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Abstract 
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disorder of mature  

B-lymphocytes presenting with 40% of novel lymphoma cases worldwide the most 

common subtype of adult Non-Hodgkin lymphoma. DLBCL is characterised by a 

high degree of heterogeneity regarding clinical, pathologic and molecular genetic 

issues. Gene expression profiling revealed distinct molecular DLBCL subtypes 

resembling germinal centre B-cells (GCB DLBCL) and activated B-cells (ABC 

DLBCL). Despite advances in therapy, the 3-year progression free survival rates of 

GCB and ABC DLBCL upon immunochemotherapy are still at 74% and 40%, 

respectively. Consequently, there is an obvious need for identifying new molecular 

targets and biomarkers serving as starting points to develop new, more efficient 

therapeutic strategies especially of the adverse ABC DLBCL subtype. 
 

In the present study we were able to demonstrate that IκBNS is constitutively 

expressed in ABC DLBCL cell lines and human biopsies, whereas IκBNS 

expression is absent in GCB DLBCL. We noticed that two IκBNS isoforms were 

detectable, the described p35 and a second larger IκBNS isoform exhibiting an 

additional N-terminal unstructured portion. Silencing of IκBNS led to a reduced 

growth of ABC DLBCL cell lines, suggesting an oncogenic function of IκBNS. 

Promoter studies suggested that IκBNS expression is under the control of NF-κB 

and NFAT signalling. Interestingly, we detected constitutive activation of NFAT in 

DLBCL cell lines, which was necessary to drive the expression of IκBNS in ABC 

DLBCL. Calcineurin inhibitors, which decrease the activity of NFAT proteins, did not 

only impair the expression of IκBNS, but also induced cell death in multiple ABC 

DLBCL cell lines. The expression of the pro-survival cytokines IL-6/-10 was 

markedly reduced by calcineurin inhibition, which might at least partially explain their 

toxicity in ABC DLBCL cell lines. With the help of phosphoproteomics, we identified 

several new calcineurin substrates in ABC DLBCL, including CD79, suggesting a 

more central role of calcineurin in tumorigenesis. 
 

Taken together, these results provide first insights into the essential function of 

IκBNS in the development of ABC DLBCL. Furthermore, we suggest IκBNS as a 

promising biomarker to discriminate ABC from GCB DLBCL. Finally, we propose 

that calcineurin inhibitors could have therapeutic potential for the treatment of 

aggressive ABC DLBCL. 
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Zusammenfassung 
Das diffus großzellige B-Zell-Lymphom (DLBCL) ist eine aggressive Erkrankung 

reifer B-Lymphozyten. Diese ist mit einem Anteil von bis zu 40% an allen weltweit 

neu auftretenden Lymphomen der am häufigsten auftretende Subtyp der adulten 

Non-Hodgkin Lymphome. DLBCL sind durch ein hohes Maß an Heterogenität 

hinsichtlich klinischer, pathologischer und molekular genetischer Aspekte 

charakterisiert. Genexpressionsanalysen haben verschiedene molekulare DLBCL 

Subtypen aufge-deckt, die Keimzentrums-B-Zellen (GCB DLBCL) und aktivierten B-

Zellen ähneln (ABC DLBCL). Trotz Fortschritten in der DLBCL-Therapie, liegt das 

3-Jahres progressionsfreie Über-leben nach einer Immunchemotherapie noch 

immer bei 74% für GCB DLBCL und lediglich 40% für ABC DLBCL. Es besteht somit 

ein offensichtlicher Bedarf an der Identifizierung neuer therapeutischer Ziele und 

Biomarker, die als Ausgangspunkt der Entwicklung neuer Behandlungsstrategien 

vor allem des ungünstigeren ABC DLBCL Subtypes dienen. 

 

Diese Arbeit zeigt, dass IκBNS ausschließlich im ABC DLBCL Subtyp exprimiert ist. 

Interessanterweise konnten zwei IκBNS-Isoformen detektiert werden. Zum einen 

war die in der Literatur bereits beschriebene p35 Form zu sehen, zum anderen eine 

längere Isoform, die sich durch einen zusätzlichen unstrukturierten N-Terminus 

auszeichnet.  

Wenn die Expression von IκBNS durch shRNA verhindert wurde, reagierten  

die ABC DLBCL Zelllinien mit einem verlangsamten Zellwachstum. Dies lässt  

eine onkogene Funktion von IkBNS vermuten. Mit Hilfe von Promotoranalysen 

konnte NFAT als essentieller Transkriptionsfaktor für die IkBNS Expression 

identifiziert werden. Überraschenderweise war eine konstitutive NFAT Aktivierung 

in allen DLBCL Zelllinien nachweisbar. Die Hemmung der NFAT Aktivität durch 

Calcineurin-Inhibitoren erniedrigte nicht nur die IkBNS Expression, sondern 

induzierte zudem Zelltod in mehreren ABC DLBCL Zelllinien. Die IL-6/-10 

Expression, die das Wachstum der Krebszellen fördert, war durch Calcineurin-

Inhibitoren stark erniedrigt.  

Eine Analyse des Phosphoproteoms mit MS deckte neue Calcineurin-Substrate in 

ABC DLBCL Zellen auf. Unter anderem konnte CD79 identifiziert werden, was auf 

eine zentrale Rolle von Calcineurin in den onkogenen DLBCL Signalwegen 

impliziert. 
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Zusammenfassend bietet diese Arbeit erste Erkenntnisse über die Rolle des IκBNS 

Proteins in der Entwicklung von ABC DLBCL. Die IκBNS Expression in Tumorzellen 

könnte ein vielversprechender Biomarker sein, um GCB und ABC DLBCL 

histologisch einfach voneinander zu unterscheiden. Die gewonnenen Ergebnisse 

legen ferner nahe, dass die Anwendung von Calcineurin Inhibitoren eine nützliche 

Option in zukünftigen Behandlungsstrategien von ABC DLBCL mit bestimmten 

Mutationsmustern sein könnte. 
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1. Introduction 
The following chapters provide the required background knowledge of the topics 

that are relevant for the understanding of this study. Chapter 1.1 introduces the 

characteristics and molecular abnormalities of the different subtypes of diffuse large  

B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL). Moreover, it also 

covers the function and relevance of intracellular NF-κB inhibitors with a particular 

focus on the atypical NF-κB inhibitor IκBNS. The ensuing Chapter 1.2 focuses on 

the components, relevance, the molecular characteristics and signaling of 

transcription factor families that are involved in B-cell lymphoma genesis and are 

part of investigations conducted in this study. The subsequent chapter 1.3 describes 

the antigen-receptor signaling pathways of B- and T-cells. Lastly, Chapter 1.4 deals 

with MHCI and II molecules, their structure, assembly, function and what is known 

so far about their role in DLBCL. 

1.1 B-cell lymphoid malignancies 

1.1.1 Diffuse large B-cell lymphoma (DLBCL) 

DLBCL account for 30% to 40% of all adult lymphoid malignancies world-wide and 

are therefore the most common form of Non-Hodgkin’s lymphoma (The Non-

Hodgkin's Lymphoma Classification Project, 1997; Coiffier et al., 1997). The disease 

can be observed at any age and is evenly distributed between genders (Armitage 

et al., 1998). The median age of onset is the seventh decade of life whereby 60% 

of patients are older than 60 years at diagnosis (Groves et al., 1995). Notably, there 

are considerable differences between ethnicities concerning the average age of 

disease onset, as African Americans in the United States are diagnosed at younger 

ages (Shenoy et al., 2011; Sinha et al., 2013). As the name “Diffuse large B-cell 

lymphoma” already implies it is a hematologic disorder of mature large B lymphoid 

cells (mean diameter ≥ 20 µm), growing diffusely. Most commonly the neoplastic B-

cells eliminate the normal underlying lymph node architecture, thereby frequently 

causing rapidly swelling of lymph nodes. Up to 40% of patients exhibit extranodal 

primary lymphoma sites whereby the most common spots are the gastrointestinal 

tract, head and neck, skin and soft tissue and the genitourinary system (Hunt and 

Reichard, 2008; Castillo et al., 2014). Untreated, the median life expectancy of 

DLBCL patients is less than one year, indicating the aggressive nature of DLBCL 

(Sinha et al., 2013). The CHOP regime including Cyclophosphamide, 
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Hydroxydaunorubicin, Vincristine (Oncovin™) and Prednisone was first applied in 

the 1970s has been considered as the standard chemotherapeutic therapy 

approach for DLBCL. CHOP treatment was found to have an impact in only 40% to 

50% of elderly DLBCL patients and results in an overall survival of 35% to 40% 

(Sonneveld et al., 1995). The CHOP based chemotherapy was complemented in 

1997 by the introduction of the immunochemotherapeutic IgG1 monoclonal antibody 

Rituximab targeting the pan-B-cell marker CD20. The administration of the new R-

CHOP therapy for initial DLBCL treatment improved complete response rates and 

prolongs progression-free and overall survival significantly in elderly DLBCL 

patients notably without excess of toxicity and is for these now the standard of care 

(Coiffier et al., 2002; Feugier, 2015). Despite this advance in treatment still nearly 

40% of patients eventually die of relapsed or refractory DLBCL (Vaidya and Witzig, 

2014). DLBCL are characterised by a high degree of heterogeneity in respect of 

clinical presentation and courses, pathology, morphology, molecular abberations 

and treatment response (Sinha et al., 2013; Carbone et al., 2014; Castillo et al., 

2014). The wide spectrum of this single diagnostic category can be partially 

explained by the distinct molecular features of the tumors revealed by the 

investigation of DLBCL tumor samples using cDNA microarrays. Three distinct 

DLBCL disease entities were discovered by gene expression profiling (GEP) 

differing in their treatment outcomes after standard chemotherapy regimens, thus 

defining prognostic categories (Alizadeh et al., 2000). The newly established DLBCL 

subtypes seem to be derived from different stages in B-cell maturation as they 

exhibit gene expression patterns of non-transformed cells at different stages in  

B-cell differentiation. Alizadeh et al. used this distinctiveness in gene expression 

patterns to subdivide DLBCL and named the most common major DLBCL subtypes 

after the differentiation status of their cell of origin namely the germinal B-cell like 

(GCB) DLBCL subtype with accounting for 17% of B-cell malignancies, the activated 

B-cell like (ABC) DLBCL subtype making up 15% of B-cell malignancies. The 

primary mediastinal B-cell lymphoma (PMBL) accounting for 6% of B-cell 

malignancies, was defined as the third molecular DLBCL entity and named after the 

site of its manifestation. 
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1.1.1.1 GCB DLBCL 

The germinal centre (GC) B-cell is the non-cancerous counterpart of the GCB 

DLBCL subtype. Patients suffering from GCB DLBCL show a drastically better  

3-year overall survival rate with approximately 80% than patients diagnosed with the 

so called ABC DLBCL subtype with approximately 45% under R-CHOP regimen 

therapy (Lenz et al., 2008). On the molecular level the as GCB subtype classified 

lymphoma are characterised by the overexpression of several genes common for 

germinal centre B-cells such as the BCL6, LMO2 and the surface markers CD10 

and CD38 (Schuetz et al., 2012; Alizadeh et al., 2000). For an overview of the 

molecular characteristics of GCB DLBCL see Figure 1. BCL6, a transcriptional 

repressor is expressed at high levels in mature B-cells within the germinal centre. 

BCL6 binds regulatory regions of several thousand genes in germinal centre B-cells 

and constitutes hence a well-established germinal centre marker. Hence, BCL6 is a 

master transcriptional regulator in germinal center B-cell differentiation and is 

constitutively expressed due to chromosomal translocation or mutations altering its 

promoter region in 45% of DLBCL cases that cause a deregulation of BCL6 

expression (Lo Coco et al., 1994; Migliazza et al., 1995). For instance, BCL6 

represses genes afflicted in inflammatory processes such as STAT1, important for 

interferon (IFN) response or the expression of the chemokines IL-10 and CCL3 

(Toney et al., 2000). Moreover, BCL6 was revealed to have a crucial role in the 

regulation of apoptosis in GC B-cells. It acts as direct transcriptional of the anti-

apoptotic BCL2 protein repressor by suppressing MIZ1 triggered BCL2 expression. 

However, this repressor function of BCL6 over BCL2 was found to be lost in DLBCL 

due to promoter mutations and chromosomal translocations of BCL2 and the 

deregulation of MIZ1 (Saito et al., 2009; Ci et al., 2009). Furthermore, BCL6 was 

reported by Phan et al. (2004) to be an active repressor of p53 expression in 

germinal center B-cells by binding to two specific sequences within the p53 

promoter. Consequently, high levels of BCL6 as present in germinal center B-cells 

were found by Phan et al. to protect the cells from DNA-damage induced apoptosis 

by functional inactivation of p53. Thus, deregulated BCL6 expression as in GCB 

DLBCL contributes considerably to lymphomagenesis by the inactivation of p53. 

Additionally, important for cancerogenesis as well, is the property of BCL6 to repress 

pivotal cell-cycle regulators such as the cyclin-dependent kinase (CDK) inhibitors 

p21 and p27kip1. With this, BCL-6 enables unregulated cell-cycle progression 
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(Shaffer et al., 2000; Phan et al., 2005). The histone H3 lysine 27 methyltransferase 

enhancer of zeste homolog 2 (EZH2) is highly upregulated in GC derived B-cells 

and thus constitutively activated in GC-derived NHL. Morin et al. (2010) discovered 

a recurrent somatic EZH2 missense mutation in 21, 7% of investigated cases GCB 

DLBCL in exon 15 of the EZH2 gene exchanging tyrosine 641 for a histidine. 

The mutation is located in the catalytic component of the enzyme and responsible 

for adding methyl groups to substrates. The Y641H amino acid substitution is 

leading to reduced enzymatic turnover in vitro. Functionally, EZH2 cooperates with 

BCL6 by regulating the BCL6 repressor function on a subset of target genes in GC 

B-cells, probably mediating the GC B-cell phenotype and under aberrant conditions 

inducing lymphomagenesis of GC origin such ach GCB DLBCL (Caganova et al., 

2013). Moreover, EZH2 impairs GC responses and silences BLIMP1 a major factor 

for terminal maturation to plasmocytes. Béguelin et al. (2013) proved in mice bearing 

DLBCL xenografts and in primary human DLBCLs that the combinatorial 

administration of BCL6 and EZH2 inhibitors synergistically kills DLBCL. 

The chromosomal translocation t(14; 18)(q32; q21) is reported to be associated with 

the GCB gene expression profile and CD10 expression and thus present in roughly 

30% to 40% of all GCB DLBCL cases. This chromosomal abnormality brings the 

locus of the anti-apoptotic gene BCL2 under the regulatory control of the heavy-

chain locus leading to BCL2 overexpression and simultaneous relieve of BCL6 

repression (Zhang et al., 2011). The BCL2 gene was also found to be the most 

commonly mutated gene in GCB DLBCL. GC B-cells and their malignant 

counterparts of the GCB DLBCL subtype show only very minor activity of NF-κB 

due, in part, to the overexpression of the NF-κB negative regulator BCL2 and the 

fact that BCL6 inhibits the expression of p50 and was also observed to colocalise 

with RelA unfolding repressive transcriptional activity on various NF-κB target genes 

(Grimm et al., 1996; Shaffer et al. 2001; Li et al., 2005; Schuetz et al., 2012). 

Also contributing to GCB DLBCL pathogenesis is the frequent heterogeneous 

deletion of PTEN in ~10% and the complete loss of PTEN expression in 55% of 

GCB DLBCL as revealed by IHC (Pfeifer et al., 2013). The PTEN phosphatase is 

the major negative regulator of the PI3K/AKT pathway, is inversely correlated with 

p-AKT levels and was described to be crucial for growth, proliferation and survival 

of a subset of GCB DLBCL. Cells exhibiting PTEN loss were found to be addicted 

to PI3K/AKT signaling. Moreover, also the proto-oncogene MYC plays a crucial role 
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in GCB DLBCL. The loss of PTEN in GCB DLBCL and the subsequent constitutive 

PI3K/AKT signaling lead by the inhibition of GSK3β to the up regulation of MYC 

which is important for proliferation. Thus, the ectopic expression of PTEN in PTEN-

deficient GCB DLBCL induced toxicity as PI3K/AKT signaling is consequently 

diminished and MYC expression reduced. Therefore, GCB DLBCL showing PTEN 

loss are suggested to be vulnerable to PI3K/AKT inhibition (Pfeifer et al., 2013; 

Roschewski et al., 2014). Noteworthy as well, for understanding GCB DLBCL 

lymphomagenesis is the microRNA cluster miR-17-92 which is amplified and 

overexpressed in 12,5% of GCB DLBCL cases but never in ABC DLBCL. miR-17-

92 expression results in elevated MYC and related targets expression (Lenz et al., 

2008). Murine cells expressing miR-17-92 also display down modulation of PTEN in 

turn leading to enhanced PI3K/AKT signaling and the repression of p21 altogether 

leading to promotion of cell growth and anti-apoptotic signaling (Xiao et al., 2008; 

Inomata et al., 2009; Olive et al., 2009). 

Figure 1. Overview of key 

signaling pathways affected  

and characteristic genetic 

aberrations involved in 

GCB DLBCL pathogenesis. 

(a) Signaling pathways 

afflicted in the pathogenesis 

of GCB DLBCL. Illustrated 

are possible targets for 

therapy approaches of GCB 

DLBCL by small molecule 

inhibitors (Figure adapted 

from: Roschweski et al., 

2014). (b) Summary of  

recurrent genetic aberrations 

and deregulated pathways 

found in GCB DLBCL. 

Depicted on the right-hand 

site, the frequency of the 

distinct molecular 

abnormalities, if they are loss 

or gain of function, in which 

regulatory category they 

belong and to what kind of 

malignant phenotype they 

lead (Figure adapted from: 

Shaffer et al., 2012). 
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1.1.1.2 ABC DLBCL 

ABC DLBCL derive from B-cells at the plasmablastic differentiation stage. This 

DLBCL entity shows a more aggressive behaviour than the GCB subtype, thus 

exhibiting a distinctly inferior cure rate of 40% in 2015 (Roschweski et al., 2015).                                  

The major molecular hallmark of ABC DLBCL subtype is the constitutively active 

classical NF-κB signaling sustaining viability, proliferation and anti-apoptotic 

signaling contributing to the lymphoma’s aggressiveness and poor outcome of 

therapeutic approaches (Frick et al., 2011). An overview of recurrent genetic 

aberrations and signaling pathways such as NF-κB that are implicated in ABC 

DLBCL lymphomagenesis is depicted in Figure 2. As found by Davis et al. in 2001,  

the transduction of a dominant negative IκBα or IKKβ inhibiting NF-κB signaling is 

selectively toxic for ABC DLBCL cell lines what was indicating an addiction of ABC 

DLBCL to NF-κB activation. The permanent NF-κB activity is achieved by multiple 

molecular mechanisms in upstream signaling (Figure 2). A participation of B-cell 

receptor (BCR) signaling in the pathomechanistic context of ABC DLBCL was first 

revealed by an RNAi screen showing a toxic impact of shRNAs directed against 

CARD11, BCL10 and MALT1, the core components of the CBM complex (Ngo et 

al., 2006). The ternary complex serves as a signaling hub and is required to activate 

IKKβ downstream of the BCR, thus relaying signals from the BCR to the classical 

NF-κB pathway (Ngo et al., 2006). Hence, the CBM complex is critical for antigen 

receptor induced activation of classical NF-κB signaling. CARD11, also known as 

CARMA1, is a multidomain protein adapter. It functions as a signaling scaffold in the 

CBM complex, coordinating the activation of the NF-κB positive regulator IKKβ 

(Rawlings et al., 2006). Approximately 10% of ABC DLBCL cases harbour somatic 

activating mutations of CARD11 such as G1116S and L244P leading to increased 

NF-κB pathway activity independent from upstream BCR signaling (Lenz et al., 

2008). The linear ubiquitin chain assembly complex (LUBAC) is associated with the 

CBM complex.Single nucleotide polymorphisms in the LUBAC subunit RNF31, 

especially enriched in ~8% of ABC DLBCL augment the ability of LUBAC to attach 

linear ubiquitin to IKKγ, thereby enhancing NF-κB signaling and consequently 

promoting the survival of the ABC DLBCL (Yang et al., 2014).  Since IKKγ 

ubiquitination is required for IKK activation the knock down of LUBAC complex 

components is fatal for ABC DLBCL (Yang et al., 2014; Dubois et al., 2014). A RNA 

interference screen conducted by Davis et al. (2010) proved the Bruton’s tyrosine 
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kinase (BTK) as an essential element for survival of ABC DLBCL with wild type 

CARD11 proteins. Moreover, the study also revealed that the shRNA mediated 

knockdown of the heavy and light chain of BCR, the components of the BCR  

co-receptor heterodimer CD79A/B and downstream BCR signaling key signaling 

molecules SYK, BLNK, PLCγ2, PKCβ results in the death of wild-type CARD11 

bearing ABC DLBCL cell lines. In addition to that, Davis et al also identified CD79A/B 

ITAM sequences to be mutated in 21, 1% of ABC DLBCL and only in 3,1% in GCB 

DLBCL cases. In 18% of investigated ABC DLBCL biopsies, CD79B was mutated 

in the membrane-proximal ITAM tyrosine (Y) residue, whereas CD79A mutations 

occurred rarely in only 2,9% of examined biopsies. For instance, the ABC DLBCL 

model cell lines HBL-1 and TMD8 harbour a heterozygous missense mutation 

affecting the first tyrosine of the CD79B ITAM Y196F and Y196H, respectively.  

The ITAM mutations were shown to reduce the activity of the BCR signaling 

negative regulator LYN and to promote increased BCR surface expression. 

Together with the finding of the vital importance of more distal BCR signaling 

elements such as BTK or PKCβ these findings suggest that chronic active BCR 

signaling is a key mechanism in ABC DLBCL with wild type CARD11 resulting in 

constitutively active NF-κB signaling. Besides BCR signaling, a second signaling 

pathway was uncovered to contribute to constantly active NF-κB. Ngo et al. (2011) 

describe the dependence of ABC DLBCL cell lines on MYD88 which was observed 

to be mutated in 39% of ABC DLBCL, and the associated kinases IRAK1/4. MYD88 

is a signaling adapter downstream of toll like receptors (TLRs) activating NF-κB 

upon ligand engagement of TLRs. Among the ABC DLBCL MYD88 mutations, the 

Ngo group describes an ABC DLBCL exclusive gain-of-function driver mutation. 

With a frequency of 29% this single amino acid exchange, L265P, located in the 

MYD88 Toll/IL-1 receptor domain, constitutes the most common MYD88 mutation 

in ABC DLBCL cases. Functionally, this particular L265P mutation led to promoted 

cell survival by IRAK1/4 assembly and activation in turn leading to  

NF-κB signalling, IFN-β production and by JAK/STAT3 mediated signaling the 

secretion of IL-6, IL-10 and. Notably, 34% of ABC DLBCL cases harbouring a 

MYD88 L265P mutation also exhibited a coincident mutation of CD79B/A and in 

some cases the MYD88 L265P mutation was coincident with CARD11 mutation. 

Thus, MYD88, CD79A/B and CARD11 mutations are not exclusive and can be 

observed in one tumor or the respective model cell lines like HBL1 (MYD88 L265P; 
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CD79B Y196F), TMD8 (MYD88 L265P; CD79B Y196H) or OCI-LY3 (MYD88 

L265P; CARD11 L244P). Furthermore, Ngo et al. observed that the knock down of 

MYD88 in addition to shRNA mediated knockdown of CD79B or CARD11 in ABC 

cells lines, addicted to chronic active BCR signaling enhanced the killing of cells 

harbouring a combination of the earlier described mutations. This suggests a non-

redundant synergising effect of aberrant BCR and MYD88 signalling in order to 

maintain ABC DLBCL survival. Additional NF-κB signaling promoting factors 

reported in the ABC DLBCL subtype is for instance the inactivation of the NF-κB 

negative regulatory, ubiquitin editing enzyme A20. Roughly 30% of ABC DLBCL 

patients exhibit biallelic A20 inactivation by mutations and/or deletions and 

epigenetic silencing of the A20 encoding gene (Compagno et al., 2009). Moreover, 

the TAB2-associated TGF-β-activated kinase (TAK1) was described to be mutated 

in the ABC DLBCL cell line U2932 and in 5% of patient derived samples (Compagno 

et al., 2009; Fontan et al., 2012). TAK1 is recruited and activated by TAB1 which in 

turn is recruited by TRAF6 upon TLR stimulation and subsequent MYD88 and 

IRAK1/4 activation. TAK1 promotes cell survival through activation of NF-κB 

signaling downstream of the CBM complex and the adaptor protein MYD88 by the 

phosphorylation of IKKβ and is therefore an essential mediator of proliferation and 

cytokine secretion (Wang et al., 2001; Sun et al., 2004 Moreno-García et al., 2013; 

Ansel et al., 2014).  

Apart from NF-kB signaling there are several other proteins and signaling pathways 

afflicted in the molecular pathogenesis of ABC DLBCL. As already mentioned, ABC 

DLBCL derive from B-cells that are in the transition to become plasma cells.                     

This maturation is blocked by several genetic aberrations in ABC DLBCL that for 

instance finally lead to the inactivation of the PRDM1 gene and its expression 

product BLIMP-1 (Rosenwald et al., 2002; Frick et al., 2011; Shaffer et al., 2012). 

Roughly one quarter of ABC DLBCL samples show inactivating truncations, 

nonsense and splice site mutations, deletions or epigenetically silencing of the 

PRDM1 gene encoding one master regulator of further cell differentiation, 

“the transcriptional repressor and plasmacytic differentiation driver B lymphocyte-

induced maturation protein-1” (BLIMP-1) (Pasqualucci et al. 2006; Tam et al. 2006). 

This transcription factor orchestrates the transformation into plasma cells by shutting 

down mature B-cell gene expression programs for example the expression of PAX5 

and SPIB and the exit of cell cycle (Shaffer et al., 2002). SPIB and its DNA binding 
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partner IRF4 are both highly expressed in ABC DLBCL and critical for ABC DLBCL 

survival as revealed by an RNAi screen (Yang et al., 2012). Also BCL6 which is a 

BLIMP-1 repressor as well, is found to be affected by translocations observable in 

25% of ABC DLBCL patients (Iqbal et al., 2007; Tunyaplin et al., 2004; Shaffer et 

al., 2000). The ETS family transcription factor SPIB which is repressed by BLIMP-1 

is highly expressed in ABC DLBCL and represses in turn BLIMP-1 constituting a 

negative feedback loop (Shapiro-Shelef et al., 2005; Lenz et al., 2008; Schmidlin et 

al., 2008). Together, SPIB and its DNA binding partner IRF4 which is highly 

expressed since it is induced by constitutively active NF-κB signaling are crucial for 

the expression of CARD11 (Young et al., 2015). In this manner NF-κB signaling, 

IRF4/SPIB and CARD11 shape a positive feedback loop pivotal for ABC DLBCL 

survival (Shaffer et al., 2012; Young et al., 2015). Furthermore, they act together in 

repressing cell cycle arrest and apoptosis promoting type I interferon response 

secretion in ABC DLBCBL that is induced by MYD88 signaling (Stark et al., 1998; 

Yang et al., 2012). 

Figure 2. Overview of  

key signaling pathways 

affected and characteristic 

molecular aberrations 

involved in ABC DLBCL 

pathogenesis. (a) Signaling 

pathways afflicted in the 

pathogenesis of GCB DLBCL. 

Depicted in yellow stars, 

protein mutations leading to 

constitutively active NF-κB 

signaling. Illustrated are 

possible targets for therapeutic 

approaches of GCB DLBCL 

by small molecule inhibitors 

(Figure adapted from: 

Roschweski et al., 2014). 

(b) Summary of recurrent 

genetic aberrations and 

deregulated pathways found in 

ABC DLBCL. Depicted on the 

right-hand site, the frequency 

of the distinct molecular 

abnormalities, if they are loss 

or gain of function, in which 

regulatory category they 

belong and to what kind of 

malignant phenotype they lead 

(Figure adapted from: Shaffer 

et al., 2012). 
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1.1.1.3 PMBL 

PMBL arise from a rare subset of B-cells residing in the thymus and is a clinically 

aggressive lymphoma (Dunleavy and Wilson, 2015; Shaffer et al., 2012).                       

The malignancy predominantly affects adolescents and young adults with a median 

age of onset between 30 to 35 years, much earlier than the GCB and ABC DLBCL 

subgroups (Swerdlow et al., 2008). According to Rosenwald et al., (2003) the 5-year 

survival rate was with 64% relatively favourable after anthracycline multiagent based 

chemotherapy with some patients receiving radiation therapy. The clinical 

presentation and molecular characteristics are different from the other DLBCL 

subtypes and resemble “nodular sclerosing Hodgkin Lymphoma”. Notably, over one 

third of genes expressed in PMBL were also characteristic for Hodgkin Lymphoma 

(Dunleavy and Wilson, 2015; Rosenwald et al., 2003). PMBL exhibit a B-cell 

phenotype as they express CD20 and CD79A and show surface expression of GC-

markers such as CD10, BCL6 and CD23 (Möller et al., 1987; Calaminici et al., 2004; 

Salama et al., 2010). A genetic hallmark found in PMBL are gains/amplifications in 

the p24 region of chromosome 9 (Joos et al., 1996; Lenz et al., 2008). The molecular 

characteristics of PMBL involved pathogenesis are summarised in Figure 3. The 

9p24 chromosomal region encodes JAK2 the activator of STAT6 which was shown 

to transcriptionally repress BCL-6 (Ritz et al., 2013). Moreover, also in the 9p24 

region located are the genes coding for the ligands for the inhibitory PD-1 receptor 

on the surface of T-cells, PDL1 and 2 which are rearranged at a frequency of 20% 

in PMBL, indicating a mechanism of immune evasion of PMBL (Green et al., 2010; 

Steidl et al., 2011; Twa et al., 2014). All genes in this 9p24 region JAK2, PDL1 and 

2 are highly expressed in PMBL whereby PDL2 is according to Rosenwald et al. 

(2003) the best discriminator for PMBL. Epigenetic abnormalities seem to play a key 

role in the pathogenesis of PMBLs since the histone H3K9 demethylase “JMJD2C” 

which is also located in the 9p24 region cooperates with the earlier mentioned JAK2 

in decreasing heterochromatin throughout the whole genome (Rui et al., 2010). Due 

to this JAK2/JMJD2C mediated epigenetic alterations, many genes are induced in 

PMBL such as MYC. Knockdown of JMJD2C and JAK2 resulted in the epigenetically 

silencing of MYC as a consequence of heterochromatin formation (Rui et al., 2010).  

Noteworthy 38% of PMBL show a translocation of CIITA, the master transactivator 

of MHC class II genes (Steidl et al., 2011). This translocation inactivates one CIITA 

gene copy leading to decreased MHCII on the cell surface and augmented immune 
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evasion and thus to inferior survival of PMBL patients. Alike ABC DLBCL, PMBL are 

addicted to constitutive activity of the NF-κB pathway (Lam et al., 2005; Rosenwald 

et al., 2003; Savage et al., 2003). One putative reason could be the inactivation of 

the deubiquitinating enzyme A20 (Schmitz et al., 2009).   

 

Figure 3. Overview of recurrent genetic aberrations and dysregulated signaling pathways 

involved in PMBL lymphomagenesis. Shown are the frequencies of the distinct molecular 

abnormalities, if they are loss or gain of function, in which regulatory category they belong and to 

what kind of malignant phenotype they lead (Figure adapted from: Shaffer et al., 2012). 
 

1.1.2 Mantle cell lymphoma (MCL) 

MCL were first described in 1975 by K. Lennert. MCL account for 3 to 10% of all 

NHL in the western world, predominantly affecting men (Anderson et al., 1998; Zhou 

et al., 2008). MCL describe an aggressive neoplasm of mature B-cell deriving from 

cells surrounding the germinal centres. In the early stages the neoplastic cells 

replace the mantle zone pattern of the lymph node (Tiemann et al., 2005). In more 

advanced stages MCL show a rather diffuse growth pattern (Bertoni et al., 2007). 

The median age of diagnosis is ≤ 60 years and the median overall survival lies 

between 3 to 5 years, thus exhibiting the poorest long-term survival among B-cell 

lymphoma (Zucca et al., 1995; Herrmann et al., 2009). So far, conventional 

chemotherapy approaches are not curative and MCL show a high frequency of 

remissions up to 90% in a short time range of 1 to 2 years. The normal counterpart 

of the malignant MCL cell seems to be the pre-germinal center B-cell (Pérez-Galán 

2011). MCL display mature B-cell markers on their cell surface such as IgM and 

CD20 (Ghielmini et al., 2009; Pérez-Galán 2011). Molecularly, MCL share the 

expression of BCL2, CD5 and the hallmark chromosomal translocation the 

t(11,14)(q13;q32) bringing the CCND1 gene under the transcriptional control of the 
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Ig heavy chain promoter leading to an overexpression of the MCL prototypic 

oncogene cyclin D1 (Ghielmini et al., 2009; Pérez-Galán et al., 2011). A summary 

of genetic aberrations implicated in MCL lymphomagenesis is depicted in Figure 4. 

Observed as well in MCL were frequent deletions or the epigenetically silencing of 

the INK4a/arf locus that is coding for p16 and INK4arf that block the cell cycle and 

activate p53 (Rosenwald et al., 2003; Beà et al., 2001). HDM2 and HDM4, both 

negative regulators of p53 that synergistically promote proteasome-mediated p21 

and p53 degradation were found to be overexpressed. HDM4 also inhibits the p53-

mediated transcriptional activation of p21 a negative cell-cycle regulatory protein 

and inhibitor of cyclin D1 leading to the promotion of cell-cycle progression (Liang 

et al., 2010). Also DNA damage response pathways are afflicted in MCL 

pathogenesis since recurrent chromosomal deletions in chr.11q22-23 affect the 

functionality of the p53 upstream kinase ATM by gene truncation or missense 

mutations. By large scale pharmacological profiling Rahal et al. (2014) identified a 

subset of MCL cell line models that are sensitive to BCR signaling inhibitors ibrutinib 

(targeting BTK) and sotrastaurin (targeting PKC). They revealed that inhibitor 

sensitive MCL cell lines exhibit constitutively active BCR-signaling driven classical 

NF-κB signaling in contrast to resistant cell lines that show activation of the non-

canonical NF-κB signaling. Moreover, the group also unveiled recurrent mutations 

in TRAF2 and BIRC3, proteins involved in the non-canonical NF-κB pathway in 15 

% of examined patient samples by transcriptome sequencing. TRAF2 and 3 interact 

with BIRC2 and 3 in order to downregulate NIK which fosters the transition of the 

p100 precursor into the active mature p52 protein. RNAseq data obtained from MCL 

cell line models identified a TRAF2 nonsense mutant, TRAFW114* and a biallelic 

TRAF3 deletion. These mutations impair TRAF2 and 3 inhibitory properties on non-

canonical NF-kB signaling. Furthermore, when they conducted targeted sequencing 

of key elements implicated in non-canonical NF-kB signaling in primary MCL 

samples they found frequent mutations of TRAF in 6% and BIRC3 in 10% of cases. 

Two patient derived BIRC3 mutant variants, the nonsense mutation S441* and the 

missense mutation C560S were investigated in more detail. The coexpression of 

NIK with BIRC3S441* or BIRC3C560S resulted in less efficient NIK destabilisation and 

increased p52 production compared to wild type BIRC3 coexpression. This result 

was confirmed when both BIRC3 mutant proteins were expressed in a cell line 

exhibiting low p52 levels. BIRC3S441* or BIRC3C560S expression in this cell line clearly 
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led to an increase of p100 cleavage to p52 whereas expression wild-type BIRC3 did 

not affect steady state p52 protein levels. In addition to that, inhibitor insensitive 

MCL cell lines with alterations in non-canonical NF-kB signaling were found to be 

addicted to NIK activity in vitro and in vivo. Also in this B-cell lymphoma malignancy, 

the NF-kB negative regulatory ubiquitin editing enzyme A20 is commonly inactivated 

by deletions, mutations or its transcription is epigenetically dampened by increased 

promoter methylation (Honma et al., 2009). Moreover, MCL were found to be 

addicted to IRF4 and SYK as revealed by knock down approaches (Friedberg et al., 

2009; Shaffer et al., 2012). Several more secondary genetic alterations were 

discovered contributing to MCL lymphomagenesis including prosurvival and 

proliferative pathways like the PI3K/AKT/mTOR pathway, the WNT and Hedgehog 

pathway (Pérez-Galàn et al., 2011), critical cell-cycle regulating genes and DNA 

damage response and repair genes, indicating the MCL’s unique biology. 

 

                   

Figure 4. Overview of recurrent genetic aberrations involved in MCL 

lymphomagenesis. Shown are the frequencies of the distinct molecular abnormalities, if they are 

loss or gain of function, in which regulatory category they belong and to what kind of malignant 

phenotype they lead (Figure adapted from Shaffer et al., 2012). 
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1.2 Transcription factor families involved in B-cell 
lymphomagenesis 

1.2.1 The NF-κB family 

The nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) was 

discovered in 1986 and described as a constitutive nuclear B-cell specific inducible 

transcription factor regulating the expression of the Ig kappa light chain (Sen et al., 

1986). As result of intensive research during the last decades it was revealed that              

NF-κB is present in all cells and that the NF-κB family of transcription factors                

consists of five members termed p65/RelA, RelB and c-Rel. All NF-κB family 

members (depicted in Figure 5) are encoded by a distinct gene, RELA, RELB and 

REL (Gerondakis et al., 1999). They all share the presence of an N-terminal 

structural domain, the conserved 300 amino acid (aa) Rel homology domain (RHD). 

This protein motif comprises a sequence for DNA binding, a nuclear localisation 

signal (NLS) and a site for the interaction with other REL proteins for homo- and 

heterodimerization or NF-κB inhibitors (IκBs) (Baeuerle and Henkel., 1994; Baldwin, 

1996). Each of the NF-κB subunits has a unique DNA binding domain and therefore 

exhibits its own characteristic DNA binding affinity, as well. Thus, every subunit 

contributes to the overall DNA binding affinity of a NF-κB dimer leading to different 

dimer specific DNA binding consensus sequences (Wang et al., 2003; Siggers et 

al., 2011; Wong et al., 2011).Only RelA/p65, c-Rel and RelB exhibit a C-terminal 

transcriptional activation domain (TAD) which is necessary for the recruitment of 

coactivators and thus the transcriptional positive regulation of a certain NF-κB target 

gene (Hayden and Ghosh, 2012). As indicated earlier, NF-κB members form homo-

and heterodimers that bind NF-κB consensus sites (κB sites) within 

promoters/enhancers of a target gene (Pahl, 1999; Hayden and Ghosh, 2004). For 

this reason only NF-κB dimers including either at least one RelA, c-Rel or RelB 

subunit are able to act as transcriptional inducers. In most cell types, the 

predominant dimer in NF-κB signaling is the RelA/p50 heterodimer (Li and Verma, 

2002; Oeckinghaus and Ghosh, 2009). Noteworthy, RelB does not homodimerize 

and only forms dimers with p100, p52 or p50 whereas the other NF-κB subunits are 

being found in all possible hetero-or homodimer combinations (Ryseck et al., 1992; 

Bauerele et al., 1994; Bobrzanski et al., 1994). Unlike RelA, c-Rel or RelB, the 

N-terminal proteolytic cleavage products of p105 and p100, p50 and p52, 
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respectively lack a TAD. As a consequence of this, NF-κB homodimers consisting 

of p50 or p52 can only function as transcriptional repressors of their respective 

target gene. 

Those transactivation incapable dimers can negatively regulate transcription by 

constitutively occupying κB sites in a NF-κB responsive promoter sequence until 

they are displaced by a competitive TAD comprising NF-κB dimer. In this manner, 

p50 and p52 homodimers can establish an activation threshold of a NF-κB target 

gene (Hayden and Gosh, 2012). Moreover, p50/p52 dimers were also shown to act 

as epigenetic modifiers by recruiting gene-silencing proteins such as histone 

deacetylases (HDACs) to inhibit transcription (for review see Chen and Greene, 

2004). Taking into account the different NF-κB dimer compositions acting as gene 

inducers and repressors, distinct DNA binding site specificities depending on dimer 

combination, the large number of IκB sites in the genome and the multitude of 

NF-κB target genes makes the NF-κB transcription family and the regulated 

downstream signaling network highly complex and versatile. 

1.2.2 NF-κB signaling 

The induction of transcriptionally active NF-κB dimers by NF-κB signaling is 

classified into two main pathways termed as the canonical (classical) NF-κB 

pathway and the noncanonical (alternative) NF-κB pathway (pathways are 

schematically shown in Figure 6) (Sun, 2012). Both NF-κB inductive pathways share 

the activation of differently composed IκB kinase complexes and lead to the 

liberation of distinct NF-κB dimers. The activation of the pathways is under the 

control of a wide range of soluble and membrane-bound extracellular ligands 

originating from various extracellular sources (Hayden and Ghosh, 2012). 

Regarding the immune system, the NF-κB family coordinates various genes that 

control immune responses to a multitude of immune system stimulating agents for 

instance proinflammatory cytokines or pathogen derived substances recognised by 

pattern-recognition receptors such as LPS, peptidoglycans, lipoproteins, 

unmethylated bacterial DNA or dsRNA of viral origin (Li and Verma, 2002). 

Therefore, NF-κB signaling plays an important role in regulating the innate and 

adaptive immune system. Noteworthy, NF-κB activity was shown to be required for 

the rapid expression induction of acute-phase antimicrobial defence genes as 

response to invading pathogens. In adaptive immune system it plays a role in T-cell 
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development and function, Ig class switch of B-cells, germinal center formation or 

proper B-cell maturation (Gerondakis et al., 1998). Moreover, NF-κB signaling is 

also crucial for an appropriate response that is followed upon ligand binding of 

antigen-receptors implicated in the immune system like for example those of B- and 

T-cells (Schuster et al., 2012). In addition to that, there are also multiple intracellular 

pathways activating and regulating NF-κB activity such as DNA damage response, 

ionizing radiation, intracellular pattern recognition receptors and a plethora of other 

physical and chemical stresses (Li et al., 2001; Mohan and Meltz, 1994; Gilmore, 

2008). 

 

 

Figure 5. Molecular structures of members of the NF-κB family and the ternary IKK 

complex. (a) NF-κB family with indicated characteristic protein domains. p100 and p105  have dual 

role in NF-κB signaling as they exhibit IkB properties and when proteolytically processed to p52 and 

p50 they can act as activating NF-κB members. (b) Subunits of the high molecular IKK complex 

with indicated protein domains. ANK, ankyrin-repeat; CC, coiled-coil; DD, death domain; GRR, 

glycine-rich region; HLH, helix–loop–helix; IKK, IκB kinase; LZ, leucine-zipper; NBD, NF-κB-

essential-modulator-binding domain; RHD, REL homology domain; TAD, transactivation domain; 

ZF, zinc-finger. Figure adapted from Ghosh and Hayden, 2008. 

1.2.3 Canonical or classical NF-κB signaling  

The canonical or also called classical NF-κB pathway is activated by signals 

emanating from of a variety of structurally diverse membrane bound receptors upon 

ligand binding. Among them are tumor necrosis factor super-family receptors 

(TNFSFRs), interleukin receptors (ILRs), pattern recognition receptors (PRRs) such 

as Toll-like receptors (TLRs) or antigen receptors like the B- or T-cell receptor 

(Hyaden and Ghosh, 2012). Receptor ligation is followed by the recruitment of 

receptor proximal specific adapter protein complexes. In canonical signaling these 

are mostly RIP (receptor interacting protein) and TNF-receptor-associated factor 

(TRAF) family member protein complexes generally in conjunction with the TGFβ-

activated kinase-1 (TAK1) that is required as IKK kinase (IKK-K) for further 
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downstream signaling to the IκB kinase (IKK) (Hayden and Ghosh, 2008). Whereas 

TRAF proteins are utilised by both NF-κB pathway inducing pathways, RIP family 

members are exclusively used in the canonical signaling pathway Hayden and 

Ghosh, 2012). Receptor signaling culminates in the activation of IKKβ which is part 

of the trimeric cytoplasmic IKK complex consisting of the catalytic subunits IKKα and 

IKKβ, and the regulatory IKKγ (NEMO) subunit (Hacker and Karin, 2006). The 

activation of this ternary kinase complex requires the phosphorylation of IKKβ and 

the ubiquitination of IKKγ. Once activated, IKKβ in turn phosphorylates IκB proteins. 

The 37 kDa protein IκBα, the prototypical IκB is bound to the RHD of a NF-κB 

protein. IκBα mainly binds and thus regulates RelA/p50 or c-Rel/p50 heterodimers 

in the resting state by its repetitive ankyrin repeats thereby masking the NLS of 

either RelA or c-Rel. The p50 precursor protein p105 is constitutively processed 

through a cotranslational mechanism which is regulated by a glycine rich region 

(GRR) (Lin and Gshosh, 1996; Orian et al., 1999). On the other hand, also p105 

phosphorylation at certain C-terminal serine residues by IKKβ was reported that was 

followed by inducible procession to p50. The NLS of p50 is still accessible as 

unveiled by crystallographic investigations (Huxford et al., 1998; Jacobs and 

Harrison, 1998; Malek et al., 2001, 2003). In combination with the impact of nuclear 

export signals (NES) within the protein sequences of RelA, c-Rel and IκBα, the p50 

NLS accessibility is leading to the capability of the RelA/p50 or c-Rel/p50 complexes 

to shuttle between nucleus and cytoplasm under steady state conditions. But the 

masking of the RelA and c-REL NLS and the NES of IκBα results in the 

predominantly cytoplasmic localisation of NF-kB in the steady-state (Johnson et al., 

1999; Huang et al., 2000). This dynamic balance of cytosolic and nuclear 

localisation is shifted towards the nucleus by the activation of NF-kB signaling. Upon 

the activation of canonical NF-κB signaling, IκBα is phosphorylated by IKKβ at two 

conserved N-terminal serine (S) residues 32 and 36 within the so-called destruction 

box (aa-sequence: DSGXXS). These phosphorylated serines are subsequently 

recognized and IκBα gets K48-linked polyubiquitinated by the E3 ubiquitin ligase 

SCFβTrCP leading to proteasomal degradation of IκBα (Hayden and Ghosh, 2008; 

Henkel 1993; Chen, 1995; Yaron, 1997). In this way, the NLS is of RelA/p50 or  

c-Rel/p50 is accessible again and the sequestration of the NF-κB dimers in the 

cytoplasm is ceased. Upon release, the NF-κB factors migrate to the nucleus where 
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they accumulate and bind DNA, recruit cofactors and so activate the transcription of 

NF-κB responsive target genes (Hayden and Ghosh, 2004, 2008). 

1.2.4 Non-canonical or alternative NF-κB signaling 

The second NF-κB inducing signaling pathway, the Non-canonical or alternative         

NF-κB signaling displays distinct kinetics and regulatory components (Razani et al., 

2011). In contrast to the canonical NF-κB signaling this pathway is induced by a 

rather small variety of stimuli. A subset of TNFSFRs comprising lymphotoxin β 

receptor (LTβR), B-cell activating factor receptor (BAFF-R), OX40L (CD134), 

receptor activator of NF-κB (RANK), Fn14, and CD27 were revealed to induce non-

canonical NF-κB signaling (Claudio et al., 2002; Coope et al., 2002; Dejardin et al., 

2002; Novack et al.,2003; Ramakrishnan et al., 2004; Saitoh et al., 2003). 

The central regulatory mechanism in non-canonical NF-κB signaling involves the 

degradation modulation of the key kinase in this pathway, the NF-κB-inducing 

kinase (NIK) (Sun, 2011). Under steady state conditions, NIK is recruited to a 

cytosolic complex made up of TRAF2/3-cIAP1/2. NIK is brought together with the 

ubiquitin ligase cIAP1/2 by TRAF2/3. NIK K48-linked ubiquitination by cIAP1/2 

results in constant NIK proteasomal degradation (Zarnegar et al., 2008). As soon as 

for instance TNFSFRs engage their respective ligands, receptor dimerization is 

induced as in the case of CD40 and the TRAF2/3-cIAP1/2 is recruited to the 

intracellular portion of the receptor. Ensuing downstream signaling is best 

characterised for CD40, and LTβR as follows. In CD40 proximal signaling instead 

of NIK, TRAF3 is now due to TRAF2 mediated K63 ubiquitination, the new target of 

the K48 ubiquitin ligase activity of cIAP1/2. In this fashion, newly synthesizes NIK 

proteins are not degraded anymore and can accumulate. Enriched and activated 

NIK then phosphorylates and activates IKKα kinase activity which prevails in a 

homodimeric complex. The active IKKα dimer then phosphorylates p100 C-terminal 

serine residues which in turn results in the recruitment of the ubiquitin ligase 

complex SCFβTrCP. K48-linked ubiquitination of a distinct C-terminal lysine in p100, 

targets the protein C-terminus for proteolytic cleavage in which a GRR in close 

proximity to the ubiquitination plays an important role. This proteolytic processing of 

p100 ends up in leaving an N-terminal portion, named p52. NF-kB dimers that are 

generated as the end-product of this signaling cascade, consist of p52 and RelB.  

Full length p100 binds RELB which needs this association for stability. Prior to the 
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formation of mature p52, the NLS sequences of both subunits are hidden intra-

molecularly by C-terminal p100 ankyrin repeats that are structurally homologue  

to those of IκBs, establishing the C-terminal part of p100 as IκB. In the course of 

p52 generation, also the NLS masking p100 ankyrin repeats are eliminated.  

Thus, the IκB-like function of p100 is abrogated and NF-kB dimers composed of 

RelB and p52 are not sequestered in the cytoplasm anymore and can translocate in 

the nucleus, initiating the positive transcriptional regulation of corresponding target 

genes. (For noncanonical NF-kB signaling review see Bonizzi and Karin et al., 2004; 

Oeckinghaus, Hayden & Ghosh, 2011, Razani et al., 2011; Sun et al., 2012) 

 

Figure 6. Exemplary TNF and LT-β triggering of canonical (classical, left) and 

noncanonical (alternative, right) NF-κB signaling. In canonical signaling, NF-κB dimers are 

bound by IκB proteins masking their NLS and thus, sequestering them in an inactive NF-κB state in 

the cytoplasm. Upon stimulus induced receptor, the IκB kinase (IKK) complex, consisting of the 

kinases IKKα, IKKβ and the regulatory IKKγ-subunit (NEMO), phosphorylates the IκB and 

targeting it for ubiquitination and eventual proteasomal degradation. NF-κB dimers are subsequently 

liberated and can migrate to the nucleus to bind transcription regulatory sites of NF-κB responsive 

genes. The canonical pathway (left) is triggered by a multitude of stimuli, represented here by TNFR1 

signaling. TNF binding of TNFR1 results in the binding of TRAD, providing a platform for FADD 

and TRAF2 assembly. TRAF2 in turn associates with RIP1 to activate the IKK complex which 

phosphorylates IκBα in an IKKβ-and NEMO-dependent manner. In most cases p65-containing 

heterodimers are then released and translocate to the nucleus. NF-κB activity is further fine-tuned by 

modifying subunits with different PTMs. The noncanonical pathway, is induced by only certain TNF 
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family cytokines like CD40L, BAFF and as represented here, by lymphotoxin-β (LT-β). Upon 

receptor triggering, a complex consisting of TRAF3, TRAF2 and additional ubiquitin ligases 

regulates the stabilisation of NIK. This kinase phosphorylates IKKα which in turn phosphorylates 

p100 that is associated with RelB. This leads to proteolytic cleavage of p100 and the generation of 

p52 that pairs with RelB, generating active NF-κB dimers that migrate to the nucleus to exert 

transcriptional regulation of NF-κB target genes. (Figure taken from Oeckinghaus, Hayden & Ghosh, 

2011) 

1.2.5 Inhibitors of NF-κB signaling 

NF-κB is critical for the regulation of multiple physiological processes such as cell 

differentiation, survival and proliferation. Moreover, the NF-κB signaling network is 

also a key player of more comprehensive mechanisms including embryonic 

development, the functionality of innate and adaptive immune system and tissue 

homeostasis (Annemann et al., 2016). For this reason, a fine-tuned regulation of 

NF-κB activity is essential for the regular functioning of intracellular and superior 

mechanisms of the human body. This task is achieved by intracellular inhibitors of 

NF-κB signaling, the IκB proteins. The NF-κB regulatory “IκB protein family” is 

according to structural and deduced functional properties subdivided into the 

classical and a distinct group of atypical (also referred to as the BCL-3 subfamily) 

NF-κB inhibitors (an overview of classical and atypical IκBs is shown in Figure 7). 

All IκB proteins, no matter from which subfamily, are characterised by the presence 

of an ankyrin repeat domain (ARD), containing six to eight ankyrin repeats (ANK), 

a 33 amino acid structural motif exhibiting a helix-loop-helix conformation (Hinz et 

al., 2012). The ARD of an IκB regulates protein stability and mediates protein-protein 

interaction with the RHDs of NF-κB dimers (Annemann et al., 2016).  

1.2.5.1 Classical NF-κB inhibitors 

In resting cells, classical IκB proteins bind NF-κB dimers mediated by their ARD and 

functionally inactivate the dimers by retaining them in the cytoplasm as                                 

a consequence of the molecular masking of their NLS located within the RHD  

(Hinz et al., 2012). In this fashion, the binding of NF-κB dimers to κB DNA sequences 

in enhancers or promoters of target genes is prevented. The protein family consists 

so far of five cytoplasmic (classical) IκBs, namely the prototypic IκBα, IκBβ, IκBε, 

p105 (NF-κB1) and p100 (NF-κB2). In mice, all members are quite ubiquitously 

expressed exhibiting specific elevated levels for IκBα and IκBβ in spleen, IκBβ and 

IκBε in testis, IκBα in thymus, and IκBε in lung (Thompson et al., 1995; Li et al., 

1997; Whiteside et al., 1997; Lernbecher et al., 1994). IκBε primarily expressed in 
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hematopoietic cells (Hayden and Ghosh, 2008). p105 and p100 can be 

proteolytically processed to p50 and p52 by the cleavage of a C-terminal portion 

that serves as IκB, sequestering the NLS of a Rel protein, thus preventing the 

translocation of a NF-κB dimer to the nucleus (Bours et al., 1992; Beinke and Ley., 

2004; Sun, 2012). Accordingly NF-κB1 and NF-κB2 exhibit both, a NF-κB and a 

cytoplasmic IκB functionality (Hinz et al., 2012). Structurally, classical IκBs are 

defined by exhibiting six ANK and share an unfolded structure N-terminal to the ARD 

(Hinz et al., 2012). This unfolded aa-stretch comprises a degron motif also called 

“destruction box”, which includes two serines that are stimulus-dependent 

phosphorylated by IKKβ, namely S32 and S36 of IκBα, S19 and S23 of IκBβ and 

S157 and S161 for IκBε (Brown et al., 1995 ;DiDonato et al., 1996; Shirane et al., 

1999; Hinz et al., 2012). The phosphorylated residues are recognised and 

polyubiquitinated by the E3 ligase SCFβTrCP, followed by rapid the proteasomal 

degradation of the IκBs and release of NF-κB dimers (Henkel, 1993; Chen, 1995; 

Yaron, 1997; Winston1999; Ben-Neriah, 2002). Exclusive for IκBα and IκBβ is the 

presence of a region termed PEST, a peptide sequence rich in proline (P), glutamic 

acid (E), serine (S), and threonine (T) mediating fast protein turnover (Hinz et al., 

2012). Regarding NF-κB signaling modulation, IκBs influence the transcriptional 

specificity of differently composed NF-κB dimers by their ability to preferentially 

associate with certain members of the NF-κB family. For example, the RelA/p50 

heterodimer which is involved canonical NF-κB signaling is predominantly, albeit not 

exclusively, regulated by IκBα (Hayden and Ghosh, 2008). Classical IκB proteins 

also seem to have redundant functions. For instance the combined depletion of 

IκBα, IκBβ and IκBε resulted in an only minor increase of nuclear RelA levels 

(Tergaonkar et al., 2005). It is suggested that the inhibitory function of the three IκB 

was compensated by p105 and p100. Furthermore, IκBβ replacing the genomic IκBα 

was found to serve analogously to IκBα (Hayden and Ghosh, 2008 and 2012).  

