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INTRODUCTION

The main objects of the present thesis are T-varieties, i.e. varieties X with an algebraic
torus T acting effectively on them. The difference between the dimension of the variety
and the dimension of the acting torus is called the complexity of a T-variety. The
best understood varieties of this kind are toric varieties, where the complexity equals
zero. These varieties have been intensively studied [26, 27, 74, 75, 24, 40], and are of
high interest due to their combinatorial description via fans. This thesis contributes to
the case of higher complexity. These varieties occur naturally: For instance the surface
quotient singularities are varieties of complexity one and the quadrics in projective space
admit a natural action of the maximal torus of the orthogonal group. If X is a T-variety
of complexity c, then, as in the toric case, there is a combinatorial part reflecting the torus
action, and a continuous part reflecting the geometry of a suitable variety representing
the field K(X)T of rational invariants of X.

Our approach is based on Cox rings, which are a rich invariant of algebraic varieties.
In fact the Cox ring of a variety fixes it up to small birational modifications. In the
complete case the toric varieties are precisely those having a multigraded polynomial
ring as Cox ring [23]. In general the Cox ring of a variety X is a graded algebra

R(X) :=
⊕

[D]∈Cl(X)
Γ(X,O(D)),

and can be defined for any normal (irreducible) variety with only constant invertible
functions and finitely generated divisor class group; see [6, 14, 52]. We are particularly
interested in the case thatR(X) is finitely generated. In that case, many of the geometric
invariants can be read off. Moreover, it provides a canonical embedding of the variety into
a toric one, which allows to deduce basic geometric properties from the toric embedding
and thus describe them in combinatorial terms similar as in the toric case.

In the first part of this thesis our main focus is on T-varieties of complexity one. For a
complete, rational T-variety of complexity one the Cox ring has been described in [49]
via generators and specific trinomial relations. Applying the theory behind Cox rings to
this special situation one obtains a combinatorial approach to these varieties. We extend
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2 Introduction

the toolkit developed in [49] to the non-complete, e.g. affine, case. This includes i.a. a
description of factorially graded affine algebras R of complexity one with only constant
homogeneous invertible elements in terms of generators and relations. The first results in
this direction treat the case R0 = K; see [66, 61, 44]. Our results complete the description
of all factorially graded affine algebras of complexity one and thus the description of the
Cox rings of rational T-varieties of complexity one, compare Theorem 2.1.8, where the
complete case treated in [49] is a subcase of Type 2:

Theorem. Let X be a normal, rational T-variety of complexity one with only con-
stant invertible global functions and finitely generated divisor class group. Then, with
T lii = T li1i1 · · ·T

lini
ini

, the Cox ring of X is described by trinomial relations of one of the
following forms:

Type 1: T l11 − T
l2
2 − θ1, T l22 − T

l3
3 − θ2, . . . , T

lr−1
r−1 − T lrr − θr−1,

Type 2: T l00 + T l11 + T l22 , θ1T
l1
1 + T l22 + T l33 , . . . , θr−2T

lr−2
r−2 + T

lr−1
r−1 + T lrr .

As an immediate sample application we calculate the Cox rings of all affine C∗-surfaces
having at most log terminal singularities and their resolutions. It is well known that the
log terminal surface singularities are exactly the surface quotient singularities, i.e., they
arise as a quotient of C2 by a finite group G ⊆ GL2; see [4, 20, 30]. Moreover any log
terminal surface singularity is in fact a C∗-surface and with our explicit description of
the Cox rings, one observes that the derived series of the group G reflects iteration of
Cox rings.
We extend this picture to log terminal singularities in arbitrary dimension coming with
a torus action of complexity one. As a first result, in Theorem 3.1.3 we obtain that the
Cox rings of affine log terminal T-varieties of complexity one are either of Type 1 or
platonic of Type 2, i.e. lij = 1 holds for all i ≥ 3, and all triples (l0j0 , l1j1 , l2j2) form
a platonic triple, i.e., a triple of the form (5, 3, 2), (4, 3, 2), (3, 3, 2), (x, 2, 2), or (x, y, 1),
where x, y ∈ Z≥1. We obtain the following general statements on iteration of Cox rings,
compare Theorems 3.1.5 and 3.1.6:

Theorem. Let X1 be a rational, normal, affine T-variety of complexity one with Cox
ring of Type 2 and at most log terminal singularities. Then the following assertions hold.
(i) There is a unique chain of quotients

Xp
//Hp−1// Xp−1

//Hp−2// . . .
//H3 // X3

//H2 // X2
//H1 // X1 ,

where Xi = Spec(Ri) holds, the ring Rp is factorial and each Ri is the Cox ring
of Xi−1.

(ii) X1 is a quotient X1 = Xp//G by a solvable reductive group G.
(iii) The presentation of (i) is regained by Hi := G(i−1)/G(i) and Xi := Xp/G

(i−1),
where G(i) is the i-th derived subgroup of G.

Statement (ii) of the above Theorem shows that, in a large sense, the log terminal singu-
larities with torus action of complexity one still can be regarded as quotient singularities:
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the affine plane C2 and the finite group G ⊆ GL2 of the surface case have to be replaced
with a factorial affine T-variety of complexity one and a solvable reductive group.
Looking at this result about log terminal singularities the natural question arises, if
there are any further varieties of complexity one admitting iteration of Cox rings despite
the log terminal ones. Note that iteration of Cox rings requires in particular a finitely
generated divisor class group of the spectrum of the Cox ring in each iteration step. As
in case of complexity one, finite generation of the divisor class group turns out to be
equivalent to rationality, the task is to give a criterion for the rationality of an affine
variety X of complexity one. Having in mind that the generic quotient of a T-variety of
complexity one is the curve Y with function field K(X)T and rationality of this curve is
equivalent to rationality of the variety X, we calculate a genus formula for Y leading to
the following numerical criterion for the rationality of X. We call a ring R of Type 2
as above hyperplatonic if li := gcd(li1, . . . , lini) = 1 holds for all i ≥ 3 and (l0, l1, l2) is a
platonic triple. We obtain the following criterion, see Theorem 4.1.1

Theorem. Let X be a rational, normal T-variety of complexity one with Cox ring of
Type 2. Then the following statements are equivalent.
(i) The variety X admits iteration of Cox rings.
(ii) The variety X has a hyperplatonic or factorial Cox ring.

For a variety with Cox ring of Type 1 the picture is much easier: it admits iteration of
Cox rings if and only if the spectrum of its Cox ring is rational. Moreover, if the latter
holds, the iteration of Cox rings stops after at most one step.
In the last part of this thesis we extend the Cox ring based combinatorial theory for
rational varieties with torus action of complexity one to T-varieties of arbitrary high
complexity with finitely generated Cox ring. Recall that the situation can be described
by a c-dimensional variety Y suitably realizing the field K(X)T of rational invariants of
the T-variety X and a combinatorial part reflecting the essential properties of the torus
action. This approach has been taken in [1, 2], where the torus action is encoded via the
combinatorial language of polyhedral divisors and Y is chosen as the Chow quotient.
We provide a more specific approach: We choose a rather minimal representative Y of
the field K(X)T of rational invariants: the maximal orbit quotient; for a precise definition
see Section 5.1. For our purposes, the crucial property is that Y has finitely generated
Cox ring if and only if X has so, see [49, Thm. 1.1]. This allows us to make full use of the
strongly combinatorial nature of varieties with finitely generated Cox ring [6, Chap. 3].
Given a variety Y with finitely generated Cox ring, we systematically construct varieties
with torus action and maximal orbit quotient π : X 99K Y . Our main tool is basic toric
geometry: We start with a choice of Cox ring generators for Y , then fix a compatible
fan Σ and finally deliver X as a closed subvariety of the toric variety Z associated with
the fan Σ such that the torus action on X is inherited from a subtorus action on Z. As
a byproduct of the construction, we obtain the Cox ring of X for free. Specializing to
the case that Y is the projective or the affine line, we regain the Cox rings of Type 1
and 2 of the rational varieties with torus action of complexity one as described above.



4 Introduction

As a sample class, we restrict to the special case of a maximal orbit quotient π : X 99K Pc
such that the critical values of π form a general hyperplane arrangement in Pc. We
call such a T-variety X an arrangement variety. These varieties directly generalize the
rational T-varieties of complexity one and their Cox rings show indeed a very similar
structure.
With our description we provide classification results on smooth Fano varieties, i.e.,
normal, projective varieties with ample anticanonical class. The interest in this class of
varieties is due to their important role in the Minimal Model Program, an approach to
classify projective varieties up to birational equivalence introduced by S. Mori [67, 68].
The classification of smooth Fano varieties was settled in dimension two by P. del Pezzo
[77] and in dimension three by V. Iskovskikh [54, 55] and S. Mori/S. Mukai [69, 70].
Restricting to the toric case, the classification was done up to dimension nine by work
of V. Batyrev, M. Kreuzer, B. Nill, M. Øbro and A. Paffenholz [10, 11, 60, 73, 78].
Extending recent classification work in complexity one [35], we take a closer look at
smooth arrangement varieties of Picard numbers at most two. In Picard number one,
we retrieve precisely the smooth projective quadrics. Similar to the case of complexity
one, the situation in Picard number two is much more ample. For the case of complexity
two, we obtain the following explicit descriptions, see Section 6.2.

Theorem. Every non-toric smooth Fano arrangement variety of complexity two and
Picard number two is isomorphic to precisely one of the following varieties X, specified by
their Cox ring R(X) and the matrix [w1, . . . , wr] of generator degrees wi ∈ Cl(X) = Z2.

No. R(X) [w1, . . . , wr] −KX dim(X)

1 K[T1,...,T9]
〈T1T2T 2

3 +T4T5+T6T7+T8T9〉

[
0 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1

] [
5
6

]
6

2 K[T1,...,T9]
〈T1T2T3+T4T5+T6T7+T8T9〉

[
0 0 1 1 0 1 0 1 0
1 1 0 1 1 1 1 1 1

] [
3
6

]
6

3 K[T1,...,T8]
〈T1T2T 2

3 +T4T5+T6T7+T 2
8 〉

[
0 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1

] [
4
5

]
5

4.A
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 2 1 2 1 2 1 2 . . . 2
1 0 1 0 1 0 1 0 1 . . . 1

] [
7 + 2m
3 + m

]
m+ 5

4.B
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 1 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
4 + m
3 + m

]
m+ 5

4.C
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T 2

4 +T5T6+T7T8〉
m≥0

[
0 1 0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
4 + m
3 + m

]
m+ 5

4.D
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 1 1 1 1 1 1 d1 1 . . . 1
1 0 1 0 1 0 1 0 1 1 . . . 1

]
d1 ∈ {0, 1}

[
5+m−1+d1

3 + m

]
m+ 5

4.E
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 3

4 +T5T 3
6 +T7T 3

8 〉
m≥0

[
0 1 0 1 0 1 0 1 0 . . . 0
1 0 1 0 1 0 1 0 1 . . . 1

] [
3

3 + m

]
m+ 5

4.F
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 0 1 0 1 0 1 d1 0 . . . 0
1 0 1 0 1 0 1 0 1 1 . . . 1

]
d1 ∈ {−1, 0}

[
2 + d1
3 + m

]
m+ 5
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4.G
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥0

[
0 1 0 1 0 1 0 1 d1 d2 0 . . . 0
1 0 1 0 1 0 1 0 1 1 1 . . . 1

]
d1, d2 ≤ 0, d1 + d2 ≥ −2

[
3 + d1 + d2

3 + m

]
m+ 5

5
K[T1,...,T8,S1,...,Sm]

〈T1T2+T 2
3 T4+T 2

5 T6+T 2
7 T8〉

m≥1

[
0 2a + 1 a 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 1 0 0 . . . 0

]
a ≥ 0,m > 3a

[
3a + 3 + m

3

]
m+ 5

6
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T 2
5 T6+T 2

7 T8〉
m≥1

[
0 2a3 + 1 a1 a2 a3 1 a3 1 1 . . . 1
1 1 1 1 1 0 1 0 0 . . . 0

]
0 ≤ a1 ≤ a2, a1 + a2 = 2a3 + 1

m > 4a3 + 1

[
4a3 + 3 + m

4

]
m+ 5

7
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T 2
7 T8〉

m≥1

[
0 2a5 + 1 a1 a2 a3 a4 a5 1 1 . . . 1
1 1 1 1 1 1 1 0 0 . . . 0

]
ai ≥ 0,

a1 + a2 = a3 + a4 = 2a5 + 1,
m > 5a5 + 2

[
5a5 + 3 + m

5

]
m+ 5

8
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
1≤m≤5

[
0 0 0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

] [
m
6

]
m+ 5

9
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 a1 a2 a3 a4 a5 a6 a7 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

]
ai ≥ 0,

a1 = a2 + a3 = a4 + a5 = a6 + a7,
m > 3a1

[
3a1 + m

6

]
m+ 5

10
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 1 0 d2 . . . dm

]
0 ≤ d2 ≤ · · · ≤ dm, 0 < dm ≤ 5
m · dm < 6 + d2 + . . . + dm

[
m

6+
∑

dk

]
m+ 5

11
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
1≤m≤4

[
−1 1 0 0 0 0 0 1 . . . 1
1 1 1 1 1 1 1 0 . . . 0

] [
m
5

]
m+ 4

12
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
0 2a5 a1 a2 a3 a4 a5 1 . . . 1
1 1 1 1 1 1 1 0 . . . 0

]
a1 + a2 = a3 + a4 = 2a5

ai ≥ 0
m > 5a5

[
m + 5a5

5

]
m+ 4

13
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 0 d2 . . . dm

]
0 ≤ d2 ≤ . . . ≤ dm

dm > 0
m · dm < 5 + d2 + . . . + dm

[
m

5+
∑

dk

]
m+ 4

14 K[T1,...,T10]〈
T1T2 + T3T4 + T5T6 + T7T8,

λ1T3T4 + λ2T5T6 + T7T8 + T9T10

〉 [
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1

] [
3
3

]
6

Moreover, each of the listed data defines a smooth Fano arrangement variety of complex-
ity two and Picard number two.
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ONE

BACKGROUND

In this chapter we introduce the fundamental definitions and concepts used throughout
this thesis. Its content is well known and does not contain results by the author. Our
main reference for this chapter is the book [6].
Throughout the whole thesis K is an algebraically closed field of characteristic zero. If
not stated different a variety is always assumed to be irreducible.

1.1 Cox rings

At first we recall the basic definitions for divisors of normal varieties and divisorial
sheaves. Let X be a normal variety over K. A prime divisor D of X is an irreducible
subvariety D ⊆ X of codimension 1. We call the free abelian group generated by the
prime divisors the group of Weil divisors of X and denote it by WDiv(X). To any
nonzero rational function f ∈ K(X)∗ we associate the Weil divisor

div(f) :=
∑

D prime
ordD(f) ·D,

where ordD(f) denotes the vanishing order of f along D. A Weil divisor E arising as
E = div(f) for f ∈ K(X)∗ is called principal. The set PDiv(X) of principal divisors of
X and the set CaDiv(X) of locally principal divisors of X form subgroups of the group
of Weil divisors. The divisor class group and the Picard group of X are given as

Cl(X) := WDiv(X)/PDiv(X), Pic(X) := CaDiv(X)/PDiv(X).

The rank of the Picard group is called the Picard number of X and if X is Q-factorial
the Picard number equals the rank of the class group. With every divisor D ∈WDiv(X)
we associate the divisorial sheaf OX(D) by defining its sections over an open U ⊆ X to
be

Γ(U,OX(D)) := {f ∈ K(X)∗; (div(f) +D)|U ≥ 0} ∪ {0} .

7



8 Chapter 1. Background

Note that for any two functions f1 ∈ Γ(U,OX(D1)) and f2 ∈ Γ(U,OX(D2)) we have
f1f2 ∈ Γ(U,OX(D1 +D2)). Thus we obtain a sheaf of K-graded OX -algebras called the
sheaf of divisorial algebras associated with a subgroup K ⊆WDiv(X) by setting

S :=
⊕
D∈K

SD, where SD := OX(D).

Now we turn to the definition of the Cox sheaf and the Cox ring, which is a generalization
of the homogeneous coordinate ring for toric varieties.
For this let X be a normal prevariety with Γ(X,O∗) = K∗ and finitely generated divisor
class group Cl(X). Let K ≤ WDiv(X) be a subgroup such that the map c : K →
Cl(X), D 7→ [D] is surjective. Denote by K0 ⊆ K the kernel of c and fix a group
homomorphism χ : K0 → K(X)∗ with

div(χ(E)) = E for all E ∈ K0.

Denote by I the sheaf of ideals of S generated by the sections 1− χ(E) , where E runs
through K0.

Definition 1.1.1. The Cox sheaf associated with K and χ is the quotient sheaf R :=
S/I together with the Cl(X)-grading

R :=
⊕

[D]∈Cl(X)
R[D], where R[D] := π

 ⊕
D′∈C−1([D])

S ′D

 ,
and π : S → R is the projection. The Cox ring of X is the algebra of global sections
R(X).

The Cox ring is up to isomorphy independent of the choices of K and χ. In case of a tor-
sion free class group we can choose a subgroup K ≤WDiv(X) such that c : K → Cl(X)
as above is an isomorphism. In this case we have R = S where S is the sheaf of divisorial
algebras associated with K.
The Cox ring of a variety is in general not a unique factorization domain but has a
similar property:

Definition 1.1.2. Let K be an abelian group and R = ⊕w∈KRw an integral K-graded
K-algebra.
(i) A homogeneous element 0 6= f ∈ R \R∗ is called K-prime if whenever f |gh holds

for homogeneous elements g, h ∈ R we have f |g or f |h.
(ii) We call R factorially K-graded if every homogeneous 0 6= f ∈ R \R∗ is a product

of K-prime elements.

Theorem 1.1.3. Let X be a normal variety with Γ(X,O∗) = K∗ and finitely gener-
ated divisor class group Cl(X). Then the Cox ring R(X) is Cl(X)-factorially graded.
Moreover if Cl(X) is torsion free then R(X) is a unique factorization domain.
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Observe that the Cox ring of a variety is in general not finitely generated. This motivates
the following definition.

Definition 1.1.4. Let X be a normal variety with Γ(X,O∗) = K∗ and finitely generated
divisor class group. X is called a Mori Dream Space (MDS) if its Cox ring is finitely
generated.

Let X be an MDS with Cox sheaf R. Then finite generation of R(X) implies that
R is locally of finite type, i.e., any x ∈ X has an affine open neighbourhood U such
that R(U) is finitely generated. Choosing an affine open cover of X we can define the
relative spectrum X̂ := SpecX(R) by gluing the affine pieces SpecR(U). We call X̂ the
characteristic space and X := SpecR(X) the total coordinate space of X. Note that X̂
has a canonical open embedding into X and is big, i.e., the codimension of X \ X̂ is at
least two.

1.2 Graded algebras, quasitorus actions and good quo-
tients

In this section we give the necessary background to show how to regain a variety back
from its characteristic space. At first we introduce the correspondence between graded
affine algebras and quasitorus actions on affine varieties. Moreover we provide the nec-
essary background on good quotients.
An (affine) algebraic group is an (affine) variety G and a group such that the group
operations

G×G→ G, (g, h) 7→ g · h and G→ G, g 7→ g−1

are morphisms of algebraic varieties. A homomorphism of algebraic groups G and G′

is a group homomorphism G→ G′, which is a morphism of the underlying varieties. A
character of an algebraic group G is a homomorphism of algebraic groups χ : G → K∗,
where K∗ is the multiplicative group of the underlying field K. The character group of
an algebraic group G is the set X(G) of all characters of G, which forms a group with
respect to pointwise multiplication. A quasitorus is an affine algebraic group H such
that the algebra of regular functions Γ(H,O) is generated as a K-vector space by the
characters χ ∈ X(H). A torus is a connected quasitorus. The standard n-torus is the
algebraic torus Tn := (K∗)n.
Let G be an affine algebraic group. A G-variety is a variety X together with an action
G×X → X, (g, x) 7→ g ·x, which is a morphism of the underlying varieties. If G is even
a quasitorus, then any choice of characters χ1, . . . , χr defines a diagonal G-action on Kr

by setting
g · z := (χ1(g)z1, . . . , χr(g)zr).

We briefly recall the equivalence of categories between the category of affine algebras
graded by a finitely generated abelian group and the category of affine varieties with
quasitorus action.
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Construction 1.2.1. Let K be a finitely generated abelian group and R = ⊕w∈KRw a
K-graded affine K-algebra. Set X := SpecR. Fixing homogeneous generators f1, . . . fr
with fi ∈ Rwi we obtain a closed embedding

X → Kr, x 7→ (f1(x), . . . , fr(x)).

We equip Kr with the diagonal action of the quasitorus H := SpecK[K] given by the
characters χw1 , . . . , χwr . Then X is invariant under this action and thus an H-variety.
This construction does not depend on the choice of the embedding X ⊆ Kr up to
isomorphism.
We show that vice versa any affine variety with quasitorus action gives rise to an affine
algebra graded by a finitely generated abelian group: Let a quasitorus H act on a variety
X. Then the algebra of regular functions Γ(X,O) on X becomes a rational H-module
by setting

(h · f)(x) := f(h · x).
and it becomes a X(H)-graded algebra by considering its decomposition into one-
dimensional subrepresentations

Γ(X,O) =
⊕

χ∈X(H)
Γ(X,O)χ, where Γ(X,O)χ := {f ∈ Γ(X,O); f(h · x) = χ(h)f(x)} .

Definition 1.2.2. Let G be a reductive algebraic group acting on a prevariety X. A
good quotient for this action is a morphism of prevarieties p : X → Y such that the
following holds:
(i) p : X → Y is affine and G-invariant.
(ii) The pullback p∗ : OY → (p∗OX)G is an isomorphism.

A good quotient is called geometric if it moreover separates the orbits, i.e., any fiber is
a G-orbit.
Let X := SpecR be an affine G-variety, where G is a reductive algebraic group. Then
the algebra of invariants

RG := {f ∈ R; f(g · x) = f(x) for all x ∈ X and g ∈ G}

is finitely generated. Thus we obtain a good quotient p : X → Y , where Y = SpecRG.
For non affine X good quotients are locally modeled on this concept.

Construction 1.2.3. Assume X is a Mori Dream Space. Then R(X) is a Cl(X)-graded
affine K-algebra. This gives rise to an action of a quasitorus H := SpecK[Cl(X)] on
its total coordinate space X. The characteristic space X̂ ⊆ X is an H-invariant open
subset admitting a good quotient for this action. In particular we obtain the following
diagramm:

SpecX(R) = X̂ ⊆

−→

X SpecR(X)=

X

.
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1.3 Bunched rings

In this section we summarize at first basic facts about toric varieties. Afterwards we
give a short summary of the theory of bunched rings. Fixing a graded ring R the theory
of bunched rings provides a construction for example for all quasi-projective varieties
having R as their Cox ring and fulfilling some maximality property, see below. Moreover
the theory provides an embedding of a variety X with Cox ring R into a toric variety
and thus leads to combinatorial methods.
A toric variety is a normal variety Z with an effective torus action T × Z → Z and a
base-point z0 ∈ Z such that the orbit map T → Z, t 7→ t · z0 is an open embedding.
We recall the basic notions of the combinatorial description of toric varieties via fans.
Let N and M be mutually dual lattices and NQ resp. MQ the corresponding rational
vector spaces. A cone is a convex polyhedral subset σ ⊆ NQ such that for any u ∈ σ
and t ∈ Q≥0 we have t · u ∈ σ. The dimension of a cone σ is the dimension of its linear
hull. A lattice cone is a pair (σ,N) where N is a lattice and σ ⊆ NQ is pointed, i.e., it
contains no lines. The dual cone of σ is the polyhedral cone σ∨ := {u ∈MQ; u|σ ≥ 0}.
A face of a cone σ is a cone τ ⊆ σ such that there exists an u ∈ σ∨ with u|τ = 0. A
1-dimensional face is called ray and a face of codimension one is called facet.
A finite collection Σ of convex polyhedral cones in NQ is called a quasifan if the following
holds:
(i) Let σ ∈ Σ. Then σ0 ∈ Σ holds for any face σ0 4 σ.
(ii) For any two cones σ1, σ2 ∈ Σ the intersection σ1 ∩ σ2 is a face of both cones.

A quasifan Σ is called a fan if all of its cones are pointed. A tuple (Σ, N) is called a
lattice fan. The support |Σ| of a fan Σ is the union of its cones.
Any lattice cone (σ,N) defines an affine toric variety Z(σ) := SpecK[σ∨∩M ] with dense
open torus TZ := SpecK[M ]. We can extend this construction to lattice fans (Σ, N)
and toric varieties: For any two cones σ1, σ2 ∈ Σ one glues the corresponding affine toric
varieties Zσ1 , Zσ2 along the affine toric variety Zσ1∩σ2 , which defines a common open
subset. This gluing process provides a toric variety ZΣ. Note that ZΣ is a complete
variety if and only if Σ is complete, i.e., |Σ| = NQ.
Let K be a finitely generated abelian group and consider a finitely generated K-
factorially graded affine K-algebra

R :=
⊕
w∈K

Rw.

Fix a set of pairwise non-associated K-prime homogeneous generators F := (f1, . . . , fr)
and denote byQ : Zr → K the homomorphism of abelian groups, that maps the canonical
basis vector ei ∈ Zr to the weights wi := deg(fi) ∈ K.
(i) An F-face is a face γ0 4 γ := Qr

≥0 of the positive orthant, such that there is a
point x ∈ X with xi 6= 0 if and only if ei ∈ γ0.

(ii) The K-grading of R is almost free if for every facet γ0 4 γ the image Q(γ0 ∩ E)
generates K as a group.
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(iii) Let ΩF = {Q(γ0); γ0 4 γ is an F-face } denote the set of projected F-faces. An
F-bunch is a nonempty subset Φ ⊆ ΩF satisfiying the following conditions:
(a) For any two τ1, τ2 ∈ Φ, we have τ◦1 ∩ τ◦2 6= ∅.
(b) Let τ1, τ2 ∈ ΩF with τ◦1 ⊆ τ◦2 . Then τ1 ∈ Φ implies τ2 ∈ Φ.

(iv) An F-bunch Φ is called true if for every facet γ0 4 γ we have Q(γ0) ∈ Φ.

Definition 1.3.1. A bunched ring is a triple (R,F,Φ) consisting of an integral, normal,
almost freely factorially K-graded affine K-algebra R with only constant homogeneous
invertible elements, a system F of pairwise nonassociated K-prime generators for R and
a true F-bunch Φ.

The following construction associates to a bunched ring (R,F,Φ) a variety X having R
as its Cox ring.

Construction 1.3.2. Let (R,F,Φ) be a bunched ring with Q : E → K as above and
F = (f1, . . . , fr). Then we obtain an action of the quasitorus H := SpecK[K] on the
affine variety X := SpecR. We define the localization of X with respect to an F-face γ0
to be

Xγ0 := Xf
u1
1 ···f

ur
r

for some u = (u1, . . . , ur) ∈ γ◦0 .

This set is independent of the choice of u and with the collection of relevant faces
rlv(Φ) := {γ0 4 γ; γ0 is an F-face with Q(γ0) ∈ Φ} associated to Φ, we obtain an H-
invariant open subset of X:

X̂ := X̂(R,F,Φ) :=
⋃

γ0∈rlv(Φ)
Xγ0 .

The H-action on X̂ admits a good quotient [6, Prop. 3.1.3.8] and we set

X := X(R,F,Φ) := X̂//H

and denote the quotient map by p : X̂ → X. The pieces Xγ0 := p(Xγ0) ⊆ X
form an affine cover of X. Moreover, every element fi of F defines a prime divisor
Di
X := p(V

X̂
(fi)) on X.

Recall that an A2-variety is a variety X with the property that any two points of X
admit a common affine open neighbourhood.

Theorem 1.3.3. Let X, X̂ and X arise from a bunched ring (R,F,Φ) as above. Then
X is a normal A2-variety with

dim(X) = dim(X)− dim(KQ), Γ(X,O∗) = K∗.

Moreover there is an isomorphism Cl(X) ∼= K, the Cox ring R(X) is isomorphic to R
and the characteristic space of X equals X̂. In particular X is a Mori dream space.
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We say that a variety is A2-maximal if it has the A2-property and cannot be realized
as an open subset with nonempty complement of codimension at least two in another
A2-variety. Moreover, we call an F-bunch maximal if it cannot be enlarged by adding
further projected F-faces. In the situation of Theorem 1.3.3 X is A2-maximal if and only
if Φ is maximal. Moreover, we obtain the following:

Theorem 1.3.4. Let X be an A2-maximal Mori Dream Space with Cox ring R := R(X)
and let F be any finite system of pairwise nonassociated Cl(X)-prime generators for R.
Then X ∼= X(R,F,Φ) holds for some maximal F-bunch Φ.

Every variety X defined by a bunched ring comes with a closed embedding into a toric
variety Z.

Construction 1.3.5. Let (R,F,Φ) be a bunched ring and Q : E → K be as above.
Setting F := E∗ and M := ker(Q), we obtain mutually dual exact sequences

0

0

L

K

F

E

N

M 0

P

P∗Q

We define the envelope of the collection of relevant faces of Φ

Env(Φ) := {γ0 � γ; ∃ γ1 ∈ rlv(Φ) with γ1 � γ0 and Q(γ1)◦ ⊆ Q(γ0)◦}.

Set δ := γ∨ ⊂ FQ and for each γ0 � γ, let γ∗0 := γ⊥0 ∩ δ � δ be the corresponding face.
We define the following fans in FQ and NQ

Σ̂ := {δ0 � δ; ∃ γ0 ∈ Env(Φ) with δ0 � γ∗0},
Σ := {P (γ∗0); γ0 ∈ Env(Φ)}.

Let Σ be the fan consisting of all faces of δ, which is the fan corresponding to Kr with
its natural toric structure. Since Σ̂ is a subfan of Σ, there is an open embedding of the
corresponding varieties Ẑ ⊆ Kr. Moreover, there is a map of fans Σ̂ → Σ arising from
P : F → N . Denoting by Z the toric variety associated to Σ, we obtain a toric morphism
p : Ẑ → Z. We obtain the following commutative diagram:

X Kr

X̂ Ẑ

X Z

ı

ı̂

ı

//H //H

where X, X̂ and X are the varieties associated to the bunched ring (R,F,Φ) as in Con-
struction 1.3.2. We call the closed embedding i : X → Z the canonical toric embedding.
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Definition 1.3.6. Let (R,F,Φ) be a bunched ring with F = (f1, . . . , fr). We say that it
is a complete intersection if the kernel of the epimorphism K[T1, . . . , Tr]→ R, mapping
Ti to fi, is generated by K-homogeneous polynomials g1, . . . , gs, where s = r − dim(R).
In this case we define the degree vectors of (R,F,Φ) as (w1, . . . , wr) and (u1, . . . , us),
where wi := deg(fi) ∈ K and uj := deg(gj) ∈ K.

Proposition 1.3.7. Let the bunched ring (R,F,Φ) be a complete intersection with
degree vectors (w1, . . . , wr) and (u1, . . . , us). Then the anticanonical divisor class of
X = X(R,F,Φ) is given in Cl(X) = K as

−KX =
r∑
i=1

wi −
s∑
j=1

uj .

The last part of this section is dedicated to projective varieties arising from a bunched
ring. In particular we give a link between bunched rings providing projective varieties
and the GIT-chamber decomposition of the weight cone of a graded ring.
Let K be a finitely generated abelian group and consider an affine K-graded K-algebra
R. Set X := SpecR. The weight cone of X is the cone

ωX := cone(w ∈ K; Aw 6= {0}).

The orbit cone of a point x ∈ X is the convex cone ωx ⊆ KQ generated by the weight
monoid

Sx = {w ∈ K; f(x) 6= 0 for some f ∈ Aw} ⊆ K.

The GIT-cone of an element w ∈ ωX is the intersetion of all orbits containing it:

λ(w) :=
⋂

x∈X,w∈ωx
ωx.

The set of all GIT-cones is a quasifan in KQ having the weight cone ωX as its support.
For any weight w ∈ ωX we define the set of semistable points to be the H-invariant open
subset

Xss(w) := {x ∈ X; f(x) 6= 0 for some f ∈ Anw, n > 0} ⊆ X,

allowing a good quotient Xss(w) → Xss(w) // H onto a projective variety. Note that
Xss(w1) = Xss(w2) for any w2 ∈ λ(w1)◦. In particular every GIT-cone defines a good
quotient as above.
We link this situation to the theory of bunched rings: Let (R,F,Φ) be a bunched ring
and suppose the F-bunch Φ arises from a GIT-cone λ(w), i.e.,

Φ := Φ(w) := {Q(γ0); γ0 4 γ F-face with w ∈ Q(γ0)◦} .

Then X(R,F,Φ) = X
ss(w) //H holds with X := SpecR. Note that any projective Mori

dream space arises this way.



CHAPTER

TWO

NON COMPLETE RATIONAL T -VARIETIES OF
COMPLEXITY ONE

In this chapter we consider rational varieties with a torus action of complexity one and
extend the combinatorial approach via the Cox ring developed for the complete case
in [49, 45, 44] to the non-complete, e.g. affine, case. This includes in particular a
description of all factorially graded affine algebras of complexity one with only constant
homogeneous invertible elements in terms of canonical generators and relations. The
results of this chapter have been published in [50].

2.1 Factorially graded rings of complexity one

The basic task is to describe all Cox rings of normal rational varieties X with an effective
torus action T×X → X of complexity one even in the non-complete case. As it is needed
for the uniqueness of the Cox ring, we require Γ(X,O∗) = K∗. From the algebraic
point of view, a Cox ring is firstly a finitely generated integral K-algebra R, graded
by a finitely generated abelian group K such that there are only constant invertible
homogeneous elements. The most important characterizing property of a Cox ring is
then K-factoriality, which means that we have unique factorization in the multiplicative
monoid of non-zero homogeneous elements. Observe that for a torsion-free grading
group, K-factoriality is equivalent to the usual unique factorization property but in
general it is weaker.
In a first step, we describe all finitely generated integral K-algebras R that admit an
effective factorial K-grading of complexity one, where effective means that the weights
w ∈ K with Rw 6= 0 generate K as a group and complexity one means that the rational
vector space K ⊗ Q is of dimension one less than R. The first results in this direction
concern the case R0 = K in dimension two, see [66, 61]. The case R0 = K in arbitrary
dimension was settled in [44] and occurs as part of Type 2 in our subsequent consider-
ations. A simple example of Type 1 presented below is the coordinate algebra of the

15
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special linear group SL(2):

R = K[T1, T2, T3, T4]/〈T1T2 − T3T4 − 1〉, Q =
[

1 −1 0 0
0 0 1 −1

]
,

where the matrix Q specifies a Z2-grading of R by assigning to the variable Ti the i-
th column of Q as its degree; if T ⊆ SL(2) denotes the diagonal torus, this grading
reflects the action of T× T on SL(2) given by (s, t)·A = sAt−1. Here comes the general
construction.

Construction 2.1.1. Fix integers r, n > 0, m ≥ 0 and a partition n = nι + . . . + nr
starting at ι ∈ {0, 1}. For each ι ≤ i ≤ r, fix a tuple li ∈ Zni>0 and define a monomial

T lii := T li1i1 · · ·T
lini
ini

∈ K[Tij , Sk; ι ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m].

We will also write K[Tij , Sk] for the above polynomial ring. We distinguish two settings
for the input data A and P0 of the graded K-algebra R(A,P0).

Type 1. Take ι = 1. Let A := (a1, . . . , ar) be a list of pairwise different elements of K.
Set I := {1, . . . , r − 1} and define for every i ∈ I a polynomial

gi := T lii − T
li+1
i+1 − (ai+1 − ai) ∈ K[Tij , Sk].

We build up an r× (n+m) matrix from the exponent vectors l1, . . . , lr of these polyno-
mials:

P0 :=

 l1 0 0 . . . 0
... . . . ...

...
...

0 lr 0 . . . 0

 .
Type 2. Take ι = 0. Let A := (a0, . . . , ar) be a 2× (r + 1)-matrix with pairwise linearly
independent columns ai ∈ K2. Set I := {0, . . . , r − 2} and for every i ∈ I define

gi := det
[
T lii T

li+1
i+1 T

li+2
i+2

ai ai+1 ai+2

]
∈ K[Tij , Sk].

We build up an r× (n+m) matrix from the exponent vectors l0, . . . , lr of these polyno-
mials:

P0 :=

 −l0 l1 0 0 . . . 0
...

... . . . ...
...

...
−l0 0 lr 0 . . . 0

 .
We now define the ring R(A,P0) simultaneously for both types in terms of the data A
and P0. Denote by P ∗0 the transpose of P0 and consider the projection

Q : Zn+m → K0 := Zn+m/im(P ∗0 ).
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Denote by eij , ek ∈ Zn+m the canonical basis vectors corresponding to the variables Tij ,
Sk. Define a K0-grading on K[Tij , Sk] by setting

deg(Tij) := Q(eij) ∈ K0, deg(Sk) := Q(ek) ∈ K0.

This is the coarsest possible grading of K[Tij , Sk] leaving the variables and the gi homo-
geneous. In particular, we have a K0-graded factor algebra

R(A,P0) := K[Tij , Sk]/〈gi; i ∈ I〉.

We gather the basic properties of the graded algebras just constructed; the corresponding
proofs are given in Section 2.2. Below, we mean by a K0-prime element a homogeneous
non-zero non-unit which, whenever it divides a product of homogeneous elements, it also
divides one of the factors.

Theorem 2.1.2. Let R(A,P0) be a K0-graded ring as provided by Construction 2.1.1.
(i) The ring R(A,P0) is an integral, normal complete intersection ring of dimension

n+m− r + 1.
(ii) The K0-grading on R(A,P0) is effective, factorial of complexity one and R(A,P0)

has only constant invertible homogeneous elements.
(iii) The variables Tij and Sk define pairwise nonassociated K0-prime generators for

R(A,P0).
(iv) In case of Type 1, suppose r ≥ 2 and nilij > 1 for all i, j. Then R(A,P0) is

factorial if and only if one of the following statements holds:
(a) One has gcd(li1, . . . , lini) = 1 for i = 1, . . . , r or, equivalently, K0 is tor-

sion free.
(b) P0 = [2E2, 0] holds.

(v) In case of Type 2, suppose r ≥ 2 and nilij > 1 for all i, j. Then the following
statements are equivalent:
(a) R(A,P0) is factorial.
(b) Any two of the li := gcd(li1, . . . , lini), where i = 0, . . . , r, are coprime.
(c) K0 is torsion free.

(vi) In case of Type 1, the degree zero part R(A,P0)0 is isomorphic to a polynomial
ring in one variable over K, and in case of Type 2, one has R(A,P0)0 = K.

Observe that the situation of (iv) can always be achieved by eliminating the variables
that occur in a linear term of some relation. The following result shows that Construc-
tion 2.1.1 yields in fact all affine algebras with property (ii) of the above theorem; see
Section 2.2 for the proof.

Theorem 2.1.3. Every finitely generated, integral, normal K-algebra with an effective,
factorial grading of complexity one by a finitely generated abelian group and only constant
invertible homogeneous elements is isomorphic to a K0-graded K-algebra R(A,P0) as
provided by Construction 2.1.1.
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We turn to Cox rings of rational varieties with a torus action of complexity one. They
will be obtained as suitable downgradings of the algebras R(A,P0) of Construction 2.1.1.
Here comes the precise recipe.

Construction 2.1.4. Let integers r, n = nι + . . .+nr, m and data A and P0 of Type 1
or Type 2 as in Construction 2.1.1. Fix 1 ≤ s ≤ n+m−r, choose an integral s×(n+m)
matrix d and build the (r + s)× (n+m) stack matrix

P :=
[
P0
d

]
.

We require the columns of P to be pairwise different primitive vectors generating Qr+s

as a vector space. Let P ∗ denote the transpose of P and consider the projection

Q : Zn+m → K := Zn+m/im(P ∗).

Denoting as before by eij , ek ∈ Zn+m the canonical basis vectors corresponding to the
variables Tij and Sk, we obtain a K-grading on K[Tij , Sk] by setting

deg(Tij) := Q(eij) ∈ K, deg(Sk) := Q(ek) ∈ K.

This K-grading coarsens the K0-grading of K[Tij , Sk] given in Construction 2.1.1. In
particular, we have the K-graded factor algebra

R(A,P ) := K[Tij , Sk]/〈gi; i ∈ I〉.

We present the basic properties of this construction; see Section 2.2 for the proof. Recall
from [6] that the K-grading of R(A,P ) is almost free if for any choice of n+m− 1 out
of the n + m variables Tij , Sk, the respective degrees generate the grading group K;
geometrically this means that the quasitorus SpecK[K] acts freely on an open subset of
SpecR(A,P ) having complement of codimension at least two.

Theorem 2.1.5. Let R(A,P ) be a K-graded ring as provided by Construction 2.1.4.
(i) The K-grading on R(A,P ) is almost free, factorial, and R(A,P ) has only constant

invertible homogeneous elements.
(ii) The variables Tij and Sk define pairwise different nonassociated K-prime genera-

tors for R(A,P ).

Knowledge of the Cox ring allows to (re)construct the underlying varieties. As in the
complete case, we will obtain A2-varieties, i.e. varieties admitting an embedding into a
toric variety. This comprises in particular the affine and, more generally, the quasipro-
jective case. We make use of the language of bunched rings, see Section 1.3 for an
introduction.

Construction 2.1.6. Let R(A,P ) be aK-graded ring as provided by Construction 2.1.4
and F = (Tij , Sk) the canonical system of generators. Consider

H := SpecK[K], X(A,P ) := SpecR(A,P ),
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Then H is a quasitorus and the K-grading of R(A,P ) defines an action of H on X. Any
true F-bunch Φ defines an H-invariant open set and a good quotient

X̂(A,P,Φ) ⊆ X(A,P ), X(A,P,Φ) := X̂(A,P,Φ)//H.

The action of H0 = SpecK[K0] leaves X̂(A,P,Φ) invariant and induces an action of the
torus T = SpecK[Zs] on X(A,P,Φ).

From [6, Thm. 3.2.1.4] we infer the following properties of the varieties arising via this
construction; the proof of rationality is given in Section 2.2.

Theorem 2.1.7. Consider a T -variety X = X(A,P,Φ) as provided by Construc-
tion 2.1.6. Then X is a normal, rational A2-variety with only constant invertible func-
tions and the action of T on X is of complexity one. Dimension, divisor class group and
Cox ring of X are given by

dim(X) = s+ 1, Cl(X) ∼= K, R(X) ∼= R(A,P ).

Note that, according to Theorem 2.1.2 (v), for a given X = X(A,P,Φ), its Cox ring
R(A,P ) arises from data of Type 2 if and only if X has only constant T -invariant
functions. In case of Type 1, the algebra of T -invariant functions is a polynomial ring
in one variable over K.
The following converse for Theorem 2.1.7 is proven in Section 2.2 and concerns A2-
maximal varieties that means A2-varieties that cannot be realized as an open subset
with nonempty complement of codimension at least two in another A2-variety; this
setting includes in particular the affine and, more generally, the semiprojective case, i.e.,
varieties being projective over an affine one.

