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I 

Zusammenfassung 

 

Chlorierte Kohlenwasserstoffe, wie chlorierte Methane und Ethene, sind in großen Mengen 

hergestellte chemische Produkte, die regelmäßig als giftige Schadstoffe in der Umwelt 

detektiert werden. Sanierungsmaßahmen verwenden oft die reduktive Dechlorierung durch 

Bakterien oder reduzierende Chemikalien. Jedoch beobachtet man bei Organismen häufig, 

dass der Abbau bei toxischen Zwischenprodukten stoppt und keine vollständige 

Dechlorierung erreicht wird. Bisher ist der Grund dafür nicht bekannt. Aufklärungsversuche 

mit mechanistischen Studien und Interpretationen waren nicht aufschlussreich, da zuletzt 

mehrere Mechanismen für den Abbau in Frage kommen konnten. Aus diesem Grund wurde 

in dieser Arbeit die substanzspezifische Isotopenanalytik, ein viel versprechender Ansatz zur 

Identifikation von Reaktionsmechanismen, mit chemischen Modelsystemen kombiniert, um 

reduktive Abbaumechanismen zu identifizieren.  

Die Chlorisotopenanalytik für chlorierte Ethene wurde im Jahr 2006 etabliert und wird 

seitdem regelmäßig eingesetzt, um das Schicksal dieser Substanzen im Grundwasser zu 

untersuchen und Reaktionsmechanismen zu identifizieren. Allerdings gab es bisher keine 

etablierte und geprüfte Methode zur Messung der Chlorisotope von chlorierten Methanen. 

Daher wurde im ersten Teil dieser Arbeit eine Methode zur Chlorisotopenanalytik für 

Tetrachlormethan und Trichlormethan für Gas-Chromatographie – quadrupole 

Massenspektrometrie (GC-qMS) und Gas-Chromatographie – Isotopenverhältnis 

Massenspektrometrie (GC-IRMS) entwickelt. Beide Methoden wurden auf Präzision und 

Richtigkeit der Werte miteinander verglichen. Somit war es zum ersten Mal möglich, 

Informationen von Kohlenstoff- und Chlorisotopen zu kombinieren und einen Doppel-

Element Isotopen Plot für den reduktiven Trichlormethan Abbau zu generieren.  

Die direkte Untersuchung des Abbaumechanismus von chlorierten Ethenen durch 

Organismen erweist sich als sehr schwierig, da eine Vielzahl von Prozessen in dem Abbau 

involviert wie Diffusion durch die Zelle, Bindung am Enzym etc., welche die Interpretation 

des Mechanismus verkomplizieren. Aus diesem Grund werden häufig vereinfachte 

Modelsysteme (wie Abbau von chlorierten Ethenen durch reine Enzyme oder nur den 

Cofactor wie z.B. Vitamin B12) gewählt, um den Mechanismus zu untersuchen. In dieser 

Arbeit wurde der enzymatische Cofaktor Vitamin B12 (welcher das aktive Zentrum in allen 

bisher identifizierten reduktiven Dehalogenasen bildet) als Modelsystem gewählt.. Trotz 

vieler Studien mit diesem Modelsystem, konnte der für den Abbau verantwortliche 
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Reaktionsmechanismus noch nicht aufgedeckt werden. Basierend auf diesen Ergebnissen 

und den vorgeschlagenen Reaktionsmechanismen für dieses System (1. Outer-Sphere oder 

Inner-Sphere Ein-Elektronen-Transfer 2. Nucleophile Substitution 3. Nucleophile Addition), 

wurden zuerst die Isotopenfraktionierung des Outer-Sphere Ein-Elektronen-Transfer (OS-

SET) für Tetra-, Tri- und cis-Dichlorethen (PCE, TCE und cis-DCE) untersucht. Die OS-

SET Reaktion wurde mit verschiedenen Ein-Elektronen-Transfer Reagenzien (z.B. CO2 

Radikal Anionen) in Wasser und organischen Lösungsmittel simuliert. Bei den 

durchgeführten Reaktionen wurde keine Chlorisotopenfraktionierung festgestellt, was den 

OS-SET für die Reaktion von chlorierten Ethenen mit Organismen und Vitamin B12 

ausschließt, sondern auch darauf hinweist, dass der OS-SET Mechanismus ebenfalls für die 

reduktive Dechlorierung von chlorierten Ethenen durch nullwertiges Eisen nicht überwiegt. 

In letzter Instanz konnte durch Messung von Kohlenstoff- und Chlorisotopeneffekten ein 

unterschiedlicher Mechanismus für die Reaktion von PCE und cis-DCE mit Vitamin B12 

aufgedeckt werden, sowie ein sich verändernder Mechanismus für den TCE Abbau in 

Anhängigkeit vom pH-Wert. Basierend auf Kohlenstoff-, Chlor- und 

Wasserstoffisotopeneffekten, pH abhängiger Reaktionskinetik und der Produkteversteilung 

des TCE Abbaus, konnte ein Reaktionsmechanismus nachgewiesen werden, der zwei 

mögliche Reaktionswege beinhaltet 1. Addition-Eliminierung 2. Addition-Protonierung. 

Durch Defizite in der Massenbilanz konnten irreversible und reversible Cobalamin-Substrat 

Komplexe und durch hochauflösende Massenspektroskopie mögliche Strukturen von 

Chloralkyl- und Chlorvinylkomplexen detektiert werden. Die experimentellen Daten führten 

schließlich zu dem Ergebnis, dass der initiale Elektronen-Transfer oder die Bildung von 

Alkyl- oder Vinylkomplexen nicht der Schnittpunkt der beiden Reaktionspfade ist. Hingegen 

konnte gezeigt werden, dass Cobalamin-Chlorcarbanionen die Schlüsselspezies darstellen. 

Durch die Eliminierung von Chlorid bilden diese Vinylkomplexe (was die Kinetik und 

Produkteverteilung bei hohen pH-Wert erklärt) und durch Protonierung weniger reaktive 

Alkylkomplexe (was wiederum die Kinetik und Produkteverteilung bei niedrigen pH-Wert 

erklärt). Des Weiteren deuten starke Indizien darauf hin, dass PCE nur über Addition-

Eliminierung reagiert und cis-DCE nur über Addition-Protonierung. Bei Übertragung dieser 

Mechanismen auf Biosysteme würde dies implizieren, dass Enzyme, die über Addition-

Eliminierung reagieren, kein cis-DCE abbauen können, was auch eine mögliche Erklärung 

dafür liefert, weshalb der Abbau oft bei cis-DCE stoppt  
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Summary 

 

Chlorinated hydrocarbons, such as chlorinated methanes and ethenes, are large-scale 

industrial products and frequently detected in the environment as toxic contaminants. As 

remediation approach the reductive dechlorination through bacteria or reducing agents is 

commonly applied. However, for organisms it is often observed that the degradation stops at 

toxic intermediates and no full dechlorination is achieved. The reason why degradation stops 

is not understood so far and even the elucidation with mechanistic experiments and 

interpretation were ultimately not successful because until today multiple reaction 

mechanisms are plausible candidates for the degradation. Therefore, compound specific 

isotope analysis, a promising tool for identifying reaction mechanisms was combined with 

chemical model systems to identify the reductive dechlorination mechanisms in this thesis.  

Chlorine isotope measurement for chlorinated ethenes (CEs) became accessible in 2006 and 

is frequently used to follow the fate of CEs in groundwater and to identify their reaction 

mechanisms. However, an established and verified method for chlorine isotope measurement 

of chlorinated methanes was not available. Therefore, in first instance, a method for chlorine 

isotope analysis of tetrachloromethane and trichloromethane was realized for Gas 

Chromatography - quadropol Mass Spectrometry (GC-qMS) and Gas Chromatography - 

Isotope Ratio Mass Spectrometry (GC-IRMS) and both methods were compared in points of 

precision and trueness. Thus, for the first time it became possible to combine information 

from carbon and chlorine isotope values to form a dual element isotope plot for reductive 

trichloromethane degradation. 

Direct investigation of the reaction mechanism of chlorinated ethene degradation by 

organisms is no simple task, because processes like diffusion through the cell membrane or 

binding at the enzyme complicate the interpretation of the mechanism. Therefore, often 

simplified model systems such as degradation of chlorinated ethenes by pure enzymes or the 

enzymatic cofactor vitamin B12 are used. The enzymatic cofactor vitamin B12 (which lies at 

the heart of practically all reductive dehalogenases identified to date) was chosen as model 

system for this thesis. . Despite numerous studies which investigated this model system, the 

prevailing mechanism still remains elusive. Based on these results and the suggested reaction 

mechanisms for this system (1. Outer-Sphere or Inner-Sphere Single Electron Transfer 2. 

Nucleophilic Substitution 3. Nucleophilic Addition), first the isotope fractionation of the 

Outer-Sphere Single Electron Transfer (OS-SET) mechanism was investigated for tetra-, tri 

and cis-dichloroethene. The OS-SET reaction was simulated using different single electron 
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transfer reagents (e.g. CO2 radical anions) in water and organic solvent. Through the absence 

of chlorine isotope effects the OS-SET reaction for CEs by organism and vitamin B12 could 

be ruled out and furthermore it was indicated that the OS-SET reaction does not prevail for 

reductive dechlorination of CEs by zero valent iron (ZVI). 

In last instance, carbon and chlorine isotope effects revealed a mechanistic shift for PCE 

(


Cl= -4.0‰) and cis-DCE (


Cl= -1.5‰) reaction with vitamin B12 and a pH dependent 

shift for TCE (from 


Cl= -5.2‰ at pH 12 to 


Cl= -1.2‰ at pH 5). Based on carbon-, 

chlorine- and hydrogen isotope effects, pH-dependent shifts in reaction rates and TCE 

product distribution the existence of two possible pathways (1. addition-elimination, 2. 

addition-protonation) was narrowed down. Reversible and irreversible cobalamin-substrate 

association was detected by mass balance deficits, whereas possible structures of chloroalkyl 

and chlorovinyl cobalamin complexes could be analyzed by high-resolution mass 

spectrometry. By combining experimental evidence it was revealed that initial electron 

transfer or alkyl or vinyl complexes as crossroads of both pathways are not consistent with 

experimental observations. In contrast, the formation of cobalamin chlorocarbanions is 

supported as key intermediates, where chloride elimination produces vinyl complexes 

(explaining rates and products of TCE at high pH) and protonation generates less reactive 

alkyl complexes (explaining rates and products of TCE at low pH).   

Furthermore, circumstantial evidence indicates that PCE reacts only via addition-elimination 

and cis-DCE only via addition-protonation. Transferring these results into biosystems 

implies that enzymes which react via the addition-elimination cannot degrade cis-DCE. 

Finally this fact can provide a possible answer why degradation often stops at the step of cis-

DCE.   
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1.  

 

General Introduction 

 

 

1.1 Water contamination by organic chemicals  

The worldwide growing demand for water supply is one of the most challenging tasks for 

next generations. On the one hand, a growing population increases the demand for clean 

water and on the other hand, increasing pollution of water through organic chemicals further 

aggravate water scarcity problem 
1
. Chlorinated hydrocarbons are one of the major types of 

contaminants. These chemicals are used as dry cleaning agents, softeners for plastic, solvents 

and refrigerants 
2, 3

. Two of the most prominent pollutants in this group are chlorinated 

methanes and ethenes (CEs). Considering them as inert and unproblematic led to improper 

handling and industrial disposal, resulting in thousands of hazardous waste sites worldwide. 

In the priority list of hazardous substances from 2015 of the U.S. Environmental Protection 

Agency three of these chemicals are ranked in the top twenty (vinyl chloride (4); 

trichloromethane (11); trichloroethene (16)) 
4, 5

. 
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Their toxic nature originates from their chlorine substituents which make them reactive 

towards metabolic bioactivation and are the cause for their mutagenic property 
6
. Through 

complete dehalogenation non-toxic hydrocarbons can be produced, what was intriguingly 

observed in groundwater ecosystems. Stepwise dechlorination of these substances was 

detected by microorganisms which use chlorinated hydrocarbons as electron acceptor what is 

called “dehalorespiration” 
7
. In this process chlorine is stepwise substituted by hydrogen 

(hydrogenolysis; Figure 1). However, only few organisms can achieve complete 

dehalogenation to non-toxic end products, often they stop at the step of cis-dichloroethene 

(cis-DCE) or vinyl chloride (VC)
8
 for chlorinated ethenes and at dichloromethane for 

chlorinated methanes 
9-11

. This fact aggravates the problem of contamination because cis-

DCE and VC are more toxic than their parent compound. In general remediation of CEs can 

be approached with different technologies. One possibility is the addition of dehalogenating 

bacteria (bioaugmentation); a second one is the enhancement of the dehalogenation activity 

of organisms through addition of organics (biostimulation) 
12

. Beside the degradation of 

chlorinated ethenes by organisms, the installation of permeable reactive barriers of zero 

valent iron (ZVI) is a broadly implemented removal technology. Reducing CEs by ZVI is 

very efficient and operates, beside the stepwise hydrogenolysis, with vicinal ß-elimination as 

a second reduction pathway, 
13-15

. However, the incomplete removal can still be observed 

with these remediation approaches. Therefore, the identification of the reaction mechanism 

is of great interest, to understand why complete dehalogenation is not achieved and how it 

can be improved.  

 

Figure 1. Stepwise reductive dechlorination of chloroethenes and chloromethanes by hydrogenolysis 
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1.2 Identification of the reaction mechanism with compound specific isotope 

analysis 

1.2.1 Reductive dehalogenation – state of art 

To improve remediation strategies in order to achieve complete detoxification of 

contaminated sites, great interest is directed towards the reaction mechanism of reductive 

dehalogenation. Therefore, in recent years this aim was addressed by a lot of studies using 

pure organisms, enrichment cultures, purified dehalogenase enzymes, coenzyme Vitamin 

B12 and chemical model systems which mimic such dehalogenation reactions. Numerous 

investigations focused on the enzymatic cofactor vitamin B12 which is present in almost all 

reductive dehalogenases identified to date 
16

. Nevertheless, the reaction mechanisms are still 

incompletely understood. However, measuring multi element isotope effects of particular 

elements (e.g. 
37

Cl/
35

Cl, 
13

C/
12

C, 
2
H/

1
H) is an emerging approach which has the potential to 

close this knowledge gab.  

 

1.2.2 Concept of CSIA 

Measuring kinetic isotope effects (KIE) can provide the information which is necessary to 

identify a reaction mechanism. Heavy and light isotopes show an unequal reaction behavior 

which can be expressed through the KIE (Equation 1). Primary isotope effects are observed 

through the difference in reaction rates of molecules containing heavy (e.g. 
13

C) and light 

isotopes (e.g. 
12

C). The mass difference of these isotopologues affects the vibration energies 

what leads to different zero point energies (ZPEs). Consequently, different activation 

energies are necessary to reach the transition state. 

KIE
k

k
h

l









           (1) 

Here 
l
k and 

h
k are the reaction rate of light and heavy isotopologues. Furthermore, secondary 

isotope effects can also be detected at atoms next to the reaction position which do not 

directly take part in the chemical reaction. But their mass also has an effect on the 
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vibrational energies. Degradation reactions typically cause normal KIE effects which means 

that light isotopes react faster than heavy ones. However, there are also observations were 

heavy isotopes reacted faster what resulted in an inverse isotope effect 
17

. Through the 

reflection of these transition state properties, KIEs make it possible to pinpoint reaction 

mechanisms.  

The changes in isotopic composition can be analyzed through coupling of a gas 

chromatograph with an isotope ratio mass spectrometer (GC-IRMS). Analytical advances
18-

20
 made it possible to measure compound-specific isotope ratios of single chlorinated 

compounds (e.g., PCE, TCE) at their natural isotopic abundance in chemical model reactions 

and natural samples. At natural abundance such isotope ratios (
13

C/
12

C, 
37

Cl/
35

Cl and 
2
H/

1
H) 

are expressed as difference relative to an international reference material by the delta 

notation: 

dardS

dardSSample

CC

CCCC
C

tan

1213

tan

12131213

13

/

)//( 
         (2) 

dardS

dardSSample

ClCl

ClClClCl
Cl

tan

3537

tan

35373537

37

/

)//( 
        (3) 

dardS

dardSSample

HH

HHHH
H

tan

12

tan

1212

2

/

)//( 
         (4) 

initialCCC 131313            (5) 

initialClClCl 373737            (6) 

initialHHH 222            (7) 

Here, the isotope ratios of international reference standard (
13

C/
12

CStandard) and sample 

(
13

C/
12

CSample) and the isotope values at the beginning of a reaction (
13

Cinital) and a given 

time-point (
13

C) are used, respectively. As international reference standards, Vienna Pee 

Dee Belemite (VPDB) is used for carbon and Standard Mean Ocean Chloride (SMOC) for 

chloride. Through these standards, isotope measurements in different laboratories can be 

compared on an absolute scale. According to the Rayleigh equation 
21

, isotope effects can be 

evaluated using the change of isotope values at natural abundance 
22

. 
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 fCC Cinitial ln1313            (8) 

In Equation 8 f expresses the concentration at a given time-point divided through the 

concentration at the beginning. C is the resulting enrichment factor which symbolizes the 

difference in transformation rates of light and heavy isotopes of a molecule and which is 

equivalent to a compound specific KIE. Analogous equations are valid for chlorine and 

hydrogen using 
37

Cl and 
35

Cl or 
2
H and 

1
H in equation 8. 

1.2.3 Multi element isotope analysis 

Trough combining the isotope changes of two elements dual element isotope plots can be 

formed (e.g.  = 
13

C/
37

Cl). These plots combine the information of two elements and 

provide an even more robust interpretation of reaction mechanisms. Interpreting the isotopic 

information from one element can lead to wrong conclusions because the information can be 

biased, if aside the chemical reaction a reaction cascade with rate limiting steps is involved. 

These masking effects could be caused by diffusion through cell membranes or the binding 

of the substrate to an enzyme. Conclusively, the observed enrichment factor wouldn’t reflect 

the isotope effects generated by the reaction mechanism. Adding the isotopic information of 

a second element can avoid this problem because masking would influence the apparent 

kinetic isotope effects (AKIE) of both elements to the same extent. Therefore, the dual 

element plot would still reflect the characteristics of the reaction mechanism. 

In order to enable the dual element isotope analysis for chlorinated ethenes or methanes, 

methods had to be invented for chlorine and hydrogen measurements, beside the already 

existing method for carbon which is well described by W.A. Brand 
23

. For chlorine isotope 

analysis the “online” measurement was developed by Shouakar Stash et al. 
18

 what made the 

laborious offline preparation unnecessary
24

 and enabled the direct measurement of 

chlorinated compounds. Here, chlorinated ethenes are directly transferred from the gas 

chromatograph into the IRMS and molecule fragments of chlorinated ethenes are measured 

with sensitive detectors (Faraday cups) which were adapted to these mass fragments (e.g. 

C2Cl2
+
 for PCE and C2HCl2

+
 for TCE). For chlorinated methanes (tetrachloromethane and 

trichloromethane) such a method was developed during the time of this thesis. The method 

itself is described in Chapter 2. A method for hydrogen isotope measurements of chlorinated 

hydrocarbons was developed in 2013 by Shouakar Stash et al. and Kuder et al. 
25, 26

. For this 
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approach a chromium reactor was invented which enabled the conversion of chlorinated 

hydrocarbons to H2 without the formation of HCl which is corrosive and was the biggest 

hindrance for these measurements. Afterwards this method was improved and intensively 

tested by Renpenning et al.
20

   

1.3 Objectives 

CSIA is a promising tool to identify the reaction mechanism of biodegradation of chlorinated 

methanes and ethanes. However, until recently it was only possible to measure carbon 

isotope values for chlorinated methanes because chlorine and hydrogen measurements were 

not invented. That made the identification of reaction mechanisms more difficult because 

information for only one element was available.  

In chapter 2 of this thesis a method for chlorine isotope analysis of tetrachloromethane and 

trichloromethane was realized for the Gas Chromatography - quadrupol Mass Spectrometry 

(GC-qMS) and the IRMS and both methods were compared in points of precision and 

trueness. Furthermore, the developed GC-qMS methods were tested in an interlaboratory 

comparison between Munich and Neuchâtel. This method also forms the basis for a related 

study that is provided in the Appendix A1 but does not form part of this thesis: it was 

possible for the first time to create dual element isotope slopes for oxidative and reductive 

trichloromethane degradation and to investigate isotope fractionation for three different 

mechanisms: oxidative C-H bond cleavage using heat-activated persulfate, reductive C−Cl 

bond cleavage by cast zero-valent iron (ZVI) and transformation under alkaline conditions at 

pH 12.  

The work presented in chapter 3 and 4 aims to identify the reaction mechanism of reductive 

dehalogenation of chlorinated ethenes by the coenzyme vitamin B12 (cobalamin) and by 

organisms, which still remains elusive until today. Furthermore, the question should be 

answered: “Why does biodegradation often stop at the step of cDCE or VC?” Dual element 

isotope analysis in combination with a simplified model system is used to achieve this goal. 

Direct investigation of the reaction mechanism of chlorinated ethene degradation by 

organism is no simple task, because processes like diffusion through the cell membrane, 

binding at the enzyme etc. complicate the interpretation of the mechanism. Therefore, often 

simplified model systems are used such as degradation of chlorinated ethenes by pure 
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enzymes or the enzymatic cofactor vitamin B12 Depending on isotope data Cretnik at al. 27 

pin-pointed, that degradation of chlorinated ethenes by vitamin B12 is an optimal model 

system to investigate the mechanism. Three reaction mechanisms are suggested for the 

reductive dehalogenation of chlorinated ethenes by vitamin B12: 1. Outer-sphere or inner-

sphere Single electron transfer (OS- or IS-SET) 2. nucleophilic substitution (inner sphere 

reaction) and 3. nucleophilic addition (inner sphere reaction). 

In chapter 3 outer-sphere single electron transfer (OS-SET) reagents were used to simulate 

an OS-SET in water and organic solvent. The changes of isotopic composition were 

monitored. The results of dual element isotope analysis (carbon and chlorine) were 

compared to reported dual element isotope slopes from reactions of organisms, enzymes and 

vitamin B12. Besides, the results are compared to previous zero valent iron experiments 

because for this system either an IS- or OS-SET is supposed. Finally, an explanation was 

provided why different isotope values are observed for the OS-SET in organic solvent and 

water, and the question was answered whether an OS-SET is observed in biodegradation or 

degradation by zero valent iron 

To pin-point which reaction mechanism is responsible for the reductive dehalogenation of 

chlorinated ethenes, further experiments with pure vitamin B12 and chlorinated ethenes 

(PCE, TCE and cis-DCE) were conducted (chapter 4). Changing the initial pH value in 

combination with dual element isotope analysis for the reaction of vitamin B12 with PCE 

and cis-DCE revealed different reaction mechanisms for PCE and cis-DCE. Subsequently, 

experiments with TCE from pH value 5 to 12 were conducted, where combining dual 

element isotope analysis with determination of intermediates by UV-VIS and high-resolution 

mass spectrometry enabled us to identify the reaction mechanisms of PCE, TCE and cis-

DCE degradation by vitamin B12. Furthermore, we included results and interpretations from 

numerous previous studies to verify the reaction mechanisms. Finally, we were able to 

provide an answer to the question: “Why does biodegradation often stop at the step of cDCE 

or VC?”.  
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2.1. ABSTRACT  

Compound-specific chlorine isotope analysis of tetrachloromethane (CCl4) and 

trichloromethane (CHCl3) was explored by both, gas chromatography – isotope ratio mass 

spectrometry (GC-IRMS) and GC – 

quadrupole MS (GC-qMS), where GC-

qMS was validated in an interlaboratory 

comparison between Munich and 

Neuchâtel with the same commercial GC-

qMS instrument. GC-IRMS measurements 

analyzed CCl isotopologue ions, whereas 

GC-qMS analyzed the isotopologue ions 

CCl3, CCl2, CCl (of CCl4) and CHCl3, 

CHCl2, CHCl (of CHCl3), respectively. Lowest amount dependence (good linearity) was 

obtained (i) in H-containing fragment ions where interference of 
35

Cl- to 
37

Cl-containing ions 

was avoided; (ii) with tuning parameters favoring one predominant rather than multiple 

fragment ions in the mass spectra. Optimized GC-qMS parameters (dwell time 70 ms, 2 most 

abundant ions) resulted in standard deviations of 0.2‰ (CHCl3) and 0.4‰ (CCl4) which are 

only about twice as large as 0.1‰ and 0.2‰ for GC-IRMS. To compare also the trueness of 

both methods and laboratories, samples from CCl4 and CHCl3 degradation experiments were 

analyzed and calibrated against isotopically different reference standards for both CCl4 and 

CHCl3 (two of each). Excellent agreement confirms that true results can be obtained by both 

methods provided that a consistent set of isotopically characterized reference materials is 

used.  
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2.2. Introduction 

Chlorinated methanes such as trichloromethane (CHCl3) and tetrachloromethane (CCl4) have 

been used as dry cleaning agents, solvents and for the production of chlorofluorocarbons. As 

a consequence of accidents and inadvertent handling, spills of these chemicals have led to 

groundwater and soil contaminations. Because of their potential to cause cancer and chronic 

diseases, both compounds have received attention as notorious legacy chemicals at 

contaminated sites.
27, 28

  

To characterize on-site contamination, and to explore best remediation strategies, compound-

specific isotope analysis (CSIA) offers the possibility to distinguish chemically identical 

contamination sources by their isotope values, and to quantify transformation of chlorinated 

solvents by the observation of degradation-induced changes in these isotope ratios 
29, 30

. 

