
 

 

 

Physiological properties of mature adult-born neurons 

in the olfactory bulb of awake mice 

 

 

 

 

 

 

Dissertation 

 

zur Erlangung des Grades eines 

Doktors der Naturwissenschaften 

 

 

der Mathematisch-Naturwissenschaftlichen Fakultät 

und 

der Medizinischen Fakultät 

der Eberhard-Karls-Universität Tübingen 

 

 

 

vorgelegt 

von 

 

Natalie Fomin-Thunemann 

aus Omsk, Russland 

 

Januar 2018 

 

  



  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Tag der mündlichen Prüfung:    16. April 2018  

 

Dekan der Math.-Nat. Fakultät:  Prof. Dr. W. Rosenstiel 

Dekan der Medizinischen Fakultät: Prof. Dr. I. B. Autenrieth 

 

1. Berichterstatter:        Prof. Dr. Olga Garaschuk 

2. Berichterstatter:       Prof. Dr. Bernd Antkowiak 

 

Prüfungskommission:     Prof. Dr. Thomas Euler 

Prof. Dr. Konrad Kohler 

 

       

 

 



 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Erklärung / Declaration: 
 
Ich erkläre, dass ich die zur Promotion eingereichte Arbeit mit dem Titel: “Physiologi-
cal properties of mature adult-born neurons in the olfactory bulb of awake mice“ selb-
ständig verfasst, nur die angegebenen Quellen und Hilfsmittel benutzt und wörtlich 
oder inhaltlich übernommene Stellen als solche gekennzeichnet habe. Ich versichere 
an Eides statt, dass diese Angaben wahr sind und dass ich nichts verschwiegen ha-
be. Mir ist bekannt, dass die falsche Abgabe einer Versicherung an Eides statt mit 
Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft wird. 

I hereby declare that I have produced the work entitled “Physiological properties of 
mature adult-born neurons in the olfactory bulb of awake mice”, submitted for the 

award of a doctorate, on my own (without external help), have used only the sources 
and aids indicated and have marked passages included from other works, whether 

verbatim or in content, as such. I swear upon oath that these statements are true and 
that I have not concealed anything. I am aware that making a false declaration under 
oath is punishable by a term of imprisonment of up to three years or by a fine. 

 

 

Tübingen, den .........................................       ............................................................. 

    Datum / Date   Unterschrift /Signature  



  





 

i 
 

Abstract 

The adult brain undergoes various forms of plasticity. Besides synaptic plasticity 

where connections between neurons are strengthened or weakened, another form of 

plasticity is the addition of new neurons into the pre-existing neuronal network 

throughout life. It is believed that this form of neuronal plasticity adjusts the behavior 

to the ever-changing environment. In the mammalian brain, continuous addition of 

‘adult-born cells’ (ABCs) has been observed in the olfactory bulb (OB) and the hippo-

campus. ABCs migrate into the OB, mature to GABAergic cells – juxtaglomerular 

cells and granule cells – and integrate into the existent neuronal network. These 

ABCs are believed to be involved in many olfactory functions, as for instance odor 

detection, odor discrimination, and olfactory learning. In vivo measurements in anes-

thetized mice suggest that adult-born juxtaglomerular cells mature at 8-9 weeks of 

age and acquire physiological properties that are similar to that of pre-existing, resi-

dent cells. Yet, a few studies reported that even after maturation, some physiological 

properties remain different. However, all these comparisons have been performed in 

anesthetized animals and since several years it is clear that brain activity changes 

under anesthesia. Therefore, the major goal of this work was to test whether mature 

ABCs (mABCs) in awake animals retain unique features that distinguish them from 

resident GABAergic (ResGABA) cells. 

For this, we labeled mABCs and ResGABA cells via viral transduction with the genet-

ically encoded calcium (Ca2+) indicator Twitch-2B and performed two-photon-based 

Ca2+ measurements in awake head-restrained mice. We measured basal Ca2+ levels 

(i.e., Ca2+ levels recorded in the absence of any experimental manipulation) and 

found that they are similar between mABCs and ResGABA cells. In order to measure 

odor-evoked Ca2+ signals, we applied the odorant ethyl tiglate in front of the mouse 

snout and observed that, compared to ResGABA cells, fewer mABCs responded to 

odor application. Furthermore, the odor-evoked responses showed lower reliability 

upon repeated odor application, but reached higher levels than in ResGABA cells. In 

addition, we tested if anesthesia-induced alterations in brain state modulate mABCs 

differently than ResGABA cells. Under anesthesia, basal Ca2+ levels of both, mABCs 

and ResGABA cells, were reduced. One specific anesthetic mixture, ketamine/xylazine 

anesthesia, reduced basal Ca2+ levels significantly stronger in mABCs than in ResGA-
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BA cells, indicating that mABCs might have a higher sensitivity to NMDA receptor 

blockers compared to ResGABA cells. Furthermore, under anesthesia, mABCs re-

sponded to odorant application more reliably but still less often compared to ResGABA 

cells. The odor-evoked responses reached again higher levels. Anesthetic agents are 

known to modulate the brain state by affecting the ascending reticular activating sys-

tem (ARAS). ARAS centers give rise to various centrifugal fibers that project to the 

OB and target GABAergic cells. These centrifugal fibers arising from the locus co-

eruleus, dorsal raphe nucleus, and basal forebrain, release noradrenaline, serotonin, 

and acetylcholine, respectively. In addition, these projections were reported to target 

ABCs and to promote their survival. We tested if the centrifugal projections target 

mABCs differently compared to ResGABA cells. In response to application of choliner-

gic receptor blockers, both mABCs and ResGABA cells showed a drop in basal Ca2+ 

levels. Surprisingly, however, only mABCs showed a drop in basal Ca2+ levels in the 

presence of the serotonergic receptor blocker methysergide.  

Thus, our results demonstrate that mABCs differ from ResGABA cells in (1) odor-

response properties, (2) modulation by K/X anesthesia, and (3) innervation by sero-

tonergic fibers or responsiveness to activation of serotonin receptors. Larger Ca2+ 

signals in mABCs in response to odor application might be relevant in the context of 

activity-dependent plasticity as a basis of olfactory learning, the function suggested 

for mABCs. The observation that serotonergic inputs might innervate specifically 

mABCs indicates that mABCs could exert a specific function via serotonin, such as 

sensory gain control in dependence of the brain state of the animal. 
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Zusammenfassung 

Im adulten Gehirn existieren verschiedene Formen neuronaler Plastizität. Neben der 

Plastizität synaptischer Verbindungen werden während des gesamten Lebens neu-

geborene Nervenzellen in bestehende neuronale Netzwerke hinzugefügt (adulte Neu-

rogenese). Es wird angenommen, dass adulte Neurogenese die Anpassung des Ver-

haltens an eine sich ständig verändernde Umwelt erlaubt. In Säugetieren wurde die 

kontinuierliche Einwanderung von adult-geborenen Nervenzellen in Riechkolben und 

Hippocampus nachgewiesen. Adult-geborene Zellen wandern in den Riechkolben 

ein, reifen zu GABAergen Nervenzellen (juxtaglomeruläre Zellen und Körnerzellen) 

heran und integrieren sich in das bestehende neuronale Netzwerk. Von diesen adult-

geborenen Zellen wird angenommen, dass sie an vielen Funktionen des Riechsys-

tems beteiligt sind, unter anderem Geruchsdetektion, Geruchs-diskriminierung und 

olfaktorisches Lernen. In-vivo-Untersuchungen in anästhesierten Mäusen legen na-

he, dass juxtaglomeruläre Zellen im Alter von 8-9 Wochen ausreifen und physiologi-

sche Eigenschaften bekommen, die denen bereits existierender (residenter) Zellen 

ähnlich sind. Einige Studien berichten jedoch, dass auch nach der Reifung einige 

physiologische Eigenschaften unterschiedlich bleiben. All diese Vergleiche wurden 

jedoch in anästhesierten Tieren durchgeführt, was neuronale Aktivitätsmuster im 

Vergleich zum Wachzustand stark verändern kann. Daher war das Hauptziel dieser 

Arbeit in wachen Tieren zu testen, ob reife adult-geborene Zellen im Riechkolben 

physiologische Merkmale behalten, die sie von residenten GABAergen Zellen unter-

scheiden. 

Dazu wurden adult-geborene und residente GABAerge Zellen über eine virale Trans-

duktion mit dem Calcium-Sensorprotein Twitch-2B genetisch markiert und in wachen, 

fixierten Mäusen Zweiphotonen-Messungen durchgeführt. Basale Ca2+-Spiegel (in 

Abwesenheit jeglicher experimenteller Manipulation aufgezeichnet) sind zwischen 

adult-geborenen und residenten GABAergen Zellen ähnlich. Um Ca2+-Signale in 

Antwort auf Duftstoffstimulation zu messen, applizierten wir Ethyltiglat und beobach-

teten, dass weniger adult-geborene Zellen auf Duftstoffapplikation reagieren. Darüber 

hinaus zeigten die Duftstoff-evozierten Ca2+-Signale eine geringere Zuverlässigkeit 

bei wiederholter Duftstoffapplikation, erreichten jedoch höhere Ca2+-Spiegel als resi-

dente GABAerge Zellen. Zusätzlich wurde getestet, ob durch Anästhesie hervorgeru-
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fene Veränderungen des Hirnzustands adult-geborene Zellen anders modulieren als 

residente GABAerge Zellen. Anästhesie reduzierte die basalen Ca2+-Spiegel von 

adult-geborenen und residenten GABAergen Zellen. Hier reduzierten Keta-

min/Xylazin basale Ca2+-Spiegel signifikant stärker in adult-geborenen als in residen-

ten GABAergen Zellen, was darauf hindeuten könnte, dass adult-geborene Zellen 

eine höhere Empfindlichkeit gegenüber NMDA-Rezeptorblockern aufweisen. Unter 

Anästhesie reagierten adult-geborene Zellen zuverlässiger, aber immer noch seltener 

als residente GABAerge Zellen. Die Duftstoff-evozierten Ca2+-Signale erreichten 

auch hier höhere Werte. Anästhetika modulieren den Gehirnzustand durch Beeinflus-

sung des aufsteigenden retikulären Aktivierungssystems (ARAS). ARAS-Zentren 

senden verschiedene Nervenfasern aus, von denen einige den Riechkolben errei-

chen und dort GABAerge Zellen innervieren. Diese Nervenfasern kommen aus Locus 

Coeruleus, dorsalem Raphe-Kern und basalem Vorderhirn und setzen Noradrenalin, 

Serotonin, bzw. Acetylcholin frei. Es wurde berichtet, dass diese Nervenfasern auch 

adult-geborene Zellen innervieren und deren Überleben fördern. Hier haben wir ge-

testet, ob die Modulation dieser Nervenfasern sich unterscheidlich auf adult-geborene 

und residente GABAerge Zellen auswirkt. Cholinerge Rezeptorblocker führten bei 

adult-geborenen und residenten GABAergen Zellen zu einer Reduktion des basalen 

Ca2+-Spiegels. Überraschenderweise führte der serotonerge Rezeptorblocker Methy-

sergide nur bei adult-geborenen Zellen zu einer Reduktion des basalen Ca2+-

Spiegels. 

Diese Ergebnisse zeigen, dass sich reife adult-geborene Zellen von residenten GA-

BAergen Zellen in (1) Duftstoff-evozierter Aktivität, (2) Modulation durch Keta-

min/Xylazin-Anästhesie und in (3) serotonerger Innervierung oder ihrer Empfindlich-

keit auf die Aktivierung von Serotoninrezeptoren unterscheiden. Größere Ca2+-

Signale bei Duftstoffapplikation in adult-geborenen Zellen könnten mit aktivitätsab-

hängiger Plastizität als Grundlage für olfaktorisches Lernen im Zusammenhang ste-

hen. Die Beobachtung, dass serotonerge Nervenfasern eventuell ausschliesslich rei-

fe adult-geborene Zellen innervieren, zeigt, dass diese eine über Serotonin vermittel-

te Funktion ausüben könnten, wie z. B. die Filterung von sensorischen Reizen in Ab-

hängigkeit vom Gehirnzustand.  
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1 Introduction  

1.1 The olfactory sensory system 

The olfactory sensory system is an evolutionarily old sensory system conserved 

throughout species (Ache and Young 2005). It mediates a vast variety of odor-guided 

behaviors important for survival in mammals (Ache and Young 2005; Pinto 2011), like 

searching for food, finding a sexual partner, mother-child interactions, predator 

avoidance, and avoidance of dangerous odorants arising from spoiled food or fire. In 

addition, olfactory stimuli have an influence on emotions and moods in humans 

(Kadohisa 2013). Loss of smell (anosmia) in humans increases health risks arising 

from spoiled food and dangerous vapors such as gas and fire (Doty 2005). The ability 

to smell declines naturally with age (Doty and Kamath 2014), but can as well be di-

minished through mechanical or chemical damage to the nose epithelium (Doty 2005; 

Doty 2017). A mild-to-severe loss of smell has been considered as an early marker of 

neurodegenerative diseases such as Alzheimer’s or Parkinson’s disease (Godoy et 

al. 2015), which is detectable decades before other disease-related symptoms like 

memory or motor impairments become apparent (Ross et al. 2008; Devanand et al. 

2015).  

In the environment, various odorants from different sources are intermixed. The olfac-

tory system is able (1) to detect the odor signal of interest within this noisy environ-

ment, (2) to extract the signal from a changing and complex odor background, and (3) 

to associate it with previously experienced odors. Unlike other sensory systems, the 

olfactory system does not relay sensory information via the thalamus to the olfactory 

cortex but sends signals from the sensory neurons via the olfactory bulb (OB), which 

is the first processing stage of olfactory signals, to the olfactory cortex. Odorants acti-

vate olfactory sensory neurons (OSNs), which reside in the olfactory epithelium of the 

nasal cavity. OSNs transmit the signal to the OB where their axons congregate into 

spherical structures called glomeruli (Mombaerts et al. 1996)(Figure 1). In rodents, 

each OSN expresses only one out of ~1000 odorant receptors, but these receptors 

can bind a variety of related odorants. OSNs expressing the same odorant receptor 

converge onto one or two glomeruli per hemibulb (Vassar et al. 1994). Within glo-

meruli, OSN inputs can either activate the principal neurons directly, which are called 

mitral cells (MCs) and tufted cells (TCs), summarized as ‘M/Ts’, or OSN inputs are 
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first processed by a group of interneurons, collectively referred to as ‘juxtaglomerular 

cells’ (Nagayama et al. 2014). 

 

Figure 1. Schematic representation of the mouse olfactory bulb. 
(A) In the nose, odorants can enter through the nasal cavity (NC) and access the olfactory epithelium 
(OE), where they bind to the receptors of olfactory sensory neurons (OSNs). Upon activation, OSNs 
send the signal via their axons to the olfactory bulb (OB). Figure modified from Ferrero and Liberles 
(2010). (B) In the OB, axons from OSNs terminate in spherical structures called glomeruli. In glomeru-
li, the signal can be processed by excitatory external tufted cells (ETCs) and inhibitory short axon cells 
(SACs) and periglomerular cells (PGCs), before it is forwarded to the output neurons, mitral cells 
(MCs) and tufted cells (TCs), summarized as ‘M/Ts’. M/Ts form synapses with inhibitory granule cells 
(GCs) in deeper layers. Another type of inhibitory cell, the deep SAC (dSAC), inhibits GCs. In the end, 
the computed signal leaves the OB via axons of MCs and TCs to the olfactory cortex. Inhibitory cells 
receive neuromodulatory inputs (as described in section 1.4.1). Illustration modified from Lepousez et 
al. (2013). ONL, olfactory nerve layer; GL, glomerular layer; EPL, external plexiform layer; MCL, mitral 
cell layer; GCL, granule cell layer. 
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Compared to most other central nervous system regions, an unique feature of the 

olfactory system is the relation of inhibitory cells (which release the neurotransmitter 

gamma-aminobutyric acid, GABA) to excitatory cells (which release the neurotrans-

mitter glutamate): inhibitory interneurons outnumber excitatory principal cells by ap-

proximately 100:1 (Imai 2014). The juxtaglomerular cells are composed of inhibitory 

periglomerular cells (PGCs) and short-axon cells (SACs), as well as excitatory exter-

nal tufted cells (ETCs). In deeper layers of the OB, M/Ts can be inhibited by granule 

cells (GCs) before they transfer the output signal to the olfactory cortex (anterior ol-

factory nucleus, olfactory tubercle, and piriform cortex), the cortical nucleus of the 

amygdala and the entorhinal area (Kevetter and Winans 1981; Shepherd 2004; 

Wilson and Mainen 2006). GCs in the deeper layer account for about 90% of all bulb-

ar interneurons (Shepherd et al. 2007), and PGCs together with SACs make up the 

remaining 10% in the superficial glomerular layer. In the glomerular layer, half of the 

juxtaglomerular cells are GABAergic PGCs and SACs, and half are glutamatergic 

ETCs (Parrish-Aungst et al. 2007). The initial information about odorant identity and 

intensity is thought to be extracted by bulbar interneurons in the glomerular layer as 

well as in the deeper external plexiform and granule cell layer. One conceivable way 

to achieve this extraction might be via decorrelation of signals arriving from OSNs. 

There are several hypotheses how OSN signals could be decorrelated (Cleland and 

Linster 2005) by each cell in different OB layers, which is discussed in the following 

section.  

1.1.1 Sensory processing in the olfactory bulb 

Each cell in different OB layers is assumed to play a different role in the processing of 

olfactory signals arriving from OSNs. The inhibitory PGC is the most abundant  

GABAergic cell type in the glomerular layer (Parrish-Aungst et al. 2007). It has the 

smallest cell body among all juxtaglomerular cell types and thus a very high input 

resistance (~1 GΩ). Typically, it extends its dendrites to a single glomerulus, only 

occasionally to multiple glomeruli. In this one particular glomerulus, the PGC is 

thought to mediate ‘intra-glomerular’ inhibition of M/Ts and juxtaglomerular cells in 

addition to presynaptic feedback-inhibition of OSNs (McGann et al. 2005; Murphy et 

al. 2005; Gire and Schoppa 2009). Intra-glomerular inhibition within one glomerulus is 

a potential mechanism to decorrelate OSN signals and to enhance contrast between 

similar odorants. ‘Contrast enhancement is a common property of sensory systems 
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that serves to narrow, or sharpen, sensory representations by specifically inhibiting 

neurons on the periphery of the representation’ (Cleland and Sethupathy 2006). 