On the other hand, studies in mouse embryonic fibroblasts (MEFs) investigating NF-

κB responses upon knocking out one, two or all three of IκBα, IκBβ or IκBε revealed 

that the inhibitors have distinctive unique functions even within one signaling 

pathway (Hayden and Ghosh, 2008). Hoffmann et al. (2002) postulate that the 

distinct functional features of IκBα, IκBβ and IκBε are the consequence of 

differences in their degradation and resynthesis. The degradation and resynthesis 

of IκBε for instance occurs with remarkable delayed kinetics in comparison to that 
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of IκBα (Kearns et al., 2006). Cell type and temporal specific degradation of for 

example IκBε suggests that different IκBs also have unique functions in regulating 

NF-κB responses (Hayden and Ghosh, 2008). In this regard, the major physiological 

feature of the classical NF-κB inhibitor IκBα is its capability to rapidly but strictly 

transiently induce a NF-κB mediated response to a canonical NF-κB pathway 

specific stimulus. This characteristic suggested that IκBα constitutes an 

autoregulatory feedback loop with NF-κB in which activated NF-κB drives the 

synthesis of IκBα that in turn inhibits the activity of NF-κB by regulating 

predominantly, but not exclusively RelA/p50 dimers. This hypothesis was promoted 

by the finding that the IκBα promoter was found to comprise κB sites within its 

sequence (Ito et al., 1994). Moreover, Mice, knock-out for IκBα show a significantly 

delayed termination of NF-κB signaling in response to canonical stimuli as for 

example TNF-α, substantiating the existence of this negative feedback loop 

(Gerondakis et al., 2006; Pasparakis et al., 2006). Thus, due to this negative 

feedback mechanism, IκBα is able to facilitate the maintenance of the transient 

effect induced by multiple agents on the transcription of NF-κB responsive genes. 

Obviously, the duration of the NF-κB response relies heavily on the kinetics of the 

feedback pathway determined by a distinct IκB, demonstrating the importance of the 

NF-κB response regulation by classical IκB proteins. 

1.2.5.2 Atypical NF-κB inhibitors 

In 1990, the (B-cell lymphoma 3 protein) BCL-3 was initially identified by Ohno et al. 

as rearranged proto-oncogene expressed in patients suffering from B-cell chronic 

lymphocytic leukemia that is characterised by a specific chromosomal translocation. 

Two years later in 1992 the seven ANK of BCL-3 were found to be closely related  

to those common in classical IκB proteins and shown to mediate complex formation 

with NF-kB dimers by binding the dimerization domain of NF-κB. Further, BCL3 was 

proven to bind p50 and p52 homodimers and to be co-localised with those in the 

nucleus. These observations and further findings such as the capability of BCL3  

to inhibit p50 DNA binding and the reversal of p50 homodimer-mediated 

transcription inhibition, revealed the protein as the first founding member of the 

atypical IκB family or also called BCL-3 subfamily (Franzoso et al., 1992; Hatada et 

al., 1992; Wulczyn et al., 1992; Nolan et al., 1993). Today, Bcl-3, IκBζ, IκBNS, IBη 

and IκBL belong to the group of atypical NF-κB inhibitors (Handel-Fernandnez et 

al., 1999; Kitamura et al., 2000; Fiorini et al., 2002; Yamauchi et al., 2010). 
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The atypical IκBs can be distinguished from classical IκBs by several distinct 

characteristics. In contrast to classical NF-κB inhibitors this protein group shows a 

completely different subcellular localisation as they are located predominantly in the 

nucleus where they exert their various functions by interacting with different NF-κB 

dimers in contrast to classical IκB which mainly bind NF-κB in the cytoplasm. 

However, the interaction of atypical IκB with different NF-κB dimers seems to be cell 

specific and dependent from the type of NF-κB stimulus or posttranslational 

modifications of the atypical IκBs. Furthermore, atypical IκB exhibit different 

activation and degradation kinetics. In detail, upon the induction of NF-κB signaling 

by extrinsic stimuli or antigen receptor derived signaling the expression of atypical 

nuclear IκBs is induced whereas classical IκB are initially degraded. Therefore, 

nuclear IκBs generally mediate their effects late in the transcriptional response or 

during secondary responses. The most important hallmark of the atypical IκBs that 

discriminates them from their classical relatives is their ability to either enhance, 

TAD sequences were found in BCL-3 and IκBζ, or diminish the transcriptional 

activity of target genes by the interaction with transcriptionally active DNA-

associated NF-κB dimers. In contrast to the cytoplasmic IκBs, that can only act as 

negative regulators of NF-κB activity (for review see Schuster et al., 2013; Hinz et 

al., 2012; Annemann et al., 2016). These mechanism are not the only differences 

between the two NF-κB inhibitor classes. Atypical IκBs not only act as NF-κB 

repressors but are also known to fine tune NF-κB activation and transcriptional 

response in the nucleus. This occurs for instance by adding post translational 

modifications to NF-κB subunits such as acetylation, phosphorylation and 

ubiquitination. These modifications regulate NF-κB dimer exchange on the DNA, 

stabilise DNA associated NF-κB dimers or recruit and displace histone deacetylases 

(HDACs) and histone acetyltransferases (HATs) to epigenetically alter target gene 

expression (for review see Mankan et al., 2001 Cheng and Greene, 2004). Most 

atypical IκBs are part of a negative feedback loop to limit the duration of NF-κB 

signaling. Bcl-3, IκBε, IκBζ and IκBNS are transcriptional targets of NF-κB except 

for IκBη that is regulated almost independently of NF-κB. Additionally, Bcl-3 and 

IκBζ mRNA translation was found to be negatively regulated by microRNAs miR-

125b and miR-124a, respectively (Guan et al., 2011; Lindenblatt et al., 2009).  

The knockout of a sole atypical IκB in mice was observed to be not lethal and results 

in normal growth after birth. However, the mice show multiple defects in organ 
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structures and immune system functions. Therefore, atypical IκB knockout mice 

suffer from autoimmune diseases and are for instance not able to mount proper 

defences against invading pathogens. Bcl-3 for example was shown to be important 

for correct splenic architecture, and the pathogen specific humoral immune 

response since knockout out mice are incapable of clearing listeria monocytogenes, 

streptococci pneumonia and toxoplasma gondii infections (Franzoso et al., 1997; 

Schwarz, 1997; Tassi et al., 2015). This impaired response to pathogens is in this 

case partially based on reduced IL-12p70 and IFNγ levels that are caused by the 

increased production of anti-inflammatory IL-10 by macrophages (Riemann et al., 

2005). On the other hand, mice lacking Bcl-3 are more susceptible to diabetes type 

I, display higher levels of IL-17 and do not show signs of autoimmunity (Ruan et al., 

2010). On the contrary, adult mice lacking IκBζ expression develop various 

symptoms of autoimmunity such as atopic dermatitis and chronic conjunctivitis. 90% 

of IκBζ deficient mice do not survive embryogenesis but the remaining fraction 

grows regularly after birth. IκBζ plays also an important role in adaptive immunity 

since it binds together with RORγ or RORα, to the IL-17a locus, promoting TH17 

cell development. Together with its function to positively regulate IL-6 production 

upon LPS exposure, the previous finding establishes IκBζ as proinflammatory IκB 

(Okamoto et al., 2010). In contrast to that, the proinflammatory TNFα transcription 

is suppressed by IκBζ and knockout mice are more resistant to experimental 

autoimmune encephalomyelitis (EAE) due to the impairment of TH17 cell 

development and susceptible to MCMV infection (Motoyama et al., 2005; Miyake et 

al., 2010; Okamoto et al., 2010). These examples of the dual IκBζ function in pro-

and anti-inflammatory mechanisms and processes clearly illustrates the versatile 

and complex role of atypical IκBs in the regulation of immune homeostasis and 

reaction. To sum it up, in this context atypical IκBs were revealed during the last 

decades to regulate the expression of surface markers, chemokines, cytokines and 

other effector proteins such as antibodies of immune cells, thus consequently 

regulating their maturation, differentiation and activation (for further review see Beg 

and Baldwin, 1993; Gosh et al., 1998; Li and Verma, 2002; Hayden and Gosh, 2004; 

Hayden and Gosh, 2008; Hinz et al., 2012; Hayden and Gosh, 2012; Schuster et 

al., 2013; Annemann et al., 2016). 
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Figure 7. Schematic overview of the molecular structure of murine cytoplasmic and 

nuclear IκB proteins. IκBs are characterised by the presence of an ankyrin repeat domain 

consisting of six to eight ankyrin repeats (ANK). IκBNS belongs to the nuclear or atypical IκB 

subfamily and consists of 6 ankyrin repeats and short N-terminal and C-terminal tails. Figure taken 

from: Annemann et al., 2016. 

 

1.2.5.3 The atypical NF-κB inhibitor IκBNS  

IκBNS, also called TA-NFKBH and NFKBID is encoded on chromosome 19q13.12 

in the Nfkbid gene and consists of 313 aa (human) or 327 aa (mouse). The protein 

comprises in human and mice six ANK for protein-protein interactions and short  

N-and C-terminal portions. IκBNS was first identified by Fiorini et al. in 2002 by 

investigating genes that are induced upon antigen induced negative selection of  

T-cells, bearing auto-reactive TCRs in the thymus. Soon afterwards it revealed to 

be inducibly expressed in several cell types. It was shown to be induced by stimuli 

like LPS, IL-10, CD40 and antigen ligands activating BCR and TCR signaling. IκBNS 

interacts with several NF-κB family members depending on the cell type. By 

conducting pulldown experiments with GST-IκBNS fusion proteins, Fiorini et al. 

(2002) have also shown the interaction of IκBNS with cytoplasmic and nuclear p50, 

as well as nuclear p52, p65, RelB and c-Rel in stimulated N14 TCR transgenic 
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thymocytes. In RAW264.7 macrophages overexpressed IκBNS interacts with p50 

but not with RelA (Hirotani et al., 2005). Co-IPs using nuclear extracts from 

fractionised P/I stimulated regulatory T-cells (Tregs) cell lysates, Schuster et al. 

(2012) revealed strong interaction of endogenous IκBNS with p50 and mild 

interaction with c-Rel. IκBNS-deficient mice breed and grow regularly. They do not 

show signs of spontaneous autoimmunity and are like IκBζ knockout mice more 

resistant to TH17-dependent EAE (Kobayashi et al., 2014). Furthermore, they found 

decreased expression of IL17A, IL-17-related genes and RORγt in response to 

Transforming Growth Factor (TGF-β1) and IL-6 stimulation in IκBNS deficient 

T-cells. TH17 cells depend on the expression of RORγt as the driving transcription 

factor of the TH17 phenotype which is also primarily characterised by the production 

of IL-17 (Ivanov et al., 2006). Considering the results described by Kobayashi et al., 

IκBNS negative T-cells are thus impaired in differentiating in proinflammatory TH17 

cells in response to TGF-β1 and IL6. For this reason, Kobayashi et al. concluded 

that IκBNS plays a crucial role in the generation of TH17 cells and in the control of 

TH17-dependent EAE. These results are in accordance with the findings of 

Annemann et al., 2015. They found IκBNS to be required for TH17 cell differentiation 

during gut inflammation and to regulate the expression of multiple key TH17 

cytokines such as IL-17A, IL17-F; IL-2, IL-10, GM-CSF, and MIP-1α.  

The requirement of IκBNS for the TH17 key cytokine IL-17 production was also 

observed by Jeltsch et al. by using a shRNA mediated knockdown approach in 

mouse CD4+ T-cells. Jeltsch et al. (2014) also demonstrated that Roquin and 

Regnase-1 repress mRNA encoding IκBNS, thereby inhibiting the expression of 

IκBNS and as a result of this also impair TH17 cell differentiation. Moreover, 

Annemann et al. (2015) report further that IκBNS exhibits increased binding to the 

IL-10 gene locus in stimulated TH17 cells in comparison to unstimulated TH17 cells. 

Therefore, the authors assume that IL-10 is a direct target of IκBNS expression and 

that IκBNS partially regulates TH17 differentiation by direct transcriptional control 

over TH17 phenotype determining cytokine expression. Furthermore, they reveal 

that IκBNS expression is not restricted to a specific T-cell subset, but drives besides 

TH17 also the development of TH1 cells in vitro. Consequently, they could observe 

reduced amounts of TH17 and TH1 cells, as result of a proliferation defect in IκBNS 

deficient mice. The group also describes that IκBNS mice display an impaired TH17 

development. TH17 cells are required for the clearance of Citrobacter rondentium 
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infections in the gut, which induce a strong TH17 response. Thus, as IκBNS was 

found to be indispensable for proper TH17 development it is consequently required 

for restricting Citrobacter rondentium infections in the gut and IκBNS knockout mice 

were unveiled to be highly susceptible to Citrobacter rondentium infections. The 

knockout proved IκBNS also not to have a considerable role in thymic negative 

selection, as indicated by the results obtained by Fiorini et al. (2002), since CD4+ 

and CD8+ T-cell numbers were not altered between wild-type and knockout mice.              

Alike IκBζ, IκBNS exhibits a dual role as negative and positive regulator of NF-κB 

target genes. T-cells lacking IκBNS produce significantly less IL-2 and IFN-γ and 

exhibit slightly impaired proliferation upon anti-CD3/28 stimulation, demonstrating 

its ability to act as transcriptional inducer (Touma et al., 2007). In contrast, 

stimulation of bone marrow-derived dendritic cells (DCs), lacking IκBNS with LPS 

show clearly increased and longer expression of the MYD88 dependent genes 

IL-6, IL-12p40 and IL-18. This result indicated that IκBNS is needed for termination 

of NF-kB activity at certain gene promoters such as in case of IL-6 (binding of IκBNS-

p50 complexes) and IL-12p40 that are induced late after TLR stimulation (Kuwata 

et al., 2006). The investigated knockout mice of this study were also highly 

susceptible to intestinal inflammation and LPS-mediated endotoxin shock. This 

outcome led to the conclusion that IκBNS is a regulator of inflammatory responses 

by inhibiting TLR-induced genes via the modulation of NF-kB activity. B-cell 

development and function are affected by IκBNS deficiency as well, since knockout 

mice exhibit for instance a complete absence of their peritoneal B1 B-cell repertoire 

and reduced mature B-cell numbers in the marginal zone of the spleen (Arnold et 

al., 2012). Furthermore, Touma et al. (2011) also describe that IκBNS deficient B-

cells show a decreased proliferation upon LPS and anti-CD40 exposure whereas 

proliferation was not affected upon BCR-stimulation. Moreover, also the effector 

function of B-cells in the humoral immune response was impaired by the absence 

of IκBNS. In addition to the observation of impaired in vitro plasma cell 

differentiation, IgG3 class switch was defective, the amount of serum IgM and IgG3 

was significantly diminished. Although B-cells of IκBNS deficient mice exhibit higher 

surface IgM levels. Also antigen-restricted antibody production in response to 

influenza A virus was decreased. As already mentioned earlier, IκBNS expression 

can be induced by IL-10. In this regard Fujita et al., showed high expression of 

IκBNS in mouse regulatory DCs in comparison to their conventional counterparts. 
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Those, regulatory DCs exhibit high levels of IL-10 but reduced levels of 

proinflammatory cytokines upon LPS exposure. This suggests that IκBNS 

participates in the suppression of the NF-κB-mediated production of 

proinflammatory cytokines. Schuster et al. showed in 2012 that IκBNS drives the 

expression of Forkhead box P3 (Foxp3) in mouse cells, the key     transcription factor 

controlling development and phenotypic maintenance of the immunosuppressive 

regulatory T-cell (Treg) phenotype. IκBNS binds together with p50 and c-Rel to the 

Foxp3 the promoter and a conserved non-coding sequence in the Foxp3 locus. 

Noteworthy, IκBNS expression is in turn suppressed by Foxp3 upon its induction, 

establishing a negative feedback loop (Marson et al., 2007). As a consequence of 

this, IκBNS positive regulation of Foxp3 expression, the loss of IκBNS in mice results 

in a substantial decrease of ~ 50% in mature Treg cell numbers due to an 

impairment of precursor Foxp3- Treg cell development in the thymus. Moreover, 

IκBNS also critically regulates induced Treg (iTreg) cell development during gut 

inflammation, and prevents IL-2 secretion of Treg cells (Schuster et al., 2012). 

Taken together, IκBNS has versatile roles in regulating immune homeostasis and 

response and is therefore an important player within the innate and adaptive 

immune system. Since IκBNS carries out functions in immune system activating as 

well as in immune suppressive mechanisms, it cannot be specified as pro- or anti-

inflammatory signaling protein. 

1.2.6 The NFAT family 

The nuclear factor of activated T-cells (NFAT) was first identified by Shaw et al. in 

1988 as a rapidly inducible transcription factor that switches on interleukin-2 

expression by binding to the IL-2 promoter in activated T-cells. Research in the 

following years revealed several more members of the NFAT family, it became 

obvious that NFAT expression is not restricted to T-cells but is expressed in almost 

all cell types, including other cells of the immune system, as well. The NFAT family 

now includes five members that are evolutionary related to the Rel/NF-κB family: 

NFAT1 (NFATc2/NFATp), NFAT2 (NFATc1/NFATc), NFAT3 (NFATc4), NFAT4 

(NFATc3/NFATx) and NFAT5 (tonicity enhancer binding protein TonEBP) (Hogan 

et al., 2003; Miyakawa et al., 1999).   Almost every cell type expresses one of the 

NFAT family members, including cells of hematopoietic and non-hematopoietic 

origin (Rao et al., 1997; Hogan et al., 2003; Graef et al., 2001; Crabtree and Olson, 
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2002). In general, the majority of NFAT proteins in lymphocytes, however, make up 

NFAT1 and NFAT2 (Rao et al. 1997). Research on NFAT proteins uncovered their 

regulatory roles in the central nervous system such as axonal guidance, 

angiogenesis, heart (e.g. cardiac valve formation), kidney, pancreas, skin, bone 

homeostasis, skeletal and smooth muscle development, the hematopoietic system, 

inflammatory response and the development and function of the immune system 

(Hogan et al., 2003; Graef et al., 2001; Crabtree and Olson, 2002; Kiani et al., 2004; 

Heit et al., 2006; Horsley et al., 2008; Pan et al., 2013). In more detail, in the context 

of lymphocyte development NFAT family members are expressed in peripheral 

lymphocytes except for NFAT3 which is primarily expressed outside of the immune 

system. NFAT1 is predominantly expressed in single positive thymocytes whereas 

NFAT2 is mainly expressed in double negative thymocytes and B-cells. In contrast 

to NFAT4 which is preferentially found in double positive thymocytes (Oukka et al., 

1998; Amasaki et al., 1998). NFAT5 is expressed in almost all cells and is activated 

as response to osmotic stress. For instance it regulates the expression of cytokines 

such as TNF-α and LTβ in lymphocytes under osmotic stress (Miyakawa et al., 1999; 

Lopez-Rodriguez et al., 2001). NFAT1-4 are regulated by calcium signaling whereas 

NFAT5 exhibits a truncated NFAT homology region (NHR) and thus lacks the 

calcineurin binding site (in 2.4.2 more about NFAT protein structure).  

For this reason, this certain NFAT protein is insensitive to calcium and calcineurin.  

1.2.6.1 Transgenic mice 

Studies of mouse models deficient in various NFAT members unveiled diverse 

phenotypes indicating unique roles of the different NFAT proteins. NFATc1 knockout 

mice for instance, exhibit a lymphoproliferative disorder and TH2-like responses 

(Ranger et al. 1998b; Yoshida et al., 1998). Mice with a NFATc2 loss, show modestly 

increased immune responses with TH2 characteristics (Hodge et al., 1996; 

Xanthoudakis et al., 1996; Kiani et al., 1997; Schuh et al., 1998). NFATc3 deletion 

results in increased lymphocyte apoptosis, hyperactive peripheral T-cells and the 

loss of CD4/CD8 double positive thymocytes (Oukka et al., 1998). Animals with 

a NFATc2 and NFATc3 double knockout exhibit spontaneous differentiation of 

T-cells into TH2 cells, overshooting IgE secretion, lymphadenopathy and the TH2-

predominant syndrome comprising allergic blepharitis and pneumonitis (Ranger et 

al., 1998c). As NFATc1 and NFATc2 exhibit the same DNA binding specificity, they 

were expected to be redundant in function. To figure this out, Peng et al. (2001) 
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reconstituted irradiated RAG2-deficient host mice with fetal livers taken from 

NFATc1/c2 double knockout mice. By doing this they confirmed the redundancy of 

NFATc1 and c2. They also investigated lymphocyte functions of NFATc1 or c2 

deficient animals. Peng et al. found that NFATc1 and c2 are indispensable for the 

activation of certain cytokine encoding genes since lymphocytes did not produce 

any IL-2, IL-4 or TNF-α and reduced IL-5 levels. Mice harbouring a constitutively 

active NFATc1 mutant show a global inflammatory response without affectation of 

thymocyte development (Pan et al., 2007). 

1.2.6.2 Common protein structure of NFAT proteins 

Structurally, all NFAT classified proteins share a moderately conserved regulatory       

N-terminal NFAT homology region (NHR) (~300 aa) that includes a potent 

transactivation domain, a NLS, serine rich regions (SRR1, 2), KTS and SPXX-repeat 

motifs (SP1-3), whereby X denotes any amino acid. Furthermore, the NHR also 

comprises the docking sites for calcineurin (SPRIEIT), the casein kinase1 (CK1) 

(FSILF) and for further NFAT kinases (Müller and Rao, 2010). Together, these 

kinases regulate the activation of NFAT by determining the phosphorylation status 

of the many serine residues in the SRRs and SP motifs that are contained by the 

NHR protein domain. Moreover, the NFAT proteins have in common a highly 

conserved DNA binding domain (DBD) that shares high homology with the Rel 

homology domain found in Rel/NF-κB proteins, therefore also termed RHD (Chen 

et al., 1998). The RHD contains points of contact for the interaction with the 

activating protein-1 (AP-1) transcription family members FOS and JUN. Each NFAT 

protein has two or more isoforms that are can be distinguished by their length 

variable N-and C-terminal tails (Luo et al., 1996; Imamura et al., 1998; Park et al., 

1996; Chuvpilo et al., 1999). Noteworthy, there are existing three isoforms of NFAT1 

(called A, B, C) and six of NFAT2 (called αA, βA, αB, βB, αC, βC) and four of NFAT4 

(called 1, 2, 3 and 4). These isoforms are generated by alternative splicing or by the 

usage of different promoter sites. The functional difference between the isoforms 

can be for instance the constitutive or inducible expression as in the case of NFAT2 

(NFATc1) which encompasses five permanently expressed and one isoform (αA) 

induced by T- or B-cell stimulation (Macian, 2005).  
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Figure 8. Schematic illustration of the common NFAT family protein structure.                                    

NFAT family proteins exhibit a characteristic N-terminal regulatory NFAT homology region 

(NHR), a DNA-binding domain which is due to its high similarity called REL-homology 

domain RHD and a C-terminal domain which is variable in length and that specifies 

isoforms. The NHR contains a transactivation domain (TAD) and docking sites for casein 

kinase 1 (CK1), termed FSILF, and calcineurin, termed SPRIEIT. The NHR includes as well 

multiple serine-rich motifs (SRR1, SP1, SP2, SRR2, SP3 and KTS) that provide 

phosphorylation sites for controlling NFAT activity and a nuclear localization sequence 

(NLS). Figure adapted from Müller and Rao, 2010. 

 

1.2.6.3 Ca2+ signaling and NFAT activation 

The activation of receptor tyrosine kinases (RTKs), G-protein coupled receptors 

(GPCRs), immunoreceptors such as antigen specific T-cell and B-cell receptors and 

Fc receptors on mast cells, monocytes and NK cells result in the initiation of a signal 

transduction cascade which leads to an increase of the intracellular Ca2+ 

concentration. Receptor engagement and thus activation leads to the activation of 

phospholipase C-γ (PLC-γ1 in T-cells and mast cells; PLC-γ2 in B-cells). PLC-γ in 

turn hydrolyses phosphatidylinositol-3,4-bisphosphate (PIP2) to generate the 

second messengers inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 

then binds to IP3 receptors located in the endoplasmic reticulum (ER) membrane 

inducing the release of ER stored calcium. This Ca2+ storage depletion is sensed by 

the high-affinity ER calcium sensors “stromal interaction moelcule1 or 2” (STIM1 or 

2) which are then activated. STIM1 proteins subsequently form oligomers and 

migrate to the contact site between ER and the cytoplasma membrane. STIM1 

oligomers bind then to specialised store-operated calcium-release-activated 

calcium (CRAC) channels crossing the plasma membrane, including ORAI1. This 

STIM1-CRAC channel binding triggers a conformational change and ensuing 

opening of CRAC channels such as ORAI1 in the plasma membrane. The described 

mechanism provides sustained Ca2+ influx into the cell (also called “store operated 

Ca2+ entry” (SOCE)) and maintenance of increased intracellular calcium. Calcium 

ions bind the Ca2+-sensor calmodulin (CaM), which in turn binds and activates the 

serine-threonine (S/T) phosphatase calcineurin. Calcium binding by the calcineurin 
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regulatory B subunit (CnB) under increased intracellular Ca2+ conditions leads to the 

exposure of the calmodulin-binding site on the catalytically active calcineurin A 

(CnA) subunit. Together, both events result in the release of an autoinhibitory 

peptide in the catalytic pocket of CnA and the S/T phosphatase calcineurin is now 

capable of converting substrates such as the calcium/calcineurin signaling 

dependent NFAT family members NFAT1-4. In order to effectively dephosphorylate 

NFAT proteins, calcineurin has to bind to a specific peptide motif within the NHR 

that is highly conserved in the NFAT family and exhibits the consensus aa-sequence 

“PXIXIT” (X designates any aa). This main calcineurin binding site on NFAT proteins 

was also exploited to create a specific with calcineurin for NFAT binding competing 

peptide. This competitive inhibitor mimics the calcineurin NFAT binding site and thus 

blocks NFAT activation by calcineurin mediated dephosphorylation. The competitive 

peptide is termed VIVIT according to its aa-sequence. In studies VIVIT was found 

to prolong xenograft survival in mice and attenuating the invasion of breast cancer 

cells (Noguchi et al., 2004; Jauliac et al., 2002). The catalytic activity of calcineurin 

is tightly regulated since it is not only controlled by calcium and CaM but also by 

other negatively regulating inhibitors like the calcineurin-binding protein 1 (CABIN1), 

the A-kinase anchor protein AKAP79 and the calcineurin inhibitor family of 

calcipressins (CSPs). In resting cells, NFAT proteins are present in a 

hyperphosphorylated, inactive conformation in the cytoplasm. NFAT proteins exhibit 

20 serine phosphorylation sites from which the regulatory region NHR comprises 18 

in the SSR1 and SP1-3 motifs. The dephosphorylation of the SP2, SP3 and SRR1 

motif serine residues by calcineurin unmasks the NFAT NLS, consequently resulting 

in the nuclear import of the NFAT protein (Macian, 2005). Moreover, in the nucleus 

calcineurin also sustains the dephosphorylated state of NFAT. In the nucleus, NFAT 

then cooperates with members of other transcription factor families (described later 

in more detail) such as AP-1 or NF-κB. These transcription factor families are 

activated downstream of DAG which induces the MAPK signaling pathway and PKC 

pathways, to regulate the transcription of target genes. Termination of NFAT 

transcriptional activity is achieved by its nuclear export and cytoplasmic relocation 

and accumulation. Responsible for this were found several regulating mechanisms 

as for example the inhibition of calcineurin activity. The inhibition of the calcineurin 

S/T phosphatase activity prevents NFAT transcriptional impact on target genes 
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because NFAT cannot migrate into the nucleus anymore and is also no longer 

retained there.  

1.2.6.4 Pharmacologic inhibitors of NFAT signaling 

Cyclosporin A (CsA, a cyclic peptide) and tacrolimus (FK506, macrolid lactone) are 

immunosuppressive drugs and function as pharmacological inhibitors of calcineurin 

which is their primary target. Both compounds are structurally unrelated but form 

complexes with intracellular immunophilins cyclophilinA and FRKBP12 (McCaffrey 

et al., 1993; Liu et al., 1991). These complexes in turn competitively inhibit 

calcineurin S/T phosphatase activity by binding to a hydrophobic groove between 

the catalytic (CnA) and regulatory subunit (CnB), thereby preventing substrate 

access to the active centre. Consequently, by inhibiting calcineurin, CsA and FK506 

act as well as inhibitors of NFAT signaling which is necessary for T-cell mediated 

immunity as it is indispensable for inducing interleukin (IL)-2 transcription and T-cell 

activation. CsA is due to its potent immunosuppressive abilities commonly used in 

the clinic to prevent immune-mediated transplant rejection and in therapy of 

autoimmune diseases. However, in cancer chemotherapy both calcineurin/NFAT 

inhibitors are not applied yet because of non-proven effectiveness. 

1.2.6.5 NFAT activity modulators 

Also multiple cytoplasmic and nuclear NFAT targeting S/T kinases modulate NFAT 

transcriptional activity. These distinct NFAT kinases precisely maintain the 

subcellular localisation of NFAT proteins and with this their function as transcription 

factors.        The kinases act as either maintenance or export kinases by sequestering 

NFAT in the cytoplasm by keeping NFAT fully phosphorylated or assist in NFAT 

nuclear export by rephosphorylating NFAT. A kinase that exhibits both 

functionalities is the casein kinase 1 (CK1) that phosphorylates the SRR1 motif. 

An example for an export kinase is the constitutively active glycogen synthase 

kinase 3 (GSK3) which phosphorylates the SP2 motif of NFAT1 and the SP2 and 

SP3 motifs of NFAT2. Another class of NFAT kinases, modifying the subcellular 

localisation of NFAT are the dual specificity tyrosine phosphorylation-regulated 

kinases (DYRKs). The family members DYRK1 and 2 phosphorylate the SP3 motif 

of NFAT1, providing the prerequisites for the phosphorylation of SP2 and SRR1 by 

GSK3 and CK1. DYRK1 facilitates the nuclear export of NFAT, whereas DYRK2 

phosphorylates NFAT in the cytoplasm, thereby preventing it from migration to the 
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nucleus, thus acting as maintenance kinase. Moreover, also JNK and p38 MAPKs 

can phosphorylate SSRs of NFAT1 and 2. Phosphorylations are not the only kind of 

NFAT post-translational modifications and mechanism determining the subcellular 

localisation and with this NFAT transcriptional activity. Sumoylation for instance was 

described to result in nuclear relocalistation of NFAT1 and 2 (Terui et al., 2004; 

Nayak et al., 2009). Yoeli-Lerner et al. (2005) report that in breast cancer cells, 

NFAT1 is ubiquitinated and thereby targeted for degradation by the E3 ubiquitin 

ligase MDM2. Furthermore, the cytoplasmic proteins HOMER2 and 3 were 

found to compete with calcineurin for NFAT binding, thus preventing NFAT 

dephosphorylation and nuclear translocation. In addition to that, a non-coding RNA 

was discovered called non-coding repressor of NFAT (NRON) that was identified as 

specific inhibitor of NFAT nuclear trafficking (Willingham et al., 2005).  
 

 
 

Figure 9. Schematic overview of Ca2+ - NFAT signaling. Ligand binding of immunoreceptors 

such as T-and B-cell receptors and receptor tyrosine kinases (RTKs) lead to the activation of 

phospholipase Cγ (PLCγ). PLCγ in turn hydrolyses phosphatidyl-4, 5-bisphosphate (PIP2) to 

generate diacylglycerol (DAG) and inositol-1, 4, 5-trisphosphate (InsP3). InsP3 binds to the InsP3 

receptor in the endoplasmic reticulum (ER) membrane and induces the depletion of the ER Ca2+ 

store. Stromal interaction molecule 1 or 2 (STIM1 or STIM2) subsequently detect the emptying of 

the ER Ca2+storage and form small clusters. STIM1 and 2 interact with the calcium-release-activated 

calcium ion channel (CRAC) protein ORAI in the plasma membrane to trigger store-operated Ca2+ 

entry (SOCE). Calmodulin as calcium sensing protein binds Ca2+ and activates calcineurin. 

Calcineurin in turn dephosphorylates NFAT, which then translocate to the nucleus where NFAT can 

cooperate with various transcriptional partners such as AP1 to regulate gene expression of target 

genes. Activation of transcriptional partners is controlled by for instance MAPK signaling and other 

pathways. Multiple NFAT kinases mediate the inactivation of NFAT proteins by rephosphorylating 

them. These are for example the glycogen-synthase kinase 3 (GSK3), Casein kinase1 (CK1) and the 
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dual-specificity tyrosine-phosphorylation regulated kinase 1 (DYRK1) and DYRK2. Calcineurin 

phosphatase activity is regulated by endogenous calcineurin inhibitors like calcineurin-binding 

protein 1 (CABIN1), A-kinase anchor protein 79 (AKAP79) and Down's syndrome critical region 1 

(DSCR1). Cyclosporin A (CsA) and FK506 are efficient pharmacological inhibitors of calcineurin. 

Endogenous negative regulators of NFAT signaling are the Non-coding repressor of NFAT (NRON) 

and caspase 3. Different scaffold proteins were shown to participate in NFAT regulation. 

Abbreviations: GADS, GRB2-related adaptor protein; ITK, IL-2-inducible T-cell kinase; LAT, 

linker for activation of T cells; Lck lymphocyte-specific protein tyrosine kinase; MAPK, mitogen-

activated protein kinase; MAPKK, MAPK kinase; SLP76, SH2-domain-containing leukocyte protein 

of 76 kDa; TCR, T cell receptor; ZAP70, ζ-chain-associated protein kinase of 70 kDa. Figure adapted 

from Müller and Rao, 2010. 

 

1.2.6.6 NFAT transcriptional activity 

Once entered the nucleus, active NFAT members interact with DNA as homodimers 

or heterodimers and the DNA binding domain is able to cooperate with those of 

other transcription factors families in the nucleus to enable functional synergies 

(Giffin et al., 2003). The interaction of NFAT with members of other transcription 

families is also needed to execute transcription regulation as NFAT exhibits only 

weak DNA binding properties. For example, the binding of NFAT and AP-1 to 

neighbouring DNA binding sites results in an ~ 20-fold increase in the stability of the 

NFAT-AP1-DNA complex in comparison with binding of NFAT to its DNA binding 

site alone (Jain et al., 1993). The interaction of NFAT proteins with other 

transcription factors is feasible thanks to a highly flexible linker region located 

between the RHD and the C-terminal domain that has contact only with the 

phosphate backbone of the DNA (Stroud and Chenpark, 2003). NFAT interacts with 

several transcription factors as for instance AP-1, GATA4, IRF4, MEF2, NF-kB, 

PPARγ, EGR, and FOXP2 & 3 (Yang et al., 2000; Molkentin et al., 1998; Crabtree 

and Olson, 2002; Rengarajan et al., 2002; Hogan et al., 2003; Macian et al., 2001; 

Macian, 2005; Pham et al., 2005; Wu et al., 2001; Hu et al., 2002; Hermann-Kleiter 

and Baier, 2010, Müller and Rao, 2010). This versatile cooperation of NFAT 

members with other transcription factors makes it possible to combine different 

signaling pathways in turn to activate specifically rendered gene programmes 

leading to different phenotypes and specific responses to various stimuli. The best 

characterised example is the interaction of NFAT with AP-1 members. Fos-Jun 

dimers form quaternary complexes with NFATs and DNA on corresponding NFAT-

AP1 sites to regulate the transcription of diverse inducible genes. This NFAT-AP1 

cooperation complex is needed in T-cell activation and integrates to main signaling 
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pathways of T-cell stimulation. Namely calcium signaling leading to NFAT activation 

and the MAP-kinase pathway inducing FOS and JUN expression (Chen et al., 1998; 

Jain et al., 1992). AP1 proteins are thus the main transcriptional partners of NFAT 

during T-cell activation and together they are inducing a distinct gene program that 

characterises the activated T-cell phenotype (Macian et al., 2001; Jain et al., 1992). 

Among the NFAT transcription factor family, NFAT5 is the only protein that is not 

capable to form cooperative complexes with AP-1 members on composite DNA 

elements. NFAT5 does not require a nuclear partner for its activity (Lopez-

Rodriguez et al., 1999; Macian et al., 2001; Pan et al., 2013). Interestingly Macian 

et al. (2002), found that under conditions where AP-1 is not activated and NFAT-

AP1 cooperation is not taking place, NFAT activity alone in T-cell activation leads to 

the activation of a different gene set resulting in lymphocyte anergy a completely 

opposing genetic program than the productive activated state mediated by NFAT-

AP-1 complexes. Also a cooperation between NFAT and NF-κB was observed by 

several groups. Sica et al. (1997) for instance describe coordinate activities of NFAT 

and RelA/p50 NF-kB dimers binding at same site within the IFN-γ promoter in order 

to enhance IFN-γ transcription, the TH1 defining cytokine. Another study proves 

NFAT and NF-κB to act synergistically to activate IL-4 gene expression in T-cells 

(Li-Weber et al., 2004). Moreover, NFAT is also implicated in cooperation with 

different partners from different transcription factor families in the regulation of 

multiple other genes playing an important role in the regulation of the immune 

system. This includes for instance the cytokines IL-2, IL-3, IL-5, IL-6, IL-13, TNF-α 

and GM-CSF, the chemokines IL-8 and Mip-1α, the surface proteins Igk, CD5, 

CD25, CD40L and CD95L (Rao et al., 1997; Macian et al., 2001). 

Thus, it is likely that NFAT signaling has a significant impact on chemokines in cells 

that are part of the tumor environment. This is from interest since leukaemia and 

lymphoma mouse models were revealed to harbour hyperactive NFAT as a result 

of paracrine signalling in the tumor environment (Medyouf et al., 2007; Pham et al., 

2005).  

1.2.6.7 Role of NFAT in B-cells 

Regarding B-cells, mice lacking NFAT2 exhibit a complete loss of splenic and 

peritoneal B-1 cells. In contrast, NFAT1 deficient mice showed a normal repertoire 

of B-1a cells. Winslow et al. (2006) describe a more indirect role of NFAT in B-cell 

function. The group was investigating mice with a B-cell specific deletion of the 
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regulatory subunit B of calcineurin. As a consequence of this, the mice showed 

decreased plasma cell development, fewer immunoglobulin production, reduced 

numbers of B1a cells and a B-cell proliferation defect downstream of the BCR.  

1.2.6.8 NFAT in solid cancers 

NFAT signaling participates in the regulation of growth, survival, differentiation and 

development of many cell types and organ systems. Due to this, abnormalities in 

NFAT proteins and/or the dysregulation of NFAT signaling are potent to be 

associated with the development of neoplasms originating from various tissues. 

Indeed, aberrant NFAT signaling, mostly overexpression and/or hyperactivity, was 

documented to play roles in malignant transformation, tumor angiogenesis, invasive 

migration, and therefore in the development and pathogenesis of solid neoplasms. 

This is the case for instance in breast cancer (NFAT1, 5), pancreatic cancer 

(NFAT2), melanoma (NFAT2, 4), prostate cancer and endometrial cancer (Robbs 

et al., 2008; Mancini and Toker, 2009; Yoeli-Lerner et al., 2005 and 2009; Buchholz 

et al., 2006; Koenig et al., 2010; Flockhart et al., 2009; Lehen’kyi et al., 2007; Sales 

et al., 2009 and 2010). 

1.2.6.9 NFAT in hematopoietic malignancies  

NFAT family members and thus Ca2+/NFAT signaling were also revealed by multiple 

studies to be implicated in the pathogenesis of haematological malignancies like           

B- and T-cell lymphoma (Pham et al., 2005; Fu et al., 2006; Glud et al., 2005; 

Medyouf et al., 2007). An immunohistological evaluation of almost 300 lymphoma 

samples conducted by Marafioti et al. in 2004 found NFAT2 to be overexpressed in 

most lymphoid neoplasms. Moreover, NFAT2 exhibiting a nuclear localisation was 

observed in 30% of DLBCL and 70% of Burkitt lymphoma samples, indicating in vivo 

activation of the NFAT pathway in those malignancies. Other studies report that in 

patient samples derived from DLBCL and T-All NFAT2 nuclear localisation or 

dephosphorylation of NFAT2 and 1 were observed (Fu et al., 2006; Medyouf et al., 

2007). In line with this, another study conducted by Pham et al (2005) reports that 

NFAT is constitutively activated in LBCL. Moreover, they demonstrate that NFAT2 

and c-Rel cooperatively bind at the CD154 promoter at similar binding sites. 

Thereby, they directly interact and synergistically regulate CD154 transcription in 

lymphoma B-cell lines. This result was supported by the finding from Srahna et al. 

(2001). They report an additive effect of NF-κB inhibitors and the NFAT inhibitor CsA 
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in inhibiting the expression of CD154 (CD40L) on both, the mRNA and protein level 

upon P/I mediated T-cell stimulation. In DLBCL and MCL it was found that NFAT2 

regulates the expression of B-cell survival factors like CD40L (CD154) and B-

lymphocyte stimulator (BLYS) (Pham et al., 2005; Fu et al., 2006). Mouse T-cell 

acute lymphoblastic leukemia (T-ALL) models that were treated with calcineurin 

inhibitors exhibited reduced proliferation and induction of apoptosis of leukemic blast 

cells, fast tumor clearance and consequently prolonged survival (Medyouf et al., 

2007). Notably, NFAT2 was found to play an important role in cancer therapy 

resistance as the activation of Ca2+-NFAT signaling was associated with the 

acquired resistance of chronic myeloid leukemia (CML) towards tyrosine kinase 

inhibitors (Gregory et al., 2010).  

1.2.6.10 NFAT signaling summary 

In summary, taking into account the almost ubiquitous expression of NFAT, the 

number of NFAT family members and their distinct isoforms, the multitude of NFAT 

binding partners from other transcription families on target genes, the abundance of 

NFAT activity modulators and the involvement of NFAT signaling in the regulation 

of a wide range of genes and physiological processes makes NFAT signaling to a 

complex and vital component of human cell organisation. Therefore, NFAT signaling 

constitutes a promising subject for further research in order to develop therapy 

approaches for a variety of malignancies. 

1.2.7 The AP-1 family 

The activator protein 1 (AP-1) transcription factor was discovered in 1987 as DNA 

binding protein in HeLa nuclear extracts that recognises a distinct DNA element 

(TGACTCA) within the promoter and enhancer region of the SV40 and 

metallothionein IIA gene (Lee et al., 1987) Today, the AP-1 transcription factor 

family comprises dimeric complexes made up of over 20 different protein subunits 

that are functionally and structurally related and categorised in five subfamilies 

termed JUN (v-Jun, c-Jun, JUNB and JUND), FOS/FRA (v-Fos, c-FOS, FosB, Fra1, 

Fra2), JDP (JDP1/2),  ATF/CREB (ATF1, ATF2, ATF3/LRF1, ATF4, ATF5, ATF6a, 

ATF6b, ATF7, B-ATF; ATFa0, CREB) and MAF (v-Maf, c-Maf, MafB, MafF, MafG, 

MafK, Nrl). These subunits can form a multitude of homo- and heterodimeric 

combinations that exhibit different DNA binding specificities and affinities towards 

gene expression regulatory elements within promoters and enhancers of AP-1 
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responsive genes. The dimers also exhibit partially redundant functions and are 

differently regulated. Thus, the manifold dimer combinatorial possibilities determine 

the range of regulated genes. For instance, Jun containing dimers preferentially bind 

the AP-1 DNA recognition element also called the TPA-responsive element (TRE). 

But besides TRE there are several more different AP-1 responsive sequences that 

are preferentially bound by distinct dimer pairs. Some are favoured over others or 

are exclusively bound by a specific dimer composition. These are the cAMP-

responsive element (CRE) which is preferentially bound by ATF proteins, the MAF-

recognition elements (MAREs I/II) and the antioxidant-response elements (AREs). 

c-Jun homodimers for instance, favour TRE over CRE site binding whereas  

c-Jun/ATF4 heterodimers exclusively bind to CRE sites and c-FOS/MAFB/F/G/K 

heterodimers bind only to MARE I/II responsive elements (Eferl and Wagner, 2003). 

Such AP-1 binding elements were among others found in regulatory regions of 

genes that are induced during T-cell activation. This led to the assumption that 

proteins of the AP-1 transcription factor family could consequently regulate the 

expression of those genes. Promoter analysis of such a gene, the human IL-2 gene, 

encoding interleukin-2 an important growth factor for B-cells and critical for T-cell 

proliferation, differentiation and mounting of a T-cell dependent immune responses 

was identified to harbour two AP-1 responsive sites. Furthermore, the IL-2 promoter 

was also shown to bind partially purified AP-1 proteins and mutation of one of those 

sites resulted in diminished or abrogated induction of IL-2. The functionality of this 

AP-1 responsive site within the IL-2 promoter was validated by a cotransfection of 

IL-2-chloramphenicol acetyltransferase encoding plasmid together with c-FOS 

and/or c-Jun leading to an enhanced induction of IL-2-chloramphenicol 

acetyltransferases activity (Jain et al., 1992). In accordance with this, transgenic 

mice, overexpressing c-FOS exhibit enhanced IL-2 gene expression and cytokine 

production. Whereas mice expressing a dominant negative form of the CRE-binding 

protein (CREB) that is known to induce various AP-1 encoding genes show less  

IL-2 production with simultaneous decreased c-Jun, c-FOS, Fra2 and FosB mRNA 

levels (Ochi et al., 1994; Barton et al., 1996). Thus, AP-1 plays a pivotal role in the 

transcriptional regulation of the IL-2 gene. AP-1 members can also form complexes 

with non-bZIP proteins likeNF-κB and NFAT (Stein et al., 1993; Jain et al., 1992). 

AP-1 and NFAT were found to bind cooperatively to composite DNA binding sites 

and from stable complexes. This is the case for instance at the murine IL-4 promoter. 
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Together, NF-κB and NFAT bind at a composite site within the sequence of the  

IL-4 promoter. Therefore, AP-1 is together with the transcription factor NFAT critical 

for full activity of the murine IL-4 promoter. IL-4 is involved in the differentiation of 

precursor T-helper (TH) cells into the TH2 phenotype. Depending on the 

investigated T-cell line, c-FOS, Fra-2, Fra-1, c-Jun, JunB, and JunD were found to 

be involved in the transcriptional regulation of this leukocyte modulatory interleukin 

4 (Le Gros et al., 1990; Chuvpilo et al., 1993; Rooney et al., 1995; Li-Weber et al., 

1997). Consequently, loss of JunB in TH2 cells in vitro results in deregulated TH2 

cytokine expression and the expression of TH1 characteristic key regulators 

(Hartenstein et al., 2002). Moreover, also IL-10 expression of TH2 cells is positively 

controlled by JunB/AP-1, c-Jun/AP-1 transcription complexes. In contrast to that, 

Meixner et al., 2004 found reduced IL-4 levels in JunD overexpressing lymphocytes 

and consistently with that higher IL-4 and IL-10 expression in JunD negative TH2-

cells. This suggests that JunD unlike its relatives JunB and c-Jun suppresses TH2 

differentiation and the expression of TH2 specific cytokines. The cooperation 

between AP-1 and NFAT was also observed in controlling the induction of IL-5. In 

the gene promoter of this cytokine which is predominantly produced by TH2 cells, a 

DNA element was found to which NFAT and c-FOS/c-Jun dimers bind cooperatively 

(Lee et al., 1995; Wang et al., 1994; Karlen et al., 1996). Furthermore, also in the 

promoters of IL-3 and IL-9 AP-1 sites were identified. Thus, AP-1 was reported to 

enhance the expression of an IL-3 reporter construct and c-FOS/c-Jun were found 

to bind to the IL-3 promoter in stimulated T-cells (Mathey-Prevot et al., 1990; Park 

et al., 1993). A mutational analysis revealed that AP-1 enhances IL-9 promoter 

activity in T-cells (Zhu et al., 1996). Moreover, also IFN-γ and TNF-α were described 

to be regulated by AP-1 proteins in cooperation with other transcription factors. For 

instance, in Jurkat T-cells AP-1 was found by Barbulescu et al. (1997) to be pivotal 

for the induction of IFN-γ expression. In line with this, an AP-1 heterodimer 

consisting of c-Jun and ATF2 was shown to interact and transactivate IFN-γ 

promoter constructs in T-cells (Penix et al., 1996). Additionally, AP-1 family 

members were reported to induce the macrophage inflammatory protein-1β  

(MIP-1β) and upon IL-1β stimulation of endothelial cells in cooperation with 

RelA/p50 the chemoattractant protein-1 (MCP-1) (Martin and Dorf, 1991). In calcium 

stimulated T-cells, an AP-1 dimer consisting of c-Jun/ATF-2 cooperates with 

NFATc2 to bind to a CRE site in order to induce TNF-α expression, whereas in LPS 
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stimulated THP-1 cells, c-Jun comprising AP-1 complexes cooperate with RelA/p50 

dimers to increase TNF-α transcription (Tsai et al., 1996; Yao et al., 1997).  

AP-1 family members were also reported to act as transcriptional repressors 

especially those exhibiting weak transactivation capacities such as JunB and JunD, 

Fra1 and Fra2. These AP-1 proteins can competitively out bind AP-1 subunits of 

transcriptionally active AP-1 dimers binding at the same DNA promoter site as they 

do. The Jun and Fos AP-1 subfamilies are the major AP-1 proteins. Notably, Jun 

proteins homo- and heterodimerize whereas FOS members are incapable of 

homodimerisation but pair stably with Jun proteins and some ATF family members. 

FOS proteins possess negatively charged residues adjacent to their leucine zipper 

domain leading to an electrostatic destabilisation of FOS homodimers, therefore 

favouring instead the formation of Jun-Fos heterodimers (Halazonetis et al., 1988). 

AP-1 proteins are composed of basic leucine zippers (bZIPs), heptad repeats of 

leucine residues. For this reason, AP-1 members are referred to as bZIP proteins. 

The bZIP forms an amphipathic α-helix and is associated with the leucine zipper of 

the second AP-1 member within the dimer in a coiled-coil arrangement facilitating 

the dimerization of the AP-1 subunits. Furthermore, AP-1 proteins comprise another 

α-helical region that includes several basic amino acid residues responsible for the 

interaction of the transcription factor with the phosphate backbone of the DNA. 

Moreover, AP-1 proteins also contain a transactivation domain called delta domain, 

determining transcriptional activation. AP-1 is activated by a wide array of different 

stimuli such as ligand engagement of BCR, TCR or TLRs, cellular stress, radiation, 

growth factors, neurotransmitters, peptide hormones, pathogens and cytokines. 

Hence, AP-1 signaling is involved in several cellular processes like apoptosis, 

inflammation proliferation, cellular migration, wound healing, survival and 

differentiation. Depending on the stimulus, different AP-1 subfamilies are induced 

by different upstream signaling pathways. Antigen receptor activation for instance 

results in the induction/activation of Jun (c-Jun, JunB), FOS (c-FOS) and ATF 

(ATF2, ATF3) proteins. Growth factors for example, induce AP-1 transcriptional 

activity by the activation of the S/T kinases mitogen-activated protein kinase (MAPK) 

subgroup of extracellular signal-regulated kinase (ERK) proteins which migrate to 

the nucleus where they activate ternary complex factors which in turn bind FOS 

promoters. The MAPK family members c-Jun N-terminal kinase (JNK) and p38 

mainly activate AP-1 as response to pro-inflammatory cytokines, genotoxic stress 
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and some mitogenic signals. JNK which encompasses at least ten isoforms 

encoded by three different genes (JNK1, 2, 3) regulates the expression and activity 

of Jun family proteins. Subsequently to their nuclear translocation, JNK isoforms 

phosphorylate c-Jun, JUNB, JunD and less efficiently also ATF2 which then trigger 

the activation and formation of AP-1 dimers. For instance, JNK phosphorylation of 

c-Jun and ATF2 increases their transcriptional activity, stability and induces their 

heterodimerization. c-Jun/ATF2 heterodimers can then bind different sites in the 

c-Jun promoter. On the other hand, under non-stimulated conditions, 

phosphorylation inactive JNKs were shown by Fuchs et al. (1998) to degrade c-Jun 

and ATF2. As soon as the JNK phosphorylation enzyme activity is turned on,  

c-Jun and ATF2 degradation is abolished (Musti et al., 1997). AP-1 induction by p38 

is facilitated by direct phosphorylation and activation of ATF2 and MEF2C.  

In order to reveal whether c-Jun is essential for lymphocyte function, Chen et al. 

(1994) injected c-Jun deficient mouse embryonic stem cells into blastocysts derived 

from RAG2 lacking mice that do not develop mature lymphocytes. The resulting 

chimeric mice showed altered thymus structure and changes in the ratios of 

thymocyte populations but produced T-and B-cells exhibiting normal phenotypes. 

For this reason, c-Jun was not supposed to be required for lymphopoiesis. 

Moreover, also c-FOS deficient mice did not display any obvious differences in T-

cell activation and proliferation (Jain et al., 1994). On the other hand, FosB2 (lacking 

a transactivation domain) overexpressing mice display strong alterations in thymic 

structures and composition. Furthermore, in comparison to their wild-type 

counterparts these mice show elevated amounts of αβ-TCR expressing thymocytes 

and reduced fractions of DP thymocytes. Research in c-FOS and c-Jun negative 

murine cells suggests that those proteins are not necessary for proper induction  

of apoptosis. This assumption was further strengthened by the occurrence of 

apoptosis in mouse embryos deficient in either c-FOS, c-Jun or both c-FOS and  

c-Jun (Roffler-Tarlov et al., 1996). Moreover, also splenic and thymic primary 

cultures from c-FOS knockout mice showed inducible apoptosis in cell culture 

experiments (Gajate et al., 1996). In contrast, a study conducted by Colotta et al. 

(1992) suggests that AP-1 plays a role in growth factor withdrawal-induced 

apoptosis of lymphoid cells. 

It was reported that several FOS and JUN members associate alone or in 

conjunction with other transcription factors such as NFAT with the promoters of 
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genes coding for cytokines characteristic for TH1 and TH2 cells. Both T-cell 

subtypes were shown to express several AP-1 members upon activation (Rincon et 

al., 1998). TH1 cells express c-FOS and c-Jun whereas TH2 cells exhibit high levels 

of c-FOS, c-Jun and also of JunB. This indicates that different AP-1 expression 

patterns result in a distinct cytokine expression. AP-1 members also participate in 

hematopoietic differentiation as c-FOS was revealed with the aid of c-FOS deficient 

mice to be a unique regulator of bone marrow macrophage differentiation 

(Grigoriadis et al., 1993). The regulatory role of c-FOS in macrophages is also 

illustrated by c-FOS deficient macrophages that were found to produce higher IL-12 

levels upon LPS stimulation than c-FOS positive controls (Roy et al., 1999). 

Regarding B-cell biology, surface immunoglobulin (mIg) crosslinking was unveiled 

to induce several AP-1 family proteins in a primarily PKC dependent manner.                             

For instance, c-FOS expression was induced in primary B-cells and model B-cell 

lines (Klemsz et al., 1989). Moreover, elevated levels of the AP-1 proteins JunB, 

FosB and JunD were observed as well in mIg stimulated primary B-cells (Tilzey et 

al., 1991; Tanguay et al., 1994; Huo and Rothstein, 1995 and 1996; Amato et al., 

1996). On the other hand, also a predominantly PKC independent induction of the 

AP-1 proteins c-FOS, JunB and JunD by CD40 was observed (Huo and Rothstein, 

1995; Francis et al., 1995; Kawakami et a., 1992). Unlike in other cell types, the 

induction of AP-1 DNA binding in B-cells was described not to increase AP-1 

transactivation or cell-cycle progression. For instance, in the murine B-cell 

lymphoma line BAL-17.7.1 (BAL-17) which is a model for primary B-lymphocyte 

responses, induced AP-1 proteins did not transactivate a transiently transfected 

TRE binding site containing human collagenase gene promoter (Chiles and 

Rothstein, 1992). Kobayashi et al. (1997) report that in splenic B-cells derived from 

IFNα, β inducible c-FOS transgenic mice the cell cycle was arrested in the G1-phase 

as a consequence of IFNα/β application within half a day after anti-IgM stimulation. 

