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Summary 

Tools to manipulate genetic information without interfering at the DNA level are highly 

desirable in medicine and the life sciences. Recently, our group introduced the first 

engineered, RNA-guided deaminase. The approach relies on the in situ covalent bond 

formation between a benzylguanine-modified guide RNA (BG-gRNA) and a SNAP-

tagged deaminase (SNAP-ADAR). Once the gRNA-deaminase conjugate is formed, it 

enables specific adenosine-to-inosine (A-to-I) substitutions in target RNAs. Since inosine 

is biochemically interpreted as guanosine by the cellular machinery, site-directed A-to-I 

editing provides the possibility to manipulate RNA and protein function.  

 In this PhD project, it was aimed at elucidating the potential of the SNAP-ADAR 

approach for future applications. Therefore, the performance of the editing system in 

mammalian cells was comprehensively characterized.  

It could be shown that efficient site-directed RNA editing with SNAP-ADAR 

enzymes in cell culture requires the chemical modification of the BG-gRNA. A strong 

performance in the editing of endogenous transcripts was demonstrated in engineered cell 

lines stably expressing SNAP-ADAR enzymes. Editing yields up to 90% were achieved 

and remained stable even when several transcripts or multiple sites on a single transcript 

were concurrently targeted. Maximum editing was reached after 3 hours of BG-gRNA 

transfection and stayed unchanged for several days. Additionally, low concentrations 

(≥ 1.25 pmol/96-well) of the BG-gRNA were sufficient to obtain highest editing levels. 

The SNAP-ADAR approach holds great promise for the recoding of many functionally 

important amino acid residues as 11 out of the 16 adenosine-containing 5’-NAN triplets 

were editable between 50% and 90%. 

First evidence was provided that the editing system might be a valuable tool for the 

correction of disease-causing mutations. Moreover, the possibility of manipulating entire 

signaling networks was highlighted by the efficient and concurrent editing of two disease-

relevant transcripts, KRAS and STAT1. Photo-controlled A-to-I editing was applied to 

direct protein localization within the cell by introducing alternative start or stop codons 

which allowed the expression of signals for nuclear and membrane translocation. 

NGS-based analysis revealed that wild-type SNAP-ADAR enzymes are highly 

precise editing machines. Their more active versions (SNAP-ADARQ enzymes) 

produced some off-target edits into the transcriptome, but the observed off-target activity 

appeared to be reducible by lowering the SNAP-ADAR protein amounts without great 
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inhibition of the on-target editing. Nevertheless, these enzymes were one order more 

precise than editing machines applied by competing approaches. The chemical 

modification of the BG-gRNA was shown to suppress the off-target editing within a 

duplex formed by the BG-gRNA and the target RNA.  

The SNAP-ADAR approach outcompetes all well-characterized approaches for 

site-directed RNA editing due the best balance between efficiency and specificity.        
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Zusammenfassung 

Werkzeuge, die die Veränderung genetischer Informationen ohne den Eingriff auf DNA-

Ebene gewährleisten, sind sehr attraktiv für die Medizin und den Lebenswissenschaften. 

Kürzlich präsentierte unsere Arbeitsgruppe die erste künstliche RNA-gesteuerte 

Deaminase. Der Ansatz baut auf die kovalente Verknüpfung einer Benzylguanin-

modifzierten guide-RNA (BG-gRNA) und einer SNAP-Tag-fusionierten Deaminase 

(SNAP-ADAR). Sobald sich das gRNA-Deaminasekonjugat bildet, ermöglicht es die 

spezische Umwandlung von Adenosin zu Inosin (A-zu-I) in Ziel-RNAs. Da Inosin von 

der zellulären Maschinerie biochemisch als Guanosin interpretiert wird, bietet die 

gerichtete A-zu-I-Editierung die Möglichkeit, Funktionen von RNAs und Proteinen zu 

verändern. 

Ziel dieser Arbeit war es, das Potenzial des SNAP-ADAR-Ansatzes für zukünftige 

Anwendungen zu beleuchten. Dazu wurde die Leistungsfähigkeit des Editierungssystems 

in Säugetierzellen umfangreich charakterisiert. 

 Es konnte gezeigt werden, dass die gerichtete RNA-Editierung mit SNAP-ADAR-

Enzymen die chemische Modifizierung der BG-gRNA benötigt, um in der Zellkultur 

effizient zu sein. Eine starke Leistung in der Editierung endogener Transkripte wurde in 

Zelllinien demonstriert, die stabil SNAP-ADAR-Enzyme exprimierten. Editierungs-

ausbeuten bis zu 90% wurden erreicht und blieben stabil, selbst als mehrere Transkripte 

oder mehrere Stellen auf einem Transkript gleichzeitig editiert wurden. Das Maximum 

an Editierung wurde 3 Stunden nach der BG-gRNA-Transfektion erreicht und blieb 

mehere Tage lang unverändert. Zusätzlich waren geringe Konzentrationen (≥ 1,25 

pmol/96-Well) an BG-gRNA ausreichend, um die höchsten Editierungsausbeuten zu 

erhalten. Der SNAP-ADAR-Ansatz is sehr vielversprechend für die Umcodierung 

funktionell wichtiger Aminosäurereste, da 11 von den 16 Adenosin-enthaltenden 5‘-NAN 

Tripletts zwischen 50% und 90% editierbar waren.        

 Erste Ergebnisse zeigten, dass das Editierungssystem ein wertvolles Werkzeug für 

Korrektur von krankheitsverursachenden Mutationen sein könnte. Des Weiteren wurde 

die Möglichkeit zur Manipulation ganzer Signalnetzwerke durch das effiziente und 

gleichzeitge Editieren von zwei krankheitsrelevanten Transkripten (KRAS und STAT1) 

hervorgehoben. Photokontrollierte A-zu-I-Editierung wurde angewendet, um die 

Proteinlokalisation in der Zelle duch das Einbringen alternativer Start- oder Stopcodonen 
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zu steuern. Dies erlaubte die Expression von Signalen für die Zellkern- und 

Membranlokalisation.   

 Die NGS-basierte Analyse zeigte, dass Wildtyp-SNAP-ADAR-Enzyme sehr 

präzise Editierungsmaschinen sind. Ihre aktiveren Versionen (SNAP-ADARQ-Enzyme) 

produzierten einige Off-Target-Editierungen im Transkriptom, jedoch erschien die Off-

Target-Aktivität durch die Verringerung der SNAP-ADAR-Proteinmenge reduzierbar, 

ohne dabei großartig die Editierung an der Zielstelle zu inhibieren. Nichtsdestotrotz 

waren diese Enzyme um eine Größenordnung präziser als Editierungsmaschinen, die von 

konkurrierenden Ansätzen genutzt werden. Es wurde gezeigt, dass die chemische 

Modifikation der BG-gRNA die Off-Target-Editierung innerhalb eines Duplexes 

unterdrückt, der von der BG-gRNA und Ziel-RNA gebildet wird.        

 Der SNAP-ADAR-Ansatz übertrifft alle gut charakterisierten Ansätze zur 

gerichteten RNA-Editierung aufgrund des besten Verhältnisses zwischen Effizienz und 

Spezifität. 
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1 Introduction 

1.1 Inosine found in RNA  

According to the MODOMICS database, more than 150 different modifications have 

been found in RNA molecules.1 Over the last 60 years, biochemical studies have well 

documented the occurrence and effects of modifications in tRNA and rRNA. High-

throughput sequencing technologies have recently provided a global view on RNA 

modifications within transcripts and have led to a revival of interest in the 

epitranscriptome. RNA modifications have been shown to be abundant, conserved and 

dynamically regulated. Besides other nucleosides with base modifications, inosine is 

currently being studied intensively to learn more about its functions in RNA.  

The conversion of adenosine to inosine (A-to-I editing) frequently happens within 

double-stranded RNA (dsRNA) regions in the transcriptome of metazoans (Fig. 1a).2,3 In 

contrast to adenosine, inosine preferentially interacts with cytidine and is biochemically 

interpreted as guanosine by the cellular machinery. Editing sites within a known RNA 

substrate can be validated by Sanger sequencing to compare the sequences of genomic 

DNA (gDNA) and complementary DNA (cDNA). Since A-to-I editing does not occur in 

every RNA molecule, cDNA sequencing normally shows a mixture of adenosine and 

guanosine at the respective site. To exclude the possibility that the mixed signal derives 

from a genomic SNP, gDNA sequencing should only identify an adenosine. 

Transcriptome-wide identification of A-to-I editing sites has been achieved by next-

generation sequencing (NGS)-based methods comparing DNA and RNA sequencing, 

using RNA sequencing data alone or applying chemical labeling of inosine.4 So far, 

researchers have identified millions of editing sites.5-15 It has been shown that A-to-I 

editing is catalyzed by adenosine deaminases acting on RNA (ADARs) and regulates 

many cellular processes by manipulating protein functions, RNA splicing, 

immunogenicity and RNA interference.  

1.2 A-to-I RNA editing catalyzed by ADARs 

1.2.1 ADAR enzymes 

Three ADARs are encoded in the human genome and share common structural features 

including multiple N-terminal dsRNA-binding domains (RBDs) and a deaminase domain 

at the C-terminus (Fig. 1b).   



2          INTRODUCTION 
 

a 

b 

 
Figure 1 A-to-I  RNA edi t ing mediated by ADARs.  (a) ADARs catalyze the hydrolyt ic conversion of 

adenosine to inosine which is biochemical ly interpreted as guanosine. (b) There are three ADAR 

enzymes exist ing in humans: ADAR1 expressed as two isoforms (p110 and p150),  ADAR2 and 

ADAR3. Al l  these enzymes have similar structural  features. dsRBD, dsRNA-binding domain; NES, 

nuclear export signal ;  NLS, nuclear local izat ion signal;  R domain, arginine-rich domain; Zα and Zβ, 

Z-DNA-binding domains. Adapted from ref.  2.      

Constitutive gene expression results in the generation of ADAR1 as a 110-kDa 

protein (ADAR1p110) containing an N-terminal Z-DNA-binding domain together with 

three dsRBDs.16,17 However, ADAR1 can also be translated as a 150-kDa protein 

(ADAR1p150) initiated through an alternative promoter inducible by interferon 

(IFN).16,17 ADAR1p150 harbors an additional Z-DNA-binding domain and a nuclear 

export signal (NES) in the extended N-terminus compared to the shorter ADARp110. 

Both protein isoforms can shuttle between nucleus and cytoplasm, but ADAR1p110 is 

mainly localized in the nucleus and ADARp150 accumulates in the cytoplasm due to its 

NES.18,19 ADAR2 contains two dsRBDs and has been found to be restricted to the 

nucleus.20-22 Similarly, ADAR3 has also two dsRBDs, but contains an arginine-rich (R) 

domain which enables binding of single-stranded RNA (ssRNA) and serves as a signal 

for nuclear import.23,24 Expression analyses revealed that ADAR3 transcripts can only be 

detected in the brain.13,23 In contrast, ADAR1 and ADAR2 are expressed across multiple 

tissues.13,20,25 Whereas ADAR1 and ADAR2 have been proven to be catalytically active, 

ADAR3 lacks any evidence to mediate A-to-I RNA editing.
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1.2.2 Physiological significance of ADARs 

Only a very small fraction of editing sites causes amino acid substitutions in proteins. A 

prominent example is the transcript encoding the glutamate receptor subunit B (GRIA2). 

In GRIA2 pre-mRNA, intron 11 and exon 11 form an imperfect RNA duplex, where 

editing results in the change of a glutamine (Q) codon (CAG) to an arginine (R) codon 

(CIG) in the coding sequence (Fig. 2a).26 It has been shown that this site is only efficiently 

edited by ADAR2.20 AMPA receptors containing GRIA2 with the Q/R substitution are 

impermeable to calcium.27 ADAR2-null mice exhibit early onset epilepsy and die early 

after birth, but the phenotype can be fully rescued by the homozygous knock-in of the 

Q/R mutation at the edited site of GRIA2.28 RNA editing of the Q/R site has been shown 

to be reduced in motor neurons from human patients with amyotrophic lateral sclerosis 

(ALS) and is therefore postulated to be necessary for neuronal integrity (Fig. 2b).29 In 

mice, the death of motor neurons induced by the lack of ADAR2 is indeed prevented by 

the expression of Q/R site-edited GRIA2.30 GRIA2 pre-mRNA harbors another recoding 

editing site which was also identified in the transcripts encoding two further AMPA 

receptor subunits (GRIA3 and GRIA4).31 In exon 13, which forms an imperfect hairpin 

structure with its adjacent intron, editing changes an arginine (R) codon (AGG) to a 

glycine (G) codon (IGG) and is efficiently catalyzed by both ADAR1 and ADAR2 (Fig. 

2a).20 The level of editing at the R/G site increases in rat brain during development and 

glutamate receptor subunits harboring the R/G substitution accelerate the recovery of 

AMPA receptors from desensitization.31      

Further editing sites mediated by ADARs have been discovered and characterized 

in terms of their impact on protein properties. For instance, editing of 5 adenosines in the 

transcript encoding the serotonin receptor 2C (5-HT2CR) changes the amino acid 

composition within the second intracellular loop and reduces the efficiency of the 

coupling between the receptor and G proteins (Fig. 2a).32,33 In KV1.1 (voltage-gated K+ 

channel subfamily A member 1) transcripts, editing leads to the recoding of isoleucine to 

valine in the ion-conducting pore and enables the channel to recover faster from 

inactivation (Fig. 2a).34  

Almost all editing sites identified in the human transcriptome have been found in 

Alu sequences which are highly repetitive elements generally located within introns and 

untranslated regions.5-15 Alu sequences are primate-specific retrotransposons of ~ 300 bp 

in length and comprise more than 10% of the human genome.35 Two repetitive Alu  
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a 

b 

Figure 2  Substrates and functions of ADAR enzymes. (a)  Predicted secondary structures of known 

ADAR substrates. Edi t ing in the coding region of  these transcripts (red underl ined) has been shown 

to modulate the function of the respective proteins. The structures are typical ly formed by an exon 

and i ts  adjacent intron wi thin the pre-mRNA (GRIA2, 5-HT2 CR).  (b)  Physiological s igni f icance of 

ADARs. Pr imate-speci f ic Alu  sequences and other repet i t ive elements can form long dsRNA 

structures. Edi t ing wi thin such structures by ADAR1 (p110 and p150) is required to prevent 

endogenous RNA from tr igger ing the MDA5/MAVS-mediated antiv i ral  immune response. Addit ional ly,  

IFN-inducible ADARp150 has been presumed to be primari ly responsible to edi t  vi ral  dsRNA in the 

cytoplasm3 6 and has been found to uniquely regulate the MDA5/MAVS pathway in mice. ADAR2-

mediated edit ing at  the Q/R si te of GRIA2 pre-mRNA encoding an AMPA receptor subunit  (also cal led 

GluA2) is essential  for  the neuronal integr i ty by preventing Ca2 + inf lux.  Catalyt ical ly inact ive ADAR3 

inhibi ts edi t ing by ADAR1 and ADAR2 via competi t ive binding to dsRNA substrates. Adapted from 

ref. 3.       

sequences that are inversely orientated in the same transcript (inverted repeat Alus) can 

form a long double-stranded structure undergoing multiple editing.5 Recent findings have 

led to speculation that widespread RNA editing of Alu sequences in brain transcripts 

might contribute to increased cognitive capacity in humans compared to other primates.37-

39 Additionally, there is evidence that RNA editing within Alu sequences prevents 

interferon response by regulating the innate immune system. Recently, ADAR1 has been 
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shown to be the primary editor of Alu sequences and other repetitive elements.15,40 Several 

ADAR1 mutations have been identified in human patients with Aicardi-Goutières 

syndrome which is an autoimmune disease characterized by interferon overproduction.41 

These gene mutations are speculated to impair ADAR1 function and to result in the 

accumulation of immune-stimulatory dsRNA formed by repetitive sequences.41 MDA5 

is a pattern recognition receptor detecting viral dsRNA in the cytoplasm and mediating 

IFN response via its adapter protein MAVS.42 ADAR1-null mice die during the early 

stages of embryonic development with aberrant IFN production, liver disintegration, 

hematopoietic failure and widespread apoptosis.43-46 However, the embryonic lethality 

can be rescued by the loss of either MDA5 or MAVS.45,46 Recent data indicate that 

ADAR1-catalyzed editing of endogenous dsRNA formed by inverted repeat Alus inhibits 

recognition by MDA5, leading to the prevention of IFN production.47 Therefore, editing 

of Alu sequences by ADAR1 might serve as a mechanism for the innate immune system 

to discriminate self from non-self dsRNA (Fig. 2b). Additionally, ADAR1 appears to be 

involved in another mechanism ensuring the fine-tuning of the IFN-mediated immune 

response. It has been shown that ADAR1 inhibits translational shutdown in cells by 

preventing endogenous RNA from activating protein kinase R (PKR) during IFN 

treatment.40 This might be accomplished by the action of ADAR1 on Alu dsRNAs.40  

Recent data demonstrated independent functions of the ADAR1 isoforms in mice.46 

Whereas ADAR1p150 regulates the MDA5/MAVS pathway and is necessary for 

intestinal homeostasis as well as B-cell development, ADAR1p110 is required for kidney 

patterning and contributes to the editing of 5-HT2CR transcripts.46 It is still unknown 

whether the functions of the ADAR1 isoforms in multi-organ development and 

maintenance are dependent or independent of A-to-I editing. Editing independent 

functions of ADAR1 have been suggested since mice expressing catalytically inactive 

ADAR1E861A, leading to the same embryonic-lethal phenotype as ADAR1-null mice, 

exhibit normal development and reach adulthood without any loss of viability when 

MDA5 is additionally deleted, while ADAR1-null mice with deleted MDA5 or deleted 

MAVS survive only a few days after birth.45,46,48  

Sakurai et al. showed that ADAR1p110 is phosphorylated under cellular stress and 

is translocated to the cytoplasm to inhibit apoptosis independently of its catalytic 

activity.49 ADAR1p110 binds anti-apoptotic gene transcripts containing dsRNA 

structures in the 3’-UTR and protects them from Staufen1-mediated decay.49 Both 

ADAR1 isoforms have been reported to form a complex with Dicer, leading to enhanced 
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pre-siRNA and pre-miRNA processing without requiring the dsRNA-binding and 

deaminase activities of ADAR1.50 Additionally, ADAR1 can interact with Ago2 via 

Dicer and promote RNA silencing.50 

ADARs can also influence RNA silencing by catalyzing A-to-I editing in miRNAs. 

A considerable number of pri-miRNAs undergoes A-to-I editing in the human brain and 

depending on the pri-miRNA, RNA editing can either suppress or enhance Drosha 

processing.51 In some cases, pri-miRNA editing results in inhibition of pre-miRNA 

cleavage by Dicer.51,52 The replacement of adenosine by inosine in the seed region of 

miRNAs can alter their affinities for target mRNAs. For instance, miR-376a-5p has been 

shown to target a different set of genes when edited at the +4 position.53 In mice, edited 

miR-376a-5p has been found to be restricted to certain tissues and to contribute to 

decreased uric acid levels by silencing PRPS1, showing that tissue-specific regulation of 

the uric acid synthesis pathway can be managed by RNA editing-induced switching of 

miRNA target-specificity.53 Several studies have reported that A-to-I editing in the 3’-

UTR of transcripts can regulate mRNA levels by creating or disrupting miRNA-binding 

sites.54-57  

The physiological role of the catalytically inactive ADAR3 is less understood. A 

recent NGS-based study has indicated that editing levels in the brain are negatively 

regulated by ADAR3 expression.15 This might be accomplished by the competitive 

binding of ADAR3 to RNA editing substrates (Fig. 2b).23,58   

1.2.3 Regulation of A-to-I RNA editing 

RNA editing is dynamically regulated, but little is known about the underlying 

mechanisms determining which adenosine is edited at which rate. At the cis-regulatory 

level, the secondary structure of the dsRNA substrate has high influence on the editing 

outcome by modulating ADAR binding. In vitro studies have shown that multiple 

adenosines are converted within long stretches of dsRNA, such as Alu dsRNA.59,60 

However, in shorter dsRNA regions interrupted by loops, bulges and mismatches, only 

one or few adenosines are edited. It is suggested that these structural features restrict the 

binding of ADARs to certain regions of the substrate, leading to selective A-to-I 

editing.61,62 Additionally, RNA structural elements distantly located from the editing site 

have been shown to be required for efficient deamination.63-66 The neighboring bases 

around the target adenosine have a major impact on the editing rate. In vitro data revealed 

that both ADAR1 and ADAR2 prefer uracil as 5’- and guanosine as 3’-nearest 
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neighboring base of the target adenosine.67 Furthermore, 5’-GAN (N = G, C, A, U) triplets 

are highly disfavored for editing.67 Several NGS studies have also confirmed that editing 

sites with G at the -1 position (upstream) are depleted, whereas editing sites with G at the 

+1 position (downstream) are enriched.5-14 It has been reported that the neighbor 

preferences are mainly determined by the catalytic domain.67 In addition, an A:C 

mismatch at the editing site has been found to increase the editing level compared to a A-

U base pair at the same site.68 Consistent with this observation, an A:C mismatch at the 

Q/R site within GRIA2 pre-mRNA lead to efficient conversion of the target adenosine by 

ADAR1 which is unable to edit the wild-type Q/R site (A-U).69 Editing by both ADARs 

is remarkably inhibited when the target adenosine is mismatched with a purine base (A:A, 

A:G).68  

ADARs are important trans-regulators of A-to-I editing. As mentioned earlier, 

ADAR3 appears to inhibit ADAR1- and ADAR2-mediated editing in brain.15 

Additionally, it has been shown that ADAR2 edits an intronic site of its own pre-mRNA 

to induce alternative splicing.70 Consequently, the mature transcript contains 47 

additional nucleotides causing a reading frameshift which ends in a premature translation 

stop and in a non-functional protein.70 Recent data indicate that ADAR2 auto-editing 

represents a negative regulatory mechanism to adjust ADAR2 protein levels and substrate 

editing in vivo.71 In general, the total number of editing sites correlates with ADAR 

expression across human tissues as both increase from muscle to brain.13,15 In some cases, 

the levels of A-to-I editing in transcripts varies strongly across different tissues and does 

not correlate with ADAR expression.72,73 RNA editing at several sites increases during 

brain development, which can be explained by the enhancement of ADAR expression, but 

there are many sites which nevertheless exhibit stable editing yields.14 In addition, some 

of the identified sites are edited highly efficiently despite a low degree of double-

strandedness.14 This implies that A-to-I editing is not only trans-regulated by ADARs 

alone. High-throughput screening has identified a small number of enhancers and 

repressors of ADAR2-catalyzed RNA editing, but the underlying mechanisms for 

regulating enzyme activity remains speculative.74,75 ADAR1 has been reported to be 

catalytically inactive when it is in complex with DICER.50 The snoRNA HBII-52 

promotes 2’-O-methylation at the C-site within 5-HT2CR pre-mRNA and inhibits editing 

of the target adenosine.76 Additionally, the transcription factor CREB acts as negative 

regulator of ADAR1 expression in metastatic melanoma cells.77 Downregulation of 

ADAR1 inhibits editing of pri-miR-455, leading to the accumulation of mature wild-type 
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miR-455-5p which promotes melanoma growth and metastasis in vivo.77 In contrast, 

activation of CREB results in increased ADAR2 protein levels and GRIA2 Q/R site 

editing in rat brain.78 The nuclear localization and stability of ADAR2 is ensured by the 

prolyl isomerase Pin1, leading to enhanced RNA editing.79 In absence of PIN1, ADAR2 

is released into the cytoplasm and is targeted by the E3 ubiquitin-protein ligase WWP2 

promoting degradation.79 Very recently, ADAR2 has been found to be targeted by the 

transcription factor CLOCK inducing circadian gene expression.80 Accordingly, several 

transcripts are rhythmically edited by ADAR2 in vivo.80  

1.2.4 Structural and mechanistic insights into ADAR catalysis 

The crystal structure of the deaminase domain of ADAR2 (ADAR2-D) has revealed 

several important components including an inositol hexakisphosphate (IP6) molecule 

which is located in the enzyme core and is necessary for proper protein folding.81 Within 

the catalytic site, a zinc ion and a glutamate residue (E396) activate water for the 

hydrolytic deamination of adenosine.81 The glutamate probably serves as a proton shuttle 

and its mutation to alanine has been shown to abolish editing activity of ADAR1 (E912A) 

and ADAR2 (E396A).82,83 NMR structural studies on both dsRBDs of ADAR2 in 

complex with the RNA hairpin, where the R/G site of GRIA2 pre-mRNA is embedded, 

have revealed that the dsRBDs recognize both the sequence and the shape of the RNA 

substrate (Fig. 3a).84 Whereas dsRBD1 interacts with the upper part of the hairpin, 

dsRBD2 binds near the R/G site and is supposed to bring the deaminase domain in close 

proximity to the target adenosine.84 A yeast-based screen revealed that the substitution of 

a glutamate by a glutamine at position 488 in the deaminase domain enhances the catalytic 

rate of ADAR2.85 It has been indicated that the glutamine facilitates base-flipping which 

is suggested to be used by ADARs to perform deamination.85 In addition, the mutation 

has also been reported to increase the binding of ADAR2-D to a model substrate.86 A 

screen for mutations at the corresponding position in ADAR1-D (E1008X) showed that, 

besides glutamine, several other amino acids can also enhance the catalytic activity.87 

Recently, Matthews et al. described crystal structures of ADAR2-D and ADAR2-D 

E488Q bound to RNA substrates and showed that ADARs indeed use base-flipping to 

catalyze A-to-I editing (Fig. 3b,c).88 In this report, the authors used the adenosine analog 

8-azanebularine (8-azaN) as target base since its hydration generates a mimic of the 

proposed high-energy intermediate during the deamination reaction, leading to tight 
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Figure 3  Structural  insights into the interaction between RNA substrate and ADAR enzyme. (a)  NMR-

based structure of  the ADAR2 dsRBDs bound to the GRIA2 R/G si te-containing RNA hairpin. dsRBD1 

(red) contacts the upper part  of  the hairpin whi le dsRBD2 (blue) binds near the R/G si te (pink).  

Adapted from ref. 84. (b)  Crystal  structure of ADAR2-D E488Q bound to a model  substrate. During 

deaminat ion, the target base N (8-azaN, red) is f l ipped out and the glutamine residue 488 (yel low) 

contacts the opposite base to stabi l ize the al tered RNA structure. Highl ighted is also the Zn2 + ion 

(grey sphere), the IP6 molecule (space-f i l l ing, red and grey) and the ADAR2-specif ic RNA-binding 

loop (green). Adapted from ref.  88. (c)  Contacts between ADAR2-D E488Q and the RNA duplex. 

Adapted from ref. 88.  

substrate binding.89 While 8-azaN is flipped out and becomes accessible to the catalytic 

site, the residue 488 penetrates the RNA duplex and contacts the opposite base to stabilize 

the altered structure.88 Among further interactions between deaminase domain and RNA 

substrate, the structure revealed an RNA-binding loop whose sequence is different in 

ADAR1.88 The importance of this region (amino acids 454-479) for the activity of the 

ADAR2 deaminase domain has been confirmed by a high-throughput approach.90 It has 

been speculated that the loop might contribute to the different substrate specificities of 

ADAR1 and ADAR2.88 The comparison of the ADAR2-D/dsRNA crystal structure with 

a  b 

 

 

 

c 
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the NMR-based ADAR2 dsRBD2/dsRNA structure shows that ADAR2-D and dsRBD2 

contact the same region, leading to a clash between both domains. Therefore, researchers 

have proposed new structural models showing the concurrent binding of dsRBD2 and 

ADAR2-D to dsRNA without steric hindrance.91 However, it cannot be excluded that 

both domains bind sequentially, meaning that dsRBD2 first contacts the region containing 

the editing site which is then released for the interaction with the deaminase domain.    

1.3 Targeting RNA as therapeutic strategy 

Classical approaches to treat diseases include targeting of enzymes and receptors with 

small molecule agonists and antagonists to modulate their activity. However, RNA is 

increasingly moving into the spotlight as a therapeutic target and/or agent. Therapeutic 

intervention on the RNA level is particularly useful when the targeting of the disease-

related protein fails or when disorders are induced by RNA itself, such as dysregulated 

miRNAs or CAG-repeat RNAs. Furthermore, targeting RNA offers the possibility not 

only to up- or downregulate gene expression but also to generate new transcripts and 

protein products, for instance by creating or deleting splice sites. Antisense 

oligonucleotides (ASOs) interact with RNA via Watson-Crick base-pairing and regulate 

RNA function through various mechanisms.92-94  

Medicinal chemists designing ASOs face many challenges concerning the 

pharmacokinetic and pharmacodynamic properties of ASOs. One typical modification is 

the replacement of a non-bridging phosphate oxygen atom in the nucleic acid backbone 

by a sulfur atom (Fig. 4a). The resulting phosphorothioate (PS) linkage enhances nuclease 

stability and prevents rapid renal filtration of ASOs by increasing their binding to plasma 

proteins. Another possibility to enhance nuclease resistance of oligonucleotides is the 

substitution of the sugar-phosphate backbone by phosphorodiamidate linkages, leading 

to so-called morpholinos (Fig. 4a). Furthermore, ASOs often contain sugar modifications 

at the 2’-position (Fig. 4a). Using modified nucleosides with 2’-fluoro (F), 2’-O-methyl 

(OMe) or 2’-O-methoxyethyl (MOE) groups increases the stability, potency and 

immunoresistance of nucleic acid-based drugs. The stability and potency are further 

improved by applying 2’-O,4’-C-methylene-bridged nucleic acids termed LNAs (locked 

nucleic acids; Fig. 4a). LNA and its analogs (cEt, ENA) are widely used for the new 

generation of ASO drug candidates.95-97 Recently, oligonucleotides have been conjugated 

with triantennary N-acetylgalactosamine (GalNAc3) mediating liver-specific uptake.98,99  
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Several concepts using ASOs have been successfully translated to the clinic. The 

majority of ASO drugs tested in clinical studies promotes RNase H-mediated target RNA 

cleavage (Fig. 4b). Interaction between short DNA oligomers and target mRNAs results 

in the formation of heteroduplexes, which are recognized by RNase H1. When the 

enzyme binds to such a heteroduplex, it catalyzes the cleavage of the RNA substrate.100 

The DNA oligomer remains intact and is released after RNA degradation. RNase H-

dependent ASOs of the 1st generation contain a PS backbone, such as fomivirsen 

(Vitravene) which was the first FDA-approved ASO and was given to AIDS patients 

suffering from CMV retinitis.101-103 2nd generation ASOs are designed as so-called 

gapmers that are typically 20 nt long PS oligonucleotides with a central DNA gap 

allowing RNase H-mediated cleavage and with five flanking 2’-MOE-modified residues 

at both ends. A representative of this class is the FDA-approved mipomersen (Kynamro) 

targeting apolipoprotein B-100 mRNA for the treatment of familiar 

hypercholesterolemia.104-106 Recently developed gapmers are also terminally modified 

with an analogue of LNA (cEt) and/or conjugated with GalNAc3.98 Remarkably, the 

conjugation of GalNAc3 has been shown in a Phase I/IIa study to increase the target 

affinity (potency) of an MOE gapmer more than 30-fold for lowering plasma levels of 

apolipoprotein(a).107     

RNA interference (RNAi) as a therapeutic strategy can be achieved by small 

interfering RNAs (siRNAs; Fig. 4b). Such ASOs are 21-23 nt RNA duplexes with 2 nt 

overhangs at their 3’-ends.108,109 The duplexes contain the target RNA sequence on the 

one strand (passenger strand) and the complementary sequence on the other (guide 

strand). Once delivered into the cell, siRNA is recognized by the RNA-induced silencing 

complex (RISC) which discards the passenger strand and retains the guide strand. To be 

preferably selected, the guide strand needs to fulfill several requirements, including that 

its 5’-terminus is located at the less stable end of the RNA duplex.110 The guide strand 

steers RISC to the target RNA which is subsequently cleaved by the RISC component 

Ago2. Therapeutic RNAi in the liver has benefited from the encapsulation of siRNA into 

lipid nanoparticles (LNPs) exhibiting hepatic accumulation. One of the most promising 

siRNA drugs is patisiran which contains 2’-OMe-modified nucleosides and 3’-terminal 

dT overhangs. The siRNA is delivered by LNPs to target transthyretin mRNA in patients 

suffering from hereditary ATTR amyloidosis.111,112 After successfully completing a Phase 

III trial, the drug is expected to be approved.113 Besides RNase H-dependent ASOs, 
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Figure 4  Chemical  modi f icat ion enables ef f ic ient RNA targeting by antisense ol igonucleot ides 

(ASOs). (a) Select ion of nucleic acid modif icat ions commonly used in ASOs. Adapted and modif ied 

from Manuscript  (Man.) 6 (b)  Classical  ant isense-mediated mechanisms of act ion. ASOs appl ied for 

the treatment of diseases modulate RNA spl ic ing or promote RNA degradat ion via RNase H1 or RISC. 

RNase H-mediated RNA cleavage can be directed by ASOs in the nucleus and in the cytoplasm.1 1 4  

Adapted and modif ied from Man. 6.          

GalNAc3 has also been conjugated to siRNAs to enable specific liver uptake.99 Various 

GalNAc3-siRNA conjugates are currently being evaluated in clinical trials.115 

Another application field of therapeutic ASOs is the regulation of pre-mRNA 

splicing (Fig. 4b).116 Such ASOs are termed as splice-switching oligonucleotides (SSOs). 

Most recently, the FDA has approved two SSOs promoting exon skipping and exon 

retention in pre-mRNA to treat Duchenne muscular dystrophy (DMD) and spinal 

muscular atrophy (SMA), respectively. DMD is a rare muscle wasting disease mostly 

resulting from exonic out-of-frame deletions in the DMD gene encoding dystrophin. The 

morpholino-based oligomer eteplirsen (Exondys 51) binds to an internal splicing 

enhancer in DMD pre-mRNA and promote skipping of exon 51 to restore the ORF.117 

Consequently, dystrophin is truncated, but can partially fulfill its role in the maintenance 

of muscle integrity, leading to the milder Becker muscular dystrophy phenotype. 14% of 

all DMD patients could benefit from the approved SSO-based drug.118 SMA is 
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characterized by motor neuron loss with subsequent muscle wasting. The 

neurodegenerative disease results from mutations in the survival of motor neuron 1 

(SMN1) gene. The closely related SMN2 gene can potentially compensate the loss of 

SMN1 function, but it contains a C-to-T point mutation in a splicing enhancer within exon 

7. Due to this mutation, exon 7 is not included into most of the mature SMN2 transcripts 

during splicing, leading to an insufficient amount of functional protein.119 Nusinersen 

(Spinraza) is a 2’-MOE PS-modified SSO recently approved for the treatment of SMA. 

The ASO drug targets an intronic splicing silencer within intron 7 of SMN2 pre-mRNA 

and has been shown to increase functional SMN protein levels by promoting exon 7 

inclusion.120       

1.4 Novel concepts for manipulating genetic information 

1.4.1 Genome engineering 

In recent years, tools to introduce specific changes in the genome of organisms have 

become very popular in basic research. Genome engineering approaches often rely on the 

induction of DNA double-strand breaks (DSBs) which are repaired by different 

mechanism, including nonhomologous end-joining (NHEJ) and homology-directed 

repair (HDR; Fig. 5a).121 NHEJ leads to random insertions or deletions (indels) at the site 

of the DSB. Since indels can create translational frameshifts, NHEJ is useful to disrupt 

gene functions. In contrast, HDR enables the insertion of single nucleotide substitutions 

or transgenes by an exogenously given DNA template that contains homologous 

sequences to the flanking regions of the DSB. However, NHEJ occurs concurrently and 

reduces the rate of HDR. To introduce site-specific DSBs, several programmable 

nucleases have been applied.  

 Meganucleases are obtained by protein engineering of naturally occurring DNA 

endonucleases (Fig. 5b).122 Since the DNA recognition activity and the cleavage activity 

coexist in a single domain, changing the recognition specificity of meganucleases for 

targeting different genomic loci without affecting its cleavage activity is a major 

challenge which limits the use of these enzymes for genome engineering.123  

Zinc-finger nucleases (ZFNs) are fusion proteins between an array of zinc-finger 

DNA-binding domains and the non-specific cleavage domain of the FokI endonuclease 

(Fig. 5b).124 The zinc-finger DNA binding domains, each usually contacting three base 
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pairs of DNA, can be designed to target any chosen sequence, but the creation of a zinc- 

finger array with high binding affinity remains laboriously.123  

Transcription activator-like effector nucleases (TALENs) are constructed similar to 

ZFNs (Fig. 5b). DNA recognition is ensured by TALE repeats, each binding a single base 

pair.125,126 According to a user-defined sequence, an array of TALE repeats is constructed 

and fused to the FokI cleavage domain inducing a DSB at the chosen site.127 In contrast 

to ZFNs, TALENs are easy to design, but their highly repetitive nature and their large 

size limit their potential to be delivered by viral gene delivery vehicles for in vivo 

applications.123  

A major drawback of all above-mentioned approaches is the need to design a new 

site-specific nuclease for each new target site. Recently, genome engineering has been 

revolutionized by using Cas9 (CRISPR-associated protein 9; Fig. 5b). The endonuclease 

originated from bacteria and is part of type II CRISPR-Cas immunity systems providing 

protection against invading MGEs (mobile genetic elements), such as viruses and 

plasmids.128,129 Foreign DNA is degraded and short fragments are integrated as new 

spacers into the CRISPR array. The array is transcribed and processed into CRISPR 

RNAs (crRNAs), each interacting with a second short RNA known as trans-activating 

CRISPR RNA (tracrRNA). The crRNA-tracrRNA duplex and Cas9 form a CRISPR 

ribonucleoprotein (crRNP) complex for targeting a region called protospacer in which 

one strand contains the complementary sequence to the crRNA. It has been revealed that 

DNA cleavage by Cas9 requires the presence of a specific protospacer adjacent motif 

(PAM) downstream the non-complementary strand of the protospacer.130 Once the PAM 

is recognized, the endonuclease unwinds the DNA duplex for the hybridization between 

the crRNA and the complementary DNA strand.131 The subsequent cleavage within the 

protospacer by Cas9 produces a blunt DSB. The 1,368-amino acids Cas9 nuclease 

adapted from Streptococcus pyogenes is most widely used for genome engineering 

experiments and recognizes the simple PAM sequence of 5’-NGG.130 In a typical 

experiment, genome engineering in cells is realized by the presence of the Cas9 nuclease 

and of a guide RNA (gRNA) which is a fused version of crRNA and tracrRNA.132 At the 

5’-end, the gRNA consists of a variable region of 20 nucleotides that are designed to 

target to a chosen DNA sequence undergoing site-specific cleavage by Cas9. The number 

of genomic sites allowing the induction of a DSB by Cas9 is limited as the targeted 

sequences needs to be followed by a PAM sequence. To redirect Cas9 nuclease activity 

to a new appropriate target site, only the 20 nucleotides in the variable region of the gRNA 



 INTRODUCTION          15 
 

must be changed according to the DNA sequence, but the nuclease does not require any 

new protein design which would be necessary when using meganucleases, ZFNs or 

TALENs. Since the first report on genome engineering by CRISPR-Cas9, there has been 

an explosion of published work demonstrating successful gene targeting in various cell 

types and organisms. In contrast to the other genome engineering platforms, Cas9 does 

not require dimerization for its nuclease activity, leading to initial concerns that CRISPR-

Cas9 exhibits higher off-target activity. However, the use of shorter gRNAs, paired Cas9 

nickases, dimeric Cas9-FokI fusion proteins, high-fidelity Cas9 variants or small 

molecule-activated Cas9 nucleases has significantly improved the target specificity of 

this approach.133  

Due to its simplicity, the CRISPR-Cas9 technology is routinely used for efficient 

gene disruption by NHEJ-induced indels. However, the HDR strategy to introduce 

specific changes in the genome is still too inefficient to be widely used for gene repair. 

As mentioned before, the strategy relies on a DSB which can also concurrently lead to 

the formation of unintended indels by NHEJ. Recently, HDR efficiencies have been 

improved by several strategies, including rational template design and inhibition of 

NHEJ.133 Another strategy for efficiently introducing point mutations applies CRISPR 

base-editing systems that do not rely on inducing DSBs and subsequent HDR-mediated 

genome engineering. Currently used editing systems are fusion proteins composed of a 

single-strand-breaking Cas9 nickase, a cytosine deaminase and an uracil glycosylase 

inhibitor (Fig. 5c).134 An added gRNA steers the fusion protein to the protospacer and 

forms a duplex with the complementary strand, while the non-complementary strand 

containing the PAM undergoes C-to-U editing catalyzed by the cytosine deaminase. The 

glycosylase inhibitor prevents base excision repair of the resulting uracil, whereas the 

Cas9 nickase-induced break within the non-deaminated strand promotes mismatch repair, 

leading to the generation of an A-T base pair from the former G-C base pair. Recently, a 

highly engineered CRISPR base editing system has been presented which enables the 

targeted substitution of A-T base pairs by G-C base pairs in DNA.135 This was 

accomplished by the fusion of a Cas9 nickase and a mutant derived from E. Coli t-RNA-

specific adenosine deaminase (TadA). When the fusion protein is directed to the target 

DNA via an appropriate gRNA, the TadA mutant component catalyzes A-to-I editing 

within the displayed strand. After DNA repair or replication, an G-C base pair is present 

at the target site. Compared to HDR-mediated genome engineering, base editing systems 
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Figure 5  Genome engineering. (a)  Altering genet ic information often rel ies on the si te-speci f ic  

induction of a DNA double strand break (DSB). DSBs can be repaired by nonhomologous end-joining 

(NHEJ) result ing in random insert ions or delet ions ( indels).  Homology directed repair  (HDR) is 

induced in the presence of a single- or double-stranded DNA donor template, leading to the speci f ic  

insert ion of  single nucleot ide substi tut ions or t ransgenes. (b) Si te-speci f ic DSBs have been 

introduced by four types of  programmable nucleases. Meganucleases, ZFNs and TALENs need to be 

re-engineered to bind a new target s i te.  This is s impl i f ied by the usage of Cas9 which only requires 

a PAM (Protospacer-adjacent moti f ) near the target si te and the change of the antisense sequence 

wi thin the single guide RNA (sgRNA). In contrast to the other nucleases, Cas9 induces blunt DSBs 

(red dashed l ine). Adapted from ref. 136. (c)  CRISPR-base edi t ing systems enable si te-speci f ic G-C 

to A-T base pair substi tut ions in genomic DNA without the induction of  a DSB. This is accomplished 

by a fusion of a Cas9-nickase, a cytosine deaminase (here: APOBEC1) and an uraci l  glycosylase 

inhibi tor (UGI).   

offers higher efficiencies of single nucleotide changes while minimizing indel formation 

at the target site.134,135 However, these systems have been reported to cause off-target 

editing in the genome and are dependent on a PAM sequence which need to be located in 

a defined distance from the target base.135,137 Additionally, the systems are unable to 

distinguish between multiple copies of the target DNA base within the editing window 

(~ 5 nucleotides).134,135 
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1.4.2 Site-directed A-to-I RNA editing 

In 1995, Tod Woolf and co-workers introduced the concept of site-directed A-to-I RNA 

editing.138 They could show that ADAR activity can be directed to catalyze RNA editing 

within a reporter mRNA inside Xenopus embryos when the mRNA was hybridized with 

a 52 nt oligonucleotide prior micro-injection.138 Since then, several approaches have been 

developed enabling site-directed A-to-I editing within RNA to manipulate protein and 

RNA function without interfering at the DNA level.     

In this PhD project, I applied so-called SNAP-ADAR (SA) enzymes. O6-

alkylguanine-DNA alkyltransferase (AGT) is responsible for the repair of O6-

alkylguanine in DNA by irreversibly transferring the alkyl group to a definite cysteine 

residue in the protein.139 It has been reported that proteins fused to a mutated version of 

AGT termed SNAP-tag can be labelled by O6-benzylguanine (BG) derivatives in vitro 

and in cell culture.140 Subsequently, the SNAP-tag has been further engineered to obtain 

increased activity towards BG derivatives, low affinity to DNA and improved expression 

in cells.141 Stafforst & Schneider reported the usage of the SNAP-tag for the design of the 

first published example of an engineered, RNA-guided deaminase performing site-

directed RNA editing.142 The promiscuity of ADARs mainly derives from their dsRBDs 

binding to various dsRNA structures. Therefore, the dsRBDs of ADAR1 were replaced 

by the SNAP-tag, leading to the generation of SNAP-ADAR1 (SA1; Fig. 6a,b). The 

SNAP-ADAR (SA) approach also includes customized gRNAs that can be commercially 

acquired and contain a 5’-amino-C6 linker at the 5’-end for the coupling with BG. BG-

modified gRNA (BG-gRNA) is covalently bound to the SNAP-tag and forms conjugates 

with the SA enzyme in a one-to-one ratio. The bound gRNA directs the enzyme to the 

complementary sequence of a chosen RNA and creates a duplex structure with a central 

A:C mismatch at the target site. Such a duplex structure is considered necessary for the 

efficient and selective editing of the target adenosine by the deaminase domain. In vitro 

data has shown that SA1 driven by 20 nt gRNAs is able to selectively correct nonsense 

and missense mutations in reporter transcripts, leading to the restoration of protein 

function.142 In the next report, our group showed in vitro that optimizing the gRNA results 

in the editing of all four 5’-NAG triplets by SA1 and SA2 (SNAP-ADAR2) with yields 

≥ 80% obtained for 5’-UAG, 5’-AAG and 5’-CAG.143  Editing of the less preferred 5’-

GAG triplet yielded in ~ 50% and required a gRNA with a mismatching A or G opposite 

the 5’-neighboring base to the target adenosine.143 Besides an A:C mismatch, also an A-U 
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Figure 6  Approaches to perform site-directed A-to-I  RNA edi t ing. (a) ADAR-derived art i f ic ial  enzymes 

or wi ld-type ADARs can be recrui ted by gRNAs to enable si te-speci f ic  A-to-I substi tut ions in target 

RNAs. ADAR-D, ADAR deaminase domain; BG, benzylguanine; MCP, MS2 coat protein; dsRBD, 

dsRNA-binding domain. (b) The SNAP-ADAR (SA) approach. The deaminase domain of  hADAR is 

fused to the so-cal led SNAP-tag which covalently binds benzylguanine (BG)-modif ied gRNA. The 

gRNA directs the SA enzyme to the target RNA and forms the duplex structure required for ef f ic ient 

A-to-I  edit ing. Adapted and modi f ied from Man. 5. 

base pair at the target site can lead to quantitative editing yields in vitro.143 In contrast, an 

A:G mismatch abolishes editing and can be used to prevent unintended off-target editing 

within the gRNA/mRNA duplex.143 

Cas13b enzymes have been previously identified as RNA-guided RNases 

belonging to type IV CRISPR-Cas systems.144 Comprehensive screening of Cas13 family 

members revealed that the Cas13b ortholog from Prevotella sp. P5-125 enables efficient 

and specific RNA knockdown in mammalian cells without evident sequence 

constraints.145 The Cas13b enzyme was engineered to lack catalytic activity and fused to 

the ADAR2 deaminase domain carrying the hyperactive E488Q mutation to create an 

artificial RNA editing enzyme (dCas13b-ADAR2Q; Fig. 6a).145 Expressing both 

dCas13b-ADAR2Q and ~ 85 nt gRNA, containing a 3’-terminal stem-loop and a 

targeting sequence at the 5’-end, enables site-directed RNA editing. Additionally, a 

highly-specific variant (dCas13b-ADAR2Q T375G) has been described which was 



 INTRODUCTION          19 
 

obtained from the substitution of threonine for glycine at position 375 within dCas13b-

ADAR2Q.145   

 The group of J. Rosenthal have replaced the dsRBDs of ADAR2 by a 22 amino 

acids long peptide (λN) which is derived from the N protein of bacteriophage λ and binds 

with high affinity to boxB RNA which forms a hairpin structure (Fig. 6a).146 Once the 

boxB hairpin is fused to an RNA oligonucleotide (boxB-gRNA), which is complementary 

to the sequence of interest, it can guide λN-ADAR2 to the target site.  

 A similar system has been presented by Azad et al. who performed site-directed 

RNA editing by an artificial enzyme (MCP-ADAR1) derived from the fusion of the 

deaminase domain of ADAR1 and the bacteriophage MS2 coat protein (MCP) which 

exhibits high affinity binding to a specific stem-loop structure in MS2 RNA (Fig. 6a).147 

gRNAs containing six MS2 RNA stem-loops (MS2-gRNA) have been shown to direct 

MCP-ADAR1 for specific A-to-I RNA editing.147   

Our laboratory and others have developed a strategy enabling specific A-to-I 

substitutions in target RNAs by ADAR2.148,149 ADAR2 is steered by a guide RNA 

(gRNA) forming, together with the target RNA, a structure which mimics the hairpin 

where the GRIA2 R/G editing site is embedded (Fig. 6a). At one end, the gRNA consists 

of the imperfect stem-loop (R/G motif) which is intended to be recognized by the dsRBDs 

of ADAR2. At the other end, the gRNA sequence is complementary to the user-defined 

target RNA. The gRNA design can also be used to recruit the ADAR1 isoforms p110 and 

p150.150 So far, published studies have applied ectopically expressed ADAR enzymes. 

However, ongoing studies in our group show that even endogenous ADAR enzymes can 

be recruited for site-directed RNA editing. This is accomplished by applying chemically 

modified gRNAs instead of using gRNAs expressed from plasmids. 
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2 Aims of this study 

Tools for the manipulation of genetic information have great potential for various 

applications in medicine and the life sciences. Genome engineering has been simplified 

by CRISPR-Cas9 tools which are applied in many laboratories to study gene function in 

vitro and in vivo. It appears promising that the CRISPR-Cas9 technology might be 

therapeutically used in the future to correct disease-causing mutations. However, 

changing the genome gives rise to urgent ethical questions associated with germline gene 

modification.151 There are also safety concerns regarding the therapeutic applicability of 

genome engineering tools which can induce unintended off-target mutations permanently 

persisting at the DNA level. In this regard, tools for manipulating genetic information at 

the RNA level are highly desired since ethical issues can be circumvented and potentially 

produced off-target mutations in RNA can be considered as reversible. The transient 

nature of RNA changes also allows to temporarily intervene in biological processes, such 

as inflammation or signal transduction, whose permanent alteration could have harmful 

effects. Additionally, the extend of specifically introduced RNA changes can be 

potentially adjusted from 0% to 100% to precisely regulate their biological outcome. 

 The SA approach differs from all other approaches for site-directed RNA editing 

due to the in situ covalent bond formation between gRNA and editing enzyme. Recent 

reports from our group successfully demonstrated that the unique assembly strategy 

enables SA enzymes to be recruited by small BG-gRNAs for efficient RNA editing in a 

PCR reaction tube.142,143 The study described here addressed the question of how 

powerful the SA approach is for future applications. Therefore, it was aimed at testing the 

performance of RNA-guided SA enzymes in mammalian cells. The editing system was 

extensively characterized regarding achievable editing yields, duration of RNA editing, 

the scope of editable triplets and gRNA potency. Additionally, possible applications in 

medicine and the life sciences were tested and discussed. This included the correction of 

disease-causing mutations, the manipulation of signal transduction and the light-driven 

translocation of proteins. The transcriptome-wide identification of off-target editing sites 

by NGS-based analysis provided insights into the specificity of SA enzymes. The 

performance of the BG-gRNA/SA editing system was compared with those of the other 

editing systems to assess whether the SA approach sets a new benchmark for site-directed 

RNA editing.     
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3 Results and discussion 

This section contains the summary and the discussion of the results described in the 

research manuscripts (Man. 1-4).   

3.1 SNAP-ADAR enzymes enable site-directed RNA editing 

in cell culture 

The SA enzyme is genetically encodable and can be delivered via plasmid transfection 

for its expression in mammalian cells. In contrast, the gRNA is not encodable since it 

requires the modification with O6-benzylguanine (BG) to recruit the SA enzyme.142 

Besides the BG modification at the 5’-end, the gRNAs lacked any other chemical 

modification in former in vitro experiments.142,143 However, to successfully perform site-

directed RNA editing in cells, we anticipated that the gRNA requires chemical 

modification to enhance its nuclease resistance. Therefore, the BG-gRNA has been 

modified according to antagomirs which are ~ 22 nt RNA oligonucleotides antagonising 

miRNAs. Antagomirs, containing terminal PS linkages and global 2’-OMe-modified 

nucleosides, have been shown to ensure miRNA silencing in mice over three weeks.152 

Similar to unmodified BG-gRNAs, the first antagomir-like BG-gRNA was designed to 

contain 17 nucleotides complementary to the chosen sequence, excepting a central 

mismatching C (counter base) facing the target A, and three non-complementary 5’-

terminal nucleotides that serve as a linker between the gRNA and the SA enzyme. 

According to the antagomir design, the BG-gRNA contained two PS linkages at the 5’-

end and four at the 3’-end. Additionally, the BG-gRNA was globally modified with 2’-

OMe groups leaving a gap of three unmodified ribonucleosides that comprise the 

mismatching C and its two nearest neighbors. The impact of the antagomir design on the 

editing performance was first tested in vitro by M. F. Schneider (T. Stafforst group). 

When targeting a premature 5’-UAG stop codon at position 66 within eCFP mRNA 

(eCFP W66X), RNA editing was performed by SA1 to the same extend when using 

unmodified BG-gRNA or its antagomir-modified analog (Man. 1, Fig. 1a,f). The result 

was unexpected since oligonucleotides with such extensive modification typically impair 

the activity of nucleic-acid-driven enzymes. For example, RNase H activity has been 

shown to require gapmers containing a central region of at least five unmodified 2’-deoxy 

residues.153 RISC-mediated RNA cleavage appears to be most efficient when using only 

modestly modified siRNAs. In particular, the siRNA guide strand is sensitive to base 
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modifications within its seed region (position 2-8) which is most important for target 

recognition.110,154 In contrast to SA1, SA2 seems not to tolerate extensively modified 

gRNAs, since the in vitro editing of eCFP W66X was reduced by ~ 40% when using 

antagomir-like BG-gRNA instead of the unmodified BG-gRNA (Man. 1, Fig. 1a,f). 

Considering the published crystal structure of the ADAR2 deaminase domain bound to 

dsRNA, the reduced editing activity of SA2 with the antagomir-like BG-gRNA may arise 

from decreased interaction between deaminase domain and gRNA.88 The PS linkage 

between the nucleotides 16 and 17 within the gRNA could prevent the interaction with 

the arginine residue at position 474 in the ADAR2 deaminase domain (see Introduction, 

Fig. 3c) and could therefore lead to a destabilization of the duplex structure between 

gRNA and target mRNA during deamination. 

 Due to the results obtained from the in vitro editing experiments, SA1 was chosen 

to perform site-directed RNA editing in mammalian cells. For their CMV promoter-

controlled gene expression, SA1 and CFP W66X were cloned into pcDNA3.1 plasmids. 

2×105 HEK 293T were seeded in a 24-well format and incubated for 24 hours before they 

were transiently transfected with 1800 ng of each plasmid + 14.4 µl Lipofectamine 2000 

(ratio = 1 µg plasmid : 4 µl Lipofectamine 2000). After 24 hours, 4×104 cells were 

transferred into a 96-well format. One day later, the cells were transfected with 50 pmol 

gRNA + 2.5 µl Lipofectamine 2000 and incubated again for 24 hours before fluorescence 

microscopy. In case of RNA editing, the premature 5’-UAG stop codon is converted back 

to a tryptophan codon (5’-UIG) leading to restored eCFP fluorescence. Indeed, eCFP 

signal was detected in cells after transfecting them with the same antagomir-like BG-

gRNA used in the in vitro experiment before (Man. 1, Fig. 2e). To demonstrate the 

restored fluorescence resulted from the RNA editing of the targeted stop codon at position 

66, RNA was isolated from the cells, treated with DNaseI to remove DNA contaminations 

and reverse transcribed into cDNA which was then amplified by Taq-PCR for Sanger 

sequencing. Besides the signal for adenosine, Sanger sequencing revealed an additional 

signal for guanosine at the target site (Man. 1, Fig. 2h). This shows that the target 

adenosine was successfully converted to inosine indicated by the presence of the 

additional guanosine signal. Around 30% editing yield was calculated by dividing the 

height of the resulting guanosine peak by the sum of the peak heights of guanosine and 

adenosine. Additionally, eCFP W66X/SA1-coexpressing cells were transfected with 

either BG-gRNA without any chemical modification or antagomir-like NH2-gRNA 

lacking the BG moiety. In both cases, the editing yield was ≤ 5% (Man. 1, Suppl. Fig. 
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7b,e) and only a small fraction of the cells showed restored eCFP fluorescence compared 

to cells transfected with BG-antagomir-like gRNA (Man. 1, Fig. 2d,g). Therefore, 

efficient site-directed RNA editing with SA enzymes in cell culture requires a gRNA 

which is chemically modified and conjugated to BG. Chemical modification was 

necessary to enhance the nuclease resistance of the gRNA, but probably also to improve 

its potency.92-94 The BG conjugation was essential because BG enables the gRNA to 

recruit the SA enzyme as shown by former in vitro experiments142 and by all further 

studies described here (Man. 2, Fig. 2-4; Man. 3, Fig. 1-4; Man. 4, Suppl. Fig. 14, 

Suppl. Note 1).   

 After proving that site-directed RNA editing with SA enzymes can be indeed 

achieved in cell culture, several parameters of the cellular assay have been further 

optimized in collaboration with A. Hanswillemenke (T. Stafforst group) to improve the 

editing yield for the next study (Man. 2). We chose eGFP as a new reporter for editing 

since it is brighter than eCFP and can be made visible in cells even in case of a low 

concentration. According to this, the amount of plasmid with integrated reporter gene was 

reduced to 500 ng per 24-well format. For the transfection, the ratio of plasmid to 

Lipofectamine 2000 remained 1 µg : 4 µl. The gRNA transfection procedure was changed 

from forward to reverse transfection, meaning that 24 hours after plasmid transfection, 

the cells were detached and given to the prepared transfection mixture containing the 

gRNA. Similar protocols have been reported to be very efficient for the delivery of siRNA 

into mammalian cells.155,156 The amount of Lipofectamine 2000 used for the gRNA 

transfection has been reduced from 2.5 µl to 0.5 µl per 96-well. To maintain the viability 

of the cells, the plasmid and the gRNA transfections required cell confluences ≥ 80% 

(2×105 cells/24-well) and ≥ 50% (6×104 cells/96-well), respectively. A premature 5’-

UAG stop codon was introduced at position 58 within eGFP (eGFP W58X) and served 

as a target site for RNA editing which was examined by Sanger sequencing and by 

fluorescence microscopy visualizing restored eGFP fluorescence. The chosen BG-gRNA 

was designed similarly to the BG-gRNA used for eCFP W66X editing, but the target-

complementary sequence was extended by two additional nucleotides at the 3’-end (Man. 

2, Suppl. Table 9). The new BG-gRNA design was applied in all subsequent studies and 

is shown in Suppl. Fig. 1b of Man. 4. With a constant BG-gRNA amount of 10 pmol/96-

well, the yield of eGFP W58X editing ranged from ~ 20% with 25 ng SA1 plasmid to 

~ 45% with 200 ng plasmid (Man. 2, Suppl. Fig. 19). With a constant SA1 plasmid 

amount of 100 ng, the editing yield increased from ~ 20% with 2 pmol to ~ 45% with 25 
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pmol or 50 pmol BG-gRNA (Man. 2, Suppl. Fig. 20). The results obtained from the new 

cellular assay indicate the possibility to adjust site-directed RNA editing by varying the 

expression of the SA enzyme and the amounts of the gRNA. To test the efficiency of the 

editing system under in vivo conditions, eGFP W58X editing was performed inside the 

annelid Platynereis dumerilii by T. Kuzdere (T. Stafforst group). For this, zygotes were 

micro-injected with the BG-gRNA and two mRNAs encoding SA1 and eGFP W58X. 

Indeed, restored GFP fluorescence was detected by microscopy one day after 

microinjection when the zygotes develop into trochophores (Man. 2, Fig. 4). 

Correspondingly, Sanger sequencing of the eGFP W58X cDNA revealed an editing yield 

of ~ 70%. The worms showed no obvious abnormalities during their early development. 

Taken together, the results show that the SA approach enables efficient RNA editing in 

Platynereis dumerilii and might therefore also be applicable in higher organisms.  

Another study was conducted to demonstrate the efficiency of the editing system 

(Man. 4). For this, the SA plasmid was integrated as a single copy in the genome of 293 

Flp-In T-REx cells under the control of a doxycycline-inducible CMV promoter. It was 

already known before that the expression of the SA enzyme in such cells is more 

homogeneous and much weaker than its transient expression in HEK 293T cells (Man. 

3, Suppl. Fig. 5,12,15). I generated four cell lines expressing SA1, SA2, SA1Q (SNAP-

ADAR1Q) or SA2Q (SNAP-ADAR2Q). The latter two harbor the hyperactive E/Q 

mutation in their deaminase domain.85,87 gRNAs were designed according to the gRNA 

used for eGFP W58X editing. For experiments, 3×105 cells were seeded in a 24-well 

format and incubated with 10 ng/ml doxycycline for 24 hours. To obtain editing at a 

respective site, 8×104 cells were reverse-transfected typically with 5 pmol BG-gRNA + 

0.75 µl Lipofectamine 2000 and incubated again with 10 ng/ml doxycycline in a 96-well 

format. After one day, RNA was isolated and processed as usual to determine the editing 

yield by Sanger sequencing. The SA enzymes were first directed to specific 5’-UAG 

triplets in the 3’UTRs of their own transcripts and of endogenous GAPDH, ACTB and 

GUSB. Editing yields of 40-80% (average 60%) were obtained when using SA1 and SA2 

cells (Man.4, Fig. 1a). The editing yield was dependent on the targeted transcript 

(GAPDH ≈ ACTB > GUSB > SA) rather than on the enzyme. According to the results 

obtained from the above-mentioned in vitro experiment, it was expected that the editing 

performance of SA2 may be impaired by using extensively modified gRNAs. However, 

it seems that the new gRNA design is well tolerated by the ADAR2 deaminase domain. 

Due to the extension of the gRNA, the four terminal PS linkages are shifted by two 
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nucleotides to the 3’-end, leading to additionally unmodified phosphodiester linkages 

between the nucleotides 16, 17 and 18. Regarding the previous discussion, it is tempting 

to speculate that the restored editing activity of SA2 resulted from the disappearance of 

the PS linkage between the nucleotides 16 and 17 in the gRNA. When BG-gRNA was 

transfected into SA1Q and SA2Q cells, editing was increased (65-90%, average 80%) 

compared to the cells expressing the wild-type SA enzymes (Man. 4, Fig. 1a). This was 

particularly true for GUSB and SA transcripts whose editing clearly profited from the 

activated SA enzymes which exhibit similar editing performances. The SA1Q and SA2Q 

cells were further used to investigate how long RNA editing stays stable after the 

transfection of the BG-gRNA targeting the 5’-UAG triplet in the 3’-UTR of GAPDH. It 

could be shown that 3 hours after gRNA transfection, maximum editing was achieved 

(Man. 4, Fig. 1b). The editing yield remained stable (80-90%) for three days and declined 

slightly afterwards, reaching ~ 60% at day 5 post-transfection. The reduction of editing 

may result from the dilution of the BG-gRNA-deaminase complex in the fast-growing 

cell line which was cultivated in medium supplemented with 10% FBS. Thus, the duration 

of stable editing may be even longer when using slowly dividing or non-dividing cells. 

M. Moschref (T. Stafforst group) showed that site-directed RNA editing was adjustable 

from 5% to 90% when targeting a 5’-UAG triplet in the ORF of GAPDH with increasing 

BG-gRNA amounts (39 fmol – 20 pmol/96 well; Man. 4, Fig. 1c). The activated SAQ 

enzymes reached the half-maximum editing yield with 0.15 pmol BG-gRNA and were up 

to 12-fold more potent than the wild-type SA enzymes with 1-2 pmol. High editing yields 

of ≥ 80% were achieved with ≥ 1.25 pmol BG-gRNA when using SA1Q- or SA2Q-

expressing cells. Given the high efficiency (up to 90% editing), potency (≥ 1.25 pmol 

BG-gRNA) and duration (several days), site-directed RNA editing with BG-gRNA-

driven SA enzymes shows similar performance characteristics to siRNA-mediated RNAi 

in cell culture.157 Editing of various 5’-UAG triplets in the 5’-UTRs and the ORFs of 

transcripts was shown to be more challenging than in the 3’-UTRs, especially in case of 

the wild-type SA enzymes which achieved editing yields of 25-50% (average 35%) in the 

5’-UTRs and 15-60% (average 35%) in the ORFs (Man. 4, Fig. 1d). We assumed that 

the reduced editing in these areas resulted from the competition with the translation 

machinery which might disrupt the binding of the SA enzyme to the target site. In line 

with this, global translation inhibition by puromycin resulted in elevated editing within 

the ORF of GUSB mRNA in the wild-type SA cells with yields equal to those obtained 

from the 3’-UTR editing which was not notably influenced by the puromycin treatment 
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(Man. 4, Suppl. Fig. 3). The SAQ enzymes with the catalytic rate-enhancing E/Q 

mutation increased the editing yields in the 5’-UTRs (60-75%, average 70%) and the 

ORFs (50-85%, average 65%; Man. 4, Fig. 1d). The positive effect of the E/Q mutation 

on the editing performance has also been reported for the approaches based on λN-

ADAR2 and dCas13b-ADAR2.145,158,159 Concurrent editing of the 5’-UAG triplets in the 

3’-UTRs of SA, GAPDH, ACTB and GUSB transcripts was examined in all four SA cell 

lines co-transfected with the four corresponding BG-gRNAs. The editing yields were 

equal to those obtained from the single transcript editings (Man. 4, Fig. 1a). Furthermore, 

three BG-gRNAs were co-transfected for the concurrent editing of three 5’-UAG triplets 

(2×ORF, 1×3’-UTR) within the GAPDH mRNA. Also in this case, the editing yields 

remained unchanged compared to the editings at the single sites (Man. 4, Suppl. Fig. 2). 

All 16 triplets containing an adenosine at the middle position (5’-NAN) were selected in 

the ORF of the GAPDH transcript to be edited in SA1Q and SA2Q cells (Man. 4, Suppl. 

Note 4). The editing experiments were conducted by M. Moschref (T. Stafforst group). 

The obtained results were in accordance with the reported preferences of ADAR enzymes 

with the 5’-GAN triplets being most challenging to edit (< 30%; Man. 4, Fig. 1e).67,85 

Nevertheless, editing yields > 50% were obtained for 10/16 triplets and even > 70% for 

7/16 triplets (5’-CAA, CAC, CAG, AAC, UAU, UAC, UAG). SA1Q and SA2Q achieved 

similar editing yields, excepting for the triplets GAU (SA1Q < SA2Q), CAU (SA1Q > 

SA2Q) and CAG (SA1Q < SA2Q). Due to the large number of decently editable triplets, 

the application of the SA approach holds promise for recoding many functionally 

important amino acid residues, including those involved in signal transduction.  

 Since the SA enzyme covalently binds to the BG-gRNA, both components merge 

into one. The number of required components, which need to interact during the 

deamination reaction, is reduced to two, the mRNA and the gRNA-SA conjugate. In 

contrast, all other approaches are based on non-covalent interactions between editase and 

gRNA. These editing systems require the simultaneous interaction between three 

components (mRNA + gRNA + editase) during deamination. Therefore, the probability 

for successful deamination might be lower compared to the SA/BG-gRNA system. This 

should be reflected in higher editing yields when using the SA approach. As mentioned 

earlier, over-expressed SA1 achieved ~ 45% editing of eGFP W58X in cell culture (Man. 

2, Suppl. Fig. 19,20). Compared to this, MCP-ADAR1 directed by MS2-gRNA edits the 

same transcript with a much lower efficiency of ~ 5%.147 The boxB-gRNA-driven λN-

ADAR2 editing system was also less efficient in catalyzing eGFP W58X (~ 20%) as 



RESULTS AND DISCUSSION          27 
 

shown by the first report.146 However, ~ 70% editing of eGFP W58X was recently 

achieved by an optimized version of the system which consists of the ADAR2 deaminase 

domain with the activating E/Q mutation and four λN peptides at the N-terminus (4λN-

ADAR2Q) and of a gRNA containing two boxB hairpins (2boxB-gRNA).158 Additionally, 

a similar variant (NLS3-λN-ADAR2Q), containing three nuclear localization signal 

(NLS) copies and only one λN peptide at the N-terminus, was able to correct a Rett 

syndrome-causing mutation within endogenous Mecp2 mRNA in mouse neurons.159 The 

targeted 5’-CAA triplet was edited with ~ 70% efficiency. In comparison, when targeting 

a CAA triplet within the endogenous GAPDH message, the genomically expressed SAQ 

mutants achieved even higher editing yields (SA1Q: ~ 80%, SA2Q: ~ 90%; Man. 4, Fig. 

1e). However, since the editing of the CAA triplet was tested on two distinct transcripts, 

it is difficult to judge which editing system performs better. Besides the applied system, 

the editing efficiency also depends on the target accessibility which may be hampered by 

RNA secondary structures, RNA-binding proteins, low mRNA levels and short transcript 

half-lifes. So far, the λN-ADAR2Q enzymes have been highly over-expressed from 

plasmids in mammalian cells. It remains to be determined how efficiently the editases 

perform under genomic expression which generally lead to lower protein levels compared 

to transient expression. In contrast, the approach based on steering human ADARs by 

gRNA containing the R/G-motif of the GRIA2 transcript (R/G-gRNA) has already been 

applied upon stable integration of the ADAR-expressing plasmid into the genome.148-150 

It could be shown that although the genomic expression of ADAR2 was 20-fold lower 

than the transient expression, eGFP W58X editing was even enhanced from ~ 45% to ~ 

65%.148 Despite the promising yields obtained from the editing of the exogenously 

expressed marker construct, editing of endogenous transcripts was much weaker. For 

instance, a 5’-UAG triplet within the ACTB transcript was edited with ~ 15% efficiency 

in case of the genomic expression of ADAR2 and ~ 25% efficiency in case of transient 

expression.148 In comparison, the same 5’-UAG triplet within ACTB was targeted in SA-

expressing cells and edited with much higher efficiencies ranging from ~ 70% (SA1 cells) 

to ~ 85% (SA2Q cells; Man. 4, Fig. 1e). dCas13b-ADAR2Q has been reported to achieve 

89% editing of a premature 5’-UAG stop codon in a luciferase reporter transcript.145 One 

has to be skeptical about the high editing yield since the editase reached much smaller 

yields in case of all other targeted transcripts. dCas13b-ADAR2Q were tested for the 

correction of over 30 disease-relevant 5’-UAG nonsense mutations in a reporter construct 

(for further discussion, see section 3.2.1). In contrast to the highly efficient 5’-UAG 
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editing in the luciferase transcript, the enzyme edited the 5’-UAG triplets with only low 

efficiencies between ~ 0% and 30%.145 5’-UAG triplets within endogenous transcripts 

were edited by dCas13b-ADAR2Q with 15-45% efficiency. SA1Q and SA2Q achieved 

editing yields between 50% and 90% when testing several 5’-UAG triplets within 

endogenous transcripts (Man. 4, Fig. 1d). Even SA1 and SA2 showed a higher overall 

efficiency (15-85%) in the editing of 5’-UAG triplets compared to dCas13b-ADAR2Q 

(Man. 4, Fig. 1d). dCas13b-ADAR2Q was also tested for the editing of eGFPW58X by 

T. Merkle (T. Stafforst group; Man. 4, Suppl. Fig. 11, Suppl. Note 2). The experiments 

were conducted according to the conditions applied by Cox et al.145 It could be revealed 

that dCas13b-ADAR2Q edits eGFPW58X with ~ 30% efficiency which was lower than 

that achieved by wild-type SA1 (~ 45%, Man. 2, Suppl. Fig. 19,20). As described later 

in section 3.2.2, further evidence was provided that the SA approach achieves higher 

editing efficiencies than the dCas13-ADAR approach. The T375G mutation in dCas13b-

ADAR2Q has been described to enhance the specificity of the enzyme without the 

substantial loss of editing efficiency.145 However, when tested for the editing of the 

luciferase reporter transcript, the yield of 89% obtained by Cas13b-ADAR2Q decreased 

to ~ 45% when Cas13b-ADAR2Q T375G was used.145 As shown by S. Flad (T. Stafforst 

group), the editing of five tested triplets (5’-UAG, CAA, CAG, AAG, GAU) within the 

ORF of GAPDH mRNA was greatly impaired when the T375G mutation was introduced 

into SA2Q (SA2QG) (Man. 4, Suppl. Fig. 10). Even the wild-type SA enzymes edited 

the triplets with higher efficiencies than SA2QG. Since the results indicate that this 

mutation substantially decreases the editing activity, the claim, which was made for the 

T375G mutation, seems overstated.    

3.2 SNAP-ADAR enzymes as a promising tool for medicine 

and life sciences 

3.2.1 Correcting disease-causing mutations 

The potential of SNAP-ADAR enzymes to be applied for correcting disease-causing 

mutations has been demonstrated in vitro by T. Stafforst (T. Stafforst group). The single 

G-to-A substitution at position 1746 in coagulation factor V mRNA lead to the 

replacement of an arginine residue by a glutamine residue (R534Q). The mutated variant 

is called Factor V Leiden which is resistant to the cleavage by protein C and increases the 

risk of thrombosis 8-fold in heterozygous individuals and even 80-fold in homozygous 
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individuals.160 The in vitro experiment was conducted with a 1000-nt long fragment of 

the factor V transcript containing the disease-causing 5’-CAA glutamine codon. SA2 was 

shown to edit the codon with ~ 70% efficiency (Man. 1, Fig. 3c). Such a high editing 

efficiency would be enough to dramatically alleviate the disease phenotype.160 Other 

editing systems have also been used to repair disease-related mutations within RNA. The 

λN-ADAR2 approach was applied to correct a disease-related nonsense mutation within 

CFTR mRNA in Xenopus oocytes, leading to restored CFTR protein activity.146 The 

rescue of mitophagy after repairing a loss-of-function mutation in the PINK1 transcript 

has been achieved in mammalian cells by R/G-gRNA-directed ADAR2.148 As mentioned 

earlier, dCas13b-ADAR2Q was able to edit over 30 disease-relevant UAG sites.145 

However, only small fragments (200 bp) of the original sequences were used to be 

expressed within a reporter cassette. It is therefore difficult to estimate whether the 

endogenous transcripts are also editable with the same efficiencies. Furthermore, it is 

unclear if the achieved editing yields (≤ 30%) would be sufficient to change the disease 

phenotypes. In cell culture experiments, the correction of disease-causing mutations by 

site-directed RNA editing has so far been largely tested on over-expressed transcripts in 

standard cell lines. Given the current delivery methods, it remains challenging to 

efficiently introduce an artificial editing enzyme or gRNA into primary cells or higher 

organisms to perform RNA editing of endogenous transcripts. Recently, the boxB-

gRNA/λN-ADAR2Q editing system was successful delivered into primary mice neurons 

via adeno-associated virus (AAV) transduction to perform the above-mentioned repair of 

endogenous Mecp2 mRNA, leading to increased levels and restored heterochromatin 

enrichment of Mecp2 protein.159 Viral delivery vehicles have also been successfully 

applied to enable in vivo gene transfer.161 Regarding the SA approach, only the SA 

enzyme can be delivered by viral carriers. The uptake of the BG-gRNA into primary cells 

or in vivo may be achieved by already existing oligonucleotide delivery vehicles including 

lipoplexes, cell-penetrating peptides, cholesterol and GalNAc3.98,99,152,162,163 Since the 

BG-gRNA/SA system was shown to achieve high editing yields in a standard cell line 

and in a simple organism, it has the potential to attenuate a disease phenotype ex vivo or 

in vivo when efficiently delivered.   

3.2.2 Reversible manipulation of signaling networks 

KRAS is an important molecular on/off switch regulating signal transduction.164 

Recently, the dCas13b-ADAR approach was applied for the editing at two 5’-UAG sites 
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(#1, #2) within the ORF of endogenous KRAS mRNA. dCas13b-ADAR2Q achieved 22% 

editing at site #1 and 32% at site #2.145 The editing at the two sites was repeated with the 

SA approach using SA1Q cells. It could be shown that SA1Q substantially increased the 

editing yields at both sites (#1: ~ 55%, #2: ~ 46%; Man. 4, Fig. 2e). Additionally, the 

editing remained similar when both sites were targeted concurrently in SA1Q cells. SA1 

was also tested for editing at site #1 and achieved 18% editing (Man. 4, Fig. 2e). In 

comparison, the specific variant dCas13b-ADAR2Q T375G edits the same site with 13% 

efficiency.145 Signal transduction is mediated by the phosphorylation of serine, threonine 

and tyrosine residues. The triplets 5’-UAU and 5’-UAC code for tyrosine and were edited 

up to 90% within endogenous GAPDH mRNA by the activated SAQ variants (Man. 4, 

Fig. 1e). Thus, it was assumed that the SA approach enables the efficient recoding of 

tyrosine residues within signaling proteins. The phosphorylation of Tyr 701 in the 

transcription factor STAT1 is essential for signal transduction and appeared therefore as 

an appropriate target.165 The editing of the corresponding 5’-UAU codon was examined 

in SA1 and SA1Q cells under the assistance of K. D. Selvasaravanan (T. Stafforst group). 

