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1. INTRODUCTION 

1.1 The inwardly rectifying K
+
 channel Kir2.1 

The inwardly rectifying potassium channel Kir2.1 belongs to the Kir2.X family of inward 

rectifier K
+
 channels encoded by the genes KCNJ/IRK (1-3) and was the first time cloned 

from mouse macrophages (4). The flow of positive charged cations from the extracellular to 

the intracellular domain defines the inward current (5). Kir channels allow preferentially K
+
 

to pass through their pores (1, 5, 6).  

The rectification function of Kir channels results from the “nonlinear change in the ion 

current through the ion channel” as a function of the electrochemical driving force (5). 

Thus, Kir channels have a determinant contribution to repolarization of the action potential 

and to maintain the resting membrane potential in excitable cells such as neurons, skeletal 

muscle and cardiac myocytes (1, 2). Therefore, many research studies focus on their 

potential as therapy targets for different disorders as cardiac arrhythmias, hypertension, 

learning and memory, epithelial transport and pain modulation (5). 

1.1.1 Kir2.1 structure 

Kir channels share the same structure composed of a pore forming loop and a single 

transmembrane domain (7). The tetramer structure is composed of four either homo-

tetrameric or hetero-tetrameric transmembrane subunits bordering a water filled pore 

delimiting the passage of K
+
 ions down their electrochemical gradient. Each inward K

+
 

channel subunit displays two α- helices crossing the plasma membrane with an extracellular 

K
+
 selective site loop separating them (5) (Figure 1). Kir2.1 channel structure presents two 

main distinct parts namely: the transmembrane pore and the cytoplasmic pore (1, 8). The 

inward rectification function is ensured by the presence of magnesium ions
 
(9, 10) or 

polyamines (11-13). 
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Figure 1:  Kir channels general structure: A: Topology of an inward rectifying K
+ 

channel 

subunit model. B: Illustration of Kir tetramers organization. C: Schematic representation of KcsA 

K+ channel showing two subunits of the homo-tetramer, each subunit is composed of: an outer 

helix, inner helix, pore helix and a K
+
 selective site. Adapted from Sepúlveda 2015 (14). 

 

1.1.2 Kir2.1 expression and physiological function 

Kir2.1 is expressed in several tissues namely: brain, heart, smooth and skeletal muscle, 

retina, kidney and placenta (15, 16). 

1.1.2.1. Kir2.1 in Brain 

In the brain, the inward rectifying K
+
 channel Kir2.1 is expressed in excitable and non-

excitable cells, and plays a major role in maintaining the hyperpolarized membrane 

potential (1, 17). Inward rectifying K
+
 currents of Kir2.1 were detected in rodent microglia 

(18-20) in both resting and activated states (21-24), as well as in brain slices (25-27). It was 
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proven that Kir2.1 channel is needed for Ca
2+ 

signaling in microglia and for migration in 

normal and anti-inflammatory conditions, whereas it has little inhibitory effect of 

proliferation (28). Kir current was also recorded in hippocampal neurons (29) and neonatal 

spinal motor neurons in rats (30). Further studies show the expression of Kir in the 

Schwann cells of the nodes of Ranvier, where it controls extracellular K
+
, necessary for 

nerve fibers activity (31). 

1.1.2.2. Kir2.1 in Heart and blood vessels 

Kir channels are highly represented in cardiomyocytes including atrial, ventricular cells and 

Purkinje fibers (32-35). Kir contributes to the action potential and the resting membrane 

potential in cardiac cells, and is responsible for the plateau and the repolarization phase (1). 

Moreover, Kir channels are expressed in the endothelial as well as the smooth muscle cells 

(36, 37), they ensure the driving force for Ca2
+
 flow through Ca2

+
-permeable channels by 

keeping a negative potential in endothelial cells (38). 

1.1.2.3. Kir2.1 in skeletal muscle 

Kir channels activity in skeletal muscles is necessary to hyperpolarize the membrane 

potential and activation of Na
+
 channels to allow the propagation of the action potential 

(39). The expression of Kir2.1 was also shown to be involved in the maintain of the 

membrane potential so that Ca
2+

 flows through the Ca
2+

-permeable channels enhancing the 

differentiation of myoblasts (40). 

1.1.2.4. Kir2.1 in kidney 

The inwardly rectifying K
+
 channel is expressed in the kidney and exactly in the 

juxtaglomerular cells (41), where it is involved in maintaining the membrane potential. In 

proximal renal tubules, Kir2.1 stimulates the cellular acidification, resulting in stimulation 

of Na
+
 entry, thus activating Na/K-pump (42).  

1.1.3 Kir2.1 modulation 



 13 

The inward rectifier Kir2.1 plays a major role in cell excitability, thus the alteration of 

Kir2.1 activity suggests either a pro-excitotoxic or a pro-arrhythmic effect (43). Studies on 

mitochondrial dysfunction revealed a relation with cell membrane excitability and more 

precisely, Kir channels are regulated by mitochondrial function inhibitors (43-45). Kir2.1 

among other Kir2.X inward rectifiers, is an heteromultimer (7, 46, 47) sensitive to 

mitochondrial dysfunction (43). In addition, Kir2.1 channels contribute to the ischemic pre-

conditioning protection (48), which is a mechanism delaying and limiting cell death 

occurring following myocardium ischemia (49). During ischemia, K
+ 

flows out of 

cardiomyocytes through different K
+
 channels, thus the concentration of the extracellular 

K
+
 increases (50). Consequently, myocardium approaches the resting membrane potential, 

a state called electrical quiescence, and hence the activation of voltage gated K
+ 

channels is 

reduced drastically (48). Inward rectifier K
+ 

currents are activated because of the high 

extracellular K
+ 

concentrations (48). 

Moreover, Kir2.1 channels are regulated by further factors such as the TNF-alpha (51) 

during neurological systemic inflammation in brain, which downregulates Kir2.1 

expression (51). As well, PSD-93/chapsyn 110 binds to Kir2.1 channel and modifies the 

protein channel spatial and temporal distribution by enhancing the channels assembly and 

inhibition of protein internalization in neurons (52). Studies showed that filamin A 

increases Kir2.1 channel protein expression and insertion in the plasma membrane of the 

vascular smooth muscle (53). Cholesterol was proved to regulate the channel transition 

from active to inactive state (54). Kir2.1 is further regulated by PKC (55, 56), tyrosine 

kinase (57), kinase anchoring protein AKAP79 (58), SAP97, CASK, Veli and Mint1 (59), 

GTPase Rho (60) and the parvovirus B19 capsid protein VP1 (61). 

1.1.4  Kir2.1 physiopathology 

Mutations of KCNJ2, the gene encoding for the inwardly rectifying K
+
 channel Kir2.1, 

induce severe channalopathies. The most known is caused by the loss of function mutations 

that results in Andersen Tawil syndrome (ATS). ATS is characterized by periodic paralysis, 

cardiac ventricular arrhythmia and developmental abnormalities (3, 39, 62-64). Also an 
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associated rare syndrome of a monogenic disease occurs with developmental defects of 

bone structures, periodic paralysis and cardiac arrhythmia alluding to (long Q-T) LQT 

syndrome (3, 65-67). The mutations affect negatively the potassium currents in Kir2.1 (68, 

69) by blocking the protein channel migration to the cell surface (68) or by alteration of the 

interaction of the channel protein with the phosphatidylinositol4,5-bisphosphate (PIP2) 

(70). The loss of function mutation of KCNJ2 induces a prolonged plateau phase in the 

action potential and depolarization of the resting membrane potential (1). 

The gain of function mutation of KCNJ2 gene encoding for Kir2.1 defines the short Q-T 

syndrome, which is characterized by sudden death following cardiac defect, syncope and/or 

atrial fibrillation (71). Moreover, Kir2.1 mutations is associated to phenocopies  traits of the 

fetal alcohol spectrum disorder (FASD) which is characterized by several birth defects 

affecting cognition and structure like clef lip/palate, dental anomalies, digits anomalies and 

small jaws, head and stature. Kir2.1 channel turns out to be the molecular target of alcohol 

which modulates the channel activity by direct binding (72).  

 

1.2 The creatine transporter CreaT  

The Creatine transporter CreaT is encoded by the gene SLC6A8 and belongs to the solute 

carrier superfamily (i.e. SLC6) (73-75) which is the class of carriers that insure solute flow 

through the cellular plasma membrane down their electrochemical gradient. This transport 

is possible by coupling the transport of the solute to sodium Na
+
 and chloride Cl

-
 (76). The 

co-transported solute can be a neurotransmitter such as the gamma aminobutyric acid 

GABA, glycine, norepinephrine, serotonin and dopamine (73, 76, 77) or an organic 

osmolyte i.e. betaine, taurine, the amino acid proline (76, 78, 79) and the metabolic 

compound creatine (76).  

1.2.1. Creatine substrate 

Creatine is a metabolic compound (figure 2) synthetized endogenously from the three 

following amino-acids: arginine, glycine and methionine, but can be provided from food 
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 (meat and fish) (80). Creatine transport in a muscle cell is limited to 160mmol/kg (81).  

 

Figure 2: Creatine chemical structure. Molecular formula: C4H9N3O2, Mass 131.133 Da. 

(ChemSpider website, ID566) 

Creatine is stored in the skeletal muscles (95%), the rest 5% resides in the brain, liver, testis 

and kidneys (80, 82), therefore, creatine supplementation is preconized for athletes’ diet to 

enhance the muscular mass (80).  Creatine main and well-known physiological role is the 

energy production, since it maintains the concentration of ATP (adenosine triphosphate) in 

muscles. ATP is the result of an oxidative phosphorylation mediated by mitochondria (80, 

83). 

1.2.2. Creatine transporter Structure 

Transporters of SLC6 family present 12 transmembrane domains among which homo-

oligomers. The C-terminal and the N-terminal tails are located in the intracellular space 

(76). Creatine transporter has a cysteine residue (Cys
144

) unlike the rest of Na/Cl-coupled 

neurotransmitters carriers. Investigations on the role of Cys
144 

using site directed 

mutagenesis and methane thiosulfonate reaction, showed that replacing cysteine by serine 

did not change neither the kinetics nor the activity of CreaT, while alanine and leucine both 

increased the Km (74). Nevertheless, the replacement of creatine by structural analogues 

like GABA, choline, glycine, beta alanine, taurine and betaine did not activate the intestinal 

creatine transporter demonstrating the high affinity of CreaT (84) and dependence to Na
+
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(75). The creatine transporter CreaT is a 70kDa glycoprotein. It was isolated from HEK293 

cells and displays a structure of alpha helices with 12 transmembrane domains (73). 

 

 

Figure 3: Schematic structure of Creatine transporter CreaT SLC6A8: showing 12 

transmembrane domains with the transmembrane domains 1,6,3 and 8 contributing to creatine 

permeation and kinetics. Model adapted from the proposed models by Dodd and Christie 2007 (74) 

and Santacruz 2016 (85). 

 

1.2.3. Creatine transporter expression and physiology function 

SLC6 carriers are activated in order to regulate the extracellular concentration of a given 

solute and they modulate neuron signaling (76). The cloning and hybridization of the creaT 

isolated from human brain stem cells and spinal cord revealed that the creatine transporter 

is expressed in skeletal muscle, heart and kidney (75, 86). CreaT is also expressed in the 

intestinal villus where it ensures Na
+
 and Cl

-
 coupled creatine transport with high affinity 
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(84). Moreover, the development of CreaT antibody allowed researchers to localize the 

creatine carrier expression in the brain, skeletal muscle and retina (77, 87, 88).  

The creatine transporter is needed to supply creatine to cells with high energy demand (73, 

77). Creatine is necessary to produce a high-energy phosphate buffering system in order to 

ensure the required ATP level in these tissues (77). For brain function, creatine provides the 

needed ATP concentrations; therefore the creatine transporter is specifically expressed in 

neurons of the olfactory bulb, granule cells of the dentate gyrus in hippocampus, pyramidal 

neurons of the cerebral cortex, Purkinje cells of cerebellum, motor and sensory cranial 

nerves nuclei of brainstem cells as well as dorsal and ventral horn in spinal cord. On the 

whole, CreaT is preferentially expressed in the forebrain, brainstem and the spinal cord, 

tissues responsible for learning process, memory modulation and function of the limbs (88). 

In addition, creatine in the brain shows an antioxidant effect, diminishes mental fatigue and 

prevents neurotoxicity. It is also known to improve neurological disorders especially 

depression and bipolarity (80). 

1.2.4. Creatine transporter physiophathology  

Mutations in the transporters of the solute carrier superfamily SLC6 are subject of several 

neurological disorders (76). CreaT is necessary for brain activity since mutations in the 

SLC6A8 gene leads to X-linked mental retardation, which is due to a severe lack of 

creatine in the brain. It engenders autistic behavior, epilepsy, speech and language delay 

(77) and also unusual alteration of language function and mental retardation (89, 90). 

Creatine deficiency syndrome results in major part from a lack of creatine transporter 

SLC6A8 expression, which explains the absence or the severe decreased creatine 

concentrations in brain (87, 91). Mutations in SLC6A8 have negative effect on the 

metabolism of stress, where intracellular creatine impacts directly on energy depletion 

which leads to the activation of metabolic stress hallmarks namely: reactive oxygen species 

(ROS), p38MAPK activation, uncontrolled proliferation and apoptosis (92-94). Moreover, 

the low expression of SLC6A8 in astrocyte in the blood-brain barrier influences creatine 

uptake from periphery (87). 
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1.3 The phosphate transporter NaPi-IIb  

The phosphate transporter NaPi-IIb belongs to SLC34 family of Na
+
 dependent phosphate 

carriers. Their role is to transport the inorganic phosphate (HPO4
2-

) coupled to sodium Na
+
 

(95). Phosphate homeostasis depends on three things: the first is phosphate uptake in 

intestines, the second is phosphate re-absorption and excretion in kidneys and the last is 

phosphate exchange between the extracellular and the stored Pi in bones (96). Intestinal 

phosphate absorption involves the Na
+
 coupled phosphate transporter type II NaPi-IIb 

which is encoded by the gene SLC34a2 (97) 

1.3.1. NaPi-IIb structure 

The structure of the Na
+
-coupled phosphate transporter NaPi-IIb analyzed via 

bioinformatics represents eight transmembrane domains, with five cytoplasmic and four 

extracellular loops, the N-terminal as well as the C- terminal are intracellular (98, 99). 

Figure 4. 

 

Figure 4: Phosphate transporter type II NaPi-IIb (SLC34A2) structure. Schematic structure of 

NaPi-IIb showing the 8 transmembrane domains and kinetics of inorganic phosphate and sodium. 

Adapted from  Cerri et al. 2010 (103). 
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1.3.2. NaPi-IIb expression and physiology function 

Inorganic phosphate (Pi) is important for several biological processes, for instance: 

bioenergetics, metabolic modulation needed for intracellular signaling (glycolysis, 

oxidative phosphorylation), cell proliferation (DNA and RNA composition), bone and 

membrane structure (100, 101). Phosphate participates in the balance acid-base in blood 

and urine. 85% of the total phosphate is accumulated in bones and teeth, the rest is located 

in erythrocytes and muscles (102). 

