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Diese Arbeit auf einer Seite

Auf den folgenden Seiten werde ich die wichtigsten Ergebnisse meiner Promotionsforschung
vorstellen. Der Schwerpunkt meiner Arbeit liegt auf der Verbesserung der Präzision für Berech-
nungen, die für das Verständnis der Struktur von Hadronen relevant sind. In den veröffentlichten
Arbeiten, die in dieser Promotionsarbeit vorgestellt werden, haben wir vor allem Prozesse mit
identifizierten Hadronen im Endzustand betrachtet. Unsere Studien beruhen auf dem bewährten
Rahmen der perturbativen Quantenchromodynamik (pQCD) und sind daher relevant für die
Beschreibung von hochenergetischen Experimenten von Teilchen die der starke Wechselwirkung
unterliegen.
In diesem Rahmen stellen Faktorisierungstheoreme sicher, dass in Prozessen mit Hadronen
der niederenergetische (nicht-perturbative) Anteil und der hochenergetische (perturbative) An-
teil der Wechselwirkung zwischen den Teilchen in der theoretischen Beschreibung formal ge-
trennt werden können. Der erste Teil kann durch universelle, nicht-perturbative Funktionen
beschrieben werden, die in globalen Analysen von Daten extrahiert werden, während der zweite
grundsätzlich (analytisch) mit perturbativen Techniken berechnet werden kann. Daher ist die
Anwendbarkeit dieser Herangehensweise stark mit der Präzision sowohl des perturbativen als
auch des nicht-perturbativen Anteils verbunden. Die Verbesserung der Genauigkeit verursacht
auf der einen Seite eine bessere Beschreibung von Wirkungsquerschnitten in bereits untersuch-
ten kinematischen Regionen des Phasenraums, während auf der anderen Seite eine verbesserte
Vorhersagekraft in extremen kinematischen Bereichen erreicht werden kann, in denen die Prä-
zision bisheriger Rechnungen nicht ausreichend ist.
Aufgrund der perturbativen Herangehensweise, liegt eine Möglichkeit die theoretische Berech-
nung zu verbessern darin höhere Beiträge der perturbativen Entwicklung mit einzubeziehen.
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DIESE ARBEIT AUF EINER SEITE

Dies ist zum Beispiel unser Ansatz, um die Präzision der Fragmentationsfunktionen zu verbes-
sern. Sie beschreiben die Fragmentation eines hochenergetischen Teilchens in ein beobachtetes
Hadron und wurden zuvor über eine globale Analysen extrahiert, die bislang bis zu einer “next-
to leading order” Genauigkeit durchgeführt wurden. Wir haben “next-to-next-to leading order”
Korrekturen für die Elektron-Positron-Annihilation mit einbezogen und eine erste Analyse von
Fragmentationsfunktionen für diese Genauigkeit durchgeführt.
In einer anderen Studie haben wir eine erste Berechnung der neuen Beiträge zur longitudinalen
Strukturfunktion der semi-inklusiven tief inelastischen Streuung durchgeführt. Diese Beiträ-
ge kommen zum ersten Mal in der “next-to-next-to leading order” der Störungsreihe vor und
wurden als ersten Schritt zu einer vollständigen Berechnung für diesen Prozess bei dieser Ge-
nauigkeit berechnet.
Eine andere Strategie, um die Präzision der perturbativen Berechnungen voranzutreiben, ist die
Anwendung von Resummations Techniken. Wiederkehrende Strukturen in der Störungsreihe,
die mit bestimmten kinematischen Konfigurationen verknüpft sind, können zu allen Ordnun-
gen "wieder aufsummiert"werden. Wir haben zwei verschiedene Arten von Resummationen
betrachtet. Auf der einen Seite haben wir die Effekte von small-z Resummation in unseren be-
reits erwähnten Fragmentationsfunktionen berücksichtigt. Sie beeinflussen den kinematischen
Bereich von extrem kleinen Impulsbruchteilen z. Das heisst, dass das beobachtete Hadron nur
einen kleinen Bruchteil des Impulses des fragmentierenden Teilchens hat. Auf der anderen Seite
haben wir für die polarisierte semi-inklusive tief inelastische Streuung “threshold Resummation”
berechnet. Diese Art der Resummation betrifft die sogenannten threshold” Logarithmen, die
mit der Abstrahlung von weichen Gluonen verbunden sind. In einer weiteren Arbeit haben wir
auch das Zusammenspiel zwischen threshold Resummationünd Korrekturen aufgrund der Mas-
sen von Hadronen analysiert. Es ist in der Tat eine gute Annäherung für die meisten Prozesse,
Hadronen als masselose Teilchen zu betrachten, da die Energien, bei denen Experimente durch-
geführt werden, meist gross genug sind. Es gibt jedoch Fälle, in denen diese Näherung nicht
ausreichend ist um eine gute Beschreibung der Daten zu bekommen. Wenn man die Masse der
Hadronen in Prozessen mit beruücksichtigt, wie z. B. für Elektron-Positron-Annihilation oder
tief inelastische Streuung, muss man auch den möglichen Einfluss von verschiedenen Korrektu-
ren betrachten, die dieselbe Kinematik beeinflussen. Dies haben wir am Beispiel tief inelastischer
Prozesse beobachtet, wenn man gleichzeitig threshold Resummationäls auch Hadronen Massen
Effekte berücksichtigt.

VIII



The Thesis in one page

In the following pages I am going to present the main results of my PhD research activity.
The main focus of my work has been directed towards the improvement of the precision in
calculations relevant for understanding the structure of hadrons. More specifically, in the
published papers presented in this thesis, we have mainly considered processes with identified
hadrons in the final state. Our studies rely on the well established framework of perturbative
Quantum Chromodynamics (pQCD) and, as such, are of interest for the description of high
energy experiments involving particles interacting through means of the strong force.
In this framework, factorization theorems guarantee that in most processes involving hadrons
the low energy (non-perturbative) part at which hadrons are observed and the high energy (per-
turbative) one where particles interact strongly with each others can be formally separated in
their theoretical description. The first can be described by universal non perturbative functions
which are extracted from fits of global data, whereas the second can be in principle calculated
analytically with perturbative techniques. As it can be inferred, the applicability of this frame-
work is strongly correlated to the precision of both the perturbative and the non-perturbative
part. Extending their accuracy directly translates on one side into a better description of ob-
servables in the already studied kinematic regions of the phase space whereas on the other into
an improved prediction power in the extreme kinematic regions where the reliability of the
framework itself starts to be questionable at the previously given precision.
Due to the perturbative nature of the framework, a way of improving a theoretical calcula-
tion is to advance in the perturbative series and to include higher orders in the fixed order
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expansion, where the expansion parameter considered is the strong coupling constant. This
has been our approach, for example, in order to improve the precision of fragmentation func-
tions. They describe the fragmentation of a particle into the observed final sate hadron and
have been previously extracted via a global analysis performed at most up to a next-to-leading
order accuracy. We have considered next-to-next-to-leading order corrections to the single-
inclusive electron-positron annihilation and presented a first fit of fragmentation functions at
this accuracy.
In another study, we have performed a first calculation of new contributions to the longitudinal
structure function of the semi-inclusive deep inelastic scattering. They appear for the first time
at next-to-next-leading order and were calculated as a first step toward a complete calculation
for this process at this accuracy.
A different strategy to advance the precision of perturbative calculations is through the means
of resummation techniques. Recurring structures in the perturbative series related with deter-
mined kinematical configurations can be “resummed” to all orders. We have considered two
different type of resummations. On one side, we have studied the effects of small-z resum-
mations in our already mentioned fragmentation functions’ fit. They affect the extreme low
momentum fraction z region, i.e. where the observed hadron carries a small fraction of the
fragmenting particle momentum. On the other end, we have included “threshold resumma-
tion” in the description of the polarized semi-inclusive deep inelastic scattering. This type
of resummation addresses the so called “threshold logarithms” which are connected with the
presence of soft gluon emissions. In a further work we have also studied the interplay between
the corrections to the fixed order calculation coming from “threshold resummation” and a more
kinematical type of corrections generated by the presence of a hadron mass. It is in fact a good
approximation to consider hadrons as massless particles for most processes since the scales of
energies at which experiments are carried out are usually big enough. There are however cases
in which this approximation can not be considered trustworthy for a good description of data.
When including the mass of the hadrons in processes such as single-inclusive electron-positron
annihilation or deep inelastic scattering, one has to also carefully consider the possible entan-
gled game between different type of corrections affecting the same kinematical regions. This
is what we have observed, for example, in the high momentum fraction region for the deep
inelastic process when considering both “threshold resummation” and hadron mass effects.
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CHAPTER 1

Theoretical Framework

In this first chapter we are going to outline the key concepts of perturbative Quantum Chro-
moDynamics (pQCD) relevant to the work presented throughout the rest of this thesis. The
aim is to provide the reader with the basic aspects of the framework within which the results
of the next chapters will be presented. We refrain here from discussing those matters which
are not strictly connected to the subjects of interest of this thesis and rather refer to more
comprehensive reviews such as [1] or [2] and references therin.
We introduce the theory of strong interaction by briefly remembering some historical milestones
of its development and then move to the description of its modern lagrangian formulation. We
discuss fundamental concepts of perturbative QCD such as asymptotic freedom, factorization
and evolution, crucial to the theoretical description of measurable observables. We conclude by
presenting the main aspects of two types of resummation technique which will be used in our
analyses of chapters 2, 3 and 5.

1.1 QCD

The first mention of a possible existence of a strong force holding together the components
of an atomic nucleus is attributed to J.Chadwick and E.S.Bieler in their article of 1921 [3].
The experiments they conducted on hydrogen nuclei scattered by alpha particle brought them

1



CHAPTER 1. THEORETICAL FRAMEWORK

to conclude that a simple coulomb interaction was not able to explain the observed angular
distribuion of the project H particles in the case of high energy striking alpha particles, but
a new form of interaction had to be implied. This is the very reason for which this work
is considered to be the first evidence of a strong nuclear force as a distinct force of nature.
The same J.Chadwick is responsible for the discovery of the neutron a decade later in 1932. It
appeared mandatory, then, to assume the existence of a new force binding neutrons and protons
together in the nucleus: the nuclear force or the strong force. Since then, understanding the
nature of this force has been a central problem in modern physics.
A first fundamental attempt to describe the strong force in a consistent field theory manner
was made by a young japanese scientist, H.Yukawa, in 1935 [4]. He suggested that a new
particle with "intermediate" mass about 200 times the mass of the electron, later on called
meson, could be responsible for the interaction energy between nucleons. The very simple
nature of this first theory followed the lines suggested by the simple mathematical structures of
the well-known interactions at that time, namely the coulomb interaction and the gravitational
force. From this point, it would have taken more than 30 years for the community to formulate
the theory that we know today as QCD. The first experimental findings didn’t help steering
history in the right direction. In 1937 a particle with mass about the size of the one predicted
by Yukawa was discovered in cosmic rays by two independent groups [5, 6]. It was wrongly
interpreted as the searched "meson". Only much later it would have been understood that
the observed particles were instead leptons (i.e. muons) [7]. Nonetheless, this gave rise to a
zoology of meson theories which latest for about a decade until the first discovery in 1947 of
the lightest muon, the pion [8, 9]. The two decades that followed were marked by a series of
exciting discoveries made possible by the invention of bubble and spark chambers. Hundreds
of new particles (i.e. hadrons) were observed and a consistent theory that could explain such
spectrum was yet to be found. M.Gell-Mann believed that one could find a pattern in the
variety of particles based on underling fundamental symmetries with a rigorous mathematical
group structure. The concept of isospin symmetry was already formulated by W.Heisenberg in
1932 and dubbed by E.Wigner in 1937. A new quantum number called strangeness, which was
observed to be conserved in strong interaction decays, was introduced by the same M.Gell-Mann
and K.Nishijima indipendently [10, 11]. The so-called eightfold way classification introduced by
M.Gell-Mann and Yuval Ne’eman in 1961 [12, 13] was the natural extension of those concepts.
Here, the particles were organized in families of different spin-parity JP and plotted according
to their charge Q and strangeness S. See Fig.1.1. The great success of this classification came
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(a) Baryon-decuplet with JP = 3
2

+
.

(b) Baryon-octet with JP = 1
2

+
.

(c) Meson-octet with JP = 0�.

Figure 1.1: Eightfoldfold way diagrams for baryons JP = 3
2

+, baryons 1
2

+ and mesons 0�.

few months after its publication when the missing particle ⌘ needed to complete the pattern
was discovered experimentally. Few years after, in 1964, M.Gell-Mann and G.Zweig showed
independently how the large spectrum of hadrons and its classification could be understood in
terms of symmetry property of more fundamental coupled 1

2
-spin particles called quarks [14–

16]. In the so called quark model each hadron is a composite quantum state of either one quark
and one anti-quark (mesons) or a composite quantum state of three quarks (baryons) and the
binding between the quarks is provided by the strong force. To classify the hadrons it was
necessary to assume the existence of three different quarks, each of which was identify by a new
quantum number called flavour : up u, down d, strange s (according to the current SM it is
believed that the correct number of flavours present in nature is six: up, down, strange, charm c,
top t, bottom b). Moreover, it was necessary to assume that the strong force is invariant under
interchange of flavours. Such assumption translates in mathematical terms by saying that the
strong force has a flavour SU(3) (⌘ SU(3)f ) symmetry. See Appendix A. The quarks lie in
the fundamental representation of the SU(3)f group while the antiquarks in the corresponding

3
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conjugate representation of it

q ! Uq q ⌘

0

B@
u

d

s

1

CA , U = exp

✓
i
�a

2
✓a
◆

2 SU(3)f . (1.1)

The �a are the so-called Gell-Mann matrices whose explicit expression can be found in A.14.
Mesons and baryons can then be classified according to the irreducible representation in which
we can decompose the product between the representations of the constituting quarks. As
shown in A.21 a meson can lie either in a singlet representation or in a octet representation.
The corresponding mesons for the octet representation are shown in Fig.1.1c. In the same way,
(see A.22) baryons can lie in a singlet representation, in two different octet representations
or in a decuplet representation. Fig.1.1b and Fig.1.1a show the baryon-octet and the baryon-
decuplet respectively.
The quark model soon appeared to be just a very useful periodic table of the hadrons rather
than a consistent theory of the strong interaction. According to this model, some hadrons
would turn out to follow the wrong statistic. The �++ baryon was discovered years before
in 1951 by K.A.Brückner [17]. In its the fundamental state it is expected to have angular
momentum L = 0. Since the third component of the total angular momentum is J3 = +3

2
, the

three up quarks forming this baryon should have their spins all align in the same direction and
no angular momentum component (u"u"u"). The �++ state, therefore, would be a symmetric
state, which means that this fermion would have to obey the wrong statistic. The problem was
resolved independently by O.W.Greenberg [18] (1964) and M.Y.Han together with Y.Nambu
[19] (1965), by assuming that the quarks have an extra quantum number called color and each
quark state can present itself in a different color state q↵. At least at least three color quantum
numbers are necessary in order to build an antisymmetric state for the �++ ⇠ ✏↵�� |u"

↵u
"
�u

"
�i.

Furthermore, since no color charge and no free quark was ever observed, to avoid the existence of
non-observed colored extra states, one has to postulate that all asymptotic states of the hadrons
are colorless (or more precisely, singlet representations of the color symmetry transformation).
This request is known as the confinement hypothesis, since it implies that quarks can present
themselves only "confined" within colour-singlet bound states. Baryons and mesons can be
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1.1. QCD

Figure 1.2: World data on the ratio Re+e� . The broken lines show the simple quark model
approximation with NC = 3 while the solid curve is a perturbative QCD prediction [20].

then described as colour-singlet bound states as follows:

Baryon ⌘ 1p
6
✏↵�� |q↵q�q�i , Meson ⌘ 1p

3
�↵� |q↵q̄�i . (1.2)

The right number of colors NC was found to be 3: red, green and blue. A strong experimental
evidence of that comes from the measurement of the ratio

Re+e� ⌘ �(e+e� ! hadrons)
�(e+e� ! µ+µ�)

⇡ NC

NfX

f=1

Q2
f =

8
>>><

>>>:

2
3
NC = 2, (Nf = 3 : u, d, s)

10
9
NC = 10

3
, (Nf = 4 : u, d, s, c)

11
9
NC = 11

3
, (Nf = 5 : u, d, s, c, b)

(1.3)

where Qf is the electric charge for a quark with flavour f . Ignoring the region around the Z

peak and the low-energy region, the best choice for the number of colors which better agrees
with the experimental data shown in Fig.1.2 is indeed NC = 3.
The question whether or not the introduced quarks were just useful mathematical constructs
instead of elementary particles describable by a proper quantum field theory lasted until the first
observations in 1969 at SLAC, where deep inelastic scattering experiments showed point-like
structures inside hadrons. The formulation of a quantum field theory for the strong interaction
followed short after based on some key passages. The extension of gauge theories form abelian
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groups to general compact, semi-simple Lie groups was done by C.N.Yang and R.Mills already in
1954 [21]. Thence, the modern approach of particle physics was to formulate a gauge field theory
for the strong interaction that could be consistent with the below highlighted characteristics:

1. the strong force should be flavour-conserving and flavour-indepenent,

2. the colors should be the charge associated with the strong interaction and the quarks are
color-charged particles,

3. NC = 3 so that the quarks and antiquarks belong to the triplet representation 3
¯

and 3
¯
⇤

of the color symmetry group respectively,

4. quarks and antiquarks are different particles. Thus, 3
¯
6= 3

¯
⇤,

5. hadronic states should be colorless, hence color singlets (confinement hypothesis),

6. although we haven’t discussed it yet, to complete the list of characteristics coming from
empirical evidence, we have to mention that the coupling constant should be asymptotic
free. See sections 1.2 and 1.2.2

The only possible compact Lie group surviving all requirements is the SU(3). The SO(3) '
SU(2), for example, has only a real triplet representation 3

¯
, that leads to the violation of point 4.

Moreover, according to the already mentioned decomposition of SU(3) representations’ product
(see A.21 and A.22), the only possible bound states of quarks that could origin colorless hadrons
(point 5) are indeed the ones predicted by the quark model. In 1973, H.Fritzsch, H.Leutwyler
and M.Gell-Mann [22] formulate the theory that we know today as Quantum Chromodynamcs.
The same year D.Gross, F.Wilczek [23] and H.D.Politzer [24] discovered a crucial property
of QCD: the asymptotic freedom, the property of the strong coupling to vanish at infinite
energy scale. This key feature of QCD allowed for high precision predictions using perturbative
methods at high energy experiments. The great success of perturbative QCD, earned D.Gross,
F.Wilczek and H.D.Politzer the 2004 Nobel Price.

1.1.1 QCD Lagrangian

Following the discussion above, the modern theory for the strong interaction is a non-Abelian
gauge theory with local symmetry being the SU(3)C color group. Proceeding in a similar way

6



1.1. QCD

to the QED, the QCD can be constructed starting from the free Dirac Lagrangian for quarks
fields q↵f with flavour f(2 {u, d, s, c, t, b}) and color ↵ (2 {1, 2, 3})

L0 =
X

f

q̄f (i�
µ@µ �mf )qf . (1.4)

The qf are vectors defined as qTf ⌘ (q1f , q
2
f , q

3
f ). 1.4 is invariant under global SU(3)C transfor-

mation
q↵f ! (q↵f )

0 = U↵
�q

�
f , U = exp

⇢
�igs

�a

2
✓a

�
2 SU(N) (1.5)

where gs is a factor taken out from the arbitrary parameters ✓a that will turn out to be the
so-called strong coupling constant. The �a are the Gell-Mann matrices, the generators of the
fundamental representation of SU(3)C . According to the gauge principle, we require the SU(3)C

symmetry to be local, ✓a = ✓a(x). This yields a redefinition of the derivative into a new covariant
object

Dµqf ⌘ [@µ � igsG
µ(x)]qf (1.6)

where the matrix Gµ is defined by

[Gµ(x)]↵� ⌘
✓
�a

2

◆

↵�

Gµ
a(x) (1.7)

and the Gµ
a(x) are the gauge boson fields. In order to preserve the local gauge invariance of

the Lagrangian, Dµqf has to transform in the same way as qf . Therefore, the transformations
rules for Dµ and Gµ become

Dµ ! (Dµ)0 = UDµU † (1.8)

Gµ ! (Gµ)0 = UGµU † � i

gs
(@µU)U †.

The infinitesimal local transformations of the two fields are

q↵f ! (q↵f )
0 = q↵f � igs

✓
�a

2

◆

↵�

�✓a(x)q
�
f (1.9)

Gµ
a ! (Gµ

a)
0 = Gµ

a � @µ(�✓a(x)) + gsf
abc�✓b(x)G

µ
c . (1.10)
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The last term in equation 1.10 involves the gauge field itself. This is a general consequence
of the non-commutativity of the SU(N)C matrices for N > 2. The fabc are called structure
constants and the fact that we can express the transformation of the gauge fields in terms of
these constants implies that such fields belong to the adjoint representation of SU(3)C . See
Appendix A.
In analogy to what happens for the photon � in QED, the local gauge invariance gives rise to
8 new boson gauge fields Gµ

a . In order for those to be propagating fields, hence to be able to
describe physical particles, we have to add a gauge-invariant kinetic term for the Gµ

a to the free
Lagrangian. We start by defining the corresponding field strength tensor

Gµ⌫(x) ⌘ i

gs
[Dµ, D⌫ ] = @µG⌫ � @⌫Gµ � igs[G

µ, G⌫ ] ⌘ �a

2
Gµ⌫

a (x), (1.11)

Gµ⌫
a (x) = @µG⌫

a � @⌫Gµ
a + gsf

abcGµ
bG

⌫
c ,

which transforms
Gµ⌫ ! (Gµ⌫)0 = UGµ⌫U †, (1.12)

and we construct the corresponding Yang-Mills term

Lkinetic ⌘ �1

2
tr[Gµ⌫Gµ⌫ ] = �1

4
Gµ⌫

a Ga
µ⌫ . (1.13)

The gauge fields describe massless spin 1 boson fields which, after quantization, will describe
the so-called gluons. The total QCD Lagrangian is

LQCD =Lkinetic +
X

f

q̄f (i�
µDµ �mf )qf (1.14)

=� 1

4
(@µG⌫

a � @⌫Gµ
a)(@µG

a
⌫ � @⌫G

a
µ) +

X

f

q̄↵f (i�
µ@µ �mf )q

↵
f

+ gsG
µ
a

X

f

q̄↵f �µ

✓
�a

2

◆

↵�

q�f

� gs
2
fabc(@µG⌫

a � @⌫Gµ
a)G

b
µG

c
⌫ �

g2s
4
fabcfadeG

µ
bG

⌫
cG

d
µG

e
⌫ .

The second line of equation 1.14 contains the kinetic terms for the different fields, which will
originate the two propagators of the quantized version of those fields; the third line describes
the interaction between gauge and Dirac fields, which is proportional to the strong coupling
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1.1. QCD

constants gs; and the fourth line is responsible for the cubic and quadratic gluon self-interaction,
which is also proportional to the same gs. The presence of gauge field self-interacting terms is
a common characteristic of non-Abelian gauge theories.
Although the classical formulation of the theory runs straight forward without many problems,
the quantization procedure for non-Abelian theories in general encounters some technical issues.
Due to the gauge invariance of the classical Lagrangian, physical observables cannot uniquely
determine the gauge fields, leaving the latter subject to an infinite number of possible gauge
choices. Applying quantization to the Lagrangian, however, requires the elimination of those
unphysical degrees of freedom [25]. In order to overcome this issue, a gauge fixing term can be
added directly to the Lagrangian. The covariant gauge @µGµ

a = 0 is a common choice since it
preserves the Lorentz invariance of the Lagrangian. The covariant-gauge fixing term for this
specific case reads

LGF = � 1

2⇠
(@µGa

µ)(@⌫G
⌫
a) (1.15)

where ⇠ sets the chosen gauge and is called the gauge parameter. Since physical observables
are independent of the gauge choice, the value of ⇠ is arbitrary. One talks about Feymann
gauge if ⇠ = 1, whereas the Landau gauge is commonly referred to for ⇠ ! 0. For QED,
this procedure would be enough to assure that the resulting quantized fields do not contribute
with unphysical degrees of freedom to scattering amplitudes. The condition @µAµ = 0 on the
photon, in fact, leaves a residual gauge invariance under transformation satisfying ⇤ = 0

which guarantees the conservation of the electromagnetic current and, consequently, of the
unitarity of scattering amplitudes. The same argument doesn’t hold for non-Abelian theory
where the non commutativity destroys the residual gauge invariance and the conservation of
the current. The consequence is that the covariant scattering amplitudes calculated from the
quantized Lagrangian LQCD+LGF will take into account unphysical gluon contributions leading
to violation of unitarity. A mathematical trick to solve this problem was given by L.D.Faddev
and V.N.Popov in 1967 [26]: one can insert artificially into the theory ghost fields that cancel
the unphysical degrees of freedom. The corresponding Lagrangian piece to add is

LFP = �@µ�̄aD
µ�a (1.16)

9
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where �a, �̄a is a set of anticommutating, massless, hermitian scalar fields and the covariant
derivative is expressed in the adjoint representation

Dµ�a ⌘ @µ�a � gsf
abc�bGµ

c . (1.17)

The total QCD Lagrangian density in the covariant gauge takes the end form LQCD+LGF+LFP .
The corresponding Feynman rules listed in Fig. 1.3 can be deduced from the resulting action
defined as

SQCD ⌘ i

Z
d4xLQCD (1.18)

Alternative choices of gauges more suitable for some specific applications can be found in the
literature. Among non-covariant gauges, worth of mention are the Coulomb gauge and axial
gauges. In particular, axial gauges, nµGa

µ = 0, do not require the introduction of ghost fields.
The gauge fixing term in this case reads

LGF = � 1

2⇠
(nµGa

µ)
2 , (1.19)

where nµ is the so-called gauge vector. The case where the square of nµ is taken to be positive,
i.e. n2 > 0, is called a temporal gaguge. When n2 = 0 is called a light-cone gauge, whereas for
n2 < 0 we talk about a pure axial gauge. The drawback in this gauge is the resulting increased
complexity of the gluon propagator, c.f. Fig. 1.3:

= �AB �i

p2 + i"

✓
gµ⌫ � nµp⌫ + n⌫pµ

n · p +
(n2 + ⇠p2)pµp⌫

(n · p)2
◆

(1.20)
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1.1. QCD

Figure 1.3: Feynman rules for QCD. The solid line indicates quarks, the curly gluons and the
dashed ghosts [27].
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1.2 Perturbative QCD

As for any theory in physics, the success of QCD is strictly connected with its ability to make
phenomenological predictions for relevant observables. In this respect, under the name pertur-
bative QCD (pQCD) we collect the practical instruments to calculate measurable quantities
describing some process in which the strong interaction involved can be considered as a small
perturbation. Crucial to any perturbative approach in field theory is the fact that, to be applied
reliably, the coupling between fields has to be “small enough” at the energies involved in the
described process. On the other end, the QCD coupling has to be “large enough” in order to be
consistent with the confinement hypothesis, i.e. to be consistent with the lack of observations
of free color charges in nature. As we will discuss in Sec. 1.2.1, the strong coupling constant
exhibit a remarkable property called asymptotic freedom, which guarantees that the magni-
tude of the interaction decreases asymptotically to zero when the energy scale of the process
increases to infinity. The affirmation of QCD in its early days was made possible by the fact
that perturbative QCD turned out to be applicable at the energies accessible to experiments
of that time and produced straight away satisfying descriptions of the data. A well-established
framework able to describe more and more observables at high precision has developed since
then. In the next sections of this chapter we are going to present key aspects of the pQCD
framework making use of the deep inelastic process as an example. We focus on concepts such
as factorization and resummation relevant for or discussion in the next chapters. For a more
didactical treatment of the subject we refer to [1] and [2].

1.2.1 The Running of the Coupling Constant

Up until now, we have looked into the structure of the Lagrangian without properly justifying
the validity of a perturbative approach to QCD. As we shall discuss in this section, the answer
lies in the so-called asymptotic freedom of the strong coupling, i.e. in the behaviour of the strong
interaction at high energy scales (or equivalently, at short distances). QCD is a quantum field
theory and as such it naturally exhibit divergent integrals when calculating Green’s functions
with loops. This implicitly spoils our ability to identify parameters of the theory directly with
physical observables. Renormalization is the systematic way of redefining the parameters in
order to get rid of divergences and, hence, to be able to describe the physical world. As a
remnant of this procedure on is left with a dependence of the parameters on a dimensionful
arbitrary variable, the renormalisation scale µR. The last fact is referred in the literature as
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1.2. PERTURBATIVE QCD

the running of the constants and it can be used to inspect the quantum structure of a theory.
In high energies processes the quarks can be treated as massless particles and the only remaining
parameter in QCD is the coupling constant gs. In analogy to the fine structure constant in
QED, it is common to define

↵s ⌘ g2s
4⇡

. (1.21)

To renormalize the strong coupling constant one needs to proceed as usual choosing a regular-
ization scheme, in order to isolate the divergences, and a renormalization scheme, that specifies
which finite factors in addition to the divergent parts will be included in the redefinition of the
constant. Among all possible regularization schemes, for the type of calculations presented in
this thesis the normal choice is the dimensional regularization which is Lorentz and gauge in-
variant. Since it is a standard subject of every QFT course, we won’t discuss the details of this
technique. We want, however, to bring to attention the fact that each regularization scheme
introduces itself an arbitrary regularization scale µ which, fortunately, cancels at some point of
the calculations. In our case, for example, to be able to perform the dimensional regularization,
hence to rewrite the divergent loop integrals in a different dimension d = 4� 2✏, where ✏ is an
arbitrary small constant, we have to make sure that we work with dimensionless objects. Thus,
to prevent the coupling constant from acquiring a dimension when d 6= 4, we have to introduce
a regularization scale µ and define a dimensionless coupling constant ↵s(µ)

↵s = ↵(d)
s µ�2✏. (1.22)

The d symbol stands for "dimensionful". Once we have regularized the divergences, we end
up with terms that can directly be absorbed in a redefinition of the coupling constant. For
example, in a one-loop calculation those terms will manifest 1/✏ singularities. By redefining (i.e.
renormalizing) the coupling constant at one-loop order as

↵s(µ
2
R) = ↵s + �0F (✏)

✓
µ2

µ2
R

◆✏
1

✏
↵2
s, (1.23)

the ✏ poles produced by this expression exactly cancels those of the one-loop calculation. The
arbitrary regularization scale µ will cancel at this point too. The renormalization scale µR had
to be introduced here to keep the renormalized coupling constant ↵s(µR) dimensionless. �0 is a
constant that is defined in Eq.1.35. The arbitrary F (✏) = 1 +O(✏) defines the renormalization
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scheme. For the so-called minimal subtraction scheme MS

FMS(✏) = 1. (1.24)

For the modified minimal subtraction scheme MS the function F(✏) is defined as

FMS(✏) =
(4⇡)✏

�(1� ✏)
= 1 + (ln 4⇡ � �E)✏+O(✏2) (1.25)

in order to get rid of some other constant terms coming from the analytical continuation of the
angular integration of the one-loop integrals. � is the Euler gamma function and �E ⇡ 0.577216

is the Euler-Mascheroni constant.

We have explicitly kept track of the regularization scale µ for discussion purposes. It is however
common to set µ = µR from start when performing renormalization since, as we have seen, the
dependence on µ drops out. The running of ↵s is in fact a consequence of the renormalization
scale independence of the renormalization process itself. The “bare” parameter gs appearing in
the Lagrangian 1.14 knows nothing about µR:

dgbare
s

dµR

= 0 . (1.26)

The running coupling is defined from the bare quantity gbare
s through the renormalization con-

stant Zg as gbare
s = µ✏

RZggs. Thus, from Eq. 1.26 and using definition 1.21 we obtain

�(↵s) ⌘ µ2
R

@↵s(µ2
R)

@µ2
R

=
�✏↵s

1 + 2↵s
Zg

dZg

d↵s

. (1.27)

In the previous equation we used the fact that Zg depends on the renormalization scale µR only
via the presence of ↵s. At one loop, for example,

Zg = 1� �0
2✏
↵s , (1.28)

with the same �0 defined in Eq.1.35. The introduced beta function �(↵s) contains all informa-
tion regarding the behavior of the running coupling constant ↵s and can be computed directly
from the renormalization constant Zg. Using Eq. 1.27 and expanding Eq. 1.27 in powers of ↵s,
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at one loop we obtain
�(↵s) = ��0↵2

s +O(↵2
s, ✏) (1.29)

As long as �0 > 0, the magnitude of the coupling constant is predicted to diminish increasing
µR. Hence, there should be some value of the renormalization scale above which the running
coupling becomes smaller than 1. In this case, the above expansion is fully legitimate and we
can solve the equation analytically in order to get the famous running of ↵s:

↵s(µ
2
R) =

1

�0 ln(µ2
R/⇤QCD)

. (1.30)

The parameter ⇤QCD is the boundary condition of the first order differential equation, and
corresponds to the scale at which ↵s ! 1.
So far, the running of the coupling has been introduced has a consequence of the renormalization
procedure without any connection to the real physical world. Nonetheless, we shall see that
the behaviour of the running coupling has to be such that physical observables are insensitive
to the arbitrary choice of the artificial scale µR. In a more formal way, we would say that all
physical observable should be invariant under transformations of the renormalization scale

µR ! eSµR , (1.31)

where S is a free parameter. These transformations form a group called the renormalization
group. The requirement of invariance of a physical observable under such transformations
translates itself in a set of differential equations called the renormalization group equation, one
for each renormalized parameter in the theory. In our case the only renormalized constant
is the coupling constant and the corresponding renormalization group equation for it can be
easily derived. Let’s take a dimensionless physical observable R like, for example, the ratio
seen in Eq.1.3. Since R is dimensionless and we are neglecting the quark masses, it can be
only a function of some set of dimensionless physical variables that we will denote collectively
as x (angles, Bjorken variables and so on), the renormalized coupling constant ↵(µ2

R) and the
ratio Q2/µ2

R between the renormalization scale µR and, now, the physical scale Q2 at which the
observable is measured. In order for R(x, Q2/µ2

R,↵s(µ2
R)) to be independent from the choice of
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µR the following differential equation has to be satisfied

µ2
R

d
dµ2

R

R(x, Q2/µ2
R,↵s(µ

2
R)) = 0 =


µ2
R

@

@µ2
R

+ µ2
R

@↵s(µ2
R)

@µ2
R

@

@↵s(µ2
R)

�
R (1.32)

⌘

µ2
R

@

@µ2
R

+ �(↵s)
@

@↵s(µ2
R)

�
R.

If we set the renormalization scale equal to the physical scale, we obtain R = R(x, 1,↵s(Q2)),
which is a solution of the above equation. This means that a physical solution of Eq.1.32 will
manifest its Q-dependance only through the Q-dependence of the running coupling constant,
i.e. only because of the renormalization we had to make of the latter.
The beta function explicitly appears in Eq. 1.32 connecting, de facto, the behaviour of ↵s to
the real physical world. Eq.1.27 is generally referred as the renormalization group equation for
the running coupling since its solution describes how ↵s must change under a transformation
of the renormalization scale in order for R to remain invariant. From Eq.1.32 we obtain

�(↵s) = �
µ2
R

@R
@µ2

R

@R
@↵s

. (1.33)

Let’s suppose now that at some value of Q the coupling constant ↵s becomes smaller than 1
and hence we are able to write R in a perturbative series with order parameter being ↵s. As
we have seen, this is a perfectly legitimate approach as long as �0 > 0. Due to Eq.1.33 the beta
function will be also perturbatively calculable. At present day the �(↵s) for the QCD is known
up to four-loop accuracy [28]

�(↵s) = �↵s

1X

n=0

�n
⇣↵s

4⇡

⌘n+1

= �↵2
s(�0 + �1↵s + �2↵

2
s + �3↵

3
s + . . .), (1.34)

where in the MS scheme

�0 =
1

4⇡


11� 2

3
Nf

�
(1.35)

�1 =
1

(4⇡)2


102� 38

3
Nf

�
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�2 =
1

(4⇡)3


2857

2
� 5033

18
Nf +

325

54
N2

f

�

�3 =
1

(4⇡)4

✓
149753

6
+ 3564⇣3

◆
�
✓
1078361

162
+

6508

27
⇣3

◆
Nf

+

✓
50065

162
+

6472

81
⇣3

◆
N2

f +
1093

729
N3

f

�

and ⇣⌫ is the Riemann zeta-function, ⇣3 ⇡ 1.202057. The Nf are the number of active flavours.
If we observe the first coefficient of the expansion �0, we note that it is a positive quantity.
Therefore, according to Eq.1.34, unlike the �(↵) for QED, in QCD �(↵s) < 0. This change
of sign in the beta function has a drastic consequence on the real physical world. Eq.1.27
obligates the running coupling constant ↵s to decrease as the energy of the interaction increases,
or equivalently as the distance of the interaction becomes shorter and shorter. This is what
is called the asymptotic freedom. Although it is somewhat counterintuitive to think that an
interaction builds stronger and stronger as we increase the distance between two particles, it
is a consequence of the non-Abelian structure of the theory which produces self interaction
terms between the gauge gluon fields (see Eq.1.14). As the scale gets smaller and smaller, the
contributions of those terms will be more and more important. To have an intuitive vision of
it, we could say that the quark will get surrounded by more and more charged gluons, building
up from self interactions, as it moves apart from the other quarks. The color charge the quark
experiences will grow rather than being screened from other quarks (as it happens in QED for
the electrons). This "anti-screening" phenomenon is responsible for the asymptotic freedom.
Since no free quarks are observed, a confinement hypothesis has to be assumed. There should
be a breaking point where it is more likely for a quark to be in a hadronic state with other
nearby quarks than to experience an enormous interaction with faraway quarks.
To better understand how the real world comes into play in the determination of ↵s, let’s solve
Eq.1.27 this time by imposing a boundary condition on ↵s at some physical reference scale µ0,
i.e. by solving

ln
Q2

µ2
0

=

Z ↵s(Q2)

↵s(µ2
0)

d↵
�(↵)

. (1.36)

At one-loop, the solution equivalent to Eq. 1.30 reads

↵s(Q
2) =

↵s(µ2
0)

1 + �0↵s(µ2
0) ln(Q

2/µ2
0)

= ↵s(µ
2
0)

1X

n=0

✓
��0↵s(µ

2
0) ln

Q2

µ2
0

◆n

. (1.37)
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(a) Measurements of ↵s(Q2) as a function of the en-
ergy scale.

(b) Measurements of ↵s(MZ) at the scale MZ . The
vertical yellow stripe shows the 2009 word average
↵s(MZ) = 0.1184± 0.0007

Figure 1.4: Collection of world measurements of ↵s. Pictures taken from [29].

The remarkable thing here is that the value of ↵s(µ2
0) can be extracted from data. By convention

µ0 is chosen to be the mass scale of the Z boson (⇡ 90GeV) and the MS scheme is taken to
be the standard renormalization scheme. See [29] and Fig.1.4 for the 2009 word average of ↵s.
Comparing Eq. 1.37 and Eq. 1.30, the introduced renormalization group invariant ⇤QCD can
be now interpreted in terms of the experimentally extracted parameter ↵s(µ2

0):

⇤2
QCD ⌘ µ2

0 exp


� 1

�0

1

↵s(µ2
0)

�
. (1.38)

Moreover, Eq. 1.37 clearly shows how a change of scale induces a reorganization of the per-
turbative expansion of any observable. By solving the renormalization group equation for the
strong coupling, one effectively resumms logarithms of the type (�0↵s(µ2

0) ln(Q
2/µ2

0))
n. In-

cluding higher n-loop corrections proportional to �n coefficients in the solution increases the
accuracy of said resummation. However, beyond 1-loop, Eq. 1.36 yields no exact analytical
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solution. The three loop solution, for example, can be only written implicitly through the
expression

↵s(Q
2) =

↵s(µ2
0)

X


1� �1

�0
↵s(µ

2
0)
logX

X
+ ↵2

s(µ
2
0)

✓
�2
�0

1�X

X2
+
�2
1

�2
0

log2 X � logX +X � 1

X2

◆�

(1.39)
with

X = 1 + �0↵s(µ
2
0) log(Q

2/µ2
0) (1.40)

As a last remark of this section, we want to point out the fact that despite the suitable be-
haviour of ↵s at large scales, perturbation theory could still produce wrong results. A physical
observable R might not be described uniquely by its series expansion

P1
n=0 R

(n)↵n
s , even for

↵s ! 0. The factorial growth of the perturbative coefficients R(n), and, hence, its n!-type diver-
gence, may spoil the validity of the perturbative approach even if ↵s is taken to be very small.
A fundamental assumption within pQCD is, therefore, that the expansion in ↵s is asymptotic.
A series is asymptotic to a function f(↵s) if

�����f �
NX

n=0

f (n)↵n
s

�����  CN+1↵
N+1
s (1.41)

for all integer N when ↵s ! 0. Thus, the best approximation of an observable R(↵s) may be
achieved truncating the series at the Nth order for which CN+1 is the smallest. In practice,
only few orders in the perturbative expansion are shown to be necessary for the description of
most of the studied high energy reaction in colliders and fixed target experiments. This ceases
to be true for specific kinematical regimes where higher order contributions become large and
the perturbative series is not under control. We shall see in the last section of this chapter
how to account for them in two specific cases at all orders through the use of a resummation
techniques. Those procedures allow us to stretch the applicability of pQCD to regions of the
phase space where non-perturbative effects start to become the predominant contribution.

1.2.2 Deep Inelastic Process: from Parton Model to Factorization

Up until now we have justified the validity of the perturbative approach based on a fundamental
feature of QCD: the asymptotic freedom. In our following chapters, we will be presenting results
for processes involving hadrons in the initial and/or in the final state. As we have discussed
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previously, the confinement hypothesis relegates hadronic states to highly non-perturbative
regimes. The key connection between the perturbative description of the high momentum
transfer interactions between quarks and gluons and the non-perturbative final/initial state
hadrons lies in a property of some observables called factorization. Factorization relies on the
incoherence of long distance and short distance effects in hadronic processes. It allows us to
write scattering amplitudes involving high energy hadrons as a product of a “hard” scattering
(short distance) piece, which only contains high energy and momentum components, and a
“soft” reminder which includes all informations about the physics of low energy (long distance).
Due to asymptotic freedom, the former can be computed in perturbation theory, whereas the
latter can be described by process independent distribution functions. Initial state and final
state distribution functions describe conceptually the distribution of the constituting funda-
mental elements inside an initial state hadron, parton distribution functions (PDFs), and the
probability for them to hadronize after the scatter into a specific type of final state hadron,
fragmentation functions (FFs). They are usually extracted through fits of global data and used
as inputs when making further predictions in high energy hadronic processes.
Hereinafter, we consider the inclusive cross-section for deep inelastic proton-lepton scattering
(DIS) as an exemplary observable to discuss factorization in more detail. We start by present-
ing the parton model, whose success in the 70’s came from its ability to explain the observed
approximate scaling property of the DIS structure function: the Bjorken scaling. We shall see
that the parton model can be understood as the lowest order result of a more general structure
and discuss how a factorized expression can be achieved at first order in perturbation theory.
We are not going to extend this to higher orders as we are not interested here in presenting a
formal proof of a factorization theorem. On the other end, the first order result will be useful
to introduce the concepts of PDFs, FFs and evolution relevant to our discussions in the next
chapters.

DIS in the parton model

Let’s consider a lepton-hadron scattering process and label with Q2 = �q2 the momentum
loss of the lepton transferred to the proton via an exchange of a virtual photon of momentum
q. In order to gain better information over the structure of the hadron one may progressively
improve the spatial resolution by increasing the transferred momentum, i.e. the momentum of
the virtual photon. Intuitively, this is show in Fig. 1.5. If we define with W the invariant mass
of the final state and with Mhadron the mass of the initial hadron, the condition W 2 � M2

hadron
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Figure 1.5: Relation between resolution and �q2 [30].

identifies the inelastic regime of this process. The transition between the elastic and the inelastic
regime appears clear in Fig. 1.6 where the cross section for electron-proton collision is shown.
The first peak corresponds to the elastic regime where W 2 ⇡ M2

p . The second peak takes place
when W 2 ⇡ M2

� and corresponds to the reaction ep ! e�+ ! ep⇡0 where the proton brakes up
and is excited to a �+ state. Less and less structures are seen for higher invariant masses. The
inelastic regime is said to be "deep" if, together with the inelasticity condition, the condition
Q2 � M2

hadron is satisfied. In this regime we are effectively scanning over the constituents of
the hadron which are collectively called partons. The main idea of the parton model is to
take advantage of the different time scales at which the elastic scattering between the virtual
photon and the partons, and the subsequent interaction between the partons happen. Without
loss of generality, let’s move the reasoning in a Lorentz frame where the |p|hadron � Mhadron

Figure 1.6: SLAC measurements for the e�p ! e�X cross section as a function of the invariant mass W
[30].
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(infinite momentum frame). This can be done since Q2 � M2
hadron, and an example of such

frame could be the center of mass frame (c.m.s.). In this system of reference, the hadron moves
ultra-relativistically and both the masses of the partons m and the mass of the hadron Mhadron

can be neglected. Moreover, due to Lorentz contraction of space the hadron will look like a disk
of collinear moving partons, which allows us to neglect the transversal momenta of the partons
pparton
T = 0 in both initial and final state. On the other hand, from the point of view of a striking

lepton going through the hadron, time dilatation "freezes" the partons in their virtual states.
The time scale at which the hard scattering between lepton and parton occurs is much smaller
than the time needed for the partons to interact with each others. For example, if we consider
a transferred momentum of 100 GeV, the first reaction happens in about 0.67⇥ 10�26s whereas
the subsequent series of interactions take place in about 0.67⇥10�22s after considering the time
dilatation in transferring from the hadron inertial frame to the laboratory frame. Based on this
considerations, one might write a cross section where this two parts of the DIS process are well
separated. The conceptual picture for the parton model was firstly introduced by R.P.Feynman
(1969)[31] and then formally developed by J. D. Bjorken and E. A.Paschos (1969)[32]. We can
schematically summarize this picture as follows

d�(x) =
X

i

Z 1

x

dy

y
fi(y)d�̂

✓
x

y

◆
=
X

i

Z 1

x

dz

z
fi
⇣x
z

⌘
d�̂ (z) =

X

i

fi ⌦ d�̂, (1.42)

where � is the measured cross section, the �̂ denotes the cross section of the hard scattering
between the lepton and the parton i and fi(y) is the parton distribution function describing
the probability for the virtual photon to find a parton of momentum ppartoni

= yPhadron, or
vice-versa, the probability for the struck parton i to carry a fraction 0  y  1 of the hadron’s
momentum Phadron. The convolution of two function is defined as

g(⌧) ⌘
Z 1

0

dx

Z 1

0

dzf(z)�(⌧ � xz)h(x) =

Z 1

⌧

dz

z
f(z)h

⇣⌧
z

⌘
= f ⌦ h. (1.43)

On the other side, the cross section of DIS can be constructed directly from the general scat-
tering theory. For an unpolarized cross section the general expression is

d� =
|M|2

initial flux
dPS (1.44)

where dPS is the Lorentz invariant phase space factor and |M|2 is the invariant amplitude
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P, s

q

k0k

1

2

. . .