However, in the OB, an approximately 1000-dimensional sensory space, provided by 

the around 1000 odorant receptors expressed by OSNs, is projected onto a two-

dimensional glomerular layer. Therefore, center and periphery of a receptive field are 

not necessarily located in spatially close glomeruli. Thus, a contrast enhancement 

independent of the topography of glomeruli is a more likely property of this sensory 

system. This ‘nontopographical contrast enhancement hypothesis’ proposes that an 

inhibitory PGC within a glomerulus, which receives a weak input, will be excited be-

fore excitatory cells (ETCs or M/Ts) because the PGC has a higher input resistance 

(Cleland and Sethupathy 2006; Gire and Schoppa 2009). Then, the PGC would inhib-

it excitatory cells in this glomerulus. In comparison, a strong input in another glomeru-

lus could excite excitatory cells directly, and M/Ts could forward the signal to the ol-

factory cortex. Thus, only the strong and not the weak input would be transmitted, 

resulting in less noisy signals arriving in the olfactory cortex. Furthermore, PGCs are 

thought to inhibit OSNs via GABAB receptors. Several studies investigated the under-

lying mechanism of this feedback inhibition (Aroniadou-Anderjaska et al. 2000; 

McGann et al. 2005; Murphy et al. 2005; Wachowiak et al. 2005; Vucinic et al. 2006). 

Research suggests that feedback inhibition on OSNs is dependent on sensory activi-

ty (strength of odorant stimulus, sampling frequency of the nose) or spatial distribu-

tion of glomeruli. Pirez and Wachowiak challenged this idea in 2008 by in vivo exper-

iments demonstrating that inhibition is not necessarily dependent on sensory activity, 

but rather tonically present even before an odorant is presented (Pirez and Wachowi-

ak 2008). Presynaptic inhibition is thought to be necessary for several reasons (re-

viewed in McGann (2013)): first, the OSN synapse has an unusually high release 

probability, and without controlled inhibition, the vesicle pool would be rapidly deplet-

ed at high firing rates. Second, the dynamic range of response amplitudes to various 

odorant concentrations can be extended by shifting the level at which OSNs would 

saturate to a higher value. Third, tonic inhibition could serve as a gain control limiting 

sensory input as a function of the animal’s brain state and behavior. Indeed, Petzold 

and colleagues showed that the presynaptic inhibition of OSNs is regulated by sero-

tonergic inputs from the dorsal raphe nucleus in the brain stem (Petzold et al. 2009) 

and serotonergic neurons are known to change their activity depending on brain state 

(Jacobs and Azmitia 1992; Jones 2005). In conclusion, the suggested function of 
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PGCs is to decorrelate signals via intra-glomerular inhibition and to control the re-

lease of glutamate from OSNs via presynaptic inhibition. 

Inter-glomerular inhibition, i.e., inhibition between glomeruli, is thought to be mediated 

by the inhibitory SACs and might serve lateral contrast enhancement (Cleland and 

Linster 2005). The cell bodies of SACs are slightly larger than the cell bodies of 

PGCs, and their dendrites course in the inter-glomerular space. SACs can extent 

their dendrites and contact 5-12 glomeruli (oligo-glomerular) or more than 30 glomer-

uli (poly-glomerular) (Kiyokage et al. 2010). As a result, SACs, in contrast to PGCs, 

can inhibit glomerular cells in far-distanced locations within the OB and not only in the 

glomerulus where they received synaptic input. The current model is that those SACs 

that receive a strong excitatory input from OSNs would inhibit weakly activated M/Ts 

in neighboring or distant glomeruli.  

Lateral contrast enhancement was also suggested for GCs in the external plexiform 

layer. Here, a GC activated by a strongly activated M/T cell can inhibit weakly acti-

vated neighboring M/T cells via reciprocal dendro-dendritic synapses laying in the 

external plexiform layer. Besides contrast enhancement, another suggested function 

of GCs in the OB is facilitation of MC synchronizations and network oscillations 

(Bathellier et al. 2006; Lagier et al. 2007).  

In summary, bulbar interneurons seem to be essential for the extraction of odorant 

identity and intensity from OSN inputs via intra- and inter-glomerular inhibition before 

the signal is forwarded by M/Ts to higher cortical areas. Another suggested function 

of PGCs is to adjust the sensory inputs of OSNs; while an additional suggested func-

tion of GCs is to facilitate MC synchronization.  

1.2 Adult neurogenesis in the olfactory bulb 

Contrary to the previous acknowledged dogma that the adult brain loses its potential 

to regenerate and refine synaptic connections after development, it has been shown 

that an established mature neuronal network can undergo various forms of plasticity 

(Holtmaat and Svoboda 2009; Yang and Zhou 2009; Piochon et al. 2016). One form 

is structural plasticity, where new synaptic connections are formed or existing con-

nections are eliminated; another form is molecular plasticity, where synaptic connec-

tions are strengthened or weakened (Holtmaat and Svoboda 2009; Yang and Zhou 
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2009; Piochon et al. 2016). These refinements are thought to enable some flexibility 

in the response to new signals arising from complex and ever-changing environ-

ments. In addition to these refinements, a new form of neuronal plasticity was discov-

ered in the last few decades: the addition of entirely new neurons into a pre-existing 

functional network, called ‘neurogenesis’ (Gage 2004). Here, new connections can be 

formed with neurons that have not been present before. Neither is it understood why 

entirely new neurons need to arise and structural/molecular plasticity is not sufficient, 

nor how connectivity and function of the network are preserved when new neurons 

integrate. Interestingly, in more complex nervous systems, neurogenesis seems to be 

less prominent (Kaslin et al. 2008), which could imply that integrity of complex neu-

ronal circuits is incompatible with neurogenesis. In contrast to other vertebrates like 

birds and fishes, which show widespread neurogenesis in many brain regions (Kaslin 

et al. 2008), in mammalians, neurogenesis has only been observed in two brain re-

gions: hippocampus and OB (Ming and Song 2011).  

Thousands of these new ‘adult-born cells’ (ABCs) arrive every day in the OB after 

migrating from the subventricular zone (SVZ), which is a layer of tissue covering the 

walls of the lateral ventricles. In turn, elimination of neurons in the OB was also 

shown to take place (Sawada et al. 2011). In the rodent SVZ, neural stem cells give 

rise to neuroblasts (Doetsch et al. 1999), which migrate several days via the rostral 

migratory stream (RMS) into the OB (Lois and Alvarez-Buylla 1994)(Figure 2). More 

than 95% of these cells terminate their migration in deeper layers of the OB and be-

come inhibitory GCs, while the remaining 5% migrate further radially to the glomeru-

lar layer and become mainly PGCs and, to a lesser extent, SACs (Alvarez-Buylla and 

Garcia-Verdugo 2002; Lledo and Saghatelyan 2005).  
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Figure 2. Production, migration, and integration of adult-born cells (ABCs). 
ABCs arise from stem cells in the subventricular zone (SVZ) and migrate along the rostral migratory 
stream (RMS) to the olfactory bulb (OB). There, they migrate radially into the granule cell layer to be-
come GCs and into the glomerular layer to become PGCs and SACs. One part of the ABCs dies, and 
the other part differentiates into mature cells and integrates into the pre-existing circuitry (modified 
after Lledo et al. (2006)). LV, lateral ventricle; E, epithelial cell; DG, dentate gyrus; Hipp, hippocampus.  

It has been postulated that these ABCs enable a new form of plasticity for the neu-

ronal system to adapt to the ever-changing environment. Thus, ABCs are suggested 

to detect new signals compared to pre-existing, resident cells. This hypothesis was 

tested by presentation of novel signals and subsequent measurement of ABCs’ activi-

ty. In the OB, Magavi and colleagues showed that presentation of novel odorants in-

creased the expression of the immediate-early gene Arc, a marker for neuronal activi-

ty, in adult-born but not resident olfactory GCs (Magavi et al. 2005). In the hippocam-

pus, a different study by Danielson et al. showed in awake mice that adult-born GCs 

are crucial for the discrimination between novel and familiar contexts: by optogenetic 

silencing of adult-born GCs in the hippocampus, contextual discrimination was im-

paired (Danielson et al. 2016). Since ABCs were shown to detect new signals, it 

raised the question what would happen if signals from the environment are blocked. 

When sensory signals to the OB were blocked by closure of one nostril (naris occlu-

sion), survival of ABCs was reduced in the respective hemibulb (Mandairon et al. 

2006). On the other hand, an increase in sensory inputs via enrichment with odorants 
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has been shown to increase survival of ABCs in the OB (Rochefort et al. 2002; Bovet-

ti et al. 2009; Bonzano et al. 2014). Thus, ABCs seem to be important for detection of 

new signals, and their survival depends on olfactory signals from the environment. 

Furthermore, it was observed that their survival is potentiated in animals undergoing 

specific behavioral tasks, like the odor discrimination task (Alonso et al. 2006), and 

that successful discrimination of odorants in this task depends on the activation of 

these neurons (Alonso et al. 2012). Reduction of adult neurogenesis impaired the 

animal’s performance in odor discrimination tasks (Gheusi et al. 2000; Enwere et al. 

2004). Besides detection and discrimination of odorants, it is believed that ABCs con-

tribute to plasticity within the system, which is potentially required to learn new odor-

driven behaviors, e.g. remembering to act in response to one specific odorant but not 

to another. Several studies confirmed their contribution to learning processes: ABCs 

have been shown to influence short-term olfactory memory (Rochefort et al. 2002; 

Breton-Provencher et al. 2009; Pan et al. 2012; Wang et al. 2015), long-term olfacto-

ry memory (Lazarini et al. 2009; Sultan et al. 2010), perceptual learning (Moreno et 

al. 2009), associative olfactory learning (Pan et al. 2012; Sakamoto et al. 2014; Wang 

et al. 2015), and fear learning (Valley et al. 2009; Pan et al. 2012). Furthermore, it 

has been described that ABCs may play a role in innate olfactory responses like 

pregnancy, mating behavior, male offspring recognition and male-male aggressive 

behavior (Shingo et al. 2003; Mak et al. 2007; Larsen et al. 2008; Feierstein et al. 

2010; Mak and Weiss 2010; Sakamoto et al. 2011).  

In several of these studies, adult neurogenesis was inhibited, and learning perfor-

mance was measured. For example, after cytosine arabinoside infusion into the lat-

eral ventricles (where the SVZ is located) or after irradiation of the SVZ with ultravio-

let (UV) light, changes in short-term but not long-term memory were observed, while 

other authors described effects on long-term, but not short-term memory. These con-

tradictory findings are a matter of discussion (Lledo et al. 2006; Lazarini and Lledo 

2011; Breton-Provencher and Saghatelyan 2012; Gheusi and Lledo 2014) and might 

be probably due to the different ways how adult neurogenesis was inhibited. As it was 

the case for sensory inputs and odor discrimination tasks, also olfactory learning in-

creases ABC survival (Moreno et al. 2009; Kermen et al. 2010; Sultan et al. 2010). 

The effect on odor discrimination and olfactory learning depends on the task and on 

the age of the ABCs (Mandairon et al. 2011; Alonso et al. 2012). Alonso et al. 



Introduction 

9 
 

showed that a direct activation of ABCs in vivo facilitated the discrimination between 

two odorants, but only when the task was difficult and involved perceptually similar 

odorants (Alonso et al. 2012). The observed effects on learning and memory were 

dependent on neuronal age (Mouret et al. 2008; Belnoue et al. 2011). Belnoue and 

colleagues showed that odorant stimulation preferentially activated immature neurons 

(around 2 weeks old) whereas associative learning based on odor discrimination acti-

vated mature neurons (5-9 weeks old) (Belnoue et al. 2011). Another function of 

ABCs has been proposed to be circuit maintenance (Cummings et al. 2014): mainte-

nance of neuronal connections is of particular interest since it is in contrast to the 

idea that newly arriving cells might distort already present connections in the neu-

ronal circuit as they form new connections. Cummings et al. described that the princi-

pal neurons of the OB, TCs, usually send their axons to the ‘partner’ glomerulus of 

the contralateral OB. There, the axons ramify in a specific constellation between the 

MC and GC layer. After blocking sensory input by naris occlusion, these ramifications 

broadened, but became refined again when the nostril was reopened. In a transgenic 

mouse where neurogenesis in the SVZ was inhibited, this refinement after nostril re-

opening was not possible anymore.  

In summary, olfactory ABCs are believed to play a role in odor detection, odor dis-

crimination, olfactory learning, innate olfactory behavior, and circuit maintenance. 

1.2.1 Comparison of adult-born and resident cells in the olfactory bulb 

As it is believed that ABCs are important for specific olfactory functions, it raised the 

question if they possess specific morphological and physiological properties. Indeed, 

it was shown that ABCs express more N-methyl-D-aspartate receptors (NMDARs) 

compared to α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors 

(AMPARs) in their plasma membrane (Grubb et al. 2008). ABCs also show different 

spontaneous activities (Belluzzi et al. 2003; Grubb et al. 2008; Livneh et al. 2014; 

Kovalchuk et al. 2015). For instance, Livneh et al. demonstrated in keta-

mine/medetomidine (K/M) anesthetized mice in vivo that 2-week-old adult-born PGCs 

had a lower spontaneous action potential (AP) firing rate than resident cells (Livneh 

et al. 2014), while Kovalchuk et al. showed in ketamine/xylazine (K/X) anesthetized 

mice, that 9-day-old adult-born PGCs had a lower spontaneous AP firing rate 

(Kovalchuk et al. 2015). Furthermore, Kovalchuk et al. described that ABCs show 
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different odor-evoked responses: odorant stimulation induced lower AP firing rates in 

9-day-old PGCs at a specific stimulus concentration (9% saturated vapor) compared 

to resident cells, while Livneh et al. showed that adult-born PGCs at 4 weeks of age 

show higher odor-evoked AP firing rates (Livneh et al. 2014). Besides spontaneous 

and odor-evoked activity, response selectivity was also reported to be different 

(Livneh et al. 2014). Livneh et al. demonstrated that 2- and 4-week-old PGCs are less 

selective, i.e. they respond to more odorants than resident cells in K/M anesthetized 

mice. ABCs also show different morphological properties when they are young com-

pared to when they mature (Mizrahi 2007; Livneh et al. 2009; Livneh and Mizrahi 

2011). It was observed that the dendritic trees of immature adult-born PGCs were 

less densely branched with a lower total dendritic branch length, lower number of 

branching points and fewer intersections compared to mature adult-born PGCs 

(Mizrahi 2007; Livneh et al. 2009; Livneh and Mizrahi 2011). In addition, Livneh et al. 

described a lower number of postsynaptic density 95 (PSD95) puncta in immature 

adult-born PGCs (Livneh et al. 2009), an indication for fewer synaptic contacts. 

These puncta were more dynamic in immature adult-born PGCs, with a higher per-

centage of newly created PSD95 puncta and a lower percentage of stable PSD95 

puncta described. Furthermore, the connectivity between adult-born GCs and MCs 

has been described to be more dynamic than the connectivity between resident GCs 

and MCs (Huang et al. 2016; Quast et al. 2017). For instance, Quast et al. analyzed 

connectivity in the context of receptive fields: when a GC has more connections with 

MCs, its receptive field is larger. The authors observed that receptive fields broad-

ened during maturation, implying that GCs receive more inputs from MCs when they 

mature. This phenomenon was shown to be activity-dependent: upon sensory depri-

vation, the connections of MCs onto adult-born GCs reduced leading to shrinkage of 

their receptive fields. The authors suggested that these plastic receptive fields could 

act as a substrate for olfactory learning. 

When ABCs mature, the ratio of AMPARs/NMDARs increases: these ‘typical mature’ 

glutamatergic synapses were observed in adult-born PGCs/SACs at 45 days of age 

(Grubb et al. 2008). Also spontaneous activity of ABCs becomes similar to resident 

cells as they mature: Livneh et al. showed for 8-to-9-week-old and Kovalchuk et al. 

for 7-to-13-week-old adult-born PGCs that their AP firing rates matched the firing 

rates of resident cells (Livneh et al. 2014; Kovalchuk et al. 2015). In both studies, 
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odor-evoked AP firing rates of mature adult-born PGCs and resident cells were simi-

lar (Livneh et al. 2014; Kovalchuk et al. 2015). Apart from that, odor-evoked activity 

was demonstrated to become more selective during maturation and thus similar to 

that of resident cells (Livneh et al. 2014; Wallace et al. 2017). Furthermore, the dy-

namics of dendrites and spines were shown to become more stable and thus similar 

to the dynamics found in resident cells (Mizrahi 2007; Livneh et al. 2009; Livneh and 

Mizrahi 2011). According to these findings, ABCs from an age of ~7/8 weeks on are 

assumed to be ‘mature’.  

On the other hand, mature ABCs (mABCs) still showed some properties that differed 

from those of resident cells. For instance, Livneh et al. showed that mature PGCs 

become more selective to odorants than resident cells if the environment was en-

riched with odorants when PGCs were 2-5 weeks old (Livneh et al. 2014). Wallace et 

al. showed in awake mice that adult-born GC dendrites become less selective after 

odorant enrichment (Wallace et al. 2017), in contrast to Livneh’s finding for PGCs. 

However, in both cases, their selectivity was variable and dependent on sensory in-

puts from the environment. Interestingly, Wallace et al. showed that adult-born GCs 

consist of two subpopulations, one becoming more selective with maturation, and the 

other becoming less selective and instead broadening their responsiveness with mat-

uration. Thus, even when the sensory inputs from the environment were not changed, 

one subpopulation of adult-born GCs will develop differently and become distinct to 

resident cells. In the hippocampus, the second region where significant adult neuro-

genesis has been observed in mammals, Ramirez-Amaya and colleagues showed 

that adult-born GCs stay more responsive towards new environmental contexts even 

when they mature, as indicated by an increased expression of the immediate-early 

gene Arc (Ramirez-Amaya et al. 2006).  

Moreover, the dendritic morphology of mABCs remains plastic for a long time. In vivo 

time-lapse imaging studies in the OB have shown that new dendrites and spines 

were constantly formed or retracted on mature adult-born PGCs (Mizrahi 2007; 

Livneh et al. 2009; Livneh and Mizrahi 2011). Also in adult-born GCs, spines re-

mained plastic after they matured (Sailor et al. 2016). Using a linear rate model let 

Sailor et al. to suggest that this spine plasticity might serve odor discrimination during 

learning processes (Sailor et al. 2016). Besides the so far described spine remodel-

ing (addition and deletion of spines), which takes hours to days, also spine relocation 
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(extension of spine filopodia towards active dendrites) has been reported. Spine relo-

cation has been observed on adult-born GCs in the OB and was described to take 

only minutes (Breton-Provencher et al. 2016). Since this relocation happens within 

minutes and not hours, it might serve other learning processes on a faster timescale. 

This behavior was found only in adult-born GCs, but not resident GCs. Breton-

Provencher et al. performed sensory deprivation experiments and observed that filo-

podia-harboring spines were preserved after the deprivation while other spines were 

deleted. The authors speculated that this selection might help spines on GC den-

drites to find and connect to an active MC dendrite faster. A modeling approach in the 

same study suggested that filopodia extension might provide a rapid way to change 

the set of synchronized MCs and as such, odorant information processing (Breton-

Provencher et al. 2016).  