From this observation they concluded that induced c-FOS overexpression in the  

G1-phase interferes with the activation of cell cycle regulating mechanisms. In 

further investigating this, they found that IFN induced c-FOS overexpression in anti-

IgM stimulated B-cells is responsible for preventing the down regulating of p27 as a 

result of abolished CDK2 kinase activity in late G1 phase. From this they drew the 

conclusion that c-FOS is able to negatively affect cell cycle regulatory mechanisms 

in anti-IgM stimulated B-cells (Kobayashi et al., 1997). Moreover, AP-1 dimers also 
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seem to be involved in antibody production as they were found to transcriptionally 

induce the kappa light chain and the Ig heavy chain gene (Schanke et al., 1994; 

Grant et al., 1995). In this respect, transgenic mice overexpressing c-FOS under the 

control of the H-2kb promoter showed abnormalities in Ig class switch, an inability to 

produce primary IgG antibodies in response to antigens and no generation of 

memory B-cells in the spleen (Takao et al., 1991). 

Members of the AP-1 family were observed to be frequently overexpressed in 

lymphoma such as c-jun, JunD, JunB and c-FOS in B-cell NHL of the splenic 

marginal zone. c-Jun and JunB were found to be overexpressed in primary and 

cultivated tumor cells of cHL patients and in anaplastic large cell lymphoma. JunB 

was also described to be overexpressed in cutaneous lymphoma and in an array of 

CD30+ lymphoma (Trøen et al., 2004; Mathas et al., 2002; Rassidakis et al., 2005). 

Regarding DLBCL, Blonska et al. (2015) have shown that c-Jun is frequently 

activated. By conducting a DNA microarray they revealed a number of c-Jun 

positively regulated genes that were coding for signaling and adhesion molecules, 

surface receptors, enzymes and cytokines. Thus, c-Jun knockdown resulted in 

decrease of cell adhesion to extracellular matrix (ECM) components, down 

regulation of ABC DLBCL (OCI-Ly3 and OCI-Ly10 cell lines) released cytokines 

such as macrophage-derived chemokine (MDC), interferon-inducible protein 10 (IP-

10), IL-6, IL-10 and IL-12. Furthermore, c-Jun knockdown led to a reduction of tumor 

growth and cell invasiveness into the bone marrow of a mouse DLBCL xenograft 

model. Moreover, in cell lines classified as the ABC DLBCL subtype derived from 

patients in an advanced disease stage, they observed elevated c-Jun expression 

levels. In accordance with this study, Juilland et al. (2016) revealed that ABC DLBCL 

exhibit constitutively upregulated CARMA1 and MYD88 mediated expression of the 

AP-1 proteins c-Jun, JunB and ATF3. By conducting chemical cross-linking 

experiments, the indicated JUN family members were revealed to form constitutive 

dimers with ATF2 and ATF7 in both GCB- and ABC DLBCL cell lines. In contrast, 

ATF3 was found to be expressed exclusively in ABC DLBCL cell lines where it 

formed dimeric complexes with c-Jun, JunB and JunD. The group also reports that 

the usage of a competitive AP-1 inhibitor had an impairing effect selectively on ABC 

DLBCL viability. An additional shRNA mediated silencing approach of either ATF2, 

ATF3 or ATF7 in the ABC DLBCL cell line HBL-1 showed that ATF2 and ATF3 

expression is pivotal for ABC DLBCL survival, whereas ATF7 silencing had only little 
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impairing effects on survival. Moreover, the analysis of 350 DLBCL patient samples 

by immunohistochemistry unveiled a strong nuclear presence of ATF3 in nodal ABC 

DLBCL samples, identifying ATF3 expression as a hallmark of the ABC DLBCL 

subtype. These results are consistent with observations made by Ruland et al. 

(2015). The group generated a mouse model expressing the human DLBCL derived 

CARD11 (L225LI) gain-of-function mutant that was uncovered by Ruland et al. to 

induce CBM dependent simultaneous NF-κB and JNK signaling in purified splenic 

B-cells. In line with the induced JNK signaling activity, they could observe high 

amounts of the phosphorylated AP-1 JNK substrates c-Jun and ATF2 in nuclear 

extracts of transgenic CARD11 (L225LI) expressing murine splenic B-cells. When 

they conducted gel mobility shift assays with these nuclear extracts, they found 

markedly increased NF-κB and AP-1 DNA binding activity in CARD11 (L225LI) 

expressing transgenic B-cells compared to wild-type B-cells. Furthermore, 

transfection of the mature B-cell lymphoma line Bal-17 with CARD11 (L225LI) led 

to increased nuclear c-Jun, RelA, c-Rel and p50 levels. Moreover, in order to figure 

out if the results that were obtained by the transgenic mouse model would also hold 

true for human DLBCL cases, they performed an immunohistochemistry based 

analysis to check for the presence of activated JNK in 67 human primary DLBCL 

samples patients. Indeed, in more than 55% of the investigated ABC DLBCL cases 

they found phosphorylated JNK indicating a constitutive JNK enzyme activity, 

whereas no GCB DLBCL classified cases were found to exhibit active JNK. 

Consequently, they tested established human ABC DLBCL model cell lines for the 

presence of phosphorylated i.e. activated JNK and revealed three of four cell lines 

to harbour constitutively phosphorylated JNK. Constitutive active JNK in these 

DLBCL could be further substantiated by conducting an in vitro kinase assay with 

the JNK AP-1 substrate c-Jun. In addition, alike in the murine Bal-17 cell line the 

transduction of the GCB DLBCL cell line BJAB with the CARD11 (L225LI) mutant 

caused the besides NF-kB also the activation of JNK as proven by p-JNK detection 

and JNK kinase activity assays. Finally, they treated ABC DLBCL with a JNK 

inhibitor and unveiled that all cell lines exhibiting JNK activity died upon JNK inhibitor 

treatment in a dose-dependent manner, indicating the relevance of the JNK pathway 

and associated AP-1 signaling for the survival of ABC DLBCL subtype.  
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1.3 Antigen receptor signaling: B-cell receptor 
(BCR) and T-cell receptor (TCR) signaling  

B- and T-lymphocytes are central elements of the adaptive immune system.                          

Both lymphocyte subsets bear highly diverse antigen receptors on their surfaces 

with each lymphocyte possessing its own unique antigen receptor namely the B-cell 

receptor (BCR) or the T-cell receptor (TCR) which a single antigen specificity. 

Therefore, the abundance of this receptor class enables the immune system to 

recognise a wide range of different pathogens. Whereas T-cells play a central role 

in cell-mediated immunity by killing cancerous or infected cell and activating other 

immune cells, the correct activation of B-cells is substantial for mounting an effective 

humoral immune response. The terminal effector cells of the B-cell lineage are 

plasma cells and memory B-cells emerging from mature activated B-cells that 

underwent a highly regulated differentiation process. Plasma cells are capable to 

neutralise invading pathogens such as bacteria and viruses by secreting high-affinity 

antigen specific immunoglobulins. Memory B-cells confer long-lasting protection 

against recurrent infections. B-cell activation begins with the engagement of the 

correspondent antigen by the B-cell antibody receptor (BCR) (for an overview of 

BCR-signaling see Figure 10). The BCR is a multiprotein complex made up of the 

ligand binding membrane bound immunoglobulin (mIg) heavy and light chains and 

an associated disulfide-linked heterodimer consisting of Igα (CD79A) and Igβ 

(CD79B) that are capable of transducing downstream signaling. The T-cell receptor 

(TCR) on the other hand, consists of the highly variable heterodimer forming antigen 

recognition chains TCRα and TCRβ. Moreover, the accessory CD3 complex is 

associated with the antigen-recognising portion by electrostatic interactions 

between aa-residues within their transmembrane domains. The CD3 complex 

comprises several invariant proteins, one CD3γ, one CD3δ and two CD3ε chains 

that consist of an extracellular Ig-like structure and cytoplasmic tails bearing one 

ITAM each. Further, the complex is associated with two ζ chains representing a 

mainly intracytoplasmic disulfide-linked homodimer bearing six ITAMs in total, 

responsible for TCR downstream signaling. Monovalent ligands binding to the BCR 

of mature B-cells are not able to activate the BCR. Instead, in order to properly 

active the BCR and ensuing downstream signal cascades, ligand engagement has 

to crosslink BCRs resulting in the formation of BCR aggregation clusters (Küppers, 

2005). However, some studies report that in the absence of antigens, BCRs are 
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present on the surface of resting cells in oligomers that exhibit an autoinhibitory 

confirmation and are dissolved as a result of antigen binding (Fiala et al., 2013; Yang 

and Reth, 2010). The first step of signal propagation upon mIg antigen ligand 

binding is the phosphorylation of the CD79A/B immunoreceptor tyrosine-based 

activation motif (ITAM) tyrosins. Each CD79 subunit harbours a single ITAM in its 

cytoplasmic domain that incorporates two tandem tyrosines that are phosphorylated 

by the B-cell predominantly expressed LYN and also FYN, BLK or LCK kinases of 

the src family. Phosphorylation of the TCR associated CD3 invariant chains and the 

ζ-chains in T-cells is conducted by LCK. The phosphorylated ITAM tyrosines of 

CD79 (CD3 invariant chains and ζ-chains in TCR signaling) bind and activate the 

spleen tyrosine kinase also known as SYK (ZAP-70 in T-cells) as the dually 

phosphorylated ITAMs of the signaling chains provide a specific, spatially defined 

binding site for the SYK SH2 domains. SYK in turn is critical for coupling the BCR 

to downstream signaling events. Activated SYK autophosphorylates (ZAP-70 

however is activated by LCK in T-cells) and in turn creates docking sites for further 

distal signaling proteins. SYK also interacts with and phosphorylates various 

proteins like the phospholipase Cγ2 (PLCγ2), the Tec-family protein Bruton's 

tyrosine kinase BTK, BCAP and the B-cell linker protein (BLNK; also known as SH2-

domain-containing leukocyte protein SLP65). In TCR-signaling, ZAP-70 

phosphorylates LAT and SLP76 (LCP2) to which SLP65 has strong sequence 

homologies. BLNK contains a SH2 domain and more than five sites for tyrosine 

phosphorylation that were unveiled to bind SH2 domains of effector molecules (Chiu 

et al., 2002). Thus, BLNK functions as a molecular scaffold for the coordinated 

formation of a signalosome in which BLNK provides the platform for the assembly 

of signaling proteins that spread BCR signaling into distinct signal transduction 

pathways. This signalosome consists besides SYK and BLNK of several signaling 

molecules like Vav, BTK, PI3K and PLCγ2. The BCR co-receptor CD19, an integral 

transmembrane protein that positively modulates CD79 signaling by recruiting and 

activating LYN, PI3K, BTK and VAV is phosphorylated in its cytoplasmic tail by Lyn 

in a BCR activation dependent manner (Buhl and Cambier et al., 1999; Fujimoto et 

al., 2000). CD19 phosphorylation by LYN provides a binding site for the PI3K p85 

subunit. Together with the adaptor protein BCAP, CD19 localises the PI3K to the 

cytoplasma membrane where PI3K generates phosphatidylinositol-3,4,5-

trisphosphate (PIP3), a docking site for BTK. Subsequent to the recruitment in the 
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signalosome, BTK gets activated and together with SYK it activates PLCγ2 (PLCγ1 

in T-cells) by phosphorylation and recruits it to the cytoplasma membrane where 

PLCγ2 can bind phosphoinositides by its pleckstrin (PH) homology domain. PLCγ2 

hydrolyses phosphatidylinositol-4,5-bisphosphate (PIP2) in order to generate the 

second messengers inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 binds 

to IP3 receptors in the ER membrane leading to emptying the intracellular Ca2+ 

storage what in turn leads to the influx of extracellular calcium into the cell. Elevated 

intracellular Ca2+ levels and DAG activate protein kinase C beta (PKCβ), in T-cells 

the isoform PKCθ (Isakov and Altman et al., 2002). The phosphorylation of CARD11 

(also known as CARMA1) by PKCβ or PKCθ releases the intramolecular inhibitory 

interaction between the linker and the coiled-coiled domain of CARD11 and leads 

to the recruitment of BCL10 and MALT1 and consequently the formation of the CBM 

complex that triggers canonical NF-kB signaling (1.3.3). Another subset of proteins 

that is activated through BCR signaling is the mitogen activated protein kinase 

(MAPK) family with the subfamilies of extracellular signal regulated kinase (ERK), 

c-Jun NH2-terminal kinase (JNK/SAPK) and p38 MAPKs. These protein families in 

turn activate ETS-1, c-MYC and members of the transcription factor family AP-1 

(2.5). There are several proposed mechanisms how BCR signaling facilitates the 

integration of MAPK signaling. For instance, Vav a Rac/Rho-specific guanine 

nucleotide exchange factor and adaptor for GRB2/SOS associates as well with 

phosphorylated BLNK, thus part of the signalosome, is able to activate the RAC and 

RAS MAPK family pathways. Furthermore, RasGRP3 phosphorylation by PKCβ 

promotes the formation of RAS-GTP which in turn activates RAF1 and subsequently 

the MAP kinases ERK1/2. Furthermore, it was also suggested that BCR ITAM 

tyrosine phosphorylation recruits the adaptor protein SHC which in turn associates 

with GRB2 and SOS. This ternary complex is proposed to activate the 

RAS/RAF/MEKK cascade (D’Ambrosio et al., 1996; Nagai et al., 1995). 

Conventionally, SYK was attributed to phosphorylate SHC. However, Pao et al. 

(1998) suggest an SYK independent pathway in which mono-phosphorylated CD79 

binds SHC leading to its phosphorylation. This indicates that SRC-kinases are 

implicated in this mechanism. Also JNK activation was shown to require SYK and 

to a lesser extent BTK, whereas Lyn activity is not needed (Chan et al., 1998; Ishiai 

et al., 1999). Also PLCγ2 and the generation of IP3 were shown to be involved in 

the BCR mediated activation of JNK and p38 MAPK (Hashimoto et al., 1998). 
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In T-cells linking TCR signaling to MAPKs is facilitated by the adaptor protein GADS, 

a homologue of GRB2 which is recruited by phosphorylated LAT. GADS in turn uses 

SOS to recruit RAS. The serine/threonine kinase AKT is a further signaling protein 

that is integrated by downstream BCR signaling (Datta et al., 1997; del Peso et al., 

1997). AKT is known to regulate transcription factors and other proteins that are 

involved in controlling apoptosis. Due to its PH domain, AKT is recruited by the 

generation of PIP3 to the cytoplasma membrane. This results in a conformational 

change through which serine and threonine residues can be phosphorylated that 

are necessary for full activation of the enzyme. A substrate of AKT kinase activity is 

BAD, a pro-apoptotic BCL-2 family protein promoting apoptosis by binding and 

thereby neutralising the anti-apoptotic BCL-XL. The phosphorylation of BAD by AKT 

leads to the dissociation from BCL-XL and the subsequent binding of AKT to 14-3-

3 proteins ceasing BAD mediated BCL-XL neutralisation. AKT directly regulates 

several more transcription factors such as NF-kB, E2F and CREB and the forkhead 

transcription family (Brennan et al., 1997; Brunet et al., 1999; Kane et al., 1999; 

Kops et al., 1999; Plas and Thompson et al., 2003). Moreover, also GSK3 a kinase 

that participates in cell-cycle regulation and NFAT signaling as nuclear export kinase 

was found to be negatively regulated by AKT (Beals et al., 1997; Cross et al., 1995; 

Ikeda et al., 1998). Another transcription factor family that is activated by proximal 

BCR signaling is NFAT which is linked to BCR signaling through the increase of the 

intracellular Ca2+ concentration and the followed activation of the S/T kinase 

calcineurin (reviewed in 2.4.).  

Negative modulators are an important component of BCR and TCR signaling as 

their loss usually results in self-reactive lymphocytes instead of anergy or deletion 

leading to the abrogation of tolerance and autoimmunity (Cornall et al., 1998; Cyster 

and Goodnow, 1995 and 1997). The group of negative regulators includes CD22, 

LYN, SH2 domain-containing phosphatase 1 and 2 (SHP1,2), SH2 domain-

containing inositol 5’-phosphatase 1 (SHIP1) and the Fc receptor for IgG (FcγRIIB-

1). Upon BCR aggregation, the src-family kinase LYN which has also a positive 

regulatory role, phosphorylates the three immunoreceptor tyrosine-based inhibitory 

motifs (ITIMs) located in the cytoplasmic tail of the inhibitory coreceptor CD22. The 

negative impact conferred by CD22 to BCR signaling is partially caused by its 

recruitment of SHP-1 (Blasioli et al., 1999). SHP-1 is a protein tyrosine phosphatase 

that removes phosphates that were previously added by tyrosine kinases. 
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Substrates of SHP-1 include CD79A, CD79B, SYK, VAV, BLNK and CD22 (Mizuno 

et al., 2000; Tamir et al., 2000; Wu et al., 1998). FcγRIIB-1, a low affinity IgG 

receptor also harbours regions that are phosphorylated in a LYN-dependent fashion. 

Upon ITIM phosphorylation, FcγRIIB-1 primarily recruits SHIP1 which removes the 

5’phosphate group from PI(3,4,5)P3 to generate PI(3,4)P3 thereby preventing 

PI(3,4,5)P3 accumulation and hampering further BCR proximal signaling 

(Scharenberg et al., 1998; Fong et al., 2000). In vitro data suggest also an 

association of FcγRIIB-1 with SHP1 and SHP2 (Famiglietti et al., 1999; Hippen et 

al., 1997; Nakamura et al., 2000). FcγRIIB-1 was also observed to colligate with the 

BCR and subsequently to cause early termination of PIP2 hydrolysis and thus Ca2+ 

signaling. Moreover, SHIP can also recruit the adaptor protein downstream of kinase 

(DOK) that acts in inhibiting more proximal pathways such as RAS/ERK. The 

initiation of BCR signaling is fine-tuned regulated by two antagonistic non-BCR 

associated proteins namely CD45 and the C-terminal src tyrosine kinase (CSK). 

CD45 or also well-established as the pan B-cell marker B220, is a transmembrane 

glycoprotein with tyrosine phosphatase activity. CD45 is capable of removing 

inhibitory phosphate groups form src-family kinases thus acting in a BCR signaling 

promotive manner. For instance in CD45 deficient mice, LYN was shown by Pao et 

al. (1997) to be hyperphosphorylated at the C-terminal inhibitory tyrosine residue 

and was thus predominantly present in its inhibited conformation. The expression of 

a hyperactive CD45 variant by Majeti et al. (2000) resulted in autoimmunity and 

neoplasma growth. In contrast, CSK which is already constitutively active in resting 

cells, phosphorylates the C-terminal inhibitory tyrosine of src-family kinases 

promoting their inhibited state even when the kinases are already phosphorylated 

at their activating tyrosine. This mechanism was proven by the hypophosphorylation 

of the C-terminal tyrosine residue of LYN in CSK negative cells (Hata et al., 1994). 

(For further review see Dal Porto et al., 2004) 
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Figure 10. Schematic overview of BCR signaling and integrated proximal pathways. 

For a more detailed description see continuous text. The red asterisks designate protein domains 

commonly affected by mutations in human lymphoid malignancies. Abbreviations: BLNK, B-cell 

linker protein; BTK, Bruton’s tyrosine kinase; CARD11, caspase recruitment domain-containing 

protein 11; CBM, CARD11–BCL-10–MALT1; CIN85, Cbl-interacting protein of 85 kDa; DAG, 

diacylglycerol; IKK, inhibitor of NF-κB kinase; IgH, immunoglobulin heavy chain; IgL, 

immunoglobulin light chain; IP3, inositol trisphosphate; MALT1, mucosa-associated lymphoid 

tissue lymphoma translocation protein 1; MAPK, mitogen-activated protein kinase; mTOR, 

mammalian target of rapamycin; NF-κB, nuclear factor-κB; NFAT, nuclear factor of activated T 

cells; PI3K, phosphoinositide 3-kinase; PIP2, phosphatidylinositol-4,5-bisphosphate; PIP3, 

phosphatidylinositol-3,4,5-trisphosphate; PKCβ, protein kinase Cβ; PLCγ, phospholipase Cγ; SFK, 

SRC family kinase. Figure and caption adapted from Young and Staudt, 2013. 

 

1.4 The major histocompatibility complex (MHC) 

The major histocompatibility complex (MHC) are cell surface glycoproteins that are 

a vital component in the responses of the adaptive immune system towards invading 

pathogens. The membrane bound glycoproteins are subdivided into two different 

classes termed MHC class I and II (MHCI and MHCII) molecules, exhibiting distinct 

subunit compositions and tissue expression patterns. MHCI and MHCII molecules 

originate from one gene locus, share high levels of polymorphism and similar spatial 

structure (Neefjes et al., 2011). Furthermore, both MHC classes bind and present 

pathogen-derived peptide fragments and antigens from self-proteins on the cell 

surface. A MHC-complex is made up of either a MHCI or II molecule and a pathogen 

derived peptide. Together, these components constitute a ligand that is intended to 

be recognised by the antigen receptors of CD8+ and CD4+ T-cell subsets and as 

consequence of this, to induce T-cell proliferation and to activate the T-cell’s distinct 
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effector function. MHC class I molecules are present on the surfaces of all nucleated 

cells and most highly expressed on cells of the hematopoietic lineage. In contrast, 

the expression of MHC class II proteins is restricted to a comparatively small subset 

of professional antigen-presenting cells (APCs) such as monocytes/macrophages, 

dendritic cells and B-cells. Moreover, in humans MHCII expression was also 

observed to be expressed on activated T-cells and epithelial cells of the thymus 

(TECs) that are critical in the generation of CD4+ T-cells. MHCII expression is also 

known to be induced in a couple of other cell types such as fibroblasts, epithelial 

cell and keratinocytes by IFN-γ stimulation (Pober et al., 1983; Glimcher and Kara, 

1992; Pattenden et al., 2002). The MHCI molecules consist of two peptide chains, 

a polymorphic heavy α-chain which is non-covalently bound to a non-polymorphic 

smaller light chain called β2-microglobulin (B2M). The whole MHCI complex is 

subdivided into four domains. Three of which make up the heavy α-chain (α1-3) and 

the fourth is contributed by B2M. Only the α-chain) exhibits a transmembrane 

domain (α3) and thus anchors the whole MHCI complex in the cytoplasma 

membrane. The other α-chain domains, 1 and 2 together form the peptide-binding 

groove which includes the major differences between the different polymorphic 

MHCI α-chains. Peptides bound by MHCI molecules usually consist of 8 to 10 aa 

and are accommodated deeply within the peptide binding cleft which is closed at its 

ends by conserved tyrosine residues (Matsumura et al., 1992; Bouvier et al., 1994; 

Zacharias and Springer, 1994). The bound peptide within the groove stabilises the 

complex. Without a peptide ligand MHCI proteins are stabilised by ER chaperons 

like calreticulin, ERP57, PDI and tapasin. In humans, the heavy α-chain is encoded 

by three polymorphic genes named HLA-A, HLA-B and HLA-C located on 

chromosome 6p21 whereas the light chain (B2M) coding gene is situated on 

chromosome 5q (MHC sequencing consortium,1999; Roberts et al., 2006). HLA-A 

and -B usually exhibit higher expression levels compared to HLA-C which is 

sparsely expressed as it is (post-) transcriptionally controlled by microRNAs 

(Neefjes and Ploegh, 1988; Kulkarni et al., 2011). MHCII is categorised in 3 classical 

and 2 non-classical molecules that are encoded by genes located in the same gene 

locus as MHCI genes. Classical MHCII molecules that are responsible for antigen-

presentation, are encoded by the three polymorphic HLA-DR, HLA-DQ and HLA-DP 

genes from which HLA-DR is the most highly expressed in humans (Cresswell, 

1994; Landsverk et al., 2009). The expression of classical, non-classical MHCII and 
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several associated genes like CD74, stands under the coordinated control of a 

master transcriptional regulator the “class II major histocompatibility complex 

transactivator” (CIITA). In general, CIITA regulates the maturation dependent 

permanent expression of genes implicated in antigen presentation (Steimle et al., 

1993; Wright et al., 2006). The activity of this MCHII transactivator in turn, is 

controlled by post-translational modifications such as phosphorylation and 

monoubiquitylation and other elements predominantly found to be active in cells 

belonging to the immune system. Structurally, a MHCII molecule is a heterodimer 

composed of two membrane anchored peptide chains, termed α and β, each 

consisting of two domains α 1, 2 and β 1, 2. In MHCII molecules the peptide binding 

groove, which encompasses the major polymorphism sites, is formed by aas of the 

two different peptide chains, α1 and β1. The MHCII peptide binding groove exhibits 

open ends. Therefore, the N-and C-terminal tails of a bound peptide-antigen are not 

buried within the MHCII molecules as their MHCI counterparts and accommodated 

peptides have a length of 13 to 25 residues (Wieczorek et al., 2017). Whether a 

peptide is suitable to be accommodated in the binding groove of MHCI and MHCII 

molecules is determined by the correct length and particular aa-residues at certain 

sequence positions (p), p2 or p5/6 of MHCI peptides and p1, 4, 6 and 9 of MHCII 

peptides. These aa-residues do not have to be identical but related in structure and 

characteristics. They occupy defined pockets in the MHC molecules and anchor the 

peptide antigen to the MHC backbone. Thus, these aa-residues are called anchor 

residues. The 2 non-classical MHCII molecules called HLA-DM, HLA-DO and the 

invariant chain (li), also known as CD74 (located on chr.5q32) are required as 

accessory proteins in the proper loading of MHCII molecules with peptides.  

HLA-DM is not present at the cell surface and does not bind antigenic-peptides itself. 

Instead, it catalyses the dissociation of the CLIP peptide, which is generated by the 

degradation of CD74, from the peptide binding groove of MHCII molecules. 

Furthermore, HLA-DM binds to and stabilises the peptide-free MHCII state.  

HLA-DM also acts as peptide editor and selects for antigenic-peptides that bind 

stably to MHCII molecules by promoting the dissociation of inappropriate peptides. 

The other non-classical MHCII molecule HLA-DO was found to be expressed in 

thymic epithelial cells, dendritic cells and B-cells (Liljedhal et al., 1996; Douek and 

Altmann, 1997). HLA-DO is as HLA-DM not present on the cell surface and seems 

not to bind antigens. It functions as HLA-DM negative regulator by associating with 
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HLA-DM and thereby inhibiting its catalytic peptide exchange activity. The HLA-DO 

inhibitor function was proven by the transfection of HLA-DO lacking but HLA-DM/-

DR3 and li endogenously expressing cells with cDNA constructs coding for HLA-

DO. This resulted in higher amounts of MHCII molecules still associated with li, a 

decreased number of antigenic peptide loaded MHCII complexes and thus reduced 

antigen presentation to T-cell clones (van Ham et al., 1997). MHCI and II exhibit 

different pathways of antigen processing to achieve surface antigen-peptide 

presentation to the immune system (a schematic overview of both pathways is 

depicted in Figure 11.). MHCI surface complexes of nucleated cells present 

antigenic peptide fragments originating from intracellular i.e. cytosolic and nuclear 

localised proteins which are degraded by 26S proteasomes. A large share (30% to 

70%) of intracellular proteins is degraded ensuing translational synthesis just prior 

to the formation of operational proteins due to failures in transcriptional or 

translational processes. These degradation products are called defective ribosomal 

products (DRiPS) and explain why for instance viral proteins are presented on cell 

surfaces and recognised by T-cells in only a few hours after the infection (influenza 

virus antigens in ~ 90 minutes) independent from the natural half-life of a certain 

protein (Khan et al., 2001). The proteasomally generated peptide fragments of 8 to 

16 aa length are translocated by the transporter associated with antigen 

presentation (TAP) into the endoplasmic reticulum (ER) where MHCI molecules are 

waiting for peptides (Parcej and Tampe, 2010). The MHCI molecules in the ER are 

folded by the chaperon tapasin which can also function as peptide editor  

in the same manner as HLA-DM in MHCII antigen loading. The ER transporter TAP 

also serves as platform for the binding of several tapasin proteins (Wearsch and 

Cresswell., 2008). Two more proteins, the chaperons calreticulin and ERp57 

participate in the folding and stabilisation of MHCI molecules in the ER. Together, 

these ER-located chaperons form the so called peptide-loading complex (PLC) 

which facilitates the loading of peptides onto MHCI molecules and is released when 

peptide loading is accomplished. Before peptide fragments can be loaded by the 

PLC onto MHCI molceules, some of them first have to undergo N-terminal trimming 

by the ER aminopeptidases ERAP1 and ERAP2 in humans or the ER 

aminopeptidase associated with antigen processing (ERAAP) in mice (Serwold et 

al., 2002; Saveanu et al., 2005; Saric et al., 2002). ERAAP is known to shorten 

peptides down to minimally 8 aa (Schubert et al., 2000). In case these N-terminally 
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processed peptides do not bind a MHCI molecule, they are transported back into 

the cytosol by ER associated protein degradation (ERAD). In the cytosol, these 

peptides are eliminated by cytosolic aminopeptidases like the thimet oligopeptidase 

(TOP), the tripeptidyl peptidase II (TPPII) or the proteasome. Some peptides 

however, reenter the ER by TAP mediated transport and search again for a suitable 

MHCI molecule (Roelse et al., 1994; Koopmann et al., 2000). Successfully peptide 

loaded MHCI complexes are allowed to leave the ER. Consequently, the MHCI 

complexes detach from the ER and are subsequently mediated by the Golgi 

apparatus transported to the cytoplasma membrane to display their peptide antigens 

to CD8+ cytotoxic T-cells. This CD8+ T-cell subset kills cells presenting foreign 

antigens derived from intracellular pathogens or altered self-peptides for instance 

from mutated cancerous proteins. This process constitutes an important defense 

mechanism of the immune system in order to prevent the spread of infection and 

cancer. The already mentioned TCR coreceptor CD8 is a disulfide-inked 

heterodimer composed of an α- and β-chain. Additionally to the TCR, CD8 interacts 

with the MHCI molecule on a nucleated cell. In particular, CD8 binds to a conserved 

site in the α3-domain and also residues in the α2-domain of MHCI.                          

These additional interactions stabilise the conjunction between the MHCI bearing 

cell and the T-cell and are thus essential for generating an effective immune 

response directed against the presented antigen and its origin. MHCI complexes 

present on the cell surface are quite stable and targeted for degradation by MARCH 

family proteins from which MARCH4 and 9 were described to regulate MHCI half-

life by ubitquitylation (Bartee et al., 2004). This protein modification catalyses the 

internalisation and subsequent lysosomal degradation of MHCI molecules.  

MHCII molecules are mainly expressed by professional APCs and were shown to 

assemble in the ER. In this organell, MHCII proteins also associate with the trimeric 

CD74 chaperon. Each of the three CD74 subunits binds to a single MHCII 

heterodimer. Since a stretch of the CD74 protein lies within the peptide binding 

groove of MHCII, CD74 prevents premature binding of antigenic peptide fragments 

to the cleft. For this reason, Bodmer et al. (1994) were able to show that in CD74 

deficient mice, the fraction of endogenous-derived peptide fragments presented by 

MHCII is increased. Ensuing, the formed MHCII heterodimer translocates in a CD74 

guided fashion, through the Golgi directly or by taking a detour via plasma 

membrane to a late endosomal compartment termed MHC class II compartment 
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(MIIC). Here, CD74 is digested in several serial steps by acid proteases such as the 

cysteine proteases cathepsin-S and-L (Hsing and Rudensky, 2005). The proteases 

leave a remaining short class II-associated li peptide (CLIP) which is still bound in 

the MHCII peptide binding cleft. Afterwards, the chaperon HLA-DM facilitates the 

exchange of CLIP for a suitable antigenic peptide fragment destined to be 

accommodated in the MHCII peptide binding groove in order to form a stable MHCII 

complex (as described earlier in more detail). HLA-DM also prevents aggregation 

and degradation of MHCII molecules before they bind their respective antigenic 

peptide (Kropshofer et al., 1996). MHCII molecules that do not bind a peptide after 

the release of CLIP are not stable within the low-pH MHCII environment upon the 

fusion with lysosomes and are thus degraded. In contrast to MHCI, MHCII molecules 

bind peptides derived from proteins that originate from exogenous sources and are 

degraded in the endosomal pathway upon their internalisation. Once MHCII 

molecules bound an appropriate peptide fragment, they are released from the MIIC 

and transported in vesicles to the plasma membrane where they can present their 

peptide antigen to CD4+ T-cells. The release of peptide loaded MHCII containing 

vesicles from the MIIC was found to be dependent from several factors such as 

kinases, GTPases, cholesterol and cytosolic pH. The activation of the CD4+ T-cell 

population by this MHCII dependent mechanism is important for the coordination 

and regulation of effector cells. CD4 is a monomeric protein that comprises 4 Ig-like 

domains (D1-D4). CD4 binds MHCII molecules displayed on the cell surface of a 

professional APC at a hydrophobic cleft between the α2 and β2 domain by the lateral 

site of the D1 domain. The simultaneous binding of the MHCII complex to the TCR 

and its CD4 co-receptor present on the T-cell surface enhances the signal triggered 

within the T-cell and furthermore, increases the T-cell’s sensitivity towards the 

presented antigenic-peptide. Alike MHCI, MHCII molecules are quite stable 

complexes that do not degenerate on the cell surface and exhibit cell type 

dependent half-lives. Similarly to MHCI also MHCII molecules can be ubiquitinated  

by MARCH proteins, in particular MARCH1, thereby being targeted for endocytosis 

and proteasomal degradation (de Gassart, A. et al., 2008). Thibodeau et al. (2008) 

demonstrate the direct interaction of MHCII and MARCH1 proteins by 

immunoprecipitation experiments. MARCH1 expression was found to be strongly 

induced by IL-10 in human primary monocytes. Furthermore, siRNA mediated 

MARCH1 knockdown was observed to abrogate the IL-10 mediated down regulation 
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of surface MHCII levels in primary monocytes. Together, these experiments explain 

the mechanism behind the interfering impact of IL-10 on MHCII antigen 

presentation. It is also assumed that MHCII molecules are just degraded in usual 

lysosomal proteolysis. As already described earlier, MHCI complexes display 

antigenic peptides from intracellular sources whereas MHCII complexes present 

peptide fragments originating from extracellular proteins. However, this attribution 

of peptide sources to MHCI and II molecules is not static and it is therefore possible 

that cells can present antigens derived from extracellular origins on MHCI 

molecules. Furthermore, also endogenous antigenic protein fragments can be 

presented by MHCII complexes in case there were generated by autophagy under 

certain conditions. This link between MHCI and MHCII antigen presentation is 

termed antigen cross presentation. One purpose why endogenous proteins are 

exclusively presented by MHCI molecules is that healthy cells that have absorbed 

proteins of viral or tumorous origin derived from diseased cells in the close proximity 

do not get killed by CD8+ cytotoxic T-cells. On the other hand, naive CD8+ cytotoxic 

T-cells have to be activated by professional APCs before they can execute their 

lethal effector function. In case endogenous proteins would be exclusively restricted 

to be displayed on the surface of professional APCs by MHCI complexes, 

intracellular pathogens for instance that do not infect professional APCs, impair the 

endogenous antigen presentation or when a neoplasm does not originate from 

APCs, the only way to activate naïve CD8+ cytotoxic T-cells by APCs is to present 

exogenous-derived antigens on MHCI molecules (Kurts et al., 2010).  

Regarding B-cell malignancies, a loss of MHCI and MHCII expression was generally 

found to be associated with poor survival outcome and a more aggressive clinical 

behaviour of the neoplasms under CHOP or R-CHOP treatment (Guy et al., 1986; 

Moller et al., 1986; Riemersma et al., 2000; Booman et al., 2008; Momburg et al., 

1987; Amiot et al., 1998, Wilkinson et al., 2012). In the context of DLBCL 

pathogenesis and prognosis, decreased MHCII expression for example of HLA-

DRA surface expression was found to be associated with less tumor infiltrating CD8+ 

T-cells and reduced patient survival, indicating impaired immunosurveillance 

(Rimsza et al., 2004). In addition, Rimsza et al., 2007 demonstrated that  

the expression of classical MHCII, non-classical MHCII and CD74 correlates  

with the expression of CIITA in DLBCL. In line with this, Cycon et al. (2009) found 

the expression of MHCII genes in the GCB DLBCL cell lines SU-DHL-4 and SU-
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DHL-6 to be coordinately reduced and the extent of their expression was correlated 

with CIITA expression. The group found varying MHCII levels when they 

investigated the surface MHCII expression of several DLBCL model cell lines. They 

report that the ABC DLBCL cell line OCI-LY10 does not exhibit any HLA-DR and 

HLA-DQ surface protein levels due to homozygous deletions found in the MHCII 

locus. Furthermore, they also describe a dyscoordinated downregulation of the 

MCHII β-chain in the ABC DLBCL cell line OCI-LY3 resulting in dramatically 

decreased surface MHCII levels. An IHC-based study conducted by Rimsza et al. 

(2007), comprising 97 paraffin embedded tissue samples from MACOP-B regimen 

treated DLBCL patients revealed a loss of HLA-DR expression in 37% of 

investigated cases. MHCII gene expression loss was also reported to be common 

in rare cases of DLBCL arising in immune privileged sites such as eyes, brain, testes 

or ovary. It was shown that this type of DLBCL exhibits a loss of MHCII gene 

expression in more than 50% of cases in which the primary tumor was found in brain 

or testis. It is also described that the loss of MHCII expression was often 

accompanied by the homo- or heterozygous deletion of the MHCII locus in the 

above mentioned immune-privileged DLBCL cases. Whereas in 5% other DLBCL 

the loss of MHCII expression was not accompanied with abnormalities within the 

chr. 6p MHC gene locus (Riemersma et al., 2000; Jordanova et al., 2002). 

Moreover, the DLBCL subtype PMBL was also reported to exhibit a loss of MHCII 

proteins frequently. Furthermore, PMBLs showed significantly lower average 

expression of all individual MHCII genes except for CD74 compared to the GCB-

DLBCL subtype whereas not to the ABC DLBCL subtype. This difference could 

probably be explained by the fact that GCB- and ABC DLBCL react differently to IL-

4 exposure. IL-4 is known to encompass the MHCII genes as target genes. If this 

difference is also true for in vivo behaviour of DLBCL, this could be a reason for 

higher MHCII gene expression in GCB DLBCL. 

In addition, also poor patient survival in PMBL cases was found to be correlated with 

decreased MHCII expression levels. Wilkinson et al., 2012 investigated the 

relationship between the loss of MHCII and the B-cell differentiation state as the 

plasmacytic differentiation of non-cancerous B-cells is known to be linked to the loss 

of MHCII surface expression. Accordingly, MHCII gene expression fluctuates within 

B-cell differentiation. Thus, MHCII gene expression is absent in pro-B-cell 

populations but is highly present in mature B-cells and further maturation to plasma 
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cells abolishes MHCII expression by the down regulation of the transcriptional 

regulator CIITA (Benoist et al., 1990). Indeed, the Wilkinson group was able to show 

that GCB exhibit significantly higher MHCII levels than the ABC DLBCL subtype. In 

accordance with this, they also revealed a negative correlation between the mRNA 

levels and the protein expression of MHCII (HLA-DR) molecules and classical 

plasmacytic markers such as MUM1, BLIMP1 and XBP1s. (For further review see 

Neefjes et al., 2011) 

 

 
 
Figure 11. Schematic illustration of the basic events in the (a) MHCI and the (b) MHCII 

antigen presentation pathway. (a) The MHCI pathway begins with the generation of peptide 

fragments by the proteasome from cytosolic or nuclear proteins. These antigenic peptides are then 

translocated via the ABC transporter TAP into the ER. In the ER lumen MHCI proteins are loaded 

with suitable peptides. The resulting MHCI-peptide complexes are subsequently released from the 

ER. Through passing the Golgi apparatus they get to the cytoplasma membrane where they present 

their peptide cargo to the antigen receptor of CD8+ cytotoxic T-cells. In case, a MHCI molecule does 

not bind a peptide in the ER it is transported back into the cytosol where it is degraded or 

alternatively, enters again via TAP the ER in order to find an appropriate MHCI molecule to bind. 

(b) The α-and β-chain of MHCII molecules is assembled in the ER of a professional APC. The 

trimeric invariant chain (li; CD74) then binds to three MHCII molecules in order to prevent 

premature peptide binding and to target the MHCII complex to be transported to the late endosomal 

compartment MIIC. This occurs either in a direct manner or via a detour to the cytoplasma 

membrane. In the MIIC the invariant chain is serially degraded by proteases. Also peptide fragments 

derived from endocytosed proteins from extracellular sources are generated here. The remaining 

fragment of the invariant chain which is called CLIP still binds the peptide-binding groove until it is 

exchanged for an appropriate antigenic-peptide. This exchange occurs in assistance with the auxiliary 

non-classical MHCII molecule and chaperon HLA-DM. Ensuing, antigen loaded MHCII molecules 

are transported to the cytoplasma membrane where they display their respective antigen to the TCR 
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of a CD4+ T-cell. Abbreviations: APC, antigen presenting cell; TAP, transporter associated with 

antigen presentation; ER, endoplasmic reticulum ERAD, ER-associated protein degradation; TCR, 

T-cell receptor; β2m, β2-microglobulin; MIIC, MHC class II compartment; CLIP, class II-associated 

li peptide. Figure adapted from Neefjes et al., 2011. 
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2. Material and Methods 

2.1 Materials 

2.1.1 Providers 

Providers  

Abcam Abcam plc, Cambridge, U.K. 

Agilent   Agilent Technologies GmbH, Böblingen, Germany 

Ambion  Life Technologies GmbH, Darmstadt, Germany 

AppliChem Applichem GmbH, Darmstadt, Germany 

BD BD Biosciences, Heidelberg, Germany 

BioLegend BioLegend, San Diego, U.S.A. 

Biorad Bio-Rad, Hercules, U.S.A 

Cayman Chemical Biomol GmbH, Hamburg, Germany 

Cell Signaling New England Biolabs, Inc., Ipswich, U.S.A. 

Corning Corning, Inc., Tewksbury, U.S.A. 

Eppendorf Eppendorf AG, Hamburg, Germany 

Eurofins MWG GmbH Ebersberg, Germany 

GE Healthcare   GE Healthcare Lifesciences, Dornstadt, Germany 

Genaxxon Genaxxon Bioscience GmbH, Ulm, Germany 

Gibco Gibco/Invitrogen Cell Culture, Carlsbad, U.S.A. 

Gilson Gilson, Inc. Middleton, WI,USA 

IBA IBA GmbH, Göttingen, Germany 

Immunotools ImmunoTools GmbH, Friesoythe, Germany 

Invitrogen Life Technologies GmbH, Darmstadt, Germany 

KapaBiosystems KapaBiosystems, Wilmington, Massachusetts U.S.A. 

Macherey-Nagel Macherey-Nagel GmbH & Co. KG, Düren, Germany 

Merck  Merck KGaA, Darmstadt, Germany 

NEB New England Biolabs, Inc., Ipswich, U.S.A. 

PAA PAA Laboratories GmbH, Cölbe, Germany 

PEQLAB  PEQLAB Biotechnologie GmbH, Erlangen, Germany 

Pineda  Pineda – Antikörper service, Berlin, Germany 

Promega Promega Corp., Madison, U.S.A. 

Qiagen  Qiagen GmbH, Hilden, Germany 

Roche  Roche GmbH, Basel, Switzerland 

Roth Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Santa Cruz Santa Cruz Biotechnology, Santa Cruz, U.S.A. 

Selleckchem Selleckchem, Munich, Germany 

Sigma Sigma Aldrich, Buchs, Switzerland 

Tecan Tecan Group, Ltd., Crailsheim, Germany 

Thermo  Thermo Fisher Scientific, Karlsruhe, Germany  
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TPP Techno Plastic Products AG Trasadingen, Switzerland 

VWR  VWR International GmbH, Darmstadt, Germany 
 

2.1.2 Chemical reagents 

Reagent Provider 
2% Bis-acrylamide   AppliChem 

2-propanol Merck 

2x HeBS pH 7.5  Self made 

40% Acrylamide   AppliChem 

50 mM MgSO4  Invitrogen 

Ammonium peroxodisulphate (APS) Roth 

Ampicillin Sigma 

Bradford  Biorad 

Bromphenol blue Biorad 

BSA PAA 

CaCl2  Merck 

CHX Sigma 

cOmplete™, Mini, EDTA-free 

Protease Inhibitor Cocktail Tablets 

Roche 

 

Cyclosporin A Merck 

Dithiothreitol (DTT) Roth 

DMEM  Sigma 

DMSO  Sigma 

dNTPs  Thermo Scientific 

DPBS Thermo 

EDTA Roth 

FCS PAA 

FK506 Selleckchem 

GenAgarose LE   Genaxxon 

Glacial acetic acid AppliChem 

Glycerol  AppliChem 

Glycine  AppliChem 

HEPES  AppliChem 

IMDM Sigma 

Ionomycin Sigma 

Isopropanol Merck 

Kanamycin Sigma 

KCl Sigma 

LB-agar  Roth 

LB-medium Roth 

L-glutamine, 200 mM Sigma 

Luminol enhancer solution Promega 

MgCl2 AppliChem 

Na3VO4  AppliChem 

Na4P2O7 AppliChem 

NaCl AppliChem 

NaF AppliChem 

NaN3 AppliChem 

Nonfat dried milk powder Applichem 

Nonidet P-40 (NP-40) Applichem 

nuclease-free water Ambion 
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Orange G Applichem 

PBS (1x) PAA 

Penicillin, 10000 units/ml Sigma 

Peroxide solution Promega 

Plasmocin Invitrogen 

PMA   Sigma 

Polysorbat 20/Tween 20 Merck 

RPMI 

Triton-x-100  

Sigma 

Merck 

Sodium dodecyl sulphate (SDS) Merck 

Streptomycin Sigma 

Sucrose Merck 

SYBR ™ safe DNA gel stain Invitrogen 

Tetramethylethylenediamine 

(TEMED)  

Roth 

Tris base AppliChem 

β-mercaptoethanol AppliChem 
 

2.1.2 Commonly used Buffers and Solutions and their 

composition 

Buffer / Solution Compounds 
Cell lysis  

Lysis buffer 1% triton X-100 150 mM NaCl 

 
 

50 mM tris, pH 7,4 

Lysis buffer 1% triton X-100 complete 10 ml lysis buffer 

 1% triton X-100 

 50 mM NaF 

 10 mM Na4P2O7 

 10 mM Na3VO4 

 1 tablet protease inhibitor 

Agarose gel electrophoresis  

50x TAE buffer  242.2 g tris in 600 ml H2O 

  57.1 ml glacial acetic acid 

  100 ml 0,5 M EDTA, pH 8 

  ad 1 l H2O 

5x DNA Sample Buffer  30 % (v/v) glycerol 

  0.2 % (w/v) orange G   

SDS – Polyacrylamide gel 
electrophoresis  

 

10% acrylamide for resolving gel 125 ml 40% acrylamide 
49 ml 2% bis-acrylamide 

 125 ml 1.5 M tris-HCl, pH 8.8 

 ad 500 ml H2O 

 

25% acrylamide for resolving gel 312 ml 40% acrylamide  

 17 ml 2% bis-acrylamide 

 125 ml 1,5 M tris-HCl, pH 8.8 

 ad 500 ml H2O 
 

10x migration buffer 60.6 g tris 

 288 g glycine 
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Sample buffer for SDS-PAGE 

20 g SDS 
ad 2 l H2O 
 
7,5 ml 1 M tris, pH 7.4 
2.4 g SDS 
12 mg bromphenol blue 
30% glycerol 
4 ml 14.3 M β-mercaptoethanol 
ad 100 ml H2O 
adjust to pH 6.8 with HCl 

  

2X urea sample buffer:  

 
 
 

50mM Tris HCl pH 6.8 
1.6% SDS 
7% glycerol 
8M urea 
4% β-mercaptoethanol 
0.016% bromophenol blue 
 

Stacking gel 31.25 ml 40% acrylamide 

 16.25 ml 2% bis-acrylamide 

 
 
 

31.25 ml 1M tris-HCl, pH 6.8 
ad 250 ml H2O 

Western Blot  

10x blot buffer 238 g glycine 
50 g tris 
 

1x blot buffer 1 l 10x blot buffer 
1.7 l methanol 

 
 
Western wash buffer:  
1x PBS/T 

7.3 l H2O 
 
 
1 l 10x PBS 

 50 ml tween 
9 l H2O 

Blocking solutions: 
5% milk / PBS/T 

 
25 g nonfat dried milk powder 

 
 
5% BSA / PBS/T 
 
 
Ponceau Rouge  
 
 
ECL 

ad 500 ml PBS/T 
 
25 g BSA 
ad 500 ml PBS/T 
 
10 g Ponceau  

15 ml trichloroacetic acid  

150 g sulfosalicylic acid 
ad 500 ml H2O  
1:1 luminol enhancer solution : peroxide solution 

Cell fractionation  

Buffer C 10 mM HEPES, pH 7.9 
1.5 mM MgCl2 

 300 mM sucrose 
0,25% / 0.5% NP-40 

10 mM KCl 

 0,5 mM DTT added at the last minute 

complete protease inhibitor 
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Buffer N 20 mM HEPES pH 7.9 
100 mM NaCl 

0,2 mM EDTA 

20% (v/v) glycerol 
100 mM KCl 
0,5 mM DTT added at the last minute 
complete protease inhibitor 

Cell stimulation  

PMA/Ionomycin (P/I) 10 ng/ml PMA, 1 µM ionomycin in DMSO 

PMA 10 ng/mL in DMSO 

Ionomycin PMA 1 µM ionomycin in DMSO 

  
 

2.1.3 Pharmacological inhibitors 

Inhibitor Description  Provider 

CyclosporinA Calcineurin inhibitor in complex with the 

immunophilins CyclophilinA. 

 

Merck 

FK506 (Tacrolimus) Macrolidlacton calcineurin inhibitor in 

complex with the immunophilins FKBP12. 

 

Selleckchem 

JAK-1 inhibitor  Reversible, cell permeable, ATP –

competitive Inhibitor witch a IC50 of 15nM. 

Soluble in DMSO (5 mg/ml) 

 

Calbiochem 

 

p38 MAPK inhibitor 

(SC204157) 

 

Potent p38 MAPK inhibitor with a C50 = 35 

nM; soluble in DMSO (25 mg/ml). 

Santa Cruz 

Sotrastaurin (STN) 

Synonym: AEB071 

Potent and selective panPKC-inhibitor. 

Mostly for PCK θ with a Ki of 0, 22 nM. 

PKCβ1 Ki: 0, 64 nM. Inactive to PKCζ. 

Soluble in DMSO at 25°C: (87 mg/ml). 

 

Selleckchem 

Sulfosuccinimidyl Oleate 

(SSO) 

Irreversible CD36 inhibitor which does not 

permeate the cytoplasma membrane. 

 

CaymanChemical 

Chemical 

z-LVSR-fmk 

  

2.1.4 Enzymes 

Tetrapeptide; MALT1 inhibitor. Based on 

“LVSR85” sequence in the MALT1 substrate 

RelB. 

 

Margot Thomé 

Designation Description Provider 

Pfu DNA polymerase, 

recombinant 

Highly thermostable DNA 

polymerase from Pyrococcus 

furiosus 

Agilent 

Platinum™ Pfx DNA 

polymerase 

 

Higher fidelity than Pfu. Thermo 
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Hot start polymerase. 

Provided in inactive state due 

to antibody binding. 

Restriction endonucleases Cuts DNA strands at enzyme 

specific palindromic 

recognition sequences 

Thermo, NEB 

T4 DNA Ligase  

 

Joins DNA fragments by the 

formation of phosphodiester 

bonds between blunt and 

cohesive end DNA termini  

Thermo, NEB 

FastAP Thermosensitive Alkaline 

Phosphatase. Catalysis the 

release of 5’ and 3’ 

phosphates from DNA, RNA, 

nucleotides and from proteins. 

Thermo 

 

2.1.5 Media and buffers for cell culturing 

Medium/Buffer Compounds/Preparation 
DMEM Before usage media from providers were 

supplemented with 100 U/ml penicillin, 100 µg/ml 

streptomycin, 2,5 µg/ml plasmocyin and either 

10% or 20% FCS 

IMDM 

RPMI 

Cell wash buffer  1x PBS 

FACS Buffer 1x PBS; 2% (v/v) FCS. 

Freezing buffer  20 % (v/v) DMSO in FCS 
 

2.1.6 Media for bacterial culturing 

Medium Compounds/Preparation 
LB-agar 4 % (w/v) LB-agar diluted with ddH20; autoclave 

and cool to 60°C; pour plates and store them at 

4°C 

LB-selection agar suppl. with ampicillin 4 % (w/v) LB-agar diluted with ddH20; autoclave 

and cool to 60°C subsequently add 100 µg/ml 

ampicillin; pour plates and store them at 4°C 

LB-selection agar suppl. with 

kanamycin 

4 % (w/v) LB-agar diluted with ddH20; autoclave 

and cool to 60°C subsequently add 50 µg/ml 

ampicillin; pour plates and store them at 4°C 

LB-medium 2 % (w/v) LB-medium; autoclave; store at  4°C 

LB-selection medium suppl. with 

ampicillin 

2 % (w/v) LB-medium; autoclave; cool down  to                  

~ 60°C; add 100 µg/ml ampicillin and store at  4°C 

LB-selection medium suppl. with 

kanamycin 

 

 

 

 

 

2 % (w/v) LB-medium; autoclave; cool down to                    

~ 60°C; add 50 µg/ml kanamycin and store at  4°C 
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2.1.7 Kits  

Product Application                        Provider                          
RNeasy Mini Kit Isolation of RNA Qiagen   

 
QuantiTect Reverse 

Transcription Kit  

2-step-reaction, gDNA digestion and 

cDNA synthesis 

Qiagen  
 

GeneJET Plasmid Miniprep 

Kit 

Isolation of plasmid DNA Thermo 
ScientificTM  
 

GeneJET Gel Extraction Kit Purification of DNA from agarose gel Thermo 
ScientificTM  
 

GeneJET PCR Purification 

Kit 

 

Purification of DNA-fragments generated 

by PCR 

Thermo 
ScientificTM  
 

NucleoBond Xtra Maxi Kit Large-scale isolation of plasmid DNA Macherey-Nagel 

Dual-Luciferase® Reporter 

Assay System 

  

Genetic reporter system to investigate 

eukaryotic gene expression and cellular 

physiology 

Promega 

eBioscience™ Human IL-2 

ELISA Ready-SET-Go!™ Kit 

Detection of IL-2 in the supernatant of 

human cells 

Thermo 
ScientificTM  
 

eBioscience™ Human IL-6 

ELISA Ready-SET-Go!™ Kit 

Detection of IL-6 in the supernatant of 

human cells 

Thermo 
ScientificTM  
 

eBioscience™ Human IL-10 

ELISA Ready-SET-Go!™ Kit 

Detection of IL-10 in the supernatant of 

human cells 

Thermo 
ScientificTM  
 

KAPA SYBR® FAST qPCR 

Master Mix (2X) Kit 

Ready-to use cocktail to conduct qRT-
PCR assays. Comprises: 2X master mix 
with integrated antibody-mediated hot 
start polymerase, SYBR Green I 
fluorescent dye, MgCl2 , dNTPs, and 
stabilizers 

KapaBiosystems 

CellTiter 96® AQueous One 

Solution Cell Proliferation 

Assay 

Colorimetric method to determine the 
portion of viable cells 

Promega 

LEGENDScreen™ 

Lyophilized Antibody Array 

Human PE Kit 

Kit containing 361 PE-conjugated 
lyophilised antibodies directed against 
human cell surface markers and 
corresponding isotype controls. 

BioLegend® 

 

2.2 Biological material 

2.2.1. Size markers for DNA and proteins  

Product Provider 
O´GeneRuler 1 kb Plus DNA ladder, ready-to-use Thermo Scientific 
O’GeneRuler 100 bp Plus DNA Ladder, ready-to-use Thermo Scientific 
Spectra Multicolour Broad Range Protein Ladder Thermo Scientific 
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2.2.2. Antibodies 

According to the manufacturer’s instructions antibodies were dissolved in respective 
dilutions either in 1xTBS/T supplemented with 5% (w/v) nonfat dried milk powder or 
1xTBS/T supplemented with 5% (w/v) BSA. Additionally, NaN3 in a dilution of 1:250 
was added to prevent spoilage of Milk or BSA. The prepared dilutions were used 
several times and stored at 4°C or -20°C dependent on the antibody. Secondary 
antibodies were prepared freshly prior to use and dissolved 1:10.000 in 1xTBS/T 
supplemented with 5% (w/v) nonfat dried milk powder. 
 