While the ability to derive both lines of evidence is limited if isotope ratios of only one 

element are measured, the possibilities of CSIA are magnified when analyzing isotopic 

information from several elements.
31-34

 Specifically, as shown for chlorinated ethylenes, 

analysis of carbon and chlorine isotopes makes it possible to create dual element isotope 

plots offering the opportunity to distinguish sources more confidently, to detect degradation 

and, importantly, to investigate different transformation mechanisms 
35-42

. For CCl4 and 

CHCl3 this perspective became achievable by the introduction of viable approaches for 

compound-specific chlorine isotope analysis of organic compounds 
43-45

. Traditionally, the 

analysis of chlorine isotopes does not only require dedicated instrumentation, but also time-

demanding offline preparation, such as analyte conversion to CH3Cl 
18, 46

. Subsequently, 

CH3Cl can be measured on a dual-inlet gas isotope ratio mass spectrometer (DI-IRMS). This 

so-called offline method for chlorine isotope analysis was established by Holt et al.
24

 

Another possibility is the conversion to cesium chloride for thermal ion mass spectrometry 

analysis 
47

, or the atomization of compounds in an inductively coupled plasma followed by 

multi-collector MS
48, 49

. A breakthrough for compound-specific chlorine isotope analysis by 

continuous flow (“online”) measurements without laborious offline preparation was 

accomplished by Shouakar Stash et al.
18

 and Sakaguchi-Soder et al. 
50

. Chlorine isotope 

analysis was performed on original target analyte molecules of tetrachloroethylene (PCE) 

and trichloroethylene (TCE) eluting from gas chromatographic separation. Measurements 

rely on molecular ions, or fragment ions, generated in the ion source of an IRMS
18

 or qMS
50

. 
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In 2010 Aeppli et al.
51

 obtained chlorine isotope ratios for PCE, PCP and DDT using this 

GC-qMS approach. To improve the qMS measurements of PCE and TCE Jin et al. 
52

 

optimized the method and compared different evaluation schemes. Palau et al. investigated 

for the first time 1,2-dichloroethane
37

 and 1,1,1-trichloroethane
53

. Chlorine isotope 

measurements for CHCl3 were reported, but not yet systematically validated by Breider and 

Hunkeler 
54

. Hitzfeld et al.
55

 and Renpenning et al.
56

 introduced yet an alternative and 

potentially improved strategy to measure chlorine, bromine and sulfide isotopes. In their 

studies, GC separation was followed by H2-induced high temperature conversion (HTC) to 

HCl, HBr or H2S, respectively and subsequent qMS
55

 or IRMS
56 

analysis. While this 

approach represents a universal strategy irrespective of target compound structure, memory 

effects and short reactor lifetimes are presently reported to limit HTC applications.
56

 

Consequently, analyses of unconverted target analytes by GC-IRMS 
18

 or GC-qMS 
50

 are the 

current methods of choice. They represent an emerging opportunity for field studies and 

mechanistic investigations that is far from being explored. Specifically, current applications 

are restricted for several reasons. On the one hand, parameters for GC-qMS and GC-IRMS 

analyses must be carefully validated for each new target compound
19

 and the choice of 

adequate analyte / fragment ions to achieve optimum performance (sensitivity, linearity) in 

isotope analysis is still an open question. 
52

 On the other hand, interlaboratory comparisons 

show that the use of two isotopically distinct isotopic reference materials of each target 

compound are necessary to ensure comparable results in different laboratories
19, 37, 57

. 

Comparisons between the performance of GC-qMS and GC-IRMS using the same reference 

materials are highly desirable, yet limited to few comparative studies
19, 37

. 

In this study we, therefore, optimized, and carefully evaluated, compound-specific chlorine 

isotope analysis for two new important target compounds - CHCl3 and CCl4 - by both, GC-

IRMS and GC-qMS, with a particular focus on the comparison of precision and trueness for 

both approaches. Also, we focused on the question whether rules of thumb can be derived to 

choose the best analyte / fragment ions for optimum performance (sensitivity, linearity) of 

isotope analysis. We evaluated the performance using reference material with independently 

determined isotope ratios, as well as with samples from degradation experiments to 

investigate if measured shifts in isotope ratios and enrichment factors are consistent among 

methods. In addition, GC-qMS methods were validated in an interlaboratory comparison 

between Munich and Neuchâtel. 
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2.3. Experimental section 

2.3.1. Chemicals 

All chemicals in this study were used as received: CHCl3 (Fluka), CCl4 (Panreac), sodium 

formate (HCOONa, Merck), cast iron (92% Gotthart Maier Metallpulver GmbH), dibasic 

anhydrous sodium phosphate (Na2HPO4, Panreac AppliChem), sodium hydroxide (NaOH, 

Baker), hydrochloric acid (HCl, 32 wt. %, Sigma-Aldrich). 

2.3.2. Abiotic Degradation of CCl4 with Sodium Formate 

 Ten microliters of CCl4 were dissolved in 35 mL of degassed ultrapure water by vigorous 

stirring for 24 hours in a 40 mL vial. The reaction was started inside an anoxic chamber with 

the addition of 1 g sodium formate. The vial was closed with a mininert valve (Supelco) and 

constantly stirred with a magnetic stir plate. Seven samples were taken over a time course of 

7 hours. For each time point 0.5 mL were removed from the reaction mixture, diluted in 7 

mL hydrogen peroxide solution (1%) and 1 mL subsamples were immediately taken from 

this solution to analyze concentrations and chlorine isotope values. One experimental 

replicate was performed with 2 g instead of 1 g sodium formate and was analyzed in the 

same way. 

2.3.3. Abiotic Degradation of CHCl3 with Cast Iron at pH 12 

 The cast iron was washed with 0.1 M HCl for an hour, rinsed and dried overnight to activate 

the surface
58

. The surface of the activated iron was determined by the BET (Brunauer-

Emmett-Teller) method as 1.624±0.007 m²g
-1

. Forty-two milliliter vials (20 reaction vials, 12 

blank vials) were wrapped in aluminum foil to inhibit photoreaction and 2 g of cast iron were 

added to each vial. Subsequently, a buffer solution of pH 12 was added until nearly no 

headspace was left. To start the reaction, pure CHCl3 was added to reach a concentration of 

100 mg/L. During the whole reaction vials were placed on a horizontal shaker (IKA KS 260 

BASIC, Stanfen, Germany). Samples were taken over 9 days and for each time point one 

vial was sacrificed. To stop the reaction, 0.2 µm filtration and subsequent neutralization by 
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acetic acid was done. Samples were frozen
59

 in 10 mL vials until analyses for concentrations, 

carbon and chlorine isotope ratios.  

2.3.4. Stable Carbon Isotope Analysis by GC-C-IRMS  

Carbon isotope analyses of CHCl3 were performed in the Centres Científics i Tecnològics at 

the Universitat de Barcelona (CCiTUB) according to the method described elsewhere 
60

 by 

using a Thermo Finnigan Trace GC Ultra instrument coupled via a GC-Isolink interface to a 

Delta V Advantage isotope ratio mass spectrometer (Thermo Scientific GmbH, Bremen, 

Germany). The GC was equipped with a Supelco SPB-624 column (60 m × 0.32 mm × 1.8 

μm, Bellefonte, PA, USA). The GC program started at 60 °C for 5 min, the GC was heated 

to 165 °C at a rate of 8 °C/min, then heated to 220 °C at 25 °C/min and finally held at 220 

°C for 1 min. A split ratio of 1:5 was used at an injector temperature of 250 °C. Helium (5.o) 

served as a carrier gas (2.2 mL min
-1

). The chlorinated methanes were extracted from 

aqueous samples by automated headspace solid-phase micro-extraction (HS-SPME) using a 

75 μm Carboxen-PDMS fiber (Supelco, Bellefonte, PA, USA) and a TriPlus
TM

 autosampler 

equipped with a SPME holder (Thermo Fisher Scientific, Waltham, USA). Samples were 

extracted at a constant agitation rate (600 rpm) for 20 minutes at 40°C. After extraction, the 

SPME fibers were desorbed at 250°C for 5 minutes in the GC injector. The analytical 

uncertainty (2σ) of carbon isotopic measurements never exceeded ±0.5‰. A pulse of CO2 as 

monitoring gas was introduced at the beginning and at the end of each run. For carbon, the 

monitoring gas had been calibrated beforehand so that values are stated relative to the 

international reference material Vienna Pee Dee Belemnite (VPDB) on the international per 

mille scale. Moreover, several CHCl3 aqueous control standards were prepared daily at the 

same concentration range than the samples from a pure in-house standard of known carbon 

isotopic composition (δ
13

C) and analyzed on the same days as the samples to ensure 

accuracy of the isotopic measurements and to correct slight carbon isotopic fractionation 

induced by the HS-SPME preconcentration technique 
61

. The δ
13

C of this pure CHCl3 

standard (-48.96 ± 0.04‰) was determined previously using a Flash EA1112 (Carlo-Erba, 

Milano, Italy) elemental analyzer (EA) coupled to a Delta C IRMS (Thermo Fisher 

Scientific, Bremen, Germany) through a Conflo III interface (Thermo Finnigan, Bremen, 

Germany) using six international reference materials (NBS 19, IAEA-CH-6, USGS40, 

IAEA-600, IAEA-CH-7, L-SVEC) with respect to the VPDB standard, according to Coplen 
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et al. 
62

. All the controls injected together with the present samples had an average CHCl3-

δ
13

C value of -50.0 ± 0.3‰ (n = 15). 

2.3.5. Stable Chlorine Isotope Analysis by GC-IRMS in Munich 

GC-IRMS analysis of CCl4 and CHCl3 was conducted by recording the masses m/z = 47 and 

49 (CCl fragment), which correspond to half of the masses for which the IRMS instrument is 

specifically configured (98: dichloroethene molecular ion; 94: double dechlorinated 

tetrachloroethene fragment ion). The GC-IRMS system (Thermo Scientific) consisted of a 

Trace GC that was connected via a transfer line to a MAT 253 IRMS equipped with a dual 

inlet system. The gas chromatograph was operated with He carrier gas (5.0) at 1.4 mL/min 

and contained a 30 m VOCOL column (Supelco) with 0.25 mm inner diameter and a film 

thickness of 1.5 μm. The GC program started at 60 °C for 2 min, followed by a temperature 

ramp of 8 °C/min to 165 °C and of 25 °C/min to 220 °C (held for 1 min). One milliliter gas 

phase was injected from 10 mL headspace vials that contained 1 mL of aqueous sample and 

that had previously been equilibrated for 5 min at 40 °C. Injection was performed in split 

mode (1:10 split ratio) at 220 °C through a split/splitless injector. No difference was 

observed in isotope values obtained with a split ratio of 1:10 compared to 1:20 (data not 

shown). 

To provide an anchor between individual measurements, pulses of a monitoring gas of CCl4 

and CHCl3 were introduced via the dual inlet system at the beginning and the end of each 

measurement. Monitoring gas was never adjusted to sample concentration, but instead the 

amount dependency (“linearity”) of isotope measurements was carefully investigated using 

external standards (see below). In addition, to convert delta values relative to the 

international reference Standard Mean Ocean Chloride (SMOC), a two-point calibration was 

performed with external standards of CCl4 and CHCl3. These external standards were placed 

into daily measurement sequences in the following way. At the beginning of a sequence, ten 

injections of the first standard and four injections of the second standard were performed 

with different headspace volumes. This resulted in a series of amplitudes that allowed 

evaluating the linearity of the method and, if necessary, performing an amplitude correction. 

After that, duplicate measurements of both standards were introduced after every ten sample 

injections to enable a drift correction accounting for slow outgassing of the CCl4 monitoring 
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gas from the reference bellow of the IRMS. The measurement sequence was, finally, 

concluded by quadruplicate measurements of both standards with the same concentration 

and headspace volumes. Values of the external standards (after amplitude and drift 

correction) were plotted against their values on the SMOC scale and sample measurements 

were evaluated using the intercept and the slope of this regression (again, after amplitude 

and drift correction). The chlorine isotope signatures (δ
37

Cl) of the external CCl4 standards 

were +1.98±0.1‰ (n=2) and -4.11±0.07‰ (n=2), as characterized in the University of 

Delaware (Newark, USA) and those of the external CHCl3 standards were -3.02±0.17‰ 

(n=17) and -5.4±0.3‰ (n=8), as characterized in Waterloo (Isotope Tracer Technologies 

Inc., Waterloo, Canada), in both cases by IRMS after conversion to CH3Cl
24

. 

2.3.6. Concentration and Stable Chlorine Isotope Measurements with GC-qMS 

GC-qMS measurements for analysis of CCl4 and CHCl3 concentrations and chlorine isotope 

values were performed in Munich (GC-qMS-1) and Neuchâtel (GC-qMS-2). A summary of 

instrument parameters in the GC-qMS-1 and GC-qMS-2 setups can be found in the 

Supporting Information of Chapter 2 (Table B1). The isotope data from both qMS were also 

corrected by a two-point calibration with the external standards mentioned above. For each 

run, four samples of both standards with the same concentration were measured at the 

beginning, two after every ten measurements and again four at the end to enable a drift 

correction. In contrast to GC-IRMS, an amplitude (“linearity”) correction was not necessary, 

because we did not observe an amount-dependency (for further discussion see the Results 

section below). The data acquisition frequency was chosen such that 15-25 data points are 

obtained across the chromatographic peaks (Agilent GC/MSD ChemStation and Instrument 

Operation – Course Number H4043A Volume I, page 100). This requires around 3 

measurement cycles/second corresponding to a total scan time for each cycle of around 

300ms. A suitable dwell time is then obtained by dividing this time interval by the number of 

ions (n) analyzed. Reasonable dwell times were calculated in milliseconds. 

dwell time =  
300

𝑛+1
          (1) 

In this study, the dwell time was varied around this typical value. 
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2.3.7. Evaluation of chlorine isotope data 

Instrument isotope values for chlorine and carbon measurements by IRMS were in a first 

step derived from the instrument’s software, where samples were evaluated relative to a 

monitoring gas in each run. For the calculation of chlorine isotope values equation 2 was 

used: 

𝛿37𝐶𝑙𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 =
( 𝐶𝑙/ 𝐶𝑙)3537

𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑−( 𝐶𝑙/ 𝐶𝑙)3537
𝑟𝑒𝑓

( 𝐶𝑙/ 𝐶𝑙)3537
𝑟𝑒𝑓

=
𝑅𝑡

𝑅𝑟𝑒𝑓
− 1       (2) 

where values are given in per mille For example, a value of 10 ‰ indicates that a substance 

contained 10 per mille (or one percent) more 
37

Cl/
35

Cl than the compound to which it was 

compared. An analogous equation applies with 
13

C/
12

C for carbon.  

For chlorine isotope measurements by GC-qMS-1, we tested settings with different numbers 

of ion pairs and different dwell times (i.e., 2, 4 and 6 ions and dwell times between 40 and 

100). The molecular ion peaks and fragment ion peaks of CCl4 and CHCl3 are shown in 

Figure 1. The masses 119/117, 84/82 and 49/47 were chosen for CCl4 and 120/118, 85/83 

and 49/47 for CHCl3. For the evaluation of selected-ion monitoring (SIM) measurements 

relying on only two ions we chose the peak intensities of the two most abundant fragment 

ions (m/z 83 and 85) for CHCl3 and (m/z 117, 119) for CCl4. These ioncouples correspond to 

the isotopologue pairs ([
35

Cl2
12

CH]
+
 and [

35
Cl

37
Cl

12
CH]

+
) and ([

35
Cl3

12
C]

+
 and 

[
35

Cl2
37

Cl
12

C]
+
), respectively

51
. The isotope ratio was obtained from the ratio of these 

isotopologues according to Eq. 3 and 4 
63

.   
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Figure 1. Mass spectra of the isotopologue ion peaks of CCl4 (in black) and CHCl3 (in red) in 

analysis by GC-qMS 

 

For the fragment ions m/z 83 and 85 of CHCl3 the equation applies 

𝑅 =
𝐶𝑙37

𝐶𝑙35 =
p37

p35 =  
𝑘

(𝑛−𝑘+1)
∙

𝐶𝑙(𝑘) 𝐶𝑙(𝑛−𝑘)
3537

𝐶𝑙(𝑘−1) 𝐶𝑙(𝑛−𝑘+1)
3537 =  

1

2
∙

𝐼85

𝐼83       (3) 

where 
37

p and 
35

p are the probabilities of encountering 
37

Cl and 
35

Cl, n is the number of Cl 

atoms in the fragment (here: 2), k is the number of 
37

Cl isotopes in the “heavy” isotopologue 

(here: 1),
 37

Cl(k)
35

Cl(n−k) and 
37

Cl(k−1)
35

Cl(n−k+1) represent the isotopologues containing k and 

(k−1) heavy isotopes (here: [
35

Cl
37

Cl
12

CH]
+
 and [

35
Cl2

12
CH]

+
), respectively, and I indicates 

the ion peak intensities. An analogous equation applies to the fragment ions m/z 117 and 119 

([
35

Cl2
37

Cl
12

C]
+
 and [

35
Cl3

12
C]

+
 of CCl4, respectively): 

𝑅 =
𝐶𝑙37

𝐶𝑙35 =
p37

p35 =  
𝑘

(𝑛−𝑘+1)
∙

𝐶𝑙(𝑘) 𝐶𝑙(𝑛−𝑘)
3537

𝐶𝑙(𝑘−1) 𝐶𝑙(𝑛−𝑘+1)
3537 =  

1

3
∙

𝐼119

𝐼117      (4) 

with n=3 and k=1. Values calculated this way were subjected to a calibration with the 

external standards as described above (measured values of standards were plotted against 

their values on the SMOC scale, sample measurements were subsequently evaluated using 

the intercept and the slope of this regression). Resultant values were reported in the δ-

notation in parts per thousand relative to the international Standard Mean Ocean Chloride 

(SMOC) standard. 
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In contrast, for evaluation of the 4 and 6 ion settings for CCl4 and CHCl3 the modified 

multiple ion method was used
52 

. Eq. 5 and 6 show the corresponding expressions for CHCl3 

4 ions:
 

𝑅𝐶𝐻𝐶𝑙3
= 𝑎 ∙ 𝑅𝐹1

𝐶𝐻𝐶𝑙3 + 𝑏 ∙ 𝑅𝐹2
𝐶𝐻𝐶𝑙3  

𝑎 =
𝐼85+𝐼83

(𝐼85+𝐼83)+(𝐼49+𝐼47)
   

𝑏 =
𝐼49+𝐼47

(𝐼85+𝐼83)+(𝐼49+𝐼47)
          (5) 

6 ions: 

𝑅𝐶𝐻𝐶𝑙3
= 𝑎 ∙ 𝑅𝑀

𝐶𝐻𝐶𝑙3 + 𝑏 ∙ 𝑅𝐹1
𝐶𝐻𝐶𝑙3 + 𝑐 ∙ 𝑅𝐹2

𝐶𝐻𝐶𝑙3  

𝑎 =
𝐼120+𝐼118

(𝐼120+𝐼118)+(𝐼85+𝐼83)+(𝐼49+𝐼47)
  

𝑏 =
𝐼85+𝐼83

(𝐼120+𝐼118)+(𝐼85+𝐼83)+(𝐼49+𝐼47)
  

𝑐 =
𝐼49+𝐼47

(𝐼120+𝐼118)+(𝐼85+𝐼83)+(𝐼49+𝐼47)
        (6) 

where RM is the isotope ratio of the molecular group, RF1 of fragment 85/83 and RF2 of the 

fragment 49/47 (Eq. 3). For a quantitative evaluation of degradation experiments, isotopic 

enrichment factors () were determined according to the Rayleigh equation 
21, 64

 

ln (
𝛿 𝐶𝑙+137

𝛿 𝐶𝑙37
0+1

) = 𝜀 ∙ 𝑙𝑛𝑓         (7) 

 

where δ
37

Cl0 is the chlorine isotope value at time zero, δ
37

Cl is the chlorine isotope value at 

time t and f is the residual fraction of the substrate (i.e. the concentration at time t divided 

through the concentration at time zero).  

The isotopic enrichment factor expresses the difference in reaction rates of molecules 

containing light and heavy isotopes, respectively, where a value of, e.g., -3.5‰ indicates that 

heavy isotopologues reacted by 3.5‰ more slowly than light isotopologues.  
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2.4. Results and Discussion 

2.4.1. Acquisition Parameters for GC-qMS Analysis 

 A crucial parameter for chlorine isotope measurements on a GC-qMS is the optimum 

configuration in SIM mode. On the one hand, instrument fluctuations and also “isotope 

swings” (i.e., changing isotope values over a chromatographic peak) are better accounted for 

when measurements jump quickly back and forth between masses. On the other hand, each 

mass is analyzed more precisely when recorded over a longer time. Finally, different masses 

can be selected to derive isotope values (see Figure 1). In a first step it was, therefore, our 

aim to find the optimal choice of ions and dwell times. As described in detail above, we 

evaluated the most abundant ions method (equation 3 and 4) plus dwell times of 100, 70 or 

50 ms, on the one hand, and the multiple ion method (equation 5 and 6) for 4 and 6 ions with 

dwell times of 60 ms and 40 ms, respectively, on the other hand. For each configuration 25 

identical aqueous samples with concentrations of 1-5 mg/L were measured and the resultant 

standard deviations were plotted in Figure 2A (after two-point calibration against the 

international standard SMOC to convert instrument readings into per mille units of the δ-

scale). This plot of precision versus instrument configuration showed that the recording of 2 

ions with a dwell time of 70 ms gave most precise results for both CCl4 and CHCl3, with a 

low standard deviation of around 0.35 per mille. Consequently, we used this setting for all 

subsequent evaluations in GC-qMS-1. In Neuchâtel (GC-qMS-2), the method already 

established for CHCl3 by Breider and Hunkeler
27

, using the two most abundant ions and 50 

ms as dwell time, was followed. 
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Figure 2. (A) Standard deviation (n=25) of δ
37

Cl of CCl4 and CHCl3 with different ion pair/dwell 

time settings measured on GC-qMS-1. Delta values (in per mille) are calibrated against SMOC (B) 

δ
37

ClCCl4 measurements with dwell times of 70 ms and 2 ions in per mil and calibrated against 

SMOC, indicating a small drift over time for CCl4 in GC-qMS-1. 

 

Figure 2B gives an example of CCl4 standard measurements over time (60 measurements in 

a range of 1 to 25 mg/L) showing a small drift, which occurs with increasing measurement 

number. We observed such a shift in nearly all measurements and a corresponding drift 

correction was applied, both in GC-qMS-1 as well as in GC-IRMS measurements. To this 

end, a linear regression similar to Figure 2B was performed from external standards analyzed 

along the sequence. Subsequently, the regression parameters were used to correct isotope 

values of samples. 

2.4.2. Amount Dependency (“Linearity”) of Chlorine Isotope Analysis of CCl4 by GC-

qMS and GC-IRMS 

To determine the precision of CCl4 measurements on the GC-IRMS instrument, we analyzed 

70 standards in a range of 0.03 to 2.6 mg/L. Even at the lowest amplitude (100 mV) CCl4 

measurements had a standard deviation of only ±0.6‰ (n=10) and at signals greater than 1 V 

a very small standard deviation of ±0.1‰ (n=60) was accomplished (Figure 3A). No amount 

dependency of the trueness (i.e., the target value) was detected, which is consistent with 

results obtained previously with chlorinated ethylenes on the GC-IRMS system
65

. Figure 3B 

shows the precision of CCl4 measurements by GC-qMS. 
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Figure 3. (A) Precision of chlorine isotope measurements vs. signal amplitude of CCl4 measured by 

GC-IRMS (70 data points). (B) Precision of chlorine isotope measurements of CCl4 on GC-qMS-1 

and GC-qMS-2 in dependence on signal intensity, where δ
37

ClCCl4 (calibrated to SMOC scale) of the 

two most abundant ions are plotted against area (from 119 + 117 ions; qMS-1 - 58 data points; GC-

qMS -2- 50 data points) (C) Comparison of the precision of chlorine isotope analysis by GC-IRMS 

vs.GC- qMS-1 and GC-qMS-2 in dependence on the mass of analyte (CCl4) on column.   

