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1.	Introduction		

The most common primary brain tumours are gliomas which originate from glial 

brain cells. The latest World Health Organization (WHO) classification from 

2007 of gliomas includes the following histological types (1):  

 Grade 1: subependymal giant cell astrocytoma and pilocytic astrocytoma,  

 Grade 2: pilomyxoid, diffuse astrocytoma and pleomorphic 

xanthoastrocytoma  

 Grade 3: anaplastic astrocytoma  

 Grade 4: glioblastoma, giant cell glioblastoma and gliosarcoma.  

The grade 4 neoplasms are characterized by microvascular proliferation and 

necrosis (1). The treatment management of the patients is mainly dependent on 

the histopathological grade, which determines the patient’s response to therapy 

as well as the prognosis. In contrast to patients with WHO grade 2 tumours, 

who usually survive longer than 5 years (1), the prognosis in patients with high-

grade gliomas (WHO grade 3 and 4) still remains poor. The standard 

therapeutic regimes in these patients include concomitant adjuvant radiotherapy 

(2) and chemotherapy. Among the available chemotherapeutic agents, 

temozolomide is the most widely used and its impact on the median survival in 

patients with glioblastoma has been reported to be 14.6 months while the 

median progression-free survival was only 6.9 months (3). Other prognostic 

criteria next to histological grade are tumour volume, localization, age at 

diagnosis, sex, gene expression (4, 5), Karnofsky Performance Score (KPS) 

(6), radiological contrast enhancement as indication of disrupted blood brain 

barrier (BBB) (7) and the extent of surgery and radiation dose (8). Small tumour 

size and more extensive tumour resection are associated with better survival. 

(6, 9) For this reason and because of the risk of sampling error, an open 

resection is generally preferred rather than stereotactic biopsy if age, tumour 

type and localization of the lesion allow for it. If an invasive tumour is located in 

a sensitive area (for example in the brain stem), an extensive and complete 

tumour resection in most cases cannot be guaranteed. Therefore both the time 
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to tumour recurrence and death is shorter than for patients with tumours located 

in an area like the cerebellum which allows complete resection without 

damaging brain function in a great extent. (6) Younger age at diagnosis of a 

glioblastoma has been announced as an independent factor with improved 

survival outcome (6, 9). Not only do glioblastomas appear more often in male 

patients, they also have a poorer survival rate than in female patients (10). Sun 

et al. showed that the cause of that observation lies in the retinoblastoma 

protein, which reduces cancer risk and is less active in male brain cells than in 

female brain cells (11). In glioblastomas MGMT (O6-alkylguanine 

deoxyribonucleic acid alkyltransferase) promotor gene methylation is an 

important prognostic factor, since is determines the response to temozolomide 

chemotherapy (12). If the MGMT promotor is methylated, it is inactive, thus the 

DNA (deoxyribonucleic acid) repair enzyme cannot be produced. If the 

malignant cell has contact to temozolomide, which damages the DNA, it cannot 

repair itself and dies. The Karnofsky performance score is a scale running from 

100 (no complaints) to 0 (death) and was designed in order to quantify cancer 

patients’ ability to manage daily life. It considers the degree of assistance a 

patient needs and is therefore also used as a measure of quality of life. 

Generally, a higher score correlates with long progression free survival (13, 14). 

Patients with high grade gliomas face typical symptoms such as fatigue, 

uncertainty about the future, motor dysfunction, drowsiness, communication 

deficit and headache (15). Some symptoms are associated with the increased 

intracranial pressure such as nausea and vomiting, headache, fatigue, seizures 

and anorexia. Other symptoms derive from therapy itself such as fluid retention, 

weight gain, muscle weakness, osteoporosis and reduce of neurocognitive 

function (15-17) from corticosteroids, which are used to decrease intracranial 

edema. Radiotherapy causes symptoms like hair loss, fatigue, somnolence and 

decrease of neurocognitive function (18). Combination of radiotherapy with 

temozolomide leads to increased vomiting, anorexia, constipation and fatigue 

(19). Indeed, patients who respond to temozolomide report an improvement of 

quality of life (19). Of course the results of neurological damage like motor 
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deficits, speech or visual difficulties have an effect on disease burden, but 

patients suffer even more from neuropsychiatric and neurocognitive symptoms 

like personality changes, mood disturbances or decrease of concentration (15). 

Patients with high grade gliomas report at time of recurrence greater 

neurological deficits and suffer more often from visual problems, pain and 

cognitive deterioration. The latter precede radiographic evidence of progression 

by almost 6 weeks (20). Since patients with recurrent gliomas carry a higher 

symptom burden compared to patients with newly diagnosed gliomas (15), the 

time between first diagnosis and tumour recurrence is essential for these 

patients. Holding in mind the above mentioned side effects of therapy and their 

influence on quality of life, possible therapy has to be carefully balanced with 

patients’ prognosis of progression free survival. The investigation of the 

prognostic value of a non-invasive imaging technique is therefore of great 

interest for therapy decisions.  

Conventional magnetic resonance imaging (MRI) has been the reference 

imaging modality to distinguish between the different types of gliomas. Low-

grade gliomas are typically well demarcated and show high signal intensity on 

T2-weighted imaging, low signal intensity on T1-weighted imaging and usually 

no contrast-enhancement. Anaplastic astrocytomas share features of both 

diffuse astrocytoma and glioblastoma, possibly gadolinium enhancing, and they 

usually show some mass effect. Glioblastomas are typically irregularly shaped 

enhancing masses with diffuse borders and infiltrating outliers (Figure 1). They 

usually include necrotic parts and cysts (21).  
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Nevertheless, conventional magnetic resonance (MR) neuroimaging may still 

fail to distinguish WHO grade 1-2 from 3-4 tumours, a shortcoming that carries 

obvious therapeutic implications. Cofounding perifocal oedema poses also a 

diagnostic challenge since it is impossible to differentiate it from infiltrating or 

relapsing tumour tissue, either at the baseline diagnosis or during surveillance. 

Such drawbacks of conventional MRI have been partly overcome by advanced 

MRI techniques including mainly tissue perfusion imaging. Perfusion MRI is not 

grounded on the strict definition of perfusion as measure of the delivery of 

nutritional agents via blood to brain tissue parenchyma per unit per minute (2), 

but it encompasses several perfusion surrogates such as cerebral blood volume 

(CBV), cerebral blood flow (CBF), mean transit time (MTT) and contrast agent 

leakage. These perfusion parameters may be estimated by means of T1-, T2*- 

weighted dynamic contrast-enhanced acquisitions as well as by arterial spin 

labelling (ASL). 

Figure 1: MRI of a patient with right temporal glioblastoma.  
(A) shows the FLAIR sequence of a right temporal glioblastoma (indicated with white 
arrows) with peritumoural oedema (blue arrows), which indicates typical infiltration. (B) 
shows the contrast-enhanced T1-weighted image. It demonstrates strong 
enhancement of the tumour mass with central necrotic parts (white arrows) which hints 
of blood brain barrier disruption and is also a typical feature of glioblastomas.  
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1.1	T2*‐weighted	dynamic	susceptibility	contrast‐enhanced	MRI		

T2*-weighted DSC MRI has been utilized in neuro-oncology to assess the 

degree of angiogenesis and BBB-disruption in gliomas, which is an important 

feature for tumour grading (22, 23), as well as a prognostic factor to therapy 

response and survival (24, 25). The technique is based on the rapid injection of 

gadolinium chelates with high magnetic susceptibility through a peripheral vein. 

Given a faultless BBB, the contrast agent stays due to its size and low 

lipophilicity in the intravascular space. Thus, DSC imaging can be used to 

determine the integrity of the blood brain barrier and the degree of 

neovascularity, which often refers to high-grade gliomas. DSC MRI provides 

different perfusion-related parameters such as relative cerebral blood volume 

(rCBV), relative cerebral blood flow (rCBF), leakage of the contrast agent in the 

extravascular space, MTT of the contrast agent in the tissue of interest and k1. 