Theorem 2.1.8. Let X be an irreducible, normal, rational, A2-maximal variety with
only constant invertible functions, finitely generated divisor class group and a torus ac-
tion of complexity one. Then X is equivariantly isomorphic to a variety X(A,P,Φ)
provided by Construction 2.1.6.

In the case of affine, normal, rational varieties with a torus action of complexity one,
the whole machinery boils down to the following statement.

Corollary 2.1.9. Let X be an irreducible, normal, rational affine variety with only
constant invertible functions, finitely generated divisor class group and an effective alge-
braic torus action of complexity one. Then X is equivariantly isomorphic to a variety
SpecR(A,P )0 acted on by the torus H0/H, where R(A,P ) is as in Construction 2.1.4
and the columns of P generate the extremal rays of a pointed cone in Qr+s.

In Section 2.3 we turn towards the geometry of the varieties of complexity one con-
structed in this section, presenting i.a. methods for the resolution of singularities.
Finally, in Section 2.4, we illustrate our methods by discussing the well-known case of
normal affine K∗-surfaces [36, 38]. We take a closer look at du Val singularities and show
how their Cox rings and resolutions are obtained using our framework; see [33, 62, 29]
for earlier treatments based on other methods.
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2.2 Proofs of the results of Section 2.1

We first show that the algebras provided by Constructions 2.1.1 and 2.1.4 have indeed
the desired properties: the assertions of Theorem 2.1.2 are verified in Propositions 2.2.1
to 2.2.8, where we restrict to Type 1 and refer to [6, Section 3.4.2] for the corresponding
statements on Type 2. Then Theorems 2.1.5, 2.1.7, 2.1.8 and Corollary 2.1.9 are proven.
We work in the notation of Constructions 2.1.1 and 2.1.4.

Proposition 2.2.1. Let R(A,P0) be a K-algebra of Type 1 as in Construction 2.1.1.
Then every K0-homogeneous invertible element of R(A,P0) is constant.

Lemma 2.2.2. Notation as for Type 1 in Construction 2.1.1. For any two indices
1 ≤ i, j ≤ r, set

gij := T lii − T
lj
j + ai − aj .

For any three 1 ≤ i, j, k ≤ r, we have gij = gik − gjk and G := {gir; 1 ≤ i ≤ r − 1} is a
reduced Gröbner basis with respect to the lexicographical ordering for 〈g1, . . . , gr−1〉.

Proof. The identities among the gij are obvious. Since gi = gi i+1 holds, we see that G
generates 〈g1, . . . , gr−1〉. With αij := aj − ai, the S-polynomials of G are of the form

T lii T
lr
r − T

lj
j T

lr
r + T lii αjr − T

lj
j αir = gir(T lrr + αjr)− gjr(T lrr + αir).

In particular, they all reduce to zero with respect to G and thus G is the desired Gröbner
basis for 〈g1, . . . , gr−1〉. Obviously G is reduced.

Proof of Proposition 2.2.1. Let f ∈ K[Tij , Sk] define a K0-homogeneous unit in R(A,P0)
with inverse defined by g ∈ K[Tij , Sk]. We first show that f and hence g is of K0-degree
zero. We have a presentation

fg − 1 =
r−1∑
i=1

higi, hi ∈ K[Tij , Sk].

Suppose that f is of nonzero K0-degree. Then g is so and the constant term of fg − 1
equals −1. Thus, at least one of the hi must have a nonzero constant term and we may
rewrite the presentation as

fg − 1 =
r−1∑
i=1

h̃igi + βigi =
r−1∑
i=1

h̃igi + βi(T lii − T
li+1
i+1 − αi i+1),

where the h̃i ∈ K[Tij , Sk] have constant term zero and at least one βi is nonzero. Adding
1 to the left and the right hand side gives

fg =
r−1∑
i=1

h̃igi + βi(T lii − T
li+1
i+1 ).
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By Lemma 2.2.2, at least two different T ljj , T
lk
k are not cancelled on the right hand side.

Consider monomials fj , fk of f dividing T ljj , T
lk
k respectively. Since f isK0-homogeneous,

the exponents of fj and fk differ by an element of the row lattice of P0. This works
only for fj = 1 or fj = T

lj
j . We conclude that f and hence g is of K0-degree zero; a

contradiction.
Having seen that f and g are of K0-degree zero, we conclude that they are polynomials
in the T lii . Using the structure of the gir we may bring the representatives f and g in
the form

f =
∑
i

λi(T lrr )i, g =
∑
j

κj(T lrr )j .

Then also fg − 1 is a polynomial in T lrr . Since fg − 1 belongs to 〈g1 r, . . . , gr−1 r〉, its
reduction by the set G of Lemma 2.2.2 equals zero. This means fg − 1 = 0 and thus
f, g ∈ K∗.

Proposition 2.2.3. Let R(A,P0) be a K-algebra of Type 1 as in Construction 2.1.1.
Then R(A,P0) is an integral, regular complete intersection of dimension n+m− r+ 1.
The K0-grading of R(A,P0) is effective and of complexity one. Moreover, the degree zero
part R(A,P0)0 is a polynomial ring in one variable over K.

Lemma 2.2.4. Let G be a quasitorus and X a (normal) affine G-variety with only
constant invertible homogeneous functions. Then X is connected (irreducible).

Proof. Consider the induced action of G on the set Y = {X1, . . . , Xr} of connected
components. Then Y is a single G-orbit, because otherwise we can write X as a union of
disjoint open G-invariant sets which in turn yields nonconstant invertible functions onX.
The stabilizer G1 ⊆ G of X1 ∈ Y is a closed subgroup and we have the homomorphism
π : G→ G/G1. Write Xi = gi ·X1 with suitable g1, . . . , gr ∈ G. Then, for every character
X on G/G1, we obtain an invertible regular function fX on X sending x ∈ gi · X1 to
X(π(gi)). By construction, fX is homogeneous with respect to X. Thus every fX is
constant, which means G = G1 and thus X = X1.

Proof of Proposition 2.2.3. Consider X := V (g1, . . . , gr−1) ⊆ Km+n. We first show that
for every z ∈ X the Jacobian of g1, . . . , gr−1 is of full rank. The Jacobian is of the form
(Jg, 0) with

Jg :=


δ1,1 δ1,2 0 · · · 0
0 δ2,2 δ1,3 0
...

...
...

0 δ2,r−2 δ1,r−1 0
0 · · · 0 δ2,r−1 δ1,r


where each δt,i is a nonzero multiple of δi := grad T lii . Let z ∈ Km+n be any point with
Jg(z) not of full rank. Then δi(z) = δj(z) = 0 for some i 6= j. This implies zik = 0 = zjl
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for some 0 ≤ k ≤ ni, 0 ≤ l ≤ nj . It follows T lii (z) = T
lj
j (z) = 0 and thus z /∈ X. So the

Jacobian is of full rank for any z ∈ X.
We conclude that g1, . . . , gr−1 generate the vanishing ideal of X and that X =
SpecR(A,P0) is smooth. Lemma 2.2.4 yields that X is connected and, by smooth-
ness, irreducible. Thus R(A,P0) is integral. Moreover the dimension of X and hence
R(A,P0) is n+m− (r − 1) and thus R(A,P0) is a complete intersection.
Effectivity of theK0-grading means that the degrees of the generators Tij and Sk generate
K0 as a group and is given by construction. As well by construction, the monomials
T l11 , . . . , T

lr
r generate the degree zero part of the K0-grading of K[Tij , Sk]. Lemma 2.2.2

yields the relations T l11 = T lii − a1 + ai, where 2 ≤ i ≤ r, in R(A,P0) and we arrive at
R(A,P0)0 = K[T l11 ] ∼= K[T ].

Proposition 2.2.5. Let R(A,P0) be of Type 1. Then the variables Tij , Sk define pair-
wise nonassociated K0-prime elements in R(A,P0). If furthermore the ring R(A,P0) is
factorial, P0 6= [2E2, 0] and nilij > 1 holds, then Tij is even prime.

Proof. First observe that, by the nature of relations, any two different variables define a
zero set of codimension at least two inX. Thus the variables are pairwise non-associated.
Since R(A,P0) is integral and R(A,P0) ∼= R(A,P ′0)[S1, . . . , Sm] holds with P ′0 obtained
from P0 by deleting the zero columns, the Sk are even prime.
We now turn to the Tij and exemplarily treat T11. The task is to show that the divisor
of T11 in X is H0-prime that means that its prime components have multiplicity one and
are transitively permuted by H0. First we claim

V (X;T11) := V (T11) ∩X = H0 · z ⊆ Kn+m.

Indeed, the zero set of T11 in X is given by the equations

T11 = 0, T lss = as − a1, 2 ≤ s ≤ r.

Set h := T12 · · ·Trnr · S1 · · ·Sm and let z ∈ Kn+m
h be a point satisfying the above equa-

tions. Then z is of the form (0, z12, . . . , zrnr , z1, . . . , zm) with nonzero zij and zk and any
other such point z′ ∈ Kn+m

h is given as

z′ = t · z = (0, t12z12, . . . , trnrzrnr , t1z1, . . . , tmzm), t ∈ (K∗)n+m, tlss = 1.

This means t ∈ H0 and V (Xh;T11) = H0 · z. Since the common zero set of any two
different variables is of codimension at least two in X, our claim follows. In particular,
H0 permutes transitively the components of the divisor defined by T11 on X. To obtain
only multiplicities one, observe that the Jacobian of the above equations is of full rank
at any point of H0 · z ⊆ V (X;T11).
The supplement is shown in 4.4.11.

Proposition 2.2.6. Let R(A,P0) be of Type 1. Then R(A,P0) is K0-factorial.
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Proof. First observe that the quasitorus H0 ∼= SpecK[K0] equals the kernel of the ho-
momorphism of tori

ϕ : Tn+m → Tr, (tij , tk) 7→ (tl11 , . . . , tlrr ).

Denote the coordinates of Tr by U1, . . . , Ur. Then the relations gi are pullbacks of the
affine linear forms

gi = ϕ∗(hi), hi := Ui − Ui+1 − (ai+1 − ai) ∈ K[U±1 , . . . , U±1
r ].

The hi generate the vanishing ideal of an r times punctured affine line in Tr and thus

(R(A,P0)t)0 = K[U±1 , . . . , U±1
r ]/〈h1, . . . , hr−1〉

is a factorial ring, where t is the product over all the variables Tij and Sk. Now Propo-
sition 2.2.5 and [6, Cor. 3.4.1.6] tell us that R(A,P0) is K0-factorial.

Proposition 2.2.7. Let R(A,P0) be of Type 1. Then the variable Tij is prime in
R(A,P0) if and only if 1 = gcd(lk1, . . . , lknk) holds for all k 6= i.

Proof. We treat exemplarily T11. By Lemma 2.2.2, the ideal of relations of R(A,P0) is
generated by g12, . . . , g1r. Thus T11 generates a prime ideal if and only if the following
ideal is prime

〈T ljj + aj − a1; j 6= 1〉 ⊆ K[Tij ; (i, j) 6= (1, 1)].

This is equivalent to the statement that (l2, 0, . . . , 0), . . . , (0, . . . , 0, lr) generate a prim-
itive sublattice of Zn−n1 . This in turn holds if and only if lk1, . . . , lknk have greatest
common divisor one for all k 6= 1.

Proposition 2.2.8. Let R(A,P0) be of Type 1 with P0 6= [2E2, 0] and suppose that r ≥ 2
and nilij > 1 hold for all i, j. Then the following statements are equivalent.
(i) The ring R(A,P0) is factorial.
(ii) The group K0 is torsion free.
(iii) We have gcd(li1, . . . , lini) = 1 for i = 1, . . . , r.
(iv) The variables Tij are prime for all i, j.

Proof. Let K0 be torsion free. Then K0-factoriality implies factoriality of R(A,P0),
see [6, Thm. 3.4.1.11]. If R(A,P0) is factorial, then Proposition 2.2.5 says that the gen-
erators Tij are prime. This implies gcd(lk1, . . . , lknk) = 1 for all k, see Proposition 2.2.7.
If the latter holds, then the rows of P0 generate a primitive sublattice of Zn+m and thus
K0 is torsion free.

Proof of Theorem 2.1.5. We first show that every K-homogeneous unit f ∈ R(A,P )w is
constant. For this, it suffices to show that f is K0-homogeneous, see Proposition 2.2.1.
From [6, Rem. 3.4.3.2] we infer that the downgrading map K0 → K has kernel Zs.
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Consider the inverse g ∈ R(A,P )−w of f ∈ R(A,P )w and the decompositions into
K0-homogeneous parts

f =
∑

fi, fi ∈ R(A,P0)ui , g =
∑

gj , gj ∈ R(A,P0)vj ,

where ui = w0 +u′i with u′i ∈ Zs and vj = −w0 + v′j with v′j ∈ Zs for some fixed w0 ∈ K0
projecting to w ∈ K; we identify the kernel of K0 → K with Zs. Let fi0 , fi1 , gj0 , gj1
denote the terms, where u′i0 , v

′
j0 are minimal and u′i1 , v

′
j1 are maximal with respect to

the lexicographical ordering on Zs. As 1 is of K0-degree zero, we obtain

0 = deg(fi0gj0) = w0 + u′i0 − w0 + v′j0 = u′i0 + v′j0 .

and analogously u′i1 + v′j1 = 0. We conclude u′i0 = u′i1 and v′j0 = v′j1 . Consequently, f is
homogeneous with respect to the K0-grading.
Using [6, Lemma 2.1.4.1], we see that the K-grading of R(A,P ) is almost free. By [6,
Lemma 3.4.3.5], the variables Tij and Sk define pairwise nonassociated K-primes in
R(A,P ). Finally, [6, Thms. 3.4.1.5, 3.4.1.11 and Cor. 3.4.1.6] show that the K-grading
of R(A,P ) is factorial.

Now we turn to the converse statements. For this, we adapt the ideas of [49] to our more
general setting.

Proof of Theorem 2.1.3. Consider X = SpecR with the action of H := Spec K[K]
defined by the grading. We follow the lines of [6, Sec. 4.4.2]. Denote by E1, . . . , Em
the prime divisors on X such that for any x ∈ Ek the isotropy group Hx is infinite and
consider the H-invariant open subset

X0 := {x ∈ X; Hx is finite} ⊆ X.

Then there is a geometric quotient X0 → X0/H with a possibly non-separated smooth
curve X0/H. Consider the separation X0/H → Y and let aι, . . . , ar ∈ Y be points such
that every fiber of X0/H → Y comprising more than one point lies over some ai and
every prime divisor of X with non-trivial general H-isotropy lies over some ai; we denote
these prime divisors by Dij , where the i indicates that Dij lies over ai.
According to [6, Thm. 4.4.2.1], this quotient is the characteristic space over the possibly
non-separated curve X0/H and we have a canonical well-defined pullback isomorphism
of K-graded algebras

R(X0/H)[Tij , Sk]/〈T
lij
ij − 1zij 〉 → Γ(X,O),

where Sk and Tij are sent to functions with divisor Ek and Dij respectively and 1zij is
the pullback of the canonical section of a point zij ∈ X0/H lying over yi ∈ Y . As X0/H
is smooth, has only constant invertible global functions and finitely generated divisor
class group, we end up with Y being either the affine or the projective line. The Cox
ring of X0/H is given as

R(X0/H) = R(Y )[Uij ]/〈Ui1 · · ·Uini − 1ai〉,
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where the Uij represent the canonical sections of the points zi1, . . . , zini ∈ X0/H lying
over ai ∈ Y and 1ai is the pullback of the canonical section of ai with respect to X0/H →
Y , see [6, Prop. 4.4.3.4]. Now, if Y = K holds, we set ı := 1 and represent R(Y ) as

R(Y ) = K[V1, . . . , Vr]/〈Vi − Vi+1 − (ai+1 − ai)〉.

Plugging this into the above descriptions of R(X0/H) and Γ(X,O) gives us Type 1
of Construction 2.1.1. If Y = P1 holds, then we set ı := 0, replace the ai ∈ Y with
representatives ai ∈ K2 \ {0} and obtain

R(Y ) = K[V0, . . . , Vr]/〈g0, . . . , gr−2〉, hi := det
[
Vi Vi+1 Vi+2
ai ai+1 ai+2

]
.

Combining this description with the above presentations of R(X0/H) and Γ(X,O) leads
to Type 2 of Construction 2.1.1.
So far, we verified that the algebra R = Γ(X,O) has the desired generators and relations.
The generators are homogeneous with respect to K = X(H). As the K0-grading of
R(A,P0) is the finest possible with this property, we obtain a downgrading mapK0 → K.
Using the arguments of the proof of [6, Thm. 4.4.2.2], we see that K0 → K is an
isomorphism.

Proof of Theorem 2.1.7. From [6, Thm. 3.2.1.4] we infer all listed properties except ra-
tionality. For the latter, let U ⊆ X(A,P ) be the open subset obtained by removing the
prime divisors corresponding to the Tij and Sk. Then U is affine, T acts freely on U
with a geometric quotient p : U → C onto a smooth affine curve C. Suitably shrinking
U , we find invertible T -homogeneous functions f1, . . . , fs on U , the weights of which
form a Z-basis of the character group of T . Then (p, f1, . . . , fs) defines an isomorphism
U ∼= C × (K∗)s. Since Cl(X) is finitely generated, also Cl(C) is so. Consequently, C is
rational and thus X is rational.

Proof of Theorem 2.1.8. One follows exactly the proof of [6, Thm. 4.4.1.6], but uses our
more general Theorem 2.1.5 instead of [6, Thm. 4.4.2.2].

Proof of Corollary 2.1.9. Theorem 2.1.8 tells us X ∼= X(A,P,Φ) as in Construc-
tion 2.1.6. Since X is affine, the open subset X̂(A,P,Φ) equals the total coordinate
space X(A,P ). The latter means that Φ contains the trivial cone {0}. This is equiv-
alent to saying that the columns of P generate the extremal rays of a pointed cone in
Qr+s.

2.3 Geometry of complexity one T -varieties

In this section we adapt the construction of a canonical toric ambient variety from [6,
Sec. 3.2.5]. As a first application we show that varieties X(A,P,Φ) with Cox ring
R(A,P ) of Type 1 such that li1 + . . . + lini > 1 holds for all i = ι, . . . , r are non-toric.
Moreover we extend the resolution of singularities [6, Thm. 3.4.4.9] to our setting.
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Remark 2.3.1. Consider the defining matrix P of a K-graded ring R(A,P ) as in Con-
struction 2.1.4. Write vij = P (eij) and vk = P (ek) for the columns of P . The i-th
column block of P is (vi1, . . . , vini) and by the data of this block we mean li and the
s× ni block di of d. We introduce admissible operations on P :
(i) swap two columns inside a block vi1, . . . , vini ,
(ii) exchange the data li1 , di1 and li2 , di2 of two column blocks,
(iii) add multiples of the upper r rows to one of the last s rows,
(iv) any elementary row operation among the last s rows,
(v) swapping among the last m columns.

The operations of type (iii) and (iv) do not change the associated ring R(A,P ), whereas
the types (i), (ii), (v) correspond to certain renumberings of the variables of R(A,P )
keeping the (graded) isomorphy type.

Remark 2.3.2. If R(A,P ) is not a polynomial ring, then we can always assume that P
is irredundant in the sense that li1 + . . .+ lini > 1 holds for i = ι, . . . , r. Indeed, if P is
redundant, then we have ni = 1 and li1 = 1 for some i. After an admissible operation
of type (ii), we may assume i = r. Now, erasing vr1 and the r-th row of P and the last
column from A produces new data defining a ring R(A,P ) isomorphic to the previous
one. Iterating this procedure leads to an R(A,P ) isomorphic to the initial one but with
irredundant P .

Toric embeddability is important in our subsequent considerations. More specifically,
there is even a canonical embedding X → Z into a toric variety such that X inherits
many geometric properties from Z. The construction makes use of the tropical variety
of X.

Construction 2.3.3. Let X = X(A,P,Φ) be obtained from Construction 2.1.6.
The tropical variety of X is the fan trop(X) in Qr+s consisting of the cones

λi := cone(vi1) + lin(er+1, . . . , er+s) for i = ι, . . . , r, λ := λι ∩ . . . ∩ λr,

where vij ∈ Zr+s denote the first n columns of P and ek ∈ Zr+s the k-th canonical basis
vector; we call λi a leaf and λ the lineality part of trop(X).

Type 1 Type 2

Construction 2.3.4. Let X = X(A,P,Φ) be obtained from Construction 2.1.6. For a
face δ0 � δ of the orthant δ ⊆ Qn+m, let δ∗0 � δ denote the complementary face and call
δ0 relevant if
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• the relative interior of P (δ0) intersects trop(X),
• the image Q(δ∗0) comprises a cone of Φ,

where Q : Zn+m → K = Zn+m/P ∗(Zr+s) is the projection. Then we obtain fans Σ̂ in
Zn+m and Σ in Zr+s of pointed cones by setting

Σ̂ := {δ1 � δ0; δ0 � δ relevant}, Σ := {σ � P (δ0); δ0 � δ relevant}.

The toric varieties Ẑ and Z associated with Σ̂ and Σ, respectively, and Z = Kn+m fit
into a commutative diagramm of characteristic spaces and total coordinate spaces

X(A,P ) ⊆
⊆

Z

⊆

X̂(A,P,Φ) ⊆

//H

��

Ẑ

//H

��
X(A,P,Φ) ⊆ Z

The horizontal inclusions are T -equivariant closed embeddings, where T acts on Z as
the subtorus of the (r+ s)-torus corresponding to 0×Zs ⊆ Zr+s. Moreover, X(A,P,Φ)
intersects every closed toric orbit of Z.

We call Z from Construction 2.3.4 the minimal toric ambient variety of X = X(A,P,Φ).
Observe that the rays of the fan Σ of Z have precisely the columns of the matrix P as its
primitive generators. In particular, every ray of Σ lies on the tropical variety trop(X).

Theorem 2.3.5. Let X := X(A,P,Φ) be as in Construction 2.1.6 with R(A,P ) irre-
dundant of Type 1. Then X is not a toric variety.

Proof. Assume X is a toric variety. Then its Cox ring R(X) = R(A,P ) is a polyno-
mial ring and X := SpecR(A,P ) ∼= Kt holds. By construction X is endowed with an
H0 := SpecK[K0]-action of complexity one. As X is factorial H0 is indeed a torus and
the H0-action on X induces an action of a torus Tt−1 on Kt. By [15, 16] this torus action
arises as a subtorus action of the maximal torus. Consider the H-invariant isomorphic
open subsets

(Kt)0 :=
{
x ∈ Kt; Tt−1

x is finite
}
⊆ Kt, X0 :=

{
x ∈ X; (H0)x is finite

}
⊆ X.

Then there are geometric quotients

(Kt)0 → (Kt)0 // Tt−1 and X0 → X0 // H0

with possibly non-separated smooth curves (Kt)0 // Tt−1 and X0 // H0. Consider the
separation X0 // H0 → Y and call a points a ∈ Y , where a fiber of X0 // H0 → Y
comprising more than one point lies over a or a prime divisor of X0 with non-trivial
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general H0-isotropy lies over a, a doubling point of Y . Analogously, consider the sepa-
ration (Kt)0 // Tt−1 → Y ′ and call the points a′ ∈ Y ′, where a fiber of (Kt)0 //Tt−1 → Y ′

comprising more than one point lies over a′ or a prime divisor of (Kt)0 with non-trivial
general Tt−1-isotropy lies over a′, a doubling points of Y ′. Note that as X ∼= Kt holds
as T -varieties, the number of doubling points of Y ′ and Y coincide. Thus we compare
the number of doubling points of Y ′ with the ones of Y .
As Tt−1 acts as a subtorus of the maximal torus the quotient (Kt)0 // Tt−1 has at most
one doubling point at zero.
For counting the doubling points of Y we consider the embedding X ⊆ Kn+m. We obtain
the following commutative diagramm:

X0

��

⊆ Kn+m
0

��
X0/H0

��

⊆ Kn+m
0 /H0

��
Y ⊆ Kr,

where Kn+m
0 ⊆ Kn+m is the subset of all points with finite H0-isotropy and

X0 = Kn+m
0 ∩X holds. First we determine the orders of isotropy groups. Every point

in Tn+m has trivial H0-isotropy. Thus, we only have to look what happens on the sets
V (Tij) ∩ Kn+m

0 . Applying [6, Prop. 2.1.4.2] we obtain that the order of isotropy group
of H0 at any point x ∈ V (Tij) ∩ Kn+m

0 equals lij . Moreover the H0-invariant divisors
V (X,Tij) are prime and two divisors V (X,Tij) and V (X,Tij′) are identified isomor-
phically under the separation map X0/H0 → Y In particular any term of the defining
relations of X with li1 + . . . + lini > 1 gives rise to exactly one doubling point of Y .
As R(A,P ) has at least one relation and P is irredundant we obtain more than two
doubling points on Y . This contradicts X ∼= Kt.

We turn towards resolution of singularities. The minimal toric ambient variety is crucial
for the resolution of singularities. The following recipe for resolving singularities directly
generalizes [6, Thm. 3.4.4.9]; a related approach using polyhedral divisors is presented
in [62].

Construction 2.3.6. Let X = X(A,P,Φ) be obtained from Construction 2.1.6 and
consider the canonical toric embedding X ⊆ Z and the defining fan Σ of Z.
• Let Σ′ = Σ u trop(X) be the coarsest common refinement.
• Let Σ′′ be any regular subdivision of the fan Σ′.

Then Σ′′ → Σ defines a proper toric morphism Z ′′ → Z and with the proper transform
X ′′ ⊆ Z ′′ of X ⊆ Z, the morphism X ′′ → X is a resolution of singularities.

Remark 2.3.7. In the setting of Construction 2.3.6, the variety X ′′ has again a torus
action of complexity one and thus is of the form X ′′ = X(A′′, P ′′,Φ′′). We have A′′ = A
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and P ′′ is obtained from P by inserting the primitive generators of Σ′′ as new columns.
Moreover, Φ′′ is the Gale dual of Σ′′, that means that with the corresponding projection
Q′′ and orthant δ′′ we have

Φ′′ = {Q′′(δ∗0); δ0 � δ′′; P ′′(δ0) ∈ Σ′′}.

Proposition 2.3.8. Consider a variety X = X(A,P,Φ) of Type 2 as provided by Con-
struction 2.1.6. Then the following statements are equivalent.
(i) One has X̂ = X
(ii) The variety X is affine.
(iii) The minimal toric ambient variety Z of X is affine.
(iv) One has Ẑ = Z = Kn+m.
If one of these statements holds, then the columns of P generate the extremal rays of a
full-dimensional cone σ ⊆ Qr+s and we have Z = SpecK[σ∨ ∩ Zr+s].

Proof. Only for the implication “(ii)⇒(iii)” there is something to show. As X is of
Type 2, we have 0 ∈ X ⊆ Z = Kn+m. Since X is affine, we have X = X̂ and thus 0 ∈ Ẑ.
We conclude Ẑ = Z and thus Z = Z//H is affine.

The characterization 2.3.8 (i) allows us to omit the bunch of cones Φ in the affine case:
we may just speak of the affine variety X = X(A,P ) := X//H.

Corollary 2.3.9. Let X = X(A,P ) be affine of Type 2. Then the following statements
are equivalent.
(i) The variety X is Q-factorial.
(ii) The variety Z is Q-factorial.
(iii) The columns of P are linearly independent.

Proof. The equivalence of (i) and (ii) is [6, Cor. 3.3.1.7], The equivalence of (ii) and (iii)
is [24, Thm. 3.1.19 (b)].

Corollary 2.3.10. Let X = X(A,P ) be affine of Type 2. Then the Picard group of X
is trivial.

Proof. Proposition 2.3.8 says that the minimal toric ambient variety Z is affine. Thus,
Z has trivial Picard group; see [24, Prop. 4.2.2]. According to [6, Cor. 3.3.1.12], the
Picard group of X equals that of Z.

More generally one can show that in fact every normal affine variety admitting a torus
action with an attractive orbit has trivial Picard group: every bundle can be linearized
and the non-vanishing loci of its homogeneous sections form an invariant trivializing
open cover. As one of these covering sets contains the attractive orbit, the bundle is
trivial.
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2.4 Application: affine K∗-surfaces

To illustrate our methods, we consider the well-known case of normal affine K∗-
surfaces [36, 38] and take a closer look at those with at most du Val singularities. By
Corollary 2.1.9, any affine rational normal variety X with only constant invertible func-
tions and a torus action of complexity one is of the form

X = X(A,P ) := SpecR(A,P )0.

Moreover, using the fact that the columns of P generate the extremal rays of a pointed
cone in Qr+s we directly obtain the following.

Remark 2.4.1. Consider a rational normal affine K∗-surface X = X(A,P ). Then we
have s = 1 and there are three possible cases for the defining matrix P :
(i) The elliptic case: we are in Type 2 and we have n0 = . . . = nr = 1 and m = 0.
(ii) The parabolic case: we are in Type 1 and we have n1 = . . . = nr = 1 and m = 1.
(iii) The hyperbolic case: we are in Type 1 and we have n1, . . . , nr ≤ 2 and m = 0.

Example 2.4.2. We consider the unique normal affine K∗-surface X of parabolic type
with Cox ring

R(A,P ) := K[T11, T21, S1]/〈T 2
11 + T 2

21 + 1〉,

where

P :=

 2 0 0
0 2 0
1 1 1

 .
In this case the total coordinate space X is isomorphic to K∗×K. The divisor class group
of X is Cl(X) = Z/2Z× Z/2Z and the Cl(X)-grading of the Cox ring R(X) = R(A,P )
is given by

deg(T11) = (0, 1), deg(T21) = (0, 1), deg(S1) = (1, 1).

We have
X ∼= SpecR(A,P )Cl(X) ∼= V(T 2

1 T2 + T1T2 + T 2
3 ) ⊆ K3

and X is endowed with a K∗-action given by t ·x := (x1, t
2x2, tx3) for x ∈ X and t ∈ K∗.

We obtain a fixed point curve consisting of the points (x1, 0, 0) mapping isomorphically
onto the quotient X//K∗ ∼= K and thus X is of parabolic type as claimed.
We sketch how to regain the Cox ring out of the geometric data of X: The fixed point
curve (x1, 0, 0) corresponds to the free variable S1 in the Cox ring of X. Moreover, the
orbits K∗ ·(0, 1, 0) and K∗ ·(−1, 1, 0) are of generic isotropy 2 and give rise to the relation
T 2

1 + T 2
2 + 1 in the Cox ring of X.

We take a closer look at the surfaces X = X(A,P ) with at most du Val singularities.
Recall that these are exactly the singularities with a resolution graph of type A, D or E.
The singularities of type A are precisely the toric du Val surface singularities; we refer
to [24] for an exhaustive treatment of this case.
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Proposition 2.4.3. Let X be a parabolic or hyperbolic normal affine K∗-surface. If
x0 ∈ X is a du Val singularity, then it is of type A.

Proof. In the parabolic and hyperbolic cases, the fan Σ of the canonical ambient toric
variety is supported on the tropical variety trop(X) and we have Σ′ = Σ in the first step
of the resolution of singularities according to Construction 2.3.6. The second step means
regular subdivision of the purely two-dimensional fan Σ′ = Σ and, in the du Val case, we
end up with resolution graphs of type A; use [6, Sec. 5.4.2] for computing intersection
numbers.

We turn to the elliptic case. In case of a singularity of type D or E, we determine
the possible X and present the defining data and the Cox ring for X as well as for the
minimal resolution X̃; see [33, 62, 29] for other approaches.

Proposition 2.4.4. Let X be an elliptic normal affine K∗-surface with a du Val singu-
larity x0 ∈ X. If x0 is of type A, then X is an affine toric surface. If x0 is of type D
or E, then X ∼= X(A,P ), where

A =
[

0 −1 1
1 −1 0

]
,

the defining matrix P depends on the type of x0 as shown in the table below; we addi-
tionally present a defining equation for X ⊆ K3 from [64] and the relation g of the Cox
ring R(X) = K[T1, T2, T3]/〈g〉.

x0 equation in K3 matrix P relation g

Dq T2
1 + T2T

2
3 + T

q−1
2

[
−2 q − 2 0
−2 0 2
−1 1 1

]
T2

1 + T
q−2
2 + T2

3

E6 T2
1 + T3

2 + T4
3

[
−3 3 0
−3 0 2
−2 1 1

]
T3

1 + T3
2 + T2

3

E7 T2
1 + T3

2 + T2T
3
3

[
−4 3 0
−4 0 2
−3 1 1

]
T4

1 + T3
2 + T2

3

E8 T2
1 + T3

2 + T5
3

[
−5 3 0
−5 0 2
−4 1 1

]
T5

1 + T3
2 + T2

3

Moreover, Construction 2.3.6 provides a minimal resolution of singularities X̃ → X with
X̃ = X(A, P̃ , Φ̃), where P̃ depends on the type of x0 as shown below; we list the relation
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g̃ of the Cox ring R(X̃) = K[Tij , S1]/〈g̃〉.

x0 matrix P̃ relation g̃

Dq

[
−2 −1 q − 2 q − 3 . . . 1 0 0 0
−2 −1 0 0 . . . 0 2 1 0
−1 0 1 1 . . . 1 1 1 1

]
T2

11T12 + T
q−2
21 · · ·T2,q−2 + T2

31T32

E6

[
−3 −2 −1 3 2 1 0 0 0
−3 −2 −1 0 0 0 2 1 0
−2 −1 0 1 1 1 1 1 1

]
T3

11T
2
12T13 + T3

21T
2
22T23 + T2

31T32

E7

[
−4 −3 −2 −1 3 2 1 0 0 0
−4 −3 −2 −1 0 0 0 2 1 0
−3 −2 −1 0 1 1 1 1 1 1

]
T4

11 · · ·T14 + T3
21T

2
22T23 + T2

31T32

E8

[
−5 −4 −3 −2 −1 3 2 1 0 0 0
−5 −4 −3 −2 −1 0 0 0 2 1 0
−4 −3 −2 −1 0 1 1 1 1 1 1

]
T5

11 · · ·T15 + T3
21T

2
22T23 + T2

31T32

The fan Σ̃ of the canonical ambient toric variety Z̃ of X̃ is the unique fan with only two-
dimensional maximal cones, all of them lying on trop(X), and having as one-dimensional
cones precisely the rays through the columns of P̃ . The corresponding bunch of cones Φ̃
is the Gale dual of Σ̃.

Proof. We only have to consider the case that X = X(A,P ) is not a toric surface and
thus can assume r ≥ 2 and li := li1 > 1 for all i = 0, . . . , r. We resolve the singularity
x0 ∈ X according to Construction 2.3.6. The first step gives us a fan with r+1 maximal
cones, each of dimension two:

cone(v0, er+1), . . . , cone(vr, er+1),

where vi ∈ Qr+1 denotes the i-th column of P and we may assume that er+1 is the
(r + 1)-th canonical basis vector. In the second step, we perform the minimal regular
subdivision of these cones. This gives indeed a minimal resolution X̃ → X of x0 and the
resulting picture reflects the resolution graph. We see that x0 cannot be of type A und
thus is of type D or E. We end up with r = 2 and defining data

A =
[

0 −1 1
1 −1 0

]
, P =

 −l0 l1 0
−l0 0 l2
d0 d1 d2

 .
Moreover, because all exceptional curves are of self intersection −2, we must have di ≡ 1
mod li for i = 1, 2, 3. That means, that we inserted li−1 new rays to obtain the minimal
regular subdivision of the i-th cone.
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As a sample, we continue the case of an E6-singularity. By the shape of the corresponding
resolution graph, we have l0 = l1 = 3 and l2 = 2 after renumbering the columns suitably.
This establishes the P0-block. By suitable row operations we can achieve

P = Pc :=

 −3 3 0
−3 0 2

1 + 3c 1 1

 .
Every c ∈ Z yields a matrix Pc admissible for Construction 2.1.4. The minimal resolution
X̃c of Xc is the K∗-surface defined by A and the matrix

P̃c =

 −3 −2 −1 3 2 1 0 0 0
−3 −2 −1 0 0 0 2 1 0

1 + 3c 1 + 2c 1 + c 1 1 1 1 1 1

 .
Only for c = −1, we obtain self intersection −2 for all exceptional curves; in fact, the
one corresponding to (0, 0, 1) is important here. The fan Σ̃ of the canonical ambient
toric variety Z̃ of X̃ = X̃−1 sits on the tropical variety trop(X) and looks as follows:

Resolution of the E6-Singularity

Remark 2.4.5. Note that the approach via the defining data A and P establishes a
posteriori that every du Val surface singularity can be realized as the fixed point of
an elliptic K∗-surface. Similarly, the defining equation for X ⊆ K3 is easily seen to be
the defining relation of the Veronese subalgebra Γ(X,O) = R(A,P )0 of the Cox ring
R(X) = R(A,P ).





CHAPTER

THREE

LOG TERMINAL VARIETIES AS QUOTIENTS

Looking at the well understood case of log terminal surface singularities, one observes
that each of them is the quotient of a factorial one by a finite solvable group. The derived
series of this group reflects an iteration of Cox rings of surface singularities. We extend
this picture to log terminal singularities in any dimension coming with a torus action of
complexity one. In this setting, the previously finite groups become solvable finite torus
extensions. The results of this chapter have been published in the joint publication [5].

3.1 Platonic tuples and iteration of Cox rings

We begin with a brief discussion of the well known surface case [4, 20, 30]. The two-
dimensional log terminal singularities are exactly the quotient singularities C2/G, where
G is a finite subgroup of the general linear group GL(2). The particular case that
G is a subgroup of SL(2) leads to the du Val singularities An, Dn, E6, E7 and E8,
named according to their resolution graphs. They are precisely the rational double
points, and are also characterized by being the canonical surface singularities. The du
Val singularities fill the middle row of the following commutative diagram involving all
two-dimensional log terminal singularities:

C2

��

CR

  '' && %%
E8

��

An
CR //

��

n odd

##

Dn+3
CR
n=1

//

��

n=1

  

E6
CR //

��

E7

��
Eı8 Aın,k D2,ı

(n+3)/2 Dı
n+3 E3,ı

6 Eı6 Eı7

Here, all arrows indicate quotients by finite groups. The label “CR” tells us that this

35
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quotient represents a Cox ring; recall that the Cox rings of (the resolutions of) the du Val
singularities C2/G have been computed in [29, 33], see also the example given below. So,
E6 is the spectrum of the Cox ring of E7 etc.. In fact, the chain of Cox rings reflects the
derived series of the binary octahedral group S̃4 ⊆ SL(2), producing the E7 singularity:

S̃4 ⊇ Ã4 ⊇ D̃4 ⊇ {±I2} ⊇ {I2},

where Ã4 is the binary tetrahedral group, D̃4 the binary dihedral group, and I2 stands for
the 2×2 unit matrix. The respective CR labelled arrows stand for quotients by the factors
of this derived series. The arrows passing from the middle to the lower row indicate index-
one covers: the upper surface is Gorenstein, one divides by a cyclic group of order ı and
the lower surface is of Gorenstein index ı. Finally, the superscripts 2 in D2,ı

(n+3)/2 and 3
in E3,ı

6 denote the “canonical multiplicity” of the singularity, generalizing the “exponent”
discussed in [28, 31]; see 3.3.2. For a discussion of the surface case based on the methods
provided in this chapter, see Example 3.3.8.
Another feature of the log terminal surface singularities is that, as quotients C2/G by a
finite subgroup G ⊆ GL(2), they all come with a non-trivial C∗-action, induced by scalar
multiplication on C2. The higher dimensional analogue of C∗-surfaces are T -varieties X
of complexity one, that means varieties X with an effective action of an algebraic torus
T which is of dimension one less than X. The notion of log terminality is defined in
general via discrepancies in the ramification formula; see Section 3.2 for a brief reminder.
In higher dimensions, log terminal singularities form a larger class than the quotient
singularities Cn/G with G a finite subgroup of GL(n). Our aim is, however, to extend
the picture drawn at the beginning for the surface case to log terminal singularities with
a torus action of complexity one in any dimension.
If X comes with a torus action of complexity one, then the Cox ring R(X) admits an
explicit description in terms of generators and very specific trinomial relations. Vice
versa, one can abstractly write down all rings that arise as the Cox ring of some T -
variety X of complexity one. Let us briefly summarize the procedure; see Section 2.1
and [44] for the details.

Construction 3.1.1. Fix integers m ≥ 0, ι ∈ {0, 1} and r, n > 0 and a partition
n = nι + · · ·+ nr. For every i = ι, . . . , r let li := (li1, . . . , lini) ∈ Zni>0 with li1 ≥ . . . ≥ lini
and lι1 ≥ . . . ≥ lr1 and define a monomial

T lii := T li1i1 · · ·T
lini
ini

.

Denote the polynomial ring C[Tij , Sk; i = ι, . . . , r, j = 1, . . . , ni, k = 1, . . . ,m] for short
by C[Tij , Sk]. We distinguish two types of rings:

Type 1. Take ι = 1 and pairwise different scalars θ1 = 1, θ2, . . . , θr−1 ∈ C∗ and define for
each i = 1, . . . , r − 1 a trinomial

gi := T lii − T
li+1
i+1 − θi.
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Then we obtain a factor ring

R = C[Tij , Sk]/〈g1, . . . , gr−1〉.

Type 2. Take ι = 0 and pairwise different scalars θ0 = 1, θ1, . . . , θr−2 ∈ C∗ and define for
each i = 0, . . . , r − 2 a trinomial

gi := θiT
li
i + T

li+1
i+1 + T

li+2
i+2 .

Then we obtain a factor ring

R = C[Tij , Sk]/〈g0, . . . , gr−2〉.

As we explain later, the rings R come with a natural grading by a finitely generated
abelian group K0 and suitable downgradings K0 → K give us Cox rings of rational,
normal, varieties X with Cl(X) = K that come with a torus action of complexity one.
More geometrically, X arises as a quotient of an open set X̂ ⊆ X of the total coordinate
space X = SpecR by the quasitorus H having K as its character group. Conversely,
basically every rational, normal variety X with a torus action of complexity one can be
presented this way.
Geometrically speaking, Type 1 leads to the T -varieties of complexity one that admit
non-constant global invariant functions and Type 2 to those having only constant global
invariant functions. The varieties of Type 1 turn out to be locally isomorphic to toric
varieties. In particular, they are all log terminal and the study of their singularities is
essentially toric geometry, see Corollary 3.2.7 for a precise formulation. We therefore
mainly concentrate on Type 2. There, the true non-toric phenomena occur, as for
instance the singularities Dn, E6, E7 and E8 in the surface case.
Characterizing log terminality for a T -variety of complexity one of Type 2 involves
platonic triples, that means, triples of the form

(5, 3, 2), (4, 3, 2), (3, 3, 2), (x, 2, 2), (x, y, 1),

where x ≥ y ∈ Z≥0. We say that positive integers a0, . . . , ar form a platonic tuple if,
after reordering decreasingly, the first three numbers are a platonic triple and all others
equal one. Moreover, in the setting of Construction 3.1.1, we say that a ring R of Type 2
is platonic if every (l0j0 , . . . , lrjr) is a platonic tuple.

