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Abstract

In this work, the stability problem of magnetised neutron stars will be addressed, by
applying a new semi-analytic method for stability analysis.

The durability and long-lasting stability of magnetised neutron stars, inferred from
numerous pulsar observations, is not explicable with the current state of research. This key
issue of neutron star physics implies that the interior neutron star magnetic field structure
is widely unknown. This situation is highly undesirable since neutron stars, showing the
most extreme densities and field strengths of extended objects in the universe, represent
highly interesting objects for investigations on fundamental physics.

The semi-analytic method presented here is based on the energy variational princi-
ple, where the stability of an equilibrium system is tested towards perturbations of the
equilibrium state. An increase in the system energy for all perturbation modes represents
stability, an energy decrease for at least one mode indicates instability. The innovative idea
of the semi-analytic method is to set up the energy variation density of the parametrised
system analytically, and to perform the required volume integration numerically. With
this approach, the investigated model systems can be kept more complex than in previous
analytical studies. The generality of the model system compared to numerical studies
allows for conclusions on realistic magnetic field and composition structures inside the
star.

The functionality of the implemented computation code is verified by re-detections of
the known Tayler instabilities in the purely toroidally and purely poloidally magnetised
neutron star. The stabilising impact of stratification, i.e. deviations from barotropicity,
and the interplay of both magnetic field components found in analytic studies is confirmed.

New physical insights are gained by removing the Cowling approximation that has
commonly been used in all stability studies on magnetised neutron stars so far. This
simplification neglects the change in the gravitational potential caused by the perturbation.
This approximation is tested here on its validity in modern studies. Even though the
Cowling approximation is justified for instability detections in toy models, it might distort
the results of stability proofs in more realistic systems.

It is shown that the semi-analytic method represents a valuable tool for future stability
investigations. It provides essential advantages for a straightforward stability analysis
compared to previous approaches, and it is a promising method to achieve progress in the
field of magnetised neutron stars.






Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem Stabilitdtsproblem magnetisierter Neutro-
nensterne, unter Verwendung einer neuen semi-analytischen Untersuchungsmethode zur
Stabilitdtsanalyse.

Die in Pulsarbeobachtungen vielfach detektierte hohe Lebensdauer und anhaltende Sta-
bilitdt magnetisierter Neutronensterne kann bei derzeitigem Forschungsstand nicht erklart
werden. Dieses zentrale Problem der Neutronensternphysik hat zur Folge, dass die innere
Magnetfeldstruktur von Neutronensternen weitgehend unbekannt ist. Dieser Zustand ist
hochst problematisch, da Neutronensterne die hochsten Dichten und Feldstdrken unter
allen ausgedehnten Objekten des Universums aufweisen und somit hochinteressante Un-
tersuchungsobjekte fiir die physikalische Grundlagenforschung darstellen.

Die hier vorgestellte semi-analytische Methode beruht auf dem Energievariationsprinzip,
nach dem die Stabilitdt eines Systems auf Stérungen seines Gleichgewichtszustands hin un-
tersucht wird. Beim Anstieg der Systemenergie gegentiber allen Stérungsmoden liegt Sta-
bilitdt vor, ein Energieabfall fir mindestens eine Mode zeigt Instabilitdt an. Die neuartige
Idee der semi-analytischen Methode ist es, die Energievariationsdichte des parametrisierten
Systems analytisch aufzustellen, die erforderliche Volumenintegration aber numerisch aus-
zufithren. Mit diesem Ansatz kann das untersuchte System komplexer gehalten werden als
es in bisherigen analytischen Studien méglich war. Verglichen mit numerischen Studien ist
bei der Konstruktion des Modellsystems ein héheres Mafl an Allgemeingiiltigkeit moglich,
welches Riickschliisse auf realistische Konfigurationen des Magnetfelds und der stellaren
Zusammensetzung erlaubt.

Die Funktionalitit des aufgesetzten numerischen Codes wird anhand von Instabilitéts-
nachweisen der bekannten Taylerinstabilititen in rein toroidal und rein poloidal mag-
netisierten Neutronensternen bewiesen. Der in analytischen Untersuchungen gefundene
stabilisierende Einfluss von Stratifikation, d. h. Abweichungen von der barotropen Zusam-
mensetzung des Sterns, und dem Wechselspiel beider Magnetfeldkomponenten wird besté-
tigt.

Neue physikalische Erkenntnisse werden erzielt, indem die Cowlingnédherung aufgehoben
wird, die {iblicherweise fiir alle Stabilitdtsuntersuchungen an magnetisierten Neutronen-
sternen bislang angenommen wurde. Diese Naherung vernachléssigt die durch die Stérung
entstehende Anderung des Gravitationspotentials. Diese Naherung wird hier auf ihre
Giltigkeit in aktuellen Studien hin untersucht. Obwohl die Verwendung der Cowling-
ndherung zur Detektion von Instabilititen in vereinfachten Systemen gerechtfertigt ist,
verfilscht sie moglicherweise die Ergebnisse von Stabilitdtsnachweisen in realistischeren
Systemen.

Es wird gezeigt, dass die semi-analytische Methode ein nitzliches Hilfsmittel fiir zu-
kiinftige Stabilitdtsuntersuchungen darstellt. Verglichen mit fritheren Herangehensweisen
bietet sie entscheidende Vorteile beziiglich einer unkomplizierten Stabilitdtsanalyse und
stellt eine vielversprechende Methode dar, mit der Fortschritte auf dem Gebiet der mag-
netisierten Neutronensterne zu erwarten sind.






1. Motivation

Neutron stars have been known as enormously interesting objects with high densities
and strong magnetic fields for decades. They attract attention by observations of their
pulsar characteristics, giant flare activities, partially enormously fast rotation or their
characteristic cooling curves. However, they are of interest to modern research not only
because they are fascinating objects, but predominantly because they provide essential
insights for up-to-date fundamental physics.

Relevance of neutron stars

Neutron stars are the most compact extended objects in the universe, representing unique
laboratories for identifying the fundamental characteristics of matter under extreme con-
ditions.

Investigating these kinds of systems is a crucial step towards finding the equation of state
for matter at high densities. This relation describes the composition of matter for pressure
levels occurring in ordinary atomic nuclei as well as in the innermost parts of neutron stars.
Even though this relation represents a basic component of our understanding of physics
itself, it is still unknown for high pressure values.

This fact is owed to the extreme conditions that are necessary to test matter in this
regime and that cannot be realised in experimental setups. Neutron stars, in contrast,
naturally provide these extreme environments and might bring us closer to a solution.

In the course of finding the equation of state, we expect insights about atomic nuclei
and about the actual existence of potential particles, lightening our entire understanding
of matter. Due to this potential, finding the equation of state for high densities is often
referred to as the Holy Grail of neutron star physics.

Relevance of neutron star magnetic fields

For the purpose of enhancing our physical understanding based on neutron stars, they
need to be understood sufficiently.

One essential component are the commonly strong magnetic fields typical neutron stars
possess. Aside from the equation of state, the magnetic field determines how neutron
star matter behaves. From observations it is known that neutron star magnetic fields are
strong enough to crucially impact all kinds of neutron star processes.

Typical surface field strengths of neutron stars are of the order of 108G to 103 G,
while the interior field strength is expected to exceed 10'° G (Manchester et al., [2005;
Pulsar Catalogue, 2017)). The neutron star subclass of so-called magnetars shows surface
fields of more than 10'* G and is expected to have accordingly even stronger interior fields
(Olausen & Kaspi, 2014; Magnetar Catalog, 2016). Thus, the evolution of magnetars is in
fact dominated by their magnetic field.

For an adequate description of neutron stars, it is essential to take into account their
magnetic field. Beyond this fundamental requirement, the neutron star magnetic field
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1. Motivation

represents a highly interesting field itself. It is unique, artificially not reproducible and
highly topical, since it converts neutron stars into sources of gravitational waves, whose
first direct detection succeeded recently.

Key issue of magnetised neutron star physics

However, despite its importance there is no theoretical model describing magnetised neu-
tron stars sufficiently until today. This issue leads to the fact that studies on neutron stars
are based on assumptions and estimates for the magnetic field. Considering the massive
impact magnetic fields exert on neutron stars, this situation is unacceptable.

The problem in particular is that simplified theoretical models cannot support stable
magnetised neutron stars. This implies that magnetised neutron stars could not persist
and would thus not be observable. This obvious contradiction between theory and obser-
vations indicates that an essential feature must be missing in the model. Unfortunately, it
is extremely difficult to make the model more realistic. Analytical studies rely on oversim-
plifications to keep the system treatable. Numerical simulations on the other hand cannot
provide the universal conclusions which are necessary for a conceptual understanding.
Therefore, the structure of interior neutron star magnetic fields is still widely unknown.

Fundamental idea of this work

In this work, a semi-analytic approach combining the advantages of both pure analytic
and pure numerical attempts will be developed and implemented for the first time. It is
designed as a method of semi-analytic stability analysis to find the stellar configurations
that are most likely to be stable. The method is expected to constrain which composition
and magnetic field structures are possibly present in actual neutron stars.

The semi-analytic method will be based on the variational principle. It states that
an equilibrium state is stable if the total system energy increases towards every possible
perturbation mode. The system is unstable as soon as at least one perturbation mode
lowers the total system energy.

In analogy to an analytical treatment, the energy variation density of the star towards
an arbitrary perturbation will be set up analytically in the semi-analytic approach. From
that, the energy variation follows by an integration over the stellar volume. The sign of the
energy variation indicates whether the system is stable or not. In contrast to the analytical
approach where simplifications in the model are necessary to perform the integration, the
semi-analytic method will make use of a numerical Simpson integration.

Compared to numerical simulations, the semi-analytic method will not require specific
initial conditions. Due to parametrisation, classes of systems can be investigated at once.
That way, the semi-analytic approach allows for a preservation of the system’s complexity,
yet providing universal conclusions. It is expected to improve the analytical approach
allowing for a description of more realistic stars.

Outline of this work

The structure of this work is as follows.

Before the fundamental idea of the semi-analytic method explained above can be framed
in a detailed and mathematical way, theoretical foundations need to be presented. Chapter
summarises the astrophysical foundations. Section gives a global scientific overview
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on neutron stars. Section presents the equations of magnetohydrodynamics required
for a mathematical description of neutron stars. In section [2.3] the essentials of stability
analysis are explained, applying either the variational principle or a normal mode analysis.
The analytical expressions for the energy variation the semi-analytic method is based on
are derived.

Afterwards, the central underlying problem of this work is discussed in chapter [3] The
current state of research is outlined and the idea of the semi-analytic approach is explicitly
motivated.

Chapter [ describes the development of the semi-analytic method with the necessary
analytical and numerical steps that have been implemented so far. The analytical steps in
sections [4.1] and [4.2] particularly involve the derivation of additional terms in the energy
variation that need to be considered when stratified stars are investigated and the Cowling
approximation is removed. The numerical implementation of the method is shown in
section

The implemented method is applied to different systems in chapter [5|in order to prove
its functionality and to gain first new insights about more complex systems. Sections
and cover the field of stability analysis of magnetised neutron stars in simple model
systems. Section [5.3]addresses systems with more realistic magnetic field and composition
structures. Section demonstrates the generality of the method through applications
on further issues such as the calculation of system eigenfrequencies and eigenfunctions.

The conclusions are drawn in chapter [f] The technical functionality of the method
is discussed in section [6.1] and the physical achievements are discussed in section [6.2]
Chapter [7] gives an outlook on the upcoming follow-up projects.

13



2. Theoretical foundations and system setup

Before the main idea of this work can be brought into an astrophysical and mathematical
context, the required theoretical foundations need to be outlined.

Section will give an overview of today’s state of neutron star research, providing
the basis for the magnetised neutron stars investigated in this work. Part covers the
mathematical treatment of these systems applying magnetohydrodynamics (MHD). Sec-
tion introduces the mathematical concept of stability analysis which will be extended
and applied in this work to study neutron stars.

2.1. Research state on neutron stars

As briefly touched in the previous chapter I, the understanding of neutron stars in general
and their magnetic fields in particular is of exceptional relevance to modern research. For
an illustration of this fact, this chapter presents the most important characteristics of
neutron stars and their magnetic fields.

Neutron stars are among the most extreme objects known to exist in the universe.
Showing masses on the order of 1.5 Mg and radii of approximately 12km, they represent
the densest objects with finite extents. Providing densities, gravitational potentials and
magnetic field strengths that are not reproducible artificially by far, they are unique
laboratories for investigations of matter under extreme conditions. These studies are about
to reveal the most fundamental characteristics of matter, promoting today’s progress of
our understanding of physics itself.

2.1.1. Neutron star formation

Neutron stars as compact objects represent one of the final stages of stellar evolution.
They originally evolve from stars with an initial mass of 8 to 29 Mg after their supergiant
phase in a core collapse supernova.

Lighter stars do not reach the stage where neutron stars can be built because their
temperature stays too low to start the required fusion processes. They end up as brown
dwarfs or helium, or respectively CO (carbonate and oxygen), white dwarfs. Heavier stars
undergo an unstoppable core collapse creating a black hole.

The evolution of a potential neutron star forming candidate is as follows (Wessel, [2009)).
Stars with initial masses of 8 to 29 Mg fuse hydrogen, helium and heavier elements in
their interior during their evolution. Finally, their core consists of the iron isotope *%Fe.
For this isotope, no further energy-providing fusion processes exist.
The nuclear power produced in the core drops, the total energy E decreases locally. Ac-
cording to the virial theorem of classical and degenerated gases in hydrostatic equilibrium,
1

E= 5 Egrav = _Eint <0 (21)
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2.1. Research state on neutron stars

holds, which leads to an increase in the internal energy FEj, supplied by the gravitational
energy Egray. The stellar core collapses.

The increasing temperature enables inverse [-decays and photo disintegration, both
being endothermic processes that further accelerate the collapse. With increasing density,
electrons are first pressed into the nuclei and also neutronise free protons eventually.
Thus, the electron degeneracy pressure drops, accelerating the core collapse even more.
Simultaneously, the existing nuclei are disintegrated. Finally, the stellar core consists of a
fluid of mostly free neutrons, protons and electrons.

Once temperature and density rise high enough, the neutrons degenerate. Their de-
generacy pressure has the ability to stop the collapse and create a stiff stellar core. The
material still infalling from outer layers is repelled in a shock wave creating an explosive
ejection of matter. The former outer layers of the star form supernova remnants, while
the original compact stellar core remains as a proto neutron star. Discharging its energy
mainly by neutrino emission, the proto neutron star cools down from initially 10'! to
10" K to approximately 10® K in about 100 years, eventually forming a neutron star.

Apart from core collapses of old stars, highly massive neutron stars can also be formed
as the end product of a stellar binary merger (Schwenzer, 2015; Baiotti & Rezzolla, 2017).

Due to their original formation via fragmentation in interstellar clouds, stars are often
arranged in groups. In the course of their development, heavy stars thus commonly capture
other main sequence or compact stars and form a binary system. Both objects rotate
around their common centre of mass, while emitting gravitational waves, and merge into
each other eventually.

The fast rotating emerging object can be described as a hypermassive neutron star.
Its mass exceeds the critical upper limit for neutron stars, while it is stabilised by its
rotation. If the material loss during its spin-down phase is high enough, the hypermassive
neutron star will not collapse to a black hole, but transform into a new massive neutron
star instead.

2.1.2. Neutron star composition

The developmental history of neutron stars explains their high masses at small radii. The
internal neutron star structure is well understood in the outer parts and widely unknown
for the core (Lattimer & Prakash, 2004).

The outermost parts of the neutron star are its thin atmosphere and envelope, followed
by the crust underneath with a thickness of 1 to 2 km.

At relatively low densities, the outer crust consists of nuclei arranged in a Coulomb
lattice, starting from %6Fe at the surface towards neutron-richer nuclei in deeper layers, as
well as free electrons. At densities above 4 x 10*! gcm™, neutrons start to drip out of the
nuclei, creating a fluid of free neutrons around the nuclei within the inner crust.

After a possible transition area between crust and core, where structures of different
dimensions might appear, the neutron star core starts at a density of 2 x 10 gcm™. The
stellar core contains 99% of the neutron star mass. The outer core consists of a fluid
containing neutrons, protons, electrons and muons. The free neutrons are stabilised by
the proton and electron Fermi seas that prevent the §-decay of neutrons, holding no free
states for the emerging particles. The ratio of protons to neutrons is in S-equilibrium.
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2. Theoretical foundations and system setup

Considering the temperature and density inside the core, the neutrons are expected to be
in a superfluid state, while the protons form a superconductor.

At densities exceeding 10'® gcm™, there might be an unknown state of matter forming
an inner core. In this density regime exceeding nuclear densities, strong interactions are
relevant. The associated theory of quantum chromo dynamics (QCD) can neither be
solved numerically or be tested experimentally for the required density levels. It relies
on assumptions for hadronic interactions and quantum many body effects. Therefore,
there is a full variety of theoretically possible scenarios for the neutron star interior.
For example, different fluids containing strangeness-carrying hyperons might appear, the
possible existence of a quark fluid is still under discussion, colour superconduction might
arise or mixed phases of hadronic and deconfined matter might emerge.

Neutron stars provide a unique opportunity to test these theories which are difficult to
access otherwise. The interior neutron star structure is indirectly revealed by observational
data being affected by the stellar composition (Ozel & Freirel 2016).

2.1.3. Neutron star features and observational data

According to their formation and composition, neutron stars show characteristic features
that allow for a connection between observables and the underlying theory of internal
processes.

Neutron stars are usually classified by type according to their dominant energy source.
Emission processes in pulsars are driven by their rotational energy, the evolution of mag-
netars is determined by their strong magnetic field, and binary neutron stars are predom-
inantly accretion powered. There are common features basically applying to all neutron
stars, as well as characteristics which are typical only for one of these subclasses.

The subsequent paragraphs briefly list the fundamental properties and characteristics
of neutron stars.

Mass limit Despite their compactness, neutron stars underlie the Tolman-Oppenheimer-
Volkoff limit, an upper limit for the neutron star mass (Wessel, 2009). It follows from the
fact that an ultra relativistic degenerate gas in hydrostatic equilibrium is on the boundary
between its bound and unbound state, according to the virial theorem Ej,; = —FEgray, i.e.
E = Eing + Egrav =0.

In a series of neutron stars with increasing masses, their average density increases, while
their radius decreases, different from main sequence stars. Heavy neutron stars would thus
eventually reach the critical density where the mean free path meets the neutron Compton
wave length Ao = hp/(my, ¢). The neutron mass is denoted by m,,, hp and ¢ denote the
Planck constant and the speed of light. At this point, the star would be dominated by the
relativistic degenerate neutron gas.

In the ultra relativistic regime where the neutron rest mass is negligible compared to
its kinetic energy, m, c? < |p,|, i.e. E = |p,|c with the neutron momentum p,,, the stars
could not be bound any more.

Due to the unknown equation of state for high densities, the mass limit for neutron
stars is rather inaccurately predicted between 1.4 Mg and 3 Mg. The masses of the neutron
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2.1. Research state on neutron stars

stars detected so far observationally constrain the lower bound (Lattimer & Prakash| 2005}
Lattimer} [2016)). The causality limit, stating that the speed of light must exceed the speed
of sound, constrains the upper bound.

Rotation Typically, neutron stars show fast rotation with periods of 1073 to 1s (Wessel,
2009; |Schwenzerl, |2015]).

This observation can be explained based on the conservation of angular momentum
during the neutron star formation collapse if the coupling between the core and the ejected
envelope is assumed to be weak.

If the initial amount of pre-collapse angular momentum is concentrated mainly onto
the proto neutron star, millisecond periods can arise. In contrast to other stellar objects,
neutron stars are compact enough to keep these high rotation rates without reaching
the mass shedding limit, where the centrifugal force would overcome the gravitational
force leading to mass loss. So called millisecond pulsars show periods of less than 1072s.
They are believed to form in recycling processes where an old neutron star gains angular
momentum via accretion from its companion star in a low mass X-ray binary.

Magnetic field Neutron stars stand out for their magnetic fields reaching strengths that
are not achieved in other objects by far.

The surface field strength of a typical pulsar is on the order of 10% to 103G, and
exceeds 104 G in magnetars (Goldreich & Reisenegger], 1992; Manchester et al. [2005}
Pulsar Cataloguel [2017; |Olausen & Kaspi, 2014; Magnetar Catalog, 2016). The internal
field strength is expected to reach above 10'° G (Tayler, 1973; |Akgiin et al., 2013).

The reason for the long-lasting and strong magnetic fields is still an open question of
astrophysics.

Commonly, the field origin in neutron stars is explained by flux freezing during the star
formation process. Weak initial galactic fields are frozen into the collapsing material when
stars are formed. During this process, the magnetic field strength increases according to
flux conservation when the cross section traversed by the magnetic field lines decreases to
stellar scales. Taking into account ambipolar diffusion, which describes the relative move-
ment of charged particles to neutral particles caused by the stronger coupling of charged
material to the magnetic field compared to the neutral material, the flux is not com-
pletely preserved. During the neutron star formation core collapse afterwards, extremely
strong magnetic fields are created in the transition from the original main sequence stellar
dimensions to the final extremely small neutron star radii.

Ohmic magnetic field decay, on the other hand, is not expected to be relevant on a
neutron star life timescale. This estimate is a necessary condition for the observed dura-
bility of the fields. Nevertheless, this durability cannot be explained sufficiently until
today. There is a number of instabilities that are expected to affect the magnetic field,
preventing a persistent development.

However, works as Thompson & Duncan| (1993) show that the theory of flux freezing
can most likely not explain the eventual field strengths observed for neutron stars and
suggest a dynamo process producing the magnetic field instead. Beyond the theory of
flux freezing, there is a number of theories aiming on the explanation of the neutron star
magnetic field strengths and related features. Magnetic field amplification caused by the
magneto-rotational instability seems to be active both during the core collapse process, as
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2. Theoretical foundations and system setup

well as in the neutron star binary merger (Friedman et al.,|2017)). This effect might explain
the extraordinarily high magnetar field strengths (Rembiasz et al., 2017). According to
currents in the stellar magnetosphere, the dipole momentum assigned to magnetars might
appear stronger than it actually is (Akgun et al., 2016)).

Besides the ongoing search for an explanation for the extreme field strengths, the neutron
star magnetic field is highly interesting itself.

Neutron stars, respectively magnetars, show flares and superflares, highly energetic
radiation outbursts in the frequency range of X-rays and «-rays. They are associated with
possibly global scale rearrangements of the magnetic field and possible crust breaking after
the occurrence of a magnetic field instability (Thompson & Duncan) 1995).

The magnetic field induced global deformation of neutron stars as well as possible
magnetically confined mountains transform neutron stars into gravitational wave sources
(Melatos & Payne|, 2005; Mastrano et al., 2011). With the first direct detection of gravi-
tational waves recently, this opens up an entirely new detection channel for neutron star
data. It is highly desired to prepare the underlying theory before first detections of grav-
itational waves induced by isolated neutron stars will be possible.

Pulsar emission Neutron stars posses a generally weak omnidirectional luminosity, but a
characteristic directional pulsar emission by what they were first detected (Hewish et al.,
1968; |Gold, |1968]). According to this effect, they are called “pulsars” even though their
luminosity is not variable as it is the case for actual pulsating stars. Instead, the lighthouse
model explains their periodic luminosity (Wessel, [2009).

Pulsars emit electromagnetic radiation particularly from their magnetic pole areas, cre-
ating two light cones. If the symmetry axis of the mainly dipole structured magnetic field
is not aligned with the stellar rotation axis, the light cone periodically hits an observer
that is located in the emission plane. This periodicity with typical pulse durations of 5%
of the pulse period is greatly precise for the pulsars observed so far.

Due to the short pulse durations indicating a compact source and the short periods
indicating a fast rotating source, the observed pulsars could be identified as neutron stars.
The pulse period allows a straightforward determination of the neutron star rotation rate.
The frequency of the directional electromagnetic emission usually lies in the radio band
and for some pulsars it is in the optical, X-ray or y-band.

Despite the universality of the pulsar behaviour, the reason for the directional emission
is not completely understood yet.

The common model by |Goldreich & Julian| (1969) states that the strong electromagnetic
fields at the neutron star surface drag charged particles out of the surface. Within the
light cylinder, i.e. the region around the star where the rotation speed is still less than
the speed of light, the neutron star magnetic field corotates with the star, see figure 2.1
The charged particles are forced on spiral trajectories around the field lines and create a
corotating magnetosphere. Field lines that do not close inside the light cylinder are open
and charged particles can stream out along them.

It is still uncertain, however, whether the emitted photons are created right above the
neutron star polar caps due to synchrotron radiation and inverse Compton radiation or
whether the charged particles are accelerated to outer vacuum gaps where they induce -~
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2.1. Research state on neutron stars

light cylinder
/ corotating /
magnetosphere

Figure 2.1.: Schematic illustration of the pulsar model by (Goldreich & Julian| (1969)).

pair production. Independently of the model, the light cones develop eventually because
the magnetic fields lines are most dense and open at the polar regions.

Spin-down Despite their very accurate periodic behaviour, pulsars show a well-defined
spin-down in rotation during their evolution, detectable by a systematic increase in the
pulsar emission period.

The energy loss can be caused by different effects such as electromagnetic dipole radi-
ation, emission of gravitational waves due to magnetically induced distortions from rota-
tional symmetry or the excitation of r-modes. The spin-down process type is characterised
by the braking index

npe = QQ/Q%, (2.2)

which describes the decrease in the angular velocity © via Q = —kp, Q™ where the dots
denote time derivatives and kp, is a proportionality constant (Alpar & Baykal, 2006)).

The evaluation of spin-down curves is essential for the categorisation of neutron stars,
the identification of energy providing processes, a better understanding of pulsar emission
and thus a more detailed knowledge about neutron star magnetic fields.

Glitches Another characteristic feature in the observed pulsar spin-down curves are sud-
den spin-ups, so-called glitches.

A suitable explanation for the unexpected and unpredictable spin-up events is provided
by superfluidity (Ruderman et all [1998). Assuming that the neutrons form a superfluid
in the outer core, the rotational energy of the star is quantised in vortices that are pinned
to the crust. During the regular continuous crust spin-down, the superfluid vortices keep
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2. Theoretical foundations and system setup

their velocity until the velocity difference becomes large enough to unpin the vortices from
the crust. In a glitch event, the released rotational energy is transferred from the vortices
to the crust which is observed as a sudden increase in the stellar rotation.

Luminosity The omnidirectional electromagnetic radiation of neutron stars can be ex-
plained by the dipole emission of the generally aligned rotator mentioned above, cf. figure
(Wessel, 2009).

According to the stellar rotation rate, the omnidirectional emission frequency is very
low. The directional emission is thus clearly distinguishable from the dipole radiation.

The visual luminosity L of neutron stars is very weak as can be seen by the radiation
law of a black body,

L =4nR? ogp Tik, (2.3)

where ogp denotes the Stefan-Boltzmann constant and T,g the effective temperature of
the star. Neutron stars do not run fusion processes anymore and they posses extremely
small radii R.

In contrast to main sequence stars and white dwarfs with surface temperatures of 103
to 10* K, the neutron star surface temperature is on the order of 10° K. Neutron stars are
thus not bright enough and too hot to appear in the Hertzsprung-Russel diagramme.

The interpretation of neutron star cooling curves, where the thermal luminosity is con-
nected to the age of the star, is an important tool for understanding the early neutron
star evolution.

Besides dipole emission, neutron stars in binary systems provide another electromagnetic
observation channel via accretion powered X-ray emission. When matter is transferred
from the companion to the neutron star, its gravitational potential energy is released in
an accretion luminosity which lays in the X-ray band.

Beyond that, bursts and superbursts are detectable if the accreted matter causes un-
stable hydrogen or helium burning at the surface of the neutron star or carbon burning in
deeper layers.

Present-day neutron star research fields Summarising the previous paragraphs, neu-
tron stars show features which are extremely interesting on one hand and still not fully
understood yet on the other hand.

All four fundamental forces come into play, which makes the system unique and com-
plicates its description at the same time (Lattimer & Prakash, [2004). Gravity is relevant
during the whole evolution of the neutron star due to its compactness; electromagnetism
is needed for the description of the stellar magnetic field, its charged fluids and emission;
weak forces determine the composition of the outer stellar core, i.e. the main part of the
neutron star; strong forces are relevant for the density levels occurring in the inner stellar
core, and they are related to observational features via the equation of state. Therefore,
there is a broad variety of current neutron star studies, where the question of the equation
of state for matter under high pressure is the central subject.

The collection of observational data for neutron star masses and radii is supposed to

constrain the potential equation of state (Lattimer & Prakashl |2004; Lattimer, |2016; Ozel
& Freire, [2016).
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2.2. Mathematical description of magnetised neutron stars

Many equations of state calculated from nuclear physics or QCD provide a rather steep
curve in the mass-radius diagramme, see figure[2.2] A precise measurement of neutron star
radii could thus rule out many possible theories. These radius measurements, however,
are very difficult. The scattering behaviour and the composition of the stellar atmosphere
strongly impact the determined radii, while they are poorly known at the same time.

The underlying theory is not complex enough to yield reliable radius measurements
currently, which is why this is an active research field.

Cooling curves of nearby neutron stars showing detectable optical thermal emission
are studied to connect the neutron star age to their internal 5-decay reactions, envelope
compositions and potential superfluid phases (Potekhin et al., [2016).

Pulsar spin-down rates connect neutron star ages to their magnetic field strengths
(Scholz et al., 2017)). Glitches are analysed to elaborate the interaction of a superfluid
core with a solid crust, which is also influenced by the internal composition (Pizzochero
et al., [2017).

In the aftermath of giant flares, quasiperiodic oscillations in the emission spectra have
been detected. These oscillations can be related to stellar oscillation modes (Passamonti
& Lander, 2014). The identification of these modes in the spectra that are directly related
to the stellar composition, is expected to be another approach to constrain the equation of
state. Beyond that, unstable eigenmodes could be responsible for crust breaking or major
magnetic field rearrangements (Lander et al| 2015).

Another possible source for crust breaking are strong magnetic fields which might be-
come noticeable in flares, giant flares or bursts (Perna & Pons, 2011)). The origin of giant
flares is still under discussion currently. The interpretation of quasiperiodic oscillations
detected in the aftermath of flare events might shed light on these questions.

Binary systems including neutron stars are excellent test objects for gravitational wave
emission which represents a new investigation channel for equation of state related ob-
servables. Beyond that, binaries are possible sources of neutron star formation and can
provide information about the early state of recycled neutron stars (Bose et al. 2017;
Tauris et al.} 2017)).

2.2. Mathematical description of magnetised neutron stars

After gaining a global understanding of magnetised neutron stars in the previous section,

the mathematical framework for a description of these systems must be constructed.
The modelling process will be explained in section Mathematical conventions will

be defined in section the required system equations will be listed in section [2.2.3]

2.2.1. Modelling

Due to the fact that the stability problem of magnetised neutron stars is a globally un-
resolved issue and that this work is a first attempt to build a semi-analytic investigation
method for this problem, the mathematical framework will be kept fairly simple. Once the
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Figure 2.2.: Mass-radius diagramme for neutron stars from [Lattimer & Prakash| (2004).
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Mass-radius relations based on different choices for the equation of state are
shown, black curves correspond to normal matter, green curves to strange
quark matter models. The orange contours represent radiation radii Re, =

R/\/1- 25024 . The dashed line shows the radius limit deduced from Vela
pulsar glitches, cf. Lattimer & Prakash| (2001). The blue region (GR) excludes
radii equal to or smaller than the Schwarzschild radius Rg = 2G M /c? for
which the object would be a black hole. The green region excludes radii
R <3G M/c? for which the speed of sound inside the star would exceed the
speed of light, causing causality problems. The red region excludes radii
equal to or above the mass shedding limit, where particles are not bound to

the stellar surface anymore.




2.2. Mathematical description of magnetised neutron stars

method proved itself by providing results on this simple system, the system complexity
will be enhanced in subsequent steps.

The mathematical framework set up here is derived from magnetohydrodynamics and
the theory of mass distributions.

Perturbative approach The semi-analytic stability analysis method set up here will be
based on the energy variational principle.

This principle is a perturbative approach, which offers the opportunity to keep the model
complexity quite low. We can distinguish between one model for the unperturbed equi-
librium system and reasonable conditions for its perturbations, rather than constructing
one complete complex system.

The perturbation theory will be discussed in detail in section In section it is
sufficient to know that we need to construct one model system for the hydrostatic equi-
librium state of the star and one perturbed model system for deviations from equilibrium
which cause slight changes in all system quantities.

Simplifications The model equilibrium system describes the mass, density and pressure
distribution of the star, which is assumed to be barotropic. The magnetic field as well as
possible deviations from barotropicity will be superimposed on the background model as
perturbations.

This procedure is a simplification, particularly because the so constructed magnetised
neutron star does in general not correspond to an actual equilibrium state fulfilling the
Grad-Shafranov equation. However, this approach is justified for a first attempt as it
has been shown in equation (21) in [Sotani et al. (2007) that the equilibrium density and
pressure distribution are only slightly influenced by the magnetic field. Later on, this step
can be skipped by using an accurate magnetic equilibrium as an initial state instead. The
semi-analytic method is just as well compatible with an actual magnetic equilibrium.

Furthermore, the neutron star rotation will be neglected for now in both the background
system and the perturbed state. This assumption is justified as long as the rotational en-
ergy is exceeded by other relevant energy contributions, such as magnetic and gravitational
energy. Beyond that, |[Pitts & Tayler| (1985) found that rotation is not stringently required
to explain the stability behaviour of magnetised neutron stars, while it considerably com-
plicates the description of the system dynamics.

2.2.2. Mathematical Definitions

Coordinate system In this work, different types of coordinate systems will be used,
adjusted to the respective geometry of the system under investigation (Bronstein et al.,
2008|).

The spherically symmetric background equilibrium system is best described in spherical

23



2. Theoretical foundations and system setup

(a) Spherical coordinates. (b) Cylindrical coordinates.

Figure 2.3.: Coordinate systems utilised in this work.

coordinates {r,9, p}, where

x = rsind cos p r=+\22+y?+ 22

y=rsindsiny 9 = arccos - (2.4)
r

z =rcost <p=arcta1r12
x

describes the transformation to cartesian coordinates {x,y, z}. The volume element is
dV = r?sind dr dd de. (2.5)

Due to its spherical symmetry, the background system is basically one-dimensional in
coordinate system . The coordinates are the radial distance r from the stellar centre,
the poloidal angle ¥ and the azimuthal angle ¢. For an illustration of the coordinate
system, see figure [2.3a]

According to the lack of magnetic field symmetry in a mixed field system and for the
sake of comparability with the work by Akgiin et al.| (2013]), we are going to apply spherical
coordinates also for neutron stars with mixed magnetic fields.

Neutron stars with a simple purely toroidal magnetic field structure will be described
in cylindrical coordinates {w, ¢, z}:

X =T COoS P w=\x2+y?

y=wsiny = arctan £ (2.6)
x

zZ=Z 2=z

with the volume element
dV = wdwdedz. (2.7)

According to the axisymmetry we assume for the magnetised equilibrium star, the un-
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2.2. Mathematical description of magnetised neutron stars

perturbed system is two-dimensional in cylindrical coordinates. The cylindrical radius w
measures the distance of a point from the stellar symmetry axis in the (w, p)-plane, cf.
figure The azimuthal angle ¢ is identically defined as in spherical coordinates, while
z describes the cartesian height with respect to the equatorial plane.

Finally, the system with a purely poloidal magnetic field requires toroidal coordinates
{1, ¢, x} to optimally fit the magnetic field geometry. In accordance with|Markey & Tayler
(1973)), the transformation relations between cylindrical and toroidal coordinates are

Qp:—B%”ﬁ w = Ryor — T COS X
p=p p=p (2.8)
X = arctan Rtm%w z=Tsiny.
with
r:\/(Rtor—w)2+z2=\|—;¢ (2.9)
pol

and the volume element

w

AV = Jdydedy =

dy dedy. (2.10)

pol

The Jacobi determinant is denoted by J. The toroidal coordinates span a torus with
radius 7, centred around the origin, as can be seen in figure The torus centre lies in
the equatorial plane and its distance to the stellar centre is given by Ryi,,. The azimuthal
angle ¢ remains unchanged compared to the previously defined coordinate systems. The
other coordinates ¢ and x represent polar coordinates in the (w, z)-plane.

Note that for the specific choice of toroidal coordinates (2.8 used in this work, the unit
vector e, points towards the torus centre. The coordinate 1) <0 takes negative values ev-
erywhere besides the torus centre, where 1 = 0. According to that, the backtransformation

to relation ({2.9)) is

72 Bpol

Yy
where out of the two square root solutions, the negative sign is compatible with < 0.

Beyond that, i represents a stream function defining the poloidal magnetic field. The
poloidal field amplitude is denoted by the constant Bj,. The connection between the
toroidal coordinate system and the magnetic field structure will be explained in section
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(2.11)

Unit system In this work, cgs-units, and more precisely Gaussian units, will be used.
For an overview on the unit systems utilised in this work and related works, see appendix

section [A.]

The derivations in this work will be presented in non-geometrised non-rationalised Gaus-
sian units (A.63). That way, we keep track of the appearance of prefactors, i.e. the speed
of light ¢, the gravitational constant G and the factor 47 in the equations related to the
Maxwell equations as well as the Poisson equation.
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Figure 2.4.: Toroidal coordinate system utilised in this work.

For the explicit derivations and calculations performed in sections and ge-
ometrised rationalised Gaussian cgs units will be applied, i.e. ¢=1and G = 1.
That way, the expressions and results are directly comparable to the works by [Tayler
(1973) and Markey & Tayler| (1973) which are based on geometrised rationalised Gaussian
cgs units.

The formulas and computations in section are based on non-rationalised Gaussian
units instead, in order to allow for a quantitative comparison with Akgun et al.| (2013)). In
the end, the difference between both approaches will manifest in an additional factor of
1/(47) in the magnetic field related terms of the energy variation in the non-rationalised
expression compared to the rationalised one.

For all numerical calculations, dimensionless quantities will be defined. The dimen-
sionless system is based on the solar mass Mg, the speed of light ¢ and the gravitational
constant G.

Partial and material derivatives In fluid dynamics, system quantities depend on position
variables that are in general time-dependent as well due to fluid movements. Therefore,
two kinds of derivatives are defined, distinguished by their reference frame (Thompson,
2006]).

The partial time derivative 0;() describes the change in a system quantity ) at a fixed
position. The material time derivative D;() describes the change in () within a generally
moving fluid element. The fluid motion at a velocity v provides an extra term in the
material derivative:

DtQ = 8tQ+'U'VQ, (212)

where V denotes the nabla operator. The derivation of this expression and further remarks
are shown in the appendix
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2.2. Mathematical description of magnetised neutron stars

2.2.3. System equations

This section presents all basic equations the neutron star description in this work is based
on, structured by the general setup, the background system and the perturbed system
(Bernstein et al. [1958; [Shapiro & Teukolsky, 1983 Mestel, |1999).

General system setup

In this first attempt of building a semi-analytic stability analysis method, we will focus
on the outer core of the star and neglect the thin crust as well as a potential inner core
in the model. This is obviously a strong simplification but a necessary step at the same
time to include more realistic features later on.

The investigated system is a fluid consisting of neutrons, protons and electrons. Being
a fluid of charged particles, its time evolution is described by magnetohydrodynamics.

Electromagnetic field The neutron star fluid is assumed to be electromagnetically force-
free. Assuming an infinitely high conductivity, the charged particles can arrange their
position in such a way that they take the energetically lowest state where Lorentz force
and electric forces on the particles are vanishing:

vx B
c

E +

0. (2.13)

The electric and magnetic field vectors are denoted by E and B, the fluid velocity by v.
The Maxwell equations describe the connection between electric and magnetic fields,
electric charge densities p. and electromagnetic currents j:

V-E=47p, (2.14a)
VxE-=- —@TB (2.14D)
V-B=0 (2.14¢)
va=47”j. (2.14d)

Charge densities represent sources of the electric field according to Gaufi’s law .
The Maxwell-Faraday equation describes the electric eddy current field created by
changes in the magnetic field. The magnetic field is divergence free as shown by equation
. Ampere’s law is based on the assumption of a negligible displacement
current ;D = O, F = 0.
Applying the force-free condition to Faraday’s law , the basic equation of
magnetokinematics follows:
B =V x(vxB). (2.15)

Equation of motion The evolution of each stellar fluid element is described by the Euler
equation of motion. It is the equation of motion of an ideally conducting magnetisable
self-gravitating fluid:

) x B
thv:—VpipV<I>+JX . (2.16)
c
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g =4V, g=—-Va,
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Figure 2.5.: Geometrical consideration for both sign conventions for the gravitational field,
given in equation (2.17). The equilibrium gravitational potential is denoted
by ®, its value at the stellar centre by ®. = ®o(r =0).

Fluid pressure, mass density and gravitational potential are denoted by p, p and ®. On
the right hand side of , all relevant force densities are considered, being the fluid
pressure gradient, the gravitational force and the Lorentz force.
Upper and lower sign correspond to different conventions of defining the gravitational
field via
g=xVvo. (2.17)

In both cases, the gravitational field vector is oriented towards the stellar centre. Upper
and lower sign convention correspond to V® s 0. For an illustration, see figure

Both sign conventions are commonly used in studies strongly related to this work.
Therefore, the equations formulated here are all compatible with both conventions in
order to avoid confusion and to allow for a direct comparison with these studies. The
upper sign is used in |(Chandrasekhar & Lebovitz (1964); Tayler| (1973)); Markey & Tayler
(1973) etc., the lower sign convention in |Akgiin et al.| (2013); Bernstein et al.| (1958) etc.
For an overview, cf. table in the appendix.

Mass conservation The stellar fluid obeys the continuity equation of mass conservation
Oip=-V-(pv). (2.18)
Or, with the definition of the material derivative (2.12)) and relation (A.1]),

Dip=-pVw. (2.19)
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2.2. Mathematical description of magnetised neutron stars

Poisson equation The gravitational potential of the neutron star mass distribution is
described by the Poisson equation

V20 = F471Gp, (2.20)

with sign convention (2.17). It is formally solved by

- inf |£(r,r,| (2.21)

Background equilibrium state

In the absence of magnetic fields and rotation, the background system is not subject to
deformations and the stellar fluid takes on the energetically most favourable, i.e. spherical,
shape.

Equation of state The equilibrium composition of the fluid can be described by a
barotropic equation of state pyp = po(pop), where the fluid pressure depends on the mass
density only. The index 0 indicates an unperturbed equilibrium quantity.

More precisely, we assume a polytropic equation of state of the form

po(po) = Kk py°, (2.22)

with the time-invariant constant x and the equilibrium polytropic index

_dlnpy 9dlnpg

= = . 2.23

dlnpy 09lnpg ( )
In the barotropic model, the total and partial derivatives of In pg, denoted by operators d
and 0, are equivalent.

In the context of phase transitions in general, the polytropic equation of state (2.22)) is
equivalent to an adiabatic process with

Di(pp™°) = (B +v-V) (pp™°) =0, (2.24)

where I'g = ¢,/cy is the ratio of isobaric and isochoric specific heat capacities.

Barotropicity further implies that the individual proton and neutron densities pg and
pgy, contributing to pg = pf + p, both show the same radial dependency. That means, the
proton fraction

P
) (2.25)

is spatially homogeneous inside the star.

System equations for mass distribution According to the spherical symmetry of the
background system, the equilibrium stellar mass distribution can be described by the
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one-dimensional Newtonian system equations

d,mo = 4mr?po(r) (2.26a)

dypo = - 2T o(r) (2.26b)
T

d,®p = ﬂ:dTp—O(r), (2.26¢)
po(r)

where mg(7) denotes the mass enclosed inside a sphere with radius r and ®o(r) is its
gravitational potential. The sign convention is defined in equation ([2.17]).

In this work, we apply Newtonian system equations despite the fact that a rela-
tivistic treatment seems advisable when dealing with objects as compact as neutron stars.
The reason is that this work is focussed on magnetic field and stability effects that do not
involve extensive mass movements. Compared to studies on compact objects in binaries
for example, the isolated magnetised neutron star description is only weakly influenced
by relativistic corrections. A fully relativistic treatment would thus be an unnecessary
complication for the first test applications presented here.

An alternative is the consideration of relativistic corrections in the system equations.
The Newtonian system equations can easily be replaced by the relativistic Tolman-
Oppenheimer-Volkoff (TOV) equations

dymo = 4wr? po(r) (2.27a)
__po(r) mo(r) +p0(7") +47TP0(7")7'3)( _27710(7"))1

dypo = 2 (1 po(T)) (1 —mo(r) 1 — (2.27b)
~dypo(r) po(r) - .

d, P =+ 20(r) (1 + po(r)) . (2.27¢)

However, in order to apply equations consistently, an equivalent relativistic or at
least post-Newtonian description for the magnetic field must be derived. The effort asso-
ciated with this is too big for the first test setup of the semi-analytic method.

Therefore, the fully consistent relativistic treatment of the problem represents a task
for future projects.

Hydrostatic equilibrium In equilibrium, the Euler equation (2.16)) reads

jox Bo

— Vpo + po VB, + 20220 . 0, (2.28)

as dyv = 0.

The special case of an unmagnetised stationary fluid with Bg = 0 we assume in equilib-
rium is described by the hydrostatic equilibrium equation

Vpo = £po V®o. (2.29)
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symmetry axis

Figure 2.6.: Geometry of an arbitrarily magnetised neutron star, with toroidal and poloidal
field components. The symmetry axis of the toroidal field forms the stellar
symmetry axis. The interior magnetic field is schematically illustrated as the
superposition of both field components. The actual interior magnetic field
structure is still widely unknown. The exterior field is purely poloidal.

Perturbed state

Magnetic field In the perturbed state, the global magnetic field structure is superim-
posed to the background system, violating the spherical symmetry of the star. In the
absence of rotation, the magnetised system is axisymmetric to the symmetry axis of the
magnetic field. Therefore, the total magnetic field symmetry axis will be called stellar
symmetry axis henceforth. Cf. figure [2.6
Note that any arbitrary magnetic field structure can be decomposed into toroidal and
poloidal parts:
B = By + Bpols (2.30)

cf. |Grad & Rubin| (1958]).

In the vacuum exterior model system applied here, the toroidal magnetic field compo-
nent cannot be sustained outside the star, as illustrated in figure The poloidal field
component pervades the stellar interior and exterior.

It is worth mentioning that the magnetic field has been neglected in the equilibrium
state constructed above, but the magnetic field vector B will be treated as an ordinary and
generally perturbed system quantity in the subsequent sections. That means, it consists
of an equilibrium part and a part caused by the perturbation. This circumstance can
be understood as follows. The unmagnetised background state has above been assumed
in order to construct a mass, pressure and density profile. Now, the magnetic field is
superimposed to this background state, creating an approximated magnetised equilibrium
state which will be perturbed in the following consideration.

Depending on the system under investigation, we will choose different parametrisations
for the magnetic field structure in this work. In particular, we will describe neutron stars
with purely toroidal magnetic fields, purely poloidal magnetic fields and a special case

31



2. Theoretical foundations and system setup

(a) Toroidal field induced by poloidal currents. (b) Poloidal field induced by toroidal currents.

Figure 2.7.: Magnetic field components and their schematically generating current densi-
ties. In the case of a vacuum exterior, a toroidal magnetic field cannot be
sustained outside the neutron star as it would require electrical currents ex-
tending to the stellar exterior. In contrast, a poloidal magnetic field produced
by a toroidal current density inside the star extends beyond the stellar surface
to infinity.

of mixed magnetic fields, where a weak poloidal part is superimposed to the toroidal
field component. These choices are reasonable assumptions to gradually approach more
complex systems and they allow for a direct comparison with works by |(Tayler| (1973);
Markey & Tayler| (1973) and |Akgtn et al.| (2013)).

The purely toroidal magnetic field will be parametrised by

By =0
By = @ po Bior (2.31)
B, =0,

depicted in cylindrical coordinates and in accordance with Tayler| (1973]).

The radial form of B, ensures that the magnetic field is physically reasonable, as can
be seen in figure 2.8t The toroidal field B, ~ pg drops to zero at the stellar surface,
guaranteeing that the vacuum exterior is field free. As mentioned above, this is demanded
because electromagnetic currents cannot exist in the vacuum exterior to maintain the
toroidal field component.

The magnetic field strength B, ~ @ further vanishes at the symmetry axis in order to
stay consistent with the assumption of axisymmetry at @ = 0.

The field strength can be arbitrarily adjusted by the constant amplitude parameter By .

For the purely poloidal magnetic field, we draw on the fact that an axisymmetric mag-
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@
R

symmetry axis

(b) Field strength |Bio,|, where Bina* denotes

tor

(a) Geometry. the maximum field strength of |Byo| = B,,.

Figure 2.8.: Purely toroidal magnetic field structure according to assumption (2.31)).

netic field can be expressed by a stream function ¢ = ¢(w, z), as demonstrated in
& Rubin| (1958); Lander & Jones| (2009) and illustrated in the appendix section The
poloidal field assumed in this work is

1

Bo=-=0. By =0
w

By= 0 B, =0 (2.32)
1 T

Bz: ; ww Bx:de;,

represented in cylindrical coordinates (left hand side) and toroidal coordinates (right hand
side). The specific choice for toroidal coordinates has been applied to transform the
expressions from cylindrical to toroidal coordinates. In toroidal coordinates, the purely
poloidal magnetic field structure is more obvious since B, is the only non-vanishing com-
ponent of Bp.

The amplitude of the field can be adjusted by the constant factor Bpe, measured in
ecm~2. Note that in toroidal coordinates, the magnetic field dependency on the stream
function is comprised by the proportionality B, ~ 7(1)/w, according to equation .

The structure of the poloidal field is illustrated in figure The symmetry axis of
the poloidal field, called neutral line, lies in the equatorial plane. It is a closed circle of
radius Rty around the stellar symmetry axis. The poloidal field chosen in equation
vanishes at the neutral line.

Beyond that, choice is connected to the toroidal coordinates chosen in equation
(2.8]) in the following way. The torus spanned by the toroidal coordinates (1, ¢, x) confines
an area around the symmetry axis in the equatorial plane. The magnetic flux flowing
through this area along z is given by 27, as illustrated in figure [2.9b
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neutral line

(a) Geometry. (b) Magnetic Flux.

Figure 2.9.: Purely poloidal magnetic field structure according to assumption (2.32)). The
magnetic flux along z through the area enclosed by symmetry axis and torus
surface is 2.

In accordance with Akgiin et al. (2013), the magnetic field structure chosen for the
mixed field case investigated in this work is

Btor = BU Tltor RB(T’,’&) Ve (233)
By,01 = By npol R? V(7 9) x Vyp,

depicted in spherical coordinates. The B-defining functions are

R A-1)? forax1
a(r,9) = f(x) sin® By =] (@-D7 foraz (2.34)
0 for é <1,
with z = r/R and
21 , 1
f(x)=%w2—zx4+§5x6 forx <1 (2.35)

inside the star. The gradient index r indicates that derivatives are taken with respect to
r as opposed to z.

Applying choices and , the magnetic field fulfils the boundary condition at
the stellar surface that enables the exterior field to have the observed dipole structure.
Beyond that, the magnetic field and its generating current density are assured to be finite
by boundary conditions at the stellar centre.

The amplitudes of toroidal and poloidal field components can be adjusted by appropriate

choices for 7¢or and 101 They measure the maximum field strengths Big?™ and Bgfl‘x that
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are achieved by the separate field components inside the star:

B = By, (ac ~0.782,0 = g) ~ 0.0254 1¢0r Bo (2.36a)
max 35
pol = Bpol|7=0,0=0]= - ool By. (2.36D)

The overall amplitude of the field is given by the constant prefactor By, measured in cm™2.

In this work, for the sake of comparison with |[Akgiin et al. (2013]), we will investigate
mixed magnetic fields that posses a strong toroidal field, superimposed by a weak poloidal
component.

For an illustration of the field geometry chosen by assumption , see |Akglin et al.
(2013)). The toroidal field is localised to the region inside the outermost poloidal field line
that closes inside the star. Outside this region, the toroidal field vanishes.

Stratification In order to allow for a treatment of non-barotropic stars, the perturbed
star is assumed to be generally stratified. Stratification means that neutron and proton
densities can be distributed differently inside the star, the proton fraction zP = zP(r)
varies with depth. In retrospection to the current knowledge about neutron star compo-
sition in section this picture is by far more realistic than the barotropic description
(Passamonti et al.l 2009; [Passamonti, 2009; Lander et al., 2011]).

Mathematically, there are two ways to realise the treatment of stratified stars. For one
thing, the star can be considered as a multifluid where neutrons and protons are described
separately with individual equations of state and density distributions.

Alternatively, the established description of the one-component fluid is maintained,
while the former barotropic equation of state is replaced by a non-barotropic one depending
on an additional parameter.

In this work, the second possibility will be utilised, as it allows for a continued applica-
tion of the standard frame for stability analysis that has been developed for magnetised
neutron stars over the past decades. However, we will assume stratification in the per-
turbed system only, for the purpose of keeping the model as simple as possible in this first
investigation step. In addition to the equilibrium polytropic index I'g, a new polytropic
index I'y for the perturbations will be introduced.

The concrete realisation is as follows.

In this work, the polytropic equation of state will be applied to describe the
equilibrium model neutron star, while the generally perturbed system is stratified. That
means, proton and neutron densities take on the most favourable value at every position
7 inside the star, according to the S-equilibrium:

n—pt+e +10 (2.37a)

prte —n+ .. (2.37b)

Here, n, p* and e~ denote neutrons, protons and electrons, v, and 7, are electron neutrino
and antineutrino.

The weak force determining the conversion between neutrons and protons according to
8- and inverse 3~ -decay reactions ([2.37)), sets the proton fraction zP(r) at every position.
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2. Theoretical foundations and system setup

The individual proton and neutron densities p? and p™ can be distributed differently with
r. Thus, 2P is not spatially homogeneous in general.
The perturbed system obeys

p=p(p,aP). (2.38)

With mass density p(r) and proton fraction zP(r) being independent quantities now, the
neutron star pressure depends on both quantities. Relation represents a special case
of non-barotropic equations of state in general, where the pressure depends on density and
entropy.

The polytropic index I'; describing the perturbations is defined in analogy to the back-

ground polytropic index Ty in (2.23):

Olnp
I'i= . 2.

The polytropic index of the perturbations represents the change in In p with In p for a fixed
proton fraction, as indicated by the index xP.

Note that in general, both polytropic indices are different. This can be seen by applying
the chain rule to the total differential of the logarithm of p = p(p, 2P (p)):

r _dlnpg _(Olnpo) N Jlnpg dln:vg_r . Olnpy) dlnzf
0~ dlnpy \9lnpy/ dlnxf p dlnpy Olnaf p d1n pg

Ty, (2.40)

The special case of I'; = Iy represents an actual barotropic star, where p = p(p) describes
the equilibrium state as well as the perturbed state. Any deviation from barotropicity

AT = Fl - Fo 2 0 (241)
indicates whether the star is stably or unstably stratified.

The meaning of stable and unstable stratification will be explained here by the example
of a g-mode type displacement. G-modes are stellar fluid eigenmodes where gravity acts
as a restoring force. They will be discussed in section [2.3.1]

We consider a fluid element in a stratified star that is displaced outwards radially.
According to the decrease in the ambient pressure, its volume increases. The pressure pg.
inside the fluid element adjusts quickly to the pressure level of the surroundings, pse = Psur-
The proton fraction mfe, however, stays unchanged, because the displacement happens on
a time-scale short compared to nuclear reaction time-scales. There is not enough time to
adjust the proton and neutron densities via 5-decay reactions .