It could be shown that SA1 edited the codon with ~ 30% efficiency while SA1Q reached 

~ 80% (Man. 4, Fig. 2e). This shows that it is readily feasible to recode tyrosine residues 

which are relevant for signaling. Additionally, KRAS (site #1) and STAT1 (Tyr 701) 

mRNAs were simultaneously targeted in SA1Q cells. Both transcripts were edited with 

similar efficiencies compared to their single editings (Man. 4, Fig. 2e). Thus, concurrent 

editing of signaling transcripts can be achieved which opens the possibility of 

manipulating entire signaling networks. 

3.2.3 Switching protein localization by light 

We were wondering if SA enzymes can expand the synthetic biology toolbox for 

manipulating protein localization. To achieve spatiotemporal control of protein 

translocation, I applied the concept of light-triggered RNA-editing that was developed in 

the previous study by A. Hanswillemenke (T. Stafforst group; Man. 2). The 6-

nitropiperonyloxymethyl (NPOM) caging group has recently been shown to be stable 

under physiological conditions and to enable efficient decaging of aromatic N-

heterocyclic compounds upon irradiation with UV-light of 365 nm.166 The NPOM group 

was installed on BG before its coupling to NH2-gRNA. NPOM-caged BG-gRNA 

(NPOMBG-gRNA) fails to act as a substrate for the SA enzyme. However, UV-light 

irradiation cleaves the NPOM group from the BG moiety and allows the formation of the 
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gRNA-deaminase complex ready for catalyzing site-directed RNA editing (Man. 2, Fig. 

1, 2a,b). The decaging of NPOMBG-gRNAs has been proven to be very efficient to mediate 

light-triggered RNA editing in a reaction tube (Man. 2, Fig. 2c), a mammalian cell (HEK 

293T cell; Man. 2, Fig. 3) and in a simple organism (Platynereis dumerilii; Man. 2, Fig. 

5). The editing yield was adjustable by the duration of UV-light exposure. However, 

minor background editing at the target site was observed in non-irradiated cells and 

worms after the transfection/injection of NPOMBG-gRNA. This has led to the speculation 

that the NPOM group does not entirely block the complex formation between SA enzyme 

and gRNA. Therefore, when applying NPOMBG-gRNA in an experiment, optimization of 

the SA and gRNA amounts is required to reduce the background editing levels to a 

minimum.   

 The strategy was ready to be used for the photo-induced switching of protein 

localization within a mammalian cell. Short peptide sequences typically define the 

subcellular localization of a protein. For instance, proteins containing a nuclear 

localization signal (NLS) are transported into the nucleus.167 In this study, site-directed 

RNA editing by SA enzymes was exploited to introduce three copies of the SV40 large 

T antigen NLS (NLS3) into the N- or C-terminus of a protein to induce its nuclear 

transport. SA2 is localized in the cytoplasm without NLS inclusion and its localization 

can be easily visualized under a fluorescence microscope when stained with BG-

fluorescein (BG-FITC; Man. 4, Suppl. Note 3). Therefore, the SA2 transcript was chosen 

as a target for NLS3 inclusion mediating the switch in the localization of the SA2 protein 

from the cytoplasm to the nucleus. Since SA2 can be used for site-directed RNA editing, 

only one gene construct was required for the editing experiments. For C-terminal NLS3 

inclusion by site-directed RNA editing, a gene construct was designed containing a 

premature 5’-TAG stop codon between the SA2 sequence and the downstream NLS3 

sequence (SA2-TAG-NLS3; Man. 3, Scheme 1). At the RNA level, the conversion of the 

stop codon (5’-UAG) to a tryptophan codon (5’-UIG) by RNA editing results in the 

translation of SA2 harboring the NLS3 at its C-terminus which redirects the enzyme from 

the cytoplasm to the nucleus. The SA2-TAG-NLS3 construct was first transiently 

expressed from a pcDNA3.1 plasmid in 293T cells. The editing experiment was again 

conducted according to the new cellular assay described in section 3.1. Four hours after 

the reverse transfection with BG-gRNA, the cells were detached and seeded on cover 

slips. 24 hours later, the cells were stained with BG-FITC or harvested for the Sanger 

sequencing of SA2-TAG-NLS3 cDNA. Without BG-gRNA, the stained SA2 protein was 
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strictly located in the cytoplasm (Man. 3, Fig. 1a). However, when SA2-TAG-NLS3-

expressing cells were additionally transfected with BG-gRNA, ~ 50% of these cells 

showed a new phenotype representing a mixture of cytoplasmic and nuclear SA2 protein. 

The editing yield was ~ 75%. The mixed phenotype differed from the phenotype of the 

positive control (SA2-TGG-NLS3), where SA2 protein could only be found in the 

nucleus. It was reasoned that the mixture resulted from the incomplete editing and old 

SA2 protein which was already produced before BG-gRNA transfection. The ability of 

the BG-gRNA/SA system to mediate C-terminal NLS3 inclusion was also tested when 

SA2-TAG-NLS3 was weaker expressed under genomic control in 293 Flp-In T-REx cells. 

Again, transfecting BG-gRNA induces the phenotype change from strict cytoplasmic to 

cytoplasmic/nuclear localization (Man. 3, Fig. 1b). The mixed phenotype was observed 

in ~ 35% of the cells and the target mRNA was edited with ~ 50% efficiency. Taken 

together, C-terminal NLS3 inclusion to redirect a protein from the cytoplasm to the 

nucleus can be indeed achieved by SA-mediated RNA editing under transient or genomic 

expression. Next, NLS3 inclusion at the N-terminus was examined under both expression 

conditions. Translation of mRNA is initiated by an AUG start codon typically embedded 

in a Kozak sequence.168 The gene construct designed for this study contained a Kozak 

sequence (5’-CCACC-ATG-G) between the NLS3 sequence and the downstream SA2 

sequence (Man. 3 , Scheme 1). In addition, another Kozak sequence harboring a single 

G-to-A substitution within the start codon (5’-CCACC-ATA-G) was placed in front of 

the NLS3 sequence (ATAG-NLS-SA2). Without the editing of the defective 5’-AUA start 

codon at the RNA level, translation was assumed to start in front of the SA2 sequence, 

leading to cytoplasmic SA2 protein. In contrast, the conversion to 5’-AUI would initiate 

translation in front of the NLS3 sequence which results in the translocation of the protein 

to the nucleus. When the gene construct harboring the defect start codon in front of NLS3 

(ATAG-NLS-SA2) was transiently expressed in 293T cells, SA2 was found almost 

exclusively in the cytoplasm (Man. 3, Fig. 2a). However, in ~ 10% of the transfected 

cells, a small portion of SA2 protein was also located in the nucleus as indicated by a 

faint nuclear staining (Man. 3, Suppl. Fig. 10). This indicates that translation may be 

slightly initiated in front of the NLS3 sequence despite the defective start codon. In 

contrast, the same sequence (5’-CCACC-AUA-G) has been shown not to initiate the 

translation of plasmid-encoded preproinsulin in transfected COS cells.169 The small 

amount of nuclear SA2 protein observed in a minor fraction of cells transiently expressing 

ATAG-NLS-SA2 did not result from gRNA-independent editing of the defect start codon 
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since the editing yield was negligible (≤ 2%). When the cells were additionally 

transfected with BG-gRNA, ~ 60% editing was obtained and ~ 55% of the cells showed 

a mixed cytoplasm/nuclear phenotype similar to that described after C-terminal NLS3 

inclusion (Man. 3, Fig. 2a). The fluorescence of nuclear SA2 protein in cells transfected 

with BG-gRNA was much stronger than that of nuclear SA2 protein occasionally 

observed in the negative control (without gRNA; Man. 3, Suppl. Fig. 10). The ATAG-

NLS-SA2 gene construct was also genomically expressed in 293 Flp-In T-REx cells. Less 

than 3% of the cells contained a small portion of nuclear SA2 protein, probably because 

of the reduced expression of the construct. When transfected with BG-gRNA, only ~ 10% 

of the cells contained nuclear SA2 protein. According to this, Sanger sequencing revealed 

an editing yield of ~ 15% (Man. 3, Fig. 2b). Thus, reducing the expression of target 

mRNA and SA enzyme appears to substantially impair the editing within the 5’-UTR for 

N-terminal NLS3 inclusion. The difference between the editing yields under genomic and 

transient construct expression was much more pronounced than obtained for the C-

terminal NLS3 inclusion where editing was catalyzed within the ORF. To increase the 

editing within the 5’-UTR under genomic expression, the gene construct was re-

engineered using the sequence of the hyperactive SA2Q variant instead of wild-type SA2. 

Similar to the old gene construct, the genomic expression of the new version (ATAG-

NLS-SA2Q) in 293 Flp-In T-REx cells led to a small percentage of cells (< 4%) 

containing a minor fraction of nuclear SA protein (Man. 3, Fig. 2b). After BG-gRNA 

transfection, ~ 45% of the cells showed the cytoplasmic/nuclear phenotype and ~ 40% 

editing was obtained. Thus, choosing the hyperactive SA2Q mutant greatly increases the 

editing in the 5’-UTR under genomic expression, leading to an improved efficiency of N-

terminal NLS3 inclusion comparable with that of C-terminal NLS3 inclusion.  

As mentioned earlier, decaging of NPOMBG-gRNAs were tested for light-induced 

protein translocation. For this, the medium was changed four hours after gRNA-

transfection and the cells were irradiated at 365 nm for 5 s (UV-LED) before they were 

seeded on cover slips. NPOMBG-gRNAs were first applied for N-terminal NLS3 inclusion 

in HEK 293T cells transiently expressing ATAG-NLS-SA2. Without UV-light irradiation, 

~ 20% of the cells contained a small portion of nuclear SA2 after NPOMBG-gRNA 

transfection (Man. 3, Fig. 3a). However, after UV-light irradiation, the mixed phenotype 

with clearly visible amount of nuclear SA2 protein was observed in ~ 55% of the cells. 

Accordingly, the editing in NPOMBG-gRNA-transfected cells increased from ~ 15% before 

to ~ 40% after irradiation. Photo-induced N-terminal NLS3 inclusion was also tested 
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under genomic expression. As expected, the editing yield and phenotype switch induced 

by light-triggered RNA editing were inefficient (< 20%) in Flp-In T-REx cells expressing 

the wild-type enzyme (ATAG-NLS-SA2, Man. 3, Fig. 3b). Compared to this, when 

transfecting NPOMBG-gRNA into Flp-In T-REx cells expressing the hyperactive SAQ 

version (ATAG-NLS-SA2Q), the editing was substantially increased from ~ 15% in non-

irradiated cells to ~ 35% in irradiated cells. Similarly, the percentage of the cells showing 

the cytoplasm/nuclear phenotype was enhanced from ~ 10% before to ~ 40% after 

irradiation. Therefore, nuclear import of a protein, whether expressed transiently or 

genomically, can be indeed controlled by light-induced NPOMBG-gRNA decaging which 

enables complex formation between SA enzyme and gRNA. There are several tools 

inducing protein translocation into the nucleus to control gene expression. For instance, 

the small molecule tamoxifen is administered to induce nuclear translocation of the 

engineered CreER recombinase which mediates on/off switching of gene expression in 

vivo.170 Furthermore, inducing the NLS-directed nuclear transport of transcription factors 

has been shown to trigger gene expression.171,172 In this regard, the inclusion of an NLS 

into the C- or N-terminus of a transcription factor by site-directed RNA editing might be 

also used for the induction of gene expression. When additionally applying Npom-caged 

BG-gRNAs, the SNAP-ADARs might enable light-dependent activation of gene 

expression and could be an alternative to current TALE-based or CRISPR-Cas9-based 

optogenetic tools which require substantial engineering due to the high number of 

components.173-176 Light-induced protein translocation from the cytoplasm to the nucleus 

can also be achieved by other strategies including photo-decaging of amino acids or small 

molecules, and photo-controlled protein unfolding.171,172,177,178 The strategies have been 

successfully applied since nuclear protein import is mediated post-translationally. 

However, these strategies are only applicable at the protein level and fail to manipulate 

co-translational protein translocation into the ER. Membrane or secretory proteins 

typically contain an N-terminal signal sequence which is recognized by the signal 

recognition particle (SRP) during translation.179 The SRP recruits the ribosome to the ER 

where the elongating polypeptide chain is translocated across the ER membrane. The 

signal sequence is usually cleaved off and after translocation, the mature protein can fold 

before being transported towards the plasma membrane. Since RNA editing is catalyzed 

before translation, SA enzymes might be used to control the co-translational protein 

transport to the ER. To test this, a gene construct was designed containing a defective 5’-

ATA start codon followed by the IgҠ-chain leader sequence which functions as signal 
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sequence for ER-mediated protein secretion (Man. 3, Scheme 1).180 An alternative start 

codon together with the sequence of HA-tagged eGFP (HA-eGFP) was placed after the 

signal sequence. To attach the resulting protein to the plasma membrane, the gene 

construct additionally contained the sequence of the transmembrane domain (TMD) of 

the PDGF receptor at its C-terminus. Repairing the defective 5’-AUA start codon at the 

RNA level allows the translation of the IgҠ-chain leader sequence which mediates the 

transport of the protein to the plasma membrane. When integrated into the membrane via 

the TMD, the N-terminus of the protein (HA-eGFP) is located extracellularly. An 

antibody against the HA-tag was used to visualize the protein at the plasma membrane 

via red immunofluorescence. The gene construct (ATAG-IgҠ-HA-eGFP-TMD) was 

transiently expressed in HEK 293T cells together with BFP-tagged SA2 (BFP-SA2). The 

co-transfected cells contained only intracellular BFP and eGFP fluorescence (Man. 3, 

Suppl. Fig. 19, Suppl. Table 7). When transfecting these cells with BG-gRNA, ~ 45% 

of the cells additionally exhibit red fluorescence at the plasma membrane (Man. 3, Fig. 

4c). The editing yield was ~ 65%. Protein translocation to the membrane was also 

mediated by light-induced RNA editing. When transfecting NPOMBG-gRNA into the cells 

expressing ATAG-IgҠ-HA-eGFP-TMD and BFP-SA2, only ~ 10% RNA editing was 

detected and the percentage of cells showing red fluorescence at the membrane was 

negligible (< 2%; Man. 3, Fig. 4d). In contrast, the irradiation of the NPOMBG-gRNA-

transfected cells with UV-light resulted in ~ 45% RNA editing and ~ 30% of the cells 

exhibiting red membrane staining (Man. 3, Fig. 4e). Taken together, site-directed RNA 

editing can indeed be used to translocate a protein from the cytoplasm to the plasma 

membrane, even under the control of light. So far, no other strategy has been exploited to 

steer a protein to the membrane. RNA editing by SNAP-ADARs therefore expands the 

synthetic biology toolbox for directing protein localization within a cell. Inducing protein 

translocation to the plasma membrane might be useful to modulate cell signaling or cell-

to-cell/matrix interactions. In addition, the use of Npom-caged BG-gRNA offers the 

possibility to manipulate such biological processes in a spatiotemporal manner.  

3.3 SNAP-ADAR enzymes have a promising safety profile 

A major hurdle for the application of RNA editing systems is maintaining the integrity of 

the A-to-I RNA editome in the cell. Altered A-to-I editing is associated with several 

human diseases, including cancer, neurodegeneration and autoimmunity.181,182 Therefore, 

an optimal RNA editing system does not interfere with the function of endogenous 
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ADARs and fails to cause any off-target editing while being very efficient in catalyzing 

editing at target sites.  

To determine global off-target A-to-I editing events caused by the SA approach, the 

poly(A)+ transcriptome of the SA cell lines (SA1, SA2, SA1Q, SA2Q) was analyzed using 

NGS (Illumina HiSeq 4000 platform, 50 million 2×100 bp paired end reads per sample, 

two independent experiments). For the study, RNA was isolated from the cells which 

were transfected with BG-gRNA targeting a 5’-UAG triplet in the 3’-UTR of endogenous 

ACTB. To distinguish between gRNA-dependent and -independent off-target editing, 

RNA samples from SA1Q and SA2Q cells lacking the BG-gRNA were additionally 

prepared. The analysis of the NGS data was done by Q. Li (J. B. Li group, Stanford 

University, USA). The RNA-seq reads were aligned to the human (hg19) genome and 

exonic sequences around known splice junctions. The rate of uniquely mapped reads was 

typically ~ 95%. Around 25,000 distinct transcripts with FPKM ≥ 2 (both replicates 

combined) were detectable (Man. 4, Suppl. Note 4). Editing sites were identified through 

a pipeline described by Ramaswami et al. (separate samples method).10 The pipeline can 

be applied when using RNA-seq data alone and removes known human SNPs to reduce 

the false positive rate to usually less than 3%. Around 50,000 editing sites with ≥ 50 reads 

coverage (both replicates combined) were identified in every sample (Man. 4, Suppl. 

Note 4). The editing levels of these sites were compared between the samples obtained 

from the SA cell lines and the control obtained from 293 Flp-In T-REx cells stably 

transfected with the empty vector lacking any SA gene. In case of changes in editing 

> 10%, Fisher’s exact test was performed to identify significantly differently edited sites 

(p < 0.01). Almost all (> 99.8%) significantly differently edited sites were found to 

exhibit higher editing levels in the SA samples compared to the control. These sites were 

considered as off-target editing sites. The analysis also identified the targeted editing of 

the 5’-UAG triplet within ACTB in all four SA+gRNA samples (Man. 4, Fig 2b). Both 

wild-type SA enzymes were shown to be highly precise editing machines since very few 

off-target sites (SA1+gRNA: 6 sites, SA2+gRNA: 30 sites) could be found (Man. 4, Fig. 

2b). Most of the off-target sites were edited < 25%, were known from the RADAR 

database183 and were located within the 3’-UTRs of transcripts (Man. 4, Table 1, Suppl. 

Fig. 5a). Edits, which happen in the coding regions and lead to amino acid substitutions, 

require special attention. Only one of such so-called nonsynonymous editings was found 

in the SA1+gRNA sample. However, the site (in TMX3) was edited with an efficiency of 

only ~ 10% (Man. 4, Fig. 2d). The region around the off-target site shares high sequence 
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similarity to the gRNA-targeted region within ACTB, indicating that the found 

nonsynonymous editing was gRNA-dependent and would therefore disappear when 

omitting the BG-gRNA (Man. 4, Suppl. Table 1). Indeed, this site was also identified to 

be edited in the SA1Q+gRNA sample but not in the SA1Q sample without gRNA. Two 

nonsynonymous off-target sites (AAGAB: 42%, CHFR: 32%) were identified in SA2 

cells. One of them (AAGAB) was also located in a region similar to the gRNA-targeted 

region and was found to be edited in a gRNA-dependent manner in the SA2Q samples 

(Man. 4, Suppl. Table 1). In contrast to the wild-type SA enzymes, the hyperactive 

versions generated a considerable number of off-target edits in the transcriptome. 835 off-

target edits were identified in the SA1Q+gRNA sample and 1310 in the SA2Q+gRNA 

sample (Man. 4, Table 1, Fig. 2b, Suppl. Fig. 5a,8c). Most of these edits were found at 

novel sites (SA1Q+gRNA: 706/835 sites, SA2Q+gRNA: 972/1310 sites) and located 

either in the ORF (SA1Q+gRNA: 347/835, SA2Q+gRNA: 496/1310) or in the 3’-UTR 

(SA1Q+gRNA: 402/835, SA2Q+gRNA: 637/1310). The number of nonsynonymous off-

target sites was 230 for the SA1Q+gRNA sample and 347 for the SA2Q+gRNA sample 

(Man. 4, Fig. 2d, Suppl. Fig. 8d). However, the majority of these sites were edited < 25% 

in both samples (SA1Q+gRNA: 167/230, SA2Q+gRNA: 240/347). Only 4/230 

nonsynonymous off-target sites in the SA1Q+gRNA sample and 20/347 in the 

SA2Q+gRNA sample were found to be edited > 50% but below the level of the on-target 

editing (SA1Q+gRNA: 67%, SA2Q+gRNA: 77%). The off-target editing was generated 

by the editing enzyme alone rather than by the misguiding of the enzyme through the 

gRNA. This was concluded because compared to the SAQ samples without gRNA, only 

a few off-target sites (SA1Q: 29, SA2Q: 30) were additionally identified or edited with 

higher efficiency in the SAQ samples with gRNA (Man. 4, Fig. 2c). Almost all of them 

(58/59) were novel and edited < 50% (57/59). Approximately half of the off-target edits 

occurred at nonsynonymous sites (27/59). Furthermore, 414 off-target sites identified in 

the SA1Q+gRNA sample were also found to be edited in the SA2Q+gRNA sample. 

Therefore, most of the off-target edits (SA1Q+gRNA: 421/835, SA2Q+gRNA: 896/1310) 

were generated in an enzyme-dependent manner. Analysis of the sequence around the 

off-target sites revealed that the off-target editing produced by SA1Q is almost restricted 

to sites with an U or an A at the -1 position (5’-UAN or 5’-AAN; Man. 4, Suppl. Fig. 

5b). In contrast, SA2Q seems to be more promiscuous as it additionally produced off-

target edits at sites with a C at the -1 position to a noticeable extent. The weak neighbor 

preference at the -1 position may explain the higher off-target activity of SA2Q compared 
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to SA1Q. Off-target editing identified in this study had no obvious effects on cell 

physiology since the SA cell lines behaved identically to the cell line containing the empty 

vector in terms of morphology and proliferation. Accordingly, no difference in global 

gene expression was found in the SAQ cells transfected with gRNA compared to cells 

containing the empty vector (Man. 4, Suppl. Fig. 6). Nevertheless, attempts were made 

to lower the off-target editing in the SAQ cells without affecting the on-target editing. 

For this, site-directed RNA editing was performed in SA1Q and SA2Q cells which were 

incubated with doxycycline for different periods of time (0 h, 4 h, 8 h, 24 h, 48 h). Sanger 

sequencing was applied to determine the editing yield at the target site (GAPDH ORF#2) 

and at six top-ranked off-target sites. The amount of the SAQ proteins was reduced when 

decreasing the incubation time (Man. 4, Suppl. Fig. 9a). At four hours of doxycycline 

incubation, the protein amounts were less than 10% of those at 48 h of incubation. It could 

be shown that off-target editing was typically more affected by the SAQ protein reduction 

than the on-target editing (Man. 4, Suppl. Fig 9b,c). Whereas most of the off-target 

editing yields were reduced by 2 to 3-fold when decreasing the incubation time from 48 

h to 4 h, the loss of the on-target editing yield was only 28% in SA1Q cells (from 78% to 

50%) and 18% in SA2Q cells (from 80% to 62%). Taken together, reducing the SAQ 

protein expression offers a possibility to dramatically decrease off-target editing in SAQ 

cells while maintaining high on-target editing.  

The extend of global off-target editing has been also described for the dCAS13-

ADAR approach and the λN-ADAR approach. In case of dCas13b-ADAR2Q, NGS 

analysis identified more than 18,000 off-target events in the transcriptome.145 In 

comparison with that, ~ 18-fold less off-target edits were found in SA1Q and SA2Q. 

dCas13b-ADAR2Q T375G caused only 20 off-target editing events and therefore 

provides a high specificity similar to those of the wild-type SA enzymes. One should note 

that the NGS analysis was performed with samples from cells transfected with only 10 

ng of the respective dCas13-ADAR construct instead of 150 ng which was typically used 

for editing experiments including those conducted for the editing of endogenous KRAS. 

Therefore, it is reasonable to assume that both dCas13b-ADAR2Q and dCas13b-

ADAR2Q T375G caused more off-target edits in the editing experiments than observed 

in the analysis of the NGS experiments. Additionally, it is hard to believe that 15-fold 

less plasmid, as used in the NGS experiments, can lead to the same editing yields achieved 

with 150 ng of the dCas13-ADAR constructs, especially in cases when endogenous 

transcripts are targeted. 4λN-ADAR2Q has been reported to produce editing at ~ 77,000 
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off-target sites.184 The off-target activity was reduced by approximately half when the 

editing enzyme was translocated from the cytoplasm to the nucleus (NLS3-4λN-

ADAR2Q). Wild-type 4λN-ADAR2 exhibits higher specificity as ~ 20,000 off-target 

edits were found. Also in this case, nuclear localization reduced the off-target activity of 

the enzyme (NLS3-4λN-ADAR2, ~ 8,800 off-target sites). The authors claimed that 

sequestering the enzyme in the nucleus decreases off-target editing without affecting on-

target editing. The NGS data was reanalyzed by Q. Li (J. B. Li group, Stanford University, 

USA) using the same pipeline that was applied for the SA approach. Contrary to the claim, 

the reanalysis revealed that nuclear translocation of the 4λN-ADAR enzymes results in a 

reduction of the on-target editing by ~ 20% (Man. 4, non-included data a). In 

accordance, redirecting SA2 or SA2Q from the cytoplasm to the nucleus affected editing 

at target sites (Man. 4, non-included data b,c). Additionally, the reanalysis showed that 

the wild-type 4λN-ADAR enzymes (4λN-ADAR2, NLS3-4λN-ADAR2) were several 

100-fold less specific than the wild-type SA enzymes (Man. 4, Suppl. Fig. 8). Around 

14-fold more off-target edits were identified for the hyperactive 4λN-ADARQ versions 

(4λN-ADAR2Q, NLS3-4λN-ADAR2Q) compared to the SAQ enzymes.  

Off-target editing produced by an editing system can occur on the target RNA. 

Since the gRNA and the target RNA form a nearly perfect double-stranded RNA duplex, 

not only the target adenosine can be edited but also other adenosines which are located 

within the duplex structure. SA enzymes are steered by BG-gRNAs which cannot be 

expressed from plasmids and need to be stabilized by chemically modification to be 

effective in cell culture. Besides stabilizing the BG-gRNA, chemical modification also 

prevents the off-target editing within gRNA/target RNA duplexes. It could be shown by 

M. F. Schneider (T. Stafforst group) that the in vitro editing of eCFP W66X can be 

blocked by a gRNA containing several 2’-OMe-modified nucleosides next to the editing 

site (Man. 1, Fig. 1b). This knowledge was applied by T. Stafforst (T. Stafforst group) 

to inhibit the off-target editing when repairing the disease-causing 5’-CAA glutamine 

codon within the factor V transcript in vitro. In case of the unmodified gRNA, the target 

A (5’-CAA) was edited by SA2 with ~ 70% efficiency while the neighboring A (5’-CAA) 

suffered from strong off-target editing (~ 50%; Man. 1, Fig. 3b). The off-target editing 

could be eliminated by using a gRNA, which were modified with two 2’-OMe-modified 

ribonucleosides opposite the off-site A and its 3’-neighboring base, while maintaining 

editing at the target site (~ 70%; Man. 1, Fig. 3c). When performing site-directed RNA 

editing of endogenous transcripts in SA cells, almost all 29 tested BG-gRNAs did not 
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produce any off-target edits within the gRNA/target RNA duplexes. Only four out of the 

29 BG-gRNAs led to off-target editing within the gRNA/target RNA duplexes. Off-target 

editing was observed when targeting the triplets 5’-CAA, AAA, AAC and UAA within 

GAPDH mRNA in SA1Q or SA2Q cells (Man. 4, Fig. 2a). In all four cases, the adenosine 

adjacent to the target adenosine suffered from off-target editing (5’-CAA, AAA, AAC, 

UAA). The levels of editing at these off-target sites were very low in SA1Q cells (0-10%, 

average 6%), but noticeable in SA2Q cells (5-75%, average 30%). In particular, the off-

site A within the 5’-CAA codon was found to be strongly edited with ~ 75% efficiency 

in SA2Q cells. The unintended edits within the four triplets happened due to the structure 

of the BG-gRNA which contains a gap of three unmodified ribonucleosides opposite to 

the targeted triplet (Man. 4, Suppl. Fig. 1b). The ribonucleoside facing the off-site 

adenosine was additionally modified with a 2’-OMe or a 2’-F group to avoid off-target 

editing (Man. 4, Fig. 2a, Suppl. Fig. 4). Indeed, the editing of the off-site adenosines 

could be reduced by these modifications, whereby the 2’-OMe group had a stronger 

inhibitory effect on the off-target editing than the 2’-F group. In case of SA2Q cells, the 

off-target editing within the triplets 5’-AAA (3%), AAC (2%) and UAA (~ 10%) almost 

disappeared when using BG-gRNAs carrying the additional 2’-OMe modification. The 

new BG-gRNA variant was also able to substantially decrease the off-target editing 

within the 5’-CAA triplet from ~ 75% to 25%. Remarkably, the additional modifications 

in the BG-gRNA did not affect the on-target editing within all four triplets. In case of the 

5’-AAA triplet, the 2’-F-modifed BG-gRNA even increased the on-target editing from 

40% to 55%. In contrast to the SA approach, all other approaches rely on genetically 

encodable gRNAs expressed from plasmids. Since such gRNAs lack any chemical 

modification, they make gRNA/target RNA duplexes vulnerable to off-target editing. 

Indeed, off-target edits within gRNA/target RNA duplexes were observed when using 

R/G-gRNAs directing wild-type ADAR enzymes.148,150 Furthermore, applying the λN-

ADAR2 approach to repair Mecp2 R106Q produced up to 60% off-target editing at 

several sites within the transcript.159 Four out of the five off-target sites were located in 

the gRNA/target RNA duplex. Massive off-target editing within gRNA/target RNA 

duplexes is also generated by dCas13b-ADAR2Q.145 For instance, multiple off-target 

edits were detected within the gRNA/target RNA duplexes when the dCas13b-ADAR2Q 

was applied for the targeting of the KRAS sites #1 and #2. In contrast, SA enzymes edited 

these sites without any detectable off-target editing (Man. 4, Suppl. Fig. 7, Suppl. Note 
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1). The off-target editing within gRNA/target RNA duplexes by dCas13b-ADAR2Q was 

found to be reduced when using the more specific dCas13b-ADAR2Q T375G.145   

The editing of off-site adenosines on the target RNA can also occur outside of a 

gRNA/target RNA duplex. When testing the SNAP-ADAR approach for the editing of 

endogenous transcripts, off-target editing outside the gRNA/target RNA duplexes was 

only found within GAPDH mRNA when using SA1Q and SA2Q cells (Man. 4, Suppl. 

Fig. 15a). In wild-type SA1 or SA2 cells, such off-target edits were absent. In the SAQ 

cells, six off-target sites were detected, whereby only one site in each cell line (SA1Q: up 

to 50% editing of a 5’-AAG triplet in the 3’-UTR; SA2Q: up to 70% of a 5’-CAG triplet 

in the ORF) were strongly edited (Man. 4, Suppl. Fig. 15c-d). The RNA secondary 

structures around these two off-target sites were predicted using Mfold. The analysis 

predicted that both sites are located within dsRNA regions (Man. 4, Suppl. Fig. 15b). 

Additionally, off-target editing was analyzed using three BG-gRNAs binding to different 

locations of the transcript (against ORF #1, ORF #2 and 3’-UTR; Man. 4, Suppl. Fig. 

15a). In the SA1Q and SA2Q cells, the editing at an off-target site within GAPDH mRNA 

increased when the SA enzyme was directed in the proximity to that site (Man. 4, Suppl. 

Fig. 15c-d). Therefore, gRNA-dependent editing of an off-site adenosine outside the 

gRNA/target duplex appears to rely on the secondary structure around that site and on the 

proximity of the editase. This observation is also confirmed by the results obtained from 

a recently introduced method called TRIBE which applies fusions of the ADAR2 

deaminase domain and RNA-binding proteins (RBPs) to identify RBP targets by A-to-I 

editing.185 The editing reaction has been reported to take place preferentially within 

dsRNA regions near the binding site of the fusion protein. Furthermore, the hyperactive 

E/Q mutation in the deaminase domain increased the sensitivity of the TRIBE method as 

more edited sites and more edited RBP targets were identified.186 With regard to site-

directed editing approaches, possible off-target edits within dsRNA regions in proximity 

of a gRNA/target duplex need to be considered, especially when using systems with the 

hyperactive ADAR deaminase domain. To avoid such off-target edits, the application of 

2’-OMe/LNA mixmer-based ASOs might be helpful since they have been shown to be 

potent inhibitors of RNA editing by remodeling the RNA secondary structure.187 4λN-

ADAR2 has been reported to edit several off-site adenosines outside of a duplex formed 

by the gRNA and an over-expressed target mRNA with efficiencies reaching that of the 

target adenosine.158 The off-target editing was even more pronounced when using the 

hyperactive 4λN-ADAR2Q variant. It could be shown that the editing of the off-site 
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adenosines can be reduced by lowering the gRNA amount. However, reducing the gRNA 

amount similarly impaired the on-target editing. gRNA-dependent off-target editing 

outside the gRNA/target RNA duplex was also found within targeted endogenous Mecp2 

mRNA when applying the λN-ADAR approach.159 This type of off-target edits has also 

been shown to be generated by the dCas13-ADAR approach.145                       

Endogenous ADAR function might be influenced by the applied gRNA. Using 

R/G-gRNAs for directing wild-type ADAR enzymes might prevent the editing at 

important sites in the transcriptome. Similarly, wild-type ADAR enzymes might also 

recognize the dsRNA duplex formed by the target RNA and the gRNA used for the 

recruitment of engineered editing machines. Such a duplex potentially sequesters wild-

type ADAR enzymes and therefore might lead to decreased levels of editing within 

endogenous substrates. It has been shown that dsRNA with a minimum length of ~ 20 bp 

can be recognized as editing substrates, whereby dsRNA with a length < 40 bp are edited 

with less than 10% efficiency.59 BG-gRNAs directing SA enzymes have a typical length 

of 22 nt (Man. 4, Suppl. Table 4) and form an RNA duplex of 19 bp with the target 

RNA. A former study tested the recruitment of transiently or genomically expressed wild-

type ADAR2 by such a gRNA targeting eGFP W58W.148 Since the editing yields stayed 

< 10%, the gRNA seems to insufficiently recruit wild-type ADAR enzymes. The same 

result was obtained for a gRNA which led to the formation of a 21 bp RNA duplex. As 

indicated above, NGS analysis revealed that applying BG-gRNA does not reduce 

naturally occurring A-to-I edits in the transcriptome of 293 Flp-In T-REx cells (Man. 4, 

Fig. 2b). The gRNAs used for the dCas13-ADAR approach form a 50 bp duplex with the 

target RNA.145 The recognition of such a duplex by wild-type ADAR enzymes was tested 

by T. Merkle (T. Stafforst group). For the experiments, a Cas13-gRNA was designed to 

target eGFP W58X mRNA. The plasmid containing the gRNA sequence was transfected 

together with wild-type ADAR2 and eGFP W58X into HEK 293T cells according to the 

protocol applied in the original study by Cox et al.145 It could be shown that the Cas13-

gRNA indeed directed ADAR2 to the target site which was edited with ~ 25% efficiency 

similar to that obtained by dCas13b-ADAR2Q (~ 30%; Man. 4, Suppl. Fig. 11). The 

gRNA even recruited SA2Q which also achieved 25% editing. Therefore, the results 

indicate that, under the applied conditions, the ADAR2 deaminase domain alone is 

sufficient to be recruited by Cas13-gRNAs which lack specificity for dCas13b-ADAR2Q. 

Cas13-gRNAs might also be able to recruit endogenously expressed ADAR enzymes, 

potentially leading to a reduction of naturally occurring A-to-I edits in the transcriptome. 
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This might also be true for 2boxB-gRNAs (~ 85 nt) directing λN-ADAR2Q enzymes 

since they form gRNA/target RNA duplexes with similar length (~ 50 bp).158,159,184 

Despite of the large size of the MS2-gRNA used to steer MCP-ADAR1 (~ 400 nt), it 

forms smaller gRNA/target RNA duplexes (21 bp) as compared to Cas13-gRNAs or 

2boxB-gRNAs.147 Therefore, a substantial recruitment of wild-type ADARs by such a 

gRNA seems rather unlikely.
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4 Conclusion 

Six approaches (SA, dCas13-ADAR, λN-ADAR, MCP-ADAR, wild-type ADAR; see 

Introduction, Fig. 6) have been developed enabling specific A-to-I substitutions in target 

RNAs. So far, the approaches applying SA, dCas13-ADAR or λN-ADAR enzymes have 

been best characterized with respect to editing efficiency and specificity. Endogenous 

transcripts were highly efficiently edited by SAQ enzymes which achieved 50-90% 

editing within 11 out of the 16 adenosine-containing 5’-NAN triplets. The wild-type SA 

enzymes allowed decent editing within preferred triplets, especially in the 3’-UTR. 

Editing of endogenous transcripts by dCas13b-ADAR2Q has only been tested within 

highly preferred 5’-UAG triplets and enabled yields up to 45%. dCas13b-ADAR2Q 

edited KRAS mRNA with less efficiency (up to 2.2-fold) as compared to SA1Q.145 NLS3-

λN-ADAR2Q achieved a promising yield of ~ 70% when editing a 5’-CAA triplet within 

endogenous Mecp2 mRNA.159 However, more work is needed to determine the efficiency 

of the system in editing various endogenous substrates and triplets. Highly precise RNA 

editing was provided by the wild-type SA enzymes whose genes were integrated into the 

cell genome as a single copy. The more efficient SAQ variants showed some off-target 

activity, but there is evidence that reducing the amounts of the SAQ enzymes can inhibit 

off-target editing while maintaining high on-target editing. In contrast, dCas13b-

ADAR2Q and (NLS3-)4λN-ADAR2Q were transiently over-expressed and produced one 

order of magnitude more off-target edits in the transcriptome.145,184 Wild-type 

(NLS3-)4λN-ADAR2 enzymes were even two orders of magnitude less specific than 

wild-type SA enzymes. The Cas13-ADAR and λN-ADAR approaches struggled with off-

target edits within a duplex formed by the gRNA and the target RNA.145,158,159 This 

specificity problem is fixed in the SA approach due to the chemical modification of the 

BG-gRNAs, even when A-rich triplets are targeted. The dCas13b-ADAR2Q T375G reach 

a similar specificity as provided by the wild-type SA enzymes.145 However, it remains 

unclear to which extend dCas13b-ADAR2Q T375G can be used to efficiently catalyze 

site-directed RNA editing of transcripts since the T375G mutation within the ADAR2 

deaminase domain seems to substantially decrease the editing efficiency of an editase to 

a level which is lower than that achieved by a wild-type SA enzyme. When considering 

the achieved editing yields and the extend of produced off-target edits together, the SA 

approach provides the best balance between editing efficiency and specificity compared 

to the dCas13-ADAR and λN-ADAR approaches. Therefore, the SA approach, which 
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relies on the unique assembly mechanism of gRNA-deaminase complexes, sets a new 

benchmark for site-directed RNA editing. The BG-gRNA/SA editing system has been 

well characterized regarding maximum editing yields, editing duration, the scope editable 

triplets and gRNA potency. The results obtained from the studies using SA enzymes to 

correct disease-causing mutations, to manipulate signaling networks and to switch protein 

localization by light are promising for future applications of the SA approach in medicine 

and the life sciences. 
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Improving Site-Directed RNA Editing In Vitro and in Cell Culture by
Chemical Modification of the GuideRNA**
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Abstract: Adenosine-to-inosine deamination can be re-
addressed to user-defined mRNAs by applying phospho-
thioate/2’-methoxy-modified guideRNAs. Dense chemical
modification of the guideRNA clearly improves performance
of the covalent conjugates inside the living cell. Furthermore,
careful positioning of a few modifications controls editing
selectivity in vitro and was exploited for the challenging repair
of the Factor 5 Leiden missense mutation.

RNA editing has the power to reprogram genetic informa-
tion on the RNA level.[1] The outcome depends on the site at
which a single adenosine-to-inosine (A-to-I) conversion
occurs. If it happens in the open reading frame, the
substitution of a single amino acid residue results; if it
happens in an untranslated region, RNA processing is altered.
Thus, directing RNA editing activity to a user-defined site of
a (pre)-mRNA makes it possible to manipulate RNA and
protein function with high potential for application in basic
biology research and medicine (transcript repair). We
recently reported a strategy for the assembly of an artificial,
guideRNA-dependent RNA editing machinery that allows
the application of simple Watson–Crick binding rules for the
site-selective and highly rational targeting of any arbitrary
codon.[2] Here, we report several improvements of the tool
including a proof-of-principle for its cellular application.

To direct RNA editing, we have engineered the protein-
guided human ADAR1 (adenosine deaminase acting on
RNA) into a guideRNA-dependent enzyme by fusing its C-
terminal catalytic domain to a SNAP-tag (Scheme 1).[2] The
SNAP-tag[3] enables formation of fully defined one-to-one
conjugates with guideRNAs that carry a 5’-terminal O6-
benzylguanine (BG) modification. The RNA part of such
a tool fulfills two tasks. First, it steers the deaminase domain
to the target site at a user-defined mRNA, and second, it
forms the secondary structure required for the highly efficient
and selective editing of a single adenosine residue without
overediting of nearby off-target adenosines. Most appealing is
the modular nature of our approach which allows us to

program the machinery to target virtually any given codon by
designing a respective guideRNA.

Single nucleotide polymorphisms (SNP) can have a pro-
found effect on the processing of an RNA transcript or the
function of the derived protein product.[4] Hence, many SNP
are directly linked to diseases. By reprogramming adenosine
formally into guanosine, site-directed A-to-I RNA editing has
the potential to either model, repair, or attenuate genetic
disease phenotypes.[5] However, for application in research or
therapy, the RNA–protein conjugate has to become effective
and specific inside the cell. The direct transduction of the
protein–RNA conjugate could be difficult.[6] An alternative
would be the expression of the editing machinery in
a genetically engineered animal or tissue culture. Whereas
the SNAP-ADAR fusion is genetically encodable, the guide-
RNA strictly requires the chemical modification with the BG
group for its proper functioning and thus is genetically not
encodable.[3] Hence, with respect to in vivo application, we got
interested in the stabilization of the guideRNA component by
chemical modification.

Antisense oligomers are often globally modified at the
ribose backbone.[7] A typical example is the antagomir[8] that
contains global 2’-O-methyl groups and terminal phospho-
thioate groups in combination with a single cholesterol
modification. Such modifications make the probe resistant
against nucleases; thus, long-lasting microRNA knockdown
of more than one week is typically obtained by a single
transfection.[8] The increased lipophilicity supports their

Scheme 1. Engineering of a guideRNA-dependent deaminase. The N-
terminal RNA substrate binding protein domains (dsRBD) are substi-
tuted with a SNAP-tag, which allows for the formation of defined 1-to-
1 covalent conjugates with short guideRNAs 5’-terminally modified
with O-benzylguanine (BG). The guideRNA steers editing activity
towards new mRNA substrates.
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penetration into the cell membrane and also facilitates their
trafficking between cyto- and nucleoplasm.[9] The cholesterol
modification facilitates the receptor-mediated uptake in
various tissues without the need for additional transfection
agents.[8] Thus, the action of such probes has been reported
after systemic administration to mice with remarkably low
toxicity and immunogenicity.[10]

The situation is more complex for RNA probes that
address a catalytically active protein complex such as the
antisense strand of a siRNA after loading into the RNA-
induced silencing complex (RISC). Since such probes have to
fulfill their tasks inside the active site of the respective protein
complex they are less receptive for modification.[11] However,
it was demonstrated that chemical modification at selected
sites[12] can improve pharmacokinetics, target selectivity,[13]

and also toxicity and immunogenicity.[14] Various modifica-
tions including 2’-O-methyl, 2’-fluorine, and LNA have been
reported.[11,14]

If ADAR�s deaminase domain would accept chemically
modified guideRNAs as substrates for editing mRNAs, an
important hurdle towards in vivo application would be
overcome. To not entirely block editing, we had to carefully
optimize the site and degree of modification. As modifica-
tions we chose 2’-O-methylation and terminal phosphothioate
since they are particularly simple to synthesize and commer-
cially affordable, and have proven their utility in various
applications.[7–15] To test the acceptance of 2’-O-methyl groups
in BG-guideRNA-dependent A-to-I RNA editing, we system-
atically studied the effect of such modifications in our in vitro
assay[2] on a nonsense Stop66 eCFP mRNA with our
optimized 17nt guideRNA. As one may expect, editing of
the eCFP mRNA substrate was fully inhibited by a protein–
RNA conjugate containing a guideRNA that carried three 2’-
methoxy groups centered at the counter base of the targeted
adenosine (Figure 1B versus 1A). It was shown before that
densely modified nucleic analogues inhibit RNA editing.[16]

However, modifying only the counter base of the targeted
adenosine with a single 2’-methoxy group gave not complete
but rather roughly 50% inhibition (Figure 1 C). Notably,
a single modification one nucleotide up- or downstream from
the counter base had nearly no or only very little influence on
the overall editing yield (Figure 1D,E). Thus, full inhibition
can only be achieved by cooperative action of several
proximate 2’-modifications. We then tested a guideRNA
that was densely modified with 2’-methoxy groups leaving
only a little gap of three natural ribonucleotides centered
around the counter base, and that further carried two
phosphothioate modifications at the 5’-terminus and four at
the 3’-terminus, as antagomirs[8] typically do. Even though this
17nt duplex was heavily chemically modified on the guide
strand, a very good editing yield of � 80 % was obtained with
SNAP-ADAR1 (Figure 1 F). Thus, antagomir-like guide-
RNAs are well accepted by the deaminase domain of
hADAR1 if they contain a minimal gap (3nt) of unmodified
RNA at the target site. Nucleic acid dependent enzymes
typically tolerate less extensive chemical modification on the
guide. For instance, gapmers that redirect RNaseH activity
require a gap of 7 to 10 unmodified deoxyribonucloetides,[17]

whereas the antisense strand of siRNAs can tolerate 2’-

fluorine,[12] but is disabled in the presence of global 2’-
methoxylation.[7, 8,11] Thus applying a very limited number of
modified bases is usually recommended.[11] Our finding was
unexpected but is highly important: in the future it may allow
us to express SNAP-ADAR fusions inside an animal or
a tissue and to then manipulate protein or RNA function
under conditional control by administration of a chemically
stabilized guideRNA.

To further illustrate that approach we transiently
expressed SNAPf-ADAR1 and the fluorogenic reporter
gene under control of a CMV promotor in HEK 293T cells
and stimulated transcript repair by transfection of the guide-
RNA. For this, SNAPf-ADAR1 and Stop66 eCFP were
subcloned into the pcDNA3.1 vector. Wild-type (Trp66)
eCFP served as a positive control. Cotransfection of both
plasmids in a 1-to-1 ratio was achieved with lipofectamine
2000 in a 24-well format. After 24 h, transfected cells were
detached with trypsin, distributed evenly over several wells in
a 96-well plate, and incubated for 24 h prior to lipofection
with various guideRNAs (50 pMol in 150 mL/well). After one
day of incubation, the fluorescence phenotype was analyzed
by microscopy.

Whereas the positive control (Figure 2A) gave a clearly
visible fluorescence signal, no fluorescence was observed
when the nonfunctional Stop66 eCFP was transfected in the

Figure 1. Effect of chemically modified guideRNAs on editing of the
Stop66 codon in eCFP mRNA (mRNA black; guideRNA gray; the
targeted adenosine is marked with an asterisk; 2’-OMe-modified bases
are indicated by small red letters, phosphothioate linkages by green
“s”). Editing yields are estimated from the areas for adenosine (red)
versus guanosine (blue) in the respective sequencing traces with
SNAP-ADAR1 (left) and SNAP-ADAR2 (right). Editing conditions: 3 h
at 30/37 8C; 50 nm mRNA, 500 nm BG-guideRNA, 650 nm SNAP-
ADAR1 or -ADAR2, 75 mm KCl, 25 mm Tris-HCl, 10 mm DTT, 0.75 mm

MgCl2, 2 mm heparin, pH 8.3). One full sequencing trace is given in
the Supporting Information (Figure S3).
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presence of either SNAPf-ADAR1 or the BG-modified
antagomir-like guideRNA alone (Figure 2B,C). For further
controls see Figure S6. In contrast, CFP fluorescence was
detectable when Stop66 eCFP was coexpressed with SNAPf-
ADAR1 and subsequently transfected with our standard BG-
modified guideRNA lacking 2’-methoxy and phosphothioate
modifications (Figure 2D). However, compared to the pos-
itive control, the number of bright fluorescing cells was low. In
order to estimate the effect of further chemical modification
we transfected Stop66 eCFP/SNAPf-ADAR1-coexpressing
cells with the BG-modified antagomir-like guideRNA. Com-
pared to the standard guideRNA (Figure 2D), the chemically
stabilized guideRNA displayed a markedly increased number

of fluorescent cells (Figure 2E), hence clearly demonstrating
the expected beneficial effects of chemical modification in
a cellular environment.

In vitro, the editing reaction benefits strongly from the
covalent conjugation between guideRNA and deaminase.
Applying 5’-amino (NH2)-modified guideRNAs instead of the
5’-BG-modified guideRNAs typically results in a reduced or
even abolished editing activity depending on the in vitro
editing conditions.[2] Thus we tested the cellular transcript
repair in the presence of the corresponding NH2-guideRNAs.
As expected, no (Figure 2F), or only very little CFP
fluorescence (Figure 2G) was restored by applying guide-
RNAs that cannot address the deaminase domain by means of
covalent attachment. Apparently covalent conjugation is fast
enough inside the cell and is required for efficient transcript
repair. The conjugation kinetics of our applied SNAPf-tag
variant for BG-tagged moieties was reported to be 2.8 �
104

m
�1 s�1 and was previously shown to be sufficient for

fluorophore conjugation in the cytosol of living mammalian
cells.[18]

To clearly demonstrate that the fluorescence phenotype
was due to RNA editing at the targeted Stop66 codon, we
extracted the total RNA from the cells, removed possible
DNA contaminations with DNaseI, reversely transcribed the
eCFP mRNA with a specific backward primer, and amplified
the cDNA through Taq-PCR with CFP-specific primers. In
agreement with the fluorescence imaging, Sanger sequencing
revealed the highest editing yield for the antagomir-like BG-
guideRNA (Figure 2H) and no detectable editing for the
control experiment expressing SNAPf-ADAR1 but lacking
the guideRNA (Figure S7 A). Natural editing enzymes ach-
ieve selective and up to quantitative editing, similar to our
optimized in vitro directed editing approach. Since many
parameters remain to be optimized for the cellular assay,
including the length, sequence, concentration, modification,
and transfection of the guideRNA, as well as the ratio and
transfection of the reporter and SNAP-ADAR genes, we
expect further improvements in the future.

As a last control, we transfected Stop66 eCFP/SNAPf-
ADAR1 co-expressing cells with a 2’-methoxy-phospho-
thioate modified BG-guideRNA that binds around Trp
codon 58, thus 24 nt upstream of the targeted codon. Even
though this BG-guideRNA is capable of repairing a Stop58
eGFP mutation there was no detectable repair of the Stop66
eCFP mutation (Figures S6 H and S7 F). This is in very
accordance with our experimental experience. Re-directed
RNA editing is highly selective and requires the positioning of
the targeted adenosine in a well-defined secondary struc-
ture.[2]

Chemical modification of the guideRNA may also
improve substrate specificity in a cellular application, because
random binding of the probe to a partially complementary
sequence in the transcriptome may less often lead to
unwanted off-site editing.[15] Furthermore, chemical modifi-
cation may not only improve the pharmacological properties
including lifetime and off-site effects, but could also improve
the editing selectivity. We demonstrate this for the repair of
the Factor 5 Leiden polymorphism. This disease-causing
single point mutation (G1746!A) represents the most abun-

Figure 2. Directed RNA editing in 293T cells. Cells were cotransfected
with equal amounts of reporter gene (Stop66 eCFP or wild-type) and
SNAPf-ADAR1 (or empty pcDNA3.1). After 24 h guideRNAs were
transfected and 24 h later the fluorescence phenotype was analyzed by
fluorescence microscopy. A) Positive control (wild-type eCFP with
SNAPf-ADAR1 and BG-antagomir-guideRNA); B) negative control 1
(Stop66 eCFP/empty pcDNA3.1/BG-antagomir-guideRNA); C) negative
control 2 (Stop66 eCFP/SNAPf-ADAR1/no guideRNA); D)–G) experi-
ments with Stop66 eCFP/SNAPf-ADAR1 and various guideRNAs:
D) standard BG-guideRNA; E) BG-antagomir-guideRNA; F) standard
NH2-guideRNA; G) NH2-antagomir-guideRNA. The scale bar repre-
sents 200 mm. H) Sanger sequencing of the RNA extracted from cells
treated as in experiment (E). For details on cell culturing see the
Supporting Information.
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dant genetic risk factor in heritable multifactorial thrombo-
philia in the Caucasian population.[19] Due to the point
mutation, a single amino acid substitution (R534!Q)
appears at the Protein C dependent proteolytic cleavage site
(R533R534) of the blood coagulation factor F5. Whereas the
heterozygous defect is accompanied by an only minor
increase in thrombosis risk (ca. 8-fold), the homozygous
defect has a much more pronounced effect (> 80-fold
increased risk).[19] Directed RNA editing has the potential
to compensate for this genetic defect by its repair at the RNA
level. However, a look into the gene revealed a very
adenosine-rich and thus highly challenging target site (Fig-
ure 3A). The glutamine codon (5’-CAA) is known to be more
difficult to activate than the amber stop codon.[20, 2b]

The repair reaction was studied on a 1000nt long piece of
the F5 transcript containing the F5 Leiden mutation centrally.
This was required since both the F5 pre-mRNA (> 70 kb) and
the mature mRNA (7 kb) are too large[19d] for our standard
editing assay.[2] We started the repair study with a 17nt long
guideRNA that puts the targeted adenosine into an A/C
mismatch in the middle of the guideRNA/mRNA helix. Even
though none of the 330 adenosines outside of the helix have
been edited, we found massive overediting at neighboring off-
target adenosines inside the guideRNA/mRNA duplex (Fig-
ure 3A). Specifically, editing was observed at four sites, with
the targeted site being barely activated (� 20 % yield). The
highest editing yield (ca. 50 %) was obtained at the direct
neighbor of the targeted base. Since ADAR2 is known to edit
the Q/R site in the glutamate receptor with up to quantitative
yield,[1] we made use of our modular approach and changed
the deaminase domain in our SNAP fusion protein from that
of hADAR1 to that of hADAR2 (see the Supporting
Information). Indeed, this helped to activate the 5’-CAA
codon considerably (ca. 70% yield, Figure 3B). Shortening

the guideRNA (from 17 to 14 nt) was sufficient to suppress
overediting at the distal sites; however, the strong overediting
(ca. 50%) at the adenosine directly neighboring the targeted
base stayed unaffected (Figure 3B). Our work on 2’-O-
methylated guideRNAs (Figure 1A–G) suggested that incor-
poration of 2’-methoxy groups around the off-targeted
adenosine may provide a means to suppress overediting in
this very delicate codon context. To avoid affecting the
targeted adenosine, we placed only two modifications on the
guideRNA, one opposite the off-site adenosine and one
opposite its neighboring guanosine. Indeed, overediting was
completely abolished without affecting editing at the target
site for which the overall yield remained roughly 70%
(Figure 3C). Such repair yields would be more than sufficient
to attenuate the disease phenotype.[19] Thus chemical modi-
fication of the guideRNA is not only useful to increase
nuclease resistance but provides a means to finetune editing
selectivity.

In summary, we have demonstrated the strength and
applicability of site-directed RNA editing as a rational
approach for RNA repair. Chemical modification turned
out to be a reliable means to suppress overreaction and steer
selectivity. Importantly, we found that even massive chemical
modification including global 2’-methoxy and terminal phos-
phothioate groups is well accepted as long as a small gap of
three nonmodified ribonucleotides is maintained. Further-
more, we have demonstrated the functioning of the tool inside
the cell. To our knowledge this is the first example of the
assembly of an enzymatically active, covalent protein nucleic
acid (analogue) conjugate inside the living cell and may
represent an attractive strategy for the spatially or temporally
controlled assembly of protein arrays in general.[21] In contrast
to competing strategies that apply the protein–RNA recog-
nition by means of the MS2 or lN phage system for
assembly,[22,21] our guideRNAs are particularly short (20 nt)
and lack additional BoxB RNA hairpin (19nt) and linker (10–
20nt) motifs required for recognition and spacing that make
other guideRNAs � 60 nt long.[22] Our stabilized 20nt short
guideRNAs are particularly suitable for transfection and are
supposed to be too small to elicit an immune response.[7–15]

The necessity to transfect our guideRNAs instead of express-
ing them encourages us to think about introducing further
chemical modifications that endow our probes with additional
layers of control, such as photoactivation. Our findings
dramatically improve the prospect of directed RNA editing
for in vivo applications in basic biology research and
medicine. Along those lines, we demonstrated the first
repair of a disease-causing missense point mutation in vitro.
This required the exchange of the deaminase domain of the
SNAP fusion protein from hADAR1 to that of hADAR2 and
the careful chemical modification of the guideRNA to target
the codon in its highly challenging adenosine-rich sequence
context. The high modularity of the SNAP-deaminases in
combination with their useful tolerance for chemical modi-
fication highlight the potential of this approach for site-
directed RNA repair.

Received: February 21, 2014

Figure 3. Repair of the F5 Leiden polymorphism. Potential off-target
adenosines are highlighted with red boxes. Overedited sites are
marked with black arrows, the targeted site with an asterisk. Editing
conditions: 50 nm R534Q F5 mRNA, 200 nm BG-guideRNA, 350 nm

SNAP-ADAR1/2; 3 h at 30/37 8C in 75 mm KCl, 25 mm Tris-HCl,
10 mm DTT, 0.70 mm MgCl2, pH 8.3. An overview of the editing results
for all guideRNAs with SNAP-ADAR1 and SNAP-ADAR2 is shown in
the Supporting Information together with one complete sequencing
trace (Figures S4 and S5).
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Protein and gene constructs used in this study 

One part of the work was done with SNAP‐ADAR1, the same construct described in a previous 

publication (Angew. Chem. Int Ed. 2012, 51, 11166). Another part of the work was done with SNAP‐

ADAR2 as described below. 

Cloning of SNAP‐ADAR2‐His6 into pRS426 under control of the Gal1‐10 promotor 

The gene of the deaminase domain (aa281‐701) of human adar2 (BC065545, with a sequenced clone 
from a commercial cDNA library as template) was subcloned via the AscI and BamHI restriction sites 
into the SNAP‐ADAR1‐His6 construct replacing the ADAR1 domain. The plasmid is based on the 
yeast/E. coli shuttle vector pRS426 (P. Hieter et al., Gene 1992, 110, 119.). The fusion protein is under 
control of a Gal1‐10 promotor, adding a C‐terminal 6xHis‐tag. To allow the usage of BamHI, a natural 
BamHI site in the ADAR2 gene was disrupted by a silent point mutation. Thus the insert was cloned 

via overlap PCR. 5`‐Site: fw primer: 5`-TAGGCGCGCC AGGGTCTGGC GGCGGCAGTA AGAAGCTTGC 
CAAGGCCCGG; bw primer: 5`‐CTGAGCAGGG AACCCTGGAT GCC; 3`‐site: fw primer: 5`‐GGCATCCAGG 
GTTCCCTGCT CAG; bw primer: 5`‐GCGGATCCTA TTAATGGTGA TGGTGATGGT GGGGCGTGAG 
TGAGAACTGG TC; overlap with the 5`‐site fw and the 3`‐site bw primer. Phusion polymerase (NEB) 
was used for all cloning steps. PCR products were always cleaned by 1.2‐1.5% agarose gel 
electrophoresis in 1fold TAE buffer. Ligation products were transformed into xl1blue E.coli. After 
minipreparation, plasmids were sequenced over the whole promotor and ORF.    

Protein production and purification 

The fusion protein was produced on a 1L scale in YVH10 (saccharomyces cerevisiae, K. D. Wittrup et 

al., Nat. Biotech. 1998, 16, 773) very similar to a well described literature protocol (B. L. Bass et al., 

Meth. Enzym. 2007, 424, 319). For this the SNAP‐ADAR2‐His6 gene in pRS426 was transformed into 

chemically competent YVH10 using the Frozen‐EZ Yeast Transformation II Kit (Zymo Research) 

according to the recommendations of the manufacturer. Cells were grown in SD‐CAA+W for 4 days at 

25°C, 270 rpm in culture flasks and switched to SG‐CAA+W for induction. After 5 days at 20°C, 270 

rpm, cells were harvested, lysed with a French press (20 000 Psi, 3 runs) and clarified from the debris 

by centrifugation (40 000 g, 1h). The lysate was subjected to pre‐equilibrated Ni‐NTA gel via a 0.4 µM 

PES‐sterile syringe filter. The Ni‐NTA gel was washed with 10 mM imidazole, the protein was eluted  

into 15 ml 400 mM imidazole, 100 mM NaCl, 20 mM Tris‐HCl pH 8.0, 5% glycerol. The protein 

containing fractions were subjected to a 1 ml HiTrap Heparin column (GE‐Healthcare) equilibrated 

with 100 mM NaCl, 20 mM Tris‐HCl pH 8.0, 5% glycerol. The protein was manually eluted by step‐

wise increasing salt concentration. The protein was typically found between 250 and 350 mM NaCl 

and was already >90% clean as judged from the SDS‐PAGE (Fig. S1). The presence of the SNAP‐tag 

was confirmed by staining the protein with O‐benzylguanine‐modified fluoresceine (Fig. S1). Since 

yeast is not containing an endogenous editing machinery that could interfere with our construct, no 

further purification was done. The protein was concentrated to a final volume of 250 µl with a 15 ml 

10kDa MWCO amicon centrifugal filter and was changed to 150 mM NaCl without changing the other 

buffer conditions. The concentration of the protein solution was estimated by UV‐spectroscopy with 

extinction coefficients of 600 cm‐1 mM‐1 (230 nm), 85 cm‐1 mM‐1 (260 nm), 120 cm‐1 mM‐1 (280 nm) 

prior to addition of DTT. The protein stock solution was filled up with 86% glycerol to a total 

concentration of 20% glycerol and DTT was added to a final concentration of 2 mM, and was stored 

at ‐20°C for short‐term and ‐80°C for long‐term. A typical 1 L production resulted in about 10‐15 nmol 

(600‐1000 µg) >90% pure protein. Protein properties: 622 aa (190 aa SNAP‐tag, 420 aa deaminase); 

pI ≈ 9.4; MW = 67.8 kDa. 
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Figure S1.   SDS‐Page of SNAP‐ADAR2 protein production after purification on heparin. Left: Coumassie blue stain, right FITC‐BG staining. 

Shown are the fractions of the step‐wise heparin column elution with 100‐500 mM NaCl. Protein samples were incubated in presence of ca. 

1 uM O‐benzylguanine‐fluoresceine for highly selective fluorescence staining of SNAP‐tagged proteins. The 250 mM and 300 mM fractions 

were unified and concentrated and used without further purification. The expected size of the protein (68 kDa) fits well to the LMW protein 

marker (GE Healthcare).  

 

Editing substrates 

Editing was investigated on mRNA substrates of Stop66 eCFP and R534Q F5 mRNA. The Stop66 eCFP 
gene was subcloned into the pMG211 E. coli vector (M. Gamper et al., FEBS J. 2005, 272, 375.) and 
was produced from Xl1Blue with a Miniprep kit (Macherey&Nagel).  
 

 

Scheme S1.  pGM211 plasmids carrying the Stop66 eCFP gene used in this study. 

 

Stop66 eCFP 

The repair of the Stop66 nonsense mutation to functional tryptophan was investigated on eCFP. As 

compared to eGFP, eCFP contains the typical mutations N146I, M153T, V163A, and N164H which are 

required for the proper folding and maturation of the tryptophan‐containing chromophore (Tsien, et 

al., Current Biology 6, 178‐82 (1996)). A gene containing the non‐functional Stop66 codon (UAG) at 

position of Trp66 (UGG) is the starting material for the editing‐mediated repair. Point mutations were 

introduced by overlap‐extension PCR via the XhoI/NheI restriction sites. The product genes were 

approved by sequencing over the complete ORF.  
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Stop66  eCFP protein sequence 

1         MASKGEELFT GVVPILVELD  
21        GDVNGHKFSV SGEGEGDATY  
41        GKLTLKFICT TGKLPVPWPT  
61        LVTTLC*GVQ CFSRYPDHMK  
81        RHDFFKSAMP EGYVQERTIF  
101       FKDDGNYKTR AEVKFEGDTL  
121       VNRIELKGID FKEDGNILGH  
141       KLEYNYISHN VYITADKQKN  
161       GIKAHFKTRH NIEDGSVQLA  
181       DHYQQNTPIG DGPVLLPDNH  
201       YLSTQSALSK DPNEKRDHMV  
221       LLEFVTAAGI THGMDELYKS  
241       GGSMALE 
 

Stop66 eCFP gene sequence 

1        ATGGCTAGCA AAGGAGAAGA ACTCTTCACT GGAGTTGTCC CAATTCTTGT TGAATTAGAT 
61       GGTGATGTTA ACGGCCACAA GTTCTCTGTC AGTGGAGAGG GTGAAGGTGA TGCAACATAC 
121      GGAAAACTTA CCCTGAAGTT CATCTGCACT ACTGGCAAAC TGCCTGTTCC GTGGCCAACA 
181      CTAGTCACTA CTCTGTGCTA GGGTGTTCAA TGCTTTTCAA GATACCCGGA TCACATGAAA 
241      CGGCATGACT TTTTCAAGAG TGCCATGCCC GAAGGTTATG TACAGGAAAG GACCATCTTC 
301      TTCAAAGATG ACGGCAACTA CAAGACACGT GCTGAAGTCA AGTTTGAAGG TGATACCCTT 
361      GTTAATAGAA TCGAGTTAAA AGGTATTGAC TTCAAGGAAG ATGGCAACAT TCTGGGACAC 
421      AAATTGGAAT ACAACTATAT CTCACACAAT GTATACATCA CCGCAGACAA ACAAAAGAAT 
481      GGAATCAAAG CCCACTTCAA GACCCGCCAC AACATTGAAG ATGGAAGCGT TCAACTAGCA 
541      GACCATTATC AACAAAATAC TCCAATTGGC GATGGCCCTG TCCTTTTACC AGACAACCAT 
601      TACCTGTCCA CACAATCTGC CCTTTCGAAA GATCCCAACG AAAAGAGAGA CCACATGGTC 
661      CTTCTTGAGT TTGTAACAGC TGCTGGGATT ACACATGGCA TGGATGAACT ATACAAATCC 
721      GGCGGCTCCA TGGCGCTCGA G 
 

The F5 gene covers roughly >70 kb on the genome and results in a 7 kb mRNA, spliced together from 

25 exons. For T7 in vitro transcription, we have used a plasmid from a human ORFeome collection 

database that contains the full mature cDNA and the F5 Leiden mutation (BC111588). To run the F5 

editing assay efficiently, we have copied a 1000 bp section of this cDNA downstream of a T7 

promotor via a 2‐step PCR (Phusion polymerase, 1. reaction: template ORF clone BC111588 after 

miniprep, forward primer: 5`-GGG ACT ATG CAC CTG TAA TAC CAG; backward primer: 5`-

CCG TGT AGC CAT GAC TGT AGA TTC; 2. reaction: template PCR reaction 1 after agarose gel 

purification, forward primer: 5`- GCT AAT ACG ACT CAC TAT AGG GAG AGG GAC TAT 

GCA CCT GTA ATA CCA G; backward primer: 5`-CCG TGT AGC CAT GAC TGT AGA 

TTC). After agarose gel purification, a 1000 nt long transcript containing the F5L mutation right in the 

middle was formed via in‐vitro‐T7 transcription from this template. The F5VL mutation is located in 

exon 10 (220 bp) and sits 10 bp upstream of the boarder to exon 11. Thus, all guideRNAs tested so 

far can target both, the mature and the pre‐mRNA. 

 

R534Q   F5 protein sequence 

1         DYAPVIPANM DKKYRSQHLD  
21        NFSNQIGKHY KKVMYTQYED  
41        ESFTKHTVNP NMKEDGILGP  
61        IIRAQVRDTL KIVFKNMASR  
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81        PYSIYPHGVT FSPYEDEVNS  
101       SFTSGRNNTM IRAVQPGETY  
121       TYKWNILEFD EPTENDAQCL  
141       TRPYYSDVDI MRDIASGLIG  
161       LLLICKSRSL DRQGIQRAAD  
181       IEQQAVFAVF DENKSWYLED  
201       NINKFCENPD EVKRDDPKFY  
221       ESNIMSTING YVPESITTLG  
241       FCFDDTVQWH FCSVGTQNEI  
261       LTIHFTGHSF IYGKRHEDTL  
281       TLFPMRGESV TVTMDNVGTW  
301       MLTSMNSSPR SKKLRLKFRD  
321       VKCIPDDDED SYEIFEPPES  
341       TVMATR 
 

R534Q   F5 gene sequence 

1        GGGACTATGC ACCTGTAATA CCAGCGAATA TGGACAAAAA ATACAGGTCT CAGCATTTGG 
61       ATAATTTCTC AAACCAAATT GGAAAACATT ATAAGAAAGT TATGTACACA CAGTACGAAG 
121      ATGAGTCCTT CACCAAACAT ACAGTGAATC CCAATATGAA AGAAGATGGG ATTTTGGGTC 
181      CTATTATCAG AGCCCAGGTC AGAGACACAC TCAAAATCGT GTTCAAAAAT ATGGCCAGCC 
241      GCCCCTATAG CATTTACCCT CATGGAGTGA CCTTCTCGCC TTATGAAGAT GAAGTCAACT 
301      CTTCTTTCAC CTCAGGCAGG AACAACACCA TGATCAGAGC AGTTCAACCA GGGGAAACCT 
361      ATACTTATAA GTGGAACATC TTAGAGTTTG ATGAACCCAC AGAAAATGAT GCCCAGTGCT 
421      TAACAAGACC ATACTACAGT GACGTGGACA TCATGAGAGA CATCGCCTCT GGGCTAATAG 
481      GACTACTTCT AATCTGTAAG AGCAGATCCC TGGACAGGCA AGGAATACAG AGGGCAGCAG 
541      ACATCGAACA GCAGGCTGTG TTTGCTGTGT TTGATGAGAA CAAAAGCTGG TACCTTGAGG 
601      ACAACATCAA CAAGTTTTGT GAAAATCCTG ATGAGGTGAA ACGTGATGAC CCCAAGTTTT 
661      ATGAATCAAA CATCATGAGC ACTATCAATG GCTATGTGCC TGAGAGCATA ACTACTCTTG 
721      GATTCTGCTT TGATGACACT GTCCAGTGGC ACTTCTGTAG TGTGGGGACC CAGAATGAAA 
781      TTTTGACCAT CCACTTCACT GGGCACTCAT TCATCTATGG AAAGAGGCAT GAGGACACCT 
841      TGACCCTCTT CCCCATGCGT GGAGAATCTG TGACGGTCAC AATGGATAAT GTTGGAACTT 
901      GGATGTTAAC TTCCATGAAT TCTAGTCCAA GAAGCAAAAA GCTGAGGCTG AAATTCAGGG 
961      ATGTTAAATG TATCCCAGAT GATGATGAAG ACTCATATGA GATTTTTGAA CCTCCAGAAT 
1021     CTACAGTCAT GGCTACACGG 
 

mRNA‐Synthesis for RNA editing 

Editing was investigated on mRNA substrates of Stop66 eCFP and R534Q F5. Those were generated 

from the respective genes under control of the T7 promotor with T7 RNA polymerase. To avoid 

contamination with RNaseA, mRNA production was templated with PCR products rather than 

plasmids. For this, each gene was amplified from the respective pMG211 plasmids with Phusion Pol, 

T7forw primer and a respective backward primer, yielding 900 or 1050 nt long ssRNA transcripts in 

very good quality after spin column clean‐up with the  RNeasy Minelute kit (Qiagen). To remove even 

traces of DNA template, mRNA transcripts were subsequently treated with DNaseI (Qiagen, 30 min at 

37°C), and were finally cleaned by another RNeasy spin column work‐up.  Average yields of DNA‐free 

mRNA were 1.0 OD/50µl reaction mix. The absence of DNA template was always proven by PCR prior 

to cDNA synthesis. 
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 Figure S2.  Analytical agarose gel (1x TAE, 1.5% agarose) of a representative mRNA (STOP66 ecfp) 

obtained via T7 RNA polymerase‐dependent transcription from a 930 bp PCR transcript as template, 

after DNaseI treatment and spin column workup. As expected, the 900 nt ssRNA runs slightly faster 

as compared to the 1000 bp dsDNA marker and is of very good quality (no degradation detectable).  

 

Properties of the mRNA transcripts: Stop66 eCFP: length 903 nt; 

molecular weight = 290.3 kDa, 287 adenosines (32%); 207 cytosines 

(23%); 194 guanosines (22%); 215 uridines (24%); 5´‐UTR: length 70 nt; 

3´‐UTR: length 68 nt, ORF: length 765 nt: 245 A (32%); 179 C(23.4%); 161 

G (21.0%); 180 U (23.5%); R534Q F5: length 1040 nt; molecular weight = 

334.6 kDa, 334 adenosines (32%); 222 cytosines (21%); 228 guanosines 

(22%); 256 uridines (25%). 

 

 

Syntheses 

Synthesis of 5´‐benzylguanine‐modified gRNAs 

gRNA oligos with no, one and up to three 2`‐methoxy groups were obtained from Eurofins Germany 

as HPLC‐purified, MALDI‐TOF‐confirmed ssRNA oligos carrying a 5´‐C6‐aminolinker (NH2‐gRNA). The 

phosphothioate / 2´‐OMe modified oligomer was obtained from Biospring GmbH (Frankfurt) in HPLC‐

clean, desalted purity. In a typical procedure (Angew. Chem. Int Ed. 2012, 51, 11166), 150 µg NH2‐

gRNA (20‐25 nMol) were first cleaned by ethanol precipitation, washed, dried, taken up in 25 µl 

hepes buffer (75 mM hepes, 50 mM NaCl, pH 8.1) and were given to a pre‐activated OSu‐ester of BG‐

linker‐COOH (10 equiv. BG‐linker‐COOH, 10 equiv. EDCI*HCl, 14 equiv. N‐hydroxysuccinimide, 40 

equiv. Hünig base, all in 25 µl DMSO, 1h preactivation). After 1h at 30°C, another lot of 10 equiv. 

preactivated (2h) BG‐linker‐OSu in 25 µl DMSO were added and incubated for 1h at 30°C. The raw 

gRNA was precipitated with ethanol, taken up in 1xTBE, 7M urea and purified on a 20% 19:1 1xTBE‐

7M urea PAGE mini gel (10x10 cm, 1mm thick), cut out on a TLC‐plate under low‐intensity 254 nm 

UV‐light and was isolated by the crush‐soak method into RNAse‐free water at 4°C overnight. To 

remove urea and buffer salts, the BG‐gRNA was precipitated again with ethanol, washed, dried and 

dissolved into 80 µl RNase‐free water. Typically, 80‐100% conversion was observed and around 40% 

pure BG‐modified gRNA was obtained after crush soak / precipitation. The concentrations were 

determined by UV‐absorbance at 260 nm. Special care must be taken in the preparation of the 

PTO/2´‐OMe‐modified guideRNA with regard to ethanol precipitation and PAGE purification. Even 

though clean oligomers can be precipitated, precipitation from a reaction mixture or urea containing 

solutions turned out to be difficult. The RNA pellet also tends to dissolve in 70% ethanol (take short 

incubation of 5 min with ‐20°C pre‐cooled ethanol). PTO/OMe oligomers run slower on the PAGE, 

thus cyanol blue should be added as a dye front rather than bromphenol blue. In our experience the 

20 mer oligomer with 6xPTO and 17x2`‐OMe runs close to the cyanol blue band in 18% PAGE (19:1). 

To reduce problems, we directly loaded the reaction mixture on the PAGE skipping the precipitation 

step. However, BG‐linker‐COOH should also be loaded as a marker to clearly distinguish the modified 

guideRNA from the excess reagent that would block conjugation if it was not removed. 
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Scheme  S3.  Structure  of  the  BG‐modified  guideRNAs.  BG was  introduced  via  peptide  bond  formation  (red  bond,  see  arrow)  into  C6‐

aminolinker‐modified guideRNAs. 

 

Stop66 gRNA    5´-r(UCG GAA CAC CCC AGC ACA GA)   ε260
a) = 230 

Stop66 gRNA-me    5´-r(UCG GAA CAC CCc AGC ACA GA)   ε260
a) = 230 

Stop66 gRNA-3`me    5´-r(UCG GAA CAC CCC aGC ACA GA)   ε260
a) = 230 

Stop66 gRNA-5`me    5´-r(UCG GAA CAC CcC  AGC ACA GA)   ε260
a) = 230 

Stop66 gRNA-3me    5´-r(UCG GAA CAC Ccc aGC ACA GA)    ε260
a) = 230 

Stop66 gRNA-PTO/OMe   5´-r(uscsg gaa cac cCC  A gc ascsa sgsa)   ε260
a) = 230 

F5 gRNA-17nt    5´-r(CAC GUA UUC CUC GCC UGU CC)   ε260
a) = 189 

F5 gRNA-14nt    5´-r(UGC UAU UCC UCG CCU GU)    ε260
a) = 160 

F5 gRNA-14nt-2me    5´-r(UGC UAU UCc uCG CCU GU)    ε260
a) = 160 

Table S1.  Commercially obtained 5´-NH2-gRNAs that were transformed into 5’-BG-modified gRNA; the nucleotide opposite of 
the targeted adenosine is unlined and in bold; 2`-methoxylation is indicated by small letters; phosphothioate linkages are 
indicated by “s” subscripts. The first three nucleotides 5` of each guideRNA are not binding to the mRNA substrate but link the 
guideRNA to the SNAP-tag.  

a) extinction coefficients of NH2-gRNAs are given in mM-1 cm-1, after modification with BG, 12 mM-1 cm-1 were added to 
the respective extinction coefficients listed here 

 

MALDI‐TOF‐MS‐analysis of BG‐modified gRNAs 

PAGE‐purified BG‐gRNAs were precipitated with 0.5 volumes 7.5 M ammonium acetate / 2.5 volumes 

ethanol, washed with 70% ethanol and were dissolved in nanopure water. Samples were then mixed 

with a matrix of 2,4,6‐trihydroxyacetophenone monohydrate (0.3 M in EtOH) / diammonium citrate 

(0.1 M in water) 2:1. Spectra were collected by the Richert group (University of Stuttgart) on a Bruker 

REFLEX‐IV spectrometer (see SI in C. Richert et al., Nat. Chem. 2011, 3, 603) in the negative ion mode. 