The phosphate Na
+
-dependent transporter NaPi-IIb is expressed in different tissues, 

namely: the small intestine brush border membrane, lung, liver, testis, salivary glands, 

thyroid, mammary glands and uterus (95, 104). The Na
+
-coupled phosphate carrier NaPi-

IIb determines the compensatory mechanism to phosphate homeostasis in kidney (97). 

NaPi-IIb has a major role in the phosphate absorption with more than 90% of the total 

absorbed phosphate in intestine (97).  

SLC34A2 gene encoding for the phosphate transporter type II, is in addition expressed in 

the epididymis (105) and some types of cancer such as: ovarian (106), papillary thyroid 

(107) and breast cancer (108). 

1.3.3. NaPi-IIb physiophathology 

Hypophosphatemia caused by inherited disorder and resulting in renal phosphate 

reabsorption include hypophosphatemic rickets, X-linked hypophosphatemia and tumor 

induced osteomalacia (96, 109, 110). 

Long term phosphate deficiency induces bone demineralization and thus leads to skeletal 

disorder like rickets in young individuals and osteomalacia in adults (111, 112) and 

enhances nephrolithiasis (113). Other disorders observed in hypophosphatemia such as the 

rhabdomyolisis, hemolysis, respiratory failure due to weak muscles and low myocardial 

contractility (114-116). On the other hand, hyper-phosphatmia is a severe chronic renal 

failure (117), involved in hyper-parathyroid activity, and also participates in the 

cardiovascular morbidity and mortality cases (118). Moreover, mutations in NaPi-IIb gene 
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induce pulmonary alveolar microlithiasis, a disorder due to calcification in alveoli induced 

by accumulation of phosphate in lungs (119). Phosphate imbalance presenting excessive 

phosphate exposure is cytotoxic and leads to cardiovascular disorders, which is consequent 

to Pi and Ca
2+

 deposition in vessels (120).  

 

1.4. SPAK and OSR1 kinases 

The mammalian kinases SPAK (STE20 (sterile 20) /SPS1-related proline/alanine rich 

kinase) and OSR1 (oxidative stress-responsive kinase 1) belong to the STE20 superfamily 

of the MAPK-like protein kinases (mitogen-activated protein kinases) (121-124). SPAK 

and OSR1 are homologous, sharing 96% of their N-terminal catalytic domain and 67% of 

their C- terminal regulator domain sequences (121).  

1.4.1. SPAK tissues expression 

SPAK was first identified in β-cells of pancreas (122, 123). Later it was shown to be 

ubiquitously expressed, since it was detected via Northern blot in brain, salivary gland, 

thymus, cardiac cells, lungs, spleen, stomach, intestines, adrenal glands, kidneys, testis, 

epididymis, ovaries and uterus (122, 125, 126). As well, SPAK was localized in rat 

embryos in the choroid plexus, myocardium, mesonephron and dorsal root ganglia (122, 

127). SPAK kinase is expressed the most in the apical membrane of epithelium choroid 

plexus and in the cranial nerve nucleus of brain stem cells (126, 128). 

1.4.2. OSR1 tissues expression 

OSR1 gene was isolated and identified from chromosome 3 (124). OSR1 kinase is 

expressed in brain, heart, lung, kidney, colon and small intestine, thymus, liver, spleen, 

pancreas, skeletal muscles, ovaries, testis, prostate and placenta (122, 124). It was shown to 

be further expressed in the nuclear fractions of stomach among the rest of pre-cited tissues 

(129). OSR1 kinase shows a lower expression in brain stem cells than SPAK (128). 
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1.4.3. Physiological role of SPAK and OSR1 

SPAK and OSR1 share important homology in the catalytic and regulator domain in 

addition to the several same tissues expression (121). They are both the downstream 

kinases of WNK1 and WNK4 and the upstream modulators of Na/K/Cl (NKCC1 and 2) 

and Na/Cl cotransporters (NCC) (130-132). SPAK and OSR1 are powerful modulators of 

ion transport in epithelial cells. Both kinases are co-localized with the Na
+
/K

+
/2Cl

-
 

cotransporter (NKCC2) in the thick ascending limb of Henle loop in kidney and also with 

the Na
+
/Cl

-
 cotransporter (NCC) in the distal convoluted tubule (122, 133-135). Moreover, 

SPAK kinase is highly expressed in tissues secreting Cl
-
, such as the gastric, sublingual and 

salivary glands (122, 126, 130). The kinases upregulate the Na
+
 and Cl

-
 (NCC) 

cotransporter, as well, they enhance the activity of the Na
+
/K

+
/2Cl

-
 (NKCC) cotransporters 

(122, 131-133, 136-138). In addition, SPAK/OSR1contribute to the regulation of blood 

pressure (122) through interaction with WNK to modulate the NCC and NKCC in kidney 

and blood vessels (135). In brain, and specifically in olfactory sensory cilia, SPAK and 

OSR1 expression is directly correlated with Cl
-
 accumulation due to NKCC1 activity and 

GABA depolarizing effect (122). 

1.4.4. SPAK and OSR1 modulation  

SPAK and OSR1 kinases are modulated mainly by With-no-lys kinases WNK 

phosphorylation (131, 132, 139, 140). This effect participates in the regulation of ion 

transport and blood pressure (132, 140-142). The kinases are present in the downstream 

pathway of WNK1 and WNK4 kinases (130-132). SPAK and OSR1 are phosphorylated 

and activated by WNK kinases consequently both SPAK and OSR1 activate NCC and 

NKCC1 by phosphorylation (143). Research on WNK kinases showed that only a subset of 

these kinases contributes to the activation of SPAK/OSR1 signaling (122). In the intestines, 

SPAK and OSR1 are regulated by forskolin, the adenylate cyclase stimulator (144). SPAK 

transcription is enhanced by the transcription factor NF-kappaB and SP1 (145). Further, 

SPAK activity is stimulated by angiotensin II (146, 147). Other modulators of SPAK and 
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OSR1 such as: glycoprotein CD46, TNF-α receptor, heat shock protein 105 (Hsp105) and 

calcium binding protein 39 (Cab39) (122). 

1.4.5. Physiopathology of SPAK and OSR1 

Genetic defects impairing the activity of the WNK kinases induce Gordon’s syndrome, a 

monogenic disease presenting hyperkalemia and hypertension as well (142), which makes 

this syndrome different from the other forms of hypertension disorders that are inducing 

hypokalemia (148). Mutations in WNK and their downstream kinases SPAK and OSR1 are 

involved in Gordon’s syndrome, by phosphorylation and activation of the Na/Cl and the 

Na/K/Cl cotransporters (148). SPAK deficiency leads to the decrease in the permeability in 

the para-cellular space and also induces resistance to inflammatory bowel disease (149). 

SPAK gene defects induce disturbed NCC activity in kidney and disturbed NKCC1 in 

blood vessels, which results in renal salt wasting followed by vasodilation, and causes a 

hypotension, these observations suggest SPAK to be a potential drug target (135). 

OSR1 is a hypertension drug target (136). SPAK and OSR1 demonstrated a further role in 

cancer cells proliferation and migration (122). Furthermore, investigation of SPAK knock-

out mice revealed that SPAK deficiency induces, through NKCC1 decaying function, mice 

latency in responding to noxious heat stimuli, together with balance and locomotion 

difficulty (122, 150).  

 

 

 

 

Note: This introduction may lack some explanatory figures, avoiding any conflict and 

considering plagiarism rules.  

 



 23 

Aim of the study 

The regulation of ion transport involves several kinases including SPAK (SPS1-related 

proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) which are the 

downstream of WNK (with-no-K[Lys]) kinases. SPAK and OSR1 are expressed in many 

tissues where they contribute to a variety of functions, among the most known the 

modulation of blood pressure and neuroexcitability (122, 151). Since the discovery of 

SPAK and OSR1 kinases, research studies focus rather on their tissues expression, 

interaction with WNK kinases or their role in the modulation of Na/K/Cl and Na/Cl 

cotransporters (122, 131-133, 136-138). Nevertheless, so far very few information is known 

about the role of SPAK and OSR1 in the regulation of further channels and transporters.  

The present study sheds the light on the effect of both kinases SPAK and OSR1 on the 

following channels and transporters: the first channel is the inwardly rectifying K
+
 channel 

Kir2.1 (KCNJ2), which is expressed in brain, heart and skeletal muscle, it is important to 

maintain the resting membrane potential and is determinant for cell volume regulation, 

preventing cell shrinkage and thus apoptosis (152). The second transporter is the creatine 

transporter CreaT (SLC6A8), a Na
+
 and Cl

- 
coupled creatine carrier expressed in cells with 

high energy demand such as brain, heart, retina and skeletal muscle, where it provides 

creatine needed for energy. CreaT defects leads to mental retardation, seizure and 

intellectual disability (122). The third is the Na
+
 coupled phosphate transporter NaPi-IIb, 

which mediates phosphate up-take in the intestine needed for bioenergetics and cell 

proliferation (100). 

The aim of this study is to investigate whether the co-expression of the kinases SPAK and 

OSR1 influences the ion transport of Kir2.1, CreaT and NaPi-IIb and if it is related to 

WNK signaling. Moreover, this work investigates the effect on the channel conductance, 

and the kinetics of the transporters. Further, this study explores the effect of the kinases on 

the protein expression of the channel and the protein trafficking. 
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2. MATERIALS and METHODS  

2.1. Materials: 

2.1.1. Equipment: 

Equipment Name Manufacturer 

Autoclave HICLAVE-50 HMC Labor systemtechnik, 

Germany. 

Digitizer digidata 1322A Axon Instruments, Union City, CA, USA. 

DMZ universal puller Zeitz-instruments, Martinsried. Germany. 

Eppendorf centrifuge 5415R          Hinz GmbH. Hamburg. Germany. 

Gene Clamp 500 amplifier Axon Instruments, Union City, USA. 

HS-2A Headstage Axon Instruments, Union City, USA. 

Luminometer Wallac Victor  

(1420 multilabel counter plate reader) 

Perkin Elmer, Juegesheim, Germany. 

Maclab D/A converter AD    Instruments, Castle Hill, Australia. 

Microscope Leica MS5  Leica microsystems, Germany. 

Magnetic stirrer Combimag RCT                 IKA-Werke GmbH & Co. KG, Germany. 

Nanoliter injector 2000                             World precision instruments, Germany 

pH meter 646      Carl Zeiss, Oberkochen. Germany 

Spectrophotometer: Biophotometer Eppendorf, Hamburg, Germany. 

Tube roller Scilogex MX-T6-S, Michigan, USA. 

Vortex Mixer VX-100 Labned, Langenfeld, Germany 
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2.1.2. Instruments: 

Instrument Name Manufacturer 

Dissecting scissors Fine Science Tools, Dumont, Switzerland. 

Eppendorf pipettes 0.1-1000ul  Eppendorf. Hamburg. Germany. 

Eppendorf pipettes 10-100ul                   Eppendorf. Hamburg. Germany. 

Eppendorf pipettes 0.5-10ul                                                                                                                            Eppendorf. Hamburg. Germany. 

Kelly forceps Fine Science Tools, Dumont, Swizerland. 

Thumb forceps Fine Science Tools, Dumont, Swizerland. 

Toothed forceps Fine Science Tools, Dumont, Swizerland. 

 

2.1.3. Consumable materials: 

Material Name Manufacturer 

Borosilicate glass capillaries 

(OD: 1.14mm,ID: 0.5mm)           

Harvard apparatus, USA. 

Borosilicate glass capillaries 

(OD: 1.5mm,ID: 1.17mm) 

Harvard apparatus, USA. 

Bottle-top filters (0.5 l) Carl Roth, Karlsruhe, Germany.  

Cell Culture dishes PS (627 160 & 

628 160) 

Greiner bio-one, Frickenhausen, Germany. 

Eppendorf tubes Eppendorf, Hamburg, Germany. 

Falcon tubes (15, 50ml)   Greiner bio-one, Frickenhausen, Germany. 

Filter tips 10µl (SurPhob)                                                                                    Biozym, Gemrany. 

Hardshell 96 well plates  Biozym Biotech trading GmBH Vienna, Austria. 

SteriCup-GP (0,22µm) Millipore Merck Millipore, Germany. 

Vicryl: Suture filament, polyglactin 

910: (45cm) needle: 13mm 3/8c  

Johnson & Jonhson, Medical GmbH, Ethicon 

Deutschland, Norderstedt, Germany 

https://en.wikipedia.org/wiki/Scissors
https://en.wikipedia.org/wiki/Forceps
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2.1.4. Chemicals: 

Reagent Name Manufacturer 

CaCl2 x 2H2O Sigma-Aldrich, Steinheim, Germany. 

Ciprofloxacin Fresenius Kabi Austria GmdH, Austria. 

Collagenase Type II  Worthington Biochemical Corp., NJ, USA. 

Creatine hydrate Sigma-Aldrich, Steinheim, Germany. 

HEPES Carl Roth GmbH, Karlsruhe, Germany.                 

Gentamycinsultaf (Refobacin c )  Merck Serono, Dramstadt, Germany. 

KCl   Carl Roth GmbH, Karlsruhe, Germany. 

MgCl2 x 6H2O  Sigma-Aldrich, Steinheim, Germany.  

NaCl  Sigma-Aldrich, Steinheim, Germany. 

NaOH  Applichem GmbH O, Darmstadt, Germany. 

Paraffin Oil    Merck, Darmstadt, Germany. 

Di-NatriumhydrogenPhosphate  

di-hydrate (Na2HPO4*2H2O) 

Sigma-Aldrich, Steinheim, Germany. 

Sodium pyruvate Sigma-Aldrich, Steinheim, Germany. 

SuperSignal ELISA Femto Substrate Thermo Fisher Scientific, Germany. 

Tetracycline  Sigma-Aldrich, Steinheim, Germany. 

Theophyline (Euphylon c) Nycomed GmbH, Konstanz, Germany. 

 

Tricaine methanesulfonate   

 

Sigma-Aldrich, Steinheim, Germany. 

 

 

 

 



 27 

2.1.5. Solutions: 

2.1.5.1. ND96+ antibiotics solution for oocytes culture: 

Reagent Concentration 

NaCl 88.5 mM 

KCl 2 mM 

CaCl*2H2O 1.8 mM 

MgCl2*6H2O 1 mM 

Hepes 5 mM 

NaOH 2.5 mM 

Sodium Pyruvate 5 mM 

Gentamycin 100mg/L 

Tetracyclin 50mg/L 

Ciprofloxacin 1.6mg/L 

Theophylin 90mg/L 

*The pH is adjusted to 7.4 and this solution is filtred maintained at 4°C. 

2.1.5.2. ND96 superfusate solution for measurement: 

Reagent Concentration 

NaCl 93.5 mM 

KCl 2 mM 

CaCl*2H2O 1.8 mM 

MgCl2*6H2O 1 mM 

Hepes 5 mM 

NaOH 2.5 mM 

*The pH is adjusted to 7.4 and this solution is maintained at room temperature. 
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2.1.5.3. OR2 Solution: 

Reagent Concentration 

NaCl 82.5 mM 

KCl 2 mM 

MgCl2*6H2O 1 mM 

Hepes 5 mM 

NaOH 2.5 mM 

*The pH is adjusted to 7.4 and this solution is filtered and maintained at 4°C. 

2.1.5.4. OR2 solution for oocytes defolliculation: 

Reagent Concentration 

NaCl 82.5 mM 

KCl 2 mM 

MgCl2*6H2O 1 mM 

Hepes 5 mM 

NaOH 2.5 mM 

Collagenase II 1 mg/ml 

*The pH is adjusted to 7.4, freshly prepared. 