Leakage refers to the quantity of the extravasated contrast agent in case of 

disrupted BBB and k1 is the gadolinium transfer constant into the extravascular 

space being similar to the permeability of the vessel wall.  

rCBV has been the most broadly examined perfusion parameter. The existing 

evidence suggests that it is superior to other perfusion parameters in predicting 

tumour grade (22) and it shows the best correlation to histopathologic grading 

(23). On the other hand, rCBV has also several limitations such as providing 

relative instead of absolute quantification and being prone to susceptibility 

artefacts. In case of severe disruption of the BBB, rCBV may be underestimated 

(26) and it should be a posteriori corrected for the contrast extravasation (27).  

For the assessment of rCBF by DSC imaging, an arterial input function (AIF) is 

necessary and it usually refers to the vessels in the circle of Willis. To address 

the lack of standardisation and suboptimal technique performance due to 

inconsistent manually selected AIF (28), the latter can be automatically set by 

implemented robust software algorithms. Even if advanced post-processing 

(including local arterial input functions) is applied, there are some disturbing 

factors left, which prohibit an accurate registration of the AIF time integral and 
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thus, accurate quantification (29). These factors include partial volume effects, 

arterial signal saturation at peak concentration, large vessel signal displacement 

during bolus passage and different contrast agent responses in arterial blood 

and tissue (30). 

Compared to other perfusion techniques like ASL, the inherent advantage of 

DSC technique resides in the increased signal from arterioles and capillaries as 

well as from larger vessels leading to a clinically sufficient signal to noise ratio 

(SNR) (31-33).  

1.2	Arterial	spin	labelling		

ASL is in contrast to DSC MRI a completely non-invasive imaging technique, 

which requires no exogenously administered intravascular contrast agent. 

Instead of that, the spins in the patient’s own blood are used as an intrinsic 

tracer, which is magnetically labelled by means of a specific MR pre-pulse, 

before it enters the examined tissue volume (34). This technique offers absolute 

quantification (compared to the DSC MRI based relative one) of brain perfusion 

(in terms of blood flow) and is especially valuable for patients who need multiple 

scanning, e.g. for tumour therapeutic monitoring. Moreover, patients with high-

risk of nephrogenic systemic fibrosis (NSF) (35), children and patients whose 

veins are unsuitable for contrast injections with high flow rate can benefit from 

the non-gadolinium-based ASL-technique. In addition, leaky immature tumour 

vessels, who may challenge the post-processing algorithms of DSC MRI 

method leading to approximations of the tracer kinetic behaviour, do not pose a 

relevant problem for the ASL technique, which more importantly does not rely 

on the AIF estimation (28). One disadvantage of ASL compared to DSC MRI is 

the worse signal-to-noise ratio (36). Thus, ASL acquisitions have to be lengthy 

in order to compensate for it. Moreover, underestimation of ASL-based rCBF 

may occur in regions with delayed labelled blood arrival (37), when labelled 

blood might not have completely reached the parenchyma up to the time of 

image acquisition. This sensitivity of ASL to the post labelling delay is relevant 
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for the perfusion estimation in elderly patients with lower/prolonged blood 

ejection fraction and cerebrovascular disease (28). Adversely, slow blood transit 

time may artificially increase the signal in the proximal arteries, which may be 

erroneously interpreted as neoplastic vessels in tumour patients (28) and may 

lead to biased perfusion quantification. This drawback has been largely 

overcome by crusher gradients used to suppress the signal from the slowly 

moving spins in the large arteries.  

The ASL measurement is typically conducted at a particular inversion time, 

which is approximately 1200 ms at 1.5T and 1600 ms at 3T based of the T1 

time decay of magnetically labelled blood (38). This selected inversion time is 

related to normal rather than tumourous brain tissue. At low inversion times the 

labelled spins are mainly located in arterial vessels. In order to achieve accurate 

measurements, an adequate post labelling delay time about two seconds is 

fundamental to allow the spins to completely enter the grey matter (39). Even 

longer inversion times are needed for white matter. Because of the longitudinal 

relaxation, the magnetization of the labelled bolus decreases at very late 

inversion times. Thus, higher inversion times might be of benefit, but this would 

also lead to a decreased SNR caused by the rapid decay of the ASL-measured 

perfusion signal over time. In light of these limitations, other authors have 

suggested that the ASL-derived intratumoural signal intensity depicts tumour 

circulation but not tumour perfusion and should be more precisely called 

“normalized vascular intratumoural signal intensity” (40). 

1.3	Background	and	purpose		

On a comparative basis, previous studies have shown that DSC MRI and ASL 

yield comparable perfusion values in healthy brain tissue (31, 41) as well as in 

brain tumours (27, 28, 42, 43). Up to date, the ASL-derived CBF estimates have 

initially demonstrated ability to distinguish between high- and low-grade gliomas 

(28, 44), but they have not been widely used for this purpose as DSC MRI 

derived rCBV. Adding to this, the prognostic value of the ASL-derived CBF 
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compared to the DSC-derived rCBF and rCBV has been less intensively 

investigated, yet. But since ASL holds distinct advantages over DSC MRI, the 

purpose of this study was to examine whether ASL-derived CBF is comparable 

or even superior to DSC-derived perfusion-related parameters, including rCBF, 

rCBV and gadolinium leakage to assess the time to recurrence in patients with 

high-grade gliomas. Secondarily, the intention was to compare ASL- and DSC-

derived CBF values in the same population and examine whether these values 

may be used in an interchangeable way. 
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2.	Materials	and	Methods		

2.1	Patients		

From February 2010 to March 2013 69 patients with histologically verified high-

grade gliomas could be included in this study. These patients underwent their 

MRI’s out of clinical routine and were retrospectively collected. Among were 39 

men and 30 women. Their median age was 53 years ranging from 23 to 79 

years. The median KPS was 90, ranging from 40 to 100. Among the gliomas 

were 59 WHO grade IV and 10 WHO grade III gliomas. The patient cohort was 

confined to high-grade gliomas to exclude any possible impact of the current 

histopathological grading system. The same therapy scheme was used for all 

patients: Tumour resection where possible following adjuvant chemoradiation 

according to Stupp protocol (3). If tumour resection is a reasonable part of 

therapy gets individually discussed and determined in weekly tumour boards 

with specialists from neurosurgery, neuroradiology, neurology and 

radiooncology.  Material for histological verification was gained through tumour 

resection in 56 patients or stereotactic biopsy targeted by T1-weighted contrast 

enhancement or positron emission tomography (PET) data in 13 patients. The 

inclusion and exclusion criteria are summarised below (30): 

Inclusion criteria 

1) Histologically confirmed WHO Grade 3-4  

2) DSC and ASL MR imaging previous to surgery and onset of therapy  

3) Adequate follow-up of patients for at least 6 months after completion of 

adjuvant chemoradiation according to Stupp protocol (3)  

4) Histological verification of any tumour recurrence  

Exclusion criteria 

1) Any contraindication to gadolinium or MR imaging administration 

2) Imaging artefacts affecting any post-processing  
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3) Dropout of therapy 

4) Dropout of follow-up 

Twenty-two subjects showed significant mass effect in terms of midline shifting 

or considerable displacement of the adjacent healthy brain structures. They 

received 12–18 mg dexamethasone intravenously per day for up to two days 

prior to surgery. Among ten patients underwent MR imaging one day after 

initiation of the glucocorticoid therapy. This study was approved by our local 

ethics committee before any action on patients was taken. The ethics 

committee’s vote is available under the reference number 27/2010B01. In 

addition all patients gave informed consent. (30) 

2.2	Image	data	acquisition		

Conventional MRI examinations were performed on 1.5T (Magnetom Aera; 

Siemens Healthcare AG, Erlangen, Germany) and 3T MRI scanners (Trio Tim; 

Siemens Healthcare AG, Erlangen, Germany), using a 12- or 32-channel head 

coils, respectively.  

For the evaluation of brain tumours the standard clinical MRI protocol was used 

consisting of T2-weighted turbo-inversion recovery-magnitude, fast Spin Echo 

(FSE) T2-weighted, diffusion weighted imaging and 3D T1-weighted gradient-

echo sequences before and after i.v. contrast medium application (0.1 ml/kg 

body weight of a gadolinium-based contrast agent called Gadovist® from Bayer 

Schering AG, Berlin, Germany). 

