a linear filter (either spatiotemporal or just 

temporal) that convolves with the stimulus (Chichilnisky, 2001) (Figure 1.19). The convolution 

product is then sent to a nonlinear transform that determines the spiking rate. This spiking 

rate is converted to spike trains by sampling from a Poisson distribution.  

 

Figure 1.19 LNP model. The linear filter is convolved with the stimulus. This product is sent 
to a spike rate determining nonlinear function. The instantaneous firing rate is converted to 
spike times by sampling from a Poisson distribution. Figure adapted from Pillow, 2007 and 
reused with permission under  CC BY-SA 4.0 license   

The success of LNP models at describing the response properties of neurons in various sensory 

systems (including the visual system) and their ease of implementation have made them very 

popular in neuroscience (Pillow, 2007; Schwartz et al., 2006; Williamson et al., 2015). That 

being said, there are a few notable drawbacks that must be kept in mind when working with 
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the LNP framework. The first is, that neuronal spikes are not Poissonal (memoryless) in nature. 

Due to the relative and absolute refractory period, the timing of a spike does depend on the 

preceding spikes. Therefore, a Poisson spike generator can lead to un-physiological spike times  

(Pillow, 2007). Depending on the question at hand, this could be a major confound. To correct 

for this, a memory filter can be added. The memory filter convolves with the generated spikes 

to create a small negative feedback that is combined with the convolution product of the input 

filter and stimulus (Figure 1.20).  

 

Figure 1.20 LNP model with memory. The spiking of real neurons does not follow a Poisson 
process (due to the refractory period). Hence a post-spike memory filter is introduced. This 
corrects for the un-physiological spike times of a pure LNP model. Figure adapted from 
Pillow, 2007 and reused with permission under  CC BY-SA 4.0 license   

A second shortcoming of the LNP model is the explicit assumption of a linear convolution 

between the stimulus and the cell’s input filter. Therefore, differences between the predicted 

spike trains of the model and recorded spike trains will be due to non-stationarity/noise in the 

responses and essential nonlinearities that have been overlooked. Though an LNP model 

alone cannot capture these nonlinear response properties, by using a combination of the LNP 

model, the broader GLM framework, and a suitable experimental/stimulus design, it is 

possible to quantify how much nonlinearity is being missed by the LNP. 

 

 

 



44 | P a g e  
 

Generalized Linear Models 
A mathematical model maps input variables X of a given domain to the observed output Z of 

either the same or different domain. A GLM is a special class of models which consists of three 

components namely a random component, linear predictor and a link function (Dobson, 2002; 

Pillow, 2007).   

 

Random Component 

The random component of the model determines the distribution of the observed 

target/output variable Z. The stochastic distribution can be any of the distributions in 

the exponential family namely Poisson, Gaussian, exponential, gamma, Bernoulli and 

is usually determined by the application (Koopman, 1936; Pitman, 1936). 

Linear Predictor 

The linear predictor (Y) linearly weights the input variables X according to the formula 

given below.  

𝑌 =  𝑊0 + ∑ 𝑊𝑖𝑋𝑖

𝑁

𝑖=1

 

Where 𝑊  and 𝑋  ∈ 𝑅𝑒𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟𝑠. 

Link Function 
 
The link function is used to connect the deterministic linear predictor 𝑊𝑋, to the 

observed stochastic variable 𝑍. The choice of the link function depends partly on the 

domains of 𝑋 and 𝑍, that need to be mapped. 

 

In this thesis, the Poisson distribution is used to model the distribution of the observed spike 
counts 𝑍.  
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Therefore 
 

𝑃(𝑦~𝑠𝑝𝑖𝑘𝑒𝑠) =  (𝛥𝜆)𝑦
𝑒−𝛥𝜆

𝑦!
 

Where  
Δ is the size of the time-bin 
y is the observed spike count in a bin of size Δ  
λ is the theoretical firing rate given linear predictor k and stimulus x 
 
The results of this GLM/LNP analysis are provided in the next section. 
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Summary of Results 

Tickling the retina: integration of subthreshold electrical pulses can activate retinal 

neurons. 
The best-restored vision to date for a patient with RP was with a retinal prosthetic device 

(Stingl et al., 2015). However, this restored acuity is still well below the limit that is 

theoretically possible with a prosthetic device (Stett et al., 2000). One major reason for this 

could be the indiscriminate activation of different classes of retinal ganglion cells, which leads 

to a reduction in restored visual acuity. A key reason for indiscriminate activation is the use of 

large suprathreshold voltage/current pulses, instead of waveforms specific to cell type. 

Though there have been recent studies, which explore alternate waveforms for preferential 

activation of different RGC classes (Twyford & Fried, 2016), there has been to date no 

systematic approach to answering this question. Therefore, we decided to investigate the 

response properties of RGCs using a linear systems approach, based on white noise 

stimulation and reverse correlation (Sekhar et al., 2016). To this end, it was necessary to 

establish appropriate parameters for the Gaussian white noise stimulus distribution, such as 

mean voltage, standard deviation, and stimulation frequency. A combination of these 

parameters to reliably obtain electrical STAs was determined by performing numerous pilot 

experiments. Though voltage and current pulses of different lengths could have also been 

explored, we decided to settle on voltage pulses of 1 ms as this is the standard stimulus 

paradigm used by the Tuebingen retinal implant (Zrenner et al., 2011). We performed 

different experiments where we stimulated the retina with a mean voltage of -1000 mV and 

an S.D of 35%, at frequencies of 10, 20, 25, and 50 Hz. We were able to obtain STAs at all these 

frequencies except 10 Hz. As the frequency of stimulation increased, the temporal sampling 

of the STAs improved. However, since we were interested in network activation, the first 10 

ms post stimulation is always ignored to avoid direct spikes (Boinagrov et al., 2014; Jensen et 

al., 2005). Therefore, at higher stimulation frequencies, we ignored a larger percentage of the 

time-bin after each stimulus pulse. At 50 Hz (the highest stimulus frequency we presented), 

50% (10/20 ms) of the time-bin is ignored. Therefore, a stimulation frequency of 25 Hz was 

finally chosen as a suitable compromise between better sampling of the underlying temporal 

filter and maximal utilization of the time-bin. Our inability to recover any STAs at 10 Hz strongly 

implies that an inter-pulse interval of 99 ms was too large for cells to integrate across multiple 

voltage pulses. Next, numerous pilot experiments were performed to find a mean voltage and 
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standard deviation for the Gaussian white noise distribution that would offer a suitable 

compromise between sufficient signal strength for multi-pulse integration and an overall 

reduction in single-pulse activation. Multiple experiments were done with mean voltages of -

700 mV, -800 mV, and -1000 mV at an SD of 35% (Appendix 1). While we could generate 

electrical STAs under all these conditions, STAs of many cells calculated at a mean of -1000mV 

showed significant single-pulse activation (in contrast to only integrative-based activation). An 

example STA showing single-pulse activation due to direct RGC activation is shown in figure 

1e of Sekhar et al., 2016. A mean voltage of -800 mV was finally chosen as an ideal 

compromise between increasing integrative responses and lowering responses to single-pulse 

stimulation. Additionally, different SDs of 20%, 35% and 45% were also tested using a mean 

voltage of -800 mV. While we were able to generate STAs at all these SDs, many of the STAs 

calculated at 45% SD had significant single-pulse activation. Taking all these results into 

consideration, a mean voltage of -800mV, at an SD = 35%, presented at a frequency = 25Hz 

was chosen as the standard stimulus paradigm (Figure 1a,b of Sekhar et al., 2016). Using this 

stimulus paradigm, 27 cells were collected using 54 unique trials of electrical white noise of a 

100 s each. Previous work has shown that direct responses of RGCs to electrical stimulation 

tend to be solitary spikes with very precise spike timings, while network-driven RGC responses 

usually occur in the form of bursts with lower spike-time precision (Fried et al., 2005). 

Therefore, the bursting response of RGCs to network stimulation could artificially increase the 

width of the electrical STAs of the 27 cells. To correct for this, we developed a method called 

‘first spike-triggered averaging’. First, bursting events were identified using inter-spike 

intervals (Rodieck et al., 1962; Zeck & Masland, 2007). Next, only the first spike of each 

bursting event is considered for calculating the electrical STA. The stimulus corresponding to 

that first spike is weighted by the number of spikes in that burst (Figure 2a of Sekhar et al., 

2016). In doing so, we noticed that, while some cells showed a reduction in their STA widths, 

other cells showed almost no change (Figure 2 c,e,g of Sekhar et al., 2016). This suggested 

that there are different coding schemes employed by different cells to electrical stimulation. 

Finally, we show the STA of a single cell obtained under three different mean voltages (-800 

mV, -1000 mV and -1200mV). Only at -1200 mV, we observed significant single-pulse 

activation in addition to the integrative responses for this cell (Figure 3a of Sekhar et al., 

2016). The threshold of this cell was found to be -1500 mV (Figure 3b of Sekhar et al., 2016). 

Moreover, data included from another study showed that the population threshold 
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(calculated from 59 RGCs) was -1312 mV. Taken together these two results provide strong 

evidence that the retinal network can integrate multiple subthreshold pulses. To summarize, 

the manuscript “Tickling the retina: integration of subthreshold electrical pulses can activate 

retinal neurons.” was a methods paper that demonstrated, that white noise stimulation and 

reverse correlation can yield electrical STAs for network-driven RGCs indicative of 

subthreshold multi-pulse integration.  
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Correspondence between visual and electrical input filters of ON and OFF mouse 

retinal ganglion cells 
The major motivation behind using electrical white noise stimulation was to find if different 

cell types (ON, OFF, ON-OFF, etc.) have distinct electrical input filters. This is an important 

precursor to finding electrical waveforms specific to each cell type, that can be used for 

preferential stimulation. The experimental design consisted of full-field flash stimulation, 

visual Gaussian white noise, and electrical Gaussian noise followed once again by flash and 

visual noise (Figure 1 of Sekhar et al., 2017). A cell-classification index was calculated based 

on the methods in Carcieri et al., 2003 (using PSTH fits to the flash responses).  We classified 

cells with an index greater than .5 as ON cells, between -.5 and .5 as ON-OFF cells and lesser 

than -.5 as OFF cells. The short-latency deflections in the STAs immediately preceding spiking 

were called D1, while the secondary long-latency deflections (if present) were labeled D2. The 

timings of the peak of these deflections was called the D1 and D2 latencies. It was found that 

spiking responses of ON and OFF cells, during electrical stimulation, corresponded to an 

upward and downward D1 deflection from the baseline in the electrical STAs, respectively 

(Figure 3 & 4 of Sekhar et al., 2017). No correlation was found between electrical and visual 

STAs with respect to the D1 widths or D1 latencies (Figure 6 a,c of Sekhar et al., 2017). 

However, the latency and widths for the electrical STA D1 deflections of ON cells were found 

to be significantly shorter than their corresponding visual STA D1 deflections. While the D1 

latencies of electrical STAs for OFF cells were significantly shorter than their corresponding D1 

latencies in visual STAs, the D1 widths of electrical and visual STAs for OFF cells were found to 

be comparable (Figure 6 b,d of Sekhar et al., 2017).  These results suggest that, while the 

electrical and visual STAs both originate due to activation of the network, there still might be 

differences in the mechanisms between the electrically- and visually-driven STAs. Next, we 

analyzed how strongly electrical STAs deviated from sine waves, since sinusoids had been used 

in previous studies for preferential stimulation of selected RGC types in the wild type retina 

(Im & Fried, 2016) without much success. For a sine wave 1) the ratio of the latency of crest 

to the trough is .33, 2) the ratio of the widths of the crest to trough is 1:1, and 3) ratio of 

amplitudes of the crest to trough is 1:1.  Comparing these ratios for those cells which had both 

a D1 and D2 deflection in their electrical STAs, we found that, except for the D1: D2 latency 

ratio, both D1: D2 width and D1: D2 amplitude ratios deviated from that of a sine wave. This 

could potentially explain why selective stimulation with sine waves was not possible. This 
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result is depicted in figure 5 of Sekhar et al., 2017 which shows that the scatter plot of D1 vs. 

D2 widths for the E-STAs deviates from the unity line for the majority of the cells.  Finally, in 

order to understand how these electrical STAs change with photoreceptor loss and retinal 

rewiring (Gargini et al., 2007; Marc et al., 2003), electrical STAs were calculated at P84 rd10 

mice. It was found that there was a statistically significant decrease in both the D1 latency and 

width for the rd10 retina in comparison to the wild type retina (Figure 7 & 8 of Sekhar et al., 

2017). So, in summary the results of the manuscript “Correspondence between visual and 

electrical input filters of ON and OFF mouse retinal ganglion cells”, shows for the first time, 

using the technique of white noise stimulation and reverse correlation, that ON and OFF cells 

have very distinct electrical STAs, and that these electrical STAs deviate strongly from a 

classical sine wave approximation. This finding has important implications for preferential 

activation of different visual pathways, and therefore improving the visual acuity restored 

with a prosthetic device. The results of this manuscript were corroborated by a later study (Ho 

et al., 2017). In this study, a photovoltaic device, was used to subretinally stimulate the wild 

type and degenerate rat retina using binary white noise. In doing so, Ho et al reported that 

ON and OFF RGCs had distinct electrical STAs, whose polarities were the opposite of their 

corresponding visual STAs. Moreover, like us, they also found that the latencies of the 

electrical STAs were shorter than the visual STAs. Finally, Ho et al reported electrical STAs of 

both polarities, in very late stage degenerate RCS rats, similar to figure 7 of Sekhar et al., 2017.  
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Characterizing retinal responses to electrical stimulation using generalized linear 

models 
As described in the previous chapter, the spike-triggered average (STA) of a cell represents a 

first-order approximation of a cell’s input filter. The STA assumes that the cell’s filter convolves 

linearly with the stimulus.  It is, therefore, necessary to estimate how much of the stimulus-

dependent variability is not captured by the STA model, due to this assumption of linearity. 

To estimate this deviation from linearity, we presented the same retinal cell with multiple 

interleaved trials of unique (non-repeating) and frozen (repeating) white noise in a 1:1 ratio. 

This ratio was validated by the following procedure: We fit GLMs to RGC responses that were 

shown only multiple trials of unique white noise or only multiple trials of frozen white noise. 

We then checked how the predictive performance of the GLMs on a held-out trial, changed 

when reducing the number of trials that were used for training. By doing this, we validated 

that an appropriate number of unique and frozen trials that are required to obtain robust fits 

for the GLMs was 18 unique and 18 frozen or 1:1 (Figure 1 of Appendix 4). Figure 2 of 

Appendix 4 shows the rasters of an example cell, to 18 trials of unique and frozen noise each, 

along with the recovered STA. A generalized linear model (GLM) with a log-link function, 

Poisson spiking distribution, and linear predictor function acting on the stimulus, is trained on 

all the trials of unique stimuli. Such a model is also called an LNP model (Figure 4a in Appendix 

4).  The LNP model’s predictive performance is then measured on the frozen trials. The spiking 

responses not predicted by the LNP model (on the frozen trials) are due to a combination of 

the simplifying assumption of a linear input filter and the intrinsic stimulus-independent 

variability of the retinal ganglion cell (RGC) spiking. To tease apart the remaining stimulus-

dependent variability not captured by the LNP model from the intrinsic stimulus-independent 

variability, we analyzed the variability in RGC responses to the multiple trials of frozen white 

noise. This is done by estimating a second GLM, fitted directly to the PSTH averaged over 

multiple trials of frozen stimuli (Figure 4b in Appendix 4). Since there is no assumption of a 

linear filter acting on the stimulus, any spiking variability not captured by the PSTH model on 

a held-out trial, represents the intrinsic stimulus-independent variability of the RGC. 