Importantly, all BG‐gRNAs contain the BG‐modification and are free from impurities by the respective 

non‐modified amino‐gRNAs (‐568 Da). 
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Editing of mRNA substrates with gRNA‐ADAR‐conjugates 

General considerations 

Editing reactions were performed in 1x reverse transcription (RT) buffer from New England Biolabs 

but with a magnesium concentration reduced to physiological conditions (25 mM Tris‐HCl, 

75 mM KCl, 0.75 mM MgCl2, 10 mM DTT, pH 8.3). To our experience editing reactions can be run 

between magnesium concentrations of 0 to 5 mM, however, some codons are better edited at low 

magnesium content (≤ 1mM). To be as close as possible to later in vivo conditions, reactions are 

generally run at 0.75 mM magnesium concentration. eCFP mRNA has a short self‐pairing region 

around nt 400. Due to the formation of this dsRNA motif little over‐editing can occur. However, 

adding supplements as heparin (0.5‐2 µM), spermidine or BSA can completely block this off‐target 

editing. Thus, editing reactions with eCFP mRNA (not F5 mRNA) had been supplemented with 

heparin (2 µM, calculated on an average molar mass of 20 kDa). SNAP‐ADAR proteins were always 

given in at least 1.3 equiv. excess over the respective gRNA to allow full in situ conversion of the 

latter and thus to ensure the presence of the deaminase at every gRNA/mRNA pairing complex. To 

minimize mRNA degradation the reaction mixture was complemented with 0.5 u/µl murine RNase 

inhibitor (NEB). Typically, reactions were carried out at 30°C 30 min, 37°C 30 min for 3 cycles (overall 

reaction time = 3 h), however, >90% of the final A to G conversion was usually observed after 30 min. 

Editing reactions were run at the given concentrations of the components on a 25 µL scale according 

to our recently published protocol (Stafforst, Schneider, Angew. Chem. Int Ed. 2012, 51, 11166).  

 

Post‐editing work‐up / PCR amplification 

After editing, the edited mRNA was reverse transcribed into cDNA. For this, the editing reaction was 

stopped by addition of a reverse transcription mix containing an excess of a short ssDNA that is fully 

reverse complementary to the respective gRNA used (see Table 1.) and heating to 70°C for 3 min. The 

magnesium concentration was adjusted to the requirements of the reverse transcriptase (3 mM final 

Mg concentration). Heating enables to break possible RNA secondary structure and to allow primer 

binding. RT was started by adding 50 u M MuLV RT (NEB) in 0.5 µl. After 2 h at 42 °C the cDNA was 

worked‐up and concentrated using the Nucleospin PCR work‐up kit (Macherey & Nagel). 

Reverse complementary strands to stop editing reactions: 

Stop66 ecfp ssDNA: 5´‐d(ATCTGTGCTGGGGTGTTCCGAT) 

R534Q F5 ssDNA: 5`‐(d(CGGACAGGCGAGGAATACGTGT) 

For subsequent analysis, a PCR amplification was required. For this, the respective cDNA from edited 

mRNA was used as template (typically 1 µl OD260 = 0.2, ca. 5 ng) in a Taq‐PCR reaction on a 50 µl 

scale. Negative controls were performed with mRNA substrate (1 µl OD260 = 0.2), to exclude that 

traces of DNA template in the mRNA originate the PCR product, and without adding any template to 

ensure that none of the mixed PCR components was contaminated with any DNA template.  A PCR 

product containing the gene served as positive control. PCR products were separated by 1.5 % 1xTAE 

agarose gel electrophoresis containing the Rotisafe stain (Carl Roth GmbH), product bands were cut 

out and DNA was extracted with the Nucleospin PCR & Gel work‐up kit (Macherey & Nagel). 
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Taq PCR primers used: 

eCFP: fw: 5´‐d(GCGGATAACAATTCCCCTCTAG) 

bw: 5´‐d(CAGCGGTGGCAGCAGCCAAC) 

F5: fw: 5`‐d(GGGACTATGCACCTGTAATACCAG) 

bw: 5`‐d(GAGTCTTCATCATCATCTGGGATAC) 

 

Sequencing 

For sequencing, PCR products were sent to either LGC‐Genomics, Berlin (F5) or to Eurofins MWG, 

Ebersberg (eCFP). The F5 samples were sequenced using the Taq PCR backward primer, the eCFP 

samples were sequenced using the Taq PCR forward primer reported above. The areas in the abi‐

traces of the respective adenosine versus guanosine peaks at a specific site were used to estimate 

the degree of editing.   
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Results 

Figure S3. One complete Sanger sequencing trace that covers the full ORF of eCFP is given to exemplify the high editing selectivity achieved 

with directed RNA editing. The given sequence is of the experiment shown in Figure S3 F): the editing with Stop66 BG‐gRNA‐ant in presence 

of SNAP‐ADAR1. No second site (off‐target) editing was observed for any of the 14 editing settings shown in Figure S3. 

 

Editing of R534Q F5 mRNA (CAA) to (CGA) with SNAP‐ADAR1 & SNAP‐ADAR2 with various 

chemically modified guideRNAs 

 



Supporting Information        12 

 

12 
 

 

Figure  S4. Effect of  chemically modified  guideRNAs on editing of R
534
Q  F5 mRNA. As  compared  to ADAR2, ADAR1  is not at all able  to 

sufficiently activate  the 5`‐CAA codon.   ADAR2 efficiently and selectively edits  the  targeted adenosine  (*). However, over‐editing at  the 

direct 3`‐neighboring adenosine base is problematic. Selective methylation at two sites (C) enable to control over‐editing in closest vicinity. 

The mRNA is shown in blue, the guideRNA in red. Bases modified with 2`‐OMe are colored red, phosphothioate linkages are indicated with 

a green `s`. Editing yields can be estimated from the areas for adenosine (red) versus guanosine (blue) in the respective sequencing trace 

after reverse transcription and PCR amplification. Editing conditions: 3h at 30/37°C; 25 nM mRNA, 200 nM BG‐guideRNA, 350 nM SNAP‐

ADAR1/2, 75 mM KCl, 50 mM Tris‐HCl, 10 mM DTT, 0.70 mM MgCl2, pH 8.3. 
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 Figure S5. One complete Sanger sequencing trace that covers the full 1000 nt part of the F5 mRNA which was be used for editing. The F5 

leiden mutations lies centrally in this transcript. The full sequencing trace is given to exemplify the high editing selectivity achieved with 

directed RNA editing (no other adenosine of 330 possible off‐targets is edited). The given sequencing trace is that of the experiment shown 

in Figure S5 C): the editing with F5 BG‐gRNA‐14nt‐2me in presence of SNAP‐ADAR2.  
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Cellular editing assay 

Constructs 

SNAP‐ADAR1, Stop66 eCFP and wt eCFP were subcloned into pcDNA3.1 (Life Technologies) at the 

BamH1 / Xba1 site using the following primers: CFP: fw: 5´‐ GCGGATCCAC CATGGCTAGC 

AAAGGAGAAG AACTC; bw: 5´‐CCTCTAGAGC CGGATTTGTA TAGTTCATCC ATGCC; SNAP‐ADAR1: fw: 5´‐

CGGATCCACC ATGGACAAAG ATTGCGAAAT GAAAC; bw: 5´‐CCTCTAGATA CTGGGCAGAG ATAAAAGTTC 

TTTTC. The genes are under control of the CMV promotor and contain a 5´‐CCACCATGG Kozak 

sequence. In contrast to the in vitro experiments, we have used a new, improved SNAP‐tag variant 

called SNAPf (cloned from the SNAPf vector, N9183S, New England Biolabs into the pcDNA3.1 vector 

using the BamH1/Asc1 restriction sizes with fw primer: 5´‐GCGGATCCAC CATGGACAAA GACTGCG; bw 

primer: 5´‐CGGCGCGCC TCCGCCTGCA GGACCCAGC). Compared to the older SNAP‐tag used in the in‐

vitro‐assays (pSNAP‐tag (T7)‐2 Vector, N9182S, NEB) this new SNAPf variant possess 10 mutations 

that are important for faster labeling kinetics[1] and are sequence‐optimized for translation in 

mammalian cells. (Protein‐Sequence of SNAPf: MDKDCEMKRTTLDSPLGKLELSGCEQGLHRIIFLGKGTS 

AADAVEVPAPAAVLGGPEPLMQATAWLNAYFHQPEAIEEFPVPALHHPVFQQESFTRQVLWKLLKVVKFGEVISYS

HLAALAGNPAATAAVKTALSGNPVPILIPCHRVVQGDLDVGGYEGGLAVKEWLLAHEGHRLGKPGLG). 

 

Cell culture & transfection  

Fresh HEK293T cells (DSMZ Braunschweig, Germany, ACC‐635) were cultured in DMEM (Life 

Technologies) supplemented with 10% FBS (Life Technologies) and 1% penicillin/streptomycin (Life 

Technologies) under standard conditions (37°C and 5% CO2 in a water saturated steam atmosphere). 

The transfection experiments were performed with Lipofectamine 2000 reagent (Life Technologies) 

according to the manufacture`s protocol. For this, cells were seeded in full media (DMEM+FBS+ 

antibiotics) 24hrs prior to the first transfection with plasmid‐DNA. Subsequently, the media was 

changed to DMEM+FBS lacking antibiotics. Plasmid‐DNA and Lipofectamine 2000 reagent in a ratio of 

1 µg to 4 µl were separately diluted in equal amounts of OptiMEM (Life Technologies) and incubated 

for 5 min.  Then the solutions were mixed and incubated for 20 min prior to addition to the cells. 24 

hrs later, the cells were harvested by trypsination and were seeded again. After incubation overnight 

the cells were transfected with the respective guideRNA applying basically the same procedure as for 

plasmid transfection (20:1 ratio of guideRNA (pmol) to Lipofectamine (µl)). If no RNA was transfected 

(negative controls, f.i.) the cells were treated with the same amount of Lipofectamine 2000 instead.     

Fluorescence imaging of Stop66 eCFP editing 
2×105 Cells were seeded in a 24‐well plate in 500 µl media and were co‐transfected with 1,8 µg of 

each plasmid in 50 µl OptiMEM + Lipofectamine in 50 µl OptiMEM on the following day. 24hrs after 

transfection, 4×104 cells were given in each 96‐well plate in 100 µl media. guideRNA (50 pmol) in 25 

µL OptiMEM + Lipofectamine in 25 µl OptiMEM were used for the second transfection of the cells. 

24hrs later, the eCFP fluorescence was imaged at 50× magnification using an Axiovert 200M 

microscope (Zeiss) equipped with an AxioCam MRm camera (Zeiss). Access to the fluorescence 

microscope was kindly provided by Prof. Dr. Alfred Nordheim (Interfaculty Institute for Cell Biology, 

University of Tübingen).  

                                                            
[1] A. Gautier, A. Juillerat, C. Heinis, I. Reis Correa Jr., M. Kindermann, F. Beaufils, K. Johnsson, Chem. Biol. 2008, 15, 128. 
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Figure S6. Fluorescence (left) and phase contrast pictures (right) for analyzing Stop66 eCFP editing in HEK293T cells (scale bar: 200 µm). 

Cells were co‐transfected with equal amounts of reporter gene (Stop66 eCFP or wildtype) and SNAP‐ADAR1 (or empty pcDNA3.1). After 

24hrs the guideRNAs were transfected and 24hrs later, the fluorescence phenotype was analyzed by fluorescence microscopy.  

A) Positive control 1 (wt eCFP with SNAP‐ADAR1 and BG‐antagomir‐guideRNA);  

B) Negative control 1 (Stop66 eCFP / empty pcDNA3.1 / BG‐antagomir‐guideRNA);  

C) Negative control 2 (Stop66 eCFP / SNAP‐ADAR1 / no guideRNA);  

D)‐H) experiments with Stop66 eCFP / SNAP‐ADAR1 and various guideRNAs:  

D) standard BG‐guideRNA;  

E) BG‐antagomir‐guideRNA;  

F) standard NH2‐guideRNA;  

G) NH2‐antagomir‐guideRNA;  

H) Stop58 eGFP BG‐antagomir‐guideRNA (5`‐BG‐UsAsUGUGUCGG CCA CGGAAsCsAsGsG‐3`, italic letters: 2`‐methoxylation, s: 

phosphothioate modification, ribonucleotides: underlined); 

I)‐L) further control experiments:  

I) Negative control 3 (Stop66 eCFP / empty pcDNA3.1 / no guideRNA);  

J) Positive control 2 (wt eCFP / SNAP‐ADAR1 / BG‐antagomir‐guideRNA);  

K) Negative control 4 (empty pcDNA3.1 / empty pcDNA3.1 / BG‐antagomir‐guideRNA);  

L) Negative control 5 (untreated cells).   
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Determination of in‐vivo‐editing yield by RNA extraction and Sanger sequencing 

In comparison to the fluorescence imaging protocol, the protocol for determining the editing 

efficiency in HEK293T cells was 10‐fold up‐scaled from 24 well plates to 6‐cm dishes to obtain enough 

material for RNA sequence analysis. 2×106 cells were plated on a 6‐cm dish in 5 ml media and the 

first transfection was performed with 18 µg of both Stop66 eCFP and SNAP‐ADAR1 plasmids in 500 µl 

OptiMEM + Lipofectamine in 500 µl OptiMEM. After 24hrs 2×105 harvested cells were seeded in each 

24‐well plate in 500 µl media, and after 24hrs incubation 250 pmol guideRNA in 50 µl OptiMEM were 

transfected per well with Lipofectamine 2000 in 50 µl OptiMEM. RNA was extracted 24hrs after the 

second transfection using the RNeasy MinElute Cleanup Kit (Qiagen). The samples were purified from 

DNA by DNase I digest (RNase‐Free DNase Set, Qiagen). Afterwards, M‐MuLV reverse transcriptase 

(New England Biolabs) was applied for synthesizing cDNA according to the manufacture`s protocol 

(RT Primer: 5`‐CTAGAAGGCACAGTCGAGGC). The resulting cDNA was amplified by Taq‐PCR (fwd 

Primer: 5`‐GCGGATCCACCATGGCTAGCAAAGGAGAAGAACTC, rev Primer: 5`‐CCTCTAGAGCCGGATTTGT 

ATAGTTCATCCATGCC) and analyzed through Sanger Sequencing (Eurofins MWG Operon, Germany) 

applying the forward primer from the PCR amplification. 

 

 

Figure S7. RNA sequence analysis for determining the editing yield in HEK293T cells. Cells were co‐transfected with equal amounts of Stop66 

eCFP and SNAP‐ADAR1. After 24hrs various guideRNAs were transfected and 24hrs later, mRNA was extracted. After DNase I digestion 

cDNA was prepared by reverse transcription, amplified by Taq‐PCR and subsequently analyzed by Sanger Sequencing. The following 

guideRNAs were applied, respectively: 

A) no guideRNA;  

B) standard BG‐guideRNA;  

C) BG‐antgomir‐guideRNA;  

D) standard NH2‐guideRNA;  

E) NH2‐antagomir‐guideRNA;  

F) Stop58 eGFP BG‐antagomir‐guideRNA.    
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ABSTRACT: Site-directed RNA editing allows for the
manipulation of RNA and protein function by reprogramming
genetic information at the RNA level. For this we assemble
artificial RNA-guided editases and demonstrate their transcript
repair activity in cells and in developing embryos of the annelid
Platynereis dumerilii. A hallmark of our assembly strategy is the
covalent attachment of guideRNA and editing enzyme by
applying the SNAP-tag technology, a process that we
demonstrate here to be readily triggered by light in vitro, in mammalian cell culture, and also in P. dumerilii. Lacking both
sophisticated chemistry and extensive genetic engineering, this technology provides a convenient route for the light-dependent
switching of protein isoforms. The presented strategy may also serve as a blue-print for the engineering of addressable
machineries that apply tailored nucleic acid analogues to manipulate RNA or DNA site-specifically in living organisms.

■ INTRODUCTION

RNA-guided machineries provide highly selective and rationally
programmable tools for the site-specific manipulation of nucleic
acids. Several endogenous riboproteins are known that are
steered toward their endogenous targets by nucleic acid
hybridization and that are readily re-addressed toward new
targets by expression or administration of artificial external
guideRNAs. Those include the snoRNA-guided 2′-O-methyl-
ation1 and pseudo-uridinylation2 machineries and the micro-
RNA-guided RNA-induced silencing complex. The harnessing
of the latter machinery, better known as RNA interference,3 has
developed into a standard tool in cell biology. Besides
harnessing endogenous eukaryotic machineries, the engineering
of artificial riboproteins for the site-specific manipulation of
nucleic acids comes more and more into focus now. Tools are
highly desired that simplify genetic engineering4 and that help
to elucidate the role of point mutations and RNA
modifications.5−7 Besides their application in basic biology
research, such tools have potential for translation into
individualized medicine. A highly topical example is the re-
engineering of the bacterial CRISPR-Cas9 system for site-
selective genome editing in eukaryotic cells.8

Endogenous riboproteins are typically assembled by
molecular recognition between specific protein and RNA
structures.9 The formation of a single covalent bond between
an RNA and a protein component, however, is virtually
unknown for that purpose. Nevertheless, we could recently
demonstrate the assembly and functioning of highly selective
adenosine (A)-to-inosine RNA editing machineries inside living
cells following the latter approach.10,11 Since inosine is
biochemically read as guanosine (G), editing formally creates
A-to-G point mutations at the RNA level. If RNA editing is

directed to the open reading frame, 12 out of the 20 canonical
amino acids can be substituted,12 including most of the polar
residues essential for enzyme catalysis, post-translational
protein modification, or signaling. Furthermore, editing in the
non-coding part of the RNA can interfere with translation
initiation (start codon), translation stop, microRNA action, and
splicing among others.13,14 Thus, the potential of site-directed
RNA editing for application in basic biology research and
medicine is evident.15−18

We apply the SNAP-tag technology19 to assemble the editing
machinery via covalent bond formation. This technology
requires the fusion of a SNAP-tag domain (an evolved O6-
alkylguanine-DNA alkyltransferase) with the C-terminal
catalytic domain of a human ADAR enzyme (adenosine
deaminases acting on RNA).10 At the RNA component, the
incorporation of a small chemical moiety, O6-benzylguanine
(BG), is necessary. The covalent bond is then formed in situ in
a single-turnover enzymatic reaction between the SNAP-tag
and the BG moiety with very fast kinetics (kconjugation = 2.8 × 104

M−1 s−1)20 and high specificity (Figure 1a). Recently, we
demonstrated the repair of a premature stop codon (UAG) into
a tryptophan codon (UIG) in a fluorescent reporter gene in
human cells (293T).11 Notably, the repair reaction was strongly
dependent on the covalent attachment of the guideRNA to the
deaminase. This opens the appealing possibility of controlling
the editing reaction by triggering the assembly of the covalent
RNA−protein conjugate (Figure 1a). We decided to apply light
as a trigger, as it allows for the very precise and fast control in
time, space, and dosage.21
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■ RESULTS AND DISCUSSION
Synthesis and Decaging of Npom-Protected O6-

Benzylguanine. To achieve the light-dependent assembly of
the covalent RNA−protein conjugate, we masked the BG
moiety chemically by installment of a light-sensitive 6-
nitropiperonyloxymethyl (Npom) protection group22,23 which
absorbs broadly in the 330−420 nm range. During synthesis we
obtained a separable 1:2 mixture of regioisomers containing the
Npom group either at N7 or N9 position of the guanine base.
Upon irradiation with 365 nm light on a common UV-light
table, both isomers, N7 and N9, decay efficiently into free BG
and the respective nitroso acetophenone byproduct with similar

kinetics (N7 isomer, Figure 1b, t1/2 = 34 ± 3 s; N9 isomer,
Figure S13, t1/2 = 47 ± 4 s). The decaging efficiency εϕ was
determined by comparison with a commercial standard
(DMNB-cAMP) to be ∼2000 and ∼1500 M−1 cm−1 for the
N7 and N9 isomers, respectively, giving quantum yields ϕ ≈
0.5 and 0.36 (for details, see the Supporting Information).
To determine the reactivity of the Npom-protected BG with

SNAP-deaminases, we modified the aminomethyl linker of the
BG moiety with fluorescein. Such probes were incubated with
sub-stoichiometric amounts of SNAP-ADAR1 either in the dark
or in the presence of 365 nm light. The conjugate formation
was then determined by SDS-PAGE and fluorescence analysis

Figure 1. (a) Concept of light-triggered site-directed RNA editing. Assembly of the guideRNA−deaminase conjugate requires release of the Npom-
protected benzylguanine (BG) moiety and is a prerequisite for the editing reaction. (b) First-order kinetic analysis (via HPLC) of the
photodeprotection of N7-NpomBG at the small-molecule level. The HPLC trace shows the product mixture after 60 s of 365 nm irradiation (75%
conversion). The respective analysis for N9-NpomBG can be found in Figure S13. (c) Light-triggered conjugation reaction of fluorescein-labeled
Npom-BG with SNAP-ADAR1 protein (SDS-PAGE coomassie versus fluorescein stain). BG-FITC refers to the conjugate of BG with fluorescein
isothiocyanate, and BG-FAM refers to the conjugate with 6-carboxyfluorescein.

Figure 2. Light-dependent assembly of the editase and in vitro RNA editing. (a) N7-NpomBG is included into an activated linker that readily reacts
with the aminolinker of commercially available RNA analogues to obtain the NpomBG-guideRNAs. (b) The light-driven conjugation reaction between
Npom-BG-guideRNA and SNAP-ADAR1 is easily monitored by SDS-PAGE (coomassie stain). (c) In vitro site-directed RNA editing of the amber
stop codon at position 66 in the eCFP gene. The editing yield is clearly light-dose-dependent obeying first-order kinetics. Sanger sequencing of the
entire ORF of the eCFP gene shows no off-target editing (Figure S15). The respective editing applying SNAP-ADAR2 instead of SNAP-ADAR1 is
given in Figure S16. For further details, see the Supporting Information.
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(Figure 1c). It was clearly shown that full fluorescence labeling
of the SNAP-deaminase was readily accessible upon irradiation.
However, some background reactivity of the protected BG in
particular of the N9 isomer with SNAP-ADAR1 was visible.
The latter is coherent with the requirement of the natural
ancestor of the SNAP-tag to accept the desoxyribose at the N9
position of the nucleobase.24 We did not expect the low-level
residual activity to play a role under dilute conditions inside the
living cell; nevertheless, we continued all further work with the
pure N7 isomer of Npom-BG.
Light-Triggered Assembly of Protein−RNA Conju-

gates Controls RNA Editing in Vitro. To study the assembly
of the guideRNA−deaminase conjugate and its effect on in
vitro RNA editing, we attached the N7-NpomBG via a short
linker10 to the 5′-terminal aminolinker of a 17 nt guideRNA
that directs the conjugate to codon 66 of the eCFP transcript in
order to stimulate the repair of a premature amber stop codon
(UAG) back to tryptophan (Figure 2a). Via SDS-PAGE we first
characterized the light-dependent assembly of the riboprotein
(Figure 2b). Conjugation results in a readily detectable shift of
the SNAP-deaminase toward higher molecular weight. Indeed,
excellent control of the conjugate assembly was achieved in a
clearly light-dose-dependent manner, shifting the SNAP-
deaminase from non-conjugated to nearly complete conversion
following kinetics agreeing with the decaging kinetics of the
NpomBG precursor described above. To study the light-
dependent in vitro RNA editing reaction, a master mix
containing all components was aliquoted in the dark into
PCR tubes and aliquots were irradiated individually with 365
nm light for 0, 15, 30, 60, or 180 s, respectively, prior to starting
the editing reaction by incubation at 37 °C. A guideRNA
lacking the BG moiety served as a negative, and a guideRNA
modified with authentic BG served as a positive control. No
editing was observed in the negative control. Similarly, only
very minor editing above background was detectable in the
non-irradiated sample with the Npom-caged BG-guideRNA.
However, upon irradiation editing was restored in a light-dose-
dependent manner regaining an editing level comparable to
that of the positive control (Figure 2c, 75% with SNAP-
ADAR1; Figure S16, 60% with SNAP-ADAR2). Plotting the
intermediate editing levels against the irradiation time resulted
in first-order kinetics (Figure 2c, t1/2 = 26 ± 0.5 s) very similar
to those obtained with the small-molecule precursor (Figure
1b).
RNA Editing Is Controllable by Light in Living Cells.

For the study of intracellular light-activated RNA editing, we
incorporated the N7-NpomBG into a 19 nt Antagomir-like25

chemically stabilized nucleic acid analogue11 that contained a
gap of three natural ribonucleotides around the editing site. We
applied Antagomir-like chemistry to improve the stability of the
guideRNA and the selectivity of the editing reaction;11 this has
been shown for RNA interference before.26 The guideRNA
targets a premature amber stop codon (UAG) at an eGFP
reporter (W58amber), and successful editing is indicated by
turn-on of eGFP fluorescence. A guideRNA with authentic BG
served as a positive and the same guideRNA lacking the BG
moiety as a negative control. Further controls were done to test
the necessity of all components of the machinery. SNAP-
ADAR1 and the reporter gene were transiently overexpressed
from plasmids in HEK293T cells. One day after transfection of
the plasmids, the respective guideRNA was lipofected into the
cells. Four hours after lipofection, the medium was changed and
cells were irradiated with 365 nm light under high control of

dosage and wavelength by using a fluorescence microscope
equipped with a LED light source. One day later, the eGFP
fluorescence was analyzed by microscopy before the RNA was
isolated, and the editing yield was determined by Sanger
sequencing. Compared to our previous protocol, we had to
optimize the amounts and stoichiometry of SNAP-ADAR1 and
guideRNA in order to suppress some low-level (∼10%) editing
caused by the Npom-protected guideRNA in the dark (for
details, see Figures S19 and S20). The optimal amount of
guideRNA used was 10 pmol/150 μL and is in a range typical
for siRNA duplexes. Applying the NH2-guideRNA (negative
editing control), only a very few cells developed a low-level
GFP fluorescence and no editing was detectable in the
sequencing trace (<5%). However, transfecting BG-guideRNA
(positive editing control) gave brightly fluorescent cells, similar
to the transfection of functional wt eGFP, and an editing yield
of typically 45% was determined (Figures 3 and S17). Notably,

no other edited site was observed in the reporter transcript.
Furthermore, absolutely no editing was obtained at codon 58
by a chemically stabilized, negative control guideRNA that
directs repair to codon 66. Thus, the formation of the RNA
secondary structure directly at the targeted codon is strictly
required for site-directed RNA editing and is the major
determinant of specificity. The Npom-protected guideRNA
gave only very low editing yield over background (<5%) and
only a small number of low-intensity fluorescent cells.
However, following illumination, editing was switched on to a
level similar to that of the positive editing control, as indicated

Figure 3. Light-controlled RNA editing in living 293T cells. SNAP-
ADAR1 and the reporter gene (W58X eGFP, or wt eGFP) are
provided on plasmids, the guideRNAs are reverse-transfected, all as
described in the Supporting Information. Shown is the fluorescence
microscopy analysis together with the respective Sanger sequencing
traces 24 h post-transfection of the respective guideRNA. 5′-Terminal,
the guideRNAs are either carrying an aminolinker (NH2), the BG
moiety (BG), or the Npom-protected BG moiety. The Stop66-
guideRNA is a negative control BG-guideRNA targeting the GFP gene
around codon 66 instead of codon 58.
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by fluorescence microscopy but also by RNA sequencing (45%
editing yield). Intermediate editing levels have been accessible
by varying the light dose (Figure 3; more details can be found
in Figure S17). The light dose applied to photoactivate editing
was well tolerated by the cells. In comparison to the Npom-
guideRNA, the editing yield of neither the positive nor the
negative editing controls was dependent on light (Figure S17).
No unspecific off-target editing was observed in the reporter
gene, as indicated by Sanger sequencing (Figure S18).
Site-Directed RNA Editing in Platynereis dumerilii. As it

requires massive genetic manipulation to switch the expression
of one isoform to another that differs only in a single point
mutation, site-directed RNA editing might offer a practical
alternative.15 A light-triggered variant would be particularly
attractive for developmental biology, as early stages are often
transparent,21 and the spatiotemporal control of gene
expression is of particular interest.27,28 An emerging model
system for developmental and neurobiology is the marine
annelid Platynereis dumerilii29 that is readily cultivated30 and
easily manipulated at the one-cell zygote by microinjection.27

To test site-directed RNA editing inside the worm, we injected
two mRNA transcripts encoding SNAP-ADAR1 and eGFP
together with chemically stabilized 21 nt guideRNAs. One day
after microinjection, when the zygotes were developing into
trochophore larvae, the fluorescence phenotype was analyzed
by microscopy (Figures 4 and S22). A GFP-positive phenotype
was only detectable in the positive control (wt GFP) and in the

editing sample (Figure 4a,f). All negative controls lacking parts
of the machinery, such as the guideRNA, SNAP-ADAR1, or
both, showed no green fluorescence (Figure 4b−d). In the
editing sample as well as in the positive control, there was some
heterogeneity of fluorescence intensity that may result from the
difficulty of precisely controlling the injection volume. To
determine the editing yield, a cohort of trochophores (each
80−100) were lysed, and RNA was extracted and analyzed by
Sanger sequencing (Figure 4; for detailed analysis of all larvae,
see Table S23). Editing was observed only when all
components were included and achieved 60−70% over the
entire population. No off-target editing was observed in the
targeted transcript (Figure S24). The worms seem to develop
and behave normally over the first days and stages of
development.

Controlling Site-Directed RNA Editing in Living P.
dumerilii by Light. Also in Platynereis, efficient editing
requires assembly of the covalent guideRNA−deaminase
conjugate and fails when using the NH2-guideRNA lacking
the BG moiety (Figure 4e). This encouraged us to test light-
activated RNA editing inside the worm. For this, a guideRNA
containing the Npom-protected BG was microinjected. In
contrast to using the NH2-guideRNA (Figure 4e) lacking the
BG moiety, microinjection of the Npom-protected guideRNA
resulted in a small but significant number of faintly fluorescing
trochophores (18%) besides a large number of dark ones
(>80%, Figure 5a, Table S23). In accordance with this, RNA
sequencing of a cohort of 80−100 animals revealed a low but
significant residual editing at the targeted stop codon (∼10%).
In faintly fluorescent trochophore larvae, the rhodamine signal
was typically stronger (Figure 5a), indicating that the low-level
editing might be due to an undesirably high injection volume of
the editing components. This low-level residual editing activity
is reminiscent of the situation described above for the light-
dependent editing in cell culture. However, when the
microinjected trochophores were treated with 365 nm light
on a UV trans-illuminator (5 min), half of the trochophores
developed a bright eGFP signal (Figure 5b, Table S23). The
fluorescence imaging was in agreement with an editing yield of
∼60%, as determined by RNA sequencing of 80−100 animals
(Figure 5b). Thus, irradiation allows for activating RNA editing
to a yield nearly identical to that of the positive editing control
with an unprotected BG moiety (Figure 4f).

■ CONCLUSION
RNA-guided enzymes represent rationally programmable tools
that allow for the efficient and precise manipulation of nucleic
acids at specific sites in living organisms. Here, we further
elaborate a novel strategy for site-directed adenosine-to-inosine
RNA editing (a) by introducing photocontrol and (b) by
applying the tool in developing Platynereis dumerilii.
The presented approach is unique in that the artificial RNA-

guided editing enzyme is assembled via the formation of a
single covalent bond.10,15 As covalent bond formation is
essential for the functioning, photocontrol is feasible by
blocking the SNAP-tag-mediated bond formation via install-
ment of a single photoprotection group at the O6-benzyl-
guanine moiety. Specifically, we demonstrate the ready
synthesis of Npom-protected BG and its convenient
introduction into diversely chemically modified antisense
oligomers after their solid-phase synthesis. This is in contrast
to other strategies that require the site-specific incorporation of
(often several) photoprotected nucleosides during solid-phase

Figure 4. Site-directed RNA editing in P. dumerilii. Reporter mRNA
(eGFP) and SNAP-ADAR1 mRNA were microinjected into one-cell
zygotes, together with the respective BG/NH2-guideRNA and
rhodamine−dextran as an injection control. Shown are the
fluorescence images of one representative embryo 24 hours post
fertilization (hpf) for each experiment and the sequencing trace
obtained from the RNA of 80−100 animals per experiment: (a)
positive control, (b−e) negative controls lacking single components of
the editing machinery, and (f) editing experiment. For details, see the
Supporting Information. DIC = differential interference contrast.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.5b10216
J. Am. Chem. Soc. 2015, 137, 15875−15881

15878

http://pubs.acs.org/doi/suppl/10.1021/jacs.5b10216/suppl_file/ja5b10216_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.5b10216/suppl_file/ja5b10216_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.5b10216/suppl_file/ja5b10216_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.5b10216/suppl_file/ja5b10216_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.5b10216/suppl_file/ja5b10216_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.5b10216/suppl_file/ja5b10216_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.5b10216/suppl_file/ja5b10216_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.5b10216/suppl_file/ja5b10216_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.5b10216/suppl_file/ja5b10216_si_001.pdf
http://dx.doi.org/10.1021/jacs.5b10216


oligonucleotide synthesis to achieve photocontrol of biochem-
ical processes.21,23,31 Furthermore, our strategy needs less
genetic engineering compared to the introduction of photo-
responsive groups into enzymes by means of amber
suppression or related strategies.32,33

In vitro we could show that the attachment of the Npom
group at N7, but not N9, of the BG moiety blocks the
conjugation reaction with the SNAP-tag. However, reactive
benzyl guanine is readily released upon 365 nm irradiation with
high efficiency (εφ ≈ 2000 M−1 cm−1) and allows for the light-
dose-dependent assembly of guideRNA−deaminase conjugates.
Besides editing, the Npom-protected BG will be applicable in
other approaches that rely on the SNAP-tag, like chemical
inducers of dimerization.34 By controlling the assembly of the
editase, we could trigger the in vitro editing of a purified mRNA
in a light-dose-dependent manner covering the whole dynamic
range from absence of editing in the absence of light until full
editing in the presence of light. The desired action of our tool
could be directly translated into mammalian cell culture;
however, optimization was required to control low-level
residual editing by the photoprotected guideRNA. Again, a
similarly high dynamic range was achieved. Furthermore, we
established site-directed RNA editing for the first time in a
living organism. Specifically, we achieved the efficient and
highly selective switch of a premature stop into a tryptophan
codon in developing Platynereis dumerilii zygotes. Notably, no
genetic engineering and livestock breeding is required, thus
circumventing time-consuming and cost-intensive laboratory
work. As our editing tool is independent of any host-specific
factors, the technology should be transferable to any other
organism. In Platynereis, the covalent assembly of the
guideRNA−deaminase conjugate was again essential, and our
simple photocontrol strategy for site-directed RNA editing was
directly transferable. The tool could now be further elaborated
to achieve precise spatiotemporal control of protein isoforms in
cellular networks or in developing Platynereis.

■ MATERIALS AND METHODS
Synthesis of Npom-Caged O6-Benzylguanine. Trifluoroaceta-

mide protected O6-benzylguanine (BG, 120 mg, 0.33 mmol)19 was
solved in dry DMF (1.2 mL) under argon. Diazabicycloundecene (150
μL, 153 mg) was added at room temperature, and the solution was
stirred for 30 min. Npom chloride (0.5 mmol, ∼1.5 equiv, dissolved in
1.6 mL of DMF) prepared in situ as described22 was added dropwise.
After 2.5 h, the reaction mixture was diluted with EtOAc, washed with
1% citric acid (3×) and brine (1×), and dried over Na2SO4. The

evaporated crude product was cleaned via silica chromatography (2−
4% MeOH in DCM) and yielded 24 mg (21%) of N7Npom-BG-TFA
and 50 mg (42%) of N9Npom-BG-TFA. For full characterization and
assignment of the isomers and downstream synthesis, see the
Supporting Information.

N7 Isomer. 1H NMR (600 MHz, DMSO-d6): δ = 9.99 (t, J = 5.9
Hz, 1H), 8.07 (s, 1H), 7.48 (d, J = 8.1 Hz, 2H), 7.35 (s, 1H), 7.28 (d, J
= 8.1 Hz, 2H), 6.84 (s, 1H), 6.22 (s, 2H), 6.16 (s, 1H), 6.04 (s, 1H),
5.54 (m, 2H), 5.46 (m, 2H), 5.13 (q, J = 6.2 Hz, 1H), 4.39 (d, J = 5.9
Hz, 2H), 1.33 (d, J = 6.2 Hz, 3H). 13C NMR (151 MHz, DMSO-d6): δ
= 164.1, 159.8, 156.4 (q, 2J(C,F) = 36 Hz), 156.3, 151.8, 146.5, 145.9,
140.5, 137.2, 136.2, 135.5, 127.9, 127.5, 116.0 (q, 1J(C,F) = 288 Hz),
105.6, 105.2, 104.3, 103.2, 74.9, 72.0, 66.6, 42.4, 23.3. HR-ESI-MS: [M
+ H]+(theoretical) = 590.16056 for C25H23F3N7O7; found 590.16118.
Rf(DCM/MeOH, 98:2) = 0.08. Rf(DCM/MeOH, 95:5) = 0.50.

N9 Isomer. 1H NMR (600 MHz, DMSO-d6): δ = 10.00 (t, J = 6.0
Hz, 1H), 7.80 (s, 1H), 7.49 (d, J = 8.1 Hz, 2H), 7.46 (s, 1H), 7.31 (d, J
= 8.1 Hz, 2H), 6.97 (s, 1H), 6.34 (s, 2H), 6.15 (s, 1H), 6.03 (s, 1H),
5.43−5.49 (m, 2H), 5.40 (d, 2J = 11.4 Hz), 5.32 (d, 2J = 11.4 Hz), 5.21
(q, J = 6.3 Hz, 1H), 4.41 (d, J = 6.0 Hz, 2H), 1.38 (d, J = 6.3 Hz, 3H).
13C NMR (151 MHz, DMSO-d6): δ = 160.8, 157.2 (q, 2J(C,F) = 36
Hz), 155.3, 152.7, 147.5, 142.1, 140.5, 138.2, 137.0, 136.6, 129.6,
128.3, 116.9 (q, 1J(C,F) = 288 Hz), 114.3, 106.7, 105.2, 104.1, 73.1,
71.7, 67.5, 43.3, 24.1. HR-ESI-MS: [M + Na]+(theoretical) = 612.14250
for C25H22F3N7O7Na; found 612.14262. Rf(DCM/MeOH, 98:2) =
0.32. Rf(DCM/MeOH, 95:5) = 0.55.

Light-Triggered in Vitro RNA Editing. Purified SNAP-ADAR1
(170 nM), purified eCFP mRNA (10 nM), and one of the respective
guideRNAs (50 nM) were prepared in buffer (25 mM Tris·HCl, 0.75
mM MgCl2, 75 mM KCl, 2 μM heparin, and 640 u/mL murine RNase
inhibitor, 10 mM DTT, pH 8.3) in PCR tubes. Irradiation with 365
nm light was performed on a UV trans-illuminator (UVP TFL-40V, 25
W, intensity high) for the indicated amount of time at room
temperature. Subsequent editing was performed by incubation for 120
min while cycling between 30 and 37 °C. Reactions were stopped by
heating to 70 °C for 3 min and subsequent reverse transcription. After
PCR amplification of the cDNA, editing yields were estimated by the
relative height of the guanosine versus adenosine traces by Sanger
sequencing. All experiments were done in at least two replicates.
Sequence of the guideRNAs: (Npom)BG/NH2-UCG-GAACACCCC-
AGCACAGA-3′ (natural ribonucleotides; 5′-terminal modifications
were introduced via amino-linker, the 5′-terminal three nucleotides
serve as linker and do not base-pair with the target).

Light-Triggered Cellular RNA Editing. Cells (293T: DSMZ
code ACC-635; 200 000 cells/well) were seeded on 24-well plates in
full media (DMEM, 10% FBS, 1% penicillin/streptomycin, grown in
5% CO2, 37 °C). At 60−80% confluency, plasmid pcDNA3.1 vector
(Life Technologies) carrying SNAP-ADAR1 (100 ng/well) and
pcDNA3.1 vector carrying the respective eGFP variant (500 ng/
well)11 were co-transfected with Lipofectamine 2000 (4 μL/μg).11

Figure 5. Light-dependent editing in P. dumerilii. Reporter gene and SNAP-ADAR1 have been microinjected into one-cell Platynereis zygotes as
described in Figure 4, but now with a photoprotected chemically stabilized NpomBG-guideRNA. Within 1 h after microinjection, zygotes have been
(a) kept in the dark or (b) treated with 365 nm light (5 min). Fluorescence images and RNA sequences (80−100 animals/experiment) are taken 24
hpf. The sequence of the guideRNA is the same as in Figure 4. For further details, see the Supporting Information.
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After 24 h, the cells were reverse transfected into 96-well plates (60
000 cells/well) containing the respective guideRNAs (10 pmol/well)
pretreated with Lipofectamine 2000 (0.5 μL/well). Four hours after
reverse transfection, media was replaced with DMEM without FBS
and phenol red, containing HEPES (25 mM). Irradiation (365 nm)
was performed in a fluorescence microscope (Zeiss CellObserverZ.1,
equipped with a 365 nm Colibri.2 LED) at 100% LED power for the
indicated amount of time. Twenty-four hours later, the fluorescence
phenotype was analyzed by fluorescence microscopy (Zeiss
CellObserverZ.1), and RNA was extracted using the RNeasy MinElute
Cleanup Kit (Qiagen). After reverse transcription and PCR
amplification, the editing yield was estimated by Sanger sequencing.
All experiments were done in at least two replicates. The sequence of
the W58X guideRNAs was (Npom)BG/NH2-UsAsU-GUGUCGG-
CCA-CGGAAsCsAsGsG-3′; the sequence of the Stop66-guideRNA
was BG-UsCsG-GAACACC-CCA-GCAsCsAsGsA-3′ (s = phospho-
thioate linkage; plain font indicates 2′-methoxyribonucleotides, and
italic underlined indicates unmodified ribonucleotides; the three 5′-
terminal nucleotides serve as a linker and do not base-pair with the
target).
Editing in Platynereis dumerilii. For the in vitro transcription of

stabilized mRNAs of SNAP-ADAR1 and eGFP variants with the
mMESSAGE mMACHINE T7 Ultra Kit (Life Technologies), the
respective genes were subcloned into the pUC57-T7-RPP2 vector,
resulting in 5′-capped and 3′-polyadenylated transcripts additionally
stabilized by a Platynereis-specific RPP2 5′-UTR, as described before.35

mRNA transcripts were cleaned by the RNeasy MinElute Cleanup Kit
(Qiagen). GuideRNAs were precipitated with potassium acetate prior
to use. Fertilized zygotes were obtained from an in-house breeding
culture and were incubated at 14.8 °C for 55 min. Prior to
microinjection, the egg jelly was removed by rinsing the zygotes
with natural seawater (NSW) in a 100 μm sieve. To soften the vitellin
envelope, a 1-min-long proteinase K treatment (70 μg/mL) was
performed as described before.27 Around 100 zygotes were embedded
in the injection stage (2% agarose in NSW). Samples were injected
using Femtotipps II microcapillaries with a Femtojet express
microinjector (700 hPA injection pressure, 0.1 s injection time, 35
hPa compensation pressure) in a cooled (14.8 °C) Zeiss Axiovert 40
CL microscope equipped with a Luigs and Neumann micro-
manipulator as described before.27 Injection started 1 hours post
fertilization (hpf) and was stopped when the first cleavage was
detected (ca. 2 hpf). Irradiation at 365 nm was performed immediately
after microinjection for the indicated amount of time on a UV trans-
illuminator (UVP TFL-40V, 25 W, intensity high). Microinjected
zygotes were bred at 19 °C in Nunclon six-well plates containing 6 mL
NSW. Twenty-four hpf, healthy larvae (early trochophore) were
separated from unhealthy ones. The fluorescence phenotype was
analyzed by microscopy (Axio Imager Z1). RNA from 80−100 healthy
larvae (two injection sessions) was isolated 25 hpf by shock freezing
(liquid nitrogen), shear forces (passing through 0.6 mm needle),
vortexing (10 s), and subsequent use of the RNeasy MinElute Cleanup
Kit (Qiagen). After reverse transcription and PCR amplification, the
editing yield was determined by Sanger sequencing. Injection samples
contained 1.5 μg/μL rhodamine-dextran (10 kDa MW, Sigma) for
injection control, 250 ng/μL of the respective reporter mRNA, 450
ng/μL SNAP-ADAR1 mRNA, and 25 μM of the respective guideRNA.
Sequence of the guideRNA: BG/NH2-UsAsU-GUGUCGG-CCA-
CGGAACAsGsGsCsA-3′ (s = phosphothioate linkage; plain font
indicates 2′-methoxy ribonucleotides, and italic underlined indicates
unmodified ribonucleotides; the 5′-terminal three nucleotides serve as
linker and do not base-pair with the target).
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Tübingen, the Deutsche Forschungsgemeinschaft (STA 1053/
3-2, STA 1053/4-1), and the Max Planck Society. This work
has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement no. 647328). The
research leading to these results received funding from the ERC
under the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no. 260821. The
authors thank Aurora Panzera for technical assistance during
microinjection.

■ REFERENCES
(1) Zhao, X.; Yu, Y.-T. Nat. Methods 2008, 5, 95−100.
(2) Karijolich, J.; Yu, Y.-T. Nature 2011, 474, 395−398.
(3) Dorsett, Y.; Tuschl, T. Nat. Rev. Drug Discovery 2004, 3, 318−
329.
(4) Kim, H.; Kim, J.-S. Nat. Rev. Genet. 2014, 15, 321−334.
(5) Machnicka, M. A.; Milanowska, K.; Oglou, O. O.; Purta, E.;
Kurkowska, M.; Olchowik, A.; Januszewski, W.; Kalinowski, S.; Dunin-
Horkawicz, S.; Rother, K. M.; Helm, M.; Bujnicki, J. M.; Grosjean, H.
Nucleic Acids Res. 2013, 41, D262−D267.
(6) Liu, N.; Pan, T. Transl. Res. 2015, 165, 28−35.
(7) Li, J. B.; Church, G. M. Nat. Neurosci. 2013, 16, 1518−22.
(8) Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.;
Charpentier, E. Science 2012, 337, 816−821.
(9) Watkins, N. J.; Bohnsack, M. T. WIREs RNA 2012, 3, 397−414.
(10) Stafforst, T.; Schneider, M. F. Angew. Chem., Int. Ed. 2012, 51,
11166−11169.
(11) Vogel, P.; Schneider, M. F.; Wettengel, J.; Stafforst, T. Angew.
Chem., Int. Ed. 2014, 53, 6267−6271.
(12) Schneider, M. F.; Wettengel, J.; Hoffmann, P. C.; Stafforst, T.
Nucleic Acids Res. 2014, 42, e87.
(13) Nishikura, K. Annu. Rev. Biochem. 2010, 79, 321−349.
(14) Bass, B. L. Annu. Rev. Biochem. 2002, 71, 817−846.
(15) Vogel, P.; Stafforst, T. ChemMedChem 2014, 9, 2021−2025.
(16) Reenan, R. N. Engl. J. Med. 2014, 370, 172−174.
(17) Montiel-Gonzalez, M. F.; Vallecillo-Viejo, I.; Yudowski, G. A.;
Rosenthal, J. J. C. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 18285−
18290.
(18) Kole, R.; Krainer, A. R.; Altman, S. Nat. Rev. Drug Discovery
2012, 11, 125−140.
(19) Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel,
H.; Johnsson, K. Nat. Biotechnol. 2003, 21, 86−89.
(20) Gautier, A.; Juillerat, A.; Heinis, C.; Correâ, I. R., Jr.;
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Williams, E. A.; Conzelmann, M.; Shahidi, R.; Jeḱely, G. eLife 2014, 3,
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Chemical Synthesis 

 

Chemicals 

If not stated otherwise, all substrates and reagents required for synthesis and 
biochemical studies were purchased from commercial providers and used without 
further purification. 

 

General Methods 
All column chromatographic purifications were carried out on self-packed columns of 
silica gel (0.04-0.063 mm/230-240 mesh). Thin-layer chromatography (TLC) was 
performed on silica gel sheets (60 F254, 0.2 mm, 5 x 10 cm, Merck) and visualized 
under UV light (254 nm). All analytical and preparative HPLC runs were performed 
on a Shimadzu system (SCL-10A VP, SPD-20AV, LC-20AT) running with 0.1% TFA 
in water (Eluent A) and 0.1% TFA in acetonitrile/water (9:1, Eluent B). Analytical 
HPLC was performed using an EC 125/4 Nucleodur C18 column by Machery + 
Nagel and preparative HPLC was performed using a VP 250/10 Nucleodur C18 
column by Machery + Nagel. 1H and 13C spectra were recorded on a Bruker ARX 
250 or a Bruker Avance 400. 1H, 13C, HCCH-Cosy, HSQC and HMBC experiments 
for the discrimination of Npom-BG isomers (1a/1b) were performed using a Bruker 
AMX-600. High resolution mass spectrometry was performed on a maXis4G ESI-
TOF-MS by Bruker Daltonics. 
  



 

S3 
 

 

Figure S1. Synthesis of Npom-caged BG- derivatives. a) DBU, DMF, r.t, 2.5 h b) 
K2CO3, MeOH, 50°C, 4 h c) OSu-FAM, TEA, DMF, r.t., 1 h d) Solid-phase peptide 
synthesis (see page S12). 

 

Synthesis of N7/N9Npom-BG-TFA (1a/1b) 
BG-TFA (120 mg, 0.33 mmol, 1 eq; synthesized according to Keppler et al.[S1]) was 
solved in DMF (1.2 ml) in a dry flask under argon atmosphere. Diazabicycloundecen 
(DBU, 150 μl, 153 mg, 1 mmol, 3 eq) was added at r.t. and the solution was stirred 
for 30 min. Npom-Cl (0.5 mmol, ~1.5 eq, in situ; synthesized according to Lusic et 
al.[S2]) was solved in DMF (1.6 ml) and added drop wise. After 2.5 h stirring at r.t., the 
reaction mixture was diluted with EtOAc, washed three times with 1% citric acid and 
Brine and dried over Na2SO4. Evaporation of the organic phase resulted in 180 mg 
crude product. Silica gel column chromatography (2-4% MeOH in DCM) yielded 120 
mg (63%) total product. The isomers were cleanly separable and were obtained in a 
1:2 ratio (21% yield of N7Npom-BG-TFA (1a) and 42% yield of N9Npom-BG-TFA 
(1b)). 
 
Rf(DCM/MeOH, 98:2): N7 = 0.08, N9 = 0.32 
Rf(DCM/MeOH, 95:5): N7 = 0.50, N9 = 0.55 
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N7Npom-BG-TFA, characterization: 
1H NMR (600 MHz, DMSO-d6): δ = 9.99 (t, J = 5.9 Hz, 1H), 8.07 (s, 1H), 7.48 (d, J = 
8.1 Hz, 2H), 7.35 (s, 1H), 7.28 (d, J = 8.1 Hz, 2H), 6.84 (s, 1H), 6.22 (s, 2H), 6.16 (s, 
1H), 6.04 (s, 1H), 5.54 (m, 2H), 5.46 (m, 2H), 5.13 (q, J = 6.2 Hz, 1H), 4.39 (d, J = 
5.9 Hz, 2H), 1.33 (d, J = 6.2 Hz, 3H). 
 
13C NMR (151 MHz, DMSO-d6): 164.1, 159.8, 156.4 (q, 2J(C,F) = 36.2 Hz), 156.3, 
151.8, 146.5, 145.9, 140.5, 137.2, 136.2, 135.5, 127.9, 127.5, 116.0 (q, 1J(C, F) = 
288.4 Hz), 105.6, 105.2, 104.3, 103.2, 74.9, 72.0, 66.6, 42.4, 23.3. 
 
 
HR-ESI-MS: [M+H]+(theoretical) = 590.16056 for C25H23F3N7O7;  

[M+H]+(found) = 590.16118 
 
N9Npom-BG-TFA, characterization: 
1H NMR (600 MHz, DMSO-d6): 10.00 (t, J = 6.0 Hz, 1H), 7.80 (s, 1H), 7.49 (d, J = 
8.1 Hz, 2H), 7.46 (s, 1H), 7.31 (d, J = 8.1 Hz, 2H), 6.97 (s, 1H), 6.34 (s, 2H), 6.15 (s, 
1H), 6.03 (s, 1H), 5.43-5.49 (m, 2H), 5.40 (d, 2J = 11.4 Hz), 5.32 (d, 2J = 11.4 Hz), 
5.21 (q, J = 6.3 Hz, 1H), 4.41 (d, J = 6.0 Hz, 2H), 1.38 (d, J = 6.3 Hz, 3H). 

13C NMR (151 MHz, DMSO-d6): 160.8, 157.2 (q, 2J(C,F) = 36.2 Hz), 155.3, 152.7, 
147.5, 142.1, 140.5, 138.2, 137.0, 136.6, 129.6, 128.3, 116.9 (q, 1J(C,F) = 288.4 Hz), 
114.3, 106.7, 105.2, 104.1, 73.1, 71.7, 67.5, 43.3, 24.1. 
 
HR-ESI-MS:  [M+Na]+(theoretical) = 612.14250 for C25H22F3N7O7Na;  

[M+Na]+(found) = 612.14262 
 
The N7- and N9- isomer of Npom-BG-TFA were characterized by 1D- and 2D-NMR 
spectroscopy (see Figure S2-5). All peaks in the 1H and 13C spectra were assigned 
supported by the data from heteronuclear multiple-bond correlation spectroscopy 
(HMBC) experiments. The carbon atoms of the TFA-protection group show 
characteristic coupling to the 19F atoms. 
In the HMBC spectrum of N7Npom-BG-TFA a crosspeak between the protons of the 
oxymethyl bridge of the Npom-group and C5 of guanosine was observed, while a 
cross-peak between the oxymethyl bridge and C4 was observed for N9Npom-BG-
TFA. Figure S5 shows the HMBC spectra of both isomers and signals relevant for 
the assignment of the regioisomers are highlighted. The Npom substitution has a 
strong effect on chemical shifts of C4 (N7: 165.14 ppm, N9: 155.25 ppm) and C5 
(N7: 105.23 ppm, N9: 114.28 ppm). Furthermore, the oxymethyl bridge of the Npom 
group and the oxygen and O6 methylen group of BG are in close proximity in the 
case of N7Npom-BG-TFA, shifting the 1H signal of the oxymethyl bridge from 5.36 
ppm (N9) to 5.53 ppm (N7). 
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Figure S2. 1H- & 13C-NMR spectra of N7Npom-BG-TFA (1a). 
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Figure S3. HSQC- and H,H-COSY of N7Npom-BG-TFA (1a). 
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Figure S4. 1H- & 13C-NMR spectra of N9Npom-BG-TFA (1b). 
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Figure S4 continued H,H-COSY of N9Npom-BG-TFA (1b). 
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Figure S5. Assignment of the regio-isomers via HMBC NMR experiments of 
compounds 1a (top, N7) versus 1b (bottom, N9). Signals significant for the 
assignment are marked. 
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N7/N9Npom-BG-NH2 (2a/2b) 
For deprotection of the trifluoroacetamide group, 50 mg of the respective isomer of 
Npom-BG-TFA (1a/1b, 90 μmol, 1 eq) was solved in 1 ml MeOH and 150 μl water. 
Potassium carbonate (K2CO3, 100 mg, 720 μmol, 8 eq) was added and the reaction 
mixture was heated to 50°C for 4 h. HPLC analysis showed full conversion of the 
starting material. No hydrolysis of the Npom-group was observed. 1 M HCl was 
added to the solution until a neutral pH was reached and all solvent was evaporated. 
When Npom-BG-NH2 was used for solid phase synthesis of the Npom-BG-Linker for 
the later incorporation into guideRNAs, then Npom-BG-NH2 was purified via 
preparative HPLC. For this, the crude reaction mixture was neutralized to pH 7 with  
1 M HCl, all solvents were evaporated, the crude product was solved in 
water/ACN/TFA (50:50:0.1), filtered and applied to preparative HPLC. 38 mg (90%) 
HPLC-pure product was recovered (see Figure S6). 
For workup of larger scale reactions MeOH was removed by evaporation and the 
resulting precipitate was resolved in EtOAc by ultrasonification. The organic phase 
was washed three times with 1M NaOH/Brine (1:9) and dried over Na2SO4. 
Evaporation yielded ~80% of the respective Npom-BG-NH2 isomer that was used 
without further purification for the synthesis of N7/N9Npom-BG-FAM (3a/3b). 
 
N7Isomer: HR-ESI-MS:  [M+H]+(theoretical) = 494.1783 for C23H24N7O6;   

[M+H]+(found) =  494.1781  
N9Isomer: HR-ESI-MS:  [M+H]+(theoretical) = 494.1783 for C23H24N7O6; 

[M+H]+(found) =   494.1784 
 
 

    

      
    
Figure S6. Analytical HPLC-analyses of N7 and N9 Npom-BG-NH2 (2a/2b), top. 
unpurified compounds for NpomBG-FAM synthesis; bottom: HPLC-purified 
compounds for incorporation into guideRNAs. 
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N7/N9Npom-BG-FAM (3a/3b) 

3-4 mg of the respective isomer of Npom-BG-NH2 (2a/2b, ~7 μmol, 1 eq) were solved 
in DMF (300 μl) in an amber eppendorf cup (1.5 ml) and trimethylamine (TEA, 5 μl) 
was added. Then, 5(6)-carboxyfluorescein succinimidyl ester (~3.5 mg, 7.4 μmol, 
1.05 eq) was solved in DMF (50 μl) and added to the Npom-BG-NH2. The reaction 
cup was incubated at r.t. for 1 h. DMF and TEA were removed under high vacuum 
and the crude product was solved in water/ACN/TFA (60:40:0.1), filtered and applied 
to preparative HPLC. For both isomers, the product fractions contained two products 
referring to the C5 and C6 isomers of carboxyfluorescein (see Figure S7). The main 
fractions were lyophilized and resolved in dimethylsulfoxide (DMSO, 50 μl). The 
concentration was adjusted to 1 mM by spectroscopic measurement of the 
carboxyfluorescein absorbance at a wavelength of 500 nm (assuming an extinction 
coefficient of FAM at 500 nm to equal 93.000 M-1cm-1). The extinction was 
determined in a buffer containing 20 mM Tris-HCl (pH 8), 100 mM NaCl and 5% 
glycerol. 
 
 
HR-ESI-MS (N7Npom-BG-FAM):  [M+H]+(theoretical) = 852.22600; 

[M+H]+(found) = 852.22538 
 

HR-ESI-MS (N9Npom-BG-FAM):  [M+H]+(theoretical) = 852.22600;  
[M+H]+(found) = 852.22499 

 
 

  
 
Figure S7. Analytical HPLC of N7- and N9-Npom-BG-FAM (3a/3b) 
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Synthesis of N7Npom-BG-Linker-COOH (4) via solid phase peptide synthesis  
 
Synthesis of N7Npom-BG-Linker-COOH was performed in a syringe and if not 
indicated otherwise the resin was washed with N-Methyl-2-pyrrolidon (NMP)/DCM (4 
x 1:1, 4 x DCM and 4 x NMP) after every coupling or deprotection step. Fmoc-EEG-
COOH (Fmoc-aminoethoxy-ethoxy-acetic acid, synthesized according to Visintin et 
al. [S3], 179 mg, 460 μmol, 4.14 eq) was pre-activated with HBTU (162 mg, 427 μmol, 
3.85 eq) and HOBt (54 mg, 400 μmol, 3.6 eq) for 10 min and coupled to the H-Gly-2-
ClTrt resin (EMD Millipore, 178 mg, 0.63 mmol/g, 111 μmol, 1 eq) in DIPEA/NMP 
(1:8). After 50 min of coupling, the resin was washed and capped with 5 ml 
NMP/DIPEA/acetic anhydride (10:1:1, 3x). Fmoc-deprotection was performed using 
20% piperidine in NMP (3x5 ml, 10 min each). Glutaric anhydride (125 mg ,1.1 
mmol, 10 eq) was coupled in NMP (1.2 ml) with DIPEA (200 μl) for 25 min. An 
additional washing step with 1% NaOH in Dioxan/H2O (1:1, 1 min) was performed. 
Afterwards, the resin was washed with NMP/DCM thoroughly to ensure that all water 
was removed. The glutaric acid was activated on the solid phase two times with 
pentafluorophenyl trifluoroacetate (Tokyo chemical industries,155 mg, 95 µl, 555 
μmol, 5 eq) in 2 ml pyrimidine/DCM (1:1) and the resin was washed with dry NMP (4 
x). N7Npom-BG-NH2 (2a, 15 mg, 30 μmol, 0.27 eq) was coupled to the resin in 
NMP/DMSO/DIPEA (100:15:8, 1.2 ml) at r.t. overnight. The syringe was protected 
from light. Cleavage from the trityl-resin was performed with 0.5% TFA in 
DCM/hexafluoro-2-propanol (9:1, 50 ml). Evaporation of the cleavage solution 
yielded 80 mg of crude product which was solved in ACN/water, filtered and applied 
to preparative HPLC. Product fractions were identified by ESI-MS and analyzed by 
analytical HPLC (Figure S8). A stock solution of N7Npom-BG-Linker-COOH in DMSO 
was prepared and the concentration was determined photometrically by observing 
Npom absorption (ε360nm = 4300 M-1cm-1, as determined for (R,S)-1-(6-Nitro-1,3-
benzodioxol-5-yl)ethan-1-ol) (Npom-OH)). Overall, 3.05 μmol (10% with respect to 
2a) of clean product were obtained. 
 
HR-ESI-MS:  [M+H]+(theoretical) = 810.30531 for C36H44N9O13; 

[M+H]+(found) = 810.30417 
 

 
Figure S8. Analytical HPLC of N7-Npom-BG-Linker-COOH (4).   
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Synthesis of Npom-guideRNAs 
 
guideRNAs that carry only the 5´-C6-aminolinker but no further chemical 
modifications were obtained from Eurofins Germany in HPLC‐purified, MALDI‐TOF‐
confirmed quality. The phosphothioate / 2´‐OMe modified oligomers were obtained 
from Biospring GmbH (Frankfurt) in HPLC-clean quality with sodium as counter ion. 
Npom-guideRNAs were synthesized on a 100 μg scale (~12-15 nmol depending on 
sequence, length and modification of the guideRNAs). Antogamir-like modified 
guideRNAs were solved in RNase free water to a concentration of 6 μg/μl. Stop66 
NH2-guideRNAs were precipitated with 0.1 volumes of 3 M NaCl and 3 volumes of 
100% EtOH, washed with 70% EtOH and dissolved in RNase free water (6 μg/μl) 
prior to coupling.  
A 35 mM stock solution of N7-Npom-BG-Linker-COOH (4) in DMSO was prepared. 
For activation N7Npom-BG-Linker-COOH (10 μl, 0.350 µmol, ~25 eq) was incubated 
with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI*HCl, 0.72 
µmol, ~50 eq), N-hydroxysuccinimide (NHS, 1.23 µmol, ~90 eq) in 24 μl DMSO. 
After 15 min. incubation at 30°C, half of the pre-activated linker was added to 17 μl of 
the NH2-guideRNA solution (6 μg/μl, 100 μg, ~14 μmol, 1 eq) together with DIPEA 
(2.35 µmol, 170 eq, in 8 µl DMSO) and incubated for another 30 min at 37°C. Then, 
the remaining pre-activation mix was added and the reaction was continued for 60-
90 min.  
The crude BG-guideRNA was mixed with 0.1 volumes of 10 x TBE-7M urea 
containing two dyes (bromophenol blue and xylene cyanol) and purified on a 20% 
urea-PAGE (four lanes per reaction, 1 x TBE-7 M urea, 120-140 V, 300 min). The 
PAGE was performed in the dark to prevent Npom-deprotection. While the main part 
of the gel was stored in the dark, one lane containing ca. 10% of the crude Npom-
BG-guideRNA was cut from the gel and analyzed on a TLC plate under low intensity 
254 nm UV light. The migration of NH2-guideRNA and Npom-BG-Linker were noted 
and the gel slice was discarded. The region corresponding to Npom-BG-guideRNA 
migration was cut out from the remaining lanes and was transferred to a 1.5 ml 
reaction tube. In the 20% urea PAGE the xylene cyanol band migrated between the 
NH2- and the Npom-BG-guideRNA and served as additional orientation. 
600 μl of RNAase free water were added to the gel slices and the tube was shaken 
at 4°C overnight to allow the NpomBG-guideRNA to diffuse out of the gel. To remove 
urea and buffer salts, the NpomBG-guideRNA was precipitated with 0.1 volumes 
sodium acetate (NaOAc, 3 M) and 3 volumes of EtOH 100% (incubation at -80°C for 
>4 h). The precipitated RNA was centrifuged (45 min, 14.000 rpm, -4°C), washed 
with 70% EtOH, dried and dissolved in 50 μl RNase free water. Concentrations were 
determined photometrically by UV-absorbance of RNA at 260nm and typically 
around 40% of clean Npom-BG-guideRNA was recovered (compare Table S9). 
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Table S9. Sequences and extinction coefficients of guideRNAs synthesized in this 
study. The 5’-BG-modified and 5’-(N7Npom-BG)-guideRNAs were prepared from the 
commercially obtained 5´-NH2-guideRNAs as described above. The nucleotides 
opposite of the targeted adenosine are unlined and bold, they are normal 
ribonucleotides. 2`-Methoxylation is indicated by italic characters. Phosphothioate 
linkages are indicated by “s” subscripts. The 5´-terminal three nucleotides 5` of each 
guideRNA are not binding to the mRNA substrate but link the guideRNA to the 
SNAP-tag. BG-modification adds 2.5 mM-1 cm-1, Npom-BG modification adds 6.5 
mM-1 cm-1 to the extinction coefficient of the NH2-guideRNAs. 
 
Short name Sequence ε260nm(mM-1cm-1) 

NH2-Stop66 UCG GAA CAC CCC AGC ACA GA 230 

NH2-W58X 19nt UsAsU GUG UCG GCC ACG GAAs CsAsGs G 226 

NH2-W58X 21nt UsAsU GUG UCG GCC ACG GAA CAsGs GsCsA 236 

BG-Stop66 UCG GAA CAC CCC AGC ACA GA 232.5 

BG-W58X 19nt UsAsU GUG UCG GCC ACG GAAs CsAsGs G 228.5 

BG-W58X 21nt UsAsU GUG UCG GCC ACG GAA CAsGs GsCsA 238.5 

BG-Stop66 PTO UsCsG GAA CAC CCC AGC AsCsAs GsA 232.5 

Npom-Stop66 UCG GAA CAC CCC AGC ACA GA 236.5 

Npom-W58X 19nt UsAsU GUG UCG GCC ACG GAAs CsAsGs G 232.5 

Npom-W58X 21nt UsAsU GUG UCG GCC ACG GAA CAsGs GsCsA 242.5 

    
 
 
MALDI-TOF characterization of guideRNAs 
150-300 pmol of each guideRNA were precipitated by adding 0.5 volumes 
ammonium acetate (7.5 M) and 2.5 volumes EtOH 100% and subsequent incubation 
at -80°C for >4 h. The precipitated RNA was centrifuged (45 min, 14 000 rpm, -4°C), 
washed with 70% EtOH, dried and dissolved in 5 μl RNase free water. The samples 
were mixed with a matrix of [2,4,6]-trihydroxyacetophenone monohydrate (0.3 M in 
EtOH) / diammonium citrate (0.1 M in water) (2:1) and the mixture applied on a 
ground steel target and analyzed using a Bruker Reflex MALDI-TOF mass 
spectrometer (linear mode, negative mode). All spectra were processed using 
mMass (Martin Strohalm, Germany, see Figure S10). 
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Fig S10. MALDI-TOF spectra of NH-guideRNAs 
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cont. Fig S10. MALDI-TOF spectra of BG-guideRNAs 
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cont. Fig S10 MALDI-TOF spectra of Npom-guideRNAs  
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Experiments with Npom-caged O6-Benzylguanine 
 
Photo-deprotection kinetics of N7/N9Npom-BG-TFA 
To determine the decaging efficiency εΦ, the decaging of our compounds 1a and 1b 
was compared to the decay of a commercially available compound DMBN-cAMP 
(4,5-dimethoxy-2-nitrobenzyl adenosine 3’,5’-cyclic monophosphate; Life 
Technologies). The latter was chosen because of the very similar absorbance 
properties with our compounds. First, the absorption coefficient ε of the Npom-BG-
TFA was determined. Therefore, the absorption spectra of N7Npom-BG-TFA, BG-
NH2 and Npom-OH were recorded (Fig S11). The extinction coefficient of Npom-OH 
and the caged product N7Npom-BG-TFA are very similar around 360 nm. ε365nm of 
Npom-OH was determined to be 4300 M-1cm-1. In the range of the methoxy-
nitrobenzyl group the presence of the BG moiety didn´t change the UV spectra 
significantly. Stock solutions of N7Npom-BG-TFA and DMNB-cAMP in DMSO were 
prepared and diluted in sodium phosphate buffer (NaCl 100 mM, KH2PO4/K2HPO4 
10mM, pH 7.4) to final concentrations of 10 μM. Decaging was performed in PCR 
tubes (60 μL scale) by irradiation with 365 nm light on a UV transilluminator (UVP 
TFL-40V, 25 W, intensity high) for the indicated amount of time at room temperature. 
Decaging was performed at low concentrations of the compounds making inner-filter 
effects negligible. Taking the extinction coefficient and the maximal diameter of the 
PCR tube (diameter of 5 mm) into consideration a transmission of >95% is expected. 
Photodecomposition of the caged substances was monitored in analytical HPLC with 
UV detection at 280nm and 365 nm. For both substances an exemplary 
chromatogram is shown in Figure S12. Decomposition of N7Npom-BG-TFA results in 
two clean products, BG-TFA which shows high absorption at 280nm but now 
absorption at 365nm and the released photocaging group that shows high 
absorbance at 365nm. DMNB-cAMP shows two starting materials that refer to the 
two isomers (axial versus equatorial). The peak areas of the emerging products, BG-
TFA and cAMP, were determined and plotted against irradiation time (see Figure 
S13). By 1st-order fitting, the half-life was determined to be 5.53±0.63 min for DMNB-
cAMP decay, 0.57±0.04 min for N7Npom-BG-TFA and 0.78±0.06 min for N9Npom-BG-
TFA. 
  
Literature reports a εΦ value of 250 M-1cm-1 for of cAMP formation at 350 nm with ε = 
5.0 mM-1cm-1 and Φ = 5%.[S6] ε365nm of DMNB-cAMP was determined to be 4.0 mM-

1cm-1 and from this εφ at 365nm was calculated to be 200 M-1cm-1. By comparing the 
half-lives, an εΦ 365nm for N7-Npom-BG-TFA of 2000 M-1cm-1 results. Taking a ε of 
ca. 4 mM-1cm-1 into account, the quantum yields can be estimated to be ≈50% for the 
N7- and ≈36% for the N9-isomer.  
To test the stability of the Npom-protected BG in the dark, compounds 1a and 1b 
were dissolved at 10 μM in phosphate buffer (NaCl 100 mM, KH2PO4/K2HPO4 
10mM, pH 7.4) and kept at r.t. for 3 day. Per HPLC (Figure S14), no release of BG is 
detectable.  
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Figure S11. Determination of the 
extinction coefficients of Npom-OH, 
N7-Npom-BG-TFA and BG-NH2. 
 
 
 
 
 
 
 

 
 
 

 
 

Figure S12. Analytical HPLC traces of the photo-decaging of reference DMNB-
cAMP versus compound N7-Npom-BG-TFA. Shown are the HPLC trace after 5 min 
(left) and 0.5 min (right) irradiation with 365 nm.  
 
 
 
 

 
 
Figure S13.. Photodecaging kinetics at 365 nm irradiation for N7-Npom-BG-TFA and 
N9-Npom-BG-TFA in comparison to commercial reference DMNB-cAMP for the 
determination of the quantum yield. 
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Figure S14. Analytical HPLC for N7-Npom-BG-TFA before and after 3 days at r.t. in 
the dark (NaCl 100 mM, KH2PO4/K2HPO4 10mM, pH 7.4). No release of BG-TFA (tR 
= 10 min) was observed. The little impurity at tR = 10 min after 3 days is not BG-TFA 
as it shows absorption at 365 nm (compare Figure S12). 

 

BG-FITC/FAM assay 
The BG-FITC/FAM assay (Figure 1c in the manuscript) was performed in 20mM Tris-
HCl (pH 8), 100mM NaCl and 5% glycerol. The reaction was performed on a 8 μl 
scale in PCR reaction tubes. The concentration of SNAP-ADAR1 was adjusted to 1 
μM and the respective BG derivatives (BG-FITC, N7Npom-BG-FAM and N9Npom-BG-
FAM) were used in a concentration of 7.5 μM. Irradiation was performed on a UV-
table (365 nm, power=high). The reaction tubes were incubated at 30°C for 20 min in 
the dark. The reaction was stopped by adding 0.5 volumes of 4 x SDS-PAGE loading 
buffer and heating to 95°C for 4 min. 10 μl of each sample were applied to SDS-
PAGE (4% stacking gel, 12% separation gel, 100 V, 2 h). Furthermore, GE 
Healthcare LMW protein marker was applied to one lane. To determine FITC/FAM 
fluorescence, the gel was scanned in a Fujifilm FLA-5100 fluorescence scanner 
using an excitation wavelength of 473nm (Intensity = 500V) and recording the 
emission at 557nm (Cy3 filter set). To verify consistent loading, coomassie staining 
was performed. The staining solution was composed of Coomassie Brilliant Blue G-
250 (0.02% w/v), Al2(SO4)3 (5% w/v), EtOH (10% v/v) and phosphoric acid (2% v/v). 
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SNAP-ADAR1 band-shift assay 
The SNAP-ADAR1 band-shift assay (Figure 2b in the manuscript) was performed in 
10 ml Tris-HCl (pH 8), 50 mM NaCl and 2.5% glycerol, 2 mM DTT. The reaction was 
performed on an 8 μl scale in PCR reaction tubes. The concentration of SNAP-
ADAR1 was adjusted to 1 μM and the respective guideRNAs (NH2-Stop66, BG-
Stop66, Npom-Stop66) were used in a concentration of 7.5 μM. Irradiation was 
performed on a UV-table (365 nm, power=high). The reaction tubes were incubated 
at 30°C in the dark for 40 min. The reaction was stopped by addition of 0.5 volumes 
of 4 x SDS-PAGE loading buffer and heating to 95°C for 4 min. 10 μl of each sample 
were applied to SDS-PAGE (4% stacking gel, 12% separation gel, 100 V, 3.5 h). 
Furthermore, GE Healthcare LMW protein marker was applied to one lane. The 
proteins were visualized by coomassie staining. The staining solution was composed 
of Coomassie Brilliant Blue G-250 (0.02% w/v), Al2(SO4)3 (5% w/v), EtOH (10% v/v) 
and phosphoric acid (2% v/v). 
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Primer 
 
All primers used in this study were purchased from Sigma-Aldrich GmbH 
(Muenchen) or MWG Eurofins (Ebersberg). 
 
Stop66 fw:  GCGGATAACA ATTCCCCTCT AG 

Stop66 rv:  CAGCGGTGGC AGCAGCCAAC 
 
W58X RT:  CTAGAAGGCA CAGTCGAGGC 

W58X fw:  GCGGATCCAC CATGGCTAGC AAAGGAGAAG AACTC 

W58X rv:  CCTCTAGAGC CGGATTTGTA TAGTTCATCC ATGCC 

W58Xpos327 fw:  GACACGTGCT GAAGTCAAGT TTGAAGGTG 
 
W58X PD fw:  ATGGCGCGCC TAGCTAGCAA AGGAGAAGAA CTC 
W58X PD bw:  TAACCGGTTT TGTATAGTTC ATCCATGCCA TG 
 
 
Gene sequences 
 
PCR-template for the generation of W66amber eCFP mRNA 
The premature stop codon (TAG) at position 66 is underlined and highlighted.  
 