According to the equation of state p = p(p,z”), we can deduce information about the
density inside the fluid element. The displaced fluid element shows the same pressure
and a different entropy, i.e. proton fraction, than its surroundings. For af, 2 zf,, the
density inside the fluid element obeys pg 2 psur- This can easily be understood in the
analogy where temperature plays the role of the entropy. A higher ambient temperature
can achieve the same pressure level that is present inside the fluid element with a lower
density than pg due to the faster particle movement at higher temperatures. Analogously,
a higher proton fraction zP implies more charged particles, who achieve the given pressure
level at a lower density than a neutron-richer fluid.
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2.3. Stability analysis

Therefore, the density of the displaced fluid element is higher /lower than the equilibrium
fluid density would be at this position if 2 increases/decreases with . The gravitational
force directed at the stellar centre acts stronger/less strong on the fluid element compared
to its surroundings. In consequence, the fluid element moves inwards towards its initial
position/further outwards. The perturbation corresponds to a stable oscillation/unstable
exponential growth.

The same consideration can be done for an inward radial displacement. Again, the
g-mode type displacement is stable/unstable if the entropy, respectively proton fraction,
increases/decreases with r. The star is “stably”/“unstably” stratified.

The implication of stable and unstable stratification on the model system via AI' 2 0
will become clear in sections 4.1l and (.3

2.3. Stability analysis

The goal of this work is to develop a semi-analytic method for the perturbative stability
analysis of magnetised neutron stars. Therefore, section [2.3.1] explains the general concept
of stability analysis and illustrates the meaning of stability, which mainly motivates this
work. The mathematical framework applied for the specific stability analysis of magnetised
neutron stars is outlined in section

2.3.1. Concept of stability analysis

According to perturbation theory, the stability of an equilibrium state can be tested by
imposing a small perturbation on a system situated in this equilibrium state and investi-
gating its reaction towards the disturbance. The initial equilibrium state is stable if the
system relaxes back to the initial state after the perturbation. It is unstable if the system
further diverges from the equilibrium state (Bernstein et al., [1958; [Mestel, 1999).

The perturbation is represented by an infinitesimal spatial displacement of generally all
system points to new positions:

r(t) =ro+&(r.1), (2.42)

where r denotes the position vector, in general in the perturbed state, while rg is the
position vector in equilibrium. The time variable is denoted by ¢. The displacement field
& characterises the perturbation. It will be written in an exponential ansatz

£"(r,t) = &(r) et (2.43)

with a time-independent amplitude &£(r), the complex quantity w characterising its time-
evolution and the temporal mode index n.

Based on this, the stability test can be mathematically performed in two different ways.
The normal mode analysis is based on the time-dependent study of the perturbation mode
&(r,t). In contrast, the energy variational principle makes use of the fact that the system’s
perturbative behaviour also affects its energy. The variational principle studies the change
in the total energy during the displacement in a stationary picture.
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2. Theoretical foundations and system setup

Here, both approaches will be outlined for the purpose of a better understanding and
in view of future applications of the semi-analytic method. This work, however, is pre-
dominantly based on the energy variational principle which is better suited for the aims
pursued here.

The energy principle is based on purely stationary considerations and can be adopted in
a straightforward way. The application of the normal mode analysis as a time-dependent
procedure is more complex. As a consequence, normal mode analysis provides more infor-
mation, i.e. eigenmodes and eigenfrequencies, than the energy variation principle. Until
today, magnetised neutron stars cannot be modelled to a sufficiently realistic extent ex-
plaining their stability. A simple method providing predictions about stability only is thus
most suitable at the present time. The time evolution of the system might be studied in
a later step using normal mode analysis once a stable equilibrium state has been found.

Normal mode analysis

The method of normal mode analysis tests whether the perturbation imposed on a system
corresponds to one of the system’s eigenmodes.

The displacement field £"(r,t) corresponds to a stable oscillation around the equilibrium
state with the real frequency wy, if w2 > 0. In contrast, the amplitude of £"(r,t) evolves
exponentially, i.e. in an unstable way, if w,, describes an imaginary damping coefficient:
w2 <0.

An equilibrium state is stable if all possible perturbations evolve stably. As soon as there
exists at least one unstable perturbation, the equilibrium is unstable. Mathematically
formulated this reads

2 _
{wg>0 V n }@{ stability } (2.44)

wy <0 for at least one n instability.

iwnt

Stability criterion in normal mode analysis towards £"(7,t) = £(r) e

For w? = 0, the system is metastable. It might remain in the equilibrium state for an
extended period of time, possibly due to an inhibited transition, but it will finally decay
into an energetically more favourable state.

For unstable modes, —w,, corresponds to the growth rate of the mode n. The faster an
instability grows, the less likely it is to be damped out.

Modes that grow slowly on the time-scale of typical system processes can transfer energy
to other modes and achieve a saturation state as for example the rotationally driven CFS-
instability (Chandrasekhar, Friedman, Schutz) in neutron stars.

If the growth rate of an unstable mode is short compared to the system time-scale, the
instability cannot be stopped by any other process and will become active. The occurrence
of such a so-called dynamical instability therefore leads to the instability of the entire
star. Examples for this type of instability are the Tayler-instabilities of magnetised fluids
occurring in neutron star models. Therefore, all unstable modes relevant for this work can
be looked at as dynamical ones.

The eigenmodes of the spherically symmetric background neutron star are divided into
three categories distinguished by their restoring forces [Finn| (1987); |Aerts et al.| (2010).
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2.3. Stability analysis

All mode types can posses an imaginary frequency part describing damping mechanisms.
Apart from that, the existence of a potential real frequency part determines according to
condition (2.44) whether the mode can be stable or not.

Pressure modes / p-modes The fluid pressure gradient acts as a restoring force towards
pressure modes. They generate acoustical waves because the fluid pressure gradient implies
a spatially varying sound speed. P-modes are always stable for their frequencies posses a
non-vanishing real part.

Gravity modes / g-modes Gravity acts as a restoring force towards gravity modes. They
generate gravity waves, because gravity implies an entropy gradient or, more specifically,
stratification. G-modes can be stable, marginally stable or unstable for their frequencies
can be arbitrary combinations of real and imaginary parts.

Fundamental mode / f-mode There is only one fundamental mode per star. It generates
surface gravity waves. The fundamental mode does not involve compressive displacements,
i.e. there is no change in sign in & throughout the star. The f-mode is always stable in
non-rotating stars for its frequency possesses a non-vanishing real part. In rotating stars,
the f-mode can become CFS-unstable.

Energy variational principle

A physical system aims for minimising its total energy, which enables the possibility to
formulate the stability criterion as an energy statement.

A displacement mode is stable if it increases the total energy W of the system for the
transition from its equilibrium state to the perturbed state. The displacement mode is
unstable if it decreases the system energy. In the first case, the displaced system will try to
return to the energetically more favourable initial state. In the second case it will develop
into a new even more favourable state, see figure [2.10

Mathematically spoken, the first variation of the system energy §W () = 0 vanishes. The
total energy is extremal as the system is assumed to be in equilibrium. The second varia-
tion W) = §W provides the stability information. It indicates whether the extremum is
a minimum, corresponding to a stable perturbation, or a maximum, corresponding to an
unstable one.

The entire equilibrium state is stable if the total energy increases for all possible dis-
placement fields and it is unstable as soon as the energy decreases for at least one pertur-

bation:
W>0 V n stability
{ 0W <0 for at least one n } = { instability. } (2.45)

Stability criterion according to the energy variational principle for £"(r,t) = £(r) ¢'“"*

It can be shown that both stability criteria and of normal mode analysis and
energy variational principle are equivalent (Shapiro & Teukolskyl, [1983)).

The metastable state with 6W = 0 corresponds to the situation where the perturbation
does not impact the system energy. Usually, this scenario is highly improbable due to the
high complexity of real systems.
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(a) Stable equilibrium. (b) Metastable equilibrium. (¢) Unstable equilibrium.

Figure 2.10.: Schematic stability behaviour of a system in equilibrium. The equilibrium
state is stable if a deflection from equilibrium increases the system energy (a),
unstable if it decreases the system energy (c) and metastable if the deflection
does not influence the total energy (b).

Meaning of stability

From an observational point of view, the stability behaviour of a system is of particular
interest.

In real systems, small perturbations of an equilibrium state occur constantly, caused
by external influences, variations, uncertainty and quantum fluctuations. Even isolated
systems are subject to some of these causes.

This discovery has a decisive consequence on observations.

A system in an unstable state cannot persist long enough to be detectable. Therefore,
it is expected that all neutron stars we observe must be in a stable equilibrium state.

Observationally inferred requirement for theoretical neutron star models

Although a long-term “metastable” state with inhibited transitions might explain the ob-
served durability of neutron stars as well, metastability in the proper sense is not expected
in the context of neutron stars, due to the high complexity of the system and the dynamical
type of the potential instabilities.

2.3.2. Energy variation for magnetised neutron stars

For the purpose of applying the energy variational principle to the systems discussed in
this work, the energy variation of magnetised neutron stars needs to be calculated. In this
section, we will define the required notations and present the derivation of an expression
for dW. Subsequently, the expression will be made explicit by applying the Euler equation
of motion for the system under consideration.

Note that in this chapter, the foundations on neutron star stability analysis will be
summed up. That means, the energy variation will be derived in the common way of
previous works, i.e. for a barotropic star in Cowling approximation. Therefore, the poly-
tropic equation of state will be used here and it is assumed that the gravitational
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2.3. Stability analysis

potential does not change due to the perturbation. Both simplifications will be removed
in chapters [ and [5] where the innovations of this work are presented.

Eulerian and Lagrangian perturbations

Definitions The infinitesimal displacement field imposed on the position vector in equa-
tion causes all system quantities @) to change as well (Bernstein et al., [1958; [Shapiro
& Teukolskyl, [1983; Mestel, [1999). The variable ) can represent an arbitrary system quan-
tity, for example Q € {p,p,®, B, j,...}.

The perturbed quantities Q¥ or Q" can be expressed in an Eulerian or Lagrangian
framework via

Q" (ro,t) = Qo(ro)|, +6Q(ro, 1) (2.46a)
Q"(r,t) = QO(TO)L +AQ(r,t) = QO(TO)L +0Q(ro,t) +£-VQ, (2.46b)

where Qo(r¢)|, denotes the equilibrium quantity Qo at the unperturbed position rg, eval-
uated at time ¢t. The notation indicates that ()g does not depend on t.
Also note that

r(t) = ol + £(r 1) (2.47)
from equation ([2.42]).

The Eulerian perturbation Q) represents the change in @) at the fixed position rq. The
Lagrangian perturbation AQ) represents the change in ) inside the fluid element that was
located at rgy in the unperturbed state and that was displaced to the position = by the
perturbation. Compare figure Note that Q) and AQ are caused by an instantaneous
deflection &, as opposed to an actual temporally finite shift. Both layers in the illustration
thus correspond to the time .

The deflection of the fluid element itself causes a contribution £ - V@) which connects
both perturbations via

AQ=35Q+£-VQ. (2.48a)

Note that relations (2.46]) and ([2.48a)) hold for scalar quantities Q. In the case of a vector
quantity Q = (Q1,Q2,Q3), these relations are equally valid for the individual components,

ne Q1 (£101 + £202 + £303) Q1
AQ=0Q+(&-V)Q=| Q2 |+]| (£&101+&02+&03)Q2 |. (2.48b)
0Q3 (101 + &202 + £303) Q3

Eulerian and Lagrangian perturbations are defined analogously to partial and material
derivatives 0; and D; which are taken at a fixed position, respectively fixed fluid element,
and which are connected via relation .

However, note that 6@ and AQ are differentials rather than derivatives and that they re-
fer to the infinitesimal displacement £ rather than an arbitrary fluid movement v. Further
remarks are made in the appendix
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2. Theoretical foundations and system setup

Figure 2.11.: Hlustration of Euler and Lagrange perturbations. The Euler perturbation
6@ describes the change from the blue coloured fluid element at rg, t to the
red coloured fluid element at ry, t. The Lagrange perturbation describes the
change from the blue coloured fluid element at rg, ¢ to the blue coloured fluid
element at r, t.

Below, the system quantities will be expanded in terms of different powers of &:

Q=Qo+6QM +0(£%) (2.49)
W =W+ WM 15w 3 4+ 0(g%), (2.50)

where O(£*) denotes terms of the order £ and higher.
An analogous expansion can be made in the Lagrangian framework:

Q=Qo+AQW +0(&?) (2.51)
W=Wo+ AW £ AW 4 0(&%). (2.52)

Since the perturbative approach used in this work will be based on a second order
consideration in the energy variation 6W, it involves first order approximations in §Q)
VQ + {W, E}. Thus, the notations

5Q = 6QM V Q={W,E} (2.53)
AQ = AQW V Q=+ {W,E} and (2.54)
SW = 6w (2.55)

will be convenient.
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2.3. Stability analysis

In the linearised framework, relation ([2.48) becomes
AQ=0Q +£-VQo+O(&?). (2.56)

Relations for position and velocity From figure the special cases of the positional
Euler and Lagrange differentials can be identified as

or=0 (2.57)

(£101 + &202 +£303) 11
Ar=0r+(E-V)r=| (§&01+&0D2+E&303) 12 | =&. (2.58)
(£101 + &202 +£303) 13

Note that 9;7; = d;j, with the Kronecker delta d;;.

Furthermore, the time derivatives of the position vector are

Oyrl, =0 (2.59)
(1)181 + 1)282 + 0383) T
Derl, = 0|, + (vl V)7 =| (v101 + 0202 +v303) 12 | = vl,., (2.60)
~—~ (1)161 + 1)282 + 1)383) T3
0

Equation (2.59)) states that the change in 7 at a fixed position always vanishes, whereas
the change in r within a fluid element represents the fluid velocity, as shown by equation
(2.60). Thus, the fluid velocity v is given by the material derivative.

The Euler and Lagrange differentials of the fluid velocity are

dv =v(ro,t) — vo(ro)|, = Dirl,, — Dirol,., = Di (1o +&)l,., — Dirol,,, = Diél,,, = 0:€
(2.61)

Av =v(r ,t) - vo(ro)l; = Dir|, — Dirol,, = Di(ro+§)|. — Dirol,,, = Di€. (2.62)

Equations (2.61)) and (2.62)) follow from the definition of the Euler respectively Lagrange
perturbations (2.46)), according to which

v(ro,t) = vo(ro)|, + dv(7, 1) (2.63a)
v(r,t) = vo(ro)|, + Av(r,t), (2.63D)

and from the relation for the fluid velocity . The last step in relation is based
on the fact that the material derivative of any quantity at a fixed position involves no
movement of the respective fluid element, i. e. vy = 0. Therefore, material and partial
derivative are identical, DtQ]TO = 0;Q. Based on that, Dyrg|, = Dtr0|7-0 holds as well,
applied in the last step of relation .

The interpretation of expressions (2.61) and (2.62)) is as follows. The Euler variation
ov describes the change of v at a fixed position rg. According to equation , it is
equivalent to the partial derivative of the displacement field. The Lagrange variation Av
describes the change of v within a fluid element that is displaced from rg to r = r¢ + &.
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2. Theoretical foundations and system setup

According to equation (2.62)), it is equivalent to the material derivative of the displacement
field.

Furthermore, we will assume a stationary equilibrium fluid below, with
Vo = Dt'ro =0. (264)

This assumption allows for non-stationary equilibria as well as long as the equilibrium
flow is generally spoken slow compared to the perturbative flow:

Sv = D€

Av-Dit. (2.65)

vg = Dyrg < {

Note that according to assumption (2.64) or (2.65)), the linearisation in & yields the

relations

Av=v+ (& V)v=0v+ (£ -V)vg+ 0(52) = v+ O(£?) (2.66)
Db =0+ (v-V)E=0&+ (vy-V)E+O(€%) =&+ O(€2) (2.67)
v=0v=Av=0£=D&. (2.68)

Implicit form for the energy variation W

In this paragraph, we outline the derivation of an expression for the energy variation
during the perturbation of a magnetised fluid. The derivation is shown in [Bernstein et al.
(1958); [Mestel (1999).

The first step is to set up the work W done by the displacement €. This can be
achieved by multiplying the force densities appearing in the Euler equation with &
and integrating over the system volume. The Euler equation includes all relevant force
density contributions. After the multiplication with a length and the volume integration,
it provides an energy:

jxB

pDw=-Vp+pVd+ (2.69)

C
f[ pg-DtvdV:ff[{—g-Vpipg-vqug-ijB} av., (2.70)

where dV denotes the integration over the stellar volume. In the simplified model neglect-
ing rotation and magnetic deformations, the stellar volume is represented by a sphere.
The left hand side LHS can be expanded with respect to &€ using Lagrange expansions

(2.51)) and a negligible equilibrium flow with (2.68]), yielding
LHS = [[] (p0+2p+0(€2)€-Di(D8) aV = [[[ pog-Digav+0(€).  (27)

Applying relation ([2.68)) and the exponential ansatz ([2.43)), & = £€(r) e™“?, for the displace-

ment field, we receive

£ -DI€=¢-07€ = —wE(r) - £(r) e®™" = [0,€]”. (2.72)
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2.3. Stability analysis

This time derivative can be identified as the fluid velocity by relation (2.68). Then,

Lus = [[[ mloP av + 0 = [[[ polol av +o(€?). (2.73)

Inferred from that, equation (2.70) provides the kinetic energy Fyi, on the left hand side
if it is multiplied by 1/2:

%ff/ﬂo\&f’? dV +0(&?) = % f[-[ {—{-Vpipﬁ-v@+£'ijB} av. (2.74)

From the energy conservation law, Ey;, = —W, the negative work —W can be identified
on the right hand side. This work represents the potential energy W which is converted
during the perturbation. Thus, up to second order:

W+(’)(£3):%/Z[{&VpﬂFp&-VCI)—g-jXTB}dV. (2.75)

The potential energy can next be expanded with respect to £ as well, yielding

W0+5W(1)+5W(2)+O(§3)=%m{E-V(po+5p):F(p0+5p)§'V((I>O+5<I)) (2.76)
-5 Gy +64) < (Bo+ )]} av + O(€%).

Terms of different order in £ can now be identified as

Wo =0 (2.77a)
1 1o x B
5W(1)=§ff 5‘{VP03FP0V‘1>0—JOXTO} dv =0 (2.77b)
sw® =2 [ {e-vin=pe-voreope- vag-g 2208 . 2Bk v 277
C C

The equilibrium quantity Wy vanishes since W is the work done by the displacement field
&. There are no contributions to W not depending on &.

The first variation §W () vanishes since it includes the equilibrium Euler equation .
Physically spoken, the first energy variation indicates whether the system is in equilibrium.
The kinetic energy contribution given by equation is quadratic in &, i. e. Fyjno =0
and 5E1£113 = 0. Thus, up to first order the potential energy represents the total system
energy. Since we assume the initial state to be an equilibrium, s E) = §W 1) = 0 follows.

The second variation of the energy W = sw® given by equation provides
information about the system’s stability behaviour. It needs to be calculated for the
stability analysing purpose of this work. Expression is the form [Bernstein et al.
(1958) derived for the energy variation.

Note that we implicitly assumed a real function & for the foregoing derivation. In the

subsequent part of this work, the displacement field will be chosen as a generally complex
function. In this case, the energy variation will obtain an additional factor of 1/2 that
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is still missing in equation (2.77c). The detailed explanation of this circumstance will be
given in the following section.

Preserving the physical meaning of the energy variation

Before the energy variation will be expressed explicitly, we need to make a remark on the
generally complex nature of the displacement field &.

The energy variation given by equation depends on the displacement field £ as
well as the Euler perturbations. They can also be expressed in terms of &, 6Q = 6Q(&), as
will be seen below in relations (2.101)).

The displacement field will be assumed to be complex in this work in general. Particu-
larly the description of a spatially periodic displacement field involves imaginary parts.

The energy variation W, however, needs to be a real number in order to represent a
meaningful physical quantity with the dimension of an energy. This requirement is fulfilled
in this work by taking the real part of the integrand £ before integrating. In doing so, an
additional prefactor of 1/2 occurs in the expression for the energy variation.

Note that Tayler|(1973) and |[Markey & Tayler| (1973) we follow in the application sections
b.IJand[5-2] use a different approach to guarantee the physical meaningfulness of the energy
variation. In these works, the real part of £ is taken before it is inserted into the energy
variation integral in order to keep §W real.

Consequently, the energy variation formulas given by Tayler et al. are missing the factor
1/2 compared to their analogues presented in this work. The mathematical proof for that
is given in the appendix section where the connection between both procedures is
discussed in detail. That way, the equations in this work are directly comparable to|layler
(1973) and [Markey & Tayler| (1973]).

The approach we use shows several advantages for this work compared to the one utilised
by Tayler et al.

First, the derivation of the explicit form of §W required in the application chapter [f is
simplified.

Beyond that, constraints regarding the choice of the &-defining functions are removed
in the poloidal field application shown in section [5.2

Finally, our procedure allows for a consistent approach for all applications, the ones
based on the work by Tayler et al. as well as the one based on the work by |Akgiin et al.
(2013), shown in section

Explicit form for the energy variation )W

In order to practise stability analysis on magnetised neutron stars, the energy variation
set up in equation (2.77c]) needs to be expressed in an explicit form. For this purpose, the
Eulerian perturbations §Q of the system quantities will be calculated.

For convenience, the energy variation will be split into three parts hereafter, stemming
from magnetic field, fluid pressure gradient and gravity:
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OW = 6Wnagn + Wauid + 0Weray (2.78a)

=[] {Emagn + Eawa + Egrar} AV (2.78b)

with the energy variation densities

1 . JoxoB . djxB

5magn:_l—l%{5 J()T‘l'g %} (279&)
1

Efuid = n 9%{5* : V5p} (2.79b)
1

Sy =77 R {p0 (€7-760) +6p (6" vE0) }. (279

Implicit energy variation for an arbitrary equation of state, in full description

In this notation, we took into account that the energy variation depends on the generally
complex displacement field £. As explained in the previous section, the additional prefactor
of 1/2 occurs in equation with compared to expression when the real
part is taken over the integrand £. The explanation is given in the appendix section
Expressions can be simplified by removing the real part if the displacement field is
fully real. This special case is discussed in the appendix section

Further note that not all terms included in the above form of the energy variation need
to be considered in this work. |Bernstein et al. (1958]) showed that the energy variation
given by and can be split into terms that are expressible by surface integrals
0 Wit Over the stellar surface, terms that are expressible by volume integrals §Ws,. over
the exterior of the star, and actual volume integrals §Wgia, over the stellar volume.

Hereafter, we will only consider contributions of § W, as the other terms vanish for the
explicit choices we will make for the displacement field below. The mathematical proof is

given in the appendix

Calculation of the Eulerian perturbations For an explicit expression of W, the Eule-
rian perturbations dp, op, 0P, B and 67 need to be expressed in terms of equilibrium
quantities Qo and the displacement field & only. This can be achieved by perturbing all
relevant system equations presented in section In order to perturb the equations,
all appearing quantities are expressed by expansions in linear order of &.

The Euler perturbation dp of the mass density can be calculated by perturbing the
continuity equation of mass conservation ([2.18)):

0: (po+0p) ==V - (povo) = V- (podv) = V- (8pwo) + O(£?). (2.80)

Here, the equilibrium equation d;pp = =V - (pgvg) can be identified. The derivative with
respect to r is equivalent to the derivative with respect to rg in first order in &, since
Vr =V, + O(€), as discussed by Bernstein et al. (1958). Therefore, we will interchange
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the spatial derivatives with respect to r and 7r¢ in this section in a way that is most
favourable for the demonstrated derivations.

The term including v will be neglected according to assumption (2.65)) and dv = 9,
holds according to relation . Considering 0;pg = 0 for equilibrium quantities, the
Euler density perturbation follows:

016p ==V - (podv) + O (&%) = =V - (po &) + O(£?) (2.81)
5p=-V-(po&) +O(€?). (2.82)

The Lagrange density perturbation follows with connection ([2.48) and vector identity

(E1):
Ap=0p+€ Vpo+O(E) =~V (po€) +£ Vpo+ O (€2) =~po V- £+ O (€2).  (2.83)

The Euler and Lagrange perturbations dp and Ap of the fluid pressure follow from the
density perturbations (2.82)) and (2.83]) with the use of the equation of state (2.22]). The
assumption of a polytropic equilibrium pg = po(po) = & pgo yields

d 0 r
ﬂ = ﬂ - FO f{pgo_l = 0—p07 (284)
dpo  Opo Po
and thus P d r
Appoly = PO A - PO N LOPO A (2.85)
dpo dpo Po

The superscript poly indicates the polytropic star we consider here. Making use of the
density perturbation (2.83)), the Lagrange pressure perturbation reads

ApPoY = Ty poV - € + O(€?). (2.86)

From that, the Euler pressure perturbation follows with connection ([2.48)):

PPN = ApPOY — €. vpg + O (£%) = -TopoV - £ - £+ Vpo + O(€?). (2.87)

The Euler perturbation d® of the gravitational potential can be calculated by perturbing
the Poisson equation ([2.20)):

V2 (Do +0D) =F47G (po +6p) . (2.88)

Here, the equilibrium equation V2®y = ¥47 G py can be identified. The perturbation is
thus determined by a Poisson equation itself:

v26® = F47 G op. (2.89)
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2.3. Stability analysis

The Poisson equation for the Euler perturbation is formally solved by

5P = inf 9p(r) qy fofv’“ LoD ED] 417, oe2), (2.90)

|r /| |r — /|

where the Euler density perturbation (2.82)) has been inserted Equation (2 can be
further transformed by 3D-partial integration (A.9) with a = ;=7 and b = po(r' )E(r") to
yield

50 =z ff LoD &) dS’:l:G[f po(r') (') - v,~1|
oV

L

| "+ O(&?). (2.91)

=0

The surface integral in relation (2.91]) vanishes because the polytropic density distribution
given by system equations ([2.26]) vanishes at the stellar surface, po(R) = 0.
The Lagrange perturbation of the gravitational potential follows with connection ([2.48)),

respectively from equation (2.83)) in analogy to (2.90)):
s =36 [If o)) vo 2

!
_:Ffo por) Ve 8001 gy, o (¢2). (2.93)

[ =]

AV’ + € v+ O(&?) (2.92)

The Euler perturbation § B of the magnetic field can be calculated by perturbing the
basic equation of magnetokinematics ([2.15)):

O (B()+6B) =V x (’U(] XBo)+V>< (U()X(SB)+V>< (5’U><Bo)+0(£2). (294)

Here, the equilibrium equation 9; B = V x (v x Bp) can be identified. The term including
vg will be neglected according to assumption and dv = 0§ holds according to
relation . Considering 9 Bg = 0 for equilibrium quantities, the Euler perturbation
of the magnetic field reads

6B =V x (6v x By) + O (€%) = V x (0i& x By) + O(£?) (2.95)
6B =V x (& x By) +O(&?). (2.96)

The Lagrange perturbation of the magnetic field follows with connection ([2.48]) and
vector identity ({A.2)):

AB=0B+(£-V)Bo+0(£*)=€¢€(V-Bo)-Bo(V-&)+(By-V)E+0O(€%).  (2.97)

Note that for the derivation shown above, the magnetic field vector is treated in the
same way as the other system quantities. It is assumed to consist of an equilibrium part
Bg and an Eulerian, respectively Lagrangian, perturbation 6B or AB. As explained in
the magnetic field paragraph of section this approach is a simplified treatment which
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2. Theoretical foundations and system setup
does not conflict with the assumption of an unmagnetised equilibrium system we applied
for the hydrostatic system setup.

The Euler perturbation d7 of the current density can be calculated perturbing Ampére’s

law ([2.14d):

(jo+5j)=i(vao+Vx6B). (2.98)

Here, the equilibrium equation j, = ;= V x By can be identified. Applying the magnetic
field perturbation (2.96)), the Euler perturbation of the electric current density reads

5 = - V6B = =V x [V x (§x Bo)] + O(£?). (2.99)

The Lagrange perturbation of the electric current density follows with connection ([2.48)):

Aj =05+ (£-V)jo+O(£%). (2.100)

To sum up, the Euler perturbations (2.82), (2.87)), (2.91)), (2.96) and (2.99)) calculated
in this paragraph are

5p=-V-(po&) +O(&?) (2.101a)

5pP°Y = —Topo (V- &) — € Vpo + O(&?) (2.101b)

5P = +G ff po(r) E(r") - wﬁ AV’ + 0(€%) (2.101c)

6B =V x (& x By) + O(&?) (2.101d)

5j = ivX [V x (€ x Bo)] + O(£?). (2.101e)

Explicit Euler perturbations of all system quantities for polytropes, in full description

According to the fact that in general the displacement field is a complex function, the Euler
perturbations of all system quantities given by equations (2.101)) are complex functions as
well.

Magnetic contribution to the energy variation The energy variation density caused by

the magnetic field can be calculated substituting d B and §j from (2.101d)) and (2.101e))
into the implicit expression (2.79al):

gmagn = —19{{5* ' o~ °B +£* ' (V . 5B) . BO} (2.102)
4 c 47
=19Ci{—j0-6BX£ +L(V><5B)-(§*><BO)}. (2.103)
4 c 47

Here, cyclic commutation of the scalar triple product has been used according to identities

(A3) and (AA).

50



2.3. Stability analysis

Remember that §W has been defined in equation to be of second order in €.
The energy variation densities derived here thus are of first order in &.

Further, identity for divergences of cross products can be applied to the second
term, yielding

Enmagn - im{—jo OB x& 9B [« (& x Bo)]- —— v-[(¢" x Bo) » 531} (2.104)
c 47r 47
:lf)f{{_ .0‘(5B><£* +(5B*5B _iv[(g* XBQ)X(SB]}, (2105)
47 47

where the Euler perturbation of the magnetic field (2.101d|) has been identified. Writing
(2.105) in the integral form (2.78]), the last term being a divergence term can be expressed
by a surface integral applying Gauf}’ theorem (A.8)):

Wonsen = + [ 9 {‘53* B, 2B Xﬁ*}dv (2.106)
fff [(€" x Bo) x 6B] } 4V
4[ff {53* 0B j0.5BCX5 }dV (2.107)

! #9%{(5* x By) x 6B} ndS.

- 167
0

The surface integral contribution vanishes for the displacement field assumptions we will
use below, as shown in the appendix [B.4]
The magnetic contribution to the energy variation is thus given by

1_(6B*-6B . 6Bx¢*
gmagn—zm{ An —Jo- c }7

with §B = V x (& x By) according to equation (2.101d)).

Note that for fully real displacement fields, the complex scalar product in expression
([2-108) simplifies to 6B* - 6B = § B.

(2.108)

Fluid pressure contribution to the energy variation The energy variation density caused
by the fluid pressure gradient can be calculated substituting dpP°% from (2.101b) into the

implicit expression :
1 *
Evis = Zﬁ{E*V- [Copo (V-€)]+&*-v-[¢- Vo] } (2.109)
1

=% {e v [Topo (V&) +&- o] } (2.110)
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2. Theoretical foundations and system setup

Next, identity (A.1) for divergences of scalar-vector products can be applied with a =
Topo(V-€)+&-Vpo and b=¢", yielding

et = 1R om0 (7€) (7€) + € Vp (7€) - - [Tomé” (V&) +€-vme']}.
(2.111)
Writing in the integral form , the pure divergence term can be expressed by
a surface integral applying Gauf’ theorem :

Wiia = }lfff%{Fopo (V-£") (V-€)+£ Vpy(V-€) | dV (2.112)
_i//]m{v'[ropoﬁ* (V'E)+£*(E-V)po]}dv
- ;lf[/%{Fopo(V'E*) (V-€)+&-Vpo(V-€) }av (2.113)
1

—~ 1 R {Tom & (v-€)+€ (€-V)po}-ndS.

0

The surface integral contribution vanishes for the displacement field assumptions we will
use below, as shown in the appendix [B.4]
The fluid pressure gradient contribution to the energy variation is thus given by

Ehd = i%{Fopo (V&) (V-€)+€& Vpo(V-£) }. (2.114)

Gravitational contribution to the energy variation Typically, in previous works the
change in the gravitational potential caused by the perturbation has been neglected. The
so-called Cowling approximation d® = 0 has been applied in order to avoid the integration
for the calculation of the actual Euler perturbation given by .

The energy variation density caused by gravity can then be calculated substituting dp

from (2.101a)) into the implicit expression (2.79¢]):
W 1 *
Egan' =27 R{E- V2 (V- (p0€") | (2.115)

Note that according to relation (A.29)), it is irrelevant which of the two displacement field
vectors in this expression is complex conjugated.
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2.3. Stability analysis

According to equations (2.78)), (2.108), (2.114)), (2.115) and (2.101d)), the total volume
integral contribution to the energy variation of a polytropic star in Cowling approximation

is

o= ff[ {Eumagn + ER + Egan'} AV, (2.116)

with
1 0B*-6B ., 6Bx¢*
Emagn = ZSR{ i Jo Cg} (2.117a)
epi= 39 {Tom (7€) (v-©) +£ v (v-€) | (2.17b)
s =22 e Voo (V- (o€ | (2117¢)

and 6B =V x (€ x By) + O(&?).

Explicit energy variation for polytropes, in Cowling approximation

This expression is identical to the energy variation derived in Bernstein et al. (1958)) or
applied in [Tayler| (1973).

2.3.3. Displacement field for stability tests

As stated in the previous sections, we are going to investigate the stability of magnetised
neutron stars by subjecting the system to a perturbation &£(r,t) and observing its reaction
in the form of the energy variation given by equations and (2.117). The final
component needed for this task is an appropriate choice for the displacement field.
Remember the assumption we made for its time-dependence in equation ,

g (r,t) = &(r) e, (2.118)

with the temporal mode index n. In this section, we make choices for the generally complex
spatial part &(7).

Required displacement field properties

Most prominent unstable modes Stability criterion suggests that a system must
be subject to all possible kinds of perturbations in order to test its overall stability be-
haviour and especially to conduct a stability proof.

This task would be exceptionally time-consuming if not impossible. However, since
we are going to address a system comprising established instabilities known from previous
works, we will focus on these instabilities first and keep the framework as simple as possible.

It is convenient to first study the particular unstable modes that have the most crucial
impact on the system. These modes are the fastest growing ones. The chances for them
to be damped away are low and they probably become global modes instead. That means,
they show high amplitudes and eventually affect the entire star.
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2. Theoretical foundations and system setup

In the variational approach, the most violent modes are the ones producing the low-
est energy variation and thus causing the “strongest instability”. However, these modes
can generally differ from the fastest growing modes and might not be the dominating
instabilities.

Later on, less violent instabilities and overtones should be investigated as well. The
question is whether stability can be sustained against all locally unstable modes without
any of them gaining influence over the whole star. The excitation of unstable high-order
modes can for instance be suppressed by dissipative mechanisms, such as viscosity or
resistivity. Not every mathematical instability must therefore lead to an astrophysically
unstable system.

Currently, however, it is sufficient to study the most dominant modes first, since we
cannot even explain the stellar stability against these violent modes yet. In the end,
weaker and higher modes might be suppressed by the same effect that also stabilises the
star against the strongest modes.

In our specific case, we will examine whether the instabilities unexpectedly occurring
in the simple model neutron star are still present in the more realistic system, or whether
they dissolve or lose relevance when additional features are taken into account.

Predominantly, the instabilities we need to focus on are the dynamical Tayler instabili-
ties occurring in purely toroidally and purely poloidally magnetised neutron stars shown

in figure 2:12]

Displacement field geometry The most relevant types of instabilities occurring in a
system depend on the system’s particular magnetic field structure. For the purpose of
concentrating on these specific modes, the utilised perturbation will be adjusted to the
system geometry.

With respect to the magnetic field lines, the displacement field needs to be oriented in
such a way that the induced inflection is able to excite possibly unstable eigenmodes of
the magnetised fluid.

In magnetised neutron stars, the fastest growing pinch instabilities are localised close
to the symmetry axes of the toroidal and poloidal magnetic field components, cf. figures
and (Tayler, 1973} Markey & Tayler, 1973]).

In this work, neutron stars with purely toroidal, purely poloidal and mixed magnetic
fields will be investigated. In the mixed field case, the instability under consideration is
the toroidal field instability in the presence of a weak poloidal component. The geometry
required for its displacement field is thus analogous to the toroidal field case.

In all cases, the system is axisymmetric and &€ is the only quantity entering the en-
ergy variation that generally depends on the azimuthal angle ¢. It is therefore
convenient to use an exponential ansatz for the p-dependence of &:

&(r) ~ e, (2.119)

with the angular mode index m. This notation allows us to pull the ¢-dependency out of
the energy variation integrand &, and carry out the p-integration analytically. That way,
the number of integrations that are necessary for the calculation of 6W is reduced by one,
exploiting the axisymmetry of the system.
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2.3. Stability analysis

B B

fluid fluid
perturbation perturbation

(a) Axisymmetric “sausage” mode with m=0.  (b) Non-axisymmetric “kink” mode with m = 1.

Figure 2.12.: Tayler instabilities in a cylindrical fluid discharge.

Localised displacement fields Beyond their general geometry, instabilities might be lo-
calised in a closed region inside the star. Modes that dominate in a strongly constrained
region occur if their amplitude spatially decays rapidly.

Based on that, we will draw on the option of localising the displacement field to a
region A inside the star, where £ # 0, while £ = 0 elsewhere. That way, we only observe
a certain area inside the star and prevent possible instabilities located there from staying
undetected. Their negative contribution to the energy variation cannot be covered by
possibly strong positive contributions stemming from other parts of the star.

One further advantage of localised displacement fields is that with their use, surface
terms in the energy variation can be neglected for any particular choice of £(r). Condition
, determining whether the surface integral can be neglected, can always be fulfilled.

This is the case if € is localised to A and vanishes at its boundary 0A, as explained
in the appendix [B.4] If the energy variation integrand vanishes in a defined connected
region, the surface integral over the stellar volume V' can be replaced by a surface integral
over the localisation region A, where the integrand is finite. The surface integral over A
vanishes itself if the integrand vanishes at its boundary 0A:

ﬂgds - ﬂEdS - 0. (2.120)
ov 0A

The localisation of a displacement field is not highly realistic, since in a real star, per-
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2. Theoretical foundations and system setup

turbations spread due to coupling mechanisms. Still, this assumption is a valid approach
for a first attempt in a semi-analytic stability analysis. We assume that the couplings
in the fluid are weak and that other regions do not strongly contribute to the system’s
stability behaviour if the localisation area includes the strongest instabilities.

According to these considerations, the surface contributions to the energy variation
can be neglected for all applications shown in this work. The displacement fields will be
chosen appropriately. However, for future applications it is worth mentioning that the
semi-analytic method in general is capable of treating the surface and vacuum integral
contributions as well.

In this work, five different choices for the displacement field will be used. They are
shown in the subsequent paragraphs.

As explained in section [2.3.2] the displacement field will be a complex function according
to the assumptions we make, while the physical meaningfulness of W will be guaranteed
by taking the real part over the energy variation integrand.

Displacement field choice for investigations of purely toroidal magnetic fields

In a toroidally magnetised non-rotating neutron star, the instability region is expected to
be close to the stellar symmetry axis. The area around the symmetry axis is equivalent
to a pinched cylindrical fluid discharge creating the toroidal field, as can be seen in figure
In comparison to the fluid discharge, the star is additionally subject to gravity.
According to [Tayler| (1973)), a convenient perturbation to investigate this system is

bw = X (w,2) ™ (2.121a)
€p = % '™ (2.121D)
£ = Z(w,2) ™. (2.121c)

Displacement field choice £(r) for stars with purely toroidal magnetic fields

Here, X (w,z), Y (w, z) and Z(w, z) are generally complex &-defining functions. However,
as shown by Tayler, their real and imaginary parts contribute structurally equivalent
terms to the energy variation. Therefore, X, Y and Z can be assumed to be real without
restriction. A proof of that will be given in the appendix section

The displacement field is expressed in cylindrical coordinates, according to the axisym-
metry of the system. The structure of the field components is illustrated in figure

The axisymmetric m = 0 mode, which is unstable in the fluid discharge, is likely to be
suppressed in the star by gravity, cf. figure

The m =1 mode, in contrast, mainly involves motion along surfaces of constant gravity.
This mode is expected to be unstable in the fluid discharge as well as in the presence
of gravity. Causing the lowest energy variation under the non-axisymmetric modes, the
m =1 mode is the strongest instability in the toroidally magnetised neutron star.

According to Tayler, the specific choice we use for the £-defining functions is given by
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~ - B pol

1. G-

b Bior

L/
(a) Toroidal magnetic field. (b) Poloidal magnetic field.

Figure 2.13.: Analogy between the cylindrical fluid discharge and magnetised neutron
stars. While the toroidal field system is described by the fluid discharge with
the geometry of a straight cylinder (a), the poloidal field can be represented
by a toroidally closed cylinder, i.e. a torus (b).

S (&)

Figure 2.14.: Tllustration of the displacement field components & = {{x,&,,§.} for the
toroidal field choice (2.121), & = {fd,,&p@x} for the poloidal field choice
(2.125) and & = {&, &y, &, )} for the mixed field choice (2.130]). Imaginary and

real parts of € oscillate with the azimuthal angle (.
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X(w,z) =Xow sin(ka (w—€4)) cos(laz) X(w,z)=0
in A, else,
Z(w,z) =Zyw cos(ka(w—€4)) sin(la 2) Z(w,z)=0
(2.122)
and
_ @ po
Y (w,2) = Yiin S0x(wX) + w0, Z + T (ng +gzZ)
0
B Ow (wB
bt @B2) x v 0.8,2
2T0 po w
with
1 us
kaXo+laZy=0 lLa| > |ka| > — €4 > —. (2.123)
h ka
Explicit choice of the £-defining functions for stars with purely toroidal magnetic fields

Here, Xg, Zg # 0 are numerical constants representing constant amplitudes. Further, €4
denotes a distance from the symmetry axis in w-direction, determining the position of
the localisation area, while the numerical constants k4 and [ 4 determine the extent of the
localisation area. Their absolute values are constrained by the typical scale height h of
the physical system quantities.

The details concerning this choice will be motivated in the application chapter
Altogether, the localisation region is defined as

Az{weR

eA—l<w<eA+l,zeR‘—1<z<1}. (2.124)
ka ka la la

The intersection of the localisation area with the (w,z)-plane is a rectangle close to the
symmetry axis, see figure [2.15

Note that X, Y and Z vanish everywhere outside A, fulfilling the localisation condition
for €.

The §,-defining function Y (w0, z) has been chosen as Ypin, the value which minimises
the energy variation density £ with respect to Y. This procedure will be explained in
section [5.1] illustrating the applications of the semi-analytic method on the toroidally
magnetised star.

Displacement field choice for investigations of purely poloidal magnetic fields

In the purely poloidally magnetised star, the instability region is close to the magnetic
field symmetry axis which is the neutral line. The system is equivalent to the previous
one, under the conception that the cylindrical discharge is closed here. It forms a torus
that includes the neutral line, cf. figure The displacement field has an analogous
structure to the toroidal field case, as explained in the appendix section However,
the impact of gravity on the modes is different now as the geometry of £, B and g has
changed.

58



2.3. Stability analysis

Figure 2.15.: Displacement field localisation area A for the purely toroidally magnetised
neutron star, cf. relation . The two-dimensional integration area for
the Simpson integration will be chosen as one half of the stellar cross section.
The sketch is not true to scale.

According to Markey & Tayler| (1973), we will use the following displacement field,
expressed in toroidal coordinates:

&y = % e (2.125a)
X

€p = W el™? (2.125D)

&x =By Z(4,x) ™. (2.125¢)

Displacement field choice &(r) for stars with purely poloidal magnetic fields

The &-defining functions X (v, x), Y (¢, x) and Z(v, x) are complex in general, but they
can be assumed to be real without restriction based on the same argument as in the
toroidal field case.

Due to the definition of the toroidal coordinate system in , the magnetic field enters
€ in the form of B,.

The localisation of the displacement field inside the star is different from the toroidal
field case. We will thus vary the mode index m in the application section in order to
find the strongest instability in the gravity subjected star for the poloidal field case.
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2. Theoretical foundations and system setup

Our specific choice for the &-defining functions is

X%, x) = fF(¥,x) (¥ = ror)’

Y (4,x) = 5 (X 0pJ +0xZ) + 0y X

X(,x)=0

in A, Y(,x)=0 else,
(Rior cosx —7) (Rior — T cosX)

g w7 = - r 1 A ; =0
(¥, x) B2 | Rior 72 sin x (¥, x)
(2.126)
with
1 X cosy OhWX ) i
e “anx) B =7) (Rior - 2.127
X Bgol Riop 72 [( sin2 x sinx) (Rior cosx —7) (Rior — T COSX) ( )

+ X (7 = Rior (F cos x - w))] .

Explicit choice of the £-defining functions for stars with purely poloidal magnetic fields

The Jacobi determinant J = /By, was defined in equation (2.10).
The function f(v,x) describes the remaining dependence of X on v and x besides

its prespecified proportionality to (w—wtor)Q. The role and structure of f(w,x) will

be discussed in detail in the application section The explicit choice we use for the

application here is

Xp sin x

B? ’
pol

f(h,x) = (2.128)
with a numerical constant Xy # 0 which plays the role of a displacement field amplitude.
Further, Ry is the distance between neutral line and stellar symmetry axis, defining the
position of the localisation area, while the radius 1o, of the torus cross section determines
the extent of the localisation area.
Altogether, the localisation region is a torus around the symmetry axis of the star that
includes the neutral line and is defined by

A={yeR |l < ol }. (2.129)

For an illustration of the localisation area geometry see figure [2.16
Note that X, Y and Z vanish everywhere outside A, fulfilling the localisation condition
for €.

Displacement field choice for investigations of mixed magnetic fields

In the case of mixed magnetic field investigations, we consider the toroidal field instability
in the presence of a weak poloidal component. Therefore, the utilised displacement field
is equivalent to the one applied in the purely toroidal field case (2.121])).
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RN

Figure 2.16.: Displacement field localisation area A for the purely poloidally magnetised
neutron star, cf. relation (2.129)). The 2D-integration area that will be chosen
coincides with the localisation area. The sketch is not true to scale.

However, in order to keep this work comparable to |Akgun et al.| (2013) in a straightfor-
ward way, their notation will be used here:

& = R(r,9) rsind ™ (2.130a)
&9 = S(r,9) rsinde™? (2.130Db)
o =iT(r,9) rsingde™? . (2.130c)

Displacement field choice £(r) for stars with mixed magnetic fields

The generally complex &-defining functions R(r, 19),~5’ (r, ) and T(r,?) are dimensionless.
Just like in the previous cases, we will assume that R, S and T are real without restriction.
Note that choice (2.130)) is structurally equivalent to choice (2.121)) if the generating

functions fulfil

X=(wR+28)2 (2.131a)
r

Y=mwT (2.131D)

Z=(:R-w8)=, (2.131c)
r

as shown in the appendix section
Due to the presence of both toroidal and poloidal field components, neither the cylin-
drical nor the toroidal coordinate system fit perfectly to the system geometry. For the

sake of comparison with Akgiin et al., spherical coordinates are used.
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The &-defining functions will be used in the specific form chosen by Akgiin et al.:

R(T,ﬁ) = —% o (1 - )22)0_1 (919)22 R(T‘,’ﬁ) =0
in A, . else,  (2.132)
S(r,9) = %U( _ >—<2)ff—1 8,2 S(r,9)=0
e T(r,9) = Trnin = __Bind) (2.133)
) min = 2mE2(r,19) :
Explicit choice of the £-defining functions for stars with mixed magnetic fields

The abbreviatory notation

N2 3 2
’22:(335%) +(195;90) (2.134)

has been used. Further, &y # 0 is a numerical constant, representing a constant amplitude.
The constant o can be chosen as o > 2. The energy terms E;(r,9) and E»(r,9) can be
expressed by analytical relations of system quantities. Their exact form and its derivation
will be shown in the application section The dimensionless radial variable x is defined
as x = r/R. Further, rp and 1y determine the position of the localisation area, while ¢,
and dy set its extent.

Altogether, the localisation region is defined as

A={>22€R+

<1} (2.135)

The intersection of A with the (r,9)-plane has an ellipse-like shape, as shown by figure
217

Note that R, S and T vanish everywhere outside A, fulfilling the localisation condition
for €. The ,-defining function T(r,9) has been chosen as Tinin, the value which minimises
the energy variation density £ with respect to 7. This procedure will be explained in
section 0.3

Displacement field expressed by spherical harmonics

Besides the specific choices made above for the displacement field, we will apply a universal
notation for &.

One way of systematically describing all possible perturbations is to express them by
spherical harmonics. This form will become useful in the course of dropping the Cowling
approximation.
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Integration
area

w

Figure 2.17.: Displacement field localisation area A and corresponding 2D-integration area
for neutron stars with mixed magnetic fields, cf. relation (2.135)). The in-
tegration area for J and K in the non-Cowling treatment will be discussed

below in section

Following |Chandrasekhar| (1964), we write

Y™ (0,
& = 9(r) 17" (0. ¢) 12( ?) (2.136a)
r

drh(r) 0sY™ (9, )
= 2.136b
v I(l+1)r ( )

drh(r) a@Dlem(ﬁa (P)

= 2.136
S = T+ 1) rsmd (2.136¢)
with radial functions g(r) and h(r).
Displacement field choice £(r) expressed by spherical harmonics
The spherical harmonics with mode indices | and m are given by
Y™(9,%) = Ny, Py (cos 9) €™ (2.137)

with the normalisation constant

Ny = \l 21;1 8 " Zi: (2.138)
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and the associated Legendre polynomials

-1)" m dhHm (cos2z9—l)l

( 2
Py (cos?) = ST (1-cos®9)? Tl oos g

(2.139)

l+m

The expression dlfmm denotes the (I +m)-th derivative with respect to cos®.

Displacement field expressed by stellar eigenfunctions

Another systematic way of describing a universal displacement field is to express it by
stellar eigenfunctions.

This approach is most closely related to the system’s geometry and oscillation properties.
It will become useful for the idea of one day actually testing the system towards stability
instead of scanning it for instabilities. Given that a stability proof requires the usage of
all possible perturbations according to criterion , this systematic notation is a very
first step approaching this goal.

According to Unno et al.| (1989), the displacement field can be expressed by

EZ Z Cn,l,m Un,lm, (2140)

n,l,m

with the expansion coefficients ¢, ; ,, and the stellar eigenfunctions

up = ur (1) Y] (9, ) (2.141a)

uy = up(r) 9" (3, ¢) (2.141Db)
9,Y;" (¥,

uyp = up(r) %, (2.141c)

where u,(r) and up(r) denote the radial parts.

Displacement field choice £(r) expressed by stellar eigenfunctions

The angular parts of the eigenfunctions are expressed by spherical harmonics. Therefore,
in the simplest case of &€ = u, the notation of & using spherical harmonics (2.136)) and the
notation of £ using eigenfunctions (2.141)) are related via

g(r) = r? up (1) (2.142)
Orh(r) =1+ 1) rup(r). (2.143)

The radial functions u,(r) and up(r) can further be expressed (Fligge, 1958; |[Smeyers
& van Hoolst}, 2010)) in the form

ur(r) =111 up(r) = "Y2 (2.144)

c1w?’

where

0= — —. (2.145)
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2.3. Stability analysis

The explicit form of the stellar eigenfunctions is defined by the functions y; and ys.

The eigenfunctions of a homogeneous incompressible star can be expressed by analyt-
ical relations for y; and w9, for given eigenfrequencies. These relations are shown in the
appendix section
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for stability analysis

After the theoretical foundations on neutron stars have been set, this chapter explains the
key problem of neutron star research and motivates the solution approach proposed in this
work.

3.1. Central problem of present neutron star research

In section it was shown that strong magnetic fields are a characteristic feature of neu-
tron stars. They strongly influence the stellar evolution and the observational properties.
The magnetic fields led to the discovery of neutron stars by pulsar observations in the
first place. In general, the magnetic field is essential for the explanation of basically all
neutron star processes.

Surprisingly, the nature of neutron star magnetic fields still is an unresolved question.
In contrast to the external neutron star magnetic fields, whose existence is proved by
observations, the interior field structure is widely unknown. The origin of the enormous
magnetic field strength is still a matter of debate. No general model is able to describe the
reality sufficiently at the moment. The reason is that all models that currently exist are too
simplified to produce stable realistic configurations. At the same time, it is mathematically
difficult to make the models more realistic, as the following section will show.

3.1.1. Stability problem of magnetised neutron stars

As explained in section a physical equilibrium state is globally stable if the system
eventually relaxes back to the equilibrium state after any displacement & from equilibrium.
If at least one possible perturbation causes the system to further diverge from the initial
equilibrium state, the equilibrium state is unstable.

In reality, small deviations from equilibrium are unavoidable. The growth rate of the
potential unstable modes in neutron stars is short on a typical neutron star timescale.

Any state existing long enough to be observed, must be in a stable state. This stable
state apparently does not strongly depend on the specific conditions of the individual
neutron star, since all observed neutron stars show a broadly universal behaviour.

So far, no theoretical model system could produce universally stable stars for a broad
range of parameters, i.e. conditions. That means, according to the current theory, mag-
netised neutron stars could not exist. The model used for the description of this problem
is obviously oversimplified. This issue could neither be solved with an analytical approach
nor a numerical approach so far.
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3.1. Central problem of present neutron star research

3.1.2. Analytical treatment of the stability problem

The established analytical stability analysis of magnetised neutron stars is based on the
variational principle.

According to criterion , the total energy of a system increases/decreases during
its displacement from equilibrium if the applied perturbation mode £ is stable/unstable.
As a consequence, the equilibrium state is stable if the energy variation éW caused by
any possible perturbation £ is positive and unstable if §W is negative for at least one
displacement field &.

In order to calculate the energy variation and analyse the stability behaviour of the
neutron star, the contributions to the variational density need to be integrated over the
stellar volume. In the analytical treatment, this is only possible for a model system that
is noticeably simplified compared to the real system.

The first investigations on simple models by [Tayler| (1973); [Markey & Tayler| (1973,
1974); Wright| (1973|) showed that polytropic stars with a purely toroidal or a purely
poloidal magnetic field display generic instabilities. The so-called Tayler instabilities of
the cylindrical fluid discharge are illustrated in figure [2.12

Over the following decades, many neutron star aspects that have been neglected in the
first studies were tested for their impact on stability.

One first study of mixed magnetic fields with toroidal and poloidal components showed
indications that stable mixed field models might exist (Tayler, |1980). Due to the strong
simplifications in this work, it was rather based on estimations drawn from particular
cases than a universal stability study. One supposedly stable mode was identified but the
capabilities were far from creating a general mathematical proof.

Beyond this, it was investigated how Ohmic decay might influence the stability be-
haviour of an initially stable configuration during the main sequence phase of the star
(Tayler, 1981). This is important in order to understand the origin of neutron star mag-
netic fields. However, the question whether the theory of flux freezing is convenient could
not be clarified at that time.

Stellar rotation was expected to have a stabilising impact on the system, as discussed
in Pitts & Tayler (1985)). Nevertheless, rotation at realistic frequencies is probably not
capable of removing all instabilities of the non-rotating star.

Overall, no universal solution of the stability problem, nor any concrete suggestions for
realistic field configurations could be found. The underlying fundamental problem is that,
contrary to an instability verification where only one unstable mode must be detected, a
stability proof requires the consideration of all possible perturbations.