2.1.5.5. Anesthesia Solution for frog: 

Reagent Concentration 

Tricaine  1mg/ml 

*This solution should be mixed very well with fresh water. 
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2.1.6. Animal material: Xenopus laevis 

Xenopus Laevis female specimens were provided from NASCO, Fort Atkinson, USA, and 

maintained in the animal facility of the Physiology Institute of Tübingen University. 

Frogs were kept humanely in accordance with the German law for the welfare of animals 

and were approved by local authorities. 

2.1.7. Software: 

Software Name Company 

GraphPad InStat v3.05 GraphPad Software Inc., La Jolla, CA, USA. 

GraphPad Prism 5.0 GraphPad Software Inc., La Jolla, CA, USA. 

Microcal Origin 6.0G Microcal software, Northampton, MA, USA. 

pClamp 9.2 software package: 

- Clampex 9.2 Data acquisition 

- Clampfit 9.2 Data analysis 

 

Axon Instruments, Union City, CA, USA. 

Axon Instruments, Union City, CA, USA. 

Axon Instruments, Union City, CA, USA. 

Wallac 1420 manager prog. Wallac Victor, Perkin Elmer, Germany. 

2.2. Methods:  

2.2.1. cRNA preparation: 

The cRNA needed to be injected in the Xenopus oocytes to express the corresponding 

protein, are synthesized from the corresponding DNA each. These constructs encode for the 

following wild-type kinases: human Kir 2.1(153), Kir 2.1-HA having an extracellular 

hemagglutinin epitope (154), bovine creatine transporter (CreaT) (88), human NaPi-IIb 

(155), human SPAK (131), human OSR1 (156) and the following mutant   human kinases
 

T233E
SPAK, 

T233A
SPAK,

 D212A
SPAK (131), 

T185E
OSR1, 

T185A
OSR1 and 

D164A
OSR1 (156). 

The production of the cRNA is the result of two main following steps: 

 



 30 

2.2.1.1. Plasmid DNA linearization: 

Specific restriction endonucleases were used to cut at 3’ end of every insert. 

Table 1: Plasmids containing the gene encoding the specific protein and restriction 

Endonucleases and polymerases. 

Plasmid Vector Restriction enzyme Polymerase 

Kir2.1 (KCNJ2) pGHJ Mlu I SP6 

Kir2.1-HA pGHJ Mlu I SP6 

CreaT (SLC6A8) pGHJ Not I / Spe I T7 

NaPi-IIb (SLC34A2) Psport1 Sal l SP6 

SPAK pGHJ Sal I/Sph I T7 

T233E
SPAK pGHJ Sal I/Sph I T7 

T233A
SPAK pGHJ Sal I/Sph I T7 

D212A
SPAK pGHJ Sal I/Sph I T7 

OSR1 pGHJ Spe I T7 

T185E
OSR1

 
pGHJ Spe I T7 

T185A
OSR1

 
pGHJ Spe I T7 

D164A
OSR1

 
pGHJ Spe I T7 

 

The following reaction mixture is used to linearize the DNA plasmid: (see Table 2) 

Table 2: Mixture of reagents for DNA linearization 

Mixture Volume/Concentration 

10X Buffer 5µl 

DNA plasmid (10µg) Depends on DNA concentration 

Restriction enzyme (20U) 2µl 
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Deionized water (nucleases free) DEPC The needed to reach the total volume of 25µl 

 

This mixture was incubated overnight at 37°C. Then, a careful purification of the DNA 

using a NucleoSpin
®
 Gel and PCR celan-up: 250µl of NTI Buffer was added to the mixture 

and loaded in NucleoSpin
®
 Gel. PCR clean up column is centrifuged at 11000rpm/30 

seconds. The column was then washed twice with 700µl NT3 Buffer and centrifuged again 

at 11000/1minute. The DNA was then eluted with 20µl NE Buffer. Later, cRNA 

concentration was measured via the Bio-photometer (Eppendorf, Hamburg, Germany), 

using a spectrophotometer cuvette (1µl cRNA + 69µl water). 

2.2.1.2. cRNA synthesis: 

The DNA linearized was used as a template to synthesize the cRNA. For this purpose we 

do need the following mixture: (see table 3) 

 

Table 3: Mixture of reagents for cRNA synthesis 

Mixture Volume/Concentration 

Linearized DNA (1µg) Depends on the DNA concentration 

10X Buffer 2.5µl 

rNTPs 1µl 

Cap analog 2.5µl 

RNAse inhibitor 1µl 

Deionized water The needed volume to reach 25µl 

 

All the reagents were mixed together by a gentle vortexing. The specific RNA polymerase 

was then added to the mixture, prior to an incubation of 2 full hours at 37°C. Afterwards, 

5µl of DNAase was added to avoid any possible DNA contamination, and the whole 

mixture was then incubated at 37°C for 15 minutes on a shaker. 

The corresponding polymerases were added following the Table 1. 
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The following step consists on the purification of the new synthesized RNA. For this 

purpose, 129µl of phenol chloroform was mixed to 100µl of DEPC water and centrifuged 

at 11000 rpm/5minutes. The result of the centrifugation shows two different phases, the 

inorganic phase (the upper phase) was thoroughly separated in a new Eppendorf tube. 

Later, 375µl of 100% Ethanol and 12.5µl of 3M Sodium acetate (pH=5.2) were added and 

all was mixed together to be incubated at -70°C for 30 minutes. At the end of the 

incubation time, a centrifugation at 20000 rpm/15minutes/4°C was performed. Only the 

pellet was kept for a wash with 500µl Ethanol 70%. Then, the tube was placed in the 

Speedvac for 5 minutes in order to dry. Then after, 40µl of DEPC water was added to dilute 

the pellet. The cRNA concentration was measured via an Eppendorf Biophotometer 

(Hamburg, Germany) using 1µl of the new synthesized cRNA and 69µl of water mixed in a 

cuvette. Finally, the cRNA was run on a gel electrophoresis to confirm its quality. Good 

cRNA was kept in -80°C for a later use.  

2.2.2. Frog Operation: 

- Pre-operative considerations: 

Frog needs to fast 12hours prior to surgery. The surgical area must be clean with a 

disinfectant (Descosept AF alcoholic rapid, Dr. Schumacher, Value-Rx, Inc.). 

- Instruments sterilization: 

Instruments must be sterilized in the sterilization center of the UniversitätsKlinikum 

Tübingen, before the surgery and placed on a sterile wrap during surgery. 

- Anesthesia: 

To anesthetize the frog, a fresh solution of 1mg/ml Tricaine methane sulfonate (ethyl 3-

aminobenzoate methanesulfonate salt) mixed very well in fresh water is prepared. The 

Xenopus laevis is placed in the anesthesia solution for 15 to 30 minutes (depending on the 

frog). To check whether the frog is well anesthetized, a mechanical stimulus is used by 

pressing the hind paw with fingers, when the leg drawing-back reflex is lost, the frog is 

enough unconscious. The animal is removed from the solution and placed on the clean wet 

pad, to keep the frog’s skin moist. 
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- Surgical procedure: 

Skin preparation is not always necessary, but when needed, cotton stick is used.  An 

incision of 0.5 to 2 cm is operated through the skin first and then incision through the 

muscle layer. This should be done on either the left or the right side. A portion of oocytes 

are exteriorized with forceps and placed in OR2 solution. Then, both tissue layers are 

closed back separately with a monofilament suture (Vicryl). 

- Post-surgical care: 

The frog must be placed in dechlorinated water in a shallow recovery container. Water 

should not cover the nostrils of the frog. Once frog is active again, it can be placed in a tank 

and labelled with date and operation side. The animal should be checked every day after the 

operation. 

 

2.2.3. Oocytes treatment, injection and culture: 

- Defolliculation:  

The oocytes extracted from the Xenopus ovary, are placed immediately in OR2 solution. 

Later, these cells are immerged in the defolliculation solution (OR2+collagenase type II) to 

undergo collagenase digestion for 3hours, under a slow rotation on a tube roller, 

considering the obscurity condition. The oocytes are then washed with OR2 and checked 

under microscope, if the follicular layer is ruptured, a second wash with ND96 enriched 

solution with anti-biotics to stop the collagenase effect as well as cell division. (Figure 5). 
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Figure 5: Defolliculation process. 

 

- Oocytes selection:  

A meticulous selection of mature oocytes (at stage V and VI) presenting a clear 

differentiation between the two poles of the oocyte, namely: the vegetal pole and the animal 

pole, sign of healthy and adequate oocyte for injection is needed. 

- Oocytes injection: 

Oocytes treated beforehand, take a rest of 1 to 2 hours prior to injection. They were divided 

into groups corresponding to the needed experiment and then placed on a netted petri dish 

being ready for manual injection, using a Nano-liter injector. Borosilicate (or Glass) 

capillaries used in injection are prepared using the Pullar, beforehand. The capillary tip 

should be cut to open a diameter of 20µm allowing the flow of RNA afterwards. An 

injection of Paraffin oil in the capillary is needed prior to RNA suction. (Figure 6 and Table 

4). 

Folliculated oocyte  

Follicule 

Vegetal pole 

Animal pole 

Defolliculated oocyte  Digestion 

OR2 solution + Collagenase II 
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Figure 6: Oocytes manual injection 

 

- Culture: 

Oocytes are kept in petri dishes filled with ND96 solution for culture, at 17°C temperature, 

for later use. Medium is changed daily, and dead oocytes are removed from the medium. 

The expression of a given protein (transporter, channel) on the cell membrane takes in 

general from 3 to 10 days depending on the molecule complexity. Here, we explain in the 

following Table 4. 
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Table 4: Days required for protein expression and cRNA concentrations. 

Protein [cRNA] (ng) / oocyte Days of incubation 

Kir2.1 10ng 3 days 

Kir2.1-HA 10ng 3 days 

CreaT 15ng 4 days 

NaPi-IIb 15ng 4 days 

SPAK 10ng 3 days 

T233E
SPAK 10ng 3 days 

T233A
SPAK 10ng 3 days 

D212A
SPAK 10ng 3 days 

OSR1 10ng 3 days 

T185E
OSR1

 
10ng 3 days 

T185A
OSR1

 
10ng 3 days 

D164A
OSR1

 
10ng 3 days 

 

2.2.4. Dual Electrode Voltage Clamp measurement:  

The dual electrode voltage clamp technique was used to measure in a real time the activity 

of ion channel and transporters in this study. This is the conventional technique of 

electrophysiology used to control artificially the membrane potential of the macroscopic 

single cell, namely the Xenopus laevis oocyte. (See figure 7). All the electrophysiological 

measurements were performed at room temperature after the corresponding incubation 

days. 
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Figure 7: Dual Electrode Voltage Clamp Principle 
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2.2.4.1. Inwardly rectifying K
+
 current in real-time recording of Kir2.1, KCNJ2 

 

The recording of the inwardly rectifying potassium currents through Kir2.1 channels via 

voltage clamp needed a concentration of 5mM KCl in the ND96 superfusate solution. The 

flow rate of the superfusion was about 20ml/min. 

Measurement was done at a holding potential of -60mV. The inwardly rectifying K
+
 

currents were obtained every 20 seconds with 1 second pulses, from -150 mV to +30 mV, 

10mV increment (figure 8). Data were filtred at 2 kHz and recorded with digita A/D-D/A 

converter 1322A Axon instruments. pClamp 9.2 software package from Axon Insruments, 

Union City, CA, USA was used as corresponding: Clampex 9.2 software for data 

acquisition and Clampfit 9.2 software for Data analysis, respectively. 

 

 

 

 

 

 

 

 

 

Figure 8: Voltage Clamp recording protocol of the inwardly rectifying K
+
 channel Kir2.1 

 

2.2.4.2: Ion Transporter real-time recording: 

The recording of ion transport through carriers necessitates the addition of the specific 

substrate to the ND96 superfusate solution. The superfusate flows at 20ml/min. The data 

were filtred at 10Hz and recorded with digita A/D-D/A converter 1322A Axon instruments. 

-60 mV -60 mV  

+30 mV 
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pClamp 9.2 softwares package (Axon Insruments, Union City, CA, USA): Clampex 9.2 and 

Clampfit 9.2  were used for data acquisition and Data analysis, respectively. 

2.2.4.2.1. Creatine transporter: CreaT, SLC6A8 

For CreaT (SLC6A8) activity assessment, 1Mm creatine hydrate was added to the ND96 

superfusate in all experiments, expect the measurement of carrier kinetics, where increasing 

concentrations of creatine were used as following in mM: 0.003, 0.03, 0.1, 0.3, 1 and 3. 

Current recording used CreaT protocol with -60mV pre-set holding potential. 

2.2.4.2.2. Phosphate transporter: NaPi-IIb, SLC34A2 

The phosphate transport was possible by addition of 1Mm phosphate di-hydrate to the 

ND96 superfusate in all experiments. The transporter kinetics assessment needed the use of 

different concentrations of phosphate as following in mM: 0.1, 0.2, 0.4, 0.8, 1, 2 and 4. 

Current recording used CreaT protocol with -60mV pre-set holding potential. 

2.2.5. Quantification of Protein cell surface abundance via Chemiluminescence: 

- Principle:  

The chemiluminescence is the technique that allows the assessment of the abundance of a 

given protein expressed on cell surface through light. Chemiluminescence (or 

chemoluminescence) is defined as the emission of light (luminescence) following a 

chemical reaction without heat. The ‘Horseradish Peroxidase’ (HRD) enzyme catalyzes the 

substrate, resulting in a luminescent product, which quantification is possible via a 

luminometer machine. (Figure 9)  

- Cell surface proteins expression:  

For the purpose, the inwardly rectifying K
+
 channel Kir2.1 with an external HA-tag was 

expressed in Xenopus defolliculated oocytes with or without co-expression of the kinase 

SPAK or OSR1, compared to oocytes injected with water as a negative control.  
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- Monoclonal anti-body treatment:  

 

After 3 days of culture, oocytes were incubated in a blocking solution composed of 1ml 

ND96 (see subheading 2.1.5.2) with 1% BSA for 20 minutes placed in a crushed ice box on 

a plate shaker. The blocking solution was then removed and replaced by 1:500 monoclonal 

anti-HA antibody conjugated to Horseradish Peroxidase (Miltenyi Biotech, Germany) 

diluted in 1% BSA/ND96. Oocytes were incubated for 1 hour on the plate shaker at 4°C. 

The oocytes were first washed with 1ml of 1% BSA in ND96 for 5 minutes under shaking 

condition at 4°C. This first wash step was repeated 3 times. The second wash step was done 

with ND96 solution only, again for 5 minutes at 4°C under shaking condition and repeated 

3 times. Immediately afterwards, each oocyte was placed in an individual well of a 

hardshell 96 well plate, appropriate to avoid any possible light crossing, along with 100µl 

ND96 + 20µl of SuperSignal (Elisa Femto Substrate) under protection from light.  