Therefore, we could estimate an upper limit of the stimulus-dependent spiking variability that 

can be captured by a statistical model (linear or nonlinear).  Moreover, the degree to which 

the GLM (trained on frozen stimuli), outperforms the LNP model for a given cell, represents 

the extent of nonlinearity in RGC coding not captured by the simple linear filter. In doing this 
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analysis for our cells, we found that the LNP model of ON, OFF, and ON-OFF cells captured 

only a fraction of the total stimulus-dependent variability (Figure 5 of Appendix 4). This 

implies that there is a certain degree of nonlinearity in how RGCs encode for electrical 

stimulation, and that more sophisticated nonlinear models must be explored to capture the 

full extent of these responses. It should be noted, that the results of Appendix 4 are 

provisional as this work is still in progress. While the finding that there are nonlinearities in 

RGC responses to electrical stimulation that cannot be captured by a simple LNP model, is not 

surprising, currently work is being carried out to record from more OFF cells in order to 

compare the model performances between ON and OFF cells (Figure 6 of Appendix 4). 

Additionally, other model performance measures such as signal to noise ratio and log-

likelihood are also being implemented. A comparison between how ON and OFF cells encode 

for electrical stimulation, with respect to their variability and linearity/nonlinearity, using 

multiple model performance measures would be a truly novel contribution to the field of 

prosthetic stimulation. 
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Discussion 

In this thesis, we studied the response properties of RGCs to electrical stimulation using white 

noise analysis. Even though there had been previous studies, which had attempted this, they 

had used very different paradigms. For example, in the work of Freeman et al., 2010, 

continuous binary noise stimulation was used to recover temporal electrical STAs in the rabbit 

retina. Though this was a novel finding, retinal implants use pulsatile stimuli and not 

continuous current or voltage stimulation, as such a paradigm could potentially damage the 

retina and electrodes over a period of time. Furthermore, Lorach et al., 2015, mapped the 

spatial electrical receptive fields of ON and OFF RGCs using sparse white noise stimulation. In 

doing so, they found the electrical receptive fields of ON and OFF cells to be comparable in 

the wild type rat retina. They also did not find any statistically significant correlations between 

the size of the visual receptive field and the electrical receptive field in the wild type rat retina.  

In this thesis, we tried to extend these methods to calculate the temporal receptive fields of 

ON and OFF RGCs in the mouse retina using voltage pulses whose amplitudes were randomly 

drawn from a Gaussian distribution. As mentioned earlier, establishing the parameters of the 

Gaussian distribution required several pilot experiments (Sekhar et al., 2016).  

The central work of this thesis demonstrated first: the ability to generate electrical STAs across 

different frequencies and white noise distributions (Sekhar et al., 2016); second: that ON and 

OFF cells have characteristic electrical STAs  (Sekhar et al., 2017); and third: that these linear 

filters (electrical STAs) only capture a fraction of the total stimulus-dependent spiking 

responses (Appendix 4). Based on each of these results there are many subsequent questions 

that can be explored.  

1) Studying electrical contrast adaptation using STAs 

At present, patients have to manually adjust the gain and sensitivity of their prosthesis when 

moving through visual scenes with different contrast and luminance conditions. These 

changes to the electrode gain or sensitivity are global across all electrodes (Zrenner et al., 

2011), which is very different from how the healthy retina adapts to contrast and luminance. 

The retina’s ability to adapt to luminance and contrast has been studied in the past using visual 

white noise and visual STAs (Baccus & Meister, 2002; Chander & Chichilnisky, 2001). Changes 

in contrast (SD of the visual Gaussian distribution) have been found to affect the amplitude of 
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the visual STAs, with higher-contrast stimuli leading to a decrease and lower-contrast stimuli 

leading to increases in STA amplitude, respectively (Chander & Chichilnisky, 2001). This effect 

is seen when the nonlinear spike generator function of the respective STAs (high and low 

contrast) are superimposed using a scaling factor. These contrast driven STA-amplitude 

changes are believed to reflect the adaptations in the sensitivity of the retina (Chander & 

Chichilnisky, 2001). Changes in the latencies of these STA peaks are also observed (Baccus & 

Meister, 2002). It should, therefore, be possible to use electrical STAs to study how the retina 

adapts to electrical stimulation at different levels of contrasts. Though retinal responses to 

changes in electrical contrast have been studied already, these studies used sudden changes 

in a stimulation pulse amplitude (driven by visual luminance) as a surrogate for contrast 

change (Goetz et al., 2015). Moreover, the effects of these contrast changes were studied 

based on changes in firing rates for the retinal cell responses. However, using the white noise 

method described in this thesis, it would be possible to understand in-depth how these 

contrast changes affect the gain and sensitivity of the retinal responses through changes in 

the amplitude of the electrical STA and spike generating nonlinear function. This study of 

electrical STAs could be done in both the wild type and degenerate retina in order to 

understand how photoreceptor loss and retinal rewiring affects the retinal circuitry’s ability 

to adapt to different contrasts. While initial studies showed, that late-stage degenerate retina 

cannot respond to decreases in electrical contrast (Goetz et al., 2015), the use of electrical 

STAs will help to more deeply investigate why.  

A model studying this process could in turn shed light on how to automatically adjust electrode 

settings locally for different contrast and luminance conditions. 

2) Effect of electrical cross talk on STAs and RGC activation thresholds 

The data in this thesis was collected using a single stimulating electrode with the immediate 

surrounding electrodes being used for recording. Our rationale for analyzing only the 7-8 

neighboring electrodes is because the percentage of cells that are electrically responsive, to 

even large suprathreshold voltages pulses, reduces sharply when we extend our analysis 

beyond the nearest neighboring electrodes. This result can be seen in figure 3 of Jalligampala 

et al., 2017. Moreover, initially we did analyze cells further away (>400 micrometers) from the 

stimulating electrode. However, we could not recover any electrical STAs. In addition to this, 

due to the subthreshold nature of our stimuli, the data yield per tissue tended to be low. While 
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we could have increased our yield by stimulating with multiple electrodes, such a paradigm 

can introduce electric cross-talk between the stimulating electrodes and induce changes in 

the retinal activation thresholds (Khalili Moghadam et al., 2013; Matteucci et al., 2016). 

Initially we did perform experiments, where we used multiple stimulating electrodes on the 

MEA (separated by a distance of at least 1mm), in order to understand if multi-electrode 

subthreshold stimulation had an effect on the RGC thresholds and therefore the shape of the 

electrical STAs. However, the results of our analysis were not conclusive. Therefore, to avoid 

this potential confound, we limited ourselves to a single stimulating electrode. Quantifying 

the effect of white noise stimulation with multiple electrodes, however, would be interesting 

for two reasons: First, if electric cross-talk produced by multiple electrode subthreshold 

stimulation alters RGC thresholds, it could shed light on how different spatial patterns of 

electrical stimulation affect population encoding by the retina in a prosthetic setting. This, in 

turn, could help to optimize the spatial electrode configuration used by present implants 

(Khalili Moghadam et al., 2013; Matteucci et al., 2016). Second, if electric cross-talk has no 

effect or only a weak effect on RGC activity, it would be possible to increase our data yield by 

the use of multiple stimulating electrodes (separated by a certain minimal distance).  

3) Preferential activation of ON and OFF pathways in wild type and degenerate retina 

The ability to preferentially activate different classes of RGCs electrically is a much-researched 

topic as it has major implications for the effectiveness of retinal prosthetics. There have 

already been studies, which showed that ON and OFF cells display responses distinct from 

each other when activated indirectly (through the network) with the same stimulus (Im & 

Fried, 2015). It was also found that strong correlations exist between electrically and visually 

driven responses patterns for ON cells based on parameters such as inter-spike interval, 

latency, peak firing rate, and spike count. These correlations though present for OFF cells were 

much weaker. Furthermore Twyford & Fried, 2016  showed that ON and OFF cells in the wild 

type rabbit retina respond to different phases of an ongoing low-frequency sine wave (5 and 

10 Hz). Though these results lend evidence to the existence of stimuli that can preferentially 

activate different cell types, there has been, till date, no systematic exploration of the input 

stimulus space for ON and OFF cells. The choice of the sine wave as a stimulus was ad hoc and 

not grounded in any estimate of the RGCs input filter. Such ad hoc choices can lead to sub-

optimal stimuli that fail to preferentially activate the retina. Indeed when isolated sine waves 
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were presented, the preferential activation of different RGC classes was only weak (Im & 

Fried, 2016). When the stimulus space for ON and OFF cells was explored systematically using 

white noise, we showed that electrical STAs are not always well approximated by sine waves 

(Sekhar et al., 2017). It would be therefore interesting to see, if preferential activation can be 

achieved using modified sine waves, which have asymmetries in their D1 and D2 amplitudes 

and widths.  

Moreover, it is important to remember that the results mentioned above were in the wild 

type retina. It is, therefore, not guaranteed that these findings will be preserved in the 

degenerate retina, the end target of a prosthetic device. In the past, it has been shown that 

physiological findings in the wild type retina do not necessarily translate to the late-stage 

degenerate retina, due to the photoreceptor loss and retinal rewiring (Gargini et al., 2007; 

Marc et al., 2003).  For example, Twyford & Fried, 2016, showed that ON and OFF cells in the 

wild type rabbit retina respond to different phases of an ongoing sine wave. However, these 

differential responses disappear with the addition of synaptic blockers suggesting that such 

phase-specific retinal responses are photoreceptor mediated. Therefore, experiments in 

search of electrical STAs in the late-stage degenerate retina which are specific to cell type is 

crucial.  

We could show that electrical STAs for p84 rd10 retina are significantly shorter in their 

latencies and widths in comparison to the electrical STAs of the wild type retina (Sekhar et al., 

2017). Therefore, a higher stimulation frequency would be required to better sample rd10 

STAs. This would need further optimization of the stimulation parameters that are currently 

being used for the wild type retina. Once the stimulation parameters for the rd10 E-STAs have 

been optimized, it is necessary to correlate them with their cell type. However, due to the 

photoreceptor loss, traditional visual stimuli based classification schemes are no longer viable. 

Therefore, cell-type classification in the degenerate retina would require exploration of 

techniques such as immunohistochemistry, cellular morphology, intra- and extra-cellular 

physiology, etc. Though challenging, such experiments are essential in order to find 

waveforms in the degenerate retina which are specific to cell type, thereby leading to better 

retinal prosthesis. 

 

 



57 | P a g e  
 

4) Differences between visually and electrically driven STAs 

The absence of any correlations between the widths and latencies of electrical and visual STAs 

is interesting as it suggests that the network activation mechanisms of electrical and visual 

stimulation, though similar are not identical. Using more invasive techniques, such as synaptic 

blockers or patch clamping, it would be interesting to study the origin of these network 

mediated differences. 

5) Statistical modeling of the wild type retina and degenerate retina 

In the third and final paper, we found that there are nonlinearities in how ON, OFF and ON-

OFF cells encode for electrical stimulation that cannot be captured by a simple LNP model. 

Therefore, future work in this direction should try and use more sophisticated nonlinear 

models to capture the spiking dynamics of RGCs. Being able to predict spike times to novel 

electrical stimuli with greater accuracy will in turn help find waveforms for preferential 

stimulation. However, a major difficulty in implementing the models for the third paper was 

the high stimulus-independent spiking variability in the recorded RGC responses. One reason 

for this could be due to adaptation/desensitization of RGC responses to prolonged electrical 

stimulation. This adaptation over recording time will lead to increase in the variability of RGC 

responses to repeated blocks of electrical stimuli. Another reason for the high variability could 

be our site of stimulation. In our experiments, the retina was stimulated and recorded from 

the RGC side. However, since we are targeting the retinal network (bipolar cells and 

photoreceptors), stimulating from the RGC side increases activation thresholds due to the 

greater distance between the electrodes and the intended target of stimulation. This increase 

in threshold could, in turn, decrease our signal strength. Therefore, developing an 

experimental setup that would allow electrical stimulation from the photoreceptor side and 

recording from the RGC side would help to decrease the distance between electrodes and the 

retinal network, thereby reducing activation thresholds, reducing the variability and 

ultimately making the modeling much easier. Furthermore, exploring alternate stimulus 

distributions should be considered. In designing our stimuli, we focused on minimizing single-

pulse activation. However, this came at the cost of low signal strength, and therefore, higher 

variability in stimulus-driven responses. Hence, exploring stimulus distributions with higher 

means, in order to reduce stimulus-driven variability while still maintaining low single-pulse 

activation, should be undertaken. This would require several new pilot experiments. Finally, 
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once the models for the wild type retina have been fully developed it would be necessary to 

see how these models change for the late stage degenerate retina. By comparing the models 

of wild type RGC responses to rd10 RGC responses it should be possible to characterize more 

formally the effects of photoreceptor loss and subsequent rewiring. Such a mathematical 

formalization is crucial to understanding how the neural code is altered in the degenerate 

retina (in comparison to the wild type retina). This understanding could, in turn, help develop 

better visual processing algorithms for retinal implants, to compensate for the altered neural 

code. 
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Appendix 1 

Electrical STAs at alternate stimulus conditions 
In Appendix 2, a detailed presentation of the electrical Gaussian white noise stimulus and 

evidence that the retina can integrate multiple subthreshold pulses is provided. The majority 

of the data in Appendices 2-4 is obtained using electrical white noise sampled at a rate of 25 

Hz from a distribution of mean voltage -800mV, 35% SD. Though most of the electrical STAs in 

this dissertation were obtained with these stimulus conditions, we were able to recover STAs 

at alternate conditions as well. The ability to obtain E-STAs at multiple contrasts, mean 

voltages and frequencies speaks to the robustness of the electrical white noise method. Here 

provided below are some of the E-STAs obtained under alternate stimulus paradigms, plotted 

at their original spike times (without correcting for bursts). 

As mentioned previously we finally settled on a stimulation frequency of 25Hz, as it offered a 

good compromise between a well-sampled E-STA at 50Hz (but neglecting 50% of the time-bin) 

and a poorly sampled E-STA at 20Hz (but only neglecting 20% of the time-bin).  

 

Electrical STAs at -800mV, 25Hz, 20%SD 
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Electrical STAs at -1000mV, 50Hz, 35%SD 

 

                                         

 

          Electrical STAs at -1000mV, 20Hz, 35%SD 
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                                                 Electrical STAs at -700mV, 25Hz, 35%SD 
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Appendix 2 

Manuscript 1: Tickling the retina: integration of subthreshold electrical pulses can 

activate retinal neurons. 
Sudarshan Sekhar, Archana Jalligampala, Eberhart Zrenner, Daniel L. Rathbun 

Published 17th May 2016 in the Journal of Neural Engineering 

Abstract 

Retinal Implants have been able to provide, to date, the best-restored visual acuity to patients 

with retinitis pigmentosa. Present implants use current or voltage pulses of a fixed amplitude 

presented at a certain frequency, adjusted to each patient. The amplitudes of the individual 

pulses are designed such that each pulse can activate RGCs, thereby eliciting visual 

phosphenes in patients. In other words, the individual pulses are suprathreshold. Despite 

encouraging results in many patients, with such a paradigm, the restored visual acuity falls 

well below the theoretical limit possible. This is because, there are still many unanswered 

questions that need to be addressed, such as reducing thresholds for retinal activation, 

reducing fading of percepts at high stimulation frequencies, inability to preferentially activate 

different retinal pathways, etc. In an attempt to resolve many of these issues, recent studies 

have tried alternate stimulus paradigms such as sine waves, sawtooths, diamond-shaped 

waves, etc. However, the choice of these alternate stimuli has been somewhat ad hoc without 

a strong justification. Therefore, in this study, we attempted to estimate a linear electrical 

filter for various retinal ganglion cells using subthreshold white noise electrical stimulation 

and reverse correlation. The ability to estimate a linear filter would provide a more educated 

guess at alternate stimulus waveforms that could be used to activate the retina. Our analysis 

showed that the retina could integrate multiple subthreshold pulses to generate a variety of 

different electrical input filters. The ability to obtain different electrical STAs raises the 

possibility that these different filters could correlate with visual cell type. This would have 

important implications for preferential stimulation of the retina, a major question in the field 

of retinal prosthetics. 