Recently, another refined mathematical approach was eventually done by |[Akgtn et al.
(2013). The stability of a stratified star with a toroidal field in the presence of a weak
poloidal component was studied. This work showed that stratification and a mixed mag-
netic field seem to be decisive factors for the explanation of neutron star stability. However,
owed to the analytical nature of the study, this consideration still relied on simplifications.
The equation of state for example was approximated to make it analytically treatable. The
Cowling approximation has been used. Furthermore, the stability analysis Akgiin et al.
performed did not investigate the reaction of an actual mixed field towards perturbations.
It rather considered the isolated toroidal field stability in the presence of a poloidal field
component. This means, the final conclusions are confirmed for a very specific class of
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3. Basic idea of the semi-analytic method for stability analysis

models and perturbation modes only. Although this work represented an important step
for the field, the generalised conclusions drawn from this work are still based on estimates.

Altogether, analytical approaches experience difficulties in producing universal findings
while keeping the system complexity sufficiently high.

3.1.3. Numerical treatment of the stability problem

As an alternative to the analytical investigation, a numerical stability analysis can be
performed by tracing the evolution of a model system in numerical simulations. The system
may either show a stable behaviour during the calculation period or underlie unstable
exponential growth over time.

The advantage of the numerical approach is to make quite realistic systems treatable,
without a need for excessive simplifications.

On the other hand, numerical simulations can never distinguish between a metastable
state that decays after the computation ends and an actually stable state. Another dis-
advantage all numerical studies have in common, is that they can not address slightly
different models at the same time. It is not possible to parametrise the system or the
perturbation. The simulation requires explicit initial conditions and cannot produce uni-
versal results. This issue can be particularly inconvenient if a minor change in the model
parameters or the displacement field changes the structure of the energy variation density
significantly. In this case, every set of parameters requires a separate simulation.

The constriction of potential realistic field configurations requires a global picture of the
star under different conditions. The eventually intended stability proof even requires the
consideration of all possible perturbations. Regarding both facts, it is desirable to inves-
tigate the impact of numerous perturbations onto different systems at once. A numerical
approach cannot offer this.

Simulations that have been performed so far reproduce the Tayler instabilities (Braith-
waite, 2004, 2006b; |[Colaiuda et al.| 2008; |Ciolfi et al., |2009; Lander & Jones, 2011}, 2010;
Lasky et al., 2011)).

Furthermore, mixed magnetic fields and stratification were considered as well (Braith-
waite, 2006a; Lander & Jones, 2012).

Some simulations feature the so-called twisted-torus field, a quasi-stable state where
the system remains for time-scales long compared to the Alfvén time, the typical time a
magnetohydrodynamic wave takes to cross the star (Braithwaite, 2006a; Lander & Jones,
2012)). The twisted field structure emerges from the superposition of poloidal and toroidal
components, see figure[3.1 This configuration might be a candidate for the stable magnetic
field in neutron stars.

However, numerical studies are not able to prove that no instability will occur later or
would occur for slightly different conditions. It is a tedious or impossible task to scan the
entire parameter space using numerical methods.

In conclusion, simulations are not suited best to constrain neutron star magnetic field
configurations for a start.

68



3.1. Central problem of present neutron star research

neutral line

NS
)

(a) [Bpol| > [Bior| (b) [Btor| > [Bpol

Figure 3.1.: "Twisted-torus’ fields, i.e. mixed magnetic fields with toroidal and poloidal
components. The field geometry differs whether a strong poloidal component
is disturbed by a toroidal part (a) or a strong toroidal component is disturbed
by a poloidal part (b). In principle, all intermediate stages are possible. The
neutral line is still defined as the axis where the poloidal field component
vanishes.

3.1.4. The impact of the unknown magnetic field structure on modern
research

Theory and observations imply that the behaviour of pulsars and especially magnetars is
crucially influenced by their magnetic field due to its strength. Since the magnetic field
structure is broadly unknown, all studies on neutron stars rely on assumptions and esti-
mates for the magnetic field. The unresolved question of the magnetic field configuration
complicates neutron star research in basically all areas.

In order to clarify the severity of the neutron star magnetic field problem, this section
lists some of the many present studies that suffer from the unknown field structure.

Starting with the neutron star formation and proto neutron star phase, the mechanisms
of neutrino cooling and neutrino driven winds are influenced by the unknown factor mag-
netic field (Perego et al.;[2014). For neutron stars formed in binary mergers, the interaction
of the original companion magnetic fields cannot be described sufficiently. Accretion, in-
spiral, merger and the creation of the new proto neutron star cannot be simulated reliably
(Kawamura et al., 2016)).

The interpretation of cooling curves is strongly affected by the magnetic field, especially
for high field strengths B > 104 G (Lazzati et al), [2008). On one hand, the magnetic field
creates heat by joule heating. Inferred from the high magnetar temperatures, this seems
to be a relevant effect (Kargaltsev et al., 2012)). On the other hand, the magnetic field
creates an anisotropy in the conductivity because charged particles cannot move across
the magnetic field lines. Quantisation effects might be relevant if the field is enclosed in
flux tubes. Although the magnetic field cannot be neglected, its consideration brings too
many free parameters into play because it is too poorly understood (Pons et al., |2007)).

The investigation of spin-down curves is essential not only for a better understanding of
the pulsar evolution, but also to learn about the magnetic field itself. However, the stellar
braking process itself depends on the unknown magnetic field, according to its strength
and structure. Depending on the magnetic field dissipation behaviour, the spin-down
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3. Basic idea of the semi-analytic method for stability analysis

will be slower or faster (Pons et al., 2007)). Beyond this, the magnetic field changes the
rotational properties of the star by inducing prolateness or oblateness according to the
field geometry. Owed to the large number of free parameters, different models for the
magnetic field decay fit the data. The curve interpretation becomes less significant.

The theory behind glitches is based on the pinning behaviour of superfluid core vortices
onto the crust. However, this region inside the star is poorly understood and strongly
influenced by the magnetic field (Graber et al., 2015)). Analogously, the implementation
of superconductivity in the neutron star model is complicated by the unknown magnetic
field strength as well. For field strengths of 10" G in the interior for example, proton
superconductivity would be entirely suppressed. Therefore, the spatial extent of the su-
perconducting region is unclear (Sedrakian et al., |1997)).

After the first successful detection of gravitational waves, it is a highly topical task
to prepare the theory for the new neutron star detection channel of gravitational waves.
In order to find out which gravitational wave signals are to be expected from neutron
stars, mechanisms creating a deviation from the stellar rotational symmetry need to be
simulated. For isolated stars, r-modes and magnetic deformations need to be studied,
which is obviously complicated by the unknown field structure. In low mass X-ray binaries,
accretion caused deformations, unstable modes and magnetically confined mountains of
accreted matter can generate gravitational waves (Melatos & Paynel 2005)). The inspiral
and merger phase of the companions is expected to be detectable best in the gravitational
wave spectrum. However, the entire simulation of the binary system is subject to large
uncertainties due to the unknown initial magnetic fields of the companions (Haskell et al.,
2015)).

Neutron star seismology, aiming on constraining the equation of state from QPOs,
is hindered by the unknown magnetic field. In order to infer the interior composition
from surface observations, the behaviour of oscillation modes at the crust-core boundary
region needs to be well-known. The magnetic field penetrating both media is the crucial
coupling mechanism, strongly affecting the oscillation spectrum (Colaiuda & Kokkotas|,
2011; \Gabler et al., 2012). Another important investigation channel for neutron star
oscillation modes is the CFS instability. Its growth rate is influenced by the neutron star
magnetic field as well (Kokkotas, 2011)).

Besides the complications the unknown magnetic field structure enforces on general
neutron star investigations, magnetic field related studies are clearly challenged as well.
For example, the origin and evolution of the magnetic field, possibly involving dynamo
processes, is unclear (Mastrano & Melatos, [2011)). The time scale of ohmic field decay
cannot be estimated due to the unknown length scale of the magnetic field structure
(Pons et al., |2007). Outbursts such as giant flares allow for a variety of interior field
structures fitting to the same set of observables (Perna et al., 2014).

Summarising, the stability problem of magnetised neutron stars hinders the highly de-
sired determination of the equation of state and the understanding of the neutron star
evolution itself.

Aside from the disadvantages, all correlations between observations and the magnetic
field listed above also represent possibilities to constrain the magnetic field by measure-
ments. The interpretation of this data, however, is very difficult due to the large number of
free parameters, such as uncertainties concerning the neutron star mass, radius, equation
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of state, effects of superfluidity and superconductivity etc.

After all, one might ask how reasonable it is to perform neutron star studies applying
magnetic field configurations that are known to be unstable in simple systems. Universal
results that are produced for different field assumptions might still be reliable, but it is
highly desirable to rather solve the stability problem of magnetised neutron stars.

3.2. Main idea of the semi-analytic method

As demonstrated in the previous sections, it is more than worthwhile to address the
stability problem of neutron stars. This is what is implemented in this work.

Sections [3.1.2] and [3.1.3] discussed the incapability of purely analytical and numerical
approaches in finding concrete universal answers to the stability problem. Therefore, in
this work we present and implement a semi-analytic method that has never been used
before. It combines the advantages of both analytical and numerical approaches, avoiding
their weak points.

The innovative idea of the semi-analytic method for stability analysis presented here
is to set up the energy variation density for the variational principle analytically, and
to compute the integral required to calculate the energy variation numerically.

That way, the system can be kept general by parametrisation and many previously
required simplifications are not mandatory. The systematic investigation of system
classes allows it to constrain realistic magnetic field and composition structures.

Main idea of the stability analysis method presented in this work

Compared to a purely analytical approach, the semi-analytic method allows for a treat-
ment of more realistic stars. Compared to a simulation study, the magnetic field and
composition structure as well as the imposed perturbation can be parametrised. Varying
these parameters, various model systems can be studied at once. The energy variation
can be computed systematically for all sets of parameters and provides information about
the corresponding model systems, according to the stability criterion .

The results for §W can be scanned for systematic trends. That way, we might find areas
in the parameter space that produce stars that are stable with a high possibility.

Once we find evidence for possibly stable configurations, these candidates can be in-
vestigated applying time evolution codes, that potentially confirm their stability. This
procedure is by far more promising and expedient than constructing test systems for
numerical codes on the basis of intelligent guesses, which is the procedure simulations
currently rely on.

The findings of potentially stable magnetised stars can then be applied to make models
that are assumed for various studies more realistic, cf. section

Beyond the stability analysis of magnetised neutron stars and the determination of
realistic configurations, the method set up in this work is capable of investigating other
systems as well. It is generally applicable to issues where the energy variation of a system
is required and it is possibly difficult to access analytically at the same time.

In this work, the derivation and implementation of the method is explicitly referred to
magnetised neutron stars.
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For the purpose of implementing the idea of the semi-analytic method presented in the pre-
vious chapter, the analytic expression for the energy variation derived in equation ([2.116))
needs to be integrated numerically. This procedure requires the analytical preparation of
the integral on one hand, as well as the numerical integration setup on the other hand.

The first goal of this work is to reproduce known results in order to ensure the function-
ality of the method. Secondly, we intend to make the investigated system more realistic
by incorporating new effects into the framework, that have been difficult or impossible to
address analytically so far.

Consequently, a numerical integration pattern is required. Beyond that, the additional
features need to be depicted mathematically to test their influence on the energy variation.

In this chapter, we first derive the newly appearing terms in the energy variation caused
by the additional neutron star features. Subsequently, the applied numerical setup and
integration pattern will be explained.

The analytic extensions implemented here aim for a more realistic model system that
might solve the stability problem of the possibly oversimplified current neutron star model.

For one thing, we will investigate stratified stars as opposed to the polytropic stars
Tayler applied in his studies.

The barotropicity commonly assumed in former studies implies a homogeneous proton-
neutron fraction throughout the star and represents a strong simplification towards real
stars, cf. paragraph “Stratification” in section The consideration of stratification is
a promising attempt to make progress in solving the stability issue of neutron stars.

Although stratification has been suggested several times before, only very few attempts
have been made to realise a stratified model system. The reason is that the implementation
of stratification complicates an analytic study decisively. The polytropic equation of state
chosen in numerous studies before, allows for an exact solution for the density distribution
inside the star. A non-polytropic equation of state, however, requires a numerical solution
for the pressure and density distribution that influences all investigation steps.

In this work, the numerical consideration of the density distribution can easily be realised
due to the semi-analytic character of the investigation method. Beyond that, we will
keep the polytropic description for the background system and consider the impact of
stratification in a perturbative approach following |Akgin et al.| (2013]).

Secondly, we will drop the Cowling approximation in this work.

Previous stability studies on magnetised neutron stars were based on the negligence of
the gravitational Euler perturbation. Here, it will be observed how §® affects the system
stability, indicated by the energy variation.

This step is essential in modern neutron star stability analysis for the following rea-
son. (Tayler| (1973) showed that the Cowling approximation is a valid simplification when
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4.1. Energy variation with stratification

performing an instability proof. A system that is found to be unstable in Cowling approx-
imation is still unstable in full description. The additional term in the energy variation
caused by the disturbed gravitational potential is negative. Nowadays, however, we are
less concerned with finding instabilities rather than explaining the actual stability of real
neutron stars. The final goal in this field is the ultimate proof of the stability of magne-
tised neutron stars. For this task, the validity of the Cowling approximation is no longer
obvious. An estimate is needed on how strongly the stability of a system state is affected,
whether it is detected in Cowling approximation or in an exact approach.

Akgiin et al.| (2013) discussed the stabilisation of a dominant toroidal field instability by
a poloidal field component and stratification. This result indicates that mixed magnetic
fields and stratification might be relevant for the global stability of arbitrary modes. Nev-
ertheless, this study has been performed in Cowling approximation. We will investigate
whether this assumption was justified and whether the result is reliable.

In this work, the impact on the energy variation for this peculiar case will be derived.
This represents a first concrete application of removing the Cowling approximation, which
has never been done before. However, the provided procedure is exemplaric and represents
a generic scheme that can be applied on further issues in the future. Generally, the
approach is analogous for other perturbation modes or system properties.

The consideration of stratified stars without Cowling approximation requires an exten-
sion of the energy variation for polytropes in Cowling approximation set up in section
Stratification and the perturbation induced change in the gravitational potential
cause additional terms in §W as given by with .

These expressions will be derived in sections [£.1] and Starting point is the implicit
form for the energy variation with , as it is valid for arbitrary equations of
state and it holds in full non-Cowling description.

4.1. Energy variation with stratification

In this section, the impact of stratification on the energy variation formula will be derived.
Note that Akgtn et al.| (2013)) derived an analogous expression for the stratified star. The
agreement between both derivations is shown in the appendix

The impact of stratification on the mathematical framework set up in chapter 2] is given
by the change in the equation of state when the system is deflected from its equilibrium
state.

The polytropic equation of state is replaced by its perturbed form . The
equation of state enters the mathematical framework only in the course of deriving the
Euler pressure perturbation dp, as can be seen in section Accordingly, the only
contribution to the energy variation (2.78)) with (2.79)), which is affected by stratification,
is Efuia-

The Euler pressure perturbation dp and subsequently the fluid contribution éWgyiq to
the energy variation will be derived here for I'y # I'1, in analogy to section [2.3.2]
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4. Realisation of the semi-analytic method

4.1.1. Calculation of the Eulerian pressure perturbation

The Euler and Lagrange perturbations op and Ap of the fluid pressure follow from the
density perturbations (2.101a)) and (2.83)) with the use of the equation of state (2.38]). The

assumption of a non-barotropic equation of state p = p(p,x), with the definition of I'; by

(2.39), yields

1

(%) :@(ano) _Pop (4.1)
9po/ar  po \Onpo/m  po

In this step, relation has been used for the connection between derivatives of scalar
functions and derivatives of their logarithms.

The further consideration will be based on the assumption that the fluid displacement
happens on a short time-scale, prohibiting particle conversions during the perturbation.
Therefore, the proton fraction stays constant inside a displaced fluid element: AzP = 0.
With connection , oxP = =€ - ng follows. This assumption is equivalent to an
adiabatic process, reminding that xP plays the role of an effective entropy, as stated in
section

Therefore,

Ap = (%) Ap+ (a—pg) AxP = Lo Ap. (4.2)
0po / w» 9 ), —~— Po
0

Making use of the density perturbation (2.83)), the Lagrange pressure perturbation reads

Ap=-TipyV &+O(&). (43)
The Euler pressure perturbation follows with connection ([2.48)):
0p=Ap-&-Vpo+O(£). (4.4)
Thus,
dp=-T1poV-&-&- Vpo+O(&). (4.5)

Explicit Euler pressure perturbation for stratified stars, in full description

The pressure perturbation in the case of considering stratification is equivalent to the
pressure perturbation (2.86)) and (2.101b)) of a polytrope, where the equilibrium polytropic
index I'y is replaced by the polytropic index I'y of the perturbed state. The pressure
perturbation in the polytropic case dpP°Y represents a special case of , for I'y = T'g.

4.1.2. Fluid pressure contribution to the energy variation

According to the equivalence in §p concerning polytropes, as given by expression (2.101b)),
and stratified stars, as given by expression (4.5, the further derivation of éWgyq in the
stratified case is structurally identical to the polytropic case shown in section [2.3.2]
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4.2. Energy variation without Cowling approximation

Neglecting surface integral terms, the fluid pressure gradient contribution to the energy
variation is thus given by

Efuid = %9‘{{1“1290 (V&) (V-&)+&-Vpo (V'f*)}- (4.6)

Explicit fluid pressure energy variation for stratified stars, in full description

This expression can be rearranged to give the form given by |Akgtn et al.| (2013]):

Enia = 31| (T T0) i (7€) (7€) + T2 (@ () (7 ()| (47
0
The derivation is shown in the appendix section . Note that formulation involves
the difference AI' between both polytropic indices and therefore directly shows the stabilis-
ing/destabilising impact of stable/unstable stratification mathematically. Stable/unstable
stratification as explained in paragraph “Stratification” of section contributes a pos-
itive/negative part to the energy variation density.

Further note that the fluid contribution to the energy variation in the polytropic case
Sﬁgilg, given by expression (2.114)), represents a special case of (4.6]), for 'y = T'y.

4.2. Energy variation without Cowling approximation

In this section, the impact of dropping the Cowling approximation on the energy variation
formula will be derived.

The Cowling approximation implies that the change in the gravitational potential due to
the displacement is negligible, i.e. §® =0, as stated in section If this approximation

is removed, a §®-dependent contribution ¢ W;rgv arises in the energy variation. The super-

script 'nC’ indicates that 6Wé;§v is the additional term appearing in a full non-Cowling

treatment as opposed to a Cowling treatment:

SWgray = WSOV 4 sWw2¢ (4.8)

grav grav®

The additional term has been neglected in the explicit form of the energy variation given
in (2.116)). According to the implicit form given by (2.78) and (2.79¢), it reads

eas =719t oo (€ vom) }. (1.9

Remember the sign convention, determined by the choice of the gravitational field vector

in (217,
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4. Realisation of the semi-analytic method

For the purpose of determining the impact of dropping the Cowling approximation, Sglgv

needs to be calculated. This requires the calculation of §®, which is implicitly given by

E1019):

50=2G [[[ (e Vo AV + O(€2). (4.10)

[ =]

Since 0P depends on the displacement field in a non-trivial way, the explicit calculation
of @ requires a specific choice for the displacement field. In the subsequent paragraphs,
we will thus derive an explicit expression for d® for two different choices of &.

Afterwards, the expressions will be used to set up an explicit expression for 5;%.

4.2.1. )® explicitly for £ expressed by spherical harmonics

The first choice we assume for the displacement field is its expression via spherical har-

monics Y}, according to assumption (2.136]) with (2.137).

The explicit form for the Euler perturbation of the gravitational potential in this case
can be found in |Chandrasekhar| (1965):

89(r) = 62(r) V" (9, ) + O(£?), (4.11)
with )
47 G Jl r l
(S(I)(’l“) =:I:2l+1 [HT_T Kl(?“):| (412)
and
r g(r")
Ji(r) = f po(r')r" [l o dwh(r')] dr’ (4.13a)
3 T
) g(r")
/ /
Ki(r) = [ 25 [(z + 1) L2 dyoh(r )] dr'. (4.13b)
=
Explicit Euler perturbation of the gravitational potential for £ expressed by spherical
harmonics according to , in full description

Here, m and [ denote the spherical harmonics’ mode indices. The radial functions J;(r),
respectively K;(r), at the position r are given by integrations from the stellar centre up
to r, respectively from r up to the stellar surface. Singularities at 7’ = 0 in the first term
of Ji(r) are avoided for [ > 1, while for [ = 0 the term vanishes. The integral in K;(r") does
not extend to ' =0, and thus stays finite as well.

The derivation of expression (4.11)) with (4.12)) and (4.13) is outlined in the appendix
section B.5.1}

4.2.2. 5WWC explicitly for £ expressed by spherical harmonics

With the use of the Euler perturbation of the gravitational potential shown in the previous
section, the gravitational energy variation can be derived in full description.
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4.2. Energy variation without Cowling approximation

The derivation is shown in the appendix The result can be found in |Chan-
drasekhar & Lebovitz| (1964)):

R
SWES, = 27 G f pO(’")g (") g _ ;lﬂ—ﬁ {n(r)d,Ka(r) (4.14a)
0
~Ky(r)d,Ji(r) } dr
R 9 2
WS, = —arg [ 2NITW 4”G d,Jy(r) Ky(r) dr-. (4.14D)
g b[ 7,2 f ! l

Explicit non-Cowling contribution to the energy variation for £ expressed by spherical

harmonics according to (2.136|)

4.2.3. 0P explicitly for £ according to the mixed field choice of Akgiin et al.

In this work, we will in investigate the relevance of the Cowling approximation particularly
by testing whether the stability analysis performed by Akgiin et al. (2013) stays valid when
the approximation is dropped.

For this purpose, the gravitational Euler perturbation will be derived for Akgiin’s choice
of the displacement field. Note that expression is not applicable in this case
because the ¥-dependence of £ cannot be expressed by the general form of & that
has been used in the previous section.

The procedure is analogous to the case where the displacement field was expressed by
spherical harmonics, where the derivation is shown in the appendix section

Starting from equation (4.10), we use spherical coordinates (2.4]) and assume axisym-
metry:

o(r) = +G ff po(r')E(r") -V (|7°_—17"|) 2 sind’ dr’ d9’ dy’ + O(£2). (4.15)

The integral extends over the total stellar volume.
Following the procedure in the appendix, the absolute value can be expanded in terms of

spherical harmonics Y (¥, ¢") as defined in (2.137)). Then, according to relations (B.25)

and (B20):

oo

=253

|r — 7”| =0

A
i1 f)\(ra T/) Z Y)'\u(ﬁvgo) Y){L(ﬁlﬂpl)a (416)
JTEEDN
with the radial function N
r’ if v <
N { P BTET (4.17)

: !/
S ifr' >

The expansion (4.16]) is inserted into (4.15). Due to the linearity of the gradient and the
distributive property, all quantities independent of ' and the summations can be pulled
out of the integral. Keeping the integrand real according to section in the appendix,
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4. Realisation of the semi-analytic method

the Euler perturbation then is

© A ArqG
6®(r) =+ 9, ) - (4.18)
)\ZE)MZA 21 +1 vy

ff po(r) (€ () - Vo [ () VI )] | rsind’ dr' v’ dg' + O(€?).

Note that & as well as Y{'(¢',¢") denote generally complex functions. However, the az-
imuthal integral over the scalar product is always real as it has been shown in the appendix
section Thus, we do not need to take the real part over the integrand or add the
factor 1/2 as it is necessary for the energy variation. Further, the spherical symmetry of
the unperturbed system was taken into account by applying po(7") = po(r').

Next, the mixed field choice for the displacement field is utilised:

& = R(r,9)rsinde ™ (4.19a)
& =8(r,9) rsinde ™Y (4.19b)
&, =~iT(r,9) rsinge ™. (4.19¢)

Note that the sign of £ is negative due to the complex conjugation. Beyond that, the
mode index of £, is denoted as m’ because it generally differs from the mode index m
of the spherical harmonics describing §®. Further, the gradient is evaluated in spherical
coordinates. The exponential dependence on ¢’ can be factored out by defining

YW, @) = O8(9) e, (4.20)

with ©4(9") = Ny, Py, (cos?'). Thus,

) A T
o(r) =3 3 24A G yr,p)- (4.21)
A=0 p=-X

/] po(r’) [R(r', 9 r'sind’ O fa(r, ") @‘/\‘(19')
+ S, 0" sin®’ fa(r,r) 819/@‘;(19')
(', 0') fa(rr') O4(9) ]}
r?sind’ dr’ dv’ dy’ + O(€?),

where we already evaluated the azimuthal derivative 9, Y} (9, ¢") = i ©5 (9") e’
In equation (4.21)), the only actually complex contribution to the integrand is the expo-
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4.2. Energy variation without Cowling approximation

nential function. Thus, with relation (A.10):

* X 4nG
6P(r)==> > T A (9, 0)- (4.22)
A=0 p=-X

T R
f po(r") [E(r', 0") 1 sin ' O fr(r,r") OK (")
00
+S(r',9") sind’ fr(r,r") 99 OK (Y")
w0, 9) () O]

21
./ e h=me 4o’ 2 sin ' dr’ A’ + 0(&?).
0

276 pum

The ¢'-integral in vanishes if both mode indices differ, as shown by equation (A.10)).

This implies that for all non-vanishing terms in d®, the mode index p of the E 1T,‘ expansmn

is equivalent to the mode index m of the displacement field. The py-summation in
can be dropped, keeping only the non-vanishing term with u = m.

Subsequently, the A-summation cannot include terms with A < m and its summation
index is adjusted:

5B(r) = 8

(9, 0) [fpo [R(r 91 O fr(ry 1) O () (4.23)

A=m

Mﬁ(r M en()|

Zsin? 9 dr’ dv’ + O(£?).

+‘§(T,7 79,) f)\(r? T,) 819’ T(ﬁ,)

The fy-derivative is evaluated based on (4.17)), yielding

7,,/)\ 1 . /
At i<

(A + 1)7%A+2 if ' >

12N
T : !/
AT lfT <r

f)\(’l", ’I“,) = { N . ,_ dr’fk(ra T,) = {

4.24
et bt (4.24)

For the purpose of inserting (4.24]) into (4.23)), the integral is split into two integration
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4. Realisation of the semi-analytic method

areas with ' <r and ' > r:

oo 7.(.2
)= 3 N (0,0) (425)

/>\ 12

{f po(r [)\R(r ) 5 T(ﬁ')+§(r',ﬁ')%&9/ m (')

mT(T ) A

sin® Al

(19'):|7" sin? ¢’ dr’ d’

™ R
+/fpg(r' [ A+ 1) RO, 0" — g @mw)+5( 9y 5 0005 (W)
0r

Lm T(’I“ 9" r
sin W /)\+1

T(ﬁ')] " sin? 9’ dr’ dﬁ'} +0(£%).

In analogy to (4.13)), radial functions J{"(r) and K{*(r) are defined as

() = f f po(r") [AR(W,@')@T(W)+§(r’,q9’)a§, () (4.26a)
00
+”ff+;w @m(ﬁ’)]r sin? 9’ dr’ 4o’
Ky (r) = f [ i) [(m1>R<r',ﬂ'>eT<ﬁ'>—5@'719')@19,@7(19') (4.26D)
_mT(r',ﬁ')

sin ¢/

o () ] % sin? 9’ dr’ dv’.

Note that as opposed to r, ¥ does not appear in the integration boundaries. It is therefore
irrelevant whether the polar integration variable is named 9’ or 9.
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4.2. Energy variation without Cowling approximation

Finally, the Euler perturbation of the gravitational potential can be written in analogy

to (11 with (I12) and (E.13) as

() = 32 89T (0. 9) + O(E) 4.27)
with o [

SO (r) = ﬂ:2§+ . [TAA—(’;) p K;”(r)] (4.28)
and

sin ¥/

Jﬁ”(r)=ff po(r’)r’“z[(AR(r’,ﬁ’HM) ') (4.292)
00
+S(r' 9") Oy T(ﬁ’)] sin® ¢ dr’ 49’

™ R (r,)
K™(r) = 'OTOIH [(()\ +1)R(,9) -

0or

mT(r',9")

sin ¢/

)G)T(ﬁ’) (4.29D)
_S(T/,’ﬂ,) 819/ T(ﬁ/)]sin219'd7"/d19/.

Explicit Euler perturbation of the gravitational potential for the mixed field choice
(2.130f) of &, in full description

Note that unlike A, m is not a summation index but the mode index stemming from
the displacement field £(r) ~ e"™¥. The r’-integrations in J{*(r) and K3*(r) run in the
intervals [0,7] and [r, R]. The ¥¥'-integration covers the full angular range [0, 7].

In comparison with expressions , equations comprise an additional angular
integration. The reason is that the displacement field here does not show symmetry prop-
erties which could be utilised in the case where & was expressed by spherical harmonics.

Due to the missing symmetry properties, the A-summation in (4.27) could not be eval-
uated as easily as it was the case for the y-summation.

A detailed search for symmetries in the appendix [B.5.7]shows: The A-summation cannot
be removed in the mixed field case if we take into account the explicit choice we make for
R, S and T in the application section in accordance with |Akgiin et al.[ (2013)). Instead,
when applying d®(r) on the mixed field system with stratification, we will approximate
the sum by focussing on the most dominant terms with A <2 for m = 1:

3B (r) = 601 (r) Vi (9, ) + 35 (r) Y5 (9, ) + O(£?) (4.30)
A P15 R 3
+O([T—4f(r')dr')+(9 /ﬁf(rl)dr,
0 T

1

- in spherical harmonics
[r—7| )

Keeping in mind that the A-sum stems from the expansion of
the most dominant terms belong to the lowest values of .
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4. Realisation of the semi-analytic method

With our choice, we neglect terms of the order %5 and higher in the J{"-contribution

and terms of the order :% and higher in the K\'-contribution. In both cases, the fraction
is small, because r’ < r holds for the J{"-integral and ' > r holds for the K{'-integral. The
approximation is valid.

4.2.4. oW explicitly for ¢ according to the mixed field choice of Akgiin et
al.

Starting from the expression for the gravitational potential derived in the previous section,

the non-Cowling contribution 5Wgr}gv to the energy variation needs to be set up.

We derive 5Wgnrgv for the mixed field choice of £, in analogy to the derivation shown in

the appendix [B where the displacement field was expressed by spherical harmonics.

According to (4.9) and (2.78]), the non-Cowling contribution to the energy variation is

5wg§v:¢4[f po(r) R {€* - voa(r)} av. (4.31)

The integral extends over the total stellar volume. We insert the expression for 0®(r)
given by equations (4.27) and (4.28)), keeping first order &-terms in 6®(r). Thus, SW2C

grav
is on the order of &2 as demanded:

Wi == 2 > ;Iﬁ )G { [(JS;EZ)—TAKT(T))Y)\T”(&@)]} V. (4.32)

As shown in the appendix [A’5.4] the real part ensures the integral to be physically rea-
sonable even though £ and Y\"(r) are both generally complex functions.

In analogy to the previous paragraph, the lack of symmetry in € prohibits the application
of an orthogonality relation similar to at this point. Instead, the scalar product
of £* with the gradient will be evaluated step by step. First, we express the gradient in

spherical coordinates and define the abbreviation F{"(r) = (JE;S) - r)‘Kj\”(r)) to obtain

> 2@ DY (0
Wit 3 3 ] mn{g 100,06 1) L)
(4.33)
+&o, FY'(r )8Y—(ﬁ(p)}r sind drdd de.
rsind

Next, the mixed field choice @ for the displacement field is utilised. The complex
conjugation was shown in equation (]@D Note that the sign of £ is negative due to the
complex conjugation and that the mode index m’ of €,,, generally differs from the mode
index m of the spherical harmonics describing §®.

We insert (4.19) into (4.33]) and split the spherical harmonics into polar and azimuthal
parts according to definition . Further, the derivation with respect to ¢ is evaluated
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4.2. Energy variation without Cowling approximation

as 0,e"¥ =im e"¥. Thus,

oo 2
WES, = - % ;;rfi [ o) R{ [Rer,0)rsin g d 2 (r) ©5(9) + S, 9) sind -
A=m

(4.34)
F{ (r) 0905 (9) = m T (r,0) F'(r) OF(9) ] ™02} 2 sin g dr di dp,
where the exponential terms have been factorised.

The exponential terms are the only complex contribution to the integrand. The real
part can be evaluated utilising expression (A.32]) while the azimuthal integration is carried

out according to relation (A.10):

T R

0 > 272G ~ m m
Wit == 3 5 [ o [ Ry rarrer30) (439
Q m m mT 7“,’[9 m m
8, 0) EL (1) 2005 0) + "0 ) o)
1 2T
5[ (ei(m_m,)‘p+ei(m’_m)“@) dy r?sin? ¥ dr do.
0

271'((5mml +6m’m)

Renaming m’ as m, this is

™R
Y 3 B ~
Wit =- 3 g [ ) |70 0, ) O30) + 300) ) 0005 0)
(4.36)
+MF§T‘(7‘)@ (19)]7“ sin? 9 dr do.
sin ¥
The radial derivative of F{"(r) is given by
Jm(r) m A+1 m _ m

de| 2 P ER() | = = S IR ) = AT R () (4.37)

LA+ 1) 7 po(r) / R(r,0") OT (') sin® ¢ 40/,
0

as proven in the appendix section [B-5.4]
We insert (4.37)) as well as FY"(r) into (4.36]) and sort the terms by the appearance of
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4. Realisation of the semi-analytic method

J{*(r) and K{*(r) to obtain

oo ™R 3 © g3
5W§"§v:_)\:zm47T3Gb/;][ pa(r)r* R(r,9) ©F(0) sin® 9 IY*(r) dr do) - Z 4/\+Gl- (4.38)
T R ~
] {22 (0 v e ez -senaeso - "L D epw ) o
00
2 o (r) (Afe(r,ﬁ) v(9) +50.9) 0565 (9) + L) T(ﬁ))KT(r)}-
sin? ¥ dr d9,
with -
0 (r) = f R(r,0") O (') sin® ¢ 4o (4.39)
0

Based on their definition in (4.29)), the radial derivatives of J{"(r) and KY'(r) are

dp Y (r) =+ f po(r) 2 [()\ R(r,9) + %) (D) (4.40a)
0

+S(r,19) aﬂ@T(ﬁ)] sin ¢ dv

d, K3'(r) = - /p,A ; [(()\+1)R( ﬂ)—%)@ﬁ\”(ﬁ) (4.40b)

-S(r,19) aﬁ@gn(ﬁ)] sin? 9 do.

This result is derived in the appendix section [B.5.5] Note that the polar angle represents
an integration variable that can be named 9 as well as 9. Further note that d, K" (r) is
equivalent to the negative radial integrand in KY{'(r) which follows from the definition of
the integration boundaries in K7'(r).

The derivatives can be identified in and thus, the non-Cowling energy

variation term is expressible as

5Wgnr§v: Z 4773fo P2 (1) R(r,9) ©F(9) sin® 0 IY*(r) dr dv) (4.41)

)\=m 0

This result can be further simplified by applying relation (B.71]) derived in the appendix
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4.2. Energy variation without Cowling approximation

section

R
[ e a KR e - K2 ) desyi )} d :—2fd B Ky (rydr. (4.42)
0

Using expression (4.42)) in (4.41), the alternate formulation of the additional energy
variation term is

o T R

SWIC == 3 ardG f [ P2(r)r R(r, 9) O (9) sin® @ I () dr A9 (4.43)
A=n.
A= m

Finally, based on the results in equations (4.41)) and (4.43]) the non-Cowling contribution
to the energy variation in the mixed field case is

SWhC = Z 473G [f pa(r)r* R(r,9) ©F(0) sin 9 I¥*(r) dr dv (4.44a)

grav
=m

PJT(r) K (r) | dr

grav

oo T R
SWES == 3 4ndG f f P2(r) rt R(r,9) O7(9) sin2 9 I (r)drdd  (4.44b)
A=m 00

o0

SG I

2 o [ do) K3y dr,
0

with

I7(ry= [ R(r,9") O (W) sin®¢' dv'. (4.45)

-

Explicit non-Cowling contribution to the energy variation for the mixed field choice

[2-130) of ¢
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4. Realisation of the semi-analytic method

4.3. Numerical implementation

In this section, the numerical framework applied in this work will be presented.

Statement of the problem After the energy variation has been analytically prepared
and extended in the previous sections, the total integral that needs to be solved is

OW = dWhiagn + 0Wauid + 0Wray (4.46)
~ ] {agn + Enia + €1} av + oS, (4.47)
with
Enmagn = lm{M_jo_w% } 5B =V x (€ x By) (4.482)
4 47 c
1 . .
Efinid = Z%{Flpo(V'E ) (V&) +E&-Vpo(V-€ )} (4.48Db)
1 *
ecar -1 fe-vo0 (v (meN | (4.450)

This form is composed of the original expressions for the energy variation with
and the new fluid pressure contribution considering stratification in equation ,
as well as the additional non-Cowling term in the gravitational contribution (4.8)).

In the mixed field case, SWZS, is given by equations (#.44b), ([#.45) and (#.29):

grav
oo T R
Was, == Y 4G [ [ gh(r)rt R(r,9) 5(9) sin® 9 I (r) dr do (4.49)
A=m
A=m
with i
(r) = f R(r,9") (9" sin? 9’ 4o’ (4.50)
0
and
T T ~ / /
Jy(r) = f f Po(r')r'“2[()\]~%(r’,19’)+%ﬁ’jﬂ)@&”(ﬁ’) (4.51a)
00 Sin
+S(r,0") O T(ﬁ’)] sin? ¢’ dr’ d’
/)0(7“ r mT(T’,ﬂl) m
K3'(r) = f o) [((A+1)R(r',19’)——sim9/ (") (4.51b)

-S(r',9") Dy OF (1) ] sin? ' dr’ doy’.
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4.3. Numerical implementation

As stated in section [2.2.3] we assume the model system to be axisymmetric. The
symmetry reduces the number of integrations that need to be performed numerically in
order to calculate 6W by one. The integral over the azimuthal angle ¢ will be evaluated
analytically, the same way it has been done in the J)'- and K)'-integrals in equation
(4.35). The remaining numerical integration will be carried out in the (w0, z)-plane in
cylindrical coordinates.

Explicit expression of the integrand In the course of the numerical integration, the
continuous stellar volume is replaced by a discrete grid. At the grid points, the integrand
value must be known numerically. That means, numerical values are required at these
positions for all quantities appearing in the integrand.

According to the respective choice illustrated in section [2.3-3] the displacement field can
be expressed as a function of constants, coordinates and &-defining functions X and Z or
R and S. The &-defining functions will be chosen as functions of constants, coordinates
and also equilibrium system quantities (o, as shown by equations (2.122)), (2.126]), (2.132)
and . The same applies for the magnetic field structure chosen in section

At every integration grid point, we can allocate numerical values to these quantities
depending on constants and coordinates, as long as the system quantities (09 are known.
Considering this, the only remaining unknowns are the background system quantities
pressure, density and gravitational potential.

Problem solving plan According to the statement of the problem in the previous para-
graphs, we can give a problem solving plan and list the numerical methods that will be
required.

First, we need to calculate the equilibrium quantities Qo(r) in the code before solving
the integral. For this task, the system equations are numerically solved using the classical
Runge-Kutta method, as it will be described in section

The geometry of the grid points where the integrand is numerically known as provided
by the system equations differs from the grid required for the two-dimensional integration.
We thus need to calculate the numerical values of the system quantities at the required
positions before the integration can be performed. This can be achieved by spatial in-
terpolation, most conveniently employing cubic splines, as it will be explained in section
4.0.2)

Finally, a numerical integration algorithm based on Simpson’s rule will be utilised. The
algorithm is illustrated in section

In the case of a full non-Cowling treatment, the d®-describing radial functions J and
K require additional integrations. Their computation is described in section [£.3.4]

The integration code for the calculation of W has been set up successively and extended
gradually to keep track of its functionality while the treatment of more complex systems
was enabled. The code development process is depicted in section The final code
structure will be presented in section |4.3.6
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4. Realisation of the semi-analytic method

Remember that the dimensionless unit system introduced in section is utilised in
order to keep the astrophysical values, that are represented by large numbers, numerically
treatable.

4.3.1. Solving the background system equations with Runge-Kutta

General problem The system equations given by expressions ([2.26) form a first-order set
of nonlinear ordinary explicit differential equations for the equilibrium quantities Qo(r) €

{mo(r), po(r), ®o(r)}:

d,;Q(r) = f(r, Q(r)) Q(r0) = Qo. (4.52)

System of nonlinear ordinary differential equations

In this section, we will skip the lower index 0 denoting an equilibrium quantity, in order
to avoid confusion. Instead, the index s labels the numerical grid points from s = 0 to
s = s(max).

The exact boundary conditions are given at the stellar centre rg = 0. For the application,
however, an approximation or exclusion of the central point will become necessary to avoid
singularities if the numerical procedure requires terms involving 1/rg.

Further note that the structure of this problem would still be maintained in a relativistic
or post-Newtonian approach based on TOV equations in future applications.

Runge-Kutta method A system of differential equations as shown in equation can
be solved applying the Runge-Kutta method which we prefer over a multistep method for
convenience.

That means, starting from the boundary condition at the stellar centre, the solution
QQs+1 at each numerical grid point s + 1 is calculated based on the previously calculated
solution Q)5 of the neighbouring grid point s:

J
Qs1=Qs + hy Z bjkj+0O (h;”l) Terl =Ts+ Ry 5=0,..., s(max). (4.53)
j=1

J-th order Runge-Kutta method, solving the system of differential equations (4.52)

The step width h, is the distance between neighbouring grid points, b; and k; are prefactors
and intermediate values of f, and J corresponds to the order of the Runge-Kutta method
applied.

The classical forth order Runge-Kutta method (J = 4) provides an optimised ratio
between effort and accuracy. Although the local truncation error of every iteration is of
fifth order in h,, the total error is of the order O(h}). With this method, the solution of
the differential equation is calculated on the basis of four intermediate stages k;:

88



4.3. Numerical implementation

hy
Qs1=Qs + 5 (k1 +2ko + 2k + kg) + O (hf) rs+1=Ts+h, s=0,..,s(max) (4.54)

with
ki=f (rs, Qs) (4.55a)
ko= f (rs + % Qs + % kl) (4.55b)
ks =f (rs + hr, Qs + % kg) (4.55¢)
ky=f (rs +hr, Qs+ hy kg) . (4.55d)

Classical Runge-Kutta method, solving the system of differential equations (4.52)

In our case, the method is explicit and does not require the solution of further systems of
equations.

Boundary conditions The application of the classical Runge-Kutta method for solving
the background system equations ([2.26)) requires a detailed consideration of the problem
and the establishment of numerically formulated boundary conditions.

The system equations ([2.26)) comprise three differential equations for equilibrium mass
myg, pressure pg and gravitational potential ®3. The mass density p is related to the
pressure by the equation of state (2.22) and can easily be calculated once a solution for

po(r) has been found:
1/To
p(r) = (M) : (4.56)

K

The neutron star is subject to the boundary conditions
m(ro) =0 p(R) =0 (R) = Pex, (4.57)

which can be explained as follows. The mass m(r) included inside a sphere with radius 7 is
zero for ro = 0. The fluid pressure drops to zero at the stellar surface 74(;ax) = R matching
the surrounding vacuum. The gravitational potential at the stellar surface rymax) = R
equals the total gravitational potential ®ey a test particle experiences at the neutron star
surface.

As explained above, the classical Runge-Kutta method operates by calculating the sys-
tem quantities stepwise starting from a set of initial values.

We thus need to create a set of boundary conditions either located at the stellar centre
or at the stellar surface. We choose to solve the equations from the inside outwards and
set the solving pattern as follows.

First, the central density p. = po = p(r9) is chosen appropriately to fit a typical neutron
star density profile. From that, the polytropic equation of state provides the central
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4. Realisation of the semi-analytic method

pressure
Pe=po =p(ro) = K pLL. (4.58)

The boundary condition for the gravitational potential at the stellar centre can be arbi-
trarily chosen as the third system equation is linear in ®. The addition of a constant value
to the solution ®(r) can thus fulfil the surface boundary condition ®(R) = Pext.

Note that we skipped the equilibrium index again. The index s = 0 denotes the system
quantity at the innermost grid point.

In order to avoid singularities in the numerical procedure, the initial radial grid point
is located slightly off-centred by choosing r¢ = 7. with 7. 2 0, for example 7. = 107°. That
way, the possible singularity at r = 0 is excluded from the numerical grid. The initial mass
follows from r. and p. by integration of system equation ([2.26al):

47 3

dymg = 4mr? pe mo = -7’ pe. (4.59)

Altogether, the boundary conditions for the numerical procedure are

4 .
mo=—-r’pe  po=rp” Qo=@  with ro=re  py=pe. (4.60)

Boundary conditions for the Runge-Kutta solving of the background system equations

Remember that the index 0 denotes the innermost grid point s = 0.

Numerical solving pattern Starting from suitable initial values established in the previ-
ous paragraph, the numerical solving scheme for the problem needs to be set up next.

The routine given by (4.54) and (4.55) solves the equations stepwise for increasing values
of rs. We store the solutions m(rs), p(rs) and rs in order to receive a full radial profile of
these quantities at discrete positions.

Note that currently we have no use for the gravitational potential inside the star. The
gravitational potential enters the integrand in the differentiated form via (§-V) ®g
only. According to the spherical symmetry of the equilibrium star, the only non-vanishing
component of this expression is the radial one, &.d,.®g. The derivative d,®q in this
expression is given by the right hand side of the third system equation . The Pg-
dependent terms appearing in the integrand £ can thus be fully expressed by py and my.
This is why we abstain from solving the third system equation. However, the code is
capable of storing ®(r,) as well if needed and if it is supposed to fit an external value of
the gravitational potential ®ey;.

The solving iteration must stop when the stellar surface is reached at rs = R or s =
s(max). This requirement can be translated into a numerical exit condition: The solving
algorithm runs until the fluid pressure drops below a critical value p. > 0, small enough to
be a valid approximation of the vacuum pressure level. The computed pressure is checked
in each iteration step. As long as it exceeds p., that means p(rs;1) > pe, the solving
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4.3. Numerical implementation

algorithm continues. Once the fluid pressure equals the critical value or falls below it, i.e.
p(rsi1) < pe, the iteration stops. The value last computed for r is allocated to the stellar
radius R = r;. The mass included inside this radius is identified as the total stellar mass
M =m(rs).

Applying the numerical scheme set up above, the variation of central density p., poly-
tropic index 'y and equation of state prefactor x enables the construction of different
compact objects, varying in mass M, radius R and compactness M/R.

In this work, we prefer specific models characterised by (M, R, M /R) as code input over
parameter sets of (p¢, g, k). The determination of stellar mass, radius and compactness is
intuitively far more meaningful than choosing the internal density or the polytropic index.
That way, the model star under investigation can directly be compared to compact objects
from observations or other studies, naturally characterised by M, R and M/R.

The usage of (M, R, M/R) as predefined values can be realised as follows. In prepara-
tory code runs, various sets of input parameters have been tested to construct realistic
neutron star models that are appropriate for the usage in this work. Using these results,
the parameter values for p., I'g and k required for the construction of a desired model
(M,R,M/R), can be assigned. One further advantage of this procedure is that the nu-
merical grid can be chosen in such a way that the outermost grid point 74(yax) coincides
exactly with the given stellar radius R. The utilised step width h, follows from R and the
demanded number of grid points s(max). The exit condition is pre-fulfilled and the only
remaining task during the code run is to compute and store the radial values m(r;) and

p(7s).

4.3.2. Grid adjustment with cubic spline interpolation

Problem According to the spherical symmetry of the equilibrium system, the discrete
solutions calculated with the Runge-Kutta method for the system quantities Q(rs) are
located on concentric spheres with radii rs. For constant ¢, the positions of numerically
known values form a poloidal grid. It is represented by a series of concentric semi-circles
in the (w, z)-plane and by a family of straight lines in the (r,v)-plane, cf. figures
and [4.1Dl

The numerical integration on the other hand will be performed on a non-equidistant
cartesian grid in the (w, z)-plane as shown in figure Currently, a universal number
of z-grid points is utilised at every wo-grid point for convenience, resulting in an inhomo-
geneous spacing. In the long term, however, an equidistant cartesian grid can be utilised
instead, resulting in a spatially homogeneous accuracy of the numerical integration.

Either way, the grid transformation from the Runge-Kutta-known points to the points
demanded for the Simpson integration requires an interpolation of generally all system
quantities.

Grid definition For the purpose of interpolating the Runge-Kutta calculated values to
the integration grid, both grids need to be mathematically well defined.
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4. Realisation of the semi-analytic method

z )

Fs

(a) Runge-Kutta grid in cylin-  (b) Runge-Kutta grid in spher- (¢) Simpson integration grid in
drical coordinates. ical coordinates. cylindrical coordinates.

Figure 4.1.: Grid of Runge-Kutta calculated values displayed in the (z, z)-plane of cylin-
drical coordinates (a) and the (r,4)-plane of spherical coordinates (b). Simp-
son integration grid in the (w, z)-plane of cylindrical coordinates (c).

The original grid shown in figures and is defined by the Runge-Kutta solving
scheme:

The number of intervals in r-direction is s(max) with an interval width h,.
The grid is spherically symmetric. The grid points are located at

re =10+ 8h, ¥ arbitrary, (4.61)

where s(max) is reasonably chosen and s =0, ..., s(max).

Original Runge-Kutta grid in the (r,?9)-plane

The basic structure of the integration grid we choose for the (w, z)-plane is shown in
figure Along w, the grid points (w, z}) are equidistant and labelled by the index
k=0,..,ngy. For each k, n, + 1 grid points are spread along z, labelled by the index
q=0,...,n,. In this work, we use a universal number of intervals along z for all wy-knots,
i.e. n,(k) =n,Vk. Therefore, the grid points for different k are not equally spaced along
z. As explained above, a cartesian grid could easily be constructed instead for future
applications.

According to the requirement of the Simpson integration, the number of intervals in
both directions must be even, i.e. ngy mod 2=0 and n, mod 2 =0.

Beyond that, the numbers of intervals n, and n, need to be chosen large enough to
provide a sufficient level of accuracy in the numerical integration while keeping the effort
and calculation time still reasonable.
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4.3. Numerical implementation

Finally, the integration grid should be in reasonable proportion to the Runge-Kutta
grid with s(max) grid points. The accuracy cannot be increased arbitrarily by refining the
integration grid, it is ultimately determined by the Runge-Kutta background computation.
In the extreme case of very small localisation areas, we allow for the situation that all grid
points utilised in the (w, z)-integration stem from interpolations of one single Runge-Kutta
grid point 5. In other cases with spatially extended integration areas, this scenario should
be avoided in order to guarantee a sufficient level of accuracy.

According to this considerations, the integration grid we choose for the (w, z)-plane can
be constructed as follows.

The numbers of intervals along w and z are

s(max) |+0 if smax) oven s(max) [+0 if a9 o ven
w = T . s(%ﬁx) Npg=—7— . s(rqézax) (462)
U +1 if T odd Uy +1 if T odd
with the according interval widths
he = w(max) — w(min) ha (k) = z(max) — zk(min)7 (4.63)
N Ny

where w(max), w(min), zx(max) and z;(min) denote the upper and lower boundaries
of the grid along w and z. The grid points are located at

@y, = wo + k e 2l =20+ qh.(k), (4.64)

where k=0,...,ny, and ¢=0,...,n,.

Numerical integration grid for the jW-calculation in the (w, z)-plane, general form

Note that the interval size h, (k) along z depends on the w-index k. The numerical factors
Ug and u, determine the choice of ny and n, on the basis of s(max).

Simpson integration grids applied in this work Based on the general form for the Simp-
son grid in cylindrical coordinates, the concrete two-dimensional integration areas applied
in this work can be defined.

Depending on the individual system the semi-analytic method is applied to, cf. chapter
we will use different choices for the numerical integration area.

For the application on purely toroidally magnetised neutron stars in section the
three-dimensional integration area we chose extends over the full stellar volume. The
reason is that the localisation of the displacement field described in equation keeps
the computation time manageable. There is no need for an integration area reduction.
Beyond that, we do not expect singularities inside the integration area that might perturb
the integration result.

The subsequent two-dimensional area for the numerical integration in the (o, z)-plane
corresponds to one half of the stellar cross section.
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4. Realisation of the semi-analytic method

The integration boundaries are given by

w' =0 2 =—\/R2 - @} (4.65)

_ f_ 2
=R 2 = +\/R? - wy.

Numerical integration boundaries for the §1¥/-calculation in the toroidal field case

The indices 7 and f denote initial and final integration bounds.
The explicit integration grid follows from the general form shown by (4.62)), (4.63) and
(@.64):

The explicit interval widths are

ho=— h,(k)= ———. (4.66)
n
The grid points are located at

@ = B + k Aot (- Z)ha(k),  (46D)

where £ =0,...,np and ¢=0,...,n,, winit = 0 and zpiq = 0.

Numerical integration grid for the dWW-calculation in the toroidal field case

The chosen integration area is symmetric to the equator. The grid point (o, zg 2 2) =
(0,0) is located at the stellar centre and for constant k, the zZ—grid points are arranged

axisymmetrically with respect to the w-axis: z,g = —z;* etc.

For the poloidal field application shown in section we assume the integration area
to be identical to the localisation area of the displacement field. In three dimensions, its
shape is the torus around the symmetry axis including the neutral line. It is given by
equation (2.129). In two dimensions, it is illustrated in figure With this choice,

possible singularities at the stellar symmetry axis are excluded from the integration area.
The integration boundaries are given by

@ = Rior — Tror 2 = —\/ 72 — (Ror — w)? (4.68)

wf = Rtor + Tror Zl]: = -i-\/’I:2 = (Rtor — W)z.

Numerical integration boundaries for the jW-calculation in the poloidal field case
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4.3. Numerical implementation

For the application on stars with mixed magnetic fields and stratification, described in
section the integration area chosen for the JW-computation extends over the entire
stellar volume.

The two-dimensional area for the numerical integration is equivalent to the toroidal field

case (4.65]).

The integration boundaries are given by

@ =0 = —\/R2 - @} (4.69)

Numerical integration boundaries for the jI¥-calculation in the mixed field case

However, in the case of the full non-Cowling treatment, a smaller integration area will be
applied in the mixed field case for the computation of J and K. That way, the computation
time is reduced. This procedure will be described in section [4.3.4]

Spline interpolation For the purpose of performing the transformation from the Runge-
Kutta grid to the integration grid, we will make use of a spline interpolation.

It is based on the approximation of an exact function Q(r) by polynomials. The full
domain is divided into intervals where the function is represented by different polynomials
P,(r) inside each interval [s,s+ 1]. The interpolation accuracy increases with the degree
of the employed polynomials.

The cubic spline interpolation that is used here is a specifically favourable method, since
it provides a comparably small error for low efforts.

It is based on polynomials of third degree. Polynomials of neighbouring intervals are
matched at the grid points as well as their first and second derivatives:

Py(r) = Psr1(r) dPy(r) = dPs1(r) d2Py(r) = d2 Py (r). (4.70)

The additional condition of fitting derivatives increases the interpolation accuracy over
the expected value for third degree polynomials. Under certain circumstances, the inter-
polation can even be exact. The method is illustrated in the appendix section [D.1]

Implementation In order to apply the cubic spline interpolation to our specific problem,
an implementation plan must be determined.

First, we need to specify the coordinate system we want to perform the interpolation in.
According to the geometry of the neutron star and its magnetic field, reasonable options
are cylindrical coordinates or spherical coordinates. It is more convenient to use spherical
coordinates for the following reasons.