N

W

n =

Figure 1.7: Deep inelastic scattering l(k) + h(P ) ! l(k0) +X. W is the invariant mass of the
unobserved final state X and with s we indicate the spin state of the incoming hadron. q is the
momentum of the virtual photon. The dashed line serves as an intuitive separation between
the leptonic and the hadronic part of the process.

squared M, summed over all outgoing spin states and averaged over the incoming ones:

|M|2 =

0

BBB@

n
incoming

spin 1⁄2-particlesY

i=1

1

2si + 1

1

CCCA

0

BBB@

n
incoming

spin 1-particlesY

j=1

1

2sj

1

CCCA
X

all outgoing
spin states

|M|2. (1.45)

The invariant amplitude for the DIS process shown in Fig. 1.7 is given by

M = eū(k0)�µu(k)
1

q2
hX| Jµ(0) |P, si , (1.46)

where Jµ(0) is the electromagnetic current. We are not considering here electroweak currents
since they don’t add any relevant information to the discussion in this chapter. It turns out
that the cross section constructed from this amplitude according to Eq. 1.45 can be separated
into a leptonic part and and a hadronic part

d� ⇠ Lµ⌫W
µ⌫ . (1.47)

In Fig. 1.7 the dashed line serves as an intuitive separation between the leptonic and the
hadronic part of the process. The leptonic part can be calculated from first principles in QED
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and gives

Lµ⌫ =
1

2

X

lepton
spins

[ū(k0)�µu(k)][ū(k0)�⌫u(k)]⇤ = 2(k0µk⌫ + k0⌫kµ � (k0 · k �m2)gµ⌫) , (1.48)

where m is the lepton mass, which in the deep inelastic limit can be neglected. The hadronic
tensor, on the other end, has a more complicated structure and is defined as

Wµ⌫ =
1

4⇡M

X

N

 
1

2

X

s

!Z NY

n=1

✓
d3P 0

n

(2⇡)32E 0
n

◆X

sn

hP, s| J†
µ |Xi (1.49)

⇥ hX| J⌫ |P, si (2⇡)4�(4)
 
P + q �

X

n

P 0
n

!
,

where the sum runs over all possible final N-particle state X and
P

n P
0
n = PX is the momentum

of the final state X. Using �4(P+q�PX) =
R
d4z exp(iP ·z+iq ·z�iPX ·x), using the tranlation

relation Jµ(z) = exp(iPop · z)Jµ exp(�iPop · z) and using the completeness for the intermediate
states, the hadron tensor can be written as the Fourier transform of the product Jµ(z)J⌫(0)

expectation value
Wµ⌫ =

1

4⇡M

Z
d4zeiqz hP | Jµ(z)J⌫(0) |P i , (1.50)

where summation and averaging over spins is left implicit. As we shall see later in this section,
the hadron tensor is related to the total cross section for virtual photoabsorption. As such,
the hadronic tensor is related to the forward virtual Compton amplitude through the optical
theorem

Wµ⌫ =
1

⇡
Im Tµ⌫ , (1.51)

where
2MTµ⌫ = i

Z
d4zeiqz hP | T Jµ(z)J⌫(0) |P i . (1.52)

Although we cannot calculate W µ⌫ from first principles due to the non-perturbative nature of
the hadronic states, we can derive its tensor structure from the properties of the strong and
electromagnetic interaction. For unpolarized cross sections the most general covariant rank-2
tensor will contain only symmetric terms in µ and ⌫. Thus, the general form of W µ⌫ in this
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case would be

W µ⌫ = �W1g
µ⌫ +

W2

M2
P µP ⌫ +

W4

M2
qµq⌫ +

W5

M2
(P µq⌫ + qµP ⌫). (1.53)

Using the fact that Jµ is a conserved quantity, qµW µ⌫ = 0. As a consequence we obtain

W5 = �P · q
q2

W2 (1.54)

W4 =

✓
P · q
q2

◆2

W2 +
M2

q2
W1,

and inserting W4 and W5 into 1.53 gives us

W µ⌫ = W1

✓
�gµ⌫ +

qµq⌫

q2

◆
+W2

1

M2

✓
P µ � P · q

q2
qµ
◆✓

P ⌫ � P · q
q2

q⌫
◆
. (1.55)

W1 and W2 are called the structure functions and depend on the two Lorentz scalar variables

Q2 ⌘ �q2 (1.56)

⌫ ⌘ P · q
M

.

The invariant mass W of the final hadronic system can be expressed in terms of the scalars Q2

and ⌫ as follows
W 2 = (P + q)2 = M2 + 2M⌫ �Q2. (1.57)

Furthermore, the variables of Eq.1.56 can be replaced by the dimensionless

x ⌘ Q2

2P · q =
Q2

2M⌫
0  x  1 (1.58)

Y ⌘ P · q
P · k 0  Y  1.

x is called the Bjorken scaling variable. The dimensionless structure functions F1(x) and F2(x)

are defined from W1(⌫, Q2) and W2(⌫, Q2) as

F1(x,Q
2) = MW1(⌫, Q

2) (1.59)

F2(x,Q
2) = ⌫W2(⌫, Q

2).
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Figure 1.8: Parton model for DIS l(k) + h(P ) ! l(k0) +X.

Written as a function of F1 and F2, Eq. 1.55 takes the form

MW µ⌫ = (
qµq⌫

q2
� gµ⌫)F1(x,Q

2) +
1

P · q
✓
P µ � qµ

P · q
q2

◆✓
P ⌫ � q⌫

P · q
q2

◆

= �gµ⌫? F1(x,Q
2) + t̂µt̂⌫

⇣
�F1 +



2x
F2

⌘
, (1.60)

where

 = 1 +
4M2x2

Q2
, t̂µ =

1

Q
p

(qµ + 2xP µ) and gµ⌫? = gµ⌫ +

1

Q2
qµq⌫ � t̂µt̂⌫ . (1.61)

With those definitions and ignoring hadron mass corrections / M2/Q2, the inclusive cross
section for DIS, l(k) + h(P ) ! l(k0) +X, written in terms of the structure functions reads

d�

dx dY
=

2⇡↵2

xY Q2

"
⇥
1 + (1� Y )2

⇤
2xF1 + (1� Y ) 2FL

#
, (1.62)

where FL = F2 � 2xF1.
As we discussed at the beginning of this section, the idea of the parton model is to approximate
the process shown in Fig. 1.7 to a sum of incoherent scatters between the virtual photon and the
individual partons, whose momentum distribution may be described by the parton distribution
functions fi(y). Diagrammatically, this is show in Fig. 1.8. The hadron tensor is related to
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the total cross section of the lower part of the proccess, i.e. to the virtual photon absorption
�⇤(q)h(P ) ! X. Since the flux for a virtual photon beam is not a well-defined quantity and
can be chosen arbitrary, let’s use here the so called Hand convention and set the flux factor for
the virtual photon equal to the one of a real photon with q2 = 0 and energy q0 = ⌫ ⌘ K. In
this case the flux factor is 4MK and K has to satisfy the following equality:

K =
W 2 �M2

2M
= ⌫ +

q2

2M
. (1.63)

The cross section reads

�tot
� =

4⇡2↵

K
"µ⇤� "

⌫
�Wµ⌫ ⌘ �02M"µ⇤� "

⌫
�Wµ⌫ , (1.64)

where �0 = 4⇡2↵
2MK

. Taking the z axis in the same direction as q, the photon polarization vectors
"µ� for the different helicities � are defined as

"± = ⌥
r

1

2
(0, 1,±i, 0) for � = ±1, (1.65)

"0 = "L =
1p�q2

⇣p
⌫2 � q2, 0, 0, ⌫

⌘
for � = 0.

The completeness relation for a massive photon yields

X
(�1)�+1"µ⇤� "

⌫
� =

X

T=±1

"µ⇤T "
⌫
T + "µ⇤L "

⌫
L = �gµ⌫ +

qµq⌫

q2
, (1.66)

where with T and L we indicate the transversal and longitudinal components respectively.
In the deep inelastic limit, i.e. ignoring corrections of order M2/Q2, Eq 1.64 together with 1.55
yield

M(�gµ⌫Wµ⌫) ⌘ �T
�0

= 2F1(x,Q
2) (1.67)

2M

✓
qµq⌫

q2
Wµ⌫

◆
⌘ �L
�0

=
FL(x,Q2)

x
. (1.68)

Following the prescription of the parton model (see Eq. 1.42), the structure functions may be
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written as

2F1 =
�T (x)
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(1.69)

where �̂0 = 4⇡2↵
ŝ

and ŝ = (pi + q)2 is the partonic c.m. energy squared. �̂ identifies the
quark-parton elastic process �⇤q ! q:

�̂(�⇤q) =
4⇡↵2

2pi · q"
µ⇤
� Ŵµ⌫"

⌫
�. (1.70)

Hence, the partonic structure functions F̂ can be calculated from the partonic hadron tensor
Ŵµ⌫ . Similarly to Eqs.1.67 and 1.68 we can define [33]

M
⇣
�gµ⌫Ŵµ⌫

⌘
= F̂2(z)� 3

2
F̂L(z) (1.71)

M
⇣
pµi p

⌫
i Ŵµ⌫

⌘
=

Q2

8z2
F̂L(z), (1.72)

where z ⌘ Q2

2pi·q , F2 = FL + F1 and the partonic hadron tensor takes the form
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4⇡M
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(2⇡)32p00i
(2⇡)4�(4)(pi + q � p0i)
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e2i [p

µ
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⌫
i + p⌫i p

µ
i + pµi q

⌫ + p⌫i q
µ � (p · q)gµ⌫ ]� �(pi + q)2

�
. (1.73)

From Eq.1.72 it can be shown that F̂L / 1
Q2 which in the deep inelastic limit Q2 ! 1 implies

F̂L(z) ! 0 =) FL(x) ! 0 =) 2xF1(x) ⇡ F2(x). (1.74)

The expression above is better known as the Callan-Gross relation [34] and is a consequence
of the 1

2
-spin nature of quarks. Let’s express the momenta in light-cone components, v =

[v�, v+,v?] where v± = (v0 ± v3)/
p
2 or v = v�n� + v+n+ + vT in terms of light-like vectors

satisfying n2
� = n2

+ = 1 and n+ · n� = 0 (thus v± = v · n⌥). This will be useful later to
understand the operator definition of the parton distribution function. The relevant momenta
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in the frame where P and q are collinear read in light-cone coordinates

q =


Q2

A
p
2
,� Ap

2
,0?

�

pi =


p�,

A

z
p
2
,p?

�
=
⇥
p�, yP+,p?

⇤

P =


xM2

A
p
2
,

A

x
p
2
,0?

�
, (1.75)

where z = �q+/p+ = Q2/(2pi · q), x = �q+/P+ = Q2/(2P · q). We introduce also the variable
y = p+/P+ = x/z which is called the lightcone momentum fraction. A defines the boost
along the z-axis. For example, A ! 1 for the infinite momentum frame mentioned before
and A = xM in the target rest frame. Let’s consider now the frame where |q|2 = Q2, thus
A = Q. Since in this case P� = xM2/(Q

p
2) and P+ = Q/(x

p
2), when Q2 becomes large

P� ⌧ q� and the nucleon momentum is on the scale Q, i.e. becomes light-like. Also the parton
momentum pi is light-like if compared to the hard scale Q. We don’t need to put it on-shell
(p2i = m2 which implies p� = (m2 + p2

T )/(2p
+)) for it to be true. For a quark in a hadron we

have

p� =
2pi · P � yM2

2P+

p2T = y(1� y)M2 � y(P � pi)
2 � (1� y)p2i . (1.76)

As long as all invariants p · P ⇠ (P � pi)2 ⇠ p2i ⇠ P 2 = M2, then p+ ⇠ P+ ⇠ Q, while
p� ⇠ P� ⇠ M2/Q and p2T ⇠ M2. Those assumptions are well verified in the deep inelastic limit.
For large enough transferred momentum Q, minus components of P and pi can be neglected.
This is sufficient to derive the parton model result. A more comprehensive discussion of those
matters can be found in [35].

With this considerations, we may write now Eq.1.71 using Eq.1.73 and obtain

2F̂1(z) = e2i �(1� z). (1.77)

Placing Eq.1.77 in Eq.1.69 gives the main result of the parton model:

2F1(x) =
F2(x)

x
=
X

i

e2i fi(x). (1.78)
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Figure 1.9: Experimental data on ⌫W2 as function of x for different values of Q2 [37].

Eq. 1.78 is independent of the scale Q2. This property is known as the Bjorken scaling [36] and
was experimentally verified by a series of experiments at SLAC around 1980. See Fig. 1.9 [37].
Although such scaling is broken when considering gluon contributions to the process (see later),
the observation of the Bjorken scaling was the first “proof” that point-like structures existed
inside the hadron.

Parton distribution functions

In the parton model the distribution functions fi(z) are convoluted with the partonic process
in a ad hoc manner based on the intuitive physical picture described at the beginning of the
previous section. To understand the very essence of PDFs we may find an operator definition
in terms of quark (strength tensor gluon) fields  (x) (Gµ⌫

a ). To do this, we can calculate the
hadronic tensor directly form the handbag diagram shown in Fig. 1.10 describing the incoherent
scattering of the photon off an individual parton inside the hadron. The lower blob pictures
the so called quark correlator defined as a Fourier transform of an hadronic matrix element

�(p, P, s) =
1

(2⇡)2

Z
d4⇠eip·⇠ hP, s| j(0) i(⇠) |P, si . (1.79)
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�
P, s P, s

q

p p

q

Figure 1.10: The handbag diagram for DIS. The cut identifies final state on shell particles.

The hadronic tensor restricted to the quark part only and expressed in the light-cone coordinates
reads

2MW µ⌫(P, q) =
X

q

e2q

Z
dp�dp+d2p?tr[�(p)�µ(/p+ /q +m)�⌫ ]�((p+ q)2 �m2)

⇡
X

q

e2q

Z
dp�dp+d2p?tr

✓
�(p)�µ

/q

2q�
�⌫
◆
�(p+ + q+)

⇡ �gµ⌫?
1

2

X

q

e2q

Z
dp�d2p?tr(�+�(p))

�����
p+=xP+

+ other tensor structures . . . .

(1.80)

In the second line we have ignored the minus components of p and set p+ = xP+. This
approximation defines a framework called collinear factorization which is justified in the deep
inelastic process by the considerations made at the end of the previous section. Comparing
Eq. 1.80 with Eq. 1.60, and using the result of the parton model 1.78 together with the definition
of the quark correlator, we can read off the definition of the “collinear” parton distribution
function

q(x) =
1

4⇡

Z
d⇠�e(+ixP+⇠�) hP, s| (0)�+ (⇠) |P, si

�����
⇠+=⇠?=0

. (1.81)

In the above equation the integral over dp� and dp? was carried out leaving two delta functions
�(⇠+) and �(⇠?). This is perfectly fine as long as p2? ⇠ M2 and corrections to the collinear
picture are of order M2/Q2, which in DIS are negligible. If we do not perform the integration

31



CHAPTER 1. THEORETICAL FRAMEWORK

over dp? and keep the dependence on the transverse momentum in the definition 1.81, we
define what are called transverse momentum dependent (TMD) PDFs. TMD PDFs are used
in the framework of TMD factorization relevant for processes where corrections of order 1/Q2

are not anymore negligible.
In chapter 5 we will consider the case where the spin polarization of the target is taken into
account. The definition of “polarized” PDF reads

sL�q(x) =
1

4⇡

Z
d⇠�e(+ixP+⇠�) hP, s| (0)�+�5 (⇠) |P, si

�����
⇠+=⇠?=0

, (1.82)

where sL ⌘ M(s · q)/(P · q) and s is the spin vector of the target hadron with momentum P .
Eq. 1.81 and 1.82 are gauge dependent. In order to define PDFs in a gauge independent way
one has to introduce a path ordered exponential of the gluon field

G = P exp

 
�igs

Z ⇠�

0

d! n ·Ga(! n)ta
!
, (1.83)

where ta are the colour group generators in the fundamental representation (see Appendix A).
In the axial gauge n ·G = 0 it reduces to 1. The gauge invariant definition of a quark PDF is
then

q(x) =
1

4⇡

Z
d⇠�e(+ixP+⇠�) hP, s| (0)�+G (⇠) |P, si

�����
⇠+=⇠?=0

. (1.84)

For completeness, the definition of a gluon PDF is given by

g(x) =
1

2⇡ xP+

Z
d⇠�e(+ixP+⇠�) hP, s|G+,⌫

a (0)GabGb,+⌫(⇠) |P, si
�����
⇠+=⇠?=0

, (1.85)

where Gµ⌫ is the gluon field strength operator and in G we use the adjoint representation for
the color group generators.
To complete the parton model picture we need to understand PDFs as parton momentum
densities. From definition 1.81 is however straight forward to obtain this interpretation. Given
 (0)�+ (⇠) =

p
2 †

+(⇠) +(0), where  ± = P± ± are projections obtained from the projection
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operator P± = 1
2
�⌥�±, we can write the PDF for the quark as

q(x) =
1

2⇡
p
2

Z
d⇠�e(+ip·⇠) hP, s| (0) (⇠) |P, si

�����
⇠+=⇠?=0

=
1p
2

X

n

| hPn| + |P i |2�(P+
n � (1� x)P+). (1.86)

This represents the probability that a quark is annihilated from |P i giving a state |ni with
P+
n = (1� x)P+.

In light of our discussion so far, we can view a PDF fi graphically as

fi(x) =
dPi

dx
=

P

i
xP+

(1� x)P+
. (1.87)

where the letter P denotes a probability. As such, a general property that has to be satisfied is

X

i0

Z
dy yfi(y) = 1. (1.88)

The summation is carried out over all parton i0, not only over the charged ones i interacting
with the virtual photon. Using Eq.1.87, we can understand the parton model diagrammatically
as follows:

P
=
X

i

Z
dy

y
P

pi = yP zpi

, (1.89)
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where the white blob

=

�⇤
q

pi
ei

q
�⇤

pi

p0ip0i

,

(1.90)

From this diagrams, it is now clear how the parton model can be seen as the lowest order
approximation of a more general factorization theorem, which, for DIS [38–40], holds also in the
case when gluon emission corrections are take into account in 1.90. We will discuss factorization
for DIS in the next section.
We have derived the parton model for DIS. With analogous reasonings we could derive the
parton model for other processes. For example, for the hadron-hadron process h1(P1)+h2(P2) !
l(k1) + l(k2) +X (Drell-Yan process) the parton model gives

d�

dQ2
(⌧) =

X

i

Z 1

⌧

d⇠1
⇠1

Z 1

⌧/⇠1

d⇠2
⇠2

⇥
fh1
i (⇠1)f

h2

ī
(⇠2) + fh1

ī
(⇠1)f

h2
i (⇠2)

⇤ d�̂

dQ2
(⌧/(⇠1⇠2)) (1.91)

=
X

i

[fh1
i ⌦ fh2

ī
+ 1 $ 2]⌦ d�̂

dQ2
,

where ⌧ = Q2

s
is the Drell-Yan scaling variable and represent the fraction of momentum of the

initial state transferred to the virtual photon �⇤. The great feature of definitions 1.81 and 1.85
is that they are process independent. The PDFs f

h1,2

i in Eq.1.91 are the same as the fi for
DIS and depend only on the hadron we consider for the scattering. In this sense we say that
the PDFs are "universal". As a consequence of their universality, the distribution functions
have to satisfy some relations connected with the conservation of the charge. Let’s consider a
proton. From the quark model we know that the quantum numbers of the proton should come
from the combination of three quarks: uud. These are the so-called valence quarks. Within the
confinement region, however, quark and antiquark pairs are constantly created and annihilated
with roughly the same frequency and momentum distribution for each flavour type. Those are
known as the sea quarks. See Fig.1.11. Considering only the lightest flavour quarks u, d and
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Figure 1.11: Proton’s scheme of valence and sea quarks [30].

s, the following relations must hold

fsee = us(x) = ūs(x) = ds(x) = d̄s(x) = ss(x) = s̄s(x) (1.92)

ūv(x) = d̄v(x) = 0

u(x) = uv(x) + us(x)

d(x) = dv(x) + ds(x).

It follows that
fi � fī = fi � fī sea = fi � fi sea = fi valence. (1.93)

From the conservation of the charge, the valence quark distribution functions should then sum
to the valence value vi. For the proton it follows that

Z 1

0

[u(x)� ū(x)]dx = vproton
u = 2, (1.94)

Z 1

0

[d(x)� d̄(x)]dx = vproton
d = 1.

Z 1

0

[s(x)� s̄(x)]dx = vproton
s = 0.
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Figure 1.12: Parton distribution functions for the CT14 at Q = 2 and 100 GeV [41].

Eq.1.94 together with Eq.1.88 are called the sum rules for the PDFs. They can be derived also
from their operator definition:

Z 1

�1

dxq(x) =

Z 1

0

[q(x)� q̄(x)] =
hP | (0)�+ (0) |P i

2P+
= nq, (1.95)

where nq is the coefficient of the expectation value hP | (0)�µ (0) |P i = 2nqP µ, which is
precisely the quark number.

Being universal, PDFs can be extracted from data of different processes through the means
of fitting techniques. The CTEQ (Coordinated Theoretical-Experimental Project on QCD),
for example, is a multi-institutional collaboration which, among other projects, provides the
high-energy community of physicists with sets of PDFs coming from the analysis of different
processes (DIS, vector boson production and single-inclusive jet production)[41]. An overview
of the set of PDFs released in 2014 (CT14) is shown in Fig.1.12. In the following chapter we
will consider the time-like counter part of PDFs, the fragmentation functions, which describe
the momentum distributions of fragmenting partons. Similarly to what we have discuss here
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we can give an operator definition for this objects

Dh
q (z) =

X

X

Z
d⇠+

(2⇡)3
eip

�⇠+ h0|W(1+, ⇠+) (⇠+) |Ph, shi hPh, sh| (0)W(0,1+) |0i
�����
⇠�=⇠?=0

,

(1.96)

where the Wilson line is defined as

W(a, b) = P exp

✓
�igs

Z b

a

d! n ·Ga(! n)ta
◆
, (1.97)

At the parton model level they can be interpreted as the probability density of a parton with
momentum fraction z = P�

h /p� to fragment into the observed hadron h. As such the normal-
ization condition for FFs is given by

X

h

Z
dz z Dh

q = 1 (1.98)

As we will extensively discuss in the following chapters, FFs are also extracted from data
through global fits.

1.2.3 Factorization

In the previous section we introduced the concept of "factorization" which, intuitively, denotes
the ability to construct a formalism that separates short- from long-distance behavior. As a
starting point for the parton model, we justified Eq.1.42 by assuming that quarks do not interact
at short-distant scale. However, this approximation cannot be taken for granted when QCD
corrections are taken into account. Thus, Eq.1.42 and 1.91 will no longer describe the correct
factorization theorems for higher-order perturbative calculations. The question if a factorization
theorem for every perturbative order calculation and for every process exists at all is nowadays
still a issue to be resolved. At the time of this thesis a formal proof of factorization exists only
for some processes like the DIS and the Drell-Yann mentioned above, whereas a factorization
theorem is simply assumed for other processes[1, 38–40, 42]. For those processes, the match
between predictions and experimental data is taken to be the best proof for now. In this
section we start by considering only NLO QCD corrections to the DIS process and show how
it is possible to express the structure functions in an equivalent factorized form as in Eq. 1.69.
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Figure 1.13: Measurements of unpolarized cross section for e�p (solid trangles) and e+p (solid
squares) at various fixed x [43].

It turns out that divergent contributions coming from configurations when a gluon is emitted
collinear to the parton can be handled in a similar way as the ultra violet (UV) divergences in
the case of the running coupling. The parton distribution functions as defined in the previous
section can be viewed as the “bare” unphysical quantities which can be related to “physical”
PDFs through a procedure called factorization and equivalet to renormalization. Similarly to
the renormalization procedure discussed in Sec. 1.2.1, factorization introduces a factorization
scale µ and a set of renormalization group equations called DGLAP equations regulating the
evolution (i.e. the “running”) of PDFs. Since physical PDFs become then scale dependent,
the Bjorken scaling is violated. The precise prediction of this violation in DIS was one of the
greatest achievements of pQCD. Fig. 1.13 shows an example of such predictions.

Continuing the discussion from last section, one can try to rewrite the parton model for DIS
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including the O(↵s) corrections by substituting Eq.1.90 for the hard scattering with

=

+

+

+

+

+ virtual corrections.

(1.99)

However, diagrams of the type shown in Fig.1.14 are affected by two kinds of divergences: the
so-called soft and collinear divergences. They are a direct consequence of the emission of a real
gluon. The fermion line connecting the two vertices is described by a propagator of the form

G ⇠ 1

(pi � k)2
. (1.100)

Because both incoming quark and outgoing gluon are real particles, their on-shell property
allows us to write

(pi � k)2 = �2pik = �2|pi||k|(1� cos ✓), (1.101)

where ✓ is the angle between the quark and the emitted gluon. According to the KLN the-
orem [44, 45], the soft divergence (i.e for |k| = 0) does not constitute a problem, since it is
cancelled after adding real and virtual correction together. On the other side, the remaining
collinear divergence (i.e. for ✓ = 0) has to be treated in a similar way as the UV loop di-
vergences are treated by renormalization. We follow a similar procedure to the one used to
renormalize the coupling constant, wherein this time the quantities to be redefined are the
PDFs. To regularize the divergences we use the dimensional regularization scheme, thus we
introduce an arbitrary scale µ and we make the substitution ↵s ! ↵s(µ)2✏. Moreover, Eq.1.102
has to be modified to

M(�gµ⌫Ŵµ⌫) = (1� ✏)F̂2(z)�
✓
3

2
� ✏

◆
F̂L(z). (1.102)

The complete NLO QCD contributions to the hard process, include both virtual and real
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pi

k

(pi � k)

Figure 1.14: Example of Feynman diagram affected by soft and collinear divergences.

(a)

(b)

Figure 1.15: Cut diagrams for the real contributions to the NLO DIS hard process.

corrections of order O(↵s). In Fig.1.15 the cut diagrams for the real contributions are shown
whereas the virtual contributions are shown in Fig. 1.16. To understand how factorization
works at NLO, let’s consider explicit results [33] for the contributions to the to the partonic
structure function F̂2 given by the process �⇤(q)q(pi) ! q(p0i)g(k) shown in Fig.1.15a. The
O(↵s) corrections to the longitudinal partonic structure function F̂L are finite and hence do
not require regularization of divergences and are not of interest for the discussion of this section.
The explicit calculation follows straightforward from Eq.1.72 without any particular problem
and can be found for example in [46]. The result is the following:

F̂L(z) = F̂L
(0)
(z) +

↵s

2⇡
F̂L

(1)
(z) +O(↵2

s)

F̂L
(0)
(z) = 0 (see last section)

F̂L
(1)
(z) = e2iCF2z. (1.103)

To be noticed is the fact that the Callan-Gross relation doesn’t hold beyond LO.
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With the definitions

ŝ = (pi + q)2 ⇡ 2pi · q �Q2,

t̂ = (pi � k)2 ⇡ 2pi · k,
û = (pi � p0i)

2 ⇡ 2pi · p0i,
y =

1

2
(1 + cos✓) (1.104)

the averaged amplitude squared summed over the transverse polarization states (i.e. contracted
with �gµ⌫ , see Eq. 1.66) reads

X

"

|M�⇤q!gq|2 = 4↵se
2
iCF (1� ✏)(µ2)✏

⇢
(1� ✏)

✓
ŝ

�t̂
+

�t̂

ŝ

◆
� 2ûq2

ŝt̂
+ 2✏

�
, (1.105)

whereas the phase space PS =
R
dPS for two outgoing particles reads

PS =
1

8⇡

✓
4⇡

ŝ

◆✏
1

�(1� ✏)

Z 1

0

dy(y(1� ✏))�✏. (1.106)

In the c.m.s. pi + q = (
p
ŝ, 0, 0, 0) we define

ŝ =
Q2(1� z)

z
, t̂ =

�Q2

z
(1� y), û =

�Q2

z
y, (1.107)

and putting together Eq.1.105, 1.106 and 1.103 in Eq.1.102, we obtain:

F̂2

���
real

=
↵s

2⇡
e2iCF

✓
4⇡µ2

Q2

◆✏
1

�(1� ✏)
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contribution

3z + z✏(1� z)�✏

Z 1

0

dy(y(1� y))�✏

⇥
✓

1� z

1� y
+

1� y

1� z

◆
(1� ✏) +

2zy

(1� z)(1� y)

��
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↵s

2⇡
e2iCF

✓
4⇡µ2

Q2

◆✏
�(1� ✏)

�(1� 2✏)

⇢
2

✏2
�(1� z)

1

✏

✓
1 + z2

(1� z)+

◆
+

3

2✏
�(1� z)

+


(1 + z2)

✓
ln(1� z)

1� z

◆

+

� 3

2

1
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1� z
ln z + 3 + 2z +

7

2
�(1� z)

��
.

(1.108)
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Figure 1.16: Virtual contributions to the NLO DIS hard process.

In the last equality we have defined the plus distribution as

g+[h] =

Z 1

0

dzh(z)g+(z) ⌘
Z 1

0

dz(h(z)� h(z0))g(z), (1.109)

where z0 is a singular point of the parent g(z) function and h(z) is a smooth test function. To
go from the first to the second equality in Eq. 1.108 the following identity was used:

z✏(1� z)�1�✏ ⌘ �1

✏
�(1� z) +

1

(1� z)+
�
✓
ln(1� z)

1� z

◆

+

+ ✏
ln z

1� z
+O(✏2). (1.110)

To calculate the virtual corrections we have to take into account the two possible self-energy
corrections and the vertex correction shown in Fig.1.16. Choosing the Landau gauge, i.e. setting
⇠ = 0 in the gluon propagator (see Fig.1.3), not only both self energy and vertex corrections are
individually UV finite (hence, there is no need for a quark-wave function renormalization), but
also in the dimensional regularization the self energy vanishes at O(↵s) for massless quarks [47].
Thus, the only virtual contribution to the invariant amplitude squared comes from the vertex
correction:

|M|2
���
virtual

=

P
�

2<

2

·
+ O(↵2

s)
. (1.111)

The calculation is similar to the one made for the real correction and the result is the following:

F̂2

���
virtual

= e2i �(1� z)

⇢
1 +

↵s

2⇡
CF

✓
4⇡µ2

Q2

◆✏
�(1� ✏)

�(1� 2✏)


� 2

✏2
� 3

✏
� 8� 1

3
⇡2

��
. (1.112)
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Using the expansion of the � function

�(✏) =
1

✏
� �E✏+

✏

2

✓
�2E +

⇡2

6

◆
+ . . . (1.113)

and the expansion of the exponential a✏ = e✏ ln a ⇡ 1 + ✏ ln a, we can write
✓
4⇡µ2

Q2

◆✏
�(1� ✏)

�(1� 2✏)
⇡ 1 + ✏

✓
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◆
. (1.114)

We can now add together the virtual and real contributes:

F̂2 = F̂2

���
real

+ F̂2

���
virtual

= �(1� z) +
↵s

2⇡
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✓
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✏
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+
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3
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◆
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(1.115)

The term in O(1/✏2) has cancelled in the summation. This is the anticipated cancellation of soft
singularities.

Pqq(z) = CF

✓
1 + z2

(1� z)+
+

3

2
�(1� z)

◆
= CF P̃qq(z) (1.116)

is an Altarelli-Parisi splitting function and describes the probability to find a "quark into a
quark", i.e. the probability for a quark to emit a gluon and become a quark with momentum
reduced by a fraction z. We will leave the discussion of splitting functions for the conclusion
of this section.
The complete NLO calculation incorporates also the �⇤g ! q hard process (see Fig.1.15b),
which we are not going to explicitly calculate. Using the corresponding version of Eq.1.69 for
F2 together with the result 1.115 and the gluon-absorption corrections, the conclusive LO+NLO
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result for the DIS structure function F2 yields

F2(x,Q2)

x
=

Z 1

x

dz

z

X

i=q,q̄

e2i

(
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⌘)
.

(1.117)

The second line of the above equation comes from the �⇤g ! q contribution which appears
only starting from O(↵s). C 02

q (z) and C 02
g (z) are finite function which are listed below:

C 02
q =CF


(1 + z2)

✓
ln(1� z)

1� z

◆

+

� 3

2

1

(1� z)+
� 1 + z2

1� z
ln z + 3 + 2z �

✓
9

2
+

1

3
⇡2

◆
�(1� z)

�

C 02
g =Pqg(z) ln

1� z

z
+ 3z(1� z) (1.118)

where
Pqg(z) = TR

⇥
z2 + (1� z)2

⇤
= TRP̃qg(z) (1.119)

is another splitting function describing the probability to "find a quark into a gluon".
The quantity F2 expressed by Eq.1.117 is not well-defined for ✏ ! 0 and cannot be used to
describe a physical observable. To get rid of this divergencies we proceed, as for the renor-
malization, by redefining the "parameters of the theory", which in this case are represented by
the "bare" parton distribution functions f 0

i and f 0
g . To formally perform this operation at all

perturbative orders, we have to introduce the transition functions �ik, which are assumed to
have a perturbative expansion in ↵s:

�ik(z) = �ik�(1� z) +
1X

n=1

⇣↵s

2⇡

⌘n

�
(n)
ik (z). (1.120)

For DIS, the "bare" partonic structure function F̂i can be expressed in terms of the physical
(finite) partonic structure function ˆ̄Fk as

F̂i = �ik ⌦ ˆ̄Fk. (1.121)
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Note that, due to the general nature of this discussion, we dropped the indices L, 1 or 2 denoting
the type of structure function we consider. The i index refers to the parton i. Furthermore,
according to Eq.1.69 the structure function can be written in terms of the "bare" PDFs:

F =
X

i

f 0
i ⌦ F̂i (1.122)

Using Eq.1.121 in the above equation, we obtain

F =
X

i

f 0
i ⌦ �ik ⌦ ˆ̄Fk =

X

k

fk ⌦ ˆ̄Fk, (1.123)

where fk = f 0
i ⌦�ik is the "renormalized" PDF. The DIS factorization theorem, as expressed in

Eq.1.123, is well defined for all perturbative orders. The existence of such a transition function
�ik is a technical issue that we are not going to discuss. For further details refer to the citations
mentioned in the introduction of this section. Using Eq.1.120, at first order Eq.1.121 becomes

F̂ (0)
i +

↵s

2⇡
F̂ (1)

i = ˆ̄F (0)
i +

↵s

2⇡

h
ˆ̄F (1)
i + �

(1)
ik ⌦ ˆ̄F (0)

k

i
, (1.124)

where the following perturbative expansions for the partonic structure function were taken:

ˆ̄Fi =
1X

n=1

⇣↵s

2⇡

⌘n ˆ̄F (n)
i

F̂i =
1X

n=1

⇣↵s

2⇡

⌘n

F̂ (n)
i . (1.125)

From Eq.1.124 it follows that the "physical" NLO correction to the hard process is

ˆ̄F (1)
i = F̂ (1)

i � �
(1)
ik ⌦ F̂ (0)

k . (1.126)

Although Eq.1.123 correspond now to the right factorization theorem for DIS, the explicit
expression at a given fixed-order calculation depends on the chosen transition function, i.e. on
the specific factorization scheme used. For example, in the DIS scheme all corrections to the
the structure functions are absorbed in the PDF so that the simple expression for the parton
model (Eq.1.78) holds at all orders in pQCD. Using Eq.1.117 it is easy to see that in the DIS
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scheme at NLO the PDFs have to be redefined as follows

fDIS
i

✓
x,

Q2

µF

◆
=f 0

i (x) +

Z 1

x

dz

z

(
↵s

2⇡
Pqq(z)

✓
ln

Q2

µ2
F

� 1

✏
+ �E � ln 4⇡

◆
+
↵s

2⇡
C 02

q (z)

�
f 0
i

⇣x
z

⌘

+


↵s

2⇡
Pqg(z)

✓
ln

Q2

µ2
F

� 1

✏
+ �E � ln 4⇡

◆
+
↵s

2⇡
C 02

g (z)

�
f 0
g

⇣x
z
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, (1.127)

where, as it happens for the renormalization, µF is an arbitrary mass scale introduced by the
the factorization scheme. In the above equation the factorization scale was set equal to the
regularization scale, i.e. µ = µF . Compare also with [33].
A more used scheme is the MS, where, as explained in section 1.2.1, in addition to the singu-
larities in ✏, the ��E + ln 4⇡ factor is absorbed in the redefinition of the PDFs at all orders in
pQCD. In this scheme the factorization theorem for DIS can be written as

Fi(x,Q
2) =

X

f

Z 1

x

dy

y
Ci
f

✓
x

y
,
Q2

µ2
,
µ2
F

µ2
,↵s(µ

2)

◆
f
�
y, µ2

F , µ
2
�
, (1.128)

where f (y, µ2
F , µ

2) is the redefined PDF for a parton f = q, q̄, g and i = 1, 2, L denotes either one
of the two transversal structure functions (T = 1, 2) or the longitudinal one (L). The expression
1.128 holds for any fixed-order calculation in pQCD up to corrections that are suppressed by
the power 1

Q2 when Q2 is large enough. The Ci
f = C i,(0)

f + ↵s
2⇡
C i,(1)

f +O(↵2
s) are perturbatively

calculable and are called the coefficient functions of the hard process. For each order they
are independent from the soft process, i.e. from the hadron considered in the scattering. The
complete set of coefficient functions for the DIS can be found in [48]. To be consistent with the
logic of this section, we list the two coefficient functions C2,(1)

q and C2,(1)
g for the NLO correction

to F2/x:

C2,(1)
q

✓
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Q2

µ2
F

◆
= e2q


CF P̃qq(z) ln
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µ2
F

◆
+ C 02
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◆
= e2q


TRP̃qg(z) ln

✓
Q2

µ2
F

◆
+ C 02

g (z)

�
, (1.129)

where we implicitly took µF = µ.

As it is shown in Eq 1.128, both the "renormalized" parton functions and the coefficient func-

46



1.2. PERTURBATIVE QCD

tions will be µF scale dependent. Referring to the MS scheme, it is easy to see that imposing
µF = Q2 we transfer most of the µF dependence to the PDFs. In NLO, for example, this
condition cancels completely the µF dependence from the coefficient functions (see Eq.1.129).
As it happens for the renormalization of the coupling constant, the logic requirement that a
physical observable is not dependent on the arbitrary factorization scale, in our case

µ2
F

d

dµ2
F

Fi(x,Q
2) = 0, (1.130)

translates itself in a set of coupled equations for the PDFs ruling their µF dependance. As
anticipated, those evolution equations are called DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi equations)[49, 50] and can be written in a integro-differential form:

µ2
F

d

dµ2
F

fi(x, µ
2
F ) =

X

j=f,f̄ ,g

Z 1

x

dy

y
Pij

✓
x

y
,↵s(µ

2
R = µ2

F )

◆
fj(y, µ

2
F ), (1.131)

where the Pij are the Altarelli-Parisi evolution kernels (or splitting functions) which can be
perturbative expanded in ↵s

Pij = P (0)
ij +

↵s

2⇡
P (1)
ij +O(↵2

s) (1.132)

Eqs.1.116 and 1.119 show the null order expansion terms for the Pqq and Pqg respectively.
Within the MS approach, Eq.1.131 corresponds to the he renormalization-group equation for
the parton densities and hence, we can obtain the splitting functions directly from the transition
function �ij: X

j0

Pjj0 ⌦ �j0k =
d

d lnµF

�jk. (1.133)

Introducing the following notation for the "non-singlet" (fNS) and "singlet" (⌃) PDFs

fNS = fi � fī, ⌃ =
X

i

(fi + fī), (1.134)
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Eq.1.131 can be written as
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, (1.135)

where Nf is the number of chosen quark flavours.
For the sake of completeness, in addition to Eq.1.116 and 1.119 we list also the LO expansion
terms P (0)

gq ⌘ Pgq and P (0)
gg ⌘ Pgg

Pgq(z) =CF
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TRNf

◆
�(1� z). (1.136)

We refrain here from discussing evolution of fragmentation functions since it will be extensively
treated in the next chapter. As we shall see they undergo the same type of evolution, where, in
this case, the evolution kernels will be a time-like version of the discussed splitting functions.

1.2.4 Two examples of soft gluon resummation

Threshold resummation for DIS

In the last section we have presented explicit NLO-result for the DIS structure function F2.
If we take a close look on the expression for the hard process (see Eq.1.115), we note that
contributions of type

↵s

✓
ln(1� z)

1� z

◆

+

, ↵s
1

(1� z)+
(1.137)

are present. In general it can be shown that at O(↵n
s ) contributions proportional to

↵n
s

✓
lnm(1� z)

1� z

◆

+

, m  2n� 1 (1.138)
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are always present [51–53]. Independently from the scale Q2 we choose, at the phase space
boundary where z ! 1 (threshold limit) those terms can spoil the validity of the perturbative
expansion, even when ↵s ⌧ 1. To be able to get reliable results, a standard procedure is to
sum to all orders the most important contributions of the type 1.138 and add them to the
fixed-order perturbative calculation made for the specific hard process. Such an operation
is called resummation. There are many ways to approach the problem. Among the most
used ones, we list "the renormalization group approach" [54], "the resummation from strong
factorization properties"[51], "the resummation from effective field theory"[55, 56] and "the
eikonal approach"[52]. For the work of this thesis only the last one was is relevant. Because
the proof of the resummation’s formulas is a technical issue that lies outside the aims of this
thesis, in this section we just give an idea of how the eikonal approach works for the QED case
and then only sketch the generalization for the QCD case. We follow closely Section 2.3 of [57].

Let’s consider in the DIS hard process the case where n extra partons are emitted. All outgoing
impulses will be denoted with ki, where i 2 {1, . . . , n + 1} and kn+1 = p0 is the LO outgoing
parton. From the conservation of the impulse it follows that

ŝ = (p+ q)2 = (k1 + . . .+ kn+1) (1.139)

which, using Eq.1.107, becomes

Q2(1� z)

z
=

n+1X

i,j=1

k0
i k

0
j (1� cos ✓ij), (1.140)

where ✓ij is the angle between ki and kj. The above relation states that for z ! 1 only soft
partons and sets of partons collinear to each others can be emitted. However, with a more
careful analysis of the DIS kinematics and phase space, one could show that the k0

i s are always
proportional to

p
ŝ
2

and, hence, also in the collinear case the emitted partons turn out to be soft
(see Section 3.2 of [57]). In the Drell-Yann case Eq.1.140 becomes

ŝ = (p1 + p2)
2 =

Q2(1� z)

z
= (Q+ k1 + . . .+ kn)

2

=
nX

i,j=1

k0
i k

0
j (1� cos ✓ij) + 2

nX

i,j

k0
i

p
Q2 + |Q|2 � |Q| cos ✓i, (1.141)

where ✓i is the angle between ki and Q. Since (p1 + p2)2,
p
Q2 + |Q|2 � |Q| cos ✓i and
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. . .

p0i

k1

k2

kn�1

kn

µ1

µ2

µn�1

µn

pi + k1 + . . . + kn

pi + k1 + . . . + kn�1

pi + k1

iMh

Figure 1.17: An external fermion line with n extra photon emitted. The white blob indicates the hard
scattering amplitude (iMh) without one external fermion line.

Pn
i,j=1 k

0
i k

0
j (1 � cos ✓ij) are positive defined quantities, also here for z ! 1 only soft partons

(ki ! 0) can be emitted.
In the eikonal approach we take the soft limit as a starting point to calculate the contribution of
n emitted extra partons. Let’s consider the diagram of Fig.1.17 where, together with the parton
p0, n soft photons are emitted. In the eikonal approximation (also called soft approximation)
we neglect every (k1+ ...+ki)2 contribution in the denominator of all propagators and every /ki

in the numerator. In this approximation, the amplitude of the diagram shown in Fig.1.17 can
be written as follows:

ū(p0)(�ie�µ1)
i/p0

2p0 · k1 (�ie�µ2)
i/p0

2p0 · (k1 + k2)
· · · (�ie�µn)

i/p0

2p0 · (k1 + . . .+ kn)
iMh. (1.142)

Using the Dirac equation ū(p0)/p0 = 0 and the anti-commutation relation of the �-matrices we
can rearrange the factors in the numerator in the following way:

ū(p0)�µ1/p
0�µ2/p

0 . . . �µn/p
0 = ū(p0)2p0µ1�µ2/p

0 . . . �µn/p
0 = ū(p0)2p0µ12p0µ2 . . . 2p0µn . (1.143)

Hence Eq.1.142 becomes

enū(p0)
✓

p0µ1

p0 · k1

◆✓
p0µ2

p0 · (k1 + k2)

◆
. . .

✓
p0µn

p0 · (k1 + . . .+ kn)

◆
iMh (1.144)
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To obtain the total amplitude, we should sum over the set of diagrams resulting from all n!
possible permutation P (i) of the momenta k1 . . . kn. To do that we can use the so-called eikonal
identity

X

P

1

p · kP (1)

1

p · (kP (1) + kP (2))
· · · 1

p · (kP (1) + · · ·+ kP (n))
=

1

p · k1 · · ·
1

p · kn , (1.145)

which combined with Eq.1.144 gives us

enū(p0)
✓

p0µ1

p0 · k1

◆✓
p0µ2

p0 · k2

◆
· · ·

✓
p0µn

p0 · kn

◆
iMh. (1.146)

Let’s now consider an initial fermion line with momentum p. In this case Eq.1.142 becomes

ū(p)(�ie�µ1)
i/p

2p · (�k1)
(�ie�µ2)

i/p

2p · (�k1 � k2)
· · · (�ie�µn)

i/p

2p · (�k1 � . . .� kn)
iMh.

(1.147)
We can generalize Eq.1.146 for the case where we sum over all possible diagrams containing n

soft photons connected in any possible order to j initial and final fermion lines:

eniM0

nY

i=1

X

j

⌘jpµj

pj · ki . (1.148)

where

⌘j =

(
1 for a final fermion line
�1 for an initial fermion line

(1.149)

and iM0 is the remaining matrix elements without ingoing and outgoing fermion lines. Let’s
consider now the case where only one real photon is emitted, thus we set n = 1 in equation
1.148. To obtain the cross section in this case we have to add the corresponding polarization
vector for the real photon, sum over the possible polarizations and integrate over the phase
space:

Y =

Z
d3k

(2⇡)22k0
e2
 
X

j

⌘jpj
pj · k

!2

�

 
X

j

⌘jpj � k

!
. (1.150)

The phase space factorizes the Mellin space (see Appendix B) since the delta function can
be written as the inverse Mellin transform of 1. Thus, the whole expression 1.150 factorizes
in Mellin space. Recalling Eq.1.148, we obtain that in Melling space the total cross section
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("resummed") for the emission of any number of soft photon is

�(N)
resummed = �(N)

0

1X

n=0

Y (N)n

n!
= �(N)

0 eY
(N)

, (1.151)

where the index (N) denote the Mellin moments of the respective quantities and �0 is the
hard cross section for the process without extra soft emission. The factor 1

n!
comes from the

symmetry of the n identical boson in the final state.
Y still contains the collinear and soft divergences that we encountered in the last section.
Adding the virtual corrections and subtracting the collinear divergences, we obtain

�(N)
resummed = �(N)

0 e�
(N)
1 , (1.152)

where �(N)
1 is the Mellin moment of the cross section of the hard process where only one extra

soft emission in taken into account. In technical jargon we say that the eikonal hard scattering
functions �1 exponentiate in Mellin space, leading to the resummed result. The higher is the
fixed-order at which we can calculate �1, the more accurate will be the resummed result.
The generalization to the QCD case is a non-trivial issue since the presence of three-gluon
vertices between soft gluons complicates the above sketched factorization of the terms. The
exponentiation of soft emission still works, but the eikonal hard scattering functions will in
general be different from �1 of the fixed-order calculation since only a subset of the eikonal
diagrams appear in the exponent with modified color factors. The non-abelian eikonal expo-
nentiation was discovered and proven in [58–60]. Hereinafter we highlight the main concepts
of this proof following closely [61].
The theorem states that a given cross section X with two external colored fermion lines expo-
nentiates in the eikonal approximation similarly to the QED case, i.e.

