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1 INTRODUCTION 

The outcome of a cancer treatment course is mainly determined by the ability of the main 

treatment modalities, namely surgery, radiation therapy (RTx) and chemotherapy (CTx) 

to locally and systematically control the tumour expansion. However, the efficiency of 

the therapeutic options to eradicate tumour cells is hurdled among other reasons by the 

heterogeneity of the tumour microenvironment (2, 3). Solid tumours maintain their 

continuous augmentation by becoming insensitive to tissue homeostatic signals and 

developing their own vascular network. The uncontrolled cellular proliferation coupled 

with the functional and structural abnormalities of the newly formed tumour blood vessels 

generate tumour subvolumes that are deficient in oxygen (4, 5). Existence of tumour 

hypoxia has an adverse treatment outcome mainly because it renders tumour cells more 

radioresistant due to lower induction of DNA damage (6-8). However, in recent years 

several lines of evidence from basic and clinical research suggest that hypoxia exposure 

promotes a more aggressive and resistant cellular phenotype. In the present study, the 

potential impact of hypoxia on determining cellular survival after treatment with ionizing 

radiation was functionally assessed in human tumour cells in vitro.  

 
 
 

1.1 Existence of hypoxia in experimental and human tumours 

Tumour growth is enabled due to disturbance of the normal tissues homeostatic 

mechanisms aiming to maintain a defined number of cells within the context of a given 

tissue. Tackling tissue homeostasis is empowered to the tumour cells via the progressive 

acquisition of biological capabilities during the carcinogenesis known as the hallmarks of 

cancer, namely, evading growth suppression, resisting cell death, sustaining proliferative 

signaling, inducing angiogenesis, enabling replicative immortality, activating invasion 

and metastasis, reprogramming of energy metabolism and evading immune destruction 

initially established and recently reviewed (2). Neoplastic cells under the selection 

pressure of the induced genetic instability, an enabling characteristic of malignant cells, 

accumulate mutations in their genome, which renders them insensitive to tissue anti-

growth signals and allows them to acquire replicative immortality and to sustain 

proliferation signals (3). As a consequence, cell production is favored over cell loss 
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leading to the expansion of tumour cell population. However, the neoplastic cells would 

have to face oxygen deprivation and nutrient starvation as they progressively move away 

from the tissue vessels due to the continuous proliferation of the cells adjacent to the 

blood vessels (5).   

 

In order to support the cellular outgrowth, tumours develop their own vasculature network 

from already established normal tissue vessels to ensure blood supply and thus nutrient 

and oxygen availability. The latter occurs via a sophisticated cell-to-cell interaction 

process, known as angiogenesis, consisting one of the key players in the continuous 

enlargement of the tumour mass. It is occurring via at least three different mechanisms, 

namely intussusception, vascular splitting and sprouting angiogenesis, which is by far the 

most commonly observed process (4). Induction of angiogenesis or turning on the 

“angiogenic switch” is a crucial step in tumour progression since it not only serves to 

maintain the continuous tumour growth but also enables the tumour cells to metastasize 

through vascular dissemination. In the molecular level, it seems to arise as an 

overexpression of pro-angiogenic factors such as members of the vascular endothelial 

growth factor (VEGF), angiopoietin (ANG-1), fibroblast growth factors (FGFs) and 

several classes of chemokines (9) against anti-angiogenic factors e.g. thrombospondin-1 

(TSP-1). Upon sensing the pro-angiogenic signal, the quiescent blood vessels respond by 

degrading their mature structure and initiate a program involving proliferation, vascular 

elongation through formation of endothelial cell phalanx and migration of the newly 

formed endothelial cells. As a final step, the migrated endothelial cells resume their 

quiescent state and under the expression of signaling cascades such as platelet derived 

factor B (PDGF-B), transforming growth factor–β (TGF-β), ANG-1, ephrin B2 and 

NOTCH recruitment of pericytes promotes maturation of the newly formed vessels in 

order to become functional and allow the blood flow (4, 10). The critical role of VEGF 

as a factor in angiogenesis has been extensively investigated and reviewed (4, 5). 

However, cancer cells can produce other pro-angiogenic signals, like interleukin-8 or 

chemokines (CXCL12) through autocrine or paracrine way via stimulation of the tumour-

associated stroma or tumour associated bone marrow derived cells to stimulate or further 

amplify tumour angiogenesis (5, 9). The latter might explain the reason why despite the 

initial promise, in vivo studies have shown that inhibition of angiogenesis either through 
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VEGF inhibition alone or in combination with other angio-kinase inhibition did not have 

an impact on local tumour control although vessel area was reduced significantly (11). 

In normal tissue, where due to the balanced structure of the inherent vascular architecture 

the oxygen demand of the underlying tissue is adequately supported by the oxygen supply 

and maintained at a partial oxygen pressure ranging between 20 and 80 mmHg (12, 13). 

However, in solid tumours the nascent blood vessels lack the normal tissue architecture 

causing the rapidly growing tumour mass with an increased oxygen consumption rate to 

“outrun” the provided insufficient blood supply. In addition, the newly formed tumour 

vessels are commonly appearing with substantial structural and therefore functional 

abnormalities causing blind ends, loops and arterio-venous shunts that together result in 

a heterogeneous and unstable blood flow within the tumour mass, mainly due to lack of 

sufficient smooth muscle cells support. As a result of these diverse procedures, tumours 

develop subvolumes that are nutrient and oxygen deprived, rendering hypoxia as a 

commonly observed phenomenon in most solid tumours. In the clinical setting, hypoxia 

is generally defined as a state of reduced availability of oxygen resulting in decreased 

oxygen partial pressures. In this regard, anoxia is characterized as the complete absences 

of oxygen in tissue, equaling an oxygen partial pressure of 0 mmHg. Critical hypoxic 

levels, with progressive restrictions to cellular functions and activities, seem to range 

between 35 mmHg and 0.02 mmHg. For squamous cell carcinoma a median pO2 of 15 

mmHg with a range of median pO2 between 24 to 66 mmHg for normal tissue has been 

described (13). 

 

Hypoxia within the tumour emerges as a consequence of the oxygen supply inability to 

meet the oxygen demand of the growing tumour cell population. This arises mainly 

through two different mechanisms, which give rise to two distinct types of hypoxia. The 

insufficient amount of blood vessels to support the expanding tumour mass, coupled with 

the high oxygen consumption rate of the constantly proliferating tumour cells even in 

micro-environmental conditions where oxygen or nutrients are diminished, generates 

oxygen gradients around the perfused blood vessels and in increased distances (greater 

than 100 μm) oxygen diffusion is reduced giving rise to diffusion-limited or “chronic” 

hypoxia (14, 15). On the other hand, the structural abnormalities of the tumour blood 

vessels can cause transient disturbances to the blood flow leading to perfusion-limited or 
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acute hypoxia. The main difference of the two types of hypoxia lies in the duration of 

exposure. Acute hypoxia is generally defined as exposure to low intracellular oxygen for 

minutes to hours followed by rapid reoxygenation, while in chronic hypoxia cells are 

confronted with low oxygen tension for prolonged periods of time (hours to days). These 

two diverse effective causes of hypoxia generate a highly dynamic tumour 

microenvironment where tumour cell subpopulations might be exposed to acute, chronic 

or cycles of variable extend and duration of hypoxia followed by reoxygenation (cycling 

hypoxia), implicating that one tumour might contain cell subpopulations with different 

oxygen tension ranging from anoxia to normoxia and in turn undermine substantial 

differences in their respective biological behavior (16, 17). Additional pathogenic 

conditions that might give rise to hypoxia include tumour-associated or treatment-related 

anemia (anemic hypoxia), resulting in a decreased ability of blood to transport oxygen, 

or oxygenation might be limited due to pulmonary disease (hypoxemic hypoxia). 

 

The first evidence for the existence of tumour hypoxia as a result of oxygen diffusion 

distance limitation was reported as early as 1955 by Thomlinson and Gray, who described 

the occurrence of tumour necrosis as a function of distance from vessels in human 

tumours (18). Thereafter the existence of hypoxic subareas or hypoxic tumour cell 

populations in both human and experimental tumours has been demonstrated with 

numerous different approaches. The most prominent technique, though invasive, for 

direct assessment of tumour oxygenation has been the polarographic oxygen needle 

electrodes measuring the oxygen partial pressure (pO2). They have been extensively used 

to estimate pO2 distribution across the same or different tumours and indicated a large 

intra-tumoural and inter-tumoural heterogeneity of oxygen pressure in a number of 

experimental and human tumours (8, 19). The presence of hypoxic tumour cells have been 

manifested and also quantitatively assessed by the means of immunohistochemistry 

(IMH) in cross-sections from experimental and patient-derived tumours. This method 

takes advantage of the fact that actively metabolic hypoxic cells overexpress gene and 

proteins cascades that allows adaptation to the hypoxic microenvironment. Several of 

these hypoxia-induced genes have been identified and can be visualized when targeted 

with appropriate antibodies, with the most commonly used being the transcription factor 

hypoxia inducible factor 1 (HIF1) (20), carbonic anhydrase IX (21) or downstream targets 
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of these pathways or proteins associated in different ways to hypoxia adaptation e.g. the 

glucose transporters that mediate the intracellular glucose content during anaerobic 

glycolysis (22). An alternative way for detecting the presence of hypoxic cells with IMH 

is to administer exogenous hypoxia markers and then stain the tumour sections. These are 

chemical compounds that are rapidly diffuse in the tumour tissue and are specifically bio-

reduced in hypoxic tumour cells. This method has been extensively used in experimental 

animal tumours but also in humans, with the most commonly used chemicals being 

members of 2-nitroimidazoles e.g. pimonidazole and EF5 (23, 24). The limitation of 

invasiveness of these methods can be overcome when visualizing the whole tumour in 

situ with the use of radiological or nuclear medicine imaging approaches. These methods 

hold the promise of being rapidly implemented in clinical studies to detect the presence 

of hypoxia in patient tumours. They mainly include the use of Positron Emission 

Tomography (PET) and the most widely used hypoxia PET tracers involve Fluor-18 (18F)-

labelled 2-nitroimidazole markers e.g. Fluoromisonidazole (FMISO) and have been 

extensively studied for imaging hypoxia in experimental (25) or cancer patients tumours 

(26, 27). A more indirect imaging of hypoxia is to evaluate perfusion parameters from 

dynamic contrast-enhanced MRI (DCE-MRI) (27). Such approaches offer the possibility 

for repetitive assessment of hypoxia of the same patients in different time points during 

their treatment.   

 

 

1.2 Impact of tumour hypoxia in treatment outcome   

Tumour hypoxia represents a negative prognostic factor for the outcome of cancer 

patients. It has been shown for different cancer types, involving the prostate, cervix, breast 

and head and neck, that patients with tumours containing larger proportions of hypoxic 

cells have decreased disease-free survival than patients with less hypoxic tumours, 

confirming the presence of intra-tumoural hypoxia to be a negative prognostic factor for 

long term survival (8, 19, 28, 29). The latter has been extensively demonstrated from 

meta-analysis studies especially for squamous cell carcinomas of head and neck region 

and cervix and it is strongly supported from experimental evidence. A large multi-center 

study on head and neck cancer patients indicated that low pre-treatment pO2 was 

associated with poor prognosis (8). Clinical trials using the PET imaging of hypoxia either 
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with fluoroazomycin arabinoside (FAZA) (30) or Fluoromisonidazole (FMISO) (31), 

which have the major advantages that they are non-invasive and can be easily repeated in 

the same patient at different time points. Furthermore, they can also be applied 

prospectively and have demonstrated a prognostic potential of hypoxia imaging prior to 

treatment in HNSCC. Additional studies confirmed that pretreatment tumour oxygenation 

status is not only highly prognostic for survival and the occurrence of metastatic disease 

but also a predictive marker of loco-regional tumour control after irradiation treatment (8, 

31). Similarly, pre-treatment pimonidazole hypoxic fraction was predictive for the tumour 

control dose in 10 different human squamous cell carcinoma lines grown as human 

tumour xenografts (32).  

 

Additional evidence for the impact of tumour hypoxia on the therapeutic outcome arises 

from the results of clinical trials aiming to counteract the hypoxic microenvironment of 

solid tumours. Several approaches have been used in the literature intending either to 

enhance the oxygen deliver from the blood circulation e.g. use of Hyperbaric oxygen 

(HBO), carbogen and/or nicotinamide breathing, application of oxygen-mimetic 

compounds e.g. nitroimidazoles, targeting directly the hypoxic cells with hypoxic cell 

cytotoxins or eliminating the hypoxic cell radioresistance via the use of heavy ions 

irradiation high linear energy transfer (LET). The outcome of large randomize trials 

clearly demonstrate that cancer patients benefit from approaches aiming to overcome 

tumour hypoxia e.g. HBO breathing in cervix carcinomas (Medical Research Council), 

use of nimorazole in HNSCC (Danish Head and Neck Cancer Study) (33), use of 

Carbogen and Nicotinamide breathing in an accelerated radiotherapy for HNSCC cancer 

patients (ARCON) (34). Interestingly retrospective analysis of the randomize trials 

indicated that patients with more hypoxic tumours had a significantly worse treatment 

outcome (irrespectively of the endpoint used per study) and that only patients with higher 

extend of hypoxia either prior or during the treatment benefit from the treatment 

modification to overcome hypoxia (31, 35). Accumulated evidence supports strategies 

involving the selection of patients that will benefit from hypoxic modification based on 

the extent of hypoxia either prior or during therapy. Recently, several hypoxia gene 

signatures or hypoxia-induced gene expression classifiers have been validated in 

translation radiation oncology in experimental animal tumours and are prospectively 
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validated in patient cohorts (36, 37). In experimental human tumour xenografts several 

approaches to optimize the oxygen diffusion distances through pharmacological 

inhibition of molecular pathways that are mediated directly from hypoxia activated genes 

e.g. HIF inhibitors (38) or indirectly controlled by hypoxia e.g. PI3K /mTOR inhibitors 

(39) have shown promising results in prolonging tumour growth delay or reducing the 

dose to locally control the tumour (TCD50) either through reduced mitochondria 

respiration rate to reduce oxygen consumption, or increased oxygenation status of the 

tumours through vascular normalization.  

 

The poorer treatment outcome of hypoxic tumours is mainly attributed to the hypoxia-

induced malignant progression either through systemic changes to the tumour entity or 

through cellular acquisition of pro-survival signaling and biochemical resistance to 

radiotherapy damage induction (12, 40). Systemic changes, involve hypoxia induction of 

angiogenesis and promotion of metastatic phenotype. Through HIF members mediated 

downstream signaling cascade, angiogenetic factors such as VEGF have been 

demonstrated to promote angiogenesis e.g. in prostate cancer patients (10, 41). On the 

other hand, clinical studies indicate that patients with more hypoxic tumours have a higher 

risk to develop metastatic disease attesting hypoxia to promote a metastatic phenotype in 

cancers (42, 43). Possible explanations involve the induction of mesenchymal epithelial 

transition programming through complex cell-cell and cell-extra cellular matrix (ECM) 

interactions (44, 45).  

 

Hypoxia promotes the development of more “aggressive” tumour cell phenotype through 

induction of genetic instability, that in turn allows the acquisition of a mutant genotype 

by compromising either the surveillance machinery of the DNA integrity or the DNA 

damage response. It mainly occurs through alteration of ATR and ATM mediated 

checkpoints, induction of ROS during reoxygenation and modification of DNA repair 

pathways, mainly impairment of HR (46, 47). Recently a prognostic 100 loci DNA 

signature has been established for the risk of relapse and metastasis in prostate cancer 

patients, which consists of genes involved in genetic instability and hypoxia (48).  

In addition, hypoxia has been implicated in the induction of pro-survival signaling that 

renders neoplastic cells independent in growth factor abundance (49) e.g. HIF1 induced 
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over-expression of TGF-β and PDGF and activation of the Phosphatidylinositol 3-

Kinase/Akt pathway with subsequent inactivation of Glycogen Synthase Kinase-3 (50, 

51). Hypoxia-driven gene activation such as unfolded protein response pathways 

mediated through PERK, IRE1 and ATF6, the folding capacity of the endoplasmatic 

reticulum is increased via regulation of transcription and translation (52, 53) while in 

parallel cellular metabolism is downregulated through the inhibition of the activity of 

mTOR, the mammalian target or rapamycine, reducing the oxygen demand of the cell and 

thus preventing more severe hypoxia (54, 55). Over-expression of amino-acid 

transporters, glucose transporters, monocarboxylate transporters and acid-base regulating 

carbonic anhydrases mediated via HIF signaling assist the tumour cell to adapt its energy 

metabolism (56). Evading apoptosis either through loss of p53 or through upregulation of 

the anti-apoptotic protein IAP-2 (57, 58) or induction of autophagy, another important 

response machinery to cellular stress, has been reported to be induced in cells exposed to 

hypoxia, leading to radioresistance (59, 60). An important factor contributing to treatment 

outcome is the fact that the hypoxic cells can be 2.5 to 3-fold more radioresistant than 

their well-oxygenated counterparts. Ionizing radiation induces DNA damage in cells, 

including DNA DSBs, DNA SSBs, base damage and DNA cross-links, either through 

direct interaction with the DNA or through indirect interaction after induction of reactive 

oxygen species (ROS). ROS are a group of chemically highly reactive molecules, 

including superoxide, hydroxyl and peroxyl radicals. Physiologically, ROS are mainly 

produced during mitochondrial respiration and are immediately eliminated by the enzyme 

superoxide dismutase (SOD) and other antioxidant defenses after formation (61). The 

amount of the DNA-damage induction though is highly dependent upon the oxygen 

tension at the time of irradiation and it has been long demonstrated that irradiation under 

hypoxia leads to an increase of radioresistance in tumour cells as well as cells of normal 

tissue as a function of the oxygen tension (62). The mechanism of hypoxia induced 

radioresistance is commonly explained by the oxygen fixation theory, stating that the 

indirect effect of radiation is highly reduced under conditions of hypoxia as fewer oxygen-

molecules are present and thus less radicals are induced therefore preventing the 

“fixation” of the DNA damage under these circumstances (63). In order to quantify the 

magnitude of this effect on cells the enhancement of survival measured by CFA can be 

calculated as the ratio of radiation doses under hypoxia compared to normoxia that lead 
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to the same biological effect, e.g. 1% survival. The received value is generally referred to 

as the Oxygen Enhancement Ratio (OER). These effects have been extensively 

demonstrated in a variety of in vitro experiments, where paired survival curves have been 

compared under normal air and under hypoxia (64), or in vivo with the paired tumour 

control assays, where tumours were irradiated in situ either under ambient conditions or 

under clamped blood flow (32). Another cause of cellular stress is reoxygenation, which 

contributes to cellular damage determining cellular survival through induction of reactive 

oxygen species (ROS) (65). This is generally referred to as reoxygenation injury. During 

reoxygenation ROS generation exceeds the capacity of these preventive mechanisms, 

resulting in the formation of hydroxyl radicals which in turn may damage cellular 

structures, such as enzymes, DNA integrity or the cellular membrane (66).  