2D-ASL was performed through a pulsed ultrafast echo planar imaging 

sequence with a single subtraction. The applied technique is called quantitative 

imaging of perfusion using a single subtraction, version II, (QUIPS II a. k. a. 

Q2TIPS) and both a thin-slice TI1 periodic saturation and a proximal inversion 

with control for (TR) off-resonance effects (PICORE) tagging scheme was used. 

QUIPS II is a modification of pulsed ASL, which decreases the sensitivity to 

blood transit-times by applying saturation pulse to the tagging region after the 
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inversion pulse and before image acquisition. In this way the trailing edge of the 

tagged bolus gets cut off and a sharply defined blood bolus is produced (45). 

For a more detailed description of this technique the reader is referred to 

previous work from Wong et al. (46). Following are the ASL imaging parameters 

for 3T: voxel size = 3.75 x 3.75 x 5 mm, slice thickness = 3 mm, intersection 

gap = 1 mm, T1 = 700 msec, saturation stop = 1600 msec, T2 = 1800 ms, 

measurement repetitions = 60. The remaining ASL imaging parameters are 

summarized in Table 1. In order to suppress the intravascular signal and avoid 

artificially high blood flow measurements when trying to quantify brain perfusion, 

crusher gradients were used. For gaining maximal SNR, water protons were 

inverted by a short radio-frequency pulse. Since patient’s movement can lead to 

large subtraction errors (47), the patient’s head was fixed with vacuum cushions 

in the head coil and all ASL-images were motion corrected on-site. The 

administration of contrast agent was unexceptionally performed after the 

acquisition of ASL. In eight cases, it was not possible to acquire ASL data due 

to patient movement or other technical failures. 

Table 1: Overview of imaging parameters 
Following parameters of arterial spin labelling (ASL) and dynamic susceptibility 
contrast-enhanced (DSC) imaging are summarized: time of repetition, echo time, field 
of view, flip angle, number of slices, and slice thickness. Units are in square brackets.  

 Time of 
repetition 

[ms] 

Echo 
time 
[ms] 

Field of 
view  
[mm] 

Flip 
angle 

[°] 

Number 
of slices 

Slice 
thickness 

[mm] 

ASL 3000 19 240 x 240 90 9 3 
DSC 1610 30 220 x 220  60 20 3 

 

For DSC imaging a fast gradient-echo EPI sequence was used during the first 

pass of a bolus of gadobutrol (Gadovist®, Bayer Schering AG, Germany) with a 

standard dose of 0.1 ml/kg body weight at an injection rate of 4 ml/s. In order to 

avoid underestimation of CBF in the tumour because of leakage effects, a 

preloading dose of contrast agent (0.5 mmol/kg body weight) was injected with 

a rate of 4 ml/s before DSC imaging (48). The imaging parameters at 3T were: 
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matrix 128 x 128 voxel, acceleration factor 2, temporal resolution 1.5 s. For 

more parameters please see Table 1. 

2.3	Imaging	data	post‐processing	and	analysis		

The DSC MRI data were transferred off-line to a dedicated post-processing 

workstation running the VisiaTM Software (MeVis Medical Solutions AG, 

Bremen, Germany). The leakage correction algorithm described by Boxerman 

et al. (49) was used to calculate rCBV values. Therefore the original signal-

intensity-curve is first converted to a relaxivity-time curve. From this the 

uncorrected rCBV is then calculated through integration. The leakage-corrected 

rCBV is then derived by applying a whole-brain estimated leakage correction 

term (32). Based on the corrected rCBV, rCBF maps were generated by the 

equation rCBF = rCBV/MTT (central volume theorem of the indicator dilution 

theory (50)) after calculation of the MTT assuming a bolus injection of the 

contrast agent (51). The resulting rCBF maps were then superimposed on 

anatomical T2- and T1-weighted images. Each automatically obtained AIF was 

manually controlled in order to assure noise-free curves with satisfactory fitting 

suitable to enter the post-processing and parameters calculation. 

Region-of-interest (ROI) analysis was performed by placing a freehand-drawn 

ROI over the enhancing, macroscopically non-necrotic tumour areas (Figure 2) 

avoiding leptomeningeal vessels wherever possible (30). Another standardized 

ROI of 0.2 mm² was placed in the contralateral healthy white matter. In four 

cases with WHO grade 3 gliomas which showed no gadolinium enhancement, 

the freehand ROI placement was based on the Fluid attenuated inversion 

recovery (FLAIR) imaging abnormality and inevitably included also parts of the 

peritumoural oedema, since peritumoural infiltration may have altered rCBV 

values (52). 
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The ASL-rCBF maps were online calculated based on the General Kinetic 

Model according to Buxton et al. (53) after motion correction and background 

noise suppression. ASL-derived CBF maps were also registered on post-

contrast T1-weighted images and ROI analysis was performed following the 

same pattern applied in DSC MR analysis (30). A proprietary workstation 

(Leonardo Syngo, Siemens Healthcare AG, Erlangen, Germany) was used to 

measure the signal intensities of the lesions on the ASL-CBF map. The 

intensities within the lesions were normalized based on the intensity within the 

contralateral healthy white matter. The perfusion parameter normalisation by 

calculating the ratios to the mean value of the contralateral white matter was 

preferred since it has been shown perform satisfactorily in tumour grading (28, 

54, 55). The normalized parameters are defined as DSC-rCBV, DSC-rCBF 

(DSC MRI) and ASL-rCBF. Both maximum values, which are shown to provide 

the best intraobserver and interobserver reproducibility (28), and mean tumour 

values were entered into the statistical analysis. Finally, the spatial distribution 

of the “hot-spots”, namely the sites with the highest perfusion values within a 

Figure 2: Example of a ROI analysis 
Perfusion maps of a left temporal glioblastoma. (A) shows the FLAIR sequence with a 
free hand ROI drawn for better presentation around the tumour and the peritumoural 
oedema. Another ROI is placed in the contralateral healthy white matter. (B) shows the 
contrast-enhanced T1-weighted image with intratumoural enhancement. (C) shows the 
ASL map of CBF. The free hand ROI placement is based on the FLAIR image.  
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tumour, was visually compared between DSC-rCBF, DSC-rCBV and ASL-rCBF 

maps in order to assess the spatial concordance between the two techniques. 

2.4	Statistical	analysis		

Analysis was performed using IBM® SPSS® Statistics, Version 21, Armonk, 

United States and MedCalc, Version 12.5.0, Ostend, Belgium for Windows. 

Results were declared statistically significant at the 2-sided 5 % comparison-

wise significance level (p < 0.05).  

At all variables Shapiro–Wilk test for normality was applied.  

In order to compare DSC-rCBF and ASL-rCBF values Wilcoxon test and Bland 

Altman plot analysis were used. Wilcoxon test is a nonparametric test, which 

compares paired samples within a population to examine whether there is a 

difference of the population’s mean ranks. In this case DSC-rCBF and ASL-

rCBF values of every patient were compared concerning the absolute 

difference. Then the results were ordered by absolute difference and got a new 

increasing rank independent whether negative or positive. Pairs which are tied 

in absolute value got the average of their 2 ranks as new rank. The ranks of 

positive and negative differences were added together, respectively. The 

smaller sum is the value of W, which got proved of significance. Bland Altman 

plot is a graphical analysis to compare two measurements techniques. Here the 

differences between ASL-rCBF and DSC-rCBF values were plotted against the 

averages of both values.  

To find any correlation for the continuous and interval scaled variables 

Spearman's rank correlation coefficient q was determined (30).  

Receiver Operating Characteristic (ROC) curve analysis was applied to 

compare the prognostic value of the different perfusion parameters and to 

define the optimal cut-off perfusion values for prediction of time to recurrence 

(TTR) (30, 56). In ROC analysis the true positive rate (Sensitivity) was plotted in 
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function of the false positive rate (100-Specificity) for different cut-off points of a 

perfusion parameter. Each point on the ROC curve represents a 

sensitivity/specificity pair corresponding to a certain decision value. The area 

under the ROC curve indicates how well the perfusion parameter is able to 

distinguish between patients with and without an adverse event within 6 

months. To perform ROC curve analysis with two combined perfusion 

parameters (i.e. rCBV-rCBF), binary logistic regression was conducted and the 

predicted probabilities from these parameters were recorded. Subsequently, 

they were entered as a new variable in the ROC curve analysis. Two groups 

were constituted, one group with high and one with low perfusion values. The 

value with the highest Youden index, the point in the ROC curve analysis that 

optimizes the parameter’s differentiating ability, when equal weight is given to 

sensitivity and specificity was used as cut-off value. 