For one thing, spherical coordinates provide the advantage that the known points form a
cartesian grid in the (r,1)-plane, as can be seen in figure This allows for a straightfor-
ward choice of interpolation intervals. The cartesian structure of the original grid strongly
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known grid points known grid points
interpolation along r interpolation along 9
interpolation along ¥ interpolation along r

(0

v r

(a) Interpolation first along 7. (b) Interpolation first along .

Figure 4.2.: Two-dimensional spline interpolation in the the (r,9)-plane of spherical co-
ordinates. If the interpolation is first executed along r, cubic splines need to
be utilised twice (a). If the continuously known values along ¥ are utilised
instead of the first interpolation, cubic splines are only required along r (b).

simplifies the procedure, because the interpolation method relies on reasonably structured
intervals.

The final grid, on the other hand, does not need to show any kind of structure, because
the final grid points can be calculated at arbitrary positions.

Furthermore, the spherical symmetry of the system background quantities mq(r), po(r),
po(r) and ®o(r) can be exploited in spherical coordinates by reducing the number of re-
quired interpolation processes by one. This becomes obvious with the following explana-
tion.

The required grid transformation takes place on a two-dimensional plane. Therefore,
generally two spline interpolations are necessary. In spherical coordinates, the interpola-
tion can either be first performed along r or be first performed along ¥, cf. figure [4.2

If the interpolation is first performed along the r-coordinate, the determined interme-
diate grid points can be used to perform a second spline interpolation along ¥ afterwards.
According to the spherical symmetry, all splines along r are identical, which provides a
calculation advantage.

However, if we decide to first interpolate along 9 and then along r, we find that the first
interpolation is not necessary at all. The Runge-Kutta calculated values form a discrete
grid in the r-direction, but they provide continuous values along 4.

One single cubic spline interpolation along r is therefore sufficient to find the required
values at every (r,9)- or (w, z)-position inside the star.

It is thus sufficient to perform a one-dimensional cubic spline interpolation along r.
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4.3. Numerical implementation

The interval boundaries coincide with the grid points of the numerically computed
system quantities. The interval width is given by the Runge-Kutta step width h, with
equidistant grid points, hs = h, V s.

Based on the general formulas , and given in the appendix, the specific
procedure we apply in this work is as follows.

System quantities Q(r) are interpolated by
Q(r) =as (7“—7“5)3+bS (r—rs)2+cs (r—rs)+ds hs =Tss1—Ts, (4.71)

with the interpolation coefficients

_ Ss+1 - Ss b. = Ss Co = Qs+1 - Qs 2 hr Ss + hr Ss+1

s~ s~ o S - ds =s 4.72
6 h, 2 hy 6 @ ( )

Vs=0,..,n—1 and the linear system of equations for Sy, ..., Sp:

6 0 0O 0 .. 0 0 0 O 6/h (Q2-2Q1 + Qo)

hy 4h, h, 0 .. 0 O 0 O 6/h (Q3-2Q2+ Q1)

0O hr 4h, h ... 0 O 0 0 6/h (Q1-2Q3+Q2)

0 O 0 0 .. hy 4h, hy 0 |6/h(Qn-2-2Qn-3+Qn-4)

0 0 0 0 .. 0 hy 4hy he|6/h(Qu1-2Qn2+Qn3)

0 0 0 O 0 0 0 6| 6/h(Qn-—2Qn-1+Qn-2)

(4.73)

Cubic spline interpolation with linear extrapolation at the boundaries.

The linear system of equations (4.73) is tridiagonal and diagonally dominant. It can be
solved applying the Gauf3-Seidel method explained below.

GauB-Seidel method

The GauB-Seidel method is an iterative routine for the solution of linear systems of equa-
tions.

It is based on the procedure of solving the i-th system equation for the unknown S; in
each iteration step, taking into account the variables S; with j < ¢ that have previously
been calculated during this step.

The linear system of equations

apo SO + +  aon Sn = bQ

aio SO + + Qin Sn = b1 (4 74)
+ + = .. )

ano So  + + apnSn = by

is approximately solved by the solution vector S (™) in the m-th iteration. In the (m+1)-th
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iteration, the components of the solution vector are

Si( 1) _ ;(bi— Zoal-j S](' D _ Zlaij S](' )), i=0,....,n. (4.75)
2 j= J=i+

With an increasing number of iterations, the solution vector approaches the exact so-
lution. The method converges definitely if the linear system of equations is diagonally
dominant. This is especially the case for the system given in expression (4.73]).

4.3.3. Computing the energy variation with Simpson’s integration method

Simpson method For the actual integration part of the code we draw on Simpson’s
h/3-rule in two dimensions.

According to this method, the integrand is approximated by different polynomials in
different intervals of the integration area. The integral value follows as the sum of their
contributions.

The approximation error of the method is of forth order, although the applied polyno-
mials are only of second degree. The reason is that the third order error term vanishes.
The method thus features an optimised ratio between effort and accuracy.

Symmetry The neutron stars investigated in this work are represented by a three-
dimensional model system in axisymmetry. Thanks to the symmetry, one of the integrals
required to calculate the energy variation can be solved analytically.

After the p-integration has been carried out, the w- and z-integral in cylindrical co-
ordinates, or the r- and ¥-integral in spherical coordinates, respectively, remain to be
evaluated numerically. In order to perform the two-dimensional integration, Simpson’s
method is applied twice here.

Implementation The integration grid we use in cylindrical coordinates has been defined
in section Based on that, the numerical integration can be mathematically formu-
lated.

Expressed in cylindrical coordinates, the integral we need to solve is
I-= [f f(w,z)dzdw. (4.76)
First, we apply Simpson’s method on the inner z-integral for all w-grid points k. After-

wards, the results for k£ = 0, ..., n5 are entered as integrand values into the Simpson formula
of the outer w-integral.
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4.3. Numerical implementation

According to that, the approximated integral is

nw _q nNw _q
he 2 2
I:? G0+4 Z G2j+1+2 Z G2j+an +O(h4w)a GkEG(Wk) (477&)
4=0 j=1
nz_q nz_
LY B 20+1 4 9 20 4 e |+ O(h? 9= f(21 A.77h
k‘? fk+ z(:)fk + z;fk +fk + (z)a k:f(zk)- ( )
J= J=

Two-dimensional Simpson integration in the (w, z)-plane in cylindrical coordinates

Remember that lower indices denote w-grid points labelled by k, and upper indices denote
z-grid points labelled by q.

In this work, we are going to compute the energy variation integral in cylindrical
coordinates based on the framework set up in this section.

However, the integration can equally be performed in spherical coordinates. In this
case, the corresponding integration grid and Simpson procedure are equivalent to the ones
we use for the calculation of the radial functions J and K. Their computation will be
performed in spherical coordinates as shown in the subsequent section.

Computational effort The two-dimensional numerical integration requires a noticeable
amount of computation time compared to a one-dimensional integration. However, for the
problems considered in this work and the achieved accuracies, the computational effort is
still limited and manageable.

For future treatments of actual three-dimensional systems, the numerical integration
will still be feasible in finite computation time. In this case, however, one might consider
the precalculation and storing of certain terms, to directly use their values when needed.
That way, it will not be necessary to re-solve all system equations for each new parameter
combination we choose. This idea requires a detailed investigation on which terms stay
unchanged during the variation of certain parameters.

4.3.4. Calculation of the radial functions J* and K" in SWnc

grav

Problem The numerical scheme set up in the previous section is suitable to calculate
the energy variation in Cowling approximation. For a full non-Cowling description of the
system, however, the radial functions J and K need to be known at all grid points r, in
order to compute §W.

The calculation of J and K strongly depends on the choice we make for the displacement
field. In the case of the mixed field choice for &, the additional integral I\*, given by
expression , needs to be computed as well.

Note that in this section, J and K will be named in the general form without indices
as long as we do not specify a particular choice for the displacement field.

If £ is expressed by spherical harmonics according to choice (2.136]), there are two options
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4. Realisation of the semi-analytic method

to calculate the radial functions given by equation (4.13)):

Ji(r) = f po(r') " [z J (;) + drrh(r’)] dr’ (4.78a)
OR / !/
Ki(r) = / % [(l +1) % - dr/h(r'):| dr’. (4.78Db)

The first and obvious possibility is to compute these integrals numerically, for example
applying the Simpson method in one dimension.

On the other hand, the derivatives d,J; and d,K; are related to the integrands in the
following way:

A Jy(r) = +5i(r) = po(r) 7t [@ + drh(r):| (4.79a)
dp Ki(r) = =ki(r) = —”Tol—ﬁ) [(z +1) @ - drh(r)] : (4.79D)

as shown in the appendix equation . With this formulation, the second option
becomes evident: J; and K; can be calculated as solutions of one-dimensional ordinary
differential equations , for example applying the classical Runge-Kutta method.

Both numerical procedures have already been implemented in the code as explained in
sections [4.3.1] and [£.3.3] Therefore, the basis to apply the methods in a straightforward
way is prepared.

Tests showed that both procedures provide comparable results regarding accuracy and
computing time. The second option of the Runge-Kutta treatment is thus preferable to
the Simpson integration due to its reduced programming effort.

In this work, however, we are going to remove the Cowling approximation for the neutron
star model with mixed magnetic fields, where the displacement field obeys the specific

choice ([2.130). Jy* and K}" are given by equations (4.51]).
According to equations (4.40)), their radial derivatives are

0=+ [ oy | (3« LD Jepo (4.500)
0

+S(r,19) aﬁ@T(ﬁ)] sin” ¢ dv

kg =- [ 40 |0 Ry - LD
0

) ™(9) (4.80b)

sin
-S(r,19) aﬁ@;"(ﬁ)] sin? 9 dv.

In contrast to the previous case where & was expressed by spherical harmonics, these
equations are no ordinary differential equations. The application of a Runge-Kutta method
would still require the integration over the polar angle 9.
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integration area for J(rz)
integration area for K(rs)

integration area for J(rs)
integration area for K(rz)

(b) Integration grid for the

(a) Runge-Kutta grid. (J, K)-calculation.

Figure 4.3.: The step width of the (J, K)-calculation grid (b) is twice as large as in the
Runge-Kutta grid of the background quantities (a) in order to guarantee an
even number of intervals for the radial Simpson integration. In this highly
simplified sketch, it is s(max) = 6.

Therefore in this work, Jy* and K" will be entirely calculated by Simpson integrations
in two dimensions.

Integration grid In analogy to the integration grid set up in cylindrical coordinates for
the computation of dW in section [4.3.3] we now define an integration grid in spherical
coordinates for the J, K-calculation.

We first need to choose an adequate set of known points we can base the integration
on. Remember the original Runge-Kutta grid of known background quantities. It
consists of s(max) intervals of width A, and grid points 75, as shown in figure The
background quantities are known at the concentric spheres forming the Runge-Kutta grid.
We are going to place the (J, K)-integration grid points inside this set. That way, all
required quantities for the J- and K-calculation are directly known at the (J, K)-Simpson
grid points without further interpolation, cf. figure [£.3]

Secondly, we need to consider the points where the computed values of J and K are
required. Equation shows that the §W-calculation requires computed values of J
and K at all §W-Simpson integration grid points (g, 2} ). We will therefore compute J
and K for all Runge-Kutta grid points rs where the equilibrium quantities are known as
well. Afterwards, the computed values for J(rs) and K(rs) will be interpolated to the
cylindrical integration grid points (wk,zg), applying the same procedure we established
for the background quantities in section

In order to construct the radial structure of the (J, K)-integration grid, the geometry
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of J and K needs to be considered. In comparison to the energy variation integral, the
calculation of J and K shows one decisive difference: Integrals (4.51a)) and (4.51b)) are not
onetime integrations extending from the stellar centre r = 0 to the surface r = R, but they
need to be computed for different integration areas [0,7] in the case of J and [rs, R] in
the case of K, with s=0,..., s(max).

For the calculation of J(rs) and K (rs), we are going to utilise a two-dimensional Simp-
son method. It is based on the even grid points of the Runge-Kutta grid. For each value of
rs, the upper integral boundary for the J(rs)-calculation and the lower integral boundary
for the K (rs)-calculation are determined by the respective grid point r; itself.

With this approach, the necessary condition of an even number of intervals for the radial
Simpson integration can only be fulfilled for even grid points s = 2, s =4, ..., s = s(max)
in the J-calculation and s = 0, s = 2, ..., s = s(max) — 2 in the K-calculation. This is
why the utilised (J, K)-integration grid has a doubled step width 2 h, compared to the
Runge-Kutta grid. Apart from that, both grids are congruent as can be seen in figure
Once J and K have been computed for the even Runge-Kutta grid points, they are
interpolated to the uneven grid points s =1, s =3, ..., s = s(max) — 1.

Besides its radial structure, the (J, K)-integration grid must provide a discrete angular
structure as well, in order to enable the angular integration. Due to the spherical symmetry
of the background, the equilibrium quantities are independent of i}. That means, the
angular position of the (J, K)-integration grid points can be chosen arbitrarily inside the
Runge-Kutta set of concentric spheres. We choose an even number ny of intervals in the
¥-direction and set the interval width hy and grid point location 95 subsequently.

Overall, the integration grid we use for J and K in the (r,¢)-plane is described as
follows.
The integration boundaries are given by

= (z0-6,)R ¥t =g - g (4.81)
rf = (20 +6,)R 9 =9 + .

Numerical integration boundaries for the J)'-, K}'-calculation in the (r,9)-plane

We choose an integration area that is slightly bigger than the localisation region given by
equation ([2.135)), cf. figure 2.17 For convenience, the integration area has a rectangular
shape in the (r,9)-plane. The extent of the integration area is kept small because in the
mixed field case, the calculation of J and K requires additional integrations for each grid
point.
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Additionally, the explicit integration grid for the J{'- and KY'-computation is defined.

For the Simpson integration, the number of intervals along r is n, = @
The number ny of intervals along ¥ is arbitrarily chosen by
+0 if 22 iep
ng = sl s (4.82)
Uy +1 if =—= odd.
Uy
The according interval widths and grid point locations are given by
R
2h, = —- ho = — rs = Fmin + 28 hr 9 = Dnin + t h, (4.83)
Ny Ny

where s =0,...,n, and £ =0, ..., ny.

The computed values of J and K are next interpolated to a finer grid described by

h, = R hy = T Ts = T'min + S Ay 0" = Unin +t hy, (4.84)

where s =0,...,n, = s(max) and t =0, ..., ny.

Numerical integration grid for the Jy'-, K}'-calculation in the (r,J)-plane

The numerical factor uy determines the choice of ny on the basis of s(max).

Simpson integration In analogy to the approximated integral in cylindrical coor-
dinates, the two-dimensional integral will be calculated by a twice-done application
of the Simpson method.

The J- and K-integrals in spherical coordinates can be expressed by

I- ff F(r,9) A9 dr. (4.85)

They are approximately solved by

! !
=2 Go+4 ) Gaju1+2 ), Gaj+ Gy, | +O((2h,)"), Gs=G(rs) (4.86a)
3=0 j=1
9 _q 9 _q
_hy | L0 3 2j+1 3 2% . png 4 t_ t
Gk—? fg +4 Z fg +2 Z fg +f§ +O(h19), f§:f(79§)' (486b)
j=0 J=1

Two-dimensional Simpson integration in the (r,9)-plane in spherical coordinates
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In the mixed field case, the calculation of 5W§§V shown in equation (4.49)) requires not
only the computation of J}* and KY*, but the computation of the additional integral I}

shown in expression (4.50) as well.
It will be calculated in a one-dimensional Simpson integration along ¢ for all radial grid

points 5. The integration grid we use is equivalent to the angular part of the integration
grid (4.83)) utilised for the (J§*, K}")-computation.
If the additional integral (4.50]) is expressed by

I, = / F(r,9)dd, (4.87)

it can be approximately solved by

One-dimensional Simpson integration along ¢ in spherical coordinates

Reduction of the computational effort The calculation pattern described here for the
mixed field case includes s(max)/2 two-dimensional numerical integrations for J{* and the
same number of two-dimensional integrations for K\* that need to be executed before the
actual 0W-computation can be performed.

The computation time required for two-dimensional integrations is significant, as dis-
cussed in the previous section Therefore, the non-Cowling part will become the
decisive term determining the computation time. It is thus desired to find mechanisms
simplifying the calculation of J and K concerning the processing power.

First of all, we can save time by efficiently arranging the programming structure.

The radial functions J and K will be precalculated and stored before the actual code
run. In cases where J and K do not depend on certain parameters that are being varied,
this procedure is an efficient time-saving method. One precode run allows for a whole
series of §W-calculations with different parameters as long as they do not impact J and
K in (4.51)).

For the application on mixed fields presented in this work, the explicit dependencies are

I = I3 Qo, R, S, T, %) (4.89)
K = K{'(Qo, R, S, T,0%) (4.89b)
with
R = R(&y, 0,799, 0,,09) (4.90)
S': 5’({0,%0,190,(2,5@) (4.91)
T: T(Q07R757F1730777t0r)- (492)
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That means, the radial functions do depend on the magnetic field and composition pa-
rameters. However, they are independent of the poloidal field parameter 7. Therefore,
it is possible to generate lookup tables of J- and K-values for each polytropic index I'y
that will be utilised.

Besides the programming manner, there is also an opportunity to simplify the underlying
calculation structure directly.

As explained above, the computation of J at each grid point rys requires an integration
from 0 to ros. This procedure can be simplified thanks to the additivity of integration
on intervals, for an illustration cf. figure For s > 1, the computation of J{*(r25)
can be performed by making use of the previously calculated value for J{*(rgs,—2). In
analogy, the computation of K (r9s) requires an integration from 795 to R. The additivity
of integration can be exploited here as well if the integration is carried out from the stellar
surface inwards:

ros r25-2 T2s
J(res) = f jdr' = / jdr' + / g dr’ (4.93a)
0 T25-2

T2s+2 T2s

0
R T2s
K@) = [ k' == [k’ == [ kar'~ [ kar. (4.93b)
T2s R R

T2s+2

In the mixed field case, the angular integration over ¥ included in j\* and kY must
be performed in any case. Therefore, we do not exploit the opportunity described above
in the first code applications shown in this work. Instead, we apply the two-dimensional
Simpson integration framework for the J- and K-computation we prepared in the previous
section.

In future applications, however, when more systems should be analysed without Cowling
approximation, the simplification based on might be a convenient tool for the reduc-
tion of computation time. We need to keep in mind that depending on the magnetic field
and composition structure, future applications will require displacement fields different
from the choices shown in this work, which causes different forms of J and K accordingly.
For realistic model systems, their structure is expected to be rather complex, similar to
the mixed field case, than simple, as for spherically symmetric systems. This method will
thus become helpful, especially when complex structures occur inside the integration area,
that slow down the integration process.

Finally, it is always advisable to exploit existing symmetries of the system.

For example, the ¥-integral values in J)* and K" are preserved for given r as long as
we only change parameters of the spherically symmetric background. Features like this
should be considered to save computation time in future applications.

4.3.5. Code development

The integration code built in this work is written in the programming language C. It has
been set up in a very reduced form at first and has been extended ever since to gradually
include more and more features of realistic neutron stars. That way, the code development
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4. Realisation of the semi-analytic method

process could be controlled in every step, guaranteeing that the produced results are in
accordance with previously known facts.
In this section, the code construction progress will be presented chronologically.

Stability of unmagnetised spherically symmetric equilibrium polytropes The first test
application for a simplified version of the code was the stability analysis of equilibrium
compact objects constructed with different polytropic indices.

This setup required the following steps. Since the calculation of the energy variation
is grounded on the background stellar model, the very first required code fragment was
the solution of the equilibrium system equations. The classical Runge-Kutta solver was
implemented as explained in sectionm providing the radial distributions of mass mg(r),
pressure po(r) and gravitational potential ®g(7).

Next, the expression for the energy variation density was expressed by numerically
known values. In this first application, fluid pressure terms and gravitational contributions
were relevant.

Afterwards, the code fragment performing the actual integration was established. Ac-
cording to the spherical symmetry of the equilibrium system, a one-dimensional Simpson
integration over r was sufficient. It was implemented in spherical coordinates. The applied
integration grid was chosen equivalently to the well-established Runge-Kutta grid.

Finally, the opportunity of automatic parameter variation during the code run was
implemented. The energy variation can be calculated for different sets of parameters. The
result W is output tabularly depending on the parameters and can be plotted on the
parameter space. In the simplified code, the polytropic index I'g and the central density
pe were varied in order to investigate different background models.

Stability of toroidally magnetised polytropes The second step in the code development
process enabled the treatment of magnetised systems.

This involves the extension of the energy variation density by the Lorentz term as well
as choices for the magnetic field parametrisation. Accordingly, the displacement field
has been chosen as explained in section Due to the Newtonian description of the
magnetic field, the relativistic corrections in the system equations needed to be dropped
in order to maintain consistency.

With this new situation, the following arrangements in the code became necessary. Since
the newly added magnetic field structure breaks the spherical symmetry of the background
system, the one-dimensional Simpson integration was replaced by the two-dimensional one
shown in section It was implemented in cylindrical coordinates.

The two-dimensional integration requires an integration grid in the (w, z)-plane, which
was set up next. The according system quantities Q(w,z) were interpolated from the
spherically symmetric solutions Qo(r) of the system equations. At first, a simple approx-
imation method had been implemented. Subsequently, it has been replaced by the more
accurate cubic spline interpolation explained in section [4.3.2]

The first code test for magnetised systems was the investigation of toroidally magnetised
neutron stars subject to ’sausage’ (m=0) and ’kink’ (m=1) mode displacement fields de-
fined by Tayler| (1973). The code presented here was the first one to reproduce the Tayler
instabilities of neutron stars with toroidal magnetic fields using a semi-analytic method.
This result will be shown in section Bl
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4.3. Numerical implementation

Stability of poloidally magnetised polytropes In order to enable the code for the treat-
ment of arbitrary magnetic field structures, the investigation of poloidal magnetic fields
needed to be implemented next.

The required model adjustments regarding the magnetic field parametrisation and the
displacement field structure have been shown in sections [2.2.3] and [2.3.3] All quantities
have been transformed from toroidal coordinates used by Markey & Tayler (1973) to
cylindrical coordinates, according to (2.8)). That way, the code structure performing the
Simpson integration in cylindrical coordinates could be maintained.

The required code enhancement in this step was the adaption of the integration area.
The integral extending over the stellar volume has been replaced by an integral over the
localisation area of £, in accordance with the explanation given in section [2.3.3]

Applying the adapted code, the poloidal field instability was verified by a negative
energy variation for arbitrary magnetic field strengths, as will be shown in section [5.2

Stability of unmagnetised stratified stars The implementation of stratification in the
model was first introduced by investigating the stability of stratified unmagnetised stars
against g-mode type displacement fields.

According to section [4.I] the energy variation was adjusted to stratified stars. The
displacement field was expressed by stellar eigenmodes, approximated by a homogeneous
background star, as shown in expression .

The implementation of stratification in the model did not require a restructuring of the
code per se. An extension was nevertheless added to enable a validation mechanism for
the produced results. For displacement fields of the form of stellar eigenfunctions, the code
can calculate the corresponding eigenfrequencies from the computed energy variation, see
equation .

Beyond that, a perturbative method was implemented to derive the eigenfunctions of
the stratified star. Starting functions equivalent to the eigenfunctions of the homogeneous
star are gradually corrected to converge to the actual eigenfunctions of the considered
system. The method will be shown in section [5.4.2]

The code confirmed the expected qualitative stability behaviour of stratified stars sub-
ject to g-mode type displacements for I'y 2 I'g. Literature values of eigenfrequencies of
polytropic neutron stars were reproduced to affirm the quantitative functionality of the
code, cf. section [5.4.1

Stability of stratified stars with mixed magnetic fields The investigation of mixed
magnetic fields considering stratification required the combination of all fragments set up
in the code development process so far.

Energy variation, magnetic field and displacement field were chosen in accordance with
Akgun et al. (2013) in order to facilitate the validation of results, cf. sections and
233

This step did not require further structural code modifications thanks to the program-
ming groundwork depicted above. Still, the integration code has been restructured again
to adjust the integration area to the displacement field localisation.
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4. Realisation of the semi-analytic method

Beyond that, the automatic variation of the level of stratification has been implemented.
Note that in the first application we performed, the stability of hydrostatic equilibria
constructed with different values of I'g was tested. In contrast, for the application described
here, the background system was kept constant and we tested the impact of stratification
and the magnetic field structure on the stability of these equilibria. Therefore, we kept I'g
constant here, while I'y has been varied.

The calculated energy variation depending on the poloidal field strength and the level of
stratification reproduced the stability criterion derived by Akgiin et al. (2013]) for stratified
neutron stars with mixed magnetic fields. The results will be shown in section

Stability of polytropic stars without Cowling approximation The final step to receive
the code in its current form was the removal of the Cowling approximation.

This was first realised in a spherically symmetric toy system with one-dimensional in-
tegration and displacement fields expressed by spherical harmonics, in accordance with
Chandrasekhar, (1965). The analytical extension of the energy variation is depicted in

sections £.2.7] and [£.2.2

The computational requirements for the J- and K-calculation are the additional Simp-
son integrations, that have been implemented according to section

Furthermore, the storing of computed values for J(r) and K(r) in arrays and their
reuse in subsequent code runs has been realised in order to save calculation time.

Stability of stratified stars with mixed magnetic fields without Cowling approximation
After the consideration of the toy model, the non-Cowling contribution was set up for the
actual mixed field system with stratification and the according mixed field choice for the
displacement field.

The analytical groundwork is shown in sections and

The numerical implementation required modifications in the computation of the radial
functions J and K. According to the axisymmetry of the star and the mixed field choice
for &, the one-dimensional integration has been replaced by the two-dimensional Simpson
method explained in section [4.3.4]

The full non-Cowling treatment was applied on the mixed field system with stratifica-
tion we investigated before in Cowling approximation. That way, the assumption of the
Cowling approximation from Akgiin et al.| (2013) could be validated. The results will be
shown in section [5.3

4.3.6. Code structure

This section illustrates the structure of the final code at the end of the development
process described above. The current code is capable of treating mixed magnetic fields,
stratification and non-Cowling problems.

The code run consists of two precodes that will be described first in this section and the
main code described afterwards.
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Precodes

Before we run the actual integration code, two precodes computing input values for the
main code are called in order to save calculation time. As explained above, the precodes
provide lookup tables of system quantity values the actual main code has recourse to. This
is especially expedient for quantities that are not influenced by the parameter variation
performed in the main code.

Specifically, the first precode constructs typical background neutron star models. The
second precode computes the radial functions J{*(r®) and K{*(7*) describing d®.

Construction of neutron star models This precode generates typical neutron star models
characterised by mass, radius and compactness on the basis of different input parameter
sets (pe, Lo, k). It is based on the Runge-Kutta solver described in section With
the precode results, the input parameters and grid assumptions required to yield a desired
model neutron star can be read from a lookup table.

Calculation of radial functions J* and K}* As discussed in section this precode
creates lookup tables for values of J, K, d,J and d,K at all Runge-Kutta grid points
inside the localisation area. The main code can call these results in every run during the
parameter variation, for which the parameter change does not impact the radial functions.

The precode structure concerning the calculation of the background quantities is equiv-
alent to the main code structure. The integration part differs from the main code by
computing J{* and K7 instead of W, cf. section

For the sake of accuracy, the numerical values for the derivatives d,Jy" and d,K)" are
not numerically derived from J and K but directly calculated from the integrands in (4.29))
based on known quantities at the grid points.

Main code

Prespecified constants and input parameters The main code first requires physical and
technical input parameters that can be arbitrarily chosen within a reasonable range.

The computational input parameters determine the Runge-Kutta solver as well as the
Simpson-grid definition. The remaining parameters describe the model system under con-
sideration, the magnetic field and the displacement field vector. They represent potential
members of the parameter space on which the energy variation is investigated. In this
case, a new value is assigned to them in each code run during a loop.

Finally, the required physical constants ¢, Mg and G are defined.

Setup numerical grids The first computational step in the main code is the determination
of the Runge-Kutta step width h, based on the given neutron star model with radius R
and the desired accuracy, determined by s(max). Next, the numbers of intervals for the
Simpson integration in the (w,z)-plane in both directions are set via relations ,
according to s(max) and the factors u, and u, chosen before. Tests ensure that the
numbers of integration grid intervals for both integrals are even, sufficiently large, and in
a reasonable relation to one another.

Once the numerical grids are defined, the remaining variables required for the Simpson
integration, (Jy*, K{*)-calculation and the localisation are declared and initialised.
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4. Realisation of the semi-analytic method

Solution of the system equations After the numerical setup is complete, the system
equations are solved with the Runge-Kutta routine described in section In
contrast to the precode, this time the solver is not mainly focussed on identifying total mass
and radius, but on computing the background quantities mass, pressure and gravitational
potential for all Runge-Kutta grid points. The results mo(rs), po(rs) and ®o(rs) are
stored in one common array together with the radial distance from the stellar centre 7.

Validation tests are performed in order to ensure that the routine produces the correct
values for the prespecified values of M and R and that the fluid pressure decreases below
the required critical value p. at the surface.

Setup numerical integration grid Once the radial profiles of the equilibrium quantities
are available, the numerical grid points defining the localisation area can be identified.
First, the radial grid points ryi, and ryax comprising the localisation region are deter-
mined. The precalculated values for J and K are allocated to the arrays that describe
their radial distribution.

Afterwards, the radially known background quantities mg and pg as well as J and
K are interpolated to the Simpson grid points utilised in the two-dimensional numerical
integration. Further, the position variables defining the integration grid in the (o, z)-plane
are stored in arrays.

Computation of the energy variation After all required system quantities are numer-
ically set, the Simpson integration in two dimensions is performed, first along z and af-
terwards along w, cf. section The integration code is executed in a series of loops
where the input parameters are varied. That way, the energy variation is computed for
different sets of parameters at once.

Variable parameters are the neutron star model (M, R, M /R), the background composi-
tion parameters p. and &, the polytropic indices I'g and I'y, the magnetic field parameters
such as By, 7ior and npe1, the displacement field amplitude as well as the localisation
choices described by zq, ¥, J, and dy for example.

Finally, the code produces an output, listing the computed energy variation values
for the corresponding parameter sets being used. In addition, the constants and model
parameters that were not being varied are output.
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5. Applications of the semi-analytic method

After the idea of the semi-analytic method has been realised in the previous chapter, it
will be applied to actual problems, testing its functionality and producing new insights
about the stability of neutron stars.

On one hand, the method will be employed on magnetised neutron stars in order to
address the stability issue. By testing gradually more complex systems and incorporating
more and more features of realistic neutron stars, systems shall be found that might be
potentially stable. Translated into a mathematical approach, this means, the particular
parameter combinations generating the most positive energy variations shall be found.

On the other hand, further application possibilities of the semi-analytic method will be
shown in section [5.4 For one thing, these general applications are helpful steps during
the development of the method. Beyond that, they show the broad range of applications
and the universality of the method.

Concerning the application of the method to magnetised neutron stars, we will begin
with the attempt of verifying Tayler’s known analytical results on unstable neutron stars
with purely toroidal and purely poloidal magnetic fields in sections and That way,
the functionality of the method and the applied code is guaranteed, as explained in section
4.3.75]

Afterwards, the extensions analytically derived in chapter (4] are incorporated in the
method. Subsequently, more complex neutron star models will be investigated, as pre-
sented in section This study can be compared to the work by |Akgun et al.| (2013),
where the semi-analytic approach allows for a more realistic modelling in comparison to
the analytic study presented by Akgiin et al. We will be able to remove simplifications
and constraints that were necessary in the analytical approach. Especially, the Cowling
approximation will be removed.

This chapter is structured in the following way. For each application of the semi-
analytic method to magnetised neutron stars, we describe the specific model setup first,
including the parametrisation we use for the magnetic field, the displacement field and
the localisation area. Next, we present the subsequent explicit expression for the energy
variation. After the case-dependent numerical specialities have been discussed, the results
are finally presented and interpreted.

Supporting calculations and derivations are shown in the appendix [C] for reasons of
clarity.

As explained in section [2.3.3 and proven in the appendix [B.4] the displacement fields
we constructed are chosen in such a way that the surface integral contributions do not
need to be considered in any of the applications shown in this chapter.

Moreover, all applications shown here address neutron stars in a vacuum environment.
The stars do not have an atmosphere which could provide any magnetic field or energy
contributions.
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5. Applications of the semi-analytic method

5.1. Stars with purely toroidal magnetic fields

For the toroidally magnetised neutron star, we will mainly discuss non-axisymmetric dis-
placement fields with mode indices m # 0. They cause instabilities in the cylindrical fluid
discharge which are expected to persist in the presence of gravity as well, cf. Tayler (1973).
The “kink” mode with m = 1 discussed here causes the strongest instability. This
becomes apparent in a straightforward instability proof that will be outlined below.
For the geometry of the displacement field see figure

5.1.1. System setup

In this section, the semi-analytic method will be applied to the model used by [Tayler
(1973). That is, an axisymmetric polytropic star with a purely toroidal magnetic field in
Cowling approximation.

Rotation is neglected, as well as the crust and the potential inner core. The star solely
consists of normal fluid neutrons and normally conductive protons and electrons. The
magnetic field lines form concentric circles around the symmetry axis of the system, cf.
figure According to the axisymmetric geometry of the system, cylindrical coordinates
will be utilised in this application.

In order to describe the unmagnetised background system, we will apply the hydrostatic
equilibrium equation as defined in section Note that Tayler, on the contrary,
considers the magnetic field contribution in the hydrostatic equilibrium equation in order
to simplify the expressions in 6W. According to this circumstance, our terms will slightly
differ from the form given by Tayler| (1973). These deviations will be discussed in detail
below.

In this section, rationalised geometrised Gaussian cgs units will be applied in order to
be consistent with Tayler’s work.

Magnetic field

At first, Tayler chooses a magnetic field of purely toroidal geometry and an otherwise
arbitrary structure. The azimuthal component B, is finite, while the other components
vanish.

In addition and as explained above, in this work the magnetic field is claimed to vanish
at the stellar axis as well as at the stellar surface. The assumptions B, ~ @ and B, ~ p
prevent inconsistencies at the stellar axis on one hand and the extension of the field into
the vacuum exterior on the other hand. The magnetic field choice was presented in
the fundamental setup section It is depicted in figure

In cylindrical coordinates, with the constant amplitude By, it is

By =0 B, = @ po Bior B, =0. (5.1)

Stellar composition

In the simple system Tayler chose, stratification is not taken into account, the star is
polytropic. Therefore, the equilibrium system and the perturbed state are described by
the very same equilibrium polytropic index, I'y = T'y.

The fluid contribution to the energy variation density is thus given by .
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5.1. Stars with purely toroidal magnetic fields

Description of the gravitational energy contribution

This first application of the semi-analytic method on magnetised neutron stars will be
performed in Cowling approximation, i.e. 5§rgv =0.

The gravitational contribution to the energy variation is thus given by (2.117c|).

Beyond that, we keep both sign conventions for the gravitational field vector with g =
+V®g, where the upper sign corresponds to the notation used by Tayler (1973).

Displacement field

For the construction of a non-axisymmetric displacement field revealing the instability of
toroidally magnetised stars, we follow Tayler’s approach.

After ansatz has been chosen for the displacement field, the &-defining functions
need to be defined in such a way that the Tayler instability is detectable.

The derivation of this explicit form for & is based on the explicit expression for the
energy variation in the toroidal field case, which will be given below in equations
and . The derivation of this explicit form will be outlined in the subsequent section.
The detailed derivation is presented in the appendix section However, equation
has been derived applying the general ansatz for the displacement field and
the minimisation of £(Y") only, without further assumptions on the &-defining functions.

In comparison to Tayler’s approach, the form of equation derived here, includes
additional terms following from the fact that we do not include the magnetic field con-
tribution in the equilibrium equation . More details on that will be given in the
subsequent section and in the appendix section For the construction of the explicit
displacement field form presented here, we just need to keep track of these additional
terms.

In Tayler|(1973), three stability criteria for the neutron star are set up. Their equivalents
derived from equation ([5.11)) are

_ 1 —
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The derivation of these criteria is shown in the appendix section

Tayler finds that if one of the stability criteria is violated, a displacement field
causing a negative energy variation can always be found.

Close to the stellar symmetry axis, the first stability criterion is violated for B, # 0, as
validated in the appendix section [C.1.2}

A<0 for B, #0. (5.4)
This violation is obvious only for m = 1, which will be assumed from now on.

Based on , the displacement field can be constructed in such a way that the en-
ergy variation becomes negative for an integration around the localisation (g, 2¢) of the
instability. Particularly, this implies to choose suitable values for the &-defining functions
X and Z in the ansatz for the displacement field.

Despite the fact that the stability criteria with differ from Tayler’s approach
due to the differences in equation , the argumentation for the displacement field
construction stays unchangedly applicable. The justification of this statement as well as
the detailed description of all construction steps outlined here are given in the appendix

section [C.1.4l

Considering the detectability of the Tayler instability and a vanishing surface integral
contribution, the assumptions made in section [2.3.3] for the displacement field ansatz

b = X (w,2) ™ €p = Y(=.z) eme & = Z(w, z) ™ (5.5)
m
follow:
X(w,z) = Xow sin(ka (w—€4)) cos(la z) X(w,z)=0
in A, else, (5.6)
Z(w,z) =Zyw cos(ka(w—€4)) sin(la z) Z(w,z) =0

and the value for Y that minimises the energy variation with respect to Y:

Y(w,2) = Yiin =0x(wX) +wd. Z + If?po (ng+gzZ)
0
B - (wB
L ZBe (9=@Bo) vy i 7).
2F0p0 w
The localisation area is
A={w€ReA—1<w<eA+l,z€R‘—£<z<1}. (5.7)
ka ka la la

The geometry of the toroidally magnetised model system is illustrated in figure The
parameters must fulfil

1
€A>% ke Xo+14Zo=0 | Xo| > | Zo| Lal > Jkal > . (5.8)
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with the typical scale height h of the system quantities.
The precise motivation for this displacement field choice is given in the appendix section

C14

The geometry of the utilised displacement field and its localisation are visualised in
figures 2.12b] and 2:15]

The “kink” mode with m =1 and choice in general describes a non-axisymmetric
deflection that is periodic with ¢, according to the proportionality & ~ €%, The displace-
ment field components in w- and z-direction are each periodic with both w and z, accord-
ing to the proportionalities £ ~ sin(ka (w—€4)), &w ~ cos(la z) and &, ~ cos(ka (w—€4)),
&, ~sin(la z). The dependency of &, on w and z is not trivial, due to the dependency
€ ~Y (X, Z,05(wX),0.2).

Finally, we are going to define the constants k4 and l4 in terms of the dimensionless
stellar radius R via

T i
k = —=U l =—~u7 59
4= F A= (5.9)

where u; and u; are numerical parameters that need to be chosen.

5.1.2. Energy variation explicitly

Applying the assumptions (5.1)) and (5.5) made above for B and £ in its general form
(2.116)) with (2.117)), the energy variation becomes

ST = }lfffm{Bimg (X*X+Z*Z)+(8w(XB<p)+8Z(ZB¢)) (5.10)

o2

O (wB,)
w

.(aw (X*B,)+0.(Z" B,) - X*-8.B, Z*)

B B
- —£ 05 (wB,)Y'X - —£0.B,Y"Z
w w

+F0p0(@—y—+8ZZ*)'(M—£+8ZZ+X8wp0+Zazp0)

w w

Oz (wX™) Y* +8ZZ*) + X" Ompo+ 2" azpo]} dv.

w

+ (X 8wq)0 + Zazq)o) [po (

Note the additional factor 1/2 that appears here compared to Tayler’s form as long as
the real part has not been evaluated yet. It is caused by our differing definition of the
displacement field, cf. appendix section [A.5.4] In comparison to the general expression
(2.117), the magnetic contribution terms in are missing the factor 1/(47) that
stemmed from the non-rationalised Maxwell equations . It is neglected here since
we switched to geometrised rationalised Gaussian cgs units in this chapter.

Expression can be further transformed by splitting the &-defining functions into
real and imaginary parts. Since they provide equivalent contributions to W, they can
be chosen real without restriction: X = Xg, Y =Yg and Z = Zr. The real part in
the integrand can be evaluated and the ¢-integral can be performed. Beyond that, the
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integrand can be minimised with respect to Y. This derivation is shown the appendix
section [C.1.5)
Finally, the explicit energy variation is

2 2 2 2 72
om 9 X o (M*=2)X*+m~Z
SW = fo{Bw(waw(w)wzz) + B (5.11)

w2

2B, X

w

(6WB<p X+ 82B¢ Z) + (X 8w¢)0 + Z&ZCDO) (X 6wp0 + Zazpo)

2 2 B2 8 B 2
—&(Xawebwzaz%) - ( = (@ “0)X+8ZB¢Z)
o po 4T po w
B 0 (@B
7 2070 (X8w<1>0+282<1>0) (MX+8ZB¢Z) wdwdz.
Topo w

Note that the last two terms in are additionally appearing compared to Tayler’s
form. This circumstance is caused by the different use of the equilibrium equation men-
tioned above.
Furthermore, we kept the mode index m # 0 arbitrary, whereas Tayler assumed m = 1.
The difference in taking the real part between our approach and Tayler’s approach,
however, is only reflected during the derivation but not in the end result. We applied the
real part to the complete integrand, whereas Tayler takes the real part of the displacement

field only, compare appendix section

Energy variation contributions explicitly

During the derivation of the energy variation formula in the appendix, we kept track of
the separate contributions stemming from different stellar forces: the Lorentz force, the
fluid pressure gradient and the gravitational force.

This procedure will allow for a detailed interpretation of the results.

With the minimising value

Yiin = O (wX) +wd. Z + pow
Lo po

(X 0By + Z8Z<I>0) , B¢ (8w (@By)

X +0,B,Z
2T po . )

(5.12)
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from equation (C.43)), the contributions to the energy variation density are

2.2 2
1 Bq,m 9 9
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The explicit form, after Yy, has been inserted, follows from equations ((C.45)), (C.49)
and (C.50):
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5. Applications of the semi-analytic method

For a better understanding, the terms appearing in this notation can be traced back to
their origin in equation (2.116]) with (2.117)), where

oW = 5W1 + (5W2 + (5W3 + 5W4 + (5W5 (515)
with
1
SWy = Z9%{513* ’B} (5.16a)
SW = im{go (6B x¢)} (5.16b)
W= 1% {Tom (V€ (v-6)) (5.16¢)
sWi= (9 {e p(v-€9) (5.164)
5W5—iifﬁ{ V@ (V- (po&” ))} (5.16e)

The positive magnetic contribution terms in expression ([5.14a)) stem from 6Wj, the
negative and mixed sign terms from 6Ws. The last term in the magnetic contribution
represents the additional term compared to Tayler’s form.

The first fluid contribution in equation added up from terms of both W3 and
0Wy, while the second fluid contribution follows from W3 alone and appears additionally
compared to (Tayler| (1973).

The gravitational contribution corresponds to 0W5. The last gravitational con-
tribution is an additional term.

5.1.3. Computation
Parameter set choice

Once the system setup has been prepared, the numerical integration requires an appro-
priate choice for the parameters of the background model, the magnetic field and the
displacement field, as well as suitable computation parameters.

In order to create a typical neutron star with Newtonian system equations , the
background polytropic index of I'g = 2 will be used. The central density p. and the
proportionality constant #* will be varied within a reasonable range to cover a variety of
neutron star models differing in mass, radius and compactness.

Cf. the current list of observed neutron stars in [Lattimer & Prakash (2005); Lattimer
(2016).

The models applied here are shown in table

The magnetic field strength will be varied within the range that is relevant for toroidal
magnetic fields in neutron stars. According to previous studies indicating a much stronger
interior field than the observable exterior field, we also cover high magnetic field strengths.

The calculations will be performed for varying Bior from 10 to 10 G and for Bior = 0.
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5.1. Stars with purely toroidal magnetic fields

Table 5.1.: Background model parameter set used for the Tayler instability proof on
toroidally magnetised neutron stars. The remaining parameters for magnetic
field, displacement field and computation are given in the text.

pe in 108 g/em® &% in 10" em? M in Mg Rinkm M/R

1.24 8 1.12 11.2 0.15
1.1 10 1.39 12.5 0.16
1.15 10 1.45 12.5 0.17
1.2 10 1.51 12.5 0.18

The displacement field parameters must be chosen in accordance with the requirements
shown in equation . The discussion regarding the optimal choice is shown in the
appendix section

We use the mode index m =1, the amplitudes Xg =1, Zy = —0.1, the constants u = 10,
u; = 10? and the dimensionless localisation parameter é4 = 0.001 R/uk =0.0001 R.

For the computational parameters, one universal parameter set will be utilised for all
models under investigation.

The radial coordinate is approximated at the stellar centre by r. = 1cm. The vacuum
pressure level introduced in section is set to p. = 10719 Remember that $ denotes
the dimensionless pressure value, i.e. p. = 5.55 x 1038 g cm™! s72. Note that this value is
smaller than the central pressure by approximately four orders of magnitude. For example,
Pe=5.34x10*2g em™ s72 for Ty =2, p. = 10 g cm™ and #* = 8 x 10" cm?. The Simpson
integration grid is defined by ux = 10 and u, = 10.

Numerical features

The two-dimensional integration area used for the toroidal field was constructed in section
and presented in equation (4.65]).

According to the manageable computation time, the numerical integration area is chosen
as one half of the stellar cross section. That way, we do not need to construct an integration
region with a cartesian geometry, adjusted to the shape of the localisation region.

5.1.4. Results

The total energy variation (b.11) and its individual contributions (5.13)) have been calcu-
lated for exemplaric model systems. In this section, we present the results.

The qualitative behaviour of 5W(Btor) and especially its sign are presented in figure
The quantitative behaviour can be visualised by plotting the absolute value ‘6W‘ (Btor)-
The absolute values of the energy variation and the separate contributions are plotted in
figure for different model neutron stars.

We show both graphs as we are primarily interested in the stability behaviour of the
system which is described by the sign of the energy variation. On the other hand, figure
cannot provide information about the quantitative behaviour of (5W(Btor). The result
must be plotted in a log-log plot in order to read out the quantitative relation between
energy variation and magnetic field strength. However, the logarithmic scaling requires
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5. Applications of the semi-analytic method

positive values. We can create graph which contains the desired information about
the quantitative behaviour at the price of loosing the qualitative sign information. The
picture becomes complete by combining both graphs.

Also note that we focus on models that provide a positive gravitational energy variation
0Waeray in order to avoid possible g-mode type instabilities affecting the consideration.

Finally, figure presents a measurement for the numerical error caused by the inte-
gration. It shows the absolute difference between the total energy variation and the sum
of its contributions,

3
‘WV’—Z(S’MZ , (5.17)

i=1

with 6W; = 6Whagn, 0Wiauid, 0 Weray-

The total energy variation has been computed based on the explicit form ([5.11f), whereas
the separate contributions have been calculated according to equations , where the
minimising value has been specified separately.

Note that this consideration represents a restricted estimate for the numerical error
range. It only reflects the obvious deviation between different numerical approaches, pro-
viding the minimum numerical error range. The actual error generated by the integration
might be even larger.

The results presented here contain the following information.

Before we focus on the impact of the magnetic field, we check the conditions of the
unmagnetised system.

The total energy variation of the unmagnetised star is positive for all models, i.e.
5T/I7(Btor =0) > 0. That means, without the toroidal magnetic field, the system is stable
against the kink mode type displacement field which is imposed on the star. This
fact eliminates the possibility of mistaking a potential negative energy variation caused
by the fluid or gravitational contribution for the Tayler instability. This result creates the
foundation for a verification of the Tayler instability.

The qualitative behaviour of the energy variation follows from figure [5.1

The magnetic contribution is negative for all finite field strengths, 5Wmagn <0V Byor 0.
Its absolute value |5Wmagn| increases with the field strength.

The fluid and gravitational contributions are independent of the magnetic field strength
as expected. The fluid part is slightly negative, 6Wauq < 0, and the gravitational part
is slightly positive, 5Wgrav > 0. Compared to the magnetic part, both are increasingly
negligible for growing Bio;.

The dominating magnetic contribution causes the total energy variation to be negative
for magnetic field strengths exceeding a critical value: 6W < 0V Bior > BEH. In terms of
the stability criterion , this implies that the system is unstable against the kink mode
perturbation if the system’s toroidal magnetic field is sufficiently strong. The significance
of this finite critical value will be discussed below.

The quantitative result is expressed in figure [5.2
The magnetic contribution to the energy variation, and thereby the total energy varia-
tion as well, shows a linear behaviour in the log-log plot. This relation translates into a

120



5.1. Stars with purely toroidal magnetic fields

0.0 4= -—e —e —e »
-1.0x10™"
-2.0x10™"
= ]
173
” 2.0x10°
-3.0x10 -
0.0 6Wtot
a1 magn
-4.0x10 " — {-2.0x0%1 —_—
fluid
i —— W
-4.0x10% ; | grav
0.0 4.0x10’ 8.0x10’
-11
-5-0X10 |l|1 L) L L) ||l|||11 L L} L] ll|l||12 L L ||||||I1 L] L) llllllll4 L L |||||l|1
10" 10 10 10” 10 10°
Btor G)

Figure 5.1.: Dimensionless energy variation of the toroidally magnetised neutron star for
the m =1 mode displacement, calculated with the semi-analytic method. The
graph shows the total energy variation as well as the separate contributions
from magnetic field, fluid pressure and gravity. The energy variation is neg-
ative for magnetic field strengths of By, > Bt = 2.86 x 108 G. Note that
OWmagn < 0, 0Wayia < 0 and 0Weray > 0V Byor # 0. Separate contributions
do not add up to the total energy variation due to numerical inaccuracies,
as it will be discussed in section [5.1.5] The model system is described by

M =1.12Mg and R =11.2km. The parameters are defined in the text.
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Figure 5.2.: Dimensionless energy variation of the toroidally magnetised neutron star for

122

the m = 1 mode displacement, calculated with the semi-analytic method.
The graph shows the absolute value ‘5Wg4‘ = 10%4 ‘5W‘ of the total energy
variation 0W (solid line), the fluid contribution 6Wpuq (dashed line) and
the gravitational contribution 5Wgrav (dotted line). Note that dWpagn < 0,
OWayia < 0 and 0Wgray > 0V Bior # 0. The magnetic contribution dominates
the behaviour of the total energy variation. The parameters are defined in
the text.



5.1. Stars with purely toroidal magnetic fields

1E-16 5
1E175 —=—M=1.12M_, R=11.2km
| ——M=1.39M, R=125km
1E184| —A—M=1.45M, R=12.5km
e1o]l TYM=151M, R=125km
= 1E-20
o E
GRERIE Y
% ez
1E-23 -
1E-24
1E-25
T AL AL AL UL | o T
1E10 1E11 1E12 1E13 1E14 1E15

B, (G)
Figure 5.3.: Error estimation for the numerical integration of the semi-analytic method,

regarding the application of the method on the toroidally magnetised neutron
star.
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5. Applications of the semi-analytic method

quadratic dependency dWyyagn ~ Bfor. The magnetic contribution increases quadratically
with the magnetic field strength, while fluid and gravitational contribution stay constant
independent of Bi;.

This can be seen from the separate contributions to the energy variation as well.

From assumption ([5.1)) it is

O (wB,)
w

BQD = PO Btor = (2 L0 +w6wp0)Btor 8ZB@ = wazpo Btor- (518)

Therefore, the magnetic contribution (5.13a]) obeys Emagn ~ B, while the fluid contribu-

tor»

tion ([5.13b)) as well as the gravitational contribution ([5.13c]) do not depend on Big,.

The root of §W (Bior) in graph determines the critical field strength for instability.
We give a rough estimate by fitting the energy variation for Bioy < 9 x 10°G with a
quadratic function and calculating the root.
For an estimate of the BXf-accuracy, we calculate the minimal and maximal values
the energy variation can take, according to the numerical error range. These minima and

maxima are denoted by §W™™ and §W™ax,

We approximate the energy variation error within the range 0 G to 9 x 10° G restrictively.
That means, we assume the smaller value at By, = 0 rather than the larger value at
Bior = 9 x 10°G. That way, we ensure not to overestimate the error and mistake an actual
physical feature for a numerical inaccuracy.

According to the computed values

W (Bior =0) = 7.47092 x 10724 (5.19)
SW (Bior = 9x 107 G) = -7.40234 x 107 (5.20)
SW (Bior) = Y. 6Wi(Bior)| = 2.70492 x 10722, (5.21)

the energy variation and the minimal and maximal values of the error range can be de-
scribed by the quadratic equation

SW ~ 6W (Bior = 0) + ¢4 (Bior[G])? (5.22)
with
¢y =9.14791 x 107 G2 Wnin = —1.957828 Wnax = 3.452012. (5.23)
The roots follow as

Bt 985776 x 108G BIbmn_g BILmAX_ 614999 x 108 G. (5.24)

tor tor tor

Note that the minimal possible value of the energy variation is already negative for Bior = 0
and does not have a change in sign within the range 0 G to 9 x 10° G.

Thus, the minimal critical value is Bg,,” ™" = 0.
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5.1. Stars with purely toroidal magnetic fields

5.1.5. Interpretation

After the results have been presented in the previous section, the next step is to evaluate
whether the analytically known Tayler instability could be verified applying the semi-
analytic method.

Summarising from the previous section, the total energy variation is negative for all
magnetic field strengths exceeding a critical value. Therefore, the system is in fact unstable
against the imposed perturbation as expected.

In the unmagnetised state, §W is positive which implies a stable system in the presence
of the same perturbation mode. That means, the instability is caused by the magnetic
field indeed.

It must be noted that the results in figure imply 0W (Bior = 0) > 0, while figure
provides §Wayid (Btor = 0) +dWeray (Bior = 0) < 0 for the presented model system. However,
the small values 6Wayiq(Btor = 0) and 0Weray (Bior = 0) lie within the error range of the
numerical integration, estimated in figure [5.3] The negative energy variation resulting
for Bior = 0 by adding fluid and gravitational contribution is rather a consequence of the
numerical inaccuracy then an actual physical feature. This interpretation is supported
by the fact that JW has been computed directly from the explicit minimised form ({5.11))
of the energy variation. The calculation of dWqyuiq and dWeray, in contrast, involved the
additional step of precomputing Y., and inserting it into the integral. It is therefore a
justified assumption that the accuracy of W is higher than the accuracy of the sum of
the separate contributions.

Furthermore, the possibility that the detected negative energy variation could be caused
by another instability, not the Tayler-instability, has been broadly eliminated by focussing
on a model where the gravitational contribution is stable against the applied perturba-
tion. In fact, the fluid and gravitational contributions to the energy variation are almost
vanishingly small for all values of By, and might even vanish strictly according to the
numerical error range.

Therefore, it is very likely that the detected instability is of magnetic nature.

However, the instability analytically found by [Tayler| (1973 represents a structural
instability which is present for all magnetic field strengths Byo, > 0. In contrast, the semi-
analytical results produced here suggest a finite critical field strength Bt > 0. This fact
needs to be discussed in order to decide whether the instability detected here functions as
a verification of the Tayler instability.

First, we must mention that a structural character of the instability found here is not
excluded by the results. As explained above, the fluid and gravitational contribution to
the energy variation are so small that 0Wayiq(Bior = 0) = 0 and 6Weray (Bior = 0) = 0 are
compatible with the restrictive numerical error range. This scenario would imply a critical
magnetic field strength of B = 0.