 

 

 

1.3 The DNA damage response – the role of γH2AX phosphorylation 

The cytotoxic action of ionizing radiation arises from its ability to induce DNA damage, 

including base damage, DNA SSBs and DNA DSBs. Among the different types of DNA 

damage induced to the cells by ionizing radiation, DNA DSBs are the most crucial lesions 

as they are complex for the cell to repair and pose a serious threat for the genomic integrity 

and thus for the survival of the cell (67, 68). Consequently, cells have evolved a complex 

set of mechanisms to effectively sense and repair DSBs. The DNA damage response 

(DDR) consists of well-orchestrated signaling pathways that through dynamic 

interrelation aim to effectively detect and repair DSBs. The process of repairing the DSBs 

can be subdivided into the sensing, damage signal amplification (signal transduction) and 

the effector pathways. The whole process is mediated via 3 main kinases, namely ATM, 

DNA-PKcs and ATR, which are rapidly becoming activated upon DNA DSB induction 

and each one is active in different parts of the cell cycle and have different interacting 

partners.  

 

Initial sensing includes the MRN complex (Mre11-Rad50-NBS1) and the Ku70/80 

heterodimer (ATR-IP) is mainly acting in repairing DSBs in the S-phase (69, 70). The 

initial sensing leads to activation of the signal transducing kinases ATM and ATR and 

DNA-PK, who in turn activate via phosphorylation multiple downstream proteins which 
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are mainly involved in the amplification of the damage signal and act as template for the 

DNA repair enzymes e.g. H2AX, BRAC1, 53BP1 and MDC1 (71, 72). The damage 

signaling then ultimately disembogues in three different effector pathways, including (1) 

cell death, (2) DNA repair pathways and (3) pathways that result in temporary or 

permanent cell cycle arrest. Two main repair pathways exist for dealing with DSBs, 

namely homologous recombination (HR) and non-homologous end joining (NHEJ), that 

greatly differ in the proteins and enzymes involved, the cell cycle phase they primarily 

act in and the fidelity of the performed repair (73). 

 

As HR requires the presence of the homologous undamaged DNA on the sister 

chromosome as a template for repair it is mainly active in late S-phase or G2-phase of the 

cell cycle and is nearly error free. Briefly, after forming 3’ single strand overhangs at both 

sides of the break Rad51 polymerizes at the resulting ends and strand invasion is initiated. 

Consequently, helicases expand the resulting crossover bubbles in order to allow DNA 

polymerases to synthesis across the missing region using the DNA template of the sister 

chromosome. As a final step, nucleases and ligases cut and then reconnect the restored 

DNA sections (71, 74).  

 

In contrast, NHEJ is active throughout the phases of the cell cycle as it is independent of 

homologous DNA sequences and is more error prone compared to HR but faster and 

simpler. In order to circumvent nuclear digestion of the ends of the break through 

exonucleases the Ku heterodimer (Ku70, Ku80) rapidly binds to the DNA ends. 

Subsequently, the protein kinase catalytic subunit DNA–PK is recruited by DNA-bound 

Ku to the site of damage, resulting in the formation of the DNA–PK complex. In order to 

maintain a close proximity for the following repair DNA–PK forms a bridge between the 

DNA ends. Furthermore, DNA-PK often in a complex with Artemis, an endonuclease 

processing the DNA ends prior to ligation, facilitates the formation of a ligation complex, 

comprising amongst others XRCC4, DNA ligase 4 and NHEJ1 (75). 
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Figure 1: Figure showing proteins involved with the DNA damage response; adapted from Surova et 
al. Various modes of cell death induced by DNA damage. Oncogene. 2013, 32(33), p. 3789-97 (76, 77) 

 

Several of the proteins involved in the DDR have been shown to form sub-nuclear 

structures when targeted with phosphor-specific antibodies against their activated form 

and visualized with fluorescent microscopy (72, 78). All have been found to accumulate 

directly at or in the vicinity of the DSBs, however, the most commonly used is the targeted 

phosphorylation of the histone H2AX in the residue Ser 139. H2AX is a variant of the 

highly conserved histone protein H2A, which comprises approximately 2 to 25% of the 

H2A pool depending on tissue or cell line origin (79). This phosphorylation mainly arises 

from ATM, although all the main kinases have been shown to potentially being able to 

phosphorylate H2AX (γH2AX) (80, 81), and spreads within a region of 2 Mb around 

every DSB amplifying the damage signal and forming distinct foci within few minutes 

after the induction of damage and reaching a maximum plateau level after 10-30 minutes 

(80). It was determined that each DSB give rise to one γH2AX focus (82) and that the 

kinetics of γH2AX disappearance follow the ones of the DSBs rejoining (83). 

Importantly, the histone H2AX is dephosphorylated upon repair of the DSB and it has 

been shown that this event marks the ceasing of cell cycling arrest and the progression of 

the cells in the cell cycle (84). Therefore, the assay offers the possibility to study 
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persisting residual γH2AX foci which are potentially associated with unrepaired DSBs 

(79).    

 

 

 

1.4 Residual γH2AX foci as an indication of radiation –induced lethal lesions 

and potential pitfalls  

Intrinsic radiosensitivity of cells is closely connected to their efficiency of repairing DNA 

lesions and the capacity to do so is one of the most important factors determining cellular 

survival after irradiation. Due to the one to one correlation with the induced DSBs, the 

rapid appearance even after the low dose of irradiation and the subsequent disappearance 

upon DSBs rejoining the γH2AX assay has become in the past decades the “gold 

standard” for the detection of unrepaired DSBs. The assay is simple, sensitive, the 

formation of γH2AX can be produced in response to a spectrum of genotoxic agents and 

offers the possibility to study the response of each individual cell in the “natural 

environment” where the DSB is occurring. Several lines of evidence support the 

hypothesis that residual γH2AX are indicators of lethal lesions (84, 85). Studies in cell 

lines that have defects in one of the enzymes involved in the repair of the DNA DSBs 

showed that in these cell lines retention of DSBs is followed by persisting foci (86). 

Additional evidence emerges from studies where the residual γH2AX foci were correlated 

with radiobiological endpoints (86, 87). The fraction of cells lacking foci (less than 3 foci 

per nucleus) correlates with the clonogenic survival (87) and the kinetics of foci 

disappearance negatively correlates with surviving fraction after 2 Gy (88). The mean 

number of residual γH2AX foci correlates with lethal lesions in vitro (89). Studies in 

human tumour cell lines from head and neck region grown as human tumour xenografts 

indicate that the slope of residual γH2AX foci dose response evaluated in well-

oxygenated tumour areas could predict tumour control dose (14).  

  

However, despite the high sensitivity of the assay certain pitfalls of the method have been 

established. Thus, the presence of microfoci, which are inducible by cellular stress such 

as hypoxia, but independent of DNA damage induction, may impair accuracy of the 

method (90). This effect is particularly important when studying tumour cell lines as it 

appears that the endogenous expression incidence increases with the degree of genomic 

instability within the cell lines (91). Furthermore, a dependency on cell cycle phases and 
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the level of chromatin condensation has been demonstrated (79, 92). Evaluation should 

be also cautious in cases where diverse cytotoxic compounds are used because the 

formation of γH2AX foci in response to DSBs is not radiation-specific, chemotherapeutic 

agents and radiomimetic drugs also induce foci (93). 

Nevertheless, the detection of γH2AX foci remains the most sensitive and simplest 

method for monitoring the DDR and a wide range of applications both in vivo, in vitro 

and ex vivo have been established recently revealing promising results on the way to 

establish γH2AX as a possible biomarker for radiation sensitivity in patient tumours (94, 

95).   

 

 

 

1.5 Aim of the study 

In previous in vivo experiments it was shown that in two hSCC lines (SKX and FaDu as 

used in the present experiments) grown as xenografts in nude mice, hypoxic tumour areas 

depicted substantial lower amounts of residual γH2AX foci, a marker of persistent 

unrepaired DNA DSBs, 24 hours post irradiation suggesting that a hypoxic 

microenvironment promotes cellular survival after irradiation (1, 14). Despite the fact that 

the resulted differences could be explained by the lower amount of induced γH2AX foci 

(30 minutes after irradiation) and the similar foci disappearance kinetics, several scientific 

questions remained open. The two tumour models under investigation beard pronounced 

differences in intrinsic radiation sensitivity evaluated previously in vitro and in vivo (14, 

32, 89, 96, 97). Interestingly, these differences were apparently solely expressed in well 

oxygenated tumour areas, whereas no difference in the mean number of residual γH2AX 

foci was observed in the hypoxic tumour parts (14). Based on these observations we 

hypothesized that inter-tumoural heterogeneity in radiation sensitivity under hypoxia is 

less pronounced compared to well-oxygenated tumour areas, suggesting that hypoxia not 

only affects cellular survival through reduced induction of DNA damage but potentially 

also affects the capacity of DNA DSB repair and possibly γH2AX formation and decay 

(1). Importantly, in vivo, it was not possible to systematically assess the oxygenation 

levels of the cells evaluated over different time periods, but rather the fact that the cells 

were hypoxic, i.e. positive staining for pimonidazole, at the time of irradiation was 

considered. In the present in vitro study we investigated systematically the effect of 
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hypoxia exposure on clonogenic cell survival in cells irradiated either prior, post or while 

being hypoxic in order to functionally characterize the effect of hypoxia exposure on 

cellular radiosensitivity (1). In addition, we aimed to investigate the role of residual 

radiation-induced DNA DSBs on cellular survival to provide insights regarding the 

radiation-induced DNA DSB repair capacity under the different experimental conditions 

(1).  

 

The understanding of this heterogeneity could be of high clinical relevance in order to 

establish biomarkers and targeting studies that could specifically address these 

differences in order to overcome hypoxia mediated treatment resistance. 
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2 MATERIAL AND METHODS 

 

2.1 Material 

2.1.1 Antibodies 

 

 

antibody Isotype clone blocking dilution company 

Alexa flour 488 
tyramid 

goat anti 
mouse IgG 

 BSA 1:400 Life technologies 
(Invitrogen), USA 

anti-actin rabbit, 
polyclonal 

103M4826
V 

BSA 1:2000 Sigma Aldrich Co., 
USA 

anti- ATM (phospho 
Ser 1981) 

rabbit IgG, 
monoclonal 

D6H9 BSA 1:1000 cell signaling 
Technology, Inc., USA 

anti- ATM rabbit IgG, 
monoclonal 

D2E2 BSA 1:1000 cell signaling 
Technology, Inc., USA 

anti -ATR (phospho 
S428) 

rabbit IgG, 
monoclonal 

EPR2184 BSA 1:1000 abcam, Cambridge, UK 

anti- ATR rabbit IgG, 
polyclonal 

 BSA 1:1000 biomol GmbH, 
Germany 

anti- CHK1 (phospho 
Ser345) 

rabbit IgG, 
monoclonal 

133D3 BSA 1:1000 cell signaling 
Technology, Inc., USA 

anti- CHK1 mouse IgG1, 
monoclonal 

2G1D5 BSA 1:1000 cell signaling 
Technology, Inc., USA 

anti- CHK2 (phospho 
Thr68) 

rabbit IgG, 
monoclonal 

C13C1 BSA 1:1000 cell signaling 
Technology, Inc., USA 

anti- CHK2 rabbit IgG, 
monoclonal 

D9C6 BSA 1:1000 cell signaling 
Technology, Inc., USA 

anti- DNA PK 
(phospho S2056) 

rabbit IgG, 
polyclonal  

 BSA 1:1000 abcam, UK 

anti- DNA PK mouse IgG1, 
monoclonal  

18-2 Milk 1:500 abcam, UK 

anti- Hif 1alpha mouse IgG 54/Hif-1α BSA 1:500 BD Bioscience, USA 

anti- Histone gH2AX 
(phospho Ser139) 

mouse IgG1, 
monoclonal 

JBW301 BSA 1:1000 Merck Millipore, 
Germany 

anti- Rad51 mouse IgG, 
polyclonal 

 BSA 1:500 abcam, UK 

anti- pimonidazole mouse, 
monoclonal 

 PBS 1:50 Hypoxyprobe Inc., 
USA 

Amersham ECL 
rabbit IgG, HRP 
linked whole Ab 

rabbit IgG NA934V BSA 1:2000 GE Healthcare Life 
Science, USA  

secondary AB anti-
mouse 

mouse IgG NAP31V BSA 1:2000 GE Healthcare Life 
Science, USA 
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2.1.2 Devices 

Device company 

Axiovert 200 inversed fluorescence microscope Carl Zeiss Microscopy GmbH, Germany 

Axio Imager Z1 Apotome fluorescence mircroscope Carl Zeiss Microscopy GmbH, Germany 

Hypoxia incubator Binder GmbH, Germany 

Incubator Heraeus Instruments, Germany 

Kühlzentrifuge Universal 30RF Hettich GmbH & Co.KG, Germany 

Lichtmikroskop Stemi 2000 Carl Zeiss Microscopy GmbH, Germany 

monochrome digital camera (AxioCamMRm) Carl Zeiss Microscopy GmbH, Germany 

Monochromkamera (Model: #25.0 2 Mp 
monochrome w/o IR) 

Diagnostic instruments, inc., USA 

motorized scanning stage, 400x, EC Plan Neofluar Märzhäuser Wetzlar GmbH&Co.KG, Germany 

objective for Axiovert 200 inversed fluorescence 
microscope (40x, 1.6 Öl, EC Plan – NEOFLUAR)  

Carl Zeiss Microscopy GmbH, Germany 

Röntgenbestrahlungseinheit RS 225 research 
system 

Gulmay Medical LTD, UK 

Shandon CytoSpin III Zytozentrifuge Thermo Fisher Scientific Inc., USA 

Sterilwerkbank  BDK Luft und Reinraumtechnik, Germany 

ledetect 96  LABEXIM Products, Austria 

AccuBlockTM  Labnet International, Inc, USA 

Kühlzentrifuge Mikro 200r Hettich GmbH & Co.KG, Germany 

Sonifier B12 Branson Sonic Power Company, USA 

Curix 60 AGFA Healthcare Corporation, USA  

Odyssey Fc Imaging System Li-cor Bioscience, USA 

Tankblot Peqlab Biotechnologie GmbH, Germany 

Electrophoresis Power Supply PS 3002  Life technologies (Gibco), USA 

 

 

2.1.3 Chemicals 

Chemicals company 

ArkTM kit (animal research kit) Dako Deutschland GmbH, Germany 

BSA  Carl Roth GmbH & Co.KG, Germany 

Bromphenolblau AppliChem GmbH, Germany 

complete MINI protease inhibitor cocktail tablets Roche diagnostics, Swiss 

DAPI Sigma Aldrich Co., USA 

DcTM Protein Assay  BioRad, USA 

DL-Dithiothreitol (DTT) Sig Sigma Aldrich Co., USA  

DMEM Biochrom GmbH, Germany 

DMSO Sigma Aldrich Co., USA 

Ethanol 99% (vollst. verh. MEK/BITREX) SAV-LIQUID PRODUCTION GMBH, 
Germany 

FCS  Sigma Aldrich Co., USA 

Flourescence Mounting Medium Dako Deutschland GmbH, Germany 

Formaldehyd Lösung 4% Merck KGaA, Germany 
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Formaldehyd min. 37% Merck KGaA, Germany 

Glycerol AppliChem GmbH, Germany 

Glycerol – 2 – phosphat Sigma Aldrich Co., USA 

Glycin Carl Roth GmbH & Co.KG, Germany 

HEPES- buffer Biochrom GmbH, Germany 

2-Propanol VWR Chemicals International, Germany 

KCl Carl Roth GmbH & Co.KG, Germany 

K2HPO4 Carl Roth GmbH & Co.KG, Germany 

β-Mercaptoethanol Sigma Aldrich Co., USA 

Methanol VWR Chemicals International, Germany 

NaCl (AnalaR Normapur) VWR Chemicals International, Germany 

Na2HPO4 x 2 H2O AppliChem GmbH, Germany 

NaHCO3   Biochrom GmbH, Germany 

NiCl2 Sigma Aldrich Co., USA 

Non-essential aminoacids Biochrom GmbH, Germany 

Na-pyrovate Biochrom GmbH, Germany 

PBS Biochrom GmbH, Germany 

Penicillin/Streptomycin  Life technologies (Gibco), USA 

phosphatasee inhibitor cochtail 2 Sigma Aldrich Co., USA 

phosphatase inhibitor cochtail 3 Sigma Aldrich Co., USA 

pimonidazole  Natural Pharmacia International, USA 

Rotiphorese Gel 30  Carl Roth GmbH & Co.KG, Germany 

Dodecylsulfat-Na-Salt Serva Electrophoresis GmbH, Germany 

Super Pap Pen Life technologies (Gibco), USA 

N, N, N‘,N‘ Tetramethylethylenediamide Sigma Aldrich Co., USA 

Triton X 100 Sigma Aldrich Co., USA 

Trizma-Base Sigma Aldrich Co., USA 

Trishydrochloride AppliChem GmbH, Germany 

Trypsin Sigma Aldrich Co., USA 

Tween20 Carl Roth GmbH & Co.KG, Germany 

DCTM protein assay (Reagent A, Reagent B) BioRad, USA 

Precision Plus Protein Standrds  BioRad, USA 

Nitrocellulose Blotting Membrane GE Healthcare Life Science, USA 

Milchpulver Carl Roth GmbH & Co.KG, Germany 

ECL Western Blotting Detection Reagents GE Healthcare Life Science, USA 

 