Contributions SS and DLR designed the experiments; SS executed the experiments and 

analysis; SS, AJ, DLR, and EZ composed the manuscript; AJ contributed additional unpublished 

data. 



Tickling the retina: integration of
subthreshold electrical pulses can activate
retinal neurons

S Sekhar1,2,3,4, A Jalligampala1,2,3, E Zrenner1,2,4 and D L Rathbun1,2,4

1 Institute for Ophthalmic Research, Eberhard Karls University, D-72076 Tübingen, Germany
2Werner Reichardt Centre for Integrative Neuroscience (CIN), D-72076 Tübingen, Germany
3Graduate Training Center of Neuroscience/International Max Planck Research School, D-72074
Tübingen, Germany
4Bernstein Center for Computational Neuroscience Tübingen, D-72076 Tübingen, Germany

E-mail: sudsa89@gmail.com and daniel.rathbun@uni-tuebingen.de

Received 12 October 2015, revised 11 April 2016
Accepted for publication 12 April 2016
Published 17 May 2016

Abstract
Objective. The field of retinal prosthetics has made major progress over the last decade, restoring
visual percepts to people suffering from retinitis pigmentosa. The stimulation pulses used by
present implants are suprathreshold, meaning individual pulses are designed to activate the
retina. In this paper we explore subthreshold pulse sequences as an alternate stimulation
paradigm. Subthreshold pulses have the potential to address important open problems such as
fading of visual percepts when patients are stimulated at moderate pulse repetition rates and the
difficulty in preferentially stimulating different retinal pathways. Approach. As a first step in
addressing these issues we used Gaussian white noise electrical stimulation combined with
spike-triggered averaging to interrogate whether a subthreshold sequence of pulses can be used
to activate the mouse retina. Main results. We demonstrate that the retinal network can integrate
multiple subthreshold electrical stimuli under an experimental paradigm immediately relevant to
retinal prostheses. Furthermore, these characteristic stimulus sequences varied in their shape and
integration window length across the population of retinal ganglion cells. Significance. Because
the subthreshold sequences activate the retina at stimulation rates that would typically induce
strong fading (25 Hz), such retinal ‘tickling’ has the potential to minimize the fading problem.
Furthermore, the diversity found across the cell population in characteristic pulse sequences
suggests that these sequences could be used to selectively address the different retinal pathways
(e.g. ON versus OFF). Both of these outcomes may significantly improve visual perception in
retinal implant patients.

Keywords: systems biology, retinal prosthesis, white noise analysis, spike triggered average

(Some figures may appear in colour only in the online journal)

Introduction

Retinitis pigmentosa (RP) and age-related macular degen-
eration (AMD) are two retinal diseases that cause visual
impairment in many people world over. Both RP and AMD
are caused by a progressive loss of photoreceptors that
remains irreversible and untreatable, eventually leading to
complete blindness. Fortunately, the inner retina remains
relatively intact. A host of different approaches including

gene therapy, stem cells, optogenetic stimulation and retinal
implants are being explored in order to find a treatment for
these diseases [1, 2]. To date retinal implants are the only
effective treatment approved for clinical use [3–5]. In the
subretinal configuration, the implant is embedded in the area
where the photoreceptors used to be. The goal of subretinal
stimulation is to elicit phosphene perception through activa-
tion of the retinal network i.e. indirect retinal ganglion cell
(RGC) stimulation. In contrast, epiretinal devices aim to
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activate RGCs directly with all image processing performed
by the device without help of the retinal network, using direct
RGC stimulation. The success of retinal implants—in part-
icular, subretinal—emphasizes that the retinal circuitry of
patients who have been blind for many years may still be
functional and capable of carrying out important visual pro-
cessing despite the retinal rewiring that is known to take place
during disease progression [6, 7]. To capitalize on such net-
work processing, we have focused our attention on improving
our understanding of network stimulation.

Despite the effectiveness of subretinal network stimula-
tion, there remain many unresolved problems. Among them
are fading (of visual percepts at high frequencies of constant
amplitude pulse stimulation [8]) and the inability to pre-
ferentially stimulate different retinal pathways. A solution to
the fading problem would give patients better temporal
resolution by allowing higher frequency of repetitive stimu-
lation. Complementarily, stimulation specific to select RGC-
types could, for example, improve visual contrast by reducing
antagonistic signals from competing visual pathways. Though
there has some been progress in recent years in addressing
these questions [9–11], the exact mechanisms of how the
retinal circuitry behaves under electrical stimulation is still
poorly understood. To address this limited understanding, we
applied linear systems analysis techniques developed in the
field of visual cellular neurophysiology as detailed below.

Gaussian-distributed ‘white noise’ stimuli have been
used for many years in visual neuroscience to recover
temporal filters from the retinal network [12–14]. In this
method, a series of luminance values drawn randomly from
a Gaussian distribution is presented to the retina [15]. Such
a ‘white noise’ stimulus effectively samples the practically
infinite space of time-varying luminance patterns. Each of
the stimulus sequences immediately preceding a RGC
action potential (also called a spike) is combined to produce
the spike-triggered average (STA). The Gaussian distribu-
tion ensures that the resulting STA is a close estimate of the
linear filter of the RGC [12–14]. The advantages of the STA
are two-fold. First, it provides a useful model of how the
cell and its inputs from the retinal network can integrate
multiple subthreshold stimuli over time in order to cross the
spike generation threshold. Second, it is an efficient method
for sampling from a large, parameter space of potential
stimuli.

This white noise method, due to its advantages, is gain-
ing momentum in the field of retinal prosthetics [16, 17].
However, previous studies likely only examined suprathres-
hold extracellular network stimulation using continuous-cur-
rent binary noise [16], or did not investigate the temporal
integration of multiple pulses over time intervals shorter than
500 ms [17]. Here we present electrical STAs obtained by
subthreshold Gaussian white noise stimulation of the retinal
network. This paper shows that subthreshold stimulation can
be effective, thereby opening up a new domain of electrical
waveforms that may selectively activate RGC subtypes and
reduce phosphene fading.

Materials and methods

Experimental design

The data contained here represent a first study to describe the
degree to which network stimulation of the retina may result
from integration of subthreshold pulse sequences. Our data,
we contend demonstrates subthreshold integration. Since our
aim with this study was to see if we could get RGC responses
based on network integration of multiple subthreshold pulses,
our principle goal was therefore repeatability across multiple
retinal tissues. We therefore conducted enough experiments to
collect data from at least 20 RGCs for initial evaluation.
Based on the frequency of basic RGC types (ON, OFF, ON/
OFF) [18], this should be sufficient to provide a random
sampling from the main RGC types. Our data was collected
using a 60 channel Microelectrode array (MEA). Only those
electrodes immediately surrounding the stimulating electrode
were analyzed. Waveforms of spikes from a putative spike
train were analyzed based on: (1) the presence of a lockout
period in the ISI histogram and autocorrelogram indicating
that spike trains from multiple cells were not lumped together
(2) absence of a peak in the cross-correlogram with other
‘cells’ that would indicate splitting of a single cell’s spike
train into multiple ‘cells’ (3) good isolation in spike clustering
space of a biphasic waveform whose shape is typical of
extracellularly recorded action potentials and (4) stability of
this waveform over the entire recording. Each of these indi-
vidual characteristics was rated from 1 to 5 (1 being the worst
and 5 being the best) and a weighted average was calculated.
Only those cells which had an overall rating of 2.8333 or
higher were included here. We initially had 44 spike clusters.
After applying our selection criteria we had 28 cells. Outliers
were not excluded from the population analysis. The present
data was collected from 3 retinal tissues from 3 mice.

Our null hypothesis was that integrative electrical STAs
were not obtainable under such conditions. Upon initial
analysis, we investigated the hypothesis that temporal smear
alone was responsible for apparently integrative STAs. This
secondary hypothesis was rejected, allowing us to also reject
the original null hypothesis. The unit of investigation were
well-isolated wild-type mouse (C57Bl/6J) RGCs.

Animals

The mice were kept under a standard white cyclic lighting,
mimicking regular daily rhythms. They had free access to
food and water. In total, 3 adult wild-type C57Bl/6J (Jackson
Laboratory, Bar Harbor, ME, USA) were used. Two of these
mice were aged postnatal day 32 (P32) and one was P39. In
total, one retinal half was used from each of these 3 mice. All
procedures were approved by state authorities (Regierung-
spräsidium, Tübingen) and conducted under the supervision
of the Tübingen University facility for animal welfare (Ein-
richtung für Tierschutz, Tierärztlichen Dienst und Labortier-
kunde) and the NIH Guide for the Care and Use of Laboratory
Animals. All possible efforts to minimize the number of
animals used and their suffering were made.
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Retinal preparation

Prior to retinal dissection, CO2 inhalation was used to anes-
thetize the mouse. Next, a pinch of the tissue between toes
was used to check for withdrawal reflex. Finally, the mouse
was euthanized by cervical dislocation. The eyes were then
removed under normal room lighting and placed in carbo-
genated (95% O2 and 5% CO2) artificial cerebrospinal fluid
(ACSF) solution containing the following (in mM): 125
NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26
NaHCO3 and 20 Glucose, pH 7.4. During the dissection
process (which was performed under dim light conditions) the
cornea, ora serrata, lens and vitreous body were removed.
Next the optic nerve was cut at the base of the retina and
finally the retina was detached from the pigment epithelium.
Next all traces of vitreous material from the inner surface of
the retina were removed. This is important as vitreous pre-
vents good contact between the nerve fiber layer and elec-
trodes. Retinas were maintained in carbogenated ACSF until
needed. All recordings were performed with a planar MEA. A
retinal half was oriented and flattened onto the MEA—
ganglion cell side down—with two miniature forceps and was
allowed to adapt for >30 min. Care was taken not to damage
the retina or MEA during this process. In order to create better
contact between the retina and the electrodes, a dialysis
membrane (CelluSep, Membrane Filtration Products Inc.,
Seguin, Texas, USA) mounted on a custom Teflon ring was
lowered onto the retina [19]. The MEA was then placed under
the preamplifier and continuously superfused with carboge-
nated ACSF (∼6 ml min−1) maintained at 33 °C using both a
heating plate and a heated perfusion cannula (HE-Inv-8 &
PH01; Multi Channel Systems, Reutlingen, Germany).

MEA and data acquisition system

A planar MEA containing 59 circular TiN electrodes (dia-
meter: 30 μm, interelectrode spacing: 200 μm; Multi Channel
Systems, Reutlingen, Germany) arrayed in an 8×8 recti-
linear grid layout, and with electrode tracks insulated by
Si3N4 on a glass substrate was used for recording from RGCs.
There were no electrodes on the four corners of the grid.
Moreover one electrode was substituted with a large reference
electrode. The electrodes had impedances of approximately
50 kΩ at 1 kHz. The data acquisition system consisted of the
MEA60 system (MCS, Reutlingen, Germany), RS-232
interface, a 60 channel preamplifier with integrated filters and
a blanking circuit (MEA 1060-Inv-BC). The blanking circuit
was used to reduce recording noise by grounding any
defective electrodes and to choose the stimulating electrode.
These operations were controlled by the MEA Select soft-
ware. All data collection was done using the MC_Rack pro-
gram which was installed on a personal computer running
Windows XP. The computer was also fitted with MC_Card
data acquisition hardware and an analog input card to record
stimulus trigger signals. The raw data was sampled at a rate of
50 kHz/channel. Using a filter with a bandwidth of 1 Hz–
3 kHz and a gain of 1100.

Electrical stimulation and recording

A stimulus generator (STG 2008, MCS, Reutlingen, Ger-
many) was used to generate the stimulus pulses. The pulses
were delivered from the ganglion cell side of the retina
(epiretinally) via one of the 59 electrodes—chosen based
on proximity to electrodes with clean neural signals.
Although subretinal implants deliver electrical stimulation
from the photoreceptor side of the retina to activate the
retinal network, it is well established that the desired
network stimulation can be achieved by stimulating from
either side of the retina [20, 21]. Therefore, because of the
difficulty in simultaneously stimulating and recording from
opposite sides of the whole-mount retina, epiretinal elec-
trodes were used for both. Furthermore, to remove the
influence of direct RGC activation on our results, a
spike latency exclusion period was applied (see results
and figure 1(e))—a step that would also be necessary with
subretinal stimulation.

RGC responses on the 8 neighboring electrodes at a
distance of either 200 or 283 μm were examined. The noise
stimulus was programmed in MATLAB (The Mathworks,
Natick, MA) with custom scripts, and imported into
MC-Stim (MCS, Reutlingen, Germany) for presentation. It
consisted of monophasic rectangular voltage pulses, each of
1 ms duration, whose amplitudes were drawn for every
40 ms interval from a Gaussian distribution with a mean of
−800 mV and a standard deviation of 280 mV. Such pulse
waveforms are typical for retinal implants that target net-
work-mediated (indirect) activation of RGCs [3, 22]; and
are comparable to biphasic current pulses [21]. Further-
more, the choice of relatively short 1 ms pulses delivered
from the epiretinal side was made, in part, to minimize any
potential contribution of photoreceptor stimulation to the
STA [23]. For stimuli with a mean other than −800 mV the
SD was always 35% of the mean (figure 3). A ‘post-time’ of
1 ms was set in MC-Stim (MCS, Reutlingen, Germany) to
facilitate active discharge of the stimulating electrode via
the stimulator. Additionally, a wait time of 1.3–1.4 ms was
set in MEA Select to extend the blanking period before
recording resumed—thus minimizing stimulation artifacts.
A single trial of the noise stimulus ran for 100 s. Fifty-four
non-repeating trials were presented in each recording with
about 30 s between each trial.

For figure 3, voltage pulses of 1 ms duration were pre-
sented in order of increasing magnitude with each pulse
repeated 10 times at 5 s intervals before advancing to the next
voltage. This stimulus block was repeated twice before pro-
ceeding to noise stimulation. Noise stimulation for this cell
consisted of 5 non-repeating trials of noise with a mean of
−800 mV followed by 5 non-repeating −1000 mV trials and
then 5 non-repeating −1200 mV trials. The full set of 15 trials
was repeated twice. The population data of figure 3(b) was
collected during a separate study that did not include the 28
cells presented here, using the same 1 ms duration, 5 s inter-
vals, and increasing voltage amplitude; but in the context of a
broader exploration of stimulus space in which 8 other
durations and matching positive voltages were also presented.

3

J. Neural Eng. 13 (2016) 046004 S Sekhar et al



Response threshold was determined as the lowest voltage in
which the response exceeded mean+2·Variance of the
‘spontaneous’ firing rate assessed during the many 1 s epochs
preceding each voltage pulse.

Data analysis

The stored raw data were processed using commercial spike
sorting software (Offline Sorter, Plexon Inc, TX, USA). To
process the data, voltage traces were first high pass filtered
with a 12-pole Bessel filter with a cut off frequency of 51 Hz.
Following this, putative action potential events (spikes)
whose filtered amplitude was greater than four standard
deviations from the mean were detected. These events were
sorted into clusters with an automated routine (T-distribution
expectation maximization) to assign noise events as well as
spikes from up to 5 cells recorded on each electrode to their

own separate ‘units’. Finally, as a quality control step, the
multiple automated sorting solutions were manually inspected
and slightly modified as necessary in order to minimize Type
I and Type II errors in attribution of events to different
sources. Only units with a distinct waveform, interspike
interval lock-out period, and which demonstrated a refractory
period in their autocorrelogram were considered to contain
the spike train from a single RGC and included in the analysis
presented here. Cells which responded to visual but not
electrical stimulation were observed, however the number of
spikes produced were too few to support reliable spike train
isolation. Time stamps assigned to the detection threshold
crossing of these sorted spikes were collected with Neu-
roExplorer (PlexonInc, TX, USA) and exported to MATLAB
for further analysis.