Protein 
 

Mol. Weight Species Provider Catalogue 

number 

Primary antibodies 
A 20 (59A426) 90 kDa 

 
mouse 
monoclonal 

Santa Cruz 
 

sc-52910 
 

Bcl10 (H-197) 33 kDa 
 

rabbit 
polyconal 

Santa Cruz 
 

sc-5611 
 

BCL-XL 
 

30kDa 
 

rabbit 
monoclonal 

Cell Signaling 
 

2764 
 

CYLD (D1A10) 
 

108 kDa 
 

monoclonal 
rabbit 

Cell Signaling 
 

#8462 
 

ERK 2 (C14) 
 

42kDa 
 

rabbit 
polyclonal 

Santa Cruz 
 

sc-154 
 

Flag (M2)  
 

1 kDa mouse 
monoclonal 
 

Sigma 
 

F1804 
 

GAPDH (A3) 
 

37 kDa 
 

mouse 
monoclonal 

Santa Cruz 
 

sc-137179 
 

IkB-α (L35A5) 
 

39 kDa 
 

mouse 
monoclonal 

Cell Signaling 
 

#4814 
 

IκBNS 
 

35 kDa &  
70 kDa 

rabbit 
polyclonal 

abcam 
 

ab182633 

IκBNS p35/p70 
 

35 kDa & 70 kDa rabbit 
polyclonal 

Pineda Self-made 
against aa 105-
120 and aa  

IκBNS p70 
 

70 kDa rabbit 
polyclonal 

Pineda Self-made 
against aa 215-
231 

Lamin A/C 
 

28 kDa 
 

rabbit 
polyclonal 

Cell Signaling 
 

#2032 
 

MALT1 
 

90 kDa 
 

rabbit 
polyclonal 

Cell Signaling 
 

#2494 
 

NFAT c1 (7A6) 110 kDa 
 

mouse 
monoclonal 

Santa Cruz 
 

sc-7294 
 

p-BLNK (Y96) 
 

68 kDa rabbit 
polyclonal 

Cell Signaling 
 

3601 
 

Phospho-IkBα 
(Ser32/36) 

40 kDa 
 

mouse 
monoclonal 

Cell Signaling 
 

#9246 
 

Phospho-Stat3 
(Thy705) (D3A7) 

79, 86 kDa 
 

rabbit 
polyclonal 

Cell Signaling 
 

#9145 
 

Phospho-Tyrosine 
 

total protein mouse 
monoclonal 

Cell Signaling 
 

#9411 
 

ß-Tubulin (H-235) 
 

55 kDa 
 

rabbit 
polyclonal 

Santa Cruz 
 

sc-9104 
 

Stat3 (124H6) 
 

79, 86 kDa 
 

mouse 
monoclonal 

Cell Signaling 
 

#9139 
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StrepMAB-Classic 
 

1,1 kDa mouse 
monoclonal 

Iba 
 

2-1507-001  

Syk (Tyr526)  
 

70 kDa rabbit 
polyclonal 
 

Cell Signaling 
 

#2704 
 

Flow 
cytometry 
antibodies 

Mol. weight Colour Provider Catalogue 
number 

CD36 
  

53 kDa FITC ImmunoTools 21270363 
 

CD90 
 

18 kDa FITC affymetrix 
eBioscience 
 

11-0909 
 

CD108 
 

75 kDa FITC ImmunoTools 
 

21271083 
 

CD274 
 

33 kDa APC affymetrix 
eBioscience 
 

17-5983 
 

HLA-DR 29 kDA FITC ImmunoTools 21278993 

secondary 

antibodies 

Description  Provider  

anti-mouse IgG HRP conjugated 
secondary 
antibody 

 Promega W4021 

anti-rabbit IgG HRP conjugated 
secondary 
antibody 

 Promega W4011 

 

2.2.3 Oligonucleotides  

All applied oligonucleotides were purchased from Sigma. 

2.2.3.1 RNAi mediated gene expression knockdown:  

Designation  Sequence  5’ - 3’ 

shRNAs designed for IκBNS knockdown 

shRNA1 Sense: 
Antisense:   

GCC AGG AGA TCA AGA GCA ACA 
CCC GTG GGC CTT CAT GTT G 

shRNA2 Sense: 
Antisense:   

CAA CAT GAA GGC CCA CGG G 
CCC GTG GGC CTT CAT GTT G 

shRNA3 Sense: 
Antisense:   

CTG CGC AAC CTG GAG AAT G 
CAT TCT CCA GGT TGC GCA G 

shRNA4 Sense: 
Antisense:   

CAG CTG TTG AAG AGG AGC C 
GGC TCC TCT TCA ACA GCT G 

shRNA5 Sense: 
Antisense:   

GGG GAC TCC CAG GCC TGT G 
CAC AGG CCT GGG AGT CCC C 

shRNA6 Sense: 
Antisense:   

CCC CAG GGC ATG GAG GCT G 
CAG CCT CCA TGC CCT GGG G 

shRNA7 Sense: 
Antisense:   

CTG AGC ATC ACT CAA GCT C 
GAG CTT GAG TGA TGC TCA G 

shRNA8 Sense: 
Antisense:   

GCA AAC CCA TGA TAAT GTA 
TAC ATT ATC ATG GGT TTG C 

shRNA9 Sense: 
Antisense:   

CGG CAT ATG CTG CGG CTG A 
TCA GCC GCA GCA TAT GCC G 

shRNA10 Sense: 
Antisense:   

ACA TGA AGG CCC ACG GGA A 
TTC CCG TGG GCC TTC ATG T 

shRNA11 Sense: 
Antisense:   

ACT GAG ATC TTT CGG GTT C 
GAA CCC GAA AGA TCT CAG T 
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siRNA pools Provider 
IκBNS:   SMARTpool: ON-TARGET plus NFKBID siRNA Dharmacon™, GE Healthcare 
MALT1: SMARTpool: ON-TARGETplus MALT1 siRNA Dharmacon™, GE Healthcare 
Control:  ON-TARGETplus Non-targeting Pool Dharmacon™, GE Healthcare 

2.2.3.2 Oligonucleotides used in Crispr/Cas9 mediated gene 
expression knockout 

Target gene  gRNA sequence 5’ - 3’ 
Nfkbid fwd: 

rev: 
GCT CAC GAA TGT CAA GAC GC 

GTT TAA AAA CTC GCG GGT ACC GG 

2.2.3.3 Oligonucleotide primers applied in qRT-PCR experiments 

Template 
mRNA 

 Sequence  5’ - 3’ Length (bp) Tm°C 

CD36 fwd: 
rev:   

GGC TG TGA CCG GAA CTG TG 
AGG TCT CCA ACT GGC ATT AGA A 

19 
22 

62,9 
60,8 

CD90 fwd: 
rev:   

ATC GCT CTC CTG CTA ACA GTC 
CTC GTA CTG GAT GGG TGA ACT 

21 
21 

61,3 
60,9 

CD274 fwd: 
rev:   

TGG CAT TTG CTG AAC GCA TTT 
TGC AGC CAG GTC TAA TTG TTT T 

21 
22 

62,0 
60,4 

ACADM fwd: 
rev:   

ACA GGG GTT CAG ACT GCT ATT 
TCC TCC GTT GGT TAT CCA CAT 

21 
21 

60,5 
60,6 

ACADVL fwd: 
rev:   

ACA GAT CAG GTG TTC CCA TAC C 
CTT GGC GGG ATC GTT CAC TT 

22 
20 

61,2 
62,5 

HADHA fwd: 
rev:   

ATA TGC CGC AAT TTT ACA GGG T 
ACC TGC AAT AAA GCA GCC TGG 

22 
21 

60,4 
63,0 

IκBNS fwd: 
rev:   

GTG TAC CGG CGT CTT GAC ATT 
GTG AGG CCC TCG AAG TCT CT 

21 
20 

62,7 
62,8 

SDHA fwd: 
rev:   

CAA ACA GGA ACC CGA GGT TTT 
CAG CTT GGT AAC ACA TGC TGT AT 

21 
23 

60,7 
60,9 

2.2.3.4 Oligonucleotide primers used for sequencing of plasmids 

Sequencing Primer  Sequence  5’ - 3’ 
BGH Reverse TAG AAG GCA CAG TCG AGG 
EF-1α Forward TCA AGC CTC AGA CAG TGG TTC 
GLprimer2 CTT TAT GTT TTT GGC GTC TTC CA 
SP6 ATT TAG GTG ACA CTA TAG 
T7 TAA TAC GAC TCA CTA TAG GG  

2.2.4 Bacterial strains 

Product  Provider 
NEB 5-alpha competent E.coli  NEB 
One Shot™ Stbl3™ Chemically Competent E. coli Thermo  

2.2.5 Continuous human cell lines 

Cell Line 
Lymphoma   
(Sub-)Type Medium 

% Supplemented 
FCS 

DLBCLs     

BJAB GCB RPMI 10 

SU-DHL-4 GCB RPMI 10 

SU-DHL-6 GCB RPMI 10 

OCI-LY1 GCB IMDM 10 

OCI-LY7 GCB IMDM 10 
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OCI-LY19 GCB IMDM 10 

HBL-1 ABC RPMI 20 

U2932 ABC RPMI 20 

TMD8 ABC RPMI 20 

OCI-LY3 ABC RPMI 20 

OCI-LY10 ABC IMDM 20 

MCLs    

Granta 519 MCL DMEM 10 

Z138 MCL RPMI 10 

Rec-1 MCL RPMI 10 

Jeko-1 MCL RPMI 10 

JVM2 MCL RPMI 10 

UPN1 MCL RPMI 10 

Others    
Jurkat 
 
 

Adult T-cell 
Leukemia/ 
Lymphoma (ATLL) 

RPMI 
 
 10 

Raji Burkitt's Lymphoma RPMI 10 

Ramos Burkitt's Lymphoma RPMI 20 

HEK293T 
Human embryonic 
kidney 293 cells DMEM 10 

2.2.6 Plasmids 
   

Plasmid 
Backbone/ 
Description Resistance Source 

Transient Expression Plasmids 
FLAG-RelA pCR3  Amp Margot Thomé 
FLAG-NFKBID pCR3 Amp This study 
STREP-NFKBID pCR3  Amp This study 
V5-NFKBID Iso3 pCR3 Amp This study 
FLAG-DN-IkBa pCR3  Amp This study 
VSV-MALT1 - Amp Margot Thomé  
VSV-Bcl10 - Amp This study 
StrepHA-MyD88 L265P (aa13-296) - Amp Oliver Wolz 
StrepHA-MyD88 wt (aa13-296) - Amp Oliver Wolz 
HA-CARMA1 WT pTO_HA Amp Georg Lenz 
HA-CARMA1 Mutant2 (L244P) pTO_HA Amp Georg Lenz 
HA-CARMA1 Mutant3 (G116S) pTO_HA Amp Georg Lenz 
NFATc1  pcDNA3 Amp Georg Lenz 
pSUPER empty Intermediate vector for 

cloning shRNAs into 
pLVTHM or pAB286.1 
(Rueda et al., 2007) 

Amp Margot Thomé; 
OligoEngine 

Retroviral expression constructs 
V5-BIRC3 WT pRetro_PG Amp Georg Lenz 
V5-BIRC3 S441Stop pRetro_PG Amp Georg Lenz 

Lentiviral expression constructs 
V5-NFKBID Iso3 pRDI_292 Amp, Puro This study 
FLAG-NFKBID  pRDI_292 Amp, Puro This study 
FLAG-a-fos pRDI_292 Amp, Puro This study 
pLVTHM IRES GFP coupled 

shRNA expression 
Amp Addgene 

#12247 
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pLVTHM IκBNS shRNA1 and 8 IRES GFP coupled 
expression of 
shRNAs targeting 
IκBNS mRNA 

Amp  

pAB286.1 Lentiviral 
expression of 
shRNA 

Amp Margot Thomé 

pAB286.1 IκBNS shRNA1 to 11 Lentiviral 
expression of 
shRNA1 to 11 
targeting IκBNS 
mRNA 

Amp  

lentiCRISPRv2 Empty Crispr/Cas9 
vector 

Amp Addgene 
#52961 

lentiCRISPRv2 gRNA IκBNS Comprises 
specifically 
designed gRNA to 
knock out IkBNS by 
Crispr/Cas9 

Amp This study 

Helper plasmids to generate lenti-viral particles  
pCMV-VSV-G CMV promoter-

driven expression of 
VSV-G envelope  

Amp Addgene #8454 

psPAX2 
 

2nd generation 
lentiviral packaging 
plasmid.  

Amp Addgene 
#12259 

Luciferase reporter plasmids 

Human IκBNS promoter in pGL3-basic Construct of the 
human IκBNS 
promoter for testing 
its activity in 
response to 
transcription factor 
is luciferase assay. 

Amp Promega 

pRL-TK Renilla Luciferase Control 
Reporter Vector 
 

Transcription 
efficacy 
normalisation in 
luciferase assay. 

 

Amp Promega 

2.3 Additional materials 

Material Provider 
Filter Paper for Western Blotting Thermo 
Nitrocellulose membrane, protran BA 83, whatman GE Healthcare 
Ultra Cruz autoradiography film, blue  Santa Cruz 
Tissue Culture Test Plates (6, 12, 24, 48 - well) 
Tissue Culture Flask 500 ml 
Cell Culture Flask 20 ml, 250 ml, 550 ml 
CELLSTAR® 96 well plates flat bottom, round bottom 
LightCycler® 480 Multiwell Plates 96, 384, white 
Centrifuge tubes 15ml, 50 ml 

TPP 
TPP 
Greiner 
Greiner 
Roche 
VWR 

Corning® large volume centrifuge tube, 500 ml 
VWR® Culture Tubes, Plastic, with Dual-Position Cap 

Sigma 
VWR 

VWR® PCR 8-Well Tube Strips; PCR Tubes and Caps VWR 
Safe-Lock Tubes, 1.5 ml;2,0 ml Eppendorf Quality™ Eppendorf 
Pipetman Classic Pipettes P20, P200 and P1000 Gilson, Inc. Middleton, WI ,USA 
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2.3.1 Devices used for conducting experiments 

Device Provider 
DMI6000 Microscope Leica 
Light Cycler 480 II Roche 
LSRII FACS Device BD 
Nanodrop 1000 Peqlab 
Tecan Infinite M200 Tecan 
Film processor for western blot films Agfa 
Gene Pulser Xcell™ Electroporation Systems Biorad 
Gene Pulser®/MicroPulser™ Electroporation 
Cuvettes, 0.4 cm gap 

Biorad 

PerfectBlue™ gel system Twin ExW S Peqlab 
Trans-Blot® Cell BioRad 

2.4 Methods 

2.4.1 Experimental procedures in molecular biology 

2.4.1.1 Isolation of whole cell RNA 

Whole cell RNA was isolated using the Qiagen RNA mini Kit according to the 

manufacturer’s instructions from frozen or freshly harvested supernatant-free 

GCB/ABC DLBCL cell line derived pellets. RNA was eluted in the final step from the 

column by using 35 µl nuclease free water. Until usage, isolated RNA was stored at 

-80°C. 

2.4.1.2 Determination of nucleic acid concentrations and purity 

DNA and RNA concentrations and purity was determined photometrically using the 

Nanodrop 1000 device as per manufacturer's protocols. 

2.4.1.3 Reverse transcription of RNA  

The QuantiTect Reverse Transcription Kit was used according to the manufacturer’s 

instructions to reverse-transcribed 500 ng of isolated RNA (3.4.1.3) into cDNA in a 

final volume of 10 µl. 

2.4.1.4 Quantitative RT-PCR 

Quantitative RT-PCR was conducted in a LightCycler 480II. cDNA was diluted with 

H20 to 50ng/µl. Per reaction 7,5 ng of cDNA was applied. When using a 96/384 well 

plate 15 µl/7,5µl of the KAPA Master mix (H20, KAPA SYBR® FAST qPCR Master 

Mix (2X) Kit, resolight, fwd/rev primers) plus 5 µl/2,5µl cDNA was used per well. 

Primer pairs were diluted 1:10 in H20. mRNA levels were analysed by applying the 

following primer pairs: CD36 fwd/rev; CD90 fwd/rev; CD274 fwd/rev; ACADM 

fwd/rev; HADHA fwd/rev; ACADVL fwd/rev; IκBNS fwd/rev; SDHA fwd/rev. SDHA 

mRNA levels were determined in order to be used as house-keeping reference gene 
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in all qPCR analysis. Primer sequences as listed in 3.2.3.3 were obtained from the 

“PrimerBank - PCR Primers for Gene Expression Detection and Quantification 

database” (https://pga.mgh.harvard.edu/primerbank/). Relative Quantification of the 

reverse transcribed RNA was conducted using the ∆∆CP method: 

∆CP = CP target gene – CP reference gene (here: SDHA) 
∆∆CP = ∆CP treatment – ∆CP control (solvent control) 

Ratio = 2–∆∆CP 

 

2.4.1.5 RNAseq analysis 

For IκBNS knock-down, HBL-1 cells were lentivirally transduced with the empty 

pAB286.1 vector as control and pAB286.1 comprising IκBNS shRNA1. After 4 days 

of puromycin selection, cells were harvested and whole cell RNA was isolated as 

described in 3.4.1.1. RNA samples were sent to the group of Prof. Dr. med. Georg 

Lenz, Medizinische Klinik A – Hämatologie und Onkologie, UK Münster who 

conducted the RNAseq and subsequent analysis. For the characterisation of the 

second IκBNS isoform, deep sequencing analysis was performed in collaboration 

with the “Institut für Humangenetik”, Münster 

2.4.1.6 Digesting DNA strands with restriction endonucleases 

In subcloning ,standard restriction endonuclease digestions were performed in a 

total volume of 20 µl including 2-3 µg of target or/insert comprising vector that were 

digested with corresponding restriction enzymes and buffers as to the 

manufacturer’s instructions. Restriction enzymes were obtained from Thermo or 

NEB. 1,5 µl of FastAP was used to dephosphorylate DNA-ends in order to prevent 

self-ligation of vectors upon single enzyme digestion. Enzymatic digestion of vector 

DNA was incubated for 1 h at 37°C.  

2.4.1.7 Agarose gel electrophoresis 

Un-/Digested dsDNA originating from vectors or PCR-products was analysed by 

size separation using agarose gel electrophoresis. To this end, 1-2% (w/v) of 

GenAgarose LE was dissolved in 1xTAE buffer using a microwave. Subsequently, 

4 µl SYBR Safe was added to the liquid agarose which was poured into a sealed 

gel casting frame and cooled down at RT in order to solidify. Before loading into 

agarose-gel pockets, DNA samples were mixed with 5x sample buffer. 

Electrophoresis was performed in 1xTAE buffer at 90-120V. As DNA molecular 

weight standards served the DNA ladders O´GeneRuler 1 kb Plus DNA ladder or 
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the O’GeneRuler 100 bp Plus DNA Ladder. Separated DNA fragments were 

visualised by an LED transilluminator, exciting the dsDNA intercalating SYBR Safe. 

2.4.1.8 Extraction of DNA fragments from agarose 

Desired DNA fragments were cut out from the agarose and purified from the gel 

using the GeneJET Gel Extraction Kit according to the manufacturer’s instructions. 

The final DNA column elution step was performed with 40 µl ddH2O. 

2.4.1.9 Ligation 

Ligation of appropriate cut and purified vectors and inserts was performed using the 

T4 Ligase. For this purpose 5 µl Insert, 3 µl vector and 1 µl each of T4 DNA Ligase 

and T4 DNA Ligase buffer were mixed and incubated at RT for at least 1h.  

2.4.1.10 Transformation of competent E.coli bacteria 

For transformation of non-viral expression vectors, NEB 5-alpha competent E.coli 

were used for transformation whereas for the transformation of viral expression 

vectors One Shot™ Stbl3™ Chemically Competent E. coli were used. Until usage, 

bacterial strains were stored at -80°C. For transformation they were thawed on ice 

and incubated for 20 – 30 minutes with 1 - 2,5 µl of the ligation reaction or 200 ng 

of plasmid. Subsequently, bacteria were heat-shocked at 42°C for 30 sec in case of 

NEB 5-alpha and for 45 sec. in case of Stbl3™ bacteria. Following 1 min on ice the 

bacteria were transformed with an ampicillin resistance bearing vector, were plated 

out immediately on selective agar plates and incubated over night at 37°C. Bacteria 

transformed with a kanamycin resistance bearing vector were incubated after heat 

shock with 200 µl of SOC-outgrowth medium and incubated for 1h at 37°C.  

Ensuing, bacteria were plated out on selective agar plates and incubated overnight. 

2.4.1.11 Analytical plasmid preparation 

On selection agar grown single bacterial colonies were picked with an autoclaved 

pipet tip. Subsequently, picked colonies sticking to pipet tips were transferred into  

3 ml of selective LB- medium and incubated over night at 37°C and shaking (140 

rpm). The next day, plasmid preparation from grown bacterial suspensions was 

conducted using the GeneJET Plasmid Miniprep Kit following the manufacturer’s 

instructions. Plasmid DNA was eluted from the column with 40 µl of elution buffer. 

In turn to validate if the isolated plasmids actually contain the desired insert, 15 µl 

of each isolated plasmid was digested with the appropriate restriction enzyme. 
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Ensuing, digested samples were analysed by agarose gel electrophoresis for the 

presence of the insert of interest. 

2.4.1.12 Sequencing 

In order to be certain that a distinct plasmid comprises the exact sequence of interest 

or in case of undirected cloning the insert in the correct orientation, 50-100 ng of a 

plasmid in 15 µl dH2O were sent for sequencing to Eurofins MWG Operon. 

Depending on the vector and the availability of oligonucleotide primers provided by 

Eurofins, sequencing samples were additionally mixed with 10 nM of oligonucleotide 

primers in 2µl dH2O resulting in a total volume of 17 µl. 

2.4.1.13 Preparative plasmid isolation 

NEB 5-alpha competent E.coli or One Shot™ Stbl3™ Chemically Competent E. coli 

were transformed with freshly isolated and via sequencing validated plasmid 

constructs. A single bacteria colony or a small amount of a frozen bacteria glycerol 

stock was picked by a pipette tip and transferred to 200 ml of LB-medium 

supplemented with the appropriate selection antibiotic and incubated over night at 

37°C and shaking (140 rpm). For optimal growth, 3 ml pre-bacterial cultures from 

glycerol stocks were set up and incubated over day at 37°C and shaking (140 rpm). 

In the evening pre-cultures were inoculated in 200 ml of selective LB-medium and 

incubated over night at 37°C and shaking (140 rpm). The next day, plasmid DNA 

was prepared using the NucleoBond Xtra Maxi Kit for high-copy plasmids as per 

manufacturer's instructions. Deviating from that 100 – 250 µl ddH20 were used to 

resolve the DNA pellet. Finally, the plasmid DNA concentration was adjusted to  

1 µg/µl. Plasmid DNA solutions were stored at -20°C. 

For long-time storage of back-up bacterial cultures bearing generated plasmid 

constructs, bacterial glycerol stocks were prepared. For this purpose, 500 µl of the 

overnight culture was added to 20% of glycerol and 30% of LB-medium. Bacterial 

glycerol stocks were stored at -80°C.  

2.4.1.14 Polymerase chain reaction (PCR) 

PCR was conducted in order to introduce restriction endonuclease recognition sites 

flanking the DNA sequences of inserts or to change start and stop codons. PCR 

reactions were performed using the Pfu DNA polymerase or the Platinum™ Pfx DNA 

polymerase according to the manufacturer’s instructions. In a standard PCR 

reaction, 200 ng of template was used in a total volume of 50 µl.  
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2.4.1.15 Cloning of PCR fragments 

Using the Pfx DNA Polymerase generates blunt end DNA fragments. Primers can 

be designed to yield PCR generated amplicons that are flanked by palindromic 

sequenced serving as restriction endonuclease recognition sites. The digested ends 

of the PCR fragment facilitates a ligation in an appropriately digested target vector. 

Subsequently to a PCR, the total reaction volume of 50 µl was analysed via agarose 

gel electrophoresis (3.4.1.7). The DNA fragment with the correct size was cut out of 

the gel and purified using the GeneJet gel extraction kit and eluted in 50 µl. 40 µl of 

the PCR product was taken to be subjected to restriction with the appropriate 

endonuclease digestion and afterwards purified again. In parallel, appropriate target 

vectors were digested with the same endonucleases and purified. Finally, the 

digested PCR fragment could be ligated with the appropriate cut target vector 

(3.4.1.9). 

2.4.1.16 Generation of shRNA expressing vectors  

shRNA sequences targeting IkBNS mRNA (3.2.3.1) were modified with flanking 

adaptor sequences to bear BglII and HindII target sites and in order to generate a 

64-mer that constitutes the final duplex form with the 3’UU overhang, typical for 

siRNA: 

5’-gatcccc-target sequence sense-ttcaagaga- target sequence antisense-ttttta-3’ 
5’-agcttaaaaa- target sequence sense-tctcttgaa- target sequence antisense-ggg-3’ 

 
The designed forward and reverse 64-mers were annealed and digested by BglII 

and HindII. The pSuper backbone is digested by BglII and HindII, as well. The 

digested pSUPER backbone and the annealed and digested insert can then be 

ligated as described in 3.4.1.9  

For subcloning of the shRNA sequence into the lentiviral expression vector 

pAB286.1, pSUPER and the target vector were digested by BamHI and SalI 

followed by ligation. 

For subcloning into the pLVTHM vector, pSUPER and the target vector had to be 

digested by EcoRI and ClaI, followed by ligation. 

3.4.1.17 Generation of CRISPR/Cas9 expressing vectors 

In order to clone the target gRNA sequence into the lentiCRISPRv2 backbone,  

two 25-mer oligonucleotides had to be generated in the following form (N designates 

any DNA nucleotide): 
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5‘-caccgNNNNNNNNNNNNNNNNNNNN-3‘ 

3‘-cNNNNNNNNNNNNNNNNNNNNcAAA-5‘ 
 

The gRNA sequence replacing “N” in order to target the NFkBID gene are listed 

under 3.2.3.2 Lentiviral backbone digestion, oligo-annealing and gRNA cloning into 

the digested vector were conducted according to the “Target Guide Sequence 

Cloning Protocol” established by the Zhang lab. 

2.4.1.18 Luciferase IkBNS promoter reporter generation 

The putative IkBNS promoter sequence with flanking restriction endonuclease 

recognition sites was chemically synthesized by Invitrogen GeneArt Gene 

Synthesis. Upon delivery, the received bacterial stab was cultured and the plasmid 

containing the synthesized promoter sequence was isolated. Subsequently, the 

IkBNS promoter sequence was cut out of its backbone and subcloned into the pGL3-

basic luciferase reporter plasmid using XhoI and NheI. With the generation of this 

plasmid construct the IkBNS promoter activity could be investigated under different 

conditions by the Dual luciferase reporter assay (3.4.2.8). 

2.4.2 Experimental procedures in cell biology 

2.4.2.1 Determination of cell concentrations 

Cell concentrations were determined by using Neubauer Chamber slides according 

to the manufacturer’s instructions. 

2.4.2.2 Cryoconservation of cells 

106 - 107 cells per mL were dissolved in 1,5 ml freezing buffer in cyroconservation 

tubes. Subsequently, cells were inverted several times and stored for a couple of 

days in Mr. Frosty™ freezing containers at -80°C. For long time storage, cells were 

stored in liquid nitrogen. 

2.4.2.3 Thawing of cells 

In liquid nitrogen frozen cells were thawed in a 37°C water bath and subsequently 

transferred into 50 ml of the cell line corresponding medium with the purpose to 

dilute the cell toxic DMSO. Cells were pelleted by centrifugation at 300 g for 4 min.  

The supernatant was decanted and cells were resuspended in 15 ml of the 

respective cell culture medium (3.1.5).  
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2.4.2.4 Culture of lymphoma cells 

All cell lines used (3.2.5) were cultured in a humidified atmosphere under standard 

conditions comprising 5 % CO2, 20 % O2 and a temperature of 37°C. 

The GCB DLBCL cell lines BJBAB, SU-DHL-4, SU-DHL-6 were cultured using 

RPMI supplemented with Plasmocin, 100 U/ml penicillin/ 100 µg/ml streptomycin 

and 10% FCS. OCI-LY1, OCI-LY7, OCI-LY19 were cultured using IMDM 

supplemented with 2,5 µg Plasmocin, Pen/Strep and 10% FCS. The ABC DBLCL 

cell lines HBL-1, TMD8, U2932, OCI-LY3 were cultured using RPMI supplemented 

with 2,5 µg/ml Plasmocin, 100 U/ml penicillin/ 100 µg/ml streptomycin and 20% FCS. 

OCI-LY10 was cultured using IMDM supplemented with 2,5 µg/ml Plasmocin, 100 

U/ml penicillin/ 100 µg/ml streptomycin and 20% FCS. MCL cell lines Z138, Rec-1, 

Jeko-1, JVM2, UPN1 were cultured using RPMI supplemented 2,5 µg/ml Plasmocin, 

100 U/ml penicillin/ 100 µg/ml streptomycin and 20% FCS except for Granta519 

which was cultured using DMEM supplemented with Plasmocin, Pen/Strep and 10% 

FCS. The Burkitt’s lymphoma cell lines Raji and Ramos were cultured using 

RPMI supplemented 2,5 µg/ml Plasmocin, 100 U/ml penicillin/ 100 µg/ml 

streptomycin 10% and 20% FCS, respectively. The Adult T-cell Leukemia/ 

Lymphoma (ATLL) cell line Jurkat was cultured using RPMI supplemented 2,5 

µg/ml Plasmocin, 100 U/ml penicillin/ 100 µg/ml streptomycin and 10% FCS. 

HEK293T cells were cultured using DMEM supplemented with Plasmocin, 100 U/ml 

penicillin/ 100 µg/ml streptomycin and 10% FCS. Cells were kindly provided by Prof. 

Dr. Falko Fend, University of Tuebingen, Germany; Prof. Dr. Georg Lenz University 

of Münster, Germany and Prof. Dr. Margot Thomé Université de Lausanne, 

Switzerland. 

2.4.2.5 Transfection of DNA by calcium phosphate precipitation 

24 h prior to transfection, confluent HEK293T cells were splitted 1:10 with 

supplemented DMEM. In case adherent cells grown in 6-well plates were 

transfected, 125 µl nuclease free water was mixed with 12,5 µl of 2,5 M CaCl2. For 

10 cm culture dishes 500 µl nuclease free water and 50 µl of 2,5 M CaCl2 were 

mixed. To this mixture, the respective plasmid DNA was added. Subsequently, 125 

µl (6-well plate) or 500 µl (10 cm dish) of 2x HeBs (pH7,05) was added dropwisely 

to this mixture under vortexing followed by an incubation time of 10 min at room 

temperature. Ensuing, this mixture was added in small drops to the cells. The media 

of the transfected cells was exchanged 16 h later. 24 h - 48 h after transfection, cells 
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were harvested and lysed for usage in downstream methods such as western blot 

and luciferase assay.  

2.4.2.6 Lentiviral transduction of DNA 

HEK293T cells were seeded in 10 cm plates. 24h later HEK293T cells were 

transfected using calcium phosphate precipitation with the lentiviral helper plasmids 

pCMV-VSV-G (3 µg per sample) and psPAX2 (6,5 µg per sample) and an 

appropriate lentiviral expression vector (10 µg per sample). Another 24 h later, 

medium was sucked off the 10 cm plates and substituted by 6ml the appropriate 

target cell medium. 96 h after transfection, virus containing HEK293T supernatant 

of one plate (6 ml) was given to 2x106 target cells in 6 ml medium by syringe driven 

filtration (0,45 µM). 48h after infection, medium was exchanged for puromycin 

containing selection medium. At least 48 h after exposure to selection medium, 

remaining antibiotic resistant cells can be harvested and checked for proper 

expression of the protein of interest by western blot. 

2.4.2.7 Transfection of DNA by electroporation 

Suspension cells were transfected by electroporation. Per sample, 6 to 10 million 

cells were pelleted and washed in DPBS supplemented with Ca2+/Mg2+. 

Subsequently, the cells resuspended in 350 µl DPBS. Ensuing, up to 30 µg plasmid 

DNA was added. Samples were then incubated for 15 min and then transferred to 

a 4 mm electroporation cuvette. Electroporation pulsing was conducted by BioRad 

Gene Pulser using the exponential protocol at 220-230 V, 950 µF and infinite 

resistance in cuvettes with 4 mm gap size. After pulsing, 1 ml of RPMI medium 

without supplements was added to the cells in the 4 mm cuvette. By using a transfer 

pipette, cells were transferred preferably without cellular debris to pre-warmed 

cell line corresponding culture medium. 24 h - 48h after transfection, cells were 

harvested and lysed for usage in downstream methods such as western blot or 

luciferase assay. 

2.4.2.8 Dual luciferase reporter assay 

For conducting the dual luciferase reporter assay, adherent HEK293T cells in 6 well 

plates were additionally transfected to the plasmids of interest with 0,125 µg of 

pGL3-basic comprising the putative human NFkBID promoter which was cloned 

upstream of a firefly luciferase coding gene and 0,0125 µg of a TK-Renilla 

expressing vector. Transfection was conducted using the calcium phosphate 
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precipitation method. 24 h – 48 h after transfection medium was sucked off the wells. 

Subsequently, cells were lysed using the provided 1x passive lysis buffer and 

incubated for half an hour under agitation. Ensuing, 5 µl of cell lysate was added to 

50 µl of luciferase substrate in a FACS tube. By using a photometer, luminescence 

intensity of the expressed firefly luciferase was measured. After that, 50 µl stop and 

glow solution was added to the mixture and then the luminescence value for TK-

Renilla was measured. The constitutive expression of TK-renilla and the resulting 

luminescence value was determined as efficacy control for transfection and thus for 

the normalization of samples in order to compare them equitably independent from 

different transfection efficacies. As negative control served a sample containing only 

the promoter to be investigated and the TK-renilla encoding plasmid. Samples were 

transfected as either duplicates or triplicates. 

2.4.2.9 MTS Assay 

In order to determine the number of viable cells upon the treatment of DBCL cells 

with calcineurin inhibitors, the colorimetric based MTS assay was performed using 

the Promega CellTiter 96® Aqueous One Solution Cell Proliferation Assay. The 

assay was conducted in 96-well plates according to the manufacturer’s instructions 

with 1-2,5 x 105 cells. Absorbance at 490 nm was measured using the Tecan Infinite 

M200. As background values served wells filled with equal amounts of the 

corresponding medium. Samples were applied as triplicates to the 96 well plate 

each containing 1-2,5 x 105 untreated or treated cells dependent from the 

experiment. 

2.4.2.10 Generation of protein lysates for Western Blot 

For lysis, suspension cells were centrifuged down at 500g for 4 min. Subsequently, 

supernatant was discarded and cells washed with 1x PBS and transferred to a 1,5 

ml reaction tube. The supernatant of adherent cells was discarded and cells were 

detached from culture plate with 1 ml of 1x PBS and transferred to a 1,5 ml reaction 

tube. After centrifugation, PBS was aspired and depending on the cell pellet double 

the volume of ice-cold Tris-NaCl lysis buffer (50 mM Tris, pH 7.4, 150 mM NaCl, and 

1% Triton X-100) complemented with inhibitors of proteases (cOmplete™, Mini, 

EDTA-free Protease Inhibitor Cocktail Tablet) and phosphatases (50 mM NaF, 10 

mM Na4P2O7, and 10 mM NaVO4) was added. After vortexing, cells dissolved in 

lysis buffer were incubated for 15 min of ice, interrupted by occasional vortexing. 
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Subsequent to incubation, cell debris was removed by centrifugation for 10 min at 

14.000 g and 4°C. The cleared postnuclear cell lysate was finally transferred to 

another 1,5 ml reaction tube and stored at -20°C. The remaining cell debris was 

discarded.  

3.4.2.11 Protein quantification 

Protein concentration of cell lysates was determined calorimetrically using the Bio-

Rad Protein Assay Dye Reagent Concentrate. The Concentrate was diluted 1:5 in 

a volume of 1 ml ddH20 in 1,5 ml reaction tubes. In this dilution 0,5 µl of cell lysate 

was pipetted and the total volume was transferred into a cuvette. Protein 

concentration of lysate sample duplicates was finally determined using a photometer 

measuring absorbance at 595 nm. 

2.4.2.12 Fractionation of cytosolic and nuclear proteins 

10 to 20 million cells of the GCB DLBCL cell line BJAB and the ABC DLBCL cell 

lines U2932 and HBL-1 were harvested and washed once with ice-cold 1x PBS and 

centrifuge for 5 min at 300g at 4°C. The reductant DTT and a protease inhibitor was 

added to Buffer C before the resuspension of cells with 3-to 4-fold the volume of the 

cell pellet. After short vortexing cells were incubated in Buffer C on ice for 5 minutes. 

The cytosolic fraction and the nuclei were then separated by centrifugation at 9000 

rpm for 45 sec. Subsequently, the generated supernatant i.e. the cytosolic fraction 

was now transferred to a fresh 1,5 ml reaction tube. The remaining pellet was then 

washed twice for 10 sec. with Buffer C. In order to crack the nuclei, dependent on 

pellet size two times the volume of Buffer N was added and the reaction tubes were 

frozen in liquid nitrogen and thawed in a 37°C water bath for 9 cycles. Subsequently, 

the samples were sonicated for 10 seconds. Ensuing, the cellular debris was 

separated from the nuclear fraction by centrifugation at 14.000g for 10 min. The 

supernatant i.e. the nuclear fraction was transferred to a new 1,5 ml reaction tube. 

To examine the subcellular distribution of the protein of interest and to verify the 

purity of fractions, samples were then separated by SDS-PAGE and analysed by 

immunoblotting. 
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2.4.2.13 Stimulation of cells 

Cells were centrifuged down at 500g for 4 min in 15 ml falcons. The supernatant 

was discarded and cells were resuspended in 1-4 ml of corresponding 

supplemented cell medium. Cells were then incubated for 15 min in a pre-warmed 

water bath at 37°C. Finally, B- or T-cells were stimulated with either a mixture of 

PMA (10 ng/ml) and Ionomycin (1 µM) (P/I; 1:1000), PMA (10 ng/ml; 1:500) or 

Ionomycin (1 µM; 1:200) for different periods of time. As stimulation control, DMSO 

was applied in the same dilution as the cell stimuli. 

2.4.2.14 Cycloheximide treatment of ABC DLBCL cell lines 

To investigate the protein half-life of IkBNS isoforms, the ABC DLBCL cell lines 

HBL-1 and OCI-LY3 were treated with the protein biosynthesis inhibitor 

cycloheximide (CHX). Cells were harvested an resuspended in 3 ml RPMI medium 

supplemented with 20% FCS in 15 ml tubes. Tubes were then incubated for 15 min 

in a 37°C water bath. Subsequently, CHX was added to the cells to a final 

concentration of 20 µg/ml for 1, 2, 4 or 6h at 37°C. After that, cells were harvested 

and protein lysates were generated that were separated by SDS PAGE and 

analysed by western blot. 

 

3.4.2.15 Stable isotope labeling by/with amino acids in cell culture  

300 ml of densely grown HBL-1 were centrifuged down at 500g for 4 min. Cells were 

then resuspended in equal portions of 150 ml in light growth medium (RPMI 20% 

FCS) containing normal amino acids, medium heavy amino acids containing growth 

medium (RPMI 20% FCS), containing amino-acids labeled with non-radioactive 

isotopes and growth medium comprising amino acids labeled with stable heavy 

isotopes. Cells were splitted every other day and harvested after 12 days of 

incubation in corresponding medium. Five hours prior harvesting CsA (2,5 µM) and 

FK506 (5 µM) were added to differentially labeled cells that were previously 

resuspended in 50 ml of corresponding fresh SILAC medium. Subsequent to 

harvesting, cells were resuspended in lysis buffer provided by the Quantitative 

Proteomics & Proteome Center Tuebingen. Cells in lysates were stored at -20°C 

until given to MS analyses in order to assess calcineurin inhibition dependent 

changes in the phosphoproteom in the ABC DLBCL cell line 

HBL-1. 
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2.4.3 Immunobiological methods 

2.4.3.1 Staining of lymphoma cell surface markers and analysis 
by FACS  

Lymphoma surface marker expression was quantified by FACS analysis using an 

LSRII device. For this purpose, 4 ml of GCB and ABC DLBCL cell suspensions were 

harvested in FACS tubes by centrifugation at 500g for 4 min. Medium supernatant 

was discarded. Cells were subsequently washed with 4 ml of 1x PBS and 

resuspended in 200 µl FACS Buffer (1x PBS; 2% FCS) containing fluorochrome-

conjugated anti-CD36, CD90, CD108, CD274 or HLA-DR in a dilution of 1:50 each. 

As control served the staining of cells line with appropriate fluorochrome-labelled 

isotype control antibodies. Following an incubation time of 30 minutes in the dark, 

cells were centrifuged at 500g for 4 min, supernatant was discarded and cells were 

washed once using 4 ml of FACS Buffer. Finally, cells were resuspended in 200 µl 

FACS of Buffer and subjected to FACS analysis. 

2.4.3.2 Legend screen™ 

The BioLegend® LEGENDScreen™ Lyophilized Antibody Array Human PE Kit was 

conducted following the standard operating procedures provided by the 

manufacturer using the GCB DLBCL cell lines BJAB, SU-DHL-4 and SU-DHL-6 and 

the ABC DLBCL cell lines HBL-1, TMD8, U2932, and OCI-LY3. 

2.4.3.3 ELISA  

In order to detect the amounts of Jurkat secreted interleukin-2 and ABC DLBCL 

secreted interleukin-6 and -10 the eBioscience™ Human IL-2, IL-6 and IL-10 ELISA 

Ready-SET-Go!™ Kits were used. The respective interleukin containing 

supernatants of control samples and differently treated cell lines were harvested as 

triplicates and transferred into 1,5 ml reaction tubes that were subsequently stored 

at -80°C until usage. When conducting an ELISA, samples were initially thawed on 

ice. Samples were applied as duplicates to the 96-well pre-coated ELISA plate. The 

following ELISA was performed according to the manufacturer’s instructions. 

Deviating from that, as controls served cell line corresponding media without 

supplements. 
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2.4.3.4 Sodium dodecylsulphate polyacrylamide gel 
electrophoresis (SDS-PAGE) 

Proteins in generated cell lysates (3.4.2.10) were size separated using the 

denaturing sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS‐

PAGE). The appropriate volume of lysate corresponding to the desired amount of 

protein was mixed with reducing 3x SDS sample loading buffer or 2x urea sample 

buffer. This mixture was subsequently boiled for 10 min at 95°C to denature the 

proteins. Afterwards, samples were loaded into polyacrylamide gels (acrylamide 

percentage depends on the size of the protein of interest), that were handcasted 

using the Peqlab PerfectBlue™ gel system Twin ExW S. As molecular weight 

standard, the Spectra Multicolour Broad Range protein ladder was additionally 

loaded. Samples were electrophoretically separated according to their size in the 

Peqlab PerfectBlue™ gel system chamber filled with 1x migration buffer. Initially, 80 

V were applied. As soon as the samples ran out of the pockets of the stacking gel, 

SDS-PAGE was continued applying 120 V until the loading front ran out of the 

resolving gel. 

2.4.3.5 Immunoblotting 

Subsequent to the size dependent separation of lysate proteins by SDS-PAGE, 

proteins were transferred to a nitrocellulose membrane by tank blotting for 90 min 

at 100 V using the BioRad Trans-Blot® Cell filled with 1x blotting buffer. Optionally, 

in order to check regular protein transfer on membranes could be incubated for 

some minutes in Ponceau Rouge which could washed away using dH2O. Hereafter, 

nitrocellulose membranes were incubated for 30 to 60 min in blocking solutions 

under shaking. Depending on the later applied primary antibody blocking solutions 

either contained 5% milk powder or 5% BSA dissolved in 1xTBS/T. After blocking, 

the primary antibody (3.2.2) either dissolved in 25 ml 5% milk powder/ 1xTBS/T or 

25 ml 5% BSA/1xTBS/T was added to the membrane and incubated over night or 

longer at 4°C under shaking. The next day, membranes were washed three times 

for 5 minutes with 1xTBS/T. Ensuing, membranes were incubated for 2-4h in 

immunoblotting secondary antibody solution comprising HRP-coupled IgG 

secondary antibodies in a dilution of 1:10.000 depending on the primary antibody 

either from mouse or rabbit (3.2.2) After secondary antibody incubation, membranes 

were washed three times for 5 minutes with 1xTBS/T. Subsequently, ECL solution 
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was applied and specific protein bands were finally detected by exposing the 

nitrocellulose membranes to Ultra Cruz Blue autoradiography films. 

For reprobing of membranes with another primary antibody, membranes were 

washed three times for 5 minutes with 1xTBS/T and blocked again for 30-60 min 

depending on the primary antibody with either 5% milk / PBS/T or 5% BSA / PBS/T. 

Additionally, 100 µl NaN3 was added to the blocking solution to eliminate remaining 

HRP activity from the previous detection. Subsequent to blocking, another primary 

antibody was given to the membrane and incubated at least over night at 4°C. 
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3. Results 

3.1 IκBNS regulation in lymphocytes 

In turn to investigate how IκBNS expression is regulated in lymphocytes and 

moreover which transcription factor families (TF-families) might be implicated in this 

regulation we made use of a model T-cell line. 

To figure out whether the AP-1 family or NF-κB could be the driving factors of IκBNS 

expression we lentivirally transduced the T-cell line Jurkat with either A-Fos,                       

an inhibitory AP-1 construct preventing the binding of other AP-1 family members to 

DNA in a competitive manner (Olive et al., 1997) or with a FLAG-tagged,  

non-phosphorylatable dominant negative IκBa (DN-IκBa). Both TF-families are well 

known to positively regulate IL-2 secretion upon T-cell activation (Hoyos et al, 1989, 

Jain et al., 1995; Juilland et al., 2016). Therefore, we stimulated Jurkat cells for 16 

h with P/I, a mixture of PMA (phorbol-12-myristate-13-acetate), activating PKC, and 

Ionomycin an ionophore produced by Streptomyces conglobatus, which is leading 

to raising intracellular Ca2+ levels. Subsequently, IL-2 was measured in the 

supernatants of the differently transduced Jurkat cells (Figure 12.a). In comparison 

to control cells, A-Fos and DN-IkBa transduced cells secreted considerably less IL-

2 upon P/I stimulation, indicating the proper functionality of A-Fos and DN-IκBa. To 

further validate the functionality of the Flag-tagged DN-IκBa in B-lymphocytes and 

to see a putative effect on IκBNS induction, we lentivirally transduced the GCB-

DLBCL cell line BJAB with the NFκB inhibitor. As a DN-IκBa functionality control, 

we blotted against A20, a negative regulator and target of NF-κB (Compagno et al., 

2009). A20 expression was clearly diminished upon stimulation in DN-IκBa 

transduced cells compared to control cells (Figure 12.b). Expression of DN-IκBa 

was confirmed by staining against the FLAG-tag. Upon 16 h of P/I stimulation we 

did not observe any difference between IκBNS levels in control cells and DN-IκBa 

transduced BJAB cells (Figure 12.b), suggesting NF-κB not to be essential for 

IκBNS induction and expression maintenance. 
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Figure 12. Proving functionality of A-Fos and DN-IκBα. (a) IL-2 ELISA made from 

supernatants of non-stimulated or P/I treated Jurkat cells that were lentivirally transduced with either 

a FLAG-tagged expression construct for A-Fos, DN-IκBα or an empty vector as control. (b) 

Immunoblot analysis of IκBNS, A20, FLAG expression levels in BJAB cells transduced with a 

FLAG-tagged expression construct for DN-IκBα or an empty vector as control. Cells were treated 

with P/I for 16 h or with solvent alone as control (a, b) GAPDH served as an indicator for equal 

loading.  

 

To narrow down which TF-families are responsible for IκBNS expression, we again 

lentivirally transduced BJAB B-cells and Jurkat T-cells cells with either an empty 

control vector, A-Fos or DN-IκBa and the combination of A-Fos and DN-IκBa to 

exclude a redundancy of AP-1 and NF-κB TF-family members (Figure 13.a,b; 14a, 

b). Expression of the dominant negative inhibitors was validated by using an anti-

FLAG antibody. The activation of B- and T-cells was confirmed by blotting against 

CYLD, a deubiquitinase and negative regulator of NF-κB (Brummelkamp et al., 

2003). Upon B- and T-cells activation CYLD is cleaved C-terminally by MALT1 in a 

40 kDa and 70 kDa fragment (Figure 13.a, b; 14a, b) and is therefore an indicator 

of B- and T-cell activation. To the different viral backgrounds of BJABs we 

additionally applied a p38-inhibitor and Cyclosporin A (CsA) (Figure 13.a, b, 14.a, 

b), an inhibitor of the phosphatase calcineurin and thus of the NFAT-family of TFs, 

as well. CsA was originally isolated from fungus Tolypocladium inflatum and is today 

an essential, commonly used immunosuppressive drug. Since IκBNS is not 

expressed in BJAB under steady state conditions, cells were initially pre-incubated 

for 20 minutes with the previously mentioned inhibitors and afterwards stimulated 

with P/I for the indicated periods of time to induce IκBNS expression. IκBNS was 

clearly detectable after 1 h of P/I stimulation. The IκBNS expression level reached 

its peak at 3 h and declined after 4 h of P/I mediated stimulation under all conditions. 

BJAB expressing A-Fos, DN-IκBa alone or the combination thereof did not show 
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any changes in their IκBNS induction behaviour upon P/I stimulation compared to 

the control (Figure 13.a). This finding is in line with the result of Figure 12.b which 

showed that NF-kB inhibition alone does not have an influence on proper IκBNS 

induction. When we treated the cells additionally to the expression of the dominant 

negative inhibitors with a p38-inhibitor we saw slightly diminished levels of IκBNS 

induction upon P/I treatment. This is most likely due to toxic side effects of this 

inhibitor. In contrast, when we added Cyclosporin A, IκBNS induction was 

tremendously hampered upon stimulation in all differently transduced cells 

compared to non-treated cells (Figure 13.b). Notably, the combined treatment with 

the NFAT-inhibitor Cyclosporin A and the expression of the NF-κB-inhibitor (DN-

IκBa) led to the strongest impairment of IκBNS induction upon P/I stimulation. To 

further elucidate how IκBNS induction is regulated in lymphocytes we conducted the 

same experiment with Jurkat T-cells (Figure 14.a, b). To confirm the effect of CsA 

seen in Figure 13.b we also tested FK506 (tacrolimus), another calcineurin inhibitor, 

that is commonly used in immunosuppressive therapies. FK506 is a macrolid 

lactone originally produced by Streptomyces tsukubaensis and exerts its 

mechanism of action basically in the same manner as Cyclosporin A does (Haddad 

et al., 2006; Bonner and Boulianne, 2017). Using this second calcineurin inhibitory 

compound made it possible for us to exclude putative unspecific CsA effects and to 

further validate the observations previously made in BJAB. As in BJAB B-cells, 

Jurkat T-cells obviously expressed IκBNS 1 h upon P/I mediated stimulation, 

reached its peak at ~ 3 h but remained at the same expression level at 4 h, 

regardless the expression of the empty control vector, A-Fos, DN-IκBa or the 

combination of both. Moreover, the eventual expression levels of IκBNS were 

neither altered under AP-1, NF-κB inhibitory nor the combination thereof compared 

to empty control (Figure 14.a). However, as soon as we gave in the calcineurin 

inhibitors CsA or FK506, IκBNS induction was remarkably affected compared to 

non-treated controls. For FK506 treated samples, this effect was even more 

pronounced (Figure 14.b). Noteworthy, in Jurkat T-cells the strongest negative effect 

on IκBNS induction did not occur under the combination of CsA treatment and DN-

IκBa expression compared to CsA only treated cells. The same applies to Jurkat 

cells, in which we combined calcineurin inhibition by FK506 and NF-κB inhibition 

(Figure 14.a, b). Hence, the induction of IκBNS in T-cells could be slightly 

differentially regulated as in B-cells. 
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Figure 13. Investigating the TF-family dependency of IκBNS induction and expression 

maintenance in B-cells. Analysis of IκBNS protein expression by western blot in lysates of BJAB 

cells lentivirally transduced with either an empty control vector (Control), an expression construct 

for Flag-tagged A-Fos, DN-IκBα or the combination of thereof upon P/I stimulation for the indicated 

times. Cells were pre-incubated with p38 inhibitor or Cylcosporin A (2,5 µM)  for 20 min ahead of 

P/I stimulation. FLAG-tag expression was assessed to validate expression of A-Fos and DN-IκBa. 

Proper B-cell stimulation by P/I was verified by determining CYLD cleavage. In a+b blotting for 

GAPDH served as a loading control. 
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Figure 14. Investigating the TF-family dependency of IκBNS induction and expression 

maintenance in T-cells. Immunoblot analysis of IκBNS protein expression in lysates of Jurkat 

cells lentivirally transduced with either an empty control vector (Control), an expression construct 

for Flag-tagged A-Fos, DN-IκBα or the combination of thereof upon P/I stimulation for the indicated 

times. Cells were pre-incubated with calcineurin inhibitors Cylcosporin A (2,5 µM) or FK506 (5 

µM) for 20 min ahead of P/I stimulation. FLAG-tag expression was assessed to validate expression 

of A-Fos and DN-IκBa. Proper T-cell stimulation by P/I was verified by determining CYLD 

cleavage. In a+b blotting for GAPDH served as a loading control. 
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To substantiate our previous findings of IκBNS regulation and to exclude unspecific 

CsA effects in B-lymphocytes as well, we also tested FK506 in BJAB. Cells were 

pre-treated with solvent only or with either one of the calcineurin inhibitors CsA or 

FK506 just before P/I mediated cell stimulation for the indicated times (Figure 15.a).  

Under solvent only (control) conditions IκBNS protein levels could be appreciably 

determined by western blot analysis after 1 h, raised at its highest level after 3 h and 

remained at the same level after 4 h of P/I stimulation. However, in CsA or FK506 

pre-treated BJAB IκBNS induction was unambiguously impeded (Figure 15.a). 

Collectively, these findings show that the indirect inhibition of NFAT by using 

calcineurin inhibitors CsA and FK506 lead to impaired IκBNS induction in both  

B-and T-lymphocytes. Moreover, when the NF-κB pathway is additionally blocked 

by a dominant negative approach this inhibitory effect is, at least in B-cells the 

strongest among all tested conditions. Taken together, the results suggest a 

synergistic role for NF-κB and NFAT TF-family members for the induction and 

maintenance of IκBNS in B-and T-lymphocytes. 

So far, the effect of CsA or FK506 was only tested upon P/I meditated cell 

stimulation. Due to this, we wanted to assess next the effect of NFAT-inhibition by 

CsA and FK506 also on high steady state expression level of IκBNS. As we describe 

in chapter 4.2 in more detail, we noticed that ABC DBLCL cell lines express high 

levels of IκBNS under steady state conditions. Therefore, we treated the ABC 

DLBCL B-lymphocyte cell lines HBL-1 and U2932 for two days with CsA and 

examined the effect on IκBNS protein levels (Figure 4.b). CsA treatment clearly 

decreased the IκBNS levels in both cells lines compared to solvent controls (Co) 

even after one day of application and was also lasting at the same extend on day 

two (Figure 15.b). These findings are in accordance with the previously gained data 

and therefore strengthen the assumption that NFAT is likely to be important for the 

induction of IκBNS upon cell stimulation (Figure 13.a, b; Figure 14.a, b; Figure 15.a). 

Furthermore, as found in HBL-1 and U2932 (Figure 15.b) NFAT is also important 

for the maintenance of high level steady state IκBNS levels in ABC DLBCL. 
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Figure 15. NFAT requirement for induction of IκBNS upon P/I stimulation and 

maintenance of high level steady state IκBNS protein levels in B-lymphocytes analysed 

by western blotting. (a) The GCB-DLBCL cell line BJAB was preincubated for 20 min with either 

solvent control (DMSO), CsA (2,5 µM) or FK506 (5 µM) and subsequently stimulated with P/I for 

the indicated times. (b) HBL-1 and U2932 ABC DLBCL lines were treated for 1 or 2 days with 

DMSO (Co) or CsA (2,5 µM). Blots were incubated with the indicated antibodies. GAPDH was 

blotted to show equal loading of samples in (a, b). 