Secondly, we need to take into account that Tayler’s stability consideration was based on
the assumption that the &-defining functions X and Z vary quickly spatially compared to
the system quantities. This assumption was based on the requirement |l4]| > |ka| > 1/h 4,
as explained in the appendix section However, this condition might be violated in
the limit of small magnetic field strengths. That means, for very small field strengths,

|B| might increase steeply with r. If this is the case and the second requirement in

125



5. Applications of the semi-analytic method

equation is violated, the argumentation concerning the stability consideration is not
longer valid. Specifically, the estimates made for A’ and B’, both depending on Bior,
are untenable: A’ might not be negative everywhere inside the localisation region and
B’ might not be negligible. For the definition of A’ and B’, see appendix section
This possible violation might explain why the structural character of the Tayler instability
cannot be verified with the approach presented here. Due to the fact that the analytical
investigation in Tayler| (1973) was based on approximations, the character of the instability
might in fact not even be structural.

Summarising, the existence of the Tayler instability has been verified. The character of
the detected instability is not in agreement with the analytical result yet, but neither do
the two methods contradict each other within their range of accuracy.

Overall, the detected instability is clearly driven by the magnetic field. The semi-
analytic method has proven its functionality for the first application on simple magnetised
neutron stars.

5.2. Stars with purely poloidal magnetic fields

After the semi-analytic method has been successfully applied to the toroidally magnetised
star, the next step is to also investigate the poloidally magnetised neutron star with the
slightly more complex magnetic field structure.

This application will be based on the analytical study by Markey & Tayler| (1973).
Altering the geometry, the model system under consideration is basically equivalent to the
toroidal field model described in the previous section. We will make use of this situation
by utilising toroidal coordinates. Consequently, the applied displacement field will be the
analogue to the perturbation applied in the toroidal field case, although this time various
modes m will be considered.

5.2.1. System setup

In accordance to the model definition of the toroidal field case, the system will be kept
as simple as possible. The semi-analytic method will be applied to an axisymmetric
polytropic background star with a purely poloidal magnetic field, described in Cowling
approximation.

Uniform and differential rotation as well as the neutron star crust are neglected in the
model. The neutron star consists of a fluid with normal neutrons and normally conductive
protons and electrons.

The magnetic field lines form concentric circles around the magnetic field symmetry axis,
which is the neutral line shown in figure The neutral line represents a circular toroidal
line around the stellar symmetry axis. Therefore, with the usage of toroidal coordinates
, the system appears as a cylindrical fluid discharge that is toroidally wrapped up
around the symmetry axis, cf. figure

The hydrostatic equilibrium equation describes the unperturbed system. In con-
trast, Markey & Tayler| (1973) comment that the equilibrium equation includes the mag-
netic field. However, the analytic consideration does not require the determination of the
background system quantities pg, pg and ®g. Therefore, the equations shown by Markey
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5.2. Stars with purely poloidal magnetic fields

and Tayler have been derived independently of the equilibrium equation and are directly
comparable to the expressions shown here.

For the poloidal field application, geometrised rationalised Gaussian cgs units will be
applied in order to keep the consistency with |Markey & Tayler| (1973]).

Magpnetic field

The magnetic field has been defined in section [2.2.3]in such a way that it shows a purely
poloidal structure with a vanishing azimuthal component B, = 0, while the other compo-
nents can be expressed by the stream function ¢ in cylindrical coordinates:

1 1
By =—-—0.7 B, = — 0z, (5.25)
w w

cf. appendix section Next, the toroidal coordinate system ([2.8) has been chosen in
such a way that the amount of magnetic flux streaming through the torus along the stellar
symmetry axis is prespecified to a certain value of 27w . This procedure is shown in the

appendix section With this, choice (2.32]) follows:

By =0 B,=0 B, = Byl —. (5.26)
w

The distance 7 to the neutral line has been defined in equation (2.9)). The field amplitude
is described by the constant prefactor By of the dimension cm™2,

Note that the magnetic field smoothly approaches zero at the neutral line. Beyond that,
the prefactor B is constant, which means the dependency of the magnetic field on the
stream function B = B(¢) is hidden in the proportionality B, ~ 7/w in equation (5.26]).

Stellar composition

In analogy to the previous application on toroidally magnetised stars, stratification is
not considered in the simple neutron star model applied here. The polytropic indices of
background system and perturbed state are identical, I'; = I'g.

The fluid part of the energy density variation is given by form .

Description of the gravitational energy contribution

Just like in the toroidal field case, the stability analysis of the poloidally magnetised star
will be performed in Cowling approximation, eggv =0.

Therefore, the gravitational part of the energy variation density is given by expression

17,

Both sign conventions g = +V®q will be kept, in order to facilitate the comparison to
the toroidal field case.

For comparison, in Markey & Tayler| (1973), the sign convention is not defined. As
shown in the subsequent section, the gravitational contribution vanishes there, according
to the particular displacement field choice applied, and does not need to be discussed.
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5. Applications of the semi-analytic method

Displacement field

For the stability investigation of the poloidally magnetised neutron star, Markey & Tayler
(1973) first argue that the system is equivalent to the toroidal field case with respect to the
magnetic field symmetry axis. Therefore, the displacement field has a similar structure
to the perturbation applied in the toroidally magnetised neutron star, if the poloidally
magnetised star is described in toroidal coordinates.

The analogue to Markey and Tayler’s ansatz utilised in this work is

&y = —X;T/;X) elm? (5.27a)
X

€p = % elm? (5.27b)

& =By Z(¢,x) e (5.27¢)

There are two differences compared to Markey and Tayler’s approach.

First, as in the toroidal field case, we use the actually complex displacement field vector
in the integrand and ensure the physical meaningfulness of 6 by taking the real part
over the total integrand. Markey & Tayler| (1973), in contrast, apply the real part of &€
only.

Secondly, according to our definition , Y is a real function, whereas Markey and
Tayler include the imaginary unit in YMT = iYIMT.

Beyond the displacement field ansatz, Markey & Tayler| (1973) formulate two additional
constraints for £ which will be assumed in this work as well.
These conditions simplify the energy variation and facilitate the actual instability proof:

£g20 V-£20. (5.28)

These requirements state that the applied displacement field is perpendicular to the grav-
itational field vector and divergence free.

Conditions imply that the neutron star fluid is incompressible towards the type
of perturbation being imposed on the system, which means dp = 0. The local density p at
a fixed position is not influenced by €. This consequence is mathematically derived in the
appendix section [C.2.2]

Note that this limitation to a subclass of perturbations is possible, since this study
aims on the verification of an instability. According to the stability criterion , the
detection of one unstable perturbation mode is sufficient to prove instability.

With conditions , the &-defining functions Y and Z can be expressed as functions
of X. The derivation is shown in the appendix section [C.2.2]

Furthermore, X is chosen in such a way that the displacement field can be localised
inside a torus extending around the symmetry axis and including the neutral line, cf.
figure The torus surface is given by ¥ = ¥to;. The detailed discussion concerning the
localisation is presented in the appendix as well.

We assume

X =f(,x) (- wtor)Q . (5.29)
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The explicit form of Y and Z resulting from this choice is shown in equation (2.126]).

The remaining structure of X besides the localisation is described by the function
f(x,®). It is chosen in such a way that the Tayler instability is detectable, while f(x,)
is still in accordance with the localisation of &.

As shown in the appendix section [C.2.2] the structural character of the Tayler instability
becomes evident in cases where the energy variation is negative independently of the
magnetic field strength. This is the case particularly if the magnetic field amplitude B
can be factorised out of the §W-integrand.

The appropriate choice fulfils this requirement. It reads

X siny

f(% X) = B2 ’ (530)
pol
so that finally
- 9 9 \2
X(,x) = 205X (72 - 7,y X (4, x) =0
nZ
Y(¢¥,x) = X;;;Biol + Bpol - + 0y X inA, Y(,x)=0 else,  (5.31)
_ _ 2 w (R, or -7 _
Z(¢7 X) =-Xo (T2 - Tthr) % Z(¢7 X) =0
with X s
DX = -=0TRX (252 (5.32)
pol
and
9 9 \2 9 _ .
5.7 < Xo (1"2 - rgor) Rfor +72 - 7 Rior COS Y (st X + 2) @ (Rior cOSX —T) (5.33)
YU UBZ 47 Rin sin x tan y o

Note that the dependency X ~ X sinx in ansatz ([5.31) is borrowed from Markey and
Tayler’s approach, where XMT = X siny is used. Apart from this resemblance, our
assumption is more specified. We ensure the localisation of £ and exclude the magnetic
field strength from the integral.

Close to the neutral line, this approach is equivalent to the m = 1 mode applied in the
toroidal field case, where the reference axis of the displacement field was straight. This
equivalence holds for Markey and Tayler’s choice of X as well as for our assumption .

2
The additional term (F2 - f?or) /4 reduces to a constant amplitude in the case of 7 = 0.

For the purpose of revealing the magnetic field independency of W, the &-defining
functions are finally redefined, as shown in equation (C.94)):

fB=Blf (0pX ) = Bpo 9y X

Xp=X (0, X)g = O X (5.34)
Vs = Bpot Y (0yY)g = Bpol Y

Zy=Bl, 2 (030yX ) = Bpol Dy X.
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5.2.2. Energy variation explicitly

Remember the assumptions (5.28) made for the displacement field. Displacement fields
of this type do not contribute to the fluid or gravitational part of the energy variation, as

can be seen from equation (2.117)).

The remaining energy variation density is the magnetic part,

SW = 6Winagn- (5.35)

Applying choices and - for B and £ to the general form (2.116)) with E

of the energy variation 5W reads

1 HhX 0, X w?o,Y*0,X —
6W=1fffm{ rXD?B,%XJ ’ ;(rﬂJX +BYJ (0pX YY) (0,X"-Y")  (5.36)

-8, (B2J) (X OpX* - XY*+ % 8XX*) } dip dg dx.

In this step, the transformation equations for the toroidal coordinate system as well
as the corresponding volume element (2.10)) have been applied. The Jacobi determinant
is given by J = w@/Bp,l, cf. equation (C.67).

Expression ([5.36]) contains the additional factor 1/2 compared to Markey and Tayler’s
form that arises from the fact that we apply actually complex displacement fields in this
work, cf. appendix section

Beyond that, we neglected the factor 1/(47) in compared to the original ex-
pression , since we switched to rationalised units in this chapter. This prefac-
tor stemmed from the non-rationalised Maxwell equations and it is suppressed in
Markey and Tayler’s formulation. However, in this application the factor would only
represent a constant amplitude of the total energy variation, because only magnetic con-
tributions are considered in 6W.

Analogously to the previous application, the &-defining functions are next split into real
and imaginary parts that contribute equivalent terms to éW. According to that, X, Y
and Z are chosen real without restriction.

Note that with our choice for the displacement field, this also applies for the
azimuthal displacement field component. This is not the case for Markey and Tayler’s
formulation. We use

€, =i—— ™ with Y =Yg (5.37)
m

In contrast, Markey & Tayler| (1973|) define

YMT .
ur_ 2 elm with yMT =y MT, (5.38)
m

The p-integral can next be performed analytically while the real part is evaluated. The
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particular steps are shown in the appendix section
The result is the explicit energy variation for the poloidal field case ((C.103)):

—2 2
ff {(a X pol (8,Y)* + —gp"l (0,X -Y)? (5.39)

w2

2 Ryor — 7 COS Y
2

+B, ol
P w

B
(X OpX - XY + 2 ZaXX) } dew dz.
w
We transformed the integral to cylindrical coordinates because the numerical integration

will be performed in w and z. The &-defining functions are chosen according to equations
(5.31). The subsequent transformation steps of 0W are given in the appendix.

Finally, the magnetic field dependency can be factored out applying choice (5.34)), and
the simplified energy variation becomes

T Oy 2 w 72
w=3 ff {% e (0 Y )z, + — (X)) - Ys)* (5.40)

w72

2 Ryor — T Zp (0 X
+w (XB (&z;X)B—XBYB"'m)}deZ,

w? w

as shown in equation . Note that quantities with the index B are truly independent
of Bpol, without implicit dependencies.

Therefore, according to form of the energy variation, a possibly detectable insta-
bility must indeed be independent of the magnetic field strength.

Beyond that, the analytic elimination of B, from the integrand reduces the numerical
integration error.

5.2.3. Computation
Parameter set choice

Similar to the previous application on toroidally magnetised neutron stars, the parame-
ter values for the equilibrium system, magnetic field and displacement field need to be
specified.

Additionally, the magnetic field geometry and displacement field localisation are deter-
mined by the parameters Rio, and 7o, of the toroidal coordinate system.

The background model will be constructed by solving the Newtonian system equations
(2.26)) for a T'g = 2 polytrope. The model parameters we choose generate typical neutron
stars. They are listed in table

The mode index m will be varied within the range 1.6 to 6.0, depending on the model
under consideration. The covered range is chosen large enough for a potential change in
sign to be detected.

Note that by its definition in equation , the mode index is defined as an integer.
Here, however, rational numbers are applied in order to better resolve the area around a
potential root, i.e. a potential change in the stability behaviour.
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5. Applications of the semi-analytic method

Table 5.2.: Background model parameter set used for the Tayler instability proof on
poloidally magnetised neutron stars. The remaining parameters for magnetic
field, displacement field, computation and the geometrical parameters are given

in the text.
pe in 10 g/cm®  &* in 10 ecm? M in Mg Rinkm M/R
1.1 8 0.99 11.2 0.13
1.05 9 1.13 11.9 0.14
1.0 10 1.26 12.5 0.15
1.3 8.5 1.28 11.5 0.16

For the sake of numerical accuracy, form ([5.40|) of the energy variation density will be
entered in the integration code rather than form (5.39)). That means, the magnetic field
strength cancels out exactly from the integrand and B, does not need to be defined.

The only remaining &-defining parameter that has not been set yet is Xy. It acts as
the displacement field vector amplitude and is arbitrarily chosen as Xy = 1 x 1073, From

equation ([5.40)) with (5.31) and (5.34]), it can be inferred that it solely determines the

absolute value of the energy variation [§W].

The position of the neutral line and the extent of the localisation area are set to

R 'Ftor

Rior = —
tor 9 Rtor

=0.8. (5.41)
The torus centre is located at the half stellar radius, which allows for a variation of 7,
up to high values. The actual extent of the localisation area we assume here ensures that
the localisation torus completely lies within the star.

The numerical parameters are chosen as follows.

The vacuum pressure level for the Runge-Kutta solver of the background equations is set
to p. = 1071, The corresponding step width is h, = 4 x 107, while the Simpson integration
grids are determined by u, =10 and u, = 100.

Note that these parameters create relatively coarse grids. This choice was motivated by
the following fact. For the specific case investigated here, the numerical result diverges with
an increasing grid resolution, as it will be discussed in the subsequent section. Therefore,
we do not want to choose an overly fine grid here, for the sake of computation time.

Numerical features

The two-dimensional integration area used for the poloidal field application was con-
structed in section and presented in equation (4.68]). It is identical to the localisation

area cross section.

Note that the integrand £ in equations ([5.36)) or ([5.40]) shows a pole at the neutral line.
The pole is not caused by numerical inaccuracies, but it is of physical nature. That
means, its occurrence can be expected from the formula. All terms besides V diverge
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Ey

1010

Figure 5.4.: Integrand terms for the poloidally magnetised neutron star, defined by equa-
tions and . All terms besides &y show a pole at the neutral line.
The system quantities are defined in the text. The numerical resolution is
given by the Runge-Kutta stepwidth h, = 1 x 1073,

for (w = Rior,z = 0), where the separate integrand terms have been defined in equation
(1C.86)).
For an illustration, the integrand terms & -Ey1 are plotted in figure where

&, 1v = wp" (an—Y) . (5.42)

Due to the physical pole, the Simpson method is not a suitable integration method
for this specific application. The computed integrand value W does not converge with
increasing integration accuracy, as it is strongly affected by the extremely high values of
& close to the pole.

One possibility to avoid this problem would be the construction of an alternative dis-
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5. Applications of the semi-analytic method

placement field which removes the divergent terms from the integrand.

However, this task might be extremely difficult if not impossible, as € still needs to
simultaneously fulfil the conditions that have been imposed earlier: Markey and Tayler’s
assumptions , the ability of being localised in order to neglect the surface integral
terms, and the potential of revealing the Tayler instability, which translates into conditions
for the choice of f(,x).

Alternatively, we could replace the Simpson integration we use for the semi-analytic
routine by an adaptive integration method which is suitable for divergent integrands.

However, at this stage, the purpose of this application is only to test the functionality
of the semi-analytic method and the corresponding code at large. Precise values for the
energy variation are not required. The instability verification is based on the qualitative
consideration of 6W 2 0. Future projects might be adequately describable by the Simpson
method. The appropriate integration routine will need to be chosen for each newly inves-
tigated system anyway. Concerning the effort, the replacement of the integration routine
is not a reasonable choice for the test system considered here.

Therefore, we are going to apply the displacement field defined above as well as the
Simpson integration routine, and exclude the pole from the integration area by cutting
the integrand values at a certain maximum. That way, only grid points that are located
far enough from the pole at the neutral line (w = Rior,2z = 0) are considered during
the numerical integration. The grid points closest to the singularity, providing integrand
contributions that exceed the average by orders of magnitude, are excluded.

Note that the procedure of cutting the pole removes the quantitative significance of the
results. They need to be considered as qualitative results instead.

In order to assure their meaningfulness, it has been ascertained that the qualitative
result is not influenced by the computation parameter choice. The extent of the localisation
region as well as the numerical grid resolution do not have an impact on the sign of §W
or its separate contributions.

5.2.4. Results

The energy variation (5.40)) has been calculated for different model systems and varying
mode indices. The results are presented in this section.

The result W (m) is presented in figure Remember that the mode index m is
varied continuously for a higher resolution of a possible change in the stability behaviour,
although m has actually been defined as an integer, according to assumption ([5.27)).

The interpretation of figure shows, all model systems feature an equivalent 6W (m)-
dependency.

The energy variation is positive for small mode indices and becomes negative for in-
creasing m, exceeding a critical value, m > m*. The change in sign implies a change in
the system’s stability behaviour.

That means, for all neutron star models considered here, a displacement field & ~ ™%
can be found that decreases the total system energy. There is an infinite number of
perturbations with m > m®i® against which the investigated systems are unstable.
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Figure 5.5.: Dimensionless energy variation 8W of the poloidally magnetised neutron star,
calculated with the semi-analytic method. The energy variation is plotted
against the displacement field mode index m for neutron star models with
different compactness. The parameters are defined in table and in the
text.
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5. Applications of the semi-analytic method

According to stability criterion (2.45), one unstable mode is sufficient to prove the
instability of the equilibrium state. From graph [5.5 we can therefore deduce that the
purely poloidally magnetised models we tested are unstable.

Furthermore, the detected instability is evidently driven by the magnetic field. The
Lorentz term is the only contribution to the energy variation we considered when we

imposed conditions ([5.28) on the displacement field, cf. equation (5.35]).

Once the detected instability has been identified as a magnetic field instability, we can
also deduce its structural character.

The magnetic field strength has no impact on the W (m)-behaviour. The onset of the
instability is therefore independent of the field strength.

This observation is confirmed by the analytical consideration formulated above: The
energy variation is independent of the magnetic field strength Bp,. That means,
the instability is always present as long as a poloidal magnetic field exists which is of the
structure defined in equation . The field strength can become arbitrarily small, as
long as the corresponding energy variation is significant compared to other contributions
in the star.

As soon as the magnetic field is removed from the model system, the magnetic field
contribution Wi agn vanishes. For the displacement field structure applied here, the
energy variation vanishes as well, 6WW =0, i.e. the system is metastable.

5.2.5. Interpretation

Based on the results presented in the previous section, we need to evaluate whether the
Tayler instability of the poloidal field could be verified applying the semi-analytic method.

The results suggest: The instability found in the previous section is indeed the Tayler
instability of neutron stars with purely poloidal magnetic fields detected by [Markey &
Tayler| (1973).

This conclusion is supported by the fact that the instability both is magnetically caused
and shows a structural character.

The verification of the Tayler instability was accomplished for the models shown in table
and for the displacement field choices , . However, the uniform behaviour
of 6W (m) found for all investigated systems suggests that the validity of this result might
hold as well in generalised cases.

On the contrary, graph[5.5|suggests a connection between the critical mode index and the
mass, radius or compactness of the neutron star model. This potential dependency could
be investigated if the numerical Simpson integration would be replaced by an adaptive
integration method that is able to provide quantitative results, in spite of the diverging
integrand in . The qualitative results we produced cannot serve for this kind of
analysis.

Note that the stability analysis provided here is based on a stationary picture. Although
higher mode indices produce stronger negative energy variations, these perturbations do
not necessarily represent the “strongest instability”. As explained in section [2.3.3] this
term typically describes the fastest growing mode.
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5.3. Stars with mixed magnetic fields and stratification

The detected tendency of the instability onset with an increasing mode index m > m®it

is in accordance with the analytic stability evaluation given by [Markey & Tayler (1973).
The instability proof provided there is based on the assumption m — oo. For the detailed
analytic stability consideration given by Markey & Tayler (1973)), see appendix section

C24

Finally, it can be remarked that the qualitative nature of the results produced here does
not keep us from drawing valid conclusions.

This emphasises the great advantage of the semi-analytic method of delivering state-
ments about the stability requiring little effort. The semi-analytic method can produce
results without providing additional quantitative information that would complicate the
study considerably. It is therefore perfectly suitable for a first evaluation of a system’s
stability behaviour, before simulations or normal mode analysis are applied to the system.

For future applications, however, the semi-analytic method can be adapted optimally
to the system under consideration by choosing the ideal integration method, in order to
receive reliable quantitative results directly from the method as well.

Summarising, the application of the semi-analytic method on poloidally magnetised stars
proved the functionality of the method as well as the code that has been set up so far.
After the verification of the toroidal field Tayler instability, this validation demonstrates
that the method works on structurally distinct problems of different geometry.

5.3. Stars with mixed magnetic fields and stratification

Once the semi-analytic method proved itself as a functional tool to investigate purely
toroidal as well as purely poloidal magnetic field structures in the previous sections, the
next step is to apply it to a system with a mixed magnetic field consisting of both com-
ponents. Furthermore, the simple polytropic composition structure will be altered into a
stratified density profile. And the Cowling approximation will be lifted. This approach
represents an ideal test of the method, since it involves the combination of all energy
variation terms and all code fragments derived and set up so far, cf. chapter

The application presented in this section aims on the verification of the analytic study
performed by |Akgiin et al| (2013). The semi-analytic method is challenged to reproduce
the stability criterion analytically derived in this study.

This test first indicates whether the semi-analytic method is capable of reproducing
quantitatively known results, after the qualitative verifications of the Tayler instabilities.

For the sake of comparability of the results, the model system used here will be chosen
in accordance to the model defined by Akgiin et al.

However, several simplifying assumptions that were necessary in the analytical study
will be lifted. The most prominent one is the removal of the Cowling approximation.

Magnetic and displacement field structure are chosen in such a way that the star would
be unstable with the toroidal magnetic field component alone. The magnetic field compo-
nent which is tested for its stability behaviour is the toroidal one.
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5. Applications of the semi-analytic method

Therefore, the displacement field applied here is equivalent to the one used in the toroidal
field case model described in section [5.1] The poloidal field component is superimposed
to this system, possibly stabilising the Tayler instability in the presence of stratification.

5.3.1. System setup

In this application, we consider stratified stars with mixed magnetic fields in Cowling
approximation as well as in a full non-Cowling treatment.

Rotation, neutron star crust and inner stellar core are not taken into account. The star
is assumed to be a fluid consisting of neutrons, protons and electrons, without superfluidity
or superconductivity. The poloidal part of the magnetic field pervades the stellar interior
and exterior, taking on a dipole structure outside the star. The toroidal component is
confined into the torus-shaped region inside the star that is enclosed by the outermost
poloidal field line which still closes inside the star. According to the presence of both field
components and for the sake of comparison with |Akgiin et al.| (2013), spherical coordinates
will be used for this application.

Note that in contrast to the previously shown applications, non-rationalised Gaussian
cgs units will be applied in the mixed field case. That way, in accordance to Akgiin et al.,
the magnetic contributions to the energy variation consistently contain the factor 1/(4 )
stemming from the Maxwell equations .

Magnetic field

The toroidal and poloidal magnetic field components in the mixed field case can be de-
scribed separately. For a visualisation see |Akgun et al.| (2013]).

The poloidal field extending everywhere is assumed to have a simple but realistic field
structure. It simulates the magnetic field of a point dipole outside the star. It corresponds
to the lowest non-vanishing order in a multipole expansion, considering that magnetic
monopoles do not exist. This assumption is quite a good approximation for exterior
neutron star magnetic fields, according to observational data. The neutral line defined
by B = 0 represents the symmetry axis of the poloidal field in the mixed field picture.
Note that the poloidal field lines are not necessarily circles around the neutral line as in
the previous application. Their shape is more realistic with straighter lines towards the
stellar symmetry axis and more curved lines towards the equator region.

The toroidal field component is spatially confined into a torus-like region including
the neutral line. Since the model star is situated in vacuum, the toroidal field cannot be
sustained outside the star, cf. Section Therefore, the region with Byo, # 0 is bounded
by the outermost poloidal field line that still closes inside the star. The symmetry axis of
the toroidal field component is equivalent to the stellar symmetry axis, due to the lack of
rotation.

An arbitrary magnetic field is divergence free. Additionally, the field we assume here
is axisymmetric and can thus be expressed in terms of a stream function, as shown in

equation (B.11)). Akgun et al|(2013) utilise this approach to construct ansatz (2.33) for
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5.3. Stars with mixed magnetic fields and stratification

the mixed magnetic field:

Btor = BO Ttor RB(T,'ﬁ) V,rp (543)
Bpol = Bo Mpol R? Vra(r,9) x V.

The remaining structure is determined by choices ([2.34]) and (2.35)):

A~ 2 N
a(r,9) = f(x) sin?9 B(r, ) = {(O‘ S foraxl (5.44)
0 for & <1,
and
f(x) = faa® = faa' + foa. (5.45)

These assumptions ensure that the poloidal field is continuous at the stellar surface, match-
ing the exterior field, and finite at the stellar centre. The toroidal field component is
continuous at the boundary of the toroidal field confinement region.

The maximum field strengths of the poloidal and toroidal field are determined by the
amplitude parameters 7,01 and 7o, as explained in section @l

Stellar composition

In the mixed field case, we assume a polytropic background star, described by the poly-
tropic index I'g. The equilibrium quantities pressure, mass, density and gravitational
potential will be computed by solving the system equations with the polytropic
equation of state .

Note that Akgiin et al. use an explicit density distribution approximating the polytrope
instead in order to make it analytically treatable. Thanks to the semi-analytic method,
this simplification is not necessary here.

The perturbations are described by the polytropic index I'y # I'g, which generally differs
from the background polytropic index which implies stratification, as explained in section
This procedure is in accordance with the description in |Akgiin et al.| (2013).

However, Akgiin et al. distinguish between two background polytropic indices, one for
the unmagnetised equilibrium system and one for the magnetised one. Thus, they work
with three polytropic indices in total. For a straightforward comparison with their work,
see table providing an overview on the notations of polytropic indices applied by
different authors.

According to the consideration of stratification, the fluid contribution to the energy
variation density is given by equation (4.6)).

Description of the gravitational energy contribution

Since the study performed by Akgin et al. was purely analytical, it relied on the assump-
tion of the Cowling approximation. For the purpose of a direct comparison of the results
and an evaluation of the semi-analytic method’s functionality, we first apply the Cowling
approximation as well.

The gravitational contribution to the energy variation is given by equation (2.117c]).
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Afterwards, the system under investigation is gradually made more complex by removing
the Cowling approximation and applying the full non-Cowling treatment instead.

The additional contribution to the energy variation is given by expressions or
. The total gravitational contribution is given by equation , with an unchanged
Cowling part.

Both sign conventions g = +V® for the gravitational field vector are kept. The lower
sign corresponds to the notation applied by |Akgiin et al.| (2013)).

Displacement field

In the mixed field case investigated here, the toroidal field component is tested regarding
its stability behaviour. Ansatz chosen by Akgiin et al. for the displacement field is
thus equivalent to the choice that has been used in the toroidal field case in section
Both approaches are identical if the &-defining functions fulfil relation , as
shown in the appendix section

The &-defining functions are set up similarly to the toroidal field case in section [5.1

They are chosen in such a way that the Tayler instability of the toroidal field component
is detectable in the absence of the poloidal field component. That means, with assumptions
and for R, S and T, the energy variation density is negative at the position
(0, 0) of the localisation area if only fluid and gravitational contributions and the toroidal
field part & of the magnetic contribution are taken into account.

In order to achieve this, the energy variation density Eior + Equid + Egrav of the toroidally
magnetised star is minimised with respect to the &-defining function 7' of the azimuthal
component.

Beyond that, the displacement field is localised to an axisymmetric region with an
ellipse-like cross section in the (r,9¥)-plane, as explained in section and illustrated in
figure

Constraints on the &-defining functions follow from the requirement of a vanishing sur-
face integral contribution and the avoidance of singularities when the poloidal field is
added to the system. The exact procedure is shown in the appendix section [C.3.1}

The final choice is, cf. equations (2.132)), (2.133) and (2.134)):

= § _oyo-1 o 5
funﬁ):~£o(1—xﬂ 9 x* R(r,9) =0
in A, 3 else, (5.46)
S0y =20 (1-02) o S(58) =0
with Ey(r.9)
T(r,0) = Togn = ——— ) 5.47
%) 2m Ex(r, 0) (547)
and

—20\2 (U -1p)\> 9 -1 r-x
200 9 :(5U 5190) ( 0) 2 _ o 0 52 =2 0 u
X (r,9) . + 7 Oy X 52 Oz X 52 (5.48)
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Expressions E1 and Es are contributions to the energy variation integrand, and will be
defined in the subsequent section.

This assumption for the displacement field was derived for mode indices m # 0.

In accordance with the toroidal field application and |Akgiin et al.| (2013)), we will
use m = 1 for the calculations. It represents the particular Tayler unstable mode that is
expected to be the strongest one in a toroidally magnetised system. That way, the possible
finding of a stabilisation of the considered mode would be more significant.

5.3.2. Energy variation explicitly

The energy variation of a stratified star is given by the general form (4.47) with (4.48)).
In Cowling approximation, we assume 5Wé}§v = 0. In the case of the full non-Cowling
treatment, the non-Cowling gravitational contribution must be additionally considered.

For displacement field choice ([2.130)), 5Wgr;‘r§v is given by equation (4.49) with relations
[T50) and (E51).

In order to achieve the explicit form for the energy variation in the mixed field case, the
magnetic field and displacement field choices and ([2.130) with ([5.44)), (5.45)), (5.46])
and are inserted into the expression. After some rearrangements, definitions and
algebra, Akgiin et al. express the energy variation in a compact form.

Since the derivation is shown in Akgin et al. (2013), we will only outline the essential
transformation steps and present the end result for the total energy variation in this

section.

In extension to the formulas presented by Akgiin et al., we keep track of the origin of
each term in the energy variation. That way, we are able to calculate the impact of every
contribution to the energy variation separately.

In analogy to Akgiin et al., we split the magnetic contribution into a toroidal, poloidal

and mixed part,
gmagn = gtor + gpol + gcros& (5'49)

and combine the fluid and gravitational contributions to the energy variation into one
hydrostatic term
ghyd = 5ﬂuid + ggrav- (550)

With assumption (5.43]), the magnetic contribution consists of terms purely involving By,
described by Eior, terms purely involving By, described by &,01, and terms involving
both field components, described by E.ross. The mathematical illustration is shown in the

appendix section [C.3.2]

Next, Akgiin et al. define the notations

A(u) = ROyu + S gu (5.51)
r
and R B B B
D= 3B g4 25 cop s 225 T (5.52)
T r r r sind
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where u = {mq, po, po, Po, @, 5} can be an arbitrary axisymmetric system quantity and D,,
denotes the prefactor of the displacement field divergence

V-&€=Dy,rsing ™. (5.53)

With these definitions and choice (5.43) for the magnetic field, Akgiin et al. receive
expressions for Eor, Epol and Eyyq, which are shown in equation ((C.120)).

The &-defining functions can be chosen real without restriction as their real and imagi-
nary parts contribute equivalent terms to the energy variation density, analogously to the
previous applications.

The mixed term Egposs is purely imaginary and will eventually not contribute to the
energy variation as demonstrated in the appendix.

The expression Akgiin et al. give for the hydrostatic part is indeed identical
to the sum of fluid and gravitational contributions and set up in this work
for the stratified star, as proven in the appendix section [C.3.3]

The final form of the energy variation that will be used for the computation is

s E%
oW = Eff By - +2 Byt {wdd (5.54)
2

with

Eo = B + B Ey = Bl 4 B4 Ey = Y4 (5.55)

The contributions caused by the toroidal magnetic field component are

2 A 2\ A(B)A 2A?
Eéor _ E Dg " (B 45(5) _ B 7T,(w7ﬂ)) DO _ B (2671)_w(w> 4 6 ﬂ”w(Qw) (556&)
E}or — _/84‘/;—(2) . (556b)

Note that E°" = 0.
The fluid and gravitational parts, combined in the hydrostatic contribution provide

m2 62 R2 + 512

Eﬁ}yd =@’y po D3+ (w2 A(po) + 2 Po A(<I>0)) Dy +w’ A(po) A(Po) + 4Erw2 )
(5.57a)
E?yd =-2wl'1po Do —w A(po) F w po A(Po) (5.57b)
By =T po. (%57
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The poloidal field contributes

2

2
EPol = 8% [7“2 (mT@ra _ZAM) warA(a)) + (m&gaT -z A (a) - w&gA(a))
Twir r
2
+wrAtaS (m dgaT -z A(a) - w&gA(oz)) +w? (819(1 0.T - drax GﬁT)
YN (m o - ZA) waTA(oo) ] , (5.58)
r
where - 5
A =02+ Lo, (—’9) (5.59)
r sin v

denotes the Grad-Shafranov operator.
The total toroidal, hydrostatic and combined contributions to the energy variation den-
sity are

Evor = B m T + B (5.60a)
Enya = EXY (mT)? + EWNm T + BV (5.60Db)
gtor + ghyd = E2 (m T)Q + E1 mT + E(). (5600)

Note that the integrand in equation has been minimised with respect to 7,
whereas expression has not been minimised yet.

Remember that the minimising value Thi, has been defined in equation , depend-
ing on E; and Fs. These functions are the sums of the magnetic and hydrostatic parts

and (E57).

Finally, Akgiin et al. approximate the poloidal contribution to

ot , (9900,5)° ( 422 )

N 5.61
8mr? m?2 r? (5:61)
which facilitates the analytic consideration.
In contrast to the analytic study, this approximated form is not necessary for an inves-
tigation with the semi-analytic method. However, the semi-analytic method can be used
to test the validity of this approximation by comparing the stability criteria derived from

the exact and the approximated energy variation densities ([5.58) and (5.61]).

In the unmagnetised system, the energy variation is

Cnor (L 1) (€ (T )
5Whyd_§ff(r—o—r—l) S dwds for B=0. (5.62)

In contrast to the previous applications, Akgiin et al. apply the same procedure that
we use to ensure that the energy variation is real and physically meaningful. They take
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the real part over the total integrand. Therefore, the expressions ([5.56[), (5.57) and (5.58)
shown here are identical to the expressions given by |Akgiin et al.|(2013) without additional
prefactors, as long as the real parts have been evaluated in both formulas, respectively
have not been evaluated in both formulas yet.

The prefactor 1/(4 ) arising from the non-rationalised Maxwell equations and
appearing in the magnetic field terms, is present in both studies.

Note that in this work, the energy variation density is defined via 6W = [[ £dV, while
Alkgiin et al. define SW4 =1/2 [[ £2dV. Therefore, 4 = 2.

The analytical consideration presented by Akgiin et al.| (2013)) is further based on an
approximation of the derived energy variation terms, as shown in the appendix section
[C.3.4

Beyond that, the extent of the localisation region is assumed to be infinitesimal by
setting 6, — 0 and Jy — 0 simultaneously.

Finally, a stability criterion is analytically derived which describes the minimal
poloidal field strength necessary for the stabilisation of the toroidal field Tayler instability.

The verification of this criterion represents a quantitative test for the semi-analytic
method. Due to the advantages of the semi-analytic method, the energy variation does
not require approximations applied in the approach of Akgiin et al. We use the exact

expressions ((5.56)), (5.57) and (5.58|) derived for £ instead.

5.3.3. Computation
Parameter set choice

In the mixed field application, the parameter values for the equilibrium system, stratified
composition, magnetic field and displacement field, including the localisation region, must
be specified.

For the background system, a polytrope will be utilised that is similar to the analytic
density profile Akgiin et al. (2013) assume.

In particular, the equilibrium polytropic index will be chosen as I'yg = 2.2877574 and
the proportionality constant as £ = 65cm?'0~2. The central density is choosen as p, =
2.087 x 10* g ecm™3. The resulting stellar mass and stellar radius are M = 0.0764 Mg and
R =3.53km.

The considered model thus does not represent a neutron star. However, as it will be seen
below, the specific model system does not impact the resulting general stability criterion.

According to the analytic density profile applied by Akgiin et al., the central pressure

can be calculated via
_15G M?

Pe = J6n RT
This value is required for the analytic stability criterion and the ratio of
the localisation area parameters.

In this work, the central pressure value for the Runge-Kutta solution of the background
system equations follows from I'g, k and p.. For the evaluation of the stability criterion, we
still apply formula , in order to be as consistent with the analytic study as possible.
Note that both approaches to calculate p. are nevertheless aligned, since the background

(5.63)
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system parameters have been chosen in such a way that they reproduce the model (M, R)
applied by Akgiin et al.

For the computation, we apply geometrised rationalised Gaussian cgs units, where the
geometrised gravitational constant is G* = 1.

The stellar composition will be varied by altering the polytropic index for the pertur-
bations in such a way that

%F ¢ [0,0.25], (5.64)
where AI' = I'1 — I'g has been defined in equation . Remember that A denotes a
simple difference here, not a Lagrangian perturbation.

The stable stratification implied by AI' > 0 ensures that the neutron star under investi-
gation is not subject to unstable g-modes which might cause a negative energy variation
even in the unmagnetised case. That way, the Tayler instability of the magnetised star
that is investigated is prevented from being covered by other unstable effects inducing
oW < 0.

The exact values applied for I'; are shown in table

In contrast to the investigation here, Akgiin et al. assume a constant ratio of I' /T’y = 5/4
for the polytropic indices, corresponding to a typical main sequence star. However, this
ratio does not enter the derivation of the analytic stability criterion . Therefore,
the criterion is applicable to typical stratification levels of neutron stars assumed in
as well.

The toroidal magnetic field strength is set by assuming o, = 1/0.0254, in accordance
to Akgiin et al.

This value is an arbitrary choice since the analytically derived stability criterion
provides the critical poloidal field strength that is necessary for stability in terms of the
toroidal field strength.

The general field amplitude is set to By = 3.663623 96 x 107°.

The poloidal magnetic field strength 7,1 is varied within a range that covers the change
in sign in the energy variation. This range differs for the distinct choices of I'y. The
specific intervals are given in table

According to the assumption made in the analytic study, the poloidal field shall be
sufficiently weaker than the toroidal component for all 7,, applied, where we keep in
mind that 7 and 7,0 determine the maximum field strengths of both components.

The displacement field parameters are chosen as &y = 1, o = 2.366 025 from equation
(C.135) and m =1, in accordance to the analytic study. That way, we consider the mode
causing the so called “strongest” instability.

The localisation region is positioned at xzg = 0.772, g = 1.37. The angular extent of the
localisation region in the semi-analytic study is set by dy = 0.05, while the radial extent
follows from relation with the parameters chosen above as

ToT
8y =2.617x 10455/ FIO_ rlo' (5.65)

The list of applied parameter combinations is given in table [5.3]
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5. Applications of the semi-analytic method

Table 5.3.: Parameter combinations applied for the Tayler instability proof on neutron
stars with mixed magnetic fields and stratification. The combinations of the
polytropic indices for the perturbations and the radial extent of the localisation
area are shown, together with the corresponding parameter range where the
poloidal field strength is varied. This table is valid for I'g = 2.287 7574, nor =
1/0.0254 and By = 3.663 62396 x 1075, The remaining parameters are given in

the text.
F1 Flr;ol—‘o 57" Tlpol Tange
2.8596968 0.25 4.42629 x 107 1.0x107°,1.2x107°
2.7000000 0.18 5.0659461725x 107 [1.3x107°,1.4x 107
2.6000000 0.14 5.71209892 x 107° 1.4%x107°,1.5x 107

2.4000000 4.9x1072  9.1533882725x10™° [1.9x107°,2.8 x107
2.3000000 5.35x1073 2.713202515 x 1074 3.0x107°,8.0x 107

[ ]
[ ]
[ ]
2.5000000 9.3x1072  6.7937388525x 107 [1.7x107°,1.9x 1079]
[ ]
[ ]
2.2900000 9.8x10™*  6.3255305175x 107 [1.0x 107*,4.0 x 107%]

The considerations underlying this choice are as follows. In the analytical study, the
localisation region is assumed to be infinitesimally small with §, - 0 and dy — 0. For the
purpose of keeping the validity of the analytically derived stability criterion acceptable, we
assume a rather small value for the angular extent of the localisation area here. Beyond
that, Akgiin et al. assume relation for the ratio d,/dy in deriving the stability
criterion . Inserting the parameters chosen above and using relations , the

ratio becomes

(&)2 ko 03, B3 Ty s Toln (5.66)

— | = =6.85109 x 10~ .
Oy 2kpya(T1) 87mpe I't =T I'y-To

For a definition of the parameters, see appendix section [C.3.4]

As explained in the appendix, the comparison between the results from the semi-analytic
method and the analytic study requires the same assumptions in both studies. Especially,
the ¢, /dy-ratio of Akgiin et al. must be obeyed in the semi-analytic study in order to
keep the validity of the analytic stability criterion for our application. This ratio
is a function of I'y, which is varied in the semi-analytic study. Therefore, in contrast to
Akgiin et al., one of the localisation area parameters defining its extent must be adjusted
in our study for each choice of 'y in such a way that stays valid. We choose to keep
dy constant and to adapt J, accordingly. For all choices of I'y, it has been ensured that
the resulting radial extent d,. is small enough to keep the error for the comparison between
the analytic stability criterion and the semi-analytic method sufficiently low.

The computational parameters are chosen similarly to the previous applications.

At the stellar centre, the radial coordinate is approximated by 7. = 10cm. The vacuum
pressure level is set to p. = 10 x 10719 ie. p. = 5.55x 103® g cm™! s72. The Simpson grid
is constructed with u, = 10 and u, = 100. The grid for the J!, K éf—calculation in the
full non-Cowling treatment is defined by ug = 10. The mode indices for the spherical
harmonics describing the Euler perturbation of the gravitational potential are chosen as
m=1and [ =2.
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5.3. Stars with mixed magnetic fields and stratification

For the parameter values defined here, the analytic stability criterion derived by Akgiin

et al. (C.139) explicitly reads

. Iy’
crit -5 obt1
Mool > 11CHH = 6.759 x 107° 6, 4 /—Fl o (5.67)

The two-dimensional integration area applied to compute §W in the mixed field case was
constructed in sectionand presented in equation . The integration is performed
in cylindrical coordinates to avoid changes in the integration code structure.

The two-dimensional integration area for the computation of J{* and K" in the non-
Cowling treatment was constructed in section and presented in equation . The
integration is performed in spherical coordinates. This choice facilitates the integrations
that need to be performed during the (J}*, K{*)-calculation for all radial grid points 7.

Numerical features

The localisation of the displacement field in the integration code is realised in the fol-
lowing way. For all integration grid points fulfilling the localisation condition y? < 1 from
equation , the &-defining functions are set according to the choices discussed above.
For grid points outside the localisation area, the &-defining functions are set to zero.

5.3.4. Results

The total energy variation and its individual contributions have been calculated for differ-
ent poloidal magnetic field strengths and stratification levels. In this section, the results
are presented.

The energy variation has been calculated for a varying poloidal field strength,
applying different levels of stratification. The result 6W(77p01) is shown in figure M For
this calculation, the full non-Cowling treatment has been applied. The corresponding
energy variation in the case of 7,0 = 0 is listed in table @ for all investigated levels of
stratification.

In this section, the energy variation is presented in the dimensionless form §Wg = 10% §T7.

The separate contributions to the energy variation caused by both magnetic field com-
ponents, the hydrostatic part and the removal of the Cowling approximation are plotted in
figure for one particular level of stratification AT'/Ty. The corresponding expressions
for these contributions are given by equations (5.56)), (5.57)), (5.58)) and . Graph
also compares the energy variation in Cowling approximation with the energy variation
resulting in full treatment.

The computed energy variation presented in figure [5.6] shows the expected change in
stability with an increasing poloidal field strength that was found in the analytic study
by |Akgun et al.| (2013). In order to verify this result quantitatively, the roots from graph
representing the critical poloidal field strength nggilt necessary for stability, are plotted
against the level of stratification in figure [5.8]
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Figure 5.6.: Dimensionless energy variation 6Wg = 108 W of the neutron star with mixed
magnetic fields, calculated with the semi-analytic method. The energy varia-
tion is plotted against the field strength of the poloidal field component 7,
for neutron star models with different levels of stratification AT'/Ty. The
curves have been interpolated according to the discrete computed values. The
parameters are defined in table @ and in the text.
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Figure 5.7.: Dimensionless contributions to the energy variation 6W; of the neutron star
with mixed magnetic fields, calculated with the semi-analytic method. The
graph shows 0Ws = 1086W. The total energy variation with and without
the assumption of the Cowling approximation is presented. The total energy
variation and its contributions are plotted against the field strength of the
poloidal field component 7,01 for AI'/Tg = 0.093. The parameters are defined
in table 5.3 and in the text.
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Figure 5.8.: Critical minimum poloidal field strength necessary to stabilise the toroidal
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field Tayler instability, plotted against the level of stratification. The discrete
values follow from graph which has been produced applying the semi-
analytic method. The result is shown for both cases, with and without Cowling
approximation. The parameter values are defined in the text. The continuous
curve has been computed for the same system applying the analytical stability
criterion derived by [Akgun et al.| (2013).



5.3. Stars with mixed magnetic fields and stratification

Table 5.4.: Dimensionless energy variation 6Wg = 10%6W of the mixed field case model
system for 7,01 = 0, calculated with the semi-analytic method. The results are
presented for the different levels of stratification, cf. figure [5.6] in Cowling
approximation as well as in the full non-Cowling treatment. The underlying
formula for the energy variation is given by with (5.55)), (5.56), (5.57)
and E,, = 0. The parameters are defined in table and in the text. The
energy variation is negative in all cases.

Iy AT/Ty oWy in Cowling appr. 8Ws in full treatment
2.8596968 0.25 -15.444 53352 -15.445924 04

2.70 0.18 -13.494 40584 -13.495998 95

2.60 0.14 -11.96791572 -11.96971216

2.50 0.093 -10.062476 96 -10.064613 39

2.40 0.049 -7.468 438961 -7.471318096

2.30 5.35x 1073 —2.519344 759 —2.527887708

2.29 9.8x10™*  -1.080092219 -1.1000749

From the data, the following results can be deduced.

The energy variation of the purely toroidally magnetised star is negative, according to

table (.4} AT

Ty
That means, the model system investigated in graph and in table is unstable
for all applied levels of stratification if 7,5 = 0. Remember that the displacement field
constructed in the appendix section was designed precisely to provide this result.

SW(npo=0)<0 ¥ (5.68)

For npe1 # 0, the energy variation increases with the growing field strength and experi-
ences a change in sign, cf. figure 5.6l This behaviour is qualitatively independent of the
degree of stratification, for all polytropic indices I'; applied here.

The positive energy variation for large poloidal field strengths implies the stabilisation
of the instability that has been active for small poloidal field strengths. This consideration
is referred to the specific displacement field mode applied here.

Figure shows that the toroidal field contribution to the energy variation is negative,
0Wior < 0. That means, the toroidal field component has a destabilising impact on the
system.

The poloidal field contribution, in contrast, is positive for all considered field strengths,
0Wpot > 0V npo1, and increases with 7,1 That means, the stabilising impact of the poloidal
field component becomes stronger the stronger the poloidal field is.

The hydrostatic contribution 6Wyyq = 6Wayiq + 5W§g¥l and the additional non-Cowling

part W2 <  are negative.

grav

The non-Cowling part is negligibly small, |5W§§V\ <« [0W]. Therefore, the total en-
ergy variation in Cowling approximation is approximately equivalent to the total energy

variation in the full non-Cowling approach, §W " ~ syyfull,

The critical poloidal field strength n;roif necessary for stability from figure increases
with a decreasing value of AT'/T.
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5. Applications of the semi-analytic method

In the limiting case AI' = 0 of an unstratified star, the solid curve following from the
analytical stability criterion diverges. That means, the toroidal field instability
of the applied displacement field cannot be stabilised by an arbitrarily strong poloidal
magnetic field if the star is unstratified.

The discrete data points in graph following from the semi-analytically produced
results in figure [5.6| cannot reproduce the actual divergence for I'y = I'y. Due to the usage
of numerical methods, a possible divergence cannot manifest as an actual infinite value,
but as a very large finite numerical value. That means, the semi-analytic result is in
accordance with the analytical result.

Beyond this, the semi-analytic results are in great accordance with the analytically
calculated curve.

The semi-analytic results are almost identical for both approaches with and without the
assumption of the Cowling approximation, as already seen from graph [5.7] The largest
deviation between the semi-analytic study and the analytical criterion, as well as between
the Cowling approach and the full treatment in graph occurs for AI' = 0. However,
the critical poloidal field strength found for AT' — 0 is very large and does not fulfil the
requirement of ’Bpol‘ & |Btor| anymore. Therefore, in the limiting case of T'; — Ty, the
assumptions for the stability consideration are violated and the significance of the result
as well as the comparability of both studies are restricted.

5.3.5. Interpretation

According to the results from the investigation of the mixed field system with stratification
presented in the previous section, we can now estimate the quantitative validity of the
semi-analytic method.

Besides this, the impact of the removal of the Cowling approximation will be discussed.

Summarising the outcome from the previous section, the analytically found stabilising
impact of the poloidal field component on the toroidal field instability in the presence of
stratification has been verified with the semi-analytic method.

This fact represents one further qualitative confirmation of the semi-analytic method’s
functionality. Beyond that, figure [5.8] convincingly confirms the quantitative prediction
capacity of the code and the method as well.

The great accordance between the analytic study by |Akgin et al.| (2013)) and the semi-
analytic one further provides the justification for the simplifications Akgiin et al. made
for the analytic approach. Since we did not rely on these simplifications, the semi-analytic
approach was based on their exact equivalents instead.

In particular, the analytic density profile Akgiin et al. assumed was an adequate approx-
imation of the (Fo =2.2877574, Kk = 65cm?o - 2)-polytlrope we applied in the semi-analytic
study.

Akgiin et al. based the analytical stability criterion on approximated expressions for
the energy variation contributions. This simplification seems to be perfectly valid for
the purpose of stability analysis. For the largest range of tested AI'-values, the analytic
criterion coincides with the semi-analytic result, which has been derived from the exact
expressions for dW; instead.

Finally, the assumption of the infinitesimally small localisation area of the displacement
field made by Akgiin et al. was sufficiently approximated by the choices made in this work
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5.3. Stars with mixed magnetic fields and stratification

for 0y and 0,.. Although we kept the localisation area finite, apparently the chosen extent
of A was small enough to keep the validity of the analytic stability criterion for our
model as well.

Nevertheless, the semi-analytic method offers a larger flexibility than the analytic ap-
proach concerning the investigation of versatile model systems.

The comparison of the studies in Cowling approximation and in the full non-Cowling
treatment shows no significant differences in the results for the particular application here.
The impact of the additional non-Cowling term 5Wgr§gv is negligible in the investigated
System.

This agreement holds for all tested finite levels of stratification, even for the star with
the strongest level of stratification AT'/Ty = 0.25. In fact, the maximum difference in the
critical poloidal field strength calculated with both approaches is present for the lowest
tested level of stratification AI'/Tg = 1.86 x 107°, cf. figure However, this deviation
does not seem to be a physical feature. It seems to be caused by a numerically induced
inaccuracy. The limiting case AI' - 0 corresponds to the transition between existent
g-modes for I'y # I'y and non-existent g-modes for I'y = Iy, cf. section 2.3.I] Therefore,
the numerical error is expected to increase for AT' - 0. The deviation between both
approaches is thus most probably covered by the numerical error range.

The overall insignificant difference between the Cowling and the non-Cowling approach
for the particular application shown here is a consequence of the infinitesimally small
localisation area Akgiin et al. assume for the displacement field.

The additional non-Cowling contribution ¢ ng;gv to the energy variation is a function of

Jy', K" and the integral I}, as can be seen from equation . Functions I}", Jy* and
K" are given by equations and .

For each radial grid point r, I{", J{" and K" are calculated by angular and, in the
case of JY" and K", radial integrations from 0 to 7 or r to R, respectively. None of their
integrands includes terms that do not linearly depend on one of the &-defining functions
R, S or T. Since these functions are non-vanishing only inside the strongly restricted
localisation area, only very few grid points contribute finite integrand values to I}*, J\"
and K"

In particular, the effective angular integration area is constrained by dy = 0.05 and the
effective radial integration area by 4, € [4.4 x 107°,9.5 x 1072], depending on the polytropic
index I';.

The absolute values of the functions Iy*, Jy" and K" following as the sums of these
contributions are thus very small, considering that the integrands are finite and not ex-
traordinarily big.

In the limiting case of an infinitesimally small localisation area extent, as assumed for
the analytic consideration by Akgiin et al., these functions even vanish identically:

I7(8, > 0,89 - 0) > 0 (5.69)
T8, > 0,89 — 0) > 0 (5.70)
KY"(6, = 0,69 - 0) > 0. (5.71)
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5. Applications of the semi-analytic method

Concerning the above discussion, one should remark that the behaviour found here holds
for the particular assumptions made by Akgiin et al. indeed, but it is not to be expected
in general by any means.

Especially, the displacement field applied in this section is not expected to be present
in realistic stars. The displacement field assumed by Akgiin et al. is truly artificial due to
its infinite localisation. Spatially extended displacement fields might lead to a significant
difference between W and §W! and require the full non-Cowling treatment.

Displacement fields involving a strong radial motion or the consideration of rotating
stars might necessitate the non-Cowling treatment as well.

The same holds for the consideration of relativistic corrections. Compared to the New-
tonian approach portrayed here, they might cause the Eulerian gravitational perturbation
0P to have a larger impact on the system, due to the altered effect of gravity in the
relativistic treatment.

The construction and development of the semi-analytic method thus has its justification.

It has been shown that the semi-analytic method is capable of removing the Cowling
approximation in a straightforward way, also for finite localisation regions, which would
be infeasible in an analytic treatment.

The computation time of the results presented above and other trial code runs was
manageable, even for larger localisation regions, i.e. larger effective integration areas.
That means, there are still computational capacities for possible future investigations on
3D-systems that will require significantly more computation time.

The physical outcome of the neutron star investigation with mixed fields and stratifi-
cation applying the semi-analytic method is equivalent to the result found by Akgiin et
al.

The stabilisation of the particular Tayler unstable displacement field mode applied here
is possible for a sufficiently strong poloidal magnetic field component if the star is stably
stratified.

Although this result provides a possible indication on which effects might be relevant to
explain the observed stability of magnetised neutron stars, it does not imply the solution
of the neutron star stability problem by any means.

First, the detected stabilising impact has been found for one single perturbation mode
only. According to the general stability criterion , a complete stability proof would
require the investigation of all possible displacement fields.