�eik, (N) ⌘ X = eY . (1.153)

However, the exponent Y has the following properties:

• it can be recursively defined and can be expressed as perturbative series of terms, each of
which corresponds to a Feynman diagram;

• only a subset of diagrams contributing to X and called webs contribute to the exponent
Y ;
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a)

b)

�

�

=

=

Figure 1.18: The commutation relation a) and the Jacobi identity b) for color-weight diagrams

• the diagrams appearing in Y are dressed with a “modified” color-weights which can be
calculated recursively and are in general different from the ones in X;

• the phase space must be symmetric in the real gluon momenta.

In order to define the color-weight diagrams, one uses the fact that the colour part may be
separated from the rest of a QCD diagram. The rules for evaluating colour-weight diagrams
follow directly from the color part of the QCD Feynmann rules and can be summarized as
follows: every vertex contributes with a color matrix (tA)ab or a structure function ifABC ,
whereas a factor �ab and �AB is given for every quark and gluon line respectively. Here a, b 2
{1, 2, 3} and A,B 2 {1, 2, . . . , 8}. By using the Lie commutator [tA, tB] = ifABCtC and the
Jacobi identity fADEfEBC + fBDEfAEC + fCDEfABE = 0 different diagrams can be related
with each others. See Fig. 1.18 for a graphical representation of those relations in the language
of color-weight diagrams.

On the other end, the web diagrams are defined in [59, 60] as a set of gluon lines, which cannot
be partitioned without cutting at least one of its lines. At higher order c-webs (connected webs)
appear. They are defined as a connected set of gluon lines. Examples of this definitions is given
graphically in Fig. 1.19. Moreover, webs can be separated into a Feynmann integral part F
containing all internal eikonal propagators and a modified color-weight C̄. For the final result
to exponentiate, both parts needs to factorize. For the F -part a non-abelian analogue of the
eikonal identity Eq. 1.145 is sufficent for this to happen. The main point of the proof of the
theorem lies in the ability of writing each Feynman diagram as a sum of products of c-webs. It
can be shown that this can happen once the following definition of a “modified” color weight C̄
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a) b) c)

Figure 1.19: Examples of web diagrams: a) is web of O(↵2
s), b) is a c-web of O(↵3

s) c) is not
a web but a product of a O(↵s) web and a O(↵2

s) web. The eikonal lines are indicated by a
double line.

is introduced:

C̄(W (m)) =
1

tr1
C(W (m))�

X

d

Y

di

C̄(W (i)
ni
),

C̄(W 1) =
1

tr1
C(W (1)), (1.154)

where W (m) is a web of O(↵m
s ), C(W (m)) is a non-modified color weight diagram and 1

tr1 is
just a normalization factor. The sum runs over all set of non-trivial decompositions d of W (m)

obtained by using the identities in Fig. 1.18. The multiplication is done for all ni webs of order
i < m. The final factorization of the Feynmann diagrams is proven by induction and at O(↵n

s )

reads

F n =
X

{ni},
P

i i ni=n

Y

i

1

ni!

 
X

webs of order i

C̄(W (i))F(W (i))ni

!
, (1.155)

where {ni} is a set of integer with the constraint
P

i i ni = n. The cross section is obtained
summing over all possible F (n)

X =
1X
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F (n) =
Y

i

exp

 
X

webs of order i

C̄(W (i))F(W (i))ni
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= exp

 
X

i

X

webs of order i

C̄(W (i))F(W (i))ni

!
= eY (1.156)
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As an example, we report the resummed result for DIS that can be also found in section 3.2.2,
written in terms of the resummed transversal coefficient function

CT,res
q (N) = e2qHq
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)#

,

(1.157)

where the three functions Aq, Bq and Hq are perturbative calculable. They are listed in sec-
tion 3.2.2 together with further specific details. Here, we just want to observe how the threshold-
limit logarithms coming from the fixed order calculation are connected with Eq.1.157. Let us
consider the Mellin transformations of the terms shown in Eq.1.137 when z ! 1 (i.e. when
N ! 1 in Mellin space; see AppendixB)

✓
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◆
+O(ln N̄),
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✓
1

N

◆
, (1.158)

where N̄ = Ne�E . From Eq.1.158 we deduce that in Mellin space the large threshold logarithms
are represented by ⇠ lnm N logarithms, where m  2k for every O(↵k

s) fixed-order calculation.
In Table 1.1 a schematic overview of the soft large logarithms is shown.

LO 1

NLO ↵s ln
2 N ↵s lnN

NNLO ↵2
s ln

4 N ↵2
s ln

3 N ↵2
s ln

2 N . . .

. . . . . . . . . . . . . . .

NkLO ↵k
s ln

2k N ↵k
s ln

2k�1 N ↵k
s ln

2k�2 N . . .

#
LL

Table 1.1: Threshold logarithms for every fixed-order NkLO (O(↵k
s )) calculation.
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Let’s now consider Eq.1.157 and neglect for simplicity the Bq function since we are not interested
in the explicit result but rather in the discussion of more general aspects. The term in the
exponent reads then

log�(N)
q ⌘

"Z 1

0

dx
⇠N � 1

1� ⇠

Z (1�⇠)2Q2

Q2

dk2
?

k2
?
Aq(↵s(k

2
?))

#
. (1.159)

If we take only the lowest order term in ↵s for Aq (see Eq.5.16) together with a fixed value for
↵s = ↵s(Q2) the above equation becomes

log�
(N)
q, LL ⇡ ↵sCF

⇡

Z 1

0

dx
⇠N � 1

1� ⇠

Z (1�⇠)2Q2

Q2

dk2
?

k2
?

⇡ ↵sCF

⇡
ln2 N̄ +O

✓
1

N

◆
. (1.160)

It is easy to see that after expanding the exponent �
(N)
q , all the terms laying in the first

column of Table 1.1 are recovered. Those logarithms are the so-called leading-logs (LL). Taking
in addition the O(↵2

s) term for Aq, we resum also the NLL (next-to-leading logs) and so on.
Moreover, for the NLL result the two-loop expansion of the strong coupling constant has to be
taken into account:

↵s(k
2) =

↵s(µ2
0)

1 + �0↵s(µ2
0) ln(k

2/µ2
0)

"
1� �1

�0

↵s(µ2
0)

1 + �0↵s(µ2
0) ln(k

2/µ2
0)

ln(1 + �0↵s(µ
2
0) ln(k

2/µ2
0))

+O(↵2
s(µ

2
0)(↵s(µ

2
0) ln(k

2/µ2
0))

n)

#
, (1.161)

where the �0 and �1 coefficient are specified in Eq.1.35. In this case, Eq.1.159 can be written
as

log�
(N)
q, NLL ⇡ ln N̄h(1)

q (�) + h(2)
q

✓
�,

Q2

µ2
,
Q2

µ2
F

◆
, (1.162)

where � ⌘ �0↵s(µ2) log N̄ . The ln N̄h(1)
q (�) term collects the "generator" of the leading log-

arithms ln2 N̄ of Eq.1.160 plus all logarithms of the form ↵k
s ln

k+1 N̄ , which, after expanding
the exponent, generate ↵ik

s lni(k+1) N̄ (i 2 {0, . . . ,1}) logs of the fixed order calculation. The
h(2)
q (�) collects all logarithms of the form ↵k

s ln
k N̄ , thus ↵ik

s lnik N̄ logs of the fixed order cal-
culation.
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Small-z resummation in single-inclusive e+e� annihilation

In the next chapter we will discuss another type of resummation which can be traced back
to soft gluon emissions as well. We shall see that in the electron-positron process e+e� !
�/Z(q) ! h(Ph)X mediated by an intermediate virtual photon � or Z and with an observed
hadron h in the final state, double logarithmic contributions of type

⇣↵s

4⇡

⌘n 1

z
log2n�l(z), (1.163)

appear both in the time-like splitting functions, regulating the evolution of the FF, and in the
coefficient functions. In Eq. 1.163, l is an integer number which depends on the logarithmic
accuracy considered and on the type of coefficient function or splitting function in which the
logarithm appears (see section 2.3.1 in the next chapter). The scaling variable z is defined in
terms of the four momenta Ph and q of the observed hadron and �/Z boson, respectively, as
z ⌘ 2Ph · q/Q2.

At LL accuracy, defined in Tabs. 2.1 and 2.2, the double logarithmic contributions can be
understood as a specific configuration of the partonic sub process e+e� ! �/Z(q) ! Q(p) +

Q̄(p̄) + g(k) +X in the case the observed hadron is generated by the “observed” gluon g with
momentum k. More specifically, leading small-z double logarithm contributions are generated
whenever g is soft and the unobserved part consists of m ! 1 soft gluons with momenta
k1, k2, . . . , km, whose three-momenta and angles in respect to the hard quark Q with momentum
p are strongly ordered [62]

|k| ⌧ |k1| ⌧ |k2| ⌧ · · · ⌧ |km| ⌧ Q2

2

✓ ⌧ ✓1 ⌧ ✓2 ⌧ · · · ⌧ ✓m, (1.164)

where Q2 ⇡ (p + p̄)2 is the process hard scale and p̄ is the momentum of the recoiling hard
anti-quark Q̄ necessary for momentum conservation since all gluons are assumed to be soft.

By using again the eikonal approximation for the soft gluons, it can be shown that the partonic
cross section describing this specific configuration factorizes (e.g. see [63, 64])

d�̂m+1(p, p̄, k) =
1X

m=0

d�̂m+1(p, p̄, k, k1, k2, . . . , km)
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=
1X

m=0

d�̂B(p, p̄)dwg(k)dwg(k1)dwg(k2) . . . dwg(km�1)dwQ(km), (1.165)

where dwI(k) describes the probability of emission of a soft gluon from a parton I = g,Q, Q̄,
and d�̂B(p, p̄) is the partonic Born cross section for the e+ e� annihilation. In dimensional
regularization with d = 4� 2✏

dwI(k↵) = dwI(y↵, t↵) =
↵s

⇡

✓
µ2

Q2

◆✏
(4⇡)✏

�(1� ✏)
KI

dy↵
y1+2✏
↵

dt↵
t1+✏
↵

, (1.166)

where KQ/Q̄ = CF = 4/3 and Kg = CA = 3, and

t↵ =
p · k↵
p̄ · k↵ , y↵ =

p̄ · k↵
p̄ · p . (1.167)

Integrating out the unobserved degrees of freedom, fixing the momentum fraction of the “ob-
served gluon” as the experimentally measured momentum fraction (i.e. substituting dwg(k) =

dwg(y, t) ! �(z�y)dwg(y, t) in Eq. 1.165) and normalizing with the Born partonic cross section
we obtain

1

d�B(p, p̄)

d�

dz
(p, p̄, z) =

CFXz�1�2✏

CA

Z 1

z

dy

y
y G(y,X, ✏), (1.168)

where
X = CA

↵s

⇡

(4⇡)✏

�(1� ✏)

✓
µ2

Q2

◆✏

, (1.169)

and

G(y,X, ✏) = �(1� y) + y�1�2✏

1X

m=1

Xm

Z 1

y

dy1
y1+2✏
1

Z 1

y1

dy2
y1+2✏
2

. . .

Z 1

ym�2

dym�1

y1+2✏
m�1

⇥
Z 1

0

dt1
t1+✏
1

Z 1

t1

dt2
t1+✏
2

. . .

Z 1

tm�1

dtm
t1+✏
m

= �(1� y) +
1

y

1X

m=1

Xm (�1)my�2✏(y�2✏ � 1)m�1

m!(m� 1)!2m�1✏2m�1
. (1.170)

Taking the Mellin transform of Eq. 1.170 one ends up with

G(N)(N,X, ✏) =

Z 1

0

dy yN�1G(y,X, ✏) = 0F1

✓
; 1� N � 1

2✏
;
X

2✏2

◆
, (1.171)
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where pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) is the generalized hypergeometric function. This
quantity is divergent for ✏! 0.

According to what we have discussed in Sec. 1.2.3, we can use factorization to get rid of collinear
divergences and define a finite quantity C(N) from G(N) through means of a time-like transition
function �T, (N) collecting all collinear divergences appearing as poles in ✏:

G(N)(N,X, ✏) = C(N)

✓
N,↵s(µ

2
F , ✏),

Q2

µ2
F

, ✏

◆
�T, (N)

�
N,↵s(µ

2
F , ✏), ✏

�
. (1.172)

For the precision needed at LL, corrections of O(↵2
s) and O(✏2) to the running coupling ↵s(µR)

can be dropped. Moreover we have set µR = µF and also used the fact that convolutions
become normal products in Mellin space (c.f. Eq. 1.121 and Appendix B). Using the time-
like equivalent of Eq. 1.133, where for now only the case of the “observed” gluon is taken into
account,

PT, (N)
gg (N,↵s(µ

2
F , ✏)) =

d

lnµF

ln�T, (N)(N,↵s(µ
2
F , ✏), ✏) (1.173)

together with the definition of the beta function in d dimension,

d↵s(µ2
R, ✏)

d lnµ2
R

= �✏↵s(µ
2
R, ✏)�

1X

n=0

�n↵
n+2
s (µ2

R, ✏), (1.174)

and ignoring corrections of O(↵2
s) and O(✏2), the transition function has the solution

�T, (N)(N,↵s, ✏) = exp


�1

✏

Z ↵s

0

d↵s

↵s

PT, (N)
gg (N,↵s)

�
. (1.175)

In order to calculate the finite coefficient function C(N) and time-like splitting function PT, (N)
gg

describing the partonic configuration that we are investigating with its correct evolution, one
would simply need to expand Eq. 1.171 in powers of ✏ and perform a coefficient comparison in
Eq. 1.172. However, expanding Eq. 1.171 is not possible with the mathematical knowledge at
the time of writing of this thesis. Nonetheless, we can use the fact that Eq. 1.171 satisfies

G̈(N) � N�1
2✏

Ġ(N)

G(N)
=

X

2✏2
, (1.176)

where
ḟ(X) = X

df

dX
. (1.177)
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Let’s set for simplicity and without loss of information µR = µF = Q, so that X = ↵s(Q2,✏)CA

⇡
[1+

O(✏2)] +O(a2s). From Eq. 1.175, the transition function satisfies

�̇T, (N) = �PT, (N)
gg

✏
�T, (N). (1.178)

Putting Eq. 1.172 into 1.176 and using the above equation, we obtain

1

✏2

 
�PT, (N)

gg

�2
+

(N � 1)PT, (N)
gg

2

!
� 1

✏

 
2PT, (N)

gg +
N � 1

2

�
Ċ(N)

C(N)
+ ṖT, (N)

gg

!
+

C̈(N)

C(N)

!
=

X

2✏2
.

(1.179)
Comparing the ✏�2 coefficients on both sides gives

�PT, (N)
gg

�2
+

(N � 1)PT, (N)
gg

2
� X

2
= 0, (1.180)

and its solution gives the resummed splitting function [65, 66] at LL accuracy

PT, res, (N)
gg (N,↵s) =

1

4

✓
�(N � 1) +

r
(N � 1)2 + 8CA

↵s

⇡

◆
. (1.181)

Comparing the ✏�1 coefficients on both sides gives

@ lnC(N)

@PT, (N)
gg

= �1

2

1

PT, (N)
gg + N�1

4

, (1.182)

whose solution is
C(N) =

A(N)q
PT, (N)

gg + N�1
4

, (1.183)

where A(!) is an unknown constant of integration which can be determined by the condition
C(N)(N, 0) = 1 from perturbation theory. Using Eq. 1.181, the resummed coefficient function
reads

Cres, (N) (N,↵s) =
1

⇣
1 + 8CA

as
⇡(N�1)2

⌘ 1
4

. (1.184)

In Eqs. 1.173 and 1.172 we have neglected the contributions coming from inclusive quark pro-
duction, i.e. when the same process is considered but instead of a gluon g being the “observed”
parton we consider a quark with the same momentum. In the complete calculation [63], the two
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contributions get entangled via factorization due to the DGLAP equations (c.f. Eq. 1.135). If
we call g the unfactorized coefficient function for the process in which the gluon is the “observed”
particle and q the one where the quark is “observed”, the correct factorization yields

(q,g) = (C(N)
q , C(N)

g )�̂, (1.185)

where at the considered accuracy q = C(N)
q = 1 and

�̂ =

 
1 2CF

CA
(�T, (N) � 1)

0 �T, (N)

!
. (1.186)

Due to the introductory nature of this first chapter and since the subject will be dealt in great
detail in the next chapter, we refrain here from performing the complete calculation. The
resummed coefficient function free of collinear singularities for the gluon inclusive process in
e+e� annihilation turns out to be

Cres, (N)
g (N,↵s) = 2

CF

CA

⇥
Cres, (N) (N,↵s)� 1

⇤
, (1.187)

whereas the quark-gluon resummed splitting function reads

PT, res, (N)
gq (N,↵s) =

CF

CA

PT, res, (N)
gg (N,↵s). (1.188)

All Eqs. 1.181, 1.187 and 1.188 reproduce the correct LL small-z logarithms appearing in the
known fixed order results [67–71]. As we shall see in the next chapter, they are mapped to
N = 1 poles in the Mellin N -moment space. By expanding Eqs. 1.181, 1.187 and 1.188 around
↵s ! 0 one recovers the leading power of 1/(N � 1)n�l for each ↵n

s coefficient. By performing
the Mellin inversion then, we can easily recover all leading small-z contributions to each fixed
order calculation. In the next chapter we will discuss how to extend this type of resummation
to NNLL accuracy.
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CHAPTER 2

Fragmentation functions beyond NLO

In this chapter we present a first analysis of parton-to-pion fragmentation functions beyond
next-to-leading order accuracy in QCD based on single-inclusive pion production in electron-
positron annihilation. We extend previous fixed order analyses (e.g. see [72–79]) up to NNLO
accuracy. A second analysis is performed including all-order resummations of logarithmically
enhanced contributions at small momentum fraction of the observed hadron in order to estimate
their phenomenological relevance. Special emphasis is put on the technical details necessary to
perform the QCD scale evolution and cross section calculation in Mellin moment space. The
formalism to perform resummations in Mellin moment space is briefly reviewed, and all relevant
expressions up to next-to-next-to-leading logarithmic order are derived, including their explicit
dependence on the factorization and renormalization scales. We discuss the details pertinent to
a proper numerical implementation of fixed order NNLO and resummed results comprising the
solution to the time-like evolution equations, the matching to known fixed-order expressions,
and the choice of the contour in the Mellin inverse transformation. We demonstrate how the
description of the data and the theoretical uncertainties are improved when such higher order
QCD corrections are included. This chapter is based on the published works [J4, J5].
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2.1 Introduction

Fragmentation functions (FFs) Dh
i (z,Q

2) are an integral part of the theoretical framework de-
scribing hard-scattering processes with an observed hadron in the final-state in perturbative
QCD (pQCD) as they can be convoluted with perturbatively calculable hard-scattering coef-
ficient functions to describe cross sections. The underlying theoretical foundations have been
established in factorization theorems (see for example [80]). In an analogous manner to PDFs,
FF parametrize in a process-independent way the non-perturbative transition of a parton with
a particular flavor i into a hadron of type h and depend on the fraction z of the parton’s
longitudinal momentum taken by the hadron and a large scale Q inherent to the process un-
der consideration [81, 82]. The prime example is single-inclusive electron-positron annihilation
(SIA), e�e+ ! hX, at some center-of-mass system (c.m.s.) energy

p
S = Q, where X is some

unidentified hadronic remnant. Precise data on SIA [83–91], available at different
p
S, ranging

from about 10GeV up to the mass MZ of the Z boson, reveal important experimental informa-
tion on FFs that is routinely used in theoretical extractions, i.e., fits of FFs [J4, 72, 75–79, 92,
93]. Processes other than SIA are required, however, to gather the information needed to fully
disentangle all the different FFs Dh

i for i = u, ū, d, d̄, . . . quark and antiquark flavors and the
gluon. Specifically, data on semi-inclusive deep-inelastic scattering (SIDIS), e±p ! hX, and
the single-inclusive, high transverse momentum (pT ) production of hadrons in proton-proton
collisions, pp ! hX, are utilized, which turn extractions of FFs into global QCD analyses [77–
79, 92]. Most recently, a proper theoretical framework in terms of FFs has been developed for
a novel class of processes, where a hadron is observed inside a jet [94–100]. It is expected that
corresponding data [101–107] will soon be included in global analyses, where they will provide
additional constraints on, in particular, the gluon-to-hadron FF.

The ever increasing precision of all these probes sensitive to the hadronization of (anti-)quarks
and gluons has to be matched by more and more refined theoretical calculations, which crucially
depend on the precise knowledge of FFs and their uncertainties.

One way of advancing QCD calculations is the computation of higher order corrections in the
strong coupling ↵s. Here, next-to-leading order (NLO) results are available throughout for
all ingredients needed for a global QCD analysis of FFs as outlined above. Specifically, they
comprise the partonic hard scattering cross sections for inclusive hadron production in SIA [48,
108, 109], SIDIS [48, 108–111], and pp collisions [112–114] and the evolution kernels or time-like
parton-to-parton splitting functions P T

ij [67, 68, 115–118], which govern the scale Q dependence
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of the FFs through a set of integro-differential evolution equations [49, 50, 119, 120]. Such type
of NLO global analyses of FFs represent the current state-of-the-art in this field.

Here, SIA data are of utmost importance, similar to the singular role played by deep-inelastic
scattering (DIS) measurements in determinations of PDFs. Recently, results from the Belle [83]
and BaBar [84] collaborations have complemented the existing suite of SIA data mainly
from the CERN-LEP experiments taken at a center-of-mass system (c.m.s.) energy of

p
S =

91.2GeV. Thanks to the unprecedented precision of the new data sets, where the statistical
uncertainties are mainly at the sub-percent level despite their fine binning, and the lower

p
S,

global QCD analyses can now utilize the energy dependence of the SIA data in the range from
about 10.5GeV to 91.2GeV [79] to extract FFs also from scaling violations, a key prediction of
pQCD. For instance, a recent extraction of parton-to-pion FFs D⇡

i at NLO accuracy including
those data can be found in Ref. [79]. Moreover, contrary to the case of hadron production in
SIDIS or in pp collisions, with SIA data fits of FFs can be carried out already at the next-to-
next-leading order (NNLO) level thanks to the available SIA coefficient functions [67, 68, 70,
121] and kernels P T

ij at NNLO [122–124]. In this chapter we will present the main results of our
first determination of parton-to-pion FFs from SIA data at NNLO accuracy performed recently
in [J4].

In our phenomenological study there, we adopt the technical framework used in the DSS global
analyses [77–79] which we extend to NNLO accuracy. As we shall discuss in some detail below,
we apply efficient Mellin space techniques in order to both solve the evolution equations and
compute the SIA cross section at NNLO. As it turns out, the numerical implementation of the
Mellin inverse transformation, needed to compare to data, requires special attention in case
of the time-like scale evolution of FFs. Global fits to SIA data at leading order (LO), NLO,
and NNLO accuracy are performed to demonstrate the anticipated reduction in theoretical
uncertainties inherent to the truncation of the perturbative calculation at a given fixed order
in ↵s. In [J4] we refrain from including other sources of hadron production data used in the
DSS global analyses at NLO accuracy [77–79], such as hadron multiplicities in semi-inclusive
DIS and high transverse momentum hadron production in proton-proton collisions, due to the
lack of corresponding NNLO partonic cross sections. As a consequence, our fits use less free
parameters than in the DSS global analyses. Nonetheless, the quality of the fit is observed to
gradually improve by including higher order terms in the global analysis. We note that first
reference results for the scale evolution of FFs at O(↵3

s) were obtained in [125] with which we
compare.
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Another important avenue for systematic improvements in the theoretical analysis of data
sensitive to FFs, which we have pursued in [J5] and present here in this chapter, concerns large
logarithms present in each fixed order of the perturbative series in ↵s for both the evolution
kernels P T

ij and the process-dependent hard scattering coefficient functions. They may become
large in the limit of small momentum fractions z and, in this way, can spoil the convergence
of the expansion in ↵s even when the coupling is very small. As we shall see, two additional
powers of log2k(z) can arise in each fixed order ↵k

s , which is numerically considerably more severe
than in the space-like case relevant to deep-inelastic scattering (DIS) and the scale evolution
of parton density functions (PDFs) and completely destabilizes the behavior of cross sections
and FFs in the small-z regime.

To mitigate the singular small-z behavior imprinted by these logarithms, one needs to resum
them to all orders in perturbation theory, a well-known procedure (see for instance [66, 126–
128]). Knowledge of the fixed-order results up to NmLO determines, in principle, the first
m + 1 “towers” of logarithms to all orders. Hence, thanks to the available NNLO results,
small-z resummations have been pushed up to the first three towers of logarithms for SIA
and the time-like splitting functions P T

ij recently, which is termed the next-to-next-to-leading
logarithmic (NNLL) approximation [129, 130]. Based on general considerations on the structure
of all-order mass factorization, as proposed and utilized in Ref. [129, 130], we re-derive the
resummed coefficient functions for SIA and the evolution kernels P T

ij and compare them to
the results available in the literature. Next, we extend these expressions by restoring their
dependence on the factorization and renormalization scales µF and µR, respectively, which
allows us to estimate the theoretical uncertainties related to the choice of µF/Q. It is in fact
expected that the scale ambiguity shrinks the more higher order corrections are included. We
note that large logarithms also appear in the limit z ! 1. Their phenomenological implications
have been addressed in the case of SIA in Ref. [J1, 131–135], and we shall not consider here
focussing mainly on the small-z regime.

Resummations are most conveniently carried out in Mellin-N moment space, which also gives
the best analytical insight into the solution of the coupled, matrix-valued scale evolution equa-
tions obeyed by the quark singlet and gluon FFs. We discuss in some detail how we define a
solution to these evolution equations beyond the fixed-order approximation, i.e., based on re-
sumed kernels P T

ij . We also explain how we match the resummed small-z expressions to a given
fixed-order result defined for all z, thereby avoiding any double-counting of logarithms and also
maintaining the validity of the momentum sum rule. As for the NNLO case, we also address
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in our following discussions the proper numerical implementation of the resummed expressions
in Mellin N space, in particular, the structure of singularities and the choice of the integration
contour for the inverse Mellin transformation back to the physical z space.

So far, resummations in the context of FFs have been, to the best of our knowledge, exclusively
studied for the first five integer N moments of the z-integrated hadron multiplicities, in partic-
ular, their scale evolution and the shift of the peak of the multiplicity distribution with energy
[63, 66, 126–128, 136–139]. At fixed order, multiplicities are ill-defined due to the singularities
induced by the small-z behavior. In the “modified leading logarithmic approximation” (MLLA)
and beyond, i.e., upon including resummed expressions, these singularities are lifted, and one
finds a rather satisfactory agreement with data, which can be used to determine, e.g., the strong
coupling ↵s in SIA [63, 136–139].

In [J5], however, we apply resummations in the entire z range, i.e., for the first time, we extract
FFs from SIA data with identified pions up to NNLO+NNLL accuracy, including a proper
matching procedure. We investigate the phenomenological relevance of small-z resummations
in achieving the best possible description of the SIA data. This is done by comparing the
outcome of a series of fits to data both at fixed order accuracy and by including up to three
towers of small-z logarithms. We also compare the so obtained quark singlet and gluon FFs
and estimate the residual theoretical uncertainty due to the choice of µF/Q in each case. An
important phenomenological question that arises in this context is how low in z one can push
the theoretical framework outlined above before neglected kinematic hadron mass corrections
become relevant. Hadron mass effects in SIA is investigated to some extent in Chapter 3
(see also corresponding published article [J3]) but so far there is no fully consistent way to
properly include them in a general process, i.e., ultimately in a global analysis of FFs. See for
example [140, 141]. Therefore, one needs to determine a lower value of z, largely on kinematical
considerations, below which fits of FFs make no sense. We discuss this issue as well in the
phenomenological section of this chapter. In general, it turns out, that in the range of z

where SIA data are available and where the framework can be applied, a fit at fixed, NNLO
accuracy already captures most of the relevant small-z behavior needed to arrive at a successful
description of the data, and resummations add only very little in a fit.

In Sec. 2.2, we outline all the necessary technical ingredients for the extension of the pQCD
framework for SIA to NNLO, specifically, those related to the proper Mellin space implementa-
tion and the Mellin inverse transformation. This framework is extended in Sec 2.3 in order to
include resummations corrections for the small z region In Sec. 2.4, we briefly recall the DSS
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global analysis framework and discuss the results of our fits of SIA data up to NNLO accuracy.
In particular, we demonstrate the reduction of the scale uncertainty when increasing the pertur-
bative order from LO and NLO to NNLO. In addition, we compare the resulting fragmentation
functions to those obtained by DSS [79] and Kretzer [72]. Analogouly, in Sec. 2.5.1 we present
and discuss various fits to semi-inclusive annihilation data at different fixed-orders in pertur-
bation theory and levels of small-z resummations. We summarize our main results in Sec. 2.6,
where we also discuss potential further improvements of the presented analysis framework for
fragmentation functions.

2.2 Semi-inclusive e+e� annihilation up to NNLO accuracy

In this Section we review the necessary technical aspects to compute SIA cross sections up
to NNLO accuracy. Special emphasis is put on the transformation from momentum to Mellin
moment space and the additional subtleties appearing beyond NLO. To set the stage, we first
recall in Sec. 2.2.1 the general structure of the SIA cross section. Next, we discuss some relevant
features of the NNLO coefficient functions. In Sec. 2.2.2 we review the time-like evolution equa-
tions at NNLO and their truncated and iterated solutions, which we shall compare numerically
in Sec. 2.4. Section 2.2.3 is devoted to a detailed discussion of the numerical implementa-
tion of the Mellin space expressions and the proper choice of contour for the Mellin inverse
transformation. We will also compare to the results of the Mela evolution code presented in
Ref. [125].

2.2.1 Cross Section and Coefficient Functions

We consider the SIA process e+e� ! �/Z ! hX mediated by an intermediate virtual photon
� or Z boson at a c.m.s. energy

p
S, more specifically, hadron multiplicities defined as

1

�tot

d�h

dz
=

1

�tot


d�h

T

dz
+

d�h
L

dz

�
. (2.1)

Since we have already integrated over the scattering angle ✓ of the produced hadron h in (2.1),
parity-violating interference terms vanish, and the cross section d�h/dz can be decomposed only
into a transverse (T ) and a longitudinal (L) part, where T, L refer to the �/Z polarizations (see
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for instance [109]). The scaling variable z is defined in terms of the four momenta Ph and q of
the observed hadron and �/Z boson, respectively, as

z ⌘ 2Ph · q
Q2

c.m.s.
=

2Eh

Q
, (2.2)

where Q2 ⌘ q2 = S. As indicated in Eq. (2.2), z reduces to the hadron’s energy fraction in the
c.m.s. and is often also labeled as xE [109].

Up to NNLO accuracy, i.e., O(↵2
s) in the strong coupling, the total hadronic cross section �tot

in Eq. (2.1) is given by [67, 142–144]

�tot = �0Nc

X

q

ê2q


1 + 3CF as + a2s

✓
�3

2
C2

F + CACF

✓
�11 log

✓
Q2

µ2
R

◆
� 44 ⇣(3) +

123

2

◆

+NfCFTf

✓
4 log

✓
Q2

µ2
R

◆
+ 16 ⇣(3)� 22

◆◆�
,

(2.3)

where �0 = 4⇡↵2/(3Q2) is the lowest order QED cross section for e+e� ! µ+µ�, ↵ denotes
the electromagnetic fine structure constant, êq are the electroweak quark charges, and Nc = 3

is the number of colors. In addition, we have introduced the usual QCD color factors CA = 3,
CF = 4/3, and Tf = 1/2. The sum in (2.3) runs over Nf active massless quark flavors. Here and
throughout this chapter, we use the definition as = ↵s(µ2

R)/4⇡, where µR is the renormalization
scale. We refrain from reproducing the well-known expressions for the electroweak quark charges
which can be found, e.g., in Ref. [67].

The NNLO QCD corrections to the transverse and longitudinal cross sections d�h
k/dz, k = T, L,

in Eq. (2.1) were calculated in [67, 68, 70]. Adopting the same notation, they can be expressed in
factorized form as a convolution of appropriate combinations of quark and gluon fragmentation
functions Dh

l=q,g(z, µ
2) and calculable coefficient functions CS,NS

k,l (z,Q2/µ2) [67, 121]:

d�h
k

dz
= �(0)

tot


Dh

S(z, µ
2)⌦ CS

k,q

✓
z,

Q2

µ2

◆
+ Dh

g

�
z, µ2

�⌦ CS
k,g

✓
z,

Q2

µ2

◆�

+
X

q

�(0)
q Dh

NS,q(z, µ
2)⌦ CNS

k,q

✓
z,

Q2

µ2

◆
,

(2.4)
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where, for simplicity, we have set the renormalization scale µR equal to the factorization scale
µF , i.e., µR = µF ⌘ µ. The symbol ⌦ denotes the standard convolution integral defined as

f(z)⌦ g(z) ⌘
Z 1

0

dx

Z 1

0

dy f(x) g(y) �(z � xy) . (2.5)

�(0)
q in Eq. (2.4) is the total quark production cross section for a given flavor q at LO, O(↵0

s),
and �(0)

tot is the corresponding sum over all Nf active flavors. They read �(0)
q = �0Ncê2q and

�(0)
tot =

P
q �

(0)
q . With this notation, the transverse and longitudinal cross sections are related

to the usual longitudinal and transverse structure functions [68] according to

Fk ⌘ 1

3�0

d�h
k

dz
=

 
X

q

ê2q

!
Dh

S(z, µ
2)⌦ CS

k,q

✓
z,

Q2

µ2

◆
+Dh

g

�
z, µ2

�⌦ CS
k,g

✓
z,

Q2

µ2

◆�

+
X

q

ê2q D
h
NS,q(z, µ

2)⌦ CNS
k,q

✓
z,

Q2

µ2

◆

=
X

l=q,q̄,g

Dh
l (z, µ

2)⌦ Ck,l

✓
z,

Q2

µ2

◆
. (2.6)

Factorization in Eq. (2.4) holds in general only in the presence of a hard scale, in this case
Q. SIA is a one-scale process, and the hard scale should be chosen to be of O(Q). The power
corrections for SIA are much less well understood than in DIS, perhaps due to the lack of an
operator product expansion in the time-like case. One source, which we will get back to later
on, is of purely kinematic origin. Instead of the energy fraction z, SIA data are often given in
terms of the hadron’s three-momentum fraction in the c.m.s., xp = 2p/Q, which leads to 1/Q2

corrections when converted back to proper scaling variable: xp = z � 2m2
h/(zQ

2) + O(1/Q4)

[109]. mh is the produced hadron’s mass and is neglected in the factorized formalism outlined
above. Other sources of power corrections arise in the non-perturbative formation of a hadron
from quarks or gluons and are expected to behave like 1/Q from model estimates [109]. Higher-
twist corrections to Eq. (2.4), that are suppressed by inverse powers of the hard scale, can be
usually safely neglected as long as Q is large enough. We do not consider them in this study.

The non-perturbative but universal FFs Dh
i (z, µ

2) have a formal definition as bilocal operators
[81, 82] and parametrize the hadronization of a massless (anti)quark or gluon, i = q, q̄, g, into
the observed hadron h as a function of its fractional momentum z. The fragmentation process
is assumed to be independent of any other colored particles produced in a hard scattering.
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The scale dependence of the FFs is calculable in pQCD and governed by renormalization group
equations similar to those for PDFs. The SIA cross section in Eq. (2.4) depends on the gluon-
to-hadron FF Dh

g (z, µ
2) and the quark singlet (S) and non-singlet (NS) combinations that are

defined as
Dh

S(z, µ
2) =

1

Nf

X

q

⇥
Dh

q (z, µ
2) +Dh

q̄ (z, µ
2)
⇤

(2.7)

and
Dh

NS,q(z, µ
2) = Dh

q (z, µ
2) +Dh

q̄ (z, µ
2)�Dh

S(z, µ
2) (2.8)

respectively, in terms of the quark plus antiquark FFs Dh
q (z, µ

2) +Dh
q̄ (z, µ

2) for each flavor q.

The corresponding i = S,NS coefficient functions in Eq. (2.4) can be calculated perturbatively
in pQCD as a series in as,

Ci
k,l = Ci,(0)

k,l + as Ci,(1)
k,l + a2s Ci,(2)

k,l + . . . , (2.9)

where we have suppressed the arguments (z,Q2/µ2) in (2.9). Results are available up to O(a2s)

[67, 68, 70] which is NNLO for the CS,NS
T,l but formally only of NLO accuracy for the sublead-

ing longitudinal coefficient functions CS,NS
L,l . The latter coefficients vanish at O(a0s), and their

perturbative series is hence shifted by one power in the strong coupling as. The situation is
completely analogous to DIS but, unlike in DIS [145], the O(a3s) NNLO contributions have
not been calculated yet for SIA. In our phenomenological studies in Sec. 2.4, we will therefore
resort, for the time being, to the approximation where the perturbative orders for CS,NS

L,l are
counted as for CS,NS

T,l , i.e., we treat the O(a2s) longitudinal coefficients as NNLO. In that case,
the gluon FFs does not contribute directly in SIA at LO as also Ci,(0)

T,g = 0, again, similar to
DIS. In addition, we note that up to NLO accuracy, the relation CS

k,q = CNS
k,q holds, which can

be used to simplify Eq. (2.4) as was done, e.g., in Ref. [48, 108].

Numerically, in particular, when fitting a large number of data in a global QCD analysis, it
is advantageous to work in complex Mellin N moment space rather than with expressions like
Eq. (2.4) containing one or several time-consuming convolution integrals. In general, the Mellin
transform f(N) of a function f(z) is defined by

f(N) =

Z 1

0

dz zN�1f(z) ⌘ M[f(z)] . (2.10)

It has the well-known property that convolutions of two functions factorize into ordinary
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products, i.e., both the transverse and longitudinal cross section d�h
k/dz in Eq. (2.4) can be

schematically written as products of the Mellin N moments of FFs and coefficient functions,
Dh

l (N, µ2) · Ck,l(N,Q2/µ2). See Appendix B.

The Mellin moments of the NNLO coefficient functions Ci,(2)
k,l in (2.9) were computed in both

Ref. [70] and [121]. We analytically checked the consistency of the two results, which are
presented using somewhat different notations, by independently calculating the Mellin moments
from scratch starting from the z-space expressions given in Appendix C of Ref. [70]. To this
end, two Mathematica [146] packages [147, 148] were employed. The z-space results in [70]
are given in terms of harmonic polylogarithms expressed in the notation Hm1,...,mw , mj = 0,±1

introduced in [149]. Their Mellin transform can be written in terms of harmonic sums

Sa1,...,an(N) =
NX

k1=1

k1X

k2=1

. . .
kn�1X

kn=1

sign(a1)k1

k|a1|
1

. . .
sign(an)kn

k|an|
n

, (2.11)

where the ak are positive or negative integers, and N is a positive integer. The number n

of ak indices indicates the so-called depth, whereas w =
Pn

k=1 |ak| is called the weight of the
function. At NNLO accuracy one ends up dealing with harmonic sums of weight up to w = 4.

In order to perform the Mellin inverse transformation to z-space along a contour in the com-
plex N plane at the very end, see Sec. 2.2.3 below, one needs to know all functions not only
for discrete integers but for any complex value of N . This is achieved by proper analytical
continuation of the harmonic sums in Eq. (2.11). As it is well known [115, 150, 151], there is
no analytical continuation for all integer values of N due to the presence of terms / (�1)N ,
and a choice (�1)N ! ±1 has to be made based on physical considerations. For instance,
the analytical continuation of all the coefficient functions CS,NS

k,l appearing in Eq. (2.4) has to
correctly reproduce only even integer N moments.

To compare our results for the Mellin moments of the NNLO coefficients obtained with the help
of the Mathematica packages [147, 148] with those given for even values of N in [70], special
care needs to be taken for factors / S�2(N � 2)/(N � 2) since the zero in the denominator
for N = 2 suggests the presence of a pole. However, this is a spurious pole as can be seen by
making use of its the integral representation [152]

S�2(N) = �
Z 1

0

dz log(z)
(�z)N � 1

1 + z
. (2.12)
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The existence of this spurious pole for N = 2 at NNLO is the reason for the notation adopted
in [70], where the Mellin moments of the coefficient functions are written proportional to ✓(N�
3) and �(N � 2), representing the finite N ! 2 limit. Note that the limit in Eq. (2.12) has
to be taken for even N to obtain the correct sign. This can be made manifest by rewriting
Eq. (2.12) in terms of the digamma function which is defined as the derivative of the Euler
Gamma function  (x) ⌘ d log[�(x)]/dx. The harmonic sum in Eq. (2.12) then reads [153]

S�2(N) = (�1)N+3�0(N + 1)� 1

2
⇣(2) , (2.13)

where
�(N) =

1

2


 

✓
N + 1

2

◆
�  

✓
N

2

◆�
. (2.14)

We fully reproduce both the ✓(N � 3) pieces and the N ! 2 limits of the NNLO coefficients
CS,NS
k,l (N) listed in Ref. [70]. Note that the subtleties concerning the spurious pole for N = 2

first appear at the NNLO level. We also completely agree with the results given in Ref. [121]
as long as we do not use their definitions of the functions A3(N), A5(N), A18(N), A21(N), and
A22(N) in Eq. (14) of [121] but, instead, define them as the Mellin transforms of the functions
g3(x), g5(x), g18(x), g21(x), and g22(x) specified in the Ancont package [153].
In our numerical code we implement the Mellin N space expressions for the NNLO coefficient
functions in the way as they are presented in [121]. The proper analytical continuations of all
the harmonic sums and special functions are taken from [121, 152–154]. In addition, we are
making use of some of the routines provided in the Ancont package [153].

2.2.2 Time-like Evolution Equations

The factorization procedure invoked in Eq. (2.4) introduces an arbitrary scale µF which con-
ceptually separates the high-energy perturbative regime from the low-energy, non-perturbative
region. Both the hard coefficient functions and the FFs depend on µF in such a way that at
O(ans ) in pQCD any residual dependence of a physical cross section on µF is of order O(an+1

s ).
Similar to the case of PDFs, this leads to a set of 2Nf +1 coupled renormalization group equa-
tions (RGE) governing the scale µF dependence of the gluon and Nf quark and antiquark FFs
into a given hadron species h. Schematically, these time-like evolution equations read

@

@ lnµ2
Dh

i (z, µ
2) =

X

j

P T
ji (z, µ

2)⌦Dh
j

�
z, µ2

�
, (2.15)
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i, j = q, q̄, g, and where, for simplicity, we have set µR = µF = µ as in Sec. 2.2.1. The j ! i

splitting functions P T
ji (z, µ

2) can be calculated perturbatively as a series in as,

P T
ji = asP

T,(0)
ji + a2sP

T,(1)
ji + a3sP

T,(2)
ji + . . . , (2.16)

suppressing all arguments z, µ2 in (2.16). They are known up to NNLO accuracy [122–124],
i.e., O(a3s), as is the case for their space-like counterparts P S

ij [71, 155] needed for the scale
evolution of PDFs. In fact, there is still a small uncertainty left concerning the off-diagonal
splitting kernel P T,(2)

qg which could not be completely determined by the crossing relations to the
space-like results employed in [122–124]. Presumably, this remaining ambiguity is numerically
irrelevant for all phenomenological applications; see, however, Ref. [156] for the status of an
ongoing direct calculation of the NNLO time-like kernels. To implement the time-like evolution
equations (2.15) numerically up to NNLO accuracy, we closely follow the strategies and frame-
work developed for the public, space-like PDF evolution code Pegasus [157]. In general, the
structure and solutions of the space-like and time-like evolution equations are completely anal-
ogous apart from replacing PDFs by FFs and the kernels P S

ij by P T
ji . Hence, for completeness,

we repeat here only the most important aspects, in particular, those features appearing for the
first time at NNLO. Instead of working directly with the system of 2Nf + 1 coupled equations
in (2.15) it is convenient to recast the quark sector into a flavor singlet

Dh
⌃ ⌘

NfX

q

(Dh
q +Dh

q̄ ) , (2.17)

which evolves along with the gluon FF Dh
g ,

d

d lnµ2

 
Dh

⌃

Dh
g

!
=

 
P T
qq 2NfP T

gq

1
2Nf

P T
qg P T

gg

!
⌦
 
Dh

⌃

Dh
g

!
, (2.18)

and 2Nf � 1 non-singlet combinations

Dh,±
NS,l ⌘

kX

i=1

(Dh
qi
±Dh

q̄i
)� k(Dh

qk
±Dh

q̄k
) , (2.19)

Dh
NS,v ⌘

NfX

q

(Dh
q �Dh

q̄ ) , (2.20)
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reflecting the properties of the (anti)quark to (anti)quark splitting functions and which all evolve
independently. In Eq. (2.19) l = k2 � 1, k = 1, . . . , Nf , and the subscripts i, k were introduced
to distinguish different quark flavors. After the evolution is performed, the individual Dh

q and
Dh

q̄ can be recovered from Eqs. (2.17), (2.19), and (2.20), and any combination relevant for a
cross section calculation can be computed, such as those used in the factorized expression for
SIA given in Eq. (2.4).
More specifically, the three NS combinations in Eq. (2.19) and (2.20) evolve with the following
NS splitting functions [122–124]

P T,±
NS = P T,v

qq ± P T,v
qq̄ , (2.21)

P T,v
NS = P T,�

NS + P T,s
NS ,

respectively, and the singlet P T
qq in (2.18) obeys

P T
qq = P T,+

NS + P T,ps . (2.22)

Similarly to the space-like case, P T,v
qq̄ = P T,s

NS = P T,ps = 0 and P T,s
NS = 0 in LO and NLO,

respectively, such that three independently evolving NS quark combinations appear for the
first time at NNLO accuracy [122–124]. We note that P T,s

NS 6= 0 can lead to a perturbatively
generated, albeit small strange-quark asymmetry for FFs, i.e., Dh

s (z, µ
2)�Dh

s̄ (z, µ
2) 6= 0, even

if the input Dh
s and Dh

s̄ are symmetric; see Ref. [158] for a detailed discussion of a similar
effect in the context of PDFs. For pion FFs such a charge asymmetry is expected to be further
suppressed since the effect is driven by a non-zero Dh

NS,v in Eq. (2.20). This combination
vanishes when exact charge conjugation and isospin symmetry is imposed on the u and d quark
and antiquark FFs as is the case in many of the available sets of pion FFs [72–76].
As mentioned already, we choose to solve the set of time-like evolution equations in Mellin N

space, which not only has the benefit of turning all integro-differential equation into ordinary
differential equations but also makes them amenable to further analytical studies, such as the
inclusion of those resummation corrections presented later on in this chapter. Solutions of the
evolution equations in N space, as well as their numerical implementation, are well known and
were treated extensively in, e.g., Ref. [157] in the space-like case relevant for PDFs. Since the
procedure for FFs is essentially the same, we will in the following only sketch some aspects
of the solution at NNLO important for our discussions later on. The needed NNLO kernels
P T,(2)
ji (N) can be found in [122–124]. As for the SIA coefficient functions presented in Sec. 2.2.1,
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we have verified the expressions for P T,(2)
ji (N) starting from z-space and find full agreement.