 

Owing the fact that we have observed the strongest impairment of IκBNS induction 

upon P/I mediated B-cell stimulation when combining an NFAT inhibitor and an NF-

κB inhibitor (Figure 13.b) we now ask ourselves what would be the outcome of 

single-treatment with either PMA or Ionomycin on IκBNS up-regulation compared to 

their combined treatment. PMA mimics diacylglycerol and therefore activates PKC 

and adjoining downstream pathways. Amongst others, NF-κB and AP-1 (Staudt and 

Young, 2013) but due to lacking Ca2+ mobilisation, NFAT is not activated hereby.  

In contrast, treating the cells only with Ionomycin gives rise to elevating intracellular 

Ca2+ levels that lead in turn to the activation of calcineurin and eventual nuclear 

translocation and activation of NFAT (Steinbach et al., 2007) but not NF-κB. In this 

manner we were able to distinguish between the effects of NFAT and NF-κB activity 

alone, compared to their synergistic impact on the induction of IκBNS (Figure 16.). 

PMA treatment of BJAB cells alone obviously led to IκBNS up regulation albeit very 

weak compared to P/I stimulation. After 1 h IκBNS expression was already 

detectable in western blot, reached its highest level at 3 h and was on the edge to 

decline after 4h of stimulation upon PMA treatment. Thereby, only IκBNS p70 was 

detectable most likely due to the anyway higher expression levels than IκBNS p35. 

However, the treatment of BJAB cells with Ionomycin alone did not lead to any 

detectable IκBNS (Figure 16.).  
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Taking into account the previously gained findings, this result was further approving 

the assumption that NF-κB and NFAT play a synergistic role to fully induce IκBNS 

expression levels as we could observe them upon stimulation in B- and 

T-lymphocytes and as well as under high steady state expression levels in 

representative ABC-DLBCLs. In detail, NF-κB alone is able of inducing only very 

little amounts of IκBNS whereas NFAT alone does not exhibit the capability to 

induce IκBNS at all (Figure 16.). 

 

Figure 16. Distinguishing the inductive capabilities of NF-κB and NFAT solely and in 

synergy to up regulate IκBNS in BJAB B-lymphocytes analysed by immunoblotting.                            

Cells were treated with either PMA, Ionomycin or their mixture for the indicated times. Protein 

levels, stimulation of B-cells and equal loading were determined with the indicated antibodies.  

 

So far, all evidences suggested that NF-κB and NFAT together were the main 

drivers of proper Nfκbid gene induction and expression maintenance in  

B-lymphocytes. Thus, we had a closer look at the Nfκbid gene structure. CHIP data, 

published in the UCSC Genome Browser (http://genome.ucsc.edu) revealed a 

putative Nfκbid promoter region in intron one of the Nfκbid gene (Figure 17.a; framed 

in red; Figure 17.b nucleotide sequence of this chromosome stretch) with putative 

binding sites for NF-κB family members and NFATc1. Moreover, when we analysed 

the nucleotide sequence as shown in Figure 17.b for potential transcription factor 

binding sites by using a prediction tool, we actually found potential NF-κB (Figure 

17., depicted in yellow and red) and NFAT (Figure 17., depicted in blue) binding 

sites. 
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Figure 17. Putative promoter sequence of the Nfκbid gene. (a) CHIP-Seq data for different 

NF-κB family members and NFATc1 in the region of the Nfκbid gene on chromosome 19q13.12 in 

multiple cell lines. Framed in red: the sequence in intron one of the Nfκbid gene containing potential 

transcription factor binding sites as indicated by several peaks (b) Nucleotide sequence of the 

sequence framed in red in (a) which is covering the stretch of putative binding sites for NF-κB family 

members and NFATc1 in intron one of the Nfκbid gene. Depicted in 5’�3’ direction. Highlighted 

in blue: potential NFAT binding site; in yellow and red: potential NFκB binding sites. 

 

To investigate this Nfκbid promoter sequence further, we cloned the whole 

sequence as depicted in Figure 17.b upstream of a firefly luciferase encoding gene 

located in a reporter construct, with which we then transfected HEK293T cells. By 

measuring the activity of this firefly luciferase reporter, we had the tool to test for 

factors that would potentially activate the putative Nfκbid promoter (Figure 18. a, b).                                              
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When we added RelA as a potent NF-κB activator alone in a low amount (of plasmid 

DNA) we were able to induce the promoter up to ~ 7,5 fold compared to an empty 

vector control. However, when we applied the same amount of RelA and additionally 

treated the HEK293T cells 3 h before harvesting with Ionomycin we could double 

the promoter activity up to ~ 15,5 fold. The same was true of higher amounts of RelA 

leading to a luciferase activity that could be more than doubled by incubating the 

cells with Ionomycin (Figure 18.a). To figure out whether the promoter activity could 

be reduced by using a DN-IκBa approach, we also co-transfected steady amounts 

of RelA and two different amounts of DN-IκBa. This NF-κB inhibitory approach 

reduced promoter activity in a dose dependent manner down to the empty control 

background level. So far, it remains an open question why the lentiviral approach 

(Figure 13.a) in which DN-IκBa was expressed solely did not lead to a reduction of 

IκBNS levels. A possible reason for this could be that multiple pathways were 

switched on after the inhibition of classical NF-κB signaling by DN-IκBa that either 

substitute NF-κB activity or exert a redundant function like the related alternative 

NF-κB signaling on the IκBNS promoter. Conceivable as well is that the lentivirally 

transduced DN-IκBa inhibited NF-κB not completely resulting in low levels of NF-κB 

sufficient to induce IκBNS. 

In the next step we wanted to explore the direct effect of an NFAT-transcription 

family member (NFATc1) on Nfκbid promoter activity (Figure 18.b). We co-

transfected again RelA that led to a clear dose dependent induction of the Nfκbid 

promoter activity. Since the treatment of B-lymphocytes with Ionomycin only, did not 

induce any IκBNS expression (Figure 16.) we also co-transfected NFATc1.  

As anticipated, NFATc1 did not activate the IκBNS promoter. Moreover, we then 

also co-transfected NFATc1 additionally to RelA. This combination however, led to 

an even better induction of the luciferase activity compared to RelA alone. Taken 

together, the collected data suggest that the induction and expression of IκBNS is 

indeed driven by NF-κB and NFAT, acting in a synergetic manner. NF-κB and NFAT 

alone however, are only capable of inducing very low levels of IκBNS (NF-κB) or 

even unable to induce IκBNS (NFAT). 
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Figure 18. Luciferase reporter activity assay upon cloning of the putative Nfκbid 

promoter into a luciferase reporter construct. The promoter was then tested for being 

activated by different putative factors. (a, b) HEK293T were transfected with the Nfκbid 

reporter construct together with a renilla luciferase reporter, RelA, DN-IκBa, and NFATc1 at 

different amounts (low/high) of plasmid DNA. Ionomycin was added 3 h before harvesting 

HEK293T cells. Values were normalized against an empty vector control. RLU means Relative 

Luciferase Units. Bars represent means ± standard deviation. 

 

Since our so far collected data suggest an important role for NF-κB in regulating the 

expression of IκBNS in B-lymphocytes, we next asked ourselves whether an 

interference in NF-κB upstream signaling would have an effect on IκBNS induction 

and expression. To this end, we pre-incubated BJAB cells with either LVSR or 

sotrastaurin just before addition of P/I and compared IκBNS levels to a solvent 

treated control at the indicated time points (Figure 19.a). LVSR acts as a peptide-

based inhibitor of MALT1 paracaspase activity, which is activated upon B- and T-



  Results 
 

 

98 

 

cell stimulation (Hachmann et al., 2015; Rebeaud et al., 2008; Coornaert et al., 

2008). As part of the CBM complex, MALT1 is a pivotal upstream-modulator of  

NF-κB activity (Lucas et al., 2001; Thome et al., 2010). Sotrastaurin (AEB071, 

Novartis) on the other hand is a pan-PKC inhibitor, thus blocking the activation of 

PKCβ (B-cell specific isoform) in the context of B-cell stimulation by e.g. proximal 

antigen-receptor engagement or artificially by PMA. PKCβ phosphorylates 

CARMA1, which is part of the CBM complex, essential for NF-κB activity (Shinohara 

et al., 2005; Sommer et al., 2005). Treatment of BJAB with LVSR or Sotrastaurin 

under concomitant P/I stimulation completely abolished IκBNS induction (Figure 

19.a). To further verify the important role of NFκB signaling on IκBNS expression 

not only under stimulating conditions, we next conducted an siRNA mediated 

approach to knock-down MALT-1 levels in HBL-1 B-lymphocytes cells that 

constitutively express high levels of IκBNS (Figure 19.b). As a consequence of this, 

IκBNS protein levels were drastically reduced but not completely vanished 

compared to scramble control. This is most likely based on to the incomplete siRNA-

block of detectable MALT1 expression, other unknown factors leading to NFκB 

signaling in HBL-1 and also the fact that IκBNS expression is according to our data 

a result of the interplay of NFκB and NFAT (Figure 12.-18.). Collectively these 

results fortify an important role for NFκB signaling in IκBNS induction upon P/I 

mediated stimulation and under high level steady state expression conditions. 

 

Figure 19. Determining IκBNS expression upon (a) direct pharmacological inhibition 

or (b) siRNA mediated knock-down of NFκB signaling up-stream elements MALT1 

and PKC under P/I mediated B-cell stimulation in (a) BJAB or (b) under high level 

steady-state conditions in HBL-1 cells (b) by western blotting. (a) BJAB cells were pre-

treated for 20 min with either DMSO as solvent control, the MALT1 peptide inhibitor LVSR (1 µM) 
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or the pan-PKC inhibitor Sotrastaurin (10 µM) and were subsequently stimulated by P/I for the 

indicated time points. Thereafter, cell lysates were analysed for IκBNS levels. A not specific band 

(n.s.) served as loading control. (b) HBL-1 cells expressing IκBNS under steady state conditions 

were electroporated with scramble as a control or siRNA targeting MALT1. Following cell 

lysis 48 h post-electroporation lysates were analysed for IκBNS levels and as a control for efficient 

siRNA mediated knockdown for the presence of MALT1. GAPDH served as a loading control. 

 

To gain further and more detailed insights into the mechanisms of IκBNS regulation 

in B-lymphocytes we next had a closer look at another signaling pathway that could 

be implicated in this context. As IκBNS is a member of the atypical IκB-family and 

from these the murine IκBNS protein sequence is known to share its highest 

similarity with the murine IκBζ (43%) (their human counterparts 26 %) in this 

subgroup of nuclear NF-κB inhibitors (Fiorini et al., 2002), we presumed it to be 

highly likely that IκBζ and IκBNS could also share some aspects in regard to their 

regulation in B-lymphocytes. Nogai et al, 2013 found only very low levels of IκB-ζ 

mRNA expression in multiple myeloma and classical Hodgkin lymphoma compared 

to ABC DLBCL cell lines, even though their survival also depends on the activity of 

the NF-κB signaling network. Therefore, Krappmann comments on this finding that 

NF-κB activation could not be solely responsible for high IκB-ζ levels as observed 

in ABC DLBCL cell lines (Daniel Krappmann, Comment on Nogai et al, page 2242; 

Blood, 2013). It was reported that not only NF-κB is able to induce IκB-ζ but also the 

activation of STAT3 by JAK1 phosphorylation due to a pivotal autocrine feedback 

loop of IL- 6 and IL-10 in ABC DLBCLs (Lam et al., 2008; Okamoto et al., 2010; 

Okuma et al., 2013). This link between IκB-ζ that also positively regulates IL-6/-10 

secretion and STAT3 phosphorylation suggests a positive feed-back loop that is 

supporting the malicious excessive IL-6/-10 production and NF-κB hyperactivity in 

ABC DLBCL. So far however, it was not shown, whether JAK1 inhibition would 

directly influence IκB-ζ (Daniel Krappmann, Comment on Nogai et al, page 2242; 

Blood, 2013). Taking everything into account, we were therefore interested to see if 

there would be an observable effect of JAK1 inhibition on steady state IκBNS 

expression levels in the ABC DLBCL cell line OCI-LY3 (Figure 20.). OCI-LY3 cells 

were incubated with the JAK1 inhibitor up to 6h. At all times indicated we could not 

observe any changes in IκBNS levels compared to solvent control or amongst 

treatment time points. The JAK1 inhibitor worked properly due to the complete 

disappearance of active phosphorylated STAT3 (Figure 20.). Taken together, the 
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expression of IκBNS seems to be independent from the JAK/STAT signaling 

pathway despite its relation to IκB-ζ. 
 

 
 

Figure 20. Revealing potential links between IκBNS expression and the JAK/STAT 

signaling pathway in the ABC cell line OCI-LY3 by western blot analysis. IκBNS 

expression levels were assessed at the indicated time points upon treatment with 5 µM of JAK1 

inhibitor. Blotting for p-Stat3 levels served as proof of functionality of the JAK1 inhibitor. Loading 

of equal amounts of proteins was controlled by blotting for GAPDH. 

 

Another yet in the literature undescribed aspect of IκBNS regulation in  

B-lymphocytes is concerning the half-life of the protein and whether there is a 

difference between IκBNS p35 and IκBNS p70. To investigate this, we took two ABC 

DLBCL cell lines that express high levels of IκBNS under state conditions. HBL-1 

and OCI-LY3 cells were incubated for the indicated times in the presence of the 

antibiotic cycloheximide, an inhibitor of protein translation from Streptomyces 

griseus. IκBNS levels did not alter still within the sample with the longest incubation 

of cycloheximide for 6h in both cell lines. Thereby, we could not observe any 

difference between IκBNS p35 and IκBNS p70. For controlling the proper function 

of cycloheximide we were blotting against IκBα, which is known to have a rather 

short half-life (Fagerlund et al., 2015). IκBα clearly diminished over time in OCI-LY3 

cells, and was almost completely vanished at 6 h of cycloheximide treatment. 

Surprisingly, in HBL-1 cells however, IκBα levels just began to decline at 6h of 

applying cycloheximide. Thus, IκBα seems to have a longer half-life in HBL-1 cells 

compared to OCI-LY3 cells. In summary, it can be stated that IκBNS has a rather 

long half-life of more than 6h in the ABC DLBCL cell lines HBL-1 and OCI-LY3. 
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Figure 21. Determining the half-life of IκBNS in HBL-1 and OCI-LY3 cells under 

steady state conditions for the indicated time periods by the treatment with the protein 

synthesis inhibitor cycloheximide. IκBNS levels in lysates of HBL-1 and OCI-LY3 cells upon 

cycloheximide treatment were determined by western blot to estimate half-life of IκBNS and to see 

possible differences between IκBNS p35 and IκBNS p70 in this respect. Functionality of translation 

blockage by cycloheximide was assessed by blotting against IκBα. Tubulin levels were determined 

to check for evenly-loaded amounts of protein.  

 

3.2 Role of IκBNS in ABC DLBCL 

Gene expression profiling of the clinically heterogeneous DLBCL revealed three 

distinct subgroups of DLBCL (Alizadeh et al., 2000). This eventually led to their 

molecular classification into GCB/ABC DLBCL and PMBL. Those subtypes are 

highly different in their prognosis and their response to therapeutic approaches.                     

Moreover, in 2001 Davis et al. unveiled the constitutive activity of the NF-κB pathway 

as a hallmark of ABC DLBCL. Furthermore, they also showed the dependency of 

this subtype on hyperactive NF-κB signaling by using a NF-κB super-repressive 

form of IκBα which was toxic for ABC DLBCL but not for GCB DLBCL. Since IκB-ζ, 

which like IκBNS belongs to the family of the atypical nuclear NF-κB inhibitors, was 

reported to be overexpressed in ABC DLBCL but not in GCB DLBCL (Nogai et al., 

2013) and we previously found IκBNS induction and expression maintenance to be 

regulated by NF-κB, (chapter 3.1) we were interested in whether this expression 

pattern would be also hold true for IκBNS. 

For this purpose, we screened a selection of GCB and ABC DLBCL model cell lines 

for their expression of IκBNS (Figure 22., 23a). Initially, we used a commercially 

available antibody to assess IκBNS protein levels (Figure 11.). In this panel we also 

included several representative mantle cell lymphoma (MCL) lines (Figure 22.).             

We chose this aggressive B-cell cancer type because MCL were shown to have 
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either chronic active BCR-driven classical NF-κB signaling (Jeko-1, Rec-1)  like ABC 

DLBCL or NIK (MAP3K14) depended alternative NF-κB signaling (Granta-519, 

JVM2, Z-138) (Rahal et al., 2014). To estimate the size of IκBNS on a SDS-PAGE 

we also involved two lysates of HEK293T cells in the western blot, an empty control 

and a sample in which we overexpressed a FLAG-tagged IκBNS p35 (Figure 22.). 

Indeed, when we compared the IκBNS expression pattern of GCB and ABC DLBCL 

cell lines, IκBNS was exclusively expressed in ABC DLBCL cell lines, just as IκB-ζ, 

shown in Nogai et al., 2013. The MCL cell lines showed a rather mixed pattern of 

IκBNS expression, most likely depending on whether the classical or alternative NF-

κB signaling pathway was predominantly activated, indicating that IκBNS is mainly 

induced by classical NF-κB signaling. In this experiment (Figure 22.) we also noticed 

a consistently with IκBNS p35 upcoming band running at approximately 70 kDa, 

labelled as IκBNS p70. We presumed it either to be an IκBNS p35 homodimer, 

posttranslational modification of IκBNS p35 or another IκBNS isoform. This issue 

will be further investigated in chapter 4.4. 

 
 

Figure 22. Determining IκBNS expression levels in GCB, ABC DLBCL and MCL by 

western blot analysis. Samples from HEK293T cells, either transfected with an empty vector or 

with a FLAG-IκBNS p35 construct served as a negative and positive control. 

 

As the IκBNS antibody we used so far, displays plenty of unspecific bands (Figure 

22.), we decided to generate an anti-IκBNS antibody ourselves. We used this self-

made antibody to repeat the experiment depicted in Figure 22., comprising mostly 

the same GCB and ABC DLBCL model cell lines (Figure 23.a). This time were not 

only interested to assess IκBNS protein levels but IκBNS mRNA levels, as well 

(Figure 23.b). Using the self-made antibody confirmed IκBNS to be solely expressed 
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in ABC DLBCL compared to GCB DLBCL cell lines. An empty and a FLAG-tagged 

IκBNS overexpressing HEK293T sample served again as specificity controls to 

estimate at which size IκBNS p35 has on a SDS-PAGE. Also detected by the 

antibody was the IκBNS p70 band, which only appears when IκBNS p35 is detected, 

as well. As B-cell activation markers, we stained against CYLD and BCL-10.  

BCL-10 is like CYLD a substrate of MALT1 and part of the CBM complex, thus 

important for an appropriate NF-κB response upon B- and T-cell receptor 

engagement (Rebeaud et al., 2008; Ruland et al., 2003). As expected, only DLBCL 

of the ABC subtype exhibit MALT1 substrate cleavage of CYLD and BCL-10. The 

assessment of IκBNS mRNA levels reflects the protein levels (Figure 23.a, b). 

Relative to GCB DLBCL cell lines ABC DLBCL cell lines express abundant amounts 

of IκBNS mRNA (Figure 23.b), indicating that increased mRNA levels are translated 

into protein expression. 

 

 
 

Figure 23. Assessment of IκBNS mRNA and protein levels in GCB and ABC DLBCL 

model cell lines. (a) IκBNS mRNA levels were determined by qPCR and normalized against the 

IκBNS expression level of the GCB DLBCL cell line BJAB. Bars represent means ± standard 

deviation. (b) IκBNS protein levels were detected by immunoblot using a self-made antibody. 

Lysates from HEK293T cells that were either transfected with an empty vector or with a FLAG-

IκBNS p35 expression construct served as a negative and positive control. Blotting against CYLD 

and BCL-10 indicates B-cell activation status. GAPDH served as a loading control. 

 

In summary, the atypical nuclear IκB IκBNS is expressed exclusively in the NF-κB 

signaling dependent ABC subtype of DLBCL what is reflected on both, the mRNA 

and protein level. Moreover, also MCL model cell lines that mainly exhibit chronic 

activation of BCR-driven classical NF-κB signaling express IκBNS. Furthermore, we 
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found a second correlating, presumably specific p70 IκBNS band additionally to 

IκBNS p35 that could represent a dimer, a posttranslational modification of IκBNS 

p35 modified or an unknown IκBNS isoform (further investigated in chapter 4.4). 

Taken together, these results underscore the regulation of IκBNS induction and 

expression maintenance by classical NF-κB signaling in the context of oncogenic 

signaling in DLBCL and MCL. 

In order to shed some more light on IκBNS regulation within the framework of 

frequent mutations leading to oncogenic NF-κB pathway signaling in ABC DLBCLs, 

we next made us again of the already established NFκBID promoter sequence 

cloned into a luciferase reporter construct (Figure 17.). A number of different somatic 

mutations in positive and negative NF-κB regulator proteins have been found to 

contribute to chronically active NF-κB signaling in ABC DLBCLs including e.g. 

MYD88 and CARMA1/CARD11 (Lenz et al., 2008; Kato et al., 2009; Davis et al., 

2010; Ngo et al., 2011;). Thus, we co-transfected several well-known proteins 

afflicted in ABC DLBCL in their wild type and representative mutant variants together 

with our luciferase reporter construct in HEK293T cells (Figure 24.a). NFκBID 

promoter activity was clearly induced by RelA and blocked upon adding DN-IκBa, 

reproducing results gained earlier (Figure 18.a, b). However, when we co-

transfected NF-κB signaling regulatory proteins affected in ABC DLBCL in their wild-

type version, mutant version or combinations of different mutants like they also 

occur in ABC DLBCL, luciferase activity was only slightly increased (Figure 24.a). 

This result suggests, that NF-κB upstream elements alone (wild type or mutant), that 

positively regulate the classical NF-κB pathway in ABC DLBCL, have only a minor 

impact on IκBNS induction. This is most likely due to the missing synergistic IκBNS 

inducible effect of Ca2+ mediated NFAT signaling in HEK293T cells under steady 

state conditions. 

So far we were just examining if wild-type or mutant upstream elements of the 

classical NF-κB pathway like CBM complex members or MYD88 would induce the 

NFκBID promoter luciferase reporter. But also a BIRC3 missense mutation was 

recently described for the first time in DLBCL (Hatem et al., 2016). For these 

reasons, we were next investigating if also elements that are implicated in 

alternative NF-κB signaling would be capable of inducing or repressing the NFκBID 

promoter. For this purpose, we used a wild-type and a mutant variant of BIRC3 

which is a key regulatory component of the non-canonical NF-κB pathway.  
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BIRC3 interacts with BIRC2 and TRAF2/3 in regulatory complex to down regulate 

NIK by constitutive ubiquitin-dependent degradation. NIK supports the transition of 

the cytosolic p100 precursor into the active p52, thereby activating alternative  

NF-κB signaling (Zarnegar et al., 2008; Zarnegar BJ et al.,2008; Vallabhapurapu et 

al., 2008.). Rahal et al. showed in 2014 that roughly 10% of MCL patient samples 

they collected, carry mutations in BIRC3 leading to genetically deregulated 

alternative NF-κB signaling. They revealed amongst others, two frequent mutants 

namely BIRC3S441* and BIRC3C560S. They found those mutants to be less efficient in 

destabilizing NIK and to be affected to prevent p52 maturation. Moreover, they also 

showed BIRC3S441* and BIRC3C560S expression in a GCB DLBCL cell line to elevate 

p52 levels, thereby increasing alternative NF-κB signaling. Obviously, BIRC3S441* 

and BIRC3C560S lost their ability to suppress alternative NF-κB signaling. For this 

reason we were interested to examine what effect wild-type and the BIRC3S441* 

mutant would have on NFκBID promoter activity. When we co-transfected wild-type 

BIRC3, NFκBID promoter activity negligibly increased for yet unknown reasons. 

Albeit, when we co-transfected the non-sense mutation BIRC3S441* we observed a 

weak but dose-dependent increase in luciferase activity (Figure 24.b). That implies 

that IκBNS can also be induced by the alternative NF-κB pathway. Together, the 

results obtained from the experiments depicted in Figure 24.a, b indicate that IκBNS 

expression can be induced by both classical and alternative NF-κB signaling. In 

particular, the IκBNS promoter was also inducible, although weakly, by upstream 

wild-type but also mutant elements of classical NF-κB signaling regulation 

commonly found in the context of ABC DLBCL somatic mutation patterns. Also a 

typical negative regulator of the non-canonical NF-κB pathway that lost its 

suppressive function by a missense mutation, found in MCL and recently reported 

to be also found mutated in DLBCL, slightly induced IκBNS promoter activity. 
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Figure 24. Examining the inducible abilities of classical and alternative NF-κB wild-

type and in the context of ABC DLBCL pathogenesis commonly mutated NF-κB 

upstream elements on NFκBID promoter activity by luciferase assay. (a) Co-transfection 

of wild type and mutant variants commonly found somatically altered in the context of ABC DLBCL 

mutagenesis. RelA co-transfection and the inhibition of its induced NFκBID promoter activity by 

DN-IκBα served as a specificity control of induction (b) Co-transfection of the wild-type BIRC3 

negative regulator of alternative NF-κB signaling and the loss of function variant missense mutated 

BIRC3S441*. (a, b) Triangles indicate increasing amounts of plasmid DNA co-transfected to a 

constant amount of NFκBID promoter luciferase construct. RLU means Relative Luciferase Units 

Bars represent means ± standard deviation. 
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To strengthen the previous findings that were obtained based on the analysis of 

NFκBID promoter activity we subsequently wanted to figure out what would be the 

result of CARMA1L244P and CARMA1G116S overexpression in a GCB DLBCL (without 

constitutive NF-kB signaling) on the actual IκBNS protein expression (Figure 25.).                                    

Thus, we electroporated BJAB cells with either an empty vector as control, wild-type 

CARMA1 or the missense base substitution carrying mutant proteins CARMA1L244P 

and CARMA1G116S. These CARMA1 variants are both mutated in their coiled-coil 

domains and were discovered in the ABC DLBCL cell line OCI-LY3 (harbours a 

CARMA1L244P mutation) and in an ABC DLBCL biopsy (CARMA1G116S) (Lenz et al., 

2008; Snow et al., 2012). Both mutants were shown to generate high levels of 

constitutive active NF-κB signaling without any extrinsic stimuli and introduction in 

BJAB resulted in the induction of NF-κB target genes (Lenz et al., 2008). Since our 

previous results suggest that IκBNS is also a NF-κB target gene, we assumed 

IκBNS to be induced also on the protein level upon introduction of CARMA1L244P and 

CARMA1G116S in BJAB cells. Indeed, the overexpression of CARMA1L244P or 

CARMA1G116S in BJAB led to a clear induction of IκBNS p35/p70 proteins in a 

comparable degree (Figure 25.). Moreover, also BJAB cells expressing wild-type 

CARMA1 showed a weak induction of IκBNS p35/p70 but considerably less 

pronounced compared to the mutant CARMA1 variants (Figure 25.) most likely due 

to its potent NF-kB activating properties. 

Taken together, the weak induction of IκBNS p35/p70 protein levels upon 

introduction of ABC DLBCL derived CARMA1 mutants into the GCB DLBCL cell line 

BJAB is in line with the weak induction of the IκBNS promoter reporter upon co-

transfection with common mutant ABC DLBCL NF-κB regulators (Figure 24.a). 

Additionally, this result validates IκBNS as NF-κB target gene and constitutive NF-

κB signaling in ABC DLBCL to drive IκBNS expression. The only weak induction 

also indicates that NF-κB is capable of inducing IκBNS expression on its own but 

for full induction and high protein levels as seen in ABC DLBCL, it might require the 

synergistic signaling of NF-κB together with NFAT. 
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Figure 25. CARMA1 mutants induce the expression of IκBNS in the GCB DLBCL cell 

line BJAB as revealed by Western Blot analysis. Cells were either electroporated with an 

empty vector as control, wild-type CARMA1 or the missense base substitution carrying mutant 

proteins CARMA1L244P or CARMA1G116S. 

 

To further elucidate the role of IκBNS and how important its steady state expression 

is for ABC DLBCL we now tried a shRNA mediated knock down approach targeting 

IκBNS. Therefore, we initially designed and screened for functional shRNA 

sequences (Figure 26.). For this, we lentivirally transduced BJAB cells, a cell line 

model of the GCB DLBCL subtype with constructs expressing the distinct shRNAs 

and assessed the suppressive abilities of the different shRNAs on IκBNS protein 

levels upon P/I mediated induction of IκBNS. Out of 11 different possible shRNA 

sequences we identified two suitable shRNA sequences (#1 and #8) that were 

sufficiently able to decrease IκBNS expression levels after 4 h of P/I stimulation 

compared to controls (Figure 26.). 
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Figure 26. Screening for functional shRNA sequences to knock down IκBNS levels.                                  

BJAB cells were lentivirally transduced with shRNA sequences (#1 - #11) targeting IκBNS mRNA. 

Upon selection of shRNA expressing cells by puromycin cells were stimulated with P/I for 4 h to 

induce IκBNS expression. Suitable shRNA sequences should markedly diminish induced IκBNS 

protein levels induced by 4 h of P/I stimulation compared to stimulated controls. Two shRNAs #1 

and #8 were identified to sufficiently decrease IκBNS on the protein level. Weak and strong 

exposures are shown to evaluate down regulations of IκBNS p35 and p70 due to differences in 

expression levels. Tubulin served as a loading control. 

 

With IκBNS shRNA #1 and #8 we now had the appropriate tool to test the effect of 

IκBNS knock down on DLBCL. To this end, we lentivirally transduced DLBCL of the 

ABC and GCB subtype with the identified functional shRNAs (#1 and #8) targeting 

IκBNS. shRNA expression was coupled to the expression of GFP by an IRES-

element, so that GFP served as a read-out for the survival rate of shRNA #1 and #8 

expressing cells over the course of time.  

IκBNS knock down by the two independent shRNAs #1 and #8 clearly induced 

toxicity in the group of IκBNS positive ABC DLBCL cell lines (HBL-1, TMD8, U2932,                    

SU-DHL-2) after some days in case of shRNA #1 and after roughly one week for 

shRNA #8 after transduction (Figure 27.). This obvious time difference could be 

explained by the different efficiencies of both shRNAs to knock down IκBNS (Figure 

26.). For instance the growth rate of TMD8 declined over the course of time down 

to 30% 17 days after transduction transduced with shRNA #1 and to less than 20% 

23 days after transduction with shRNA #8. In contrast, the shRNAs did not affect the 

growth of the GCB DLBCL group (HT, SU-DHL-4, SU-DHL-6, OCI-LY1, OCI-LY7) 
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which exhibited little or no IκBNS mRNA levels and displayed no detectable IκBNS 

on the protein level, as well (Figure 22.; 23.a, b). This result suggests a selectively 

toxic effect of the IκBNS knock down to ABC DLBCL and furthermore an addiction 

of ABC DLBCL to the expression of IκBNS, indicating an essential role for growth. 

 

 

Figure 27. Investigating the effect on survival of IκBNS knock down mediated by two 

independent shRNAs. Cells of the GCB and ABC subgroup of DLBCL were lentivirally 

transduced by either shRNA #1 (upper panel) or # panel8 (lower) mediating the knockdown of 

IκBNS. shRNA expression was coupled to the expression of GFP by an IRES element. GFP served 

as a read out for the rate of living transduced cells in % of day 0 fraction over the course of time 
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measured by flow cytometry. Survival rates were assessed for 17 days after transduction for shRNA 

#1 and for 23 days after transduction for shRNA #8  

 

As demonstrated, IκBNS knock down is exclusively toxic to the ABC subgroup of 

DLBCL (Figure 27.). We now addressed the question whether what would be the 

outcome of the vice-versa experiment, meaning the overexpression of IκBNS p35 

in GCB and ABC DLBCL cell lines for a longer period of time. Thus, we lentivirally 

transduced a GCB cell line (BJAB) and two ABC cell lines (HBL-1 and U2932) with 

a GFP-tagged IκBNS p35. GFP served as the read out for the rate of living 

transduced cells over the next 14 days of measurement. As depicted in Figure 28., 

the overexpression of IκBNS p35 did not affect the growth of GCB and ABC DLBCL 

cell lines over a time frame of two weeks. Taken together, the overexpression of 

IκBNS p35 has neither a noticeable positive effect on the survival of IκBNS negative 

cells (BJAB) nor a negative effect on IκBNS positive ABC DLBCL cell lines (HBL-

1,U2932) and vice versa, 14 days after IκBNS p35 transduction. This suggests, 

IκBNS p35 overexpression alone does not confer a survival advantage over non-

transduced GFP- cells. Furthermore, the high steady levels of IκBNS in ABC DLBCL 

does not seem to be vulnerable to a further increase in IκBNS p35 protein 

expression since no toxic effects on survival were observed.  

In summary, IκBNS knockdown is selectively toxic to ABC DLBCL cell lines whereas 

the overexpression of IκBNS p35 does not affect the survival of both the GCB and 

the ABC subtype of DLBCL neither in a positive nor in negative manner in the time 

span of several weeks.  

 

Figure 28. Impact of IκBNS p35 overexpression on the survival of GCB and ABC 

DLBCL cell lines. The IκBNS negative cell line BJAB (GCB DLBCL) and IκBNS positive cell 
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lines HBL-1, U2932 (both ABC DLBCL) were lentivirally transfected with a GFP-tagged IκBNS 

p35 expression construct. GFP expression served as a read out for the rate of living IκBNS p35 

transduced cells in % of day 0 fraction measured by flow cytometry over a period of 14 days. 

 

To substantiate the clinical importance of this study and to reaffirm the finding that 

IκBNS is expressed exclusively in the ABC but not in the GCB subtype of DLBCL 

also in a clinical context, we analysed patient samples from both DLBCL subtypes 

for the relative mRNA expression of IκBNS. Indeed, also clinical samples derived 

from GCB and ABC DLBCL patients show the same IκBNS mRNA expression 

pattern as the investigated DLBCL model cell lines (Figure 29.). Also in these patient 

derived samples IκBNS mRNA is significantly higher expressed in ABC DLBCL 

samples compared to GCB DLBCL samples confirming the results shown in Figure 

23.b. The high background of IκBNS mRNA levels in both DLBCL subtypes is most 

likely due to infiltrating activated T-cells expressing high levels of IκBNS mRNA.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Comparison of relative NFκBID mRNA expression levels determined by 

qPCR in patient samples derived from DLBCL of the GCB and ABC subtype.                            

NFκBID mRNA expression is depicted relative to the housekeeping gene ACTB coding for Actin 

Beta. Analysis was performed on 19 patient samples (n=19) for each DLBCL subtype. Each dot 

represents one patient sample. Shown is the standard error of the mean. The difference between the 

two groups was statistically significant with **p < 0, 05 (unpaired, two-tailed t-test). The experiment 

was performed in collaboration with Dr. Irina Bonzheim. 
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3.3 Role of calcineurin in DLBCL 

As demonstrated earlier in this study, the induction of IκBNS expression upon 

stimulation of GCB DLBCL by P/I and the maintenance of IκBNS expression under 

steady state conditions in ABC DLBCL needs both, classical NF-κB signaling and 

NFAT signaling, together acting in a synergistic manner. Thus, we have also shown 

that it is possible to decrease IκBNS expression by applying the phosphatase 

calcineurin inhibitors Cyclosporin A (CsA) and FK506. This effect, we assume is 

most likely the consequence of NFAT signaling blockage by CsA and FK506. CsA 

and FK506 mediated calcineurin inhibition, prevents the cytosolic NFAT to be 

dephosphorylated. Thus, also its consecutive translocation in the nucleus is blocked 

where it would otherwise, cooperatively with other partners such as NF-κB direct 

transcriptional control over a multitude of target genes including IκBNS (Figure 

15.a,b; 16. a,b; 17.a,b) (Fu et al. 2006; Pham et al. 2005; Steinbach et al., 2007; 

Gachet and Ghysdael, 2009). Due to this dependency of IκBNS expression to active 

NFAT signaling and because IκBNS was highly expressed in all investigated ABC 

DLBCL, we were interested to figure out the activation status of the calcium 

signaling responsive NFAT member NFATc1 in the DLBCL cell lines (Figure 30.). 

Therefore, we treated cells from the GCB subtype (BJAB, HT, SU-DHL-4) and the 

ABC subtype (HBL-1, TMD8, OCI-LY10, OCI-LY3, SU-DHL-2, U2932, RIVA) of 

DLBCL for 2 h with CsA and compared afterwards lysates from CsA treated cells 

with untreated cells in regard to their NFATc1 protein expression. Undoubtedly, all 

tested cell lines except for SU-DHL-4 exhibit active dephosphorylated NFATc1 

species. Those hyperphosphorylated active NFATc1 isoforms could be identified by 

an obvious upward shift of NFATc1 bands to higher molecular weights on the blot, 

upon CsA treatment (Figure 30.). Notable were also the highly different NFATc1 

expression levels amongst the DLBCL cell lines (Figure 30.). 
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Figure 30. Assessment of NFATc1 phosphorylation and expression levels in DLBCL of 

the GCB and ABC subtype by western blot. Each cell line was either treated with solvent 

control (Ctrl) or 2,5 µM CsA for 2 h prior to lysis. Different NFATc1 blot exposures (long exp., mid 

exp., short exp.) are shown due to the different NFATc1 expression levels of the investigated 

DLBCL. Blotting for Tubulin served as loading control amongst untreated and CsA treated samples. 

 

As shown in Figure 30., it turned out that NFAT signaling was active in all GCB                     

and all ABC DLBCL cell lines tested except SU-DHL-4. In Figure 27., we have 

proven that the direct knock down of IκBNS by two independent shRNAs was toxic 

to all ABC DLBCL we tested but not to GCB DLBCL cell lines. We now asked 

ourselves what would be the impact on ABC and GCB DLBCL growth of indirect 

IκBNS protein expression knock down as shown in Figure 15.a,b by CsA and FK506 

mediated inhibition of NFAT signaling. For this, we treated GCB (SU-DHL-4, BJAB, 

HT) and ABC (HBL-1, TMD8, OCI-LY3, U2932, RIVA, SU-DHL-2, OCI-LY10) 

DLBCL with either two different concentrations of CsA or FK506 (Figure 31.) and 

measured their growth by MTS assay on day six of calcineurin inhibitor treatment. 

Inhibitors were once reapplied on day two. In detail, the GCB DLBCL group (SU-

DHL4, BJAB, HT) was completely unaffected by CsA or FK506 inhibitor treatment. 

However, some members of the ABC DLBCL group namely HBL-1 and TMD8 were 

severely impaired in their proliferation capabilities by the application of both 

inhibitors and concentrations. For instance, at the higher CsA or FK506 inhibitor 

concentration those cell lines show a reduction of growth up to 80 % or 60% 
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compared to respective solvent controls. Furthermore, U2932, RIVA, SU-DHL-2 and 

OCI-LY10 represent a group of ABC DLBCL that were clearly impeded in their 

proliferation by both inhibitors concentrations of CsA and FK506 but were less 

vulnerable than HBL-1 and TMD8. On the contrary, OCI-LY3 was the only ABC 

DLBCL cell line that entirely tolerated CsA and FK506 treatment. 

Figure 31. Indicated GCB and ABC DLBCL cell lines show different growth 

behaviours upon treatment with calcineurin inhibitors CsA and FK506. Cells were 

treated with either solvent as control (a, b) or two different concentrations of (a) CsA (2, 5 µM or 5 

µM) and (b) FK506 (5 µM or 10 µM), respectively. Inhibitors were applied on day 0 and 2 of the 

experiment. Cell proliferation was determined on day 6 of inhibitor treatment by MTS assay. Bars 

represent means from 3 independent replicates ± standard deviation. 

 

In order to exclude unspecific toxic side effects mediated by CsA and FK506                     

at µM concentrations and to validate our findings concluded from the results 

depicted in Figure 31. we selected four ABC DLBCL cell lines to test at lower CsA 

and FK506 inhibitor concentrations (Figure 32.). To this end, we decided to 

comprise one or more ABC DLBCL cell line representative of each distinct inhibitor 

susceptibility group. The most sensitive HBL-1 and TMD8, the intermediate 
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sensitive SU-DHL-2 and the resistant OCI-LY3 ABC DLBCL cell line. Treating the 

selected ABC DLBCL with considerably lower concentrations of CsA (250 nM and 

500 nM) or FK506 (500 nM and 1000 nM) reproduced the results gained from higher 

concentrations (Figure. 31) albeit less pronounced (Figure 32.). Cell growth was 

again measured by MTS assay on day 6 of treatment. Cells were retreated with 

inhibitors on day 2, as well. HBL-1 and TMD8 were again the cell lines the most 

susceptible to inhibitor treatment whereas OCI-LY3 was also here not affected by 

inhibitor treatment. SU-DHL-2 however, that previously showed intermediate 

sensitivity to calcineurin inhibition seemed to be unimpressed by lower CsA and 

FK506 concentrations (Figure 32.). The less pronounced impairing effects on growth 

of HBL-1 and TMD8 cells and the unsuceptibility of SU-DHL-2 to CsA and FK 

treatment at lower concentrations can be attributed most likely to the short time span 

of treatment.  
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Figure 32. GCB and ABC DLBCL cell lines show different growth behaviours upon 

treatment with calcineurin inhibitors CsA and FK506 also at lower compound 

concentrations. Indicated cell lines were treated with either solvent as control (a, b) or two 

different concentrations of (a) CsA (250 nM or 500 nM) and (b) FK506 (500 nM or 1000 nM), 

respectively. Inhibitors were applied on day 0 and 2 of the experiment. Cell proliferation was 

determined on day 6 of inhibitor treatment by MTS assay. Bars represent means from 3 independent 

replicates ± standard deviation. 

 

In summary, these results suggest calcineurin inhibition to be exclusively toxic to 

some ABC DLBCL cell lines at both, high and low inhibitor concentrations indicating 

calcineurin activity to be essential for the growth of certain ABC DLBCL cell lines. 

Hereby, we can differentiate between highly sensitive, intermediate sensitive and 

resistant ABC DLBCL cell lines in regard to calcineurin inhibition by CsA and FK506. 

In contrast, all tested cell lines of the GCB subtype of DLBCL were not prone to 

calcineurin inhibition, at all. Moreover, due to the usage of two independent 

calcineurin inhibitors these impairing effects on cell growth are highly likely to be 

specific. Besides this, the observed effects on cell growth could be independent from 

NFAT signaling that is blocked upon calcineurin inhibition, since NFAT is active in 

all investigated ABC DLBCLs. Taken together, taking into consideration all previous 

mentioned points the different outcomes of the ABC DLBCL growth upon calcineurin 

inhibition could be the result of a yet unknown calcineurin substrate that positively 

regulates pivotal chronic active BCR-driven classical NF-κB signaling of ABC 

DLBCL in its dephosphorylated state but loses this ability when calcineurin 

dependent dephosphorylation is blocked. Furthermore, the given circumstance of 

CsA/FK506 less or insensitive ABC DLBCL cell lines could be dependent from the 

distinct mutation patterns harboured by the ABC DLBCL cell lines, since the highly 

sensitive cell lines HBL-1 and TMD8 share mutations in the same protein CD79B  

quite upstream in BCR signaling (Davis et al., 2010). The toxic effect of calcineurin 

inhibition could be overridden by different common NF-κB positive regulating 

mutations that can be found in CsA and FK506 intermediate and insensitive ABC 

DLBCL downstream of this putative substrate. Such mutations in intermediate or 

non-sensitive cell lines include mutant CARMA1 and mutant/biallelic truncating 

mutation of A20 in SU-DHL-2 (Naylor et al., 2011, Ma et al., 2015); TAK1 mutation 

and A20 hemizygous deletion in U2932 (Fontan et al., 2012; Ma et al., 2015); mutant 

CARMAL244P  and hemizygous A20 deletion in OCI-LY3 (Lenz et al., 2008; Naylor et 

al., 2011; Ma et al., 2015), possibly explaining the growth behaviour of those cell 
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lines. Upon obtaining the results shown in Figure 31. and 32. the question emerged 

what the general reason could be that leads to impaired growth of ABC DLBCL cell 

lines as result of CsA and FK506 treatment. As already described earlier, ABC 

DLBCL are addicted to classical NF-κB signaling. But moreover, this chronically 

active NF-κB signaling also induces the induction and subsequent secretion of the 

B-cell pro-proliferative cytokines IL-6 and IL-10 (Kishimoto, 2005; Moore et al., 

2001). An autocrine/paracrine feedback loop of those cytokines then activates IL-6 

and IL-10 receptor associated JAK kinases which subsequently phosphorylate 

STAT3. This phosphorylated STAT3 (p-STAT3) transcription factor accumulates in 

the nucleus and initiates target gene transcription, such as STAT3 itself, establishing 

a positive auto regulatory loop (Narimatsu et al., 2001). Therefore, ABC DLBCL that 

exhibit high NF-κB activity show also high IL-6 and IL-10 secretion in turn leading to 

elevated STAT3 and p-STAT3 levels (Lam et al., 2008). In addition to that, IL-6 and 

IL-10 secreting ABC DLBCL cell lines were killed by the inhibition of STAT3 

signaling alone and combining JAK-1 and NF-κB inhibition actually led to synergistic 

toxicity, indicating ABC DLBCL to be addicted not only to NF-κB signaling alone but 

also to the mentioned autocrine/paracrine cytokine signalling loop consisting of IL-

6 and IL-10 (Lam et al., 2008). For these reasons, we were interested to see whether 

p-STAT3 levels and therefore also the associated pivotal IL-6 and IL-10 secretion 

of ABC DLBCL would be affected in ABC DLBCL exposed to calcineurin inhibitors. 

To test this, we treated a GCB DLBCL cell line (BJAB) and four ABC DLBCL (HBL-

1, TMD8, SU-DHL-2, RIVA) cell lines that were sensitive to calcineurin inhibition as 

shown in Figure 31.a,b; 32.a,b with 2,5 µM of CsA or FK506 for one or two days, 

respectively. Calcineurin inhibitors worked properly in all cell lines, indicated by the 

shift of NFATc1 bands (Figure 33.a-e). Indeed, when we treated the cells with either 

CsA or FK506 we observed clearly decreased p-STAT3 levels in all ABC DLBCL 

cell lines (Figure 33.b-e) just after one day of treatment, whereas STAT3 levels 

remained the same. Noteworthy, the CsA and FK506 highly sensitive cell lines HBL-

1 and TMD8 and the intermediate sensitive cell line RIVA showed the most 

pronounced reduction in p-STAT3 when treated with the inhibitors. SU-DHL-2 cells 

that were shown to be intermediate sensitive for higher concentrations (Figure 31.a, 

b) and insensitive for lower concentrations of calcineurin inhibitors accordingly 

showed only a small decrease of p-STAT3 levels for CsA treatment and little, if any 

reduced p-STAT3 levels when treated with FK506 even after two days of treatment. 
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In comparison, the calcineurin inhibitor insensitive GCB DLBCL cell line BJAB was 

if, at most, only marginally affected in p-STAT3 levels. Also STAT3 levels remained 

the same upon treatment (Figure 33.a). We also included two well-known NF-κB 

targets, the antiapoptotic BCL-XL (Chen et al, 2000; Lee et al, 1999) and the  

NF-κB negative regulator A20 (Krikos et al, 1992) in our experiment to check 

whether NF-κB signaling in DLBCL would be affected. This was seemingly not the 

case for all DLBCL cell lines tested (Figure 33.a-e).  

 
 

Figure 33. Assessing the impact of calcineurin inhibition of CsA and FK506 treatment 

on signaling in GCB and ABC DLBCL cell lines (a- e). Protein expression levels in GCB 

(BJAB) and ABC DLBCL (HBL-1, TMD8, SU-DHL-2, RIVA) cell lines was determined by western 

blot using the indicated antibodies. Cells were either treated with solvent control or calcineurin 

inhibitors CsA (2,5 µM) / FK506 (5 µM) for one or two days. Blotting against NFATc1 served as 

functionality control for CsA and FK506. In figure panels (a, b, c, e) blotting for tubulin served as a 

loading control, whereas in (d) a non-specific band indicates equal loading. 

 

In turn to verify that the sensitivity of ABC DLBCL towards calcineurin inhibitors  

(Figure 31.a, b; 32.a, b) correlates with the extend of p-STAT3 level reduction upon 

CsA and FK506 application, we treated the highly sensitive ABC DLBCL cell line  
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HBL-1 (Figure 34.a, c) and the fully insensitive ABC DLBCL cell line OCI-LY3 with 

dilution series of CsA for 2 days and compared consequent p-STAT3 levels to 

untreated cells. We did this in a dilution series to learn whether the reductive effect 

on p-STAT3 levels is CsA dose dependent. As presumed, with increasing 

concentrations of CsA we observed reciprocally decreasing levels of p-STAT3 

(Figure 34.a, b), indicating a CsA dose dependent effect. On the contrary, OCI-LY3 

cells treated with a CsA dilution series did not show any changes in their p-STAT3 

levels at all concentrations applied (Figure 34.b). Again, STAT3 expression 

remained at the same level in HBL-1 and was not altered in OCI-LY3 cells under all 

conditions, as well (Figure 34.a, b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 34. Verifying the decline of p-STAT3 levels in a dose-dependent manner as a 

result of a CsA dilution series treatment by western blotting. (a, b). Lysates were analysed 

by western blotting with anti NFATc1, anti-STAT3, anti p-STAT3, and anti-BCL-10 antibodies. 
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Cells were treated with solvent control or CsA applied at the indicated concentrations. In (a, b) a 

non-specific band served as a loading control. Equal loading in (b) is indicated by BCL-10. 

 

In summary it can be said, therefore, that the different sensitivities of GCB and ABC 

DLBCL in respect of their growth towards the treatment with increasing 

concentrations of calcineurin inhibitors CsA and FK506 correlates with their 

observed reciprocal decrease in STAT3 phosphorylation as a consequence of CsA 

and FK506 application. Mentionable, this effect was dose-dependent at least for the 

investigated CsA treatment. Unphosphorylated STAT3 levels however, stayed the 

same at all times. Since we found lowering p-STAT3 levels upon CsA and FK506 

treatment in only certain ABC DLBCL cell lines e.g. HBL-1 and TMD8  we supposed 

the secreted amounts of IL-6 and IL-10 (that bind their corresponding receptors 

distal from JAK1 mediated STAT3 phosphorylation) of solely those cell lines also to 

be reduced. On the other hand, we did not expect the secretion of IL-6 and IL-10 of 

OCI-LY3 cells to be reduced as result of CsA and FK506 treatment as p-STAT3 

levels were not declined. Hence, we treated calcineurin inhibitor treatment highly 

sensitive ABC DLBCL cell lines HBL-1 and TMD8 and the unresponsive OCI-LY3 

cell line with either a solvent as control or CsA and FK506 in a dilution series for two 

days and subsequently assessed relative IL-6 and IL-10 secretion levels in 

the supernatants.  

In fact, we were able to reveal that secretion of both Interleukins, IL-6 and IL-10 by 

HBL-1 and TMD8 cells were clearly decreased when treating them for two days with 

calcineurin inhibitors (Figure 35.a, b). This was even the case for very low levels of     

40 nM for CsA and 160 nM for FK506, respectively. Those cell line were also shown 

to have markedly lowered p-STAT3 levels when they were exposed to calcineurin 

inhibitors (Figure 33.b, c; 34.a). In contrast, the IL-6 and IL-10 secretion of OCI-LY3 

cells was completely unaffected by calcineurin inhibitors (Figure 35.a, b) what is in 

agree with stable p-STAT3 levels upon CsA/FK506 treatment. Furthermore, already 

low CsA or FK506 concentrations had a strong impairing effect on IL-6 and IL-10 

secretion. Moreover, higher compound doses did not improve the interleukin 

secretion inhibitory effect (Figure 35.a, b). Worth mentioning as well is the fact that  

IL-10 secretion is slightly more hampered compared to IL-6 secretion by usage of 

both calcineurin inhibitors (Figure 35.a, b).  
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Figure 35. Determination of IL-6 and IL-10 levels in the supernatants of ABC DLBCL 

cell lines HBL-1, TMD8 and OCI-LY3 upon two days treatment of CsA and FK506 in 

dilution series. Cells were either treated with DMSO as solvent control, or the calcineurin 

inhibitors CsA and FK506 at the indicated concentrations. After two days of exposure, 

supernatants of cells were collected and subsequently measured for their levels of IL-6 and 

IL-10 by ELISA. Bars represent means from 3 independent replicates ± standard deviation. 

 

To substantiate the finding of decreasing IL-6 and IL-10 secretion of ABC DLBCL 

cell lines that exhibit diminished p-STAT3 levels upon calcineurin inhibitor treatment 

the next experiment was performed including the CsA/FK506 resistant cell line 

SU-DHL-2 (at low concentrations; Figure 32.a,b). Cells were again subjected to CsA 

or FK506 treatment for two days before assessing IL-6 and IL-10 levels in their 

supernatants. As it was expected, IL-6 and IL-10 secretion upon inhibitor treatment 

was tremendously hampered in in samples derived from HBL-1 and TMD8 cells 

whereas the supernatants collected from OCI-LY3 and SU-DHL-2 showed 

unchanged (in case of CsA) or inconsiderably less (in case of FK506) IL-6 and  

IL-10 secretion (Figure 36.a, b). This finding correlates well with both, the 

remarkable decrease of p-STAT3 levels in HBL-1 and TMD8, the unaltered levels 

of p-STAT3 in OCI-LY3 and finally the only slightly decreased p-STAT3 levels in 

SU-DHL-2 when applying CsA or FK506 (Figure 33.b, c, d; Figure 34.a-c). 
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Figure 36. IL-6 and IL-10 secretion assessment of calcineurin inhibitor sensitive and 

insensitive ABC DLBCL cell lines treated with 300 nM CsA. (a, b). Cells were treated 

with DMSO as solvent control or a sole concentration of CsA (300 nM) for two days. 

Subsequently supernatants were taken to measure IL-6 and IL-10 levels by ELISA. Bars 

represent means from 3 independent replicates ± standard deviation. 

 

Taken together, the demonstrated results suggest that the different growth 

outcomes of ABC DLBCL upon treatment with calcineurin inhibitors correlate with 

distinct secretion levels of the pro-proliferative interleukins IL-6 and IL-10, which act 

in a survival promoting autocrine/paracrine feedback loop, the cells are addicted to. 

These varying interleukin secretion properties are reflected by diverging amounts of 

p-STAT3. In summary, this means the higher the sensitivity towards calcineurin 

inhibitors of DLBCL with respect to their growth, the lower are secreted IL-6 / IL-10 

levels as well as p-STAT3 levels. As already stated earlier, NFAT activity is shared 

by all ABC DLBCL tested and moreover all of them express high levels of IκBNS, 

as well. In addition to that, when we considered differences between the ABC 

DLBCL cell lines we concluded that they mainly differ, as previously mentioned, in 

exhibiting distinct mutant patterns. In this regard, we noticed that cell lines that were 

impaired the most by calcineurin inhibitor treatment in their ability to secrete IL-6 

and IL-10, thus also affected severely in respect to proliferation, were mutated in the 

BCR associated signaling protein CD79. Taking this into account, we addressed the 

question what the molecular mechanism could be behind this selective toxicity. A 

recently published paper by Dutta and colleagues gave us an indication for a 

possible explanation. In their study they were investigating primary human CD4+  

T-cells and Jurkat T-cells. From their results they draw the conclusion that 

calcineurin is recruited to the TCR signaling complex, where it positively regulates 

the tyrosine kinase LCK by removing an inhibitory phosphorylation which is normally 

induced by TCR activation. Moreover, when they inhibited calcineurin activity by 
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different approaches such as the pharmacological inhibition by CsA or FK506 or 

siRNA mediated knock down, they observed increased TCR-mediated LCK 

inhibitory phosphorylation, impaired phosphorylation of ZAP-70 and various 

alterations of phosphorylation events in related TCR-proximal pathways. The T-cell 

and B-cell antigen receptor pathways share a multitude of common elements and 

other similarities such as the association of the antigen receptor to invariant ITAM 

bearing accessory proteins, the recruitment of Src-family kinases to the receptor 

complex, the involvement of proteins sharing strong sequence homologies such as 

BLNK and SLP-76 and the eventual activation of proximal signaling pathways 

converging in the activation of NF-κB, NFAT and AP-1 TF-families. These 

homologies are the reason why we thought that calcineurin could be not only 

implicated in TCR-signaling but also in BCR-signaling events by dephosphorylation 

of a yet unknown substrate as already earlier mentioned. This in turn would lead to 

positive regulatory effect on downstream BCR signaling. When we transferred this 

thought in the context of ABC DLBCL signaling it was justified to hypothesise that 

only CD79 mutated ABC DLBCL cells were vulnerable to CsA/FK506 mediated 

calcineurin inhibition because the more proximally mutated cell lines could override 

the loss of the positive regulation of BCR signaling upon calcineurin inhibition.  