Example 3.1.2. The platonic rings of Type 2 in dimension two are the polynomial ring
C[T1, T2] and the factor rings C[T1, T2, T3]/〈f〉, where f is one of

T y1 + T 2
2 + T 2

3 , y ∈ Z>1, T 3
1 + T 3

2 + T 2
3 , T 4

1 + T 3
2 + T 2

3 , T 5
1 + T 3

2 + T 2
3 .

Endowed with a suitable grading, C[T1, T2] is the Cox ring of An, and the other rings,
according to the above order of listing, are the Cox rings of Dy−2, E6, E7 and E8.
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Our first result says that a rational, normal variety X with a torus action of complexity
one of Type 2 has at most log terminal singularities if and only if there occur enough
platonic tuples (l0j0 , . . . , lrnr) in the Cox ring R; see Theorem 3.2.15 for the precise
meaning of “enough”. In the affine case, the result specializes to the following; compare
also [38, Ex. 2.20] for an earlier result in a particular case and [62, Cor. 5.8] for a related
characterization.

Theorem 3.1.3. An affine, normal, Q-Gorenstein, rational variety X with torus action
of complexity one of Type 2 has at most log terminal singularities if and only if its Cox
ring R is a platonic ring.

Set for the moment li := gcd(li1, . . . , lini). Then, by Proposition 2.2.8, a ring R of Type 1
is factorial if and only if li = 1 holds for all i = 1, . . . , r. Moreover, a ring R of Type 2
is factorial if and only if the li are pairwise coprime for i = 0, . . . , r, see Theorem 2.1.2
or [44, Thm. 1.1].

Example 3.1.4. In dimension two, the factorial platonic rings R of Type 2 are the
polynomial ring C[T1, T2] and the ring C[T1, T2, T3]/〈T 5

1 + T 3
2 + T 2

3 〉.

To extend the iteration of Cox rings C2 → A1 → D4 → E6 → E7 observed in the surface
case to higher dimensions, we have to allow instead of only finite abelian groups also
non-finite abelian groups in the respective quotients.

Theorem 3.1.5. Let X1 be a rational, normal, affine variety with a torus action of
complexity one of Type 2 and at most log terminal singularities. Then there is a unique
chain of quotients

Xp
//Hp−1// Xp−1

//Hp−2// . . .
//H3 // X3

//H2 // X2
//H1 // X1 ,

where Xi = Spec(Ri) holds with a platonic ring Ri for i ≥ 2, the ring Rp is factorial
and each Xi → Xi−1 is the total coordinate space.

Note that iteration of Cox rings requires in each step finite generation of the divisor
class group Cl(X) of the total coordinate space of X. The latter merely means that
the curve Y with function field C(X)H0

0 is of genus zero, where H0
0 ⊆ H0 is the unit

component of the quasitorus H0 with character group Cl(X). In Theorem 3.4.3, we
establish a formula for the genus of Y in terms of the entries lij of the defining matrix
P of R = R(X), generalizing the case of C∗-surfaces settled in [76, Prop. 3, p. 64]. This
allows us to conclude that for log terminal affine X, the total coordinate space is always
rational. Together with the fact that the total coordinate space of a log terminal affine
X is canonical, see Proposition 3.4.1, we obtain that Cox ring iteration is possible in
the log terminal case; see Remark 3.4.12 for a discussion of a non log terminal example
with rational Cox ring. The final step in proving Theorem 3.1.5 is to show that the Cox
ring iteration even stops after finitely many steps. For this, we compute explicitly in
Proposition 3.5.6 the equations of the iterated Cox ring. It seems to be interesting to
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study Cox ring iteration also more generally; note that a Q-factorial variety has a log
terminal Cox ring if and only if it is log Fano [21, 41].
The next result shows that, in a large sense, the log terminal singularities with torus
action of complexity one still can be regarded as quotient singularities: the affine plane
C2 and the finite group G ⊆ GL(2) of the surface case have to be replaced with a factorial
affine T -variety of complexity one and a solvable reductive group.

Theorem 3.1.6. Let X be a rational, normal, affine variety of Type 2 with a torus
action of complexity one and at most log terminal singularities.
(i) X is a quotient X = X ′//G of a factorial affine variety X ′ := Spec(R′) by a

solvable reductive group G, where R′ is a factorial platonic ring.
(ii) The presentation of Theorem 3.1.5 is regained by Hi := G(i−1)/G(i) and Xi :=

X ′/G(i−1), where G(i) is the i-th derived subgroup of G.

Example 3.1.7. Every log terminal affine C∗-surface is a quotient of C2 or the E8-
singular surface V (T 5

1 + T 3
2 + T 2

3 ) ⊆ C3 by a finite solvable group.

3.2 The anticanonical complex and singularities

First recall the basic singularity types arising in the minimal model programme. Let X
be a Q-Gorenstein variety, i.e., some non-zero multiple of a canonical divisor DX on X
is an integral Cartier divisor. Then, for any resolution of singularities ϕ : X ′ → X, one
has the ramification formula

DX′ − ϕ∗(DX) =
∑

aiEi,

where the Ei are the prime components of the exceptional divisors and the coefficients
ai ∈ Q are the discrepancies of the resolution. The variety X is said to have at most log
terminal (canonical, terminal) singularities, if for every resolution of singularities the
discrepancies ai satisfy ai > −1 (ai ≥ 0, ai > 0).

Remark 3.2.1. In our subsequent considerations we will use the description of the
Cox rings of varieties of complexity one as introduced in Constructions 2.1.1 and 2.1.4.
This allows more flexibility than the simpler version presented in 3.1.1. However, given
any R(A,P ) as in Construction 2.1.4, we can achieve li1 ≥ . . . ≥ lini for all i and
lι1 ≥ . . . ≥ lr1 by means of admissible operations of type (i) and (ii), see Remark 2.3.1.
Moreover, via suitable scalings of the variables Tij , we can turn the coefficients of the
relations gi into those presented in Section 3.1.

In [13], the “anticanonical complex” has been introduced for Fano varieties X(A,P,Φ)
and served as a tool to study singularities of the above type. The purpose of this section is
to extend this approach and to generalize results from [13] to the non-complete and non-
Q-factorial cases. As an application, we characterize log terminality in Theorem 3.2.15
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via platonic triples occuring in the Cox ring. For the affine case, the result specializes
to Theorem 3.1.3.
Now, let X = X(A,P,Φ) be a rational T -variety of complexity one arising from Con-
struction 2.1.6. Consider the embedding X ⊆ Z into the minimal toric ambient variety.
Then X and Z share the same divisor class group

K = Cl(X) = Cl(Z)

and the same degree map Q : Zn+m → K for their Cox rings. Let eZ ∈ Zn+m denote
the sum over the canonical basis vectors eij and ek of Zn+m. Then, with the defining
relations gι, . . . , gr−2+ι of the Cox ring R(A,P ), the canonical divisor classes of Z and
X are given as

KZ = −Q(eZ) ∈ K, KX =
r−2+ι∑
i=ι

deg(gi) +KZ ∈ K.

Observe that if X is of Type 1, then its canonical divisor class equals that of the minimal
toric ambient variety Z. Define a (rational) polyhedron

B(−KX) := Q−1(−KX) ∩Qn+m
≥0 ⊆ Qn+m

and let B := B(gι) + . . .+B(gr−2+ι) ⊆ Qn+m denote the Minkowski sum of the Newton
polytopes B(gi) of the relations gι, . . . , gr−2+ι of R(A,P ).

Definition 3.2.2. Let X = X(A,P,Φ) such that −KX is ample and denote by Σ the
fan of the minimal toric ambient variety Z of X.
(i) The anticanonical polyhedron of X is the dual polyhedron AX ⊆ Qr+s of the

polyhedron
BX := (P ∗)−1(B(−KX) +B − eΣ) ⊆ Qr+s.

(ii) The anticanonical complex of X is the coarsest common refinement of polyhedral
complexes

AcX := faces(AX) u Σ u trop(X).

(iii) The relative interior of AcX is the interior of its support with respect to the inter-
section Supp(Σ) ∩ trop(X).

(iv) The relative boundary ∂AcX is the complement of the relative interior of AcX in AcX .

Remark 3.2.3. Consider a subdivision Σ′ → Σ of fans in Qn and the associated toric
morphism ZΣ′ → ZΣ. Then the toric Cox constructions P : ZR′ → Zn and P ′ : ZR′ → Zn,
where R = Σ(1) and R′ = Σ′(1) define homomorphisms of tori

TR
′ → Tn ← TR.

For a polynomial g ∈ C[T%; % ∈ R] without monomial factors the push-down of g
is the unique polynomial p∗(g) ∈ C[T1, . . . , Tn] without monomial factors such that
Tµp∗(p∗(g)) = g holds for some Laurent monomial Tµ ∈ C[T±1

% ; % ∈ R]. We define



3.2. The anticanonical complex and singularities 41

the shift of g to be the unique g′ ∈ C[T%′ ; %′ ∈ R′] without monomial factors such that
p′∗(g′) = p∗(g).
Let X ′ → X be a resolution of singularities as in Construction 2.3.6. Then the Cox ring
of X ′ is given as

R(X ′) = C[T%′ ; %′ ∈ R′]/〈g′ι, . . . , g′r−2+ι〉,
with the shift g′i of gi. Due to [13, Lemma 2.4] the exponents of gi correspond to the
exponents of g′i and for any exponent ν of gi the corresponding exponent ν ′ of g′i satisfies
ν ′% = ν%.

A first statement expresses the discrepancies of a given resolution of singularities via
the anticanonical complex; the proof is a straightforward generalization of the one given
in [13] for the Fano case but for the sake of completeness we give a proof here.
Proposition 3.2.4. Let X = X(A,P,Φ) such that −KX is ample and ϕ : X ′ → X a
resolution of singularities as in Construction 2.3.6. For any ray % ∈ Σ′′, let v% be its
primitive generator, v′% its leaving point of AcX provided % 6⊆ AcX and D% the corresponding
prime divisor on X ′′. Then the discrepancy a% along D% satisfies

a% = −1 + ||v%||
||v′%||

if % 6⊆ AcX , a% ≤ −1 if % ⊆ AcX .

Proof. We use the notation of Remark 3.2.3. Note that the exceptional divisors of ϕ
are exactly the divisors D%′

X′ obtained as pullbacks of the toric divisors in ZΣ given by
the rays %′ ∈ Σ′(1) \ Σ(1). We fix such a ray %′ and compute the discrepancy of ϕ
along D%′

X′ . Let B := B(gι) + . . .+B(gr−2+ι) and B′ := B(g′ι) + . . .+B(g′r−2+ι) be the
Minkowski sums of the Newton polytopes B(gi) and B(g′i). The inverse image P−1(%′) is
contained in a maximal cone τ ∈ N (B(−KX) +B). Let η ∈ B(−KX) +B be the vertex
corresponding to τ . Then η = ν−KX + ν with vertices ν−KX ∈ B(−KX) and ν ∈ B.
Write ν ′ ∈ B′ for the vertex corresponding to ν ∈ B in the sense of Remark 3.2.3. We
fix the following representatives of the anticanonical classes of X and X ′:

Dc
X :=

∑
%∈R

(−1 + ν%)D%
X , Dc

X′ :=
∑
%∈R′

(−1 + ν ′ρ)D
%
X′ .

Note that Dc
X′ − ϕ∗Dc

X is supported on the exceptional locus as ν ′% = ν% holds for all
% ∈ Σ(1). We use this representatives to compute the discrepancy of % along D%′

X′ .
Let σ ∈ Σ be the cone with relint(%′) ⊆ relint(σ). Then, on the corresponding chart
Xσ = X ∩Zσ, the divisor Dc

X is rationally principal and we claim that on Xσ the divisor
has a presentation

Dc
X = 1

m
div(χmu) with u := (P ∗)−1(ν−KX + ν − eΣ),

where m ∈ Z>0 such that mu is integral and χmu denotes the pullback of the toric
character function on ZΣ associated to mu. We obtain

1
m

div(χmu) =
∑

%∈σ(1)
〈u, v%〉D%

X =
∑

%∈σ(1)
〈P ∗u, e%〉D%

X =
∑

%∈σ(1)
〈ν−KX + ν − eΣ, e%〉D%

X
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Thus in order to verify the claim, we have to show that 〈ν−KX , e%〉 = 0 holds for all rays
% of σ. Due to amplesness of the anticanonical class we obtain B(−KX)∩relint(σ̂⊥∩γR)
is non-empty and thus contains some element e. As relint(%′) ⊆ relint(σ) holds, we can
choose a vector µ =

∑
%∈σ(1) b%% with positive b% in the preimage P−1(%′). By the choice

of e we have 〈e, µ〉 = 0 and as ν−KX ∈ B(−KX) is a minimizing vertex of µ, we conclude
〈ν−KX , µ〉 = 0 and thus 〈ν−KX , e%〉 = 0 for all rays % of σ.
We obtain that the discrepancy a%′ of ϕ : X ′ → X along D%′

X′ is the multiplicity of
Dc
X′ − div(χu) along D%′

X′ and thus

a%′ = −1 + ν ′%′ − 〈u, v%′〉.

In a last step we show that ν ′%′ equals zero. Then evaluating 〈u, v%′〉 gives the assertion.
First note that we can find a decomposition ν = νι + . . .+ νr−2+ι, where νi ∈ B(gi). Let
ν ′i be the corresponding exponent vector of the shift g′i. Then we have a decomposition
ν ′ = ν ′ι + . . .+ ν ′r−2+ι. We claim that ν ′i%′ = 0 for all i = ι, . . . , r− 2 + ι. By definition, ν ′i
lies in the face of B(g′i) which is cut out by P ′−1(%′). Consequently, the corresponding
exponent vector of the pushed down equation p∗(gi) lies in the face of B(p∗(gi)) that is
cut out by %′. Then [13, Lemma 2.5] gives the assertion.

The next result characterizes the existence of at most log terminal (canonical, termi-
nal) singularities in terms of the anticanonical complex; again, this generalizes a result
from [13].

Theorem 3.2.5. Let X = X(A,P,Φ) be such that −KX is ample. Then the following
statements hold.
(i) AcX contains the origin in its relative interior and all primitive generators of the

fan Σ are vertices of AcX .
(ii) X has at most log terminal singularities if and only if the anticanonical complex

AcX is bounded.
(iii) X has at most canonical singularities if and only if 0 is the only lattice point in

the relative interior of AcX .
(iv) X has at most terminal singularities if and only if 0 and the primitive generators

v% for % ∈ Σ(1) are the only lattice points of AcX .

Proof. By construction of the desingularization 2.3.6 X is strongly tropically resolvable.
Thus following the lines of [13, Theorem 1.4] but replacing [13, Proposition 2.3] with our
more general Proposition 3.2.4 gives the assertions.

We describe the structure of the anticanonical complex in more detail, which generalizes
in particular statements on the Q-factorial Fano case obtained in [13]. For Type 1, the
situation turns out to be simple, whereas Type 2 is more ample.

Proposition 3.2.6. Let X = X(A,P,Φ) be of Type 1 such that −KX is ample. Let Σ
be the fan of the minimal toric ambient variety of X and denote by λ0, . . . , λr the leaves
of trop(X).
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(i) Every cone σ ∈ Σ is contained in a leaf λi ⊆ trop(X). In particular, Σ u trop(X)
equals Σ.

(ii) The boundary of AcX is the union of all faces of AX that are contained in Supp(Σ).
(iii) The non-zero vertices of AcX are the primitive generators of Σ, i.e. the columns

of P .

Corollary 3.2.7. Let X = X(A,P,Φ) be a T -variety of Type 1. Then X has at most
log-terminal singularities. Moreover, it has at most canonical (terminal) singularities if
and only if its minimal toric ambient variety Z does so.

Construction 3.2.8. Let X = X(A,P,Φ) be of Type 2 and Σ the fan of the minimal
toric ambient variety of Z. Write vij := P (eij) and vk := P (ek) for the columns of P .
Consider a pointed cone of the form

τ = cone(v0j0 , . . . , vrjr) ⊆ Qr+s,

that means that τ contains exactly one vij for every i = 0, . . . , r. We call such τ a
P -elementary cone and associate the following numbers with τ :

`τ,i := l0j0 · · · lrjr
liji

for i = 0, . . . , r, `τ := (1− r)l0j0 · · · lrjr +
r∑
i=0

lτ,i.

Moreover, we set

v(τ) := `τ,0v0j0 + . . .+ `τ,rvrjr ∈ Zr+s, %(τ) := Q≥0 · v(τ) ∈ Qr+s.

We denote by T(A,P,Φ) the set of all P -elementary cones τ ∈ Σ. For a given σ ∈ Σ,
we denote by T(σ) the set of all P -elementary faces of σ.

Remark 3.2.9. Let X = X(A,P,Φ) be of Type 2. Let Σ be the fan of the minimal
toric ambient variety of X and λ0, . . . , λr ⊆ trop(X) the leaves of the tropical variety of
X. As in [13, Def. 4.1], we say that
(i) a cone σ ∈ Σ is a leaf cone if σ ⊆ λi holds for some i = 0, . . . , r,
(ii) a cone σ ∈ Σ is called big if σ ∩ λ◦i 6= ∅ holds for all i = 0, . . . , r.

Observe that a given cone σ ∈ Σ is big if and only if σ contains some P -elementary cone
as a subset.

Proposition 3.2.10. Let X = X(A,P,Φ) be of Type 2 such that −KX is ample. Let Σ
be the fan of the minimal toric ambient variety of X, denote by λ0, . . . , λr the leaves of
trop(X) and by λ = λ0 ∩ . . . ∩ λr its lineality part.
(i) The fan Σ u trop(X) consists of the cones σ ∩ λ and σ ∩ λi, where σ ∈ Σ and

i = 0, . . . , r. Here, one always has σ ∩ λ � σ ∩ λi.
(ii) The fan Σ u trop(X) is a subfan of the normal fan of the polyhedron BX . In

particular, for every cone σ ∩ λi, there is a vertex uσ,i ∈ BX with

∂AcX ∩ σ ∩ λi = {v ∈ σ ∩ λi; 〈uσ,i, v〉 = −1}.
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(iii) If a P -elementary cone τ is contained in some σ ∈ Σ, then τ is simplicial, v(τ) ∈ τ◦
holds, %(τ) is a ray, %(τ) = τ ∩ λ holds as well as Q%(τ) = Qτ ∩ λ.

(iv) Let σ ∈ Σ be any cone. Then, for every i = 0, . . . , r, the set of extremal rays of
σ ∩ λi ∈ Σ u trop(X) is given by

(σ ∩ λi)(1) = {%(σ0); σ0 ∈ T(σ)} ∪ {% ∈ σ(1); % ⊆ λi}.

(v) The set of rays of Σ u trop(X) consists of the rays of Σ and the rays %(σ0), where
σ0 ∈ T(A,P,Φ).

(vi) If a P -elementary cone τ is contained in some σ ∈ Σ, then the minimum value
among all 〈u, v(τ)〉, where u ∈ BX , equals −`τ .

(vii) Let the P -elementary cone τ be contained in σ ∈ Σ. Then %(τ) 6⊆ AcX holds if and
only if `τ > 0 holds; in this case, %(τ) leaves AcX at v(τ)′ = `−1

τ v(τ).
(viii) The vertices of AcX are the primitive generators of Σ, i.e. the columns of P , and

the points v(σ0)′ = `−1
σ0 v(σ0), where σ0 ∈ T(A,P,Φ) and `σ0 > 0.

Proof. Assertion (i) holds more generally. Indeed, the coarsest common refinement Σ1u
Σ2 of any two quasifans Σi in a common vector space consists of the intersections σ1∩σ2,
where σi ∈ Σi. Moreover, the faces of a given cone σ1 ∩ σ2 of Σ1 u Σ2 are precisely the
cones σ′1 ∩ σ′2, where σ′i � σi.
We show (ii). Let Σ′ be the complete fan in Qr+s defined by the class −KX ∈ K.
Since −KX is ample, the fan Σ is a subfan of Σ′. The preimage P−1(Σ′) consists of the
cones P−1(σ′), where σ′ ∈ Σ′, and is the normal fan of B(−KX) ⊆ Qn+m. Moreover,
P−1(trop(X)) turns out to be a subfan of the normal fan of B ⊆ Qn+m. It follows that
P−1(Σ′) u P−1(trop(X)) is a subfan of the normal fan of B(−KX) +B. Projecting the
involved fans via P to Qr+s gives the assertion.
To obtain (iii), consider first any P -elementary τ = cone(v0j0 , . . . , vrjr). Then
v0j0 , . . . , vrjr is linearly dependent if and only if v(τ) = 0 holds. The latter is equiv-
alent to 0 being an inner point of τ . Thus, if τ is contained in some σ ∈ Σ, then τ is
pointed an thus must be simplicial. The remaining part is then obvious; recall that the
lineality part of trop(X) equals the vector subspace 0×Qs ⊆ Qr+s.
We turn to (iv). First, we claim that if σ0 ∈ Σ is big and %(τ) = %(τ ′) holds for any
two P -elementary cones τ, τ ′ ⊆ σ, then σ0 is P -elementary. Assume that σ0 is not
P -elementary. Then we find some 1 ≤ t ≤ r and cones

τ = cone(v0j0 , . . . , vtjt−1 , vtjt , vtjt+1 , . . . , vrjr) ⊆ σ0,

τ ′ = cone(v0j0 , . . . , vtjt−1 , vtj′t , vtjt+1 , . . . , vrjr) ⊆ σ0

with jt 6= j′t and thus τ 6= τ ′. Here, we may assume that c−1
τ ltjt ≥ c−1

τ ′ ltj′t holds with
the greatest common divisors cτ and cτ ′ of the entries of v(τ) and v(τ ′) respectively.
Then even c−1

τ `τ,i ≥ c−1
τ ′ `τ ′,i must hold for all 1 ≤ i ≤ r. Since, the rays %(τ) and %(τ ′)

coincide, also their primitive generators c−1
τ ′ v(τ ′) and c−1

τ v(τ) coincide. By the definition
of v(τ) and v(τ ′), this implies

c−1
τ ′ `τ ′,tvtj′t = c−1

τ `τ,kvtjt +
∑
i 6=t

(c−1
τ `τ,i − c−1

τ ′ `τ ′,i)viji .
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We conclude vtj′t ∈ τ . Since vtj′t is an extremal ray of σ0 and τ ′ ⊆ σ0 holds, vtj′t generates
an extremal ray of τ . This is a contradiction to the choice of j′t and the claim is verified.
Now, consider the equation of (iv). To verify “⊆”, let % be an extremal ray of σ ∩ λi.
We have to show that % = %(σ0) holds for some σ0 ∈ T(σ) or that % is a ray of σ with
% ⊆ λi. According to (ii), there is a face σ% � σ such that % = σ% ∩ λ or % = σ% ∩ λi
holds. We choose σ% minimal with respect to this property, that means that we have
%◦ ⊆ σ◦%. We distinguish the following cases.

Case 1. We have % = σ% ∩ λ. If σ% ⊆ λ holds, then we obtain % = σ% and thus % ⊆ λi
is an extremal ray of σ. So, assume that σ% is not contained in λ. Then, because of
σ◦% ∩ λ 6= ∅, there is a P -elementary cone τ ⊆ σ%. Using (i), we obtain

%(τ) = τ ∩ λ ⊆ σ% ∩ λ = %

and thus % = %(τ). As this does not depend on the particular choice of the P -elementary
cone τ ⊆ σ%, the above claim yields σ0 := σ% ∈ T(σ) and % = %(σ0).

Case 2. We don’t have % = σ% ∩ λ. Then % = σ% ∩ λi and %◦ ⊆ λ◦i hold. If σ% ⊆ λi
holds, then we obtain % = σ% and thus % ⊆ λi is an extremal ray of σ. So, assume that
σ% is not contained in λi. Then σ% ∩ λ◦j is non-empty for all j = 0, . . . , r. Thus, there is
a P -elementary cone τ ⊆ σ%. Using (i), we obtain

%(τ) = τ ∩ λ ⊆ σ% ∩ λ = %

and thus % = %(τ). As this does not depend on the particular choice of the P -elementary
cone τ ⊆ σ%, the above claim yields σ0 := σ% ∈ T(σ) and % = %(σ0).
We verify the inclusion “⊇”. Consider a face σ0 ∈ T(σ). As seen just before, the extremal
rays of σ0∩λi are %(σ0) and the rays of σ0 that lie in λi. Since σ0∩λi is a face of σ∩λi,
the ray %(σ0) is an extremal ray of σ ∩ λi. Finally, consider an extremal ray % � σ with
% ⊆ λi. Then % = % ∩ λi is a face of σ ∩ λi.
The proof of Assertion (iv) is complete now. Assertion (v) is a direct consequence of (iv).
We turn to Assertions (vi), (vii) and (viii). Let τ̂ � σ̂ � Qn+m

≥0 be the faces with
P (τ̂) = τ and P (σ̂) = σ. Moreover, let eτ ∈ τ̂ be the (unique) point with P (eτ ) = v(τ).
The minimum value 〈u, v(τ)〉 is attained at some vertex u ∈ BX . For this u, we find
vertices eσ ∈ B(−KX) and eB ∈ B with

u = (P ∗)−1(eσ + eB − eZ).

Here, eσ is any vertex of B(−KX) such that σ̂ is contained in the cone of the normal fan
of B(−KX) associated with eσ; such eσ exists due to ampleness of −KX and eσ vanishes
along σ̂. Together we have

eτ =
r∑
i=0

lijieiji , 〈u, v(τ)〉 = 〈eσ + eB − eZ , eτ 〉.

As mentioned, 〈eσ, eτ 〉 = 0 holds. Moreover, 〈e, eτ 〉 = (r − 1)l0j0 · · · lrjr holds for every
e ∈ B. We conclude 〈u, v(τ)〉 = −`τ and Assertion (vi). Moreover, Assertions (vii)
and (viii) are direct consequences of (vi) and (ii).
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Example 3.2.11. Consider the E6-singular affine surface X = V (z4
1 + z3

2 + z2
3) ⊆ C3.

It inherits a C∗-action from the action

t · (z1, z2, z3) = (t3z1, t
4z2, t

6z3)

on C3. The divisor class group and the Cox ring of the surface X are explicitly given by

Cl(X) = Z/3Z, R(X) = C[T1, T2, T3]/〈T 3
1 + T 3

2 + T 2
3 〉,

where the Cl(X)-degrees of T1, T2, and T3 are 1̄, 2̄ and 0̄. The minimal toric ambient
variety is affine and corresponds to the cone

σ = cone((−3,−3,−2), (3, 0, 1), (0, 2, 1)).

Denoting by ei ∈ Q3 the i-th canonical basis vector, the tropical variety trop(X) in Q3

is given as

trop(X) = cone(e1,±e3) ∪ cone(e2,±e3) ∪ cone(−e1 − e2,±e3).

The anticanonical polyhedron AX ⊆ Q3 is not bounded with recession cone generated
by (−1,−1,−1), (1, 0, 0), (0, 1, 0). The vertices of AX are

(−3,−3,−2), (3, 0, 1), (0, 2, 1), (0, 0, 1).

The anticanonical complex AcX = AX u Σ u trop(X) lives inside trop(X) and looks as
follows.

Corollary 3.2.12. Let X = X(A,P,Φ) be of Type 2 such that −KX is ample. Let
τ be a P -elementary cone contained in some σ ∈ Σ. Assume %(τ) 6⊆ AcX and denote
by cτ the greatest common divisor of the entries of v(τ). Then, for any resolution of
singularities ϕ : X ′′ → X provided by 2.3.6, the discrepancy along the prime divisor of
X ′′ corresponding to %(τ) equals c−1

τ `τ − 1.

Corollary 3.2.13. Let X = X(A,P,Φ) be of Type 2 such that −KX is ample and let
τ = cone(v0j0 , . . . , vrjr) be contained in some σ ∈ Σ.
(i) If X has at most log terminal singularities, then l−1

0j0 + . . .+ l−1
rjr

> r − 1 holds.
(ii) If X has at most canonical singularities, then l−1

0j0 + . . .+ l−1
rjr
≥ r−1+ cτ l

−1
0j0 · · · l

−1
rjr

holds.
(iii) If X has at most terminal singularities, then l−1

0j0 + . . .+ l−1
rjr

> r− 1 + cτ l
−1
0j0 · · · l

−1
rjr

holds.
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Remark 3.2.14. Let a0, . . . , ar be positive integers. Then a−1
0 + . . .+a−1

r > r−1 holds
if and only if (a0, . . . , ar) is a platonic tuple.

Theorem 3.2.15. Let X = X(A,P,Φ) be of Type 2 such that −KX is ample and let Σ
be the fan of the minimal toric ambient variety of X. Then the following statements are
equivalent.
(i) The variety X has at most log terminal singularities.
(ii) For every P -elementary τ = cone(v0j0 , . . . , vrjr) contained in a cone of Σ, the

exponents l0j0 , . . . , lrjr form a platonic tuple.

Proof. Assume that X = X(A,P,Φ) is log terminal. Then Corollary 3.2.13 (i) tells
us that for every P -elementary τ = cone(v0j0 , . . . , vrjr) contained in a cone of Σ, the
corresponding exponents l0j0 , . . . , lrjr form a platonic tuple.
Now assume that (ii) holds. Then every (l0j0 , . . . , lrjr) is a platonic tuple. Consequently,
we have `τ > 0 for every P -elementary cone τ . Proposition 3.2.10 shows that AcX is
bounded for X = X(A,P,Φ). Theorem 3.2.5 (ii) tells us that X is log terminal.

Remark 3.2.16. Let X = X(A,P,Φ) be affine of Type 2 such that KX is Q-Cartier.
Then −KX is ample. The fan Σ of the minimal toric ambient variety Z of X consists
of all the faces of the cone σ generated by the columns of P . In particular, every P -
elementary cone is contained in σ. Thus, Theorem 3.1.3 follows from Theorem 3.2.15.
Moreover, the rays %(σ0), where σ0 ∈ T(A,P,Φ), are precisely the extremal rays of the
intersection of σ and the lineality part of trop(X).

3.3 Gorenstein index and canonical multiplicity

If a normal variety X is Q-Gorenstein, then, by definition, some multiple of its canonical
class KX is Cartier. The Gorenstein index of X is the smallest positive integer ıX such
that ıXKX is Cartier. We attach another invariant to the canonical divisor of X.

Remark 3.3.1. Let X = X(A,P ) be a Q-Gorenstein, affine T -variety of Type 2. We
consider canonical divisors DX on X that are of the following form, cf. [6, Prop. 3.3.3.2]:

−
∑
i,j

Dij −
∑
k

Ek +
r−1∑
α=1

niα∑
j=0

liαjDiαj , 0 ≤ iα ≤ r. (3.1)

Corollary 2.3.10 says that ıXDX is the divisor of a T -homogeneous rational function.
Any two ıXDX with DX of shape (3.1) differ by the divisor of a T -invariant rational
function, and thus, all the functions with divsors ıXDX , where DX as in (3.1), are
homogeneous with respect to the same weight ηX ∈ X(T ).

Definition 3.3.2. Let X = X(A,P ) be a Q-Gorenstein, affine T -variety of Type 2. We
call ηX ∈ X(T ) of Remark 3.3.1 the canonical weight of X. The canonical multiplicity of
X is the minimal non-negative integer ζX such that ηX = ζX · η′X holds with a primitive
element η′X ∈ X(T ).
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Proposition 3.3.3. Let X = X(A,P ) be a Q-Gorenstein, affine T -variety of Type 2
with at most log terminal singularities. Then ζX > 0 holds. Moreover, for any positive
integer ı, the following statements are equivalent.
(i) The variety X is of Gorenstein index ı.
(ii) There exist integers µ1, . . . , µr with gcd(µ1, . . . , µr, ζX , ı) = 1 such that with µ0 :=

ı(r − 1)− µ1 − . . .− µr we obtain integral vectors

νi := (νi1, . . . , νini) with νij := ı− µilij
ζX

,

ν ′ := (ν ′1, . . . , ν ′m) with ν ′k := ı

ζX

and by suitable elementary row operations on the (d, d′)-block, the matrix P gains
(ν0, . . . , νr, ν

′) as its last row, i.e., turns into the shape

P̃ =


−l0 l1 . . . 0 0
...

... . . . ...
...

−l0 0 . . . lr 0
∗ ∗ . . . ∗ ∗
ν0 ν1 . . . νr ν ′

 .

Proof. We work with an anticanonical divisor DX on X such that −DX is of the
form (3.1):

DX :=
∑
i,j

Dij +
∑
k

Ek − (r − 1)
n0∑
j=1

l0jD0j .

According to Corollary 2.3.10, the Picard group of X is trivial. Thus, ıXDX is the
divisor of some toric character χu, where

u = (µ1, . . . , µr, η1, . . . , ηs) ∈ Zr+s.

Note that −(η1, . . . , ηs) ∈ Zs = X(T ) is the canonical weight ηX of X. Moreover, the
divisor ıXDX = div(χu) corresponds to the vector P ∗ ·u ∈ Zm+n under the identification
of toric divisors with lattice points via Dij 7→ eij and Ek 7→ ek.
We claim that ηX is non-trivial. Otherwise, η1 = . . . = ηs = 0 holds. As noted, the ij-th
and k-th components of the vector P ∗ · u are the multiplicities of Dij and Dk in ıXDX ,
respectively. More explicitly, this leads to the conditions

m = 0, ıX((r − 1)l0j − 1) = (µ1 + . . .+ µr)l0j , ıX = µilij

for all i and j. Plugging the third into the second one, we obtain that l−1
0j0 + . . . + l−1

rjr
equals r − 1 for any choice of 1 ≤ ji ≤ ni. According to Corollary 3.2.13 (i), this
contradicts to log terminality of X. Knowing that ηX is non-zero, we obtain that ζX is
non-zero.
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Now, assume that (i) holds, i.e., we have ı = ıX . Let u ∈ Zr+s as above. Then we
have ζX = gcd(η1, . . . , ηs) and div(χu) = ıDX implies gcd(µ1, . . . , µr, ζX , ı) = 1. Next,
choose a unimodular s × s matrix B with B−1 · (η1, . . . , ηs) = (0, . . . , 0, ζX). Consider
P̃ := diag(Er,B∗) · P and

ũ = (µ1, . . . , µr, 0, . . . , 0, ζX) ∈ Zr+s.

Observe that we have P ∗·u = P̃ ∗·ũ. Comparing the entries of P̃ ∗·ũ with the multiplicities
of the prime divisors Dij and Dk in ıDX shows that the last row of P̃ is as claimed.
Conversely, if (ii) holds, consider u := (µ1, . . . , µr, 0, . . . , 0, ζX). Then we obtain ıDX =
div(χu). Using gcd(µ1, . . . , µr, ζX , ı) = 1, we conclude that ı is the Gorenstein index of
X.

Remark 3.3.4. LetX = X(A,P ) be a Q-Gorenstein, affine T -variety of Type 2 andDX

a canonical divisor on X as in (3.1). Then ıXDX is the divisor of some toric character
χu, where

u = (µ1, . . . , µr, η1, . . . , ηs) ∈ Zr+s.

In this situation, we have ηX = (η1, . . . , ηs) ∈ X(T ) for the canonical weight of X and
the canonical multiplicity of X is given by ζX = gcd(η1, . . . , ηs). If P is in the shape of
Proposition 3.3.3, then ηX = (0, . . . , 0, ζX) holds and −µ1, . . . ,−µr satisfy the conditions
of 3.3.3 (ii).

Remark 3.3.5. The defining matrix P of a given Q-Gorenstein, affine T -variety X =
X(A,P ) is in the shape of Proposition 3.3.3 if and only if for every i = 0, . . . , r, the
numbers µi := (ıX − ζXνi1)l−1

i1 satisfy
(i) ζXνij + µilij = ıX for i = 1, . . . , r and j = 1, . . . , ni,
(ii) ζXν0j + µ0l0j = ıX , for µ0 := ıX(r − 1)− µ1 − . . .− µr and j = 1, . . . , n0,
(iii) gcd(µ1, . . . , µr, ζX , ıX) = 1,
(iv) ζXν ′k = ıX for k = 1, . . . ,m.

Corollary 3.3.6. Let X = X(A,P ) be a Q-Gorenstein, affine T -variety of Type 2 with
at most log terminal singularities. Then, for every ı ∈ Z≥1, the following statements are
equivalent.
(i) The variety X is of Gorenstein index ı and of canonical multiplicity one.
(ii) One can choose the defining matrix P to be of the shape

−l0 l1 . . . 0 0
...

... . . . ...
...

−l0 0 . . . lr 0
∗ ∗ . . . ∗ ∗

ı− ı(r − 1)l0 ı . . . ı ı

 ,

where ı stands for a vector (ı, . . . , ı) of suitable length.
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Proof. If (i) holds, then we may assume P to be as P̃ in Proposition 3.3.3. Adding
the µi-fold of the i-th row to the last row brings P into the desired form. If (ii) holds,
take u = (0, . . . , 0,−1) ∈ Zr+s. Then P ∗ · u ∈ Zn+m defines a divisor ıDX with DX a
canonical divisor of shape (3.1) and we see ζX = 1.

Proposition 3.3.7. Let X = X(A,P ) be a Q-Gorenstein affine T -variety of Type 2
with at most log terminal singularities and canonical multiplicity ζX > 1. Then we can
choose P of shape 3.3.3 (ii) such that lij = 1 and νij = 0 holds for i = 3, . . . , r and
j = 1, . . . , ni and, moreover, P satisfies one of the following cases:

Case (l01, l11, l21) (ν0, ν1, ν2) ζX ıX

(i) (4, 3, 2) 1
2(ıX + l0, ıX − ıX l1, ıX − l2) 2 0 mod 2

(ii) (3, 3, 2) 1
3(ıX − l0, ıX + l1, ıX − ıX l2) 3 0 mod 3

(iii) (2k + 1, 2, 2) 1
4(ıX − ıX l0, ıX − l1, ıX + l2) 4 2 mod 4

(iv) (2k, 2, 2) 1
2(ıX − l0, ıX + l1, ıX − ıX l2) 2 0 mod 2

(v) (k, 2, 2) 1
2(ıX − ıX l0, ıX − l1, ıX + l2) 2 0 mod 2

(vi) (k0, k1, 1) (ν0, ν1, ζ
−1
X (ıX − ıX l2))

where ıX stands for a vector (ıX , . . . , ıX) of suitable length, and in Case (vi), all the
numbers (ıX − ν0j0ζX)/l0j0 and (ν1j1ζX − ıX)/l1j1 are integral and coincide.

Proof. Since X = X(A,P ) has at most log terminal singularities, Theorem 3.1.3 guar-
antees that the Cox ring R(X) = R(A,P ) is platonic. Thus, suitably exchanging data
column blocks, we achieve lij = 1 for all i ≥ 3. Next, we bring P in to the form of
Proposition 3.3.3 (ii). Finally, subtracting the νij-fold of the i-th row from the last one,
we achieve νij = 0 for i = 3, . . . , r.
Observe that our new matrix P still satisfies the conditions of Remark 3.3.5. For the
integers µi defined there, we have

µ0 + µ1 + µ2 = µ3 = . . . = µr = ıX . (3.2)

Moreover, for i = 0, 1, 2 set `i := l01l11l21/li1. Then, because of ıX + µilij = νijζX , we
obtain

gcd(`0, `1, `2)−1
2∑
i=0

`i(ıX − µilij) = αζX for some α ∈ Z. (3.3)

Finally, Remark 3.3.5 ensures

1 = gcd(µ1, . . . , µr, ζX , ıX) = gcd(µ1, µ2, ζX , ıX). (3.4)



3.3. Gorenstein index and canonical multiplicity 51

We will now apply these conditions to establish the table of the assertion. Since
(l01, l11, l21) is a platonic triple, we have to discuss the following cases.

Case 1 : (l01, l11, l21) equals (5, 3, 2). Our task is to rule out this case. Using (3.2)
and (3.3), we see that ζX divides

ıX = 31ıX − 30(µ0 + µ1 + µ2) = 6(ıX − 5µ0) + 10(ıX − 3µ1) + 15(ıX − 2µ2).

Consequently, (3.4) becomes gcd(µ1, µ2, ζX) = 1 and from ıX − µilij = νijζX we infer
that ζX divides 5µ0, 3µ1 and 2µ2. This leaves us with the three possibilities ζX = 2, 3, 6.
If ζX = 2 holds, then ζX divides µ0 and µ1 but not µ2; if ζX = 3 holds, then ζX divides µ0
and µ2 but not µ1. Both contradicts to the fact that ζX divides ıX = µ0 +µ1 +µ2. Thus,
only ζX = 6 is left. In that case, ζX must divide µ0. Since ζX divides ıX = µ0 +µ1 +µ2,
we see that ζX divides µ1 + µ2. Moreover, ζX | 3µ1 gives µ1 = 2µ′1 and ζX | 2µ2 gives
µ2 = 3µ′2 with integers µ′1, µ′2. Now, as ζX = 6 divides 2µ′1 + 3µ′2, we obtain that µ′2 and
hence µ2 are even. This contradicts gcd(µ1, µ2, ζX) = 1.

Case 2 : (l01, l11, l21) equals (4, 3, 2). Similarly as in the preceding case, we apply (3.2)
and (3.3) to see that ζX divides

ıX = 13ıX − 12(µ0 + µ1 + µ2) = 1
2
(
6(ıX − 4µ0) + 8(ıX − 3µ1) + 12(ıX − 2µ2)

)
.

As before, we conclude gcd(µ1, µ2, ζX) = 1 and obtain that ζX divides 4µ0, 3µ1 and 2µ2.
This reduces to ζX = 2, 3, 6.
If ζX = 3 holds, then ζX divides µ0 and µ2 but not µ1, contradicting the fact that ζX
divides ıX = µ0 + µ1 + µ2. If ζX = 6 holds, then we obtain µ0 = 3µ′0, µ1 = 2µ′1 and
µ2 = 3µ′2 with suitable integers µ′i. Since ζX divides ıX = µ0 + µ1 + µ2, we obtain that
µ2 is divisible by 3, contradicting gcd(µ1, µ2, ζX) = 1.
Thus, the only possibility left is ζX = 2. We show that this leads to Case (i) of the
assertion. Observe that µ1 is even, µ2 is odd because of gcd(µ1, µ2, ζX) = 1 and µ2 is
odd because ıX = µ0 + µ1 + µ2 is even. Recall that the vectors νi in the last row of P
are given as

νi = 1
ζX

(ıX − µili) = 1
2ıX −

µi
2 li.

Thus, adding the (−µ0−µ2)/2-fold of the first row and the (µ2−1)/2-fold of the second
row to the last row brings P into the shape of Case (i).

Case 3 : (l01, l11, l21) equals (3, 3, 2). As in the two preceding cases, we infer from (3.2)
and (3.3) that ζX divides

ıX = 7ıX − 6(µ0 + µ1 + µ2) = 1
3
(
6(ıX − 3µ0) + 6(ıX − 3µ1) + 9(ıX − 2µ2)

)
.