Custom scripts written in MATLAB were used for: ‘all’
and ‘first’ spike-triggered averaging, analysis of the statistical

Figure 1. Spike-triggered average method reveals temporal electrical integration. Retinas were stimulated through a microelectrode array in
an epiretinal configuration with both the stimulating and recording electrodes against the RGC side of the retina. (a) Single stimulus block
containing random pulse amplitude sequence of 1 ms pulses at 25 Hz. (b) Amplitude distribution of pulses in (a) (black) drawn from a
Gaussian function (gray, dotted). Dotted lines mark mean and SD voltages, which define the Gaussian function. (c) Expansion from a with
accompanying high-pass filtered voltage recording and spike train; (gray) highlights an example pulse sequence preceding the associated
spike, below. (d) Sample pulse amplitude sequences of the 7 spikes from (c). Three ms spike waveform excerpts are shown at right. (e) STA
for all spikes (gray, dotted). Average post-spike stimuli shown right of 0 s to reflect spike count dependent noise level for each STA. To
ignore direct electrical activation of RGCs, spikes following a pulse by �10 ms were excluded in subsequent analysis (black). Inset shows
histogram of spike times after each pulse. Gray area denotes excluded spikes.
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significance of the STAs, pre-ISI versus post-ISI analysis to
identify bursts, and calculation of latency and integration
period of the negative deflection (see results). Because
cathodic pulses are known to be more effective in stimulating
the retina in the epiretinal configuration, we focused our
analysis on negative deflections in the STA. For STAs, each
spike was binned according to the 40 ms stimulus frame in
which it occurred.

Statistical analysis

To identify STA deflections, the STA was first smoothed with
MATLAB’s spline function sampled at 1 ms intervals. The
time delay of the minimum value in this smoothed STA
determined the latency of negative STA deflections. Statis-
tical significance of a STA deflection was calculated using
MATLAB’s ztest function to test whether the deflection was
significantly outside the distribution of baseline values for
each STA. The mean of the baseline distribution for each cell
was taken to be the mean of the fluctuation on the right of
time=0 in the STA for each cell. The sigma was the stan-
dard deviation of these fluctuations. The alpha value used by
ztest (1-tailed) was corrected for multiple comparisons to
result in a 5% chance of falsely misidentifying a data point as
significant. The integration widths for negative deflections
were calculated based on the first values on either side of the
deflection peak that were no longer statistically significant
from the baseline. The limits for integration boundaries were
set to 0 and 1 s.

Results

Determining if retinal circuit can integrate multiple electrical
pulses

To determine if the retinal circuit can integrate across multiple
electrical pulses, we presented random voltage-controlled
pulse sequences while recording RGC spike trains from the
mouse retina using a planar MEA (figures 1(a)–(d); exper-
imental methods). We then estimated the electrical filter of
each RGC by averaging the stimulus segments preceding
each spike—yielding the STA. We found STAs with an
integration time spanning multiple pulses were common
(figure 1(e)), demonstrating that, in addition to responding to
individual suprathreshold pulses, the retinal network can
integrate multiple subthreshold pulses. Preliminary experi-
ments with pulse frequencies of 10, 20, 25, 40, and 50 Hz
demonstrated a tradeoff between STA sampling density and
response rate—with 25 Hz representing a reasonable com-
promise between the two concerns (data not shown). No
integrative STAs were acquired at 10 Hz suggesting that the
maximal interval sufficient for integration lies somewhere
between 50 and 100 ms.

All 28 well-isolated RGC spike trains yielded negative
STA deflections that were statistically significant. We focused
our analysis on negative deflections because cathodic pulses
are known to be most effective in the epiretinal stimulation

configuration. STA shape varied across the population with
11 cells demonstrating a short latency positive deflection
preceded by a longer latency negative deflection (as in
figure 1(e)). Another 9 cells displayed the inversion (as in
figure 3(a)) with negative deflection preceded by longer
latency positive deflection. The remaining 8 cells were
monophasic or difficult to classify. Further work is required to
develop classification methods that are robust to the varia-
bility in STA shape and signal-to-noise ratio.

As our objective, was to investigate only the RGC spikes
resulting from retinal network activation and not via direct
RGC activation, all spikes within a latency of 10 ms follow-
ing each stimulus pulse were excluded from our analysis
(figure 1(e) inset). This exclusion period was based both on
previous reports and on our observation that a short-latency
negative deflection/peak was eliminated in the STA for less
than 20% of cells [20, 24].

Bursting responses sometimes broaden STA deflections

Because network-driven responses of some RGCs tend to
occur in bursts, single suprathreshold electrical pulses could
evoke multiple spikes of variable latency. This in turn, would
smear out the representation of such pulses in the STA across
multiple time points thereby implying integration where none
exists (figure 2) [25]. To test this, we used interspike intervals
(ISIs; figures 2(b), (d) and (f)) to identify response bursts
[26, 27] and created STAs using only the timing of the first
spike in each burst (figures 2(c), (e) and (g)). The STAs of
most cells changed only modestly due to this first spike-
triggered average (fSTA) method, and still demonstrated the
broad negative deflections expected for multi-pulse integra-
tion. Examples of the two extremes of this continuum are
shown in figures 2(c) and (g). The fSTAs of a few cells
(5/26) had negative deflections with latencies shorter than the
interpulse interval of 40 ms—indicating that the STA was
dominated by responses to single pulses (figure 2(g)).
For the cells with significant negative fSTA deflections
(26/28), we found that deflection latency mean±SD was
171.5±118.9 ms and temporal integration width was
139.2±70.5 ms. These electrical STA values were compar-
able to typical mouse RGC visual STA latencies and inte-
gration widths, suggesting that the retinal circuit is activated
in a similar way by both visual and electrical stimulation [18].
Figure 2(h) shows how width and latency vary across the
population. Figures 2(i) and (j) shows how these parameters
change when correcting for burst responses with the fSTA
method.

Determining how the mean of the voltage distribution affects
the STA

In order to stimulate and record from multiple RGCs simul-
taneously—each of whom might have a different stimulation
threshold—we could not optimize the mean voltage level of
stimulation for each cell. Instead, we sought to find a mean
that would be sufficiently below threshold for a majority of
cells. In preliminary experiments, we observed that a mean of
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−800 mV maximized the number of cells which responded
with an integrative fSTA while simultaneously minimizing
the number of cells which yielded fSTAs with sharp peaks
driven by single suprathreshold voltage pulses (as discussed
below).

Accordingly, we found that the statistics of the voltage
pulse distribution (figure 1(b)) influenced the degree to which
cells responded to single suprathreshold pulses versus the
integration of subthreshold pulse sequences (figure 3). As the
mean amplitude increased, more individual pulses passed the
cell’s response threshold (−1500 mV according to our defi-
nition, see methods), thereby contributing to a short-latency
peak in the STA (figure 3(a), bottom). It should be noted that
the actual threshold for this cell is most likely somewhere
between −1000 mV and −1500 mV. The voltage response
curve for the cell shown in figure 3(b) demonstrates that many
of the voltages presented to generate the lower STA of
figure 3(a) strongly activate this cell. In contrast to the
Gaussian noise stimuli used to generate STAs, the stimuli
used to measure the voltage response curve of figure 3(b)
were presented one at a time separated by 5 s. For a broader
context, the mean population voltage response curve from 59
cells (from 12 retinal halves) recorded in another study from
our group is overlaid in black. In this other study currently
being prepared for publication [28], the same 1 ms pulses and
5 s intervals were used. The mean±SD threshold calculated
from this population data was found to be −1312±530 mV
—supporting our assertion that most pulses in the −800 mV
noise stimulus were indeed subthreshold for the majority of
cells. Examples of fSTAs with sharp, single-pulse-activated
peaks which were produced from a Gaussian of mean
−1000 mV (35% contrast, 12 trials) during our preliminary
investigations are also shown, demonstrating responses from
cells for whom the network was activated too strongly to elicit
multi-pulse integration (figures 3(c) and (d)).

Discussion

Electrical STAs from the retina have been shown in previous
work using continuous binary noise stimulation [16]. In
contrast, the stimuli delivered by implants presently approved
for human patients are pulsatile in nature and not continuous–
in order to prevent damage to electrodes and retinal tissue. In
a related work, the average firing rate following electrical
pulses using a ‘sparse noise’ stimulus were reported [17].
Although useful for mapping the spatial extent of electrical
sensitivity, such results do not address how multiple pulses
may be integrated on the scale of tens to hundreds of ms.
Therefore, the electrical filters we have presented in this
paper, are the first proof of principle that electrical STAs can
be recovered from the retina under conditions immediately
relevant to prosthetics. Because the STA provides an
approximation of the cell’s preferred stimulus, it might prove
useful to move away from the suprathreshold pulsatile stimuli
presently used in prostheses, towards exclusively subthres-
hold stimulus patterns, like those we have shown in this
paper.

Figure 2. Bursting responses sometimes broaden STA deflections.
(a) Sample bursting spike train (top), first spike occurrences (middle)
and stimulus pulse times (bottom). (b), (d), (f) Distribution of
interspike intervals (ISIs) before (pre) and after (post) each spike for
three different RGCs. Quadrants divide spikes into four labeled
classes using a criteria of <100 ms for inclusion of spikes into a
‘burst’. (c), (e), (g) Burst correction of STAs. For ‘first’ spike STA
(fSTA) calculation, each ‘first’ spike time is weighted according to
the total number of spikes in the burst. ‘All’ indicates the standard
STA method presented in figure 1. Shaded regions mark negative
deflections for each STA. (h) Scatterplot of negative deflection
parameters for all RGCs for ‘all’ spike STAs. (i) Negative deflection
latency for fSTAs versus ‘all’ spike STAs. (j) Same for widths. The
three example cells from (b) to (g) are marked in (h)–(j).
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It has previously been shown that different RGCs (e.g.
ON versus OFF) have different visual STAs [18]. If electrical
STAs also vary for different RGCs, it would in theory be
possible to preferentially stimulate different retinal pathways
by employing different pulse patterns, thus providing more
naturalistic visual percepts. This would have substantial
implications for retinal prosthetics. Preliminary studies have
shown correlations between certain visual RGC subtypes and
their responses to pulsatile electrical stimulation [9]. Using
Gaussian white noise electrical stimulation would comple-
ment such correlation analyses. In accordance with the
hypothesis that preferred electrical stimuli vary with RGC
type, we have observed in a few cells, an apparent correlation
between visual and electrical STAs. Specifically, whether the
short-latency peak of an STA deviates above or below the
mean voltage appears to correlate with the ON/OFF visual

response category of that cell. However, further experiments
and analysis are needed to fully develop these observations.

The reality of obtaining these STAs may seem surprising,
given that RGC spiking has been shown to decrease markedly
when stimulated at such frequencies—a potential retinal
correlate of phosphene fading [8, 10, 11]. Nevertheless, it has
been demonstrated that responses to such high frequencies
can persist if the stimulus amplitude is varied [29]. In this
case, the response reflects a change in stimulus rather than the
presence of the stimulus. Given that threshold measurements
are typically made with single isolated pulses, the electrical
STAs reported here measured in the context of ongoing sti-
mulation may prove to be a better measure of the best sti-
mulus waveform. Simultaneously, these STAs could provide
a solution to the problem of phosphene fading observed
during traditional suprathreshold stimulation to the degree

Figure 3. Mean stimulus voltage alters STA. (a) STA calculated at three mean voltages for a single cell. Labeled peak reflects single-pulse
responses. (b) Voltage tuning curve of same cell for 1 ms pulses presented at 5 s intervals (black, 20 repetitions each, response integration
window: 10–100 ms). Population tuning curve for 59 RGCs from another study using the same methods shown for reference (gray). For each
cell, firing rate was baseline (spontaneous) subtracted and normalized to its maximal response. (c), (d) Sample cell STAs from a pilot study
which displayed primarily single-pulse responses (Gaussian noise stimulus: mean=−1000 mV, 35% contrast, 25 Hz pulse rate).
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that fading may be limited to suprathreshold pulses. The
presentation of subthreshold pulse patterns to patients will be
necessary to test this theory.

Limitations of the present study and future work

It has previously been shown that a cell can have multiple
linear filters contributing to the spike generation mechanism
[30]. The STA would in such a case be an amalgamation of
these multiple underlying filters and therefore not the ideal
estimate of the cell’s preferred stimulus. Moreover, because
an STA is a linear approximation of the cell’s filter, non-
linearities underlying a cell’s response are not captured by the
STA. Nevertheless, the ability to get STAs from a tissue is an
important and arguably essential precursor to exploring the
extent of nonlinearities and possibility of multiple filters.

In order to achieve significant STAs with minimal noise,
the stimuli presented here lasted well over an hour. Over that
time, nonstationarity in firing rate was noted. One well-known
source of nonstationarity is the various timescales of adap-
tation that have been frequently observed in retinal responses.
Accordingly, we are further investigating adaptation and other
candidate nonstationarities to better model the electrical
responses of RGCs.

As a pilot study, the main goal of these experiments was
to ascertain whether RGC STAs could be obtained from
subthreshold pulsatile electrical stimulation of the retinal
network. We have demonstrated that the fundamental method
is sound and that there is evidence to support both cell type-
specific stimulation and a role for such stimuli in reducing
perceptual fading. It is, however, necessary to expand on this
work by testing each of these hypotheses experimentally as
well as examining how these STAs change over the course of
degeneration. If these hypotheses prove to be correct, these
novel stimulation paradigms could, with relative ease, be
translated to human trials. This could in turn significantly
improve visual percepts restored by implants.
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Abstract 

Our goal was to investigate, if different visual cell types had characteristic electrical STAs. To 

this end, we performed experiments in which we provided full-field visual flash, visual and 

electrical white noise to the retina. The visual stimuli were used for cell classification, and the 

electrical noise was used to calculate electrical STAs. It was found that ON and OFF cells 

(classified based on the flash stimuli) had very distinct electrical STAs. While electrical STAs of 

ON cells correlated with a decrease in magnitude of the voltage stimulus immediately prior to 

spiking, electrical STAs of OFF cells correlated with an increase in the magnitude of voltage 

stimulus prior to spiking. Moreover, these electrical STAs were found to deviate from a 

classical sine wave, with regards to the amplitude and widths of their two phases. This result 

could explain why selective activation was not seen when sine wave shaped electrical stimuli 

were presented to the retina in isolation. Finally, we quantify the functional effects of 

photoreceptor loss and retinal rewiring by comparing the latency and widths of late-stage 

rd10 electrical STAs to those of the wild type electrical STAs. We show that the latency and 

width of rd10 STAs are significantly shorter. In general, while our central finding that ON and 

OFF cells have different electrical STAs is not definitive proof for preferential stimulation, it 

provides strong evidence that the use of systems engineering tools such as white noise 

analysis could hold the answer to some of the field’s most challenging questions. 
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Abstract
Objective. Over the past two decades retinal prostheses have made major strides in restoring 
functional vision to patients blinded by diseases such as retinitis pigmentosa. Presently, 
implants use single pulses to activate the retina. Though this stimulation paradigm has proved 
beneficial to patients, an unresolved problem is the inability to selectively stimulate the on and 
off visual pathways. To this end our goal was to test, using white noise, voltage-controlled, 
cathodic, monophasic pulse stimulation, whether different retinal ganglion cell (RGC) types 
in the wild type retina have different electrical input filters. This is an important precursor to 
addressing pathway-selective stimulation. Approach. Using full-field visual flash and electrical 
and visual Gaussian noise stimulation, combined with the technique of spike-triggered 
averaging (STA), we calculate the electrical and visual input filters for different types of 
RGCs (classified as on, off or on–off based on their response to the flash stimuli). Main 
results. Examining the STAs, we found that the spiking activity of on cells during electrical 
stimulation correlates with a decrease in the voltage magnitude preceding a spike, while the 
spiking activity of off cells correlates with an increase in the voltage preceding a spike. No 
electrical preference was found for on–off cells. Comparing STAs of wild type and rd10 mice 
revealed narrower electrical STA deflections with shorter latencies in rd10. Significance. This 
study is the first comparison of visual cell types and their corresponding temporal electrical 
input filters in the retina. The altered input filters in degenerated rd10 retinas are consistent 
with photoreceptor stimulation underlying visual type-specific electrical STA shapes in wild 
type retina. It is therefore conceivable that existing implants could target partially degenerated 
photoreceptors that have only lost their outer segments, but not somas, to selectively activate 
the on and off visual pathways.