 

2.1.4 Laboratory equipment 

laboratory equipment company 

Adhäsions-Objektträger SuperFrost Ultra plus/ 
SuperFrost plus Gold 

R. Langenbrinck, Germany 

BD-Falcon 10-cm-Schalen VWR Chemicals International, Germany 

BD-Falcon 6- cm Schalen VWR Chemicals International, Germany 

BD-Falcon T-75-Flaschen VWR Chemicals International, Germany 
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BD-Falcon T-25-Flaschen VWR Chemicals International, Germany 

BD GasPakTM-EZ- Gas Generating Pouch 
Systems 

Becton, Dickinson and Company, USA 

BD-Falcon Röhrchen VWR Chemicals International, Germany 

BD-Falcon Kryoröhrchen VWR Chemicals International, Germany 

Eppendorfreaktionsgefäße Eppendorf AG, Germany 

Filterkarten (Shandon CytoSpin III) Thermo Fisher Scientific Inc., USA 

Fuchs-Rosenthal counting chamber Glaswarenfabrik Karl Hecht, Germany 

Pipettenspitzen Thermo Fisher Scientific Inc., USA 

Röntgenfilme AGFA, Belgium 

96 Well platten Greiner bio-one International GmbH  

Exmire microsyringe Ito Corporation, Japan 

Odyssey Fc Imaging System LI-COR Biosciences – GmbH, USA 

 

 

2.1.5 Solutions 

DMEM (1 L) DMEM Trockenmedium 12,04 g 

NaHCO3 3,33 g 

H2O 890 ml 

pH   7,2 

PBS (1 L) NaCl 8g 

Na2HPO4 x 2 H2O 1,44g 

KCl 0,2g 

K2HPO4 0,2g 

cristal violet staining solution  
(1 L) 

cristal violet 0,5g 

formaldehyd 27 ml 

PBS 1000ml 

separating gel (6%) resolving gel buffer 5ml 

H2O 11ml 

Acrylamid 4ml 

APS (10%) 100µl 

Temed 10µl 

separating gel (12%) resolving gel buffer 5ml 

H2O 7ml 

Acrylamid 8ml 

APS (10%) 100µl 

Temed 10µl 

stacking gel (4.5%) stacking gel buffer 1.25ml 

H2O 3ml 

Acrylamid 0.75ml 

APS (10%) 100µl 

Temed 5µl 
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2.1.6 Buffering Solutions 
Lysisbuffer (500ml) Tris-HCL 3.94g 

Glycerol – 2 – phosphat 5.401g 
NaCl 4.383g 

Na3VO4 0.092g 
Glycerol 50ml 

Tween20 5ml 

NaF 0.021g 
H2O 440ml 

pH 7.5 
Stripping buffer (550ml) Glycin 4.5g 

10% SDS in PBS 3ml 

Tween 20 3ml 
H2O 550 ml 

pH 2.2 

TBST (2l) Tris-HCL 3.152g 
NaCl 11.688g 

Twen 20 2ml 
H2O 2 l 
pH 7.5 

Running buffer (5l) Tris-Base 30g 

Glycin 144g 
SDS 5g 

H2O 5l 
Transfer buffer (8l) Tris-Base 46.4g 

Glycin 23.2g 

SDS 2.96g 
Methanol 1.6l 

H2O 8l 

separating gel buffer (500ml) Tris Base 90.85g 
SDS 10% 20ml (bzw. 2g) 

H2O 500ml 
pH 8.8 

stacking gel buffer (500ml) Tris Base 30.3g 

SDS 10% 20ml (bzw. 2g) 
H2O 500ml 

pH 6.8 
Loading buffer (Lämmli buffer)  
(100ml) 

Glycerol (=Glycerin) 20ml 
SDS 2g 

Bromphenolblau 10mg 
Sammelgelpuffer (4x) 25ml 
H2O 95ml 

washing buffer (1l) PBS 1l 

Tween 20 1ml 
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2.2 Cell culture conditions 

Cells were reactivated from a cryo-stock (liquid nitrogen) and grown in DMEM 

supplemented with 10% of FCS, 1% antibiotics (Penicillin/Streptomycin), 1% Non-

Essential Amino Acids, 1% Sodium Pyruvate and 2% Hepes Buffer to obtain optimal 

growth conditions for the cell lines [0] (1). Standard CFAs were performed using DMEM 

containing 20% FCS supplemented as previously described. During all cultivations, cells 

were kept in 37 °C under humidified atmosphere (95% humidity) either in 21% oxygen 

(normoxic conditions) or in 1% oxygen (hypoxic conditions). Cells were routinely 

passaged once a week upon reaching 90-95% confluency level and kept in culture until 

25th passage after reactivation to minimize the possibility of inducing random mutations. 

All cells were routinely checked for contamination with Mycoplasma (1).  

 

 

2.3 Cell lines 

Three hSCC cell lines from the head and neck region, namely UT SCC-5, FaDu and SKX, 

were used in the experiments. All cell lines have been previously extensively 

characterized both in in vitro (89, 96, 98) and in vivo (14, 32, 96) studies and were kindly 

donated from Prof. Baumann (University Hospital of Dresden, Department of Radiation 

Oncology, Oncoray). They are all including a missense-mutation of the tumour 

suppressor gene TP53 (98) and are growing in vitro as adherent cell cultures.  

 

The UT SCC-5 cell line was established from a primary tumour of the mobile tongue at 

the Department of Otorhinolaryngology – Head and Neck Surgery (Turku University; 

Turku Finland) and expresses high radiation resistance evaluated both with in vivo and in 

vitro endpoints (32) .  

 

The FaDu cell line used is a subline of the original FaDu cell line available in the ATCC. 

FaDu cells initially arose from an undifferentiated human hypopharyngeal SCC of the 

head and neck region and are characterized by moderate radiosensitivity (14, 89, 96, 98-

101).  
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The SKX cell line was established from a biopsy of a moderate differentiated SCC of the 

floor of mouth and alveolar bone (T4 N2 M0) prior to radiotherapy at the University 

Hospital Hamburg-Eppendorf in 1991. A cell line was consequently established in 

Dresden from an original tumour xenograft (96). Previous experiments, both in vitro and 

in vivo, indicated that SKX cell line is highly radiosensitive (14, 89, 96-98). 

 

 

2.4 Methods 

 

2.4.1 Validation of hypoxic conditions 

For verification of hypoxic conditions, staining with pimonidazole [0], a 2-nitroimidazole 

hypoxia marker that forms covalent bonds with cellular macromolecules at oxygen levels 

below 10 mmHg (23), was performed using the ARKTM Kit [0]. For all cell lines confluent 

cell cultures were incubated with medium containing 20 µmol pimonidazole for 1 hour 

prior to incubation either in GasPaks for 0, 1, 2, 2.5 and 3 hours or in 1% O2 for 4 hours 

within a hypoxic incubator. After fixation of cells with 4% formaldehyde (15 min) and 

permeabilization of cell membranes (Triton X100, 0.01% in PBS), endogenous activity 

of peroxidase was blocked (5min, peroxidase bock, ARKTM kit). This was followed by 

incubation with the primary antibody (1:50, 15min, 37°C according to the manual 

provided from the manufacturer). Slides were then incubated with the streptavidine-

peroxidase complex (15min, RT). Preparation of DAB chromogen was done based on the 

manufacturer’s guidelines (DAB substrate buffer + DAB chromogen solution) with the 

addition of 30% NiCl2 (1/1000 dilution) and applied to cells (8min, RT) before 

counterstained with hematoxylin (2min, RT). Between every application, three washing 

steps with PBS were performed (5 minutes each). Slides were kept in dark and humid 

atmosphere during all incubations.   
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Figure 2: representative images of cells after incubation in GasPaks for 0, 1 and 2.5 hours and after 
incubation with 1% O2 for 4 hours for all cell lines und investigation; cytoplasmic staining with 
pimonidazole increased over incubation time under conditions close to anoxia as well as after long time 
incubation under moderate hypoxia  

 

2.4.2 Proliferation assay 

For all cell lines tumour cells were seeded with a seeding density of 100.000 cells in cell 

culture dishes (diameter: 6cm) and incubated for 24 hours under normoxic conditions 

before medium was changed. Cells were subsequently either incubated under normoxic 

(37°C, 7% CO2, 21% O2) or under hypoxic conditions (37°C, 7% CO2, 1% O2) and cell 

numbers were counted daily between day 3 and 7 post seeding. Cell counts were 

performed manually using a Fuchs-Rosenthal counting chamber [2.1.4].  

 
 

2.4.3 Colony Formation Assay 

After preparation of single cell suspension cells were seeded in cell culture dishes (10 cm 

diameter) for standard CFA. For each dose, three different seeding densities were used in 

triplicates (Tabl. 1). Seeding densities varied between cell lines and were adapted for 

conditions including irradiation under hypoxia, due to expected higher cell survival. For 

all cell lines, dishes were incubated for 14 days under normoxic conditions, followed by 



30 
 

fixation (formaldehyde, 15min) and staining (cristal violet) [2.1.5]. Colonies with at least 

50 cells were counted manually and numbers were recorded.  

 

Table 1: seeding densities for conditions with or without irradiation under hypoxia for different 
irradiation doses and all cell lines investigated; number of cells seeded was decreased for conditions 
with irradiation under hypoxia due to the expected higher clonogenic survival under this condition 

 

 

 

2.4.4 γH2AX-Assay 

After preparation of single cell suspension, cells were centrifuged on glass slides (FaDu: 

75000 cells/spot; SKX/UT SCC-5: 100000 cells/spot) by cytospin procedure (200 rpm, 

2min) [2.1.2] and fixed with 4% formaldehyde (15 min). After permeabilization of the 

cell membranes (Triton X100, 0.01% in PBS) cells were blocked using BSA (1% in PBS, 

30min, RT), in order to block unspecific reactions, and incubated with primary antibody 

(1:1000 in BSA, Anti-phospho-Histone H2AX, 1h, 37°C). For second antibody Alexa 

488 flourescence probe was used (1:400 in BSA, 45min, RT) and nuclei were 

counterstained with DAPI (1:1000 in PBS, 10 min, RT). Slides were mounted with 

fluorescent mounting medium and stored at 4°C until image acquisition (1, 14, 89).  

 SKX FaDu UT SCC-5 
O2 concentration 
during irradiation 

21% <0.1% 21% <0.1% 21% <0.1% 

0 Gy 2400 2400 1200 1200 1200 1200 
3000 3000 1500 1500 1500 1500 

3600 3600 1950 1950 1950 1950 

1 Gy 3000 3000 1800 1800 1800 1800 
5000 5000 2250 2250 2250 2250 
7000 7000 2400 2400 2400 2400 

2 Gy 9000 9000 1800 1800 1800 1800 
12000 12000 2550 2550 2550 2550 

15000 15000 3000 3000 3000 3000 

4 Gy 30000 30000 3000 2000 2000 2000 
37500 37500 6000 3000 4000 3000 

45000 45000 9000 4000 6000 4000 
6 Gy 120000 40000 24000 3000 10000 3000 

180000 60000 30000 4000 15000 4000 

240000 80000 36000 5000 20000 5000 
8 Gy 120000 40000 24000 3000 24000 3000 

180000 60000 30000 4000 30000 4000 

240000 80000 36000 5000 36000 5000 
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2.4.5 Images and image analysis 

Images were either generated with Axiovert 200 inversed fluorescence microscope (40x) 

[2.1.2] using a monochrome camera and VisiVIEW- Imaging software (Visitron Systems 

GmBH) or with Axio Imager Z1 Apotome fluorescence microscope [2.1.2] using a 

monochrome digital camera (AxioCamMRm, Carl Zeiss, Jena, Germany; motorized 

scanning stage, Märzhäuser, Wetzlar, Germany, 400x, EC Plan Neofluar). For both 

microscopes, at least 8 individual images of different areas were taken per dose group and 

cell line. For Axio Imager Z1 Apotome fluorescence microscope images were taken as 

optical sections every 0.5 μm on the Z-axis (z-stack) and individual images were fused 

into a 2D maximum intensity projections of a single stack image for analysis (1, 14, 89).  

Images taken with Axiovert 200 inversed fluorescence microscope were evaluated 

manually using Image J–software (National Institute of Health). For images taken with 

Axio Imager Z1 Apotome fluorescence microscope evaluation was performed using 

AxioVision software (LE 64, SP1, version: 4.9.1.0 for Windows) (1). Evaluation of 

γH2AX foci was restricted to cells with intact nuclei based on DAPI counterstain. Cells 

exhibiting high background or presenting with pan-nuclear staining were excluded 

(Fig.3). At least 150 nuclei per dose group were randomly selected and the number of 

foci per nuclei was recorded. 

 
 
 
 
 

Figure 3: representative image (FaDu, 0Gy, control), excluded cells marked with *; cells without intact 
nuclei, irregular DAPI staining, overlapping nuclei or cells in mitosis were excluded  
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2.4.6 Western Blot Analysis 

Whole cell lysates were isolated using lysis buffer [2.1.6] with added protease and 

phosphatase inhibitors [0] and kept on ice. After sonification (intensity: 2.5, 15 sec), 

samples were centrifuged (14000 rpm, 4 °C, 15 min) [2.1.2] and protein concentration 

was determined using Lowry assay (DCTM protein assay, BSA-standard, 620nm, ledetect 

96). Appropriate amounts of supernatant containing 80-100µg Protein were mixed with 

Laemmli-buffer (5% β-Mercaptoethanol, 1:1)(102) and mixture was boiled (100°C, 

10min) to denaturate proteins. For SDS-PAGE (stacking gel: 4.5%, separating gel: 

12%/6% acrylamide, 35 mA/Gel, 4h, RT) samples were loaded using a micro-syringe and 

a molecular weight marker to determine protein size and progress of electrophoresis was 

used. Proteins were transferred onto a nitrocellulose membrane through tank blotting 

procedure (24V, 12-14h, 4°C). Success of protein transfer was assessed with Ponceau 

staining (2 min, RT). Subsequently, membranes were blocked with BSA (5% BSA in 

washing buffer [2.1.6], RT, 4h) or milk (5% in washing buffer, RT, 4h, agitation) [2.1.1] 

and incubated with primary antibodies (overnight, 4°C) [2.1.1]. After washing (washing 

buffer, 3x5min), membranes were incubated with indicated secondary antibodies (1h, 

RT) [2.1.1]. For development, membranes were incubated with ECL reagent (2min, RT) 

and chemiluminescence was detected using Odyssey Fc imaging system [2.1.2]. As 

required membranes were stripped with stripping buffer (2x 15min, RT) [2.1.6] and 

reincubated with primary antibodies for further analysis. Digital images were evaluated 

using Image Studio Software (version 4.0.21, LI-COR Biosciences – GmbH, Lincoln, 

Nebraska (USA)). 

 

 

2.5 Experimental design 

Over all experiments and for all cell lines used, cells were seeded with the same density 

(5x 105 cells) either in 25 cm² (20000 cells /cm2) cell culture flasks for CFA and γH2AX 

Assay or in cell culture dishes (6cm diameter) for western blot analysis (1). After an initial 

cultivation period for 24 hours to allow cell attachment, culture medium was changed and 

subsequently, cells were grown until reaching confluency (100 000 cells/cm2) while being 

allocated to different conditions according to the respective experimental design. In all 

experimental settings, cells were exposed to normoxia or hypoxia within three distinct 
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time frames (in a variety of combinations (Tabl. 2)) namely, pre-irradiation period 

(growth period) (4-5 days, according to cell line and growth condition), irradiation time 

and post-irradiation period (repair time 24 h) (Tabl. 2) (1). Irradiation was always 

performed as single doses of 0, 1, 2, 4, 6 and 8 Gy (200 kV, 15mA X-Rays; dose-rate: 

0,91Gy/min; RS 225 research system). For irradiation under hypoxia, cells were kept in 

GasPaks for 2.5h prior to irradiation and subsequently irradiated in the GasPaks with 

oxygen concentration of 0.1% (according to the manufacturer’s instruction) (1).  

 

Table 2: Table showing the different experimental groups tested with the corresponding 
abbreviations used; Adapted from Hauth F.et al. (2017) Cell-line dependent effects of hypoxia prior to 
irradiation in squamous cell carcinoma lines. Clinical and Translational Radiation Oncology (accepted 
for publication)(1) 

Oxygen concentration  Experimental condition 

abbreviation Growth period (4-5 days) Irradiation Post irradiation (24h) 

21% 21% 21% O-O-O 

21% 0,1% 21% O-H-O 

21% 21% 1% O-O-H 

21% 0,1% 1% O-H-H 

1% 1% 21% H-O-O 

1% 21% 1% H-O-H 

1% 0,1% 21% H-H-O 

1% 0,1% 1% H-H-H 

 

 

Seeding for standard CFA and γH2AX assay was always performed from cells of the 

same flask (for each dose) via division of the single cell suspension. Processing of cells 

for both assays along with the western blot analysis was always done after the completion 

of 24 hours post-irradiation period. At least three independent experiments were 

performed for all cell lines and all conditions for CFA while at least one independent 

experiment was performed for western blot analysis and γH2AX Assay (1). 
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2.6 Statistics 

All statistical analyses were performed using GraphPad Prism 5 (version: 5.03 for 

Windows, GraphPad Software, Inc., San Diego, California (USA)). For multiple 

comparisons of CFA and γH2AX data one way analysis of variance (ANOVA) with 

Bonferroni correction was used (1). Furthermore, p-values of below 0.05 were considered 

statistically significant (1).   

 

 

2.6.1 Proliferation assay 

Data obtained by proliferation assay were fitted using the exponential growth model 

 

𝒚(𝒕) = 𝒚(𝟎) ∗  𝒆(𝒌∗𝒕), (1) 

 

where y(0) equals the y-intercept of the curve, t equals the time post seeding in days and 

k is a growth rate coefficient, resembling the slope of the exponential growth curve. 