Since gcd(µ1, µ2, ζX) = 1 and ζX divides 3µ0, 3µ1, 2µ2, we are left with ζX = 2, 3, 6. If
ζX = 2 or ζX = 6 holds, then µ0, µ1 and ıX = µ0 + µ1 + µ2 must be even. Thus also µ2
must be even, contradicting gcd(µ1, µ2, ζX) = 1.
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Let ζX = 3. We show that this leads to Case (ii) of the assertion. First, 3 divides µ2 and
ıX = µ0 + µ1 + µ2, hence also µ0 + µ1. Moreover, 3 divides neither µ0 nor µ1 because
of gcd(µ1, µ2, ζX) = 1. Interchanging, if necessary, the data of the column blocks no. 0
and 1, we achieve that 3 divides µ0− 1 and µ1 + 1. So, at the moment, the νi in the last
row of P are of the form

νi = 1
ζX

(ıX − µili) = 1
3ıX −

µi
3 li.

Adding the (µ1 + 1)/3-fold of the first and the (−µ0 − µ1)/3-fold of the second to the
last row of P , we arrive at Case (ii).

Case 4 : (l01, l11, l21) equals (k, 2, 2) with k ≥ 3 odd. Then (3.2) and (3.3) show that ζX
divides

2ıX = (2 + 2k)ıX − 2k(µ0 +µ1 +µ2) = 1
2(4(ıX − kµ0) + 2k(ıX − 2µ1) + 2k(ıX − 2µ2)).

Case 4.1 : ζX doesn’t divide ıX . Then we have 2ıX = αζX with α ∈ Z odd. Thus, ζX
is even and 2µi = ıX − νijζX implies that 4µi is an odd multiple of ζX for i = 1, 2. In
particular, 4 divides ζX . Moreover, (3.4) implies gcd(µ1, µ2, ζX/2) = 1 and we obtain
ζX = 4. That means ıX ≡ 2 mod 4. Since ζX = 4 divides ıX − kµ0 and k is odd, we
conclude µ0 ≡ 2 mod 4. Then µ0 + µ1 + µ2 = ıX ≡ 2 mod 4 implies that 4 divides
µ1 + µ2. Interchanging, if necessary, the data of the column blocks no. 1 and 2, we can
assume µ1 ≡ −µ2 ≡ 1 mod 4. Then, adding the (µ1 − 1)/4-fold of the first and the
(µ2 +1)/4-fold of the second to the last row of P , we arrive at Case (iii) of the assertion.

Case 4.2 : ζX divides ıX . Then (3.4) becomes gcd(µ1, µ2, ζX) = 1. Since ζX divides 2µ1
and 2µ2, we see that ζ = 2 holds and µ1, µ2 are odd. Adding the (µ1 − 1)/2-fold of the
first and the (µ2 + 1)/2-fold of the second to the last row of P leads to Case (v) of the
assertion.

Case 5 : (l01, l11, l21) equals (k, 2, 2) with k ≥ 2 even. Then (3.2) and (3.3) show that ζX
divides

ıX = (k + 1)ıX − k(µ0 + µ1 + µ2) = 1
4(4(ıX − kµ0) + 2k(ıX − 2µ1) + 2k(ıX − 2µ2)).

As earlier, we conclude that ζX |2µi for i = 1, 2 and ζX = 2. Since gcd(µ1, µ2, 2) = 1
holds and µ0 + µ1 + µ2 = ıX is even, two of the µi are be odd and one is even. If µ1
and µ2 are odd, then adding the (µ1 − 1)/2-fold of the first and the (µ2 + 1)/2-fold of
the second to the last row of P leads to Case (v). Now, let µ0 be odd. Interchanging, if
necessary, the data of the column blocks no. 1 and 2, we achieve that µ1 is odd. Then
we add the (µ1 + 1)/2-fold of the first and the (−µ0 − µ1)/2-fold of the second to the
last row of P and arrive at Case (iv) of the assertion.

Case 6. (l01, l11, l21) equals (k0, k1, 1), where k0, k1 ∈ Z>0. We subtract the ν21-fold
of the second row of P from the last one. Since ν21 = (ıX − µ2)/ζX holds, we obtain
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ν2 = ζ−1
X (ıX − ıX l2). Moreover, (3.2) becomes µ0 + µ1 = 0. We arrive at Case (vi) of

the assertion by observing

(ıX − ν0j0ζX)/l0j0 = µ0 = −µ1 = (ν1j1ζX − ıX)/l1j1 .

Example 3.3.8. We discuss the rational affine C∗-surfaces X with at most log terminal
singularities. First, the affine toric surfaces X = C2/Ck show up here, where Ck is the
cyclic group of order k acting diagonally. In terms of toric geometry, these surfaces are
given as

X = SpecC[σ∨ ∩ Z2], σ = cone((k, ı), (ı, k +m)),

where k,m ∈ Z>0 with gcd(k, ı) = gcd(k + m, ı) = 1 and ı is the Gorenstein index
of X; see [24, Chap. 10] for more background. Now consider a non-toric C∗-surface
X = X(A,P ) of Type 2. As a quotient of C2 by a finite group, X has finite divisor class
group and thus P is a 3× 3 matrix of the shape

P =

 −l01 l11 0
−l01 0 l21
d01 d11 d21

 .
Theorem 3.1.3 says that (l01, l11, l21) is a platonic triple. Moreover, Corollary 3.3.6 and
Proposition 3.3.7 provide us with constraints on the di1. Having in mind that P is of
rank three with primitive columns, one directly arrives at the following possibilities,
where ζ = ζX is the canonical multiplicity and ı = ıX the Gorenstein index:

Type P ζ ı

D1,ı
n

[
−n + 2 2 0
−n + 2 0 2
−nı + 3ı ı ı

]
1 gcd(ı, 2n) = 1

D2,ı
2n+1

[
−2n + 1 2 0
−2n + 1 0 2
(1− n)ı ı/2 + 1 ı/2− 1

]
2 gcd(ı, 8n− 4) = 4

E1,ı
6

[
−3 3 0
−3 0 2
−2ı ı ı

]
1 gcd(ı, 6) = 1

E3,ı
6

[
−3 3 0
−3 0 2

ı/3− 1 ı/3 + 1 −ı/3

]
3 gcd(ı, 18) = 9

E1,ı
7

[
−4 3 0
−4 0 2
−3ı ı ı

]
1 gcd(ı, 6) = 1

E1,ı
8

[
−5 3 0
−5 0 2
−4ı ı ı

]
1 gcd(ı, 30) = 1

For geometric details on these surfaces, we refer to the work of Brieskorn [20], and, in
the context of the McKay Correspondence, Wunram [88] and Wemyss [86].
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3.4 Geometry of the total coordinate space

We take a closer look at the geometry of the total coordinate space X of a T -variety X
of complexity one. The first result says in particular that X is Gorenstein and canonical
provided that X is log terminal and affine.

Proposition 3.4.1. Let R(A,P0) be a platonic ring of Type 2. Then the affine variety
X = SpecR(A,P0) is Gorenstein and has at most canonical singularities.

Proof. Adding suitable rows, we complement the matrix P0 to a square matrix P of full
rank with last row (1− (r−1)l0,1, . . . ,1), where 1 indicates vectors of length ni with all
entries equal to one; this is possible, because the last row is not in the row space of P0.
Then X = X(A,P ) is a Q-factorial affine T -variety. Theorem 3.1.3 tells us that X has at
most log terminal singularities and Corollary 3.3.6 ensures that X is Gorenstein. Thus,
X has at most canonical singularities. Since X → X is finite with ramification locus of
codimension at least two, we can use [53, Thm. 6.2.9] to see that X is Gorenstein with
at most canonical singularities.

Now we investigate the generic quotient Y of X by the action of the unit component
H0

0 ⊆ H0, in other words, the smooth projective curve Y with function field C(Y ) =
C(X)H0

0 . Note that the curve Y occurs also in [3], where it carries the polyhedral divisor
of the Cox ring.

Definition 3.4.2. Consider the defining matrix P0 of a ring R(A,P0) of Type 2 and the
vectors li = (li1, . . . , lini) occuring in the rows of P0. Set

li := gcd(li1, . . . , lini), l := gcd(l0, . . . , lr), lij := gcd(l−1li, l
−1lj),

l := lcm(l0, . . . , lr), bi := l−1
i l, b(i) := gcd(bj ; j 6= i).

Theorem 3.4.3. Let R(A,P0) be of Type 2 and consider the action of the unit component
H0

0 ⊆ H0 of the quasitorus H0 = SpecC[K0] on X = SpecR(A,P0). Then the smooth
projective curve Y with function field C(Y ) = C(X)H0

0 is of genus

g(Y ) = l0 · · · lr
2l

(
(r − 1)−

r∑
i=0

b(i)
li

)
+ 1.

Lemma 3.4.4. Let R(A,P0) be of Type 2, consider the degree u := deg(g0) ∈ K0 of the
defining relations and the subgroup

K0(u) := {w ∈ K0; αw ∈ Zu for some α ∈ Z>0} ⊆ K0.

Then the Veronese subalgebra R(A,P0)(u) of R(A,P0) associated with K0(u) of K0 is
generated by the monomials T l0/l00 , . . . , T

lr/lr
r .
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Proof. First, observe that every element of R(A,P0)(u) is a polynomial in the variables
Tij . Now consider a monomial T l in the Tij of degree w ∈ K0(u), where l ∈ Zn+m. Then
αw ∈ β0u holds for some α ∈ Z>0 and β0 ∈ Z. Moreover, there are β1, . . . , βr ∈ Z with

αl = β0l
′
0 + β1(l′0 − l′1) + . . .+ βr(l′0 − l′r), where l′i := li1ei1 + . . .+ linieini ,

reflecting the fact that αl − β0l
′
0 lies in the row space of P0. Consequently, we obtain

l = β′0l
′
0 + . . .+β′rl

′
r for suitable β′i ∈ Q. Since l has only non-negative integer entries, we

conclude that every β′i is a non-negative integral multiple of l−1
i . Thus, T l is a monomial

in the T li/lii . The assertion follows.

Proof of Theorem 3.4.3. The curve Y occurs as a GIT-quotient: Y = X
ss(u0)/H0

0 ,
where u0 ∈ X(H0

0 ) represents the character induced by u = deg(g0) ∈ K0 = X(H0).
In other words, we have Y = ProjR(A,P0)(u0) with the Veronese subalgebra defined by
u0. We may replace u0 with

w0 := 1
l
u0 ∈ X(H0

0 ).

Then R(A,P0)(u0) is replaced with R(A,P0)(w0) which in turn equals the Veronese
subalgebra treated in Lemma 3.4.4. Moreover, the generators T li/lii ∈ R(A,P0)(w0) are
of degree biw0 ∈ X(H0

0 ), respectively. We obtain a closed embedding into a weighted
projective space

Y = V (h0, . . . , hr−2) ⊆ P(b0, . . . , br), hi := det
[
T li
i T

li+1
i+1 T

li+2
i+2

ai ai+1 ai+2

]
,

where the hi generate the ideal of relations among the generators of the Veronese sub-
algebra R(A,P0)(w0). The idea is now to construct a ramified covering Y ′ → Y with a
suitable curve Y ′ and then to compute the genus of Y via the Hurwitz formula. Consider

Y ′ = V (h′0, . . . , h′r−2) ⊆ Pr, h′i := det
[
T l
i T l

i+1 T l
i+2

ai ai+1 ai+2

]
.

The Y ′ ⊆ Pr is a smooth complete intersection curve. Computing the genus of Y ′
according to [39], we obtain

g(Y ′) = 1
2((r − 1)lr − (r + 1)lr−1) + 1.

The morphism Pr → P(b0, . . . , br) sending [z0, . . . , zr] to [zb0
0 , . . . , z

br
r ] restricts to a mor-

phism Y ′ → Y of degree b0 · · · br. The intersection Y ∩ Ui with the i-th coordinate
hyperplane Ui ⊆ Pr contains precisely l

r−1 points and each of these points has ramifi-
cation order bi · b(i) − 1. Outside the Ui, the morphism Y ′ → Y is unramified. The
Hurwitz formula then gives g(Y ).
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We now use Theorem 3.4.3 to characterize rationality of X = SpecR(A,P0). For the
special case of Pham-Brieskorn surfaces, the following statement has been obtained in [9].

Proposition 3.4.5. Let R(A,P0) be of Type 2 with r = 2, that means that
X = SpecR(A,P0) is given as

X ∼= V (T l01
01 · · ·T

l0n0
0n0 + T l11

11 · · ·T
l1n1
1n1 + T l21

21 · · ·T
l2n2
2n2 ) ⊆ Cn.

Then the hypersurface X is rational if and only if one of the following conditions holds:
(i) there are pairwise coprime positive integers c0, c1, c2 and a positive integer s such

that, after suitable renumbering, one has

gcd(c2, s) = 1, l0 = sc0, l1 = sc1, l2 = c2;

(ii) there are pairwise coprime positive integers c0, c1, c2 such that

l0 = 2c0, l1 = 2c1, l2 = 2c2.

Lemma 3.4.6. For i = 0, 1, 2, let li = (li1, . . . , lini) be tuples of positive integers. Define
l, li and lij as in Definition 3.4.2 for r = 2. Then the following statements are equivalent.
(i) We have l(ll01l02l12 − (l01 + l02 + l12)) = −2.
(ii) One of the following two conditions holds:

(a) there are pairwise coprime positive integers c0, c1, c2 and a positive integer s
such that, after suitable renumbering, one has

gcd(c2, s) = 1, l0 = sc0, l1 = sc1, l2 = c2;

(b) there are pairwise coprime positive integers c0, c1, c2 such that

l0 = 2c0, l1 = 2c1, l2 = 2c2.

Proof. If (ii) holds, then a simple computation shows that (i) is valid. Now, assume
that (i) holds. Then the following cases have to be considered.

Case 1. We have l = 1. Then l01(l02l12 − 1) = l02 + l12 − 2 holds. From this we deduce

l01(l02l12 − 1) = (l01 − 1)(l02l12 − 1) + (l02 − 1)(l12 − 1) + l02 + l12 − 2
≥ l02 + l12 − 2,

where equality holds if and only if at least two of l01, l02, l12 equal one. So, we arrive at
Condition (a).

Case 2. We have l = 2. Then we have l01(2l02l12 − 1) + 1 = l02 + l12. In this situation,
we conclude

l01(2l02l12 − 1) + 1 = (l01 − 1)(2l02l12 − 1) + l02l12

+(l02 − 1)(l12 − 1) + l02 + l12 − 1
≥ l02 + l12,

where equality holds if and only if we have l01 = l02 = l12 = 1. Thus, we arrive at
Condition (b).
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Proof of Proposition 3.4.5. First, observe that X is rational if and only if Y is rational
or, in other words, of genus zero. For r = 2, Theorem 3.4.3 gives

g(Y ) = l

2(ll01l02l12 − l01 − l02 − l12) + 1.

Thus, according to Lemma 3.4.6, condition g(Y ) = 0 holds if and only if (i) or (ii) of
the proposition holds.

Remark 3.4.7. If the defining polynomial in Proposition 3.4.5 is classically homoge-
neous, then it defines a projective hypersurface X ′ ⊆ Pn−1 and the following statements
are equivalent.
(i) X ′ is rational.
(ii) Cl(X ′) is finitely generated.
(iii) Condition 3.4.5 (i) or (ii) holds.

Corollary 3.4.8. Let R(A,P0) be of Type 2. Then X = SpecR(A,P0) is rational if and
only if one of the following conditions holds:
(i) We have gcd(li, lj) = 1 for all 0 ≤ i < j ≤ r, in other words, R(A,P0) is factorial.
(ii) There are 0 ≤ i < j ≤ r with gcd(li, lj) > 1 and gcd(lu, lv) = 1 whenever v 6∈ {i, j}.
(iii) There are 0 ≤ i < j < k ≤ r with gcd(li, lj) = gcd(li, lk) = gcd(lj , lk) = 2 and

gcd(lu, lv) = 1 whenever v 6∈ {i, j, k}.

Lemma 3.4.9. Let A,P0 be defining data of Type 2, enhance A to A′ by attaching a
further column and P0 to P ′0 by attaching lr+1 to l0, . . . , lr. If gcd(li, lr+1) = 1 holds
for i = 0, . . . , r, then we have g(Y ) = g(Y ′) for the curves associated with R(A,P ) and
R(A′, P ′0) respectively.

Proof. Denote the numbers arising from P ′ in the sense of Definition 3.4.2 by l′i, l′ etc.
Then we have

l
′ = llr+1, b′(i) = gcd(l, l′/lj ; j 6= i) = b(i), i = 0, . . . , r,

b(r + 1) = gcd(l′/l0, . . . , l
′
/lr) = lr+1.

Plugging these identities into the genus formula of Theorem 3.4.3, we directly obtain
g(Y ′) = g(Y ).

Lemma 3.4.10. Let R(A,P0) be of Type 2 and assume that the curve Y associated with
R(A,P ) is of genus zero. Then there are 0 ≤ i ≤ j ≤ k ≤ r with gcd(lu, lv) = 1 whenever
v 6∈ {i, j, k}.

Proof. According to Theorem 3.4.3, the fact that the curve Y associated with R(A,P )
is of genus zero implies

r∑
i=0

b(i)
li

= (r − 1) + 2l
l0 · · · lr

> r − 1.
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As b(i) divides li, we see that b(i) 6= li can happen at most three times. Moreover,
b(i) = li is equivalent to gcd(li, lj) = 1 for all j 6= i.

Proof of Corollary 3.4.8. We may assume that the indices i, j and k of Lemma 3.4.10
are 0, 1 and 2. Then Lemma 3.4.9 says that X is rational if and only if the trinomial
hypersurface defined by the exponent vectors l0, l1, l2 is rational. Thus, Proposition 3.4.5
gives the assertion.

Corollary 3.4.11. Let R(A,P0) be a platonic ring of Type 2. Then X = SpecR(A,P0)
is rational.

Remark 3.4.12. It may happen that for a rational T -variety X of complexity one, the
total coordinate space X is rational, but the total coordinate space of X is not rational
any more. For instance consider

X3 := V (T 4
1 + T 4

2 + T 4
3 ) ⊆ C3.

Then, according to Proposition 3.4.5, the surface X3 is not rational. Moreover, X3 is
the total coordinate space of an affine rational C∗-surface X2 with defining matrix

P2 =

 −4 4 0
−4 0 4
−3 1 1

 .
The divisor class group of X2 is Cl(X2) = Z/4Z× Z/4Z and the Cl(X2)-grading of the
Cox ring R(X2) = C[T1, T2, T3]/〈T 4

1 + T 4
2 + T 4

3 〉 is given by

deg(T1) = (1, 1), deg(T2) = (1, 2), deg(T3) = (2, 1).

For an equation for X2, compute the degree zero subalgebra of R(X2): it has three
generators S1, S2, S3 and S3

1 + S3
2 + S4

3 as defining relation. Thus,

X2 ∼= V (S3
1 + S3

2 + S4
3) ⊆ C3.

To obtain a rational affine C∗-surface having X2 as its total coordinate space, we take
X1, defined by

P1 :=

 −3 3 0
−3 0 4
−2 1 1

 .
The divisor class group of X1 is Cl(X1) = Z/3Z and the Cl(X1)-grading of the Cox ring
R(X1) = C[S1, S2, S3]/〈S3

1 + S3
2 + S4

3〉 is given by

deg(T1) = 1, deg(T2) = 2, deg(T3) = 0.

We have constructed a chain of total coordinate spaces X3 → X2 → X1, where X1 is a
rational affine C∗-surface, X2 is rational and X3 not.
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Finally, we determine the factor group of the maximal quasitorus by its unit compo-
nent acting on a given trinomial hypersurface; the proof is a direct consequence of the
subsequent lemma.

Proposition 3.4.13. Let R(A,P ) be any ring of Type 2, where r = 2. Then, for the
quasitorus H0 acting on the corresponding trinomial hypersurface

X ∼= V (T l01
01 · · ·T

l0n0
0n0 + T l11

11 · · ·T
l1n1
1n1 + T l21

21 · · ·T
l2n2
2n2 ) ⊆ Cn,

the factor group H0/H
0
0 by the unit component H0

0 ⊆ H0 is isomorphic to the product of
cyclic groups C(l)× C(ll01l02l12).

Lemma 3.4.14. Consider a matrix P0 with m = 0 and r = 2 as in Type 2 of Construc-
tion 2.1.4:

P0 =
[
−l0 l1 0
−l0 0 l2

]
.

As earlier, set li = gcd(li1, . . . , lini). Then, with lij = gcd(li, lj) and l = gcd(l0, l1, l2), we
obtain

Ktors
0 = (Zn/im(P ∗0 ))tors ∼= C(l)× C(ll01l02l12).

Proof. Suitable elementary column operations to P0 transform the entries li to
(li, 0, . . . , 0). Thus, Ktors

0
∼= (Z3/im(P ∗1 ))tors holds with the 2× 3 matrix

P1 :=
[
−l0 l1 0
−l0 0 l2

]
.

The determinantal divisors of P0 are gcd(l0, l1, l2) and gcd(l0l1, l0l2, l1l2). Thus, the
invariant factors of P0 are l and ll01l02l12; see [72].

3.5 Proof of Theorems 3.1.5 and 3.1.6

We are ready to prove the main results of this chapter. The proof of Theorem 3.1.5 will
be in fact constructive in the sense that it allows to compute the defining equations of
the Cox ring in every iteration step; see Proposition 3.5.6.

Remark 3.5.1. Let R(A,P ) resp. R(A,P0) be a ring of Type 2. Applying suitable
admissible operations, one achieves that P resp. P0 (is ordered in the sense that li1 ≥
. . . ≥ lini for all i = 0, . . . , r and l01 ≥ . . . ≥ lr1 hold. For an ordered P resp. P0, the
ring R(A,P ) resp. R(A,P0) is platonic if and only if (l01, l11, l21) is a platonic triple and
li1 = 1 holds for i ≥ 3.

Definition 3.5.2. The leading platonic triple of a ring R(A,P ) resp. R(A,P0) of Type 2
is the triple (l01, l11, l21) obtained after ordering P resp. P0.
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Lemma 3.5.3. Let R(A,P0) be of Type 2 and platonic such that li1 ≥ . . . ≥ lini holds
for all i and li1 = 1 for i ≥ 3. Moreover, assume gcd(l1, l2) = l. Then, with K0 =
Zn+m/im(P ∗0 ), the kernel of Zn+m → K0/K

tors
0 is generated by the rows of the matrix

P1 :=



−1
gcd(l0,l1) l0

1
gcd(l0,l1) l1 0 . . . 0 0 . . . 0

−1
gcd(l0,l2) l0 0 1

gcd(l0,l2) l2 0 0

−l0 0 1 0
...

...
...

... . . . ...
−l0 0 . . . 0 1 0 . . . 0


,

where, as before, the symbols 1 indicate vectors of length ni with all entries equal to one.

Proof. Observe that the rows of P0 generate a sublattice of finite index in the row lattice
P1. Thus, we have a commutative diagram

K0 //

&&

K0/K
tors
0

Zn+m/im(P ∗1 )

77

It suffices to show, that Zn+m/im(P ∗1 ) is torsion free. Applying suitable elementary
column operations to P1, reduces the problem to showing that for the 2× 3 matrix l0

gcd(l0,l1)
l1

gcd(l0,l1) 0
l0

gcd(l0,l2) 0 l2
gcd(l0,l1)

 ,
all determinantal divisors equal one. The entries of the above matrix are coprime and
its 2× 2 minors are

l0l2
gcd(l0, l1) gcd(l0, l2) ,

l1l2
gcd(l0, l1) gcd(l0, l2) ,

l0l1
gcd(l0, l1) gcd(l0, l2) .

up to sign. By assumption, we have gcd(l1, l2) = l. Consequently, we obtain

gcd(l0l2, l0l1, l1l2) = gcd(l0l, l1l2) = gcd(l0, l1) gcd(l0, l2)

and therefore the second determinantal divisor equals one. As remarked, the first one
equals one as well and the assertion follows.

Lemma 3.5.4. Let R(A,P0) be of Type 2 and X = SpecR(A,P0). Then, for the
generator T01 of R(A,P0), we have

V (X,T01) ∼= V (T01) ∩ V (T l11 − T
li
i ; i = 2, . . . , r) ⊆ Cn+m.
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In particular, the number of irreducible components of V (X,T01) equals the product of
the invariant factors of the matrix −l1 l2 0

... . . .
−l1 0 lr

 .
Proof. First observe that the ideal 〈T01, g0, . . . , gr−2〉 ⊆ C[Tij , Sk] is generated by bino-
mials which can be brought into the above form by scaling the variables appropriately.
Now consider the homomorphism of tori

π : Tn1+...+nr → Tr−1, (t1, . . . , tr) 7→
(
tl22
tl11
, . . . ,

tlrr

tl11

)
.

Then the number of connected components of ker(π) equals the product of the invariant
factors of the above matrix. Moreover, Tn0−1×ker(π)×Tm is isomorphic to V (X,T01)∩
Tn+m. Finally, one directly checks that V (X,T01) has no further irreducible components
outside Tn+m.

Lemma 3.5.5. Let R(A,P0) be of Type 2 and platonic. Assume that P0 is ordered.
Then the number c(i) of irreducible components of V (X,Tij) is given as

i 0 1 2 ≥ 3
c(i) gcd(l1, l2) gcd(l0, l2) gcd(l0, l1) l2l01l02l12

Proof. Suitable admissible operations turn Tij to T01. Then the number of components
is computed via Lemma 3.5.4.

Proposition 3.5.6. Let R(A,P0) be of Type 2, platonic and non-factorial. Assume that
P0 is ordered and let P1 be as in Lemma 3.5.3. Set

ni,1, . . . , ni,c(i) := ni, lij,1, . . . , lij,c(i) := gcd((P1)1,ij , . . . , (P1)r,ij).

The li,α := (li1,α, . . . , lini,α) ∈ Zni,α build up an r′ × (n′ + m) matrix P ′0, where
n′ := c(0)n0 + . . .+ c(r)nr. With a suitable matrix A′, the following holds.
(i) The affine variety SpecR(A′, P ′0) is the total coordinate space of the affine variety

SpecR(A,P0),
(ii) The leading platonic triple (l.p.t.) of R(A′, P ′0) can be expressed in terms of that

of R(A,P0) as

l.p.t. of R(A,P0) l.p.t. of R(A′, P ′0)
(4, 3, 2) (3, 3, 2)
(3, 3, 2) (2, 2, 2)
(y, 2, 2) (z, z, 1) or

(y
2 , 2, 2

)
(x, y, 1)

(
x

gcd(l0,l1) ,
y

gcd(l0,l1) , 1
)
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Proof. We compute the Cox ring of X = SpecR(A,P0) according to [6, Thm. 4.4.1.6];
use Corollary 1.9 [50] to obtain the statement given there also in the affine case. That
means that we have to figure out which invariant divisors are identified under the rational
map onto the curve Y with function field C(X)H0

0 and we have to determine the orders
of isotropy groups of invariant divisors.
Let P1 be as in Lemma 3.5.3. Then the torus H0

0 acts diagonally on Cn+m with weights
provided by the projection Q1 : Zn+m → K0

0 , where K0
0 = Zn+m/im(P ∗1 ) equals the

character group of H0
0 . Consider the commutative diagram

X0

��

⊆ Cn+m
0

��
X0/H

0
0

��

⊆ Cn+m
0 /H0

0

��
Y ⊆ P

where X0 ⊆ X and Cn+m
0 ⊆ Cn+m denote the open H0

0 -invariant subsets obtained
by removing all coordinate hyperplanes V (Sk) and all intersections V (Ti1j1 , Ti2j2) with
(i1, j1) 6= (i2, j2) from Cn+m. Moreover, the geometric quotient spaces in the middle row
are possibly non-separated and the maps to the lower row are separation morphisms.
We determine the orders of isotropy groups. Every point in Tn+m has trivialH0

0 -isotropy.
Thus, we only have to look what happens on the sets V (Tij) ∩ Cn+m

0 . According to [6,
Prop. 2.1.4.2], the order of isotropy group of H0

0 at any point x ∈ V (Tij)∩Cn+m
0 equals

the greatest common divisor of the entries of the ij-th column of P1:

|H0
0,x| = l′ij := gcd((P1)1,ij , . . . , (P1)r,ij) for all x ∈ V (Tij) ∩ Cn+m

0 .

Now we figure out which H0
0 -invariant divisors of X0 are identified under the map X0 →

Y . Lemma 3.5.5 provides us explicit numbers c(0), . . . , c(r) such that for fixed i and
j = 1, . . . , ni, we have the decomposition into prime divisors

V (X,Tij) = Dij,1 ∪ . . . ∪Dij,c(i),

in particular, the number c(i) does not depend on the choice of j. The components
Dij,1, . . . , Dij,c(i) lie in the common affine chart W0 ⊆ X0 obtained by localizing at all
Ti′j′ different from Tij . Their images thus lie in the affine chart W0/H

0
0 ⊆ X0/H

0
0 .

Consequently, the Dij,1, . . . , Dij,c(i) have pairwise disjoint images under the composition
X0 → X0/H

0
0 → Y .

On the other hand, V (X,Tij) and V (X,Tij′) are identified isomorphically under the
separation map X0/H

0
0 → Y Thus, suitably numbering, we obtain for every i, and

α = 1, . . . , c(i) a chain
Di1,α, . . . , Dini,α,
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of divisors identified under the morphism X0/H
0
0 → Y . The order of isotropy for any

x ∈ Dij,α equals l′ij . Now, using [6, Thm. 4.4.1.6], we can compute the defining relations
of the Cox ring of X, which establishes the two assertions.

Remark 3.5.7. Let R(A,P0) be a non factorial platonic ring with ordered P0 and
leading platonic triple (l01, l11, l21). Denote by R(A′, P ′0) the Cox ring of SpecR(A,P0).
Then the exponents of the defining relations of R(A′, P ′0) are listed in the following table,
where 1n1 denotes the vector of length ni with all entries equal to one.

leading plat. triple exponents in R(A′, P ′0)

(4, 3, 2) l1, l1, l0/2, 1n2 and 2× 1ni for i ≥ 3.

(3, 3, 2) l2, l2, l2, 1n0 , 1n1 and 3× 1ni for i ≥ 3.

(x, 2, 2) and l = 2 l0/2, l0/2, 2× 1n1 , 2× 1n2 , and 4× 1ni for i ≥ 3.

(x, 2, 2) and 2 - l0 l0, l0, 1n1 , 1n2 and 2× 1ni for i ≥ 3.

(x, 2, 2) and l2 = 1 l0/2, l2, l2, 1n1 and 2× 1ni for i ≥ 3.

(x, y, 1) l0
gcd(l0,l1) ,

l1
gcd(l0,l1) , gcd(l0, l1)× 1ni for i ≥ 2.

Proof of Theorem 3.1.5. We start with a rational, normal, affine, log terminal X1 of
complexity one. According to Theorem 3.1.3, the Cox ring R2 of X1 is a platonic ring. If
the greatest common divisors of pairs li, lj of R2 all equal one, then R2 is factorial by [44,
Thm. 1.1] and we are done. If not, then we pass to the Cox ring R3 of X2 := SpecR2 and
so on. Proposition 3.5.6 ensures that this procedure terminates with a factorial platonic
ring Rp.

Proof of Theorem 3.1.6. Let X1 be any rational, normal, affine variety with a torus
action of complexity one of Type 2 and at most log terminal singularities. Then Theo-
rem 3.1.5 provides us with a chain of quotients

Xp
//Hp−1// Xp−1

//Hp−2// . . .
//H3 // X3

//H2 // X2
//H1 // X1 ,

such that Xi = Spec(Ri) holds with a platonic ring Ri when i ≥ 2, the ring Rp is
factorial and each Xi+1 → Xi is the total coordinate space. The idea is to construct
stepwise solvable linear algebraic groups Gi ⊆ Aut(Xi+1) acting algebraically on Xi+1
such that the unit component G0

i ⊆ Gi is a torus, Gi contains Hi as a normal subgroup,
Gi−1 = Gi/Hi holds and we have G1 = H1.
Start with G1 := H1, acting on X2. According to [6, Thm. 2.4.3.2], there exists an
(effective) action of a torus G1 on X3 lifting the action of G0

1 on X2 and commuting with
the action of H2 on X3. Moreover, [7, Thm. 5.1] provides us with an exact sequence of
groups

1 // H2 // Aut(X3, H2) π // Aut(X2) // 1 ,
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where Aut(X3, H2) denotes the group of automorphisms ofX3 normalizing the quasitorus
H2. Set G2 := π−1(G1). Then H0

2G1, as a factor group of the torus H0
2 ×G1 by a closed

subgroup, is an algebraic torus and it is of finite index in G2. Thus, G2 is an affine
algebraic group with G0

2 = H0
2G1 being a torus. By construction, H2 ⊆ G2 is the

kernel of α1 := π|G2 and hence a normal subgroup. Moreover, G2 is solvable and acts
algebraically on X3. Iterating this procedure gives a sequence

Gp−1
αp−2 // Gp−2

αp−3 // . . .
α2 // G2

α1 // G1
α0 // 1

of group epimorphisms, where, as wanted, Gi is a solvable reductive group acting alge-
braically on Xi+1 such that Hi = ker(αi−1) is the characteristic quasitorus of Xi. In
particular, the group G := Gp−1 ⊆ Aut(Xp) satisfies the first assertion of the theorem.
We turn to the second assertion. From [6, Prop. 1.6.1.6], we infer that G1 = H1 acts
freely on the preimage U2 ⊆ X2 of the set of smooth points U1 ⊆ X1 and moreover, the
complement X2 \U2 is of codimension at least two in X2. Let U3 ⊆ X3 be the preimage
of U2 ⊆ X2. Again, the complement of U3 is of codimension at least two in X3 and,
as U2 consists of smooth points of X2, the quasitorus H2 acts freely on U3. Because of
G2/H2 = G1, we conclude that U3 is G2-invariant and G2 acts freely on U2. Repeating
this procedure, we end up with an open set Up ⊆ Xp having complement of codimension
at least two such that G acts freely on Up. Thus, G acts strongly stably on Xp. Now
consider

G = D0 ⊇ D1 ⊇ . . . ⊇ Dp−2 ⊇ Dp−1 = 1, Di := ker(αi ◦ . . . ◦ αp−2).

Then we have Xi = Xp//Di−1 and Hi = Di−1/Di. Moreover for each Di, its action on
Xp is strongly stable, as remarked before, and Xp is G-factorial because it is factorial.
Using [7, Prop. 3.5], we obtain a commutative diagram

Xp//[Di,Di]

//Di/[Di,Di] &&

β // Xp//Di+1

//Di/Di+1yy
Xp//Di

where the left downward map is a total coordinate space. As Di/Di+1 = Hi+1 is abelian,
[Di,Di] is contained in Di+1 and we have the horizontal morphism β. Since the right
hand side is a total coordinate space as well, we infer from [6, Sec. 1.6.4] that β is an
isomorphism. This implies Di+1 = [Di,Di], proving the second assertion.
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FOUR

CHARACTERIZATION OF ITERABILITY OF COX RINGS

We consider normal algebraic varieties X defined over the field C of complex numbers
with finitely generated divisor class group K and only constant invertible global regular
functions. If the K-graded Cox ring R1 of X is a finitely generated C-algebra, then one
has the total coordinate space X1 := SpecR1. We say that X admits iteration of Cox
rings if there is a chain

Xp
//Hp−1// Xp−1

//Hp−2// . . .
//H2 // X2

//H1 // X1

dominated by a factorial variety Xp where in each step, Xi+1 is the total coordinate
space of Xi and Hi = SpecC[Ki] the characteristic quasitorus of Xi, having the divisor
class group Ki of Xi as its character group. Note that if the divisor class group K of
X is torsion free, then R1 is a unique factorization domain and iteration of Cox rings
is trivially possible. As soon as K has torsion, it may happen that during the iteration
process a total coordinate space with non-finitely generated divisor class group pops up
and thus there is no chain of total coordinate spaces as above, see Remark 3.4.12.
In Chapter 3 we showed that for affine X with Γ(X,O)T = C and at most log terminal
singularities, the iteration of Cox rings is possible. In this chapter, we characterize all
varieties X with a torus action of complexity one that admit iteration of Cox rings. The
results of the Sections 4.1 to 4.3 of this chapter have been published in [51].

4.1 Iterability of Cox rings

First consider the case Γ(X,O)T = C. In order to have finitely generated divisor class
group, X must be rational and then the Cox ring of X is of Type 2 as introduced
in Construction 2.1.1 and thus of the form R = C[Tij , Sk]/I, with a polynomial ring
C[Tij , Sk] in variables Tij and Sk modulo the ideal I generated by the trinomial relations

T l00 + T l11 + T l22 , θ1T
l1
1 + T l22 + T l33 , . . . , θr−2T

lr−2
r−2 + T

lr−1
r−1 + T lrr ,

65
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with T lii = T li1i1 · · ·T
lini
ini

. For each exponent vector li set li := gcd(li1, . . . , lini). The Cox
ring R is factorial if and only if the li are pairwise coprime; see [44, Thm. 1.1]. We
say that R is hyperplatonic if l−1

0 + . . . + l−1
r > r − 1 holds. After reordering l0, . . . , lr

decreasingly, the latter condition precisely means that li = 1 holds for all i ≥ 3 and
(l0, l1, l2) is a platonic triple, i.e., a triple of the form

(5, 3, 2), (4, 3, 2), (3, 3, 2), (x, 2, 2), (x, y, 1), x, y ∈ Z≥1.

Theorem 4.1.1. Let X be a normal T-variety of complexity one with Γ(X,O)T = C.
Then the following statements are equivalent.
(i) The variety X admits iteration of Cox rings.
(ii) The variety X is rational with hyperplatonic or factorial Cox ring.

Note that we have to check rationality in each iteration step. See Remark 3.4.12 for an
example, where X and its total coordinate space X are rational but the total coordinate
space of X is not any more.
We turn to the case Γ(X,O)T 6= C. Here, O(X)∗ = C∗ holds and finite generation of the
divisor class group of X force Γ(X,O)T = C[T ]. We end up with a Cox ring of Type 1
and obtain the following simple characterization.

Theorem 4.1.2. Let X be a normal T-variety of complexity one with Γ(X,O)T 6= C.
Then X admits iteration of Cox rings if and only if X and its total coordinate space are
rational with only constant globally invertible functions. Moreover, if the latter holds,
then the iteration of Cox rings stops after at most one step.

Note that there exist indeed rational T -varieties of complexity one with only constant
globally invertible functions, having a rational non-factorial total coordinate space X
of Type 1 with non-constant globally invertible functions; see Remark 4.4.12 for an
example.
As a consequence of the two theorems above, we obtain the following structural result,
generalizing Theorem 3.1.6 but using analogous ideas for the proof.

Corollary 4.1.3. Let X be a normal, rational, affine variety with a torus action of
complexity one admitting iteration of Cox rings. Then X is a quotient X = X ′ //G of a
factorial affine variety X ′ := Spec(R′), where R′ is a factorial ring and G is a solvable
reductive group.

On our way of proving Theorem 4.1.1, we give in Proposition 4.2.5 an explicit description
of the Cox ring of a variety SpecR for a hyperplatonic ring R. This allows us to describe
the possible Cox ring iteration chains in more detail. After reordering the numbers
l0, . . . , lr associated with R decreasingly, we call (l0, l1, l2) the basic platonic triple of R.

Corollary 4.1.4. The possible sequences of basic platonic triples arising from iteration
of Cox rings of normal, rational varieties with a torus action of complexity one and
hyperplatonic Cox ring are the following:
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(i) (1, 1, 1)→ (2, 2, 2)→ (3, 3, 2)→ (4, 3, 2),
(ii) (1, 1, 1)→ (x, x, 1)→ (2x, 2, 2),
(iii) (1, 1, 1)→ (x, x, 1)→ (x, 2, 2),
(iv) (l−1

01 l0, l
−1
01 l1, 1)→ (l0, l1, 1), where l01 := gcd(l0, l1) > 1.

4.2 Proof of Theorem 4.1.1

In order to iterate a Cox ring R(A,P0), it is necessary that SpecR(A,P0) has finitely
generated divisor class group. The latter turns out to be equivalent to rationality of
SpecR(A,P0). From Corollary 3.4.8, we infer the following rationality criterion.

Remark 4.2.1. Let R(A,P0) be a ring of Type 2 as in Construction 2.1.1 and set
li := gcd(li1, . . . , lini). Then SpecR(A,P0) is rational if and only if one of the following
conditions holds:
(i) We have gcd(li, lj) = 1 for all 0 ≤ i < j ≤ r, in other words, R(A,P0) is factorial.
(ii) There are 0 ≤ i < j ≤ r with gcd(li, lj) > 1 and gcd(lu, lv) = 1 whenever v 6∈ {i, j}.
(iii) There are 0 ≤ i < j < k ≤ r with gcd(li, lj) = gcd(li, lk) = gcd(lj , lk) = 2 and

gcd(lu, lv) = 1 whenever v 6∈ {i, j, k}.

Definition 4.2.2. Let R(A,P0) be a ring of Type 2 such that SpecR(A,P0) is rational.
We say that P0 is gcd-ordered if it satisfies the following two properties
(i) gcd(li, lj) = 1 for all i = 0, . . . , r and j = 3, . . . , r,
(ii) gcd(l1, l2) = gcd(l0, l1, l2).

Observe that if SpecR(A,P0) is rational, then one can always achieve that P0 is gcd-
ordered by suitably reordering l0, . . . , lr. This does not affect the K0-graded algebra
R(A,P0) up to isomorphy.

Lemma 4.2.3. Let R(A,P0) be a ring of Type 2 such that SpecR(A,P0) is rational and
P0 is gcd-ordered. Then, with K0 = Zn+m/im(P ∗0 ), the kernel of Zn+m → K0/K

tors
0 is

generated by the rows of

P1 :=



−1
gcd(l0,l1) l0

1
gcd(l0,l1) l1 0 . . . 0 0 . . . 0

−1
gcd(l0,l2) l0 0 1

gcd(l0,l2) l2 0 0

−l0 0 l3 0
...

...
...

... . . . ...
−l0 0 . . . 0 lr 0 . . . 0


.

Proof. The arguments are similar as for Lemma 3.5.3. The row lattice of P0 is a sublattice
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of finite index of that of P1 and thus there is a commutative diagram

K0 //

&&

K0/K
tors
0

Zn+m/im(P ∗1 )

77

We have to show, that Zn+m/im(P ∗1 ) is torsion free. Suitable elementary column oper-
ations on P1 reduce the problem to showing that for the r × (r + 1) matrix

−1
gcd(l0,l1) l0

1
gcd(l0,l1) l1 0 . . . 0

−1
gcd(l0,l2) l0 0 1

gcd(l0,l2) l2 0 0
−l0 0 l3 0
...