We start our discussions by recalling the Mellin transformed time-like evolution equations.
Adopting the notations used in the Pegasus code [157], one finds

@Dh(N, as)

@as
= � 1

as


R0(N) +

1X

k=1

aksRk(N)

�
Dh(N, as) ,

(2.23)

where the bold characters indicate that we are dealing in general with 2 ⇥ 2 matrix-valued
equations, cf. Eq. (2.18). For the NS combinations (2.19) and (2.20), Eq. (2.23) reduces to
a set of single partial differential equations which are straightforward to solve, and we do not
consider them here any further.

The Rk in (2.23) are defined recursively as

R0 ⌘ 1

�0
eP T,(0) , Rk ⌘ 1

�0
eP T,(k) �

kX

i=1

biRk�i , (2.24)

where eP T,(k)(N) is the k-th term in the perturbative expansion of the 2 ⇥ 2 matrix of singlet
splitting functions as it shows in Eq. (2.18)

eP T (N) =

 
P T
qq(N) 2NfP T

gq(N)

1
2Nf

P T
qg(N) P T

gg(N)

!
. (2.25)

In addition, bi ⌘ �i/�0 with �k denoting the expansion coefficients of the QCD �-function;
see Ref. [159, 160] for explicit expressions up to NNLO, i.e, �2. Also note that Eq. (2.23) is
now written in terms of @as rather than @ log µ2 used in Eq. (2.15). This convenient change of
variables is possible as long as factorization and renormalization scales are related by a constant,
i.e., µR = µF , in numerical studies; see Ref. [157] for a detailed discussion. For simplicity, we
have so far only considered the case µ = µR = µF . Expressions for  6= 1 can be easily recovered
both for the coefficient functions (2.9) and the splitting functions (2.16) by re-expanding as in
powers of log(µ2

F/µ
2
R). The general expressions are implemented in our numerical code.

Due to the matrix-valued nature of Eq. (2.23), no unique closed solution exists beyond LO.
Instead, it can be written as an expansion around the LO solution, (as/a0)�R0(N)Dh(N, a0),
where a0 is the value of as at the initial scale µ0 where the non-perturbative input Dh(N, a0)
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is specified from a fit to data. This expansion reads

Dh(N, as) =


1 +

1X

k=1

aks Uk(N)

�✓
as
a0

◆�R0(N)
1 +

1X

k=1

aks Uk(N)

��1

Dh(N, a0) . (2.26)

The evolution matrices Uk are recursively defined by the commutation relations

[Uk,R0] = Rk +
k�1X

i=1

Rk�1Ui + kUk . (2.27)

Based on (2.26), it is now possible to define several solutions at order NmLO which are all equiv-
alent up to the accuracy considered, i.e., up to subleading higher-order terms. Any numerical
differences between two different choices should be treated as a source of theoretical uncertainty
in the determination of FFs or PDFs, and it is expected that the inclusion of NNLO corrections
reduces this type of ambiguity as compared to NLO. We highlight two possible solutions which
we pursue further in our phenomenological studies in Sec. 2.4. Suppose the perturbatively
calculable quantities P T,(k) and �k are available up to a certain order k = m. One possibility is
to expand Eq. (2.26) in as and strictly keep only terms up to ams . This defines what is usually
called the truncated solution in Mellin moment space, and, unless stated otherwise, will be used
in all our phenomenological applications.
However, given the iterative definition of the Rk in Eq. (2.24), one may alternatively calculate
the Rk and, hence the Uk in Eq. (2.27), for any k > m from the known results for P T,(k) and
�k up to k = m. Any higher order P T,(k) and �k with k > m are simply set to zero. Taking
into account all the thus constructed Uk in Eq. (2.26) defines the so-called iterated solution.
This solution is important as it mimics the results that would be obtained by solving Eq. (2.15)
directly in z-space by some numerical iterative method. Both choices are equally valid as they
only differ by terms that are of order O(am+1

s ) and are implemented in our numerical code; see
Ref. [157] for a more detailed discussion in the context of space-like evolution equations. We
shall illustrate the numerical differences between the truncated and iterated solution in Sec. 2.4.

2.2.3 Numerical Implementation: NNLO analysis

We base the development of our new NNLO evolution code for FFs on the well-tested Pegasus

package [157] which provides different numerical solutions to the space-like evolution of PDFs
up to NNLO accuracy in Mellin N space and the necessary routines for the subsequent Mellin
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inverse transformation back to momentum space. It also solves the RGE for the strong coupling
as(µ2

R) in the required order in pQCD. In addition to extending Pegasus to handle also time-
like evolution, we also add packages to compute the SIA cross section in N -space and to
determine the parameters of the FFs at some input scale µ0 from a fit to existing SIA data at
LO, NLO, and NNLO accuracy.

In Sec. 2.2.2 we have omitted how we deal with heavy quark flavors, i.e., charm and bottom, in
the time-like scale evolution apart from defining the relevant 2Nf � 1 NS combinations of FFs
in Eqs. (2.19) and (2.20). In Pegasus [157] both a fixed flavor-number scheme (FFNS) and
a variable flavor-number scheme (VFNS) evolution are implemented. For the latter, matching
coefficients between the space-like evolution for Nf and Nf+1 are provided for both PDFs [161]
and the RGE for as [162, 163] up to NNLO accuracy. Similar time-like matching coefficients
for FFs are only known up to NLO and can be found in Ref. [164]. They are implemented in
our evolution code. In practice, however, all fits of FFs performed so far [72–79], have used
a different approach for the charm and bottom-to-light hadron FFs. Once the scale µ in the
evolution crosses the heavy quark pole mass Q = mc,b, a new non-perturbative input distri-
bution is introduced at that scale Dh

c,b(z,m
2
c,b) and Nf ! Nf + 1. The parameters describing

these input distributions Dh
c,b(z,m

2
c,b) are also determined by a fit to, usually flavor-tagged, data

taken at scales µ � mc,b. We will also adopt this non-perturbative input scheme (NPIS) in all
our phenomenological studies below. We note that as one of the many cross-checks for our new
time-like evolution code, we have implemented the input parameters and as(µ0) value of the
NLO NPIS fit to SIA data performed in Ref. [72]. We obtain an excellent numerical agreement
with the FFs of [72] for all z and µ values.

As the last technical issue, we would like to comment on the numerical implementation of
the Mellin inverse transformation. To this end, one needs to perform a numerical integration
in complex N -space along a suitably chosen contour CN in order to recover expressions in z-
space which can be compared to data. In case of the SIA cross section, this transformation
schematically reads

D(z)⌦ C(z) =
1

2⇡i

Z

CN
dN z�N D(N)C (N) , (2.28)

where we have omitted any scale µ and flavor dependence in Eq. (2.28). In practice, one chooses
a tilted contour CN which can be parametrized in terms of a real variable x as N = c + x ei�,
see Fig. 2.1 for an illustration of the path and Ref. [157] for more details. To ensure that the
value of the integral is independent of CN , c has to be to the right of the rightmost pole of the
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Re N

Im N

CN

c

�

Figure 2.1: The dashed line represents the contour CN in complex N -space to perform the
inverse Mellin transformation (2.28). The poles of the integrand along the real axis are schemat-
ically represented by the crosses.

integrand, which, in our case, are all located along the real axis. An exponential dampening
of the integrand in (2.28) is achieved for ⇡ > � � ⇡/2, resulting in a smaller upper integration
limit xmax sufficient for a numerically stable result.

However, extra care needs to be taken in choosing actual values for both c and � beyond the
requirements just outlined. As it turns out, the standard choice, c = 1.9 and � = 3/4, made for
the PDF evolution in Pegasus cannot be used in the time-like case. This is due to the fact that
the time-like kernels P T (z) are more singular than their space-like counterparts P S(x) in the
limit z, x ! 0. At NLO accuracy, one finds, for instance, that P T, (1)

gg (z) / log2(z)/z [122–124]
whereas P S,(1)

gg (x) / 1/z [71, 155]. In Mellin space this behavior translates into / 1/(N � 1)3

and / 1/(N � 1), respectively, i.e., a leading singularity at N = 1. To order NmLO this
generalizes to P T, (m)

gg (N) / 1/(N � 1)(2m+1) [62, 126] whereas in the space-like case only one
additional power of 1/(N � 1) appears in each order (see e.g. [165] and references therin). As
a result, the function that is integrated in Eq. (2.28) has potentially much stronger oscillations
in the vicinity of the pole N = 1 than for the corresponding Mellin inverse transformations for
space-like PDFs and observables, and achieving numerical convergence becomes considerably
more delicate.

79



CHAPTER 2. FRAGMENTATION FUNCTIONS BEYOND NLO

Re N

 0

 0.2

 0.4

 0.6

 0.8

 1

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

C1
C2

C3 FF

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

Re N

 0

 0.2

 0.4

 0.6

 0.8

Im
 N

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

C1

PDF

Figure 2.2: The value of the real part of K12 in Eq. (2.29) in a region of the complex N plane
for both the evolution of FFs (upper panel) and PDFs (lower panel). The lines correspond
to three different integration contours CN in (2.28). C1 is the default choice in the Pegasus
package [157]; see text.

To illustrate this issue further, we schematically write the general solution in Eq. (2.26) as

Dh(N, as) =

 KT
11(as, a0, N) KT

12(as, a0, N)

KT
21(as, a0, N) KT

22(as, a0, N)

!
Dh(N, a0) , (2.29)

where the KT
ij denote the entries of the 2⇥ 2 time-like evolution matrix on the right-hand-side

of (2.26). A similar equation can be written down for the evolution of PDFs.
In Fig. 2.2 we show a comparison of the real part of the NLO singlet evolution kernel Re{KT,S

12 }
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for the iterated solution for both the evolution of FFs (upper panel) and PDFs (lower panel)
in the relevant section of the complex N plane. As an illustrative example, we have chosen
µ2
0 = 1 GeV2 and µ2 = 110 GeV2, the scale relevant for Belle and BaBar, in Eq. (2.29). The

line labeled as C1 represents the standard contour CN implemented in Pegasus [157], and C2,3
are two alternative choices.
As can be seen from the upper panel of Fig. 2.2, the contour C1 with c = 1.9 and � = 3/4

goes through a region of strong numerical oscillations of Re{KT
12} and, as a consequence, yields

numerically unstable results for the integral in Eq. (2.28). Hence, in our code we need to
choose either a different angle, e.g., � = 2/3 as in C2, or a different value of c, such as c = 2.5

adopted in C3. Both choices lead to numerically stable and identical results for the Mellin
inverse transformation in Eq. (2.28) for all practical purposes. Figure 2.2 also shows that no
such issue appears for the evolution of PDFs because of the weaker N = 1 singularity than in
the time-like case.
Finally, we compare the results of our time-like evolution code with those obtained with the
publicly available Mela [125] package, where also tables of benchmark numbers are given
corresponding to input FFs taken from the fit in Ref. [76]; cf. Eq. (3.3) in [125]. Using the same
input FFs, we were not able to directly reproduce their benchmark results as generated “out
of the box” from the downloadable script. The RGE for as(µR) is always solved exactly in our
code by means of a fourth order Runge-Kutta integration [166] (as taken from the Pegasus

package [157]), whereas in Mela the standard, expanded solution is utilized for the truncated
solution of Eq. (2.26). After this small difference is accounted for, we achieve perfect numerical
agreement with differences of less than 0.01% for both the truncated and iterated solution using
the FFNS with Nf = 3 or the VFNS.

2.3 Small-z Resummation for Semi-inclusive e+e� annihi-
lation

This section covers all the relevant technical aspects of small-z resummations in SIA: in
Sec. 2.3.1 we sketch the systematics of the small-z enhanced logarithmic contributions that
appear in both the coefficient functions for SIA and in the time-like evolution kernels in each
order of perturbation theory. The resummation of these logarithms up to NNLL accuracy is
concisely reviewed in Sec. 2.3.2, where we also compare our results to those available in the
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literature. In Sec. 2.3.3, we extend the currently available resummed expressions for the SIA
cross section by re-introducing their dependence on the scales µF and µR, which is vital for
a discussion of theoretical uncertainties later on in the phenomenological section of this chap-
ter. In Sec. 2.3.4 we explain in some detail how the resummed kernels are used in solving the
time-like evoltion equations in Mellin N space, and numerical peculiarities, in particular, those
associated with the Mellin inverse transformation are covered in Sec. 2.3.5

2.3.1 Systematics of small-z logarithms

The fixed order results of the coefficient functions contain logarithms that become large for
z ! 1 (large-z regime) and z ! 0 (small-z regime). Such large logarithms can potentially spoil
the convergence of the perturbative expansion even for as ⌧ 1 and, hence, need to be taken
into account to all orders in the strong coupling. The resummation of large-z logarithms in
SIA has been addressed, for instance, in Refs. [J1, 131–135]. The main focus of the work [J5]
is on the so far very little explored small-z regime and its phenomenology. In contrast to the
space-like DIS process with its single logarithmic enhancement, one finds a double logarithmic
enhancement for the time-like SIA; see, e.g., [167] and references therein. For example, for the
gluon sector in Eq. (2.4) one finds

CS,(k)
T,g / aks

1

z
log2k�1�a(z) ,

CS,(k)
L,g / aks

1

z
log2k�2�a(z) , (2.30)

where a = 0, 1, and 2 corresponds to the leading logarithmic (LL), next-to-leading logarithmic
(NLL), and NNLL contribution, respectively.
Furthermore, the same logarithmic behavior at small-z is found for the time-like splitting
functions that govern the scale evolution of the FFs. For example, for the gluon-to-gluon
and the quark-to-gluon splitting function, one finds

P T,(k)
gi / a(k+1)

s

1

z
log2k�a(z) , (2.31)

where i = q, g, and k denotes the perturbative order starting from k = 0, i.e., LO. In order to
obtain a reliable prediction from perturbative QCD in the small-z regime, these large logarith-
mic contributions, both in the coefficient functions and in the splitting functions, need to be
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CS,(n)
T,g CS,(n)

T,q CS,(n)
L,g CS,(n)

L,q

LL N̄�2n – N̄1�2n –
NLL N̄1�2n N̄1�2n N̄2�2n N̄2�2n

NNLL N̄2�2n N̄2�2n N̄3�2n N̄3�2n

n � 1 n � 2 n � 1 n � 2

Table 2.1: The explicit 1/N̄ dependence of the coefficient functions CS
k,l =

P
n a

n
sCS,(n)

k,l at any
given fixed order n of the perturbative expansion at the LL, NLL, and NNLL approximation.
These generic structures are valid starting from n = 1 or n = 2 as indicated in the bottom row
of the table. For smaller values of n, the correct 1/N̄ dependence must be extracted from the
fixed order results; see text. Also, note that the entry for CS,(n)

L,g at NNLL is obtained by AC
relations; see text.

P T,(n)
gg P T,(n)

gq P T,(n)
qq P T,(n)

qg

LL N̄�1�2n N̄�1�2n – –
NLL N̄�2n N̄�2n N̄�2n N̄�2n

NNLL N̄1�2n N̄1�2n N̄1�2n N̄1�2n

n � 0 n � 0 n � 2 n � 2

Table 2.2: Same as Tab. 2.1 but for the splitting functions P T
ij =

P
n a

n+1
s P T,(n)

ij .

resummed to all orders. The resulting expressions are available in the literature up to NNLL
accuracy [129, 130] and we will re-derive them in the next subsection. Traditionally, and most
conveniently, these calculations are carried out in the complex Mellin transform space. The
Mellin transform of the small-z logarithms given in Eqs. (2.30) and (2.31) reads

M

log2k�1(z)

z

�
= (�1)k

(2k � 1)!

N̄2k
, (2.32)

where N̄ ⌘ N � 1, i.e., they give rise to singularities at N = 1 in Mellin space.
The structure of the 1/N̄ divergences for all quantities relevant to a theoretical analysis of
SIA up to NNLL accuracy is summarized schematically in Tables 2.1 and 2.2. Note that no
LL contributions appear in the quark sector, neither for the splitting nor for the coefficient
functions. Moreover, the LO and NLO small-z contributions to CS

T/L,q, P T
qq, and P T

qg are not
contained in the generic structure summarized in Tables 2.1 and 2.2. Instead, these terms have
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to be extracted directly from the respective fixed order calculations. We would like to point out
that there is no complete NNLO calculation (i.e., third order in as) for the longitudinal coeffi-
cient functions available at this time. Therefore, only the first two non-vanishing logarithmic
contributions can be resummed for the time being. For this reason, the third entry for CS

L,g in
Tab. 2.1 has to be deduced using analytic continuation (AC) relations between DIS and SIA;
see Refs. [122–124, 168] for details.

2.3.2 Small-z resummations

The resummation of the first three towers of small-z logarithms, summarized in Tables 2.1
and 2.2, was performed recently in Refs. [129, 130] in a formalism based on all-order mass
factorization relations and the general structure of unfactorized structure functions in SIA.
Explicit analytical results can be found for the choice µ = Q. The corresponding LL and NLL
expressios are known for quite some time [62, 66, 126–128] and have been derived by other
means. We have adopted the same framework based on mass factorization as in [129, 130] and
re-derived all results from scratch up to NNLL accuracy. We are in perfect agreement with all
of their expressions except for some obvious, minor typographical errors 1. In this section, we
will concisely summarize the main aspects of the calculation as we will extend the obtained
results to a general choice of scale µ 6= Q in the next subsection.
One starts from the unfactorized structure functions using dimensional regularization. In our
case, we choose to work in d = 4�2" dimensions. The unfactorized partonic structure functions
can be written as

F̂k,l(N, as, ") =
X

i=q,g

Ck,i(N, as, ")�il(N, as, ") , (2.33)

with k = L, T and l = q, g. We have introduced the d-dimensional coefficient functions Ck,l,
which contain only positive powers in ",

Ck,l(N, as, ") = �kT �l,q +
1X

i=1

ais

1X

j=0

"jc(i,j)k,l (N) , (2.34)

1We noticed the following typographical errors in Ref. [129] which should be corrected as follows:
Eq. (2.12):

�
67
9 CA � 4⇣2

� ! �
67
9 � 4⇣2

�

Eq. (3.18) 1st line, last term: � 38
9 C2

ACFnf ! � 38
9 CAC2

Fnf

Eq. (4.8) 2st line, last term: � 47
9 CFn2

f ! � 47
9 C2

Fnf

Eq. (5.5) denominator: 9(N � 1)2n�2 ! 9(N � 1)2n�3
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whereas the transition functions �ij include all IR/mass singularities, which are manifest in 1/"

poles, i.e., they contain all negative powers of ". The transition functions are calculable order
by order in as by solving the equation

�d(as)
@�ik

@as
��1
kj = P T

ij . (2.35)

Here, �d(as) = �" as�a2s
P1

i=0 �ia
i
s denotes the d-dimensional beta function of QCD. Eq. (2.35)

can be derived from the time-like evolution equations and its solution reads

� = 1 � as
P T,(0)

"
+ a2s


1

2"2
(P T,(0) + �0)P

T,(0) � 1

2"
P T,(1)

�

+ a3s


� 1

6"3
(P T,(0) + �0)(P

T,(0) + 2�0)P
T,(0) +

1

6"2

⇢
(P T,(0) + 2�0)P

T,(1) + (P T,(1) + �1)2P
T,(0)

�
� 1

3"
P T,(2)

�
+O(a4s) (2.36)

where

P T ⌘
1X

i=0

ai+1
s P T,(i) ⌘

1X

i=0

ai+1
s

 
P T,(i)
qq P T,(i)

gq

P T,(i)
qg P T,(i)

gg

!
(2.37)

is the 2 ⇥ 2 matrix that contains the time-like singlet splitting functions. Note that here, the
off-diagonal entries of the matrix P T differ from the ones of eP T in Eq. (2.18) and Eq. (2.25)
by factors 2Nf and 1/2Nf . Since we are interested only in the small-z regime, we take the
small-N̄ limit of the known coefficient and splitting functions in Eq. (2.33).

Alternatively, one can express the unfactorized partonic structure functions in Eq. (2.33) as a
series in as,

F̂k,l(N, as, ") =
X

n

ans F̂ (n)
k,l (N, as, ") . (2.38)

The key ingredient to achieve the resummations of the leading small-N̄ contributions, which is
the main result of [129], is the observation that the O(ans ) contribution in Eq. (2.38) may be
written as

F̂ (n)
k,l (N, as, ") = "�kL+�lq+1�2n

n�1��lqX

i=0

1

N̄ � 2(n� i)"
⇥
⇣
A(i,n)

k,l + "B(i,n)
k,l + "2C(i,n)

k,l + . . .
⌘
.

(2.39)
Each of the coefficients A, B, and C is associated with a different logarithmic accuracy of the
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resummation, i.e., LL, NLL, and NNLL, respectively.
By equating Eqs. (2.33) and (2.38), one obtains a system of equations which may be solved
recursively order by order in as. The small-z (small-N̄) limits of the fixed order results are
needed here as initial conditions for the first recursion. Since these results are only known
up to NNLO accuracy, resummations are limited for the time being to the first three tow-
ers listed in Tables 2.1 and 2.2. At each order n, this procedure then yields expressions for
c(n,m)
k,l , P T, (n�1)

ij , A(m,n)
k,l , B(m,n)

k,l , and C(m,n)
k,l .

Note that up to NNLL accuracy only �0 is needed in Eq. (2.36). All terms proportional �i�1 will
generate subleading contributions and, hence, can be discarded. For instance, when initiating
the recursive solution, P T,(0) and P T,(1) are known from fixed order calculations, and P T,(2),
that appears at O(a3s) in Eq. (2.36), is the unknown function that is being determined. The
NNLL contribution for, say, P T, (2)

gg is / 1/N̄2, cf. Table 2.2, whereas the highest inverse power
of N̄ in the term �1P

T, (0)
gg appearing in the curly brackets of Eq. (2.36) is / 1/N̄ and, thus,

beyond NNLL accuracy.
After solving the system of equations algebraically using Mathematica [146], we find expres-
sions for c(n,0)k,l , and P T,(n)

ij . Since the coefficient functions and the splitting functions both have
a perturbative expansion in as,

P T
ij =

1X

n=0

an+1
s P T, (n)

ij (2.40)

and

CS
k,l =

1X

n=0

ans c
(n,0)
k,l (2.41)

one can eventually deduce a closed expression for resummed splitting functions and coefficient
functions as listed in [130]. As mentioned above, we fully agree with these results up to the
typographical errors listed in the footnote.

2.3.3 Resummed scale dependence

All calculations presented so far in this chapter, including Refs. [129, 130], have been performed
by identifying, for simplicity, the renormalization and factorization scales with the hard scale Q,
i.e., by setting µF = µR = µ = Q. However, it is well known that the resummation procedure
should not only yield more stable results but should also lead to a better control of the residual
dependence on the unphysical scales µF and µR that arises solely from the truncation of the
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perturbative series. Hence, for our subsequent studies of the phenomenological impact of the
small-z resummations on the extraction of FFs from SIA data it is imperative to reintroduce
the dependence on the scales µF and µR in the resummed expressions. This is the goal of this
section. In what follows, we reinstate the scale dependence with two different, independent
methods. We find full agreement between the two approaches.

Firstly, we consider a renormalization group approach; see also Ref. [169]. The dependence of
the coefficient functions on the factorization scale µF can be expressed as

CS
k,l(N, as, LM) =

1X

i=0

ais

 
c(i)k,l(N) +

iX

m=1

c̃(i,m)
k,l (N)Lm

M

!
, (2.42)

with LM ⌘ log Q2

µ2
F
. The coefficients c(i)k,l ⌘ c̃(i,0)k,l are the finite (i.e., " independent) coefficients

as given in Eq. (2.34). The c̃(i,m)
k,l can be calculated order by order in as by solving a set of

renormalization group equations (RGEs). These equations can be obtained by requiring that
d

d log µ2
F
Fk

!
= 0, where Fk ⌘

P
l Ck,lDl (see Eq. (2.6) for the definition of these structure functions

in z space), which leads to
⇢

@

@ log µ2
F

+ �(as)
@

@as

�
�lm + P T

lm(N)

�
CS
k,m(N, as, LM) = 0 . (2.43)

Here, the sum over m = q, g is left implicit. For the sake of better readability, we drop the
arguments of all functions for now. From (2.43), the following recursive formula can be obtained

c̃(i,m)
k,l =

1

m

i�1X

w=m�1

c̃(w,m�1)
k,j

⇣
P T, (i�w�1)
lj � w�i�w�1�jl

⌘
. (2.44)

Again, the sum over j = q, g is implicitly understood. Up to NNLO accuracy, we obtain the
same results as given in [67].

If one now plugs in the small-N̄ results for the splitting and coefficient functions, one can
compute the coefficients c̃(n,m)

k,l up to any order n and identify the leading three towers of 1/N̄
in Eq. (2.42), i.e., the LL, NLL, and NNLL contributions. At order n we find at LL accuracy

CS,LL,(n)
k,g = cLL,(n)

k,g . (2.45)

Thus, no improvement of the scale dependence is achieved by a LL resummation (recall that
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resummation in the quark sector only starts at NLL accuracy). The full LM dependence is
given by the fixed-order expressions, which have to be matched to the resummed result for
all practical purposes. As usual, the matching of a resummed observable T res to its NLO
fixed-order expression TNLO is performed according to the prescription schematically given by

Tmatched = TNLO + T res � T res|O(as )
. (2.46)

Here, T res|O(as )
denotes the expansion in as of T res up to order O(as ). Likewise, at NLL

accuracy one obtains the following results

CS,NLL,(n)
T,g = cNLL,(n)

T,g + LM

(
P T LL,(n�1)
gq +

n�2X

j=0

cLL,(n�1�j)
T,g P T LL,(j)

gg

)
, (2.47)

CS,NLL,(n)
L,g = cNLL,(n)

L,g + LM

n�2X

j=0

cLL,(n�1�j)
L,g P T LL,(j)

gg

(2.48)

and

CS,NLL,(n)
T,q = cNLL,(n)

T,q , (2.49)

CS,NLL,(n)
L,q = cNLL,(n)

L,q . (2.50)

The scale dependent terms / LM enter here for the first time in the gluonic sector, Eqs (2.47)
and (2.48), and are expressed in terms of LL quantities. Due to the fact that the quark coefficient
functions are subleading, they still do not carry any scale dependence at NLL. Finally, at NNLL
accuracy one finds

CS,NNLL,(n)
T,g = cNNLL,(n)

T,g + LM

(
P T NLL,(n�1)
gq � (n� 1)�0c

LL,(n�1)
T,g +

n�3X

j=0

cNLL,(n�1�j)
T,q P T LL,(j)

gq

+
n�2X

j=0

 
cLL,(n�1�j)
T,g P T NLL,(j)

gg + cNLL,(n�1�j)
T,g P T LL,(j)

gg

!)
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+
L2
M

2

"
n�2X

j=0

P T LL,(n�2�j)
gq P T LL,(j)

gg +
n�3X

i=0

n�2�iX

j=0

cLL,(n�2�i�j)
T,g P T LL,(i)

gg P T LL,(j)
gg

#
,

(2.51)

CS,NNLL,(n)
L,g = cNNLL,(n)

L,g + LM

(
� (n� 1)�0c

LL,(n�1)
L,g

+
n�2X

j=0

 
cLL,(n�1�j)
L,g P T NLL,(j)

gg + cNLL,(n�1�j)
L,g P T LL,(j)

gg

!
+

n�2X

j=0

cNLL,(n�1�j)
L,q P T LL,(j)

gq

)

+
L2
M

2

n�3X

i=0

n�3�iX

j=0

cLL,(n�2�i�j)
L,g P T LL,(i)

gg P T LL,(j)
gg , (2.52)

CS,NNLL,(n)
T,q = cNNLL,(n)

T,q + LM

(
P T NLL,(n�1)
qq (1� �n,2) +

n�1X

j=0,j 6=1

cLL,(n�1�j)
T,g P T NLL,(j)

qg

)
, (2.53)

and

CS,NNLL,(n)
L,q = cNNLL,(n)

L,q + LM

n�2X

j=0,j 6=1

cLL,(n�1�j)
L,g P T NLL,(j)

qg

(2.54)

It should be noticed that by the subscripts LL, NLL, and NNLL in Eqs. (2.45) and (2.47)-(2.54),
we denote only those contributions in 1/N̄ specific to the tower at LL, NLL, or NNLL accuracy,
respectively. This means, for instance, that the full next-to-next-to-leading logarithmic expres-
sion at some given order n in the as perturbative expansion of CS

k,l in Eq.(2.42) will be always
given by the sum of the individual LL, NLL, and NNLL contributions. As one may expect from
the fixed-order results, the scale dependence at NmLL is expressed entirely in terms of the re-
summed expressions at NkLL with k < m. Since the resummed results are known up to NNLL
accuracy, we may, in principle, extend our calculations to fully predict the scale dependent
terms at N3LL. These findings are consistent with the scale dependence of fixed-order cross
sections. Finally, for all practical purposes, as we shall see below, it is numerically adequate
to have explicit results for each tower up to sufficiently high order in n, say, n = 20, in lieu of
a closed analytical expression for the resummed series as was provided for the case µ = Q in
Refs. [129, 130].
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We may now reintroduce the renormalization scale dependence as well by following the straight-
forward steps outlined in Ref. [67]. In practice, this amounts to replacing all couplings as in
the expressions given above according to

as(µ
2
F ) = as(µ

2
R)

✓
1 + as(µ

2
R)�0 log

µ2
R

µ2
F

+O(a2s)

◆
. (2.55)

In a second step one needs to re-expand all results in terms of as(µ2
R) which leads to additional

logarithms of the type LR ⌘ log(µ2
R/µ

2
F ). In our phenomenological studies below we will study,

however, only the case µF = µR 6= Q and, hence, we do not pursue the LR dependence any
further.

The second approach we adopt to recover the scale dependence of the SIA coefficient functions
obtained in Sec. 2.3.2 is based on the all-order mass factorization procedure. After removing
the ultraviolet (UV) singularities from the bare partonic structure functions F̂k,l (which have
been computed directly from Feynman diagrams) by a suitable renormalization procedure, the
remaining final-state collinear/mass singularities have to be removed by mass factorization

F̃k,l = Ck,i ⌦ �̃li . (2.56)

Here, all singularities are absorbed into the transition functions �̃li while the coefficient functions
Ck,i are finite. We have labeled the quantities in Eq. (2.56) with a tilde to show that they contain
the full dependence on all scales.

We may thus proceed in the following way: first, we “dress” the transition functions and partonic
structure functions in Eq. (2.33) with the appropriate scale dependence, i.e., we substitute as !
as · (µ2

F/µ
2)�" in the �ij and as ! as · (Q2/µ2)�" in the F̂k,l, where the mass parameter µ stems

from adopting dimensional regularization. As a next step, we go back to the unrenormalized
expressions, where we assume that the renormalization was performed at the scale µ2

F and Q2,
respectively. Afterwards, we perform renormalization again, but now at a different scale µ2

R.
Schematically, this amounts to

�̃ij = R
µ2
R

µ2

h
(R

µ2
F

µ2 )
�1
⇥
�ij(as ! as · (µ2

F/µ
2)�")

⇤i
(2.57)

and
F̃k,l = R

µ2
R

µ2

h
(RQ2

µ2 )
�1
⇥Fk,l(as ! as · (Q2/µ2)�")

⇤i
. (2.58)
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Here, we are using the following notation: with R
µ2
R

µ2 [f̂(âs)] = f [as(µ2
R)] we denote the renor-

malization of a bare quantity f̂(âs) which, as indicated, depends on the unrenormalized, bare
coupling âs. This procedure yields a renormalized quantity f [as(µ2

R)], which now depends on
the physical coupling as(µ2

R). The renormalization procedure R
µ2
R

µ2 is performed by replacing
the bare coupling with

âs = as(µ
2
R)Z(µ

2
R, µ

2) (2.59)

where we have introduced the renormalization constant

Z(µ2
R, µ

2) ⌘
"
1� as(µ

2
R) ·

✓
µ2
R

µ2

◆�" �0
"

+O(a2s)

#
. (2.60)

Analogously, (R
µ2
R

µ2 )
�1[f [as(µ2

R)]] = f̂(âs) performs the inverse operation, i.e., it translates
the renormalized quantity f(as(µ2

R)) back to the corresponding bare quantity f̂(âs). This
is achieved by replacing the renormalized coupling with

as(µ
2
R) = âsẐ(µ

2
R, µ

2) , (2.61)

where the “inverse" renormalization constant reads

Ẑ(µ2
R, µ

2) ⌘
"
1 + âs ·

✓
µ2
R

µ2

◆�" �0
"

+O(â2s)

#
. (2.62)

The latter can be obtained from Eq. (2.60) by a series reversion. After substituting Eqs. (2.57)
and (2.58) into Eq. (2.56) one can solve the latter equation for the coefficients Ck,i, which now
exhibit the full dependence on µR and µF .

In order to generate the renormalization constant Z in Eq. (2.60) at each order n in an expansion
in as with the maximal precision available at this time (i.e., up to terms proportional to �i,
i  2), we adopt renormalization group techniques. The general form of the renormalization
constant reads

Z = 1 +
1X

k=1

aks

kX

l=1

fk,l
"l

(2.63)

and may also be written as

Z = 1 +
1X

l=1

gl(as)

"l
(2.64)
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where gl(as) =
P1

k=l a
k
sfk,l is a power series in as with l being the lowest power. Using the RGE

it is possible to derive a recursive formula for this power series,

g0k+1(as) = g01(as)
d(asgk(as))

das
. (2.65)

Here the prime denotes a derivative with respect to as. Hence, we obtain gk+1(as) by integration
of Eq. (2.65). From the expression of the renormalization constant up to a3s, see, for example
Ref. [170], we obtain as initial conditions

f1,1 = ��0, f2,1 = ��1
2
, f3,1 = ��2

3
. (2.66)

As already stated above, only terms proportional to �0 are relevant up to NNLL accuracy.

2.3.4 Solution to the time-like evolution equation with a resummed
kernel

As discussed above, small-z resummations are carried out in Mellin space. It is therefore of most
convinience to use the developed framework for the NNLO solution to the time-like evolution
(see Sec. 2.2.2) and extend it to define a resummed solution.

Instead of the fixed-order expressions defined in Eq. (2.16) for the kernels, we shall now consider
the resummed results for the splitting functions P T NLL

jl as discussed in Sec. 2.3.2 and listed in
Ref. [129, 130]. They obey a similar expansion in as as in Eq.(2.16), which reads

P T NLL
ji =

1X

n=0

an+1
s P T NLL,(n)

ji , (2.67)

where each term P T NLL,(n)
ji in (2.67) is, in principle, known up to NNLL accuracy, i.e., for

 = 0, 1, and 2.

The simplest way of extending the fixed-order framework outlined above to the resummed case
is to take the iterated solution as defined in Sec. 2.2.2. However, instead of setting contri-
butions beyond the fixed order to zero, we use the resummed expressions. One can define a
NmLO+NLL resummed “matched solution” by defining the k-th term of the splitting matrix
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which appears in Eq. (2.24) as follows:

eP T,(k) ⌘
8
<

:
eP T FO,(k) k  m

eP T NLL,(k) k > m .
(2.68)

In other words, the full fixed-order expressions eP T FO,(k) for k  m are kept in Rk, whereas
we use the resummed expressions for k > m. This iterated and matched solution is the one
implemented in our numerical code and will be used in Sec. 2.5 for all our phenomenological
studies. For the range of z-values covered by the actual data sets considered in our analysis,
only the terms up to k = 20 are indeed numerically relevant as we shall discuss further in
Sec. 2.3.5. However, when evolving the FFs in scale with such an extended iterative solution,
one finds that momentum conservation is broken to some extent due to missing sub-leading
terms in the evolution kernels.

In fact, total momentum conservation for FFs is expressed by the sum rules for combinations
of splitting functions, see, e.g. Ref. [49].

Z 1

0

dx x
�
P T
qq(x) + P T

gq(x)
�

= 0 ,

Z 1

0

dx x
�
P T
gg(x) + P T

qg(x)
�

= 0 . (2.69)

In terms of Mellin moments, these relations read

P T
qq(N = 2) + P T

gq(N = 2) = 0 , (2.70)

P T
gg(N = 2) + P T

qg(N = 2) = 0 . (2.71)

These sum rules are satisfied, i.e., built into the kernels, at any given fixed order.

In the case of the iterated and matched solution we use in our numerical implementation, the
sum rules in Eqs. (2.70) and (2.71) deviate from zero only about a few h which is perfectly
tolerable. We note, that in calculations of the SIA cross section, we also adopt the matching
procedure for the relevant resummed coefficient functions as specified in Eq. (2.46).

However, when evaluating the sum rules without matching, the sums in (2.70) and (2.71) yield
the approximate values 0.05 and 0.1, respectively, which is, of course, not acceptable.

We would like to point out that a NLO truncated + resummed solution has been proposed in
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Figure 2.3: Upper panel: expansion of the splitting function Pgg(z) times z at NNLL accu-
racy for different upper values of k compared to the fully resummed expression of Ref. [129, 130].
Lower panel: deviation of the full and O(k) expanded results. All functions are evaluated at
Q2 = 110GeV2 and Nf = 5 active flavors.

Ref. [167]. Its extension to NNLO accuracy and the numerical comparison with its iterated
counterpart as discussed above is not pursued here.
Given that the logarithmic contributions to the NS splitting function are subleading up to the
NNLL accuracy, see Ref. [130], no small-z effects have to be considered. The usual fixed-order
NS evolution equations and kernels should be used instead.

2.3.5 Numerical Implementation: including the small-z resumma-
tions

In this section, we will review how to adapt the numerical implementation of the fixed-order
results up to NNLO accuracy, as discussed in Ref. [J4] and Sec. 2.2.3 to include also the small-z
resummations as discussed above.
Following the discussions on the iterated solution in Sec. 2.3.4, we start with assessing the order
k in P T NLL,(k) that is necessary to capture the behavior of fully resummed series down to values
of z relevant for phenomenological studies of SIA data in terms of scale-dependent FFs. To
this end, we study the convergence of the series expansion of the resummed expressions when
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evaluated up to a certain order k. This is achieved by first expanding the resummed splitting
functions in Mellin N space and then using an appropriate numerical Mellin inversion, see below,
to compare the expanded result with the fully resummed splitting functions in z-space given
in [129, 130]. A typical example, the gluon-to-gluon splitting function, is shown in Fig. 2.3. As
can be seen, k = 20 in the expansion is accurate at a level of less than 0.3h differences down
to values of z ⇡ 10�5. This is more than sufficient for all phenomenological studies as SIA data
only extend down to about z = 10�3 as we shall discuss later.

However, the splitting functions enter the scale evolution of the FFs in a highly non-trivial way,
cf. Eqs. (2.23) and (2.24), such that this convergence property does not directly imply that
the effects of truncating the expansion at O(k = 20) are also negligible in the solution of the
evolution equations. To explore this further, we recall that the N -space version of Eq. (2.15)
reads

@

@ lnµ2
Dh

i (N, µ2) =
X

j

eP T
ji (N, µ2) ·Dh

j

�
N, µ2

�
, (2.72)

where eP T
ji is the ij-entry of the 2 ⇥ 2 singlet matrix in (2.25). One can solve this equation

numerically with the fully resummed kernels, assuming some initial set of FFs, and compare
the resulting, evolved distributions with the corresponding FFs obtained from the iterative
solution of Eq. (2.26) at O(k = 20) defined in Sec. 2.3.4. Again, we find that the two results
agree at a level of a few per mill for z & 10�5, i.e., after transforming the evolved FFs from N

to z-space.

In general, the Mellin inversion of a function f(N) is defined as

f(z) =
1

2⇡i

Z

CN
dN z�N f(N) , (2.73)

where the contour CN in the complex plane is usually taken parallel to the imaginary axis with
all singularities of the function f(N) to its left. As we have seen in Sec. 2.2.3, for practical
purposes, i.e. faster numerical convergence, one chooses a deformed contour instead, which can
be parametrized in terms of a real variable t, an angle ', and a real constant c as N(t) = c+tei';
see Fig. 2.4 for an illustration of the chosen path and Ref. [157] for further details.

In order to properly choose the contour parameters c and ', we proceed as for our NNLO
analysis and analyze the pole structure of the evolution kernels KT

ij.

In complete analogy to what was found in Ref. [167] in the space-like case, the fully resummed
time-like splitting functions exhibit additional singularities as compared to the fixed order
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Re N

Im N

CN

c

'

Figure 2.4: The dashed line represents the standard contour CN in the complex N plane for
the inverse Mellin transformation (2.28). The poles of the integrand along the real axis are
schematically represented by crosses, whereas the poles lying in the complex plane away from
the real axis are represented by squares. The branch cut is illustrated by the wiggly line.

expressions. Their location in the complex plane away from the real axis depends on the value
of as. More specifically, if we consider, for instance, P T

gg at NLL [130], one can identify terms

proportional to
⇣p

1 + 32CAas(µ)/(N � 1)2
⌘�1

which lead to poles at N = 1± i
p

32CAas(µ)

that are connected by a branch cut. If we had chosen to directly solve Eq. (2.72) numerically
with the fully resummed splitting functions, the appropriate choice of contour for the Mellin
inversion in Fig. 2.4 would have to be µ dependent as the position of these poles, denoted by
the squares, depends on as(µ).

In the iterative solution, which we adopt throughout, only the expanded splitting functions
P T NLL,(k) enter the KT

ij in Eq. (2.29). Therefore, the evolution is not affected by the singular-
ities present in the fully resummed kernels, and a unique, µ-independent choice of the contour
parameters c and ' is still possible. In our numerical code, we take c = 4 and ' = 3/4 ⇡. This
choice also tames numerical instabilities generated, in particular, by large cancellations caused
by the oscillatory behavior in the vicinity of the N = 1 pole. This is visualized in the upper
panel of Fig. 2.5. Here, we show the real part of the singlet evolution kernel Re{KT

12} defined in
Eq. (2.29) at NLO+NNLL accuracy and Q2 = 110GeV2. The numerical instabilities are well
recognizable near the N = 1 pole.

Finally, in order to perform a fit of FFs based on SIA data one has to compute the multiplicities
as defined in Eq. (2.4). As was mentioned above, in order to arrive at a fast but reliable
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Figure 2.5: Upper panel: real part of K12 in Eq. (2.29) in a portion of the complex N plane.
Lower panel: as above but for the coefficient function CS

T,q(N). Both quantities are computed
at NLO+NNLL accuracy for Q2 = 110GeV2. The line corresponds to the contour CN in (2.28).

numerical implementation of the fitting procedure, we choose to evaluate the SIA cross section
also in Mellin moment space and, then, perform a numerical inverse transformation to z-space.

In principle, while performing the Mellin inversion, one has to deal with the same kind of
as-dependent singularities in the fully resummed resummed coefficient functions, cf. Ref. [130],
that we have just encountered in the resummed splitting functions. In the lower panel of
Fig. 2.5, we show the real part of the coefficient function CS

T,q(N) for which the pole structure
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and the branch cut are again well recognizable. However, for the typical scales relevant for
a phenomenological analysis (µ = 10.5 � 91.2GeV; see Sec. 2.5), our choice of contour CN is
nevertheless applicable since the position of the singularities does not change considerably in
this range of energies.

2.4 Phenomenological Applications: NNLO analysis

As a first application of our time-like evolution package presented in Sec. 2.2, we will perform
a fit to the available SIA data with identified pions up to NNLO accuracy in Sec. 2.4.1. The
obtained sets of LO, NLO, and NNLO pion FFs will be used in Sec. 2.4.2 to demonstrate
the relevance of the NNLO corrections to the SIA cross section and to estimate the residual
theoretical uncertainties due to variations of the factorization scale in each order or to the choice
of a truncated or iterated variant of the solution to the evolution equations given in (2.26).

2.4.1 Fit of Pion FFs up to NNLO Accuracy

Since full NNLO corrections are only available for a rather limited set of hard scattering pro-
cesses, we have to restrict our first analysis of FFs at NNLO accuracy to data obtained in
SIA for the time being. In addition, we focus solely on pion production where data are most
abundant and precise. In any case, the main interest of this work are the general features of
NNLO corrections rather than to provide a new set of FFs.
To facilitate the fitting procedure, we closely follow the framework outlined and used in the
series of DSS global QCD analyses of parton-to-pion FFs at NLO accuracy [77–79]. Specifically,
we adopt the same flexible functional form

D⇡+

i (z, µ2
0) =

Ni z↵i(1� z)�i [1 + �i(1� z)�i ]

B[2 + ↵i, �i + 1] + �iB[2 + ↵i, �i + �i + 1]
(2.74)

to parametrize the non-perturbative input FFs for charged pions at a scale µ0 in the MS scheme.
Here, B[a, b] is the Euler Beta function used to normalize the parameter Ni in (2.74) for each
flavor i to its contribution to the energy-momentum sum rule. In addition to the gluon i = g,
we only consider FFs for the sum of a quark and an antiquark of a given flavor i, i.e., i = u+ ū,
d + d̄, s + s̄, c + c̄, and b + b̄, since SIA is only sensitive to q + q̄ flavor combinations as can
be already inferred from Eq. (2.4). Also, since all hadrons in SIA originate from the initially
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produced qq̄ pair, the rates for ⇡+ and ⇡� are the same, and data for charged pions are usually
presented for the sum d�⇡ ⌘ d�⇡+

+ d�⇡� .

We assume charge conjugation and isospin symmetry and impose D⇡±
u+ū = D⇡±

d+d̄
as is also

suggested by the flavor composition of ⇡±. We note that a recent global QCD analysis of pion
FFs at NLO accuracy based on SIA, SIDIS, and pp data [79] finds a breaking of this symmetry
of less than 0.5%. Beyond that, we are forced to fix certain parameters in our ansatz (2.74) as
they cannot be constrained by data. More specifically, we set ↵s+s̄ = ↵u+ū, �s+s̄ = �u+ū+ �u+ū,
and �g = 8. In addition, �g,s+s̄,c+c̄ = 0 and �g,s+s̄,c+c̄ = 0. For light quark flavors and the
gluon, we choose an initial scale of µ0 = 1 GeV. As in all previous fits [72–79], the charm and
bottom-to-pion FFs are treated as a non-perturbative input and are turned on discontinuously
at µc

0 = mc = 1.4 GeV and µb
0 = mb = 4.75 GeV, respectively. Their parameters are essentially

determined by charm and bottom flavor-tagged SIA data. In case of D⇡+

b+b̄
, a good fit is only

achieved with the full functional form (2.74) using all five parameters, whereas for charm only
three free parameters are needed. Since the heavy quark masses are neglected throughout in
the NPIS, D⇡+

c+c̄ and D⇡+

b+b̄
should be only used in cross sections such as Eq. (2.4) at scales well

beyond their partonic thresholds µ = 2mc and µ = 2mb, respectively.