                  10        20        30        40        50        60 
1         TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 
     T7 promotor 
                  70        80        90       100       110       120 
61        TGTTTAACTTTAAGAAGGAGATATACATATGGCTAGCAAAGGAGAAGAACTCTTCACTGG 

   M  A  S  K  G  E  E  L  F  T  G  
 
                 130       140       150       160       170       180 
121       AGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAACGGCCACAAGTTCTCTGTCAG 
41          V  V  P  I  L  V  E  L  D  G  D  V  N  G  H  K  F  S  V  S  
 
                 190       200       210       220       230       240 
181       TGGAGAGGGTGAAGGTGATGCAACATACGGAAAACTTACCCTGAAGTTCATCTGCACTAC 
61          G  E  G  E  G  D  A  T  Y  G  K  L  T  L  K  F  I  C  T  T  
 
                 250       260       270       280       290       300 
241       TGGCAAACTGCCTGTTCCGTGGCCAACACTAGTCACTACTCTGTGCTAGGGTGTTCAATG 
81          G  K  L  P  V  P  W  P  T  L  V  T  T  L  C  *  G  V  Q  C  
 
                 310       320       330       340       350       360 
301       CTTTTCAAGATACCCGGATCACATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGA 
101         F  S  R  Y  P  D  H  M  K  R  H  D  F  F  K  S  A  M  P  E  
 
                 370       380       390       400       410       420 
361       AGGTTATGTACAGGAAAGGACCATCTTCTTCAAAGATGACGGCAACTACAAGACACGTGC 
121         G  Y  V  Q  E  R  T  I  F  F  K  D  D  G  N  Y  K  T  R  A  
 
                 430       440       450       460       470       480 
421       TGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATAGAATCGAGTTAAAAGGTATTGACTT 
141         E  V  K  F  E  G  D  T  L  V  N  R  I  E  L  K  G  I  D  F  
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                 490       500       510       520       530       540 
481       CAAGGAAGATGGCAACATTCTGGGACACAAATTGGAATACAACTATATCTCACACAATGT 
161         K  E  D  G  N  I  L  G  H  K  L  E  Y  N  Y  I  S  H  N  V  
 
                 550       560       570       580       590       600 
541       ATACATCACCGCAGACAAACAAAAGAATGGAATCAAAGCCCACTTCAAGACCCGCCACAA 
181         Y  I  T  A  D  K  Q  K  N  G  I  K  A  H  F  K  T  R  H  N  
 
                 610       620       630       640       650       660 
601       CATTGAAGATGGAAGCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGA 
201         I  E  D  G  S  V  Q  L  A  D  H  Y  Q  Q  N  T  P  I  G  D  
 
                 670       680       690       700       710       720 
661       TGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGA 
221         G  P  V  L  L  P  D  N  H  Y  L  S  T  Q  S  A  L  S  K  D  
 
                 730       740       750       760       770       780 
721       TCCCAACGAAAAGAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTAC 
241         P  N  E  K  R  D  H  M  V  L  L  E  F  V  T  A  A  G  I  T  
 
                 790       800       810       820       830       840 
781       ACATGGCATGGATGAACTATACAAATCCGGCGGCTCCATGGCGCTCGAGCACCACCACCA 
261         H  G  M  D  E  L  Y  K  S  G  G  S  M  A  L  E  H  H  H  H  
 
                 850       860       870       880       890       900 
841       CCACCACTAATAATGACTAGTCAGCTGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTG 
281         H  H  *  *   
 
                 910       920 
901       AGTTGGCTGCTGCCACCGCTG 
301                                   
 
 
W58XeGFP/wt eGFP in the context of the pcDNA3.1 vector (Invitrogen): 
The gene was cloned using the BamH1 and Xba1 (underlined) restriction sites. The 
codon 58 (TAG) that is edited is highlighted in yellow. In the wildtype sequence = 
positive control plasmid this codon is TGG. 
 
                  10        20        30        40        50        60 
1         GAGCTCGGATCCACCATGGCTAGCAAAGGAGAAGAACTCTTCACTGGAGTTGTCCCAATT 

BamH1   M  A  S  K  G  E  E  L  F  T  G  V  V  P  I  
 
                  70        80        90       100       110       120 
61        CTTGTTGAATTAGATGGTGATGTTAACGGCCACAAGTTCTCTGTCAGTGGAGAGGGTGAA 
21         L  V  E  L  D  G  D  V  N  G  H  K  F  S  V  S  G  E  G  E   
 
                 130       140       150       160       170       180 
121       GGTGATGCAACATACGGAAAACTTACCCTGAAGTTCATCTGCACTACTGGCAAACTGCCT 
41         G  D  A  T  Y  G  K  L  T  L  K  F  I  C  T  T  G  K  L  P   
 
                 190       200       210       220       230       240 
181       GTTCCGTAGCCGACACTAGTGACGACGCTCTGCTATGGCGTCCAGTGCTTTTCAAGATAC 
61         V  P  *  P  T  L  V  T  T  L  C  Y  G  V  Q  C  F  S  R  Y   
 
                 250       260       270       280       290       300 
241       CCGGATCACATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAG 
81         P  D  H  M  K  R  H  D  F  F  K  S  A  M  P  E  G  Y  V  Q   
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                 310       320       330       340       350       360 
301       GAAAGGACCATCTTCTTCAAAGATGACGGCAACTACAAGACACGTGCTGAAGTCAAGTTT 
101        E  R  T  I  F  F  K  D  D  G  N  Y  K  T  R  A  E  V  K  F   
 
                 370       380       390       400       410       420 
361       GAAGGTGATACCCTTGTTAATAGAATCGAGTTAAAAGGTATTGACTTCAAGGAAGATGGC 
121        E  G  D  T  L  V  N  R  I  E  L  K  G  I  D  F  K  E  D  G   
 
                 430       440       450       460       470       480 
421       AACATTCTGGGACACAAATTGGAATACAACTATAACTCACACAATGTATACATCATGGCA 
141        N  I  L  G  H  K  L  E  Y  N  Y  N  S  H  N  V  Y  I  M  A   
 
                 490       500       510       520       530       540 
481       GACAAACAAAAGAATGGAATCAAAGTGAACTTCAAGACCCGCCACAACATTGAAGATGGA 
161        D  K  Q  K  N  G  I  K  V  N  F  K  T  R  H  N  I  E  D  G   
 
                 550       560       570       580       590       600 
541       AGCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTT 
181        S  V  Q  L  A  D  H  Y  Q  Q  N  T  P  I  G  D  G  P  V  L   
 
                 610       620       630       640       650       660 
601       TTACCAGACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAG 
201        L  P  D  N  H  Y  L  S  T  Q  S  A  L  S  K  D  P  N  E  K   
 
                 670       680       690       700       710       720 
661       AGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTACACATGGCATGGAT 
221        R  D  H  M  V  L  L  E  F  V  T  A  A  G  I  T  H  G  M  D   
 
                 730       740       750       760       770       780 
721       GAACTATACAAATCCGGCTCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGC 
241        E  L  Y  K  S  G  S  R  G  P  Y  S  I  V  S  P  K  C  *     
 
 
 

 
SNAPf-ADAR1 in the context of the pcDNA3.1 vector 
 
                  10        20        30        40        50        60 
1         GGATCCACCATGGACAAAGACTGCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGC 

BamH1   M  D  K  D  C  E  M  K  R  T  T  L  D  S  P  L  G  
 
                  70        80        90       100       110       120 
61        AAGCTGGAACTGTCTGGGTGCGAACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGA 
21         K  L  E  L  S  G  C  E  Q  G  L  H  R  I  I  F  L  G  K  G   
 
                 130       140       150       160       170       180 
121       ACATCTGCCGCCGACGCCGTGGAAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAG 
41         T  S  A  A  D  A  V  E  V  P  A  P  A  A  V  L  G  G  P  E   
 
                 190       200       210       220       230       240 
181       CCACTGATGCAGGCCACCGCCTGGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAG 
61         P  L  M  Q  A  T  A  W  L  N  A  Y  F  H  Q  P  E  A  I  E   
 
                 250       260       270       280       290       300 
241       GAGTTCCCTGTGCCAGCCCTGCACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAG 
81         E  F  P  V  P  A  L  H  H  P  V  F  Q  Q  E  S  F  T  R  Q   
 
                 310       320       330       340       350       360 
301       GTGCTGTGGAAACTGCTGAAAGTGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTG 



 

S25 
 

101        V  L  W  K  L  L  K  V  V  K  F  G  E  V  I  S  Y  S  H  L   
 
                 370       380       390       400       410       420 
361       GCCGCCCTGGCCGGCAATCCCGCCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAAT 
121        A  A  L  A  G  N  P  A  A  T  A  A  V  K  T  A  L  S  G  N   
 
                 430       440       450       460       470       480 
421       CCCGTGCCCATTCTGATCCCCTGCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGC 
141        P  V  P  I  L  I  P  C  H  R  V  V  Q  G  D  L  D  V  G  G   
 
                 490       500       510       520       530       540 
481       TACGAGGGCGGGCTCGCCGTGAAAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGC 
161        Y  E  G  G  L  A  V  K  E  W  L  L  A  H  E  G  H  R  L  G   
 
                 550       560       570       580       590       600 
541       AAGCCTGGGCTGGGTCCTGCAGGCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAGGCA 
181        K  P  G  L  G  P  A  G  G  G  A  P  G  S  G  G  G  S  K  A   
 
                 610       620       630       640       650       660 
601       GAACGCATGGGTTTCACAGAGGTAACCCCAGTGACAGGGGCCAGTCTCAGAAGAACTATG 
201        E  R  M  G  F  T  E  V  T  P  V  T  G  A  S  L  R  R  T  M   
 
                 670       680       690       700       710       720 
661       CTCCTCCTCTCAAGGTCCCCAGAAGCACAGCCAAAGACACTCCCTCTCACTGGCAGCACC 
221        L  L  L  S  R  S  P  E  A  Q  P  K  T  L  P  L  T  G  S  T   
 
                 730       740       750       760       770       780 
721       TTCCATGACCAGATAGCCATGCTGAGCCACCGGTGCTTCAACACTCTGACTAACAGCTTC 
241        F  H  D  Q  I  A  M  L  S  H  R  C  F  N  T  L  T  N  S  F   
 
                 790       800       810       820       830       840 
781       CAGCCCTCCTTGCTCGGCCGCAAGATTCTGGCCGCCATCATTATGAAAAAAGACTCTGAG 
261        Q  P  S  L  L  G  R  K  I  L  A  A  I  I  M  K  K  D  S  E   
 
                 850       860       870       880       890       900 
841       GACATGGGTGTCGTCGTCAGCTTGGGAACAGGGAATCGCTGTGTAAAAGGAGATTCTCTC 
281        D  M  G  V  V  V  S  L  G  T  G  N  R  C  V  K  G  D  S  L   
 
                 910       920       930       940       950       960 
901       AGCCTAAAAGGAGAAACTGTCAATGACTGCCATGCAGAAATAATCTCCCGGAGAGGCTTC 
301        S  L  K  G  E  T  V  N  D  C  H  A  E  I  I  S  R  R  G  F   
 
                 970       980       990      1000      1010      1020 
961       ATCAGGTTTCTCTACAGTGAGTTAATGAAATACAACTCCCAGACTGCGAAGGATAGTATA 
321        I  R  F  L  Y  S  E  L  M  K  Y  N  S  Q  T  A  K  D  S  I   
 
                1030      1040      1050      1060      1070      1080 
1021      TTTGAACCTGCTAAGGGAGGAGAAAAGCTCCAAATAAAAAAGACTGTGTCATTCCATCTG 
341        F  E  P  A  K  G  G  E  K  L  Q  I  K  K  T  V  S  F  H  L   
 
                1090      1100      1110      1120      1130      1140 
1081      TATATCAGCACTGCTCCGTGTGGAGATGGCGCCCTCTTTGACAAGTCCTGCAGCGACCGT 
361        Y  I  S  T  A  P  C  G  D  G  A  L  F  D  K  S  C  S  D  R   
 
                1150      1160      1170      1180      1190      1200 
1141      GCTATGGAAAGCACAGAATCCCGCCACTACCCTGTCTTCGAGAATCCCAAACAAGGAAAG 
381        A  M  E  S  T  E  S  R  H  Y  P  V  F  E  N  P  K  Q  G  K   
 
                1210      1220      1230      1240      1250      1260 
1201      CTCCGCACCAAGGTGGAGAACGGAGAAGGCACAATCCCTGTGGAATCCAGTGACATTGTG 
401        L  R  T  K  V  E  N  G  E  G  T  I  P  V  E  S  S  D  I  V   



 

S26 
 

 
                1270      1280      1290      1300      1310      1320 
1261      CCTACGTGGGATGGCATTCGGCTCGGGGAGAGACTCCGTACCATGTCCTGTAGTGACAAA 
421        P  T  W  D  G  I  R  L  G  E  R  L  R  T  M  S  C  S  D  K   
 
                1330      1340      1350      1360      1370      1380 
1321      ATCCTACGCTGGAACGTGCTGGGCCTGCAAGGGGCACTGTTGACCCACTTCCTGCAGCCC 
441        I  L  R  W  N  V  L  G  L  Q  G  A  L  L  T  H  F  L  Q  P   
 
                1390      1400      1410      1420      1430      1440 
1381      ATTTATCTCAAATCTGTCACATTGGGTTACCTTTTCAGCCAAGGGCATCTGACCCGTGCT 
461        I  Y  L  K  S  V  T  L  G  Y  L  F  S  Q  G  H  L  T  R  A   
 
                1450      1460      1470      1480      1490      1500 
1441      ATTTGCTGTCGTGTGACAAGAGATGGGAGTGCATTTGAGGATGGACTACGACATCCCTTT 
481        I  C  C  R  V  T  R  D  G  S  A  F  E  D  G  L  R  H  P  F   
 
                1510      1520      1530      1540      1550      1560 
1501      ATTGTCAACCACCCCAAGGTTGGCAGAGTCAGCATATATGATTCCAAAAGGCAATCCGGG 
501        I  V  N  H  P  K  V  G  R  V  S  I  Y  D  S  K  R  Q  S  G   
 
                1570      1580      1590      1600      1610      1620 
1561      AAGACTAAGGAGACAAGCGTCAACTGGTGTCTGGCTGATGGCTATGACCTGGAGATCCTG 
521        K  T  K  E  T  S  V  N  W  C  L  A  D  G  Y  D  L  E  I  L   
 
                1630      1640      1650      1660      1670      1680 
1621      GACGGTACCAGAGGCACTGTGGATGGGCCACGGAATGAATTGTCCCGGGTCTCCAAAAAG 
541        D  G  T  R  G  T  V  D  G  P  R  N  E  L  S  R  V  S  K  K   
 
                1690      1700      1710      1720      1730      1740 
1681      AACATTTTTCTTCTATTTAAGAAGCTCTGCTCCTTCCGTTACCGCAGGGATCTACTGAGA 
561        N  I  F  L  L  F  K  K  L  C  S  F  R  Y  R  R  D  L  L  R   
 
                1750      1760      1770      1780      1790      1800 
1741      CTCTCCTATGGTGAGGCCAAGAAAGCTGCCCGTGACTACGAGACGGCCAAGAACTACTTC 
581        L  S  Y  G  E  A  K  K  A  A  R  D  Y  E  T  A  K  N  Y  F   
 
                1810      1820      1830      1840      1850      1860 
1801      AAAAAAGGCCTGAAGGATATGGGCTATGGGAACTGGATTAGCAAACCCCAGGAGGAAAAG 
601        K  K  G  L  K  D  M  G  Y  G  N  W  I  S  K  P  Q  E  E  K   
 
                1870      1880      1890      1900      1910      1920 
1861      AACTTTTATCTCTGCCCAGTATCTAGAGGGCCCTTCGAACAAAAACTCATCTCAGAAGAG 
621        N  F  Y  L  C  P  V  S  R  G  P  F  E  Q  K  L  I  S  E  E   
 
                1930      1940      1950      1960      1970      1980 
1921      GATCTGAATATGCATACCGGTCATCATCACCATCACCATTGAGTTTAAACCCGCTGATCA 
641        D  L  N  M  H  T  G  H  H  H  H  H  H  *   
 
 

SNAPf-ADAR2 in the context of the pcDNA3.1 vector 
1         GGATCCACCATGGACAAAGACTGCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGC 

BamH1   M  D  K  D  C  E  M  K  R  T  T  L  D  S  P  L  G  
 
                  70        80        90       100       110       120 
61        AAGCTGGAACTGTCTGGGTGCGAACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGA 
21         K  L  E  L  S  G  C  E  Q  G  L  H  R  I  I  F  L  G  K  G   
 
                 130       140       150       160       170       180 
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121       ACATCTGCCGCCGACGCCGTGGAAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAG 
41         T  S  A  A  D  A  V  E  V  P  A  P  A  A  V  L  G  G  P  E   
 
                 190       200       210       220       230       240 
181       CCACTGATGCAGGCCACCGCCTGGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAG 
61         P  L  M  Q  A  T  A  W  L  N  A  Y  F  H  Q  P  E  A  I  E   
 
                 250       260       270       280       290       300 
241       GAGTTCCCTGTGCCAGCCCTGCACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAG 
81         E  F  P  V  P  A  L  H  H  P  V  F  Q  Q  E  S  F  T  R  Q   
 
                 310       320       330       340       350       360 
301       GTGCTGTGGAAACTGCTGAAAGTGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTG 
101        V  L  W  K  L  L  K  V  V  K  F  G  E  V  I  S  Y  S  H  L   
 
                 370       380       390       400       410       420 
361       GCCGCCCTGGCCGGCAATCCCGCCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAAT 
121        A  A  L  A  G  N  P  A  A  T  A  A  V  K  T  A  L  S  G  N   
 
                 430       440       450       460       470       480 
421       CCCGTGCCCATTCTGATCCCCTGCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGC 
141        P  V  P  I  L  I  P  C  H  R  V  V  Q  G  D  L  D  V  G  G   
 
                 490       500       510       520       530       540 
481       TACGAGGGCGGGCTCGCCGTGAAAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGC 
161        Y  E  G  G  L  A  V  K  E  W  L  L  A  H  E  G  H  R  L  G   
 
                 550       560       570       580       590       600 
541       AAGCCTGGGCTGGGTCCTGCAGGCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAGAAG 
181        K  P  G  L  G  P  A  G  G  G  A  P  G  S  G  G  G  S  K  K   
 
                 610       620       630       640       650       660 
601       CTTGCCAAGGCCCGGGCTGCGCAGTCTGCCCTGGCCGCCATTTTTAACTTGCACTTGGAT 
201        L  A  K  A  R  A  A  Q  S  A  L  A  A  I  F  N  L  H  L  D   
 
                 670       680       690       700       710       720 
661       CAGACGCCATCTCGCCAGCCTATTCCCAGTGAGGGTCTTCAGCTGCATTTACCGCAGGTT 
221        Q  T  P  S  R  Q  P  I  P  S  E  G  L  Q  L  H  L  P  Q  V   
 
                 730       740       750       760       770       780 
721       TTAGCTGACGCTGTCTCACGCCTGGTCCTGGGTAAGTTTGGTGACCTGACCGACAACTTC 
241        L  A  D  A  V  S  R  L  V  L  G  K  F  G  D  L  T  D  N  F   
 
                 790       800       810       820       830       840 
781       TCCTCCCCTCACGCTCGCAGAAAAGTGCTGGCTGGAGTCGTCATGACAACAGGCACAGAT 
261        S  S  P  H  A  R  R  K  V  L  A  G  V  V  M  T  T  G  T  D   
 
                 850       860       870       880       890       900 
841       GTTAAAGATGCCAAGGTGATAAGTGTTTCTACAGGAACAAAATGTATTAATGGTGAATAC 
281        V  K  D  A  K  V  I  S  V  S  T  G  T  K  C  I  N  G  E  Y   
 
                 910       920       930       940       950       960 
901       ATGAGTGATCGTGGCCTTGCATTAAATGACTGCCATGCAGAAATAATATCTCGGAGATCC 
301        M  S  D  R  G  L  A  L  N  D  C  H  A  E  I  I  S  R  R  S   
 
                 970       980       990      1000      1010      1020 
961       TTGCTCAGATTTCTTTATACACAACTTGAGCTTTACTTAAATAACAAAGATGATCAAAAA 
321        L  L  R  F  L  Y  T  Q  L  E  L  Y  L  N  N  K  D  D  Q  K   
 
                1030      1040      1050      1060      1070      1080 
1021      AGATCCATCTTTCAGAAATCAGAGCGAGGGGGGTTTAGGCTGAAGGAGAATGTCCAGTTT 
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341        R  S  I  F  Q  K  S  E  R  G  G  F  R  L  K  E  N  V  Q  F   
 
                1090      1100      1110      1120      1130      1140 
1081      CATCTGTACATCAGCACCTCTCCCTGTGGAGATGCCAGAATCTTCTCACCACATGAGCCA 
361        H  L  Y  I  S  T  S  P  C  G  D  A  R  I  F  S  P  H  E  P   
 
                1150      1160      1170      1180      1190      1200 
1141      ATCCTGGAAGAACCAGCAGATAGACACCCAAATCGTAAAGCAAGAGGACAGCTACGGACC 
381        I  L  E  E  P  A  D  R  H  P  N  R  K  A  R  G  Q  L  R  T   
 
                1210      1220      1230      1240      1250      1260 
1201      AAAATAGAGTCTGGTGAGGGGACGATTCCAGTGCGCTCCAATGCGAGCATCCAAACGTGG 
401        K  I  E  S  G  E  G  T  I  P  V  R  S  N  A  S  I  Q  T  W   
 
                1270      1280      1290      1300      1310      1320 
1261      GACGGGGTGCTGCAAGGGGAGCGGCTGCTCACCATGTCCTGCAGTGACAAGATTGCACGC 
421        D  G  V  L  Q  G  E  R  L  L  T  M  S  C  S  D  K  I  A  R   
 
                1330      1340      1350      1360      1370      1380 
1321      TGGAACGTGGTGGGCATCCAGGGATCCCTGCTCAGCATTTTCGTGGAGCCCATTTACTTC 
441        W  N  V  V  G  I  Q  G  S  L  L  S  I  F  V  E  P  I  Y  F   
 
                1390      1400      1410      1420      1430      1440 
1381      TCGAGCATCATCCTGGGCAGCCTTTACCACGGGGACCACCTTTCCAGGGCCATGTACCAG 
461        S  S  I  I  L  G  S  L  Y  H  G  D  H  L  S  R  A  M  Y  Q   
 
                1450      1460      1470      1480      1490      1500 
1441      CGGATCTCCAACATAGAGGACCTGCCACCTCTCTACACCCTCAACAAGCCTTTGCTCAGT 
481        R  I  S  N  I  E  D  L  P  P  L  Y  T  L  N  K  P  L  L  S   
 
                1510      1520      1530      1540      1550      1560 
1501      GGCATCAGCAATGCAGAAGCACGGCAGCCAGGGAAGGCCCCCAACTTCAGTGTCAACTGG 
501        G  I  S  N  A  E  A  R  Q  P  G  K  A  P  N  F  S  V  N  W   
 
                1570      1580      1590      1600      1610      1620 
1561      ACGGTAGGCGACTCCGCTATTGAGGTCATCAACGCCACGACTGGGAAGGATGAGCTGGGC 
521        T  V  G  D  S  A  I  E  V  I  N  A  T  T  G  K  D  E  L  G   
 
                1630      1640      1650      1660      1670      1680 
1621      CGCGCGTCCCGCCTGTGTAAGCACGCGTTGTACTGTCGCTGGATGCGTGTGCACGGCAAG 
541        R  A  S  R  L  C  K  H  A  L  Y  C  R  W  M  R  V  H  G  K   
 
                1690      1700      1710      1720      1730      1740 
1681      GTTCCCTCCCACTTACTACGCTCCAAGATTACCAAGCCCAACGTGTACCATGAGTCCAAG 
561        V  P  S  H  L  L  R  S  K  I  T  K  P  N  V  Y  H  E  S  K   
 
                1750      1760      1770      1780      1790      1800 
1741      CTGGCGGCAAAGGAGTACCAGGCCGCCAAGGCGCGTCTGTTCACAGCCTTCATCAAGGCG 
581        L  A  A  K  E  Y  Q  A  A  K  A  R  L  F  T  A  F  I  K  A   
 
                1810      1820      1830      1840      1850      1860 
1801      GGGCTGGGGGCCTGGGTGGAGAAGCCCACCGAGCAGGACCAGTTCTCACTCACGCCCTCT 
601        G  L  G  A  W  V  E  K  P  T  E  Q  D  Q  F  S  L  T  P  S   
 
                1870      1880      1890      1900      1910      1920 
1861      AGAGGGCCCTTCGAACAAAAACTCATCTCAGAAGAGGATCTGAATATGCATACCGGTCAT 
621        R  G  P  F  E  Q  K  L  I  S  E  E  D  L  N  M  H  T  G  H   
 
                1930      1940      1950      1960      1970      1980 
1921      CATCACCATCACCATTGAGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGC 
641        H  H  H  H  H  *                 
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In vitro editing 

The general procedure of in vitro editing comprises the actual editing of the mRNA, 
reverse transcription and amplification of the cDNA by PCR. Subsequent sequencing 
of the PCR product served as a read-out for the editing yield.[S4] 
 
CFP Stop66 mRNA synthesis  
The mRNA substrate for the in vitro editing experiments was generated by in vitro 
transcription of a PCR fragment containing the Stop66 gene under the control of a 
T7 promotor. Using a PCR fragment as template instead of a plasmid decreases the 
risk of RNase contamination. The in vitro transcription reaction mixture contained 
100 ng template, transcription buffer (7.5 μl), DTT (100 mM, 7.5 μl), BSA (1 mg/ml, 3 
μl), rNTPs (mix 25 mM, 12 μl) and T7 RNA polymerase (4.5 μl). The volume was 
adjusted to 50 μl with RNase free water. The mRNA was purified using the RNeasy 
mini kit (Quiagen). To remove traces of the template DNaseI (Qiagen) digest was 
performed according to the manufactures protocol. Afterwards, the mRNA was again 
purified using the RNeasy mini kit (Quiagen). Absence of DNA was controlled by 
PCR using 2 μl of diluted mRNA (OD = 0.2) as template and the primers Stop66 fw 
and Stop66 rv. If necessary the DNaseI digest was repeated until the PCR control 
reaction was negative. 
 
Editing 
All in vitro editings were performed on a 25 μl scale in PCR-tubes as previously 
described.[S4] The editing buffer was composed of 25 mM Tris·HCl, 75 mM KCl, 10 
mM DTT (pH 8.3) and 0.75 mM MgCl2. The substrate mRNA (eCFP Stop66) was 
used in a concentration of 10 nM and NH2-, BG- or Npom-guideRNA was added in 5-
fold excess. The reaction was started by addition of 3.4 equivalents of editing 
enzyme (SNAP-ADAR1 or SNAP-ADAR2) relative to guideRNA resulting in a final 
enzyme concentration of 170 nM. Expression and purification of the SNAP-ADAR 
enzymes were previously described.[S4,S5] Furthermore, the reaction mixture always 
contained heparin (2 μM, assuming an average molar mass of 20 kDa) and murine 
RNase inhibitor (0.5 u/μl, NEB) to prevent degradation of the guideRNAs and the 
mRNA substrate. Irradiation with 365 nm light was performed on a UV 
transilluminator (UVP TFL-40V, 25 W, intensity high) for the indicated amount of time 
at room temperature. The reaction was carried out by cycling between 30°C and 
37°C [3x(30 min at 30°C and 30 min at 37°C) for SNAP-ADAR2, 3x(20 min at 30°C 
and 20 min at 37°C) for SNAP-ADAR1]. 
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Reverse Transcription 
Editing was stopped by adding an excess of an antisense DNA oligo (5´-
TGACGGCTGGCTGCACCATT, final concentration 20 μM),  MgCl2 (2.6 mM), dNTPs 
(0.27 mM each), a primer for reverse transcription (Stop66 rv, 0.5 μM), DTT (5.3 
mM), and M-MuLV RT buffer (1.25 μl, NEB), and heating to 70°C for 3 min. After 
heating M-MuLV-reverse transcriptase (50 units, 0.5 μl NEB) was added and the 
reaction mixture was incubated at 42°C for 2 h. Afterwards the cDNA was purified 
and concentrated using the NucleoSpin gel and PCR clean-up (Machery-Nagel). 
 
Taq-PCR and agarose gel electrophoresis 
The cDNA was amplified by PCR on a 50 μl scale (denaturation: 15 s at 95°C, 
annealing: 30 s at 56°C, elongation: 60 s at 68°C, 27 cycles). The PCR reaction mix 
contained 5 μl ThermoPol buffer (10 x, NEB), 2.5 μl of Stop66 fw primer (10 µM), 2.5 
μl Stop66 rv primer (10 µM), 1.25 μl dNTPs (10 mM each, NEB) and 0.5 μl Taq DNA 
polymerase (5 units/μl). 5 μl of cDNA (typical concentration ca. 10 ng/μl) were used 
as template. Elution buffer from the NucleoSpin kit was used as negative control to 
preclude contamination of the elution buffer or PCR components. PCR products of 
previous editings were used as positive control. All PCR reactions were applied to 
agarose gel electrophoresis (1 x TAE, 1.4%, staining with Rotisafe by Carl Roth 
GmbH). The eCFP band was cut out under UV light and the PCR product was 
recovered using the NucleoSpin gel and PCR clean-up kit by Machery-Nagel and 
sent for sequencing. 
 
Sequencing and processing of sequencing traces 
The PCR products (120 ng) were sequenced with Stop66 fw primer () at Eurofins 
MWG, Ebersberg. The editing yield was determined by comparison of the peak 
height of adenosine and guanosine in the sequencing traces according to the 
following formula: 
 

Editing	yield 	
h guanosine

h guanosine 	 	h adenosine
	 	100			h peak	height	 cm  

 
Sequencing traces were processed with DNAMAN 7. The Figure S15 on the next 
page shows the complete sequencing trace of the CFP s top66 mRNA edited in vitro. 
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Figure S15 RNA Sequencing of the entire ORF of CFP. The RNA was obtained after 
light-induced transcript repair with N7Npom-BG-Stop66 guideRNA and SNAP-ADAR1 
(corresponding to experiments shown in Figure 2c, manuscript).  
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Additional experimental data 
The light-dependent RNA editing experiment shown in the manuscript in Figure 2c 
for SNAP-ADRA1 was also carried out with SNAP-ADAR2 as shown below (Figure 
S16). Again, the full dynamic range of editing is obtained from no editing prior to 
irradiation to the editing yield of the positive editing control after >60 sec irradiation. 
The maximum yield obtained for SNAP-ADAR2 is a little bit reduced compared to 
SNAP-ADAR1 which is caused by the stronger sensitivity of the first towards 
heparin. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S16 Light-dependent in-vitro site-directed RNA editing of the amber Stop 
codon at position 66 in the CFP gene by SNAP-ADAR2.  
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Editing in cell culture 

 
Cell culture techniques 
HEK293T cells (DSMZ Braunschweig, Germany, ACC-635) were grown in 
Dulbecco’s Modified Eagle Medium (DMEM, Life Technologies) supplemented with 
10% fetale bovine serum (FBS, Life Technologies) and 1% penicillin/streptomycin 
(P/S, Life Technologies) under standard conditions (37°C and 5% CO2 in a water 
saturated steam atmosphere). 
 
Plasmid transfection 
HEK 293T cells (DSMZ code ACC-635, passage number < 15) were grown in a 25 
cm2 cell culture flask to a confluency of 70-90%. The medium was removed; the cells 
were washed with 5 ml PBS and trypsinated with 500 μl trypsin/EDTA for 3 min at 
37°C. Then the protease was blocked by adding 4.5 ml DMEM+FBS+P/S. Cells were 
incubated with trypan blue for 5 min and the cell number was determined in a 
hemacytometer. Cells were seeded onto a 24 well plate (200 000 cells/well) in 500 μl 
DMEM+FBS+P/S grown for 24 h. 60-120 min before plasmid transfection the 
medium was replaced with 450 μl DMEM+FBS without antibiotics. Lipofectamine 
2000 (Life Technologies, 4 μl per 1 μg DNA) was used as transfection reagent. For 
transfection, plasmid DNA and Lipofectamine were diluted in 50 μl OptiMem (Life 
Technologies) independently and incubated for 5 min at r.t. allowing micelle 
formation of the transfection agent. Then both solutions were mixed, incubated for 
another 20 min at r.t. for complex formation and applied to the cells. The transfected 
cells were incubated for 24 h. 
In a typical experiment 500 ng of W58X coding plasmid (pcDNA3.1, Invitrogen) was 
co-transfected with 25 to 200 ng SNAPf-ADAR1 coding plasmid (pcDNA3.1, 
Invitrogen). Furthermore, W58X was co-transfected with empty pcDNA3.1 as 
negative control. The plasmid coding for functional EGFP was transfected together 
with SNAPf-ADAR1 as positive control. 
 
guideRNA transfection 
After 24 h incubation, the medium was removed; cells were washed with 500 μl PBS, 
trypsinated (60μl trypsin/EDTA) and taken up in 500 μl DMEM+FBS+P/S. The cell 
suspension was centrifuged (1600 rpm, 5 min, r.t.), the supernatant was removed, 
the cell pellet re-suspended in DMEM+FBS without antibiotics and the cell number 
was determined in a hemacytometer. The cells were reverse transfected onto a 96 
well plate (60 000 cells/well, in 100 µl DMEM+FBS) containing the respective 
guideRNAs (typically 10 pmol/well) pre-treated with Lipofectamine 2000 (0.5 
μL/well). guideRNA and Lipofectamine were diluted in 25 μl OptiMem independently, 
incubated for 5 min, mixed and incubated another 20 min before applying the mixture 
to the 96 well plate. 
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All experiments involving Npom-caged guideRNAs were performed in the absence of 
direct light or under red light (590-660 nm, LED Spot Luexon Red, Conrad 
Electronic). 96 well plates were wrapped in aluminum foil to protect Npom-
guideRNAs from light. 
 
Npom-decaging 
After 4 h of guideRNA transfection, the medium was replaced by 100 μl 
DMEM+HEPES (25 mM) without phenol red. Irradiation (365 nm) was performed in a 
fluorescence microscope (Zeiss CellObserverZ.1, equipped with a 365 nm Colibri.2 
LED) at 100% LED power for the indicated amount of time. 
 
Imaging & data processing 
All cells were imaged 24 h after irradiation using a Zeiss AXIO Observer.Z1 with a 
Colibri.2 light source. For each sample, a phase contrast image acquired and EGFP 
fluorescence signal was recorded (Excitation: 465 nm, 50% LED power, 460-480 nm 
band pass filter, Emission: 500-557 nm band pass filter). All samples of one 
experiment were recorded with the same settings (exposure time, etc.). Images were 
processed in ImageJ 1.47h and the adjustment of contrast and brightness was 
carried out for all fluorescence images identically. 
 
Cell harvesting and RNA isolation 
After imaging, the cells were harvested and the RNA was isolated and reverse 
transcribed. The obtained cDNA was amplified by PCR, worked-up and sequenced. 
 
The medium was removed from the 96 well-plates and the cells were trypsinated 
with 20 μl Trypsin/EDTA for 1 min. Then, DMEM+FBS+P/S (80 μl) was added, the 
cell suspension was transferred to a 1.5 ml reaction tube and centrifuged (1600 rpm, 
5 min, r.t.). The supernatant was removed and the cell pellets were washed with 
PBS. After another centrifugation step (1600 rpm, 5 min, r.t.) and removal of the 
PBS, the pellets were frozen in liquid nitrogen and stored for up to 3 days at -80°C. 
For RNA isolation, the pellets were thawn on ice and suspended in lysis buffer (RLT 
buffer from Qiagen RNeasy mini kit + 1% mercaptoethanol (v/v)). To enhance cell 
disruption, the cells were exposed to shearing stress by pipetting the suspension 
through a needle (Ø = 0.25 mm) several times. After lysis, RNA purification was 
performed according to the RNeasy mini kit manual (Qiagen). In a typical experiment 
600-1800 ng RNA were recovered per well. 
 
DNase digest and reverse transcription 
For DNase digest 2.9 μl 10 x RDD buffer and 1 μl DNase I (Qiagen) were added to 
25 μl RNA sample and incubated for 30 min at 37°C. The DNase was inactivated by 
adding 1 μl EDTA (25 mM) and heating to 65°C for 10 min. 14.75 μl of the DNase 
digest were mixed with 1 μl W58X RT (10 μM) primer and 1 μl dNTPs (10mM each) 
and incubated at 70°C for 3 min. Then, 2 μl 10 x M-MuLV-RT buffer, 0.25 μl murine 
RNase inhibitor (40 units/μl, NEB) and 1 μl M-MuLV reverse transcriptase (200 
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units/μl, NEB) were added and the solution was incubated at 42°C for 1 h. M-MuLV 
reverse transcriptase was inactivated by heating to 90°C for 10 min. The cDNA was 
purified using the NucleoSpin gel and PCR clean-up kit (Machery-Nagel). In a typical 
experiment, reverse transcription yielded 150-600 ng cDNA. 
 
Taq-PCR and agarose gel electrophoresis 
The cDNA was amplified by PCR on a 50 μl scale. Furthermore, a control PCR was 
performed using the DNase digest as template to verify the absence of interfering 
plasmid DNA. The PCR reaction mix contained 5 μl ThermoPol buffer (10 x), 2.5 μl 
of W58X fw primer (10 μM), 2.5 μl W58X rv primer (10 μM), 1.25 μl dNTPs (10 mM 
each) and 0.5 μl Taq DNA polymerase (5 U/μl, NEB). 5 µl of cDNA sample or 2.5 µl  
RNA after DNase digest were used as template. Furthermore, RNase free water and 
elution buffer from the NucleoSpin kit were used as negative control to preclude 
contamination of the PCR components. W58X plasmid DNA was used as positive 
control. 10 μl of 6 x blue loading dye (NEB) were added and all PCR reactions were 
applied to agarose gel electrophoresis (1 x TAE, 1.4%, staining with Rotisafe by Carl 
Roth GmbH). The W58X/EGFP band was cut out and the PCR product was 
recovered using the NucleoSpin gel and PCR clean-up kit by Machery-Nagel. If any 
bands showed up in the DNase control PCR, the samples were processed again 
starting from DNase digest. 
 
Sequencing 
For sequencing 120 ng of the PCR products were send to Eurofins MWG. W58X fw 
(1.5 μl, 10 μM) was used as primer for all samples. The editing yield was determined 
as described for Stop66 editing in vitro. Figure S18 shows the complete sequencing 
trace of the W58X editing in cell culture. The amplified fragment corresponds to base 
pairs 44-668 of the EGFP ORF. 
  



 

S36 
 

 

 

Figure S17. Light-controlled RNA editing in living 293T cells (corresponding to 
experiments shown in Figure 3 manuscript). For all samples phase contrast imaging 
(left), eGFP fluorescence imaging (middle) and Sanger sequencing traces (right) 24 
h post transfection is shown.  
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Figure S18. RNA Sequencing of the isolated eGFP mRNA (amplified fragment 
corresponds to base pairs 44-668 of the eGFP ORF). The RNA was obtained after 
light-induced transcript repair with N7NpomBG-Stop66 guideRNA and SNAPf-ADAR1 
(corresponding to experiments shown in Figure 3, manuscript) 
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Additional experimental data 
 
Figure S19 and S20 demonstrate the dependence of the editing yield and Npom-
guideRNA residual activity on the amount of transfected guideRNA and plasmid. 
Remarkably, the system yields reasonable editing (20-50%) even when the amount 
of plasmid or BG-guideRNA is varied by about 1 order of magnitude. 
With a constant amount of BG-guideRNA (10 pmol/well) the editing yield decreases 
from ~50% with 200 ng SNAPf-ADAR1 plasmid to ~20% with 25 ng SNAPf-ADAR1. 
At the same time the residual activity of Npom-guideRNA in the dark is decreases 
from ~15% to <5%. 
With a constant amount of SNAPf-ADAR1 enzyme (100 ng) the editing yield 
decreases from ~50% with 50 pmol BG-guideRNA to ~20% with 2 pmol BG-
guideRNA. Residual activity of Npom-guideRNA can be efficiently suppressed by 
lowering the amount of guideRNA. 
The presented results indicate that SNAPf-ADAR1 expression level and the amount 
guideRNA can be used to adjust both editing yield and residual activity for future 
applications. 
 
 

 
 
Figure S19. RNA editing in living 293T cells with different amounts of SNAPf-ADAR1 
plasmid transfected. All cells were transfected with a constant amount of guideRNA 
(10 pmol/well). 
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Figure S20. RNA editing in living 293T cells with different amounts of guideRNA 
transfected. All cells were transfected with a constant amount of SNAPf-ADAR1 
plasmid (100ng). 
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Editing in Platynereis Dumerilii 
 

Materials and Methods 
 
Gene (transcript) sequences of eGFP and SNAP-ADAR1  
 

W58X eGFP in the pUC57-T7-RPP2 context 

                  10        20        30        40        50        60 
1         TAATACGACTCACTATAGGGAGATTTGATGTTTACAGGGCTATTTATAAACAAATTGTTA 
  T7 promotor 
 
                  70        80        90       100       110       120 
61        ATAATTTAGGTGGAAATTATTTTGGTGTCTCAAACCCACATGTTCAGGAAGCTGTGGCCC 
 
                 130       140       150       160       170       180 
121       CCAAATCTTTCTTTCTGTTTGAGAAATTTTCTGGTGTGCACACGTTTTCGTGTCTCTTGG 
 
                 190       200       210       220       230       240 
181       AAGACTTAAAAAATGGCGCGCCTAGCTAGCAAAGGAGAAGAACTCTTCACTGGAGTTGTC 
                      M  A  R  L  A  S  K  G  E  E  L  F  T  G  V  V   
 
                 250       260       270       280       290       300 
241       CCAATTCTTGTTGAATTAGATGGTGATGTTAACGGCCACAAGTTCTCTGTCAGTGGAGAG 
81         P  I  L  V  E  L  D  G  D  V  N  G  H  K  F  S  V  S  G  E   
 
                 310       320       330       340       350       360 
301       GGTGAAGGTGATGCAACATACGGAAAACTTACCCTGAAGTTCATCTGCACTACTGGCAAA 
101        G  E  G  D  A  T  Y  G  K  L  T  L  K  F  I  C  T  T  G  K   
 
                 370       380       390       400       410       420 
361       CTGCCTGTTCCGTAGCCGACACTAGTGACGACGCTCTGCTATGGCGTCCAGTGCTTTTCA 
121        L  P  V  P  *  P  T  L  V  T  T  L  C  Y  G  V  Q  C  F  S   
 
                 430       440       450       460       470       480 
421       AGATACCCGGATCACATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTAT 
141        R  Y  P  D  H  M  K  R  H  D  F  F  K  S  A  M  P  E  G  Y   
 
                 490       500       510       520       530       540 
481       GTACAGGAAAGGACCATCTTCTTCAAAGATGACGGCAACTACAAGACACGTGCTGAAGTC 
161        V  Q  E  R  T  I  F  F  K  D  D  G  N  Y  K  T  R  A  E  V   
 
                 550       560       570       580       590       600 
541       AAGTTTGAAGGTGATACCCTTGTTAATAGAATCGAGTTAAAAGGTATTGACTTCAAGGAA 
181        K  F  E  G  D  T  L  V  N  R  I  E  L  K  G  I  D  F  K  E   
 
                 610       620       630       640       650       660 
601       GATGGCAACATTCTGGGACACAAATTGGAATACAACTATAACTCACACAATGTATACATC 
201        D  G  N  I  L  G  H  K  L  E  Y  N  Y  N  S  H  N  V  Y  I   
 
                 670       680       690       700       710       720 
661       ATGGCAGACAAACAAAAGAATGGAATCAAAGTGAACTTCAAGACCCGCCACAACATTGAA 
221        M  A  D  K  Q  K  N  G  I  K  V  N  F  K  T  R  H  N  I  E   
 
                 730       740       750       760       770       780 
721       GATGGAAGCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCT 
241        D  G  S  V  Q  L  A  D  H  Y  Q  Q  N  T  P  I  G  D  G  P   
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                 790       800       810       820       830       840 
781       GTCCTTTTACCAGACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAAC 
261        V  L  L  P  D  N  H  Y  L  S  T  Q  S  A  L  S  K  D  P  N   
 
                 850       860       870       880       890       900 
841       GAAAAGAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTACACATGGC 
281        E  K  R  D  H  M  V  L  L  E  F  V  T  A  A  G  I  T  H  G   
 
                 910       920       930       940       950       960 
901       ATGGATGAACTATACAAAACCGGTTAAAAGAAACACTTTTACAAACATCAGTCTGTAACA 
301        M  D  E  L  Y  K  T  G  *   
                 970       980       990      1000      1010      1020 
961       TCTTTCCAATAAAAAAAAAACATGTAACTTACTGGTCTGGAGTTGTTTAAGAGAAAATTG 
 
                1030      1040      1050 
1021      GATCTAGATGCATTCGCGAGGTACCGAG(CTC) Polyadenylation 
      Eco53kI 

In yellow the transcription start site and the premature W58X site are highlighted. 
The ORF is marked by the single letter amino acid code. 

 

SNAP-ADAR1 in the pUC57-T7-RPP2 context 

                 10        20        30        40        50        60 
1         TAATACGACTCACTATAGGGAGATTTGATGTTTACAGGGCTATTTATAAACAAATTGTTA 

T7 promotor 
 
                  70        80        90       100       110       120 
61        ATAATTTAGGTGGAAATTATTTTGGTGTCTCAAACCCACATGTTCAGGAAGCTGTGGCCC 
 
                 130       140       150       160       170       180 
121       CCAAATCTTTCTTTCTGTTTGAGAAATTTTCTGGTGTGCACACGTTTTCGTGTCTCTTGG 
 
                 190       200       210       220       230       240 
181       AAGACTTAAAAAATGGCGCGTCTAGACAAAGACTGCGAAATGAAGCGCACCACCCTGGAT 
                       M  A  R  L  D  K  D  C  E  M  K  R  T  T  L  D   
 
                 250       260       270       280       290       300 
241       AGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCGAACAGGGCCTGCACCGTATCATCTTC 
81         S  P  L  G  K  L  E  L  S  G  C  E  Q  G  L  H  R  I  I  F   
 
                 310       320       330       340       350       360 
301       CTGGGCAAAGGAACATCTGCCGCCGACGCCGTGGAAGTGCCTGCCCCAGCCGCCGTGCTG 
101        L  G  K  G  T  S  A  A  D  A  V  E  V  P  A  P  A  A  V  L   
 
                 370       380       390       400       410       420 
361       GGCGGACCAGAGCCACTGATGCAGGCCACCGCCTGGCTCAACGCCTACTTTCACCAGCCT 
121        G  G  P  E  P  L  M  Q  A  T  A  W  L  N  A  Y  F  H  Q  P   
 
                 430       440       450       460       470       480 
421       GAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGCACCACCCAGTGTTCCAGCAGGAGAGC 
141        E  A  I  E  E  F  P  V  P  A  L  H  H  P  V  F  Q  Q  E  S   
 
                 490       500       510       520       530       540 
481       TTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAGTGGTGAAGTTCGGAGAGGTCATCAGC 
161        F  T  R  Q  V  L  W  K  L  L  K  V  V  K  F  G  E  V  I  S   
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                 550       560       570       580       590       600 
541       TACAGCCACCTGGCCGCCCTGGCCGGCAATCCCGCCGCCACCGCCGCCGTGAAAACCGCC 
181        Y  S  H  L  A  A  L  A  G  N  P  A  A  T  A  A  V  K  T  A   
 
                 610       620       630       640       650       660 
601       CTGAGCGGAAATCCCGTGCCCATTCTGATCCCCTGCCACCGGGTGGTGCAGGGCGACCTG 
201        L  S  G  N  P  V  P  I  L  I  P  C  H  R  V  V  Q  G  D  L   
 
                 670       680       690       700       710       720 
661       GACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGAAAGAGTGGCTGCTGGCCCACGAGGGC 
221        D  V  G  G  Y  E  G  G  L  A  V  K  E  W  L  L  A  H  E  G   
 
                 730       740       750       760       770       780 
721       CACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAGGCGGAGGCGCGCCAGGGTCTGGCGGC 
241        H  R  L  G  K  P  G  L  G  P  A  G  G  G  A  P  G  S  G  G   
 
                 790       800       810       820       830       840 
781       GGCAGTAAGGCAGAACGCATGGGTTTCACAGAGGTAACCCCAGTGACAGGGGCCAGTCTC 
261        G  S  K  A  E  R  M  G  F  T  E  V  T  P  V  T  G  A  S  L   
 
                 850       860       870       880       890       900 
841       AGAAGAACTATGCTCCTCCTCTCAAGGTCCCCAGAAGCACAGCCAAAGACACTCCCTCTC 
281        R  R  T  M  L  L  L  S  R  S  P  E  A  Q  P  K  T  L  P  L   
 
                 910       920       930       940       950       960 
901       ACTGGCAGCACCTTCCATGACCAGATAGCCATGCTGAGCCACCGGTGCTTCAACACTCTG 
301        T  G  S  T  F  H  D  Q  I  A  M  L  S  H  R  C  F  N  T  L   
 
                 970       980       990      1000      1010      1020 
961       ACTAACAGCTTCCAGCCCTCCTTGCTCGGCCGCAAGATTCTGGCCGCCATCATTATGAAA 
321        T  N  S  F  Q  P  S  L  L  G  R  K  I  L  A  A  I  I  M  K   
 
                1030      1040      1050      1060      1070      1080 
1021      AAAGACTCTGAGGACATGGGTGTCGTCGTCAGCTTGGGAACAGGGAATCGCTGTGTAAAA 
341        K  D  S  E  D  M  G  V  V  V  S  L  G  T  G  N  R  C  V  K   
 
                1090      1100      1110      1120      1130      1140 
1081      GGAGATTCTCTCAGCCTAAAAGGAGAAACTGTCAATGACTGCCATGCAGAAATAATCTCC 
361        G  D  S  L  S  L  K  G  E  T  V  N  D  C  H  A  E  I  I  S   
 
                1150      1160      1170      1180      1190      1200 
1141      CGGAGAGGCTTCATCAGGTTTCTCTACAGTGAGTTAATGAAATACAACTCCCAGACTGCG 
381        R  R  G  F  I  R  F  L  Y  S  E  L  M  K  Y  N  S  Q  T  A   
 
                1210      1220      1230      1240      1250      1260 
1201      AAGGATAGTATATTTGAACCTGCTAAGGGAGGAGAAAAGCTCCAAATAAAAAAGACTGTG 
401        K  D  S  I  F  E  P  A  K  G  G  E  K  L  Q  I  K  K  T  V   
 
                1270      1280      1290      1300      1310      1320 
1261      TCATTCCATCTGTATATCAGCACTGCTCCGTGTGGAGATGGCGCCCTCTTTGACAAGTCC 
421        S  F  H  L  Y  I  S  T  A  P  C  G  D  G  A  L  F  D  K  S   
 
                1330      1340      1350      1360      1370      1380 
1321      TGCAGCGACCGTGCTATGGAAAGCACAGAATCCCGCCACTACCCTGTCTTCGAGAATCCC 
441        C  S  D  R  A  M  E  S  T  E  S  R  H  Y  P  V  F  E  N  P   
 
                1390      1400      1410      1420      1430      1440 
1381      AAACAAGGAAAGCTCCGCACCAAGGTGGAGAACGGAGAAGGCACAATCCCTGTGGAATCC 
461        K  Q  G  K  L  R  T  K  V  E  N  G  E  G  T  I  P  V  E  S   
 
                1450      1460      1470      1480      1490      1500 
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1441      AGTGACATTGTGCCTACGTGGGATGGCATTCGGCTCGGGGAGAGACTCCGTACCATGTCC 
481        S  D  I  V  P  T  W  D  G  I  R  L  G  E  R  L  R  T  M  S   
 
                1510      1520      1530      1540      1550      1560 
1501      TGTAGTGACAAAATCCTACGCTGGAACGTGCTGGGCCTGCAAGGGGCACTGTTGACCCAC 
501        C  S  D  K  I  L  R  W  N  V  L  G  L  Q  G  A  L  L  T  H   
 
                1570      1580      1590      1600      1610      1620 
1561      TTCCTGCAGCCCATTTATCTCAAATCTGTCACATTGGGTTACCTTTTCAGCCAAGGGCAT 
521        F  L  Q  P  I  Y  L  K  S  V  T  L  G  Y  L  F  S  Q  G  H   
 
                1630      1640      1650      1660      1670      1680 
1621      CTGACCCGTGCTATTTGCTGTCGTGTGACAAGAGATGGGAGTGCATTTGAGGATGGACTA 
541        L  T  R  A  I  C  C  R  V  T  R  D  G  S  A  F  E  D  G  L   
 
                1690      1700      1710      1720      1730      1740 
1681      CGACATCCCTTTATTGTCAACCACCCCAAGGTTGGCAGAGTCAGCATATATGATTCCAAA 
561        R  H  P  F  I  V  N  H  P  K  V  G  R  V  S  I  Y  D  S  K   
 
                1750      1760      1770      1780      1790      1800 
1741      AGGCAATCCGGGAAGACTAAGGAGACAAGCGTCAACTGGTGTCTGGCTGATGGCTATGAC 
581        R  Q  S  G  K  T  K  E  T  S  V  N  W  C  L  A  D  G  Y  D   
 
                1810      1820      1830      1840      1850      1860 
1801      CTGGAGATCCTGGACGGTACCAGAGGCACTGTGGATGGGCCACGGAATGAATTGTCCCGG 
601        L  E  I  L  D  G  T  R  G  T  V  D  G  P  R  N  E  L  S  R   
 
                1870      1880      1890      1900      1910      1920 
1861      GTCTCCAAAAAGAACATTTTTCTTCTATTTAAGAAGCTCTGCTCCTTCCGTTACCGCAGG 
621        V  S  K  K  N  I  F  L  L  F  K  K  L  C  S  F  R  Y  R  R   
 
                1930      1940      1950      1960      1970      1980 
1921      GATCTACTGAGACTCTCCTATGGTGAGGCCAAGAAAGCTGCCCGTGACTACGAGACGGCC 
641        D  L  L  R  L  S  Y  G  E  A  K  K  A  A  R  D  Y  E  T  A   
 
                1990      2000      2010      2020      2030      2040 
1981      AAGAACTACTTCAAAAAAGGCCTGAAGGATATGGGCTATGGGAACTGGATTAGCAAACCC 
661        K  N  Y  F  K  K  G  L  K  D  M  G  Y  G  N  W  I  S  K  P   
 
                2050      2060      2070      2080      2090      2100 
2041      CAGGAGGAAAAGAACTTTTATCTCTGCCCAGTATCCGGTTAAAAGAAACACTTTTACAAA 
681        Q  E  E  K  N  F  Y  L  C  P  V  S  G  *   
 
                2110      2120      2130      2140      2150      2160 
2101      CATCAGTCTGTAACATCTTTCCAATAAAAAAAAAACATGTAACTTACTGGTCTGGAGTTG 
 
                2170      2180      2190      2200 
2161      TTTAAGAGAAAATTGGATCTAGATGCATTCGCGAGGTACCGAG(CTC)Polyadenylation 

Eco53kI 

In yellow the transcription start site is highlighted. The ORF is marked by the single 
letter amino acid code. 
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SNAP-ADAR1 and reporter mRNA synthesis 
For the in-vitro transcription of correctly m7G capped and poly(A)-tailed mRNAs of 
SNAP-ADAR1 and eGFP variants (wt, W58X) the mMESSAGE mMACHINE T7 Ultra 
Kit (Life Technologies) was used. For additional stabilization, the respective genes 
were subcloned into the pUC57-T7-RPP2 vector containing a 169 bp 5’-UTR from 
the Platynereis 60S acidic ribosomal protein P2 downstream of the T7 promoter. To 
avoid the formation of long heterogeneous RNA transcripts and to facilitate “run-off” 
transcription, the expression plasmids were linearized prior to in-vitro transcription.  
The linearization reaction mix contained 5 µL CutSmart buffer (10 x), 15 µg plasmid 
DNA and 2.5 µL Eco53kI (10 units/µL). The total reaction volume was adjusted to 50 
µL with nuclease-free water. To terminate the linearization reaction 2.5 μL 0.5 M 
EDTA, 0.5 μL 3 M NaOAc and 100μl ethanol (RNase free) were added. The mixture 
was cooled for 1h at - 20°C, pelleted (15 min, 15000 rpm) and re-suspended in 
nuclease-free water at a concentration of 1 μg/ μL. 2 µg of the respective linearized 
plasmid template was in-vitro-transcribed with the mMESSAGE mMACHINE T7 Ultra 
Kit (Life Technologies). All steps were performed according to the manufacturer´s 
protocol. To verify the correct polyadenylation state, the synthesized transcripts were 
mixed with 2 µL of 5 x RNA loading buffer (95% formamide, 0.025 % bromophenol 
blue) denatured (70°C, 5 min) and applied to agarose gel electrophoresis (1 x TBE, 
1.4%, staining with Rotisafe by Carl Roth GmbH, see Fig S21). 
 

 
Figure S21. Analytical TBE agarose gel (1.4 %) of iv-transcribed mRNAs for 
microinjection prior to and after polyadenylation.  
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Ethanol precipitation of guideRNAs 
Prior to the in vivo application of the editing system in Platynereis Dumerilii the 
synthesized guideRNAs had to be purified. Ethanol precipitation was used to get rid 
of impurities and detergents and to exchange the counter ion of the guideRNAs to 
potassium. Therefore, the volume of the guideRNA samples was adjusted to 300 µL 
with nuclease-free water. Subsequently 33 µL 3 M KOAc and 1 ml 100 % ethanol 
were added. The mixture was stored at - 80°C overnight and centrifuged again (30 
min, 
-4°C, 15000 rpm).  The supernatant was removed carefully and the pellet was 
washed with 500 μl 70% ethanol (10 min, 4 °C, 15000 rpm) and re-suspended in 15 
μl nuclease-free water. 
 
Platynereis dumerilii zygotes 
Full-grown and mature male and female Platynereis were obtained from the in-house 
breeding culture of the laboratory of Dr. Gáspár Jékely (Max Planck Institute for 
Developmental Biology, 72076 Tübingen, Germany). Reproduction of the worm was 
initiated by collecting two males and females in one beaker containing 75 mL natural 
seawater (NSW). The release of sperm and oocytes was monitored by eye and 
eventually the animals were removed carefully with a plastic pasteur pipette. The 
fertilized eggs were washed one time by pouring off half of the NSW and refilling the 
beaker. To facilitate microinjection, the zygotes were incubated for 55 min at 14.8 °C 
and the egg jelly was removed by rinsing the zygotes with 500 mL NSW in a 100 μm 
sieve. The vitelline envelope was softened by a minute-long proteinase K treatment 
(final concentration: 70 μg/mL) and an additional washing step with 500 µL NSW. 
Approximately 100 zygotes were embedded into the channel of the injection stage 
(2% agarose in NSW). During the whole procedure of washing and the following 
microinjection, care has been taken to always keep the eggs covered with NSW to 
avoid draining. 
 
Microinjection of Platynereis zygotes 
Injection samples contained 1.5 μg/µL Rhodamine-dextran (10 kDa MW, Sigma) for 
injection control, 250 ng/μL of the respective reporter mRNA, 450 ng/μL SNAP-
ADAR1 mRNA, and 25 μM of the respective guideRNA. Prior to microinjection the 
samples were centrifuged and 3.5 µL of the supernatant were loaded into a 
Femtotips II microcapillarie (Eppendorf). Microinjection was performed with a 
Femtojet express microinjector (Eppendorf) on a Zeiss Axiovert 40 CL inverted 
microscope combined with a Luigs and Neumann micromanipulator. The 
temperature was controlled using a Luigs and Neumann Badcontroller V cooling 
system and a Cyclo 2 water pump (Roth). The injection session was carried out at 
14.8 °C. The start parameter for microinjection (injection pressure: 700 hPa; injection 
time: 0.1 s; compensation pressure: 35 hPa) were adjusted accordingly to the 
condition of the microcapillarie. Injection was started 1 hour post fertilization (hpf) 
and stopped when the first cleavage of the Platynereis zygotes could be detected 
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(ca. 2 hpf). Microinjetced zygotes were breed at 19°C in Nunclon six-well plates 
containing 6 mL NSW until the desired stage of development was reached. For 
decaging of Npom-protected guideRNAs the injected zygotes were collected in a 
Nunclon petri dish containing 6 ml NSW, put on a UV-table (UVP high performance 
UV transilluminator, 25 W, 365 nm, power=high) and irradiated for the indicated 
amount of time. 
 
Immobilization and imaging of Platynereis larvae 
Platynereis larvae were imaged 24 hpf. Healthy animals had to be immobilized to 
allow proper imaging. Therefore, glass slides with 3 layers of adhesive tape on both 
sides were prepared. 10 µl of NSW containing 3-5 larvae were mounted in the 
middle of the slide and trapped with a coverslip, forming a small chamber for the 
animals. 
Imaging was performed with an AxioCamHRc microscope camera connected to a 
Axio Imager Z1 widefield fluorescence microscope (Zeiss). The eGFP and the 
rhodamine-dextran signal were recorded with an exposure time of 750 ms and 350 
ms respectively for 40x magnification. For 10x magnification an exposure time of 
2000 ms (eGFP) and 1063 ms (rhodamine-dextran) were chosen. 
 
Platynereis harvesting and RNA isolation 
Larvae were harvested 25 hpf. Healthy ones were separated from unhealthy ones 
and collected in a 1.5 ml reaction tube. As much NSW as possible was removed 
from the tube and the larvae were frozen in liquid nitrogen and stored at - 80°C till 
further use.  
Larvae were thawn on ice and 80–100 animals were used for RNA isolation. If 
needed, larvae of 2 injection sessions with the same injection sample were pooled. 
Lysis and RNA purification was performed with the RNeasy MinElute Cleanup Kit 
(Qiagen). All steps were performed according to the manufacturers protocol. To 
facilitated lysis of Platynereis, the RLT lysis buffer + 1% mercaptoethanol (v/v), shear 
forces (passing through 0.6 mm needle) and vortexing (10 s) was used. The purified 
RNA was eluted from the spin columns in 30 μl RNase free water and the RNA 
concentration was determined. 
 
Reverse transcription 
500 ng of extracted total RNA were reverse transcribed into cDNA. The sample was 
filled up to 14.75 μl with RNase free water, mixed with 1 μl W58X PD bw primer (10 
µM) and 1 μl dNTPs (10 mM each) and incubated at 70 °C for 3 min. The mixture 
was immediately spun down and put on ice. Subsequently 2 μl 10 x M-MuLV-RT 
buffer, 0.25 μl murine RNase inhibitor (40 units/μl) and 1 μl M-MuLV reverse 
transcriptase (200 units/μl) were added and the solution was incubated at 42°C for 2 
h. M-MuLV reverse transcriptase was inactivated by heating to 90°C for 10 min. 
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Taq-PCR and agarose gel electrophoresis 
The cDNA was amplified by PCR on a 50 μl scale. The PCR reaction mix contained 
5 μl ThermoPol buffer (10 x), 2.5 μl of W58X PD fw primer (10 μM), 2.5 μl W58X PD 
bw primer (10 μM), 1.25 μl dNTPs (10 mM each), 1 μl Taq DNA polymerase (5 
units/μl) and 7 µl of the unpurified cDNA reaction mixture. 10 μl of 6 x blue loading 
dye (NEB) were added and all PCR reactions were applied to agarose gel 
electrophoresis (1 x TAE, 1.4%, staining with Rotisafe by Carl Roth GmbH). The 
W58X/eGFP band was cut out and the PCR product was recovered using the 
NucleoSpin gel and PCR clean-up kit by Macherey-Nagel. 
 
Sequencing 
For sequencing 120 ng of the PCR products were send to Eurofins MWG 
(Germany). W58X fw (1.5 μl, 10 μM) and W58Xpos327 fw (1.5 µl, 10µM) were used 
as primers for all samples respectively. The editing yield was determined as 
described for Stop66 editing in vitro. Figure S24-S26 show complete sequencing 
traces of W58X edited in Platynereis Dumerilii. 
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Additional experimental data 
 

 
 
Figure S22. Editing in Platynereis Dumerilii. Showing the full set of controls and 
additional fluorescence and DIC images at 10x magnification corresponding to the 
experiment shown in Figure 4, manuscript. 
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Table S23. Statistical overview of detected GFP signal after microinjection. To score 
the phenotypes, the injected larvae (24hpf) were analyzed by an Imager Z1 widefield 
fluorescence microscope. 

 
  

Injection Sample  No GFP signal 
[%] 

Low GFP signal 
[%] 

High GFP signal 
[%] 

total number 
healthy larvae 

analyzed 

eGFP 
SNAP‐ADAR1 
BG‐guideRNA 
Figure 4a 

0  4.6  95.4  195 

W58X 
Figure 4b 

100  0  0  200 

W58X 
BG‐guideRNA 
Figure 4c 

100  0  0  110 

W58X 
SNAP‐ADAR1 
Figure 4d 

100  0  0  150 

W58X 
SNAP‐ADAR1 
NH2‐guideRNA 

Figure 4e 

100  0  0  120 

W58X 
SNAP‐ADAR1 
BG‐guideRNA 
Figure 4f 

29.1  8.2  62.7  110 

W58X 
SNAP‐ADAR1 

NpomBG‐guideRNA 
No light 
Figure 5a 

81.2  15.2  3.6  250 

W58X 
SNAP‐ADAR1 

NpomBG‐guideRNA 
5 min 365 nm 
Figure 5b 

48  10  42  150 
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Figure S24. Sequencing obtained from the edited RNA from the experiment shown 
in Figure 4f in the manuscript (editing with BG-guideRNA & SNAP-ADAR1). 
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Figure S25. Sequencing obtained from the unedited RNA from the control 
experiment shown in Figure 4b in the manuscript (W58X eGFP & no SNAP-ADAR1). 
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Figure S26. Sequencing obtained from the edited RNA from the experiment shown 
in Figure 5b in the manuscript (editing with NpomBG-guideRNA & SNAP-ADAR1 & 5 
min UV light). 
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ABSTRACT: Site directed RNA editing is an engineered tool for
the posttranscriptional manipulation of RNA and proteins. Here,
we demonstrate the inclusion of additional N- and C-terminal
protein domains in an RNA editing-dependent manner to switch
between protein isoforms in mammalian cell culture. By inclusion
of localization signals, a switch of the subcellular protein
localization was achieved. This included the shift from the
cytoplasm to the outer-membrane, which typically is inaccessible
at the protein-level. Furthermore, the strategy allows to implement
photocaging to achieve spatiotemporal control of isoform switch-
ing. The strategy does not require substantial genetic engineering,
and might well complement current optogenetic and optochemical approaches.

KEYWORDS: RNA editing, photocontrol, photocaging, protein localization, optogenetics, epitranscriptomics, gene regulation

During expression genetic information is diversified by
various mechanisms. Even when encoded in a single

genetic locus, many proteins occur in several isoforms, which
result from alternative promotor usage or alternative splicing.
Another way of diversification is a process called RNA
editing.1,2 This refers to the insertion or deletion of nucleotides
and to the enzymatic deamination of cytosine and adenosine
resulting in the formation of uridine and inosine, respectively.
Upon editing in the open reading frame (ORF) single amino
acids can be recoded. Furthermore, RNA editing can interfere
with RNA splicing, microRNA activity, and RNA stability. Such
diversifications can affect almost any property of a protein
including substrate specificity, catalytic efficiency, protein
localization, stability, and others. As correct subcellular
localization is essential for proper functioning, mislocalization
can act as a strategy to control a protein’s function. One
example is the cytosolic sequestering of transcription factors
like NF-KB or the glucocorticoid receptors, which translocate to
the nucleus in response to specific signaling cues. Synthetic
biology has exploited the induction of translocation as a
strategy to control genetic networks. One example for the latter
is the engineered Cre-ER(T2) system for the conditional switch
of gene function in vivo.3,4

The information about the subcellular localization is typically
encoded in short peptide-segments, so-called localization
signals.5 Some signals, like the nuclear localization signal
(NLS), can be found anywhere in a protein. Whereas others,
like the ER-targeting sequence, are typically found in the N-
terminus and are proteolytically cleaved off during translation.6

If protein isoforms differ in their localization, such signal
peptides are typically in- or excluded by alternative promotor or

splice sites usage. We were wondering if site-directed RNA
editing could be harnessed for that purpose.7

We and others have recently engineered artificial guideRNA-
dependent editing machines that allow for the introduction of
single A-to-I substitutions at targeted sites in selected
transcripts inside living cells, a process called site-directed
RNA editing.8,9 To achieve this, we have fused the catalytic
domain of a human adenosine deaminase acting on RNA
(hADAR) with a SNAP-tag that allows for the formation of
highly defined 1-to-1 covalent conjugates between the guide-
RNA and the deaminase.8 The approximately 20 nt long
guideRNA steers the deaminase to any arbitrary transcript in a
readily programmable way. As the deaminase acts only on
double-stranded RNA the guideRNA component provides the
basis for substrate specificity. By chemical modification and
sequence refinement, the selectivity and efficiency of the editing
reaction can be further fine-tuned.10,11 So far, we and others
have applied site-directed RNA editing strategies in human cell
culture,7,9 in living organisms,12 and in Xenopus eggs,9 to
manipulate reporter genes and to repair disease-related
mutations in CFTR9 and PINK113 mRNAs. Furthermore, we
recently demonstrated the possibility of controlling the
guideRNA−deaminase assembly by light, which enabled us to
extent RNA editing by photocontrol in vivo.12

Here, we now demonstrate a simple strategy to apply RNA
editing for triggering the inclusion of an additional peptide
signal into both, the N- or the C-terminus of a protein. We
apply the strategy for the inclusion of a nuclear localization
signal (N- or C-terminal) and for the switching between a
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cytoplasmic and a membrane-bound isoform in human cell
culture. Furthermore, we demonstrate the light control of the
isoform switch.

■ RESULTS AND DISCUSSION
General Considerations. The C-terminal inclusion of an

additional peptide signal appears particularly straightforward by
putting the signal into the 3′-UTR directly behind an amber
Stop codon (UAG), Scheme 1. Upon editing the Stop codon to
Trp (UIG) the additional signal is inserted C-terminally. The
analogous strategy at the N-terminus appears more challenging.
We explore here the activation of an alternative Start codon in
the 5′-UTR, as it is conceivable to edit an isoleucine codon
(AUA) into a methionine/Start codon (AUI), Scheme 1. Prior
to editing, the downstream Start codon would be used only.
However, after editing the upstream Start should dominate, as
cap-dependent translation typically applies the first Start codon
after the cap.14−16 Nevertheless, site-directed RNA editing
inside the 5′-UTR has not yet been reported. Also within
natural editing sites, editing in the 5′-UTR is strongly
underrepresented.17 Thus, it was unclear if the preinitiation
complex of translation and the editing machinery will interfere.
To assess both strategies in a comparable manner, we decided
to start with the inclusion of a nuclear localization signal (NLS)
derived from the SV 40 Large T-antigen (PKKKRKV)3, which
can be put to both, the N- or C-terminus.18 To visualize the
localization phenotype, we chose the transcript of the editing
enzyme (SNAP-ADAR2) as the editing target. On one hand,
the enzyme is strictly localized in the cytoplasm when lacking
an NLS. On the other hand, the enzyme is readily stained with
fluoresceine-O6-benzylguanine (BG-FITC) to assess its local-

ization by fluorescence microcopy.12 Furthermore, this
procedure allowed us to stay with the ectopic expression of a
single construct which simplified transfection and phenotypic
analysis.

Editing-Dependent Inclusion of the NLS into the C-
Terminus under Transient Expression. According to
Scheme 1, two plasmids were constructed that contain
SNAP-ADAR2 under control of the CMV promotor. In one
construct, the NLS was put in frame at the C-terminus (SA-
TGG-NLS). When transfected into 293T cells and BG-FITC-
stained 48 h later, a clear nuclear localization was visible (Figure
1a). The other construct contained a single G-to-A mutation
between the SNAP-ADAR and the NLS which inserts a
premature Stop codon and thus shortens the open reading
frame (SA-TAG-NLS). When expressed and stained compara-
bly, a clear cytoplasmic phenotype was visible. The latter
construct was the substrate to study the editing-dependent
phenotype switch.
For editing, 293T cells were first transfected with SA-TAG-

NLS (or SA-TGG-NLS in the control) and were then reverse
transfected with a guideRNA. When the matching guideRNA
was used, BG-FITC staining revealed a clear appearance of
nuclear SNAP-ADAR2 protein (Figure 1a) that resembles the
phenotype of the positive control. We found this new, mixed
cyto-/nucleoplasmic phenotype in 48 ± 9% of the transfected
cells. Sanger sequencing revealed an editing yield of 74 ± 9%.
We assume two reasons for the mixed (cytoplasmic/nuclear)
phenotype after editing. First, editing was incomplete, and
second, some of the stained SNAP-ADAR2 protein was old
protein from the SNAP-ADAR expression prior to induction of
the editing event by transfecting the guideRNA. The isoform

Scheme 1. Three Different Constructs for Editing-Dependent Isoform Switchinga

aThe NLS has been included either N- or C-terminally into the SNAP-deaminase protein. The IgK-leader sequence, which signals plasma membrane
localization, has been included N-terminally into an HA-tagged eGFP. The C-terminal platelet-derived growth factor receptor transmembrane
domain (PDGFR-TMD) is a single transmembrane α-helix that anchors the protein to the plasma membrane by pointing the N-terminus outside.
The expected localization phenotype (cytoplasm, nucleoplasm or outer membrane) is indicated.
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switch was strongly dependent on editing. It did neither occur
in the presence of an NH2-guideRNA incapable of
conjugation,12 nor in the presence of a BG-guideRNA with a
mismatching (mm) sequence (Figure 1a). However, due to the
high levels of SNAP-ADAR2 protein and its transcript under
transient expression, low levels of guideRNA-independent
editing were detectable (Figure 1a, graph). Even though this
low-level editing did not result in a visible nuclear localization
phenotype, we aimed to further improve the performance of
the system by genomic integration of the SNAP-ADAR
construct.
C-Terminal NLS-Inclusion Works Also under Genomic

Expression. To obtain a weaker and more homogeneous
expression, the respective constructs were integrated as a single
copy into the genome of 293 Flip-In cells under control of the
Tet-on CMV promotor (inducible genomic expression).
Fluorescence microscopy confirmed the homogeneous, indu-
cible and much weaker expression of the editase under genomic
control (Figure 1b). Again, the cytoplasmic (SA-TAG-NLS)
and nucleoplasmic (SA-TGG-NLS) phenotypes in the controls
were clearly visible (Figure 1b). As expected, and in contrast to
the conditions before, the editing was now fully dependent on
the presence of the matching BG-guideRNA. Lacking the

guideRNA or applying a mismatching or an NH2-guideRNA
gave no detectable editing yield. The editing yield with the
matching BG-guideRNA was 50 ± 8% and thus stayed a bit
below that under transient expression. The same trend holds
also true for the isoform switch. About 34 ± 2% of the cells
showed the switch from pure cytoplasmic to a mixture of
cytoplasmic and nuclear localization, demonstrating the C-
terminal NLS inclusion in an editing-dependent manner under
genomic expression of the construct.

Editing-Dependent Inclusion of the NLS into the N-
Terminus (Transient Expression). As depicted in Scheme 1,
two plasmids were constructed that contain two Start codons
each embedded in a strong Kozak sequence (5′-CCACC-AUG-
G).19 One of the Start codons was located in front and one
behind the NLS. In the construct ATGG-NLS-SA, both Start
codons are appropriate to start translation. According to the
scanning model of cap-dependent translation one expects this
construct to predominantly use the Start codon prior to the
NLS and thus to express the full NLS-SNAP-ADAR2
protein.14−16 Accordingly, transient expression of this construct
in 293T cells showed exclusive nuclear localization of SNAP-
ADAR (Figure 2a). The construct ATAG-NLS-SA differs from
the latter by a single G-to-A mutation in the upstream Start

Figure 1. Editing-dependent switch from SNAP-ADAR2 to SNAP-ADAR2-NLS under transient (a) and genomic (b) expression. (a) Fluorescence
imaging of FITC-stained SNAP-ADAR (green) and Hoechst 33342-stained nuclei (blue). SA-TGG-NLS is the positive control for the nuclear
localization phenotype after editing. Quantitative analysis of the editing experiment: Blue shows the editing yield from Sanger sequencing. Red shows
the amount of cells that are positive for SNAP-ADAR expression and show nuclear localization. mm BG-gRNA: mismatching BG-guideRNA. Black
bars show the standard deviation from N = 3 independent experiments. The scale bars represent 20 μm. (b) Analogous experiment as in panel (a),
but under genomic expression of the SNAP-ADAR constructs. n.d. = neither RNA editing nor nuclear localization was detectable. Further data and
controls are shown in the Supporting Information, Figure S1−S3 for transient and S4−S6 for genomic expression.
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codon, thereby creating a 5′-CCACCAUA*G sequence that is
supposed to be inappropriate to start translation prior to
editing (AUA*) but to turn into a strong initiation signal after
editing (AUI*). Transient expression of this construct gave
almost exclusive cytoplasmic localization of SNAP-ADAR. Only
a small number of cells (10 ± 4%) showed a faint nuclear
staining (Figure S10), which might result from a minor
translation initiation from the unedited AUA Start codon, as it
is embedded in a very strong sequence context. However, in a
similar setting it was reported that the plasmid-borne sequence
5′-CCACCAUAG is unable to initiate translation when
transfected into COS cells.20 Clearly, the faint nuclear staining
was not due to (guideRNA-independent) editing, as the editing
yield in absence of the guideRNA was below the detection limit
(≤2%).
For editing, 293T cells were transfected with either of the

two constructs and reverse transfected with a guideRNA.
Protein localization was analyzed by fluorescence microscopy
after BG-FITC staining. After transfection of the editing
substrate (ATAG-NLS-SA) and the matching BG-guideRNA,
we found a clearly visible nuclear staining that resembled that of
the positive editing control (ATGG-NLS-SA), Figure 2a.
Similar to the results at the 3′-UTR, we found a mixed
nucleo-/cytoplasmic phenotype in 57 ± 5% of all cells. After
editing the nuclear staining of the protein was much stronger
compared to the occasional faint nuclear staining observed

prior to editing (Figure S10). Sequencing of the mRNA
revealed an editing yield of 58 ± 4%, in good agreement with
the mixed phenotype. Again, the isoform switch was dependent
on the editing event and did not happen in the presence of a
mismatching or conjugation-incompetent NH2-guideRNA.