... . . . ...
−l0 0 . . . 0 lr


the r-th determinantal divisor and therefore the product of the invariant factors equals
one. Up to sign, the r × r minors of the above matrix are

1
gcd(l0, l1) gcd(l0, l2) l0 · · · li−1 · li+1 · · · lr, where i = 0, . . . , r.

Suppose that some prime p divides all these minors. Then p - lj holds for all j ≥ 3,
because otherwise we find an i 6= j with p | li, contradicting gcd-orderedness of P0. Thus,
p divides each of the numbers

l0l2
gcd(l0, l1) gcd(l0, l2) ,

l1l2
gcd(l0, l1) gcd(l0, l2) ,

l0l1
gcd(l0, l1) gcd(l0, l2) .

By the assumption of the lemma, l := gcd(l1, l2) equals gcd(l0, l1, l2). Consequently, we
obtain

gcd(l0l2, l0l1, l1l2) = gcd(l0l, l1l2) = gcd(l0, l1) gcd(l0, l2).

We conclude p = 1; a contradiction. Being the greatest common divisor of the above
minors, the r-th determinantal divisor equals one.

Lemma 4.2.4. Let R(A,P0) be a ring of Type 2 and X := SpecR(A,P0) be rational.
Assume that P0 is gcd-ordered. Then, with l := gcd(l1, l2), the number c(i) of irreducible
components of V (X,Tij), where j = 1, . . . , ni, is given by

i 0 1 2 ≥ 3

c(i) gcd(l1, l2) gcd(l0, l2) gcd(l0, l1) 1
l gcd(l1, l2) gcd(l0, l2) gcd(l0, l1)

Proof. The assertion is a direct consequence of Lemma 3.5.5
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We are ready for the main ingredient of the proof of Theorem 4.1.1, the explicit descrip-
tion of the iterated Cox ring.

Proposition 4.2.5. Let R(A,P0) be of Type 2 non-factorial with SpecR(A,P0) ratio-
nal. Assume that P0 is gcd-ordered and let P1 be as in Lemma 4.2.3. Define numbers
n′ := c(0)n0 + . . .+ c(r)nr and

ni,1, . . . , ni,c(i) := ni, lij,1, . . . , lij,c(i) := gcd((P1)1,ij , . . . , (P1)r,ij).

Then the vectors li,α := (li1,α, . . . , lini,α) ∈ Zni,α build up an r′× (n′+m) matrix P ′0 with
r′ = c(0) + . . .+ c(r)− 1. With a suitable matrix A′, the affine variety SpecR(A′, P ′0) is
the total coordinate space of the affine variety SpecR(A,P0).

Proof. The idea is to work with the action of the torus H0
0 := SpecC[K0/K

tors
0 ] on

X := SpecR(A,P0) and to use the description of the Cox ring of a variety with torus
action provided in [49]. For this, one has to look at the exceptional fibers of the map
π : X0 → Y , where X0 ⊆ X is the set of points with at most finite H0

0 -isotropy and
the curve Y is the separation of X0/H

0
0 . Following the lines of the proof of Proposition

3.5.6, one uses Lemma 4.2.4 to determine the number of components for each fiber of π
and Lemma 4.2.3 to determine the order of the general (finite) H0

0 -isotropy groups on
each component. The rest is application of [49].

The defining property of a hyperplatonic ring R(A,P0) is l−1
0 + . . .+ l−1

r ≥ r− 1. Thus,
for any such ring we find a (unique) platonic triple (li, lj , lk) with i, j, k pairwise different
and all lu with u different from i, j, k equal one. We call (li, lj , lk) the basic platonic triple
(bpt) of R(A,P0).

Remark 4.2.6. Let R(A,P0) be non-factorial and hyperplatonic with basic platonic
triple (l0, l1, l2). Then Remark 4.2.1 ensures that X := SpecR(A,P0) is rational. More-
over, Lemma 4.2.4 and Proposition 4.2.5 yield that the exponent vectors of the defining
relations of the Cox ring R(A′, P ′0) of X are computed in terms of the exponent vectors
l0, . . . , lr of R(A,P0) according to the table below, where “a× li” means that the vector
li shows up a times.

bpt of R(A,P0) exponent vectors in R(A′, P ′)

(4, 3, 2) 2× l1, 1
2 l0,

1
2 l2 and 2× li for i ≥ 3

(3, 3, 2) 3× l2, 1
3 l0,

1
3 l1 and 3× li for i ≥ 3

(x, 2, 2) and 2 | x 2× 1
2 l0, 2× 1

2 l1, 2× 1
2 l2 and 4× li for i ≥ 3

(x, 2, 2) and 2 - x 2× l0, 1
2 l1,

1
2 l2 and 2× li for i ≥ 3

(x, y, 1) 1
gcd(x,y) l0,

1
gcd(x,y) l1 and gcd(x, y)× li for i ≥ 2



70 Chapter 4. Characterization of iterability of Cox rings

Lemma 4.2.7. Let R(A,P0) be a ring of Type 2, non-factorial and assume that X :=
SpecR(A,P0) is rational. If the total coordinate space of X is rational as well, then
li > 1 holds for at most three 0 ≤ i ≤ r.

Proof. We may assume that P0 is gcd-ordered. Then Proposition 4.2.5 provides us with
the exponent vectors of the Cox ring R(A′, P ′0) of X. As R(A,P0) is rational and non-
factorial, Remark 4.2.1 leaves us with the following two cases.

Case 1. We have gcd(l0, l1) > 1 and gcd(li, lj) = 1 whenever j ≥ 2. This means in
particular l0, l1 > 1. Assume that there are 2 ≤ i < j ≤ r with li, lj > 1. According to
Proposition 4.2.5, we find c(i) times the exponent vector li and c(j) times the exponent
vector lj in P ′0. Lemma 4.2.4 tells us c(j) = c(i) = gcd(l0, l1) > 1. Thus, for the first two
copies of li and lj , we obtain gcd(li,1, li,2) = li > 1 and gcd(lj,1, lj,2) = lj > 1 respectively.
Remark 4.2.1 shows that SpecR(A′, P ′0) is not rational; a contradiction.

Case 2. We have gcd(l0, l1) = gcd(l0, l2) = gcd(l1, l2) = 2. Assume that there is an
index 3 ≤ i ≤ r with li > 1. Proposition 4.2.5 and Lemma 4.2.4 yield that the ex-
ponent vector li occurs c(k) = 4 times in the matrix P ′0. As in the previous case we
conclude via Remark 4.2.1 that the total coordinate space SpecR(A′, P ′0) is not rational;
a contradiction.

Proof of Theorem 4.1.1. We prove “(ii)⇒(i)”. ThenX is rational and has a ringR(A,P0)
of Type 2 as provided by Construction 2.1.1 as its Cox ring. If R(A,P0) is factorial, then
there is nothing to show. So, let R(A,P0) be non-factorial and hyperplatonic. Then,
after reordering the li decreasingly, (l0, l1, l2) is the basic platonic triple of R(A,P0).
From Remark 4.2.6 we infer that X1 := SpecR(A,P0) is rational with hyperplatonic
Cox ring R(A′, P ′0). So, we can pass to X2 := R(A′, P ′0) and so forth. The table of
possible basic platonic triples given in Remark 4.2.6 shows that the iteration process
terminates at a factorial ring.
We prove “(i)⇒(ii)”. Since X has a Cox ring, X must have finitely generated divisor
class group. As for any T-variety of complexity one, the latter is equivalent to X being
rational. The Cox ring of X is a ring R(A,P0) of Type 2. If R(A,P0) is factorial, then we
are done. So, let R(A,P0) be non-factorial. Then we may assume that P0 is gcd-ordered
and, moreover, l01 6= 1. Since X1 = SpecR(A,P0) has a Cox ring R(A′, P ′0), it must be
rational. Preserving the gcd-orderedness, due to Lemma 4.2.7 we may assume lj = 1
whenever j ≥ 3 holds. Remark 4.2.1 leaves us with the following cases.

Case 1. We have l01 := gcd(l0, l1) > 1 and gcd(li, lj) = 1 whenever j ≥ 2 holds. Then
we may assume l0 ≥ l1.

1.1. Consider the case l01 > 3. By Lemma 4.2.4, the exponent vector l2 occurs l01 times
in the defining relations of the Cox ring R(A′, P ′0) of X1. Since SpecR(A′, P ′0) is rational,
Remark 4.2.1 yields l2 = 1. We conclude that (l0, l1, l2) is platonic.

1.2. Assume l01 = 3. Then l2 occurs 3 times as exponent vector in the defining relations
of R(A′, P ′0). Remark 4.2.1 shows l2 ≤ 2. Thus, (l0, l1, l2) is platonic.
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1.3. Let l01 = 2. If l0 = l1 = 2 holds, then (l0, l1, l2) is a not necessarily ordered platonic
triple for any l2. So, assume l0 > l1 ≥ 2. As we are in Case 1, the number l2 must be
odd. If l2 = 1 holds, then (l0, l1, l2) is a platonic triple and we are done. So, assume
l2 6= 1. By Proposition 4.2.5 and Lemma 4.2.4, we find the exponent vectors 1/2 l0 and
1/2 l1 as well as twice l2 in P ′0. Since X1 = SpecR(A′, P ′0) is rational and l0 > l1 holds,
Lemma 4.2.7 shows l1 = 2 and the triple of non-trivial gcd’s of exponent vectors of P ′0 is
(l0/2, l2, l2). After gcd-ordering P ′0, we can apply Case 1.1 and with l0/2 > 1 we obtain
l0 = 4 and l2 = 3. In particular, (l0, l2, l1) is platonic.
Case 2: We have gcd(l0, l1) = gcd(l0, l2) = gcd(l1, l2) = 2. Then we may assume
l0 ≥ l1 ≥ l2. Proposition 4.2.5 and Lemma 4.2.4 tell us that each of the exponent vectors
1/2 l0, 1/2 l1 and 1/2 l2 occurs twice in P ′0. Since SpecR(A′, P ′0) is rational, Lemma 4.2.7
yields l1 = l2 = 2. Thus, (l0, l1, l2) is platonic.

4.3 Proof of Theorem 4.1.2

As a first step we relate the total coordinate space of a rational variety with torus action
of complexity one admitting non-constant invariant functions to the total coordinate
space of one with only constant invariant functions; see Corollary 4.3.3. This allows
us to characterize rationality of the total coordinate space using previous results; see
Corollary 4.3.4. Then we determine in a similar manner as before, the iterated Cox ring;
see Proposition 4.3.6. This finally allows us to prove Theorem 4.1.2.
Recall from Chapter 2 that the suitable downgradings of the rings R(A,P0) of Type 1
as provided by Construction 2.1.1 yield precisely the Cox rings of the normal rational
T-varieties X of complexity one with Γ(X,O)T = C[T ]. Suitable downgradings of the
rings R(A,P0) of Type 2 yield precisely the Cox rings of the normal rational T-varieties
X of complexity one with Γ(X,O)T = C.
Construction 4.3.1. Consider a ring R(A,P0) of Type 1 as in Construction 2.1.1 with
A = (a1, . . . , ar). Set li := gcd(li1, . . . , lini) and ` := lcm(l1, . . . , lr). Then, writing L0 for
the column vector −(`, . . . , `) ∈ Zr, we obtain a ring R(Ã, P̃0) of Type 2 with defining
matrices

Ã :=
[
−1 a1 . . . ar

0 1 . . . 1

]
, P̃0 := [L0, P0] .

Proposition 4.3.2. Let R(A,P0) be a ring of Type 1 and R(Ã, P̃0) the associated ring
of Type 2 obtained via Construction 4.3.1. Fix αij ∈ Z with li = αi1li1 + . . . + αini lini.
Then one obtains an isomorphism of graded C-algebras

R(Ã, P̃0)T̃01
→ R(A,P0)[T01, T

−1
01 ], T̃01 7→ T01, T̃ij 7→ TijT

`
li
αij

01 .

Proof. By construction, R(Ã, P̃0) is a factor algebra of C[T̃ij , S̃k] and R(A,P0) of
C[Tij , Sk]. We have an isomorphism of C-algebras

ψ : C[T̃ij , S̃k]T̃01
→ C[Tij , Sk][T01, T

−1
01 ], T̃01 7→ T01, T̃ij 7→ TijT

`
li
αij

01 , S̃k 7→ Sk.
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Observe ψ(T̃ lii ) = T `01T
li
i . We claim that ψ is compatible with the gradings by K̃0 on

the l.h.s. and by Z×K0 on the r.h.s., where the latter grading is given by

deg(T01) = (1, 0) ∈ Z×K0, deg(Tij) = (0, eij + im(P ∗0 )) ∈ Z×K0.

Indeed, because of ψ(T̃−`01 T̃
li
i ) = T lii , the kernels of the respective downgrading maps

Zn+1+m → K̃0, Zn+1+m → Z×K0,

generated by the rows P̃0 and P0, correspond to each other under ψ. The defining ideal
of R(Ã, P̃0) is generated by the polynomials g̃1, . . . , g̃r−1, where

g̃i := det

 T̃ `0 T lii T
li+1
i+1

−1 ai ai+1
0 1 1

 .
The above isomorphism sends g̃i to T `0gi, where the gi are the generators of the defining
ideal of R(A,P0), and thus induces the desired isomorphism.

Corollary 4.3.3. Let X := SpecR(A,P0) be the affine variety arising from a ring of
Type 1 and X̃ := SpecR(Ã, P̃0) the one arising from the associated ring of Type 2. Then
X×C∗ is isomorphic to the principal open subset X̃T̃01

⊆ X̃. In particular, X is rational
if and only if X̃ is so.

Proof. Only for the supplement, there is something to show. If X is rational, then
obviously X̃ is so. Now, let X̃ be rational. Then the divisor class group Cl(X̃) is finitely
generated. Thus, also Cl(X̃T̃01

) = Cl(X × C∗) = Cl(X) is finitely generated and, as it
carries a torus action of complexity one, X must be rational; see [6, Rem. 4.4.1.5].

Corollary 4.3.4. Let R(A,P0) be a ring of Type 1. Then X := SpecR(A,P0) is rational
if and only if one of the following conditions holds:
(i) One has li = 1 for all 1 ≤ i ≤ r, in other words, R(A,P0) is factorial.
(ii) There is exactly one 1 ≤ i ≤ r with li > 1.
(iii) There are 1 ≤ i < j ≤ r with li = lj = 2 and lu = 1 whenever u /∈ {i, j}

Proof. Combine Corollary 4.3.3 with the rationality criterion of Remark 4.2.1.

Lemma 4.3.5. Let R(A,P0) be of Type 1 with X := SpecR(A,P0) rational and assume
that (l1, . . . , lr) is decreasingly ordered. Then the number c(i) of irreducible components
of V (X,Tij) is given as

i 1 2 ≥ 3

c(i) l1 l2 l1l2

.
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Proof. Due to Corollary 4.3.3, we can realize X × C∗ as a principal open subset of the
associated variety X̃ of Type 2. Then the irreducible components of V (X,Tij) × C∗
are in one-to-one correspondence with the irreducible components X ∩ V (X̃, T̃ij). The
assertions follows.

Proposition 4.3.6. Let R(A,P0) be non-factorial of Type 1 with SpecR(A,P0) ratio-
nal with only constant globally invertible functions and (l1, . . . , lr) decreasingly ordered.
Define numbers n′ := c(1)n1 + . . .+ c(r)nr and

ni,1, . . . , ni,c(i) := ni, li,1, . . . , li,c(i) := 1
li
li.

Then the vectors li,α ∈ Zni,α build up an r′× (n′+m) matrix P ′0. With a suitable matrix
A′ the affine variety SpecR(A′, P ′0) is the total coordinate space of the affine variety
SpecR(A,P0).

Proof. First observe that the kernel of Zn+m → K0/K
tors
0 is generated by the rows of

the following r × (n+m) matrix:
1
l1
l1 . . . 0 0 . . . 0
... . . . ...

...
...

0 . . . 1
lr
lr 0 . . . 0

 .
Now one determines the Cox ring of X = SpecR(A,P0) in the same manner as in the
proof of Proposition 4.2.5 by exchanging the matrix P1 used there by the matrix above
and applying Lemma 4.3.5.

Proof of Theorem 4.1.2. If the Cox ring of X is a factorial ring R(A,P0) of Type 1,
then we are done. So, let R(A,P0) be non-factorial and rational of Type 1. Then
Proposition 4.3.6 shows that the Cox ring of SpecR(A,P0) is factorial. Thus, iteration
of Cox rings is possible for X if and only if the total coordinate space of X is rational.
Moreover, if the latter holds then the iteration of Cox rings ends after at most one
step.

4.4 Divisor class groups of total coordinate spaces

To complete the picture drawn in 4.1, we calculate explicitely the divisor class groups
of all affine rational T-varieties X := SpecR(A,P0) arising from a ring of Type 2. We
obtain the following result:

Theorem 4.4.1. Let X := SpecR(A,P0) be an affine, rational, non-factorial variety
arising from a ring of Type 2 and set ñ :=

∑r
i=0((c(i)− 1)ni − c(i) + 1).

(i) If c := gcd(l0, l1) > 1 and gcd(li, lj) = 1 holds whenever j /∈ {0, 1}, then the class
group Cl(X) is isomorphic to

(Z/Zl2)c−1×. . .×(Z/Zlr)c−1×Zñ.
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(ii) If gcd(l0, l1) = gcd(l1, l2) = gcd(l0, l2) = 2 and gcd(li, lj) = 1 holds whenever
j /∈ {0, 1, 2}, then the class group Cl(X) is isomorphic to

Z/(l0l1l2/4)Z×(Z/l3Z)3×. . .×(Z/lrZ)3×Zñ.

The rationality criterion of Corollary 3.4.8 shows that indeed all rational varieties are
treated in the above Theorem.

Remark 4.4.2. As a direct consequence of the above theorem, we can compute the di-
visor class groups of all affine varieties arising from a hyperplatonic Cox ring. We list the
basic platonic tuple (bpt) of R(A,P0) and the divisor class group of X := SpecR(A,P0)
in a table:

Case bpt of R(A,P0) divisor class group

(i) (4, 3, 2) Zn1+n3+···+nr−(r−1) × Z/3Z

(ii) (3, 3, 2) Z2·(n2+···+nr−(r−1)) × Z/2Z× Z/2Z

(iii) (x, y, 1) Z(gcd(x,y)−1)·(n2+···+nr−(r−1))

(iv) (x, 2, 2) and 2 - x Zn0+n3+···+nr−(r−1) × Z/xZ

(v) (x, 2, 2) and 2 | x Zn0+n1+n2+3·(n3+···+nr−(r−1)) × Z/xZ

.

Recall that the exponents of the relations of the Cox ring R(A,P0) of a variety of
complexity one give rise to the matrix P0, see Construction 2.1.1. This matrix defines
the maximal grading keeping the relations and the variables of the Cox ring homogeneous
and any other such grading coarsens this maximal one. Moreover, if we endow R(A,P0)
with a grading, such that it arises as the Cox ring of a variety of complexity one, we find
a description of this grading via a stack matrix

P :=
[
P0
d

]

as defined in Construction 2.1.4. In particular its transpose P ∗ defines an injective map.
Thus, let P0 be as above and define K0 := Zn+m/im(P ∗0 ). Then

Ktors
0 ⊆ K := Zn+m/im(P ∗)

holds for any matrix P as above and we call Cl(X)ctors := Ktors
0 the compulsory torsion

of the class group Cl(X) of any X having R(A,P0) as its Cox ring.
We use the notation introduced in Proposition 4.2.5.

Lemma 4.4.3. Let R(A,P0) be non factorial of Type 2 such that X := SpecR(A,P0)
is rational.
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(i) If c := gcd(l0, l1) > 1 and gcd(li, lj) = 1 holds whenever j /∈ {0, 1}, then the
compulsory torsion of the class group of X is

(Z/l2Z)c−1 × · · · × (Z/lrZ)c−1 .

(ii) If gcd(l0, l1) = gcd(l1, l2) = gcd(l0, l2) = 2 and gcd(li, lj) = 1 holds whenever
j /∈ {0, 1, 2}, then the compulsory torsion of the class group of X is

Z/(l0/2)Z× Z/(l1/2)Z× Z/(l2/2)Z× (Z/l3Z)3 × · · · × (Z/lrZ)3 .

Proof. We prove (i). With our subsequent considerations we obtain that the class group
of X is given as Zn′+m/im(P ′), where P ′ is some (r′ + s′)× (n′ +m) stack matrix[

P ′0
d′

]
,

of full row rank, and with Proposition 4.2.5 we get that P ′0 is the r′ × (n′ + m) matrix
build up by the exponent vectors c−1l0, c−1l1 and c copies li,1, . . . , li,c of li for i ≥ 2.
Thus, to obtain the assertion, we compute the Smith Normal Form of P ′0. Suitable
elementary column operations transform P ′0 into

c−1l0 c−1l1 0 . . . 0 0 . . . 0
c−1l0 0 l2,1 0
... . . . ...

c−1l0 0 . . . lr,c 0 . . . 0

 .

As gcd(li, lj) = 1 holds for i, j /∈ {0, 1} we obtain for 1 ≤ t ≤ c that the (r′ − t + 1)-th
determinantal divisor of P ′0 equals lc−t2 · · · lc−tr . The assertion follows.
For the proof of (ii) we note that in this case P ′0 is built up by 2 copies of 1/2l0, 1/2l1
and 1/2l2 and 4 copies of each term li for i ≥ 3. Then, applying the same arguments as
above, we obtain the assertion.

Construction 4.4.4. Let X be an irreducible, normal variety with O(X)∗ = C∗ and
finitely generated divisor class group. Denote by WDiv(X) the group of Weil-divisors of
X and fix a finitely generated subgroup Zn ∼= 〈D1, . . . , Dn〉 ≤ WDiv(X) such that the
map π : Zn → Cl(X) sending each Weil divisor D to its class [D] ∈ Cl(X) is surjective.
Let f1, . . . , fr be any linear relations such that

fj([D1], . . . , [Dn]) =
n∑
i=1

αij [Di] = [0] ∈ Cl(X)

and set

P :=

 α11 . . . α1n
...

...
αr1 . . . αrn

 .
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Then there is a commutative diagramm:

Zn π //

%%

Cl(X)

Zn/im(P ∗)

88

In particular Cl(X) is a factor group of Zn/im(P ∗).
Lemma 4.4.5. Let li ∈ Zni>0 be any tuple, k ∈ Z≥1 and consider the matrix

A(k, li) :=


li . . . 0
... . . . ...
0 . . . li
Eni . . . Eni

 ∈ Mat(k + ni, k · ni,Z),

where Eni denotes the identity matrix of size ni. Then A(k, li) has rank ni − 1 + k and
the (ni − 1 + k)-th determinantal divisor divides lk−1

i with li = gcd(li1, . . . , lini).

Proof. Choose for any 2 ≤ t ≤ k an integer 1 ≤ jt ≤ ni and denote by ejt the column
vector having 1 as jt-th entry and all other entries equal zero. Consider the following
(ni − 1 + k)× (ni − 1 + k) square matrix obtained by deleting the first row and several
of the last (k − 1) · ni columns of A(k, li)

0 . . . 0 lij2 . . . 0
...

...
... . . . ...

0 . . . 0 0 . . . lijk
Eni ej2 . . . ejk

 .
The determinant of this matrix equals up to sign lij2 · · · lijk . With li = gcd(li1, . . . , lini)
we obtain

gcd(
k∏
t=2

lijt ; jt ∈ {1, . . . , ni}) = lk−1
i .

This shows that the (ni − 1 + k)-th determinantal divisor divides lk−1
i . Moreover as

A(k, li) is obviously not of full rank this proves the assertions.

Remark 4.4.6. Let R(A,P0) be a ring of Type 2 defining a rational variety
X := SpecR(A,P0). Then the prime divisors Dij,1, . . . Dij,c(i) inside V(X;Tij), where
1 ≤ j ≤ ni, correspond to the variables Tij,1, . . . , Tij,c(i) in the Cox ring R(A′, P ′0) of X
as described in Proposition 4.2.5. In particular we have

deg(Tij,t) = [Dij,t] ∈ Cl(X).

Moreover each free variable Sk gives rise to a prime divisor V(X;Sk) = Ek with infinite
H0

0 -isotropy. This leads to a free variable S′k in R(A′, P ′0) with

deg(S′k) = [Ek] = [0] ∈ Cl(X).

Note that all free variables of R(A′, P ′0) arise this way.
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Lemma 4.4.7. Let R(A,P0) be a ring of Type 2 defining a rational variety
X := SpecR(A,P0) such that gcd(l0, l1) > 1 and gcd(li, lj) = 1 holds whenever j /∈
{0, 1}. Then the defining relations of the Cox ring R(A′, P ′0) of X have Cl(X)-degree
zero.

Proof. Note that for a ring R(A,P0) as above there is at least one integer i ∈ {0, 1, 2}
such that V(X,Tij) = Dij,1 is irreducible for j = 1, . . . , ni. Thus K0-primeness of the
variable Tij implies that Dij,1 is a principal divisors for j = 1, . . . , ni. We conclude

deg(T li,1i,1 ) =
n0∑
j=1

lij,1[Dij,1] = 0 ∈ Cl(X).

As T li,1i,1 occurs as a term in at least one relation of R(A′, P ′0) the assertion follows.

Proof of Theorem 4.4.1, Case (i). Set H0
0 := H0/H

tors
0 . We recall that the H0

0 -invariant
prime divisors with finite isotropy generate the class group of X = SpecR(A,P0) and
those are exactly the irreducible components of V(X,Tij), where i = 0, . . . , r and 1 ≤ j ≤
ni. Our aim is to determine some relations between the Cl(X)-degrees of the divisors
arising this way. Using Construction 4.4.4 this gives rise to an abelian group having
Cl(X) as a factor group.
LetDij,1∪· · ·∪Dij,c(i) be the decomposition of V(X,Tij) into prime divisors. As R(A,P0)
is K0-factorial and Tij is K0-prime (see [6, Theo. 3.4.2.3]) we get

c(i)∑
t=1

[Dij,t] = 0 ∈ Cl(X). (4.1)

Moreover we observe that in the Cases (i)-(iv) gcd(l0, l1, l2) = 1 holds and so due to
Lemma 4.4.7 the defining relations of R(A′, P ′0) have degree zero. In particular, due to
Proposition 4.2.5 we obtain a term T

li,t
i,t = T

lij,t
i1,t · · ·T

lini,t
ij,t of degree zero for fixed i and t.

This gives rise to relations
ni∑
j=1

lij,t[Dij,t] = 0 ∈ Cl(X), (4.2)

where i = 0, . . . , r and t = 1, . . . , c(i). As li,1 = · · · = li,c(i) holds for any i = 0, . . . , r,
the relations (4.1) and (4.2) give rise to block matrices A(c(i), li,1) in a matrix P as in
Construction 4.4.4. In particular we get an m′ × n′ matrix with m′ :=

∑r
i=0(ni + c(i))

and n′ :=
∑r
i=0 c(i) · ni of the following form

P :=


A(c(0), l0,1) 0 · · · 0

0 A(c(1), l1,1) · · · 0
...

... . . . ...
0 0 . . . A(c(r), lr,1)

 . (4.3)
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Note that P is of rank
∑r
i=0(ni − 1 + c(i)) and the rk(P )-th determinantal divisor of P

equals the product of the (ni − 1 + c(i))-th determinantal divisors of the block matrices
A(c(i), li,1). With Lemma 4.4.5 we conclude that the class group of X is isomorphic to
a factor group of the group

Zn
′
/im(P ∗) ∼= Zn

′−rk(P ) ×G (4.4)

with some finite abelian group G of order k with k|lc(0)−1
0,1 · · · lc(r)−1

r,1 .
We show that even Zn′/im(P ∗) ≤ Cl(X) and therefore equality holds. For this purpose
we compare the dimensions of X = SpecR(A,P0) and X = SpecR(A′, P ′0):

dim(X)− dim(X) = n′ − (r′ − 1)− (n− (r − 1))

= n′ −
r∑
i=0

c(i) + 2−
r∑
i=0

ni + (r − 1) = n′ − rk(P ).

With X = X // SpecC[Cl(X)] we conclude Zn′−rk(P ) ≤ Cl(X). The assertion follows
with

|Cl(X)ctors| ≤ |G| ≤ |Cl(X)ctors|.

We turn towards the proof of the second assertion of Theorem 4.4.1.

Definition 4.4.8. Let X be an irreducible normal variety and Y ⊆ X a prime divisor.
Let furthermore A := 〈f1, . . . , fr〉 ≤ O(X) be any ideal. Then we define the order of A
along Y to be min(ordY (fi); i = 1, . . . , r) =: ordY (A).

Lemma 4.4.9. Let X be an irreducible normal variety, A := 〈f1, . . . , fr〉 ≤ O(X) any
ideal and f ∈ O(X). Then the following statements are equivalent:
(i) ordY (A) = ordY (f) holds for all prime divisors Y ⊆ X.
(ii) 〈f〉 = A holds, i.e. A is a principal ideal.

In particular the Weil-divisor D :=
∑

ordY (A), where the sum runs over all prime
divisors Y ⊆ X, is principal if and only if A is a principal ideal.

Proof. We prove (i) ⇒ (ii). Observe that f | fi holds for i = 1, . . . , r as div(f) ≤ div(fi)
by construction. In particular 〈f〉 ⊇ A. We prove the other inclusion. Consider the
covering ∪ri=1Ui of X where

Ui := X \ (Yi1 ∪ · · · ∪ Yiki ),

where all prime divisors Y with ordY (fi) 6= ordY (A) occur among the Yit . Then inside
Ui we have fi | f . We obtain ci · fi = f with ci ∈ O(U)∗. Considering the associated
sheaf Ã of A we obtain f ∈ Ã(X) = A. The other implication is clear.
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Lemma 4.4.10. Let R(A,P0) = C[Tij , Sk]/I be a hyperplatonic ring with g0 of the form
T l00 + T l11 + T l22 and basic platonic triple (x, 2, 2). Fix an integer y ∈ Z≥0 with y | x and
set

Ay := 〈T 1/2l1
1 + i · T 1/2l2

2 , T
1/y·l0
0 〉 ≤ R(A,P0).

Then A is a principal ideal if and only if y = 1 holds.

Proof. Note that A1 = 〈T 1/2l1
1 + iT

1/2l2
2 〉 holds in R(A,P0). So let y 6= 1 and assume

there is an f ∈ Ay with 〈f〉 = A. Then there exist g1, g2, h1, h2 ∈ K[Tij , Sk] with
g1 · f + I = T

1/y·l0
0 + I and g2 · f + I = T

1/2l1
1 + iT

1/2l2
2 + I and

h1 · T 1/y·l0
0 + h2 · (T 1/2l1

1 + iT
1/2l2
2 ) + I = f + I.

Inserting the third formula into the first one we obtain

T
1/y·l0
0 + I = g1 · h1 · T 1/y·l0

0 + g1 · h2 · (T 1/2l1
1 + iT

1/2l2
2 ) + I

and so in particular

h := (g1 · h1 − 1) · T 1/y·l0
0 + g1 · h2 · (T 1/2l1

1 + iT
1/2l2
2 ) ∈ I. (4.5)

As there can not occur any term T
1/y·l0
0 in I for y 6= 1, we conclude that g1 and h1

each have a constant term. Inserting the third formula above into the second we ob-
tain a constant term in g2 and h2 with similar arguments. But this leads to a term
λ · (T 1/2l1

1 + i · T 1/2l2
2 ) with λ 6= 0 in (4.5), which contradicts h ∈ I.

Proof of Theorem 4.4.1, Case (ii). With the same arguments as in the Case (i) we get
relations of the form (4.1). Moreover since the degrees of the relations and thus all terms
occuring in the Cox ring R(A′, P ′0) of X = SpecR(A,P0) coincide, we obtain

n0∑
j=1

l0j,1[D0j,1] =
ni∑
j=1

lij,t(i)[Dij,t(i)] ∈ Cl(X), (4.6)

where i = 0, . . . , r and 1 ≤ t(i) ≤ c(i). Those replace the relations (4.2). Suitably
ordered this gives rise to a matrix

−1/2l0 1/2l0 0 · · · 0
En0 En0 0 · · · 0
∗ 0 A(c(1), l1,1) · · · 0
...

...
... . . . ...

∗ 0 0 . . . A(c(r), lr,1)

 ,

where we use c(0) = 2, l0,1 = l0,2 = 1/2 · l0. and the ∗ indicates that there might be
some entries not equal to zero. By suitably swapping columns and applying elementary
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row operations one achieves a matrix

P ′ :=


−l0 0 · · · 0
∗ A(c(1), l1,1) · · · 0 0
...

... . . . ...
...

∗ 0 . . . A(c(r), lr,1) 0
En0 0 . . . 0 En0

 .

The rank of P ′ equals
∑r
i=0(ni − 1 + c(i)). Using li,1 = li,2 = li/2 for i = 1, 2, we obtain

with Lemma 4.4.5 that the (ni−1+c(i))-th determinantal divisors of A(c(i), li,1) divides
li/2 for i = 1, 2. Using li,1 = . . . = li,4 = li for i ≥ 3 we obtain that the (ni− 1 + c(i))-th
determinantal divisors of A(c(i), li,1) divides l3i for i ≥ 3. Thus considering the maximal
square submatrices just including one of the first n0 columns, Laplace expansion with
respect to the first row shows that the rk(P ′)-th determinantal divisor of P ′ divides l0.
If we delete all of the first n0 columns we observe that the (rk(P ′)− 1)-th determinantal
divisor of P ′ divides 1, i.e., it equals 1. Thus Cl(X) is a factor group of

Zn
′
/im(P∗) ∼= Zn

′−rk(P ′) ×G,

where G is a finite group of order k with k|l0(l1/2)(l2/2)l33 . . . l3r .
We show equality of these groups. Observe that we may assume the relation g0 of
R(A,P0) to be of the form T l00 + T l11 + T l22 . In particular the irreducible components
D0j,1 and D0j,2 of V(X;T0j) are of the form

D0j,1 = V(T0j , T
1/2l1
1 + i · T 1/2l2

2 ) and D0j,2 = V(T0j , T
1/2l1
1 − i · T 1/2l2

2 ).

We conclude that for y ∈ Z≥0 with y | l0

D :=
n0∑
j=1

1
y
l0jD0j,1 =

∑
Y

ordY (Ay)

holds with Ay as in Lemma 4.4.10. As Ay is principal if and only if y = 1 holds, we obtain
Z/l0Z and thus in particular Z/2Z as a factor of the class group of X. Calculating the
difference between the dimensions of SpecR(A,P0) and SpecR(A′, P ′0) as in the proof
of the case (i) we conclude Zn′−rk(P ′) ≤ Cl(X) and the assertion follows with

2 · |Cl(X)ctors| ≤ |G| ≤ 2 · |Cl(X)ctors|.

To conclude this chapter we give a necessary criterion for the factoriality of a ring
R(A,P0) of Type 1 using the methods developed so far.

Proposition 4.4.11. Let R(A,P0) be a factorial ring of Type 1 with li1ni > 1 for all
i = 1, . . . , r. Then one of the following statements hold:
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(i) We have li = 1 for all i = 1, . . . , r.
(ii) We have P0 = [2E2, 0].

Moreover, if (i) holds, the variables Tij are even prime.

Proof. Factoriality of R(A,P0) implies rationality of SpecR(A,P0). Thus it suffices to
go through the cases of Corollary 4.3.4. In Case 4.3.4(i) we have li = 1 for all i and it is
nothing to show.
Now let R(A,P0) be as in Case 4.3.4(ii). Then, after suitable renumbering, l1 > 1
and li = 1 holds for all i ≥ 2. The associated ring R(Ã, P̃0) of Type 2 has the terms
T l1

01, T
l1
1 , . . . , T

lr
r in the defining relations. In particular due to [6, Theorem 3.4.2.3] it is

not factorial. As T01 is prime due to [6, Lemma 3.4.2.7] we conclude that the localization
R(Ã, P̃0)T01

∼= R(A,P0)[T01, T
−1
01 ] is not factorial and thus R(A,P0) is not factorial, see

[65, Theorem 20.2]; a contradiction.
We turn to Case 4.3.4(iii). After suitable renumbering l1 = l2 = 2 and li = 1 holds for
all i ≥ 3. In particular li1ni > 1 implies ni ≥ 2 for all i = 3, . . . , r. We are left with the
following two cases:
We have r = 2 and n1 = n2 = 1: In this case we have

R(A,P0) ∼= C[T11, T21, Sk]/〈T 2
11 + T 2

21 + 1〉 ∼= C[T, T−1, Sk]

and P0 = [2E2, 0] holds.
We have r = 2 and n1 ≤ n2 ≥ 2 or r ≥ 3: We show that these assumptions contradict
factoriality of R(A,P0). Consider the corresponding ring R(Ã, P̃0) of Type 2, which
is hyperplatonic with basic platonic tuple (2, 2, 2) and has the terms T 2

01, T
l1
1 , . . . , T

lr
r

in the defining relations. Set X := SpecR(A,P0) and X̃ := SpecR(Ã, P̃0) and note
that div(T01) = D01,1 +D01,2 holds with prime divisors D01,1, D01,2 ⊆ X̃. In particular
[D01,1] = −[D01,2] ∈ Cl(X̃) holds. Using this and factoriality of X × C∗ ∼= X̃ \ V(T01),
we obtain an exact sequence

Z2 π−→ Cl(X̃) −→ Cl(X × C∗) = 0,

where π(e1) = [D01,1] and π(e2) = [D01,2] = −[D01,1] and thus π(Z2) is a cyclic group.
Due to Remark 4.4.2 we have

Cl(X̃) ∼= Z/2Z× Zn0+n1+n2+3(n3+...+nr−(r−1))

and n0 + n1 + n2 + 3(n3 + . . .+ nr − (r− 1)) ≥ 1 holds by assumption. As the image of
π is a cyclic group this contradicts surjectivity of π and thus factoriality of R(A,P0).
The supplement is a direct consequence of Proposition 2.2.7.

Remark 4.4.12. It may happen that for a rational T -variety of complexity one with
only constant globally invertible functions, the total coordinate space X is rational and
non-factorial of Type 1 but has non-constant globally invertible functions. For instance
consider

X2 := V(T 2
11T

2
12 − T 2

21 − 1) ⊆ C3,
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where T11T12 + T21 ∈ O(X)∗. According to Corollary 4.3.4 and Proposition 4.4.11 the
surface X2 is rational and non-factorial. Moreover X2 is the total coordinate space of
an affine rational C∗-surface X1 with defining matrix

P0 :=

 2 2 0
0 0 2
1 −1 1

 .
X1 has only constant globally invertible functions, see [6, Theorem 3.2.1.4], the divisor
class group of X1 is Cl(X1) = Z/2Z× Z/4Z and the Cl(X1)-grading of the Cox ring
R(X1) = C[T11, T12, T21]/〈T 2

11T
2
12 − T 2

21 − 1〉 is given by

deg(T11) = (0, 1), deg(T12) = (1, 3), deg(T21) = (1, 2).



CHAPTER

FIVE

VARIETIES WITH TORUS ACTION OF HIGHER
COMPLEXITY

In this chapter we extend the Cox ring based combinatorial theory for rational varieties
with torus action of complexity one to Mori dream spaces with torus action of arbitrary
high complexity. The key idea is to work over the maximal orbit quotient, which keeps
finite generation of the Cox ring. As a sample class we investigate Mori dream spaces with
a projective space as maximal orbit quotient having a general hyperplane arrangement as
critical locus. Here we obtain simply structured resulting Cox rings directly generalizing
the case of rational T-varieties of complexity one. The results of this and the following
chapter have been published in the joint publication [46].

5.1 Mori dream spaces with torus action

In this section, we introduce a general framework to construct Mori dream spaces with
torus action. The key input is the main result of [49]. There, the Cox ring

R(X) =
⊕

Cl(X)
Γ(X,OX(D))

of a normal variety X with an effective torus action T×X → X, only constant invertible
global functions and finitely generated divisor class group Cl(X) was described in terms
of the open subset of points with finite T-isotropy and a certain quotient:

X0 = {x ∈ X; Tx is finite} ⊆ X, π : X 99K Y.

More precisely, [83, Cor. 3] yields a quotient κ : X0 → X0/T, where the orbit space X0/T
is a normal, possibly non-separated prevariety. Using [49, Prop. 3.5], we obtain a normal

83



84 Chapter 5. Varieties with torus action of higher complexity

variety Y and a commutative diagram of rational maps

X0
κ //

π
  

X0/T

σ
||

Y

such that there are an open set W ⊆ X0 with complement X0 \W of codimension at
least two and prime divisors C0, . . . , Cr on Y with the following properties:
(i) the map π is defined on W , the image V := π(W ) ⊆ Y is open with complement

of codimension at least two,
(ii) the image κ(W ) ⊆ X0/T is open, σ : κ(W )→ V is a surjective local isomorphism

and it is an isomorphism over V \ (C0 ∪ . . . ∪ Cr),
(iii) for every i = 0, . . . , r, the inverse image π−1(Ci) ⊆W is a union of prime divisors

Di1, . . . , Dini ⊆W and all prime divisors of X0 with nontrivial generic T-isotropy
occur among the Dij .

We call the rational map π : X 99K Y the maximal orbit quotient, the morphism π : W →
V a big representative and C0, . . . , Cr the doubling divisors of π. Keeping their notation,
we extend the Dij to X by passing to their closures. Moreover, we denote by E1, . . . , Em
the prime divisors in the complement X \X0. Then the main result of [49] says that the
Cox ring R(X) of X is given as

R(X) ∼= R(Y )[Tij , Sk]/〈T lii − 1Ci〉, T lii := T li1i1 · · ·T
lini
ini

,

where R(Y ) is the Cox ring of Y , by 1Ci ∈ R(Y ) we denote the canonical section of Ci,
the variables Tij , Sk represent the canonical sections of Dij , Ek and lij is the order
of the isotropy group Tx for a general x ∈ Dij . Moreover, the Cl(X)-grading on the
r.h.s. assigns to Tij , Sk the classes of Dij , Ek and turns the Cl(Y )-grading of R(Y ) into
a Cl(X)-grading via the pullback homomorphism π∗.
The idea of this section is to go in the reverse direction. That means that we start with
a normal variety Y having only constant invertible global functions, finitely generated
divisor class group Cl(Y ) and finitely generated Cox ring R(Y ); for example, Y might
be any Mori dream space. The aim is to construct from Y in a systematic way basically
all varieties X with finitely generated Cox ring coming with a torus action that have
maximal orbit quotient X 99K Y .
Our construction will link to toric geometry by using suitable toric varieties as ambient
spaces. This means in particular, that we have to deal with varieties Y admitting toric
embeddings. According to [87], the latter just means that Y is an A2-variety, that means
that any two points of Y admit a common affine open neighborhood; this is the case,
for instance, if Y is affine or projective.
We are ready to enter the construction. The reader preferring to see a concrete example
before may jump directly to Example 5.2.10.