The number of days between the first adjuvant treatment dose and the 

diagnosis of histologically confirmed tumour recurrence in follow-up surveillance 

was defined as TTR. Kaplan-Meier method with log-rank (Mantel-Cox) test was 

applied to calculate survival curves of the two constituted groups.  

Since only a small group of patients received dexamethasone and since there 

was a close time between the pre-treatment scan and the therapy initiation (one 

day) a confounding effect of steroid doses on the perfusion values is 

implausible (30, 57).   
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3.	Results		

In the following the results of the study are presented. They have been partly 

already published in the study „Prognostic value of blood flow estimated by 

arterial spin labeling and dynamic susceptibility contrast-enhanced MR imaging 

in high-grade gliomas“ by Rau et al. (30)  

Descriptive statistics contain demographic and clinical characteristics of both 

patients with and without an adverse event within six months; a summary of 

determined perfusion parameter; a summary statistic of WHO grade 3 vs. grade 

4 tumours regarding PFS, KPS and perfusion parameters; mean preoperative 

tumour volume; the amount of patients with and without disruption of BBB and 

the percentage of patients with an adverse event both within six months and 

within the entire observation period of 37 months. 

The heading “correlations” holds Spearman’s rank correlation of the different 

perfusion parameters.  

Results regarding to comparison of DSC imaging and ASL contain Wilcoxon 

test and Bland-Altman method. 

The spatially distribution patterns of maximum DSC-rCBV, DSC-rCBF and ASL-

rCBF are presented with several imaging examples. 

Results of ROC analysis containing median TTR and results of Kaplan-Meier 

analysis are summarized unter the headline “Survival analysis”.  

3.1	Descriptive	statistics		

Table 2 shows demographic and clinical characteristics of both patients with an 

adverse event within six months and patients without an adverse event within 

six months. Adverse event holds either recurrence or death. There was no 

patient with a WHO grade 3 glioma who had an adverse event within 6 months. 

Eleven patients with a frontal tumour had an adverse event, 22 of them not. 
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Twenty-three patients with a temporal tumour had no adverse event, whereas 

three of them had one.  

Table 2: Descriptive statistics of patients with and without adverse event (AE) 
Included are median age and range in years, gender, WHO grade, Karnofsky 
performance score (KPS), tumour location, preoperative tumour volume (TV) in cm³, 
median and range of progression free survival (PFS) in days of patients with an AE, 
namely recurrence or death, within six months and patients without an adverse event 
within six months (no AE). Median Age was similar in both groups. 45 % of female 
Patients had an AE and ~40 % of male had one. Interestingly no one with a grade 3 
astrocytoma had an AE within 6 months. Tumours located temporal had mostly 
(~13 %) no AE, whereas frontal tumours led to an AE in 50 %.  

 
Age [years] Gender WHO grade KPS [%] 

Median Range Male Female 3 4 ≤ 80 > 80 
No 
AE 

53 56 29 20 10 39 12 37 

AE 55 36 10 10 0 20 7 13 

 
Tumour location TV [cm3] PFS [days] 

Frontal Parietal Occipital Temporal Mean Median Range 

No 
AE 

21 5 1 22 25.38 380 846 

AE 13 2 1 4 18.50 80 441 

 

Table 3 contains the summery of both median and range of DSC-rCBV, DSC-

rCBF, ASL-rCBF and leakage.  

Table 3: Summery of determined perfusion parameters 
Summarized are the perfusion parameters relative rCBV, rCBF and leakage of DSC 
imaging and rCBF of ASL. 

Perfusion Parameter Median Range 

DSC-rCBV 8.0 2.1 – 24.6 
DSC-rCBF 6.9 1.5 – 18.4 
ASL-rCBF 5.3 1.2 – 20.1 
leakage 14.9 1.5 – 193.6 

 



 

24 

Table 4 shows a detailed summary of perfusion parameters and clinical 

characteristics of patients with gliomas WHO grade 3 vs. 4 gliomas. 

Table 4: Summary statistics between 2 patient subgroups (grade 3 vs. 4) 
regarding to progression free survival (PFS), Karnofsky performance score (KPS), 
rCBV and rCBF measured with DSC-imaging (DSC-rCBV, DSC-rCBF), leakage and 
rCBF measured with ASL (ASL-rCBF). Grading is based on the World Health 
Organization (WHO) classification. 

 
PFS [days] KPS [%] DSC-rCBV 

Median Range ≤ 80 > 80 Median Range 

WHO Grade 3 670 846 0 10 7.18 8.92 

WHO Grade 4 255 912 19 40 8.11 39.84 

 

DSC-rCBF leakage ASL-rCBF 

 

Median Range Median Range Median Range 

WHO Grade 3 6.31 11.11 9.80 22.60 3.31 18.77 

WHO Grade 4 6.99 16.97 14.88 192.05 5.84 13.29 

 

 

Figure 3: Pie diagram of blood brain barrier (BBB) disruption  
You can see percentages of patients with and without BBB disruption before surgery. 
The majority had BBB disruption, being a sign of malignancy. 
 

The mean preoperative tumour volume was 31.04 ± 24.8 cm3 (range 5.4 –

 111.3 cm3). Before surgery 53 cases (76.8 %) showed BBB-disruption, 16 

cases (23.2 %) had a non-disrupted BBB (Figure 3). Follow-up MR 

no BBB disruption 
 

BBB disruption 

23.2 % 

76.8 % 
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examinations 24 – 48 h after surgery showed in 55 cases no residual BBB-

disrupted tumour tissue. In 14 cases (20 %), residual disease (mean tumour 

volume 0.12 ± 0.04 cm3, range 0.08 – 2 cm3) was found. Twenty patients (29 %) 

suffered tumour recurrence within six months. Forty-four subjects (64 %) 

experienced recurrence during the entire observation period of 37 months 

(Figure 4).  

   

Figure 4: Pie diagrams of tumour recurrence after 6 and 37months. 
These diagrams are indicating the percentages of patients with and without tumour 
recurrence after 6 months (left diagram) and over the whole observation period of 37 
months (right diagram).  

 

3.2	Correlations		

There was no significant correlation between ASL-rCBF and DSC-rCBF (p = 

0.12) as well as DSC-rCBV (p = 0.7). Spearman’s rank correlation showed 

significant correlations between all DSC perfusion parameters as follows: rCBV-

rCBF: r = 0.61, p < 0.0001*; rCBV-leakage: r = 0.33, p = 0.01*; rCBF-leakage: r 

= 0.33, p = 0.01*. None of the DSC perfusion parameters was significantly 

correlated with ASL-rCBF (p ≥ 0.80). 

no tumour recurrence (6 months) 
 

tumour recurrence (6 months) 

no tumour recurrence (37 months)  
 

tumour recurrence (37 months)  

29 % 36 % 

64 % 71 % 
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3.3	Comparison	of	DSC	imaging	and	ASL		

Wilcoxon test indicated no significant difference between ASL-rCBF and DSC-

rCBF (p = 0.07). Linear regression of the difference between rCBF and ASL-

rCBF as dependent variable and the average between both parameters as 

independent variable showed proportional bias indicating that the difference 

between both measures is a function of the average of the measures. Plotting 

the differences between DSC-rCBF and ASL-rCBF against the means of DSC-

rCBF and ASL-rCBF for each patient (both variables showed normal 

distribution) using the Bland-Altman method (Figure 5) demonstrated also that 

the vertical spread of the scatter points was narrower at low values of the 

average of DSC-rCBF and ASL-rCBF than at high values of the average of both 

measures. The average difference between DSC-rCBF and ASL-rCBF was 

1.47. The 95 % limits of agreement (± 1.96 standard deviation) were -10.64 and 

13.58. 