- Quantification and Analysis:  

Chemiluminescence of every oocyte was measured by a Wallac Victor2 plate reader, by 

integrating the signal over 1 second-period. The results are given as normalized relative 

light units and assessed visually to prevent any unspecific cytosolic light. The analysis was 

possible through Wallac 1420 manager programme.  
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Figure 9: Chemiluminescence principle  
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2.2.6. Brefeldin A treatment 

Brefeldin A is a natural fungal macrocyclic lactone extracted from Eupenicillium 

brefeldianum. It is shown to inhibit protein trafficking by a rapid accumulation of proteins 

in the endoplasmic reticulum and by blocking the secretion and redistribution of vesicles 

leading to the collapse of Golgi apparatus. For such property, brefeldin A had been widely 

used as a biological tool in the study of protein transport (157-159) (Figure 17).  

After oocytes injection with the KCNJ2 cRNA encoding for Kir2.1channel, oocytes were 

incubated in ND96 culture solution for 3 days. The treated groups were supplemented with 

5 µM of Brefeldin A in their culture media 24 hours prior to the dual voltage clamp 

measurement. 

 

 

 

 

 

 

 

 

 

 

Figure 10: Brefeldin A inhibiting protein channel migration to the membrane principle 
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2.2.7. Ethical Statement: 

All experiments were conform to the 'European Convention for the Protection of Vertebrate 

Animals used for Experimental and other Scientific Purposes' (Council of Europe No 123, 

Strasbourg 1985) and were conducted according to the German law for the welfare of 

animals. Surgical procedures on the adult Xenopus laevis were reviewed and approved by 

the respective government authority of the state Baden-Württemberg 

(Regierungspräsidium) prior to the start of the study (Anzeige für Organentnahme nach 36). 

2.2.8. Statistics: 

The Data are expressed as arithmetic means ± standard error mean (SEM), where (n) 

represents the number of oocytes measured. All voltage-clamp and chemiluminescence 

experiments were repeated at least 3 batches of oocytes; in all repetitions qualitatively 

similar data were obtained. Statistical analysis used either the Student t-test or ANOVA 

(analysis of variance), as appropriate. Values of P < 0.05 were considered statistically 

significant. 
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3. RESULTS 

The results are composed of three main parts.  

Part of the results presented here is published in the following papers: 

Fezai M, Ahmed M, Hosseinzadeh Z, Elvira B, Lang F. SPAK and OSR1 sensitive Kir2.1 

K
+
 Channels. Neurosignals. 2015 Dec 17; 23(1):20-33. 

Fezai M, Elvira B, Borras J, Ben-Attia M, Hoseinzadeh Z, Lang F. Negative regulation of 

the creatine transporter SLC6A8 by SPAK and OSR1. Kidney Blood Press Res. 2014 Dec 

8;39(6):546-54.  

Fezai M, Elvira B, Warsi J, Ben-Attia M, Hosseinzadeh Z, Lang F. Up-Regulation of 

Intestinal Phosphate Transporter NaPi-IIb (SLC34A2) by the Kinases SPAK and OSR1. 

Kidney Blood Press Res. 2015Oct 28; 40(6):555-64. 

 

3.1. Kir2.1 sensitive to SPAK and OSR1 

3.1.1. SPAK up-regulated Kir2.1 

3.1.1.1. Wild-type SPAK increased the inwardly rectifying K
+ 

current in KCNJ2-

expressing Xenopus laevis oocytes 

3.1.1.1.1. The inward rectifying K
+
 currents enhanced by SPAK co-expression 

In order to investigate the effect of SPAK on Kir2.1 channel, the inwardly rectifying K
+
 

currents were measured in Xenopus laevis oocytes by two electrode voltage clamp 

technique. Xenopus oocytes were divided in 4 different groups: oocytes expressing either 

Kir2.1 (KCNJ2) channels alone, or the kinase SPAK only, or co-expressing both the 

channel and the kinase Kir2.1+SPAK and a negative control group was injected with water. 

Oocytes membrane current was recorded at a holding potential of -60mV. The inwardly 

rectifying K
+
 currents were obtained every 20s with 1s pulses, from -150 mV to +30 mV, 

10mV increment.  

https://www.ncbi.nlm.nih.gov/pubmed/26673921
https://www.ncbi.nlm.nih.gov/pubmed/26673921
https://www.ncbi.nlm.nih.gov/pubmed/25531585
https://www.ncbi.nlm.nih.gov/pubmed/25531585
https://www.ncbi.nlm.nih.gov/pubmed/26506223
https://www.ncbi.nlm.nih.gov/pubmed/26506223
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Negative control as well as SPAK-injected oocytes did not show any appreciable inward K
+
 

current, on one hand, which confirms that the oocytes expressed negligible inwardly 

rectifying K
+ 

currents. On the other hand, Kir2.1-expressing oocytes showed large 

measurable inward rectifying K
+
 currents. This current was significantly increased in the 

presence of the wild-type SPAK.  As illustrated in figure 11 (A) the original tracings along 

with the recording protocol and figure 11 (B) showing the histogram of the arithmetic 

means of maximal inward K
+
 currents of the different groups (160). 
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Figure 11: The inward rectifying K
+
 current in Kir2.1 is up-regulated by wild-type SPAK 

additional expression. (A): Original tracings of currents measured in Xenopus laevis oocytes 

expressing water (a), SPAK alone (b), Kir2.1 (KCNJ2) alone (c) and Kir2.1 + wild-type SPAK (d). 

The recording protocol is not to scale. (B): Histogram of means of the maximal inward K
+
 current I 

(µA) recorded at -150mV (±SEM), respectively in negative control water (dotted bar), SPAK WT 

only (grey bar), Kir2.1 (white bar) and Kir2.1 co-injected with SPAK WT (black bar). (n = 9-37), 3 

different batches of oocytes. **(p<0.01) express the statistical significant difference between Kir2.1 

and kir2.1+ SPAK WT (160). 
 

 

3.1.1.1.2. The Current-Voltage (I/V) curve characteristic assessment with wild-type 

SPAK  

The current-voltage curve (I/V curve) characteristic refers to the current and voltage 

relationship of K
+
 channel activation and voltage dependent inactivation. I/V refers to the 

current amplitude recorded during the test pulse after conditioning the pre-pulse (amplitude 

V) and I is the maximum current during the test pulse (161).  

For Kir2.1 (I/V) curve, the holding potential is preset to -60mV. Applying the pulses from -

150mV to +30mV induces channels opening and thus inward current could be measured. 

The current through Kir2.1 channel at each precise potential is then proportional to the 

driving force and the opening probability.  

Current amplitudes serve to plot the (I/V) curve as illustrated in figure 12 showing current 

carried by K
+ 

with negative reversal potential and a characteristic shape of the inwardly 

rectifying K
+ 

currents. The I/V curves show a clear up-regulation of the K
+
 currents 

between Kir2.1-expressing oocytes and Kir2.1+SPAK co-expressing oocytes, while both 

water injected oocytes and SPAK expressing oocytes did not show any curve (160). 

. 
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Figure 12: Current-Voltage (I/V) curve: current as function of potential difference across the 

cell membrane demonstrated a stimulation effect of SPAK on Kir2.1 currents. Curves plotted 

by means of the current I (µA) (±SEM) as a function of the voltage steps applied on the oocyte 

membrane V(mV) from -150mV to +30mV. (I/V)-curves correspond respectively to water injected 

oocytes (white circles), SPAK alone (black triangles), Kir2.1 alone (white squares) and kir2.1 + 

SPAK wt (black squares). (n=9-37), 3 different batches of oocytes. (160) 

 

3.1.1.1.3. The wild-type SPAK up-regulated the Kir2.1 channel Conductance 

The conductance is one of the measurable properties of ion channels. It defines the rate of 

ions flowing through the channel, which electrophysiological analysis applies Ohm’s low 

(the current through a conductor between two points is proportional to the voltage: I=V/R). 

The conductance is calculated as the ratio of ion current to the applied voltage. gi = Ii /(Vm-

Ei) with (gi = conductance , Ii = the flowing ions, (Vm-Ei) = the driving force).  
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The comparison of the conductance between Kir2.1-expressing oocytes and Kir2.1co-

expressing SPAK wild-type, considered the linear fit of I/V-curves between the amplitudes 

-150mV and -120mV. The conductance was significantly increased in the presence of wild-

type SPAK kinase as shown in the figure 13 (160). 

 

 

 

Figure 13: The Kir2.1 conductance (µS) is increased in the presence of the co-expressed wild 

type SPAK. Conductance calculated between -150mV to -120mV from the (I/V) curves (±SEM), 

of respectively water oocytes (dotted bar), SPAKWT (grey bar), Kir2.1 (white bar) and Kir2.1 + 

SPAK WT (black bar). (n=9-37), 3 different batches of oocytes. ***(p<0.001) shows the statistical 

significant difference from Kir2.1 oocytes (160). 

 

3.1.1.2. SPAK mutants effect on the inward K
+ 

current in Kir2.1-expressing Xenopus 

laevis oocytes 

3.1.1.2.1. The inward rectifying K
+
 currents enhanced by constitutively active 

T233E
SPAK but not by WNK insensitive 

T233A
SPAK or the catalytically inactive 

D212A
SPAK co-expression 
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Kir2.1 (KCNJ2) was co-expressed with the different SPAK mutants to evaluate the effect 

of each mutation on the channel activity. The constitutively active 
T233E

SPAK demonstrated 

a similar effect as the wild-type SPAK by stimulating the inwardly rectifying K
+
 currents in 

Kir2.1 expressing oocytes. In contrast, the WNK insensitive 
T233A

SPAK as well as the 

catalytically inactive 
D212A

SPAK did not exert any observable effect on Kir2.1 currents. 

Figure 14 illustrates the original tracings (A), translated in histograms (B) showing the 

arithmetic means of the maximal currents of the different groups (160). 

 

 

 

 

 

 

 

 

 

 

250ms 

5µA 

(a) (b) (c) 

(d) (e) 

A 

-60 mV -60 mV  

+30 mV 

-150 mV 

B 



 50 

Figure 14: Kir2.1 inward current enhanced by the co-expression of the constitutively active 

mutant 
T233E

SPAK but not by the co-expression of the WNK insensitive 
T233A

SPAK or the 

catalytically inactive 
D212A

SPAK. (A): original tracings of current in oocytes injected respectively 

with water (a), kir2.1 (b), Kir2.1+
 T233E

SPAK (c), Kir2.1+
 T233A

SPAK (d) and Kir2.1+ 
D212A

SPAK 

(e). The recording protocol is shown, not to scale. (B): Histogram showing means of the maximal 

inward K
+
 currents I (µA) recorded at -150mV (±SEM), respectively in negative control water 

(dotted bar), Kir2.1 (white bar), Kir2.1 co-injected with 
T233E

SPAK (black bar), Kir2.1 co-injected 

with 
T233A

SPAK (light grey bar) and Kir2.1 co-injected with 
D212A

SPAK (dark grey bar). (n = 13-

33), 3 different batches of oocytes. ***(p<0.001) express the statistical significant difference from 

Kir2.1 alone (160). 

 

3.1.1.2.2. The Current-Voltage (I/V) curve characteristic assessment with SPAK 

mutants 

The illustration of the I-V curves in the figure 15 displays the stimulation effect of the 

constitutively active mutant 
T233E

SPAK on the inwardly rectifying K
+
 currents of Kir2.1 

expressed in Xenopus oocytes at the different applied voltages of the curve. The WNK 

insensitive 
T233A

SPAK and the catalytically inactive 
D212A

SPAK, both did not show a 

significant change on the (I/V) curve of Kir2.1 channel (160). 

 

 

 

 

 

 

 

 

Figure 15: Current-Voltage (I/V) curve: current as function of potential difference across the 
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cell membrane demonstrates a stimulation effect of the constitutively active 
T233E

SPAK on 

Kir2.1 currents. Curves plotted by means of the current I (µA) (±SEM) as a function of the voltage 

steps applied on the oocyte membrane V(mV) from -150mV to +30mV. (I/V)-curves correspond 

respectively to water injected oocytes (white circles), Kir2.1 alone (white squares), Kir2.1+ 
T233E

SPAK (black squares), Kir2.1 + 
T233A

SPAK (grey diamonds), Kir2.1 + 
D212A

SPAK (black 

triangles). (n=13-33), 3 different batches of oocytes. ***(p<0.001) express the statistical significant 

difference from Kir2.1 alone (160). 

 

3.1.1.2.3. The constitutively active 
T233E

SPAK up-regulated the Kir2.1 channel 

Conductance, but not WNK insensitive 
T233A

SPAK or the catalytically inactive 

D212A
SPAK 

The figure 16 is in perfect concord with the previous results, demonstrating the enhanced 

conductance of Kir2.1 by the co-expression of the constitutively active 
T233E

SPAK, but not 

by the co-expression of the WNK insensitive 
T233A

SPAK or the catalytically inactive 

D212A
SPAK (160). 

 

 

Figure 16: The Kir2.1 conductance (µS) is increased in the presence of the constitutively 

active 
T233E

SPAK. Conductance calculated between -150mV to -120mV from the (I/V) curves 
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(±SEM), of respectively water oocytes (dotted bar), Kir2.1 (white bar) and Kir2.1 + 
T233E

SPAK 

(black bar), Kir2.1 +
T233A

SPAK (light grey bar), Kir2.1+
D212A

SPAK (dark grey bar). (n=13-33), 3 

different batches of oocytes. ***(p<0.001) shows the statistical significant difference from Kir2.1 

oocytes (160). 

 

3.1.1.3. Wild-type SPAK increased Kir2.1 protein abundance in the cell membrane 

Previous results from dual electrode voltage clamp technique showed that SPAK could 

increase the K
+ 

currents through the inwardly rectifying K
+
 channel Kir2.1. In order to 

check whether this stimulation of the currents is the result of an increase in the protein 

abundance on the cell membrane, chemiluminescence was used to highlight the increased 

insertion of the protein channel on the oocytes surface.  

Three groups of oocytes injected respectively with water, Kir2.1-HA alone and Kir2.1-HA 

with additional wild-type SPAK cRNA. Oocytes were incubated in HA-specific antibody 

(AB) and washed to eliminate excess and/or unspecific epitope binding. The quantification 

of Kir2.1-HA-specific binding by the luminometer was possible due to the Horseradish 

Peroxidase HRP-conjugated to the AB reaction with the substrate (SuperSignal).  

The results displayed in the figure 17 show a statistically significant increase (p<0.001) of 

the chemiluminescence of cell membrane of the oocytes expressing Kir2.1-HA+SPAK wt 

comparing to oocytes expressing Kir2.1-HA alone (160). 
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Figure 17: SPAK Wild-type increased Kir2.1-HA protein abundance in cell surface. 

Normalized means of chemiluminescence signal of Kir2.1-HA protein abundance from Xenopus 

laevis oocytes injected with water (dotted bar), Kir2.1-HA (white bar) and Kir2.1-HA+SPAKwt 

(black bar). (n=84-88), 4 different batches of oocytes. (p<0.001) statistical significance difference 

from kir2.1-HA group (160). 

 

3.1.1.4. Wild-type SPAK role in Kir2.1 current stimulation is abolished by Brefeldin A  

Previous results demonstrated that SPAK up-regulated Kir2.1 channel by increasing the K
+ 

inward rectifying current flowing through the channel and thus increasing the conductance, 

which is paralleled to an increase in the Kir2.1-HA protein abundance on the cell surface. 

In order to check if this effect is due to enhancement of the protein channel insertion in the 

cell membrane, or rather to a delay of the protein retrieval from the plasma membrane; 

Brefeldin A was used.  