 

For signals of small areas below 10 million TIC (Total Ion Count), chlorine isotope values of 

GC-qMS-1 measurements showed a rather low precision (±3‰). Above an area of 30 

million, in contrast, standard deviations of ±0.6 to 0.4‰ (n=13) were obtained, which 

represent an excellent precision for a GC-qMS
65

. In support of these data, an inter-laboratory 

comparison using the same type of GC-qMS gave identical results in Neuchâtel for the GC-

qMS-2 (Figure 3B). Therefore, even though standard deviations (i.e., the precision) were 

clearly affected by the injected amount, the target value (i.e., the trueness) appeared to be 

hardly amount-dependent in both laboratories. This is in remarkable contrast to previous 
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TCE measurements with GC-qMS
65

, where the concentrations of external standards had to 

be adjusted to sample concentrations
 
for accurate chlorine isotope analysis by GC-qMS. To 

compare the precision of GC-IRMS and GC-qMS, the same standard and concentration 

range (on-column amounts) was measured on the three instruments (Figure 3C). Here, the x 

axis displays the amount of analyte that, after accounting for the split flow in the injector, 

reaches the chromatographic column and is measured at the ion source. This amount is also 

reflected in the signal amplitudes of Figures 3A and 3B.  

2.4.3. Amount Dependency (“Linearity”) of Chlorine Isotope Analysis of CHCl3 by GC-

IRMS 

Chlorine isotope measurements of CHCl3 by GC-IRMS were conducted identically, meaning 

that, like for CCl4, also the fragment masses 49 and 47 were recorded on the GC-IRMS 

(corresponding to [
12

C
37

Cl]
+
 and [

12
C

35
Cl]

+
 in both cases). Figure 4A shows that – in contrast 

to CCl4 – for CHCl3 a strong amount-dependency of isotope values was observed, which 

could be taken into account by an amplitude correction. We attribute this observation to the 

fact that, besides the fragment [
12

C
37

Cl]
+
, also the fragment [

13
C

1
H

35
Cl]

+
 fell on the detector 

cup that analyzed the mass 49 (Figure 4B). Therefore, as the number of ions increased, also 

the probability of collisions increased so that more H atoms were stripped from the 

[
13

C
1
H

35
Cl]

+
 fragment and were transferred to other ions (which were not analyzed) and 

therefore the interference by [
13

C
1
H

35
Cl]

+
 decreased. The phenomenon is well-known from 

H-measurements where hydrogen atoms are transferred to H2 molecules creating ions of the 

mass H3
+
 that are detected together with [

2
H

1
H]

+
. In both cases the probability of H transfer 

increases with the amount of analyte molecules in the ion source. However, while in the case 

of hydrogen, more collisions create more H3
+
 ions and, hence, increase the interference, in 

the case of CHCl3 more collisions decreased the number of [
13

C
1
H

35
Cl]

+
 ions so that the 

interference became smaller. For hydrogen isotope measurements, the problem is 

circumvented by a linear correction of the amount-dependency, i.e., determination of a 

(positive) H3-factor. Following an analogous strategy, we introduced an amplitude correction 

with a negative factor to take into account the amount-dependency of the interference by 

[
13

C
1
H

35
Cl]

+
. This amplitude correction did not require additional analytical effort because 

external standards needed to be measured anyways and an injection of different amount of 
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headspace from the same standard was sufficient to calibrate for the amount-dependency 

according to Figure 4A (see Experimental Part above). 

Our hypothesis of this “crossover interference” (where ions containing a light isotope (
35

Cl) 

contributed to the mass of a heavy isotope (
37

Cl)) is confirmed by analysis of the fragment 

masses 50 and 48 of CHCl3, which did not show a mass dependency between 2000 to 12000 

mV. Figure 4B illustrates the underlying reason: unlike in the case of mass 49 and 47, there 

is no possibility for ions containing 
35

Cl to contribute to the mass recorded for ions 

containing heavy isotopes, 
37

Cl
12

CH (note that 
2
H is of too low abundance for 

35
Cl

13
C

2
H to 

make a difference). Since in the case of chloroform, the sensitivity of measurements of the 

masses 50 and 48 was 2.5 times lower and standard deviation was worse compared to masses 

49 and 47 we nevertheless decided against measurements of the masses 50 and 48 and rather 

performed an amplitude correction on the masses 49 and 47. Figure 5B illustrates the 

resulting linearity demonstrating that – after correction - excellent accuracy could be 

obtained. 
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Figure 4. (A) Chlorine isotope values of CHCl3 in dependence on increasing amplitudes on the GC-

IRMS (Fragments 49/47 – 60 data points; Fragments 50/48 – 30 data points). (B) “Crossover 

interference” where ions containing a light isotope (
35

Cl or 
 1

H) contribute to the mass of a heavy 

isotope (
37

Cl or 
2
H). This interference is dependent on intermolecular proton transfer in the ion source 

of the GC-IRMS and, hence, amount-dependent. Such interference is possible for the masses m/z = 3 

(
1
H3

+
 vs. 

1
H

2
H, left) and m/z = 49 (

37
Cl

12
C vs. 

35
Cl

13
C

1
H, center), but not for mass 50 (right).  

2.4.4. Amount Dependency (“Linearity”) of Chlorine Isotope Analysis of CHCl3 by GC-

qMS. 

To accomplish a similar method comparison of GC-IRMS and GC-qMS as for CCl4, CHCl3 

standards were measured again by both GC-qMS instruments in Munich and Neuchâtel 

(Figure 5A). As in the case of CCl4, standard deviations were amount-dependent ranging 

from ±1.0‰ (low concentrations of 0.24-0.36 mg/L, n=20) to ±0.4‰ (higher concentrations 

of 1.2-2.4 mg/L, n=15). On the one hand, the low standard deviations for GC-qMS are 

remarkable. On the other hand, however, Figure 5B illustrates that GC-IRMS still showed 

better precision, especially when on-column amounts of samples became smaller.  
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In contrast to the amount-dependency of precision, no amount-dependency was observed for 

the trueness of chlorine isotope values of CCl4 and CHCl3 on both GC-qMS (Figure 3B and 

5A). This can partly be explained by the fact that masses of fragment ions of the type 

CHClx
+
 were analyzed, where “crossover interferences” as in Figure 4B can be avoided. 

However, amount dependencies of mean values did occur on some instruments in previous 

analysis of TCE
19

 despite the fact that also there, only the fragments with hydrogen atoms 

were measured (e.g TCE mass 97/95 “C2HCl2
+
”) and not those without (e.g TCE mass 96/94 

“C2Cl2
+
”). It is important to understand the reasons for this poor linearity, but since 

“crossover interferences” are not a possible explanation, Figure 5C explores an additional 

factor.  

Expected isotope fractionation trends in Figure 5C predict that the isotope ratios of 

molecular and fragment ions should be more stable if the respective ion pair is the 

predominant one in a given mass spectrum: i.e., to the very left of the reactant (molecular 

ion) curve, or to the very right of the product (fragment ion) curve. The reason is that these 

are the locations where the slope of the isotope fractionation graph is shallowest (i.e., least 

sensitive to changes in the extent of fragmentation). Indeed, we found that the relative peak 

intensities in mass spectra differed significantly between chlorinated methanes and TCE 

(Figure 5C). Measuring all three compounds with the same ion source settings showed for 

each chlorinated methane mainly one fragment, but three fragments of similar intensity for 

TCE. Hence, the “lesson learned” from this observation is that instruments should be tuned 

for either soft ion source settings which preserve mainly the original molecule or for strong 

ion source fragmentation which ideally leads to one predominant fragment.  
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Figure 5. (A) Interlaboratory comparison of CHCl3 measurements on GC-qMS-1 and GC-qMS-2, 

where the δ
37

ClCHCl3 (calibrated to SMOC scale) of the two most abundant ions are plotted against 

area (from 83 + 85 ions) readings (GC-qMS-1 51 data points; GC-qMS-2 - 32 data points). (B) 

Comparison of the precision of chlorine isotope analysis by GC-IRMS (after amplitude correction) 

vs. both GC-qMS in dependence on the mass of analyte (CHCl3) on column (IRMS -60 data points). 

(C) Expected isotope fractionation trends of molecular and product ions (see, e.g., ref. 
66

) predict that 

isotope values are not amount dependent if one kind of ion predominates (either parent or product). 

Mass spectra of CHCl3 and CCl4 illustrate that, indeed, CCl4 gives almost exclusively rise to the 

fragment of mass m/z = 117/119/121 and CHCl3 almost exclusively to that of m/z = 83/85. This 

contrasts with ionization of TCE, where several fragments of similar intensity are formed under 

identical tune settings.  

2.4.5. Trueness of Chlorine Isotope Analysis of CCl4 and CHCl3 by GC-qMS and GC-

IRMS 

 While Figures 3, 4 and 5 illustrate the methods’ performances in terms of precision, the 

trueness requirements of both methods can only be tested with samples that include a range 
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of isotope values. Therefore, for each substance one degradation experiment was conducted. 

CCl4 was reduced with sodium formate and CHCl3 with zero-valent iron. Both reactions 

gave rise to pronounced chlorine isotope fractionation, which is a necessary precondition for 

reliable investigations of trueness over a representative range of  values. Figure 6A shows 

changes in isotope values during the degradation of CCl4 with sodium formate determined 

by GC-qMS-1. The Figure illustrates the importance of a two-point standard calibration. On 

the one hand, without an external standard that projects instrument values on the 

international SMOC scale, the start isotope value would be wrong by 5‰ precluding 

comparisons between laboratories. On the other hand, however, the data show that a two-

point calibration is important to quantify changes in isotope values relative to this starting 

value, as demonstrated by a difference of 0.5‰ in the enrichment factor Cl (Figure 6A). The 

underlying reason for this is illustrated in Figure 6B which shows isotope data obtained from 

degradation experiments for CCl4 and CHCl3. In this Figure, uncorrected “instrument” 

chlorine isotope values determined by GC-qMS are plotted against corrected ones by a two-

point calibration relative to SMOC. The deviation of the slopes from unity and the 

differences between compounds and laboratories strongly emphasize the need of calibration 

by two characterized compound-specific isotope standards for chlorine isotope 

measurements. The effect is particularly pronounced for CHCl3, where the isotope values 

would be strongly overestimated without a standard correction (m(Munich) = 1.6 and 

m(Neuchâtel) = 1.9). These slopes show even small variations between measurement days 

(or sequence number, Figure 6C) over a period of half a year for CCl4 and two years for 

CHCl3. For CCl4 the average slopes were 0.91±0.03 in Munich and 1.06±0.02 in Neuchâtel, 

whereas for CHCl3 average slopes were 1.6±0.2 and 1.8±0.2, respectively. With a two-point 

calibration, in turn, reliable results were obtained by GC-qMS for CCl4, as evidenced by the 

strong agreement of GC-qMS-1 versus GC-IRMS results shown in Figure 7A, indicating that 

excellent trueness can be achieved by both methods. Good agreement was also accomplished 

for CHCl3 degradation with iron, as shown in Figure 7 where results of chlorine isotope 

measured on both instruments were combined with carbon isotope values analyzed by GC-

C-IRMS in a dual element isotope plot. Very good agreement of linear regressions 

performed on GC-qMS vs. GC-IRMS – both regarding the slope and 95% confidence 

intervals – confirms that both methods are able to deliver precise and true results.       
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Figure 6. (A) CCl4 degradation with sodium formate measured at the GC-qMS-1. (Four 

measurements were conducted for each data point.) Calibration of isotope values by external 

standards is not only necessary to fix the start chlorine isotope value to the SMOC scale, but also to 

obtain true enrichment factors. (B) Comparison of chlorine isotope values of CHCl3, and CCl4 from 

degradation experiments determined with and without correction in two different sequences from 

GC-qMS-2 and GC-qMS-1. (C) Plot of slope vs sequence number for CCl4 and CHCl3 from Munich 

and Neuchâtel shows small variations for different measurement days over long periods. 
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Figure 7. (A) Comparison of δ
37

ClCCl4 results against remaining fraction in sodium formate 

experiments from GC-IRMS and GC-qMS-1 after two-point calibration. (Four measurements were 

conducted for each data point) (B) Dual element isotope plot of CHCl3 degradation with metallic iron 

at pH 12 and comparison of regressions from GC-qMS-1 and GC-IRMS chlorine isotope 

measurements. (Four measurements were conducted for each data point).   

  

2.5. Conclusion 

With its enabling role for dual element isotope studies, compound-specific chlorine isotope 

analysis can greatly increase the identification of groundwater contamination sources and the 

elucidation of pollutant transformation pathways, and the dual element approach may be a 

game changer in the assessment of contaminated sites. However, chlorine CSIA has been 

validated for only a handful of compounds, and systematic method comparisons have been 

rare. This study contributes to closing this gap by validating, on the one hand, the method for 

CHCl3 and CCl4 as important environmental contaminants. On a more fundamental (and 

general) level, it highlights factors that may lead to strong amount dependence (poor 

linearity) of chlorine isotope values: (i) protonation of ions containing 
13

C and 
35

Cl that may 

contribute to the mass off 
37

Cl ions; and (ii) deviation from “ideal” fragmentation conditions 

where multiple fragment ions rather than one predominant ion are formed. This insight will 

be valuable to guide future method developments also for other target compounds. On the 

other hand, our study systematically addresses the question of trueness: whether accurate 

results are obtained by different methods (GC-qMS vs. GC-IRMS) in different laboratories. 

Our results show indeed that measurements of CHCl3 and CCl4 on a GC-qMS are a very 
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promising alternative if no GC-IRMS is available. Especially at higher concentrations (1.2-

2.4 mg/L) isotope measurements with a low standard deviation and a high trueness can be 

obtained (Δδ
37

Cl = 0.2-0.6‰). In turn, the possibility to measure chlorine isotope values of 

CHCl3 and CCl4 on a GC-IRMS can provide the extra precision that may be critical to 

distinguish different sources of groundwater contaminations, and to detect the onset of 

degradation in field samples. Finally, our results stress the importance of a two-point 

calibration with compound-specific chlorine isotope standards bracketing a range of different 

chlorine isotope values. For true results, the need must, therefore, be addressed for standards 

with large differences in chlorine isotope values. 
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3.1. ABSTRACT  

Chlorinated ethenes (CEs) such as perchloroethylene, trichloroethylene and dichloroethylene 

are notorious groundwater contaminants. Although reductive dehalogenation is key to their 

environmental and engineered degradation, underlying reaction mechanisms remain elusive. 

Outer-sphere reductive single 

electron transfer (OS-SET) has 

been proposed for such different 

processes as Vitamin B12-

dependent biodegradation and 

zero-valent metal-mediated 

dehalogenation. Compound-

specific isotope effect (
13

C/
12

C, 

37
Cl/

35
Cl) analysis offers a new 

opportunity to test these 

hypotheses. Defined OS-SET 

model reactants (CO2 radical 

anions, S
2-

-doped graphene oxide in water) caused strong carbon (C = -7.9‰ to -11.9‰), 

but negligible chlorine isotope effects (Cl = -0.12‰ to 0.04‰) in CEs. Greater chlorine 

isotope effects were observed in CHCl3 (C = -7.7‰, Cl =-2.6‰), and in CEs when the 

exergonicity of C-Cl bond cleavage was reduced in an organic solvent (reaction with arene 

radical anions in glyme). Together, this points to dissociative OS-SET (SET to a σ* orbital 

concerted with C-Cl breakage) in alkanes compared to stepwise OS-SET (SET to a π* orbital 

followed by C-Cl cleavage) in ethenes. The non-existent chlorine isotope effects of 

chlorinated ethenes in all aqueous OS-SET experiments contrast strongly with pronounced 

Cl isotope fractionation in all natural and engineered reductive dehalogenations reported to 

date suggesting that OS-SET is an exception rather than the rule in environmental 

transformations of chlorinated ethenes.  
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3.2. Introduction  

Groundwater contamination by chlorinated ethenes is a prominent environmental problem of 

our time. Left by a legacy of improper handling and disposal, these compounds are among 

the most commonly found groundwater contaminants
67

.  While they are resistant to 

degradation, they are susceptible to reductive dehalogenation under reducing conditions 
68

. 

Most groundwater remediation schemes therefore aim at removing these contaminants under 

anoxic conditions, either through enhanced natural biodegradation
69

, or by installing trenches 

of reactive granular metal, in particular zero-valent iron
70, 71

. These reactions, unfortunately, 

do not always lead to complete dehalogenation/detoxification. Biotransformation 

sequentially replaces the chlorine substituents by hydrogen atoms (hydrogenolysis) so that 

perchloroethylene (PCE) and trichloroethene (TCE) are converted to more problematic cis-

dichloroethene (cis-DCE) and vinyl chloride (VC) before non-toxic ethene is formed.
8
 

Dehalogenation with zero-valent metal also shows release of problematic daughter 

compounds, but involves a parallel vicinal-dichloro elimination pathway where two chlorine 

substituents are removed, offering a more direct avenue to benign end products.
14

 The 

underlying reasons for these different reaction pathways have eluded researchers for years.
72

 

Electrons must clearly be transferred in some form since less halogenated, more reduced 

daughter compounds are formed. The nature of this electron transfer (ET), however, has 

been subject of debate. Following a convention from transition metal chemistry 
73

, inner-

sphere-electron transfer (IS-SET) is conceptualized to occur if electrons are transferred 

between chemically associated electron donors and electron acceptors (i.e., the CE). 
74

 By 

contrast, outer-sphere-electron transfer (OS-SET) takes place if the donor and acceptor are 

not associated through a chemical bond during ET. 
75

 In OS-SET, electrons are transferred 

over some distance, usually from the highest occupied molecular orbital (HOMO) of the 

electron donor (or a conduction band of an electron-donating metal) into the lowest 

unoccupied molecular orbital (LUMO) of the electron acceptor (the CE). These concepts of 

non-adiabatic outer-sphere SET and adiabatic inner-sphere SET have been treated in 

comprehensive textbooks
76

 and reviews 
77

, but are intrinsically difficult to pinpoint in 

environmental transformations. 

To elucidate the underlying mechanism of biotransformation, numerous studies have focused 

on cob(I)alamin (Vitamin B12)
78

, the co-factor present in almost all reductive dehalogenases 
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identified to date 
16

. Inner-sphere reaction has been proposed in the form of nucleophilic 

addition or nucleophilic substitution reactions by cob(I)alamin with the chlorinated ethene
78

. 

By contrast, single electron transfer (either inner or outer-sphere) was proposed based on the 

detection of trichlorovinyl radicals in reaction of TCE with Vitamin B12 
79-81

. Both 

hypotheses are supported by recent insight from crystal structures of the first heterologously 

expressed dehalogenases 
82-84

. Studies either favor outer-sphere SET, both for the reductive 

dehalogenase VcrA from Dehalococcoides mccartyi Strain VS 
82

 and the reductive 

dehalogenase PceA from Sulfurospirillum multivorans (based on a distance of 5.8 Ǻ between 

Co(II) and TCE) 
84

. Alternatively, an inner-sphere mechanism by attack of Co at the halogen 

atom is proposed based on the detection of direct Co-Br interactions in the reductive 

dehalogenase NpRdhA of Nitratireductor pacificus.
83

  

Competing mechanistic hypotheses have also been proposed for CE transformation by zero-

valent metals. Besides “indirect” reactions with by-products of iron corrosion such as 

activated hydrogen or Fe(II), direct electron transfer at the metal surface (or from a 

conducting metal oxide layer) is commonly invoked. 
70, 85, 86

 Inner-sphere ET in the form of 

complexes at the metal surface was proposed based on reactivity trends 
14

 and computational 

calculations 
87, 88

, whereas (OS)-SET transfer has been invoked based on the consideration 

that metals likely transfer electrons one at a time and that metals in aqueous solution are 

covered by a passive oxide layer 
70, 89

. OS-SET would also be consistent with the observation 

that most CE dehalogenation rates correlate with redox potentials derived from LUMOs and 

one-electron reduction potentials (linear free energy relationships, LFERs)
90

. However, such 

LFERs may arise owing to different mechanisms
91

 so that they cannot uniquely answer the 

questions of underlying reaction chemistry: which bonds are broken in the chlorinated 

ethenes, in what order are they broken, and by attack of what reaction partner? Therefore, 

even though recent research has explored LFERs (or quantitative structure activity 

relationships, QSARs) as pragmatic approaches to forecast transformation rates in the 

environment (
92

 and refs cited therein), a fundamental understanding of underlying chemical 

reaction mechanisms – the knowledge that is crucial to tailor the transformation chemistry of 

remediation schemes – has so far eluded researchers.  

Multiple element (
37

Cl/
35

Cl, 
13

C/
12

C) isotope effect measurements are currently emerging as 

a potential approach to close this gap
35, 38, 42, 93, 94

. Analytical advances
18, 19

 have made it 

possible to measure compound-specific isotope ratios of single chlorinated ethene 
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compounds (e.g., PCE, TCE) at their natural isotopic abundance in chemical model reactions 

and natural samples. At natural abundance, such isotope ratios 
13

C/
12

C and 
37

Cl/
35

Cl are 

expressed as difference relative to an international reference material: 

dardS

dardSSample

CC

CCCC
C

tan

1213

tan

12131213

13

/

)//( 


        (1) 

dardS

dardSSample

ClCl

ClClClCl
Cl

tan

3537

tan

35373537

37

/

)//( 


       (2) 

initialCCC 131313            (3) 

initialClClCl 373737            (4) 

where 
13

C/
12

CSample and 
13

C/
12

CStandard are the isotope ratios of sample and international 

reference standard, whereas δ13
Cinital and δ13

C and are isotope values at the beginning of a 

transformation and a given time point, respectively. To determine isotope effects, these 

values are subsequently evaluated according to the Rayleigh equation
21

, which corresponds 

to analogous equations from chemistry 
95,96

 for the case that isotope ratios are measured at 

natural abundance
22

  

 fCC Cinitial ln1313             (5) 

Here f is the residual fraction of the substrate in a closed system (i.e. the concentration at 

time point t divided through the concentration at time point zero). The resultant isotopic 

enrichment factor C is the equivalent of a compound-specific kinetic isotope effect: it 

expresses the difference in reaction rates of molecules containing light and heavy isotopes, 

respectively. For example, a value of -9‰ indicates that heavy isotopologues (with the label 

randomly distributed across the molecule) reacted 9‰ (0.9%) more slowly than light 

isotopologues. This corresponds to a compound-specific kinetic isotope effect of 
12

k/
13

k = 

1.009. Equivalent expressions are valid for the evaluation of chlorine isotope effects.
63

 

Similar to classical position-specific isotope effect studies from (bio)chemistry 
96, 97

, 

compound-specific isotope effects reflect underlying transition states and, therefore, 

represent an yes yet underexplored sensitive tool for distinguishing different reaction 

mechanisms. Mechanistic distinction is easiest when isotope values of two elements are 
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plotted against each other, because the slope (here:  = 
13

C/
37

Cl ≈ C/Cl ≈ (1-

12
k/

13
k)/(1-

35
k/

37
k)) represents the compound-specific isotope effects of the two elements 

relative to each other 
98, 99

.  In recent years, an increasing number of studies have reported 

compound-specific isotope effects C, Cl and  ≈ C/Cl of chlorinated ethenes in 

biodegradation 
35, 38, 42, 100-103

, dehalogenation by Vitamin B12 
35, 36

, and transformation by 

zero-valent iron 
13, 94

. This data, however has offered only limited mechanistic insight until 

today because it did not include isotope effect reference data for defined OS-SET reactions. 

To close this knowledge gap, we conducted outer-sphere SET reactions in water and in an 

organic solvent, and measured associated changes in carbon, chlorine and hydrogen isotope 

values of chlorinated ethenes. To facilitate OS-SET in water, we employed two systems: 

CO2 radical anions
104

 and graphene oxide that had been doped with electrons from a sodium 

sulfide solution
105

. CO2 radical anions transfer an electron to form stable CO2, whereas 

graphene oxide shuttles electrons and protons from the donors (sulfide and water) to the 

acceptor (the chlorinated ethene)
106-108

. In the organic solvent, dimethoxyethane (glyme), 

OS-SET was modeled with radical anions of naphthalene and pyrene, which readily transfer 

an electron to regain their aromaticity
109

. All reagents have in common that they are not 

conducive to direct (inner-sphere) bond interactions and are, therefore, regarded as outer-

sphere single electron transfer agents.
109

 To probe for differences in OS-SET between 

chlorinated alkenes and alkanes, an additional experiment investigated the reaction of CO2 

radical anions with chloroform. Finally, to test the hypothesis that OS-SET is a common 

mechanism in different environmental dehalogenation reactions, we compared our results to 

reported values for multi-element isotope fractionation of chlorinated ethenes from 

dehalogenation by vitamin B12, by dehalogenating bacteria, and by iron metal. To measure 

for the first time hydrogen isotope fractionation in TCE by reaction with iron metal, also a 

complementary experiment with nanoscale zero valent iron (nZVI) was conducted.  
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3.3. Materials & Methods 

3.3.1. Chemicals  

A list of all chemicals is provided in the supporting information of chapter 3.  