3.4	Spatial	distribution	of	maximum	perfusion	values	

Qualitative comparison of perfusion maps showed different spatial distribution 

patterns of tumour hot spots, meaning areas of the perfusion map with 

maximum DSC-rCBV, DSC-rCBF and ASL-rCBF, respectively. The distribution 

of DSC-rCBV and DSC-rCBF was for every tumour exactly the same (Figure 6). 

Consequently, in the following only hot spots DSC-rCBF and ASL-rCBF was 

compared, the comparison with DSC-rCBV was waived. In 21 tumours the 

areas of maximal perfusion of DSC-rCBF and ASL-rCBF was similar and 

partially overlapped (Figure 7), through it was not exactly identical. In 29 

tumours, the hot-spot in DSC-rCBF maps was spatially different to the hot spot 

of the ASL-rCBF maps (Figure 8). Only in nine tumours, the DSC-rCBF and 

ASL-rCBF maps showed spatial concordance (Figure 9). 
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Figure 5: Bland-Altman plot of the DSC-rCBF and ASL-rCBF 
Every plot shows for the corresponding patient the difference DSC-rCBF - ASL-rCBF 
at the mean value of these both perfusion values. The mean difference of DSC-rCBF 
and ASL-rCBF (depicted by the horizontal line in the diagram) is 1.47. The plot shows 
that the vertical spread of the scatter points is wider at high values of the average of 
both measures indicating a proportional bias. This means that at least one method is 
especially variable at high values of DSC- and ASL-rCBF. Two outliers are depicted 
out of the 95 % limits of agreement (±1.96 standard deviation), which are 13.58 and -
10.64 (30). 
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Figure 6: Example of identical spatial distribution of DSC-rCBV and -rCBF 
(A) shows the FLAIR sequence of a patient with left frontoparietal glioblastoma. (B) 
shows the corresponding DSC-rCBF map, (C) shows the DSC-rCBV map. There is an 
identical spatial distribution of maximum DSC-rCBF (B) and –rCBV (C) in the tumour 
area (as indicated by the hand-drawn circle). This was true in all cases; therefore the 
comparison of DSC-rCBV with ASL-rCBF was waived. 

 

Figure 7: Example of similar spatial distribution of DSC-rCBF and ASL-rCBF 
(A) shows the FLAIR sequence of a patient with right temporal glioblastoma, (B) shows 
the corresponding DSC-rCBF map. (C) shows the corresponding ASL-rCBF map. The 
DSC-rCBF map (B) and ASL-rCBF map (C) show similar spatial distribution of the 
maximum DSC-rCBF and ASL-rCBF values in the tumour area (as indicated by the 
arrows). 



 

29 

Figure 8: Example of non-similar distribution of DSC-rCBF and ASL-rCBF 
Three patients (A-C), (D-F) and (G-I) with FLAIR (A, D, G), DSC-rCBF (B, E, H) and 
ASL-rCBF (C, F, I) maps. (A) shows the FLAIR sequence of the same patient of Figure 
6 with a left frontal glioblastoma. The areas of maximum DSC-rCBF (B) values are not 
visually prominent in the ASL-rCBF (C) map, which shows a different, more border 
stressed distribution (arrows). (D) shows the FLAIR sequence of a patient with left 
frontal glioblastoma. In the DSC-CBF map (E) maximum values are located in the 
tumour centre (ROI), whereas in the ASL-rCBF map (F) the distribution of maximum 
values are located in the periphery of the tumour (arrows). (G) shows again the FLAIR 
sequence of a patient with a left frontal glioblastoma. The maximum values in the DSC-
rCBF map (H) are located in the periphery of the tumour region (ROI), whereas the 
distribution of maximum ASL-rCBF (I) has its maximum in the tumour centre (arrows) 
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Figure 9: Example of similar distribution of DSC-rCBF and ASL-rCBF 
(A) shows the FLAIR image of a patient with left frontal glioblastoma with typical 
irregular confirmation and attendant oedema. (B) shows the corresponding DSC-
rCBF map. (C) shows the ASL-rCBF perfusion map with the same spatial distribution 
compared to DSC-rCBF map (B). 

3.4	Survival	analysis		

In ROC Analysis DSC and ASL-based perfusion parameters demonstrated 

moderate to satisfactory prognostic values for TTR (Table 5), whereas the 

predictive value of DSC-rCBV with an AUC of 0.71 (p = 0.006) was shown to be 

significantly superior to ASL- and DSC-rCBF with an AUC of 0.89 (p > 0.05) and 

0.89 (p > 0.05), respectively (Table 5). The combination of more than one DSC 

perfusion parameters increased the prognostic value of the method, while the 

addition of ASL-rCBF to DSC-rCBV, DSC-rCBF and leakage provided the 

highest AUC value of 0.74. The combination of all DSC perfusion parameters 

(DSC-rCBV, DSC-rCBF and leakage) achieved an AUC of 0.72 (Table 6). 

Notably, the combination of DSC-rCBV and ASL-rCBF presented an AUC of 

0.71, which is exactly the same as the perfusion parameter which scored best in 

single ROC analysis, namely DSC-rCBV. 

The cut-off perfusion values with the highest Youden-Index in ROC-analysis 

were for DSC-rCBV 6.8 (sensitivity 73 %, specificity 64 %), for DSC-rCBF 5.7 

(sensitivity 75 %, specificity 63 %) and for ASL-rCBF 3.4 (sensitivity 75 %, 

specificity 60 %) (Table 5). 
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Kaplan-Meier analysis for TTR indicated that patients with rCBF and rCBV 

perfusion estimates below the calculated cut-off values had longer TTR than 

patients with higher perfusion values (Table 5). However, this was statistically 

significant for the DSC-rCBV parameter only. The Kaplan-Meier curves for 

DSC-rCBV, DSC-rCBF and ASL-rCBF are shown in Figure 10.  

 

Table 5: ROC analysis and median TTR of single perfusion parameters 
Area under the curve (AUC) (including p-value) and cut-off values with the highest 
Youden index of receiver operating characteristic (ROC) analysis, sensitivity and 
specificity referring to prediction of tumour recurrence are shown for each examined 
perfusion-related parameter. Namely rCBV and rCBF of DSC imaging and ASL-rCBF. 
The time to recurrence (TTR) (median, in days) (including the p-value of the log-rank 
test) after patient stratification according to the cut-off values is also demonstrated. The 
statistically significant values are indicated in bold. (30)  

 AUC Cut-off 
value 

Sensitivity 
[%] 

Specificity 
[%] 

TTR 
[days] 

p-value 
(log-rank 

test) 
DSC-
rCBV  

0.71 
(p=0.006) 

≤ 6.8 
73 64 

510 
0.002 

> 6.8 225 

DSC-
rCBF  

0.59 

(p>0.05) 

≤ 5.7 
75 63 

445 
0.09 

> 5.7 294 

ASL-
rCBF  

0.58 

(p>0.05) 

≤ 3.4 
75 60 

368 
0.10 

> 3.4 310 

 

Table 6: Areas under the curve (AUCs) of combined perfusion parameters. 
AUCs were generated out of binary logistic regression of different perfusion-related 
parameters: DSC-rCBV and leakage, DSC-rCBF and ASL-rCBF. No p-value can be 
given since no cut-off can be determined out of probabilities.  

Combined perfusion parameters AUC 

DSC-rCBV + ASL-rCBF 0.71 

DSC-rCBV, DSC-rCBF + leakage 0.72 

DSC-rCBV, DSC-rCBF, leakage + ASL-rCBF 0.74 
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Figure 10: Kaplan-Meier survival curves for time to recurrence (TTR) 
in days for DSC-rCBV (A), DSC-rCBF (B) and ASL-rCBF (C). The blue lines represent 
TTR of patients with perfusion values below the perfusion thresholds shown in Table 5 
while the green lines the TTR of patients with perfusion values above the threshold. 
The Kaplan-Meier survival curves are indicating that TTR is longer for patients with low 
tumour perfusion and shorter for patients with high perfusion estimates over the 
corresponding threshold (30).  
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4.	Discussion		

4.1	General	considerations		

Perfusion metrics and histopathological grading System 

First this study confirms the prognostic value of perfusion metrics in general in 

patients with high grade gliomas compared to the already established WHO 

grading system. In previous studies histopathologic defined WHO grade has 

been shown to be the strongest predictor for overall survival in gliomas (7, 58, 

59). Since rCBV refers to microvessel density (26, 60), which is also a 

histopathologic feature taking into account for conventional histopathologic 

grading, it was not surprising to find in this study that DSC-rCBV had a 

significant prognostic value, this being in accordance with other studies (24, 25, 

61-64). However, these studies did not agree, whether rCBV is a grade-

independent prognostic factor (25, 61, 62, 64) or merely a surrogate for 

histopathology. In order to exclude any bias and the possible impact of 

histopathologic grade on the elaborated prognostic model, the study was 

confined only to high-grade gliomas (WHO grade 3-4).Since this study showed 

significant differences in TTR among patients with tumours of the same 

histopathological grade, rCBV seems to be not only another independent 

surrogate for prognosis; it even seems to provide complementary information to 

the current WHO classification system as prognosticator.  