DTs were calculated based on the formula: 

 

𝑫𝑻 =
𝐥𝐧 𝟐

𝒌
, (2) 

 
 

2.6.2 CFA 

For standard CFA PEs and SFs for the different doses were calculated based on the 

following equations:  

 

𝑷𝑬 [%] =
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒐𝒍𝒐𝒏𝒊𝒆𝒔 𝒄𝒐𝒖𝒏𝒕𝒆𝒅

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒆𝒆𝒅𝒆𝒅 𝒄𝒆𝒍𝒍𝒔
 ∗ 𝟏𝟎𝟎          (3) 

 

𝑺𝑭 [%] =  
𝑷𝑬 (𝒊𝒓𝒓𝒂𝒅𝒊𝒂𝒕𝒆𝒅 𝒄𝒆𝒍𝒍𝒔)

𝑷𝑬 (𝒏𝒐𝒏ି𝒊𝒓𝒓𝒂𝒅𝒊𝒂𝒕𝒆𝒅 𝒄𝒆𝒍𝒍𝒔,𝟎𝑮𝒚)
                    (4) 
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All acquired data was fitted using the linear – quadratic model: 

 

𝒚(𝒙) =  𝒆(ି𝜶∗𝒙ି𝜷∗൫𝒙𝟐൯), (5) 

 

where y(x) equals the surviving fraction, x equals the dose in Gy and α and β are 

coefficients of dose and dose squared. 

 

 

2.6.3 γH2AX foci assay 

Data obtained by γH2AX foci assay were fitted with the linear regression model. The 

equation for linear regression used for calculation was: 

 
𝒚(𝒙) = (𝒂 ∗ 𝒙 + 𝒃) – c, (6) 

 
 
where x equals dose in Gy, y(x) equals the mean number of residual foci and a and b are 

constants, resembling the slope of the linear regression and the y-intercept, respectively. 

C resembling the mean value of residual foci counted in 0 Gy. 

Based on the Poisson statistics describing the radiation effects on cells, the cellular 

survival after irradiation is the probability of a cell having zero lethal lesions (7) (1). 

Therefore, the number of lethal lesions is equal to the –lnSF (8). This is mathematically 

described by the equations: 

 

𝑺𝑭𝑪𝑭𝑨 =  𝒆(ି𝒎𝒆𝒂𝒏 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒍𝒆𝒕𝒉𝒂𝒍 𝒍𝒆𝒔𝒊𝒐𝒏𝒔)  (7) 

 

− 𝒍𝒏 𝑺𝑭𝑪𝑭𝑨 = 𝒎𝒆𝒂𝒏 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒍𝒆𝒕𝒉𝒂𝒍 𝒍𝒆𝒔𝒊𝒐𝒏𝒔 (8) 

 

The correlation between –ln SFCFA and the number of residual γH2AX foci were fitted 

with the linear regression model (1): 

 

𝒚(𝒙) = 𝒄 ∗ 𝒙 + 𝒅,  (9) 
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where x equals –ln SFCFA, y(x) equals the mean number of residual foci and c and d are 

constants, resembling the slope of the linear regression and the y-intercept, respectively.  

This equation allowed the direct recalculation of survival curves based only on the 

number of residual γH2AX foci as previously shown (89).  

 

𝑺𝑭(𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅) =  𝒆
ቄିቀ

𝒎𝒆𝒂𝒏 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒇𝒐𝒄𝒊ష𝒅

𝒄
ቁቅ

   (10) 

 
 

2.6.4 Calculation of OER 

The OER for every experimental condition was calculated from the standard CFA based 

on the following equation: 

 

𝑶𝑬𝑹 =  
𝑫𝒐𝒔𝒆 𝒏𝒐𝒓𝒎𝒐𝒙𝒊𝒂 (𝑺𝑭ୀ𝟎.𝟏)

𝑫𝒐𝒔𝒆 𝒉𝒚𝒑𝒐𝒙𝒊𝒂 (𝑺𝑭ୀ𝟎.𝟏)
  (11) 

 
Since the number of residual γH2AX foci significantly correlates with the surviving 

fractions obtained by CFA (8) we were able to recalculate the OERs based only on the 

linear regression of mean residual foci with –ln SFCFA (9). This was performed by fixing 

the biological effect at the level of 10% survival (-ln (0,1)CFA=2.3) and defining the 

amount of mean expected residual foci under hypoxia and normoxia using the following 

equation: 

  

𝒎𝒆𝒂𝒏 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 𝒇𝒐𝒄𝒊 = 𝒄 ∗ 𝟐. 𝟑 + 𝒅 , (12) 

 

where c and d are constants, resembling the slope of the linear regression and the y-

intercept of the equation for either normoxia or hypoxia, respectively 𝒚(𝒙) = 𝒄 ∗𝒙+𝒅,  

(9). Next, we transferred these values to the equivalent γH2AX dose-response curve and 

defined the dose levels needed to produce the corresponding amount of residual foci.  

 

𝑫𝒐𝒔𝒆 (𝑮𝒚) =  
(𝒎𝒆𝒂𝒏 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 𝒇𝒐𝒄𝒊ି𝒃)

𝒂
 , (13) 

 



37 
 

where a and b are constants, resembling the slope of the linear regression and the y-

intercept, respectively 𝒚(𝒙) = (𝒂∗𝒙+𝒃) – c, (6). As a final step, by dividing the two dose 

levels, we calculated the OERs (Suppl. Fig. 1).  

 
 

2.6.5 Calculation of DMF 

It is described mathematically as followed: 
  

𝑫𝑴𝑭 =  
𝑫𝒐𝒔𝒆 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒓𝒆𝒂𝒈𝒆𝒏𝒕 (𝑺𝑭ୀ𝟎.𝟏)

𝑫𝒐𝒔𝒆 𝒘𝒊𝒕𝒉 𝒓𝒆𝒂𝒈𝒆𝒏𝒕 (𝑺𝑭ୀ𝟎.𝟏)
 , (14) 
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3 RESULTS 

3.1 Effect of hypoxia on cellular growth 

As a first approach to our hypothesis, we investigated the impact of hypoxia on cellular 

growth for all cell lines under investigation. We observed exponential growth of cells 

under both normoxic and hypoxic conditions with FaDu cells exhibiting the longest 

doubling time (DT), UT SCC-5 cells showing an intermediate and SKX the shortest DT 

under normoxic conditions, respectively (Fig. 4: SKX: DT= 41.3h; FaDu: DT= 30.1h; 

UT SCC-5: DT= 39.9h). Incubation under hypoxia increased DT for all cell lines, in a 

cell line dependent manner (Fig. 4: SKX: DT= 52.7h; FaDu: DT= 39.6h; UT SCC-5: DT= 

56.5h). Interestingly, we observed the highest deceleration of growth in UT SCC-5 cells, 

whereas in FaDu cell line exposure to hypoxia resulted in the slightest reduction of growth 

rate. 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Normoxia (experimental group: O-O-O) 

Figure 5A shows the results of standard CFA under normoxic conditions for the three 

hSCC cell lines under investigation. Clonogenic cell survival revealed substantial 

Figure 4: Figure showing exponential growth curves for all cell lines under investigation. Dashed lines 
and open symbols indicating data obtained under normoxic conditions (O), whereas filled symbols and 
solid lines indicating data obtained under hypoxic conditions (H). Error bars indication the standard 
deviation of three independent experiments.  
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differences in intrinsic radiosensitivity depicted as differences in the survival fraction 

after 2 Gy (SF2) with SKX showing high radiosensitivity (SF2= 0.14), while FaDu showed 

moderate radiosensitivity (SF2= 0.38) and UT SCC-5 low radiosensitivity (SF2= 0.59) 

respectively (Supp. Tab. 1) (1). In terms of γH2AX foci assay, for all cell lines residual 

γH2AX foci were increasing linearly with increasing dose. However, the slope values of 

the linear dose-response varied among the different cell lines (Fig. 5B: SKX: slope= 2.13, 

r²= 0.3887; Fa Du: slope= 1.58, r²= 0.2623; UT SCC-5: slope= 1.13, r²= 0.2028). 

 

 

 

Figure 5A: Standard CFA under normoxic 
conditions (experimental group: O-O-O) for all 
cell lines investigated. Shown are the means of 8 
(SKX, UT SCC-5 ) and 11 (FaDu) experiments
(closed symbols) with the standard error of the 
mean. Open symbols indicating single values of 
individual experiments. Differences in SF2 values 
indicate differences in intrinsic radiosensitivity 
within the cell lines under investigation. Adapted 
from Hauth F.et al. (2017) Cell-line dependent 
effects of hypoxia prior to irradiation in squamous 
cell carcinoma lines. Clinical and Translational 
Radiation Oncology (accepted for publication) (1) 

Figure 5B: Linear correlation of residual 
γH2AX foci number with radiation dose for all 
cell lines under investigation under normoxic 
conditions (experimental group: O-O-O).
Shown are the means of 5 (SKX, UT SCC-5) and 
7 (FaDu) experiments with standard deviation of 
the mean. Differences in slopes of the linear 
regressions indicating differences of intrinsic 
radiation sensitivity between the cell lines used.
Adapted from Hauth F.et al. (2017) Cell-line 
dependent effects of hypoxia prior to irradiation in 
squamous cell carcinoma lines. Clinical and 
Translational Radiation Oncology (accepted for 
publication)(1) 
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Plotting the mean values of residual γH2AX foci against the –lnSFCFA led to a significant 

linear correlation (Fig. 5C: SKX: slope= 2.63, r²= 0.99; FaDu: slope= 1.83, r²= 0.99; UT 

SCC-5: slope= 2.32, r²= 0.98) for all cell lines (Suppl. Tab. 1). From the respective linear 

correlation equations we were able to recalculate the whole survival curves based only on 

the number of residual foci. For all cell lines no systematic differences were observed 

between the data obtained by standard CFA and the ones predicted by recalculation 

through mean γH2AX foci numbers, resulting in overlapping curves (within the expected 

experimental spread) (Fig. 5D). 

 

 

3.3 Effect of post-irradiation incubation under hypoxia on cellular survival and 

number of residual γH2AX foci (experimental group: O-O-H) 

For FaDu and SKX 24 hours post-irradiation exposure to hypoxia resulted in survival 

curves that were not significantly different from those obtained under normoxic 

conditions, whereas for UT SCC-5 cells a slight increase in cellular survival was observed 

(Fig. 6A: SKX: SF2= 0.10, p= 0.20; FaDu: SF2= 0.34, p= 0.48; UT SCC-5: SF2= 0.61, p= 

0.004) (Suppl. Tab. 1). Consistent with the results of the CFA the slopes of the normoxic 

dose-γH2AX foci linear regressions were not different compared to the ones obtained 

Figure 5C: Correlation of mean number of 
residual γH2AX foci with the observed –lnSF 
(mean number of lethal lesions) for all cell lines 
used under normoxic conditions (experimental 
group: O-O-O). Error bars indicating standard 
error of the mean. Adapted from Hauth F.et al. 
(2017) Cell-line dependent effects of hypoxia prior 
to irradiation in squamous cell carcinoma lines. 
Clinical and Translational Radiation Oncology 
(accepted for publication)(1) 

Figure 5D: Figure showing survival curves 
obtained by CFA data (observed SF) and survival 
curves recalculated based on data obtained by 
γH2AX foci assay (calculated SF). For CFA data 
both single surviving fractions per dose (open 
symbols) and means of single surviving fractions per 
dose (closed symbols) are blotted. Adapted from 
Hauth F.et al. (2017) Cell-line dependent effects of 
hypoxia prior to irradiation in squamous cell 
carcinoma lines. Clinical and Translational 
Radiation Oncology (accepted for publication) (1) 
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after hypoxia exposure during post irradiation incubation time for both FaDu and SKX 

cell line (Fig. 6B: SKX: slope= 1.84, r²= 0.32; FaDu: slope= 1.43, r²= 0.22). Whereas, 

for UT SCC-5 cell line 24-hour post-irradiation incubation under hypoxia led to a higher 

slope compared to normoxic conditions (Fig. 6B: UT SCC-5: slope= 1.50, r²= 0.22) (1).  

 

 

 

 

 

 

 

 

 

 

 

 

In addition, reconstruction of the cell survival curves based on the correlation of γH2AX 

foci and –lnSFCFA (Fig. 6C: SKX: slope= 2.01 r²= 0.99; FaDu: slope= 2.15, r²= 0.95; UT 

SCC-5: slope= 3.99, r²= 0.92) resulted in a good approximation for SKX and FaDu cell 

lines and to a slight underestimation of survival for UT SCC-5 cells (Fig. 6D). HMFs, 

derived from both CFA and γH2AX assay data, revealed values close to one (Supp. Tab. 

1: HMFCFA: SKX: 1.0; FaDu: 1.0; UT SCC-5: 1.2; HMFγH2AX: SKX: 1.0; FaDu: 1.1; UT 

SCC-5: 1.2), indicating no effect of post-irradiation exposure to hypoxia (1) (Fig. 14). 

  

Figure 6B: Linear dose-response of mean 
number of residual foci for normoxic control (O-
O-O, open symbols, dashed line) and post-
irradiation incubation under hypoxia (O-O-H, 
filled symbols, solid line). Shown are the results of 
3 (FaDu), 4 (SKX) and 6 (UT SCC-5) independant
experiments with standard error of the mean.
Adapted from Hauth F.et al. (2017) Cell-line 
dependent effects of hypoxia prior to irradiation in 
squamous cell carcinoma lines. Clinical and 
Translational Radiation Oncology (accepted for 
publication)(1) 

Figure 6A: Figure showing results of standard CFA
for normoxic control (O-O-O, open symbols) and 
24 hour post-irradiation incubation under hypoxia 
(O-O-H, filled symbols). For all cell lines results of 3 
independant experiments with standard error of the 
mean are plotted. No significant difference between 
results for post-irradiation exposure  and control 
condition could be detected. Error bars indicating 
standard error of the means. Adapted from Hauth F.et 
al. (2017) Cell-line dependent effects of hypoxia prior 
to irradiation in squamous cell carcinoma lines. 
Clinical and Translational Radiation Oncology 
(accepted for publication) (1) 
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3.4 Effect of acute hypoxia at the time of irradiation on cellular survival and 

number of residual γH2AX foci (experimental group: O-H-O) 

Application of severe hypoxia at the time of irradiation (acute hypoxia), significantly 

increased cellular survival in all cell lines over all doses tested (Fig. 7A: SKX: SF2= 0.48; 

FaDu: SF2= 0.71; UT SCC-5: SF2= 0.76) (1). In parallel a significant decrease of the 

amount of residual γH2AX foci as depicted by the slopes of the linear regression was 

observed (Fig. 7B: SKX: slope= 1.31, r²= 0.29; FaDu: slope= 0.41, r²= 0.42; UT SCC-5: 

slope= 0.41, r²= 0.03) (1). The survival curves obtained by the correlation of the mean 

γH2AX foci numbers with -lnSFCFA (Fig. 7C: SKX: slope= 2.12 r²= 0.95; FaDu: slope= 

1.91, r²= 0.91; UT SCC-5: slope= 2.85, r²= 0.93) did not differ from those observed by 

standard CFA for FaDu and UT SCC-5 cell lines, whereas for SKX survival was slightly 

underestimated (Fig. 7D) (1). No significant difference was observed in the calculation 

of OERs based on standard CFA data among the different cell lines with a mean OER of 

2.36 (Supp. Tab. 1: OERCFA: SKX: 2.3; FaDu: 2.4; UT SCC-5: 2.3) while calculation of 

OERs based on data obtained by γH2AX assay resulted in a mean OER of 2.58 over all 

cell lines (Supp Tab. 1: OERγH2AX: SKX: 2.0; FaDu: 2.9; UT SCC-5: 2.8) (Fig. 14) (1). 

 

Figure 6C: Linear correlation between –lnSF and 
mean number of residual γH2AX foci for post-
irradiation incubation under hypoxia 
(experimental group: O-O-H). Shown are results of 
mean number of residual foci with standard error of 
the means. Adapted from Hauth F.et al. (2017) Cell-
line dependent effects of hypoxia prior to irradiation 
in squamous cell carcinoma lines. Clinical and 
Translational Radiation Oncology (accepted for 
publication)(1) 

Figure 6D: Figure showing observed and 
recalculated surviving fractions for all cell lines 
under investigation for post-irradiation 
incubation under hypoxia (experimental group: 
O-O-H). Mean numbers of observed SF are 
indicated by open symbols, calculated SF values are 
indicated by filled symbols. Error bars indicating 
standard deviation. Adapted from Hauth F.et al. 
(2017) Cell-line dependent effects of hypoxia prior to 
irradiation in squamous cell carcinoma lines. 
Clinical and Translational Radiation Oncology 
(accepted for publication)(1) 
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Figure 7A: Standard CFA revealing increased 
cellular survival for cells exposed to acute hypoxia 
during irradiation for all cell lines used. Dashed 
lines and open symbols indicating data obtained 
under normoxic conditions (experimental group: O-
O-O) and filled symbols and solid line indicating data 
obtained under acute hypoxia (experimental group: 
O-H-O). Error bars indicate the standard errror of the 
mean. Adapted from Hauth F.et al. (2017) Cell-line 
dependent effects of hypoxia prior to irradiation in 
squamous cell carcinoma lines. Clinical and 
Translational Radiation Oncology (accepted for 
publication)(1) 

Figure 7B: Figure showing a linerar dose –foci 
response for all cell lines under investigation. 
Dashed lines and open symbols indicating data 
obtained under normoxic conditions (experimental 
group: O-O-O) and filled symbols and solid line 
indicating data obtained under acute hypoxia
(experimental group: O-H-O). Shown are the means 
of 3 (SKX, UT SCC-5) and 4 (FaDu) independent
experiments with standard error of the mean. 
Adapted from Hauth F.et al. (2017) Cell-line 
dependent effects of hypoxia prior to irradiation in 
squamous cell carcinoma lines. Clinical and 
Translational Radiation Oncology (accepted for 
publication)(1) 

Figure 7C: Correlation between –lnSFCFA and 
mean number of residual foci followed linear 
regression for all cell lines under investigation
(experimental group: O-H-O). Error bars indicating 
standard error of the mean.  