Editing in the 5′-UTR under Genomic Expression
Requires an Activated Deaminase. Again, we tested editing
under genomic expression of the 5′-UTR constructs. Upon
induction, both constructs behaved as expected showing either
the strict nuclear (ATGG-NLS-SA) or cytoplasmic localization
(ATAG-NLS-SA) with strongly reduced but homogeneous
expression over the entire culture. Compared to the expression
under transient conditions, the occasional appearance of faint
nuclear staining in the ATAG construct was almost abolished
(below 3%). However, the editing-dependent isoform switch
was disappointing. The nuclear phenotype was visible in no
more than 11 ± 4% of the cells. However, this matched the low
editing levels of 13 ± 1% (Figure 2b). The editing reaction
might suffer from the comparably low concentration of editase
and substrate, which might slow down the editing reaction. To
test if a faster enzyme would help to improve the performance,
we engineered two new cell lines that contain again either the
ATAG or ATGG construct, but now with a SNAP-ADAR2*
protein that contains a well-described, single point mutation in
the deaminase domain (E488Q) that is reported to speed up
deamination by at least 1 order of magnitude.21

Figure 2. Editing-dependent switch of SNAP-ADAR2 to NLS-SNAP-ADAR2 under transient (a) and genomic (b) expression. Experiment and
analysis follows the description given in Figure 1. SA* marks the construct with the activated E488Q deaminase. The scale bars represent 20 μm.
Further data and controls are shown in Figures S7−S9 for transient and S11−S13 for genomic expression.
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The two new constructs behaved indistinguishable from their
less active counterparts in terms of expression level,
homogeneity and localization phenotype. However, in the
editing experiment the new constructs showed a robust isoform
switch. A clear change to the mixed nuclear/cytoplasmic
phenotype was found in 46 ± 4% of the cells, resulting from an
improved editing yield of 42 ± 2% (Figure 2b). As seen before,
the switch was fully dependent on editing. Consequently, the
nuclear phenotype was seen in ≤4%, when no guideRNA, a
mismatching guideRNA, or an NH2-guideRNA was used,
reflecting the low editing yields obtained under these
conditions (≤4%). Substitution of the deaminase by a more
active variant boosted the performance of the system by 3-fold
in terms of editing yields and number of cells with a phenotypic
switch and brought the editing at the 5′-UTR to a level
comparable to that at the 3′-UTR.
Isoform Switching Can Be Controlled by Light. Light is

an attractive trigger to manipulate biological systems.22 We
tested if a recently introduced strategy to control the editing
process by controlling the assembly reaction could be applied
for the light-control of 5′-UTR editing. As described earlier,
guideRNAs have been made that mask the SNAP-reactive BG
moiety with the Npom photocage to render it inactive for the
assembly reaction.12 Then, the editing reaction can be started
by treating the cells under the microscope with a short UV-light
pulse (365 nm, 5 s). First, we studied the system with the
wildtype ATAG-NLS-SA construct under transient expression.
The light flash had no effect on the negative (NH2-guideRNA)
and the positive editing control (BG-guideRNA) in terms of
editing yield (4 ± 2% and 53 ± 1%) and localization phenotype
(19 ± 4% and 57 ± 5%), Figure 3a. However, when applying
the Npom-protected BG-guideRNA, a clear photoinduction of
editing yield and isoform switch was detectable. Without
irradiation, 19 ± 6% of cells showed a faint nuclear staining,
whereas 53 ± 12% of the cells showed the switch to a clear
nuclear staining after irradiation (Figure 3a). This was in

accordance with the photoinduced change of editing levels
from 13 ± 5% before to 40 ± 8% after irradiation. As before,
the ATAG-NLS-SA construct suffered from the occasional
formation of faint nuclear staining under transient expression.
Thus, we also tested photocontrol under genomic expression.

As before, editing yields and phenotype switching were
dissatisfying with wildtype enzyme and stayed below 20%
(Figure 3b, graph). However, the E488Q variant of the
deaminase was helpful again, and the positive editing control
(BG-guideRNA) gave robust nuclear staining in 46 ± 4% of the
cells, matching the respective editing yields of 45 ± 4% (Figure
3b). The negative editing control (NH2-guideRNA) showed
virtually no editing (≤4%) and also the occasional faint nuclear
staining was strongly reduced (≤4%). When applying the
Npom-protected guideRNA, a clear photoactivation was visible.
Before irradiation 12 ± 2% of the cells showed the nuclear
staining, whereas 41 ± 3% showed nuclear staining after
irradiation. Again the effect was clearly depending on the
editing yields which changed from 13 ± 2% before to 37 ± 5%
after irradiation, see Figure 3b. Thus, protein isoforms can be
switched by light simply by photocontrolling the assembly
reaction of editase and guideRNA, both under transient and
genomic expression.

5′-UTR Editing Enables to Switch Localization from
the Cytoplasm to the Outer Membrane. Induction of
protein translocation from the cytoplasm to the nucleoplasm
under control of small molecules and/or light has been
achieved earlier, either by engineering fusion proteins to
become controllable by small molecules (f.i. the Cre-ER(T2)
system)23 or by the ectopic expression of proteins with site-
specifically photocaged amino acids.24−26 The latter strategies
are feasible because trafficking into the nucleus is a posttransla-
tional mechanism applied to fully folded proteins. As RNA
editing happens before translation, isoform switches become
feasible that are decided cotranslationally and thus are
impossible to control at the protein level. A conceivable

Figure 3. Photoinduced switch of SNAP-ADAR2 to NLS-SNAP-ADAR2 under transient (a) and genomic (b) expression. SA* marks the construct
with the activated E488Q deaminase. The scale bars represent 20 μm. Further data is shown in Figures S7−S9 for transient and Figures S11−S16 for
genomic expression.
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example is plasma membrane localization. The respective signal
peptides are found in the very N-terminus of a protein.5 Once
the nascent signal peptide leaves the exit at the ribosome, it is
recognized by the signal recognition particle that recruits the
translating ribosome to the ER. At the ER, translation
continues, the signal peptide is cleaved off during translation
inside the ER and the protein is inserted into the membrane
cotranslationally.6

We explored how RNA editing can be used to switch protein
isoforms from a cytoplasmic to a membrane-anchored
localization. For this a construct was made that contains an
editable Start codon (AUA*) followed by the 22 amino acid Igκ
chain leader sequence, an alternative Start codon (AUG), and
an HA-tagged GFP protein (Scheme 1). At the very C-
terminus, the construct contains the transmembrane domain
(TMD) of the PDGF receptor that anchors the protein to the
plasma membrane displaying the GFP and the HA-tag to the
extracellular side of the cell. The analogous ATGG construct
served as the positive editing control. To assess the phenotype,
immunofluorescence microscopy was applied.
Under transient expression (293T cells) of the positive

control (ATGG), the HA-GFP is clearly localized to the outer
membrane, as visualized by a rim-like anti-HA-immunostaining
in fixed but not permeabilized cells (Figure 4a). In contrast, the
negative editing control (ATAG) gave no rim-like anti-HA-
staining (f.i. Figure 4b). However, when cells were permeabi-
lized prior to immunostaining (Figure S21), the cytoplasmic
expression of the construct was clearly detectable. When
cotransfecting the ATAG construct with SNAP-ADAR2-BFP
and reverse transfecting the matching BG-guideRNA, the HA-
immunofluorescence showed again the rim-like staining of the
outer membrane in 43 ± 2% of the cells that have been positive
for GFP and BFP fluorescence (Figure 4c). This phenotypic
switch was again clearly depending on the editing yield (64 ±
5%). It did not occur in the absence of a guideRNA or in the
presence of a mismatching or NH2-guideRNA (Figure 4b).

Translocation to the Outer Membrane Can Be
Controlled by Light. Finally, we tested to switch the isoforms
under control of light. As before, we put the Npom photocage
on the guideRNA. When applying the Npom-BG-guideRNA, a
modest residual editing activity was detected (9 ± 1%),
however, no outer-membrane staining was detectable (<2%,
Figure 4d). After irradiation with 365 nm light a clear
membrane staining became visible in 31 ± 3% of the
cotransfected cells (Figure 4e). Accordingly, the editing yield
increased from 9 ± 1% prior to 44 ± 5 after irradiation. UV-
irradiation had no influence on the editing yield or localization
phenotypes of the positive (BG-guideRNA) or negative (NH2-
guideRNA) editing controls (Figures S17−S20). Overall,
isoform switch from cytoplasmic to the outer membrane can
be controlled at the posttranscriptional level, and photocontrol
is readily included.

■ CONCLUSION AND OUTLOOK

RNA editing can be applied to switch protein isoforms. This is
not restricted to the recoding of amino acids or splice sites, but
can be harnessed for the inclusion of additional N- or C-
terminal peptide signals by editing of Start and Stop codons.
UTRs in mammals are typically around 100 nt long, but can
extent to 1000 nt or longer. Thus, even the N- or C-terminal
inclusion of large protein domains is conceivable.19 Our
artificial editing strategy that relies on the RNA-guided
SNAP-tagged deaminases enables this without detectable
interference with translation and translation initiation. It can
be accomplished either under transient or genomic expression.
The usage of the SNAP-deaminases further allows for a ready
inclusion of light-control. The method might well complement
current methods in synthetic biology, including optogenetics27

and other optochemical approaches.22 On one hand it enables
light-controlled isoform switches that are impossible at the
protein-level. This holds particularly true for phenotypes that
separate already during translation and thus are inaccessible

Figure 4. Editing-dependent switch of HA-GFP-PDGFR-TMD localization from the cytoplasm to the plasma membrane under transient
coexpression with the BFP-tagged editase (SNAP-ADAR2). Imaging was carried out after fixation, without permeabilization: HA-immunostaining
with AlexaFluor-594 (red), GFP (green), and BFP (blue). (a) positive control for plasma membrane localization; (b) negative editing control; (c)
editing; (d,e) light-dependent editing experiment. The scale bar represents 20 μm. Further data and controls are shown in Figures S17−S21.
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with caged or otherwise engineered proteins,23−26 as
demonstrated by the switch to an outer-membrane anchored
isoform. On the other hand, the method might complement
approaches that depend on the light-dependent (in)activation
of genes,28,29 which typically require massive genetic engineer-
ing. To our knowledge, this is the first report about redirecting
protein localization from the cytoplasm to the membrane. In
combination with light-control, our tool could provide new
opportunities to address biological questions in basic research.
In the future, proteins might be steered to the cell surface by
using light-activated RNA editing to manipulate intracellular
signaling but also extracellular events like cell−cell and cell−
matrix interactions in a spatiotemporal manner.

■ METHODS
Editing under Transient Expression. 293T cells were

grown in DMEM + 10% FBS + 1× P/S, 5% CO2. Plasmid
transfection was done with 300 ng of the respective plasmid/
well with Lipofectamine 2000 in DMEM + 10% FBS. The
respective guideRNA (2.5−10 pmol/well) was reverse trans-
fected with Lipofectamine 2000 in DMEM + 1% FBS. Cells
were seeded on coverslips (DMEM + 1% FBS + HEPES). After
24 h cells were harvested for RNA sequencing or stained with
BG-FITC for fluorescence microscopy as described before.10,12

Editing under Genomic Expression. 293-Flp-In T-REx
cells were induced in DMEM + 10% FBS + 15 μg/mL
blasticidinS + 100 μg/mL hygromycinB + 10 ng/mL
doxycycline, 5% CO2. The respective guideRNA (5−20
pmol/well) was reverse transfected with Lipofectamine 2000
in DMEM + 10% FBS + 10 ng/mL doxycycline. Cells were
seeded on coverslips (DMEM + 10% FBS + HEPES +
doxycycline). After 24 h cells were harvested for RNA
sequencing or stained with BG-FITC for fluorescence
microscopy.
Light-Induced RNA Editing. Experiments were carried out

as described above with an additional irradiation step 4 h after
guideRNA transfection. Cells were washed and the entire well
was irradiated with 365 nm light on the microscope (Zeiss
CellObserverZ1, 365 nm LED light source) for 5 s under full
power at 5× magnification. Then the protocol was continued as
described above.
BG-FITC Staining. To visualize the localization of SNAP-

ADAR2, acetylated BG-FITC (final concentration 2 μM) was
applied to the cells together with a blue Hoechst stain (Thermo
Fisher, R37605) for 30 min. Cells were fixed with formaldehyde
and permeabilized with 0.1% Triton X-100. Cover glasses were
mounted using Shandon Immu-Mount (Thermo Fisher, USA).
Immunofluorescence Microscopy. Cells were fixed with

formaldehyde and blocked with PBS + 10% FBS at 4 °C
overnight. Cells were stained with a primary mouse anti-HA-
antibody (Sigma-Aldrich, H9658) diluted 1:1250 in PBS + 5%
FBS for 1.5 h at room temperature, and a secondary antimouse
antibody conjugated to AlexaFluor-594 (Thermo Fisher, A-
11005) diluted 1:1500 in PBS + 10% FBS for 45 min at room
temperature. Cover glasses were mounted using Dako
mounting medium (Dako North America, USA). Microscopy
was performed with a Zeiss CellObserverZ1 under 600× total
magnification.
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Methods 
 
Editing under transient expression: 2x105 cells (293T) cells were grown in 24-well format in DMEM+10%FBS+1xP/S, 5%CO2. After 24h, forward transfection was carried out 
in 24-wells with 300 ng of the respective plasmid/well with Lipofectamine 2000 (4 µl per 1 µg plasmid) in DMEM+10%FBS. As indicated, the respective guideRNA (2.5-10 
pmol/well) was reverse transfected (4 h) in a 96-well format with Lipofectamine 2000 (0.5 µL/well) in DMEM + 1% FBS. Cells were seeded on cover slips 
(DMEM+1%FBS+HEPES). After incubation (24h) cells were harvested for RNA sequencing or stained with BG-FITC for fluorescence microscopy as described before. 
 
Editing under genomic expression: 4x104 293-Flp-In T-REx cells were induced in DMEM+10%FBS + 15 µg/mL blasticidin S + 100 µg/mL hygromycin B + 10 ng/mL 
doxycycline, 5%CO2 in a 24 well-format. After 24 h, the respective guideRNA (5-20 pmol/well) was reverse transfected (4 h) in a 96-well format with Lipofectamine 2000 (0.75 
µL/well) in DMEM + 10% FBS +10 ng/mL doxycycline. Cells were seeded on cover slips (DMEM+10%FBS+HEPES+doxycycline). After incubation (24h) cells were harvested 
for RNA sequencing or stained with BG-FITC for fluorescence microscopy as described before. 
 
Light-induced RNA editing: Experiments were carried out as described above with irradiation as an additional step. After reverse transfection of the guideRNA for 4hrs, cells 
were washed and the whole well was irradiated with 365 nm light on an inverted cell culture microscope (Zeiss Cell ObserverZ1, Colibri.2 with 365nm LED light source) for 5 sec 
under full power (DAPI filter) at 5x magnification. Then the protocol was continued as described above. 

Quantification of A-to-I change at RNA: In case of changing the protein localization from the cytoplasm to the nucleus, cells were collected for RNA isolation with the RNeasy 
MinElute Kit (Qiagen, Germany) according to the manufacturer’s protocol. After DNaseI digestion, RNA was converted in cDNA for the subsequent amplification by Taq DNA 
PCR. The DNA was delivered to Eurofins Genomics (Germany) for Sanger sequencing. The A-to-I change was calculated by the peak height of the resulting guanosine divided by 
the sum of the heights of the guanosine and adenosine. For RNA editing quantification in case of changing the protein localization from the cytoplasm to the membrane, RNA was 
isolation using 500 µl TRI Reagent (Sigma Aldrich, Germany). The RNA was separated by 100 µl chloroform and precipitated by 350 µl isopropanol supplemented with 1.5 µl 
linear acrylamide (5 mg/ml). The RNA pellet was washed twice with 500 µl of 75% ethanol and dissolved in 25 µl RNase-free water. Afterwards the steps were performed as 
described above.           

BG-FITC staining: To determine the localization of SNAP-ADAR2, 303 µl medium was removed and 1 µl of 400 µM acetylated BG-FITC (for final concentration of 2 µM) 
together with 2 µl of NucBlue Live ReadyProbes Reagent (Thermo Fisher Scientific, R37605) were added to the cells. After 30 min in the incubator, cells were fixed by 21.6 µl 
aqueous deionized formaldehyde (37%) at room temperature for 3 min and washed threefold with PBS. 200 µl of a 0.1% Triton X-100/PBS solution was used to permeabilized the 
cells at room temperature for 15 min. After washing the threefold with PBS, cover glasses were mounted onto microscope slides using Shandon Immu-Mount (Thermo Fisher 
Scientific, USA).     

Immunofluorescence microscopy: From each well (24 well) 300 µl medium was removed and 21.6 µl aqueous deionized formaldehyde (37%) were added to obtain a final 
concentration of 4%. After 3 min incubation at room temperature, cells were washed threefold with PBS (5 min) and incubated with 500 µl PBS+10% FBS at 4 °C overnight for 
blocking. After removing the blocking solution, cells were incubated with 200 µl of a mouse anti-HA-antibody (Sigma Aldrich, H9658) diluted 1:1250 in PBS+5% FBS for 1.5h at 



 

room temperature. Cells were washed threefold with PBS and incubated with 200 µl of a secondary anti-mouse antibody conjugated to Alexa Fluor 594 (Thermo Fisher Scientific, 
A-11005) diluted 1:1500 in PBS+10% FBS for 45 min at room temperature. After threefold washing with PBS, cover glasses were fixed on microscope slides with Dako mounting 
medium (Dako North America, USA). Microscopy was performed with a Zeiss CellObserverZ1 under 600x total magnification. 
  



 

Materials 
 
Full DNA and protein sequence of the construct SNAP-ADAR2-TAG-NLS in the context of the pcDNA3.1 vector for transient expression (green = editing site, yellow = NLS). 
 
                  10        20        30        40        50        60 
1         CTCGGATCCACCATGGACAAAGACTGCGAAATGAAGCGCACCACCCTGGATAGCCCTCTG 
1          L  G  S  T  M  D  K  D  C  E  M  K  R  T  T  L  D  S  P  L  
             BamHI 
                  70        80        90       100       110       120 
61        GGCAAGCTGGAACTGTCTGGGTGCGAACAGGGCCTGCACCGTATCATCTTCCTGGGCAAA 
21         G  K  L  E  L  S  G  C  E  Q  G  L  H  R  I  I  F  L  G  K   
 
                 130       140       150       160       170       180 
121       GGAACATCTGCCGCCGACGCCGTGGAAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCA 
41         G  T  S  A  A  D  A  V  E  V  P  A  P  A  A  V  L  G  G  P   
 
                 190       200       210       220       230       240 
181       GAGCCACTGATGCAGGCCACCGCCTGGCTCAACGCCTACTTTCACCAGCCTGAGGCCATC 
61         E  P  L  M  Q  A  T  A  W  L  N  A  Y  F  H  Q  P  E  A  I   
 
                 250       260       270       280       290       300 
241       GAGGAGTTCCCTGTGCCAGCCCTGCACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGC 
81         E  E  F  P  V  P  A  L  H  H  P  V  F  Q  Q  E  S  F  T  R   
 
                 310       320       330       340       350       360 
301       CAGGTGCTGTGGAAACTGCTGAAAGTGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCAC 
101        Q  V  L  W  K  L  L  K  V  V  K  F  G  E  V  I  S  Y  S  H   
 
                 370       380       390       400       410       420 
361       CTGGCCGCCCTGGCCGGCAATCCCGCCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGA 
121        L  A  A  L  A  G  N  P  A  A  T  A  A  V  K  T  A  L  S  G   
 
                 430       440       450       460       470       480 
421       AATCCCGTGCCCATTCTGATCCCCTGCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGG 
141        N  P  V  P  I  L  I  P  C  H  R  V  V  Q  G  D  L  D  V  G   
 
                 490       500       510       520       530       540 
481       GGCTACGAGGGCGGGCTCGCCGTGAAAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTG 
161        G  Y  E  G  G  L  A  V  K  E  W  L  L  A  H  E  G  H  R  L   
 



 

                 550       560       570       580       590       600 
541       GGCAAGCCTGGGCTGGGTCCTGCAGGCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAG 
181        G  K  P  G  L  G  P  A  G  G  G  A  P  G  S  G  G  G  S  K   
 
                 610       620       630       640       650       660 
601       AAGCTTGCCAAGGCCCGGGCTGCGCAGTCTGCCCTGGCCGCCATTTTTAACTTGCACTTG 
201        K  L  A  K  A  R  A  A  Q  S  A  L  A  A  I  F  N  L  H  L   
 
                 670       680       690       700       710       720 
661       GATCAGACGCCATCTCGCCAGCCTATTCCCAGTGAGGGTCTTCAGCTGCATTTACCGCAG 
221        D  Q  T  P  S  R  Q  P  I  P  S  E  G  L  Q  L  H  L  P  Q   
 
                 730       740       750       760       770       780 
721       GTTTTAGCTGACGCTGTCTCACGCCTGGTCCTGGGTAAGTTTGGTGACCTGACCGACAAC 
241        V  L  A  D  A  V  S  R  L  V  L  G  K  F  G  D  L  T  D  N   
 
                 790       800       810       820       830       840 
781       TTCTCCTCCCCTCACGCTCGCAGAAAAGTGCTGGCTGGAGTCGTCATGACAACAGGCACA 
261        F  S  S  P  H  A  R  R  K  V  L  A  G  V  V  M  T  T  G  T   
 
                 850       860       870       880       890       900 
841       GATGTTAAAGATGCCAAGGTGATAAGTGTTTCTACAGGAACAAAATGTATTAATGGTGAA 
281        D  V  K  D  A  K  V  I  S  V  S  T  G  T  K  C  I  N  G  E   
 
                 910       920       930       940       950       960 
901       TACATGAGTGATCGTGGCCTTGCATTAAATGACTGCCATGCAGAAATAATATCTCGGAGA 
301        Y  M  S  D  R  G  L  A  L  N  D  C  H  A  E  I  I  S  R  R   
 
                 970       980       990      1000      1010      1020 
961       TCCTTGCTCAGATTTCTTTATACACAACTTGAGCTTTACTTAAATAACAAAGATGATCAA 
321        S  L  L  R  F  L  Y  T  Q  L  E  L  Y  L  N  N  K  D  D  Q   
 
                1030      1040      1050      1060      1070      1080 
1021      AAAAGATCCATCTTTCAGAAATCAGAGCGAGGGGGGTTTAGGCTGAAGGAGAATGTCCAG 
341        K  R  S  I  F  Q  K  S  E  R  G  G  F  R  L  K  E  N  V  Q   
 
                1090      1100      1110      1120      1130      1140 
1081      TTTCATCTGTACATCAGCACCTCTCCCTGTGGAGATGCCAGAATCTTCTCACCACATGAG 
361        F  H  L  Y  I  S  T  S  P  C  G  D  A  R  I  F  S  P  H  E   
 
                1150      1160      1170      1180      1190      1200 



 

1141      CCAATCCTGGAAGAACCAGCAGATAGACACCCAAATCGTAAAGCAAGAGGACAGCTACGG 
381        P  I  L  E  E  P  A  D  R  H  P  N  R  K  A  R  G  Q  L  R   
 
                1210      1220      1230      1240      1250      1260 
1201      ACCAAAATAGAGTCTGGTGAGGGGACGATTCCAGTGCGCTCCAATGCGAGCATCCAAACG 
401        T  K  I  E  S  G  E  G  T  I  P  V  R  S  N  A  S  I  Q  T   
 
                1270      1280      1290      1300      1310      1320 
1261      TGGGACGGGGTGCTGCAAGGGGAGCGGCTGCTCACCATGTCCTGCAGTGACAAGATTGCA 
421        W  D  G  V  L  Q  G  E  R  L  L  T  M  S  C  S  D  K  I  A   
 
                1330      1340      1350      1360      1370      1380 
1321      CGCTGGAACGTGGTGGGCATCCAGGGATCCCTGCTCAGCATTTTCGTGGAGCCCATTTAC 
441        R  W  N  V  V  G  I  Q  G  S  L  L  S  I  F  V  E  P  I  Y   
 
                1390      1400      1410      1420      1430      1440 
1381      TTCTCGAGCATCATCCTGGGCAGCCTTTACCACGGGGACCACCTTTCCAGGGCCATGTAC 
461        F  S  S  I  I  L  G  S  L  Y  H  G  D  H  L  S  R  A  M  Y   
 
                1450      1460      1470      1480      1490      1500 
1441      CAGCGGATCTCCAACATAGAGGACCTGCCACCTCTCTACACCCTCAACAAGCCTTTGCTC 
481        Q  R  I  S  N  I  E  D  L  P  P  L  Y  T  L  N  K  P  L  L   
 
                1510      1520      1530      1540      1550      1560 
1501      AGTGGCATCAGCAATGCAGAAGCACGGCAGCCAGGGAAGGCCCCCAACTTCAGTGTCAAC 
501        S  G  I  S  N  A  E  A  R  Q  P  G  K  A  P  N  F  S  V  N   
 
                1570      1580      1590      1600      1610      1620 
1561      TGGACGGTAGGCGACTCCGCTATTGAGGTCATCAACGCCACGACTGGGAAGGATGAGCTG 
521        W  T  V  G  D  S  A  I  E  V  I  N  A  T  T  G  K  D  E  L   
 
                1630      1640      1650      1660      1670      1680 
1621      GGCCGCGCGTCCCGCCTGTGTAAGCACGCGTTGTACTGTCGCTGGATGCGTGTGCACGGC 
541        G  R  A  S  R  L  C  K  H  A  L  Y  C  R  W  M  R  V  H  G   
 
                1690      1700      1710      1720      1730      1740 
1681      AAGGTTCCCTCCCACTTACTACGCTCCAAGATTACCAAGCCCAACGTGTACCATGAGTCC 
561        K  V  P  S  H  L  L  R  S  K  I  T  K  P  N  V  Y  H  E  S   
 
                1750      1760      1770      1780      1790      1800 
1741      AAGCTGGCGGCAAAGGAGTACCAGGCCGCCAAGGCGCGTCTGTTCACAGCCTTCATCAAG 



 

581        K  L  A  A  K  E  Y  Q  A  A  K  A  R  L  F  T  A  F  I  K   
 
                1810      1820      1830      1840      1850      1860 
1801      GCGGGGCTGGGGGCCTGGGTGGAGAAGCCCACCGAGCAGGACCAGTTCTCACTCACGCCC 
601        A  G  L  G  A  W  V  E  K  P  T  E  Q  D  Q  F  S  L  T  P   
 
                1870      1880      1890      1900      1910      1920 
1861      TCCACCGGCGGCATGGACGAGCTGTACAAGGCTAGCCCCGGGCCCCCCAAACTGCCTGTT 
621        S  T  G  G  M  D  E  L  Y  K  A  S  P  G  P  P  K  L  P  V   
 
                1930      1940      1950      1960      1970      1980 
1921      CCGTAGCCGACACTAGGTACCCCAAAAAAGAAGAGAAAGGTGCCGAAGAAGAAGAGGAAG 
641        P  *  P  T  L  G  T  P  K  K  K  R  K  V  P  K  K  K  R  K   
              
                1990      2000      2010      2020      2030      2040 
1981      GTGGATCCTAAGAAAAAAAGGAAAGTTTCTAGAGGGCCCTTCGAACAAAAACTCATCTCA 
661        V  D  P  K  K  K  R  K  V  S  R  G  P  F  E  Q  K  L  I  S   
                                     XbaI 
                2050      2060      2070      2080      2090       
2041      GAAGAGGATCTGAATATGCATACCGGTCATCATCACCATCACCATTGA 
681        E  E  D  L  N  M  H  T  G  H  H  H  H  H  H  * 
 
 
Full DNA and protein sequence of the construct SNAP-ADAR2-TAG-NLS in the context of the pcDNA5 vector for genomic expression (green = editing site, yellow = NLS). 
 
                  10        20        30        40        50        60 
1         CTCGGATCCACCATGGACAAAGACTGCGAAATGAAGCGCACCACCCTGGATAGCCCTCTG 
1          L  G  S  T  M  D  K  D  C  E  M  K  R  T  T  L  D  S  P  L  
             BamHI 
                  70        80        90       100       110       120 
61        GGCAAGCTGGAACTGTCTGGGTGCGAACAGGGCCTGCACCGTATCATCTTCCTGGGCAAA 
21         G  K  L  E  L  S  G  C  E  Q  G  L  H  R  I  I  F  L  G  K   
 
                 130       140       150       160       170       180 
121       GGAACATCTGCCGCCGACGCCGTGGAAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCA 
41         G  T  S  A  A  D  A  V  E  V  P  A  P  A  A  V  L  G  G  P   
 
                 190       200       210       220       230       240 
181       GAGCCACTGATGCAGGCCACCGCCTGGCTCAACGCCTACTTTCACCAGCCTGAGGCCATC 
61         E  P  L  M  Q  A  T  A  W  L  N  A  Y  F  H  Q  P  E  A  I   



 

 
                 250       260       270       280       290       300 
241       GAGGAGTTCCCTGTGCCAGCCCTGCACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGC 
81         E  E  F  P  V  P  A  L  H  H  P  V  F  Q  Q  E  S  F  T  R   
 
                 310       320       330       340       350       360 
301       CAGGTGCTGTGGAAACTGCTGAAAGTGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCAC 
101        Q  V  L  W  K  L  L  K  V  V  K  F  G  E  V  I  S  Y  S  H   
 
                 370       380       390       400       410       420 
361       CTGGCCGCCCTGGCCGGCAATCCCGCCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGA 
121        L  A  A  L  A  G  N  P  A  A  T  A  A  V  K  T  A  L  S  G   
 
                 430       440       450       460       470       480 
421       AATCCCGTGCCCATTCTGATCCCCTGCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGG 
141        N  P  V  P  I  L  I  P  C  H  R  V  V  Q  G  D  L  D  V  G   
 
                 490       500       510       520       530       540 
481       GGCTACGAGGGCGGGCTCGCCGTGAAAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTG 
161        G  Y  E  G  G  L  A  V  K  E  W  L  L  A  H  E  G  H  R  L   
 
                 550       560       570       580       590       600 
541       GGCAAGCCTGGGCTGGGTCCTGCAGGCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAG 
181        G  K  P  G  L  G  P  A  G  G  G  A  P  G  S  G  G  G  S  K   
 
                 610       620       630       640       650       660 
601       AAGCTTGCCAAGGCCCGGGCTGCGCAGTCTGCCCTGGCCGCCATTTTTAACTTGCACTTG 
201        K  L  A  K  A  R  A  A  Q  S  A  L  A  A  I  F  N  L  H  L   
 
                 670       680       690       700       710       720 
661       GATCAGACGCCATCTCGCCAGCCTATTCCCAGTGAGGGTCTTCAGCTGCATTTACCGCAG 
221        D  Q  T  P  S  R  Q  P  I  P  S  E  G  L  Q  L  H  L  P  Q   
 
                 730       740       750       760       770       780 
721       GTTTTAGCTGACGCTGTCTCACGCCTGGTCCTGGGTAAGTTTGGTGACCTGACCGACAAC 
241        V  L  A  D  A  V  S  R  L  V  L  G  K  F  G  D  L  T  D  N   
 
                 790       800       810       820       830       840 
781       TTCTCCTCCCCTCACGCTCGCAGAAAAGTGCTGGCTGGAGTCGTCATGACAACAGGCACA 
261        F  S  S  P  H  A  R  R  K  V  L  A  G  V  V  M  T  T  G  T   
 



 

                 850       860       870       880       890       900 
841       GATGTTAAAGATGCCAAGGTGATAAGTGTTTCTACAGGAACAAAATGTATTAATGGTGAA 
281        D  V  K  D  A  K  V  I  S  V  S  T  G  T  K  C  I  N  G  E   
 
                 910       920       930       940       950       960 
901       TACATGAGTGATCGTGGCCTTGCATTAAATGACTGCCATGCAGAAATAATATCTCGGAGA 
301        Y  M  S  D  R  G  L  A  L  N  D  C  H  A  E  I  I  S  R  R   
 
                 970       980       990      1000      1010      1020 
961       TCCTTGCTCAGATTTCTTTATACACAACTTGAGCTTTACTTAAATAACAAAGATGATCAA 
321        S  L  L  R  F  L  Y  T  Q  L  E  L  Y  L  N  N  K  D  D  Q   
 
                1030      1040      1050      1060      1070      1080 
1021      AAAAGATCCATCTTTCAGAAATCAGAGCGAGGGGGGTTTAGGCTGAAGGAGAATGTCCAG 
341        K  R  S  I  F  Q  K  S  E  R  G  G  F  R  L  K  E  N  V  Q   
 
                1090      1100      1110      1120      1130      1140 
1081      TTTCATCTGTACATCAGCACCTCTCCCTGTGGAGATGCCAGAATCTTCTCACCACATGAG 
361        F  H  L  Y  I  S  T  S  P  C  G  D  A  R  I  F  S  P  H  E   
 
                1150      1160      1170      1180      1190      1200 
1141      CCAATCCTGGAAGAACCAGCAGATAGACACCCAAATCGTAAAGCAAGAGGACAGCTACGG 
381        P  I  L  E  E  P  A  D  R  H  P  N  R  K  A  R  G  Q  L  R   
 
                1210      1220      1230      1240      1250      1260 
1201      ACCAAAATAGAGTCTGGTGAGGGGACGATTCCAGTGCGCTCCAATGCGAGCATCCAAACG 
401        T  K  I  E  S  G  E  G  T  I  P  V  R  S  N  A  S  I  Q  T   
 
                1270      1280      1290      1300      1310      1320 
1261      TGGGACGGGGTGCTGCAAGGGGAGCGGCTGCTCACCATGTCCTGCAGTGACAAGATTGCA 
421        W  D  G  V  L  Q  G  E  R  L  L  T  M  S  C  S  D  K  I  A   
 
                1330      1340      1350      1360      1370      1380 
1321      CGCTGGAACGTGGTGGGCATCCAGGGATCCCTGCTCAGCATTTTCGTGGAGCCCATTTAC 
441        R  W  N  V  V  G  I  Q  G  S  L  L  S  I  F  V  E  P  I  Y   
 
                1390      1400      1410      1420      1430      1440 
1381      TTCTCGAGCATCATCCTGGGCAGCCTTTACCACGGGGACCACCTTTCCAGGGCCATGTAC 
461        F  S  S  I  I  L  G  S  L  Y  H  G  D  H  L  S  R  A  M  Y   
 
                1450      1460      1470      1480      1490      1500 



 

1441      CAGCGGATCTCCAACATAGAGGACCTGCCACCTCTCTACACCCTCAACAAGCCTTTGCTC 
481        Q  R  I  S  N  I  E  D  L  P  P  L  Y  T  L  N  K  P  L  L   
 
                1510      1520      1530      1540      1550      1560 
1501      AGTGGCATCAGCAATGCAGAAGCACGGCAGCCAGGGAAGGCCCCCAACTTCAGTGTCAAC 
501        S  G  I  S  N  A  E  A  R  Q  P  G  K  A  P  N  F  S  V  N   
 
                1570      1580      1590      1600      1610      1620 
1561      TGGACGGTAGGCGACTCCGCTATTGAGGTCATCAACGCCACGACTGGGAAGGATGAGCTG 
521        W  T  V  G  D  S  A  I  E  V  I  N  A  T  T  G  K  D  E  L   
 
                1630      1640      1650      1660      1670      1680 
1621      GGCCGCGCGTCCCGCCTGTGTAAGCACGCGTTGTACTGTCGCTGGATGCGTGTGCACGGC 
541        G  R  A  S  R  L  C  K  H  A  L  Y  C  R  W  M  R  V  H  G   
 
                1690      1700      1710      1720      1730      1740 
1681      AAGGTTCCCTCCCACTTACTACGCTCCAAGATTACCAAGCCCAACGTGTACCATGAGTCC 
561        K  V  P  S  H  L  L  R  S  K  I  T  K  P  N  V  Y  H  E  S   
 
                1750      1760      1770      1780      1790      1800 
1741      AAGCTGGCGGCAAAGGAGTACCAGGCCGCCAAGGCGCGTCTGTTCACAGCCTTCATCAAG 
581        K  L  A  A  K  E  Y  Q  A  A  K  A  R  L  F  T  A  F  I  K   
 
                1810      1820      1830      1840      1850      1860 
1801      GCGGGGCTGGGGGCCTGGGTGGAGAAGCCCACCGAGCAGGACCAGTTCTCACTCACGCCC 
601        A  G  L  G  A  W  V  E  K  P  T  E  Q  D  Q  F  S  L  T  P   
 
                1870      1880      1890      1900      1910      1920 
1861      GCTAGCCCCGGGCCCCCCAAACTGCCTGTTCCGTAGCCGACACTAGGTACCCCAAAAAAG 
621        A  S  P  G  P  P  K  L  P  V  P  *  P  T  L  G  T  P  K  K   
                                            
                1930      1940      1950      1960      1970      1980 
1921      AAGAGAAAGGTGCCGAAGAAGAAGAGAAAGGTAGATCCTAAGAAAAAAAGGAAAGTTGCG 
641        K  R  K  V  P  K  K  K  R  K  V  D  P  K  K  K  R  K  V  A   
                                                                   NotI 
                1990       
1981      GCCGCTCGAGTCTAG 
661        A  A  R  V  * 
                           
 



 

 
 
Full DNA and protein sequence of the construct ATAG-NLS-SNAP-ADAR2 in the context of the pcDNA3.1 vector for transient expression (green = editing site, yellow = NLS). 
 
                  10        20        30        40        50        60 
1         TTGGTACCGAGCTCCACCATAGCCCCAAAAAAGAAGAGAAAGGTGCCGAAGAAGAAGAGG 
1          L  V  P  S  S  T     A  P  K  K  K  R  K  V  P  K  K  K  R  
            KpnI              
                  70        80        90       100       110       120 
61        AAGGTGGATCCTAAGAAAAAAAGGAAAGTTGGATCCACCATGGACAAAGACTGCGAAATG 
21         K  V  D  P  K  K  K  R  K  V  G  S  T  M  D  K  D  C  E  M   
 
                 130       140       150       160       170       180 
121       AAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCGAACAGGGC 
41         K  R  T  T  L  D  S  P  L  G  K  L  E  L  S  G  C  E  Q  G   
 
                 190       200       210       220       230       240 
181       CTGCACCGTATCATCTTCCTGGGCAAAGGAACATCTGCCGCCGACGCCGTGGAAGTGCCT 
61         L  H  R  I  I  F  L  G  K  G  T  S  A  A  D  A  V  E  V  P   
 
                 250       260       270       280       290       300 
241       GCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGATGCAGGCCACCGCCTGGCTCAAC 
81         A  P  A  A  V  L  G  G  P  E  P  L  M  Q  A  T  A  W  L  N   
 
                 310       320       330       340       350       360 
301       GCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGCACCACCCA 
101        A  Y  F  H  Q  P  E  A  I  E  E  F  P  V  P  A  L  H  H  P   
 
                 370       380       390       400       410       420 
361       GTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAGTGGTGAAG 
121        V  F  Q  Q  E  S  F  T  R  Q  V  L  W  K  L  L  K  V  V  K   
 
                 430       440       450       460       470       480 
421       TTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCCTGGCCGGCAATCCCGCCGCCACC 
141        F  G  E  V  I  S  Y  S  H  L  A  A  L  A  G  N  P  A  A  T   
 
                 490       500       510       520       530       540 
481       GCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCATTCTGATCCCCTGCCACCGG 
161        A  A  V  K  T  A  L  S  G  N  P  V  P  I  L  I  P  C  H  R   
 



 

                 550       560       570       580       590       600 
541       GTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGAAAGAGTGG 
181        V  V  Q  G  D  L  D  V  G  G  Y  E  G  G  L  A  V  K  E  W   
 
                 610       620       630       640       650       660 
601       CTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAGGCGGAGGC 
201        L  L  A  H  E  G  H  R  L  G  K  P  G  L  G  P  A  G  G  G   
 
                 670       680       690       700       710       720 
661       GCGCCAGGGTCTGGCGGCGGCAGTAAGAAGCTTGCCAAGGCCCGGGCTGCGCAGTCTGCC 
221        A  P  G  S  G  G  G  S  K  K  L  A  K  A  R  A  A  Q  S  A   
 
                 730       740       750       760       770       780 
721       CTGGCCGCCATTTTTAACTTGCACTTGGATCAGACGCCATCTCGCCAGCCTATTCCCAGT 
241        L  A  A  I  F  N  L  H  L  D  Q  T  P  S  R  Q  P  I  P  S   
 
                 790       800       810       820       830       840 
781       GAGGGTCTTCAGCTGCATTTACCGCAGGTTTTAGCTGACGCTGTCTCACGCCTGGTCCTG 
261        E  G  L  Q  L  H  L  P  Q  V  L  A  D  A  V  S  R  L  V  L   
 
                 850       860       870       880       890       900 
841       GGTAAGTTTGGTGACCTGACCGACAACTTCTCCTCCCCTCACGCTCGCAGAAAAGTGCTG 
281        G  K  F  G  D  L  T  D  N  F  S  S  P  H  A  R  R  K  V  L   
 
                 910       920       930       940       950       960 
901       GCTGGAGTCGTCATGACAACAGGCACAGATGTTAAAGATGCCAAGGTGATAAGTGTTTCT 
301        A  G  V  V  M  T  T  G  T  D  V  K  D  A  K  V  I  S  V  S   
 
                 970       980       990      1000      1010      1020 
961       ACAGGAACAAAATGTATTAATGGTGAATACATGAGTGATCGTGGCCTTGCATTAAATGAC 
321        T  G  T  K  C  I  N  G  E  Y  M  S  D  R  G  L  A  L  N  D   
 
                1030      1040      1050      1060      1070      1080 
1021      TGCCATGCAGAAATAATATCTCGGAGATCCTTGCTCAGATTTCTTTATACACAACTTGAG 
341        C  H  A  E  I  I  S  R  R  S  L  L  R  F  L  Y  T  Q  L  E   
 
                1090      1100      1110      1120      1130      1140 
1081      CTTTACTTAAATAACAAAGATGATCAAAAAAGATCCATCTTTCAGAAATCAGAGCGAGGG 
361        L  Y  L  N  N  K  D  D  Q  K  R  S  I  F  Q  K  S  E  R  G   
 
                1150      1160      1170      1180      1190      1200 



 

1141      GGGTTTAGGCTGAAGGAGAATGTCCAGTTTCATCTGTACATCAGCACCTCTCCCTGTGGA 
381        G  F  R  L  K  E  N  V  Q  F  H  L  Y  I  S  T  S  P  C  G   
 
                1210      1220      1230      1240      1250      1260 
1201      GATGCCAGAATCTTCTCACCACATGAGCCAATCCTGGAAGAACCAGCAGATAGACACCCA 
401        D  A  R  I  F  S  P  H  E  P  I  L  E  E  P  A  D  R  H  P   
 
                1270      1280      1290      1300      1310      1320 
1261      AATCGTAAAGCAAGAGGACAGCTACGGACCAAAATAGAGTCTGGTGAGGGGACGATTCCA 
421        N  R  K  A  R  G  Q  L  R  T  K  I  E  S  G  E  G  T  I  P   
 
                1330      1340      1350      1360      1370      1380 
1321      GTGCGCTCCAATGCGAGCATCCAAACGTGGGACGGGGTGCTGCAAGGGGAGCGGCTGCTC 
441        V  R  S  N  A  S  I  Q  T  W  D  G  V  L  Q  G  E  R  L  L   
 
                1390      1400      1410      1420      1430      1440 
1381      ACCATGTCCTGCAGTGACAAGATTGCACGCTGGAACGTGGTGGGCATCCAGGGATCCCTG 
461        T  M  S  C  S  D  K  I  A  R  W  N  V  V  G  I  Q  G  S  L   
 
                1450      1460      1470      1480      1490      1500 
1441      CTCAGCATTTTCGTGGAGCCCATTTACTTCTCGAGCATCATCCTGGGCAGCCTTTACCAC 
481        L  S  I  F  V  E  P  I  Y  F  S  S  I  I  L  G  S  L  Y  H   
 
                1510      1520      1530      1540      1550      1560 
1501      GGGGACCACCTTTCCAGGGCCATGTACCAGCGGATCTCCAACATAGAGGACCTGCCACCT 
501        G  D  H  L  S  R  A  M  Y  Q  R  I  S  N  I  E  D  L  P  P   
 
                1570      1580      1590      1600      1610      1620 
1561      CTCTACACCCTCAACAAGCCTTTGCTCAGTGGCATCAGCAATGCAGAAGCACGGCAGCCA 
521        L  Y  T  L  N  K  P  L  L  S  G  I  S  N  A  E  A  R  Q  P   
 
                1630      1640      1650      1660      1670      1680 
1621      GGGAAGGCCCCCAACTTCAGTGTCAACTGGACGGTAGGCGACTCCGCTATTGAGGTCATC 
541        G  K  A  P  N  F  S  V  N  W  T  V  G  D  S  A  I  E  V  I   
 
                1690      1700      1710      1720      1730      1740 
1681      AACGCCACGACTGGGAAGGATGAGCTGGGCCGCGCGTCCCGCCTGTGTAAGCACGCGTTG 
561        N  A  T  T  G  K  D  E  L  G  R  A  S  R  L  C  K  H  A  L   
 
                1750      1760      1770      1780      1790      1800 
1741      TACTGTCGCTGGATGCGTGTGCACGGCAAGGTTCCCTCCCACTTACTACGCTCCAAGATT 



 

581        Y  C  R  W  M  R  V  H  G  K  V  P  S  H  L  L  R  S  K  I   
 
                1810      1820      1830      1840      1850      1860 
1801      ACCAAGCCCAACGTGTACCATGAGTCCAAGCTGGCGGCAAAGGAGTACCAGGCCGCCAAG 
601        T  K  P  N  V  Y  H  E  S  K  L  A  A  K  E  Y  Q  A  A  K   
 
                1870      1880      1890      1900      1910      1920 
1861      GCGCGTCTGTTCACAGCCTTCATCAAGGCGGGGCTGGGGGCCTGGGTGGAGAAGCCCACC 
621        A  R  L  F  T  A  F  I  K  A  G  L  G  A  W  V  E  K  P  T   
 
                1930      1940      1950      1960      1970      1980 
1921      GAGCAGGACCAGTTCTCACTCACGCCCTCTAGAGGGCCCTTCGAACAAAAACTCATCTCA 
641        E  Q  D  Q  F  S  L  T  P  S  R  G  P  F  E  Q  K  L  I  S   
                                     XbaI 
                1990      2000      2010      2020      2030       
1981      GAAGAGGATCTGAATATGCATACCGGTCATCATCACCATCACCATTGA 
661        E  E  D  L  N  M  H  T  G  H  H  H  H  H  H  * 
 
Full DNA and protein sequence of the construct ATAG-NLS-SNAP-ADAR2* in the context of the pcDNA5 vector for genomic expression (green = editing site, yellow = NLS, 
activating E/Q site = grey). 
 
1         TTGGTACCGAGCTCCACCATAGCCCCAAAAAAGAAGAGAAAGGTGCCGAAGAAGAAGAGA 
1          L  V  P  S  S  T  I  A  P  K  K  K  R  K  V  P  K  K  K  R  
            KpnI 
                  70        80        90       100       110       120 
61        AAGGTAGATCCTAAGAAAAAAAGGAAAGTTGGATCCACCATGGACAAAGACTGCGAAATG 
21         K  V  D  P  K  K  K  R  K  V  G  S  T  M  D  K  D  C  E  M   
 
                 130       140       150       160       170       180 
121       AAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCGAACAGGGC 
41         K  R  T  T  L  D  S  P  L  G  K  L  E  L  S  G  C  E  Q  G   
 
                 190       200       210       220       230       240 
181       CTGCACCGTATCATCTTCCTGGGCAAAGGAACATCTGCCGCCGACGCCGTGGAAGTGCCT 
61         L  H  R  I  I  F  L  G  K  G  T  S  A  A  D  A  V  E  V  P   
 
                 250       260       270       280       290       300 
241       GCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGATGCAGGCCACCGCCTGGCTCAAC 
81         A  P  A  A  V  L  G  G  P  E  P  L  M  Q  A  T  A  W  L  N   
 



 

                 310       320       330       340       350       360 
301       GCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGCACCACCCA 
101        A  Y  F  H  Q  P  E  A  I  E  E  F  P  V  P  A  L  H  H  P   
 
                 370       380       390       400       410       420 
361       GTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAGTGGTGAAG 
121        V  F  Q  Q  E  S  F  T  R  Q  V  L  W  K  L  L  K  V  V  K   
 
                 430       440       450       460       470       480 
421       TTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCCTGGCCGGCAATCCCGCCGCCACC 
141        F  G  E  V  I  S  Y  S  H  L  A  A  L  A  G  N  P  A  A  T   
 
                 490       500       510       520       530       540 
481       GCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCATTCTGATCCCCTGCCACCGG 
161        A  A  V  K  T  A  L  S  G  N  P  V  P  I  L  I  P  C  H  R   
 
                 550       560       570       580       590       600 
541       GTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGAAAGAGTGG 
181        V  V  Q  G  D  L  D  V  G  G  Y  E  G  G  L  A  V  K  E  W   
 
                 610       620       630       640       650       660 
601       CTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAGGCGGAGGC 
201        L  L  A  H  E  G  H  R  L  G  K  P  G  L  G  P  A  G  G  G   
 
                 670       680       690       700       710       720 
661       GCGCCAGGGTCTGGCGGCGGCAGTAAGAAGCTTGCCAAGGCCCGGGCTGCGCAGTCTGCC 
221        A  P  G  S  G  G  G  S  K  K  L  A  K  A  R  A  A  Q  S  A   
 
                 730       740       750       760       770       780 
721       CTGGCCGCCATTTTTAACTTGCACTTGGATCAGACGCCATCTCGCCAGCCTATTCCCAGT 
241        L  A  A  I  F  N  L  H  L  D  Q  T  P  S  R  Q  P  I  P  S   
 
                 790       800       810       820       830       840 
781       GAGGGTCTTCAGCTGCATTTACCGCAGGTTTTAGCTGACGCTGTCTCACGCCTGGTCCTG 
261        E  G  L  Q  L  H  L  P  Q  V  L  A  D  A  V  S  R  L  V  L   
 
                 850       860       870       880       890       900 
841       GGTAAGTTTGGTGACCTGACCGACAACTTCTCCTCCCCTCACGCTCGCAGAAAAGTGCTG 
281        G  K  F  G  D  L  T  D  N  F  S  S  P  H  A  R  R  K  V  L   
 
                 910       920       930       940       950       960 



 

901       GCTGGAGTCGTCATGACAACAGGCACAGATGTTAAAGATGCCAAGGTGATAAGTGTTTCT 
301        A  G  V  V  M  T  T  G  T  D  V  K  D  A  K  V  I  S  V  S   
 
                 970       980       990      1000      1010      1020 
961       ACAGGAACAAAATGTATTAATGGTGAATACATGAGTGATCGTGGCCTTGCATTAAATGAC 
321        T  G  T  K  C  I  N  G  E  Y  M  S  D  R  G  L  A  L  N  D   
 
                1030      1040      1050      1060      1070      1080 
1021      TGCCATGCAGAAATAATATCTCGGAGATCCTTGCTCAGATTTCTTTATACACAACTTGAG 
341        C  H  A  E  I  I  S  R  R  S  L  L  R  F  L  Y  T  Q  L  E   
 
                1090      1100      1110      1120      1130      1140 
1081      CTTTACTTAAATAACAAAGATGATCAAAAAAGATCCATCTTTCAGAAATCAGAGCGAGGG 
361        L  Y  L  N  N  K  D  D  Q  K  R  S  I  F  Q  K  S  E  R  G   
 
                1150      1160      1170      1180      1190      1200 
1141      GGGTTTAGGCTGAAGGAGAATGTCCAGTTTCATCTGTACATCAGCACCTCTCCCTGTGGA 
381        G  F  R  L  K  E  N  V  Q  F  H  L  Y  I  S  T  S  P  C  G   
 
                1210      1220      1230      1240      1250      1260 
1201      GATGCCAGAATCTTCTCACCACATGAGCCAATCCTGGAAGAACCAGCAGATAGACACCCA 
401        D  A  R  I  F  S  P  H  E  P  I  L  E  E  P  A  D  R  H  P   
 
                1270      1280      1290      1300      1310      1320 
1261      AATCGTAAAGCAAGAGGACAGCTACGGACCAAAATAGAGTCTGGTCAGGGGACGATTCCA 
421        N  R  K  A  R  G  Q  L  R  T  K  I  E  S  G  Q  G  T  I  P   
 
                1330      1340      1350      1360      1370      1380 
1321      GTGCGCTCCAATGCGAGCATCCAAACGTGGGACGGGGTGCTGCAAGGGGAGCGGCTGCTC 
441        V  R  S  N  A  S  I  Q  T  W  D  G  V  L  Q  G  E  R  L  L   
 
                1390      1400      1410      1420      1430      1440 
1381      ACCATGTCCTGCAGTGACAAGATTGCACGCTGGAACGTGGTGGGCATCCAGGGATCCCTG 
461        T  M  S  C  S  D  K  I  A  R  W  N  V  V  G  I  Q  G  S  L   
 
                1450      1460      1470      1480      1490      1500 
1441      CTCAGCATTTTCGTGGAGCCCATTTACTTCTCGAGCATCATCCTGGGCAGCCTTTACCAC 
481        L  S  I  F  V  E  P  I  Y  F  S  S  I  I  L  G  S  L  Y  H   
 
                1510      1520      1530      1540      1550      1560 
1501      GGGGACCACCTTTCCAGGGCCATGTACCAGCGGATCTCCAACATAGAGGACCTGCCACCT 



 

501        G  D  H  L  S  R  A  M  Y  Q  R  I  S  N  I  E  D  L  P  P   
 
                1570      1580      1590      1600      1610      1620 
1561      CTCTACACCCTCAACAAGCCTTTGCTCAGTGGCATCAGCAATGCAGAAGCACGGCAGCCA 
521        L  Y  T  L  N  K  P  L  L  S  G  I  S  N  A  E  A  R  Q  P   
 
                1630      1640      1650      1660      1670      1680 
1621      GGGAAGGCCCCCAACTTCAGTGTCAACTGGACGGTAGGCGACTCCGCTATTGAGGTCATC 
541        G  K  A  P  N  F  S  V  N  W  T  V  G  D  S  A  I  E  V  I   
 
                1690      1700      1710      1720      1730      1740 
1681      AACGCCACGACTGGGAAGGATGAGCTGGGCCGCGCGTCCCGCCTGTGTAAGCACGCGTTG 
561        N  A  T  T  G  K  D  E  L  G  R  A  S  R  L  C  K  H  A  L   
 
                1750      1760      1770      1780      1790      1800 
1741      TACTGTCGCTGGATGCGTGTGCACGGCAAGGTTCCCTCCCACTTACTACGCTCCAAGATT 
581        Y  C  R  W  M  R  V  H  G  K  V  P  S  H  L  L  R  S  K  I   
 
                1810      1820      1830      1840      1850      1860 
1801      ACCAAGCCCAACGTGTACCATGAGTCCAAGCTGGCGGCAAAGGAGTACCAGGCCGCCAAG 
601        T  K  P  N  V  Y  H  E  S  K  L  A  A  K  E  Y  Q  A  A  K   
 
                1870      1880      1890      1900      1910      1920 
1861      GCGCGTCTGTTCACAGCCTTCATCAAGGCGGGGCTGGGGGCCTGGGTGGAGAAGCCCACC 
621        A  R  L  F  T  A  F  I  K  A  G  L  G  A  W  V  E  K  P  T   
 
                1930      1940      1950      1960       
1921      GAGCAGGACCAGTTCTCACTCACGCCCTCTAGAGGGCCCGTTTAA 
641        E  Q  D  Q  F  S  L  T  P  S  R  G  P  V  *   
                                                                                      ApaI 
 
 
 
  



 

Full DNA sequence of the construct ATAG-IgK-HA-eGFP-PDGFR-TMD. Full DNA and protein sequence of the construct ATAG-IgK-HA-eGFP-PDGFR-TMD in the context of the 
pcDNA3.1 vector for transient expression (green = editing site, yellow = IgK chain leader sequence). 
 
                  10        20        30        40        50        60 
1         CTCGGATCCACCATAGAGACAGACACACTCCTGCTCTGGGTACTGCTGCTCTGGGTTCCA 
1          L GT  M        E  T  D  T  L  L  L  W  V  L  L  L  W  V  P  
             BamHI 
                  70        80        90       100       110       120 
61        GGTTCCACTGGTGACTCCACCATGTATCCATATGATGTTCCAGATTATGCTGGGGCCCAG 
21         G  S  T  G  D  S  T  M  Y  P  Y  D  V  P  D  Y  A  G  A  Q   
 
                 130       140       150       160       170       180 
121       CCGGCTAGCAAAGGAGAAGAACTCTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGAT 
41         P  A  S  K  G  E  E  L  F  T  G  V  V  P  I  L  V  E  L  D   
 
                 190       200       210       220       230       240 
181       GGTGATGTTAACGGCCACAAGTTCTCTGTCAGTGGAGAGGGTGAAGGTGATGCAACATAC 
61         G  D  V  N  G  H  K  F  S  V  S  G  E  G  E  G  D  A  T  Y   
 
                 250       260       270       280       290       300 
241       GGAAAACTTACCCTGAAGTTCATCTGCACTACTGGCAAACTGCCTGTTCCGTGGCCGACA 
81         G  K  L  T  L  K  F  I  C  T  T  G  K  L  P  V  P  W  P  T   
 
                 310       320       330       340       350       360 
301       CTAGTGACGACGCTCTGCTATGGCGTCCAGTGCTTTTCAAGATACCCGGATCACATGAAA 
101        L  V  T  T  L  C  Y  G  V  Q  C  F  S  R  Y  P  D  H  M  K   
 
                 370       380       390       400       410       420 
361       CGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAAAGGACCATCTTC 
121        R  H  D  F  F  K  S  A  M  P  E  G  Y  V  Q  E  R  T  I  F   
 
                 430       440       450       460       470       480 
421       TTCAAAGATGACGGCAACTACAAGACACGTGCTGAAGTCAAGTTTGAAGGTGATACCCTT 
141        F  K  D  D  G  N  Y  K  T  R  A  E  V  K  F  E  G  D  T  L   
 
                 490       500       510       520       530       540 
481       GTTAATAGAATCGAGTTAAAAGGTATTGACTTCAAGGAAGATGGCAACATTCTGGGACAC 
161        V  N  R  I  E  L  K  G  I  D  F  K  E  D  G  N  I  L  G  H   
 
                 550       560       570       580       590       600 



 

541       AAATTGGAATACAACTATAACTCACACAATGTATACATCATGGCAGACAAACAAAAGAAT 
181        K  L  E  Y  N  Y  N  S  H  N  V  Y  I  M  A  D  K  Q  K  N   
 
                 610       620       630       640       650       660 
601       GGAATCAAAGTGAACTTCAAGACCCGCCACAACATTGAAGATGGAAGCGTTCAACTAGCA 
201        G  I  K  V  N  F  K  T  R  H  N  I  E  D  G  S  V  Q  L  A   
 
                 670       680       690       700       710       720 
661       GACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCAT 
221        D  H  Y  Q  Q  N  T  P  I  G  D  G  P  V  L  L  P  D  N  H   
 
                 730       740       750       760       770       780 
721       TACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACCACATGGTC 
241        Y  L  S  T  Q  S  A  L  S  K  D  P  N  E  K  R  D  H  M  V   
 
                 790       800       810       820       830       840 
781       CTTCTTGAGTTTGTAACAGCTGCTGGGATTACACATGGCATGGATGAACTATACAAATCC 
261        L  L  E  F  V  T  A  A  G  I  T  H  G  M  D  E  L  Y  K  S   
 
                 850       860       870       880       890       900 
841       GGCGGTACCGAACAAAAACTCATCTCAGAAGAGGATCTGAATGCTGTGGGCCAGGACACG 
281        G  G  T  E  Q  K  L  I  S  E  E  D  L  N  A  V  G  Q  D  T   
 
                 910       920       930       940       950       960 
901       CAGGAGGTCATCGTGGTGCCACACTCCTTGCCCTTTAAGGTGGTGGTGATCTCAGCCATC 
301        Q  E  V  I  V  V  P  H  S  L  P  F  K  V  V  V  I  S  A  I   
 
                 970       980       990      1000      1010      1020 
961       CTGGCCCTGGTGGTGCTCACCATCATCTCCCTTATCATCCTCATCATGCTTTGGCAGAAG 
321        L  A  L  V  V  L  T  I  I  S  L  I  I  L  I  M  L  W  Q  K   
 
                1030       
1021      AAGCCACGTTAGTCTAGAGGG 
341        K  P  R  *    
                      XbaI 

 
 
 
 



 

Table S1. Sequences and extinction coefficients (Ɛ260nm) of guideRNAs applied in this study. NpomBG- and BG-conjugated guideRNAs were synthesized and PAGE-purified from 
commercially acquired oligonucleotides coupled with an 5’-amino-C6 linker (BioSpring, Germany) as described in Hannswillemenke et al. (J. Am. Chem. Soc. 2015, 137, 15875-
15881). The nucleotides highlighted in bold are unmodified ribonucleotides and face the nucleotide triplet with the target adenosine in the middle. Nucleotides highlighted in italic 
are modified with 2’O-methylation. Terminal phosphorothioate linkages are indicated by “s”. The first three nucleotides at the 5’-end do not bind to the mRNA substrate, but 
function as linker between guideRNA and SNAP-tag. The BG and the Npom group add 2.5 mM-1 cm-1 and 6.5 mM-1 cm-1, respectively, to the 260 nm extinction coefficient of the 
NH2-guideRNAs.      
 
C-terminal NLS inclusion Sequence Ɛ260nm [mM-1 cm-1]
NH2/BG-guideRNA UsAsUGUGUCGG CCA CGGAAsCsAsGsG 226/228.5 
mm BG-guideRNA UsCsGGAACACC CCA GCAsCsAsGsA 232.5 
N-terminal NLS inclusion Sequence Ɛ260nm [mM-1 cm-1]
NH2/BG/NpomBG-guideRNA AsCsAUUUGGGG CCA UGGUGsGsAsGsC 226/228.5/232.5 
mm BG-guideRNA UsAsUGUGUCGG CCA CGGAAsCsAsGsG 228.5 
N-terminal IgK inclusion Sequence Ɛ260nm [mM-1 cm-1]
NH2/BG/NpomBG-guideRNA AsCsAUCUGUCU CCA UGGUGsGsAsUsC 218/220.5/224.5 
mm BG-guideRNA UsAsUGUGUCGG CCA CGGAAsCsAsGsG 228.5 
  



 

Primary data 
3’UTR Editing to switch protein localization 
 

Transient Expression of SNAP-ADAR2-TAG-NLS 

 

Figure S1. Sanger sequencing of SNAP-ADAR2-TAG-NLS in 293T cells, with 10 pmol guideRNA/well, mm = mismatched. 
Exp. No. Lipofectamine NH2-gRNA mm BG-gRNA BG-gRNA 
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Figure S2. Localization phenotype via FITC staining in transfected 293T cells, mm = mismatched. 

Sample DIC (63×) FITC (F) Hoechst (H) F + H 
293T + pcDNA3.1, only 

Hoechst added 

 
293T + pcDNA3.1 

 
293T + SNAP-ADAR2-

TGG-NLS 

 
293T + SNAP-ADAR2-

TAG-NLS 

 
293T + SNAP-ADAR2-

TAG-NLS + NH2-gRNA  

 



 

293T + SNAP-ADAR2-

TAG-NLS + mm BG-

gRNA  

 
293T + SNAP-ADAR2-

TAG-NLS + BG-gRNA  

 
 

 

Table S2. Quantification of phenotype switch by fluorescence microscopy, transfected cells with NLS-phenotype [%], 50-110 cells were counted for each sample per experiment, 

mm = mismatched. 

Exp. No. Lipo NH2-gRNA mm BG-gRNA BG-gRNA 
1 0 1 0 38 
2 0 3 0 49 
3 0 0 0 56 
Average 0.00 1.33 0.00 47.67 
Standard Deviation 0.00 1.53 0.00 9.07 

  



 

Figure S3. Comparison of change in RNA (A-to-I change in RNA) with localization switch (cells with NLS-phenotype) in 293T cells, mm = mismatched. 
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Editing of genomically integrated SNAP-ADAR2-TAG-NLS 

 

Figure S4.  Sanger sequencing of 293-SNAP-ADAR2-TAG-NLS cells with 20 pmol guideRNA/well, mm = mismatched. 

Exp. No. Lipofectamine NH2-gRNA mm BG-gRNA BG-gRNA 
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Figure S5. Localization phenotype via FITC staining in 293-Flip-In T-REx cells, mm = mismatched. 

Sample DIC (63×) FITC (F) Hoechst (H) F + H 
293-pcDNA5 (empty), 

only Hoechst added 

 



 

293-pcDNA5 (empty) 

 
293-SNAP-ADAR2-

TGG-NLS 

 
293- SNAP-ADAR2-

TAG-NLS 

 
293-SNAP-ADAR2-

TAG-NLS + NH2-gRNA 

 
293-SNAP-ADAR2-

TAG-NLS + mm BG-

gRNA 

 
293-SNAP-ADAR2-

TAG-NLS + BG-gRNA 

 
  

 



 

 

Table S3. Quantification of phenotype switch by fluorescence microscopy, cells with NLS-phenotype [%], 140-280 cells were counted for each sample per experiment, mm = 

mismatched. 

Exp. No. Lipo NH2-gRNA mm BG-gRNA BG-gRNA 
1 0 1 0 32 
2 0 1 0 36 
3 0 0 0 35 
Average 0.00 0.67 0.00 34.33 
Standard Deviation 0.00 0.58 0.00 2.08 

 
 

Figure S6. Comparison of change in RNA (A-to-I change in RNA) with localization switch (cells with NLS-phenotype) in 293-SNAP-ADAR-TAG-NLS cells, mm = mismatched.  
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Editing in the 5’UTR to switch protein localization 
 

Transient Expression of ATAG-NLS-SNAP-ADAR2, including light control 

 

Figure S7. Sanger sequencing of ATAG-NLS-SNAP-ADAR2 in 293T cells, guideRNA: 5 and 10 pmol/well, mm = mismatched. 

Exp. No. Lipofectamine Lipofectamine + UV 5 pmol NH2-gRNA 10 pmol NH2-gRNA 5 pmol NH2-gRNA + UV 10 pmol NH2-gRNA + UV 10 pmol mm BG-gRNA 
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Exp. 

No. 

5 pmol BG-gRNA 10 pmol BG-gRNA 5 pmol BG-gRNA + 

UV 

10 pmol BG-gRNA + 

UV 

5 pmol NpomBG-

gRNA 

10 pmol NpomBG-

RNA 

5 pmol NpomBG-gRNA 

+ UV 

10 pmol NpomBG-

gRNA + UV 
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Figure S8.  Localization phenotype by FITC staining in transfected 293T cells, mm = mismatched. 

Sample DIC (63×) FITC (F) Hoechst (H) F + H 
293T + pcDNA3.1 

(empty), only Hoechst 

added 

 
293T + pcDNA3.1 

(empty) 

 
293T + ATGG-NLS-

SNAP-ADAR2 

 
293T + ATAG-NLS-

SNAP-ADAR2  

 
293T + ATAG-NLS-

SNAP-ADAR2 + UV 

 



 

293T + ATAG-NLS-

SNAP-ADAR2 + 5 pmol 

NH2-gRNA 

 
293T + ATAG-NLS-

SNAP-ADAR2 + 10 pmol 

NH2-gRNA 

 
293T + ATAG-NLS-

SNAP-ADAR2 + 5 pmol 

NH2-gRNA + UV 

 
293T + ATAG-NLS-

SNAP-ADAR2 + 10 pmol 

NH2-gRNA + UV 

 
293T + ATAG-NLS-

SNAP-ADAR2 + 10 pmol 

mm BG-gRNA 

 
293T + ATAG-NLS-

SNAP-ADAR2 + 5 pmol 

BG-gRNA  

 



 

293T + ATAG-NLS-

SNAP-ADAR2 + 10 pmol 

BG-gRNA 

 
293T + ATAG-NLS-

SNAP-ADAR2 + 5 pmol 

BG-gRNA+ UV 

 
293T + ATAG-NLS-

SNAP-ADAR2 + 10 pmol 

BG-gRNA + UV 

 
293T + ATAG-NLS-

SNAP-ADAR2 + 5 pmol 

NpomBG-gRNA  

 
293T + ATAG-NLS-

SNAP-ADAR2 + 10 pmol 

NpomBG-gRNA 

 
293T + ATAG-NLS-

SNAP-ADAR2 + 5 pmol 

NpomBG-gRNA + UV 

 



 

293T + ATAG-NLS-

SNAP-ADAR2 + 10 pmol 

NpomBG-gRNA + UV 

 
 

Table S4. Quantification of phenotype switch by fluorescence microscopy, transfected cells with NLS-phenotype [%], 50-200 cells were counted for each sample per experiment, 

mm = mismatched. 
Exp. No. Lipo Lipo 

+ UV 
5 pmol 
NH2-
gRNA 

10 pmol 
NH2-
gRNA 

5 pmol 
NH2-
gRNA + 
UV 

10 pmol 
NH2-
gRNA + 
UV 

10 pmol 
mm BG-
gRNA 

5 pmol 
BG-
gRNA 

10 pmol 
BG-
gRNA 

5 pmol 
BG-
gRNA + 
UV 

10 pmol 
BG-
gRNA + 
UV  

5 pmol 
NpomBG-
gRNA 

10 pmol 
NpomBG-
gRNA 

5 pmol 
NpomBG-
gRNA + UV 

10 pmol 
NpomBG-
gRNA + UV 

1 12 13 8 13 14 19 15 54 70 51 65 18 26 63 67 
2 13 12 16 19 20 23 18 54 67 59 63 13 19 39 63 
3 6 7 21 13 22 12 19 63 65 61 60 25 22 57 52 
Average 10.33 10.67 15.00 15.00 18.67 18.00 17.33 57.00 67.33 57.00 62.67 18.67 22.33 53.00 60.67 
Standard Deviation 3.79 3.21 6.56 3.46 4.16 5.57 2.08 5.20 2.52 5.29 2.52 6.03 3.51 12.49 7.77 

 

 

 

  



 

 

Figure S9. Comparison of change on RNA (A-to-I change at RNA) with localization switch (cells with NLS-phenotype) in 293T cells, mm = mismatched. 
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Figure S10. Example of faint nuclear staining with the ATAG-NLS-SNAP-ADAR2 construct prior to editing compared to clear staining after 
editing.    Shown are DIC and FITC staining at 40× magnification of 293T cells transfected with a) empty vector, b) negative editing control: 
ATAG-NLS-SNAP-ADAR2, or c) editing: ATAG-NLS-SNAP-ADAR2 + BG-guideRNA. The arrows indicate the nuclear phenotype of the SNAP-
ADAR protein. 10-15% of cells transfected with ATAG-NLS-SNAP-ADAR2 (negative editing control) show some faint nuclear staining, 
compared to the cells which are additionally transfected with BG-guideRNA, which show a clearly visible nuclear staining. Nevertheless, when 
analyzing the phenotype in the negative editing control, cells showing faint staining have already been counted as positive. The scale bar 
represents 50 µm. 

 



 

Editing of genomically integrated ATAG-NLS-SNAP-ADAR2, including light control 

 

Figure S11. Sanger sequencing of editing in 293-ATAG-NLS-SNAP-ADAR2 cells, 20 pmol guideRNA/well, mm = mismatched. 

Exp. 

No. 

Lipofectamine Lipofectamine + 

UV 

NH2-gRNA mm BG-gRNA BG-gRNA BG-gRNA + UV NpomBG-gRNA NpomBG-gRNA 

+ UV 

1 

2 

3 

 

 

 



 
Figure S12. Localization phenotype by FITC staining of transfected 293-Flip-In T-REx cells, mm = mismatched. 

Sample DIC (63×) FITC (F) Hoechst (H) F + H 
293-pcDNA5 (empty), 

only Hoechst added 

293-pcDNA5 (empty) 

293-ATGG-NLS-SNAP-

ADAR2 

293-ATAG-NLS-SNAP-

ADAR2 

293-ATAG-NLS-SNAP-

ADAR2 + UV 

293-ATAG-NLS-SNAP-

ADAR2 + NH2-gRNA 



 
293-ATAG-NLS-SNAP-

ADAR2 + mm BG-gRNA 

293-ATAG-NLS-SNAP-

ADAR2 + BG-gRNA 

293-ATAG-NLS-SNAP-

ADAR2 + BG-gRNA + 

UV 

293-ATAG-NLS-SNAP-

ADAR2 + NpomBG-

gRNA 

293-ATAG-NLS-SNAP-

ADAR2 + NpomBG-

gRNA + UV 

  

Table S5. Quantification of phenotype switch by fluorescence microscopy, cells with NLS-phenotype [%], 110-310 cells were counted for each 

sample per experiment, mm = mismatched. 

Exp. No. Lipo Lipo + UV NH2-gRNA mm BG-gRNA BG-gRNA BG-gRNA + UV NpomBG-gRNA NpomBG-gRNA+ UV 
1 1 3 6 3 13 12 3 9 
2 2 2 2 2 6 13 3 5 
3 4 3 1 2 13 16 2 13 
Average 2.33 2.67 3.00 2.33 10.67 13.67 2.67 9.00 
Standard Deviation 1.53 0.58 2.65 0.58 4.04 2.08 0.58 4.00 

 



 
 

Figure S13. Comparison of change in RNA (A-to-I change in RNA) with localization switch (cells with NLS-phenotype) in 293-ATAG-NLS-SNAP-
ADAR2 cells, mm = mismatched. 
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Editing under genomic expression of ATAG-NLS-SNAP-ADAR2*(E488Q), including light control 

Figure S14. Sanger sequencing of editing in 293-ATAG-NLS-SNAP-ADAR2* cells, 10 pmol guideRNA/well, mm = mismatching. 

Exp. 

No. 

Lipofectamin

e 

Lipofectamine 

+ UV 

NH2-gRNA NH2-gRNA + 

UV 

mm BG-gRNA BG-gRNA BG gRNA + 

UV 

NpomBG-

gRNA 

NpomBG-

gRNA +UV 

1 

2 

3 

 

 

 

 

 

  



 
 

Figure S15. Localizaiton phenotype by FITC staining of transfected 293-Flip-In T-REx cells, mm = mismatched. 

Sample DIC (63×) FITC (F) Hoechst (H) F + H 
293-pcDNA5 (empty) 

293-ATGG-NLS-SNAP-

ADAR2*  

293-ATGG-NLS-SNAP-

ADAR2* + BG-

guideRNA 

293-ATAG-NLS-SNAP-

ADAR2* 

293-ATAG-NLS-SNAP-

ADAR2* + UV 

293-ATAG-NLS-SNAP-

ADAR2* + NH2-gRNA 



 
293-ATAG-NLS-SNAP-

ADAR2* + NH2-gRNA+ 

UV 

293-ATAG-NLS-SNAP-

ADAR2* + mm BG-

gRNA 

293-ATAG-NLS-SNAP-

ADAR2* + BG-gRNA 

293-ATAG-NLS-SNAP-

ADAR2* + BG-gRNA + 

UV 

293-ATAG-NLS-SNAP-

ADAR2* + NpomBG-

gRNA 

293-ATAG-NLS-SNAP-

ADAR2* + NpomBG-

gRNA + UV 

 

 

  



 
Table S6. Quantification of phenotype switch by fluorescence microscopy, cells with NLS-phenotype [%], 120-350 cells were counted for each 

sample per experiment, mm = mismatched. 

 
Exp. No. Lipo Lipo + UV NH2-gRNA NH2-gRNA + UV mm BG-gRNA BG-gRNA BG-gRNA+ UV NpomBG-gRNA NpomBG-gRNA + UV 

1 3 3 2 2 3 47 51 10 42 
2 4 2 5 5 3 49 44 14 38 
3 3 4 4 5 4 42 44 12 43 
Average 3.33 3.00 3.67 4.00 3.33 46.00 46.33 12.00 41.00 
Standard Deviation 0.58 1.00 1.53 1.73 0.58 3.61 4.04 2.00 2.65 

 

 

Figure S16. Comparison of change in RNA (A-to-I change in RNA) with localization switch (cells with NLS-phenotype) in 293-ATAG-NLS-SNAP-
ADAR2*, mm = mismatched.  
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Switch to outer-membrane localization by 5´-UTR editing 
 

Transient expression of ATAG-IgK-HA-eGFP, including light control 

Figure S17. Sanger sequencing of ATAG-IgK-HA-eGFP in 293T cells co-transfected with SNAP-ADAR2-BFP, and guideRNA 2.5 pmol/well, mm = 

mismatched. 