Keywords: prosthesis, white noise analysis, preferential stimulation, linear systems analysis, 
retinal physiology
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Introduction

Retinitis pigmentosa (RP) and age-related macular degenera-
tion are some of the leading causes of incurable blindness the 
world over. There has been much effort in recent years to find 
treatments for these diseases, with research being conducted 
in fields as diverse as stem cells, gene therapy, optogenetics 
and prosthetics [1–3]. Many of these approaches have shown 
great promise as viable treatment options. Retinal prostheses 
in particular have enjoyed the most success in the restoration 
of functional vision to RP patients. In fact, three prosthetic 
companies namely Second Sight, Retina Implant and Pixium 
Vision have received regulatory approval for their devices 
in 2011 (Argus-II), 2013 (Alpha-IMS), and 2016 (IRIS 2), 
respectively [2, 3].

The two main types of retinal prosthesis, categorized by 
site of implantation, are the subretinal (employed by Retina 
Implant) and epiretinal (employed by Second Sight and Pixium 
Vision). Typically, subretinal implants aim to engage the 
residual retinal network through bipolar cell stimulation while 
epiretinal implants target the retinal ganglion cells (RGCs) 
directly without activation of the network. This ability to pref-
erentially stimulate the network versus RGCs directly is pos-
sible due to the difference in the ion channel types present in 
bipolar cells versus RGCs. RGCs prefer fast changing stimuli 
due to their high concentration of voltage-gated sodium chan-
nels which mediate action potentials, whereas bipolar cells 
and photoreceptors prefer slower changing stimuli due to their 
high concentration of calcium channels which regulate neuro-
transmitter release [4]. Although stimulation kinetics support 
such preferential stimulation from both epiretinal and subret-
inal locations, stimulation thresholds tend to be lowest for the 
most proximal neurons (RGCs for epiretinal electrodes, and 
bipolar cells for subretinal electrodes) [5]. Despite their dif-
ferent strategies, sub- and epiretinal implants both primarily 
use rectangular pulses of a fixed amplitude for activation of 
the retina, probably due to their effectiveness in other medical 
devices such as cochlear implants and pacemakers etc [6, 7].

In recent years there has been a growing body of work 
exploring alternate waveforms like sine waves [8] and pulse 
amplitude modulation patterns such as diamond, triangular, 
sawtooth and random [9] in order to stimulate the retina. The 
primary motivation for this work is the belief that the present 
pulsatile stimulation paradigm could be sub-optimal (e.g. due 
to its inability to selectively stimulate selected visual path-
ways) and that alternate stimulation waveforms could help 
resolve this problem. For example, Twyford and Fried showed 
in wild type rabbit retina that on and off sustained and BT 
cells respond to the different phases of an ongoing sine wave 
[8]. Additionally, we recently showed that RGCs can be acti-
vated by a stream of subthreshold pulses [10]. In particular 
this ability to activate the retina through subthreshold elec-
trical stimulation opens up a whole new way of probing the 
question, ‘What is an RGC’s preferred electrical stimulus pat-
tern?’ through the use of white noise stimulation, both elec-
trical and visual [11].

Prior to Twyford and Fried, Freeman et al, also showed that 
on and off cells respond to different phases of a low frequency 

sine wave [4, 8]. Likewise, Twyford et  al also showed that 
strategic amplitude modulation could differentially acti-
vate RGCs through direct stimulation [12]. However, to our 
knowledge there has been no systematic examination of how 
different patterns of indirect (network) activation of RGCs 
correspond to specific RGC types. In this study we present 
the first systematic comparison of the retinal network’s elec-
trical and visual temporal input filters based on white noise 
stimulation. To best characterize the cell type, we quantified 
the full-field flash response with an on/off selectivity index 
[13]. Examination of both flash and Gaussian noise responses 
indicates a clear correspondence between RGC cell type and 
its electrical input filter.

Methods

The main aim of this study was to test whether electrical input 
filters (also called spike-triggered averages or STAs) differ 
between on and off RGCs. Each experiment (figure 1) began 
with a block of full-field flash stimulation followed by a block 
of full-field temporal visual Gaussian white noise, and then a 
~100 s block of spontaneous activity before starting electrical 
white noise stimulation in 100 s stimulus blocks. Following 
electrical stimulation we recorded one more set of flash, visual 
Gaussian white noise and spontaneous activity blocks.

To test the hypothesis that on and off cells differ in their 
electrical STAs, we pooled data from three related studies. 
The main data set of 27 cells came from a previous study 
using 54 non-repeating (unique) electrical noise stimulus 
blocks (90 min total), 80 s flash stimulus blocks and 50 s visual 
white noise blocks [10]. Another data set, consisted of 13 cells 
which had been shown 18 blocks of repeating (frozen) and 
18 blocks of non-repeating electrical noise (60 min total) in 
an interleaved fashion. Flash stimulus blocks were 160 s long 
before electrical stimulation and 80 s long after electrical stim-
ulation. This data set was used to validate the pooling together 
of E-STAs calculated under repeating versus non-repeating 
stimulus paradigms and was the only wild type data set where 
we did not present visual noise stimulation. The final set of 6 
cells received 36 blocks of repeating noise (60 min total), 80 s 
flash stimulus blocks and 50 s visual white noise blocks. We 
supplemented these wild type data with 31 RGCs from rd10 
retina, which, barring the visual noise stimuli, had an identical 
experimental design to the main set of 27 cells.

Animals

Except where noted, the methods used in this study matched 
those we have reported in our previous study [10]. Here we 
examine the data from 46 RGCs collected from 12 retinal 
pieces using 11 wild type C57BL/6J mice aged 2  ×  P32, 
2  ×  P39, 1  ×  P46, 1  ×  P51, 1  ×  P56, 1  ×  P58, 2  ×  P59, 
1  ×  P64 and 31 RGCs from three retinal pieces of two 
rd10 mice aged P84 (The Jackson Laboratory, Bar Harbor, 
ME, USA). Based on the frequency of occurrence of the 
main RGC types (on, off and on–off), this should pro-
vide sufficient sampling of these three categories [14]. All 
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experimental procedures have approval of the state authori-
ties (Regierungspraesidium, Tuebingen) and were conducted 
under the supervision of the Tuebingen University facility for 
animal welfare (Einrichtung fuer Tierschutz, Tieraerztlichen 
Dienst und Labortierkunde) and the NIH Guide for the Care 
and Use of Laboratory Animals.

Data collection

All mice were anesthetized with CO2 inhalation and killed 
by cervical dislocation. The eyes were then removed and dis-
sected quickly to ensure that retinas were perfused with car-
bogenated ACSF (artificial cerebrospinal fluid) maintained at  
33 °C (using a heating plate and heated perfusion cannula) and 
7.4 pH within 10 min of death. All data was collected from iso-
lated retina mounted on a standard 60-channel microelectrode 
array (MEA, 60MEA200/30iR-ITO, Multi Channel Systems, 
Reutlingen, Germany), constantly perfused with ACSF. Due 
to the difficulties of stimulating and recording from opposite 
sides of the retina, and the ability to stimulate the network 
both epi- and subretinally [5, 15], the retina was placed gan-
glion cell side down on the MEA. Thus, both stimulation and 
recording were epiretinal. A single electrode on the MEA was 
used to deliver electrical stimulation. Only the 7–8 electrodes 
immediately surrounding the stimulating electrode were anal-
ysed (interelectrode distance  =  200 or 283 µm). Voltage traces 
were sampled with MultiChannel Systems hardware (MCS, 
Reutlingen, Germany) at a rate of 50 kHz/channel, using a 
filter bandwidth of 1 Hz–3 kHz and a gain of 1100.

Data processing and inclusion criteria

Offline Sorter (Plexon Inc., TX, USA) was used to process 
the raw data. Raw data were high-pass filtered before putative 
action potential events (spikes) were extracted. Automated 
and manual spike sorting were applied to minimize Type 
I and Type II errors in attribution of waveforms to different 
sources [10]. Spike trains included in this study exhibited 
(1) the presence of a clear lock-out period in the ISI histo-
gram and autocorrelogram (2) the absence of a peak in the 
cross-correlogram between different cells which would indi-
cate that a single cell had been wrongly split into 2 or more 
units (3) good separation in principal component space of a 
biphasic waveform whose shape is typical of extracellularly 
recorded action potentials and (4) stability of the waveform 
shape and firing rate over the entire experiment. These were 
the cell inclusion criteria. Time stamps of these sorted spikes 
were collected with NeuroExplorer (Plexon Inc., TX, USA) 
and exported to MATLAB. All analyses and statistical tests 
were performed in MATLAB (The Mathworks, Natick, MA).

Visual stimulation

Flash stimulus blocks consisted of cycling 2 s on (40 klx) and 
2 s off (20 lx) full-field luminance (mean illuminance  =  20 
klx, 99.9% Michelson contrast). For the 50 s visual white 
noise blocks, the brightness of each stimulus frame was 

drawn randomly from a Gaussian distribution with 35% con-
trast (i.e. standard deviation, SD, of the Gaussian distribution 
was 35% of the mean, which was also 20 klx) at the rate of 
10 Hz. Visual stimuli were presented with a linearized, com-
mercially available DLP-based projector (K10; Acer Inc., San 
Jose, California, USA). Other than during visual stimulation, 
a shutter was placed in front of the projector and the exper-
imental setup was surrounded by dark curtains with room 
lights turned off to minimize stray light.

Electrical stimulation

Our aim was to test our hypothesis, that there is a correspon-
dence between electrical spike-triggered averages (STAs) 
and visual response type. Therefore, we presented 1 ms long 
voltage pulses whose amplitudes were drawn randomly at a 
rate of 25 Hz from Gaussian distributions with mean  −800 mV  
and SD 35%. The choice of 1 ms long voltage pulses is well 
established amongst subretinal implants [16, 17] and are 
comparable to biphasic current pulses [18–20]. The stimulus 
pulses were programmed in MATLAB using custom scripts 
and imported into MC-Stim (MCS, Reutlingen, Germany) 
for presentation. A stimulus generator (STG 2008, MCS, 
Reutlingen, Germany) was used to generate pulses.

Analysis

Electrical and visual STAs (E-STAs and V-STAs, respectively) 
were calculated by averaging the  ±1 s of stimulus surrounding 
each spike. Significance testing of STA deflections has been 
described previously [10]. Briefly, the maximal upward- and 
downward-going deflections from the mean, preceding time 
zero, were first detected. These deflections were judged to be 
significant if they were statistically distinguishable from the 
1 s of noise following time zero. Once an STA passed this ini-
tial criterion, it was cubic spline interpolated at intervals of 
1 ms. The deflection with the shorter latency was assigned to 
be D1. The width of D1 was defined as the full span of time 
around the D1 maximum over which the STA did not cross the 
stimulus mean. The latency of D1 was defined as the time of 
the maximal point of the deflection. Once the STA crossed the 
stimulus mean to the left of D1, the maximal point of the STA 
from that crossing to the next crossing was tested for signifi-
cance. If it was significant, this longer-latency deflection was 
assigned to be D2, otherwise, the cell was not assigned a D2. 
The procedure for width and latency calculation of D2 were 
identical to D1. We were only interested in examining integra-
tive electrical responses, so the contribution of single-pulse 
activations to the E-STA was removed by setting the first time 
point of each E-STA to the stimulus mean (see supplement 
1 (stacks.iop.org/JNE/14/046017/mmedia)). Example voltage 
response curves demonstrating the voltage-dependency of 
single-pulse activation can be seen in supplement 2.

For comparisons of visual and electrical responses (figures 
4 and 6), the short latency deflection of the STA (D1) was used. 
Deflections demonstrating a decrease in voltage magnitude 
or brightness relative to the stimulus mean were negatively 
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signed while the converse were positively signed. When com-
paring the first and second deflections of the E-STA (figure 5), 
the term ‘upward’ was used for negatively signed deflections 
while ‘downward’ was used for positive deflections to reflect 
their orientation as displayed. Electrical STAs were burst cor-
rected as described in [10], and include singleton spikes that 
were not part of a burst. The inclusion of singleton spikes 
did not significantly alter the E-STA. Spiking events with an 

onset latency within 10 ms following a voltage stimulus pulse 
were disregarded to exclude direct RGC stimulation from our 
analysis.

The responses to flash stimulation were quantified according 
to the methods of Carcieri et al [13] (figure 1(b)). Briefly, a 
mean peristimulus time histogram (PSTH) was generated 
using 10 ms bins. The PSTH was smoothed with a Gaussian 
filter (σ  =  50 ms). The maximal firing rate of each phase was 
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at 10 Hz) were presented at the start and end of each experiment to classify RGCs. The primary stimulus was at least one hour of electrical 
noise presented in 100 s blocks. (b) Cell classification. Spike time histograms of the flash responses were quantified according to Carcieri 
et al [13] (see Methods).
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identified to determine its latency and amplitude. An on/off 
index was calculated from the amplitudes of on (A1) and off 
(A2) responses according to the equation, (A1  −  A2)/(A1  +  A2), 
such that on cells have a large positive index bounded by 1, 
off cells have a large negative index bounded by  −1, and 
on–off cells have indices around 0. In scatterplots, cell colour 
was based on the on/off index with off cells  <  −0.5 coloured 
blue, on cells  >  0.5 coloured red and on–off cells between 
these two cut-off values coloured black.

Results

We recorded spike trains from 57 wild type mouse RGCs. 
Because electrical white noise was presented during the 
bulk of the recording time, cells which responded to visual 
stimulation, but not to electrical, were very difficult to iso-
late. Therefore, the majority of effectively isolated spike trains 

were from RGCs that responded during electrical stimulation 
(n  =  46). Of these, 33 cells also had visual STAs. We also 
recorded from 36 rd10 mouse RGCs, 31 of which had signifi-
cant E-STAs.

Following up on our previous work [10], we first addressed 
the concern that calculating electrical STAs (E-STAs) from 
repeated presentation of the same noise stimulus could influ-
ence the STA shape due to overfitting. This comparison was 
done based on 13 RGCs which were shown 18 blocks of 
100 s repeating (frozen) and 18 blocks of 100 s non-repeating 
electrical Gaussian white noise interleaved (−800 mV,  
25 Hz, 35%). The distribution of the D1 latency and widths 
of the E-STAs obtained under these two different conditions 
were found to be comparable with no statistically significant 
difference (figure 2; p  >  0.05, paired two-tailed t-test). This 
therefore justified the pooling of the above mentioned sets of 
27 and 6 cells described in Methods. Except for figure 2, all 
subsequent figures in this paper, containing analysis of these 
13 cells was done with all 36 trials of electrical noise.

Finally, in order to understand how the electrical input fil-
ters change with photoreceptor loss and retinal rewiring (as 
seen in patients with RP) we also collected data from 31 RGCs 
obtained from late stage degenerate rd10 mice. The rd10 cells 
were subject to the identical 54 non-repeating electrical noise 
stimuli as the core set of 27 cells mentioned above.