Construction 5.1.1. Let Y be a normal A2-variety with only constant invertible global
functions, finitely generated divisor class group Cl(Y ) and finitely generated Cox ring
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R(Y ). Fix a choice α = (f0, . . . , fr) of pairwise non-associated Cl(Y )-prime generators
of R(Y ) and an associated toric embedding Y ⊆ Z∆, where Z∆ arises from the fan ∆ in
the lattice Zt. Denote by u0, . . . , ur the primitive generators of the rays of ∆ and write
them as the columns in a t× (r + 1) matrix

B =
[
u0 . . . ur

]
.

Note that Cl(Y ) = Cl(Z∆) equals KB := Zr+1/im(B∗). We build a larger matrix P
from B as follows. Fix positive integers n0, . . . , nr and set n := n0 + . . .+ nr. Let m, s
be nonnegative integers such that t+ s ≤ n+m. For every pair i, j, where i = 0, . . . , r
and j = 1, . . . , ni, fix a positive integer lij and an intergral vector dij ∈ Zs. Moreover,
fix integral vectors d′1, . . . , d′m ∈ Zs. Set uij := lijui and consider the (t + s) × (n + m)
matrix

P =
[
u01 . . . u0n0 . . . ur1 . . . urnr 0 . . . 0
d01 . . . d0n0 . . . dr1 . . . drnr d′1 . . . d′m

]
,

where we require that the columns vij = (uij , dij) and vk = (0, d′k) are pairwise different
and primitive and generate Qt+s as a vector space. Now choose any fan Σ in Zt+s
having the columns vij , vk as the primitive generators of its rays and denote by ZΣ the
associated toric variety. We obtain a commutative diagram

X //

��

ZΣ

��
Y // Z∆

where the downwards rational map from ZΣ to Z∆ is given by the projection of tori
Tt+s → Tt and we define

X = X(α, P,Σ) := (Y ∩ Tt)× Ts ⊆ ZΣ

to be the closure of the inverse image of Y under Tt+s → Tt. Then X is invariant under
the action of Ts. We have

KP := Zn+m/im(P ∗) = Cl(ZΣ).

Now, consider the monomials T lii := T li1i1 · · ·T
lini
ini
∈ K[Tij , Sk] and let h1, . . . , hq be

generators for the ideal of relations between f0, . . . , fr. Then the factor ring

R(α, P ) := K[Tij , Sk]/〈h1(T l00 , . . . , T
lr
r ), . . . , hq(T l00 , . . . , T

lr
r )〉

becomes KP -graded by assigning to the generators Tij , Sk the classes of the canonical
basis vectors eij , ek in KP as their degrees. Moreover, we have a unique homomorphism
of graded rings R(Y )→ R(α, P ) sending fi to T lii .

Remark 5.1.2. If, in Construction 5.1.1, the toric ambient variety ZΣ is affine (com-
plete, projective), then the resulting X is affine (complete, projective).
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Proposition 5.1.3. Let X = X(α, P,Σ) arise from Construction 5.1.1. Suppose that
R(α, P ) is integral, normal with only constant homogeneous units and the variables Tij
define pairwise nonassociated KP -primes in R(α, P ). Then the following statements
hold.
(i) The Ts-variety X is normal with only constant invertible global functions, is of

dimension s + dim(Y ), has divisor class group Cl(X) = KX , Cox ring R(X) =
R(α, P ) and it comes with a Ts-equivariant toric embedding X ⊆ ZΣ.

(ii) Let Z1
Σ ⊆ ZΣ be the union of the open toric orbit and all those corresponding to

variables Tij and Z1
∆ ⊆ Z∆ the union of all toric orbits of codimension at most

one. Then X1 := X ∩ Z1
Σ ⊆ X0 maps onto Y1 := Y ∩ Z1

∆ and X1 → Y1 is a big
representative of of the maximal orbit quotient π : X 99K Y .

Proof of Construction 5.1.1 and Proposition 5.1.3. Consider the toric Cox construc-
tions of the fan ∆ living in N∆ := Zt and the fan Σ living in NΣ := Zt+s; see for
example [24, Sec. 5.1]. They fit into a commutative ladder of lattices with exact rows

0 // LΣ //

��

FΣ
P //

A
��

NΣ

��
0 // L∆ // F∆ B

// N∆

where the lifting A : FΣ → F∆ of the projection NΣ → N∆ sends the canonical basis
vectors eij ∈ FΣ = Zn+m to lijei ∈ F∆ = Zr+1 and ek ∈ FΣ = Zn+m to 0 ∈ F∆ = Zr+1.
Dualizing gives a commutative ladder of abelian groups with exact rows

0 oo KP
oo Q

OO

ı

EΣ oo
P ∗

OO

A∗

MΣ ooOO 0

0 oo KB
oo
C

E∆ oo B∗
M∆ oo 0

By construction, ei ∈ E∆ is sent by C to deg(fi) ∈ KB = Cl(Y ). Consequently, the
induced map ı : KB → KP sending deg(fi) ∈ KB to the class of li1ei1 + . . .+ linieini in
KP . The fact that we have a homomorphism of graded rings R(Y )→ R(α, P ) sending
fi to T lii is then obvious. This proves all statements made in Construction 5.1.1.
Let Y ⊆ Kr+1 and X ⊆ Kn+m denote the closures of the inverse images of Y ∩ Tt
and X ∩ Tt+s under the homomorphisms of tori b : Tr+1 → Tt and p : Tn+m → Tt+s
defined by B and P respectively. Then Y is the total coordinate space of Y and has
R(Y ) as its algebra of functions. Observe that with the quasitori HY := SpecK[KB]
and HX := SpecK[KP ] and the homomorphism of tori a : Tn+m → Tr+1 defined by A,



5.1. Mori dream spaces with torus action 87

we have a commutative diagram

X ∩ Tn+m /HX

p
//

a
��

X ∩ Tt+s

/Ts
��

Y ∩ Tr+1 /HY

b
// Y ∩ Tt,

Consider the product f ∈ R(Y ) over all the generators fi of R(Y ) and the product
g ∈ R(α, P ) over all the generators Tij and Sk of R(α, P ). Then, using the above
diagram, we see

(R(Y )f )HY ∼= a∗ (R(Y )f )HY =
(
(R(α, P )g)HX

)Ts
.

Since the l.h.s. ring is factorial, also the r.h.s. ring is so. By assumption, R(α, P ) is in-
tegral, normal and the generators Tij are KP -prime. Thus, we can apply [6, Cor. 3.4.1.6]
and see that R(α, P ) is factorially KP -graded. Consequently, we are in the setting of [6,
Constr. 3.2.1.3] which establishes Proposition 5.1.3 (i).
For the second assertion of the Proposition, observe that Z1

Σ → Z1
∆ defines the maximal

orbit quotient of the Ts-action on ZΣ. As toric prime divisors of Z1
Σ and Z1

∆ cut down to
prime divisors of X1 and Y1 respectively, we can conclude that X1 → Y1 bigly represents
the maximal orbit quotient of the Ts-variety X.

Theorem 5.1.4. Let X be an irreducible, normal, A2-maximal variety with torus action
having only constant invertible global functions, finitely generated divisor class group and
finitely generated Cox ring. Then X is equivariantly isomorphic to a variety X(α, P,Σ)
arising from Construction 5.1.1.

Proof. Consider the maximal orbit quotient X0 99K Y . As outlined at the beginning
of the section, the main result of [49] yields a presentation of the Cox ring of X via
Cl(X)-homogeneous generators and relations:

R(X) ∼= R(Y )[Tij , Sk]/〈T lii − 1Ci〉, T lii := T li1i1 · · ·T
lini
ini

,

where we ensure that the canonical sections 1C0 , . . . , 1Cr generate the Cox ring of Y .
The Cl(X)-grading of R(X) reflects the action of the characteristic quasitorus H :=
SpecK[Cl(X)] on the total coordinate space X := SpecR(X). Moreover, there is an
H-invariant open subset X̂ ⊆ X with complement of codimension at least two in X such
that we have a good quotient p : X̂ → X = X̂//H.
Let T ×X → X be the torus action on X. According to [6, Thm. 4.2.3.2], there is an
action of T on X̂ such that we have t · h · x = h · t · x and p(t · x) = tb · p(x) with a fixed
positive integer b for all t ∈ T, h ∈ H and x ∈ X̂. Since X̂ ⊆ X has a small complement
and X is normal, we can extend the T-action to X.
The Cox ring generators Tij and Sk are H-homogeneous. We show that they are also
T-homogeneous. Consider f := Tij ∈ R(X). Since div(T lii ) = p∗(Dij) is T-invariant,



88 Chapter 5. Varieties with torus action of higher complexity

also the component div(f) of this divisor is T-invariant. For each t ∈ T, we define a
rational function on X by

gt : x 7→
f(t · x)
f(x) .

Numerator and denominator have the same divisor and both are H-homogeneous. Thus,
gt is an invertible H-homogeneous element of R(X) and hence constant; see [6]. We
conclude that there is a character χ ∈ X(T) with f(t · x) = χ(t)f(x). The same arguing
works in the case f = Sk.
The toric embedding X ⊆ Z defined by the (T×H)-homogeneous Cox ring generators
Tij and Sk is T-equivariant, where T acts as a subtorus of the acting torus TZ of the
ambient toric variety Z. The inclusion T ⊆ TZ is reflected by a splitting Zt × Zs of the
lattice of one parameter subgroups of TZ , where Zs represents the factor T = Ts. The
toric variety Z is defined by a fan Σ in Zt × Zs and the projection Zt × Zs → Zs gives
rise to a commutative diagram

X //

��

ZΣ

��
Y // Z∆,

where ∆ in Zs is the fan having the projected rays corresponding to the generators Tij
as its maximal cones. The r.h.s. downwards arrow defines the maximal orbit quotient
for the T-action on Z = ZΣ and as the toric divisors of ZΣ cut out the prime divisors of
X, the l.h.s. downwards arrow defines the maximal orbit quotient for the T-action on
X.
Now consider the toric Cox construction of ZΣ. It is given by a homomorphism Zn+m →
Zt+s. Let P denote the corresponding (n + m) × (t + s) matrix and write vij , vk for
the columns indexed according to the Cox ring generators Tij and Sk. Computing
the T-isotropy along the toric divisors of ZΣ according to [6, Prop. 2.1.4.2], we obtain
v1, . . . , vm ∈ {0} × Qs and see that the vij have a non-trivial Zt-part being the lij-fold
multiple of the primitive generator wi ∈ Zt of the ray through the image of vij . Thus,
P looks as in Construction 5.1.1.
To conclude the proof, we still have to show that Y ⊆ Z∆ is the toric embedding arising
from the Cox ring generators 1C0 , . . . , 1Cr . By construction, the pullbacks to X of the
divisors on Y ⊆ Z∆ cut out by the toric prime divisors equal the pullbacks to X of the
divisors C0, . . . , Cr. Thus, C0, . . . , Cr are in fact the divisors cut out by the toric prime
divisors of Z∆. The toric Cox construction of Z∆ is given by the lattice homomorphism
Zr+1 → Zt sending the i-th canonical basis vector to wi. The monomial map

µ : Kn+m → Kr+1, (z, w) 7→ (zl00 , . . . , zlrr )

is the categorical quotient by the action of the quasitorus ker(µ) on Kn+m. The total
coordinate space X ⊆ Kn+m is invariant and thus maps onto a closed set Y ⊆ Kr+1. By
construction, Y lies over Y ⊆ Z∆. Moreover, we have

O(Y ) ∼= O(X)ker(µ) = R(Y ).
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Thus, Y is a total coordinate space for Y , showing that Y ⊆ Z∆ is the toric embedding
arising from the Cox ring generators 1C0 , . . . , 1Cr .

Corollary 5.1.5. Let X be a Mori dream space with effective torus action T×X → X.
Then the T-variety X arises from Construction 5.1.1.

Remark 5.1.6. If, in Construction 5.1.1, we fix α and P , then the possible choices
of polytopal fans Σ having the columns of P as their primitive generators give us all
projective Mori dream spaces sharing the KP -graded ring R(α, P ) as Cox ring.

Remark 5.1.7. In order to describe a projective Mori dream space with torus action
via polyhedral divisors [1, 2], it happens that one has to start with a non Mori dream
space. For example, the maximal torus action on the Grassmannian G(2, n) has the
moduli space M0,n as its Chow quotient and for n ≥ 10, it is known that M0,n and
hence all its blow ups have a non-finitely generated Cox ring [22, 42, 48].

5.2 First properties and examples

We begin this section with adapting concepts and statements from [6, Chap. 3] to the
setting of Construction 5.1.1. This allows us to describe basic geometric properties of the
resulting varieties. Then we turn to more specific properties around the torus action.
Finally, we elaborate an explicit example, showing how Construction 5.1.1 works in
practice and we indicate how an existing description of rational T-varieties of complexity
one fits into the framework of Construction 5.1.1.

Remark 5.2.1. Let X = X(α, P,Σ) and the toric ambient variety Z = ZΣ be as in 5.1.1
and 5.1.3. The total coordinate spaces X and Z, that means the spectra of the Cox rings
R(X) and R(Z), are explicitly given as

X := X(α, P ) := V (h1(T l00 , . . . , T
lr
r ), . . . , hq(T l00 , . . . , T

lr
r )) ⊆ Kn+m =: Z.

The grading of R(X) and R(Z) by Kp = Cl(X) = Cl(Z) defines the actions of the
characteristic quasitorus H = SpecK[KP ] on X and Z, which respect the embedding
X ⊆ Z. Moreover, we have a commutative diagram

X̂ ⊆

//H
��

Ẑ

//H
��

X ⊆ Z

where Ẑ → Z is the toric Cox construction [24, Sec. 5.1] and X̂ = X ∩ Ẑ holds. The
induced good quotient X̂ → X is the characteristic space over X.

We take a closer look at the decomposition of X = X(α, P,Σ) obtained by cutting down
the orbit decomposition of the ambient toric variety Z = ZΣ. Recall that, for σ ∈ Σ, the
associated distinguished point zσ ∈ Z is the common limit point of all one-parameter
groups given by vectors from the relative interior of σ.
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Definition 5.2.2. Let X = X(α, P,Σ) be as in 5.1.1 and 5.1.3. Set γ := Qn+m
≥0 . An

X-face is a face γ0 4 Qn+m such that the complementary face γ∗0 4 γ satisfies

Kn+m ⊇ X(γ0) := X ∩ Tn+m · zγ∗0 6= ∅.

For a cone σ ∈ Σ and the face γ0 4 γ with P (γ∗0) = σ, consider the intersection of the
corresponding toric orbit of Z = ZΣ with X:

X(γ0) := X(σ) := X ∩ Tt+s · zσ ⊆ Z.

We say that σ ∈ Σ and γ0 4 γ are X-relevant if X(γ0) = X(σ) is non-empty. Moreover,
we denote

rlv(X) := {γ0 4 γ; γ is X-relevant}.

Note that each X(γ0) ⊆ X is locally closed and X is the disjoint union of the X(γ0),
where γ0 4 γ runs through the X-relevant faces. Moreover, if γ0 4 γ is X-relevant, then
we have X(γ0) ⊆ X̂ and X(γ0) maps onto X(γ0). In terms of the pieces X(γ0) ⊆ X, we
can characterize the following local properties; for the proofs see [6, 3.3.1.8 to 3.3.1.12],
the notation is as in Construction 5.1.1.

Proposition 5.2.3. Let X = X(α, P,Σ) be as in 5.1.1 and 5.1.3. Let γ0 4 γ and thus
σ = P (γ∗0) ∈ Σ be X-relevant. Then the following statements are equivalent.
(i) The piece X(σ) consists of Q-factorial points of X.
(ii) The cone σ is simplicial.
(iii) The cone Q(γ0) ⊆ KQ is of full dimension.

Proposition 5.2.4. Let X = X(α, P,Σ) be as in 5.1.1 and 5.1.3. Let γ0 4 γ and thus
σ = P (γ∗0) ∈ Σ be X-relevant. Then the following statements are equivalent.
(i) The piece X(σ) consists of locally factorial points of X.
(ii) The cone σ is regular.
(iii) The set Q(γ0 ∩ Zn+m) generates K as a group.
Moreover, X(σ) consists of smooth points of X if and only if one of the above statements
holds and X(γ0) consists of smooth points of X.

As well, we can use the X-relevant faces to describe global data as the Picard group and
the various cones of divisor classes; compare [6, Cor. 3.3.1.6 and Prop. 3.3.2.9].

Proposition 5.2.5. Let X = X(α, P,Σ) be as in 5.1.1 and 5.1.3. Then, in KP =
Cl(X), the Picard group of X is given by

Pic(X) =
⋂

γ0∈rlv(X)
Q(linQ(γ0) ∩ Zn+m).

Moreover, in (KP )Q = ClQ(X), the cones of effective, movable, semiample and ample
divisor classes are given by

Eff(X) = Q(γ), Mov(X) =
⋂

γ04γ facet
Q(γ0),
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SAmple(X) =
⋂

γ0∈rlv(X)
Q(γ0), Ample(X) =

⋂
γ0∈rlv(X)

Q(γ0)◦.

Remark 5.2.6. Let X = X(α, P,Σ) be as in 5.1.1 and 5.1.3. Assume that X is projec-
tive, and take any u ∈ (KP )Q from the relative interior of the ample cone Ample(X).
Then Σ can be chosen as the normal fan Σ(u) of the polytope

(P ∗)−1(Q−1(u) ∩ γ)− e) ⊆ Qt+s,

where γ = Qn+m
≥0 and e ∈ Qn+m is any element with Q(e) = u; note that in terms of the

faces γ0 4 γ, the normal fan is given as

Σ(u) = {P (γ∗0); γ0 4 γ with u ∈ Q(γ0)◦} .

Conversely, for any u′ ∈ Mov(X)◦, the normal fan Σ(u′) defines a projective variety
X ′ = X(α, P,Σ(u′)) and there is a small quasimodification X 99K X ′, which is an
isomorphism if and only if u and u′ belong to the same Mori chamber.

We turn to more specific properties of the varieties produced by Construction 5.1.1,
involving in particular the torus action.

Proposition 5.2.7. Let X = X(α, P,Σ) be as in 5.1.1 and 5.1.3. Suppose that the Cox
ring presentation R(Y ) = K[f1, . . . , fr]/〈h1, . . . , hq〉 is a complete intersection. Then,
with h′u := hu(T l00 , . . . , T

lr
r ), also the Cox ring presentation

R(X) = K[Tij , Sk]/〈h′1, . . . , h′q〉

is a complete intersection. Moreover, in the latter case, the canonical divisor class of X
is given by

KX = −
r∑
i=0

ni∑
j=1

deg(Tij)−
m∑
k=1

deg(Sk) +
q∑

u=1
deg(h′u) ∈ KP = Cl(X).

In particular, with the canonical divisor class KY ∈ KB = Cl(Y ) and the maximal orbit
quotient π : X 99K Y , we have

KX − π∗(KY ) =
r∑
i=0

ni∑
j=1

(lij − 1) deg(Tij)−
m∑
k=1

deg(Sk).

Proof. The second and third statement follow from [6, Prop. 3.3.3.2]. The first one is
seen via a simple dimension computation:

dim(X) = dim(X) + rk (Cl(X))
= s+ dim(Y ) + rk (Cl(X))
= s+ dim(Y )− rk (Cl(Y )) + rk (Cl(X))
= s+ (r + 1− q)− (r + 1− t) + (n+m− t− s)
= n+m− q.



92 Chapter 5. Varieties with torus action of higher complexity

For the next observation, note that in Construction 5.1.1, we may remove successively
maximal cones that are not X-relevant from the fan Σ. The result is a minimal fan Σ
defining still the initial X. We call ZΣ in this case the minimal ambient toric variety of
X.

Proposition 5.2.8. Let X = X(α, P,Σ) be as in 5.1.1 and 5.1.3. Consider the sublattice
L := {0} × Zs ⊆ Zt+s corresponding to the inclusion Ts ⊆ Tt+s of tori and assume that
ZΣ is the minimal toric ambient variety of X.
(i) The normalization of the general Ts-orbit closure of X is the toric variety defined

by the fan ΣL in L, where

ΣL := {τ ; τ 4 (σ ∩ LQ), σ ∈ Σ}.

(ii) If the maximal orbit quotient π : X 99K Y is a morphism, then ΣL is a subfan of
Σ.

Proof. As ZΣ is the minimal toric embedding, the general Ts-orbit closure ofX equals the
general Ts-orbit closure of ZΣ. This reduces the problem to standard toric geometry.

Corollary 5.2.9. Let X = X(α, P,Σ) be as in 5.1.1 and 5.1.3. Assume that X is
complete and ΣL is a subfan of Σ. Then we have

rk (Cl(X))− rk (Cl(Y )) > n− r − 1.

Proof. According to Proposition 5.2.8, the general Ts-orbit closure of X has divisor class
group of rank m− s > 0. Thus, the assertion follows from

rk (Cl(X)) = n+m− t− s, rk (Cl(Y )) = r + 1− t.

We conclude the section by producing an explicit example of a Mori dream space with
torus action via Construction 5.1.1.

Example 5.2.10. Consider the surface Y := P1 × P1. Then we have Cl(Y ) = Z2 and
the Cox ring of Y is the polynomial ring K[T0, T1, T2, T3], where the Z2-grading is given
by

deg(T0) = deg(T1) = (1, 0), deg(T2) = deg(T3) = (0, 1).
Consider the redundant system α = (f0, . . . , f5) of generators for R(Y ) consisting of
fi := Ti for i = 0, . . . , 3 and the canonical sections of the diagonals

f4 := T0T3 − T1T2, f5 := T0T2 − T1T3,

both being of degree (1, 1). A matrix B of relations between the degrees of generators
f0, . . . , f5 is given by

B :=


−1 1 0 0 0 0

0 0 −1 1 0 0
−1 0 −1 0 1 0
−1 0 −1 0 0 1

 .
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Then Y is embedded into the toric variety Z∆, the fan ∆ of which lives in Z4 and has
the following four cones as its maximal ones

cone(vi, vj , vk, v4, v5), 0 ≤ i ≤ j ≤ k ≤ 3,

where vi denotes the i-th column of B. Note that Y is given in Cox coordinates by the
equation f4 = f0f3 − f1f2 and f5 = f0f2 − f1f3. To build the variety X, consider the
matrix

P :=



−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
−1 0 −1 0 2 0 0 0
−1 0 −1 0 0 1 2 0
−1 −1 1 1 −1 1 −1 −1

0 1 0 1 0 1 2 −1


obtained from B by firstly doubling the last column, then multiplying its last and third
last columns with 2, adding a zero column and, after that, adding two new rows as
d, d′ part. We gain polynomials by modifying the variables of the describing relations of
Y ⊆ Z∆ accordingly to the column modifications:

g1 := T 2
41 − T01T31 + T11T21, g2 := T51T

2
52 − T01T21 + T11T31,

By construction, the polynomials gi are homogeneous with respect to the grading of
K[Tij , S1] given by

deg(Tij) := Q(eij) ∈ K, deg(S1) := Q(e1) ∈ K,

where Q : Z8 → K := Z8/im(P ∗) ∼= Z2, is the projection and eij , e1 ∈ Z8 are the
canonical basis vectors, numbered according to the variables Tij and S1. Let Σ = Σ(u)
in Z6 be the normal fan of the polytope

(P ∗)−1(Q−1(u) ∩ γ)− e) ⊆ Q6,

where u := (8,−4) ∈ K and e ∈ Z8 is any point with Q(e) = u. Then Σ has the columns
of P as its primitive generators. Moreover, the projection Z8 → Z6 onto the first six
coordinates sends the rays of Σ into the rays of ∆. This gives a rational toric map
π : ZΣ 99K Z∆. Now, define a variety

X = X(α, P,Σ) := π−1(Y ∩ T4) ⊆ ZΣ.

Then X is invariant under the action of the subtors T := (1, 1, 1, 1,K∗,K∗) of the acting
torus T6 of ZΣ(u). The T-variety X is normal, of dimension four with divisor class group
and Cox ring given by

Cl(X) = Z2, R(X) = K[Tij , S1]/〈g1, g2〉,

where the grading of the Cox ring is the one given above. This involves application
of Proposition 5.1.3; the necessary assumptions are directly verified. Now, applying
for instance Propositions 5.2.3, 5.2.5 and 5.2.7, we obtain that X is a Q-factorial Fano
variety of Gorenstein index 30.
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Example 5.2.11. We show how to retrieve the description of rational T -varieties of
complexity one provided in Chapter 2 via Construction 5.1.1.

Type 1. We have Y = K. Then Cl(Y ) = {0} and R(Y ) = K[T ] hold. As a system
of Cox ring generators, take α = (f0, . . . , fr), where fi = T − ai with ai ∈ K. Then
Construction 5.1.1 succeeds with the unit matrix B = Er+1 and the relations

hi = Si − Si+1 − (ai − ai+1) ∈ K[S0, . . . , Sr], i = 0, . . . , r − 1.

Type 2. We have Y = P1. Then Cl(Y ) = Z holds and the Cox ring is R(Y ) = K[T1, T2]
with the classical grading. As a system of Cox ring generators, take α = (f0, . . . , fr),
where fi := ai1T1 +ai2T2 and [ai1 : ai2] ∈ P1 are pairwise different points for i = 0, . . . , r.
The matrix

B = [e0, e1, . . . , er], e0 := −e1 − . . .− er
defines the fan ∆ of the projective space Z∆ = Pr and Construction 5.1.1 succeeds with
the relations

hi := det

 ai,1 ai+1,1 ai+2,1
ai,2 ai+1,2 ai+2,2
Si Si+1 Si+2

 .
Then one has to verify the assumptions of Proposition 5.1.3 for both types. Together
with Theorem 5.1.4, this basically gives the desired results.

5.3 Arrangement varieties

We use the results of Section 5.1 to produce all T-varietiesX with maximal orbit quotient
X 99K Pc such that the doubling divisors form a general hyperplane arrangement in
the projective space Pc. This leads to a natural and direct extension of the Cox ring
based approach to complete rational T-varieties of complexity one developed in [45,
49, 44, 6]. The resulting Cox rings R(X) allow a direct description. We proceed by
presenting and discussing the Cox rings first and then see how the varieties X arise via
Construction 5.1.1.

Construction 5.3.1. Fix integers r ≥ c > 0 and n0, . . . , nr > 0 as well as m ≥ 0. Set
n := n0 + . . .+ nr. The input data is a pair (A,P0), where
• A is a (c+ 1)× (r+ 1) matrix over K such that any c+ 1 of its columns a0, . . . , ar

are linearly independent,
• P0 is an integral r × (n + m) matrix built from tuples of positive integers li =

(li1, . . . , lini), where i = 0, . . . , r, as follows

P0 :=

 −l0 l1 0 0 . . . 0
...

... . . . ...
...

...
−l0 0 lr 0 . . . 0

 .
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Write K[Tij , Sk] for the polynomial ring in the variables Tij , where i = 0, . . . , r, j =
1, . . . , ni, and Sk, where k = 1, . . . ,m. Every li defines a monomial

T lii := T li1i1 · · ·T
lini
ini

∈ K[Tij , Sk].

Moreover, for every t = 1, . . . , r−c, we obtain a polynomial gt by computing the following
(c+ 2)× (c+ 2) determinant

gt := det
[
a0 . . . ac ac+t
T l00 . . . T lcc T

lc+t
c+t

]
∈ K[Tij , Sk].

Now, let eij ∈ Zn and ek ∈ Zm denote the canonical basis vectors and consider the
projection

Q0 : Zn+m → K0 := Zn+m/im(P ∗0 )

onto the factor group by the row lattice of P0. Then the K0-graded K-algebra associated
with (A,P0) is defined by

R(A,P0) := K[Tij , Sk]/〈g1, . . . , gr−c〉,

deg(Tij) := Q0(eij), deg(Sk) := Q0(ek).

We list the basic properties of the resulting graded algebra. Recall that a grading of a
K-algebra R = ⊕KRw by a finitely generated abelian group is effective if the weights
w ∈ K with Rw 6= {0} generate K as a group and pointed, if R0 = K holds and
Rw 6= {0} 6= R−w is only possible for torsion elements w ∈ K. Finally, we say that the
grading is of complexity c if dim(R)− rk (K) = c holds.

Theorem 5.3.2. Let R(A,P0) be a K0-graded K-algebra arising from Construc-
tion 5.3.1. Then R(A,P0) is an integral, normal, complete intersection ring satisfying

dim(R(A,P0)) = n+m− r + c, R(A,P0)∗ = K∗.

The K0-grading of R(A,P0) is effective, pointed, factorial and of complexity c. The
variables Tij, Sk define pairwise nonassociated K0-primes in R(A,P0), and for c ≥ 2,
they define even primes.

The following auxiliary statements for the proof of this theorem are also used later. We
begin with discussing the specific nature of the matrix A and its impact on the ideal of
relations of R(A,P ).

Remark 5.3.3. Situation as in Construction 5.3.1. For any tuple I = (i1, . . . , ic+2) of
stricly increasing integers from [0, r], consider the matrix

A(I) :=
[
ai1 , . . . , aic+2

]
,
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Let w(I) ∈ Kc+2 denote the cross product of the rows of A(I) and define a vector
v(I) ∈ Kr+1 by putting the entries of w(I) at the right places:

v(I)i :=
{
w(I)j , i = ij occurs in I = (i1, . . . , ic+2),
0, else.

Then any linearly independent choice of vectors v(I1), . . . , v(Ir−c) is a basis for ker(A).
Note that any non-zero v ∈ ker(A) has at least c+ 2 non-zero coordinates.

Remark 5.3.4. Situation as in Construction 5.3.1. Every vector v ∈ ker(A) ⊆ Kr+1

defines a polynomial

gv := v0T
l0
0 + . . .+ vrT

lr
r ∈ 〈g1, . . . , gr−c〉.

Moreover, if a subset B ⊆ ker(A) generates ker(A) as a vector space, then the polyno-
mials gv, v ∈ B, generate the ideal 〈g1, . . . , gr−c〉. In particular, we have

〈g1, . . . , gr−c〉 = 〈gv(I); I = (i1, . . . , ic+2), 0 ≤ i1 < . . . < ic+2 ≤ r〉,

with the tuples I from Remark 5.3.3. Observe that each gv, 0 6= v ∈ ker(A), has at least
c+ 2 of the monomials T lii and all the gv share the same K0-degree.

Lemma 5.3.5. Let R(A,P0) be a graded algebra arising from Construction 5.3.1.
(i) If we have li1 + . . . + lini = 1 for some i, then R(A,P0) is isomorphic to a ring

R(A′, P ′0) with data r′ = r − 1 and c′ = c.
(ii) For any generator Tij, the factor ring R(A,P0)/〈Tij〉 is isomorphic to a ring

R(A′, P ′0) with data r′ = r − 1 and c′ = c− 1.

Proof. To obtain (i), let A′ be the matrix obtained by deleting the i-th column from A.
Then the respective ideals defined by A and A′ produce isomorphic rings. Adapting the
matrix P0 accordingly, gives the desired P ′0.
We show (ii). As elementay row operations on A neither change the required properties
of A nor the defining ideal of R(A,P ), we may assume that ai1 6= 0 holds and all other
entries of the i-th column of A equal zero. Then the matrix A′ obtained by deleting
the first row and the i-th column from A satisfies the assumptions of Construction 5.3.1
with r′ = r − 1 and c′ = c − 1. Using Remarks 5.3.3 and 5.3.4, we see that the ideal
defined by A′ corresponds to the defining ideal of R(A,P0)/〈Tij〉. Again, adapting the
matrix P0 accordingly, gives the desired P ′0.

Lemma 5.3.6. Situation as in Construction 5.3.1. Let us say that a point z ∈ Kn+m

with coordinates zij, zk is of
• big type, if for every i = 0, . . . , r, there is an index 1 ≤ ji ≤ ni such that ziji = 0
holds,
• leaf type, if there is a set Iz = {i1, . . . , ic} of indices 0 ≤ i1 < . . . < ic ≤ r, such
that for all i, j, we have zij = 0⇒ i ∈ Iz.
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If z ∈ Kn+m is of one of these types, then also all translates t · z, where t ∈ Tn+m, are
so. Moreover, for X = V (g1, . . . , gr−c) ⊆ Kn+m we have the following statements.
(i) Every point z ∈ X is of big type or of leaf type.
(ii) Every z ∈ Kn+m of big type is contained in X.
(iii) For every z ∈ Kn+m of leaf type, there is a t ∈ Tn+m with t · z ∈ X.

Proof. To obtain (i), we have to show that any z ∈ X which is not of big type must be of
leaf type. Otherwise, there are indices i1 < . . . < ic+1 and associated jq with ziqjq = 0.
As z is not of big type, there is at least one index i0 with zi0j 6= 0 for all j = 1, . . . , ni0 .
Remarks 5.3.3 and 5.3.4 provide us with a relation g ∈ 〈g1, . . . , gr−c〉 involving precisely
the monomials T lii for i = i0, i1, . . . , ic+1. Then g(z) = 0 implies zi0j = 0 for some
j = 1, . . . , ni0 ; a contradiction.
We verify (ii) and (iii). Let z ∈ Kn+m. If z is of big type, then we obviously have
gi(z) = 0 for i = 1, . . . , r − c. Thus, z ∈ X. Now, assume that z is of leaf type. First
consider the case Iz = {1, . . . , c}. Then, suitably scaling zc+1,1, we achieve g1(z) = 0.
Next we scale zc+2,1 to ensure g2(z) = 0, and so on, until we have also gr−c(z) = 0.
Then we have found our t ∈ Tn+m with t · z ∈ X. Given an arbitrary Iz, Remarks 5.3.3
and 5.3.4 yield a suitable system g′1, . . . , g

′
r−c of ideal generators that allows us to argue

analogously.

Lemma 5.3.7. Situation as in Construction 5.3.1. Let X = V (g1, . . . , gr−c) ⊆ Kn+m

and denote by J the Jacobian of g1, . . . , gr−c. Then, for any z ∈ X, the following
statements are equivalent:
(i) The Jacobian J(z) is not of full rank, i.e., we have rk (J(z)) < r − c.
(ii) The point z ∈ X is of big type and there are i1 < . . . < ic+2 such that each of these

iq fulfills one of the subsequent two conditions:
• ziqjq = 0 and liqjq ≥ 2 hold for at least one 1 ≤ jq ≤ niq ,
• ziqj = 0 and liqj = 1 hold for at least two 1 ≤ j ≤ niq .

In particular, the set of points z ∈ X with J(z) not of full rank is of codimension at least
c+ 1 in X.

Proof. Assertion (ii) directly implies the supplement and, by a simple computation,
also (i). We are left with proving “(i)⇒(ii)”. So, let z ∈ X be a point such that J(z) is
not of full rank. Then there is a non-trivial linear combination annulating the lines of
J(z):

η1grad(g1)(z) + . . .+ ηr−cgrad(gr−c)(z) = 0.

The corresponding g := η1g1 + . . .+ ηr−cgr−c satisfies grad(g)(z) = 0 and is of the form
g = gv with a non-zero v ∈ ker(A) as in Remark 5.3.4. The condition grad(g)(z) = 0
implies ziji = 0 for some 1 ≤ ji ≤ ni whenever the monomial T lii shows up in g. As
observed in Remark 5.3.4, the polynomial g has at least c+2 monomials. Thus, we have
ziji = 0 for at least c + 2 different i. By Lemma 5.3.6, the point z ∈ X is of big type.
Moreover, the two conditions of (ii) reflect the fact grad(g)(z) = 0.
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Proof of Theorem 5.3.2. For c = 1, the statement is proven in [44, Thm. 1.1 and
Prop. 2.2]. So, assume c ≥ 2. First we show that X = V (g1, . . . , gr−c) ⊆ Kn+m is
connected. By construction, the quasitorus H0 ⊆ Tn+m is the kernel of the homomor-
phism Tn+m → Tr defined by P0. Consider the multiplicative one-parameter subgroup
K∗ → H0, t 7→ (tζ , tξ), where

ζ =
(
n0 · · ·nrl01 · · · lrnr

n0l01
, . . . ,

n0 · · ·nrl01 · · · lrnr
nrlrnr

)
∈ Tn, ξ = (1, . . . , 1) ∈ Tm.

This gives rise to a K∗-action on X having the origin as an attractive fixed point.
Consequently, X is connected. Moreover, we can conclude that all invertible functions
as well as all H0-invariant functions are constant on X.
Now, Lemma 5.3.7 allows us to apply Serre’s criterion and thus we obtain that R(A,P0) is
an integral, normal, complete intersection. By construction, the K0-grading is effective
and as seen above, it is pointed. To obtain factoriality of the K0-grading, localize
R(A,P0) by the product over all generators Tij , Sk, observe that the degree zero part of
the resulting ring is a polynomial ring and apply [12, Thm. 1.1]. Finally, primeness of
the generators Tij follows from Lemma 5.3.5 (i).

Construction 5.3.8. Let (A,P0) be input data as in Construction 5.3.1. Moreover, fix
1 ≤ s ≤ n + m − r and let d be an integral s × (n + m) matrix such that the columns
vij , vk of the (r + s)× (n+m) stack matrix

P :=
[
P0
d

]
are pairwise different, primitive and generate Qr+s as a vector space. Consider the factor
group K := Zn+m/im(P ∗). Then the projection Q : Zn+m → K factors through Q0 and
we obtain the K-graded K-algebra associated with (A,P ):

R(A,P ) := K[Tij , Sk]/〈g1, . . . , gr−c〉,

deg(Tij) := wij := Q(eij), deg(Sk) := wk := Q(ek).
Now, let Σ be any fan in Zr+s having precisely the rays through the columns of P as
its one-dimensional cones and let Z be the associated toric variety. Then we have a
commutative diagram

V (g1, . . . , gr−c) = X ⊆

⊆

Z =

⊆

Zn+m

X̂ ⊆

//H
��

Ẑ

//H
��

X ⊆

��

Z

��
Pc // Pr
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with the quasitorus H = SpecK[K], the toric Cox construction Ẑ → Z and the induced
quotient X̂ → X, where Ẑ := X ∩ Ẑ. The resulting variety X = X(A,P,Σ) is normal
with dimension, invertible functions, divisor class group and Cox ring given by

dim(X) = s+ c, Γ(X,O∗) = K∗, Cl(X) = K, R(X) = R(A,P ).

Moreover, the inclusion Zc ⊆ Zs+c defines a subtorus T ⊆ TZ of the acting torus of Z
leaving X ⊆ Z invariant and the induced T -action on X is effective and of complexity c.
Finally, the dashed arrows indicate the maximal orbit quotients for the T -actions and
Pc ⊆ Pr is the linear subspace given by

Pc = V (h1, . . . , hr−c), ht := det
[
a0 . . . ac ac+t
U0 . . . Uc Uc+t

]
∈ K[U0, . . . , Ur].

The doubling divisors of X0 → Pc are precisely the intersection of Pc with the coordinate
hyperplanes of Pr and thus form the general hyperplane arrangement

H0, . . . ,Hc ⊆ Pc, Hi := {z ∈ Pc; ai0z0 + . . .+ aiczc = 0}.

Remark 5.3.9. Situation as in Construction 5.3.8. Then the Cox ring R(Y ) of Y := Pc
is generated by the canonical sections fi ∈ R(Y ) of the hyperplanes Hi ⊆ Pc, where
i = 0, . . . , r. Enter Construction 5.1.1 with Y = Pc and α = (f0, . . . , fr). Set t := c and
let ∆ ∈ Zt the standard fan of Y = Pc, that means

B =

 −1 1 0
... . . .
−1 0 1

 .
Then running Construction 5.1.1 leads to a variety X(α, P,Σ) = X(A,P,Σ), where the
(c+ 1)× (r+ 1) matrix A has the normal vectors ai ∈ Kc+1 of the hyperplanes Hi ⊆ Pc
as its columns. This verifies in particular all claims made in Construction 5.3.8.

Remark 5.3.10. According to Lemma 5.3.5 (i), we may always assume that the defining
data P of Construction 5.3.8 is irredundant in the sense that li0 + . . . + lini ≥ 2 holds
for every i = 0, . . . , r. In this case, we also say that X(A,P,Σ) is irredundant.

Definition 5.3.11. By an arrangement variety we mean a normal projective T-variety
X with only constant invertible global functions and maximal orbit quotient π : X 99K Pc
such that the doubling divisors C0, . . . , Cr ⊆ Pc form a general hyperplane arrangement.

Theorem 5.3.12. Let X be an A2-maximal arrangement variety. Then X is T-
equivariantly isomorphic to some X(A,P,Σ) arising from Construction 5.3.8.

Proof. Take the canonical sections of the doubling divisors on the maximal orbit quotient
Y = Pc as generators of the Cox ring R(Y ) and enter Construction 5.1.1. As outlined
in the proof of Theorem 5.1.4, this reproduces X = X(α, P ). Thus, Remark 5.3.9 gives
the assertion.
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5.4 Examples and first properties

We begin with two example classes. First, in Example 5.4.1, we show how intrinsic
quadrics arise as arrangement varieties. Second, in Examples 5.4.2 and 5.4.14, we ex-
hibit a series of arrangement varieties producing many smooth Fano examples. Then,
we provide basic structural properties of arrangement varieties, also needed in the sub-
sequent sections. Finally, as a first application, we show that the smooth projective
arrangement varieties of Picard number one are just the classical smooth projective
quadrics; see Proposition 5.4.15.

Example 5.4.1. An intrinsic quadric is a normal projective variety with a Cox ring
defined by a single quadratic relation; see [18, 34]. From [34, Prop. 2.1], we infer that
every intrinsic quadric admits a representation X = X(A,P,Σ) in the sense of Construc-
tion 5.3.8 with a matrix P having left upper block −l0 l1 0

... . . .
−l0 0 lr

 , l0 = . . . = lq = (1, 1), lq+1 = . . . = lr = (2),

where −1 ≤ q ≤ r and the variables Ti1 with i = q + 1, . . . , r have pairwise distinct
K-degrees. In particular, we obtain that intrinsic quadrics are arrangement varieties.
Moreover, for the dimension of X, the rank of the divisor class group and the complexity
of the torus action, we have

dim(X) = r − 1 + s, rk (Cl(X)) = m+ q + 2− s, c = r − 1.

Example 5.4.2. Fix integers r > c ≥ 1. Consider the product Z = Pr × Pr and the
intersection X = V (g1) ∩ . . . ∩ V (gr−c) ⊆ Z of the r − c divisors of bidegree (a, b) in Z
given by

g1 = λ1,0T
a
01T

b
02 + λ1,1T

a
11T

b
12 + . . .+ λ1,cT

a
c1T

b
c2 + T ac+1,1T

b
c+1,2,

...
gr−c = λr−c,0T

a
01T

b
02 + λr−c,1T

a
11T

b
12 + . . .+ λr−c,cT

a
c1T

b
c2 + T ar1T

b
r2,

where a, b > 0 are coprime integers and any c+ 1 of the vectors λi = (λi,0, . . . , λi,c) are
linearly independent. Observe that for r > c + 1, the divisors V (gi) ⊆ Z are singular.
We have X = X(A,P,Σ) in the sense of Construction 5.3.8, where the stack matrix P
has upper and lower blocks

P0 =

 −l0 l1 0
... . . .

−l0 0 lr

 , l0 = . . . = lr = (a, b),

d =

 −d0 d1 0
... . . .