Exp. No. Lipofectamine Lipofectamine + UV NH2-gRNA NH2-gRNA + UV 2.5 pmol BG41 2.5 pmol BG 91 2.5 pmol BG 91 + UV 
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Exp. No. NpomBG-gRNA NpomBG-gRNA + UV 
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3 
  



 
Figure S18. Additional control: Editing depends on co-transfection of SNAP-ADAR2. Sanger sequencing of ATAG-IgK-HA-eGFP in 293T cells co-

transfected with empty vector, and guideRNA 2.5 pmol/well. 

 

 

 

 

 

 

 

 

 

 

 

Figure S19.  Localization phenotype via immunostaining in transfected 293T cells, mm = mismatched. 

Sample DIC (63×) SNAP-ADAR2-

BFP 

eGFP Alexa Fluor 594 

293T + pcDNA3.1 

(empty) + pcDNA3.1 

(empty)  

293T + ATGG-IgK-HA-

eGFP + SNAP-ADAR2-

BFP 

Exp. No. BG-gRNA 

1 

 

2 

 

3 
 



 
293T + ATAG-IgK-HA-

eGFP + SNAP-ADAR2-

BFP 

293T + ATAG-IgK-HA-

eGFP + SNAP-ADAR2-

BFP + UV 

293T + ATAG-IgK-HA-

eGFP + SNAP-ADAR2-

BFP + NH2-gRNA 

293T + ATAG-IgK-HA-

eGFP + SNAP-ADAR2-

BFP + NH2-gRNA + UV 

293T + ATAG-IgK-HA-

eGFP + SNAP-ADAR2-

BFP + mm BG-gRNA 

293T + ATAG-IgK-HA-

eGFP + SNAP-ADAR2-

BFP + BG-gRNA 



 
293T + ATAG-IgK-HA-

eGFP + SNAP-ADAR2-

BFP + BG-gRNA + UV 

293T + ATAG-IgK-HA-

eGFP + SNAP-ADAR2-

BFP + NpomBG-gRNA 

293T + ATAG-IgK-HA-

eGFP + SNAP-ADAR2-

BFP + NpomBG-gRNA + 

UV 

293T + ATAG-IgK-HA-

eGFP + pcDNA3.1 + BG-

gRNA 

 

Table S7. Quantification of phenotype switch by fluorescence microscopy, transfected cells with membrane phenotype [%], 50-90 cells were counted 

for each sample per experiment, mm = mismatched. 

Changed phenotype [%] Lipo Lipo + UV NH2-gRNA NH2-
gRNA 
+UV 

mm BG-
gRNA 

BG-gRNA BG-gRNA + UV NpomBG-gRNA NpomBG-gRNA + UV 

1 0 0 0 0 0 44 43 3 32 
2 0 0 0 0 0 41 41 2 34 
3 0 0 0 0 0 43 42 0 28 
AVERAGE 0.00 0.00 0.00 0.00 0.00 42.67 42.00 1.67 31.33 
Standard Deviation 0.00 0.00 0.00 0.00 0.00 1.53 1.00 1.53 3.06 



 
 

Figure S20. Comparison of change in RNA (A-to-I change in RNA) with localization switch (cells with membrane phenotype) in 293T cells, mm = 
mismatched.  
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Figure S21. Effect of permeabilization on the detection of HA-IgK-HA-eGFP via GFP fluorescence and anti-HA immunostain. Cells were transfected 

with empty vector, ATGG-Igk-HA-eGFP, or ATAG-Igk-HA-eGFP. 24h after transfection, cells were plated on cover slips and incubated for 1 d. 

Immunostaining was performed as described above. In case of permeabilization, cells were incubated in 500 µl of 1% Triton X-100/PBS for 5 min 

before blocking. Additionally, cells were incubated in 200 µl Hoechst solution (1:100 in PBS) before mounting. Shown are DIC images (63× 

magnification), nuclear staining by Hoechst 33342 (blue), GFP fluorescence (green) and HA-immunostain with Alexa Fluor 594 (red). Without 

permeabilization, the anti-HA antibody stains only the outer-membrane-bound form, not the cytosolic one. However, after permeabilization also the 

Ha-tagged protein in the cytoplasm is stained. This is supported by the GFP channel. 
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Molecular tools that target RNA at specific sites allow recod-
ing of RNA information and processing. SNAP-tagged deami-
nases guided by a chemically stabilized guide RNA can edit 
targeted adenosine to inosine in several endogenous tran-
scripts simultaneously, with high efficiency (up to 90%), high 
potency, sufficient editing duration, and high precision. We 
used adenosine deaminases acting on RNA (ADARs) fused 
to SNAP-tag for the efficient and concurrent editing of two 
disease-relevant signaling transcripts, KRAS and STAT1. We 
also demonstrate improved performance compared with that 
of the recently described Cas13b–ADAR.

Tools for efficient and precise RNA manipulation are highly 
desired1. We recently introduced SNAP-tagged ADARs, which can 
be used to substitute adenosine by inosine in RNA in a rational and 
programmable way with a guide RNA (gRNA)2,3 (Supplementary 
Fig. 1). Because inosine is interpreted as guanosine, RNA editing 
can alter splicing, start and stop codons, and microRNA action, and 
can reprogram the protein product4. Manipulation at the RNA level 
is tunable in yield and reversible in time. This might be particularly 
useful for substitutions that are either lethal or compensated when 
introduced at the DNA level5, for example, in signaling proteins6. A 
further advantage is safety, as off-site RNA editing can be consid-
ered reversible. Current methods7–9 typically apply overexpression 
of (engineered) deaminases, which may result in massive global off-
target editing. In contrast, the deaminase and gRNA are covalently 
linked in our SNAP–ADAR approach, which allows for efficient 
RNA-targeting after single-copy, genomic integration of the editase.

We validated four editases: SNAP–ADAR1 (SA1) and SNAP–
ADAR2 (SA2)2, and their respective hyperactive E> Q variants10 
SA1Q and SA2Q. We initiated editing by transfection of a short, 
chemically stabilized benzylguanine-modified gRNA (BG-gRNA) 
(Supplementary Fig. 1), and analyzed the results for formal A-to-G 
conversion in cDNA at specific 5′ -UAG triplets in the 3′  untranslated 
regions (UTRs) of the four targeted endogenous mRNAs: ACTB, 
GAPDH, GUSB, and SA1/2. For both wild-type enzymes (SA1 and 
SA2), editing yields of 40–80% were achieved (Fig. 1a), depend-
ing on the target. Application of the hyperactive mutants (SA1Q 
and SA2Q) raised the yields to 65–90%; in particular, the weaker 
edited transcripts GUSB and SA1/2 profited from this application. 
The maximum editing yield (80–90%) was nearly achieved 3 h after 
transfection (Fig. 1b), remained constant for 3 d, and then declined 
slowly, probably as a result of dilution of the gRNA–enzyme con-
jugate by cell division. The activated enzymes (SA1Q and SA2Q) 
were up to 12-fold more potent than the wild-type enzymes (SA1 
and SA2), achieving the half-maximum editing yield at concentra-
tions of 0.15 pmol per well, compared with 1–2 pmol per well for the 

wild type (Fig. 1c). We tested the concurrent editing of all four tran-
scripts by cotransfection of four gRNAs. Notably, the yields stayed 
unchanged (Fig. 1a). We obtained similar results for the concurrent 
editing of three sites in the GAPDH mRNA (Supplementary Fig. 2). 
Editing yields were higher in the 3′ -UTR than in the open reading 
frame (ORF) and 5′ -UTR (Fig. 1d), probably because of interference 
with translation. Accordingly, the faster enzymes (SA1Q and SA2Q) 
boosted the yields from 25–50% to 60–75% in the 5′ -UTR and from 
15–60% to 50–85% in the ORF (Fig. 1d). Furthermore, translation 
inhibition with puromycin increased ORF editing in SA1/2+ cells 
to the level of 3′ -UTR editing (Supplementary Fig. 3). To assess the 
codon scope, we targeted all 16 conceivable 5′ -NAN triplets in the 
ORF of endogenous GAPDH for SA1Q and SA2Q. We obtained 
yields ranging from very little to almost quantitative, reflecting the 
well-known preferences of ADARs10,11 (Fig. 1e). Although editing 
was generally difficult for 5′ -GAN triplets (< 30%), we obtained 
significant yields (> 50%) for 10/16 triplets. For 7/16 triplets, we 
obtained excellent editing yields (> 70%) for at least one enzyme.

An important aspect is specificity. A major advantage of our 
strategy2 (compared with others7–9,12–14) is the suppression of off-site 
editing within the gRNA–mRNA duplex by chemical modification 
of our gRNA. Only for adenosine-rich triplets (AAC, AAA, UAA, 
and CAA) did we detect some off-target editing, mainly with SA2Q 
(5–75%) and mainly for the CAA triplet (Fig. 2a, left). Off-target 
editing was due to three natural nucleotides in the gRNA opposite 
the targeted adenosine2 (Supplementary Fig. 4). Careful inclusion 
of further chemical modifications (2′ -methoxy, 2′ -fluoro; Fig. 2a, 
right) restricted off-target editing at the CAA triplet to 20% and 
limited off-target editing at all other sites to < 10% without reduc-
ing on-target editing. Notably, for AAA, the additional modifica-
tion even elevated the on-target yield from 40% to 50%. Global 
off-target editing is the main obstacle for RNA editing, in particular 
with overexpression of editases9,12,13,15. To test this for SNAP–ADARs 
under genomic expression, we conducted deep RNA-seq when edit-
ing the ACTB transcript. We also assessed the role of gRNA-depen-
dent misguiding. The wild-type enzymes (SA1/2) were extremely 
precise. Among the 50,000 editing sites called (Supplementary 
Data), only very few were significantly differently edited compared 
with the negative control (6 for SA1, 30 for SA2; Fig. 2b). Most 
of these sites are known16 sites in the 3′ -UTRs (Table 1) and were 
edited less than 25% (Supplementary Fig. 5a). For SA1, there was 
a single nonsynonymous edit (TMX3; 10%) that was gRNA depen-
dent (Supplementary Table 1). For SA2, there were two nonsyn-
onymous edits (AAGAB, 42%; CHFR, 32%), with the former being 
gRNA dependent. Off-targets were much more frequent with the 
hyperactive enzymes (835/1,310 sites for SA1Q/SA2Q; Table 1,  
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Fig. 2b), were caused by the free-floating enzyme, and comprised 
mainly novel sites (74–85%). Only a small number of sites were 
edited in a gRNA-dependent manner (∼ 30 sites for each editase; 
Fig. 2c). A vast amount of sites were located in the ORF (347–496 
sites) and gave rise to nonsynonymous editing (230–347 sites). 
However, none of the nonsynonymous editing exceeded that at the 
target site, and the majority of these edits occurred at a low level. 
This was particularly true for SA1Q, where only 4 of 227 sites were 
edited more than 50%, and 167 of 227 sites were edited less than 25% 
(Fig. 2d). For SA2Q, however, the average editing level was higher, 
with 20/344 sites above 50% and 240/344 below 25% editing yield. 
We found SA1Q and SA2Q to share only 414 of their off-target sites. 
SA1Q and SA2Q differ in their off-target codon preferences, with 
SA2Q accepting 5′ -CAN triplets better (Supplementary Fig. 5b). All 
SNAP–ADAR cell lines behaved indistinguishably from normal 293 
cells with respect to doubling times and morphology, and analysis 

of the number of fragments per kilobase of transcript per million 
mapped reads (FPKM) revealed no difference in gene expression 
due to the presence of (off-target) editing activity (Supplementary 
Fig. 6). Because SA1(Q) showed the best balance of efficiency and 
specificity, we continued with that editase.

RNA editing would be particularly attractive for the manipula-
tion of signaling networks. Also, the editable codons (5′ -UAG, 5′ 
-UAC, 5′ -UAU, 5′ -UAA, and 5′ -AAG) indicate amino acid sub-
stitutions (Thr-to-Ala, Tyr-to-Cys, Ser-to-Gly, and Lys-to-Arg; 
Supplementary Fig. 5c) suitable for the manipulation of signaling 
proteins. For illustration, we edited two 5′ -UAG sites in KRAS mRNA 
(sites 1 and 2) and the Tyr701 site (5′ -UAU) in STAT1 mRNA, its 
most relevant phosphorylation site17 for signaling. With SA1Q, we 
achieved editing levels of 55% ±  8% (KRAS site 1), 46% ±  2% (KRAS 
site 2), and 76% ±  6% (STAT1) (Fig. 2e). We found no detectable off-
target editing in the gRNA–mRNA duplex (Supplementary Fig. 7). 
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Again, concurrent editing of either two sites on the KRAS transcript 
or sites on two transcripts (KRAS and STAT1) was possible without 
a loss of editing efficiency (Fig. 2e). The highly precise editase SA1 
was less active, but was still able to obtain yields of 18% ±  3% (KRAS 
site 1) and 31% ±  2% (STAT1).

The chemical modification of our gRNA restricted off-target 
editing in the mRNA–gRNA duplex. This is in contrast to two com-
peting approaches (one based on Cas13b)9,12,13 that were shown to 
induce massive global off-target editing caused by the overexpressed 
editases9,15 (Supplementary Tables 2 and 3). For SNAP–ADARs, 
global off-target editing was restricted by genomic integration. It 
was almost eliminated with the precise editases SA1 and SA2, and 
editing of endogenous targets was still sufficient for some codons 
(UAG and UAU). The performance of SA1 was also better than that 
of the ‘high-specificity variant’ of Cas13b–ADAR9 (Supplementary 
Note 1). Notably, our integrated hyperactive SA1Q and SA2Q 
showed off-target editing that was orders of magnitude less than 
that observed with overexpressed Cas13b–ADAR version 19 or λ 
N-deaminases15 (Supplementary Fig. 8). We found that further 
reduction of SA1Q/SA2Q expression (up to 25-fold) is possible to 

further reduce off-target editing (Supplementary Fig. 9). One could 
further improve on the gRNA chemistry18 or the editase used in our 
approach9,10. Notably, we tested the reported high-specificity vari-
ant of Cas13b–ADAR (T375G), but in the context of SNAP–ADAR 
(Supplementary Fig. 10). In contrast to previous claims9, we found 
this mutant to be much less efficient than SA1Q/SA2Q, and even 
inferior to SA1/2. Compared with those used in other approaches, 
our gRNAs are extremely short (22 nt). Thus editing clearly depends 
on the targeting mechanism and will not interfere with endogenous 
ADARs8. However, we found that the long Cas13b gRNAs (85 nt) 
recruited overexpressed human ADAR2, as well as SA2Q, to elicit 
editing of a cotransfected reporter at levels similar to those observed 
with Cas13b–ADAR (Supplementary Fig. 11). This observation 
raises the question of the extent to which previously reported edits9 
were affected by overexpression artifacts (Methods, Supplementary 
Note 2). Finally, the small size (20 kDa) and human origin of 
the SNAP-tag provide further advantages over Cas13–ADAR. 
Together, our results set a new benchmark for site-directed RNA 
editing and provide a tool ready for use in concurrent editing of  
endogenous transcripts.
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Table 1 | Global off-target editing

Location in mRNA

Known Novel   Coding region

Enzymea Total Alu Non-Alu Alu Non-Alu 5′ -uTR Syn. Nonsyn. 3′ -uTR othersb

SA1 6 2 1 0 3 0 0 1 3 2

SA2 30 15 8 1 6 0 0 2 22 6

SA1Q 835 70 59 7 699 11 117 230 402 75

SA2Q 1,310 267 71 24 948 13 149 347 637 164

Numbers represent the number of sites that were significantly differently edited compared with sites in a related control cell line that did not express the respective SA editase. Syn., synonymous; nonsyn., 
nonsynonymous. aEditing was carried out in cells expressing the given SNAP–ADAR in the presence of a BG-gRNA targeting the ACTB transcript. b“Others” refers to editing in introns, intergenic regions, 
and noncoding RNA.
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Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41592-018-0017-z.
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Methods
BG-gRNA synthesis. Synthesis of chemically modified BG-gRNAs does not 
require any chemistry equipment. All chemical modifications used in this study 
are commercially available. The benzylguanine (BG) modification can be achieved 
by application of a commercial amino or thiol reactive BG derivative such as BG-
maleiimide (New England Biolabs). The sequences and chemical modifications of 
all gRNAs are presented in Supplementary Table 4. For this study, all NH2-gRNAs 
were purchased from Biospring (Germany) as HPLC-purified single-stranded 
RNAs with a 5′ -C6 amino linker. As an alternative to commercial BG derivatives, 
our protocol can be used to introduce the BG moiety. BG connected to a carboxylic 
acid linker2,3 (12 µ l, 60 mM in DMSO) was activated in situ as an OSu-ester 
by incubation with EDCI·HCl (12 µ l, 17.4 mg/ml in DMSO) and NHS (12 µ l, 
17.8 mg/ml in DMSO) for 1 h at 30 °C. Then, the NH2-gRNA (25 µ l, 6 µ g/µ l) and 
DIPEA (12 µ l, 1:20 in DMSO) were added to the preactivation mix and incubated 
(90 min, 30 °C)19. The crude BG-gRNA was purified from unreacted NH2-gRNA 
by 20% urea PAGE and then extracted with H2O (700 µ l; overnight at 4 °C). RNA 
precipitation was done with sodium acetate (0.1 volumes, 3.0 M) and ethanol  
(3 volumes, 100%, overnight at –80 °C). The BG-gRNA was washed with ethanol 
(75%) and dissolved in water (60 µ l).

SNAP–ADAR-expressing cell lines. Each enzyme was integrated as a single copy 
under control of the doxycycline-inducible CMV promoter at the FRT site into 
the genome of Flp-In 293 cells (R78007; Thermo Fisher Scientific) as described8. 
The exact cDNAs are listed in Supplementary Note 4. Enzyme expression of all 
four enzymes was inducible by doxycycline (10 ng/ml) to roughly similar levels 
as validated by western blotting and fluorescence microscopy (Supplementary 
Fig. 12 and Supplementary Note 3). Also at the RNA level, the expression levels 
of SA1 (wild-type and Q) and SA2 (wild-type and Q) were roughly similar, with 
average FPKM values of 679 and 814 for SA1(Q) and SA2(Q), respectively. The 
E> Q mutation did not change the protein localization (Supplementary Note 3). 
SA1(Q) is localized to cytoplasm and nucleoplasm; SA2(Q) is mainly localized to 
cytoplasm. To determine the location of the different SNAP–ADAR proteins, we 
seeded 1 ×  105 cells in 500 µ l of selection media with or without doxycycline  
(10 ng/ml) on poly-d-lysine-coated coverslips in a 24-well format. After 1 d, we 
carried out BG–FITC labeling of the SNAP-tag and nuclear staining. To validate 
SNAP–ADAR protein amounts, we performed western blotting analysis. For this, 
3 ×  105 cells were seeded in 500 µ l of selection media with or without doxycycline 
(10 ng/ml) in a 24-well format for 1 d. Then, cells were lysed with urea buffer  
(8 M urea in 10 mM Tris, 100 mM NaH2PO4, pH 8.0). Protein lysate (5 µ g) was 
separated by SDS–PAGE and transferred onto a PVDF membrane (Bio-Rad 
Laboratories) for immunoblotting with primary antibodies to the SNAP-tag 
(1:1,000; P9310S; New England Biolabs) and β -actin (1:40,000; A5441; Sigma-
Aldrich). Afterwards, the blot was incubated with HRP-conjugated secondary 
antibodies against rabbit (1:10,000; 111-035-003; Jackson ImmunoResearch 
Laboratories) and mouse (1:10,000; 115-035-003; Jackson ImmunoResearch 
Laboratories) and visualized by enhanced chemiluminescence.

RNA-editing experiments. General. Flp-In T-REx 293 cells stably transfected 
with the respective SNAP–ADAR-expressing pcDNA5 vector were grown 
in DMEM with 10% FBS, 100 µ g/ml hygromycin B, and 15 µ g/ml blasticidin 
S. For experiments, 3 ×  105 cells per well were seeded in 24-well plates, and 
gene expression was induced by doxycycline (10 ng/ml) for 1 d. Then, 8 ×  104 
cells per well were resuspended in 100 µ l of DMEM with 10% FBS and 15 ng/
ml doxycycline and reverse-transfected in a 96-well format with the gRNA 
transfection mixture (39 fmol to 40 pmol of gRNA and 0.75 µ l of Lipofectamine 
2000 in 50 µ l of OptiMEM; the exact amounts of gRNA used in this study are given 
in Supplementary Table 4). After 24 h, cells were collected for RNA isolation. When 
determining editing yields at later time points, we resuspended the cells in DMEM 
with 10% FBS and 10 ng/ml doxycycline and seeded them into 24-well plates. 48 h 
later, we added fresh medium containing 10% FBS and 10 ng/ml doxycycline to 
the cells. RNA was extracted with the RNeasy MinElute kit (Qiagen) and treated 
with DNase I. After DNA digestion, RNA was converted into cDNA for subsequent 
amplification by Taq DNA PCR. The DNA was analyzed by Sanger sequencing 
(Eurofins Genomics, Germany). We quantified A-to-I editing yields by measuring 
the height of the resulting guanosine peak divided by the sum of the peak heights 
of the guanosine and adenosine peaks at a respective site. In general, negative 
controls were run for all experiments and never showed detectable editing.

Potential editing at the DNA versus the RNA level. To check for potential A-to-I 
editing of the genomic DNA beside the targeted RNA, we used the innuPREP 
DNA/RNA mini kit (Analytik Jena, Germany) to extract genomic DNA and  
RNA from cells in parallel. We followed the manufacturer’s protocol. Cellular  
RNA was further reverse-transcribed as described above, and the genomic  
DNA was immediately amplified by Taq DNA PCR and sequenced without  
reverse transcription. No A-to-G change in the DNA was detectable 
(Supplementary Fig. 13).

Potency and time dependency. For the potency and the time-dependence 
experiments, RNA was isolated with 500 µ l of TRI reagent (Sigma-Aldrich). 

Chloroform (100 µ l) was added to extract the RNA for precipitation with 
isopropanol (350 µ l) in the presence of linear acryl amide (1.5 µ l; 5 mg/ml). The 
RNA pellet was washed twice (500 µ l of 75% ethanol) and was then dissolved in 
RNase-free water (30 µ l). Furthermore, we tested whether the editing efficiency and 
potency were dependent on the formation of the covalent bond between gRNA and 
SNAP–ADAR. gRNAs that lacked the BG moiety could elicit substantial editing 
only with the hyperactive enzymes (up to 70% editing yield), and required ∼ 50-
fold higher amounts of gRNA (ED50 (effector dose for a half-maximum response) 
~ 6–7 pmol per well; Supplementary Fig. 14). With the wild-type enzymes, no 
substantial editing was obtained even at the highest gRNA concentration  
(20 pmol per well). The target site in the potency screen was UAG site 2 in the ORF 
of endogenous GAPDH mRNA. The target in the time-dependency screen was a  
5′ -UAG site in the 3′ -UTR of endogenous GAPDH mRNA.

Triplet scope. When studying the editing scope with all 16 5′ -NAN triplets, we 
chose targets such that no amino acid change resulted. For four triplets, sites had 
to be chosen that elicited amino acid changes. Then, sites were selected that were 
expected not to interfere with GAPDH activity (Supplementary Note 4).

Applicability. In terms of maximum yield (up to 90%), potency (≥ 1 pmol per well), 
and duration (several days), site-directed RNA editing behaves similarly to RNA 
interference with transfected short interfering RNAs20 in cell culture and may allow 
numerous applications. However, it is difficult to reliably predict the outcome of 
an editing reaction from the triplet preference alone (Fig. 1e). The accessibility of 
an arbitrary target might be limited by RNA secondary structure, RNA-binding 
proteins21, low mRNA copy numbers, and short half-lives.

Off-target editing. Accurate analyses uncovered an example of off-target 
editing at the targeted transcript but outside the gRNA–mRNA duplex. This was 
undetectable for SA1/2, but was found for SA1Q (50% editing of one AAG triplet 
in GAPDH mRNA) and for SA2Q (70% editing of a CAG site in GAPDH mRNA). 
These two strongly edited sites in GAPDH mRNA were predicted by mfold to 
be located in highly double-stranded regions of the transcript (Supplementary 
Fig. 15). In accordance, editing yields correlated with the proximity of the gRNA 
binding site, reminiscent of the recently described TRIBE method to elucidate 
binding sites of RNA-binding proteins22.

Next-generation RNA-sequencing experiments. The RNA editing was done 
by transfection of 5 pmol of gRNA targeting a 5′ -UAG triplet in the 3′ -UTR of 
ACTB mRNA into the respective Flp-In cell line as described above. Overall, 
seven settings were implemented, each with an independent duplicate: (1) empty 
lipofection into empty (i.e., not expressing SA proteins) Flp-In 293 cells, (2) gRNA 
lipofection into SA1+ cells, (3) gRNA transfection into SA2+ cells, (4) empty 
transfection into SA1Q+ cells, (5) empty transfection into SA2Q+ cells, (6) gRNA 
transfection into SA1Q+ cells, and (7) gRNA transfection into SA2Q+ cells. RNA 
was isolated with the RNeasy MinElute kit, treated with DNase I, and purified 
again with the RNeasy MinElute kit. Purified RNA (1.2 µ g) was delivered to CeGaT 
(Germany) for poly(A)+ mRNA sequencing. The library was prepared from 100 ng 
of RNA with the TruSeq stranded mRNA library prep kit (Illumina) and sequenced 
with a HiSeq 4000 (50 million reads, 2 ×  100 bp paired end; Illumina).

Mapping of RNA-seq reads. We adopted a previously published pipeline to 
accurately align RNA-seq reads onto the genome23,24. We used BWA25 to align the 
reads to a combination of the reference genome sequences and exonic sequences 
surrounding known splicing junctions from known gene models. Each of the 
paired-end reads was mapped separately using the commands “bwa aln fastqfile” 
and “bwa samse -n4.” We then chose a length of the splicing junction that was 
slightly shorter than the RNA-seq reads to prevent redundant alignment  
(i.e., 95 bp for reads 100 bp in length). The reference genome used was hg19, and 
the gene models were obtained through the UCSC Genome Browser for Gencode, 
RefSeq, Ensembl, and UCSC Genes. We considered only uniquely mapped reads 
with mapping quality q >  10 and used SAMtools rmdup26 to remove clonal reads 
(PCR duplicates) mapped to the same location. Of these identical reads, only the 
read with the highest mapping quality was kept for downstream analysis. Unique 
and nonduplicate reads were subjected to local realignment and base-score 
recalibration using the IndelRealigner and TableRecalibration from the Genome 
Analysis Toolkit (GATK)27. The above steps were applied separately to each of the 
RNA-seq samples.

Identification of editing sites from RNA-seq data. We used the UnifiedGenotyper 
from GATK27 to call variants from the mapped RNA-seq reads. In contrast to 
the usual practice of variant calling, we identified the variants with relatively 
loose criteria by using the UnifiedGenotyper tool with options stand_call_conf 0, 
stand_emit_conf 0, and output mode EMIT_VARIANTS_ONLY. Variants from 
nonrepetitive and repetitive non-Alu regions were required to be supported by at 
least three reads containing mismatches between the reference genome sequences 
and RNA-seq data. Supporting of one mismatched read was required for variants 
in Alu regions. We subjected this set of variant candidates to several filtering 
steps to increase the accuracy of editing-site calling. We first removed all known 
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human single-nucleotide polymorphisms (SNPs) present in dbSNP (except SNPs of 
molecular type ‘cDNA’; database version 135; http://www.ncbi.nlm.nih.gov/SNP/), 
the 1000 Genomes Project, and the University of Washington Exome Sequencing 
Project (http://evs.gs.washington.edu/EVS/). To remove false positive RNA-seq 
variant calls due to technical artifacts, we applied further filters as previously 
described23,24. In brief, we required a variant call quality Q >  2023,24, discarded 
variants if they occurred in the first six bases of a read25, removed variants 
in simple repeats26, removed intronic variants that were within 4 bp of splice 
junctions, and discarded variants in homopolymers27. Moreover, we removed sites 
in highly similar regions of the genome by BLAT28. Finally, variants were annotated 
with ANNOVAR29 on the basis of gene models from Gencode, RefSeq, Ensembl, 
and UCSC. The resulting sets of sites identified from RNA-seq data were compared 
with all sites available in the RADAR database16 and were subsequently referred to 
as ‘known’ sites if also found in RADAR, or ‘novel’ sites if not found.

Identification of significantly differently edited sites. We quantified editing levels 
of edited sites with coverage of ≥ 50 reads (combined coverage of both replicates) 
and performed Fisher’s exact tests (adjusted P <  0.01) to identify significantly 
differently edited sites across the samples (editing difference > 10%). Additional 
next-generation sequencing (NGS) quality data are given in Supplementary Note 4.

Benchmarking with Cas13b–ADAR and λN-deaminases. The SNAP–ADAR 
approach was benchmarked against the recently published Cas13b–ADAR 
approach (Supplementary Notes 1 and 2, Supplementary Table 2, and 
Supplementary Figs. 10 and 11). First, we repeated the editing of KRAS mRNA sites 
1 and 2 with SA1 and SA1Q. We observed that SA1Q achieved better editing yields 
than Cas13b–ADAR version 1 (e.g., 50–65% compared with 15–25% for KRAS 
site 1), SA1 was better than Cas13b–ADAR version 2 (e.g., 18–20% versus ~12%), 
editing depended strictly on the targeting mechanism, and there was no off-target 
editing in the mRNA–gRNA duplex (Supplementary Note 1). ADARs are known 
to edit double-stranded RNA substrates of > 30 bp readily. We wondered whether 
large Cas13–gRNAs (85 nt, 50-bp duplex) are able to recruit human ADAR or 
any other ADAR fusion protein independently of a specific targeting mechanism. 
Indeed, we found that such 50-bp gRNAs recruited overexpressed ADAR2 but 
also engineered SA2Q to elicit editing of a cotransfected reporter transcript at 
levels similar to those achieved with Cas13–ADAR (~25–30%; Supplementary 
Fig. 11, Supplementary Note 2). This medium-level editing was apparently due 
to self-targeting of the deaminase (domain) alone and independent of a specific 
targeting mechanism. Most of the experiments reported by Cox et al.9 were done 
under such co-overexpression conditions, and it remains unclear to what extent 
their results rely on a true (Cas-dependent) targeting mechanism and which, if any, 
are overexpression artifacts (self-targeting). The lack of codon preference reported 
for repairV1 (with 10–35% editing yields) could be impaired by this. Cox et al.9 
argue that Cas–ADAR has a weak codon preference due to tight binding of the 
Cas protein to the mRNA–gRNA complex, but in our opinion they do not report 
sufficient data or controls to support this. In the worst case, a very stable long RNA 
duplex wrapped by Cas–ADAR could inhibit translation, in particular when the 
start codon is close or even included, as this is given for the KRAS transcript they 
reported on (Supplementary Note 1). As we have shown here in the context of 
SNAP–ADARs, translation inhibition with puromycin can indeed increase editing 

levels in the ORF (Supplementary Fig. 3). In this respect, it is notable that we have 
tested the mutation from their ‘high-specificity’ Cas–ADAR repair version  
2 (T375G), but in the context of SNAP–ADAR. For this, we genomically integrated 
SA2QG (E488Q +  T375G) and tested it side-by-side with SA1 and SA2 for the 
editing of five codons in the ORF of the GAPDH transcript (UAG, CAA, CAG, 
AAG, and GAU). SA2QG elicited only minor editing at the UAG codon (15%)  
and no significant yield with the other four codons (Supplementary  
Fig. 10). It was always less active than the two wild-type SA enzymes, which 
produced editing at some of the codons (~40% at UAG, 23–66% at CAA, 18% at 
CAG). In the ORF, SA2QG seemed unable to edit even the preferred UAG codon 
sufficiently. However, editing was successful when we targeted a UAG triplet in 
the 3′ -UTR of GAPDH mRNA (80% SA2QG, 85–90% for wild-type SA enzyme). 
Unfortunately, Cox et al.9 do not comprehensively characterize repairV2 or show 
whether and how it promotes the editing reaction. Notably, our data predict 
that the wild-type deaminase would always be the better choice (compared with 
repairV2) to achieve decent editing at preferred codons with manageable off-target 
edits also in the context of Cas–ADAR. The true mechanism of Cas–ADAR-
directed RNA editing and how it can be best applied remain partly unclear. 
We also provide a side-by-side comparison with the λ N-deaminase approach 
(Supplementary Table 3) and reanalyzed the NGS data from Vallecillo-Viejo et al15. 
with our pipeline (Supplementary Fig. 8). In comparison, our wild-type SA1/SA2 
enzymes were highly precise and provoked several-hundred-fold less off-target 
editing. Our hyperactive enzymes SA1Q and SA2Q were less prone to off-target 
editing than the wild-type versions of the λ N-deaminases and much less off-target 
prone than the hyperactive version of the λ N-deaminases.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. All original NGS data have been deposited in the NCBI GEO 
database under accession GSE112787. Our NGS data analysis is available online 
as Supplementary Data. All programs used are publically available. The gene 
sequences of all constructs are given in the Supplementary Information; plasmids 
can be obtained from the corresponding author upon request.
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Supplementary Figure 1 

Site-directed RNA editing by SNAP-tagged ADARs driven by short, chemically modified guide RNAs. 

a) General concept: The double-stranded RNA-binding domains (dsRBDs) of hADAR have been substituted with the SNAP-tag. The 
latter is able to form a covalent bond to a guideRNA that is modified with benzylguanine (BG). When bound to the SNAP-ADAR, the 
guideRNA steers the attached SNAP-ADAR protein to the target RNA and forms the necessary secondary structure for A-to-I editing 
catalyzed by the deaminase domain. b) A typical BG-guideRNA that targets a UAG site with a 5´-CCA anticodon. The guideRNA is 22-
nt long and is densely chemically stabilized by 2’-methoxylation and terminal phosphorothioate linkages (commercially available). The 
first three 5’-terminal nucleotides do not base pair with the target RNA, but serve as a linker. The sequence comprises an unmodified 
ribonucleotide gap (5´-CCA) which faces the target site and contains a central mismatching cytosine opposite the targeted adenosine 
for efficient deamination. A commercial C6-amino-linker is located at the 5’-end of the guideRNA to introduce the BG modification to the 
full length oligonucleotide. Modification of the guideRNA with OSu-activated BG can be performed in any reaction tube. c) Experimental 
setup. Cells with stably integrated SNAP-ADAR (SA) are seeded into 24-well plates with medium containing doxycycline (dox) to induce 
SA expression. 24 h later, the cells were reverse-transfected with the guideRNA (see online methods). After 24 h, the cells were lysed 
for RNA isolation to analyze RNA editing. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Supplementary Figure 2 

Concurrent editing of three 5′-UAG sites in endogenous GAPDH transcript.  

The respective SA‐expressing cells where transfected with either a single gRNA or 3 gRNAs against distinct sites on the endogenous 
GAPDH transcript. Data are shown as the mean±SD, N=3 independent experiments, black dots represent individual data points. 



 
 
 
 
 

 

Supplementary Figure 3 

Effect of global translation inhibition (puromycin) on RNA editing. 

a) SA1 and SA2 cells were seeded on poly-D-lysine-coated glass slides. After one day, doxycycline (end concentration = 10 ng/ml) was 
added to induce SA enzyme expression. To inhibit translation, cells were additionally supplemented with 5 µg/ml puromycin, 
respectively. After 12h, cells were stained with BG-FITC and Hoechst. The staining shows that the applied amount of puromycin (5 
µg/ml) is sufficient to block translation. The scale bar represents 40 µm. b) Cells were reverse transfected with BG-gRNA (5 pmol/96 
well) targeting a UAG site either in the ORF (site #2) or in the 3’-UTR of GUSB. After 4 h, the cells were optionally incubated with 5 
µg/ml puromycin for 12 h. Then, RNA was isolated and reverse transcribed for Sanger sequencing. As one can see, the editing levels 
differ between ORF and 3´-UTR in the absence of puromycin with less efficient editing in the ORF than in the 3´-UTR. After addition of 
puromycin translation is blocked (panel a) and the editing levels in the ORF increase to the levels obtained in the 3´-UTR (panel b), 
which don´t change notably under puromycin treatment. This supports our assumption that editing in the ORF can be kinetically limited 
by the process of translation. a), b) Two independent experiments were performed with similar results. 



 
 
 
 
 
 
 
 
 
 
 

 

Supplementary Figure 4 

Controlling off-target editing in SA1Q/SA2Q
+
 cells. 

a) General strategy. To avoid unintended editing of an adjacent adenosine at the target site, the opposing base in the guideRNA can be 
modified by 2’-methoxylation (M) or 2’-fluorination (F). This is exemplary shown for the triplet CAA. b) In the study, off-target editing of 
an adjacent adenosine was detected in the triplets CAA, AAA, AAC and UAA when particularly using SA2Q cells. However, off-target 
editing was remarkably reduced when the strategy was applied. Data are shown as the mean±SD, N=3 independent experiments, black 
dots represent individual data points. 



 
 
 
 
 

 

Supplementary Figure 5 

Off-target editing and off-target codon preferences caused by SA enzymes. 

a) Overall off-target sites are ranked by editing yields. b) Logo represents the sequence conservation around all significant off-target 
sites for SA1Q and SA2Q. c) Analysis of the codon changes for all off-target editings that were found in SA1Q and SA2Q cells. The 
ratio was calculated in relation to the total number of editing events happened in the coding region of the transcripts. 



 
 
 

 

Supplementary Figure 6 

Gene expression analysis. 

FPKM values of approximately 25.000 expressed transcripts are compared between cells containing the empty pcDNA5 vector with 
SA1Q cells + gRNA (a) or SA2Q cells + gRNA (b). Plotted is the log2 fold change in expression against the FPKM of the respective 
transcript in the control cell line (pcDNA5). The left plots show the data for all transcripts, the right plots for the low expressing 
transcripts only (FPKM < 100). Analysis was restricted to transcripts with FPKM values ≥ 2 in either the control or the SNAP-ADAR-
expressing cell line. No strongly expressed transcripts (FPKM > 100) show log2-fold changes >1. Log2-fold changes of low expressing 
genes originate from transcripts with low FPKM and very low read coverage (typically non-coding RNAs, read-coverage below 50). The 
significance of such expression changes are difficult to assess. Clearly visible was the different expression of SNAP-ADAR in the 
engineered versus control cell line as highlighted by light blue circles. 



 
 
 
 
 
 
 
 
 
 

 

Supplementary Figure 7 

Targeting of KRAS mRNA by SA1 and SA1Q. 

The applied BG-gRNAs form 19 bp duplex structures with the target transcript. No off-target editing was detected within these 
mRNA/gRNA duplexes in KRAS mRNA. For further discussion, see also Supplementary Note 1. N=3 independent experiments were 
performed with similar results. 



 
 

Supplementary Figure 8 

Reanalysis of NGS data produced by Vallecillo-Viejo et al.
15

 according to our pipeline (Methods). 

a) Number of transcripts covered in RNA sequencing of the samples with 2boxB-driven 4λN-ADAR2 enzymes. Shown are numbers of 
detected transcripts with a FPKM value ≥ 2. The dashed line shows the average of detected transcripts with FPKM value ≥ 2 produced 
in this study. b) Summary of off-target sites produced by 2boxB-driven 4λN-ADAR2 enzymes. Given are the numbers of off-target sites 
significantly differently edited compared to the related cells lacking editing enzyme and gRNA. NGS data were re-analyzed according to 
the protocol for detecting off-target editing by SNAP-ADAR enzymes (see online methods). 

1
Nonsynonymous refers to editing that 

results in amino acid change (syn. = synonymous; nonsyn. = nonsynonymous); 
2
others refers to editing in introns, intergenic regions, 

and ncRNA.
3
Editings were carried out in 293T cells transfected with 4λN-ADAR2 enzyme, CFTR Y122X reporter and 2boxB-gRNA by 

Vallecillo-Viejo et al., RNA Biol. (2018). c) Ranking of all off-target editing sites by the editing level. Left panel: wildtype SA versus wt 
λN-ADAR; right panel: hyperactive SA versus hyperactive λN-ADAR. d) Like c) but ranking of all nonsynonymous off-target edits.  



 
 

 

Supplementary Figure 9 

Changes in editing efficiency and specificity upon variation of SNAP–ADAR induction time (0–48 h, as indicated). 

a) The expression of SA1Q or SA2Q was varied and quantified by western blot analysis (shown in relative expression, asterisks (*) 
indicate unspecific protein bands). We assessed the effect of reduced SA expression levels on editing the on-target (GAPDH, ORF site 
#2) versus several high-ranked off-targets in SA1Q (b) and SA2Q cells (c). For SA1Q (b), we tested three top-ranked nonsynonymous 
off-targets (FN1, CCNI, LAMA1) and one top-ranked, known 3´-UTR editing site (RPS23). For SA2Q (c), we tested three top-ranked 
nonsynonymous off-targets (SSRP1, CCNI, LAMA1) and two top-ranked 3´-UTR editing sites (SSR2, RPS23). On-target editing 
tolerated the reduction of SA expression much better compared to most off-targets. At 4h induction (4-8% SNAP-ADAR protein 
expression compared to full induction after 48h), most off-target editing yields were reduced by 2- to 3-fold while the on-target editing 
was only reduced by 35% (SA1Q) and 25% (SA2Q) compared to the editing level at full induction (48h). a)-c) The data presented are 
obtained from a single experiment. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Supplementary Figure 10 

Studying the Cas13b–ADAR repairV2 mutant (E488Q + T375G) in the context of the SNAP–ADAR system (SA2QG). 

The respective double mutant (SA2QG) was genomically integrated into Flip-In cells analog as described for the other four enzymes 
(SA1, SA2, SA1Q, SA2Q). We then studied the editing of 6 different sites in the GAPDH transcript entirely analog as described. 
Interestingly, SA2QG was only active in the 3´-UTR. It was almost unable to edit targets in the ORF. SA2QG lagged behind the 
wildtype enzymes SA1 and SA2 in all studied codons. This is in contrast to Cox et al. (Ref. 10) who claim Cas13b-ADAR repairV2 to be 
a more specific mutant that still enables good editing yields. Editing levels between 5% and 10% are difficult to detect precisely by 
Sanger sequencing, editing levels below 5% (dotted line) cannot be detected. The data presented here is a single experiment (N = 1). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Supplementary Figure 11 

Recruitment of various editases by Cas13–gRNAs (with and without DR domain). 

Overexpressed Cas13-guideRNAs can also recruit human ADAR2 or SA2Q to elicit editing in co-transfected reporter transcripts to 
yields similar as Cas13b-ADAR repairV1 does. For further details and discussion, see Supplementary Note 2. Data are shown as the 
mean±SD, N=3 independent experiments, black dots represent individual data points. DR = Cas13 directing domain 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Supplementary Figure 12 

Western blotting analysis of SNAP–ADAR expression. 

Five Flip-In T-REx cell lines were generated expressing either the empty vector (pcDNA5) or SNAP-ADAR genes (SA1, SA2, SA1Q, 
SA2Q) under the control of a doxycycline-inducible CMV promoter. Western blot analysis was done after the cells were incubated with 
and without doxycycline for 1 day. A SNAP-tag antibody was used to evaluate the protein levels of the SNAP-ADAR enzymes. The 
expression of ß-actin served as reference. Asterisks (*) indicate unspecific protein bands. N = 2 independent experiments were 
performed with similar results. 



 

Supplementary Figure 13 

Editing control gDNA versus cDNA . 

To ensure that editing occurred only at the transcript and not the genomic DNA (gDNA), sequencing traces of gDNA and cDNA derived 
from mRNA were compared after site-directed editing in the 3’-UTR of GAPDH. Only the cDNA traces showed an A-to-G change for 
SA1Q and SA2Q, indicating that both enzymes target only RNA but not DNA. N = 2 independent experiments were performed with 
similar results. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Supplementary Figure 14 

Dose-dependence of editing when using a control gRNA lacking the benzylguanine (BG) moiety. 

gRNA lacking the benzylguanine moiety was transfected in amounts of 0.625 pmol – 20 pmol, showing that efficient editing requires 
BG-dependent covalent bond formation via the SNAP-tag BG reaction. In particular, the wt enzymes SA1 and SA2 do not elicit editing. 
The hyper-active enzymes (SA1Q/SA2Q) require much higher doses to elicit editing when lacking the BG moiety. Data are shown as 
the mean±SD, N=3 independent experiments. 



 
 
 
 
 
 
 
 
 

 

Supplementary Figure 15 

gRNA-dependent off-target editing in GAPDH transcript outside the gRNA–mRNA duplex. 

Different from the three other targets (ACTB, GUSB, SA), off-target editing was found in the GAPDH transcript when targeting the 
GAPDH transcript. These off-target sites are all outside the mRNA/guideRNA duplex. a) The GAPDH transcript was targeted with 
gRNAs at two sites in the ORF (#1, #2) and one site in the 3’UTR. Six off-target sites were observed (ORF 508/516/656/791 and 3’-
UTR 135/150). b) Secondary structures of the off-target sites with strongest editing (ORF 791 and 3’-UTR 135) were predicted with 
mfold. 250 nt up- and downstream from the editing site were chosen for the analysis. The light blue circles highlight the off-target site. 
c) Editing of the respective six off-target sites in SA1Q cells transfected with the respective guideRNA(s) against the three target 
adenosines in the transcript. Off-target editing was promoted when the editase was directed into vicinity of the off-target site. d) The 
same observation was made for SA2Q cells, but with higher editing levels and different off-target preference. c), d) Data are shown as 
the mean±SD, N=3 independent, black dots represent individual data points. 
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Supplementary Table 1. Sequence similarity between top-ranked off-targets (TMX3 and AAGAB) and the 
target site in ß-actin (ACTB) reveals sequence similarity as the cause of guideRNA-dependent off-target 
editing.   

mRNA sequence bound by gRNAa 

ACTB 5’-GGGAGGUGAUAGCAUUGCU-3’ 
TMX3 5’-AGGAGGUGAUAGCAUUUUG-3’ 
AAGAB 5’-CCAGGUUGAUAGCAUUGUG-3’ 

a edited adenosines are highlighted in bold and not matching nucleotides in red.   
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Supplementary Table 2. Comparison SNAP-ADAR and dCas13b-ADAR system (Cox et al. Science 2017) 

 SNAP-ADAR (SA) system dCas13b-ADAR system 

Targeting System 

SNAP-tag – gRNA covalent bond 

SNAP-tag: human, < 200 aa 

gRNA: ca. 22 nt, chemically stabilized 

guideRNA / dCAS13b RNP assemblya) 

Cas13: bacterial >1000 aa 

gRNA: ~85 nt, genetically encoded 

 

Deaminase tested 
4 enzymes fully tested: ADAR1 and ADAR2 

each wildtype and E488Q  

1 enzyme strongly tested: ADAR2 E488Q (REPAIRv1) 

1 enzyme briefly tested: ADRA2 E488Q/T375G (REPAIRv2) 

Delivery 

SNAP-ADAR: single genomic copy, inducible 

gRNA: lipofection of chemically stabilized gRNA 

(22 nt) 

dCas-ADAR: massive overexpression via plasmid lipofection 

guideRNA: massive overexpression via plasmid lipofection 

Editing of endogenous 

targets 
ACTB, GAPDH, GUSB, SA, KRAS, STAT1 KRAS and PPIB 

Concurrent editing 

3 sites or 4 endogenous house keeping 

transcripts, no loss in efficiency 

2 sites or 2 endogenous signaling transcripts 

(KRAS, STAT1), no loss in efficiency  

Nothing shown 

Editing range for the best 

editable codon (UAG) on 

endogenous targets 

wild-type SA: 15 - 90%, (12 sites on 6 targets, 

ORF & UTRs) 

SAQ variants: 46 - 90%, (13 sites on 6 targets, 

ORF & UTRs) 

REPAIRv2: 7-25%,  (5 sites on 2 targets, only ORF)  

 

REPAIRv1: 15-40%,  (5 sites on 2 targets, only ORF) 

 

Codon scope 
all 16 codons tested on an endogenous target 

with SA1Q and SA2Q 

all 16 codons tested, but on an overexpressed reporter 

transcript with overexpressed Cas-ADAR. The co-

overexpression together with the low editing yields suggest 

that the shallow codon specificity observed could be an 

overexpression artefact. Codon scope was only tested for 

REPAIRv1, not for version 2 

Applications in the 

manuscript 

Manipulation of signaling transcripts, KRAS and 

STAT1, recoding of phosporylation switch 

Tyr701 in STAT1 

Manipulation of the signaling transcript KRAS, but not at a 

phosphorylation site. The claimed editing of 34 “release-

relevant transcripts” (Figure 4) is somewhat misleading.b) 

Editing duration stable over several days Nothing shown 

Off-targets in 

gRNA/substrate duplex 

the guideRNA/mRNA duplex is small (19 bp), 

chemical modification of guideRNA blocks off-

target editing almost entirely even in A-rich 

codons 

General: the guideRNA/mRNA duplex is large (50 bp) 

REPAIRv1: massive problem, several sites, high yields  

REPAIRv2: better, but present, too little data is shown yet 

Global off-target editing 

Wild-type SA: almost absent  

SAQ variants: moderate (≈1000 sites, might be 

further decreased by lowering SAQ expression) 

REPAIRv2: almost absent (but the 125x coverage/deep 

sequencing analysis (Figure 6D) was done with 15fold less 

Cas13-ADAR plasmid (10 ng instead of 150 ng) than used in 

the relevant editing reactions on KRAS and PPIB (Figure 6F & 

Figure 5). It is unclear if KRAS/PPIB editing would be effective 

with 15fold less CAS13-ADAR plasmid.c) 

 

REPAIRv1: extremely high (>18 000 sites, even though 15fold 

less Cas13-ADAR was transfected then in almost all other 

experiments)  

 

Unique property 

1) Chemically stabilized guideRNAs enable 

perfect specificity inside gRNA/mRNA duplex 

2) low expression of editase enables high 

editing yields with reduced global off-target 

editing  

1) Fashionable 

there are at least two other RNA editing systems that apply 

encodable guideRNAs which encounter the same specificity 

problems as Cas13-ADAR does (local off-target editing in the 

guideRNA/mRNA duplex, global off-target editing due to 
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2) clearly proven, covalent RNA targeting 

3) very short guideRNA/mRNA duplex, unlikely 

to interfere with endogenous ADARs or 

translation 

4) simple co-transfection of guideRNAs enables 

concurrent editing 

overexpression, in particular with hyperactive ADAR 

deaminases, low editing yields with wildtype or less active 

ADAR domains like version2) 

 

a) It remains to be determined to which extent the RNA-targeting via the 35 nt DR-helix in the Cas13-
guideRNAs and dCas13b interaction contributes to Cas13-ADAR editing, in particular under overexpression 
conditions on reporter constructs. From previous control experiments we know that under overexpression 
conditions editing can be obtained even in absence of any RNA targeting mechanism by self-targeting of the 
ADAR, in particular for long RNA duplexes (like >30 bp). When carefully reading the Cox et al. paper, the 
evidence is lacking that the dCAS13/guideRNA RNP assembly is strictly required for editing; the respective 
important control for this (Figure S8 in the Cox et al. paper) is flawed: it shows that overexpression of the 
ADAR2 deaminase lacking Cas13 doesn´t give editing, but the guideRNA is missing too. There is also no 
proof that the ADAR deaminase domain they express is giving stable, catalytically functional protein. On one 
hand, they claim that the free-floating deaminase is giving rise to off-target editing. On the other hand, their 
control ADAR deaminase alone (ADAR2DD) gives much less off-targets compared to REPAIRv1 (Figure S8, 
C) indicating that the truncation is less functional per se. The proper control would have been to mutate the 
guideRNA (at the DR domain or leave the DR domain away). We tested the Cas13 guideRNAs and found 
them similarly active (editing yields around 25%) when overexpressing them together with either wildtype 
ADAR2 or SNAP-ADAR2Q, independent of the DR domain (see Supplementary Figure 11, and further 
Supplementary Notes 1 and 2 below). This shows that any overexpressed highly active ADAR fusion can 
edit 50 bp guideRNA/mRNA duplexes independent of a targeting mechanism to similar yields under the 
conditions reported by Cox et al. (their Figure 2-4).  

b) Cox et al. suggest that 34 disease-relevant editings have been achieved (Figure 4E). This is somewhat 
misleading, in particular the suggestive Figure 4G that pretends that the data from the codon screen can be 
transferred to thousands of clinical variants. As the 34 disease-relevant transcripts are only small pieces of 
cDNA (ca. 200 bp) that have been overexpressed within a reporter cassette it is unlikely that one will be able 
to edit the respective real transcripts with the suggested editing yields in a relevant cell with the current Cas-
ADAR versions (in particular version2) and the current delivery methods. It is also unclear if any of the 
mutations (all selected for simple-to-edit 5´-UAG codons) is really relevant for human disease (incidence, 
penetrance), and what editing yield might be required for therapy. Anyway, only hyperactive, off-target-prone 
REPAIRv1 has been used, the more precise REPAIRv2, which has a lower editing activity (similar or lower 
than wildtype ADAR2, see Supplementary Fig. 10), has not been characterized in this respect. Similar 
experiments with disease-relevant, and overexpressed cDNAs like CFTR, and PINK1 have anyway already 
been described before by others, however, additionally including a relevant phenotypic change. 

c) Cox et al. use very high amounts of plasmids (150 ng/96 well Cas-ADAR, 300 ng/96 well guideRNA 
plasmid) for the editings. However, for the deep sequencing analysis they transfect only 10 ng/96 well Cas-
ADAR plasmid (if understood correctly from their manuscript). One can expect that 15fold less plasmid will 
strongly reduce the transfection efficiency, thus the background of many untransfected cells will clearly 
reduce global off-target editing, while editing on a co-transfected reporter transcript (Cluc) is less affected by 
lowering Cas-ADAR (Cox et al. Fig S15). Nevertheless, one can expect that editing of an endogenous target 
(like KRAS, PPIB) will strongly suffer if less cells are transfected. If we understand the paper correctly, the 
editing on endogenous targets was not shown with low plasmid transfection. For the SNAP-ADAR system, 
however, we can much better and more homogenously control the enzyme expression levels (by doxycycline 
induction) and we did show to what extent the reduction of SNAP-ADAR does change the editing at 
endogenous targets and at selected off-targets (see our Supplementary Figure 9). 
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Supplementary Table 3. Comparison SNAP-ADAR and 4λN-DD / BoxB system (Vallecillo-Viejo et al. RNA 

Biol 2018 & Sinnamon et al. PNAS 2017)a) 

 SNAP-ADAR (SA) system 4λN-DD / BoxB system 

Targeting System 

SNAP-tag – gRNA covalent bond 

SNAP-tag: human, < 200 aa 

gRNA: ca. 22 nt, chemically stabilized 

 

λN / BoxB RNA peptide interaction 

λN (typically 4 copies): bacteriophage, ca. 100 aa 

optional 3x NLS: ca. 30 aa 

gRNA: ~84 nt, genetically encoded 

 

Deaminase tested 
4 enzymes fully tested: ADAR1 and ADAR2 

each wildtype and E488Q  

several versions, all based on ADAR2 deaminase domain, 

either wt or E488Q in combination with 1-4 copies λN peptide, 

with and without NLS 

4 copies λN increase efficiency; 3xNLS can reduce off-target 

editing by ca. 50% 

Delivery 

SNAP-ADAR: single genomic copy, inducible 

gRNA: lipofection of chemically stabilized gRNA 

(22 nt) 

Enzyme: currently massive overexpression via plasmid 

lipofection (or AAV) 

guideRNA: massive overexpression via plasmid lipofection (or 

AAV) 

Editing of endogenous 

targets 
ACTB, GAPDH, GUSB, SA, KRAS, STAT1 

This system has mainly been characterized with reporter 

constructs, in particular GFP and CFTR; to my knowledge only 

a single example of an endogenous target has been described 

(MeCP2); the targeting of endogenous transcripts has not yet 

been tested systematically  

Concurrent editing 

3 sites or 4 endogenous housekeeping 

transcripts, no loss in efficiency 

2 sites or 2 endogenous signaling transcripts 

(KRAS, STAT1), no loss in efficiency  

Not shown; it is unclear if several different guideRNAs can 

ever be co-expressed as very high amounts of U6-guideRNA 

plasmids are currently used already for a single target (like 4-

15fold more than the editase plasmid) 

Editing range for the best 

editable codon (UAG) on 

endogenous targets 

wild-type SA: 15 - 90%, (12 sites on 6 targets, 

ORF & UTRs) 

SAQ variants: 46 - 90%, (13 sites on 6 targets, 

ORF & UTRs) 

With the E488Q variant editing levels of 70-80% have been 

observed on reporter transcripts GFP and CFTR; with the 

wildtype enzyme editing levels typically stay below (more like 

40-60%); so far only a few preferred codons have been 

targeted, mostly UAG and mostly in reporter transcripts   

 

Codon scope 
all 16 codons tested on an endogenous target 

with SA1Q and SA2Q 
There is no systematic test on the full codon scope published 

Applications in the 

manuscript 

Manipulation of signaling transcripts, KRAS and 

STAT1, recoding of phosporylation switch 

Tyr701 in STAT1 

The system has been explored for the repair of CFTR (cDNA) 

and endogenous MeCP2 

Editing duration stable over several days Nothing shown yet 

Off-targets in 

gRNA/substrate duplex 

the guideRNA/mRNA duplex is small (19 bp), 

chemical modification of guideRNA blocks off-

target editing almost entirely even in A-rich 

codons 

General: the guideRNA/mRNA duplex is large (50 bp, twice 

interrupted by the two 17 nt BoxB hairpins) 

The system suffers from major off-target editing inside the 

gRNA/mRNA duplex (e.g. PNAS 2017), even though 

endogenous MeCP2 was repaired in primary cells to ca. 75% 

yield, this came along with 5 off-target editings in the duplex 

(10-50% yield). 

The system also elicits strong guideRNA dependent off-target 

editing in the target transcript but outside the gRNA/mRNA 

duplex due to a proximity effect; e.g. RNA Biol 2018, 

depending on the enzyme 5-14 off-target editings (10-55%) 

have been found along the CFTR transcript  
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Global off-target editing 

Wild-type SA: almost absent  

SAQ variants: moderate (≈1000 sites, 

decreased by lowering SAQ expression) 

The E488Q version of Vallecillo-Viejo et al. was also tested by 

Cox et al. (Supporting Figure S9 in their paper) and showed 

massive global off-editing at rates very similar to Cas13-ADAR 

repairV1. We performed a re-analysis of Vallecillo-Viejo et al.’s 

NGS analysis with our pipeline (see Supplementary Figure 8). 

The wildtype enzymes elicit several hundred-fold more off-

target edits compared to the wt SA. The wt Vallecillo-Viejo et 

al. enzymes are even more off-target-prone than our 

hyperactive SA1Q/SA2Q mutants. The hyperactive Vallecillo-

Viejo et al. enzymes seem extremely off-target-prone. 

Unique property 

1) Chemically stabilized guideRNAs enable 

proper specificity inside gRNA/mRNA duplex 

2) low expression of editase enables high 

editing yields with reduced global off-target 

editing  

2) clearly proven, covalent RNA targeting 

3) very short guideRNA/mRNA duplex, unlikely 

to interfere with endogenous ADARs or 

translation 

4) simple co-transfection of guideRNAs enables 

concurrent editing 

1) the system is fully genetically encoded 

2) the entire system (editase + 6 copies guideRNA) has been 

delivered as a single AAV  

 

a) This system has already undergone several rounds of refinement. We focused on the results reported in 
the two most recent papers.   
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Supplementary Table 4. Sequences of gRNAs applied in this study. BG-conjugated gRNAs were 
synthesized and PAGE-purified from commercially acquired oligonucleotides containing a 5’-amino-C6 
linker (BioSpring, Germany) as described by Hanswillemenke et al. (J. Am. Chem. Soc. 2015, 137, 15875-
15881). Nucleotides highlighted in bold are unmodified and are placed opposite the triplet with the target 
adenosine in the middle. Nucleotides highlighted in italic are modified with 2’-O-methylation, those 
highlighted in red are 2’-fluorinated nucleotides. The backbone contains terminal phosphorothioate 
linkages as indicated by “s”. The first three nucleotides at the 5’-end are not complementary to the mRNA 
substrate, but serve as linker sequence between gRNA and SNAP-tag.  

target gRNA sequence applied gRNA amounta) 

editing of various endogenous transcripts 
5’-UTR SNAP-ADAR 5’-UsCsAUUAAACG CCA GAGUCsCsGsGsA-3’ 5 pmol 
5’-UTR GAPDH isoform 2 5’-UsCsUGAAUAAU CCA GGAAAsAsGsCsA-3’ 5 pmol 
ORF #1 GAPDH 5’-UsAsUAGGGGUG CCA AGCAGsUsUsGsG-3’ 5 pmol 
ORF #2 GAPDHb) 5’-UsAsUGGUUUUU CCA GACGGsCsAsGsG-3’ 5 pmol 
ORF #1 GUSB 5’-GsGsUGCAGAUU CCA GGUGGsGsAsCsG-3’ 5 pmol 
ORF #2 GUSB 5’-AsCsAGACUUGG CCA CUGAGsUsGsGsG-3’ 5 pmol 
3’-UTR SNAP-ADAR 5’-UsAsUGUGUCGG CCA CGGAAsCsAsGsG-3’ 5 pmol 
3’-UTR GAPDHc) 5’-AsAsUAAGGGGU CCA CAUGGsCsAsAsC-3’ 5 pmol 
3’-UTR ACTB 5’-UsCsGAGCAAUG CCA UCACCsUsCsCsC-3’ 5 pmol 
3’-UTR GUSB 5’-UsAsUUUCCCUG CCA GAAUAsGsAsUsG-3’ 5 pmol 
KRAS target A/1 5’-GsAsUGCUCCAA CCA CCACAsAsGsUsU-3’ SA1: 40 pmol , SA1Q: 10 pmol  

KRAS target 2 5’-CsGsUCUCUUGC CCA CGCCAsCsCsAsG-3’ 20 pmol 

STAT1 Y701 5’-GsUsCUCUUGAU ACA UCCAGsUsUsCsC-3’ 20 pmol 
editing of all 16 adenosine-containing triplets in GAPDH isoform 1 

5’-GAA 5’-CsAsCAUGGGAU UCC CAUUGsAsUsGsA-3’ 5 pmol 
5’-GAU 5’-UsAsUCGACCAA ACC CGUUGsAsCsUsC-3’ 5 pmol 
5’-GAC 5’-CsAsCGUCAUGA GCC CUUCCsAsCsGsA-3’ 5 pmol 
5’-GAG 5’-AsAsCGAGGGAU CCC GCUCCsUsGsGsA-3’ 5 pmol 
5’-CAA 5’-GsAsAGAGGCUG UCG UCAUAsCsUsUsC-3’ 5 pmol 
5’-CAU 5’-CsAsAGAGGUCA ACG AAGGGsGsUsCsA-3’ 5 pmol 
5’-CAC 5’-AsAsCGCCAGGG GCG CUAAGsCsAsGsU-3’ 5 pmol 
5’-CAG 5’-UsAsCGCAUGGA CCG UGGUCsAsUsGsA-3’ 5 pmol 
5’-AAA 5’-UsAsCAUGACCC UCU UGGCUsCsCsCsC-3’ 5 pmol 
5’-AAU 5’-GsAsCUAGCCAA ACU CGUUGsUsCsAsU-3’ 5 pmol 
5’-AAC 5’-AsGsUCGCCACA GCU UCCCGsGsAsGsG-3’ 5 pmol 
5’-AAG 5’-UsGsUAUAUCCA CCU UACCAsGsAsGsU-3’ 5 pmol 
5’-UAA 5’-AsGsGAGGGGUC UCA CUCCUsUsGsGsA-3’ 5 pmol 
5’-UAU 5’-CsUsAGGCAACA ACA UCCACsUsUsUsA-3’ 5 pmol 
5’-UAC 5’-CsCsGAGCGCCA GCA GAGGCsAsGsGsG-3’ 5 pmol 
5’-UAG 5’-UsAsUGGUUUUU CCA GACGGsCsAsGsG-3’ 5 pmol 

avoiding off-target editing of neighboring adenosine 
5’-CAA methoxy 5’-GsAsAGAGGCUGU CG UCAUAsCsUsUsC-3’ 5 pmol 
5’-CAA fluoro 5’-GsAsAGAGGCUGU CG UCAUAsCsUsUsC-3’ 5 pmol 
5’-AAA methoxy 5’-UsAsCAUGACCCU  CU UGGCUsCsCsCsC-3’ 5 pmol 
5’-AAA fluoro 5’-UsAsCAUGACCCU  CU UGGCUsCsCsCsC-3’ 5 pmol 
5’-AAC methoxy 5’-AsGsUCGCCACA GC UUCCCGsGsAsGsG-3’ 5 pmol 
5’-AAC fluoro 5’-AsGsUCGCCACA GC UUCCCGsGsAsGsG-3’ 5 pmol 
5’-UAA methoxy 5’-AsGsGAGGGGUCU CA CUCCUsUsGsGsA-3’ 5 pmol 
5’-UAA fluoro 5’-AsGsGAGGGGUCU CA CUCCUsUsGsGsA-3’ 5 pmol 

a) The indicated gRNA amounts were used for single and concurrent editings. 
b) This gRNA was additionally applied to test the dose dependency of RNA editing (Fig. 1c) 
c) This gRNA was additionally applied to test the time dependency of RNA editing (Fig. 1b) 
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Editing of two sites in endogenous KRAS as previously reported by Cox et al. with Cas13b-ADAR 
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Supplementary Note 1. Editing of KRAS target #1, #2, and STAT1 with SNAP-ADARs. Editing of KRAS 
target #1/A gives very high yields with SA1Q and absolutely no off-target editing at the sites reported for 
Cas13b-ADAR (*). Note also the large mRNA/gRNA duplexes applied for Cas13b-ADAR guideRNAs (50 bp, 
blue lines) versus the short ones applied for SNAP-ADAR (green lines). For target #1/A, the long Cas13 
guideRNA even overlaps with the translation start site (boxed ATG) of the KRAS transcript (translation 
inhibition?). Also note the strong dependency of the SNAP-ADAR on the targeting mechanism. The same 
guideRNA lacking the BG modification (NH2-guideRNA) cannot form the covalent bond with the deaminase 
and is incapable of editing the target at all (a-c). Panel a), the editing yield is significantly larger (50-65%) 
compared to off-target prone Cas13b-ADAR version 1 (ca. 25%). The precise wildtype SA1 edits target #1/A 
better than the precise Cas13-ADAR version 2 (20% versus ca. 12%). Target #2 (panel c) is also better edited 
by SA1Q than Cas13b version 1 (50% compared to 32%). Finally, we show efficient concurrent editing of 
KRAS site #1 + site #2, with yields of 50% both (d). And we show concurrent editing of KRAS site #1 with the 
most important phosphorylation site of STAT1 (Y701) with very good yields (50% and 78%, panel e). a-e) 
N=3 independent experiments were performed with similar results. 
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Supplementary Note 2. Lacking specificity of overexpressed Cas13-guideRNAs. Cox et al. repeatedly claim 
a unique Cas-dependent targeting mechanism which is the reason for the claimed higher effectiveness of 
“repair” compared to other editing systems, the reason for the lacking codon preference they find, and the 
reason for the lack of a PFS dependency. However, all those claims are built on co-overexpression 
experiments of Cas-ADAR together with a guideRNA and reporter constructs. Here, we show that the Cas13-
guideRNAs, they apply, are able to elicit editing with ADAR2 but also with SNAP-ADAR2Q in yields 
comparable to Cas-ADAR repair1, demonstrating that the applied guideRNAs under the applied conditions 
are not specific for Cas-ADAR and that many of the findings, in particular under overexpression / reporter 
conditions could be partly flawed by self-targeting of the deaminase (domain) itself. Unfortunately, Cox et al. 
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did not properly address this question in their paper (e.g. control experiments with guideRNAs lacking the 
DR domain are completely missing).  

For this, we designed a Cas13 guideRNA according to Cox et al. containing a 50 nt part antisense to our 
GFP reporter (W58amber), putting the targeted A into mismatch with C. Mismatch position was 34. We 
constructed guideRNAs with the 3´-terminal DR hairpin for Cas-targeting but also lacking the DR motif (the 
DR motif is a 34 nt hairpin that has the function to recruit Cas13). The guideRNAs were expressed from a U6 
promotor (pSilencer plasmid), as applied by Cox et al. Co-transfection was carried out as described by Cox 
et al.: 150 ng editing enzyme, 300 ng guideRNA vector, 40 ng GFP reporter plasmid in a coated 96 well into 
293T cells. As enzymes, we co-transfected either full length human ADAR2 (wildtype), or the respective 
hyperactive SNAP-ADAR2Q, or Cas13-ADAR repairV1 (containing the same mutated deaminase domain of 
ADAR2 E488Q as SA2Q). guideRNA (antisense part: capital letters; DR domain: small 
letters):GCGTCACTAGTGTCGGCCACGGAACAGGCAGTTTGCCAGTAGTGCAGATGAgttgtggaaggtccagtt
ttgaggggctattacaac. In panel b), the position and length of the gRNA is indicated as a blue line under the 
sequence, the on-target site is marked by a red arrow, main off-target sites are marked by red asterisks.  

a) shows that the Cas13-guideRNA can also recruit human ADAR2 or SNAP-ADAR2Q to elicit editing yields 
similar to Cas13-ADAR. The average editing levels (25-30%) are very similar to those described by Cox et 
al. for various similar overexpression / reporter experiments in their Figures 2-4 (15-30%). As expected the 
recruitment of ADAR2 and SNAP-ADAR2Q is independent of the DR motif. In contrast, we have shown in 
the past that short chemically stabilized (BG)-guideRNAs (as we apply) are unable to recruit ADAR2 (see 
NAR 2016, gkw911, Figure S9A); and as we have shown repeatedly in our manuscript that SNAP-ADARs 
are only recruited by short chemically stabilized guideRNAs when the BG moiety is present, clearly 
demonstrating the SNAP-tag-dependent targeting mechanism. The editing control with Cas13-ADAR shows 
several interesting things. First, editing is to some extent depending on the DR motif, but second, editing also 
occurs without a guideRNA and also with a guideRNA lacking the DR motif, even though with reduced editing 
yields; this indicates that the editing yields reported by Cox et al. are composed of an unknown Cas-
dependent and an unknown Cas-independent (self-targeting) part, probably differing for each respective 
target and condition; third, the editing yield with Cas13-ADAR with the ideal guideRNA (30%) was not notably 
better than that with other deaminases (25-30%); d) the off-target editing of Cas13-ADAR was higher than 
that of ADAR2 but lower than that of SA2Q. Finally, we want to mention that editing yields are strongly varying 
under co-overexpression conditions as seen in the error bars of N=3 independent experiments (Data are 
shown with the mean±SD, black dots represent individual data points). This is in agreement with our earlier 
experience. 

b-d) show selected Sanger sequencing traces (always the trace with the highest on-target editing yield was 
chosen) to give an idea of off-target editing. While ADAR2 (b) gives decent on-target editing (25%) there was 
only very little off-target editing seen and on-target editing was fully dependent on the presence of the 
guideRNA, even though not on the DR motif in the guideRNA. The respective single off-target editing site 
was described before by us (NAR 2017). Co-transfection with hyperactive SA2Q (c) largely shows the misery 
of overexpressing hyperactive deaminases (like Cas13-ADAR repairV1 too): even in absence of the 
guideRNA, there is massive off-target editing all over the transcript (only few sites are picked here). On-target 
editing was achieved with 10% yield if though no gRNA was transfected. With the Cas13-guideRNA, on-
target editing increased to 25%, independent of the DR-motif. With respect to off-target editing, the 
experiment with Cas13-ADAR overexpression (d) shows results similar to the overexpression of SA2Q, which 
contains the same ADAR deaminase mutant (E488Q). Off-target editing is found all over the transcript, on-
target editing is already found prior to the expression of the guideRNA. However, such off-target yields are 
roughly half that strong as found for SA1Q, which might be due to lower expression levels. After adding the 
guideRNA, editing levels increase and there is a targeting effect, however, there is also a notable increase 
in editing yield with the guideRNA lacking the DR domain. N=3 independent experiments were performed 
with similar results.  

Together, panels a-d) suggest that the conditions (overexpression & reporters) under which Cas13-ADAR 
has mostly been characterized today are not sufficient to support the general claims made by Cox et al. 
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Determination of intracellular SNAP-ADAR localization by fluorescence microscopy 

 DIC (63×) FITC (F) Hoechst (H) F + H 

1st experiment 

pc
D

N
A

5 
pc

D
N

A
5 

+
 d

ox
 

S
A

1 
S

A
1 

+
 d

ox
 

S
A

2 
S

A
2 

+
 d

ox
 



13 
 

S
A

1
Q

 
S

A
1Q

 +
 d

ox
 

S
A

2
Q

 
S

A
2Q

 +
 d

ox
 

2nd experiment 

pc
D

N
A

5 
pc

D
N

A
5 

+
 d

ox
 



14 
 

S
A

1 
S

A
1 

+
 d

ox
 

S
A

2 
S

A
2 

+
 d

ox
 

S
A

1
Q

 
S

A
1Q

 +
 d

ox
 



15 
 

S
A

2
Q

 
S

A
2Q

 +
 d

ox
 

 

Supplementary Note 3. Protein expression was induced by doxycycline (dox) for 24 h. Cells were 
incubated with BG-FITC to stain SNAP-ADARs (green) and with Hoechst 33342 to stain nuclei (blue). 
Microscopy was performed with a Zeiss CellObserverZ1 under 630x total magnification. The scale bar 
represents 40 µm. FITC-BG/SNAP-tag labeling was done as described before (Vogel et al., ACS Synth. 
Biol. 2017, doi: 10.1021/acssynbio.7b00113). N=3 independent experiments were performed with similar 
results. 
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Supplementary Note 4 (NGS quality data, SNAP-ADAR gene sequences, target sites 
on endogenous transcripts) 

Additional NGS quality data 

 Replicate 1 Replicate 2 
pcDNA5 + Lipo 

  
SA1 + gRNA 

  
SA2 + gRNA 

  
SA1Q + Lipo 

  
SA2Q + Lipo 

  
SA1Q + gRNA 

  
SA2Q + gRNA 

  
 

Detected editing sites ranked by coverage for each experiment. For testing significant editing differences, a 
coverage cut-off of 50 (red line) for the sum of each experiment with its replicate was applied. This typically 
yielded around 50.000 sites / experiment to be analyzed.  
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Scatter plots of editing levels of all called editing sites of replicate 1 against replicate 2 for the indicated editing 
experiments show good replicability with correlation ranging from 0.932-0.960. 