Example cells (figure 3) demonstrate our main result that 
on and off RGCs had electrical STAs (E-STAs) that were 
well-matched to their visual response type; and that on–off 
cells often did not follow this pattern. Specifically, on cells 
had an upward deflection in both their visual STA (V-STA) 
and E-STA shortly preceding time zero; whereas, off cells 
had a downward short-latency deflection (D1) in each STA.

Visual response classification

The visual stimuli (a flash followed by visual Gaussian noise) 
were only presented at the beginning and end to ensure uninter-
rupted electrical stimulation during the main experiment. For 
our 33 cells that were shown both flash and visual noise, flash 
trials #1–20 were recorded at the beginning of the experi-
ment, whereas trials #21–40 were recorded at the end after at 
least an hour of electrical stimulation (figure 3, bottom row). 
All flash response repetitions were used to categorize cells. 
As indicated by their on/off indices (see Methods), the three 
example cells were classified as on, off and on–off, respec-
tively (figure 3, bottom row). Visual STAs were also calculated 
from all presentations of the visual noise stimulus. The sign 
of the short latency V-STA deflection always matched flash 
response based classification of on and off cells. For the set 
of 13 cells which were not shown visual noise, we presented 
40 flash trials prior to electrical stimulation and 20 flash trials 
following electrical stimulation. All 60 trials were used to cal-
culate the on/off indices.

E-STAs correspond to cell type

Comparison of the flash stimulus-derived on/off selectivity 
index with the direction of the short-latency E-STA deflection 
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Figure 2. Comparison of responses to repeating and non-repeating 
electrical noise stimuli. (a) Latency of the short-latency E-STA 
deflections calculated using 18 trials of non-repeating white noise 
versus 18 trials of repeated white noise, interleaved. (b) Width of 
the short-latency E-STA deflections calculated using 18 trials of 
non-repeating white noise versus 18 trials of repeated white noise.
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(negative for upward, positive for downward) demonstrates 
the robustness of our main result across the population of 46 
wild type RGCs (figure 4). While all 20 on cells had nega-
tive deflections and 10/11 off cells had positive deflections, 
on–off cells showed both signs (11 negative, 4 positive) 
with no apparent correlation between the on/off index and 
E-STA deflection sign. One reason for this could be our sim-
plistic full-field visual stimuli. Perhaps with more sophisti-
cated stimulation to better discriminate RGC types (e.g. see 
[14]) or analysis tools such as spike-triggered covariance 
[21], we might find correlations between electrical and visual 
responses for on–off cells. Further examination of the deflec-
tion latency (figure 4(a)) and width (figure 4(b)) also reveals 
no clear correlation between latency or width magnitude and 
the on/off index.

E-STA variability

We next examined the relationship between upward and down-
ward deflections in the E-STA (figure 5). The majority of cells 
(36/46) had biphasic E-STAs (both upward and downward 

deflections were significant). The remaining ten cells had 
monophasic E-STAs (only significant upward or downward 
deflection). As already noted, upward deflections had shorter 
latencies than downward deflections (if present) for all on cells, 
whereas downward deflections had shorter latency than upward 
deflections (if present) for most off cells (figure 5(a)). Similar 
to latencies, we found that upward deflection widths were 
greater for most off cells while downward deflection widths 
were greater for most on cells (figure 5(b)). Note that unsigned 
deflection widths and latencies are used for these figures.

To test whether whole-wave sinusoids might reasonably 
approximate the biphasic E-STA shapes, we examined the 
ratios of latencies, widths and amplitudes for D1 and D2. The 
geometric mean ratio of latencies (D1:D2) was 0.32, well 
matched to the 1:3 ratio that would be expected for a sinu-
soid. In contrast, the geometric mean ratio of widths was 0.48, 
which is well below the 1:1 ratio that would be expected for 
sinusoids, indicating that D2 widths tend to be about twice as 
broad as D1 widths. Likewise, the geometric mean ratio of 
amplitudes, which should be close to 1:1 for sinusoids, was 
actually 1.52, reflecting that D2 was almost always weaker 
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than D1. Examined together, these results indicate that, while 
a sinusoidal electrical waveform may be a good first approx-
imation to these STAs, significantly more effective electrical 
stimulation may be achievable with waveforms that better 
match the E-STA shape.

Comparison of E-STAs and V-STAs

Although V-STA responses are good at predicting flash 
responses [22] it is not a certainty that the two will always 
match. This is because the complex interaction of early and 
late response phases of receptive field centre and surround 
inputs can have a profound effect on the STA. Such an effect 
is most notable in on–off cells for which the sign of the 
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short latency V-STA deflection could be either an upward 
on response (+sign) or a downward off response (−sign) 
depending on the relative timing and weighting of on and off 
inputs. Therefore, we also examined the relationship of D1 
latencies and widths for E-STAs and V-STAs (figure 6) for the 
33/46 cells which had been presented visual noise in addition 
to flash and electrical noise. We found the same correlations 
for on and off cell types as shown in figure 4. Specifically, 
negative deflections of the E-STA were associated with posi-
tive V-STA deflections—as would be expected for on cells. 
Likewise, positive E-STA deflections (associated with off 
cells) corresponded with negative V-STA deflections; and 
the on–off cells could be found in all four quadrants of the 

scatter plots (figures 6(a) and (c)). Comparing on cells to 
off cells, both widths and latencies of E-STAs were found 
to be well matched ( p  >  0.05, two-tailed Student’s t-test), 
indicating that an on E-STA can be considered equivalent to 
an off E-STA that has been inverted around the mean (fig-
ures 6(b) and (d)). Although not included in this figure, the 
additional set of 13 cells without V-STAs does not change 
this last result. Comparing E-STAs to V-STAs, both latencies 
and widths were smaller for E-STAs in ON cells, while only 
latencies were smaller for E-STAs in OFF cells ( p  <  0.05). 
These faster E-STAs suggest that, though the visually and 
electrically activated mechanisms may be similar, they are 
unlikely to be identical.
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Comparison of wild type and rd10 E-STAs

Since the majority of present implants are used in patients 
who have been blind for many years, we wanted to determine 
whether E-STAs in the wild type retina differ from those in 
late stage degenerate retina. Figure 7 shows 12 example rd10 
E-STAs representing the diversity of shapes observed across 
31 rd10 RGCs.

Comparing the first significant deflections immediately 
preceding zero of rd10 E-STAs to those of the 46 wild type 
E-STAs, we found that both latencies and widths in rd10 are 
significantly shorter in comparison to the wild type retina 
(figure 8; two-tailed t-test, p  <  0.05). These differences 
demonstrate that the loss of photoreceptors and subsequent 
rewiring in diseased retina significantly alters the E-STA. 
Such changes are consistent with photoreceptor stimulation 
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underlying the slower, broader E-STA shapes found in the 
healthy retina.

Discussion

The main aim of this study was to verify if the major visual 
pathways (on, off and on–off) in the wild type mouse have 
different electrical input filters. Though there have been studies 
that show that different RGC types vary in their responses to 
electrical stimulation [12, 23, 24] and that on and off cells 
respond to different phases of an ongoing sine wave [8], there 
has to date been no comparison of the electrical input filters of 
these different RGC types. Our study is, to our knowledge, the 
first comparison of an RGC’s temporal electrical and visual 
input filters based on cell type. Our demonstration that there 
is a correspondence between the visual and network-mediated 
electrical input filters of different RGC types adds strong sup-
port to the growing body of literature on selective stimulation. 
Moreover, we have demonstrated the effectiveness of using 
white noise analysis in the field of retinal prosthetics as a tool 
to address important unanswered questions.

In this study we have shown that the E-STAs of on cells 
have a short latency upward deflection (corresponding to 
decreasing voltage magnitude) while the E-STAs of off cells 
have a short latency downward deflection (corresponding to 

increasing magnitude). This implies, that in theory selective 
stimulation of these RGC types should be possible. Previous 
studies foreshadowed this result by demonstrating that on and 
off cells respond during opposite phases of an ongoing sine 
wave electrical stimulus [4, 8]. Extrapolating from these pre-
sent and previous results, we hypothesize that a pulse train 
modulated by the diminishing phase of an electrical sinusoid 
in the range of 1–10 Hz presented epiretinally, would prefer-
entially activate on cells while the rising phase would prefer-
entially activate off cells.

Because degenerate rd10 E-STAs are faster and narrower 
than wild type E-STAs, it appears that photoreceptor stimula-
tion makes a significant contribution to the E-STA in the wild 
type retina. It is quite likely, therefore, that the mirror-inverted 
E-STAs found for on versus off cells reflect the sign inverting 
and sign preserving synapses of photoreceptors onto the on 
and off bipolar cell pathways, respectively. If photoreceptor 
stimulation underlies these visual type-specific E-STAs, it 
becomes unclear how they could be used in patients blinded 
by photoreceptor degeneration. Fortunately, photoreceptors 
persist in the degenerating retina long after their outer seg-
ments have been lost [25]. Therefore, presuming that such 
residual photoreceptors maintain their synaptic connections, 
it may still be possible to selectively stimulate on and off 
pathways in the early stages of degeneration.

Regarding the shape of our E-STAs, though a half- or full-
period sinusoid might be the simplest approximation of our 
E-STAs, it might not necessarily be the best. Looking at the 
distribution of biphasic E-STA latencies, widths, and ampl-
itudes, we see that there is considerable variability between 
D1 and D2. Specifically, while the mean latency ratio D1:D2 
matches a sinusoid approximation of the STAs, neither ampl-
itude or width ratios matched this approximation. Whereas 
amplitudes tended to be greater for D1, widths tended to be 
greater for D2. These observations suggest that, though sinu-
soids should be able to preferentially stimulate different path-
ways in the wild type retina, they might be too simplistic an 
approximation. This concern is reinforced by an absence of 
cell type-specific stimulation even when such stimuli were 
presented [26]. Possibly sinusoids which have an asymmetry 
in the size and widths of their upward and downward deflec-
tions should be investigated.

Limitations and future work

Though the results of this study are novel and interesting, it 
must be remembered that the data central to this paper were 
collected from the wild type retina so that cells could be visu-
ally classified. Consequently the RGC type-specific E-STAs 
presented here appear to have a strong photoreceptor contrib-
ution. However for cell-type specific stimulation based on 
E-STAs to be most useful in retinal prosthetics, it must work 
in the degenerated retina in which most photoreceptors are 
gone. Therefore, in order to verify if we could obtain E-STAs 
in late-stage, degenerated retinas where the majority of pho-
toreceptors are lost and the network has undergone significant 
rewiring [27], we repeated these white noise experiments in 
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P84 rd10 mice. We found that it is possible to obtain diverse 
E-STA filters even in the rd10 retina. Such short, multipulse 
STAs were also shown in degenerated RCS rats in a recent 
conference presentation [28]. Unfortunately because it is not 
possible to correlate these E-STAs to visual cell type in late 
stages of degeneration, it will be necessary to develop non-
visual techniques for cell type classification in order to deter-
mine if specific degenerate E-STAs correspond to specific 
RGC types.

In the present work, cell-type specific filters appear to be 
mediated by either inhibition or excitation of photorecep-
tors which consequently activates on and off bipolar cells, 
respectively—a multiplexing of the photoreceptor signal. 
Such cell-type specific filters may still be found in the 
degenerated retina due to the relatively intact synaptic con-
nections of the inner plexiform layer (IPL). For example, 
in the wild type retina rod on bipolar cells, through A-II 
amacrine cells, multiplex their signal into on and off sig-
nals in cone bipolar cells [29]. Although the outer plexi-
form layer (OPL) circuitry is compromised, there is no 
current evidence that this IPL circuit is non-functional in 
the degenerated retina. As the most numerous bipolar cell 
type [29], with well-preserved inner retinal connections 
[25], rod bipolar cells may be a par ticularly attractive target 
for prosthetic stimulation. Though these are interesting 
possibilities to explore in future research, they are however 
beyond the scope of the present manuscript. Moreover, the 
significance of our main result does not rely on the pos-
sibility of achieving cell-type selective stimulation without 
photoreceptors. Rather the significance is the correspond-
ence between electrical input filter and cell type which has 
never before been published.

Conclusions

To conclude, we used the tools of temporal white noise stimu-
lation and linear systems analysis to show that on and off 
cells have distinct electrical input filters. This in turn reflects 
the successful application of STA analysis to the field of pros-
thetic vision, which has, till date, been largely absent. Our 
demonstration that the sign of the short latency deflection cor-
relates between visual and electrical STAs (given that the cell 
is either on or off), not only provides insight into selective 
stimulation of retinal pathways, but also, in the broader sense, 
represents a significant shift from the present method used in 
prosthetic research of examining parameters one at a time (e.g. 
frequency, duration, amplitude, etc) to a linear systems method 
in which the parameter space is more efficiently sampled [11]. 
It also demonstrates that electrical STAs are sensitive enough 
to reveal such variability. Although not definitive proof that 
such variable STAs are applicable to prosthetic stimulation, 
this result opens the door to such a possibility and necessitates 
that more research be conducted to fully explore the impli-
cations of this new method. Additionally these STAs suggest 
that half- or full-period sinusoids, which have been previously 
used for retinal stimulation, might be too simplistic, ignoring 

the diversity of electrical filters found across RGCs. Based 
on these initial results, we feel that the systems approach of 
using white noise stimulation could hold the key to under-
standing how to selectively stimulate the varied visual path-
ways remaining in the degenerated retina.
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Supplementary Materials  
 

S1. Removing the influence of single pulse activation to better understand integrative 

activation. 

As described in our previous manuscript (Sekhar et al. 2016), when stimulating and recording 

from multiple RGCs simultaneously, it is not possible to optimize the distribution of stimuli for 

each of our cells. We therefore chose the stimulus distributions presented in this manuscript to 

maximize the number of cells responding due to integration of subthreshold pulses. However, as 

thresholds can vary considerably across cells in an experiment, it is not guaranteed that all pulses 

will be below threshold for a given cell. This is why the STAs of some cells showed single pulse 

activation, in addition to integrative responses. Because our goal was only to study the integrative 

component of the STA, these deflections due to single pulse activation could potentially confound 

the classification of our electrical STAs. In order to avoid identifying single pulse activations as D1, 

as well as to remove the influence of these activations on the D1 width and latency, the first time 

point of every electrical STA was set to the mean of the stimulus prior to detection of D1 and D2. 

Thus, our objective custom algorithm ignored the first time point of the STA in assigning D1 and 

D2 as well as their parameters. This was even done in STAs where single pulse activation was 

difficult to clearly identify, in order to standardise the calculation of D1 latencies and widths across 

all cells. We provide below an example ON cell which has significant single pulse activation in 

addition to integrative responses. Using this cell we demonstrate why setting the first time point 

of each E-STA to the mean of the stimulus is essential for appropriate classification. 



 

 

 

 

  



S2. For each of the cells presented in this manuscript, we derived the voltage-response curve 
in order to better understand the contribution of single pulse activation to the STA. The 
voltage response curve is calculated in the following way 

i) The stimuli presented are first binned in 100 mV steps ranging from -2500 mV to 
500 mV. 

ii) To produce the average response rate, the total number of spikes elicited during 
the experiment (within 40 ms of stimulus pulse presentation), by stimulus pulses 
from each bin, was divided by the number of pulses in that bin. The plot of average 
spikes elicited per binned stimulus against the voltage of each bin was used to 
determine the voltage-response curve from our ongoing white noise stimulus. 