Oocytes were injected respectively with Kir2.1 alone and Kir2.1+SPAK, and then divided 

in two groups control and treated group. The control oocytes were maintained in the ND96 
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solution for culture; whereas for the treated group, oocytes were treated 24 hours prior to 

recording with additional 5µM Brefeldin A in the normal culture media.  

As illustrated in the figure 18, the incubation in Brefeldin A, resulted in a significant 

decrease of the inwardly rectifying K
+ 

currents in Kir2.1 expressing oocytes indicating 

retrieval of channel protein from the plasma membrane. As well, following 24 hours of 

Brefeldin A treatment, the stimulating effect of the kinase on the K
+ 

channel was abolished 

completely, and the currents showed a significant decrease in both Kir2.1 alone or Kir2.1 

and SPAK co-expressing oocytes. Therefore, the presence of SPAK did not retard retrieval 

of the protein channel from the plasma membrane (160). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

250ms 

4µA 

(a) (b) 

(c) (d) 

A 

-60 mV -60 mV  

+30 mV 

-150 mV 



 55 

 

 

 

 

 

 

 

 

 

 

B 

D 



 56 

Figure 18: Brefeldin A abolished the stimulating effect of the wild-type SPAK on Kir2.1 

currents. (A): Original tracings of K
+
 inwardly rectifying currents in oocytes injected with Kir2.1 

alone (a,b) and kir2.1+SPAK (c,d), without (a,c) or with (b,d) 24h treatment with 24h Brefeldin A 

(5µM). (B): Means of the maximal currents (±SEM) at -150mV in oocytes injected with Kir2.1 only 

(white bars) or kir2.1+SPAK (black bars) without (left bars) or with (right bars) 24h Brefeldin A 

treatment. (C): Means of the current as a function of the potential difference (I/Vcurves) through 

oocytes membrane expressing Kir2.1 alone (white), kir2.1+SPAK (black) without (squares) or with 

(circles) 24h Brefeldin A treatment. (D): Arithmetic means of the conductance (from -150mV to -

120mV) (±SEM) in oocytes injected with kir2.1 alone (white bars) or kir2.1+SPAK (black bars) 

without (left bars) or with (right bars) 24h of Brefeldin A incubation. (n=14-21), 3 different batches 

of oocytes. *(p<0.05) and **(p<0.01) show the statistical significance from Kir2.1, ###(p<0.001) 

shows the statistical significance from respective group without Brefeldin A incubation (160). 

 

3.1.2. OSR1 up-regulated Kir2.1 

3.1.2.1. Wild-type OSR1 increased the inwardly rectifying K
+ 

current in KCNJ2-

expressing Xenopus laevis oocytes 

To explore the effect of OSR1 on the inwardly rectifying K
+ 

channel Kir2.1, K
+
 current was 

recorded in Xenopus laevis oocytes via two dual voltage clamp technique. Xenopus laevis 

oocytes were divided in 4 groups: oocytes expressing either Kir2.1 channel alone, or OSR1 

the kinase only, or co-expressing both the channel and the kinase Kir2.1+OSR1 and water 

was injected in the negative control group. Negative control as well as OSR1-injected 

oocytes did not demonstrate any appreciable inward K
+
 current, confirming that Xenopus 

oocytes expressed negligible inwardly rectifying K
+ 

currents. In contrast, Kir2.1-expressing 

oocytes showed large measurable inward rectifying K
+
 currents which increased 

significantly in the presence of wild-type OSR1. As illustrated in figure 19 (A) the original 

tracings and (B) the histogram of the arithmetic means of maximal inward K
+
 currents 

demonstrate the increasing effect of OSR1 on the maximal current of Kir2.1.  

Figure 19 (C) shows the current carried by K
+ 

with negative reversal potential and the 

characteristic curve shape of the inwardly rectifying K
+ 

currents of Kir2.1. The I/V curves 

show an up-regulation of the K
+
 currents between Kir2.1-expressing oocytes and 

Kir2.1+OSR1 co-expressing oocytes, while both water injected oocytes and OSR1 
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expressing oocytes did not demonstrate a characteristic shaped (I/V) curve. Figure 19 (D) 

displays the conductance of Kir2.1-expressing oocytes and Kir2.1co-expressing OSR1 

wild-type, considering the linear fit of I/V-curves between the amplitudes -150mV and -

120mV. The conductance was significantly enhanced in the presence of wild-type OSR1 

(160). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Wild type OSR1 enhanced the inwardly rectifying K
+ 

currents through Kir2.1 

channel in Xenopus oocytes. (A): Representative tracings of original currents in Xenopus oocytes 

A 

D C 
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injected respectively with water (a), OSR1 wild type (b), Kir2.1 (c) and Kir2.1+OSR wild type. The 

represented protocol is not to scale. (B): Means (±SEM) of the maximal inward currents at -150mV 

of water (dotted bar), OSR1 (grey bar), Kir2.1 (white bar) and Kir2.1+OSR1wild type (black bar) 

expressing oocytes. (C): Current-voltage I/V curves at the different potentials applied to the cell 

membrane, of oocytes expressing respectively: water (white circles), OSR1 (black triangles), Kir2.1 

alone (white squares) and Kir2.1+OSR1 wild type (black squares). (D): Arithmetic means of the 

channel conductance (±SEM) calculated from -150mV to -120mV. (n=9-35), 3 different batches of 

oocytes. ***(p<0.001) shows statistical significant difference between Kir2.1 and Kir2.1+OSR1 

(160). 

 

3.1.2.2 OSR1 mutants effect on the inward K
+ 

current in Kir2.1-expressing Xenopus 

laevis oocytes 

Similarly to SPAK, OSR1 mutants were tested for their effect on Kir2.1 activity. The 

channel was co-expressed with the different OSR1 mutants.  

The constitutively active 
T185E

OSR1 demonstrated a similar effect as the wild-type OSR1 

by stimulating the inwardly rectifying K
+
 currents in Kir2.1 expressing oocytes. In contrast, 

the WNK insensitive 
T185A

OSR1 as well as the catalytically inactive 
D164A

OSR1 did not 

show any observable stimulation of Kir2.1.  

Figure 20 shows a significant up-regulation of Kir2.1 conductance by the wild type OSR1 

between -150mV and -120mV (160). 
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Figure 20: Kir2.1 inward current increased by the co-expression of the constitutively active 

mutant 
T185E

OSR1 but not by the co-expression of the WNK insensitive
 T185A

OSR1 and the 

catalytically inactive 
D164A

OSR1. (A): Original tracings of current in oocytes injected respectively 

with water (a), kir2.1 (b), Kir2.1+
 T185E

OSR1(c), Kir2.1+
 T185A

OSR1 (d) and Kir2.1+ 
D164A

OSR1 (e). 

The recording protocol shown is not to scale. (B): Histogram showing means of the maximal inward 

K
+
 currents I (µA) recorded at -150mV (±SEM), respectively in negative control water (dotted bar), 

Kir2.1 (white bar), Kir2.1 co-injected with 
T185E

OSR1 (black bar), Kir2.1 co-injected with 

A 

C D 

B 
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T185A
OSR1 (light grey bar) and Kir2.1 co-injected with 

D164A
OSR1 (dark grey bar). (C): Curves 

plotted by means of the current I (µA) (±SEM) as a function of the voltage steps applied on the 

oocyte membrane V(mV) from -150mV to +30mV of respectively: water injected oocytes (white 

circles), Kir2.1 alone (white squares), Kir2.1+ 
T185E

OSR1 (black squares), Kir2.1 + 
T185A

OSR1 (grey 

diamonds), Kir2.1 + 
D164A

OSR1 (black triangles). (D): Conductance (µS) calculated between -

150mV to -120mV from the (I/V) curves (±SEM), of respectively water oocytes (dotted bar), Kir2.1 

(white bar) and Kir2.1 + 
T185E

OSR1 (black bar), Kir2.1 +
 T185A

OSR1 (light grey bar), Kir2.1+
 

D164A
OSR1 (dark grey bar). (n = 17-35), 3 different batches of oocytes. **(p<0.01) expresses the 

statistical significant difference from Kir2.1 alone.(160). 

 

3.1.2.3. Wild-type OSR1 enhanced Kir2.1 protein abundance in the cell membrane 

Currents recording via dual electrode voltage clamp technique demonstrated that OSR1 

could enhance the inwardly rectifying K
+
 currents in Kir2.1 channel. In order to check 

whether this currents stimulation results from an increase in the protein abundance on the 

cell surface, chemiluminescence was the technique used to quantify the protein channel 

insertion in the oocytes plasma membrane.  

Xenopus oocytes were divided into three groups, injected respectively with water, Kir2.1-

HA and Kir2.1-HA with additional injection of wild-type OSR1 cRNA. Oocytes were 

treated with HA-specific antibody (AB) and washed 3 times in order to eliminate unspecific 

and excess of epitope binding. Quantification of Kir2.1-HA-specific binding via 

luminometer was possible by the presence of the Horseradish Peroxidase HRP-conjugated 

to the AB, which binds to SuperSignal substrate. Results analysis shows a significant 

increase in the quantified chemiluminescence dependent- HA in oocytes expressing Kir2.1-

HA+OSR1 wild type comparing to oocytes expressing Kir2.1-HA alone.  

See figure 21. 
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Figure 21: OSR1 Wild-type enhanced Kir2.1-HA protein abundance in Xenopus oocytes 

surface. Normalized means of chemiluminescence signal of Kir2.1-HA protein abundance from 

oocytes injected with water (dotted bar), Kir2.1-HA (white bar) and Kir2.1-HA+OSR1 WT (black 

bar). (n=78-84), 4 different batches of oocytes. (*p<0.01) statistical significant difference from 

kir2.1-HA group. 

 

3.1.2.4. Wild-type OSR1 role in Kir2.1 current stimulation is abolished by Brefeldin A  

Similar to SPAK, OSR1 currents recording via two electrode voltage clamp showed that 

OSR1 enhanced Kir2.1 activity with an increase in the K
+ 

inward rectifying flow and 

consequently increasing the conductance of the channel, which is simultaneous to an 

increase in the Kir2.1-HA protein abundance on the cell membrane. Brefeldin A was used 

in order to check if this effect is due to increase of the channel insertion in the cell surface, 

or rather due to a protein retrieval delay.  

Xenopus oocytes expressed respectively Kir2.1 only and Kir2.1+OSR1 shared in control 

and treated groups. The control oocytes were cultured in the ND96 solution; for the treated 
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group, oocytes were incubated 24 hours prior to measurement with additional 5µM 

Brefeldin A to the ND96 media. As shown in the figure 22, incubation in Brefeldin A was 

followed by a significant decrease of the inwardly rectifying K
+ 

currents in Kir2.1 

expressing oocytes indicating channel protein retrieval from the plasma membrane of 

Xenopus oocytes. Hence, OSR1 did not delay protein channel retrieval from the membrane  

(160). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Brefeldin A abolished the stimulating effect of the wild-type OSR1 on Kir2.1 

currents. (A): Original tracings of K
+
 inwardly rectifying currents in oocytes injected with Kir2.1 

A 

C D 

B 
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alone (a,b) and kir2.1+OSR1 (c,d), without (a,c) or with (b,d) 24h treatment with Brefeldin A 

(5µM). (B): Means of the maximal currents (±SEM) at -150mV in oocytes injected with Kir2.1 only 

(white bars) or kir2.1+ OSR1 (black bars) without (left bars) or with (right bars) 24h Brefeldin A 

treatment. (C): Means of the current as a function of the potential difference (I/Vcurves) through 

oocytes membrane expressing Kir2.1 alone (white), kir2.1+ OSR1 (black) without (squares) or with 

(circles) 24h Brefeldin A treatment. (D): Arithmetic means of the conductance (from -150mV to -

120mV) (±SEM) in oocytes injected with kir2.1 alone (white bars) or kir2.1+ OSR1 (black bars) 

without (left bars) or with (right bars) 24h of Brefeldin A incubation. (n=14-20), 3 different batches 

of oocytes. *(p<0.05) and **(p<0.01) show the statistical significance from Kir2.1, ###(p<0.001) 

shows the statistical significance from Brefeldin A incubation (160). 

 

3.2. Creatine transporter CreaT (SLC6A8) negative regulation by SPAK 

and OSR1 

3.2.1. SPAK down-regulated CreaT (SLC6A8) 

3.2.1. 1. SPAK down-regulated the electrogenic creatine transport in CreaT 

In order to explore the potential effect of SPAK on the creatine carrier CreaT (SLC6A8), 

the creatine induced-current was recorded in different conditions by the technique of dual 

electrode voltage clamp. To this end, Xenopus laevis oocytes were injected after 

defolliculation with cRNA encoding for the transporter and/or the kinase. Three groups 

representing: oocytes expressing CreaT (SLC6A8), CreaT (SLC6A8) with co-expressing of 

SPAK wild type and the negative control oocytes group injected with water. 

Creatine-induced currents were recorded with dual electrode voltage clamp, at a holding 

potential of -60mV, according to the specified CreaT protocol by addition of 1mM creatine 

as substrate to the ND96 superfusate solution. The superfusate flows at 20ml/min. 

In the control group, oocytes did not show observable current, meaning that Xenopus 

oocytes did not express electrogenic creatine transport. For oocytes expressing SLC6A8, 

the supplementation of the superfusate media ND96 with 1mM creatine substrate, resulted 

in a large appreciable inward creatine induced current, while in oocytes co-expressing both 

CreaT and SPAK wild type, the creatine induced current was significantly lowered. The 
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figure 23 shows in A the comparative original tracings translated in histogram of the 

respectively maximal creatine induced currents in B (162). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Creatine (1mM) transport current in CreaT (SLC6A8) decreased in presence of 

SPAK wild type in Xenopus laevis oocytes. (A): Original tracings of electrogenic creatine 

transport in water (a), CreaT (b) and CreaT+SPAK (c) expressing oocytes. (B): Means of the 

maximal creatine induced current in oocytes expressing water (white bar), CreaT (black bar) and 

CreaT+SPAK (grey bar). (n=11-23) 4 different batches of oocytes, ***(p<0.001) shows statistical 

significant difference from CreaT alone (162). 
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3.2.1.2. SPAK decreased the maximal creatine induced current but not the affinity in 

CreaT expressing oocytes: Kinetic analysis 

Wild type SPAK was shown to decrease Creatine induced current in CreaT co-expressing 

oocytes. In order to check if it affects the maximal current Icreat and/or the affinity of the 

transporter, two groups of oocytes expressing CreaT alone or CreaT+SPAK were 

supplemented in the ND96 superfusate with increasing concentrations of creatine (3µM – 

2000µM).  

The currents recorded for each single oocyte at the different concentrations (Icreat as 

function of the inward current) helped to evaluate the CreaT transporter kinetic. The same 

protocol of recording was used.  

The analysis of kinetics demonstrated that on one hand, the maximal creatine induced 

inward current was significantly lower in oocytes co-expressing CreaT+SPAK with mean 

value (7.6 ± 1.0 nA), while in oocytes expressing CreaT only, the mean value of the 

maximal current was (18.4 ± 2.6 nA). On the other hand, kinetic analysis showed that the 

concentration needed for the half-maximal creatine induced inward current was not 

significantly different between the two groups of oocytes as it was highly variable: for 

oocytes co-expressing CreaT+SPAK (Km = 29 ± 22 mM) and for CreaT expressing oocytes 

(Km = 192 ± 102 mM).  