3.3.2. Reactions in Water 

3.3.2.1. Reactions with CO2 Radical Anions 

To prepare reactions of CO2 radical anions with PCE, TCE, cis-DCE and CHCl3, 40 mL 

vials were filled with 38 mL of deoxygenized water containing the respective chlorinated 

target compound (10 µL, corresponding to between 0.09 mmol to 0.13 mmol) together with 

sodium formate (1.2 g,17.5 mmol). Vials were kept closed and anoxic, were stirred (300 

rpm) and heated to 80°C. To start the reaction, one milliliter of sodium persulfate dissolved 

in deoxygenized water (70 mg; 0.29 mmol) was injected to trigger formation of CO2 radical 

anions according to: 

         (6) 

     (7) 

 

 At selected time points, samples of the reaction solution (0.3 mL) were taken and injected 

into an 8 mL-vial containing a H2O2 solution (7 mL, 0.5 %) so that CO2 radical anions were 

quenched and the reaction was stopped. From these 8 mL-vials, samples were withdrawn for 

analysis of substrate concentrations, as well as for carbon, chlorine and hydrogen isotope 

analysis. Concentrations were measured immediately after quenching and 24 hours later to 

ensure that there was indeed no further reaction of the chlorinated target compounds after 

quenching (e.g., with remaining CO2 radical anions or through reaction with hydroxyl 

radicals formed according to  

     (8) 
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Furthermore, a control was run with PCE and sodium persulfate, but without sodium formate 

to exclude that isotope values were influenced by a parallel reaction of PCE with sodium 

persulfate. (data shown in Supporting Information). Three identical replicates were 

conducted for each experiment. 

 

3.3.2.2. Reactions with Graphene Oxide in the Presence of Sodium Sulfide 

 Reactions were conducted in 40 mL-vials containing solid sodium sulfide (2.4 g, 30.7 

mmol) and a graphene oxide solution (0.4 mL, 2000 mg/L). To start the reaction, 38 mL of a 

PCE stock solution (2.3 mM, 0.09 mmol) containing TRIS (Tris(hydroxymethyl)-

aminomethane) (500 mg, 4.1 mmol) at pH 7, was injected. The reaction was conducted on a 

stir plate at 25°C in an anoxic chamber with an atmosphere of 97% N2 and 3% H2. Over 60 

days, fourteen samples of 0.5 mL were taken and injected into 8 mL-vials containing a H2O2 

solution (7 mL, 0.5%) to stop the reaction. From these 8 mL-vials samples were withdrawn 

for subsequent analysis of substrate concentrations, as well as for carbon, chlorine and 

hydrogen isotope analysis. To complement the experiment at pH 7, a reaction of PCE (1.2 

mM) was performed in exactly the same way at pH 2 with the exception that no TRIS buffer 

was used and that 6 samples were taken over 8 days.  

3.3.3. Reactions in an Organic Solvent  

3.3.3.1. Reactions with Radical Anions of Naphthalene and Pyrene 

 For a detailed description see the Supporting Information. All modifications were conducted 

in an anoxic glovebox. Radical anion solutions were prepared from solutions of naphthalene 

or pyrene through reaction with sodium metal in glyme. Solutions were filtered and added to 

stock solutions of PCE and TCE at six different concentrations so different degrees of CE 

degradation were achieved. To enable headspace analysis of the chlorinated target 

compounds, aliquots of the completed reaction mixtures were subsequently added to 

deionized water from where chlorinated analytes could partition into the headspace. 
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Headspace samples were withdrawn for subsequent analysis of substrate concentrations, as 

well as for carbon and chlorine isotope analysis.  

3.3.4. Analytical Methods 

A detailed description of concentration analysis as well as isotope measurements (carbon and 

chlorine) is provided in the supporting information. Briefly, concentrations were measured 

by gas chromatography-mass spectrometry (GC-MS) and isotope values by gas 

chromatography – isotope ratio mass spectrometry (GC-IRMS). For 
13

C/
12

C analysis 

separated analyte peaks were online combusted to CO2
110

 whereas 
37

Cl/
35

Cl analysis was 

conducted on intact CE isotopologue molecules
18, 19

.  
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3.4. Results and Discussion 

3.4.1. Aqueous Reductive OS-SET Reagents Induced Chlorine Isotope Effects in 

Chloroform, but not in Chlorinated Ethenes 

CO2 radical anions were generated in situ by oxidation of sodium formate by sulfate radicals 

according to Eq. 7 Consistent with their low reduction potential (CO2/CO2
.-
: -1.9 V)

111
 they 

induced rapid transformation of chlorinated ethenes and CHCl3, corresponding to a total 

duration of experiments of between 13 min and 60 min for the CEs and 30 min  for CHCl3 

(see Supporting Information).  Despite similarly rapid kinetics, isotope effects showed 

pronounced differences between CEs and CHCl3, as illustrated in Figure 1a-c. While carbon 

isotope effects could be observed in both substances, as expressed by the carbon isotope 

enrichment factors of -11.9‰ +/- 1.0‰ for TCE (11.9‰) and -17.7‰ +/- 0.8‰ for CHCl3 

(Figure 1a), chlorine isotope effects were only observed for CHCl3 (-2.6‰ +/- 0.2‰) and 

not for TCE (0.04‰ +/- 0.03‰) (Figure 1b). This disparity is visually represented in the 

dual-element isotope plot of TCE and CHCl3 of Figure 1c. Since isotope effects in CHCl3 are 

expressed for both elements, they result in a finite slope for CHCl3 of  = 
13

C/
37

Cl = 6.7 

± 0.4 ≈ C/Cl. By contrast, due to the absence of chlorine isotope effects in TCE, the dual-

element isotope slope of TCE was close to infinity. The same trend was observed not only 

for TCE, but also for PCE and cis-DCE (Figure 1c, Table 1). To further confirm the absence 

of chlorine isotope effects in the reaction of CEs by OS-SET reagents in water, a second 

experiment was conducted with PCE, graphene oxide and sodium sulfide in aqueous solution 

at pH 7 and pH 2. TCE was formed as main product clearly demonstrating the occurrence of 

reductive dehalogenation. Even though transformation of PCE by doped graphene oxide was 

much slower than with CO2 radical anions (duration over two months), the isotope effect 

results were consistent: Figure 1d shows the occurrence of carbon isotope effects, but no 

change in chlorine isotope values (Figure C3 and C4 Appendix). Taken together, these 

results are consistent with OS-SET to the chlorinated alkane CHCl3 that is concerted with C-

Cl bond cleavage so that a chlorine isotope effect could be observed. In contrast, OS-SET to 

the chlorinated ethenes is consistent with a stepwise – or at least asynchronous – process that 

involved C-Cl bond cleavage only after the rate-determining step so that chlorine isotope 

effects were not observable.  
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Figure 1. Model reagents for OS-SET in water caused chlorine isotope effects in chloroform, 

but not in chlorinated ethenes. Isotopic enrichment factors of carbon (a) and chlorine (b) for TCE 

and CHCl3 in reaction with CO2 radical anions were obtained by fitting experimental data according 

to Equation 5. The dual-element isotope slope in panel (c) – where changes in carbon isotope values 

are plotted against changes in chlorine isotope values – is an alternative way to visualize the presence 

of carbon, but the absence of chlorine isotope effects in different chlorinated ethenes. Panel (d) 

shows that the same absence of chlorine isotope effects was also observed for reaction of PCE with 



3. Reductive Outer-sphere Single Electron Transfer 

- 44 - 

graphene oxide as alternative OS-SET reagent. Error bars correspond to the analytical uncertainty 

(±0.5‰ for carbon, ±0.2‰ for chlorine isotope analysis). Regressions are represented together with 

their 95% confidence intervals. 

3.4.2. Chlorine Isotope Effects Were Partly Recovered when Chlorinated Ethenes Were 

Reacted with OS-SET Reagents in an Organic Solvent 

The finding that C-Cl bond cleavage in chlorinated ethenes was not concerted / synchronous 

with OS-SET in our aqueous experiments raises the question whether chlorine isotope 

effects can be recovered by slowing down C-Cl bond cleavage so that it becomes (partially) 

rate-limiting. Since a large component of the driving force of aqueous dehalogenation 

reactions is the high Gibbs enthalpy that is released due to chloride solvation 
112

, additional 

experiments were conducted with OS-SET reagents in an organic solvent. Figure 2 shows 

dual-element isotope slopes for reaction of (a) PCE and (b) TCE with OS-SET model 

reactants (naphthalene and pyrene radical anions) in glyme. Also here, the SET reactions 

resulted in steep slopes  = 
13

C/
37

Cl ≈ C/Cl for both PCE and TCE, indicative of large 

carbon isotope effects of between C = -10.5‰ +/- 1.7‰ and -27.0‰ +/- 4.0‰ (Table 1). In 

contrast to SET reactions in water, however, we did observe small changes in chlorine 

isotope values (Cl = -0.7‰ +/- 0.2‰ to -2.5‰ +/- 0.3‰, Table 1) indicating that C-Cl bond 

cleavage became at least partially rate-limiting so that chlorine isotope effects were 

recovered. 
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Figure 2. OS-SET reagents caused small chlorine isotope effects when chlorinated ethenes were 

brought to reaction in the organic solvent glyme. Dual-element isotope plots show carbon and 

chlorine isotope effects in reaction of (a) PCE and (b) TCE with radical anions of pyrene and 

naphthalene in glyme compared to reactions of the same substances with CO2 radical anions as OS-

SET reagents in water. Error bars correspond to the analytical uncertainty (±0.5‰ for carbon, ±0.2‰ 

for chlorine isotope analysis). Regressions are represented together with their 95% confidence 

intervals. 

3.4.3. Our Observations Are Consistent with a Dissociative OS-SET in Chlorinated 

Alkanes Compared to a Stepwise Process in Chlorinated Ethenes 

A mechanistic model explaining our results must take into account (1) the different chlorine 

isotope effects in CHCl3 and chlorinated ethenes when reacting with OS-SET reagents and 

(2) the observation that chlorine isotope effects of chlorinated ethenes were partly recovered 

when the OS-SET was conducted in an organic solvent.  
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Figure 3: Mechanistic hypothesis of a concerted dissociative OS-SET in chlorinated alkanes 

versus a stepwise (or asynchronous) process in chlorinated ethenes. Energy diagrams are 

sketched together with molecular orbitals of the chlorinated compounds. They illustrate (a) the 

transfer of an electron into the σ* orbital of the C-Cl bond of a chlorinated alkane (CHCl3) compared 

to (b) a SET into the π* orbital of the C-C bond of a chlorinated ethenel. Both reactions are driven 

downhill by the Gibbs enthalpy of solvation of the chloride ion in water. In contrast, panel (c) 

sketches OS-SET to chlorinated ethenes in an organic solvent where the driving force of C-Cl bond 

cleavage is reduced by the absence of this solvation energy.  

 

Addressing the first point, the different chlorine isotope effects in reactions of CHCl3 and 

CEs can be rationalized from their electronic structures, where the LUMO orbitals are a σ* 

and π* orbital, respectively. Adding an electron to the σ*-orbital in CHCl3 is believed to 

cause immediate (i.e., concerted) carbon-chlorine bond cleavage (Figure 3a)
113

. By contrast, 

addition of an electron to the π*-orbital of the CEs causes a weakening of the π-π bond, but 

not necessarily immediate bond cleavage. Indeed, the non-existent chlorine isotope effect in 

chlorinated ethenes strongly suggests that the chlorine atom was cleaved in a subsequent step 

(Figure 3b). Hence, we hypothesize that OS-SET into a σ*-orbital of CHCl3 leads to a 

concerted reaction, whereas OS-SET into a π*-orbital of chlorinated ethenes involves a 

stepwise (or asynchronous) reaction. 

Considering the second point, a possible explanation for the observation that CE chlorine 

isotope effects were partly recovered when OS-SET was conducted in an organic solvent is 
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provided by Figure 3b and 3c. According to our hypothesis of a stepwise process the 

transformation would involve two activation barriers: one barrier (EA1) for the transfer of an 

electron into the π*-orbital of the chlorinated ethene and a second barrier (EA2) for 

subsequent cleavage of the C-Cl bond. As discussed above, solvation of the chloride ion in 

water is strongly exergonic 
112

. In line with Hammond’s postulate,
114

 this lowers the second 

activation barrier (EA2) (Figure 3b). In an organic solvent, by contrast, the driving force is 

lower so that the height of the second activation barrier (EA2) is less reduced compared to the 

first (EA1) (Figure 3c). A strong driving force of the second step will cause practically all 

intermediate CE radical anions to react onwards to form products so that hardly any 

molecule partitions back to the reactant side (Figure 3b). Hence, the chlorine isotope effect 

from C-Cl bond cleavage in EA2 will not be observable in the reactant. This masking / 

demasking of kinetic isotope effects is expressed by mathematical expressions for an 

apparent kinetic isotope effect in a two-step reaction: 
98
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where k-1 and k2 are the reaction rates of intermediate CE radical anions back to reactant and 

onward to product. 
kin

1  and 
equ

1  are kinetic / equilibrium isotope effects of the OS-SET in 

step 1 (non-zero for carbon, zero for chlorine) whereas 
kin

2  is the kinetic isotope effect of the 

C-Cl bond cleavage in step 2 (non-zero for both carbon and chlorine). Equations equivalent 

to 9 are well established expressions in the chemical
96

, biochemical
115

 and biogeochemical
116

 

literature (see ref. 
98

 and references cited therein). Substitution of the rate constants k-1 and k2 
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where A is the pre exponential factor of the Arrhenius equation, R is the universal gas 

constant, T is the absolute temperature, EA1 is the energy difference between reactant state 

and transition state one and EA2 the energy difference between reactant state and transition 

state two (see Figure 3). The equation expresses the same phenomenon as derived above: 

that the apparent kinetic isotope effect is a weighted average of the isotope effects of each 

step, where the weight is given by the height of the respective activation barriers. In water 

(Figure 3b) the apparent kinetic isotope effect of the reaction of TCE with CO2 radical 

anions is, therefore, hypothesized to reflect the OS-SET of the first step (C = -11.9‰; Cl = 

0.03‰) whereas in glyme (Figure 3c) the reaction of TCE with naphthalene radical anions 

likely represents a weighted average of both steps (C = -27.0‰; Cl = -2.5‰). 

Our hypothesis of a concerted mechanism for chloroform and a stepwise mechanism for 

chlorinated ethenes is in accordance to electrochemical observations of Jean-Michel 

Savéant
117-120

 . By cyclic voltammetry they could determine, that results for the symmetric 

factor α strongly supports the concerted mechanism for chlorinated methanes
118

, whereas the 

attractive interaction between the caged fragments (DCF) for chlorinated ethenes is too high 

for a concerted mechanism, favoring a stepwise mechanism
118, 121

.     

Finally, it was determined that the strength of the reduction potential, what is significant 

different for CO2 radical anions and the graphene/sodium sulfide reaction, had no appeal on 

the intrinsic isotope effect of chlorinated ethenes because k-1 (Equation 9) is not affected by 

reduction of the activation energy by stronger reductive OS-SET reagents
122
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Figure 4. Multi-element isotope effects of chlorinated ethenes in natural and engineered 

reductive dehalogenation are systematically different from reductive OS-SET in water. Dual-

element isotope plots of carbon and chlorine in OS-SET reaction with CO2 radical anions (this study) 

are compared to data for biodegradation of PCE (panel a) by Desulfitobacterium sp. strain Viet1 
101

, 

to data for transformation of TCE (panel b) with Vitamin B12 
35

 and metallic iron 
94

, and to data for 

transformation of cis-DCE (panel c) with metallic iron 
94

. Shaded areas illustrate trends of isotope 

fractionation for OS-SET (grey), metallic iron (pink) and biodegradation (green) from published 

literature studies (see Table 1). Data for carbon and hydrogen dual-element isotope effects which 

were measured specifically for this study are shown in Figure 4d. Error bars correspond to the 

analytical uncertainty (±0.5‰ for carbon, ±0.2‰ for chlorine, ±5‰ for hydrogen isotope analysis). 

Regressions are represented together with their 95% confidence intervals. 
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3.4.4. Systematically Different Isotope Fractionation Trends Suggest that OS-SET Is 

Not a Common Mechanism in Natural and Engineered CE Reductive 

Dehalogenations  

In Figure 4, multi-element isotope effect trends of PCE and TCE from the OS-SET 

experiments with CO2 radical anions are compared to literature data on reductive 

biodegradation and on dehalogenation by zero-valent iron. Example data on natural and 

engineered transformations (biodegradation of PCE by Desulfitobacterium sp. strain Viet1, 

reductive dehalogenation of TCE by Vitamin B12, transformation of TCE with metallic iron) 

are shown together with shaded areas representing literature values reported to date. The 

literature data includes experiments with mixed cultures, pure strains, isolated reductive 

dehalogenases and purified corrinoids, as listed in Table 1. Even though Figure 4 does 

illustrate some isotope effect variability in natural and engineered reductive dehalogenation, 

the combined data still clearly cluster outside the range of our OS-SET experiments in water. 

The distinguishing feature is the presence of chlorine isotope fractionation in all reactions of 

PCE, TCE and cis-DCE with organisms or zero valent iron reported to date, compared to the 

total absence of a chlorine isotope effect with OS-SET reagents in our experiments. This is 

particularly true in cases in which both C and Cl are so large that they reflect intrinsic 

isotope effects of the reaction rather than binding isotope effect of substrate-enzyme 

association (see Table 1). This combined data, therefore, indicates that OS-SET reaction 

mechanisms are an exception rather than the rule in natural biodegradation or engineered 

reactions with zero valent iron. In further support of this statement, are great differences of 

the predictions and experimental data of rate constants of PCE and TCE reduction by either 

electron transfer or by vitamin B12 and dehalogenases determined by Constantin et al
121

. 

Indicating a more intimate interaction between the substrate and the electron donor where 

the chlorinated ethene enters the cobalt coordination sphere, supporting an inner-sphere 

rather than outer-sphere mechanism. 
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Table 1: Literature overview of results from dual-element (C, Cl) isotope studies targeting reductive 

dehalogenation of PCE, TCE and cis-DCE in biodegradation and metallic iron-mediated 

transformation. Values are stated together with their 95% confidence intervals. 

 

  

C [‰] Cl [‰] 

dual-element 

isotope trend 

[λ ≈ C/ Cl] 

references 

OS-SET in an organic solvent   

  PCE pyrene -10.5±1.7 -0.7±0.2 15.1±1.4 this study 

PCE naphthalene -15.4±1.5 -1.5±0.1 12.8±2.5 this study 

TCE pyrene -26.5±2.6 -1.9±0.1 13.7±1.2 this study 

TCE naphthalene -27.0±4.0 -2.5±0.3 11.0±0.5 this study 

OS-SET in water 

    PCE CO2 radical anions -7.6±0.8 0.04±0.12 ∞ (-11.3±47) this study 

PCE graphene oxide/sodium sulfide pH 7 -9.3±0.9 0.05±0.18 ∞ (-10.6±24.5) this study 

PCE graphene oxide/sodium sulfide pH 2 -7.9±1.4 -0.3±0.3 ∞ (12.4±15.7) this study 

TCE CO2 radical anions -11.9±1.0 0.04±0.03 ∞ (148.5±112.2) this study 

cis-DCE CO2 radical anions -10.5±0.7 -0.12±0.06 ∞ (51.5±32.1) this study 

CHCl3 CO2 radical anions -17.7±0.8 -2.6±0.2 6.7±0.4 this study 

Reductive biodegradation of PCE 

    Desulfitobacterium  sp. strain 

Viet1 
-19.0±0.9 -5.0±0.1 3.7±0.2 Cretnik et al. 2014101 

Enrichment culture dominated by 

Desulfitobacterium aromaticivorans 

UKTL* 

-5.6±0.7 -2.0±0.5 2.8 Wiegert et al. 201342 

Sulphurospirillum spp. enrichment culture 

harboring PceA-TCE* 
-3.6±0.2 -1.2±0.1 2.7±0.3 Badin et al. 2014102 

Sulphurospirillum . enrichment culture 

harboring PceA-DCE* 
-0.7±0.1 -0.9±0.1 0.7±0.2 Badin et al. 2014102 

Reductive dehalogenase from 

Sulphurospirillum multivorans (norpseudo-

B12)* 

-1.4±0.1 -0.6±0.2 2.2±0.5 Renpenning et al. 201436 

Reductive dehalogenase from 

Sulphurospirillum multivorans (nor-B12)* 
-1.3±0.1 -0.4±0.1 2.8±0.5 Renpenning et al. 201436 

Norpseudo-B12 (purified cofactor) -25.3±0.8 -3.6±0.4 6.9±0.7 Renpenning et al. 201436 

Nor-B12 (purified cofactor) -23.7±1.2 -4.8±0.9 5.0±0.8 Renpenning et al. 201436 
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Cyano-B12 (purified cofactor) -22.4±0.8 -4.8±0.2 4.6±0.2 Renpenning et al. 201436 

Dicyanocobinamid (purified cofactor) -25.2±0.5 -3.4±0.4 7.0±0.8 Renpenning et al. 201436 

Reductive biodegradation of TCE 
    

Geobacter lovleyi -12.2±0.5 -3.6±0.1 3.3±0.1 Cretnik et al. 201335 

Desulfitobacterium hafniense Y51 -9.1±0.6 -2.7±0.6 3.4±0.2 Cretnik et al. 201335 

 -8.6±0.0 -2.6±0.2 3.2±0.2 Buchner et al. 2015103 

 -8.8±0.2 -2.4±0.2 3.4±0.2 Buchner et al. 2015103 

 -9.0±0.2 -3.1±0.3 2.8±0.3 Buchner et al. 2015103 

 -9.0±0.2 -2.6±0.1 3.5±0.2 Buchner et al. 2015103 

Dehalococcoides (two species) -16.4±1.5 -3.6±0.3 4.5 Kuder et al. 201338 

Enrichment culture dominated by 

Desulfitobacterium aromaticivorans UKTL 
-8.8±2.0 -3.5±0.5 2.5 Wiegert et al. 201342 

Reductive dehalogenase from 

Sulphurospirillum multivorans (norpseudo-

B12) 

-20±0.5 -3.7±0.2 5.3±0.3 Renpenning et al. 201436 

Reductive dehalogenase from 

Sulphurospirillum multivorans (nor-B12) 
-20.2±1.1 -3.9±0.6 5±0.8 Renpenning et al. 201436 

Norpseudo-B12 (purified cofactor) -18.5±2.8 -4.2±0.8 4.5±0.8 Renpenning et al. 201436 

Nor-B12 (purified cofactor) -15.1±2.7 -3.9±1.0 3.7±0.3 Renpenning et al. 201436 

Dicyanocobinamid (purified cofactor) -16.5±0.7 -3.9±0.5 4.2±0.6 Renpenning et al. 201436 

Cyano-Vitamin B12 (purified cofactor) -15±2.0 -3.2±1.0 4.4±0.7 Renpenning et al. 201436 

Cyano-Vitamin B12 (purified cofactor) -16.1±0.9 -4.0±0.2 3.8±0.2 Cretnik et al. 201335 

Cobaloxime (chemical model reactant) -21.3±0.5 -3.5±0.1 6.1±0.2 Cretnik et al. 201335 

Reduction by metallic iron -14.9±0.9 -2.6±0.2 5.2±0.3 Audí-Miró et al.201394 

Reduction by metallic iron -12.4 -3.0 4.2 Lojkasek-Lima et al. 201213 

Reductive biodegradation of cis-DCE 
    

Mixed culture harboring Dehalococcoides  -26.8 -3.2 8.4 Kuder et al. 201338 

Mixed culture harboring Dehalococcoides -18.5±1.8 -1.6±0.1 11.6 Abe et al. 200993 

Mixed culture harboring Dehalococcoides -18.5±1.3 -1.4±0.2 13.2 Abe et al. 200993 

Reduction by metallic iron -20.5±1.8 -6.2±0.8 3.1±0.2 Audí-Miró et al.201394 

* entries with a star indicate cases in which observable C are so small that they likely reflect 

isotope effects of substrate-enzyme association etc. in addition to those of the intrinsic 

(bio)chemical reaction. 
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3.5. Conclusion 

Pinpointing detailed chemical reaction mechanisms in complex natural and engineered 

transformations is intrinsically difficult. Methods employed to characterize electron transfer 

encounter complexes in laboratory experiments – spectral elucidation, or even X-ray 

structure analysis
77

 – are not accessible in natural environments. Yet it is this knowledge 

about the manner and order of chemical bond cleavage that provides the key to 

understanding subsequent transformation pathways leading to problematic vs. benign 

daughter products in remediation schemes. This study takes advantage of a new opportunity 

– multi-element isotope effect analysis of organic compounds at natural isotopic abundance 

– to evaluate whether outer-sphere single electron transfer, a mechanism that has frequently 

been invoked, but not been proven, is involved in natural and engineered reductive 

dehalogenation reactions.  

