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Abstract

Magnetic resonance imaging (MRI) is moving towards higher and higher

�eld strengths. After 1.5T MRI scanners became commonplace, 3T scanners

were introduced and once 3T scanners became commonplace, ultra high �eld

(UHF) scanners were introduced. UHF scanners typically refer to scanners with

a �eld strength of 7T or higher. The number of sites that utilise UHF scanners

is slowly growing and the �rst 7T MRI scanners were recently CE certi�ed for

clinical use.

Although UHF scanners have the bene�t of higher signal-to-noise ratio (SNR),

they come with their own challenges. One of the many challenges is the prob-

lem of inhomogeneity of the main static magnetic �eld (B0 �eld). This thesis

addresses multiple aspects associated with the problem of B0 inhomogeneity.

The process of homogenising the �eld is called �shimming�. The focus of this

thesis is on active shimming where extra shim coils drive DC currents to gen-

erate extra magnetic �elds superimposed on the main magnetic �eld to correct

for inhomogeneities. In particular, we looked at the following issues: algorithms

for calculating optimal shim currents; global static shimming using very high

order/degree spherical harmonic-based (VHOS) coils; dynamic slice-wise shim-

ming using VHOS coils compared to a localised multi-coil array shim system; B0

�eld monitoring using an NMR �eld camera; characterisation of the shim system

using a �eld camera; and designing a controller based on the shim system model

for real-time feedback.

We hope that, after reading this thesis, the reader will become well-informed

in the practical implementation and limitations of B0 shimming at 9.4T in the

human brain.
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1 Synopsis

It can be argued with some vehemence that the biggest bane of a

high-resolution NMR spectroscopist's existence is the ritual of �magnet

shimming�.

- Chmurny and Hoult

�The Ancient and Honourable Art of Shimming�

Concepts in Magnetic Resonance 2;131-149 (1990)

1.1 Introduction

A particle with a n.onzero nuclear spin in the presence of an external magnetic �eld

will precess at a certain frequency. This is the core principle that allows magnetic

resonance imaging (MRI) to exist. The frequency at which the particle precesses is

dependent on the strength of the magnetic �eld (B0 �eld) and the gyromagnetic ratio

of that particle, given by:

f =
γ

2π
·B0 (1)

This is called the Larmor frequency.

Therefore, MRI relies on an external magnetic B0 �eld to form images. This

magnetic �eld should be homogeneous. Nevertheless, despite the e�orts of even the

most rigorous and precise manufacturers, the magnetic �eld will always have some

inhomogeneity. Even if the magnetic �eld is perfectly homogeneous, the introduction

of an object into the magnetic �eld would disrupt the homogeneity. The way in which

the �eld is distorted is dependent on the geometry and magnetic (or B0) susceptibility

of the object. This means that the magnetic �eld distorts di�erently for di�erent

objects, people, body parts, positions and orientations of whatever is being scanned

in the MRI machine. In fact, the magnetic susceptibility χ is constant and relates the

magnetic �ux density B to the external �eld H of the material by the equation:

B = χH (2)
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There is no lack of adverse e�ects of inhomogeneous B0 �elds on MRI data. If B0

is shifted, from Eqn. 1 it can be seen that the frequency is also shifted. Since MRI

is based on resonance, artifacts will result if the frequency is shifted too far from the

resonance frequency. Poor B0 homogeneity can lead to geometric distortions and signal

dropout for MRI imaging. For MR spectroscopy (MRS), poor B0 homogeneity leads

to line broadening which results in less accurate quanti�cation and fewer detectable

metabolites. For single voxel spectroscopy (SVS), poor B0 homogeneity can also lead

to inaccurate localization of the voxel. Furthermore, any MRI sequence that uses

frequency selective pulses will be a�ected by the B0 homogeneity. For example, if the

frequency of the water peak is shifted as a result of an inhomogeneous B0 �eld, the

water suppression quality for typical MRS studies will be a�ected.

In pursuit of more SNR, there is a trend in the MRI community to go to higher and

higher �eld strengths. In other words, the B0 strength of MRI scanners is increasing.

However, this means that the problem of B0 inhomogeneity also gets worse. This can

be seen from Eqn. 2 where the di�erence between B �elds within di�erent materials

is larger if the H �eld is larger. New methods to ensure a homogeneous B0 �eld need

to be developed for the advantages of higher �eld strengths to be fully realised.

The goal of magnetic or B0 shimming, is to ensure that the �eld is su�ciently

homogeneous. This can be done using passive elements to adjust the magnetic �eld.

Passive shimming is usually done with ferromagnetic materials (χ > 10, 000), however,

diamagnetic materials have also been used successfully [32]. What is more commonly

done now, is to use active elements to generate extra magnetic �elds superimposed on

the main B0 �eld that correct for the inhomogeneities. These extra magnetic �elds

are generated by inductive coils, or shim coils, and can be controlled by the amount

of current driving the coils. This, thereby, allows the magnetic �eld to be actively

shimmed and allows more �exibility and adaptability to di�erent applications.

The question then becomes: how do we design the shim coils? The design of

gradient coils is obvious since the desired magnetic �eld that these coils should generate

is known a priori. For shim coils, the desired magnetic �eld depends on the application

and is hence less straight-forward. The earlier designs of shim coils can be seen as

a generalisation of the gradient coils and were based on spherical harmonic functions
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Figure 1: Spherical harmonic functions visualised on the surface of a unit sphere.
From �rst to third degree terms (L=1 to L=3 ) and corresponding orders M. The
orientation is shown at an azimuth angle of -37.5° and an elevation angle of 30°.

[23, 6]. Spherical harmonic functions span a 3D space, are orthogonal and are radially

invariant. The magnetic �elds generated by the spherical harmonic functions are

shown in Figure 11 (more discussion of very high order/degree spherical harmonic

shimming can be found in section 1.3). It can be seen that the �rst degree terms of

the spherial harmonic functions correspond directly to the gradient terms x, y, and z.

However, in recent years, the design of shim coils has moved towards small, lo-

calized coils [17, 18]. Orthogonality is not a necessity for the shim �elds and smaller

coils reduces the amount of unwanted eddy currents and coupling between the coils.

Furthermore, since the coils are smaller they need to be closer to the object being

scanned and it is therefore possible to combine the RF coil with the shim coils [25].

A downside of this design is that it typically requires more current than the spherical

harmonic coil design since the coils are smaller and have less inductance (i.e. less

sensitivity). Furthermore, the design of these coils cannot compensate for local inho-

mogeneities in the magnetic �eld due to the lack of degrees of freedom for generating

local magnetic �elds.

1The formal equations for the spherical harmonic functions are given in the Appended Publications
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Figure 2: Individually shimming each 2D slice (in green) in a volume results in better
B0 homogeneity than shimming the entire 3D volume (in blue). In trying to compen-
sate for the B0 inhomogeneity pattern resulting from the air cavities in the bottom
slices, strong remaining �eld inhomogeneities in the left to right direction can be
observed in all other slices when the entire 3D volume is shimmed.

Besides hardware modi�cations, B0 homogeneity can be improved for 2D sequences

using slice-wise shimming [21, 16, 10]. 3D sequences excite the entire volume and read

out the data, however, 2D sequences acquire the data from a single slice at a time.

This allows us to only shim the slice that is currently excited (Figure 2). More details

on dynamic slice-wise B0 shimming can be found in section 1.4.

The B0 �eld can also have temporal changes. This means that the B0 �eld is

not independent of time but can vary and �uctuate with respect to time. Temporal

changes can occur due to physiological causes such as motion and breathing or due

to �uctuations in the currents in the shim coils. To maintain a stable magnetic �eld,

these temporal �uctuations should be corrected.

However, temporal �uctuations of the magnetic �eld cannot be corrected unless

we can measure or monitor the �eld. Short modules can be inserted into an MRI

sequence to quickly read out an estimate of the B0 �eld [30, 19]. These methods require

modi�cations to the sequence and can increase the overall scan duration. Recently,

another method for magnetic �eld monitoring has emerged. Field probes can be used

15



as sensors to measure the magnetic �eld at a single position [4]. These �eld probes

utilise the principle of magnetic resonance and generate free induction decay (FID)

signals that can be used to calculate the magnetic �eld using Eqn 1. An array of

�eld probes, or a �eld camera, can then be used to measure the magnetic �eld at

multiple spatial positions. Since, �eld cameras can be used simultaneously while the

MRI scanner is running a sequence, the magnetic �eld can be measured in real-time

and without increasing the scan duration. Figure 3 depicts the �eld camera (that was

built within the scope of the thesis) and one of the �eld probes that was mounted on

the �eld camera. Section 1.5 further describes the use of a �eld camera and how �eld

cameras compare to B0 mapping sequences.

Suppose now, that we have the good fortune to have available to us a system or

method that can allow us to measure the temporal dynamics of the magnetic �eld

such as the �eld camera formerly described. The system dynamics of our shim system

in question can then be measured. That is, we can measure how the magnetic �eld

changes when individual shim currents change. Indeed, no system is perfect and

will have certain time responses and surely such a system with so many electrical

conductors and changes in current (in the presence of a magnetic �eld) must generate

eddy currents and cross-coupling e�ects. Only once this is measured, can we hope to

control such a system.

A shim system with more than one coil element is, by nature, a multivariable

system. Once the system dynamics have been measured and modelled, a controller

can be designed to control the system. Details of what a control system is and how

to design controllers is given in section 1.6.

This thesis addresses multiple issues regarding B0 homogeneity: how we can

achieve it and how we can keep it stable. Thus, we delve into topics that touch

on algorithms, sequence programming, spatial/temporal modelling, instrumentation,

electronics and controller design.

16



Figure 3: (a) NMR �eld camera with 12 �eld probes and (b) one of the �eld probes.

1.2 Algorithms

The B0 shimming is, at the core, an inversion problem. That is, the inhomogeneities

can be counteracted by applying the inverse. In order to calculate the optimal shim

currents that cancel out the inhomogeneities, the B0 �eld �rst needs to be measured.

There are di�erent ways the B0 �eld can be measured. Either a full image-based

B0 mapping based on dual-echo [15] or multi-echo gradient echo sequences [13] can

be used or fast projection-based methods such as FASTMAP (or FASTERMAP) can

be used [11, 24]. In any case, the scope of this thesis was not to develop a new B0

mapping method but rather, is focused on how the B0 map can be used for shimming.

Calculation of the currents that need to be applied to the shim coils varies across

literature and, in some instances, is not even mentioned. However, the hardware

limitations of the shim ampli�ers are sometimes not properly handled or sometimes

not considered at all. Exceeding the hardware limitations usually does not happen

for large volumes of interest (VOIs) but for smaller volumes such as single voxel

spectroscopy (SVS), the required shim currents can be high and exceed the current

limits of the ampli�ers. This can also happen for single-slice shimming. Furthermore,

the more the shim coils overlap, the more likely this will happen.

Therefore, there is a need for a B0 shimming algorithm that can account for

hardware limitations regardless of the size and nature of the VOI. This inversion

problem is typically cast as a linear least squares problem. If the shim currents are

constrained due to hardware limitations, this can be described as box constraints in

17



Figure 4: Regions of interest (ROIs) that were used to test the B0 shimming algo-
rithms.

this optimisation problem. The B0 shimming optimisation problem is then:

minx ‖Ax− b‖2

lb ≤ x ≤ ub
(3)

where b is a n×1 vector (n is the number of voxels in the ROI) of unshimmed B0 �eld

map voxels stacked column-wise; A is a n × c matrix (c is the number of shim coils)

of the shim �elds generated by each shim coil; and lb and ub are the lower and upper

bounds, respectively. Subsequently, the shim �elds that need to be generated by the

coils is given by −x.
As with any linear least-squares problem, this optimisation problem can be rewrit-

ten in the following quadratic form:

min
x

(
1

2
· xTQx− cTx

)
(4)

where Q = AT ·A and cT = AT · b. Since Q = AT ·A is always positive (semi-)de�nite.

This is a quadratic problem and hence (semi-)convex. Therefore, any solution to this

problem is a global minimum. If it is strictly positive de�nite then the solution to this

problem is unique. However, even when the matrix is only positive semi-de�nite, even

though there are multiple solutions, they all yield the same global minimum regardless

of the box constraints (i.e. hardware constraints)2. It should always converge to the

same global minimum.

2This means that the algorithm does not have �local� minima and hence does not depend on a
starting value as is sometimes misconstrued in the literature [13, 9].
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In Publication 1, a plethora of di�erent algorithms were considered. Algorithms

that were found in the literature such as the linear least squares and Levenberg-

Marquardt algorithms were included. Additional optimization algorithms were also

compared, including nonlinear solvers and quadratic solvers. Finally, a regularised

algorithm that was developed to account for hardware constraints, called ConsTru,

was compared. The analysis of the algorithms were tested on multiple VOIs (Figure

4):

� whole brain covering the entire cerebrum, cerebellum and brain stem (denoted

as whole-brain+);

� whole brain without the medulla and cervical spine;

� single slice through the frontal sinus air cavity;

� single voxel (2x2x2 cm3) in the frontal cortex; and

� in the visual cortex

Multiple performance metrics were used:

1. sensitivity to starting values (if starting values are required),

2. numerical stability (to noise and perturbations in the b vector,

3. speed of convergence/calculation,

4. required total current
∑
abs(xi)

5. the objective function value (i.e. the residual error).

In the publication, we showed that our proposed algorithm ConsTru outperformed

the other algorithms. Although this method was similar to other regularisation meth-

ods such as in [20], we provide a systemic method of regularisation that is tailored to

the speci�c MRI shim hardware constraints. Furthermore, we showed that ConsTru

gave optimal results for multiple di�erent VOIs, which previously had not been thor-

oughly investigated. In Fig. 5, we also showed that the algorithm works for 7T and
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Figure 5: Achievable shim quality using the proposed ConsTru algorithm for the dif-
ferent ROIs (shown in Fig. 4) at 7T and 9.4T. The standard deviation of the reference
�eld maps (measured with all shim currents set to zero, denoted as �unshimmed� in
the plot) are also shown for comparison. Results are shown for a total of 33 volunteers
at each �eld strength.

9.4T �eld strengths and how bene�cial this algorithm is especially for the single voxel

case.

Using an optimal algorithm to calculate B0 shim currents is necessary because

improving the B0 �eld homogeneities through di�erent methods such as di�erent coil

designs or slice-wise updates should not be biased or a�ected by a poorly chosen

algorithm.

20



1.3 Spherical Harmonic Shimming

Much like the Fourier series for 1D signals, spherical harmonics form an orthogonal

basis set for 3D signals. Spherical harmonic functions are, hence, a common method of

decomposing and characterising 3D functions. A 3D scalar �eld can be approximated

by spherical harmonic functions as follows:

B0 (r) ≈
L∑
l=0

l∑
m=−l

bl,m · Al,m (r) (5)

where the spherical harmonic functions are Al,m (r) , the bl,m are constant coe�cients,

l is the degree of the spherical harmonic function and m is the order3. The degree of

the approximation is given by L. An illustration of the �rst, second and third degree

spherical harmonic functions are depicted in Figure 1. In relation to the optimisation

problem described in Eqn. 3, Al,m (r) becomes the matrix A, B0 (r) becomes the

vector b and the vector of coe�cients bl,m form the vector x.

Publication 2 demonstrates how very high degree (and order) spherical harmonic

shimming can be used for B0 shimming at ultra high �eld strengths. Most MRI

scanners have up to 2nd order shim coils and on some occasions may even have 3rd

order shim coils. In this case, very high order B0 shimming refers to more than 3rd

order shim coils. This study was made possible due to the availability of an insert

shim system from Resonance Research Inc. (Billerica, MA) that had up to full 4th

degree and partial 5th and 6th degree shim terms.

However, it is important to note that the shim coils do not necessarily generate the

spherical harmonic shim �eld that they were designed to. Instead of generating the

spherical harmonic shim �eld Al,m(r), imperfections in the manufacturing of the shim

coils may lead to deviations Al,m(r) + ε(r). This can be accounted for by measuring

the actual (or real) shim �elds using a B0 mapping sequence. Indeed, very high degree

B0 shimming has previously been shown to be advantageous for B0 homogenisation

using this method with a similar shim system [13, 22]. Figure 6 shows the results of B0

3The use of the terminology �order� for spherical harmonics is somewhat confused in the literature
and usually refers to the degree. Out of convention, in this thesis, the use of the term �order� refers
to the degree, unless otherwise stated.
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Figure 6: B0 maps using real shim �elds (considering the deviations) and using ideal
shim �elds (without considering the deviations) for B0 shimming using all channels
of the insert shim (i.e. full 4th degree and partial 5th/6th degree spherical harmonics)
from Resonance Research Inc. (Billerica, MA, USA).
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shimming with and without considering the deviations. It is obvious from the �gure

that if the imperfections of the system are not accounted for, B0 shimming completely

fails.

In Publication 2, we took a slightly di�erent approach by measuring the real

shim �elds Al,m(r) + ε(r) and modelling the �elds using spherical harmonic decompo-

sition. The advantage of using a model instead of reference �eld maps is that they are

easier to use since no interpolation is required (between the B0 maps and the reference

maps) and the reference �eld maps do not need to be stored. Furthermore, using a

model allowed us to have amplitude models for the shim coils. A linear amplitude

model, nearest-neighbour model and piece-wise linear model were investigated and

compared. The process has been described in the publication.

Another aspect of B0 shimming was also investigated and reported in the publica-

tion; that is, the problem of geometric distortion. B0 inhomogeneities cause geometric

distortions in the images (and subsequently the B0 maps). However, decomposing

the B0 maps using spherical harmonics assumes that the positions are known and

correct. Since we need to measure the shim �elds, which intrinsically result in B0

inhomogeneities, the B0 maps of the shim �elds are distorted. We, therefore, studied

prospective and retrospective means to minimise the e�ects of geometric distortion.

In summary, we showed the necessity of considering the imperfections in shim sys-

tems. We also showed that using a modelling approach, very high order B0 shimming

can be successfully used for whole brain, single slice and single voxel applications.

Additionally, we also showed that although there is advantage of going to higher and

higher degree shim terms, the marginal improvement diminishes. In particular, go-

ing above more than 6th degree spherical harmonics does not further improve the

homogeneity. Similar results have been shown in [22].
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1.4 Dynamic Slice-wise Shimming

Figure 7: Multi-coil localised shim coil array and measured shim �elds generated for
each coil element of the array (for a current of 1.0A). The orientation is shown at an
azimuth angle of -37.5° and an elevation angle of 30°.

For multi-slice 2D sequences, it is possible to perform slice-wise B0 shimming. For

each slice in the acquisition, di�erent shim currents can be applied to the shim coils

to produce a more homogeneous magnetic �eld for the slice currently being acquired.

Dynamic slice-wise shimming has previously been done using up to 3rd order shim

coils [16, 10]. It can also be done using localised shim coils [17]. In Publication 3,

we extended the number of spherical harmonic shim channels and performed 4thorder

dynamic slice-wise shimming. Furthermore, we also compared this very high order

B0 shim (VHOS) system to a localised shim coil array system. Even though there is

research being done on the localised shim arrays, there is currently no comprehensive

and consistent comparison between the two systems. In Publication 3, we attempted

to compare the two shim systems as fairly as possible for slice-wise shimming. Since

the 3rd + 4th order shim coils have 16 shim channels, we compared this to a localised

shim array of 16 channels (two rows of 8 channel elements). Therefore, the number of

channels was the same and both systems used the 2nd order shim terms in conjunction
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Figure 8: B0 �eld maps using di�erent shim systems on the same volunteer. A single
transversal slice in the centre of the cerebrum is shown using a 2nd degree shim and
a 4th+ degree shim (for a very-high order shim system) and a 2nd degree shim and a
multi-coil shim system. Corresponding histograms are also shown for comparison.

with 16 extra coils. Furthermore, the same current constraints were used on both

shim coil con�gurations. The multi-coil localised shim array that was used is shown

in Figure 7.

Dynamic slice-wise shimming was found to have an advantage over static whole

volume shimming. The homogeneity of the slices improved by 10 to 20 Hz at 9.4T,

depending on the slice position. Slices closer to the top of the head tended to have less

improvement. Our �ndings also showed that the advantage in B0 homogeneity was

very similar for both the VHOS system and the localised shim array. Fig. 8 shows

B0 �eld maps and the corresponding histograms using the di�erent shim systems.

The improvement that the higher degree shim channels o�ers is very similar to the

improvement achieved by the multi-coil system. More results and analyses can be

found in Publication 3.

In our publication, we showed the advantage of dynamic slice-wise shimming for

mapping metabolites in the human brain using spectroscopic imaging. A brief review

of the literature showed that Juchem et al. showed the advantage of dynamic slice-

wise shimming [16, 17] but did not show any applications. Fillmer et al. showed the

advantage for echo-planar imaging (EPI) [10]. We show that better B0 shimming not

only improves the reliability of detecting metabolites (indicated by the lower FWHM of

the spectra and lower CRLBs of the �ts for the more homogeneous �elds), in addition,

we show that the resulting metabolite maps di�er in their structure. This means that
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Figure 9: EPI image of the spherical phantom (a) with the insert shim inside the bore
and (b) without the insert shim. No current was applied to any of the shim coils.

metabolite maps can change due to poor B0 shimming and metabolite maps acquired

with poor B0 shimming do not accurately represent the underlying physiological state.

Although dynamically shimming with the VHOS was comparable to the dynam-

ically shimming with the 16 channel multi-coil localised shim array setup, the design

of the shim coils of the VHOS system are more susceptible to eddy currents caused

by switching the shim and gradient currents (Figure 9). Therefore, the eddy currents

need to be corrected for the VHOS system for fast switching, strong shim/gradient

currents. This can be done using pre-emphasis as demonstrated in [10, 28].
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1.5 Field Monitoring

As mentioned in the introduction, correcting for temporal �uctuations that may result

from several e�ects (such as eddy currents and/or subject breathing and motion)

requires a fast method to measure the B0 �elds. Conventional B0 mapping has higher

spatial resolution but low temporal resolution, while NMR �eld cameras have lower

spatial resolution and higher temporal resolution.

The accuracy of NMR �eld cameras has previously not been thoroughly investi-

gated. While NMR �eld cameras are likely to be su�cient for monitoring gradient

trajectories, for higher order shim terms the accuracy of the NMR �eld camera be-

comes more limited. Particularly for shim terms 3rd order and higher, the typical

16-probe �eld camera is insu�cient [1]. We investigated the accuracy of the NMR

�eld camera by comparing it to B0 mapping sequences which have higher spatial reso-

lution. We mitigated the problem of the insu�cient number of �eld probes by moving

the �eld camera to multiple positions and acquiring the data. We tested the NMR

�eld camera's ability to measure the shim �elds for shim terms up to the 4th order.

Prior to the comparison of the NMR �eld camera and B0 mapping, we �rst im-

proved the position calibration of the �eld probes. The use of a NMR �eld camera

requires the positions of the probes to be known. This is typically done using the

gradient �elds of the scanner and the change in the FID phase signal can be used to

estimate the position [4, 3, 29, 28]. The x-,y-,z-gradients can be used to estimate the

respective x-,y-,z-positions. However, this method does not account for any imperfec-

tions that may be present in the gradient �elds. The gradient �elds should be linear

but small nonlinearities in the �eld result in inaccurate position estimates of the �eld

probes. In Publication 4, we measured the gradient �elds for more accurate estima-

tion of the positions. Secondly, we also constrained the positions of the �eld probes

relative to each other since these are physically �xed. We showed that the accuracy

of estimating the positions of the �eld probes was improved by using the measured

gradient �elds and the relative position constraints of the �eld probes. Furthermore,

we showed how errors in the position estimation of the �eld probes change the B0

�eld measured using the NMR �eld camera. The 2nd order shim �elds measured using

di�erent position estimation methods is shown in Figure 10. The proposed method
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Figure 10: Shim �elds measured using B0 mapping and using a NMR �eld camera
(with linear gradient position estimation and constrained optimised gradient position
estimation). The orientation is shown at an azimuth angle of -37.5° and an elevation
angle of 30°.
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resulted in more robust measurements of the shim �elds. The complete analysis of all

shim terms up to the 4th degree can be found in the publication.

Therefore, in Publication 4, we showed that the position estimation of the �eld

probes can be improved by accounting for the nonlinearities in the gradient �elds

and also by constraining the relative positions of the �eld probes. We also showed

a comparison of shim �elds measured using an NMR �eld camera compared to B0

mapping. The low spatial resolution of the NMR �eld camera proved to have a

signi�cant impact on the accuracy of measuring B0 �elds even when 50 probes are

used.

29



1.6 Feedback

Figure 11: Schematics of (a) an open-loop controller where G(s) is the system, K(s)
is the controller (or �lter), r(s) is the set-point signal, u(s) is the input signal and y(s)
is the output signal, (b) a closed-loop control system where e(s) is the error signal,
and (c) a decoupled closed-loop controller where T (s) is the decoupling �lter.

If the magnetic �eld can be measured during the scan, this information can be

used to correct for time-varying changes in the magnetic �eld. For example, one can

use navigators interleaved in the sequence to estimate the magnetic �eld throughout

the sequence. This can be used to correct for motion or update the shim currents

[12, 19, 27]. However, including navigators or short B0 read-outs in a sequence can

increase the scan duration. Alternatively, if a �eld camera is available (such as the

one described in the previous section), these measurements can be used to correct

for the time-varying B0 inhomogeneities. To date, this has been applied for slower

time-varying e�ects such as breathing and motion correction [31, 5, 8].

If the shim currents are updated at a faster rate, the transient dynamics of the

system come into play. Hence, design of a controller is necessary to ensure stability,

robustness and good performance. Current implementations of feedback controllers in

shim systems use proportional-integral-derivative (PID) controllers or proportional-

integral (PI) controllers tuned using the Ziegler-Nichols method [31]. However, this

tuning method has been shown to have large overshoot and hence is less robust [2, 7].
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The design of controllers often makes the assumption that the system that needs

to be controlled is linear time-invariant (LTI). Although there are studies investigating

nonlinear systems, such as using input-output linearisation, state linearisation or phase

portraits for design, the focus of this study was on linear systems. This is due to

the fact that eddy currents can be modelled quite accurately using exponentially

decaying functions [14] where the assumption of linear time-invariance holds true. A

LTI system can be represented as a transfer function. This means that a nth-order

ordinary di�erential equation:

an

(
d

dt

)n

· y(t) + ...+ a1
d

dt
· y(t) + a0y(t) = bn

(
d

dt

)n

· x(t) + ...+ b1
d

dt
· x(t) + b0x(t)

can be written as:

ans
nY (s) + ...+ a1sY (s) + a0Y (s) = bms

mX(s) + ...+ b1sX(s) + b0X(s)

(ans
n + ...+ a1s+ a0) · Y (s) = (bms

m + ...+ b1s+ b0) ·X(s)

G(s) = Y (s)
X(s)

= bmsm+...+b1s+b0
ansn+...+a1s+a0

where Y (s) and X(s) are the Laplace transforms of the signals y(t) and x(t), respec-

tively (assuming zero initial conditions). Transfer functions can also be represented

in the frequency domain by replacing s = jω.

An open-loop controller (Fig. 11a) such as using pre-emphasis compensation

simply includes another transfer function K(s) before the system G(s) such that

K(s) ≈ G−1(s). Therefore, the whole system would then become:

H(s) = K(s) ·G(s) ≈ I(s)

and hence the output Y (s) ≈ I(s) ·X(s) = X(s).

However, in a closed-loop system (Fig. 11b), the system would become:

H(s) =
G(s)

1 +K(s) ·G(s)

and therefore the design of K(s) is less obvious than in the open-loop case.

Now, a single-input single-output (SISO) system can be extended to a multiple-
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input multiple-output (MIMO) system intuitively, by creating an array of transfer

functions (since linearity is assumed). Although there are multiple design methods

for designing such MIMO controllers, many of these methods are not easily scalable

to larger systems. The simplest and most practical approach to larger systems is to

decouple the MIMO system into a system of multiple SISO systems. That is, to try

and form a diagonal transfer function matrix as such:

G(s) =


G1,1(s) · · · G1,Q(s)

...
. . .

...

GP,1(s) · · · GP,Q(s)


⇒ G∗(s) = G(s) · T (s) =


G∗

1,1(s) · · · 0
...

. . .
...

0 · · · G∗
P,Q(s)


where G∗(s) is the decoupled system (so all the o�-diagonal transfer functions are zero

for the frequency range of interest) and where P and Q are the number of outputs

and inputs, respectively.

After the system has been su�ciently well decoupled, the system can be treated

as multiple SISO controllers.

Currently, PID controllers are prevalent in industry due to their simplicity of

implementation. PID controllers can be presented in the s-domain as such:

K(s) = KP + KI/s +KDs

Even though the structure of PID controllers is simple, the design and tuning of

such controllers is still often based on rule-of-thumb and emperically done. Design of

optimal PID controllers is still, even to this day, under investigation. The reason for

this is that controller design has multiple objectives that need to be satis�ed, including

their performance and robustness against disturbances. Furthermore, the objectives

are highly non-linear and require large amounts of computation.

In light of this, in this thesis two steps for designing controllers for shim systems

were proprosed: �rstly, the decoupling of the shim system was investigated; secondly,
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Figure 12: Schematic of a closed-loop system for a B0 shim system using a �eld camera
and digital controllers.

the design of PI controllers were investigated to �nd more robust controllers that gave

good performance. In Publication 5, we investigated di�erent decoupling strategies

for a spherical harmonic based shim coil system. Since, the shim coils were based on

spherical harmonic functions, the generated �elds should be approximately orthogonal.

This means that decoupling the system comes intuitively. Each shim �eld can be

decomposed into the theoretical spherical harmonic functions.

Static and dynamic decoupling strategies were compared. For static decoupling,

two methods were investigated: a standard static decoupling of the steady state (i.e.

at a frequency of 0Hz) and an optimised static decoupling method. The Vaes method

[26] was used for the optimised static decoupling that optimises the elements in the

decoupling matrices over a range of frequencies using the µ-interaction as an objective

function.

Although the dynamic decoupling (analogous to pre-emphasis or compensation)

gave better decoupling results when evaluated with the µ-interaction term, in the

closed-loop design, the static decoupling gave more robust results. In this case, static

decoupling was a better solution as it was more robust and had a similar performance

to the dynamically decoupled system. A schematic of the closed-loop system is shown

in Fig. 12.

Finally, di�erent methods for optimising and tuning PI controllers were investi-

gated. In Publication 6, the optimisation problem was cast as a multi-objective

problem where the settling time, sensitivity, complementary sensitivity and control
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Figure 13: Closed-loop time-domain responses of the diagonal self-terms for a full 3rd

degree/order shim system using dynamic decoupling (red), static decoupling (black)
and static decoupling (blue) using the Vaes method [26]. Sensitivity functions for each
of the closed-loop responses are also shown in the frequency domain. The sensitivity
function is de�ned as 1

1+K(s).G(s)
, where G(s) is the system, K(s) is the controller.

e�ort were used as the objective functions. The domain space for the input param-

eters were constrained using the Routh-Hurwitz stability criteria and by de�ning a

minimum closed-loop response time. The results showed that the dominant features

could be described by the settling time and sensivity function; there was also a trade-

o� between these two features. Therefore, in Publication 5, only two features were

used: 1) the phase margin as a place-holder for the sensitivity function and 2) the

integral-absolute-error (IAE) as a placeholder for the settling-time. Since, in this

case, the robustness was more important due to possible cross-coupling of a multi-

input multi-output system, the phase margin was used as the objective function and

the IAE was used as a constraint. This made the optimisation problem much simpler

and the results show good robustness for all the channels while satisfying the settling

time constraint. The closed-loop time-domain responses of the diagonal self-terms

along with the frequency domain sensitivity functions are shown in Fig. 13 for all

three decoupling methods.

Therefore, we showed that for a spherical harmonic-based shim system, decoupling
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control could be used e�ectively to improve the closed-loop response of the system.

Secondly, we presented an optimisation method for PI controller tuning instead of

using the Ziegler-Nichols method.
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1.7 Summary

In this thesis, we presented an amalgamation of software, hardware and design im-

provements for the application of B0 shimming of magnetic �elds. An optimal algo-

rithm was developed that takes into account the hardware constraints of the ampli�ers

and was tested on for multiple ROIs and applications. Global static whole-brain shim-

ming was demonstrated at 9.4T using very high order B0 shimming. This could only

be achieved by accounting for the imperfections in each shim �eld. It was also demon-

strated that this methodology works for dynamic slice-wise B0 shim updating using a

very high order shim system and is also comparable to using a 16 channel multi-coil

array. Next, a �eld camera was constructed and the position calibration of the �eld

probes was optimised for better �eld monitoring. Finally, the �eld camera was used

to measure the time dynamics of the shim system and this model was used to design

a decoupling controller with optimised PI controllers.

Needless to say, further investigation is still required for even better B0 homogene-

ity. However, with the current progress in this research �eld, su�ciently homogeneous

magnetic �elds should be possible for ultra high �eld applications.
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3 Statement of Contributions

3.1 A Comparison of Optimization Algorithms for Localized

In Vivo B0 Shimming

In vivo B0 maps were acquired from ultra high �eld MRI scanners and multiple di�er-

ent algorithms were used to shim the B0 maps. The algorithms that were compared

were the ones that are typically used in the literature and hardware constraints were

applied to the optimisation problem. The algorithms were compared for di�erent

regions-of-interest and multiple criteria were used to evaluate the performance and

robustness of each algorithm.

� P. Chang - Designed the test criteria for the algorithm comparisons and the

in vivo experiments. Collected data from the Siemens 9.4T MRI scanner. Im-

plemented all the hardware/software interface with the very high order B0 shim

system. Devised and developed the main idea for the ConsTru algorithm. Wrote

parts of the manuscript.

� S. Nassirpour - Designed the test criteria for the algorithm comparisons and

the in vivo experiments. Collected data from the Siemens 9.4T MRI scanner.

Implemented the other optimization algorithms in a custom script for performing

the comparisons. Wrote the majority of the manuscript.

� A. Fillmer - Provided the Philips 7T in vivo data.

� A. Henning - Supervised and advised on the manuscript.

3.2 Modeling Real Shim Fields for Very High Degree (and

Order) B0 Shimming of the Human Brain at 9.4T

An implementation of very high degree spherical harmonic shimming of the human

brain at 9.4T. B0 maps were acquired for each shim channel at di�erent current am-

plitudes. All shim �elds were modelled and used for B0 shimming. The study demon-

strated the advantage of using higher degree spherical harmonic shimming in the

human brain.
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� P. Chang - Implemented the scripts for �eld modelling in addition to all the

hardware/software interface with the very high order B0 shim system. Optimised

the experimental protocol and collected all the phantom and in vivo data at 9.4T.

Conducted the in vivo applications (MRSI, single-voxel spectroscopy and EPI

experiments). Wrote the majority of the manuscript.

� S. Nassirpour - Optimised the experimental protocol and collected all the

phantom and in vivo data at 9.4T. Primarily performed the geometric distor-

tion and amplitude non-linearity section of the study. Conducted the in vivo

applications (MRSI, single-voxel spectroscopy and EPI experiments). Wrote

parts of the manuscript.

� A. Henning - Supervised and advised on the manuscript.