Figure 7D: Figure showing calculated and 
observed surviving fractions for all cell lines for 
acute hypoxia at the time of irradiation 
(experimental group: O-H-O) Mean numbers of 
observed SF are indicated by open symbols, 
calculated SF values are indicated by filled symbols. 
Error bars indicating standard deviation. Adapted 
from Hauth F.et al. (2017) Cell-line dependent 
effects of hypoxia prior to irradiation in squamous 
cell carcinoma lines. Clinical and Translational 
Radiation Oncology (accepted for publication) (1) 
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3.5 Effect of long term incubation under hypoxia prior to irradiation on cellular 

survival and number of residual γH2AX foci (experimental group: H-O-O) 

Long term exposure to mild hypoxia of 1% O2 prior to irradiation affected cellular 

survival compared to control conditions in a cell line dependent manner, namely, 

induction of radiosensitivity in SKX (Supp. Tab. 1: SF2: 0.05), induction of 

radioresistance in FaDu (Supp. Tab. 1: SF2: 0.59) and no difference for UT SCC-5 

(Supp. Tab. 1: SF2: 0.59) (Fig. 8A) (1). Quantification of the magnitude of the effect was 

performed based on the calculation of HMF values, which were 0.76, 1.54 and 1.10 for 

SKX, FaDu and UT SCC-5 respectively (Fig. 14, Supp. Tab. 1) (1). The slopes of 

γH2AX foci linear dose response differed from those obtained under normoxic 

conditions, with decreased slope value for FaDu and SKX cell line and a slight increased 

slope value for UT SCC-5 cell line (Fig. 8B: SKX: slope= 0.83, r²= 0.10; FaDu: slope= 

0.8, r²= 0.20; UT SCC-5: slope= 1.4, r²= 0.21) (1). Interestingly, UT SCC-5 and SKX 

cells expressed an increased amount of background foci in unirradiated controls when 

cultivated under mild hypoxia (Suppl. Tab. 2: mean residual foci (0Gy): SKX: 8.7 (H-O-

O), 2.0 (O-O-O); UT SCC-5: 2.8 (H-O-O), 1.4 (O-O-O)), while no difference was 

observed for FaDu cell line compared to the control values (Suppl. Tab. 2: mean residual 

foci (0Gy): FaDu: 1.1(H-O-O), 0.9 (O-O-O)). Under long term mild hypoxia, 

recalculation of the cell survival curve could not be performed for the SKX cell line, 

presumably as a consequence of lack of correlation between mean number of residual 

γH2AX foci and –lnSFCFA. In contrast, recalculation of survival curves based on the 

significant linear correlations of γH2AX foci and –lnSFCFA led to good estimation of the 

standard CFA curve for FaDu and slight underestimation for UT SCC-5 lines respectively 

(Fig. 8C: SKX: slope= 0.58, r²= 0.14; FaDu: slope= 1.58, r²= 0.99; UT SCC-5: slope= 

3.86, r²= 0.97; Fig. 8D) (1). Consequently, OERs based on data obtained by γH2AX assay 

could only be estimated for FaDu and UT SCC-5 cells (Suppl. Tab. 1: OERγH2AX: FaDu: 

1.4; UT SCC-5: 1.2) (Fig. 14). 
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Figure 8B: Figure showing linear dose response 
of mean number of residual foci for all cell lines 
used for exposure to hypoxia prior to 
irradiation (filled symbols, solid lines; 
experimental group: H-O-O). Error bars 
indicating standard error of the mean and two 
indipendent experiments were performed. Open 
symbols and dashed lines represent data obtained 
under normoxic conditions (experimental group: 
O-O-O). Adapted from Hauth F.et al. (2017) Cell-
line dependent effects of hypoxia prior to 
irradiation in squamous cell carcinoma lines. 
Clinical and Translational Radiation Oncology 
(accepted for publication) (1) 

Figure 8A: Application of hypoxia prior to 
irradiation resulted in three distinct phenotypes for 
the cell lines under investigation (filled symbols, 
solid lines; experimental group: H-O-O). Error bars 
indicating standard error of the mean for three 
indipendent experiment. Dashed lines and open 
symbols indicating results obtained under normoxic 
conditions (experimental group: O-O-O). Adapted 
from Hauth F.et al. (2017) Cell-line dependent effects 
of hypoxia prior to irradiation in squamous cell 
carcinoma lines. Clinical and Translational Radiation 
Oncology (accepted for publication)(1) 

Figure 8C: Figure showing the linear correlation 
between –lnSFCFA and mean number of residual 
γH2AX foci for pre-irradiation incubation 
under hypoxia (experimental group: H-O-O). 
Error bars indicating standard error of the mean.  

Figure 8D: For FaDu cell line recalculation of 
surviving fractions led to a survival curve that did 
not differ from the one observed by standard CFA. 
For UT SCC-5 cell line recalculation resulted in a 
slight underestimation of survival, while for SKX 
cells recalculation was not possible. Mean numbers 
of observed SF are indicated by open symbols and 
filled symbols indicating recalculated SF values. Error 
bars indicating standard deviation. Adapted from 
Hauth F.et al. (2017) Cell-line dependent effects of 
hypoxia prior to irradiation in squamous cell 
carcinoma lines. Clinical and Translational 
Radiation Oncology (accepted for publication) (1) 
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3.6 Effect of exposure to hypoxia prior and during irradiation on cellular survival 

and number of γH2AX foci (experimental group: H-H-O) 

Application of hypoxia both prior and during the time of irradiation led to a significant 

increase in cellular survival over all doses and cell lines (Fig. 9A, Suppl. Tab. 1: SKX: 

SF2= 0.46; FaDu: SF2= 0.72; UT SCC-5: SF2= 0.85). For FaDu and UT SCC-5 cells this 

scenario yielded the maximal increase in cell survival curves, whereas for SKX cell line 

no differences compared to irradiation under hypoxia alone was observed (Suppl. Tab. 

1: OERCFA: SKX: 2.45; FaDu: 3.73; UT SCC-5: 4.22; OERγH2AX: SKX: 1.99; FaDu: 4.22; 

UT SCC-5: 4.49) (Fig. 14) (1). In parallel, a decrease in slope values was found for the 

observed linear dose response of residual foci in all cell lines under investigation (Fig. 

9B: SKX: slope= 1.04, r²= 0.13; FaDu: slope= 0.65, r²= 0.08; UT SCC-5: slope= 0.76, 

r²= 0.07). For SKX and UT SCC-5 cell line high numbers of residual γH2AX foci were 

observed in unirradiated cells in this experimental setting (Suppl. Tab. 2: mean residual 

foci (0Gy): SKX: 3.9; UT SCC-5: 5.1). In contrast, no significant deviation from the 

background foci values was shown for FaDu cells (Suppl. Tab. 2: mean residual foci 

(0Gy): FaDu: 0.9). 

 

 

 

 

 

 

 

Figure 9A: Application of hypoxia prior and at the 
time of irradiation increased cellular survival in all 
cell lines under investigation (filled symbols, 
experimental group: H-H-O). Dashed lines and open 
symbolds indicating data obtained under normoxic 
conditions (experimental group: O-O-O). Error bars 
indicating standard error of the mean of three 
independent experiments. Adapted from Hauth F.et al. 
(2017) Cell-line dependent effects of hypoxia prior to 
irradiation in squamous cell carcinoma lines. Clinical 
and Translational Radiation Oncology (accepted for 
publication) (1) 

Figure 9B: Figure showing results of γH2AX 
foci assay for cells kept under hypoxia prior 
and during irradiation (filled symbols and solid 
lines; experimental group: H-H-O). A decrease 
of the linear dose response was observed for all 
cell lines used. Open symbols and dashed lines 
indicating data obtained under normoxic 
conditions (experimental group: O-O-O). Error 
bars indicating standard error of the mean for two
independent experiments. Adapted from Hauth 
F.et al. (2017) Cell-line dependent effects of 
hypoxia prior to irradiation in squamous cell 
carcinoma lines. Clinical and Translational 
Radiation Oncology (accepted for publication)(1) 
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The correlation between –ln SFCFA and mean residual foci followed linear regression for 

all cell lines under investigation with remarkably high slope values for UT SCC-5 and 

FaDu cells (Fig. 9C: SKX: slope= 1.71 r²= 0.99; FaDu: slope= 4.5, r²= 0.89; UT SCC-5: 

slope= 8.6, r²= 0.98). For all cell lines recalculation of survival fractions led to survival 

curves that did not differ significantly from those obtained under standard CFA conditions 

(Fig. 9D). 

 

 

 

 

 

 

 

 

 

 

 

3.7 Effect of exposure to hypoxia prior and post irradiation on cellular survival 

and number of γH2AX foci (experimental group: H-O-H) 

Hypoxia treatment prior and post irradiation led to radiosensitization in SKX cells 

compared to normoxic conditions, while in FaDu and UT SCC-5 cells a slight increase of 

cellular survival was observed (Fig. 10A, Suppl. Tab. 1: SKX: SF2= 0.02; FaDu: SF2= 

0.49; UT SCC-5: SF2= 0.73). This in turn, resulted in HMFs of 0.7, 1.3 and 1.1 for SKX, 

FaDu and UT SCC-5 respectively (Suppl. Tab. 1: HMFγH2AX: SKX: 0.65; FaDu: 1.05; 

UT SCC-5: 1.41) (Fig. 14) (1). Slope values of the linear regression analysis of residual 

Figure 9C: Figure showing the linear correlation 
between –ln SFCFA and mean residual foci for all 
cell lines under investigation. For SKX cell line 
data obtained after irradiation with 4Gy was 
excluded. Error bars shown indicating standard error 
of the mean. 

Figure 9D: Recalculation of surviving fractions 
based on γH2AX foci assay for all cell lines under 
investigation for cells exposed to hypoxia both 
prior and at the time of irradiation (experimental 
group: H-H-O). Mean numbers of observed SF are 
indicated by open symbols and filled symbols 
indicating calculated SF values. Error bars indicating 
standard deviation of the mean. Adapted from Hauth 
F.et al. (2017) Cell-line dependent effects of hypoxia 
prior to irradiation in squamous cell carcinoma 
lines. Clinical and Translational Radiation 
Oncology (accepted for publication) (1) 
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foci number and radiation dose did not differ systematically from those obtained under 

normoxic conditions, with SKX and UT SCC-5 cell line showing a slight increase, while 

for FaDu cell line a slight decrease was observed (Fig. 10B: SKX: slope= 2.57, r²= 0.20; 

FaDu: slope= 1.33, r²= 0.16; UT SCC-5: slope= 1.23, r²= 0.98). Furthermore, for SKX 

and UT SCC-5 high values of foci were observed in non-irradiated cells compared to 

normoxic controls, while for FaDu cell line no significant difference was shown (Suppl. 

Tab. 2: mean residual foci (0Gy): SKX: 4.8; FaDu: 1.9; UT SCC-5: 3.0).  

 

 

  

 

 

 

 

 

 

Based on the linear regression equations derived from the correlation between mean 

residual γH2AX foci and -lnSFCFA (Fig. 10C: SKX: slope= 1.66 r²= 0.92; FaDu: slope= 

2.64, r²= 0.97; UT SCC-5: slope= 3.95, r²= 0.86) we could estimate the cell survival 

Figure 10A: Figure showing results of standard 
CFA for cells incubated under hypoxia both prior 
and post irradiation (filled symbols, solid lines; 
experimental group: H-O-H). For SKX cell line a 
decrease in cellular survival could be observed, 
while for UT SCC-5 and FaDu cells increase of 
radioresistance was shown under this condition. 
For SKX cells no survival was observed for cells 
irradiated with higher doses than 4 Gy. Dashed 
lines and open symbols indicating data obtained under 
normoxic conditions (experimental group: O-O-O)
and error bars indicating standard error of three 
independent experiment. Adapted from Hauth F.et al. 
(2017) Cell-line dependent effects of hypoxia prior to 
irradiation in squamous cell carcinoma lines. Clinical 
and Translational Radiation Oncology (accepted for 
publication) (1) 

Figure 10B: Application of hypoxia prior and 
post irradiation (experimental group: H-O-H) 
resulted in slopes of the linear regression of 
γH2AX foci assay that differed only minimally 
from those obtained under normoxic 
conditions (experimental group: O-O-O), with 
SKX and UT SCC-5 cell lines showing a slight 
increase and FaDu showing a slight decrease, 
respectively. Error bars indicate standard error of 
the mean of two (SKX, FaDu) and one (UT SCC-
5) independent experiments. For UT SCC-5 cell 
line no data could be collected for cells irradiated 
with 8 Gy due to poor sample quality. Dashed 
lines and open symbols indicating data obtained 
under normoxic conditions. Adapted from Hauth 
F.et al. (2017) Cell-line dependent effects of 
hypoxia prior to irradiation in squamous cell 
carcinoma lines. Clinical and Translational 
Radiation Oncology (accepted for publication) 
(1) 
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curves accurately compared to the observed ones for SKX and FaDu cell lines and with 

a slight underestimation for UT SCC-5 cells (Fig. 10D).  

 

 

 

 

 

 

 

 

 

3.8 Effect of exposure to hypoxia at the time of and post irradiation on cellular 

survival and number of γH2AX foci (experimental group: O-H-H) 

Exposure of cells to hypoxia acutely at the time of irradiation and during repair time (24h 

post-irradiation) led to increased cellular survival (Fig. 11A, Suppl. Tab. 1: SKX: SF2= 

0.34; FaDu: SF2= 0.89; UT SCC-5: SF2= 0.90) with a mean OER of 2.56 over all cell 

lines (Suppl. Tab. 1: OERCFA: SKX: 2.6; FaDu: 2.4; UT SCC-5: 2.8; OERγH2AX: SKX: 

2.3; FaDu: 2.9; UT SCC-5: 4.6) (Fig. 14) (1). As expected, linear dose response of the 

mean number of residual foci resulted in lower slope values compared to normoxic 

conditions (Fig. 11B: SKX: slope= 1.38, r²= 0.33; FaDu: slope= 1.04, r²= 0.16; UT SCC-

5: slope= 0.88, r²= 0.10). For UT SCC-5 cell line we observed a high amount of residual 

γH2AX foci in unirradiated cells under this condition compared to the normoxic controls, 

however no significant differences were shown for FaDu and SKX cells (Suppl. Tab. 2: 

Figure 10C: Linear correlation between –ln SFCFA

and mean number of residual foci for all cell lines 
under investigation and pre- and post irradiation 
incubation under hypoxia (experimental group: 
H-O-H). Error bars indicating standard error of the 
mean. 

Figure 10D: Recalculation of SFs revealed no 
significant differences compared to SFs observed
by standard CFA for SKX and FaDu cell lines 
and resulted in a slight underestimation of 
survival for UT SCC-5 cells (experimental group: 
H-O-H). Mean numbers of observed SF are 
indicated by open symbols and recalculated SF 
values by filled symbols. Error bars indicating 
standard deviation.  Adapted from Hauth F.et al. 
(2017) Cell-line dependent effects of hypoxia prior 
to irradiation in squamous cell carcinoma lines. 
Clinical and Translational Radiation Oncology 
(accepted for publication)(1) 
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mean residual foci (0Gy): SKX: 1.8; FaDu: 1.3; UT SCC-5: 6.1). Subsequently, plotting 

the mean number of residual foci against the –ln SFCFA resulted in a significant linear 

correlation, with surprisingly high slope values for FaDu and UT SCC-5 cells (Fig. 11C: 

SKX: slope= 2.84, r²= 0.91; FaDu: slope= 4.53, r²= 0.95; UT SCC-5: slope= 9.66, r²= 

0.03). Recalculation of survival fractions based on the γH2AX mean foci numbers led to 

survival curves that were not significantly different from those obtained by standard CFA 

and data could be fitted with a single curve (Fig. 11D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11A: Results of standard CFA revealed 
increased cellular survival after application of 
hypoxia both at the time of irradiation and during 
repair time (filled symbols, solid lines; 
experimental group: O-H-H) for all cell lines 
under investigation. Error bars indicating standard 
error of the means of 3 individual experiments and 
dashed lines and open symbols indicating data 
obtained under normoxic conditions (experimental 
group: O-O-O). Adapted from Hauth F.et al. (2017) 
Cell-line dependent effects of hypoxia prior to 
irradiation in squamous cell carcinoma lines. Clinical 
and Translational Radiation Oncology (accepted for 
publication)(1) 

Figure 11B: For all cell lines exposure to 
hypoxia both during and after irraidation (filled 
symbols, solid lines; experimental group: O-H-
H) let to a decrease of slopes of the linear 
correlation compared to the normoxic controls. 
Error bars indicate standard error of the mean. 
Dashed lines and open symbols indicate data 
obtained under normoxic conditions (experimental 
group: O-O-O). Adapted from Hauth F.et al. 
(2017) Cell-line dependent effects of hypoxia prior 
to irradiation in squamous cell carcinoma lines. 
Clinical and Translational Radiation Oncology 
(accepted for publication)(1) 
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3.9 Effect of chronic hypoxia on cellular survival and number of γH2AX foci 

(experimental group: H-H-H) 

Continuous incubation of cells under hypoxia (chronic hypoxia), during all the 

experimental time frames, prior, during and post irradiation, led to an increase in cellular 

survival for all three cell lines (Fig. 12A, Suppl. Tab. 1: SKX: SF2= 0.33; FaDu: SF2= 

0.86; UT SCC-5: SF2= 0.85). In parallel a significant decrease of the amount of residual 

foci as depicted by the slopes of the linear regression of data obtained by γH2AX assay 

was observed (Fig. 12B: SKX: slope= 1.39, r²= 0.21; FaDu: slope= 0.98, r²= 0.12; UT 

SCC-5: slope= 0.86, r²= 0.05). Interestingly, under this condition we observed a 

significant increase in numbers of residual foci in non-irradiated controls for FaDu and 

UT SCC-5 cell line, whereas for SKX only slightly higher numbers were recorded (Suppl. 