To unveil this putative new calcineurin substrate whose dephosphorylation indirectly 

or directly leads to an enhanced BCR downstream signaling we performed a SILAC 

with subsequent phosphoproteom analysis by mass spectrometry (MS). For this, we 

treated HBL-1 cells for 5 h with either CsA or FK506 after being subjected to medium 

containing amino acids with differentially heavy isotopes. The frequency of 

phosphorylated peptides in calcineurin inhibitor treated samples was then compared 

to the abundance of the corresponding phosphorylation in peptides from the solvent 

treated control. SILAC revealed, that indeed proteins that are implicated in BCR-

proximal signaling are present in a more phosphorylated state like CD79A and 

CD79B or in a less phosphorylated state as the adaptor protein BLNK (Table 1.). 

This result indicates that calcineurin could be indeed recruited to BCR downstream 

signaling where it dephosphorylates (a) certain substrate(s) leading directly or 

indirectly to a promotion of further BCR signaling events. As a specificity control for 

this SILAC experiment serves the finding of BCL-10 that is accordingly to our result 

roughly two times more phosphorylated at serine 138 (S138) when calcineurin is 

inhibited by either CsA or FK506. BCL-10 S138 is known to be an IKK2 
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phosphorylation target site and was identified by Zeng et al. (2007) as a T-cell 

receptor activation-induced phosphorylation site that is implicated in the induction 

of BCL-10 ubiquitination and subsequent degradation. Zeng et al. demonstrate that 

the prevention of BCL-10 phosphorylation at S138 inhibits T-cell activation induced 

BCL-10 ubiquitination and degradation and also causes sustained NF-κB signaling 

and enhanced IL-2 production. Palkowitsch et al. (2011) revealed calcineurin to 

constitutively interact with the CBM complex in T-cells and moreover CsA/FK506 

inhibition and siRNA mediated knock-down of calcineurin led to increased levels of 

phosphorylated BCL-10, reduced CBM complex formation and consequently 

decreased NF-κB activity. Furthermore, based on their results, Palkowitsch et al.  

suggest BCL-10 S138 to be a calcineurin dephosphorylation site. In accordance 

with the Zeng study, Palkowitsch et al. suggest that the calcineurin mediated  

BCL-10 dephosphorylation at S138 is thus linked to a positive regulation of CBM 

complex assembly and therefore to antigen receptor induced NF-κB signaling, as 

well. Moreover, our results also revealed BCLAF1 as a new direct putative 

calcineurin substrate or at least indirectly regulated by calcineurin. According to the 

SILAC analysis BCLAF1 frequently appeared to be more phosphorylated upon 

calcineurin inhibition at several known and unknown putative phosphorylation sites 

(Table 1). So far, there is nothing known about the already noted phosphorylation 

sites, neither their function nor whether they have a positive or negative effect on 

BCLAF1 function. BCLAF1 fulfils diverse functions. It is known as inducer of 

apoptosis, autophagic cell death in myeloma cells and as repressor of transcription 

(Kasof et al., 1999; Liu et al., 2007; Lamy et al., 2013) and was moreover it was 

found as a target of NF-kB (Kong et al., 2011; Shao et al., 2016). Taken together, 

this result suggests an actual role of calcineurin in modifying BCR downstream 

signaling as we found BCR signaling elements under the top hits of peptides with 

altered phosphorylation rates by phosphoproteom analysis. Putative substrates 

thereby could be directly due to more phosphorylation CD79 or indirectly due to less 

phosphorylation BLNK. Since the inhibition of calcineurin impairs the growth of 

certain ABC DLBCL we have to assume a positively regulating role of calcineurin in 

BCR signaling. We found CD79B phosphorylation altered at serine 221 in close 

proximity to the CD79B amino terminal ITAM (aa185 - aa213) when calcineurin was 

inhibited. This suggests that the common heterozygous HBL-1 and TMD8 amino 

acid substitutions Y196F and Y196H, located in the middle of the CD79B ITAM, 
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could somehow enhance the negative effect of calcineurin inhibition on BCR 

downstream signaling compared to wild-type CD79B Y196. Moreover, MS based 

phosphoproteom analysis of isotope labelled samples also revealed CD79A to be 

more phosphorylated at multiple sites upon calcineurin inhibition. Those sites are 

situated closely to the CD79A ITAM except for S197 what lies in the middle of the 

CD79A ITAM. As OCI-LY10 exhibits a heterozygous deletion of aa191- aa208 

affecting parts of the CD79A ITAM also this mutation could slightly strengthen the 

adverse effect on BCR downstream signaling upon inhibition of calcineurin causing 

their intermediate sensitivity towards calcineurin inhibition. This link between 

CD79A/B mutations in ABC DLBCL that somehow alter the outcome  

of calcineurin inhibition on BCR downstream signaling and calcineurin 

dephosphorylation sites in CD79A/B could also explain why the interleukin secretion 

and growth of wild-type cell lines such as GCB DLBCL or some ABC DLBCL are 

only minimally or not impaired by calcineurin inhibition. 

 

In order to have an overview of the general changes in the patterns of 

phosphorylated tyrosines upon calcineurin inhibition we next stimulated the cell line 

Ramos for different time periods with anti-IgM antibodies with or without pre-

incubation of CsA and had then a closer look at phosphorylated tyrosine residues 

by western blotting (Figure 37.). As GCB DLBCL are known to be stimulated by anti-

IgM only very difficult we used the Burkitt lymphoma cell line Ramos for this 

experiment. Moreover, Burkitt lymphoma usually do not harbour mutations in BCR 

proximal CD79 signaling, just as GCB DLBCL. ITAMs are common for associated 

signaling chains of immunoreceptors such as CD79A / CD79B of the BCR and are 

phosphorylated at two invariant tyrosines upon activation of the corresponding 

immunoreceptor and critical for the intracellular signal generation by e.g. upon 

antigen engagement (Niemann and Wiestner, 2013). As tyrosine phosphorylation 

(p-tyrosine) is a common feature in BCR mediated signaling in B-cells, it is possible 

to recognise changes in the phosphorylation of ITAM tyrosines by using anti-p-

tyrosine antibodies in western blotting. 
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Protein aa Position Peptide with STY 
phosphorylation 

probabilities 

Ratio M/L 
normalised 
by protein  
CsA treatment 

Ratio H/L 
normal-
ised by 
protein 

FK506 

treatment  
      

CD79A S 197 LGLDAGDEY(0.001) 
EDENLY(0.079)EGLNLDD
CS(0.609)MY(0.188) 
EDIS(0.123)R 

1,85 3,78 

 Y 210 GLQGT(0.002)Y(0.998)QV
GS(1)LNIGDVQLEKP 

1,74 2,09 

 S 215 GLQGT(0.002)Y(0.998)QV
GS(1)LNIGDVQLEKP 

1,30 1,27 

 T 209 GLQGT(0.748)Y(0.016)QV
GS(0.236)LNIGDVQLEKP 

1,25 1,05 

CD79B S 221 WS(1)VGEHPGQE 1,94 1,58 

BLNK S 129 SSQRHS(1)PPFSK 0,89 0,85 

 S 213 S(1)PPPAAPSPLPR 0,74 0,76 

 S 409 NHQHS(1)PLVLIDSQ 
NNTK 

0,66 0,67 

 S 270 QEAVQS(1)PVFPPAQK 0,43 0,46 

BCL-10 S 138 SNS(1)DESNFSEK 1,74 2,09 

BCLAF1 S 196 DTFEHDPSES(1)IDEFNK 2,21 2,72 

 S 523 S(0.921)T(0.085)FREE  
S(0. 994)PLR 

2,10 2,72 

 S 395 QKFNDS(1)EGDDTEE        
TEDYR 

1,40 1,24 

 S 387 AEGEWEDQEALDYFS(1) 
DKES(1)GK 

1,37 1,57 

 S 383 AEGEWEDQEALDYFS 
(1)DK 

1,33 1,23 

 S 295 YS(0.965)PS(0.035)QNS(1
)PIHHIPS(0.791)RRS(0.20
9)PAK 

1,29 1,38 

 S 529 STFREES(1)PLRIK 1,23 1,04 
 

Table 1. Peptides and their corresponding proteins that prevail in a more or less 

phosphorylated state upon CsA or FK506 treatment. “aa” for amino acid designates the 

abbreviation for a certain amino acid in its one letter code. “Position” means the amino acid’s spot 

in the protein. “Peptide with STY phosphorylation probabilities” depicts the found peptide with 

the assigned probabilities of phosphorylation of the amino acids serine (S) threonine (T) or tyrosine 

(Y). “Ratio M/L” or “H/L” normalised by protein represents the frequency of a certain 

phosphorylated peptide with medium heavy (M) or heavy (H) labelled isotopes in the CsA or FK506 

treated sample divided by the frequency of this phosphorylated peptide labelled with normal, light 

isotopes (L) under untreated control conditions. 

 

From the results obtained from this approach, we concluded no major changes in 

tyrosine phosphorylation patterns upon BCR signaling activation of Ramos cells in 

the presence of CsA compared to control conditions (Figure 37.). Anti-IgM 

stimulation itself was successful because unstimulated cells showed considerably 

fewer and less intensive p-tyrosine bands (Figure 37.). From this result it can be 
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claimed that upon BCR-mediated B-cell stimulation under calcineurin repressive 

conditions, tyrosine phosphorylation patterns are not appreciably changed, at least 

in B-cells deriving from Burkitt’s Lymphoma. In summary, calcineurin seems to 

convey its positive influence on BCR signaling not indirectly by altering the 

phosphorylation of tyrosines as there was no obvious change in BCR upstream 

signaling p-tyrosine patterns. This conclusion is at least true for the Burkitt’s 

Lymphoma cell line Ramos and cannot be handled as general and can be therefore 

different for DLBCL which show other mutation patterns. 

 

 
 

Figure 37. Detection of p-tyrosine residues by western blot in lysates from the Burkitt 

lymphoma cell line Ramos upon anti-IgM mediated BCR stimulation in the presence 

or absence of CsA. Ramos cells were either pre-incubated for 20 min with solvent as control or 3 

µM CsA prior to 15 µg/ml anti-IgM mediated BCR stimulation for the indicated periods of time. 

Weak and strong exposure of p-tyrosine blots are shown to better assess the effects of calcineurin 

inhibition on tyrosine phosphorylation due to the difference in band thickness. 

 

Following this, to further elucidate the potential influence of calcineurin on BCR 

proximal signaling we investigated the phosphorylation of additional proteins 

implicated in BCR signaling. The Ashwell lab recently published in the previously 

mentioned study by Dutta et al., which they found the activating Y493 within the 

activation loop of the tyrosine kinase domain of Zap-70 to be less phosphorylated 
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subsequently to the loss of calcineurin activity that was achieved by different 

approaches (Dutta et al., 2017). Since ZAP-70 is specifically expressed in T-cells 

and plays a role in TCR signaling we were thus interested in the BCR signal 

transduction analogous and structurally similar protein SYK (Chu et al.,1998). Alike 

ZAP-70, SYK is a protein tyrosine kinase and activated by the phosphorylation of 

Y525 and Y526 in the activation loop of its kinase domain. These site are therefore 

crucial for the proper function of SYK (Zhang et al., 2000). For this reason, Y493 of 

ZAP-70 and SYK Y525 and Y526 can be regarded equally in their respective 

function in the context of TCR and BCR signaling. Furthermore, Dutta et al. also 

showed that the phosphorylation of the ZAP-70 ensuing downstream signaling 

molecule SLP-76 at Y145, which facilitates the binding to ITK (Bunnell et al., 2000) 

was diminished by the CsA and FK506 mediated inhibition of calcineurin in T-cells. 

Due to that finding, we were also here interested in the B-cell homologous adaptor 

protein which is called BLNK or SLP-65. BLNK follows directly to SYK in the signal 

transduction chain. It is phosphorylated by SYK among others at Y96 which serves 

similar to p-Y145 of SLP-76 as docking site for signaling molecules as for instance 

PLCγ (Kurosaki and Tsukada, 2000; Ishiai et al., 1999). Consequently, also the 

phosphorylation sites Y145 from SLP-76 and Y96 from BLNK at are homologous in 

their function as ZAP-70 Y493 and SYK Y525 / Y526. For these reasons and 

because there were no commercially available antibodies against the 

phosphorylation sites we unveiled by SILAC for BLNK and CD79A/B as well, we 

examined the phosphorylation sites Y526 from SYK and Y96 from BLNK that are 

both important for BCR downstream signaling in a bit more detail (Figure 38.).  

For this purpose, we treated calcineurin sensitive ABC DLBCL cell lines TMD8 and 

HBL-1 with CsA or FK506 for 2, 5 and 5 and were keen to see if p-SYKY526 or  

p-BLNKY96 levels would change when calcineurin is inhibited. As control for CsA and 

FK506 function, we blotted once more against NFATc1. Both inhibitors worked 

regularly as indicated by NFATc1 shift. We did not recognise any changes in SYK 

and BLNK phosphorylation in neither CsA/FK605 insensitive nor sensitive cell lines 

(Figure 38.). Notably there were no detectable p-BLNKY96 levels emanating from 

TMD8. In summary, the alterations of TCR signaling phosphorylation events upon 

calcineurin inhibition found by Dutta et al seem to be not true for the corresponding 

molecules and phosphorylation sites of BCR signal transduction, we investigated. 

This in turn suggests, a completely different mechanism or other phosphorylation 
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events in the same or other proteins to be the reason behind the calcineurin 

inhibition caused effects on B-cell signaling and their final impact on interleukin 

secretion and proliferation of certain ABC DLBCL. Hence, it is likely that calcineurin 

acts differently in BCR signaling compared to the mechanisms that were shown for 

the phosphatase in primary CD4+ and Jurkat TCR downstream signaling by the 

Aswhell lab. As these mechanisms seem to differ, it is therefore not unlikely that the 

calcineurin mediated positive effect on BCR signaling is caused by the direct and 

indirect dephosphorylation of the newly by SILAC identified putative calcineurin 

affected amino acids in CD79A and/or CD79B or the indirect phosphorylation of 

BLNK at one or multiple sites (Table 1.), which are consequently less 

phosphorylated when calcineurin activity is blocked. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Revealing the effects of calcineurin inhibition on BCR downstream 

phosphorylation events in CsA and FK506 sensitive cell lines. (a, b). As indicated lysates 

derived from TMD8, HBL-1 were analysed for protein levels of NFATc1, p-SYKY526 and p-BLNKY96 

by western blotting. Cells were treated with either a solvent as control (0 h), or for 2, 5 and 5 h with 

CsA (2, 5 µM) / FK506 (5µM). A non-specific band approves the equal loading of samples.  

 

3.4 Expression of IκBNS isoforms in B and T-cell 
lymphoma cell lines 

Western blot based analysis of IκBNS expression levels in a panel of ABC DLBCL 

cell lines and the P/I mediated stimulation of the GCB DLBCL cell line BJAB and 

Jurkat T-cells revealed a constantly with the predicted 35 kDa IκBNS signal 

correlated emerging band with a size of approximately 70 kDa. Furthermore, this 70 

kDa signal always appeared to be stronger compared to the IκBNS p35 one. In turn 

to investigate if the 70 kDa protein is indeed another IκBNS specific gene product, 

we tried different IκBNS specific knock down or knock out approaches (Figure 39.a-

d). For this purpose, we lentivirally transduced the GCB DLBCL cell line BJAB with 
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either an empty vector or a construct expressing shRNA #1 and subsequently 

selected for shRNA expressing BJAB cells. Because BJAB do not express IκBNS 

under steady state conditions we induced IκBNS expression in both cell populations 

by P/I mediated stimulation for different time periods (Figure 39.a). To figure out 

whether the experimental outcome would be the same for T-cells, we conducted the 

former described experiment with Jurkat cells, as well (Figure 39.b). Additionally, 

we also tried siRNA mediated IκBNS knock down under steady state IκBNS 

expression in the ABC DLBCL cell line HBL-1 (Figure 39.c). Moreover, we designed 

a CRISPR/Cas9 guide RNA (gRNA) for specific genomic knock out of IκBNS.  Since 

the GCB DLBCL cell line BJAB does not depend on IκBNS expression under steady 

state conditions, we lentivirally transduced BJAB cells with the CRISPR/Cas9 

construct comprising the gRNA targeting the genomic NFκBID sequence.  

For validation of CRISPR/Cas9 caused IκBNS knock out BJAB cells were stimulated 

by P/I for several time periods to induce IκBNS gene expression (Figure 39.d). P/I 

treated BJAB samples that were CRISPR/Cas9 transduced were then compared to 

stimulated empty vector transduced BJAB samples. In case the unknown 70 kDa 

protein should be indeed another IκBNS as well, the 70 kDa signal should vanish 

concomitantly with the p35 IκBNS band in all mentioned IκBNS knock down and 

knock out attempts. All cells transduced with an empty vector as a control, P/I 

treatment induced both, the IκBNS p35 and p70 signal in the expected ratio, 

regardless of B- or T-cell origin (Figure 39.a-d). Indeed, the shRNA and siRNA 

mediated knock down of IκBNS (Figure 39.a, b, c) and the CRISPR/Cas9 conducted 

knock out (Figure 39.d) of IκBNS which all targeted originally the p35 protein also 

affected the appearance of the 70 kDa band in the same manner as for p35 (Figure 

39.a-d). Furthermore, also this result was true for both, the shRNA knock down of 

IκBNS in B- and T-cells. The correlation between the p35 and the p70 band could 

be monitored very nicely in the siRNA mediated knock down approach on steady 

state levels of IκBNS in HBL-1. Here, the strength of both, the p35 and p70 signal 

simultaneously and gradually increased when the siRNA mediated knock down of 

IκBNS ceased over time (Figure 39.c). Blotting against the MALT1 substrate CYLD 

served as control for B- and T-cell stimulation. Taken together, these results suggest 

that in addition to the already known IκBNS p35, there actually exists another IκBNS 

protein that could constitute for instance a posttranslationally modified IκBNS, an 

IκBNS homodimer or a different IκBNS isoform with a size of approximately 70 kDa, 
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afterwards designated as IκBNS p70. As our self-made antibody recognised IκBNS 

p70 and the shRNA, we applied, also targeted this IκBNS p70, both IκBNS proteins 

must share at least those stretches of amino acid sequences that are recognised by 

the antibody and the shRNA sequence. Since the CRISPR/Cas9 knock out 

approach that was designed with the ambition to target IκBNS p35 also led to the 

disappearance of the IκBNS p70 signal in immunoblot further indicates that both, 

the p35 and p70 IκBNS protein are indeed NFκBID gene products and are supposed 

to originate from the same gene locus in B- and T-cells. 

 
 

Figure 39. shRNA and siRNA mediated IκBNS knock down and CRISPR/Cas9 caused 

IκBNS knock out approach to elucidate whether the emerging p70 signal is a IκBNS 

specific band. (a) BJAB GCB DLBCL cells or (b) Jurkat T-cells were lentivirally transduced with 

either an empty vector as control or a construct expressing shRNA#1. Subsequent to puromycin 

selection, cells were stimulated with P/I for the indicated time periods. Induced IκBNS expression 

levels under empty vector and shRNA#1 expressing vector conditions were determined by Western 

Blotting. (c) HBL-1 cells were electroporated at 240 V with either a mixture of unspecific siRNA 

sequences as control or 300 pmol of siRNA targeting IκBNS. Lysates of HBL-1 cells electroporated 

with either control or siRNA targeting IκBNS were analysed by Western Blot for IκBNS p35 and 

p70 knock down for the indicated days following electroporation. Weak and strong exposure of 
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IκBNS p70 is shown due to different expression levels of IκBNS p35 and p70. (d) BJAB cells were 

lentivirally transduced with either a CRISPR/Cas9 encoding vector without gRNA (empty vector) as 

control or a construct bearing a gRNA sequence targeting the genomic sequence of NFκBID leading 

to a knock out. To verify the successful knock out of IκBNS p35 and p70 upon puromycin selection, 

levels of P/I induced IκBNS p35 and p70 in control cells and IκBNS knock out cells were compared 

by western blot analysis. In (a, b and d) CYLD cleavage validated cell activation by P/I. In all figure 

panels (a-d) Tubulin served as loading control. 

Next, we wanted to shed some more light on the induction mechanisms of IκBNS 

p35 and p70. Since the stimulation of B-cells by their antigen receptor is more 

difficult to achieve compared to T-cells we decided to investigate this issue in a T-

cell lymphoma model cell line. The acute T-cell leukemia derived cell line Jurkat 

showed the same stimulation behaviour in the up regulation and shRNA mediated 

knock down of IκBNS p35 and p70 as BJAB GCB DLBCL (Figure 39.a, b). For this 

reason, we chose the Jurkat T-cell line as model to investigate IκBNS up regulation. 

To study whether different fashions of T-cell activation would also result in diverse 

induction manners of whole IκBNS levels or in differences between the expression 

patterns of IκBNS p35 and p70 we stimulated Jurkat cells with either cross-linked 

stimulating monoclonal antibodies against the T-cell activation molecules CD3 and 

CD28 or P/I for different time periods. Subsequently IκBNS p35 and p70 expression 

was assessed by western blot. Anti-CD3/CD28 antibodies activate T-cells in a way 

that partly mimics physiological stimulation by antigen-presenting cells, whereas cell 

stimulation mediated by P/I acts more proximally in TCR signaling by inducing PKC 

activity and increasing Ca2+ mobilisation. Both stimuli led to the induction of high 

IκBNS p35 and p70 expression levels in the familiar ratios after 180 min of 

administration (Figure 40. a, b). Noteworthy, both the p35 and the p70 IκBNS signal 

appear as a lower strong and upper weak double band, indicating the existence of 

further modified IκBNS proteins. The only small distinction between the different 

kinds of T-cell stimulation regarding IκBNS induction was the non-long lasting T-cell 

stimulation intensity and as a consequence of this the earlier decline of IκBNS p35 

and p70 levels after 360 min when cells were activated by anti-CD3/CD28 

antibodies compared to P/I stimulated T-cells. This effect is caused most likely due 

to the fact that P/I seemed to stronger stimulate the cells in general and over a 

longer time frame in this experiment indicated by the higher portions of cleaved 

CYLD p40 of P/I stimulated cells compared to CYLD p40 levels in anti-CD3/CD28 

stimulated cells. Furthermore, from this outcome we can draw the conclusion that 

there are neither noteworthy differences between whole IκBNS levels nor 
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observable changes in the ratios of p35 and p70 expression levels caused by the 

two fashions of T-cell stimulation. In summary, this result suggests that both IκBNS 

gene products, the p35 and p70 protein are also induced when T-cell receptors 

engage their antigens reflected by the physiological TCR activation by anti-

CD3/CD28 antibodies. Taken together, we can state that T-cell stimulation is a 

potent functional inducer of IκBNS p35 and p70 expression. 

          
 

Figure 40. Investigating the potential differences of anti-CD3/CD28 antibody and P/I 

mediated T-cell stimulation on IκBNS p35 and p70 expression. (a) Jurkat T-cells were 

treated with 10 µg/µl cross-linked anti-CD3/CD28 antibodies or (b) P/I for the indicated periods of 

time. Lysates were analysed for IκBNS and CYLD expression levels by immunoblot. (a, b) CYLD 

cleavage by MALT1 reflects the antibody and P/I mediated activation of Jurkat T-cells. Tubulin 

served as an indicator for equal loading of samples. 
 

Thanks to the previously conducted experiments we now had several lines of 

evidence that the p70 signal is indeed another additional IκBNS protein sharing 

amino acid sequence stretches with the predicted IκBNS p35. Moreover, by applying 

the CRISPR/Cas9 method, we proved that the two proteins arise from the same 

gene locus in human B-cells. Both IκBNS proteins were already observed in mouse 

conventional T-cells by Schuster et al. in 2012 and in mouse embryonic fibroblasts 

by Jeltsch et al. in 2014, as well. Schuster et al. also assumed p35 and p70 to 

emanate from a sole gene locus as stimulated mouse Nfkbid-deficient cells show 

no p70. Additionally, Jeltsch et al. claim IκBNS to produce specific signals at 35 and 

70 kDa. However, the two of them did not show evidence that the 70 kDa signal 

arises indeed from another distinct IκBNS protein in mouse cells. Nevertheless, so 
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far, we did not know what exactly the additional IκBNS protein with a size of 

approximately 70 kDa was indeed. We speculated if the IκBNS p70 could be a 

second IκBNS isoform, a postranslationally modified p35 or a p35 homodimer. The 

latter possibility was the most obvious for us as the IκBNS protein of so far unknown 

genesis exhibits exactly double the size (70 kDa) of the predicted IκBNS with 35 

kDa. For that reason, we next tried to figure out if the IκBNS p70 is just a seemingly 

SDS-stable homodimer of IκBNS p35. To this end, we tried different approaches to 

crack the putative IκBNS p70 homodimer in lysates derived from steady state IκBNS 

expressing cell lines OCI-LY3, HBL-1 and Rec1 by different modifications of our 

sample buffer (Figure 41.a,b). Kolodziejski et al. suggested to increase the 

concentration of protein reducing agents to destruct dimers. From this we 

considered combining 2-ME that is already included in our sample buffer with the 

other commonly used reductant DTT (Figure 41.a). Moreover, we also applied 

another strongly reductive sampler buffer (2x urea buffer) to lysates comprising  

8 M urea plus either 8% of SDS or 6 M guanidine hydrochloride (Figure 41.b). We 

decided to include 8% SDS and 6 M guanidine hydrochloride concentrations 

according to Kolodziejski et al., 2003. All listed compounds are either strongly 

reductive agents such as 2-ME and DTT or strong protein denaturants like urea, 

SDS and guanidine hydrochloride (Wingfield, 2016) that should disrupt the putative 

IκBNS dimers of 70 kDa into two 35 kDa IκBNS monomers. As depicted in Figure 

41.a, b, none of the different reductive and denaturising conditions successfully led 

to the disruption of the presumable 70 kDa homodimer. This is indicated by stable 

amounts of IκBNS p70 and no further increase in the amount of putative IκBNS p35 

monomers (Figure 41.a) in comparison to sample buffer controls (sample buffer with 

2-ME). HEK293T lysates derived from cells transfected with an empty vector or a 

FLAG-tagged IκBNS p35 expressing construct were included in Figure 41. to 

estimate the size at which IκBNS p35 runs on a SDS-gel. Taken together, this result 

suggests that IκBNS p70 is not an IκBNS p35 homodimer and favours instead the 

hypothesis of a further, larger IκBNS isoform or postranslationally modified IκBNS 

p35.  
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Figure 41. Pursuing the question whether IκBNS p70 is a SDS stable IκBNS p35 

homodimer. (a) Lysates from OCI-LY3 cells expressing steady state levels of IκBNS p35 and p70 

were treated with either our commonly used sample buffer or a modified variant containing 100 mM 

DTT. Expression levels of IκBNS were then assessed by western blotting (b) Western blot analysis 

of lysates from OCI-LY3, HBL-1 and Rec1 cells expressing steady state IκBNS p35 and p70 levels 

were exposed either to the commonly used sample buffer as control or 2 x Urea Buffer comprising 

either 8% SDS or 6 M of guanidine hydrochloride to disrupt the presumable 70 kDa IκBNS p35 

homodimer. 

 

To further elucidate if IκBNS p70 is indeed no dimer and no postranslationally 

modified p35, as well, we next overexpressed a FLAG-tagged IκBNS p35 in the ABC 

DLBCL cell line HBL-1 by lentiviral transduction. Both, IκBNS p35 and p70 are 

already expressed at high levels under steady state conditions in HBL-1 cells. The 

FLAG-tagged IκBNS p35 exhibits a slightly higher molecular mass than the 

endogenously expressed IκBNS p35. We assumed that in case the IκBNS p70 

would be a homodimer, made up of two IκBNS p35 or a postranslationally modified 

IκBNS p35 then the artificially introduced FLAG-tagged IκBNS p35 should also exist 

either as a FLAG-tagged p70 IκBNS dimer or postranslationally modified FLAG-

tagged p70 IκBNS. Due to the FLAG-tag these IκBNS p70 versions would then have 

a slightly higher molecular weight compared to their endogenously expressed 

counterparts and would therefore run higher on a SDS-gel, so that they could be 

easily distinguished from each other. Thus, the existence of those FLAG-tagged p70 

IκBNS versions would strengthen the p35 dimer and posttranslational modification 

hypothesis. However, the outcome of this experiment as depicted in Figure 42. 

rejects the dimer and posttranslational modification thesis since the described 
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additional FLAG-tagged p70 IκBNS signals do not appear. In summary, we excluded 

the IκBNS p70 protein to be an IκBNS p35 homodimer by different disruption 

approaches (Figure 41.a,b). This result was approved by the overexpression of a 

FLAG-tagged IκBNS p35 in HBL-1 cells that did not lead to the generation of  

a FLAG-tagged IκBNS p70 that could easily be distinguished from the endogenous 

counterparts in immunoblot due to the slightly increased molecular weight. 

Moreover, the absence of those FLAG-tagged IκBNS p70 variants also proofs that 

IκBNS p70 is not just a posttranslationally modified IκBNS p35. Taken together, the 

obtained results suggest that the IκBNS p70 is most likely a further second, discrete 

IκBNS isoform originating from the same gene locus as IκBNS p35. 

                                     
 

Figure 42. Exploring whether IκBNS p70 is an IκBNS p35 derived homodimer or a 

postrans-lationally modified IκBNS p35. The steady state endogenous IκBNS p35 and p70 

expressing ABC DLBCL cell line HBL-1 was lentivirally transduced with either an empty vector as 

control or a FLAG-tagged IκBNS p35 expressing vector. HBL-1 lysates were analysed for IκBNS 

levels by western blotting. Due to the FLAG-tag, the lentivirally transduced IκBNS p35 exhibits a 

minimally higher size therefore running at slightly higher molecular weight on the western blot 

compared to endogenous IκBNS p35. As no FLAG-tagged IκBNS p70 band emerges upon 

expression of FLAG-tagged IκBNS p35 the theory of an IκBNS p70 consisting of two IκBNS p35 

and an IκBNS p70 that is a posttranslationally modified IκBNS p35 was ruled out. Weak and strong 

exposures of blots are shown for a better impression of the different expression levels of IκBNS p35 

and p70. 

 

Since previous experiments strongly indicate IκBNS p70 to be a second distinct 

IκBNS isoform originating from the same gene locus as IκBNS p35, we next had a 

closer look at the transcribed NFκBID mRNA. In fact, deep sequencing conducted 

with samples from the ABC DLBCL cell line HBL-1, revealed that only one IκBNS 

mRNA is expressed. Furthermore, with the help of an ORF prediction tool, we found 

a second open reading frame consisting of 1716 nucleotides coding for a protein 
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comprising 572 aa with a resulting predicted molecular weight of 61 kDa, suggesting 

the expression of a second isoform (Figure 43.; IκBNS p70). This molecular weight 

was a bit less than expected, as we assumed a molecular weight of approximately 

70 kDa due to the IκBNS p70 signal. In order to prove the presence of the predicted 

IκBNS isoform in B-cells  

 
 

Figure 43. Schematic illustration of the IκBNS p35 and p70 isoform. The human IκBNS 

p35 consists of 313 aa and includes 6 ankyrin repeats (ANK; shaded in grey), important for protein-

protein interactions. IκBNS p70 comprises 572 aa and exhibits an additional 259 aa N-terminal 

unstructured portion of unknown function (shaded in grey), and shares the complete IκBNS p35 

sequence. The predicted molecular weight of IκBNS p35 is 33,5 kDa whereas IκBNS p70 is predicted 

to have a molecular weight of 61,1 kDa. aa, amino acid; NH2, N-terminus; COOH, C-terminus. 

 

In turn to examine this newly established isoform (Figure 43.; IκBNS p70) in more 

detail, we cloned a vector encoding the potential new IκBNS p70 isoform and 

conducted multiple experiments with this. First of all, we wanted to figure out at 

which size the presumable IκBNS p70 would actually run on a SDS gel compared 

to the endogenous IκBNS p70 counterpart to have a clue whether our sequence 

could be indeed identical to the endogenous one found in ABC DLBCL as well as in 

in GCB DLBCL and Jurkat T-cells upon P/I mediated stimulation. To this end, we 

transfected HEK293T cells with either an empty vector as control or with vector 

constructs expressing STREP-tagged IκBNS p35 or p70. In order to compare these 

STREP-tagged proteins with the size of endogenously expressed IκBNS p35 and 

p70 proteins we included several samples from ABC DLBCL cell lines (HBL-1, 

TMD8, OCI-LY3 and RIVA) in the experiment showing high endogenous expression 

levels of IκBNS p35 and p70. In contrast to that we also implicated multiple samples 

deriving from GCB DLBCL cell lines (SU-DHL-4, SU-DHL-6 and OCI-LY1) that are 

known to us to express no IκBNS. As shown in Figure 44.a, STREP-tagged IκBNS 

p35 was properly expressed in HEK293T and showed as expected a slightly higher 

molecular weight than the endogenous protein. Furthermore, western blot analysis 

also clearly revealed that the STREP-tagged IκBNS p70 expressed in HEK293T  

de facto exhibits a slightly higher molecular weight in the blot than the actual 

predicted size of 62 kDa including STREP-tag. This size was comparable with the 
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endogenous IκBNS p70 from ABC DLBCL (Figure 44.a). Moreover, the expression 

of the STREP-tagged IκBNS p70 led to the formation of several bands that were 

lying close to each other, resembling the band pattern observable in ABC DLBCL 

samples (Figure 44.a). Noteworthy as well, the expression of IκBNS p35 and p70 

expressed in HEK293T cells closely resembled the pattern of IκBNS p35 and p70 

endogenously expressed by ABC DLBCL. For these reasons, the IκBNS p70 protein 

sequence we found is likely to be same as the endogenous IκBNS p70 amino acid 

sequence found under steady state conditions in ABC DLBCL cell lines and upon 

stimulation of GCB DLBCL.  

The following experiment we conducted to analyse what influence the ectopic 

expression of IκBNS p35 and p70 would have on endogenous IκBNS p35 and 70 

levels that were induced by P/I mediated T-cell stimulation (Figure 44.b). In addition 

to that, we wanted to know, whether the expression of the IκBNS p70 isoform in  

T-cells would look the same as in HEK293T cells. For this purpose, we lentivirally 

transduced Jurkat T-cells with either an empty vector or plasmid constructs 

expressing either FLAG-tagged IκBNS p35 or the V5-tagged IκBNS p70 isoform. 

Once the successfully transduced cells were selected by puromycin treatment 

Jurkat T-cells were stimulated by P/I to induce endogenous levels of IκBNS p35  

and p70. Samples were subsequently analysed for IκBNS expression by 

immunoblotting. Both IκBNS isoforms that were lentivirally transduced expressed 

well in Jurkat cells (Figure 44.b). As already observed in samples coming from 

HEK293T cells, the expression of lentivirally transduced V5-tagged IκBNS isoform 

p70 exhibits just a marginally higher size than the endogenously expressed IκBNS 

p70 caused by the V5-tag. For the same reason, also the FLAG-tagged IκBNS p35 

shows a slightly increased molecular weight compared to its physiological 

correspondent. In this way it was possible to clearly distinguish between 

endogenous and lentivirally transduced IκBNS isoforms. Compared to the P/I 

induced IκBNS p35 and p70 levels of Jurkat cells transduced with an empty vector 

both, the expression of the FLAG-and V5-tagged lentivirally transduced IκBNS p35 

and p70 isoforms resulted in remarkably decreased levels of endogenous IκBNS 

p35 and p70 that were induced by 4 h of cell stimulation by P/I (Figure 44.b). 

Noteworthy, the level of cell stimulation was equal amongst the samples, indicated 

by the amount of cleaved CYLD. This result suggests that IκBNS p35 and p70 act 

in a negative (auto inhibitory) feedback loop to restrict and down regulate their own 
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expression. By pull-down experiments in TCR transgenic thymocytes, IκBNS was 

shown to bind NFκB family members such as nuclear p50, p65, RelB and c-Rel. 

Moreover, IκBNS binds to transcriptional inactive p50 homodimer on the IL-6 

promoter (Hirotani et al., 2006). In IκBNS deficient macrophages Kuwata et al. 

observed in 2006, the extended binding of the RelA/p50 heterodimer to the IL-6 

promoter, indicating that IκBNS is able to act as a transcriptional repressor. Thus, it 

would be conceivable that this negative feedback loop could be conducted by the 

binding of IκBNS to NF-κB components such as a transcriptional inactive p50 

homodimers, thereby preventing subsequent DNA binding of other active NF-κB and 

NFAT members to the NFκBID promoter. Also imaginable would be that IκBNS 

shortens the resting time of active RelA/p50 heterodimers by removing them from 

the NFκBID promoter. Taken together, these results suggest that the IκBNS p70 

amino acid sequence we revealed is indeed equivalent to the endogenous IκBNS 

p70 protein sequence from B- and T-cells under steady state and P/I mediated 

induced IκBNS expression conditions. Furthermore, both IκBNS isoforms seem to 

work in a negative (auto inhibitory) feedback loop to limit and down modulate a 

surplus of IκBNS expression levels.  

 
 

Figure 44. Expression of the revealed IκBNS p70 protein in comparison to steady state 

endogenous IκBNS p70 in ABC DLBCL cell lines and P/I induced IκBNS p70 in Jurkat 

T-cells. (a) HEK293T cells were transfected either with an empty vector as control or a vector 

expressing IκBNS p35 or p70. Lysates from indicated GCB and ABC DLBCL cell lines were 

analysed for IκBNS p35 and p70 expression in comparison to IκBNS p35 and p70 overexpressed in 

HEK293T cells. GAPDH served as a loading control especially for samples from GCB DLBCL cell 

lines that do not express IκBNS (b) Jurkat T-cells were lentivirally transduced either with an empty 

vector as control or one of the two IκBNS isoforms (FLAG-tagged p35 or V5-tagged p70) and 

stimulated for 4 h with P/I to induce endogenous IκBNS expression.  CYLD cleavage was determined 
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to indicate T-cell stimulation by P/I. A not specific band (n.s.) served as indicator for equal loading 

of samples. 

 

To further substantiate that the IκBNS p70 isoform sequence we established is really 

the one that can be found endogenously in DLBCL, we generated an IκBNS p70 

isoform specific antibody that binds an antigen in the N-terminal portion unique for 

IκBNS p70. Thus, this antibody should not detect the shorter IκBNS p35 isoform.                   

In order to test the anti-IκBNS p70 antibody, we stimulated the GCB DLBCL cell line 

BJAB for different periods of time with P/I what would cause the induction of both                    

IκBNS isoforms. By western blot analysis we compared the IκBNS antibody 

recognising both isoforms (Figure 45. upper panel) with the antibody detecting 

exclusively the larger p70 IκBNS isoform. Indeed, the p70 isoform specific antibody 

detected a protein strongly appearing after 180 min of P/I mediated cell stimulation 

with the expected size of approximately 70 kDa. Unfortunately, this presumably 

specific IκBNS p70 signal was partly overlaid with another unspecific band.  

Thus, it was not possible for us to make further statements about the recognition 

capacities of the self-made anti-IκBNS p70 antibody and the pattern of bands 

specific for IκBNS p70. Moreover, the anti-IκBNS p70 antibody did not detect any 

IκBNS p35 isoform at all (Figure 45. middle panel) as it was the case for the anti-

p35/p70 antibody (Figure 45. upper panel) that recognised an IκBNS p35 specific 

band in samples from BJAB cells that were stimulated with P/I for 180, 240 and 360 

minutes. BJAB stimulation by P/I was confirmed by assessing the cleavage of the 

MALT1 substrates BCL-10 and CYLD. In summary, this result strengthens the 

assumption that the endogenous IκBNS p70 isoform is indeed identical with our 

IκBNS p70 aa-sequence as the antibody recognises an antigen located in the N-

terminal portion that is unique for the IκBNS p70 isoform. 
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Figure 45. Testing the self-made anti-IκBNS p70 antibody for 

its detection capabilities for the larger IκBNS p70 isoform in 

comparison to the anti-IκBNS p35 and p70 antibody. 

BJAB cells (GCB DLBCL) were stimulated by P/I for 0, 15, 240 

and 360 min to induce endogenous IκBNS expression. Lysates 

were analysed for IκBNS expression with the anti-IκBNS p35 and 

p70 antibody (upper panel) and the anti-IκBNS p70 specific 

antibody (middle panel). Blotting against the MALT1 substrates 

BCL-10 and CYLD served as B-cell activation marker. An 

unspecific band (n.s.) indicates the equal loading of samples. 

 

 

 

 

 

 

 

 

 
 

Since we expect different IκBNS isoforms not only to have mutual tasks and 

properties but also isoform specific and unique purposes and characteristics, we 

were next interested in the existence of differences between the IκBNS p35 and p70 

isoform. Schuster et al. claimed in 2012 that in immunoblotting IκBNS appears within 

the first   4 h of P/I mediated stimulation of conventional mouse T-cells as a 35 kDa 

protein in the cytoplasm and as two 70 kDa IκBNS proteins in the nucleus. Moreover, 

Fiorini et al., found that IκBNS (most likely the p35 isoform) was selectively found in 

the nuclear fraction of thymocytes derived from mice treated 2 h with VSV8. 

Furthermore, they expressed an N-terminally eGFP-tagged IκBNS p35 in HeLa cells 

that was predominantly localised to the nucleus.  

In turn to see where IκBNS p35 and p70 localise and if the isoforms would indeed 

differ in their spatial distribution also in B-cells we conducted cell fractionations with 

BJAB cells (GCB DLBCL) that were treated for 1 and 3 h with P/I to induce IκBNS 

(Figure 46.a) and with U2932 and HBL-1 (ABC DLBCL) cells, both expressing 

IκBNS under steady state conditions (Figure 46.b). Lamin A/C was considered as 

nuclear marker whereas ERK2 constituted the cytoplasmic marker protein. Western 

blot analysis showed that under inductive IκBNS expression conditions in BJAB cells 

the IκBNS p70 isoform emerges first in the nuclear fraction after 1 h of P/I stimulation 

whereas IκBNS p35 is not detectable in both, the cytoplasmic and nuclear fraction 

at that time point. After 3 h of P/I mediated B-cell stimulation both isoforms appear 
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in the cytosolic fraction in rather low but equal amounts. This is in contrast to the 

nuclear fraction where both isoforms were clearly enriched compared to the 

cytoplasmic fraction whereby IκBNS p70 was now obviously more abundant than 

the smaller IκBNS p35 isoform (Figure 46.a). The fractionation of ABC DLBCL cell 

lines expressing steady state IκBNS levels revealed that  there is clearly more 

IκBNS p35 and p70 in the nucleus than in the cytoplasm (Figure 46.b). Thereby, the 

ratios of protein amounts between IκBNS p35 and p70 apparently remained the 

same no matter in which cellular compartment.  

Taken together, from these results we draw the conclusion that there exists no 

cytoplasmic or nuclear specific IκBNS isoform. Furthermore, upon IκBNS 

expression induction by P/I, IκBNS p70 clearly appears first in the nucleus whereas 

IκBNS p35 is not present neither in the cytoplasm nor the nucleus. This could be 

caused simply by the fact that IκBNS p70 is generally higher expressed than IκBNS 

p35. Thus the smaller isoform is also expressed but in such little amounts that is not 

detectable by immunoblotting. Moreover, in general it can be said, that both isoforms 

are more abundant in the nucleus than in the cytoplasm after the induction by P/I 

and under steady state conditions, as well. Mentionable, the ratio of protein levels 

between IκBNS p35 and p70 always remains the same with only one exception. 

After 3 h of P/I stimulation the ratio between the levels of IκBNS p35 and p70 is 

equal in the cytoplasmic fraction and p70 is strikingly more abundant in the nuclear 

fraction than p35. This fact could be explained by different nuclear shuttling 

behaviours of the IκBNS isoforms. The larger isoform IκBNS p70 could probably 

bear a nuclear localisation sequence (NLS) in its unique N-terminal portion and 

could be therefore retained in the nucleus in contrast to IκBNS p35 for which no NLS 

was found so far. According to the cytoplasmic and nuclear marker,  

cell fractionations worked properly in all samples. 
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Figure 46. Fractionation of P/I stimulated one GCB DLBCL and two ABC DLBCL cell 

lines under steady state conditions to assess potential differences between the spatial 

distribution of IκBNS p35 and IκBNS p70. (a) The GCB DLBCL cell line BJAB was 

stimulated with P/I for 0, 1 and 3 h to induce IκBNS p35 and IκBNS p70 expression. Subsequently, 

cells were fractionated into cytoplasmic and nuclear moieties. (b) The ABC DLBCL cell lines U2932 

and HBL-1 cells were harvested under steady state conditions. Afterwards, cytoplasmic and nuclear 

fractions were prepared. (a, b) Expression levels of IκBNS p35 and IκBNS p70, Lamin A/C and 

ERK2 were determined by immunoblotting. In both panels Lamin A/C detection served as a marker 

for the purity of the nuclear fraction whereas ERK2 levels indicate the purity of the cytoplasmic 

fraction. An unspecific band (n.s.) served as loading control. 

 

3.5 Regulation of HLA-DR expression by IκBNS 

IκBNS belongs to the group of atypical, nuclear residing NF-κB inhibitors.                           

The members of this protein family were shown to contribute considerably to the 

modulation of NF-κB mediated transcription in immune cells. They accomplish this               

task by their capability to negatively or positively regulate the transcriptional activity 

of target genes together with DNA-associated NF-kB transcription factors (reviewed 

in Annemann et al., 2016). For this reason, we were interested which genes and in 

which direction these affected genes would be regulated by an IκBNS knockdown 

in ABC DLBCL. For this purpose, we conducted an inducible shRNA #1 mediated 

IκBNS knock down in HBL-1 cells for 96 h that was followed by an RNA-Seq. The 

approach revealed multiple MHC class II (MHCII) genes and moreover genes 

encoding accessory proteins that are needed for MHCII-restricted antigen 

presentation like CD74 (also known as invariant chain or Li) or Human Leucocyte 

Antigen-DM (HLA-DM) (LeibundGut-Landmann et al., 2004) among the top hits of 

genes that were negatively regulated by IκBNS (Table 2.). MHCII molecule 
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expression is restricted to the surface of professional antigen presenting cells such 

as B-cells and is crucial for presenting peptide antigens derived from extracellular 

pathogens to the TCR of CD4+ T-cells. This MHCII:peptide complex engagement by 

the TCR in turn induces the activation and proliferation of the respective T-cell and 

is therefore pivotal for an antigen-specific response of the adaptive immune system. 

Moreover, MHC class II molecules are not only important for mounting an adaptive 

immune response directed against pathogens but also for the recognition of 

peptides specific for tumorigenic cells by tumor-specific T-cells. This feature 

indicates the important role of MHCII in immune surveillance (Wilkinson et al., 2012). 

The human MHCII protein family is subdivided into the classical MHCII (HLA-DP, 

-DQ, and –DR), the non-classical (HLA-DM and –DO) and the invariant chain 

molecules. Unlike their classical counterparts, non-classical MHCII are not located 

at the cell surface and do not present antigens. Instead, they regulate and promote 

the loading of peptide antigens to classical MHCII molecules (Alfonso and Karlsson 

2000; Ting and Trowsdale, 2002; Reith and Mach., 2001; LeibundGut-Landmann et 

al., 2004; Wilkinson et al., 2009). Remarkably, also the class II major 

histocompatibility complex transactivator “CIITA” which is the essential master 

transcriptional regulator of the entire MHC class II genes and several associated 

genes like the membrane glycoprotein Li, was positively affected by IκBNS silencing  

(Table 2.). CIITA governs whether and in what extend MHC II proteins are 

expressed. Therefore, CIITA is expressed in MHCII positive professional antigen 

presenting cells such as B-cells, macrophages and DCs (Reith and Mach., 2001; 

LeibundGut-Landmann et al., 2004). 

Based on the results we obtained by RNA-Seq., we were next interested to further 

examine the impact of IκBNS expression on MHC class II protein expression in 

DLBCL. As B-cells are professional antigen presenting cells, they usually express 

MHCII on the cell surface. Thus, we also expected to find MHC class II molecules 

on the surface of DLBCL cell lines. RNA-Seq. revealed the HLA-DRB1 gene which 

encodes the beta subunit of the HLA-DR isoform to be the most affected MHC class 

II gene by shRNA mediated IκBNS knockdown. In addition to that HLA-DR is known 

to be the highest expressed isoform in human (Landsverk et al., 2009). Accordingly, 

we decided to investigate this particular classical MHCII isoform on the surface of 

DLBCL cell lines in our experiments.  
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Gene Fold change P-value 

 LAG3;CD223 1,60 1,24E-17 

HLA-DRB1 1,51 9,37E-27 

ferritin heavy chain 1 1,44 2,46E-15 

2'-5'-oligoadenylate synthetase 3 1,44 8,77E-11 

CD52 1,42 8,85E-15 

MX dynamin like GTPase 1 1,41 7,87E-11 

HLA-DRA1 1,40 1,67E-24 

Janus kinase 3  1,40 5,42E-17 

HLA-DQA 1,39 2,97E-11 

TNF alpha induced protein 2  1,39 1,14E-08 

protein tyrosine phosphatase, non-receptor type 7 1,38 1,74E-13 

transmembrane protein 160 1,38 3,69E-08 

CD74 (invariant chain) 1,37 9,59E-41 

BCL2 interacting killer  1,36 3,66E-08 

heat shock protein family B (small) member 1 1,35 1,20E-08 

MIR663A host gene 1,35 6,40E-08 

fibromodulin  1,34 6,34E-10 

parvin gamma 1,34 4,44E-07 

HLA-DRB 1,34 2,11E-07 

surfactant protein B 1,33 5,02E-09 

class II major histocompatibility complex 
transactivator (CIITA) 

1,22 3,77E-07 

NFKB inhibitor delta (IκBNS) 0,76 3,29E-11 

   
Table 2. Genes that were revealed by RNA-Seq. to be upregulated upon 96 h of 

inducible shRNA mediated IκBNS knock down in samples from the steady state IκBNS 

expressing ABC DLBCL cell line HBL-1. “Gene” designates the name of the gene found to 

exhibit an altered transcriptional activity upon IκBNS knock down; “Fold change” means the extent 

of the transcriptional activity change compared to the control; Highlighted in bold are genes that 

belong to MHC class II gene family.  

 

Partial IκBNS knock-down can be easily achieved in a relative short time span by 

treating ABC DLBCL cell lines with the calcineurin inhibitors CsA and FK506.  

For this reason, we subjected the calcineurin inhibitor sensitive cell line HBL-1 and 

the insensitive cell line OCI-LY3 to a dilution series of CsA. After an incubation of 

two days we determined the amount of HLA-DR molecules displayed on the cell 

surface by flow cytometry. Indeed, the CsA mediated knock down of IκBNS led to 

an increase of HLA-DR proteins residing on cell surface of approximately 30 % for 

HBL-1 and more than 50% for OCI-LY3 cells in comparison to the untreated control 

(Figure 47.). This effect is dose dependent as there was an observable tendency of 
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elevating HLA-DR surface levels accompanied by increasing CsA concentrations. 

The highest HLA-DR surface levels could be therefore achieved in both cell lines 

with the highest applied concentration of CsA. In summary, these results indicate, 

that the partial IκBNS knock down caused by the pharmacological inhibition of 

calcineurin and resulting NFATc1 activity blockage is leading to the enhanced 

presentation of HLA-DR molecules on the cell surface of ABC DLBCL cell lines. 

Notably, this effect seems to be independent from whether the cell line is calcineurin 

inhibitor sensitive or not. 

 

Figure 47. Measurement of HLA-DR surface levels on HBL-1 and OCI-LY3 cells (ABC 

DLBCL) upon two days of CsA mediated knock down of IκBNS. (a) HBL-1 and (b) OCI-

LY3 cells were treated with solvent as control or the indicated concentrations of CsA for two days 

prior to flow cytometry analysis of HLA-DR surface levels. (a, b) Depicted is the mean fluorescence 

intensity (MFI) of HLA-DR+ cells normalised to solvent treated cells (control). 

 

Since we wanted to confirm the previously observed effect (Figure 47.),                              

we consequently treated another ABC DLBCL with both available calcineurin 

inhibitors (CsA and FK506). Thus, we incubated TMD8 cells that also exhibit high 

expression levels of IκBNS with dilutions series of both inhibitors for two days and 

subsequently assessed HLA-DR surface levels by flow cytometry. The impact of 

CsA mediated IκBNS knock down on HLA-DR levels that we had already observed 

for HBL-1 and OCI-LY3 cells could clearly be reproduced for HLA-DR surface levels 

of TMD8 cells treated with CsA or FK506 (Figure 48.). Furthermore, the effect of 

raising HLA-DR surface levels going along with increasing concentrations of CsA 

was this time clearly dose dependent. It was possible to increase HLA-DR surface 

levels more than 3-fold compared to solvent control by treating TMD8 cells with 

5 µM CsA (Figure 48.a). FK506 treatment of TMD8 cells clearly induced the 

elevation of HLA-DR surface levels, as well. Noteworthy, the mentioned dose 

dependent effect we have seen for CsA treatment was also present here, as the 

highest HLA-DR surface levels could be measured at the highest amounts of FK506 
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(Figure 48.b), but not that impressive as for CsA treatment of TMD8. Here, 

calcineurin inhibition by FK506 led to an HLA-DR surface expression up to 1,5 fold 

compared with the solvent control. In summary, the CsA and Fk506 mediated knock 

down of IκBNS in ABC DLBCL leads to clearly enhanced HLA-DR surface levels in 

a dose dependent manner. 

 

Figure 48. Assessment of HLA-DR surface levels upon treatment of TMD8 cells (ABC 

DLBCL) with dilutions series of the calcineurin inhibitors CsA and FK506 to knock 

down IκBNS expression. Cells were treated with solvent as control or (a) the indicated 

concentrations of CsA or (b) for two days ahead of flow cytometry analysis of HLA-DR surface 

levels. (a, b) Depicted is the mean fluorescence intensity (MFI) of HLA-DR+ cells normalised to 

solvent treated cells (control). 

 

To demonstrate that IκBNS itself directly causes the changes of HLA-DR surface 

levels on B-cells we overexpressed both IκBNS isoforms (FLAG-tagged p35 and 

V5-tagged p70) in B-cell lines that show high HLA-DR and no steady state IκBNS 

expression. RNA-Seq. revealed IκBNS as a negative regulator of HLA-DR. 

Therefore, the knock down of IκBNS by calcineurin inhibitors led to increased HLA-

DR surface levels on ABC DLBCL cell lines (Figure 47. and 48.). For this reason, 

we expected diminished HLA-DR surface levels on B-cells overexpressing the 

IκBNS isoforms p35 and p70. In order to figure this out, we lentivirally transduced 

the GCB DLBCL cell line BJAB and the Burkitt’s lymphoma cell line RAJI with either 

an empty vector as control or vectors coding for IκBNS p35 or p70 (Figure 49.a, b). 

Upon puromycin selection of successfully transduced cells, we measured HLA-DR 

surface levels of BJAB and RAJI cells that were properly expressing IκBNS p35 or 

p70 one week after lentiviral transduction (Figure 49.a, b). As assumed, BJAB and 

RAJI cells expressing IκBNS p35 or p70, showed indeed clearly diminished HLA-

DR surface levels (Figure 49.a, b) compared to the empty vector transduced cells. 

In detail, HLA-DR surface levels were lowered up to roughly 30% for BJAB and 40% 

for RAJI cells by the expression of IκBNS p35, whereas the expression of IκBNS 

p70 caused a reduction of HLA-DR surface levels by approximately 40% on BJAB 



Results 
 

149 

 

and slightly more than 40% on RAJI cells (Figure 49.a, b). In summary, the 

overexpression of IκBNS p35 and p70 in B-cells deriving from GCB DLBCL and 

Burkitt’s lymphoma origin caused a clear reduction of HLA-DR surface levels. 