Secondly, the above consideration is based on the unrealistic assumption of an infinites-
imally small localisation area. In real systems, we expect mode coupling, which prevents
the occurrence of isolated mode excitations. According to energy transfers, an active mode
will excite other modes on one hand and propagate through the whole stellar system on
the other hand, especially if the mode is unstable and the star is broadly homogeneous.
Even if one mode might dominate in an actual star and if spatial anomalies facilitate the
confinement of this mode, it will neither be fully constrained nor partially constrained to
an infinitesimal region.

To summarise, the results presented in this section represent one further proof of the
functionality of the semi-analytic method. Beyond that, for the first time, new physical
insights were gained applying the method.
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5.4. Application to further issues

Beyond the stability analysis investigations on magnetised neutron stars shown above, the
semi-analytic method can be applied to further problems.

In section the method will be applied for the computation of eigenvalues and
eigenfunctions of the system under investigation. That way, we can test the potential of
the semi-analytic method to make quantitative predictions.

Beyond that, the semi-analytic method provides the potential of creating a perturbative
method for the computation of eigenfrequencies and eigenfunctions of the investigated
system. This approach is shown in section

5.4.1. Computation of neutron star eigenfrequencies
Idea

As explained in the appendix section the perturbation of the Euler equation can be
understood as an eigenvalue problem.

The eigenfrequencies w,, of the perturbed system can be calculated from the eigenfunc-
tions u1(10) of the equilibrium system and the eigenvalue operator L, given by the Euler

equation. The corresponding formula is shown in equation (B.110)),

o Wul? L pav
"W pav

+O(5L?), (5.72)

where the equilibrium system is denoted by the superscript (0). Appendix section [B.6.3]
further shows that due to the connection with the Euler equation, the numerator of ex-
pression is related to the expression for the energy variation in the following
way:
, AW (5 = uff))
w® = - : (5.73)
D%{uglo) 'U;O)pdV}

Therefore, the expression analytically derived for §W in this work can be applied for a
quantitative calculation of the eigenfrequencies of the considered system.
The numerical setup implemented here provides the required computational framework.

Implementation and outlook

First test applications of the idea described above have been implemented.

For the continuing development of the method, the eigenfrequencies of a homogeneous
star shall be calculated. According to the underlying formula , this procedure re-
quires the input of the eigenfunctions u,(lo) of the homogeneous star. We use the formulation
shown in section The eigenfunctions are given in the appendix section

For first test runs on polytropic stars, the numerically calculated eigenfunctions provided

by other studies can be utilised.

Note that in this procedure, f-mode type displacement fields cannot be investigated in
the case of a homogeneous star, since they obey V- & = 0.
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5. Applications of the semi-analytic method

According to equation (2.101a)),
dp=-poV-£-& Vpo=—poV -&, (5.74)

where we took into account that Vpg = 0 in the homogeneous star. Further, the f-mode
type displacements are always incompressible, i.e. dp = 0, as explained in section [2:3.1]
Therefore, V- & = 0.

5.4.2. Eigenmode determination in non-homogeneous stars

In this section, the idea of the previous section is extended for the purpose of creating a
method to calculate eigenfunctions and eigenfrequencies of non-homogeneous stars.

Motivation

While the eigenmodes and eigenfrequencies of polytropic stars are well known, the investi-
gations presented in section for instance involve stratified stars whose eigenmodes and
eigenfrequencies have not been determined yet. Generally spoken, in the course of apply-
ing the semi-analytic method, we will regularly deal with specific systems and parameter
choices for which the eigenfunctions are not necessarily known.

However, the determination of the system’s eigenfrequencies and eigenmodes might
be helpful to gain information about its oscillation properties. It would be desirable
to calculate these quantities with the aid of the semi-analytic method as opposed to a
full complex time-dependent normal mode analysis. Beyond that, the global stability
analysis test, based on the semi-analytic method and suggested above, requires the given
eigenfunctions of the system as well.

Idea

The idea of determining eigenfunctions and eigenfrequencies with the semi-analytic method
is based on the fact that the energy variation is related to the eigenfrequency as explained
in section 2311

The basic assumption is that the eigenfrequency of a system changes slightly when the
star is polytropic or stratified as compared to purely homogeneous. In this case, the
star can be described by a perturbative approach, where the deviation from homogeneity
creates a small deviation in the stellar eigenfrequency.

Starting from analytically known eigenfrequencies of the homogeneous star, the correc-
tions caused by the radius dependent density profile are calculated with the semi-analytic
method. Afterwards, these frequencies can be inserted to calculate the new corrected
eigenfunctions. This procedure can be repeated in an iterative method.

According to equation , the eigenfrequencies of the system can be calculated from
the eigenfunctions of the equilibrium system and the eigenvalue operator describing the
system. In the first step, we approximately apply the eigenfunctions uye, of the homoge-
neous star in the formula. The eigenvalue operator Ly, is chosen according to the actual
polytropic system:

2 2 j.Z[ Lli;om ’ Lp01y Uhom £ d 2
Wiy = W + +O(0L 5.75
(1) hom [j’j‘ });0 Une '\ ( )’ ( )
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where we consider an arbitrary non-degenerate mode n. The subscript (1) denotes the
order of the correction method.

The result of is the square of an eigenfrequency w(;y which is expected to differ
from the original eigenfrequency w(g) = whom of the homogeneous star, corresponding to
U(y) = Unhom- The computed eigenfrequency is expected to fit the polytropic star bet-
ter than wyem, since it has been corrected by applying the actual operator Ly, of the
polytrope.

Subsequently, the newly calculated eigenfrequency w(;y can be applied in equation
, in order to calculate the corresponding first-order corrected eigenfunction w(yy:

1 Unhom (P) [/ %
= m T —— -L m dv, 5.76
U(1) = Uhom + N %: w(Ql)(n) _ w?l) (p) uhom(p) poly Uho (n) p ( )

where N has been defined in equation (B.102]). In this step, the system is again described
as a polytrope via Lply.

These steps can now be repeated in an iteration procedure. For each iteration step j,
the calculated eigenfrequency wy;) and eigenfunction u;y are expected to more accurately
approach the actual eigenfrequency wpoly and eigenfunction wupel, of the polytropic star.
Finally, the method shall converge to the exact values.

Test runs and outlook

The perturbative correction method for the calculation of eigenmodes in arbitrary systems
has been examined in several test runs. Apparently, the mutual computation of w? and u
is essential for the method to work.

A more extended study of the functionality of this method and quantitative tests of the
results shall be performed in future studies.

Once the method works for the computation of eigenmodes on polytropic stars, it shall
be extended to stratified systems.

This step would provide a valuable tool, since modern and future neutron star stability
studies must investigate complex systems, as proven in this work. The more realistic the
considered system will be, the reduced the possibilities are to describe it analytically, and
the more beneficial the semi-analytic determination of its eigenmodes will be.
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6. Conclusions

Based on the results from the application chapter [5] we can now make concluding remarks
on the technical and physical outcome of this work. First, we estimate whether the
construction and implementation of the semi-analytic method worked as desired. Second,
the newly gained physical insights on neutron stars will be summed up.

6.1. Functionality of the semi-analytic method

The functionality of the semi-analytic method will be evaluated considering the expec-
tations described in chapter [3| We will estimate whether the requirements for the semi-
analytic method could be implemented and whether the fundamental idea of the semi-
analytic procedure could prove itself.

System complexity The first requirement for the semi-analytic method was to provide
an opportunity to keep the investigated system more complex and realistic than possible
in an analytic study. This demand has been clearly fulfilled.

The semi-analytic approach allowed us to successively include a variety of additional
neutron star characteristics relevant for its stability behaviour compared to the simple
analytic investigations by Tayler (1973); |[Markey & Tayler| (1973]).

In particular, we could add the possibility of stratified model neutron stars in section
investigate mixed magnetic fields in a straightforward way and combine these effects
in section (.3

Even compared to the analytic study of more complex magnetised neutron stars provided
by |Akgtin et al.| (2013]), the strong and previously essential Cowling approximation could
be removed in section This achievement represents the main confirmation of the fact
that the complexity of the considered system has been increased.

The analytic derivation of the non-Cowling term has been kept general, so that it can
easily be adapted to future applications on different systems. Additionally, the required
code structure for this extension has been prepared, cf. section The first test appli-
cation on mixed magnetic fields with stratification in section finally proved that the
semi-analytic method is indeed capable of investigating systems without Cowling approx-
imation.

This step represents a major improvement in the field of stability analysis of magnetised
neutron stars. So far, basically all studies relied on the assumption of the Cowling ap-
proximation, which is an unsatisfying circumstance given that gravity plays an important
role for the physical characteristics of compact objects. Especially for future investigations
focussing on the search for stability rather than on the detection of instabilities, where the
Cowling approximation might not be valid, this achievement is essential.
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Removal of simplifications Furthermore, several approximations that were necessary for
the previous analytical stability investigations could be avoided in this work.

In particular, the stability considerations in Tayler| (1973) and [Markey & Tayler (1973)
relied on estimations and argumentations. The semi-analytic method in sections |5.1] and
(2] in contrast, provided a statement about the stability of the system directly produced
from the theoretical model assumptions.

It was possible to consistently neglect the magnetic field in the unmagnetised neutron
star equilibrium in contrast to [Tayler| (1973). Tayler assumed the magnetised neutron
star background in order to avoid additional terms in the energy variation density in the
analytic consideration. Applying the semi-analytic method, these additional terms in the
energy variation and in the minimising &-defining function Yy, in could
easily be carried along. This example demonstrates the flexibility of the semi-analytic
method to treat systems with altered fundamental equations or composition profiles.

Compared to|Akgun et al.| (2013, the analytic density profile approximating a polytrope
could be replaced by an actual polytropic composition structure, cf. section [5.3] This
achievement indicates that the constructed code is capable of processing arbitrary and
for example precalculated density profiles for the background system in a straightforward
way.

Similar to the simple neutron star models, Akgiin et al. derived the analytic stability
criterion based on approximated expressions for the energy variation. Even in the highly
complex system with mixed magnetic fields, stratification and full consideration of the
gravitational Euler perturbation, these approximations were not necessary in the semi-
analytic approach. The full and — within the frame of the applied model system — exact
expressions for the energy variation density could be processed easily and in manageable
computation time by the integration code, cf. section [5.3|

Finally, the analytically required assumption of an artificial infinitely strongly confined
displacement field was not necessary in the semi-analytic treatment in section [5.3] Even
though the extent of the localisation area was kept relatively small for the application
shown here in order to produce results comparable to the analytic study, larger localisation
areas can equally be chosen. The application presented in this work was a first test
verifying the functionality of the code. Further test runs indicate that realistic extended
localisation areas are assumable in future applications.

As explained in section larger localisation areas involve the complication of an
aggravated distinction between the spatial regions contributing positive or negative terms
to the total energy variation and to localise a possible instability. The straightforward
possibility to adjust the localisation region when working with the semi-analytic method,
will allow for a systematic scanning of the questionable region. Beyond this, the code set
up in this work even holds the opportunity to directly plot the energy variation integrand
depending on the spatial parameters, as shown in figure [5.4l This allows a fast visuali-
sation of the problem at hand, which is not accessible with purely analytic or numerical
approaches, and provides an extremely valuable overview.

Generality Finally, the semi-analytic approach was expected to offer the opportunity of
an easy and systematic parameter variation, especially for the magnetic field and displace-
ment field. That way, the considered system shall be kept general and different classes
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of systems shall be examinable at once. The semi-analytic method provides this feature
which has already been utilised in all applications shown above.

The method proved that it is possible to vary different system parameters and to scan
the parameter space for values and combinations producing systems that are more likely to
be stable. The functionality of the parameter variation has been confirmed for parameters
describing different aspects of the neutron star, such as the magnetic field, displacement
field, background system and the stellar composition.

For the toroidal field application in section the toroidal magnetic field strength Bio,
has been varied and the increasingly destabilising impact of the field with higher field
strengths has been detected. Beyond that, the background model parameters I'g and s
have been varied in order to ensure that the findings are universal.

In section the displacement field has been parametrised and the mode index m has
been varied. It has been proven that for mode indices exceeding a critical value, the system
is unstable. Again, the background parameters have been varied for the sake of generality.
The parameters being varied were the central density p. and the proportionality constant
k of the polytropic equation of state.

Finally, in the mixed field case in section the poloidal magnetic field strength
Npol and the polytropic index for the perturbations I'y have been varied. The stabilising
tendency has been detected for poloidal field strengths exceeding a critical value, where a
stronger degree of stratification lowers the minimum field strength.

In test runs, different sizes of the displacement field localisation area have been applied
in all applications. This type of parameter variation proved to be easily feasible as well.

Overall, one can say that the possibilities of parameter variation are by far more diverse
than demonstrated in the test applications implemented so far. The semi-analytic method
thus offers a very broad range of investigation options for future projects.

Concluding, the semi-analytic method is capable of treating complex systems while
keeping the generality of the study at the same time.

Therefore, the semi-analytic method indeed proved itself as a valuable tool for prein-
vestigations prior to simulation studies.

6.2. Theoretical insights about magnetised neutron stars

In this section, the physical aspects of the insights newly gained by applying the semi-
analytic method will be summarised.

In accordance to the simple analytic study by Tayler| (1973)), the semi-analytic method
detected an instability in the toroidally magnetised neutron star for non-axisymmetric
displacement fields of an exponential angular dependence, cf. section [5.1

This result holds for polytropic stars consisting of a neutron proton electron fluid without
rotation. The occurrence of this instability, identified as the Tayler instability, was found
for magnetic field strengths exceeding a vanishingly low minimum magnetic field strength
for interior field standards. However, the instability might occur for lower field strengths
as well which cannot be ruled out from the semi-analytic investigation. According to the
localisation of the displacement field, it can be deduced that the origin of the instability
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is located close to the symmetry axis of the star which coincides with the magnetic field
symmetry axis.

The same simple neutron star model with a purely poloidal magnetic field shows an
analogous instability that has been detected with the semi-analytic method in section [5.2

The unstable perturbation mode has the same structure as in the toroidal field case,
with respect to the symmetry axis of the geometrically altered magnetic field. This Tayler
instability of the poloidal magnetic field is detectable for arbitrary non-vanishing field
strengths. This result verifies the work by [Markey & Tayler (1973). The localisation of
the displacement field confirmed that the origin of the instability is located close to the
magnetic field symmetry axis again, which for the poloidally magnetised star is equivalent
to the neutral line.

Beyond these instability proofs, the semi-analytic method detected stabilising impacts
of more complex physical features that are present in real stars, in comparison to the
variety of simple analytic studies such as Tayler| (1973); |Markey & Tayler| (1973)); Wright
(1973). Section showed that the poloidal magnetic field component in a mixed field
star can have a stabilising impact on the toroidal field Tayler instability. The fundamental
condition for this effect is a deviation from the polytropic composition of the star. These
results confirm the outcome of |Akgiin et al.| (2013]).

This result implies that the non-barotropic stratified density distribution might have a
tendency to stabilise the neutron star system against magnetic field instabilities in general.
Equally, the interaction of toroidal and poloidal field components might in general be a
relevant factor to solve the stability problem of magnetised neutron stars. However, the
investigation presented here does not consider the global stability of the system or the
properties of an actual mixed magnetic field with interacting components.

In comparison with the advanced analytical study by |Akgin et al.| (2013), the semi-
analytic method confirmed the validity of the Cowling approximation for the specific
conditions assumed there, cf. section [5.3

In the application shown here, the displacement field was infinitely strongly localised.
This fact prohibited a meaningful investigation on whether the Cowling approximation
shows tendencies to become invalid in the case of stability proofs, as compared to its
validity for the detection of instabilities. However, the possibility of becoming invalid can-
not be ruled out according to the study performed here. The hypothesis should therefore
be investigated again for a different system in order to test to what extent the Cowl-
ing approximation affects the result and whether it must be removed for future stability
verifications similar to the one shown here.

Overall, the semi-analytic method was able to provide numerous new insights compared
to the simple analytic studies.

The more advanced analytical study by Akgiin et al. could be confirmed. The general
framework to apply the semi-analytic method to more complex systems in the future is
prepared. According to the results found so far, one can feel confident that the method
will make its contribution to gain a more detailed knowledge about magnetised neutron
stars.
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After summarising the achievements of the semi-analytic method presented in this work
in the previous chapter, the future perspectives of the method, concrete applications and
possible followup projects will be discussed here.

7.1. Applications on magnetised neutron stars

The first thing to mention is that the stability investigation of magnetised neutron stars
started in section [0l can be continued.

On the one hand, the system under consideration shall successively be made more real-
istic, including additional physical features that might be relevant for the stellar stability
behaviour. In doing so, the semi-analytic approach shall be applied in order to test the
stability properties of the system, based on the energy variation method.

On the other hand, the method can be adapted to other neutron star related application
fields, such as the calculation of eigenfrequencies of the system.

Twisted torus field configurations

The most natural extension to the method in its current form and according to the present
state of research is the investigation of actual mixed magnetic fields.

The application shown in section investigated the impact of a weak poloidal field
component on the toroidal field Tayler instability. An actual star, however, is expected
to posses an interior field consisting of both field components, forming a twisted-torus
structure as illustrated in figure[3.1] The result from the work by [Akgiin et al|(2013) is not
directly applicable to this situation as it is not clear how both field components interact,
regarding the field instabilities of the other component. New instabilities might arise in
the actual mixed field compared to the superposition of both independent components.

The twisted-torus field showed indications of stability in numerical studies before, for
example in [Braithwaite & Spruit| (2006).

The semi-analytic method shall be applied to investigate if this configuration shows
in fact stronger stability tendencies then others. The investigation of the twisted-torus
field first requires the construction of an appropriate displacement field that is optimally
adjusted to the mixed field geometry in order to impose effective perturbations on the
field lines. Next, the system should be perturbed while its energy variation is computed
applying the semi-analytic method.

As demonstrated in the applications presented in this work, the construction of an
adequate displacement field is not a direct process with one single solution. It might
be a difficult task to find the perturbation mode that causes a fast growing instability.
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The recognition of such modes, however, is highly desired. They allow for deductions
concerning the global stability behaviour of the system, which is predominantly driven by
these fast growing unstable modes.

The semi-analytic method offers a helpful possibility to address this issue.

First, a general form for the displacement field shall be constructed for the twisted-
torus field. It will be based on the geometrical considerations that underlie the displace-
ment field choices applied above to perturb the separate magnetic field components. The
twisted-torus field follows by vectorial addition of the toroidal and poloidal magnetic field
components. Therefore, the appropriate mixed case displacement field is expected to be
a vectorial combination of choices , respectively , for the toroidal field case
and for the poloidal field case.

This displacement field ansatz shall next be expressed in a parametrised form where
the parameters can be constrained applying the semi-analytic method. As proven in this
work, the semi-analytic approach is capable of varying certain mode parameters easily.
The parameter space can be scanned for displacement fields that might cause strong
instabilities.

Indications for unstable modes as well as possible stabilising effects can be verified
afterwards by an investigation with time resolved simulation codes.

One possible intermediate step towards the mixed field investigation is to study the
impact of an isolated toroidal field component on the poloidal field instability discussed
in section

This investigation can be performed in analogy to the procedure shown in section [5.3
with interchanged magnetic field components. Fast growing unstable modes have been
discussed before by Markey & Tayler| (1973) and can be tested on the simple purely
poloidally magnetised star. The required analytical and numerical framework has already
been prepared.

Therefore, this study is expected to be implemented in a more straightforward way
than the actual mixed case and it might complete the picture about the stability related
interaction of both field components towards each other. This information might then
facilitate the construction of an actual mixed field perturbation in the next step.

Extensions of the model system

Besides the consideration of mixed magnetic fields, further neutron star characteristics
have been neglected in the investigations so far that might have an impact on stability.

All investigations shown here and all studies cited in this work are based on the descrip-
tion of the neutron star as a fluid. Actual stars, however, possess a solid crust of nuclei,
as explained in section [2.1.2

This solid crust might have a stabilising impact on the perturbation modes of the interior
magnetised fluid. The crust is assumed to be elastic and deformable, but it cannot be
displaced as easily as the fluid elements that move with very little resistance. Since the
poloidal magnetic field lines penetrate the surface of the neutron star, as visualised in figure
they pass through the solid crust as well. It is expected that the fixation of the field
lines by the relatively rigid crust might have a stabilising impact on the system. Compared
to an entirely fluid star, the field lines fixated by the crust cannot move arbitrarily with
the fluid elements.

163



7. Outlook

The implementation of the solid crust in the energy variation principle would imply an
additional term in the energy variation caused by the elastic energy of the crust. The
derivation of this term can be done by assuming a full elastic sphere at first and passing
on to the spherical shell in a second step. For the transition region between the solid
crust and the fluid core, appropriate boundary conditions must be found. The simplest
possibility would be to describe the fluid interior and the solid crust with the same model,
but different parameters for their distinct elasticity behaviour.

However, even the neutron star crust is not able to stabilise all expected instabilities,
especially not in the case of the very strong magnetic field strengths appearing in magne-
tars. Therefore, the consideration of stability in fluid stars, as presented in this work, is
still relevant as well.

Furthermore, the fluids assumed in this work, and other studies concerning neutron
star stability, are based on the assumption of normal neutrons and protons. This implies
another simplification, since the temperature and density conditions in the neutron star
interior suggest that the neutrons form a superfluid and the protons form a superconductor,
cf. section 2.1.2

Since superfluidity and superconductivity were able to explain other neutron star char-
acteristics such as glitches, it stands to reason that these effects might be essential for the
neutron star properties in general (Ruderman et al. [1998; [Scholz et al., [2017)).

The description of superfluid neutrons or superconducting protons would require a new
consideration of the established energy terms in the energy variation. The altered proper-
ties of neutrons and protons impact the fluid pressure contribution as well as the treatment
of the magnetic field.

Validity tests of the Cowling approximation

As explained in the previous chapter, a reasonable follow-up step to the studies performed
in this work is to test the validity of the Cowling approximation for stability verifications
on further systems.

This information is important due to the increasing interest to search for stability rather
than to detect instabilities in upcoming studies. For investigations of this kind, it is not
clear whether the Cowling approximation is still applicable. For example in the case of
the toroidal field instability, the investigated system appears more stable than it actually
is due to the Cowling approximation. If this effect is noticeably strong, the assumption
of the Cowling approximation would implicate that unstable systems mistakenly appear
stable and the results were not reliable.

Since the analytical and numerical environment for these validity studies has been set
up in sections and already, this step involves little effort and provides interesting
insights for future applications.

Relativistic neutron star models

Another natural improvement of the semi-analytic method is the replacement of the New-
tonian description by a relativistic approach.

The Newtonian approach applied in this work was justified since we performed tests
and produced first results, and because the investigated systems do not involve major
mass movements or the like. For a long-range application of the method, however, the
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relativistic framework is essential to gain an optimally suitable description of neutron
stars, being highly compact objects.

The simplest way to incorporate relativistic corrections in the method is to replace the
Newtonian system equations by TOV equations. However, this procedure creates
inconsistencies if the Newtonian description of the magnetic field used so far is being kept.

Therefore, a relativistic framework can only be achieved by a complete replacement of
the Newtonian description by the relativistic one. The entire energy consideration must
be set up again in analogy to the existing Newtonian case.

Alternatively, the magnetic field description can be adjusted to a relativistic approach
by computing an actual relativistic magnetic equilibrium by solving the Grad-Shafranov
equation.

Minor improvements

Besides the additional effects that are worthwhile to be studied and some major structural
extensions, there is a number of small improvements that can be implemented in the model
and in the code.

Concerning the model, the solving of the system equations can be replaced by
the use of a prespecified composition profile. That way, the large effort of a complete
relativistic description of the background system can be avoided, while we can still estimate
to what extent various more realistic composition structures would affect stability. The
numerically specified density profiles can for instance be taken from computational studies
that showed indications of stability for these models.

Analogously, the approximated magnetic equilibrium applied in this work can be re-
placed by an actual magnetic equilibrium. So far, the equilibrium state is constructed
under the assumption of superimposing the magnetic field to an unmagnetised equilib-
rium, cf. section [2.2.1) The semi-analytic method, however, is also compatible with a
prespecified numerically constructed magnetic equilibrium, which follows from the solu-
tion of the Grad-Shafranov equation.

One useful possible code improvement is for example the application of an equidistant
cartesian integration grid in the (o, z)-plane. That way, the numerical accuracy stays
spatially homogeneous.

Regarding the removal of the Cowling approximation and due to the additionally re-
quired integrations, it is important to exhaust the full potential of possible reductions of
the computation time. In particular, the J- and K-calculation should be improved by
drawing on the previously calculated values of J and K at the neighbouring grid points.

Input parameter construction for simulations

According to all previously discussed phenomena and ideas for future projects, the semi-
analytic method can be applied to construct more realistic model systems for magnetised
neutron stars. Since they represent a still unresolved question of neutron star physics, this
goal is highly desirable.

In particular, the semi-analytic method can be applied in order to systematically con-
struct initial conditions for numerical simulation studies. These studies commonly rely on
intelligent guesses for the initial parameter choices. The parameter combinations utilised
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in modern studies are partially quite questionable regarding the system’s stability be-
haviour. The usage of profound initial conditions would improve the significance of the
simulation study. At the same time, the numerical study would provide a feedback on
whether the determined parameters are actually realistic, concerning the outcome of the
study or the possibly stable time evolution of the system.

Vice versa, the semi-analytic method can also be applied in order to test whether estab-
lished initial parameters of numerical studies could tend to result in stable systems, and
accordingly decide whether the applied parameters are suitable for these studies.

Global stability tests

The final goal in the field of stability analysis of magnetised neutron stars is to find stable
model systems that satisfactorily explain the long and stable life of the observed pulsars.

This goal implies a global stability proof of the constructed model system. As explained
in section a global stability proof of an equilibrium state requires the stability proof
of the system against all possible displacement fields. This task is a highly complex if not
impossible challenge.

For example, the stabilising impact of the poloidal field component on the toroidal one
in the study discussed in section [5.3 only took into account the system’s stability behaviour
against one specific perturbation mode.

Gaining a statement about the global stability of the system analytically is simply
impossible. The semi-analytic method, however, offers a possibility to approach this goal
at least.

As shown in chapter |5 the energy variation can be calculated for different choices of
displacement field parameters at once. This property provides the opportunity to sys-
tematically investigate the impact of entire perturbation mode classes and possibly detect
trends regarding which displacement field structures systematically induce instabilities.

The displacement field vectors can be expressed in terms of eigenfunctions of the system,
which form a complete basis. That way, all possible displacement field modes can in
principle be studied at once.

Even if the practical realisation is not at all a straightforward process, the sheer possi-
bility is a chance the analytical approach cannot offer.

In a second step, these highly destabilising displacement fields can be applied to systems
that are expected to be comparably stable. This might be systems involving certain
features such as the twisted-torus magnetic field structure, stratification or a neutron
star crust. That way, it can be tested whether the destabilising impact of the unstable
perturbations is reduced or suppressed by the additional physical features.

7.2. Applications on further systems

Besides the stability analysis of magnetised neutron stars, there are several ideas to apply
the semi-analytic method for stability tests on other neutron star related issues.
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Eigenmode correction method

First of all, the perturbative correction method for the eigenmode calculation of polytropes
or stratified neutron stars suggested in section [5.4.2] can be extended.

As explained above, the semi-analytic method in principle offers the possibility to calcu-
late eigenfrequencies and eigenfunctions of polytropic and stratified stars from the eigen-
frequencies and eigenfunctions of the homogeneous star. The advantage is the low time
effort, that is expected compared to a time-resolved normal mode analysis approach.

Oscillation studies on neutron stars described in section[2.1.3|rely on the identification of
stellar eigenmodes in computed or observed oscillation spectra. It is highly advantageous
to have a method at hand that can provide the eigenmodes of arbitrary systems.

For stability analysis, the eigenfunctions are interesting as well. Especially the system-
atic approach of global stability analysis suggested in the previous paragraph requires the
full set of stellar eigenfunctions. Arbitrary displacement fields can be expressed in the
basis of eigenfunctions. Systems that are realistic enough in order to be of interest for
future stability studies are not analytically treatable. The semi-analytic construction of
their eigenmodes would be extremely helpful.

Stability of compact objects against radial displacements

Compact objects, constructed with a polytropic equation of state and TOV equa-
tions , show a different stability behaviour depending on the input parameters ap-
plied in the construction (Shapiro & Teukolsky, |1983).

The semi-analytic method can be applied in order to investigate this behaviour.

Plotting the total mass of a series of compact objects depending on their central density,
one can identify stable and unstable regions in the graph. The stability criterion is given

by
dp. M >0 stability
¢ 1
{ dp, M <0 }‘:’{ instability. } (7.1)
For comparably low central densities, the slope is positive. The corresponding objects
are stable white dwarfs. With increasing central density, the stability behaviour changes.
There is a density range where no stable objects exist. For even higher central densities,

stable neutron stars occur. This region ends with a turning point d, .M =0 as well.
As shown by [Shapiro & Teukolsky| (1983), the proportionality

4
dp M ~To -5 (7.2)

can be derived. This translates into the stability criterion
Lo>2 stability
{ To< } ‘:’ { instability. } (7.3)

3

According to the achievements of the semi-analytic method presented in this work, we
expect that the method is capable of confirming this stability criterion.
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Different model systems can be constructed applying the TOV equations and versatile
input parameters. The energy variation consists of fluid pressure and gravity terms. For
the displacement field, a radial perturbation must be applied. The variation of the poly-
tropic background parameter I'g should then reveal the stability behaviour of compact
objects.

Once this step has been achieved, the system equation for the model construction can be
replaced by other choices. The impact of the relativistic description or a realistic equation
of state can be investigated. For simplicity, one can even apply a numerically precalculated
density profile. That way, it could be tested how realistic models are that are applied in
other studies on compact objects.

g-mode stability of neutron stars

Removing the magnetic contribution from the energy variation, the semi-analytic method
is able to investigate the stability of stratified neutron stars.

As explained in section [2.:2.3] the level of stratification impacts the stability behaviour
of the star towards g-mode type displacement fields.

In order to test this, one can apply the g-mode eigenfunctions of a homogeneous star,
given in the appendix section [A.7] as a displacement field first. Since the star is assumed
to be stratified, this procedure is an approximation.

In the next step, the eigenmode of the actual stratified star shall be applied. It might
be calculated applying the perturbative correction method suggested above.

The stability behaviour can then be tested, considering fluid and gravitational contri-
butions in the energy variation.

CFS-instability of neutron stars

Another example for a possible application concerning stability analysis is the investigation
of the CFS-instability.

Fast rotating neutron stars are subject to the CFS-instability, as mentioned in section
2.3.11 This stability is not dynamical, as opposed to the instabilities discussed in this
work. An investigation of this type of instability would therefore be interesting.

For the application of the semi-analytic method to the possibly CFS-unstable system,
we would need to consider rotation in the model. The corresponding rotational energy
must be included in the expression for the energy variation density.

Beyond that, fluid pressure and gravitational contributions are still relevant. The non-
Cowling treatment of the system derived in this work might become necessary as well
when rotation is taken into account.

Choosing an adequate displacement field which induces the possible instability, would
allow for an investigation of the CFS-instability.

There is a variety of opportunities to vary the system parameters, for example regarding

the composition or the rotation of the star. One could even add the magnetic field and
investigate its impact on the CFS instability.

168



7.2. Applications on further systems

Finally, beyond all opportunities described here, the semi-analytic method is not con-
strained to an investigation of neutron stars.

In principle, it is adaptable to all sorts of geometrically similar systems where a direct
quick stability analysis is desired and less effort is preferred over time resolved results.
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8. Summary

In this work, a new method for semi-analytic stability analysis based on the variational
principle has been developed and implemented. Its functionality has been verified and
its crucial advantages towards purely analytical and purely numerical studies have been
shown. The method provides an excellent tool to address the so far unresolved stability
problem of magnetised neutron stars, which represents one of the essential key questions
of neutron star physics.

In particular, the general idea of the method has been presented and an implementation
plan was built to set up the method.

The model used in previous stability analysis studies has been extended by adding more
realistic and relevant neutron star features. The required analytical derivations have been
presented. These were specifically the derivation of the Eulerian pressure perturbation
and the fluid contribution to the energy variation density in a stratified star, as well as the
Eulerian perturbation of the gravitational potential and the gravitational contribution to
the energy variation density in a full non-Cowling treatment.

The numerical code involving the solution of the background system equations, two-
dimensional Simpson integrations, grid interpolations and automatic parameter variation
has been set up. Successively, the code has been adapted and refined to address more
and more complex and realistic systems. Starting from spherical unmagnetised stars,
axisymmetry and single magnetic field components have been added first. Afterwards,
stratification and mixed magnetic fields have been taken into account. Finally, the Cowling
approximation has been removed.

The implemented method has been applied to different problems in order to test the
idea of the semi-analytic approach as well as the constructed numerical code. The Tayler
instabilities of neutron stars with purely toroidal and purely poloidal magnetic fields have
been verified. The stabilising impact of stratification and the poloidal field component
on the toroidal Tayler instability has been confirmed. In order to gain first new physical
insights from the method, the influence of the Cowling approximation has been investi-
gated. While it does not affect the stability investigation in the specific application tested
in this work, it still might not be valid for other applications.

Based on the achievements in this work, the semi-analytic method provides decisive
improvements towards a more realistic description of magnetised neutron stars. There is
room for further extensions such as the consideration of the neutron star crust, an actual
mixed twisted-torus magnetic field structure or many others.

The essential goal of this work has been achieved. The result of this work is a func-
tional method that enables promising potential applications. The semi-analytic method
represents one further step towards a more detailed understanding of the interior neutron
star structure, which impacts on our general knowledge of fundamental physics.
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A. Mathematical identities

This chapter shows mathematical identities frequently used in this work (Bronstein et al.,
2008]).

A.1. Vector identities

Vectors a, b, ¢ and generally complex scalars a, b fulfil:

V-(ab)=aV-b+b-Va (A.1)
Vx(axb)=a(V-b)-b(V-a)+(b-V)a-(a-V)b (A.2)
axb=-bxa (A.3)
a-(bxe)=b-(cxa)=c-(axb) (A.4)
(axb)xc=(a-c)b-(b-c)a (A.5)
V-(axb)=b-(Vxa)-a-(Vxb) (A.6)
V- (Vxb)=0. (A7)

A.2. Integral theorems

Integral theorems for the scalar a, vector b and normal vector n to the surface 9V of the

ff[v-de:ﬂb-ndS. (A8)
1% oV

Partial integration in three dimensions
[[/avde:#ade—ﬂ b-vadV. (A.9)
\% )% \%4

Integration of an exponential function over a full period

integration volume V are:
Gauf’s theorem

27
f mimm2)e Gy = 2 G (A.10)
0
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A.3. Derivative identities

Gradient, divergence and curl

Spherical coordinates For spherical coordinates (2.4]), the gradient of a scalar quantity
a is
Opa

(A.11)

Oga
Va=0rae, + —ey+ — @
T r sin?d

where e; denote the unit vectors.

Cylindrical coordinates For cylindrical coordinates (12.6)), the gradient of a scalar quantity
a is 9
a
Va=0gaes + Le¢+8zaez, (A.12)
w
where e; denote the unit vectors.
The divergence of a vector quantity b is
_ Ow (wwby) . 0,b,

w w

V-b

+0,b,. (A.13)

The curl of b is given by

va:(a“"bZ
w

- 8Zb¢) ew + (8wa _ 8wbz) eyt (aw (wb,) - Qabw) .. (A.14)
w

Orthogonal curvilinear coordinates Be u; = {u1,u2,us} orthogonal curvilinear coordi-
nates. The curve element dr and volume element dV are

3 3
dr = Zhi du; dv =J H du;, (A.15)
i=1 1=1
with du; = e; du;. The normalised unit vectors e;, scale factors h; and Jacobi determinant
J are

Ou @ Oyp®  Oys
d h'L = ‘au,/r‘ J =det 6u1y 8’uzy au?,y ) (A16)
Ou 2 Oupz  Oyyz

where {z,y, 2z} are cartesian coordinates.

The gradient, divergence and curl of the scalar @ and vector b in orthogonal curvilinear
coordinates are

Va = 8;;11a e+ a;;za es + (9;2)@ e (A.17)
1
v-b=— [am (h2 hgb1) + Oy, (ha B3 b2) + Ouy (h1 he bs)] (A.18)
3 hz
Vxb= > e D Ou; (hi bi,) €3, (A.19)
ig.k=1
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with D = hy hp hg and the Levi-Civita symbol &;;y.

Derivatives of logarithms

For scalar functions z = z(lnz(Iny)) and Inz = Inz(lny(y)), a relation between their
derivatives and derivatives of their logarithms can be derived. These functions obey

1 1
z =en?® do__ S dlny _ —. (A.20)
dlnzx dy Y
Thus,
dr  dr dlnz  dlnzdlhny zdlnz (A.21)

dy dlnz dy _gjdlny dy ydlny

Fluid pressure gradient

The gradient of the fluid pressure can be rewritten applying the chain rule on the depen-
dence p = p(p,2P(p)) from the equation of state (2.38]) for the perturbed system:

Opo ) Opo\ dzf Do ( dlnpg ) Olnpy\ dlnzf
- == —_— _ = — + . A22
Vpo ( 0po / z» Vpot ozl P dpo Vo po [\0Inpy/,» \OInaf P dlIn pg veo- )

In the second step, we made use of equation (A.21)), relating derivatives and derivatives
of their logarithms:

(%) _ Do (81np0) (%) _Po (81np0) d_xg_x_gdlnxg (A.23)
dpo)w  po \Olnpy/,» Ozl ) zb \Olnaf ) dpo  po dlnpg’ )

The polytropic index I’y of the background system can be identified in (A.22]) according

to equation ([2.40)), yielding

r
Vpo = ‘;—po V0. (A.24)
0

A.4. Other relations

Trigonometric relation

The Pythagorean trigonometric identity reads
.2 2 _
sin” ¢ + cos” ¢ = 1. (A.25)

Transformation relations for vector components

For transformations from spherical coordinates (2.4]) to cylindrical coordinates (2.6]), the
vector components of b obey

b = by sind + by cosv (A.26a)
by = by, (A.26b)
b, = b, cosV — by sin®. (A.26¢)
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A.5. ldentities for complex functions

A.5.1. Notations and identities for complex numbers

Let a and b be complex functions, {a,b} € C. The complex number a and its complex
conjugate a* can be expressed as

a =are ¥ =aqa,(cosp+ising) a =ap+ias (A.27a)

a* =a,e % =a, (cosp—isiny) a® =ap - iay, (A.27D)

where a, is a real amplitude, while ar and a; denote real and imaginary parts of a.
The complex conjugation of sums and products obeys

(a+b)" =a"+b" (ab)" =a*b*. (A.28)

A.5.2. Properties of real parts

The real parts of products of complex functions {a,b} € C obey

% {ab} =%{a b*}:%{a*b +a b} =anbr-arbs (A.29)
% {a b}:%{a*b*}:%{a b +a'b*}=arb+arb (A.30)
%{a*+a}=9{{2a3}=2a3, (A.31)

which follows from the definition of complex numbers in equation (A.27)).

Especially, the real part of an exponential function obeys

%{ei(m1—m2)<ﬂ} - % {ei(mrmz)so +ei(m2—m1)¢} . (A.32)

A.5.3. Integrals of complex exponential functions

The integral of an exponential function e*# over a full period of ¢ vanishes for integers
keZ:

27 27

/eikgo d(p:f{cos(k’gp)+isin(k§0)}d¢:
0 0

sin (k @) 1 cos (k ) 27T=0,
ok 0
(A.33)

which follows from the definition of complex functions in exponential depiction in (A.27))
and the periodicity of sine and cosine.

> =

This property facilitates a consequent simplification in the integrand of the energy vari-
ation density. The energy variation density £ depends on products of complex functions,
such as € or §Q, that involve exponential parts like e*™#. In these products, only terms
where the exponential functions cancel out will provide a non-vanishing contribution dur-
ing the (p-integration.

174



A.b.

This circumstance can be expressed as a consequence of relation (A.33)):

27 27

/ (a e™? 1h e_im“a) (c e™e 1 e_im@) dp = [ ad+bc) dp (A.34)
0 0

2

0

3

(
(ac eAme b d e_2im‘p) de,

o/

where a, b, ¢ and d are generally real functions.
This relation is applicable to all cases of this type considered in this work, since the
mode index m always fulfils the condition m € Z.

Finally, in the case where a, b, ¢ and d are independent of ¢, (A.34]) can be integrated

to give
27

f (a e™? +b e_im‘p) (c e™? 1d e_im‘P) dp=2n(ad+bc). (A.35)
0

A.5.4. Ensuring the physical meaningfulness of the energy variation

As explained in section there are two possible ways to guarantee a physically mean-
ingful energy variation. Tayler| (1973)) and Markey & Tayler (1973|) take the real part of
& before inserting it into £. In this work, the real part is taken over the total integrand £
instead.

In this section, we derive the impact of both approaches on the form of §W. The result
will enable the transformation between the equations given in this work and by Tayler et
al., for direct comparison of the applications described in sections and with the
original work.

We define complex functions

F=Fye™ F=R(F)=R(Fe™) (A.36)
G =Gy e G=R(G)=R(Gye™?) (A.37)
with generally complex amplitudes Fy, Gg that do not depend on .

According to relation (A.30)), the integral over the product of F' and G can be calculated
as

27 27
fFGdap - fi)%(Fg ) %1 (G ™) dy (A.38)
0 0
1 27
-3 f (Fp ™ +Ff e ™) (G €™ +Gf e7™) dg (A.39)
0
- g (Fo Gy + Fy Go), (A.40)
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where the final step follows with relation (A.35). o
Analogously, the integral over the real part of the product F'G can be calculated using
equation (|A.29):

27 27
[ R(EG) dp= [ R(Fy e Gy &) dp (A1)
0 0
1
=5 f (Fy Go+ FoGg) de (A.42)
0
ZW(FJ G()-i-FoGS). (A43)

Overall, the connection between both approaches can therefore be described by

2
-3 R 6y des
0

Note that relation (A.44]) is valid, independently of whether the first or the second function
is complex conjugated on the right hand side.

27

Jre

0

N)l’i
l\DlH

27
f R(FG*) (A.44)
0

The components of the displacement field in this work are of the form of F and G, while
Tayler’s &-components are of the form of F' and G.

Accordingly, all formulas shown in this work — where complex displacement fields are
used and the real part is taken inside £ — contain an extra factor of 1/2 as long as the real

part has not been evaluated yet, compared to Tayler’s approach with real displacement
fields.

Physical meaningful energy variation The additional factor of 1/2 which ensures that
the final explicit form of éW is identical with Tayler’s form, particularly appears in the
energy variation density in its implicit form in , as well as its explicit form in ,
and all transformation steps in between. The same applies for the fluid energy variation
density contribution in the stratified star, shown in equation , and the non-Cowling
gravitational contribution, given by equations and to . The summarised
contributions in equation still contain the unevaluated real part as well and therefore
also the additional factor 1/2 compared to |Bernstein et al.| (1958]) or Tayler (1973). The
same applies for the original 0W-expressions in the application chapter, (5.10]) and -

On the other hand, after the real part has been evaluated, the addltlonal factor disap-
pears. Expressions of the non-Cowling gravitational contribution for displacement
fields expressed by spherical harmonics are formally identical with their equivalents in
Chandrasekhar & Lebovitz| (1964). The same applies for the non-Cowling gravitational
contributions in the mixed field case, shown by equations (4.35)) to (4.44) and (4.49)). In
the application chapter, the final forms of the energy variation in equation , ,
and , are identical with their equivalents in Tayler| (1973)), [Markey & Tayler
(1973) and |Akgiin et al.| (2013).
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Physical meaningful gravitational Euler perturbation For the derivation of the gravita-
tional Euler perturbation d®, the situation is different from the energy variation.

The calculation of §® involves the integration of a scalar product between the displace-
ment field € and a gradient involving spherical harmonics Y}, cf. equation . In
contrast to 0W, where Tayler inserted only the real part of the displacement field into the
integrand, this time & and Y/\“ are actual complex functions. Nevertheless, the integral
over the product is real which follows from the explicit form of their imaginary parts.

With

£~ Y~ e, (A.45)
and according to relation (A.10)), the azimuthal integral in 6 becomes
27 2m
/ ag* - v[bY}!'] dp= f ¢l Ao = 27 ¢ 6y, (A.46)
0 0

where a, b and ¢ denote real functions that are independent of ¢. On the other hand, with

relation (A.27)),

27 27 27
/ %{aﬁ* -V [bYA“]} dy = f c%{ei(“_m)“’} dy = f c {cos((,u—m)go) } dp =27 compu
0 0 0
(A.47)
holds as well. Therefore,

27 27

[agviae= [ w{ae vy ag, (A.48)

0 0

with the real function d.

Note that this relation does not hold for arbitrary complex functions, cf. equation
, it is rather caused by the particular form of £ and Y)\“ .

According to and the fact that (Chandrasekhar & Lebovitz (1964) address actual
complex functions in the §®-integrand, there are no additional factors to be considered
here compared to their form when we take the real part of the integrand.

Also note that the complex scalar product in the gravitational Euler perturbation inte-
gral (B.28)), traces back — over the integral relation (B.29)) — to the orthogonality relations

(A.51)) and (A.52) for spherical harmonics.

They involve actual complex functions whose scalar product integrals are real. The
orthogonality relations stay unchanged when the real part is applied to the integrand:

ff R (V7 Y} dS = by Sy (A.49)
S

1 . m* m’ m* m’
ff SmQﬂi)%{anQﬁaﬁYl Y™ + 0, 0,V 1S =11+ 1) b . (A50)
S

This feature eventually causes the d®-integral to be intrinsically real as well.
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A.6. Properties of spherical harmonics

Spherical harmonics, as defined in equation (2.137)) with (2.138) and (2.139)), and their

derivatives fulfil the following orthogonality properties:

[f YV dS = 6 G (A.51)

1 . % m’ m* m’
ff SinQﬁ{sm%mﬁYl Y™ + 0, 0,7} AS =11+ 1) b e, (A52)

where dS denotes the angular surface element. For example, in spherical coordinates

(2.4): dS =sin¥ddde.

A.7. Eigenmodes of the homogeneous incompressible star

The stellar eigenmodes of homogeneous incompressible stars can be analytically described
(Fliggel 1958; [Smeyers & van Hoolst} 2010).

The explicit form of the radial functions defined in equation (2.144)) is given in this
section.

We define
EU 1%
y1=Co— yo =Co— (A.53)
r r
and
E _ Fl w2
Sw?2+2wt-12
_ 14T w? -8w? - 2w +12
o 4lhiw’ —8w - 2w+ (A.54)
14T w?
Go L (ZMT1e? + 8w + 2wt ~12)° 52 1T w? - 8uw? ~ 2w’ +12
924 I w? 924 I w? ’
with a constant amplitude Cy. For the homogeneous star, ¢ = 1.
The f-mode is described by
— 2r _ _ 2
U= = Ve=r o0pUyr = —. A.55
Iy i U= =% (A.55)
The g;- and p;-mode are described by
- 6\ r 6
o = (4 2) 7= (22 22
_ 6E - Th'\ P (6E - T,
‘/iql’pl:(ﬁ-i-E-l-?)ﬁ—(F—E-l‘? T (A56)

_ 6\ r2 6
@»Ugl,pl =3 (4+ E) ﬁ — (2 + —) .
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The g,- and py-mode are described by

_ 6 3 6

U927p2 = (6+ J)Fﬁ + (4+ —) (1 F R2 (2+ E)r (A57)
_ 6F I 5 6E - r3 6E - I
‘%m:(w B 2)F§1(27+E )“ g (57‘E+3'r

_ 6 7744 6 B T2 6
aTU927p2:5(64_?)}7@4‘3(44‘E)(l_F)ﬁ—(2+ﬁ).
The g3- and ps-mode are described by
6\, - =710 6 _ 3 6
Ugs.ps = ( ) (6+E)(F_G)ﬁ+(4+§)(1_F)ﬁ_(2+ﬁ)r
" (6E _ - T1\,- ~. 1
g37p3 ( )GR (—2 +3E+7) (F_G)ﬁ (A58)
= B (6E - T
( Hh )“ ") (z?‘E+E)T
4 2 6
gs,p3—7( ) +5(6+—)(F G)—+3(4+ )(1 F)__(2+ﬁ)'

For homogeneous stars, the following analytical relations hold for the equilibrium quan-
tities, inferred from the system equations ([2.26)):

M 3 M
= =" _ — — .A.-
P(r)=m == (4.59)
2
po(r) = — p(2) (R2 - T2) (A.60)
4
gr(r) = Fgopor (A.61)
Ty = oo. (A.62)

A.8. Unit systems

For an overview and the straightforward comparison with works by different authors, the
most common choices for unit systems used in the field of magnetised neutron star stability
analysis are presented in this section.

Generally, unit systems can be distinguished by the following characteristics.

SI and cgs unit systems In contrast to the SI unit system which is based on metre,
kilogramme and second, the cgs system is based on the three fundamental units centimetre,
gramme and second.

The expression of mechanical quantities in cgs units is unique. The transformation
involves a simple unit change.
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Electromagnetic quantities, in contrast, require an extension of the cgs unit system.
A common choice is the so-called Gaussian cgs unit system. Electromagnetic quantities
depicted in SI units and Gaussian cgs units are not transferable into each other by simple
unit changes. The quantities and equations expressed in SI units and Gaussian cgs units
differ in prefactors involving 4 7, ¢, or vacuum permittivity and permeability g and uyg.

Non-rationalised and rationalised unit systems The standard formulation of the fun-
damental electromagnetic equations in non-rationalised Gaussian cgs units involves the
factor 47 in two of the Maxwell equations . On the contrary, rationalised unit
systems are defined in such a way that these factors disappear.

The Maxwell equations expressed in rationalised units are symmetrical, while additional
factors appear in Coulomb’s law and the Biot-Savart law. The SI unit system is one
example of a rationalised unit system, the rationalised Gaussian unit system discussed
below is another one.

Non-geometrised and geometrised unit systems Fundamental equations describing
phenomena of electromagnetism or gravity generally involve the appearance of the prefac-
tors ¢ and G. This can be seen for example in the Maxwell equations or the Poisson
equation . In a geometrised unit system, the physical units are defined in such a way
that these factors equal unity, c=1 and G =1, and thus disappear from the fundamental
equations.

Dimensionless set of quantities For calculations, and the numerical computation of
physical quantities especially, it is convenient to work in a unit system where all physical
quantities are dimensionless. All quantities are expressed in terms of non-dimensionless
physical constants.

The dimensionless unit system can be based on an arbitrary set of constants that involves
all three fundamental units in an independent way.

In the field of compact stellar objects, the usage of the solar mass Mg, the speed of light
c and the gravitational constant G is customary.

Gaussian cgs unit system

The typically so called “Gaussian unit system” labels a non-rationalised cgs system that
represents an extension of the mechanical cgs unit system for electromagnetism.

It is for instance used by |Akgiin et al.| (2013).

The basic equations that are relevant for this work, expressed in non-rationalised Gaus-
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sian cgs units, are

V-E=47p. (A.63a)
0.B
VxE=-—— (A.63D)
C
V-B=0 (A.63c)
4 E
vxB-iT; OF (A.63q)
C C
B
F.=q. (E + 25 ) (A.63¢)
Fo-22T (A.63f)
r?|r|

where equations (A.63al) to (A.63d|) are the Maxwell equations, relation (A.63¢]) describes
the electromagnetic force and equation (A.63f]) represents Coulomb’s law of two electric
charges ¢q; and g¢o.

Geometrised rationalised Gaussian unit system

Compared to the Gaussian cgs unit system , the geometrised rationalised Gaussian
cgs unit system does not involve the factor 47 in the Maxwell equations. The other
equations, that might gain additional factors in the course of this, are not required in this
work. Beyond that, the geometrisation involves ¢ =1 and G = 1.

This unit system is used by [Bernstein et al.| (1958); Tayler| (1973)); Markey & Tayler
(1973) for instance.

The basic equations expressed in geometrised rationalised Gaussian cgs units are

V-E =p, (A.64a)
VxE-=-0,B (A.64D)
V-B=0 (A.64c¢)
VxB=j+E (A.64d)
F.=q.(E+vxB). (A.64e)
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Dimensionless quantities in terms of Mg, c and G

The set of dimensionless quantities {Q} applied in this work is based on the solar mass,
the speed of light and the gravitational constant. It is defined by the following relations.

2
F=—S o 5=2 F-Sr e
My G c ct c2 My
3 2 3
- C _m . MZG - @
t: t = — = (I)Z— A-65
My G m Mg b s 7P c2 ( )
_ MEGP _ MG _ MZTo g
p=—"w P 9=—a 9 R=—"&%r, "~
6 6 2 1 1+l
~ c c = c - M,G
- o jo_ ¢ g i MG
¥ M3 ek =Bt VT e L= Tava M
~ . M2G5/2, . M G3/2
o= j==21—j B-"°"_B
MsG c c

Note that this definition holds for cgs as well as for SI units in the case of the mechan-
ical or geometrical quantities {r,v, F,W,t,m,p,®,p,g,k, ¥, X, J;, K;}. In the case of the
electromagnetic quantities {qc, 7, B}, the relations are valid only in the cgs unit system.

The geometrised dimensionless quantities {Q*} are defined in analogy to relations (A.65)
by choosing

7 [em] =7 m* [em]=—=m t* [em] = ct. (A.66)
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In this chapter, mathematical derivations that are relevant for this work are outlined.

B.1. Partial and material derivatives

The connection between material and partial time derivatives in floating fluids will be
derived (Thompson 2006]).

The partial derivative 9;Q) describes the change of a quantity Q(r¢) at a fixed position:

9,0 = lim Q(ro,t) - Q(Tovto)'

t—to t—1o

(B.1)

The material derivative D;@Q describes the change in ) within a fixed fluid element, that
moves at a velocity v from 7y to 7 during the time interval ¢ — t:

D, = lim LD =Qroto) _y, Qro+v(t=t),1) - Qlro,to)

t—to t—to t—to t—1o

(B.2)

The connection between both derivatives can be derived as follows.
The total derivative d;Q of a quantity Q(r) = Q(r1(t),r2(t),73(t),t) is generally calcu-
lated by applying the chain rule:

dtQ = 81@ dtrl + BQQ dtT'Q + (93@ dt’r’g + atQ, (B.3)

where 9; = 9/0r;.

In fluid dynamics, any system quantity ) depends on position variables r; that are
also time-dependent, due to the fluid velocity v = dsr. The fluid velocity describes the
change in the position vector for a fixed fluid element and is therefore denoted by the total
derivative.

In this special case of fluid dynamics, the total derivative becomes

dtQ = 8162 V1 + 82@ V2 + 83@ v3 + 8,5@ = 8tQ +v- VQ = DtQ (B4)
It is called the material derivative.

If Q=(Q1,Q2,Q3) is a vector quantity, the relation equally holds for its components:

016Q1 (V101 + 1202 + v303) Q1
DtQ = 8tQ + (’U . V) Q = 6t<5Q2 + (1}131 + V909 + ’03(93) QQ . (B5)
010Q3 (V101 + V202 +v303) Q3
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B.2. Magnetic field expressed by a stream function

Axisymmetric magnetic fields can be expressed by derivatives of a scalar stream function
(Grad & Rubin} [1958; Lander & Jones, [2009). This feature is reasoned below.