Tab. 2: mean residual foci (0Gy): SKX: 3.7; FaDu: 3.9; UT SCC-5: 4.9). In addition, 

estimation of OERs both based on standard CFA data and γH2AX assay revealed 

increased survival for cells incubated under chronic hypoxia (Suppl. Tab.1: OERCFA: 

SKX: 1.7; FaDu: 2.8; UT SCC-5: 2.4; OERγH2AX: SKX: 1.7; FaDu: 3.9; UT SCC-5: 3.5) 

(Fig. 14) (1). 

Figure 11C: Figure indicating linear correlation 
between –ln SFCFA and mean residual foci for 
exposure to hypoxia at the time and after 
irradiation (experimental group: O-H-H). Error 
bars showing standard error of the mean. 

Figure 11D: Calculation of SFs based on the 
correlation between –ln SFCFA and residual foci 
resulted in survival curves that did not differ from 
those obtained by standard CFA foci for exposure 
to hypoxia at the time and after irradiation 
(experimental group: O-H-H). Mean numbers of 
observed SF are indicated by open symbols and 
calculated SF values indicated by open symbols. 
Error bars indicating standard deviation. Adapted 
from Hauth F.et al. (2017) Cell-line dependent 
effects of hypoxia prior to irradiation in squamous 
cell carcinoma lines. Clinical and Translational 
Radiation Oncology (accepted for publication) (1) 
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For all cell lines mean number of residual γH2AX foci were linearly correlated with –ln 

SFCFA, with surprisingly high slope values for FaDu and UT SCC-5 cell lines (Fig. 12C: 

SKX: slope= 2.14 r²= 0.93; FaDu: slope= 5.73, r²= 0.84; UT SCC-5: slope= 6.96, r²= 

0.66). Recalculation of survival curves based on the respective equations led to survival 

curves that were not significantly different from those observed by standard CFA (Fig. 

12 D).  

 

 

 

 

 

 

 

Figure 12A: Application of chronic hypoxia led to 
an increase  in cellular survival for all cell lines 
under investigation. Error bars indicate standard 
error of the mean. Dashed lines and open symbols 
indicating data obtained under normoxic conditions 
(experimental condition: O-O-O) and solid lines and 
filled symbols indicating data obtained under chronic 
hypoxia (experimental condition: H-H-H). Adapted 
from Hauth F.et al. (2017) Cell-line dependent effects 
of hypoxia prior to irradiation in squamous cell 
carcinoma lines. Clinical and Translational 
Radiation Oncology (accepted for publication) (1) 

Figure 12B: Continuous incubation of cells 
under hypoxia led to a significant decrease of 
slopes of the observed linear regression between 
mean residual foci and dose for all cell lines 
under investigation. Dashed lines and open 
symbols indicating data obtained under normoxic 
conditions (experimental group: O-O-O) and solid 
lines and filled symbols indicating data obtained 
under chronic hypoxia (experimental group: H-H-
H). Error bars indicating standard deviation of the 
means of  two (FaDu) and one (SKX, UT SCC-5) 
indipendant experiments, respectively. Adapted 
from Hauth F.et al. (2017) Cell-line dependent 
effects of hypoxia prior to irradiation in squamous 
cell carcinoma lines. Clinical and Translational 
Radiation Oncology (accepted for publication) (1) 
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3.10 Recalculation of OERs and HMFs  

As an approach to our hypothesis, that OERs and HMFs could be recalculated based 

solely on the mean number of residual γH2AX foci, we correlated OERs and HMFs 

observed by standard CFA with the corresponding data obtained by γH2AX assay [2.6.4] 

(Suppl. Fig. 1). As hypothesized, the fit of these parameters resulted in a significant linear 

correlation for 10% survival with a slope very close to 1, indicating the accuracy of the 

method. 

 

 

 

 

 

 

 

Figure 12C: Figure showing the correlation 
between mean number of residual foci and –ln 
SFCFA (mean lethal lesions) for all cell lines used. 
Error bars indicating standard error of the mean.  

Figure 12D: Recalculation of SFs based on data 
obtained by γH2AX foci assay resulted in survival 
curves that did not differ from those observed by 
standard CFA (experimental group: H-H-H). Open
symbols indicating observed SF values and filled 
symbols indicating calculated SF values. Error bars 
indicating standard deviation. Adapted from Hauth 
F.et al. (2017) Cell-line dependent effects of hypoxia 
prior to irradiation in squamous cell carcinoma lines. 
Clinical and Translational Radiation Oncology 
(accepted for publication) (1) 
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3.11 Comparison OER and HMF values for all conditions under investigation 

Comparison of OER and HMF values over all conditions and cell lines tested clearly 

revealed a pattern for experimental groups, where cells were incubated under hypoxic 

conditions prior to irradiation.  Thus, SKX showed an OER value below 1 (experimental 

groups: H-O-O, H-O-H), or for chronic hypoxic cells (experimental group: H-H-H) an 

OER value below the OER for acute hypoxia (experimental group: O-H-O) alone, 

indicating a decrease in cellular survival under these conditions (Suppl. Tab. 1). For 

FaDu cell line we observed an OER value above 1 for cell exposed to hypoxia prior to 

irradiation (experimental groups: H-O-O, H-O-H) and for chronic hypoxic cells a higher 

value than expected from exposure to acute hypoxia alone (experimental group: O-H-O) 

respectively. In contrast, we observed OER/HMF values close to 1 for UT SCC-5 cells 

(experimental groups: H-O-O, H-O-H) and no significant difference between OER values 

obtained for acute and chronic hypoxia (experimental groups: O-H-O, H-H-H). 

Interestingly, for cells exposed to hypoxia both prior and at the time of irradiation we 

observed exceptional high OER values for all cell lines under investigation with the 

highest OER value for UT SCC-5 cells (Suppl. Tab.1: OERCFA: SKX: 2.45; FaDu: 3.73; 

Figure 13: Figure showing the linear correlation between OERs/HMFs observed by standard CFA 
and OERs/HMFs calculated based on data obtained by γH2AX assay. OERs and HMFs are 
calculated for 10% survival (SF= 0.1). Adapted from Hauth F.et al. (2017) Cell-line dependent effects of 
hypoxia prior to irradiation in squamous cell carcinoma lines. Clinical and Translational Radiation 
Oncology (accepted for publication)(1) 
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UT SCC-5: 4.22). However, for SKX we still observed the lowest OER value as expected 

(1).  

 

 

 

 

 

 

 

 

 

 

 

3.12 Effect of acute hypoxia on protein expression and phosphorylation status of 

proteins (experimental group: O-H-O) 

In order to investigate the underline mechanisms leading to the increased cellular survival 

when cells were irradiated under hypoxic conditions, we performed western blot analysis 

focused on DNA repair enzymes. Application of acute hypoxia at the time of irradiation 

led to a strong activation of Hif-1α immediately after irradiation (Fig. 15A, B, C) (Suppl. 

Fig. 2). The phenomenon was also observed in the non-irradiated controls, which were 

only incubated under hypoxia at the same time. Expression level of Rad51, was not 

changed neither after irradiation nor after exposure to hypoxia for all cell lines 

investigated (Fig. 15A, B, C) (Suppl. Fig. 2). As expected, 4Gy irradiation induced a 

strong upregulation of protein levels and phosphorylation of ATM (Ser 1981) in both 

FaDu and UT SCC-5 cell lines (Fig. 15A, B, C) immediately upon irradiation remaining 

up to the 6 hours time point, while no difference was recorded after application of acute 

Figure 14: Figure showing OER and HMF values for all conditions and all cell lines tested. Black bar 
indicating an OER of 1, e.g. no significant difference between condition tested and control 
(experimental group: O-O-O). Error bars indicating standard deviation of the mean of three 
individual experiments. Adapted from Hauth F.et al. (2017) Cell-line dependent effects of hypoxia prior 
to irradiation in squamous cell carcinoma lines. Clinical and Translational Radiation Oncology (accepted 
for publication) (1) 
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hypoxia alone (Suppl. Fig. 2). For SKX cell line, no traces of ATM protein could be 

detected (Fig. 15A). Furthermore, for all cell lines we observed induction of DNA-PK 

phosphorylation (Ser 2056) after irradiation (30 min), with a delayed peak of enzyme 

activity in SKX cells after 6 hours (Fig. 15A, B, C). Under conditions of acute hypoxia a 

slight reduction of phosphorylation was shown in all cell lines under investigation (Suppl. 

Fig. 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15A: Figure showing results of western blot analysis for SKX cell line under either normoxic 
conditions (N, experimental condition: O-O-O) or irradiation under hypoxia (H, experimental 
condition: O-H-O). Lysates were extracted at the indicated time points post irradiation with 4 Gy (0min, 
30min, 1h, 6h, 24h). As a loading control β-Actin was used as shown. For phosphorylated proteins 
corresponding unphosphorylated proteins served as loading controls. One experiment was performed.  
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Figure 15B: Figure showing results of western blot analysis for FaDu cell line under either normoxic 
conditions (N, experimental condition: O-O-O) or irradiation under hypoxia (H, experimental 
condition: O-H-O). Lysates were extracted at the indicated time points post irradiation with 4 Gy (0min, 
30min, 1h, 6h, 24h). As a loading control β-Actin was used as shown. For phosphorylated proteins 
corresponding unphosphorylated proteins served as loading controls. Two experiments were performed. 

Figure 15C: Figure showing results of western blot analysis for UT SCC-5 cell line under either 
normoxic conditions (N, experimental condition: O-O-O) or irradiation under hypoxia (H, 
experimental condition: O-H-O). Lysates were extracted at the indicated time points post irradiation with 
4 Gy (0min, 30min, 1h, 6h, 24h). As a loading control β-Actin was used as shown. For phosphorylated 
proteins corresponding unphosphorylated proteins served as loading controls. One experiment was 
perfomed. 
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3.13 Effect of exposure to hypoxia prior to irradiation on protein expression 

and phosphorylation status of proteins (experimental group: H-O-O) 

Exposure to hypoxia prior to irradiation led to an impairment of HR repair pathway 

compared to normoxic controls as revealed by the downregulation of Rad51 protein 

levels, an HR-key regulator, for all cell lines under investigation (Fig. 16A, B, C) (Suppl. 

Fig. 3) (1). This observation was irrespective of additional irradiation with 4Gy. 

Phosphorylation of ATM protein at Serine 1981 was increased when cells were not only 

irradiated but also exposed to hypoxia prior to irradiation for UT SCC-5 cells and to a 

lesser extent also for FaDu cells (Fig. 16B, C) (Suppl. Fig. 3) (1). Both ATM and its 

phosphorylated form (p-ATM) could not be detected in SKX cell line under both 

conditions (Fig. 16A) (1). Phosphorylation of DNA-PKcs at the site of Serine 2056 after 

irradiation was observed for all cell lines and no differences were recorded between 

samples kept under normoxic conditions compared to pre-irradiation incubation under 

hypoxia (Fig. 16A, B, C). For SKX a slightly delayed phosphorylation of DNA-PKcs 

was observed after irradiation with 4 Gy (Fig. 16A, Suppl. Fig. 3) (1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16A: Figure showing results of western blot analysis for SKX cell line under either normoxic 
conditions (N, experimental group: O-O-O) or under pre-irradiation incubation under hypoxia (H, 
experimental group: H-O-O). Lysates were extracted at the indicated time points post irradiation with 4 
Gy (0min, 30min, 1h, 6h, 24h). As a loading control β-Actin was used as shown. For phosphorylated 
proteins corresponding unphosphorylated proteins served as loading controls.  Two experiments were 
perfomed. Adapted from Hauth F.et al. (2017) Cell-line dependent effects of hypoxia prior to irradiation 
in squamous cell carcinoma lines. Clinical and Translational Radiation Oncology (accepted for 
publication) (1) 
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Figure 16B: Figure showing results of western blot analysis for FaDu cell line under either normoxic 
conditions (N, experimental group: O-O-O) or under pre-irradiation incubation under hypoxia (H, 
experimental group: H-O-O). Lysates were extracted at the indicated time points post irradiation with 4 
Gy (0min, 30min, 1h, 6h, 24h). As a loading control β-Actin was used as shown. For phosphorylated 
proteins corresponding unphosphorylated proteins served as loading controls. Two experiments were 
perfomed. Adapted from Hauth F.et al. (2017) Cell-line dependent effects of hypoxia prior to irradiation 
in squamous cell carcinoma lines. Clinical and Translational Radiation Oncology (accepted for 
publication) (1) 

Figure 16C: Figure showing results of western blot analysis for UT SCC-5 cell line under either 
normoxic conditions (N, experimental group: O-O-O) or under pre-irradiation incubation under 
hypoxia (H, experimental group: H-O-O). Lysates were extracted at the indicated time points post 
irradiation with 4 Gy (0min, 30min, 1h, 6h, 24h). As a loading control β-Actin was used as shown. For 
phosphorylated proteins corresponding unphosphorylated proteins served as loading controls. Two 
experiments were perfomed. Adapted from Hauth F.et al. (2017) Cell-line dependent effects of hypoxia 
prior to irradiation in squamous cell carcinoma lines. Clinical and Translational Radiation Oncology 
(accepted for publication) (1) 
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3.14 Effect of exposure to hypoxia prior to and at the time of irradiation on protein 

concentration and phosphorylation of proteins (experimental group: H-H-O) 

Application of hypoxia prior and at the time of irradiation led to a downregulation of 

Rad51 protein in UT SCC-5 cell line, with a reduction on 51% for Rad51 (Fig. 17, Suppl. 

Fig. 4). This impairment of the protein was independent of irradiation with 4 Gy. For 

ATM a phosphorylation of the protein at the site of Serin 1981 following irradiation was 

observed with no significant difference between incubation under normoxia and exposure 

to hypoxia both prior to and at the time of irradiation (Fig. 17, Suppl. Fig. 4). Also testing 

for phosphorylation of DNA PK (Ser 2056) revealed only an increase after irradiation as 

expected, but no difference compared to normoxia was detected (Fig. 17, Suppl. Fig. 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Figure showing results of western blot analysis for UT SCC-5 under either normoxic 
conditions (N, experimental group: O-O-O) or for exposure to hypoxia both prior and at the time of 
irradiation (H, experimental group: H-H-O). Lysates were extracted at the indicated time points post 
irradiation with 4 Gy (0min, 30min, 1h, 6h, 24h). As a loading control β-Actin was used as shown. For 
phosphorylated proteins corresponding unphosphorylated proteins served as loading controls. One 
experiment was performed.  
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4 DISCUSSION 

 

In previous experiments it was shown that hypoxic subvolumes of tumours grown as 

xenografts in nude mice exhibited less residual DNA DSBs, depicted as residual γH2AX 

foci, 24 hours after irradiation. Furthermore, differences in intrinsic radiosensitivity 

between the two cell lines under investigation were solely expressed in well oxygenated 

tumour areas (14). Based on these observations we hypothesized that irradiation of 

tumour cell lines under hypoxia leads to less pronounced differences in radiation 

sensitivity compared to the one observed when irradiation occurs under ambient 

conditions and that exposure to hypoxia at different timepoints regarding irradiation alters 

the radiation response of cells both in terms of cellular survival as well as the expression 

profile of DNA damage response enzymes (1). Therefore, the aim of the current study 

was to functionally characterize the effect of hypoxia exposure on cellular survival and 

DNA damage repair in three hSCC lines of the head and neck region with pronounced 

differences in intrinsic radiosensitivity, namely SKX (radiosensitive), FaDu (moderate 

sensitivity) and UT SCC-5 (radioresistant) (1).  

 

Our findings indicate that the most important factor determining cellular survival is the 

presence of oxygen during irradiation as this condition resulted in significantly higher 

cellular survival and significantly lower amounts of residual γH2AX foci. However, since 

the survival increase was rather homogeneous as depicted from the OER values, hypoxia 

exposure did not alter the overall pattern of radiation sensitivity across the respective cell 

lines. Therefore, our results do not support the initial hypothesis (1). Furthermore, our 

observations, suggest that post-irradiation hypoxia exposure does not affect cellular 

survival whereas pre-irradiation hypoxia exposure yields differential radiation response 

in a cell line dependent manner indicating differences in intrinsic hypoxia tolerance (1).  

 

All experiments were performed 24 hours after irradiation, a time point, which has been 

previously shown to be adequate for DNA DSB repair completion in SKX and FaDu cells 

(85, 88, 96). Only confluent cell cultures were irradiated as Hammond et al. reported in 

their paper from 2004 that for RKO cell line S-phase cells were more sensitive to both 

hypoxia (<0.02% O2) and reoxygenation (1, 103). Additionally, several reports points out 
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the cell cycle dependent and DNA damage independent expression of H2AX, which can 

in turn affect the evaluation of phosphorylated histone through the appearance of so-

called microfoci (79, 90). By using confluent cultures, cells are enriched in the G1 phase 

and therefore the cell cycle dependent effects can be minimized.  In the past many studies 

by different groups focused on survival and differences in DNA DSB repair under 

conditions of severe hypoxia or even anoxia (104-106), but not much is known about 

alterations under mild or moderate hypoxia. This is intriguing as cells that are moderate 

hypoxic may exhibit a radioresistant phenotype while not suffering from the cytotoxic 

effects of severe hypoxia. This phenomenon was demonstrated in a paper by Menegakis 

et al. where they observed a significant decline on the residual γH2AX foci with 

increasing distance form perfused vessels in human tumour xenografts, indicative of an 

intratumoural oxygen gradient, suggesting that a large number of tumour cells might be 

constantly exposed to conditions of intermediate hypoxia and such condition might affect 

their radiation response (14). Consequently, for our experiments we decided to set oxygen 

cultivation levels to 1% (1). This oxygen concentration has been shown previously to be 

adequate for binding of pimonidazole, a 2-nitroimidazole exogenous hypoxia marker that 

is bioreduced via formation of covalent bonds with cellular macromolecules at oxygen 

levels below 10 mmHg and has been extensively used previously in many studies both in 

vivo and in vitro (14, 23, 34, 94, 107). 