The remaining 16 free parameters are determined by a standard �2 minimization procedure as
described, for instance, in Ref. [79]. They are listed in Tab. 2.3 for our LO, NLO, and NNLO sets
of pion FFs. For each set of experimental data we determine the optimum normalization shift
analytically and assign an additional contribution to �2 according to the quoted experimental
uncertainties; see, e.g., Eq. (5) in Ref. [79] for details.

Our fits are performed to the following sets of inclusive and flavor-tagged SIA data with iden-
tified pions: Sld [88], Aleph [89], Delphi [90], and Opal [91], all taken at a c.m.s. energy
of

p
S = 91.2 GeV, Tpc [85–87] at

p
S = 29 GeV, and BaBar [84] and Belle [83] both

at
p
S = 10.5 GeV. The Sld, Delphi and Tpc experiments not only provide inclusive SIA

measurements but also uds, charm and bottom-tagged data. All these sets were also used in
the recent global analysis presented in Ref. [79].

As is customary [72–79], we do not include any data below a certain zmin in the fit where finite,
but neglected hadron mass effects / M⇡/(z2S) might become relevant [J3], and potentially
the large logarithmic contributions / log z, discussed above in Sec. 2.3, need to be resumed to
all orders [62, 63, 126–130, 171, 172]. For all our fits in this section, we choose zmin = 0.075.
In addition, we employ an upper cut of z < zmax = 0.95. In this region threshold logarithms
/ log(1 � z) in the coefficient functions are expected to become increasingly relevant, and,
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parameter LO NLO NNLO
Nu+ū 0.735 0.572 0.579
↵u+ū -0.371 -0.705 -0.913
�u+ū 0.953 0.816 0.865
�u+ū 8.123 5.553 4.062
�u+ū 3.854 1.968 1.775
Ns+s̄ 0.243 0.135 0.271
↵s+s̄ -0.371 -0.705 -0.913
�s+s̄ 4.807 2.784 2.640
Ng 0.273 0.211 0.174
↵g 2.414 2.210 1.595
�g 8.000 8.000 8.000

Nc+c̄ 0.405 0.302 0.338
↵c+c̄ -0.164 -0.026 -0.233
�c+c̄ 5.114 6.862 6.564
Nb+b̄ 0.462 0.405 0.445
↵b+b̄ -0.090 -0.411 -0.695
�b+b̄ 4.301 4.039 3.681
�b+b̄ 24.85 15.80 11.22
�b+b̄ 12.25 11.27 9.908

Table 2.3: Parameters describing our optimum LO, NLO, and NNLO D⇡+

i (z, µ0) in Eq. (2.74)
at the input scale µ0 = 1 GeV. Results for the charm and bottom FFs refer to the scale
µc
0 = mc = 1.4 GeV and µb

0 = mb = 4.75 GeV, respectively. The parameters given in italics are
fixed by ↵s+s̄ = ↵u+ū, �s+s̄ = �u+ū + �u+ū, and �g = 8 but are listed for completeness.

again, all-order resummations are needed [J1, J3, 131–133].

We note that we are not fitting the initial value as at some reference scale in order to solve the
RGE governing the running of the strong coupling but rather adopt the following boundary
conditions ↵s(MZ) = 0.135 at LO, ↵s(MZ) = 0.120 at NLO, and ↵s(MZ) = 0.118 at NNLO
accuracy from the recent MMHT global analysis of PDFs [173].

Table 2.4 and Fig. 2.6 illustrate the quality of our fits to SIA data at LO, NLO, and NNLO
accuracy in terms of the individual �2-values obtained for each experiment and the quantity
“[data-theory]/theory”, respectively. The total �2-penalty originating from the normalization
shifts applied to each data set can be also found at the bottom of Tab. 2.4. It turns out to
be small, about 7 units, and is largely independent of the perturbative order. Upon applying
the cuts on the z-range discussed above, a total of 288 data points remains for the fitting
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Experiment Data # Data �2

type in fit LO NLO NNLO
Sld [88] incl. 23 15.0 14.8 15.5

uds tag 14 9.7 18.7 18.8
c tag 14 10.4 21.0 20.4
b tag 14 5.9 7.1 8.4

Aleph [89] incl. 17 19.2 12.8 12.6
Delphi [90] incl. 15 7.4 9.0 9.9

uds tag 15 8.3 3.8 4.3
b tag 15 8.5 4.5 4.0

Opal [91] incl. 13 8.9 4.9 4.8
Tpc [85–87] incl. 13 5.3 6.0 6.9

uds tag 6 1.9 2.1 1.7
c tag 6 4.0 4.5 4.1
b tag 6 8.6 8.8 8.6

BaBar [84] incl. 41 108.7 54.3 37.1
Belle [83] incl. 76 11.8 10.9 11.0
norm. shifts 7.4 6.8 7.1
TOTAL: 288 241.0 190.0 175.2

Table 2.4: The individual �2-values and number of points for each inclusive and flavor-tagged
data set included in our fits at LO, NLO, and NNLO accuracy. At the bottom, we list the total
�2-penalty from the normalization shifts and the total �2for each fit.

procedure and to determine the 16 free parameters describing our parton-to-pion FFs D⇡+

i (z, µ0)

in Eq. (2.74). All fits yield a very good �2 per degree of freedom (d.o.f.) ranging from 0.89
in LO to 0.64 at NNLO accuracy. We note, however, that the �2/d.o.f. would deteriorate
very significantly if the number of free fit parameters would be reduced further by setting, for
instance, �u+ū = 0 or �b+b̄ = 0.
As can be seen from Tab. 2.4 and Fig. 2.6, nearly all SIA data sets can be described equally
well in LO, NLO, and NNLO accuracy with just a few exceptions, most notably the BaBar

data [84] taken at the smallest
p
S which drive the differences found in the total �2-values

of the three fits. Here, the inclusion of higher order corrections progressively leads to better
fits. A closer inspection reveals that the larger �2 at LO, and also at NLO, stems from the
data points corresponding to the lowest z values included in the fit, i.e., 0.075  z . 0.12;
note that the Belle Collaboration does not provide any data below z = 0.2. This result
is readily understood from the fact that calculations at higher orders contain more of the
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numerically important small z enhancements / log z mentioned above, i.e., are closer to an all-
order result. From the observation that calculations at NNLO accuracy provide a significantly
better description of data at small-z, one could anticipate that including all-order resummations
into the analysis framework would eventually further extend the range of z amenable to pQCD.
We will show in Sec. 2.5, however, that the phenomenological relevance of small-z resummations
in the kinematical region of interest is very small. The neglected hadron mass is another source
of potentially large corrections at small z and/or

p
S. In Chapter 3 [J3] it is shown, however,

that hadron mass terms are relatively small for pion production in SIA in the kinematic regime
relevant for the BaBar data with z > zmin = 0.075. We also wish to recall that BaBar

provides their data in two variants called “conventional” and “prompt”, differing by the treatment
of weak decays into pions in their event sample [84]. As in the recent global NLO analysis [79],
our results are based on the latter set. We have verified that a decent fit to all SIA data
can be also obtained when the “conventional” data are used instead but at the expense of a
less favorable total �2, e.g., 236.4 rather than 190.0 units at NLO, and, more importantly,
for undesirable corners of the parameter space describing the D⇡+

i (z, µ0) in Eq. (2.74). For
instance, the u + ū fragmentation tends to saturate the energy-momentum sum rule, which is
summed over all hadrons, already for pions.

Table 2.4 and Fig. 2.6 also reveal that some flavor-tagged data from Sld can be described best
at LO but at the expense of larger �2-values for inclusive Aleph and Opal data. In general,
the NLO and NNLO results are very similar for all data sets used in the fits except, as just
discussed, for a few points from BaBar at small z. This observation also carries over to the
obtained FFs at NLO and NNLO accuracy, in particular, those flavor combinations which are
constrained best by the SIA data alone.

Figure 2.7 shows our fitted LO, NLO, and NNLO D⇡+

i (z,Q2) at Q2 = 10GeV2 for i = u + ū,
s+ s̄, g, and the flavor singlet combination in (2.17) for Nf = 4. As a comparison with previous
NLO results, we consider the most recent global analysis of the DSS group [79], based on the
same set of SIA data plus SIDIS and pp data, and the old fit by Kretzer [72]. The latter still
provides a good description of all pion data, including those from SIDIS and pp, despite making
use of only a small subset of the SIA data listed in Tab. 2.4 comprising Sld [88], Aleph [89],
and Tpc [85–87]. To illustrate how the current experimental uncertainties typically propagate
to the extraction of parton-to-pion FFs, we also show in Fig. 2.7 the 90% confidence level
(C.L.) estimates of the latest DSS global QCD fit (shaded bands). As was already mentioned,
we refrain from providing uncertainty bands for our fits as SIA data alone are not sufficient for

102



2.4. PHENOMENOLOGICAL APPLICATIONS: NNLO ANALYSIS

-0.2

0

0.2

-0.2

0

0.2

-0.2

0

0.2

-0.5

0

0.5

-0.5

0

0.5

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

NNLO Q/2 ≤ µ ≤ 2Q

SLD (incl.)

[d
at

a 
- 

th
eo

ry
] 

/ 
th

eo
ry

NLO µ = Q

ALEPH (incl.)

LO µ = Q

OPAL (incl.)

DELPHI (incl.) TPC (incl.) BELLE (incl.)

BaBar (incl.)
prompt data

SLD (uds tag) DELPHI (uds tag)

TPC (uds tag)

SLD (c tag) TPC (c tag)

z

SLD (b tag)

z

DELPHI (b tag) TPC (b tag)

z
0.2 0.4 0.6 0.8 1

Figure 2.6: /
theory for our LO (dot-dashed), NLO (dashed), and NNLO (solid lines) fits computed with
the scale µ = Q for the data sets listed in Tab. 2.4"]Ratios for [data-theory]/theory for our
LO (dot-dashed), NLO (dashed), and NNLO (solid lines) fits computed with the scale µ = Q
for the data sets listed in Tab. 2.4. The shaded bands illustrate the remaining scale ambiguity
at NNLO accuracy in the range Q/2  µ  2Q. The points along the zero axis indicate the
relative experimental uncertainty.

providing a reliable estimate due to the assumptions one has to impose on the parameter space
describing the D⇡+

i (z, µ0) in Eq. (2.74).

From Fig. 2.7 one can make the following observations: the quantity which is known to be
constrained best by the SIA data alone [72–79], the flavor singlet combination D⇡+

⌃ defined in
Eq. (2.17), is very similar for all the NLO results, DSS, Kretzer, and our fit, in particular, for
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Figure 2.7: Comparison of our LO, NLO, and NNLO FFs D⇡+

i (z,Q2) at Q2 = 10GeV2 for
i = u + ū, s + s̄, g, and the flavor singlet combination in (2.17) for Nf = 4. Also shown are
the optimum NLO FFs from Kretzer [72], obtained also solely from SIA data, and the latest
global analysis of the DSS group [79] based on SIA, SIDIS, and pp data. For the latter, we also
illustrate their 90% C.L. uncertainty estimates (shaded bands).

z & 0.1. The fact that also the singlet FF determined at NNLO accuracy is close to the NLO
results gives some indication that NNLO corrections do not seem to alter results obtained at
NLO accuracy too much. A similar level of agreement for D⇡+

⌃ is found also at other scales, for
instance, µ = MZ .
Breaking up the singlet into FFs for individual quark flavors depends on the assumptions made
in the fit, including such details as the choice for zmin. Therefore, it is not too surprising that
one finds some differences between the various fits shown in Fig. 2.7 for the favored D⇡+

u+ū and
the unfavored D⇡+

s+s̄, with the latter FF, of course, being considerably less well constrained by
data than the former. Another FF which is only loosely constrained by a fit to solely SIA data
is the gluon D⇡+

g , which, despite the different assumptions, agrees rather well among all fits.
Finally, one notices that for a LO fit both the singlet and the favored FFs, D⇡+

⌃ and D⇡+

u+ū,
respectively, are significantly larger than the corresponding NLO estimates. In general, we find
that in order to achieve a good fit to SIA data at LO accuracy, some of the parameters listed
in Tab. 2.3 tend to approach extreme values, for instance, the u + ū fragmentation saturates
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Figure 2.8: NNLO/NLO (solid) and NLO/LO (dashed lines) K-factors for the SIA process
for three different c.m.s. energies. All computations are performed with our NLO set of parton-
to-pion FFs; see text.

most of the energy-momentum sum rule already for pions. In any case, LO estimates are not
sufficient for phenomenological applications.

2.4.2 Impact of NNLO Corrections on Theoretical Uncertainties

In this Section we analyze the relevance of the NNLO corrections for a reliable phenomenology of
the SIA process. To this end, we will examine the importance of various sources of theoretical
uncertainties in LO, NLO, and NNLO accuracy. We will present results for the size of the
NNLO corrections in terms of the K-factor, study the residual dependence on the choice of
scale µ, and investigate the uncertainties induced by choosing a particular solution, truncated
or iterated, to the time-like evolution equations. All these results are largely independent of
the details of fitting an actual set of FFs, and as such they represent the main numerical results
of our analysis along with our newly developed code described in Sec. 2.2 and 2.3.
In Fig. 2.8, we show the K-factor for the SIA process defined as d�⇡(NmLO)/d�⇡(Nm-1LO)
for m = 2 (solid) and m = 1 (dashed lines) for the three c.m.s. energies corresponding to the
experiments included in our fit; see Tab. 2.4. To determine only the impact of the genuine
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higher order corrections and not some numerical differences in the LO, NLO, and NNLO FFs,
like those illustrated in Fig. 2.7, all calculations in Fig. 2.8 are performed with our NLO input
FFs. Their evolution, the running of the strong coupling as, and the coefficient functions are
taken consistently either at LO, NLO, or NNLO accuracy though.

As one expects, the K-factor for the NNLO/NLO results is significantly smaller than the one
for NLO/LO, and for most values of z the additional NNLO corrections are at the level of about
10% or less. Both at large and small z, one finds clear indications for the presence of large
logarithmic corrections to the perturbative series contained in the evolution kernels P T and the
SIA coefficient functions C. They need to be resummed to all orders to extend the range of
applicability of the presented fixed order results to both z ! 1 and z ! 0 (see Sec. 2.5). We
note that the small

p
S dependence of the K-factors in Fig. 2.8 is only caused by the different

orders in pQCD used in the denominator and in the numerator, d�⇡(NmLO) and d�⇡(Nm-1LO),
respectively, to compute the scale evolution of FFs and the coupling as. There is no scale in
the coefficient functions as we have set µR = µF = µ = Q throughout, i.e., all logarithms of
the type log(µ2

R/µ
2
F ) or log(Q2/µ2

F ) vanish.

The scale dependence of the SIA cross section is illustrated in Fig. 2.9, where we show results at
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Figure 2.10: Ratio of the iterated and truncated variant of the solution (2.26) to the time-
like evolution equations at NLO (dashed) and NNLO (solid line) accuracy at the scale of the
BaBar and Belle experiments.

LO, NLO, and NNLO accuracy (shaded bands) for µR = µF = µ = 2Q and µ = Q/2 normalized
in each case to our default choice µ = Q. The residual dependence on the choice of the scale
µ in a theoretical calculation is presumably the most important source of uncertainty and is
expected to shrink progressively upon including higher and higher order corrections. This is
exactly what we find. For instance, at

p
S = 10.5GeV, relevant for BaBar and Belle, the

typical scale uncertainty at z ⇡ 0.5 amounts to about 20% at LO and reduces to ⇡ 10% at
NLO and ⇡ 5% at NNLO. At larger c.m.s. energies, the scale ambiguities are even smaller
and reach around 1 � 2% at NNLO accuracy. This is actually needed in a phenomenological
analysis to roughly match the experimental uncertainties for the most precise sets of inclusive
pion data as can be inferred from Fig. 2.6; note that the scale uncertainty bands are hardly
visible for some of the flavor-tagged data as we had to inflate the axis of the ordinate in Fig. 2.6
to accommodate the rather sizable experimental uncertainties.

As can be seen from Fig. 2.9, all scale uncertainty bands narrow down somewhere in the range
0.1 . z . 0.15 before they start to increase again towards z ! 0. This can be readily under-
stood from fact that one has approximate “scaling” of the SIA cross section, or, alternatively,
the quark FFs, for some value of z in this region, i.e., they become independent of the scale µ.
This is very much similar to DIS and PDFs, where this happens somewhere near momentum
fractions of about 0.2. Of course, QCD corrections always introduce some scale dependence,
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and higher order cross sections never probe a FFs or a PDFs locally at one value of momentum
fraction but rather over a broad range due to the presence of convolutions, like, for instance,
in Eq. (2.4).

We close our discussions about the relevance of the NNLO corrections by showing the theoretical
ambiguity associated with the different choices one has in defining the solution to the time-like
evolution equations beyond the LO accuracy. More specifically, Fig. 2.10 gives the ratio of the
iterated and truncated variant of the general solution given in Eq. (2.26) computed in NLO
(dashed) and NNLO (solid line); see also the corresponding discussions in Sec. 2.2.2. In the
z-range relevant for the extraction of FFs from data, this type of theoretical uncertainty is
rather small, and we note that it is usually not considered or even mentioned [72–79]. As for
the K-factor and the scale dependence shown in Fig. 2.8 and 2.9, respectively, including NNLO
corrections reduces the residual uncertainties by about a factor of two as compared to the
results obtained at NLO accuracy. For most values of z, the differences between the truncated
and iterated solutions are less than 0.5% at NNLO, i.e., smaller than scale uncertainties and
potentially missing higher order corrections as indicated by the K-factor for NNLO/NLO.

2.5 Phenomenological Applications: including small-z re-
summations

In the literature, small-z resummations have been exploited to exclusively study the fixed N = 1

moment of integrated hadron multiplicities in SIA, in particular, their scale evolution and the
shift of the peak of the multiplicity distribution with energy [63, 136–139]. In this section, we
will extend these studies to the entire z-range and present a first phenomenological analysis of
SIA data with identified pions in terms of FFs up to NNLO+NNLL accuracy. More specifically,
we use the same data sets as in the fixed-order fit of parton-to-pion FFs at NNLO accuracy
presente in Sec. 2.4 and [J4]. In Sec. 2.5.1 we perform various fits to SIA data with and without
making use of small-z resummations to quantify their phenomenological relevance. The impact
of small-z resummations on the residual dependence on the factorization scale is studied in
Sec. 2.5.2.
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2.5.1 Fits to SIA data and the relevance of resummations

The procedures is analogous to the one presented Sec. 2.5.1 and outlined in Refs. [J4, 77–
79, 92]. However, we choose µ0 = 10.54 GeV, which is equivalent to the lowest c.m.s. energyp
S of the the data sets relevant for the fit. This choice is made to avoid any potential bias

in our comparison of fixed-order and resummed extractions of FFs from starting the scale
evolution at some lowish, hadronic scale O(1GeV) where non-perturbative corrections, i.e.,
power corrections, might be still of some relevance.
As for the NNLO analysis, in all our fits here, we only consider FFs for the flavor combinations
u+ū, d+ d̄, s+ s̄, c+ c̄, b+ b̄, and g, each parametrized by the ansatz in (2.74). The treatment of
heavy flavor FFs, i.e., charm and bottom quark and antiquark, proceeds also in the same, non-
perturbative input scheme (NPIS) used for the NNLO case and in the global analyses of [77–
79, 92] (see Sec.2.4.1 for more details). However, since we use µ0 = 10.54 GeV > mb, no heavy
flavour mass threshold is crossed during the evolution. In this case the NPIS corresponds to the
standard FFNS. The parameters of Dh

c+c̄,b+b̄
(z,m2

c,b) are determined by the fit to data according
to the Eq. (2.74). We note that a general-mass variable flavor number scheme for treating the
heavy quark-to-light hadron FFs has been recently put forward in Ref. [174]. Since this scheme,
as well as other matching prescriptions [164], are only available up to NLO accuracy, we refrain
from using them in our phenomenological analyses.
Rather than fitting the initial value of the strong coupling at some reference scale in order
to solve the RGE governing its running, we proceed as in Sec 2.4.1 and adopt the boundary
conditions ↵s(MZ) = 0.135, 0.120, and 0.118 at LO, NLO, and NNLO accuracy, respectively,
from the recent MMHT global analysis of PDFs [173]. When we turn on small-z resummations
at a given logarithmic order NmLL in our fit, we keep the ↵s value as appropriate for the
underlying, fixed-order calculation to which the resummed results are matched. For instance,
in a fit at NLO+NNLL accuracy, we use the ↵s value at NLO.
In this section, we are mainly interested in a comparison of fixed-order fits with corresponding
analyses including small-z resummations to determine the phenomenological impact of the
latter. We make the following selection of data to be included in our fits. First of all, as in
for the NNLO alalysis, we limit ourselves to SIA with identified pions since these data are the
most precise ones available so far. They span a c.m.s. energy range from

p
S ' 10.5GeV at the

b-factories at SLAC and KEK to
p
S = MZ ' 91.2GeV at the CERN-LEP. The second, more

important selection cut concerns the lower value in z accepted in the fit. As already discussed
in Sec. 2.4.1, fits of FFs introduce a minimum value zmin of the energy fraction z in the analyses
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below which all SIA data are discarded and FFs should not be used in other processes. This
rather ad hoc cut is mainly motivated by kinematic considerations, more specifically, by the
finite hadron mass or other power corrections which are neglected in the factorized framework
[109]. Hadron mass effects in SIA have been investigated to some extent in [J3] (see also
Chapter 3) but so far there is no fully consistent way to properly include them in a general
process, i.e., ultimately in a global analysis of FFs. See for example [140, 141].

In case of pion FFs, one usually sets zmin = 0.1 [77, 79] or, as for our NNLO analysis zmin = 0.075.

The two main assets one expects from small-z resummations, and which we want to investigate,
are an improved scale dependence and an extended range towards lower values of z in which data
can be successfully described. For this reason, we have systematically explored to which extent
one can lower the cut zmin in a fit to SIA data once resummations as outlined in Sec. 2.3 are
included. It turns out, that for the LEP data, taken at the highest c.m.s. energy of

p
S = 91.2

GeV, we can extend the z-range of our analyses from 0.075 < z < 0.95 used in the NNLO
fit [J4] to 0.01 < z < 0.95. Unfortunately, any further extension to even lower values of z

is hampered by the fact that two of the data sets from LEP, the ones from ALEPH [89] and
OPAL [91], appear to be mutually inconsistent below z ' 0.01, see Fig. 2.11. Including these
data at lower z, always lets the fits, i.e., the minimization in the multi-dimensional parameter
space defined by Eq. (2.74), go astray and the convergence is very poor.

For the relevant data sets at lower c.m.s. energies, TPC [85–87] (
p
S = 29 GeV), BELLE

[83] (
p
S = 10.52 GeV), and BABAR [84] (

p
S = 10.54 GeV), the above mentioned problems

related to the finite hadron mass arise at small values of z not considered before in Sec. 2.4. A
straightforward, often used criterion to assess the relevance of hadron mass effects is to compare
the scaling variable z, i.e. the hadron’s energy fraction z = 2Eh/Q in a c.m.s. frame, with the
corresponding three-momentum fraction xp which is often used in experiments. Since they are
related by xp = z � 2m2

h/(zQ
2) + O(1/Q4) [109], i.e., they coincide in the massless limit, any

deviation of the two variables gives a measure of potentially important power corrections. To
determine the cut zmin for a given data set, we demand that z and xp are numerically similar
at a level of 10 to at most 15%. The BELLE data are limited to the range z > 0.2 [83], where
z and xp differ by less than 1%. BABAR data are available for z & 0.05, which translates in
a maximum difference of the two variables of about 14%. Concerning the TPC data, we had
to place a lower cut zmin = 0.02 to arrive at a converged fit, which corresponds to a difference
of approximately 11% between z and xp. After imposing these cuts, the total amount of data
points taken into account in our fits is 436. We note that, in general, the interplay between
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Figure 2.11: Pion multiplicity data [83–91] included in the analyses as a function of ⇣ =
log (1/z) compared to the results of various fits without (solid lines) and with (dotted lines)
small-z resummations. All curves refer to the central choice of scale µ = Q. The top, middle,
and lower panel shows the results at LO and LO+LL, NLO and NLO+NNLL, and NNLO and
NNLO+NNLL accuracy, respectively. The vertical dotted lines illustrate, from left to right,
the lower cuts zmin = 0.075 adopted in [J4], and zmin = 0.02 and 0.01 used in all our fits for the
TPC data and otherwise, respectively.

small-z resummations and the various sources of power corrections poses a highly non-trivial
problem which deserves to be studied further in some dedicated future work.

It is also worth mentioning that with the lowered kinematic cut zmin, we achieve a better
convergence of our fits with our choice of a larger initial scale µ0 = 10.54 GeV in Eq. (2.74).
Starting the scale evolution from a lower value µ0 = O(1)GeV, like in our NNLO analysis of
Ref. [J4], leads, in general, to less satisfactory fits in terms of their total �2 value which is
used to judge the quality of the fits. This could relate to the fact that other types of power
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corrections have to be considered as well when evolving from such a low energy scale in order
to be able to describe the shape of the differential pion multiplicities, cf. Fig. 2.11, measured
in experiment. To corroborate this hypothesis is well beyond the scope of this analysis. In any
case, our choice of µ0 is certainly in a region where the standard perturbative framework can
be safely applied and meaningful conclusions on the impact of small-z resummations in SIA
can be drawn.

We emphasize that the choice of µ0 is solely due to technical rather than conceptional reasons.
As the evolution equations are, in principle, forward-backward symmetric, the actual choice of
µ0 should not matter in a fit. Our functional form (2.74) is presumably not flexible enough to
obtain an equally good description of the data if the initial scale is chosen well below 10GeV,
which manifests itself in larger values of �2 and poor convergence of the fits. The main results
and conclusions of our work are, however, not affected by the actual choice of µ0.

Turning back to the choice of our flexible ansatz for the FFs, it is well known that fits based
solely on SIA data are not able to constrain all of the free parameters in Eq. (2.74) for each of
the flavors i. Again, we impose the constraint D⇡±

u+ū = D⇡±

d+d̄
. We further limit the parameter

space associated with the large-z region by setting �g,s+s̄,c+c̄ = 0 and �g,s+s̄,c+c̄ = 0. Note that
in contrast to Sec 2.4.1, we are now able to keep �g as a free parameter in the fits.

The remaining 19 free parameters are then determined by a standard �2 minimization procedure
as described, for example, in Ref. [79] and used in Sec 2.4.1. The optimal normalization shifts
for each data set are computed analytically. They contribute to the total �2 according to the
quoted experimental normalization uncertainties; see, e.g., Eq. (5) in Ref. [79] for further details.
The resulting �2-values, the corresponding “penalties” from the normalization shifts, and the
�2 per degree of freedom (dof) are listed in Tab. 2.5 for a variety of fits with a central choice of
scale µ = Q. Results are given both for fits at fixed order (LO, NLO, and NNLO) accuracy and
for selected corresponding fits obtained with small-z resummations. Here, all cross sections are
always matched to the fixed order results according to the procedures described in Sec. 2.3.3
and Sec. 2.3.4. More specifically, we choose the logarithmic order in such a way that we do
not resum logarithmic contributions which are not present in the fixed-order result. For this
reason, we match the LO calculation only with the LL resummation as the only logarithmic
contribution at LO is of LL accuracy; cf. Tabs. 2.1 and 2.2. Using the same reasoning, we
match NLO with the NNLL resummed results. Finally, at NNLO accuracy five towers of small-
z logarithms are present. However, the most accurate resummed result currently available is
at NNLL accuracy which includes the first three towers. Thus, we can match NNLO only with
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accuracy �2 norm shift �2/dof
LO 1260.78 29.02 2.89
NLO 354.10 10.93 0.81
NNLO 330.08 8.87 0.76
LO+LL 405.54 9.83 0.93
NLO+NNLL 352.28 11.27 0.81
NNLO+NNLL 329.96 8.77 0.76

Table 2.5: The obtained �2-values, the “penalties” from normalization shifts, and the �2/dof
for the fits at fixed order and resummed accuracy as described in the text.

NNLL. It should be stressed that the results for the fixed-order fits are not directly comparable
to the ones given in Sec. 2.4 since we use more data points at lower values of z, a slightly
different set of fit parameters, and a different initial scale µ0. However, the main aspects of
these fits remain the same and can be read off directly from Tab. 2.5: a LO fit is not able to
describe the experimental results adequately. The NLO fit already gives an acceptable result,
which is further improved upon including NNLO corrections. Compared to the corresponding
fixed-order results, the fits including also all-order resummations of small-z logarithms exhibit,
perhaps somewhat surprisingly, only a slightly better total �2, except for the LO+LL fit,
where resummation leads to a significant improvement in its quality. The small differences in
�2 between fits at NNLO and NNLO+NNLL accuracy are not significant. Hence, we must
conclude that in the z-range covered by the experimental results, NNLO expressions already
capture most of the relevant features to yield a satisfactory fit to the SIA data with identified
pions.

The same conclusions can be reached from Fig. 2.11, where we compare the used inclusive
pion multiplicity data in SIA with the theoretical cross sections at different levels of fixed- and
logarithmic-order obtained from the fits listed in Tab. 2.5. The theoretical curves are corrected
for the optimum normalization shifts computed for each set of data. For the sake of readability,
we only show a single curve for the different experiments at

p
S = MZ which is corrected for the

normalization shift obtained for the OPAL data. The individual normalization shifts for the
other sets are, however, quite similar. We refrain from showing the less precise flavor-tagged
data which are, nevertheless, also part of the fit. The vertical dotted lines in Fig. 2.11 indicate
the lower cuts in z applied for the data sets at different c.m.s. energies as discussed above. The
leftmost line (corresponding to zmin = 0.075) is the cut used in our NNLO analysis. Both, the
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Figure 2.12: z times the obtained gluon (upper panel) and singlet (lower panel) FFs as a
function of z, evaluated at Q = 91.2 GeV for the different fits listed in Tab. 2.5. The singlet
is shown for Nf = 5 active flavors. The fitted z-range, z > 0.01, is to the right of the dotted
vertical line.

data and the calculated multiplicities are shown as a function of ⇣ ⌘ � log z.

In Fig. 2.12, we plot z times the gluon and singlet FFs for positively charged pions, D⇡+

g (z,Q2)

and D⇡+

S (z,Q2), respectively, resulting from our fits given in Tab. 2.5. The FFs are computed
at Q = MZ = 91.2GeV and in a range of z shown extending well below the zmin = 0.01 cut
above which they are constrained by data. We would like to point out that the resummed (and
matched) results for which we have full control over all logarithmic powers (i.e. for LO+LL and
NLO+NNLL) are well behaved at small-z and show the expected oscillatory behavior with z

which they inherit from the resummed splitting functions through evolution. The latter behave
like different combinations of Bessel functions when the Mellin inverse back to z-space is taken;
for more details see Ref. [130]. The singlet and gluon FFs at NNLO+NNLL accuracy still
diverge for z ! 0 (i.e. they turn to large negative values in the z-range shown in Fig. 2.12)
since we do not have control over all five logarithmic powers that appear in a fixed-order
result at NNLO; cf. Tabs. 2.1 and 2.2. However, the resummation of the three leading towers
of logarithms, considerably tames the small-z singularities as compared to the corresponding
result obtained at NNLO.

Finally, to further quantify the impact of small-z resummations in the range of z relevant for
phenomenology, Fig. 2.13 shows the K-factors at scale Q = 91.2GeV for the pion multiplicities
(2.4) obtained in our fits. Schematically, they are defined as

K ⌘ CFO + Res ⌦DFO + Res

CFO ⌦DFO . (2.75)
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Figure 2.13: K-factors as defined in Eq. (2.75) at LO+LL, NLO+NNLL, and NNLO+NNLL
accuracy at Q = 91.2 GeV in the range of z relevant for phenomenology. In addition, we show
NNLO+NNLL results where the resummations are only performed either for the coefficient
functions (”C only”) or for the splitting functions (”P only”).

Here, CFO and CFO+Res denote the fixed-order coefficient functions at LO, NLO, and NNLO
accuracy and the corresponding resummed and matched coefficient functions, respectively.
Likewise, DFO and DFO+Res are the FFs evolved with splitting functions at fixed order and
resummed, matched accuracy, respectively. In order to assess the relevance of the small-z re-
summations independent of the details of the non-perturbative input for the FFs at scale µ0,
we adopt the same FFs for both calculating the numerator and the denominator. In each com-
putation of K, we select the set of FFs obtained from the corresponding fixed-order fit and the
different logarithmic orders of the resummations are chosen as discussed and given in Tab. 2.5.

By comparing the results for the K-factors at LO+LL, NLO+NNLL, and NNLO+NNLL ac-
curacy, it can be infered that the corrections due to the small-z resummations start to become
appreciable at a level of a few percent already below z ' 0.1. As one might expect, resum-
mations are gradually less important when the perturbative accuracy of the corresponding
fixed-order baseline is increased, i.e., the NNLO result already captures most of the small-z
dynamics relevant for phenomenology whereas the differences between LO and LO+LL are still
sizable. This explains the pattern of �2 values we have observed in Tab. 2.5. In addition,
Fig. 2.13 also gives the K-factor at NNLO+NNLL accuracy where the small-z resummations
are only performed either for the coefficient functions (labeled as ”C only”) or for the split-
ting functions (”P only”). By comparing these results with the full K-factor at NNLO+NNLL
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accuracy, one can easily notice, that there are very large cancellations among the two.

2.5.2 Scale dependence

In this section, the remaining scale dependence of the resummed expressions is studied and
compared to the corresponding fixed-order results. The scale-dependent terms are implemented
according to the discussions in Sec. 2.3.3. As usual, we use the iterated solution with up to
n = 20 terms in the perturbative expansion.
As was already observed in the NNLO analysis, the dependence on the factorization scale µF in
SIA is gradually reduced the more higher order corrections are considered in the perturbative
expansion. This is in line with the expectation that all artificial scales, µF and µR, should
cancel in an all-order result, i.e. if the series is truncated at order m, the remaining dependence
on, say, µF should be of order am+1

s . Following this reasoning, we do expect a further reduction
of the scale dependence upon including small-z resummations on top of a given fixed-order
calculation; see Sec. 2.3.3.
The scale dependence is studied by varying the scale µF by a factor of two or four around
its default (central) value, µF = Q in case of SIA. Therefore, we introduce the parameter
⇠ ⌘ µ2

F/Q
2; note that thoriughout this chapter we kept µF = µR as is commonly done. Hence,

⇠ = 1 corresponds to the standard choice of scale µF = Q. The conventional way of showing
the dependence of a quantity T , like the pion multiplicity (2.4), on ⇠ is to plot the ratio
T (⇠)/T (⇠ = 1) for various values of ⇠; in our analyses, we will use ⇠ = 2 and ⇠ = 0.5.
However, we find that the oscillatory behavior of the resummed splitting and coefficient func-
tions causes the SIA multiplicities to become an oscillatory function as well, which for certain
small values of z, well below the cut zmin down to which we fit FFs to data, eventually becomes
negative. Therefore, it is not feasible to utilize the common ratio plots to investigate the re-
summed scale dependence. Instead, we decide to study the width of the scale variation �T for
a quantity T , defined as

�T (z) ⌘ max[T⇠=1(z), T⇠=2(z), T⇠=0.5(z)]

� min[T⇠=1(z), T⇠=2(z), T⇠=0.5(z)] (2.76)

in the range ⇠ = [0.5, 2] as a measure of the residual dependence on µF .
In Fig. 2.14, we show �SIA(z) for the pion multiplicities (2.4) at Q = 10.54GeV for the two fixed-
order fits (NLO and NNLO accuracy) as well as for resummed and matched fit at NNLO+NNLL.
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Figure 2.14: z times the width of the scale band �SIA defined in (2.76) for for three dif-
ferent ranges of z at NLO, NNLO and NNLO+NNLL accuracy. All results for the SIA pion
multiplicities are obtained for Q = 10.54GeV; see text.

The main plot, which covers the z-range down to 10�7, clearly demonstrates that the band �SIA

is, on average, considerably more narrow for the NNLO+NNLL resummed cross section than for
the fixed-order results, according to the expection. From the middle inset in Fig. 2.14, which
shows z values relevant for experiments, i.e. z & 10�3, one can infer that the band �SIA is
roughly of the same size for all calculations and resummations do not lead to any improvement
in the scale dependence in this range. The small inset zooms into the range z > 0.01, where a
similar conclusion can be reached.
In order to fully understand this behavior, one perhaps would have to include the yet missing
N4LL corrections, which would allow one to resum all five logarithmic towers present at NNLO
accuracy. The observed result might be due to these missing subleading terms or it could be
related to some intricate details in the structure of the perturbative series in the time-like case
at small-z.
In any case, one can safely conclude that in the z-region relevant for phenomenology of SIA, the
residual scale dependence of the resummed result does not differ from the fixed order calculation
at NNLO accuracy. The latter is therefore entirely sufficient for extractions of FFs from SIA
data as resummations neither improve the quality of the fit, cf. Sec. 2.5.1 nor do they reduce
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theoretical uncertainties. Nonetheless, it important to demonstrate from a theoretical point
of view that, on average, resummation does achieve smaller scale uncertainties, although for
values of z that are well outside the range of currently available data. It should be also kept
in mind that the study of the N = 1 moment of multiplicities, though not studied here, would
not be possible without invoking small-z resummations as fixed-order results are singular.

2.6 Conclusions

In this chapter we have presented the results of [J4] and [J5], which extended for the first time
previous FF analysis frameworks based on single-inclusive pion production in electron-positron
annihilation beyond NLO. To this end, we have extended the existing space-like evolution
package Pegasus for parton distribution functions to the time-like region and fragmentation
functions. The code is numerically very efficient and works throughout in Mellin N moment
space, where the evolution equations can be solved analytically. It was used to conduct two
separate analyses. The first one at next-to-next-to leading order whereas the second one in-
cluded resummations for the small-z kinematical region. The technical details of each separate
implementation were discussed in Sec 2.2 and 2.3.
First in Sec 2.2, we have studied all the relevant technical details to perform the QCD scale evo-
lution and cross section calculation for single-inclusive hadron production in electron-positron
annihilation up to next-to-next-to-leading order accuracy. We have verified all the needed
expressions for the N moments of the time-like evolution kernels and the hard-scattering co-
efficient functions by re-deriving them from their counterparts in momentum space. We find
full agreement with the results given in the literature. The results obtained with our time-like
evolution code at NNLO are found to agree with the Mela package.
On the other hand in Sec 2.3, we have reviewed how to resum coefficient functions and split-
ting functions to all orders in perturbation theory up to next-to-next-to-leading logarithmic
accuracy. The approach used here was proposed in the literature and is based on general con-
siderations concerning all-order mass factorization. Our results agree with those presented in
the literature, and we have extended them to allow for variations in the factorization and renor-
malization scales away from their default values. Moreover, we have shown how to properly
implement the resummed expressions in Mellin moment space and how to set up a solution
to the coupled, matrix-valued singlet evolution equations. The non-singlet sector is subleading
and not affected by the presently available logarithmic order. For all practical purposes we
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advocate an iterated solution for the scale evolution of fragmentation functions, and we have
shown that keeping twenty terms in the expansion of the resummed expressions is sufficient for
all applications. We have also discussed how to match the resummed towers of logarithms for
both the coefficient and the evolution kernels to the known fixed-order expressions. Numerical
subtleties in complex Mellin moment space related to finding a proper choice of contour for the
inverse transformation despite the more complicated structure of singularities of the resummed
evolution kernels and coefficient functions have been addressed as well.

For both studies a number of phenomenological results were presented and the relevance of each
contribution was discussed separately. In Sec. 2.4, we have proceeded by extracting new sets
of parton-to-pion fragmentation functions from a fit to electron-positron annihilation data up
to next-to-next-to-leading order accuracy. We have compared our results to existing next-to-
leading order fits in the literature. The flavor singlet fragmentation function, which is known to
be constrained best by data, comes out very similar as in all previous fits in both our next-to-
leading and next-to-next-to-leading order analyses whereas some small ambiguities remain for
the fully flavor-decomposed fragmentation functions. While the quality of our fits to electron-
positron annihilation data was already acceptable at leading order accuracy, it gradually im-
proved upon including higher order corrections. In particular, the description of data at small
momentum fractions z at the lowest energies Q is significantly better at next-to-next-to-leading
order accuracy. In addition, leading order fits are found to explore regions in the parameter
space which are at the border of becoming unphysical in order to achieve the best possible fit
to data. As for the analysis of parton distributions, we expect global fits of fragmentation func-
tions at next-to-next-to-leading order accuracy to become the new standard soon. The most
important new asset in this section, however, is the found reduction of theoretical uncertainties
related to the choice of the factorization scale by about a factor of two as compared to the
next-to-leading order level. The uncertainties now match the precision of the data in most of
the kinematic regime relevant for an analysis of fragmentation functions. A similar reduction
by a factor of two was found for the size of the genuine higher order corrections relative to
calculations performed one order lower in the perturbative series, i.e., in the K-factor.

The corresponding results for the analysis including small-z resummations effects was addressed
in Sec. 2.5 were a first analysis of semi-inclusive annihilation data with an identified pion
in terms of parton-to-pion fragmentation functions and in the presence of resummations was
presented. To this end, various fits at different fixed-orders in perturbation theory and levels
of small-z resummations were compared in order to study and quantify the phenomenological
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impact of the latter. It turned out that for both the quality of the fit to data and the reduction
of theoretical uncertainties due to the choice of the factorization scale, resummations provide
only litte improvements with respect to an analysis performed at fixed, next-to-next-to-leading
order accuracy. At values of the hadron’s momentum well outside the range of phenomenological
interest, we did observe, however, a significant improvement in the scale dependence of the
inclusive pion cross section in the presence of resummations.

There are several avenues one can follow to further improve the theoretical framework for the
analysis of fragmentation functions and the phenomenology of single-inclusive hadron produc-
tion in electron-positron annihilation. For instance, the treatment of heavy quark to light
meson fragmentation functions in global analyses certainly leaves room for improvement as,
for exapmle, matching conditions for a variable flavor number scheme are only know up to
next-to-leading order accuracy so far.

Moreover, as was pointed out in this chapter, a better understanding of the interplay of resum-
mations and other sources of potentially large corrections in the region of small momentum
fractions is another important avenue of future studies for time-like processes. One if not the
most important source of power corrections is the hadron mass, which is neglected in the fac-
torized framework adopted for any analysis of fragmentation functions. At variance with the
phenomenology of parton distributions functions, where one can access and theoretically de-
scribe the physics of very small momentum fractions, hadron mass corrections prevent that in
the time-like case. In fact, they become an inevitable part and severely restrict the range of
applicability of fragmentation functions and the theoretical tools such as resummations.

As is well known and utilized in global QCD analyses of fragmentation functions at next-
to-leading order already, other processes such as semi-inclusive deep-inelastic scattering or
inclusive hadron production in hadron-hadron collisions provide invaluable information on the
flavor decomposition and the gluon fragmentation function. Full next-to-next-to-leading order
expressions for these processes are unfortunately not yet available but one can resort to results
obtained with resummation techniques that contain the dominant higher order terms. Again,
these expression can be most conveniently implemented numerically in terms of Mellin moments.

Possible further applications of resummations comprise revisiting the analyses of the first mo-
ment of hadron multiplicities available in the literature. Here, resummations are indispensable
for obtaining a finite theoretical result. So far, the main focus was on the energy dependence
of the peak of the multiplicity distribution, its width, and a determination of the strong cou-
pling. It might be a valuable exercise to merge the available data on the first moment and the

120



2.6. CONCLUSIONS

relevant theoretical formalism with the extraction of the full momentum dependence of fragmen-
tation functions as described in this chapter to further our knowledge of the non-perturbative
hadronization process.
In addition, resummations can and have been studied for large fractions of the hadron’s mo-
mentum. With more and more precise data becoming available in this kinematical regime,
it would be very valuable to incorporate also these type of large logarithms into the analysis
framework for fragmentation functions at some point in the future.
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CHAPTER 3

Interplay of Threshold Resummation and Hadron

Mass Corrections in Deep Inelastic Processes

We discuss hadron mass corrections and threshold resummation for deep-inelastic scattering
`N ! `0X and semi-inclusive annihilation e+e� ! hX processes, and provide a prescription
how to consistently combine these two corrections respecting all kinematic thresholds. We
find an interesting interplay between threshold resummation and target mass corrections for
deep-inelastic scattering at large values of Bjorken xB. In semi-inclusive annihilation, on the
contrary, the two considered corrections are relevant in different kinematic regions and do not
affect each other. A detailed analysis is nonetheless of interest in the light of recent high
precision data from BaBar and Belle on pion and kaon production, with which we compare
our calculations. For both deep inelastic scattering and single inclusive annihilation, the size
of the combined corrections compared to the precision of world data is shown to be large.
Therefore, we conclude that these theoretical corrections are relevant for global QCD fits in
order to extract precise parton distributions at large Bjorken xB, and fragmentation functions
over the whole kinematic range. This chapter is based upon our published work [J3].
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3.1 Introduction

Predictions from QCD rely on perturbative calculations of parton-level hard scattering pro-
cesses as well as on non-perturbative input in the form of parton distribution functions (PDFs)
and fragmentation functions (FFs). On the one hand, PDFs contain information about the
distributions of quarks and gluons in hadrons, which is relevant for processes with initial-state
hadrons. On the other hand, as we have seen in Chpater 2, FFs describe the fragmentation
of an outgoing parton into the observed hadron and, to some extent, may be viewed as the
final-state analogue of PDFs. The applicability of this framework within perturbative QCD was
established in factorization theorems [80] allowing one to absorb long-distance dynamics into
these two universal non-perturbative objects. Therefore, the predictive power of QCD relies
crucially on the precise knowledge of PDFs and FFs, that are nowadays extracted from a global
analysis of a wide set of experimental data, see Refs. [175–177] for recent reviews.

Modern PDF fits [178–181] are available within a next-to-leading order (NLO) framework and
most of them also at (partial) next-to-next-to-leading order. Key data sets for the extraction
of PDFs are provided by measurements of inclusive deep-inelastic scattering (DIS) `N ! `0X,
which is one of the two processes that we are considering in this chapter. Despite a lot of progress
in the past years, large uncertainties are still present for large values of the parton momentum
fraction x [182]. As it turns out, it is precisely this region that is particularly relevant at the
LHC, when trying to find signals of new physics in, for example, (di-)jet measurements [183,
184]. Furthermore, the large-x region is also interesting as it can provide a window into the non-
perturbative dynamics of the color confinement mechanism holding quarks and gluons inside
hadrons [185, 186].

On the experimental side, improvements for the gluon PDF at large-x can be obtained from jet
data taken at the Tevatron and the LHC, direct photon production in fixed target experiments,
and from longitudinal DIS structure functions. Concerning quark PDFs, the present focus
is mostly on low-energy experiments carried out for example at JLab [187], with important
information coming from directly reconstructed W charge asymmetries at the Tevatron [182].
On the theoretical side a number of corrections to the pQCD calculations of these events are
needed in order to harvest fully the available and upcoming experimental data, and extract
precise large-x quark and gluon PDFs from global QCD fits. These corrections include, in
particular, resummation of threshold logarithms, Target Mass Corrections (TMCs), higher-
twist diagrams, and nuclear corrections when nuclear targets are considered. The last three
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have been included consistently, for example, in the CTEQ-JLab collaboration PDF fits [179]
and the fits by Alekhin and collaborators [188], allowing to substantially extend the range in
x of the fitted DIS data. Threshold resummation has been considered in the past to estimate
the theoretical errors of PDFs or was used for fits of only a subset of the data [189–191], but
has not yet been fully included for all relevant data sets in a global QCD fit.