In summary, the adult brain is capable of plasticity by adding ABCs into pre-existing 

neuronal networks. In the OB, ABCs are believed to detect new signals, discriminate 

between odorants, facilitate olfactory learning, contribute to innate olfactory respons-

es, and maintain circuit specificity. Although the properties of ABCs became more 

similar to those of the pre-existing resident cells upon maturation, it has been ob-

served that they retain some morphological and physiological differences. Studies 

about the physiological properties of ABCs and resident cells have been conducted 

so far predominantly in anesthetized mice. However, it is well known that anesthesia 

has a profound effect on brain activity (see next section) and might therefore affect 

the investigation and comparison of ABCs and resident cells in the OB.  

1.3 Modulation of brain states by anesthesia 

1.3.1 Effect of anesthesia on bulbar interneurons 

Spontaneous and odor-evoked activity of olfactory GCs was shown to decrease un-

der K/X anesthesia, as well as under urethane anesthesia (Kato et al. 2012). Moreo-

ver, GCs responded less selective to odorants in the awake state but became more 

selective under anesthesia (Kato et al. 2012; Cazakoff et al. 2014). Furthermore, it 

was reported that immature adult-born GCs respond less selective to odorants com-

pared to mature adult-born GCs, and that this difference was stronger in awake state 

than under anesthesia (Wallace et al. 2017). Spontaneous and odor-evoked activities 
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of PGCs and SACs in the glomerular layer were shown to be lower under isoflurane 

anesthesia compared to the awake state (Wachowiak et al. 2013). However, in the 

study by Wachowiak et al., measurements of PGCs and SACs were performed im-

mediately after removal of isoflurane, so that the mouse has perhaps not completely 

recovered from anesthesia (see, e.g. Eger (1981)) Hence, it might be difficult to draw 

a clear conclusion from this data on how activities of PGCs and SACs change be-

tween awake and anesthetized state. As activity of OB interneurons was indicated to 

decline under anesthesia, it implies that some excitatory inputs to interneurons are 

active in the awake state, but not under anesthesia. Indeed, the OB receives centrif-

ugal projections from various brain areas that modulate the activity of interneurons 

(see section 1.4.1 and Figure 4). Boyd and coworkers observed that optogenetic acti-

vation of pyramidal neurons in the olfactory cortex increases activity in inhibitory neu-

rons in the OB (PGCs, SACs, and GCs) (Boyd et al. 2012), indicating a direct excita-

tory drive onto these interneurons. In a study by Boyd et al., the activity of centrifugal 

projections from the olfactory cortex was compared between anesthesia and awake 

state. Since the OB forwards signals to the olfactory cortex, projections from the ol-

factory cortex back to the OB are also called ‘feedback projections’. Boyd et al. la-

beled these feedback projections with a calcium (Ca2+) indicator and measured activi-

ty of their terminals in the OB; they observed that spontaneous and odor-evoked ac-

tivity in those terminals decreased when K/X or urethane anesthesia was induced 

(Boyd et al. 2015). The decrease in spontaneous activity of feedback projections un-

der anesthesia was also observed in another study (Otazu et al. 2015).  

1.3.2 The ascending reticular activating system (ARAS) 

Anesthesia is known to suppress parts of the ascending reticular activating system 

(ARAS) leading to a state comparable to non-rapid eye movement (NREM) sleep 

(see 1.3.3). The ARAS consists of the ventral and the dorsal pathway and activates 

the cortex (including the OB) in the awake state (Dringenberg and Vanderwolf 1998; 

Detari et al. 1999; Semba 2000; Jones 2003). In the following, I will focus on the ven-

tral pathway (Figure 3) which also targets the OB (see 1.4; Figure 4).  
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Figure 3. Ventral ARAS pathway excites cortex in the transition from sleep to arousal.  
The dorsal raphe nucleus (DRN), the locus coeruleus (LC), the periaqueductal gray (PAG) and the 
parabrachial nucleus (PBN) send their axons to the lateral hypothalamic (LH) and tuberomammillary 
(TM) nuclei of the hypothalamus, as well as the basal forebrain. The LH and TM nuclei also ascend to 
the basal forebrain. The basal forebrain projects to the cortex and increases cortical activity. PPT, 
pedunculopontine tegmental nuclei. Illustration modified from Lorincz and Adamantidis (2017). 

The ventral pathway of the ARAS consists of noradrenergic projections from the lo-

cus coeruleus, serotonergic projections from the dorsal raphe nucleus, dopaminergic 

projections from the periaqueductal gray and glutamatergic projections from the par-

abrachial nucleus. These projections target the lateral hypothalamic (LH) and tuber-

omammillary (TM) nuclei of the hypothalamus, as well as the basal forebrain. Projec-

tions from the LH and TM nuclei also ascend to the basal forebrain (Jones and Yang 

1985). The basal forebrain projects to the cortex (Brown et al. 2010), leading to a 

higher state of cortical excitability. As reviewed in Brown et al., firing rates of cholin-

ergic neurons from the basal forebrain correlate with cortical activation, which is 

highest during wakefulness. Like acetylcholine, noradrenaline and serotonin promote 

wakefulness in the cortex. The average firing rates of cholinergic, noradrenergic, and 

serotonergic neurons decline during NREM sleep (Brown et al. 2012). In rapid eye 

movement (REM) sleep, noradrenergic and serotonergic neurons remain silent, while 

cholinergic neurons fire at higher rates (Lee et al. 2005; Brown et al. 2012; Lee and 

Dan 2012). 

1.3.3 Action of anesthetic agents 

‘General anesthesia is a drug-induced, reversible condition that includes specific be-

havioral and physiological traits - unconsciousness, amnesia, analgesia, and akinesia 

- with concomitant stability of the autonomic, cardiovascular, respiratory, and ther-
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moregulatory systems’ (Brown et al. 2010). A critical issue in medicine and neurosci-

ence is to understand how anesthetic agents mediate the suppression of arousal and 

cause other effects seen under anesthesia, of which many can be related to modula-

tion of ARAS nuclei. Anesthetic drugs that are commonly used in mice, and which 

were used in this study are: (1) K/X, (2) 3-component narcosis (3CN), which is a 

combination of midazolam, medetomidine, and fentanyl, and (3) the volatile anesthet-

ic isoflurane. Studies tested, for instance, the effect of GABAA potentiators (such as 

midazolam), α2 adrenergic receptor agonists (such as xylazine and medetomidine) 

and opioids (such as fentanyl) onto the brain nuclei that are part of the ARAS (re-

viewed in Brown et al. (2010)). These studies reported that GABAA potentiators in-

crease the inhibition of the TMN, and thereby stop promotion of wakefulness (Nelson 

et al. 2002). The α2 adrenergic receptor agonists have been shown to inhibit release 

of noradrenaline from neurons in the locus coeruleus (Correa-Sales et al. 1992; Nel-

son et al. 2003). The electroencephalographic (EEG) patterns under α2 adrenergic 

receptor agonists closely resembled those of NREM sleep (Huupponen et al. 2008). 

Furthermore, it was described that opioids hyperpolarize cells in the periaqueductal 

gray via binding to μ, δ and κ opioid receptors. In addition, presynaptically activated 

opioid receptors can inhibit the release of acetylcholine, noradrenaline, serotonin, 

glutamate, and the neuropeptide substance P (Brown et al. 2010). Different anesthet-

ic agents act on preferred target receptors, but the number of target receptors can 

change dependent on anesthesia depth (see Table 1). Xylazine and medetomidine 

are α2 adrenergic receptor agonists and lead to a block of noradrenaline release via 

activation of α2 receptors on presynapses of noradrenergic fibers whereby me-

detomidine is ten times more specific to α2 receptors than xylazine. Isoflurane poten-

tiates GABAA receptors but was also shown to inhibit glutamatergic NMDARs, block 

AMPARs, and stimulate Kainate receptors. Furthermore, it can inhibit nicotinergic 

acetylcholine receptors (nAChRs), stimulate serotonin receptors, and interact with 

Na+ channels, L-type Ca2+ channels, and K+ channels. Moreover, midazolam and 

isoflurane potentiate the effect of the main inhibitory neurotransmitter in the spinal 

cord, glycine, inducing immobility during anesthesia. Ketamine is known to be a 

NMDAR antagonist, but it was also shown to inhibit nAChRs, to bind μ, δ and κ re-

ceptors of the opioid system and to interact with Na+ channels, L-type Ca2+ channels 

and K+ channels (Mion and Villevieille 2013). Furthermore, ketamine affects the sero-

tonergic system, stimulates the release of noradrenaline, and inhibits the reuptake of 
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catecholamines (noradrenaline, adrenaline, dopamine), provoking a hyperadrenergic 

state. This hyperadrenergic state can be decreased when ketamine is applied to-

gether with xylazine or medetomidine. 

Table 1. Actions of different anesthetic agents used in this study on neurotransmitter receptors (Rec.). 

 + denotes agonism, - denotes antagonism of the receptor, dep. means depolarization and hyp. 

means hyperpolarization of the cell after binding of the agent to the receptor. 5-HT, serotonin; NA, 

noradrenaline. 

 GABAA 
Rec 

nACh 
Rec 

5-HT 
system 

NA 
system 

AMPA 
Rec 

Kainate 
Rec 

NMDA 
Rec 

opioid 
Rec 

Na+-, Ca2+-, K+-
channels 

Ketamine  -  
 hyp 

+/- 
 hyp/dep 

+ 
 dep 

  -  
 hyp 

+  
 hyp 

+/- 
 hyp/dep 

Xylazine    + (α2) 
 hyp 

     

Medetomidine    + (α2) 
 hyp 

     

Midazolam +  
 hyp 

        

Isoflurane +  
 hyp 

-  
 hyp 

+ 
 dep 

 -  
 hyp 

+ 
 dep 

-  
 hyp 

 +/- 
 hyp/dep 

Fentanyl        +  
 hyp 

 

 

Anesthesia-induced reduction of interneuron activity in the OB, which was described 

in section 1.3.1, can have several common reasons, including potentiation of GABAA 

receptors on interneurons leading to increased inhibition, or blockade of glutama-

tergic receptors (AMPARs, NMDARs) and nAChRs on interneurons leading to de-

creased excitation. Finally, yet importantly, it was observed that centrifugal projec-

tions from the olfactory cortex (see section 1.3.1) decrease their activity under anes-

thesia and thus the excitatory drive onto interneurons could be missing. Further cen-

trifugal inputs targeting the OB are described in the following section and arise from 

the ARAS nuclei, which are suppressed by anesthesia (see section 1.3.3). 

1.4 Centrifugal inputs to the olfactory bulb 

1.4.1 Neuromodulation of the olfactory bulb neurons 

The OB receives a variety of neuromodulatory centrifugal projections from the olfac-

tory cortex, and some ARAS nuclei, namely locus coeruleus, dorsal raphe nucleus 

and basal forebrain (Shepherd 2004; Willhite et al. 2006; Mouret et al. 2009).  
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Figure 4. Centrifugal projections to the olfactory bulb.  
The OB receives glutamatergic projections from the olfactory cortex (orange), noradrenergic projec-
tions from the locus coeruleus (LC, blue), serotonergic projections from the dorsal raphe nucleus 
(green) and cholinergic projections from the basal forebrain (BF, pink). Illustration modified from Lor-
incz and Adamantidis (2017). 

The olfactory cortex provides glutamatergic inputs to the OB. These feedback pro-

jections target predominantly the GC and external plexiform layer and excite inhibito-

ry neurons: PGCs, SACs, GCs and dSACs (Boyd et al. 2012; Otazu et al. 2015). 

The locus coeruleus provides noradrenergic inputs to the external plexiform-, GC- 

and MC-layer (McLean et al. 1989; McLean and Shipley 1991). Noradrenaline binds 

to α1 adrenergic receptors on MCs resulting in depolarization (Hayar et al. 2001). 

Furthermore, noradrenaline was shown to excite or inhibit GCs via α1 or α2 adrener-

gic receptors, respectively (Nai et al. 2010). The strength of adrenergic innervation 

was reported to be sensory activity-dependent: naris occlusion increased fiber densi-

ty in the external plexiform layer (Brinon et al. 2001). The noradrenergic transmission 

in the OB was suggested to be important for odor discrimination (Doucette et al. 

2007; Mandairon et al. 2008) and olfactory learning processes (Rosser and Keverne 

1985; Brennan et al. 1990; Sara et al. 1994; Shea et al. 2008; Shakhawat et al. 

2012). Pandipati and colleagues suggested that noradrenaline might exert its effect 

on learning processes via inhibiting GCs, which would lead to MC disinhibition, so 

that MCs can fire synchronously to enable learning (Pandipati et al. 2010).  

The dorsal raphe nucleus provides serotonergic inputs predominantly to the glo-

merular layer in the OB; and this in a heterogeneous fashion (McLean and Shipley 

1987; Gomez et al. 2005). Larger glomeruli receive few serotonergic fibers, in con-
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trast to relatively smaller glomeruli, which are highly innervated by serotonergic fi-

bers. The serotonergic innervation is as well sensory activity-dependent, showing 

increased serotonergic fiber innervation after unilateral naris occlusion (Gomez et al. 

2007). Application of serotonin has been shown to depolarize tonically active jux-

taglomerular cells (Hardy et al. 2005) and stimulation of the dorsal raphe nucleus in-

creased activity of PGCs and SACs (Brunert et al. 2016). PGCs express metabo-

tropic 5-HT2C receptors. Upon activation by serotonin, PGCs release GABA and in-

hibit OSNs presynaptically (Petzold et al. 2009), enabling brain state-dependent con-

trol of odor sensitivity. On a faster timescale, serotonergic activation was also shown 

to modulate activity of the output neurons in the OB, TCs and MCs (Kapoor et al. 

2016). McLean et al. found an impairment in olfactory learning after depleting sero-

tonergic fibers in neonatal rat pups (McLean et al. 1993). Moriizumi et al. reported 

that olfactory learned avoidance of a repellent failed after serotonergic fiber depletion 

in rats. Furthermore, Moriizumi observed glomerular dystrophy, implying that seroto-

nin is involved in cell survival and circuit maintenance (Moriizumi et al. 1994). Overall, 

the suggested function of serotonin in the OB is sensory gain control and facilitation 

of learning and memory. 

The basal forebrain provides cholinergic inputs from a nucleus called ‘horizontal 

limb of the diagonal band’ (HDB). In contrast to the other centers, cholinergic projec-

tions target all bulbar layers (Macrides et al. 1981; Shipley and Adamek 1984; Za-

borszky et al. 1986; Durand et al. 1998), although there are also studies indicating a 

preference for the glomerular layer (Kasa 1986; Porteros et al. 2007). The cholinergic 

innervation in the glomerular layer is also heterogeneous (Gomez et al. 2005; 

Salcedo et al. 2011). In addition, the extent of innervation is age-dependent: cholin-

ergic innervation is sparse 2 days after birth (postnatal day 2, ‘P2’), becomes greatest 

at P12 and then declines in the adulthood (Le Jeune et al. 1996; Durand et al. 1998; 

Salcedo et al. 2011), which implies a role of cholinergic projections in postnatal de-

velopment. In the adult mouse, innervation has been shown to be sensory activity-

dependent, showing diminished cholinergic innervation after naris occlusion (Salcedo 

et al. 2011). The action of acetylcholine in the OB is controversially discussed. It has 

various effects, depending on cell type and receptor type targeted in experiments. An 

application of cholinergic receptor agonists in situ in tissue slices (Castillo et al. 1999; 

D'Souza and Vijayaraghavan 2012; D'Souza et al. 2013) or in vivo in anesthetized 
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mice (Ravel et al. 1990) induced an increase in excitability of ETCs, MCS, and PGCs, 

whereby the bipolar PGCs described in Castillo’s study rather resemble the nowa-

days classified SACs. The increase was mediated by nAChRs. Furthermore, Roth-

ermel et al. showed that M/T cell firing is enhanced after optogenetic activation of 

cholinergic terminals in the OB of anesthetized mice (Rothermel et al. 2014). Howev-

er, activation of cholinergic cells in the HDB itself led to reduced spontaneous activity 

of PGCs and M/Ts (Ma and Luo 2012). This discrepancy could arise from the differ-

ent areas used to stimulate cholinergic transmission: stimulating the HDB may lead to 

indirect inhibition of M/Ts and other bulbar neurons through different pathways than 

direct activation of cholinergic terminals in the bulb as a more immediate method to 

alter cholinergic tone in the OB. The action of acetylcholine on GCs has been report-

ed to be mediated via muscarinic acetylcholine receptors (mAChRs); GCs express 

various mAChR subtypes, which can result in either excitation via the M1 receptor 

(Castillo et al. 1999; Pressler et al. 2007), or inhibition via the M2 receptor (Kunze et 

al. 1992; Ma and Luo 2012). Activation of OB neurons by acetylcholine is believed to 

serve mainly three OB computations as reviewed in Devore and Linster (2012) and Li 

and Cleland (2013): (1) filtering of strong versus weak OSN inputs; (2) decorrelation 

of similar odorants to enhance contrast and (3) generation of gamma oscillations to 

facilitate learning and memory. These computations might underlie the so far de-

scribed function of acetylcholine, which is the improvement of performance in learn-

ing and memory. Acetylcholine release from HDB fibers was shown to be involved in 

the enhancement of sensory perception during wakefulness, particularly during peri-

ods of sustained attention (Sarter and Bruno 1997; Himmelheber et al. 2000; Jones 

2005; Hasselmo and Giocomo 2006), opposite to serotonergic action, which is high-

est during non-attentive states (Jacobs and Azmitia 1992; Jones 2005). Enhanced 

attention to sensory stimuli might be needed to facilitate sensory processing and im-

prove memory encoding. Indeed, blockade of cholinergic transmission in the OB re-

sulted in deficits in odor discrimination (Linster et al. 2001; Fletcher and Wilson 2002; 

Mandairon et al. 2006) as well as various forms of learning and memory such as ha-

bituation (Hunter and Murray 1989), odor-reward association (Roman et al. 1993) and 

short-term olfactory memory (Ravel et al. 1994). Furthermore, acetylcholine was re-

ported to switch the dynamics of the piriform cortex network between the modes of 

olfactory learning (acetylcholine ‘on’) and memory recall (acetylcholine ‘off’) (de Al-

meida et al. 2013). From a clinical perspective, it is noteworthy that cholinergic neu-
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rons degenerate early during neurodegenerative diseases (Coyle et al. 1983; Pepeu 

and Grazia Giovannini 2017) at the same time as olfaction declines (Coyle et al. 

1983; Christen-Zaech et al. 2003).  