According to Gauf’s law for magnetism ([2.14c|), magnetic fields are divergence free.
With relation (A.7), this Maxwell equation is fulfilled by default if the magnetic field is
generated by a vector potential A via

B=VxA. (B.6)

In cylindrical coordinates (2.6) with (A.14]) and under the assumption of axisymmetry,
this can be expressed as

A,
B = (aﬂo —8ZA<p) ew‘f‘(azAw_awAz) €¢+l(aw (’WAZ)—G@AW) e, (B?)
w

w

1 1
=-—0ueg + Bye, + —O0zue,, (B.8)
w w

with the cylindrical unit vectors e; and a scalar stream function

u=wl,. (B.9)

By the use of the gradient (A.12)) in cylindrical coordinates and with the assumption of
axisymmetry, d,u = 0, it is

Vuxe,=(0gues +0ue,) xe,=-0uey+0zue,. (B.10)

Comparison of relations (B.8]) and (B.10) finally shows that the axisymmetric magnetic
field can be expressed by the stream function, the azimuthal magnetic field component
and the azimuthal unit vector:

1
B=—Vuxe,+Bge,. (B.11)
w

B.3. Euler and Lagrange differentials

The connection between Lagrangian and Eulerian differentials in floating fluids will be
derived in analogy to material and partial derivatives shown in section (Mestel,, 1999).

The Euler differential 6@ describes the change of a quantity Q(rg) at a fixed position,
see equation (2.46al):
6Q = Q% (ro,t) — Qo(ro), - (B.12)

The Lagrange differential AQ) describes the change in () within a fixed fluid element, that
is displaced from ¢ to 7 = 7o + £, see equation ([2.46Db)):

AQ = Q"(r,t) — Qo(ro)l, = Q“(ro + &,1) - Qo(10)l, - (B.13)

184



B.4.

The connection between both definitions can be derived as follows.
The total differential d@ of a quantity Q(r) = Q(r1(t),r2(t),r3(t),t) is generally calcu-
lated by applying the chain rule:

dQ = 81@ dry + 6262 d’l“g + 83@ d’l”3 + 5@ (B.14)

In fluid dynamics, any system quantity () depends on position variables r; that are varied as
well, by the displacement field € = Ar acting on the fluid. The displacement field describes
the change in the position vector for a fixed fluid element. It is therefore described by the
Lagrange differential.

In this special case of fluid dynamics, the total differential becomes

dQ=01Q& + Q& + 03Q &3 +6Q =0Q + (£ V) Q = AQ. (B.15)
It is called the Lagrange differential.

If Q=(Q1,Q2,Q3) is a vector quantity, the relation equally holds for its components:

0Q1 (£101 + £202 + £303) Q1
AQ=6Q+(&£-V)Q=| 0Q2 |+| (&101+&02+8303) Q2 |. (B.16)
0Q3 (£101 + &202 +£303) Q3

Note that the displacement causing () and A(Q is an instantaneous process as opposed
to the actual fluid movement causing the partial and material time derivatives discussed
in section [B.1l

B.4. Surface integral contributions to the energy variation

Bernstein et al.| (1958)) showed how the energy variation for a magnetised neutron star can
be split into surface integral terms dWgy ¢+ over the stellar surface, volume integral terms
0Wace over the exterior of the star and the actual volume integral W, over the stellar
volume.

This finding is briefly outlined here for the purpose of proving that the only contribution
that needs to be considered in this work is ¢ Wgiar-

The total energy variation of a polytropic star in Cowling approximation, including
volume integrations as well as surface integrals, is given by equations (2.78)), (2.107)),
(2.113) and (2.115)):

0B* - 6B 0B x &*
5W=}lfff9%{ 1 Jo C€+F0P0(V‘£*)(V'£) (B.17)

€V (V- €) £ €V <v-<pos*>>} av

1 . . 1 .

-3 m{FOpog (V-&)+¢& (g-v)p0+ﬂ (¢* x By) x 6B }ndS.
—_—
(£*-6B)Bo—-(Bo-dB)¢*
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The surface normal n points inwards. The cross product can be expressed by identity
(A.5). Then,

By- 6B
47

5W:5Wstar—iﬂm{ropo(v§)+(§V)PO— }g*ndsv (B18)
if we take into account that the equilibrium magnetic field By penetrating the stellar
surface is purely perpendicular to to the surface, i.e. Bg-mn = 0. The magnetic field
component parallel to the surface must vanish at the stellar surface, since the exterior
neutron star magnetic field is purely poloidal in vacuum. This has been discussed in
section

The surface integral in can be further transformed as shown by [Bernstein et al.
(1958)), so that finally

OW = dWstar + OWeuet + 0 Waac, (B.19)
with
1 N2 1 2 N2 1 2
Wt == ff R (-’09 (po+ = |Bol’ )+ (n-€)° - (= Bl ) | ds
4 8T 87
(B.20a)
5WV%:—%#%{(&-£*)BO-VXA} ds. (B.20b)
™

Here, Q labels a vacuum quantity outside the star. In particular, the surface normal
pointing outwards is 71 = —n. Furthermore, A denotes the vacuum vector potential,
fulfilling the Maxwell equations E = -0 Aflc+ Ey and B =V x A + By for the exterior.

Note that Wy given by can also be expressed by a volume integral over
the stellar exterior. However, we will keep the surface integral form for drawing the
conclusions.

Equation (B.19) with (B.20]) implies that surface and vacuum contributions to §W
vanish if either the displacement field itself vanishes at the stellar surface, or if it is purely
parallel to the stellar surface:

SW = 6Wigar if (€)qus =0 v (n-€) =0 (B.21)

That means, surface contributions to W are negligible in this work if condition
is fulfilled for the explicit form constructed for &.

In particular, this can be achieved by localising the displacement field into a closed
region A inside the star. All terms in the energy variation integral are proportional to the
displacement field. Therefore, A is the only region inside the star that contributes to the
integrand.

Stellar surface integrals can be replaced by surface integrals over the surface of A:

ﬂ5d5= ﬂEdS. (B.22)
ov 0A
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Consequently, the condition for the construction of a localised displacement field is

SW = Wegar if (£)9a =0 v (n-€)y, =0. (B.23)

In the case of stratified stars, the discussion given in this section holds as well. According
to equation , the structure of the energy variation density remains unchanged
when the polytropic star is replaced by the stratified one. Only the polytropic index I'g is
replaced by I';.

B.5. Dropping the Cowling-approximation

B.5.1. /P explicitly for £ expressed by spherical harmonics

Chandrasekhar & Lebovitz (1964)) derived an expression for the Euler perturbation of the
gravitational potential in an axisymmetric system where the displacement field is expressed
by spherical harmonics. This derivation will be outlined here in order to draw the analogy
to the derivation made in section where the displacement field was chosen according

to the mixed field case ([2.130)).

According to equation (2.91)), the Euler perturbation of the gravitational potential is
formally given by

0P = +G [f po(r')E(r") -V (#) 2 sin®’ dr’ dv’ dy’ + O(€?), (B.24)

=

where spherical coordinates have been chosen in order to allow for a straightforward
analogy to the mixed field choice for £&. Nevertheless, the system is assumed to be ax-
isymmetric rather than spherically symmetric. The integral extends over the total stellar
volume.

The absolute value in can be expanded in terms of spherical harmonics Y)\“ (¥, "),

defined in equation (2.137)):

1 x4 o
— =Y (n Y9, ) Y, o), B.25
T S M) 8RO (.25)
with the radius-dependent component
r' e 0
L= ifr<r
My =478 (B.26)
T i >m
Alternatively, (B.26]) can be written as
A
(') = 35 with r< = min(r,r") rs = max(r, 7). (B.27)
T>

Note that our form of the expansion (B.25)) slightly differs from the form given in |Chan-
drasekhar & Lebovitz (1964), since we use normalised spherical harmonics as opposed to
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Chandrasekhar and Lebovitz.

After the expansion is inserted to , all r’-independent quantities as well as
the summations can be pulled out of the integral, making use of the gradient’s linearity
and the distributive property:

* A 47G

d0(r) =+ YF(9, ) (B.28)
g)u; 20+1"7

[[/ {po(r') £ (r') -V [fA(r, )Y, gp')] } r?sind’ dr’ dv’ dy’ + O(€2).

Here, we took into account that &(r’) and Y/\“ (¥, ") are actual complex functions. As
shown in the appendix section their product is solely real and thus maintains the
physical meaningfulness of §®. According to the particular form of their complex parts,
£~ e and Y{' (¥, ") ~ €, the result of the integral in would be identical if
only the real part of the integrand would be considered. In contrast to the integrand of
OW , where the real part was taken over the total integrand, no additional factor appears
here. The detailed explanation of this circumstance can be found in the appendix section
[A54

Further, the spherical symmetry of the background quantities has been applied in ([B.28))
by assuming po(r") = po(r').

Next, the displacement field is expressed by spherical harmonics according to .
Then, the angular integration can be carried out. For radial functions F(r), Chan-
drasekhar| (1961) gives a relation which follows from the orthogonality properties
of the spherical harmonics’ derivatives:

I n 9 [FOO VR0 6D] 48 = [0 dp FG) + PG dyh(r)] 2002 (3.29)

The derivation of is shown in the appendix section m

In contrast to /Chandrasekhar| (1961), we used normalised spherical harmonics as defined
in (2.137) with the normalisation constant (2.138). The prefactor in thus differs
from the form given by Chandrasekhar.

The angular surface element dS’ can be expressed in spherical coordinates as dS’ =
sin¥’ dv’' d¢’, for instance. The integral extends over the total angle, i.e. ¥ = [0,7] and
v =1[0,27].

Note that A and p are the mode indices characterising the spherical harmonics appearing
inside the gradient in , whereas [ and m denote the mode indices of the spherical

harmonics representing &;,,, according to (2.136|).
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Applying relation (B.29) on (B.28), the Euler perturbation becomes

* A 4nG u
0b(r) =+ Z Z Y (9, 0) 6ix Omp (B.30)

/po g(r Ydy fa(r,r") + fa(r,r") dprh(r” )] dr'+(’)(£2)

47TG
=4

S Y (0,) (B.31)
R

[ o0 [9) A i’y + ) dh ()] dr’ + O(€),

0

where the Kronecker-deltas have been evaluated.
The derivative of fi(r,r’), defined by (B.26) can be evaluated by splitting the radial
integral into two integration areas with ' <r and 7’ > r:

n-1 11

5B(r) =+ 4 Y,mw go){/po(r [ Y 7;[7+T%dr,h(r')] dr’ (B.32)

rl

l
[ (s |0 1) g+ ) a }+0<s2>

:i;”G Ym0 ,go){ pr (r)r'l[ g(”+d (! )] (B.33)

pfffi) [< ) dr'h("”,)] dr'}%(ﬁ?).

Finally, the Euler perturbation of the gravitational potential can be written as
5B (r) = 50(r) V" (0, 0) + O(€2), (B.34)

where the angular part is expressed by spherical harmonics. The radial part is given by

47 G Jl(T)
() =5 [ L ~r! Kl(r)]v (B.35)
where we defined the radial functions
T ’
Ji(r) = f po(r') 1" [z&:) +dr/h(r’)] ar’ (B.36a)
T
0
[ po(r') g(r")
Kl(’l") = T”l"'l [(l + 1) T - d,«/h(’f”)] d’l”,. (B36b)
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The expression for §® in (B.34)) represents the form derived by Chandrasekhar & Lebovitz
(1964), given in (4.11]) with (4.12)) and (4.13]).

B.5.2. )WW"¢ explicitly for £ expressed by spherical harmonics

In this section, the additional gravitational energy variation caused by the full non-Cowling
treatment is derived, in the case where the displacement field is expressed by spherical
harmonics.

This can be achieved by using the expression for the gravitational potential set up in the
previous section. We follow the procedure outlined in |Chandrasekhar & Lebovitz (1964).

According to (4.9)) and (2.78]), the additional term in the energy variation when dropping
the Cowling approximation is

oWnC — %2 ff po(r) R {€* - voa(r)} av. (B.37)

If the volume element is exprebbed in spherical coordinates and the expression given for

d®(r) by equations (4.11)) and ( is inserted, (B.37) becomes

5Wé£v = —ZFG ,[// po(r) %{gl*,m, avi [( {fl(;) - rlKl(r)) Y™ (9, gp)]} 2 sin ¢ drr do dep.

[+1
(B.38)
We kept the first order terms in §®(r), ensuring that 5Wgrav is of second order in £ as
demanded. Here, we denote the mode indices of the spherical harmonics expressing &;/,,,/
by m’ and I’, keeping in mind that they can generally differ from the mode indices m and
[ of the spherical harmonics describing §®.

Remember that we take into account that & and d®(r) are both generally complex
functions, expressed by spherical harmonics. The real part of the product insures that the
integral is real and physically reasonable, see appendix section

The integral extends over the total stellar volume.

Next, relation , used in the previous paragraph, can be applied to carry out the
angular integration over the scalar product of §;,,, with the gradient of the product of

a radial function F(r) = (le(+7°l) r Kl(r)) and a spherical harmonic. In this step, the

displacement field is expressed by spherical harmonics as well, according to choice (2.136)).
Relation (B.29) finally reveals that non-vanishing contributions only appear for m = m’

and [ =1":
R
w2, =375 [ o) fatrya (457 )+ acntry (22 - x| v

21+1 J
(B.39)
The radial derivative of F'(r) is given by
Ji(r) l+ 1 Po(?‘)g(?”)
dr( wreul r! Kl(r)) =—— L) - K () + 21+ 1) B (B.40)

according to|Chandrasekhar & Lebovitz (1964)). A proof for this relation is given in section
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B.5.4

Inserting (B.40) and sorting the terms by the appearance of Jj(r) and K;(r), (B.39)
becomes

SWEC =~ 27 G/po(r)g () g - 276 (B.A1)
20+1

[ w0 [ (500 - ) 1) - (12909 7 000 )
0

The derivatives of J;(r) and K;(r), following from their definition in (4.13)), are given
by

d,Jy(r) = po(r) 7t [ 9(r) +d,h(r )] (B.42a)
dr Ky(r) = - pol(f;) [(l )g(r) drh(r)], (B.42b)

as calculated in the appendix section Note that d,K;(r) equals the negative inte-
grand in the definition of Kj(r), due to its integration boundaries.
Identifying (B.42)) in (B.41]), the additional energy variation term can be expressed as

" FR(P0)  2xG [
oWiC = 275G f o ar - = [0 4K - Ki() 4o A | dr. (B.43)
0 0

Chandrasekhar & Lebovitz (1964) further simplify the second integral by applying

R
f I A Ki(r) = (') dpe Ji(r) ) =-2[d S (F) Ky (') dr (B.44)
0

The derivation of relation jB.44) is outlined in the appendix section m
Applying (B.44) to 1B.43: , the non-Cowling energy variation term can be written in the
alternate form

SWIC = 27 G/po(r)g ) 4y MG fd Ji(r) K, (r) dr (B.45)

Both forms, (B.43]) and (B.45|) represent the expressions given in equation (4.14]).
B.5.3. Relation for the angular integration for displacement fields expressed
by spherical harmonics

In the course of dropping the Cowling approximation, an expression for the angular part
of the required integration comes in useful.
For displacement fields expressed by spherical harmonics, it can be derived from their
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orthogonality properties. While the relation given by (Chandrasekhar| (1961) holds for un-
normalised spherical harmonics, the derivation shown is this section applies for normalised
spherical harmonics.

Both expressions, 6® and 5Wgr;§w involve the real part of a scalar product, containing
the displacement field and a gradient of the product of a radial function F(r) with a
spherical harmonic.

Working in spherical coordinates (2.4) with the gradient given by equation (A.11]), the
angular integral of this expression is

i vtrevnw.on} as (B.460)

F(r)

m . F(r m
yY) (19790)+€¢rsi(n) 9,Y; (ﬁ,@} ds  (B.47)

- ff {g; dF(r) Y™ (9,¢) + &5 0

:ff{Mgw’*(ﬁ,w)nm(ﬁ,wh%&W?ﬁ(ﬁ,w)@mm(ﬁ,w)

(B.48)
d,h(r) F(r)
I(1+1) 72 sin?v

03" (0.9)0,57" (0.9 a5

where assumption has been applied for the displacement field. The mode indices
of &, are named I’ and m’, as they generally differ from the mode indices | and m of
Y™ (9, ) appearing in the integral (B.46).

Note that the azimuthal integral automatically provides a real number despite the com-
plex scalar product involving £* and Y;". The reason is the particular form of the imagi-
nary part for both functions. This will be seen below when the integral is traced back to
the spherical harmonics orthogonality relations. Also compare appendix section

The integral comprises the total angular area element. It can be evaluated for
instance in spherical coordinates as dS = sinvdddep, with the integration boundaries
¥ =[0,7] and ¢ =[0,27].

Next, the integrand can be split into two parts: one part containing the spherical
harmonics and the other part containing their derivatives. All radial functions are real
and can be factored out of the integrals:

[[ &V IFO) Y0001 } 8 (B.49)

_ g(r)igF(T) [f (¥ (0,0) ¥ (0,) } dS + %. (B.50)

]_ . ml* m m/* m
I sy (50 00¥E (9.0) 0077 (9,0) + 0,37 (9.9) 0,377 (9,0)} aS.

Then, the orthogonality relations for normalised spherical harmonics (A.51)) and their
derivatives ([A.52) are applied to yield the end result

I {Eime v 1@V @.001 48 = [0() 4, F(r) + PGy den(r)] 20 (1.51)

192



B.5.

B.5.4. Derivative of F(r) describing the gravitational potential

In this section, the derivative of the radial function F'(r) containing J(r) and K (r) will

be calculated, proving expressions and (| -
We use a universal notation apphcable for both choices we make for the displacement

field, which are & expressed by spherical harmonics and £ in the mixed field case.

First, the chain rule is applied to d,F(r) = [‘il(fl) —rl K(r)]:

J(T) —rtd,. K (r). (B.52)

dr[il(jl)_TlK(r)]: ) - K () +

Next, the derivatives of J(r) and K (r) are inserted according to and ([4.40)), re-
spectively.

In the case where the displacement field is expressed by spherical harmonics, with J(r) =
Ji(r) and K(r) = K;(r), the derivative is

dr[{fl(;)—rlf(z(r)]z L+ J,(r)—lr“K(r) ’”l(r) -t d, Ky (r) (B.53)

ey S K () ’)“(T)rl[lgy) +doh(r )] (B.54)

l+2 T‘l+1

4 pO(T) rt [(l + 1)9(7‘) _ drh(T):|

Tl+1

_ l+1J,( )= 1 Ky () + (21+1)M (B.55)

where arithmetic transformation finally led to the form given in (B.40)).

In the mixed field case, with J(r) = J{*(r), K(r) = KY'(r) and [ = A, the derivative is

d, [‘Kiﬁ) A K;”(r)] (B.56)
=) AP R () (B.57)
+fp0(r)r[()\R( )+ %)emw')w(w)aﬁ,@mw )]sm 9
0
+fPO(7°)7"[((/\+1)R(7"a79/)—%)GT(W)—S'(T,W)(%: T(ﬁ')]smw(w'
0
= )\+1J)\ (r) = At~ 1K§1(r)+(2)\+1)rpo(r)fR(r 9 O (9") sin? 9’ Ay,

(B.58)

where arithmetic cancellation led to the form given in (4.37)).
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B.5.5. Derivatives of J(r) and K (r) describing the gravitational potential
In this section, we find expressions for the derivatives d,J(r) and d,K(r) of the radial
functions

R

J(r) = / (') dr! K(r) = f k(') dr (B.59)
0

T

describing d®.
We use a universal notation applicable to both choices we make for the displacement
field.

In the case where £ is expressed by spherical harmonics, according to equation (4.13)),
the integrands are

50 = i) = por") " [M , dﬂh(r')] (B.60a)
k(r') =k(r') = pﬁ%ﬁ) [(l +1) %ﬁl) - dr/h(r')] ) (B.60Db)

In the mixed field case with choice (2.130) for &, according to equation (4.29), the
integrands are

mT (9"

sin Y’

109 = 860 [ e (Ve Joxon (B.61a)
0

+S(r', 0" 819/(9&”(19')] sin? ' dr’ doy’

r po(r')

K=k = [ 2 (e oo - )
0

sin ¥/

)@;"(19’) (B.61b)

-S(r,0") 0907 (") ] sin? ¢ dr’ doy’.

The antiderivatives of j(r') and k(r") are denoted as J(r") and K(r"). Based on equa-
tion (B.59)), the radial derivatives of J(r) and K (r) are

——
0

d.J(r) =d, f j(r"ydr' ) =d, ( [j(r')]; ) = dr(j(r) -J(0) ) =+d,.J(r) (B.62a)
0

—
0

K R
dK(r)=d, f k(r')dr'| = d, ( [’C(T')]r ) = dT(ic(R) —lC(r)) =—d.K(r). (B.62b)

Here, we took into account that for both choices of € the integrand j(r’) vanishes at the
stellar centre if [ > 1 and that the integrand k(r") vanishes at the stellar surface due to
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po(R) = 0. The integration constants are set to zero without restriction.

We further consider that the derivative d,.J(r) or d.IC(r) of an antiderivative J(r) or
K(r) of the function j(r) or k(r) is the function j(r) or k(r) itself.

Thus,

d.J(r) =+d,.J(r) = +j(r) (B.63a)
d-K(r) = -d,.K(r) = =k(r). (B.63Db)

In the case Where £ is expressed by spherical harmonics, the final result follows from

equation (B.63)) with (| -

The radlal derlvatlves of Ji(r) and K;(r) are

drJy(r) = +51(r) = po(r) rl[ 9(r) 4 q h(r)] (B.64a)
acki(r) =-tr) =252 [0 2D - ano|. (B.64b)

Analogously, in the mixed field case with choice (2.130f) for &, the result follows from

equation (B.63]) with -

The radlal derlvatlves of J{"(r), KY'(r) are

dp J3*(r) = +53'(r) = f po(r)r)‘+2[()\]~%(r,19')+%i;lm) (') (B.65a)
0

+S(r,0") Ogr T(ﬁ’)] sin? 9’ dv’

m T (r,9")
sin ¥’

4 () = K51 () = - [ w0 (0w ) - Jor@)  mam

- S(r,9") Ogr (9" ] sin? ' dv'.

Relations (B.64) and (B.65)) are utilised in section and section to simplify

the expression for the non-Cowling contribution in the energy variation.

B.5.6. Integral of J(r)d,K(r) - K(r)d,J(r) describing 6P ()

In this section, the simplifying relation for the integral of J(r)d, K (r)-K(r)d,J(r) shown
in (Chandrasekhar & Lebovitz (1964) will be derived.

We use a universal notation, applicable for both choices of the displacement field we
make. If £ is expressed by spherical harmonics, J(r) = J;(r) and K(r) = K;(r) holds. In
the mixed field case where £ is chosen according to equation (2.130), J(r) = J{"(r) and
K(r) = KY'(r) holds.
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First, we apply the chain rule to the product of J(r) and K (r):

A, [J(r) K(r)] = deJ (r) K (r) + J (r) d, K (r) (B.66)
Jr) K (r) = K(r) dpJ (r) = d, [ J(r) K(r) ]| - 20 () K (r). (B.67)

The second step follows by arithmetic rearrangements.
Next, the radial integration can be applied:

R R R
f[J(r)dTK(r)—K(r)dTJ(r)] dr:fdr [7(r) K ()] dr—2/dTJ(r)K(r)dr (B.68)
0 0 0

R
- [J(r)K(r)]OR—Q/dr.](r)K(r)dr. (B.69)
0

Here, we considered that the antiderivative of d, [J(r) K(r)] is the product [J(r) K(r)]
itself.

According to their definition in and , the integrand j(r) vanishes at r =0
and the integrand k(r) vanishes at r = R.

Without restriction, we set the integration constants to zero and obtain

R R
] [7(r) 4K (r) - K(r) d,.7(r)] dr = J(R) K(R) - J(0) K (0) -2 ] 4 J (1)K (r) dr
0 N—— S 0
0 0

(B.70)

R
==2 [ d,J(r) K (r)dr. (B.71)
/

Relation (B.71]) holds for both choices, & expressed by spherical harmonics and & in the
mixed field case. It is applied in sections [B.5.2and [4.2.4] to simplify the expression derived
for SW2S

grav*

B.5.7. Search for symmetries in §®(7) in the mixed field case

In section where & was expressed by spherical harmonics via , the expression
for the gravitational Euler perturbation é® could be simplified by making use of the or-
thogonality properties of spherical harmonics. Based on relation , the A-summation
could be removed from §®.

In the mixed field case where the displacement field is chosen according to Akgiin
et al., we need to examine whether a similar relation can be applied in order to simplify
the expression for 6®.

Starting from equation (4.27) with (4.28]) and (4.29), an orthogonality relation needs
to be found for the 9- and p-dependent quantities that allows us to evaluate the angular

196



B.5.

integral and remove the A-summation in

[&S) 71_2 m r
() =+ 3 28)\Gl (g, )[J;\/\El)—r’\Kf\"(r)]+O(£2), (B.72)

with

T (r) = f f po(r’)r'“?[(m(r',ﬁ')+%)@T(ﬁ') (B.73a)
0 0

+S(r',0") Dy ;”(0')] sin? ¢’ dr’ 4’

T R o0 9l
- [ [ 22 (ke - erwy wam)
0

sin 9’
T

-S(r'9") Oy ;”(ﬁ’)]sinQ 9 dr’ dv'.

In the case where £ is expressed by spherical harmonics, the simplifying relation (B.29)
is

I 90 [FOO V20 6D] 48 = [0 dp PG + PGy dyoh(r)] 2002 (3 74)

with dS’ =sin9’ dd dp. The integral extends over the full angle.
Remember that the symmetry in ¢’ has already been utilised in (B.72]) to remove the

p-summation. Also note that the polar part ©3'(?9') of the spherical harmonics in the
searched relation would take the role of Y}*(¥',¢’) in relation (B.74).

The goal is to find an orthogonality based relation for in analogy to (B.74)).

For this purpose, the integrands of need to be screened for a possible trigono-
metric dependence on 1’ that might lead to a systematic cancellation of terms when the
¥-integral is performed in the interval [0, 7].

Similar to the case where £ was expressed by spherical harmonics, the associated Leg-
endre polynomials included in O (9') = Ny, Pyy(cos?’) entail a periodic dependence
on 9. However, the displacement field dependence on v is unknown and needs to be
investigated.

The explicit form of £ is determined by the choices for R, S and subsequently 7" made
in and according to |Akgiin et al| (2013). The &-defining functions R and
S do not depend on ¥ in a periodic way, as can be seen from equation , with the

definition of y in (/5.48)):

- S5 (1-2) T gR2,  in A

R0 ={" 6(1-%)" 0pX*, im (B.75)
0 else
5_0 ~ 1 _ ~2 o-1 , ~92 . A

S, 9" = RO(L-%)" 0% in (B.76)
0 else,
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. 4
with 2’ = & and

o 2 r_ 2 1 r
GROE (x > xo) +(79 5;90) owit =2 52190 O =27. (BTY)
r v

T

The remaining €-defining function 7" partially depends on ¢’ in a periodic, but non-trivial

way, as can be seen from equation ([5.47)) with the definition of Ej in (5.55)), (5.56) and
(5.57)):

B AB), )

T(9") yP—— +2rsind’ Ty po Do (9" +7sin®’ A(pg)+rsind’ pg A(®g), (B.78)
with

B(Y') = Bomor R (f(2') sin® 0’ = 1)° (B.79)

ABW"),9") = R(W) 0B+ g(ﬁ/)a—w (B.80)

Do(¥') = &,ﬁ') + O R(V') + &,ﬁ') cot 1 + m (B.81)

A(po), A(Po) ~ R(%’), ' ' (B.82)

cf. relations (5.51)) and ([5.52]).

That means, according to the systematic trigonometric dependence of ©F" on ¥’, orthog-
onality relations might exist. However, in non-trivial cases their application is prohibited
by the additional partially trigonometric dependence of T on ¥'.

The specific choice we make for R, S and T in section represents a non-trivial case.
It will thus not be possible to remove the A-summation from §® as given by .

Instead, the expression can be written in a compact form. The A-summation is approx-
imated by neglecting higher order terms A > 3, as shown in equation (4.30)).

B.6. Eigenvalue problems

B.6.1. Magnetised neutron stars as an eigenvalue problem

The perturbed system of a stellar fluid considered in this work and described by the Euler
equation of motion (2.16[), can be understood as an eigenvalue problem (Unno et al., 1989;
Tassoul, 2000).

The Euler equation reads
pDiv = RHS, (B.83)

where for instance in the case of a magnetised self-gravitating fluid, the right hand side is
given by
| x B
RHS = -Vp+pVd+ 22 (B.84)
c
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According to relation (2.68)), the perturbed Euler equation can be written as

pD?¢ = GRHS, (B.85)
o SRHS(
D?E = T)E)’ (B.86)

where for (B.84]), the perturbed right hand side is given by

SRES = —V (po + 0p) + (po + 6p) ¥ (B + 6B) + % [(Go+35) % (Bo+6B)].  (B.8T)

Applying ansatz (2.43)), it is
€, (r,t) = &(r) et D€, = iwn &, D¢, = —wl§,,. (B.88)

Inserting this into (B.86)), the perturbed Euler equation

ORH
g, - ORHSEE,) (B.89)
p(€,)
can be written in the form of an eigenvalue problem
L¢, =w, &, (B.90)

with the eigenvalue operator L and the eigenvalue w? for the eigenmode €, = wu,. For
reasons of clarity, we write the mode index as a subscript in this section. The eigenvalue
operator is defined by

L¢-= —6RH—S(£). (B.91)
p(€)
B.6.2. Perturbation theory on eigenvalue problems
The eigenvalues A, and eigenmodes wu,, of an eigenvalue problem
Lu=\u (B.92)

can approximately be determined in a perturbative approach (Mathews & Walker} [1969;
Seifert), |2007)).

It is assumed that the system state can be described as a small deviation from a well-
known equilibrium state.
Then, the operator L is expressible as the sum of the equilibrium operator L(®) and a
small correction dL:
L=LO +4L. (B.93)
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The eigenvalues and eigenmodes can be expressed by the expansions

An = MO XD LA 063 (B.94a)
uy, = u + Za%)l ul® + Za%)l ul® + 0%, (B.94b)

where the superscript denotes the perturbation order and a,,, are expansion coeflicients.
The order of the small perturbation is denoted by 6.

Ansatz (B.94]) can now be inserted into the eigenvalue problem . With the use of
the equilibrium eigenvalue equation,

L) 340 = \(0),(0), (B.95)
the correction of the eigenvalue in first perturbation order follows as

NOFSRORS )RR (B.96)
where T' denotes the transpose of u%o). Therefore, the eigenvalue of the perturbed system
is given by

A = AO 4 O 51,4, 1 0(52). (B.97)

In the case of an undegenerated eigenvalue /\7(10) of the unperturbed system, the first
order correction of the eigenvector u,, can be derived as

T
ué,o) oL 'U,glo) (0)

OO ul”. (B.98)

1
Oy
2
Therefore, the eigenvector of the perturbed system is given by

(0) ’U;;go)T oL ’ll,7(10) (0) 2

B.6.3. Mathematical connection of eigenfrequency and energy variation

According to the perturbation theory outlined in the previous section, the eigenfrequency
of a stellar fluid can be approximately expressed.

In basis free representation, and according to relation (B.97)), the stellar eigenfrequency
is given by
0 0
> o2, (w [6L() [u”)
O ©, 0

Here, we took into account that the eigenvalue of the star is given by A, = w2, as can be
seen by comparison of equations (B.92) and (B.90)). Further, we apply the Dirac notation.
The stellar eigenfunctions u form a complete orthogonal basis,

+O(6%). (B.100)

(| uDYy = N6, (B.101)
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B.6.

The eigenvectors are generally not normalised and posses the norm

N = (uﬁf’) |u7(10)) = ff/ uflo)*(r) -u,(lo)(r)p(r)d‘gr. (B.102)

The equilibrium stellar eigenvalue problem reads
LO fuf®) = " ), (B.103)
where multiplication with (u£0)| gives

0) 11 .(0),,00)
w7(10)2:(un | L™ | up, )

7 (B.104)
Therefore, the eigenfrequency (B.100) can be expressed as
(0)71.(0),,(0) (0) (0)
WZ _ <Un |L |un ) + <un |5L(I‘)|Un ) +0((52) (B105)
(ur” | i) (ur” [uf”)
0) 1 (0) (0)
uy, | L\Y + 0L(r) |uy,
_ | o (0() Mun') 0(6%) (B.106)
(un” |un")
L) o
Analogously, in mass representation with
(m|u) =u(m) and f |m) (m| dm =1, (B.108)
it is © ©
0)* 0
-L
2 Jun” (m) L(m)un (m)dm | 52y (B.109)

S ul" (m) - (m) dm
This expression can be transformed into the positional representation applying dm =
p(r)dV:
)%y . (0)
o Mun’ (r)-L(r)uy (r) p(r) dV

" () - w2 () p(r) AV

+0O(6%). (B.110)

Remember the definition of L by equation (B.91)). For polytropic stars in Cowling
approximation, according to (B.87)), it is

_ V. (po+9p) F (po+6p) V(R0 +6P) —1/c (§o + ) x (Bo +IB)

Le +0(€%) (B.111a)
po+0p
_ VOpFpV o F ppVIP — 1/j éjo xdB)—1/c (6 x By) +O(&2). (B.111h)
po +dp

The last step follows with the equilibrium Euler equation ([2.28]).
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B. Mathematical derivations

On the other hand, the energy variation density for the polytropic star in Cowling
approximation, given by equations (2.79)), is

1 * * * * ] 5B * 6.XB
57%{5 VP T po (€7 -V6B) T op (£ VD) - &+ L0 OB _gr 20 % Bo

}. (B.112)

c c
Comparison of (B.111b)) and (B.112)) yields
1
R () B * 2
£(&=ul )_4m{u Lup}+O(£). (B.113)

Expressing equation (B.110)) with real parts as well, it is

(0)* (0)
1/2R Uy’ -Luy’ pdV
w2 = {ff (. }+0(§2). (B.114)
1/29‘{{[[ u,(q,) 'ug)pdV}

Therefore, with equation (2.78]), the eigenfrequency can be expressed in terms of the
energy variation for an eigenmode-type displacement field:

45W (5 = u;0>)

o R ul” ul? pav}

(B.115)

The factor 4 appearing in this expression is caused by the following effects. First, the real
part in the denominator has not been evaluated yet, proving the factor 1/2. Secondly, the
definition of the energy variation provides a factor 1/2 as well, as shown in the derivation

of 6W in equation ([2.75]).
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C. Supporting calculations for the
applications of the semi-analytic method

In this chapter, derivations and explanations supporting the argumentations in the appli-
cation chapter [5| will be presented.

C.1. Stars with purely toroidal magnetic fields

This section shows the mathematical background regarding the application of the semi-
analytic method on toroidally magnetised neutron stars, presented in section

C.1.1. Analytical criteria for the Tayler instability

In Tayler| (1973), three stability criteria have been set up for the toroidally magnetised
neutron star. If one of them is violated, a displacement field can always be found that
leads to a negative energy variation, i.e. an instability.

In this section and the subsequent sections, this proof will be outlined and the impact of
the additional terms appearing in the energy variation compared to Tayler’s form
will be examined.

For the construction of the stability criteria, the integrand of the explicit energy variation
form (5.11)) is written as the sum of a positive definite term and a quadratic form in X
and Z:

w

2
6W=§ff{D (waw(X)mzz) +AX2+BXZ+C'Z2}wdwdz. (C.1)
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C. Supporting calculations for the applications of the semi-analytic method

The prefactors are

2 2 2 2 2
_ -9 2B,d_B 0, ® B 9. (wB
A= B2 m _ P P + awq)o awpo _ Po 0 _ P (w 50) (023)
Y w? w Lo po 2T0po w
B
F 022 9 000 (wB,)
T'opow
_ 2B,0,B 202 B2
B=- 2220 4 9 B0 0.0 + 0. D0 O po — —L0 9,00 0B — —E— Oy (wB,,) 0.8,
w T'opo Fopow
(C.2b)
B, {0 (wB
5 P02 ( (@By) 0.3 + 0. B, 8w<I>O)
T'opo w
2 2 2 2
A m 05 9= Pg Bnp 2 _ po By
C= B2— £0,8,0,p — - 9.B,)" 9,%y0,B C.2
v 2 =20 0200 To po 2T po ( z go) To P 2 P00z Dz ( C)
D= B2, (C.2d)

where the last two terms in A, B and C represent additional terms compared to Tayler’s
form, resulting from the negligence of the magnetic field in the equilibrium equation.

The particular form of will be derived below when the energy variation is set up
explicitly in section [C:I.5| for the toroidal field application.

According to equation ((C.1]), the stability criteria for the neutron star are
_ 1 _ 1 _ | — _
A>0 C>0 B*<4AC. (C.3)

The first and second criterion ensure that the quadratic terms A X? and C Z? provide
positive contributions to the integrand. The third criterion follows from the requirement
_ _— _ _
BXZ < AX?+C Z?%, which guarantees that the potentially negative mixed term B XZ
will be compensated by the positive definite terms. The equivalence of both expressions,
_ 1 _ 1
BXZ<AX?+CZ?and B2_< 4 AC, is shown in section [C.1.3
The only remaining term D is positive and therefore the three criteria (C.3)) are sufficient
for stability.

Tayler remarks that these criteria are not only sufficient, but also “necessary” for sta-
bility. This statement must be understood in the sense that as soon as one of the criteria
is violated, it is always possible to find a displacement field that creates a negative energy
variation. If this is the case, the equilibrium state is unstable per definition, cf. equation
(12.45)).

However, the fact that criteria are “necessary” for stability does not imply that
any arbitrary combination of &-defining functions will facilitate 6 < 0 as soon as one of
the criteria is violated.

Based on the analytic stability criteria (C.3]), a displacement field that reveals the Tayler
instability can be constructed. This will be done in section [C.1.4]
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C.1. Stars with purely toroidal magnetic fields

C.1.2. Stability criterion violation in the toroidally magnetised neutron star

A simple estimate shows that the first stability criterion given in is violated close to
the stellar symmetry axis if B, # 0.

For the purpose of validating this statement, the system quantities can be expanded
around w = 0.

For small w, the system quantities and their derivatives are adequately described by

w? ( <P)l

(Bcp)1 o +(Be)s 2 w3 O(w3) 9B, = +0 (@) (C4)
p0~w2+(’)(w ) 8wp0~w+(’)(w2)
By ~ w2+ O(=?) o ~ w + O(w?) (C.5)

Here, (B,), denote expansion coefficients independent of w, and @y is the constant that
de-dimensionalises the cylindrical coordinate.

Applying expansion , we can find the lowest w-order contribution of each term
appearing in A in equation (C.2)):

- 2_2 2B,04B 20, @2

A=-p2 2 Z700F50 4 5 B dp - =0 (C.6)
w2 w Lo po
——
~1+0(w) ~1+O(w) ~w2+0(w?)  wb+O(w7)
B2 B, \? B
- (awa—@) 2070 g @0(wa B, +B)
2T po w Fopow™
~w?+0(w?) ~t+O (@)

For small w, the first and second term dominate, independently of the existence of the
last two additional terms.
For a mode index of m =1, both dominant terms are negative if B, # 0. The stability

criterion A ; 0 is thus violated.

Note that for mode indices m > 1, the first dominant term is positive and might com-
pensate the negative contribution from the second term. The stability criterion might still
be violated but it is not an obvious implication anymore.

Therefore, we constrain on the case m =1 in this application.

C.1.3. Algebraic transformation of the stability criterion for the mixed terms

From equation (C.), the stability criterion for the prefactor B of the mixed terms in the
quadratic form is

— | —

BXZ<AX?+CZ% (C.7)
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C. Supporting calculations for the applications of the semi-analytic method

This inequality can be rewritten, under the assumption made in section that the
functions X and Z are real, which implies X2 > 0 and Z2 > 0:

B*X272 < (AX?+C 22) (C.8)
1, X2 72
B2 < A2 3 +2AC+ 2 (C.9)

Arbitrary real numbers U fulfil

(U-1)*>0 (C.10)
U?-2U+1>0. (C.11)

2

Thus, for U = g_ Z—, it is
A X?

ctzt _C 7?2
X2
Multiplication with A2 72 yields

_ X2 o B Z2
A2?—2A0+CQFZO. (C.13)
For criterion (C.9) this implies
L X2 7
B2<A2ﬁ+02ﬁ+2AC. (C.14)
| ——
>2AC

That means, a sufficient condition for the validity of criterion (C.9) can be formulated:
The demanded inequality is always fulfilled if

_ | _
B*<4AC. (C.15)
This form is the criterion given in equation (C.3])).

C.1.4. Construction of the explicit displacement field

According to section one of the stability criteria for toroidally magnetised
neutron stars is violated close to the symmetry axis.

Following Tayler (1973)), we choose a position (wy, zp) inside the integration area of the
dW-calculation where the first criterion shall be violated. Then, the &-defining functions
X and Z from ansatz need to be chosen in such a way that the energy variation
becomes negative due to the violation in (wg, 2¢).

We follow Tayler’s steps while keeping track of the additional terms in (C.2]).
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C.1. Stars with purely toroidal magnetic fields

The derivation of the explicit form for & shown here is based on expression (5.11]) which
has been derived on the basis of ansatz (2.121] alone, without further assumptions for X
or Z.

Displacement field ansatz

Tayler introduces new variables X" = — and

w o
the energy variation density given by equation (5.11]) to

"n_

7Z
— that simplify the quadratic term in

B2w? (0. (X") +0.(2"))". (C.16)

For an appropriate construction of the &-defining functions, a coordinate transformation
is applied afterwards. Locally, the cylindrical coordinates (c,z) can approximately be
considered as cartesian. A transformation to new coordinates (w’,z’) with the origin
(@0, 20) diagonalises the quadratic form in the integrand of expression (5.11)):

SW = % ff {D' (O X' + az,z’)2 + A X?+B' X'Z +C' Z’2} deo’ dz’ (C.17)

2 {D, (6w/X’+8zrz')2+(Xfyzl)(Bfl_l/’2 BC:/lz)()ch’ )} G (O

where the quadratic form has been expressed in matrix notation. The prefactors A, B’,
C" and D' have been redefined in such a way that the factor @ vanishes in the integrand.
At the origin, the mixed term vanishes: B’(wy, z0) = 0.

This procedure shown in [Tayler| (1973)) equally holds for the altered form of the energy
variation here, including the additional terms.

For convenience, we place the instability position in this work in the equatorial plane.
The distance from the symmetry axis is described by the small value e4: (@, 20) = (€4,0).
With this choice, the particular coordinate transformation from (w, 2) to (@', z’) simplifies
to

X A

w =w-€y 2=z X'=X"== 7'=7"==. (C.19)
w w
For an illustration compare figure [2.15
Next, the ansatz
X' = X, sin (kA w') COS (ZA z') 7' =7 cos (kA w') sin (ZA z') (C.20)

X =wXpsin(ka (w—-€a)) cos(laz) Z =wZycos(ka (w—-€4))sin(laz) (C.21)
is chosen for the &-defining functions with

k‘AXo+lAZO=0. (022)
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C. Supporting calculations for the applications of the semi-analytic method

That way, the positive term in equation ((C.1)) vanishes globally and does not need to be
compensated in order to achieve a negative energy variation:

2
D' (Bw (i) +0, (g)) =D’ (kaXo+14Zp) cos (k:Aw') cos (ZA z') =0. (C.23)
w w
0

Note that the positive term remained unchanged by the additional terms in the energy
variation. Therefore, Tayler’s ansatz (C.20) is applicable here as well.

Furthermore, the assumptions
1
| Xo| > | Zo| [La] > |ka| > 7 (C.24)

are made. That way, terms including X dominate over terms including Z. The second
requirement guarantees that equation can still be fulfilled.

Beyond that, the second requirement ensures that the spatial variation of X and Z
happens on a length scale which is short compared to the one of the system quantities
with the scale height h.

Displacement field localisation

The displacement field must be defined in a small region around the instability only.
The localisation area is thus chosen as

A:{weReA—l<w<eA+1,zeR‘—£<z<1}, (C.25)
ka ka la la
with
Lo
€A> —. (C.26)
ka

For the purpose of keeping the localisation region in the physically meaningful range of
|

w > 0, it would be sufficient to require e4 > %. By demanding the strict inequality
instead, we simultaneously exclude the stellar symmetry axis from A in order to avoid
possible singularities at @ = 0.

The localisation region is visualised in figure [2.15

Note that according to the second requirement in (C.24)), |7/k4| > |7/l4] holds. That
means, the extent of the localisation area in w-direction is larger than the extension of
the localisation area in z-direction.

Beyond that, the localisation area is oriented in such a way that on its boundaries, the
displacement field is parallel to the boundary.

At the left and right hand side boundaries, @’ = -w/k4 and @’ = 7/ka, the @'-
component of the displacement field vanishes:

X' ~sin(kaw') =sin (+7) =0, (C.27a)

while Z" # 0 in general.
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C.1. Stars with purely toroidal magnetic fields

At the lower and upper boundaries, 2z’ = -7, and 2 = 7o, the z'-component of the
displacement field vanishes:

Z' ~sin(la2") =sin (x7) =0, (C.27b)

while X’ # 0 in general.
This definition ensures that the surface integral contribution to the energy variation
which is proportional to n-& does not need to be taken into account, cf. appendix section

B.4

Instability proof capability of the displacement field

Next, we need to show that the assumptions made above for £ facilitate the proof of the
Tayler instability, independent of the additional terms in equation (C.2)).

Applying the assumptions, the energy variation given by equation (5.11]) can be esti-
mated inside the localisation area:

sw=" ff {D’ (0 X' +042')’ + A X2+ B X'Z2'+ C' 2" }dw’ dz’ (C.28)
2 S— ———— S——
0 <0 <A’ X1? <A X"

Winam ff A X7 de' d2' <0, (C.29)

cf. equation (C.17)).
Inside A, the first term vanishes according to equation ((C.23)).

The second term is negative at the origin (wy, 29), as reasoned in and below equation
. According to the second requirement in , the system quantity dependent
expression A" varies spatially slowly with (w,z2), compared to X’ and Z’. Tt is thus a
valid assumption that the second term is also negative everywhere inside the localisation
region.

The third term vanishes at the origin (g, 29), caused by the diagonalisation described
below equation . According to the slow spatial variation of B’ caused by the sec-
ond requirement in , this term is negligible compared to the other contributions
everywhere inside the constrained localisation area.

The last term in is small compared to the second one because of the first require-

ment in (C.24).

According to the above discussion, equation proves that the displacement field
constructed here creates a negative energy variation. It is thus suitable for the verification
of the Tayler instability.

The constructed form is applicable in both cases, with and without the additional terms
caused by the negligence of the magnetic field in the equilibrium equation. It will be used
in the code in section [5.1| in order to prove the Tayler instability with the semi-analytic
method.
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C. Supporting calculations for the applications of the semi-analytic method

Displacement field parameter choice

Once an appropriate structure for £ has been found, convenient values for the parameters
Xo, Zy, I and k need to be chosen.

The parameters must portray a system with a positive energy variation for B, = 0,
which especially implies 6Wgray > 0, in order to make the Tayler instability W (B, # 0) <0
detectable.

The system needs to represent a realistic neutron star model with typical values for
mass, radius and compactness. In this work, different models will be tested in order to
show the universality of the Tayler instability verification.

For the choice of [ and k, we need to consider that the instability region covers the area
close to the z-axis. The localisation area , however, is more extended in ww-direction
than in z-direction according to the second requirement in .

That means, we need to ensure that the localisation area is large enough to contain a
sufficient amount of integration grid points along z. At the same time, it must not be too
wide to extend too far from the stellar axis.

It would be convenient to modify A from an “oblate” to a “prolate” shape by inter-
changing | and k. However, this is not possible in a straightforward manner. We would
need to ensure again that the surface integral contribution is negligible, since equations
are not valid anymore when [ and k are interchanged.

Therefore, we keep the extent of A as small as possible along w, and by that even
smaller along z, with a still acceptable number of grid points in z-direction.

Based on these considerations, the parameter sets used in the computation are shown
in and below table B.11

C.1.5. Derivation of the explicit form for the energy variation

The energy variation for polytropes in Cowling approximation, given by equation
with , can be rewritten and simplified for the particular toroidal field case investi-
gated in this work.

For this purpose, the assumptions made by [Tayler| (1973) and shown in section for
the toroidally magnetised neutron star will be applied.

In this section, the derivation of the final explicit form is presented.

It slightly differs from the derivation shown by [Tayler| (1973)). In contrast to Tayler, we
neglect the magnetic contribution to the hydrostatic equilibrium equation for the
sake of consistency. We assume that the magnetic field is superimposed to the unmag-
netised background, which was built by the system equations . In contrast, Tayler
(1973) includes the impact of the magnetic field on the equilibrium in , because this
allows for the cancellation of several terms in the subsequent derivation. Consequently, the
energy variation density derived here will contain additional terms compared to Tayler’s
form.

Beyond that, the real part ensuring the energy variation to be physically meaningful
will be taken in the integrand & rather than immediately inside the displacement field
choice &, as explained in section and in the appendix section
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C.1. Stars with purely toroidal magnetic fields

Finally, we will derive the explicit forms for the different energy variational contributions
Emagn, Eauid and Egray separately first, in order to keep track of the origin of the particular
terms. In the end, these contributions will be added, and after some cancellations, the
analogue to Tayler’s result follows.

Starting from equations (2.117) for the energy variation density, we first insert the
assumption (2.31) of a toroidal magnetic field, B = (0, B,0), depicted in cylindrical

coordinates. According to equations (2.14d)) and (2.101d)), it is further

. | 9B 2 ol
T O (wBy) By é‘
w w TP

Finally, we use relation (A.1l]) for the gradient of the product and take into account the
axisymmetry of the equilibrium quantities. Minor rearrangement yields

2

— (%5; O + 0k @oﬁz) (C.31a)

1
gmagn = Z %{w
+ (6w (5 By) + 0 (€2 By) ) (6w (§wByp) +0: (€2 By) )

) (aw (wB,)

§o + 0By, 5;) (81D ({wBy) + 0. (£ By) )

B . B *
—w_g Ow (WBgo) gcp a«péw - g«p aZB@ §<p 6<P§Z}

EROY = i%{FOPO(V'é*)(V’E)J"(gwawp()"'fzazpo)(V’ﬁ*)} (C.31D)
oo - syt 0nmr 000 (0 (7€) v oomecom) | (30

Note that compared to relation expressed in non-rationalised units, we now
switched to geometrised rationalised units for the sake of consistency with Tayler’s work.
According to equation , Emagn would contain an additional prefactor of 1/(4)
that stems from the non-rationalised formulation of the Maxwell equations and
that is consequently neglected here.

Next, the toroidal field choice for the displacement field will be inserted under
the assumption of m # 0. The case m = 0 needs to be treated separately, due to the
singularity that arises when dividing by m. Since we assume m =1 in this work, this case
is not relevant here.
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C. Supporting calculations for the applications of the semi-analytic method

With the divergence in cylindrical coordinates given by equation (A.13)),

_ O (w&v) + agofgo

' £ + azgz (032)
w w
X 4 4 .
= (— + 0 X )e Y Y e "™ +0,Z e "% (C.33)
w
* X* * —im * _—im * _—im
V€& :( + 0 X )e oY e 10,7 e (C.34)
w
the energy variation density contributions can be expressed as
Lo [Bom™ (o) s
Emagn = 79 25 (X X427 Z) ; (aw (XB¢)+8Z(ZB¢)) (C.350)
0w (wB
.(aw (X*B,)+0.(2* B,) - 2=2FB2) vy Z*)
w

B B
-— 05 (wB,) Y X - —0.B, Y*Z}
w w

4 w w
o (o X Y
.(M__ +8ZZ+X8wp0+Z(92po)}
w w
Egon = i}l %{(X O @0 + Z&z%) (C.35¢)
w X* Y* * * *
'[po(m— 10,7 )+X O po + 7 8Z,00:|}.
w w

The exponential functions cancelled out completely, for equations involved products
of &-components of opposite conjugation only.

For comparison of with Tayler| (1973)), note that products of complex functions
obey the relation R {a*b} = R {ab*}, according to equation (A.29).

The generally complex &-defining functions can now be split into real and imaginary
parts, denoted by the indices R and I:

X=XR+iX[ YZYR+iY[ ZZZR+iZ[. (C36)

Expressions ((C.35)) can then be simplified considering relations (A.29)) and (A.30f) for the

product of complex conjugated numbers.

In doing so, we take into account that all other quantities B, m, I'g and Q9 appearing
in the integrand as well as the coordinate w are real numbers. Finally, the calculation
rules for complex conjugation, (agb)* =arb* and (a+b)* =a* +b*, can be applied.
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C.1. Stars with purely toroidal magnetic fields
After these steps, the integrand contributions are

1 BZmQ 2 2 ?
11— | X5+ 23 ) + (02 (XaB,) + 0. (28B,) (C.37a)

gmagn =

- (8w (XRBcp) + 82 (ZRBga) ) (@ XR + &ZB@ ZR)

B B
- _L; 8w (WBw) YR XR - = ango YR ZR
w w

2,2 2
Bom (X2+Z2)+(a (X;B,)+0.(ZB ))
2 I 1 w 1Dy z\LIDyp

+
w

(omCuB) 0. sy ) (=25

X] + 6ZB@ Z[)
B B

~—2 05 (wBg) Y1 X1 - —£0.B, Y] ZI}
w w

2
gpoly = LU0 {(aw (@Xr) Y&, aZZR) N (M tm azZR) (C.37h)
w w

4 w w

2
. (XRawp() + ZRaZPO) + (—aw (WXI) - —YI + azZI)
w w

- (M BRI GZZI) (XI Ompo + 21 azp@) }
w

w

8Cowl

grav +

O (X Y;
{(XR 0x®Po+ Zr 6Z<I>o) [Po (% - ER + 8zZR) + XROxpo+ 2R azﬂo]

(C.37¢)

Ll M

0s (X)) Yi
w

(XI 0x®o+ 21 32(1)0) [po ( — + asz) + X1 0xp0+ Z1 3z,00] } .
W

In equations ((C.37)), it becomes obvious that real and imaginary parts of X, Y and Z
contribute equivalent parts to £.
The energy variation density can then be written as

E=E(XR, YR, Zr) + E(X1,Y1. Z1) (C.38a)
with
E(X,V,Z) = Emagn (X, V, Z) + EXN(X,V,Z) + ESoN (X, Y, 2) (C.38b)
for
X ={Xr, X1} Y ={Yr,Yr} Z={Zp,Zr} (C.38¢)
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and

2,2 2
c 1| Bgm 2, 22
Emagn(X, Y, Z) = R X7+ Z7 |+ 8w(XB¢)+8Z(ZB¢)) (C.39a)

- (aw (XB,)+0.(ZB,) ) (@ X +0.B, z)

B B
-—2 05 (wBy,) YX - —£0.B, yz}
w w

2
ey, 2)- (220 Vg ) (C.a0h)
+ (M _Y + BZZ) (X Owpo + Zazpo) }
w w

—+0,Z

w w

(C.39¢c)

gg(ig‘\tll(xay)z) = i;l {(X 8w<1>0 + ZaZCI)O) [po (_8w (ZUX) _ y )

+X 6wp0 + Zazp():l } .

Next, the integrand will be minimised with respect to the {,-component ), in accordance
with [Tayler| (1973]).
The integrand is extremal when the first derivative vanishes:

dyE L0, (C.40)
which gives
B, (0n (wB 2T o (X
——“’((L“’)X+8ZB@Z)— 0P (8 (= )—2+azz) (C.41)
w w w w w
1 £0 !
- — X@wp0+Zapo F — X@w<I>0+26Z<I>O =0.
w w
Note that the second derivative,
= 2Topo
€= — >0, (C.42)

is positive which implies that the extremum determined by requirement (C.41f) represents
in fact a minimum of the energy variation.