Experiments with chemical model reactants made it possible to derive a consistent 

mechanistic explanation for the absence of chlorine isotope effects in chlorinated ethene 

transformation by aqueous OS-SET reagents. Our results indicate the occurrence of a 

stepwise OS-SET (SET to a π* orbital followed by C-Cl cleavage) in chlorinated ethenes 

compared to a dissociative OS-SET (SET to a σ* orbital concerted with C-Cl breakage) in 

chlorinated alkanes (Figure 3). Building on this mechanistic understanding, the consistent 

absence of chlorine isotope effects in aqueous OS-SET could be compared to the consistent 

presence of chlorine isotope effects in all biodegradation studies and in all metallic iron-

mediated dehalogenation reactions of PCE and TCE reported to date (Figure 4). The 

discrepancy strongly suggests that OS-SET is an exception rather than the rule in natural and 

engineered reductive dehalogenation reactions. This result is relevant to guide future 

research on the organic reaction chemistry of environmental reductive dehalogenations. Our 

results indicate that product formation cannot necessarily be derived from chlorinated vinyl 

radicals resulting from initial outer-sphere electron transfer, and that reactivity cannot 

necessarily be predicted from Marcus theory of outer-sphere non-adiabatic ET 
75

. Instead, 

our results point to inner-sphere interactions, consistent with organometallic reactions at 

metal surfaces and in reductive dehalogenases which still warrant exploration. Future 

research should be directed at characterizing the underlying reaction chemistry of 

chlorinated ethene degradation. Together with the recent structural elucidation of reductive 
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dehalogenases, the new opportunity of multi-element isotope effect analysis at natural 

isotopic abundance may enable pursuit of this goal 

. 
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4.1. ABSTRACT 

Chlorinated ethenes are toxic groundwater contaminants. While they can be dechlorinated by 

microorganisms, reductive dehalogenases and their corrinoid cofactor, biochemical reaction 

mechanisms remain unsolved. This study uncovers a mechanistic shift revealed by 

contrasting compound-specific carbon (


C) and chlorine (


Cl) isotope effects between 

perchloroethene, PCE (


Cl= -4.0‰) and cis-dichloroethene, cis-DCE (


Cl= -1.5‰), and 

a pH-dependent shift for trichloroethene, TCE (from 


Cl= -5.2‰ at pH 12 to 


Cl= -

1.2‰ at pH 5). The existence of different pathways is supported also by pH-dependent shifts 

in reaction rates, 

TCE product 

distribution and 

hydrogen isotope 

effects. Mass 

balance deficits 

revealed reversible 

and irreversible 

cobalamin-substrate 

association, whereas 

high-resolution 

mass spectrometry 

narrowed down possible structures to chloroalkyl and chlorovinyl cobalamin complexes. 

Combined experimental evidence is inconsistent with initial electron transfer or alkyl or 

vinyl complexes as crossroads of both pathways. In contrast, it supports cobalamin 

chlorocarbanions as key intermediates from which Cl
-
 elimination produces vinyl complexes 

(explaining rates and products of TCE at high pH), whereas protonation generates less 

reactive alkyl complexes (explaining rates and products of TCE at low pH). Multielement 

isotope effect analysis holds promise to identify these competing mechanisms also in real 

dehalogenases, microorganisms and even contaminated aquifers.  
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4.2. Introduction 

Chlorinated ethenes are important chemical intermediates, degreasing and dry cleaning 

agents, and they rank among the most frequent groundwater contaminants 
123

. They can enter 

the subsurface through accidents and improper handling. Because of their high density and 

low water solubility, they tend to accumulate as pure phase pools at the confining layer of 

aquifers leading to long-lasting groundwater contaminations. Highly chlorinated ethenes are 

rather persistent under oxic conditions, but are conducive to biotic reductive dehalogenation 

in anoxic zones of aquifers.
68

 Natural or engineered biodegradation does not always achieve 

complete dehalogenation, however. 
8
 Biodegradation involves sequential replacement of 

chlorine by hydrogen so that perchloroethene (PCE) and trichloroethene (TCE) are 

transformed to more problematic cis-dichloroethene (cis-DCE) and vinyl chloride (VC), 

before harmless ethene is formed. While some microorganisms of the genus 

Dehalococcoides are able to achieve complete dehalogenation, most microorganisms stop at 

the stage of cis-DCE or VC 
69

. This raises the question for the underlying (bio)chemical 

degradation mechanism and why transformation frequently stops at the stage of these more 

problematic daughter compounds. The key must lie in the reaction chemistry of cobalamin 

(Vitamin B12) since this enzymatic cofactor lies at the heart of practically all reductive 

dehalogenases (Rdases) identified to date
124

. The importance of the lower axial ligand at the 

Co center was highlighted in dechlorination with Dehalococcoides mccartyi, where 

amendment with a 5,6-dimethylbenzimidazole base resulted in complete cis-DCE, whereas 

amendment with other ligands did not.
125

 In contrast, crystal structures of Rdases from 

Sulfurospirillum multivorans and Nitratireductor pacificus suggest that this base is not even 

ligated with the Co center
83, 84, 126

. Despite this evidence and much research on putative 

reaction intermediates of cobalamine and its functional mimics (cobaloxime, 

tetraphenylporphyrin cobalt (TPP)Co), 
78, 127-133

 and despite even the first elucidation of 

reductive dehalogenase enzyme structures,
82-84

 a consistent picture of the underlying reaction 

biochemistry of chlorinated ethenes has still not be pinpointed. Three different reductive 

dechlorination mechanisms have been brought forward 
78

: 1. (inner sphere) nucleophilic 

addition 
134

; 2. electron transfer (either inner-
83, 135-137

 or outer-sphere
84,79, 126, 138

; 3. (inner-

sphere) nucleophilic substitution 
78, 139
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Scheme 1. Suggested reaction mechanisms for reductive dehalogenation of TCE.  

1) Nucleophilic addition; 2) Single electron transfer; 3) Nucleophilic substitution. Here, “-e
-
, +H

+
” indicate an electron transfer followed by protonation, 

whereas “[H]” indicates abstraction of a hydrogen atom. 
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The nucleophilic addition and substitution pathways are motivated by the observation of pH-

dependent reaction kinetics
134

, by the detection of alkyl and vinyl Vitamin B12 complexes 

from (low resolution) mass spectrometry
79, 140

, and by the observation that typical product 

spectra are obtained from synthesis and subsequent reaction of such intermediates 
78, 79, 132, 

140, 141
. Conversely, the hypothesis of single electron transfer is based on the detection of 

trichlorovinyl radicals during the reaction of vitamin B12 with TCE
79, 80, 131, 138, 141

. 

Furthermore, studies of the reductive dehalogenase PceA from Sulfurospirillum 

multivorans
84, 126

 favor an outer-sphere single electron transfer (OS-SET) based on a Co(II)-

to-TCE distance of 5.8 Ǻ. EPR evidence for a direct interaction of the halogen atom and Co 

in reductive dehalogenation of aromatic phenols by the reductive dehalogenase NpRdhA of 

Nitratireductor pacificus supports an inner-sphere SET mechanism 
83

; DFT-based 

computational calculations simulated this mechanistic scenario also for chlorinated ethenes 

137
. Conversely, the absence of such EPR observations in reductive dehalogenation of PCE 

by PceA from Sulfurospirillum multivorans was interpreted as evidence for an outer-sphere 

SET mechanism 
126

. An inner-sphere two-electron transfer via a halogenophilic substitution, 

finally, has been proposed for halogenated aromatic compounds (not shown in Scheme 1) 

135
. 

The difficulty in coming up with a coherent mechanistic picture for even the simplest model 

of reductive biotransformation – chlorinated ethene reduction by Vitamin B12 – presents, 

therefore, a major obstacle in advancing our understanding of reaction mechanisms in 

dehalogenases, or even whole organisms. The research need exists for additional 

experimental evidence to integrate existing observations in a coherent mechanistic picture, to 

subsequently transfer such insight from model systems to real environmental systems, and to 

demonstrate, thereby, that the same reaction mechanisms prevail in enzymes, or real 

organisms.  

Multiple element compound-specific isotope effect analysis (CSIA) of chlorinated ethenes 

offers an underexplored opportunity from geochemistry 
142

 to answer both questions and to 

close the gap between mechanistic insight from model systems, enzymes and organisms
116

. 

Isotope ratios of carbon (
13

C/
12

C), chlorine (
37

Cl/
35

Cl) and hydrogen (
2
H/

1
H) can be 

measured at their natural isotopic abundance (i.e., without isotope label) in samples taken 

along a (bio) chemical reaction and can be expressed as difference relative to an international 

reference.  
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ference

ferenceSample

CC

CCCC
C

Re

1213

Re

12131213

13

/

)//( 
         (1) 

initialCCC 131313            (2) 

 

Here, (
13

C/
12

CReference) and sample (
13

C/
12

CSample) are the isotope ratios of an international 

reference and of the sample, and 
13

C and 
13

Cinitial are isotope values of samples taken at a 

given time point and at the beginning of the reaction, respectively. Recent analytical 

advances 
18, 20, 65

 have made it possible to analyze such isotope ratios also for chlorine 

(
37

Cl/
35

Cl) and hydrogen (
2
H/

1
H) in chlorinated ethenes; analogous equations apply for these 

elements. Compound-specific isotope effects are subsequently evaluated for each element 

according to 
21, 22

 

 

 fCCC initial ln131313            (3) 

 

where f is the fraction of reactant remaining and 


C is the so-called enrichment factor 

which expresses the difference in transformation rates of light and heavy isotopologues and 

which is equivalent to a compound-specific kinetic isotope effect 
12

k/
13

k. Specifically, a 

value, e.g., of 


C= -10‰ means that molecules containing 
13

C react by 10 per mille – or 

one percent – slower than those with 
12

C corresponding to a compound-average kinetic 

isotope effect of 
12

k/
13

k = 1.01. For chlorine and hydrogen analogous expressions are valid 

63
. When plotting changes in isotope ratios of two elements against each other, a dual 

element isotope plot is obtained. Its slope = 
13

C/
37

Cl ≈ 


C/


Cl≈ (
12

k/
13

k - 

1)/(
35

k/
37

k - 1)  expresses the magnitude of isotope effects of different elements relative to 

each other and is, therefore, a sensitive tool to distinguish different reaction mechanisms 
53, 

98, 99, 143, 144
. Indeed, a recent computational study brought forward in this journal suggests 

that dual element isotope analysis may provide the key evidence necessary to distinguish 

different mechanisms of chlorinated ethene reduction by Cob(I)alamin.
139

 However, even 

though several studies have recently determined compound-specific isotope effects of 

carbon
35, 36, 42, 103

, chlorine
35, 36, 42, 103

 and even hydrogen
38

 for chlorinated ethenes in 

reductive dehalogenation by Vitamin B12, enzymes and bacteria 
35, 36, 42, 100-103

, interpretations 

remain inconclusive: the variability of isotope effects has not been systematically 

investigated; observed isotope effects have not been combined with “classical” mechanistic 
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probes such as reactivity trends, detection of intermediates, etc. Finally, the approach has not 

been pursued to rationalize product formation (e.g., why reactions often stop at the stage of 

cis-DCE). 

With the aim to derive a consistent mechanistic picture for the conflicting mechanisms of 

Scheme 1, this study, therefore, combines all available lines of evidence: reactivity trends 

and multielement (C, H, Cl) isotope effects of chlorinated ethenes with different molecular 

structures (PCE, TCE, cis-DCE); detection of intermediates by high-resolution mass 

spectrometry, radical trap experiments and mass balance deficit analysis; and, changes in the 

relative contribution of various pathways upon changes in reaction conditions (pH between 5 

and 12). The mechanistic insights gained from this study are then explored for their ability to 

explain reactivity trends and product formation, and to answer why biodegradation of 

chlorinated ethenes often stops at cis-DCE or VC.    
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4.3. Materials & Methods 

4.3.1. Chemicals 

A list of all chemicals is provided in the Supporting Information of Chapter 4. 

4.3.2. Kinetics, isotope effects and product formation in dehalogenation of chlorinated 

ethenes by Vitamin B12 at different pH  

For a detailed description see the Supporting Information. Briefly, a pH-specific buffer 

solution (pH between 5 to 12) was prepared, degassed with nitrogen and PCE, TCE or cis-

DCE were added in an anoxic glovebox. In parallel, titanium(III)chloride was dissolved in 

water, the solution was degassed with nitrogen, sodium citrate was added and the pH 

adjusted. The reaction was started by combining the chlorinated ethene solution, the 

Ti(III)citrate solution and Vitamin B12 to give concentrations of about 1 mM chlorinated 

ethene, between 15 M and 325 M Vitamin B12 and about 25 mM Ti(III) citrate. Reactions 

were conducted in the dark. Samples for concentration, carbon- and chlorine isotope 

measurements were removed at selected time-points either by headspace sampling with a 

pressure lock syringe or by taking liquid samples in which the reaction was stopped through 

hydrogen peroxide addition.  

 

4.3.3. Experiments to detect complex formation between Vitamin B12 and TCE by 

direct injection-mass spectrometry (DI-MS) and analysis of mass balance deficits  

To capture intermediates, experiments at different pH were conducted with stoichiometric 

amounts of pre-reduced vitamin B12 and without Ti(III) as bulk reductant. Mass balance 

deficits were determined as the difference between (a) initial TCE; (b) remaining TCE; (c) 

volatile products (not observed under stoichiometric conditions); (d) reversibly associated 

TCE that could be recovered by exhaustive sparging of the solution. A detailed description is 

provided in the Supporting Information.  
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4.3.4. Analytical Methods  

A detailed description of concentration-, isotope analysis (carbon, chlorine and hydrogen) 

and high resolution mass spectrometry is provided in the Supporting Information. Briefly, 

concentrations were analyzed by gas chromatography-mass spectrometry (GC-MS) and 

isotope values by gas chromatography coupled to an isotope ratio mass spectrometer (GC-

IRMS). 
13

C/
12

C and 
2
H/

1
H ratios were determined after peak separation and combustion to 

CO2
145

 or reduction to H2
56

 respectively, whereas 
37

Cl/
35

Cl ratios were determined after gas 

chromatographic separation by direct analysis of intact CE isotopologue molecules
18, 19

.   

  

4.4. Results and Discussion 

4.4.1. Isotope effects and reactivity trends indicate different reaction mechanisms for 

PCE and cis-DCE  

To probe for the occurrence of different transformation mechanisms as hypothesized in 

Scheme 1 and brought forward in previous studies
79, 134

, Vitamin B12-catalyzed 

dehalogenation was investigated for the chlorinated ethenes PCE and cis-DCE with titanium 

citrate as bulk reductant at different pH (6.5 to 11). Increasing pH values resulted in 

opposing reactivity trends for PCE and cis-DCE, where 2
nd

 order rate constants (derived for 

S = PCE, TCE, cis-DCE and catalyst = Vitamin B12 according to  

𝑑[𝑆] 𝑑𝑡 = −𝑘 ∙ [𝑆] ∙ [𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡]⁄ ) increased for PCE (pH 6.5: k= 115 ± 15 (M catalyst)
-1

·s-
1
; 

pH 9: k= 176 ± 14 (M catalyst)
-1

·s
-1

; pH 11: k= 270 ± 41 (M catalyst)
-1

·s
-1

) whereas they 

decreased for cis-DCE (from pH 6.5: k= 0.03 ± 0.006 (M catalyst)
-1

·s-
1 

over pH 9: k= 0.0008 

± 0.0002 (M catalyst)
-1

·s
-1 

 to pH 11: hardly any degradation at all). The greater rate 

constants of PCE compared to cis-DCE agree perfectly with those of previous studies (e.g. 

PCE pH 9.0 k= 155 ± 21 M
-1

·s
-1

;  cis-DCE pH 9.0 k= 0.0006 ± 0.0001 M
-1

·s
-1

)
134

. 

Conversely, the different nature of relative reactivity (trends of decreasing rates of PCE at 

lower pH vs. increasing rates of cis-DCE) indicate the occurrence of different underlying 

reaction mechanisms. 
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In agreement with these opposing reactivity trends, also carbon and chlorine isotope effects 

showed pronounced differences between the two compounds. Large carbon and small 

chlorine isotope effects were detected for cis-DCE (


C = -28.4‰ ± 1.1‰; 


Cl = -1.5‰ ± 

0.2‰; Figure 1a & b), whereas reaction of Vitamin B12 with PCE resulted in smaller carbon 

but much greater chlorine isotope effects (


C = -16.6‰ ± 2.7‰ to -17.0‰ ± 1.2‰; 


Cl = 

-4.0‰ ± 0.4‰ to -4.2‰ ± 0.4‰; Figure 1a & b). (Note that these differences cannot be 

explained by the number of chlorine atoms in the molecules: when taking into account a 

“dilution” by non-reacting positions
22

, the discrepancy in intrinsic chlorine isotope effects 

(2·(-1.5‰) = -3‰ vs. 4·(-4‰) = -16‰) would be even more pronounced). The trend is also 

represented in the dual element isotope plot of Figure 1c, where the small chlorine isotope 

effects in reaction of cis-DCE resulted in a steep slope of λ = 
13

C/
37

Cl = 18.2 +/- 2.2, 

whereas the larger chlorine isotope effects in PCE gave rise to a much flatter slope (λ = 3.9 

+/- 0.4 to 4.2 +/- 0.3). The pH value of the reaction solution had no influence on the carbon 

and chlorine isotope effects of PCE. Taken together, both lines of evidence point to different 

reaction mechanisms in the reductive dehalogenation of PCE vs. cis-DCE. The increasing 

reaction rates of PCE with increasing pH can be explained with the increasing reduction 

potential of titanium(III) citrate
146

 and – consequently – a higher steady-state concentration 

of Co
I
 (where we have considered that the redox potential of Co

I
 does not change above pH 

4.7
147, 148

). The opposite trend for cis-DCE, in contrast, indicates that its reactivity must be 

governed by a different underlying mechanism and that the reaction rate of this mechanism 

is accelerated by the presence of H
+
. Further, the strong chlorine isotope effect in PCE 

indicates that a C-Cl bond must be cleaved in the rate-determining step of PCE 

dehalogenation, whereas the small chlorine isotope effect (in conjunction with a large carbon 

isotope effect) in cis-DCE indicates that a different chemical step involving carbon, but not 

chlorine atoms was rate-determining in reduction of cis-DCE.  
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Figure 1: Different carbon vs. chlorine isotope effects in reaction of PCE and cis-DCE with 

Vitamin B12. Isotopic enrichment factors  of chlorine (a) and carbon (b) for PCE and cis-DCE in 

reaction with Vitamin B12 were obtained according to Equation 3 by fitting changes in isotope values 

against the remaining fraction of substrate. (c) The different trends in isotope effects are represented 

in the dual element isotope plot which combines carbon and chlorine isotope values from the reaction 

of Vitamin B12 with PCE and cis-DCE. 

 

4.4.2. Isotope effects and reactivity trends indicate a pH-dependent mechanistic shift in 

reaction of TCE  

To further probe for the observed pH-dependency in reductive chlorinated ethene 

dehalogenation by Vitamin B12, experiments were conducted with TCE between pH 5 and 

12. TCE contains one dichlorovinylidene group (=CCl2) like in PCE and one 

chlorovinylidene group  (=CHCl) like in cis-DCE, and its redox potential (CHCl=CCl2(aq)  + 
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2e
-
 + H

+
  CHCl=CHCl(aq)  + Cl

-
(aq); -0.67 V vs. the standard hydrogen electrode) has been 

computed to lie between PCE (CCl2=CCl2(aq)  + 2e
-
 + H

+
  CHCl=CCl2(aq) + Cl

-
(aq);; -0.60 

V) and cis-DCE (CHCl=CHCl(aq)  + 2e
-
 + H

+
  CH2=CHCl(aq) + Cl

-
(aq);; -1.012 V)

112
. The 

reactivity trend of TCE was analogous to PCE: a decrease in pH resulted in a reduction of 

TCE reaction rates, where the decline was particularly drastic below pH 8 (Figure 2f). 

Remarkably, this trend was also accompanied by a change in observable TCE chlorine 

isotope effects, where the change was again particularly pronounced at pH 8 (Figure 2e). 

While carbon isotope effects showed only a small variation (


C = -15.8‰ ± 0.9‰ to -

17.5‰ ± 1.0‰; Figure 2a) chlorine isotope effects of TCE decreased dramatically from 




Cl = -5.2‰ ± 0.4‰ at pH 11 to 


Cl = -1.2‰ ± 0.1‰ at pH 5 (Figure 2b, e). The 

observed carbon isotope enrichment factors 


C are consistent with those of previous 

studies 
35, 36, 149-151

. Variation of chlorine isotope enrichment factors, 


Cl, in contrast, was 

much greater than previously observed 
35, 36, 149-151

 indicating a hitherto unrecognized shift to 

a different reaction mechanism in the reduction of TCE. This shift is also visualized in the 

dual element isotope plot of Figure 2e, where the slope λ = 
13

C/
37

Cl increased with 

decreasing pH (from λ = 3.3 +/- 0.1 to 12.4 +/- 1.4; Figure 2e).  

The large chlorine isotope effect at high pH is indicative of a mechanism that involves C-Cl 

bond cleavage. In contrast, the small chlorine isotope effect at low pH indicates a different 

mechanism which, like in the case of cis-DCE, does not involve C-Cl bond cleavage in the 

rate-determining step and which is accelerated by the presence of [H
+
]. The role of 

protonation in this mechanistic shift is emphasized by an additional experiment conducted 

with Vitamin B12 in deuterated water at pH 9.0, which resulted in the greatest chlorine 

isotope effect (


Cl = -6.8‰ +/- 0.4‰; Figure 2b) and the smallest slope (λ = 2.8 +/- 0.2; 

Figure 2c) of all observations. Hence, the lower reaction rate of D
+
 ions slowed down the 

alternative pathway to the same, or an even greater extent, than a smaller concentration of H
+
 

ions imposed by the change of pH.  Such a change in mechanism is further supported by 

carbon/hydrogen dual element isotope fractionation trends (Figure 2d) where also different 

slopes with changing pH are detected (for further discussion see below). 
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Figure 2: Trends in TCE chlorine isotope effects and observed product ratios indicate a change 

in the dechlorination mechanism with Vitamin B12. Isotope enrichment factors of carbon (a) and 

chlorine (b) for TCE in reaction with Vitamin B12 were obtained by fitting changes of isotope values 

against the remaining fraction of TCE substrate according to Equation 3. (Data on OS-SET are from 

ref 
59

). (c) pH dependent variation in carbon and chlorine isotope effects of TCE represented in a 

carbon/hydrogen dual element isotope plot, (d) pH dependent variation carbon and hydrogen isotope 

effects of TCE represented in a carbon/hydrogen dual element isotope plot. (e) Changes of chlorine 

isotope enrichment factors of TCE with pH (note that a more negative value indicates a stronger 

isotope effect). (f) Changes in 2
nd

 order rate constants of TCE with pH. (g) cis-DCE-to-trans-DCE 

ratio versus pH. (h) Formation of chlorinated and non-chlorinated products versus pH (where 

numbers (11, 12, 15 and 16) correspond to structures in Scheme 2). 

 

The results of the two sets of experiments with PCE / cis-DCE (Figure 1) and with TCE 

(Figure 2) are strikingly consistent. Both give evidence of different reaction mechanisms 

which are reflected by a different magnitude of chlorine isotope effects, and both have in 

common that the mechanistic path that is associated with a small chlorine isotope effect is 

accelerated by H
+
. 

 

4.4.3. pH-dependent product distribution supports a mechanistic shift in TCE 

transformation  

Figures 2h and 2g demonstrate that this mechanistic dichotomy is also reflected in the 

pattern of TCE product distribution. Identical products, but drastic changes in their quantity 

were found between high and low pH values (Figure D2a and b), which is consistent with, 

but exceeds previous observations by Glod et al.
79

 Degradation of TCE at pH 6 resulted in 

around 80% chlorinated products while less than 15% non-chlorinated products were formed 

(remaining TCE 2%). In contrast, over 50% non-chlorinated products, mainly ethene, and 

less than 40% chlorinated products were produced at high pH (remaining TCE 5%). Figure 

2g further shows that even the cis- to trans-DCE ratio changed significantly with pH. It has 

been recognized that the preference of cis- over trans-DCE may derive from different 

intermediates 
101, 109, 141, 152

 and that the exact ratio of cis- over trans-DCE may serve as 

indicator of competing mechanisms 
109

. Hence, our data suggests that different intermediates 

were involved as precursors to these isomers depending on pH. Experiments with d7-

isopropanol
80

, finally, yielded more deuterated cis- and trans-DCE at pH 6.5 than at pH 9 
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revealing a greater steady-state concentration of dichlorovinyl radicals at pH 6.5 (Figure 

D2c). While such radicals have previously been taken as evidence of an initial SET 

mechanism 
79, 138

, they may alternatively also derive from decomposition of intermediate 

cobalamin vinyl complexes (see Scheme 1). Therefore, even though we reproduced in our 

study the observation of previous studies and were able to trap such radicals (Figure D2c), 

we conclude that they cannot provide conclusive evidence about the initial reaction step at 

this point. 