In summary, centrifugal projections innervate different layers of the OB, whereby ser-

otonergic and cholinergic projections predominantly target the glomerular layer and 

the noradrenergic projections target the external plexiform-, GC- and MC-layer. The 

innervation of those centrifugal projections is dependent on sensory inputs, and their 

activity is dependent on brain state (awake versus sleep; low versus high attention). 

Centrifugal projections to the OB mainly excite inhibitory neurons and mediate odor 

discrimination, learning and memory, and sensory gain control.  

1.4.2 Neuromodulation of adult-born cells 

Centrifugal inputs have been shown to target ABCs (Mouret et al. 2009; Lazarini and 

Lledo 2011). For example, projections from the olfactory cortex target immature (18-

day-old) adult-born GCs (Deshpande et al. 2013). The strength of this innervation 

was increased after learning as shown in 32-day-old GCs (Lepousez et al. 2014). 

Noradrenergic projections were described to target immature adult-born GCs and 

control their survival (Bauer et al. 2003; Moreno et al. 2012). Moreover, serotonin was 

reported to influence ABCs by regulating neurogenesis: depletion of serotonin de-

creased neurogenesis in the SVZ (Brezun and Daszuta 1999) whereas injection of 

serotonin receptor antagonists increased neurogenesis (Soumier et al. 2010). In addi-

tion, in a mouse model of anxiety and depression, application of a selective serotonin 

reuptake inhibitor restored survival of ABCs and attenuated olfactory deficits (Siopi et 

al. 2016). Also cholinergic projections target immature ABCs. It was described that 

14-day-old GCs receive cholinergic projections as their first neuromodulatory input 

during development and maturation (Whitman and Greer 2007). Furthermore, cholin-

ergic projections have been shown to modulate survival of ABCs (Cooper-Kuhn et al. 

2004; Kaneko et al. 2006). Mechawar et al. found that this modulation is dependent 

on the cholinergic receptor and cell type activated (Mechawar et al. 2004): activation 

of β2-nAChRs decreased the survival of adult-born GCs but not PGCs. In summary, 

so far, it has been reported that centrifugal projections promote the survival of adult-

born immature GCs and PGCs. Anatomical projections have been investigated, to the 

best of my knowledge, only onto immature GCs, but not onto adult-born PGCs. Fur-
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thermore, no studies comparing centrifugal projections between ABCs and resident 

cells have been published. 
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1.5 Aim of this project 

The precise function of ABCs in the OB is not fully understood. Specifically, whether 

they become and remain a discrete cell population, or if they ‘simply’ replace pre-

existing resident cells. Studies suggest that ABCs become like resident cells when 

they mature, but may retain some unique properties. The aim of this work was to un-

derstand if ABCs (specifically adult-born juxtaglomerular cells) retain unique features 

after their maturation regarding (1) spontaneous activity, (2) odor-evoked activity, (3) 

modulation by brain state via anesthesia, and (4) innervation by centrifugal projec-

tions. 

Previously, the physiology of ABCs was measured predominantly in anesthetized 

animals. However, for several years it is well known that the activity of bulbar inter-

neurons differs between awake and anesthetized state (see 1.3.1). Thus, to under-

stand the genuine physiological properties of mABCs, we measured their spontane-

ous and odor-evoked activity in awake mice via measuring basal Ca2+ levels and 

odor-evoked Ca2+ signals, respectively, and compared these properties to those of 

resident cells.  

Furthermore, it was tested if the brain state modulates mABCs differently than resi-

dent cells. As brain state is changed under anesthesia (see 1.3.3), anesthetic agents 

were used to modulate the brain state, and basal and odor-evoked Ca2+ signals of 

mABCs and resident cells were measured. Various anesthetic agents share some 

target receptors but also act specifically on other receptors. To avoid modulation of 

only specific receptors by one anesthetic agent, basal Ca2+ levels in mABCs and res-

ident cells were compared under three commonly used anesthetic mixtures (K/X, 

3CN, and isoflurane) that target a wide range of receptors (see Table 1).  

Finally, brain state is regulated by the ARAS. OB neurons are known to receive cen-

trifugal projections from ARAS nuclei (1.4) and these projections target ABCs and 

promote their survival. However, if these centrifugal projections target mABCs differ-

ently compared to resident cells is unknown. Therefore, we measured basal Ca2+ 

levels of both cell types in awake mice before and after topical application of pharma-

cological agents that block centrifugal target receptors in the OB. 
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2 Materials and Methods  

2.1 Animals and viral vectors 

To label ABCs, we used predominantly lentiviral vectors as they label more cells and 

result in higher transgene expression. The HIV-based lentiviral vector (FUGW as the 

backbone, Addgene 14883) was produced by Dr. Yajie Liang and Kaizhen Li in the 

Institute for Physiology II through transfection of HEK293T cells (Thermo-Fisher Sci-

entific Inc.). To a lesser extent we used retroviruses, which were transfected in 

GPG-1F8 cells. Both vectors deliver a transgene to the cells for expression of the 

fluorescent Ca2+ indicator protein Twitch-2B. Expression was under control of ubiqui-

tin or cytomegalovirus immediate early enhancer/chicken β-actin/ß-globin (CAG) 

promotor in lentiviruses or retroviruses, respectively. Lentiviral or retroviral vectors 

were injected into the RMS of 2-to-6-month-old C57BL/6 wildtype mice (Charles Riv-

er). 

Previous studies compared ABCs to neighboring resident cells, whose transmitter 

type (GABAergic/glutamatergic) or age was unknown. However, the ABCs in the OB 

mature into GABAergic interneurons and 3% new neurons arrive every month in the 

OB and integrate into the network (Mizrahi et al. 2006; Ninkovic et al. 2007; Brill et al. 

2009). Thus, approximately 50% of neighboring cells is glutamatergic and one part is 

newborn. Therefore, in our study, we planned to compare mABCs to mature resident 

GABAergic cells (ResGABA cells). To label GABAergic cells in the OB, we used the 

transgenic mouse strain Viaat-Cre (B6.FVB-Tg(Slc32a1-cre)2.1Hzo/FrkJ; The Jack-

son Laboratories). ‘Viaat’ is the abbreviation for ‘vesicular inhibitory amino acid trans-

porter’ and so expression is directed to inhibitory cells. Chao and colleagues reported 

specific Cre expression in GABAergic neurons in this mouse strain (Chao et al. 

2010). The Viaat-Cre transgenic mice were injected at young age (3-to-4-week-old) 

with an adeno-associated virus (AAV) carrying a Cre-inducible transgene for Twitch-

2B expression under control of the synapsin promotor 

(AAV1.CAG.Flex.Twitch2B.WPRE.SV40, Addgene 49531M; Penn Vector Core, Uni-

versity of Pennsylvania). Around 6 months after AAV injection, two-photon imaging 

was started, so that labeled GABAergic cells had time to mature.  
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C57BL/6 wildtype mice and Viaat-Cre transgenic mice of both sexes were kept under 

a 12-hour-light-12-hour-dark cycle with free access to food and water in the facilities 

of the Pharmacology and Toxicology Institute, University of Tübingen. All experi-

mental procedures were performed in accordance with institutional animal welfare 

guidelines and were approved by the government of Baden-Württemberg, Germany. 

2.2 Viral transfection to express a Ca2+ indicator in target cells 

2.2.1 The genetically encoded Ca2+ indicator Twitch-2B 

The Ca2+ indicator used in this project was the genetically encoded ratiometric Ca2+ 

indicator Twitch-2B (Thestrup et al. 2014), which consists of two fluorescent proteins, 

or ‘fluorophores’, (mCerulean3 and cpVenusCD) and a troponin C-derived Ca2+ bind-

ing linker. Each of the fluorophores can be excited with a specific wavelength and 

emit at longer wavelengths. Upon binding of Ca2+ ions, the indicator changes its con-

formation, and the fluorophores move closer and change their orientation to each 

other (Figure 5A). In a distance (and orientation)-dependent manner, Förster reso-

nance energy transfer (FRET) (Förster 1948) occurs from the donor fluorophore 

mCerulean3 to the acceptor fluorophore cpVenusCD. With an increase in FRET effi-

ciency, mCerulean3 fluorescence decreases while cpVenusCD fluorescence increas-

es. Thus, an increase of the cpVenusCD/mCerulean3 ratio indicates an increased lev-

el of Ca2+ ions. When expressed in a cell, the rise in cpVenusCD/mCerulean3 ratio 

indicates an increased level of Ca2+ ions in the cell’s cytosol. Since the indicator is a 

ratiometric Ca2+ indicator based on FRET between the two fluorophores, it can detect 

basal Ca2+ levels, recorded in the absence of any experimental manipulation, as well 

as sensory-evoked Ca2+ signals. Upon rise in Ca2+ concentration after sensory stimu-

lation, the increase in the cpVenusCD/mCerulean3 ratio (from now on  

‘cpVenus/mCerulean ratio’ or simply ‘ratio’) can be displayed as ΔR/R; whereby ΔR is 

the difference between the ratio during stimulation minus the baseline ratio before 

stimulation. This difference is divided by the baseline ratio, R. When multiplied by 

100, it results in ΔR/R in percent, which can range from ~26 % in hippocampal slices 

up to ~800% in the cuvette (Thestrup et al. 2014). Furthermore, Thestrup and col-

leagues showed that Twitch-2B binds Ca2+ with a sensitivity of ~200 nM (Kd) and that 

ΔR/R of Twitch-2B correlates linearly with the increase in the intracellular Ca2+ con-

centration at low (log Ca2+ [M] of -7.25 to -6.5) Ca2+ concentrations (Figure 5B). Note 
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that this correlation becomes logarithmic at higher Ca2+ concentrations. Besides indi-

cating intracellular Ca2+ levels, when Twitch-2B is expressed in neurons, it can also 

indicate spiking activity (AP firing). In the same study by Thestrup et al., it was shown 

that ΔR/R is correlated linearly with the number of APs that the cell fired (Figure 5C). 

 

Figure 5. Working principle of the Ca2+ indicator Twitch-2B. 
(A) Schematic drawing illustrating the conformational change of Twitch-2B upon binding of Ca2+ ions. 
The donor fluorophore mCerulean3 (blue) and the acceptor fluorophore cpVenusCD (yellow) are con-
nected with a troponin C-derived Ca2+ binding linker (TrpC). Modified after (Wilms and Hausser 2014). 
(B) Relationship between ΔR/R and the Ca2+ concentration in a cuvette. (C) Left panel: cortical pyram-
idal neuron in a brain slice was patched and Ca2+ transients were measured concomitantly with the 
number of underlying APs fired (number of APs is indicated above each Ca2+ transient). Right panel: 
relationship between ΔR/R and APs of cells. Displayed is the mean ± s.e.m. for 11 cells from 4 ani-
mals. Panels B and C are from Thestrup et al. 2014.   

 

2.2.2 Preparation of mice for surgery 

First, mice were anesthetized by intraperitoneal (i.p.) injection of either K/X (Sigma-

Aldrich, 80/4 mg/kg of body weight (BW)), or 3CN (0.5 mg/kg BW medetomidine, 

Alfavet Tierarzneimittel GmbH; 5 mg/kg BW midazolam, Hameln Pharma plus GmbH; 

0.05 mg/kg BW fentanyl, Albrecht GmbH). After 5-10 minutes, the animal’s head was 

shaved using a veterinarian trim and povidone-iodine solution (B. Braun) was used to 

sterilize the shaved skin. Before an incision with a razor blade was made, local anes-
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thesia was induced by subcutaneous (s.c.) injection of 0.2 ml xylocaine (2% w/v). An 

eye ointment (Bepanthen, Bayer) was used to prevent corneal drying during surgery. 

Next, the animal was positioned on a custom-made heating pad and its body temper-

ature was monitored continuously using a rectal temperature probe. The body tem-

perature was maintained between 35-37°C. Ear bars were used to fix the mouse 

head in a stereotactic device. Subsequent anesthesia maintenance was accom-

plished by injecting either half of the initial dose of K/X or one third of the initial dose 

of 3CN. Deep anesthesia was confirmed by the absence of a toe pinch reflex 

throughout surgery.  

2.2.3 Stereotactic viral injection 

After the mouse was prepared for surgery as described above (2.2.2), an incision into 

the skin was made with a razor blade, and the skin was pulled back to each side of 

the ear to reveal periosteum and bone. The periosteum was scraped off and the bone 

was cleaned with sterile ringer solution (in mM: 147 Na+, 4 K+, 2.2 Ca2+, 156 Cl-; B. 

Braun). The bone was dried using absorbent swabs (Kettenbach GmbH). To label 

ABCs, the coordinates for RMS injection were 3.0 mm anterior and 0.84 mm lateral to 

bregma. A high-speed dental drill (ultimate 500, NSK) was used to make a 

0.5x0.5 mm hole in the skull above the injection site. A glass pipette (~10-40 µm in-

ternal diameter) was navigated to the coordinates. 

For labeling of ABCs in the RMS, the lentivirus was sonicated in an ultrasonic bath 

and around 1.5-2.0 µl of pure virus was applied onto parafilm and drawn into the pi-

pette. Then, the pipette was lowered into the brain to a depth of 3.0 mm, and 0.5 µl of 

the virus suspension were injected at three different depths (3.0, 2.9, 2.8 mm) over 

3 minutes per depth. 

For labeling of resident cells in the OB, virus suspension was not sonicated. The ros-

tral rhinal vein between the prefrontal cortex and the OB was used as landmark. 

From there, the coordinates were 0.84 mm anterior and 0.93 mm lateral from the mid-

line between the two hemispheres. The penetration angle for OB injections was set 

45-50° from the horizontal plane to minimize tissue damage overlying the imaging 

field. Around 1.0-1.5 µl of virus suspension (1:7 diluted in ringer solution) was inject-

ed at three different depths: 0.35, 0.25, 0.15 mm with 0.33-0.50 µl over 3 minutes per 

depth. 
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At the end of the injection procedure, the skin incision was closed with sutures and 

droplets of xylocaine were administered on the wound. The non-steroidal anti-

inflammatory drug carprofen (5 mg/kg BW, Pfizer GmbH) was injected s.c. to sup-

press inflammation and pain. When 3CN was used, the effect of its components (me-

detomidine, midazolam and fentanyl) was antagonized with a mixture of atipamezole 

(2.5 mg/kg BW, Alfavet Tier-arzneimittel GmbH), flumazenil (0.5 mg/kg BW, Frese-

nius Kabi Deutschland GmbH), and naloxone (1.2 mg/kg BW, Hameln Pharma plus 

GmbH) at the end of the surgery.  

The mouse was brought back to its home cage for either one month (when ABC im-

aging was planned) or five months (when ResGABA cell imaging was planned), before 

a cranial window was implanted (see below). Mice were housed individually for sev-

eral days after surgery. 

2.3  Chronic cranial window implantation 

2.3.1 Window implantation to measure basal and odor-evoked Ca2+ signals 

After the preparation of the animal for surgery (as described in 2.2.2), dexame-

thasone (0.2 mg/kg BW, Sigma-Aldrich) was injected s.c. before the start of the sur-

gery (to prevent swelling of the brain upon removal of the bone above the OB). A flap 

of skin above the OB was removed using razor blade and scissors. The periosteum 

was scraped off; the bone was cleaned with sterile ringer solution, and afterwards 

dried using absorbent swabs. Two craniotomies were made for each olfactory hemi-

bulb: the region around both OB hemispheres and the midline bone covering the ol-

factory sinus between both hemispheres was thinned until two loosely attached is-

lands formed. During drilling, sterile ringer solution was applied to prevent excessive 

heating that could damage the underlying tissue. When two loosely attached islands 

formed, first ringer solution was applied to prevent drying of the brain surface and 

then islands were gently removed with forceps while the midline bone was kept intact 

above the olfactory sinus. 

As soon as bleeding occurred, ringer solution was applied again and subsequently 

removed with absorbent swabs. This procedure was repeated until bleeding stopped. 

After removal of the bone islands, a glass coverslip with 3 mm diameter (Warner In-

struments) was positioned over both OB hemispheres. The coverslip was held with 
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forceps in place to allow application of cyanoacrylate glue around the border. After 

the glue dried, the rest of the skull surface was thoroughly dried with absorbent 

swabs and gentle airflow. In addition, the bone at the posterior part between the ears, 

near lambda, was scratched with a razor blade to facilitate adherence of the cement 

applied in further steps to the bone surface. This procedure was necessary to enable 

stable head fixation of awake mice during subsequent imaging experiments. After 

scratching the bone, a holder (see Figure 7, butterfly-shaped holder in right panel) 

was attached with dental cement (Tetric EvoFlow, Ivoclar Vivadent AG), which was 

solidified with UV light. Areas of the skull that remained exposed, as well as the bor-

der around the coverslip were covered with dental cement and solidified. The mouse 

was allowed to recover on the heating pad before it was returned to its home cage. 

To improve recovery, wet food was supplied in a petri dish for several days. To pre-

vent bacterial infection, 0.2% (w/v) of the antibiotic enrofloxacin (Baytril, Bayer) was 

administered for 10 days with the drinking water. Furthermore, at the end of the sur-

gery and for three days after surgery once a day, pain was prevented by s.c. 

carprofen injections. Mice were housed individually for several days after surgery. 

Typically, mice were imaged 21-28 days after surgery.  

2.3.2 Implantation of window with slit for local application of antagonists 

The coverslip used here (produced by Karlsruhe Nano Micro Facility, Wilhelm Pfleg-

ing) contained a slit with a size of 1.0x0.1 mm (Figure 6). Surgery and implantation of 

the coverslip were performed as described in 2.3.1. The OB is convex having its 

highest point in the center of the hemispheres, so that the slit was positioned rostral 

above the cavity between the OB hemispheres (see Figure 6). This ensured that no 

pressure was applied by the edges of the slit onto the brain surface, preventing swell-

ing of the brain, as it would be the case by positioning the slit above the center of one 

hemisphere. In addition, a larger part in the center of the OB hemisphere would stay 

free for imaging. The slit was covered with Kwik-Cast and sealed on top with Kwik-Sil 

(both are silicon elastomers from World Precision Instruments). After surgery, mice 

were injected with carprofen and received wet food in the cage. Around 1 day later, 

animals underwent imaging experiments where the silicon elastomers Kwik-Cast and 

Kwik-Sil (Kwik-Cast/Sil) were removed before application of receptor antagonists (see 

2.5.5).  
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Figure 6. Glass coverslip implanted on the olfactory bulbs for chronic imaging.  
The indicated open slit, positioned rostral, was only present in those mice that received antagonists to 
block neurotransmitter receptors (see 2.5.5). 