 

 

 

 

Number of transcript covered in RNA sequencing was performed with two replicates of each sample. Shown 
are number of detected transcripts with a FPKM value ≥ 2 for both replicates combined (light blue bars) or 
separated (pink dots). 
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Sequences of editing enzymes and editing targets 

                  10        20        30        40        50        60 
1         ATGGGGAAGGTGAAGGTCGGAGTCAACGGATTTGGTCGTATTGGGCGCCTGGTCACCAGG 
1          M  G  K  V  K  V  G  V  N  G  F  G  R  I  G  R  L  V  T  R  
                  70        80        90       100       110       120 
61        GCTGCTTTTAACTCTGGTAAAGTGGATATTGTTGCCATCAATGACCCCTTCATTGACCTC 
21         A  A  F  N  S  G  K  V  D  I  V  A  I  N  D  P  F  I  D  L   
                 130       140       150       160       170       180 
121       AACTACATGGTTTACATGTTCCAATATGATTCCACCCATGGCAAATTCCATGGCACCGTC 
41         N  Y  M  V  Y  M  F  Q  Y  D  S  T  H  G  K  F  H  G  T  V   
                 190       200       210       220       230       240 
181       AAGGCTGAGAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCATCTTCCAGGAGCGA 
61         K  A  E  N  G  K  L  V  I  N  G  N  P  I  T  I  F  Q  E  R   
                 250       260       270       280       290       300 
241       GATCCCTCCAAAATCAAGTGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGC 
81         D  P  S  K  I  K  W  G  D  A  G  A  E  Y  V  V  E  S  T  G   
                 310       320       330       340       350       360 
301       GTCTTCACCACCATGGAGAAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAAGGGTCATC 
101        V  F  T  T  M  E  K  A  G  A  H  L  Q  G  G  A  K  R  V  I   
                 370       380       390       400       410       420 
361       ATCTCTGCCCCCTCTGCTGATGCCCCCATGTTCGTCATGGGTGTGAACCATGAGAAGTAT 
121        I  S  A  P  S  A  D  A  P  M  F  V  M  G  V  N  H  E  K  Y   
                 430       440       450       460       470       480 
421       GACAACAGCCTCAAGATCATCAGCAATGCCTCCTGCACCACCAACTGCTTAGCACCCCTG 
141        D  N  S  L  K  I  I  S  N  A  S  C  T  T  N  C  L  A  P  L   
                 490       500       510       520       530       540 
481       GCCAAGGTCATCCATGACAACTTTGGTATCGTGGAAGGACTCATGACCACAGTCCATGCC 
161        A  K  V  I  H  D  N  F  G  I  V  E  G  L  M  T  T  V  H  A   
                 550       560       570       580       590       600 
541       ATCACTGCCACCCAGAAGACTGTGGATGGCCCCTCCGGGAAACTGTGGCGTGATGGCCGC 
181        I  T  A  T  Q  K  T  V  D  G  P  S  G  K  L  W  R  D  G  R   
                 610       620       630       640       650       660 
601       GGGGCTCTCCAGAACATCATCCCTGCCTCTACTGGCGCTGCCAAGGCTGTGGGCAAGGTC 
201        G  A  L  Q  N  I  I  P  A  S  T  G  A  A  K  A  V  G  K  V   
                 670       680       690       700       710       720 
661       ATCCCTGAGCTGAACGGGAAGCTCACTGGCATGGCCTTCCGTGTCCCCACTGCCAACGTG 
221        I  P  E  L  N  G  K  L  T  G  M  A  F  R  V  P  T  A  N  V   
                 730       740       750       760       770       780 
721       TCAGTGGTGGACCTGACCTGCCGTCTAGAAAAACCTGCCAAATATGATGACATCAAGAAG 
241        S  V  V  D  L  T  C  R  L  E  K  P  A  K  Y  D  D  I  K  K   
                 790       800       810       820       830       840 
781       GTGGTGAAGCAGGCGTCGGAGGGCCCCCTCAAGGGCATCCTGGGCTACACTGAGCACCAG 
261        V  V  K  Q  A  S  E  G  P  L  K  G  I  L  G  Y  T  E  H  Q   
                 850       860       870       880       890       900 
841       GTGGTCTCCTCTGACTTCAACAGCGACACCCACTCCTCCACCTTTGACGCTGGGGCTGGC 
281        V  V  S  S  D  F  N  S  D  T  H  S  S  T  F  D  A  G  A  G   
                 910       920       930       940       950       960 
901       ATTGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTGGTATGACAACGAATTTGGCTAC 
301        I  A  L  N  D  H  F  V  K  L  I  S  W  Y  D  N  E  F  G  Y   
                 970       980       990      1000 
961       AGCAACAGGGTGGTGGACCTCATGGCCCACATGGCCTCCAAGGAGTAA 
321        S  N  R  V  V  D  L  M  A  H  M  A  S  K  E  *   

Open reading frame of GAPDH transcript isoform 1 (NM_002046.5). All 16 adenosine-containing triplets 
(yellow and cyan) were tested for editing. Most of the triplets (yellow), sites could be chosen with no resulting 
amino acid change. Only for 4 triplets (cyan), editing of the corresponding site lead to amino acid change. 
However, these changes happen in the variable region of the protein and thus, are supposed not to disturb 
protein activity.   
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               10        20        30        40        50        60 
1         GGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCC 
1            R  R  H  P  R  C  F  D  L  H  R  R  H  R  D  R  S  S  L   
                  70        80        90       100       110       120 
61        GGACTCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGGACAAAGACT 
20        R  T  L  A  F  K  L  K  L  G  T  E  L  G  S  T  M  D  K  D    
                 130       140       150       160       170       180 
121       GCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCG 
40        C  E  M  K  R  T  T  L  D  S  P  L  G  K  L  E  L  S  G  C    
                 190       200       210       220       230       240 
181       AACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGAACATCTGCCGCCGACGCCGTGG 
60        E  Q  G  L  H  R  I  I  F  L  G  K  G  T  S  A  A  D  A  V    
                 250       260       270       280       290       300 
241       AAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGATGCAGGCCACCGCCT 
80        E  V  P  A  P  A  A  V  L  G  G  P  E  P  L  M  Q  A  T  A    
                 310       320       330       340       350       360 
301       GGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGC 
100       W  L  N  A  Y  F  H  Q  P  E  A  I  E  E  F  P  V  P  A  L    
                 370       380       390       400       410       420 
361       ACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAG 
120       H  H  P  V  F  Q  Q  E  S  F  T  R  Q  V  L  W  K  L  L  K    
                 430       440       450       460       470       480 
421       TGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCCTGGCCGGCAATCCCG 
140       V  V  K  F  G  E  V  I  S  Y  S  H  L  A  A  L  A  G  N  P    
                 490       500       510       520       530       540 
481       CCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCATTCTGATCCCCT 
160       A  A  T  A  A  V  K  T  A  L  S  G  N  P  V  P  I  L  I  P    
                 550       560       570       580       590       600 
541       GCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGA 
180       C  H  R  V  V  Q  G  D  L  D  V  G  G  Y  E  G  G  L  A  V    
                 610       620       630       640       650       660 
601       AAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAG 
200       K  E  W  L  L  A  H  E  G  H  R  L  G  K  P  G  L  G  P  A    
                 670       680       690       700       710       720 
661       GCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAGGCAGAACGCATGGGTTTCACAGAGG 
220       G  G  G  A  P  G  S  G  G  G  S  K  A  E  R  M  G  F  T  E    
                 730       740       750       760       770       780 
721       TAACCCCAGTGACAGGGGCCAGTCTCAGAAGAACTATGCTCCTCCTCTCAAGGTCCCCAG 
240       V  T  P  V  T  G  A  S  L  R  R  T  M  L  L  L  S  R  S  P    
                 790       800       810       820       830       840 
781       AAGCACAGCCAAAGACACTCCCTCTCACTGGCAGCACCTTCCATGACCAGATAGCCATGC 
260       E  A  Q  P  K  T  L  P  L  T  G  S  T  F  H  D  Q  I  A  M    
                 850       860       870       880       890       900 
841       TGAGCCACCGGTGCTTCAACACTCTGACTAACAGCTTCCAGCCCTCCTTGCTCGGCCGCA 
280       L  S  H  R  C  F  N  T  L  T  N  S  F  Q  P  S  L  L  G  R    
                 910       920       930       940       950       960 
901       AGATTCTGGCCGCCATCATTATGAAAAAAGACTCTGAGGACATGGGTGTCGTCGTCAGCT 
300       K  I  L  A  A  I  I  M  K  K  D  S  E  D  M  G  V  V  V  S    
                 970       980       990      1000      1010      1020 
961       TGGGAACAGGGAATCGCTGTGTAAAAGGAGATTCTCTCAGCCTAAAAGGAGAAACTGTCA 
320       L  G  T  G  N  R  C  V  K  G  D  S  L  S  L  K  G  E  T  V    
                1030      1040      1050      1060      1070      1080 
1021      ATGACTGCCATGCAGAAATAATCTCCCGGAGAGGCTTCATCAGGTTTCTCTACAGTGAGT 
340       N  D  C  H  A  E  I  I  S  R  R  G  F  I  R  F  L  Y  S  E    
                1090      1100      1110      1120      1130      1140 
1081      TAATGAAATACAACTCCCAGACTGCGAAGGATAGTATATTTGAACCTGCTAAGGGAGGAG 
360       L  M  K  Y  N  S  Q  T  A  K  D  S  I  F  E  P  A  K  G  G    
                1150      1160      1170      1180      1190      1200 
1141      AAAAGCTCCAAATAAAAAAGACTGTGTCATTCCATCTGTATATCAGCACTGCTCCGTGTG 
380       E  K  L  Q  I  K  K  T  V  S  F  H  L  Y  I  S  T  A  P  C    
                1210      1220      1230      1240      1250      1260 
1201      GAGATGGCGCCCTCTTTGACAAGTCCTGCAGCGACCGTGCTATGGAAAGCACAGAATCCC 
400       G  D  G  A  L  F  D  K  S  C  S  D  R  A  M  E  S  T  E  S    
                1270      1280      1290      1300      1310      1320 
1261      GCCACTACCCTGTCTTCGAGAATCCCAAACAAGGAAAGCTCCGCACCAAGGTGGAGAACG 
420       R  H  Y  P  V  F  E  N  P  K  Q  G  K  L  R  T  K  V  E  N    
                1330      1340      1350      1360      1370      1380 
1321      GAGAAGGCACAATCCCTGTGGAATCCAGTGACATTGTGCCTACGTGGGATGGCATTCGGC 
440       G  E  G  T  I  P  V  E  S  S  D  I  V  P  T  W  D  G  I  R    
                1390      1400      1410      1420      1430      1440 
1381      TCGGGGAGAGACTCCGTACCATGTCCTGTAGTGACAAAATCCTACGCTGGAACGTGCTGG 
460       L  G  E  R  L  R  T  M  S  C  S  D  K  I  L  R  W  N  V  L    
                1450      1460      1470      1480      1490      1500 
1441      GCCTGCAAGGGGCACTGTTGACCCACTTCCTGCAGCCCATTTATCTCAAATCTGTCACAT 
480       G  L  Q  G  A  L  L  T  H  F  L  Q  P  I  Y  L  K  S  V  T    
                1510      1520      1530      1540      1550      1560 
1501      TGGGTTACCTTTTCAGCCAAGGGCATCTGACCCGTGCTATTTGCTGTCGTGTGACAAGAG 
500       L  G  Y  L  F  S  Q  G  H  L  T  R  A  I  C  C  R  V  T  R    
                1570      1580      1590      1600      1610      1620 
1561      ATGGGAGTGCATTTGAGGATGGACTACGACATCCCTTTATTGTCAACCACCCCAAGGTTG 
520       D  G  S  A  F  E  D  G  L  R  H  P  F  I  V  N  H  P  K  V    
                1630      1640      1650      1660      1670      1680 
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1621      GCAGAGTCAGCATATATGATTCCAAAAGGCAATCCGGGAAGACTAAGGAGACAAGCGTCA 
540       G  R  V  S  I  Y  D  S  K  R  Q  S  G  K  T  K  E  T  S  V    
                1690      1700      1710      1720      1730      1740 
1681      ACTGGTGTCTGGCTGATGGCTATGACCTGGAGATCCTGGACGGTACCAGAGGCACTGTGG 
560       N  W  C  L  A  D  G  Y  D  L  E  I  L  D  G  T  R  G  T  V    
                1750      1760      1770      1780      1790      1800 
1741      ATGGGCCACGGAATGAATTGTCCCGGGTCTCCAAAAAGAACATTTTTCTTCTATTTAAGA 
580       D  G  P  R  N  E  L  S  R  V  S  K  K  N  I  F  L  L  F  K    
                1810      1820      1830      1840      1850      1860 
1801      AGCTCTGCTCCTTCCGTTACCGCAGGGATCTACTGAGACTCTCCTATGGTGAGGCCAAGA 
600       K  L  C  S  F  R  Y  R  R  D  L  L  R  L  S  Y  G  E  A  K    
                1870      1880      1890      1900      1910      1920 
1861      AAGCTGCCCGTGACTACGAGACGGCCAAGAACTACTTCAAAAAAGGCCTGAAGGATATGG 
620       K  A  A  R  D  Y  E  T  A  K  N  Y  F  K  K  G  L  K  D  M    
                1930      1940      1950      1960      1970      1980 
1921      GCTATGGGAACTGGATTAGCAAACCCCAGGAGGAAAAGAACTTTTATCTCTGCCCAGTAT 
640       G  Y  G  N  W  I  S  K  P  Q  E  E  K  N  F  Y  L  C  P  V    
                1990      2000      2010      2020      2030      2040 
1981      CTAGATGACTGCCTGTTCCGTAGCCGACACGGGCCCGTTTAAACCCGCTGATCAGCCTCG 
660       S  R  *  L  P  V  P  *  P  T  R  A  R  L  N  P  L  I  S  L    
                2050      2060      2070      2080      2090      2100 
2041      ACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACC 
680       D  C  A  F  *  L  P  A  I  C  C  L  P  L  P  R  A  F  L  D    

 

Sequence of SNAP-ADAR1 as expressed from the 293 genome with chosen editing sites (yellow). 
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                10        20        30        40        50        60 
1         GGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCC 
1            R  R  H  P  R  C  F  D  L  H  R  R  H  R  D  R  S  S  L   
                  70        80        90       100       110       120 
61        GGACTCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGGACAAAGACT 
20        R  T  L  A  F  K  L  K  L  G  T  E  L  G  S  T  M  D  K  D    
                 130       140       150       160       170       180 
121       GCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCG 
40        C  E  M  K  R  T  T  L  D  S  P  L  G  K  L  E  L  S  G  C    
                 190       200       210       220       230       240 
181       AACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGAACATCTGCCGCCGACGCCGTGG 
60        E  Q  G  L  H  R  I  I  F  L  G  K  G  T  S  A  A  D  A  V    
                 250       260       270       280       290       300 
241       AAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGATGCAGGCCACCGCCT 
80        E  V  P  A  P  A  A  V  L  G  G  P  E  P  L  M  Q  A  T  A    
                 310       320       330       340       350       360 
301       GGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGC 
100       W  L  N  A  Y  F  H  Q  P  E  A  I  E  E  F  P  V  P  A  L    
                 370       380       390       400       410       420 
361       ACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAG 
120       H  H  P  V  F  Q  Q  E  S  F  T  R  Q  V  L  W  K  L  L  K    
                 430       440       450       460       470       480 
421       TGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCCTGGCCGGCAATCCCG 
140       V  V  K  F  G  E  V  I  S  Y  S  H  L  A  A  L  A  G  N  P    
                 490       500       510       520       530       540 
481       CCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCATTCTGATCCCCT 
160       A  A  T  A  A  V  K  T  A  L  S  G  N  P  V  P  I  L  I  P    
                 550       560       570       580       590       600 
541       GCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGA 
180       C  H  R  V  V  Q  G  D  L  D  V  G  G  Y  E  G  G  L  A  V    
                 610       620       630       640       650       660 
601       AAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAG 
200       K  E  W  L  L  A  H  E  G  H  R  L  G  K  P  G  L  G  P  A    
                 670       680       690       700       710       720 
661       GCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAGAAGCTTGCCAAGGCCCGGGCTGCGC 
220       G  G  G  A  P  G  S  G  G  G  S  K  K  L  A  K  A  R  A  A    
                 730       740       750       760       770       780 
721       AGTCTGCCCTGGCCGCCATTTTTAACTTGCACTTGGATCAGACGCCATCTCGCCAGCCTA 
240       Q  S  A  L  A  A  I  F  N  L  H  L  D  Q  T  P  S  R  Q  P    
                 790       800       810       820       830       840 
781       TTCCCAGTGAGGGTCTTCAGCTGCATTTACCGCAGGTTTTAGCTGACGCTGTCTCACGCC 
260       I  P  S  E  G  L  Q  L  H  L  P  Q  V  L  A  D  A  V  S  R    
                 850       860       870       880       890       900 
841       TGGTCCTGGGTAAGTTTGGTGACCTGACCGACAACTTCTCCTCCCCTCACGCTCGCAGAA 
280       L  V  L  G  K  F  G  D  L  T  D  N  F  S  S  P  H  A  R  R    
                 910       920       930       940       950       960 
901       AAGTGCTGGCTGGAGTCGTCATGACAACAGGCACAGATGTTAAAGATGCCAAGGTGATAA 
300       K  V  L  A  G  V  V  M  T  T  G  T  D  V  K  D  A  K  V  I    
                 970       980       990      1000      1010      1020 
961       GTGTTTCTACAGGAACAAAATGTATTAATGGTGAATACATGAGTGATCGTGGCCTTGCAT 
320       S  V  S  T  G  T  K  C  I  N  G  E  Y  M  S  D  R  G  L  A    
                1030      1040      1050      1060      1070      1080 
1021      TAAATGACTGCCATGCAGAAATAATATCTCGGAGATCCTTGCTCAGATTTCTTTATACAC 
340       L  N  D  C  H  A  E  I  I  S  R  R  S  L  L  R  F  L  Y  T    
                1090      1100      1110      1120      1130      1140 
1081      AACTTGAGCTTTACTTAAATAACAAAGATGATCAAAAAAGATCCATCTTTCAGAAATCAG 
360       Q  L  E  L  Y  L  N  N  K  D  D  Q  K  R  S  I  F  Q  K  S    
                1150      1160      1170      1180      1190      1200 
1141      AGCGAGGGGGGTTTAGGCTGAAGGAGAATGTCCAGTTTCATCTGTACATCAGCACCTCTC 
380       E  R  G  G  F  R  L  K  E  N  V  Q  F  H  L  Y  I  S  T  S    
                1210      1220      1230      1240      1250      1260 
1201      CCTGTGGAGATGCCAGAATCTTCTCACCACATGAGCCAATCCTGGAAGAACCAGCAGATA 
400       P  C  G  D  A  R  I  F  S  P  H  E  P  I  L  E  E  P  A  D    
                1270      1280      1290      1300      1310      1320 
1261      GACACCCAAATCGTAAAGCAAGAGGACAGCTACGGACCAAAATAGAGTCTGGTGAGGGGA 
420       R  H  P  N  R  K  A  R  G  Q  L  R  T  K  I  E  S  G  E  G    
                1330      1340      1350      1360      1370      1380 
1321      CGATTCCAGTGCGCTCCAATGCGAGCATCCAAACGTGGGACGGGGTGCTGCAAGGGGAGC 
440       T  I  P  V  R  S  N  A  S  I  Q  T  W  D  G  V  L  Q  G  E    
                1390      1400      1410      1420      1430      1440 
1381      GGCTGCTCACCATGTCCTGCAGTGACAAGATTGCACGCTGGAACGTGGTGGGCATCCAGG 
460       R  L  L  T  M  S  C  S  D  K  I  A  R  W  N  V  V  G  I  Q    
                1450      1460      1470      1480      1490      1500 
1441      GATCCCTGCTCAGCATTTTCGTGGAGCCCATTTACTTCTCGAGCATCATCCTGGGCAGCC 
480       G  S  L  L  S  I  F  V  E  P  I  Y  F  S  S  I  I  L  G  S    
                1510      1520      1530      1540      1550      1560 
1501      TTTACCACGGGGACCACCTTTCCAGGGCCATGTACCAGCGGATCTCCAACATAGAGGACC 
500       L  Y  H  G  D  H  L  S  R  A  M  Y  Q  R  I  S  N  I  E  D    
                1570      1580      1590      1600      1610      1620 
1561      TGCCACCTCTCTACACCCTCAACAAGCCTTTGCTCAGTGGCATCAGCAATGCAGAAGCAC 
520       L  P  P  L  Y  T  L  N  K  P  L  L  S  G  I  S  N  A  E  A    
                1630      1640      1650      1660      1670      1680 
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1621      GGCAGCCAGGGAAGGCCCCCAACTTCAGTGTCAACTGGACGGTAGGCGACTCCGCTATTG 
540       R  Q  P  G  K  A  P  N  F  S  V  N  W  T  V  G  D  S  A  I    
                1690      1700      1710      1720      1730      1740 
1681      AGGTCATCAACGCCACGACTGGGAAGGATGAGCTGGGCCGCGCGTCCCGCCTGTGTAAGC 
560       E  V  I  N  A  T  T  G  K  D  E  L  G  R  A  S  R  L  C  K    
                1750      1760      1770      1780      1790      1800 
1741      ACGCGTTGTACTGTCGCTGGATGCGTGTGCACGGCAAGGTTCCCTCCCACTTACTACGCT 
580       H  A  L  Y  C  R  W  M  R  V  H  G  K  V  P  S  H  L  L  R    
                1810      1820      1830      1840      1850      1860 
1801      CCAAGATTACCAAGCCCAACGTGTACCATGAGTCCAAGCTGGCGGCAAAGGAGTACCAGG 
600       S  K  I  T  K  P  N  V  Y  H  E  S  K  L  A  A  K  E  Y  Q    
                1870      1880      1890      1900      1910      1920 
1861      CCGCCAAGGCGCGTCTGTTCACAGCCTTCATCAAGGCGGGGCTGGGGGCCTGGGTGGAGA 
620       A  A  K  A  R  L  F  T  A  F  I  K  A  G  L  G  A  W  V  E    
                1930      1940      1950      1960      1970      1980 
1921      AGCCCACCGAGCAGGACCAGTTCTCACTCACGCCCTCTAGATGACTGCCTGTTCCGTAGC 
640       K  P  T  E  Q  D  Q  F  S  L  T  P  S  R  *  L  P  V  P  *    
                1990      2000      2010      2020      2030      2040 
1981      CGACACGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCA 
660       P  T  R  A  R  L  N  P  L  I  S  L  D  C  A  F  *  L  P  A    
 
Sequence of SNAP-ADAR2 as expressed from the 293 genome with chosen editing sites (yellow). 
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               10        20        30        40        50        60 
1         GGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCC 
1            R  R  H  P  R  C  F  D  L  H  R  R  H  R  D  R  S  S  L   
                  70        80        90       100       110       120 
61        GGACTCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGGACAAAGACT 
20        R  T  L  A  F  K  L  K  L  G  T  E  L  G  S  T  M  D  K  D    
                 130       140       150       160       170       180 
121       GCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCG 
40        C  E  M  K  R  T  T  L  D  S  P  L  G  K  L  E  L  S  G  C    
                 190       200       210       220       230       240 
181       AACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGAACATCTGCCGCCGACGCCGTGG 
60        E  Q  G  L  H  R  I  I  F  L  G  K  G  T  S  A  A  D  A  V    
                 250       260       270       280       290       300 
241       AAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGATGCAGGCCACCGCCT 
80        E  V  P  A  P  A  A  V  L  G  G  P  E  P  L  M  Q  A  T  A    
                 310       320       330       340       350       360 
301       GGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGC 
100       W  L  N  A  Y  F  H  Q  P  E  A  I  E  E  F  P  V  P  A  L    
                 370       380       390       400       410       420 
361       ACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAG 
120       H  H  P  V  F  Q  Q  E  S  F  T  R  Q  V  L  W  K  L  L  K    
                 430       440       450       460       470       480 
421       TGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCCTGGCCGGCAATCCCG 
140       V  V  K  F  G  E  V  I  S  Y  S  H  L  A  A  L  A  G  N  P    
                 490       500       510       520       530       540 
481       CCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCATTCTGATCCCCT 
160       A  A  T  A  A  V  K  T  A  L  S  G  N  P  V  P  I  L  I  P    
                 550       560       570       580       590       600 
541       GCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGA 
180       C  H  R  V  V  Q  G  D  L  D  V  G  G  Y  E  G  G  L  A  V    
                 610       620       630       640       650       660 
601       AAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAG 
200       K  E  W  L  L  A  H  E  G  H  R  L  G  K  P  G  L  G  P  A    
                 670       680       690       700       710       720 
661       GCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAGGCAGAACGCATGGGTTTCACAGAGG 
220       G  G  G  A  P  G  S  G  G  G  S  K  A  E  R  M  G  F  T  E    
                 730       740       750       760       770       780 
721       TAACCCCAGTGACAGGGGCCAGTCTCAGAAGAACTATGCTCCTCCTCTCAAGGTCCCCAG 
240       V  T  P  V  T  G  A  S  L  R  R  T  M  L  L  L  S  R  S  P    
                 790       800       810       820       830       840 
781       AAGCACAGCCAAAGACACTCCCTCTCACTGGCAGCACCTTCCATGACCAGATAGCCATGC 
260       E  A  Q  P  K  T  L  P  L  T  G  S  T  F  H  D  Q  I  A  M    
                 850       860       870       880       890       900 
841       TGAGCCACCGGTGCTTCAACACTCTGACTAACAGCTTCCAGCCCTCCTTGCTCGGCCGCA 
280       L  S  H  R  C  F  N  T  L  T  N  S  F  Q  P  S  L  L  G  R    
                 910       920       930       940       950       960 
901       AGATTCTGGCCGCCATCATTATGAAAAAAGACTCTGAGGACATGGGTGTCGTCGTCAGCT 
300       K  I  L  A  A  I  I  M  K  K  D  S  E  D  M  G  V  V  V  S    
                 970       980       990      1000      1010      1020 
961       TGGGAACAGGGAATCGCTGTGTAAAAGGAGATTCTCTCAGCCTAAAAGGAGAAACTGTCA 
320       L  G  T  G  N  R  C  V  K  G  D  S  L  S  L  K  G  E  T  V    
                1030      1040      1050      1060      1070      1080 
1021      ATGACTGCCATGCAGAAATAATCTCCCGGAGAGGCTTCATCAGGTTTCTCTACAGTGAGT 
340       N  D  C  H  A  E  I  I  S  R  R  G  F  I  R  F  L  Y  S  E    
                1090      1100      1110      1120      1130      1140 
1081      TAATGAAATACAACTCCCAGACTGCGAAGGATAGTATATTTGAACCTGCTAAGGGAGGAG 
360       L  M  K  Y  N  S  Q  T  A  K  D  S  I  F  E  P  A  K  G  G    
                1150      1160      1170      1180      1190      1200 
1141      AAAAGCTCCAAATAAAAAAGACTGTGTCATTCCATCTGTATATCAGCACTGCTCCGTGTG 
380       E  K  L  Q  I  K  K  T  V  S  F  H  L  Y  I  S  T  A  P  C    
                1210      1220      1230      1240      1250      1260 
1201      GAGATGGCGCCCTCTTTGACAAGTCCTGCAGCGACCGTGCTATGGAAAGCACAGAATCCC 
400       G  D  G  A  L  F  D  K  S  C  S  D  R  A  M  E  S  T  E  S    
                1270      1280      1290      1300      1310      1320 
1261      GCCACTACCCTGTCTTCGAGAATCCCAAACAAGGAAAGCTCCGCACCAAGGTGGAGAACG 
420       R  H  Y  P  V  F  E  N  P  K  Q  G  K  L  R  T  K  V  E  N    
                1330      1340      1350      1360      1370      1380 
1321      GACAAGGCACAATCCCTGTGGAATCCAGTGACATTGTGCCTACGTGGGATGGCATTCGGC 
440       G  Q  G  T  I  P  V  E  S  S  D  I  V  P  T  W  D  G  I  R    
                1390      1400      1410      1420      1430      1440 
1381      TCGGGGAGAGACTCCGTACCATGTCCTGTAGTGACAAAATCCTACGCTGGAACGTGCTGG 
460       L  G  E  R  L  R  T  M  S  C  S  D  K  I  L  R  W  N  V  L    
                1450      1460      1470      1480      1490      1500 
1441      GCCTGCAAGGGGCACTGTTGACCCACTTCCTGCAGCCCATTTATCTCAAATCTGTCACAT 
480       G  L  Q  G  A  L  L  T  H  F  L  Q  P  I  Y  L  K  S  V  T    
                1510      1520      1530      1540      1550      1560 
1501      TGGGTTACCTTTTCAGCCAAGGGCATCTGACCCGTGCTATTTGCTGTCGTGTGACAAGAG 
500       L  G  Y  L  F  S  Q  G  H  L  T  R  A  I  C  C  R  V  T  R    
                1570      1580      1590      1600      1610      1620 
1561      ATGGGAGTGCATTTGAGGATGGACTACGACATCCCTTTATTGTCAACCACCCCAAGGTTG 
520       D  G  S  A  F  E  D  G  L  R  H  P  F  I  V  N  H  P  K  V    
                1630      1640      1650      1660      1670      1680 



24 
 

1621      GCAGAGTCAGCATATATGATTCCAAAAGGCAATCCGGGAAGACTAAGGAGACAAGCGTCA 
540       G  R  V  S  I  Y  D  S  K  R  Q  S  G  K  T  K  E  T  S  V    
                1690      1700      1710      1720      1730      1740 
1681      ACTGGTGTCTGGCTGATGGCTATGACCTGGAGATCCTGGACGGTACCAGAGGCACTGTGG 
560       N  W  C  L  A  D  G  Y  D  L  E  I  L  D  G  T  R  G  T  V    
                1750      1760      1770      1780      1790      1800 
1741      ATGGGCCACGGAATGAATTGTCCCGGGTCTCCAAAAAGAACATTTTTCTTCTATTTAAGA 
580       D  G  P  R  N  E  L  S  R  V  S  K  K  N  I  F  L  L  F  K    
                1810      1820      1830      1840      1850      1860 
1801      AGCTCTGCTCCTTCCGTTACCGCAGGGATCTACTGAGACTCTCCTATGGTGAGGCCAAGA 
600       K  L  C  S  F  R  Y  R  R  D  L  L  R  L  S  Y  G  E  A  K    
                1870      1880      1890      1900      1910      1920 
1861      AAGCTGCCCGTGACTACGAGACGGCCAAGAACTACTTCAAAAAAGGCCTGAAGGATATGG 
620       K  A  A  R  D  Y  E  T  A  K  N  Y  F  K  K  G  L  K  D  M    
                1930      1940      1950      1960      1970      1980 
1921      GCTATGGGAACTGGATTAGCAAACCCCAGGAGGAAAAGAACTTTTATCTCTGCCCAGTAT 
640       G  Y  G  N  W  I  S  K  P  Q  E  E  K  N  F  Y  L  C  P  V    
                1990      2000      2010      2020      2030      2040 
1981      CTAGATGACTGCCTGTTCCGTAGCCGACACGGGCCCGTTTAAACCCGCTGATCAGCCTCG 
660       S  R  *  L  P  V  P  *  P  T  R  A  R  L  N  P  L  I  S  L    
                2050      2060      2070      2080      2090      2100 
2041      ACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACC 
680       D  C  A  F  *  L  P  A  I  C  C  L  P  L  P  R  A  F  L  D    

 

Sequence of SNAP-ADAR1Q as expressed from the 293 genome with chosen editing sites (yellow). E/Q site 
is highlighted in cyan. 
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                10        20        30        40        50        60 
1         GGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCC 
1            R  R  H  P  R  C  F  D  L  H  R  R  H  R  D  R  S  S  L   
                  70        80        90       100       110       120 
61        GGACTCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGGACAAAGACT 
20        R  T  L  A  F  K  L  K  L  G  T  E  L  G  S  T  M  D  K  D    
                 130       140       150       160       170       180 
121       GCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCG 
40        C  E  M  K  R  T  T  L  D  S  P  L  G  K  L  E  L  S  G  C    
                 190       200       210       220       230       240 
181       AACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGAACATCTGCCGCCGACGCCGTGG 
60        E  Q  G  L  H  R  I  I  F  L  G  K  G  T  S  A  A  D  A  V    
                 250       260       270       280       290       300 
241       AAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGATGCAGGCCACCGCCT 
80        E  V  P  A  P  A  A  V  L  G  G  P  E  P  L  M  Q  A  T  A    
                 310       320       330       340       350       360 
301       GGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGC 
100       W  L  N  A  Y  F  H  Q  P  E  A  I  E  E  F  P  V  P  A  L    
                 370       380       390       400       410       420 
361       ACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAG 
120       H  H  P  V  F  Q  Q  E  S  F  T  R  Q  V  L  W  K  L  L  K    
                 430       440       450       460       470       480 
421       TGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCCTGGCCGGCAATCCCG 
140       V  V  K  F  G  E  V  I  S  Y  S  H  L  A  A  L  A  G  N  P    
                 490       500       510       520       530       540 
481       CCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCATTCTGATCCCCT 
160       A  A  T  A  A  V  K  T  A  L  S  G  N  P  V  P  I  L  I  P    
                 550       560       570       580       590       600 
541       GCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGA 
180       C  H  R  V  V  Q  G  D  L  D  V  G  G  Y  E  G  G  L  A  V    
                 610       620       630       640       650       660 
601       AAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAG 
200       K  E  W  L  L  A  H  E  G  H  R  L  G  K  P  G  L  G  P  A    
                 670       680       690       700       710       720 
661       GCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAGAAGCTTGCCAAGGCCCGGGCTGCGC 
220       G  G  G  A  P  G  S  G  G  G  S  K  K  L  A  K  A  R  A  A    
                 730       740       750       760       770       780 
721       AGTCTGCCCTGGCCGCCATTTTTAACTTGCACTTGGATCAGACGCCATCTCGCCAGCCTA 
240       Q  S  A  L  A  A  I  F  N  L  H  L  D  Q  T  P  S  R  Q  P    
                 790       800       810       820       830       840 
781       TTCCCAGTGAGGGTCTTCAGCTGCATTTACCGCAGGTTTTAGCTGACGCTGTCTCACGCC 
260       I  P  S  E  G  L  Q  L  H  L  P  Q  V  L  A  D  A  V  S  R    
                 850       860       870       880       890       900 
841       TGGTCCTGGGTAAGTTTGGTGACCTGACCGACAACTTCTCCTCCCCTCACGCTCGCAGAA 
280       L  V  L  G  K  F  G  D  L  T  D  N  F  S  S  P  H  A  R  R    
                 910       920       930       940       950       960 
901       AAGTGCTGGCTGGAGTCGTCATGACAACAGGCACAGATGTTAAAGATGCCAAGGTGATAA 
300       K  V  L  A  G  V  V  M  T  T  G  T  D  V  K  D  A  K  V  I    
                 970       980       990      1000      1010      1020 
961       GTGTTTCTACAGGAACAAAATGTATTAATGGTGAATACATGAGTGATCGTGGCCTTGCAT 
320       S  V  S  T  G  T  K  C  I  N  G  E  Y  M  S  D  R  G  L  A    
                1030      1040      1050      1060      1070      1080 
1021      TAAATGACTGCCATGCAGAAATAATATCTCGGAGATCCTTGCTCAGATTTCTTTATACAC 
340       L  N  D  C  H  A  E  I  I  S  R  R  S  L  L  R  F  L  Y  T    
                1090      1100      1110      1120      1130      1140 
1081      AACTTGAGCTTTACTTAAATAACAAAGATGATCAAAAAAGATCCATCTTTCAGAAATCAG 
360       Q  L  E  L  Y  L  N  N  K  D  D  Q  K  R  S  I  F  Q  K  S    
                1150      1160      1170      1180      1190      1200 
1141      AGCGAGGGGGGTTTAGGCTGAAGGAGAATGTCCAGTTTCATCTGTACATCAGCACCTCTC 
380       E  R  G  G  F  R  L  K  E  N  V  Q  F  H  L  Y  I  S  T  S    
                1210      1220      1230      1240      1250      1260 
1201      CCTGTGGAGATGCCAGAATCTTCTCACCACATGAGCCAATCCTGGAAGAACCAGCAGATA 
400       P  C  G  D  A  R  I  F  S  P  H  E  P  I  L  E  E  P  A  D    
                1270      1280      1290      1300      1310      1320 
1261      GACACCCAAATCGTAAAGCAAGAGGACAGCTACGGACCAAAATAGAGTCTGGTCAGGGGA 
420       R  H  P  N  R  K  A  R  G  Q  L  R  T  K  I  E  S  G  Q  G    
                1330      1340      1350      1360      1370      1380 
1321      CGATTCCAGTGCGCTCCAATGCGAGCATCCAAACGTGGGACGGGGTGCTGCAAGGGGAGC 
440       T  I  P  V  R  S  N  A  S  I  Q  T  W  D  G  V  L  Q  G  E    
                1390      1400      1410      1420      1430      1440 
1381      GGCTGCTCACCATGTCCTGCAGTGACAAGATTGCACGCTGGAACGTGGTGGGCATCCAGG 
460       R  L  L  T  M  S  C  S  D  K  I  A  R  W  N  V  V  G  I  Q    
                1450      1460      1470      1480      1490      1500 
1441      GATCCCTGCTCAGCATTTTCGTGGAGCCCATTTACTTCTCGAGCATCATCCTGGGCAGCC 
480       G  S  L  L  S  I  F  V  E  P  I  Y  F  S  S  I  I  L  G  S    
                1510      1520      1530      1540      1550      1560 
1501      TTTACCACGGGGACCACCTTTCCAGGGCCATGTACCAGCGGATCTCCAACATAGAGGACC 
500       L  Y  H  G  D  H  L  S  R  A  M  Y  Q  R  I  S  N  I  E  D    
                1570      1580      1590      1600      1610      1620 
1561      TGCCACCTCTCTACACCCTCAACAAGCCTTTGCTCAGTGGCATCAGCAATGCAGAAGCAC 
520       L  P  P  L  Y  T  L  N  K  P  L  L  S  G  I  S  N  A  E  A    
                1630      1640      1650      1660      1670      1680 
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1621      GGCAGCCAGGGAAGGCCCCCAACTTCAGTGTCAACTGGACGGTAGGCGACTCCGCTATTG 
540       R  Q  P  G  K  A  P  N  F  S  V  N  W  T  V  G  D  S  A  I    
                1690      1700      1710      1720      1730      1740 
1681      AGGTCATCAACGCCACGACTGGGAAGGATGAGCTGGGCCGCGCGTCCCGCCTGTGTAAGC 
560       E  V  I  N  A  T  T  G  K  D  E  L  G  R  A  S  R  L  C  K    
                1750      1760      1770      1780      1790      1800 
1741      ACGCGTTGTACTGTCGCTGGATGCGTGTGCACGGCAAGGTTCCCTCCCACTTACTACGCT 
580       H  A  L  Y  C  R  W  M  R  V  H  G  K  V  P  S  H  L  L  R    
                1810      1820      1830      1840      1850      1860 
1801      CCAAGATTACCAAGCCCAACGTGTACCATGAGTCCAAGCTGGCGGCAAAGGAGTACCAGG 
600       S  K  I  T  K  P  N  V  Y  H  E  S  K  L  A  A  K  E  Y  Q    
                1870      1880      1890      1900      1910      1920 
1861      CCGCCAAGGCGCGTCTGTTCACAGCCTTCATCAAGGCGGGGCTGGGGGCCTGGGTGGAGA 
620       A  A  K  A  R  L  F  T  A  F  I  K  A  G  L  G  A  W  V  E    
                1930      1940      1950      1960      1970      1980 
1921      AGCCCACCGAGCAGGACCAGTTCTCACTCACGCCCTCTAGATGACTGCCTGTTCCGTAGC 
640       K  P  T  E  Q  D  Q  F  S  L  T  P  S  R  *  L  P  V  P  *    
                1990      2000      2010      2020      2030      2040 
1981      CGACACGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCA 
660       P  T  R  A   

Sequence of SNAP-ADAR2Q as expressed from the 293 genome with chosen editing sites (yellow). E/Q site 
is highlighted in cyan. 
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                10        20        30        40        50        60 
1         GGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCC 
1            R  R  H  P  R  C  F  D  L  H  R  R  H  R  D  R  S  S  L   
                  70        80        90       100       110       120 
61        GGACTCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGGACAAAGACT 
20        R  T  L  A  F  K  L  K  L  G  T  E  L  G  S  T  M  D  K  D    
                 130       140       150       160       170       180 
121       GCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTGTCTGGGTGCG 
40        C  E  M  K  R  T  T  L  D  S  P  L  G  K  L  E  L  S  G  C    
                 190       200       210       220       230       240 
181       AACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGAACATCTGCCGCCGACGCCGTGG 
60        E  Q  G  L  H  R  I  I  F  L  G  K  G  T  S  A  A  D  A  V    
                 250       260       270       280       290       300 
241       AAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGATGCAGGCCACCGCCT 
80        E  V  P  A  P  A  A  V  L  G  G  P  E  P  L  M  Q  A  T  A    
                 310       320       330       340       350       360 
301       GGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTGTGCCAGCCCTGC 
100       W  L  N  A  Y  F  H  Q  P  E  A  I  E  E  F  P  V  P  A  L    
                 370       380       390       400       410       420 
361       ACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAACTGCTGAAAG 
120       H  H  P  V  F  Q  Q  E  S  F  T  R  Q  V  L  W  K  L  L  K    
                 430       440       450       460       470       480 
421       TGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCCTGGCCGGCAATCCCG 
140       V  V  K  F  G  E  V  I  S  Y  S  H  L  A  A  L  A  G  N  P    
                 490       500       510       520       530       540 
481       CCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCATTCTGATCCCCT 
160       A  A  T  A  A  V  K  T  A  L  S  G  N  P  V  P  I  L  I  P    
                 550       560       570       580       590       600 
541       GCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGCTCGCCGTGA 
180       C  H  R  V  V  Q  G  D  L  D  V  G  G  Y  E  G  G  L  A  V    
                 610       620       630       640       650       660 
601       AAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGTCCTGCAG 
200       K  E  W  L  L  A  H  E  G  H  R  L  G  K  P  G  L  G  P  A    
                 670       680       690       700       710       720 
661       GCGGAGGCGCGCCAGGGTCTGGCGGCGGCAGTAAGAAGCTTGCCAAGGCCCGGGCTGCGC 
220       G  G  G  A  P  G  S  G  G  G  S  K  K  L  A  K  A  R  A  A    
                 730       740       750       760       770       780 
721       AGTCTGCCCTGGCCGCCATTTTTAACTTGCACTTGGATCAGACGCCATCTCGCCAGCCTA 
240       Q  S  A  L  A  A  I  F  N  L  H  L  D  Q  T  P  S  R  Q  P    
                 790       800       810       820       830       840 
781       TTCCCAGTGAGGGTCTTCAGCTGCATTTACCGCAGGTTTTAGCTGACGCTGTCTCACGCC 
260       I  P  S  E  G  L  Q  L  H  L  P  Q  V  L  A  D  A  V  S  R    
                 850       860       870       880       890       900 
841       TGGTCCTGGGTAAGTTTGGTGACCTGACCGACAACTTCTCCTCCCCTCACGCTCGCAGAA 
280       L  V  L  G  K  F  G  D  L  T  D  N  F  S  S  P  H  A  R  R    
                 910       920       930       940       950       960 
901       AAGTGCTGGCTGGAGTCGTCATGACAACAGGCACAGATGTTAAAGATGCCAAGGTGATAA 
300       K  V  L  A  G  V  V  M  T  T  G  T  D  V  K  D  A  K  V  I    
                 970       980       990      1000      1010      1020 
961       GTGTTTCTACAGGAGGAAAATGTATTAATGGTGAATACATGAGTGATCGTGGCCTTGCAT 
320       S  V  S  T  G  G  K  C  I  N  G  E  Y  M  S  D  R  G  L  A    
                1030      1040      1050      1060      1070      1080 
1021      TAAATGACTGCCATGCAGAAATAATATCTCGGAGATCCTTGCTCAGATTTCTTTATACAC 
340       L  N  D  C  H  A  E  I  I  S  R  R  S  L  L  R  F  L  Y  T    
                1090      1100      1110      1120      1130      1140 
1081      AACTTGAGCTTTACTTAAATAACAAAGATGATCAAAAAAGATCCATCTTTCAGAAATCAG 
360       Q  L  E  L  Y  L  N  N  K  D  D  Q  K  R  S  I  F  Q  K  S    
                1150      1160      1170      1180      1190      1200 
1141      AGCGAGGGGGGTTTAGGCTGAAGGAGAATGTCCAGTTTCATCTGTACATCAGCACCTCTC 
380       E  R  G  G  F  R  L  K  E  N  V  Q  F  H  L  Y  I  S  T  S    
                1210      1220      1230      1240      1250      1260 
1201      CCTGTGGAGATGCCAGAATCTTCTCACCACATGAGCCAATCCTGGAAGAACCAGCAGATA 
400       P  C  G  D  A  R  I  F  S  P  H  E  P  I  L  E  E  P  A  D    
                1270      1280      1290      1300      1310      1320 
1261      GACACCCAAATCGTAAAGCAAGAGGACAGCTACGGACCAAAATAGAGTCTGGTCAGGGGA 
420       R  H  P  N  R  K  A  R  G  Q  L  R  T  K  I  E  S  G  Q  G    
                1330      1340      1350      1360      1370      1380 
1321      CGATTCCAGTGCGCTCCAATGCGAGCATCCAAACGTGGGACGGGGTGCTGCAAGGGGAGC 
440       T  I  P  V  R  S  N  A  S  I  Q  T  W  D  G  V  L  Q  G  E    
                1390      1400      1410      1420      1430      1440 
1381      GGCTGCTCACCATGTCCTGCAGTGACAAGATTGCACGCTGGAACGTGGTGGGCATCCAGG 
460       R  L  L  T  M  S  C  S  D  K  I  A  R  W  N  V  V  G  I  Q    
                1450      1460      1470      1480      1490      1500 
1441      GATCCCTGCTCAGCATTTTCGTGGAGCCCATTTACTTCTCGAGCATCATCCTGGGCAGCC 
480       G  S  L  L  S  I  F  V  E  P  I  Y  F  S  S  I  I  L  G  S    
                1510      1520      1530      1540      1550      1560 
1501      TTTACCACGGGGACCACCTTTCCAGGGCCATGTACCAGCGGATCTCCAACATAGAGGACC 
500       L  Y  H  G  D  H  L  S  R  A  M  Y  Q  R  I  S  N  I  E  D    
                1570      1580      1590      1600      1610      1620 
1561      TGCCACCTCTCTACACCCTCAACAAGCCTTTGCTCAGTGGCATCAGCAATGCAGAAGCAC 
520       L  P  P  L  Y  T  L  N  K  P  L  L  S  G  I  S  N  A  E  A    
                1630      1640      1650      1660      1670      1680 
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1621      GGCAGCCAGGGAAGGCCCCCAACTTCAGTGTCAACTGGACGGTAGGCGACTCCGCTATTG 
540       R  Q  P  G  K  A  P  N  F  S  V  N  W  T  V  G  D  S  A  I    
                1690      1700      1710      1720      1730      1740 
1681      AGGTCATCAACGCCACGACTGGGAAGGATGAGCTGGGCCGCGCGTCCCGCCTGTGTAAGC 
560       E  V  I  N  A  T  T  G  K  D  E  L  G  R  A  S  R  L  C  K    
                1750      1760      1770      1780      1790      1800 
1741      ACGCGTTGTACTGTCGCTGGATGCGTGTGCACGGCAAGGTTCCCTCCCACTTACTACGCT 
580       H  A  L  Y  C  R  W  M  R  V  H  G  K  V  P  S  H  L  L  R    
                1810      1820      1830      1840      1850      1860 
1801      CCAAGATTACCAAGCCCAACGTGTACCATGAGTCCAAGCTGGCGGCAAAGGAGTACCAGG 
600       S  K  I  T  K  P  N  V  Y  H  E  S  K  L  A  A  K  E  Y  Q    
                1870      1880      1890      1900      1910      1920 
1861      CCGCCAAGGCGCGTCTGTTCACAGCCTTCATCAAGGCGGGGCTGGGGGCCTGGGTGGAGA 
620       A  A  K  A  R  L  F  T  A  F  I  K  A  G  L  G  A  W  V  E    
                1930      1940      1950      1960      1970      1980 
1921      AGCCCACCGAGCAGGACCAGTTCTCACTCACGCCCTCTAGATGACTGCCTGTTCCGTAGC 
640       K  P  T  E  Q  D  Q  F  S  L  T  P  S  R  *  L  P  V  P  *    
                1990      2000      2010      2020      2030      2040 
1981      CGACACGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCA 
660       P  T  R  A   

Sequence of SNAP-ADAR2QG as expressed from the 293 genome with chosen editing sites (yellow). E/Q 
and T/G sites are highlighted in cyan. 
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                  10        20        30        40        50        60 
1         GGCACCGCAGGCCCCGGGATGCTAGTGCGCAGCGGGTGCATCCCTGTCCGGATGCTGCGC 
1          G  T  A  G  P  G  M  L  V  R  S  G  C  I  P  V  R  M  L  R  
                  70        80        90       100       110       120 
61        CTGCGGTAGAGCGGCCGCCATGTTGCAACCGGGAAGGAAATGAATGGGCAGCCGTTAGGA 
21         L  R  *  S  G  R  H  V  A  T  G  K  E  M  N  G  Q  P  L  G   
                 130       140       150       160       170       180 
121       AAGCCTGCCGGTGACTAACCCTGCGCTCCTGCCTCGATGGGTGGAGTCGCGTGTGGCGGG 
41         K  P  A  G  D  *  P  C  A  P  A  S  M  G  G  V  A  C  G  G   
                 190       200       210       220       230       240 
181       GAAGTCAGGTGGAGCGAGGCTAGCTGGCCCGATTTCTCCTCCGGGTGATGCTTTTCCTAG 
61         E  V  R  W  S  E  A  S  W  P  D  F  S  S  G  *  C  F  S  *   
                 250       260       270       280       290       300 
241       ATTATTCTCTGATTTGGTCGTATTGGGCGCCTGGTCACCAGGGCTGCTTTTAACTCTGGT 
81         I  I  L  *  F  G  R  I  G  R  L  V  T  R  A  A  F  N  S  G   
                 310       320       330       340       350       360 
301       AAAGTGGATATTGTTGCCATCAATGACCCCTTCATTGACCTCAACTACATGGTTTACATG 
101        K  V  D  I  V  A  I  N  D  P  F  I  D  L  N  Y  M  V  Y  M   
                 370       380       390       400       410       420 
361       TTCCAATATGATTCCACCCATGGCAAATTCCATGGCACCGTCAAGGCTGAGAACGGGAAG 
121        F  Q  Y  D  S  T  H  G  K  F  H  G  T  V  K  A  E  N  G  K   
                 430       440       450       460       470       480 
421       CTTGTCATCAATGGAAATCCCATCACCATCTTCCAGGAGCGAGATCCCTCCAAAATCAAG 
141        L  V  I  N  G  N  P  I  T  I  F  Q  E  R  D  P  S  K  I  K   
                 490       500       510       520       530       540 
481       TGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGCGTCTTCACCACCATGGAG 
161        W  G  D  A  G  A  E  Y  V  V  E  S  T  G  V  F  T  T  M  E   
                 550       560       570       580       590       600 
541       AAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAAGGGTCATCATCTCTGCCCCCTCTGCT 
181        K  A  G  A  H  L  Q  G  G  A  K  R  V  I  I  S  A  P  S  A   
                 610       620       630       640       650       660 
601       GATGCCCCCATGTTCGTCATGGGTGTGAACCATGAGAAGTATGACAACAGCCTCAAGATC 
201        D  A  P  M  F  V  M  G  V  N  H  E  K  Y  D  N  S  L  K  I   
                 670       680       690  #1   700       710       720 
661       ATCAGCAATGCCTCCTGCACCACCAACTGCTTAGCACCCCTGGCCAAGGTCATCCATGAC 
221        I  S  N  A  S  C  T  T  N  C  L  A  P  L  A  K  V  I  H  D   
                 730       740       750       760       770       780 
721       AACTTTGGTATCGTGGAAGGACTCATGACCACAGTCCATGCCATCACTGCCACCCAGAAG 
241        N  F  G  I  V  E  G  L  M  T  T  V  H  A  I  T  A  T  Q  K   
                 790       800       810       820       830       840 
781       ACTGTGGATGGCCCCTCCGGGAAACTGTGGCGTGATGGCCGCGGGGCTCTCCAGAACATC 
261        T  V  D  G  P  S  G  K  L  W  R  D  G  R  G  A  L  Q  N  I   
                 850       860       870       880       890       900 
841       ATCCCTGCCTCTACTGGCGCTGCCAAGGCTGTGGGCAAGGTCATCCCTGAGCTGAACGGG 
281        I  P  A  S  T  G  A  A  K  A  V  G  K  V  I  P  E  L  N  G   
                 910       920       930       940       950       960 
901       AAGCTCACTGGCATGGCCTTCCGTGTCCCCACTGCCAACGTGTCAGTGGTGGACCTGACC 
301        K  L  T  G  M  A  F  R  V  P  T  A  N  V  S  V  V  D  L  T   
                  #2       980       990      1000      1010      1020 
961       TGCCGTCTAGAAAAACCTGCCAAATATGATGACATCAAGAAGGTGGTGAAGCAGGCGTCG 
321        C  R  L  E  K  P  A  K  Y  D  D  I  K  K  V  V  K  Q  A  S   
                1030      1040      1050      1060      1070      1080 
1021      GAGGGCCCCCTCAAGGGCATCCTGGGCTACACTGAGCACCAGGTGGTCTCCTCTGACTTC 
341        E  G  P  L  K  G  I  L  G  Y  T  E  H  Q  V  V  S  S  D  F   
                1090      1100      1110      1120      1130      1140 
1081      AACAGCGACACCCACTCCTCCACCTTTGACGCTGGGGCTGGCATTGCCCTCAACGACCAC 
361        N  S  D  T  H  S  S  T  F  D  A  G  A  G  I  A  L  N  D  H   
                1150      1160      1170      1180      1190      1200 
1141      TTTGTCAAGCTCATTTCCTGGTATGACAACGAATTTGGCTACAGCAACAGGGTGGTGGAC 
381        F  V  K  L  I  S  W  Y  D  N  E  F  G  Y  S  N  R  V  V  D   
                1210      1220      1230      1240      1250      1260 
1201      CTCATGGCCCACATGGCCTCCAAGGAGTAAGACCCCTGGACCACCAGCCCCAGCAAGAGC 
401        L  M  A  H  M  A  S  K  E  *  D  P  W  T  T  S  P  S  K  S   
                1270      1280      1290      1300      1310      1320 
1261      ACAAGAGGAAGAGAGAGACCCTCACTGCTGGGGAGTCCCTGCCACACTCAGTCCCCCACC 
421        T  R  G  R  E  R  P  S  L  L  G  S  P  C  H  T  Q  S  P  T   
                1330      1340      1350      1360      1370      1380 
1321      ACACTGAATCTCCCCTCCTCACAGTTGCCATGTAGACCCCTTGAAGAGGGGAGGGGCCTA 
441        T  L  N  L  P  S  S  Q  L  P  C  R  P  L  E  E  G  R  G  L   
                1390      1400      1410      1420      1430      1440 
1381      GGGAGCCGCACCTTGTCATGTACCATCAATAAAGTACCCTGTGCTCAACCAGTTAAAAAA 
461        G  S  R  T  L  S  C  T  I  N  K  V  P  C  A  Q  P  V  K  K   
                1450 
1441      AAAAAAAAAAAAAAA 
481        K  K  K  K  K      

Sequence of GAPDH mRNA isoform 2 (NM_001256799.2) with chosen editing sites (yellow). 
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                 10        20        30        40        50        60 
1         GCCTCAAGACCTTGGGCTGGGACTGGCTGAGCCTGGCGGGAGGCGGGGTCCGAGTCACCG 
1            L  K  T  L  G  W  D  W  L  S  L  A  G  G  G  V  R  V  T   
                  70        80        90       100       110       120 
61        CCTGCCGCCGCGCCCCCGGTTTCTATAAATTGAGCCCGCAGCCTCCCGCTTCGCTCTCTG 
20        A  C  R  R  A  P  G  F  Y  K  L  S  P  Q  P  P  A  S  L  S    
                 130       140       150       160       170       180 
121       CTCCTCCTGTTCGACAGTCAGCCGCATCTTCTTTTGCGTCGCCAGCCGAGCCACATCGCT 
40        A  P  P  V  R  Q  S  A  A  S  S  F  A  S  P  A  E  P  H  R    
                 190       200       210       220       230       240 
181       CAGACACCATGGGGAAGGTGAAGGTCGGAGTCAACGGATTTGGTCGTATTGGGCGCCTGG 
60        S  D  T  M  G  K  V  K  V  G  V  N  G  F  G  R  I  G  R  L    
                 250       260       270       280       290       300 
241       TCACCAGGGCTGCTTTTAACTCTGGTAAAGTGGATATTGTTGCCATCAATGACCCCTTCA 
80        V  T  R  A  A  F  N  S  G  K  V  D  I  V  A  I  N  D  P  F    
                 310       320       330       340       350       360 
301       TTGACCTCAACTACATGGTTTACATGTTCCAATATGATTCCACCCATGGCAAATTCCATG 
100       I  D  L  N  Y  M  V  Y  M  F  Q  Y  D  S  T  H  G  K  F  H    
                 370       380       390       400       410       420 
361       GCACCGTCAAGGCTGAGAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCATCTTCC 
120       G  T  V  K  A  E  N  G  K  L  V  I  N  G  N  P  I  T  I  F    
                 430       440       450       460       470       480 
421       AGGAGCGAGATCCCTCCAAAATCAAGTGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGT 
140       Q  E  R  D  P  S  K  I  K  W  G  D  A  G  A  E  Y  V  V  E    
                 490       500       510       520       530       540 
481       CCACTGGCGTCTTCACCACCATGGAGAAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAA 
160       S  T  G  V  F  T  T  M  E  K  A  G  A  H  L  Q  G  G  A  K    
                 550       560       570       580       590       600 
541       GGGTCATCATCTCTGCCCCCTCTGCTGATGCCCCCATGTTCGTCATGGGTGTGAACCATG 
180       R  V  I  I  S  A  P  S  A  D  A  P  M  F  V  M  G  V  N  H    
                 610       620       630       640       650        #1 
601       AGAAGTATGACAACAGCCTCAAGATCATCAGCAATGCCTCCTGCACCACCAACTGCTTAG 
200       E  K  Y  D  N  S  L  K  I  I  S  N  A  S  C  T  T  N  C  L    
                 670       680       690       700       710       720 
661       CACCCCTGGCCAAGGTCATCCATGACAACTTTGGTATCGTGGAAGGACTCATGACCACAG 
220       A  P  L  A  K  V  I  H  D  N  F  G  I  V  E  G  L  M  T  T    
                 730       740       750       760       770       780 
721       TCCATGCCATCACTGCCACCCAGAAGACTGTGGATGGCCCCTCCGGGAAACTGTGGCGTG 
240       V  H  A  I  T  A  T  Q  K  T  V  D  G  P  S  G  K  L  W  R    
                 790       800       810       820       830       840 
781       ATGGCCGCGGGGCTCTCCAGAACATCATCCCTGCCTCTACTGGCGCTGCCAAGGCTGTGG 
260       D  G  R  G  A  L  Q  N  I  I  P  A  S  T  G  A  A  K  A  V    
                 850       860       870       880       890       900 
841       GCAAGGTCATCCCTGAGCTGAACGGGAAGCTCACTGGCATGGCCTTCCGTGTCCCCACTG 
280       G  K  V  I  P  E  L  N  G  K  L  T  G  M  A  F  R  V  P  T    
                 910       920       930   #2  940       950       960 
901       CCAACGTGTCAGTGGTGGACCTGACCTGCCGTCTAGAAAAACCTGCCAAATATGATGACA 
300       A  N  V  S  V  V  D  L  T  C  R  L  E  K  P  A  K  Y  D  D    
                 970       980       990      1000      1010      1020 
961       TCAAGAAGGTGGTGAAGCAGGCGTCGGAGGGCCCCCTCAAGGGCATCCTGGGCTACACTG 
320       I  K  K  V  V  K  Q  A  S  E  G  P  L  K  G  I  L  G  Y  T    
                1030      1040      1050      1060      1070      1080 
1021      AGCACCAGGTGGTCTCCTCTGACTTCAACAGCGACACCCACTCCTCCACCTTTGACGCTG 
340       E  H  Q  V  V  S  S  D  F  N  S  D  T  H  S  S  T  F  D  A    
                1090      1100      1110      1120      1130      1140 
1081      GGGCTGGCATTGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTGGTATGACAACGAAT 
360       G  A  G  I  A  L  N  D  H  F  V  K  L  I  S  W  Y  D  N  E    
                1150      1160      1170      1180      1190      1200 
1141      TTGGCTACAGCAACAGGGTGGTGGACCTCATGGCCCACATGGCCTCCAAGGAGTAAGACC 
380       F  G  Y  S  N  R  V  V  D  L  M  A  H  M  A  S  K  E  *  D    
                1210      1220      1230      1240      1250      1260 
1201      CCTGGACCACCAGCCCCAGCAAGAGCACAAGAGGAAGAGAGAGACCCTCACTGCTGGGGA 
400       P  W  T  T  S  P  S  K  S  T  R  G  R  E  R  P  S  L  L  G    
                1270      1280      1290      1300      1310      1320 
1261      GTCCCTGCCACACTCAGTCCCCCACCACACTGAATCTCCCCTCCTCACAGTTGCCATGTA 
420       S  P  C  H  T  Q  S  P  T  T  L  N  L  P  S  S  Q  L  P  C    
                1330      1340      1350      1360      1370      1380 
1321      GACCCCTTGAAGAGGGGAGGGGCCTAGGGAGCCGCACCTTGTCATGTACCATCAATAAAG 
440       R  P  L  E  E  G  R  G  L  G  S  R  T  L  S  C  T  I  N  K    
                1390      1400      1410      1420 
1381      TACCCTGTGCTCAACCAGTTAAAAAAAAAAAAAAAAAAAAA 
460       V  P  C  A  Q  P  V  K  K  K  K  K  K        

Sequence of GAPDH mRNA isoform 1 (NM_002046.5) with chosen editing sites (yellow). 
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                  10        20        30        40        50        60 
1         ACCGCCGAGACCGCGTCCGCCCCGCGAGCACAGAGCCTCGCCTTTGCCGATCCGCCGCCC 
1          T  A  E  T  A  S  A  P  R  A  Q  S  L  A  F  A  D  P  P  P  
                  70        80        90       100       110       120 
61        GTCCACACCCGCCGCCAGCTCACCATGGATGATGATATCGCCGCGCTCGTCGTCGACAAC 
21         V  H  T  R  R  Q  L  T  M  D  D  D  I  A  A  L  V  V  D  N   
                 130       140       150       160       170       180 
121       GGCTCCGGCATGTGCAAGGCCGGCTTCGCGGGCGACGATGCCCCCCGGGCCGTCTTCCCC 
41         G  S  G  M  C  K  A  G  F  A  G  D  D  A  P  R  A  V  F  P   
                 190       200       210       220       230       240 
181       TCCATCGTGGGGCGCCCCAGGCACCAGGGCGTGATGGTGGGCATGGGTCAGAAGGATTCC 
61         S  I  V  G  R  P  R  H  Q  G  V  M  V  G  M  G  Q  K  D  S   
                 250       260       270       280       290       300 
241       TATGTGGGCGACGAGGCCCAGAGCAAGAGAGGCATCCTCACCCTGAAGTACCCCATCGAG 
81         Y  V  G  D  E  A  Q  S  K  R  G  I  L  T  L  K  Y  P  I  E   
                 310       320       330       340       350       360 
301       CACGGCATCGTCACCAACTGGGACGACATGGAGAAAATCTGGCACCACACCTTCTACAAT 
101        H  G  I  V  T  N  W  D  D  M  E  K  I  W  H  H  T  F  Y  N   
                 370       380       390       400       410       420 
361       GAGCTGCGTGTGGCTCCCGAGGAGCACCCCGTGCTGCTGACCGAGGCCCCCCTGAACCCC 
121        E  L  R  V  A  P  E  E  H  P  V  L  L  T  E  A  P  L  N  P   
                 430       440       450       460       470       480 
421       AAGGCCAACCGCGAGAAGATGACCCAGATCATGTTTGAGACCTTCAACACCCCAGCCATG 
141        K  A  N  R  E  K  M  T  Q  I  M  F  E  T  F  N  T  P  A  M   
                 490       500       510       520       530       540 
481       TACGTTGCTATCCAGGCTGTGCTATCCCTGTACGCCTCTGGCCGTACCACTGGCATCGTG 
161        Y  V  A  I  Q  A  V  L  S  L  Y  A  S  G  R  T  T  G  I  V   
                 550       560       570       580       590       600 
541       ATGGACTCCGGTGACGGGGTCACCCACACTGTGCCCATCTACGAGGGGTATGCCCTCCCC 
181        M  D  S  G  D  G  V  T  H  T  V  P  I  Y  E  G  Y  A  L  P   
                 610       620       630       640       650       660 
601       CATGCCATCCTGCGTCTGGACCTGGCTGGCCGGGACCTGACTGACTACCTCATGAAGATC 
201        H  A  I  L  R  L  D  L  A  G  R  D  L  T  D  Y  L  M  K  I   
                 670       680       690       700       710       720 
661       CTCACCGAGCGCGGCTACAGCTTCACCACCACGGCCGAGCGGGAAATCGTGCGTGACATT 
221        L  T  E  R  G  Y  S  F  T  T  T  A  E  R  E  I  V  R  D  I   
                 730       740       750       760       770       780 
721       AAGGAGAAGCTGTGCTACGTCGCCCTGGACTTCGAGCAAGAGATGGCCACGGCTGCTTCC 
241        K  E  K  L  C  Y  V  A  L  D  F  E  Q  E  M  A  T  A  A  S   
                 790       800       810       820       830       840 
781       AGCTCCTCCCTGGAGAAGAGCTACGAGCTGCCTGACGGCCAGGTCATCACCATTGGCAAT 
261        S  S  S  L  E  K  S  Y  E  L  P  D  G  Q  V  I  T  I  G  N   
                 850       860       870       880       890       900 
841       GAGCGGTTCCGCTGCCCTGAGGCACTCTTCCAGCCTTCCTTCCTGGGCATGGAGTCCTGT 
281        E  R  F  R  C  P  E  A  L  F  Q  P  S  F  L  G  M  E  S  C   
                 910       920       930       940       950       960 
901       GGCATCCACGAAACTACCTTCAACTCCATCATGAAGTGTGACGTGGACATCCGCAAAGAC 
301        G  I  H  E  T  T  F  N  S  I  M  K  C  D  V  D  I  R  K  D   
                 970       980       990      1000      1010      1020 
961       CTGTACGCCAACACAGTGCTGTCTGGCGGCACCACCATGTACCCTGGCATTGCCGACAGG 
321        L  Y  A  N  T  V  L  S  G  G  T  T  M  Y  P  G  I  A  D  R   
                1030      1040      1050      1060      1070      1080 
1021      ATGCAGAAGGAGATCACTGCCCTGGCACCCAGCACAATGAAGATCAAGATCATTGCTCCT 
341        M  Q  K  E  I  T  A  L  A  P  S  T  M  K  I  K  I  I  A  P   
                1090      1100      1110      1120      1130      1140 
1081      CCTGAGCGCAAGTACTCCGTGTGGATCGGCGGCTCCATCCTGGCCTCGCTGTCCACCTTC 
361        P  E  R  K  Y  S  V  W  I  G  G  S  I  L  A  S  L  S  T  F   
                1150      1160      1170      1180      1190      1200 
1141      CAGCAGATGTGGATCAGCAAGCAGGAGTATGACGAGTCCGGCCCCTCCATCGTCCACCGC 
381        Q  Q  M  W  I  S  K  Q  E  Y  D  E  S  G  P  S  I  V  H  R   
                1210      1220      1230      1240      1250      1260 
1201      AAATGCTTCTAGGCGGACTATGACTTAGTTGCGTTACACCCTTTCTTGACAAAACCTAAC 
401        K  C  F  *  A  D  Y  D  L  V  A  L  H  P  F  L  T  K  P  N   
                1270      1280      1290      1300      1310      1320 
1261      TTGCGCAGAAAACAAGATGAGATTGGCATGGCTTTATTTGTTTTTTTTGTTTTGTTTTGG 
421        L  R  R  K  Q  D  E  I  G  M  A  L  F  V  F  F  V  L  F  W   
                1330      1340      1350      1360      1370      1380 
1321      TTTTTTTTTTTTTTTTGGCTTGACTCAGGATTTAAAAACTGGAACGGTGAAGGTGACAGC 
441        F  F  F  F  F  W  L  D  S  G  F  K  N  W  N  G  E  G  D  S   
                1390      1400      1410      1420      1430      1440 
1381      AGTCGGTTGGAGCGAGCATCCCCCAAAGTTCACAATGTGGCCGAGGACTTTGATTGCACA 
461        S  R  L  E  R  A  S  P  K  V  H  N  V  A  E  D  F  D  C  T   
                1450      1460      1470      1480      1490      1500 
1441      TTGTTGTTTTTTTAATAGTCATTCCAAATATGAGATGCGTTGTTACAGGAAGTCCCTTGC 
481        L  L  F  F  *  *  S  F  Q  I  *  D  A  L  L  Q  E  V  P  C   
                1510      1520      1530      1540      1550      1560 
1501      CATCCTAAAAGCCACCCCACTTCTCTCTAAGGAGAATGGCCCAGTCCTCTCCCAAGTCCA 
501        H  P  K  S  H  P  T  S  L  *  G  E  W  P  S  P  L  P  S  P   
                1570      1580      1590      1600      1610      1620 
1561      CACAGGGGAGGTGATAGCATTGCTTTCGTGTAAATTATGTAATGCAAAATTTTTTTAATC 
521        H  R  G  G  D  S  I  A  F  V  *  I  M  *  C  K  I  F  L  I   
                1630      1640      1650      1660      1670      1680 
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1621      TTCGCCTTAATACTTTTTTATTTTGTTTTATTTTGAATGATGAGCCTTCGTGCCCCCCCT 
541        F  A  L  I  L  F  Y  F  V  L  F  *  M  M  S  L  R  A  P  P   
                1690      1700      1710      1720      1730      1740 
1681      TCCCCCTTTTTTGTCCCCCAACTTGAGATGTATGAAGGCTTTTGGTCTCCCTGGGAGTGG 
561        S  P  F  F  V  P  Q  L  E  M  Y  E  G  F  W  S  P  W  E  W   
                1750      1760      1770      1780      1790      1800 
1741      GTGGAGGCAGCCAGGGCTTACCTGTACACTGACTTGAGACCAGTTGAATAAAAGTGCACA 
581        V  E  A  A  R  A  Y  L  Y  T  D  L  R  P  V  E  *  K  C  T   
                1810      1820      1830      1840      1850 
1801      CCTTAAAAATGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
601        P  *  K  *  K  K  K  K  K  K  K  K  K  K  K  K  K            

 

Sequence of ACTB mRNA (NM_001101.3) with chosen editing site (yellow). 
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                 10        20        30        40        50        60 
1         GTCCTCAACCAAGATGGCGCGGATGGCTTCAGGCGCATCACGACACCGGCGCGTCACGCG 
1            P  Q  P  R  W  R  G  W  L  Q  A  H  H  D  T  G  A  S  R   
                  70        80        90       100       110       120 
61        ACCCGCCCTACGGGCACCTCCCGCGCTTTTCTTAGCGCCGCAGACGGTGGCCGAGCGGGG 
20        D  P  P  Y  G  H  L  P  R  F  S  *  R  R  R  R  W  P  S  G    
                 130       140       150       160       170       180 
121       GACCGGGAAGCATGGCCCGGGGGTCGGCGGTTGCCTGGGCGGCGCTCGGGCCGTTGTTGT 
40        G  P  G  S  M  A  R  G  S  A  V  A  W  A  A  L  G  P  L  L    
                 190       200       210       220       230       240 
181       GGGGCTGCGCGCTGGGGCTGCAGGGCGGGATGCTGTACCCCCAGGAGAGCCCGTCGCGGG 
60        W  G  C  A  L  G  L  Q  G  G  M  L  Y  P  Q  E  S  P  S  R    
                 250       260       270       280       290       300 
241       AGTGCAAGGAGCTGGACGGCCTCTGGAGCTTCCGCGCCGACTTCTCTGACAACCGACGCC 
80        E  C  K  E  L  D  G  L  W  S  F  R  A  D  F  S  D  N  R  R    
                 310       320       330       340       350       360 
301       GGGGCTTCGAGGAGCAGTGGTACCGGCGGCCGCTGTGGGAGTCAGGCCCCACCGTGGACA 
100       R  G  F  E  E  Q  W  Y  R  R  P  L  W  E  S  G  P  T  V  D    
                 370       380       390       400       410       420 
361       TGCCAGTTCCCTCCAGCTTCAATGACATCAGCCAGGACTGGCGTCTGCGGCATTTTGTCG 
120       M  P  V  P  S  S  F  N  D  I  S  Q  D  W  R  L  R  H  F  V    
                 430       440       450       460       470       480 
421       GCTGGGTGTGGTACGAACGGGAGGTGATCCTGCCGGAGCGATGGACCCAGGACCTGCGCA 
140       G  W  V  W  Y  E  R  E  V  I  L  P  E  R  W  T  Q  D  L  R    
                 490       500       510       520       530       540 
481       CAAGAGTGGTGCTGAGGATTGGCAGTGCCCATTCCTATGCCATCGTGTGGGTGAATGGGG 
160       T  R  V  V  L  R  I  G  S  A  H  S  Y  A  I  V  W  V  N  G    
                 550       560       570       580       590       600 
541       TCGACACGCTAGAGCATGAGGGGGGCTACCTCCCCTTCGAGGCCGACATCAGCAACCTGG 
180       V  D  T  L  E  H  E  G  G  Y  L  P  F  E  A  D  I  S  N  L    
                 610       620       630       640       650       660 
601       TCCAGGTGGGGCCCCTGCCCTCCCGGCTCCGAATCACTATCGCCATCAACAACACACTCA 
200       V  Q  V  G  P  L  P  S  R  L  R  I  T  I  A  I  N  N  T  L    
                 670       680       690       700       710       720 
661       CCCCCACCACCCTGCCACCAGGGACCATCCAATACCTGACTGACACCTCCAAGTATCCCA 
220       T  P  T  T  L  P  P  G  T  I  Q  Y  L  T  D  T  S  K  Y  P    
                 730       740       750       760       770       780 
721       AGGGTTACTTTGTCCAGAACACATATTTTGACTTTTTCAACTACGCTGGACTGCAGCGGT 
240       K  G  Y  F  V  Q  N  T  Y  F  D  F  F  N  Y  A  G  L  Q  R    
                 790       800       810       820       830       840 
781       CTGTACTTCTGTACACGACACCCACCACCTACATCGATGACATCACCGTCACCACCAGCG 
260       S  V  L  L  Y  T  T  P  T  T  Y  I  D  D  I  T  V  T  T  S    
                 850       860       870       880       890       900 
841       TGGAGCAAGACAGTGGGCTGGTGAATTACCAGATCTCTGTCAAGGGCAGTAACCTGTTCA 
280       V  E  Q  D  S  G  L  V  N  Y  Q  I  S  V  K  G  S  N  L  F    
                 910       920       930       940       950       960 
901       AGTTGGAAGTGCGTCTTTTGGATGCAGAAAACAAAGTCGTGGCGAATGGGACTGGGACCC 
300       K  L  E  V  R  L  L  D  A  E  N  K  V  V  A  N  G  T  G  T    
                 970       980       990      1000      1010      1020 
961       AGGGCCAACTTAAGGTGCCAGGTGTCAGCCTCTGGTGGCCGTACCTGATGCACGAACGCC 
320       Q  G  Q  L  K  V  P  G  V  S  L  W  W  P  Y  L  M  H  E  R    
                1030      1040      1050      1060      1070      1080 
1021      CTGCCTATCTGTATTCATTGGAGGTGCAGCTGACTGCACAGACGTCACTGGGGCCTGTGT 
340       P  A  Y  L  Y  S  L  E  V  Q  L  T  A  Q  T  S  L  G  P  V    
                1090      1100      1110      1120      1130      1140 
1081      CTGACTTCTACACACTCCCTGTGGGGATCCGCACTGTGGCTGTCACCAAGAGCCAGTTCC 
360       S  D  F  Y  T  L  P  V  G  I  R  T  V  A  V  T  K  S  Q  F    
                1150      1160      1170      1180      1190      1200 
1141      TCATCAATGGGAAACCTTTCTATTTCCACGGTGTCAACAAGCATGAGGATGCGGACATCC 
380       L  I  N  G  K  P  F  Y  F  H  G  V  N  K  H  E  D  A  D  I    
                1210      1220      1230      1240      1250      1260 
1201      GAGGGAAGGGCTTCGACTGGCCGCTGCTGGTGAAGGACTTCAACCTGCTTCGCTGGCTTG 
400       R  G  K  G  F  D  W  P  L  L  V  K  D  F  N  L  L  R  W  L    
                1270      1280      1290      1300      1310      1320 
1261      GTGCCAACGCTTTCCGTACCAGCCACTACCCCTATGCAGAGGAAGTGATGCAGATGTGTG 
420       G  A  N  A  F  R  T  S  H  Y  P  Y  A  E  E  V  M  Q  M  C    
                1330      1340      1350      1360      1370      1380 
1321      ACCGCTATGGGATTGTGGTCATCGATGAGTGTCCCGGCGTGGGCCTGGCGCTGCCGCAGT 
440       D  R  Y  G  I  V  V  I  D  E  C  P  G  V  G  L  A  L  P  Q    
                1390      1400      1410      1420      1430      1440 
1381      TCTTCAACAACGTTTCTCTGCATCACCACATGCAGGTGATGGAAGAAGTGGTGCGTAGGG 
460       F  F  N  N  V  S  L  H  H  H  M  Q  V  M  E  E  V  V  R  R    
                1450      1460      1470      1480      1490        #1 
1441      ACAAGAACCACCCCGCGGTCGTGATGTGGTCTGTGGCCAACGAGCCTGCGTCCCACCTAG 
480       D  K  N  H  P  A  V  V  M  W  S  V  A  N  E  P  A  S  H  L    
                1510      1520      1530      1540      1550      1560 
1501      AATCTGCTGGCTACTACTTGAAGATGGTGATCGCTCACACCAAATCCTTGGACCCCTCCC 
500       E  S  A  G  Y  Y  L  K  M  V  I  A  H  T  K  S  L  D  P  S    
                1570      1580      1590      1600      1610      1620 
1561      GGCCTGTGACCTTTGTGAGCAACTCTAACTATGCAGCAGACAAGGGGGCTCCGTATGTGG 
520       R  P  V  T  F  V  S  N  S  N  Y  A  A  D  K  G  A  P  Y  V    
                1630      1640      1650      1660      1670      1680 
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1621      ATGTGATCTGTTTGAACAGCTACTACTCTTGGTATCACGACTACGGGCACCTGGAGTTGA 
540       D  V  I  C  L  N  S  Y  Y  S  W  Y  H  D  Y  G  H  L  E  L    
                1690      1700      1710      1720      1730      1740 
1681      TTCAGCTGCAGCTGGCCACCCAGTTTGAGAACTGGTATAAGAAGTATCAGAAGCCCATTA 
560       I  Q  L  Q  L  A  T  Q  F  E  N  W  Y  K  K  Y  Q  K  P  I    
                1750      1760      1770      1780      1790      1800 
1741      TTCAGAGCGAGTATGGAGCAGAAACGATTGCAGGGTTTCACCAGGATCCACCTCTGATGT 
580       I  Q  S  E  Y  G  A  E  T  I  A  G  F  H  Q  D  P  P  L  M    
                1810      1820      1830      1840      1850      1860 
1801      TCACTGAAGAGTACCAGAAAAGTCTGCTAGAGCAGTACCATCTGGGTCTGGATCAAAAAC 
600       F  T  E  E  Y  Q  K  S  L  L  E  Q  Y  H  L  G  L  D  Q  K    
                1870      1880      1890      1900      1910      1920 
1861      GCAGAAAATACGTGGTTGGAGAGCTCATTTGGAATTTTGCCGATTTCATGACTGAACAGT 
620       R  R  K  Y  V  V  G  E  L  I  W  N  F  A  D  F  M  T  E  Q    
                1930      1940      1950      1960      1970      1980 
1921      CACCGACGAGAGTGCTGGGGAATAAAAAGGGGATCTTCACTCGGCAGAGACAACCAAAAA 
640       S  P  T  R  V  L  G  N  K  K  G  I  F  T  R  Q  R  Q  P  K    
                1990      2000      2010      2020      2030      2040 
1981      GTGCAGCGTTCCTTTTGCGAGAGAGATACTGGAAGATTGCCAATGAAACCAGGTATCCCC 
660       S  A  A  F  L  L  R  E  R  Y  W  K  I  A  N  E  T  R  Y  P    
                 #2       2060      2070      2080      2090      2100 
2041      ACTCAGTAGCCAAGTCACAATGTTTGGAAAACAGCCTGTTTACTTGAGCAAGACTGATAC 
680       H  S  V  A  K  S  Q  C  L  E  N  S  L  F  T  *  A  R  L  I    
                2110      2120      2130      2140      2150      2160 
2101      CACCTGCGTGTCCCTTCCTCCCCGAGTCAGGGCGACTTCCACAGCAGCAGAACAAGTGCC 
700       P  P  A  C  P  F  L  P  E  S  G  R  L  P  Q  Q  Q  N  K  C    
                2170      2180      2190      2200      2210      2220 
2161      TCCTGGACTGTTCACGGCAGACCAGAACGTTTCTGGCCTGGGTTTTGTGGTCATCTATTC 
720       L  L  D  C  S  R  Q  T  R  T  F  L  A  W  V  L  W  S  S  I    
                2230      2240      2250      2260      2270      2280 
2221      TAGCAGGGAACACTAAAGGTGGAAATAAAAGATTTTCTATTATGGAAATAAAGAGTTGGC 
740       L  A  G  N  T  K  G  G  N  K  R  F  S  I  M  E  I  K  S  W    
                2290      2300      2310      2320 
2281      ATGAAAGTGGCTACTGAAAAAAAAAAAAAAAAAAAAAAAAA 
760       H  E  S  G  Y  *  K  K  K  K  K  K  K      