 

Three different hSCC cell lines of the head and neck region with pronounced differences 

in intrinsic radiosensitivity were investigated in the study. These differences were 

reported earlier both after in vitro and in vivo testing (14, 32, 89, 96, 97, 99) and were 

confirmed in our study by terms of clonogenic survival (standard CFA) as well as by 

terms of residual DNA DSBs marked as residual γH2AX foci under normoxic conditions 

(SKX: sensitive; FaDu: moderate sensitivity; UT SCC-5: resistant) (1). However, in 

comparison to previous studies we observed lower SF2 values for FaDu cells with regard 

to standard CFA. This effect can be explained by the atypically high PE for this cell line 

in the non-irradiated petri-dishes, which led respectively to lower SF2 values as PE acts 

as numerator during calculation of surviving fractions [2.6.2]. For SKX and UT SCC-5 

cells, surviving fractions after 2 Gy did not significantly differ from data obtained in 

previous studies (89, 96, 97). Extensive radiosensitivity in SKX cell line has been recently 
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reported by Mansour et al. to be mediated by overexpression of a micro-RNA (miR-421) 

leading to downregulation of ATM expression (97). In line with previously published 

data of Menegakis et al. (89), ratio of slopes of linear γH2AX foci dose response between 

SKX and FaDu cell lines was consistent although slope values differed within the two 

studies. This discrepancy can be explained by differences in evaluation technique as in 

the former study foci where counted manually under the microscope whereas in our study 

evaluation was performed on a PC-screen after acquisition of images. As in evaluation of 

cells under the microscope assessment of different focus planes of single cells is feasible, 

this potentially results in higher or at least different counting of numbers of foci per 

nucleus.  

 

Among the DNA lesions induced by ionizing irradiation, DNA DSBs  are of outmost 

significance, since if these lesions remain unrepaired can potentially lead to genetic 

instability or loss of genetic material through chromosomal aberrations, deletions or 

translocations resulting in mitotic catastrophe (68, 72, 108). The probability of survival 

for a single cell after irradiation is determined by the probability that this cell has no 

residual lethal lesion, respectively residual unrejoined DNA DSBs (1). There is good 

supporting evidence that survival post –irradiation is closely linked to residual DSBs 

(109) and that the number of unrepaired DSBs correlate with residual γH2AX foci. 

MacPhail et al. showed that higher rates of foci loss correlated with higher clonogenic 

survival in ten different cancer cell lines, indicating a close relation between the two 

parameters (110). Similarly, Banath et al. showed that residual γH2AX foci are indicative 

of lethal lesions after exposure of SiHa cells to various types of DNA damaging agents 

(85). Results of several other groups supported the observations of these two studies (109, 

111). The probability of radiation-induced cell death for a single cell can be described by 

the Poisson distribution of lethal lesions. Based on this, it has been shown that γH2AX 

residual foci correlate significantly with the lethal lesions expected by the Poisson model 

(87, 89) (1). We were able to reproduce this observation in our study and found strong 

correlations between number of residual DNA DSBs, marked as residual γH2AX foci, 

and –ln SF, indicating mean number of lethal lesions predicted by Poisson statistics. 

Furthermore, as previously published we also showed that cell survival curves could be 

reconstructed based only on the mean number of residual γH2AX foci (1, 89). These 
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correlations demonstrate the close connection of intrinsic radiation sensitivity (measured 

as SF) and number of unrepaired DSBs (evaluated as residual γH2AX foci). 

As a first approach to our hypothesis, we evaluated the effect of hypoxia on cellular 

growth and observed a significant increase of DTs for all cell lines investigated, with UT 

SCC-5 cell line showing the highest, SKX an intermediate and FaDu cell line showing 

the slightest delay of cellular growth, respectively. In contrast, in terms of PE of standard 

CFA for cells incubated under hypoxia prior to irradiation we observed an increase for 

FaDu cell line, whereas a decrease of PE compared to normoxic conditions was shown 

for SKX and UT SCC-5 cells. The impact of hypoxia on cellular growth and clonogenicity 

has been extensively tested under different experimental conditions, however the 

reference data are very much variable and often contradictory. While it has been 

demonstrated that severe hypoxia downregulates overall protein synthesis through 

diverse mechanisms affecting cell cycle progression and growth stimulation (52, 112-

114), it appears that the outcome of different studies is very much dependent on the cell 

line origin (tumour or normal tissue), on genetic background (e.g. p53 status), the oxygen 

concentration applied to the cells (severe or moderate hypoxia) and to the duration of 

hypoxia exposure. Spiro et al. reported already in 1984 a decline of PE in a cell cycle 

dependent manner for V-79 Chinese hamster lung fibroblasts incubated under conditions 

close to anoxia (gassing with 100% N2) for 20 hours prior to plating (115). Interestingly, 

another report showed no significant alteration of PE for several cell lines of various 

tissue origins, namely HT1080 (fibrosarcoma), RKO (colon carcinoma cell line), HeLa 

(cervix carcinoma cell line) and RCC4 (renal clear cell carcinoma cell line), for cells 

grown under moderate hypoxia (2% and 0.5% O2) during colony formation (116). 

Hammond et al. reported no significant decrease of DNA synthesis measured by 

[3H]thymidine incorporation for RKO cells grown for up to 24 hours at 2% oxygen, 

whereas incubation at 0.02% oxygen lead to a substantial decrease (117). Chan et al. only 

observed a slight decrease in proliferation after 72 hours of continuous gassing with 

0.02% oxygen in H1299 lung cancer cells (118), while Kumareswaran et al. observed a 

significant decrease of cellular proliferation for asynchronously growing fibroblasts 

exposed to 0.02% oxygen for up to 7 days (106).  
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In the present study, we applied hypoxia in three different time frames with regard to 

radiation exposure. Post irradiation hypoxia did not have a significant impact on neither 

cellular survival nor the amount of residual γH2AX foci for all cell lines under 

investigation and accordingly let to HMF values close to one (1). This observation is 

consistent with previously published data in vivo for FaDu and SKX xenografted tumours 

in nude mice where no difference was observed in γH2AX dephosphorylation kinetics 

between oxic and hypoxic cells within the first 24 hours after irradiation (14).  

 

Irradiation of cells under hypoxia led to a significant increase of cellular survival and 

lower number of residual γH2AX foci in all cell lines (1). This result demonstrates the 

well-established oxygen effect and probably arises from the lower induction of damage 

in hypoxic cells (46, 119). The magnitude of the oxygen effect can generally be expressed 

by the OER, which is defined as the ratio of dose under hypoxia versus normoxia leading 

to the same biological effect, e.g. 1% survival (46, 118, 119). The OER values were 

similar within the cell lines investigated and thus irrespective of the observed differences 

in intrinsic radiosensitivity. This observation suggests that induction of damage under 

hypoxic conditions at the time of irradiation did not differ between the cell lines. This 

finding is contradictory to what was previously suggested from FaDu and SKX in vivo 

experiments, where the slope of residual γH2AX dose response was similar between 

hypoxic cells (at the time of irradiation) of FaDu and SKX tumour cells (14). The 

disparity between the results of the two studies is most probably arising from the fact that 

the conditions in vivo cannot be fully reproduced in vitro. Cells in tumours might be 

subjected to metabolic changes, and exposed not only to different degrees of hypoxia but 

also to cycles of hypoxia and reoxygenation (cycling hypoxia) leading to different 

biological behaviors (46, 120, 121). In contrast, in cell cultures used in this set of 

experiments, tumour cells were exposed to one hypoxia level, generating a completely 

different microenvironment than that observed in tumours. On the other hand, in vitro 

experiments allow for standardized conditions, such as level and duration of hypoxia, 

which cannot be fully controlled under in vivo conditions (1). Nevertheless, the reason 

for this discrepancy is not fully understood and it is a matter of further investigation. 

Kumareswaran et al. reported in their study from 2012 OERs for fibroblasts synchronized 

in G0-G1 phase of 1.81±0.31 for cells kept under hypoxia (0.02% O2) and 2.01±0.13 for 
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cells exposed to anoxia (0.0% O2) for 16 hours, respectively (106). Similarly, Chan et al. 

reported for H1299 lung carcinoma cells an OER of 2.61 under anoxic conditions and an 

OER of 2.19 under 0.2% O2 (118). These results are very much in line with the mean 

OER of 2.36 observed in our study, indicating that the oxygen concentration reached in 

the Gas-Paks (BD GasPakTM-EZ-Gas Generating Pouch System) after 2 hours cultivation 

was very close to anoxic levels.  

 

For experimental conditions without irradiation under hypoxia HMFs instead of OERs 

were calculated for quantification of effect of hypoxia on cellular survival. Calculation 

was performed similar to calculation of OER as the ratio of dose of the experimental 

condition and co-effective dose under normoxic conditions. Interestingly, we were also 

able to calculate OERs and HMFs by the use of the mean number of residual γH2AX foci 

alone and found a strong correlation between recalculated values and values obtained by 

standard CFA. To our knowledge, this is the first demonstration that OERs could be 

directly calculated from the mean number of residual foci, further strengthening our 

hypothesis that cellular survival is very closely connected to the amount of residual DNA 

DSBs (1). This correlation could be used for the calculation of radiobiological endpoints 

in the future and is especially important for the establishment of γH2AX as a biomarker 

in clinical and preclinical studies (94).  

 

Surprisingly, cultivation of cells under hypoxia prior to irradiation revealed three different 

radiation responses for the three cell lines under investigation (1). In UT SCC-5 cells 

hypoxia was well tolerated and no significant difference was observed in cellular survival 

post irradiation compared to normoxic conditions. In FaDu cells hypoxia treatment prior 

to irradiation, led to significantly higher cellular survival. Hypoxia-induced 

radioresistance, might arise from upregulation of pro-survival signaling pathways or from 

upregulation of DNA radiation response pathways (12, 46, 54). In contrast, hypoxia 

exposure prior to irradiation led to a significant decrease in cellular survival in SKX cells 

(1). The differential radiation response of cells cultivated under hypoxia prior to 

irradiation, implies that besides of hypoxia induced radiation resistance, cells from 

different tumour cell lines might express pronounced differences in their intrinsic 

tolerance to hypoxia, which might affect radiation treatment outcome in vivo. This is 
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further supported by the experimental data where the local tumour control of xenografted 

tumours from the three cell lines were shown to be significantly different (32, 99). The 

histological examination revealed that SKX and UT SCC-5 tumours are both moderately 

well differentiated SCC tumours (98). However, despite the histological similarity, these 

two cell lines differ dramatically in their Tumour Control Dose of 50% (TCD50) with UT 

SCC-5 having the highest hypoxic fraction and the highest TCD50 values after both single 

and fractionated irradiation whereas SKX had the lowest (32, 99). 

 

Cell line dependent response to hypoxia exposure prior to irradiation and the effects on 

radiation sensitivity have been previously published. Similar to the survival curves 

observed for UT SCC-5 cells, Spiro et al. reported that pre irradiation incubation for 20 

hours under anoxia followed by reoxygenation prior to irradiation led to no alteration of 

survival curves for V-79 chinese hamster lung fibroblasts (115). In their review from 2006 

Freiberg et al. showed reduced relative survival measured by PE and increased sensitivity 

of cells lacking ATM after exposure to hypoxia for up to 25 hours followed by 

reoxygenation due to suppression of G-2 mediated cell cycle arrest mediated by ATM-

CHK2 signaling pathway (122, 123). These results are in line with our observation that 

the SKX cell line, which lacks functional ATM protein, is highly sensitive to prolonged 

hypoxia treatment (1). In support to our hypothesis, in a publication from Zölzer et al. 

authors reported an increase of radiosensitivity in one cell line after incubation under 

conditions close to anoxia (0.2 mmHg O2) for 24 hours prior to irradiation, whereas no 

difference could be shown in the other three cell lines under investigation (124). These 

results indicate that effects of pre-irradiation incubation under hypoxia might already be 

present after shorter time periods than the ones observed in our study.  

 

Interestingly, besides the increased radiation sensitivity of SKX cells when pre-cultivated 

under hypoxia prior to irradiation we also observed significant increase in the γH2AX 

foci number in unirradiated controls. Bencokova et al. reported in their study from 2009 

that RKO cells accumulated γH2AX foci in an oxygen dependent manner, with the most 

significant increase at oxygen levels below 0.02% (125). Using a fluorescence-activated 

cell sorter, they also showed that U2OS cells in G2/M phase did not form γH2AX foci, 

indicating a cell cycle dependency of foci formation under hypoxic conditions. However, 



68 
 

they were able to show that cells, which accumulated RPA foci, confirming the 

occurrence of replication fork stalling, also accumulated γH2AX foci in untreated cells 

for any DNA damaging agent (125). These results were further verified by a study from 

Hammond et al., who reported formation of γH2AX foci under conditions close to anoxia 

(0.02% O2, 16 h) in 28% of the treated RKO cells (126), indicating that foci are not solely 

formed at the site of DNA damage under these circumstances. In addition, in a study 

conducted by Tsuchimoto et al. authors showed an increase of 50% of average γH2AX 

foci numbers in M059K cells (human glioma cell line) in unirradiated controls after pre-

irradiation incubation and irradiation under hypoxia (95% N2, 5% CO2, 0% O2) for 24 

hours followed by 24 hours of reoxygenation (127).  

 

Application of hypoxia treatment at two different time-frames did not change the overall 

observations from the single-time frame application (1). Combination of hypoxia 

treatment during and post irradiation, or prior and post irradiation led to survival curves 

that were not significantly different from the corresponding curves when hypoxia was 

applied during irradiation or prior to irradiation alone. This finding is in line with our 

previous observation that post-irradiation hypoxia does not have any impact on cellular 

survival (1).  

 

Irradiation under hypoxia of cells which have also been grown under hypoxia yielded the 

maximal increase in cellular survival for FaDu and UT SCC-5 cells, suggesting that 

prolonged hypoxia exposure in combination with hypoxia during irradiation leads to very 

resistant phenotypes overcoming even the reduced hypoxia tolerance of SKX cell line (1). 

The surprisingly high increase in radiation resistance under these conditions in UT SCC-

5 cells might partly explain the observation of high TCD50 values in combination with 

high hypoxic fractions in xenograft tumours of this cell line in in vivo experiments (32, 

99). This phenomenon might have very important implications on radiation treatment 

outcome of chronically hypoxic cells in tumours that might either be reoxygenated during 

repair of radiation induced DNA damage or exposed to cycles of hypoxia and 

reoxygenation. In contrast to our observation, it has been shown that reoxygenation after 

continuous exposure of RKO cells to 0.02% oxygen for 16 hours resulted in significant 

levels of DNA damage, measured by comet assay, whereas hypoxia alone did not yield a 
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significant effect (126). In another report, 24 hours pre-irradiation incubation under 

conditions close to anoxia in combination with irradiation under hypoxia led to survival 

curves that did not significantly differ from those obtained under more acutely hypoxic 

conditions (3 hours pre-irradiation incubation) for two p53 wild type cell lines and one 

p53 mutant cell line. Interestingly, under these conditions they observed an increase of 

radiosensitivity in one other p53 mutant cell line (124). The discrepancy of the previously 

mentioned studies to ours is most probably arising from differences in oxygen 

concentration, period of pre-irradiational exposure to hypoxia and differences in the level 

of applied hypoxia yielding to differential microenvironmental adaptation and 

consequently cellular radiation response.  

 

Chronically hypoxic cells kept continuously under hypoxia, prior, during and post 

irradiation, were significantly more radioresistant compared to their normoxic 

counterparts. For FaDu and UT SCC-5 cells the effect was comparable to the one 

observed under acute hypoxia alone. In contrast, the magnitude of the effect was 

significantly lower in SKX cell line suggesting that in this cell line the effect of hypoxia 

induced radioresistance was counteracted by hypoxia induced cellular toxicity. Increase 

of residual γH2AX foci 24 hours after irradiation for synchronized fibroblast (G0-G1) 

exposed to either anoxia or severe hypoxia (0.02% O2) for 16 hours prior and 24 hours 

post irradiation has been also reported previously (106). In line with these results, we as 

well observed higher numbers of residual γH2AX foci in non-irradiated cells after 

exposure to chronic hypoxia in all cell lines under investigation. 

 

In order to test the hypothesis that the observed effects of prolonged incubation under 

mild hypoxia prior to irradiation on cellular survival are due to alterations in level or 

activity of DNA repair enzymes we performed western blot analysis.  

Incubation in GasPaks for 2.5 hours either with or without irradiation led to an equal 

induction of Hif 1α expression, verifying hypoxic conditions of oxygen concentration 

close to 0.1% O2 after this period of time. This observation is in line with results from 

many other studies, showing induction of Hif 1α, an important hypoxia-induced 

transcription factor, stabilized as a response to low oxygen levels, after incubation of cells 

under conditions close to anoxia (117, 118, 123). Under conditions of acute hypoxia 
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(experimental group: O-H-O) no significant difference to normoxic conditions in 

phosphorylation of neither ATM nor DNA-PKcs could be detected after irradiation. In 

contrast, Bencokova et al. showed in 2009 hypoxia mediated phosphorylation of ATM 

independent of other DNA damaging agents (125). However, the earliest time point 

analyzed was exposure to hypoxia for 3 hours and conditions very close to anoxia were 

tested. The discrepancy to our study might arise both from the lesser exposure time to 

hypoxia and the added effect of irradiation on phosphorylation of ATM protein, thus 

overlapping the effect hypoxia alone might promote on phosphorylation status of the 

protein.  Similarly, Um et al. observed an increase of DNA-PKcs activity after 4 hours of 

exposure to 1% O2 (128). Yet, DNA-PKcs activity was measured by a DNA-dependent 

protein kinase assay system and oxygen concentration was considerably higher than in 

our study, thus explaining the inconsistency with our study. Furthermore, no difference 

of Rad51 protein levels was observed after irradiation alone or in combination with 

exposure to hypoxia at the time of irradiation. In line, Bindra et al. observed no difference 

in Rad 51 expression after 24h of exposure to hypoxia whereas a significant 

downregulation was shown after 48 hours of hypoxia exposure (105).  

 

Pre-irradiation incubation under hypoxia led to downregulation of Rad51 in all cell lines 

under investigation, irrespective of additional radiation treatment. The observed 

downregulation of Rad51 was also independent of reoxygenation up to 24 hours after 

exposure to hypoxia (1).  These results are in line with previously published data by other 

groups, who reported hypoxia mediated decrease in the expression of Rad51 in various 

cancer cell lines from diverse origin. Interestingly, this effect appears to be independent 

of cell cycle phases, Hif 1α expression and p53 status resulting in decreased HR for both 

hypoxic and reoxygenated cells, indicating functional depletion of the protein (1, 129). 