The current glioma classification is based on the 2007 World Health 

Organization grading system, which is based from cytological characteristics of 

the tumours. Histopathologic grading however has some well-known limitations: 

1) Grading can be inaccurate because of inter- and intraobserver variability 

(36). Due to the heterogeneity of high-grade tumours (52, 65), which are 

frequently incompletely resected, it is difficult to assign a tumour to a class. 

New studies have shown that molecular and cytogenetic features of a 

tumour yield promising information to improve the classification of gliomas 
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(66, 67). Eckel‐Passow et al. classified gliomas into five groups based on 

three tumour markers: 1p/19q codeletion, IDH1/IDH2 mutation and promoter 

mutation of telomerase reverse transcriptase (TERT). These groups showed 

characteristic distributions of age at diagnosis and clinical behaviour (67). 

Even though histopathological grade represents an independent factor, 

molecular classification describes glioma variants in a better way, as stated 

by Ellison (66). 

2) Not the whole tumour can be examined, especially if the tissue is gained 

through biopsy.  

For these reasons, histopathology may have limited value in predicting tumour 

aggressiveness, prognosis and response to therapy. Both limitations can be 

overcomed by perfusion metrics: 

First, perfusion parameters provide similar to molecular and cytogenetic 

features also insight into the functional tumour characteristics and may be a 

useful complement to any upcoming molecular/cytogenetic tumour classification 

system. For instance, rCBV refers both to microvessel and indirectly to cell 

density (26, 60). Therefore, it is typically elevated in aggressive tumours (and 

tumour parts) where cell division rate is high and neovascularization is in 

progress.  

Also, to reduce sampling error, stereotactic biopsy could be guided by perfusion 

imaging (68). The method has been established in previous studies and 

implemented in many centres around the world (26). But to be fair, even if a 

biopsy is based on either rCBV or rCBF maps, it is possibly associated with 

sampling errors and result in biased information. In this study hot spots for 

DSC-rCBV and DSC-rCBF maps showed invariably the same spatially 

distribution. Former researchers concluded that vessel density (rCBV) does not 

necessarily correspond with high perfusion (rCBF) and both parameters should 

most likely provide different aspects of glioma pathophysiology (69). In fact, 

spatial distribution of DSC-rCBF and ASL-rCBF maps differed in most of the 

cases (N = 29) and was only in 9 cases identical.  
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Perfusion and corresponding microvessel properties 

The cardinal role of blood perfusion-related biomarkers, such as DSC-rCBF or 

ASL-rCBF, in estimating the success of therapy is based on the assumption that 

low perfusion lowers the amount of drugs reaching the tumour bed and causes 

hypoxia, which in turn hampers the tumour response to radiotherapy (43) and 

leads to shorter TTR. As a matter of fact, perfusion MRI with non-invasive whole 

tumour sampling in vivo may stratify patients for different treatment regimens 

according to the estimated prognosis. In previous years, research in this 

promising field demonstrated prognostic relevance for both DSC- and ASL (25, 

61, 70). One shortcoming of DSC-rCBF measurements may be attributed to an 

underestimation of tumour aggressiveness due to presence of immature tumour 

vessels with very slim lumina having no significant blood flow (71, 72). This 

postulation however would also affect DSC-rCBV metrics since DSC-rCBV 

reflects the amount of contrast passing through the capillary network, a 

phenomenon that is also dependant on functional, mature blood vessels since it 

is blood flow-related (60). It seems possible that DSC-rCBV relies to mature 

microvessels which often have dilated lumina, hence higher rCBV, which go 

along with low DSC-rCBF according to Hagen–Poiseuille equation (69, 71). 

Moreover, DSC-rCBF might also be decreased in high-grade, leaky tumours, 

since the accompanied interstitial hypertension leads to compression of the 

tumour vessels and subsequently decreases of blood flow (73). Most likely, a 

combination of the aforementioned pathophysiological phenomena may be the 

reason of the low predictive and prognostic value of DSC-rCBF measurements 

compared to the DSC-rCBV ones. 

Prognostic value of ASL-rCBF in literature 

ASL has been postulated to be an alternative to DSC MRI providing similar and 

highly correlated (i.e. linear regression coefficient, R = 0.83; P < 0.005) CBF 

values (27, 28, 31, 42, 43). Regarding the prognosis, ASL has been proved to 

be able to distinguish between high- and low-grade gliomas (28, 40). In addition 

absolute tumour blood flow acquired by ASL has been recognized as a 
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prognostic marker for TTR (70). Clinically, ASL provides an additional value to 

DSC imaging in differentiating pseudoprogression from early tumour 

progression (74) and in differentiating recurrent high-grade gliomas from stable 

disease (75). Nevertheless, there are several disadvantages of the ASL 

technique, which could explain the inferiority of ASL to DSC imaging in 

predicting the patient’s prognosis:  

1) The aforementioned poor SNR makes it difficult to place accurately the ROI;  

2) The sensitivity of ASL to post labelling delay results in either 

underestimation of blood flow or in erroneous inclusion of large vessels in 

the tumour ROI;  

3) The distribution of a diffusible tracer, like magnetically labelled water, 

across capillary membranes is not completely free and diffusion restrictions 

may apply (76, 77).  

Besides the dependency of the perfusion signal on the inversion time, long 

arterial transit times could lead to differences between ASL- and DSC-based 

rCBF. Both normal or demyelinated white matter and tortuous tumour 

vasculature hold long transit times and may lead to underestimation of 

perfusion. Finally, the current computation of ASL does not provide CBV as 

perfusion-related parameter. But since it has been postulated that blood volume 

and blood flow provide different aspects of tumour perfusion both should be 

encountered in the survival analysis (78). 

4.2	Correlations	and	comparison	of	DSC	and	ASL	perfusion	metrics		

DSC-rCBF and DSC-rCBV maps showed the same spatial distribution of areas 

with the corresponding maximum perfusion values. This may be explained by 

the fact that DSC perfusion parameters are inherently dependent on each other, 

and was confirmed in lumped ROI analysis in other studies (79-81). On the 

other hand, hot spots of DSC-rCBF and ASL-rCBF differed. Moreover in 

contrast to previous reports (27, 28, 42) no significant correlation between ASL- 

and DSC-derived rCBF was found, though ASL-rCBF values did not 
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significantly differ from the DSC-rCBF estimates. As a matter of fact, although 

DSC- and ASL-rCBF values in this study are essentially concordant with those 

reported in literature (27, 55, 82) the lack of correlation could be attributed to the 

ROI placement and measurement strategy. Namely, in contrast to previous 

studies (27, 43), not the mean tumour rCBF value but the maximum value was 

used; the reference ROI was not placed like by Järnum et al. (27) in the 

cerebellum, but in the contralateral white matter. Interestingly, Lehmann et al. 

did not place the ROI around the whole tumour but placed two small ROIs 

within the tumour and averaged them (42). Finally, the patient cohorts between 

this study and similar ones in literature differed since other authors conducted 

their ASL measurements in heterogeneous tumour groups, including 

metastases as well as treated gliomas (27, 28). Notably, White et al. showed 

that positive linear, voxel-wise-based correlations between ASL- and DSC-rCBF 

can be observed in only 30-40 % of patients with brain neoplasms (43). 