4.4.4. Mass balance deficits indicate formation of reversible and irreversible Vitamin 

B12 - TCE complexes   

To probe for reaction intermediates associated with either mechanism, experiments were 

conducted in the absence of Ti(III) citrate so that putative cob(I)alamin – TCE complexes 

would not be further reduced, but could be captured by targeted analysis. To this end, 

cob(III)alamin was pre-reduced with zinc and the pure cob(I)alamin was subsequently added 

to stoichiometric amounts of TCE in water at pH 3 and 11. These extreme pH values were 

chosen to probe for the putative endmember mechanisms. Besides TCE, no other volatile 

compounds were detected. To probe for reversibly formed complexes from cob(I)alamin and 

TCE, the mass balance deficit was determined between TCE concentrations sampled from 

the headspace of reaction vials and TCE concentrations sampled through exhaustive 

extraction of aqueous samples by Purge and Trap (P&T) at the same time point. Whereas 

headspace analysis gave the concentration of TCE in equilibrium with any reversible 

complexes, P&T analysis determined the maximum amount of TCE that could extracted 

from these equilibria. In both cases measurements were calibrated with standards treated in 

an identical way. In the presence of Vitamin B12, calibrated P&T concentrations were much 

higher than headspace concentrations (Figure 3a and 3b). This reveals the formation of 

reversibly formed TCE-cobalamine complexes in which TCE was captured, and from which 

it could be extracted. Besides this reversible complex formation, an additional mass balance 

deficit was observed. Since no other products were detected, any mismatch must be 

attributable to the presence of Vitamin B12. We, therefore, attribute this deficit to additional 

irreversible cob(I)alamin – TCE complex formation. Figure 3a and 3b, moreover, illustrate a 

pronounced pH dependence of the associated kinetics. Whereas formation of both complexes 
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was fast at high pH, at low pH reversible complexes were also produced, but transformation 

into irreversible complexes was much slower.  

 

 

 

Figure 3. Evidence of reversible and irreversible complex formation (a, b) and complementary 

evidence of cob(II)alamin chlorovinyl- and chloroalkyl-complexes high-resolution mass spectra 

(c, d). Stoichiometric amounts of TCE and pre-reduced cob(I)alamine were brought to reaction at pH 

11 (panel a) and pH 3 (panel b). The mass balance deficit between equilibrium TCE concentrations 

(from headspace analysis) and exhaustive extraction of TCE (from purge & trap analysis) gives the 

concentration of reversibly formed TCE-cob(I)alamin complexes. The remaining mass balance 

deficit is interpreted as evidence of irreversibly formed TCE-Cobalamin complexes. High resolution 

mass spectra of the reaction products from doubly 
13

C-labeled TCE with Vitamin B12 at pH value 11 

(panel c, measurement in double negative mode) and 2 (panel d, measurement in double positive 

mode). Note that the spectra are recorded in double positive or double negative mode so that a 

difference in m/z of 0.5 corresponds to a difference in one atomic mass unit. Complete mass spectra 

are provided in the supporting information (D4a, b) 



4. Cobalamin Chloroethylcarbanions as Crossroads of Competing Pathways 

- 71 - 

4.4.5. High resolution mass spectra give evidence of cob(II)alamin chloroalkyl and 

chlorovinyl complexes  

To further explore the chemical nature of these complexes, UV-Vis (Figure D3a and b) and 

high resolution MS (Figure 3c, d and D4 a, b) measurements were conducted. At both pH 

values reduction of cob(III)alamin to cob(I)alamin resulted in a shift of the absorption 

maximum from 370 nm to 390 nm, consistent with trends previously established by Glod et 

al.
79

 Hence, the reaction of TCE and cob(I)alamin caused the disappearance of the signal at 

390 nm and formation of maxima at 310 and 470 nm, which originate from cob(II)alamin 

complexes 
79, 131, 153

 Both pH-values triggered these changes indicating that either high pH or 

low pH enabled the formation of a complex from TCE and cob(I)alamin. 

High resolution mass spectra from direct injection of reaction solutions into an Orbitrap 

mass spectrometer were obtained in double negative mode at pH 11 (Figure 3c) and in 

double positive mode at pH 2 (Figure 3d). In both cases TCE labeled with two 
13

C atoms 

was brought to reaction with pre-reduced cob(I)alamine. Mass spectra of chlorinated alkyl-, 

vinyl and acetylene complexes of cob(II)alamin were observed at both pH values, and in 

addition spectra of chlorinated C4-complexes at pH 2. Assessing the relative contribution of 

alkyl vs. vinyl vs. acetylene complexes in dependence on pH is difficult, because elimination 

of HCl in the electrospray ion source can convert one type into the other so that the mass 

spectra do not necessarily reflect proportions of solution chemistry. Even so, strong 

agreement between experimental and predicted mass spectra at 712.2 m/z and 730.2 m/z 

(high pH, Figure 3c) and at 713.7 m/z and 731.7 m/z (low pH, Figure 3d) could substantiate 

the formation of vinyl- and alkyl-cob(II)alamin-complexes from direct addition of 

cob(I)alamin to TCE (Figure 3a and b). These results are consistent with, but exceed 

previous observations by Lesage et al.
140

 who employed low instead of high resolution mass 

spectrometry, and who detected chlorinated vinyl-complexes, chlorinated C4-complexes and 

non-chlorinated alkyl complexes, but not chlorinated alkyl-complexes.  

 



4. Cobalamin Chloroethylcarbanions as Crossroads of Competing Pathways 

- 72 - 

4.4.6. Experimental evidence is not consistent with initial electron transfer (either 

inner- or outer sphere)  

The combined experimental evidence from reactivity trends, isotope effects, product 

distribution and detection of intermediates can serve to test and discard current mechanistic 

hypotheses (Scheme 1). A direct electron transfer (ET) as initial step (either inner or outer 

sphere) is an unlikely scenario for the following reasons. In the mechanism prevailing with 

TCE at low pH an ET would be inconsistent with reactivity trends: whereas the low pH-

mechanism was accelerated with decreasing pH, an ET would be slowed down with 

decreasing pH owing to the decreasing redox potential of Ti(III)citrate
146

. In the mechanism 

prevailing with TCE at high pH, in turn, an outer sphere-SET can be excluded, because the 

large chlorine isotope effects of this study (Figure 2) are inconsistent with the small, or even 

non-existent chlorine isotope effects observed in outer sphere-SET of chlorinated ethenes in 

water (grey lines in Figure 2) 
59

. This conclusion is consistent with work of Costentin et 

al.
118, 120

 who observed that electrochemical rate constants of PCE and TCE via SET differed 

strongly from those involving vitamin B12 and reductive dehalogenases, respectively, ruling 

out an SET scenario for these catalysts and calling for more intimate reactant-catalyst 

interactions. This leaves inner sphere-ET as remaining possible ET at high pH. An inner 

sphere interaction of cob(I)alamin with a halogen atom, as suggested by Payne et al. for 

bromobenzenes 
83

, cannot involve an unoccupied d-orbital of Co
I
. Instead, an occupied 

orbital of cob(I)alamin must attack the anti-binding orbital of the Cl-C bond resulting in a 

homolytic or heterolytic cleavage producing vinyl radicals or vinyl anions, as suggested by 

recent computational predictions 
136, 137

. This, however, would be in contradiction to our 

observation of irreversibly, and even reversibly formed cob(I)alamin-TCE complexes as key 

intermediates in reaction with TCE (Figures 3 and D2c). If vinyl radicals and/or anions were 

formed, they would have to combine quantitatively with free cobalamin to generate such 

complexes. This is an unlikely scenario considering the difficulty in the synthetic preparation 

of vinyl-cobalamin complexes through this route
78, 79, 132, 140, 141

  and considering how readily 

these radicals or carbanions can abstract H
•
 or H

+
, respectively, from surrounding molecules 

in solution. The corresponding products (cis-DCE and trans-DCE), however, where not 

observed in the experiment of Figure 3a, b. Hence, electron transfer (either inner- or outer 

sphere) is not a likely scenario for the initial step of TCE reduction by vitamin B12.  



4. Cobalamin Chloroethylcarbanions as Crossroads of Competing Pathways 

- 73 - 

4.4.7. The occurrence of two pathways cannot be explained by alkyl cob(I)alamin 

complexes as common intermediates 

Nucleophilic addition of cob(I)alamin leads to alkyl complexes (upper path in Figure 1), 

which were indeed observed by mass spectrometry (Figure 3c, d), which are consistent with 

the observation of reversible complex formation – no C-Cl bond is cleaved, all steps are 

reversible – (Figure 3a, b) and which can explain the absence of chlorine isotope effects at 

low pH (Figure 2). To explain vinyl complexes, on the other hand, a one-step nucleophilic 

substitution in analogy to SN2 reactions (Scheme 1), is an unlikely scenario at a sp
2
 carbon 

center so that Rappoport
154

 suggested an addition-elimination or addition-protonation with 

consecutive ß-elimination as summarized in Scheme 2. This raises the question whether the 

mechanistic shift observed in our experiments can be explained by a common addition-

protonation mechanism with alkyl complexes (4 and isomers) as key intermediates (as 

suggested by Pratt and van der Donk 
141

) which may either be further reduced to 

dichloroethenes (11, 12) or may undergo ß-elimination of HCl to form vinyl complexes (7, 8 

and isomers). Such a role of alkyl complexes at the crossroads of competing pathways, 

however, can be excluded for the following reasons. On the one hand, this mechanism alone 

cannot explain the changes in mechanism (and isotope effects) with pH, since both pathways 

would involve [H
+
]. On the other hand, it cannot explain the observed product distribution. 

Reduction of alkyl cob(II) alamin complexes, as brought forward by Pratt and van der 

Donk
141

 would lead to 1,1,-DCE in the case of a 1,1,2-trichloroalkyl-cobalamin complex 

(i.e., the intermediate originating from protonation of intermediate 3). This is in 

disagreement with the observation that 1,1-DCE was hardly observed experimentally (see 

Figure D2b). Alternatively, if a cobalamin vinyl intermediate was formed by elimination of 

HCl from the cobalamin alkyl complex 4, this would lead to a 1,1-dichlorovinyl intermediate 

implying again that 1,1-DCE should be the predominant product. (Note that in comparison, 

the 1,1,2-trichloroalkyl-cobalamin complex originating from protonation of 3 would be 

much less reactive towards elimination of HCl.) Hence, we conclude that rather than alkyl 

cobalamin complexes, the competing pathways observed in this study must involve a 

different common intermediate. 
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Scheme 2. Integrating mechanism for competing pathways of chlorinated ethene dehalogenation by Vitamin B12 The mechanism accommodates evidence 

from pH-dependent isotope effects (Figure 1 and 2), chlorinated ethene-Vitamin B12 complexes (Figure 3) (c), pH- dependent product formation (Figure 2g, h). 

Here, “-e
-
, +H

+
” indicate an electron transfer followed by protonation, whereas “[H]” indicates abstraction of a hydrogen atom. A more detailed Scheme 

illustrating the reaction paths at high and low pH separately is provided in Scheme D1 and D2 in the Supporting Information 
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4.4.8. Cobalamin carbanions as key intermediates can explain experimental 

observations  

Given that we could rule out electron transfer, chlorovinyl complexes and chloroalkyl 

complexes as crossroads of competing pathways, Scheme 2 leaves carbanion complexes 2 

and 3 as remaining possibility. Nucleophilic addition of Cob(I)alamin leads to either 2 or 3. 

Both carbanions can either be protonated (addition-protonation), or eliminate Cl
-
 (addition-

elimination), and they can explain practically all observations of this and previous studies, as 

laid out in the following. 

Reversible and irreversible complex formation (Figure 3a, b). Scheme 2 uses structural 

information from Figure 3c, d to interpret the observation of reversible and irreversible 

complex formation in Figure 3. Formation of cobalamin alkyl complexes (e.g., 4) only 

involves reversible steps and is, therefore, overall reversible, whereas C-Cl bond cleavage 

makes formation of cobalamin chlorovinyl complexes (7, 8) irreversible. Hence, Scheme 2 

can explain our experimental observations of Figure 3 if chloroalkyl cobalamines are taken 

to be the reversibly formed cobalamine complexes, whereas chlorovinyl cobalamines 

represent irreversibly formed complexes. 

Absence of 1,1-DCE. Practically no 1,1-DCE was observed (Figure D2b) implying that the 

carbanion 2 is almost exclusively protonated, whereas the carbanion 3 eliminates Cl
-
 to form 

dichlorovinyl complexes, as observed by mass spectrometry (Figure 3c, d). To explain this 

selectivity on the carbanion level, conformations may be considered in a similar way as 

computed for alkyl cobalamines in Pratt and Van Der Donk 
141

. As sketched in Scheme 2, 

the energetically favored conformation in intermediate 3 is expected to position the negative 

charge exactly antiperiplanar to one of the two chlorine atoms facilitating Cl
-
 elimination and 

leading to cobalamin vinyl complexes 7, 8. In contrast, Scheme 2 illustrates that intermediate 

2 is expected to maximize the Co-C-Cl angle (115.6° 
141

) to minimize interaction of the 

chlorine atom with the corrin ring. Consequently, the negative charge is no longer positioned 

antiperiplanar to the C-Cl bond so that elimination is slowed and protonation is favored in 

comparison. Hence, carbanion 2 may indeed be expected to be protonated to alkyl 

cobalamine, whereas carbanion 3 would eliminate Cl
-
 to form vinyl cobalamine. 
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Mechanistic shift / change in chlorine isotope effects with pH (Figure 2). According to 

Scheme 2 and Scheme D1, low pH makes protonation of 2 (k2) rapid because of high [H
+
] 

concentrations, whereas it makes deprotonation of 4 (k-2) slow because of low [OH
-
] 

concentrations – likely slower than subsequent reduction so that TCE becomes “trapped” in 

the alkyl complex 4 (but can, in the absence of a reduction agent, still be recovered by P&T, 

see Figure 3). This can explain the small chlorine isotope effects observed at low pH, 

because no C-Cl bond cleavage is involved in the protonation. At high pH, in contrast, 

protonation of 2 is slower (by a factor of 10
6
 between pH 5 and 11), whereas deprotonation 

of 4 is faster (also by a factor of 10
6
 between pH 5 and 11) so that 2 can dissociate back to 

TCE (Figure D5). Subsequently, (sterically hindered) attack of cob(I)alamin can take place 

at the other, geminal (=CCl2) position of TCE to form 3 in a reversible reaction. Intermediate 

3, in turn, may eliminate chloride forming 7 and 8, as discussed above. Since all reaction 

steps prior to Cl
-
 elimination are reversible, the pronounced chlorine isotope effect of this C-

Cl bond cleavage can be observed in the substrate TCE at high pH.  

Slow reaction of chloroalkyl cobalamine complexes (Figure 3). The observation that 

reversibly formed chloroalkyl cobalamine complexes were only slowly further reduced 

(Figure 3b, Figure D2b) can be explained by the decreased reduction potential of titanium 

citrate at low pH.
146

 Furthermore,  Pratt and van der Donk suggested that the alkyl-complex 

must first convert from the preferred “base on” (E
0
 = -1.78 V vs NHE) to the “base off” 

configuration (E
0
 = -0.94 V vs NHE) to be reduced.

141
 In contrast, the observation that 

irreversibly formed cobalamin vinyl complexes were quickly further transformed (Figure 3a, 

Figure D2a) is consistent with predictions of  Pratt and van der Donk that their homolytic 

cleavage (0.27 V vs NHE
155

) is rapid leading to vinyl radicals and chlorovinyl anions 

(Scheme 2). This can explain the higher mass balance deficit at low vs. high pH, since more 

of the TCE was caught up in slowly reacting cobalamin alkyl complexes (Figure 3, Figure 

D2). 

Product distribution trends with pH (Figure 2g, h, Figure D2). According to Scheme 2 and 

Scheme D2, high pH favors the formation of cobalamin vinyl complexes 7 and 8 (Figure 3c, 

d). Scheme 2 further illustrates that their subsequent reaction can produce both chlorinated 

and non-chlorinated products as observed in Figure 2h (11, 12, 15 and 16). In contrast, low 

pH favors reversible formation of the alkyl complex, which only reacts to chlorinated 

products, again consistent with observations of Figure 3b. Scheme 2 also highlights that the 
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same products – cis-DCE (11) and trans-DCE (12) – are expected to origin from different 

possible intermediates (alkyl cobalamin complexes vs. radicals or carbanions) explaining the 

pH dependency of cis-DCE/trans-DCE ratios observed in Figure 2g. Finally, Scheme 2 

delineates how chlorovinyl-radicals 5, 6 or -anions 9, 10 can be formed from cobalamin 

chlorovinyl complexes. On the one hand chlorovinyl-radicals 5, 6 can react to cis- or trans-

DCE through reduction of a second electron, possibly provided from titanium citrate, and 

subsequent protonation. On the other hand the can form cis- or trans-DCE by abstraction of 

a hydrogen atom from surrounding molecules. This can explain why radicals could be 

trapped with d7-isopropanol in our and previous studies, where they were inadvertently 

interpreted as evidence of an initial single electron transfer mechanism.
79-81, 134, 155, 156

. The 

competing pathways of Scheme 2 can also explain why only a finite proportion of products 

from TCE carried the deuterium label from radical traps in a previous study
80

; the other part 

was likely formed via the addition-protonation pathway of Scheme 2 which does not involve 

radicals.  Finally, at lower pH the lifetime of these radicals (and, hence the probability of 

trapping them) increases with the decreasing reduction potential of titanium citrate
146

 

explaining why more deuterated dichloroethenes were trapped at pH 6.5 than at pH 9 (Figure 

D2c). In contrast, negligible amounts of trapped products - as observed for cis-DCE and VC 

by Glod et al. 
134

- would be expected if the reaction was completely dominated by the 

addition-protonation pathway.    

Hydrogen isotope effects (Figure 2d, Figure D1). Inverse hydrogen isotope effects were 

observed indicating that TCE with 
1
H reacted more slowly than with 

2
H. Such secondary 

inverse hydrogen isotope effects were previously observed in biodegradation of TCE 
38

 and 

are a hallmark of a change from sp
2
 to sp

3
 hybridization leading to a more cramped 

coordination environment around the C-H bond and thus stiffer bending vibrations 
95, 157

. 

Our observation that stronger inverse hydrogen isotope effects were observed at pH 6.5 (H = 

+130‰ ± 14‰) compared to pH 9.0 (H =+98‰ ± 6‰) are indeed consistent with a more 

cramped coordination environment in the transition state to cobalamin alkyl complexes as 

opposed to smaller inverse hydrogen isotope effects in the formation of carbanions. 

Therefore, also hydrogen isotope effects support the mechanistic picture of Scheme 2.  
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4.4.9. Implications for reactivity and product formation in biodegradation of 

chlorinated ethenes 

Our results suggest that the dual element (C, Cl) isotope plot of TCE (Figure 2) is a sensitive 

indicator of these competing pathways (addition-elimination at high pH vs. addition-

protonation at low pH) and may even allow estimating their relative contribution (Figure 

D6). When transferring this insight to data of PCE and cis-DCE, Figure 1c suggests that PCE 

is mainly degraded via an addition-elimination reaction, whereas cis-DCE reacts via the 

addition-protonation pathway. According to Scheme 2, the differences in reactivity – and, 

hence, the question why cis-DCE and VC are less reactive than TCE and PCE – may be 

traced back to cobalamin carbanions as key intermediates. PCE contains two 

dichlorovinylidene groups (=CCl2) giving rise to conformations analogous to intermediate 2, 

whereas cis-DCE contains two chlorovinylidene groups (=CHCl) groups leading to 

conformations like in intermediate 3. The addition-protonation pathway is consistent with 

the mechanism originally brought forward for cis-DCE and VC by Glod et al.
79

, whereas for 

TCE and PCE a single electron transfer mechanism has been favored until now 
83, 84, 135

. 

Notably, Scheme 2 can also explain why 1,1-DCE showed a thousand-fold higher reactivity 

and much higher proportions of trapped radicals than cis-DCE or trans-DCE in ref 
134

: unlike 

cis-DCE or trans-DCE, the compound 1,1-DCE contains a =CCl2 group, which makes it 

amenable to the addition-elimination pathway. Hence, in a similar way as recently suggested 

by Ji et al.
139

, this study could indeed bring forward evidence from multielement isotope 

analysis to pinpoint different reaction mechanisms of chlorinated ethenes with Vitamin B12 - 

even though we arrive at slightly different mechanistic picture involving an addition-

elimination pathway instead of a concerted nucleophilic substitution.  

 

4.4.10. Relevance for enzymatic and bacterial biodegradation of chlorinated ethenes 

This raises the question whether the same approach can be used to transfer mechanistic 

insight to real-world systems like enzymes or dehalogenating organisms. Can reaction 

mechanisms be compared even though cofactor-catalysis is much slower than with enzymes, 

although added Vitamin B12 exceeds environmental concentrations, and despite extreme pH 
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values? Theory predicts that comparable isotope effects are obtained as long as the manner 

and order of bond changes in the chlorinated ethene is similar – irrespective of reaction rates, 

or reaction partners. In other words, a reaction in solution at extreme pH may mimic 

protonation / deprotonation in an enzymatic pocket, whereas transformation at neutral pH 

may mimic an enzyme reaction in the absence of such a functionality. Still, intrinsic isotope 

effects may potentially be modulated by (i) the diffusion of substrates inside the enzyme 

core, (ii) interactions with amino acid residues, (iii) the position of the lower ligand of 

Vitamin B12 (base-on vs. base-off), as well as (iv) the necessity of products (i.e., the less 

chlorinated product and the chloride ion) to diffuse out of the enzymatic pocket.  

First insight on the influence of such complicating factors can be derived from a recent study 

by Renpenning et al. on carbon and chlorine isotope effects with the reductive dehalogenase 

(RDase) PceA from Sulfurospirillum multivorans 
36

. This PceA is one of the best 

characterized RDases to date. It contains a cave-like enzyme structure which introduces 

substrates in a specific orientation to the active center hypothesized to facilitate OS-SET 
84, 

126
. Isotope effects in PCE catalysis by the enzyme PceA were indeed much smaller than 

with vitamin B12 suggesting that diffusion into the enzyme channel was partially rate-

determining for this highly reactive substrate 
36

. Similarly small isotope effects were 

obtained with whole organisms by Badin et al. 
102

, whereas isotope effects with 

Desulfitobacterium sp. strain Viet1
101

 were fully expressed and agree perfectly with those of 

the present study (λ = 
13

C/
37

Cl = 3.8 ± 0.2 vs. λ = 3.9 to 4.2). Dual element isotope 

trends of PCE, finally, were slightly different in reaction with corrinoids that contained an 

axial base (nor-B12 ; cyano-B12, λ = 4.6 to 5.0), compared to corrinoids without 

(dicyanocobinamid , λ = 7.0) 
36

. 

In contrast to these differences observed with PCE, observed isotope effects of TCE are 

remarkably consistent in enzyme catalysis by PceA from Sulfurospirillum multivorans. Dual 

element isotope trends with pure corrinoids (both “nor-B12” and “norpseudo-B12) were 

similar to those of the present study and earlier investigations 
35, 38

 with λ values clustering 

between 3.7 and 4.5, confirming that the axial base does not play a decisive role. The 

corresponding λ values in enzymatic catalysis by PceA (both “nor-B12” and “norpseudo-B12), 

λ = 5.0 and 5.3, were indistinguishable within error from those of the corrinoids . Figure 4 

plots these experimental data together with the trends obtained in this study with Vitamin 

B12, and with isotope effect trends for OS-SET model reagents.  
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Figure 4. Trends of dual element isotope effects of TCE in enzymatic catalysis by PceA of 

Sulfurospirillum multivorans (data from Renpenning et al.
36

) compared to reaction with Vitamin B12 

at different pH (this study), dicyanocobinamid (data from Renpenning et al.
36

) and model reagents for 

outer sphere-single electron transfer (data from Heckel et al.
158

). 

 

Figure 4 illustrates that all isotope effect studies with corrinoids and enzymes share 

pronounced chlorine isotope effects, in contrast to non-existent chlorine isotope effects 

observed with aqueous outer-sphere single electron transfer agents 
158

. Based on this 

evidence, we have recently concluded that outer-sphere electron transfer is an exception 

rather than the rule in natural and engineered reductive dehalogenation reactions
158

, 

consistent with independent conclusions brought forward by Saveant and coworkers 
121

. This 

conclusion certainly applies to the mechanism of PCE and TCE with Vitamin B12 in this 

study, and Figure 4 suggests it should also apply to the reaction of TCE with PceA from 

Sulfurospirillum multivorans – despite recent evidence for an OS-SET 
126

. We, therefore, 

hypothesize that an OS-SET is not at work in the PceA of Sulfurospirillum multivorans, but 

favor instead an addition-elimination mechanism as laid out in Scheme 2.  

Still, we caution that Figure 4 expresses the degree to which C-Cl bond cleavage occurs in 

the rate-determining step of the reaction. In a similar way as the steep slope λ with vitamin 

B12 reflects the addition-protonation mechanism with little involvement of C-Cl cleavage, 
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the steep slope in the OS-SET mechanism reflects a stepwise mechanism where SET occurs 

into the * orbital of the chlorinated ethene so that subsequent C-Cl bond cleavage is 

decoupled. While absent in water, we observed that chlorine isotope effects could partly be 

recovered with OS-SET agents in organic solvents
158

. Hence, if the enzyme environment (i) 

keeps the reactants long enough together to reverse the ET before C-Cl bond cleavage and 

(ii) in addition, lets the majority of substrate molecules escape from the enzyme pocket as 

unreacted substrate even after the ET has occurred and has been reversed (otherwise the 

chlorine isotope effect of the transition state of C-Cl bond cleavage would not be observed!) 

this would still leave room for an OS-SET mechanism as hypothetical, but rather unlikely 

scenario.