3.3 Dynamic B0 Shimming at Ultra High Fields for Proton

Spectroscopic Imaging of the Human Brain(in prepara-

tion)

Comparison of dynamic B0 shimming using a very high degree spherical harmonic shim

system and a multi-coil shim system. Advantage of dynamic shimming over static

global shimming was shown in the human brain. Applications in proton spectroscopic

imaging were shown for both shim systems.

� P. Chang - Implemented all the hardware/software interface with the very

high order B0 shim system. Implemented the dynamic shim updating pipeline.

Collected the MRSI data with the very high order shim system. Performed

the processing and analysis for B0 shim comparisons. Wrote the parts of the

manuscript.

� S. Nassirpour - Developed the acceleration and reconstruction schemes for

MRSI acquisition. Collected the MRSI data with the very high order shim sys-

tem. Processed and analysed the MRSI data. Wrote the parts of the manuscript.
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� A. Aghaeifar - Provided the multi-coil shim setup and helped collect the in

vivo data with the multi-coil.

� N. Avdievich - Built the RF coil that was used in the study.

� K. Sche�er - Supervised and advised on the construction of the multi-coil.

� A. Henning - Supervised and advised on the manuscript.

3.4 Constrained Optimisation for Position Calibration of a

NMR Field Camera

This study investigated di�erent methods for position calibration of a NMR �eld

camera. Gradient nonlinearities were taken into account (whereas previously gra-

dient �elds were assumed to be perfectly linear for the calibration). Furthermore,

constrained relative positions of the �eld probes were used accounted for. The sug-

gested optimisation algorithm for position calibration proved to be more robust when

measuring higher order spherical harmonic shim �elds.

� P. Chang - Devised the main concept of optimising the position calibration

based on the measured gradient �elds. Built the NMR �eld cameras including

the mount, �eld probes, tuning/matching boards and cable traps. Measured the

shim �elds for each shim coil of the very high order insert shim system at 9.4T.

Wrote the majority of the manuscript.

� S. Nassirpour - Measured the shim �elds for each shim coil of the very high

order insert shim system at 9.4T. Analysed the B0 imaging data.

� M. Eschelbach - Helped with the manufacturing of the �eld probes and with

performing the gradient measurements at 9.4T.

� N. Avdievich - Built the TR switches.

� K. Sche�er - Supervised and advised on the construction of the �eld probes.

� A. Henning - Supervised and advised on the manuscript.
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3.5 Controller Design for Feedback of B0 Shim Systems (sub-

mitted)

Investigated controller design for large multivariable shim systems. System identi-

�cation was performed on a full 4th degree spherical harmonic shim system. The

modelled system was used to investigate di�erent decoupling strategies for closed-loop

control. Performance, robustness and control e�ort were used to analysis the di�erent

controllers.

� P. Chang - Performed all measurements that were conducted using the �eld

camera at 9.4T. Analysed the data and modelled the system and also performed

the investigation of controller design and evaluation of the design. Wrote the

manuscript.

� S. Nassirpour - Performed all measurements that were conducted using the

�eld camera at 9.4T.

� A. Henning - Supervised and advised on the manuscript.

3.6 System Identi�cation and Signal Processing for PID Con-

trol of B0 Shim Systems in Ultra-High Field Magnetic Res-

onance Applications

Investigated signal processing of data from a NMR �eld camera. The gradient coil

system was measured using a NMR �eld camera and the data were used to perform

system identi�cation in the time-domain. The modelled gradient system was used to

investigate multi-objective optimisation of PI controllers, accounting for performance

and robustness of the closed-loop system.

� P. Chang - Constructed the �eld camera and developed the signal processing

scripts and pipeline for analysis of the data. Acquired the data and performed

the experiments. Performed system identi�cation of the system and designed of

PID controllers. Wrote the manuscript.

� N. Avdievich - Constructed the TR switches for the �eld camera.
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� A. Henning - Supervised and advised on the manuscript.
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FULL PAPER

A Comparison of Optimization Algorithms for Localized
In Vivo B0 Shimming

Sahar Nassirpour,1,2y* Paul Chang,1,2y Ariane Fillmer,4 and Anke Henning1,3

Purpose: To compare several different optimization algorithms
currently used for localized in vivo B0 shimming, and to intro-

duce a novel, fast, and robust constrained regularized algo-
rithm (ConsTru) for this purpose.
Methods: Ten different optimization algorithms (including sam-

ples from both generic and dedicated least-squares solvers,
and a novel constrained regularized inversion method) were

implemented and compared for shimming in five different
shimming volumes on 66 in vivo data sets from both 7 T and
9.4 T. The best algorithm was chosen to perform single-voxel

spectroscopy at 9.4 T in the frontal cortex of the brain on 10
volunteers.
Results: The results of the performance tests proved that the

shimming algorithm is prone to unstable solutions if it depends
on the value of a starting point, and is not regularized to han-

dle ill-conditioned problems. The ConsTru algorithm proved to
be the most robust, fast, and efficient algorithm among all of
the chosen algorithms. It enabled acquisition of spectra of

reproducible high quality in the frontal cortex at 9.4 T.
Conclusions: For localized in vivo B0 shimming, the use of a

dedicated linear least-squares solver instead of a generic non-
linear one is highly recommended. Among all of the linear solv-
ers, the constrained regularized method (ConsTru) was found

to be both fast and most robust. Magn Reson Med 000:000–
000, 2017. VC 2017 International Society for Magnetic Reso-
nance in Medicine.

Key words: B0 shimming; ultrahigh field strengths; constrained
regularization; single-voxel; constrained optimization

INTRODUCTION

B0 shimming is crucial for magnetic resonance spectros-
copy and imaging, as an inhomogeneous B0 field intro-
duces several artifacts such as geometric distortion, loss
of signal-to-noise ratio, signal dropout, and loss of reso-
lution as a result of blurring in imaging applications
(1–5) and line broadening, localization problems, and
loss of spectral resolution in spectroscopy applications
(6). The problem becomes even worse at higher field
strengths.

The task of B0 shimming is usually accomplished by

measuring the magnetic field and calculating the

required currents that have to be applied to a set of shim

coils to cancel the nonuniformities of the original field.

Many different methods have been proposed to find the

optimal shim currents. Ideally, one should find an auto-

mated B0 shimming algorithm that is robust, numerically

stable, and applicable to any arbitrary volume of interest.

This algorithm should also handle the hardware limits of

the shim system. Finally, it should be able to take the

real shim field models into account in case the imperfec-

tions in the design cause the generated shim fields to

deviate from the ideal spherical harmonics model (7–9).
The need for a reliable B0 shimming algorithm

becomes even more important in the case of small

regions of interests (ROIs) or when the ROI lies some-

where off-center relative to the iso-center of the magnet,

where the shim fields are no longer orthogonal. In both

of these cases, solving the shimming problem is tricky,

as the problem becomes increasingly ill-conditioned, and

unless a robust shimming algorithm is used, one may

end up with unreasonably high shim values that are

prone to noise in the input (19).
Over the years, different approaches for B0 shimming

have been proposed. These methods can be classified

into two general categories: projection and volumetric

mapping methods. Projection mapping methods like

FASTMAP, FASTERMAP, FASTESTMAP, or Pencil

Beam (10–14) only measure a few linear projections, and

hence have the advantage of being less time-consuming.

The drawback, however, is that the localization techni-

ques used to acquire these projections make it impossi-

ble to apply them to disjoint regions of interest such as

in multivoxel spectroscopy. Moreover, because only a

limited number of projections are acquired, they cannot

always capture all of the local inhomogeneities.
Alternatively, the volumetric image-based mapping

methods require longer acquisition times, but provide a

full 3D map of the field. These B0 shimming routines

then use a range of optimization algorithms to calculate

the optimal shim values. Some approaches just calculate

the required shim currents by simple matrix inversion,

which provides the minimum-norm solution that mini-

mizes residual B0 inhomogeneity in a least-squares sense

(15–19). However, simple inversion is inherently uncon-

strained and cannot take the limits of the shim system

into account. Although Juchem et al (16), Wen and Jaffer

(17), and Webb and Macovski (18) report that exceeding

shim values never happened in their in vivo applica-

tions, there is no guarantee that this will hold for all

other shim applications or different systems. Wen and

Jaffer (17) proposed a method based on Powell (20), in

1Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
2IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls Univer-
sity of Tuebingen, Germany.
3Institute for Biomedical Engineering, UZH and ETH Z€urich, Z€urich,
Switzerland.
4Physikalisch-Technische Bundesanstalt, Berlin, Germany.

*Correspondence to: Sahar Nassirpour, MSc, Max Planck Institute for Bio-
logical Cybernetics, Spemannstrasse 41, 72076 T€ubingen, Germany. Tel: 1

49 7071 939; E-mail: sahar.nassirpour@tuebingen.mpg.de.

yThese authors contributed equally to this work.

Received 15 November 2016; revised 5 April 2017; accepted 29 April 2017

DOI 10.1002/mrm.26758
Published online 00 Month 2017 in Wiley Online Library (wileyonlinelibrary.
com).

Magnetic Resonance in Medicine 00:00–00 (2017)

VC 2017 International Society for Magnetic Resonance in Medicine 1



which the simple matrix inversion is combined with an
additional step in which they clip the shim currents that
exceed their limit and recalculate new first-order values
that compensate for the clipped higher-order shim val-
ues. However, this method is also not guaranteed to
yield the best possible shim, as some inhomogeneities by
nature cannot be compensated by only first-order terms.
Adalsteinsson et al (19) proposed a truncated singular
value decomposition (TSVD) to regularize the problem.
However, the constraints of the system are not directly
taken into account, and it is not clear how the threshold
for truncating the singular values should be chosen.

Another common trend is to use a constrained minimi-
zation algorithm to solve the problem. Klassen and
Menon (21) used a linear least-squares optimization
method based on the MATLAB (The MathWorks, Natick,
MA) lsqlin function, and removed shim coils from the
computation when the ROI is small, to prevent ill-
conditioning. Both van Gelderen et al (22) and Weiger
et al (23) used a least-squares optimization method but
did not mention the specific algorithm or implementa-
tion. Hetherington et al (24) proposed a three-step shim-
ming method that would “minimize the possibility of
becoming trapped in a high-order local solution.” In this
method they start by fitting only the first-order shim
terms and then use this as a starting value for the fit of
higher-order shims in each step. Recently, more and
more groups (8,25–27) have used a Levenberg-Marquardt
nonlinear least-squares minimization routine (28).
Fillmer et al (27) built upon this method by performing a
multiple starting value search and including a region of
less interest to avoid “local minimum traps.”

As shown by this brief literature review, several differ-
ent methods are used by different groups on a range of
B0 shimming applications. However, there is still a need
for a systematic comparison of these algorithms. The aim
of this work is to evaluate and compare the performance
of 10 optimization algorithms in a range of B0 shimming
applications in human brain on both a 7T and a 9.4T
scanner.

THEORY

The B0 shimming problem can be characterized as an
overdetermined system of linear equations, which can be
cast as

min
x
jjðAx � bÞjj2 [1]

where b is a n x 1 vector (n is the number of voxels in
the ROI) that holds all of the unshimmed B0 field map
voxels stacked column-wise to convert from a 2D or 3D
ROI to a single vector; and A is a nxc matrix (c is the
number of shim terms). The columns of A hold the fields
produced by different shim coils, whereas the rows cor-
respond to different voxels. Finally, x is a c x 1 vector of
the unknown shim currents that need to be calculated.

The hardware limitations of the shim system can be
included as box-constraints lb � x � ub.

As with any linear least-squares problem, this optimi-
zation problem can be rewritten in the following qua-
dratic form:

min
x

1

2
xTQx � cTx

� �
[2]

where Q ¼ AT :A and cT ¼ ATb. This is a quadratic pro-

gramming problem, and hence convex. Therefore, any

solution to this problem is a global minimum. This

means that the algorithm should not depend on a start-

ing value and should always converge to the same global

minimum.
Q ¼ ATA. is always positive semidefinite. In case it

becomes positive definite, there is a unique solution to

this problem. However, even when the matrix is only

positive semidefinite, even though there are multiple sol-

utions, they all yield the same global minimum. Note

that this is true for all shimming applications, and hav-

ing the box constraints does not change this fact.
However, depending on the shimming application, the

problem can become very ill-posed. In this case, the

shim fields produced by the shim coils no longer form

an orthogonal basis, and the columns of the matrix A

will be nearly linearly dependent. By definition, an ill-

posed problem is a problem in which the solution does

not depend continuously on the input (29), meaning that

arbitrary small perturbations can cause arbitrary large

changes in the solution (19). According to the perturba-

tion theory (19), even a small amount of noise in measur-

ing the B0 field or estimating the sensitivity of the shim

coils, or even precision round-off errors, can drastically

change the results.
It is important to note that the ill-conditioning does

not mean that a meaningful approximate solution cannot

be computed. Rather, it implies that standard optimiza-

tion methods cannot be used in a straightforward man-

ner. Instead, more sophisticated methods must be

applied to ensure the computation of a meaningful solu-

tion. This is the essential goal of regularization methods.
What is usually mistaken for local minima traps (27)

or high-order local solutions (24) are actually the unsta-

ble behavior of the global solution that is typically physi-

cally meaningless and can change drastically by

perturbing the input data.
Considering the theory behind this problem, even

though it is a conventional linear least-squares minimi-

zation problem, extra care should be taken in choosing

an algorithm that calculates stable solutions independent

of the shimming application at hand.

METHODS

Algorithms

Ten different optimization algorithms were embedded in

a software framework written in MATLAB R2013b. The

chosen set of algorithms includes sample algorithms

from both generic and dedicated quadratic solvers. A

new regularized constrained inversion algorithm (algo-

rithm 10, as described subsequently) was also included.

Here is a brief explanation of each of these methods:

1. Unconstrained pseudo-inversion (pinv): If the

shimming problem in Equation [1] was uncon-

strained, the obvious solution to it would be
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x ¼ A
y
b [3]

where Ay is the pseudo-inverse of the matrix A.
This solution always yields the best shim quality
achievable when the system is not bound by con-
straints. Therefore, the unconstrained pseudo-
inversion algorithm (pinv) using the MATLAB
pinv function was considered as the benchmark
for comparison purposes.

2–5. Generic constrained nonlinear optimization
methods using the MATLAB fmincon function
with three methods: active-set (nonlin-as) (30),
interior-point (nonlin-ip) (31) and sequential qua-
dratic programming (sqp) (30), and another one
using Levenberg-Marquardt’s algorithm imple-
mented in IDL (levMar) (28).

6. A dedicated quadratic programming solver using
the interior-point-convex method (QP) (32) using
the MATLAB quadprog function.

7. A dedicated linear least-squares solver using the
MATLAB lsqlin function.

8. A constrained inversion algorithm in which the
system is iteratively inverted and the values that
exceed the limits are clipped to their maximum
(Clipped-it). This method handles the constraints
in an iterative manner while still keeping the
problem at each step essentially unconstrained.
Let us assume that in the first iteration we calcu-
late the solution to the shim problem as

x ¼ A
y
b: [4]

And suppose that the calculated values for two
of the shim terms (xi, xj) exceeded their limits
(xi>ui, xj>uj). These two terms are clipped to
their maximum value (set xi¼ui, xj¼uj) and the
b vector is updated by subtracting their contribu-
tion from the measured field vector as follows:

b0 ¼ b�A � ½0 . . . ui . . . uj . . . 0 �T : [5]

In the next iteration, the updated b vector ðb0Þ,
and an updated matrix A that is obtained by
eliminating the rows corresponding to shim
terms i and j, form the updated problem

x0 ¼ A0
y
b0: [6]

This is repeated until all constraints are
satisfied.

9. Similar to method 8, except that before starting
the iterative inversion, the singular values of
matrix A are truncated to a fixed and empirically
chosen threshold (0.003) (Fixed-tsvd).

10. A new method (constrained TSVD inversion
method, or ConsTru) in which we simply solve
the shim problem by pseudo-inverting the matrix
A, but if any of our hardware limit constraints
are violated, we truncate the smallest singular
value of the matrix A and re-invert the new
matrix. We continue doing this by truncating the
next smallest singular value in each step until

the calculated solution does not violate any hard-

ware constraints. The rationale behind this algo-

rithm is that if we consider the singular value

decomposition of the matrix A

A ¼ U
X

V [7]

where
P

is a diagonal matrix with the singular

values of the matrix A as its nonzero elements,

then we can write the pseudo-inverse of the

matrix A as

A
y ¼ V

Xy

U� [8]

where
Py

is calculated by taking the reciprocal

of each nonzero element on the diagonal and

transposing the matrix. This equation shows that

if matrix A has small singular values (which is

the case when the shim problem is ill-condi-

tioned), the reciprocal of these values on the

diagonal of
Py

would contribute significantly to

the norm of the solution x ¼ A
y
b. This is prob-

lematic not only because this high norm solution

would most probably violate the hardware limits,

but also because according to the perturbation

theory (19), these high values will amplify any

input noise and result in numerically unstable

solutions. It is therefore clear why truncating the

small singular values of the matrix A before

inverting it would help condition the problem

and result in a minimum norm solution. A more

comprehensive mathematical description of this

can be found in Appendix A.

Data Acquisition

For this study, a total of 66 in vivo data sets from the

brains of healthy volunteers were considered. Half of

these data sets were acquired on a 7T magnet, and the

other half on a 9.4T system. All participating volunteers

gave written informed consent in accordance with local

ethics regulations. Whole-brain B0 maps covering the

entire cerebrum, cerebellum, and brain stem were

acquired.
The 7T data sets were acquired on a 7T Achieva sys-

tem (Philips Healthcare, Cleveland, OH) with a Nova

Medical 32-channel Tx/Rx coil using a 2D gradient echo

(GRE) sequence with repetition time (TR)¼ 6.86 ms;

echo time (TE)¼ 3.1/4.1 ms; field of view

(FOV)¼240�240 mm2; in-plane resolution¼ 2� 2 mm2;

110 slices and slice thickness¼ 2 mm.
The 9.4T data sets were acquired on a 9.4T human whole-

body Siemens scanner (Siemens, Erlangen, Germany) with

an in-house-developed 8-channel transmit/receive coil (33).

The B0 maps were acquired with a 2D GRE sequence with

TR of 100 ms; TE¼ 4.01/4.77 ms; FOV¼ 200� 200 mm2; in-

plane resolution¼ 1.56� 1.56 mm2; 50 slices and slice

thickness¼4 mm.
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Tests

For each volunteer, the performance of the algorithms for
up to third-order shimming in five different shim vol-
umes were studied (Fig. 1): (i) a whole-brain region cov-
ering the entire cerebrum, cerebellum, and brain stem;
(ii) another global application covering the whole brain
minus the medulla and the cervical spine; (iii) a single
slice positioned off-center and going through the frontal
sinus air cavity; (iv) a single voxel (2� 2� 2 cm3) located
in the frontal cortex; and (v) in the visual cortex. The
hardware limits of the shim system given in Table 1
were taken into account. The algorithms were tested
against the following criteria.

Sensitivity to Starting Values

Out of the 10 algorithms, four of them (namely, the

generic nonlinear solvers (Algorithms [2] to [5])), require

a starting value. Because these are numerical algorithms,

they might not always converge within the given number

of iterations; hence, the announced solution might well

depend on where the search starts. Therefore, in this test

the robustness of each of these algorithms is evaluated

against the starting values. For each volunteer and shim-

ming application, 1000 random starting point values

were generated.

Numerical Stability

As the shimming problem becomes increasingly ill-

conditioned, it becomes more and more challenging to

calculate a meaningful and numerically stable solution;

hence, the shim algorithm should be robust against any

kind of perturbations by means of better-conditioning

the problem. In this test, the robustness of each of the 10

algorithms was tested against noisy inputs. For each vol-

unteer, 1000 different noisy B0 maps were generated by

adding random white noise to the measured maps. The

maximum amplitude of the noise was kept within 61%

of the original measured value.

Speed

Any time spent on calculating a stable solution for B0

shimming is an overhead to the scan time. Hence, in this

test the speed of each of these algorithms was tested.

The run times were calculated based on a 2.3-GHz 6-core

Intel CPU with 16 GB of RAM.

Overall Performance in Different Shimming Applications

As mentioned previously, the theoretical limit on how

well the shimming can do for the least-squares objective

function, given a certain number of shim terms, is

always given by the pinv algorithm. In practice, theFIG. 1. Anatomical image overlaid with five different shim volumes
chosen for this study: (i) a whole-brain global shimming application

for a region covering the entire cerebellum, cerebrum, and brain
stem indicated as whole brainþ; (ii) another whole-brain global shim-

ming application covering the whole cerebellum minus the medulla
and the cervical spine; (iii) a single-slice shimming application for a
slice positioned off-center relative to the iso-center of the magnet;

(iv) a single-voxel shimming application for a voxel located in the
frontal cortex; and (v) another one in the visual cortex.

Table 1
Shim Terms, Their Sensitivities, and Their Maximum Strength for

the Philips 7T Shim System

Shim
term

Spherical harmonic
function

Sensitivity
(Hz/cmn/A)

Maximum
(mT/mn)

X x 42.15 0.99
Y y 42.15 0.99

Z z 42.15 0.99
Z2 z2 2 1/2*(x2þ y2) 1.97 4.63
ZX Zx 3.35 7.88

ZY Zy 3.30 7.75
C2 x2 2 y2 3.20 7.52

S2 2xy 3.13 7.35
Z3 z(z2 2 3/2*(x2þ y2)) 0.012 2.82
Z2X x(z2 2 1/4*(x2þ y2)) 0.016 3.76

Z2Y y(z2 2 1/4*(x2þ y2)) 0.016 3.76
ZC2 z(x2 2 y2) 0.1 23.72

ZS2 2zxy 0.099 23.25
C3 x(x2 2 3y2) 0.045 10.57
S3 y(3x2 2 y2) 0.044 10.33

Note: The maximum available current for each shim channel was
10 A.
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shimming problem is always bound by hardware limits.

Therefore, it may be impossible to achieve this theoreti-

cal limit. In this test, we evaluate how close the result of

each of these algorithms gets to the theoretical limit. The

test was performed on all volunteers and in all shimming

applications for both second and third order.
Only the in vivo data sets acquired at 7 T were used

for these four tests.

Overall Performance on 7T versus 9.4T Data Sets

It is well-known that B0 field homogeneity becomes

more problematic at higher field strengths. Therefore, it

would be interesting to evaluate how well each of the

algorithms would handle the higher inhomogeneity in

the B0 fields measured at 9.4 T compared with those

measured at 7 T, and to compare the best shim quality

one can achieve on each of them. So, in this test we

compared the best shim quality achievable given the

hardware limits of the shim system in all shimming

application on both 7T and 9.4T data sets. For this test

the best shimming algorithm (judged by the results of all

of these performance tests) was used. For the comparison

to be purely about the field strength and not the shim

system specifications, the same hardware constraints (as

stated in Table 1) were used in simulation on both 7T

and 9.4T data sets.

Application in In Vivo Single-Voxel Spectroscopy

One of the most challenging shimming applications (in

the sense of robustly finding the optimal shim solution)

is single-voxel spectroscopy (such as in the frontal cortex

of the brain). The shim quality directly affects the line-

width of the peaks in the spectrum. The purpose of this

test was to apply the best shimming algorithm (judged

by the results of all these performance tests) to shim a

single voxel located in the frontal cortex of the brain,

acquire non-water suppressed spectra, and evaluate the

shim quality by calculating the linewidth of the unsup-

pressed water peak. The results were compared with

those of shimming the same region with the vendor-

implemented shimming routine. The effect of higher-

order shimming was also studied by shimming the same

volume with incremental second, third, fourth, and par-

tial fifth/sixth-order spherical harmonic shim terms.
This test was performed on a 9.4T whole-body Sie-

mens scanner with an in-house-developed eight-channel

transmit/receive coil (33). To perform higher-order B0

shimming, an insert shim (MX10W-28) from Resonance

Research Inc (Billerica, MA) was used. Twenty-eight

channels including complete second, third, and fourth-

degree spherical harmonics (and partial fifth and sixth-

degree harmonics) were available. The sensitivities of

each shim channel can be found in Table 2. A total of 10

healthy volunteers were scanned for this test. A STEAM

sequence was used to acquire non-water-suppressed

spectra with the following parameters: voxel size

2� 2� 2 cm3, 16 averages, TR of 5 s, TE of 11 ms, flip

angle of 90 �, 1024 complex points, and spectral band-

width of 8 kHz. The maximum shim current for each

shim channel was limited to 2 A, and a total of 20 A

was dedicated to the positive and negative rails (10 A

each).

RESULTS

Sensitivity to Starting Values

To evaluate the quality of the shim and how dependent

it is on the starting values, the standard deviation of the

frequency shifts (sB0) in the shimmed map was chosen

as a metric. Figure 2 shows the results for a single voxel

shimming application located in the frontal cortex. The

results are shown only for the four algorithms that

require a starting point value to operate. Each box in the

box plot contains 33000 sB0 values, which are the

results of applying the corresponding algorithm to all 33

volunteers (the ones acquired on the 7T magnet) with all

1000 different randomly generated starting point values.

For comparison purposes, the best shim quality achiev-

able through an unconstrained inversion (pinv) is also

shown. On each box, the central mark (–) indicates the

median, and the bottom and top edges of the box indi-

cate the 25th and 75th percentiles, respectively. The

mean value is shown with a cross symbol (y), and the

whiskers span from 9 to 91% of the data. To better visu-

alize how the outcome of the algorithms changes

depending on the starting value, the results of the first

Table 2
Shim Terms, Insert Shim Coil Sensitivities, and Maximum Strength

Used on the 9.4T System

Shim
term

Spherical harmonic
function

Sensitivity
(Hz/cmn/A)

Maximum
(mT/mn)

Z0 1 6058 0.28
Z2 z221/2*(x2þy2) 6.942 3.26
ZX zx 24.15 11.34

ZY zy 24.15 11.34
C2 x2-y2 3.64 1.71

S2 2xy 3.64 1.71
Z3 z(z223/2*(x2þy2)) 0.4923 23.12
Z2X x(z221/4*(x2þy2)) 1.0 46.97

Z2Y y(z221/4*(x2þy2)) 1.0 46.97
ZC2 z(x22y2) 1.77 83.14
ZS2 2zxy 1.77 83.14

C3 x(x223y2) 0.188 8.83
S3 y(3x22y2) 0.188 8.83

Z4 z423z2(x2þy2)þ3/8*(x2þy2) 0.04206 197.57
Z3X zx(z223/4*(x2þy2)) 0.123 577.78
Z3Y zy(z223/4*(x2þy2)) 0.123 577.78

Z2C2 z(x22y2)(z221/6*(x2þy2)) 0.093 436.86
Z2S2 2z(xy)(z221/6*(x2þy2)) 0.093 436.86

ZC3 x(x223y2)(z221/8*(x2þy2)) 0.121 568.38
ZS3 x(x223y2) (z221/8*(x2þy2)) 0.121 568.38
C4 x426x2y2þy4 0.0187 87.84

S4 4xy(x22y2) 0.0187 87.84
ZC4 z(x426x2y2þy4) 5.71E-3 2682.20

ZS4 4zxy(x22y2) 5.71E-3 2682.20
C5 x(x4210x2y2þ5y4) 9.9E-4 465.04
S5 y(y4210x2y2þ5x4) 9.9E-4 465.04

ZC5 zx(x4210x2y2þ5y4) 3.21E-4 15078.56
ZS5 zy(y4210x2y2þ5x4) 3.21E-4 15078.56

Note: The maximum shim current for each shim channel was lim-
ited to 2 A, and a total of 20 A was dedicated to the positive and
negative rails (10 A each).
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50 test cases are plotted in Figure 2b for a representative

volunteer.
These results, and those for single-slice and whole-

brain applications, are summarized in Supporting Table

S1.
The results show that the LevMar method gets closest

to the best theoretical shim in most cases. All four algo-

rithms depend heavily on the value of the starting point.

However, as shown in Figure 2b, the LevMar method is

the most robust against changes in the starting-point

value except for cases in which it completely fails to

converge. Note that the ill-conditioned problem has

caused the nonlin-as method to result in unreasonably

high values of the solution.

Numerical Stability

Figure 3a shows the box plot of the results of applying

the 10 algorithms to all 33 volunteer data sets on 1000

noisy B0 maps each. For comparison purposes, the

results of the unconstrained pinv algorithm is shown in

the first column. Figure 3b shows the same results but

only for the first 50 test cases on a representative volun-

teer for better visualization. The results shown in this

figure, as well as those for single-slice and whole-brain

applications are summarized in Supporting Table S1.
It is evident that the ConsTru algorithm follows the

best theoretical shim quality most closely and is most

robust against the noisy inputs. All other algorithms are

more sensitive to the perturbations in the input; hence,

their optimal convergence in the case of ill-conditioned

problems is not guaranteed.

Speed

The average runtimes of the 10 algorithms across all vol-

unteers are shown in Figure 4. The four nonlinear opti-

mization methods (LevMar, Nonlin-as, Nonlin-ip,

Nonlin-SQP) are orders of magnitude slower than the

rest, and the Clipped-it, Fixed-tsvd, ConsTru and the QP

methods prove to be the fastest. The results are summa-

rized in Supporting Table S2.

FIG. 2. Starting-value sensitivity test
results for a single voxel located in the
frontal cortex. a: Box plot of the sB0

(standard deviation of the frequencies
in the shimmed B0 map) resulting from

applying each shimming algorithm to all
33 of the 7T in vivo data sets for all
1000 starting-point test cases. The best

shim quality achievable through an
unconstrained pinv algorithm is also

shown for comparison purposes. b:
Results of the same test in one repre-
sentative in vivo data set (only 50 out

of 1000 test cases are shown for better
visualization).
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FIG. 3. Numerical stability test results
for a single voxel located in the frontal
cortex. a: Box plot of the of the sB0

(standard deviation of the frequencies
in the shimmed B0 map) resulting from

applying each shimming algorithm to all
33 of the 7T in vivo data sets for all
1000 noisy test cases. The best shim

quality achievable through an uncon-
strained pinv algorithm is also shown

for comparison purposes. b: Results of
the same test in one representative in
vivo data set (only 50 out of 1000 test

cases are shown for better
visualization).

FIG. 4. Comparison of the average runtime of the algorithms across all 33 of the 7T in vivo data sets as a function of the ROI size

(shown on a log scale) on the left. A more zoomed in view is found on the right.
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FIG. 5. The overall performance of the different shimming algorithms in three different shimming applications. Each box contains the

sB0 (standard deviation of the frequencies in the shimmed B0 map) resulting from applying each of the corresponding shimming algo-
rithm to all 33 of the 7T in vivo data sets. The best shim quality achievable through an unconstrained pinv algorithm is also shown for
comparison purposes. The different algorithms are indicated as follows: (a) unshimmed, (b) pinv, (c) nonlin-as, (d) nonlin-ip, (e) nonlin-

sqp, (f) QP, (g) Clipped-it, (h) Fixed-tsvd, (i) Lsqlin, (j) LevMar, and (k) ConsTru.

FIG. 6. The resulting shim quality
of 10 different shimming algo-

rithms for a single-voxel shim-
ming region located in the frontal
cortex. B0 maps from a repre-

sentative volunteer are shown
along with the resulting standard

deviation of the frequencies in
the ROI. All B0 maps are dis-
played between 250 and 50 Hz.

8 Nassirpour et al



Overall Performance in Different Shimming Applications

Figure 5 shows the overall performance of these algo-
rithms in three of the five shimming applications (the
other two are shown in Supporting Fig. S1). Each algo-
rithm was applied to all 33 volunteer data sets acquired
at a 7T field strength. The average shim quality across
all volunteers is shown in Supporting Table S3 for both
second-order and third-order shimming. It can be seen
that in the case of bigger ROIs, all of the algorithms
(except for Nonlin-as and Nonlin-ip) perform similarly.
This is expected, as the problem is well-conditioned in
these cases. The differences start to show more as we
move on to smaller ROIs. It can be seen that the ConsTru
algorithm consistently gets closest to the best shim qual-
ity possible and is less prone to differences in the input
data.

Furthermore, to visualize how the sB0 values translate
into shim quality, Figure 6 shows the resulting shimmed
B0 map for a representative volunteer in a single-voxel
shimming application. It can be seen that the ill-
conditioned problem has caused some of these algo-
rithms to result in unreasonable solutions. Once again,
the ConsTru algorithm proves to have the best perfor-
mance by getting closest to the best theoretical shim
quality achievable.

From the results of the performance tests so far, it is
evident that the ConsTru algorithm consistently performs
most robust and among the fastest.

Overall Performance on 7T versus 9.4T Data

Figure 7 shows a comparison of the overall performance
of the ConsTru algorithm on 7 T versus 9.4 T in five

shimming applications. For each field strength, 33 in
vivo data sets were available.

Application in In Vivo Single-Voxel Spectroscopy

Figure 8a shows the box plot of the linewidth of the
unsuppressed water peak in a single voxel in the frontal
cortex after applying the vendor-implemented second-
order shimming routine as well as those for the ConsTru
algorithm for up to second, third, fourth, and partial
fifth/sixth-order shimming. Each box contains the values
obtained on 10 volunteers at 9.4 T. The total amount of
current needed to achieve the shim (excluding the first-
order terms) are shown in the accompanying table.

Figure 8b shows the unsuppressed water peaks from a
representative volunteer acquired with different shim-
ming methods. Although the difference between the
vendor-implemented second-order shim and ConsTru’s
second-order shim is clear, the difference between the
ConsTru’s second, third, fourth, and partial fifth/sixth
order is not as big and is only visible when we magnify
the top portion of the peak.

DISCUSSION

The task of B0 shimming can be very tricky when the
shimming problem becomes ill-conditioned. Noise or
error in the input data can be present for a number of
reasons, such as limited spatial resolution, errors in the
measurement of the reference field map, motion artifacts,
limited signal-to-noise ratio and residual phase wrapping
errors (in case multi-echo B0 mapping sequences (16,34)
are not used), and deviation of the shim fields generated
by the coils from the ideal spherical harmonic functions.

FIG. 7. Comparison of the performance of the ConsTru shimming algorithms on a 7 T versus 9.4 T magnet in five different shimming

applications. Each box contains the results of applying the ConsTru shimming algorithm to all 33 in vivo data sets. The average ( 6

standard deviation) shim quality across all 33 volunteers for each algorithm is summarized in the table below the box plot.
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Additionally, there is always a limit on the maximum

amount of shim currents. Considering all of this, the

shimming algorithm should be robust and able to tolerate

certain levels of noise and uncertainty in the input data,

and yet result in reasonably low values of the solution.
The sensitivity to the starting-point-value test demon-

strates that any nonlinear least-squares optimization

method that requires a starting point to operate is prone

to numerical instability. The next choice would be dedi-

cated quadratic solvers that do not require a starting-

point value. However, the results of the numerical stabil-

ity test also show that unless some measure is taken to

better condition the problem, unstable and suboptimal

solutions are inevitable.
Typically, the way shim routines are designed to han-

dle the ill-conditioned problem or errors in the input is

either by preventing the problem from becoming ill-

conditioned (by excluding certain shim fields) (18,21), or

by performing multiple iterations of the shim algorithm

to ensure convergence (19,27). The first method cannot

be easily applied to any arbitrary ROI, because depend-

ing on the shape, size, or angulation of the ROI, different

shim terms contribute differently to the shim; hence,

direct operator supervision is required to exclude the

correct shim terms. The second method, which either

performs multiple iterations by measuring the reference

field and solving the problem multiple times (19) or by

feeding multiple starting values to the algorithm to get

rid of the instability in the results (27), is also not ideal,

because in the interest of reducing the overhead time,

the algorithm should be fast and ideally require only one

iteration.
The third option to better condition the problem is to

regularize the shim matrix using methods such as SVD

truncation or Tikhonov regularization methods (19,35).