2.4 Establishment of awake imaging 

2.4.1 Fixation system 

In order to perform two-photon imaging in awake mice, the holder and fixation system 

in the imaging setup had to be changed. A measurement of mice with the previous 

available holder and aluminum ring (see Figure 7, left panel) in the awake state was 

not possible as the mouse applied enough force while fixed in the system so that the 

holder broke off. To guarantee stable fixation, a different holder in the form of a but-

terfly (see Figure 7), made of stainless steel or titanium, was created. The holder was 

modified according to a previous published version in Wienisch et al. (2012). The 

concave opening is pointing towards the OB. This holder had holes in the middle that 

could be filled with cement to allow attachment to the bone. Furthermore, the holder 

was fixed with screws on two sides into an aluminum ring to enable more stable fixa-

tion by two spots instead of one spot, limiting the shaking of the imaging field.  
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Figure 7. Holder and aluminum ring for mouse fixation in the imaging setup.  
Left panel displays the old version available in the lab. Right panel displays the new butterfly holder 
and the modified ring. Scale shows centimeters. 

Additionally, the dental cement that we used was harder than the previous bone ce-

ment from Palacos R (Heraeus Medical). Furthermore, we scraped the bone with a 

razorblade to achieve a larger surface area for attachment of the cement. UV light, 

used to solidify the cement, was applied four times, from the rostral, the caudal, and 

from lateral sides. When the mouse was fixed for awake imaging, the respiration rate 

was monitored using a thermistor positioned in front of one nostril since the pressure 

sensor, which was usually attached to the back of anesthetized mice, was shaking on 

the awake moving mouse. 

2.4.2 Training for awake imaging 

Around two weeks before imaging, mice with implanted window and holder were ha-

bituated to the imaging setup. First, the mouse was lifted from the cage and brought 

back so it could adapt to sit on the hand. Afterwards, the mouse was placed on a ta-

ble below the objective in the imaging setup to explore the unfamiliar environment. It 

was left there for around 10 minutes for 2-3 times a day. On the next day, the head of 

the mouse was secured with the butterfly holder in the aluminum ring, which was it-

self embedded in an x-y stage, thus enabling adjustments of the imaging field during 

imaging. The first fixation was ~2-5 minutes and was repeated ~2-3 times a day. After 

fixation, mice received sugar pellets as reward. The following day, fixation time was 

increased to Ten minutes. On every subsequent day, the duration was increased until 

the fixation time reached around one hour (in approx. 12 days). After this, two-photon 

imaging experiments were started. If mice were used in experiments where pharma-

cological agents were applied, they were trained before implantation of the cranial 



Materials and Methods 

31 
 

window. In this case only, the head holder was fixed to the skull with dental cement, 

leaving the skin above the OB intact. 

2.5 In vivo two-photon calcium imaging  

2.5.1 Imaging setup 

An Olympus Fluoview 1000 laser scanning microscope (BX61WI, Olympus Europa 

GmbH) was used, coupled to a mode-locked Ti:Sapphire laser (Mai Tai Deep See, 

Spectra Physics GmbH) which operates at 690-1040 nm with a pulse width of <100 fs 

and a repetition rate of 80 MHz. Images were acquired using a 20x UMPlan FI 1.0 NA 

water-immersion objective (Olympus Europa GmbH). 

2.5.2 Monitoring of mouse physiological parameters and anesthesia induction 

In awake mice, the respiration rate was monitored using a custom-built thermistor 

positioned in front of one nostril. When shifting from awake to anesthesia measure-

ments, the mouse was kept fixed in the setup and injected i.p. with K/X or 3CN. To 

reduce movement, the mouse was briefly (for 1-2 minutes) sedated with isoflurane 

(2.5% in O2) to prevent potential damage to the internal organs by the injection nee-

dle. When isoflurane was chosen as anesthetic, the isoflurane concentration was re-

duced to 0.9-1.5% in O2 and kept constant after induction. Deep anesthesia was de-

termined by loss of the toe pinch reflex and breathing rates were kept between 110 

and 160 beats per minute. Ten minutes after anesthesia induction, two-photon imag-

ing experiments were continued. In anesthetized mice, the respiration rate was moni-

tored with a pressure sensor attached to the back. The respiration signals were sent 

to the computer and displayed with AD-Instruments software (AD Instruments 

GmbH). 

2.5.3 Measurement of basal Ca2+ levels 

Twitch-2B-expressing cells were imaged with a 20x objective and a zoom factor of 2 

using an excitation wavelength of 890 nm. Fluorescence from mCerulean and cpVe-

nus was separated using a 515 nm dichroic mirror; a 475/64 nm band pass filter was 

used to detect mCerulean fluorescence, while a 500 nm long pass filter was used to 

detect cpVenus fluorescence. Signals were collected by photomultiplier tube photo-

detectors. Time-series were recorded with an image size of 512x256 pixels, 100-250 
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frames at a rate of 4-7 Hz. The cells were measured 3-5 times to make an average of 

trials afterwards. In some experiments, mCerulean and cpVenus signals were derived 

from single frames of a 3-dimensional (3D) Z-series through the glomerular layer of 

the olfactory bulb. These 3D Z-series were acquired from the dura mater to a depth of 

around 120 μm with an image size of 640x640 pixels, using a Kalman-filter of 2 and a 

step size of 2 µm.  

2.5.4 Measurement of odor-evoked Ca2+ signals 

Ethyl tiglate (ETI, Sigma-Aldrich), an odorant known to activate the dorsal OB (Soucy 

et al. 2009) was filled into a tube, and a custom-built flow-dilution olfactometer (simi-

lar design as in Vucinic et al. (2006)) was used to mix saturated odorant vapor with 

clean air for a final concentration of 1.7% saturated vapor. The olfactometer tube was 

positioned approximately one centimeter in front of the mouse’s snout. Six seconds 

were measured as a baseline before the odorant was applied. The odorant was de-

livered at a flow rate of 300 ml/min for four seconds per trial with an inter-trial interval 

of 1-2 minutes. Up to 8 trials were recorded.  

2.5.5 Local application of antagonists in awake mice  

Four weeks after surgery, we aimed to apply blocker solutions. However, this was not 

successful, as the dura mater in the slit became impermeable. This required us to 

perform functional imaging experiments as soon as possible after window implanta-

tion. Experiments immediately after or 1-2 days after surgery have been described 

before (Komiyama et al. 2010; Wachowiak et al. 2013; Roome and Kuhn 2014). In 

our study, we performed experiments around 1 day after cranial window implantation. 

This allowed the animal to recover from surgery before imaging, and anesthetics as 

well as the anti-inflammatory drug carprofen should have largely been removed from 

the body. Previous studies showed that 2 days after window implantation, astrocytes 

and microglia are in an activated state (Xu et al. 2007; Holtmaat et al. 2009), indica-

tive of inflammatory processes. Furthermore, Park et al. described that the microvas-

culature changed, it showed stronger bleeding, vasodilation, and impaired blood flow 

3 days after surgery compared to the day of surgery (Park et al. 2015). Therefore, 

experiments were performed around 12-24 hours after surgery, essentially to avoid 

states of strong inflammation occurring between 2 and ca. 30 days after window im-

plantation (Xu et al. 2007; Holtmaat et al. 2009).  
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As no perfusion was performed, drugs were diluted in HEPES-buffered ringer solution 

(in mM: 150 NaCl, 4.5 KCl, 10 HEPES, 1 MgCl2, 1.6 CaCl2) to keep the pH constant.  

To block noradrenergic receptors, the nonselective α1- and α2- adrenergic receptor 

antagonist prazosin (Sigma-Aldrich, used in Pan et al. (2004)) was used. First, 

prazosin was dissolved in dimethyl sulfoxide to a concentration of 25 mM before the 

solution was diluted to a final concentration of 100 µM in HEPES-buffered ringer solu-

tion. To block serotonergic receptors, the nonselective 5-HT1-, 5-HT2-, 5-HT7- seroto-

nin receptor antagonist methysergide (Sigma-Aldrich, used in Petzold et al. (2009)) 

was dissolved to a final concentration of 4 mM in HEPES-buffered ringer solution. To 

block cholinergic receptors, the mAChR-antagonist scopolamine and the nAChR-

antagonist mecamylamine (both purchased from Sigma-Aldrich, used in Rothermel et 

al. (2014)) were prepared in HEPES-buffered ringer solution and mixed together to a 

final concentration of 50 mM and 115 mM, respectively.  

To block AP firing (see 3.1.1, Figure 9), the voltage-gated sodium channel blocker 

tetrodotoxin (TTX) was dissolved to a concentration of 5 µM in HEPES-buffered ring-

er solution. 

The coverslip had only a small (0.1x1.0 mm) opening, and this opening was located 

rostral above the cavity between the OB hemispheres (see Figure 6). To ensure that 

sufficient drug concentrations reached the target cells via diffusion, we used higher 

concentrations than the ones described previously in anesthetized mice where a wide 

area of the OB surface was perfused (Petzold et al. 2009; Rothermel et al. 2014).  

On the imaging day, the mouse was head-fixed and control imaging sessions were 

performed with the Kwik-Cast/Sil still covering the slit. Then, Kwik-Cast/Sil was re-

moved and the vehicle (HEPES-buffered ringer solution) was placed as a drop of 

around 40 µl on top of the coverslip with slit. Afterwards, antagonists were applied. 

Measurements of cpVenus and mCerulean fluorescence intensities were performed 

as time-series or 3D Z-series in the glomerular layer. Every cell was measured 3-5 

times. To observe the effect of each antagonist on the same cell and to reduce the 

number of experimental animals, all blockers were applied sequentially on the same 

day. Two imaging series were performed with a gap of around 5 hours in-between 

sessions.  



Materials and Methods 

34 
 

2.6 Data analysis  

2.6.1 Time-series of basal and odor-evoked Ca2+ signals 

The regions of interest (ROIs) were drawn manually in ImageJ 

(https://imagej.nih.gov/ij) and Fiji (http://imagej.net/Fiji) from an average image of all 

frames in a trial. Within the selected ROI, the intensity was averaged for the  

mCerulean and the cpVenus channel. The background ROI (comparable size as cell 

soma) was drawn in the darkest spot of the image. Further analyses were performed 

using custom-written scripts in MATLAB (The MathWorks, Inc.). In MATLAB, back-

ground intensity was subtracted from mCerulean and cpVenus signals. Then, the 

cpVenus signal was divided by the mCerulean signal to calculate the ratio trace. 

When no odorants were applied, these ratio values were averaged over all time 

points to receive a readout of the basal ratio. When odorants were applied, 1-5 sec-

onds of the baseline period (before odorant application) were averaged to obtain the 

basal ratio. Since measurements were repeated 3-5 or 8 times in case of odorant 

application, respective individual ratio values were averaged to receive the mean ba-

sal ratio.  

Odor-evoked Ca2+ transients were automatically detected when their ΔR/R signal 

was six times larger than the standard deviation of noise, and when a minimum as 

well as mean of 15% was reached. Those transients were defined as ‘clear’ respons-

es. To acquire maximal ratios (Rmax) of the Ca2+ transients, the ratio trace was 

smoothed two times with a binomial filter (time window: 0.3 seconds) and the maxi-

mum was determined between the 6th and 12th second after beginning of the record-

ing.  

Cells were considered as ‘responding’ when producing at least one Ca2+ transient in 

8 trials, and as ‘reliably responding’ when producing a minimum of 5 Ca2+ transients 

in 8 trials. To investigate the variability between responses of 8 trials, the coefficient 

of variation (CV) was determined with the following formula:  

𝑐𝑣 =
𝑆𝐷

𝑥̅
∗ (1 +

1

4 ∗ 𝑛
) 

https://imagej.nih.gov/ij
http://imagej.net/Fiji
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Where SD is the standard deviation, 𝑥̅ is the average maximal ratio of the 8 Ca2+ 

transients, and n is the number of trials. The part in brackets is the correction for 

small sample sizes. 

2.6.2 Three-dimensional Z series of basal Ca2+ signals 

A MATLAB script, written by a student (Marie Schmidt) in the lab during her intern-

ship, was used to load 3D-stacks, draw ROIs, and extract fluorescence intensity val-

ues of mCerulean and cpVenus out of one frame for each cell. Fluorescence intensity 

values were processed further as described for time-series: the background fluores-

cence was subtracted and a ratio of cpVenus/mCerulean was calculated. This ratio 

value was averaged over several trials (3-5) to receive the mean basal ratio.  

2.6.3 Calculation of the effect size  

In experiments where anesthesia or neurotransmitter receptor antagonists were ap-

plied, a reduction of basal ratios, indicative of basal Ca2+ levels, was calculated as 

percentage of block that was reached, termed ‘effect size’. This allowed a compari-

son of the effects of different anesthetic agents or receptor antagonists, and a quanti-

fication of the reduction for each cell independently of its starting ratio (in control con-

dition). For instance, cells with low basal ratios or high basal ratios (see Figure 9B for 

distribution of ratio levels) may all be reduced to a lower ratio, but the absolute reduc-

tion for each cell is different; cells at lower ratios will show a smaller reduction than 

cells with higher ratios. Thus, we calculated an effect size. First, the minimum ratio 

level that was ever measured throughout all conditions in both the mABC and  

ResGABA cell population was determined: 1.25. Next, the maximum theoretically pos-

sible block was defined as the reduction towards this lowest ratio level. Thus, the dif-

ference between the basal ratio measured in the control condition and 1.25 was cal-

culated, (Rctr - 1.25). On the other hand, the observed difference in ratio between 

control and test condition was calculated, (Rctr - Rtest). Effect size was calculated by 

dividing the actual difference by the maximal theoretically possible difference.   

effect size (%) =  
Rctr − Rtest

Rctr − 1.25 
 x 100 
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2.7 Immunohistochemistry 

To test how many immature cells we have in our mABC population, we stained OB 

slices from C57BL/6 mice injected with lentiviruses encoding Twitch-2B. We used the 

immature cell marker doublecortin (DCX). After perfusion with phosphate-buffered 

saline (PBS, Sigma-Aldrich) followed by 4% formaldehyde (in PBS), both OBs were 

removed and post-fixed with 4% formaldehyde overnight at 4°C. Next, the OBs were 

cryoprotected overnight at 4°C in PBS containing 25% sucrose, followed by embed-

ding in TissueTek (Sakura, Inc.) and freezing at -80°C. Antibody staining was per-

formed with free-floating sagittal cryoslices (50 µm thick) at room temperature. To 

prevent nonspecific binding, sections were treated with a blocking solution (5% nor-

mal donkey serum and 1% Triton X-100 in PBS) for one hour. After blockage, slices 

were exposed to primary antibodies diluted in blocking solution at room temperature 

overnight. On the next day, the sections were washed in PBS three times for 10 

minutes and incubated with secondary antibodies diluted 1:1000 in PBS containing 

2% bovine serum albumin for two hours in the dark at room temperature. Finally, the 

sections were washed three times in PBS, transferred to Superfrost Plus charged 

glass slides (R. Langenbrink GmbH) and mounted with Vectashield Mounting Medi-

um (Vector Laboratories) or ProLong Gold Mounting Medium (Thermo-Fisher Scien-

tific Inc). Stained slices were imaged with a 40x water-immersion objective (Nikon 

40x, 0.8 NA) using the Olympus Fluoview 300 laser scanning microscope system 

coupled to a Mai Tai mode-locked Ti:Sapphire laser operating at 690-1040 nm wave-

length (Spectra Physics GmbH). Alexa Fluor 488 and 594 were excited simultaneous-

ly at 800 nm and their fluorescence emission was split with a 570 nm dichroic mirror.  

Table 2. Antibodies used to label Twitch-2B-expressing immature cells in the ABC population. 

Species Antibody Company Dilution 

goat primary polyclonal antibody against 
GFP 

Rockland 600-101-215 1:2500 

rabbit primary polyclonal antibody against 
DCX 

Abcam ab18723 1:2000 

donkey secondary anti-goat IgG-conjugated 
Alexa Fluor 488 

Thermo-Fisher Scien-
tific Inc. A11055 

1:1000 

donkey secondary anti-rabbit IgG-conjugated 
Alexa Fluor 594 

Thermo-Fisher Scien-
tific Inc. A21207 

1:1000 
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2.8 Statistical analysis 

Statistical tests were performed with MATLAB, GraphPad Prism (GraphPad Soft-

ware, www.graphpad.com), or Vassar Stats (website for statistical computation, 

http://vassarstats.net/, Richard Lowry 1998-2017). The one-sample Kolmogorov-

Smirnov test was used to check for normality of the data. All statistical tests were 

two-sided, unless otherwise noted. The p values smaller than 0.05 were considered 

significant. 

http://vassarstats.net/
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3 Results 

3.1 Ca2+ signaling in mABCs and ResGABA cells of awake mice 

ABCs in the OB are thought to serve specific functions in the processing of olfactory 

information and so the question arose if they also possess specific physiological 

properties to enable these functions. Previous studies suggested that ABCs become 

similar to resident cells when they mature, but might retain some unique physiological 

properties. Here, it was investigated if the basal and odor-evoked Ca2+ signals of 

mABCs are different to those of ResGABA cells. For this, cells were first labeled with 

the Ca2+ indicator Twitch-2B. After labeling ABCs by viral transfection into the RMS, 

we waited for at least 8 weeks (56 days/DPI, ‘days post injection’) to ensure maturity 

of cells. However, because lentiviruses, commonly used in this kind of experiments 

(see Grubb et al. 2008; Livneh et al. 2014; Kovalchuk et al. 2015; Wallace et al. 

2017), infect not only dividing cells, it is possible that a fraction of the labeled popula-

tion might be generated during later divisions of the labeled precursor cells and thus 

be younger than DPI 56. To estimate the fraction of young cells in the mABC popula-

tion, we labeled mABCs with DCX, known to be expressed in ABCs up to an age of 

21 days (Brown et al. 2003; Grubb et al. 2008). Figure 8A shows an example field-of-

view that contains 14 Twitch-2B-expressing cells (green), of which one is DCX-

positive (red). On average, the proportion of cells expressing both DCX and Twitch-

2B was 18% (Figure 8B); estimated from 511 cells in 5 mice. This indicates that 18% 

in the mABC population were younger than 21 days.  

 

Figure 8. Percentage of immature cells in the mABC population. 
(A) Maximal intensity projections of a Z series (40 frames at 1-µm step size) show mABCs expressing 
Twitch-2B (green, identified with anti-GFP antibody) and DCX (red); merged channel on the right 
shows co-labeling (yellow). (B) Percentage of DCX+ and DCX- cells (511 cells from 5 mice). 