In the first part of this chapter, we consider the interplay between two major corrections to the
standard NLO formalism for DIS both of which have their greatest impact at large-x, namely
TMCs and higher order contributions derived from threshold resummation. Here we choose the
collinear factorization TMC framework of Accardi and Qiu [192], that contrary to most other
approaches [193, 194] respects the kinematic xB  1 bound on the Bjorken variable. Threshold
resummation for QCD processes was derived in [52, 58–60] and recently revisited in [J1, J2,
C1]; see also Chpater 5. Large logarithms that need to be resummed to all orders arise near the
phase space boundary where gluon radiation is limited. We perform the resummation at the
level of next-to-leading logarithmic (NLL) accuracy. In particular, we derive a resummation
procedure that also respects the Bjorken xB bound when a non-zero target mass is considered,
and can therefore be consistently combined with the TMC calculation. We discuss the interplay
of both kinds of corrections, and assess their relevance for PDF global fits by comparing them
to a selection of world data on DIS scattering.

Unlike for PDFs, global fits of FFs [76, 77, 79, 92, 195, 196] are less constrained by presently
existing data sets. As it is extensively discussed in Chapter 2, one of the main sources of
constraints on FFs is semi-inclusive annihilation (SIA) e+e� ! hX which we are going to
consider in this chapter aswell. Recently, very precise data sets from BELLE [83] and BaBar [84]
became available, where the statistical accuracy is partially in the sub one percent level. In
addition, a very fine binning was applied over a wide range of the fragmentation variable
z ⌘ xE = 2Eh/

p
s reaching up to ⇡ 0.95. Here, Eh is the energy of the observed hadron

in the center-of-mass system (c.m.s.) and
p
s = 10.5 GeV is the energy for collisions at both

experiments. This offers a new possibility for studying effects that go beyond the standard
NLO framework and for learning more about QCD dynamics in fragmentation processes. On
the theory side, the present day state of the art is NLO in QCD but a first NNLO FF analysis
including small-z resummations effects was given in [J4, J5] and presented in Chapter 2. Several
additional effects, including small-x resummation, threshold resummation and hadron mass
effects have been studied in [195, 197].

In the second part of this chapter we revisit calculations of hadron mass corrections (HMCs)
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and threshold resummation in analogy to our DIS analysis. We present for the first time (to
our knowledge) a resummed calculation for kaon SIA events, and compare our kaon and pion
production cross section to the recent BELLE and BaBar data. In contrast to the Opera-
tor Product Expansion based formalism for mass corrections, the approach in [192] may be
generalized to other processes, such as semi-inclusive deep-inelastic scattering [198]. Here we
extend this framework to SIA in electron-positron scattering, we perform a detailed analysis
of the effects of the produced hadron mass on the parton-level kinematics, and evaluate their
numerical consequences. We note that previous studies of HMCs were carried out in [195, 197],
showing in particular that inclusion of these HMCs in global FF fits results in better �2 values.
We then consider the combination with threshold resummation [131] in the framework of the
so-called “crossed resummation” [199], that exploits similarities between various color-singlet
QCD processes such as DIS, SIA, Drell-Yan, and semi-inclusive deep-inelastic scattering. We
will again also build upon the recent threshold resummation studies in [J1, J2, C1]. Contrary
to DIS, we find that HMCs are dominant at low xE, whereas threshold resummation is again
most relevant for large xE. We analyze the crosstalk of these effects and evaluate their relevance
to global FF fits by comparing these to the new data sets from BELLE and BaBar.
The following sections are organized as follows. In Sec. 3.2, we discuss TMCs and threshold
resummation in DIS before we derive our prescription to combine both. We briefly review the
TMC derivation of [192], and provide some basic formulas concerning threshold resummation
in order to establish our notation in this chapter. Then, we analyze the numerical relevance of
the corrections, and compare these to a selection of world DIS data. In Sec. 3.3, we discuss SIA
following the same steps as for the DIS case before, and compare our numerical results to the
recent BELLE and BaBar data on pion and kaon production. Finally, we draw our conclusions
in Sec. 3.4.

3.2 Target Mass Corrections and Resummation for DIS

3.2.1 Target Mass Corrections

In DIS, a parton of momentum k belonging to a nucleon of momentum p is struck by a virtual
photon of momentum q. This generates in the final state a target jet with momentum pY and
a current jet with momentum pj, see Fig. 3.1. We work in a “collinear” frame where the spacial
components of p and q are parallel and directed along the longitudinal axis, and we parametrize
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the involved the momenta p, q, k following [192]:

pµ = p+n̄µ +
m2

N

2p+
nµ ,

qµ = �⇠p+n̄µ +
Q2

2⇠p+
nµ ,

kµ = xp+n̄µ +
k2 + k2

T

2xp+
nµ + kµ

T , (3.1)

In this expression p+ can be regarded as a parameter for boosts along the longitudinal axis.
The light-cone vectors nµ and n̄µ satisfy

n2 = n̄2 = 0 n · n̄ = 1 , (3.2)

and the plus- and minus- components of a general 4-vector a are given by

a+ = a · n a� = a · n̄. (3.3)

The momenta are parametrized in terms of the external (i.e., experimentally measurable) vari-
ables

xB =
�q2

2p · q , Q2 = �q2, p2 = m2
N , (3.4)

where mN is the target mass and Q2 the photon virtuality. The parton fractional light-cone
momentum with respect to the nucleon is a kinematic internal (i.e., non measurable) variable
and is defined by

x =
k+

p+
. (3.5)

In an analogous way we can define the virtual boson fractional momentum as

⇠ = �q+

p+
=

2xB

1 +
p

1 + 4x2
Bm

2
N/Q

2
, (3.6)

which is an external kinematic variable and coincides with the Nachtmann variable [200]. The
target’s mass can be neglected in the Bjorken limit Q2 � m2

N at fixed xB, and in many analysis
is omitted from the outset. (This is fine for unpolarized scattering but poses problems for the
definition of the nucleon’s spin in the case of polarized scattering.) In this chapter we explicitly
work at finite Q2 and verify that our result correctly reproduces the “massless target” formulas
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in the Bjorken limit, where ⇠ ! xB.

In order to perform collinear factorization of the DIS structure functions, one expands the
momentum k of the struck parton around its positive light-cone component xp+n̄µ, and neglects
in the kinematics the transverse components, as well as (for light quarks) the negative light-cone
component. This is equivalent to kinematically treating the parton as massless and collinear to
the parent nucleon from the very beginning, and setting k2 = 0 and kT

µ = 0 in Eq. (3.1) from
the beginning.

The parton’s momentum fraction x then appears as an integration variable in the structure
functions, that are given by a convolution integral of perturbatively calculable coefficient func-
tions and non-perturbative PDFs [80, 201]. Following [192], we may derive limits on the dx

integration by examining both the external and internal kinematics of the diagram shown in
Fig. 3.1, and apply four momentum and net baryon number conservation. This latter, in par-
ticular requires that at least one baryon of mass larger than mN be present in the final state.
This can appear in either the target jet (lower right part in Fig. 3.1) or the current jet (upper
right part in Fig. 3.1). Unless the rapidity difference between the current jet and the target
jet is too small [202, 203], the baryon mass appears in the latter [192], so that p2Y � m2

N and
pj � 0. Next, considering four-momentum conservation the hard-scattering vertex we find

0  p2j = (q + k)2 =

✓
1� ⇠

x

◆
Q2x

⇠
, (3.7)

where we used the momenta defined in Eq. (3.1). In order to obtain another constraint on the
dx integration, it is not sufficient to analyze the other vertex. Instead, we have to consider the
invariant momentum squared of the whole process:

(q + p)2 = (pj + pY )
2 � (q + k)2 +m2

N . (3.8)

where we used p2Y � mN , as previously discussed, as well as 2pj · pY � 0 since both final state
jets consist of on-shell particles. Evaluating (q + k)2 as before in Eq. (3.7) we finally obtain

1� 1

xB


✓
1� x

⇠

◆
. (3.9)
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net baryon number

p2j � 0

p2Y � m2
N

pj

pY
k

p

q

Figure 3.1: Diagram for DIS specifying all momenta. The net baryon number is shown to
flow into the target jet. Figure taken from [192].

In summary, the parton’s fractional momentum x is kinematically bound by

⇠  x  ⇠/xB , (3.10)

as first discussed in [192].

The structure functions including the finite target mass kinematics we have discussed can be
written in collinear factorization at leading twist as [192, 204]

FTMC
1 (xB, Q

2) ⌘ 2FTMC
1 (xB, Q

2) = F1(⇠, Q
2) ,

FTMC
2 (xB, Q

2) ⌘ 1

xB

FTMC
2 (xB, Q

2) =
1

⇢2
F2(⇠, Q

2) ,

FTMC
L (xB, Q

2) ⌘ 1

xB

FTMC
L (xB, Q

2) = FL(⇠, Q
2) , (3.11)

where for convenience we defined

⇢2 = 1 +
4x2

Bm
2
N

Q2
. (3.12)

Note that here we adopted the convention of Ref. [J1, 205] for the FTMC
i structure functions

in terms of the customary ones appearing in the Lorentz decomposition of the hadronic ten-
sor satisfying FTMC

L (xB, Q2) = ⇢2FTMC
2 (xB, Q2) � FTMC

1 (xB, Q2). On the right hand side of
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Eq. (3.11), convolution integrals appear

Fi(⇠, Q
2) =

X

f

Z ⇠/xB

⇠

dx

x
f(x, µ2) Ci

f

✓
⇠

x
,
Q2

µ2
,↵s(µ

2)

◆
, (3.13)

where the integration over dx ranges only over the region allowed by the limits in Eq. (3.10).
The notation we use implies that whenever the lower limit exceeds the upper limit the integral
is zero, so that the structure functions are indeed zero in the kinematically forbidden region
xB > 1. The functions f(x, µ2) denote the distribution of a parton of flavor f in the target
nucleon and the sum runs over f = q, q̄, g, with q a shorthand for all active quark flavors. The
hard-scattering coefficient functions Ci

f encode the short-distance hard scattering of the virtual
photons with partons from the nucleon target, and are independent of the mass of the latter.
They can be calculated in perturbative QCD order-by-order in powers of the strong coupling
constant,

Ci
f = C i,(0)

f +
↵s(µ2)

2⇡
C i,(1)

f +O(↵2
s) , (3.14)

which are related by CL
f = C2

f � C1
f for massless partons. For example, at leading-order (LO)

we have

C2,(0)
q,q̄ (x̂) = e2q�(1� x̂), C2,(0)

g (x̂) = 0, CL,(0)
q,q̄,g (x̂) = 0 , (3.15)

with x̂ = ⇠/x. FTMC
2 reduces to the target mass corrected version of the parton model [206,

207] except for a step function imposing the proper kinematic bounds:

FTMC
2 (xB, Q

2) =
xB

⇢2

X

f=q,q̄

e2ff(⇠, Q
2)✓(1� xB) . (3.16)

For completeness, we list all the relevant coefficient functions Ci
f up to NLO in Appendix C.1.

Note that in the large Q2 limit (in which M2/Q2 ! 0), as well as in the small Bjorken-x limit
xB ! 0, the Nachtmann variable ⇠ ! xB and ⇢! 1, so that

FTMC
i (xB, Q

2) ! Fi(xB, Q
2) (3.17)

and the usual massless target formulas are recovered. Conversely, in the xB ! 1 limit, the

130



3.2. TARGET MASS CORRECTIONS AND RESUMMATION FOR DIS

Ξ

xB

Q2 " 2 GeV
2

0 1

1

Ξth

m N
"

0
G

eV

m N
"

0.
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Figure 3.2: The Nachtmann variable ⇠ as a function of xB with mN = 0 GeV (solid blue line)
and mN = 0.938 GeV (dash-dotted red line) at Q2 = 2 GeV2.

Nachtmann variable ⇠ ! ⇠th, where

⇠th =
2

1 +
p
1 + 4m2

N/Q
2
, (3.18)

and ⇠ differs maximally from xB (see Fig. 3.2). Therefore, in this limit, TMC effects are the
largest. Since the integral over dx is limited to the region defined by the kinematic bounds in
Eq. (3.10), the structure functions FTMC

i have support only over the physical region at xB  1.
This is the defining characteristics of the treatment of TMCs proposed in Ref. [192] and sets this
apart from most other TMC prescriptions, that in fact violate that bound and allow for non-
zero structure functions also at xB > 1. When combining TMCs with threshold resummation
in Section 3.2.3, we will pay special attention to preserve this feature of our TMC treatment
and not introduce a spurious violation of the Bjorken-x bound.

3.2.2 Threshold Resummation for DIS

The DIS coefficient functions Ci
f contain singular distributions. Near threshold they can get

large and weaken or even violate the convergence of the perturbative expansion in the strong
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coupling constant. Therefore, they have to be taken into account to all orders via threshold
resummation. At NLO, singular distributions only appear in the structure function F1 (or
equivalently F2) but not in FL. In the MS scheme, they read

C1,(1)
q,th (x) = CF


(1 + x2)

✓
ln(1� x)

1� x

◆

+

� 3

2

1

(1� x)+
�
✓
9

2
+
⇡2

3

◆
�(1� x)

�
, (3.19)

where the plus-distribution is defined as

Z 1

0

dx f(x)[g(x)]+ ⌘
Z 1

0

dx (f(x)� f(1)) g(x) (3.20)

In general, at a given order k in the perturbative expansion, the coefficient function contains
logarithms of the form

↵k
s

✓
lnn(1� x)

1� x

◆

+

, with n  2k � 1 . (3.21)

Performing the resummation at NLL, we fully take into account contributions down to n =

2k � 3 at all orders. In other words, resummation at NLL accuracy sums up correctly the
three most dominant towers of threshold logarithms. Results at next-to-next-to leading loga-
rithmic accuracy were derived in [132, 133], where the next two subleading towers of threshold
logarithms are also correctly taken into account. However, the main phenomenological effects
are already captured at the level of NLL. In addition, the proposed prescription for combining
TMC and resummation, as discussed in the next subsection, is independent of the accuracy of
resummation that we are considering.
In the massless limit, m2

N/Q
2 ! 0, resummation may be performed by introducing Mellin

moments in xB of the massless structure functions:

FN
1 (Q2) =

Z
dxB xN�1

B F1(xB, Q
2) = C1,N

f

�
Q2/µ2,↵s(µ

2)
� · fN(µ2) , (3.22)

where

C1,N
f =

✓Z 1

0

dx xN�1C1
f

�
x,Q2/µ2,↵s(µ

2)
�◆

(3.23)

fN =

✓Z 1

0

dy yN�1f(y, µ2)

◆
(3.24)

and the superscript N denotes the dependence on the complex Mellin variable N . The Mellin

132



3.2. TARGET MASS CORRECTIONS AND RESUMMATION FOR DIS

space expression of the NLO coefficient function up to terms that are suppressed as O(1/N)

and choosing µ2 = Q2 is given by

C1,(1),N
q = CF


ln2 N̄ +

3

2
ln N̄ � 9

2
� ⇡2

6

�
, (3.25)

where large logarithms in N̄ = Ne�E correspond to large logarithms in 1 � x in Eq. (3.19).
The resummed DIS coefficient function for the structure function F1 reads to NLL [J1, 52, 131,
199]:

C1,N
q,res(Q

2/µ2,↵s(µ
2)) = e2qHq

�
Q2/µ2,↵s(µ

2)
�⇥�N

q (Q
2/µ2,↵s(µ

2)) JN
q (Q2/µ2,↵s(µ

2)) . (3.26)

The radiative factor �N
q describes gluon radiation from the initial quark that is both soft and

collinear. The function JN
q takes into account collinear (i.e. soft and hard) emissions from the

unobserved parton in the final state. The two functions �N
q and JN

q are given by the following
two exponentials

log�N
q ⌘

Z 1

0

dx
xN � 1

1� x

Z (1�x)2Q2

Q2

dk2
?

k2
?
Aq(↵s(k

2
?)),

log JN
q ⌘

Z 1

0

dx
xN � 1

1� x

⇢Z (1�x)Q2

(1�x)2Q2

dk2
?

k2
?
Aq(↵s(k

2
?)) +

1

2
Bq(↵s((1� x)Q2)

�
. (3.27)

The functions Aq(↵s) and Bq(↵s) can be calculated in a perturbative expansion in the strong
coupling constant

Aq(↵s) =
↵s

⇡
A(1)

q +
⇣↵s

⇡

⌘2

A(2)
q + . . . ,

Bq(↵s) =
↵s

⇡
B(1)

q +
⇣↵s

⇡

⌘2

B(2)
q + . . . . (3.28)

The relevant coefficients for resummation at NLL accuracy are given by

A(1)
q = CF , A(2)

q =
1

2
CF


CA

✓
67

18
� ⇡2

6

◆
� 5

9
Nf

�
,

B(1)
q = �3

2
CF , (3.29)

where CF = 4/3, CA = 3 and Nf is the number of active flavors. Finally, the hard-scattering
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coefficient Hq in Eq. (3.26) reads

Hq

�
Q2/µ2,↵s(µ

2)
�
= 1 +

↵s

2⇡
CF

✓
�9

2
� ⇡2

6
+

3

2
ln

Q2

µ2

◆
+O(↵2

s). (3.30)

Expanding the exponents in Eq. (3.27) up to NLL accuracy, we find [J1, 208–212]

log�N
q = ln N̄h(1)

q (�) + h(2)
q

✓
�,

Q2

µ2
,
Q2

µ2
F

◆

log JN
q = ln N̄f (1)

q (�) + f (2)
q

✓
�,

Q2

µ2

◆
, (3.31)

where � = b0↵s(µ2) ln N̄ . The two functions h(1)
q , f (1)

q (h(2)
q , f (2)

q ) collect all leading logarithmic
(next-to-leading logarithmic) contributions in the exponent of the type ↵k

s ln
n N̄ with n = k+1

(n = k + 2). The functions h(1) and h(2) for �N
q are given by

h(1)
q (�) =

A(1)
q

2⇡b0�
[2�+ (1� 2�) ln(1� 2�)] ,

h(2)
q

✓
�,

Q2

µ2
,
Q2

µ2
F

◆
=� A(2)

q

2⇡2b20
[2�+ ln(1� 2�)] +

A(1)
q b1
2⇡b30


2�+ ln(1� 2�) +

1

2
ln2(1� 2�)

�

+
A(1)

q

2⇡b0
[2�+ ln(1� 2�)] ln

Q2

µ2
� A(1)

q

⇡b0
� ln

Q2

µ2
F

. (3.32)

The functions f (1) and f (2) for JN
q are given by

f (1)
q (�) = h(1)

q

✓
�

2

◆
� h(1)

q (�),

f (2)
q

✓
�,

Q2

µ2

◆
= 2h(2)

q

✓
�

2
,
Q2

µ2
, 1

◆
� h(2)

q

✓
�,

Q2

µ2
, 1

◆
+

B(1)
q

2⇡b0
ln(1� �). (3.33)

Here, the b0, b1 are the coefficients of the QCD beta function

b0 =
11CA � 4TRNf

12⇡
,

b1 =
17C2

A � 10CATRNf � 6CFTRNf

24⇡2
. (3.34)
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Figure 3.3: On the left (right) hand side the integration regions for Q2 = 2 GeV2 (Q2 =
25 GeV2) concerning Eq. (3.38) are shown. The blue dots denote the boundary where the
threshold singularities arise and the arrows indicate the direction of integration.

In the end, we go back to x-space by numerically performing the Mellin inverse, which is given
by

F1,res(xB, Q
2) =

Z

CN

dN

2⇡i
x�N
B ⇥ C1,N

q,res(Q
2/µ2,↵s(µ

2)) fN(µ2) . (3.35)

The contour CN is taken to run between the rightmost pole of the moments of the PDFs and
the Landau pole following the minimal prescription of [213]. After the Mellin inverse is taken,
we match to the full NLO which is still a good approximation away from threshold. We avoid
double counting of threshold distributions at NLO by considering the matched combination

Fmatch = Fres � Fres|O(↵s)
+ FNLO . (3.36)
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3.2.3 Combining TMC and Threshold Resummation

After target mass corrections, the integration over the parton’s momentum fraction in the
collinear factorization formula (3.13) ranges from ⇠ to ⇠/xB. As a consequence, the Mellin
moments of the structure function are no longer the product of the moments of the coefficient
function C1 and the parton distribution f . One therefore may be tempted to express the
structure function (3.13) as

FTMC
1 =

Z 1

⇠

dx

x
C1
f

✓
⇠

x

◆
f(x)�

Z 1

⇠/xB

dx

x
C1
f

✓
⇠

x

◆
f(x) , (3.37)

where for ease of notation we omitted any dependence of the coefficient functions and the PDFs
on the scale Q2/µ2 and on ↵s(µ2). The advantage of this reformulation is that the first term
is integrated up to 1 (and differs from the Bjorken limit approximation only by a xB ! ⇠

replacement), so that its Mellin transform would indeed be given by the product of moments of
the coefficient and parton distribution functions. However, written in this way, FTMC

1 acquires
support also in the unphysical region xB > 1, where it actually becomes negative after crossing
0 at xB = 1.

A better way to manipulate the structure function convolution in Eq. (3.13) in order to obtain
a product of moments after performing its Mellin transformation, is to write

FTMC
1 =

Z ⇠th

⇠

dx

x
C1
f

✓
⇠

x

◆
f(x) +

Z ⇠/xB

⇠th

dx

x
C1
f

✓
⇠

x

◆
f(x) . (3.38)

In the small xB limit only the first term on the right hand side survives, and the massless limit
is recovered, as it should be. In the xB ! 1 limit, each term separately tends to zero and
remain zero for larger values of xB. Therefore, the structure function as well remains zero in
the unphysical region xB > 1, as it happens with the original Eq. (3.13). This is then a good
starting point for performing the resummation of threshold distributions in a way that respects
the partonic and hadronic kinematics discussed in Section 3.2.1.

In order to get a deeper insight into the effects of TMCs on resummation, we can more closely
analyze the integration region, that we depict in Fig. 3.3 for a small and a large value of Q2. The
partonic threshold for resummation is set by x = ⇠, as indicated by the blue dots. Hence, we
may view the effect of TMCs as cutting out the singularities lying at x > ⇠th. As Q2 increases,
the amount of excluded singularities decreases, as can be seen from the diagram on the right.
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Figure 3.4: We show the effects of TMC (dashed blue), threshold resummation (dotted
magenta) and the combination of both (solid black) normalized to NLO for the DIS structure
function F2 for different values of Q2 = 2, 25, 100 GeV2. The PDF set of [178] is used.

In the Bjorken limit (Q2 ! 1), ⇠th tends to 1, the integration region spans the whole triangle,
and no singularity is excluded. Since the threshold for gluon radiation is set for x ! ⇠ the
threshold singularities appear only at the lower integration boundary of the first term, which
is therefore the only one where large logarithms appear and need resummation. This can then
be achieved without introducing a non-zero result for the resummed structure function in the
unphysical region of xB > 1 because the first term in Eq. (3.38) is zero at xB � 1. In the second
term, that also tends to zero as xB ! 1, the threshold limit is not reached so that there is no
need to regularize any of the terms in the coefficient function and we can treat this as part of
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the matching procedure to the full NLO calculation, see Eq. (3.36).
As in the massless target approximation, we derive threshold resummation in Mellin space but
taking special care of the fact that at finite Q2 the first term in Eq. (3.38) does not have the
standard convolution structure as for the massless approximation of the structure functions.
Taking Mellin moments with respect to ⇠ of the first term in Eq. (3.38) only, we obtain

FTMC,N
1 =

Z 1

0

d⇠ ⇠N�1

Z ⇠th

⇠

dx

x
C1
f

✓
⇠

x

◆
f(x)

=

Z 1

0

d⇠ ⇠N�1

Z 1

0

dy

Z ⇠th

0

dx C1
f (y) f(x) �(xy � ⇠)

=

✓Z 1

0

dy yN�1C1
f (y)

◆✓Z ⇠th

0

dx xN�1f(x)

◆

= C1,N
f fN

⇠th
, (3.39)

where we denoted by fN
X =

R X

0
dx xN�1f(x) the N -th truncated moment of a function f . Hence,

In Mellin space, the TMC corrected structure function FTMC
1 factorizes into a product of the

moments of the coefficient function C1,N
f , exactly as in the massless approximation, and of the

truncated moments of parton distributions. The appearance of the latter reflects the reduced
support for integration over x in Eq. (3.13) (as illustrated in Fig. 3.3). The truncation of the
PDF moments increases in magnitude with the increase of xB and the decrease of Q2.
Using the resummed coefficient function C1,N

q,res in Eq. (3.26), we may perform the inverse trans-
formation,

FTMC
1,res (xB, Q

2) =

Z

CN

dN

2⇡i
⇠�N C1,N

q,res f
N
⇠th

, (3.40)

using the same contour as in the massless target case, see e.g. [J1]. Note that this corresponds
only to resummation of the first term in Eq. (3.38). We always have to calculate the second
term separately and add it to the resummed result. Other than that, the matching procedure
required to include the full NLO calculation is the same as that without TMCs, see Eq. (3.36).

3.2.4 Phenomenological Results

We now investigate the numerical effects of TMC and threshold resummation as well as their
combination. Throughout this section we only consider a proton target. We make use of
both the NLO “Martin–Stirling–Thorne–Watt” (MSTW 2008) set of parton distribution func-
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tions [178] as well as the NLO CJ12 PDF set of [179] . As shown in Eq. (3.39), in order to
perform numerical calculations for threshold resummation, we have to compute Mellin moments
of the PDFs. Since these are provided in x space, we first fit suitable functions to the PDFs
using the following parametrization

a0 x
a1 (1� x)a2

 
nX

j=3

ajx
bj

!
, (3.41)

where ai are free parameters and bj are some chosen fixed values in the range of 0 to 3. We
take into account the Q2 evolution of the PDFs by allowing a Q2 dependence in the parameters
ai of the form

ai = ai1 + ai2 log(log(Q
2/Q2

0)) . (3.42)

The parameters ai1,i2 are free parameters to be fitted for each different PDF and Q2
0 is a chosen

fixed scale. The truncated Mellin moments of the fitted PDFs are then taken analytically. With
TMCs, we obtain a sum of incomplete Beta functions of the type

B⇠th(N + a1 + bj, a2 + 1). (3.43)

The index ⇠th corresponds to the upper integration limit in the definition of the incomplete
Beta function. (Without TMCs, or rather in the large Q2 limit, where ⇠th = 1, we obtain a
sum regular Beta functions, B1.)

In our code, we implement the incomplete Beta functions by making use of the identity

B⇠th(N + a1 + bj, a2 + 1) =
⇠
N+a1+bj
th

N + a1 + bj
⇥ 2F1(N + a1 + bj,�a2, 1 +N + a1 + bj, ⇠th) , (3.44)

and for the complex hypergeometric function 2F1 we use the routine provided in [214]. In order
to rule out uncertainties introduced in our calculation when using the fitted functions for the
Mellin inversion, we checked the accuracy of the fits by comparing results at NLO obtained from
the convolution code in x-space and the Mellin inverse. Indeed, we find very good agreement
even for very large values of xB.

The reason behind the numerical stability of our result is the following. When performing the
Mellin inverse, we obtain an exponential suppression for large negative real values of N due
to the factor ⇠�N in Eq. (3.40). When TMCs are included, this suppression is softened by the

139



CHAPTER 3. INTERPLAY OF THRESHOLD RESUMMATION AND HADRON MASS
CORRECTIONS IN DEEP INELASTIC PROCESSES

Q2
! 2 GeV

2

1.

1.5

2.

2.5

Q2
! 25 GeV

2

1.

1.5

2.

2.5

Q2
! 100 GeV

2

0.2 0.4 0.6 0.8 1.

1.

1.5

2.

2.5

F
2

x
"

T
M

C
!F

2
x

xB

NLO

RESUM

Figure 3.5: The effect of TMC is shown for the structure function F2 on top of a NLO and a
resummed calculation. We show TMC normalized to NLO (dashed blue) as well as TMC and
resummation combined normalized to the resummed result (solid red). Again, we choose three
representative values of Q2 = 2, 25, 100 GeV2. The PDF set of [178] is used.

factor ⇠Nth in Eq. (3.44). These two exponential factors originate from two different parts of the
calculation: the first comes from the definition of the inverse Mellin transform, whereas the
second is due to the incomplete beta function. We need to combine the two factors into one
single exponential, exp[�N ln(⇠/⇠th)], where the cancellations between the two is made explicit
and makes the numerical integration over dN well-behaved even for very large values of xB.

In Fig. 3.4, we present our numerical results for the DIS structure function F2 using the PDF
set of [178]. All results are normalized to the massless NLO calculation. We choose to plot
our results only up to xB = 0.95 as non-perturbative effects are expected to set in for too
large values of xB, which is beyond the scope of this work. The two effects under consideration
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are shown separately in dashed blue (TMCs) and in dotted magenta (threshold resummation)
for three representative values of Q2 = 2, 25, 100 GeV2. Both TMC and resummation effects
become increasingly large as xB tends to 1, as it is clear from the kinematic analysis presented
in Sec. 3.2. Both vanish at small xB, the former because the Nachtmann variable ⇠ and the
kinematic factor ⇢ tend to their massless value of xB and 1, respectively, and the latter because
the integrals are evaluated more and more far from the resummation threshold. Concerning
the Q2 dependence of the two corrections under discussion, both effects taken separately are
large at small values of squared momentum transfer, and decrease with increasing Q2. However,
TMCs exhibit a power law suppression in Q2, while resummation corrections decrease much
less rapidly and become dominant, and non-negligible, at Q2 & 25 GeV. The results we find
for TMCs are in agreement with numerical results in previous work such as [204] and [192]
up to some prefactor conventions. Concerning the validity of our results on DIS threshold
resummation one may compare to Ref. [J1, 189].

We can now turn to the combination of TMC and threshold resummation, shown by the solid
black line in Fig. 3.4. We notice that the strength of the two effects does not add in a simple
way. In order to understand the interplay of TMCs and threshold resummation, we analyze
the plots in Fig. 3.5. Again, we use the PDF set of [178]. There, we compare the ratio of the
target mass corrected F2 structure function to the massless calculation without resummation
(Dashed blue line), and the ratio of the structure function with both TMC and resummation,
but normalized to the resummed result (solid red line). This way, we can see how the TMC
contribution acts on top of a purely NLO calculation compared to being added to a resummed
calculation. Firstly, we note that the effects remain decoupled for small values of xB, where
both ratios lie exactly on top of each other. This decoupled region extends to larger values of
xB as Q2 increases. However, at large enough values of xB the two functions deviate and TMC
acts differently for NLO than for the resummed result.

As discussed in [182, 220], such a variation in the calculation of the F2 structure function can
lead to considerable difference in the value of the d-quark parton distribution extracted in a
global fit. The theoretical description of the data crucially depends on whether resummation is
included or not. In order to gauge the relevance of TMCs and resummation for the extraction
of PDFs, but leaving a detailed QCD fit for future work, we present in Fig. 3.6 a comparison of
our calculations to a variety of electron-proton scattering data from JLab (E94-110) [215], JLab
(E00-116) [216], HERA [217], SLAC [218], and EMC [219]. Here we use the CJ12 PDF set
of [179]. The data was bin-centered in Q2 for the analysis of Nachtmann moments of the DIS
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Figure 3.6: We plot ratios of data/theory for DIS structure function F2 at several Q2. Here
“theory” denotes the NLO results with TMC and higher twist contributions based on the CJ
PDF set of [179]. The data is taken from [215–219]. Due to our choice of a linear scale for the
horizontal axis, the HERA data appears clustered at the vertical axis, i.e. at very small xB. In
addition, using the same normalization, we plot the theoretical prediction when resummation
is included as well. The dotted line corresponds to W 2 = 3.25GeV2.

longitudinal structure function in [221] allowing a direct comparison of different experimental
results 1. The data was normalized to a calculation including TMCs only; but in order to do
so we also need to add the “residual” power corrections in 1/Q2 not taken care of by target

1we thank P. Monaghan for kindly providing us with the bin-centered data points
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mass corrections. These were included in the CJ12 QCD fit [179] via a multiplicative factor
1+C(xB)/Q2, with C a parametrized function of Bjorken xB with parameters fitted to a variety
of DIS data. We include the same multiplicative factor in our NLO calculation, and use the
parameters obtained in the CJ12 fit. The vertical dotted line in Fig. 3.6 corresponds to a value
of W 2 = (Ph + q)2 = m2

N + Q2(1 � xB)/xB = 3.25GeV2, which is generally regarded as the
end of the DIS regime and the beginning of the resonance region where fluctuations of the data
around the DIS calculation are generally understood in terms of quark-hadron duality [222].
Finally, in order to gauge the relevance of resummation corrections to a global fit of parton
distributions, we also plot in Fig. 3.6 the structure function F2 with resummation, TMCs and
higher twist contributions, normalized by the pure NLO calculation including TMCs and higher
twists which was also used to normalize the data. Comparing the obtained deviation of this
curve from one with the experimental uncertainties, we find a very significant effect which
is getting larger for increasing Q2, while at low Q2, TMCs already capture the main effects.
In fact, threshold resummation also decreases with increasing Q2, as can be seen from both
Figs. 3.4 and 3.5 above. However, as already remarked, TMCs die off rather quickly, whereas
resummation remains clearly non-negligible in both the DIS and the resonance regions. Hence,
resummation is likely to affect the extraction of large-x partons (quarks directly, and gluons
indirectly through QCD evolution in DIS) in global PDF fits. In this respect, it is important
to remark that the non power law dependence of the resummation corrections cannot be ef-
fectively included in a phenomenological higher-twist term, and needs to be instead explicitly
calculated in order to obtain the correct behavior of the quark PDFs at large values of the
parton momentum fraction x. In particular it would be interesting to see how the effect is on
the u� and d-quark PDFs, and how much the extrapolation of the d/u quark ratio to x ! 1

obtained in Ref. [179] would be affected.
Finally, see also the work of [223, 224] concerning TMC effects for (polarized) structure func-
tions.
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3.3 Hadron Mass Corrections and Resummation for SIA

3.3.1 Hadron Mass Corrections

Hadron level and parton level kinematics

We study the kinematics for Single Inclusive electron-positron Annihilation hadron in the ��h

frame, where both the photon � and the observed hadron h have no transverse momentum
component. We start by parametrizing the momenta of the virtual photon q, the observed
hadron in the final state Ph and the momentum of the fragmenting parton k. All momenta are
also shown in Fig. 3.7. We find,

qµ = q+n̄µ +
Q2

2q+
nµ ,

P µ
h = ⇠Eq

+n̄µ +
m2

h

2⇠Eq+
nµ ,

kµ =
⇠E
z
q+n̄µ +

(k2 + k2
T )z

2⇠Eq+
nµ + kT , (3.45)

where Q2 = qµqµ denotes the virtuality of the photon, mh is the mass of the observed hadron h,
and ⇠E = P+

h /q+ its light cone momentum fraction; analogously, z = P+
h /k+ is the light-cone

fractional momentum of the hadron relative to the parton that it is fragmenting from.
The external Lorenz invariants are

Q2 = q2 = s, xE =
2q · Ph

q2
, P 2

h = m2
h , (3.46)

where s is the center of mass energy of the process. Solving for the virtual boson fractional
momentum, we obtain

⇠E =
P+
h

q+
=

1

2
xE

 
1 +

s

1� 4

x2
E

m2
h

Q2

!
, (3.47)

which is a “Nachtmann-type” fragmentation variable, cf. Eq. (3.6). Note that the radicand is
always positive due to energy conservation at the hadron level, as we derive below. Inverting
Eq. (3.47) we obtain

xE = ⇠E

✓
1 +

m2
h

⇠2EQ
2

◆
. (3.48)

Concerning the unobserved parton’s (internal) kinematics, we work in collinear factorization
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pYk
q

pj

Ph

PX

Figure 3.7: Diagram for SIA e+e� ! hX where all momenta are specified.

but refrain from fixing the value of the parton virtuality k2 until we analyze the effects of
non-zero hadron masses on the partonic kinematic bounds. Therefore, for the time being, we
only set

kT = 0 . (3.49)

Finally, we define the partonic fragmentation invariant x̂E by

x̂E =
2k · q
q2

=
⇠E
z

+
zk2

⇠EQ2
, (3.50)

where the parton virtuality k2 appears explicitly for the time being.

Four momentum conservation and kinematic bounds

We consider now the kinematics at the hadron level, and derive the kinematic limits for xE and
⇠E due to four momentum conservation. Firstly, we find a lower bound for xE which ensures
that ⇠E in Eq. (3.47) is well defined. Calculating in the e+e� c.m. frame with q+ = q� = Q/

p
2,

we find

xE =
2Ph · q
Q

=

p
2

Q
(P+

h + P�
h ) =

2Eh

Q
� 2mh

Q
⌘ xmin

E . (3.51)

As a next step, we may derive an upper bound by considering the overall momentum conser-
vation at the hadron level, q = Ph + PX . We find

0  P 2
X = (Ph � q)2 = m2

h � xEQ
2 +Q2 . (3.52)

145



CHAPTER 3. INTERPLAY OF THRESHOLD RESUMMATION AND HADRON MASS
CORRECTIONS IN DEEP INELASTIC PROCESSES

Hence,

xE  1 +m2
h/Q

2 ⌘ xmax
E , (3.53)

which implies that xE can become slightly larger than one. This is due to the neglect of hadron
mass effects in the unobserved hadron jet shown at the bottom of Fig. 3.7. This is in analogy to
what we did when analyzing the DIS kinematics. Using these two relations, we may determine
the minimal and maximal values for ⇠E, which are

⇠min
E =

xmin
E

2
=

mh

Q
, ⇠max

E = 1 . (3.54)

With these limits at hand, we may plot ⇠E as a function of xE, see Fig. 3.8. Here, the effects of
hadron mass corrections are large when the invariant xE is small, contrary to the case of DIS,
where target mass corrections are most relevant at large values of xB. This can be understood
as a consequence of crossing symmetry on the kinematics of the process, where now the virtual
photon is time-like.

In a second step, again analogously to the procedure for DIS, we analyze the kinematics at the
parton level. Firstly, we consider the hard-scattering vertex which corresponds to the lower
grey circle in Fig. 3.7. Using momentum conservation at the vertex q = k + pj and neglecting
any non-zero lower bound for the mass of the recoiling jet, we obtain the following constraint

0  p2j = (q � k)2 = Q2

✓
1� z

⇠E

k2

Q2

◆
z � ⇠E

z
. (3.55)

Secondly, we consider the hadronization vertex which corresponds to the upper right grey circle
in Fig. 3.7, and we apply again four-momentum conservation. We obtain

0  p2Y = (k � Ph)
2 =

�
zk2 �m2

h

� 1� z

z
. (3.56)

Interestingly, in SIA there appears no “threshold problem”, as is the case in DIS, and ⇠E can
range all the way up to 1. This is due to the system having no net baryon number, contrary to
the case of DIS where the net baryon number is 1, and its conservation needs to be explicitly
taken into account in the parton-level kinematics. It is also important to notice that while the
parton virtuality k2 in the first of these inequalities is parametrically suppressed at large Q2,
no hard scale suppresses this nor the hadron mass mh in the second inequality. Therefore, it is
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Figure 3.8: The fragmentation “Nachtmann-type” fragmentation variable ⇠E as a function of
xE at fixed Q = 5 GeV. For illustration purposes, we choose a fictional mass of mh = 1 GeV
(dash-dotted red) and compare it with a massless hadron, mh = 0 GeV (solid blue line).

not possible to define a “massless hadron limit” as was done for the DIS case, where the nucleon
mass, mN , always appears divided by Q. The physical solutions of Eqs. (3.55)-(3.56) are:

⇠E  z  1 (3.57)

m2
h  zk2  ⇠EQ

2 . (3.58)

In particular, the quark virtuality must always be larger than m2
h because this value corresponds

to the minimum invariant mass of the parton fragmentation products when a hadron of flavor h
is detected. Following our philosophy, we should then perform the collinear expansion around
an on-shell massive quark rather than around k2 = 0. However, dealing with the subtleties
involved in proving the factorization theorem at NLO for this case goes beyond the scope of
this work and will not be treated here. Instead, we use the well known collinear factorization
theorem for massless, k2 = 0, fragmenting partons as in [195, 197] and we continue to explore
the interplay of hadron mass corrections and threshold resummation.
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Cross section at NLO

In order to compare our results to the SIA measurements from BELLE and BaBar, we need to
compute hadron multiplicities in e+e� ! hX which are defined as

Rh
e+e� ⌘ 1

�tot

d2�h

dxEd cos ✓
. (3.59)

Here the hadron h is produced at an angle ✓ relative to the initial positron. �tot denotes the
totally inclusive cross section for e+e� ! X. At NLO, this is given by

�tot =
4⇡↵2

3Q2
Nc

X

q

e2q

⇣
1 +

↵s

⇡

⌘
, (3.60)

where Nc = 3 is the number of colors and ↵ is the electromagnetic fine structure constant. As
mentioned before, we may write the differential cross section d2�h/dxEd cos ✓ in terms of two
structure functions which we denote as F̂h

i (i=1,L), cf. [C1, 48, 109]. Including HMC, we find

d2�h

dxEd cos ✓
=

⇡↵2

Q2
Nc

1

1� m2
h

⇠2EQ2

"
1 + cos2 ✓

2
F̂h

1 (xE, Q
2) + sin2 ✓ F̂h

L(xE, Q
2)

#

=
1

1� m2
h

⇠2EQ2

d2�h

d⇠Ed cos ✓

������
xE=⇠E

, (3.61)

where the Jacobian factor of 1/(1 � m2
h/⇠

2
EQ

2) is included in order to obtain a cross section
differential in xE instead of ⇠E [195, 197]. The structure functions F̂h

i with HMCs take into
account the kinematic bounds on z from Eq. (3.57) and read

F̂h
i (xE, Q

2) =
X

f

Z 1

⇠E

dz

z
Dh

f

�
z, µ2

� Ĉi
f

✓
⇠E
z
,
Q2

µ2
,↵s(µ

2)

◆
, (3.62)

where Dh
f (z, µ

2) denotes the fragmentation function for an observed hadron h in the final state
resulting from a parent parton f . The Ĉi

f are the corresponding coefficient functions which we
list in Appendix C.2 for completeness up to NLO. The cross section without HMCs is obtained
by replacing ⇠E with xE in Eq. (3.62) and by setting mh = 0 in Eq. (3.61). Having chosen to
factorize the cross section around a parton virtuality k2 = 0 this massless hadron limit can also
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Figure 3.9: Comparison of the effect of HMC on top of NLO (dashed blue) and the resummed
result (solid red) for Q =

p
s = 10.5 GeV and the kaon mass mK0 = 497.6 MeV.

be achieved in the Q2 ! 1 limit.

3.3.2 Combining HMC and Threshold Resummation

In the spirit of “crossed resummation” [199], we note that the only difference concerning the
resummation in SIA in comparison to DIS is that we have to adjust one term in the matching
coefficient Hq in Eq. (3.30) �⇡2/6 ! 5⇡2/6, see also [J1, 131]. This similarity may be under-
stood in the sense that both processes have one “observed” and one “unobserved” parton. Hence,
the threshold resummed expression may again be written as a product of the form H 0

q �
N
q JN

q .
HMC and resummation are combined by simply replacing xE ! ⇠E in the resummed formula.
There are no issues with ⇠th as it was the case for DIS, since the upper integration limit for
z in Eqs. (3.57), (3.62) is left unchanged compared to the massless hadron calculation. Since
resummation effects increase with xE and HMC effects become large at small values of xE,
we do not expect a significant interplay of the two, contrary to the DIS case in which both
effects increase at large xB. We can numerically assess the interplay of HMC and threshold
resummation similarly to what we did for DIS. In Fig. 3.9, we plot the cross section including
the effect of HMCs on top of an NLO (dashed-dotted blue line) and a resummed (solid red
line) calculation. These are normalized to the corresponding massless hadron calculation to
highlight HMC effects. We find that both ratios match completely. Hence, there is no crosstalk
between the two effects.
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3.3.3 Phenomenological Results

Given the actuality of the recent BELLE [83] and BaBar [84] results, we choose to present our
numerical results for HMC and threshold resummation directly in comparison to data. The
BELLE experiment is operating at a c.m.s. energy of

p
s = 10.52 GeV and similarly BaBar

at
p
s = 10.54 GeV, just below the lower end of the energy range of experiments typically

included in FF fits, see for example Refs. [77, 195]. This way, we maximize the effect of HMC
and resummation of threshold logarithms and we may directly evaluate the significance of the
two corrections compared to statistical and systematic uncertainties of the data.
For the plots we discuss in this section, as well as for that in Fig. 3.9, we used the “de Florian-
Sassot-Stratmann” [77] set of fragmentation functions at NLO, where the new data from BELLE
and BaBar is not yet included. The goal is to show the phenomenological importance of
threshold resummation and HMCs, and to qualitatively assess their relevance in global FF fits,
rather than obtain a perfect description of the data. Comparing the size of HMC and threshold
resummation to statistical and systematical errors, we will conclude that a fit including the two
effects may yield rather different results for the extracted FFs. Whether indeed a better �2 can
be obtained given all the other data sets used in a global fit, as the study presented in [195]
indicates, will be left for future work.
Both BELLE and BaBar have an angular coverage of �1 < cos ✓ < 1. Hence, we integrate
over the full range of cos ✓ and obtain a cross section differential only in xE. An important
difference between the two data sets is that BELLE data is presented as a function of the
Lorentz invariant energy fraction xE, whereas BaBar is using the momentum fraction variable

xp =
2|ph|p

s
. (3.63)

Only for massless calculations are these equivalent, however, and in particular for kaons at
present energies the difference between xE and xp is quite significant. When comparing our
results to data, we multiply the BaBar data set by J = dxp/dxE to obtain a cross section
differential in xE and compare this to measurements at BELLE.
We start by analyzing our calculations for (charge integrated) pion production, plotted in
Fig. 3.10. All multiplicities 1/�tot d�/dxE presented here are normalized to the calculation
at NLO without hadron mass corrections. Our results for HMC (dashed blue line), threshold
resummation (dotted magenta line) and the combination of both (solid black line) is shown. On
the left (right) panels of Fig. 3.10, we show BELLE and BaBar data with statistical (systematic)
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p
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(right). The FFs of [77] are used.
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Figure 3.11: Same as Fig. 3.10 but for observed kaons.

uncertainties. As expected, the effects of threshold resummation are quite significant and most
relevant at large xE, whereas HMCs affect the calculation at small xE, and in the measured
range are not large, due to the smallness of the pion mass, m⇡0 = 135 MeV. Nonetheless, given
the statistical precision of this data, it seems important to account for HMCs in a global fit.
Much of discrepancy between NLO calculations and pion data can be resolved by including the
new data in a global FF fit, as it was very recently shown in Ref. [79]. Finally, we note that
below xE = 0.1, small-z logarithms start to become relevant and need to be resummed; see
Chapter 2 and [197].
For kaons, with mass mK0 = 497.6 MeV, HMCs are much larger than for pions, as shown in
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Fig. 3.11. The combination of HMC and resummation leads to a significant increase of the
cross section compared to a massless hadron NLO calculation for all values of xE, and their
inclusion in global FF fits is even more important than in the pion case. The steep rise of the
HMC corrected result over the NLO calculation at small xE is mostly due to the kinematic limit
xE > 2mK0/Q ⇡ 0.1 derived in Eq. (3.51), and in its vicinity the validity of our treatment of
HMCs may come into question. This is also the region where resummation of small-x logarithms
becomes important, and a proper treatment of these is likely to require a careful consideration
of the interplay with HMCs. It would then be very interesting to explore the similarities and
differences of this with the interplay of threshold logarithms and target mass corrections in
large-xB DIS events we have discussed in Section 3.2, but we defer this analysis to a future
effort.