We plot the voltage-response curves and corresponding electrical STAs for 6 example cells 
below. Those cells with sharp increases in response at relatively low voltage magnitudes (~-
1000 to ~-1300mV) also have higher peak firing rates and noticeable single pulse activation 
(first time point of STA), in addition to the deflections arising from integrative responses 
(rows 1-3). It is due to these cells with large responses at relatively low voltage magnitudes 
that we set the first time point of all E-STAs to the mean of the stimulus.  In contrast, for 
those cells whose responses were low and did not vary considerably with voltage, there is no 
significant single pulse activation, but only the deflections arising from integrative responses 
(rows 4-6). 
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Abstract 

In previous works, it was shown that when we combine white noise voltage stimulation with 

reverse correlation, electrical STAs can be calculated for retinal ganglion cells. Moreover, 

these electrical STAs were found to correlate with visual cell type. Though in theory STA 

shaped waveforms could be used for selective activation of different retinal pathways, it is not 

guaranteed to succeed. This is because the STA is a linear approximation of how the cell 

interacts with the input stimulus. Though this assumption is very useful, it is ultimately false. 

Therefore, it is important to quantify to what degree a linear approximation of a RGCs input 

filter can capture stimulus-dependent spiking variability, and to what extent is spiking 

variability stimulus independent. In doing so, we obtain an estimate of the nonlinearity and 

non-stationarity in RGC responses that a simple STA based model overlooks. To this end, we 

first stimulate the retina with multiple interleaved trials of unique and frozen white noise. Two 

separate GLM models are then used to fit the RGC spiking responses obtained during the 

unique and frozen trials. By comparing the performance of these two models for each cell on 

a held-out trial, an estimate of the linearity, nonlinearity and intrinsic variability in RGC spiking 

is obtained. Our initial results suggest that there is a large degree of nonlinearities in RGC 

responses to electrical stimulation that a simple LNP model, cannot capture. This, in turn, 

implies that more sophisticated nonlinear models would have to be explored for capturing 

RGC responses to electrical stimulation. These results, also have the potential to shed light on 

cell types that can be easily targeted with standard prosthetic stimuli, and cell types that 

would require more elaborate stimulus design. 

Contributions SS & DLR designed the experiments with input from PR, GB & JHM; SS executed 

the experiments; PR & GB performed the analysis with input from JHM and SS; SS, PR, GB, EZ, 

DLR and JHM wrote the manuscript. 



Characterizing retinal responses to electrical stimulation using generalized 

linear models

Abstract

Objective: The ability to preferentially stimulate different retinal pathways is an area of active 

research in visual prosthetics. Many recent studies have shown that electrical stimulation can 

elicit differential responses in varied classes of retinal ganglion cells (RGC). The aim of this 

study was to characterize these differences in RGC responses using a statistical modeling 

approach and in turn, to quantify how ON and OFF cells differ in their encoding of prosthetic 

stimulation.

Approach: We stimulate the murine retina with multiple trials of non-repeating (unique) and 

repeating (frozen) electrical noise. The RGC spiking responses recorded during the unique 

noise trials, are subsequently fit with a Linear Nonlinear Poisson (LNP) model. These models 

then predict RGC responses to the held-out trials of frozen noise. Differences between the 

model prediction and experimentally recorded spike patterns for the held-out trials are due 

to a combination of the linear encoding assumption of the LNP model and intrinsic stimulus-

independent variability in RGC spiking. Next, we estimate the intrinsic RGC spiking variability 

by analyzing the RGC response reliability to the multiple trials of frozen stimuli. Finally, by 

combining the results of these two analyses, we estimate the degree of linearity, nonlinearity 

and reliability of RGC encoding of prosthetic stimulation.

Results: On comparing model performances for our cells to unique and frozen noise, we found 

that there is a substantial degree of nonlinearity in both ON and OFF cell responses which a 

simple linear model cannot account for. 

Significance: Our paper is the first to use LNP models to quantify systematically, how ON and 

OFF cells encode for electrical stimulation. We show that both ON and OFF cell responses 

deviate from a linear regime and will, therefore, require more elaborate nonlinear models to 

capture the full extent of their response dynamics to electrical stimulation. Furthermore, in a 

broader sense, our work represents a systematic way of identifying cell types that can be easily 

targeted by standard electrical stimuli, and cell types, which would require the development 

of more sophisticated stimulus paradigms. 

Introduction

Age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are the two most 

common retinal degenerative diseases causing total blindness (Lorach et al., 2013). Both these 

diseases lead to progressive vision loss due to photoreceptor death. Despite this, studies have 

shown that the retinal circuitry in the inner plexiform layer (IPL) remains relatively intact.

Though there is not yet a cure for these diseases, multiple treatment options are currently 

being investigated. One such approach involves the use of electrode arrays or photodiode 

arrays implanted in the eye (also known as retinal implants). These arrays electrically stimulate 

the diseased retina. Retinal implants have been able to restore some degree of visual 

perception back to patients (Humayun et al., 2012; Stingl et al., 2015; Zrenner et al., 2011). 

These prosthetic devices can either directly target the retinal ganglion cells (RGCs) or stimulate 



the retinal network in order to use the remnant visual processing present in the IPL. Both these 

strategies have their respective advantages and drawbacks (Zrenner, 2002, 2013). At present, 

retinal implants (regardless of the intended site of stimulation), use a train of constant-

amplitude current or voltage pulses, with individual pulses designed to elicit retinal activity. 

Such pulses are suprathreshold (above the threshold for a cell). Though such a suprathreshold 

stimulus protocol is well established in the literature and has been effectively used in clinical 

trials, it leads to indiscriminate activation of various classes of RGCs such as ON, OFF, etc., 

thereby reducing the restored visual acuity to below the theoretical limit.  In acknowledgment 

of this shortcoming, there has been a lot of work in recent years studying preferentiality of 

RGC responses to different electrical waveforms such as sine waves, sawtooth, random, 

triangular, diamond, etc. (Guo et al., 2014; Twyford et al., 2014; Twyford & Fried, 2016). In 

addition to this, recently RGCs were shown to be able to integrate a stream of smaller 

subthreshold pulses via the retinal network, in order to generate spiking responses (Sekhar et 

al., 2016). Moreover, by combining spike-triggered averaging with this subthreshold stimulus 

paradigm ON and OFF cells were found to have very distinct electrical input filters (Sekhar et 

al., 2017).Though in theory, it would be possible to use these STA-like waveforms forms for 

selective stimulation of various RGC classes, it does not guarantee selective activation. This is 

because the underlying assumption of an STA model is that the input filter of the cell convolves 

linearly with its stimulus.  Though this a very useful assumption to make, the linear filter 

approximation overlooks nonlinear response properties of the cell. It is hence necessary to 

quantify the degree to which a cell’s behavior deviates from the simplifying STA (linear) model.

In this study, we analyzed the effectiveness of LNP models in capturing a cell’s response to 

electrical stimulation.

We do so by comparing the prediction performance of two generalized linear models (GLM), 

one fit only to trials of unique stimuli, and one only to trials of frozen stimuli. The GLM fit to 

the unique stimulus trials has a filter that convolves linearly with the stimulus. In the second 

GLM, there is no linear filter. Instead, we directly fit to each binned spike count obtained 

during the frozen stimulus trials, and thereby approximate a Peri-Stimulus Time Histogram 

(PSTH) model for the cell. The comparison of these two model performances quantifies how 

linearly RGCs encode for prosthetic stimulation. The model performance measure (MPM) 

used is linear correlation coefficient. These analyses methods provide a systematic manner of 

identifying RGC classes that can be well controlled with simple STA-like stimuli, and RGC 

classes that would require more elaborate stimulus design. This, in turn, has important 

implications for the design of future retinal prosthesis.

Methods

We obtained the data central to this study using three different stimulus protocols. In the first 

stimulus protocol, the cells were shown multiple trials of only unique white noise. In the 

second stimulus protocol, the cells were shown multiple trials of only frozen white noise. In 

the final protocol, the cells were shown interleaved trials of both frozen and unique noise with 

a 1:1 ratio. We verified that 1:1 was an appropriate ratio using the first two stimulus protocols 

and only used the cells collected under the third protocol for the LNP/GLM modeling. All 3 

protocols used 100 s trials whose mean/SD was -800 mV/280 mV with a presentation 



frequency of 25 Hz. We also presented visual stimuli before and after electrical stimulation for 

cell-classification (ON, OFF, ON-OFF) purposes. 

Animals

The experimental methods used in this paper are identical to a previous study (Sekhar et al., 

2017), and are restated here: The data in this paper consists of 53 RGCs obtained from 16 

retinal pieces using 15 C57BL/6J mice. The age of the mice are 2 × P32, 2 × P39, 2 × P46, 1 x 

P49. 1 × P51, 1 x P53, 1  ×  P56, 2  ×  P58, 2  ×  P59, 1 x P64.  All experimental procedures have 

the approval of the state authorities (Regierungspraesidium, Tuebingen) and were conducted 

under the supervision of the Tuebingen University facility for  animal welfare (Einrichtung fuer 

Tierschutz, Tieraerztlichen Dienst und Labortierkunde) and the NIH Guide for the Care and Use 

of Laboratory Animals.

Data Collection

The mice were anesthetized using CO2 inhalation. Following this, the mice were killed by 

cervical dislocation. After eye removal and dissection, the retinas were perfused with 

carbogenated ACSF (artificial cerebrospinal fluid) which was regulated at 33°C (using a heating 

plate and heated perfusion cannula) and at a pH of 7.4. Retinal pieces were mounted ganglion 

cell side down on a standard 60-channel microelectrode array (MEA, 60MEA200/30iR-ITO, 

Multi Channel Systems, Reutlingen, Germany), and were constantly perfused with ACSF. A 

single electrode was used for electrical stimulation and analysis was restricted to the 7-8 

electrodes immediately surrounding the stimulating electrode (inter-electrode distance = 200 

or 283 Em). Voltage traces were sampled with MultiChannel Systems hardware (MCS, 

Reutlingen, Germany) at a rate of 50 kHz/channel, using a filter bandwidth of 1 Hz– 3 kHz and 

a gain of 1100.

Data Processing and Inclusion Criteria

Raw data was first high pass filtered in order to extract putative action potential events 

(spikes). Following this these putative spikes underwent automated and manual spike sorting 

in order to reduce Type I and Type II errors in assigning waveforms to different sources.  To be 

included in this study spike trains had to have 1) the presence of a clear lock-out period in the 

ISI histogram and autocorrelogram 2) the absence of a peak in the cross-correlogram between 

different cells, which would indicate that a single cell had been wrongly split into 2 or more 

units 3) good separation in principal component space of a biphasic waveform whose shape 

is typical of extracellularly recorded action potentials and 4) stability of the waveform shape 

and firing rate over the entire experiment. Offline Sorter (Plexon Inc, TX, USA) was used to 

filter and spike sort the data. Time stamps of these sorted spikes were collected with 

NeuroExplorer (Plexon Inc, TX, USA) and exported to MATLAB. All analyses and statistical tests 

were performed in MATLAB (The Mathworks, Natick, MA).

Visual Stimulation

Flash stimulus blocks consisted of cycling 2 s ON (40 klx) and 2 s OFF (20 lx) full-field luminance 

(mean illuminance = 20 klx, 99.9% Michelson contrast). Visual stimuli were presented with a 

linearized, commercially available DLP-based projector (K10; Acer Inc., San Jose, California, 

USA). Other than during visual stimulation, a shutter was placed in front of the projector, and 



the experimental setup was surrounded by dark curtains with room lights turned off to 

minimize stray light.

Electrical Stimulation

Electrical stimuli were presented at a rate of 25Hz in 100s trials. The amplitudes of the 1 ms 

voltage pulses were drawn randomly from a Gaussian distribution with mean of -800 mV and 

SD 35%. Voltage pulses of length 1ms are commonly used in subretinal implants and are 

equivalent to biphasic current pulses. The stimulus pulses were programmed in MATLAB using 

custom scripts and imported into MCStim (MCS, Reutlingen, Germany) for presentation. A 

stimulus generator (STG 2008, MCS, Reutlingen, Germany) was used to generate pulses. To 

characterize the degree of linearity and variability in RGC responses, the retina was presented 

with 18 interleaved trials of unique and frozen electrical noise each. Therefore, in total 36 

trials were presented.

LNP Model Implementation

We use LNP models to quantify how well a simple linear model can capture neural responses 

to electrical stimulation. The LNP model is an encoding model which is a special case of the 

generalized linear models (GLMs) (Nelder & Wedderburn, 1972). These models have been 

extensively used in the past to describe the dependence of firing rate of retinal ganglion cells 

on visual stimuli (Paninski, 2004; Paninski et al., 2007; Pillow,  2006; Pillow et al., 2008). An 

LNP maps an input variable x (typically a stimulus) to a measured spike count y via three 

components: a linear predictor (often referred to as the receptive field), a nonlinear link-

function and model of neural variability. The linear predictor convolves the stimulus with a 

filter k which, in stimulus space, corresponds to the direction that elicits the maximum spiking 

activity from the neuron. The convolution operation projects the stimulus onto the direction 

of maximal spiking activity. 
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The function f (also called inverse-link function) maps  to a variable , such that � � �= 	(�).   
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Spike trains can be simulated from this model by drawing spikes from a Poisson distribution 

whose rate is given by L
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where

 is the binwidth��

The LNP modeling framework makes it possible to impose smoothing constraints on the filter 

k, yielding more realistic estimates compared to the direct STA approach. The direct STA  

approach  is also known to require large amounts of data to converge (Chichilnisky, 2001). 

These are two major advantages the LNP model has over the STA model. 

In conjunction with the above framework, we estimate the linear filter k using maximum a 

posteriori (MAP) estimation and by maximizing a fitness function which is a sum of the log-

likelihood of the data, and a penalization term that favours smooth filters (Park & Pillow, 

2011). This filter estimation is only based on RGC responses from the unique trials. The fitness 

function is 
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where

is the variance of the filter values from a zero mean.$2

 is the timescale over which the filter is smoothed. &

and  denote the time-bin number in the filter� "

is the inverse of the matrix # � 1 #

Sigma �M� and tau �N� are the optimized hyperparameters. The optimization procedure for 

these hyperparameters is discussed in the following section.



Optimization of hyperparameters

We optimize the hyperparameters sigma �M� and tau �N� using grid search with 10-fold cross 

validation on the log-likelihood fitness function (excluding the penalization term). We first 

construct a grid of M and N values – with both M and N ranging from 0.1 to 5. Choosing a value 

of M and N from the grid, we built the covariance matrix. Then, we randomly divided the unique 

stimulus trials into 10 sets. Using the covariance matrix, we fit the LNP model to 9 sets of data 

and obtained the estimates for the filter. We calculated the log-likelihood (L without the 

penalization term) of these estimates on the 10th held-out set of trials. We repeated this with 

each of the 10 sets of trials held out in turn, to obtain the log-likelihood values averaged across 

the 10 sets.  Once every possible pair of M and N from the grid was used in the 10-fold cross-

validation, the M and N value corresponding to the highest averaged log-likelihood were chosen 

as the optimized hyperparameters. We used these values to build a covariance matrix and 

obtain a filter estimate using all the unique stimulus trials.

Comparing LNP and PSTH model performance

We presented 18 interleaved trials each of unique and frozen electrical noise to the retina in 

order to characterize the degree of linearity and non-stationarity in RGC responses. 

We use the linear filter fit k (obtained by fitting the LNP model to the 18 unique stimulus trials) 

to predict the spiking responses for the 18 frozen trials and then quantify the model predictive 

performance using the linear correlation coefficient metric (described in the section – 

‘Quantifying Model Performance’). Spiking variability not captured by the LNP model is due to 

a combination of the non-stationarity and nonlinearities in RGC responses.

In the next step, we used the PSTH model to tease apart the nonlinearity from the non-

stationarity of the RGC spikes. The PSTH model is a GLM with the same inverse-link function 

as the LNP model, that directly estimates the parameter controlling the firing rate of the 

neuron (rather than a stimulus filter). This parameter (z) is time dependent i.e. there is a 

different value of z for each time-bin.