Results 

39 
 

3.1.1 Mature ABCs have high basal Ca2+ levels in awake state 

Figure 9A shows a representative in vivo image of mABCs expressing Twitch-2B. As 

explained in the methods chapter 2.2.1, when Ca2+ binds to Twitch-2B, the 

cpVenus/mCerulean ratio increases. Thus, a higher ratio indicates a higher level of 

Ca2+ in the cell. In awake mice, the basal ratios (without external stimulation) for 

mABCs ranged from 1.55 to 8.41 (Figure 9B; 154 cells, 13 mice). While higher ratios 

correspond to higher intracellular Ca2+ levels and ΔR/R was shown to correlate line-

arly with AP firing of a cell, we wanted to know which basal ratio levels correspond to 

which activity states (in terms of AP firing). To identify ratios corresponding to spiking 

and non-spiking states respectively, we blocked AP firing via a topical application of 

the voltage-gated sodium channel blocker TTX (see 2.3.2 and 2.5.5 methods sec-

tion). Upon application of TTX, ratios of mABCs shifted below 2 (Figure 9C; 35 cells, 

2 mice). The inset in Figure 9C shows a representative cell where the mCerulean 

(green) and the cpVenus (red) channel were merged. This predominantly resulted in 

red color in the control condition, indicating a higher ratio and thus a higher Ca2+ lev-

el. The cell changed its color from red in the control condition to yellow (low Ca2+ lev-

el) under TTX. Since TTX reduced ratio levels below 2, in further analyses cells with 

ratio levels <2 were classified as ‘non-spiking’. Figure 9D displays a cumulative prob-

ability histogram of the data shown in Figure 9B, indicating that only around 18% of 

mABCs were non-spiking (ratio <2) in the awake state. To account for cells that 

change from spiking to non-spiking states and vice versa (observed over prolonged 

imaging repetitions, data not shown), or for a possible variability in estimating the ex-

act ratio due to background subtraction, we introduced a safety margin between rati-

os of 2 and 2.4. Only cells with high average basal ratios >2.4 were considered ‘spik-

ing’, while cells with ratios between 2 and 2.4 were considered ‘uncertain’. Using this 

categorization, 59% of mABCs were classified as spiking in the awake state, while 

23% had ratios above 2 but below 2.4 and thus were classified as uncertain. The re-

maining 18% were non-spiking (Figure 9D). 
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Figure 9. Basal ratios of mABCs in the awake state.  
(A) Average intensity projection of a time-series (100 frames, ~4 frames/second) showing mABCs at 
56 DPI. The cells express the FRET-based Ca2+ indicator Twitch-2B, which increases its cpVe-
nus/mCerulean ratio upon Ca2+ binding. Merging mCerulean (green) and cpVenus (red) channel re-
sults in predominantly red color of cells, indicating a higher intracellular Ca2+ level. (B) A histogram 
illustrating the ratio distribution in 154 mABCs from 13 mice. (C)  A histogram illustrating the ratio dis-
tribution of mABCs in the presence of TTX (35 cells from 2 mice). Inset displays a cell before (left, ratio 
4.0) and during (right, ratio 1.6) TTX application. Vertical broken line indicates the border below which 
cells were non-spiking. (D) Cumulative probability histogram of the data shown in B with broken lines 
indicating borders between non-spiking and spiking populations. Cells with ratios between 2.0 and 2.4 
were considered uncertain.  

Next, we tested whether basal ratios of individual cells were stable over time. Ratios 

of the same cells were measured on one day and re-examined 3 and 6 days later. 

The scatter plot in Figure 10A shows basal ratios measured on day 0 plotted against 

basal ratios of the same cells on day 3 or 6 (35 cells, 5 mice). Some cells showed 

higher or lower ratios at later time points indicating that their basal Ca2+ levels were 

increased or decreased, respectively. Nevertheless, on a population level, the ratios 

at later time points were similar to the ratios measured on day 0, as shown by a box 
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plot displaying the medians of normalized ratios per mouse (Figure 10B; p=0.312 

day3/day0 and p=0.187 day6/day0; 5 mice; Wilcoxon Signed-Rank test). 

 

Figure 10. Stability of basal ratios in mABCs. 
(A) Scatter plot showing the ratios of a cell on one day plotted against the ratio 3 or 6 days later (35 
cells from 5 mice). Diagonal broken line indicates the unity line. (B) Box plots represent the medians of 
normalized ratios per mouse for ratios measured on day 0 and 3 or 6 days later. There was no signifi-
cant change in ratios on day 3 or on day 6 (p=0.313 and p=0.187 respectively; n=5 mice; Wilcoxon 
Signed-Rank test).  

3.1.2 Basal Ca2+ levels are similar between mABCs and ResGABA cells 

As ABCs mature to become GABAergic interneurons, we compared mABCs to ma-

ture ResGABA cells. An example field-of-view in Figure 11A shows Twitch-2B-

expressing ResGABA cells. In the ResGABA cell population, the distribution of basal rati-

os ranged from 1.27 to 6.05 in awake mice (Figure 11B; 382 cells, 5 mice). The cu-

mulative probability histogram of basal ratios was not significantly different between 

mABCs and ResGABA cells (Figure 11C; p=0.215; 154 mABCs from 13 mice, 382 

ResGABA cells from 5 mice; Kolmogorov-Smirnov test). As indicated by the broken line 

at a ratio of 2.0 in Figure 11C, most cells in both groups showed ratios higher than 

2.0. The fraction of non-spiking cells as well as the fraction of spiking and uncertain 

cells was not significantly different between the mABCs and ResGABA cells (Figure 

11D; p=0.074; Chi-Square Test). Median ratios per mouse were also not significantly 

different between the mABCs and ResGABA cells (Figure 11E; p=0.503; 5 mice versus 

13 mice; Mann-Whitney test).  
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Figure 11. Basal ratios of ResGABA cells and comparison to mABCs in awake mice.  
(A) Average intensity projection of a time-series (250 frames, ~7.7 frames/second) showing Twitch-2B-
expressing ResGABA cells around 6 months post injection. The arrowhead points to a cell with a high 
basal ratio (>2.4), whereas the arrow points to a cell with a low basal ratio (<2). (B) A histogram illus-
trating the ratio distribution in 382 ResGABA cells from 5 mice. Broken vertical lines mark the borders for 
spiking and non-spiking cells. (C) Cumulative probability histograms illustrating the distribution of ratios 
of mABCs and ResGABA cells, which were not significantly different from each other (p=0.215; 154 ver-
sus 382 cells; Kolmogorov-Smirnov test). Broken vertical lines mark the borders for spiking and non-
spiking cells. (D) Pie charts showing the fractions of spiking, non-spiking and uncertain cells, which 
were not significantly different between mABCs and ResGABA cells (p=0.074; Chi-Square Test). (E) Box 
plots showing the medians of ratios per mouse, which did not differ significantly between mABCs and 
ResGABA cells (p=0.503; 13 mice versus 5 mice; Mann-Whitney test).   

 

In summary, the basal ratios, indicative of basal Ca2+ levels, were similar between 

mABCs and ResGABA cells. Furthermore, the basal ratios of cells were stable over 

days. In the awake state, around 60% of mABCs and 50% of ResGABA cells had high 

basal ratio levels above 2.4 and were therefore considered ‘active’, or spiking.  
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3.1.3 Odor-response properties are different between mABCs and ResGABA cells in 

the awake state 

Next, we analyzed odor-evoked Ca2+ signals induced by application of the odorant 

ETI at a concentration of 1.7% saturated vapor in front of the mouse’s snout. The 

odorant was applied 8 times with an interval of 1-2 minutes between the trials and 

induced clear Ca2+ transients in mABCs (Figure 12A) and ResGABA cells (Figure 12B). 

Cells that responded at least once in 8 trials were classified as ’responding’. From 

these responding cells, those that responded to minimum 5 out of 8 trials were 

termed ‘reliably responding’. Compared to ResGABA cells, mABCs had a significantly 

lower percentage of responding cells (Figure 12C; p<0.0001; 83 mABCs from 7 mice, 

222 ResGABA cells from 5 mice; Chi-Square test). Furthermore, mABCs responded 

less reliably (Figure 12D; p<0.001; 57 mABCs from 7 mice, 203 ResGABA cells from 5 

mice; Chi-Square test). At the same time, reliably responding mABCs responded with 

a higher maximal ratio during the odorant application phase (Figure 12E; p=0.038; 36 

mABCs from 7 mice, 174 ResGABA cells from 5 mice; Kolmogorov-Smirnov test). The 

variability between maximal ratios of 8 trials was estimated using the coefficient of 

variation (CV, see methods chapter 2.6.1). The distribution of CVs was not signifi-

cantly different between mABCs and ResGABA cells (Figure 12F; p=0.930; n=36 

mABCs from 7 mice, 174 ResGABA cells from 5 mice; Kolmogorov-Smirnov test). As 

shown in Figure 11, basal ratios of mABCs did not differ from those of ResGABA cells, 

but the maximal ratios in response to odorant application were higher in mABCs 

compared to ResGABA cells (Figure 12E). Thus, we tested if there is any correlation 

between basal and odor-evoked maximal ratios. Figure 12G shows that the basal 

ratios significantly correlated with the odor-evoked maximal ratios in both cell groups 

(mABCs: r=0.54, p<0.0001; ResGABA cells: r=0.58, p<0.0001; Spearman's rank corre-

lation).  
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Figure 12. Odor-evoked responses of mABCs and ResGABA cells in awake mice.  
Representative Ca2+ transients evoked by 8 repeated applications of the odorant ETI (1.7% saturated 
vapor) in a mABC (A) and a ResGABA cell (B). (C) Pie charts displaying the fractions of responding and 
non-responding cells, which were significantly different between mABCs and ResGABA cells (p<0.0001; 
83 mABCs versus 222 ResGABA cells; Chi-Square test). (D) Pie charts displaying the fractions of relia-
bly and non-reliably responding cells, which were significantly different between mABCs and ResGABA 
cells (p<0.0003; 57 versus 203 cells; Chi-Square test). (E) Cumulative probability histograms display 
maximal ratios reached during odorant application for mABCs and ResGABA cells (p=0.038; 36 versus 
174 cells; Kolmogorov-Smirnov test). (F) Cumulative probability histograms display the coefficient of 
variation (CV), measured between 8 trials in reliably responding cells (p=0.930; 36 versus 174 cells; 
Kolmogorov-Smirnov test). (G) Scatter plots show the basal ratios before odorant application plotted 
against the maximal ratios during odorant application (mABCs: r=0.54, p<0.0001; ResGABA cells: 
r=0.58, p<0.0001; Spearman's rank correlation).   

In summary, in the awake state, odor-evoked responses of mABCs were sparser and 

less reliable compared to those of ResGABA cells. The maximal ratios during odorant 

application were higher in mABCs compared to ResGABA cells. 
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3.2 Ca2+ signaling of mABCs and ResGABA cells of anesthetized mice 

Next, it was analyzed if mABCs are differently modulated by brain state compared to 

ResGABA cells. We used either 3CN, K/X or isoflurane anesthesia, to mimic changes 

in the brain state, and measured basal ratios of mABCs and ResGABA cells. 

3.2.1 Anesthesia reduces basal Ca2+ levels of mABCs 

The 3CN anesthesia strongly reduced basal ratios in mABCs as indicated by a left-

shift in the cumulative probability histogram (Figure 13A). In addition, the fraction of 

spiking cells was significantly reduced, and the fraction of non-spiking cells increased 

accordingly (inset in Figure 13A; p<0.001, 90 cells from 8 mice; McNemar test for 

dependent proportions). Also K/X (Figure 13B) and isoflurane (Figure 13C) reduced 

the basal ratios significantly, leading to a higher fraction of non-spiking cells and a 

lower fraction of spiking cells (K/X: p<0.001, 79 cells from 8 mice; isoflurane: 

p<0.001, 106 cells from 8 mice; McNemar test for dependent proportions). To com-

pare the effect of the 3 anesthetics, and to quantify the degree of reduction for each 

cell independently of its basal ratio in the awake state, we calculated the effect size 

(see 2.6.3). Cells with a ratio level of 2.5 or cells with a higher ratio level of 5.5 may 

all reach a ratio of, for example, 1.25 under anesthesia, but the absolute reduction for 

each cell is different; cells at lower ratios will show a smaller reduction than cells with 

higher ratios. Thus, the change of the ratio (from awake to anesthesia) was related to 

the maximal possible change. Because the ratio can only be reduced in a spiking cell, 

the effect size was calculated only for spiking cells. No significant difference was ob-

served between the effects of the 3 anesthetics, when the median effect size per 

mouse was compared (Figure 13D; p>0.05; Kruskal-Wallis test). Although all 3 anes-

thetics reduced the ratios on a population level, single cells could be affected differ-

ently by different anesthetic drugs: the heatmap in Figure 13E displays the normal-

ized ratio of the same cells under 3 different anesthetics. The ratio measured under 

the anesthetic was normalized to the respective control ratio in the awake state. For 

example, cell 16 decreased its ratio moderately under 3CN but stronger under K/X 

and isoflurane. Additionally, some cells (around 3.5%) increased their ratio under an-

esthesia (Figure 13E).  
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Figure 13. Effect of the anesthesia on basal ratios of mABCs.  
Cumulative probability histograms showing basal ratios that shift towards lower levels under 3-
component narcosis (3CN) (A), ketamine/xylazine (K/X) (B) and isoflurane (C). The vertical broken 
lines in all 3 panels indicate borders between spiking and non-spiking populations. Insets in all 3 pan-
els display pie charts, showing a significant increase in the fraction of non-spiking cells and a signifi-
cant decrease in the fraction of spiking cells (3CN: p<0.001, 90 cells from 8 mice; K/X: p<0.001, 79 
cells from 8 mice; isoflurane: p<0.001, 106 cells from 8 mice; McNemar test for dependent propor-
tions). (D) Box plots showing the median effect size per mouse under 3 different anesthetics. The me-
dian effect size was not significantly different between the 3 anesthetics (p>0.05; Kruskal-Wallis test). 
(E) Heatmap displays basal ratios of the same cells under 3 different anesthetics. The basal ratio 
measured under the respective anesthetic condition was normalized to the control basal ratios meas-
ured in the awake state (28 cells from 3 mice).  
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3.2.2 Anesthesia reduces basal Ca2+ levels of ResGABA cells 

Next, we examined the effect of anesthetics on ResGABA cells. Also here, 3CN (Figure 

14A), K/X (Figure 14B) and isoflurane (Figure 14C) reduced basal ratios. The popula-

tion shifted significantly from spiking to non-spiking state (3CN: p<0.001, 215 cells 

from 8 mice; K/X: p<0.001, 221 cells from 8 mice; isoflurane: p<0.001, 231 cells from 

8 mice; McNemar test for dependent proportions). The median effect size per mouse 

was significantly different between the three anesthetics (Figure 14D; p<0.05; Krus-

kal-Wallis test) and a Mann-Whitney post-hoc test revealed that isoflurane and K/X 

differed significantly in their effect size (p=0.015), but this was not the case for K/X 

and 3CN (p=1.158) or 3CN and isoflurane (p=0.095). Like mABCs, individual cells 

were differently affected dependent on the anesthetic drug used and some ResGABA 

cells (7%) showed ratio increases under anesthesia (Figure 14E).   
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Figure 14. Effect of the anesthesia on basal ratios of ResGABA cells.  
Cumulative probability histograms showing basal ratios that shift towards lower levels under 3-
component narcosis (3CN) (A), ketamine/xylazine (K/X) (B) and isoflurane (C). The vertical broken 
lines in all 3 panels indicate borders between spiking and non-spiking populations. Insets in all 3 pan-
els display pie charts, showing a significant increase in the fraction of non-spiking cells and a signifi-
cant decrease in the fraction of spiking cells (3CN: p<0.001, 215 cells from 8 mice; K/X: p<0.001, 221 
cells from 8 mice; isoflurane: p<0.001, 231 cells from 8 mice; McNemar test for dependent propor-
tions). (D) Box plots showing the median effect size per mouse under 3 different anesthetic conditions. 
The median effect size was significantly different between the 3 anesthetics (p<0.05; Kruskal-Wallis 
test). A Mann-Whitney post-hoc test revealed that basal ratios under K/X and isoflurane differed signif-
icantly from each other (p=0.015). (E) Heatmap displays basal ratios under the respective anesthetic 
condition normalized to the control basal ratios measured in the awake state (41 cells from one exam-
ple mouse).  
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3.2.3 K/X has a stronger effect on mABCs than on ResGABA cells 

Under 3CN anesthesia, the distribution of basal ratios was similar between mABCs 

and ResGABA cells (Figure 15A; p=0.240; 101 mABCs, 217 ResGABA cells; Kolmogo-

rov-Smirnov test). Additionally, the fractions of spiking, non-spiking and uncertain 

cells between the two populations were similar under 3CN anesthesia (inset in Figure 

15A; p=0.117; Chi-Square test). In contrast, K/X reduced basal ratios of mABCs 

stronger than those of ResGABA cells (Figure 15B; p=0.001; 79 mABCs, 220 ResGABA 

cells; Kolmogorov-Smirnov test). The fraction of spiking cells was lower, whereas the 

fraction of non-spiking cells was higher in mABCs compared to ResGABA cells under 

K/X (inset in Figure 15B; p=0.003; Chi-Square test). Isoflurane reduced the basal ra-

tios in both cell groups to a similar extent as shown by the ratio distributions in Figure 

15C (p=0.999; 106 mABCs, 232 ResGABA cells; Kolmogorov-Smirnov test). However, 

under isoflurane, the fractions of spiking, non-spiking and uncertain cells were signifi-

cantly different between the two groups (inset in Figure 15C; p=0.016; Chi-Square 

test). Comparing the median effect size per mouse of each anesthetic revealed that 

all anesthetics reduced the basal ratios stronger in mABCs than in resident cells, but 

the level of significance was only reached for the effect of K/X anesthesia (Figure 

15D; p<0.01; 2-way-ANOVA with a Bonferroni post-hoc test for multiple compari-

sons).  

In summary, anesthesia reduced basal ratios in mABCs and ResGABA cells to levels 

below 2, thus reducing spiking activity. While there was no difference between the 

tested anesthetic drugs in the mABC population, in the ResGABA cell population isoflu-

rane reduced basal ratios stronger compared to K/X anesthesia. From the three an-

esthetics used, K/X had a significantly stronger effect on mABCs compared to ResGA-

BA cells. 
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Figure 15. Basal ratios of mABCs compared to ResGABA cells in anesthetized mice.  
Cumulative probability histograms and pie charts taking from Figure 13 and Figure 14. (A) Cumulative 
probability histograms displaying basal ratios of mABCs and ResGABA cells under 3CN, which were not 
significantly different between both cell types (p=0.240; 101 versus 217 cells; Kolmogorov-Smirnov 
test). Here and in the other panels, vertical broken lines indicate borders between non-spiking and 
spiking cells. Pie charts (inset) show the fraction of spiking, non-spiking and uncertain cells, which 
were not significantly different between mABCs and ResGABA cells (p=0.117; Chi-Square test). (B) 
Cumulative probability histograms displaying basal ratios of mABCs and ResGABA cells under K/X an-
esthesia, which were significantly different between both cell types (p=0.001; 79 versus 220 cells; 
Kolmogorov-Smirnov test). Pie charts (inset) show the fraction of spiking, non-spiking and uncertain 
cells, which were significantly different between mABCs and ResGABA cells (p=0.003; Chi-Square test). 
(C) Cumulative probability histograms displaying basal ratios of mABCs and ResGABA cells under 
isoflurane anesthesia, which were not significantly different between both cell types (p=0.999; 106 
versus 232 cells; Kolmogorov-Smirnov test). Pie charts (inset) show the fraction of spiking, non-spiking 
and uncertain cells, which were significantly different between mABCs and ResGABA cells (p=0.016; 
106 versus 232 cells; Chi-Square test). (D) Box plots displaying the median effect size per mouse for 
mABCs and ResGABA cells under 3 anesthetic conditions. All anesthetics had a stronger effect onto 
mABCs but only the effect of K/X reached the level of significance (p<0.01; 2-way-ANOVA with a Bon-
ferroni post-hoc test for multiple comparisons).  