−d0 0 dr

 , d0 = . . . = dr = (v, u),
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where u and v are integers with ua − vb = 1. Observe that the toric ambient variety
Z = ZΣ is indeed the product Pr × Pr. To see this, apply the following unimodular
matrix to P from the left: [

u · Er −b · Er
−v · Er a · Er

]
.

Moreover, X is of dimension r + c and comes with an effective r-torus action. The
anticanonical class of X is given by

−KX = ((a− 1)r − ac− 1, (b− 1)r − bc− 1) ∈ Cl(X) = Z2,

see Proposition 5.2.7. In particular, X is a Fano variety if and only if (a− 1)r − ac > 1
and (b− 1)r − bc > 1 hold.

We begin with our collection of structural properties of arrangement varieties. The first
one shows that there may occur inavoidable torsion in the divisor class group.

Proposition 5.4.3. Let X = X(A,P,Σ) arise from Construction 5.3.8. Then the finite
group Zr/im(P0) is a subgroup of the divisor class group Cl(X).

Proof. The divisor class group of X equals K = Zn+m/im(P ∗). Moreover, Zr/im(P0)
is the torsion part Ktors

0 of the factor group K0 = Zn+m/im(P ∗0 ). Applying the snake
Lemma to the exact sequences arising from P ∗0 and P ∗ yields that the kernel of K0 → K
injects into Zs. Consequently, the torsion part Ktors

0 maps injectively into K.

Definition 5.4.4. Consider the setting of Construction 5.3.8 and let σ ∈ Σ. We say
that the cone σ is
(i) big (elementary big) if σ contains at least (precisely) one column vij of P for every

i = 0, . . . , r,
(ii) a leaf cone if there is a set Iσ = {i1, . . . , ic} of indices 0 ≤ i1 < . . . < ic ≤ r such

that for any i, we have vij ∈ σ ⇒ i ∈ Iσ.

Proposition 5.4.5. Let X = X(A,P,Σ) arise from Construction 5.3.8. Then, for every
σ ∈ Σ, the following statements are equivalent.
(i) The cone σ is X-relevant.
(ii) The cone σ is big or a leaf cone.

Proof. Consider the face γ0 � γ with P (γ∗0) = σ. Then the points x ∈ X(γ0) are
precisely those x ∈ X satisfying xij = 0 if and only if vij ∈ σ. The assertion thus follows
from Lemma 5.3.6.

Remark 5.4.6. Consider the setting of Construction 5.3.8. Set L := {0} × Zs. Then,
for any σ ∈ Σ, the following statements are equivalent.
(i) The cone σ is big,
(ii) The projection Qr+s → Qr maps σ onto Qr,
(iii) We have σ 6⊆ LQ and σ◦ ∩ LQ 6= ∅.
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Proposition 5.4.7. Consider the setting of Construction 5.3.8. Assume r > c. Set
L := {0} × Zs and let ΣL be the fan in Zr+s consisting of all the faces of the cones
σ ∩ LQ, where σ ∈ Σ. Then the following statements are equivalent.
(i) ΣL is a subfan of Σ.
(ii) Σ contains no big cone.
(iii) Σ consists of leaf cones.

Proof. The equivalence of (ii) and (iii) is clear by r > c. We prove “(i)⇒(ii)”. Assume
that there is a big cone σ ∈ Σ. Then σ ∩ LQ belongs to ΣL but not to Σ according
to 5.4.6 (iii); a contradiction. We turn to “(ii)⇒(i)”. The task is to show that for
every cone σ ∈ Σ, the intersection σ ∩ LQ is a face of σ. Let τ � σ be the minimal
face containing σ ∩ LQ. Then τ◦ ∩ LQ is non-empty. Since τ ∈ Σ is not big, we can
use 5.4.6 (iii) to conclude τ ⊆ LQ. This means σ ∩ LQ = τ .

Proposition 5.4.8. Let X = X(A,P,Σ) arise from Construction 5.3.8. Assume that P
is irredundant, X is locally factorial, Σ consists of leaf cones and each of the sets
cone(vi1) + LQ is covered by cones of Σ. Then ni ≥ 2 holds for all i = 0, . . . , r.

Proof. Assume that ni = 1 holds for some i. Let % denote the ray through vi1 and
consider the cone τ := %+ LQ. We claim that for every σ ∈ Σ, the intersection τ ∩ σ is
a face of σ. Indeed, as Σ consists of leaf cones, the image of pr(σ) under the projection
pr: Qr+s → Qr is a pointed cone, having pr(%) as an extremal ray. Thus, τ = pr−1(pr(%))
cuts out a face from σ.
By our assumptions, the above claim implies that τ = %+ LQ is a union of cones of Σ.
Any cone of Σ\ΣL contained in τ is necessarily of the form %+σL ∈ Σ with σL ∈ ΣL. We
conclude that in particular all the cones σ = % + σL, where dim(σL) = s, must belong
to Σ. As σ and σL are leaf cones, they are X-relevant by Proposition 5.4.10. Thus,
Proposition 5.2.4 yields that σ and σL are regular. This implies li1 = 1; a contradiction
to the assumption that P is irredundant.

Corollary 5.4.9. Let X = X(A,P,Σ) arise from Construction 5.3.8. Assume that X is
non-toric, projective, locally factorial and that Σ consists of leaf cones. Then the Picard
number of X satisfies

ρ(X) ≥ r + 3 ≥ c+ 4.

Proof. Since X is non-toric, we may assume that P is irredundant with r > c. Moreover,
as X is projective, we may assume that Σ is complete. Thus, Proposition 5.4.8 applies
and we obtain n ≥ 2r + 2. Then Corollary 5.2.9 yields the desired estimate.

Proposition 5.4.10. Let X = X(A,P,Σ) arise from Construction 5.3.8. Assume that
X is Q-factorial. If Σ admits a big cone, then it admits an elementary big cone.

Proof. Let σ ∈ Σ be a big cone. Then σ is X-relevant according to Proposition 5.4.10.
Proposition 5.2.3 tells us that σ is simplicial. Now, any elementary big face of σ is as
wanted.
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Corollary 5.4.11. Let X = X(A,P,Σ) arise from Construction 5.3.8. Assume that X
is non-toric, projective and locally factorial. If X is of Picard number ρ(X) ≤ c + 3,
then Σ admits an elementary big cone.

Definition 5.4.12. Let X = X(A,P,Σ) arise from Construction 5.3.8. We say that X
is quasismooth if for every X-relevant face γ0 4 γ, the set X(γ0) ⊆ X consists of smooth
points of X.

Proposition 5.4.13. Let X = X(A,P,Σ) arise from Construction 5.3.8. Assume
that P is irredundant, X is quasismooth and σ = cone(v0j0 + . . .+vrjr) is an elementary
big cone of Σ.
(i) We have liji ≥ 2 for at most c+ 1 different i = 0, . . . , r.
(ii) We have ni = 1 for at most c+ 1 different i = 0, . . . , r.

Proof. We have σ = P (γ∗0) with an X-relevant face γ0 4 γ. Since X is quasismooth,
every z ∈ X(γ0) is a smooth point of X and thus the Jacobian J(z) is of full rank.
Because of ziji = 0 for every i = 0, . . . , r, Lemma 5.3.7 implies that liji ≥ 2 or ni ≥ 2
can hold for at most c+ 1 different i.

Example 5.4.14. We continue Example 5.4.2. Note that suitably renumbering the
variables we achieve a ≥ b. Then X is smooth if and only if one of the following
conditions is satisfied.
(i) We have r = c+ 1, a ≥ 1 and b = 1.
(ii) We have r = c+ 2 and a = b = 1 holds.

Indeed, one first checks that cone(v0j0 , . . . , vrjr), where {j0, . . . , jr} equals {1, 2}, are
precisely the elementary big cones of Σ. Then Lemma 5.3.7 (ii) and Proposition 5.4.13
verify the claim.

Proposition 5.4.15. Let X be a non-toric, smooth, projective arrangement variety of
Picard number one. Then X is a quadric V (T 2

0 + . . .+ T 2
r ) ⊆ Pr.

Proof. According to Theorem 5.3.12, we may assume X = X(A,P,Σ) is as in Construc-
tion 5.3.8. Moreover, we may assume that P is irredundant and n0 ≥ . . . ≥ nr holds.
Finally, we have KQ = Q and may assume that the effective cone of X is Q≥0.
First we show thatm = 0 holds. Otherwise, consider theX-relevant face γ1 = cone(e1) �
γ. Smoothness of X implies that the Jacobian of g1, . . . , gr−c does not vanish at the point
x1 ∈ X(γ1) having x1 = 1 as its only non-zero coordinate; see Proposition 5.2.4. This
implies li1 + . . .+ lini = 1 for some i, contradicting irredundance of P .
According to Corollary 5.4.11, the fan Σ admits an elementary big cone. Proposi-
tion 5.4.13 tells us n0 ≥ 2. Thus γ0j = cone(e0j) � γ is an X-relevant face. Propo-
sition 5.2.4 yields that deg(T0j) generates K. We conclude K = Z and deg(T0j) = 1.
Additionally, smoothness of X(γ01) implies that grad(g1)(x) 6= 0 holds for every point
x ∈ X(γ01). We conclude n0 = 2 and deg(g1) = 2. This implies deg(Tij) = 1 and for all
i, j, we obtain lij = 1 or lij = 2 according to ni = 2 or ni = 1.
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Finally, observe that c = r−1 holds, i.e., that there is only one defining relation. Indeed,
otherwise, we find generators g′1, . . . , g′r−c, each involving precisely c+ 2 monomials and
g′r−c all different from T l00 . Then the corresponding Jacobian vanishes at any x ∈ X(γ01),
showing that X(γ01) is singular. A contradiction.

Remark 5.4.16. Consider X = X(A,P,Σ) as in Construction 5.3.8 such that X is
smooth, projective, of Picard number one and P is irredundant. By Proposition 5.4.15,
the divisor class group Cl(X) is torsion free. Thus, Proposition 5.4.3 yields

P0 =

 −l0 l1 0
... . . .

−l0 0 lr

 , l0 = . . . = lr−1 = (1, 1), lr =
{

(1, 1), n even,
(2), n odd.

Moreover, the torus action on X is the action of the maximal torus of Aut(X) = O(n).
In particular, the torus action on X is of complexity

c =
{
n
2 − 2, n even,
n−1

2 − 1, n odd.



CHAPTER

SIX

CLASSIFICATION RESULTS FOR SMOOTH ARRANGEMENT
VARIETIES WITH ρ(X) = 2

In this chapter we contribute to the classification of smooth Fano varieties. In the toric
case classification was done up to dimension nine by work of V. Batyrev, M. Kreuzer,
B. Nill, M. Øbro and A. Paffenholz [10, 11, 60, 73, 78]. Extending recent classification
work in complexity one [35], we consider smooth arrangement varieties of Picard number
at most two. For Picard number one, we obtained in Proposition 5.4.15 precisely the
projective quadrics. The situation in Picard number two is much more ample: In Sec-
tion 6.1 we derive constraints on the defining data and prove our classification results,
which are listed in Section 6.2.

6.1 Towards the classification

According to Theorem 5.3.12, we may assume that X arises from Construction 5.3.8.
Here are first bounds on the defining data.

Proposition 6.1.1. Let X = X(A,P,Σ) arise from Construction 5.3.8, where P is
irredundant and we have n0 ≥ . . . ≥ nr. Assume that X is smooth, projective of Picard
number two and that the torus action is of complexity two. Then we have Cl(X) = Z2

and one of the following statements holds.
(I) We have r = 3 and the tuple (n0, n1, n2, n3) together with the number m fits into

one of the cases below, where n0 ≥ n1 ≥ 3:
(a) m ≥ 0 and (n0, n1, 2, 2),
(b) m ≥ 0 and (n0, 2, 2, 2),
(c) m ≥ 0 and (n0, 2, 2, 1),
(d) m = 0 and (3, 2, 1, 1),
(e) m = 0 and (3, 1, 1, 1),

(f) m ≥ 0 and (2, 2, 2, 2),
(g) m ≥ 0 and (2, 2, 2, 1),
(h) m ≥ 0 and (2, 2, 1, 1),
(i) m > 0 and (2, 1, 1, 1).

105
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(II) We have r = 4 and m = 0 and the tuple (n0, n1, n2, n3, n4) is one of

(2, 2, 2, 2, 2), (2, 2, 2, 2, 1), (2, 2, 2, 1, 1), (2, 2, 1, 1, 1).

The proposition is a direct consequence of the more general statements 6.1.5, 6.1.6
and 6.1.7, presented and proven below. As in the corresponding case of complexity one,
elaborated, in [35], the idea is to extract bounding conditions on the defining data of X
from smoothness of suitable small strata X(γ0) ⊆ X. The following applies to arbitrary
X(A,P,Σ) and generalizes [35, Lemma 3.9].

Lemma 6.1.2. Situation as in Construction 5.3.8. Consider the orthant γ = Qn+m
≥0 ,

its extremal rays γij := cone(eij) and γk := cone(ek) and the two-dimensional faces

γk1,k2 := γk1 + γk2 , γij,k := γij + γk, γi1j1,i2j2 := γi1j1 + γi2j2 .

(i) All γk, resp. γk1,k2, are X-faces and each X(γk), resp. X(γk1,k2), consists of sin-
gular points of X.

(ii) A given γij, resp. γij,k, is an X-face if and only if ni ≥ 2 holds. In that case,
X(γij), resp. X(γij,k), consists of smooth points of X if and only if r = c + 1,
ni = 2 and li,3−j = 1 hold.

(iii) A given γij1,ij2 with j1 6= j2 is an X-face if and only if ni ≥ 3 holds. In that case,
X(γij1,ij2) consists of smooth points of X if and only if r = c + 1, ni = 3 and
lij = 1 for the j 6= j1, j2 hold.

(iv) A given γi1j1,i2j2 with i1 6= i2 is an X-face if and only if we have either ni1 , ni2 ≥ 2
or ni1 = ni2 = 1 and r = c+ 1. In the former case X(γi1j1,i2j2) consists of smooth
points of X if and only if one of the following holds:
• r = c+ 1, nit = 2 and lit,3−jt = 1 for a t ∈ {1, 2},
• r = c+ 2, ni1 = ni2 = 2, li1,3−j1 = li2,3−j2 = 1.

Proof. Lemmas 5.3.6 and 5.3.7 directly yield the assertions.

Observe that the above statements (iii), (iv) and (v) depend on the complexity c. To
proceed, we have to figure out theX-relevant ones from the aboveX-faces in our concrete
situation. Propositions 5.2.3 and 5.2.5 lead to the following description.

Remark 6.1.3. Let X = X(A,P,Σ) arise from Construction 5.3.8. Assume that X is
projective and has divisor class group Cl(X) of rank two. Then the effective cone of X
is of dimension two and decomposes as

Eff(X) = τ+ ∪ τX ∪ τ−,

where τX ⊆ Eff(X) is the ample cone, τ+, τ− are closed cones not intersecting τX and
τ+ ∩ τ− consists of the origin. Due to τX ⊆ Mov(X), each of the cones τ+ and τ−

contains at least two of the weights

wij = deg(Tij) = Q(eij), wk = deg(Sk) = Q(ek).
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Moreover, for every X-face {0} 6= γ0 4 γ precisely one of the following inclusions holds:

Q(γ0) ⊆ τ+, τX ⊆ Q(γ0)◦, Q(γ0) ⊆ τ−.

The X-relevant faces are exactly the X-faces γ0 4 γ with τX ⊆ Q(γ0)◦. Note that the
ample cone τX is of dimension two if and only if X is Q-factorial.

Lemma 6.1.4. Let X = X(A,P,Σ) arise from Construction 5.3.8. Assume that X is
projective and has divisor class group Cl(X) of rank two.
(i) Suppose that X is Q-factorial. Then wk /∈ τX holds for all 1 ≤ k ≤ m and for all

0 ≤ i ≤ r with ni ≥ 2 we have wij /∈ τX , where 1 ≤ j ≤ ni.
(ii) Suppose that X is quasismooth, m > 0 holds and there is 0 ≤ i1 ≤ r with ni1 ≥ 3.

Then the wij , wk with ni ≥ 3, j = 1, . . . , ni and k = 1, . . . ,m lie either all in τ+

or all in τ−.
(iii) Suppose that X is quasismooth and there is 0 ≤ i1 ≤ r with ni1 ≥ 4. Then the wij

with ni ≥ 4 and j = 1, . . . , ni lie either all in τ+ or all in τ−.
(iv) Suppose that X is quasismooth and there exist 0 ≤ i1 < i2 ≤ r with ni1 , ni2 ≥ 3.

Then the wij with ni ≥ 3, j = 1, . . . , ni lie either all in τ+ or all in τ−.
(v) Suppose that X is quasismooth. Then w1, . . . , wm lie either all in τ+ or all in τ−.

Proof. Follow the lines of the proof of [35, Lemma 3.11], replacing [35, Lemma 3.9] with
the more general Lemma 6.1.2.

Proposition 6.1.5. Let X = X(A,P,Σ) arise from Construction 5.3.8, where P is
irredundant and n0 ≥ . . . ≥ nr holds. Let X be non-toric, projective, quasismooth
with divisor class group of rank two. Assume that m > 0 holds and that Σ admits an
elementary big cone.
(i) We have r = c+ 1 and are in one of the following situations:

(a) We have n0 = 2 and there exist indices i and j such that ni = 2 holds and
γij,k is X-relevant for all k.

(b) We have n0 ≥ 3 and there exist indices i1 6= i2 and j1, j2 such that ni1 =
ni2 = 2 holds and γi1j1,k, γi2j2,k are X-relevant for all k.

(ii) Assume c = 2. Then we have r = 3 and the constellation of the ni is (n0, n1, 2, 2),
(n0, 2, 2, 2), (n0, 2, 2, 1) (2, 2, 2, 2), (2, 2, 2, 1), (2, 2, 1, 1) or (2, 1, 1, 1), where n0 ≥
n1 ≥ 3.

Proof. Due to Lemma 6.1.4 (v), we may assume w1, . . . , wm ∈ τ+. As X is non-toric we
have at least one relation g1. Thus, r ≥ c + 1 holds and Proposition 5.4.13 (ii) yields
n0 ≥ 2. Lemma 6.1.4 (i) says that none of the wij with ni ≥ 2 lies in τX . Moreover,
at least one of the wij with ni ≥ 2 lies in τ−; otherwise, since all relations gi share the
same degree, we had wi1 ∈ τ+ for all i with ni = 1, meaning that τ− contains no weights
at all; a contradiction. In particular, if n0 = 2 holds, then there exists a wij ∈ τ− with
ni = 2 and all γij,k are X-relevant. Assume n0 ≥ 3. Then Lemma 6.1.4 (ii) yields
wij ∈ τ+ whenever ni ≥ 3. Moreover, because all relations gi have the same degree,
wij ∈ τ+ holds for all i with ni = 1. Since τ− contains at least two weights, we find
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i1, i2 and j1, j2 with ni1 = ni2 = 2 and wi1j1 , wi2j2 ∈ τ−. Note that all γi1j1,k, γi2j2,k
are X-relevant. Now, Lemma 6.1.2 (ii) yields r = c + 1. Thus, Assertion (i) is proven.
Assertion (ii) is a direct consequence.

Proposition 6.1.6. Let X = X(A,P,Σ) arise from Construction 5.3.8, where P is
irredundant and n0 ≥ . . . ≥ nr holds. Let X be non-toric, projective, quasismooth with
divisor class group of rank two. Assume m = 0 holds and that Σ admits an elementary
big cone.
(i) We are in one of the following situations:

(a) We have r = c + 1, n0 = 3 > n1 and there exists an index j such that γ01,0j
is X-relevant.

(b) We have r = c+ 1 and there exist indices 0 ≤ i1 < i2 with ni1 = ni2 = 2 and
indices j0, j2 such that γ0j0,i2j2 is X-relevant.

(c) We have r = c + 2 and n0 = n1 = 2 and there exist indices 0 < i1 and j0, j1
such that γ0j0,i1j1 is X-relevant.

(ii) Assume c = 2. Then the constellation of the ni is one of the following, where
n0 ≥ n1 ≥ 3 holds:

r = 3 : (n0, n1, 2, 2), (n0, 2, 2, 2), (n0, 2, 2, 1), (3, 2, 1, 1), (3, 1, 1, 1),
(2, 2, 2, 2), (2, 2, 2, 1), (2, 2, 1, 1).

r = 4 : (2, 2, 2, 2, 2), (2, 2, 2, 2, 1), (2, 2, 2, 1, 1), (2, 2, 1, 1, 1).

Proof. Only for the first assertion, there is something to show. As X is non-toric we
have at least one relation g1 and conclude r ≥ c + 1. Moreover, Proposition 5.4.13 (ii)
yields n0 ≥ 2. Finally, Lemma 6.1.4 (i) shows that none of the wij with ni ≥ 2 lies in
τX . We distinguish the following cases.
First, let n0 ≥ 4 or n0 = n1 = 3. By Lemma 6.1.4 (iii) and (iv), we may assume wij ∈ τ+

for all i with ni ≥ 3. Then wij ∈ τ+ holds as well for all i with ni = 1. Since τ− contains
at least two weights, there are i1 < i2 and j1, j2 with ni1 = ni2 = 2 and wi1j1 , wi2j2 ∈ τ−.
Observe that γ01,i2j2 is X-relevant. Moreover, Lemma 6.1.2 (iv) shows r = c + 1. We
arrive at Case (b) of (i).
Next, let n0 = 3 > n1. If all weights w0j lie either in τ+ or in τ−, then we can argue
as above and end up in Case (b) of (i). Otherwise, w01 and some w0j for j = 2, 3 lie on
different sides of τX . Then γ01,0j is X-relevant. Lemma 6.1.2 (iii) yields r = c + 1 and
we are in Case (a) of (i).
Finally, let n0 = 2. The common degree of g1, . . . , gr−c and hence all wij with ni = 1
lie in precisely one of the cones τ+, τ− or τX , where we may assume that this is not
τ−. Then no pair wi1, wi2 lies in τ−. As there must be at least two weights in τ−, we
conclude n1 = 2 and find the desired γ0j0,1j1 . Lemma 6.1.2 (iv) yields r ≤ c+ 2. Thus,
we are in one of the Cases (b) or (c) of (i).

Corollary 6.1.7. Let X be a smooth projective arrangement variety of Picard number
two. Then we have Cl(X) = Pic(X) = Z2.
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Proof. Corollary 5.4.11 tells us that Σ admits an elementary big cone. Thus Proposi-
tions 6.1.5 and 6.1.6 provide an X-relevant face γ0 4 γ. Then the two weights stemming
from γ0 generate K as a group. This implies Cl(X) ∼= K ∼= Z2.

The further proof of Theorems 6.2.1, 6.2.2 and 6.2.4 goes through the list of cases
established in Proposition 6.1.1.

Remark 6.1.8. Let X = X(A,P,Σ) as in Construction 5.3.8. be smooth, projective
and of Picard number two. Corollary 6.1.7 ensures Cl(X) = Z2 and we will write

deg(Tij) = Q(eij) = wij = (xij , yij) ∈ Z2,

deg(Tk) = Q(ek) = wk = (xk, yk) ∈ Z2

for the weights. Moreover, the (common) degree of the relations g1, . . . , gr−c will be
denoted as deg(gi) = µ = (µ1, µ2) ∈ Z2. Recall that for each i = 0, . . . , r we have

µ1 =
ni∑
j=1

lijxij , µ2 =
ni∑
j=1

lijyij .

Consider the decomposition of the effective cone Eff(X) = τ− ∪ τX ∪ τ+ from Re-
mark 6.1.3. Choosing names suitably, we can fix the following orientation:

τXτ+

τ−

If a pair w,w′ ∈ Q2 is positively oriented, for instance w ∈ τ− and w′ ∈ τ+,
then det(w,w′) is positive. Moreover, if w,w′ are the weights stemming from a two-
dimensional X-relevant face γ0 4 γ, then we have det(w,w′) = 1 by Proposition 5.2.4.
In that case, we can achieve

w = (1, 0), w′ = (0, 1)

by a suitable unimodular coordinate change on Z2. Then w′′ = (x′′, 1) holds whenever
w,w′′ stems from a two-dimensional X-relevant face and, similary, w′′ = (1, y′′) holds
whenever w′′, w′ stems from a two-dimensional X-relevant face.

Lemma 6.1.9. In the situation of Proposition 6.1.1, consider the case r = 3, m ≥ 0
and n0 ≥ 3 > n1 = n2 = 2 ≥ n3. Then the following constellation of weights can’t occur:

w01, . . . , w0n0 , w12, w22 ∈ τ+, w11, w21 ∈ τ−.
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Proof. We may assume w02, . . . , w0n0 , w21 ∈ cone(w01, w11). Applying Remark 6.1.8
at first to γ01,11 ∈ rlv(X) and then to all γ01,21, γ22,11, γ0j,11, γi,11 ∈ rlv(X), where
j = 1, . . . , n0 and i = 1, . . . ,m, turns the degree matrix Q into the shape

Q =
[

0 x02 . . . x0n0 1 x12 1 x22 x31 . . . x3n1 x1 . . . xm
1 1 . . . 1 0 y12 y21 1 y31 . . . y3n1 1 . . . 1

]
,

where x0j , y21 ≥ 0 holds. Moreover, γ01,11, γ01,21 ∈ rlv(X) implies l12 = l22 = 1 due to
Lemma 6.1.2 (iv). With γ21,12 ∈ rlv(X) we infer y12 = 1 +y21x12 from det(w21, w12) = 1
and, by the shape of Q, obtain

3 ≤ l01 + · · ·+ l0n0 = µ2 = y12 = 1 + y21x12.

We conclude x12 > 0. Using γ0j,21 ∈ rlv(X) gives det(w21, w0j) = 1 and thus x0jy21 = 0.
As the effective cone of X is pointed, w21 ∈ τ− implies y21 > 0. We arrive at x0j = 0
and thus µ1 = 0 = l11 + x12. A contradiction to l11, x12 > 0.

Case 6.1.1 (I)(a). We have r = 3, m ≥ 0 and n0 ≥ n1 ≥ 3 > n2 = n3 = 2. This
setting allows no examples satisfying the assumptions of Theorem 6.2.1.

Proof. By Lemma 6.1.4 (iv) and (ii), we may assume that the weights w01, . . . , w0n0 ,
w11, . . . , w1n1 and w1, . . . , wm all lie in τ+. At least two other weights lie in τ−. Renum-
bering suitably, we arrive at w21, w31 ∈ τ− and w22, w32 ∈ τ+ because of µ ∈ τ+. Thus,
Lemma 6.1.9 gives the assertion.

Case 6.1.1 (I)(b). We have r = 3, m ≥ 0 and n0 ≥ 3 > n1 = n2 = n3 = 2. This gives
the varieties Nos. 1 and 2 of Theorem 6.2.1.

Proof. We claim that each of τ+ and τ− contains weights from w01, . . . , w0n0 . Oth-
erwise, due to Lemma 6.1.4 (i), we may assume that all w0j lie in τ+. If m > 0
holds, Lemma 6.1.4 (ii) yields w1, . . . , wm ∈ τ+. As τ− contains at least two weights,
we can achieve w11, w21 ∈ τ− and w12, w22 ∈ τ+ by suitable renumbering; note that
wi1, wi2 ∈ τ− is not possible for i = 1, 2, 3 because of µ ∈ τ+. Lemma 6.1.9 then verifies
the claim.
By the claim, we may assume w01, w02 ∈ τ+ and w03 ∈ τ−. Lemma 6.1.4 (ii) shows
m = 0 and Lemma 6.1.4 (iii) gives n0 = 3. There must be at least one more weight
in τ−, say w11. Applying Lemma 6.1.2 (iii) to γ0j,03 ∈ rlv(X) we obtain l01 = l02 = 1.
Applying Lemma 6.1.2 (iv) to suitable γ0j,i2j2 ∈ rlv(X), we obtain

l11 = l12 = l21 = l22 = l31 = l32 = 1.

We may assume w02 ∈ cone(w01, w03). Then, applying Remark 6.1.8 to γ01,03 ∈ rlv(X)
and afterwards to γ01,11, γ02,03 ∈ rlv(X) turns the degree matrix Q into the following
shape

Q :=
[

0 x02 1 1 x12 x21 x22 x31 x32
1 1 0 y11 y12 y21 y22 y31 y32

]
.
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Note that we have x02 ≥ 0 because of w02 ∈ cone(w01, w03). We distinguish the following
three cases according to the possible positions of the weights w21 and w22.

We have w21, w22 ∈ τ−. Then µ ∈ τ− holds and we may assume w31 ∈ τ−. Moreover,
we have γ01,21, γ01,22, γ01,31 ∈ rlv(X) and conclude

x21 = x22 = x31 = 1, µ = (2, 2), x12 = x22 = x32 = 1.

The determinants corresponding to γ02,21, γ02,22 ∈ rlv(X) both equal one, which implies
y21x02 = 0 and y22x02 = 0. Because of y21 + y22 = µ2 = 2, we obtain

x02 = 0, l03 = µ1 = 2.

The considerations performed so far show that the defining relation g1 and the degree
matrix Q are of the following shape:

g1 = T01T02T
2
03 + T11T12 + T21T22 + T31T32,

Q =
[

0 0 1 1 1 1 1 1 1
1 1 0 a1 2− a1 a2 2− a2 a3 2− a3

]
.

We claim that all wij , where i = 1, 2, 3, lie in τ−. That means that we have to show
w12, w32 ∈ τ−. Otherwise, if w12 ∈ τ+ holds, then γ03,12 ∈ rlv(X) leads to

1 = det(w03, w12) = a1.

This implies w11 = w21 ∈ τ− ∩ τ+, which is impossible. Analogously, one excludes
w32 ∈ τ+. Thus, we may assume a1 ≤ a2 ≤ a3 and ai ≥ 2−ai. The latter implies ai ≥ 1
and

SAmple(X) = τX = cone((1, a3), (0, 1)).

We have w21, w22 ∈ τ+. Then we have µ ∈ τ+ and thus w12 ∈ τ+. Consequently
γ03,12, γ03,21, γ21,22 ∈ rlv(X) holds and we conclude

y12 = y21 = y22 = 1, µ2 = 2, y11 = 1.

Looking at the determinants associated with γ02,11, γ11,21, γ11,22 ∈ rlv(X) we see x02 =
x21 = x22 = 0. This gives l03 = µ1 = x21 + x22 = 0. A contradiction.

We have w21 ∈ τ− and w22 ∈ τ+. Then we may assume w31 ∈ τ− and w32 ∈ τ+, as oth-
erwise, up to renumbering, we are in one of the preceding cases. Applying Remark 6.1.8
to γ01,21, γ01,31, γ03,22, γ03,32 ∈ rlv(X) and using µ2 = 2, one obtains

x21 = x31 = y22 = y32 = 1, y21 = y31 = 1.

We claim y11 6= 0. Otherwise, y12 = µ2 = 2 holds. This implies det(w03, w12) = 2, hence
γ03,12 /∈ rlv(X) and thus w12 ∈ τ−. Then γ01,12 ∈ rlv(X) leads to x12 = 1 and µ1 = 2.
Thus w22 = (1, 1) = w21 ∈ τ−. A contradiction. Now, y11 6= 0 yields

x02 = x22 = x32 = 0, µ = (1, 2), l03 = 1, x12 = 0.
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due to γ11,02, γ11,22, γ11,32 ∈ rlv(X) and homogeneity of the relation g1. We conclude
w12 = (0, y12) ∈ τ+ and γ03,12 ∈ rlv(X) shows y12 = 1. Finally, y11 = µ2−y12 = 1 holds.
For the relation, the degree matrix and the ample cone this means

g1 = T01T02T03 + T11T12 + T21T22 + T31T32,

Q =
[

0 0 1 1 0 1 0 1 0
1 1 0 1 1 1 1 1 1

]
,

SAmple(X) = τX = cone((0, 1), (1, 1)).

Case 6.1.1 (I)(c). We have r = 3, m ≥ 0 and n0 ≥ 3 > n1 = n2 = 2 > n1 = 1. This
gives the variety No. 3 in the Theorems 6.2.1 and 6.2.2.

Proof. We claim that each of τ+ and τ− contains weights from w01, . . . , w0n0 . Otherwise,
due to Lemma 6.1.4 (i), we may assume that all w0j lie in τ+. Then we have µ ∈ τ+

and thus w31 ∈ τ+. If m > 0 holds, Lemma 6.1.4 (ii) yields w1, . . . , wm ∈ τ+. As
τ− contains at least two weights, we can achieve w11, w21 ∈ τ− and w12, w22 ∈ τ+ by
suitable renumbering; note that wi1, wi2 ∈ τ− is not possible for i = 1, 2 because of
µ ∈ τ+. Lemma 6.1.9 then verifies the claim.
By the claim, we may assume w01, w02 ∈ τ+ and w03 ∈ τ−. Lemma 6.1.4 (ii) shows
m = 0 and Lemma 6.1.4 (iii) gives n0 = 3. We claim that wi1, wi2 ∈ τ+ is not possible
for i = 1, 2. Otherwise µ ∈ τ+ implies w31 ∈ τ+ and there is no weight left to lie in τ−.
Thus we may assume w11 ∈ τ−. Applying Lemma 6.1.2 (iii) to γ0j,03 ∈ rlv(X) we obtain
l01 = l02 = 1. Applying Lemma 6.1.2 (iv) to suitable γ0j,i2j2 ∈ rlv(X), where ni2 = 2,
we obtain

l11 = l12 = l21 = l22 = 1.
We may assume w02 ∈ cone(w01, w03). Then applying Remark 6.1.8 to γ01,03 and after-
wards to γ01,11, γ02,03 ∈ rlv(X) turns the degree matrix Q into the following shape:

Q =
[

0 x02 1 1 x12 x21 x22 x31
1 1 0 y11 y12 y21 y22 y31

]
,

Note that because of w02 ∈ cone(w01, w03) we have x02 ≥ 0. We distinguish the following
three cases according to the possible positions of the weights w21, w22.
We have w21, w22 ∈ τ−. Then µ ∈ τ− and thus w31 ∈ τ−. Moreover we have
γ01,21, γ01,22 ∈ rlv(X) and conclude

x21 = x22 = 1, µ = (2, 2), x12 = 1.

Irredundancy of (A,P ) implies l31 = 2 and x31 = y31 = 1. The determinants correspond-
ing to γ02,21, γ02,22 ∈ rlv(X) both equal one, which implies x02y21 = 0 and x02y22 = 0.
Because of y21 + y22 = µ2 = 2, we obtain

x02 = 0, l03 = µ1 = 2.
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The considerations performed so far show that the defining relation g1 and the degree
matrix Q are of the following shape:

Q = g1 := T01T02T
2
03 + T11T12 + T21T22 + T 2

31[
0 0 1 1 1 1 1 1
1 1 0 a1 2− a1 a2 2− a2 1

]
.

We claim that w12 ∈ τ− and thus all weights wij for i = 1, 2, 3 lie in τ−. Otherwise
γ03,12 ∈ rlv(X) leads to

1 = det(w03, w12) = a1.

This implies w11 = w21 ∈ τ+ ∩ τ−, which is impossible. Thus we may assume a1 ≤ a2
and ai ≥ 2− ai. The latter implies ai ≥ 1 and

SAmple(X) = τX = cone((0, 1), (1, a2).

The anticanonical class is −KX = (4, 5). In particular the variety is Fano if and only if
a1 = a2 = 1 holds and there exists no truly almost Fano variety in this case.
We have w21, w22 ∈ τ+: This case does not provide any smooth projective variety. The
proof is exactly the same as in Case 6.1.1 (I)(b) with w21, w22 ∈ τ+.
We have w21 ∈ τ−, w22 ∈ τ+: Applying Remark 6.1.8 to γ01,21, γ03,22 ∈ rlv(X) and using
µ2 = 2 we obtain

x21 = y22 = 1, y21 = 1.

We claim y11 6= 0. Otherwise y12 = µ2 = 2. This implies det(w03, w12) = 2, hence
γ03,12 /∈ rlv(X) and thus w12 ∈ τ−. Then γ01,12 ∈ rlv(X) leads to x12 = 1 and µ1 = 2.
Thus w22 = (1, 1) = w21 ∈ τ−. A contradiction. Now y11 6= 0 yields

x22 = 0, µ = (1, 2), l31 = 1

due to γ11,22 ∈ rlv(X). This contradicts irredundancy of (A,P ).

Case 6.1.1 (I) (d) and (e). We have r = 3, m = 0 and n0 = 3 > n1 ≥ n2 = n3 = 1.
This setting allows no examples satisfying the assumptions of Theorem 6.2.1.

Proof. We claim that each of τ+ and τ− contains at least one weight w0j . Otherwise,
due to Lemma 6.1.4 (i), we may assume that all w0j lie in τ+. We conclude µ ∈ τ+ and
thus we may assume wi1 ∈ τ+ for all i = 1, 2, 3. As n1 ≤ 2 holds there is at most one
weight w12 left to lie in τ−. As each of τ+ and τ− has to contain at least two weights
this is impossible.
By the claim, we may assume w01 ∈ τ+ and w02, w03 ∈ τ−. Applying Lemma 6.1.2 (iii)
to γ01,03 ∈ rlv(X) and afterwards to γ01,02 ∈ rlv(X) and using Remark 6.1.8 we obtain

l01 = l02 = 1, w01 = (0, 1), w03 = (1, 0), y02 = 1, µ2 = 2.

Thus irredundancy of P implies l21 = l31 = 2 and we obtain torsion in Cl(X). Corollary
6.1.7 gives the assertion.
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Case 6.1.1 (I)(f). We have r = 3, m ≥ 0 and n0 = n1 = n2 = n3 = 2. This gives the
varieties Nos. 4 to 10 in the Theorems 6.2.1, 6.2.2 and 6.2.4,

Proof. Note that due to Lemma 6.1.4 (i) any weight wij lies either in τ+ or in τ−.
Moreover, if there is an integer i1 such that wi11, wi12 ∈ τ+ holds, we obtain µ ∈ τ+ and
thus we may assume wi1 ∈ τ+ for each i = 0, . . . , 3. As each of the cones τ+ and τ−

contains at least two weights we are left with the following five cases according to the
possible position of weights.
We have wi1 ∈ τ+ and wi2 ∈ τ− for each i = 0, . . . 3. Applying Lemma 6.1.4 (v)
we may assume wk ∈ τ+ for all k. We may further assume wij ∈ cone(w01, w12) for
all i = 1, 2, 3. Then, applying Remark 6.1.8 to γ01,12 ∈ rlv(X) and afterwards to
γ01,22, γ01,32, γ12,21, γ12,31, γ12,k ∈ rlv(X), where k = 1, . . . ,m, turns the degree matrix
into the following shape:

Q =
[

0 x02 x11 1 x21 1 x31 1 x1 . . . xm
1 y02 y11 0 1 y22 1 y32 1 . . . 1

]
.

Note that wij ∈ cone(w01, w12) implies xij , yij ≥ 0 for all i = 1, 2, 3 and thus µ1, µ2 > 0.
For any integers 0 ≤ i1, i2 ≤ 3 with i1 6= i2 we have γi11,i22 ∈ rlv(X). Thus applying
Lemma 6.1.2 (iv) yields li12 = 1 or li21 = 1.
We claim that we may assume l01 = l11 = l21 = l31 = 1. Otherwise after renumbering
we have l31 ≥ 2 and l32 = 1. Applying Lemma 6.1.2 (iv) to γ01,32, γ11,32, γ21,32 ∈ rlv(X)
we obtain

l02 = l12 = l22 = 1.

Thus after suitably renumbering we always have l01 = l11 = l21 = l31 = 1.
Note that due to Remark 6.1.8 the tuples (w02, w01), (w22, w21), (w32, w31) are positively
oriented and we obtain

x02 ≥ 0, x21y22 = 0, x31y32 = 0.

With 0 < µ2 = 1 + y02l02 we conclude y02 ≥ 0 and thus all entries xij , yij of Q are non
negative.
Considering the determinants corresponding to γ02,11, γ02,21 ∈ rlv(X) we obtain

x02y11 = 1 + y02x11, x02 − y02x21 = 1.

We claim y22 = 0. Otherwise 0 = y22x21 implies x21 = 0 and we obtain x02 = 1. We
conclude

1 + y02x11 = y11 = µ2 = 1 + y02l02.

Thus y02 = 0 or x11 = l02 holds. Assume y02 = 0 holds. Then µ2 = 1 and thus y22 = 0.
A contradiction. If x11 = l02 holds then

l02 = l02x02 = µ1 = x11 + l12 = l02 + l12.
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This is impossible.
By the claim, we obtain

µ2 = 1, y02 = y32 = 0, y11 = 1.

For the relation g1, the degree matrix Q this means

g1 = T01T
l02
02 + T11T

l12
12 + T21T

l22
22 + T31T

l32
32 ,

Q =
[

0 1 a1 1 a2 1 a3 1 d1 . . . dm
1 0 1 0 1 0 1 0 1 . . . 1

]
,

where we have ai ≥ 0, l02 = a1 + l12 = a2 + l22 = a3 + l33 and we may assume
0 ≤ a1 ≤ a2 ≤ a3 and d1 ≤ . . . ≤ dm. The semiample cone and the anticanonical class
are given as

SAmple(X) = τX = cone((1, 0), (d, 1)), −KX = (4 + a2 + a3 +
∑

dk − l12, 3 +m),

where d := max(a3, dm). In particular X is Fano if and only if the following inequality
holds

(3 +m) · d < 4 + a2 + a3 +
∑

dk − l12.

With l12 ≥ 1 we conclude d ≤ 2. We list all possibilities for the entries of Q and the
exponents of g1 in a table.

(a1, a2, a3, l02, l12, l22, l32) restrictions on dk
d = 2 l12 = 1 (2, 2, 2, 3, 1, 1, 1) dk = 2 for all k.
d = 1 l12 = 2 (1, 1, 1, 3, 2, 2, 2), (0, 1, 1, 2, 2, 1, 1) dk = 1 for all k.

l12 = 1 (1, 1, 1, 2, 1, 1, 1) 0 ≤ d1 ≤ d2 = 1.
d = 0 l12 = 3 (0, 0, 0, 3, 3, 3, 3) dk = 0 for all k

l12 = 2 (0, 0, 0, 2, 2, 2, 2) −1 ≤ d1 ≤ d2 = 0
l12 = 1 (0, 0, 0, 1, 1, 1, 1) −2 ≤ d1 + d2 ≤ 0

Moreover X is truly almost Fano if and only if the following equality holds:

(3 +m) · d = 4 + a2 + a3 +
∑

dk − l12.