Both of these are essentially minimum-norm solution

FIG. 8. Comparison of the vendor-implemented second-order shim and the ConsTru algorithm for shimming up to second, third, fourth,

and partial fifth/sixth order for single-voxel spectroscopy in the frontal cortex at 9.4 T. a: Box plot of the full width at half maximum of
the unsuppressed water. Each box contains the results of applying the corresponding algorithm to 10 volunteers. The average ( 6

standard deviation) of the results averaged across 10 volunteers, along with the amount of current needed to achieve the shim results,

are summarized in the table below the plots. Same color codes as the table are used in the box plot. b: Representative unsuppressed
water spectrum from one volunteer along with the voxel position. The magnified version of the tip of the peak is shown on the right, for

better visualization of the differences between incremental higher orders of shimming.
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methods and have the advantage of being noniterative,
ROI-independent, fast, and robust. For the purposes of
this study, the TSVD method was chosen (a more formal
discussion is presented in Appendix B).

There will always be a trade-off between regularization
and data fidelity; therefore, extra care should be taken in
choosing the regularization parameter. The reason is that
after regularization, we are no longer solving the original
problem, but rather an approximated version of it. The
regularization parameter can either be chosen empiri-
cally (Fixed-tsvd) or adaptively (ConsTru). It is always
possible that by choosing an unnecessarily high value of
the regularization parameter, we do not get as close to
the best shim quality achievable (Fig. 6), or the measured
shim quality in practice would be worse than the pre-
dicted one. Therefore, the adaptive regularization
method (ConsTru) is preferable.

After sufficiently regularizing the matrix, finding the
solution reduces to a simple matrix inversion. The only
remaining issue is finding a way to constrain the solu-
tion. Two different methods were considered in this
study: clipping the exceeding values and projecting the
remaining inhomogeneities on other shim terms itera-
tively (Clipped-it, Fixed-tsvd), or adaptively choosing the
regularization parameter that will satisfy the constraints
while maintaining as much data fidelity as possible
(ConsTru). The results of the overall performance test
proved that the latter method on average got closest to
the best theoretical shim quality.

Another advantage of the ConsTru algorithm is its flex-
ibility in handling arbitrary constraints. This is because
cost functions are directly calculated in each iteration,
and more regularization is applied in the next step if
constraints are being violated. This is of particular inter-
est in cases in which the shim system has both limits on
the maximum shim current of each channel and the total
amount of positive and negative shim currents that the
amplifiers can provide as a whole.

Although there are inherent differences between the
levels of B0 inhomogeneities on a 7T versus 9.4T magnet,
the ConsTru algorithm was able to successfully shim
both data sets (Fig. 7). The residual differences between
the shimmed maps on 7 T versus 9.4 T can be explained
by noting that the same hardware constraints were used
to shim both sets of data.

Applying the ConsTru algorithm to a single-voxel ROI
in the frontal cortex at 9.4 T resulted in reproducible
spectral linewidths that were much better than the
vendor-implemented shim routine (Fig. 8). Increasing the
number of orders decreased the mean linewidth; how-
ever, the improvement was not statistically significant
(paired t-test). Additionally, despite the ill-conditioning,
the ConsTru algorithm was always able to shim without
requiring high amounts of currents (< 4.5 A in total)
because of its regularized nature.

In summary, this study showed in simulation that the
proposed method (ConsTru) enabled successful and
robust B0 shimming for a range of shimming applica-
tions, shimming orders, and field strengths. The method
proved to be most robust and among the fastest com-
pared with a wide range of algorithms derived from
diverse concepts. The effectiveness of the algorithm was

demonstrated in vivo for single-voxel spectroscopy.

Because this algorithm calculates the analytical closed-

form solution, it is very easy to implement. Furthermore,

it is easily applicable to any arbitrary ROI, including

multivoxel or multi-object shimming applications, and

can be used to enable dynamic shimming.

CONCLUSIONS

For localized in vivo B0 shimming, the use of a dedi-

cated linear least-squares solver instead of a generic non-

linear solver is highly recommended. The reason is that

these solvers do not depend on a starting value and con-

verge much faster. Among the linear least-squares solv-

ers, the constrained TSVD inversion method (ConsTru)

was found to be the most robust and among the fastest

ones. The algorithm is easy to implement and applicable

to any arbitrary ROI or shim system. The proposed

method was used in a single-voxel spectroscopy applica-

tion at 9.4 T, where it enabled the acquisition of high-

quality spectra in the frontal cortex of the brain.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.
Fig. S1. The overall performance of the different shimming algorithms in
two additional shimming applications (in addition to Fig. 5). Each box con-
tains the rB0 (standard deviation of the frequencies in the shimmed B0

map) resulting from applying each of the corresponding shimming algorithm
to all 33 of the 7T in vivo data sets. The best shim quality achievable
through an unconstrained pinv algorithm is also shown for comparison pur-
poses. The different algorithms are indicated with different letters as
unshimmed (a), pinv (b), nonlin-as (c), nonlin-ip (d), nonlin-sqp (e), QP (f),
Clipped-it (g), Fixed-tsvd (h), Lsqlin (i), LevMar (j), and ConsTru (k).
Table S1. Results of the Robustness Performance Tests
Note: Perturbation robustness is shown on the left and starting-value sensi-
tivity is shown on the right. The average ( 6 standard deviation) shim quality
(standard deviation of the shimmed B0 maps) across all 33000 test cases
for each algorithm is shown for three different shimming applications. The
best performances are highlighted in light green.
Table S2. Comparison of the Runtimes of the Algorithms in Three Different
Shimming Applications
Note: The average ( 6 standard deviation) runtime of the algorithms aver-
aged across all 33 of the 7T in vivo data sets are shown. The best perform-
ances are highlighted in green.
Table S3. Overall Performance of the Different Shimming Algorithms in Five
Different Shimming Applications for Both Second-Order and Third-Order
Shimming
Note: The average ( 6 standard deviation) shim quality (standard deviation
of the shimmed B0 maps) across all 33 of the 7T in vivo data sets for each
algorithm is shown. The best performances are highlighted in light green.
APPENDIX A. Mathematical Description of the ConsTru Method
APPENDIX B. Mathematical Discussion of Tikhonov versus TSVD Regulari-
zation Methods
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Supporting Table S2- Comparison of the runtime of the algorithms in 3 different shimming application. The 
average (± standard deviation) runtime of the algorithms averaged across all 33 of the 7T in-vivo datasets are shown in 
the table. The best performances are highlighted in green. 

 

 Run-time (sec) Whole Brain+ Single Slice Single Voxel 
Pinv 0.009 ± 0.002 0.0013 ± 0.003 0.0012 ± 0.002 

Nonlin-as 0.35 ± 0.25 0.06 ± 0.09 0.04 ± 0.09 
Nonlin-ip 1.17 ± 0.40 0.12 ± 0.42 0.06 ± 0.04 

Nonlin-sqp 1.36 ± 0.48 0.16 ± 0.07 0.09 ± 0.08 
QP 0.023 ± 0.012 0.011 ± 0.02 0.010 ± 0.03 

Clipped-it 0.050 ± 0.012 0.003 ± 0.012 0.0013 ± 0.002 
Fixed-tsvd 0.021 ± 0.004 0.0011 ± 0.001 0.0007 ± 0.001 

Lsqlin 0.13 ± 0.04 0.037 ± 0.05 0.01 ± 0.012 
LevMar 4.01 ± 2.91 0.43 ± 0.15 0.11 ± 0.06 
ConsTru 0.048 ± 0.001 0.004 ± 0.0006 0.0023 ± 0.005 



Supporting Table S3- The overall performance of the different shimming algorithms in 5 different shimming 
applications for both 2nd order and 3rd order shimming. The average (± standard deviation) shim quality (standard 
deviation of the shimmed B0 maps) across all 33 of the 7T in-vivo datasets for each algorithm are shown. The 
best performances are highlighted in light green. 

 

 

 

  

σB0(Hz) Whole Brain+ Whole Brain Single Slice Single voxel 
(visual cortex) 

Single voxel 
(frontal cortex) 

 2nd Order 
Unshimmed 189.90 ± 10.92 118.53 ± 14.87 102.99 ± 19.87 26.90 ± 5.09 48.0 ± 13.59 

Pinv 57.40 ± 9.02 41.87 ± 8.02 24.21 ± 6.09 3.95 ± 1.19 15.06 ± 5.11 
Nonlin-as 67.76 ± 11.85 104.96 ± 34.99 569.68 ± 150.50 492.07 ± 280.47 406.86 ± 158.53 
Nonlin-ip 65.04 ± 12.85 49.33 ± 12.83 28.15 ± 7.35 17.96 ± 5.06 39.20 ± 11.89 

Nonlin-sqp 57.40 ± 9.02 41.88 ± 8.03 24.29 ± 6.09 34.27 ± 6.96 49.86 ± 16.28 
QP 57.40 ± 9.02 41.88 ± 8.03 26.33 ± 6.38 26.66 ± 5.16 47.69 ± 13.85 

Clipped-it 57.40 ± 9.02 41.87 ± 8.02 24.22 ± 6.09 3.95 ± 1.19 17.45 ± 8.05 
Fixed-tsvd 57.40 ± 9.02 41.87 ± 8.02 24.22 ± 6.09 5.17 ± 1.33 30.39 ± 8.94 

Lsqlin 57.40 ± 9.02 41.87 ± 8.02 24.22 ± 6.09 3.95 ± 1.19 20.95 ± 8.73 
LevMar 57.40 ± 9.02 41.93 ± 8.07 60.30 ± 6.09 21.65 ± 41.56 38.89 ± 72.12 
ConsTru 57.40 ± 9.02 41.87 ± 8.02 24.22 ± 6.09 3.95 ± 1.19 16.12 ± 7.05 

 3rd Order 
Unshimmed 189.90 ± 10.92  118.53 ± 14.87  102.99 ± 19.87  26.90 ± 5.09  48.0 ± 13.59  

Pinv 54.42 ± 8.87  36.11 ± 6.55  19.14 ± 3.94  3.67 ± 1.11 9.08 ± 2.77 
Nonlin-as 111.87 ± 15.05  131.96 ± 30.58  608.51 ± 155.59 433.05 ± 188.47 443.94 ± 108.81 
Nonlin-ip 68.15 ± 16.92  51.026 ± 11.45  27.58 ± 6.86 8.05 ± 3.79 39.62 ± 12.25 

Nonlin-sqp 54.76 ± 8.81  38.37 ± 7.32  24.27 ± 5.83 35.29 ± 17.37 45.54 ± 12.13 
QP 56.65 ± 8.81  41.15 ± 7.652  26.28 ± 6.24 26.65 ± 5.05 47.69 ± 13.54 

Clipped-it 54.71 ± 8.81  38.33 ± 7.33  86.35 ± 310.17 26.77 ± 39.88 23.73 ± 11.92 
Fixed-tsvd 55.31 ± 8.82  41.42 ± 7.72  24.08 ± 5.95 5.16 ± 1.30 30.38 ± 8.74 

Lsqlin 55.58 ± 9.02   40.77 ± 7.71  23.43 ± 5.56 3.89 ± 1.15  20.94 ± 8.64 
LevMar 54.74 ± 8.81  69.94 ± 148.58  32.13 ± 33.65 25.06 ± 43.64 91.47 ± 137.88 
ConsTru 54.74 ± 8.81 38.33 ± 7.33  20.03 ± 4.28 3.79 ± 1.15 15.01 ± 6.90 



Appendix A.  

The minimum-norm solution to any shimming problem defined as:  

min
௫
‖ሺݔܣ െ ܾሻ‖ଶ 

can be calculated using the pinv method as: 

ݔ ൌ  றܾܣ

Where ܣற is the pseudo-inverse of the matrix A. If we perform the singular value decomposition of the system matrix 
A, we have: 

ܣ ൌ ܷ∑ܸ ൌ 	෍ߪ௜ݑ௜ݒ௜
்

௡

௜ୀଵ

 

Where n is the number of shim terms or columns of matrix A,  ݑ௜	   and ݒ௜	are the columns of the matrices U and V 
resulting from the singular value decomposition of matrix A (commonly called the left and right singular vectors, 
respectively) pertaining to each singular value ߪ௜. 

To put this all together, we can rewrite the shim solution as: 

ݔ ൌ෍
݅ݑ
ܾܶ	
݅ߪ

݅ݒ	

݊

݅ൌ1

 

Where b is the vector of the unshimmed B0 values. Since the singular vectors are orthogonal, we can write the norm of 
the solution as: 

‖ݔ‖ ൌ 	ะ෍
௜ݑ
்ܾ	
௜ߪ

௜ݒ	

௡

௜ୀଵ

ะ ൌ 	෍ብ
௜ݑ
்ܾ	
௜ߪ

௜ብݒ	

௡

௜ୀଵ

. 

From this formula, we can see that each singular value and the respective ݑ௜	   and ݒ௜ contribute a certain term in this 
summation to the norm of the actual solution. So by removing a singular value (eliminating terms one by one from this 
summation), we decrease the norm of the solution which will enable it to eventually satisfy the constraints.  It can also 
be seen that the smallest singular values contribute the most to this norm. So by truncating the smallest singular values, 
we are serving the purpose of reducing the norm of the solution as well as avoiding noise amplification in the calculated 
solution. No matter what the constraints of the system are, we can continue doing this and truncate more singular values 
to satisfy the constraints (the solution norm goes to 0 in the extreme case). So it is guaranteed that we will satisfy the 
constraints eventually. It is only a matter of introducing too much bias (or regularization error) into the solution by 
truncating more and more singular values.  

To the trade-off between regularization error (bias) and the norm of the solution clearer, the bias introduced by truncating 
the singular values can be written as: 

ะ෍
௜ݑ
்ܾ	
௜ߪ

௜ݒ	 െ෍ ௜݂
௜ݑ
்ܾ	
௜ߪ

௜ݒ	

௡

௜ୀଵ

௡

௜ୀଵ

ะ 

௜݂ ൌ ൜
ݏܸܵ	݀݁ݐܽܿ݊ݑݎݐ	݄݁ݐ	ݎ݋݂	0	
 																							ݐݏ݁ݎ	݄݁ݐ	ݎ݋݂	1

Where first term is the true solution to the problem and the second term is the approximated TSVD solution and ௜݂s in 
the approximate solution are binary values which indicate whether or not the ith singular value is truncated. So, it can 
readily be seen that the more singular values we truncate (the more ௜݂ݏ equal to 0) the bigger the bias will be.  

  

(1)

(2)

(3)

(4)

(5)

(6)



 

Appendix B.  

Both Tikhonov and TSVD are regularization methods that result in a minimum-norm solution. The advantages of using 
TSVD over using Tikhonov is merely the simplicity of the TSVD, where at each iteration it is clear what the next step 
should be: truncating the next smallest singular value as is done in ConsTru. If a similar adaptive regularization method 
was to be used for Tikhonov, it is not very clear where the search for the regularization parameter should begin or how 
small the step for varying it should be.  In the search for the easiest and most user-independent shimming algorithm, we 
decided to consider ConsTru in our study. 

The bias introduced by Tikhonov regularization might be smaller than that introduced by ConsTru. In fact the biases 
for the two can be written as: 

ะ෍݁ݑݎݐݔ െ෍݂݅
݅ݑ
ܾܶ	

݅ߪ
݅ݒ	

݊

݅ൌ1

݊

݅ൌ1

ะ 

Where: 

  

݂݅ ൌ ൜
ݏܸܵ	݀݁ݐܽܿ݊ݑݎݐ	݄݁ݐ	ݎ݋݂	0
 ݀݋݄ݐ݁݉	࢛࢘ࢀ࢙࢔࢕࡯	݄݁ݐ	݊݅																										ݐݏ݁ݎ	݄݁ݐ	ݎ݋݂	1

And, 

݂݅ ൌ
݅ߪ
2

݅ߪ
2൅ߣ

  ሻݎ݁ݐ݁݉ݎܽ݌	ݒ݋݊݋݄݇݅ܶ	݄݁ݐ	ݏ݅	ߣሺ	݀݋݄ݐ݁݉	࢜࢕࢔࢕ࢎ࢑࢏ࢀ	݄݁ݐ	݊݅

However, the perturbation error for these two methods can be written as: 

ะ෍݂݅
݅ݑ
ܾܶ	

݅ߪ
݅ݒ	

݊

݅ൌ1

ะ . ߳ 

where ߳ is the error in the input.  

In summary, TSVD is a more simple method for finding the regularization parameter, while Tikhonov allows more 
flexibility (since the Tikhonov regularization parameter can be any real number). Secondly, there is a trade-off 
between regularization error (bias) and perturbation error (sensitivity). Less bias results in a higher solution norm 
which results in more perturbation error. 

While a thorough comparison between TSVD and Tikhonov is beyond the scope of this paper, we expect the methods 
to perform similarly (as is often found in the literature). 
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Purpose: To describe the process of calibrating a B0 shim
system using high-degree (or high order) spherical harmonic

models of the measured shim fields, to provide a method that
considers amplitude dependency of these models, and to
show the advantage of very high-degree B0 shimming for

whole-brain and single-slice applications at 9.4 Tesla (T).
Methods: An insert shim with up to fourth and partial fifth/

sixth degree (order) spherical harmonics was used with a Sie-
mens 9.4T scanner. Each shim field was measured and mod-
eled as input for the shimming algorithm. Optimal shim

currents can therefore be calculated in a single iteration. A
range of shim currents was used in the modeling to account
for possible amplitude nonlinearities. The modeled shim fields

were used to compare different degrees of whole-brain B0

shimming on healthy subjects.

Results: The ideal shim fields did not correctly shim the subject
brains. However, using the modeled shim fields improved the B0

homogeneity from 55.1 (second degree) to 44.68 Hz (partial fifth/

sixth degree) on the whole brains of 9 healthy volunteers, with a
total applied current of 0.77 and 6.8 A, respectively.

Conclusions: The necessity of calibrating the shim system
was shown. Better B0 homogeneity drastically reduces signal
dropout and distortions for echo-planar imaging, and signifi-

cantly improves the linewidths of MR spectroscopy imaging.
Magn Reson Med 000:000–000, 2017. VC 2017 International
Society for Magnetic Resonance in Medicine.
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INTRODUCTION

One of the many challenges of high field strengths in
MRI is the inhomogeneity of the B0 field. Clinical human
MRI systems are usually equipped with spherical har-
monic shim coils up to either first- or second-degree
shim terms. However, as the field strength of MRI sys-
tems increases to ultrahigh field strengths such as 7 and
9.4 Tesla (T), B0 inhomogeneity becomes even more
severe and therefore requires more attention.

B0 inhomogeneity directly affects the image quality.
Various artifacts can result from poor B0 homogeneity,

such as signal dropout, geometric distortion, blurring,

curved slice profiles, and Moir�e artifacts (1–4). Echo-

planar imaging (EPI) sequences are especially susceptible

to many of these artifacts (5). B0 homogeneity is even

more important for MR spectroscopy (MRS), as some of

the peaks that need to be separated differ by only a few

hertz (eg, the characteristic splitting of lactate is only

7 Hz) (6,7). Poor B0 homogeneity results in the broaden-

ing of linewidths. Furthermore, any water and fat-

suppression technique will be compromised by inhomo-

geneity (8).
Current state-of-the-art B0 shimming hardware either

extends the degrees (and orders) of the spherical har-

monic terms to third-degree (9) and even fourth-degree

systems (10), or alternatively, discard the spherical har-

monic paradigm for more localized multicoil shim arrays

(11). The multicoil shimming approach uses a large array

of small coils to shim the B0 field. In the case of Juchem

et al (11), 48 coils were used. The advantages of the mul-

ticoil shim system is that there are more degrees of free-

dom. The advantages of spherical harmonic shimming

are that the hardware is normally available with the MRI

scanner or otherwise can be purchased commercially,

and that the shim coils generate orthogonal shim fields

and are based on analytical models.
Both of these systems require knowledge of the real

shim field produced by each coil for calibration so that

they can be used in the B0 shimming algorithm (12–15).

Spherical harmonic shim systems are based on analytical

models (from the Legendre polynomials), and vendor-

implemented B0 shimming algorithms assume that the

shim fields generated by each of the shim coils are iden-

tical to the desired spherical harmonic function (15,16)

(ie, shim fields are usually assumed to be ideal). If the

shim coils generate fields that are similar to the ideal

fields, this assumption is feasible. However, if this is not

the case, then to improve the shim, the shimming needs

to be done iteratively until sufficient convergence is

achieved (12,16). Alternatively, field reference maps can

be acquired for each shim coil to correct for field imper-

fections. This has been done previously for very high-

degree (or very high-order) shim systems used on a 7T

magnet, in which the higher-degree shim coils do not

generate ideal fields (9,10,17). Field reference maps were

successfully used to shim using up to second (12,13) and

third-degree shim terms (9,10,17), and even fourth with

partial fourth-plus-degree shim terms (18).
The advantage of using modeled shim fields (as

opposed to directly using the field reference maps,

which was done previously) is that there are no prob-

lems with either noise or different field of views (FOVs)

or different resolutions or different position offsets.
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Furthermore, because the reference maps are compressed
into the analytical model, the reference maps do not
need to be stored on the system. This makes the B0 shim-
ming algorithm less cumbersome without sacrificing the
quality of the shim. Furthermore, by using the analytical
models instead of reference maps to characterize the
shim fields, we can account for any nonlinearity of the
shim amplifiers. Modeling of the shim fields has been
reported previously in (10,17,19), where they used up to
third-degree shim coils. More recently, Song et al (20)
also modeled shim fields using “virtual” shim functions
and a maximum likelihood method to denoise the
acquired B0 maps. However, neither of these methods
used all cross-terms, but rather used a subset of the
spherical harmonic functions in which the degree of the
functions was equal to or less than the intended degree.
Although Juchem et al (17) also used a range of current
amplitudes, only linear amplitude models were used.

The acquisition procedure for B0 shimming has been
investigated in many previous studies (12–15,21). As
mentioned previously, acquiring reference field maps for
B0 shimming has already been done. However, to our
knowledge, modeling of the real shim fields has not
been described previously in sufficient detail and did
not consider the influence of geometric distortions or ful-
ly account for amplitude nonlinearity.

In this work, we provide a quantitative evaluation of
shim field imperfections and their effect on shim quality.
We provide a comprehensive description of how to cali-
brate a B0 shim system by acquiring and modeling refer-
ence field maps of the shim fields while accounting for
geometric distortion and amplitude nonlinearity. Using
the modeled field maps, the optimal shim currents can
be calculated in a single iteration. Finally, we show very
high-degree B0 shimming (or very high-order B0 shim-
ming) of the human brain at 9.4 T. Although this study
uses very high-degree shims at ultrahigh field, the
described method can be used for any field strength and
for spherical harmonic shim systems of any degree.

METHODS

Study Design

This investigation was performed using an ultrahigh
field 9.4T human whole-body Siemens MRI scanner
(Erlangen, Germany), in which B0 inhomogeneity is of
particular concern. To investigate high-order and high-
degree B0 shimming, an insert shim MX10W-28 from
Resonance Research Inc (RRI) (Billerica, MA, USA) was
used. Twenty-eight channels, including complete sec-
ond, third and fourth-degree spherical harmonics (and
partial fifth and sixth-degree harmonics), were available
(Table 1). The maximum current that could be applied
was 10 A for each coil, and the maximum total current
was 40 A. The sensitivities of each shim channel can be
found in Table 1.

In the first section of the study, we investigated how
to minimize geometric distortion in acquiring the refer-
ence field maps. We used a large cylindrical phantom
with a diameter of 250 mm and a plastic grid with equi-
distant spacings of 15 mm. The phantom was filled with
silicon oil because of its low dielectric constant, which

yielded good B1 homogeneity. A radiofrequency (RF) coil

with 16-channel Tx/15 Rx element receive array (22) was

used to acquire the images for the geometric distortion.

A 3D gradient-echo (GRE) B0-mapping sequence (1) with

the following parameters was used to measure the fields:

resolution¼ 1.4 � 1.4 � 1.4 mm3; field of view (FOV)¼
270 � 270 � 270 mm3; echo time (TE)¼4.00/4.76 ms;

repetition time (TR)¼ 10 ms.
After the investigation of geometric distortion, the rest

of the phantom and in vivo experiments were performed

using an in-house eight-channel transceiver-phased array

RF coil (23) and a 2D GRE B0-mapping sequence (24)

with the following parameters: in-plane resolution¼ 1.56

� 1.56 mm2; slices¼ 40; slice thickness¼ 4 mm (0% dis-

tance factor); FOV¼ 200 � 200 mm2; TE¼ 4.00/4.76 ms;

TR¼ 1200 ms; read-out bandwidth¼ 1500 Hz/Px.
The reference field map of each shim coil was mea-

sured on a spherical silicon oil phantom of diameter

170 mm. This phantom was used to cover the volume of

an average human brain. After acquiring and modeling

the reference field maps, the models were verified on a

head-and-shoulder phantom filled with a mixture of agar

gel and sugar (to mimic the dielectric properties of the

human brain at 9.4 T). In vivo experiments were done by

performing B0 shimming on the brains of nine healthy

volunteers with the approval of the institutional review

board. All volunteers gave their written informed

consent.
The B0-mapping sequences had a delta TE of 0.76 ms,

as this ensures that the fat and water (for in vivo

Table 1
Shim Terms and Insert Shim Coil Sensitivities

Shim
term

Spherical harmonic
function

Sensitivity
(Hz/cmn/A)

Z0 1 6058
Z2 z2-1/2*(x2þy2) 6.942

ZX zx 24.15
ZY zy 24.15

C2 x2-y2 3.64
S2 2xy 3.64
Z3 z(z2-3/2*(x2þy2)) 0.4923

Z2X x(z2-1/4*(x2þy2)) 1.0
Z2Y y(z2-1/4*(x2þy2)) 1.0

ZC2 z(x2-y2) 1.77
ZS2 2zxy 1.77
C3 x(x2-3y2) 0.188

S3 y(3x2-y2) 0.188
Z4 z4-3z2(x2þy2)þ3/8*(x2þy2) 0.04206
Z3X zx(z2-3/4*(x2þy2)) 0.123

Z3Y zy(z2-3/4*(x2þy2)) 0.123
Z2C2 z(x2-y2)(z2-1/6*(x2þy2)) 0.093

Z2S2 2z(xy)(z2-1/6*(x2þy2)) 0.093
ZC3 x(x2-3y2)(z2-1/8*(x2þy2)) 0.121
ZS3 x(x2-3y2) (z2-1/8*(x2þy2)) 0.121

C4 x4-6x2y2þy4 0.0187
S4 4xy(x2-y2) 0.0187

ZC4 z(x4-6x2y2þy4) 5.71e-3
ZS4 4zxy(x2-y2) 5.71e-3
C5 x(x4-10x2y2þ5y4) 9.9e-4

S5 y(y4-10x2y2þ5x4) 9.9e-4
ZC5 zx(x4-10x2y2þ5y4) 3.21e-4

ZS5 zy(y4-10x2y2þ5x4) 3.21e-4
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experiments) are in phase, and it minimizes the amount
of phase wrapping in the B0 map. Any phase unwrap-
ping that was required was performed slice-wise using
the max-flow graphs (PUMA) algorithm implemented
by (25).

Geometric Distortion

Strong shim fields introduce strong inhomogeneities in
the B0 field, and this results in geometric distortion in
the images. Figure 1 shows that although the geometric
distortion is not very obvious in the B0 maps, it can be
clearly seen in the magnitude images of the grid-
phantom acquired from the same data set. For this inves-
tigation, two methods of reducing geometric distortions
were compared: (i) using retrospective geometric correc-
tion with a grid phantom, and (ii) using a higher read-
out bandwidth while acquiring the B0 maps. Even
though a higher read-out bandwidth can reduce distor-
tions, this comes at the cost of a lower signal-to-noise
ratio (SNR).

The study was performed on two second-degree shim
terms (ZY and XY) with an amplitude of 4 mT/m2 each.
The B0 maps of the phantom were acquired using read-
out bandwidths of 250 Hz/Px, 500 Hz/Px, and 1300 Hz/Px
for comparison. The benchmark B0 map that was used
for comparison was obtained using the highest available
read-out bandwidth (1500 Hz/Px) with a grid-free phan-
tom to reduce magnetic susceptibility effects between
the silicon oil and the plastic grid.

The retrospective geometric correction was performed
using the cross-points of the grid and a custom semi-
automatic MATLAB (MathWorks, Natick, MA, USA)

feature detection script based on the Harris-Stephens
algorithm (26). Note that using the retrospective correc-
tion down-samples the B0 map, because only the cross-
points of the grid are used. The retrospective correction
was used in combination with the different read-out
bandwidths. The shim fields were modeled using spheri-
cal harmonic decomposition (described in the next sub-
section) using either:

1. The entire B0 map of the phantom, or
2. The B0 values (using the phantom grid as a refer-

ence) without position correction; and
3. With position correction.

The field models were then reconstructed on a 100 �
100 � 100 mm3 FOV and compared with the benchmark
B0 map (acquired at 1500 Hz/Px without the grid). The
method that best minimized the geometric distortions of
the reconstructed maps was used for the remainder of
the investigation.

Mapping and Modeling Reference Shim Fields

As mentioned in the study design, the reference maps
for modeling the shim fields were acquired on a smaller
spherical phantom approximately the size of the human
brain, as we did not want to model the fields outside the
volume of interest (VOI) and let the strong inhomogenei-
ties outside the VOI bias the model in the region where
we were interested in imaging.

The reference fields of each of the 28 shim coils were
acquired at a range of different input current amplitudes
(61000 mA, 6 500 mA, 6 200 mA, and 6100 mA), so
that any potential amplitude nonlinearities could be

FIG. 1. Section of a slice measured with a read-out gradient of 250 Hz/Px (a), 500 Hz/Px (b), and 1300 Hz/Px (c). Magnitude images in

the top row show clear distortions, whereas the B0 maps on the bottom row do not.

Real Shim Field Modeling for High-Degree B0 Shimming of Human Brain 3



modeled and accounted for. Most shim coils did not
introduce a large frequency shift; therefore, the B0 maps
could be acquired using the same reference frequency.
However, for the Z4 coil that induced a large frequency
shift, the reference frequency was re-adjusted and the
frequency offset was retrospectively added back to the B0

maps. The frequency drift of the Z4 that was observed
was � 11.38 kHz per ampere.

The eight reference fields (for different current ampli-
tudes) of each shim coil were modeled using a spherical
harmonic decomposition (27,28). A 3D scalar spatial
field distribution B0ðrÞ could be approximated using a
set of 3D-spatial basis functions FnðrÞ, in which r ¼ ðx; y;
zÞ is the position vector:

B0ðrÞ �
XN
n¼1

bn � FnðrÞ [1]

and bn are constants and N is the number of basis
functions.

Because the shim coils are based on spherical harmon-
ics, a natural choice of basis functions would be the
spherical harmonic functions Al;mðrÞ and the shim fields
can thus be modeled as follows:

B0ðrÞ �
XL

l¼0

Xl

m¼�l

bl;m �Al;mðrÞ [2]

where bl;m are constants, l is the degree of the spherical
harmonic function, and m is the order. The degree of the
approximation is given by L. When modeling the shim
fields, the degree of approximation L was also carefully
considered. The model can be improved by fitting higher
and higher degrees of the spherical harmonic functions.
However, the marginal improvement decreases and the
model may even start to overfit the data from a certain
degree onward. Hence, we determined the optimal
degree of spherical harmonic functions with which to
model the real shim fields. Each measured shim field
was modeled with an increasing number of spherical

FIG. 2. (a) Processing pipeline of the B0 maps. Eight B0 maps were acquired for each shim field at different current amplitude. Each B0

map was decomposed into sixth-degree spherical harmonics (only four of the eight decomposition coefficients are shown for illustration

purposes), and the self-terms are shown in the red ellipses. Each column of coefficients has 49 elements, as sixth-degree spherical har-
monics were used. Each coefficient was modeled with an amplitude model. (b) Second-degree coefficients for the S2 shim term at a
range of current amplitudes (on the x-axis). The figure shows the self-term and the cross-terms. Note that this was done for all coeffi-

cients up to the sixth degree. The different models used to correct for amplitude nonlinearities are shown: linear model, nearest neigh-
bor (NN), and piece-wise linear.
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harmonic functions from the second degree to the ninth
degree. The residual mean square errors (RMSEs)
between the measured fields and the modeled fields
were calculated. The degree of the spherical harmonic
functions to use for modeling was chosen such that the
accuracy of the fit no longer improved.

The spherical harmonic decomposition was performed
by solving the standard overdefined linear system of
equations for n positions (in this case, up to sixth-degree
spherical harmonic functions):

A0;0ðr1Þ A1;�1ðr1Þ A1;0ðr1Þ A1;1ðr1Þ

A0;0ðr2Þ A1;�1ðr2Þ A1;0ðr2Þ A1;1ðr2Þ
� � �

A6;6ðr1Þ

A6;6ðr2Þ

� . .
.

�

A0;0ðrnÞ A1;�1ðrnÞ A1;0ðrnÞ A1;1ðrnÞ � � � A6;6ðrnÞ

2
666666666664

3
777777777775

�

b0;0

b1;�1

�

b6;6

2
666666666664

3
777777777775

¼

b01

b02

�

b0n

2
666666666664

3
777777777775

[3]

where Al;m is given by the Legendre polynomials. The
values b0k are the B0 values at position rk , calculated
from the phase map:

b0k ¼
Dw

DTE
=g [4]

where g is the Larmor frequency, Du is the measured
phase difference obtained from the sequence, and DTE is
the difference between the echo times of the two phases.
Thus, the fields are modeled using a vector of coeffi-
cients b calculated from the linear system:

A � b ¼ b0 [5]

The B0 value at an arbitrary position rk can be estimated
by forming the A matrix and multiplying by the coeffi-
cient vector b.

To account for amplifier nonlinearity, for each of the
shim coils, decomposition coefficients were calculated
from the field maps driven at the eight different current
amplitudes mentioned previously. To avoid confusion lat-
er, the decomposition coefficients used to characterize the
shim fields will be denoted as the vector c (instead of b).
Each of the coefficients was fit with different amplitude-
dependent models (as depicted in Fig. 2a). Three different
models were tested: a linear model, a nearest-neighbor
model, and a linearly interpolated model (Fig. 2b).

The linear model assumes that the coefficients are lin-
ear with respect to the current amplitude. The nearest-
neighbor model uses the coefficient vector of the current
amplitude that is nearest to the input current. The

linear-interpolated model is basically a piece-wise linear
model that interpolates between each of the measured
current amplitudes.