Furthermore, the same authors demonstrated significant differences between 

ASL- and DSC-rCBF in both FLAIR-hyperintense and contrast-enhanced 

tumour regions, whereas Ludemann et al. stated that tumour perfusion values 

achieved by different techniques were not to be compared (83).  

In addition to the lack of correlation between ASL- and DSC-derived rCBF 

results, the Bland-Altman plot pointed out that the difference between DSC-

rCBF and ASL-rCBF increases with higher perfusion, which implies limited 

interchangeability/comparability of both perfusion techniques. There are very 

few Bland-Altman plots of DSC- and ASL-derived rCBF in literature, but similar 

tendencies for bias were observed in proportion to the rCBF values in the 

studies of Wong et al. in normal brain and of Järnum et al. in brain neoplasms 

(27, 31). One reason for the increasing difference between ASL- and DSC-

derived rCBF in higher average values could be the susceptibility of ASL to 

arterial transit time. In that case, ASL-rCBF may appear lower than DSC-rCBF, 

like in this study (mean difference between DSC-rCBF and ASL-rCBF 1.47) and 

in other studies conducted in normal brain and brain tumours (27, 31, 43). 

Nevertheless, Warmuth et al. showed the opposite effect (28) highlighting the 
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dependence of the ASL on the transit times in different populations. To simplify 

this concept, we could assume that if the contralateral white matter is used as 

reference, the long transit time will underestimate the ASL-rCBF, and acting as 

denominator will result in artificially high tumour ASL-rCBF. This hypothesis 

challenges the appropriateness of contralateral white matter as reference region 

as well as the accuracy of measurements in low blood flow tumour areas (72). 

On the other hand, DSC remains relatively unaffected if delay-invariant circular 

deconvolution methods are applied in post-processing as done in the study 

presented here. Yet there is still uncertainty concerning the reproducibility of 

absolute quantification by ASL in presence of insufficient arterial function (e.g. 

carotid stenosis).  

What should also be mentioned as reason for the lack of correlation and 

interchangeability between both CBF metrics are the different underlying 

physical properties and acquisition schemes applied. A characteristic example 

of distinct acquisition features between the techniques is the large vessel signal 

attenuation due to vascular crushers in ASL, which may increase the bias in 

highly vascularized tumours. A systematic bias may be also anchored in the 

underlying post-processing method of ASL. The tracer kinetic model (53), which 

assumes that brain tissue and blood are holding the same relaxation rate is as 

incorrect as the applied one-compartment Kety model to analyse arterial spin 

tagging data (84), which assumes that tagged water exchanges instantaneously 

across the blood brain barrier and is located predominantly in brain tissue. 

Thus, the ASL model used for this study gives rather a satisfactory 

approximation of the true perfusion in brain tissue (77). Finally, another reason 

for the lack of interchangeability/ comparability between the ASL- and DSC- 

based CBF is the different relaxation rates of the capillary and tissue spaces. 

Thereby, low cerebral blood flow values for example in white matter are slightly 

overestimated in ASL whereas high cerebral blood flows like in grey matter and 

tumour tissue are rather underestimated.  
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An interesting finding in this study was the difference in the spatial distribution of 

maximum rCBF values derived from DSC- and ASL imaging. The distribution of 

rCBF in DSC- and ASL-maps differed in the majority of cases (n = 29) and in 

only nine cases was the same. This underlines that ASL and DSC imaging 

provide different information about the tumour and it questions whether both 

techniques can be compared at all. 

4.3	Prognostic	value	of	DSC	and	ASL		

Since the tumour aggressiveness is associated with its neovascularization, it 

was postulated that higher rCBV and rCBF values may indicate more 

aggressive tumours with shorter TTR. Weber et al. evaluated tumour response 

after treatment of metastases and showed that increase in tumour blood flow 

(perfusion) predicted tumour progression (41). According to Kaplan-Meier 

analysis in the present study, the DSC-rCBV results suited this hypothesis while 

a tendency was found for DSC-rCBF and ASL-rCBF. Although perfusion 

imaging by ASL may be correlated to vascular density (44) and DSC-rCBF was 

found to be significantly correlating with DSC-rCBV, both rCBF metrics failed to 

outperform the prognostic significance of DSC-rCBV. Nonetheless, both DSC-

perfusion parameters and ASL-rCBF showed considerable unfavourable 

survival outcome in patients with highly-perfused, high-grade gliomas 

introducing mainly ASL-rCBF as a possible biomarker for predicting TTR 

considering the non-invasive nature of the technique, the sufficient SNR with 

newly launched sequences (27, 42), and the full coverage of the brain using 

newly introduced 3D ASL sequences (31).  

4.4	Limitations		

A distinct limitation of the study is the semi-quantitative estimation of ASL-rCBF 

using reference regions in the contralateral white matter. Though this is fair in 

terms of comparison with the DSC imaging, it cancels the inherent advantage of 
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quantification of rCBF by ASL. However, an advantage of the applied reference 

region approach is that the generated rCBF are somehow age-adjusted.   

In studies that investigate the prognostic and diagnostic role of perfusion 

imaging one source of systematic bias could be due to the effect of 

glucocorticoid therapy on tumour perfusion. The present analysis did not include 

the possible effect of dexamethasone therapy as only few patients of our cohort 

were for a short period of time under glucocorticoid therapy. However, 

correlation with steroid dosing may be needed, although to date, technically 

rigorous reports looking at this subject have reached conflicting conclusions as 

to whether high-dose steroid administration acutely reduces rCBV in addition to 

its undisputed effect on permeability (57, 85, 86). This controversy will not be 

trivial to resolve definitively because alteration in permeability has a significant 

effect on the calculation of rCBV. Notably, it has been observed that 

dexamethasone caused no significant changes in rCBF (85). 

4.5	Future	endeavours		

Future endeavours investigating brain tumours by ASL may profit from 

pseudocontinuous instead of pulsed ASL, since pseudocontinuous ASL 

provides higher SNR and reduced magnetization transfer effects (87). To 

overcome the underestimation of CBF in reference tissue (usually contralateral 

normal appearing white matter) with prolonged transit time, multiple post-

labelling delay values can be used in both pulsed and pseudocontinuous ASL 

(88). This would also allow an accurate measurement of CBF in tumours with 

heterogeneous blood transit times. This method, however, adds complexity and 

expenditure of time in the post-processing and has neither been optimized nor 

tested for durability in the tumour imaging clinical practice. Vascular crushing 

gradients should optimally remain a user-controlled option and future studies in 

tumours may show their potential value or pitfalls in brain tumours staging (87). 

Finally, segmented 3D readouts with background suppression seem to enhance 

the diagnostic quality of ASL (87).  
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Regarding ASL post-processing, future studies may also aim at validating these 

preliminary results by using pseudocontinuous ASL and calculating tumour CBF 

after grey-white matter segmentation and normalization to healthy white matter 

(70). Simultaneously, any sequence optimization, i.e. as optimisation of the 

inversion time (89) would be useful. Finally, the measurement of arterial blood 

volume from ASL may also prove interesting regarding its predictive value (90). 

One drawback of DSC-imaging in this study was the semi-quantification of the 

derived parameters. Future endeavours investigating the comparability of ASL 

and DSC-imaging may pursue absolute quantification of DSC-rCBF. Any 

inaccuracy in the quantification of DSC-imaging could be improved by 

calibrating the CBV, calculated by standard DSC imaging, with an AIF-

independent steady-state measurement of CBV (29). 
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4.6	Conclusion		

This study confirms the prognostic value of “stand-alone” DSC- rCBV and 

highlights the comparable, though non-significant prognostic value of ASL- and 

DSC-rCBF estimations for prediction of tumour recurrence and assessment of 

TTR in patients with high-grade gliomas. The clear trend of ASL-rCBF 

measurements to identify patients with favourable outcome among those with 

high-grade gliomas can be further validated in future trials bearing in mind that 

ASL is a well-tolerated non-invasive technique. Furthermore, the 

implementation of ASL-rCBF results increased the prognostic power of DSC-

technique thus, implying that ASL in the routine baseline imaging of gliomas 

may be advantageous for predicting time to adverse events like recurrence 

which, in turn, provide indices for the tumour aggressiveness and may have 

therapeutic implications for the patients, especially in therapy tailored regimens.  