Thereby was the extent of reduction independent from the overexpressed isoform 

albeit the effect was minimally more pronounced in cells expressing IκBNS p70. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49. Determining HLA-DR surface levels of BJAB (GCB DLBCL) and RAJI (Burkitt’s 

lymphoma) B-cells expressing IκBNS isoforms p35 and p70. (a, b) BJAB and RAJI cells were 

lentivirally transduced with an empty vector as control or vectors expressing a FLAG-tagged IκBNS p35 

or a V5-tagged IκBNS p70. After puromycin mediated selection of successfully transduced cells, HLA-

DR surface levels were determined by flow cytometry. (a, b left) Depicted is the mean fluorescence 

intensity (MFI) of HLA-DR+ cells normalised to solvent treated cells (control). (a ,b right) On the day of 

flow cytometry measurement, cells were harvested and lysates were analysed by western blotting to assess 

IκBNS p35 and p70 expression. GAPDH served as control for equal loading of samples. 

 

Taken together, this result approves that IκBNS is indeed a negative regulator of 

MHC class II genes e.g. from HLA-DR indicated by the change of surface levels on 

B-cells. Hence, the IκBNS knock down by pharmacological calcineurin inhibitors in 

naturally IκBNS expressing ABC DLBCL cell lines causes the elevation of HLA-DR 

surface levels. Whereas, the overexpression of one IκBNS isoform (either p35 or 

p70) in B-cells exhibiting no steady state IκBNS expression is sufficient to 

remarkably diminish HLA-DR surface display 
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3.6 CD Marker screen of GCB and ABC DLBCL 

DLBCL represent a heterogeneous group of lymphoid malignancies in regard to 

clinical presentation and morphological aspects. Due to this there was an obvious 

need for having methods and algorithms that would help to stratify patients into 

distinct groups regarding prognosis and prediction to therapy response.  

An advanced approach in this respect was the classification of DLBCL according to 

gene expression profiling into three main molecular subtypes (GCB, ABC, PMBL) 

that exhibit different survival outcomes (Alizadeh et al.,200). But so far GEP is quite 

expensive, requires time for analysing huge amounts of data and is not available for 

a broad range of laboratories. Therefore, intensive efforts have been made during 

the last years to reveal reliable biological markers and to establish simpler, more 

broadly available clinical tools and methods that would provide improvements in risk 

stratification and in the development of new, more specific therapies. One such quite 

well validated and still commonly used tool is the so called International prognostic 

index (IPI) established in 1993 by the International Non-Hodgkin's Lymphoma 

Prognostic Factors Project. IPI remains the most robust predictive tool for DLBCL 

also after the introduction of the monoclonal anti-CD20 antibody rituximab 

complementing the conventional CHOP therapy, now R-CHOP (Vaidya and Witzig, 

2014). However, this index is based on five clinical risk factors found in DLBCL that 

are quite subjective and a substantial amount of patients rated as “low” or 

“intermediate risk” by IPI show therapeutic failure (Linderoth et al., 2003). Several 

groups describe the usage of immunohistochemical profiling as a promising method 

to identify outcome predictors and deduced algorithms that are moreover relatively 

easy to apply and appropriate for daily routine in clinical laboratories. One of these 

immunohistochemical (IHC) approaches was proposed by Hans et al. in 2004. They 

suggested an algorithm including CD10, BCL6 and MUM1 as specific markers to 

distinguish between DLBCL subtypes and achieved a concordance of 80% with 

GEP classification (Hans et al., 2004). Furthermore, this immunostaining based 

Hans’ algorithm was improved in 2009 by Choi et al. using GCET1, CD10, BCL6, 

MUM1, and FOXP1 as biological markers for DLBCL subclassification and 

facilitating risk stratification. Although the used markers and the deduced algorithms 

described in literature for class prediction were quite similar, the results were 

inconsistent regarding accuracy of significant prognostic value. Considering the 

previously described points, there is still an obvious need for reliable, specific 
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biomarkers that are capable to differentiate DLBCL into GCB and ABC subgroups, 

predict the response to R-CHOP therapy and present targets for new antibody 

treatments. Among the potential candidates meeting these demands are cell surface 

molecules from which the majority is listed in the cluster of differentiation (CD) index. 

This is demonstrated for instance by the fact that CD10 was already used to 

differentiate between GCB and ABC DLBCL by several algorithms 

(Hans et al., 2004; Choi et al., 2009) and that CD20 serves as the target for the 

monoclonal Rituximab in the standard treatment of DLBCL and many other 

Non-Hodgkin-Lymphoma.  

In order to reveal CD-markers that could serve as suitable biomarkers on GCB and 

ABC DLBCL, we performed an antibody based screen assessing the expression 

levels  of 360 cell surface markers of three GCB (BJAB, SU-DHL-4, SU-DHL-6) and  

three ABC (HBL-1, TMD8, U2932) DLBCL cell lines. The CD-marker screen 

revealed that, there are indeed noticeable differences in the expression of multiple 

cell surface molecules between GCB and ABC DLBCL as depicted in Figure 50.a. 

Several of these markers can be regarded as indicators for the validity of the assay. 

IgM-BCR for instance is predominantly expressed by ABC DLBCL whereas GCB 

DLBCL usually exhibit an Ig class switch recombination (CSR) to IgG-BCR (Young 

et al., 2015). Indeed, high surface IgM was also observed on ABC DLBCL in the 

conducted screen whereas absent on GCB DLBCL cell lines (Figure 50.a). The ABC 

DLBCL characterising aberrant CSR causing high IgM-BCR is based on the finding 

of deletions in the switch µ (Sµ) region of the IgH gene by Lenz et al. (2007), which 

interfere with CSR. The group assumed that the high and persistent expression of 

AID in ABC DLBCL contributes in the formation of these high frequent Sµ deletions 

mutations leading to functionally impaired CSR. Moreover, also the common reliable 

GCB phenotype predictive marker, the 100 kDa neutral membrane metallo-

endopeptidase CD10 which is implicated in the deactivation of numerous 

biologically active peptides (Dogan et al., 2000; Ohshima et al., 2001; Sezaki et al., 

2003), was confirmed by our screen to be expressed primarily in the comprised GCB 

DLBCL cell lines (Figure 50. a). In general, CD10 is an antigen found on the surface 

of lymphoid precursor cells and B lymphoid cells arising from the germinal centre 

origin (McCluggage et al., 2001). Furthermore, GEP revealed CD10 mRNA 

expression to be strongly associated with the GCB subtype of DLBCL (Ohshima et 

al., 2001). On this basis CD10 positivity of cells was therefore demonstrated and 



  Results 
 

 

152 

 

defined by several IHC based decision algorithms as the primary defining criterion 

for GCB classification e.g. the earlier described Hans’ algorithm, an altered Hans’ 

algorithm suggested by Muris et al. in 2006 or in a predictive IHC algorithm that 

classifies DLBCL in regard to the clinical prognosis into poor intermediate and good 

proposed by more by Anderson et al. in 2009.  
 

 

Figure 50. Surface marker screen determining 360 distinct molecules with GCB and 

ABC DLBCL. (a) Top hits of surface markers that were differentially or (b) equally expressed on 

the included cell lines of the GCB (BJAB, SU-DHL-4 and SUD-DHL-6) and ABC (HBL-1, TMD8 

and U2932) subtype of DLBCL. (c) Illustration of the expression distribution of the selected surface 

markers CD36, CD90 and CD274 on the included GCB and ABC DLBCL cell lines. (d) Fractions 

of CD36+, CD90+ and CD274+ of the indicated DLBCL cell lines. (a-d) Depicted are the fractions of 
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PE+ cells in %. The LEGENDScreen™ assay was conducted according to the manufacturer’s 

instructions. 
 

According to the CD marker screen results we selected three surface proteins that 

were differentially expressed between GCB and ABC DLBCL for further, more 

detailed investigations (Figure 50.a). We decided to choose CD90 as particular GCB 

and two membrane proteins namely CD36 and CD274 as ABC DLBCL specific 

surface markers (Figure 50.a, c, d).  

Since we were interested to confirm the expression pattern of CD36, CD90 and 

CD274 in DLBCL we recapitulated the assessment of those molecules on a broader 

range of GCB (BJAB, SU-DHL-4, SU-DHL-6, OCI-Ly1, OCI-Ly7 and OCI-Ly19) and 

ABC DLBCL (HBL-1, TMD8, U2932, OCI-Ly3 and OCI-Ly10) on both, the surface 

protein expression and the mRNA level (Figure 51.a-d). CD36 was indeed 

exclusively expressed at different fractions on all ABC DLBCL we investigated 

(Figure 51.a). Whereas on the mRNA levels also the GCB cell line OCI-Ly1 and 

OCI-L19 exhibit little presence of CD36 mRNA (Figure 51.b). The supposed GCB 

DLBCL marker CD90 was in fact expressed only on cell lines classified as the GCB 

subtype of DLBCL although not all of those cell lines were positive for CD90 (BJAB, 

OCI-Ly1, and OCI-Ly7) (Figure 51.c). This CD90 surface expression pattern is quite 

well reflected by CD90 mRNA levels. Only the GCB cell lines that also showed 

surface CD90 protein expression namely SU-DHL-4, SU-DHL-6 and OCI-Ly19 

exhibit CD90 mRNA levels, remarkably in the same proportionality (Figure 51.d). 

Also the presumable specific ABC DLBCL indicator CD274 was as revealed by the 

CD marker screen actually expressed solely on DLBCL cell lines belonging to the 

ABC subtype. Here, the fractions of CD274+ cells were quite different. Two cell lines 

ABC cell lines (U2932, OCI-LY3) did not show CD274 surface expression whereas 

TMD8 and OCI-Ly10 are characterised by considerable high fractions of CD274+ 

cells (Figure 51.e). The CD274 mRNA levels also demonstrate a clear preference 

of CD274 expression by ABC DLBCL. All investigated ABC DLBCL cell lines 

express CD274 mRNA at different levels (Figure 51.f). Noteworthy, TMD8 which 

exhibits the highest fraction of CD274+ cells also shows the highest CD274 mRNA 

expression among the ABC DLBCL cell lines tested. Remarkably, also the GCB cell 

line OCI-Ly1 shows slight expression of CD274 mRNA what is not reflected on the 

protein level.  
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Taken together, the results obtained by the surface molecule screen could be 

well reproduced by our array of GCB and DLBCL cell lines. Thereby, the 

protein expression extent of chosen surface markers correlated quite well with 

mRNA levels. 
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Figure 51. Assessment of surface protein and mRNA levels of selected surface markers 

specific for GCB and ABC DLBCL. (a, c , e) Fractions of (a) CD36 (c) CD90 and (e) CD274 

positive cells of the indicated GCB and ABC DLBCL cell lines were determined by flow cytometry. 

(b, d, f) Relative (b) CD36, (d) CD90 and (f) CD274 mRNA expression levels of indicated DLBCL 

cell lines of the GCB and ABC subtype. mRNA levels were assessed by qPCR and analysed using 

the ΔΔCT method. In (b) and (f) the GCB DLBCL cell line SU-DHL-6 and in (d) the ABC cell line 

U2932 served as a reference for relative mRNA expression levels of the respective surface marker 

gene. 

 

Next we were interested in functional aspects of the revealed DLBCL subtype 

specific surface markers in the context of DLBCL pathomechanisms. Many solid 

tumors exhibit an altered FA metabolism as well as increased utilisation of lipids via 

β-oxidation to gain energy. Multiple FA pathways were found to be constitutively 

activated in DLBCL and moreover cell survival seems to be strongly dependent on 

lipid metabolism (Dashnamoorthy et al., 2014). As earlier described, CD36 signaling 

coordinates the cellular fat metabolism by numerous functions. Recently, Samovski 

et al. unveiled a direct link between CD36 and β-oxidation in muscle cells. 

CD36 regulates the activation of the AMP-activated protein kinase (AMPK), a 

cellular metabolic and redox sensor. AMPK is activated upon energy deprivation 

and consequently inhibits energy-intensive metabolic pathways whereas on the 

other hand it concomitantly upregulates nutrient uptake and catabolic reactions. 

Thus, AMPK induces the recruitment of CD36 to the cytoplasma membrane and 

upregulates β-oxidation. CD36 inhibits AMPK under basal conditions. Whereas FA 

induced CD36 signaling promotes the activation of AMPK in turn leading to the 

increased activity of β-oxidation and the recruitment of more CD36 to the plasma 

membrane ending up in a feed forward cycle (Samovski et al., 2015). CD36 gene 

expression is regulated by the peroxisome proliferator-activated receptor γ 

(PPARγ), liver X receptor (LXR), and pregnane X receptor (PXR) (Tontonoz et al., 

1998). Activating ligands of the transcription factor PPARγ are oxidized 

phospholipids which are also abundant within the oxLDL particle that is bound and 

transported into the cell by CD36 (Silverstein et al., 2010). Therefore, CD36 

reinforces its own transcription by taking up lipoproteins such as oxLDL. CD36 

binding and uptake of FA and oxLDL and subsequent intracellular signaling can be 

irreversibly blocked by the membrane-impermeable N-hydroxysuccinimidyl (NHS) 

esters of long chain FA (Harmon and Abumrad, 1993; Pepino et al., 2014). NHS 

esters of long-chain FA, were originally used to label and cross link proteins by their 

ability to covalently bind to the amino group of lysine side chains (Kuda et al., 2013; 
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Kalkhof and Sinz, 2008). The most commonly used CD36 inhibitor is sulfo-N-

succinimidyl oleate (SSO), an oleate ester shown to efficiently inhibit CD36-

mediated FA uptake and signaling in various cell types by binding to the lysine164, 

a residue lying within a predicted binding site for FA and oxLDL (Coort et al., 2002; 

Kuda et al.,2011, 2013).  

Since ABC DLBCL cell lines show high CD36 mRNA and surface protein levels 

compared to GCB DLBCL cell lines, we next examined whether ABC DLBCL would 

as a consequence of this also exhibit higher β-oxidation activity. Thus also elevated 

mRNA levels of key β-oxidation enzymes in comparison to GCB DLBCL cell lines.                              

To this end, we investigated the mRNA levels from genes coding for essential                           

key-enzymes of β-oxidation in GCB (BJAB, SU-DHL-4, SU-DHL-6, OCI-Ly1, OCI-

Ly7 and OCI-Ly19) and ABC (HBL-1, TMD8, U2932, OCI-Ly3 and OCI-Ly10) 

DLBCL cell lines (Figure 52.a). The ACADM gene codes for the medium-chain acyl-

CoA dehydrogenase (MCAD) required for the metabolisation of medium chain fatty 

acids consisting of 4 to 12 carbonatoms (Bartlett and Eaton, 2004). The very long-

chain acyl-CoA dehydrogenase (VLCAD) is encoded by the ACADVL gene. VCLAD 

catalyses the initial step of β-oxidation of long-chain fatty acids comprising 14 to 20 

carbonatoms (Leslie et al 2009). The HADHA gene encodes the hydroxyacyl-CoA 

dehydrogenase α-subunit which is part of an enzyme complex called mitochondrial 

trifunctional protein. This complex contains three distinct enzymes and is essential 

for the metabolisation of long-chain fatty acids with chain lengths between 12 to 18 

carbonatoms (Choi et al., 2007). Though ABC DLBCL show higher levels of CD36 

mRNA and surface protein levels than GCB DLBCL cell lines, the mRNA levels of 

the selected β-oxidation key enzymes amongst the different DLBCL subtypes were 

comparable for all genes tested (Figure 52.a). This result indicates that the 

expression of genes regulating β-oxidation is not affected by the different degrees 

of CD36 expression in DLBCL. 

In turn to investigate the importance of CD36 in respect of its FA and oxLDL uptaking 

properties and its resulting potential influence on β-oxidation activity in DLBCL in 

more detail we treated the GCB cell line SU-DHL-6, which showed only minimal 

CD36 mRNA levels and two ABC (HBL-1 and TMD8) DLBCL cell lines with the 

irreversible CD36 inhibitor SSO at different concentrations. Subsequently, we 

assessed the mRNA levels of ACADM, HADHA, ACADVL and CD36. As depicted 

in Figure 52.b, c, d the inhibition of CD36 by SSO had no remarkable effect on 
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neither the mRNA levels of the β-oxidation key enzyme coding genes nor the mRNA 

levels of CD36 itself. This was also independent from GCB and ABC subtype. 

Noticeable exceptions seem to be mRNA expression levels of ACADVL and CD36 

in SU-DHL-6 cells treated with 250 µM SSO that exhibit a two fold increase 

compared to solvent control. In summary, these results indicate that although CD36 

is substantially more expressed in the ABC subtype of DLBCL on both the mRNA 

and the surface protein level, β-oxidation is not affected by this obvious difference. 

This result also suggests that the level of β-oxidation activity is comparable between 

DLBCL subtypes. Additionally, from the treatment of GCB and ABC DLBCL cell lines 

with an irreversible CD36 inhibitor we can conclude that there is no impact on neither 

β-oxidation nor CD36 mRNA levels when CD36 FA and oxLDL uptake and 

associated (FA and oxLDL initiated) signaling is blocked. Taken together, this result 

suggests that CD36 might be a valid biomarker to differentiate between GCB and 

the more aggressive ABC DLBCL. However, CD36 seems not to be appropriate as 

a putative therapy target since CD36 blockage had no impact on the expression of 

genes coding for proteins regulating the activity of the vital β-oxidation which was 

found to be comparable between the GCB and ABC subtype of DLBCL. 
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Figure 52. Determining mRNA expression levels of genes coding for β-oxidation key 

enzymes and CD36 in GCB and ABC DLBCL under steady state conditions and CD36 

inhibition by SSO. a) Relative mRNA expression of ACAVDM, HADHA and ACADVL coding 

for β-oxidation key enzymes were assessed by qPCR in samples from the indicated GCB and ABC 

DLBCL cell lines and analysed using the ΔCT method. (b-d) The GCB cell line (b) SU-DHL-6 and 

two ABC DLBCL cell lines (c) HBL-1, (d) TMD8 were treated either with solvent as control or the 

indicated concentrations of the irreversible CD36 inhibitor SSO for 1 h. Subsequently, cells were 

harvested, RNA was isolated and reversely transcribed into cDNA. By qPCR mRNA levels from 

ACAVDM, HADHA, ACADVL and CD36 were assessed and analysed using the ΔΔCT method. 
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4. Discussion 

4.1 Significance of DLBCL research 

DLBCL are a highly heterogeneous and aggressive B-cell Non-Hodgkin-Lymphoma 

malignancy. The molecular era of disease characterisation led to steady advances 

in the development of disease tailored treatment approaches. This includes the 

establishment of biologicals such as target-directed monoclonal antibodies e.g. 

rituximab and small molecule drugs e.g. Ibrutinib that are designed to interfere with 

the effector functions of proteins in key positions of vital signal transduction 

pathways. These new therapies considerably improved patient overall survival (Link 

and Friedberg, 2008; Lenz et al., 2008). 

In the context of DLBCL treatment, the addition of the anti-CD20 monoclonal 

antibody rituximab based immunotherapy to the established first-line 

chemotherapeutics based standard chemotherapy regimen CHOP in 2002, 

remarkably improved complete remissions by 15 to 20%. Despite the success of 

rituximab, when having a closer look at the distinct survival rates of the  

DLBCL molecular subtypes there is still a proportion of patients with advanced 

DLBCL disease stages who do not response to R-CHOP therapy or exhibit relapsed 

or refractory DLBCL in the aftermath of R-CHOP immuno- chemotherapy. In 

particular, patients suffering from the more favourable GCB subtype still exhibit a 3-

year progression free survival (PFS) rate of 74% and a 3-year overall survival (OS) 

rate of approximately 80% upon R-CHOP treatment. Moreover, patients affected by 

the most aggressive DLBCL and thus less favourable ABC subtype which is often 

resistant to standard chemotherapies show a worse 3-year PFS rate of 40% and  

3-year OS rate of approximately 45% following R-CHOP therapy. (Lenz et al., 2008; 

Young et al., 2015). Therefore, there is an obvious need for identifying new 

molecular targets and the further development of corresponding, more efficient 

novel agents in order to improve clinical outcome and prolong patient survival 

suffering from this hematopoietic cancer type, especially the adverse ABC subtype. 

To achieve this aim, understanding the underlying molecular pathological 

mechanisms characterising (ABC) DLBCL lymphomagenesis is of critical 

importance.  
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During the last years, investigation of ABC DLBCL by gene expression profiling 

revealed constitutive active canonical NF-κB signaling. By transduction of an IκBα 

super repressor and dominant negative forms of IKKβ as well as the application of 

IKKβ small molecule inhibitors the ABC DLBCL subtype was unveiled to be addicted 

to this chronically active NF-kB signaling that emerged to be the major hallmark of 

this lymphoma entity and a major criterion to distinguish the ABC from the GCB 

DLBCL subtype (Davis et al., 2001).The aberrant NF-kB signaling was found to be 

caused by various genetic abnormalities present in different NF-κB activity 

modulating signal elements constituting key drivers of this oncogenic signaling (e.g. 

CD79A/B; CARMA1, MYD88 or A20) (Davis et al., 2001; Ngo et al., 2006; Lenz et 

al., 2008, Compagno et al., 2009, Kato et al., 2009; Davis et al., 2010; Ngo et al., 

2011). However, little is known about the role of typical and especially atypical IκBs 

like IκBNS concerning the oncogenic NF-κB signaling in ABC DLBCL. IκB protein 

family members are known to be implicated in negative and positive regulation of 

the NF-κB signaling network and consequently NF-κB target gene transcription. Due 

to this, investigating their function and importance in contributing to the oncogenic 

molecular signaling pathways present DLBCL is of great interest. A deeper and 

more comprehensive knowledge about the regulation and role of the atypical NF-κB 

inhibitor IκBNS in the context of the complex oncogenic DLBCL pathogenesis is a 

promising research issue in order to provide a basis for the development of future 

therapeutic agents. 

4.2 The expression of IκBNS in DLBCL subtypes 

Within the present study, we showed that in contrast to the GCB DLBCL subtype 

cell lines the atypical, nuclear IκB family protein IκBNS was constitutively expressed 

in all tested model cell lines of the ABC DLBCL subtype cell lines as proven by the 

assessment of mRNA and protein levels. The distribution of IκBNS expression 

according to DLBCL subtypes was confirmed at least on the mRNA level determined 

in 19 patient derived samples for each DLBCL subtype. Unfortunately, the 

background of this measurement was relatively high, most likely due to activated  

T-cells in the inflammatory tumor environment that also express IκBNS. Based on 

these findings, we suggest that the expression of IκBNS could be a further 

biomarker in order to classify the GCB and ABC DLBCL subtypes on the molecular 

level. This would help to improve stratifying patients into different risk groups and 



Discussion 
 

161 

 

thus survival prediction and to choose the most suitable therapy strategy. As already 

mentioned, DLBCL tumor surrounding cells like activated T-cells should also 

express IκBNS, as indicated by P/I and anti-CD3/28 mediated stimulation of Jurkat 

T-cells in this study. Thus, in case IκBNS would be applied as ABC DLBCL 

biomarker in immunohistochemistry, there would be an obvious need to increase 

the recognition specificity in order to clearly identify IκBNS expression that belongs 

to the B-cell derived tumor and to exclude IκBNS derived signals from cells present 

in the tumor environment. For this reason, we suggest that IκBNS staining of DLBCL 

tumor tissue should be correlated with other already well-established B-cell (e.g. 

CD20) and DLBCL markers that would in the first line identify DLBCL cells and 

second the distinct DLBCL subtype. For this purpose, IκBNS staining could be 

implemented in already established immunostaining based algorithms such as the 

Hans’ algorithm (Hans et al., 2004) that defines the ABC DLBCL type as CD10-, 

BCL6- , and MUM+ or an algorithm proposed by Choi et al (2009) that includes 

GCET1, CD10, BCL6, MUM1, and FOXP1 as staining markers for DLBCL and to 

distinguish subtypes. According to Choi et al., their proposed immunohistochemistry 

staining based algorithm has a concordance of 93% with gene expression profiling 

of DLBCL. 

4.3 The mutual transcriptional regulation of IκBNS 
by NF-κB and NFAT 

In addition to the NF-κB signaling addicted ABC DLBCL cell lines, IκBNS expression 

was also detected in several sotrastaurin (STN)/Ibrutinib sensitive, BCR-driven 

canonical NF-κB signaling exhibiting MCL cell lines and one STN/Ibrutinib 

insensitive MCL cell line that displays activation of the non-canonical NF-κB 

signaling (Rahal et al., 2014). In additional B- and T-cell lymphoma/leukemia model 

cell lines representing GCB DLBCLs, Burkitt’s lymphoma and T-ALL we were able 

to induce IκBNS expression by the application of P/I or PMA alone albeit in a quite 

less extent within one hour. Furthermore, also TCR stimulation of a T-ALL cell line 

triggered the induction of IκBNS expression. The interference with NF-κB upstream 

signaling by LVSR and STN application under simultaneous cell stimulation by P/I 

completely abolished the induction of IκBNS expression. Moreover, siRNA mediated 

knock down of MALT1 in an ABC DLBCL cell line resulted in diminished IκBNS 

expression levels. Together, these results suggest that IκBNS is a target gene of 
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canonical NF-κB signaling in a couple of different lymphoma malignancies. The 

hypothesis of IκBNS expression to be controlled through NF-κB signaling in ABC 

DLBCL was further strengthened by the induction of its expression on the protein 

level by CARMA1 mutants found in roughly 10% of ABC DLBCL patient samples to 

activate the classical NF-κB pathway. Moreover, a putative IκBNS promoter 

sequence within intron one of the NFκBID gene, bearing NF-κB and NFAT 

recognition sites was discovered by the analysis of published CHIP-datasets. This 

promoter sequence showed transcriptional activity when RelA and canonical wild-

type NF-κB, mutated upstream elements e.g. MALT1/BCL-10, CARMA1, MYD88 

and combinations thereof, how they are commonly found in the context of oncogenic 

ABC DLBCL signaling, were added. Furthermore, also the noncanonical NF-κB 

signaling element BIRC3 in its wild-type and a MCL-derived mutant version induced 

promoter activity. These findings substantiated the hypothesis of IκBNS 

transcriptional regulation by canonical and noncanonical NF-κB signaling. Further 

studies of this IκBNS promoter sequence by CHIP and EMSA experiments should 

validate its capacity to bind NF-κB subunits. 

Interestingly, the combination of the NF-κB subunit RelA with Ionomycin was able 

to induce IκBNS promoter activity more than twice as much as RelA alone. 

Ionomycin treatment alone however, was not able to induce IκBNS promoter activity. 

Thus, as anticipated, the addition of NFATc1 did not result in induction of the IκBNS 

promoter. On the contrary, similarly to the combination with Ionomycin, RelA in 

combination with NFATc1 caused a strong induction of IκBNS promoter activity 

compared to RelA alone. Our results therefore indicate that IκBNS transcription is 

driven by NF-κB signaling in synergy with Ca2+-NFAT signaling as already indicated 

by the finding of NF-κB and NFAT sites within the IκBNS promoter sequence. 

Notably, each transcription factor family on its own was able to induce low IκBNS 

protein levels. Combined expression however, induced strong IκBNS promoter 

activity consistent with strong induction of IκBNS protein expression in GCB DLBCL 

cell lines stimulated by P/I. 

The assumption that besides NF-kB also NFAT signaling is involved in IκBNS 

expression regulation was further substantiated by the treatment of constitutively 

IκBNS expressing ABC DLBCL cells for several days with calcineurin-NFAT 

signaling inhibitors what led to clearly diminished IκBNS protein levels. Furthermore, 

also the induction of IκBNS by P/I was obviously impeded by pre-treatment of cells 
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with calcineurin inhibitors. Moreover, lentiviral mediated expression of a dominant 

negative IκBα in combination with the application of CsA or FK506 had a clear 

impairing effect on P/I mediated induction of IκBNS expression in a T-ALL and a 

GCB DLBCL cell line. Notably, this effect was more pronounced than in cells in 

which either NF-kB or NFAT was inhibited. Thus, our findings suggest that high 

IκBNS levels as seen constitutively in ABC DLBCL or upon P/I induction in GCB 

DLBCL cell lines require the transcriptional activity of both, the NF-kB and NFAT 

transcription factor family.  

In accordance with the previously described results, the treatment with the 

calcineurin inhibitor CsA revealed that except for the GCB DLBCL cell line  

SU-DHL-4, NFATc1 was found dephosphorylated in all investigated GCB and ABC 

DLBCL cell lines, indicating a transcriptionally active NFATc1 state. Notably,  

in consistence with this finding, nuclear localised and dephosphorylated NFATc1 

and dephosphorylated NFATc2 were also reported to be observed in samples 

obtained from DLBCL patients (Fu et al., 2006; Medyouf et al., 2007). Furthermore, 

in line with our calcineurin inhibitor results, NFAT activity was shown to be 

calcineurin-dependent in cell lines derived from DLBCL and T-ALL patients, as their 

treatment resulted in the suppression of NFAT activation. In addition, NFATc1 

activity in DLBCL was also indicated by an immunohistological evaluation of almost 

300 lymphoma samples conducted by Marafioti et al. (2005) that revealed NFATc1 

to be overexpressed in most lymphoid neoplasms. This overexpression could be at 

least in some ABC DLBCL cell lines the result of a genomic amplification affecting 

a 1,9 Mb region of chromosome 18q that includes the NFATc1 gene.  

This amplification was found in 5% of ABC DLBCL and could cause a gene dosage 

based overexpression of NFATc1 (Lenz et al., 2008; Müller et al., 2010). Marafioti 

et al. (2005) observed NFATc1 to exhibit a nuclear localisation in 30% of DLBCL 

and 70% of Burkitt’s lymphoma samples, indicating in vivo activity of the NFAT 

pathway in those malignancies what is in accordance with our DLBCL cell line model 

results. In general, the expression of NFATc1 across the investigated DLBCL cell 

line panel in this study was highly variable and expression levels did not correlate 

with any particular lymphoma subgroup. Additionally, the sensitivity of DLBCL cell 

lines towards CsA seems to be independent of NFAT protein expression levels as 

both, the ABC DLBCL cell lines OCI-LY3 and SU-DHL-2 show very low NFATc1 

levels but differ clearly in the sensitivity towards CsA treatment. Thus, the results 
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indicate that NFAT is of importance for both DLBCL subtypes. Furthermore, blotting 

against NFATc1 in samples derived from an array of GCB and ABC DLBCL cell lines 

also revealed three broad NFATc1 specific bands for each cell line. The close bands 

of each of the three band clusters are most likely different NFATc1 phosphorylation 

states, whereas the three main bands assumingly represent the different A, B and 

C NFATc1 isoforms. Considering the predicted NFATc1 isoform sizes, the lowest 

band represents most likely the NFAT c1/A α (716 aa) and β (703 aa) isoforms, the 

middle band the NFATc1/B α (825aa) and β (812aa) variants and the upper band 

the NFATc1/C α (943 aa) and β (930aa) isoforms (uniprot.org.; Entry O95644 

(NFAC1_HUMAN)). 

 

Why is NFATc1 dephosphorylated in GCB DLBCL cell lines? 

NFATc1 activity in GCB DLBCL cell lines stands in contradiction to the finding that 

cells show up regulation and constitutively active NFATc1 signaling as a result of 

activated BCR signaling which can be triggered either by antigen engagement or 

aberrantly by acquired somatic mutations. Activated BCR signaling leads to the 

generation of IP3, causing the mobilisation of intracellular Ca2+ which in turn initiates 

the influx of extracellular Ca2+ resulting in the activation of calcium dependent 

signaling such as NFAT (Le Roy et al., 2012; Young et al., 2015). This suggests that 

NFATc1 activity in GCB DLBCL could be regulated by a mechanism other than BCR 

signaling. GCB DLBCL were unveiled to be insensitive against targeted knock-down 

of BCR components such as the mIg light and heavy chain and the associated 

signaling chains CD79A and B. Also the RNAi mediated knock-down of BCR 

downstream signaling elements such as SYK, BLNK, BTK, PLCγ2, PKCβ, CARD11 

and the pharmacological inhibition of BTK by Ibrutinib, PKCβ by STN, MALT1 by z-

VRPR-fmk and IKK by e.g. MLN120B were found to be selectively toxic to ABC 

DLBCL that do not harbour a CARD11 mutation, but not to GCB DLBCL. (Ngo et 

al., 2006; Lam et al., 2005; Hailfinger et al., 2009; Davis et al., 2010). Furthermore, 

this lymphoma subtype does not exhibit common mutations in elements of the BCR 

signaling cascade. Based on these result, it could be concluded that in contrast to 

ABC DLBCL, GCB DLBCL do not rely on active BCR and integrated downstream 

signaling pathways such as NF-kB for survival (Davis et al., 2001). The chronically 

active BCR signaling of ABC DLBCL encompasses the activation of the PI3K 

pathway which is a hallmark of multiple cancer types as it is important for cell 
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survival, growth and proliferation by for instance linking BCR signaling to the 

prosurvival NF-kB pathway (Pfeifer et al., 2013). Furthermore, the constitutive PI3K 

activity was found to be vital for two ABC DLBCL cell lines harbouring CD79B 

mutations (Kloo et al., 2011). However, albeit GCB DLBCL do not exhibit chronic 

active BCR signaling, Chen et al. (2013) revealed that also a subset of GCB DLBCL 

depend on SYK mediated activation of the PI3K/AKT pathway. In line with the 

previous, the GCB DLBCL subtype maintains normal BCR expression but exhibits 

higher relative SYK expression, contributing to the activation of the PI3K/AKT 

pathway (Srinivasan et al., 2009; Kenkre et al., 2012; Chen et al., 2013).  

In accordance with this, GCB DLBCL were also reported to show mutations in the 

PI3K/AKT pathway negative regulatory phosphatase PTEN, genetic deletions on 

chr.10q23 comprising the PTEN locus and amplifications of the mIR17-192 micro 

RNA cluster that result in the inactivation of PTEN in more than 55% of cases and 

only in 14% of ABC DLBCL (Lenz et al., 2008; Xiao et al., 2008; Song et al., 2012; 

Chen et al., 2013; Pfeifer et al., 2013). Moreover, Pfeifer et al. (2013) revealed an 

addiction of PTEN deficient GCB DLBCL cell lines to PI3K/AKT signaling by 

reexpressing functional PTEN. An investigation of the BCR on the surface of ABC 

and GCB DLBCL cells revealed that that in contrast to ABC, the GCB DLBCL 

subtype does not show BCR low diffusion clusters, as they are known for antigen-

dependent stimulation of B-cells (Davis et al., 2010). The parallels of ABC DLBCL 

BCR signaling to antigen-stimulated active signaling in benign B-cells led to the 

assumption that the chronic active BCR signaling of ABC DLBCL may be driven by 

auto-antigens. These could be derived from various sources or even as reported in 

CLL, the ABC DLBCL BCR recognises its self, thereby acting as its own antigen 

ligand that triggers the intracellular signaling cascade. Considering these facts, 

it was suggested that the essential PI3K activity in GCB DLBCL cell lines is triggered 

by so called tonic BCR signaling, which is antigen-independent in contrast to the 

(auto)-antigen-dependent chronically active BCR signaling observed in ABC 

DLBCL. Tonic BCR signaling delivers antigen-independent “low level” survival 

signaling leading to low baseline NF-κB activity as it was shown in SU-DHL-4, 

SU-DHL-6 cells and enables long term survival of resting B-cells, independent from 

CARD11. (Gauld et al., 2002, Kraus et al., 2004; Monroe, 2004; Srinivasan et al., 

2009; Rossi et al., 2013; Chen et al., 2013). Taking into account the above illustrated 

mechanism of GCB DLBCL BCR signaling it would be conceivable that the activity 
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of NFATc1 in the GCB DLBCL cell lines investigated by this study is based on 

antigen-independent tonic BCR signaling which could lead next to a low baseline 

NF-κB activity also to a base-line NFAT activity as revealed in BJAB and HT cells. 

Why SU-DHL-4 cells exhibit only very weakly or no dephosphorylated NFATc1 albeit 

they were shown to have base-line NF-κB activity remains unresolved and could be 

an issue for further investigation. 

Whereas the GCB cell lines were entirely resistant, the inhibition of NFAT signaling 

by calcineurin inhibitors did not affect growth behaviour of all comprised ABC 

DLBCL cell lines in the same manner. Even though NFAT was seemingly active in 

all model cell lines and all of them expressed high IκBNS levels. Thus, calcineurin 

inhibition seemed to be selectively toxic and we could distinguish ABC DLBCL cell 

lines responding insensitively, medium sensitively and highly sensitively to 

calcineurin inhibitor treatment. In order to reveal the underlying reason why ABC 

DLBCL cell lines exhibit altered growth behaviour upon calcineurin inhibitor 

treatment, we found a clear correlation between increasing concentrations of 

calcineurin inhibitors and the reduced secretion of the survival promoting and pro-

proliferative interleukins IL-6 and IL-10 and corresponding STAT3 phosphorylation 

levels. ABC DLBCL were described by earlier studies to be addicted to an 

autocrine/paracrine positive feedback loop including IL-6 and IL-10, that is driven by 

NF-κB signaling and interleukin receptor downstream STAT3 phosphorylation 

(Moore et al., 2001; Kishimoto et al., 2005; Lam et al., 2008). Furthermore, we 

excluded some well known NF-κB signaling targets to be affected by calcineurin 

inhibitor treatment by testing the expression levels and revealed a dose-dependent 

negative effect of CsA mediated calcineurin inhibition on STAT3 phosphorylation, 

indicating that only a subset of NF-κB targets such as IL-6 and IL-10 are affected by 

calcineurin inhibition (Libermann and Baltimore, 1990; Xu and Shu, 2002). The 

described impact of pharmacological calcineurin inhibition on ABC DLBCL growth 

was thus most pronounced in inhibitor highly sensitive cell lines that exhibited the 

strongest decrease in p-STAT3 levels and IL-6 and IL-10 amounts. Whereas no 

change in secreted interleukin levels and STAT3 phosphorylation was observed in 

calcineurin inhibitor insensitive ABC DLBCL cell lines. A recently published work 

proposed a model in which calcineurin is recruited to the TCR and acts there as 

positive modulator of TCR downstream signaling by removing an inhibitory TCR 

activation induced phosphorylation (Dutta et al., 2017). As TCR and BCR signaling 
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show many similarities we propose calcineurin to be involved in BCR signaling, as 

well. We therefore speculate that calcineurin participates in BCR signaling positive 

regulation in ABC DLBCL that leads to enhanced NF-κB and NFAT signaling. Either 

this occurs indirectly by removing an inhibitory phosphorylation from an unknown 

substrate which in turn, in its active state, positively regulates BCR downstream 

signaling or directly by dephosphorylation of substrates in the BCR signaling chain.  

 

4.4 Calcineurin as positive regulator of BCR 
signaling 

In order to find the assumed putative calcineurin substrate(s) in BCR signaling,            

we conducted a phosphoproteom analysis by SILAC with subsequent MS with 

samples derived from CsA or FK506 treated ABC DLBCL HBL-1 cells. Indeed, 

phosphoproteom analysis identified a couple of putative new substrates that are 

involved BCR signaling. The fact that the found possible direct and indirect 

calcineurin substrates were far upstream in BCR-signaling would explain why CD79 

mutated ABC DLBCL cell lines were worst affected by calcineurin inhibitor 

treatment. Thus, it would be conceivable that NF-kB activating mutations of more 

downstream signaling elements such as CARMA1, TAK1 or A20 just compensate 

or mitigate the loss of the calcineurin mediated positive effect on BCR signaling as 

consequence of CsA or FK506 mediated calcineurin inhibition. This downstream 

mutation overwriting mechanism eventually leads to unaltered or only slightly 

declined NF-κB signaling and thus to an only minor impact on IL-6 and IL-10 

secretion of cells bearing such mutations such as OCI-LY3 or SU-DHL-2. This in 

turn would explain the more insensitive effect on the growth of those cell lines when 

treated with calcineurin inhibitors.  

Several putative calcineurin dependent dephosphorylation sites namely S197, 

T209, Y210, S215 in CD79A and S221 in CD79B were found hyperphosphorylated 

by phosphoproteom analysis in HBL-1 samples that were treated by the calcineurin 

inhibitors CsA and FK506. Except for S197, all putative calcineurin substrate sites 

found in CD79A are located C-terminally from the CD79A ITAM sequence (aa 185 

- aa 202) which plays a central role in transmembrane signal transduction. Essential 

for the functionality of the CD79A ITAM are two tyrosine-residues Y188 and Y199. 

In the context of ABC DLBCL biology, Davis et al. (2010) found by sequencing that 
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2,9% of patient derived biopsies had a mutation affecting CD79A. The ABC DLBCL 

cell line OCI-LY10 for instance, exhibits a heterozygous CD79A splice donor site 

mutation leading to a deletion of 18 aa, eradicating almost the whole ITAM 

sequence. Remarkably, over 90% of the OCI-LY-10 CD79A mRNA derived from the 

mutated allele. Under resting conditions, the BCR is suggested to be already 

associated with a preformed transducer complex as a prerequisite for BCR 

signaling, including kinases, phosphatases and diverse adaptor proteins (Wienands 

et al., 1996). In particular, Clark et al. (1992) conclude from their results that the 

cytoplasmic domains of CD79 associate with the src-family tyrosine kinases LYN 

and FYN, the PI3K and one or more serine/threonine (S/T) kinases, putative 

antagonists of calcineurin. 

Upon ligand binding of the IgM, a member of the src family protein-tyrosine kinase 

family, predominantly LYN initially catalyses, the phosphorylation of the first  

N-terminal ITAM tyrosine of CD79A and CD79B (see Figure 53.). Noteworthy, the 

ITAM tyrosines of CD79B are less efficiently phosphorylated than the corresponding 

CD79A tyrosines. This N-terminal p-tyrosine provides a docking site for the  

C-terminal SYK SH2-domain. SYK is described to be a vital component in BCR 

signaling and was shown by mouse knock out models to be indispensable for the 

majority of BCR signaling mediated responses to antigen binding (Takata et al., 

1994; Turner et al., 1995; Cheng et al., 1995; Cornall et al., 2000). A structural NMR 

based study conducted by Gaul et al., 2000, suggests that the preference of LYN 

towards the first ITAM tyrosine is based on the interaction of LYN with a glutamate 

residue three positions C-terminally and a glycine residue two aa N-terminally from 

the acceptor tyrosine (see Figure 53.). In order to generate proper signal 

transduction by CD79A however, asymmetrical ITAM phosphorylation is insufficient. 

Therefore, the phosphorylation of both ITAM tyrosines is required. Most likely, SYK 

itself exerts this second ITAM phosphorylation at Y199 (Rolli et al., 2002). Only then 

an interaction of the CD79A ITAM with the SYK tandem-arranged pair of SH2 

domains is possible and leads to SYK activation and further signal propagation. 

Long lasting SYK activity is needed by NFAT to remain active for more than one 

hour after the triggering of the BCR (Oh et al., 2007), indicating the importance of 

CD79 signaling for IκBNS expression. Not only CD79A and B ITAM tyrosine 

residues become phosphorylated upon BCR ligand binding but also several serine 

and threonine residues (Clark et al., 1992; Van Noesel et al., 1990; Leprince et al., 
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1992). Serine/threonine residue phosphorylation was observed in the cytoplasmic 

portions of various receptors and conferred either negative or positive influence on 

downstream signal transduction (Mufson, 1997; Lim and Cao, 1999; Li et al., 1999). 

Hence, Müller et al. (2000) were keen to figure out which impact the S/T residues in 

the cytoplasmic tail of CD79A (aa 166-aa 226) would have on BCR signaling.  

For this purpose, they mutated two serines and the threonine of the CD79A 

cytoplasmic domain (see Figure 53.) to non-phosphorylatable alanines and a valine, 

respectively. Among the mutated residues were also our putative CD79A calcineurin 

dephosphorylation sites S197 and T209. By testing the signaling function of this 

unphosphorylatable CD79A they revealed that the phosphorylated S/T residues of 

CD79A negatively regulate BLNK and ITAM tyrosine phosphorylation. In particular, 

they observed a stronger and more prolonged ITAM tyrosine phosphorylation of the 

S/T unphosphorylatable CD79A compared to the S/T phosphorylatable wild-type 

CD79A. This finding indicates that CD79A S/T kinases negatively modulate BCR 

signaling output. This is in accordance with our assumption that the S/T 

phosphatase calcineurin seems to positively regulate BCR signaling for instance by 

removing CD79A ITAM signaling hampering phosphorylations on S197, T209 and 

S215 as unveiled by SILAC/MS. This would establish calcineurin as an antagonist 

of the CD79A S/T kinases that negatively regulate CD79 proximal signaling. 

Moreover, Müller et al. also investigated the impact of the unphosphorylatable 

CD79A variant on the phosphorylation of both CD79A ITAM tyrosines, Y188 and 

Y199, from which the phosphorylation of the former is more pronounced. To analyse 

this, they substituted either one of ITAM tyrosines or both tyrosines with 

phenylalanines with and without an additional unphosphorylatable CD79A 

background. This experimental setting unveiled that the mutation of the N-terminal 

CD79A ITAM tyrosine (Y188F) leads to an only weakly phosphorylated second C-

terminal ITAM tyrosine in the context of a S/T phosphorylatable CD79A cytoplasmic 

tail. In contrast to that, a mutated N-terminal ITAM tyrosine in an S/T 

unphosphorylatable CD79A background results in an increase of the 

phosphorylation of the second ITAM tyrosine. On the other hand, the mutation of 

the C-terminal ITAM tyrosine (Y199F) in both CD79A backgrounds did not 

remarkably alter CD79A phosphorylation. From these outcomes the authors 

concluded that the phosphorylation of S/T residues in the cytoplasmic CD79A 

portion mainly regulates the phosphorylation of the C-terminal CD79A ITAM tyrosine 
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(Y199). This is also implicated as well by the fact that Y199 is situated in the 

proximity to three flanking serine residues (S197 and S203 and S215) and one 

threonine residue (T209). All of them except for S203 were found to be 

hyperphosphorylated in our SILAC/MS based phosphoproteom analysis conducted 

with samples derived from a calcineurin inhibitor treated ABC DLBCL cell line. 

Noteworthy, the binding of the second C-terminal ITAM tyrosine to SYK is stronger 

than that of the C-terminal SYK SH2 domain to the first N-terminal ITAM tyrosine 

(Fütterer et al., 1998). Considering the depicted facts, it’s reasonable to assume that 

the balance between phosphorylation and dephosphorylation of CD79 by 

associated so far unidentified kinases and phosphatases of the putative calcineurin 

target sites S197, T209 and S215 in the cytoplasmic portion possibly modulates the 

binding of SYK to CD79A and thus further signal transduction as well. In this 

proposed model, phosphorylation of the S/T residues impedes proper high-affinity 

SYK CD79 binding and further signaling, establishing a negative feedback loop. 

Whereas dephosphorylation of distinct aa-residues in the cytoplasmic portion by e.g. 

the S/T phosophatase calcineurin promotes the phosphorylation of the ITAM 

tyrosines followed by high-affinity binding of both SYK SH2 domains and proximal 

BCR signaling. The same mechanism we propose for CD79B.  

 

Why does calcineurin modulate upstream BCR signaling? 

Considering our obtained results in the context of the depicted literature it is 

conceivable that under BCR unligated conditions, the cytoplasmic portions of 

CD79A and B are constitutively phosphorylated by S/T kinases at the introduced 

serine and threonine residues in order to prevent premature or non-specific 

activation of proximal BCR signaling. Furthermore, upon ligand binding the delicate 

balance between phosphorylated and unphosphorylated S/T residues in the CD79 

cytoplasmic portion could represent a fine-tuning mechanism for the extent of BCR 

proximal signal propagation in order to adapt to external stimuli and to respond in 

adequate degree. Thus, when calcineurin is pharmacologically inhibited by the 

application of CsA or FK506, the phosphorylated CD79A/B state is predominant and 

BCR signal propagation to downstream pathways such as NF-κB, NFAT and AP-1 

is dampened or completely ceased. Unless downstream activating mutations in 

proteins like CARMA1 as found in the CsA/FK506 insensitive cell line OCI-LY3 

override this effect. Accordingly, the constitutive expression of NF-κB and NFAT 
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target genes such as IκBNS and IL-6 and IL-10 in ABC DLBCL in which calcineurin 

is constitutively active as indicated by dephosphorylated NFATc1, would be 

negatively affected by calcineurin inhibition, as well in turn leading to reduced growth 

and survival as seen in this study. Notably, this theory would be in line with the 

finding that T-cells that express an unphosphorylatable CD79A exhibit constitutive 

NFAT and thus calcineurin activity, as well (Müller et al., 2000).  

In contrast, it is also imaginable that under non-stimulated conditions, the CD79A 

and B cytoplasmic tails are kept in an S/T unphosphorylated state with the 

participation of calcineurin and other phosphatases and become gradually or at 

once phosphorylated instantly or after a certain time upon BCR engagement. Thus, 

in case calcineurin is inhibited just prior to and during BCR stimulation, CD79A 

would be hyperphosphorylated at all time and signal propagation would be blocked 

as ITAM tyrosines were not efficiently phosphorylated by src kinases as LYN.  

How the phosphorylated S/T residues in CD79A and B inhibit ITAM tyrosine 

phosphorylation by src kinases however remains elusive. Hypothetically, the 

phosphorylated serines and threonines could depict sites for protein-protein 

interactions providing binding platforms for proteins that consequently interfere with 

LYN and SYK binding and thus with further signal transduction, a mechanism that 

was already observed several times in other receptors (Yaffe and Cantley, 1999; 

Bünemann and Hosey, 1999; Levine, 1999). Another possibility is that the 

phosphorylated S/T residues just represent a steric hindrance for the binding of 

proximal signal transducers such as SYK and BLNK and thus disrupt the signaling 

cascade.  

Contrary to its positive impact on BCR proximal signaling, the cytoplasmic ITAM 

bearing part of CD79A was also found to encompass a function in BCR signal 

inhibition. This was concluded from mouse B-cells, expressing a truncated CD79A 

molecule lacking a large part of the endoplasmic tail thus including only 21 instead 

of 61 aa and lacking the ITAM sequence. These murine B-cells were hyperactive 

and could be stimulated easier by BCR cross-linking and additionally show 

constitutive BCR signaling. (Kraus et al.1999, Torres et al., 1996; Torres and Hafen, 

1999).  

This resembles the ABC DLBCL cell line OCI-LY10 which lacks aa 191 to aa 208, 

affecting a large stretch of the ITAM of CD79A including the second ITAM tyrosine 

and the putative calcineurin site S197 and just flanks T209, another putative 
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calcineurin target site found by the phosphoproteom analysis. Taking into account 

the findings from Müller et al. (2000) and the B-cells bearing truncated CD79A, this 

deletion could cause enhanced and sustained BCR signaling, consequently leading 

to NF-kB and NFAT signaling as the inhibitory function of p-S197 is missing, 

conferring a positive modulation similar to calcineurin by S197 dephosphorylation. 

SYK would then nevertheless be able to bind the CD79A N-terminal phosphorylated 

tyrosine albeit in a lower affinity and promote downstream signaling. Alike CD79A, 

CD79B also contains two ITAM tyrosines that upon src kinase mediated 

phosphorylation recruit and bind SYK (Rowley et al., 1995). Likewise in CD79A the 

second ITAM tyrosine of CD79B is surrounded by several S/T residues.  

As already mentioned earlier, the phosphoproteom analysis in HBL-1 also unveiled 

with S221 a putative calcineurin dephosphorylation site in CD79B in close proximity 

to the second ITAM tyrosine. Assuming that the theory of downstream signaling 

inhibitory S/T residues also applies for CD79B, the dephosphorylation of S221 by 

calcineurin could also result in enhanced CD79B ITAM tyrosine phosphorylation and 

lead to SYK recruitment and consequently to positive modulation of BCR signaling. 

Interestingly, the ABC DLBCL cell lines HBL-1 and TMD8 used in this study, harbour 

a heterozygous missense mutation leading to the substitution of the first CD79B 

ITAM tyrosine to a phenylalanine (HBL1-1: Y196F) or histidine (TMD8: Y196H), 

respectively, preventing their phosphorylation. However, though heterozygous, over 

90% of total CD79B mRNA in HBL-1 was originating from the mutant allele 

according to Davis et al. (2010). The replacement of the BCR proximal signaling 

essential first CD79B ITAM tyrosine was found by Davis et al (2010) to occur in 18% 

of patient derived samples. The group also found that this substitution of the first 

CD79B ITAM tyrosine led to elevated BCR surface levels and decreased LYN 

kinase activity. In accordance with this, also GCB DLBCLs that were reconstituted 

with common ABC DLBCL CD79 A or B mutants were observed to have higher 

surface Ig levels than wild-type controls. Moreover, also ABC DLBCL that were 

transduced with mutant CD79B expressed increased BCR amounts in their surface 

compared to wild-type bearing controls. Furthermore, murine B-cells that bear 

mutations in CD79A or CD79B ITAM tyrosines were shown to exhibit increased 

surface BCR levels due to inhibited receptor clathrin-dependent endocytosis.  

The increased number of BCR on the cell surface leads to the amplification of BCR 

signaling which calcineurin activity could even further enhance by 
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dephosphorylating S221 of CD79B and thus promote the phosphorylation of the 

second C-terminal ITAM tyrosine (Y207) providing a docking site for SYK. The CD79 

ITAMs are also needed for the controlled termination of BCR signaling as they 

mediate receptor internalisation. Notably, murine B-cells that harbour CD79A/B 

ITAM impairing mutations were observed to response more sensitive to antigen 

encounter (Gazumyan et al., 2006; Kraus et al., 1999; Torres et al., 1999). A study 

by Busman-Sahay (2013) who established a model system including both CD79 

subunits, showed that the N-terminal CD79B ITAM tyrosine (Y196) is the only ITAM 

tyrosine needed for internalisation. In addition to that, they also unveiled that the 

CD79A cytoplasmic portion is required to activate CD79B’s ability to trigger BCR 

receptor endocytosis. Thus, deletion mutations of CD79A as found in OCI-LY10 

could interfere as well with proper BCR internalisation. 

LYN is a further factor, needed for BCR internalisation that is as already mentioned 

above, less active in CD79B membrane-proximal ITAM tyrosine mutated cells  

(Ma et al., 2001; Niiro and Clark., 2002). LYN holds a dual role within BCR signaling 

since it promotes signaling by phosphorylating CD79 ITAM tyrosines but is also 

capable of attenuating BCR signaling by phosphorylating CD22 ITIMs leading to the 

recruitment of the protein tyrosine phosphatase SHP-1 (refer to: chapter BCR 

signaling). Conclusively, the mutation of the HBL-1 and TMD8 N-terminal ITAM 

tyrosine (Y196), the partial deletion of the CD79A ITAM as seen in OCI-LY10 cells 

or the deletion of the CD79A cytoplasmic portion would therefore result in declined 

LYN kinase activity mediated increased BCR surface presence, as a consequence 

of impaired endocytosis, promoting chronically active BCR signaling.  