4.5. Conclusion 

Pinpointing the reaction mechanism of reductive dechlorination of chlorinated ethenes in 

natural transformations is intrinsically difficult. For experiments with the enzymatic cofactor 

vitamin B12 this study combines evidence from reaction rates, product formation, isotope 

effects and trapped intermediates to bring forward a reaction mechanism which supports all 

available observations to date. Our results indicate that after forming an intermediate 

complex of vitamin B12 and a chlorinated ethene (PCE, TCE and cis-DCE) two reaction 

pathways are possible 1. addition-elimination or 2. addition-protonation. To answer the 

question why reductive degradation of chlorinated ethenes often stops at the stage of cis-

DCE or VC, the integrating mechanism of Scheme 2, therefore, bears the potential to 

provide consistent answers. Our experiments with TCE suggest that the chloroalkyl 

cobalamin intermediates of the addition-protonation pathway are of lower reactivity than the 

chlorovinyl cobalamin intermediates of the chlorovinyl cobalamin pathway offering a 

potential explanation for the persistence of the respective substrates (cis-DCE, VC) at 

contaminated sites. 

The question remains whether these characteristic trends of competing mechanisms 

(addition-elimination / addition-protonation) can also be identified in reductive 

dehalogenases, or real microorganisms. As discussed above, recently reported isotope effects 

in TCE transformation with the enzyme PceA from Sulfospirillum multivorans
36

, and similar 

trends with whole microorganisms
35, 38, 42, 101

 hold promise to bridge this gap, and they 
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suggest an addition-elimination mechanism. Conversely, further studies will be required to 

investigate whether first data on cis-DCE and VC transformation may potentially be 

indicative of an addition-protonation mechanism
100

. The characteristic dual element isotope 

trends of Figures 1 and 2 clearly highlight multiple-element isotope analysis as a new 

opportunity to bridge the gap and to demonstrate that a mechanism characterized in the 

reaction flask also occurs on the enzyme level in microorganisms – or at contaminated sites. 

Labelled compounds are not required since isotope analysis is conducted at natural isotopic 

abundance. Hence, the stage is set for studies in more complex systems such as whole 

proteins or microorganisms, to use multi element isotope effect measurements to probe for 

the mechanistic dichotomy – addition-elimination vs. addition-protonation – brought forward 

in this contribution.    

  



 

- 83 - 

 

 

 

 

 

 

5. 

 

General Conclusions 

 

 

Dechlorination reactions of chlorinated methanes and ethenes are important transformation 

processes in the environment, and it is essential to get a better understanding of the reaction 

mechanisms at work. Compound-specific Stable Isotope Analysis (CSIA) is an emerging 

approach, what can achieve this task, especially in combination with other analytical 

methods what was clearly illustrated in this thesis. 

In the first part, we introduced chlorine isotope analysis of tetrachloromethane and 

trichloromethane for the GC-qMS and GC- IRMS and created the first dual element isotope 

slope of trichloromethane degradation by ZVI (Chapter 2). Based on this method, chlorine 

isotope effects of trichloromethane in reaction with different reagents could be determined 

(Appendix A1). Dual element isotope plots allowed a clear distinction and interpretation of 

the prevailing reaction mechanisms and provided first reverence systems for future studies. 

Such information can be essential for decisive interpretation of field assessments, where the 

 values allow an estimation of the extent of degradation by using induced abiotic 

remediation strategies. Based on this method and the recently introduced hydrogen isotope 

analysis for chlorinated hydrocarbons the foundation is laid to get more insights into the 

abiotic and biotic degradation of chlorinated methanes. Recent studies already used carbon
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 isotope analysis to investigate trichloromethane degradation by Dehalobacter-containing 

subcultures, which were functionally and phylogentically almost identical and observed 

strongly varying carbon isotope enrichments (C (Dehalobacter strain UNSWDHB) = -4.3 

‰
159

; C (Dehalobacter strain CF) = -27.5 ‰
160

). The strong carbon isotope effects from 

Dehalobacter CF indicate a C-Cl bond cleavage in the rate determine step, corresponding to 

Torrentó et al (Appendix A1). Subsequently also pronounced chlorine isotope should be 

expected. In contrast, small carbon isotope effects from Dehalobacter UNSWDHB imply no 

C-Cl bond cleavage in the rate determining step. Therefore, a previous rate limiting process 

could be involved which masked the carbon and chlorine isotope effects, e.g. irreversible 

binding at the enzyme. However, information gained from one element is limited and cannot 

completely answer why these almost identical strains result in total different isotope effects. 

Hence, the introduced chlorine isotope analysis for trichloromethane could be the key to 

identify the cause of the different isotope effects and could reveal more insights into the 

reaction behavior of chlorinated methanes and these two strains. 

Identifying the reaction mechanism of chlorinated ethene degradation by vitamin B12 was 

another important goal of this thesis (Chapter 3 & 4). First, the absence of chlorine isotope 

effects was discovered by experiments of chlorinated ethenes with OS-SET reagents in 

combination with dual element isotope effect analysis. By comparing dual element isotope 

slopes of the OS-SET reactions with biodegradation and degradation by ZVI the OS-SET 

reaction was excluded as prevailing reaction mechanism for natural and engineered 

chlorinated ethene dehalogenation. Second, isotope analysis of degradation experiments with 

PCE and cis-DCE at different pH values revealed a different reaction mechanism for both 

substrates. Third, TCE reactions with vitamin B12 at varying pH value (pH value 5-12) 

exposed by isotope analysis a different reaction mechanism at high and low pH value. At 

last, UV-VIS and high-resolution mass-spectrometry disclosed reversible as well as alkyl 

and vinyl complex formation of the reaction of TCE and vitamin B12 at stochiometric 

amounts. Combining the isotopic and kinetic information of the TCE experiments with 

detection of intermediates enabled a more detailed interpretation of the results from CE 

degradation by vitamin B12 at different pH values. Finally, identifying an integrating 

reaction mechanism containing two pathways (1. addition-elimination 2. addition-

protonation) became possible. Experimental evidence revealed, that initial electron transfer 

or alkyl or vinyl complexes as crossroads of both pathways are inconsistent. In contrast, the 
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formation of cobalamin chlorocarbanions is supported as key intermediates, where chloride 

elimination produces vinyl complexes (explaining rates and products of TCE at high pH) and 

protonation generates less reactive alkyl complexes (explaining rates and products of TCE at 

low pH). By transferring these observations into biological systems it was hypothesized that 

enzymes which react only via addition-elimination can degrade PCE and TCE, however, 

they cannot degrade cis-DCE. Consequently, the reaction would stop at the step of cis-DCE. 

This observation provides a possible answer to the question: “Why does degradation often 

stop at the step of cis-DCE or VC?”  

However, beside these deep insights into the reaction mechanism of vitamin B12 with 

chlorinated ethenes, several questions which remain elusive: 

1. The reaction mechanism of VC. This thesis could provide reaction mechanisms of PCE, 

TCE and cis DCE degradation by vitamin B12. However, it still remains elusive whether 

the highly toxic VC is degraded by the addition-elimination or addition-protonation or 

totally different reaction mechanism? Glod et al.
134

 observed that corresponding to the 

reaction rate of cis-DCE, the rate of VC is decreasing with increasing pH value. 

Consequently, the addition-protonation might also be the underlying reaction 

mechanism. Measuring the isotope effects for VC is possible for carbon and hydrogen, 

however the decisive chlorine isotope effects analyzes is not feasible at the moment 

because there are no existing chlorine isotope standards for VC. Therefore, determining 

the intermediate formation as it was illustrated in Chapter 4 could be one way to identify 

the reaction mechanism of VC degradation by vitamin B12.  

2. The reaction mechanism of 1,1-DCE. Analogous to vinyl chloride the reaction 

mechanism for 1,1-DCE degradation is still not clear. On the hand first evidence of 

decreasing reaction rates with increasing pH value observed by Glod et al.
134

 as well as 

the energetic favored attack at the carbon atom with no chlorine atoms (H2C=) strongly 

indicate the addition-protonation as responsible reaction mechanism. On the other hand, 

high radical formation which is observed for 1,1-DCE degradation is opposing the 

suggested mechanism. Glod et al.
134

 proposed a possible reaction mechanism including 

steps which leave several questions: (a) possible elimination of chloride by the negative 

charge located at the same carbon atom? (b) the reaction rate is accelerating with 

decreasing pH, however no pH dependent step is involved in the suggested reaction 

mechanism). Here, also the non-existing chlorine isotope standards complicate the 
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disclosure of the mechanism. Hence, the determination of intermediates could also be 

helpful to reveal more of the 1,1.DCE degradation. 

3. The reaction mechanism in microorganism and enzymes. Another question remains 

whether the addition-elimination and/ or the addition-protonation are the prevailing 

reaction mechanism in microorganisms or enzymes. Therefore, transferring the CE and 

vitamin B12 results into biological systems has to be the next step to test our 

hypothesized reaction mechanisms. Pinpointing chemical reaction mechanisms in 

complex natural transformations is intrinsically difficult because reactivity trends are 

often not conclusive – organisms typically depend on microbial growth and enzyme 

expression rather than reflecting the biochemical reaction. Furthermore, product 

distribution is also not very helpful because generally only one dehalogenated product is 

observed (e.g. TCE  cis-DCE). Multi-element isotope effect analysis has possibility to 

bridge this gap because it allows comparison of complex biological systems with 

simplified chemical systems by forming dual element isotope plots from information of 

two or more elements. Consequently, reactions in more complex systems such as 

enzymes or organisms have to be the next step.  

Overall this work demonstrates the possibilities of CSIA what is already frequently applied 

in field assessments and since recent years as tool to identify reaction mechanism. However, 

the full potential of CSIA is still not used especially in organic and inorganic chemistry. In 

Chapter 3 and 4 we clearly illustrated, that isotopic measurement of multiple elements at 

natural abundance delivers important insights into the reaction mechanism of small 

molecules. However, this possibility is hardly used and strongly underestimated in organic 

and inorganic chemistry. Analyzing the KIEs of hydrogen by using molecules labeled with 

deuterium has already been crucial for mechanistic advances in C-H activation chemistry
161, 

162
 , the reverse oxidative addition

163
, hydrogen transfer reactions

164-167
, ß-elimination 

reactions
168, 169

, C-C coupling reactions (e.g. Sonogashira- , Heck reaction)
170-173

, 

cycloisomerization
174-176

 ,cycloadditions
177, 178

 and reactions of carbene complexes
179, 180

. 

However, several reaction mechanisms are still incompletely understood, in particular 

interactions of organic substrates with metal complexes (e.g. Sonogashira reaction which is 

one of the most important and widely used sp
2
–sp carbon–carbon bond formation reactions 

in organic synthesis 
181, 182

) or metal surfaces (Chapter 3). Beside isotopic information from 

hydrogen, the analysis of carbon, nitrogen and oxygen isotopes could provide important 
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insights whether reacting bonds are broken or not and if it’s a concerted or stepwise reaction 

mechanism, what is not always clear (e.g. oxidative addition
183

). This possibility is now 

available because analytical advances have made it possible to measure compound-specific 

isotope ratios at natural abundance what renders the application of labeled atoms redundant. 

Combining isotope analysis with frequently used analytical methods in organic chemistry 

such as kinetic analysis, NMR-, mass- or laser-spectroscopy owns great potential to get a 

deeper understanding of chemical reactions and can simplify their interpretation. Following, 

the stage is set to unleash the full potential of CSIA of multiple elements.  
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B. Supporting Information of Chapter 2 

B.1. Experimental section 

 qMs-1 Munich qMs-1 Munich qMs-2 Neuchâtel qMs-2 Neuchâtel 

 CCl4 CHCl3 CCl4 CHCl3 

Instrument 
manufacturer 

Agilent Agilent Agilent Agilent 

GC 7890A (Agilent) 7890A (Agilent) 7890A (Agilent) 7890A (Agilent) 

qMs  5975C qMS (Agilent) 5975C qMS (Agilent) 5975C qMS (Agilent) 5975C qMS (Agilent) 

m/z 119 & 117 83 & 85 119 & 117 83 & 85 

  most abundant 
fragments from 

fragment group II 

most abundant 
fragments from 

fragment group I 

most abundant 
fragments from 

fragment group II 

most abundant 
fragments from 

fragment group I 

EI (eV) 70 70 70 70 

Dwell time (msec) 70 70 50 50 

Flow (mL min) 1.4 1.4 1.2 1.2 

Split 1:10 1:10 1:20 1:20 

Column Vocol column (30 m x 
0.25 mm ID × 0.25 μm, 

Supelco) 

Vocol column (30 m x 
0.25 mm ID × 0.25 μm, 

Supelco) 

DB-5 column (30 m x 
0.25 mm ID × 0.25 μm, 

Agilent) 

DB-5 column (30 m x 
0.25 mm ID × 0.25 μm, 

Agilent) 

Temperature program start at 60°C (2 min), 

8°C/min to 165°C (0 

min), temperature ramp 
of 25°C/min to 220°C 

(1 min) 

start at 60°C (2 min), 

8°C/min to 165°C (0 

min), temperature ramp 
of 25°C/min to 220°C 

(1 min) 

start at 70°C (2 min), 

20°C/min to 230°C (0 

min) 

start at 70°C (2 min), 

20°C/min to 230°C (0 

min) 

Injection temperature 250°C 250°C 250°C 250°C  

Injection technique automated HS automated HS automated HS automated HS 

Injection vial 10mL (9ml Headspace 

+ 1mL liquid) 

10mL (9ml Headspace 

+ 1mL liquid) 

20mL (5ml Headspace 

+ 15mL liquid) 

20mL (5ml Headspace 

+ 15mL liquid) 

 

Agitator temperature 

 

40°C 

 

40°C 

 

60°C 

 

60°C 

Autosampler CombiPal (CTC 
Analytics) 

CombiPal (CTC 
Analytics) 

CombiPal (CTC 
Analytics) 

CombiPal (CTC 
Analytics) 

     

Peak integration ChemStation Integrator ChemStation Integrator ChemStation Integrator ChemStation Integrator 

Software ChemStation 

E.02.02.1431 

ChemStation 

E.02.02.1431 

ChemStation 

E.02.01.1177 

ChemStation 

E.02.01.1177 

Two-point calibration 

curve slope 

0.91 ±0.03 1.6 ± 0.2 1.06 ±0.02 1.8 ± 0.2 

m= number of x-y pairs 

of calibration curve 

30 30 25 52 

Concentration range 60-2600 µg/L 60-2400 µg/L 5-200 ug/L 10-840 ug/L 

Table B 1. Setup of GC-qMS-1 (Munich) and GC-qMS-2 (Neuchâtel)   
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IRMS IRMS 

  CCl4 CHCl3 

Instrument manufacturer Thermo Fisher Scientific Thermo Fisher Scientific 

GC Thermo Trace GC Thermo Trace GC 

IRMS  MAT 253 MAT 253 

m/z 49 & 47 49 & 47 

Flow (mL min) 1.4 1.4 

Split 1:10 1:10 

Column Vocol column (30 m ×0.25 mm ID × 

0.25 μm, Supelco) 

Vocol column (30 m × 0.25 mm ID × 

0.25 μm, Supelco) 

Temperature program start at 60°C (2 min), 8°C/min to 165°C 
(0 min), of 25°C/min to 220°C (1 min) 

start at 60°C (2 min), 8°C/min to 165°C 
(0 min), of 25°C/min to 220°C (1 min) 

Injection temperature 230°C 230°C 

   

 

Injection technique 

 

automated HS 

 

automated HS 

Injection vial 10mL (9ml Headspace + 1mL liquid) 10mL (9ml Headspace + 1mL liquid) 

Agitator temperature 40°C 40°C 

Autosampler PAS Technology PAS Technology 

Peak integration ISODAT 3.0 ISODAT 3.0 

Software ISODAT 3.0 ISODAT 3.0 

Two-point calibration curve slope 0.87 ±0.02 1.5 ± 0.2 

m= number of x-y pairs of calibration curve 20 20 

Concentration range 20-2600 µg/L 20-2400 µg/L 

Table B 2. Setup of GC-IRMS (Munich)  
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C. Supporting Information of Chapter 3 

C.1. Experimental section 

C.1.1. Materials & Methods 

C.1.1.1. Chemicals 

Chemicals used were tetrachloroethene (99.9%, Fluka and PPG Industries); trichloroethene 

(99.5% ACS grade, Dow Chemical and Sigma Aldrich), cis-dichloroethene (Dow Chemical 

and Sigma Aldrich); trichloromethane (Fluka and Alpha Aesar); glyme anhydrous (Sigma 

Aldrich); naphthalene (99%, Sigma Aldrich); pyrene (99%, Sigma Aldrich); sodium (99.9%, 

Sigma Aldrich); sodium formate (99%, Sigma Aldrich); sodium persulfate (98% Sigma 

Aldrich); sodium sulfide (Sigma Aldrich); graphene oxide (2mg/mL Sigma Aldrich); 

Tris(hydroxymethyl)-aminomethan (Roth); iron (Nano powder, Sigma Aldrich); hydrogen 

peroxide (Merck).   

C.1.1.2. Reactions in an Organic Solvent 

Reactions with Radical Anions of Naphthalene and Pyrene 

 For PCE and TCE six different stock solutions were prepared by dissolving neat chlorinated 

ethene in glyme (40 mL) to give concentrations between 20 mM and 49 mM (PCE) and 

between 22 mM and 56 mM (TCE). Naphthalene radical anion solutions were prepared 

using naphthalene (0.33 g, 2.5 mmol) dissolved in anhydrous glyme (20 mL) and sodium 

metal (0.083 g, 3.6 mmol) that had been cleaned on all sides so that it was shiny. The 

mixture was stirred for 2 hours in a glovebox (M. Braun, nitrogen atmosphere, less than 0.1 

ppm oxygen). The resultant solution was filtered through a glass fiber filter in the glovebox 

and brought to a final volume of 25 mL. The same procedure was used to prepare pyrene 

radical anion solutions from pyrene (0.73 g, 3.6 mmol,) dissolved in anhydrous glyme and 

sodium metal (0.070 g, 3.0 mmol). Since these reactions cannot be assumed to necessarily 

produce quantitative amounts of radical anions, the effective concentration of the radical 
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anions in solution was determined by test reactions, based on their reactivity with each of the 

chlorinated ethenes. 

Dechlorination Reactions 

Each reaction was performed in 10 mL reaction vials on a stir plate using 1 mL of a given 

chlorinated ethene stock solution. To start the reactions, the freshly prepared radical anion 

solutions were added at room temperature inside the glovebox with 1 mL glass syringes, 

using pre-calculated volumes according to the results of test reactions. The brightly colored 

radical anion solutions bleached immediately upon addition to the reaction vials, which were 

quickly capped with PTFE coated crimp-caps.  

According to the six different concentrations of the PCE and TCE solutions, each ratio 

resulted in a different extent of chlorinated ethene conversion. Each reaction was performed 

in duplicate, giving a total of twelve reaction solutions. Control reactions were prepared with 

an identical procedure, but with the addition of anhydrous glyme instead of radical anions to 

the chlorinated ethylene solution. For later concentration analysis, they served as 

corresponding “zero-conversion” concentrations for the respective conversion points. 

To enable headspace analysis of the chlorinated target compounds, aliquots of the completed 

reaction mixtures (0.5 mL) were added to deionized water (4.5 mL) so that compounds could 

partition from the aqueous phase into the headspace for headspace sampling. These solutions 

were distributed in portions of 1 mL into five headspace vials of 10 mL total volume for 

subsequent analysis, and closed securely with PTFE-coated crimp caps.  

 

C.1.2. Analytical Methods 

Concentration Measurements  

Aqueous samples were analyzed on an Agilent 7890A GC coupled to an Agilent 5975C 

quadrupole mass selective detector (Santa Clara, CA) equipped with a 30 m Vocol (Supelco) 

column of 0.25 mm inner diameter, with a film thickness of 1.5 µm operated with a He 

carrier gas flow of 1.6 mL/min. Automated headspace injections of 1 mL from 10 mL 

headspace vials containing 1 mL aqueous sample were carried out using a CombiPal 
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Autosampler (CTC Analytics). The injector temperature was 250 °C and the temperature 

program of the GC started at 40 °C for 2 min, was ramped at 10 °C min
-1

 to 80°C for 2 

minutes, then ramped again at 30 °C min
-1

 to 180°C and finally held at 180 °C for 1 min. 

Concentrations were calculated using a 10-point calibration curve.  

Stable Carbon Isotope Analysis  

Compound Specific Isotope Analysis (CSIA) for carbon was conducted by injection of 

headspace samples on a GC-IRMS system (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) consisting of a Trace GC with a PAL autosampler (CTC Analytics), 

coupled to a MAT 253 IRMS through a GC/C III combustion interface. The gas 

chromatograph was equipped with a 60 m DB624 column of 0.32 mm inner diameter 

(Agilent, Santa Clara, California). The GC program started at 70 °C (2 min), increasing at 30 

°C/min to 120 °C (9 min), and increasing at 30 °C/min to 220 °C (0 min). Delta values 

relative to the Vienna Pee Dee Belemnite (VPDB) international standard were evaluated by 

the instrument software against calibrated monitoring gas. The instrument isotope values 

were in a first step derived by the instrument’s software, where samples were evaluated 

relative to a monitoring gas in each run. External standards of PCE (
13

C of -28.0‰ ± 

0.2‰), TCE (
13

C TCE -27.1‰ ± 0.2‰), cis-DCE (
13

C of -24.9‰ ± 0.2‰) and CHCl3 

(
13

C of -48.4‰ ± 0.2‰) that had previously been characterized by EA-IRMS were run 

along with the samples as quality control. The resultant overall analytical uncertainty 2σ of 

carbon isotope measurements was ±0.5‰. The progress of dechlorination reactions was 

followed by evaluating the peak areas with respect to the “time zero” samples, to give the 

fractional conversion of reaction mixtures. 

Stable Chlorine Isotope Analysis  

Chlorine isotope analysis was performed according to a method adapted from Shouakar-

Stash et al. 
18, 19

. The measurements were conducted on a GC-IRMS system (Thermo 

Scientific, Waltham, Massachusetts, USA) consisting of a Trace GC that was connected to a 

MAT 253 IRMS with dual inlet system via a heated transfer line. The gas chromatograph 

was equipped with a 30 m VOCOL column (Supelco, Bellefonte, Pennsylvania, USA) with 

0.25 mm inner diameter, a film thickness of 1.5 µm and operated with a He carrier gas at 1.4 
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ml/min. The GC program for PCE started at 85 °C (8 min) and increased at 60 °C/min to 205 

°C (1 min). The GC program for TCE, cis-DCE and CF started at 50 °C (7 min), increasing 

at 60 °C/min to 70 °C (2.70 min) and at 80 °C/min to 140 °C (0.10 min). Instrument isotope 

values for chlorine measurements by IRMS were in a first step derived by the instrument’s 

software, where samples were evaluated relative to a monitoring gas in each run. External 

37
Cl values according to 

Bernstein et al. 
19

. The conversion to delta values relative to the international reference 

Standard Mean Ocean Chloride (SMOC) was performed by an external two-point calibration 

analyzing PCE, TCE, cis-DCE and CHCl3 standards. To form the regression for the 2 point 

calibration, the measured standard isotope values were plotted against the real isotope values 

of the standards. Afterwards, the measured sample values and standard values are corrected 

with the intercept and the slope of the regression. PCE standards (PCE – EIL -1 (Dow 

Chemicals) and PCE – EIL-2 (PPG Industries)) were used with a chlorine isotope signature 

(
37

Cl) of +0.29‰ and -2.52‰ 
36

; TCE standards (TCE – EIL -1 (Dow Chemicals) and TCE 

– EIL-2 (PPG Industries)) with a chlorine isotope signature (
37

Cl) of +3.05‰ and -2.7‰ 
19

; 

cis-DCE (cis-DCE -1 (Sigma Aldrich) and cis-DCE-2 (Chemos)) with a signature (
37

Cl) of 

0.07‰ and -1.52‰ (determined according to Holt et al.
24

 in the stable isotope laboratory of 

the University of Waterloo) and CHCl3 (CHCl3 -1 (Fluka) and CHCl3-2 (Alpha Aesar)) with 

a signature (
37

Cl) of -3.02‰ and -5.41‰. The analytical uncertainty 2σ of chlorine isotopic 

measurements was ±0.2‰. 
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C.2. Results and Discussion 

Control of the OS-SET reaction (CO2 radical anions) with PCE and sodium persulfate, but 

without sodium formate to exclude that isotope values were influenced by a parallel reaction 

of PCE with sodium persulfate 

 

 

Figure C1 (A) enrichment factors of carbon for the control experiment of PCE reaction with and 

without sodium formate, were derived from the logarithmic fit of the change of 13 C isotope values 

and the concentration divided through the concentration at time point zero. (B) Enrichment factors of 

chlorine were generated on the same way (C) Dual element isotope plot of PCE reaction with and 

without sodium formate  
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Figure C2 (A) Concentration vs time plot of the CO2 radical anion experiments with PCE, TCE, 

cDCE and CHCl3 (B) enrichment factors of carbon for the CO2 radical anion experiments for PCE, 

TCE and cDCE were derived from the logarithmic fit of the change of 13 C isotope values and the 

concentration divided through the concentration at time point zero (C) Enrichment factors of chlorine 

were generated on the same way 
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Figure C3 (A) Concentration vs time plot of the graphene oxide/sodium sulfide experiments with 

PCE at pH 2 and 7 (B) enrichment factor of carbon from the experiment with PCE at pH 7 and 2 (C) 

Enrichment factor of chlorine from the experiment with PCE at pH 7 and 2  
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Figure C4 (A) Plot illustrates the enrichment factor of carbon for the experiment of PCE with 

pyrene- and naphthalene radical anions in organic solvent (B) Carbon enrichment factor of the TCE- 

pyrene and naphthalene radical anion experiment (C&D) Chlorine enrichment factors for the reaction 

of PCE (C) and TCE (D) with pyrene- and naphthalene radical anions 

 

 

Figure C5 Concentration vs time plot of PCE degradation and TCE formation of the graphene 

oxide/sodium sulfide experiments at (A) pH 7 and (B) pH 2 
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D. Supporting Information of Chapter 4 

D.1. Materials & Methods 

D.1.1. Chemicals 

Vitamin B12 (≥98%, Sigma Aldrich), tris(hydroxymethyl)-aminomethane, 

titanium(III)chloride ca. 15% (Merck), sodium citrate tribasic dihydrate (Sigma Aldrich), 

sodium carbonate (Sigma Aldrich), sodium hydroxide (Sigma Aldrich), hydrogen chloride 

32wt. % (Sigma Aldrich), sodium phosphate dibasic (Sigma Aldrich), Disodium hydrogen 

phosphate dodecahydrate (Merck), deuterated water (Chemotrade), tetrachloroethene 

(99.9%, Fluka and PPG Industries); trichloroethene (99.5% ACS grade, Dow Chemical and 

Sigma Aldrich), cis-dichloroethene (Dow Chemical and Sigma Aldrich) 

 

D.1.2. Kinetics, isotope effects and product formation in dehalogenation of chlorinated 

ethenes by Vitamin B12 at different pH.  