As illustrated in the figure 24 A, the representative original tracings at the different 

concentration points, for each respective group, and in B the Kinetic curves of the 

concentration as function of the Icreat corresponding to each group of oocytes (162). 
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Figure 24: Maximal creatine induced current in CreaT is decreased by the co-expression of 

SPAK in Xenopus oocytes. (A): original tracings of Icreat at increasing concentration of creatine 

(3µM-2000µM) in oocytes expressing CreaT (upper tracings) and CreaT+SPAK (lower tracings). 

(B): arithmetic means of creatine induced current (±SEM) as function of the increasing 

concentration of supplemented creatine in oocytes expressing CreaT (black circles) and 

CreaT+SPAK (white circles). (n=6-8), 3 different batches of oocytes(162). 

 

3.2.1.3. The creatine induced inward current decreased by constitutively active 

T233E
SPAK but not by WNK insensitive 

T233A
SPAK or the catalytically inactive 

D212A
SPAK co-expression 

SPAK mutants were investigated for a potential effect on the electrogenic creatine 

transport. Xenopus laevis oocytes were injected with the constitutively active 
T233E

SPAK, 

the WNK insensitive 
T233A

SPAK and the catalytically inactive 
D212A

SPAK respectively with 
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the co-expression of CreaT (SLC6A8). The creatine (1mM) induced inward current was 

recorded by dual electrode voltage clamp. As figure 32 shows, the effect of the 

constitutively active 
T233E

SPAK was similar to the wild type SPAK, since it decreased 

significantly the creatine current in CreaT. This effect was not observed once CreaT is co-

expressed with the WNK insensitive 
T233A

SPAK or the catalytically inactive 
D212A

SPAK. In 

the figure 25, both the original representative tracings as well as the arithmetic means of the 

corresponding maximal inward creatine induced current illustrate the negative regulator 

effect of the constitutively active 
T233E

SPAK, comparing to the absence of effect of the 

WNK insensitive 
T233A

SPAK or the catalytically inactive 
D212A

SPAK on CreaT (SLC6A8) 

co-expressed in Xenopus oocytes (162). 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: The constitutively active 
T233E

SPAK decreased the creatine (1mM) induced current 

in CreaT co-expressing oocytes. (A): Original tracings of creatine induced current in oocytes 

injected with water (a), CreaT (b), CreaT+
T233E

SPAK (c), CreaT+
T233A

SPAK (d) and 

CreaT+
D212A

SPAK (e). (B): Means of the maximal inward creatine induced current (±SEM) in 

oocytes injected with water (white bar), CreaT (black bar), CreaT+
T233E

SPAK (light grey bar), 

CreaT+
T233A

SPAK (middle grey bar), CreaT+
D212A

SPAK (dark grey bar). (n=12-30), 3 different 
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batches of oocytes. ***(p<0.001) shows statistical significant difference from oocytes injected with 

CreaT.(162). 

3.2.2. OSR1 down-regulated CreaT (SLC6A8) 

3.2.2. 1. OSR1 down-regulated the electrogenic creatine transport in CreaT 

Same series of experiments were done with OSR1 to investigate the effect on the creatine 

transporter CreaT (SLC6A8) activity. Creatine induced-current was measured with two 

electrode voltage clamp. To that purpose, Xenopus laevis oocytes were injected with cRNA 

encoding for CreaT (SLC6A8) and/or OSR1 and water, using the same recording protocol. 

Control oocytes did not show sizable current, which means that Xenopus oocytes did not 

express electrogenic creatine transport. Oocytes expressing SLC6A8 supplemented with 

1mM creatine in the superfusate media ND96 showed an appreciable inward creatine 

induced current, while in oocytes co-expressing CreaT and OSR1 wild type, the current 

was significantly decreased. As illustrated in the figure 26 the comparative original tracings 

(A) displayed in histogram of the respectively maximal creatine induced currents(B) (162). 

 

 

 

 

 

 

 

 

 

Figure 26: OSR1 decreased the Icreat (1mM) in Xenopus oocytes co-expressing CreaT. (A): 

Original tracings of creatine induced current in water (a), CreaT (b) and CreaT+OSR1 wild type (c) 
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expressing oocytes. (B): Means of maximal creatine current (±SEM) in oocytes injected with water 

(white bar), CreaT (black bar) and CreaT+OSR1 wild type (grey bar). (n=10-30), 3 batches of 

oocytes. ***(p<0.001) indicates statistical significance from CreaT alone (162). 

 

3.2.2.2. OSR1 decreased the maximal creatine induced current but not the affinity in 

CreaT expressing oocytes: Kinetic analysis 

OSR1 wild type decreased creatine induced current in CreaT co-expressing oocytes. To 

check if this affects also the maximal current and/or the affinity of the carrier, Xenopus 

oocytes expressing CreaT or CreaT+OSR1 were supplemented with increasing 

concentrations of creatine (3µM – 2000µM) in the ND96 superfusate.  

Currents were recorded for every single oocyte at different concentrations (Icreat as function 

of the inward current) to evaluate the CreaT transporter kinetic. Results analysis showed 

that the maximal creatine induced inward current was significantly lower in oocytes co-

expressing CreaT+OSR1 wild type (8.2 ± 0.7 nA), whereas in oocytes expressing CreaT 

only, the mean value of the maximal current was (23.9 ± 2.1 nA).  

Moreover, Kinetics analysis showed that the concentration needed for the half-maximal 

creatine induced inward current was significantly lower in oocytes co-expressing 

CreaT+OSR1 (Km = 26 ± 14 mM) and for CreaT expressing oocytes (Km = 152 ± 52 mM). 

As illustrated in the figure 27 A, the representative original tracings and in B the Kinetic 

curves of the creatine concentration as function of the Icreat corresponding to each group of 

oocytes (162). 
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Figure 27: OSR1 decreased the maximal creatine induced current in CreaT expressing 

Xenopus oocytes. (A): Original tracings of creatine induced current at different creatine 

concentrations in CreaT (upper tracings) and CreaT+OSR1 wild type (lower tracings). (B): Means 

of creatine induced current (±SEM) as a function of creatine increasing concentrations in oocytes 

injected with CreaT (black circles) and CreaT+OSR1 (white circles). (n=5-7), 3 batches of oocytes 

(162). 

 

3.2.2.3. The creatine induced inward current decreased by constitutively active 

T185E
OSR1 but not by WNK insensitive 

T185A
OSR1 or the catalytically inactive 

D164A
OSR1 co-expression 

Further experiments were conducted to explore OSR1 mutants for potential effect on the 

creatine transporter. Xenopus laevis oocytes were injected with the constitutively active 

T185E
OSR1, the WNK insensitive 

T185A
OSR1 and the catalytically inactive 

D164A
OSR1 with 
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the co-expression of CreaT. Creatine (1mM) induced current was recorded by two electrode 

voltage clamp. As shown in figure 35, the constitutively active 
T185E

OSR1 decreased 

significantly the Icreat similarly to the wild type OSR1. This effect was less high with the 

WNK insensitive 
T185A

OSR1 and not observed with the catalytically inactive 
D164A

OSR1. In 

the figure 28, original tracings and arithmetic means of the corresponding creatine induced 

current illustrate the negative effect of the constitutively active 
T185E

OSR1 and 
T185A

OSR1 

and not effect 
D164A

OSR1 on CreaT co-expressed in Xenopus oocytes (162). 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: OSR1 mutants’ effect on CreaT inward current in Xenopus oocytes. (A): Original 

tracings of water (a), CreaT (b), CreaT+
 T185E

OSR1 (c), CreaT+
 T185A

OSR1 (d) and CreaT+
 

D164A
OSR1 (e) oocytes. (B): Means (±SEM) of creatine induced current in oocytes injected with 

water (white bar), CreaT (black bar), CreaT+
 T185E

OSR1 (light grey bar), CreaT+
 T185A

OSR1 (middle 

grey bar) and CreaT+
 D164A

OSR1 (dark grey bar). (n=15-20), 3 batches of oocytes.*(p<0.05), 

***(p<0.001) indicate statistical significant difference from CreaT expressing oocytes (162). 
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3.3. Phosphate transporter NaPi-IIb (SLC34A2) up-regulation by SPAK 

and OSR1 

3.3.1. SPAK up-regulated NaPi-IIb (SLC34A2)  

3.3.1. 1. SPAK up-regulated the electrogenic phosphate transport in NaPi-IIb 

expressed in Xenopus oocytes 

SPAK showed an effect on the regulation of Kir2.1 and CreaT. These results lead to series 

of experiments exploring the effect of SPAK on the regulation of the phosphate transporter 

NaPi-IIb (SLC34A2). In order to study the potential effect of the kinase on the carrier, 

cRNA of the phosphate transporter NaPi-IIb encoded by the gene SLC34A2 was injected in 

oocytes in the absence and presence of SPAK wild type and compared to a control group 

injected with water. 

Phosphate-induced currents were recorded with dual electrode voltage clamp, at a holding 

potential of -60mV, according to the specified NaPi-IIb protocol by addition of 1mM 

phosphate as substrate to the ND96 superfusate solution. The superfusate solution flow is 

equal to 20ml/min.  

Results show that SPAK up-regulated significantly the electrogenic phosphate current in 

NaPi-IIb compared to the current recorded in oocytes expressing the carrier NaPi-IIb alone, 

while water injected oocytes showed a negligible phosphate current demonstrating that 

water injected oocytes did not express a sizable phosphate current. As illustrated in the 

figure 29 A shows the original tracings and in B histogram of the corresponding arithmetic 

mean of the maximal IPi at 1Mm phosphate (163). 
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Figure 29: SPAK stimulated the phosphate transporter NaPi-IIb. (A): Original tracings of 

phosphate induced inward current in water (a), SPAK (b), NaPi-IIb (c) and NaPi-IIb+SPAK (d) 

injected oocytes at 1Mm phosphate. (B): Means (±SEM) of phosphate induced inward current in 

Xenopus oocytes injected with water (white bar), SPAK (dotted bar), NaPi-IIb (black bar) and 

NaPi-IIb+SPAK (grey bar). (n=9-16), 3 batches of oocytes. ***(p<0.001) indicates the statistical 

significant difference from NaPi-IIb alone(163). 

 

3.3.1.2. SPAK increased the maximal phosphate induced current and the affinity in 

NaPi-IIb expressing oocytes: Kinetic analysis 

The effect of SPAK on further characteristics of the carrier, namely the maximal inward 

induced phosphate current and the affinity to the substrate was assessed through the 

analysis of kinetics. Xenopus oocytes were injected with NaPi-IIb alone or with additional 

co-injection of SPAK, and currents were recorded in the presence of increasing phosphate 

concentration (from 0.1mM to 4mM). 

As illustrated in the figure 37, the increasing concentrations of phosphate substrate added to 

the ND96 superfusate solution was followed by an increasing phosphate induced inward 
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current in both NaPi-IIb as well as NaPi-IIb+SPAK wild type expressing oocytes. The 

maximal phosphate induced inward current was significantly (p<0.001) higher in oocytes 

expressing NaPi-IIb+SPAK showing a mean value of (20.6 ± 1.1 nA) than in those 

expressing NaPi-IIb alone with the mean value (8.9 ± 0.3 nA). Further analysis showed that 

the concentration of phosphate needed for the half maximal phosphate induced current (Km) 

was significantly higher (p<0.05) in oocytes expressing NaPi-IIb+SPAK (Km = 361 ± 

66µM) than in oocytes expressing NaPi-IIb only (Km = 193 ± 26µM). As illustrated in the 

figure 30 A, represents the original tracings at the different concentrations, for each 

respective group, and in B the Kinetic curves of the Log [Pi] in µM as function of the IPi 

corresponding to each group of oocytes (163). 

 

Figure 30: Additional SPAK expression increased the phosphate induced maximal current in 

NaPi-IIb expressing oocytes. (A): Original tracings of NaPi-IIb (upper tracings) and NaPi-
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IIb+SPAK (lower tracings) at increasing concentrations of Pi. (B): Means of phosphate induced 

currents (±SEM) as function of the logarithmic increasing phosphate concentrations in oocytes 

injected with NaPi-IIb alone (white circles) and NaPi-IIb+SPAK (black circles). (n=6), 3 batches of 

oocytes (163). 

 

3.3.1.3. The Phosphate induced inward current increased by constitutively active 

T233E
SPAK but not by WNK insensitive 

T233A
SPAK or the catalytically inactive 

D212A
SPAK co-expression 

In order to check the possible effect of the different SPAK mutants, Xenopus oocytes were 

injected with the constitutively active 
T233E

SPAK, the WNK insensitive 
T233A

SPAK and the 

catalytically inactive 
D212A

SPAK respectively with the co-expression of NaPi-IIb 

(SLC34A2).  

The induced inward current was measured for 1mM phosphate substrate through two 

electrode voltage clamp at a holding potential of -60mV using the same protocol.  

As figure 31 shows, the constitutively active 
T233E

SPAK exhibited a similar effect as the 

wild type SPAK, since it increased significantly the phosphate current in NaPi-IIb co-

expressing oocytes. This effect was not observed once NaPi-IIb is co-expressed with the 

WNK insensitive 
T233A

SPAK or with the catalytically inactive 
D212A

SPAK.  

In the figure 30, both the original representative tracings as well as the arithmetic means of 

the corresponding maximal inward phosphate induced current showed the stimulating effect 

of the constitutively active 
T233E

SPAK, comparing to the effect of the WNK insensitive 

T233A
SPAK or the catalytically inactive 

D212A
SPAK on NaPi-IIb co-expressed in Xenopus 

oocytes (163). 
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Figure 31: The constitutively active 
T233E

SPAK increased the phosphate (1mM) induced 

current in NaPi-IIb co-expressing oocytes. (A): Original tracings of phosphate induced current in 

oocytes injected with water (a), NaPi-IIb (b), NaPi-IIb+
T233E

SPAK (c), NaPi-IIb+
T233A

SPAK (d) and 

NaPi-IIb+
D212A

SPAK (e). (B): Means of the maximal inward phosphate induced current (±SEM) in 

oocytes injected with water (white bar), NaPi-IIb (black bar), NaPi-IIb+
T233E

SPAK (light grey bar), 

NaPi-IIb+
T233A

SPAK (middle grey bar), NaPi-IIb+
D212A

SPAK (dark grey bar). (n = 9-12), 3 different 

batches of oocytes, ***(p<0.001) indicates the statistical significant difference from NaPi-IIb alone 

(163). 

 

3.3.2. OSR1 up-regulated NaPi-IIb (SLC34A2)  

3.3.2.1. OSR1 up-regulated the electrogenic phosphate transport in NaPi-IIb 

expressed in Xenopus oocytes 

The same series of experiments were performed with OSR1 kinase to evaluate the effect of 

OSR1 on NaPi-IIb (SLC34A2) phosphate transporter. Phosphate induced-currents were 

measured with two electrode voltage clamp. Xenopus laevis oocytes were injected with 
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cRNA encoding for SLC34A2 and/or OSR1 and water. The same recording protocol was 

used. 

As illustrated in figure 32, oocytes injected with water did not show appreciable current, 

showing that Xenopus oocytes did not express appreciable electrogenic phosphate transport. 