Equation ((C.41)) can be solved for ), using the hydrostatic equilibrium equation ([2.29)).
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C.1. Stars with purely toroidal magnetic fields

We receive the Yyin-value which minimises the integrand:

pow
L'opo

Vimin = (Ow (wX) + w@ZZ) + (X Ox®Pp + Z@ZZ) (C.43)

. wB, (8w (wBy,)

X+90,B,Z]|.
2T0 po Zsp)

w

Note that the final term in expression ((C.43|) represents an additional term in comparison
to Tayler’s result. The consideration of the magnetic field in the hydrostatic equilib-
rium equation equation ([2.29) allows |Tayler| (1973) to cancel the magnetic field terms in

expression (C.43)).

Inserting Ymin into &€, the minimised energy variation density contributions ((C.39)) can
be calculated.

The magnetic contribution is

_ 1 B2 m2 ) ) 2
gmagn(XayminyZ) == d 3 (X +Z ) + (8w (X BSO) + 8Z (Z BSD) ) (044)

4 w

- (aw (X B,) + 0. (£ By) ) (@ X +0.B, z)

w w

Be (_aw @B2) x 1 0.8, z) y}

where the Y-independent terms as well as the first of the linear )-terms can be multiplied
out. Numerous terms add up to zero. The remaining terms can be rearranged in the
following form:

2 2 2
- 1 X X2+2% 2BX
Emagn (X, Vanin, Z) = I {Bi (w O (;) + azz) + B, m’ — - ;2 (C.45)
2B, X By, (0w (wB
-2 (awB¢X+aZB¢Z):Fp° “"( (@ “0))(+8ZB@Z)
w Topo w
B2 (0. (wB 2
.(;cawcp“zaz%) . ( (@B,) X+6ZB¢,Z) ,
2T0 po w

where the first term has been written as a squared binomial.
While equation ((C.45|) holds for arbitrary mode indices m # 0, the expression simplifies
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C. Supporting calculations for the applications of the semi-analytic method

under the assumption of m =1 to

2
_ 1 X Z2 - x?
gmagn(XaymimZ) = Z {BZ (waw (;) +azz) +B3: 7 (046)
2B, X B B
_ 2D (awB¢X+8ZB¢Z)¢pO ‘P(aw<w ‘p)X+8ZB¢Z)
w o po w
_82 B 2
.(X8w¢0+28Z®0)— 2 (8“’ (@ “O)X+8ZB@Z) }
2T po w

Before setting up the fluid contribution, we apply Ymin given by equation (C.43) to
simplify the following expression:

O (@X) _ Yuin | g 7 _ o PO (Xawq>o+zaz<bo) -

B, (aw (wBy)
w (Z 0Po

X+0.B,2Z]|.
2F0p0 w = )

(C.47)

Applying relation (C.47)) and the hydrostatic equilibrium equation Vp = £pgV®q, the
fluid contribution (C.39b]) becomes

_ 1 2 2
EPN(X, Vinin, Z) = Z{FS;O (X6w¢>0+282<bo) (C.48)
2 2By (a“ (=Be) X+aZB¢z) (Xaw@0+zazq>0)
2T0 po w
B} (0z(wB,) AR ’
2 < PPX+0,B,Z| -2 [ X0,Pp+ Z0,D
4F0p0( w +0:By ) Topo O=0+ 2 0:%0
+ 0B (8w (=@B,) X+82B¢Z) (X8W¢O+ZBZ<I>O)}
2T po w
B, (9 (wB
_L] B (9=(TB,) 5 0.B, Z | | X 000 + 20.3y|  (C.49)
4 2F0p0 w
B2 2
Do (%=(@Be) 5 o5, 2
4F0p0 w
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C.2. Stars with purely poloidal magnetic fields

Applying relation (C.47) once more, the gravitational contribution (C.39¢|) can be writ-
ten as
ggcigzlﬂ(‘)cvymin7z) (050)

2 2
= i {:t (X aw% + Z&Z%) (X 8w,00 + Zazpo) - FPO (8w<1>0 + Zaz‘l)o)

0Po

O (wB,)

w

+ 0B (X 0B + zaz%) (

X+0,B,Z|¢.
2T po t O )}

Finally, the separate contributions (C.45)), (C.49)) and (C.50) can be added.

The energy variation density does not depend on the azimuthal angle and it can be
integrated over . According to the fact that real and imaginary parts of X and Z
contribute equivalent terms, the £-defining functions can be chosen real without restriction,
X =Xp, Z=Zg.

Thus, from equations and ,

SW = fffm{é(XR,YR,ZR) + E(X1, Y, Z1)} AV (C.51)
:g/[{B; (waw(g)mzz)zwg (mQ‘Q);(j*mQZQ (C.52)
2B,X

w

(8WB(,OX + 8ZB¢, Z) + (X 6w<I>0 + ZaZ(I)()) (X 8wp0 + Zazpo)

2 2 B2 8 B 2
__P (X8w¢0+ZBZ<I>0) . ( = (@ “”)X+GZB¢Z)
o po 410 po w
B 0w (=B
2070 (Xawq>o+zazq>0) (MX+8ZB¥,Z) wdwdz.
Lo po w

This form matches the energy variation density given by [Tayler| (1973)), remembering that
the last two additional terms cancelled out in Tayler’s approach.

The first additional term was caused by the extra terms appearing in Yy, in equation
compared to Tayler’s form. The second additional term arose directly from using
the equilibrium equation of the unmagnetised system while inserting Vi, into &.

Note that in [Herbrik & Kokkotas (2017)), the extra terms that appear in Yy, when the
magnetic field is not considered in the equilibrium equation, were not taken into account.
Therefore, the analogue to equation in [Herbrik & Kokkotas (2017)) only contained
the second additional term, but not the first one.

C.2. Stars with purely poloidal magnetic fields

C.2.1. Construction of the toroidal coordinate system

The concrete structure of the poloidal magnetic field applied in Markey & Tayler| (1973])
is determined by the toroidal coordinate system given in equation (2.8). Its construction
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C. Supporting calculations for the applications of the semi-analytic method

is shown here.

The ansatz for the toroidal coordinate system are orthogonal curvilinear coordinates
with the line and volume elements

ds® = hy, dip® + b2 de® + B2 dx? dV = Jdy dedy, (C.53)

where the scale factors h; and the Jacobi determinant J need to be determined. Cf. section
Two of the coordinates are the stream function i as well as the azimuthal angle .
Together with y, the coordinate set {1, ¢, x} forms a right-handed system.

Geometrical reasons, cf. figure and the definition of cylindrical coordinates (2.6)),
suggest the transformation equations

X =T Cos p y=wsing z =rsiny, (C.54)
with

@ = Rior — T COSY r=7(1). (C.55)

The scale factors are given by the general form (A.16)) for orthogonal curvilinear coor-
dinates. With equations (C.54) and (C.55)) they are

he = 07| =/ (0p2)% + (0p9)? + (9,2)° = (C.56a)

= [0r| =\ (92)” + () + (0,2)" = 7, (C.56b)
where relation (A.25)) has been applied.

The determination of h, requires an assumption for the magnetic field: The magnetic
flux through the torus spun by the toroidal coordinates is set to a specific value. The
surface S be enclosed by the torus, as can be seen from figure It is located in the

(w, p)-plane.
The magnetic flux through S along the stellar symmetry axis is

27 Rtorff Rtor*f
@magnszdsszB-ndszf f B wdwdp=2r f B wdw, (C.57)
0 0 0

where n denotes the surface normal to .S, and B;gzo is the magnetic field strength in S, i.e.
for x = 0. Here, we took into account the axisymmetry of the magnetic field, B = B(w, 2)

from equation ([5.25)).

Markey and Tayler set the magnetic flux to

Dy = 271 (C.58)
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C.2. Stars with purely poloidal magnetic fields

Thus, from equation (C.57)),
%= f B o dw i = BY @ dw = ~BY (Rior - ) dF. (C.59)
Here, we applied relation (C.55)) to receive for y = 0:

drww ‘X=0 = —cos X |x:0 =-1 dw |x:0 = —dr. (C.60)

Equation (C.59)) provides a relation for the stream function at the position y = 0.
However, in order to determine hy, the dependence of B, () must be known. According
to the flux conservation along each magnetic flux tube, Markey and Tayler choose the
magnetic field as By ~ 1/w.

With the assumption

By 7 Boo 7
By = 2Pl o bl (C.61)
w Rior —TcCOS XY
relation (C.59)) can be evaluated for x = 0. Applying (C.55)), it becomes
T N o
d1p = =Bpol p (Rtor —7) dr = =Bpo 7 dT. (C.62)
Integration finally yields
1 2
w:—prolfdf:——Bpolf2+C F=xq|- ¥ , (C.63)
2 Bpol

where the integration constant was set to zero.
Note that ¢ <0, i.e. 7 is real everywhere. Further, the positive sign of the square root
is chosen in order to achieve © > (0. Then,

- (C.64)

follows from equation (C.63]).
With this relation, the remaining scale factor hy can be calculated, applying its defini-

tion ([A.16)), equations (C.54) and relation ({A.25):

ho =\ (9u)’ + (D) + (92)° (C.65)

= \/ (052 047" + (Ory D7) + (052 047)” = ! L

T Bpol wBX’

(C.66)

where the final step follows from choice (C.61)) for the magnetic field.
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C. Supporting calculations for the applications of the semi-analytic method

Finally, the Jacobi determinant follows according to its definition in (|A.16]):

COs X COS ¢ cos x sin g _ siny
Bpol T Bpol T Bpol T
J=det| —(Ryr—7cosy)sing (R —7COSY)COS@ 0 (C.67)
T COSp sinx 7 sin ¢ sin 'y T COS X
Rior —7Tcosx w T
= = =, (C.68)
Bpol Bpol BX

where relation (A.25)) has been applied.

Choice for the magnetic field ensures that the current density is uniform close to
the neutral line.

According to Ampere’s law , applying relation for the curl in curvilinear
coordinates and with B = B, e,, the current density is

0
j =VxB-= jap , (069)
0
with
. 1 _ 811}(th><)_ w 2

For the last step, the scale factors (C.56|) and (C.66) as well as the magnetic field choice

(C.61)) have been inserted.
Finally, according to the chain rule and with (C.64]), (C.68|) as well as

cos Y

Oy = O Oy = , C.71
@ = Orm o=t (C.71)
the current density becomes
2 TN p2 27, T _ Bpo (7 cosx
—Bpolﬁw(g)——Bpol (;aw—gaww) - ( - +2). (C.72)
At the neutral line,

. — 2 Btor
Jo (@ = Rior, 7= 0) = . (C.73)

Rtor

The current density is constant, i.e. it is consistent as demanded above.

C.2.2. Construction of the explicit displacement field
Geometrical analogy to the toroidal field case

In section m it was briefly mentioned that the displacement field choice (2.125]) for
the poloidally magnetised star is geometrically equivalent to choice (2.121f) of the toroidal
field case. This circumstance will be discussed here in greater detail.
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C.2. Stars with purely poloidal magnetic fields

The Tayler instability for both magnetic field components is expected to be located
close to the magnetic field’s symmetry axis.

This symmetry axis also represents the axis of reference for a displacement field which
is appropriate for a Tayler instability investigation. In the case of the toroidal field, the
symmetry axis of the magnetic field corresponds to the stellar symmetry axis. For the
poloidal field, the magnetic field is symmetrical with respect to the neutral line.

That means, the displacement field reference axis in the toroidal, respectively poloidal
field case, is the stellar symmetry axis, respectively the neutral line.

With this analogy, the correspondence of the displacement field components between
both cases can be understood.

The displacement field component parallel to the reference axis is £, in cylindrical co-
ordinates for the toroidal case, and &, in toroidal coordinates for the poloidal case.

The component tangential to the right-handed circle around the reference axis is £, in
cylindrical coordinates for the toroidal case, and &, in toroidal coordinates for the poloidal
case.

The absolute value of the final component describes the distance to the reference axis.
It is £ in cylindrical coordinates for the toroidal case, and & in toroidal coordinates for
the poloidal case.

The dependency on the exponential function persists in both cases, as chosen by ,
cf. figure 2.14] Furthermore, the prefactor for the azimuthal component is proportional
to i/m for both cases, in order to keep the expression real when &, is derived with respect
to .

Incompressible class of perturbations

The constraints ([5.28) Markey and Tayler impose on the displacement field imply an
incompressible character of the applied perturbation mode, which can be shown as follows.

The Eulerian density perturbation caused by the displacement field is given by equation
, and can be split into two terms by relation (]E . For polytropes, the equation
of state and the hydrostatic equilibrium equation @D yield relation for
the connection of the density gradient and the gravitational field vector .

Thus,

2
3p ==V (po&)+O(&*) = —po (V-&) =& (Vpo) + O(€%) = —po (V - £) - 52)0 £g9+0(£%) =0,

(C.74)

r
where the final step follows with the conditions £ -g =0 and V- & =0 from (5.28).

The imposed displacement field is divergence free and the density gradient in the poly-
tropic star is purely radial and points towards the stellar centre. It is therefore parallel to
the gravitational field vector.

With the assumption that the displacement field is perpendicular to g, i.e. £ L e,, the
Euler perturbation dp vanishes for the applied displacement field. The imposed perturba-
tion does not change the fluid density at a fixed local position.

Therefore, € as chosen by assumptions , purely shifts fluid elements and does not
compress them.
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C. Supporting calculations for the applications of the semi-analytic method

Displacement field ansatz

The conditions ([5.28]) discussed in the previous section translate into relations between
the &-defining functions when choice (2.125)) for the displacement field is inserted.

The requirement & - g Lo gives

X 0y®o +w B2Z 0, Py = 0. (C.75)

Applying formula jA.18) for the divergence in orthogonal coordinates, as well as relations
(C.56), (C.66) and (A.25), the divergence of the displacement field is

Op(wT&y) O )
V€= Byo w(w v, fjh ijfx) (C.76)
By, By .
={ ;18¢(JX)—Y+ ;axz} e, (C.77)

where the poloidal field choice and the Jacobi determinant have been used.
Beyond that, we took into account that 7 = 7(1)) and that X, Y and Z are independent
of ¢.

Finally, the requirement for the divergence-free displacement field gives

0y (JX)-JY +0,Z 20. (C.78)

Conditions and allow it to express the &-defining functions Y and Z in
terms of X.

For geometrical reasons, illustrated in figure the gravitational field vector compo-
nents obey the following relation

9y _ Rior cosx —7

C.79
9y Ryor sinx ( )

This relation holds for arbitrary displacement field choices under the assumption that the
gravitational field vector is purely radial, i.e. g = (g,,0,0) in spherical coordinates.
Applying the magnetic field choice (C.61)), Z follows from condition (C.75):

7o x® (Ritor cOSX —T)

. C.80
72 BIQ)01 Rior siny ( )

From that, the derivative

1 X cosy OX

siny  siny

oZ @ (Rior COSXY —T) ( )_X(Rtor (7 cosx — @) _772)

(C.81)

,,72 B2 .
po.

Rtor

can be calculated.

222



C.2. Stars with purely poloidal magnetic fields

Figure C.1.: Geometrical consideration of gravitational field vector components, see equa-

tion (C.79).

Besides this, from equation (C.67]),

Dy =

cos Y

2
T Bpol

(C.82)

follows.

With the use of relations (C.81) and (C.82), Y is explicitly given by condition (C.78]):
1
Y=0,X+ - (X 0y +0yZ). (C.83)

According to relations (C.80) and (C.83), Y and Z are completely determined by the
choice of X.

Displacement field localisation

The displacement field needs to be localised in order to avoid surface integral contributions
to the energy variation, cf. appendix section

Due to the system geometry, the most straightforward way is to localise the displacement
field to a torus including the neutral line, cf. figure For an effective localisation, the
displacement field must vanish naturally at the torus surface oy, or it must be orthogonal
to the torus surface normal, as shown in equation .

Relations (C.80), and imply that Y = Y(X) and Z = Z(X). More
precisely, Y and Z vanish for all (¢,x) where X = 0 and 04X = 0. Therefore, the
localisation can be achieved with an appropriate choice for X.

We choose the ansatz

X = f(d}a X) (d} - wtor)Q ) (084)
with
Ay X = Oy f (1, X) (¥ = o) + 2 F (¥, X) (¥ — Yror) - (C.85)
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The square ensures that both X as well as 0, X, and by that also Y and Z, vanish at
the torus surface.

The remaining function f(v,x) # 0 can generally depend on ¢ and x. It needs to be
chosen in such a way that it does not compensate the proportionality of X ~ (¢ - ¢tor)2,
nor cause any kind of singularity.

Displacement field parameter choice

Once ansatz has been chosen in order to localise the displacement field, an appro-
priate choice for function f(1,x) is required.

Besides fulfilling the conditions mentioned above, it needs to guarantee that the Tayler
instability is detectable.

In the subsequent section it will be seen that with displacement field choice ,
there are particular choices of X, Y and Z for which the energy variation §W does not
depend on the magnetic field strength B . In this case, the magnetic field amplitude
can be factored out of the integrand and the structural character of the Tayler instability
becomes obvious. Our choice of function f(1,x) shall enable this scenario.

From equation (5.39)), the magnetic field dependence of the &-defining functions and
their derivatives required for an instability proof can be deduced:

2 2 2
=3 ff{ (9 X) Bpol (8,Y)+—22 Bp‘” (0pX -Y ) (C.86)

w72 m2

SN——
I 11 IIT v

2 Rior — 7 COS X

+B ol
1% wQ

By
(Xan—XYJr pol ZE)XX)}dwdz.
w

—_———t——— —
\% VI VII

Note that this form of the energy variation has been derived with the displacement field
assumptions made in this section so far. It is presented here only to motivate the choice

of f(1,x). Its derivation will be shown in section
Expression ((C.86) provides the following conditions for the magnetic field to cancel out
of the integrand:

111 |

|
[=0,X~1 V=X~1
1= 8,Y ~ By} VIZ x 41 (C.87)
111:>an B4 VIIS 2L B2,
V=Y 4B

For the requirements following from terms V, VI and VII, the conditions derived from
terms III, IV and I have been used. Note that the mixed binomial term of IIT and IV also
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C.2. Stars with purely poloidal magnetic fields

requires Jy X Y4 Bpol However, this condition is already covered by conditions III and
1V.

For the purpose of deriving conditions for f(v, ) from relations , the Bpo- and
f (1, x)-dependency of X, Y, Z and their derivatives needs to be known.

Applying ansatz , we must consider the implicit dependency of 1 on the field
strength Bj,,. The radial distance 7, on the contrary, is a pure geometrical quantity.
Therefore, ¢ is expressed in terms of 7, according to .

Then,

320 2 2 or
(w - ¢tor)2 = Z 1 (7:2 - F‘?or) Ttor = - B;(z}t 1 . (088)
po

We insert ansatz (C.84)) into the formulas (C.80) and (C.83) for the &-defining func-
tions. With relation ((C.88)), this provides the explicit dependencies of X, Y, Z and their
derivatives on Bpo and f(1, x):

2
1 _ 2
x= D0y ()
B 1 2 -2
0. _ !
81/’X = Z 8¢f (7“ _Ttor) polf ( Ttor)
BQ
0\ X = ZOI o f (P2 -72,)
Bgol -2 -2 \2 2
8X1/)X = T axwf (7’ rtor) - BP01 aXf ( Ttor) (C89)
1 cosx 9 )
Y = X + B0 Z |+ 0p X
WBpol ( pol i
X 1\ X A
DY - sin x ( cos X ) COSX | 5 Dy X - By, 2 LI0X 7 siny 4 By X
POl pol wr w?2 w
2w (RtOr cosY —T)
( T or) =2
474 Ryor siny
T - Ttor Rtor + T - rRtor Cos X (Sln X+ 2) w (Rtor COS X — F)
OZ = f -0\ f .
472 Rtor sin? y sin
27 - Ttor 7‘ Rior (cos® x +3) -2 cosx (7 + RE,)
X 47“ Rior Sln3X
2 (r + Rtor) =27 Ryor cos (2 + sin? X) o, @ (Rior COSX —7)
+8Xf ) _axf - R
sin® y sin y

where the second derivatives are denoted by 9;; = 0;0; and 82-2 = 0;0;.
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With expressions (C.89)), the requirements ((C.87|) for the &-defining functions translate
into conditions for f(1,x):

I = xf Bpol
1 = X1 R fA B
= O X L 1 - Xf Bpol
= OwX~Bpy o~ OwfrBil, O~ Bk (C.90)
= 2 ~ : B;:gl - e B;:gl’ Oxf 3 ngl
= 622 B2 - e B2, O f 4 B2, 82f By
mo = df ~ By, f~ By
v = X1 - fA B
= 2 ~ : B;:gl - e B;)gl’ Oxf 3 ngl
= Oy X ~ By - Oy f 4 Bpd, £ Bya
Vo= f~By
VI = f~ B2
VIl = f* B2

As can be seen, all conditions from different terms are consistent.
Summarising, function f (1), x) must be chosen under the conditions

f Bpol 8¢f Bpol f Bpol wa Bpol a2f Bpol (091)

For the sake of comparability of this work with Markey & Tayler| (1973), we choose

X sin x
B2,

pol

Qb x) = (C.92)

That way, our choice of X is equlvalent to the form in Markey and Tayler, with the
additional localisation factor (¢ — @btor) and the poloidal field dependency Bpol
Thus,

dyf =0 O f = 2L X Oy f =0. (C.93)

Applying choice ((C.92)) with (C.93)) to (C.89)), the explicit form of X, Y and Z presented
in equation ([5.31)) follows.
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C.2. Stars with purely poloidal magnetic fields

Finally, according to equations (C.86)), (C.87) and (C.90|), the &-defining functions can
be redefined in such a way that the magnetic field cancels out of the integrand:

fe= Bl f (00X)g = Bpot 0y X

Xp=X (03 X)p = 00X (C.94)
Vg = Bya Y (0xY)g = Bpo1 0yY

Zg=B, 7 (040pX) g = Bpol 050y X.

The form of the energy variation following from that will be shown in the subsequent
section.

C.2.3. Derivation of the explicit form for the energy variation

In this section, the energy variation (2.116)) with (2.117]), describing polytropes in Cowling
approximation, is simplified for the specific case of poloidally magnetised stars. The
assumptions used for the poloidal field case are made by Markey & Tayler| (1973) and
they are presented in section

The derivation of the final form slightly differs from the procedure presented in [Markey
& Tayler| (1973).

As for the toroidal field case, we will use an actually complex displacement field, in
contrast to Markey and Tayler, and take the real part ensuring the physical meaningfulness
of 0W over the total integrand. The appearance of an additional factor in the integrand
caused by this procedure is explained in the appendix section [A’5.4]

Further, the definition of §, given in factorises the imaginary unit. This ansatz
will facilitate a straightforward and consistent description of X, Y and Z concerning their
real and imaginary parts. In contrast, Markey and Tayler utilise an imaginary &-defining
function YMT = z'YIMT with 532“ = =X gimg,

m

Applying assumptions , the general form of the energy variation reduces to its
magnetic part .
In toroidal coordinates , set up in section we first apply the poloidal magnetic
field choice (5.25) to receive
£ By
ExB=| -§ By |. (C.95)
0

With the scale factors, given in ((C.56[) and (C.66|), and the expression of the curl in toroidal
coordinates from equation (A.19)), it is

6By = ﬁ [0, (hy (€ x B),) -0y (hy (§x B),,)] = ;X = Oy (@ By &) (C.96a)
3B, = 1 [0 (s (63 B),) =04 (i (6 8),)] = 0, () (€.96)
0By = hwl [@p (h (&xB) ) (hw (& x B)zp)] =-By [8X (WBX Sw) -0y (%)]

(C.96¢)
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In the last step, relations J = w/Bpe and 7 Bpe = w By, from equations ((C.68) and (C.66)
have been applied. Inserting the magnetic field perturbation ((C.96)) and the current density

given by equations (C.69) and (C.72)), the energy variation density becomes

9 )0 ‘
1m{ v (@ By &) x(waﬁw)+7§_jax(£_¢) Ox(g—“ﬁ)

£ =
4 wQBf(J2 w w

(C.97)

e (&) e o (€]

_M}i‘]) [wa&Z [% (w By &) + 0, (%)] * B_iax (WBX&Z’)]}'

Compared to Markey & Tayler| (1973)), this expression contains the additional factor 1/2
because the real part has not been evaluated yet, cf. appendix section

Compared to the original general expression , the prefactor 1/(47) is neglected
here because it stemmed from the non-rationalised form of the Maxwell equations .
Here, we switched to rationalised units in accordance with Markey and Tayler’s approach.

Once the poloidal field choice (2.125]) for the displacement field has been inserted, the

exponential functions cancel out and the yp-integral can be evaluated to give

T WX 0, X w20, Y 0, X
5W:—ffm x Oy Xt A B2 1(8,X - V) (9,X* - Y* .08
9 {WQB?(J + m2.J t Dy (w )(w ) ( )

Z
~0, (B2.J) (X 0,X" - XY™+ 5 8XX*) } dydy,
where relation (2.116)) has been used.

According to relation (A.29)), this integrand can be split into two complex conjugated
parts with

SW = % f/ 0 (M + M7} dipdy (C.99)

and

_OXToX @2 0, Y* 0, X

w?B2J By (0 X -Y) (9, XT YY) (C.100)

~ 0, (B2J) (X&/}X* CXY'+ gaxx*).

Applying relation (A.31)), it becomes obvious that the integrand can be expressed in
terms of the real part only:

SW = g f Mp, dydy (C.101)
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C.2. Stars with purely poloidal magnetic fields

with

_(aXXR)2+ w?
S w@w?B2J  m?J

Mp (0 Yr)* + B2 (0yXR - Yg)’ (C.102)

Zr0y X
—8¢, (Bij) (XRaq/JXR—XRYR-FM).

J

In this step, the complex scalar products have been evaluated with the use of expression

(E29).

Next, the magnetic field choice ((C.61)) is inserted and the integral is expressed in cylin-
drical coordinates, using the volume elements (2.7)) and (2.10):

™ (a X)2 WBQOI 2 fQ 3201 2
5W:§ff{ K 2% (0yY) +T" (0pX -Y) (C.103)

w 72 m

2 Ryor — 7 COSX

+B 1
po =2

Bpo
(X@¢X—XY+ D lZaxX)}dwdz.
w

Here, we transformed the expression back to cylindrical coordinates because we will per-
form the numerical integration in w and z.

Afterwards, the explicit choices (C.89), (C.92)) and (C.93)) for the &-defining functions
constructed in the previous section are applied. Expression ((C.103]) motivates the redefi-

nition of the &-defining functions shown in equation (C.94)), that aims on the cancellation
of the magnetic field amplitude By, in all integrand terms.
Thus, the energy variation finally becomes

w 72 w

2Rior — T Zp (0, X
+M (XB (an)B_XBYBjLM)}dde.

w2 w

2 _
SW = g [f {% + % (D)% + r ((9), - YB)2 (C.104)

C.2.4. Analytical stability consideration

The analytic instability consideration presented in Markey & Tayler| (1973) proves that
the system is unstable in the limit of infinitely high mode indices m.

The integrand expression is subsequently simplified, where term II in expression ((C.86)
vanishes due to its proportionality £y ~ 1 /m2. With the assumption XMT = X(I)VIT sin
the - and y-integrals in ((C.103|) are evaluated analytically to receive a simple expression
for OW:

(g[/[/l\/[T__u(l)v[T)2 (2_2——a2) a= r (C.105)
a2 Bpol Rgor 2V1 - a2 - Rtor ' )
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C. Supporting calculations for the applications of the semi-analytic method

According to
27 (X))

———— >0, C.106
a2 BP01 Rgor ( )

the onset of the instability for SWMT < 0 is given by

2 - a2 4 2
2-—>0 = a +12a¢°-12<0 = a<10.928=0.963. (C.107)
2V1 - a?
Therefore, in the limit of m — oo, the instability occurs in the neighbourhood of the
neutral line.

The infinite mode index corresponds to displacement fields with an infinitesimally small
perturbation length scale in ¢-direction compared to the length of the neutral line.

In this case, the curvature of the torus including the neutral line is negligible and the
system is equivalent to the toroidal field case with the straight cylindrical fluid discharge.

This result has been derived for each magnetic surface 1) = const separately. For finite
m, the positive definite term
wBIQ) ol
m2

Err = (0, Y)? (C.108)

increases the energy variation. Single magnetic surfaces do not provide unstable modes.

C.3. Stars with mixed magnetic fields and stratification

C.3.1. Construction of the displacement field

This section outlines the construction of the displacement field shown by [Akgiin et al.
(2013).

Analogy to the toroidal field perturbation

The magnetic field component that is tested for stability in the mixed field system is
the toroidal one. The utilised displacement field is therefore equivalent to the
displacement field applied in the toroidal field case .

This can be seen by transforming the vector components of the mixed field displacement
field choice into cylindrical coordinates via (A.26]). The mixed field choice becomes

£ = R(r,9) rsin® 9 e™? +Srsind cos ™ (C.109a)
€ =iT(r,0) rsinge™? (C.109b)
£, = R(r,9) rsin® cos?e™? —Srsin? 9™ (C.109¢)

According to the transformation equations (2.4) and (2.6) of spherical and cylindrical
coordinates, it is

w =7 sind z =71 cosV. (C.110)

230



C.3. Stars with mixed magnetic fields and stratification

Therefore, comparison of the coefficients between the toroidal field choice (2.121) and
(C.109)) provides a relation between the &-defining functions X, Y, Z and R, S, T.
Choices (2.121)) and (2.130]) are identical if

w

X=(wh+zS) (C.111)
r

Y=mwT (C.112)

Z=(:R-w8)=. (C.113)
r

Displacement field ansatz and localisation

As explained in section the &-defining functions R, S and T are chosen in such a way
that the Tayler instability of the toroidal magnetic field is detectable in the absence of the
poloidal field component, 7,01 = 0.

For their construction, the sum of the toroidal and hydrostatic energy variation den-
sity contributions (C.120a)) and (C.120c) must be negative. These expressions are briefly
derived in the subsequent section [C.3.2] However, note that they have been derived by
applying the general displacement field ansatz (2.130)) only, without further assumptions
on R, SorT.

First, the energy variation integrand for the purely toroidally magnetised star
is minimised with respect to the & -defining function T', analogously to the £(Y")-minimi-
sation in section [B.11

Second, the condition

O (rR)+09S=0 (C.114)

for R and S ensures that the positive definite term in the energy variation density vanishes.
It is fulfilled by the ansatz
_ 0TI 5
R=2 S = -9,1I, (C.115)
x
with a scalar function II(x, ). Remember the definition of the dimensionless radial coor-
dinate x = r/R.

Finally, the displacement field is localised.

According to equation , the surface integral contributions are negligible if &
smoothly goes to zero at the boundary of the localisation region. However, Akgiin et
al. argue that Tayler’s localisation choice of the toroidal field case is not appli-
cable here. The superimposed poloidal magnetic field component requires a continuous
behaviour of the displacement field at the boundaries of the localisation area in order to
avoid singularities. Therefore, II(x,d) is chosen in such a way that the displacement field
vanishes at the boundary, while its derivatives remain finite:

T —xo\2 - 2
H(x,ﬁ):%u-;z?(x,ﬁ))“ 58(3;,19):( . 0) +(195;90) . (C.116)

Combining assumptions (C.115)) and (C.116)), the explicit choice for £ given in equation

(5.46)) follows.
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C. Supporting calculations for the applications of the semi-analytic method

C.3.2. Derivation of the explicit form for the energy variation

In the mixed field case, we express the energy variation by the compact form of
Akgitin et al.| (2013)).

The derivation of this expression starting from the general form with for
the energy variation and the energy variation densities is outlined here.

As explained in section [3] Akgiin et al. redefine the energy variation density contribu-
tions to a toroidal, poloidal, mixed magnetic and hydrostatic part, cf. equations
and . Their form is given by expressions .

The magnetic contribution can be rearranged applying identity . With
relation and the mixed magnetic field ansatz B = By + B, the separate magnetic
contributions are

1
Eror = 75~ R{IBl 0Bror ~ & (V% Bior) -0 Bier | (C.117)
1 * *
Epol = To— m{aBpol -6Bpo1— £ x (V x Bpol) 5Bp01} (C.118)
1 * * *
Ecvons = 75— R{0Blor 0Bpor + 0By 0Brox ~ & x (V x Bior) -6 By (C.119)

- & x (V X Bpol) . 5Btor} .

Note that according to the definition of dW4 = 12 EAAV in |Akgiin et al| (2013),
the energy variation we defined in equation (2.116) contains an additional factor of 1/2:
E=E7)2.

The hydrostatic part follows from the fluid and Cowling gravitational contribution
(4.48b) and (4.48c). The transformation from dWpyyq and 5W§g¥l to the form used by
Akgiin et al. is shown in the appendix section [C.3.3]

With the usage of the mixed magnetic field choice (2.33) and some notational definitions
given by equations (5.51) and (5.52)), the newly defined energy variation contributions
become

~ ~ 2 ~ 2
R B, (5(&(7’R)+9ﬂs)+1\(5)) _(m/J’T+A(ﬁ)) (C.1200)
167 T 2 w 2
+m;§2 (7232 +72)
~ ~\ 2 ~
N (m&aaT—&«(wA(oz))+A aR) +(maﬂ0‘T‘aﬂ(WA(a)) (C.120b)
167 w 2 wr
+A*a§)2 . (aﬂaarf—araaﬁ’)Q_ (@aa)’ (g, )
2 r 4
2
Enyd = % %{Fl po D2, + (A(Po) = o A(q’o)) Dy, = A(po) A(‘I’O)} (C.120c)
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C.3. Stars with mixed magnetic fields and stratification

and
5cross =0. (C.121)

Analogously to the previous applications, the &-defining functions can be chosen real
without restriction, which causes the mixed magnetic term to vanish. Also, quan-
tities D,, and A that depend on the &£-defining functions are real with this choice and the
complex scalar products in ((C.120al), (C.120b)) and can be replaced by products
of the real parts of the functions. Since all remaining functions are fully real, no prefactors
arise when the real parts are evaluated.

With (C.120f), the energy variation density for the purely toroidally magnetised star can
be expressed as

gtor + Ehyd = i {EO + E1 mT + E2 (m T)Q} s (0122)

where the prefactors Ey, E1 and Ej are defined in equation (5.55)) with (5.56]) and (5.57).

Next, the minimising value (5.47)) for T is inserted to receive the energy variation density
of the toroidally magnetised neutron star that has been minimised with respect to £,:

Ey E?

gtor(R,S,ijn) + ghyd(R,Smiin) = I _ 16E27

(C.123)

for m # 0.
Note that in accordance to section the integrand has been minimised for the
toroidally magnetised star only, and not for the mixed field case.

Finally, the poloidal field contribution (C.120b)) is added to receive the explicit form of
the energy variation for the mixed field case, given by equation ([5.54]).

C.3.3. Verification of the energy variation considering stratification

According to equation ([2.78) with expressions (4.6)) and (2.115)), the total energy variation

of an unmagnetised stratified star in Cowling approximation is

Efuid + Egront’ = im{rlpo(vf*) (V-&)+& - Vpo(V-£) =&V (V'(POE*))}-
(C.124)
The gradients of fluid pressure and gravitational potential can be rewritten according to
relation and the hydrostatic equilibrium equation ([2.29)):

r Vpo T
vpo = 2P0 v V&g =0 -G (C.125)
Po o Po

Thus,

5ﬂuid+5§3‘51=1% Flpo(V’E*)(V-f)-kFOPOE‘VﬂQ V-S’W—M . (C.126)
4 P0 Po
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C. Supporting calculations for the applications of the semi-analytic method

Applying identity (A1) on &-Vpo = V- (po€) - po (V -£), finally gives

I'opo
Po
Topo(V-€) (V-€) + 22 (v (50 €%)) (V- (po€))

Po

Lopo (g g (v-(m*))}
Po

(V-€) (V- (p0§)) (C.127)

1 "
Enia + 520 = 19 {Tum (7€) (7-€)+

_ i%{(H—FO)Po(V'ﬁ*) (V-6 + 2 (7 (me)) (v-<pos>>}.
0
(C.128)

Note that in the last step, the terms cancelled out according to relation . The terms
are identical independent of which factor is complex conjugated.

Equation is equivalent to the expression given by |Akgiin et al. (2013)) for the
energy variation of a non-magnetised star with stratification in Cowling approximation.
For comparison, consider the differing notation for the polytropic indices used by Akgiin
et al. shown in table Further remember & = EA/2. Applying the magnetic field

assumption ((5.43|) as well as notations (5.51)) and (5.52)), the explicit expression ((C.120c)
for the hydrostatic contribution follows from ((C.128)).

C.3.4. Analytical stability consideration

The analytic stability consideration Akgun et al.| (2013) provide for the purely toroidally
magnetised star is equivalent to the one given by Tayler (1973)) and shown in section |C.1.1

The minimised energy variation density for the toroidally magnetised star @ with
m # 0 can be rewritten in the following form:

Cowl B2 2A(w) ’ @ P2 . P DO, &2

gt0r+gﬂuid+ggrav = F (D[)— ) +T(AmR +BmRS+CmS ) (6129)
T w

In analogy to expression , the first term is positive definite, while the remaining

formula can be expressed in a quadratic form, where the prefactors A,,, B, and C,, are

equivalent to the prefactors given in . The derived stability criterion is thus identical

to (C.3).

The analytical stability consideration Akgiin et al. give for the neutron star with the
mixed magnetic field is based on approximations of the energy variation densities .
Their explicit forms , and with and are first approxi-
mated similar to the poloidal contribution .

Afterwards, the separate contributions to the energy variation are estimated under the
assumption of a vanishing extent of the localisation region. That way, the integrals can
be calculated analytically.

The general stability criterion for the mixed field star,

|
oW = 5Wtor + 5Wp01 + 6Whyd > 0, (C.130)
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C.3. Stars with mixed magnetic fields and stratification

translates into a critical poloidal field strength which is necessary to stabilise the toroidal
field instability that is present for the applied displacement field mode:

(bpol)2 ey [kt_ (2)2_ khya T1 —To 87 pe ((» )4] (C.131)

bior v J_J prI dy kPOI Lo B(Q] b%or %
where
35
btor = 0.0254 TMtor bpol = Z Mpol (0132)
and
1 -1 2 1 -1 -1
[UEE(U__) Jr=l7 (o-1) (g__) (g_§) _ (C.133)
2 2 6 2 2

The numerical constants Kior, kpol and knyq were defined as proportionality factors of
the approximated energy variation contributions dWio, Wy and 6Whyq. According to
Akgiin et al. (2013), they are given by

2 —_
kior = TR Cn(20,9) xé sin® 9 B?; (C.134a)
0 “tor
R? _ 8
Kool = WT Din (20, 30) 28 sin® ¥, BQ; (C.134b)
0 “pol
2 1 T
Ky = % Ao (0, 90) 22 sin’ g o —OFO' (C.134c)

Note that p. is the central pressure in the star. The function Dm(g_u,ﬂ) has been defined
for £,01 in analogy to the quadratic form coefficients A,,, By, and Cp, in Eior and Epyq.

As it can be seen from , the numerical constants Koy, kpol and kpyq solely depend
on constants, such as the localisation parameters, the stellar radius, the central pressure
and — via A, By, Cp, and D,, — on values of the equilibrium quantities Qo(xg,) at the
localisation position of the displacement field. These values Qo(xo,g) are given by the
analytical relations Akgiin et al. choose for the density, mass and pressure distribution
and the gravitational potential.

Note that in contrast to ki and kpol, knyq additionally depends on the polytropic index
I"1 of the perturbations.

The stability criterion contains system parameters on the right hand side. In
order to find the absolute minimum field strength 7, for which the toroidal field Tayler
instability can be stabilised, Akgiin et al. next maximise this right hand side with respect
to the appearing parameters o and 0, /dy.
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C. Supporting calculations for the applications of the semi-analytic method

The maximising values are

3+\/§

o =

~ 2.37 (C.135)

(£)2 _ ktor b%or Bg FO
(519 Qkhyd(I‘l) 87Tpc Fl—FQ’

(C.136)

where we keep in mind that kyyq in expression (C.136) depends on I'; itself.

Applying the maximising parameter choices, the stability criterion (C.131]) becomes for
the extremal case

2
> 52 Is thOr B(Q) b‘%or Lo

(52) > %
bor ? Ty 4kpol knya(T1) 87pe T1-Tp

(C.137)

With relation (C.132)), the critical minimum poloidal field strength for arbitrary choices
of I'1 is thus given by

tor

4 Ktor I, B3, Ty

crit _
pol —

35 v 4kp01khyd(F1) Jo 8T pe Fl_FO.

(C.138)

Finally, applying the explicit parameters chosen by Akgiin et al. and presented in section
the stability criterion reads

. ['g1
crit -5 ot1
Mool > 1Y = 6.759 x 107 85 /—1 o (C.139)

Note that Akgiin et al. assume relations and for deriving the stability
criterion . If the results produced with the semi-analytic method shall be compa-
rable to this analytic stability criterion, assumptions and must be used in
this work as well.

This implies that the localisation area needs to be adjusted each time the polytropic
index I'; of the perturbations is varied. The detailed discussion on this fact is given in the
computation section of [5.3]

For the sake of completeness, with the parameter choices made by Akgiin et al. and
shown in section the numerical constants (C.134]) become

7.71555
ktor = 1.057199 kpor = 0.08323 knya = T (C.140)
1
The central pressure can be expressed as
B2
pe =102, (C.141)
8
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D. lllustration of numerical routines

In this chapter, numerical methods applied in this work are illustrated.

D.1. Cubic spline interpolation in one dimension

In this section, the interpolation method shown in section is explained.

Cubic spline interpolation approximates a required function locally using different third
degree polynomials inside different intervals. The interval boundaries correspond to the
grid points of given values and are labelled by the index s = 0,...,n. The polynomials of
neighbouring intervals as well as their first and second derivatives are matched at these
grid points, achieving high accuracy with comparably low effort. In certain cases, the
interpolation can even be exact.

Generally, a system quantity Q(r) in the interval [rs,7s41] is approximated by
Q(r) = as(r — 1) + bs(r —15)? + cs(r — 1) + ds he =Te41 —Ts, (D.1)
where hy denotes the interval width. The derivatives are

er(T) :3as(7"—7"5)2+265(7“—7“5)+65 (DQ)
d?Q(r) = 6as(r —7rs) + 2bs. (D.3)

The function values at the grid points, their first and second derivatives are denoted as

Qs =Q(rs) Fy=d,Q(r) Ss=d;Q(r) (D.4)

Ts Ts

The interpolation coefficients for the interval [rg,rs.1] can be determined by evaluating
the interpolation formula (D.1) for @ and S at the grid points rs and 74.1:

QS = ds = ds = Qs (D5a.)
S — Ys 2hs s hs S
Quit = Way+ h2by +hoco+ds = o= 2 o @s 2hs S :; Sl (p )
Ss
S =2by = bs = 5 (D.5¢)
Sei1=6hgas +2b, = as = % (D.5d)

The coefficients are thus implicitly given by the function values Qs, Q541 and their second
derivatives S5, Ssi1.
The second derivatives can be calculated matching Fy given by (D.2)) at the boundary
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D. Illustration of numerical routines

point rg of the intervals [s —1,s] and [s,s+1]:
cs=3as-1 (rs— 7“&,,1)2 +2bs1(rs—1rs-1) + Cs-1- (D.6)
Inserting (D.5)) and the definition of hs from (D.1)) provides a relation between S; and Q;:

Qs+1 - Qs _ Qs - Qs—l
hs hs—l

ot St + 2 (hort + ) Se + vt S =6 ) 5Tt

(D.7)

Equation (D.7)) represents a linear system of equations for St, ..., Sp-1.

Due to the lack of outer neighbours, the outermost intervals require a special treatment
at s =0 and s = n. Reasonable values Sy and S,, where the polynomials can be matched
to need to be found.

In the neutron star, Sy and S, are not explicitly known for all system quantities. We
thus use a linear interpolation to calculate Sy and S, from their next and second-next
neighbours S1, and So, as well as S,,—1 and S),_2:

Sl - S() _ SQ - Sl Sn - Sn—l _ Sn—l - Sn—2 ) (D.8)
ho hy hp-1 hn-2
Thus,
— hTL— hn_ Sn— - h/TL— STL—
g - ho+ hl)hsl ho S g, - (m2+ 1)h 1= -1 5n-2. (D.9)
1 n—2

In total, the cubic splines method requires the solution of a linear system of equations
with n + 1 equations for n + 1 unknowns Sy, ..., Sj,.

The total cubic spline interpolation procedure using linear extrapolation can then be
summarised by equations (D.1]), (D.5]), the boundary conditions

(ho + hy) (ho +2hy) hi - hg <Q2—Q1 Ql—Qo)
S So =6 - D.10
I LT 2 In by ) (D102)
2 32 _ _
hn_z hn—l Sn—2 i (hn—l + hn—2) (hn—l + 2hn—2) Sn—l =6 (Qn Qn—l _ Qn—l Qn—2)
hn—Q hn—2 hn—l hn—2
(D.10b)
and the linear system of equations for Sy, ..., S,-1:
hi 2(h1+h) ha 0 .. 0 6 (QB};QQ - QTf?l)
Q4-Q3  Q3-Q2
0 ha  2(ha+hg) hy .. O 6 (% 2 ) (D.100)
0 0 0 0 Bpo | 6 (Qn—hi:_Qn—Q _ Qn—}i:_?n—3)
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E. List of notations

Physical scalar quantities

w

Displacement field localisation area where & # 0
Quadratic form prefactor of £ in the toroidal field case
Quadratic form prefactor of £ in the mixed field case
Cubic splines interpolation coefficient

Poloidal magnetic field amplitude

Toroidal magnetic field amplitude

Critical toroidal magnetic field strength for instability in the toroidal

field case

Maximum of the poloidal magnetic field amplitude
Maximum of the toroidal magnetic field amplitude
Overall magnetic field amplitude in the mixed field case
Quadratic form prefactor of £ in the toroidal field case
Quadratic form prefactor of £ in the mixed field case
Prefactors Runge-Kutta method

Cubic splines interpolation coefficient

Quadratic form prefactor of £ in the toroidal field case
Quadratic form prefactor of £ in the mixed field case
Expansion coefficients for an expansion in stellar eigenfunctions
Cubic splines interpolation coefficient

Specific heat capacity for isobaric processes

Specific heat capacity for isochoric processes
Abbreviatory notation in the mixed field case

Prefactor of a contribution to £ in the toroidal field case
Prefactor of a contribution to £ in the mixed field case
Cubic splines interpolation coefficient

Energy

Gravitational potential energy

Internal energy

Kinetic energy

Energy variation density contribution in the mixed field case, cf.
Energy variation density contribution in the mixed field case, cf.
Energy variation density contribution in the mixed field case, cf.
Energy variation density contribution in the mixed field case, cf.

Electron

Abbreviatory function for J(r)/r'*t — ! K (r)

B-defining dimensionless function in the mixed field case
&-defining function in the poloidal field case

2D-Simpson approximated inner integrand

0.58

5.59

0.5

5.59
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E. List of notations

f/\(rv 7ﬁ,)
G,

g(r)
h

240

Radial part of the 1/|r — r'|-expansion

2D-Simpson approximated outer integrand

&-defining function for the expression by spherical harmonics
Typical scale height of stellar physical quantities
Runge-Kutta step width

Simpson interval width along z

Simpson interval width along 9

Simpson interval width along w

&-defining function for the expression by spherical harmonics
Radial function describing 5Wgnrgv in the mixed field case
Abbreviatory notation in the mixed field case, cf. equation
Radial function describing &

Abbreviatory notation in the mixed field case, cf. equation
Radial function describing d®

Simpson grid point index for w

A-defining constant in the toroidal field case

Proportionality constant stellar spin-down

Proportionality constant of 6Wjyq in the mixed field case
Intermediate values Runge-Kutta method

Proportionality constant of W, in the mixed field case
Proportionality constant of §W},, in the mixed field case
Luminosity

Polar angular mode index

A-defining constant in the toroidal field case

Stellar mass

Azimuthal angular mode index

Mass enclosed by a sphere with radius r

Critical angular mode index for instability in the poloidal field case
Neutron mass

Neutron

Temporal mode index

Number of Simpson intervals for the J(r)-, K(r)-calculation
Number of Simpson intervals along z

Number of Simpson intervals along ¥

Number of Simpson intervals along w

Braking index

Fluid pressure

Vacuum pressure level for numerical computations

Proton

Generally perturbed system quantity

Quantity @ as defined by |Akgiin et al.| (2013)

§-defining quantity independent of B, in the poloidal field case
Quantity at the stellar centre Q. = Qo(r =0)

Euler perturbed quantity

Imaginary part of quantity @

Lagrange perturbed quantity
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up(r)

up (1)

NORRRE kT S

Quantity @ as defined by Markey & Tayler| (1973])

Real part of quantity @

Equilibrium quantity

Dimensionless quantity

Dimensionless geometrised quantity

Simpson grid point index for z

Electric charge

Stellar radius

Schwarzschild radius

Distance between the torus centre and the stellar symmetry axis,
‘major radius’

Radiation radius

&-defining function in the mixed field case

Central radial coordinate for numerical computations
A-defining constant in the mixed field case

Torus radius, 'minor radius’

Two dimensional stellar integration area for constant ¢
&-defining function in the mixed field case
Runge-Kutta/Simpson grid point index for r

J(r)-, K(r)-Simpson grid point index

Number of Runge-Kutta intervals

Temperature

Effective blackbody temperature of a neutron star
&-defining function in the mixed field case

£-minimising value of T

Simpson grid point index for ¥

Time

Axisymmetric system quantity € {mg, po, po, Po, , 8} in the mixed field
case

A-defining numerical parameter in the toroidal field case
A-defining numerical parameter in the toroidal field case
n,-defining factor

ng-defining factor

Radial part of the angular stellar eigenfunction component
Radial part of the radial stellar eigenfunction component
System volume

Total system energy

&-defining function in the toroidal and poloidal field case
Constant amplitude of the &-defining function X
Dimensionless radial coordinate

Final integration bound for an integration over x

Initial integration bound for an integration over x
Proton to neutron density fraction

&-defining function in the toroidal and poloidal field case
E-minimising value of Y

&-defining function in the toroidal and poloidal field case
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242

Constant amplitude of the &-defining function Z

Dimensionless B-defining function in the mixed field case
Dimensionless B-defining function in the mixed field case
Polytropic index of the equilibrium system

Polytropic index for a fixed proton fraction

Lagrangian perturbation of quantity @

Lagrangian fluid pressure perturbation in a polytropic star
Difference between the polytropic indices I'; and I’y

Eulerian perturbation of quantity @

Eulerian fluid pressure perturbation in a polytropic star
First variation of quantity @, VQ # W

Second energy variation

Fluid contribution to the energy variation

Gravitational contribution to the energy variation
Gravitational contribution to the energy variation in Cowling
approximation

Additional non-Cowling gravitational contribution to the energy
variation

Hydrostatic contribution to the energy variation

i-th contribution to the energy variation

Magnetic contribution to the energy variation

Stellar volume contribution to the energy variation

Stellar surface contribution to the energy variation

Vacuum exterior volume contribution to the energy variation
Maximal computed energy variation according to numerical accuracy
Minimal computed energy variation according to numerical accuracy
A-defining constant in the mixed field case

A-defining constant in the mixed field case

A-defining constant in the toroidal field case

Poloidal field strength parameter in the mixed field case
Critical poloidal field strength for stability in the mixed field case
Toroidal field strength parameter in the mixed field case
A-defining constant in the mixed field case

Polytropic constant

Abbreviatory notation in the mixed field case

Summation index

Compton wave length

Summation index

Electron neutrino

Electron antineutrino

Displacement field amplitude in the mixed field case

Mass density

Electric charge density

Neutron mass density

Proton mass density



(I)ext
q)magn

wtor
Q

Wn

SCI'OSS

gﬂuid
poly
gﬂuid
ggrav
£ Cowl

grav

(c/’nC

grav

ghyd
gmagn
gpol

5t0r

&-defining function in the mixed field case
Gravitational potential

Gravitational potential at the stellar surface
Magnetic flux

&-defining function in the mixed field case
A-defining constant in the poloidal field case
Stellar angular velocity

Stellar eigenfrequency of the eigenmode n

Energy variation density

Mixed magnetic field contribution to the energy variation density
in the mixed field case

Fluid contribution to the energy variation density

Fluid contribution to the energy variation density in a polytropic star
Gravitational contribution to the energy variation density
Gravitational contribution to the energy variation density

in Cowling approximation

Additional non-Cowling gravitational contribution to the energy
variation density

Hydrostatic contribution to the energy variation density

Magnetic contribution to the energy variation density

Poloidal magnetic field contribution to the energy variation density
in the mixed field case

Toroidal magnetic field contribution to the energy variation density
in the mixed field case

Physical vector quantities

A
B
Bpol

Vacuum vector potential

Magnetic field vector

Magnetic field vector of the poloidal field
Magnetic field vector of the toroidal field
Electric displacement field vector
Electric field vector

Unit vector

Gravitational field vector

Electric current density

Normal unit vector

Momentum

Neutron momentum

Position vector

Surface vector

Solution vector Gauss-Seidel method
Stellar eigenfunctions

Fluid velocity
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E. List of notations

I3 Displacement field vector, time-independent amplitude
£ (r,t) Displacement field vector of mode n, including time-dependence
Q Vectorial stellar angular velocity

Mathematical notations, operators, coordinates

D, Material time derivative

d; Total derivative

e Euler’s number

i Imaginary unit

J Jacobi determinant

Nim, Spherical harmonics normalisation constant
Py (cos ) Associated Legendre polynomials

P*(r) Polynomial defined in the interval [s, s+ 1]
Q" Complex conjugate of @

r Radial distance

T Toroidal radial distance

Y™ (49, ) Spherical harmonics

T Cartesian coordinate

Y Cartesian coordinate

z Cartesian coordinate, cylindrical height
0ij Kronecker delta

o7 (V) Polar angular part of the spherical harmonics Y, (9, ¢)
0 Polar angle

w Cylindrical radial distance

© Azimuthal angle

X Poloidal angle

P Stream function

C Set of complex numbers

0; Partial derivative

0ij Second partial derivative 0;0;

8,? Second partial derivative 0;0;

R* Set of positive real numbers

R Real part

J Imaginary part

O(2) Orders of magnitude k or higher in z

v Nabla operator

Vr Nabla operator with respect to {r, ¥, p}
Ql, Quantity @ evaluated at x
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Physical constants (Constants and Units, 2017)

¢ =2.99792458 x10'%cm s™!  Speed of light
G =6.67384x10%cm? g7! s Gravitational constant
hp =6.62607x10"2"cm? gs ! Planck constant
Mo =1.9884x10%¢g Solar mass
osg =5.670367x107°gs3 K*  Stefan-Boltzmann constant

Abbreviations

CFS instability
LHS

MHD

QCD

QPO

TOV equations

Chandrasekhar-Friedman-Schutz instability
Left hand side

Magnetohydrodynamics

Quantum chromo dynamics

Quasi periodic oscillation
Tolman-Oppenheimer-Volkoff equations
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E. List of notations

Table E.3.: Legend of polytropic indices and sign conventions used by different authors.

Polytropic index for the
background quantities

Polytropic index for a
fixed proton fraction

Sign convention

Tayler|(1973)

This work Ty g=+V®d

Akgiin et al.[(2013)* r g=-Vvo

Bernstein et al.|(1958) - g=-vo

| |Chandrasekhar & Lebovitz (1964) - g=+Vo
B Passamonti et al.| (2009) Iy -
Robe] (1968) ~ -

| |Shapiro & Teukolsky|(1983) Iy g=-vo

B } - g=+vo

* Note that |Akgiin et al.| (2013) use the index 1 for quantities in the presence of the magnetic field.
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