Sequence of GUSB mRNA (NM_000181.3) with chosen editing sites (yellow). 
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                  10        20        30        40        50        60 
1         TCCTAGGCGGCGGCCGCGGCGGCGGAGGCAGCAGCGGCGGCGGCAGTGGCGGCGGCGAAG 
1          S  *  A  A  A  A  A  A  E  A  A  A  A  A  A  V  A  A  A  K  
                  70        80        90       100       110       120 
61        GTGGCGGCGGCTCGGCCAGTACTCCCGGCCCCCGCCATTTCGGACTGGGAGCGAGCGCGG 
21         V  A  A  A  R  P  V  L  P  A  P  A  I  S  D  W  E  R  A  R   
                 130       140       150       160       170       180 
121       CGCAGGCACTGAAGGCGGCGGCGGGGCCAGAGGCTCAGCGGCTCCCAGGTGCGGGAGAGA 
41         R  R  H  *  R  R  R  R  G  Q  R  L  S  G  S  Q  V  R  E  R   
                 190       200       210  target A/1         target 2      
181       GGCCTGCTGAAAATGACTGAATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAG 
61         G  L  L  K  M  T  E  Y  K  L  V  V  V  G  A  G  G  V  G  K   
                 250       260       270       280       290       300 
241       AGTGCCTTGACGATACAGCTAATTCAGAATCATTTTGTGGACGAATATGATCCAACAATA 
81         S  A  L  T  I  Q  L  I  Q  N  H  F  V  D  E  Y  D  P  T  I   
                 310       320       330       340       350       360 
301       GAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAACCTGTCTCTTGGATATTCTC 
101        E  D  S  Y  R  K  Q  V  V  I  D  G  E  T  C  L  L  D  I  L   
                 370       380       390       400       410       420 
361       GACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGACCAGTACATGAGGACTGGGGAG 
121        D  T  A  G  Q  E  E  Y  S  A  M  R  D  Q  Y  M  R  T  G  E   
                 430       440       450       460       470       480 
421       GGCTTTCTTTGTGTATTTGCCATAAATAATACTAAATCATTTGAAGATATTCACCATTAT 
141        G  F  L  C  V  F  A  I  N  N  T  K  S  F  E  D  I  H  H  Y   
                 490       500       510       520       530       540 
481       AGAGAACAAATTAAAAGAGTTAAGGACTCTGAAGATGTACCTATGGTCCTAGTAGGAAAT 
161        R  E  Q  I  K  R  V  K  D  S  E  D  V  P  M  V  L  V  G  N   
                 550       560       570       580       590       600 
541       AAATGTGATTTGCCTTCTAGAACAGTAGACACAAAACAGGCTCAGGACTTAGCAAGAAGT 
181        K  C  D  L  P  S  R  T  V  D  T  K  Q  A  Q  D  L  A  R  S   
                 610       620       630       640       650       660 
601       TATGGAATTCCTTTTATTGAAACATCAGCAAAGACAAGACAGGGTGTTGATGATGCCTTC 
201        Y  G  I  P  F  I  E  T  S  A  K  T  R  Q  G  V  D  D  A  F   
                 670       680       690       700       710       720 
661       TATACATTAGTTCGAGAAATTCGAAAACATAAAGAAAAGATGAGCAAAGATGGTAAAAAG 
221        Y  T  L  V  R  E  I  R  K  H  K  E  K  M  S  K  D  G  K  K   
                 730       740       750       760       770       780 
721       AAGAAAAAGAAGTCAAAGACAAAGTGTGTAATTATGTAAATACAATTTGTACTTTTTTCT 
241        K  K  K  K  S  K  T  K  C  V  I  M  *  I  Q  F  V  L  F  S   
                 790       800       810       820       830       840 
781       TAAGGCATACTAGTACAAGTGGTAATTTTTGTACATTACACTAAATTATTAGCATTTGTT 
261        *  G  I  L  V  Q  V  V  I  F  V  H  Y  T  K  L  L  A  F  V   

 

Sequence of KRAS mRNA (NM_004985.4) with chosen editing sites (yellow).  
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                10        20        30        40        50        60 
1         GCTGAGCGCGGAGCCGCCCGGTGATTGGTGGGGGCGGAAGGGGGCCGGGCGCCAGCGCTG 
1           L  S  A  E  P  P  G  D  W  W  G  R  K  G  A  G  R  Q  R  C 
                  70        80        90       100       110       120 
61        CCTTTTCTCCTGCCGGGTAGTTTCGCTTTCCTGCGCAGAGTCTGCGGAGGGGCTCGGCTG 
21          L  F  S  C  R  V  V  S  L  S  C  A  E  S  A  E  G  L  G  C  
                 130       140       150       160       170       180 
121       CACCGGGGGGATCGCGCCTGGCAGACCCCAGACCGAGCAGAGGCGACCCAGCGCGCTCGG 
41          T  G  G  I  A  P  G  R  P  Q  T  E  Q  R  R  P  S  A  L  G  
                 190       200       210       220       230       240 
181       GAGAGGCTGCACCGCCGCGCCCCCGCCTAGCCCTTCCGGATCCTGCGCGCAGAAAAGTTT 
61          R  G  C  T  A  A  P  P  P  S  P  S  G  S  C  A  Q  K  S  F  
                 250       260       270       280       290       300 
241       CATTTGCTGTATGCCATCCTCGAGAGCTGTCTAGGTTAACGTTCGCACTCTGTGTATATA 
81          I  C  C  M  P  S  S  R  A  V  *  V  N  V  R  T  L  C  I  *  
                 310       320       330       340       350       360 
301       ACCTCGACAGTCTTGGCACCTAACGTGCTGTGCGTAGCTGCTCCTTTGGTTGAATCCCCA 
101         P  R  Q  S  W  H  L  T  C  C  A  *  L  L  L  W  L  N  P  Q  
                 370       380       390       400       410       420 
361       GGCCCTTGTTGGGGCACAAGGTGGCAGGATGTCTCAGTGGTACGAACTTCAGCAGCTTGA 
121         A  L  V  G  A  Q  G  G  R  M  S  Q  W  Y  E  L  Q  Q  L  D  
                 430       440       450       460       470       480 
421       CTCAAAATTCCTGGAGCAGGTTCACCAGCTTTATGATGACAGTTTTCCCATGGAAATCAG 
141         S  K  F  L  E  Q  V  H  Q  L  Y  D  D  S  F  P  M  E  I  R  
                 490       500       510       520       530       540 
481       ACAGTACCTGGCACAGTGGTTAGAAAAGCAAGACTGGGAGCACGCTGCCAATGATGTTTC 
161         Q  Y  L  A  Q  W  L  E  K  Q  D  W  E  H  A  A  N  D  V  S  
                 550       560       570       580       590       600 
541       ATTTGCCACCATCCGTTTTCATGACCTCCTGTCACAGCTGGATGATCAATATAGTCGCTT 
181         F  A  T  I  R  F  H  D  L  L  S  Q  L  D  D  Q  Y  S  R  F  
                 610       620       630       640       650       660 
601       TTCTTTGGAGAATAACTTCTTGCTACAGCATAACATAAGGAAAAGCAAGCGTAATCTTCA 
201         S  L  E  N  N  F  L  L  Q  H  N  I  R  K  S  K  R  N  L  Q  
                 670       680       690       700       710       720 
661       GGATAATTTTCAGGAAGACCCAATCCAGATGTCTATGATCATTTACAGCTGTCTGAAGGA 
221         D  N  F  Q  E  D  P  I  Q  M  S  M  I  I  Y  S  C  L  K  E  
                 730       740       750       760       770       780 
721       AGAAAGGAAAATTCTGGAAAACGCCCAGAGATTTAATCAGGCTCAGTCGGGGAATATTCA 
241         E  R  K  I  L  E  N  A  Q  R  F  N  Q  A  Q  S  G  N  I  Q  
                 790       800       810       820       830       840 
781       GAGCACAGTGATGTTAGACAAACAGAAAGAGCTTGACAGTAAAGTCAGAAATGTGAAGGA 
261         S  T  V  M  L  D  K  Q  K  E  L  D  S  K  V  R  N  V  K  D  
                 850       860       870       880       890       900 
841       CAAGGTTATGTGTATAGAGCATGAAATCAAGAGCCTGGAAGATTTACAAGATGAATATGA 
281         K  V  M  C  I  E  H  E  I  K  S  L  E  D  L  Q  D  E  Y  D  
                 910       920       930       940       950       960 
901       CTTCAAATGCAAAACCTTGCAGAACAGAGAACACGAGACCAATGGTGTGGCAAAGAGTGA 
301         F  K  C  K  T  L  Q  N  R  E  H  E  T  N  G  V  A  K  S  D  
                 970       980       990      1000      1010      1020 
961       TCAGAAACAAGAACAGCTGTTACTCAAGAAGATGTATTTAATGCTTGACAATAAGAGAAA 
321         Q  K  Q  E  Q  L  L  L  K  K  M  Y  L  M  L  D  N  K  R  K  
                1030      1040      1050      1060      1070      1080 
1021      GGAAGTAGTTCACAAAATAATAGAGTTGCTGAATGTCACTGAACTTACCCAGAATGCCCT 
341         E  V  V  H  K  I  I  E  L  L  N  V  T  E  L  T  Q  N  A  L  
                1090      1100      1110      1120      1130      1140 
1081      GATTAATGATGAACTAGTGGAGTGGAAGCGGAGACAGCAGAGCGCCTGTATTGGGGGGCC 
361         I  N  D  E  L  V  E  W  K  R  R  Q  Q  S  A  C  I  G  G  P  
                1150      1160      1170      1180      1190      1200 
1141      GCCCAATGCTTGCTTGGATCAGCTGCAGAACTGGTTCACTATAGTTGCGGAGAGTCTGCA 
381         P  N  A  C  L  D  Q  L  Q  N  W  F  T  I  V  A  E  S  L  Q  
                1210      1220      1230      1240      1250      1260 
1201      GCAAGTTCGGCAGCAGCTTAAAAAGTTGGAGGAATTGGAACAGAAATACACCTACGAACA 
401         Q  V  R  Q  Q  L  K  K  L  E  E  L  E  Q  K  Y  T  Y  E  H  
                1270      1280      1290      1300      1310      1320 
1261      TGACCCTATCACAAAAAACAAACAAGTGTTATGGGACCGCACCTTCAGTCTTTTCCAGCA 
421         D  P  I  T  K  N  K  Q  V  L  W  D  R  T  F  S  L  F  Q  Q  
                1330      1340      1350      1360      1370      1380 
1321      GCTCATTCAGAGCTCGTTTGTGGTGGAAAGACAGCCCTGCATGCCAACGCACCCTCAGAG 
441         L  I  Q  S  S  F  V  V  E  R  Q  P  C  M  P  T  H  P  Q  R  
                1390      1400      1410      1420      1430      1440 
1381      GCCGCTGGTCTTGAAGACAGGGGTCCAGTTCACTGTGAAGTTGAGACTGTTGGTGAAATT 
461         P  L  V  L  K  T  G  V  Q  F  T  V  K  L  R  L  L  V  K  L  
                1450      1460      1470      1480      1490      1500 
1441      GCAAGAGCTGAATTATAATTTGAAAGTCAAAGTCTTATTTGATAAAGATGTGAATGAGAG 
481         Q  E  L  N  Y  N  L  K  V  K  V  L  F  D  K  D  V  N  E  R  
                1510      1520      1530      1540      1550      1560 
1501      AAATACAGTAAAAGGATTTAGGAAGTTCAACATTTTGGGCACGCACACAAAAGTGATGAA 
501         N  T  V  K  G  F  R  K  F  N  I  L  G  T  H  T  K  V  M  N  
                1570      1580      1590      1600      1610      1620 
1561      CATGGAGGAGTCCACCAATGGCAGTCTGGCGGCTGAATTTCGGCACCTGCAATTGAAAGA 
521         M  E  E  S  T  N  G  S  L  A  A  E  F  R  H  L  Q  L  K  E  
                1630      1640      1650      1660      1670      1680 
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1621      ACAGAAAAATGCTGGCACCAGAACGAATGAGGGTCCTCTCATCGTTACTGAAGAGCTTCA 
541         Q  K  N  A  G  T  R  T  N  E  G  P  L  I  V  T  E  E  L  H  
                1690      1700      1710      1720      1730      1740 
1681      CTCCCTTAGTTTTGAAACCCAATTGTGCCAGCCTGGTTTGGTAATTGACCTCGAGACGAC 
561         S  L  S  F  E  T  Q  L  C  Q  P  G  L  V  I  D  L  E  T  T  
                1750      1760      1770      1780      1790      1800 
1741      CTCTCTGCCCGTTGTGGTGATCTCCAACGTCAGCCAGCTCCCGAGCGGTTGGGCCTCCAT 
581         S  L  P  V  V  V  I  S  N  V  S  Q  L  P  S  G  W  A  S  I  
                1810      1820      1830      1840      1850      1860 
1801      CCTTTGGTACAACATGCTGGTGGCGGAACCCAGGAATCTGTCCTTCTTCCTGACTCCACC 
601         L  W  Y  N  M  L  V  A  E  P  R  N  L  S  F  F  L  T  P  P  
                1870      1880      1890      1900      1910      1920 
1861      ATGTGCACGATGGGCTCAGCTTTCAGAAGTGCTGAGTTGGCAGTTTTCTTCTGTCACCAA 
621         C  A  R  W  A  Q  L  S  E  V  L  S  W  Q  F  S  S  V  T  K  
                1930      1940      1950      1960      1970      1980 
1921      AAGAGGTCTCAATGTGGACCAGCTGAACATGTTGGGAGAGAAGCTTCTTGGTCCTAACGC 
641         R  G  L  N  V  D  Q  L  N  M  L  G  E  K  L  L  G  P  N  A  
                1990      2000      2010      2020      2030      2040 
1981      CAGCCCCGATGGTCTCATTCCGTGGACGAGGTTTTGTAAGGAAAATATAAATGATAAAAA 
661         S  P  D  G  L  I  P  W  T  R  F  C  K  E  N  I  N  D  K  N  
                2050      2060      2070      2080      2090      2100 
2041      TTTTCCCTTCTGGCTTTGGATTGAAAGCATCCTAGAACTCATTAAAAAACACCTGCTCCC 
681         F  P  F  W  L  W  I  E  S  I  L  E  L  I  K  K  H  L  L  P  
                2110      2120      2130      2140      2150      2160 
2101      TCTCTGGAATGATGGGTGCATCATGGGCTTCATCAGCAAGGAGCGAGAGCGTGCCCTGTT 
701         L  W  N  D  G  C  I  M  G  F  I  S  K  E  R  E  R  A  L  L  
                2170      2180      2190      2200      2210      2220 
2161      GAAGGACCAGCAGCCGGGGACCTTCCTGCTGCGGTTCAGTGAGAGCTCCCGGGAAGGGGC 
721         K  D  Q  Q  P  G  T  F  L  L  R  F  S  E  S  S  R  E  G  A  
                2230      2240      2250      2260      2270      2280 
2221      CATCACATTCACATGGGTGGAGCGGTCCCAGAACGGAGGCGAACCTGACTTCCATGCGGT 
741         I  T  F  T  W  V  E  R  S  Q  N  G  G  E  P  D  F  H  A  V  
                2290      2300      2310      2320      2330      2340 
2281      TGAACCCTACACGAAGAAAGAACTTTCTGCTGTTACTTTCCCTGACATCATTCGCAATTA 
761         E  P  Y  T  K  K  E  L  S  A  V  T  F  P  D  I  I  R  N  Y  
                2350      2360      2370      2380      2390      2400 
2341      CAAAGTCATGGCTGCTGAGAATATTCCTGAGAATCCCCTGAAGTATCTGTATCCAAATAT 
781         K  V  M  A  A  E  N  I  P  E  N  P  L  K  Y  L  Y  P  N  I  
                2410      2420      2430      2440      2450      2460 
2401      TGACAAAGACCATGCCTTTGGAAAGTATTACTCCAGGCCAAAGGAAGCACCAGAGCCAAT 
801         D  K  D  H  A  F  G  K  Y  Y  S  R  P  K  E  A  P  E  P  M  
                2470      2480      2490      2500      2510      2520 
2461      GGAACTTGATGGCCCTAAAGGAACTGGATATATCAAGACTGAGTTGATTTCTGTGTCTGA 
821         E  L  D  G  P  K  G  T  G  Y  I  K  T  E  L  I  S  V  S  E  
                2530      2540      2550      2560      2570      2580 
2521      AGTTCACCCTTCTAGACTTCAGACCACAGACAACCTGCTCCCCATGTCTCCTGAGGAGTT 
841         V  H  P  S  R  L  Q  T  T  D  N  L  L  P  M  S  P  E  E  F  
                2590      2600      2610      2620      2630      2640 
2581      TGACGAGGTGTCTCGGATAGTGGGCTCTGTAGAATTCGACAGTATGATGAACACAGTATA 
861         D  E  V  S  R  I  V  G  S  V  E  F  D  S  M  M  N  T  V  *  
                2650      2660      2670      2680      2690      2700 
2641      GAGCATGAATTTTTTTCATCTTCTCTGGCGACAGTTTTCCTTCTCATCTGTGATTCCCTC 
881         S  M  N  F  F  H  L  L  W  R  Q  F  S  F  S  S  V  I  P  S  

 

Sequence of STAT1 mRNA (NM_007315.3) with chosen editing site Y701 (yellow).  

 



Non-included data (Man. 4)  

 

Effect of nuclear localization on the editing yield. (a) NGS data produced by Vallecillo-Viejo et al. (RNA Biol. 
2018) was reanalyzed using our pipeline (see online methods). In the study of Vallecillo-Viejo et al., three 
copies of the SV40 large T antigen NLS (NLS3) were added to the N-terminus of 4λN-ADAR2 and 4λN-
ADAR2Q to direct the editing enzymes to the nucleus. Site-directed RNA Editing was performed within an 
overexpressed reporter mRNA (CFTR). Vallecillo-Viejo et al. claimed that sequestering the enzyme in the 
nucleus decreases off-target editing without affecting on-target editing. However, the reanalysis revealed 
that nuclear translocation of the 4λN-ADAR enzymes results in a reduction of the on-target editing by 
~ 20%. (b) In our study, three copies of the SV40 large T antigen NLS (NLS3) were fused to the N-terminus 
of SA2 and SA2Q. FITC-staining revealed that both SA2 and SA2Q were predominately localized in the 
nucleus after NLS3-fusion. (c) Editing was performed in the ORF (site #2) and the 3’-UTR of GAPDH in 
cells expressing the SA enzymes without and with NLS3. The editing yields were always decreased when 
applying nuclear SA enzymes.  
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Introduction

The immediate revelation of the copying mechanism was the
most striking when Watson and Crick, 60 years ago, correctly
guessed the DNA helix structure.[1] Applying molecular recogni-
tion between two simple base pairs for encoding the entire
genetic information organized in a few gigantic macromole-
cules was unbelievable and still continues to fascinate young
life scientists and chemists. Upon the family of bio-macromole-
cules, base pairing is a unique feature of nucleic acids and is
particularly useful as it allows for the rational design of probes
that target RNA and DNA with predictable site specificity, bind-
ing strength, and binding dynamics in order to precisely ma-
nipulate biological function.

Chemists quickly started to chemically alter nucleic acids for
various reasons. On one hand, they aimed to unravel the etiol-
ogy of nucleic acid structure and function.[2] On the other
hand, they were interested in further improving nucleic acids
for medicinal applications. In the beginnings, nucleic acid ana-
logues lagged far behind the exaggerated expectations in anti-
sense and antigene technologies. However, we now find nu-
merous designed nucleic acid analogues that are successfully
applied as research tools and in clinical trials.

Small chemical modifications on the nucleic acid backbone,
including 2’-O-methyl, 2’-fluorine, 2’-O-methoxyethyl (2’-MOE),
and phosphothioate for instance typically improve several
pharmacological properties of antisense probes, such as the
in vivo stability, potency, cellular uptake, and importantly, the
immunogenicity.[3] Modifications have also been shown to
modulate the binding strength and specificity of such probes.
Examples include the locked nucleic acids (LNAs) that fix the

sugar puckering of the ribose in a conformation optimal for
hybridization (Figure 1),[4] and C5-methyl-cytosine that im-
proves the binding thermodynamics of triplex-forming oligo-
nucleotides.[5] However, fully artificial analogues, such as pep-
tide nucleic acids (PNAs)[6] and morpholinos,[7] have also been
successfully applied (Figure 1).

RNA-guided machineries perfectly satisfy the demand for ra-
tionally programmable tools that manipulate gene function
inside the cell. Over the last ten years, various natural machi-
neries have been harnessed, with RNA interference being
among the most prominent examples. It is now time to tackle
the engineering of novel RNA-guided tools not provided by
nature. In this respect, we highlight RNA-guided site-directed
RNA editing as a new concept for the manipulation of RNA
and protein function. In contrast to currently available tech-

niques, RNA editing allows for the introduction of selected
point mutations into the transcriptome without the need for
genomic manipulation. In particular, the approach described
using chemically stabilized, antagomir-like guideRNAs may
offer advantages over others, such as specificity and circum-
vention of immunogenicity. These new tools have significant
potential for the advancement of both basic science and me-
dicinal application, especially in the treatment of genetic dis-
eases.

Figure 1. Various nucleic acid analogues have been used to interfere with
gene expression by site-specific binding either to a gene (antigene) or to
a transcript (antisense) of interest, thereby inhibiting transcription, transla-
tion, splicing, and other processes. LNA = locked nucleic acid, OMe/PTO = 2’-
O-methyl/phosphothioate oligonucleotide, PNA = peptide nucleic acid,
MPO = morpholino oligomer.
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By applying simple base-pair-
ing rules, antisense and antigene
probes can interfere with gene
function in a highly rational and
predictable way.[3–8] They can
manipulate various processes, in-
cluding transcription, splicing,
translation (initiation), and mi-
croRNA function, for instance.
The mechanism of action, how-
ever, is basically always the
same. Owing to their strong
binding to specific sites on
a gene or transcript, such probes
inhibit biological processes by
blocking the access of endoge-
nous factors. The general mecha-
nism also accounts for the gen-
eral limitations. The bare probes can only block active process-
es in a concentration-dependent manner and for a limited
amount of time.

One way to overcome these limitations is the recruitment of
catalytically active machineries. Recognizing this, chemists
tried to develop gapmers and external guideRNAs that recruit
RNaseH or RNaseP activity to support the antisense effects by
nuclease digestion of the targeted transcript.[8] However, the
real breakthrough in the antisense field was the discovery of
the RNA interference mechanism and the ease by which this
RNA-guided machinery can be re-addressed with external
guideRNAs, the so-called siRNAs.[9] In recent years, many cellu-
lar RNA-guided machineries turned out to be readily re-ad-
dressable with external guideRNAs. Ribosomal RNAs, for in-
stance, are 2’-O-methylated and pseudo-uridinylated site-spe-
cifically in a snoRNA-dependent manner (Figure 2). Both pro-
cesses have been shown to be re-addressable towards (pre-
)mRNAs by the expression of user-defined snoRNAs and allow
for alteration of splice patterns[10] and for suppressing prema-
ture stop codons.[11] Instead of relying to the natural machiner-
ies only, people have recently started to engineer novel RNA-
guided machineries. One successful example is the engineering
of the CRISPR nucleases that promise to revolutionize genome
editing.[12]

The currently available, natural or engineered RNA-guided
reactions either harness nucleases or focus on reactions like
transglycosylases or 2’-O-methyltransferases that allow only for
a very limited manipulation of the gene content.[9–12] We were
wondering whether it is possible to engineer and assemble an
RNA-guided machinery that enables us to reprogram single
bases at the RNA-level and thus to manipulate RNA processing
or to introduce point mutations into proteins. If practical, such
a tool could be very valuable to study the role of single point
mutations (SNP) in disease or in protein function. With the
advent of high-throughput sequencing, personalized medicine
comes into reach that takes the genetic predisposition of the
individual into account.

Unfortunately, efficient methods to study the effect of point
mutations are lacking. It is still cumbersome and expensive to

generate animal or even cell models that can conditionally
switch between two protein isoforms differing only in a single
point mutation. However, humans and other higher animals
contain an RNA editing system that allows exactly that. The
human adenosine deaminases acting on RNA (hADAR) are
a class of enzymes that catalyze the hydrolysis of adenosine to
inosine.[13] Since inosine is biochemically read as guanosine, ed-
iting in the open reading frame (ORF) of a transcript can result
in the substitution of a single amino acid. Around 30 sites in
the human transcriptome, in particular neuroreceptor genes,
are targets of very efficient and highly selective editing reac-
tions. Besides that, RNA editing silences intronic Alu repeats,
and interferes with RNA processing and microRNA action by
editing of splice sites and of (pri/pre)-microRNAs.[13] Since edit-
ing occurs massively in the human brain and seems to be
regulated in a complex way, people recently speculated about
a yet underestimated role of RNA editing in the development
and maintenance of the human cognitive functions.[14] Appa-
rently, malfunctioning of the editing system leads to behavioral
phenotypes and psychiatric disorders.

Engineering RNA-Guided Deaminases

From an engineer’s point of view, the broad scope of the edit-
ing reaction is intriguing. Beside numerous RNA processing sig-
nals, 12 out of the 20 canonical amino acid codons are poten-
tial targets for A-to-I RNA editing, including nearly all polar res-
idues that are essential for phosphorylation, enzyme catalysis,
metal binding, and protein glycosylation (Ser, Thr, Tyr, His, Lys,
Arg, Asp, Glu, Asn, Gln, Met/Start, Val, Stop).[13, 15] Thus, the site-
directed editing of a single residue in a protein of interest is
expected to have a strong impact if a functionally essential res-
idue is chosen.

Unfortunately, targeting >20 000 sites in the human tran-
scriptome, the natural editing system is not RNA-guided but
rather applies promiscuous N-terminal dsRNA binding domains
(dsRBD) for substrate recognition. The few highly specific edit-
ing reactions in the coding frames of neuroreceptor genes,
however, are activated by intronically located dsRNA signals.[13]

Figure 2. Natural RNA-guided machineries interfere with nucleic acid function to target 2’-O-methylation, uridine
to pseudouridine transformation, or mRNA degradation. Riboproteins containing a respective enzyme (fibrillarin,
dyskerin or Ago2 inside RISC) are directed site-specifically to their targets (small nuclear RNA (snRNA) or mRNA)
by guideRNAs (small nucleolar RNAs (snoRNA) or mi/siRNAs). All three processes are readily redirected to user-de-
fined transcripts with external guideRNAs.
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Thus, editing activity cannot be
redirected by simple administra-
tion of external guideRNAs.
However, to take the advantage
of RNA guidance with its high
specificity and ease of rational
design, we decided to re-engi-
neer the protein-guided ADAR
into an RNA-guided deaminase
(Figure 3). For this, we removed
all natural substrate binding do-
mains (dsRBD) and substituted
them with a single SNAP-tag
domain,[16] an engineered O6-al-
kylguanine-DNA-alkyltransfera-
se.[15a] The SNAP-tag fusion with
the catalytic deaminase domains
allows for the simple and effi-
cient formation of highly de-
fined, covalent one-to-one con-
jugates with any user-defined
guideRNA that carries a (5’-ter-
minal) O6-benzylguanine modification. The guideRNA in the
assembled conjugates fulfills two tasks: first, it steers the con-
jugate towards the user-defined RNA transcript, and second, it
forms the secondary RNA structure required for the efficient
activation of one specific adenosine base under concurrent
suppression of over-reaction at neighboring off-target
bases.[15a]

Initially, we optimized the system for the transcript repair of
tryptophan (UGG) to Stop (UAG) nonsense point mutations in
reporter genes as cyan fluorescent protein (CFP), green fluores-
cent protein (GFP) and luciferase in vitro. When purified mRNA,
guideRNA and SNAP-ADAR is incubated, the conjugate assem-
bles and edits the mRNA in up to quantitative yield with high
selectivity and over a broad range of reaction conditions.[15a]

We comprehensively studied the prerequisites of the guide-
RNA for a robust editing reaction (Figure 4).[15b] We found that
a minimal length of 13 nt (SNAP-ADAR2) and 11 nt (SNAP-
ADAR1) is required. The targeted adenosine is best situated in
the middle of the RNA duplex. Also the counter base opposite
the targeted adenosine has an influence on the editing reac-
tion. Most codons accept pyrimidines only and prefer mis-
matching with cytosine. Mismatching of the target adenosine
with purines, in particular with guanosine, leads to complete
inhibition of editing. We exploited guanosine mismatching to
successfully suppress overediting at off-target bases. This was
even feasible when the two adenosine bases were separated
by only one intervening nucleotide, as we recently demon-
strated with the repair of a glycine to serine missense mutation
in GFP.[15b] Thus, the guideRNA not only steers the deaminase
toward the user-defined transcript, but the architecture of the
guideRNA also allows reasonable control over the editing reac-
tion. Notably, this control is not limited to inactivate off-site
targets but rather enables to activate inherently inactive
codons as 5’-GAG.[15a]

In very challenging adenosine-rich sequence contexts, chem-
ical modification of the guideRNA comes into play. We could
demonstrate that careful incorporation of two 2’-O-methyl
groups fully suppresses the overediting of the direct neighbor-
ing adenosine in a 5’-CAA codon that we targeted to repair
the factor 5 Leiden missense mutation.[15c] Chemical modifica-
tion of the guideRNA was also helpful when we applied site-di-
rected RNA editing inside the living cell. For this, SNAP-ADAR
and a fluorogenic reporter gene, carrying a Trp!Stop non-
sense mutation, were transiently overexpressed in 293T cells
(Figure 5). Transcript repair was successfully stimulated by lipo-
fection of a 20 nt-long guideRNA that was extensively modified
in an antagomir-like fashion with global 2’-O-methyl and termi-
nal phosphothioate groups, leaving only a small gap of three
natural ribonucleotides opposite the targeted adenosine. Com-
pared with the unmodified guideRNA, chemical modification
clearly improved the robustness of the editing reaction.[15c] We
were surprised by the ability of ADAR deaminases to accept
such densely modified guideRNAs as substrates. Other guide-
RNAs that get incorporated into riboproteins, siRNAs for in-
stance, typically tolerate much less chemical modification.[17]

Figure 3. Engineering an RNA-guided RNA editing machine. The natural substrate binding domains (dsRBDs) have
been substituted with a SNAP-tag domain that allows for the assembly of defined one-to-one conjugates with
O6-benzylguanine (BG)-modified guideRNAs. The guideRNA steers the deaminase domain to user-defined mRNAs
and activates a single, specific adenosine for editing.

Figure 4. The secondary structure of the guideRNA/mRNA duplex deter-
mines the outcome of an editing reaction and needs to be optimized for
any given codon and sequence context.
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However, the susceptibility of SNAP-ADAR for antagomir-like
guideRNAs is very promising for future application, as antago-
mirs have been used in various settings, including cultured
cells, living animals, and even living brains[18] to inhibit specific
microRNA functions.[19] They are characterized by a low toxicity,
low immunogenicity, and due to their high stability, they give
long-lasting effects even after single administration.[20] Since 2’-
O-methylation directly opposite the targeted adenosine fully
inhibits editing,[15c] antagomir-like guideRNAs can be expected
to have an improved editing selectivity as random binding of
the guideRNA to a partly complementary RNA will less often
lead to editing at the off-site. This could prove particularly ben-
eficial when targeting a low-abundant mRNA, which may re-
quire stronger binding and thus longer guideRNAs.

The extent to which the guideRNA can be elongated with-
out eliciting antisense effects remains to be determined. How-
ever, from the early failings with antisense probes directed to
the ORF, we know that the helicase activity of the translating
ribosome is very robust. Chemical modification of the probes
will not only improve their potency and the endurance of the
editing, but may also improve specificity and decrease possible

off-site effects. A guideRNA that cannot conjugate to SNAP-
ADAR is unable to repair the reporter transcript.[15c] This dem-
onstrates two things: first, that SNAP-ADAR alone, lacking the
dsRBDs, has difficulties to process random dsRNA, and second,
this shows that SNAP-tag technology can indeed provide the
assembly of catalytically competent, covalent antagomir–de-
aminase conjugates inside the living cell. However, off-target
effects that may arise from overexpression of SNAP-ADAR have
not yet been investigated. Future experiments will first have to
clarify the level to which SNAP-ADAR needs to be expressed to
achieve optimal editing and what guideRNA length and archi-
tecture is required to edit an RNA species with low to normal
copy numbers.

Future Directions

Site-directed RNA editing has high potential for application in
basic biology. Most intriguing is the possibility of generating
animal models that conditionally express SNAP-ADAR in specif-
ic tissues. Various point mutations in different genes could be
studied from that same animal by administration of different
guideRNAs. Transcript repair may also find application in medi-
cine as a means to attenuate otherwise untreatable genetic
disease phenotypes. Many applications could benefit from
more advanced and flexible delivery methods. SNAP-deaminas-
es could be readily transduced even into non-dividing cells
with virus particles and may result in a long-term expression of
the machinery. The guideRNAs on the other hand could be 3’-
terminally conjugated with cholesterol or folate to harness re-
ceptor-mediated uptake. Furthermore, new features are con-
ceivable, including editing of RNA processing elements, photo-
control, evolved deaminases, and genetically fully encodable
variants. With respect to the latter, others have recently com-
plemented our approach and achieved to steer RNA editing by
applying the genetically encodable protein/RNA interaction be-
tween the lN peptide and the BoxB RNA element.[21] The very
first attempt to redirect RNA editing activity, almost 20 years
ago,[22] failed due to difficulties to control overediting. Whether
the Box-dependent strategy enables the editing of challenging
codons, for instance those that are adenosine-rich, remains to
be shown. The comparably long guideRNAs (�60 nt) may po-
tentially offer more problems with off-target editing and im-
munogenic responses. That said, the enormous progress that
various groups are currently making on engineering RNA-
guided machineries is fascinating and opens new avenues for
biotechnology and engineering. In particular, our approach
may also appeal to the medicinal chemist as it opens new per-
spectives for using strongly chemically altered guideRNAs in
redirecting engineered riboproteins.
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Figure 5. Repair of a nonsense point mutation in the eCFP gene by site-di-
rected RNA editing. The 2’-O-methyl/phosphothioate oligonucleotide (OMe/
PTO)-modified guideRNA gives a substantially improved editing yield com-
pared with the unmodified guideRNA of the same sequence. Modifications:
small red letters indicate 2’-OMe; “s” indicates PTO.
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ABSTRACT
mRNA is an attractive drug target for therapeutic interventions. In this review we highlight the current
state, clinical trials, and developments in antisense therapy, including the classical approaches like
RNaseH-dependent oligomers, splice-switching oligomers, aptamers, and therapeutic RNA interference.
Furthermore, we provide an overview on emerging concepts for using RNA in therapeutic settings
including protein replacement by in-vitro-transcribed mRNAs, mRNA as vaccines and anti-allergic drugs.
Finally, we give a brief outlook on early-stage RNA repair approaches that apply endogenous or
engineered proteins in combination with short RNAs or chemically stabilized oligomers for the re-
programming of point mutations, RNA modifications, and frame shift mutations directly on the
endogenous mRNA.

Abbreviations: ASO, Antisense oligonucleotide; CD, Cluster of differentiation; CFTR, Cystic fibrosis transmembrane
conductance regulator; CRISPR/Cas9, Clustered regularly interspaced short palindromic repeats/CRISPR-associated
9; FDA, US Food and Drug Administration; GalNAc, N-acetyl galactosamine; IVT-mRNA, In-vitro transcribed mRNA;
MHC, Major histocompatibility complex; miRNA, microRNA; MOE, 2�-O-methoxyethyl; mRNA, messenger RNA; c,
pseudouridine; PS, Phosphothioate; RNAi, RNA interference; siRNA, Short interfering RNA; SSO, Splice-switching oli-
gonucleotide; SMN2, Survival of motor neuron 2; TALEN, Transcription activator-like effector nuclease; TLR, Toll-like
receptor; TH1/2 cell, Type 1/2 T helper cell; TR1, Type 1 regulatory T cell; VEGF, Vascular endothelial growth factor;
VEGFR-1, Vascular endothelial growth factor receptor 1; ZFN, Zinc finger nuclease

KEYWORDS
Antisense oligonucleotide;
chemically modified
oligonucleotides; genetic
disease; RNA vaccines; RNA
repair; RNA interference; site-
directed RNA editing; splice-
switching oligonucleotide;
therapeutic aptamer;
therapeutic mRNA

Introduction

During the last 15 y the diverse roles of RNA in regular but also
pathological cellular processes became increasingly clear. RNA
is not only a short-lived messenger and part of the translational
machinery but RNA contributes significantly to the regulation
and diversification of the genetic information. There is now
increasing insight into the mechanistic role of defective RNA
processing, including (alternative) splicing, modification, trans-
lation, and decay for the etiology of various diseases.1-4 How-
ever, not only mis-regulation and defective processing cause
disease, but even RNA species themselves can initiate disease
processes independent of their protein-coding function. Nucle-
otide repeat diseases are typical examples.5 To employ this new
mechanistic knowledge and to translate it into therapy requires
drugs that reliably target nucleic acids in a sequence-specific
manner. However, there are only few small molecule drugs that
target nucleic acids and those are limited in their capacity of
sequence addressing. In contrast, oligonucleotide analogs pro-
vide a basis for the rational design of highly sequence-specific
drugs to target virtually any cellular nucleic acid in a specific
manner.6 Classical drugs like small molecules target enzymes
and receptors to block or alter their specific functions. In con-
trast, the interference at the nucleic acid level would allow to
manipulate the transcriptome and the proteome itself. This is

not limited to the simple up- or down-regulation of target gene
expression. Most appealing is the possibility of actively creating
new transcript and protein isoforms with altered properties
and functions, for instance by re-programming a protein-cod-
ing stretch, or by altering splice sites, modification patterns,
polyadenylation states, miRNA binding sites, etc.7 Affecting the
cell by targeting its nucleic acids clearly enlarges the scope of
currently available therapeutic interventions including the
causal treatment of some genetic diseases.

However, already short oligonucleotides have unfavorable
pharmacological properties. They are hydrophilic, polyanionic
macromolecules that can hardly overcome cellular membranes,
are unstable against RNases, and suffer from rapid renal clear-
ance.8 This leads to short half-life and low bioavailability. Fur-
thermore, adverse toxic effects may appear that include
immune-reactions and off-target binding to non-targeted cellu-
lar nucleic acids. Together, oligonucleotide drugs are often
characterized by low efficacy and high toxicity which strongly
limits their clinical application.6 During the last decades,
medicinal chemists have put enormous effort into the develop-
ment of new chemistries that improve lifetime, delivery,
potency, and efficacy of the drugs while reducing their toxicity
and immunogenicity. These new chemistries are now
approaching clinical trials and will hopefully pave the way for
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the broad clinical application of oligonucleotide drugs. An
overview on recent developments in oligonucleotide medicinal
chemistry can be found elsewhere.6,7

In principle, interference with the genetic information could
be achieved permanently at the DNA- or transiently at the
RNA-level. In this review we will focus on the RNA-level. Even
though novel approaches for genome engineering are currently
keenly explored,9 we believe that it would be foolish to care-
lessly discard the RNA alternative. With respect to ethical
issues and safety aspects, the transient and thus reversible
nature of RNA manipulation could turn out as a blessing in dis-
guise. Both, the therapeutic effects and the potential adverse
effects, are likely to be tunable. Furthermore, manipulations are
conceivable that are inaccessible or difficult to realize on the
genome level per se. This includes amino acid changes or tran-
script level changes that would kill a cell if they are permanently
enforced. Potentially lethal interventions on kinases, apoptosis

factors, transcription or translation factors could be realized on
the RNA-level suddenly, transiently or partially to obtain a
therapeutic effect, for instance. Manipulation at the RNA-level
might also be much more efficient compared to HDR-depen-
dent genomic knock-in, which remained persistently inefficient
in vivo, in particular in postmitotic tissues like the brain.9 For
many genetic diseases, which are caused by loss-of-function
mutations, a patient would benefit more from a drug that can
restore a small fraction (like 5%) of functional gene product in
a large fraction of a the tissue than from a drug that can restore
full gene function (100%) but only in a small fraction of the tis-
sue. A typical example is cystic fibrosis.10

In this review we will first update on recent developments in
the classical approaches, like RNaseH-dependent decay, chemi-
cally stabilized oligonucleotides that target mRNAs to induce
splice-switching, aptamers, and the knock-down via RNAi
(Fig. 1). After painful years of repeated relapse one seems to

Figure 1. Chemically stabilized, short oligonucleotides can employ various mechanisms for their therapeutic effects ranging from blocking ligand – receptor binding, RNA
degradation via RISC or RNaseH(1) recruitment, and alteration of splicing. The classical modes of action are shown on the left panel, a small section of typically used chem-
ical backbone modifications are depicted on the right.
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have learned the lessons and have now substantially improved
the effectiveness of such drugs. For instance, in 2015 therapeu-
tic RNAi was demonstrated in a relevant monkey model by
subcutaneous administration of a chemically stabilized siRNA
that partially knocks down antithrombin in the monkey�s
liver.11 The problem of delivery and toxicity seems to be solved,
at least for simple oligonucleotide drugs and for some organs,
and allows therapeutic intervention with an affordable amount
of the drug under compliant administration routes. Conse-
quently, the number of promising clinical phase II and III stud-
ies has increased during the last few years (see Table 1).

Every new discovery in RNA function and regulation offers a
starting point to develop novel therapies. After its discovery in
1998 we now find numerous drug candidates in clinical studies
that apply the RNAi mechanism (Table 1).12 In the second part
of this review we highlight emerging concepts that are still in the
pre-clinical or very early clinical exploration stage but that have
the potential to become medicines of the future. This includes
therapeutic mRNAs, mRNAs as vaccine, and RNA repair
approaches. The latter apply endogenous or engineered enzymes
to repair, re-program, or modify a target RNA at a specific site
in order to provoke a therapeutically relevant effect (Fig. 2).

Update on established approaches

RNaseH-dependent antisense oligonucleotides

Oligonucleotides working through an RNaseH-dependent
cleavage mechanism are the oldest class of antisense oligonu-
cleotides (ASO). They are extensively explored and represent
the largest class of nucleic acid analog drugs in clinical trials.
RNaseH-dependent ASOs are short DNA oligomers targeting
mRNA. Once the DNA-oligo/mRNA heteroduplex is formed,
human RNaseH1 binds to it and catalyzes RNA cleavage under
release of the intact DNA oligomer.13

Medicinal chemists have undertaken great efforts to
improve ASO design regarding nuclease resistance, circulation
half-life, target affinity (potency), and tissue specificity. The
first ASOs tested in clinical trials, also referred to as 1st genera-
tion ASOs, have been modified by oxygen-to-sulfur substitu-
tions in the phosphate backbone. ASOs with such a
phosphothioate (PS) backbone show enhanced nuclease resis-
tance and prolonged plasma half-life due to non-specific bind-
ing to plasma proteins preventing them from rapid renal
filtration. However, numerous toxicities were also associated
with that type of modification.6 In 1998, fomivirsen was the
first FDA-approved ASO and was applied for the treatment of
human cytomegalovirus-induced retinitis in HIV patients.14-16

Marketed as Vitravene, the 21 nt PS-oligonucleotide was
administered by intravitreal injection to target the immediate
early region 2 of the viral mRNA. Since the approval of fomi-
virsen, several ASOs belonging to the 1st generation are under
clinical review. For instance, targeting the mRNA of intercellu-
lar adhesion molecule 1 and the insulin receptor substrate 1 are
advanced in the treatment of pouchitis17,18 and vascular disor-
ders in the eye,19-22 respectively. The RNaseH-mediated degra-
dation of Akt-1 mRNA to impede tumor proliferation23 is
currently tested for clinical application.24-26

Due to the early success with 1st generation ASO, further
medicinal chemistry was explored to improve half-life and
potency of the drugs in order to reduce the administered
dose, the application frequency, the costs, and to minimize
adverse effects.27 This resulted in the 2nd generation ASOs,
also referred to as gapmers. A typical gapmer is a 20 nt oli-
gonucleotide comprising a PS backbone and 5 flanking 20O-
methoxyethyl (MOE) groups at both termini. Due to the
unmodified internal DNA gap, such ASOs remain good sub-
strates for RNaseH, whereas the terminal MOE modifications
increase nuclease resistance and enhances the binding of the
ASO to the target mRNA.28 2nd generation ASOs entered
clinical trials for various therapeutic applications. The most
prominent representative of the 2nd generation is the MOE
gapmer mipomersen as the second FDA-approved RNaseH-
dependent ASO. The compound targets apolipoprotein B-
100 mRNA and is subcutaneously administered to treat
familiar hypercholesterolemia. The genetic disorder is caused
by the loss of low-density lipoprotein (LDL) receptor func-
tion leading to high LDL cholesterol plasma concentration
and early cardiovascular disease. Phase III trials had demon-
strated an efficient decrease of LDL cholesterol by lowering
ApoB-100 amount in patients obtaining mipomersen.29-31

The treatment obviously profited from the general pharma-
cokinetics of systemically administered ASOs which prefera-
bly accumulate in the liver where ApoB-100 synthesis takes
place.8 Recently, an RNase-dependent ASO32 has reached
clinical phase III to reduce transthyretin expression in
patients suffering from familial amyloid polyneuropathy.33-35

Chemotherapy combined with RNaseH-mediated degrada-
tion of clusterin mRNA is a potential therapeutic option in
the treatment of prostate36-38 and lung cancer.39,40

Generation 2.5 ASO are derived from the traditional
gapmer design. For this, the MOE modifications are replaced
by 20,40-constrained ethyl (cEt) bridges in the flanking
nucleotides. It was found that cEt-modified oligonucleotides
provide the same superior target affinity, but increased
nuclease resistance as compared to locked nucleic acid
(LNA)-containing oligonucleotides.41 One of the generation
2.5 ASOs targets the mRNA of signal transducer and activa-
tor of transcription 342 and is currently tested for the treat-
ment of various cancer types.43-46

Most recently, a new chemistry has been developed that
strongly increases the liver-specific uptake of oligonucleotide
drugs, including ASO and siRNA therapeutics. For this,
ASOs47 and siRNAs48 are conjugated with triantennary N-
acetyl galactosamine (GalNAc3). GalNAc3 mediates liver-spe-
cific uptake through the asialoglycoprotein receptor (ASGPR)
that is exclusively expressed on hepatocytes. Marketed as
ligand-conjugated antisense (LICA) technology (Ionis Pharma-
ceuticals), it could be shown that the conjugation increases the
potency of MOE gapmers up to 10-fold for inhibiting the
expression of hepatic genes in mice.49 When using a GalNAc3-
conjugated cEt gapmer, the RNaseH-mediated mRNA degrada-
tion was enhanced around 60-fold as compared to the
corresponding 2nd generation MOE ASO. Additionally, Ionis
Pharmaceuticals announced that its LICA drug targeting apoli-
poprotein(a) was 30-fold more potent in a phase I study than
the unconjugated MOE gapmer.50,51
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Splice-switching oligonucleotides

Pre-mRNA is matured during a complex nuclear process called
splicing that removes the introns (non-coding sequences) and
joins the exons (coding sequences). By applying alternative
splice sites and by occasional inclusion or exclusion of exons
and introns, multiple protein variants are derived from one
gene (alternative splicing). Several diseases are related to aber-
rant RNA-splicing leading to non-functional proteins, and
great efforts have been undertaken to develop antisense oligo-
nucleotides, referred to as splice-switching oligonucleotides
(SSOs) that manipulate splicing. Therapeutic SSOs promoting
exon skipping and exon retention for the treatment for Duch-
enne muscular dystrophy (DMD) and spinal muscular atrophy
(SMA) are currently evaluated in clinical trials.7

Dystrophin, the protein encoded by the DMD gene, is crucial
for the integrity of muscle tissue.52 In rare cases, newborn males
harbor a defect dystrophin gene on their X chromosome. The
patients suffer from successive muscle wasting resulting in a pre-
mature death due to respiratory or cardiac failure. In most cases,
the loss-of-protein-function results from exonic out-of-frame
deletions. In many cases the reading frame can be restored by
skipping the aberrant exon by addressing a SSO to an internal
exonic splicing enhancer.53 The resulting truncated dystrophin
protein retains partial function and gives the less severe Becker
muscular dystrophy phenotype.54 Several SSOs have been devel-
oped that are clinically evaluated for the skipping of exons 44, 45,
51, and 53, including drisapersen and eteplirsen (Table 1).
Recently, both companies submitted new drug applications for
their lead compounds drisapersen55-57 and eteplirsen,58,59, both
amenable to exon 51 skipping. In case of drisapersen, the FDA
rejected the application due to major concerns about the efficacy
and safety of the drug.60 The high dosage required led to severe
adverse effects including renal and vascular injury. To improve
efficacy and safety other SSO chemistries might be more success-
ful. Whereas drisapersen is a 20 nt 20O-methoxy phosphoro-
thioate RNA analog, eteplirsen is a 30 nt phosphorodiamidate
oligomer, a so-called morpholino. The final decision on the effi-
cacy and safety evaluation by the FDA is still pending for ete-
plirsen. Additionally, a new, morpholino-based SSO for exon 53
skipping is currently under clinical evaluation (NS-065/NCNP-
01).61,62 For the future, we can hope in new chemistries. A SSO
that relies on 20O,40C-ethylene-bridged nucleosides (ENA oligo-
nucleotides)63 which mediate nuclease resistance and improved
binding affinity to RNA has now entered a clinical phase I/II trial
for the treatment of DMD (DS-4151b).64,65

Spinal muscular atrophy (SMA) is a rare genetic disorder
caused by survival of motor neuron 1 (SMN1) gene mutations.66

Infant patients affected by this disease suffer from the loss of
motor neurons and associated muscle wasting. However, there is
a therapeutic approach by activating the SMN2 gene, which is
almost identical to SMN1, but a single mutation in a splicing
enhancer strongly prevents the inclusion of exon 7 resulting in an
unstable protein unable to replace the lost SMN1 function.67 In a
mouse model, a highly potent 20O-methoxyethyl PS SSO for exon
7 retention in SMN2 was identified (IONIS-SMNRx).

68 The drug
is injected in the spinal cord ensuring the direct delivery to the
affected motor neurons without the need to cross the blood-brain
barrier. After promising clinical phase II results regarding efficacy

and safety of the drug candidate,69 two phase III trials were
recently initiated for evaluating IONIS-SMNRx.

70,71

Although the SSO design remains challenging, several new
therapeutic applications were successfully validated in preclini-
cal studies.72 Possible drug approvals of eteplirsen or IONIS-
SMNRx in the near future could eventually proof the feasibility
of the splice-modulating antisense oligonucleotide approach.

Aptamers

Aptamers are 20 – 100 nt long oligomers that adopt complex
three dimensional structures that allow them to interact potently
and specifically with various proteins typically achieving nM- to
pM binding affinities.73 They are readily obtained in an iterative
laboratory evolution procedure called SELEX (systematic evolu-
tion of ligands by exponential enrichment).74 Currently,
aptamers are mainly targeting extracellular structures such as
plasma proteins and cell surface receptors thus avoiding the
problem of intracellular delivery. Hence, aptamers are compara-
ble in many aspects to antibodies, however, aptamers are much
smaller, can penetrate tissues deeper, are chemically synthesized
to highest purity and homogeneity and differ in their toxicity
and immunogenicity profile. To improve their plasma life-time
and to adjust their toxicity, aptamers are typically chemically
stabilized (20-OMe, 20-F, 30 inverted dT) and PEGylated.

In 2004, the first (and until today the only) aptamer, Macu-
gen, was approved by the FDA for clinical therapy of AMD
(age-related macular degeneration). The 27-nt chemically stabi-
lized RNA oligomer is directed against the vascular endothelial
growth factor (isoform 165) and blocks VEGF-receptor-induced
neovascularization.75,76 After achieving its highest sales in 2010,
it has now almost entirely been displaced by antibodies (Ranibi-
zumab and Bevacizumab, for instance) which can bind addi-
tional VEGF isoforms besides VEGF-165 and thus benefit for
their poorer specificity compared to the aptamer. After this early
breakthrough with Macugen, numerous aptamers have been
explored in clinical settings. However, some programs suffered
very unfortunate setbacks at late clinical trial states, like the
aptamer-containing anticoagulation system REG1 which was
terminated in 2014 in a phase III study due to unexpected toxic-
ity / immunogenicity issues (Table 1).77,78

Currently, several aptamers for the local treatment of eye dis-
eases are in late clinic trials (II and III), for instance the aptamers
Fovista79-81 and Zimura,82,83 which target PDFG (it is a growth fac-
tor) and C5, respectively. In combination with VEGF inhibitors
they might find application in the treatment of AMD in the near
future. To overcome the prevalent problems with toxicity and
immunogenicity, NOXXON Pharma develops so-called Spie-
gelmer therapeutics.84 These drugs apply stereochemically inverted
nucleotides based on L-ribose instead of the natural D-ribose, can
be evolved via SELEX, and are suggested to be resistant against
nucleases85 and invisible for the immune system.86 Currently, 3
Spiegelmer aptamers86-92 are in clinical phase II studies (Table 1).

Therapeutic RNAi

RNA interference (RNAi) is a mechanism of posttranscrip-
tional gene regulation that was discovered in 1998.12 RNAi can
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interfere with gene expression in various ways including the
degradation of a specific mRNA target via endonucleolytic
cleavage, or via recruitment of deadenylation / decapping
enzymes, but it can also positively affect the stability and trans-
lation of a specific mRNA. The mechanistic details that lead to
the respective responses are still under exploration. In princi-
ple, a dsRNA that is introduced into the cytoplasm is processed
by the RNase dicer into »22 bp RNA duplexes and loaded
onto the endonuclease Argonaut-2 (Ago-2). Ago-2 slices the
passenger strand of the RNA-duplex and applies the remaining
guide strand for sequence-specific mRNA-targeting.93 While
short interfering RNAs (siRNAs) are fully complementary to
their target mRNA and promote cleavage (knock-down), micro
RNAs (miRNAs) contain bulges and loops that prohibit slicing
by Ago-2, but alter the stability and translational activity of the
target.94

Allowing the selective knock-down of genes in cell culture
and animal-models, RNAi quickly became a valuable tool in
basic biology.95-97 In parallel a race started to exploit the RNAi
mechanism for therapeutic purposes and several big pharma
companies, like Merck, Roche, and Pfizer made large invest-
ments that resulted in the first clinical trials in 2004, already 6 y
after the discovery of RNAi.98,99 However, in the aftermath
those early trials mostly failed due to strong innate immune
reactions and/or lack of patients� benefit, and in the conse-
quence big pharma left RNAi again.100-104 In the 18 y since its
discovery the field of therapeutic RNAi went from enthusiastic
interest over despondence and back again, resulting in a re-
assessment of the technological obstacles and more realistic
expectations for clinical trials. This has been accompanied by
commentary elsewhere.105,106

However, after recent successes in clinical trials, showing the
efficacy of RNAi therapeutics to reduce transthyretin107 and
PCSK9108 in patients, the interest in RNAi is currently growing
and even big pharma including Sanofi and Roche started to
invest again.98 The initial drawbacks in clinical trials were
mostly related to the low efficacy of the drugs, off-target issues
and immune-related toxicity.109 Off-target effects include
immune-reactions induced by the siRNA/miRNA precursors,
and up- and downregulation of non-target mRNAs due to satu-
ration of the RNAi machinery and off-target binding of the
siRNA.110 There is now increasing success in tackling all those
issues. Current innovations include chemical modification /
sequence optimization of siRNAs and its precursors, and new
solutions to the delivery problem. The latter include various
forms of (lipid) nanoparticles and bioconjugates. The details of
this progress are comprehensively reviewed elsewhere.110-113

Briefly, clinical trials seem more successful when they are con-
fined to readily accessible organs like the liver, cancer, and
immune-privileged areas like the eye.114-122 Whereas the eye is
a good target for naked siRNAs, treatment of the liver benefited
from lipid-based nanoparticles and the above-mentioned Gal-
NAc3 conjugates.116 In particular the GalNAc3 approach has
significantly improved the efficacy of siRNA-conjugates, allow-
ing now the weekly administration of liver-targeting siRNA via
subcutaneous injection in non-human primates to knock-down
antithrombin to clinically relevant levels.11 Notable in this
approach is that it allows to knockdown an essential protein
(like antithrombin) in a tunable and reversible manner,

whereas the permanent knock-out of antithrombin (for
instance at the DNA-level) is lethal.11 Overall, more than 20
siRNA drugs in various formulations are in clinical trials now
(up to phase III, Table 1).123 RNAi-therapy clearly has the
potential to tackle currently undruggable diseases and to appear
in the clinics soon.

The therapeutic use of the miRNA-related mechanism (not
applying the slicing activity of Ago2) is still in its infancy. Attrac-
tive is the possibility of manipulating larger networks of genes
simultaneously in both, a negative and positive manner.124 This
might become interesting for the treatment of complex diseases
like cancer. On the other hand, endogenous miRNAs are
involved in many cellular processes and their manipulation
could also be disease-relevant. The knockdown of miRNA 122
with antisense oligonucleotides was shown to interfere with hep-
atitis C virus progression and is currently in phase II clinical
studies.125 As the hepatitis virus seems to require the endoge-
nous miRNA for its functioning the knockdown of this host-
specific factor is particularly promising as the virus cannot adapt
easily by evolution.126 Other miRNAs that are linked to cancer
like miRNA 16 and 34a are also targeted with ASOs and are cur-
rently in clinical trials phase I.127,128

Emerging concepts for therapy

Therapeutic mRNA

For a long time it has been believed that only short, chemically
stabilized oligonucleotides are suitable as drugs. However, long
(protein-encoding) mRNAs haven recently proven their enor-
mous therapeutic potential. Protein replacement experiments
were first performed in the early 1990ties with naked mRNA in
mice and rats.129,130 Even though replacement experiments
were successful to some degree, there have been massive prob-
lems related to the well-known RNA-dependent immune-
stimulation through interferon-I (IFN-I) and a generally low
translation efficiency.131,132

However, during the last 15 years, our mechanistic under-
standing of the immune-stimulatory effect of RNA has substan-
tially improved. This was due to the discovery of RNA sensors
including the Toll-like receptors (TLR) 3, 7, 8, Melanoma dif-
ferentiation-associated protein 5 (MDA-5), Retinoic acid
inducible gene I (RIG-I), as well as various RNA helicases.133

Besides the activation of the innate immune response under
release of the respective signaling molecules we have also
learned how these RNA-sensing events are directly linked to
the general repression of mRNA translation in the affected
cells. Among others, general translation repression is mediated
by phosphorylation of translation initiation factor 2a via pro-
tein kinase R activation.134,135 In the worst case, IFN-I activates
20–50-adenylate synthase and RNaseL and leads to apoptosis.136

RNA replacement strategies aim to achieve high translation
levels under minimal immune stimulation. Both can be
achieved by designing mRNAs that evade RNA-sensing. The
following strategies turned out as particularly successful.

a) Chemically modified pyrimide nucleotides like pseu-
douridine (c), 2-thiouridine (s2U), and 5-methylcytidine
(m5C) are incorporated into mRNAs during in-vitro-
transcription to minimize recognition by RNA
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sensors.137 Substitution of uridine by pseudouridine was
shown to diminish recognition by TLR-3, -7, -8, and
RIG-I.137,138 To fine-tune effects on translation efficiency,
nucleotide analogs are often mixed with their natural
counterparts. The extent to which these modifications
may induce mistranslation is yet unknown.139

b) Rigorous purification of the mRNA product from unin-
corporated nucleoside triphosphates, small abortive tran-
scripts, remaining DNA templates, and in particular
dsRNA via HPLC (High performance liquid chromatogra-
phy) was shown to dramatically reduce immunogenicity
of the transcripts and can increase the translation 10- to
1000-fold.140,141

c) Synthetic cap analog structures like ARCA (anti-reverse-
cap-analog) can further decrease immune response and
improve translation. In contrast to older cap analogs,
ARCA is always incorporated in correct orienta-
tion.142,143 A new ARCA variant contains a phospho-
thioate that resists enzymatic decapping and can increase
the half-life of the mRNA.144

d) Computational sequence design allows to reduce the
number of particularly immune-stimulatory nucleotides
and combinations (like UW, with W = A or U). 145-147

Furthermore, transcript stability can be optimized by the
introduction of 30-UTRs (or some elements) taken from
other mammalian or viral genes as well as addition of
Poly(A)-tails.148-153

The RNA replacement strategy is particularly advantageous
when a transient, burst-like expression of a protein is desired.
Typical examples for the latter are the epigenetic re-program-
ming (induced pluripotency), wound healing, and genome edit-
ing. In this sense, in-vitro transcribed mRNA (IVT-mRNAs)
has been used to deliver a) human bone morphogenetic protein
2 (hBMP-2) to support bone regeneration in rats; to deliver b)
the transcription factor mix that induces pluripotency; and to
deliver c) vascular endothelial growth factor-A (VEGF-A) into
a mouse model for myocardial infarction resulting in an
improved heart function and enhanced survival.154-160 Further-
more, IVT-mRNAs have been successful in the delivery of sur-
factant protein B in deficient mice, and in the delivery of
murine erythropoietin to increase the hematocrit.138,161

IVT-mRNA could turn out as a valuable tool for genome
editing. Genome editing holds great promise for the treatment
of various diseases by a permanent repair of a gene via a site-
directed knock-in or knockout.162 However, the respective
nucleases that induce the required double-strand DNA breaks
including ZFNs, Talens, and CRISPR/Cas, should not be persis-
tently expressed as this would dramatically increase the chance
of off-target genome editing.9 Consequently, its delivery as an
mRNA is beneficial compared to a DNA vector and also cir-
cumvents the typical safety risks of viral and non-viral DNA-
based methods like genomic insertion and antivector immuno-
genicity. Encoding of genome editing tools via IVT-mRNAs
has already been widely used to generate transgenic ani-
mals.163-169 In a proof-of-concept study, gene function was
restored via homology-directed promotor exchange in a surfac-
tant-B-deficient mouse model by in-vivo-delivery of the ZFN
in form of an IVT-mRNA. However, this required the addi-
tional delivery of the repair template (with the promotor) in

form of an AAV6 (Adeno-associated-virus serotype 6).170 Suc-
cessful promoter exchange was demonstrated and resulted in a
prolonged life of the treated mice. IVT-mRNA encoded Talen
have been used successfully to disrupt the CCR5 (CC chemo-
kine receptor type 5) gene via non-homologous-end-joining in
the T-cell line PM1. As the loss of CCR5 function confers resis-
tance toward R5-tropic HIV-1 infection, side-directed nucle-
ases are promising to target this infectious disease.171 An initial
clinical phase I study is currently starting.172 As IVT-mRNA is
a young field, this study represents the first clinical study that
uses IVT-mRNAs, but more are likely to follow soon.

mRNA can have many advantages over DNA vectors to
deliver therapeutic proteins. Besides its transient nature, we
want note that mRNA is very well and quickly translated in
postmitotic cells that are difficult to transfect with DNA vec-
tors. mRNA also works independent of a promotor, but this
can potentially limit its application if tissue-specificity is
required. However, we know from various studies that there is
a large number of regulatory elements, typically in the 3�-UTR,
including miRNA binding sites, stabilizing and destabilizing
elements that could allow to manipulate the expression of an
IVT-mRNA in a tissue-specific manner in the future.94,173

Oligonucleotides for vaccination and desensitization

As indicated above, very successful strategies haven’t been
developed to evade the RNA-sensing event and to trick the
innate immune system. However, inducing a specific immune
response can be highly desired. Thus the recent knowledge on
the immune stimulation by RNA can be used for the latter.
Currently, the classical vaccination is based on the delivery of
inactivated or living viruses, virus-like particles, or antigenic
peptides. While the antigenic peptides require additional vacci-
nation adjuvants like alum salts, the other entities contain suffi-
cient pathogen-associated-molecular-patterns (PAMPs) in
form of proteins, nucleic-acids, and lipopolysaccharides. These
PAMPs are detected by pattern-recognition-receptors (includ-
ing the above-mentioned RNA sensors) and induce the release
of type-I interferons, pro-inflammatory cytokines, and chemo-
kines. This is reviewed in-depth elsewhere.174,175 Short peptide
fragments are then presented to the immune system via MHC-
complexes on dendritic cells and other antigen presenting
cells.176 This process finally induces a humoral as well as cellu-
lar immune response of the adaptive immune system.

The presented antigens are mainly protein-derived peptides.
This opens the intriguing possibility to deliver antigens for
MHC-presentation encoded as IVT-mRNAs under simulta-
neous induction of the necessary innate and adaptive immune
stimulation as the IVT-mRNA itself can function as PAMP. By
doing so, it is well conceivable to create specific immune
responses not only against viruses and bacteria, but also against
cancer cells or for allergy treatment.177-181 The design of such
mRNA-based vaccines would be highly rational, fast, cheap,
and could be done in a personalized manner, for instance
against the specific transcriptome of a patient-specific can-
cer.182 IVT-mRNA vaccines would be faster available as the
generation of virus-particles (and similar entities) would be cir-
cumvented. Lyophilized mRNA vaccines can be stored at 37 �C
for several weeks.183 This allows the transport of vaccines into
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regions that cannot provide an uninterrupted cold chain. The
safety-profile could also be better compared to DNA-based
methods (insertion mutagenesis, low efficiency) or virus-like
entities (therapy-induced virus-specific humoral immune
response).184-186 Again, also for vaccination, the transient
nature of RNA expression is beneficial, as a low-level, long-
term expression of an antigen might induce tolerance.187

Two major IVT-mRNA-based vaccination strategies are
currently explored: the ex-vivo and the in-vivo approach. The
first, which was earlier developed, is based on the ex-vivo
pulsing of allogenic (= patient-derived) dendritic cells with
antigen-encoding mRNA, which allows the redirection of the
adaptive immune system to target cancer or virus-infected
cells. The feasibility and safety of this method was proven in
pre- and clinical trials focused on HIV and various cancer
types. However, personalized ex-vivo therapies require time-
consuming and expensive individualized manufacturing
processes which currently limit their broad clinical applica-
tion.188-195 Nevertheless, further clinical trials up to phase III
are currently running.196-202

Even though cumbersome, the ex-vivo strategy allows to
optimize and control mRNA transfection and immune stimula-
tion more carefully. The in-vivo approach, however, is poten-
tially more simple and elegant, but encounters additional
problems. Whereas all IVT-mRNA strategies require stable and
highly translatable transcripts, the in-vivo strategy requires
additionally the immune-stimulatory effect that counteracts
translation. It was found that complexation of IVT-mRNA
with protamine enhances immunogenicity via TLR-7 activation
and simultaneously improves stability, however, with the
downside of low antigen expression.203 Anyway, a combination
of protamine-complexed IVT-mRNA together with naked
IVT-mRNA of the same sequence turned out to satisfy both
needs at the same time: high translation efficiency and immune
stimulation. Those self-adjuvanting mRNAs are currently in
phase I and II clinical trials against prostate cancer, late stage

lung cancer, and rabies; pre-clinical trials against influenza
have been performed.183,186,204-209 We wish to mention that
also other approaches that apply naked or formulated IVT-
mRNAs are in clinical trials, for instance for targeting other
cancer entities.172,210 Furthermore, non-coding RNA can also
be used as a vaccination adjuvant replacing the classical alum
salts as adjuvant of protein- or peptide-based vaccines.211

Currently, IVT-mRNA are expensive therapies. On one
hand, the GMP (Good manufacturing practice) production of
IVT-mRNA in large scale is not yet fully established, but
CureVac has announced significant progress here.212 On the
other hand the potency of IVT-mRNA could be further
improved by assisted delivery via lipid-nanoparticels, polymeric
nanoparticles, gold nanoparticles, among others, as reviewed
elsewhere.213 Furthermore, there are promising attempts to
develop self-replicating RNA-vaccines that apply viral RNA-
dependent RNA-polymerases (from a-virus) to produce the
RNA vaccine from a dilute IVT-mRNA template.214-216 How-
ever, there are safety concerns related to the control of the
replication process and the tolerance against the viral RNA-
polymerase, but the strategy is still in the pre-clinical explora-
tion phase.217

Finally, mRNA vaccines could also be used in allergy treatment
to desensitize the immune system against a specific antigen. Desen-
sitization against type-I allergies is typically accomplished through
repeated intra-dermal, intra-nodal, or sub-lingual application of
allergens. Whereas a strong Immunglobuline E and CD8C T-cell
responses is intended during vaccination, desensitization aims to
change the TH1/TR1 to TH2 cell ratio toward TH1/TR1 to fine-tune
the immune response and to induce tolerance.178 Application of
low-dose IVT-mRNA could be used for that purpose, and there is
pre-clinical data that prove efficacy and suggest a long-term protec-
tive effect.218 One can expect first clinical trials to start within the
next few years. ApplyingmRNA as an anti-allergic vaccine has sev-
eral advantages compared to the classical allergen extract (like stan-
dardized cat extract) or DNA-based vaccines.219,220 IVT-mRNA is

Figure 2. Overview on selected enzymatic processes that could be harnessed to restore gene function by repairing or re-programming mRNA site-specifically. Site-
directed A-to-I editing, 2�-O-methylation, pseudouridylation, and frameshift correction via expression or administration of short guideRNAs has already been demon-
strated. Many other processes are conceivable and currently under exploration.
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obtained in a defined and highly pure state thus avoiding unin-
tended antigens that can be included in allergen extracts.221,222

DNA-based allergy treatment on the other hand suffers from the
abovementioned safety concerns and thus harbors disproportional
risk in the context of a preventative therapy.

RNA repair

Besides the manipulation of splicing, most interventions on the
RNA-level aim to destroy or block their endogenous targets.
Strategies to restore the function of an RNA that is corrupted
by missense, nonsense or frameshift mutation, or by defective
processing are rare. In case of loss-of-function mutations, the
administration of a therapeutic mRNA to replace the non-
functional variant might solve the problem, as discussed above.
However, this is only feasible with a small number of therapeu-
tic mRNAs that can be translated under low control of transla-
tion level and tissues specificity. Indeed, many transcripts are
tightly regulated with respect to their dose and tissue specificity
and come as a mixture of various isoforms due to alternative
promotor usage, alternative splicing, alternative polyadenyla-
tion and alternative posttranscriptional modification. Such
transcript variants may differ in their function, localization, sta-
bility, etc. To address this variety in an mRNA replacement
strategy seems impractical. A better alternative would be the
repair of the endogenously expressed but defective RNA tran-
script, a strategy, we call RNA repair.

Very recently, we and others have engineered artificial
RNA-guided editing machineries that allow to re-program
genetic information at the RNA level.223-225 For this, adeno-
sine-to-inosine (A-to-I) RNA editing enzymes226,227 are
directed toward specific sites on selected transcripts and
allow for the precise posttranscriptional manipulation of the
genetic information. The manipulation results from the fact
that inosine is biochemically interpreted as guanosine. Thus,
formal A-to-G conversions become accessible, in a highly
site-specific manner. The specificity comes from the guide-
RNA that addresses the editing enzymes and can be readily
programmed in rational way, simply by applying Watson-
Crick pairing rules.228 Even though only A-to-G mutations
are accessible the scope of manipulations is large. Twelve out
of the 20 canonical amino acids can be manipulated, com-
prising almost all of the polar ones which are essential for
protein function.223 Furthermore, START and STOP codon,
splice elements, polyadenylation signals, and viral RNA are
potential targets.226,227 We and others have shown that such
strategies work inside mammalian cell culture229 and even in
a simple organism230 and allow the repair of disease-relevant
genes, like the CFTR mRNA.225

Other people have recently shown the possibility of re-
directing snoRNA-guided RNA modification machineries, like
the 2�-O-methylation231 and the pseudouridylation machin-
ery.139 The first modification allows interference with splicing,
the second allows the read-through of premature STOP codons.
Mammalian cells harbor a plethora of RNA modifying and
processing enzymes. There is no need to restrict ourselves to
the usage of nucleases, like RISC, RNaseH, and RNaseP.232 Just
to give a few examples, there are RNA editing and modifying
enzymes inside the cell that can change nucleotides (A-to-I, C-

to-U233, U-to-c, A-to-m6A,234 and many more for the
tRNAs235), that add the cap236 and the poly(A)-tail,237 RNAs
can be precisely processed, for instance by the CCA-adding
enzymes,238,239 TUTases,240 etc.241 Thus, even complex repair
processes are conceivable, including the repair of insertion and
deletion mutations at the RNA-level. In this respect, we want to
recall a largely overseen work from 2004, done by Paul Zamec-
nik, the pioneer of antisense therapy, in his early nineties
shortly before he passed away. He demonstrated the possibility
of repairing the terrible D508 deletion mutation in the CFTR
gene, the main cause of cystic fibrosis, simply by administration
of 2 chemically stabilized RNA oligomers.242 In cell culture, the
efficiency of mRNA repair was sufficient to restore the chloride
channel function. Unfortunately, he was unable to elucidate the
mechanism, but he could clearly demonstrate the repair to take
place at the mRNA. Such a complex repair requires a concerted
nuclease, ligase (and polymerase) activity at a specific site on an
mRNA molecule. In summary, it seems that numerous endoge-
nous enzymes stand ready inside the cell for RNA repair pro-
cesses. We just have to learn how to make use of them.243,244 If
successful, one can establish novel platforms for therapeutic
intervention.

Conclusions

While splice-switching oligomers and aptamers are still strug-
gling on their ways to the clinic, major progress has been made
for RNaseH-dependent ASOs and for therapeutic RNAi with
chemically stabilized siRNAs. This is due to the development of
new chemistries that improve efficacy and delivery of the drugs
to some specific organs. An impressive example is the develop-
ment of the GalNAc3 conjugation that clearly improves liver
targeting and might allow for the administration of siRNA and
ASO by subcutaneous administration in the future. However,
overcoming problems with delivery and efficacy remains elu-
sive for many organs and will require massive basic research in
the future.

Among the emerging approaches, the usage of in-vitro-tran-
scribed mRNA for protein replacement and vaccination has
made impressive progress. This was mainly due to the tailored
suppression or harnessing of the RNA-induced immune
response by chemical modification and formulation. The
approach has the potential to find wide application in the clin-
ics whenever a transient, burst-like expression is advantageous.
The RNA repair approach is still in its infancy, but we believe
that the harnessing of artificial and in particular endogenous
RNA repair proteins might enable new therapies, complement-
ing the above-mentioned classical RNA-based and the
approaching genome editing methods, and being superior to
the latter with respect to safety and ethical issues.

Overall, the progress during last years is impressive. The
increasing number of clinical trials for various approaches
makes us feel optimistic that numerous nucleic-acid-based
drugs will soon find their ways to the patients to enable novel
therapies.
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