Oocytes expressing NaPi-IIb (SLC34A2) and exposed to 1mM phosphate in the superfusate 

ND96 showed an appreciable inward phosphate induced current. Oocytes co-expressing 

NaPi-IIb and OSR1 wild type together, demonstrated a significantly increase of the 

phosphate current comparing to currents recorded in NaPi-IIb alone.  Figure 32 shows in A 

the comparative original tracings displayed in histogram of the respectively maximal 

phosphate induced currents in B (163). 

 

Figure 32: OSR1 up-regulated the phosphate transporter NaPi-IIb. (A): Original tracings of 

phosphate induced inward current in water (a), OSR1 (b), NaPi-IIb (c) and NaPi-IIb+OSR1 (d) 

injected oocytes at 1Mm phosphate. (B): Means (±SEM) of phosphate induced current in Xenopus 

oocytes injected with water (white bar), OSR1 (dotted bar), NaPi-IIb (black bar) and NaPi-

IIb+OSR1 (grey bar). (n=9-17), 3 batches of oocytes. ***(p<0.001) indicates the statistical 

significant difference from NaPi-IIb alone (163). 
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3.3.2.2. OSR1 increased the maximal phosphate induced current and the affinity of 

NaPi-IIb expressing oocytes: Kinetic analysis 

OSR1 effect was further tested on the transporter characteristics. The maximal induced 

phosphate current and the affinity were analyzed from the transporter kinetics. Xenopus 

laevis oocytes were expressed with NaPi-IIb alone or with OSR1 and phosphate current 

was measured with increasing phosphate concentrations (from 0.1mM to 4mM). As shown 

in the figure 33, the increasing concentrations of phosphate substrate added to the ND96 

superfusate solution showed increasing phosphate induced current in NaPi-IIb and NaPi-

IIb+OSR1 wild type expressing oocytes. The maximal phosphate induced inward current 

was significantly (p<0.001) higher in oocytes expressing NaPi-IIb+OSR1 with the mean 

value (14.9 ± 1.1 nA) than in those expressing NaPi-IIb alone with the mean value (6.8 ± 

0.1 nA). The analysis showed as well that the concentration of phosphate needed for the 

half maximal phosphate induced current (Km) was significantly higher (p<0.05) in oocytes 

expressing NaPi-IIb+OSR1 (Km = 388 ± 92µM) than in oocytes expressing NaPi-IIb only 

(Km = 119 ± 11µM). Illustration in the figure 33 A represents the original tracings at the 

different concentrations, for each respective group, and in B the Kinetic curves of the Log 

[Pi] in µM as function of the IPi corresponding to each group of oocytes (163). 
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Figure 33: OSR1 additional expression increased the phosphate induced current in NaPi-IIb 

expressing oocytes. (A): Original tracings of NaPi-IIb (upper tracings) and NaPi-IIb+OSR1 (lower 

tracings) at increasing concentrations of Pi. (B): Means of phosphate induced currents (±SEM) as 

function of the logarithmic increasing phosphate concentrations in oocytes injected with NaPi-IIb 

alone (white circles) and NaPi-IIb+OSR1 (black circles). (n=6), 3 batches of oocytes (163). 

 

3.3.2.3. The phosphate induced inward current increased by constitutively active 

T185E
OSR1 but not by WNK insensitive 

T185A
OSR1 or the catalytically inactive 

D164A
OSR1 co-expression 

In order to explore OSR1 mutants for a potential effect on the phosphate transporter, 

Xenopus laevis oocytes were injected with the constitutively active 
T185E

OSR1, the WNK 

insensitive 
T185A

OSR1 and the catalytically inactive 
D164A

OSR1 with the co-expression of 

NaPi-IIb.  

Phosphate induced currents were recorded via two electrode voltage clamp with 1mM 

phosphate substrate, at a holding potential of -60mV, using the same protocol of NaPi-IIb.  

As shown in figure 34, the constitutively active 
T185E

OSR1 increased significantly the IPi 

similarly to the wild type OSR1. This effect disappeared with the WNK insensitive 

T185A
OSR1 and the catalytically inactive 

D164A
OSR1. In the figure 34 original tracings and 

arithmetic means of the corresponding phosphate induced current illustrate the stimulating 

effect of the constitutively active 
T185E

OSR1 and not 
T185A

OSR1 or 
D164A

OSR1 effect on 

NaPi-IIb co-expressed in Xenopus oocytes (163). 
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Figure 34: OSR1 mutants’ effect on NaPi-IIb (SLC34A2) current in Xenopus oocytes. (A): 

Original tracings of water (a), NaPi-IIb (b), NaPi-IIb+
 T185E

OSR1 (c), NaPi-IIb+
 T185A

OSR1 (d) and 

NaPi-IIb+
 D164A

OSR1 (e) oocytes. (B): Means (±SEM) of phosphate induced current in oocytes 

injected with water (white bar), NaPi-IIb (black bar), NaPi-IIb+
 T185E

OSR1 (light grey bar), NaPi-

IIb+
 T185A

OSR1 (middle grey bar) and NaPi-IIb+
 D164A

OSR1 (dark grey bar). (n=9-12), 3 batches of 

oocytes. ***(p<0.001) indicate statistical significant difference from NaPi-IIb expressing oocytes 

(163). 

 

3.3.3. Simultaneous expression of SPAK and OSR1 together with NaPi-IIb (SLC34A2) 

did not induce a significant synergic effect in Xenopus oocytes 

The last series of experiments performed in Xenopus oocytes propose to explore the 

simultaneous effect of both kinases SPAK and OSR1 on the regulation of the electrogenic 

phosphate current in NaPi-IIb, whether it is a potential synergic, cumulative or antagonist.  

For this purpose, SPAK and OSR1 were co-expressed simultaneously in NaPi-IIb-

expressing oocytes.  Results show in the figure 35 that the phosphate (1mM) induced 

currents in NaPi-IIb expressing oocytes was significantly increased in the presence of 
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SPAK alone, and OSR1 alone comparing to the currents recorded in NaPi-IIb expressed 

alone without any kinase, confirming the up-regulating effect of both kinases active 

separately. The oocytes co-expressing together: NaPi-IIb+SPAK+OSR1, demonstrated a 

significantly increased phosphate induced current comparing to oocytes expressing NaPi-

IIb alone. Even though, the phosphate induced current in NaPi-IIb co-expressing both 

SPAK and OSR1 was a little higher comparing to the current recorded in oocytes co-

expressing NaPi-IIb with either SPAK or OSR1, however the difference was not 

statistically significant  (163). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: Simultaneous expression of SPAK and OSR1 in NaPi-IIb co-expressing oocytes. 

(A): Original tracings of phosphate (1mM) induced current in oocytes injected with water (a), NaPi-

IIb (b), NaPi-IIb+OSR1 (c), NaPi-IIb+SPAK (d) and NaPi-IIb+SPAK+OSR1 (e). (B): Means of 

phosphate (1Mm) induced currents in oocytes injected with water (white bar), NaPi-IIb (black bar), 

NaPi-IIb+OSR1 (light grey bar), NaPi-IIb+SPAK (middle grey bar) and NaPi-IIb+SPAK+OSR1 

(dark grey bar). (n=9-16), 3 batches of oocytes. ***(p<0.001) shows statistical significant 

difference from oocytes injected with NaPi-IIb only (163). 
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4. DISCUSSION  

The WNK (with-no-K[lys]) kinases and especially their downstream kinases SPAK (SPS1-

related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) are 

involved in the regulation of ion transport. Both kinases are shown to be powerful 

regulators for transporters and channels, with either a negative regulation as it is the case of 

the K
+
/Cl

- 
co-transporter (151, 164), BK (165), EAAT3 (166), CLC-2 (167), ROMK1 

(168), Kv1.5 (169); or a positive regulation such the Na
+
/Cl

-
 (NCC), Na

+
/K

+
/Cl

-
 (NKCC) 

co-transporters (131-133, 137, 170, 171), the Na
+
-coupled phosphate transport (172) and 

KCNQ1/E1 (173). Nevertheless, nothing is known about the effect of SPAK and/or OSR1 

on the regulation of the inwardly rectifying K
+
 channel Kir2.1 (KCNJ2), the creatine 

transporter CreaT (SLC6A8) and the phosphate transporter NaPi-IIb (SLC34A2). This 

study focuses on the role of SPAK and OSR1 in the regulation of Kir2.1 channels, CreaT 

and NaPi-IIb transporters. 

4.1. SPAK and OSR1 sensitive Kir2.1  

The first part of the present study reveals the stimulating effect of SPAK and OSR1 on the 

inwardly rectifying K
+
 channel Kir2.1. The co-expression of both SPAK and OSR1 

separately was followed by an increase of the K
+
 inward current in KCNJ2 expressing 

Xenopus laevis oocytes, recorded with dual electrode voltage clamp technique. The 

increase of the K
+
 currents results, at least in part, from an increase of the channel protein 

abundance on the oocyte plasma membrane, as shown in chemiluminescence essays. This 

observed phenomenon is theoretically the result of either an enhance of channel protein 

migration to the cell surface, a stabilization of the protein in the plasma membrane of 

oocyte or a blockade and/or delay of the protein channel retrieval from the cell membrane 

(160). The treatment of oocytes with Brefeldin A, which inhibits the protein channel 

trafficking (159), abolishes the effect of both kinases respectively; demonstrating that 

SPAK as well as OSR1 do neither stabilize the channel protein already inserted in the 

plasma membrane, nor retard the protein internalization from cell membrane. These 

findings outlined indicate the stimulating role of the kinases SPAK and OSR1 in the 
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trafficking and insertion of the protein channel in the cell membrane. In addition, 

experiments were conducted on Xenopus oocytes model injected with KCNJ2 cRNA 

encoding for the inward rectifying K
+
 channel Kir2.1, which excludes the potential effect of 

the kinases on the transcription (160).  

Further experiments exploring the effect of the kinases mutants separately, showed that 

both of the constitutively active mutants 
T233E

SPAK and 
T185E

OSR1 exhibit a similar effect 

to the corresponding wild type kinases by up-regulating Kir2.1 currents whereas the WNK 

insensitive mutants 
T233A

SPAK and 
T185A

OSR1, as well as the catalytically inactive mutants
 

D212A
SPAK and 

D164A
OSR1 do not exert any stimulating effect on the K

+
 channel Kir2.1. 

These observations imply that SPAK and OSR1 activation involve the catalytic activity of 

WNK kinases. Nevertheless, the indirect role of both kinases SPAK/OSR1 in the up-

regulation of Kir2.1 channel through the phosphorylation of channel regulators is not 

excluded (160). 

Intracellular K
+ 

concentration plays an important role in the regulation of cell volume and 

maintain of resting membrane potential. K
+
 loss is determinant for the cell shrinkage, a 

process involved among other signaling regulators in cell apoptosis. Thus, counteracting K
+ 

exit favors cell protection from apoptosis (152). Compelling evidence suggests the 

influence of SPAK and OSR1 kinases in the activation of the inwardly rectifying K
+
 

channel Kir2.1 through cell volume regulation, since both kinases increase the cellular K
+
 

uptake through not only the up-regulation of the Na
+
/Cl

-
 co-transporter (NCC) and the 

Na
+
/K

+
/2Cl

-
 co-transporter, but also via the down-regulation of the K

+
/Cl

-
 co-transporter 

(121, 122, 131, 132, 137, 138, 143, 170, 171, 174-177). The massive K
+
 entry leading to 

the accumulation of K
+
 and Cl

- 
in the cell, followed by the osmotic obliged water, 

counteracts cell shrinkage consequently cell swelling occurs (178-180). The up-regulation 

of the inward rectifying K
+
 channel Kir2.1 by SPAK and OSR1 may diminish K

+
 and Cl

- 

entry and cell swelling. Nevertheless, these observations may not be conclusive regarding 

the significance of SPAK and OSR1 role on Kir2.1 in cell volume regulation. It was proven 

that Kir2.1 channel hyper-activating mutation engenders atrial fibrillation (46, 181, 182) 
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since Kir2.1 channels insures the inwardly rectifying K
+
 current in cardiac cells (46, 181, 

183). 

The present study and the described phenomenon may be pertinent to neurobiology 

conclusions, as Kir2.1 channel is expressed in the neurons (184-187) and in the glial cells 

(24, 188-190) and participates as well in the spatial K
+
 buffering, hence involved in the 

neuronal excitability (184, 189, 191). Furthermore, SPAK and OSR1 affect also neuronal 

excitability due to their role in the regulation of intracellular Cl
-
 in the neurons and the 

effect of the activation of Cl
-
 channels on the action potential through the cell membrane 

(151, 192, 193). Kir2.1 channels are expressed in addition in Müller cells in retina (194-

198) and the disturbed kir2.1 function leads to the pathophysiology of uveitis, which is the 

inflammation of iris, ciliary body and choroid (194).  The inwardly rectifying K
+
 channel 

Kir2.1 is also involved in the neurovascular coupling i.e. active neurons delate arterioles via 

astrocytes, so that blood flow increases and supplies the needed oxygen and glucose to the 

neuronal process. Kir2.1 loss of function induces arterioles disability to vasodilatation 

leading to the neurovascular coupling impairment, which could be involved in some brain 

disorders (199).  It is obvious that further experiments are necessary to unravel whether the 

kinases SPAK and OSR1 stimulation of the inwardly rectifying K
+
 channel Kir2.1 is 

relevant for neurobiological physiology and/or pathophysiology.  

In summary, the WNK activated kinases SPAK and OSR1 positively regulate the inwardly 

rectifying K
+
 channel Kir2.1 such stimulation may be contributing to cell excitability and 

cell volume regulation among possible further functions (160). 

4.2. SPAK and OSR1 sensitive CreaT  

The second part of the study investigated the negative regulating effect of SPAK and OSR1 

on the creatine transporter CreaT. The co-expression of SLC6A8 cRNA encoding for the 

creatine transporter with SPAK or OSR1 in Xenopus oocytes down-regulates the creatine 

induced inward current recorded by two electrodes voltage clamp. These observations are 

due to either a role of the kinases in the decrease of the maximal rate of creatine transport 

or to a decrease in the affinity of the carrier to the creatine substrate. The analysis of the 
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carrier kinetics, demonstrate on one hand, the significant negative regulation of both 

kinases SPAK and OSR1 separately on the maximal creatine induced inward current and 

thus the rate of creatine transport Vm, on the other hand, the Km is not statistically 

significant, suggesting that the kinases do not affect the affinity of the creatine transporter 

to the substrate (162). 

Additional experiments targeting the kinases mutants show that the same negative 

regulating effect of SPAK and OSR1 wild type is observed with the constitutively active 

mutants 
T233E

SPAK and 
T185E

OSR1, and thus creatine currents are decreased. Although, the 

presence of the WNK insensitive mutants 
T233A

SPAK and 
T185A

OSR1 tend to decrease the 

creatine induced current, only 
T185A

OSR1 effect is significant. However the catalytically 

inactive mutants
 D212A

SPAK and 
D164A

OSR1 both do not affect the creatine transporter 

activity. These observations demonstrate the important role of the WNK functional kinases 

in the activation of SPAK and OSR1 to negatively regulate the creatine transporter CreaT, 

but also suggest a possible independent WNK activity of the kinases SPAK and OSR1. The 

phosphorylation of the creatine transporter CreaT by the kinases may not be direct, since 

both kinases SPAK and OSR1 may interfere indirectly by phosphorylating other regulators 

of the carrier (162). 