3.2.4 Odor-response properties are different between mABCs and ResGABA cells 

under anesthesia 

After measuring odor-evoked responses in awake state, mice were anesthetized with 

3CN and the odor-evoked responses of the same cells were re-analyzed. As shown 

in Figure 16A and Figure 16B, under anesthesia, both mABCs and ResGABA cells 
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showed clear and reliable Ca2+ transients. The fraction of responding cells was again 

significantly lower for mABCs compared to ResGABA cells (Figure 16C; p<0.0001; 83 

mABCs from 7 mice, 222 ResGABA cells from 5 mice; Chi-Square test), similar to what 

was seen in awake state. Yet, the fraction of reliably responding mABCs increased 

under anesthesia and became comparable to the fraction of reliably responding 

ResGABA cells (Figure 16D; p=0.088; 54 mABCs, 200 ResGABA cells; Chi-Square test). 

The maximal odor-evoked ratios were higher in mABCs compared to ResGABA cells 

(Figure 16E; p<0.0001; 44 mABCs, 159 ResGABA cells; Kolmogorov-Smirnov test). 

The distribution of CVs was not significantly different between mABCs and ResGABA 

cells (Figure 16F; p=0.308; 44 mABCs, 159 ResGABA cells; Kolmogorov-Smirnov test). 

Further, we analyzed the correlation between the basal ratios and corresponding 

maximal odor-evoked ratios in individual cells. Interestingly, while ResGABA cells main-

tained a linear relationship between basal and corresponding maximal ratios (Figure 

16G; r=0.41, p<0.0001; Spearman's rank correlation), mABCs lost this relationship 

under anesthesia (Figure 16G; r=0.29, p=0.519; Spearman's rank correlation).  



Results 

52 
 

 

Figure 16. Odor-evoked responses of mABCs and ResGABA cells under anesthesia.  
Representative Ca2+ transients evoked by 8 repeated applications of the odorant ETI (1.7% saturated 
vapor) in a mABC (A) and a ResGABA cell (B). (C) Pie charts displaying the fractions of responding and 
non-responding cells, which were significantly different between mABCs and ResGABA cells (p<0.0001; 
83 versus 222 cells; Chi-Square test). (D) Pie charts displaying the fractions of reliably and non-
reliably responding cells, which were not significantly different between mABCs and ResGABA cells 
(p=0.088; 54 versus 200 cells; Chi-Square test). (E) Cumulative probability histograms display maxi-
mal ratios reached during odorant application for mABCs and ResGABA cells (p<0.0001; 44 versus 159 
cells; Kolmogorov-Smirnov test). (F) Cumulative probability histograms display the CV, measured be-
tween 8 trials in reliably responding cells (p=0.308; 44 versus 159 cells; Kolmogorov-Smirnov test). (G) 
Scatter plot shows the basal ratios before odorant application plotted against the maximal ratios during 
odorant application (mABCs: r=0.29, p=0.519; ResGABA cells: r=0.41, p<0.0001; Spearman's rank cor-
relation).  

In summary, mABCs responded still less often to odorant application under anesthe-

sia, but became as reliable as ResGABA cells. In addition, odor-evoked maximal ratios 

were still higher in mABCs compared to ResGABA cells.  
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3.3 Differential role of the neuromodulators of the ARAS system 

Because high basal ratios, and thus spiking, of both mABCs and ResGABA cells were 

reduced under anesthesia, we tested whether centrifugal inputs arising from ARAS 

centers contribute to the high basal ratios (spiking activity) observed in the awake 

state. In addition, we tested if these centrifugal projections target mABCs differently 

compared to ResGABA cells. Hence, basal ratios of mABCs and ResGABA cells were 

measured before and after application of antagonists of noradrenergic, serotonergic, 

or cholinergic receptors to the OB of awake mice.  

To do so we first implanted a slit-containing chronic cranial window (see chapter 

2.3.2) and intended to apply blocker solutions four weeks after surgery, which is the 

usual recovery time before imaging. However, it turned out that during this time the 

dura mater in the slit became impermeable, so drugs did not diffuse into the OB. 

Blocker injection with glass pipettes was also not successful, as the dura mater was 

not penetrated but bending thus damaging the underlying brain tissue (data not 

shown). Therefore, experiments involving application of blocker solutions were per-

formed 12-24 hours after cranial window implantation, with each imaging session 

ending at least 24 hours after surgery (see 2.5.5 for more details). All antagonists 

were diluted in the vehicle HEPES-buffered ringer solution and so the effect of 

HEPES-buffered ringer solution on basal ratios was tested first. For this, the basal 

ratios were measured in presence of the silicon elastomers Kwik-Cast/Sil (control) 

and again after removal of the plug and application of the HEPES-buffered ringer so-

lution. Basal ratios after application were normalized to the respective control basal 

ratios measured beforehand. The box plot in Figure 17 displays the median normal-

ized basal ratios per mouse, indicating that the ratios did not change significantly un-

der HEPES-buffered ringer solution (p=0.437; 5 mice; Wilcoxon Signed-Rank test). 

Yet, for further analysis, we included only those cells that had a normalized basal 

ratio between 0.7 and 1.3 and classified them as ‘stable’ (81.2% of all cells). 
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Figure 17. Effect of HEPES-buffered ringer solution on basal ratios.  
Box plot displaying medians of normalized ratios per mouse (p=0.437; 5 mice; Wilcoxon Signed-Rank 
test). 

3.3.1 Cholinergic and serotonergic receptor blocker reduce basal Ca2+ levels of 

mABCs 

In the mABC population, application of the noradrenergic receptor blocker prazosin 

did not change basal ratios (Figure 18A, pie charts in inset: p=1.090, 35 cells from 5 

mice; McNemar test for dependent proportions), whereas the serotonergic receptor 

blocker methysergide significantly reduced the basal ratios, resulting in a lower frac-

tion of spiking and accordingly a higher fraction of non-spiking cells (Figure 18B, pie 

charts in inset: p=0.007, 35 cells from 5 mice; McNemar test for dependent propor-

tions). Furthermore, the application of two cholinergic receptor blockers, mecamyla-

mine and scopolamine, significantly reduced the basal ratios, and thus the fraction of 

spiking cells (Figure 18C, pie charts in inset: p=0.005, 35 cells from 5 mice; McNemar 

test for dependent proportions). The effect sizes of methysergide and mecamyla-

mine/scopolamine were not significantly different from each other (Figure 18D; 5 

mice; p=0.812, Wilcoxon Signed-Rank test), indicating a similar degree of inhibition. 

As it was the case under anesthesia, the overall ratio was reduced on a population 

level, but some individual cells showed an increase in ratio. In addition, individual 

cells responded differently to either methysergide or mecamylamine/scopolamine 

(Figure 18E).  
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Figure 18. Effect of receptor blockers on basal ratios of mABCs in awake mice.  
Cumulative probability histograms showing basal ratios in the vehicle condition and during topical ap-
plication of prazosin (A), methysergide (B), and mecamylamine/scopolamine (C). Vertical broken lines 
indicate borders between spiking and non-spiking populations. Pie charts in inset showing the fractions 
of spiking, non-spiking and uncertain cells, which were not significantly different between vehicle and 
prazosin (p=1.090; 35 cells from 5 mice; McNemar test for dependent proportions), but between vehi-
cle and methysergide (p=0.007; 35 cells from 5 mice; McNemar test for dependent proportions) and 
between vehicle and mecamylamine/scopolamine (p=0.005; 35 cells from 5 mice; McNemar test for 
dependent proportions). (D) Box plots showing the median effect size per mouse under 3 different 
receptor blockers. The median effect size was not significantly different between the serotonergic and 
the cholinergic receptor blocker (p=0.812, Wilcoxon Signed-Rank test). (E) Heatmap displaying basal 
ratios measured during blocker application normalized to the basal ratios measured in the vehicle con-
dition (35 cells from 5 mice).  
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3.3.2 Cholinergic receptor blocker reduce basal Ca2+ levels of ResGABA cells 

In ResGABA cells, prazosin and methysergide did not reduce basal ratios, as shown by 

similar cumulative probability histograms before and during the application of block-

ers (Figure 19A for prazosin and Figure 19B for methysergide). Likewise, the frac-

tions of spiking and non-spiking cells did not change (prazosin: p=0.863; methyser-

gide: p=0.353; the same 176 cells from 5 mice; McNemar test for dependent propor-

tions). However, blockade of cholinergic receptors did reduce the basal ratios signifi-

cantly (Figure 19C); the distribution of basal ratios shifted to the left and the fraction 

of spiking cells was reduced while the fraction of non-spiking cells was increased ac-

cordingly (inset; p<0.0001; McNemar test for dependent proportions). Again, despite 

the reduction of ratios at the population level, some individual cells increased their 

ratio in the presence of cholinergic receptor blockers. In addition, individual cells re-

sponded to prazosin and methysergide with either ratio decrease or increase (Figure 

19D).  
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Figure 19. Effect of receptor blockers on basal ratios of ResGABA cells in awake mice.  
Cumulative probability histograms showing basal ratios in the vehicle condition and during topical ap-
plication of prazosin (A), methysergide (B), and mecamylamine/scopolamine (C). Vertical broken lines 
indicate borders between spiking and non-spiking populations. Pie charts in inset showing the fractions 
of spiking, non-spiking and uncertain cells, which were not significantly different between vehicle and 
prazosin (p=0.863; 176 cells from 5 mice; McNemar test for dependent proportions), or between vehi-
cle and methysergide (p=0.353; 176 cells from 5 mice; McNemar test for dependent proportions), but 
between vehicle and mecamylamine/scopolamine (p<0.0001; 176 cells from 5 mice; McNemar test for 
dependent proportions). (D) Box plots showing the median effect size per mouse under 3 different 
receptor blockers. (E) Heatmap displaying basal ratios measured during blocker application nor-
malized to the basal ratios measured in the vehicle condition (35 cells from 5 mice). 
 

Comparing the effect sizes of receptor blockers between mABCs and ResGABA cells 

revealed that the serotonergic receptor blocker methysergide affected mABCs cells 
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significantly stronger than ResGABA cells (Figure 20; p<0.05; 2-way-ANOVA with a 

Bonferroni post-hoc test for multiple comparisons), whereas the effect size of cholin-

ergic receptor blockers on the two cell populations was similar.   

 

Figure 20. Effect of receptor blockers compared between mABCs and ResGABA cells.  
Box plots show the median effect sizes per mouse for all 3 receptor blockers. The serotonergic recep-
tor blocker methysergide reduced ratios of mABCs but not ResGABA cells, as seen by the significantly 
higher effect size (p<0.05; 2-way-ANOVA with a Bonferroni post-hoc test for multiple comparisons).  

In summary, the high basal ratios (spiking activity) of mABCs observed in the awake 

state might be caused by active serotonergic and cholinergic inputs, whereas the 

high basal ratios of ResGABA cells are likely to be caused by cholinergic inputs only. 

This indicates a distinct serotonergic innervation of mABCs or a responsiveness to 

activation of serotonin receptors, distinguishing them from ResGABA cells. 
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4 Discussion 

Using two-photon Ca2+ imaging with the genetically encoded Ca2+ indicator Twitch-2B 

in awake head-restrained mice, we found that mature adult-born juxtaglomerular cells 

in the OB retain unique features compared to resident juxtaglomerular cells. For the 

first time, mature adult-born juxtaglomerular cells were analyzed in awake mice and 

were compared to resident GABAergic cells. This comparison revealed that in the 

awake state, basal ratios, indicative of intracellular basal Ca2+ levels, did not differ 

between mABCs and ResGABA cells. However, odor-response properties differed. The 

responses of mABCs were sparser, less reliable, but larger compared to those of 

ResGABA cells. Under anesthesia, mABCs responded to odorant application more reli-

ably than in awake state, but still less often and with larger responses. From three 

anesthetics used, K/X anesthesia reduced high basal ratios of mABCs stronger than 

those of ResGABA cells. To decipher what role the centrifugal inputs of the ARAS sys-

tem play for the high basal ratios of mABCs and ResGABA cells, we applied an-

tagonists of noradrenergic, cholinergic, and serotonergic receptors. Application of the 

cholinergic receptor antagonists resulted in reduced basal ratios of both, mABCs and 

ResGABA cells, while application of the serotonergic receptor antagonist reduced basal 

ratios only in mABCs, but not ResGABA cells. 

In summary, our data reveal that upon maturation, adult-born juxtaglomerular cells do 

not become identical to resident GABAergic cells, but retain distinct odor-response 

properties as well as a possible different receptor composition and innervation pattern 

(discussed below), likely endowing them with unique physiological functions. 

4.1 Basal and odor-evoked Ca2+ signals 

In the awake state, more than 50% of mABCs and ResGABA cells had high basal rati-

os above 2.4, indicating spiking activity, as TTX led to a reduction of basal ratios be-

low 2.0 (Figure 9C). Although the spiking activity was not significantly different be-

tween mABCs and ResGABA cells (Figure 11D), odor-response properties were differ-

ent (Figure 12E). First of all, a lower fraction of mABCs responded to odorant applica-

tion. A possible explanation for this observation could be that mABCs receive more 

specific synaptic inputs so that responses are more selective (i.e. cells respond to a 

few out of many odorants). Previous studies described that ABCs become more se-
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lective and respond to fewer odorants after maturation (Livneh et al. 2014; Wallace et 

al. 2017). Livneh et al. applied 7 different odorants and observed that around 50% of 

young ABCs respond to 3 odorants while 50% of mature ABCs and resident cells 

respond to only one odorant. Wallace et al. applied 8 different odorants and observed 

that around 50% of young adult-born GC dendrites respond to 3 odorants while 50% 

of mature GC dendrites did not respond to any odorant. However, in both studies 

mABCs’ responses to multiple odorants were tested, while we tested responses to 

one particular odorant (ETI). Therefore, we cannot certainly say if the lower respon-

siveness observed here indicates that mABCs are more selective in the same sense. 

It might have also other reasons, as for instance, mABCs may also receive a stronger 

inhibition from neighboring cells in the network, and so respond less often than 

ResGABA cells. 

Furthermore, mABCs showed higher maximal ratios during odorant application com-

pared to ResGABA cells. As the higher ratio is indicative of higher spiking activity, this 

implies that more GABA is released from mABCs, leading to stronger hyperpolariza-

tion of postsynaptic cells (M/Ts and juxtaglomerular cells), or of OSN terminals. This 

overall inhibition could lead to sparser, more selective olfactory inputs which are for-

warded by M/Ts to the olfactory cortex. On the other hand, higher ratios reflect higher 

intracellular Ca2+ levels, and these might induce more intracellular signaling cascades 

in mABCs that favor the suggested function of mABCs in learning and memory (1.2), 

such as Ca2+-dependent short-term and long-term plasticity (Eccles 1983; Zucker and 

Regehr 2002; Cavazzini et al. 2005). For instance, during early long-term potentia-

tion, Ca2+ activates kinases that phosphorylate AMPA receptor channels, which then 

are incorporated into the cell membrane and lead to strengthening of synaptic trans-

mission. Also, Ca2+-activated kinases phosphorylate transcription factors such as 

cAMP-response element-binding protein, leading to the synthesis of new proteins of 

which some are ion channels or receptors. Structural plasticity (dendrite and spine 

dynamics) was described for PGCs as well as GCs (1.2), while functional plasticity, 

such as short-term depression or long-term potentiation was so far predominantly de-

scribed in GCs (Dietz and Murthy 2005; Nissant et al. 2009).  

The underlying mechanism of higher maximal ratios during odorant application in 

mABCs might be due to a different composition of receptors or ion channels permea-

ble for Ca2+ in the postsynaptic membrane. For instance, more NMDA receptors or 
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voltage-gated Ca2+ channels could be present, or they may exist in different isoforms 

or subunit compositions (Simms and Zamponi 2014; Hansen et al. 2017). Interesting-

ly, we found that K/X anesthesia reduced basal ratios stronger in mABCs than 

ResGABA cells. As ketamine is known to antagonize NMDA receptors, this could indi-

cate that mABCs possess a different absolute number of NMDA receptors or subunit 

composition. Furthermore, as NMDA channels are also known to play a key role in 

long-term potentiation (Bliss and Lomo 1973), these differences in number or subunit 

composition might favor activity-dependent plasticity in mABCs. The anesthetic agent 

xylazine, which was applied together with ketamine, is unlikely to be responsible for 

the reduction of basal ratio levels, as xylazine targets α2 adrenergic receptors similar 

to medetomidine in the 3CN anesthesia, and 3CN did not reduce basal ratios as 

strong as K/X. Furthermore, it has been described that ABCs express more NMDA 

receptors when they are immature compared to when they are mature (Grubb et al. 

2008). In addition, NMDA receptors in immature ABCs contain more NR2B subunits 

than NMDA receptors in mature ABCs (Grubb et al. 2008). However, this would con-

tradict the assumption that mature ABCs in our study might have different NMDA re-

ceptors than ResGABA cells. Further experiments would be required to test whether 

the number or subunit composition of functional NMDA receptors differs between 

mABCs and ResGABA cells. For this purpose, one could topically apply NMDA recep-

tor blockers (such as (2R)-amino-5-phosphonovaleric acid) and measure basal and 

odor-evoked ratios in mABCs and ResGABA cells. Furthermore, electrophysiological 

recordings performed in vivo or in OB slices could be used to determine the electrical 

properties of NMDA receptors. In addition, expression level or subunit composition of 

NMDA receptors could be analyzed using immunohistochemical labeling (Telezhkin 

et al. 2016) or more quantitative protein-based techniques (Antonelli et al. 2016).  

A previous study found differences between the spontaneous activities of immature 

(2-week-old) ABCs and resident cells under ketamine anesthesia (in combination with 

medetomidine) (Livneh et al. 2014). However, the spontaneous activity of mABCs 

was similar to that of resident cells. This is in contrast with our finding that also 

mABCs can have lower spontaneous activity (i.e. basal ratios) under K/X anesthesia. 