The head-and-shoulder phantom (mentioned in the
“Study Design” subsection) was used to test each of the
three proposed amplitude models. The B0 shimming pro-
cedure was as follows:

1. Initialize the coefficients using the fields measured
at 100 mA;

2. Calculate the shim currents;
3. Recalculate the coefficients (for the fields generated

by the new shim currents) using one of the three
proposed methods; and

4. If the shim current values do not change then
STOP; otherwise go to step 2.

Conventional B0 shimming involves acquiring the b0 tar-
get vector and generating the A matrix (based on ideal
spherical harmonic function) and then solving Equation
[5] to acquire b as the shim terms to be applied. Howev-
er, we do not assume ideal spherical harmonic functions
but rather use them as basis functions for approximating
the shim fields. Therefore, the fields generated by the
shim coils can be estimated using the decomposition
coefficients C, and Equation [5] becomes

ðA � CÞ � b ¼ b0 [5]

for A 2 RP�Q, C 2 RQ�R, b 2 RR and b0 2 RP , where P is
the number of positions, Q is the number of spherical
harmonic functions used to approximate the reference
shim fields, and R is the number of shim coils. The shim
terms were calculated using a regularized pseudo-
inversion approach (as described in (29)) to solve Equation
[6]. The head-and-shoulder phantom was B0 shimmed
using second, third, and fourth-degree shim terms with
each of the three amplitude models described to validate
the reference shim field models.

In Vivo B0 Shimming

B0 shimming was performed in vivo on nine healthy vol-
unteers using a whole-brain VOI (including the cerebel-
lum). This was done assuming ideal-shim fields and
compared with shimming while considering the real-
shim field models. Thereafter, the real-shim field models
were used to compare lower-degree shimming with
higher-degree shimming using second, third, fourth, and
fourth-plus (including partial fifth and sixth) degree
shim terms. B0 homogeneity was evaluated by consider-
ing the standard deviation of the B0 maps over the VOI.

We show the advantage of the fourth-plus-degree B0

shimming over the vendor-implemented second-degree
shimming in two applications: a whole brain global B0

shimming application (EPI) and a single-slice B0 shim-
ming application (MRSI).

The single-shot EPI sequence parameters were:
TR¼ 1740 ms; TE¼ 20 ms; FOV¼ 210 � 210 mm; slices¼
35; slice thickness¼ 3 mm; resolution¼ 3.28 � 3.28 mm2;
flip angle¼65�; read-out bandwidth¼ 1954 Hz/Px; echo
spacing¼ 0.58 ms; GRAPPA acceleration factor¼2.

The 1H MRSI data were acquired using a custom free-
induction decay (FID) MRSI sequence (30,31) with a

Real Shim Field Modeling for High-Degree B0 Shimming of Human Brain 5



numerically optimized three-pulse water-suppression
scheme. The sequence parameters were: FOV¼210 �
210 mm2; matrix size¼ 64 � 64; acquisition delay¼ 1.5
ms, bandwidth¼8000 Hz; sample points¼ 1024; TR¼
340 ms; flip angle¼30�. The spectra were processed
using spatial Hanning filtering, eddy current, and zeroth-
order phase correction using the reference water signal,

recovering the missing FID points by linear backward
prediction (32) and HSVD water removal (33). No addi-

tional apodization filtering or phase correction was per-
formed. The spectra acquired using the two B0 shim
settings were compared. To keep the TR short and the

specific absorption rate low, no lipid or outer volume
suppression was used.

Finally, unsuppressed water spectra were acquired in
the frontal cortex using a STEAM sequence: voxel size¼
2 � 2 � 2 cm3; averages¼ 16; TR¼5 s; TE¼11 ms; flip
angle¼ 90�; bandwidth¼ 8 kHz.

RESULTS

Geometric Distortion

Three different read-out bandwidths and three different
B0 modeling methods were used. Hence, a total of nine

comparisons were available for each shim term (XY and
ZY).

The distance between uncorrected and corrected posi-

tions showed that higher read-out bandwidths reduced
the geometric distortion. The mean (and standard devia-
tion) distance between the corrected and uncorrected

positions was 5.007 6 3.172, 3.876 6 2.453, and 3.266 6

2.623 pixels for 250 Hz/Px, 500 Hz/Px and 1300 Hz/Px,

respectively.
Comparison with the benchmark B0 map (acquired at

1500 Hz/Px without the grid) showed that using the
phantom grid to model the field introduced an RMSE of

13.82% in the model because of the spatial downsam-
pling. This error was calculated by comparing the error
between the field maps and averaged for both shim

terms. The accuracy of the model using the phantom
grid could be improved by correcting for geometric dis-

tortion using the grid; however, this only improved the
accuracy by 1.48%. Therefore, even though correcting for
the positions (ie, correcting geometric distortions)

improves the accuracy of the model, the information lost
in downsampling the spatial data as a result of the cross

points resulted in poorer modeling accuracy.
In contrast, for both of the shim terms that were tested,

increasing the read-out bandwidth consistently gave
better field models. A read-out bandwidth of 1500 Hz/Px

was used for all subsequent B0 mapping sequences, and
no further geometric distortion correction was used.

Mapping and Modeling Reference Shim Fields

The model approximations of the fields were compared
with the measured reference field and the RMSE
between them (in hertz) (Fig. 3). Figure 3 shows the

aggregated error of all 28 of the shim coils of the RRI
insert shim. It can clearly be seen that as the degree

increases, the error of the fit decreases. For low-degree
approximations of the shim fields, the error for modeling

the lower-degree shim terms is small, but naturally the

low-degree model cannot fully model the higher-degree

shim terms. This results in a larger standard deviation of

errors for low-degree approximations (Fig. 3). After

approximately the sixth degree, there is no longer an

improvement as the degree of the models increase. The

means of the RMSE for the fifth, sixth, and seventh-

degree models were 2.71, 2.67 and 2.78 Hz, respectively.
The shim fields reconstructed from these models,

along with ideal shim fields and their differences, are

shown in Supporting Figure S1. The figure confirms that

there are deviations between the perfect shim field

assumption and the actual field generated by the coils.

This would result in suboptimal or incorrect B0 shim-

ming if the real field models are not considered in the

shim algorithm. The figure shows that some terms, such

as the S2, Z2X and Z2Y, are inverted (relative to the

scanner co-ordinates). In addition to these terms, many

terms such as the ZC2 and Z2C2 terms had significant

deviations from the ideal spherical harmonic fields.
The three amplitude nonlinearity models were tested

on the head-and-shoulder phantom. For second-degree

B0 shimming, the mean standard deviations of the B0

maps were 26.7, 27.0, and 26.6 Hz for the linear, nearest-

neighbor and linearly interpolated models, respectively.

For third-degree B0 shimming, the standard deviations

were 18.6, 18.7, and 19.0 Hz; and for fourth-degree shim-

ming, 15.35, 15.37, and 15.43 Hz.
It can be seen that each of the three amplitude models

provided similar results. Therefore, it can be concluded

that the shim fields are relatively linear with respect to

the current amplitude. Because the linear model requires

the least computational resources, this method was used

to model the shim fields. Even though our shim system

was linear, this approach can be used to model any arbi-

trary system to account for amplitude nonlinearities. For

example, the effect of saturation of the shim amplifiers

on the generated shim fields can be modeled and

accounted for using this method.
In summary, each shim channel was modeled with a

sixth-degree decomposition, in which each coefficient

was modeled with a linear model (with respect to the

current amplitude). The coefficients for each channel

FIG. 3. Root mean square of the residual error between the mea-

sured and the modeled fields for all 28 shim terms. All shim terms
are modeled using different number of spherical harmonic func-

tions from second to ninth degree.
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can be found in Supporting Table S1 (coefficients nor-

malized by their coil design sensitivities).

In Vivo B0 Shimming

We performed global B0 shimming with ideal-field mod-

els and compared it with B0 shimming with real-field

models. The B0 map is shown for one of the nine volun-

teers in Figure 4. The second-degree shimming is shown

for the real-field and ideal-field models. However, for

higher degrees, if ideal shim fields are used then the B0

shimming fails. In contrast, if we consider the real-field

models in the shimming algorithm, we can consistently

achieve better B0 homogeneity. Figure 4 depicts only one

slice; however, this holds for all slices.
Figure 5 shows the results of B0 shimming with differ-

ent degrees of shim terms (when real-field models are

used) for one of the volunteers. This shows the improve-

ment of B0 homogeneity when higher-degree shim terms

are used.
Figure 6 shows the B0 shim results across all nine vol-

unteers using different degrees of shim terms and using

ideal-shim fields and real-shim field models. The

second-degree shimming for both the ideal and real

fields improves the shim from a mean standard deviation

of 159.2 Hz (reference map) to a mean standard deviation

of approximately 55 Hz across the whole brain at 9.4 T.

If ideal-shim fields are assumed, then the B0 shim no
longer succeeds for higher-degree shimming and the
standard deviations are worse than the reference map
(acquired without B0 shimming). However, if the mod-
eled fields are considered, the homogeneity improves
from 55.1 ( 6 6.4) Hz to 48.68 ( 6 6.39) Hz and 44.68
( 6 7.09) Hz, for the respective second, third, and fourth-
degree shimming. The total applied currents that were
required were 0.77 ( 6 0.18) A, 6.03 ( 6 0.59) A and 6.8
( 6 2.23) A, respectively. The applied shim strengths and
shim currents are shown in Supporting Table S2 and
Supporting Figure S2.

The shim strengths that were used for the whole-brain
shimming application (EPI) and single-slice shimming
application (MRSI) are given in Table 2.

Figure 7 shows the EPI data for second-degree and
fourth-plus-degree shimming. Distortions in the images
are more severe for second-degree shimming than the
fourth-plus-degree shimming. Furthermore, signal drop-
out in lower slices can be recovered using higher-degree
B0 shimming.

Figure 8 shows a comparison of the effect of very high-
order B0 shimming on 1H FID MRSI. The standard devia-
tion of the frequency shifts in the shimmed B0 map was
24.6 Hz for the second-degree shim versus 16.50 Hz for
the fourth-plus-degree shim. The full linewidth at half
maximum (FWHM) of the water peak averaged over the
entire FOV was 22 6 5 Hz using second-degree shimming
compared with 15.3 6 2.8 Hz using partial fourth-plus-
degree shimming. Narrower linewidths allow better fitting
and quantification of metabolite concentrations (18). The
FWHM of the unsuppressed water peaks were also calcu-
lated, and Figure 8 shows the maps of these FWHMs. It
can be seen that the fourth-plus-degree B0 shimming has
much narrower lines than the second degree. Sample
spectra are shown in Supporting Figure S3.

For single-voxel spectroscopy in the frontal cortex, the
water linewidths were as follows: 24.98, 23.64, 23.21,
and 23.03 using second, third, fourth and fourth-plus-
degree B0 shimming, respectively. The total shim cur-
rents did not exceed 5 A in all cases.

DISCUSSION

Geometric Distortion

The reference fields of each shim coil were measured at
a range of current amplitudes, whereas most previous
studies only used a single-current amplitude. However,
large-current amplitudes introduce geometric distortions.

In our investigation, we considered the effect of geo-
metric distortion on the measured B0 maps. This has not
been mentioned in previous studies, because the field
deviations of the shim fields are usually chosen to be
low (less than 100 Hz for (13)) to minimize phase wrap-
ping and geometric distortion. However, by accounting
for the effect of geometric distortion, we can measure
and model the shim fields for a large range of current
amplitudes.

The results showed that although the retrospective
geometric distortion correction can improve the accuracy
of the modeling, the improvement was not always signif-
icant. Downsampling the number of points in the

FIG. 4. Comparison of in vivo shimmed B0 maps when assuming

ideal fields and when using modeled real fields. The VOI masks are
shown in white and were defined using a custom MATLAB GUI.
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modeling of the fields showed that this reduces the accu-

racy of the model quite significantly. Retrospective cor-

rection was not able to compensate for the inaccuracy

introduced by the downsampling.
The most significant reduction in geometric distortion

was seen when a high read-out bandwidth was used to

acquire the maps. Thus, the highest possible bandwidth

was used for the read-out gradient.

Mapping and Modeling Reference Shim Fields

In this study, we provide a comprehensive description of

modeling and calibrating a very high-degree B0 shim sys-

tem while accounting for amplitude nonlinearity. Previ-

ous studies (12,13) acquired reference field maps of the

shim coils and used them directly without modeling to

perform B0 shimming. In both (12) and (13), B0 shim-

ming was performed using only second-degree and a sin-

gle third-degree (Z3) shim terms. This has also been

done for higher-degree shim terms such as third-degree

(9,10,17) and even fourth-degree systems on a 7T system

(18). Although these studies used the reference field

maps directly for B0 shimming, we modeled the refer-

ence fields using spherical harmonic functions. Some

previous studies also modeled the reference fields using

spherical harmonic functions (15,19). However, the

details were not fully described and the fields were mod-

eled with only lower-degree spherical harmonic terms,

whereas we used full sixth-degree terms for all shim

fields. Furthermore, amplitude nonlinearities were not

considered. Only Juchem et al (17) considered linear cur-

rent amplitudes. Modeling the fields reduces the

FIG. 5. In vivo B0 maps shimmed on a whole-brain using the modeled real fields using second, third, fourth, and fourth-plus-degree

shim terms. The VOI masks are shown in white and were defined using a custom MATLAB GUI.
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complexity of the B0-shimming algorithm and makes it
more flexible (independent of FOVs and position of dif-
ferent scan sessions).

Another benefit of modeling the reference shim fields
is that this intrinsically denoises the data. This is also

advantageous because the method is somewhat forgiving

when it comes to the SNR of the measured field maps.

Therefore, higher-SNR B0-mapping methods, such as

multiple-echoes field mapping (18), is not required. In

addition, because the method can tolerate some SNR

penalty, a high read-out bandwidth (that reduces distor-

tion but also reduces SNR) can be used to measure the

fields, which also reduces geometric distortions.
We investigated the optimum degree of spherical har-

monics to use for modeling the shim fields. Although we

did not see any improvement beyond sixth-degree har-

monics, this may differ for different shim coils. A draw-

back of modeling with spherical harmonics is that the

components are always radially symmetrical, which

makes it difficult to model local deviations in the field. In

principle, modeling the reference fields of the shim coils

does not have to be restricted to spherical harmonics, and

can be used for the multicoil shim systems (11); however,

finding an appropriate basis set may be more difficult,

and different parametric models may need to be used.
In previous works, a single current is applied to the

shim coils. In (12) the current was chosen to be as large

as possible without phase wrapping or significant signal

dropout. In (13) the shim coils are driven such that the

maximum field deviation is 100 Hz. We know that in

practical B0 shimming applications (14), a range of cur-

rent offsets ere used; however, the details of how the

FIG. 6. Standard deviations (hertz) of in vivo B0 maps of a whole-
brain VOI for nine volunteers. Comparison of shimming with ideal

fields and real fields, as well as comparing second, third, fourth,
and fourth-plus-degree shimming.

Table 2
Applied Shim Strengths (and Percentage of the Maximum Available Shim Strengths) for the EPI Application and the Single-Slice MRSI

Application

Whole Brain (EPI) Single Slice (MRSI)

Second Degree Fourth-Plus Degree Second-Degree Fourth-Plus Degree

Hz/cmn % Hz/cmn % Hz/cmn % Hz/cmn %

Z0 — — — — — — — —
Z2 3.912 5.64 9.309 13.41 3.325 4.79 3.913 5.64

ZX 0.123 0.05 �0.628 0.26 �0.544 0.23 0.558 0.23
ZY 0.512 0.21 �5.311 2.20 �1.552 0.64 �3.111 1.29

C2 0.617 1.69 �1.053 2.89 �1.041 2.86 �0.639 1.76
S2 �0.372 1.02 0.333 0.92 0.014 0.38 �0.076 0.21
Z3 �1.137 23.10 0.166 3.38

Z2X �0.239 2.39 �0.140 1.40
Z2Y �2.041 20.41 0.337 3.37

ZC2 0.080 0.45 0.874 4.94
ZS2 �0.158 0.89 �0.019 0.11
C3 �0.027 1.43 �0.007 0.36

S3 �0.247 13.15 �0.089 4.74
Z4 0.108 25.66 �0.004 0.85

Z3X �0.027 2.18 �0.014 1.16
Z3Y �0.227 18.45 �0.125 10.14
Z2C2 �0.065 7.35 0.006 0.67

Z2S2 0.008 0.85 �0.015 1.62
ZC3 �0.008 0.67 �0.002 0.13
ZS3 0.088 7.25 0.010 0.79

C4 0.023 12.31 �0.009 4.62
S4 0.006 2.98 �0.002 1.08

ZC4 �1.12e-2 19.62 1.20e-5 0.02
ZS4 �1.08e-3 1.90 �2.28e-6 0.00
C5 �2.46e-4 2.48 6.63e-5 0.67

S5 �3.39e-4 3.43 �4.79e-5 0.48
ZC5 �2.85e-5 0.89 3.85e-6 0.12

ZS5 �1.24e-5 0.39 1.62e-6 0.05
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nonlinearity was modeled or the degree of nonlinearity
were not reported. Furthermore, in our investigation, in
addition to using a range of currents to account for possi-
ble amplitude nonlinearities in the shim fields, we mod-
eled these nonlinearities using three different models,
which was not done in previous studies. Note that each
of these current amplitudes corresponds to a different
shim strength (Table 1).

We showed that the shim fields were linear with

respect to the current amplitude. This is because of the

linearity of the shim amplifiers. However, if the shim

amplifiers are not linear, this should also be considered

in the models or the amplifiers need to be tuned to be

linear.

In Vivo B0 Shimming

The B0 shim failed when ideal shim fields were

assumed; thus, measuring the real shim fields was neces-

sary. The reconstructed models showed differences

FIG. 7. Single-shot 2D EPI with whole-brain B0 shimming using second-degree and fourth-plus-degree shim terms. The anatomical

images were acquired with a 2D flash sequence. The VOI mask is shown in light green. The signal dropout on slices 5 and 10 with the
second-degree shimming are recovered with fourth-plus-degree shimming (blue arrows). Distortions are more severe with second-
degree shimming than fourth-plus-degree shimming (green arrows).

FIG. 8. Effect of very high-degree B0 shimming on single-slice 1H FID MRSI. The B0 maps along with the FWHM of water are shown for

the second and fourth-plus-degree B0 shimming. The spectra of the marked voxels are shown in Supporting Figure S3.
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between the ideal fields and the real field models (for

shim terms higher than the second degree). This can

explain why the in vivo experiments failed when assum-

ing ideal shim fields and shimming with more than

second-degree shim terms (Fig. 4).
For in vivo B0 shimming of the human brain at 9.4 T,

the B0 homogeneity improved as more shim degrees

were used (with real-field models). Although it was

shown that increasing the number of degrees improves

the homogeneity, the improvement is less significant as

we move to higher degrees. This has also previously

been shown in (9,18).
In (18), a similar study was performed on a 7T MRI

scanner on the whole brain. The second, third, and

fourth-plus-degree B0 shimming that was achieved was

23.5, 18.1 and 12.3 Hz, respectively. We see a similar

trend to our results: As the degree of B0 shim terms

increase, the better the B0 homogeneity. However, there

is a significant difference between our mean standard

deviations and those reported in (18). This difference

can be partially accounted for by the difference in field

strength (higher B0 inhomogeneity at higher field

strengths). However, the significant difference is that we

perform a whole-brain B0 shim (including the cerebel-

lum), as shown in Figure 5, whereas (18) covers only the

top half of the cerebrum.
From the whole-brain (EPI) and single-slice (MRSI)

applications shown in this study, we can see the advan-

tage of fourth-plus-degree over second-degree B0 shim-

ming. The distortion in the EPI images is significantly

less and the B0 field is much more homogeneous (Sup-

porting Fig. S4). Although there are small local areas

where the FWHM of the second-degree shimming is

slightly better, the FWHM of higher-degree shimming is

on average significantly lower.
One limitation of this study is that coupling between

the shim coils and the gradient coils was not compensat-

ed. Fast switching of strong gradient currents induces

eddy currents in the shim coils; this can be clearly seen

in the EPI images where there are significant ghosting

artifacts (Fig. 7; Supporting Fig. S5). Fast switching of

strong shim currents, for applications such as dynamic

B0 shimming (9,17,34), will also induce eddy currents.

Dynamic B0 shimming updates the shim currents for

each slice acquisition, rather than shimming the entire

volume. One method for reducing the coupling between

the shim coils is to perform pre-emphasis (17).
Other limitations of this study include the higher Bþ1

inhomogeneity at ultrahigh fields. This resulted in signal

dropouts, particularly in the anatomical images and low-

er slices. Bþ1 inhomogeneity can be reduced with coils

that provide more transmit homogeneity or with better

RF shimming using techniques such as parallel transmis-

sion (35,36). Moreover, B0 maps could be improved with

the use of multi-echoes with alternating gradient polari-

ties to eliminate the effect of gradient asymmetries (14).

In our case, we found that single-echo B0 maps were suf-

ficient, which is in accordance with Juchem et al (37).
Finally, in the case of single-voxel spectroscopy in the

frontal cortex, higher degrees of shimming did not signif-

icantly improve the linewidth of water, and second-

degree B0 shimming is sufficient for voxel sizes of 2 � 2
� 2 cm3 or less.

CONCLUSIONS

In this study, we quantitatively evaluated the imperfec-
tions of the shim fields, which has not been shown pre-
viously. We provided a comprehensive description of
modeling and calibrating a very high-degree B0 shim sys-
tem while accounting for geometric distortion and ampli-
tude nonlinearity. Optimal shim currents were calculated
in one iteration. We showed the benefit of very high-order
B0 shimming at 9.4 T in the human brain. A range of shim
degrees were compared, up to and including, fourth-plus-
degree shim terms.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Table S1. Coefficients for Shim Channels (Normalized by Coil Design
Sensitivities)
Note: Each column corresponds to a shim channel, and the coefficients are
shown in each row.
Table S2. Applied Shim Strengths for Whole-Brain B0 Shimming for Nine
Healthy Volunteers
Fig. S1. B0 maps of shim terms at 1.0-A applied current on a 200 3

200 mm FOV. Both the ideal fields and real fields and their difference are
shown.
Fig. S2. Applied shim currents (corresponding to the shim strengths in Sup-
porting Table S2). The maximum available current strength for each channel
is 10 A. None of the applied shim currents exceeded 2.5 A.
Fig. S3. Effect of very high-degree B0 shimming on single-slice 1H FID
MRSI. Sample spectra from nine different voxels across the slice are shown
from 0.5 to 4.2 ppm for second-degree (red) and fourth-plus-degree (black)
B0 shimming. The voxels are shown from the positions marked in Figure 8.
Fig. S4. Echo-planar imaging of a spherical phantom with (a) and without
(b) the insert shim in the scanner bore. The same sequence, parameters,
and shim values were used for both cases. Ghosting artifacts cause signifi-
cant problems as a result of eddy currents generated in the shim coils.
Fig. S5. B0 maps of the EPI data for second-degree and fourth-plus-
degree whole-brain B0 shimming.
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Supporting Figure S1 The B0 maps of shim terms at 1.0 A applied current on a 200x200 mm FOV. Both the ideal-

fields  and real-fields and their difference are shown. 



Supporting Table S1: Coefficients for shim  channels (normalised by coil design sensitivities).
 Each column corresponds to a shim channel and the coefficients are shown in each row. 

Z2 ZX ZY C2 S2 Z3 Z2X Z2Y ZC2 ZS2

Z0 ‐0.00764 8.54E‐07 ‐4.54E‐05 ‐0.00017 ‐7.92E‐05 6.43E‐05 3.65E‐06 ‐4.64E‐05 ‐3.63E‐06 ‐3.08E‐06

Z ‐0.00813 0.000609 ‐0.0041 ‐0.00169 ‐0.00197 ‐0.03128 ‐7.48E‐05 2.87E‐05 ‐1.88E‐05 3.05E‐06

X ‐0.00086 ‐0.0015 5.85E‐05 0.00071 0.008199 ‐3.16E‐05 0.009324 ‐0.00025 2.81E‐05 ‐4.04E‐05

Y 0.004325 ‐0.00012 ‐0.00201 0.007565 ‐0.00103 ‐2.79E‐05 0.000288 0.009113 ‐4.50E‐05 ‐2.98E‐05

Z2 0.9978 ‐0.00517 0.000743 ‐0.01175 0.006252 ‐0.00157 ‐0.00103 0.004162 ‐0.00032 ‐0.00017

ZX 0.01644 1.045 ‐0.03106 ‐0.03343 0.02138 ‐0.00472 ‐0.00078 0.000739 0.000777 0.009966

ZY 0.002077 0.03239 1.021 0.01777 0.03258 0.01225 ‐0.00033 ‐0.00061 0.008731 ‐0.00083

C2 ‐0.00533 3.93E‐05 0.00097 0.9992 0.0577 0.000434 0.000307 0.000985 ‐0.00216 ‐0.00011

S2 ‐0.00682 0.002967 0.001911 0.1139 ‐1.982 ‐0.00031 ‐0.00205 0.000285 1.61E‐05 0.005827

Z3 ‐0.3489 ‐0.05466 ‐0.01514 0.04752 ‐0.03673 0.9378 0.004098 0.004489 ‐0.00073 ‐0.0026

Z2X ‐0.07997 ‐0.1907 0.005579 0.1367 ‐0.3357 0.01421 ‐0.941 0.02752 ‐0.01348 ‐0.0589

Z2Y 0.2703 0.000149 ‐0.1214 0.4134 0.02611 0.05206 ‐0.01492 ‐0.908 ‐0.01197 0.02606

ZC2 ‐0.00505 0.05557 ‐0.00345 ‐0.37 0.09648 ‐0.03038 0.002794 0.005054 1.053 0.06336

ZS2 0.1924 ‐0.01353 0.05253 0.2128 ‐1.443 ‐0.00301 ‐0.01434 ‐0.01511 0.1298 ‐2.234

C3 ‐0.01992 ‐0.00865 ‐0.00361 ‐0.04565 ‐0.05744 0.001929 0.009776 ‐0.00112 0.0022 ‐0.00549

S3 ‐0.00687 0.006606 ‐0.00534 ‐0.00349 0.008635 ‐0.00889 0.001685 ‐0.00153 0.000755 ‐0.00144

Z4 10.78 ‐0.1771 0.7086 0.1825 ‐0.6997 0.7611 0.1172 ‐0.1211 0.02363 0.04779

Z3X 2.387 7.15 0.3759 ‐0.7612 ‐0.4248 0.4679 ‐0.3131 0.005441 ‐0.1185 0.3856

Z3Y ‐7.645 0.1441 6.144 ‐10.28 0.01543 ‐0.1951 ‐0.2023 ‐0.5218 ‐0.1524 ‐0.04439

Z2C2 1.426 ‐0.5032 1.576 44.42 2.831 0.05463 ‐0.1069 ‐0.1044 ‐0.2945 ‐0.07147

Z2S2 ‐2.506 ‐2.345 0.4034 ‐0.4304 12.8 0.1884 0.2891 0.04522 ‐0.38 7.376

ZC3 0.6264 0.8397 ‐0.1041 0.5864 ‐0.6526 ‐0.06165 ‐0.08309 ‐0.02854 ‐0.0182 0.08415

ZS3 0.4978 ‐0.3124 0.1317 ‐3.494 ‐1.093 ‐0.04493 ‐0.00928 ‐0.02775 ‐0.1028 ‐0.02948

C4 ‐0.2208 ‐0.00175 ‐0.1781 0.3391 0.3129 ‐0.02622 0.01031 ‐0.00017 ‐0.00223 0.005221

S4 ‐0.4363 0.2062 ‐0.2694 2.674 ‐0.4451 0.05698 ‐0.06977 0.01253 0.04577 0.002082

Z5 ‐92.1 ‐0.4375 ‐2.477 ‐2.308 6.599 4.992 ‐0.6314 0.3572 0.2084 ‐0.026

Z4X ‐31.79 ‐77.07 ‐7.519 ‐6.525 49.7 ‐7.341 4.338 ‐0.7229 0.6291 ‐1.441

Z4Y 33.06 ‐3.729 ‐67.97 42.98 ‐5.137 2.355 0.6228 6.246 ‐1.488 ‐0.03996

Z3C2 ‐5.972 2.062 ‐5.364 ‐637.8 ‐59.8 ‐1.318 1.014 0.2873 ‐43.36 ‐2.385

Z3S2 ‐0.09495 ‐0.3094 ‐0.07299 ‐0.4893 1.313 0.007656 0.03832 0.0155 ‐0.101 0.6006

Z2C3 ‐1.607 ‐1.06 5.047 1.373 29.23 1.151 0.7711 0.2267 0.2668 ‐1.018

Z2S3 ‐2.428 2.443 ‐0.4474 32.98 14.58 1.053 0.01994 0.3665 ‐1.385 0.8864

ZC4 ‐0.8375 ‐1.762 1.278 5.731 8.079 ‐0.2184 ‐0.07065 0.2223 0.734 0.3618

ZS4 0.139 0.1064 ‐0.2468 1.315 0.03411 0.02606 ‐0.00747 0.02511 0.05129 0.008619

C5 0.2355 ‐0.6463 ‐0.04811 3.143 ‐0.1262 ‐0.07018 0.1587 ‐0.01 ‐0.00032 0.0828

S5 1.404 ‐0.1365 ‐0.01258 ‐2.331 ‐1.701 0.004723 0.04077 0.01735 0.0941 0.02541

Z6 ‐0.7806 ‐0.3415 ‐0.03384 ‐0.00925 ‐0.3036 0.02286 0.02103 ‐0.0167 0.03726 0.01056

Z5X ‐4.115 ‐10.09 ‐0.9848 ‐0.9993 6.471 ‐0.9615 0.5682 ‐0.09375 0.075 ‐0.1923

Z5Y 3.422 ‐0.4572 ‐9.093 ‐9.277 ‐2.001 0.3203 0.1021 0.8312 ‐1.204 ‐0.06102

Z4C2 ‐1.175 0.2862 0.598 ‐69.23 ‐6.436 ‐0.1885 0.09656 ‐0.07903 ‐4.582 ‐0.2619

Z4S2 ‐0.2944 ‐0.659 0.005886 ‐0.1178 0.6489 ‐0.05592 0.04182 ‐0.00791 ‐0.00322 0.01811

Z3C3 ‐0.1087 ‐0.1019 0.4308 0.8202 2.421 0.09048 0.06154 0.016 0.07285 ‐0.07951

Z3S3 ‐0.3627 0.2379 ‐0.1781 ‐13.1 ‐0.2699 0.05228 0.02677 0.03858 ‐1.175 0.0148

Z2C4 0.0429 ‐0.08034 0.1476 ‐0.8024 ‐0.1534 ‐0.04192 ‐0.01165 ‐0.00536 0.09283 ‐0.00971

Z2S4 ‐0.01382 ‐0.01576 0.04181 0.03081 0.2554 0.009238 0.006983 0.001937 0.004183 ‐0.00808

ZC5 ‐0.04402 ‐0.1325 0.02321 1.356 0.1438 ‐0.01207 0.007911 ‐0.00584 0.09167 0.004249

ZS5 ‐0.02747 ‐0.1165 0.09144 0.3989 0.3453 ‐0.01403 ‐0.00076 0.006146 0.05639 0.01567

C6 ‐0.3898 ‐0.274 0.2381 ‐0.6713 0.1767 ‐0.04126 0.009513 ‐0.03008 ‐0.04249 ‐0.0049

S6 0.009246 ‐0.033 ‐0.01153 ‐1.137 ‐0.1164 ‐0.00917 0.006506 ‐0.00024 ‐0.08232 0.003496



C3 S3 Z4 Z3X Z3Y Z2C2 Z2S2 ZC3 ZS3 C4 S4

‐3.68E‐05 ‐1.04E‐05 ‐1.14E+04 ‐1.69E‐07 ‐9.76E‐08 ‐1.12E‐06 ‐1.23E‐06 ‐1.85E‐06 ‐1.47E‐06 ‐1.41E‐06 ‐1.92E‐06

‐0.00037 ‐0.00051 ‐7.95E‐05 5.82E‐07 1.03E‐07 ‐1.49E‐06 1.46E‐07 7.81E‐08 ‐8.89E‐07 ‐7.18E‐05 ‐8.71E‐05

5.89E‐05 ‐0.0001 1.67E‐05 ‐3.67E‐06 8.15E‐07 ‐6.58E‐07 6.88E‐07 1.24E‐06 ‐2.12E‐07 ‐1.54E‐06 ‐5.62E‐07

2.01E‐05 ‐0.00011 3.98E‐07 ‐1.43E‐06 ‐3.98E‐06 8.64E‐07 ‐1.97E‐08 ‐1.88E‐06 4.67E‐07 4.60E‐06 4.69E‐06

‐0.00026 0.000283 0.000422 ‐1.19E‐05 5.41E‐05 ‐1.49E‐05 ‐3.93E‐05 7.70E‐05 9.54E‐05 2.68E‐05 ‐3.55E‐06

‐0.00042 0.000803 ‐4.26E‐05 0.000291 ‐9.99E‐06 2.30E‐05 ‐0.00019 ‐1.22E‐05 ‐4.94E‐06 ‐8.66E‐05 ‐8.30E‐05

0.001217 0.00078 ‐0.00035 2.84E‐05 0.000384 7.32E‐05 5.52E‐05 1.94E‐05 ‐3.23E‐05 3.18E‐08 2.78E‐05

‐0.00305 ‐0.01245 0.000128 3.71E‐06 2.92E‐05 ‐7.29E‐05 ‐8.54E‐06 ‐1.04E‐05 6.29E‐05 ‐0.00014 5.01E‐05

‐0.02223 0.003279 4.59E‐05 ‐4.45E‐05 1.16E‐06 1.01E‐05 ‐4.63E‐05 0.000106 7.02E‐05 0.000373 0.000973

‐0.00873 0.01887 ‐0.01781 0.000707 ‐0.00591 0.000455 0.000635 0.00059 0.000152 0.001218 0.004188

0.01345 0.04112 ‐0.00165 ‐0.01219 ‐0.00075 ‐0.00164 ‐0.00197 0.000665 0.001677 ‐0.00161 0.004109

0.01616 0.01115 0.03238 ‐0.00086 ‐0.01017 ‐0.01252 ‐0.00048 0.000601 ‐0.00012 0.000202 0.00101

0.07992 ‐0.06758 ‐0.00188 ‐0.00076 ‐0.00523 0.007827 0.000169 ‐0.00249 ‐0.01566 0.001129 ‐0.00253

‐0.08504 ‐0.0507 ‐0.00116 0.008596 ‐0.00188 ‐0.00123 0.0185 ‐0.03007 0.00359 ‐0.00111 0.000807

‐1.008 ‐0.09617 ‐0.00057 ‐0.0002 3.17E‐05 0.000257 ‐0.00014 0.002752 6.97E‐05 0.002627 0.0176

‐0.08397 0.9974 ‐0.00043 0.000166 ‐4.42E‐05 ‐0.00118 ‐0.00011 0.000265 ‐0.00237 0.01618 ‐0.00321

0.6904 ‐0.2021 1.241 ‐0.00915 0.03271 ‐0.00153 ‐0.01237 ‐0.00438 ‐0.00881 ‐0.01717 ‐0.02356

‐0.0787 ‐0.3662 ‐0.03834 1.305 ‐0.01112 0.02155 ‐0.01099 ‐0.01786 ‐0.03337 0.03522 ‐0.05418

‐0.1084 ‐0.377 ‐0.1784 0.05666 1.253 0.12 0.00299 ‐0.00411 0.005018 0.004277 0.02322

‐0.9821 1.17 ‐0.01964 0.009782 0.07684 ‐1.377 ‐0.07439 0.02547 0.1002 ‐0.00647 0.05276