The creatine transporter CreaT, is a Na
+
/Cl

- 
co-transporter that carries creatine to cells of 

high energy demand such as brain, skeletal muscle, intestine, retina, heart and kidney (73) 

and which belongs to the superfamily of neurotransmitters (74, 75, 77) and organic 

osmolytes (78, 79). CreaT is determinant for brain function and neuroexitability, insuring 

the creatine re-uptake in synapses and regulating GABAergic as well as glutamatergic 

cerebral pathways (200). Since creatine synthesis requires 40% of methyl groups and the 

creatine transporter is regulated by AMPK, creatine is regarded as a cellular sensor of 

methylation (200) and maintenance of ATP for energy (73). The creatine transporter CreaT 

SLC6A8 is regulated by several kinases, for instance: JAK2 (201), JAK3 (202), PIKfyve 

(203), mTOR (204), SGK1 (205), SGK3 (205), klotho (206) and peroxisome proliferator- 

activated receptor-gamma co-activator-1alpha (PGC-1α) or beta (PGC-1β) (207). 
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Creatine deficiency following an expression disorder of the creatine transporter gene, 

results in mental retardation, behavioral disorders, seizure and intellectual disability (90-94, 

200, 208-211). Such effects could be possibly due to a disparity of GABA and glutamate 

neurotransmission. In addition, these observations suggest that the effect of SPAK and 

OSR1 kinases on the creatine transporter SLC6A8 may modulate the methylation. Both 

kinases contribute as well to the modulation of neuron excitability as they are known to 

activate NKCC and inhibit KCC, an effect increasing the intracellular Cl
- 

and thus 

influencing the role of GABA on the membrane potential and hence the excitability of 

neurons (151, 164). The SPAK and OSR1 activation through WNK is consequent to low 

intracellular Cl
- 
concentration, in order to stimulate Cl

-
 entry (151), this could explain the 

Kinases disorder in arterial hypertension and the gain of function leading to epilepsy, 

spasticity, neuropathic pain, schizophrenia and autism (151). SPAK and OSR1 are further 

involved in the regulation of cell volume (121, 131-133, 136, 170, 174, 175). It is not clear 

whether the Creatine transporter is modulated by cell volume since other Na/Cl coupled 

transporters from the same SLC family are up-regulated by cell shrinkage (78, 79). This 

study did not elucidate the in vivo role of SPAK and OSR1 in the sensitivity of creatine 

transporter. 

To summarize, both WNK downstream kinases SPAK and OSR1 down-regulate the Na
+
 

and Cl
-
 coupled creatine transporter SLC6A8, an effect presumably involved in the 

modulation of cell excitability (162). 

4.3. SPAK and OSR1 sensitive NaPi-IIb  

The third part of the investigation of the role of SPAK and OSR1 kinases reveals an up-

regulation effect of both on the phosphate transporter NaPi-IIb. The co-expression of the 

kinases with the SLC34A2 cRNA encoding for the phosphate transporter NaPi-IIb in 

Xenopus oocytes, increases the phosphate induced inward current recorded with dual 

electrode voltage clamp. Such an effect is resulting from an increased maximal rate and/or 

increase in the affinity of the transporter to the phosphate. The NaPi-IIb kenetics analysis, 

show that both kinases SPAK and OSR1 not only stimulate the transport rate Vm of the 



 87 

phosphate transporter NaPi-IIb by increasing significantly the maximal phosphate induced 

current, but also, increase the affinity Km of NaPi-IIb transporter to the phosphate substrate. 

Further, the simultaneous expression of both kinases SPAK and OSR1 together with NaPi-

IIb phosphate transporter in oocytes does not display an additive effect. This observation 

can be due to the fact that SPAK and OSR1 are expressed in different cells within the same 

tissue (163). 

The results relative to the kinases mutants, demonstrate a mimic activity of the 

constitutively active mutants 
T233E

SPAK and 
T185E

OSR1, similar to the up-regulation 

observed with the corresponding wild type. The WNK insensitive mutants 
T233A

SPAK and 

T185A
OSR1, as well as the catalytically inactive mutants

 D212A
SPAK and 

D164A
OSR1 did not 

show any stimulating effect to the phosphate carrier. These findings imply the activation of 

both kinases SPAK and OSR1 by WNK phosphorylation on one hand. On the other hand, 

the phosphorylation of NaPi-IIb by the kinases may not be directly activated, since the 

effect could be due to the phosphorylation of other regulators and/or molecules involved in 

the signaling pathway of NaPi-IIb (163). 

The Na-coupled phosphate transporter NaPi-IIb is responsible for phosphate transport in 

the intestines and the tumor cells as well (155). NaPi-IIb is regulated by AMPK activated 

kinase (212), mTOR the mammalian target of rapamycin (213), B-RAF (155) and SGK1 

the serum and glucocorticoid inducible kinase (214).  

Previous studies exploring SPAK and OSR1 reveal their role in the modulation of 

phosphate metabolism. Gene targeted mice expressing WNK-resistant SPAK (172) and 

OSR1 (156) demonstrate the implication of both kinases in phosphate metabolism among 

other regulators; moreover, OSR1 stimulates NaPi-IIa in the proximal renal tubules (156). 

The kinases stimulate the entry of K
+
 and Cl

- 
by activating Na

+
/Cl

-
 (NCC) and Na

+
/K

+
/Cl

-
  

(NKCC) co-transporters, on one hand, and by inhibiting the K
+
/Cl

-
 co-transporters on the 

other hand (122, 133, 136, 137, 142, 170). This effect allows cell swelling to occur (178-

180). Activation of Na
+
-coupled phosphate transporter suggests fostering cell swelling as 

well, since it improves Na
+
 and Pi entry, which depolarizes the cell membrane, and thus 
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stimulates negative- charged Cl
- 
up-take. Nevertheless, the cell swelling phenomenon could 

not be rapid giving that the extracellular concentration of phosphate is finite and the 

transport rate is low. 

To sum up, the Na
+
-coupled phosphate transporter NaPi-IIb is stimulated by the kinases 

SPAK and OSR1, probably this observed effect is involved in the modulation of phosphate 

metabolism (163). 

In conclusion, this study reveals a novel role of SPAK and OSR1 kinases as powerful 

regulators, positively regulating the inwardly rectifying K
+
 channel Kir2.1 and the Na

+
-

coupled phosphate transporter NaPi-IIb and negatively regulating the Na
+
 and Cl

-
 coupled 

creatine co-transporter (160, 162, 163). (Figure 36). 

 

Figure 36: SPAK/OSR1 effect on Kir2.1 (KCNJ2), CreaT (SLC6A8) and NaPi-IIb (SLC34A2) 
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5. SUMMARY 

The regulation of ion transport involves several kinases including SPAK (SPS1-related 

proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1), which are 

controlled by WNK (with-no-K[Lys]) kinases. The present study investigates whether 

SPAK and/or OSR1 participate in the modulation of the K
+
 channel Kir2.1 (KCNJ2), the 

creatine transporter CreaT (SLC6A8) and the phosphate transporter NaPi-IIb (SLC34A2).   

The first part of the study focuses on Kir2.1, namely: the inwardly rectifying K
+
 channel, 

which is expressed in brain, heart and skeletal muscle. Kir2.1 maintains the resting 

membrane potential and is determinant for cell volume regulation, preventing cell 

shrinkage. In addition kir2.1 participates in the spatial K
+
 buffering in neurons and 

contributes hence to neuro-excitability. The inwardly rectifying K
+
 current in Kir2.1 co-

expressing Xenopus laevis oocytes is significantly increased in the presence of SPAK and 

OSR1 respectively; as a result of the enhanced channel protein abundance on the cell 

surface. Moreover, treatment with Brefeldin A abolishes the stimulating effect of SPAK or 

OSR1 on Kir2.1 indicating that the kinases effect involves in the protein trafficking 

pathway towards the plasma membrane. Further investigation regarding the kinases 

mutations show that the constitutively active mutants 
T233E

SPAK and 
T185E

OSR1 mimic the 

effect of the corresponding wild type kinase, while neither the WNK insensitive 
T233A

SPAK 

and 
T185A

OSR1, nor the catalytically inactive 
D212A

SPAK and 
D164A

OSR1 enhanced kir2.1 

activity.   

The second part of the investigation concerns CreaT, i.e. the Na
+
 and Cl

- 
coupled creatine 

transporter. CreaT carrier is expressed in cells with high energy demand such as brain, 

heart, intestine, retina and skeletal muscle, where it provides creatine needed for energy. 

The conversion of creatine to phosphocreatine by creatine kinase is important for 

maintaining ATP in the cells. Creatine transporter is additionally involved in mental 

retardation, seizure and intellectual disability. The co-expression of SPAK or OSR1 with 

CreaT decreases significantly the electrogenic creatine transport. Furthermore, the maximal 

creatine-induced inward current indicating the rate of transport is down-regulated by SPAK 
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or OSR1, whereas the affinity of CreaT carrier to creatine is not affected. Besides the 

results of wild type kinases, the respective active mutants namely the constitutively active 

T233E
SPAK and 

T185E
OSR1 do negatively regulate CreaT, however, the catalytically inactive 

mutants 
D212A

SPAK and 
D164A

OSR1 as well as the WNK insensitive 
T233A

SPAK do not, 

while 
T185A

OSR1 tend to reduce creatine current.  

The last part of the study, explores the regulation of the Na
+
 coupled phosphate transporter 

NaPi-IIb, which ensures phosphate up-take in the intestine and tumor cells. The carrier is 

stimulated by SPAK and OSR1. Both kinases increase not only the maximal phosphate 

inward current and thus the transport rate, but also enhance significantly the affinity of 

NaPi-IIb to phosphate. Moreover, the simultaneous expression of SPAK and OSR1 do not 

show an additive effect. Furthermore, the constitutively active mutants 
T233E

SPAK and 

T185E
OSR1 display same effect as the wild type kinase respectively on NaPi-IIb activity. 

This effect is observed neither with the inactive mutants WNK insensitive 
T233A

SPAK and 

T185A
OSR1 nor with the catalytically inactive 

D212A
SPAK and 

D164A
OSR1.  

In conclusion, both kinases SPAK and OSR1 are powerful regulators of Kir2.1, NaPi-IIb 

and CreaT, effects may be involved in the cell volume regulation and excitability.  

 

 

 

 

 

 

 

 

 

 



 91 

Zusammenfassung 

An der Regulation des Ionentransports sind mehrere Kinasen, darunter SPAK (SPS1- 

proline/alanine-rich kinase) und OSR1 (oxidative stress-responsive kinase 1) beteiligt, die 

durch WNK (with-no-K[Lys]) Kinasen kontrolliert werden. Die vorliegende Studie 

untersucht, ob SPAK und/oder OSR1 an der Modulation des K
+
 kanals Kir2.1 (KCNJ2), 

dem Kreatintransporter CreaT (SLC6A8) und dem Phosphattransporter NaPi-IIb 

(SLC34A2) eine Rolle spielen. 

Der erste Teil der Arbeit konzentriert sich auf Kir2.1: den einwärts gleich-richtenden K
+
 

Kanal, der in Gehirn, Herz und Skelettmuskeln exprimiert wird. Kir2.1 hält das 

Membranruhepotential aufrecht und ist für die Regulation des Zellvolumens und das 

Verhindern der Zellschrumpfung. Darüber hinaus beteiligt sich Kir2.1 an der räumlichen 

K
+
-Pufferung in Neuronen und trägt damit zur neuronalen Erregbarkeit bei. Der einwärts 

rektifizierende K
+
 Strom in Kir2.1 exprimierenden Oozyten wird in Anwesenheit von 

SPAK bzw. OSR1 erhöht, als Resultat der erhöhten Vorkommen des Kir2.1 auf der 

Zellmembranoberfläche. Die Behandlung der Oozyten mit Brefeldin A hemmt jedoch die 

stimulierende Wirkung von SPAK/OSR1 auf Kir2.1, was darauf hinweist, dass SPAK und 

OSR1 beim Transport von Kir2.1 zur Zellmembranoberfläche involviert sind.  

Eine weitere Untersuchung der Kinase-Mutationen zeigt, dass die konstitutiv aktiven 

Mutanten 
T233E

SPAK und 
T185E

OSR1 dieselbe Wirkung ausüben wie die entsprechende 

Wildtyp-Kinase, während weder das WNK-insensitive 
T233A

SPAK und 
T185A

OSR1 noch die 

katalytisch inaktive 
D212A

SPAK und 
D164A

OSR1 die kir2.1-Aktivität verstärken. 

Der zweite Teil der Untersuchung betrifft CreaT, den Na
+
 und Cl

-
-gekoppelten Kreatin-

Transporter. CreaT wird in Zellen mit hohem Energiebedarf wie Gehirn, Herz, Darm, 

Netzhaut und Skelettmuskel exprimiert. Das transportierte Kreatin und dessen 

Phosphorylierung wird anschließend zur Energiegewinnung (Regeneration von ATP) 

benötigt. Kreatin-Transporter Defizienz oder Mutation ist ein entscheidender Faktor bei der 

Entstehung der geistigen Retardierung.  

Die Koexpression von SPAK und/oder OSR1 mit CreaT verringert deutlich den 

elektrogenen Kreatintransport.  
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Darüber hinaus wird der maximale Kreatin-induzierte Einwärtsstrom, der die Transportrate 

angibt, durch SPAK und OSR1 herunterreguliert, während die Affinität von CreaT-Träger 

zu Kreatin nicht beeinträchtigt wird. Ähnlich wie die Wildtyp-Kinasen, beeinträchtigen die 

jeweiligen konstitutiv aktiven Mutanten, nämlich 
T233E

SPAK und 
T185E

OSR1, den CreaT, 

während die katalytisch inaktiven Mutanten 
D212A

SPAK und 
D164A

OSR1 sowie die WNK-

insensitiven 
T233A

SPAK keine Rolle spielen. Dennoch 
T185A

OSR1 neigte dazu, den 

Kreatinstrom zu reduzieren. 

Der letzte Teil der Studie untersucht die Regulation des Na
+
-gekoppelten Phosphat-

Transporters NaPi-IIb, der den Phosphat-Aufnahme in Darm- und Tumorzellen 

gewährleistet. Der Transporter wird durch SPAK und OSR1 stimuliert. Beide Kinasen 

erhöhen nicht nur den maximalen Phosphat-Einwärtsstrom und damit die Transportrate, 

sondern auch die Affinität von NaPi-IIb zum Phosphat deutlich. Darüber hinaus zeigt die 

gleichzeitige Expression von SPAK und OSR1 keinen additiven Effekt. Weiterhin zeigen 

die konstitutiv aktiven Mutanten 
T233E

SPAK und 
T185E

OSR1 dieselbe Wirkung wie die 

Wildtyp-Kinase. Diese hemmende Wirkung wurde weder bei den inaktiven Mutanten 

WNK insensitiven 
T233A

SPAK und 
T185A

OSR1 noch bei dem katalytisch inaktiven 

D212A
SPAK und 

D164A
OSR1 beobachtet. 

Zusammengefasst: Die Kinasen SPAK und OSR1 als Regulatoren von Kir2.1, NaPI-IIb 

und CreaT könnten eine Rolle bei der Zellvolumenregulation und Erregbarkeit spielen.  
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