The lack of correlation and interchangeability between the DSC-rCBF and ASL-

rCBF estimations with proportional bias in highly vascularized tumours might 

reflect the different underlying physical properties and data acquisition steps 

applied. It also underlines the need to prospectively analyse the tumour 

microenvironment by further rigorous voxel-based comparison and assessment 

of the spatial distribution pattern between the two techniques.  
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5.	Abstract		

5.1	Background	and	Purpose		

Several studies have examined the predictive value of dynamic susceptibility 

contrast-enhanced (DSC) imaging and arterial spin labelling (ASL) in relation to 

histological grade, but less is known about their significance in terms of disease 

prognosis. Since ASL is gaining in importance, the purpose of this study was to 

evaluate the predictive value of both MRI techniques in assessing time to 

recurrence (TTR) in patients with high-grade gliomas and to examine for any 

interchangeability between them. 

5.2	Materials	and	Methods		

Sixty-nine cases of WHO Grade 3–4 gliomas underwent both DSC and ASL 

MRI. Normalized ASL and DSC-based perfusion maps were analysed yielding 

mean and maximum values for relative cerebral blood volume (rCBV), relative 

cerebral blood flow (rCBF), leakage and ASL blood flow estimates. Maps were 

compared regarding the spatial distribution of maximum DSC-rCBV, DSC-rCBF 

and ASL-rCBF. Wilcoxon test and Bland Altman plot analysis were applied to 

compare DSC-rCBF and ASL-rCBF. Spearman’s rank correlation coefficient 

was determined for all perfusion parameters. Receiver operating characteristic 

curve analysis was applied to define the optimal cut-off of perfusion values for 

TTR. Survival curves were calculated by using the Kaplan-Meier method with 

log-rank test.  

5.3	Results		

The median values of ASL-rCBF, DSC-rCBF, and DSC-rCBV were 5.3, 6.9, and 

8.0, respectively. Spearman’s rank correlation showed significant correlation 

between the DSC parameters. There was neither significant correlation nor 

difference between ASL-rCBF and DSC-rCBF. Proportional bias was 
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demonstrated in the Bland-Altman plot analysis of ASL-rCBF and DSC-rCBF 

values. In ROC analysis, rCBV outperformed other parameters as prognostic 

factor (area under curve (AUC) = 0.71). DSC-rCBF was slightly superior to ASL-

rCBF (AUC = 0.59 vs. 0.58). The combination of rCBV and ASL-rCBF (AUC = 

0.71) was even to standalone rCBV. The best predictive value was achieved by 

combination of DSC-rCBV, DSC-rCBF, leakage and ASL-rCBF (AUC = 0.74). 

Unlikely to DSC-rCBV, DSC- and ASL-based rCBF parameters demonstrated 

moderate sensitivity and specificity for tumour recurrence with no statistically 

significant prognostic values in the survival analysis.  

5.4	Conclusions		

There was neither correlation nor interchangeability between the DSC-rCBF 

and ASL-rCBF estimations, which demonstrated comparable, though not 

significant prognostic value for TTR. On contrary, rCBV measurements provided 

the best available sensitivity and specificity to predict tumour recurrence and 

survival time in these patients. Combination of DSC- and ASL-perfusion metrics 

showed encouraging results for increasing the prognostic value of each ”stand-

alone” technique. 
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7.	German	Abstract		

Einleitung		

Verschiedene Studien haben sich mit dem diagnostischen Wert der 

dynamischen kontrastmittel-unterstützten Suszeptibilitäts-gewichteten (dynamic 

susceptibility contrast enhanced, DSC) Bildgebung und der arteriellen 

Spinmarkierung (Arterial Spin Labelling, ASL) bei Gliomen in Bezug auf ihre 

histologische Klassifikation befasst. Über den prädiktiven Wert dieser 

Magnetresonanztomographie-Techniken hinsichtlich der Prognose der 

Patienten ist bisher jedoch weniger bekannt. Da die kontrastmittelfreie ASL-

Bildgebung immer weiter an Bedeutung zunimmt, ist der Zweck dieser Studie, 

einerseits den prädiktiven Wert beider bildgebenden Methoden hinsichtlich der 

Vorhersage der rezidivfreien Überlebenszeit sowie andererseits deren 

Austauschbarkeit bei Patienten mit höhergradigen Gliomen zu untersuchen.  

Material	und	Methoden		

Insgesamt lagen von 69 WHO Grad 3-4 Gliomen die Rohdaten der DSC- und 

der ASL-Bildgebung vor. Die DSC- und ASL-basierten Perfusionskarten wurden 

ausgewertet und jeweils die mittleren und maximalen Werte des relativen 

zerebralen Blutvolumens (relative cerebral blood volume, rCBV), des relativen 

zerebralen Blutflusses (relative cerebral blood flow, rCBF) und des 

Kontrastmittel-Austritts in den Extravasalraum (leakage) erfasst. Die 

Perfusionskarten wurden hinsichtlich der räumlichen Verteilung der maximalen 

Perfusionswerte innerhalb des Tumors miteinander verglichen. Mittels 

Wilcoxon-Mann-Whitney-Test und Bland-Altman-Diagramm wurden DSC und 

ASL hinsichtlich rCBF miteinander verglichen. Der Rangkorrelationskoeffizient 

nach Spearman wurde für alle Perfusionsparameter bestimmt. Um den 

optimalen Schwellen-Perfusionswert zur Vorhersage des rezidivfreien Intervalls 

zu bestimmen, wurde eine Receiver Operating Characteristic (ROC)- Kurve 
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erstellt. Die Überlebenskurven wurden nach Kaplan-Meier mit dem Log-Rang-

Test erstellt. 

Ergebnisse		

Der Median von ASL-rCBF, DSC-rCBF und DSC-rCBV lag bei 5,3; 6,9; bzw. 

8,0. Die Rangkorrelation nach Spearman ergab für alle DSC-

Perfusionsparameter eine signifikante Korrelation. Für ASL-rCBF und DSC-

rCBF konnte weder eine signifikante Korrelation noch ein signifikanter 

Unterschied nachgewiesen werden (Wilcoxon-Mann-Whitney-Test p = 0,07). Im 

Bland-Altman-Diagramm zeigte sich eine leichte asymmetrische Verzerrung, so 

dass insbesondere bei höheren Durchschnittswerten keine Austauschbarkeit 

der DSC-rCBF- und ASL-rCBF-Werte vorlag. In der ROC-Analyse erzielte DSC-

rCBV das beste Ergebnis als einzelstehender Prognosefaktor (Area under the 

curve, AUC = 0,71). DSC-rCBF war dem ASL-rCBF mit einer AUC von 0,59 

gegenüber 0,58 leicht überlegen. Die Kombination von DSC-rCBV und ASL-

rCBF (AUC = 0,71) war dem alleinigen DSC-rCBV ebenbürtig. Der beste 

prädikative Wert konnte durch eine Kombination von DSC-rCBV, DSC-rCBF, 

leakage und ASL-rCBF (AUC = 0,74) erzielt werden. DSC- und ASL-rCBF 

wiesen eine moderate Sensitivität und Spezifität für die Vorhersage der 

rezidivfreien Intervalle auf. Im Gegensatz zu DSC-rCBV (p = 0,002) 

unterschieden sich die Werte für die rezidivfreien Überlebenszeit in den Kaplan-

Meier-Kurven jedoch nicht signifikant.  

Schlussfolgerung		

Es konnte weder eine Korrelation noch eine Austauschbarkeit zwischen den 

DSC-rCBF- und den ASL-rCBF-Werten festgestellt werden. Der prädiktive Wert 

von ASL-rCBF war zwar mit DSC-rCBF vergleichbar, jedoch nicht signifikant 

hinsichtlich der Vorhersage der rezidivfreien Überlebenszeit. Die rCBV-Werte 

wiesen die beste Sensitivität und Spezifität bei der Vorhersage eines Rezidivs 

sowie der rezidivfreien Überlebenszeit auf. Die Kombination von DSC- und 

ASL-Perfusionswerten wies vielversprechende Ergebnisse auf, was die 
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Steigerung des prognostischen Werts beider einzelnstehenden Techniken 

betrifft. 
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