3.4 Conclusions

In this chapter we have presented the results of [J3]. We have investigated two phenomenolog-
ically important effects for the analysis of data in inclusive DIS and single-inclusive electron-
positron annihilation, namely the corrections to NLO calculations due to a non-zero mass of
the nucleon target in DIS, and of the detected hadron in SIA, as well as the resummation of
threshold logarithms arising in the perturbative expansion of the hard scattering coefficients.
In both cases, these lead to a non-negligible enhancement in the calculated observable com-
pared to the precision of the currently available experimental data. Therefore, both effects are
significant for precise QCD fits of PDFs as well as FFs.
In DIS, target mass corrections and threshold resummation are both most relevant at large
values of xB. In particular, we have derived a way to perform resummation respecting the
parton level kinematic constraints arising from consideration of the non-zero target mass. The
resulting structure functions can then be consistently combined with TMC calculations such
that they remain zero in the unphysical region xB � 1. We find that two effects are coupled
especially for small values of Q2. At large xB, the size of the combined TMC and resummation
corrections is considerably larger than the accuracy of the existing DIS data over an extended
Q2 range. Therefore, it should be taken into account for a precise extraction of large-x PDFs
in global fits.
In SIA processes, hadron mass corrections are relevant at small xE while threshold resummation
is important at large xE, and we find no interplay of the two effects. We have included both in

152



3.4. CONCLUSIONS

our calculations of cross sections for pion and kaon production, and compared these to recent
data from the BELLE and BaBar collaborations. The effects are again large, and non-negligible
for the extraction of FFs, given the precision of the new data sets. This is particularly true for
kaons due to their bigger mass compared to observed pions. Given this large effect for kaon SIA,
it becomes a topic of practical as well as theoretical interest to determine what the interplay is
between the finite mass kinematics and the resummation of small-x logarithms. We leave this
for future efforts.
Finally, we remark that we have performed calculations in collinear factorization around mass-
less, on-shell partons. For SIA, we have found that this choice, however commonly made,
actually violates parton-level four momentum conservation. A detailed analysis of collinear
factorization with non-zero virtuality partons is a subject of future work.
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CHAPTER 4

Towards semi-inclusive deep inelastic scattering at

next-to-next-to-leading order

In this chapter, we present our computation of the first set of O(↵2
s) corrections to semi-

inclusive deep inelastic scattering structure functions. We start by studying the impact of
the contribution of the partonic subprocesses that present itselves for the first time at this
order for the longitudinal structure function. We perform the full calculation analytically, and
obtain the expression of the factorized cross section at this order. Special care is given to the
study of their flavour decomposition structure. We analyze the phenomenological effect of the
corrections finding that, even though expected to be small a priori, it turns out to be sizable
with respect to the previous order known, calling for a full NNLO calculation. This chapter is
based upon our published paper [J6].

4.1 Introduction

Over the last decades, our understanding of hadron structure has remarkably improved, thanks
to impressive experimental and theoretical progress. That includes the extraction of precise
parton distribution functions (PDFs) from global analysis [41, 173, 181, 225–227], comple-
mented with accurate perturbative calculations for several processes in quantum chromody-
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namics (QCD). As outlined in Chapter 2, recent progress has been observed towards a better
description of the hadronization process, related experimentally to observables with identified
light hadrons in the final-state. Their description relies on the previous two ingredients plus
the knowledge of the corresponding fragmentation functions (FFs), which are evolving following
the path of PDFs. It is in fact only recently that our next-to-next-to-leading order (NNLO)
analysis of FFs based on electron-positron annihilation data was presented in [J4]. This work
together with [J5] is treated in detail in Chapter 2. A global analysis including also proton-
proton collision’s data and semi-inclusive deep inelastic scattering (SIDIS) data at this precision
level is still yet to come. Therefore, the computation of NNLO corrections to the SIDIS process
is an absolute requirement in order to extend existing NLO global analyses [74–76, 79, 195].
Analyses solely based on electron-positron annihilation into hadrons give no information on
how the individual quark flavour fragments into hadrons, and leave a considerable uncertainty
on the gluon density. The measurement of final state hadrons in SIDIS provides an excellent
complementary tool for the extraction of fragmentation functions. Furthermore, SIDIS plays a
very important role in understanding the spin structure of the nucleon, that can be described
by the (non-perturbative) polarized parton distribution functions (pPDFs). The most complete
global fit of pPDFs includes all available data taken in spin-dependent DIS, semi-inclusive DIS
with identified pions and kaons, and proton-proton collisions. These fits allow the extraction of
pPDFs consistently at NLO [228]. In particular in this context, SIDIS with identified hadrons
in the final state is of essential need in order to achieve a full flavour decomposition for the
polarized parton distributions.

For all these reasons, counting on precision theoretical description for SIDIS is mandatory. In
the fully-inclusive case the structure functions are well known at next-to-next-to-leading order
(NNLO) in perturbative QCD, both for the unpolarized [229–231] and for the polarized ones
[232]. For the unpolarized case, even the hard corrections at order O(↵3

s) are available [233].
However, for semi-inclusive DIS, the QCD corrections are only known up to NLO both in the
unpolarized [108, 111] and the polarized cases [111].

Nowadays, NNLO is the state of the art for many observables of interest. It is then natural to
try to reach the same accuracy for the unpolarized SIDIS process. In an effort to analytically
calculate corrections at this level of precision, one may start by analyzing the simpler case of the
longitudinal component of the process, in order then to use the acquired experience to extend
the calculation to the more difficult transverse one. Both components are essential to evaluate
the ratio between the longitudinal and transverse photoabsortion cross sections R ⌘ �L/�T ,
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which plays an important role in the extraction of pPDFs from the observed asymmetries (see
for instance [234]). In such analyses, the semi-inclusive ratio R is customarily assumed to be
equal to the inclusive one, which may not be always a good approximation.

In the following sections we present the first steps towards the computation of the longitudinal
SIDIS structure function at NNLO accuracy. In particular, we focus on the contribution of
those channels that open for the first time at this order. In section 4.2 we introduce the
SIDIS structure functions and the cross section ratio. Their flavour decomposition structure is
discussed in section 4.3. In section 4.4 we explain the main features of the computation of the
new contributions to the longitudinal structure function at NNLO. In section 4.5 we present
some phenomenological results and finally the conclusions are presented in section 4.6.

4.2 Semi-inclusive deep inelastic scattering

The cross section for the scattering of leptons on nucleons with the observation of a hadron H in
the final state can be written, in lowest-order perturbation theory of electroweak interactions,
as

d�H

dx dy dz
=

2⇡ y ↵2

Q4

X

j

Lµ⌫WH
µ⌫ , (4.1)

where the leptonic tensor Lµ⌫ is associated with the coupling of the exchanged photon to the
leptons (we do not include processes mediated by Z and W bosons) while the hadronic tensor
WH

µ⌫ describes the interaction of the photon with the target nucleon and the hadronization of
partons into H. Here, x and y denote the usual DIS variables:

� q2 = Q2 = Sxy, x = Q2/(2P · q),

where q is the photon four-momentum, P the nucleon momentum and S the center-of-mass
energy squared of the lepton-nucleon system. Besides, z = PH · P/P · q here is the scaling
variable representing the momentum fraction taken by the hadron H. Since we concentrate in
the current fragmentation region, cuts over z should apply (typically, z > 0.1)1.

The unpolarized SIDIS structure functions (FH
i ) are defined in terms of the hadronic tensor.

Besides terms that cancel after integrating over the azhimutal angle of the outgoing hadron,

1Due to the definition of z, the target fragmentation process [235, 236] is strictly z = 0.
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one gets the usual DIS tensor: [237]

WH
µ⌫ =

✓
�gµ⌫ +

qµq⌫
q2

◆
FH
1 (x, z,Q2) +

P̂µ P̂⌫

P · q FH
2 (x, z,Q2), (4.2)

where P̂µ = Pµ � P ·q
q2

qµ. We have not taken into account those terms proportional to the
polarized structure functions.

The spin-averaged SIDIS cross section for Q2 � M2 (M being the mass of the target nucleon),
is then given by

d�H

dx dy dz
=

2⇡↵2

x y Q2

"
⇥
1 + (1� y)2

⇤
2xFH

1 + (1� y) 2FH
L

#
. (4.3)

The longitudinal structure function is defined as FH
L = FH

2 � 2 xFH
1 and vanishes at lowest

order [238].

Defining the ratio

RH =
�H
L

�H
T

=
FH
L

2 xFH
1

, (4.4)

where �H
L and �H

T are the semi-inclusive cross section for longitudinal and transversely polarized
virtual photons respectively, Eq. (4.3) can be rewritten as

d�H

dx dy dz
=

2⇡↵2

x y Q2
FH
2

"
⇥
2(1� y) +

y2

1 +RH

#
. (4.5)

4.3 The structure functions at next-to-next-to leading or-
der

Assuming factorization, the SIDIS structure functions can be obtained as the convolution of
parton distribution functions (PDFs) and fragmentation functions (FFs), describing the low-
energy non perturbative behaviour, with short-distance coefficients that can be evaluated in
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perturbation theory. In general we can write

Fk(x, z,Q
2, µ2

F , µ
2
I , µ

2
r) =

X

qa,qb

qa ⌦ Cqa,qb
k ⌦Dh

qb
+
X

qa

qa ⌦ Cqa,g
k ⌦Dh

g

+
X

qb

g ⌦ Cg,qb
k ⌦Dh

qb
+ g ⌦ Cg,g

k ⌦Dh
g

�
(x, z,Q2, µ2

F , µ
2
I , µ

2
r) , (4.6)

where k 2 {1, L}, the sums are understood to run over all possible quark and anti-quark flavours
and ⌦ denotes the usual convolution,

(q ⌦ C ⌦Dh)(x, z,Q2, µ2
I , µ

2
F , µ

2
r) =

Z 1

x

dy

y

Z 1

z

d!

!
q(y, µ2

I)C

✓
x

y
,
z

!
, µ2

r,
Q2

µ2
I

,
Q2

µ2
F

,
Q2

µ2
r

◆

⇥Dh(!, µ2
F ) . (4.7)

The coefficient functions C ij
k (with i and j denoting the initial and hadronizing partons respec-

tively) can be perturbatively calculated as a series in the strong coupling constant ↵s,

C ij
k

✓
x, z, µ2

r,
Q2

µ2
I

,
Q2

µ2
F

,
Q2

µ2
r

◆
=
X

n

✓
↵s(µ2

r)

4⇡

◆n

C ij (n)
k

✓
x, z,

Q2

µ2
I

,
Q2

µ2
F

,
Q2

µ2
r

◆
. (4.8)

The renormalization scale µr represents the “hard-scale” at which the perturbative expansion
is performed whereas the factorization scales µI and µF separate conceptually the perturbative
regime from the non-perturbative one in the initial and final state part of the process respec-
tively. The PDFs q and g, describing the momentum fraction distribution of the parton inside
the struck hadron, and the FFs Dh

q and Dh
g , describing the fragmentation of the parton into

an hadron h, are process independent distributions that can be extracted from data through
global QCD analysis of reference processes. Although they cannot be obtained from first prin-
ciples in perturbative QCD, it is possible to predict their dependence on the factorization scale
µI,F once they are given at some reference scale µ0 by solving the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equations [49, 50, 119, 120]. Their respective space-like
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and time-like versions read

@

@ log µ2
I

fi(x, µ
2
I) =

X

j

✓
Pij

✓
µ2
r,
µ2
I

µ2
r

◆
⌦ fj(µ

2
I)

◆
(x) (4.9)

@

@ log µ2
F

Dh
fi
(z, µ2

F ) =
X

j

✓
P T
ji

✓
µ2
r,
µ2
F

µ2
r

◆
⌦Dh

fj
(µ2

F )

◆
(z) . (4.10)

Here the sum runs over all possible fj = qj, q̄j, g. The space-like and time-like splitting
functions, Pij and P T

ji respectively, are perturbative calculable functions. In the space-like case,
for example, the expansion in ↵s(µr) can be written as

Pij

✓
x, µ2

r,
µ2
r

µ2
I

◆
=
X

n

an+1
s

✓
µ2
r,
µ2
r

µ2
I

◆
P (n)
ij (x)

=as(µ
2
r)P

(0)
ij (x) + a2s(µ

2
r)

✓
P (1)
ij (x) + �0P

(0)
ij (x) log

✓
µ2
r

µ2
I

◆◆

+ a3s(µ
2
r)

✓
P (2)
ij (x) + 2�0P

(1)
ij (x) log

✓
µ2
r

µ2
I

◆

+

⇢
�1 log

✓
µ2
r

µ2
I

◆
+ �2

0 log
2

✓
µ2
r

µ2
I

◆�
P (0)
ij (x)

◆
+ . . .

=
X

n

an+1
s (µ2

r)

 
P (n)
ij (x) +

nX

m=1

logm
✓
µ2
r

µ2
I

◆ n�mX

k=0

An+1
k,mP

k
ij(x)

!
, (4.11)

where as = ↵s/4⇡ and �i are the usual expansion coefficients of the QCD beta function �(as) =
�a2s

P1
i=0 �i a

i
s. The second equality was obtained by re-expanding as(µ2

r, µ
2
r/µ

2
I) in terms of

as(µ2
r) (see Eq. (D.1)). The coefficients An+1

k,m collect the beta terms coming from this expansion
and they will be of use for further discussion in Appendix D. For the sake of notation and
simplicity, we can proceed by setting all scales equal, µ2

I = µ2
F = µ2

r = Q2 without loss of
information. A sketch on how it is possible to recover all scale dependences is given in Appendix
D for a specific case.

Eqs. (4.9) for the PDFs and (4.10) for the FFs are each 2Nf + 1 integro-differential coupled
equations, with Nf being the number of active massless flavours. It is customary to rewrite the
quark sector into flavour singlet combinations

qS ⌘ 1

Nf

NfX

i

(qi + q̄i), Dh
S ⌘ 1

Nf

NfX

i

(Dh
qi
+Dh

q̄i
), (4.12)
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which evolve together with g and Dh
g respectively according to

@

@ logQ2

 
qS

g

!
=

 
Pqq Pqg

Pgq Pgg

!
⌦
 
qS

g

!
,

@

@ logQ2

 
Dh

S

Dh
g

!
=

 
P T
qq P T

gq

P T
qg P T

gg

!
⌦
 
Dh

S

Dh
g

!
, (4.13)

and three non-singlet combinations for PDFs and for FFs

q±ns, ik = qi ± q̄i � (qk ± q̄k) Dh,±
ns, ik = Dh

qi
±Dh

qi
� (Dh

qk
±Dh

q̄k
) (4.14)

qvi = qi � q̄i Dh, v
qi

= Dh
qi
�Dh

q̄i
(4.15)

which evolve independently with P+
ns, P�

ns, P v
ns, P T,+

ns , P T,�
ns , P T, v

ns and decouple the remaining
2Nf � 1 equations. All splitting functions are known up to NNLO [71, 122–124, 155]. For a
detailed discussion on the NNLO evolution see Chapter 2.

As it is done in the literature for the totally inclusive case [48, 230], the structure functions
in Eq. (4.6) can be explicitly written as functions of non-singlet and singlet PDFs and FFs
combinations. This is especially relevant at NNLO since different diagrammatic contributions
to the flavour combinations are made manifest. In the DIS inclusive case, for example, it is
common to write the structure functions separating the “non-singlet” (NS) from the “singlet”
(S) contributions CNS

k and CS
k which at O(a2s) start to differ from each other [230]:

FDIS
k (x,Q2) =

X

j

⇣
C

DIS, qj
k ⌦ qj + C

DIS, q̄j
k ⌦ q̄j

⌘
+ CDIS, g

k ⌦ g (4.16)

=
X

j

e2qjC
NS
k ⌦ qNS

j (x,Q2) +

✓X

j

e2qj

◆h
CS

k ⌦ qS + CDIS, g
k ⌦ g

i
(x,Q2) , (4.17)

where k 2 {1, L}, eqj are the electromagnetic charges of quarks and all sums run over the active
flavours. The flavour combination qNS

j is defined as

qNS
j ⌘ 1

Nf

NfX

k=1

q+ns, jk = (qj + q̄j)� 1

Nf

NfX

k=1

(qk + q̄k) (4.18)

and therefore evolves with P+
ns whereas qS was defined in (4.12) and evolves according to (4.9).

The equality between (4.16) and (4.17) is a direct consequence of the charge conjugation sym-
metry CDIS, qi

k = CDIS, q̄i
k when the considered incoming vector is a photon. In fact we can
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distinguish between NS diagrammatic contributions and “pure-singlet” (PS) ones and write

CDIS, qi
k = CDIS, q̄i

k = e2qiC
NS
k +

1

Nf

✓X

j

e2qj

◆
CPS

k . (4.19)

In this case one defines NS contributions to be the ones where either on the left side or on
the right side of the cut diagrams the struck parton is directly connected to the incoming
quark through a quark line (e.g. at NNLO C2 or BC in Fig. 4.1). On the other hand, PS
contributions generate from cut diagrams where on both sides of the cut the struck parton is
separated by gluon lines from the incoming quark (e.g. at NNLO A2 in Fig. 4.1). Inserting
Eq. (4.18) in (4.16) one obtains (4.17) with CS

k = CNS
k + CPS

k . Charge conjugation breaking
terms proportional to ei

P
j ej vanish at each order either due to their colour structure or due

to Furry’s theorem, which means that (4.19), and therefore (4.17), are all-order valid equalities.

In the semi-inclusive case, the identification of a final state hadron complicates the above
described diagrammatic contribution’s separation since Cqi, qi

k 6= Cqi, q̄i
k 6= C

qi, qj
k . In particular

non vanishing terms proportional to eiej start to appear at NNLO due to contributions where
the convolution with different FFs for quark and anti-quark spoils Furry’s theorem: for example
the q1 ⌦ Cq1, q2, (AC)

k ⌦ Dh
q2

and q1 ⌦ Cq1, q̄2, (AC)
k ⌦ Dh

q̄2
terms generating from the interference

term AC in Fig 4.1 do not vanish in the sum since in general Dh
q2
6= Dh

q̄2
although Cq1, q2, (AC)

k =

�Cq1, q̄2, (AC)
k . By introducing the corresponding time-like “non-singlet” combinations

Dh,NS
qj

⌘ 1

Nf

NfX

k=1

Dh,+
ns, ik = (Dh

qj
+Dh

q̄j
)� 1

Nf

NfX

k=1

(Dh
qk
+Dh

q̄k
) , (4.20)

we can express the semi-inclusive structure functions (4.6) as

F = (qS, g)⌦
 CS,DS CS,g

Cg,DS Cg,g

!
⌦
 
Dh

S

Dh
g

!

+

NfX

i

qNS
i ⌦ (CNS,DS

qi
, Cqi,g)⌦

 
Dh

S

Dh
g

!
+

NfX

j

(qS, g)⌦
 CS,DNS

qj

Cg,qj

!
⌦Dh,NS

qj

(4.21)
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+

NfX

i,j

qNS
i ⌦ CNS

qi,qj
⌦Dh,NS

qj
+

NfX

i

qvi ⌦ Cv
qi,qi

⌦Dh, v
qi

+
X

i,j
i 6=j

qvi ⌦ Cv
qi,qj

⌦Dh, v
qj

(4.22)

where the index “k” and the dependencies on x, z and Q2 were dropped in order to simplify
the notation. The above formula is valid to all orders and the different coefficient functions C
relate to the coefficient functions C in (4.8) according to the following equalities:

CS,DS =
1

2

NfX

i

NfX

j

(Cqi,qj + Cqi,q̄j) CS,g =

NfX

i

Cqi,g Cg,DS =

NfX

j

Cg,qj Cg,g = Cg,g

CNS,DS
qi

=
1

2

NfX

j

(Cqi,qj + Cqi,q̄j) Cqi,g = Cqi,g

CS,DNS
qj

=
1

2

NfX

i

(Cqi,qj + Cqi,q̄j) Cg,qj = Cg,qj

CNS
qi,qj

=
1

2
(Cqi,qj + Cqi,q̄j) Cv

qi,qj
=

1

2
(Cqi,qj � Cqi,q̄j) (4.23)

Here again we have dropped the index “k” and the dependencies x, z and Q2 for readability.
In a similar way as in (4.19), we can categorise the different contributions according to their
electromagnetic charge dependences. Up to O(a2s) the coefficient functions Cqi,qj can be written
as follows:

Cqi,qi = C q̄i,q̄i = e2qiC
NS
qq +

1

Nf

✓X

i

e2qi

◆
CPS

qq Cqi,q̄i = C q̄i,qi = e2i (C
1
qq̄ � C2

qq̄)

Cqi,qj = C q̄i,q̄j i 6=j
= e2qiC

1
qq0 + e2qjC

2
qq0 + eqieqjC

3
qq0 Cqi,g = C q̄i,g = e2qiCqg

Cqi,q̄j = C q̄i,qj i 6=j
= e2qiC

1
qq0 + e2qjC

2
qq0 � eqieqjC

3
qq0 Cg,qi = Cg,q̄i = e2qiCgq

Cg,g =
1

Nf

✓X

i

e2qi

◆
Cgg . (4.24)

At O(a0s) only the CNS
qq differs from zero whereas the gluon-fusion contribution Cgq and the

gluon-radiation term Cqg appear for the first time at NLO. They have been computed for both
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Figure 4.1: Diagram contributions to the sub-process � ⇤ +q ! q(1) + “q”(2) + q̄ (and
� ⇤ +q̄ ! q̄(1) + “q̄ ”(2) + q if the arrows are inverted in group A and B). Particle “2” is
assumed to be the one fragmenting in the semi-inclusive case.

F1 and FL up to O(as) in [108, 111]. The remaining coefficients CPS
qq , C1,2

qq̄ , C1,2,3
qq0 , Cgg in (4.24)

are non-zero for the first time at NNLO and they are generated at this order from the 2 to 3
diagrams of Fig. 4.1 and 4.3 [239]. Specifically :

• C(2)
gg takes contributions from squaring the diagrams in Fig. 4.3 and from the squared

amplitudes generated by their interferences,

• B2 in Fig. 4.1 is the only contribution to CPS, (2)
qq ,

• C1, (2)
qq̄ is generated by A2 and C2 with fragmenting anti-quark (quark) of same flavour of

the incoming quark (anti-quark) in Fig. 4.1,

• C2, (2)
qq̄ is generated by the interference term AC in Fig. 4.1 with fragmenting particle being

an anti-quark (quark) of same flavour of the incoming quark (anti-quark),

• C1, (2)
qq0 takes contributions only from C2 in Fig. 4.1 when fragmenting and incoming quark

or anti-quark are of different flavours,

• A2 in Fig. 4.1 is the only contribution to C2, (2)
qq0 when fragmenting and incoming quark or

anti-quark are of different flavours,
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a) b) c)

Figure 4.2: Cut diagrams proportional to
P

i

�
e2qi
�
/Nf . The grey blob indicates the frag-

menting outgoing particle. a), b) contribute to the third order Cqi,g, (3) and Cg,qi, (3) respectively
whereas c) contributes both to the fourth order Cqi,q̄i, (4) and to Cqi,qj , (4).

• The interference term AC in Fig. 4.1 contributes to C3, (2)
qq0 when fragmenting and incoming

quark or anti-quark are of different flavours.

Moreover, the O(a2s) contribution to the CNS
qq coefficient generates from loop and radiative cor-

rections to the O(a0s) and O(as) diagrams together with the A2, C2, D2, AD, BC contributions
form Fig. 4.1 when the incoming quark (anti-quark) and the fragmenting quark (anti-quark)
are of the same flavour. Contributions proportional to

P
i

�
e2qi
�
/Nf will appear only starting

from N3LO for the coefficients Cqi,g and Cg,qi whereas for Cqi,qj and Cqi,q̄i this will happen at
N4LO. An example of such contributions is given in Fig. 4.2.
As a last remark of this section, we want to stress the peculiarity of the C3

qq0 coefficient. It
generates from diagrams of the type that would vanish in the sum in the inclusive case. In
SIDIS however, it isolates the “valence” combinations of PDFs and FFs when the incoming and
the fragmenting quark or anti-quark are of different flavours. In fact, at NNLO C3

qq0 is the only
coefficient that contributes to the last line of Eq. (4.21).

4.4 Calculation of the new contributions to the longitudi-
nal structure function

In the last section we have summarized the different NNLO contributions to the structure
function that need to be calculated for a full O(a2s) result. We start by calculating the simplest
corrections to the longitudinal structure function, namely the coefficients C1,(2)

L, qq0, C
2,(2)
L,qq0, C

3,(2)
L,qq0
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and C(2)
L, gg0, whose definitions can be found in Eq. (4.24). As already discussed in Section 4.3,

they represent two channels that appear for the first time at NNLO: �⇤ + q ! q + q̄0 + q0 with
fragmenting quark or anti-quark of different flavour of the incoming quark or anti-quark, and
�⇤+g ! q+ q̄+g with the fragmenting parton being the gluon g. From now on, we will indicate
these two processes with qq0 and gg respectively. Considering only qq0 and gg channels, the
structure function in (4.6) can be written using Eqs. (4.23) and (4.24) as

F (2)
L,(qq0+gg)(x, z,Q

2) = a2s(Q
2)

(
NfX

i

e2qi

"✓
qNS
i + qS

◆
⌦ C1,(2)

L,qq0 ⌦
✓ NfX

j
j 6=i

⇣
Dh,NS

qj

⌘
+ (Nf � 1)Dh

S

◆

+

✓⇣ NfX

j
j 6=i

qNS
j

⌘
+ (Nf � 1)qS

◆
⌦ C2,(2)

L,qq0 ⌦
✓
Dh,NS

qi
+Dh

S

◆
+

1

Nf

g ⌦ C(2)
L, gg ⌦Dh

g

#
(x, z)

+

NfX

i

NfX

j
j 6=i

eqieqj

"
qvi ⌦ C3,(2)

L,qq0 ⌦Dh, v
qj

#
(x, z)

)
(4.25)

Since no lower order diagrams are present for those channels, no loop corrections and no distri-
butions appear at this level of accuracy. This simplifies the calculation considerably. Hereinafter
the main highlights of our calculation are presented.

In order to regularize the divergences that appear at the intermediate stages of the computation
we use dimensional regularization [240, 241], i.e., we work in a d-dimensional space, with
d = 4� 2✏. All quarks are considered massless.

The diagrams contributing to qq0 and gg channel are shown in Figs. 4.1 and 4.3. We compute
the squared amplitudes for each channel with the Mathematica packages FeynArts [242]
and FeynCalc [243]. When summing over the gluon helicities we only take into account the
physical ones:

X

�

"µ(p,�)"
⇤
⌫(p,�) = �gµ⌫ +

nµ p⌫ + n⌫ pµ
n · p , (4.26)

with n an auxiliar vector (n2 = 0). The explicit dependence on n drops out due to gauge
invariance. The same result is obtained by working in a covariant gauge and thus taking
external ghosts lines into account.
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Figure 4.3: Contributing diagrams to the gg channel (�⇤ + g ! q(1) + q̄ + “g”(2)). As for
before, particle “2” is assumed to be the one fragmenting.

Since the phase space integration has to be performed over the momenta of the unobserved
partons (for instance, quark-antiquark pair for the gg channel), we decide to work in the center
of mass frame of these two outgoing partons. In this frame, we still have the chance to choose
which one of the remaining momenta defines the z-axis [244]. This choice defines three different
sets of kinematic variables. While the set with the photon’s momentum (q) along the z-axis is
not useful, since the photon is not massless, the other two sets are convenient for parametrizing
different terms of the computation. For all the sets available, we can define

2 q · kh =
Q2

x
[1� x� z � (1� x)(1� z) y] , (4.27)

with kh being the momentum of the hadronizing parton (gluon in the gg channel and q0 or q̄0

for the qq0 channel), x and z the usual SIDIS variables.

At the end, the amplitude can be written in terms of just Q2, x, z, y, and the polar and
azimuthal angles of the pair of unobserved partons: ✓ and � respectively. Then, we can obtain
each one of the coefficients Cjk

L as the finite part of the partonic structure function, defined by

F jk
L =

1

4⇡

Z
d� P µ⌫

L |M jk|2µ⌫ , (4.28)

where d� is the d-dimensional phase-space and the longitudinal projector is

P µ⌫
L =

8 x2

Q2
pµ p⌫ . (4.29)
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The d-dimensional phase-space can be written as [245]

Z
d� =

1

(4⇡)4�2✏

(s+Q2)1�2✏

�(1� 2✏)
(1� x)1�2✏ z�✏ (1� z)1�2✏

⇥
Z ⇡

0

d✓

Z ⇡

0

d� (sin ✓)1�2✏ (sin�)�2✏

Z 1

0

dy [y (1� y)]�✏ . (4.30)

All the angular integrals of Eq. (4.28) can be written, by means of partial fractioning, as

I(k, l, a, b, A,B,C) =

Z ⇡

0

d✓

Z ⇡

0

d�
(sin ✓)1�2✏ (sin�)�2✏

(a+ b cos ✓)k(A+B cos ✓ + C cos� sin ✓)l
. (4.31)

These integrals need to be classified according to the relations their parameters satisfy: i)
a2 = b2, ii) A2 = B2 + C2, iii) both relations or iv) neither of them. Besides, the integrals of
group ii) can be recasted in terms of those of group i). In some cases (in particular whenever
an integral of type iv) appears, but also for some integrals of group i)) we can compute the
angular integrals in 4 dimensions. Nevertheless, some of the integrals are divergent and we
therefore need a d-dimensional computation. Since the integration over y does not introduce
extra poles for the contributions studied in this chapter, we can expand the results of the
angular integrations up to order 0 in ✏.

Most of the angular integrals that we need can be found in Appendix C of [244]. We had
to compute, however, some unknown ones that are presented in Appendix E for the sake of
completeness. These new integrals have been computed in 4 dimensions and are valid for groups
i) and iv) enumerated above.

Moreover, we need to perform the integration over y, after expanding the integrand up to order
0 in ✏. It is important to notice that this integral is not straightforward. Instead, several
changes of variables must be done and some terms must even be rewritten in a clever way to
avoid the appearance of spurious divergences in the intermediate steps.

For instance, one of the terms that appear in our computation is

1

(q � kh)2(q � k2)2
=

=
1

(Q2 + u)

2

Q2
I[0, 1, a, b,

Q2 + s� u

Q2
,
Q2 + s� t� (t+ u) cos( )

Q2
,�(t+ u) sin( )

Q2
]
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=
2⇡x2

Q4(1� z)

log

✓
(x+z+y(1�x)(1�z))+

p
(x+z+y(1�x)(1�z))2�4xz

(x+z+y(1�x)(1�z))�
p

(x+z+y(1�x)(1�z))2�4xz

◆

(1 + (�1 + x)y)
p

((x+ z + y(1� x)(1� z))2 � 4xz)
.

Here, k2 is the momentum of one of the partons in the final state that do not hadronize. Written
like that, it cannot be integrated. However, after the change of variable y ! w�x�z

(1�x)(1�z)
, equation

(4.32) becomes

1

(q � kh)2(q � k2)2
=

2⇡x2

Q4

log(4xz)� 2 log
�
w +

p
w2 � 4xz

�

(w � x� 1)
p
w2 � 4xz

, (4.32)

whose integral can be performed analytically.
At the end, we obtain the functions F jk

L defined in (4.28). These contain collinear divergences,
that appear as poles in ✏ (for these processes at NNLO, simple poles in ✏). We factorize these
divergences within the MS scheme, by subtraction of the quantities

F̃ qq0

L (x, z) =
1

✏̂

h
Cgq0,(1)

L (x, z)⌦ P (0)
gq (x) + Cqg,(1)

L (x, z)⌦ P T,(0)
qg (z)

i
,

F̃ gg
L (x, z) =

1

✏̂

h
Cqg,(1)

L (x, z)⌦ P (0)
qg (x) + Cgq,(1)

L (x, z)⌦ P T,(0)
gq (z)

i
, (4.33)

where P (0)
jk are the unpolarized LO splitting functions and we define

1

✏̂
=


�1

✏
+ �E � log(4⇡)

�
, (4.34)

with �E = 0, 5772... the Euler constant. The finite functions obtained after factorization are
the coefficients Cjk

L . Given the length of these coefficients, we do not show them here, but
available upon request at the authors of [J6].

4.5 Results

We analyze in this section the differences between the semi-inclusive and the inclusive cross
section ratio and we show the relevance of the NNLO corrections we have computed. The
behavior of the SIDIS ratio R is studied in the range 0.1 < z < 1 for different x values. We
rely on MSTW PDFs [178] and DSS fragmentation functions [77]. We fix all scales equal to Q

and consider Nf = 4 active flavours.
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Figure 4.4: NLO longitudinal-transversal ratio at Q2 = 7GeV2. The solid curves show the
semi-inclusive case, with the observation of a ⇡+ (left side) and a K+ (right side) in the final
state, while the dashed ones shows the inclusive case.

In Fig 4.4 we show the semi-inclusive ratio R at NLO for Q2 = 7GeV2 when a ⇡+ (left) or a
K+ (right) are observed in the final state. We compare it with the value of the fully-inclusive
ratio also at NLO (dashed line), which does not depend on z. As we can see, the fully-inclusive
and the semi-inclusive results may differ by a factor of two in the relevant kinematical region
(and even more close to the edges). Thus, an accurate semi-inclusive description of R is crucial
for phenomenological analyses and may not be, in general, approximated by the inclusive one.
In Fig. 4.5 we present the predictions for the semi-inclusive R ratio including the contributions
to the longitudinal structure function at NNLO considered in our work, at Q2 = 7GeV2 and for
different final-state hadrons. We should mention that NLO PDFs and FFs are used in order to
fully appreciate the effect of the corrections introduced by the new coefficients.The inset plots
show the ratio between the NNLO and the NLO computation presented in this chapter.
We can see that the corrections introduced by the NNLO contributions presented here turn out
to be negative and, therefore, tend to considerably reduce the value of R with respect to the
previous order. The corrections are specially sizeable for the low-z and high-z regions. This is
likely due to the appearance of logarithmic terms introduced by the NNLO contributions and
therefore only present in the numerator of the ratio R.
Due to the quark composition of kaons and protons, the contribution coming from F (2)

L,qq0 is
dominant for K+ and K�, for all x values analyzed. In fact, more than 80% of the new NNLO
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Figure 4.5: Longitudinal-transversal ratio computed taking into account the NNLO contribu-
tions considered in this chapter for different hadrons observed in the final state, at Q2 = 7GeV2.
The inset plots show the ratio between the NNLO and the NLO computation presented in this
chapter.

correction arises from that channel. The situation is different for pions and in this case the
corrections from qq0 and gg channels turn out to be even of the same order for some kinematic
regions.
Despite of including only a subset of contributions at NNLO, those in principle expected to be
small due to their particular structure, the corrections to the longitudinal structure function
turn out to be rather sizable, making the calculation of the full corrections even more mandatory.

4.6 Conclusions

In this chapter, we have discussed the results of [J6] where a first calculation of the O(↵2
s)

contributions to the SIDIS longitudinal structure function generated by partonic channels ap-
pearing for the first time at NNLO was presented together with an extensive discussion of the
general aspects useful for the organization of the complete NNLO calculation.
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We have started by studying the flavour decomposition of the full cross section. We have shown
how to express both longitudinal and transversal structure functions in terms of usual singlet
and non-singlet combinations of PDFs and FFs relevant in global analysis fits, thus exposing
the flavour structure of the SIDIS cross section. For instance, one can notice that a specific
contribution calculated here in this chapter, namely C3

qq0(2), isolates a particular “valence” flavor
contribution, to which a NLO cross section would be insensitive. Along the way, we have given
a summary of the different diagrammatic contributions to the partonic sub-processes in view
of the full NNLO calculation. In the same spirit, a general recursive formula to reconstruct the
dependence on both factorization scales involved in the SIDIS process at an arbitrary order in
the strong coupling constant was derived.

In a second part, we have given details of our computation for the two channels treated in [J6]. In
particular, the procedure to analytically calculate the phase space integrals has been discussed
and a set of new angular integrals was presented. Although the calculated channels are a partial
component of the full set of NNLO corrections to the cross section, we have discussed some
phenomenological study done on the observable R as a theoretical investigation of the relevance
of NNLO corrections to the cross section. It turns out that the small fraction of contributions
calculated so far do exhibit sizeable corrections especially in the low-z and high-z region, likely
due to the appearance of logarithms that are only present in the numerator.

Not only these observations are of theoretical interest, but stating whether or not this is also
the case once all corrections up to NNLO are added is of great importance when it comes to
extracting FFs from SIDIS data. As it is well know, including SIDIS data in a global analysis
helps disentangling the different single flavour contributions to the fragmenting process. Even
more at NNLO where the appearance of new channels discriminates specific new combinations
of PDFs and FFs. Nonetheless, only with the full calculation available one can at the end asses
their phenomenological relevance in the overall picture of a global analysis. With the precision
of the FFs having been recently extended to NNLO and beyond in the context of electron-
positron to pion only analysis, it is then natural to try to acquire the sort of “know how” needed
to complete a NNLO calculation of the SIDIS process. In an attempt to attack this problem
with an analytical approach, we have started by computing in [J6] the first simplest corrections
to the longitudinal structure function as a playground where to explore and organize the future
complete calculation. From a theoretical point of view, only with analytical results available
one gathers useful insight in the structure of the perturbative series. A complete analytical
calculation could in fact be relevant for further applications which go beyond PDFs and FFs
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analyses. For instance, knowing the structure of sub-leading logarithms connected with precise
phase-space configurations is an essential ingredient in order to extend resummation techniques
to higher accuracy.
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CHAPTER 5

Threshold resummation for polarized (semi-)inclusive deep inelastic

scattering

We explore the effects of the resummation of large logarithmic perturbative corrections to
double-longitudinal spin asymmetries for inclusive and semi-inclusive deep inelastic scattering
in fixed-target experiments. We find that the asymmetries are overall rather robust with respect
to the inclusion of the resummed higher-order terms. Significant effects are observed at fairly
high values of x, where resummation tends to decrease the spin asymmetries. This effect turns
out to be more pronounced for semi-inclusive scattering. We also investigate the potential
impact of resummation on the extraction of polarized valence quark distributions in dedicated
high-x experiments. This chapter is based on our published work [J2].

5.1 Introduction

Longitudinal double-spin asymmetries in inclusive and semi-inclusive deep inelastic scattering
have been prime sources of information on the nucleon’s spin structure for several decades.
They may be used to extract the helicity parton distributions of the nucleon,

�f(x,Q2) ⌘ f+(x,Q2)� f�(x,Q2) , (5.1)
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where f+ and f� are the distributions of parton f = q, q̄, g with positive and negative he-
licity, respectively, when the parent nucleon has positive helicity. x denotes the momentum
fraction of the parton and Q the hard scale at which the distribution is probed. Inclusive
polarized deep inelastic scattering (DIS), ~̀~p ! `X, offers access to the combined quark and
antiquark distributions for a given flavor, �q + �q̄, whereas in semi-inclusive deep inelastic
scattering (SIDIS), ~̀~p ! `hX, one exploits the fact that a produced hadron h (like a ⇡+) may
for instance have a quark of a certain flavor as a valence quark, but not the corresponding
antiquark [246]. In this way, it becomes possible to separate quark and antiquark distributions
in the nucleon from one another, as well as to better determine the distributions for the various
flavors. HERMES [247] and recent COMPASS [234] measurements have marked significant
progress concerning the accuracy and kinematic coverage of polarized SIDIS measurements.
The inclusive measurements have improved vastly as well [248–253]. Some modern analyses of
spin-dependent parton distributions include both inclusive and semi-inclusive data [254–257].
In addition, high-precision data for polarized SIDIS will become available from experiments to
be carried out at the Jefferson Lab after the CEBAF upgrade to a 12 GeV beam [258]. Here
the focus will be on the large-x regime.

A good understanding of the theoretical framework for the description of spin asymmetries in
lepton scattering is vital for a reliable extraction of polarized parton distributions. In a recent
paper [J1] we have investigated the effects of QCD threshold resummation on hadron multiplic-
ities in SIDIS in the HERMES and COMPASS kinematic regimes. SIDIS is characterized by
two scaling variables, Bjorken-x and a variable z given by the energy of the produced hadron
over the energy of the virtual photon in the target rest frame. Large logarithmic corrections to
the SIDIS cross section arise when the corresponding partonic variables become large, corre-
sponding to scattering near a phase space boundary, where real-gluon emission is suppressed.
This is typically the case for the presently relevant fixed-target kinematics. Threshold resum-
mation addresses these logarithms to all orders in the strong coupling. In [J1] we found fairly
significant resummation effects on the spin-averaged multiplicities. Since the spin-dependent
cross section is subject to similar logarithmic corrections as the unpolarized one, it is worth-
while to explore the effects of resummation on the spin asymmetries. This is the goal of the
work [J2] presented in this chapter. Our calculations is carried out both for inclusive DIS and
for SIDIS. We note that previous work [259, 260] has addressed the large-x resummation for
the inclusive spin-dependent structure function g1, with a focus on the moments of g1 and their
Q2-dependence. In this chapter we are primarily concerned with spin asymmetries and with
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semi-inclusive scattering.
Our work will use the framework developed in [J1]. In Section 5.2, we briefly review the basic
terms and definitions relevant for longitudinal spin asymmetries, and we describe the extension
of threshold resummation to the polarized case. In Section 5.3 our phenomenological results
are presented. We compare our resummed inclusive and semi-inclusive spin asymmetries with
available HERMES, COMPASS and Jefferson Lab data. We also discuss the relevance of
resummation for the extraction of �u/u and �d/d at large values of x.

5.2 Resummation for Longitudinal Spin Asymmetries in
DIS and SIDIS

5.2.1 Leading and next-to-leading order expressions

We first consider the polarized SIDIS process ~̀(k)~p(P ) ! `(k0)h(Ph)X with longitudinally
polarized beam and target and with an unpolarized hadron in the final state. The corresponding
double-spin asymmetry is given by a ratio of structure functions [247]:

Ah
1(x, z,Q

2) ⇡ gh1 (x, z,Q
2)

F h
1 (x, z,Q

2)
, (5.2)

where Q2 = �q2 with q the momentum of the virtual photon, x = Q2/(2P · q) is the usual
Bjorken variable, and z ⌘ P · Ph/P · q the corresponding hadronic scaling variable associated
with the fragmentation process.
Using factorization, the polarized structure function gh1 , which appears in the numerator of
Eq. (5.2), can be written as

2gh1 (x, z,Q
2) =

X

f,f 0=q,q̄,g

Z 1

x

dx̂

x̂

Z 1

z

dẑ

ẑ
�f

⇣x
x̂
, µ2

⌘
Dh

f 0

⇣z
ẑ
, µ2

⌘
�Cf 0f

✓
x̂, ẑ,

Q2

µ2
,↵s(µ

2)

◆
,

(5.3)

where �f(⇠, µ2) denotes the polarized distribution function for parton f of Eq. (5.1), whereas
Dh

f 0 (⇣, µ2) is the corresponding fragmentation function for parton f 0 going to the observed
hadron h. The �Cf 0f are spin-dependent coefficient functions. We have set all factorization
and renormalization scales equal and collectively denoted them by µ. In (5.3) x̂ and ẑ are the
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partonic counterparts of the hadronic variables x and z. Setting for simplicity µ = Q, we use
the short-hand-notation

2gh1 (x, z,Q
2) ⌘

X

f,f 0=q,q̄,g

⇥
�f ⌦�Cf 0f ⌦Dh

f 0
⇤
(x, z,Q2) (5.4)

for the convolutions in (5.3). A corresponding expression for the “transverse” unpolarized
structure function 2F h

1 can be written by replacing the polarized parton distributions with the
unpolarized ones, and using unpolarized coefficient functions which we denote here by Cf 0f .

The spin-dependent hard-scattering coefficient functions �Cf 0f in (5.3) can be computed in
perturbation theory:

�Cf 0f = �C(0)
f 0f +

↵s(µ2)

2⇡
�C(1)

f 0f +O(↵2
s) . (5.5)

At leading order (LO), we have

�Cqq(x̂, ẑ) = �Cq̄q̄(x̂, ẑ) = e2q �(1� x̂)�(1� ẑ) , (5.6)

with the quark’s fractional charge eq. All other coefficient functions vanish. The same result
holds for the LO coefficient function for the spin-averaged structure function 2F h

1 . Hence the
asymmetry in Eq. (5.2) reduces to

Ah
1 =

P
q

e2q
⇥
�q(x,Q2)Dh

q (z,Q
2) +�q̄(x,Q2)Dh

q̄ (z,Q
2)
⇤

P
q

e2q
⇥
q(x,Q2)Dh

q (z,Q
2) + q̄(x,Q2)Dh

q̄ (z,Q2)
⇤ . (5.7)

At next-to-leading order (NLO), Eq. (5.3) becomes

2gh1 (x, z,Q
2) =

X
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⇢
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2) + q̄(x,Q2)Dh

q̄ (z,Q
2)

+
↵s(Q2)

2⇡

⇥�
�q ⌦Dh

q +�q̄ ⌦Dh
q̄

�⌦�C(1)
qq

+(�q +�q̄)⌦�C(1)
gq ⌦Dh

g +�g ⌦�C(1)
qg ⌦ (Dh

q +Dh
q̄ )
⇤
(x, z,Q2)

�
,

(5.8)

where the symbol ⌦ denotes the convolution defined in Eqs. (5.3),(5.4). The explicit expres-
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sions for the spin-dependent NLO coefficients �C(1)
f 0f have been derived in [111, 205]. The

corresponding spin-averaged NLO coefficient functions C(1)
f 0f may be found in [J1, 48, 108–111,

205].
In the case of inclusive polarized DIS, the longitudinal spin asymmetry A1 is given in analogy
with (5.2) by

A1(x,Q
2) ⇡ g1(x,Q2)

F1(x,Q2)
. (5.9)

The inclusive structure functions g1 and F1 have expressions analogous to their SIDIS counter-
parts, except for the fact that they do not contain any fragmentation functions, of course. The
unpolarized and polarized NLO coefficient functions for inclusive DIS may be found at many
places; see, for example [48, 261].