However, the difference in recording technique (electrophysiological recordings of 

single APs in Livneh’s study versus Ca2+ imaging in our study) could be the reason 

for this discrepancy. Furthermore, in our study, differences in basal ratios between 
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mABCs and ResGABA cells were observed neither under the 3CN anesthesia nor un-

der the isoflurane anesthesia or in the awake state. This indicates that effects ob-

served by us under K/X anesthesia and by Livneh et al. under K/M anesthesia could 

be due to the presence of ketamine.  

Furthermore, Livneh et al. observed under K/M anesthesia higher odor-evoked AP 

firing rates in immature (4-week-old) ABCs compared to resident cells (Livneh et al. 

2014). But this difference did not remain in mature ABCs. This contrasts with the cur-

rent finding that mABCs can have higher odor-evoked maximal ratios compared to 

ResGABA cells. However, the difference in recording techniques (see above) and in 

brain state (awake state versus K/M anesthesia) between our study and Livneh’s 

study might explain this contradictory result.  

As the immunostaining of DCX and Twitch-2B revealed that ca. 18% of Twitch-2B-

expressing mABCs are younger than 21 days, this subpopulation could show differ-

ent properties than mABCs. However, the collected data did not indicate that the 

group of Twitch-2B-expressing mABCs consisted of two clearly distinguishable popu-

lations showing distinct basal or odor-evoked maximal ratios. In addition, although the 

immunostaining showed that 18% of cells are younger than 21 days, how many cells 

have an age between 21 and 56 DPI is unknown. Thus, mABCs have a continuum of 

individual ages, which is unavoidable when using lentiviruses to label ABCs; an es-

tablished method used by many studies before. So far, no marker has been de-

scribed that specifically labels mature adult-born PGCs/SACs for subsequent anal-

yses of their physiological properties in vivo, as was recently described for mature 

adult-born GCs in the OB (Quast et al. 2017). Under the current experimental para-

digm, the exact age of individual adult-born PGCs/SACs could be determined by ob-

serving Twitch-2B-expressing cells daily from their arrival in the OB until they mature, 

i.e. over about 7 weeks. However, daily measurements over this extended time span 

in awake mice would likely be stressful to the animals, which might in turn affect ABC 

maturation and integration. Measurements under anesthesia would also be possible, 

however, it has been described that anesthesia disturbs synaptogenesis of newborn 

cells during development and could under some circumstances even lead to their 

death (Jevtovic-Todorovic 2012; Reddy 2012). In addition, it has been shown that in 

adult mice anesthesia impairs maturation and integration of adult-born hippocampal 

neurons (Krzisch et al. 2013). Therefore, repeated measurements under anesthesia 
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might as well affect ABCs’ maturation and integration. Likewise, repeated imaging 

may induce cell damage due to excessive illumination.  

4.2 Modulation by anesthesia and centrifugal inputs 

Previous studies showed that anesthesia reduces spontaneous activity of GABAergic 

cells in the OB (Kato et al. 2012; Wachowiak et al. 2013; Cazakoff et al. 2014). We 

confirm and extend these findings for adult-born and resident GABAergic cells by 

showing that their basal ratios were reduced under anesthesia (Figure 13, Figure 14). 

In addition, here, three different anesthetics were used: K/X, isoflurane, and in this 

context previously not used mixture of medetomidine, midazolam and fentanyl, sum-

marized as ‘3CN’. In ResGABA cells, isoflurane reduced basal ratios significantly 

stronger than K/X did (see Figure 14D). In contrast, in mABCs, all three anesthetics 

reduced basal ratios similarly strong although a trend for a stronger reduction under 

K/X anesthesia was observed (see Figure 13D). We wanted to test if centrifugal pro-

jections from ARAS nuclei contribute to the high basal ratios in the awake state. 

Therefore, for the first time, receptor blockers for acetylcholine, serotonin, or nor-

adrenaline were applied onto the OB of awake mice and basal ratios of mABCs and 

ResGABA cells were measured. A major advantage of this approach in the awake 

mouse is that it avoids potentially confounding interference with anesthetic agents. 

However, some technical limitations should be considered. The concentration of 

blockers in our study was high compared to previous in vivo experiments in the OB of 

anesthetized mice, where a large area of the OB surface was perfused (Petzold et al. 

2009; Rothermel et al. 2014). Therefore, it is unknown if the highly concentrated 

drugs led to unspecific effects. For example, they could bind to other than the target-

ed receptors, reach other areas of the brain, or cross the blood brain barrier, thereby 

inducing systemic effects. However, the high concentrations were chosen to guaran-

tee that blockers diffusing through the small slit would reach sufficient concentrations 

in the olfactory bulb. For improvement, dose-response-curves could be recorded in 

further studies in order to find the lowest concentration that is blocking the specified 

receptors and reduces the basal ratios. This would diminish the possibility that drugs 

reach concentrations that could lead to unspecific effects. Another option is the use of 

optogenetic or chemogenetic approaches, which allows more specific blocking and 

better temporal control of the blockade. The chemogenetic blockade could be 
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achieved by expressing ‘Designer Receptors Exclusively Activated by Designer 

Drugs’ (DREAADs) (Urban and Roth 2015) in target cells (for instance, serotonergic 

cells), whereby the optogenetic blockade could be achieved by expressing light-

sensitive ion channels or ion pumps leading to hyperpolarization in target cells 

(Zhang et al. 2010).  

Upon blockade of noradrenergic receptors, changes in basal ratios of mABCs and 

ResGABA cells were not observed. This implies that noradrenergic inputs do not con-

tribute to the high basal ratios observed in the awake state. This is in line with the 

observation that adrenergic fibers primarily target the external plexiform-, GC- and 

MC- layer (McLean et al. 1989; McLean and Shipley 1991) and that adrenergic re-

ceptors are primarily expressed on GCs and MCs, but very low on juxtaglomerular 

cells (McCune et al. 1993; Day et al. 1997; Hayar et al. 2001; Nai et al. 2010; Luhrs 

et al. 2016). When we applied the cholinergic receptor blockers, basal ratios of 

mABCs and ResGABA cells were reduced. These results imply that mABCs and 

ResGABA cells are both innervated by cholinergic fibers. Acetylcholine has been 

shown to excite GABAergic juxtaglomerular cells via nicotinergic receptors (Ravel et 

al. 1990; Castillo et al. 1999). To test if the high basal ratios reflect an inflow of Ca2+ 

via nAChRs, only the nAChR-blocker mecamylamine could be applied. Application of 

the serotonergic receptor blocker led to a reduction of basal ratios in mABCs, but not 

in ResGABA cells. This implies that only mABCs, but not ResGABA cells are innervated 

by serotonergic fibers. To investigate this interesting observation, analysis of seroto-

nin receptor expression, or of the extent of serotonergic fiber innervation would be 

necessary (see, e.g., Deshpande et al. (2013) for the investigation of fiber innerva-

tion). To test whether serotonin in the OB is released from serotonergic fibers arising 

from the dorsal raphe nucleus, activity of serotonergic neurons in the dorsal raphe 

nucleus or of their terminals in the OB could be blocked directly via chemogenetic or 

optogenetic methods.  

Our finding that mABCs were selectively blocked by the serotonergic receptor blocker 

suggests a specific role for serotonin in mABCs. Previous studies have described that 

serotonin increases neurogenesis and improves ABC survival, but it was unknown if 

serotonergic innervation differs between ABCs and resident cells. Furthermore, so 

far, many studies focused on the role of noradrenaline and acetylcholine in olfactory 

learning and memory, but less is known about the function of serotonin for olfaction. 



Discussion 

65 
 

In the following, I will discuss one described function of serotonin in the context of 

brain-state-dependent sensory processing. Serotonin was suggested to mediate pre-

synaptic feedback inhibition onto OSNs via activation of GABAergic juxtaglomerular 

cells (Hardy et al. 2005; Petzold et al. 2009) and this presynaptic feedback inhibition 

was suggested to control the sensory gain (McGann 2013). Activity of serotonergic 

neurons is known to be brain-state-dependent with high activity levels during awake, 

resting states, predominantly during grooming and rhythmic movements, but not dur-

ing attentive states of sensory acquisition (Jacobs and Azmitia 1992; Jones 2005). 

Therefore, one function of serotonin was suggested to be suppression of sensory 

perception (Jacobs and Fornal 1993; Jacobs and Fornal 1999; Hurley et al. 2004). In 

resting states, e.g., during grooming or eating, acquisition of new odorants might be 

not vital, and so perception is dampened. However, when the animal is actively 

searching for food or mates, or when it pays attention to predators, the gain of olfac-

tory inputs might be raised to ensure unambiguous and fast odor perception. Gain 

adjustment or ‘gating’ is an important mechanism to filter out irrelevant information, 

which prevents an overload of sensory information (Freedman et al. 1987; Freedman 

et al. 1996; Schwartz and Simoncelli 2001). Serotonin has been demonstrated to 

modulate the sensory gain in various other species and brain areas (Hurley et al. 

2004). For instance, in the olfactory system (Dacks et al. 2009; Petzold et al. 2009), 

the visual system (Waterhouse et al. 1990; Seillier et al. 2017), the inferior colliculus 

(Hurley et al. 2002), and the somatosensory system (Dugue et al. 2014). 

As described in the introduction (1.2), it was suggested that ABCs enable plasticity to 

adapt to environmental changes. Since ABCs receive centrifugal inputs, whose activi-

ty is brain-state-dependent, Lazarini and Lledo in 2011 hypothesized that ABCs are 

coincidence detectors between the behavioral state (arousal, attention, expectation) 

of the animal and sensory inputs arising from the environment (Lazarini and Lledo 

2011). Because the activity of serotonergic neurons is brain-state-dependent, our 

finding that mABCs receive selective serotonergic inputs favors the hypothesis that 

ABCs are mediators of brain state-dependent changes in sensory processing. This 

adds another aspect to the understanding of ABC function, specifically the function of 

adult-born PGCs/SACs, as they, in contrast to adult-born GCs, reside in the glomeru-

lar layer, which displays an intersection point between sensory inputs arriving from 

the environment and centrifugal inputs arriving from the brain. Since it is known that 
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ABCs start migrating into the OB during embryogenesis (Wichterle et al. 2001) and 

continue postnatally in the young and adult animal (Luskin 1993; Lois and Alvarez-

Buylla 1994; De Marchis et al. 2007), it is very likely that ABCs can shape sensory 

processing according to the state of the animal, starting with its birth.  

Because ketamine and the serotonergic receptor antagonist methysergide reduced 

basal ratios stronger in mABCs compared to ResGABA cells, it is tempting to speculate 

about a functional interaction between ketamine and serotonin. Ketamine is known to 

act on the serotonergic system (introduction chapter 1.3.3); specifically (1) by 

modulating the descending serotonergic pathways in the spinal cord (Larson 1984; 

Koizuka et al. 2005; Bee and Dickenson 2009), (2) by modulating serotonin synthesis 

and reuptake (Martin et al. 1982; Martin and Smith 1982; Yamamoto et al. 2013), and 

(3) by reducing firing of serotonergic neurons in the DRN (McCardle and Gartside 

2012). In mouse hippocampus, it was described that ketamine increases 5-HT2C 

cluster microRNA levels, which may inhibit translation of 5-HT2C receptor mRNA 

(Grieco et al. 2017). Given that serotonin activates PGCs via 5-HT2C receptors, this 

observation is interesting. In regard of all these effects, it can be speculated that 

ketamine may affect mABC basal ratios in part by modulating serotonergic pathways. 

However, to prove this, further investigations would be required.  

Anesthesia modulates ARAS centers (introduction chapter 1.3.3) and induces an 

EEG pattern similar to that seen in NREM sleep. Besides this, anesthesia and sleep 

are believed to share many additional features (Vanini et al. 2011). It is widely ac-

cepted that sleep is needed for memory consolidation (Alger et al. 2015; Chen and 

Wilson 2017). Moreover, olfactory ABCs were described to play a role in the acquisi-

tion of memory as well as in their consolidation (Kermen et al. 2010; Yokoyama et al. 

2011). Kermen et al. described that the efficiency of learning positively correlated with 

ABC survival and with the duration of resting phase after the learning task, indicating 

that a resting phase is needed to consolidate previously learned behaviors. Yokoya-

ma et al. described that ABCs were eliminated in the resting phase, more specifically 

in the postprandial sleep following food intake (a typical behavior dependent on olfac-

tion), and that this ABC elimination during sleep was needed for consolidation of pre-

viously learned odor-driven behaviors. According to a hypothesis of Yamaguchi 

(Yamaguchi et al. 2013; Yamaguchi 2017), those ABCs that were active during the 

memory acquisition will survive while those that were not active will die during sleep. 
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Yamaguchi suggests that centrifugal inputs during sleep target ABCs and play a role 

of detectors that can initiate apoptosis when ABCs have been inactive during the ac-

quisition. In conclusion, ABCs were shown to be important for memory consolidation 

in sleep, and it is hypothesized that those ABCs that were inactive during the acquisi-

tion period will be eliminated. Since our study showed that basal activity levels (basal 

ratios) of mABCs are reduced under anesthesia and under receptor blockade for cen-

trifugal inputs arising from ARAS centers, we hypothesize that activity levels are also 

reduced during natural sleep. Measuring basal ratios of ABCs and ResGABA cells dur-

ing sleep after the animal performed learning tasks might help us to understand 

which role ABCs play in memory consolidation. So far, the performance in learning 

tasks was correlated with the degree of neurogenesis or survival of ABCs. We sug-

gest measuring activity of the same ABCs immediately during the memory acquisition 

period in the awake state and afterwards during consolidation in sleep states. Fur-

thermore, comparing activity levels of mABCs and ResGABA cells during acquisition 

and consolidation could reveal the underlying physiology of mABCs important for 

their suggested function in learning. Successful two-photon imaging experiments in 

sleeping mice have been already performed (Maret et al. 2011; Cox et al. 2016; 

Niethard et al. 2016) and could act as guidelines for the planning of the above men-

tioned experiments. 

In the awake state, mABCs responded less reliably to odorant application, but be-

came as reliable as ResGABA cells under anesthesia (Figure 12D, Figure 16D). As we 

saw that mABCs receive excitatory inputs in the awake state (cholinergic and sero-

tonergic projections), the basal activity level might arise from these projections. This 

would lead to more noise in the cell and a smaller signal-to-noise ratio, where ‘signal’ 

represents the odor-evoked activity and ‘noise’ represents the basal activity. As ex-

citatory inputs reduce their activity under anesthesia, the reduction of ‘noise’ would in-

crease the signal-to-noise ratio and enable mABCs to respond more reliably to odor-

ant stimulation. This theory can be supported by modeling studies reviewed in 

D'Souza and Vijayaraghavan (2014), which describe the modulation of odor-evoked 

responses as a function of the basal activity induced by cholinergic inputs. 
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4.1 Future directions 

Previous studies investigated ABC function mainly via relating ABC generation or 

survival to function/behavior. For instance, blocking neurogenesis led to impairment 

of odor discrimination or learning (1.2). Therefore, it has been proposed that ABCs 

have specific physiological properties that govern these functions. Physiological 

properties, such as basal or odor-evoked activities, were investigated, however, pre-

dominantly in slices or in anesthetized mice (1.2.1). As we showed, basal activity 

(basal ratios) of mABCs are altered under anesthesia, and so measurements in 

awake mice are a better reflection of ABC physiology. Measuring physiological prop-

erties of ABCs in awake mice paves the way to combine those measurements with 

behavior of the animal. In one study, adult-born GCs were activated via an optoge-

netic approach in awake mice and the animal’s performance in an odor discrimination 

task was shown to improve (Alonso et al. 2012). However, studies measuring the 

basal activity of ABCs during a behavioral task have not been reported yet. This 

would give a clearer picture of how their physiological properties correlate with the 

olfactory behavior/function. 

In the present study, we saw a reduction of basal ratios by blocking cholinergic and 

serotonergic receptors, and so a question arose how this blockade and the reduction 

of basal ratios would affect olfactory function/behavior. Interestingly, we observed 

increased motion of nose and whiskers in the animal after application of cholinergic 

receptor blockers (data not shown), indicating that the animal’s perception might have 

changed. As acetylcholine was suggested to improve sensory perception in the OB 

(Linster et al. 2001; Mandairon et al. 2006), we hypothesize that the performance in a 

task like odor discrimination would be impaired during cholinergic receptor blockade. 

Moreover, since cholinergic fibers increase the basal activity in cells, it could be that 

the reduction of basal activity during cholinergic receptor blockade might be one 

responsible factor for the inability to discriminate odorants. 

As serotonin was suggested to influence sensory gain, we hypothesize that the per-

formance in a task like odor detection would be impaired during serotonergic receptor 

blockade. The threshold to detect odorants is an indicator for the sensory gain, as the 

threshold should be low when the sensory gain is high (indicating a high sensitivity). 

When serotonergic receptors on PGCs are blocked, PGCs will be excited less and 
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therefore inhibit OSNs less, resulting in stronger incoming olfactory input (sensory 

gain is increased). To combine physiology and function, basal ratios of mABCs and 

ResGABA cells could be measured during an odor detection task. Furthermore, the 

activity of OSN terminals in the OB could be analyzed in parallel. The activity of OSN 

terminals can be measured, e.g. using synaptopHluorin, which is a pH-sensitive 

fluorescent protein that was previously used to visualize presynaptic transmitter 

release from OSN terminals (Petzold et al. 2009). To determine if mABCs inhibit OSN 

presynapses differently than ResGABA cells do, mABCs or ResGABA cells could be 

optogenetically stimulated while transmitter release of OSNs is measured with 

synaptopHluorin. 

In summary, combining physiological measurements with olfactory behavior provides 

a new way to study how ABCs process olfactory signals differently to resident cells 

and how this processing constitutes the suggested specific olfactory behavior.  

4.2 Conclusion 

In conclusion, we showed that mABCs become similar to ResGABA cells, but retain 

some unique features. For instance, mABCs had similar basal ratios - indicative of 

intracellular Ca2+ levels and spiking activity - as ResGABA cells in the awake state and 

under 3CN and isoflurane anesthesia. However, odor-evoked maximal ratios were 

found to be higher in mABCs compared to ResGABA cells in the awake as well as the 

anesthetized state. Furthermore, mABCs had significantly lower basal ratios under 

K/X anesthesia. The higher maximal ratios during odorant application and the lower 

basal ratios under K/X anesthesia point towards a potential mechanism of altered 

Ca2+ signaling required for the suggested role of ABCs in learning and memory. It 

was also observed that mABCs, but not ResGABA cells, reduce their basal ratios under 

serotonergic receptor blockade. This implies a specific role of serotonin for mABCs, 

as for example sensory gain control according to the animal’s brain state. 
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