‐1.01 ‐0.2941 0.02024 ‐0.07314 0.03189 ‐0.07367 1.32 0.1305 ‐0.05139 ‐0.01719 ‐0.05541

‐1.068 ‐0.03608 0.01522 0.004841 ‐0.00358 ‐0.00834 ‐0.00172 ‐1.195 ‐0.1003 ‐0.04418 ‐0.02065

‐0.2643 0.8281 0.002183 ‐0.01546 0.004187 0.03849 0.009652 ‐0.1088 1.152 0.03669 0.08358

0.06316 ‐0.04651 ‐0.00336 0.000148 0.00014 0.001428 0.00201 ‐0.00204 0.001954 1.005 0.1031

0.3628 0.1146 0.004441 0.000135 ‐0.00125 0.001264 0.00214 0.01411 0.009131 0.4741 ‐4.146

‐2.684 1.485 ‐2.556 0.007839 ‐0.09684 0.00359 0.07202 ‐0.02076 0.04808 0.1598 0.2192

‐2.003 ‐1.292 1.732 ‐4.528 ‐0.09788 0.03275 ‐0.495 0.1802 0.2774 0.03678 0.2481

3.255 0.6703 0.3832 ‐0.3165 ‐4.541 ‐0.5394 ‐0.00119 ‐0.03987 ‐0.07184 0.09764 ‐0.1631

11.68 ‐23.04 0.6033 ‐0.00317 ‐0.4736 8.458 0.4534 0.1163 ‐0.5112 ‐0.04519 0.1373

‐0.371 0.6077 0.01381 ‐0.00511 ‐0.00625 0.001954 0.1023 0.02773 ‐0.04703 ‐0.0013 ‐0.00665

‐72.17 ‐5.953 ‐0.3257 ‐0.1038 0.08029 0.0391 ‐0.3035 4.584 0.3251 ‐0.1863 ‐0.06333

‐6.959 69.1 0.3246 0.2884 ‐0.06734 ‐0.3046 ‐0.1954 0.4088 ‐4.327 ‐0.2898 ‐0.2986

0.3505 ‐0.4592 ‐0.00801 ‐0.00609 ‐0.03264 ‐0.04664 ‐0.04492 0.02345 0.009141 1.972 0.5289

0.001386 0.3586 ‐0.00031 0.00614 ‐0.01691 ‐0.01561 ‐0.001 ‐0.01082 ‐0.02138 0.01093 ‐0.1162

‐0.2443 ‐0.2876 ‐0.0137 ‐0.00139 0.000248 0.003573 0.004319 ‐0.01862 ‐0.01175 0.05642 ‐0.1848

‐0.2931 0.7633 0.009389 ‐0.00183 ‐0.00112 ‐0.00325 0.007371 ‐0.02131 0.008476 ‐0.1378 ‐0.0883

0.2165 ‐0.02749 ‐0.01614 ‐0.00049 ‐0.00213 ‐0.00025 ‐0.00108 0.001068 ‐0.00078 ‐0.00696 0.007154

‐0.3059 ‐0.2345 0.2267 ‐0.5995 ‐0.0131 0.006146 ‐0.06438 0.02699 0.04023 0.004683 0.03281

0.668 ‐0.4112 0.04239 ‐0.04264 ‐0.6151 0.1285 0.01097 ‐0.00214 ‐0.02269 0.0124 ‐0.01682

1.206 ‐3.166 0.05372 0.003752 0.02928 0.9194 0.05059 0.01246 ‐0.00974 ‐0.00326 0.02027

‐0.406 0.0736 0.01399 ‐0.03835 0.002351 0.001292 1.74E‐05 0.02662 ‐0.0039 ‐0.00079 0.001246

‐5.808 ‐0.4941 ‐0.02622 ‐0.00943 0.008267 ‐0.00646 ‐0.02483 0.3708 0.02965 ‐0.01389 ‐0.00477

‐0.267 4.992 0.04067 0.02285 ‐0.01795 0.186 ‐0.00448 0.03588 ‐0.3636 ‐0.01771 ‐0.01912

0.3307 ‐2.443 ‐0.01442 ‐0.00424 0.004548 0.007341 0.005056 ‐0.01797 0.1543 0.1173 0.03934

‐0.6215 ‐0.06638 ‐0.00273 ‐0.00131 0.000622 7.81E‐05 ‐0.00246 0.03949 0.003809 ‐0.00118 ‐0.00384

0.02746 ‐0.01752 0.000575 ‐0.00677 0.00308 ‐0.01724 ‐0.00103 ‐0.0032 0.004931 ‐0.00279 ‐0.00596

‐0.01128 ‐0.08342 ‐0.00045 ‐0.00252 0.001266 ‐0.00522 ‐0.00195 0.001147 0.007354 0.08152 0.02077

0.2622 0.05968 0.005975 ‐0.01613 0.01864 0.009834 ‐0.00125 ‐0.01447 ‐0.00749 0.00968 0.01106

0.08591 ‐0.06602 0.002042 ‐0.00105 ‐0.00071 0.01635 0.001971 ‐0.00449 ‐0.00043 0.005705 ‐0.00869



ZC4 ZS4 C5 S5 ZC5 ZS5

‐2.93E‐07 ‐2.88E‐07 ‐1.99E‐07 ‐3.65E‐07 ‐8.42E‐08 ‐8.51E‐08

3.71E‐07 4.64E‐07 ‐1.92E‐05 ‐1.57E‐05 ‐3.80E‐08 ‐6.82E‐08

‐1.32E‐07 4.61E‐07 ‐7.90E‐08 1.55E‐06 5.06E‐09 4.39E‐09

‐4.51E‐07 1.07E‐07 ‐1.15E‐07 5.18E‐07 5.48E‐08 3.81E‐08

‐4.70E‐06 8.51E‐06 4.20E‐05 ‐2.04E‐05 3.07E‐06 3.11E‐06

5.49E‐07 ‐2.83E‐05 5.82E‐06 ‐8.50E‐06 ‐1.29E‐06 9.06E‐07

1.77E‐05 2.24E‐06 7.85E‐06 ‐2.69E‐05 1.81E‐06 1.64E‐07

‐1.13E‐06 1.50E‐06 1.47E‐05 ‐1.64E‐05 3.44E‐07 ‐4.43E‐08

1.70E‐06 ‐9.08E‐06 5.04E‐05 ‐5.73E‐05 ‐3.94E‐07 ‐6.49E‐07

0.000263 ‐0.00011 0.000196 4.93E‐08 1.45E‐05 2.78E‐06

‐2.97E‐05 0.000386 1.17E‐05 ‐1.66E‐05 1.75E‐05 ‐2.14E‐05

‐0.00039 ‐6.18E‐05 ‐0.0002 0.000199 ‐3.51E‐05 ‐9.38E‐09

‐0.0003 ‐0.00021 0.000168 0.000353 1.98E‐05 ‐9.22E‐06

3.87E‐05 0.001253 ‐0.00038 0.000146 4.52E‐05 ‐1.44E‐05

‐1.91E‐06 0.000875 ‐1.75E‐05 0.000309 ‐1.19E‐05 ‐2.89E‐06

7.05E‐05 ‐0.00014 ‐0.00019 ‐0.00035 ‐3.18E‐06 ‐7.38E‐06

‐0.00316 0.001191 0.004145 0.01132 ‐0.00028 ‐3.85E‐05

‐0.00058 ‐0.00165 ‐0.00107 0.001093 ‐0.00032 0.000148

0.002577 0.001263 0.001828 0.00102 0.000224 ‐0.00016

0.001735 0.002493 ‐0.00694 ‐0.01617 ‐0.00041 0.000112

0.001974 ‐0.01279 ‐0.00015 0.004923 ‐0.0004 6.94E‐05

0.002244 ‐0.01438 0.000159 ‐5.47E‐05 0.000432 0.000544

0.0128 0.002498 0.002599 ‐0.00079 ‐4.97E‐05 ‐0.00014

0.003433 0.000774 ‐0.00089 ‐0.02149 3.72E‐05 ‐0.00104

0.01303 ‐0.1066 ‐0.08581 ‐0.00131 ‐0.00211 ‐6.24E‐05

0.01454 ‐0.00902 ‐0.02625 ‐0.05499 ‐0.00032 ‐0.00046

0.000458 0.00032 0.01704 ‐0.01464 0.000508 ‐0.00077

‐0.00257 ‐0.00016 ‐0.00467 ‐0.02589 ‐0.00029 0.001127

0.01571 0.00182 0.1057 0.1203 0.004617 ‐0.00206

0.001657 ‐0.00138 7.19E‐05 0.00074 ‐2.53E‐05 5.07E‐05

0.002066 0.000587 0.0361 ‐0.01848 ‐0.0011 ‐0.00453

0.000873 0.000285 ‐0.04028 0.03502 0.000537 0.003127

0.8078 0.08277 0.0376 0.041 ‐0.00159 0.01883

0.00039 ‐0.00336 ‐0.00378 0.000934 ‐8.28E‐05 4.71E‐05

0.004039 ‐0.00127 ‐1.053 ‐0.1539 ‐0.02481 ‐0.0038

0.001258 ‐0.00137 ‐0.1614 1 ‐0.00368 0.02359

‐1.68E‐06 ‐0.00015 0.001379 0.000271 ‐8.91E‐05 1.25E‐05

1.92E‐06 9.10E‐05 0.002312 ‐0.00197 6.77E‐05 ‐0.00011

‐4.75E‐05 ‐0.0001 0.001572 ‐0.00111 6.61E‐05 8.95E‐05

0.002048 0.000233 0.01181 0.01297 0.000492 ‐0.00027

0.000288 ‐6.61E‐05 0.000322 ‐0.00012 ‐1.10E‐06 ‐2.07E‐05

0.000373 0.000153 0.002894 ‐0.00167 ‐9.39E‐05 ‐0.00036

0.00312 0.00034 ‐0.0006 0.00589 0.00015 0.000265

0.05225 0.005466 0.003506 ‐3.30E‐05 ‐0.0001 0.000896

2.02E‐05 ‐8.89E‐05 ‐9.29E‐05 ‐0.00013 ‐1.95E‐05 ‐3.90E‐05

‐0.00224 ‐0.00025 ‐0.02871 ‐0.00478 ‐0.00068 ‐0.00015

0.03541 0.003576 ‐0.0027 0.02882 ‐0.00017 0.001457

0.002606 0.000471 0.01278 ‐0.05291 0.000305 ‐0.00122

0.001665 ‐4.23E‐05 ‐0.02808 ‐0.00593 ‐0.00066 ‐0.00012



Supporting Table S2: Applied shim strengths for whole brain B0 shimming for 9 healthy volunteers. 

Shim 
Term 

Shim Strengths: 
Whole Brain (Hz/cmn) 

 2nd Degree 3rd Degree 4th Degree 4th+ Degree 

 Mean Std. Dev Max Abs Mean Std. Dev Max Abs Mean Std. Dev Max Abs Mean Std. Dev Max Abs 

Z0 - - - - - - - - - -  - 

Z2 3.974 0.483 4.489 0.414 1.864 2.833 4.360 3.893 9.561 4.294  3.820 9.309 
ZX -0.226 0.684 1.360 -0.551 0.878 1.517 -0.563 1.095 1.988 -0.494  1.092 1.983 
ZY -0.409 1.333 1.968 2.258 3.156 5.745 -1.402 3.729 5.760 -1.516  3.825 5.760 
C2 0.336 0.515 1.139 -1.091 0.786 2.027 -1.108 0.493 1.866 -0.991  0.572 1.865 
S2 -0.281 0.203 0.488 -0.226 0.261 0.486 -0.012 0.363 0.498 0.042  0.356 0.498 

Z3    0.360 0.104 0.447 -0.324 0.529 1.189 -0.317  0.513 1.137 
Z2X    -0.087 0.096 0.203 -0.116 0.139 0.244 -0.096  0.146 0.242 
Z2Y    0.442 0.247 0.727 -0.571 0.856 1.955 -0.637  0.876 2.041 
ZC2    0.446 0.201 0.680 0.325 0.191 0.608 0.312 0.201 0.608 
ZS2    -0.064 0.066 0.187 -0.137 0.091 0.277 -0.142  0.081 0.271 
C3    -0.054 0.040 0.082 -0.014 0.036 0.070 -0.043  0.021 0.070 
S3    0.034 0.031 0.070 -0.131 0.119 0.292 -0.124  0.111 0.266 

Z4       0.058 0.036 0.112 0.057  0.035 0.108 
Z3X       -0.010 0.020 0.039 -0.009  0.021 0.039 
Z3Y       -0.104 0.060 0.218 -0.112  0.077 0.227 

Z2C2       -0.027 0.027 0.071 -0.019  0.031 0.065 
Z2S2       -0.004 0.013 0.025 -0.002  0.013 0.023 
ZC3       -0.006 0.014 0.023 0.002  0.009 0.018 
ZS3       0.058 0.037 0.099 0.060  0.041 0.101 
C4       -0.017 0.008 0.024 0.003  0.018 0.025 
S4       -0.001 0.005 0.008 0.001 0.005 0.008 

ZC4          -6.3e-3 5.6e-3 1.14e-2 
ZS4          -5.9e-4 5.2e-4 1.10e-3 
C5          -4.8e-5  2.3e-4 3.77e-4 
S5          -2.0e-5  3.7e-4 5.65e-4 

ZC5          -3.1e-5 6.3e-5 1.22e-4 
ZS5          -4.0e-5 1.0e-4 2.03e-4 

 



 

Supporting Figure S2 Applied shim currents (corresponding to the shim strengths in Table S2). The maximum 

available current strength for each channel is 10 A. None of the applied shim currents exceeded 2.5 A. 

  



 

Supporting Figure S3 Effect of very high degree B0 shimming on single-slice 1H FID MRSI. Sample spectra from 9 

different voxels across the slice are shown from 0.5 to 4.2 ppm for 2nd degree (red) and 4th+ degree (black) B0 shimming. 

The voxels are shown from the positions marked in Figure 8. 

  



 

Supporting Figure S4 B0 maps of the EPI data for 2nd degree and 4th+ degree whole-brain B0 shimming. 

  



 

Supporting Figure S5 EPI of a spherical phantom with (a) and without (b) the insert shim in the scanner bore. The 

same sequence, parameters and shim values were used for both cases. Ghosting artifacts cause significant problems due 

to eddy currents generated in the shim coils. 
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Dynamic B0 Shimming at Ultra High Fields for Proton Spectroscopic Imaging of the 

Human Brain 

Abstract 

Purpose:  To compare different B0 shimming approaches at 9.4T and to evaluate their performance in 

the context of high resolution multi-slice metabolite mapping of the human brain. 

Methods: Two different B0 shimming approaches, namely, a very high degree spherical harmonic insert 

shim and a multi-coil system were used to perform B0 shimming on the human brain at 9.4T. The 

performance of the different shim settings was compared in simulation for 5 different regions of interest. 

In-vivo B0 shimming was performed using both systems. High degree static shimming was compared to 

both low and high degree dynamic slice-wise shimming. Dynamic shimming using spherical harmonics 

was also compared to multi-coil slice-wise shimming. High resolution metabolite maps were acquired 

from 3 slices for different B0 shim settings. 

Results: The simulations show that the combination of the 16-channel multi-coil with 2nd degree 

spherical harmonics performs similarly to a 4th degree spherical harmonic shim system in most 

shimming applications. In-vivo measurements confirmed these results and further highlighted the 

advantages of dynamic shim updating over static shimming.  Better B0 homogeneity achieved through 

dynamic shimming using either of the systems resulted in a more accurate quantification of spectra. 

Metabolite maps acquired using the 4th degree spherical harmonic shim system were comparable to those 

acquired with the multi-coil setup.  

Conclusion: Metabolite mapping at 9.4T benefits greatly from advanced B0 shimming approaches. 

Dynamic shimming performed using a 4th degree spherical harmonic shim system resulted in a similar 

quality of metabolite maps as a 16-channel multi-coil system combined with 2nd degree spherical 

harmonic shims. 

 

Introduction 

The increased interest in ultra-high field MR imaging and spectroscopy applications has led to several 

efforts being made at further optimizing the static field homogeneity through improving the B0 

shimming process. Without a spatially homogenous magnetic field, the many advantages of ultra-high 

field strengths cannot be fully exploited. While the commercial MR scanners are usually equipped with 

up to 2nd or sometimes 3rd degree spherical harmonic shim coils, recent studies [1, 2, 3, 4, 5] have already 

shown that for higher field strengths (≥7T) these shim coils will not be sufficient to correct for subject-

induced, intensive, and localized B0 field distortions that are inherent to these field strengths. 

Two main hardware setups have been shown to be viable options for achieving better B0 shim quality at 

higher field strengths: shim systems with higher degrees of spherical harmonics shim coils [3, 2], or 

multi-coil setups [6] with multiple dedicated and local shim coils. Depending on the application, 

performing dynamic B0 shim updating [7] on the slice that is being imaged at each time will, needless 

to say, improve the quality of the images as the shim settings are optimized for the specific slice at hand 

rather than globally over the whole imaging volume (also known as static B0 shimming). However, it is 

worth noting that performing dynamic B0 shimming, regardless of which shimming approach is used, 

often requires additional hardware and software. 

Several studies [2, 3, 4, 8, 9, 5] have previously reported advantages of each of these two main B0 

shimming methods (higher degree spherical harmonic and multi-coil) in the human brain compared to 

the standard 2nd or 3rd degree spherical harmonic B0 shimming provided by the vendors. While the higher 

degree spherical harmonic shimming generally increases the homogeneity of the magnetic field over all, 

the multi coil setup can, depending on the design, produce local field patterns that more closely match 

the local inhomogeneities caused by the tissue susceptibility differences (e.g. close to the sinus air 



cavities) [4]. Therefore, using higher degree spherical harmonics B0 shimming systems likely provides 

more degrees of freedom for producing global field patterns that result in a more homogenous field 

distribution overall. On the other hand, the multi-coil approach is more suited to producing locally 

complicated patterns. 

The question of which B0 shimming setup is optimal when imaging different regions of the brain is still 

a point of discussion in the field and a thorough comparison of the two methods for shimming different 

regions of interest is missing. Given the differences between the two shim approaches, for each MRI 

imaging application (depending on the focus being on a small region of the brain versus on multiple 

slices), a certain B0 shim setup might be more beneficial over the other approach. Additionally, each of 

these shimming methods can be applied in a static or dynamic manner. While it is known that performing 

dynamic shim updates improves the quality of the images compared to static shimming, for some 

imaging applications such as 3D sequences, dynamic shim updating is not possible. Then the question 

is whether or not using more shim coils for static shimming can ever come close to the same shim quality 

as dynamic shimming (with fewer coils). 

Proton magnetic resonance spectroscopic imaging (1H MRSI) for multi-slice metabolite mapping in the 

human brain at ultra-high fields is a good example of such challenging applications where the choice of 

the optimal B0 shimming scheme becomes very important. 1H MRSI is, in general, very susceptible to 

inhomogeneities in the magnetic field and can suffer from insufficient water suppression performance 

[10], or poor quality spectra with broadened linewidths and low signal to noise ratio (SNR) if insufficient 

B0 shimming is performed. The poor quality of the spectra then directly affects the reliability of the fits 

for metabolite quantification and result in metabolite maps that do not fully reflect the underlying 

anatomy. Furthermore, B0 inhomogeneities can affect the water suppression pulses and result in 

metabolites being suppressed rather than the water peak. Also, any spectrally selective pulses will also 

be effected by B0 inhomogeneities. Depending on the slice position in the human brain, different field 

inhomogeneity patterns are observed and these patterns can be compensated best with one of the two 

main B0 shimming approaches (i.e. higher degree shimming or multi-coil shimming).  Additionally, if 

3D sequences such as EPSI [11] are used for metabolite mapping, dynamic B0 shim updating is not 

feasible and hence the only option is shimming the whole imaging volume globally. 

Although, the advantages of very high degree spherical harmonics dynamic B0 shimming for multi-slice 
1H MRSI have been studied in previous works [12, 3, 5], to the best of our knowledge, no previous study 

has directly compared the use of higher degree spherical harmonic B0 shimming to the multi-coil 

approach for human brain metabolite mapping at ultra-high fields using dynamic shim updating.  

Therefore, the aim of this paper is to systematically compare the quality of B0 shimming that can be 

achieved in the human brain using the very high degree spherical harmonics shim system and with the 

multi-coil approach. The comparison is performed in several regions of interest of different sizes and 

positions. Afterwards in vivo B0 shimming is performed using the very high degree spherical harmonic 

shim system as well as the multi-coil approach in the human brain. Multiple shimming approaches were 

performed including higher degree static shimming, low degree dynamic shimming, high degree 

dynamic shimming, and multi-coil dynamic shimming. These shim approaches were then used to 

perform multi-slice high resolution metabolite mapping at 9.4T. The effect of each B0 shim setup on the 

resulting field homogeneity as well as the quality of the acquired spectra and the resulting metabolite 

maps are investigated. For the first time, high resolution metabolite maps of the human brain using very 

high degree spherical harmonic and a multi-coil B0 dynamic B0 shimming approach are presented. 

Methods 

Equipment 

In this study, we investigated B0 shimming in the human brain using two different sets of shim coils: 

very high-degree spherical harmonics (up to 4th-degree) shim coils and a 16 channel multi-coil shim 



array. We also show an application of these B0 shim methods for multi-slice high resolution metabolite 

mapping of the human brain. 

All measurements were performed on a Siemens Magnetom 9.4T whole-body human scanner (Erlangen, 

Germany). For all experiments an in-house developed 18Tx/32Rx transceiver head RF coil [13] was 

used. An insert shim from Resonance Research Inc. (Billerica, MA) with complete 4th-degree spherical 

harmonic shim coils and partial 5th- and 6th-degree shim coils was used for the very high-degree B0 

shimming. This insert shim system will be referred to as the VHOS (very high order shim) system and 

is shown in Figure 1a. A multi-coil shim array with 16 circular shim coils arranged in two rows, as 

shown in Figure 1b, was used for the localized multi-coil B0 shimming. The local shim coils were 10 

cm in diameter and had 20 turns. The multi-coil shim array was used in combination with the 1st and 

2nd-order/degree spherical harmonic shim coils from the vendor. For a fair comparison, the partial 5th- 

and 6th-degree shim coils from the insert shim were not used, so that the total number of channels of 

VHOS system was also 16 channels. Therefore, both methods used up to 2nd-order/degree shim coils 

and 16 additional coils. 

The reference B0 maps produced by each of the 16 local shim coils is shown in Figure 2. Reference field 

maps were also acquired for the VHOS system on a silicon oil spherical phantom. Each coil channel 

was driven with 0.5 A and the shim fields were measured using a dual echo GRE with the following 

parameters:  in-plane resolution = 1.56 x 1.56 mm2; number of slices = 50; slice thickness = 4 mm (0% 

distance factor); FOV = 200 x 200 mm2; TE = 4.00/4.76 ms; TR = 1200 ms; read-out bandwidth = 1500 

Hz/Px. The reference shim fields were then modelled using spherical harmonic decomposition based on 

the Legendre functions as described in [5]. 

Simulations 

The performance of the multi-coil and VHOS shim were simulated for multiple regions-of-interest 

(ROIs): 

1) a whole-brain region covering the entire cerebrum, cerebellum and brain stem denoted as whole-

brain+, 

2) another global region consisting of the whole brain minus the medulla and the cervical spine 

denoted as whole-brain, 

3) a single-slice positioned off-centre and going through the frontal sinus air cavity, 

4) a single voxel (2x2x2 cm3) located in the pre-frontal cortex and 

5) another single voxel located in the visual cortex. 

23 in vivo B0 maps acquired at 9.4T using a 2D dual-echo GRE sequence with the same sequence 

parameters as described in the previous section were used for these comparisons. The shimmed B0 maps 

were simulated using four different hardware setups: 

 the multi-coil combined with only first degree spherical harmonic shim terms (MC16), 

 the multi-coil combine with first and second degree spherical harmonic shim terms 

(MC16+SH2), 

 the VHOS with up to third-order/degree shim terms (SH3), and 

 the VHOS with up to fourth-order/degree shim terms (SH4). 

The reference shim field maps and the VHOS spherical harmonic models (described in the previous 

subsection) were used in the simulations. 

The mean standard deviations of the frequency shifts in the shimmed B0 maps (σB0) for all volunteers 

were used to evaluate the quality of the B0 homogeneity. The shim terms were calculated using a 

constrained and regularized optimization algorithm (ConsTru) [14], that has been shown to give optimal 

shim currents for the given hardware constraints. All shim currents were constrained to a maximum of 

1.5 A per channel for both the multi-coil and the VHOS shim systems. 



In vivo B0 Shimming 

To compare the quality of each of the B0 shim setups in vivo, 3 healthy volunteers were scanned at 9.4T. 

All volunteers gave their written consent prior to the scan according to the regulations of the local ethics 

committee. On each volunteer B0 maps were acquired using the sequence and parameters mentioned in 

the previous subsection from a 5cm volume: 25 slices with 2 mm slice thickness. The middle slice was 

always placed above the corpus callosum with a transversal orientation. Different B0 shimming 

approaches were implemented on the volunteers as described below. 

For spherical harmonic B0 shimming, we compared high degree static B0 shimming to slice-wise 

dynamic B0 shimming of both low and high degree spherical harmonics on all the volunteers. For static 

B0 shimming, very high-order/degree shimming was done over the entire 5cm volume using up to 4th-

degree shim terms shimmed. Next, the slab was divided into 3 slices with 100% distance factor to 

perform dynamic B0 shimming. Since the MRSI application used a slice thickness of 10 mm (described 

further in the following subsection), each ROI for the slice-wise shimming used 5 slices from the B0 

reference map. In other words, MRSI-slice 1 used B0-slices 1 to 5, MRSI-slice 3 used B0-slices 11 to 15 

and MRSI-slice 5 used B0-slices 20 to 25 for shimming. Next the MRSI-slices 1, 3 and 5 were slice-

wise shimmed using 2nd-degree shim terms and then again using up to 4th-degree shim terms. The 

optimal shim currents were calculated using a custom written software that allowed us to accurately 

define the ROIs on the anatomical images. The ROIs were defined only for the cortex (the skull and 

subcutaneous fat were excluded). In summary, static and dynamic B0 shimming were compared using: 

4th-degree static shimming (S4), 2nd-degree dynamic (D2) and 4th-degree dynamic shimming (D4) on 

MRSI-slices 1, 3 and 5. 

B0 shimming for the multi-coil was performed on the same 3 volunteers in a similar manner with a 25 

slice reference B0 map and slice-wise shimmed for the MRSI-slices 1, 3 and 5. The ROI was placed in 

the same position and the same transversal orientation. For the multi-coil comparison, the 2nd-degree 

slice-wise shimmed (D2) B0 maps were acquired and then the multi-coil (combined with the 2nd-degree 

spherical harmonics) slice-wise shimmed (DMC) B0 maps were acquired. The measurements using the 

multi-coil could not be used in the same session as the VHOS due to hardware incompatibility of the 

insert shim system and the multi-coil setup and so the D2 setting served as a benchmark for this 

comparison. 

Spectroscopic Imaging 

A slice-selective ultra-short TE 1H FID MRSI [15, 16, 12] sequence was used to acquire the 

spectroscopic imaging data from all volunteers. No lipid suppression or outer volume suppression pulses 

were used, which allowed the repetition time (TR) to be short. The water suppression was comprised of 

three pulses. The flip angles and gradients of the water suppression were optimized for a range of B1
+ 

values (between 50% and 150%) [10]. The sequence parameters were: FOV = 200 x 200 mm2, 

acquisition delay = 1.56 ms; spectral bandwidth = 8 kHz, acquisition time = 128 ms; TR = 300ms, in-

plane matrix size = 64 x 64; slice thickness = 10mm. The nominal voxel size was therefore 97µL. An 

R=4 GRAPPA [17] acceleration was used for all MRSI acquisitions. Non-water suppressed reference 

data were acquired using the same parameters (at 4 times lower spatial resolution) for eddy current and 

phase correction purposes.  

The MRSI data reconstructed using a 2D GRAPPA operator method [18] and were coil-combined using 

singular value decomposition [19]. Automatic 0th order phase and eddy current correction was performed 

using Klose eddy current correction [20] and linear back prediction was used to perform automatic 1st 

order phase correction as described in [10]. LCModel [21] was used to fit the spectra and generate the 

metabolite maps. 

The MRSI data were acquired from the three slices described above. That is, MRSI-slice 1 which 

corresponds to B0-slices 1 to 5 (denoted as the top slice), MRSI-slice 3 corresponding to B0-slices 10 

to 15 (denoted as the centre slice) and MRSI-slice 5 corresponding to B0-slices 20 to 25 (denoted as the 



bottom slice). Each slice was separated from the next one by 1cm, so that the 3 slices span over a 5cm 

volume). These data were acquired for each of the shim settings described in the previous section. 

 

Results 

Simulations 

Figure 3 shows the boxplot of the shimming comparison results. Each box contains the results of all 23 

volunteer datasets. The mean and standard deviation for each shim setting is also summarized in Table 

1. The simulations showed that for the global shimming applications (whole-brain+ and whole-brain), 

the multi-coil setup when combined with 2nd degree spherical harmonic shim coils (MC15+SH2) 

performs similarly to 3rd degree spherical harmonic shims (SH3). The standard deviation of the 4th 

degree spherical harmonics are on average 7 Hz less than the combined multi-coil setup for both cases. 

For a single slice ROI, the combined multi-coil performs similarly to 4th degree spherical harmonics and 

they both perform better than the 3rd degree spherical harmonics by about 7 Hz on average. However, 

for single voxel applications both in the frontal and visual cortex the performance of the combined multi-

coil is similar to the VHOS system. It is worth noting that, for a single voxel in the frontal cortex, the 

MC16 (without SH2) seems to do significantly worse than all the others. 

In vivo B0 Shimming 

In the first comparison, we looked at the VHOS system and compared high degree static (S4) to both 

low (D2) and high (D4) degree dynamic B0 shimming. Three slices with 10 mm slice thickness were 

evaluated. The slices were described as the MRSI-slices 1, 3 and 5 in the previous section, and will be 

referred to as the top, centre and bottom slices, respectively. The comparison between S4, D2 and D4 

are shown for a representative volunteer in Figure 4 (left). All B0 maps in the figure are shown between 

-80 and 80 Hz. Clearly, the B0 maps resulting from D4 are much more homogeneous than D2 for all 

slices with a 2 Hz improvement on the top slice and a 10 Hz improvement on both the centre and bottom 

slices. The S4 also shows some improvement over D2, however the improvement is very little on the 

top slice. The figure also shows the histograms of the B0 field distributions between -100 and 100 Hz. 

The histograms give a rough indication of the linewidth of the spectra acquired from the whole slice for 

each position and shim setting. Compared to D2, the S4 and D4 histograms have taller and thinner 

distributions. 

In the next comparison, we looked at the difference between using a 2nd degree spherical harmonics 

dynamic B0 shimming (D2) and the dynamic multi-coil combined with 2nd degree spherical harmonics 

shim setting (DMC) for shimming the different slices. The results of this study are also shown for a 

representative volunteer in Figure 4 (right) .The DMC proves to be superior to D2 on all slices. The D2 

results for this volunteer are similar to the volunteer shown for the VHOS system on the left of the same 

Figure. However, the improvement over D2 for the bottom slice was slightly more for D4 than the DMC 

(10 Hz compared to 7 Hz). The histograms, once again, show narrower linewidths for DMC than D2. 

Figure 5 shows the means and standard deviations of the B0 maps averaged over all the volunteers for 

all shim settings. The improvement from D2 to D4 is comparable to the improvement seen from D2 to 

DMC, which is similar to what was shown in Figure 4. These averaged standard deviations of D2 vary 

between the two graphs due to different positioning of the heads mandated by the different hardware 

setups. Table 2 shows the actual means and standard deviations. Improvements can be seen on all slices 

for both D4 and DMC methods compared to D2. However, the improvement is always less for the top 

slices compared to the centre and bottom slices. 

Comparison of static and dynamic shimming shows that on average 4th order static shimming 

outperforms 2nd order dynamic shimming for the centre and bottom slices. However, the improvement 

is traded off for the homogeneity of the top slice since the top slice of D2 is better than the top slice of 



S4. Furthermore, the improvement of S4 for the centre and bottom slices is only about 4 or 5 Hz 

compared to the potential 8 to 9 Hz that could be achieved with D4. 

Spectroscopic Imaging 

Figure 6 shows the spectra for the different B0 shimming settings acquired from the centre slice. 

Representative spectra are shown from a region in the left posterior hemisphere. The spectra are shown 

between 1.8 and 3.5 ppm for better visualization. Two different comparisons are represented: spectra 

acquired with D2 vs. D4 and once again D2 vs DMC. The respective anatomical reference image 

overlaid with the grid from which the spectra are chosen are also shown. As expected, the more 

homogeneous the B0 field, the narrower the linewidths of the spectra. The peaks in the spectra resulting 

from the D2 shimmed slices are in general broader than for the D4 and DMC B0 shims.  

The resulting metabolite maps along with their respective Cramer-Rao lower bound (CRLB) maps for 

the VHOS comparisons are shown in Figure 7. The maps are shown for NAA, Glutamate and total 

Choline relative to the Creatine concentrations. The metabolite maps acquired from D2 shimming are 

different to the maps acquired from D4 shimming. For NAA on the bottom slice the signal dropout due 

to the residual B0 inhomogenity from the nasal cavity is smaller when using D4 than when using D2. 

Also, in the CRLBs of NAA, more voxels could be reliably fit for the centre and bottom slices when D4 

shimming was used. The effect of good shimming is more obvious for the Glutamate and total Choline 

metabolite maps. The Glutamate maps resemble the underlying anatomical structure much more closely 

for D4 than D2. This is evident in all the slices and is also reflected in the CRLB maps which have more 

voxels being reliably fit for the D4 case. A similar effect can be seen for total choline. 

The resulting metabolite and CRLB maps for the MC comparisons are shown in Figure 8. Compared to 

the VHOS metabolite maps, the slice position was slightly higher due to different hardware setups and 

the effect of the nasal cavity is less observed. Since the position was slightly higher, the metabolite maps 

from D2 were already quite good for the centre slice. However, we still see very good improvement of 

the DMC over D2 (particularly for the bottom slice). Again, the metabolite maps resemble the 

underlying anatomical structure better for the DMC shimming, especially for Glutamate in the top and 

bottom slices, and for total Choline in all slices. The grey and white matter contrast is clearer in the total 

Choline maps for DMC. Furthermore, the improved fitting is also clearly reflected in the CRLB maps 

for the bottom slice and the total Choline in the top slice. 

The average CRLB (of Cre) and SNR (absolute peak of NAA over the root mean square of the 

noise) are summarized in Table 2 for each B0 shim setting. 

Overall, it is evident that better B0 homogeneity not only improves the reliability of the quantification 

process (i.e. more voxels can be reliably fit) but also with better B0 shimming, the metabolite 

concentration maps are more reflective of the underlying anatomical structure. 

Discussion 

The goal of this work was to provide further insight into the benefits of two different B0 shimming 

concepts, namely very high degree spherical harmonics and multi-coil, for performing B0 shimming in 

the human brain at 9.4T. After theoretical comparisons, the two different shimming concepts were used 

in the context of multi-slice high resolution metabolite mapping in the human brain. To the best of the 

authors’ knowledge, this is the first time that the multi-coil shim setup has been used in the context of 

MRSI applications. 