The equations below describe the PSTH model
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��(1 + ��)

where 

 is the parameter controlling the firing rate for each time-bin�

 is the instantaneous firing rate.�

The spike trains can be sampled from this model by generating spikes using a Poisson 

distribution.

� � �������(���).

                where  is the binwidth   ��



Similar to the LNP, we estimate the PSTH model parameters using maximum a posteriori 

(MAP) estimation - by maximizing a fitness function which is a sum of the log-likelihood of the 

data, and a penalization term that constrains the log firing rate to be smooth. This parameter 

estimation is only based on RGC responses from the frozen trials. Given below is the fitness 

function
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where

is the variance of z values from a zero mean.$2 

is the timescale over which z values are smooth.& 

and denote the time-bin number in z� " 

The PSTH model is designed to highlight stimulus-independent variability in the spiking 

response by capturing all stimulus-dependent (linear and nonlinear) responses. Hence, it is fit 

and cross-validated only on the 18 frozen stimulus trials. We use leave-one-out cross-

validation to measure the PSTH model performance. First, we obtain the optimized 

hyperparameters sigma and tau for the PSTH model with a procedure similar to the LNP 

model. Then, with these optimized hyperparameters, we fit the model to 17 frozen stimulus 

trials and use the estimated firing rate to calculate the model performance measures on the 

18th held-out trial. We repeated this process, with each of the 18 trials being held out in turn 

and finally average the model performance measures across all 18 trials.

The LNP model captures response variability that is linearly dependent on the stimulus. Since 

the PSTH model captures any stimulus-dependent variability in RGC response (linear and 

nonlinear responses), spiking variability not captured by the PSTH, represent stimulus-

independent, intrinsic non-stationarity in RGC spiking. Therefore, by comparing the two 

models (LNP and PSTH) for each cell, we determined the degree of nonlinearity (extent to 

which PSTH model out performs LNP model) and non-stationarity in RGCs (spiking variability 

not captured by PSTH model) when encoding for electrical stimulation.



Validation of Frozen:Unique White Noise Ratio

Since the PSTH model requires frozen stimulus trials, and the LNP model requires unique 

stimulus trials for training, we needed to determine whether 1:1 was an appropriate ratio of 

frozen to unique stimulus trials to present to the same retina since we already had such 

(Sekhar et al., 2017) recordings.

As mentioned before we used the experiments with only repeating or unique stimuli to 

validate the 1:1 ratio. For each RGC presented with only unique stimuli, we fit an LNP model 

using an increasing number of trials (from 2 to 30 in increments of 2) for training. We obtained 

an upper bound (UB) for model performance by calculating the MPMs on each trial of the 

training data and averaging across all these trials. We obtained the lower bound (LB) for model 

performance by calculating the MPMs using leave-one-out cross-validation.

Likewise, for each RGC presented with only frozen stimuli, we fit a PSTH model using an 

increasing number of trials (from 2 to 30 in steps of 2) for training. We found the upper and 

lower bound estimates for the MPMs in the same way as for the LNP model. 

The upper bound value of the MPM is an estimate of the model performance on the training 

data. Since the model will overfit to some degree on the training data, the upper bound 

overestimates the model performance. The lower bound value of the MPM, on the other 

hand, is an estimate of the model performance on test data. Since the model overfits to the 

training data and not to the test data, the lower bound underestimates the model 

performance. The actual value of model performance will lie somewhere in between the 

upper and lower bound. 

Next, we paired together the MPMs, averaged across all cells for each condition (such as lower 

bound LNP, upper bound PSTH etc), for the PSTH and LNP model such that the number of trials 

they were trained on summed to 32, and then identified the ratios for which the MPM for 

both the LNP and PSTH model was optimal. For example, the MPMs for an LNP model trained 

on 2,4, 6,8,…,30 trials were combined with a PSTH model trained on  30, 28, … ,2 trials 

respectively. This procedure led us to validate the 1:1 ratio, as a suitable ratio of unique and 

frozen trials.

Quantifying model performance

We used linear correlation coefficient to quantify model performance. 

This MPM measures the degree of linear relationship between the experimental and predicted 

response (Theis et al., 2016). The linear correlation coefficient ranges between -1 and 1 (best 

performance).
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Results 

We recorded from 53 RGCs in total, with 27 RGCs being shown 54 trials of unique electrical 

noise, 6 RGCs shown 36 trials of frozen electrical noise and 20 RGCs shown 18 trials of frozen 

and 18 trials of unique stimuli in an interleaved fashion. As mentioned earlier, the experiments 

with only unique or only repeated stimuli validated the 1:1 ratio of frozen to unique stimuli. 

This is important since there is a limited time-window for the experiments. 

We fit a PSTH model (described in the methods section) for our 6 cells to an increasing number 

of trials of frozen stimuli. We then estimated upper and lower bound MPMs for the PSTH 

model. To estimate an upper bound MPM the PSTH model was first fit to the averaged spike 

trains of k randomly chosen trials. Following this, we evaluated the upper bound predictive 

power of the PSTH model on each of the k trials individually, using the linear correlation 

coefficient MPM discussed in the methods section. We repeated this process for k =2,4,6,…,30 

trials (Figure 1a, blue curve). 

We used leave-one-out cross validation to calculate the PSTH model’s lower bound estimate 

(Figure 1a, green curve) for the spike rate prediction. Given k randomly chosen trials, we fit 

the PSTH model to k-1 trials. We then used the MPM to evaluate the predictive power of this 

fit on the held-out kth trial and then repeated this process by holding out each of the k trials 

in turn and then averaging the MPM across all k trials. We then calculated the MPMs for 

different values of k ranging from 2 to 30.

In order to estimate the number of unique trials to use, we analyzed 27 cells that were shown 

54 unique trials of electrical white noise. The LNP model is trained and tested on k randomly 

chosen trials. We carried out this process, as with the PSTH model, for k ranging from the first 

2 to first 30 trials in increments of 2. Also similar to the PSTH model we estimated an upper 

and lower bound estimate of the LNP model performance. The upper and lower bound for the 

LNP are shown in the red and black curve respectively of figure 1a. The error bars in figure 1a 



represent the standard error of mean calculated by dividing the standard deviation of the 

averaged MPM for all the cells given a particular stimulus protocol (unique or frozen) at a 

certain number of training trials k by the square root of the number of cells.

Following this, scatter plots of the MPM for LNP and PSTH models is made by pairing together 

upper and lower bound MPMs for PSTH models using 2,4, … 30 repeated trials with upper and 

lower bound MPMs for LNP models using 30, 26, …. 2 unique trials respectively for all 4 

combinations (UB PSTH- UB LNP, UB PSTH-LB LNP, LB PSTH- UB LNP, LB PSTH – LB LNP). The 

points further away from the origin (0,0), in the scatter (Figure 1b), were considered as good 

combinations of frozen and unique trials.  Given these criteria, the 1:1 ratio of frozen and 

unique trials was validated as a good compromise between all 4 combinations. Some of the 

points in figure 1b are marked with their corresponding frozen: unique trial ratios.

We obtained 20 cells with the 1:1 ratio of frozen and unique white noise (18 trials each). Of 

these 20 cells 11, 3 and 6 are ON, OFF and ON-OFF cells respectively. In figure 2a, we show the 

raster plot of an example cell to 18 trials of frozen white noise. In figure 2b, we show the 

corresponding raster plot to 18 trials of unique stimuli for the same cell. In figure 2c, we show 

the recovered STA from these 18 unique trials.

As mentioned in the methods section we used a grid search to obtain the optimized sigma and 

tau values, used in the penalizing term for MAP estimation. This optimization process 

consisted of calculating log-likelihood with 10-fold cross validation for different combinations 

of sigma and tau. That is, for a given value of sigma and tau, we built the corresponding 

squared exponential kernel.  We divided the trials corresponding to a given model into 10 sets. 

We fit the model on 9 sets and calculated the log-likelihood on the held-out set 10th set. We 

then repeated this process for each of the 10 sets held out in turn and then averaged the log-

likelihood across the 10 sets. In figure 3a, we present the heatmaps displaying the log-

likelihood for each of the sigma-tau combinations for the LNP model of an example cell. Figure 

3b, shows this heatmap for the PSTH model of another example cell. The fits to the STAs and 

PSTHs for another two example cells with the optimized sigma-tau values, using the 10-fold 

cross validation is shown in figure 4a & 4b respectively. The sigma-tau values obtained through 

this process provide a close fit to the underlying STA or PSTH. We also compared the log-

likelihood of these fits to the log-likehood of the fits obtained with manual hand-tuned 

estimates of the optimal sigma and tau. The fits using grid search and manual selection were 

found to be comparable.

In order to compare LNP and PSTH model performance for the cell population from the 1:1 

frozen:unique stimulus recordings, the repeating stimulus trials and the non-repeating 

stimulus trials (18 each) for each cell were separated. The LNP model was fit to all the non-

repeating stimulus trials, and the resulting MAP estimates of the model parameters were used 

to calculate the model performance measures on all the repeating stimulus trials. The model 

performance measures for the PSTH model were calculated using leave-one-out cross 

validation on the repeating stimulus trials. We then average the 2 MPMs for each cell across 

the total population. 

In figure 5, we present a comparison between the MPM of the LNP and PSTH model for the 

entire population of ON (Figure 5a), OFF (Figure 5b) and ON-OFF (Figure 5c) cells, collected 



with the 1:1 ratio of interleaved trials. For all 3 cell types, the PSTH model tends to outperform 

the LNP model. These results show that there is nonlinearity in RGC responses to prosthetic 

stimulation, that a simple STA based model cannot capture. A comparison of the LNP and PSTH 

model performances across all 3 cell types is provided in figure 6a and figure 6b respectively.

Discussion

The main aim of this study was to characterize how different classes of RGCs encode for 

electrical stimulation. Though there have been in recent years a number of papers, which 

study differences in RGC responses to an electrical stimulus (Twyford & Fried, 2016) there 

was to date no systematic study characterizing these responses. In this paper, we use a GLM 

framework to tease apart the extent of linearity/nonlinearity and the variability that RGCs 

display when electrically stimulated. This study is a follow-up to a previous paper that showed 

that the ON and OFF class of RGCs in the mouse retina have different electrical STAs (Sekhar 

et al., 2017).

In this study, it was found that the PSTH model performed outperformed the LNP model for 

ON, OFF & ON-OFF cells. This suggests that the coding scheme of all these 3 cell types to 

prosthetic stimulation has a strong nonlinear component. Therefore, to fully capture the 

response properties of these cells to electrical stimulation, more sophisticated nonlinear 

models would have to be developed. In addition to the nonlinear response properties, all 3 

cell types also displayed high stimulus-independent variability in their encoding of electrical 

stimulation. One major reason for this could be desensitization. It has been shown that when 

RGCs are electrically stimulated at a constant amplitude and frequency, their response rates 

tend to drop off (Jensen & Rizzo, 2007). Though in this study, we presented gaussian white 

noise modulated voltage pulses, it is conceivable that some of the variability in our responses 

could be due to adaptation effects to the prolonged high-frequency stimulation. Another 

cause for the relatively high variability could be the site of stimulation. It has been shown that 

thresholds for network stimulation are lower in the subretinal space (Boinagrov et al., 2014). 

However, in these experiments we targeted the network from the RGC side. This increase in 

distance between the stimulating electrode and the intended target of stimulation could lead 

to higher thresholds and hence higher spiking variability. With a more optimal experimental 

design in which we stimulate the network from the subretinal space, it would be possible to 

lower the overall variability. However, for the purposes of this study (to characterize how 

linearly/nonlinearly ON and OFF cells encoded for electrical stimulation) the present site of 

stimulation is sufficient. In the future, if one wishes to more thoroughly characterize the 

stimulus-independent spiking variability itself, it could help to stimulate the network 

subretinally. Finally, our stimuli were chosen to be deliberately weak in order to avoid single 

pulse activation. It could be possible to reduce our response variability and increase our signal 

strength by increasing the mean of our stimulus distribution.  This would require several pilot 

experiments where we study if increasing the mean of the stimulus distribution reduces 

stimulus-independent spiking variability while still keeping single pulse activation to a 

minimum. In conclusion, while a simple linear model can capture some of the spiking dynamics 

of RGCs to electrical stimulation, more sophisticated nonlinear models should also be 

explored. This deeper understanding could, in turn, have many practical implications for the 



design of future implants, by shedding light on which cell types can be controlled by simple 

STA-based waveforms and which cell types would require more elaborate stimulus design.
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Figure 1a

Figure 1b

Figure 1 Evaluating optimal ratios of repeating to unique stimuli. a) Model performance 

measure of Upper Bound PSTH model (blue), Lower Bound PSTH model (green), Upper 

Bound LNP model (red) and Lower Bound LNP model (black) plotted against the number of 



repeated trials used for training the PSTH model. The number of unique trials used to train 

the LNP model can be inferred by subtracting the number of repeated trials (plotted on x-

axis) from 32 b) Scatter plot of paired MPMs for LNP and PSTH models using different ratios 

of repeated and unique trials. Some of the ratio values are mentioned alongside their 

respective scatter points, for reference.

Figure 2a

Figure 2b



Figure 2c 

Figure 2. Rasters and STA of an example cell shown multiple interleaved trials of repeated 

and unique electrical white noise. a) Raster plot of cell to 18 trials of repeated/frozen 

stimuli. b) Raster plot of cell to 18 trials of unique/non-repeating stimuli c) Electrical STA 

recovered from 18 trials of unique stimuli



Figure 3a  

Log-Likelihood Landscape for LNP model of OFF cell

Figure 3b

Log-Likelihood Landscape for PSTH model of ON cell

Figure 3 Log-Likelihood landscape plotted for GLM fits using different sigma-tau 

combinations for a) LNP model b) PSTH model. Plots show both the grid-search estimate, 

and manual hand-tuned estimates. 



Figure 4a

Figure 4b

Figure 4. a) GLM fits to STA of a cell using the grid-search based optimized hyperparameters. 

b) GLM fits to PSTH of a cell using the grid-search based optimized hyperparameters. The 

standard error of mean and standard deviation for the LNP and PSTH fits respectively are 

also provided.



Figure 5

                             a) ON Cells             b) OFF Cells

                           c) ON-OFF cells

 

Figure 5 Bar plots 

comparing LNP and PSTH 

model performance 

measure for a) ON b) OFF 

and c) ON-OFF cells



Figure 6

a) LNP Model b) PSTH Model

 

 

Figure 6 Bar plots comparing model 

performances between ON, OFF & ON-OFF cells 

using a) LNP model b) PSTH model
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Summary 

The aim of this thesis was to lay the groundwork for tackling some of the field’s most 

challenging questions in a more systematic manner. Over the past few years, there have been 

many excellent new studies trying to answer the question of selective stimulation and 

desensitization. However, despite this, there was still a significant gap between the raw data 

and a more theoretical, systems-level interpretation of the experimental findings. It was, 

therefore, our belief that, by applying tools from the world of systems engineering to retinal 

prosthetics research, we could bring a fresh new perspective to these still unanswered 

questions.  White noise analysis helped make major strides in our understanding of classical 

visual physiology. The results of this thesis suggest that the white noise approach could have 

an equally prominent impact in the field of prosthetic retinal stimulation. Moreover, this thesis 

has also highlighted several promising avenues of research that should be explored in order 

to fully understand retinal responses during electrical activation. Only with such a deeper 

understanding brought about by a multi-pronged approach, can we hope to improve the 

quality of vision restored to patients suffering from retinitis pigmentosa or age-related 

macular degeneration. Our findings suggest that we have only scratched the surface of what 

promises to be a difficult but fruitful endeavour.  
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