Notably, when cells were reoxygenated prior to irradiation a radiosensitizing effect was 

observed (105, 118, 130). Kumareswaran et al. observed decreased Rad51 protein 

expression at oxygen concentrations of 1% O2 in a lung and a cervical cancer cell line 

after chronic hypoxia while exposure to cycles of hypoxia led to a non-significant 

alteration of protein expression (131). Potential mechanisms involved in the suppression 

of the HR pathway under hypoxia have been proposed either through a Hif 1α mediated 

downregulation of MYC activity leading to downregulation of BRCA1 and other 
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important HR proteins (132, 133) or through a Hif 1α independent pathway by 

suppression of Rad51 through binding of repressive E2F4/p130 complexes to an E2F site 

of the promotor of the Rad51 gene (104, 105, 130). Sprong et al. showed that mutation of 

homologous recombination results in radiosensitisation and lower OERs compared to 

wild type counterpart cell lines, when cells were irradiated under conditions close to 

anoxia. In contrast, although observing an increase of radiosensitivity for DNA-PKs 

deficient cells after irradiation under normoxia, irradiation under hypoxia did not result 

in alteration of OERs (134). 

 

As expected, for FaDu and UT SCC-5 cell lines we observed phosphorylation of ATM 

protein after irradiation and hypoxia induced increase in phosphorylation for UT SCC-5 

cells and to a lesser extent also for FaDu cell line (1). In a study conducted by Freiberg et 

al., authors observed phosphorylation of ATM on serine 1981 after incubation of 

lymphoblastoid cells under anoxic conditions after 4 and 9 hours, whereas exposure of 

cells to 2% O2 for 9 hours revealed no significant effect on phosphorylation levels (122). 

Bencokova et al. reported that ATM is autophosphorylated on serine 1981 and active both 

under hypoxic conditions close to anoxia and during reoxygenation in GM0536 cells 

(125). However, no significant phosphorylation was observed for cells incubated under 

higher oxygen concentrations. The discrepancy to our study could be explained by 

differences in oxygen concentration and duration of exposure to hypoxia as well as in the 

fact that cells were exposed both to hypoxia and irradiation.  In contrast, for SKX cell 

line ATM protein could not be detected in all western blot analysis performed (1). This 

result is in line with a recently published study by Mansour et al., where authors 

demonstrated that depletion of ATM in SKX cells is due to post-transcription regulation 

through overexpression of a micro-RNA leading to downregulation of ATM– mediated 

DDR (97). In turn, this leads to increased genetic instability and thus explains the extreme 

radiosensitivity of this cell line. In their paper from 2010, Cam et al. reported that 

inhibition of mTORC1 by hypoxia is dependent on an intact ATM activity in mouse 

embryonic fibroblasts (MEF) (135). Inhibition of mTORC1, the mammalian target of 

rapamycin, is crucial for proliferation and cellular survival under hypoxic conditions 

through restriction of cellular processes with high-energy consumption such as mRNA 

translation (52, 53, 136, 137). Based on these results, we hypothesized that the extreme 
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hypoxia sensitivity of SKX cell line is partly due to depletion of functional ATM and thus 

inappropriate downregulation of mTORC1 signaling and its downstream effective 

pathways.  

 

Consequently, we performed analysis of DNA-PKcs, an important component of NHEJ 

repair pathway in DNA damage response. For all cell lines under investigation we 

observed increase phosphorylation of DNA-PKcs on Serine 2056 after irradiation, with a 

slightly delayed phosphorylation in SKX cells. Interestingly, under conditions of pre-

irradiation incubation under hypoxia we observed an increased phosphorylation of DNA 

PKcs for FaDu and UT SCC-5 cells whereas no difference could be shown for SKX cell 

line. In line, Um et al. reported an increase of DNA-PKcs and DNA-PK activity in nuclear 

extracts of HepaC1C7 cells after exposure to hypoxia (1% O2) in a time dependent 

manner (128) and Madan et al. also reported increased activity of DNA-PKcs in MEF-7 

cells after exposure of cells to 1.8% oxygen for 24 hours (138). In contrast, Wirthner et 

al. reported downregulation of DNA-PKcs mRNA levels after long time incubation under 

hypoxia for up to 256 hours in MEF cells (139). The use of long term severe hypoxia 

without irradiation along with the fact that the impact of mRNA downregulation on DNA 

repair protein levels was not assessed systematically does not allow direct comparison to 

our data.  

 

In order to further elucidate the extreme radiosensitivity of SKX cell line under pre-

irradiation incubation under hypoxia we hypothesized that the increase of radiosensitivity 

might be based on the increase of reproductive cell death though induction of senescence. 

Graeber et al. reported already in 1996 that p53 mutant cells exposed to hypoxia undergo 

apoptosis in a highly extenuated manner compared to p53 wild type cells under the same 

conditions (57). However, we did not observe morphological signs of apoptosis in our 

cultures but rather elevated number of γH2AX foci in non-irradiated controls of SKX cell 

line after pre-irradiation incubation under hypoxia. In line with our observation, 

Sedelnikova et al. showed accumulation of γH2AX foci in co-localization with DNA 

repair factors in human cell culture cells undergoing senescence (140). However, this was 

not tested in our experimental design. Another possible pathway of cell death after 

exposure to hypoxia is hypoxia-induced autophagy. This hypothesis is supported by 
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Papandreou et al., who reported induction of autophagy in RKO and SiHa cells incubated 

under conditions close to anoxia (<0.01% O2) for up to 24 hours (59). Interestingly, 

Chaachouay et al. reported increased radioresistance mediated through AMPK 

independent stimulation of autophagy already at oxygen levels of 1% O2 (60). Several 

reviews suggest that hypoxia-induced autophagy might have an important role in hypoxia 

mediated cell death (141, 142).  

 

Collectively, our proposal regarding the extreme hypoxia intolerance of SKX cell line is 

based on a combination of downregulation of HR-repair pathway after long term pre- 

irradiation incubation under hypoxia on the basis of an intrinsic functional defect of ATM 

and thus reduced efficiency of DDR repair in this cell line (1). For UT SCC-5 cell line 

and FaDu cell line in particular, deficiency in HR was well tolerated and did not lead to 

radiosensitization. We hypothesize that downregulation of Rad51 in FaDu cells triggers 

an alternative pathway of DDR and thus explain increase of radioresistance observed 

under prolonged hypoxia treatment. This hypothesis is further supported by the observed 

increase in ATM and DNA PKcs phosphorylation under this condition for both cell lines 

(1). Our data therefore suggests a significant role for ATM protein concerning cellular 

survival and the capability of cells to adapt to the hypoxic microenvironment for cells 

exposed to moderate hypoxia for prolonged periods of time. An alternative hypothesis, 

which was not tested, is that the heterogeneity of cellular radiosensitivity phenotypes 

observed under prolonged hypoxia might reflect the heterogeneity of metabolic 

adaptation of the cell lines to hypoxia (54, 55).  

 

In summary, our data support the hypothesis that time dependent exposure of hypoxia 

leads to differential cellular phenotypes affecting cellular survival after irradiation. This 

phenomenon might have important implications in the interpretation of studies aiming to 

develop predictive biomarkers for radiation response (143). Understanding the impact of 

hypoxia exposure on repair and radiation sensitivity appears to be important for 

recognition and discovery of novel targets to overcome radiation resistance in hypoxic 

tumours. 
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5 SUMMARY 

Hypoxia has been shown to be a negative prognostic marker for survival and the 

occurrence of metastatic disease for patients with various kinds of tumours. It has been 

shown previously that for two SCC tumors grown as xenografts in nude mice hypoxic 

tumour cells showed a significantly lower amount of residual DNA double strand breaks 

(DSB) compared to normoxic cells. However, it was not possible to assess the duration 

and exact timing of hypoxia exposure in relation to irradiation in this experimental setting. 

Therefore, we aimed to study the influence of hypoxia exposure at different timeframes 

in relation to irradiation on cellular survival and the amount of residual DNA double 

strand breaks. Three human squamous cell carcinoma cell lines with differences in their 

intrinsic radiation sensitivity were exposed to hypoxia prior, during or 24 hours after 

irradiation and consequently either seeded in parallel for colony formation assay (CFA) 

and for γH2AX assay or processed for western blot analysis.  

For normoxic conditions we were able to reproduce the observed differences in intrinsic 

radiosensitivity both in terms of CFA and in terms of γH2AX assay. Irradiation under 

hypoxic conditions led to an increase in cellular survival and a decrease of residual DSBs 

with similar oxygen enhancement ratios (OER) for all cell lines (OERmean =2.36). Based 

on the mean number of residual foci we were able to recalculate the observed survival 

curves and accurately estimate the OER values. Exposure to hypoxia after irradiation did 

neither alter cellular survival nor the amount of residual γH2AX foci. Interestingly, long 

term incubation under hypoxia prior to irradiation resulted in diverse effects on cellular 

survival, namely radiosensitization in SKX (HMF=0.76), induction of radioresistance in 

FaDu (HMF=1.54) and no effect in UT SCC-5 cells (HMF=1.10). These phenotypic 

behaviors were consistent when cells were exposed to hypoxia either during or after 

irradiation additionally or were chronically hypoxic. Under this condition, western blot 

analysis revealed increased phosphorylation of ATM and DNA PKcs after irradiation for 

UT SCC-5 and to a lesser extent also for FaDu cell line. Interestingly, we observed 

homogenous downregulation of Rad51 after pre-irradiation incubation under hypoxia.  

In conclusion, our data indicates a significant role for hypoxia tolerance on cellular 

radiation sensitivity for cells exposed to hypoxia prior to irradiation for prolonged periods 

of time. Furthermore, our data suggests that ATM might have an important impact on 
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cellular adaptation and cellular survival in a hypoxic microenvironment. Enhancing our 

knowledge on hypoxia is important to overcome treatment resistance of hypoxic tumors.  
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6 ZUSAMMENFASSUNG  

Die Tumorhypoxie ist ein weit verbreitetes Phänomen, das zu Metastasierung sowie 

Therapieresistenz führen kann und so einen negativen Prognosefaktor für das Überleben 

von Patienten darstellt. Vorarbeiten in vivo zeigten, dass hypoxische Tumorzellen 

gegenüber normoxischen Tumorzellen signifikant weniger residuelle DNA 

Doppelstrangbrüche (DSB) nach Bestrahlung aufweisen, wobei die Heterogenität 

zwischen verschiedenen Tumorlinien abhängig von der Oxygenierung erscheint. Das Ziel 

dieser Arbeit war die Abhängigkeit der Strahlensensitivität und des Zellüberlebens vom 

Zeitpunkt der Hypoxieexposition in Bezug auf den Bestrahlungszeitpunkt in 

verschiedenen Tumorlinien in vitro zu untersuchen. Hierzu wurden drei humane 

Plattenepithelkarzinomzelllinien des Kopf- und Halsbereiches mit Unterschieden in ihrer 

intrinsischen Strahlensensitivität ausgewählt. Diese wurden vor, während oder nach der 

Bestrahlung Hypoxie ausgesetzt und anschließend entweder parallel für die 

Koloniebildungsassays ausgesät und für den γH2AX Foci Assay gefärbt oder für die 

Western Blot Analyse vorbereitet.  

 

Die Bestrahlung von Zellen unter hypoxischen Bedingungen führte zu einem Anstieg der 

Überlebensfraktion sowie zu einer signifikanten Reduktion der Anzahl residualer γH2AX 

Foci (MW OER: 2,36). Hypoxie nach Bestrahlung führte hingegen zu keiner 

signifikanten Veränderung des Zellüberlebens. Interessanterweise zeigte die Inkubation 

unter Hypoxie vor Bestrahlung unterschiedliche Effekte in den drei Zelllinien: 

Strahlensensibilisierung in SKX (HMF: 0.76), Verstärkung von Strahlenresistenz in 

FaDu (HMF: 1.54) und keinen Effekt in UT SCC-5 (HMF: 1.10). Diese Phänotypen 

zeigten sich ebenfalls bei zusätzlicher Hypoxieexposition während oder nach 

Bestrahlung. Unter dieser Bedingung konnte in der Western Blot Analyse in allen Zellen 

eine verminderte Expression von Rad51 nachgewiesen werden. Für UT SCC-5 Zellen 

und zu einem geringeren Anteil auch für FaDu Zellen beobachteten wir eine verstärkte, 

bestrahlungsbedingte Phosphorylierung von ATM und DNA-PKcs.  

 

Zusammenfassend weisen die Daten dieser Studie darauf hin, dass die intrinsische 

Hypoxietoleranz einen wichtigen Einfluss auf die zelluläre Strahlensensitivität haben 

könnte und deuten auf eine wichtige Rolle von ATM für das Zellüberleben und die 
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Anpassung von Zellen an hypoxische Bedingungen hin. Die vorliegenden Ergebnisse 

sind bedeutend für die Entwicklung von neuen Strategien zur Überwindung der 

Strahlenresistenz hypoxischer Zellen.  
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7 APPENDIX 

 
Suppl. Tab. 1: table showing SF2 values obtained by CFA and slope of yH2AX foci assay as well as 
p-values of the linear correlation between -ln SFCFA and mean number of residual foci for all cell lines 
and conditions under investigation; Adapted from Hauth F.et al. (2017) Cell-line dependent effects of 
hypoxia prior to irradiation in squamous cell carcinoma lines. Clinical and Translational Radiation 
Oncology (accepted for publication) (1) 

Condition Cell line 

OER (SF= 0.1) 

SF2 
Slope of 

γH2AX foci 
assay 

P-value of linear 
correlation (-lnSF vs. 
mean residual foci) CFA 

γH2AX- 
assay 

O-O-O 
(21%-21%-21%) 

SKX     0.14 2.13 0.0001 

FaDu   0.38 1.58 < 0.0001 

UT SCC-5   0.59 1.13 < 0.0001 

O-O-H 
(21%-21%-1%) 

SKX 1.00 1.03 0.10 1.84 0.0003 

FaDu 1.03 1.08 0.34 1.43 0.0011 

UT SCC-5 1.21 1.17 0.61 1.50 0.0022 

O-H-O 
(21%-0.1%-21%) 

SKX 2.31 2.03 0.48 1.31 0.0008 

FaDu 2.44 2.90 0.71 0.41 0.0028 

UT SCC-5 2.32 2.82 0.76 0.41 0.0019 

H-O-O 
(1%-21%-21%) 

SKX 0.76  0.05 0.82 0.6238 

FaDu 1.54 1.41 0.59 0.80 < 0.0001 

UT SCC-5 1.10 1.19 0.59 1.40 0.0003 

O-H-H 
(21%-0.1%-1%) 

SKX 2.55 2.33 0.34 1.38 0.0034 

FaDu 2.35 2.91 0.89 1.04 0.0008 

UT SCC-5 2.8 4.62 0.90 0.88 0.0261 

H-O-H 
(1%-21%-1%) 

SKX 0.69 0.65 0.02 2.57 0.0421 

FaDu 1.32 1.05 0.49 1.33 0.0025 

UT SCC-5 1.13 1.41 0.73 1.23 0.0246 

H-H-H 
(1%-0.1%-1%) 

SKX 1.69 1.73 0.33 1.39 0.002 

FaDu 2.77 3.85 0.86 0.98 0.0104 

UT SCC-5 2.44 3.46 0.85 0.86 0.0490 

H-H-O 
(1%-0.1%-21%) 

SKX 2.45 1.98 0.46 1.04 0.0008 

FaDu 3.73 4.22 0.72 0.65 0.0048 

UT SCC-5 4.22 4.49 0.85 0.76 0.0002 
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Suppl. Tab. 2: Table showing plating efficiencies (PE) and number of mean residual foci after 0 Gy 
irradiation for all cell lines and all conditions under investigation. 

cell line condition PE  mean residual foci 0 Gy 

SKX 

O-O-O 16.65 2.02 

O-O-H 7.50 2.15 

O-H-O 15.03 2.45 

H-O-O 10.19 8.75 

O-H-H 12.18 1.81 

H-O-H 11.26 4.75 

H-H-O 12.44 3.91 

H-H-H 10.48 3.69 

FaDu 

O-O-O 43.71 0.91 

O-O-H 18.34 0.52 

O-H-O 35.42 1.72 

H-O-O 49.77 1.12 

O-H-H 28.72 1.29 

H-O-H 38.05 1.90 

H-H-O 43.76 0.92 

H-H-H 39.12 3.94 

UT SCC-5 

O-O-O 31.1 1.44 

O-O-H 17.95 2.14 

O-H-O 20.11 3.86 

H-O-O 26.16 2.81 

O-H-H 18.19 6.14 

H-O-H 22.7 3.01 

H-H-O 28.97 5.16 

H-H-H 27.32 4.94 
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Suppl. Fig. 1: Figure showing exemplarily mathematical process of recalculation of OER/HMF based 
on number of residual foci 
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Suppl. Fig. 3: Bar diagrams showing relative signal of protein levels for all cell lines under 
investigation for long term exposure to hypoxia prior to irradiation (experimental group: H-O-O). 

Shown are results of 2 individual experiments. Error bars indicating standard deviation of the mean. 
Adapted from Hauth F.et al. (2017) Cell-line dependent effects of hypoxia prior to irradiation in squamous 
cell carcinoma lines. Clinical and Translational Radiation Oncology (accepted for publication) (1)  

Suppl. Fig. 2: Bar diagrams showing relative signal of protein levels for all cell lines under 
investigation for conditions of irradiation under hypoxia (experimental group: O-H-O). Shown are 
results of 1 (SKX, UT SCC-5) and 2 (FaDu) individual experiments respectively. Error bars 
indicating standard deviation of the mean.  
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Suppl. Fig. 4: Bar diagrams showing relative signal of protein levels for UT SCC-5 cell line under 
investigation for exposure to hypoxia both prior and at the time of irradiation (experimental group: 
H-H-O). Shown are results of 1 individual experiment  
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