For the simulation comparisons, different settings were considered, where the total number of shim coils 

were kept the same among different setups at an attempt to perform a fair comparison. This way the 

shim quality merely depends on the spatial distribution of the shim fields that these coils are generating 

and not on the number of degrees of freedom. We considered two different settings for a 16-coil B0 

shim system, namely our 16-channel multi-coil setup (MC) versus the 3rd degree spherical harmonic 



shim system (SH3) and two different settings for a 25-coil B0 shim setup, namely the combination of 

the multi-coil and 2nd degree spherical harmonics (MC+SH2) versus the 4th degree spherical harmonic 

shim system (SH4).  

These simulations showed that for this particular multi-coil design, the performance of the 16-channel 

multi-coil system on its own is generally slightly worse than 3rd degree spherical harmonics shim system, 

except for shimming on a single-slice where it outperforms the 3rd degree shim system and on a single-

voxel in the frontal cortex where it performs much worse. These results further confirm what has been 

reported in previous studies by Juchem et al [1] where they showed that their DYNAMITE multi-coil 

setup outperforms a 3rd degree spherical harmonic shim on a single slice of the brain in a position similar 

to the one chosen in this study. Truong et al [9] also showed that using a multi-coil design they can 

achieve good shimming performance for a similar slice position, reporting a σB0 of 15.2Hz on 3T, which 

translates to 0.123 ppm compared to about 0.09 ppm that we achieve on 9.4T. 

The combination of the multi-coil with 2nd degree spherical harmonic shim coils performs similarly to 

3rd degree spherical harmonic shim system for global shimming applications and larger ROIs, however, 

for shimming smaller regions such as single-slice or single-voxel spectroscopy applications, its 

performance is similar to a 4th degree spherical harmonic shim system. So, unless a very large region 

needs to be shimmed globally, for other applications in the human brain the combination of this multi-

coil design and the 2nd degree spherical harmonics performs similarly to a 4th degree spherical harmonics 

shim system. 

The two best B0 shim setups (judging by the results of the theoretical simulations), namely the 

combination of the multi-coil with the 2nd degree spherical harmonics and the 4th degree spherical 

harmonics were then compared in vivo. In addition, another aspect of B0 shimming, namely, performing 

global shimming over the whole imaging volume (static shimming) versus updating the shim values for 

each slice that is currently being imaged (dynamic shim updating) was also included in the study: 

comparing a very high degree (4th degree) spherical harmonic global shimming versus dynamic shim 

updating. In all cases dynamic shim updating using 2nd degree spherical harmonic shims was taken as a 

benchmark.  The results showed that including more degrees of spherical harmonic while performing 

static shimming improves the quality of the shim overall. On the bottom and middle slice position indeed 

including more spherical harmonics improves the shim quality compared to when 2nd degree dynamic 

shimming is performed. However, the 2nd degree dynamic shim updating proves to perform better on 

the top slice where the static shimming sacrifices the shim quality for better shimming on other slices. 

Overall, the results showed that when it is not possible to perform slice-wise dynamic B0 shim updating 

(due to lack of driving hardware or software), one can still achieve reasonable shim quality by including 

higher degree spherical harmonics and performing global shimming over the whole slab. 

Alternatively, the shim quality can be further improved by performing dynamic shim updates using 4th 

degree spherical harmonics or the multi coil in combination with 2nd degree spherical harmonics. This 

proves to always be consistently advantageous over 2nd degree dynamic shimming. The amount of 

improvement gained from going to higher degree spherical harmonics versus including a multi-coil 

design was comparable to each other for similar slice positions. The highest improvement was seen on 

inferior slice positions, where due to the susceptibility difference between the air in the nasal cavities 

and the tissue, severe B0 inhomogeneities are present. This has also been confirmed before for the case 

of dynamic spherical harmonic shim updating by Boer et al [12] and Pan et al [3]. 

It is well known that the quality of B0 shimming directly affects the quality of the acquired spectra in 

MRSI applications. This can be due to the fact that as a result of lower local B0 inhomogeneity, the lines 

are sharper and the SNR is higher, which means that quantification is much more accurate. Additionally, 

the quality of water suppression is affected by B0 inhomogeneity. In regions with high residual B0 

distortion, the water suppression will fail leaving a strong residual water peak that will distort the 

quantification of the metabolites of interest. High resolution metabolite maps acquired with the two 

improved B0 shim setups of this study further highlights the advantages of these advanced shim setups 



compared to 2nd degree slice-wise shim update. Qualitatively speaking the maps acquired with 4th degree 

spherical harmonic shim system are similar to those acquired with the multi-coil combined with 2nd 

degree spherical harmonic shims. In all cases however, the maps look much more accurate than only 

performing 2nd degree dynamic shimming as they reflect the underlying anatomy much better. The 

white/gray matter contrasts are much clearer and the confidence in fits are higher as a result of improved 

B0 shimming.  

It should be noted that even though the results of this study show that for multi-slice imaging in the brain 

at 9.4T, both the multi-coil plus 2nd degree spherical harmonics setup and the 4th degree spherical 

harmonics setup perform comparably well, the manufacturing of the local shim coils are in practice 

much easier than the higher degree spherical harmonics. The requirements on manufacturing shim coils 

to generate spherical harmonic functions over a large spatial region are much more demanding than 

building local shim coils. Furthermore, spherical harmonic shim coils are more prone to eddy currents 

[5], while the local shim coils are smaller and have much less eddy currents due to gradient or shim 

switching [1]. Using spherical harmonic shim coils for dynamic B0 shim updating often requires pre-

emphasis and calibration of the system [4, 12] while the multi-coil does not. 

Conclusion 

In this study, we compared the performance of a high degree spherical harmonic B0 shim system to a 

16-channel multi-coil setup for B0 shimming of the human brain at 9.4T. Simulations on 5 different B0 

shimming applications showed that the multi-coil setup combined with the 2nd degree spherical 

harmonics performs similarly to 4th degree spherical harmonic shimming for almost all shimming 

applications. The results were confirmed by applying the two different B0 shimming approaches in vivo 

for a dynamically shim updated multi-slice MRSI application. High resolution metabolite maps were 

acquired from three slices across the human brain using each of the B0 shimming methods. Both methods 

showed advantages over low degree (up to 2nd) spherical harmonic dynamic shimming. The results 

emphasize the importance of slice-wise B0 shimming for metabolite mapping at ultra-high fields and 

suggest that either of the two B0 shimming approaches can be used to achieve similar results. 
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Figure 1 – (Left) Insert shim system with very high order B0 shim (VHOS) and (right) multi-coil array 

of localized shim coils. 

 

 

Figure 2 – Shim fields generated by each coil element of the multi-coil array for 1 A. 

  



 

Figure 3 – Mean residual standard deviations after B0 shimming for different regions of interest on 23 

in vivo datasets for four different setups: the 16-channel multi-coil (MC16), the 16-channel multi-coil 

combined with 2nd degree spherical harmonics (MC16+SH2), up to 3rd degree (SH3) and 4th degree (SH4) 

spherical harmonics. 

  



 

Figure 4 – B0 maps of top, centre and bottom slices using VHOS B0 shimming and multi-coil (MC) B0 

shimming. The 2nd degree dynamic slice-wise updated B0 shimmed maps (D2) are shown as references 

for each volunteer. Dynamic slice-wise updated shimmed maps are shown for the 4th degree VHOS (D4) 

and MC system (DMC). The statically shimmed 4th degree shimmed B0 maps are also shown for the 

VHOS system (S4). Corresponding histograms are shown beneath the respective B0 maps. 

  



 

Figure 5 – Standard deviations of shimmed B0 maps for 3 slice positions averaged across all volunteers. 

The 2nd degree dynamic slice-wise B0 maps are shown as a reference (D2). The results for the dynamic 

slice-wise 4th degree (D4) and multi-coil (DMC) are shown along with the statically shimmed 4th degree 

(S4). 

 

 

Figure 6 – Representative spectra from the acquired MRSI data for the centre slice using different B0 

shim systems: the VHOS and the MC system. The 2nd degree B0 shimmed spectra are shown as a 

reference in red. All spectra are shown between 1.8 to 3.5 ppm. 

  



 

Figure 7 – Metabolite maps for top, centre and bottom slices in the human brain using the VHOS system 

for B0 shimming. The maps for 2nd degree (D2) and 4th degree (D4) dynamic slice-wise updated shim 

are shown. The metabolite ratios are shown (with respect to creatine) along with the CRLBs. 

  



 

Figure 8 – Metabolite maps for top, centre and bottom slices in the human brain using the multi-coil 

(MC) system for B0 shimming. The maps for 2nd degree (D2) and multi-coil (DMC) dynamic slice-wise 

updated shim are shown. The metabolite ratios are shown (with respect to creatine) along with the 

CRLBs. 

  



Table 1 – Standard deviations of 23 in vivo datasets using the VHOS and MC shim coil systems for 

different regions of interest in the brain. 

 MC VHOS 

δB0 (Hz) MC16 MC16+SH2 SH3 SH4 

Whole-Brain+ 68.16 ± 7.99 62.25 ± 6.41 61.59 ± 6.01 54.96 ± 5.90 

Whole-Brain 41.83 ± 6.48 41.30 ± 6.87 40.67 ± 6.55 34.34 ± 5.67 

Single-Slice 34.60 ± 8.65 32.35 ± 9.07 39.21 ± 8.15 31.61 ± 9.06 

Single-Voxel 

(frontal cortex) 

20.76 ± 7.56 14.04 ± 5.31 14.50 ± 5.61 13.27 ± 5.48 

Single-Voxel 

(visual cortex) 

8.94 ± 7.16 8.87 ± 7.08 8.99 ± 7.09 8.83 ± 7.04 

 

 

 

 

Table 2 – Standard deviations of the B0 maps for the top, centre and bottom slices using the VHOS and 

MC dynamic slice-wise shimming. The CRLB of creatine and the SNRs of the MRSI spectral data are 

also shown for the two shim settings. 

 VHOS MC 

δB0 (Hz) D2 S4 D4 D2 DMC 

Top 12.7 ± 2.1 13.6 ± 1.6 10.6 ± 2.4 18.1 ± 1.4 14.2 ± 3.8 

Centre 22.3 ± 3.5 18.7 ± 2.6 14.5 ± 2.2 19.4 ± 1.4 12.7 ± 2.1 

Bottom 29.6 ± 4.4 25.4 ± 4.0 20.5 ± 3.3 27.0 ± 1.8 19.4 ± 3.0 

CRLB (Cre)      

Top 11 ± 1.5 - 10 ± 1 8 ± 1 8 ± 0.5 

Centre 8 ± 1.5 - 8 ± 1 8 ± 1 7 ± 0.5 

Bottom 10 ± 2  8 ± 1.5 9 ± 1.5 8 ± 1.5 

SNR      

Top 34 ± 9 - 39 ± 11 41 ± 10 43 ± 10 

Centre 42 ± 10 - 49 ± 12 51 ± 15 60 ± 16 

Bottom 27 ± 11 - 34 ± 10 36 ± 14 40 ± 13 
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Constrained Optimization for Position Calibration of an
NMR Field Camera

Paul Chang,1,2* Sahar Nassirpour,1,2 Martin Eschelbach,1,3 Klaus Scheffler,1,4 and

Anke Henning1,5

Purpose: Knowledge of the positions of field probes in an

NMR field camera is necessary for monitoring the B0 field. The
typical method of estimating these positions is by switching

the gradients with known strengths and calculating the posi-
tions using the phases of the FIDs. We investigated improving
the accuracy of estimating the probe positions and analyzed

the effect of inaccurate estimations on field monitoring.
Methods: The field probe positions were estimated by 1)
assuming ideal gradient fields, 2) using measured gradient

fields (including nonlinearities), and 3) using measured gradient
fields with relative position constraints.

The fields measured with the NMR field camera were com-
pared to fields acquired using a dual-echo gradient recalled
echo B0 mapping sequence. Comparisons were done for shim

fields from second- to fourth-order shim terms.
Results: The position estimation was the most accurate when

relative position constraints were used in conjunction with
measured (nonlinear) gradient fields. The effect of more accu-
rate position estimates was seen when compared to fields

measured using a B0 mapping sequence (up to 10%–15%
more accurate for some shim fields).

The models acquired from the field camera are sensitive to
noise due to the low number of spatial sample points.
Conclusion: Position estimation of field probes in an NMR

camera can be improved using relative position constraints
and nonlinear gradient fields. Magn Reson Med 000:000–
000, 2017. VC 2017 International Society for Magnetic Reso-
nance in Medicine.

Key words: Field monitoring; NMR field camera; NMR field
probes; position calibration; high order B0 shim.

INTRODUCTION

Spatiotemporal monitoring of the B0 field can be used to
measure the dynamics of the MR systems and has a vari-
ety of applications. The dynamics can be used to per-
form preemphasis for correcting eddy currents (1–3),
frequency stabilization (4), and field stabilization with

online control of the B0 shim fields (5–7). Spatiotemporal

monitoring of the B0 field requires fast measurements of
the B0 field without compromising the spatial accuracy.

For this purpose, projection-based B0 mapping methods
such as FASTMAP (8,9) and FASTMAP (10) can be used.

These methods can also be integrated into the sequence to
perform real-time B0 shimming (5,11). Alternatively, spatio-
temporal monitoring can be done using very low-
resolution B0 maps or B0 shim navigators (6,12,13). All of

the above-mentioned methods need to be included in the
pulse sequence, which increases the complexity of imple-
mentation and also the scan duration.

Alternative to these sequence-based techniques, one

can use NMR field probes (henceforth referred to as field
probes) for spatiotemporal monitoring (14,15). A field
probe can measure the B0 magnetic field at a single spa-

tial point at a very high temporal resolution. An array of
field probes (often called a field camera) can be used to
measure the B0 at many spatial points simultaneously

(16,17). A field camera can be used independently of the
MRI scanner and thus requires no additional scan time.
The positions of the field probes need to be estimated

before monitoring. One disadvantage of using the field
camera is that it requires additional hardware.

A comparison of the different B0 field measurement
methods shows that there is a tradeoff between the spa-

tial and temporal resolution of monitoring the B0 field
(Fig. 1). For applications in which high spatial resolution
is required (e.g., calibrating shim systems), an entire B0

map should be acquired. For applications in which
high temporal resolution is required, the projection-
based or low-resolution B0 mapping methods should be

employed. If even faster dynamics of the B0 field need to
be measured, use of a field camera can be appropriate.
However, field cameras usually only have up to 16 field

probes and thus have very low spatial resolution. Due to
the low spatial resolution of the field camera, the B0

field cannot be completely determined using a few sam-

ple points. Instead, the sample points are used to derive
an approximation of the B0 field using spherical har-
monic decomposition (18,19). Spherical harmonic
decomposition approximates arbitrary B0 fields using a

set of orthogonal basis functions (the Legendre polyno-
mials). This is a common method of approximating and
modeling B0 fields (8,9,16,20).

Field probes and field cameras have been extensively

used in (15–17) for dynamic field monitoring and in
(4,7) for real-time feedback. In this study, we show that
we can improve the spatial accuracy of the field camera

by introducing prior knowledge about the field camera
structure and about the gradient nonlinearities into the
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position calibration. We then extensively compare B0

maps measured with a large number of field probes to
static B0 maps acquired using a full B0 mapping sequence.
We show that small perturbations in the measurements
can result in spatial measurement inaccuracies despite
the large number of field probes used in this study.

THEORY

The physics of field probes goes back to the very basics
of MR. A field probe is a small sample of water (or fluo-
rine (4,7) or 2H (21) for in vivo measurements) that is
excited using a small RF coil to generate a FID. It is
well-known that the frequency of the FID (which can be
calculated from the phase) is related to the magnetic
field strength through the gyromagnetic ratio. Because
the water or fluorine sample in the field probes is small,
the magnetic field strength of this small volume at this
position can be measured:

f ¼ dw
�

dt
¼ gB; [1]

where f is the frequency, g is the gyromagnetic ratio, and
B is the magnetic field strength. The gyromagnetic ratio
of proton is approximately 42.576 Hz/uT.

Usually, several field probes are used to measure
many spatial locations of the field simultaneously. These
measurements are then modeled by spherical harmonic
decomposition using Legendre polynomials to measure
the spatiotemporal field dynamics. Legendre polyno-
mials are used because they provide a number of bene-
fits, such as orthogonality, coverage of a 3D space, and
ease of use.

In order to decompose the B0 field using spherical har-
monics, the positions of the field probes (relative to the

scanner) need to be determined prior to the measure-
ments. In the case of field cameras, despite the field
probes being mounted in fixed positions, accurately
obtaining their positions relative to the scanner can be
complicated. Even in the construction of the field cam-
era, the field probes may be slightly misplaced. Further-
more, because the field probes are often encapsulated
inside an epoxy mold (14), this may cause even more
inaccuracies in the construction and prevent accurate
relative position calibration based on optical methods.

Currently, the method of estimating the positions of
the field probes is to use the scanner gradients. Known
gradient strengths are applied in each of the x-, y-, and
z-directions, and positions can be estimated from the
measured frequencies of the field probes (16) using the
following equation:

f ¼ g � B ¼ g � Gx � x � foff res; [2]

where foff res is the off-resonance calculated from FID
without any gradients applied (as the reference); Gx is
the gradient strength in the x-direction; and x is the x-
position. Because the applied gradient strength is known
and the frequency can be measured, the x-position can
be estimated. Similarly, applying a gradient in the y- and
z-directions gives us the y- and z-positions, respectively.

The problem with this method is that it relies on the
assumption of the gradient fields being perfectly spa-
tially linear. Unfortunately, deviations in the linearity of
the gradient may introduce an error in the position esti-
mate of the field probes. Note that this is not a problem
if we only want to monitor first-order B0 terms because
the nonlinearities cancel each other out; however, for
higher order spherical harmonic terms, the accuracy of
the decomposition is heavily dependent on the accuracy
of the position estimates.

Gradient spatial nonlinearities can be modeled using
the following nonlinear equation:

f ¼ g � GxðxÞ � foff res: [3]

This is simply a generalization of Equation (2).

METHODS

All the measurements were performed on a 9.4T Siemens
human whole-body MR scanner (Erlangen, Germany). B0

monitoring using full B0 mapping was compared to
B0 monitoring using a field camera. The B0 fields were
generated from shim fields produced by a Resonance
Research Inc. 28-channel insert shim (Billerica, MA) that
has zero-, second-, third-, and fourth-order spherical har-
monics and partial fifth- and sixth-order terms. For this
investigation, only the shim terms up to the fourth order
were used.

Each of the shim fields were measured using a high-
resolution 2D dual-echo (gradient recalled echo (GRE)) B0

mapping sequence. The reference field maps were acquired
on a 170-mm diameter silicon oil spherical phantom with
an eight-channel transceiver coil array (22). The sequence
parameters were: resolution¼ 1.56� 1.56 mm2; FOV¼ 200�
200 mm2; slice thickness¼3 mm; slices¼ 40 (distance

FIG. 1. Qualitative comparison of different B0 mapping methods
show a clear tradeoff between the spatial and temporal resolution.

Although field probes require more special hardware, they can be
used independently of the MRI scanner and thus do not increase
the scan duration.
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factor¼20%); TR¼ 1,200 ms; TE¼4.00/4.76 ms; and read-

out bandwidth¼ 1,500 Hz/px. B0 maps were acquired for

each of the shim channels of the Resonance Research Inc.

insert shim (up to and including the fourth-order terms) by

applying a current of 1.0 A. The sensitivities of the shim

coils are given in Table 1.
These reference field maps were used as the bench-

mark B0 fields and compared to the B0 fields measured

using a field camera. No gradient distortion correction

was applied by the scanner in the image reconstruction.
A field camera consisting of 12 1H field probes was

constructed (Fig. 2). The field probes were positioned on

three layers at spacings of 56.25 mm. Each layer had four

field probes, with equidistant spacings of 82.5 mm

between adjacent field probes. To reduce the T1 relaxa-

tion time of the field probes, the field probes were doped

with CuSO4.5H2O (16). However, due to the higher mag-

netic field strength, a lower doping concentration was

recalculated based on (23) to be 3.0 g/L. The 1H samples

were contained inside a 10-mm glass capillary tube with

an inner diameter of 0.8 mm. The field probes were

encapsulated using doped epoxy to minimize magnetic

susceptibility and homogenize the field within the field

probe (24). The field probe samples were tilted at 45

degrees relative to the B0 direction, which decreases the

SNR. However, the SNRs of the field probes were suffi-

ciently high (1,200–4,200) for the 12 probes of the field

camera. The SNR was taken as the maximum amplitude

of the water signal over the SD of the noise region. The

field probes were also decoupled with cable traps tuned

to the proton Larmor frequency (Fig. 2). An in-house

splitter and transceiver chain were used to acquire the

FIDs of the field probes using the MR scanner. A FID

pulse sequence with the following parameters was used

to acquire the FIDs: rectangular pulse excitation with

0.5 ms duration, 5 V; sampling rate¼100 kHz; vector

size¼ 2,048; TR¼25 ms.
Before using the field camera to measure the B0 fields

of the insert shim, different position calibration methods

were investigated to improve the position estimates of

the field probes of the field camera.

Position Calibration

The actual positions of the field probes of the field cam-

era with respect to each other needed to be measured for

the position calibration study. However, the epoxy

encapsulation of the field probes made the accurate mea-

suring of the actual positions of the field probes difficult.

To locate the actual positions of the field probes within

the epoxy molds, a CT scan of the field camera was

acquired. A CT scanner was chosen to circumvent the

image distortions of the MR modality (due to the gradi-

ent nonlinearities or B0 inhomogeneity). The resolution

of the scan was: [1, 1, 0.6386] mm in the respective x-, y-,

and z-directions.
The positions were marked and calculated from the

CT scan and were then used as the reference positions.

These positions could then be compared to the positions

estimated using the MRI scanner.
Three different methods were used to estimate the

positions of the field probes using the MRI scanner. The

first method (denoted as lin) uses Equation [2] and

assumes that the gradient fields are spatially linear

(16,17). The second method (denoted as nonlin) consid-

ers the gradient field spatial nonlinearities by using

Equation [3] for each field probe of the field camera. The

last method uses the gradient nonlinearities in combina-

tion with the CT scan positions. Thus, the positions of

all the field probes are optimized simultaneously by

incorporating relative position constraints obtained from

the CT scan positions. This method is denoted as con-
nonlin (constrained nonlinear estimation).

For the nonlinear methods that use Equation [3], the

GrðrÞ for r 2 ½x; y ; z� needs to be known for each gradient

Table 1
Shim Terms and Insert Shim Coil Sensitivities

Shim
Term

Spherical Harmonic
Function

Sensitivity
(Hz/cmn/A)

Z0 1 6058
Z2 z2-1/2*(x2þy2) 6.942

ZX zx 24.15
ZY zy 24.15

C2 x2-y2 3.64
S2 2xy 3.64
Z3 z(z2-3/2*(x2þy2)) 0.4923

Z2X x(z2-1/4*(x2þy2)) 1.0
Z2Y y(z2-1/4*(x2þy2)) 1.0

ZC2 z(x2-y2) 1.77
ZS2 2zxy 1.77
C3 x(x2-3y2) 0.188

S3 y(3x2-y2) 0.188
Z4 z4-3z2(x2þy2)þ3/8*(x2þy2) 0.04206
Z3X zx(z2-3/4*(x2þy2)) 0.123

Z3Y zy(z2-3/4*(x2þy2)) 0.123
Z2C2 z(x2-y2)(z2-1/6*(x2þy2)) 0.093

Z2S2 2z(xy)(z2-1/6*(x2þy2)) 0.093
ZC3 x(x2-3y2)(z2-1/8*(x2þy2)) 0.121
ZS3 x(x2-3y2) (z2-1/8*(x2þy2)) 0.121

C4 x4-6x2y2þy4 0.0187
S4 4xy(x2-y2) 0.0187

FIG. 2. The field camera (left) consists of 12 field probes (bottom-

right). The direction of the B0 field is also indicated. The CT scan
of the field probe (top-right) shows that the sample within the

epoxy mold can be easily identified.
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direction. Once we have a model for GðrÞ ¼ ½GxðrÞ;
GyðrÞ;GzðrÞ�, the frequencies measured at any position r
can be estimated using Equation [2]. Therefore, we can

find the optimal position (in the linear least squares

sense) by solving the following minimization problem:

min
r
jjf meas � gGðrÞjj2: [4]

In this equation, GðrÞ is the spatial model of the gradient
fields and f meas are the frequencies measured for each

corresponding gradient. To acquire the spatial model

GðrÞ, the gradient fields needed to be measured in a
manner that is independent of the MR scanner to avoid

biased estimates in the MR hardware and image recon-

struction. Therefore, gradient fields were measured by
using a single field probe and moving it to different posi-

tions on a fixed 3D grid. The dimensions of the sampling
grid were 9� 4�9 (in the x–y–z dimensions), with a

spacing of 32� 30�32 mm between each sample. The

frequencies (and thus magnetic field strength) at each of

these positions were measured for each of the gradients.

These data were then used to model the nonlinearities of

the gradient fields by decomposing them using up to

fourth-order spherical harmonic functions:

GðrÞ ¼
XN
l¼0

Xl

m¼�l

km
l Sm

l ðrÞ; [5]

where km
l is the coefficient corresponding to the spheri-

cal harmonic function Sm
l , and where N is the maximum

order of the decomposition; l is the degree; and m is the

order. Note, that if the gradients are perfectly linear, this

reduces to GðrÞ ¼ G � r, which is the same as Equation

[2].
A Newton optimization algorithm can be used to cal-

culate the position of a single field probe. This algorithm

is known for its quadratic convergence rate but is usually

problematic because the Hessian matrix needs to be cal-

culated at every step, and also because it does not

always converge if a poor starting point is chosen. In

this case, these are not significant problems because the

function GðrÞ is a sum of polynomials (Eq. [5]) and thus

the Hessian is relatively easy to calculate from the Jaco-

bian. Additionally, if the starting point is chosen by

assuming perfectly linear gradient fields, this should be

a relatively good approximation of the optimal point,

and thus initializing the starting point should not be a

problem. This means that an optimization method with

quadratic convergence speed can be used and the algo-

rithm was found to typically converge in one step; the

threshold for convergence was 1e-6. The nonlin method

thus used this algorithm to calculate the positions for

each of the field probes. The calculations for the Jaco-

bian and Hessian are given in more detail in the Appen-

dix (available online).
For the connonlin method, the positions of the field

probes are fixed (relative to each other) and can thus be

considered a rigid body. Therefore, only three translation

and three rotation parameters t ¼ ½x; y ; z; u;w; r� need to be

FIG. 3. The objective function for the position optimization for two
of the parameters (x-position and u-rotation). The objective func-

tion is the norm of the difference between the measured and pre-
dicted frequencies calculated from the gradient field models.

FIG. 4. The positions of the field probes (for one position of the field camera) using each of the three-position optimization methods
(left). The differences are quite significant and can sometimes be more than 10 mm. All the field probe positions resulting from several

field camera positions, limited to a 100-mm radius from the isocentre, are also shown (right).
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found to find the optimal positions of all the field probes.

The optimization problem from Equation (3) then becomes:

min
s¼½x;y ;z;u;w;r�

XNp

p¼1

jjf meas � gGðrðsÞÞjj2: [6]

As an example, Figure 3 shows the optimization objec-

tive function for two of the parameters (x-coordinate and

u-rotation). The optimization was performed with a New-

ton optimization algorithm (implemented in Cþþ) using

the Jacobian and Hessian matrices with respect to the

variable s (details are given in the Appendix, available

online). The initial position and rotation parameters

were calculated by using the lin method and registering

the estimated positions to the relative positions of the

field camera acquired from the CT scan.

B0 Mapping Validation

As previously mentioned, field cameras use spherical

harmonic decomposition to describe B0 fields. Therefore,

the number of measured sample points need to be greater

than (or equal to) the number of spherical harmonic coef-

ficients. Also, the sample positions are also important

and need to be sufficiently well distributed for the

matrix S in Equation [5] to be well conditioned (25).

Because we used shim terms up to and including fourth-

order spherical harmonics, each shim field was decom-

posed using up to fourth-order spherical harmonic func-

tions. This resulted in a total of 25 coefficients that needed

to be determined for each shim field. To acquire enough

points, the field camera was placed in eight different posi-

tions to measure the shim fields. Eight positions and 12

field probes on the field camera gave 96 sample points of

each shim field. However, all points outside of a 100-mm

radius (from the isocenter) were discarded to be consistent

with the FOV of the B0 mapping.
A current of 1.0 A was applied to each of the shim

channels for the measurements. Note, that when measur-

ing the shim fields, the shim channels were switched on

for several seconds (at least 5 s) before acquiring the

FIDs using the field camera. This was to allow most

eddy currents to settle before acquisition.
The field camera was calibrated using three different

position estimation methods (lin, nonlin, and connonlin),

and thus each calibration gave a different set of spherical

harmonics coefficients. We determined which set of coeffi-

cients was more accurate by comparing them to the refer-

ence shim maps (acquired using a full B0 mapping

sequence). To compare these fields to the reference maps,

the coefficients were used to reconstruct the field on a

200�200� 200 mm3 FOV. The errors between these recon-

structed fields and the reference maps were compared

using the SDs, as well as the Pearson product moment to

compare the similarity between the reconstructed fields

(26). The Pearson product-moment coefficient is defined as:

rX ;Y ¼
covðX ;YÞ

sX sY
: [7]

This coefficient is a measure of the similarity between the

two signals, which results in a value between �1 and 1,

for which 1 indicates that the signals are identical and 0
indicates that there is no correlation between the signals.

Any error between the reconstructed and reference
maps is a combination of the error in the position esti-
mation and the error due to downsampling the B0 field
by acquiring only a few sample points with the field
camera. We isolated and investigated the effect of down-
sampling by decomposing the fully sampled reference

FIG. 5. The normalized gradient field deviation for 1 mT/m from spa-
tial linearity are shown for five slices (y¼1. . .5), that is, if the gradient

fields were perfectly linear, then each plane would be flat. The devia-
tions are shown in percentage (of the gradient field strength).
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maps using only the sample points given by the con-

strained field camera positions. This is theoretically the

most accurate B0 field that we can acquire using a field

camera (with the same number of sample points).
These decomposition coefficients were then compared

to the original reference maps. Any resulting error is

thus only due to downsampling.

Simulations

We performed simulations to investigate the possible fac-

tors causing differences between the position calibration

methods. The simulations were performed as follows:

1. The field probe positions measured from CT scan-

ner were used as the actual positions.
2. The frequencies at these positions for the x-, y-, and

z-gradients were simulated using the fourth-order

gradient models.
3. These frequencies were used to calculate the posi-

tions using the lin, nonlin, and connonlin methods.
4. The positions were used to decompose:

a. The ideal theoretical shim fields; and
b. The ideal theoretical shim fields with added

random white Gaussian noise.

5. The decomposed models were then compared by

reconstructing the field on a 100� 100� 100 mm3

FOV (as described above).

A range of noise levels were simulated: 0.5%, 1%, 2%,

and 5% of the shim coil strength.

RESULTS

Position Calibration

The positions of the field probes measured using the CT
scanner can be seen in Figure 4 (see connonlin; this
method uses the CT scanner data). The deviation of the
distance between the connonlin and the nonlin is on
average 5.0 6 1.4 mm, with a maximum error of 7.0 mm.
Similarly, the deviation of the distance between the con-
nonlin and the lin method is on average 8.8 6 4.0 mm,
with a maximum error of 14.5 mm. As a reminder, the
lin is the current method (in the literature) used to calcu-
late the positions of the field probes, where the gradient
fields are assumed to be spatially linear.

As mentioned earlier, the field camera was moved to
multiple positions for the measurements to increase the
number of spatial points (an effective total of 49 field
probes). The distribution of the field probe positions calcu-
lated using the connonlin method are shown in Figure 4.

These positions were estimated based on measured
gradient fields. The gradient field measurements showed
that the fields were spatially relatively linear. The devia-
tions from the ideal linear case are shown in Figure 5
(i.e., if the fields were perfectly linear, then each plane
in the figure would be flat). The figure shows that there
are still slight deviations from linearity. These gradient
field measurements were modeled using up to fourth-
order spherical harmonic coefficients. It was previously
shown that the accuracy of the model saturates after
approximately the sixth or seventh order (27). We thus
further compared modeling the gradient fields using

FIG. 6. (Left) The normalized gradient field frequencies for 1 mT/m for 96 field probes (blue) are compared to the frequencies measured
from the reference field map using a B0 mapping sequence (red). The figure shows good agreement between the two measuring techni-
ques. (Right) The normalized mean differences between the frequencies shown on the left.
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sixth- and fourth-order decomposition. The Pearson
product-moment coefficients were 0.9912, 0.9968, and
0.9945 for the x-, y-, and z-gradient fields, respectively
(comparing fields reconstructed on a 200�200�200 mm
FOV). Because the coefficients were very close to 1.0,
this showed that the difference between the fourth-order
and sixth-order models was insignificant.

B0 Mapping Validation

Firstly, we compared the field probe measurements to
the B0 mapping measurements of the gradient fields. Fig-
ure 6 shows the normalized frequencies of the gradient
field reference maps compared to the field probes. The
figure shows that, for the gradient fields, the frequencies
measured from the field camera are very similar to the
frequencies of the reference maps (acquired from the B0

mapping sequence). Figure 6 shows that the mean error
between the frequencies was 0.0008 mT/m, �0.0051 mT/
m, and �0.0016 mT/m for the x-, y- and z-gradients,
respectively (with gradient strength 1 mT/m). For spa-
tially linear gradients, this translates into a position error
of 0.8 mm, �5.1 mm, and �1.6 mm in the x-, y- and z-
directions, respectively. Note that the slightly higher
position error in the y-direction may be due to the distri-
bution of the field probes covering mostly only the lower
y-positions (with respect to the isocenter) (Fig. 6). If the
field probes were more centered in the y-direction, then
this error would most likely reduce (because gradients
are more nonlinear further from the isocenter). The Pear-
son product-moment coefficients were 0.9990, 0.9968,
and 0.9945 for the x-, y-, and z-gradients, respectively.
This metric indicates that the modeled-and-measured
gradient fields were very similar.

After the gradient fields, we analyzed the shim fields
of the insert shim. The reconstructed maps (using the
field probes) were compared to the reference shim field
maps (acquired using a B0 mapping sequence). A com-
parison of the reconstructed fields is shown in Figure 7
(only second-order terms are shown for illustration pur-
poses). The fields were reconstructed for the B0 mapping
and for the field-probe measurements with two different
field-camera calibrations, using the linear estimation and
the constrained optimization method.

The root-mean-squared error (RMSE) for each shim
field was calculated, and respective results are shown in
Figure 8a. There was no single position calibration
method that was the most accurate for every shim field.
However, the connonlin method gave more consistent
results. For example, shim terms ZX and Z3 were poorly
estimated using the lin and nonlin methods, whereas the
connonlin method was able to drastically improve the
accuracy of measuring the B0 map. However, the nonlin
method gave slightly better accuracy than the lin method
for most shim fields. Therefore, if the relative positions
of the probes are unknown, using the gradient fields for
estimating the positions still improves the accuracy of
the position estimates.