We list all possibilities for the entries of Q and the exponents of g1 in a table.
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(a1, a2, a3, l02, l12, l22, l32) restrictions on dk
d = 3 l12 = 1 (3, 3, 3, 4, 1, 1, 1) dk = 3 for all k
d = 2 l12 = 1 (2, 2, 2, 3, 1, 1, 1) d1 = 1, dk = 2 for k 6= 1

l12 = 2 (1, 2, 2, 3, 2, 1, 1) dk = 2 for all k
(2, 2, 2, 4, 2, 2, 2) dk = 2 for all k

d = 1 l12 = 1 (0, 0, 0, 1, 1, 1, 1) dk = 1 for all k
(1, 1, 1, 2, 1, 1, 1) d1 = d2 = 0, dk = 1 for all k ≥ 3
(1, 1, 1, 2, 1, 1, 1) d1 = −1, dk = 1 for all k 6= 1

l12 = 2 (0, 0, 1, 2, 2, 2, 1) dk = 1 for all k
(1, 1, 1, 3, 2, 2, 2) d1 = 0, dk = 1 for all k 6= 1
(0, 1, 1, 2, 2, 1, 1) d1 = 0, dk = 1 for all k 6= 1

l12 = 3 (1, 1, 1, 4, 3, 3, 3) dk = 1 for all k
(0, 1, 1, 3, 2, 2, 2) dk = 1 for all k

d = 0 l12 = 1 (0, 0, 0, 1, 1, 1, 1)
∑
dk = −3

l12 = 2 (0, 0, 0, 2, 2, 2, 2)
∑
dk = −2

l12 = 3 (0, 0, 0, 3, 3, 3, 3) d1 = −1, dk = 0 for all k 6= 1
l12 = 4 (0, 0, 0, 4, 4, 4, 4) dk = 0 for all k.

We have wi1 ∈ τ+ and wi2 ∈ τ− for i = 1, 2, 3 and w01, w02 ∈ τ+. We may assume
w02, w12, w22 ∈ cone(w01, w32). Then, applying Remark 6.1.8 to γ01,32 ∈ rlv(X) and
afterwards to γ02,32, γ11,32, γ21,32, γ12,01, γ22,01 ∈ rlv(X) turns the degree matrix Q into
the following shape

Q :=
[

0 x02 x11 1 x21 1 x31 1 x1 . . . xm
1 1 1 y12 1 y22 y31 0 y1 . . . ym

]
.

Note that we have x02, y12, y22 ≥ 0 because of w02, w12, w22 ∈ cone(w01, w32). Moreover
2 ≤ µ2 holds and thus y31 > 0.
We claim l11, l21 ≥ 2. Otherwise after renumbering we may assume l11 = 1. With
2 ≤ µ2 = 1 + l12y12 we conclude y12 > 0. The determinant corresponding to γ02,12 ∈
rlv(X) equals one, which implies x02y12 = 0. This gives

x02 = 0, l31x31 + l32 = 0, x31 < 0.

This contradicts y31 − y12x31 = det(w12, w31) = 1.
Thus applying Lemma 6.1.2 (iv) to γ02,12, γ01,12, γ21,12, γ31,12 ∈ rlv(X) we obtain

l01 = l02 = l32 = l22 = 1, µ2 = 2, l11 = l21 = 2, y22 = y12 = 0

As the determinant corresponding to γ12,31 ∈ rlv(X) equals one we obtain y31 = 1
and l31 = µ2 = 2. Thus applying Lemma 6.1.2 (iv) to γ11,32, γ21,32 ∈ rlv(X) implies
l12 = 1 = l22. With

0 ≤ µ1 = x02 = 1 + 2 · x11 = 1 + 2 · x21 = 1 + 2 · x31
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we obtain x11 = x21 = x31 ≥ 0 and x02 > 0. With w11, w21 ∈ τ+ and Lemma 6.1.2 (ii)
we conclude that the possible weights of type wk lie in τ−. Thus applying Remark
6.1.8 to γ01,k ∈ rlv(X) we obtain xk = 1. Finally as the determinant corresponding to
γ02,k ∈ rlv(X) equals one and x02 > 0 holds we obtain yk = 0. For the relation g1, the
degree matrix Q and the ample cone this means

g1 = T01T02 + T 2
11T12 + T 2

21T22 + T 2
31T32

Q =
[

0 2a+ 1 a 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 1 0 0 . . . 0

]
,

SAmple(X) = τX = cone((1, 0), (2a+ 1, 1)),

where a ≥ 0. The anticanonical class is −KX = (3a+ 3 +m, 3). In particular X is Fano
if and only if 3a + 3 +m > 6a + 3 holds. This is equivalent to m > 3a. Moreover X is
truly almost Fano if and only if m = 3a holds.
We have w01, w02, w11, w12, w21, w31 ∈ τ+ and w22, w32 ∈ τ−. We may assume
w02, w11, w12, w22 ∈ cone(w01, w32). Then, applying Remark 6.1.8 to γ01,32 ∈ rlv(X)
and afterwards to γ02,32, γ11,32, γ12,32, γ21,32, γ01,22 ∈ rlv(X) turns the degree matrix X
into the following shape

Q :=
[

0 x02 x11 x12 x21 1 x31 1 x1 . . . xm
1 1 1 1 1 y22 y31 0 y1 . . . ym

]
.

Note that we have x02, x11, x12, y22 ≥ 0 because of w02, w11, w12, w22 ∈ cone(w01, w32).
Moreover µ2 ≥ 2 holds and thus y31 > 0.
We claim l21 ≥ 2. Otherwise l21 = 1 holds. With 2 ≤ µ2 = 1 + y22l22 we conclude
y22 > 0. The determinant corresponding to γ02,22 ∈ rlv(X) equals one, which implies
x02y22 = 0. This gives

x02 = 0, µ1 = 0, l31x31 + l32 = 0, x31 < 0.

This contradicts y31 − y22x31 = det(w22, w31) = 1.
Thus applying Lemma 6.1.2 (iv) to γ02,22, γ01,22 ∈ rlv(X) implies

l01 = l02 = 1, µ2 = 2, l11 = l12 = 1, l21 = 2, y22 = 0.

As the determinant corresponding to γ22,31 ∈ rlv(X) equals one we obtain y31 = 1 and
2 = µ2 = l31. Thus applying Lemma 6.1.2 (iv) to γ22,31, γ21,32 ∈ rlv(X) we obtain l32 =
l22 = 1. With w21 ∈ τ+ and Lemma 6.1.2 (ii) we conclude that possible weights of type
wk lie in τ−. Thus applying Remark 6.1.8 to γ01,k ∈ rlv(X) we obtain xk = 1. Finally
as the determinant corresponding to γ02,k ∈ rlv(X) equals one and x02 = 2x21 + 1 ≥ 0
we conclude x02 > 0 and thus yk = 0. For the relation g1 and the degree matrix Q this
means

g1 = T01T02 + T11T12 + T 2
21T22 + T 2

31T32
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Q =
[

0 2a3 + 1 a1 a2 a3 1 a3 1 1 . . . 1
1 1 1 1 1 0 1 0 0 . . . 0

]
,

where 2a3 + 1 = a1 + a2, ai ≥ 0 and we may assume a1 ≤ a2. The semiample cone and
the anticanonical class are given as

SAmple(X) = τX = cone((1, 0), (2a3 + 1, 1)), −KX = (4a3 + 3 +m, 4).

In particular X is Fano if and only if 4a3 + 3 +m > 8a3 + 4 holds. This is equivalent to
m > 4a3 + 1. Moreover X is truly almost Fano if and only if m = 4a3 + 1.
We have w01, . . . , w31 ∈ τ+ and w32 ∈ τ−. As each of τ− and τ+ con-
tain at least two weights we have m ≥ 1 and wk ∈ τ−. We may assume
wi, w02, . . . , w22 ∈ cone(w1, w01). Then, applying Remark 6.1.8 at to γ1,01 ∈ rlv(X)
and afterwards to γ1,02, . . . , γ1,31, γ01,32 ∈ rlv(X) turns the degree matrix Q into the
following shape

Q :=
[

0 x02 x11 x12 x21 x22 x31 1 1 1 . . . 1
1 1 1 1 1 1 1 y32 0 y2 . . . ym

]
,

Note that because of wi, w02, . . . , w22 ∈ cone(w1, w01) all entries of Q except x31 and y32
non-negative.
Applying Lemma 6.1.2 (ii) to γ1,01, . . . , γ1,31 ∈ rlv(X), we obtain

l01 = l02 = l11 = l12 = l21 = l22 = l32 = 1, µ2 = 2

As the determinants corresponding to γ02,32, γ11,32, γ12,32, γ21,32, γ22,32 ∈ rlv(X) all equal
one we conlude y32 = 0 or x02 = . . . = x22 = 0.
Assume y32 = 0. Then 2 = µ2 = l31 holds. Moreover µ1 = x02 = 2x31 + 1 and x02 ≥ 0
implies x31 ≥ 0 and x02 > 0. As the determinants corresponding to γ02,k ∈ rlv(X) for
k = 1, . . . ,m we obtain y2 = . . . = ym = 0. For the relation g1 and the degree matrix Q
this means

g1 = T01T02 + T11T12 + T21T22 + T 2
31T32

Q =
[

0 2a5 + 1 a1 a2 a3 a4 a5 1 1 . . . 1
1 1 1 1 1 1 1 0 0 . . . 0

]
,

where 2a5 +1 = a1 +a2 = a3 +a4 and ai ≥ 0. The semiample cone and the anticanonical
class are given as

SAmple(X) = τX = cone((1, 0), (2a5 + 1, 1)), −KX = (5a5 + 3 +m, 5).

In particular X is Fano if and only if 10a5 + 5 < 5a5 + 3 +m holds. This is equivalent
to 5a5 + 2 < m. Moreover X is truly almost Fano if and only if 5a5 + 2 = m holds.
Assume x02 = . . . = x22 = 0. We have µ1 = 0 and thus l31x31 = −1. This implies
l31 = 1 and x31 = −1. Thus µ2 = 2 = 1 + y32 and we conclude y32 = 1. Finally as the



6.1. Towards the classification 119

determinants corresponding to γ31,k ∈ rlv(X) all equal one, we conclude yi = 0. For the
relation g1, the degree matrix Q and the ample cone this means

g1 = T01T02 + T11T12 + T21T22 + T31T32

Q =
[

0 0 0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

]
.

SAmple(X) = τX = cone((1, 1), (0, 1)).

The anticanonical class is −KX = (m, 6). In particular X is Fano if and only if m < 6
holds and truly almost Fano in the case m = 6.
We have wij ∈ τ+ for all i, j. As each of τ− and τ+ contain at least two weights applying
we conclude with Lemma 6.1.4 (v) m ≥ 2 and wk ∈ τ− for all k = 1, . . . ,m. Moreover
γij,1 ∈ rlv(X) implies lij = 1 for all i, j. We may assume wij , wk ∈ cone(w01, w1) for all
i, j, k. Then, applying Remark 6.1.8 at to γ01,1 and afterwards to all other γij,1, γ01,k ∈
rlv(X) turns the grading matrix Q into th following shape

Q :=
[

0 x02 x11 x12 x21 x22 x31 x32 1 1 . . . 1
1 1 1 1 1 1 1 1 0 y2 . . . ym

]
.

Note that all entries of Q are non negative because of wij , wk ∈ cone(w01, w1). We
distinguish between the case that all entries y2, . . . , ym equal zero and the case they
do not.
We have yk = 0 holds for all k. Then we have

x02 = x11 + x12 = x21 + x22 = x31 + x32

and the relation g1 and the grading matrix Q have the following shape.

g1 = T01T02 + T11T12 + T21T22 + T31T32

Q =
[

0 a1 a2 a3 a4 a5 a6 a7 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

]
,

where a1 = a2 + a3 = a4 + a5 = a6 + a7 and ai ≥ 0. The semiample cone and the
anticanonical class are

SAmple(X) = τX = cone((1, 0), (a1, 1)), −KX = (3a1 +m, 6).

In particular X is Fano if and only if 3a1 +m > 6a1 and this is equivalent to m > 3a1.
Moreover X is truly almost Fano if and only if m = 3a1 holds.
We have yk > 0 for at least one k. We may assume 0 ≤ y2 ≤ . . . ≤ ym and ym > 0. As
the determinants correspoding to γij,k ∈ rlv(X) all equal one we conclude xij = 0. For
the relation g1 and the grading matrix Q this means

g1 = T01T02 + T11T12 + T21T22 + T31T32
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[
0 0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 1 0 a2 . . . am

]
,

where 0 ≤ a2 ≤ . . . ≤ am and am > 0. The semiample cone and the anticanonical class
are

SAmple(X) = τX = ((0, 1), (1, am)), −KX = (m, 6 + a2 + . . .+ am).

In particular X is Fano if and only if m · am < 6 + a2 + . . .+ am. This implies am ≤ 5.
Furthermore X is truly almost Fano if and only if m · am = 6 + a2 + . . . + am, which
implies m ≤ 6.

Lemma 6.1.10. In the situation of Proposition 6.1.1, consider the case r = 3, m ≥ 0
and n0 = n1 = 2 ≥ n2 ≥ n3 = 1. Then the following constellation of weights can’t occur:

w02, w12 ∈ τ+ w01, w11 ∈ τ−.

Proof. We may assume w11 ∈ cone(w01, w12). Applying Remark 6.1.8 to γ01,12 ∈ rlv(X)
we obtain

w01 = (1, 0), w12 = (0, 1), x11, y11 ≥ 0.

Moreover the position of weights implies det(w11, w12) > 0 and det(w01, w02) > 0 and
thus x11 > 0 and y02 > 0. Applying Lemma 6.1.2 (iv) to γ01,12 ∈ rlv(X) we obtain
l02 = 1 or l11 = 1. With γ02,11 ∈ rlv(X) we obtain

l02 = 1 =⇒ 1 = det(w11, w02) = det(w11, l12w12 − l01w01) = l12x11 + l01y11,

l11 = 1 =⇒ 1 = det(w11, w02) = det(l01w01 − l12w12, w02) = l01y02 + l12x02,

where the second equality on the r.h.s. holds due to homogeneity of the relation.
We show l02 > 1. Otherwise the above considerations show

y11 = 0, l12 = x11 = 1, µ2 = 1, l31 = y31 = 1.

This contradicts irredundancy of P .
Thus we have l11 = 1. Note that y02 > 0 implies x02 ≤ 0. The corresponding determinant
of γ02,11 ∈ rlv(X) equals one and we obtain 1 = x11y02 − y11x02. This implies

y11x02 = 0, x11 = y02 = 1, µ1 = 1, l31 = x31 = 1.

This again contradicts irredundancy of P .

Case 6.1.1 (I)(g). We have r = 3, m ≥ 0 and n0 = n1 = n2 = 2 > n3 = 1. This gives
the varieties Nos. 11, 12 and 13 in the Theorems 6.2.1, 6.2.2 and 6.2.4.

Proof. With Lemma 6.1.10 and Lemma 6.1.4 (i) we may assume w21, w22 ∈ τ+. We
conclude µ ∈ τ+ and thus w31 ∈ τ+. We distinguish between the following two cases
according to the possible positions of weights.
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We have w02, wk ∈ τ− and all other weights in τ+. As each of τ+ and τ− contains at
least two weights we conclude m ≥ 1 and Lemma 6.1.4 (v) yields wk ∈ τ− for all k.
Applying Lemma 6.1.2 (iv) to γ01,1, γ11,1, γ12,1, γ21,1γ22,1 ∈ rlv(X) we obtain

l02 = l11 = l12 = l21 = l22 = 1.

Then applying Remark 6.1.8 to γ11,1 ∈ rlv(X) and afterwards to
γ01,1, γ12,1, γ21,1γ22,1γ02,11, γ11,k ∈ rlv(X) turns the degree matrix Q into the fol-
lowing shape:

Q :=
[
x01 1 0 x12 x21 x22 x31 1 1 . . . 1
1 y02 1 1 1 1 y31 0 y2 . . . ym

]
.

We conclude µ2 = 2 and irredundancy of P gives l31 = 2 and y31 = 1. We obtain

µ1 = l01x01 + 1 = x12 = l31x31 = 2x31

Thus µ1 is even and we conclude that l01 and x01 are odd. Thus y02 = µ2 − l01 is odd
and thus nonzero. The determinants corresponding to γ02,12, γ02,22 ∈ rlv(X) both equal
one, which implies y02x12 = 0 and y02x22 = 0. We obtain

x12 = x22 = 0 = µ1, x21 = x31 = 0, x01 = −1, l01 = 1, y02 = 1.

Finally γ01,k ∈ rlv(X) leads to det(wk, w01) = 1 and thus yk = 0. For the relation, the
degree matrix and the ample cone this means

g1 := T01T02 + T11T12 + T21T22 + T 2
31

Q =
[
−1 1 0 0 0 0 0 1 . . . 1
1 1 1 1 1 1 1 0 . . . 0

]
SAmple(X) = τX = cone((0, 1), (1, 1)).

Moreover the anticanonical class is given as −KX = (m, 5). Thus X is Fano if and only
if m < 5 and truly almost Fano if m = 5 holds.
We have wij ∈ τ+ for all i. Consider the fact that each of τ+ and τ− contains at least
two weights and applying Lemma 6.1.4 (v) we conclude m ≥ 2 and wk ∈ τ− for all k.
We may assume wij , wk ∈ cone(w01, w1) for all i, j, k. Applying Remark 6.1.8 to γ01,1 ∈
rlv(X) and afterwards to γ02,1, . . . , γ22,1, γ01,k ∈ rlv(X) turns the degree matrix Q into
the following shape

Q :=
[

0 x02 x11 x12 x21 x22 x31 1 1 . . . 1
1 1 1 1 1 1 y31 0 y2 . . . ym

]
.

Note that we have xij , xk ≥ 0 for all i, j, k because of wij , wk ∈ cone(w01, w1) for all
i, j, k. Applying Lemma 6.1.2 (ii) to γij,k ∈ rlv(X) for i = 0, 1, 2 we obtain

l01 = · · · = l22 = 1, µ2 = 2
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and thus irredundancy of P implies l31 = 2 and y31 = 1.
We distinguish between the case that all entries yk equal zero and the case that there
exists at least one k with yk > 0.
We have yk = 0 for all k. Then the defining relation g1, the degree matrix Q and the
ample cone are of the following shape:

g1 = T01T02 + T11T12 + T21T22 + T 2
31

Q =
[

0 2a5 a1 a2 a3 a4 a5 1 . . . 1
1 1 1 1 1 1 1 0 . . . 0

]
,

SAmple(X) = τX = cone((1, 0), (2a5, 1)).

where a1 +a2 = a3 +a4 = 2a5 holds and ai ≥ 0 for all i. The anticanonical class is given
as −KX = (m+ 5a5, 5). In particular X is Fano if and only if m > 5a5 and truly almost
Fano if equality holds.
We have yk > 0 for at least one k. We may assume 0 = y1 ≤ . . . ≤ ym and ym > 0.
Then γ02,m ∈ rlv(X) leads to det(wm, w02) = 1 and with xij ≥ 0 for all i this implies

x02 = 0, µ1 = 0, x12 = x21 = x22 = x31 = 0

For the relation g1, the degree matrix Q and the ample cone this means

g1 = T01T02 + T11T12 + T21T22 + T 2
31

Q =
[

0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 0 d2 . . . dm

]
,

SAmple(X) = τX = cone((0, 1), (1, dm))

where d2 ≤ . . . ≤ dm. The anticanonical class is given as

−KX = (m, 5 +
∑

di).

In particular X is Fano if and only if m · dm < 5 +
∑
di and we obtain furthermore

m < 5. X is truly almost Fano if m · dm = 5 +
∑
di holds.

Case 6.1.1 (I)(h). We have r = 3, m ≥ 0 and n0 = n1 = 2 > n2 = n3 = 1. This
setting allows no examples satisfying the assumptions of Theorem 6.2.1.

Proof. For m > 0 we may assume due to Lemma 6.1.4 (v) that w1, . . . , wm ∈ τ− holds.
Applying Lemma 6.1.10 we may always assume w11, w12 ∈ τ+ and thus µ ∈ τ+. This
implies w21 = w31 ∈ τ+. As each of the cones τ− and τ+ contains at least two weights
we are left with the following two possible position of weights.
We have w02 ∈ τ− and w01 ∈ τ+. Applying Lemma 6.1.2 (iv) to γ01,1, γ12,1, γ11,1 ∈
rlv(X) we obtain

l02 = l11 = l12 = 1.
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Applying Remark 6.1.8 to γ11,1 ∈ rlv(X) and afterwards to γ01,1, γ12,1, γ02,11, γ11,k ∈
rlv(X) turns the degree matrix Q into the following shape

Q :=
[
x01 1 0 x12 x21 x31 1 1 . . . 1
1 y02 1 1 y21 y31 0 y2 . . . ym

]
.

We obtain µ2 = 2. Thus either l21 = l31 = 2 holds, which contradicts torsion freeness
of the divisor class group of X or at least one of l21 or l31 equals one. This contradicts
irredundancy of P .
We have w01, w02 ∈ τ+. Applying Remark 6.1.8 and Lemma 6.1.2 (iv) to
γ01,1, γ02,1, γ11,1, γ12,1 ∈ rlv(X) we obtain

x01 = x02 = x11 = x12 = 1, l01 = l02 = l11 = l12 = 1, µ1 = 2

Irredundancy of P thus implies l21 = l31 = 2, which leads to torsion in the divisor class
group of X; a contradiction.

Case 6.1.1 (I)(i). We have r = 3, m > 0 and n0 = 2 > n1 = n2 = n3 = 1. This setting
allows no examples satisfying the assumptions of Theorem 6.2.1.

Proof. Applying Lemma 6.1.4 (v) we may assume w1, . . . , wm ∈ τ−. Moreover we have
µ = w11 = w21 = w31.
We claim that one of the weights w0j lies in τ+. Otherwise Lemma 6.1.4 (i) implies
w0j ∈ τ− for j = 1, 2. This implies µ ∈ τ− and there are no weights left to lie in τ+,
which is impossible. Thus we may assume w01 ∈ τ+.
Applying Lemma 6.1.2 (ii) and Remark 6.1.8 to γ01,1 ∈ rlv(X) we obtain

l02 = 1, w01 = (0, 1), w1 = (1, 0).

Moreover as the class group of X is torsion free and P is irredundant we have pairwise
coprime l11, l21, l31 > 1. We distinguish the following two cases according to the possible
position of weights.
We have w02 ∈ τ−. As τ+ contains at least two weights we may assume w11 ∈ τ+. This
implies µ ∈ τ+ and thus w21 = w31 ∈ τ+. With w02 ∈ τ− we obtain cone(w02, w01, w11) ∈
rlv(X). As X is locally factorial this implies (0, 1), (x02, y02), (x11, y11) generate Z2 as a
group. Thus gcd(x02, x11) = 1 holds and in particular not both equal zero. We obtain

0 < µ1 = x02 = l11x11 = l21x21.

With gcd(l11, l21) = 1 we conclude l21|x02 and l21|x11; This contradicts gcd(x02, x11) = 1.
We have w02 ∈ τ+. We obtain w11 = w21 = w31 = µ ∈ τ+. As τ− contains at least two
weights we obtain m ≥ 2. Applying Lemma 6.1.2 (ii) and Remark 6.1.8 to γ02,1 ∈ rlv(X)
we obtain

l01 = 1, y02 = 1, µ2 = 2.

Irredundanccy of P implies l11 = l21 = l31 = 2 contradicting coprimeness.
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Case 6.1.1 (II). We have r = 4, m = 0 and n0 = n1 = 2 ≥ n2 ≥ n3 ≥ n4. This leads
to No. 14 in Theorems 6.2.1 and 6.2.2.

We treat the cases (a) to (d) at once. Observe that if two weights wi11, wi12 lie in one
cone τ− or τ+ homogeneity of the relations implies that all wij with ni = 1 lie in this
cone as well. As each of τ+ and τ− contains at least two weights and m = 0 holds we
may thus assume w01, w11 ∈ τ− and w02, w12 ∈ τ+. In particular for each wi1j1 with
ni1 = 2 there exist at least one wi2j2 with γi1j1,i2j2 ∈ rlv(X). Thus considering r = 4
and applying Lemma 6.1.2 (iv) we obtain lij = 1 for all i with ni = 2. We may assume
w11 ∈ cone(w01, w12). Applying Remark 6.1.8 to γ01,12 ∈ rlv(X) we obtain

w01 = (1, 0), w12 = (0, 1), x11, y11 ≥ 0.

Applying Remark 6.1.8 to γ02,11 ∈ rlv(X) we obtain

1 = det(w11, w02) = x11y02 − x02y11 = x11 + y11,

where the last equality follows with µ2 = y02 = y11 + 1. As by assumption w11 /∈ τ− we
have x11 > 0 and conclude

x11 = 1, y11 = 0, µ = (1, 1), x02 = 0, y02 = 1.

This implies lij = 1 for all i with ni = 1. As P is irredundant the only possible
constellation is

n0 = n1 = n2 = n3 = n4 = 2, l01 = . . . = l42 = 1.

With Lemma 6.1.4 (i) may assume w21, w31, w41 ∈ τ− and applying Remark 6.1.8 to
γ21,02, γ31,02, γ41,02 ∈ rlv(X) we obtain

x21 = x31 = x41 = 1, x22 = x32 = x42 = 0.

We conclude w22, w32, w42 ∈ τ+. This in turn implies γ01,22, γ01,32, γ01,42 ∈ rlv(X) and
applying Remark 6.1.8 once more we obtain

1 = y22 = y32 = y42, y21 = y31 = y41 = 0.

For the defining relations g1, g2, the grading matrix Q and the ample cone we obtain

g0 := T01T02 + T11T12 + T21T22 + T31T32

g1 := λ1T01T02 + λ2T11T12 + T21T22 + T41T42[
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1

]
,

SAmple(X) = τX = (Q≥0)2.

The anticanonical class is −KX = (3, 3). In particular the variety is Fano.
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6.2 Classification Results

Here we give a complete list of all non-toric smooth arrangement varieties of complexity
two and Picard number two and classify in every dimension the smooth (almost) Fano
varieties of complexity two and Picard number two.

Theorem 6.2.1. Every non-toric smooth projective arrangement variety of complexity
two and Picard number two is isomorphic to precisely one of the following varieties X,
specified by their Cox ring R(X), the matrix [w1, . . . , wr] of generator degrees and an
ample class u ∈ Cl(X) = Z2.

No. R(X) [w1, . . . , wr] u dim(X)

1 K[T1,...,T9]
〈T1T2T 2

3 +T4T5+T6T7+T8T9〉

[
0 0 1 1 1 1 1 1 1
1 1 0 a1 2− a1 a2 2− a2 a3 2− a3

]
1 ≤ a1 ≤ a2 ≤ a3

[
1

a3 + 1

]
6

2 K[T1,...,T9]
〈T1T2T3+T4T5+T6T7+T8T9〉

[
0 0 1 1 0 1 0 1 0
1 1 0 1 1 1 1 1 1

] [
1
2

]
6

3 K[T1,...,T8]
〈T1T2T 2

3 +T4T5+T6T7+T 2
8 〉

[
0 0 1 1 1 1 1 1
1 1 0 a1 2− a1 a2 2− a2 1

]
1 ≤ a1 ≤ a2

[
1

a2 + 1

]
5

4
K[T1,...,T8,S1,...,Sm]

〈T1T
l2
2 +T3T

l4
4 +T5T

l6
6 +T7T

l8
8 〉

m≥0

[
0 1 a1 1 a2 1 a3 1 d1 . . . dm
1 0 1 0 1 0 1 0 1 . . . 1

]
0 ≤ a1 ≤ a2 ≤ a3

l2 = a1 + l4 = a2 + l6 = a3 + l8
d1 ≤ . . . ≤ dm

[
d + 1

1

]
d := max(a3, dm)

m+ 5

5
K[T1,...,T8,S1,...,Sm]

〈T1T2+T 2
3 T4+T 2

5 T6+T 2
7 T8〉

m≥0

[
0 2a + 1 a 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 1 0 0 . . . 0

]
a ≥ 0

[
2a + 2

1

]
m+ 5

6
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T 2
5 T6+T 2

7 T8〉
m≥0

[
0 2a3 + 1 a1 a2 a3 1 a3 1 1 . . . 1
1 1 1 1 1 0 1 0 0 . . . 0

]
2a3 + 1 = a1 + a2, 0 ≤ a1 ≤ a2

[
2a3 + 2

1

]
m+ 5

7
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T 2
7 T8〉

m≥1

[
0 2a5 + 1 a1 a2 a3 a4 a5 1 1 . . . 1
1 1 1 1 1 1 1 0 0 . . . 0

]
2a5 + 1 = a1 + a2 = a3 + a4

ai ≥ 0

[
2a5 + 2

1

]
m+ 5

8
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥1

[
0 0 0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

] [
1
2

]
m+ 5

9
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 a1 a2 a3 a4 a5 a6 a7 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

]
a1 = a2 + a3 = a4 + a5 = a6 + a7

ai ≥ 0

[
a1 + 1

1

]
m+ 5

10
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 1 0 d2 . . . dm

]
0 ≤ d2 ≤ · · · ≤ dm, dm > 0

[
1

dm + 1

]
m+ 5

11
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥1

[
−1 1 0 0 0 0 0 1 . . . 1
1 1 1 1 1 1 1 0 . . . 0

] [
1
2

]
m+ 4

12
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
0 2a5 a1 a2 a3 a4 a5 1 . . . 1
1 1 1 1 1 1 1 0 . . . 0

]
a1 + a2 = a3 + a4 = 2a5

ai ≥ 0

[
2a5 + 1

1

]
m+ 4
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13
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 0 d2 . . . dm

]
0 ≤ d2 ≤ . . . ≤ dm

dm > 0

[
1

dm + 1

]
m+ 4

14 K[T1,...,T10]〈
T1T2 + T3T4 + T5T6 + T7T8,

λ1T3T4 + λ2T5T6 + T7T8 + T9T10

〉 [
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1

] [
1
1

]
6

Moreover, each of the listed data defines a smooth projective arrangement variety of
complexity two and Picard number two.

As direct applications, we can classify in Theorem 6.2.2 in every dimension the (finitely
many) smooth Fano arrangement varieties of complexity two and Picard number two and
in Theorem 6.2.4 the smooth truly almost Fano arrangement varieties of complexity two
and Picard number two, where truly almost Fano means that the anticanonical divisor
is semiample but not ample.

Theorem 6.2.2. Every non-toric smooth Fano arrangement variety of complexity two
and Picard number two is isomorphic to precisely one of the following varieties X,
specified by their Cox ring R(X) and the matrix [w1, . . . , wr] of generator degrees
wi ∈ Cl(X) = Z2.

No. R(X) [w1, . . . , wr] −KX dim(X)

1 K[T1,...,T9]
〈T1T2T 2

3 +T4T5+T6T7+T8T9〉

[
0 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1

] [
5
6

]
6

2 K[T1,...,T9]
〈T1T2T3+T4T5+T6T7+T8T9〉

[
0 0 1 1 0 1 0 1 0
1 1 0 1 1 1 1 1 1

] [
3
6

]
6

3 K[T1,...,T8]
〈T1T2T 2

3 +T4T5+T6T7+T 2
8 〉

[
0 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1

] [
4
5

]
5

4.A
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 2 1 2 1 2 1 2 . . . 2
1 0 1 0 1 0 1 0 1 . . . 1

] [
7 + 2m
3 + m

]
m+ 5

4.B
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 1 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
4 + m
3 + m

]
m+ 5

4.C
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T 2

4 +T5T6+T7T8〉
m≥0

[
0 1 0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
4 + m
3 + m

]
m+ 5

4.D
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 1 1 1 1 1 1 d1 1 . . . 1
1 0 1 0 1 0 1 0 1 1 . . . 1

]
d1 ∈ {0, 1}

[
5+m−1+d1

3 + m

]
m+ 5

4.E
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 3

4 +T5T 3
6 +T7T 3

8 〉
m≥0

[
0 1 0 1 0 1 0 1 0 . . . 0
1 0 1 0 1 0 1 0 1 . . . 1

] [
3

3 + m

]
m+ 5

4.F
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 0 1 0 1 0 1 d1 0 . . . 0
1 0 1 0 1 0 1 0 1 1 . . . 1

]
d1 ∈ {−1, 0}

[
2 + d1
3 + m

]
m+ 5

4.G
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥0

[
0 1 0 1 0 1 0 1 d1 d2 0 . . . 0
1 0 1 0 1 0 1 0 1 1 1 . . . 1

]
d1, d2 ≤ 0, d1 + d2 ≥ −2

[
3 + d1 + d2

3 + m

]
m+ 5
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5
K[T1,...,T8,S1,...,Sm]

〈T1T2+T 2
3 T4+T 2

5 T6+T 2
7 T8〉

m≥1

[
0 2a + 1 a 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 1 0 0 . . . 0

]
a ≥ 0,m > 3a

[
3a + 3 + m

3

]
m+ 5

6
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T 2
5 T6+T 2

7 T8〉
m≥1

[
0 2a3 + 1 a1 a2 a3 1 a3 1 1 . . . 1
1 1 1 1 1 0 1 0 0 . . . 0

]
0 ≤ a1 ≤ a2, a1 + a2 = 2a3 + 1

m > 4a3 + 1

[
4a3 + 3 + m

4

]
m+ 5

7
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T 2
7 T8〉

m≥1

[
0 2a5 + 1 a1 a2 a3 a4 a5 1 1 . . . 1
1 1 1 1 1 1 1 0 0 . . . 0

]
ai ≥ 0,

a1 + a2 = a3 + a4 = 2a5 + 1,
m > 5a5 + 2

[
5a5 + 3 + m

5

]
m+ 5

8
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
1≤m≤5

[
0 0 0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

] [
m
6

]
m+ 5

9
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 a1 a2 a3 a4 a5 a6 a7 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

]
ai ≥ 0,

a1 = a2 + a3 = a4 + a5 = a6 + a7,
m > 3a1

[
3a1 + m

6

]
m+ 5

10
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 1 0 d2 . . . dm

]
0 ≤ d2 ≤ · · · ≤ dm, 0 < dm ≤ 5
m · dm < 6 + d2 + . . . + dm

[
m

6+
∑

dk

]
m+ 5

11
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
1≤m≤4

[
−1 1 0 0 0 0 0 1 . . . 1
1 1 1 1 1 1 1 0 . . . 0

] [
m
5

]
m+ 4

12
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
0 2a5 a1 a2 a3 a4 a5 1 . . . 1
1 1 1 1 1 1 1 0 . . . 0

]
a1 + a2 = a3 + a4 = 2a5

ai ≥ 0
m > 5a5

[
m + 5a5

5

]
m+ 4

13
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 0 d2 . . . dm

]
0 ≤ d2 ≤ . . . ≤ dm

dm > 0
m · dm < 5 + d2 + . . . + dm

[
m

5+
∑

dk

]
m+ 4

14 K[T1,...,T10]〈
T1T2 + T3T4 + T5T6 + T7T8,

λ1T3T4 + λ2T5T6 + T7T8 + T9T10

〉 [
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1

] [
3
3

]
6

Moreover, each of the listed data defines a smooth Fano arrangement variety of complex-
ity two and Picard number two.

Remark 6.2.3. Some of the above Fano varieties are intrinsic quadrics. Here is the
overlap with [34, Cor. 1.2]:
(i) Cases 10 and 13 are intrinsic quadrics of Type 1,
(ii) Cases 9 and 12 are intrinsic quadrics of Type 2,
(iii) Cases 8 and 11 are intrinsic quadricsof Type 3,
(iv) Case 4.G is an intrinsic quadric of Type 4.

Theorem 6.2.4. Every non-toric smooth projective truly almost Fano arrangement va-
riety of complexity two and Picard number two is isomorphic to precisely one of the
following varieties X, specified by their Cox ring R(X), the matrix [w1, . . . , wr] of gen-
erator degrees and an ample class u ∈ Cl(X) = Z2.
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No. R(X) [w1, . . . , wr] u dim(X)

4.A
K[T1,...,T8,S1,...,Sm]

〈T1T 4
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 3 1 3 1 3 1 3 . . . 3
1 0 1 0 1 0 1 0 1 . . . 1

] [
4
1

]
m+ 5

4.B
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 2 1 2 1 2 1 1 2 . . . 2
1 0 1 0 1 0 1 0 1 1 . . . 1

] [
3
1

]
m+ 5

4.C
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 2

4 +T5T6+T7T8〉
m≥0

[
0 1 1 1 2 1 2 1 2 . . . 2
1 0 1 0 1 0 1 0 1 . . . 1

] [
3
1

]
m+ 5

4.D
K[T1,...,T8,S1,...,Sm]

〈T1T 4
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 2 1 2 1 2 1 2 . . . 2
1 0 1 0 1 0 1 0 1 . . . 1

] [
3
1

]
m+ 5

4.E
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥0

[
0 1 0 1 0 1 0 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
2
1

]
m+ 5

4.F
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 1 1 1 1 1 1 0 0 1 . . . 1
1 0 1 0 1 0 1 0 1 1 1 . . . 1

] [
2
1

]
m+ 5

4.G
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 1 1 1 1 1 1 −1 1 . . . 1
1 0 1 0 1 0 1 0 1 1 . . . 1

] [
2
1

]
m+ 5

4.H
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T 2

4 +T5T 2
6 +T7T8〉

m≥0

[
0 1 0 1 0 1 1 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
2
1

]
m+ 5

4.I
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 1 1 1 1 1 1 0 1 . . . 1
1 0 1 0 1 0 1 0 1 1 . . . 1

] [
2
1

]
m+ 5

4.J
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T 2

4 +T5T6+T7T8〉
m≥0

[
0 1 0 1 1 1 1 1 0 1 . . . 1
1 0 1 0 1 0 1 0 1 1 . . . 1

] [
2
1

]
m+ 5

4.K
K[T1,...,T8,S1,...,Sm]

〈T1T 4
2 +T3T 3

4 +T5T 3
6 +T7T 3

8 〉
m≥0

[
0 1 1 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
2
1

]
m+ 5

4.L
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
2
1

]
m+ 5

4.M
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥0

[
0 1 0 1 0 1 0 1 d1 . . . dm
1 0 1 0 1 0 1 0 1 . . . 1

]
dk ≤ 0,

∑
dk = −3

[
1
1

]
m+ 5

4.N
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 0 1 0 1 0 1 d1 . . . dm
1 0 1 0 1 0 1 0 1 . . . 1

]
dk ≤ 0,

∑
dk = −2

[
1
1

]
m+ 5

4.O
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 3

4 +T5T 3
6 +T7T 3

8 〉
m≥0

[
0 1 0 1 0 1 0 1 −1 0 . . . 0
1 0 1 0 1 0 1 0 1 1 . . . 1

] [
1
1

]
m+ 5

4.P
K[T1,...,T8,S1,...,Sm]

〈T1T 4
2 +T3T 4

4 +T5T 4
6 +T7T 4

8 〉
m≥0

[
0 1 0 1 0 1 0 1 0 . . . 0
1 0 1 0 1 0 1 0 1 . . . 1

] [
1
1

]
m+ 5

5
K[T1,...,T8,S1,...,Sm]

〈T1T2+T 2
3 T4+T 2

5 T6+T 2
7 T8〉

m≥0

[
0 2a + 1 a 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 1 0 0 . . . 0

]
a ≥ 0, m = 3a

[
2a + 2

1

]
m+ 5
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6
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T 2
5 T6+T 2

7 T8〉
m≥0

[
0 2a3 + 1 a1 a2 a3 1 a3 1 1 . . . 1
1 1 1 1 1 0 1 0 0 . . . 0

]
0 ≤ a1 ≤ a2, 0 ≤ a3,

m = 4a3 + 1

[
2a3 + 2

1

]
m+ 5

7
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T 2
7 T8〉

m≥1

[
0 2a5 + 1 a1 a2 a3 a4 a5 1 1 . . . 1
1 1 1 1 1 1 1 0 0 . . . 0

]
ai ≥ 0,

a1 + a2 = a3 + a4 = 2a5 + 1,
m = 5a5 + 2

[
2a5 + 2

1

]
m+ 5

8
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m=6

[
0 0 0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

] [
1
2

]
m+ 5

9
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 a1 a2 a3 a4 a5 a6 a7 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

]
ai ≥ 0,

a1 = a2 + a3 = a4 + a5 = a6 + a7,
m = 3a1

[
a1 + 1

1

]
m+ 5

10
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 1 0 d2 . . . dm

]
0 ≤ d2 ≤ · · · ≤ dm, 0 < dm ≤ 6
m · dm = 6 + d2 + . . . + dm

[
1

dm + 1

]
m+ 5

11
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m=5

[
1 1 1 1 1 1 1 0 . . . 0
−1 1 0 0 0 0 0 1 . . . 1

] [
1
2

]
m+ 4

12
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
1 1 1 1 1 1 1 0 . . . 0
0 2a5 a1 a2 a3 a4 a5 1 . . . 1

]
2a5 = a1 + a2 = a3 + a4,

ai ≥ 0
m = 5a5

[
2a5 + 1

1

]
m+ 4

13
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
1 1 1 1 1 1 1 0 d2 . . . dm
0 0 0 0 0 0 0 1 1 . . . 1

]
0 ≤ d2 ≤ . . . ≤ dm

m · dm = 5 + d2 + . . . + dm

[
1

dm + 1

]
m+ 4

Moreover, each of the listed data defines a smooth truly almost Fano arrangement variety
of complexity two and Picard number two.
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admissible operations, 26
algebra of invariants, 10
algebraic group, 9
anticanonical complex, 40
anticanonical polyhedron, 40
arrangement variety, 99

basic platonic triple, 66, 69
big representative, 84
bunch

F-, 12
true, 12

bunched ring, 12

canonical toric embedding, 13
character, 9
character group, 9
characteristic quasitorus, 89
characteristic space, 9, 89
complete intersections, 14
cone, 11

X-relevant, 26, 90
big, 101
dimension, 11
dual, 11
elementary big, 101

face, 11
facet, 11
GIT, 14
lattice, 11
leaf, 26, 101
pointed, 11
ray, 11

Cox ring, 8
Cox rings

iteration of, 65
Cox sheaf, 8

degree vectors, 14
divisor

doubling, 84
prime, 7
principal, 7
Weil, 7

divisor class group, 7
divisorial sheaf, 7

elliptic, 30
envelope, 13

fan, 11
complete, 11
lattice, 11
support, 11

grading
almost free, 11, 18
effective, 95
factorial, 8
pointed, 95
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hyperbolic, 30
hyperplatonic, 66

intrinsic quadric, 100
irredundant, 26, 99

lineality part, 26

maximal orbit quotient, 84
MDS, 9
minimal ambient toric variety, 92
minimal toric ambient variety, 27
Mori Dream Space, 9

orbit cone, 14

parabolic, 30
Picard group, 7
Picard number, 7
platonic ring, 37
platonic triple, 66
platonic triples, 37
platonic tuple, 37

quasifan, 11
quasismooth, 103
quasitorus, 9
quotient

geometric, 10
good, 10

relevant face, 12

semistable points, 14
sheaf of divisorial algebras, 8
singularity

canonical, 39
log terminal, 39
terminal, 39

torus, 9
total coordinate space, 9, 89
tropical variety, 26

variety
A2-maximal, 13, 19

A2-property, 12, 84
G-, 9
complexity, 95
toric, 11
Type 1, 15, 16, 36, 94
Type 2, 15, 16, 37, 94

weight cone, 14
weight monoid, 14
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