The mutation of the first N-terminal CD79A ITAM tyrosine to phenylalanine by Müller 

et al. led to decreased phosphorylation of the second ITAM tyrosine in an otherwise 

S/T phosphorylatable CD79A cytoplasmic tail. However, in a non-phosphorylatable 

CD79A background, mimicking the dephosphorylated state as sustained by S/T 

phosphatases such as calcineurin, Y188F mutation resulted in enhanced 

phosphorylation of the second C-terminal ITAM tyrosine (Y199). Transferring these 

observations to CD79B in the context of HBL-1 and TMD8 mutations, this would 

mean that CD79B bearing the somatically acquired Y196H or Y196F mutations 

would exhibit higher phosphorylation of the second ITAM tyrosine (Y207) 

assumingly mediated by a src family kinase in a S/T dephosphorylated background 

sustained by calcineurin enzymatic activity resulting in positive modulation of 
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chronic BCR signaling in ABC DLBCL. However, as soon as the phosphate activity 

of calcineurin is blocked by CsA or FK506, S221 would not be kept in its 

phosphorylated state anymore and as a consequence of this, the second ITAM 

tyrosine Y207 would be phosphorylated only weakly. This would lead to an 

attenuating impact on the binding of SYK and consequently BCR signaling 

transduction. CD79B does not harbour non-ITAM tyrosines that are crucial for 

binding BLNK. Consequently, only CD79A is able to recruit BLNK to the BCR 

signaling complex upon ligand binding, though both CD79 subunits can bind SYK 

by phosphorylated ITAM tyrosines (Rowley et al., 1995). However, the CD79B 

subunit exhibits only weak ITAM tyrosine phosphorylation (Clark et al., 1992; 

Flaswinkel and Reth, 1994). Furthermore, CD79A and CD79B induce different kinds 

of calcium signaling. Only CD79A induces transmembrane Ca2+ influx and a long-

lasting single shot release of intracellular Ca2+ stores. Whereas CD79B induced 

emptying of intracellular Ca2+ stores is described to be brief and oscillatory (Choquet 

et al., 1993), indicating that CD79B alone does not have the competency to initiate 

proper primary BCR downstream signaling on its own. Luisiri et al. (1996) found that 

CD79B is able to enhance the tyrosine phosphorylation of CD79A by more than          

10-fold associated with a reduction of the stimulation threshold for tyrosine              

kinase activation. Therefore, CD79B seems rather to regulate CD79A tyrosine 

phosphorylation and thus the signaling transducing capability of CD79A instead of 

inducing primary BCR-signaling itself. Considering the CD79B ITAM tyrosine 

phosphorylation promoting influence on CD79A, calcineurin phosphatase inhibition 

that leads to an increased CD79B S221 phosphorylation and assumingly to the 

inhibition of ITAM tyrosines phosphorylation and thus to the prevention of SYK 

binding to CD79B could therefore also interfere with the ability of CD79B to 

positively regulate CD79A ITAM tyrosine phosphorylation and thus to negatively 

regulate the proximal BCR signaling cascade. 

Phosphoproteom analysis also revealed the CD79A non ITAM residue Y210 to be 

hyperphosphorylated under calcineurin inhibitory conditions in the ABC DLBCL cell 

line HBL-1. Kabak et al. (2002) all showed the corresponding ITAM flanking murine 

residue Y204 to be required, in its phosphorylated state, for the recruitment and 

direct binding to the linker protein BLNK by its SH2 domain. They also conclude 

from their findings that the murine Y176 (human Y182), which was not found to be 

phosphorylated, contributing to a functional coupling of BLNK to CD79A by a 
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phosphorylation independent mechanism. They suppose that this contribution to 

BLNK binding is achieved by the spatial orientation of BLNK to the kinase domain 

of SYK. The binding of BLNK to CD79A by phosphorylated Y210 brings BLNK into  

proximity of the CD79A ITAM tyrosine bound SYK. Consequently, SYK is capable  

of phosphorylating BLNK tyrosines that serve as binding partners for SH2 domains 

of different signaling proteins that integrate multiple downstream signaling 

pathways. In this manner, SYK activation is linked to downstream pathways. 

Moreover, Kabak et al. (2002) report that tyrosine-to-phenylalanine mutation of 

Y204 (corresponding to the human Y210) and to a lesser extent Y176 

(corresponding to the human Y182) led to a reduction of BLNK phosphorylation and 

subsequent BLNK dependent pathways like JNK activation. Furthermore, CD79A 

Y176 and Y204 (human: Y182 and Y210) mutation and the consequent inability of 

BLNK to bind CD79A cannot be compensated by CD79B as it does not harbour any 

tyrosine residues outside of the ITAM in its cytoplasmic domain (Müller et al., 2000). 

The enhanced phosphorylation of the CD79A Y210 upon CsA and FK506 treatment 

of HBL-1 and the subsequent BLNK binding and SYK dependent phosphorylation 

assumingly results in the maintenance of BCR downstream signaling as suggested 

by Kabak and colleagues. This contradicts the proposed role of the S/T phosphatase 

as a positive modulator of BCR signaling. Moreover, it stands also in opposition to 

the suggestion of Kabak et al. that SYK recruitment by phosphorylated CD79A ITAM 

tyrosines is a prerequisite for the phosphorylation of Y204 (human Y210). On the 

other hand, Müller et al. (2000) assume based on their findings that the rapid 

phosphorylation of BLNK does not need prior ITAM phosphorylation and suggest 

that the phosphorylation of S/T residues in CD79A negatively regulates BLNK and 

ITAM phosphorylation. One possible explanation for this calcineurin inhibition 

induced Y210 hyperphosphorylation could be a mechanism in which after a certain 

time of calcineurin inhibition that leads to a negative impact on BCR-signaling by the 

above described mechanism, Y210 is phosphorylated e.g. by a certain src-kinase 

establishing some kind of bypass in order to maintain BCR signaling. This signaling 

is supposed to be of a small magnitude as BCR signaling addicted ABC DLBCL that 

do not harbour CD79 proximal BCR signaling or NF-kB and NFAT activating genetic 

alterations such as the mutation of CARD11 or the deletion of A20, respectively are 

impaired in growth. Moreover, as observed by the treatment of ABC DLBCL cell 
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lines with calcineurin inhibitors, the expression of mutual NF-kB and NFAT target 

genes such as IκBNS become clearly reduced. 

Furthermore, also the scaffold protein BLNK was affected by the inhibition of 

calcineurin S/T phosphatase activity. The BLNK aa-residues S129; S213; S409 and 

S270 were found to be hypophosphorylated as a consequence of pharmacological 

calcineurin phosphatase activity inhibition by CsA and FK506. As calcineurin is a 

phosphatase, this hypophosphorylation has to be a secondary effect, assumingly 

caused by a kinase that is positively regulated by calcineurin. This result also 

suggests that these serine residues participate in positive regulation of BCR 

downstream signaling when they are phosphorylated. Their actual function(s) 

however remains elusive and should be an issue of future studies e.g. by assessing 

the effects on downstream signaling by replacing the serine residues through 

unphosphorylatable or phosphomimicking residues. 

However, it also conceivable that the CD79A Y210 residue that was phosphorylated 

in the proposed bypass mechanism under calcineurin inhibition is bound by BLNK 

which is subsequently relieved of inhibitory phosphorylations by the activity of an 

unknown S/T phosphatase at S129; S213; S409 and S270, which are to the best of 

our knowledge undescribed in literature. Inhibition of those phosphorylations in turn 

would lead to an aberrant BLNK function because SYK does not phosphorylate the 

tyrosine residues that serve as binding platform for signaling elements. SYK would 

not be active due to the lacking phosphorylations of the CD79A/B ITAM tyrosines to 

which it normally binds and subsequently gets activated. 

According to the conducted phosphoproteom analysis, also the BCL-10 residue 

S138 was affected by calcineurin inhibition as it was found to be present in a hyper-

phosphorylated state, indicating that this particular phosphorylated BCL-10 serine 

residue is a substrate of calcineurin S/T phosphatase activity. This finding is in line 

with a study conducted by Palkowitsch et al. (2011). They report that calcium influx 

is essential for proper CBM complex formation as the calcium dependent 

catalytically active calcineurin subunit CnA in stimulated Jurkat T-cells and in vitro 

was found to positively affect the formation of the CBM complex by the 

dephosphorylation of BCL-10. Thus, they suggest that the calcium signaling 

dependent S/T phosphatase calcineurin is implicated in the assembly of the CBM 

complex. As the formation of the CBM complex is a prerequisite for NF-κB activity 

the calcineurin dependent BCL-10 dephosphorylation also positively regulates TCR 
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induced activity of NF-κB signaling. Also Zeng et al. (2007) conclude from their 

experiments that T-cell activation induces BCL-10 phosphorylation. BCL-10 S138 

and the surrounding serine residues S134, S136, S141 and S144 in the 

serine/threonine rich C-terminal BCL-10 domain that contains about 20% S/T 

residues are known to be IKKβ targets (Wegener et al., 2006).                                            

Their phosphorylation by IKKβ was found to interfere with T-cell activation as it leads 

to a change in the structure of the MALT1-BCL-10 dimer that is present in the 

cytoplasm of unstimulated cells, resulting in the attenuation of CBM complex 

assembly when cells are stimulated (Wegener et al., 2006). Thus IKKβ acts also 

upstream of IκB phosphorylation by phosphorylating BCL-10 and is in this fashion 

able to negatively and positively regulate antigen receptor induced NF-kB activity, 

establishing a negative feedback mechanism by the phosphorylation of BCL-10 at 

S138. In accordance with this, studies conducted by Scharschmidt et al. (2004) and 

Hu et al. (2006) describe an ubiquitin mediated degradation of BCL-10 that is 

induced by T-cell activation. Palkowitsch and colleagues found that calcineurin acts 

as IKKβ antagonist since they observed calcineurin to reverse the IKKβ mediated 

BCL-10 hyperphosphorylation. Especially the phosphorylation of S138 is associated 

with a signal-induced degradation of BCL-10. Zeng et al. (2007) mutated S138 to 

an alanine and observed an impaired T-cell activation-induced phosphorylation 

of BCL-10, prevented activation-induced BCL-10 ubiquitination and thus a 

delayed BCL-10 degradation. Consequently, the replacement of serine 138 to an 

unphosphorylatable alanine results also in prolonged NF-κB signaling and 

consistent with that an increased IL-2 secretion. In consistency with this, the 

mutation of these BCL-10 serines by Wegener et al (2006) was also found to result 

in enhanced expression of the NF-kB target genes IL-2 and TNF-α upon activation 

of primary T-cells. These finding is in accordance with the revealed reduced 

expression of the NF-κB targets IL-6 and IL-10 in calcineurin inhibitor sensitive ABC 

DLBCL cell lines in this study. In summary, Zeng and colleagues conclude from 

these findings that the phosphorylation at the BCL-10 S138 is the trigger for  

BCL-10 ubiquitination and subsequent degradation upon cell activation. 

Furthermore, the phosphorylation of BCL-10 at S138 was found to negatively 

regulate the NF-κB pathway and subsequent IL-2 production, assumingly in order 

to properly terminate T-cell activation. By co-immunoprecipitation Palkowitsch et al. 

revealed that CnA obviously interacts constitutively with the CBM complex 
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components MALT1 and CARMA1. Moreover, they also demonstrate that the 

pharmacological calcineurin inhibitors (CsA and FK506) and in a weaker extent the 

siRNA mediated knockdown of CnA interferes with P/I or anti-CD3/28-induced CBM 

complex assembly in T-cells. This was indicated by a reduction of BCL-10-CARMA1 

interaction. Moreover, Zeng et al. confirmed the impairing effect of the 

unphosphorylatable BCL-10 S138A mutation on cell activation-induced degradation 

of BCL-10, they had observed in Jurkat T-cells as well as in primary murine splenic  

B-cells. Due to this and because B-cells share many similarities with T-cell antigen-

receptor signaling it is justified to transfer the results obtained by Zeng and 

Palkowitsch into the context of ABC DLBCL signaling. Thus we suggest, that the 

chronically active BCR and Ca2+ signaling induced calcineurin constitutively 

dephosphorylates BCL-10 at S138. This in turn results in a promotion of CBM 

complex formation and an inhibition of ubiquitin mediated BCL-10 degradation. This 

means that the inhibition of calcineurin by CsA or FK506 BCL-10 results in BCL-10 

hyperphosphorylation at S138, assumingly mediated by IKKβ. This in turn leads  

to enhanced BCL-10 ubiquitination followed by BCL-10 degradation.  

The downregulation of BCL-10 has a negative regulatory effect on NF-κB signaling 

resulting in diminished transcriptional induction of respective NF-κB target genes 

such as IκBNS as well as IL-6 and IL-10. As a consequence of the proposed 

mechanism, especially ABC DLBCL cell lines like HBL-1 and TMD8 that do not 

harbour CBM complex formation promoting or CBM downstream NF-κB signaling 

activating mutations could therefore be very sensitive towards the treatment with 

pharmacological inhibitors of calcineurin.  

Taken together, there exist several elements at different positions in antigen 

receptor signaling on which calcineurin S/T phosphatase activity could exert its 

positive regulatory influence on the signaling cascade. The different mutation 

pattern of ABC DLBCL are suggested to influence the consequences of calcineurin 

inhibition. Only ABC DLBCL cell lines harbouring signaling transduction activating 

mutations downstream of calcineurin engagement in proximal BCR signaling are 

supposed to compensate or mitigate the loss of calcineurin positive modulation and 

are thus less to non-sensitive towards CsA and FK506 treatment. 
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Figure 53. CD79A and B amino-acid sequences. (a, b) In bold: the CD79A/B cytoplasmic 

portions. Underlined: the CD79A/B ITAM sequences. ITAM regions were revealed to be affected 

by somatically acquired mutations in 2,9% of GCB DLBCLs and 21,1% of ABC DLBCL. 

Highlighted in red: ITAM tyrosines which are important in their phosphorylated state for SYK 

binding at the sequence positions (a) Y188 and Y199 in CD79A and (b) Y196 and Y207 in CD79B. 

The CD79B N-terminal ITAM tyrosine (Y196) was found to be substituted by multiple amino acids 

due to point mutations in 18% of ABC DLBCL as for instance in HBL-1 (Y196F) and TMD8 

(Y196H) model cell lines. The ABC DLBCL cell line model OCI-LY10 has a heterozygous splice 

donor site mutation that leads to the deletion of 18 aa affecting the majority of the ITAM sequence. 

Highlighted in yellow: S/T/Y residues found hyperphosphorylated by phosphoproteom analysis upon 

CsA and FK506 treatment of HBL-1 cells. For further information see continuous text. Amino-acid 

sequences taken from uniprot.org: Entry name: CD79A_HUMAN; Entry P11912; Entry name: 

CD79B_HUMAN; Entry: P40259. 

 

4.5 Characterisation of two IκBNS isoforms  

RNAi mediated knockdown and the application of the CRISPR/Cas9 technique both, 

originally designed to target IκBNS p35, revealed the presence of a second IκBNS 

isoform sharing the respective target sequences and originating from the same gene 

locus. The new isoform was observed to be expressed always along with the IκBNS 

p35 protein in all tested cell lines and exhibits a size of approximately 70 kDa in 
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SDS-PAGE. Consequently, protein levels were affected by both gene expression 

editing techniques. This new IκBNS p70 isoform was observed to exhibit an 

endogenous expression level more than twice as high as IκBNS p35 under 

constitutive expression in ABC DLBCL and P/I and anti-CD3/28 triggered 

expression in GCB DLBCL, Burkitt’s lymphoma and T-ALL cell lines. On the other 

hand, IκBNS p70 showed the same characteristics as IκBNS p35 regarding 

expression levels and subcellular distribution upon P/I mediated cell stimulation in 

GCB DLBCL cell lines and under constitutive expression in ABC DLBCL. The 

treatment of ABC DLBCL cell lines with cycloheximide revealed no difference 

between half-lifes of both IκBNS isoforms. 

The 70 kDa IκBNS specific signal was already described by earlier studies in murine 

cells and was assumed to emanate from one gene locus but was suggested to be 

generated by a posttranslational modification (Schuster et al., 2012; Jeltsch et al., 

2014). Deep sequencing comprising ABC DLBCL samples revealed that there exists 

only one Nfκbid mRNA that should be therefore the origin of both, the IκBNS p35 

and p70 signal. Indeed, the usage of an ORF prediction tool applied on the Nfκbid 

mRNA sequence, unveiled the existence of a second ORF that was validated to be 

the origin of the IκBNS p70 protein. According to this analysis, IκBNS p70 is protein 

made up of 572 aa with a predicted molecular weight of 61 kDa. In particular, the 

newly established IκBNS p70 aa sequence includes the whole IκBNS p35 

sequence, bearing six ankyrin repeats important for protein-protein interactions. 

Further, it exhibits an additional 259 aa counting unstructured N-terminal tail of so 

far unknown function. With this putative IκBNS p70 aa-sequence, we generated an 

expression construct comprising the above described aa-sequence and expressed 

it transiently in HEK293T and over a longer period of time, lentivirally mediated in 

Jurkat T-cells. By comparing the introduced IκBNS p70 with the endogenously 

expressed IκBNS p70 of ABC cell lines and the P/I induced IκBNS p70 of Jurkat 

T-cells by immunoblotting, we observed that the 61 kDa predicted sequence actually 

exhibits the same size and band pattern as the endogenous counterpart, indicating 

the validity of our IκBNS p70. The multiple bands that were observed to be specific 

for both IκBNS isoforms could constitute post translationally modified versions of the 

IκBNS p70 isoform of so far unknown function. The lentiviral expression of both 

isoforms in Jurkat T-cells revealed as well an autoinhibitory feedback loop of IκBNS. 

The expression of the endogenous IκBNS p35 and p70 isoform was remarkably 
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diminished upon P/I mediated cell stimulation under simultaneous lentiviral 

overexpression of IκBNS p35 and p70. This assumed autoinhibitory feedback loop 

is likely made to prevent a surplus of IκBNS expression what would also result in a 

dysregulation of putative IκBNS controlled target genes. 

In order to further validate the existence of the predicted IκBNS p70, we generated 

an antibody against aa 215- aa 231 of the IκBNS p70 sequence, an epitope located 

within the additional N-terminal tail. By application of this antibody in immunoblotting 

we were indeed able to detect an upcoming band of approximately 70 kDa by P/I 

mediated stimulation of BJAB cells. As expected, the IκBNS p35 isoform was not 

detectable with this IκBNS p70 specific antibody. Unfortunately, the seemingly 

IκBNS specific 70 kDa band was partly covered by an unspecific band. 

The difference in the protein sequences of the distinct IκBNS isoforms should have 

an impact on protein structure and function, as well. However, we could not assign 

any structure to the additional N-terminal portion of IκBNS p70 and thus no obvious 

function. It is conceivable that this unstructured region could represent some kind of 

autoinhibitory peptide domain that covers ankyrin repeats, keeping IκBNS p70 in an 

inactive state. Due to steric reasons, this would prevent interactions with unknown 

interaction partners and Rel family proteins IκBNS was shown to interact with (Fiorini 

et al., 2002; Hirotani et al., 2005; Schuster et al., 2012). However, by an unknown 

mechanism assumingly a phosphorylation event, the autoinhibitory portion could 

alter its spatial orientation and its autoinhibitory property could be abrogated and  

IκBNS p70 could become additionally to its smaller isoform active as transcriptional 

regulator. This mechanism would introduce a new layer of IκBNS controlled target 

gene regulation. Another possibility is that the additional N-terminal portion of the 

IκBNS p70 isoform comprises a yet unrecognised TAD. A comparable issue is 

known for the three described IκBζ splicing variants IκBζ (S, L and D) (Kitamura et 

al., 2000; Haruta et al., 2001; Ito et al., 2004). Whereas IκBζ(S) and IκBζ(L) are 

known to contain a TAD, IκBζ(D) misses such a domain. Regarding IκBζ, this 

difference between the isoforms became functionally obvious in an experiment in 

which a retroviral mediated expression of IκBζ (S) and (L) but not IκBζ(D) in a mouse 

fibroblast cell line resulted in increased IL-6 production (Motoyama et al., 2005). The 

presence of a TAD in the IκBNS p70 N-terminus would establish a dual system 

consisting of a putative transcriptional negative regulator namely IκBNS p35 that 

lacks a TAD and IκBNS p70 that possesses a TAD as transcriptional positive 
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regulator. Consequently, this would mean a fine tuning mechanism for IκBNS 

controlled target genes. Therefore, future experiments should shed light on the 

function of the of the additional N-terminal portion of IκBNS p70. For instance by 

targeted knockdown of only one isoform in ABC DLBCL or conducting GAL4 fusion 

protein reporter assays with the 259 aa IκBNS p70 N-terminal tail. 

 

4.6 IκBNS is essential for ABC DLBCL survival and 
might promote immune escape of ABC DLBCL 
by regulating MHCII surface expression 

The importance of constitutive IκBNS expression for ABC DLBCL biology was 

demonstrated by the induction of toxicity selectively in ABC DLBCL cell lines by 

shRNA mediated knock-down of IκBNS within one week. In contrast, 

overexpression of IκBNS p35 did neither impair nor confer a growth advantage to 

neither GCB nor ABC DLBCL cell lines. This indicates that putative targets genes 

controlled by IκBNS are critical for ABC DLBCL survival and a further increase of 

the IκBNS p35 protein amount in ABC DLBCL does not affect cell growth. In 

summary, our results suggest that IκBNS is a crucial mediator of canonical NF-κB 

activity in the NF-κB signaling addicted ABC subtype of DLBCL. As IκBNS 

expression seems to be vital for ABC DLBCL survival, IκBNS could represent a 

promising suitable molecular target in the therapy of ABC DLBCL. Since IκBNS does 

not exhibit enzyme activity, a negative impact on its functionality should rather 

interfere with its function as transcriptional inducer and repressor. This could be 

achieved by designing small peptides/molecules mimicking the binding sites from 

NF-κB interaction partners of IκBNS. In this manner, IκBNS would not be able 

anymore to associate with NF-κB subunits and as a consequence of this not having 

transcriptional control neither positively nor negatively over its target genes.  

shRNA mediated knock-down of IκBNS in the ABC DLBCL cell line HBL-1 followed 

by RNAseq revealed several genes encoding classical MHCII molecules such as 

HLA-DRA1, HLA-DRB, HLA-DRB1,HLA-DQA, the invariant chain (CD74) and also 

the class II major histocompatibility complex transactivator “CIITA” which represents 

the essential master regulator of MHCII expression to be negatively regulated IκBNS 

target genes. The treatment of HBL-1, OCI-LY3 and TMD8 cells with calcineurin 

inhibitors, which was known to us to cause IκBNS knock-down, actually resulted in 
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a calcineurin inhibitor dose dependent increase of HLA-DR surface presentation as 

previously indicated by RNAseq results. To substantiate that IκBNS has indeed a 

direct negative regulating impact on HLA-DR surface levels, both IκBNS isoforms 

were lentivirally expressed in the GCB DLBCL cell line BJAB and the Burkitt’s 

lymphoma cell line RAJI that do not express endogenous IκBNS. Indeed, as 

expected, the overexpression of IκBNS p35 or p70 in the mentioned B-cell lines 

caused a clear reduction of HLA-DR surface expression at a comparable, 

suggesting that IκBNS is indeed a MHCII negative regulator. This finding is from 

interest in respect of possible DLBCL treatment options. Clinical studies with DLBCL 

patients conducted by Rimsza et al. in 2007 show that low levels of MHC class II 

HLA-DR molecules on DLBCL are associated with a remarkable poor survival 

outcome of patients. This association is most likely based on the finding that 

decreased levels or also even the loss of MHCII on DLBCL cells causes an impaired 

tumor-infiltrating T-cell response and as consequence of this a compromised 

immunosurveillance of the tumorigenic cells (List et al., 1993; Rimsza et al., 2004; 

Roberts et al., 2006; Kendrick et al., 2017). Efficient and sustained anti-tumor 

response in the priming and effector phase needs the assistance from CD4+ T-cells 

that recognise MHCII molecules displayed on the surface of professional APCs such 

as B-cells (Toes et al., 1998; Ossendrop et al., 2000). Accordingly, the loss of MHCII  

is commonly observed in oncogenic diseases and represents a mechanism with 

which malignant cells are capable of editing the immune system to their advantage 

by preventing their detection and subsequent elimination. This mechanism is also 

called “immune escape” (Khong et al., 2002; Dunn et al., 2002; Beatty and Gladney 

2015). Furthermore, our RNAseq results are consistent with the finding of Rimsza 

et al. (2006) that show that the expression of classical and non-classical MHCII 

molecules as well as CD74 in DLBCL is associated with the expression of CIITA. 

This non-DNA-binding MHCII expression master transcriptional factor was found in 

this study by RNAseq to be increased upon IκBNS knock down in HBL-1 cells. Thus, 

it can be assumed that IκBNS is a negative regulator of CIITA function. Further 

experiments should therefore investigate the interaction between IκBNS and the 

transcriptional regulation of the CIITA encoding gene MHC2TA and moreover the 

“CIITA enhanceosome complex” that serves as CIITA docking platform and thus 

regulates CIITA target gene transcription. MHC2TA transcription is controlled by 

four distinct not-coregulated promoters (pI to IV). In B-cells transcription of MHC2TA 
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was found to be initiated from pIII (LeibundGut-Landmann et al., 2004). As GCB 

DLBCL cell lines were found during this study not to express IκBNS, the finding by 

Wilkinson et al. (2012) that in general MHCII expression of GCB DLBCL is 

significantly higher than in ABC DLBCL is in accordance with our results. This could 

be one reason why the ABC DLBCL subtype exhibits a more aggressive clinical 

course and decreased patient survival than the GCB subtype. Remarkably reduced 

MHCII surface levels were for instance observed by Cycon et al. (2009) in OCI-LY3 

cells that were caused by a dyscoordinated downregulation of the MHCII β-chain for 

an unknown reason. However, they are also other reasons that are clearly 

independent from IκBNS expression why some ABC DLBCL do express reduced or 

not express MHCII molecules. Cycon et al. (2009) found that the ABC DLBCL cell 

line OCI-LY10 harbours a homozygous deletion in the MHCII locus and thus the cell 

line has no detectable HLA-DR and HLA-DQ expression. According to our results, 

it can be said that the low levels of MHCII molecules on the surface of ABC DLBCL, 

that are characterised by adverse survival under treatment is caused by a steady 

state expression of IκBNS that conveys a clear survival advantage over GCB 

DLBCL in respect of immune evasion. Taking into account the previously mentioned 

facts and that we have shown that artificial IκBNS p35 and p70 overexpression in  

B-cell lines causes decreased HLA-DR surface levels, it is valid to claim that one 

reason why ABC DLBCL cell lines were selected to express high levels of 

endogenous IκBNS p35 and p70 could be its capability to repress HLA-DR surface 

levels by a so far unknown mechanism. This in turn leads to decreased 

immunogenicity of the cells and therefore augmented immune escape and thus 

survival of ABC DLBCL.  
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4.7 Calcineurin inhibitor administration as 
additional therapeutic option to R-CHOP in the 
treatment of ABC DLBCL 

Considering the findings regarding the impact of calcineurin inhibitor treatment on 

certain ABC DLBCLs in this study, the inhibition of calcineurin seems to hold a not 

negligible therapeutic potential in the treatment of ABC DLBCL. The calcineurin 

inhibitors CsA and FK506 are commonly used as potent immunosuppressive 

especially in preventing transplant rejection and in the therapy of autoimmune 

diseases. CsA and FK506 mediated calcineurin inhibition was found by this study 

to clearly impair the growth of ABC DLBCL with a certain mutation pattern.  

This growth impairing effect was revealed to be caused by reduced NFAT and 

NF-kB signaling the consequently resulted in decreased secretion levels of the pro-

proliferative IL-6 and IL-10 and reduced IκBNS expression. For this reason, 

we suppose that calcineurin inhibitor treatment could be suitable for ABC DLBCL 

that harbour mutations which are upstream of MALT1. CsA or FK506 treatment 

could thus be applied prior to the R-CHOP regimen in order to weaken the cells by 

interfering with the BCR antigen-receptor signaling cascade and Ca2+/NFAT 

signaling. This interference in turn results in a reduction of the aberrant pro-

proliferative and anti-apoptotic NF-kB signaling in ABC DLBCL. As a consequence 

of this, also the expression of (mutual) NF-kB and NFAT target genes such as the 

vital IκBNS would be affected by this R-CHOP complementary pre-treatment. 

Moreover, calcineurin inhibitor treatment of ABC DLBCL cell lines study was found 

by this study to lead to increased surface expression of MHCII molecules most likely 

by the down-regulation of IκBNS. The MHCII down regulating impact of IκBNS could 

be exploited as well by a R-CHOP complementary pre-treatment of ABC DLBCL 

with calcineurin inhibitory compounds. Increased MHCII surface levels would 

enhance the immunogenicity of the ABC DLBCL cells in turn leading to a better 

immunosurveillance and finally a more effective anti-tumor immune response. 

 

 

 

 

 



  Discussion 
 

186 

 

4.8 IκBNS and its relative IκBζ 

According to our results, constitutive IκBNS expression represents an intrinsic 

advantage for ABC DLBCL tumor survival as its shRNA mediated knock down led 

to the induction of toxicity in ABC DLBCL. We elucidated one possible mechanism 

why IκBNS expression is a survival advantage for ABC DLBCL. We showed IκBNS 

expression to negatively regulate MHCII surface presentation assumingly leading to 

reduced immunosurveillance of the oncogenic cell. But is this mechanism the only 

reason why ABC DLBCL were selected to express IκBNS steady state levels? 

The human atypical IκB proteins IκBNS and its relative IκBζ share a sequence 

similarity of 26% (their murine counterparts 43%) and were shown to share 

characteristics regarding effector functions in several cell types and also in respect 

of their regulation and role in the pathogenesis of the ABC subtype of DLBCL.  

Both IκBs were revealed to be upregulated by constitutive NF-κB signaling and thus 

to be overexpressed in the ABC DLBCL subtype. Furthermore, the shRNA mediated 

downregulation of IκBNS and IκBζ had a toxic effect on ABC DLBCL cell lines 

indicating that the target genes under their transcriptional control are critical for the 

survival of ABC DLBCL (This study; Nogai et al., 2013). Moreover, as found by 

Nogai et al. (2013) shRNA mediated knock-down of IκBζ downregulates the 

expression of IL-6 and IL-10 in ABC DLBCL cell lines. An investigation of IκBζ 

lacking B-cells by Hanihara et al., 2013 revealed that IκBζ is essential for the 

induction of several genes such as IL-10 upon BCR or TLR stimulation. In addition 

to that, IκBζ was described by several studies to positively regulate IL-6 in various 

cell types. In human monocytes for instance, the expression of IL-6 depends on the 

binding of p50/IκBζ heterodimers to its promoter. This finding could be confirmed by 

monocytes that exhibit higher IκBζ expression than monocyte-derived macrophages 

as their IL-6 expression reflected the distinct IκBζ expression levels (Seshadri et al., 

2009). Furthermore, in murine macrophages, IκBζ/p50/p50 complexes bind to the 

IL-6 locus and increase transcription when the cells were stimulated with TLR 

ligands and IL-1 (Yamamoto, 2004; Eto, 2003). In consistence with this, 

overexpression of IκBζ leads to increased IL-6 expression, whereas a lack of IκBζ 

results in reduced IL-6 expression (Yamamoto et al., 2004; Kitamura et al., 2000). 

Additionally, IκBζ regulates IL-12p40 expression by binding to its promoter and in 

line with this, IκBζ deficient cells were observed to express less IL-12p40 

(Yamamoto et al., 2004; Kayama et al., 2008). Moreover, also IκBζ-defective 
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conventional DCs were shown to express less LPS-induced IL-6 (Okamoto et al., 

2010). Also IκBNS was shown to be involved in the regulation of IL-6, IL-10 and 

IL12p40. IκBNS is described to be crucial for the expression of IL-6 and  

IL-12p40 in bone marrow derived DCs (Kuwata et al., 2006). However, in 

macrophages and DCs lacking IκBNS, LPS induced a prolonged and increased IL-

6 and IL-12p40 expression. This suggested that IκBNS is a negative regulator of 

LPS induced IL-6 and IL-12p40 expression in macrophages. It was supposed that 

an IκBNS/p50 complex is needed to end IL-6 expression (Hirotani et al., 2005; 

Kuwata et al., 2006). Annemann et al, (2015) observed a reduced secretion of  

IL-10 in IκBNS deficient TH17 cells. They revealed IκBNS to bind to the IL-10 gene 

locus in stimulated TH17 cells and found decreased expression of IL-10 in IκBNS 

lacking TH17 cells, indicating IL-10 to be a direct positively regulated target of IκBNS 

in this T-cell subset. This means that IκBζ and IκBNS share the regulation of certain 

target genes such as IL-6, IL-10 and IL-12p40. Furthermore, both atypical IκBs 

seem to have an essential positive regulator function on IFN-γ gene expression. 

Mature CD4+ T-cells deficient for IκBNS for example show reduced IFN-γ 

expression upon anti-CD3/28 antibody mediated TCR stimulation (Touma et al., 

2007). Furthermore, decreased IFN-γ production was also observed by IκBNS 

knock-out lymphocytes and CD8+ T-cells derived from lymph nodes (Touma et al., 

2007). IκBζ was like IκBNS found to be indispensable for IFN-γ production by NK 

cells. In this respect, IκBζ was shown to be induced by IL-12 or IL-18 stimulation of 

NK cells and subsequently recruited to the IFN-γ gene promoter region (Miyake et 

al., 2010). In accordance with the previous, IκBζ was found to associated with the 

IFN-γ promoter in a complex including p50/p65 (Kannan et al., 2011). IκBζ deficient 

mice were observed to exhibit impaired TH17 development resulting in resistance 

to experimental autoimmune encephalomyelitis (EAE) when they were immunised 

with the myelin oligodendrocyte glycoprotein (MOG)-peptide (Okamoto et al., 2010). 

Also a mouse model lacking IκBNS expression was found to be more resistant to 

EAE induction (Kobayashi et al., 2014). In addition, IκBζ and IκBNS deficient mice 

exhibit a deregulated humoral immune response as indicated by markedly reduced 

IgM and IgG3 serum levels (Touma et al., 2011; Arnold et al., 2012; Hanihara et al., 

2013). In case of IκBNS deficiency this could be illustrated in the production of less 

antigen-specific antibodies against influenza viruses. Moreover, B-cells from IκBNS 

deficient mice also exhibit a defective IgG3 class switch (Touma et al., 2011). 
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Both atypical NF-kB inhibitors were also reported by several studies to be implicated 

in TH17 development and proliferation whereby IκBζ seems to play more important 

role than IκBNS. Mice deficient for IκBNS showed a clearly reduced number of IL-

17+ T-cells under C.rodentium infection, induced EAE and colitis. Furthermore, 

TH17-cells lacking IκBNS exhibited impaired expression of IL-10, IL-17A, IL-17F 

and GM-CSF (Annemann et al., 2015; Kobayashi et al., 2014). Notably, also GM-

CSF mRNA expression of LPS stimulated peritoneal macrophages was found to be 

dependent from IκBζ (Yamamoto et al., 2004). Also described is a defective TH17-

related RORγt and CCR6 expression in CD4+ IκBNS-deficient cells what could 

represent a possible explanation for the above mentioned cytokine secretion defect. 

The direct transcriptional control of IκBNS over the TH17 characteristic interleukin 

IL-17A could be excluded by Kobayashi et al. (2014). According to Okamoto et al. 

(2010), IκBζ seems to play a crucial regulatory role in TH17 development by 

cooperating with ROR nuclear receptors. In more detail, in contrast to IκBNS, IκBζ 

could be unveiled to bind in a RORγt and RORα-dependent manner to the IL17A 

promoter and was suggested to positively regulate IL17A expression by the 

increased binding of transcriptional co-activators (Okamoto et al., 2010). 

In consistence with that, IκBζ knock-out TH17 cells show decreased mRNA levels 

of IL17A and other TH17-related genes like IL-21, IL-22 and IL-23r. As a 

consequence of this TH17 phenotype promoting impact of IκBζ, corresponding IκBζ 

knock-out mice are completely resistant to EAE due to the lack of IL-17 producing 

TH17 cell (Okamoto et al., 2010).  

As depicted above, IκBζ and IκBNS seem to share multiple functional similarities 

and to have partially redundant roles in different cellular processes. Therefore, it is 

conceivable that the found steady state expression of IκBNS in ABC DLBCL as it 

was already shown for IκBζ shown by Nogai et al. (2013) also represents an intrinsic 

advantage for ABC DLBCL cells for several reasons that led to the selective 

pressure to express IκBNS. These reasons are assumingly at least partially 

redundant for IκBζ. First, IκBNS in ABC DLBCL could directly control, as IκBζ, the 

expression of IL-6 and IL-10 and thus sustain the autocrine/paracrine pro-

proliferative cytokine signaling loop. Second, IκBζ was suggested by Nogai and 

colleagues to play a central role in the regulation of NF-κB target genes and thus to 

be required for proper functionality of the NF-κB signaling network in ABC DLBCL. 

The same function could be true for IκBNS, which could partially regulate the same 
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NF-κB target genes as IκBζ does in ABC DLBCL. However, the knock-down of 

IκBNS induced toxicity in all IκBNS and IκBζ expressing ABC DLBCL cell lines 

tested. This experimental outcome is similar to the result of an IκBζ knock-down 

experiment conducted by Nogai et al. (2013). This suggests that the observed toxic 

effects that were induced by the individual knock-down of both atypical IκBs are 

based on non-redundant functions of IκBNS and IκBζ that cannot be mutually 

adopted.  

4.9 Seeking new surface markers and molecular 
targets for classifying and combat DLBCL  

We were conducting the LEGENDScreen™ assay with 3 cell lines of the GCB 

DLBCL subtype (BJAB, SU-DHL-4, SU-DHL-6) and 3 cell lines classified as ABC 

DLBCL (HBL-1, TMD8, U2932) with the intention to reveal new biomarkers which 

could be useful to differentiate between the GCB and ABC DLBCL subtypes and 

moreover that could be potentially exploited as molecular targets in future DLBCL 

treatment approaches. The screen unveiled surface markers that were expressed 

on both DLBCL subtypes and also markers that were mainly or even exclusively 

expressed by only one, the GCB or the ABC DLBCL subtype. 

Understandably, among the surface markers that were mutually expressed by 

the GCB and the ABC DLBCL subtype cell lines, the screen unveiled plenty of 

surface molecules that are known to be generally expressed on the surface of 

B-cells and are thus also shared by both DLBCL entities such as the pan B-cell 

marker CD20 and CD79B. 

CD20 is a non-glycosylated surface protein of 33-37 kDa that is expressed in B-cell 

development from the early pre-B to the stage of mature B-cells and is down 

regulated during the transition to plasma blasts (Cragg et al., 2005; Rehnberg et al., 

2009). CD20 can be found in approximately 95% of B-cell lymphoma, is not present 

on precursor B-cells or stem cells and at low levels on plasma cells (Cragg et al., 

2005; (Boye, Elter and Engert, 2003). It was found to localise with MHCII and the 

BCR ahead to antigen engagement (Cragg et al., 2005). It is the target of several 

antibodies in the therapy of CD20+ B-cell Non-Hodgkin Lymphoma and autoimmune 

disorders (Boye, Elter and Engert, 2003; Randall, 2016). The functionality of CD20 

is not yet understood but in respect of cancer treatment it contributes to complement 
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and effector-cell mediated lysis, apoptosis induction and interferes with calcium 

influx (Boye, Elter and Engert, 2003).  

CD79B and CD79A make up the heterodimer CD79 and together with the surface 

Ig it forms the BCR-complex, the characteristic feature of B-cells (Chu and Arber 

2001; Naeim et al., 2013). It is crucial for the transport of mIg to the cell surface and 

the propagation of proximal BCR signaling (Torres et al., 2008). Thus, CD79 is 

already expressed in prior to Ig heavy chain rearrangement and also CD20 in the 

course of B-cell maturation. It is therefore a convenient pan-B-cell marker to e.g. 

classify leukemia and hence to identify B-cell neoplasms such as DLBCL, as well. 

From the CD markers that were revealed to be differentially distributed between the 

GCB and ABC DLBCL subtypes, we chose CD90 which was revealed to be 

exclusively expressed by GCB DLBCL cell lines and CD36 as well as CD274 that 

were both found to be associated with the ABC DLBCL subtype for more detailed 

investigations. 

CD90 which is also called Thy-1 is a 25-37 kDa GPI-anchored membrane protein 

lacking an intracellular domain. The core protein exhibits 25 kDa, whereas the fully            

N-glycosylated protein displayed on the cell surface comprises 37 kDa (Pont, 1987; 

Kumar et al., 2016). With a carbohydrate content of up to 30% of its molecular mass 

it is one of the most heavily glycosylated proteins (Pont, 1987). Thy-1 exerts tasks 

in cell-cell and cell-matrix interactions, apoptosis, migration, fibrosis (Rege and 

Hagood, 2006) and was recently found to be implicated in several kinds of neoplasia 

were it has a binary role in tumor facilitation and containment dependent on the 

cancer type (Kumar et al., 2016). Moreover, Thy-1 expression was found in the 

highly invasive cancer cell microenvironment in prostate and pancreatic cancer, 

determining their aggressive and metastatic abilities (Pascal et al., 2011; Zhu et al., 

2014). This is from importance since the altered tumor stroma plays in general a 

considerable role in cancer progression and metastasis (Barron and Rowley, 2012; 

Ungefroren et al., 2011). Furthermore, Thy-1 is also discussed as cancer stem cell 

(CSC) marker candidate as Thy-1 was revealed to be co-expressed with other CSC 

markers and CD90+ cells were isolated from various tumor types such as breast 

cancer (Lobba et al., 2012). These CD90+ cells showed the characteristic traits of 

CSCs in regard to spheroid forming abilities, proliferation, differentiation, metastatic 

properties and the capability to grow as tumor xenograft in mice (Shaikh et al., 

2016). Interestingly, in line with our results, Thy-1 was also identified at high 
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expression levels by Ishiura et al. (2010) in B-cell lymphoma cell lines such as BJAB 

(GCB DLBCL). The treatment of those cell lines with an anti-Thy-1 antibody 

revealed an inhibitory effect on proliferation contributed partially by apoptosis and 

necrosis. The antibody caused caspase activation and additional down regulation 

of anti-apoptotic BCL-2 family members. This proliferation inhibitory effect that was 

observed by Ishiura et al. seemed to be even stronger than that facilitated by 

rituximab. As we found CD90 to be highly expressed by the GCB subtype of DLBCL 

treatment with bi-specific anti-CD20/CD90 antibodies could be therefore indeed a 

promising approach in the therapy of GCB DLBCL. 

CD36 (alternative names: FAT, GPIV, GPIIIb, PAS IV) is an 88 kDa integral 

membrane glycoprotein and member of the scavenger receptor family of pattern 

recognition receptors (Silverstein and Febbraio, 2009; Danilova et al., 2013; Park, 

2014).CD36 is made up of two transmembrane domains, two short intracytoplasmic 

domains containing both termini, lacking known intracellular signaling domains and 

a larger extracellular extensively glycosylated domain (Febbraio et al., 2001; Park, 

2014). CD36 is expressed on numerous cells types like monocytes, macrophages, 

dendritic cells, microvascular endothelial cells, adipocytes and platelets (Pepino et 

al., 2014). It is known to interact with other membrane receptors like integrins, TLRs 

and tetraspanins. (Miao et al., 2001; Akira, 2003 Lawler et al., 2012). CD36 binds a 

multitude of different ligands at different binding sites such as thrombospondin-1, 

oxidized phospholipids, DAG, cholesterol, native lipoproteins (HDL, LDL and VLDL), 

oxidized lipoproteins (oxLDL and oxHDL) and long-chain fatty acids (Lawler et al., 

2012; Park 2014; Pepin et al., 2014). Concerning functionality, CD36 plays among 

others a role in fat metabolism as it acts as a high affinity fatty acid translocase 

(FAT) by binding long chain free fatty acids (FA) and transporting them into the cell, 

thereby providing an energy source for β-oxidation (Harmon et al., 1993; Glatz et 

al., 2010; Abumrad and Davidson, 2012; Park 2014). Moreover, CD36 is also 

reported to be implicated in FA metabolism related issues including fat taste 

perception, fat uptake and absorption and FA exploitation by muscle and adipose 

tissues (Glatz et al., 2010; Abumrad and Davidson, 2012; Pepino et al., 2014). 

Despite the negligible intracellular presence and lacking a common intracellular 

signaling domain, CD36 was reported to have diverse downstream ligand-

dependent signaling pathways (Moore et al., 2002; Chen et al., 2008; Silverstein 

and Febbraio, 2009). It interacts for example directly with src-kinases like FYN, LYN 
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and YES (Huang et al., 1991). This for instance occurs in macrophages upon 

engagement of oxLDL leading to LYN phosphorylation and the subsequent 

activation of downstream signaling molecules. Amongst them are e.g. JNK1 & 2 

which in turn facilitate oxLDL inward transport (Silverstein and Febbraio, 2009; Park, 

2014). Moreover, CD36 downstream signaling also comprises the activation of NF-

κB (Janabi et al., 2000). This was concluded from the finding that macrophages from 

CD36 deficient patients exhibit attenuated NF-κB activity and decreased secretion 

of IL-1β and TNF-α (Yamashita et al., 2007). Patients suffering from a CD36 

deficiency show high incidences of cardiomyopathy, hyperlipidemia and insulin 

resistance (Yamashita et al., 2007). Furthermore, it functions as endogenous 

angiogenesis negative regulator of microvascular endothelial cells (Dawson et al., 

1997). This is achieved by inhibiting proangiogenic signals inducing proliferation and 

tube formation, generating instead signals leading to apoptosis by activating 

caspase 3 and the secretion of FasL and TNF-α (Jiménez et al., 2000). Furthermore, 

CD36 activation that was mediated by an N-terminal recombinant thrombospondin-

2 fragment was recently shown to inhibit growth and metastasis of breast cancer by 

endothelial cell apoptosis (Koch et al., 2011). Thus, CD36 is also considered to play 

an important role in tumor growth and other processes that involve 

neovascularisation. Regarding B-cell malignancies, CD36 was revealed to be 

transcriptionally regulated by Oct-2, a commonly known B-cell differentiation 

regulator (Corcoran et al., 1993; Pfisterer et al., 1997). Additionally, the expression 

of CD36 in chronic B-cell lymphoproliferative diseases was linked to metastasis 

(Rutella et al., 1997). In B-CLLs CD36 is described as an indicator for tumor cell 

dissemination (Rutella et al., 1999). In respect of DLBCL context, CD36 was 

described to be a predictor for the non-GCB DLBCL subtype (Danilova et al., 2013). 

This result is in line with the results of our CD-marker screen that revealed CD36 to 

be selectively expressed in ABC DLBCL on both the mRNA as well as the protein 

level. Moreover, the overexpression of CD36 was reported as a protective factor, 

since it improved overall and progression-free survival in DLBCL patients under R-

CHOP therapy (Danilova et al., 2013).  

A study by Kobayashi et al. (2003), reports that CD36 together with Integrin β1 was 

overexpressed in most cases of CD5+ DLBCL, a unique de novo DLBCL subtype 

that has been identified based on CD5 expression. As demonstrated by genome 

profiling and immunohistochemistry, the majority of CD5+ DLBCL belongs to the 
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ABC DLBCL subgroup. This is in accordance with our finding of CD36 to be 

specifically expressed in ABC DLBCL. This CD5+ DLBCL entity accounts for 5-10% 

of all DLBCL cases and exhibits an aggressive disease course and thus a poorer 

prognosis (Jain et al., 2013). Whereas Integrin β1 was exclusively expressed on 

lymphoma cells, CD36 was overexpressed only on vascular endothelia cells from 

CD5+ DLBCL (Kobayashi et al., 2003). Therefore, the authors assumed an 

interaction between the Integrin β1 bearing lymphoma cells and the CD36 

expressing endothelial cells residing in the CD5+ DLBCL tumor, also because both 

proteins were shown to interact with each other by Thorne et al. in 2000. Considering 

the previously described findings and conclusions from literature and our 

observation that CD36 seems to be selectively expressed in the ABC subtype of 

DLBCL, CD36 could indeed represent a promising surface molecule to identify ABC 

DLBCL cells and could also be a target molecule of future ABC DLBCL therapy 

approaches. However, the blockage of CD36 by SSO in this study did not affect 

mRNA expression levels of GCB and ABC DLBCL encoding enzymes implicated in 

the regulation of β-oxidation. This suggests that CD36 is not an essential element 

in the lipid metabolism of DLBCL and is therefore at least in this regard not a 

promising target molecule in the treatment of ABC DLBCL. Additionally, it could 

serve as prognostic marker to predict therapy response and survival outcome of 

DLBCL patients, as well.  

CD274 (PD-1L; B7-H1) is a 33 kDa immunomodulatory glycoprotein mainly 

expressed on the cell surface of antigen-presenting cells like activated T-cells, 

natural killer (NK), T-cells, B-cells, DCs, and macrophages (Agata et al.1996; 

Andorsky et al., 2011; Krempski et al., 2011; Fang et al., 2017). It is also common 

on a broad range of solid tumors including breast, lung, colon, melanoma, liver, 

thymus or head (Konishi et al., 2004; Keir et al., 2008). In B-cell malignancies, 

however PD-L1 and its cognate inhibitory receptor PD-1 are rarely expressed 

(Brown et al., 2003; Andorsky et al., 2011). PD-L1 was also found to be expressed 

on selected DLBCL and on non-cancerous cells infiltrating the tumor such as 

macrophages (Chen et al., 2013; Georgiou et al., 2016). In addition to that, the 

number of DLBCL tumor infiltrating PD-1+ lymphocytes correlates with favourable 

overall survival (Muenst et al., 2010; Ahearne et al., 2014). This finding however 

contradicts the suppressing role of PD-1 in immune response. Fang et al. (2017) 

assume that the correlation between the increase of PD-1+ lymphocytes and 
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beneficial outcome might reflect previous active immune response. Moreover, 

PD-1L is also reported to be expressed on several primary T-cell lymphoma like 

anaplastic large T-cell lymphoma (Brown et al., 2003). Engagement of PD-1L with 

PD-1, which is expressed on the surface of activated T-cells, transmits a negative 

regulatory signal leading to the inhibition of cell cycle progression and cytokine 

production of activated T-cells transforming them into the reversible “T-cell 

exhaustion” phenotype (Freeman et al., 2000). As PD-L1 inhibits local antitumor 

T-cell responses by this mechanism, the expression of PD-L1 is strongly connected 

to tumor progression and poor outcome in many types of cancers (Kim et al., 2013; 

Kiyasu et al., 2015). Thus, the expression of PD-1L by tumor cells or APCs 

neighbouring the tumor constitutes an important factor for various cancers to 

achieve immune evasion (Iwai et al., 2002; Chen et al., 2013; Akbay et al., 2013; 

Georgiou et al., 2016). Dong et al. showed in 2002 that melanoma cells of mice 

expressing PD-1L avoid immune system mediated elimination by inhibiting the 

activation of tumor specific T-cells or even promote apoptosis of tumor specific T-

cells. In consistence with this, the treatment of mice with anti-PD-1L-antibodies 

(Hirano et al., 2005) and PD-1 knockout mice that were treated with tumor cells mice 

showed enhanced anti-tumor responses indicated by cytotoxicity and cytokine 

secretion (Iwai et al., 2002 and 2005). Hence, PD-1L blockage is able to augment 

immunotherapies. Consequently, therapies targeting PD1 and PD-1L approved to 

be from clinical efficacy in patients with different types of solid cancers, and 

Hodgkin/Non-Hodgkin lymphoma (Topalian et al., 2012; Bachy et al., 2014; Ansell 

et al., 2015). Moreover, the utility of this therapy approach is further underscored by 

the recent promising treatment of lymphoid malignancies including DLBCL using the 

anti-PD-1 receptor antibody nivolumab (Lesokhin et al., 2016; Ansell et al., 2015). 

A further remarkable example in this regard is the therapy approach with anti PD-

1/PD-1L antibodies of the so far immunotherapy non-responsive NSCLC which led 

to an enhanced anti-tumor immune response and therefore markedly improved 

clinical therapeutic effects (Gettinger et al., 2016). The antibody based therapy 

targeting the PD-1/PD-1L axis was also found to enhance the proliferation of tumor-

derived T-cells and supported the activation of NKT cells (Chu et al., 2009). 

Moreover, the extent of PD-1L expression is associated with treatment response in 

several tumor subsets (Brahmer et al., 2012; Topalian et al., 2012). In accordance 

with our CD-marker screen Chen et al. reported in 2013 that the investigation of 61 
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DLBCL cases, amongst them 27 ABC DLBCL cases, for PD-1L expression revealed 

the association between the ABC subtype and PD-1L expression as statistically 

significant. Moreover, also Kiyasu et al. found in a retrospective study of 1253 

patient DLBCL biopsies that PD-1L expression was significantly associated with the 

non-GCB subtype, EBV positivity and hence poor prognosis. They also report that 

patients with PD-1L+ DLBCL exhibit an inferior overall survival compared to cases 

with PD-L1- DLBCL. A statistical tendency of PD-1L expression to be linked to ABC 

DLBCL was also observed by Kwiecinska et al. in 2016. This correlation between  

PD-1L expression and the ABC DLBCL subtype was also observed by Andorsky et 

al. in 2011. This group also described that the blockage of PD-1L in DLBCL by 

antagonising antibodies results in increased activation of nearby T-cells. Overall,  

PD-1L could be thus considered as a potential reliable biomarker of the aggressive 

ABC subtype of DLBCL and the associated adverse clinical prognosis. Moreover,  

PD-1L could also constitute a promising therapy target in antibody based 

immunotherapy of PD-1L+ DLBCL in order to reduce immune escape capabilities of 

this lymphoma type. 

 

4.10 Summary: The pivotal role of calcineurin and 
IκBNS in ABC DLBCL biology 

In summary, we propose a model in which calcineurin and IκBNS play an essential 

role in the survival and immune evasion of ABC DLBCL, exhibiting chronically  

active BCR signaling due to somatically acquired mutations upstream of CARD11. 

BCR signaling leads by the increase of intracellular calcium levels to the activation 

of calcineurin which in turn has versatile tasks. It dephosphorylates NFAT which in 

turn migrates to the nucleus where it positively regulates together with NF-kB the 

expression of IκBNS p35 and p70. Constitutive IκBNS p35 and p70 results in 

reduced MHCII molecule surface expression levels, assumingly by modulating 

CIITA expression or transcriptional activity on target genes probably resulting in 

enhanced immune escape. Furthermore, as revealed by phosphoproteom analysis 

and supported by literature (Müller et al., 2000; Palkowitsch et al., 2011; Zeng et al., 

2007), most notably a reported comparable mechanism unveiled in TCR signaling 

(Dutta et al., 2017), the S/T phosphate activity of calcineurin seems to act as a 

positive regulator of BCR signaling. Calcineurin accomplishes this as indicated by 
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phosphoproteom analysis by the dephosphorylation of several putative BCR 

proximal signaling elements such as CD79A/B, BLNK or BCL-10. The positive 

impact of calcineurin activity on BCR signaling consequently leads to the 

enhancement of the prosurvival and anti-apoptotic NF-kB and NFAT signaling 

networks and hence to the maintenance of the vital IL-6 and IL-10 

autocrine/paracrine positive feedback loop as well as to a further reinforcement of 

IκBNS expression. Together, these findings suggest that a deeper investigation of 

the calcineurin and IκBNS function in the context of aberrant NF-kB signaling in ABC 

DLBCL seems to be a promising issue in order to lay the foundation for future 

therapy approaches. For an overview see Figure 54. 

 

Figure 54. Illustrative overview of the proposed model in which calcineurin acts at 

different positions as BCR signaling positive regulator and promotes the expression of 

IκBNS by activating and enhancing NFAT and NF-kB signaling in ABC DLBCL. 

IκBNS p35 and p70 were found to be under the mutual transcriptional control of NFAT and NF-kB. 

IκBNS p35 and p70 expression leads to reduced MHCII surface expression in B-cells most likely by 

interfering with the expression or transcriptional activity of CIITA and thus could contribute to 

immune escape of ABC DLBCL and was moreover found to be essential for ABC DLBCL survival. 

Cyclosporin A and FK506 are structurally unrelated inhibitors of calcineurin phosphatase activity. 

Yellow dashed arrows: Ca2+ signaling; Green dashed arrows: direct effects of calcineurin activity; 

Red dashed arrows: IκBNS p35 and p70 caused effects; Blue dashed arrows: IL-6 and IL-10 

autocrine/paracrine cytokine signaling; Black dashed arrows: BCR and NF-kB signaling. 

Abbreviations: BCR, B-cell receptor; S/T, Serine/Threonine; BLNK, B-cell linker protein; NFAT, 

Nuclear Factor of activated T-cells; CARD11, Caspase recruitment domain-containing protein 11 

;MALT1, Mucosa-associated lymphoid tissue lymphoma translocation protein 1; BCL-10, B-cell 

lymphoma/leukemia 10; JAK1, Janus kinase 1; STAT3; Signal transducer and activator of 

transcription 3; CRAC, Calcium release-activated channels; MHCII major histocompatibility 
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complex; CIITA class II, major histocompatibility complex, transactivator; ER, endoplasmic 

reticulum; IP3R, Inositol 1,4,5-trisphosphate receptor; CaM; Calmodulin; IKKα, β, γ, nuclear factor 

kappa-B kinase subunit alpha, beta, gamma. The figure was generated using Servier Medical Art. 

The human calcineurin heterodimer protein structure was taken from the protein data bank “PDB”; 

DOI:10.2210/pdb1aui/pdb 
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