Also shown on Figure 8a is the RMSE between the ref-
erence map and the downsampled reference map. As
mentioned in the previous section, the reference map
was spatially downsampled using the field probe

positions. This value indicates the intrinsic error of spa-

tial downsampling; in other words, this would be the

error if the position calibration was perfect. The ZX, Z3,

Z4, and ZC3 shim fields deviate the most and the largest

improvements from the connonlin method is seen for the

ZX, Z3, ZC2, ZS2, and ZC3 terms.
The RMSE for each shim field was also calculated for

the simulated results without noise (Fig. 8b). The level

of error of only downsampling is similar to the measured

data. As expected, the connonlin method reaches the

same level of error as the downsampling case.

Simulations

Figure 9 shows the simulated fields (resulting only from

downsampling) with different levels of noise: 0.5%, 1%,

2%, and 5%. The trend of the deviations between the

theoretical fields and the reconstructed fields from simu-

lations is similar to the deviations in the measured data

in Figure 8a.

FIG. 7. Shim fields for the second-order terms measured using B0

mapping (original reference maps) and measured using the field
camera (with linear estimation and constrained optimization for

position calibration). The fields are shown in Hz (for 1.0 A).
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DISCUSSION

Position Calibration

Three different calibration methods for calculating the
positions of the field probes in a field camera were
investigated. In the current literature, only the linear

estimation has previously been used. However, our
investigation showed that this is not sufficient for accu-
rate B0 monitoring. Instead, a constrained nonlinear opti-
mization should be used. This requires that the relative
field probe positions be measured (which we did using a
CT scan), and also requires that the gradient field

FIG. 8. Mean deviation between the reference shim field maps and the field probes measurements (top). The significant improvements

of the connonlin method are shown (*). Also shown are the RMSEs of the theoretical fields and the simulated fields from the field probes
calculated from simulations (bottom). In both cases, although the connonlin position optimization does not always perform better, it is

more consistent and can improve the accuracy of most B0 fields. RMSE, root-mean-square error.

FIG. 9. Mean deviation between
the theoretical shim fields and
the downsampled field probe

fields calculated from simula-
tions. Different levels of noise
were applied to the simulated

shim fields, and the recon-
structed fields were compared.

The trend of the deviations is
similar to the results from the
measured field probe data.
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nonlinearities be measured and modeled. The connonlin
method gave the best consistency of monitoring the B0

field.
As shown previously in the results section, the gradi-

ent fields could be sufficiently modeled using a fourth-
order decomposition. Increasing the modeling order to
six resulted in very similar coefficients. This is because
the gradient fields only have small imperfections.
Another limiting factor on spherical harmonic decompo-
sition is the fact that it inherently is radially symmetric,
which means that local asymmetric inhomogeneities of the
field cannot be properly modeled. The caveat is that, as we
have seen, small differences in the field probe positions
result in the B0 field models differing significantly. There-
fore, the position of the field probes should be determined
as accurately as possible. To overcome slight modeling
errors in the gradient fields, a constrained position calibra-
tion optimization is recommended.

Intuitively, the constrained optimization should yield
the most accurate result because it considers the fixed
positions of the field probes and also considers the gradi-
ent nonlinearities. The results of the position calibration
of the 12-probe field camera showed that consideration
of the gradient field nonlinearities significantly affected
the estimated positions of the field probes; that is, the
difference could be more than 10.0 mm, which in turn
will affect the spherical harmonic decomposition. Fur-
thermore, the nonlin optimization showed very similar
results to the connonlin optimization for the gradient
fields, indicating that the gradient fields were relatively
well modeled in this region and that the two methods
are in agreement. Although this implied that the nonlin
optimization could be used for position calibration, the
connonlin approach was still used because it was more
robust in measuring the B0 fields.

B0 Mapping Validation

The reference shim field maps were used as the bench-
mark fields because the spatial resolution that can be
achieved by using the mapping sequence is much greater
and thus gives more spatial fidelity. Although the map-
ping sequence is susceptible to imaging artifacts induced
by, for example, gradient nonlinearities and geometric
distortion, the artifacts should be minimal because the
phantom’s spatial coverage was within the gradient
fields’ linear range and the high readout bandwidth min-
imized the geometric distortion (27). However, it should
be noted that the magnetic susceptibility of the material
used for the B0 mapping setup and the field camera
setup were different and could thus result in slight
inconsistencies between the two methods.

The results show that the low spatial sampling of the
field camera (compared to the B0 mapping sequence) is
an important factor in the accuracy of the field model.
Even when the positions of the field probes are perfectly
calibrated, the field model still deviates significantly
from the mapping sequence model. This is shown by the
error of the downsampled field (Fig. 7). There are two
contributing factors for the error between the down-
sampled field and the field maps: 1) the lower spatial
resolution, and 2) the field models were calculated using

up to fourth-order spherical harmonic terms. Therefore,
the higher spatial frequency information (and field
imperfections) cannot be accurately modeled with
fourth-order terms. This is also consistent with the level
of error shown in the simulations compared to the mea-
sured data (Fig. 8). It was also shown in (27) that there is
a significant loss of accuracy when the fields are mod-
eled using up to fourth-order terms instead of using up
to sixth-order terms. Andersen et al. (25) also found that
using 16 field probes is not sufficient to model the field
using up to third-order decomposition.

The field comparison was performed by reconstructing
the fields from the spherical harmonic coefficients and
comparing the difference between them. The field coeffi-
cients were not directly used as a comparison because
they are difficult to interpret. Firstly, the coefficients
depend on the units of measurement that they are
decomposed with. For example, decomposing using
meters will result in the coefficients increasing exponen-
tially with the order of the spherical harmonic function,
whereas decomposing using centimeters results in the
coefficients an exponential decrease with the order. This
makes it difficult to compare B0 fields using only coeffi-
cients due to the different orders of magnitudes of the
coefficients. Secondly, coefficients are difficult to com-
pare because two similar fields can have widely varying
coefficients, especially if the measurements are noisy.
Thus, the fields were reconstructed from the coefficients
to better perform the comparison of the models.

The results showed that comparing the RMSE between
the models (in Hz) using the connonlin optimization was
the most similar to the downsampled model from the
mapping sequence. The remaining difference between the
downsampled model and connonlin model can be
explained by the noise in the B0 maps or field-probe meas-
urements (because the signals dephase in strong applied
fields). The models acquired from the field camera are
sensitive to noise due to the low number of spatial sample
points. The noise level is similar to the simulated noise
levels for approximately 1% to 2% noise. This noise can
be result from measurement noise or any inconsistencies
between the B0 mapping setup with the phantom and the
field camera setup. A limitation of this study is that the
magnetic susceptibility effects of the field camera mount
material were not matched to the field probe. Therefore,
the measured magnetic fields could deviate between the
two setups. Although for position calibration purposes
this would be minimized because of the relative position
constraints, the effect of the magnetic susceptibility could
explain the residual inconsistencies between the two field
measurement methods.

The difference between the RMSEs showed that the lin-
ear optimization of the position calibration can lead to sig-
nificant errors in the modeled B0 fields. Although using
connonlin optimization can reduce the errors, for some
shim channels they could not be reduced any further.

CONCLUSION

In this study, we compared position calibration methods
for the field probes. We introduced a method that used
information about the gradient field spatial nonlinearities
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and relative field probe positions to estimate the probe
positions.

Furthermore, we compared the spatial fidelity of the
field camera to B0 mapping sequences. We showed that a
limited number of field probes (thus reduced number of
sample points) resulted in a loss of spatial accuracy. Fur-
thermore, a constrained optimization calibration yielded
the best results for the shim fields. However, for some
shim fields, all calibration methods performed similarly.

The low spatial sampling of the field camera results in
an unavoidable loss of spatial accuracy. The linear position
calibration method that is currently used is more inaccu-
rate than a constrained optimization method that uses prior
knowledge about gradient nonlinearities and relative field
probe positions. A more accurate probe position estimate
means that field monitoring will be more accurate, espe-
cially for higherorder terms. Therefore, B0 shimming with
the field camera will be more accurate.

APPENDIX

The Jacobian and Hessian for the optimisation functions
from Equations [4] and [5] can be calculated as follows.
For the cost function:

F ¼ jjK rð Þ � f measjj2

where K rð Þ is defined as gG rð Þ, and G rð Þ is defined by
Equation [5], the Jacobian is:

rF ¼ K rð Þ � f measð ÞT � rK rð Þ

and the Hessian is:

r2F ¼ rK rð ÞT � rK rð Þ þ K rð Þ � f measð ÞT � r2K rð Þ

Since K rð Þ is a linear combination of Legendre polyno-
mials (Eq. [5]), the partial derivatives are given by:
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If there are multiple positions r1; . . . ; rn and the positions
are constrained relative to each other (as in the case of
the constrained optimisation), then the positions can be a
function of a rigid transformation (a rotation and a trans-
lation) defined by parameters s ¼ x0; y0; z0; u;w; r½ �:

ri ¼

cos w cos r cos r sin u sin w� cos u sin r cos u cos r sin w

cos w sin r cos u cos rþ sin u sin w sin r �cos r sin uþ cos u sin w sin r

�sin w cos w sin u cos u cos w

2
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3
775 � ri;0 þ
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2
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3
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The function rK r sð Þð Þ can now be calculated with

respect to s, where ri;0 is the initial position of position

ri. So the Jacobian (for Eq. [6]) is then:

rF ¼ K r sð Þð Þ � f measð ÞT � rK r sð Þð Þ � rr sð Þ

and the Hessian can be similarly calculated.
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Controller Design for Feedback of B0 Shim Systems 

Abstract 

Magnetic resonance imaging (MRI) is dependent on a static magnetic B0 field. This field needs to be as 

homogeneous as possible because an inhomogeneous B0 field can result in poor quality data and artifacts. 

Additional “shim” coils typically used to homogenize the field. However, the need for more 

sophisticated methods of B0 shimming is increasing because the inhomogeneity of B0 increases at higher 

field strengths. 

Although spatial homogeneity of the B0 field needs to be maintained, in reality disturbances cause 

temporal fluctuations in the field. One way that the B0 homogeneity can be improved is using feedback. 

This would allow the B0 field to be corrected for temporal fluctuations caused by sources such as eddy 

currents and physiological disturbances during a scan. Shim systems are large multivariable systems 

because the number of shim coils define the number of inputs of the system. 

In this study, a NMR field camera was used to measure the dynamics of the B0 shim system at a 9.4T 

human MRI scanner. Custom-built hardware and software was used to actuate the currents of the shim 

coils at an update rate of 1ms. For this multivariable system, three different decoupling strategies were 

investigated: a static decoupling, Vaes optimal static decoupling and dynamic decoupling. Optimal PI 

controllers were designed for the effective decoupled systems. The performance and robustness of the 

closed-loop systems were analysed. 

We showed a decoupling method for designing a feedback control of a multivariable B0 shim system. 

For large multivariable system that are near-diagonal, static decoupling proved to be more robust than 

dynamic decoupling. Decoupling control and optimal PI controller design were used to demonstrate the 

potential and limitations of real-time feedback in a B0 shimming application. 

Introduction 

Magnetic resonance imaging relies on a main static magnetic B0 field to acquire signals for imaging and 

spectroscopy. MRI scanners for humans are moving towards higher magnetic field strengths of 7T and 

9.4T. This is driven by a need for higher signal-to-noise ratio (SNR) resulting in higher resolution 

imaging in a shorter time. As the strength of the B0 field increases, the field becomes more 

inhomogeneous [1, 2]. As a result, the problem of B0 homogeneity is becoming a greater concern for 

the ultra-high field MRI community since an inhomogeneous B0 field can compromise data quality and 

introduce multiple artifacts into the images such as image distortions and signal dropout [3, 4]. 

The magnetic field homogeneity is usually maintained using an extra set of “shim” coils that drive DC 

currents to generate magnetic fields that correct for inhomogeneities. However, the switching of strong 

gradient fields can couple with these coil elements and generate eddy currents that result in artifacts [5, 

6, 7]. Furthermore, for dynamic slice-wise B0 shimming, switching shim currents can also cross-couple 

and generate eddy currents [8, 9]. To compensate for eddy currents, the B0 shim coils can be dynamically 

decoupled using pre-emphasis in an open-loop setup. Pre-emphasis is typically done for the gradient 

coils [10, 11]. However, pre-emphasis of shim coils has only been done in recent years [8, 9, 12]. This 

has been performed on spherical harmonic systems using a multiple-input multiple-output (MIMO) 

model and designing a filter based on the inverse of the model [12]. 

However, a feedback (or closed-loop) system is useful for maintaining a constantly homogeneous B0 

field since the magnetic field is susceptible to fluctuations during a MRI scan [13]. Any unmodeled 

disturbance such as physiological disturbances from breathing and motion or drift of the magnet and 

thermal changes of the equipment can be prospectively corrected for using feedback. For physiological 

fluctuations of the B0 field, closed-loop control has been used to keep the magnetic field homogeneous 

[14, 13]. In [13], a feedback system was used to correct for slow-varying fluctuations using single-input 

single-output (SISO) proportional-integral-derivative (PID) controllers which were tuned with the 

Ziegler-Nichols method. This method, while still used in industry, is outdated and is well-known to have 



problems with robustness [15]. The update rate in [13] was 100 ms which is sufficient for slow-varying 

fluctuations but cannot correct for faster variations such as eddy current effects, for example, for fast-

changing gradient currents in fast sequences. Even though for slow update rates, using pre-emphasis and 

SISO PID controllers is sufficient, if the update rates are faster than the spatiotemporal dynamics of the 

shim system, alternative methods for controller design need to be investigated. So far, a controller design 

strategy for real-time feedback of shim systems for fast sampling times has not been shown. 

Furthermore, in the case of [13], cross-coupling interactions between higher order shim coils were not 

considered. Different approaches can be used for this purpose. Dynamic decoupling (or pre-emphasis 

[9, 12]) can decouple the system over a larger range of frequencies, however, this requires an accurate 

model of the system and is difficult to implement. Static decoupling is much easier to implement but 

only decouples the system for a small frequency range. 

In this work, we measure the dynamics of a shim system using B0 mapping and a field camera for 

comparison and then use these measurements to model the system using a parametric model. This model 

is then used to show the feasibility of designing a pre-emphasis MIMO filter (as previously done in [12]). 

We then also show, for the first time in B0 shimming, a design for a closed-loop feedback controller that 

can help correct for slow time-varying changes (eddy currents and physiological fluctuations) and faster 

transient dynamics of the system. We also introduce metrics for analyzing control systems in the context 

of B0 shimming. 

Theory 

Linear Time-invariant Control Systems 

Linear time-invariant (LTI) systems can be fully characterized by their impulse response function as 

described in [16, 17, 18]. Therefore, a LTI system can be represented as a transfer function, which 

means that any nth-order ordinary differential equation: 

𝑎𝑛 (
𝑑

𝑑𝑡
)

𝑛

⋅ 𝑦(𝑡) + ⋯ + 𝑎1

𝑑

𝑑𝑡
⋅ 𝑦(𝑡) + 𝑎0 ⋅ 𝑦(𝑡) = 𝑏𝑚 (

𝑑

𝑑𝑡
)

𝑚

⋅ 𝑢(𝑡) + ⋯ + 𝑏1

𝑑

𝑑𝑡
⋅ 𝑢(𝑡) + 𝑏0 ⋅ 𝑢(𝑡) 

(1) 

Can be written as: 

𝑎𝑛𝑠𝑛𝑌(𝑠) + ⋯ + 𝑎1𝑠𝑌(𝑠) + 𝑎0𝑌(𝑠) = 𝑏𝑚𝑠𝑚𝑈(𝑠) + ⋯ + 𝑏1𝑠𝑈(𝑠) + 𝑏0𝑈(𝑠)

(𝑎𝑛𝑠𝑛 + ⋯ + 𝑎1𝑠 + 𝑎0) ⋅ 𝑌(𝑠) = (𝑏𝑚𝑠𝑚 + ⋯ + 𝑏1𝑠 + 𝑏0) ⋅ 𝑈(𝑠)

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

𝑏𝑚𝑠𝑚 + ⋯ + 𝑏1𝑠 + 𝑏0

𝑎𝑛𝑠𝑛 + ⋯ + 𝑎1𝑠 + 𝑎0

 

 

 

(2) 

Where u(t) and y(t) are the input and output signal of the system, respectively; U(s) and Y(s) are the 

Laplace transforms of the corresponding signals and zero initial conditions are assumed. It should also 

be noted that s is complex and the equivalent, more commonly used frequency domain transfer function 

[16, 12] is obtained by setting the real part to zero, that is: 𝑠 = 𝑗𝜔. Hence, 𝐺(𝑠) is the impulse response 

function of the system in the Laplace domain (also known as the s-domain). 

The system 𝐺(𝑠) can be corrected for by simply using a filter 𝐾(𝑠) in series with the system, where 

𝐾(𝑠) ≈ 𝐺−1(𝑠). For all physical processes, the system 𝐺(𝑠) is strictly proper, which mean that 𝑚 < 𝑛. 

Therefore, implementing 𝐾(𝑠) ≈ 𝑈(𝑠) 𝑌(𝑠)⁄  in a physical system is not feasible, and thus a propering 

filter 𝐹(𝑠) is typically used such that 𝐾(𝑠) = 𝑈(𝑠) (𝑌(𝑠) ∗ 𝐹(𝑠))⁄  where the degree of 𝐹(𝑠) is larger 

than (𝑚 − 𝑛). Filters that implement an inversion of the system are also known as pre-emphasis or pre-

compensation filters and have previously been used to improve the performance of gradient and shim 

systems [9, 12]. A control system without any feedback (such as the one described above) is also known 

as an open-loop controller (Figure 1a). 

However, if a feedback system is implemented (Figure 1b) such that the loop is closed, the design of 

𝐾(𝑠) is not as intuitive. A commonly used structure of 𝐾(𝑠) in industry is the proportional-integral-

differential (PID) controller, which has the following structure: 



𝐾(𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠⁄ + 𝑠 ⋅ 𝐾𝐷 (3) 

Another commonly used controller implement only the first two terms and are referred to as PI 

controllers. These controllers are an industry standard because they are easy to implement in practice. 

However, the tuning of PI/D controllers is still commonly done by rule-of-thumb or heuristically (such 

as the Ziegler-Nichols tuning method [19, 13]) and is often not optimal [15]. This is mainly because of 

two factors: firstly, the objectives to be optimized are often not clear since there is a trade-off between 

performance and robustness, and secondly, it is still unclear what measures should be used to evaluate 

the performance of such controllers and the objectives are often nonlinear, which make the calculation 

of optimal parameters complex and time-consuming [20, 21]. 

Evaluation of the performance of transfer functions can be done by looking at the closed-loop transfer 

function, calculated from y(s) with respect to the r(s) signal (from Figure 1b). Typical performance 

criteria use the response time, settling time, or absolute-integral-error (IAE) of the y(s) signal [22]. On 

the other hand, robustness can be evaluated from y(s) with respect to the v(s) or d(s) signals, referred to 

as the input and output disturbance signals, respectively. The transfer function 
𝑌(𝑠)

𝐷(𝑠)
=

1

1+𝐾(𝑠)⋅𝐺(𝑠)
 is 

known as the sensitivity function [22, 23]. 

Decoupling Control 

The theory presented in the previous section only dealt with SISO LTI systems. This can easily be 

extended to MIMO systems using transfer functions. A MIMO system can be represented using a matrix 

of transfer functions as described in [12, 24]. Theoretically, an input on one channel of the system can 

result in outputs on all the output channels. If the system is weakly coupled then the off-diagonal terms 

are approximately zero. Figure 2a depicts a model of a MIMO system for two inputs and two outputs. 

Again, if pre-emphasis is used, then we simply design a filter that is approximately the inverse of the 

matrix of transfer functions. However, the design of closed-loop controllers becomes more complicated. 

Although there are methods to design MIMO systems, many of these methods are not scalable to larger 

systems. If a MIMO system is large and nearly diagonal, arguably the easiest approach would be to 

decouple the system (T(s) in Figure 2b) so that the off-diagonal terms become negligible and we are left 

with an array of SISO systems, and therefore the design process of the controller becomes much simpler. 

There are multiple options for decoupling a MIMO system. Firstly, we can use pre-emphasis and 

dynamically decouple the system over a large frequency range; secondly, we can statically decouple the 

system by inverting the steady-state gain of the system [25]. Alternatively, instead of using only the 

steady-state information (that is, at 0 Hz), one can optimize static decoupling matrices 𝑇𝑢 and 𝑇𝑦  (as 

shown in Figure 2c) to decouple the system over a range of frequencies [26, 27]. 

A decoupled (or decentralized) system should have as many degrees of freedom as possible, such that 

the performance and robustness of the resulting SISO systems are not restricted by the process of 

decoupling [28, 29]. A good measure for evaluating decoupling is the μ-interaction measure which can 

be directly related to the stability of the decentralized controller [29]. The μ-interaction is defined as the 

singular value of the relative error matrix, where the relative error matrix is: 

𝐸𝑃𝑑
(ω) = (𝑃𝑑(𝜔) − 𝑑𝑖𝑎𝑔{𝑃𝑑,𝑖𝑖(𝜔)}) ∙ (𝑑𝑖𝑎𝑔{𝑃𝑑,𝑖𝑖(𝜔)})

−1
 (4) 

And 

𝑃𝑑(ω) = 𝑇𝑦𝑃(𝜔)𝑇𝑢 (5) 

where 𝑇𝑢 and 𝑇𝑦 are the decoupling matrices and 𝑃(𝜔) is the measured frequency response function 

(FRF) matrix. The complementary sensitivities of the decoupled SISO loops are limited by the inverse 

of the μ-interaction measure. Thus, an optimal decentralized controller can be found by minimizing the 

μ-interaction (maximum singular value of 𝐸𝑃𝑑
(𝜔)) over the frequency range of interest. 



Once the system has been sufficiently decoupled and we are left with the effective SISO systems, the 

cross-coupling effects can be considered as output disturbance signals (as shown in Figure 2a), and 

individual controllers can be designed for each SISO system (𝐶1, … , 𝐶𝑃 are the controllers in Figure 2c) 

Methods 

Hardware 

A B0 insert shim system from Resonance Research Inc. (RRI) (Billerica, MA) was used (Figure 3). The 

shim coils were designed using the spherical harmonic functions as basis functions. 28 shim coils were 

available and included full zeroth, second, third and fourth degree spherical harmonic shim terms. The 

scanner was a Siemens 9.4T human whole-body Magnetom (Erlangen, Germany). 

The B0 shim system is multivariable in nature since there are multiple shim coils and these interact with 

each other due to eddy currents. Furthermore, the construction of the shim coils is not perfect and thus 

the magnetic field generated by the coil is not the spatial spherical harmonic function that it was designed 

to be [30]. 

Proton field probes were constructed using a small capillary tube filled with doped water and 

encapsulated within epoxy as described in [31, 32, 33]. NMR field probes are useful for measuring the 

spatiotemporal dynamics of the magnetic field. The sample in the probe can be excited to generate a 

free induction decay (FID) signal within the MRI scanner. The magnetic field strength is calculated from 

the phase φ of the FID signal as follows: 

𝐵0 =
1

𝛾
∙

𝑑𝜑

𝑑𝑡
 

(6) 

For proton, the gyromagnetic ratio is 42.577 MHz/T.   

An array of NMR field probes is usually referred to as a field camera. In this study, a 1H 12-probe field 

camera (Figure 3) was built for measuring the dynamics of the B0 field [33, 34]. 

The shim amplifiers were driven and controlled by custom hardware. A commercial off-the-shelf 

microcontroller (Raspberry Pi 2 B) with a 900 MHz quad-core ARM Cortex-A7 CPU running a Debian 

distribution of Linux was used (Figure 4a). Synchronization with the MRI scanner was performed using 

a transistor-transistor logic (TTL) trigger as an input into one of the general purpose input/output (GPIO) 

pins of the microcontroller. Low level control of the device was performed using the WiringPi library 

written in C. The controller was connected to a digital-to-analog converter (DAC) board (AD5360 from 

Analog Devices), and communicated through a serial peripheral interface (SPI) protocol (Figure 4a). 

The clock rate of the SPI was 5 MHz and required 32-bits to update a single channel. The DAC board 

had 16 channels, and therefore two boards were required for a sufficient number of channels to drive 

the insert shim amplifiers. However, in this application only 16 channels were used (up to full 3rd degree 

shim terms) could be controlled. Updating 16 channels required approximately 100 us for the SPI 

communication. All software implementation on the microcontroller were done in C. 

The DAC was then connected to two banks of single-to-differential amplifiers. Each bank had 16 

amplifiers and had a separate power supply. An ADC driver from Texas Instruments (AN-1812) was 

used for this purpose. The board schematic is shown in Figure 4b. Each board could provide a voltage 

of ±5V rail-to-rail and a current of 0.5A. The outputs from the amplifiers were then connected to the 

shim amplifier. 

Data Acquisition 

The B0 shim system was characterized using two different methods of measuring the spatiotemporal 

dynamics of the magnetic field. Firstly, a low resolution B0 mapping sequence was used to acquire fast 

B0 maps. A 3D dual-echo GRE sequence with the following parameters was used: matrix size of 

32x32x4; FOV of 200x200x80 mm; ΔTE = 1 ms; TR = 400 ms. The maps were acquired with a temporal 



resolution of 600 ms for a total duration of 10 seconds. A shim current of 1.0A was applied to one of 

the channels during the acquisition. This was then done for each of the channels of the insert shim. 

Secondly, the resulting changes in the magnetic field were also measured using the field camera. The 

field camera measurements were decomposed using the spherical harmonic functions and hence, the 

magnetic field was characterized by the corresponding coefficients. These coefficients were converted 

into current using Equation 6 and the coil design sensitivities. The coil sensitivities are given in the 

supporting material (Table S1). For system identification of the gradient (1st degree) terms, a step input 

of 1 mT/m was applied to each of the gradient coils. The spherical harmonic coefficients of the 1st 

degree terms were converted to mT/m. Therefore, the units of 1st degree terms are in mT/m and all other 

degrees are in Amperes. 

The field camera measurements were decomposed using the Legendre polynomials. As mentioned in 

[34], the magnetic field can be decomposed if the positions of the field probes are known. This is 

calculated by solving the system of linear equations: 

𝐵(𝒓) = ∑ ∑ 𝑘𝑙
𝑚

𝑙

𝑚=−𝑙

𝑁

𝑙=0

𝑆𝑙
𝑚(𝒓) 

(7) 

where 𝑆𝑙
𝑚  is the spherical harmonic function of degree l and order m and 𝑘𝑙

𝑚  is the corresponding 

coefficient, r is the position (x,y,z) and B is the magnetic field strength at position r. Thus, the units of 

the 𝑘𝑙
𝑚 coefficients are Tesla. 

The positions of the field probes are calculated with a constrained optimization method using the 

gradient fields of the MRI scanner. Prior knowledge of the spatial positions of the field probes (relative 

to each other) were used to constrain the probe positions. The position of the field camera within the 

MRI scanner was optimized for nonlinearities in the gradient fields [33]. A disadvantage of the field 

camera is that the limited number of field probes means that the magnetic field cannot be measured with 

high spatial resolution. The number of spatial measurements was increased by moving the field camera 

to multiple positions and repeating the measurements for each position. The field camera measurements 

were then combined across all measurements. Only spatial points within the volume of interest (VOI) 

were retained; this resulted in a total of 50 spatial points measured by the field probes. 

The field probes were repeatedly excited at intervals of 25 ms to produce the FID signals during the 

measurements. The excitation pulses were rectangular RF pulses with a duration of 100 us. The FIDs 

were measured at a sampling rate of 10 kHz. The phase signals calculated from the FIDs were then 

downsampled to 1 kHz (i.e. samples were averaged over every 1 ms) to reduce the noise in the raw 

phase signals. 

Finally, the spatial accuracy of the two measurement approaches (B0 mapping versus field camera 

measurements) were compared by reconstructing the spatial distribution of the fields using the field 

camera coefficients (𝑘𝑙
𝑚). 

System Identification and Pre-emphasis 

In this study, a simple unit step was used as input for system characterization (or identification). The 

measurements from the field camera were used for system identification since the temporal resolution 

was much higher than the temporal resolution of the B0 mapping sequences. 

For the full 4th degree system, we decomposed each of the field measurements up to 4th degree spherical 

harmonic terms. Therefore, the system had a total of 25 input channels and a total of 25 output channels 

(coefficients of the spherical harmonic decomposition or 𝑘𝑚
𝑙  from Equation 7). The system matrix of 

transfer functions was then: 

𝑮(𝑠) = [

𝐺1,1(𝑠) ⋯ 𝐺1,25(𝑠)

⋮ ⋱ ⋮
𝐺25,1(𝑠) ⋯ 𝐺25,25(𝑠)

] 

(8) 



Where each transfer function 𝐺𝑗,𝑘 (𝑠) can be determined from 𝑌𝑘(𝑠)/𝑈𝑗(𝑠) where 𝑌𝑘(𝑠) is the Laplace 

transform of the kth output channel time domain signal of the open-loop system, and  𝑈𝑗(𝑠) is the Laplace 

transform of the jth input channel time domain signal of the open-loop system, and 1 ≤ 𝑗, 𝑘 ≤ 25. 

One method for characterizing the system 𝐺𝑗,𝑘  (𝑠) is to predefine the order of the system and find the 

parameters that best fit the model to the data. In other words, suppose we use a first order system: 

𝑔𝑚𝑜𝑑𝑒𝑙(𝑠) =
𝑏0

𝑎1𝑠 + 𝑎0

 
(9) 

Then an optimization is performed to find parameters [𝑏0, 𝑎0, 𝑎1] that best fit the data. The initial values 

of the parameters can be well estimated by using the time response of the system, which is approximately 

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ≈ 𝑎1 𝑎0⁄ , and the gain of the system which is 𝑏0/𝑎0. 

For the transfer functions of the system 𝑮(𝑠), third order models were used to fit each element of the 

matrix. Most of the cross-coupling effects (i.e. off-diagonal terms) are due to eddy current effects. 

Furthermore, eddy current effects can be well-modeled using exponentially decaying functions in the 

time domain (which are first order systems) [35]. 

For pre-emphasis, due to the hardware limitations mentioned previously, only up to 3rd degree shim 

terms were considered. Therefore, the system identification process are repeated using only up to 3rd 

degree shim terms and decomposition. Therefore, the system had a total of 16 inputs and 16 outputs. 

Pre-emphasis was performed by inverting the system 𝑮(𝑠) and a propering filter 𝑭(𝑠) where all off-

diagonal elements were zero and the diagonal transfer functions were 𝐹𝑘,𝑘(𝑠) = (200 𝑠 + 200⁄ )  for 

1 ≤ 𝑘 ≤ 16. The resulting matrix filter was then: 𝑲(𝑠) = 𝑮−1(𝑠) ⋅ 𝑭(𝑠). However, this filter needed to 

be implemented on a microcontroller and therefore needed to be converted to discrete time. If the 

sampling/update rate T of the system is constant, then a continuous filter 𝑲(𝑠) can be converted to 

discrete time by going to the z-domain 𝑲(𝑧) where 𝑠 =
1

𝑇
ln 𝑧. This is normally accompanied by a zero-

order hold so that the output is step-wise invariant. Therefore the digital filter was implemented as: 

𝑲(𝑧) = ℤ{𝑮−1(𝑠) ⋅ 𝑭(𝑠) ⋅ 𝑑𝑖𝑎𝑔 (
1 − 𝑒−𝑠𝑇

𝑠𝑇
)} 

(10) 

Where ℤ is the z-transform. Even though the DACs could be updated at a rate of 100 us, since the 

microcontroller did not run a real-time operating system and had latencies, we used a more conservative 

sampling/update rate of 2 kHz. 

Closed-loop Feedback 

Using the μ-interaction measure, we can determine how well the system was decoupled and compare 

different decoupling methods. Three decoupling strategies were simulated on the B0 shim system: static 

decoupling, static decoupling using the Vaes method [36], and dynamic decoupling. 

Firstly, the static decoupling was performed by calculating the steady-state of the system and inverting 

this matrix (to find the 𝑇𝑢 decoupling matrix). The 𝑇𝑦 decoupling matrix was set to the identity matrix. 

Secondly, the Vaes method was used to calculate both static decoupling matrices. This method uses the 

μ-interaction measure as a cost function for an optimization problem. The optimization parameters are 

the elements of the matrices 𝑇𝑢 and 𝑇𝑦. The optimization problem is then [36]: 

min
𝛼1,1…𝛼𝑛,𝑛,𝛽1,1…𝛽𝑛,𝑛

(max
𝜔

𝜇∆(𝐸𝑃𝑑
(ω) ∙ W(ω))) (11) 

where 𝜇∆ is the μ-interaction measure for decentralized controller Δ, 𝛼1,1, … 𝛼𝑛,𝑛 are the elements of 𝑇𝑢, 

𝛽1,1 … 𝛽𝑛,𝑛 are the elements of 𝑇𝑦, and 𝑊(𝜔) is a weighting vector. 

Since the optimization problem is nonlinear, a constrained conjugate gradient descent algorithm with 

the interior-point method (25), was used. The 𝑇𝑢 and 𝑇𝑦  matrices were constrained to have singular 

values between (0.1 and 10) to ensure that they are well-conditioned. The solution found by the 



algorithm is also dependent on the initial starting point because the problem has local minima. Vaes [27] 

suggested using the Owen’s method to find the initial starting point. However, since the B0 shim system 

was nearly-diagonal, the static decoupling matrices (described previously) were used as the starting 

point. Since we were interested in decoupling low-frequency dynamics (between 0 and 1Hz), the 

weighting vector was defined as: 

W(ω) = {
1 0 ≤ 𝜔 ≤ 0.01 ∙ 2𝜋
1

𝜔
0.01 ∙ 2𝜋 < 𝜔

 
(12) 

Lastly, a dynamic decoupling compensator, which was the same as the pre-emphasis filter described in 

the previous section, was used. 

The decoupled system was used to design controllers for the effective SISO systems. To simplify the 

implementation of the controller, PI controllers were designed for this application. An optimization 

problem was formed to find the optimal controller for each effective SISO system An integral-absolute 

error (IAE) constraint was used to ensure that the performance of each closed-loop system had a 

sufficiently fast settling time (within a few milliseconds). Another constraint was used to ensure that the 

input current used to drive the amplifiers were not too large. The maximum control effort (the signal 

that the amplifiers must drive or u(s) from Figure 1b) was restricted to three times the maximum of the 

desired set-point signal r(t). The goal was to optimize the closed-loop robustness, so the objective 

function was to maximize the open-loop phase-margin. Therefore, the optimization problem was written 

as: 

max
𝐾𝑃,𝐾𝐼

𝑃𝑀(𝐺(𝑠) ∙ (𝐾𝑃 +
𝐾𝐼

𝑠⁄ ))

𝑠. 𝑡.
∫ |𝑦(𝑡)| ∙ 𝑑𝑡

∞

𝑡=0

< 𝐸

max |𝑢(𝑡)| < 2.5 ∗ max |𝑟(𝑡)|

 

 

 

(13) 

where G(s) is the plant system of the SISO loop, y(t) is the output signal of the SISO system and E is a 

constant (= 0.005). The constant E was chosen empirically such that the average closed loop response 

time was approximately 4 ms. The constraint on the control effort u(t) ensures that input signal to the 

amplifiers is not too large. For example, in this case, if a current of 1.0 A is required then the amplifiers 

will not use more than 2.5 A. 