The preparation of the Vitamin B12 degradation experiment was divided in three consecutive 

steps: Preparation of buffered chlorinated ethene solutions (solution 1). For the preparation 

of the stock solution 500 mL water and 27 mmol (54 mM) buffer was added to a beaker 

which was equipped with a stirrer. Depending on the desired pH value different buffers were 

used (TRIS buffer for pH 12-9; carbonate buffer for pH 8.5-6.5; phosphate buffer for pH 5.5-

5.0). Subsequently, the pH value was adjusted to the chosen pH with appropriate amounts of 

1 M HCl or 1 M NaOH. After the adjustment of the pH value, 495 mL of the solution were 

transferred to a 500 mL bottle which was also equipped with a stirrer and the solution was 

degassed with nitrogen. Subsequently, the degassed stock solution was transferred into an 

anoxic glovebox (MBRAUN; LABstar, Munich, Germany) with pure nitrogen atmosphere 

and the chosen chlorinated ethene was added.  

In the case of the PCE experiments 76 µL (0.74 mmol; 1.5 mM)  

For the TCE experiments 45 µL (0.5 mmol; 1.0 mM)  

For the cis-DCE experiments 37 µL (0.49 mmol; 1.0 mM)  
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Preparation of Ti(III)citrate solutions (solution 2). In parallel, a titanium citrate solution was 

prepared by adding titanium(III)chloride (~15%; 15 mL; 18 mmol; 1.18 M) to a 100-mL 

two-headed flask equipped with a stirrer. The solution was diluted with 30 mL of water and 

degassed with nitrogen resulting in an eventual concentration of about 400 mM.  During the 

preparation, the solution was kept the whole time under anoxic conditions. In the next step 

sodium citrate (9.8 g; 33.3 mmol; 740mM) was added to this solution together with 27 mmol 

(1.2 M) of the appropriate buffer. As mentioned above different buffers were used, 

depending on the desired pH value (TRIS buffer for pH 12-9; carbonate buffer for pH 8.5-

6.5; phosphate buffer for pH 5.5-5.0). Consequently, the pH was adjusted.  

Preparation of bottles containing Vitamin B12. 

After the preparation of the two solutions, Vitamin B12 was added to a 250-mL bottle, 

wrapped with aluminum foil and equipped with a stirrer and a mininert valve cap. 

Depending on the pH, different amounts of Vitamin B12 were added to the bottles to adjust 

the duration of the experiment:  

In the case of PCE 20 mg (0.015 mmol in 245 mL; 61 M) Vitamin B12 were added for each 

reaction, irrespective of pH.  

In the case of TCE 15 mg (0.011 mmol in 135 mL; 81 M) of Vitamin B12 were added for 

reactions at pH 12 and 11; 20 mg (0.015 mmol in 135 mL; 111 M) Vitamin B12 for 

reactions at pH 9.5, 9.0 and 8.5; 40 mg (0.03 mmol in 135 mL; 222 M) Vitamin B12 for 

reaction at pH 8.0, 7.5 and 7.0; 60 mg (0.044 mmol in 135 mL; 326 M) Vitamin B12 for 

reactions at pH 6.5, 5.5 and 5.0.  

For the radical trap experiments with TCE and d
7
-isopropanol 30 mg (0.022 mmol in 135 

mL; 163 M) Vitamin B12 and d
7
-isopropanol (1.5 mL; 20 mmol) were added.  

In the case of cis-DCE  80 mg (0.059 mmol in 135 mL; 437 M) were added for the reaction 

at  pH 6.5,  

Subsequently, aliquots of solution 1 were added to the 250-mL bottle with Vitamin B12: 

In the case of PCE, 230 mL of the PCE buffer solution were used 

In the case of TCE and cis-DCE 135 mL were used.  

Each reaction was started by adding 15 mL of solution 2. Final concentrations in the 

reaction mixtures were: 

In the case of the PCE experiments 1.4 mM (0.35 mmol) 

For the TCE experiments 0.9 mM (0.14 mmol)  
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For the cis-DCE experiments 0.9 mM (0.13 mmol)  

For PCE, samples of the reaction solution (0.5 mL) were removed at selected time points and 

injected into an 8 mL-vial containing a H2O2 solution (7 mL, 0.5 %) to stop the reaction. 

This protocol effectively quenched Ti(III) and destroyed the active form of Vitamin B12, 

while leaving chlorinated products unaffected. Also, the absence of a deficit in the mass 

balance indicated that no bias from additional by-product formation was introduced (see 

Figure S7). For TCE and cis-DCE samples were taken from the headspace through the 

Mininert Caps of the bottles in regular intervals with a pressure lock syringe. For all samples 

concentration, carbon- and chlorine isotope measurements were conducted (see below). 

 

D.1.3. Experiments to detect complex formation between Vitamin B12 and TCE by 

direct injection-mass spectrometry (DI-MS) and analysis of mass balance deficits 

Mass spectrometric detection. (The whole procedure was performed in a glovebox 

(MBRAUN; LABstar, Munich, Germany) under anoxic conditions). To directly detect alkyl- 

and vinyl complexes by direct injection-mass spectrometry (DI-MS), two 5 mL aqueous 

solutions of TCE labeled with two 
13

C atoms (2 µL; 0.011 mmol) were prepared at pH 11 

and 3 (see above). To avoid decomposition of complexes by excess reduction agent, titanium 

citrate was avoided, and Vitamin B12 was instead pre-reduced using elemental Zn. To this 

end, the oxide layers of Zn shavings (1g; 15.3 mmol) were removed with HCl, the solution 

was neutralized with NaOH and the Zn shavings were washed with water. Afterwards, 

Vitamin B12 (30 mg; 0.022 mmol) was dissolved in 12 mL H2O, the freshly cleaned Zn 

shavings were added and the solution was stirred for 12 hours to reduce cob(III)alamin to 

cob(I)alamin. For analysis by direct injection-mass spectrometry (DI-MS), six milliliter 

aliquots of this freshly prepared cob(I)alamin solution were added to each 12-mL vial, the 

vials were equipped with a stirrer, and the complex formation was started by adding 5 mL of 

the TCE solution to both vials. The samples for MS measurements were taken after 5 hours.   

Mass balance deficits. For analysis of mass balance deficits, the cob(I)alamin solution was 

prepared as mentioned above, with the only exception that 104 mg (0.076 mmol) Vitamin 

B12 were dissolved in 20 mL water. Afterwards, aliquots of 10 mL cob(I)alamin solution 

were added to two 40-mL vials, wrapped with aluminum foil and equipped with a stirrer and 

a mininert valve cap. To start the reaction 10 mL of an oxygen-free TCE stock solution (3.8 

mM; 17 μL in 50 mL) at pH 3 were added to the first 40-mL vial and 10 mL of an identical 
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stock solution at pH 11 were added to the second vial. In regular intervals two types of 

sample were removed at the same time: 0.1 mL headspace and 0.15 mL liquid samples. The 

headspace sample was analyzed by GC-MS immediately. The liquid sample was transferred 

into a 1 mL vial which already contained 0.8 mL oxygen free water to ensure anoxic 

conditions. Afterwards, the combined liquid sample was transferred into the purge and trap 

unit of the same GC-MS, purged for fifteen minutes and analyzed immediately after the 

headspace sample. Concentrations were calculated by preparing a 10-point calibration curve 

beforehand for each injection method (headspace and P&T, respectively).  

 

D.1.4. Experiments in deuterated water  

Reactions with deuterated water (99% purity) were conducted at pH 7.5 and 9. For the TCE 

stock solution (500mL; TCE: 40 µL; 0.44 mmol) deuterated water and 27 mmol buffer was 

used (pH 9 TRIS buffer, pH 7.5 carbonate buffer). To prepare the titanium citrate solution, 

the non-deuterated water in the titanium chloride solution (~15%; 15 mL) was carefully 

removed by heating under a nitrogen stream and replaced with deuterated water (45 mL). 

Sodium citrate (9.8 g; 33.3 mmol; 740 mM) was added, the pH was adjusted with Na2CO3. 

Subsequently, the same procedure was followed as described above. 

 

D.1.5. Analytical Methods  

Concentration Measurements 

Reactions in water were evaluated by GC/MS analysis with a manual injection of 0.1 mL 

head-space samples using a Pressure lock syringe. Samples were injected into an Agilent 

7890A GC coupled to an Agilent 5975C quadrupole MS. The column was a 60 m Q-Plot 

(Agilent, Santa Clara, California) column of 0.32 mm inner diameter operated with a helium 

carrier gas flow of 1.6 mL/min. The injector temperature was 250 °C and the temperature 

program of the GC started at 40 °C for 9 min, was ramped at 15 °C min
-1

 to 53°C for 2.7 

minutes, then ramped at 13°C min
-1

 to 134°C, ramped again at 20°C to 200°C and finally 

held at 200 °C for 23 min. Concentrations were calculated using a 10-point calibration curve. 

For the Purge and Trap experiments the Agilent 7890A GC with 5975C quadrupole MS was 
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coupled to a purge and trap concentrator Tekmar Velocity XPTTM (Teledyne Tekmar, 

Mason (Ohio), USA) and the samples were purged for 15 minutes 

 

Direct Aqueous Injection – High Resolution Mass Spectrometry Measurements 

Samples for complex formation were transferred with a syringe pump by direct injection into 

an Orbitrap high resolution mass spectrometer (HRMS) detector equipped with electrospray 

ionization (ESI-HRMS, Thermo Exactive; Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). Analyses of the reaction at low pH value were carried out in positive 

ionization mode and at high pH value in negative ionization mode. 

 

Stable Carbon Isotope Analysis 

For compound-specific isotope analysis (CSIA) of carbon, 0.1-1 mL headspace samples 

were manually injected through a Pressure lock syringe into a GC-IRMS system (Thermo 

Fisher Scientific, Waltham, Massachusetts, USA) consisting of a Trace GC coupled to a 

MAT 253 IRMS through a GC/C III combustion interface. The gas chromatograph was 

equipped with a 60 m Q-Plot column of 0.32 mm inner diameter (Agilent, Santa Clara, 

California). The GC program started at 40 °C for 9 min, was ramped at 15 °C min
-1

 to 53°C 

for 2.7 minutes, then ramped at 13°C min
-1

 to 134°C, ramped again at 20°C to 200°C and 

finally held at 200 °C for 23 min. Delta values relative to the Vienna Pee Dee Belemnite 

(VPDB) international standard were directly derived from the instrument software where 

calibrated monitoring gas was along with the samples. As quality control, external standards 

of PCE (δ13
C of -28.0 ±0.2‰), TCE (δ13

C TCE -27.1±0.2‰) and cis-DCE (δ13
C of -

24.9±0.2‰) that had been characterized by EA-IRMS were run along with the samples. The 

overall analytical uncertainty 2σ of carbon isotope measurements was ±0.5‰.  

 

Stable Chlorine Isotope Analysis 

Chlorine isotope analysis was performed according to a method adapted from Shouakar-

Stash et al. 
18, 19

. For chlorine isotope measurements 0.1-1 mL of headspace sample were 
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manually injected into the GC-IRMS system (Thermo Scientific, Waltham, Massachusetts, 

USA), using a Pressure lock syringe. The GC-IRMS consisted of a Trace GC that was 

connected to a MAT 253 IRMS with dual inlet system via a heated transfer line. The GC was 

equipped with a 30 m VOCOL column (Supelco, Bellefonte, Pennsylvania, USA) with 0.25 

mm inner diameter, a film thickness of 1.5 µm and operated with a He carrier gas flow of 1.4 

ml/min. The GC program for PCE started at 85 °C (8 min) and increased at 60 °C/min to 205 

°C (1 min). The GC program for TCE and cis-DCE started at 50 °C (7 min), increasing at 60 

°C/min to 70 °C (2.70 min) and at 80 °C/min to 140 °C (0.10 min). In the first step 

instrument chlorine isotope values were derived through the instrument’s software, where 

monitoring gas was measured against the samples in each run. Subsequently, these 

instrument isotope values δ37
Cl were subjected to an external two-point calibration relative 

to the international reference Standard Mean Ocean Chloride (SMOC) according to 

Bernstein et al.
19

 by daily measurements of external standards of PCE, TCE and cis-DCE. 

The PCE standards had a chlorine isotope signature (δ37
Cl) of +0.29‰ and -2.52‰; TCE 

standards a chlorine isotope signature (δ37
Cl) of +3.05‰ and -2.7‰ and cis-DCE standards 

a signature (δ37
Cl) of 0.07‰ and -1.52‰. The analytical uncertainty 2σ of chlorine isotopic 

measurements was ±0.2‰. 

 

Stable Hydrogen Isotope Analysis 

 

Compound-specific isotope analysis was performed according to a method adapted from 

Renpenning et al.
20

. For hydrogen isotope measurements 1 mL of headspace sample were 

manually injected into the GC-IRMS system (Thermo Scientific, Waltham, Massachusetts, 

USA), using a Pressure lock syringe. The GC-IRMS consisting of a Trace GC, coupled to a 

MAT 253 IRMS through a GC/C III combustion interface was operated with a pyrolysis 

module at 1400°C. A reactor filled with chromium was used in order to reduce the analyte to 

hydrogen gas without formation of HCl by-product 
20

. The gas chromatograph was equipped 

with a 30 m Vocol column of 0.25 mm inner diameter and a film thickness of 1.5 µm 

(Supelco, Bellefonte, Pennsylvania, USA). The GC program started at 50 °C (6 min), 

increasing at 25 °C/min to 100 °C (4 min), and increasing at 30 °C/min to 140 °C (1 min). 

Analogous to chlorine isotope measurements, hydrogen isotope values were in a first step 
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derived by the instrument’s software, where samples were evaluated relative to a monitoring 

gas in each run. Two external standards of TCE (
2
HTCE 1 = 459‰ ± 5.0‰; 

2
HTCE 2 = -

390‰ ± 5.0‰) were run along with the samples as quality control and for a two-point 

calibration. Standard isotope values had previously been characterized using a GC-IRMS 

and two organic reference materials
19, 20

. The resultant overall analytical uncertainty 2σ of 

hydrogen isotope measurements was ±5.0‰.  

 

D.2. Results and Discussion 

 

 

Figure D1. (a, b) enrichment factors of carbon and hydrogen for the for the reaction of TCE with 

Vitamin B12 at pH value 6.5 and 9 were derived from the logarithmic fit of the change of 
13

C/ 
2
H 

isotope values and the concentration divided through the concentration at time point zero. 
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Figure D2. (a, b) Concentration-time plots of the reaction of TCE with Vitamin B12 at pH 11 and 

6.5 (c) Incorporation of deuterium in radical trap experiments with d
7
-isopropanol gives evidence of 

more dichlorovinyl radicals at steady state at pH 6.5 compared to pH 9. 
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Figure D3. UV-Vis spectra of complex formation at pH value 3 and 11 
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Figure D4. Mass spectra give evidence of cob(II)alamin vinyl- (5, 6) and alkyl-complexes (4) in 

stoichiometric reaction of TCE with pre-reduced Vitamin B12. Mass spectra of the reaction of 

double 
13

C-labeled TCE with Vitamin B12 at pH value 11 (panel a, measurement in double negative 

mode) and 2 (panel b, measurement in double positive mode). [Co
x
] stands for cob(x)alamin, where x 

is the oxidation state. [Co
x
]+CuHvClw stands for alkyl-, vinyl- and acetylene complexes of Vitamin 

B12, whereas [Co
x
]-NH2 represents cob(x)alamin from which a NH2 group of the porphyrin ring was 

eliminated by fragmentation in the mass spectrometer. Blue boxes are drawn around Co(III) 

complexes, green boxes around Co(II) complexes and red boxes around Co(I) species (only Vitamin 
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B12, no complexes). Dashed or solid boxes do not have a specific meaning, but are drawn to better 

distinguish peak multiplets of different structures. Note that the spectra are recorded in double 

positive or double negative mode so that a difference in m/z of 0.5 corresponds to a difference in one 

atomic mass unit. 
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Scheme D1: The reaction scheme illustrates the attack of cob(I)alamin at the vicinal and geminal position with subsequent protonation for both pathways and 

possible product formation (endmember for low pH value) 
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Scheme D2: The reaction scheme illustrates the attack of cob(I)alamin at the vicinal and geminal position with subsequent elimination of chloride for both 

pathways and possible product formation (endmember for high pH value) 
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Figure D5. Rate determining step of the addition-protonation pathway changes with the pH value 

 

 

Figure D6. Proportional distribution which pathway is chosen is calculated using the chlorine 

enrichment of cis-DCE and the changes of chlorine isotope values for each reaction. 

 

The calculation of the proportional distribution which pathway is chosen is based on the 

assumption that PCE is only degraded via addition-elimination and cis-DCE only via 

addition-protonation. Further, to achieve a comparison of chlorine isotope effects between 

PCE, TCE and cis-DCE on an equal  basis, the PCE and cis-DCE isotope enrichment factors 

(


Cl) were corrected for the effect of non-reacting positions and intramolecular 

competition
101

 as follows. Since a primary position-specific chlorine isotope effect is 

“diluted” in the molecular average according to the number of Cl atoms (n = 4 in the case of 
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PCE (C2Cl4), n=3 in the case of TCE (C2HCl3) and n = 2 in the case of cis-DCE (C2H2Cl2)
22

, 

the chlorine isotope enrichment factor of the PCE reduction at pH 11 (


Cl = -4.2 ‰) was 

multiplied by 4/3 (


Cl (PCE adjusted) = -5.6 ‰) and for cis-DCE reduction at pH 6.5 

(


Cl = -1.5 ‰) by 2/3 (


Cl (cis-DCE adjusted) = 1.0 ‰). The calculated enrichment 

factors would be observed when TCE is only degraded via the addition-elimination or 

addition-protonation pathway.  

The proportional distribution is calculated by the following equations.   

 

𝜀𝐶𝑙(𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 − 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) = 𝜀𝐶𝑙(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) − 𝜀𝐶𝑙 (𝑐𝑖𝑠 − 𝐷𝐶𝐸 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑)  (1) 

%(𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 − 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) =
𝜀𝐶𝑙(𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛−𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

𝜀𝐶𝑙(𝑃𝐶𝐸 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑)−𝜀𝐶𝑙(𝑐𝑖𝑠−𝐷𝐶𝐸 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑)
   (2) 

%(𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 − 𝑝𝑟𝑜𝑡𝑜𝑛𝑎𝑡𝑖𝑜𝑛) = 100% − %(𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 − 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛)   (3) 

 

Here 


Cl (measured) is the total chlorine enrichment factor, which is presented in Figure 

2b (e.g. at pH 6.5:  -3.2 ± 0.2) and 


Cl (addition-elimination) is the chlorine enrichment 

part of the addition-elimination pathway.  

Strictly speaking, the proposed correction only works if an isotope effect occurs in only one 

of several molecular positions (for example, in the case of a primary isotope effects if 

secondary isotope effects at other positions are absent, or in the case of a secondary isotope 

effect if it occurs in only one position). Since this cannot necessarily be taken for granted – 

especially in the case of cis-DCE – the calculations proposed here must be considered as 

tentative approximation.  
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Figure D7. (a, b, c) Concentration-time plots of the reaction of PCE with Vitamin B12 at pH 11, 9 

and 6.5  
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Abbreviations 

 

%  ....  .....................................  per centum (Latin) – percent; parts per hundred 

‰  ......................................... pro mille (Latin) – per mil; parts per thousand 

µg .......................................... microgram; 1µg = 1·10
-6

 g 

µL ......................................... microliter; 1 µL = 1·10
-6

 L 

µmol ...................................... micromole; 1 µmol = 1·10
-6

 mol 

AKIE ..................................... Apparent Kinetic Isotope Effect 

CAS ...................................... Chemical Abstracts Service 

CCl4 ...................................... tetrachloromethane 

cDCE .................................... cis-dichloroethene 

CEs ....................................... Chlorinated Ethenes 

CH4 ....................................... methane 

CHCl3 ................................... trichloromethane 

CH2Cl2 .................................. dichloromethane 

CH3Cl ................................... chloromethane 

cm ......................................... centimeter; 10·10
-2

 m 

CMs ...................................... Chlorinated methanes 

CSIA ..................................... Compound-specific Stable Isotope Analysis 

d ............................................ day 

DFT ....................................... density functional theory 

DOI ....................................... Digital Object Finder 

Dr. rer. nat. ............................ doctor rerum naturalium (Latin) – Doctor of Natural Science 
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Dr. ......................................... Doktor (German) – Doctor, equivalent to PhD 

e.g. ......................................... exempli gratia (Latin) – for example 

EA ......................................... Elemantal Analysis 

EIE......................................... equilibrium isotope effect  

et al. ....................................... et alii (Latin) – and others 

FID ........................................ Flame Ionization Detector 

g ............................................. gram; 1 g = 1·10
-3

 kg 

GC ......................................... Gas Chromatography  

GC-qMS ................................ Gas Chromatography – quadropol Mass Spectrometer 

h ............................................. hour; 1h = 60 min 

HPLC .................................... High Performance Liquid Chromatography  

IS-SET ................................... Inner-Sphere Single Electron Transfer 

IRMS ..................................... Isotope Ratio Mass Spectrometry  

K ............................................ Kelvin 

kg ........................................... kilogram 

KIE ........................................ kinetic isotope effect 

L ............................................ Liter 

LC .......................................... Liquid Chromatography  

M ........................................... molar; 1 mol·L
-1

 

mg .......................................... milligram; 1 mg = 1·10
-6

 kg 

min ........................................ minute; 1 min = 60 s 

mL ......................................... milliliter; 1 mL = 1·10
-3 

L 

mM ........................................ millimolar; 1 mM = 1·10
-3

 M 

mmol ..................................... millimol; 1 mmol = 1·10
-3

 mol 
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mol ........................................ mole 

MS ........................................ Mass Spectrometry  

m/z ........................................ ratio of molecular (or atomic) mass to the charge number of the 

ion 

NMR ..................................... Nuclear Magnetic Resonance Spectroscopy 

OS-SET ................................. Outer-Sphere Single Electron Transfer 

P&T ...................................... Purge and Trap 

PCE ....................................... tetrachloroethene 

pH ......................................... potential Hydrogenii (Latin) – decimal logarithm of the 

reciprocal of the hydrogen activity in water 

pKa ........................................ logarithmic from of the acid dissociation constant Ka; pKa = -

log10 Ka 

ppm ....................................... parts per million; 1 ppm = 1·10
-6

 

ref .......................................... reference      

rpm ........................................ rounds per minute 

s ............................................. second 

SIM ....................................... Selected Ion Mode 

TCE ....................................... Trichloroethene 

UV ........................................ ultraviolet 

VC ......................................... vinyl chloride 

vs. .......................................... versus (Latin) – compared to; against 

V-PDB .................................. Vienna PeeDee Belemnite 

V-SMOC ............................... Vienna Standard Mean Ocean Water 

ZPE ....................................... zero-point energy 
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ZVI ........................................ zero valent iron 
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