5.2.2 Threshold resummation

As was discussed in [J1], the higher-order terms in the spin-averaged SIDIS coefficient function
Cqq introduce large terms near the “partonic threshold” x̂ ! 1, ẑ ! 1. The same is true for the
spin-dependent �Cqq. At NLO, choosing again for simplicity the scale µ = Q, one has

�C(1)
qq (x̂, ẑ) ⇠ e2qCF

"
+ 2�(1� x̂)

✓
ln(1� ẑ)

1� ẑ

◆

+

+ 2�(1� ẑ)

✓
ln(1� x̂)

1� x̂

◆

+

+
2

(1� x̂)+(1� ẑ)+
� 8�(1� x̂)�(1� ẑ)

#
, (5.10)

where the “+”-distribution is defined as usual. The expression on the right-hand side is in
fact identical to the one for the unpolarized coefficient function near threshold [J1]. At the
kth order of perturbation theory, the coefficient function contains terms of the form ↵k

s�(1 �
x̂)
⇣

ln2k�1(1�ẑ)
1�ẑ

⌘

+
, ↵k

s�(1� ẑ)
⇣

ln2k�1(1�x̂)
1�x̂

⌘

+
, or “mixed” distributions ↵k

s

⇣
lnm(1�x̂)

1�x̂

⌘

+

⇣
lnn(1�ẑ)

1�ẑ

⌘

+
with m+ n = 2k � 2, plus terms less singular by one or more logarithms. Again, each of these
terms will appear equally in the unpolarized and in the polarized coefficient function. The
reason for this is that the terms are associated with emission of soft gluons [J1], which does not
care about spin. Threshold resummation addresses the large logarithmic terms to all orders
in the strong coupling. The resummation for the case of SIDIS was carried out in [J1]. Given
these results and the equality of the spin-averaged and spin-dependent coefficient functions
near threshold, it is relatively straightforward to perform the resummation for the polarized
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case. Having the resummation for both gh1 and F h
1 , we obtain resummed predictions for the

experimentally relevant spin asymmetry Ah
1 .

In [J1, 131, 199] threshold resummation for SIDIS was derived using an eikonal approach, for
which exponentiation of the threshold logarithms is achieved in Mellin space. One takes Mellin
moments of gh1 separately in the two independent variables x and z [108, 262]:

g̃h1 (N,M,Q2) ⌘
Z 1

0

dxxN�1

Z 1

0

dzzM�1 gh1 (x, z,Q
2). (5.11)

With this definition, Eq. (5.4) takes the form (again at scale µ = Q)

2g̃h1 (N,M,Q2) =
X

f,f 0=q,q̄,g

�f̃N(Q2)�C̃f 0f (N,M,↵s(Q
2))D̃h,M

f 0 (Q2) ,

(5.12)

where the moments of the polarized parton distributions and the fragmentation functions are
defined as

�f̃N(Q2) ⌘
Z 1

0

dxxN�1�f(x,Q2),

D̃h,M
f 0 (Q2) ⌘

Z 1

0

dzzM�1Dh
f 0(z,Q2), (5.13)

and the double Mellin moments of the polarized coefficient functions are

�C̃f 0f

�
N,M,↵s(Q

2)
� ⌘

Z 1

0

dx̂x̂N�1

Z 1

0

dẑẑM�1�Cf 0f

�
x̂, ẑ, 1,↵s(Q

2)
�
.

(5.14)

Large x̂ and ẑ in �Cf 0f correspond to large N and M in �C̃f 0f , respectively.

The resummed spin-dependent coefficient function is identical to the spin-averaged one of [J1]
and reads to next-to-leading logarithmic (NLL) accuracy in the MS-scheme:

�C̃res
qq (N,M,↵s(Q

2)) = e2qHqq

�
↵s(Q

2)
�
exp

"
2

Z Q2

Q2

N̄M̄

dk2
?

k2
?
Aq

�
↵s(k

2
?)
�
ln

✓
k?
Q

p
N̄M̄

◆#
, (5.15)
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where N̄ ⌘ Ne�E , M̄ ⌘ Me�E , with �E the Euler constant, and

Aq(↵s) =
↵s

⇡
A(1)

q +
⇣↵s

⇡

⌘2

A(2)
q + . . . (5.16)

is a perturbative function. The coefficients required to NLL read

A(1)
q = CF , A(2)

q =
1

2
CF


CA

✓
67

18
� ⇡2

6

◆
� 5

9
Nf

�
, (5.17)

where CF = 4/3, CA = 3 and Nf is the number of active flavors. Furthermore,

Hqq (↵s) = 1 +
↵s

2⇡
CF

✓
�8 +

⇡2

3

◆
+O(↵2

s) . (5.18)

The explicit NLL expansion of the exponent in (5.15) is given by [J1]

Z Q2
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dk2
?

k2
?
Aq

�
↵s(k

2
?)
�
ln

✓
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Q

p
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◆
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q

✓
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2

◆
�NM

2b0↵s(µ2)
+ h(2)

q

✓
�NM

2
,
Q2
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,
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◆
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(5.19)

where �NM ⌘ b0↵s(µ2)
�
log N̄ + log M̄

�
and h(1)

q (�) and h(2)
q

⇣
�, Q

2

µ2 ,
Q2

µ2
F

⌘
are given in Eq. (3.32)

The functions h(1)
q , h(2)

q collect all leading-logarithmic and NLL terms in the exponent, which
are of the form ↵k

s ln
n N̄ lnm M̄ with n+m = k + 1 and n+m = k, respectively. Note that we

have restored the full dependence on the factorization and renormalization scales in the above
expression.

The polarized moment-space structure function g̃h,res1 resummed to NLL is obtained by inserting
the resummed coefficient function into in Eq. (5.12). To get the physical hadronic structure
function gh,res1 one needs to take the Mellin inverse of the moment-space expression. As in [J1],
we choose the required integration contours in complex N,M -space according to the minimal
prescription of [213], in order to properly deal with the singularities arising from the Landau
pole due to the divergence of the perturbative running strong coupling constant ↵s at scale
⇤QCD. Moreover, we match the resummed gh,res1 to its NLO value, i.e. we subtract the O(↵s)

expansion from the resummed expression and add the full NLO result:

gh,match
1 ⌘ gh,res1 � gh,res1

���
O(↵s)

+ gh,NLO
1 . (5.20)
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The final resummed and matched expression for the spin asymmetry Ah
1 is then given by

Ah,res
1 (x, z,Q2) ⌘ gh,match

1 (x, z,Q2)

F h,match
1 (x, z,Q2)

. (5.21)

Similar considerations can be made for inclusive DIS, where again the resummation for g1

proceeds identically to that of F1 in moment space. Only single Mellin moments of the structure
function have to be taken:

g̃1(N,Q2) ⌘
Z 1

0

dxxN�1 g1(x,Q
2). (5.22)

The threshold resummed coefficient function is the same as in the spin-averaged case and is
discussed for example in [J1]. We note that the outgoing quark in the process �⇤q ! q remains
“unobserved” in inclusive DIS. At higher orders this is known to generate Sudakov suppression
effects [263] that counteract the Sudakov enhancement associated with soft-gluon radiation from
the initial quark. This is in contrast to SIDIS, where the outgoing quark fragments and hence
is “observed”, so that both the initial and the final quark contribute to Sudakov enhancement.
As a result, resummation effects are generally larger in SIDIS than in DIS, for given kinematics.

5.3 Phenomenological results

We now analyze numerically the impact of threshold resummation on the semi-inclusive and
inclusive DIS asymmetries Ah

1 and A1. Given that the resummed exponents are identical for
the spin-averaged and spin-dependent structure functions, we expect the resummation effects
to be generally very modest. On the other hand, it is also clear that the effects will not cancel
identically in the spin asymmetries: Even though the resummed exponents for g1 and F1 are
identical in Mellin-moment space, they are convoluted with different parton distributions and
hence no longer give identical results after Mellin inversion. Moreover, the matching procedure
also introduces differences since the NLO coefficient functions are somewhat different for g1 and
F1. It is therefore still relevant to investigate the impact of resummation on the spin asym-
metries. We will compare our results to data sets from HERMES [247] and COMPASS [234,
249]. In addition, we present some results relevant for measurements at the Jefferson Lab-
oratory [250–252], in particular those to be carried out in the near future after the CEBAF
upgrade to 12 GeV [258].
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Figure 5.1: Spin asymmetry for semi-inclusive ⇡+ production off a proton target. The data
points are from [247] and show statistical errors only. The hxi and hQ2i values were taken
accordingly to the HERMES measurements.

For our calculations we use the NLO polarized parton distribution functions of [254, 255] and
the unpolarized ones of [264]. Our choice of the latter is motivated by the fact that this set was
also adopted as the baseline unpolarized set in [254, 255], so that the two sets are consistent
in the sense that the same strong coupling constant is used. Additionally, in the case of SIDIS
we choose the “de Florian-Sassot-Stratmann” [77] NLO set of fragmentation functions. In this
work, we choose to focus only on pions in the final state. Resummation effects for other hadrons
will be very similar. The factorization and renormalization scales are set to Q.
Figures 5.1 and 5.2 present comparisons of our resummed calculations with HERMES data [247]
for semi-inclusive (⇡+) and inclusive DIS, respectively, both off a proton target at

p
s ⇡ 7.25

GeV. The error bars show the statistical uncertainties only. For the SIDIS asymmetry, we
integrate the numerator and the denominator of Eq. (5.2) separately over a region of 0.2 <

z < 0.8. We plot the theoretical results at the average values of x and Q2 of each data point
and connect the points by a line. The figures show the NLO (dashed lines) and the resummed-
matched (solid lines) results. As one can see, the higher-order effects generated by resummation
are indeed fairly small, although not negligible. They are overall more significant for SIDIS,
which is expected due to the additional threshold logarithms in SIDIS (see discussion at the
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Figure 5.2: Spin asymmetry for inclusive polarized DIS off a proton target. The data points
are from [248] and show statistical errors only. The hxi and hQ2i values were taken accordingly
to the HERMES measurements.

end of Sec. 5.2.2). We expect the resummed results to be most reliable at rather high values of
x & 0.2 or so [J1]. In this regime, there is a clear pattern that resummation tends to decrease the
spin asymmetries compared to NLO, more pronounced so for SIDIS. In other words, higher-
order corrections enhance the spin-averaged cross section somewhat more strongly than the
polarized one.

Figures 5.3 and 5.4 show similar comparisons to the SIDIS and DIS asymmetries measured by
COMPASS [234, 249] with a polarized muon beam at

p
s ⇡17.4 GeV. For COMPASS kinematics

the effects of threshold resummation are overall somewhat smaller due to the fact that one is
further away from partonic threshold because of the higher center-of-mass energy. However,
the results remain qualitatively similar to what we observed for HERMES kinematics.

The inclusive neutron spin asymmetry is particularly interesting from the point of view of
resummation, since it is known [250, 251] to exhibit a sign change at fairly large values of x.
Near a zero of the polarized cross section resummation effects are expected to be particularly
relevant. Figure 5.5 shows the asymmetry at NLO and for the NLL resummed case. For
illustration we show the presently most precise data available, which are from the Hall-A
Collaboration [250, 251] at the Jefferson Laboratory. In order to mimic the correlation of x
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Figure 5.3: Same as Fig. 5.1 but comparing to the COMPASS measurements [234].

Figure 5.4: Same as Fig. 5.2 but comparing to the COMPASS measurements [249].

and Q2 for the present Jefferson Lab kinematics, we choose Q2 = x⇥ 8 GeV2 in the theoretical
calculation. As one can see, the effects of resummation are indeed more pronounced than for
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Figure 5.5: Spin asymmetry for inclusive polarized DIS off a neutron target. The data points
are from [250, 251] and show statistical errors only. The Q2 values in the theoretical calculation
were chosen as Q2 = x⇥ 8 GeV2.

the inclusive proton structure functions considered in Figs. 5.2 and 5.4. Evidently the zero
of the asymmetry shifts slightly due to resummation. On the other hand, the asymmetry is
overall still quite stable with respect to the resummed higher order corrections.

The latter observation is quite relevant for the extraction of polarized large-x parton distribu-
tions from data for proton and neutron spin asymmetries in lepton scattering. For instance,
to good approximation [250, 251] one may use the inclusive structure functions to directly de-
termine the combinations (�u + �ū)/(u + ū) and (�d + �d̄)/(d + d̄). At lowest order, and
neglecting the contributions from strange and heavier quarks and antiquarks, one has

Ru ⌘ �u+�ū

u+ ū
(x,Q2) =

4g1,p � g1,n
4F1,p � F1,n

(x,Q2) ,

Rd ⌘ �d+�d̄

d+ d̄
(x,Q2) =

4g1,n � g1,p
4F1,n � F1,p

(x,Q2) , (5.23)

where the subscripts p,n denote a proton or neutron target, respectively. One may therefore
determine (�u+�ū)/(u+ū) and (�d+�d̄)/(d+d̄) directly from experiment by using measured
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Figure 5.6: High-x up and down polarizations (�u +�ū)/(u + ū) and (�d +�d̄)/(d + d̄).
The solid lines show the ratios of structure functions on the right-hand sides of Eq. (5.23),
while the dashed lines show the actual parton distribution ratios as represented by the NLO
sets of [254, 255] and [264]. The dotted lines show the expected shift of the distributions when
resummation effects are included in their extraction, using Eq. (5.24). The Q2 values in the
theoretical calculation were chosen as Q2 = x⇥ 8 GeV2. We also show the present Hall-A [250,
251] and CLAS [252] data obtained from inclusive DIS measurements. Their error bars are
statistical only.

structure functions g1,p, g1,n, F1,p, F1,n in (5.23). Up to certain refinements required by the
fact that measurements of the ratios g1,p/F1,p and g1,n/F1,n are more readily available than
those of the individual structure functions, this is essentially the approach used by the Hall-
A Collaboration (alternatively, one may also use the corresponding spin asymmetry for the
deuteron instead of the neutron one [252]). In the following we explore the typical size of the
corrections to the ratios due to higher orders. Figure 5.6 shows first of all the structure function
ratios on the right-hand side of (5.23), computed at NLO using as before the polarized and
unpolarized parton distribution functions of [254, 255] and [264], respectively (solid lines). We
have again chosen Q2 = x⇥ 8 GeV2. Using (5.23), these ratios would correspond to the “direct
experimental determinations” of Ru and Rd. The dashed lines in the figure show the actual
ratios (�u + �ū)/(u + ū) and (�d + �d̄)/(d + d̄) as given by the sets of parton distribution
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functions that we use. Any difference between the solid and dashed lines is, therefore, a measure
of the significance of effects related to strange quarks and antiquarks, and to NLO corrections.
As one can see, these have relatively modest size. Finally, we estimate the potential effect
of resummation on Ru, Rd: Following [189, 210], we define ‘resummed’ quark (and antiquark)
distributions by demanding that their contributions to the structure functions g1, F1 match
those of the corresponding NLO distributions, which is ensured by setting

q̃N,res(Q2) ⌘ C̃NLO
q (N,↵s(Q2))

C̃res
q (N,↵s(Q2))

q̃N,NLO(Q2) (5.24)

in Mellin-moment space. Here, C̃NLO
q and C̃res

q are the NLO and resummed quark coefficient
functions for the inclusive structure function F1, respectively. We match the resummed coef-
ficient function to the NLO one by subtracting out its NLO contribution and adding the full
NLO one, in analogy with (5.20). Equation (5.24) can be straightforwardly extended to the
spin-dependent case. The ratios Ru, Rd for these ‘resummed’ parton distributions are shown
by the dotted lines in Fig. 5.6. As one can see, they are quite close to the other results, indi-
cating that resummation is not likely to induce very large changes in the parton polarizations
extracted from future high-precision data. For illustration, we also show the Hall-A [250, 251]
and CLAS [252] data in the figure, which have been obtained using parton-model relations
for the inclusive structure functions, similar to (5.23). One can see that the error bars of the
data are presently still larger than the differences between our various theoretical results. This
situation is expected to be improved with the advent of the Jefferson Lab 12-GeV upgrade [258]
or an Electron Ion Collider [265]. As is well-known, SIDIS measurements provide additional
information on Ru, Rd, albeit so far primarily at lower x [247].

5.4 Conclusions

In this chapter we have presented the results of [J2]. There, we have investigated the size of
threshold resummation effects on double-longitudinal spin asymmetries for inclusive and semi-
inclusive deep inelastic scattering in fixed-target experiments. Overall, the asymmetries are
rather stable with respect to resummation, in particular for the inclusive case. Towards large
values of x, resummation tends to cause a decrease of the spin asymmetries, which is more
pronounced in the semi-inclusive case and for asymmetries measured off neutron targets.
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The relative robustness of the spin asymmetries bodes well for the extraction of high-x parton
polarizations (�u+�ū)/(u+ ū) and (�d+�d̄)/(d+ d̄), which are consequently also rather ro-
bust. Nevertheless, knowledge of the predicted higher-order corrections should be quite relevant
when future high-statistics large-x data become available. On the theoretical side, it will be in-
teresting to study the interplay of our perturbative corrections with power corrections that are
ultimately also expected to become important at high-x [198, 204, 259, 260, 266–269], although
it appears likely that present data are in a window where the perturbative corrections clearly
dominate. Finally, we note that related large-x logarithmic effects have also been investigated
for the nucleon’s light cone wave function [270], where they turn out to enhance components
of the wave function with non-zero orbital angular momentum, impacting the large-x behavior
of parton distributions. It will be very worthwhile to explore the possible connections between
the logarithmic corrections discussed here and in [270].
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APPENDIX A

Basics of su(N) Lie Algebra

In this appendix we will present a general idea of Lie groups and algebras without going too
much into the mathematical details of group and representation theory. We will then focus
our attention on SU(N) groups and su(N) algebras giving the practical instruments used in
many non-Abelian gauge theories derivations, such as Casimir operators and quadratic Casimir
operators. We refer to [271] and [272].

A.1 General aspects of Lie algebras and groups

If we consider gauge theories, the local symmetry transformations act on a set of quantum
fields that satisfies the requirements given mathematically by the Lagrangian. In most of these
theories, those transformations can be represented by continuously generated groups, meaning
roughly that the group G contains elements arbitrarily close to the identity (called infinitesimal
group elements), such that each element of G can be reached by sequential action of those
infinitesimal elements. An infinitesimal element g can then be written as

g(✓) = 1 + i✓aT a +O(✓2) (A.1)

where ✓a are infinitesimal parameters and T a are Hermitian operators called generators of the
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symmetry group. Such a continuous group with this structure is called a Lie Group. The
vector space g in which the T as live can be equipped with a binary and bilinear operation
[·, ·] : g⇥ g ! g called the Lie product that satisfies two requirements:

• it is alternating on g

[T a, T a] = 0 8T a 2 g (A.2)

• it satisfies the Jacobi identity

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0 8T a, T b, T c 2 g. (A.3)

Such an algebraic structure is called Lie algebra. Since we normally work with N ⇥N matrix
representation of the Lie algebra, due to the associativity of the matrix product the Lie product
becomes the well-known commutator operator (for more details refer to text book such as [273]).
In this case the commutation relations of the generators T a can be written as

⇥
T a, T b

⇤
= ifabcT c (A.4)

where the fabc are called structure constants. The Jacobi identity can then be rewritten using
the structure constants as

fadef bcd + f bdef cad + f cdefabd = 0 (A.5)

The connection between a Lie group and its algebra is provided by the exponential map

exp :g �! G (A.6)

T a ! U = exp{iT a✓a}

where U 2 G.
Another thing to be noticed is that the Lagrangian of a non-Abelian gauge theory depends
only on the Lie algebra of the local symmetry. Thus, finding "the right way to express" the
Lie algebra of the local symmetry is a crucial point in developing a theory. In rigorous terms
we would say that we have to find the right representation of the Lie algebra (hence of the Lie
group) that describes the reality that we see. To make this statement more clear let’s bring up
an example and take a symmetry transformation like the rotation of an object. The abstract
3D rotation group is defined, in mathematics, as the group of orthogonal 3 ⇥ 3 matrices with
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det = 1 and denoted as SO(3). However we can rotate every kind of object: shapes, vector
spaces, fields, sets of numbers and so on. The explicit expressions of the operators performing
the transformation will depend on the object that we are rotating. We will say that the different
sets of operators are expressed in a particular representation of the abstract rotation symmetry
group. In other words, the representation tells us how the rotation is performed on the specific
object, while the rotation group gives the abstract concept of rotation. Or in a more abstract
way, a representation of a Lie group G (or analogous for a Lie algebra g) is a map that associates
each element of the abstract symmetry group (algebra) to a linear transformation acting on
the "specific object" (formally speaking, acting on a vector space describing the object) in a
homomorphic way.
When we construct a gauge theory, we will start by individuating from our observations the
symmetry that we want our Lagrangian to have and then, according to the gauge principle, we
will modify the expression of the Lagrangian in order for this symmetry to hold also locally. For
most of today’s gauge theories, the local symmetries are described by unitary transformations
(which of course act on a set of fields). Thus we constrain our interest on Lie algebras with
finite-dimensional Hermitian representation. The corresponding Lie group representation would
be unitary and finite-dimensional. For our purposes we will also assume that the number of
generators are finite, hence we will work with compact Lie algebras. Let’s consider the simplest
case when one of the T a generators commutes with all the others. The group generated would
be an Abelian group called U(1) and the elements of it act on the fields as follows

 ! U with U = exp{i✓} 2 G. (A.7)

This group is well known to be the symmetry group of the quantum field theory of the electro-
dynamic interaction QED.
If a Lie algebra doesn’t contain such commutating elements, it is called semi-simple and if, in
addition, the Lie algebra can’t be divided into two mutually commutating sets of generators,
it is called simple. All simple, compact Lie algebras can be grouped in three infinite families
(with just five exceptions) according to the characteristics of their corresponding generated Lie
groups: the so-called classical groups. Those three families of classical groups are defined in
terms of matrix representations and are:

1. Unitary transformations of N-dimensional vectors.

2. Orthogonal transformations of N-dimensional vectors.
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3. Symplectic transformations of of N-dimensional vectors.

For the purposes of this thesis we will consider only the first family in which the SU(N)

groups are included. The pure phase transformation of A.7 is a unitary transformation which
commutates with all other unitary transformations. If we subtract the corresponding U(1)

group to the other unitary groups, we obtain a simple Lie group called SU(N).

A.2 su(N) algebra

SU(N) is the group of N ⇥ N unitary transformation U with det(U) = 1. Its generators will
be represented by Hermitian matrices ta. As discussed before, all generators will be orthogonal
to the generator of A.7. Thus, the generator of SU(N) must be Hermitian traceless matrices

tr[ta] = 0. (A.8)

There are N2�1 independent Hermitian traceless matrices satisfying the above condition. Any
finite set of d⇥d-Hermitian matrices satisfying A.7 and A.4, is a d-dimensional representation of
the su(N) Lie algebra. Moreover, every such representation can be decomposed in a direct sum
of irreducible representation by choosing a basis in which all representation matrices are block-
diagonal. In QFT we work with irreducible representations. From now on, we will imply that
a certain set of generators are expressed in an irreducible representation r by simply referring
to them as tar . For every irreducible representation, we have

tr[tar , tbr] = C(r)�ab, (A.9)

where C(r) is a constant called Casimir operator which depends on the irreducible represen-
tation. This relation together with A.4 assures that the structure constants fabc are totally
antisymmetric for every irreducible representation since

fabc = � i

C(r)
tr
�
[tar , t

b
r]t

c
r

 
. (A.10)

Using this property we can show, in analogy to the well know J2 operator in the su(2) group’s
algebra, that t2r commutates with all other generators for every su(N) algebra
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[tb, tata] = (if bactc)ta + ta(if bactc)) (A.11)

= if bac{tc, ta} = �ifabc{tc, ta}
= 0.

For a given irreducible representation we then have

tart
a
r = C2(r) · Id(r) (A.12)

where Id(r) is the d(r)⇥d(r)-unit matrix (d(r) is the dimension of the representation) and C2(r)

is the so-called quadratic Casimir constant.
For every irreducible representation r we can define the associated conjugate representation r̄

with matrices tar̄ by taking the conjugate of the infinitesimal transformation expressed in the
representation r

 ⇤ ! (1� i✓a(tar)
⇤) ⇤ = (1 + i✓atar̄) 

⇤ (A.13)

where the relation between the matrices is tar̄ = �(tar)
⇤ = �(tar)

T .
Among all irreducible finite-dimensional representations of su(N), two are of great interest
for most QFT theories: the fundamental representation and the adjoint representation. The
first one is also called the basic N -dimensional complex vector representation. It is a N -
dimensional representation where the N2�1 taF are N ⇥N -Hermitian matrices. For N > 2 this
representation is complex and the corresponding conjugate representation F̄ is inequivalent. If
we define taF ⌘ �a

2
, for N=2 the �a are the usual Pauli matrices �i. For N = 3 they are called

Gell-Mann matrices and are

�1 =

0

B@
0 1 0

1 0 0

0 0 0

1

CA , �2 =

0

B@
0 �i 0

i 0 0

0 0 0

1

CA , �3 =

0

B@
1 0 0

0 �1 0

0 0 0

1

CA , �4 =

0

B@
0 0 1

0 0 0

1 0 0

1

CA ,

(A.14)

�5 =

0

B@
0 0 �i

0 0 0

i 0 0

1

CA , �6 =

0

B@
0 0 0

0 0 1

0 1 0

1

CA , �7 =

0

B@
0 0 0

0 0 �i

0 i 0

1

CA , �8 =

0

B@
1 0 0

0 1 0

0 0 �2

1

CA .

197



APPENDIX A. BASICS OF SU(N) LIE ALGEBRA

The matrices satisfy the anticommutation relation

�
�a,�b

 4

N
�abIN + 2dabc (A.15)

where dabc are totally symmetric. For su(3) the only non zero fabc and dabc are

1

2
f 123 = f 147 = �f 156 = f 246 = f 257 = f 345 = �f 367 =

1p
3
f 458 =

1p
3
f 678 =

1

2
, (A.16)

d146 = d157 = �d247 = d256 = d344 = d355 = �d366 = �d377 =
1

2
,

d118 = d228 = d338 = �2d448 = �2d558 = �2d668 = �2d778 = �d888 =
1p
3
.

The Casimir operator and the quadratic Casimir constant for the fundamental representation
are

C(F ) =
1

2
⌘ TR, C2(F ) =

N2 � 1

2N
⌘ CF . (A.17)

In this thesis we refer to the quadratic Casimir constant of the fundamental representation
as CF and to the Casimir operator of the fundamental representation as TR according to the
common convention used in many particle physics textbooks.
The representation to which the generators of the su(N) algebra naturally belong is called the
adjoint representation A. It is given by the (N2 � 1)⇥ (N2 � 1)-matrices with matrix elements
given by the structure constants

(tbA)ac = ifabc. (A.18)

Since the structure constants are antisymmetric and real, taA = �(taA)
⇤. The adjoint represen-

tation is a real representation. The Casimir operator and the quadratic Casimir constant for
the adjoint representation are

C(A) = C2(A) ⌘ CA = N. (A.19)

Another useful relation is the following

tr
⇥
taAt

b
A

⇤
= fabcf bcd = CA�ab. (A.20)

Until now we have dealt with single objects which transform according to a representation.
However, when we work with particle physics, we are interested in quantum states of more
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particles together, which can each transform according to different irreducible representations
of the SU(N). Formally speaking, we are interested in the direct product of the different rep-
resentations. Such a product is not in general an irreducible representation itself but can be
decomposed into a direct sum of irreducible representations. For example, if we choose N = 3

and we take particles such as quarks and antiquarks, which transform according to the funda-
mental F and the conjugate of the fundamental representation F̄ of SU(3) respectively, we end
up with different possible new particles corresponding to the different irreducible representation
in which the product of the original representations can be decomposed:

qq̄ : 3
¯
⌦ 3

¯
⇤ = 1

¯
� 8

¯
, (A.21)

qqq : 3
¯
⌦ 3

¯
⌦ 3

¯
= 1

¯
� 8

¯
� 8

¯
� 1

¯
0, (A.22)

qq : 3
¯
⌦ 3

¯
= 3

¯
⇤ � 6

¯
,

. . .

The numbers with a bottom bar refer to the dimensionality of the irreducible representation
and the uppercase star indicates that it’s the conjugate representation. The mathematical
instrument thanks to which it is possible to systematically calculate the decomposition of
products of irreducible representation into direct sums of irreducible representation is called
Young tableau.
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APPENDIX B

Mellin Transformation

A useful tool that is widely used in perturbative QCD is the Mellin transform. The direct and
inverse transformations are defined in an integral form as follows

f (N)(N) =

Z 1

0

dxxN�1f(x),

f(x) =
1

2⇡i

Z

CN
dNx�Nf (N), (B.1)

where CN is a contour in the complex plane. To perform the inverse transform, standard tools
of the complex analysis (such as the residue theorem, the analytic continuations and so on)
are needed. The f (N) is also referred in literature as the Mellin moment of the function f(x).
One of the most used properties of Mellin transforms is that in Mellin space the convolution
of two functions f(x) ⌦ g(x) factorizes in the simple product of the two correspondent Mellin
moments f (N) · g(N):

Z 1

0

dxxN�1

Z 1

x

dz

z
f(z)g

⇣x
z

⌘
=

Z 1

0

dxxN�1

Z 1

0

dz

Z 1

0

f(z)g(y)�(x� yz)

�

=

Z 1

0

dzzN�1f(z)

Z 1

0

dyyN�1g(y) = f (N) · g(N). (B.2)
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As an example on how a typical calculation of a moment is made, we take the plus distribution
1

(1�x)+
and explicitly compute its Mellin moment:

✓
1

(1� x)+

◆(N)

=

Z 1

0

xN�1

(1� x)+
=

Z 1

0

xN�1 � 1

1� x
=

1X

j=0

Z 1

0

dx
�
xN�1 � 1

�
xj

=
1X

j=0

✓
1

N + j
� 1

j + 1

◆
= �

N�2X

j=0

1

j + 1

= �
N�1X

j=1

1

j
. (B.3)

In Table B.1 we summarize the most important Mellin moments used throughout the work
discussed in this thesis. The factor �⇡2

6
in the third line is evaluated continuing analytically

f(x) f (N)

1
1

N

ln x � 1

N2

ln x

1� x
�1

6
⇡2 +

N�1X

j=1

1

j2

ln(1� x) � 1

N

NX

j=1

1

j

�(1� x) 1

1

(1� x)+
�

N�1X

j=1

1

j

✓
ln(1� x)

1� x

◆

+

N�1X

k=1

1

k

kX

j=1

1

j

Table B.1: Mellin moments used throughout this thesis’ work.

the series
P1

j=1 j
�2 in the complex plane with the Riemann zeta function

⇣(z) =
1X

j=1

j�z.
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For <(z) > 1 the series converges and we have that ⇣(2) = ⇡2

6
. The analytical continuation is

also used to perform the inverse transformation of the moments. The resummation of threshold
logarithms, for example, is made in Mellin space and the final result has to be brought back
to the x-space. Hence, we have to be able to analytically continue in the complex plane the
Mellin moments of plus distributions as the one shown in the two last lines of Table B.1. Let’s
start by defyining from the �-function the digamma function  (z) as

 (z) =
d

dz
ln�(z) =

�0(z)
�(z)

, (B.4)

and the polygamma function of order m as

 (m)(z) =
dm

dzm
 (x) =

dm+1

dzm+1
ln�(z). (B.5)

Let’s consider now the partial sum Sk(N) defined as

Sk(N) =
NX

j=1

1

jk
. (B.6)

For k = 1 it coincide with the N th harmonic number defined by HN =
PN

j=1
1
j
. The digamma

function can be expressed in terms of the harmonic number as

S1(N) =
NX

j=1

1

j
= HN =  (N + 1) + �E, (B.7)

where �E is the Euler-Mascheroni constant defined by the relation

lim
N!1

(HN � lnN) = �E ⇡ 0, 577215. (B.8)

For large values of N (i.e. for x ! 1 in the x-space), the moment of the simple plus distribution
of the second last line in Table B.1 can be approximated as follows

✓
1

(1� x)+

◆(N)

���!
N!1

�S1(N) ! � (N) ! �
✓
lnN + �E +

1

N

◆
= � ln N̄ +O

✓
1

N

◆
,

(B.9)
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where N̄ = Ne�E . Using the relation below

NX

j=1

1

j

jX

i=1

1

i
=

1

2

�
S2
1(N) + S2(N)

�
, (B.10)

we can also give the moment of the logarithmic plus distribution for large N :

✓✓
ln(1� x)

1� x

◆

+

◆(N)

���!
N!1

1

2

�
S2
1(N) + S2(N)

� ! 1

2

✓
ln2 N̄ +

⇡2

6

◆
=

1

2
ln2 N̄ +O(ln N̄).

(B.11)
As last point of this appendix, we observe that multiplying a function f(x) by a factor xi just
shifts the variable N ! N + i in the expression for f (N), e.g.

✓
x2

✓
ln(1� x)

1� x

◆

+

◆(N)

=
N+1X

k=1

1

k

kX

j=1

1

j
. (B.12)
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APPENDIX C

NLO Coefficient functions

In this appendix we present literature results for DIS and SIA coefficient functions useful for
our discussion in Chapter 3.

C.1 DIS Coefficient Functions

The DIS coefficient functions up to NLO in the MS scheme are given by [48, 205, 261]

C1
q (x̂) =e2q�(1� x̂) + e2q

↵s

2⇡
CF

"
(1 + x̂2)

✓
ln(1� x̂)

1� x̂

◆

+

� 3

2

1

(1� x̂)+
� 1 + x̂2

1� x̂
ln x̂+ 3

�
✓
�9

2
+
⇡2

3

◆
�(1� x̂)

#

CL
q (x̂) =e2q

↵s

2⇡
CF 2x̂

C1
g (x̂) =e2q

↵s

2⇡
CF

 �
x̂2 + (1� x̂)2

�
ln

✓
1� x̂

x̂

◆
� 1 + 4x̂(1� x̂)

�

CL
g (x̂) =e2q

↵s

2⇡
CF [4x̂(1� x̂)] (C.1)
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where j = q, g and x̂ = ⇠/x and eq is the fractional QED charge of the quark q. The definitions
of x and ⇠ are given in Eqs. (3.5) and (3.6). These coefficients satisfy

C2
j (x̂) = C1

j (x̂) + CL
j (x̂) . (C.2)

These coefficient functions are related to the coefficient functions hi (i = 1, 2, L) defined in [192]
as follows

C1(x̂) = 2h1(x̂) CL(x̂) = 2hL(x̂) C2(x̂) =
h2(x̂)

x̂
(C.3)

so that
hL = �h1 +

h2

x̂
. (C.4)

The structure function FAQ
i (i = 1, 2, L) presented in the same paper are connected to the ones

defined in Eq. (3.11) by the following relations

FAQ
1 (xB, Q

2) =
FTMC

1 (xB, Q2)

2
= FTMC

1 (xB, Q
2)

FAQ
2 (xB, Q

2) = xBFTMC
2 (xB, Q

2) = FTMC
2 (xB, Q

2)

FAQ
L, (xB, Q

2) =
FTMC

L (xB, Q2)

2
=

FTMC
L (xB, Q2)

2xB

(C.5)

so that
FAQ
L =

⇢2

2xB

FAQ
2 � FAQ

1 , (C.6)

where ⇢ is defined in Eq. (3.12).

C.2 SIA Coefficient Functions

The coefficient functions up to NLO for SIA in the MS scheme are given by [48, 72, 109, 111]

Ĉ1
q (ẑ) =e2q�(1� ẑ) + e2q

↵s

2⇡
CF


(1 + ẑ2)

✓
ln(1� ẑ)

1� ẑ

◆

+

� 3

2

1

(1� ẑ)+
+ 2

1 + ẑ2

1� ẑ
ln ẑ +

3

2
(1� ẑ)

+

✓
2

3
⇡2 � 9

2

◆
�(1� ẑ)

�
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ĈL
q (ẑ) =e2q

↵s

2⇡
CF

Ĉ1
g (ẑ) =e2q

↵s

2⇡
CF 2


1 + (1� ẑ)2

ẑ
ln
�
ẑ2(1� ẑ)

�� 2
(1� ẑ)

ẑ

�

ĈL
g (ẑ) =e2q

↵s

2⇡
CF


4
(1� ẑ)

ẑ

�
, (C.7)

where j = q, g and ẑ = ⇠E/z. The definitions of z and ⇠E are given in Eqs. (3.49) and (3.47).
The listed coefficient functions are related by

Ĉ2
j (x̂) = Ĉ1

j (x̂) + ĈL
j (x̂) . (C.8)
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APPENDIX D

Reconstruction of scales for SIDIS

In this appendix we present a recursive method to calculate the structure of the dependence on
the factorization and renormalization scales for the SIDIS process at any arbitrary fixed order
in the strong coupling constant ↵s. An all-order valid formula is then given for the first term
in Eq. 4.21 as an example.

D.1 Reconstruction of scales

In order to reconstruct the full dependences on the factorization scales µF and µI at every
order in perturbation theory, one can use a renormalization group approach similar to what
was done in [169] for the totally inclusive DIS case or in Chapter 2 [J5] for the semi-inclusive
electron-positron annihilation (SIA). In Chapter 2, an alternative method based on the mass
factorization procedure was discussed in order to obtain the same results. We have extended
both methods to the SIDIS case and found full agreement between them.
Hereinafter, we will review the extension of the renormalization group approach method to the
SIDIS case in order to present a general recursive formula which can be utilize to reconstruct
the scale dependence on the two factorization scales µI and µF at an arbitrary order in the
strong coupling constant as = ↵s/4⇡. We are going to show the calculation only for the first
term in Eq. 4.21 since it is the most complicated case due to its matrix structure. To simplify
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the calculation we set the renormalization scale µr = µF but keep µF 6= µI 6= Q2. The
reintroduction of the renormalization scale dependence can be easily achieved by re-expanding
the result expressed as a function of as(µ2

F ) in terms of as(µ2
r). The third order expansion of

as reads [170]

as(µ
2) =

as(µ2
0)

X(µ2)
� a2s(µ

2
0)

X2(µ2)

✓
�1
�0

logX(µ2)

◆

+
a3s(µ

2
0)

X3(µ2)

✓
�2
1

�2
0

⇣
log2 X(µ2)� logX(µ2)� 1 +X(µ2)

⌘
+
�2
�0

⇣
1�X(µ2)

⌘◆
+ . . . .

(D.1)

where X(µ2) = 1��0 log(µ2
0/µ

2), and µ0 is a reference scale that in our case corresponds to µr.
We denote

F S
k (µ

2
I , µ

2
F ) = (qS, g)(µ

2
I)⌦

 CS,DS
k CS,g

k

Cg,DS
k Cg,g

k

!
�
as(µ

2
F ), LI , LM

�⌦
 
Dh

S

Dh
g

!
(µ2

F )

= q(µ2
I)⌦ CS

k

�
as(µ

2
F ), LI , LM

�⌦Dh
S(µ

2
F ) , (D.2)

where k 2 {1, L}, LI = log(Q2/µ2
I), LF = log(Q2/µ2

F ) and the dependences on x and z were
dropped for clarity in the notation. By taking the double Mellin transformation of the previous
equation, we can further simplify the calculation. Since convolutions between functions are
represented in Mellin space by simple multiplications between moments of them, we can then
write

F̃ S
k (N,M, µ2

I , µ
2
F , Q

2) =q̃N(µ2
I)⇥ C̃S

k

�
N,M,↵s(µ

2
F ), LI , LF

�⇥ D̃h,M
S (µ2

F ), (D.3)
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where the symbol ⇥ denotes the standard matrix multiplication and

F̃ S
k (N,M, µ2

I , µ
2
F , Q

2) ⌘
Z 1

0

dxxN�1

Z 1

0

dzzM�1F S
k (x, z, µ

2
I , µ

2
F , Q

2)

q̃N(µ2
I) ⌘

Z 1

0

dxxN�1q(x, µ2
I),

D̃h,M
S (µ2

F ) ⌘
Z 1

0

dzzM�1Dh
S(z, µ

2
F ),

C̃S

k

�
N,M, as(µ

2
F ), LI , LF

� ⌘
Z 1

0

dx̂x̂N�1

Z 1

0

dẑẑM�1CS
k

�
x̂, ẑ, as(µ

2
F ), LI , LF

�
.

(D.4)

The dependence of each entry of the matrix C̃S

k on the factorization scales µI and µF can be
expressed as

C̃S
k,ij

�
as(µ

2
F ), LI , LF

�
=

1X

n=0

ans (µ
2
F )

 
c̃(n,0,0)k,ij +

nX

=1

c̃(n,,0)k,ij L
I +

nX

l=1

c̃(n,0,l)k,ij Ll
F

+
nX

=1

n�X

l=1

c̃(n,,l)k,ij L
IL

l
F

!
, (D.5)

The coefficients c̃(n,0,0)k,ij are the direct result of the perturbative calculation with µ2
F = µ2

I =

µ2
r = Q2 while the c̃(n,,0)k,ij , c̃(n,0,l)k,ij , c̃(n,,l)k,ij can be calculated order by order in as solving the

renormalization group equations (RGEs) for the fatorization scales. They follow directly from
the request that @

@ log µ2
I
F̃ S
k

!
= 0 and @

@ log µ2
F
F̃ S
k

!
= 0 and they read

✓h @

@ log µ2
I

i
�im + P̃ Transp

im (N, µ2
I)

◆
CS
k,mj(N,M, as(µF ), LI , LF ) = 0 (D.6)

✓h @

@ log µ2
F

+ �(as)
@

@as

i
�mj + P̃ T

mj(M,µ2
F )

◆
CS
k,im(N,M, as(µF ), LI , LF ) = 0 . (D.7)

Here P̃ Transp
im (N, µ2

I) corresponds to the im entry of the matrix resulting from the trasposition
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of

P̃ (N, µ2
I) ⌘

1X

i=0

ai+1
s P̃ (i)(N, µ2

I) ⌘
1X

i=0

ai+1
s

 
P̃ (i)
qq P̃ (i)

gq

P̃ (i)
qg P̃ (i)

gg

!
(N, µ2

I) (D.8)

defined as the single Mellin transform of the matrix appearing in the first equation of (4.13). On
the other side, P̃ T

mj(M,µ2
I) represents the mj entry of the time-like P̃ T (M,µ2

I) matrix defined
as the single Mellin transform of the matrix appearing in the second equation of (4.13).
Inserting Eq. (D.5) in (D.6) and (D.7) one is left with a system of linear equations in the
coefficients c̃(n,,0)k,ij , c̃(n,0,l)k,ij and c̃(n,,l)k,ij which can be solved recursively order by order in as for
every fixed value of  and l once the results for  = 0 and l = 0 are given. If we define c̃(n,,l)k to
be the matrix with entries c̃(n,,l)k,ij , the formal solution for a fixed order O(ans ) can be recursively
written as

c̃(n,,0)k

 6=0
=

1



n�1X

w=�1

P̃ (n�w�1), T ransp ⇥ c̃(w,�1,0)
k

+
1



n�2X

p=0

�2X

q=0

 
n�p�+qX

i=0

An�p
i, �q�1P̃

(i), T ransp

!
⇥ c̃(p,q,0)k (D.9)

c̃(n,,l)k

l 6=0
=

1

l

n�1X

j=l�1+

c̃(j,,l�1)
k ⇥

⇣
P̃ T,(n�1�j) � 1(j �n�1�j)

⌘
, (D.10)

where all dependences have been dropped to simplify the notation. The coefficients c̃(n,0,l)k are
also given by the formula (D.10). All terms c̃(n,,l)k with  + l > n recursively generated by
the above equations are obviously set to be equal zero. The coefficient An�p

i, �q�1, introduced in
Eq. (4.11), appears in the last line of Eq. (D.9) since the space-like splitting functions showing
in (D.6) are given as a function of µI . Nonetheless, one has to take great care when solving
the system of equations (D.6) and (D.7) and re-expand P̃ Transp

im (N, µI) around the same as(µF )

consistently with the one chosen in Eq. (D.5). As a consequence, Eqs. (D.9) and (D.10) can
be correct only up to �i terms neglected in the expansion of as (see Eq. (D.1)). To regain the
expressions in the (x, z) space one has to formally perform a double Mellin inverse

CS
k

�
x̂, ẑ, as(µ

2
F ), LI , LF

�
=

Z

CN

dN

2⇡i
x̂�N

Z

CM

dM

2⇡i
ẑ�M C̃S

k

�
N,M, as(µ

2
F ), LI , LF

�
, (D.11)
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where CN and CM are contour chosen in the N and M complex moment space respectively.
Assuming that for a fixed order O(ans ) the coefficient C̃S,(n)

k is integrable along the contours CN
and CM , we have that

c(n,,l)k (x̂, ẑ) =

Z

CN

dN

2⇡i
x̂�N

Z

CM

dM

2⇡i
ẑ�M c̃(n,,l)k (N,M) (D.12)

and the expressions (D.9) and (D.10) can be translated for the c(n,,l)k coefficients by symboli-
cally dropping the “⇠” and substituting “⇥” with “⌦”.

This procedure can be easily extended for the remaining lines of Eq. (4.21) by simply substitut-
ing the matrices P̃ T,(i) and P̃ (i) with the corresponding “non-singlet” scalar function P̃ T,+ ,(i),
P̃ T,v ,(i), P̃+ ,(i) or P̃ v ,(i) in (D.9) and (D.10). Here the symbol “⇠” denotes as before the single
Mellin moment of the corresponding function. At the same time c̃(n,,l)k will represent each time
a scalar function, a vector or a transposed vector accordingly to how the coefficient functions
appear in (4.21).
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APPENDIX E

Angular Integrals

We show below the results of some angular integrals needed for the computation of the SIDIS
longitudinal structure functions, which are not available in the literature. The subscript 4

indicates that they have been computed in 4-dimensions. Except for the first three integrals
(valid for every set of parameters) the results are only valid for A2 6= B2 + C2.

E.1 New Integrals

I4[�4, 0] = 2⇡

✓
a4 + 2a2b2 +

b4

5

◆
(E.1)

I4[�3, 0] = 2⇡a
�
a2 + b2

�
(E.2)

I4[�2,�1] =
2

3

�
3⇡a2A+ 2⇡abB + ⇡Ab2

�
(E.3)

(E.4)
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APPENDIX E. ANGULAR INTEGRALS

I4[�4, 2] =
⇡

3 (B2 + C2)4 (A2 � B2 � C2)

⇥ �
A2b2

�
B2 + C2

� ⇥
36a2

�
2B4 +B2C2 � C4

�
+ b2

��16B4 + 84B2C2 � 15C4
�⇤

� 12aAbB
�
B2 + C2

�2 ⇥
2a2

�
B2 + C2

�
+ b2

�
9C2 � 4B2

�⇤

+ 2
�
B2 + C2

�2 h
3a4

�
B2 + C2

�2 � 18a2b2
�
B4 � C4

�� b4
�
B4 + 6B2C2 � 3C4

�i

� 36aA3b3B
�
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�
+ 3A4b4

�
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� 

+
⇡b

2 (B2 + C2)9/2
log

 
A+

p
B2 + C2

A�p
B2 + C2

!

⇥ ��3Ab
�
B2 + C2

� �
4a2

�
2B4 +B2C2 � C4

�� b2C2
�
C2 � 4B2

��

+ 4aB
�
B2 + C2

�2 �
2a2

�
B2 + C2

�
+ 3b2C2

�
+ 12aA2b2B

�
2B4 � B2C2 � 3C4

�
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��8B4 + 24B2C2 � 3C4

� 
(E.5)

I4[�4, 1] = � ⇡b
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�
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I4[�3, 2] =
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