The complete closed-loop system was simulated for discrete-time controller with a sampling rate of 2 

kHz to be consistent with the sampling rate of the pre-emphasis filter (in the previous section) and the 

shim system was simulated in the continuous time domain. The closed-loop system was hence a mixed 

signal system. 

Results 

System Identification and Pre-emphasis 

The spatiotemporal dynamics of the shim system were measured using a B0 mapping sequence as well 

as a field camera for comparison. Figure 5 shows the comparison between the fields measured using the 

two methods for some of the shim terms. The spatial distributions of the fields are similar between the 

two methods, however, the field camera measurements clearly have some deviations from the B0 

mapping sequence. Although, the B0 mapping sequence had a higher spatial resolution than the field 

camera, the field camera has higher temporal resolution. The temporal sampling rate of the B0 mapping 

sequence was 600 ms while the (effective) temporal resolution of the field camera was 1 ms. 

All the self-terms up to 4th degree shim terms are shown in Figure 6 in the time domain. Both the 

measured data and modeled responses are shown in the figure. It can be seen that the Z3 and Z4 terms 

deviate quite substantially from the ideal case. Also, for C3 and some of the higher 4th degree terms the 

steady-state values are not close to 1.0. The fit accuracy for most of the self-terms is very high (above 

85% for all terms excluding Z4 that could not be accurately modeled using spherical harmonics). Some 



of the more significant cross-terms are also shown in the figure. The accuracy of the model for the cross 

terms is generally lower than the self-terms because the magnitude of the cross terms are usually smaller 

and hence noisier in comparison. 

Figure 7 shows the steady state amplitudes given by the 3rd degree system that was modeled for pre-

emphasis.  Using the measured data for modelling a system, a pre-emphasis compensation filter was 

designed. The resulting pre-emphasis step input responses are shown for some of the shim terms in 

Figure 7. Only up to 3rd degree shim terms could be corrected for because of the limited number of 

channels of the DAC. It can be seen from the figure that the transients caused by eddy currents were 

corrected by the pre-emphasis filter and the responses are much closer to the intended step input. Note 

that the uncorrected responses differ from Figure 6 (which is decomposed up to 4th degree) since the 

pre-emphasis model only used up to 3rd degree decomposition. 

Closed-loop Feedback 

Firstly, we analyze the performance of the decoupling using the μ-interaction measure. The lower the 

maximum singular value, the better decoupled the system. In Figure 8, the μ-interactions are shown for 

a dynamically decoupled system (using pre-emphasis) and two static decoupling methods between a 

frequency range of 1e-4 to 1e5 Hz. The dynamically decoupled system has much lower μ-interaction 

for the entire frequency range, which is expected. The statically decoupled system (that only decouples 

on the 0 Hz frequency) is well decoupled for the low frequencies but quickly increases and is worse than 

the original system for frequencies higher than 0.5 Hz. Finally, the optimal statically decoupled system 

(using the Vaes method) again shows good decoupling for low frequencies but is able to better decouple 

the system for a wider range of frequencies. It performs better than the original system over a wide 

bandwidth. 

The performance and robustness of the closed-loop systems were analyzed. The step responses of the 

closed-loop self-terms are shown in Figure 9 for all 3rd degree self-terms. The step response of statically 

decoupled and Vaes decoupled systems were similar. Both dynamically and statically decoupled 

systems have similar settling times. However, the dynamically decoupled system has more overshoot 

and thus is less robust. The sensitivity functions are also shown for each channel. The lower the values, 

the more robust the system is. This, again, shows that the dynamically decoupled system is less robust. 

The performance of the statically and Vaes decoupled systems are similar for some terms like Z3, Z2X 

and S3. However, the Vaes system performs slightly better (faster settling time) for some terms such as 

X, ZX and ZC2 and furthermore, from the sensitivity plots, the robustness is also better for the Vaes 

system. 

Finally, Figure 10 shows the control effort required to achieve this performance. That is, it shows the 

u(t) signal for a step input r(t) (refer to Figure 1b). The dynamically decoupled system has higher 

amplitude and more oscillation than the two statically decoupled systems. This also explains why the 

dynamically decoupled case is less robust. For static/Vaes decoupling, the required control effort 

remains below five times the r(t) set-point current. However, for higher 3rd degree terms the required 

current to drive the amplifiers is less than 2.5 times r(t). 

Discussion 

In this study, we modeled a B0 shim system up to 3rd degree spherical harmonic terms. A digital pre-

emphasis filter was used to compensate for coupling between the shim terms and this was implemented 

on a commercial-off-the-shelf microcontroller and DACs using custom software. We proposed a method 

for designing closed-loop controllers for fast update rates using decoupling control. To the best of our 

knowledge, decoupling design methods for feedback control of B0 shim system has not been shown in 

previous studies. 

System Identification and Pre-emphasis 



We showed that system identification can be performed using a simple step input. However, since the 

power of the input signal decreases with frequency, the higher frequency dynamics are dominated by 

noise. In comparison to [16] which used chirp signals as inputs (constant power for a wideband 

frequency range) using a step input is less accurate for the high frequency components. Nevertheless, 

for slower dynamics such as eddy currents a step input is sufficient. 

Furthermore, in modeling the system, we used a parametric time domain method. The resulting models 

are therefore simple and easier to work with analytically. Again, compared to [12] which used a non-

parametric method in the frequency domain to characterize the system, our method is less accurate as it 

is unable to model the high frequency components and resonances [37]. Furthermore, since the method 

presented in the paper is parametric, it makes an assumption about the structure of the dynamic system 

and is less flexible than a non-parametric method. However, our method still gave reasonably good 

accuracy. In addition, when designing closed-loop controllers it is usually understood that the model of 

the system is usually an approximation and that uncertainty in the model needs to be accounted for, 

which is why controllers are designed to be robust against a margin of uncertainty. 

We showed that despite the lower input signal power at high frequencies and the less accurate model of 

the system, using this model for pre-emphasis was still sufficient to obtain good compensation of the 

eddy currents. It should be noted that since [12] modelled the system in the frequency domain, a filter 

was required for the pre-emphasis to be realized in practice and in this case a time domain Gaussian 

filter was used. However, in this work, due to the nature of the transfer functions in the s-domain, a first 

order filter is equivalent to a decaying exponential filter in the time domain. 

Closed-loop Feedback 

The μ-interactions of the three decoupling schemes showed that the dynamic decoupling results in better 

decoupling, followed by the Vaes decoupling and static decoupling methods. Although, dynamic 

decoupling provides decoupling for a large frequency range, the closed-loop responses showed that since 

the decoupling system was designed in the continuous-time domain, it had frequencies higher than the 

sample rate which results in ringing due to discretization; this could explain the oscillation in the control 

effort. This occurs when there are poles (roots of the denominator of the transfer function) that lie on 

the negative real axis of the z-transform. Another factor is that a dynamically decoupled system cancels 

poles and zeros (roots of the numerator of the transfer function) of the open-loop system and this can 

result in internal instability, that is, a closed-loop system less robust to input disturbances. 

The Vaes decoupled system was able to provide better performance and robustness for some of the 

channels indicating that there are more degrees of freedom for designing controllers than for the 

statically decoupled case. The better the system is decoupled, the more design flexibility there is for 

better feedback controllers. However, it should also be noted that the control effort for the Vaes system 

seemed to be slightly more oscillatory than the statically decoupled system. The full controller system 

required up to 5 times the desired set-point current which was much higher than the constraints of 2.5 

times the set-point. This is due to the decoupling matrices used for the controller. 

The decoupling approach to MIMO systems is only applicable if the system is weakly coupled. If the 

shim system is strongly coupled then alternative MIMO controller design methods need to be employed, 

such as H∞ [38], linear quadratic optimization [39] or μ-synthesis [40]. 

Conclusion 

Eddy currents and cross-coupling in gradient and shim coils can cause problems in MRI. For accurate 

correction and compensation of these effects, the spatiotemporal dynamics of the gradient/shim system 

need to be measured. In this work, we compared using a B0 mapping sequence to using a field camera 

for monitoring the system. Thereafter, we modeled the system using a time-domain parametric model 

for the MIMO system. The model was then used to perform pre-emphasis up to 3rd degree shim terms. 

Finally, closed-loop responses of the system were simulated for optimized PI controllers using different 



decoupling strategies. We showed that good performance and robustness for feedback control can be 

achieved using static decoupling. 
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Figure Legends 

Figure 1 – (a) Open-loop controller where G(s) is the system, K(s) is the controller (or filter), r(s) is the 

set-point signal, u(s) is the input signal and y(s) is the output signal. (b) Closed-loop control system 

where e(s) is the error signal, v(s) is the input disturbance, and d(s) is the output disturbance. 



Figure 2 – (a) Multivariable system with two inputs and two outputs and corresponding self-term 

transfer functions G1,1(s) and G2,2(s), and cross-term transfer functions G1,2(s) and G2,1(s). The red box 

shows how self-terms of the multivariable system can be considered a SISO system with the cross-

coupling effect as a output disturbance signal d(s). (b) Closed-loop control system with decoupling filter 

T(s). (c) Closed-loop control system with static decoupling matrices Tu and Ty and an array of SISO 

controllers C1… CP. 

Figure 3 – Hardware setup of the feedback system with corresponding shim coils, shim amplifiers and 

field camera. 

Figure 4 – (a) Custom made control system using a Raspberry Pi microcontroller and DAC board and 

a bank of single-to-differential driver boards as preamplifiers. (b) Schematic of the single-to-differential 

driver boards. 

Figure 5 – B0 maps acquired using a low resolution B0 mapping sequence and field camera. The B0 

maps are shown for a few of the terms from the 2nd, 3rd and 4th degree shim terms for illustration. 

Figure 6 – Measured outputs (gray) and system modelled outputs (blue) for the full 4th degree system. 

Self-terms are shown on the top and example cross-terms are shown on the bottom. Input signals were 

step functions with 1.0 A. 

Figure 7 – Cross-coupling matrix for the steady-state of the full 3rd degree system. Field camera 

measurements for a step input of 1.0 A without (black) and with (red) pre-emphasis filter. 

Figure 8 – μ-interaction measure for the original system G(s), the dynamically decoupled, the statically 

decoupled and the Vaes statically decoupled systems. The plots are on a log-log scale between 1e-4 and 

1e4 Hz. 

Figure 9 – Step response functions for the self-terms of the closed-loop systems using different 

decoupling strategies: dynamically decoupled (red), statically decoupled (black), and Vaes decoupled 

(blue). Corresponding sensitivity functions are also shown in the frequency domain between 10e-2 and 

10e3 Hz on a log-log scale. 

Figure 10 – Control effort for the self-terms to achieve the step responses shown in Figure 9. The plots 

show the required input signal u(t) for the shim amplifiers using different decoupling strategies: 

dynamically decoupled (red), statically decoupled (black), and Vaes decoupled (blue). 

Supporting Table S1. Shim terms and insert shim coil sensitivities 
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Figure 4 – (a) Custom made control system using a Raspberry Pi microcontroller,DAC board, and a 

bank of single-to-differential driver boards as preamplifiers. (b) Schematic of the single-to-differential 

driver boards. 

 

 



 

Figure 5 – B0 maps acquired using a low resolution B0 mapping sequence and field camera. The B0 

maps are shown for a few of the terms from the 2nd, 3rd and 4th degree shim terms for illustration. 

 

 



 

Figure 6 – Measured outputs (gray) and system modelled outputs (blue) for the full 4th degree system. 

Self-terms are shown on the top and example cross-terms are shown on the bottom. Input signals were 

step functions with 1.0 A. 

 

 

 



Figure 7 – Cross-coupling matrix for the steady-state of the full 3rd degree system. Field camera 

measurements for a step input of 1.0 A without (black) and with (red) pre-emphasis filter. 

 

 

 

Figure 8 – μ-interaction measure for the original system G(s), the dynamically decoupled, the statically 

decoupled and the Vaes statically decoupled systems. The plots are on a log-log scale between 1e-4 and 

1e4 Hz. 

 

 

 

Figure 9 – Step response functions for the self-terms of the closed-loop systems using different 

decoupling strategies: dynamically decoupled (red), statically decoupled (black), and Vaes decoupled 

(blue). Corresponding sensitivity functions are also shown in the frequency domain between 10e-2 and 

10e3 Hz on a log-log scale. 



 

 

 

Figure 10 – Control effort for the self-terms to achieve the step responses shown in Figure 9. The plots 

show the required input signal u(t) for the shim amplifiers using different decoupling strategies: 

dynamically decoupled (red), statically decoupled (black), and Vaes decoupled (blue). 

 

 

 

Supporting Table S1. Shim terms and insert shim coil sensitivities 

Shim Term Spherical Harmonic Function Sensitivity (Hz/cmn/A) 

Z0 1 6058 

Z2 z2-1/2*(x2+y2) 6.942 

ZX zx 24.15 

ZY zy 24.15 

C2 x2-y2 3.64 

S2 2xy 3.64 

Z3 z(z2-3/2*(x2+y2)) 0.4923 

Z2X x(z2-1/4*(x2+y2)) 1.0 

Z2Y y(z2-1/4*(x2+y2)) 1.0 

ZC2 z(x2-y2) 1.77 

ZS2 2zxy 1.77 

C3 x(x2-3y2) 0.188 

S3 y(3x2-y2) 0.188 

Z4 z4-3z2(x2+y2)+3/8*(x2+y2) 0.04206 

Z3X zx(z2-3/4*(x2+y2)) 0.123 

Z3Y zy(z2-3/4*(x2+y2)) 0.123 

Z2C2 z(x2-y2)(z2-1/6*(x2+y2)) 0.093 

Z2S2 2z(xy)(z2-1/6*(x2+y2)) 0.093 

ZC3 x(x2-3y2)(z2-1/8*(x2+y2)) 0.121 

ZS3 x(x2-3y2) (z2-1/8*(x2+y2)) 0.121 

C4 x4-6x2y2+y4 0.0187 



S4 4xy(x2-y2) 0.0187 
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Abstract: Magnetic resonance (MR) scanners are important tools in medical diagnostics and in many areas 

of neuroscience. MR technology is moving towards ultra-high field (UHF) 7T and 9.4T scanners which 

provide more signal intensity. However they also suffer from inhomogeneity of the static (B0) magnetic 

field which can lead to artifacts and uninterpretable data. B0 shimming is a technique used to reduce 

inhomogeneities but most MR scanners use static shim settings for the duration of the experiment. Dynamic 

shim updating (DSU) updates the shim in real-time while the scan is in process and can hence reduce any 

fluctuations in B0 field which may arise due to patient breathing, mechanical vibrations and soforth. 

However DSU is currently very slow and if we intend to increase the update rate then control theory needs 

to be applied. This paper presents an application of basic system identification and signal processing in the 

context of MR systems for DSU. Although system identification of these systems has been done before, 

they are non-parametric frequency domain approaches. These systems can be modelled as linear 

multivariable systems. 

Keywords: Medical systems; gyromagnetic ratios; process identification; parameter optimization; 

smoothing filters; phase-locked loop; Hurwitz criterion; PID controllers. 



1. INTRODUCTION 

Magnetic resonance (MR) scanners are widely used in both 

clinical and research environments with a large range of 

applications, from medical diagnosis to research in 

psychological neuroscience. In MR imaging (MRI), higher 

magnetic field strength of the static magnetic field (referred to 

as the B0 field) results in higher signal intensity and therefore 

a higher spatial resolution and a decrease in scan time 

(Takahashi, 2003). This is particularly beneficial in functional 

MRI where time resolution is important. Furthermore in MR 

spectroscopy (MRS), higher fields result in higher frequency 

separation between spectral resonances and also allow the 

detection of smaller concentrations of metabolites (Xu and 

Vigneron 2011). These benefits have led to the development 

of higher magnetic fields from 1.5T and 3T scanners to ultra-

high field (UHF) 7T and 9.4T scanners. 

Naturally, certain disadvantages also come with the benefits of 

high fields. UHF systems have higher specific absorption rates 

(SAR) which relates to how much RF energy is absorbed by 

the patient. The homogeneity of the static B0 field is also an 

issue at all field strengths but especially at UHF and is 

particularly important in MR spectroscopy (De Graaf, 2003). 

There are many more advantages and disadvantages of UHF 

but only the problem of B0 inhomogeneity shall be discussed 

in this paper. 

1.1 B0 Shimming 

Shimming is the processes of adjusting the static magnetic 

field to make it more homogeneous. There are two types of 

shimming: passive and active (De Graaf, 2007). Passive 

shimming uses pieces of ferromagnetic material to optimise 

the homogeneity. Once this optimisation has been done, it 

cannot be changed. Active shimming uses coils to generate the 

optimum magnetic field adjustments by driving them with the 

appropriate current. 

Active shimming can be either static or dynamic. For static 

shimming, the optimal adjustments are made before the scan 

and remain the same for the duration of the scan. Most MR 

systems that have shimming functionality use static shimming. 

On the other hand, dynamic shimming automatically updates 

the shim during the scan. Dynamic shim updating (DSU) is a 

field of study that has only recently attracted the attention of 

the MR community. 

DSU has been used to correct for fluctuations in the field due 

to breathing (see Boer et al., 2012 and Wilm et al., 2013). Since 

breathing is relatively slow, the shim update rate is slow and 

also much slower than the shim system. The feedback loops 

typically use digital proportional-integrator (PI) controllers 

(Wilm et al., 2013). Furthermore stability is not an issue 

because the open-loop system is stable and settles in less than 



 

 

     

 

one time sample thus the PI controller does not have to be 

designed based on the open-loop system. 

Certain applications would benefit from a high time resolution 

closed-loop control of the shim system. For example, 

dynamically updating the shim settings for every slice or 

volume of interest during an image acquisition sequence 

(Koch et al., 2006; Juchem et al., 2010) and updating shim 

settings for a moving volume of interest (Schӓr et al., 2004). 

These fast switching currents generate eddy currents which 

need to be compensated for. Thus if the system is to be 

controlled at a much smaller time scale such that the update 

rate is faster than the open-loop system then controllers based 

on the open-loop system need to be designed. Controller 

design based on a system model with a fast update rate is 

proposed in this paper.  

1.2 System Identification of Shim Systems 

To identify the system we need to measure the response of the 

static magnetic field. Jezzard and Balaban (1995) show that the 

B0 field can be determined from phase maps. However, 

obtaining phase maps is too slow and cannot capture the 

dynamics of the system. A more effective method for 

measuring the B0 field is to use nuclear MR (NMR) field 

probes (Barmet et al., 2008; and Handwerker et al., 2013). 

1.3 Outline 

Section 2 describes the hardware that was available and the 

process of manufacturing the sensors and instrumentation. 

This section also includes the signal processing methods that 

were used and proposes a hybrid filter for reducing noisy 

measurements. Section 3 presents the method used for system 

identification. An example of how PID controllers can be 

designed is shown in section 4 and their simulated results also 

included. Finally section 5 draws the conclusions and makes 

further recommendations for improving B0 shimming. 

2. INSTRUMENTATION AND SIGNAL PROCESSING 

2.1  Hardware and Sensors 

The experiments were performed on a whole-body 9.4T 

Siemens Magnetom MR scammer (Erlangen, Germany). 

A custom built 9.4T field camera consisting of sixteen 1H field 

probes was used to monitor the field (fig. 1). De Zanche et al. 

(2008) describes the process for producing NMR probes. The 

probes were constructed using water samples doped with 

CuSO4 at a ratio of 3.7g/ℓ to decrease the T1 relaxation time to 

approximately 80ms. Each coils consisted of six turns around 

a 1.0mm outer diameter and 0.8mm inner diameter glass tube 

where the tube was a length on 10mm. Each probe was 

encapsulated in epoxy and doped with Dy(III)(NO3)3.5H2O at 

a ratio of 2.75mg per 5g of epoxy for susceptibility matching 

to the copper wire. The probes were arranged on a spherical 

mount with a diameter of 250mm. 

Each of the probes were tuned to the appropriate frequency of 

399.72MHz (given by ⍵ = γ×B0 where γ is the gyromagnetic 

ratio). The probes were matched to 50Ω and decoupled using 

cable traps with an isolation of more than 42dB between any 

two probes. The probes were operated in transmit/receive 

mode using a custom-build 16 channel interface (-50dB 

isolation, 0.2dB insertion loss per channel). A rectangular RF 

excitation pulse of 0.5ms duration was used and the signals 

were sampled at 300kHz.  

 

Fig. 1. Magnetic field camera with 16 NMR probes for spatio-

temporal monitoring of the B0 field. 

2.2  Input and Output Signals 

The input signals to the system were the current signals used 

to drive the shim coils. The output of the system is the B0 field, 

which can be described using a set of basis functions as 

|𝑩(𝒓, 𝑡)| = ∑ 𝑐𝑖(𝑡)𝑓𝑖(𝒓)

𝑁𝐿−1

𝑖=0

+ 𝐵𝑟𝑒𝑓(𝒓) 

where r is the position in space, fi(r) is the set of basis 

functions, ci(t) are the field coefficients, NL is the number of 

basis functions and Bref(r) is the reference field some initial 

time t0 (see Barmet et al., 2008). Spherical harmonic (SH) 

functions are used as the basis functions because the shim coils 

are designed to generate the SH components of the field (Clare 

et al., 2006). Molecules subject to a magnetic field B(r,t) and 

a gyromagnetic ratio γ accrue a phase given by 𝜑(𝑡) =

𝛾 ∫ 𝐵(𝑡′)𝑑𝑡′
𝑡

0
. Therefore the field coefficients that characterise 

the B0 field are related to the phase coefficients by  

𝑐𝑖(𝑡) =
1

𝛾
∙

𝑑𝑘𝑖(𝑡)

𝑑𝑡
        𝑖 = 0, … , 𝑁𝐿 − 1 

where 𝑘𝑖(𝑡) are given by fitting basis functions to the phase 

maps (Vannesjo et al., 2013). 

The NMR probes measure the free-induction decay (FID) of 

the molecules (Handwerker, 2013). The FID phase of a probe 

at position r is the phase 𝜑(𝒓, 𝑡). The field coefficients ci(t) can 

then be calculated using SH basis functions as described by 

Barmet et al. (2008). 

2.3 Hybrid Filter 

The probes are small for high spatial resolution and specificity 

but this results in noisy FIDs. Furthermore since the field 



 

 

     

 

coefficients are dependent on the derivative of the phase 

signals, phase jitter makes the field measurements noisier. 

 

Fig. 2. Comparison of the digital PLL with a moving-average 

filter. PLL filters with bandwidths ranging from 200 to 800 

times greater than the bandwidth of the gradient system. The 

performance of a moving-average is shown as a reference 

(window sizes from 3 to 41 samples). 

Phase locked-loop (PLL) filters can be used to reduce phase 

jitter. A second-order digital PLL was used and the closed-

loop transfer function in the z-domain is 

𝐻(𝑧) =
𝛾((1 + 𝜌)𝑧 − 1)

𝑧2 + (𝛾 + 𝛾𝜌 − 2)𝑧 + (1 − 𝛾)
 

where γ and ρ are the design parameters (Shayan and Le-Ngoc, 

1989). The filter poles were constrained to be real and equal. 

The input signal was a gradient in the x-direction switched on 

and off to produce a triangular wave-form. The gradient 

amplitude was 5mT/m and the slew rate was 40mT/m/ms. 

Two objectives were considered when filtering: minimizing 

noise and preserving the underlying signal (i.e. avoid over-

smoothing). A moving-average filter was able to outperform 

the PLL in both objectives. The noise measure is the square 

sum of the error signal when the output signal is in steady-

state. The preservation measure is the square sum of the 

difference between the filtered signal and the predicted 

response. The predicted response was found using a basic 

system identification method (as described in section 3).  

A hybrid filter using the PLL and moving-average filters was 

investigated. A range of moving-average window sizes, 

varying from 3 to 41 samples, was use. The closed-loop 

response of the PLL needs to be much faster than the system. 

A range of PLL filters were tested where γ was 200 to 800 

times faster than the system response time. Fig. 2 shows the 

performance of the different combinations of γ and the window 

size. Hence we can find optimal parameters for reduce noise 

and preserve the actual signal. The cross in fig. 2 was chosen 

as the optimal point its performance is shown in fig. 3. Fig. 3 

shows a comparison of the time domain signals for the PLL 

filter, moving-average, and the hybrid filter.  

 

Fig.3. Time domain plots of the derivatives of the phase 

signals after being processed with different filters. The 

moving-average filter window size is 13. The PLL filter 

bandwidth is 360 times greater than the gradient system. The 

hybrid filter is the same as the PLL but with a moving-average 

with window size 17 (optimal point as shown in fig. 2). 

3. SYSTEM IDENTIFICATION 

Until this point, shim systems have been exclusively 

mentioned. However, notice that the gradient system are the 

set of linear shim terms. The integrated shim system of the 

scanner could not be changed during an experiment and 

therefore only gradient coils were used and so there are three 

inputs: x-, y- and z-gradients. The output signals were the field 

coefficients. The zero to second-order SH functions can be 

calculated from the 16 probes which gives a total of nine 

output functions.  

Each transfer function is assumed to be at most a second-order 

system and with no dead-time, so the transfer functions in the 

s-domain are: 

𝑔(𝑠) =
𝐴⍵

𝑠2+2𝑎𝑠+(𝑎2+𝜔2)
  or  𝑔(𝑠) =

𝐴

𝑠+𝑎
 

 
Fig. 4. Derivative of the field coefficient during the gradient 

ramp period of the x-gradient (slew rate 43.5mT/m/ms). The 

gradient was started at 0.12ms. The digital finite difference 

derivative. 

Due to hardware limitations, step inputs could not be applied 

to obtain the step responses. Instead, ramp inputs were used 



 

 

     

 

and the derivative of the output signal gave the step response. 

To calculate the derivative of the output signals (to find the 

step response from the ramp response), the finite difference 

derivative was found to be too noisy. Therefore a total 

regularisation derivative method proposed by Chartrand 

(2011) was used to calculate a smooth derivative. The 

difference between the digital derivative and the regularised 

derivative is shown in fig. 4. A regularisation factor of 𝛼 =
5𝑒−6 was used.  

Table I: System model 

Input Output A a ⍵ 

Gx F0 5.23e3 31.4e3 - 

Gx X 133.3e3 54.4e3 27.2e3 

Gx XY -1.99e3 33.4e3 - 

Gx Z2 -2.67e3 36.6e3 - 

Gx X2+Y2 4.06e3 0 34.5e3 

Gy F0 -1.78 27.8e3 - 

Gy Y 86.98e3 42.8e3 35.8e3 

Gy XY 3.95e3 29.2e3 - 

Gz Z 86.31e3 42.4e3 34.2e3 

Gz YZ -0.737e3 19.4e3 - 

Gz XZ 3.21e3 28.4e3 - 

 

 
Fig. 5. Predicted and actual response of the x-gradient for 

different amplitudes. The cross-terms of the x- and y- gradients 

(10mT/m) to the zero-order term (mT) are also shown. 

Using the derivative as the step response, the transfer function 

could be fit to the data. The slew rate was set to 43.5mT/m/ms 

and this corresponds to the amplitude of the step input. The 

system model was fit to the data and the optimal values (in the 

least-squares sense) for the parameters A, a and ⍵ were found. 

The step response of the fitted transfer function is shown in 

fig. 4. The complete system is given in table I; transfer 

functions where the ⍵ is omitted refer to first-order systems.  

To verify the results, the predicted output from the applied 

input (10mT/m with 43.5mT/m/ms slew rate) was compared 

to the actual output. This was also done for gradient input 

amplitudes of 5mT/m and 15mT/m for each of the gradient 

inputs. Fig. 5 shows the time domain responses of the x-

gradient input. 

4. CLOSED-LOOP SIMULATION 

4.1 PID Controller Design 

Only the first-order shim coils (input) – called the gradient 

coils – and first-order SH terms (output) were considered. This 

results in three independent single-input single-output (SISO) 

systems which is unsurprising as the gradients are coils are 

decoupled and shielded from each other.  

The gradient system is controlled with an inner closed-loop 

circuit that controls the current. Our goal is to control the 

slower outer loop to make it robust against noise and 

disturbances and not necessarily improve the speed of the 

system. The setpoint signal for the inner current control loop 

is a digital signal and hence the aim is to design digital 

controllers for the outer loop. PID controllers were designed 

for each of the three systems to test for feasibility of the digital 

controllers. PID controllers are well-known and the transfer 

function can  be defined as 

𝐾𝑃𝐼𝐷(𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠⁄ +
𝐾𝐷𝑠

(1 + 𝑇𝐹𝑠)⁄  

where the design parameters are 𝜃 = [𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷 , 𝑇𝐹]. The PID 

controllers were designed using a multi-objective optimisation 

approach. The optimal points are defined using the Pareto 

dominance condition. Suppose there are two fitness functions 

𝐹(𝜃) = [𝐹1(𝜃), 𝐹2(𝜃)] where θ is the domain variable (in this 

case, the design parameter vector), then θ1 Pareto dominates θ2 

if 

[𝐹1(𝜃1) < 𝐹1(𝜃2) 𝑎𝑛𝑑 𝐹2(𝜃1) ≤ 𝐹2(𝜃2)] or 

[𝐹1(𝜃1) ≤ 𝐹1(𝜃2) 𝑎𝑛𝑑 𝐹2(𝜃1) < 𝐹2(𝜃2)] 

where we suppose that we want to minimise F. This can be 

extended to more fitness functions. A formal description of 

Pareto optimality is given in Hajiloo et al. (2008). 

Firstly the fitness functions need to be defined. Hajiloo et al. 

(2008) use Pareto optimum design to find a set of robust PI and 

PID controllers. Popov et al. (2005) analyse the trade-off 

between the controller performance (integral squared error) 

and the controller effort, while Sabahi et al. (2008) consider 

the trade-off between performance (settling time) and the 

robustness (over/undershoot). Considering these previous 

fitness functions, three objectives were chosen: the 

performance, the robustness and the control effort. The 

performance was measured using the settling time, the control 

effort was measured using the infinity-norm on the control 

signal and the robustness was measured using the infinity norm 

of the sensitivity and complementary sensitivity (Garcia et al., 

2007). These fitness functions were to be minimised 

1. Settling time: |
𝑦∞−𝑦(𝑡)

𝑦∞
| < 0.05      𝑡 > 𝑡0 

2. Sensitivity: ‖
1

1+𝑔𝑘
‖

∞
 



 

 

     

 

3. Complementary sensitivity: ‖
𝑔𝑘

1+𝑔𝑘
‖

∞
 

4. Control effort: ‖
𝑘

1+𝑔𝑘
‖

∞
 

Given that the plant and controller are both second-order 

system, the closed-loop system is fourth -order and the 

characteristic equation is given by 

𝜑(𝑠)
= 𝑇𝐹 ∙ 𝑠4 + (1 + 2𝑎𝑇𝐹)𝑠3

+ (2𝑎 + 𝑇𝐹(𝑎2 + 𝜔2) + 𝑇𝐹𝐾𝑃𝐴𝜔)𝑠2

+ ((𝑎2 + 𝜔2) + (𝐾𝑃 + 𝑇𝐹𝐾𝐼 + 𝐾𝐷)𝐴𝜔)𝑠 + 𝐾𝐼𝐴𝜔 

Constraints for the parameters were then obtained from the 

Hurwitz stability criteria. The domain space for θ was defined 

by considering the Routh-Hurwitz stability criteria and by 

requiring firstly, that the closed-loop system cannot be much 

slower than the open-loop system (settling time with 20% of 

the open-loop), and secondly, requiring the noise to be 

sufficiently reduced the filter time constant TF was chosen to 

be between 1e-5 and 1e-3 and lastly, requiring the KP cannot 

exceed some upper bound (chosen as 1.0). 

Table II. Chosen Optimal PID Controller Parameters 

 KP KI KD TF 

x-Grad 0.051 14.06e3 -0.197 20e-5 

y-Grad 0.213 19.10e3 -0.073 2.11e-5 

z-Grad 0.538 23.51e3 -0.243 2.23e-5 

 
Fig. 6. Trade-off between the closed-loop performance 

(measured with the settling time) and robustness (measured 

with the sensitivity function) of PID controllers for the z-

gradient system. 

Since the domain space was defined to be relatively small, a 

brute-force search method was used to find the Pareto-optimal 

points. The infinity-norm complementary sensitivity of the 

Pareto-optimal points were found to be very similar (close to 

1.0) thus providing little additional information and so was 

discarded as a fitness function. This left three fitness functions 

which was easier to visualise. The trade-off between the 

sensitivity and settling time (for the z-gradient system) is 

shown in fig. 6. The optimum point was chosen to be the 

minimum sensitivity where the closed-loop and open-loop 

settling times are equal. The corresponding PID parameters θ 

can then be found from this point. The PID controllers for the 

x-, y- and z-gradients were all designed in this manner. The 

chosen PID parameters are shown in table II.  

4.2 Closed-Loop Simulation 

The closed-loop systems of each gradient was simulated to 

verify the results of the PID controllers. These simulations 

were also used to obtain hardware specifications for 

implementation of these controllers digitally. 

The time domain simulations show that the systems have good 

disturbance rejection and low sensitivity to noise. Fig. 7 shows 

these results for the z-gradient however the x- and y-systems 

were very similar. Furthermore, the figure shows that the 

closed-loop system is as fast as the open-loop system (as given 

by the design criteria). The analogue PID controllers were 

converted to digital controllers using a bilinear transformation 

(Tustin’s method) without pre-warping (see Al-Alaoui, 2007). 

The sampling rate shown in fig. 7 is 20kHz. As the sampling 

rate decreases, the system starts to oscillate more until the 

sampling rate is so low that the system becomes unstable. 

Therefore for digital controller implementation it is 

recommended that the sampling rate (or rather update rate) is 

at least 20kHz. For fast and effective closed-loop control of the 

gradient system with a digital controller, an embedded system 

is recommended rather than a microcontroller since most off-

the-shelf microcontrollers are generally not fast enough.  

 

Fig. 7. Time domain simulation of the continuous open-loop 

plant, the continuous closed-loop system and the digital 

closed-loop system for the z-gradient system (top). Time 

domain plot of the continuous closed-loop system for the z-

gradient with a step input at t=0.1ms, an output disturbance 

(1mT/m) at t=0.5ms and an input disturbance (1mT/m) at 

t=1.0ms and white measurement noise from -2 to 2mT/m 

(bottom). 

5.  CONCLUSION 

A field camera consisting of 16 NMR probes was built to 

measure the B0 magnetic field. Filters for processing the phase 

signals measured by the probes were investigated and a hybrid 

filter utilising a moving average and a phase locked-loop filter 

was proposed. System identification was performed on a 9.4T 

MR gradient system using standard first- and second-order 

parametric models. PID controllers were designed for the 

system and the closed-loop responses were simulated. 



 

 

     

 

With the current field camera, the system model can be easily 

extended to identify a multivariable shim system of up to 

second-order SH. Unlike the linear SH terms where the 

systems are independent, gradients also affect higher order 

terms (see also Vannesjo et al., 2013). Juchem et al. (2010) 

also show that higher order shim coils can affect other SH 

terms. Therefore controller design for shim systems require 

multivariable control techniques. 

Analogue PID controllers were designed and the results were 

simulated. The analogue controllers were used to evaluate the 

required update rate for implementation of digital controllers. 

It is recommended that the update rate needs to be at least 

20kHz to ensure stability. 
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